am
/1)

O ™
®e
=
-
[
-
5
=
w
L
=
[
>
-
.
-
>
L
>
mwaw
mmy
Z
08 ¢
.
(J
-
x

I\ =< 1

INTERNATIONAL
CONFERENCE ON
PARALLEL

| PROCESSING

PROCEEDINGS

OF THE

1983 INTERNATIONAL CONFERENCE

ON

PARALLEL PROCESSING

August 23-26, 1983

H. J. Siegel and Leah Siegel

Editors
Co-Sponsored by

Department of Computer and Information Science
OHIO STATE UNIVERSITY
Columbus, Ohio

and the

IEEE Computer Society

In Cooperation with the
Y
am
N

Association for Computing Machinery

ISSN 0190-3918
ISBN 0-8186-0479-4
IEEE Catalog Number 83CH1922-4
Library of Congress Number 79-640377
IEEE Computer Society Order No. 479

COMPUTER
SOCIETY
PRESS

The papers appearing in this book comprise the proceedings of the meeting mentioned on the
cover and title page. They reflect the authors’ opinions and are published as presented and with-
out change, in the interests of timely dissemination. Their inclusion in this publication does not
necessarily constitute endorsement by the editors, IEEE Computer Society Press, or the Institute
of Electrical and Electronics Engineers, Inc.

Published by IEEE Computer Society Press
1109 Spring Street
Suite 300
Silver Spring, MD 20910

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source.
Libraries are permitted to photocopy beyond the limits of U.S. copyright law for
private use of patrons those articles in this volume that carry a code at the bottom
of the first page, provided the per-copy fee indicated in the code is paid through the
Copyright Clearance Center, 21 Congress Street, Salem, MA 01970. Instructors are
permitted to photocopy isolated articles for noncommercial classroom use without
fee. For other copying, reprint or republication permission, write to Director, Publish-
ing Services, IEEE, 345 E. 47 St., New York, NY 10017. All rights reserved. Copy-
right © 1983 by The Institute of Electrical and Electronics Engineers, Inc.

ISSN 0190-3918
ISBN 0-8186-0479-4 (paper)
ISBN 0-8186-4479-6 (microfiche)
ISBN 0-8186-8479-8 (casebound)
Library of Congress 79-640377
|IEEE Catalog No. 83CH1992-4

IEEE Computer Society Order No. 479

Order from: IEEE Computer Society IEEE Service Center”
Post Office Box 80452 445 Hoes Lane
Worldway Postal Center Piscataway, NJ 08854

Los Angeles, CA 90080

@ The Institute of Electrical and Electronics Engineers, Inc.

PREFACE

This volume is the Proceedings of the 1983 International Conference on Parallel Process-
ing, the twelfth in a series of annual meetings. This year’s conference represents the largest
yet, both in number of papers submitted and number of papers presented at the conference.
The previous records were 136 papers submitted (1981) and 67 papers presented (1982). This
year 240 papers were submitted! The final program contains 97 papers from twelve countries.
Academia, industry, and government research labs are all represented.

Because of the large number of excellent papers submitted, the task of arriving at a pro-
gram was an extremely difficult one. For the first time, the Parallel Processing Conference
will have parallel sessions in order to accommodate more papers. Even at that, there were
many very good papers which it was not possible to include, and there were many papers sub-
mitted as regular papers which were accepted as short papers. On the positive side, because
of the large number of submissions, all of the papers finally accepted and included in this
proceedings are of the highest quality. We sincerely thank all of the authors who submitted
papers for their interest in the conference.

Special thanks go to the 379 referees who read and evaluated the manuscripts. Each sub-
mitted paper was sent to three referees. Without the efforts of these reviewers, the task of
arriving at a program would have been virtually impossible. The names of the referees are
listed in these proceedings.

We wish to thank Dr. Ben Coates, Head of the Electrical Engineering School at Purdue,
for his support and encouragement. We thank Dee Dee Dexter, Carol Edmundson, and Jenny
Hiatt for their excellent job in managing the massive amounts of paperwork involved in han-
dling 240 submissions, 720 reviews, and 97 accepted papers. We also want to thank Wanda
Booth, Andy Hughes, Sharon Katz, Mickey Krebs, Nancy Lein, Pat Loomis, Vicky Spence,
and Linda Stovall for their assistance. Ken Batcher provided valuable information about the
running of the 1982 conference. We thank Ming T. Liu and Chuan-Lin Wu for handling the
reviewing of the papers submitted from Purdue.

Finally, we wish to acknowledge the efforts of Tse-Yun Feng. As always, he has been a
one-man conference organizing committee, handling publicity, local arrangements, budget, and
all other facets of the conference. We thank him for giving us the opportunity to chair this

year’s technical program.

H. J. Siegel
Leah Siegel
Program Co-Chairs

Purdue University
June 1983

iii

Ikram Abdou

M.A. Abidi

Amir Abouelnaga
Shrikant Acharya
W. Ackerman
George B. Adams III
Loyce Adams
Subhash Agarwal
Tilak Agerwala
Dharma Agrawal
Mohan Ahuga

S.J. Allan

Dave Anderson
John B. Anderson
Richard Antony
Bruce Arden
clifford Arnold
V. Ashok

J.W. Atwood

T.S. Axelrod
Takanobu Baba
Hussein Badr
Jean-Loup Baer
T.R. Bashkow
Kenneth Batcher
Paul Bay

Stephan Bechtolsheim
Jon Bentley
Bruce Berra
Bharat Bhargava
L.N. Bhuyan
Gianfranco Bilardi
John Board, Jr.
Michael Bodner
Andre Bondi

P. Bounds

Faye Briggs
Edward C. Bronson
Mark E. Brown
Jim C. Browne
John Bruner

John Burger

John Burkley
F.J. Burkowski
Steven Butner
Bill Buzbee

D.A. Calahan
James Calhoun
Peter Cappello
Avinash Chandak
Chiou—-Min Chang
Su-shing Chen
Ming-Yang Chern
Chung-Yang Chiang
Yetung Chiang
Francis Chin
Y.C. Chow
Carolyn Cline
Fred Cohen
Leonard Cohn
Hank Cook

Ed Coyle

Karel Culik
David Culler
Janice Cuny

Ron Cytron

LIST OF REFEREES

Scott Danforth
Edward Davidson
AL Davis

Carl Davis

Nat Davis

Doug DeGroot

E. Dekel
Narsingh Deo
B.C. Desai
Sanjay Deshpande
Dave DeWitt

S. Dhar

Daniel Dias
Nikitas Dimopoulos
Karl Doty
Robert Douglass
Edwin Drogin
David Du

P.F. Dubois
Ahmed Elmagarmid
P.G. Eltgroth

P. Enslow

M.D. Ercegovac
Lars Ericson
Adly Fam

Art Feather
Raphael Finkel
Allen Firstenberg
Paul Fisher
Eugene Fiume
Raymond Ford
T.J. Forquer
J.A.B. Fortes
Alain Fournier
M. Franklin
King-Sun Fu
Henry Fuchs
George Fucik
D.S. Fussell
Daniel Gajski
John Gallant
E.J. Gallopoulos
Dennis Gannon
Oscar Garcia
J.L. Gaudiot
Pieter Geerkens
S.A. Ghozati
Gary Gladden
S.M. Goldwasser
Allan Gottlieb
James Graham
Marshall D. Graham
Peter Gregono
William Greiman
Nancy Griffeth
Gao Guang-Rong
John Gustafson
John Guttag

N.R. Hall
Susanne Hambrusch
Sang Han

Robert Haralick
C.D. Harber
Paula Hawthorn
Kye Hedlund

Don Heller

v

Ffrank P. Hiner, III
Daniel Hirshberg
Lawrence Ho
Yang-Chang Hong
G.S. Hope
William Hopkins
Edward Horvath
C.E. Houstis
Ching Hsiao
YuHen Hu

Paul Hudak
Michael Huhns

Kai Hwang

Yul Inn

Keki Irani

Mary Jane Irwin
Robert Israel
M.R. Ito

Bijan Jabbari
Bharadwaj Jayaraman
David Jefferson
Roy Jenevein
Lennert Johnsson
Harry Jordan

J. Robert Jump
Thaddeus Kadela
Avinash C. Kak
Gerald Kane
Alejandro Kapauan
Svetlana Kartashev
Krishna Kavipurapu
John Kearns
Robert Keller
T.M. Kinter
Gloria Kissin
Dave Klapphelz
Hideaki Kobayashi
Aaron Konstam
Israel Koren
Suraj Kothari
J.S. Kowalik
Clyde Kruskal
Annette Krygiel
James T. Kuehn
J.G. Kuhl

Robert Kuhn
William Kuhn
Ashok Kulkarn
Manoj Kumar

S.P. Kumar

H.T. Kung

S.Y. Kung
Ten-Hwang Lai

S. Lakshmivarahan
C. Lam

Duncan Lawrie
Daryl Lawton

C.W. Lee

fFrancis Lee
Hykyu Lee
Kyungsook Lee
Manjai Lee
Wong-Hua Lee
William Leler
Bruce Lester
Steven Levitan

Hungwen Li
Pey-yun Peggy Li
Tao Li

Richard Lian
Karl Lieberherr
Gie-Ming Lin
Huai-An Lin

Woei Lin

Gary Lindstrom
G.J. Lipovski
Yury Litvin

Ming T. Liu
David Loendorf
Hubert Love, Jr.
Richard Lyon
Bill MacDonald
Gyula Mago
Srinivas Makam
Miroslaw Malek
0.P. Malik

Creve Maples
Peter Marinos
Gerald Masson
A.D. McAulay
Charlie McDowell
S.D. McEwan

Jim McGraw
Robert J. McMillen
P. Mehrotra
Joseph Mercurio
Dave Meyer

David Middleton
Russ Miller

0. Robert Mitchell
Joseph Mohan
Dan I. Moldovan
Robert Montoye
Karam Mossaad
Fred Mowle
Trevor Mudge
Phil Mueller
Tadao Murata
Barbara Naused
Victor Nelson
Lionel Ni

Wesley Nurden
John 0'Donnell
R.R. Oldehoeft
Ibrahim Onyuksel
J. Opartny

ELi Opper

Yavuz Oruc
Krishnan Padmanabhan
Christos Papachristou
Stott Parker
Janak Patel
bave Paterson
Girish Pathak
A.R. Pleszkun
Jerry L. Potter
Dhiraj Pradhan
Terrence Pratt
S. Preiser
Kendall Preston, Jr.
Noah S. Prywes
Krish Purswani
G.Z. Qadah
Donna Quammen
Michael Quinn

C.S. Raghavendra
T.A. Rahman
Bharat Rathi

S. Reddy

Daniel Reed
Anthony Reeves
R.A. Reynolds
John Rice

Tom Rice

Garry Rodrigue
Gruia-Catalin Roman
Azriel Rosenfeld
J. Rootenberg
Jerry Rothstein
Larry Rudolph
Sartaj Sahni
Ahmed Sameh
Nicola Santoro
Subhash Sarin
John Savage
Prashant Sawkar
Michael Schlansker
J.G. Schwartz
Herb Schwetman
Robert Seban

Zary Segall
Charles Seitz
Matthew Sejnowski
Sowrirajan Seshadri
David Shaw

John Shen
Heonshik Shin
Kang Shin

Howard Sholl

Dan Siewiorek

A. Silberschatz
Harvey Silverman
Bart Sinclair

Dan Slotnick
Bradley Smith
Bruce Smith
Burton Smith

D.R. Smith

Gerald Smith

Kirk Smith

S. Diane Smith
Lawrence Snyder
Mary Soffa

Vason Srini

John A. Stankovic
Kenneth Steiglitz
Stephen Stepoway
Stanley Sternberg
L.J. Stockmeyer
Sal Stolfo

Albert Stone
Harold Stone
Quentin Stout
Philip Swain

Earl Swartzlander
Tsung-Wei Sze
Jiro Tanaka

Steve Tanimoto
Fred Taylor
Suchai Thanawastien
Alexander Thomasian
C.D. Thompson
Kenneth Thurber
Ioannis Tollis

Kishor Trivedi
Roger Tsai

F.M. Tse

Yung Tsin

David Tuomenoksa
Leonard Uhr

Jeff Ullman

L. David Umbaugh
W.K. Van Nurden
John Van Rosendale
Andre van Tilborg
Peter Varman
Alex Veidenbaum
James Vellenga
Charles Vick
Newman Vosbury
Robert Voigt
Robert Wagner
Benjamin Wah
Abraham Waksman
Don Walker
Pong-Sheng Wang
D. Wann

Robert Wedig
Charles Weems
Rich Weiss

David Wells
Charles Wetherell
Andrew Whinston
Jack Wileden
Elizabeth Williams
Tom Williams
David Wilson
Larry Wittie
F.S. Wong

Nam Woo
Chuan-Lin Wu
Steve Wu
Yee-Hong Yang
Phil Yeh

W.C. Yen

Mark Yoder
Matthew Yuschik

Acknowledgment of Prior Work

Part of a chapter in our article "Parallel Simulation by Means
of a Prescheduled MIMD-System Featuring Synchronous Pipeline
Proceésors", published in the Proceedings of the 1982 Interna-
tional Conference on Parallel Processing under the subheading
"Processor Scheduling Strategy" is quite similar to the work
of D'Hollander. While we acknbw]edged the original work, due
to an oversight D'Hollander's paper was not mentioned and we
profoundly regret this omission. The references in our article
should therefore be augmented by: E.H. D'Hollander "Speedup
Bounds for Continuous System Simulation on a Homogeneous Multi-
processor"”, Int. Conf. on Par. Proc. 1981, pp 176 - 182.

M. Tadjan, R. Biihrer, W. Hadlg
Swiss Federal Institute of Technology

vi

Abdel-Rahman, T.

Abdou, I.E. . . .
Abe, He v o o o
Adams, L.M. . . .
Agrawala, A. . .
Agusa, Ke o o o
Aiso, He « + .« &
Allan, S.Je « « &
Arnold, C.N. . .
Awervuch, B. -

Axelrod, T.S. . .
Baba, T . « .« .
Baer, J.L. o« .

Bay, Pe ¢« ¢ « +
Bhuyan, L.N. . .

Bronson, E.C. . .
Browne, J.C. . .

Brundiers, H.~J.

Bruner, J.D. .« .
Buehrer, R.E. . .
Burger, J.R. . .
Cappello, P.R. .

Cezzar, R. o e
Chandak, A. . . .
Chern, M.-Y. . .

Chiang, Y.P. . .
Crookes, D. . . .
Dansforth, S. . .
Davidson, E.S. .
Degroot, D. . . .
Dennis, J.B. . .
Deshpande, S. . .
Dhar, S. . + + .
Dimopoulos, N. .
Doty, K.W. .+ o .
Du, H.C. o e e e
Dubois, P.F. . .
Eltgroth, P.G. .
Forquer, T.J. . .
Franklin, M.A. .
Freiss, Hs .+ . .
Fritsch, G. . . .
Fu, K.-S. « + . .
Fussell, D.S. . .
Gajski, D. . . .
Gallopoulos, E.J.
Gao, Q.-S. o o e
Goldwasser, S.M.

Hashimoto, K. . .
Hashimoto, N. . .
Hiner, F.P., III.
Ho, L.Y. e o e
Hong, Y.-C. . . .

Author Index

369
255

95
132
244
135

47
303
530
175
350
478
429
421

275
359
511
240
511
547
448
395
395
79
374
232
194
461
106
331
. 25, 51
59
520
158
429
350
350
344
59
511
325
. 374
458
524
29
87
269
478
478
226
338
315

‘Makam,

vii

Hope, G.S. .
Hoshino, T. .
Hsjiao, C.C. .
Hwang, XK. . .
Irani, K.B. .
Ishizaki, M.
Israel, R.K.
Jabbari, B. .
Jayaraman, B.
Jefferson, D.
Jenevein, R.
Jump, J.P. .
Kageyama, T.
Kamimura, T.
Kanai, H. . .
Kane, G.R. .
Kartashev, S.I
Kartashev,
Kawai, T. . .
Klappholz, D.
Kleinoeder, W
Koren, I. . .
Kothari, S.C.
Kuck, D. . .
Kuhl, J.G. .
Kumar, M. . .
Kurokawa, T.
Lai, T.-H. .

S.P.

Lakshmivarahan,

Lange, O. . .
Lawrie, D.H.
Lawton, D.T.
Lee, C.W. . .
Lee, D.C.H. .
Lee, W.-H. .
Lee, Y.-H. .
Leler, W. . .
Lester, B.P.
Li, He .« « &
Li, P.-Y.P. .
Lin, We o o
Linster, C.U.
Lipovski, G.J.
Litvin, Y. .
Logan, D. . .
S.V. .
Malek, M. . .
Malik, O.P. .
Mancarella, P.
Maples, C. .
McDowell, C.E.
McEwan, S.D.
Mehrotra, P.

172

95
222
537

437
47
503
151
416
384
51
10
95
95
478
261
206
206
95
395
325
335
76
524
154
10
47
183

76
544

524
492

65
506
362
341
381
319
202
114
325

51
252
514
496

506
172

293
514
472

29
132

Milligan, P. . .
Mohan, Je. ¢ « + &
Mudge, T.N. . . .
Murata, T. =+ «
Newman, I.A. . .
Ni, L.M.
Noor, A.I. o o o
Oed, We « o o o &
Ohno, Y =« ¢« « &
Okuda, Ko « ¢ « o
Oldehoeft, R.R. .
Onyuksel, I.H. .
Oruc, A.Y. « + &
Oyanagi, Y. « . .
Padmanabhan, XK. .
Patrick, M. . . .
Perrott, R.H. . .
Perry R.P. .+ . .
Pleszkun, A.R. .
Potter J.L. . . .
Pratt, T.W. . o
Purdy, W.R.M. . .
Purswani, K. . .

Qadah, G.Z. . .« .
Raghavan, P. . .
Raghavendra C.S.

Ramakrishnan, I.V.
Rathbun, W. . . .
Rathi, B.D. . . .
Reddi, A.V. « « &
Reddy, S.M. . . .
Reed, D.A. o e e
Reeves; A.P,' o e
Reynolds, R.A. .
Roman, G.-C. .
Rong, G.G. . . .
Sahni, S. o o
Sameh, A. ¢« « ¢
Sawkar, P.S. o o
Seban ReR. .« .« &
Segall, Z. . . .
Sejnowski, M. . .
Sekiguchi, S. . .

. o 232
« . 191
. .« 369

79, 90
« o 367
.« « 537

« « 544
.« « 135
. « 478
. « 303
« o« 437
. « 126
« « 95
A
« o 132
. o 232
« .« 344
. « 461
. « 486
. o 132
.« « 232
. « 151
. » 307
. . 154
.« « 496
. « 440
. « 514
. « 51
. « 148
. « 154
« « 161
.« o« 240
.« « 269
. « 503
« « 331
. o+ 183
« «» 524
.« « 344
« « 117
. « 164
« « 51
« « 95

Shen, J.P. . . .
Siloach, Y. . . .
Shin, K.G. .« « =
Shirakawa, T. . .
Siegel, H.J. . .
Siegel, L.J. . .
Siewiorek, D. . .
Silberman, G.M. .
Silberschatz, A.

Snyder, L. e e e

Stallard, R.P. .
Steenstrup, M.E.

Steiglitz, K. . .
Stout, Q.F. . . .
Sugimoto, S. . .
Sze, Te ¢« o o o o
Tabata, K¢ « + o
Tadian, M. .« .« &
Takefuji, Y. . .
Takenouchi, K. .
Thomasian, A. .
Tse, F.M. o o s
Tsin, Y.H. .« .« &
Tuomenoksa, D.L.

Turini, Fo =« o &
Van Rosendale, J.
Varman, P.J. o o
Voigt, R.G. .+ « .
Volkert, Je¢ o « &
Walker, D. .« .+ &
Wang, R.-Q. . .« .
Wann, D.F. o e e
Weaver, D. o o .
Weems, Ce o ¢ o &
Wells, D.L. « « &
Williams, E. . .
Wilson, A. . . &
Woo, N.S¢ ¢« ¢ ¢« &
Woodward, M.C. .
Wu, Ce-L. « o o &
Yamazaki, K¢ .+ o
Yang, Y. + « o &
Yasrebi, M. « + &

viii

65
175
362

95
407
275
164
335
440
222
367
492
448
214
135
258
135
511

47

95
421
144
180

407
293
132
458
132
325

51

87

59
514
492
261
404
164
244
367
114
478
258

25

Table of Contents

Preface. . « o o o o o s o o o o o s o o o o s s s+ s e s s e s s e = = o iii
List oOf Referees . . « « ¢ ¢ o s o s o o s o o o s o o o s o o o o o o o iv
AUthor INAeX . ¢ « « o o o o o o s o o o o o o 5 s o o o o o o o o o o = vi

Acknowledgement Of Prior Work. . . ¢ ¢ o &« ¢ ¢ ¢ o o o o o o o o o o o o Vviii

SESSION 1: PANEL DISCUSSION: PERFORMANCE OF EXISTING SUPERCOMPUTERS
ON COMPUTATIONALLY INTENSIVE TASKS

SESSION 2A: MULTISTAGE NETWORK PERFORMANCE

An Interference Analysis of Interconnection Networks . « . ¢« ¢« &« ¢ & o« & 2
Laxmi N. Bhuyan and C.W. Lee

Generalized Delta NetwOXKS « o s o o o o o s o s s s s o o o s o 2 o o o 10
Manoj Kumar and J.R. Jump

Expanding and Contracting SW-Banyan Networks . . « « « &« o o o o o « o o 19
Doug DeGroot

A Comparison of Circuit Switching and Packet Switching for Data
Transfer in Two Simple Image Processing Algorithms « « « .« & 25

Mehrad Yasrebi, Sanjay Deshpande, and J.C. Browne

SESSION 2B: NUMERICAL ALGORITHMS I

Numerical Experiments with the Massively Parallel ProcesSOr. . « « « « o 29
E.J. Gallopoulos and S.D. McEwan

An M-Step Preconditioned Conjugate Gradient Method for
Parallel Computation « « « o o o o ¢ o o o o o o o o s o o s o o o o o 36
Loyce Adams

Minimizing Inner Product Data Dependencies in
Conjugate Gradient Iteration « « ¢ ¢ o o ¢ ¢ ¢ o ¢ o o o o o s o o o o 44
John Van Rosendale

New Matrix Equation Solvers in GF(2) Employing Cramer

with Chio Method . + « ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o o o o s o s o o 47
Yoshiyasu Takefuji, Takakazu Kurokawa,
Masato Ishizaki, and Hideo Aiso

SESSION 3A: MULTISTAGE NETWORKS

Specification and Implementation of an Integrated Packet
Communication Facility for an Array COMPUtEr « « « « o « o o o o o o« o & 51

Bharat Deep Rathi, Sanjay Deshpande, Matthew Sejnowski,
Don Walker, Roy Jenevein, G.J. Lipovski, and J.C. Browne

X

Timing Control of VLSI Based NlogN and Crossbar Networks . . .
Sanjay Dhar, Mark A. Franklin, and Donald F. Wann

Easily-Testable (N,K) Shuffle/Exchange Networks. . « + » o o
David C.H. Lee and John Paul Shen :

Fault Tolerance Schemes in Shuffle-Exchange Type
Interconnection NetworkS + « + o o o o 5 o o s s o s o o o o
Krishnan Padmanabhan and Duncan H. Lawrie

A Condition Known to be Sufficient for Rearrangeability of the
Benes Class of Interconnection Networks with 2x2 Switches Is
BlsO NeCeSSArY « s+ o s o & o s o 5 o s o s o s o 5 o 2 o s o

S.C. Kothari and S. Lakshmivarahan

SESSION 3B: NUMERICAL ALGORITHMS IT

A Fast Algorithm for Concurrent LU Decomposition and
Matrix Inversion ¢ « o o o & o o o 5 o o o » s s o s s o o » »
Ming-Yang Chern and Tadao Murata

Vector Computer for Sparse Matrix Operations « . « « + o « . .
Qing-Shi Gao and Rong-Quan Wang

Efficient Matrix Multiplications on a Concurrent
Data—Loading Array ProcessOY + o s s s o o o s o s s s o o s o
Ming-Yang Chern and Tadao Murata

Highly Parallel Processor Array "PAX" for Wide

Scientific Applications. .« ¢ ¢ ¢ ¢ o 4« o ¢ s s e e s s e s . .
Tsutomu Hoshino, Tomonori Shirakawa, Takeshi Kamimura,
Takahisa Kageyama, Kiyo Takenouchi, Hidehiko Abe,
Satoshi Sekiguchi, Yoshio Oyanagi, and Toshio Kawai

SESSION 4A: NETWORK CONNECTION CAPABILITIES

Partitioning Job Structures for SW-Banyan Networks . . . « .« &
Doug DeGroot

Configuring Computation Tree Topologies on a
Distributed Computing System « « + o o o & o o o o o o o o » o
Woei Lin and Chuan-Lin Wu

Performing the Shuffle with the PM2I and Illiac SIMD
Interconnection Networks « o o« o o s o o o o o o o o o o o o
Robert R. Seban and Howard Jay Siegel

A Classification of Cube-Connected Networks with a
Simple Control Scheme. « o ¢ ¢ o o o o o 5 o s s o o o o s o o

A. Yavuz Oruc

SESSION 4B: SPECIAL PURPOSE SYSTEMS

The FEM-2 Design Method. « ¢ + & ¢ &+ ¢ o o o o o o s o o s o &
Terrence W. Pratt, Loyce M. Adams, Piyush Mehrotra,
John Van Rosendale, Robert G. Voigt, and
Merrell Patrick

X

59

65

71

76

79

87

90

95

106

114

117

126

132

A Multi-Microprocessor System for Concurrent LISP.
Shigeo Sugimoto, Kiyoshi Agusa, Koichi Tabata,
and Yutaka Ohno

A Multi-Micro System for I/O Intensive Applications.
F.M. Tse

Pipeline and Parallel Architectures for Computer
Communication SyStemS. « « ¢ + o o o o o o s o o o o o o o =
Arumalla V. Reddi

An Interface Message Processor with a Multiprocessing
Architecture . .« ¢ o ¢ o ¢ o o s o o o o o o s o o o s s o =

Krish Purswani and Bijan Jabbari

SESSION 5A: NODE-TO-NODE NETWORKS

A Class of Graphs for Processor Interconnection.
S.M. Reddy, P. Raghavan, and J.G. Kuhl

Dense Bus Connection NetworkS. « o« s+ o o &+ o o o s o s o o o
Karl W. Doty

A Simulation Study of Multimicrocomputer Networks.
Daniel A. Reed

Evaluation of Multiprocessor Interconnect Structures
with the Cm* Testbed « + ¢ ¢« ¢ v ¢« ¢ o ¢ o o o o s o o o o =

Andrew Wilson, Dan Siewiorek, and Zary Segall

Slot-Based Multi-Access Protocol for Local Computer Network.
A.I. Noor, G.S. Hope, and O0.P. Malik

SESSION 5B: NON-NUMERICAL ALGORITHMS I

New Connectivity and MSF Algorithms for Ultracomputer
and PRAM .+ ¢ « o o o o o o o o o s s o o o o o o s s o o o

B. Awerbuch and Y. Shiloach

Bridge-Connectivity and Biconnectivity Algorithms for
Parallel Computer Models . « + ¢ & o o o o+ o v o o » » o & &
Yung H. Tsin

Anomalies in Parallel Branch-and-Bound Algorithms.
Ten-Hwang Lai and Sartaj Sahni

Experience with Two Parallel Programs Solving the Traveling
Salesman Problem « « « ¢ o o o o o o s s s s s e s s s e s s
Joseph Mohan

SESSION 6A: TREE STRUCTURED SYSTEMS

DOT, A Distributed Operating System Model of a
Tree-Structured Multiprocessor. « « + « « o« o o o o o o o &
Scott Danforth :

X1

135

144

148

151

154

158

161

164

172

175

180

183

191

194

The Tree Machine: An Evaluation of Strategies for Reducing
Program Loading Time€.: « o o o o o o o o s o o o o o s o o o &
Pey-yun Peggy Li and Lennart Johnsson

Optimal Routing Algorithms in Multicomputer Networks

Organized as Reconfigurable Binary Trees. . « . « « + o o « &
Svetlana P. Kartashev and Steven I. Kartashev

SESSION 6B: NON-NUMERICAL ALGORITHMS II

Sorting, Merging, Selecting, and Filtering on Tree
and Pyramid Machines. « « « s o o o o o o o o o o o o s o o =«
Quentin F. Stout

Omni-sort: A Versatile Data Processing Operation for VLSI . .
Ching C. Hsiao and Lawrence Snyder

Pseudo Associative Linking: A High-Speed Searching Algorithm
for Parallel ProCeSSOYS o o s s o s o o o o 5 o s o o o o o

F.P. Hiner III

SESSION 7A: PARALLEL PROGRAMMING AND LANGUAGES

Implementation of an Array and Vector Processing Language . .
R.H. Perrott, D. Crookes, P. Milligan, and
W.R.M. Purdy

A Parallel P-Code for Parallel Pascal and Other High
Level LanguUagesS + + o « « o s o o o o o o s o 5 o s o o o o

John D. Bruner and Anthony P. Reeves

The DC1 Flow Schema with the Data/Control-Driven Evaluation .
Nam Sung Woo and Ashok A. Agrawala

Top-Down Data Flow Programminge « s « o o o o s o o o o o o o
Yury Litvin

SESSION 7B: IMAGES AND SPEECH

A Pipeline Machine for Image Processing Applications.
Ikram E. Abdou

An Evaluation Study of Six Topologies of Parallel
Computer Architectures for Scene Matching . « « « ¢ ¢ o o« o &

Yee-Hong Yang and Tsung-Wei Sze

An Architecture for Efficient Generation of Fractal

SUrfaceS. o o o o o o o s o 5 s s s s o s s 8 s s s e s 8 e
Stephen L. Stepoway, David L. Wells, and
Gerald R. Kane

An Architecture for the Real-Time Display and Manipulation

of Three<~Dimensional ObjectsS. « « « + o o & o o o o o o s o
S.M. Goldwasser and R.A. Reynolds

xil

202

206

214

222

226

232

240

244

252

255

258

261

269

A Parallel Architecture for Labeling, Segmentation,
and Lexical Processing in Speech Understanding.
Edward C. Bronson and Leah Jamieson Siegel

SESSION 8A: EXPRESSING PARALLELISM

On the Algebraic Specification of Concurrency and
Communication . . « ¢ ¢ ¢ o v o s o s o e e e s e e e s
J.P. Finance and M.S. Ouerghi

Introduction to the Poker Parallel Programming
Environment . « « ¢ o ¢ ¢ ¢ o o o o o o s o o 2 e = e

Lawrence Snyder

A High Level Analysis Tool for Concurrent Programs. . .
Paolo Mancarella and Franco Turini

A Stream Definition for Von Neumann Multiprocessors . .
S.J. Allan and R.R. Oldehoeft

SESSION 8B: DATABASE MACHINES/SIGNAL PROCESSING

A Database Machine for Very Large Relational Databases.
G.Z. Qadah and K.B. Irani

Efficient Computing of Relational Join Operations by
Means of Specialized Hardware « « o« o o o o s o o o o &
Yang-Chang Hong

A VLSI Modular Architecture Methodology for
Realtime Signal Processing Applications « . « « « . .+ &
Hungwen Li

EMSY85 - The Erlangen Multi-Processor System for a
Broad Spectrum of Applications. o . . .
G. Fritsch, W. Kleinoeder, C.U. Linster,
and J. Volkert

SESSION 9A: DATA FLOW

Maximum Pipelining of Array Operations on Static Data
Flow Machine. .« « « ¢ ¢ o o ¢ o o o o o o o o o o o o s
Jack B. Dennis and Gao Guang Rong

A Direct Mapping of Algorithms onto VLSI Processing
Arrays Based on the Data Flow Approach. . . . « ¢ « « &
Israel Koren and Gabriel M. Silberman

An Algorithm for Processor Allocation in a Dataflow
Multiprocessing Environment « « « ¢ ¢ o o ¢ o o o o o o

Lawrence Y. Ho and Keki B. Irani

A Small, High-Speed Dataflow Processor. . « « « o o« « =
Wm. Leler

xiii

275

281

289

293

303

307

315

319

325

331

335

338

341

Programmable Modular Signal Processor -- A Data Flow Computer
System for Real-Time Signal Processing. « « « ¢ ¢ « ¢ o o o &
Prashant S. Sawkar, Timothy J. Forquer,
and Richard P. Perry

SESSION 9B: SIMULATION/OPERATING SYSTEMS

A Simulation for MIMD Performance Prediction -- Application
to the S-1 MkIIa Multiprocessor « « « « « &+ o o o o o s o o &
T.S. Axelrod, P.F. Dubois, and P.G. Eltgroth

Vectorization of Discrete Event Simulation. . « + + o « o o &
Avinash Chandak and J.C. Browne

Analysis of Backward Error Recovery for Concurrent
Processes with Recovery BlockS. « « « &+ s o o o o s o o o o

Kang G. Shin and Yann-Hang Lee

Improved Multiprocessor Garbage Collection Algorithms
I.A. Newman, R.P. Stallard, and M.C. Woodward

SESSION 10A: MODELS

Efficiency of Feature Dependent Algorithms for the
Parallel Processing of Images « « « ¢ o ¢ s o o s o o o o o
T.N. Mudge and T. Abdel-Rahman

Matching Parallel Algorithm and Architecture. . . « « .+ « .+ .
Yetung P. Chiang and King-Sun Fu

Coherent Flow of Information in Parallel Systems.
Bruce P. Lester

Virtual Time. « o o o o o o o o o o 5 s s o s s s s s o o o -»
David Jefferson

SESSION 10B: SCHEDULING RESOURCES

Process Management Overhead in a Speedup-Oriented
MIMD SYSteM « « o s o o s o o o o o o s s o s s s s o s o o »
Ruknet Cezzar and David Klappholz

Assigning Processes to Processors in Distributed
SYyStems « + ¢ ¢ o ¢ o s e e s e s s s e e o s
Elizabeth Williams

. . . . e o o

Preloading Schemes for the PASM Parallel
Memory System « « o ¢ o o o+ o ¢ 4 s e s s e s .

David Lee Tuomenoksa and Howard Jay Siegel

Constructing a Parallel Implementation from

High-Level Specifications: A Case Study Using
Resource EXPresSionsS. « « o o o 5 o o o o o s s o o s o &

Bharadwaj Jayaraman

Xiv

344

350

359

362

367

369

374

381

384

395

404

407

416

SESSION 11A: SYSTEM PERFORMANCE

Queueing Network Models for Parallel Processing
Of Task SYySEEMS « o ¢ ¢ o o o o o o o o s o o o o s o s o
Alexander Thomasian and Paul Bay

On the Performance of Interleaved Memories
with Non-Uniform Access Probabilities .« ¢« + ¢« ¢« ¢ o o o o« &
H.C. Du and J.L. Baer

A Markovian Queueing Network Model for Performance
Evaluation of Bus-Deficient Multiprocessor Systems.
Ibrahim H. Onyuksel and Keki B. Irani

SESSION 11B: VLSI PROCESSOR ARRAYS

On Mapping Homogeneous Graphs on a Linear

Array-Processor Model . . « ¢ ¢ o o o o o o o s o o o o o @
I.V. Ramakrishnan, D.S. Fussell,
and A. Silberschatz

Unifying VLSI Array Designs with Geometric Transformations.
Peter R. Cappello and Kenneth Steiglitz

Design of Robust Systolic Algorithms. ¢« . « . . « .
Peter J. Varman and Donald S. Fussell

SESSION 12A: COMPUTER ARCHITECTURES

Structured Memory Access Architecture+« + . « « o +
A.R. Pleszkun and E.S. Davidson

A Simple Architecture for Low Level Parallelism
Charles E. McDowell

Hierarchical Micro-Architectures of a Two-Level
Microprogrammed Multiprocessor Computer . . « « o o o + o o«

Takanobu Baba, Xatsuhiro Yamazaki, Nobuyuki Hashimoto,
Hiroyuki Kanai, Kenzo Okuda, and Kazuhiko Hashimoto

SESSION 12B: ASSOCIATIVE PROCESSING/DISTRIBUTED SYSTEMS

Alternative Data Structures for Lists in
Associative DevicCes ¢ o o+ ¢ o o o o o o o o o o o o o o o
J.L. Potter

Determination of the Rotational and Translational
Components of a Flow Field Using a Content
Addressable Parallel ProCeSSOTs « o« + s o s o o o o o o o
M.E. Steenstrup, D.T. Lawton,
and C. Weems

Dynamic Relibility Modeling and Analysis of

Computer NetworkS « « ¢ ¢ ¢ o o ¢ o o s o o o o o o o o o &
Srinivas V. Makam and C.S. Raghavendra

XV

421

429

437

440

448

458

461

472

478

486

492

496

Functional Specification of Distributed Systems
Gruia-Catalin Roman and Robert K. Israel

SESSION 13A: MULTIPROCESSOR SYSTEMS

MOPAC: A Partitionable and Reconfigurable Multicomputer
Array L4 L L] . . . L] L] . .

Wong-Hua Lee and Miroslaw Malek

The Multiprocessor EMPRESS: A Useful Tool for Studying
Parallelization ConceptSe. « « « o+ ¢ o o o o o o o s o o o
Hans-Joerg Brundiers, Richard E. Buehrer,
Hansmartin Friess, and Milan Tadian

Performance of a Modular Interactive Data Analysis
System (MIDAS):. + « o o o o o o o s o o o s s s o o o o &
Creve Maples, Daniel Weaver, Douglas Logan,
and William Rathbun

The Homogeneous Multiprocessor Architecture -- Structure
and Performance AnalysSiSe. ¢« o o o o o o o o o o o o o o @
Nikitas Dimopoulos

Cedar -- A Large Scale MultiprocessSor. . . « « « « &+ o
Daniel Gajski, David Kuck, Duncan Lawrie,

and Ahmed Sameh

SESSION 13B: PIPELINING

Vector Optimization on the CYBER 205. « ¢« « ¢ ¢ + o & .+ &
Clifford N. Arnold

Pipelined Evaluation of First-Order Recurrence
SyStems « ¢ o o o o ¢ e o s e o s o e o o e s e s s s s
Lionel M. Ni and Kai Hwang

The Solution of Linear Recurrence Relations on
Pipelined ProCeSSOrS. « o o s s o o o o o s s o s s s & &
W. Oed and O. Lange

Data~-Stationary Instructions as a Way to Minimize Long
Distance Communications in VLSI . « « ¢ o ¢ ¢ o o o o o &
John Robert Burger

Xvi

503

506

511

514

520

524

530

537

544

547

SESSION 1 - PANEL DISCUSSION

Performance of Existing Supercomputers

on Computationally Intensive Tasks

Sidney Fernbach, Chairman

Cray-1 Michael Ess
Cyber 205 Kevin Moriarty
HEP-1 Burton Smith

AN INTERFERENCE ANALYSIS OF INTERCONNECTION NETWORKS

Laxmi N. Bhuyan and C.W. Lee

Department of Electrical Engineering
University of Manitoba
Winnipeg, Manitoba, Canada R3T 2N2

ABSTRACT

An interference analysis of the Interconnec-
tion Networks (INs) for a tightly coupled multi-
processor is presented in this paper. The inter-
connections considered are crossbars and delta
networks. Two situations are -examined: when a
memory module is equally likely to be addressed
by a processor and when a processor has a favor-
ite memory. It is shown that for a higher rate
of favorite requests, the delta networks perform
close to a crossbar.

INTRODUCTION

A multiprocessor architecture can be broadly
divided into two categories: loosely coupled and
tightly coupled. In a loosely coupled multi-
processor, each processor has a local memory and
the communication between the Processing Elements
(PEs) is accomplished through an Interconnection
Network (IN). A PE essentially consists of a
processor and its local memory. In a tightly
coupled system, the processors are connected to
one side of the IN and the memory modules are
connected to the other side. The IN is capable
of connecting a processor to any one of the
memory modules. The loosely coupled and tightly
coupled architectures are illustrated in Fig. 1.
In this paper, we consider an interference analy-
sis of the 1INs for a tightly coupled multi-
processor.

A crossbar interconnection [1] allows all
possible one-to—one and simultaneous connections
between the processors and the memory modules.
When two or more processors try to access the
same memory, only one of them will be connected
and the rest will be blocked or rejected. Band
width (BW) is defined as the expected number of
memory requests accepted per cycle or the average
number of memory modules remaining busy in a
cycle. Clearly, this is a parameter which speci-
fies as to what extent an IN is efficient. The
interference analysis of an MxN crossbar for M
processors and N memory modules, when a processor
is equally 1likely to address any one of the N
common memories, is well known [2-4]. However,
in a practical situation, a processor is likely
to address a particular memory most of the time
except when an interprocessor communication is
necessary. If processor i (P;) communicates
more often with a memory module i (MMi), we will
call MM;as a favorite memory of P; and P, as
a favorite processor of MM, . We will assume
that we have a prior knowledge of a factor m
which is the probability that P; addresses MM
provided that P; @generates a request. When

0190-3918/83/0000/0002$01.00 © 1983 IEEE

m = 1 , a processor is equally likely to address

any one of the N memory modules and the favor-
ite case reduces to an equally likely case. In
this paper, we carry out an analysis for such a
favorite memory case for an MxN crossbar switch
when M =N, M> Nand M <N .

Because of the O(N?) switch complexity of
an NxN crossbar, Multistage Interconnection
Networks (MINs) have been proposed recently for
large values of N . Several MINs such as Omega
[5], Indirect binary n—cube [6], Generalized cube
[7] and Baseline [8] are known. An NxN MIN
basically employs log,N stages of 2x2 switches
with N/2 number of switches per stage. It is
capable of performing a subset of one—-to-one and
simultaneous mappings while reducing the cost to
o(N 1og2N) . The mappings or permutations,
achieved by one network, may be different than
another depending on the interconnection wused
between the stages. However, these MINs are all
functionally equivalent in terms of their BWs and
the total number of permutations, achievéd.
Interference analysis of such MINs have been
reported in a few papers [4,9-11] for equally
likely cases. The VLSI performance of these
networks have also been studied [12,13] when the
whole network is fabricated on a single chip. 1In
terms of area*delay characteristics the MINs do
not perform that well compared to the crossbars,
as they do in an SSI implementation.

Delta network [4] is a self routing inter—
connection network that connects M = a® inputs
to N = b™ outputs through n stages of a x b
crossbar switches. All the MINs form a class of
Delta networks with a =b =2 . A still braoder
class of networks called Radix Shuffle Networks
(RSNs) was introduced recently [11] for connect-
ing M processors to N memory modules for arbit-
rary values of M and N. If M and N can be
factored into 'r' components as M = m; X my X ...
X my and N = nq; X ny X «eo ¥ n. , an RSN con-
sists of 'r' stages of switches with the ith
stage employing m; x n crossbar modules.
Delta is a special case of the RSN when all mi's
are equal to a and all n,'s are equal to b .
All the above cited networks form a part of the
Banyan networks [l4], introduced for partitioning
multiprocessor systems. Interference analysis of
the RSNs was also reported [ll] when a processor
is equally likely to address a memory module. We
carry out here an analysis for the RSNs for the
favorite memory case. The results derived for a
crossbar are successfully applied to the RSNs.
Because of the complexity involved, we restrict
our analysis to NxN Delta networks only. The
tneoretical results match with those obtained
from simulations.

ANALYSIS OF CROSSBAR

A crossbar is capable of connecting M pro-—
cessors to N memory modules for any arbitrary
values of M and N [1]. The analyses given here
are based on the following assumptions.

1. The crossbar operates in a synchronous mode
i.e. the requests issued by the processors
begin and end simultaneously.

2. The requests are random and the request
generated by a processor is independent of
the request generated by another processor.

3. Requests which are uot accepted are blocked
or rejeted.

4. The requests generated in a cycle are inde-
pendent of the requests generated in the
previous cycle.

5. p, 1is the probability with which a processor
generates a request. Thus Py is the rate
of request of a processor per cycle.

6. m is the probability with which processor
P; addresses memory MM; given that P
generates a request. Thus mep is the rate
of request of a processor directed to its
favorite memory.

In an MIMD [15] operation, the memory
requests are asynchronous. Various simulations
[3,4] indicate that assumption 1 does not bring
in a substantial difference in the results. When
asynchronous operation is assumed, buffers should
be provided in the switches [9]. Assumption 4 is
unrealistic because the requests rejected in a
cycle will indeed be resubmitted in the next
cycle. This assumption leads to amazingly sim-
pled closed form equations for a crossbar [3] and
produces negligible discrepancies in the result
[2]. Assumption 5 indicates that a processor
need not send a request in every cycle. Assump-
tion 6 considers memory module MM; as a favorite
memory of the processor Pi « In an MxN crossbar
for an equally likely case, a proce3f0r addresses

a memory with a probability of = . MM; is

fonsidered a favorite memory of Pi only if m >
— + The values of Py and m are program

gependent and can be determined. With a prob-
ability p, of a processor generating a request,
the probability q . that j requests are
generated by M processors is given by:

= M j M-j
acyy = 3) pd ¢ (1 - py)T

where (¥) 1s the binomial coetficient.
J

(a) Equally likely case for MxN crossbar

This 1is a situation where a processor is
equally 1likely to address any one of the N
memory modules. The probability thit a processor
addresses a particular memory is — , given that

the processor generates a request. Probability
that a memory module is addressed by k process-—
ors, given that j requests are generated by the
processors;

- Iy Lk ~ 1y k
pe(k,j) = (i)(ﬁ) 1 E)J .

1t

Subscript 'e' stands for equally likely case.
For various values of k ranging from 1 to j,

the rate of request at a memory module;

= Iy Lyk -1 yik
Pe() 1<£<j CIheoka -
= 7 cIhheiHka -k 2Lyl
O<k<j N N

1-@-L1yi,
N

With each processor having a probability p, of
generating a request, the total rate of request
at a memory module is given by;

Pe = L 4¢3 * Pe(y
e 0c 3 (» e(3)
= 1 (el a-p™1-a L)
0<jM N
= 1-(-Poyu | (1)
N

BW 1is the average number of memory wmodules
remaining busy in a cycle.

In other words BW = rate of request at a memory
module * the number of memory modules.

Hence, for equally likely case,

BW = N{l-(l—EQ_)M} .)
e N

(b) Favorite memory case for NxN crossbar

Let wm be the prbability that processor Py
requests memory module MM. given that Pi
generates a request. Hence, the probability of
Py requesting MMy, P; > MM; = p em .
Probability that Pi does not request MMi;
Py My = 1-pyem .

Given another processor P. for 1 # j ,

. . - 1

which generates a request; Pj > i = (1-m) N1
= x say and Pj,b MM, = 1-x.

In a situation when there are a total of j
requests of which k requests arrive at MM; ,
two distinct possibilities can occur;

Py > MM, and (k-1) other processors »> MM,
or Pifb MMi and k other processors » MM, .

The rate of request at MMy given j requests
at the input side;

T ofpom o (Zh ¢ K- Ik
1<k<]j
+(1-pym) (T Hyxk (1-x) 37K}

Pe(yy ~

1 - (1-pm)(1-)37 . (3)

The subscript ‘£ stands for the favorite
memory case.

With a probability p, of P. generating a
request and with (N-1) other processors besides
Py the total rate of request at MM, 5

- N-1 j-1 N-j
= N Ml . e« (1- . .
Pf 0<j-Ten-1 (J 0 Py (Po) PE(Y)

1 - (1-pm)(1-p 0¥t .

With x = L8 5 po

1-m\N-1
=1- (1- l1-p, — 2 4
o1 (1-pym) (1-p, N_1) (4)

and B = N{1 - (1 - p em)(1-p, * %5?.)N‘1}. (5)

Lim BWg = p N, which means that if all the
m>1

requests were favorite, the BW is equal to the

number of requests generated; so all the requests
are accepted. Equally 1likely is a special case
of the favorite wmemory case with m = %-.
/
The BW of an NxN crossbar are plotted in
Fig. 2 both for favorite memory case with m =
0.8 and an equally likely case. With a favorite
memory, a processor remains busy with its favor-—
ite memory module most of the time. As a result,
less conflicts occur which in turn give rise to a
higher BW. A favorite case for NxN crossbars can
also be visualized as shown in Fig. 3a. Rate of
request at MM; due to % = pom - Rate of
N_

i
request at MM; due to 1) other processors;

1-
=1-{1- Py (1-m) ji-1
N-1
for (N-1) processors and (N-1) non-favorite
memories. Because of the assumption 2, these two
rates are statistically independent of each
other. Hence, the total rate of request at MM;

Py , similar to eqn. (1)

1 ’
Pap = PA t Pg " Py * Pp
1-m \N-1 -
= pm+1l-(-p, —)
° ° N-1
1-m)N-

= pon + pom(l-p,——
0 ON-1

1-(1pgm) (17pg TN = p tn eqn. (4)

(c) Favorite memory case for MxN crossbars with
M>N

The situation is depicted in Fig. 3b. The
processors are divided into two groups. Group A
consists of N processors having favorite
memories and group B consists of M-N processors
that are equally likely to address any one of the
memory modules with a probability of — . The

rate of request at MM, due to the processors
belonging to group A ;

1-m\N-1,
’

pp = 1-(1-p m)(1l-p, T same as in eqn. (4).

The rate of request at MM; due to the processors
belonging to group B;

=1- (1- ;9.)M-N ; from eqn. (1) .

Py

Since the request rates are statistically

independent, the overall request rate at MMl H

Pg =Py t Pg T Py * Pp

1-(1- pu)(1 - py EBNLL - S0yt L (6

1-m\N-1 _ PoM-N
BW; = N{1-(1-p m)(1-p, EZT) (1 ;;Q }e (M
When M=N , eqn. (7) reduces topeqn. (5).
When m = L, BW =N{L- (1 - ﬁ2)“} which
is same as the equally likely case.

(d) Favorite memory case for MxN crossbars with
N>M

The situation is depicted in Fig. 3c. The
memory modules are divided into two groups A
and B . Group A consists of M favorite memories
and group B consists of (N-M) memories that are
equally addressed by a _processor with a
probability x = (l-m) -« , given that the

processor generates a request.

Given that there are j Trequests generated
by the processors including processor P; , the
rate of request at MMy belonging to group Aj;
PA(H) 1 -(1 - pom)(l--x)J”1 ;s from eqn. (3).
With the proessors having a probability of

request p, , the total rate of request at MM,
belonging to group Aj;

M-1
PpA T 2 (J—l)
0< j-1<M-1

1- (@1 -pm(l - pox)M_l .

-1 1 - p, M3 PA(j)

l-m 1-m\M-1
With x = —— 3 =1-(1 - p,m)(1 - —)

10 PA (P, Po N1

A processor addresses a memory moduﬁe belonging
to group B with a probability of ﬁ:% . Prob-
ability of generation of a request being Py > the
rate of request at MMj belonging to group B;

Pg = 1 - - Po %E%)M ; from eqn. (1)

Then
BWg = py oM+ pg e (N-M)

M{1-(1-p M) (1-p, l?)“‘l}
+(N-M) {1-(1- po))M}

= WH(1-p) (1-pg, THMTE-(8) (1-p, O

(8
P

Again with m =1, BW; = N-N(1 - M = BW, .

BW obtained with M = 16 are plotted in Fig. 4

for various values of N. Compared to the BW for
equally likely case (BWe) , there is a fast
increase in BW, with increase in N for N <
16 . The rate of increase in BW in Fig. 5 for
N fixed at 16, is also similar to that obtained
in Fig. 4. The difference between BW and BW

is maximum when M is equal to N . This is
reasonable because the maximum possible BW is
limited to Min{M,N} irrespective of whether a
favorite case or not.

ANALYSIS OF DELTA NETWORKS

A delta network [4] is a multistage inter-
connection network that connects M = a" inputs
to N = b outputs through n stages of a x b
crossbar modules. The i%ﬁ 1stage of the delta

network consists of M b number of a x b

i
a .
crossbar switches and produces M(E)l outputs.

An interference analysis of these ﬁmtworks for
equally 1likely case is presented in [4]. The
analysis is based on a recursive computation of
the rate of request at a stage. The rate of
request on an output line of the ith stage is:
py = 1- -k ®
b

where p, is the probability of generation of a
request by a processor. With a given value of
P, » the final rate of request at an output line
of the delta network can be computed using the
above recursive equation. Then BW =N e« p, .
We develop here such a recursive analysis for
delta networks as applicable to the favorite
memory case. Because of the complexity involved,
we restrict our analysis to NxN delta networks
only. An NxN delta network with N=a" , consists
of n stages of axa crossbar modules with —

a
such modules per stage. The interconnection
between the stages is an a—-shuffle of the inputs.

S, > the a-shuffle of an integer j is given
by;
S = a j mod(N-1) for 0 < j < N-1
a
= 3 for j =N-1 . (10)

Omega network [5] is a special case of delta
network with a=2 . We define that a processor
is connected to its favorite module when all the
switches are in straight connection as shown in
Fig. 6 for an 8x8 omega network. When all the
switches are connected straight in a delta net-
work with a-shuffle interconnection before each
stage, an identity permutation results. Hence,
MM; is a favorite memory of P; for 0<icg<N-1.
The analyses presented below also hold for delta
networks which do not employ an a-shuffle inter-
connection before each stage. In such networks,
the straight connections of the switches may not
result in an identity mapping and hence, the
favorite memories will be different without any
change in the actual performance. In addition to
the assumptions spelled out for the crossbar
analysis, we make an important additional assump-
tion for delta networks. Whenever a number of
requests reach an output line of a switch, a
request is randomly accepted with an equal prob-

ability. We will call this as an Equal Accept-
ance (EA) rule.

Consider two switches A and B from two
adjacent stages of the delta network as shown in
Fig. 7. There can be only one connection from an
output of switch A to the input of switch B. The
other ouput lines of switch A will be connected
to (a-l) other switches of the (i+l)th stage.
The number of output lines being same at each
stage, the rate of request remains same for all
the output lines of a particular stage. However,
it may vary from stage to stage. Let p be the
rate of request on an output line of the ith
stage of switches. Clearly, Py is the input
rate of request which is equal to the probability
of a processor generating a request. Let m be
the probability that there is a favorite request
on an input line to the (i+l)th stage, given that
there is a request on that line. Let m} be the
fraction of p, available due to a favouritce
request at the iﬁput of switch A . So, ﬁi , the
fraction of p that comes from other inputs of
switch A is (1 - mi).

From eqn. (4) ,
lmy g ya-1
a-1
for 1 <ixg<n (11)

Py = 1-(l-pj_my_1)(1-pjg -

The rate of request at the output of switch A
due to a favorite request = mi p;j « Given k re-
quests at an output line of switch , a request

is accepted with a probability of = because of

EA assumption. All other requests are rejected.
In addition to a favorite request, (k-1) other
requests arrive at the output line of switch A.
If there are a total of j requests at the input
of switch A, the rate of request at an output
line due to a favorite request is:

1 -1y k-1 i~k
E'{Pi—rmi—l(ﬂ—l) xi1 (L= x3)77} where
1-m.
- i-1
-1 T T

For k varying between 1 to j , the rate of
favorite requests at an output line of switch A
is:

Pi-1i-1 -1y k-1 j—k
] ——— (D) xi1mxgp)d

1<k<j K
Pi-1 Mj-1 j
= {1-a-x_pDJ}.
J%i-1
With py_y being the probability of request

generation for (-1 input 1lines for an axa
crossbar at the ith stage,

= a-1 j—-1 a-3j Pi- 1Mj-1
pimj = 2 G-D pi_l (1-p;_1) J %
0<j-lga-1 J
{1-(1—xi_1)j}

m,_
L f1-a - xp?
a X1

L-my

With x = - -
i-1 a-1 4
m,_, (a-1) 1-m,_

p; mj = i Sl {1-(1-p; 1 —d7hyay o a2
a(l—mi_l) a-1

Using 1' Hospital's rule it can be shown that
lim
my_y > 1
requests are accepted if they were favorite. A
closer look at the operation of delta networks
(Fig. 7) reveals that m;_, consists of two types
of favorite requests to switch A . Let m(f)i—l
be the fraction of my_q that consists of
requests to memory module MM, . m(nf)i_l is
the fraction of my_y directed towards other
memory modules, but appears as a favorite request
to switch A. Assuming the requests due to
m(f)i—l and m(nf)i_lshare mi , at the output of
switch A, as per their proportion; the fraction

pimi = pj-1 - This means all the

] s m(f)i"l 1
of m! due to m(f);_q is —= = e n and the
i i-1 m;_, i
i_
. m(nf)i_l
fraction of m{ due to m(nf); ; is —m =" mi.
mi-1

Out of the non-favorite part of mj

fraction of requests will be directed towards
(a-1) other outputs of switch B (Fig. 7) and
the rest will appear as a favorite request.

N

2itl T
In a delta network, a fraction of N 1

at

of this non-favorite rate of request appears as a
favorite request to a switch at the (i+l)th stage
for 1 < i < n-1 . Again, the fraction of the
rate of request m} , at the output line of
switch A, consists of both favorite and non-
favorite requests to switch B . The request rate
is equally directed to all the a output lines

of the switch B . Out of this, 2&_ 1is the
fraction of the request rate that is directed to
< -2

favorite memory MM and is the

a
fraction of request rate, directed to other
memory modules but appears as a favorite request
to switch B.

Hence, at the input of the (i+l)th stage,

m(£),_ i_
m(£); = —L.ml+3F (13)
my_q N
N 1
i+l ~ m(nf),_ i _
m(nf); = a . i-1 m} + (l.—g_b mj
N m a
= -1 i-1
i
2 (14)
and
my = m(f)i + m(nf)i for 1 <i <n-1 . (15)

At the input of the first stage, m(f)o is the
probability that a processor requests its
favorite memory given that it generates a

a-

| =

-1

X (16)
m(nf)o = o « (1 - m(f)o)
With given values of p, and n(f)_ , pis and
m{s can be computed recursively for ? < i< n-1l.
The rate of request at the output of the final
stage, p, , decides the BW; of an NxN delta
network.

BWg = p, x N . 7)

request. Then,

Favorite Analysis of Omega Networks

An Omega network [5] is a special case of
delta network for N = 2P, With a = 2 , the
above set of equations can be simplified as below
for 1 <1i < n-1.

T-1
7 -
m(nf)_ =
° N-1

(1-m(f)°) and m, = m(f)o+ m(nf)o.
(1)

Py = 1=(1=py_qgmy_ 1)(A=pyy + pyy *» myy) (19)

_1 1 2 1 2 2
i S {mj_1(pyy = 5 Pi-1) * 2 Pig * M1} (20)
1
mi = 1 - mi .
m(f),_ i _
m(e); = —taoy+2- @ . (21)
mi-1
N 1
i+l * m(nf),_ i _
n(nf); = 2 1oy o+ k- 2omp.22)
L] mi-1 2 X
i
m; = m(f)i + m(nf)i for 1 < i< n-1 (23)
and BWf = PnN . (24)

The Bwf , obtained for an Omega network, for
various values of N are plotted in Fig. 8 to-
gether with the Bwe for equally likely case. It
may be noted that for higher values of m(f)0 the
performance of an Omega network is close to that
of a crossbar. With a straight connection of 2x2
switches in an Omega network, a favorite case
corresponds to an identity permutation. If most
of the time an identity permutation is desired,
less conflicts will occur which will give rise to
an increased Bandwidth. The above set of equa-
tions, derived for Omega network, also holds good
for MINs like Indirect binary n—-cube, Generalized
cube and Base line networks, as long as there is
one and only one path from a processor to a
memory module. The favorite memories may be
different depending on the permutations obtained
when all the switches are straight connected.
Fig. 9 shows a variation of p;'s and m;'s at
various stages of a 1024x10éh Omega network.
When i=0 , it represents the input side and
i=10 represents the output side of the Omega
network. Although Py reduces with increase in
i because of more conflicts, mn goes on
increasing. This means that for large 1 , the
rate of request at the output is mainly due to
the favorite requests. The limiting value of my

is unity.

CONCLUSIONS

Crossbar and Delta networks were analyzed in
this paper for equally likely and favorite memory
cases. Equally likely is shown to be a special
case of the favorite wmemory analysis. With
favorite memories, the Bandwidth is much higher
because of less conflicts. The Delta networks
perform close to crossbars for favorite memory
cases, thus increasing the cost effectiveness.
In a multistage interconnection network, the rate
of request at a stage (pi) reduces with
increase in the stages, but the rate of favorite
request goes oun increasing, being limited to
unity.

The analysis has been restricted to NxN delta
networks because of the complexity involved. The
analytical results match with those obtained in
simulatious.

REFERENCES
1. W.A. Wulf and C.G. Bell,

miniprocessor”, Proc.
Computer Conference, Dec.

"Cmmp - A Multi-
AFIPS, Fall Joint
1972.

2. D.P. Bhandarkar, "Analysis of Memory
Interference in Multiprocessor”, IEEE Trans.
on Computers, C-24, Sept. 1975, pp. 897~
908.

3. W.D. Strecker, "Analysis of the Instruction
Execution Rate 1in Certain Computer
Structures”, Ph.D. dissertation, Carnegie-
Mellon University,.1970.

4, J.H. Patel, "Performance of Processor-Memory
Inter—connections for Multiprocessors”, IEEE
Trans. on Computers, C-30, Oct. 1981, pp.
771-780.

5. D.H. Lawrie, "Access and Alignment of Data
in an Array Processor”, IEEE Trans. on
Computers, C-24, Dec. 1975, pp. 1145-1155.

6. M.C. Pease, "The Indirect Binary N-Cube
Microprocessor Array”, IEEE Trans. on
Computers, C-26, May 1977, pp. 458-473.

7. H.J. Siegel and R.J. McMillan, "The
Multistage Cube: A Versatile Interconnection
Network", Computer, Vol. 14, no. 12, Dec.
1981, pp. 65-76.

8. C.L. Wu and T.Y. Feng, "On a class of Multi-
stage Interconnection Networks", IEEE Trans.
on Computers, C€-29, Aug. 1980, pp. 694-702.

9. D.M Dias and J.R. Jump, "Analysis and Simu-

lation of Buffered Delta Network"”, IEEE
Trans. on Computers, C-30, April 1981, pp.
273-282.

10. S. Thawawastien and V.P. Nelson, "Inter-

Shuffle/Exchange
c-30,

ference Analysis of
Network”, IEEE Trans. on Computers,
Aug. 1981, pp. 545-556.

11.

12.

13.

14.

15.

L.N. Bhuyan and D.P. Agrawal, "Design and
Performance of a General Class of
Interconnection Networks"”, Proc. 1982 Int.
Conf. on Parallel Processing, Aug. 1982, pp.
2-9. Also to appear in IEEE Trans. on
Computers.

M.A. Franklin, "VLSI Performance Comparison
of Banyan and Crossbar Communication
Networks”, IEEE Trans. on Computers, C-30,
April 1981, pp. 283-291.

L.N. Bhuyan and D.P. Agrawal, "VLSI
Performance of Multistage .L.itecconnection
Networks usiug 4x4 switches”, Proc. 3rd Int.
conf. on Distributed Computing Systems, Oct.
1982, pp. 606-613.

L.R. Goke and G.J. Lipovski, "Banyan
Networks for Partitioning Multiprocessor
Systems"”, Proc. lst Int. Symp. on Computer

Architecture, Dec. 1973, pp. 21-28.

M.J. Flynn, "Some Computer Organizations and
their Effectiveness”, IEEE Trans. on

Computers, C-21, Sept. 1972, pp. 948-960.

1
I
|
|

=

o]

| S ——
.
.
.
r————="

fm—————-

C-4-4

I
1
|

Interconnection Network (IN)

Fig. la. A loosely coupled multiprocessor

Interconnection Network (IN)

Fig. 1b. A tightly coupled multiprocessor

10

Favorite memory case

- 16 ~
9l p =1 Favorite memory
o Case
8 m= 0.8 ~ 14 Equally likely case
Equally likely 12
Case
6 10 -1
[
log, (BW)5 m = 0.8
2 BW 8 A
4 6
3
2 4
1 2
y — PR B L
4 5 6 7 8 9 10 1 1 i]
1 2 3 1 2 3 4 5 6 7 8 10
N
1082 log2 N
Fig. 2. Bandwidth of N X N crossbars Fig. 4. Variation of BW in an M x N crossbar
' with M = 16
Favorite memory case
p Equally likely case
P ol A MM,
i ———t 5
'/ =1
—_—
// = 0.8
N-1 [) //PB [) N-1 = 16
other processorse -~ ° other memories
[} °
[E——
Fig. 3a. Request at MM, in an N x N crossbar
i 1 1 ! L | 1 1]
12 4 5 6 7 8 9 10
log2 M
Fig. 5. Variation of BW in an M x N cross—
N processors —_—] p — MM, bar with N = 16. -
with favorite . A - i
—
memories . —_— //
. Ve
M-N processors N-1
: . 7 b
without favorlte . Ve Py other memories
memorlies
L]
—— —
Fig. 3b. Request at MM; in an MxN

crossbar with'™M > N

M
processors

Pp
—_—— 1
PA PR - [
. - : M favox:ite
— memories
. <
——-]
L] Py ° pB N-M nonfavorite
M memories
[E— -

Fig. 3c.
cross bar with N > M

Request at memories in an M x N

log2 (BW)

10

Ry M
P ey
P, M,
MM
Py 3
MM
4
PA
MM
P5 5
P
6 MM6
MM
P7 7
Fig. 6. Favorite memory connection for a 8 x 8

Omega network

pi"l ,mi_l—_—.— —_——
—— my -
E 4
. //,c, .
a-1 : mi :
other inputs
Switch A
i th stage
Fig. 7.

L

o
i

-

Favorite memory
case

Equally fikely
case

1 | | | | ! 1 .|]
9 10

log2 N

Fig. 8. Bandwidth for N x N Omega networks

—— i pi+1
—d ~N ~ SR
. ~N . -
. - a-1
. other outputs
Switch B

(i+l)th stage

Requests at two adjacent stages of a Delta network

(Stage)

Fig. 9. Pi’mi at various stages of a 1024 x

1024 Omega network.
1. m, favorite memory case; 2. p,,
i

favorite memory case; 3. p,, equally
likely case. t

GENERALIZED DELTA NETWORKS

Manoj Kumar and J. R. Jump

Department of Electrical Engineering, Rice University
TX 77251

Houston,

Abstract

The throughput of unbuffered delta networks
is related to the arrival rate by a quadratic re-
currence relation. Lower and upper bounds on the
solution of this recurrence relation are derived
in this paper.

Two approaches for improving the throughput
of unbuffered delta networks are discussed in this
paper. The first approach combines multiple delta
subnetworks of size NXN each in parallel, to ob-
tain a network of size NXN. Three distribution
policies, used to distribute the incoming packets
between the subnetworks, are discussed in this pa-
per and their effect on the throughput is investi-
gated.

The second approach replaces each link of the
simple delta networks by K parallel 1links
(K=2,4, ...). The throughput of these networks
is analyzed and one possible implementation for
the crossbar switches to be used in these networks
is discussed. The throughput of such networks
with four parallel links 1is almost equal to the
throughput of crossbars.

1. Introduction

Delta networks have been considered frequent-
ly for processor-memory and processor-processor
interconnection in modular computer systems such
as SIMD, MIMD and Data Flow Machines [1, 3, 7, 8,

9, 11, 12, 14]. An NXN (N = 2") delta network
can be constructed from basic switches of size

BXB (B = 2b), each capable of connecting its in-
puts to any of its outputs (see Figure 1.1).

The network has n/b stages (numbered
1,2,...,n/b) and each stage has 20~P basic
switches. The outputs of switches in all stages,

except the last, are connected to the inputs of
switches in the next stage by the shuffle connec-
tion or one of its minor variants. The network
shown in Figure 1.1 is an 8X8 delta network con-
structed from 2X2 basic switches. The N inputs
of the switches in the first stage and the N out-
puts of the switches in the last stage constitute
the inputs and the outputs of the network. A
truncated delta network is obtained by deleting
one or more stages from a regular delta network.

The modules at the network inputs generate

fixed sized packets to be transmitted over the
network. The arrival of packets at the network
inputs are independent and identical Bernoulli

process with parameter xin (the arrival rate).

These packets are directed equiprobably to all
network outputs.

All the switches in the network are synchron-
ized by a single clock. A connection between two
switches which is capable of carrying ome packet
in each clock cycle is called a link.

The switches in a buffered delta network have
internal buffers to temporarily store an incoming

This work was supported by the National Science
Foundation under the grant MCS 80-01667.

0190-3918/83/0000/0010$01.00 © 1983 IEEE

10

packet that cannot be forwarded in the current cy-
cle. Unbuffered delta networks have no such
internal buffers. In this paper we will investi-
gate the pertormance of unbuffered delta networks
only.

The network control is decentralized and each
switch in the network operates autonomously. In
addition to data, each packet carries its destina-
tion address. A switch in stage i (1 < i < n/b)
uses bits bc[(i—l)b+1]""’bc[i*b] of the desti-

nation address
bybyeeeb)
ate output port. These bits are called the con-

trol bits for stage i. The operation of delta
networks is described in detail in [12].

(expressed as an binary number
to route the packets to the appropri-

Packets arriving at two distinct network in-
puts may require the use of a common link between
two stages. Since only one packet can use that
link in a clock cycle, one of the packets wiil be
ignored in the current cycle and resubmitted at a
later time. Because of such conflicts there is a
degradation in the throughput (number of packets
transmitted/unit cycle) of the network.

The performance of unbuffered delta networks
has been investigated by Patel[1l2] and Dias and
Jump [5, 4]. The throughput of an unbuffered del-
ta network has been expressed as a quadratic re-
currence relation [12]. Unfortunately, this re-
currence relation fails to show the dependence of
network throughput on the number of stages in the
network, the basic switch size, and the arrival
rate.

Kruskal and Snir provide asymptotic solutions
for this recurrence relation [10]. 1In this paper
we show that one of these solutions is a strict
upper bound on the performance of delta networks.
We also derive a strict lower bound on the perfor-
mance of delta networks, which is much more accu-
rate than the upper bound for networks constructed
from 2>X2 switches. Both these bounds incorporate
the dependence of network throughput on the number
of stages, basic switch size and the arrival rate.

The performance of unbuffered delta networks
can be improved by either using multiple delta
subnetworks in parallel as shown in Figure 1.2a
[8], or by replacing each link in the delta net-
V{Otl](by multiple links as shown in Figure 1.2b
13].

In the first approach, various policies can
be used for distributing the incoming packets
between the subnetworks. Some of these are dis-—
cussed in this paper, where the effect of distri-
bution policy on the performance of the network is
investigated.

The throughput of multiple link delta net-
works, constructed from 2X2 switches, can be ex-
pressed as a set of coupled nonlinear recurrence
relations [10]. These recurrence relations again
fail to show the dependence of throughput on the
number of stages in the network, the switch size
and the arrival rate. In this paper we analyze
multiple 1link delta networks constructed from
larger switches. The throughput of these networks
is expressed by coupled nonlinear recurrence rela-
tions. An approximate solution with a simple

functional form is also derived for the

throughput.

The above mentioned approaches also improve
the fault-tolerance of the network. In the first
approach, only one correctly functioning delta
subnetwork is required to allow communication
between any input, output pair of the network. In
the second approach, only one out of each set of
links connecting two particular switches, is re-
quired to function correctly.

In section two of this paper we will estab-
lish fairly tight lower and upper bounds on the
throughput of simple delta networks. These bounds
have simple functional forms. In section 3 dif-
ferent techniques for combining multiple delta
networks in parallel are considered and the im—
provement in throughput achieved by the use of
different distribution policies is compared. In
section 4 the use of multiple links is investigat-
ed. Switch implementations for supporting multi-
ple links are described. The throughput of these
networks is compared with the throughput of
crossbars.

In sections 3 and 4, basic switches of size
2X2 only have been considered to keep presenta-
tion simple. However, the results can be easily
generalized for BXB switches.

Performance of Unbuffered Delta Networks

The following expression for the throughput
of a BXB crossbar switch was derived by Patel
[12]. 1If the arrival of packets at the inputs of
a switch are independent and identical Bernoulli
process with the same arrival rate xin’ then the

arrival of packets at each output (output process)

is a Bernoulli process with the parameter out

(output rate). X is related to X, as follows

out

X _=1-(1-x, /B)E (2.1)
in

out

The output processes at different outputs of
a switch are identical but not independent. In an
NXN delta network constructed from BXB switches,
the output rate of switches in stage i is denoted
by X, . The arrival rate at the input links of the

network, xin’ is equal to X, the arrival rate at

the input of switches in stage 1.
of the network, Xout’

shown by Dias that the arrival of packets at the B
inputs of the same switch in any stage are identi-
cal and independent Bernoulli processes [6].
Therefore the output rate X of stage i

(1 £i < n/b) can be expressed by the quadratic
recurrence relation

1 - (l—xi_l/B

The throughput
is equal to x_ , . It was
n/b

X.

B
i)

(2.2)

= X. X =
%o in’ out X

< X. <
n/b? and 0 < Xln 1
Unfortunately, this recurrence relation pro-
vides no insight into either the functional form
of xout and its dependence on X N and B or the

upper and lower bounds on X . Such functional

out
forms or bounds would give a better idea of the
network throughput and allow us to compare the
throughputs of various networks without resorting
to computationally intensive or graphical tech-
niques. The upper and lower bounds on X, are

derived as follows

Define y; = 1/ x; for 0 < i <n/b

11

then
y -y -1 _ 1
i+l 1 1 - (1_xl/B)B Xi
2 X
BEF) -0E) -
2/\'8 3/\B v
=) (2.3)
X. X
B\{ Zi) _ (B\[_i
< (OG- 0E) -
therefore
lim _ B-1
yi——>oo Yiv ¥y 2B
- - _3-1
Def 1ne ei = yi+l yi 7B
then
B
.- 2}.'»xi - (2B + (B—l)xi)(l - (l—xi/B))
i x. (1 - (1-x,./8)%) 28
i i
(2.4)
and
. i-1
_ i(B-1) .
Vi T Y% *T s ¢t j=0 3 (2.5)

Let ni and di denote tnhe numerator and the denomi-

nator in the expression for e; in equation 2.4.

a; = 28x, * | x, - (g)(%)z R (g)(i;_if _

X

4
B\(_i
(4)(3) + ...+ last term

where the last term is {B(xi/B)B—l - (xi/B)B} iff

(2.6)

B is odd and it is {(xi/B)B} otherwise. Since

each term within the braces is a positive quantity

(because x; is less than 1) we have tne inequai.ty
d. » 2Bx.% - (B-1)x.3 (2.7)
i i i

Similarly, n, can be written as

%
—f)(%)s}} 6 - @)--

where the last term is {(xi/B)B} itf B is odd and

n, = 2B%x, - (2B +(B'1)xi) . {(]23)<

(2.8)

it is {B (xi/B)B—:l - (xi/B)B} otherwise.

Again, each term within the braces is positive and
therefore

2 3
n, <2Bx.;- (2B +(B—1)xi)[xi- (‘;)(%) + (g)(%)]

simplifying this expression we have

[2 2(B
PN +_Qx4
i~%* |68 3
| B
since Oixi_<_1
i B
2 2
3 B -1 (4)
ni§xi 68 33 (2.9)

using the bounds for n, and d.1 we get the upper
bound for e,

B
B-1, 2(4
68 B (2.10)

IA

*y. - (B-
2B*y, (3-1)

If X, is positive then both n. and di are po-

sitive (follows from equations 2.7 and 2.9), and

therefore x4 and e; will be positive too. From

this lower bound on e the following lower bound

ony, follows easily
¥ 23y +i(B-1)/28 (2.11)
In equation 2.10 the occurrence of ¥ in the

denominator can be replaced by the lower bound for
¥ and the following inequality is obtained

B
B-1, 2(4)
6B 3
e.

i = 2B%y, + (B-1)*i - (B-1)

Simplifying this inequality we have
2

B" - B +2
e. X< 2
* 48711 + 2y, B/(B-1) - 1]
Therefore
i-1 2
2e. < B -B+2 Bz+ 2 &
j=0 3 4B

(2.12)
1(B-1

—a(e-1)
log, (ZByo-ZB+2) +1

Denote the right hand side of the above inequality
by E;. Thus, the upper bound on ¥; is

12

¥; £y +i(B-1)/(2B) +E; (2.13)

The upper and lower bounds for x, are ob-

tained by inverting the lower and upper bounds for
;- Thus, we have the result

2B
X

N 2B
23y0+(B-1)i = i

2By, + (B-1)i + 2BE;

(2.14)

In Figures 2.la—2.1d the throughput of delta
networks, obtained from recurrence relation (2.2),
is compared with the lower and upper bounds given
by equation (2.14). For low arrival rates the
bounds are much more accurate than for high ar-—
rival rates. For networks constructed from 2X2
switches, the lower bounds are within 5% of the
actual throughput and the upper bounds are witnin
10% of the actual throughput (for Xin =1).

For larger switch sizes (sizes > 4X4) the
lower bounds are less accurate than the upper
bounds. The upper bounds are stiil within lu% of
the actual throughput.

3.

Connecting Delta Networks in Parallel

Three techniques for using K = 2k delta sub-
networks or truncated delta subnetworks (con—
structed from 2X2 switches) of size NXN each in
parallel, to obtain a network of size NXN, are
discussed in this section. These techniques
differ primarily in the distribution policy used
to distribute the incoming packets between the
subnetworks.

The first technique is to conmect the it in-
put of the network (0 < i < N-1) to the ith input

of each delta subnetwork through a l-to-K demulti-

plexer. Similarly the ith output of each delta

subnetwork is connected to the ith output of the
network through a K-to-1 multiplexer (see Figure
1.2a). The demultiplexers forward an incoming
packet to any of the K subnetworks equiprobably.
If multiple requests arrive at the input of a mul-
tiplexer in the last stage, one of them is select—
ed equiprobably and is forwarded to the output of
the network. This network is called a Random:iy
loaded parallel delta network (Rn).

1f Xin
the network, then the arrival rate at the input of
each delta subnetwork, XO"‘ is equal to xinIK'

is the arrival rate at the input of

The output rate at the output links of each

delta subnetwork, x , can be obtained from re-.

currence relation (2.2).

output of the network, xont’

The output rate at the
k8 given by the ex—

pression

K
X l-(l-xn)

out (3.1)

If X and x are the upper and the lower

bounds on X then the upper and lower bounds on

xout are
1-(1-x))

K
X e S 1C l—xu) (3.2)

ut

In the technique described above, a packet is
blocked within the subnetwork witn probability

l-xn. If every packet arriving at an input of
the network is forwarded to more than one delta
subnetwork simultaneously, then the probability
that all copies of the same packet are blocked
within the subnetworks is expected to be much less
than l—xn. The reduction in blocking of packets

within the subnetworks will in turn increase the
throughput of the network. The second technique
for combining multiple delta subnetworks in paral-
lel, utilizes this fact. In this technique the
packets arriving at the inputs of the network are
forwarded to all the subnetworks. This network is
called a Multiple loaded parallel delta network
(Mn). Since the throughput of this network could
not be determined analytically, simulation tech-
niques were used.

The last technique is to demultiplex the in-
coming packets between K truncated delta subnet-
works according to the destination address of the
packet. Each subnetwork has n-k stages and the
control bit for for stage i of the subnetwork is
bk+i' The subnetworks are numbered O through K-1.

The incoming packet is forwarded to subnetwork j
iff blbz"'b the first k bits in the binary

k)
representation of the destination address, are
also the binary representation of j.
All the K outputs of the jth subnetwork,

whose binary representations differ only in the
first k bits are connected to one K-to-l multi-
plexer (see Figure 3.1). The output of this mul-
tiplexer is the network output with binary

representation blb2 .o bk°k+1°k+2 cee0ps where

0 410427+ 0, 8re the common bits in the binary

representation of these subnetwork outputs and
blbz"'bk is the binary representation of j. This

network is called a Selectively loaded parallel
delta network (Sn).

If xin is the arrival rate at each input of

the network, then the arrival rate at the inputs
of the subnetworks, X5 is equal to Xin/K. The

output rate at the output of each truncated delta
subnetwork will be X o which can be obtained

from recurrence relation (2.2).
X

The output rate,
at each output of the network is given by

out’
the expression
- _ _ K
Xout 1 (1 xn_k) (3.3)
can be ob-

The upper and lower bounds on xout

tained by using the upper and lower bounds of Xk
in the above expression.

In Figures 3.2a and 3.2b the throughputs ob-
tained by using different distribution policies
are compared. The performance of Sn is better
than that of Rn because the subnetworks in Sn have
fewer stages and therefore fewer packets are lost
due to collisions in the subnetworks. The perfor-
mance of Mn was expected to be better than that of
Rn, because in Mn all possible paths between an
input and an output are tried simultaneously.
However, each subnetwork in this situation is more
heavily loaded and the number of collisions in the
subnetworks are greater. The increased number of
collisions almost offsets the advantage of using
multiple paths simul taneously.

The throughputs obtained from a simple delta
network, from the use of multiple links (to be
discussed in the next section), and from an ideal
crossbar [12], are also shown in this figure to

13

illustrate the relative advantage of using the two
approaches discussed in this paper.

4. Using Multiple Links

In this section we propose the use of delta
networks with multiple links. In an NXN delta
network constructed from 2X2 crossbar switches,

each crossbar switch can receive up to K = Zk
packets at each of its input ports and it can for—
ward at most K packets to any output port. Figure
1.2b shows an 8X 8 delta network implemented from
2X2 switches for K=2. To connect tne input port
of a switch to the output port of another, K in—
dependent links are used (since each link carries
only one packet in a clock cycle). The input
ports of switches in the first stage of the net-—
work receive packets only on one of the K links,
which is the input link of the network (remaining
K-1 links are unused). The packets on the K links
of the output are multiplexed on a single link
which is an output link of the network. A network
with K parallel links is denoted by DK.

Figures 4.la and 4.lb show one possible im—

plementation of a switch for D2 and D4. The

operation of the switch for D4 is described next.

The switch implementation can be easily general-
ized for arbitrary values of K.

contains two banks of four

1-to-2 demultiplexers, labeled the “U” bank and
the "L bank. The inputs of the “U” bank demulti-
plexers receive packets from the upper input port
and those of the “L” bank receive packets from the
lower input port. The outputs of the demulti-
plexers are labeled “0° and “1°. The demulti-
plexers are followed by four 4_ input sorters, la-
beled uu, ul, lu and 11 respectively. The “0° and
“1” outputs of the demultiplexers in the “U” bank
are connected to the uu and ul sorters, and those
of the “L° bank are connected to the lu and 11
sorters. The sorters are followed by two banks of
four 2-to-1 multiplexers, which are again labeled
the “U” bank and the “L” bank. The outputs of uu
and lu sorters are connected to the multiplexers

Each switch in D4

in the “U” bank, and the outputs of ul and 11
sorters are connected to the multiplexers in the
“L” bank. The outputs of the “U” and “L° multi-

plexers form the upper and the lower output of the
switch. The demultiplexers in the switch forward
the incoming packets to their “0° output it tney
are directed to the upper output of the swictch and
to their “1° output otherwise. The sorters move
the x packets arriving at their inputs (0 < x < 3)
to their outputs labeled O through x. The sorting
network is constructed from Bitonic Sorters [2].

In a switch for D4, each sorter contains six

switching elements shown as boxes with arrows. If
exactly one input of an switching element has a
packet on it, the packet is forwarded to the upper
output port it tne arrow in the box points upwards
and to the lower output port if it points down.
If both the input ports of a switching eleuent
have packets on them, they are both passed
straight through.

If the outputs of the two sorters connected
to the same multiplexer bank have a total of K or
fewer (more than K) packets, the multiplexers in
the bank will forward all the (only K of these)
packets to the switch output.

We wiil derive the expression for the
throughput of a 2X2 crossbar switch with K links
on each input and output pert. This result will
be used to derive the throughput of a NXN delta
network constructed from such switches.

If j packets arrive at the K links of an in-
put port with probability Xin(j)’ which is in-

dependent of the arrival of packets on the second
input port, then the probability of finding m
packets on an output port is given by the expres-
sion

K K . "
_ . (i) o=(i+])
xout(m) - izo j=§-i xin(l) xin(J)(m) 2
iz0 for m = 0,1,2,...,K-1
K K R L A
X _® =35 5 X (DX (5 27+ (“J)
out i=0 j=k-i i® in g\ O
(4.1)

In an NXN delta network made up of such
switches, let xi(m) (0 <m < K), denote the proba-

bility of finding m packets on the output of a
switch in stage i (for 1 < i < n) and let xo(m)

denote the probability of finding m packets at the

input of a switch in stage
(IE(x.(m) =1, for 0 < i< n).
n=0 *
If Xin is the arrival rate at every input of
the network then
xo(O) =1 - Xin
X = X%,
xO(Z) = x0(3) = ... = xO(K) =0

Since packets arrive at the two inputs of the
same switch in any stage independently (the rea-
sons for this are cited in section 2), the proba-
bilities of finding m (m<K) packets at the output
of a switch in stage s (1 < s <n) can be ex-
pressed by the following coupled recurrence rela-
tions

K K
_ . o (i+]) - (i4])
xs(m) - izo j=n§1—i xs—l(l) Xs—l(J)(m)2
i2o
K K (s 1)L
(=3 3 x_ (Dx_ (2G5 (")
s i=0 j=k-i s-1 s—1 m=k' ©

(4.2)

The values of x (0),x (1),...,x (K) can be ob-
n n n

tained by solving these recurrence relations [10].
The output rate at each output of the network,
Xout wiil then be given by

X e =1- xn(O)
If the modules connected to the output links
of the of accepting K

(1<K <K) packets in each clock cycle, then the
throughput of the network will be given by the ex-
pression

network are capable

=

X = 3 x (i) *MIN{i,K}
out 1=l n

In this case the K-to-l multiplexers, at the
outputs of each switch in the last stage, must be

14

replaced by K-to-K concentrators.

As mentioned in section 2, the coupled re-
currence relations (4.2) do not specify the func-
tional form of Xout or its dependeuce on xin and

To find such a functional form we assume that

for each stage i between the kth and the last

stage, xi(j) specities a binomial discribution

n.

with mean K*pi, i. e.,
oy o (K\ Gy k-]
x, (3) (j)pi (1-p,)

The first k stages can be ignored since there can
be no conflict in these stages.

Due to the conflicts in the ith

but xi+1(J)
assumed to specify a binomial distribution.
can be shown that

Py T Xin/K

stage P a1 is
(0 < j <£n) is still
It

less than P;s

and
2K

P
n-1
1 —(1——-—2)

The following recurrence relation holds for the
values of p;s (k <i<n)

j 2K
) 221(2K _p_l 1..-P—i
320 i 2 2
(4.3)

Here pi/2 is the probability that a link at the

out

-3

s gy |E
P;4 MaX {3,K} ¢

input of a switch in stage i (ome of the K links
at each input of a switch) carries a request which
must be forwarded to a given output port. This
recurrence relation can be simplified to

_ 12k, -(R+l) ., K+l
Piv =P Tk \g+1) 2 P;

+ high order terms

By deleting the high order terms of 2] and denot-

K+l

ing the coefficient of P; by Q in the above

equation, the following recurrence relation is ob-
tained

K+l
= - *
Pia TPy T Q¥R

The forward difference function of this ditference
equation is used as differential operator to ob-
tain the following differential equation

dp _ _, 4 Ktl
di Q*p

The solution of this differential equation at in-
teger points in the domain will be an approxima-
tion for the solution of the difference equation,
and thus we have the following approximate solu-
tion for equation (4.3)

p: =P e
i 70 1+KQip0K

(4.4)

The analysis presented above can be general-
ized to obtain the throughput, xout’ of NXN delta

networks constructed from BXB crossbar switches,
where K parallel links are used for each connec-
tion between two switches. The actual throughput
is obtained from the set of coupled nonlinear re-
currence relations listed below. In these equa-
tions, I denotes the total number of packets ar-
riving at all the inputs of a crossbar switch and
<i0,il,...,iB_1> is a partion of I, which denotes

the number of packets arriving at each switch in-
put.

Recurrence relation

ps(m) =
BK B-1
< . I\ -I I-m
3 UG ()" -1

igsiyseeerip)
I=1,+i +...+L >m
. B-1 form < K and s = 1,2,...,n/b

ps(K) =
BK B-1 I
3 Mx,_) 5 (IpT -ni™
.. . =0 s=1""n n=k '
igpipseeenipg L m
I=10+...+1B_1>K
for s = 1,2,...,n/b

Initial Conditions
XO(O) =

xl(O) = X.
x2(0) =

I
lal
~
o
~

I

]

Throughput

Xout =1- xn/b(o)

Similarly, by making the binomial approxima-—
tion, the following equations are obtained for the
throughput

Figures 4.2a and 4.2b show the throughput of
network D). The actual throughput obtained from

recurrence relation (4.2) and the throughput esti-
mates obtained from equations (4.3) and 54.4) are
shown together. Figures 4.2c and 4.2d show the
same for D4. The estimates obtained by equations

(4.3) and (4.4) are within 10% of the actual
throughput for networks of sizes 1less than

22223, Equation (4.4) turns out to be a very
good approximation for the nonlinear recurrence
relation (4.3).

From Figure 3.4 it is clear that the improve-
ment in throughput obtained by replacing each link
of a simple delta network by K parallel links is

greater than that obtained by using K delta sub-
networks in parallel regardless of the distribu-
tion policy.

The throughput obtained by using four links
in parallel is very close to the throughput of a
crossbar.

5. Conclusion

Fairly tight lower and upper bounds were
derived for the throughput of unbuffered delta
networks. These bounds have simple functional

forms and they illustrate the dependence of net-
work throughput on the arrival rate, network size
and basic switch size.

Two approaches for enhancing the performance
of delta networks were discussed. For networks
obtained by combining multiple delta subnetworks
in parallel, three distribution policies were pro-
posed for distributing the incoming packets
between the subnetworks. The effect of the dis-
tribution policy on the throughput of the network
was investigated.

Then, networks obtained by replacing each
link of a simple delta network by multiple links
were considered. The throughput of these networks
was analyzed. One possible implementation for thne

basic switches to be used in these networks was
described.
References
[1] Barnes, G. H. and Lundstrom, S. F., '"Design

and Validation of a Connection Newwork for
Many-Processor Multiprocessor systems," Com—
puter 14(12), pp. 31-41 (Dec. 198l).

Batcher, K. E., "Sorting Newworks and their
Applications," Proc. of the Spring Joint Com—
puter Conference , AFIPS press, Montvale, N.
J. (19%8).

Dennis, J. B., "Data Flow Supercomputers,"
Computer 13(11), pp. 4&56 (Nov. 1980).

Dias, D. M. and Jump, J. R., "Packet Switch-
ing Interconnection Networks for Modular Sys-
tems," Computer 14(1z), pp. 43-53 (1981).

Dias, D. M. and Jump, J. R., "Analysis and
Simulation of Bufferred Delta Networks,' IEEE
Trans. on Computers Cc-3u(4), pp. 273-28
(April 1981).

Dias, D. M., "Packet Switching in Delta and
Related Networks,'" Ph. D. Dissertation, Rice
University, Houston, Tx., (May 8l1).

Feng, T., "Data Manipulating Functions in
Parallel Processors and Their Implementa-
tions," IEEE Trans. on Computers C-23(3),
pp. 309-318 (Mar. 1974).

Goke, L. R. and Lipovski, G. J.,

[2]

[3]

[4]

[5]

(6]

[71

L8]

"Banyan Net-

works for Partitioning Multiprocessor Sys-
tems,"” Proc. of the lst Annual Symposium on
Computer Architecture , pp. 21-28, ACM, New
York, N. Y. (1973).

[9] Gottlieb, A., Grishman, R., Kruskal, C. P.,
McAullite, K. P., Rudolph, L., and Snir, M.,
"The NYU Ultracomputer - Designing an MiMD
Shared Memory Parallel Computer,'" IEEE Trans.
on Computers c-32(2), pp. 175-189 (Feb.
1983).

[1u] Kruskal, C. P. and Snir, M., "The Performance

of Multistage InLerconnection Networks for

Multiprocessors," Private communication .

[11]

[12]

[13]

[14]

Figure 1.1 :

Figure 1.2a:

Lawrie, D. H., "Access and Alignment of Data
in an Array Processor," IEEE Trans. on Com-
puters C-24(12), pp. 1I45-1155 (Dec. 1975).

Patel, J. H., "“Performance of Processor-
Memory Interconnections for Multiprocessors,"
IEEE Trans. on Computers C-30(10), pp. 771-
78 (Oct. 1981).

Schwartz, J. T., “The Burroughs FMP Machine,
Ultracomputer Note #5," Courant Institute,
NYU (1980).

Siegel, H. J. and McMillen, R. J., "Using the
Augmented Data Manipulator Network in PASM,"
14(2), pp. 25-33 (Feb. 1981).

Computer

An 8X8 delta network constructed

from 2X2 switches.

0 0
1
L]
.
1 .
N-2
N-1
L]
L]
° 0
1
N-2 .
.o
L]
- N-2
N-1 |v-1
“ 11 /1 {
Idemultiplexers"delta subnetworks" multiplexers

An NXN network constructed from

two NXN delta subnetworks

16

two parallel links

/

I

multiplexers

\

T T

—

Il

1l

I

Figure 1.2b :

0.6

Throughput of simple delta network —s
0.2

Figure

0.8

0.6

0.4

Throughput of simple delta network
0.2

links (D2 network)

An 8X8 delta network with double

Switch Size 2X2
Arrival Rate 1.0

upper bound

’

actual throughput

lower bound

25

10 20
Number of stages —e
2.1a
T T
Switch Size 4 X 4
Arrival Rate 1.0

upper bound

actual throughput

lower bound:

10 20
Number of stages

Figure 2.1b

25

Throughput

©
< T * /Crosshar
Switch Size 16 X 16 Network D,
Arrival Rate 1.0 >
o -
o F
. Network D,
/upper bound — v 2
= | 4 “Sn (K=4)
< actual throughput +Rn and Mn
(K=4)
L / 4 _Sn (R=2)

lower bound

Throughput of a simple delta network

+~Rn and Mn
(K=2)
+ * Arrival rate 1.0
10 20 25 delta
«network
Number of stages [i A I 1
4 16 64 256 1024 4096
Figure 2.lc Network Size (logarithmic axis)
©
S i T Figure 3.2a
Switch Size 16 X 16
Arrival Rate 0.5 F_
w
s 4 <
o

joper bound {Crossbar and
actual throughput ~ |network D,

L 4 <
« Network D,

lower bound/ = Sn (R=4)
o e “Rn and Mn
N : o (K=4)

o : Sn (K=2)
Rn and Mn
(K=2)

) Y delta

0.4

Throughput of simple delta network
Throughput

s =) “ network
10 20 25 Arrival rate 0.5
Number of stages
1] | 1]
Figure 2.1d ’ 4 16 64 256 1024 4096

Network Size (logarithmic axis)

subnetwork 0

Figure 3.2b

upper upper
inputs outputs
lower
lower tout
outputs
inputs 4

:L——— demultiplexers
| 1
[

I |
demultiplexers truncated multiplexers
delta subnetworks ::D multiplexers

Figure 3.1 : An 8X8 selectively loaded parallel

switching element

delta network constructed from two

8X8 truncated delta subnetworks. Figure 4.la : A 2X2 crossbar switch for D,

upper inputs

lower inputs

upper outputs

lower outputs

f m
"demultiplexers |

Figure 4.1b

1
sorters I uleiolexers |

: A 2X2 crossbar switch for D4

Throughput —s
0.4

0.
T

parallel links :
Arrival Rate

Binomial Approximation

brute force soln.

analytical soln.

2 g
1.0

Figure 4.2a

10 20 25
Number of Stages ——e

©
o
S
to
o
5
%4
S S
2 s
H
M
£
3]
o~
o

— .

parallel links : 2
Arrival Rate : 0.5

Binomial Approximation

— 1

Actual Throughput

i "

Figure 4.2b

10 20 25
Number of Stages —

T T

0

Binomial Approximation

0.6

Actual Throughput

Throughput ——e
0.4

parallel links : &
Arrival Rate : 1.0

10 20 25
Number of Stages —=
Figure 4.2c
< .
© § parallel links : &
Arrival Rate 0.5
© o -
‘ =
§_ Binomial Approximation
<
0
A
o o
£
= Actual Throughput
o o -
s
10 20 25

Number of Stages ——

Figure 4.2d

EXPANDING AND CONTRACTING SW-BANYAN NETWORKS

Doug DeGroot
IBM Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Abstract

SW-banyan networks are one of the most promis-
ing class of multistage interconnection networks.
Their advantages include simplicity of control, par-
titionability, modularity, and expandability. Most
SW-banyan interconnection networks that have
been studied have been strongly rectangular nxn
networks, constantly growing (expansion) net-
works, or constantly shrinking (concentration)
networks. A class of SW-banyans called expanding
and contracting SW-banyans is formally defined.
These networks are shown to offer certain signif-
icant performance benefits over other multistage
SW-Banyans. Because they require more
hardware, they are more costly than certain other
rectangular SW-banyans. However, they offer sig-
nificant performance advantages, and thus may be
suited for high-performance environments. They
retain the advantage of n log n cost functions.
More importantly, they retain the "unique-path"
property.

INTRODUCTION

It is clear that interconnection networks com-
prise a major architectural component of large,
highly parallel computers. Although many net-
works have been studied for their suitability to
this environment [Siegel, Lawrie], one type receiv-
ing much current attention is the "unique-path"
multistage network. Given any two resources con-
nected to opposite sides of the network, there is
always one and only one path through the network
between them (thus the name "unique-path"). The
number of stages in these unique-path multistage
networks is usually O(log n), with n switches
(crosspoints) per stage, yielding a cost function of
O(n log n) (as opposed to O(n?) for crossbars).
The Omega network [Lawrie2] is perhaps the best
known example of a "unique-path"” multistage net-
work. Unique-path networks are in general much
easier to control than multiple-path networks.

Unfortunately, most of these unique-path net-
works also contain only partial interconnectivity
capabilities. Thus, given any two resources to be
interconnected, if other interconnections presently
exist, the two resources may not be able to be
interconnected due to blockage by the other
already active interconnections. This absence of
‘full interconnectivity can cause serious degradation
in system performance if interconnection blockages
cannot be held to a minimum by either the operat-
ing system or the user application. Clearly, the
‘less blockage inherent in the network the better.
One large class of blocking, unique-path networks
is the class of SW-banyan networks. It is shown
below that expanding and contracting multistage

0190-3918/83/0000/0019$01.00 © 1983 IEEE

SW-banyans have less blockage inherent in them
than other types of multistage SW-banyans. But
what is just as important, they are also shown to
possess the unique-path property.

BANYAN INTERCONNECTION NETWORKS

In this section a very large, general class of
multistage interconnection networks called banyans
is described [Lipovski]. SW-banyans, a proper
subset of banyans, are a particularly attractive,
cost-effective, modular type of banyan that can be
recursively synthesized from smaller SW-banyans.
A number of single-valued functions are defined
which describe certain structural and topological
features of SW-banyans.

Banyans

Banyan networks, named for an East Indian and
Hawaiian fig tree, are defined in terms of their
graph representation. A banyan (or banyan
graph) is a Hasse diagram of a partial ordering in
which there is one and only one path from every
base to every apex. A base is defined as any ver-
tex with no edges incident into it; an apex is any
vertex with no edges incident out of it; all other
vertices are called intermediate vertices. Some
examples of banyans are shown in Figure 1. In
these diagrams, bases are at the bottom and apexes
are at the top. In the following illustrations, the
banyans will be drawn as undirected graphs.

An L-level banyan is a banyan in which every
base-apex path is of length L. In an L-level
banyan, there are L levels (stages) of arcs but L+1
levels of nodes. By convention, all following
banyan illustrations will be numbered baseward,
with apexes at level 0 and bases at level L. In an
L-level banyan, arcs exist only betweeri vertices in
adjacent levels.

In a banyan, the spread of a vertex is the num-
ber of edges incident out of the vertex; the fanout
of a vertex is the number of edges incident into the
vertex. |If every node level of a banyan is such
that all vertices within the same level have identical
spread and fanout values, the banyan is called uni-
form; otherwise it is called non-uniform. In a uni-
form banyan, the fanout values of the vertices may
be characterized by an L-component vector F,
called the fanout vector. Similarly, the spread val-
ues are characterized by an L-component spread

vector S. A rectangular banyan is a banyan for
which F = S. It is shown below that a rectangular

banyan has the same number of vertices at each
level. Non-rectangular banyans have F # S.

If every component of the fanout vector F is
equal to some constant f and every component of
the spread vector is equal to some constant s, the
corresponding banyan is called regular; otherwise
it is called irregular. When f = s, by necessity F =
S, and the corresponding banyan is both regular
and rectangular; such banyans are called strongly
rectangular. An irregular rectangular banyan is
called weakly rectangular. Figure 1 illustrates
these concepts. From the above definitions it can
be seen that a crossbar is a one-level regular
banyan.

SW-banyans

SW-banyans are a particularly interesting prop-
er subset of L-level banyans. They are especially
suitable for partitioning and connection networks
[Goke, DeGroot]. SW-banyans can be axiomatically
defined [Premkumar]. Recall that a banyan is a
Hasse diagram of a partial ordering in which there
is one and only one path from every base to every
apex. The level x reachability set for any base b,
0 < x < L, is defined as the set of all nodes in lev-
el x that can be reached by directed paths from
base b. Similarly, the level x reachability set for
any apex a, 0 < x < L, is defined as the set of all
nodes in level x that can be reached by paths from
apex a. A banyan is an SW-banyan if and only if
for any two bases b and ¢, or any two apexes d
and e, their level x reachability sets are either dis-
joint or identical, for 0 < x < L.

Constructing SW-Banyans

In addition to
definition, a novel constructive definition of
SW-banyans will now be given. This definition
applies only to uniform L-level SW-banyans, but it
can easily be extended to include non-uniform,
non-L-level SW-banyans. It differs considerably
from previous constructive definitions for
SW-banyans and SW-banyan .networks [Goke,
Goke2, DeGroot]. It can be used to generate regu-
lar and irregular SW-banyans, and
non-rectangular, strongly rectangular, and weakly
rectangular SW-banyans, as well as the expanding
and contracting SW-banyans presented here. A
number of single-valued functions can be associ-
ated with this definition, and they are given below.
These functions define and describe certain struc-
tural and topological features of SW-banyans.

the preceding axiomatic

A uniform one-level SW-banyan is simply a

crossbar. A two-level uniform SW-banyan can be
constructed as follows. Consider any mxn
crossbar, and select t of them. Choose any integer
k > 0, and construct another SW-banyan as

follows. Take the first (leftmost) apex of each of
the t crossbars and connect them to k new nodes.
Take the second apex of each crossbar and connect
each of these apexes to k other new nodes. Con-
tinue until all apexes have been connected to
groups of k new nodes. Figure 2 illustrates this
procedure. The resulting 2-level network is
(km)x(tn). Clearly each of the km new nodes has
one and only path to each of the t crossbars (see
Figure 2). Further, each crossbar apex has one
and only path to each crossbar base. Therefore,
each of the km new nodes has one and only one

20

a) regular

R

b) irregular

N

c) weakly rect.

d) strongl

<
[}
(0]
0
T

Figure 1

path to each of the tn bases, and thus the con-
structed network is a banyan. It is easy to see
that the constructed two-level banyan satisfies the
axiomatic definition given above, and thus the
banyan is also an SW-banyan. Now consider any
mxn (L-1)-level uniform SW-banyan. Choose some t
of these SW-banyans and some k > 0 as before. An
L-level SW-banyan can be constructed using the
same procedure as above. Because each (L-1)-level
SW-banyan has one and only one path between each
apex and base, so will the constructed L-level
SW-banyan. This procedure can be recursively
applied to construct an SW-banyan with any num-
ber of levels. There will always be one and only
one path between every base and every apex in the
constructed SW-banyan, and it can be shown that
the axiomatic definition will always hold. Figure 3
illustrates this process.

k=2
Pt

\ mxn crossbar

=2 (m=2, n=3)

Figure 2

L levels
L-1
levels

Figure 3

SW-banyan Topological Features

In a uniform SW-banyan, all vertices within a
given level have identical fanout values and identi-
cal spread values. The fanouts and spreads of a
uniform SW-banyan are represented by the
L-component vectors F and S. For example, the
3-level SW-banyan in Figure 1.c has F = (2,3) and
S = (2,2). The fanout of every node at level i is
denoted f(i) for 0 < i < L-1; the spreads of these
nodes are denoted s(i) for 1 <i < L. In other
words, f(i) is the i+1'st component of F, and s(i) is
the i'th component of S. For convenience, we
define both s(0) and f(L) to be 1. The number of
nodes in any level x of an L-level SW-banyan is
defined as n(x). The number of apexes is n(0);
the number of bases is n(L).

In this section, a number of topological features
of SW-banyans are described. These features are
used in the following sections to describe expand-
ing and contracting SW-banyans. Because the
proofs of the theorems are so easy and obvious,
and because they have appeared elsewhere in the
literature ([Goke, DeGroot]), they are omitted
here.

Theorem 1:)

For any level x in an SW-banyan, 0 < x < L-1,
n(x*1) = n(x)f(x)/s(x*1).

Theorem 2:

For any uniform L-level SW-banyan, n(x) < n(x*1)
if and only if f(x) > s(x*1). Furthermore,
n(x) > n(x*1) if and only if f(x) < s(x*1). And
n(x) = n(x*1) if and only if f(x) = s(x*1).
Theorem 3:

In a rectangular SW-banyan, n(x) is constant and
equal to B, the number of bases in the banyan, for
0<x<L.

Corollary 3.1:

If n(x) = n(x*1) for
F=s.

Theorem 4:

Each base of an SW-banyan S
s(x*1)s(x*2)...s(L) nodes at level x,
0< x < L-1.

Corollary 4.1:

The number of apexes in a uniform SW-banyan is
s(0)s(1)...s(L).

Corollary 4.2:

all x, 0< x < L-1, then

reaches

Each node at level x, 0 < x <L, reaches
.s(0)s(1)s(2)...s(x) apexes.

Theorem 5:

Every apex in a uniform SW-banyan reaches

f(0)f(1)...f(x-1) nodes at level x, 1 < x < L.
Corollary 5.1:)
The number of bases in a uniform SW-banyan is
f(O)f(1)...f(L).
Corollary 5.2:

Each node at level
fO)f(x*1)...f(L) bases.
Theorem 6:

In a uniform SW-banyan, the number of apexes
equals the numbers of bases if and only if
f(OYf(1)...f(L-1) = s(1)s(2)...s(L).

x, 0 < x <L, reaches

21

EXPANDING AND CONTRACTING SW-BANYANS

Most of the multistage interconnection networks
that have been studied have been nxn multistage
networks, that is, they have n inputs (apexes) and
n outputs (bases). Furthermore, they have almost
always been strongly rectangular nxn networks -
they have had n switches in every stage of the
network. In this section, a certain type of
non-rectangular nxn network is presented. These
networks are called "expanding and contracting”
nxn SW-banyan networks. They are shown to have
certain performance advantages over the prevalent
rectangular nxn networks.

From Theorem 6 above, any nxn SW-banyan
must have f(0)f(1)...f(L-1) = s(1)s(2)...s(L) = n.
Furthermore, to be rectangular, (that is, to have n
switches in every stage), it must be that
f(i) = s(i*1) for 0 < i < L-1. It should be clear
that we can take the f(i) and permute them and
still have their product equal to n. For instance,
if f(0)f(1)f(2) = n, then clearly f(1)f(0)f(2) also
equals n. Therefore, given an nxn L-level
SW-banyan with particular fan and spread vectors
F and S, another nxn SW-banyan can be derived
by simply permuting the components of F or S (or
both). However, unless f(i) still equals s(i+1), for
0 <i = L-1, the nxn SW-banyan will no longer be
rectangular (since F will no longer equal S).

For an example, consider the 8x8 weakly rec-
tangular SW-banyan in Figure 4a. It has F and S
both equal to (2,4). Because F = S, n(x) is con-
stant and equal to 8 for 0 < x < 2 (see Theorems 1
and 3). Now consider what happens when F is
changed to the vector (4,2). Clearly now F # S,
and so the resulting SW-banyan cannot be rectan-
gular. However, we still have that
f(0)f(1) = s(1)s(2) = 8. So the banyan is still 8x8
(see Corollaries 4.1 and 5.1). But because
f(0) < s(1), n(0) < n(1). In fact, n(0) = 8, but
n(1) = 16. (From Theorem 1, n(1) = n(0)f(0)/s(1).
And since f(0)/s(1) = 4/2 = 2, n(1) =2n(0}.) in
other words, there are twice as many nodes at level
1 than there are at level 0. The corresponding 8x8
SW-banyan is shown in Figure 4b. Since
f(1)/s(2) = 2/4 = 1/2, there are half as many
nodes at level 2 than there at level 1. So level 0
has 8 nodes (apexes), level 1 has 16 nodes, and

Figure 4

level 2 has 8 nodes (bases). This banyan expands
outward from the top (apexes) and then contracts
back toward the bottom (bases), somewhat like a
diamond.

It is easy to see that it is also possible to con-
struct expanding and contracting mxn SW-banyans
in which m # n.

Preserving the Unique-path Property

It has seemed perplexing to many that a multi-
stage network can have twice as many nodes in an
inner level than in the apex or base levels and yet
still retain the unique-path property, that is, that
there can still be one and only one path between
every apex and every base. Figure 4b provides
visual proof of one example of this possibility. To
see how the unique-path property is maintained,
recall the constructive definition of L-level
SW-banyans given in Section 2.3. A uniform
two-level SW-banyan can be constructed by select-
ing t mxn crossbars and interconnecting them
through km new nodes, for some k > 0. It is clear
that doing so yields an SW-banyan with F = (t,n)
and S = (k,m). If t > k, then there will be more
level 1 nodes than there are level 0 nodes. If
n < m, there will be fewer level 2 nodes than there
are level 1 nodes. However, the recursive con-
structive definition assures us that the constructed
network will in fact be an SW-banyan and will
therefore possess the unique-path property. In
this way, an expanding and contracting network
can be constructed, and the unique-path property
is maintained, as explained above. The above pro-
cedure can be recursively repeated to produce
expanding and contracting SW-banyans of even
greater numbers of levels, with the unique-path
property being easily proven by induction as
before.

A mathematical proof of the unique-path proper-
ty of SW-banyans has been given in [Bhuyan].

Blocking Characteristics

Most unique-path multistage interconnection
networks suffer from various types of blockage. In
this section, a special type of blockage is consid-
ered. It is initially assumed that some sort of ded-
icated, non-interfering connections are to be used
to interconnect apexes to bases, as in circuit
switched connections, for example. This assump-
tion is later relaxed.

When one apex is connected to a base by means
of a dedicated communication path, no other new
apex-base connection can be made if that new con-
nection requires a node or link in use by the first
connection. The second connection is said to be
"blocked.” This is a direct consequence of the
unique-path property. Only when the first con-
nection is undone can the second be made. Certain
networks are inherently more prone to blocking
than others.

In this section, a function is defined which
gives an indication of the amount of static blockage
inherent in an L-level SW-banyan. This function

22

allows different SW-banyans to be compared to each
other. The function simply relates how many pos-
sible interconnections are rendered impossible (be-
come blocked) by any single connection made on an
empty network. Exactly how much run-time
blockage this connection causes depends on many
factors.

Consider any single interconnection. It uses one
and only one node at each level of the SW-banyan.
The base and apex being interconnected are obvi-
ously rendered unavailable; but because this would
be true even in crossbars, their unavailability is
not considered as blockage here. Consider the
node in use at level x however, 1 < x < L-1. This
node can be reached by s(1)s(2)...s(x) apexes.
Furthermore, this node can reach
f(x)f(x*1)...f(L-1) bases. But one of these apexes
and one of these bases are the apex and the base
in the given interconnection, so they are not con-
sidered as being able to be blocked (they are
already in use). For any x, 0 < x < L, define
a(x), the number of apexes reachable by a node at
level x, to be s(0)s(1)...s(x) (see Corollary 4.2).
Define b(x), the number of bases reachable by a
node at level x, to be f(x)f(x*1)...f(L) (see Corol-
lary 5.2). Then bp(x), the number of blocked
paths that pass through the busy node at level x,
is simply (a(x)-1)(b(x)-1), for 1 < x < L-1. We
define both bp(0) and bp(L) to be zero. The sum
of all bp(x), for 1 < x < L-1, however, does not
yield the total number of blocked paths generated
by a single active path, since many blocked paths
would get counted more than once with this sum.
To avoid the multiple counting, we define the func-
tion bi(x) as [a(x)-a(x-1)](b(x)-1), for
1< x £ L-1. This equation counts the number of
additional blocked paths that are encountered as a
communication path is followed from an apex down
to a base. The total blockage created by a single
connection is then correctly given by the sum of all
bi(x), for 1 < x < L-1.

For an example, consider several possibilities of
a 16x16 SW-banyan. The most popular such net-
works are strongly rectangular ones in which
either f=s=2 or f=s=4. An expanding and contract-
ing SW-banyan in which F =1(4,2,2) and
S = (2,2,4) is also considered. These networks are
illustrated in Figure 5. The values for a(x), b(x),
and bl(x) are shown for all three. Summing the
bi(x)'s, it can be seen that the f=s=2 SW-banyan
incurs a total blockage of 17 blocked intercon-
nections for each connection made. The f=s=4
SW-banyan incurs a total blockage of only 9, or
almost half as few. But the expanding and contract-
ing SW-banyan incurs a total of only 5. From these
figures, it would seem that the expanding and con-
tracting SW-banyan is the best performer of the
three, followed by the f=s=4 and then the f=s=2.
These results are consistent with recent studies
[DeGroot, Malek, McMillen, Bhuyan].

For another example, consider a 64x64
SW-banyan. Using 4x2 and 2x4 nodes, a 64x64
SW-banyan can be built with F = (4,4,2,2) and
S = (2,2,4,4), as shown in Figure 6. Level 0, the
apex level, has 64 nodes, level 1 has 128, level 2
has 256, level 3 has 64, and level 4, the base level,

oy 1vl a(x) b(x) bl(x)
NNNNS 222 vi
ﬁ\Q Z 0 1 16 0
222253588 1 2 8 7
N395% \E§ 2 4 4 6
99Q§ 3 8 2 4
gl
1vl a(x) b(x) bl(x)
0 1 16 0
1 4 4 9
2 16 1 0
1vl a(x) b(x) bl(x)
0 1 16 0
1 2 4 3
2 4 2 2
3 16 1 0
Figure 5
64
256
128
F=(4,4,2,2)
$=(2,2,4,4)
Figure 6
has 64. For each connection made, this 64x64
SW-banyan suffers only 33 blocked

interconnections. The standard f=s=4 SW-banyan
suffers 81, and the f=s=2 SW-banyan suffers 129.
Clearly the expanding and contracting SW-banyan
offers significant performance gains over other
SW-banyans.

1t should be noticed that the increased perform-
ance of an expanding and contracting SW-banyan
does not come without cost. First, the number of
stages in an expanding and contracting SW-banyan
may be more than in other networks, leading to
increased communication delays. In addition,
expanding and contracting SW-banyans may easily
require more network switches and wires.

23

However, importantly, the total cost of expanding
and contracting SW-banyans still grows at the rate
of only n log n.

Bandwidth Characteristics

The above analysis considered all intercon-
nections to be dedicated, non-interfering con-
nections, as in circuit switching. This section

considers the analysis of expanding and contract-
ing SW-banyans in a packet switching environment.
Bandwidth is defined to be the expected number of
memory requests accepted per cycle. To calculate
the bandwidth, it is necessary to calculate and sum
the probabilities of an output occurring at each
base (assuming apexes are the inputs). Bhuyan
and Agrawal provide a simple recursive function
for doing so [Bhuyan]. The probability of output
of a node at network level i is simply

p() =1 - (1 - pGi-1/s(x))

We assume here that p(0)=1 (see [Bhuyan]. for
other relevant assumptions. The bandwidth of an
SW-banyan is then simply n(L)p(L). For the 16x16
SW-banyan then, the f=s=2 version has a bandwidth
of 7.2, the f=s=4 version has a bandwidth of 8.44,
but the expanding and contracting SW-banyan with
F = (4,2,2) and S = (2,2,4) has a bandwidth of
9.28. Clearly the expanding and contracting
SW-banyan is the better performer in packet
switching environments. Similar results are
obtained for the 64x64 example. It should be easy
to prove that this will always be the case for
expanding and contracting SW-banyans.

OTHER TOPOLOGICAL POSSIBILITIES

It should be clear from Section 3.1 that with the
proper choice of t and k at each recursive step of
the construction of an SW-banyan that arbitrary
topologies can be achieved. Figure 7 illustrates
some of the many possibilities. Each has the
unique-path property. What the advantages of any

of these topologies are, if any, remains to be
investigated.
Figure 7

CONCLUSIONS

It has been shown that nxn multistage
SW-banyans can be constructed with more than n
nodes in an internal level. This was not generally
believed to be possible. Because they are
SW-banyans, these networks have the unique-path
property, that is, there is one and only one path
between every apex and every base. Traditionally,
nxn SW-banyans are constructed as
strongly-rectangular SW-banyans. = It has been
shown here that the expanding and contracting
SW-banyans possess significantly less inherent
blockage than = the corresponding rectangular
SW-banyans. Such networks can be built fram only
two or three different types of switches. Although
they require more switches and may result in more
network stages than some strongly rectangular
SW-banyans, they retain the advantages of a cost
function of only O(n log n). As a consequence, it
seems such networks may prove to be more suitable
for interconnecting large numbers of system
resources than the prevalent rectangular networks,
especially when high performance is a major con-
cern.

Acknowledgements

Thanks to Dr. Jack Lipovski for his help with
this work.

Bibliography
[Bhuyan] "Design and Performance of a General
Class of Interconnection Networks,"
Bhuyan, Laxmi N. and Agrawal,
Dharma P., Proc. 1982 International
Conference on Parallel Processing,
Aug. 1982, pp. 2-9.

[DeGroot] Mapping Computation Structures Onto
SW-banyan Networks, Doctoral Disser-
tation, Department of Computer Sci-
ences, The University of Texas,
Austin, 1981.

[Goke] Banyan Networks for Partitioning
Multiprocessor Systems, Goke, Rodney
L., Doctoral Dissertation, Univ. of

Florida, 1976.

24

"Banyan Networks for Partitioning
Multiprocessor Systems,” Goke,
Rodney L. and G. Jack Lipovski, First
Annual Symp. On Comp. Arch., Dec.
1973, pp. 21-28.

[Goke2]

SIMD/MIMD Computer

Networks," Lawrie,
Duncan H., Distributed Processing
Technical Committee Newsletter, Vol.
3, No. 2, IEEE, June 1981, pp. 6-12.

"Access and Alignment of Data in an
Array Processor," Lawrie, Duncan H.,
Trans. on Computers, I|EEE, Vol.
C-24, No. 12, Dec. 1975, pp.
1145-1155.

"Bibliography:
Interconnection

[Lawrie]

[Lawrie2]

[Lipovski] "A Theory for Multicomputer Intercon-
nection Networks," Lipovski, G. Jack,
and Malek, Miroslaw, accepted for pub-

lication in Trans. on Computers, IEEE."

[Malek] A 4x4 Modular Crossbar Design for the
Multistage Interconnection Networks,
Malek, Miroslaw, DeGroot, Doug,
Hung, A.C., and Juang, Ming-Shing,
Dept. of Computer Sciences and the
Dept. of Elec. Eng., The University of

Texas, Austin, Texas, May 31, 1981.

[McMillen] "Performance and Impelmentation of
4x4 Switching Nodes in an Intercon-
nection Network for PASM," McMillen,
Robert J., Adams, George B. I1ll, and
Siegel, Howard J., Proceedings of 1982
International Conference on Parallel

Processing, Aug. 1981, pp. 229-233.

[Premkumar] A Theoretical Basis for the Analysis

and Partitioning of Regular
SW-banyans, Doctoral Dissertation,
Dept. of Elec. Eng., The University of

Texas, Austin, Texas, 1981.

[Siegel] "A Survey of Interconnection Methods
for Reconfigurable Parallel Processing
Systems," Siegel, Howard J., Mueller,
Phillip T., Jr., AFIPS Conf. Proc.
1979 National Computer Conference,

Vol. 48, June 1979, pp. 529-542.

A COMPARISON OF CIRCUIT SWITCHING AND
PACKET SWITCHING FOR DATA TRANSFER
IN TWO SIMPLE IMAGE PROCESSING ALGORITHMS
by
Mehrad Yasrebi
Communication Products Division
IBM Corporation
Research Triangle Park, NC
and
Sanjay Deshpande and J.C. Browne
Department of Computer Sciences
The University of Texas at Austin

Abstract

The communication costs for parallel versions of two simple
algorithms used in image processing are compared in packet
switching and circuit switching formulations. The two algorithms
are smoothing and histogramming. The histogramming algorithm,
the recursive doubling algorithm of Stone, is studied over a range
of processor numbers and pixel intensity resolution. The packet
and circuit switching properties of the interconnection networks of
the multiprocessor systems are based on two network architectured
multiprocessors which are well-documented in the literature, PASM
and TRAC. Communication based upon circuit switching generally
gives a somewhat lower communication cost with the advantage
increasing with pixel intensity resolution. The results of the
analysis suggest a high utility value for including both circuit
switching and packet switching functionality in the networks of
network architectured multiprocessor systems.

Introduction and Overview

This paper compares the communication costs for executing two
algorithms used in image processing on three parallel computer
architectures. The purpose of the comparison is to evaluate packet
switching and circuit switching modes of data movement for
interconnection network based multiprocessors. The two
algorithms used for the comparison are computation of histograms
of the intensity values of pixels of an image and smoothing of gray
level data across the pixels of an image.

The model for a packet switching architecture is the Partitionable
SIMD/MIMD (PASM) System for Image Processing and Pattern
Recognition [Siegel81]. The model for a circuit switching
architecture is the Texas Reconfigurable Array Computer (TRAC)
[Sejnowski80]. The third architecture, all processors sharing a
common bus [Bhuyan82|, is given as a baseline for the comparison.
An analysis of communication costs for the two algorithms
executing on PASM has been given in [Siegel81]. The results of an
analysis of the execution of the two algorithms in a circuit
switching formulation based on TRAC are given here. Space
limitations preclude detailing of the analysis.

Communication Analysis for Parallel Algorithms

The major factors determining communication cost for the
execution of parallel algorithms on interconnection network (ICN)
based multiprocessors include: (i) the topology of the ICN and the
configuration of resources on the ICN, (ii) the mapping of the data
movement requirements of the algorithm upon the ICN, (iii) choice
of switching methodology, (iv) the latency and bandwidth
properties of the ICN, and (v) the unit sizes and the total volume
of the data to be moved. This paper focuses on the impact of
switching methodology and data volume on communication cost.

The choice of packet switching or circuit switching as the mode of
network data path establishment can have a substantial effect on
each of these architectural parameters. Packet switching tends to
give flexibility in topology but fixed unit transfer sizes. Circuit
switching tends toward less flexibility in topclogy, greater flexibility
in unit size for transfers, but a longer transfer latency time. Packet
switching may also introduce bandwidth degradation due to path
contention while circuit switching may introduce path blockages
which limit realizable network topologies for all networks short of
full cross-bars.

0190-3918/83/0000/0025$01.00 © 1983 IEEE

25

The measure of communication cost is elapsed time. The
communication times given herein are reported as number of
memory cycles. We assume, in order to normalize computation
costs across architectures, that an integer addition takes a single
memory cycle and that updating a histogram vector element
requires two integer additions. The speed-up of a multiprocessor
over a uniprocessor is the ratio of total execution times, T, where

Tg = Tcomm + Tcomp: All LOG’s in this paper are in base 2

unless otherwise noted. The data paths of each ICN are taken to
be one integer word in width. For the multistage ICN’s of PASM
and TRAC it is assumed that a unit of data moves through one
stage of the ICN on each memory cycle.

Definition of Architectures

Communication cost for execution of the two algorithms is
compared for three ICN-based multiprocessor architectures. The
single shared bus architecture (Figure 1) has been characterized by
Bhuyan and Agrawal [Bhuyan82]. It is a baseline for ICN-based
multiprocessors. There is no distinction between packet and circuit
switching in this model of communication. The model for a packet
switching data movement architecture is PASM |[Siegel81]. The
ICN of PASM connects complete processing elements as shown in
Figure 2.

Shared
Memory

4

o

N

T

|3

[

v] o [n] |
eee

5] 1

Fig. 1. A Multiprocessor with a Shared Bus

Inter-
connection

Network

Fig. 2. PE-to-PE Configuration

l Interconnection Network I

Fig. 3. Processor-to-Memory Configuration

The interconnection networks proposed for PASM are the
generalized cube and the augmented data manipulator (ADM)
[Siegel79].” T'hese two networks are optimal for histogramming in
the sense that all permutations for the algorithm can be realized by
both networks in a single pass. Thus packet transfers can take
place without blocking.

The model for a circuit switching data movement architecture is
TRAC [Sejnowski80]. TRAC places processors at the apex nodes
and memories at the base nodes of its ICN (Figure 3). The ICN of
TRAC is an SW-Banyan |Premkumar80] with nodes having spread
of two and fanout of three for its ICN. Processor configurations
are formed by establishing circuits in the ICN joining processors to
memory units. Data flow between processors for different stages of
the algorithms can be realized by dynamically switching memories
between processor-memory configurations. This network also
implements trees of circuits joining one memory to many
processors in which any one circuit may be activated and/or
deactivated by a single processor instruction. These tree circuits
are called shared or switchable memory trees. Data flow between
processors may be implemented using this capability by a sequence
of circuit activations and deactivations (among the circuits
following the tree).

The ICN of TRAC actually implements both circuit switching
and packet switching but only the circuit switching mode of use is
modeled in the equations given following.

The Algorithms and Their Mapping to the Architecture

Histogramming and smoothing are among the basic operations of
image processing, although not usually rate determining steps in
the computations. Attention to detailed parallel formulations of
major computational steps of image processing such as thresholding
and edge detection is needed. It is assumed in the analysis
following that the picture is M*M pixels in size (M=2™) and that

N (N=2") processors are available. The resolution of each pixel is
X bits.

Histogramming Algorithm

The parallel algorithm for histogramming is the recursive
doubling algorithm of Stone [Stone75]. The structure of the
algorithm is shown in Figure 4 for N=8. N partial histograms are
computed in parallel at level 0. Each partial histogram is a vector

of length 2*. The partial histograms are then added in pairs in
parallel for LOG(N) stages to complete the algorithm.

level 3
level 2

level 1

level 0

Figure 4: Recursive Doubling Algorithm
for Histogramming

Partial histograms are shown at level 0 by A’s and vector additions

by B's. N/2 transfers of vectors are done between level (i-1) and
level i. The computation time, Tcomp: for this algorithm under

the assumptions made here is proportional to Toomp = M2/N +
2* LOG(N).

A Packet Switching Formulation of Recursive Doubling
Histogramming - Siegel et al |Siege181rhave given a thorough
analysis for the execution of this algorithm on PASM. We adopt
the results of this study as our packet switching model of recursive
doubling histogramming. It is commonly the case that further
steps in the analysis of the image require thresholding so that the
final histogram vector must be collected in one processor and the
threshold value distributed. The total communication time for this
formulation of the algorithm is -

Processors = @
|
]

Tree circuits =

Memories =

Tooym = l(LOG(N) + 2*) + 2] x LOG(N).
travel time switch number of levels
through the setting in the ICN
ICN time

A Circuit Switch Formulation of Recursive Doubling
Histogramming Based on Tree Circuits - Figure 5 illustrates the
structure of the circuit switched data movement formulation of
recursive doubling for an 8 processor-8 memory configuration.

oo g

o o
o
III [i]

ola

" ©0000000000000 M

tree circuits (each circuit has a
distinct "color")

" sesccecssessce

”— } normal processor-memory circuits

Figure 5: Circuit Switching Using the
Tree Circuit Formulation

The M2 pixels are evenly partitioned among the 8 memories. Each
processor computes a partial histogram vector and stores it in the
corresponding memory. The computation is then completed in
LOG(8)=3 stages of adding partial vectors with the full histogram
computed by processor 3 and stored in memory 5. The tree
circuits of Figure 5 implement the successive communication paths
between levels in Figure 5. The *——" tree circuits implement the
data flow between levels 0 and 1 in Figure 4, "00000" the data flow
between levels 1 and 2 and *.....* the data flow between levels 2
and 3. There is a regular pattern of using first the verticals and
then the diagonals of each type of tree circuit. Each tree circuit
type has a unique number {called COLOR in correspondence with
graph theory). LOG(N) colors are required to implement the
algorithm in this formulation. Path selection (activation and
deactivation) in all tree circuits of identical COLOR can be done in
parallel with a latency time proportional to LOG(N)/2. The ICN
of TRAC can implement the tree circuit pattern of Figure 5
without blockage. The total communication cost for this
formulation of recursive doubling histogramming is

LOG(N)
Toomm = [LOG(N)]'! £ N/2! [LOG(N) + LOG(N)]
i=1 ()
= (3/2)(N-1) time to latency
switch all time

memory with
identical COLOR

A Circuit Switching Formulation of Recursive Doubling Based on
Direct Reconfiguration - Another formulation based on circuit
switching can be developed by directly reconfiguring the ICN after
each step (level in Figure 4) of the algorithm to conform to the
data movement path required at each stage of the algorithm. Each
configuration step involving establishment of a circuit between a
given processor and a set of memories must be done serially. Thus
use of the tree-circuit based algorithm is faster by a factor of
LOG(K) where K is the number of COLORs available.

-The Smoothing - Algorithm

Smoothing is replacement of the intensity of each pixel by the
mean of the intensity of the given pixel and its nearest neighbors.

Packet Switching Formulation of Smoothing - Siegel et al

[Siegel81] have formulated and analyzed a packet data movement
formulation of the smoothing algorithm. They show a speed-up of

about .8N for a 1024 processor configuration. This estimate is
extremely conservatively based. A greater speed-up is probable.

Circuit Switching Formulations of Smoothing - A circuit
switching structure for the smoothing operation is suggested by the
fact that each computation requires only nearest neighbors.
Therefore if the pixels are stored by columns then a processor will
need simultaneous access to three columns (say k-1,kk+1) to
execute the computations on column k. A realization of this
representation of the smoothing algorithm is given in Figure 6.
Extra zero valued rows and columns of pixel values are added to
each formulation of boundary conditions. The solid lines of Figure
6 are normal circuits. The dotted lines are tree circuits from which
leaf-root paths can be selected. Processor 1 computes in sequence
the smoothed values for the pixels in columns 1, 2 and 3. Processor
2 will simultaneously and in sequence compute the smoothed values
for the pixels in columns 4, 5 and 6. P1 and P2 must share access
to pixel columns 3 and 4. The execution procedure described
preceding allows this sharing to be accomplished without conflict if
the required circuits can be established in the network. This two
processor configuration obviously extends to an N processor 3N-
memory configuration so long as the memory unit can hold an
entire column of pixel values. A TRAC-like ICN can realize these
configurations so long as these restrictions are met. It is also the
case that the necessary data movement can be realized by
reconfiguration of normal circuits. This is not the method of choice
so long as the conditions for a tree circuit representation can be
met.

Processors

Circuits

Memor fes

O
O m meees oo w O
O m mmmemes w O
O meeermmmmmeeas w O
O racee e w O
O oo w O
ORI, w O
ONONONCHONONONG®)

normal circuits
s=w——--- tree circuits

Pigure 6 A Storage Structure and
Circuit Configuration for
Parallel Smoothing

It may be desired to use a degree of parallelism greater than M
(N>M). Then the columns of pixels must be decomposed into
vectors of length M/k where N=kM. In this case the
establishment of circuits is dependent upon k and may not always
be possible. A formulation using both circuit switching and packet
routing capabilities for TRAC has been worked out. The pixels
appearing at the boundaries created by partitioning of columns
have their *nearest neighbors® sent to them by packet movement.
This "mixed® communication mechanism is still of lower cost than
a pure packet based mechanism. The case N<M (for N=2,
m=2) is handled by assigning multiple (2¥) columns to processors.
This case raises no new problems.

We give here numbers only for the circuit switching
representation where N=M and data movement is via tree circuit
activation and deactivation. Then the total communication cost is
(N/2) LOG(N) (assuming deactivation and activation of all tree
circuit paths is done in parallel). If N=M=512, then only
256%*9=2304 memory cycles are required for data communication.

27

This is negligible compared to the C*512*512 arithmetic operations
on the pixels (C>10 and probably C> 10%) since indexing must be
accomplished as well as the addition and division of smoothing
itself.

We thus conclude that for smoothing data movement costs will
be essentially trivial for both packet and circuit switching
representations.

Speed-up Analysis and Discussion

Figure 7 shows the net speed-up versus the number of processors
for M==1024 and A=8. There is, in this case, little difference
between formulations based on different switching strategies for
moderate numbers of processors. There is the suggestion that
circuit switching will yield superior performance for large numbers
of processors.

Figure 8 shows the speed-up factor as a function of X\ for
M=1024, and N=256. The amount of data transferred grows
exponentially as A Thus circuit switching data movement shows a
strong advantage as \ increases since the cost of data movement in
the circuit switching strategy given here is constant with respect to
data volume until the capacity of a memory unit is exceeded.

Smoothing on the other hand shows advantage for packet
switching since there are cases where a pure circuit switching
formulation becomes rather complex.

The bottom liie with respect to parallel histogramming is that
circuit switching has an advantage resulting from flexibility in the
unit size of transfers and in stability with respect to algorithm
parameters but that well-designed architectures should give similar
performance for small to moderate numbers of processors.

Circuit switching and packet switching are both extremely
efficient for parallel smoothing. Packet switching has an advantage
over circuit switching with respect to application of degrees of
parallelism with N>M for parallel smoothing. This advantage
arises from the greater flexibility in communication topology.

8 Z=MPSB, Y=PACKET, *=CIRCUIT, X=LINEAR
Q7 o = circuit switching based on trees
| * = circuit switching based on
reconfiguration
o
<
S
Q
-
SJ ¥
)
S
-
)
S
£
&
g
& 8
S
°
o
o
o
~
Z
o
S
o
o~
=
S
S T T T T
0.00 40.00 80.00 120.00 160.00

Figure 7 Speedups versus the Number of Processors
(M=1024, X=8)

There is suggestion from these two algorithms that
implementation of both packet and circuit switching facilities in the
ICN’s for multiprocessors will give lower communication cost and
greater net speedup than either used separately.

Acknowledgements

This work was sponsored by the Air Force Office of Scientific
Research under Grant Number AFOSR-82-0091 and by the
National Science Foundation under Grant Number MCS-8116099.

Z = MULTIPROCESSOR WITH A SHARED BUS
Y = PACKET, ® = CIRCUIT SWITCHING BASED ON TREES,
o = CIRCUIT SWITCHING BASED ON RECONFIGURATION
18 4 Note: The range of values for the multiprocessor
with a shared bus is 8160 to 522240. (Not
drawn fully to provide better scale for
16 4 Y viewing)
]
'
14 o
- 12 4
o
-
®
L 10 4
]
&
g 8 9 z
-
o
o
S 6]
E 4 4 y
3.06
2 4 /
0.38 . - &
0 ¥ n T T v
[\] 3 6 8 10

Fig. 8 Communication Time Versus X
(N=256)

28

References

|Bhuyan82] Bhuyan, L.N. and Agrawal, D.P., "Applications of
SIMD Computers in Signal Processing®, AFIPS Conf. Proc. 51, pp.
135-142, 1982.)

|[Feng81] Feng, Tse-yun, ®A Survey of Interconnection Networks®,
Computer 14(2), December 1981.

|Premkumar79] Premkumar, UV, et al, "Interprocessor
Communication on the Texas Reconfigurable Array Computer®, in
1st Int. Conf. on Distributed Computer Systems, 1979.

[Premkumar80] Premkumar, UV, et al, *Design and
Implementation of the Banyan Interconnection Network in TRAC®,
AFIPS Conf. Proc., May 1980.

[Sejnowski80] Sejnowski, M.C., et al, *An Overview of the Texas
Reconfigurable Array Computer®, NCC Conf. Proc., 1980.

[Siegel79] Siegel, H.J., *Interconnection Networks for SIMD
Machines*, Computer 12, June 1979.

[Siegel81] Siegel, H.J., et al, *PASM: A Partitionable
SIMD/MIMD System for Image Processing and Pattern
Recognition®, JEEETC C-30(12), December 1981.

[Stone75] Stone, H., Introduction to Computer Architectures,
Science Research Associates, Inc., 1975.

NUMERICAL EXPERIMENTS WITH THE MASSIVELY PARALLEL PROCESSOR®

E. J. Gallopoulos

and

S.D. McEwan

Department of Computer Science
University of lllinoss at Urbana-Champaign
Urbana, Ill. 61801

Abstract -- The use of the Goodyear Massively Parallel
Processor (MPP), an array of 16384 Processing Elements, is
described for the solution of the shallow-water equations in a
spherical geometry. These partial differential equations arise
in Numerical Weather Prediction models and their fast
solution is necessary. These are discretized with second order
finite-differences on a latitude-longitude grid. Each physical
grid point is mapped onto one MPP Processing Element. A
set of difference equations results at each grid point, the
same set at each grid point. This makes possible the use of
a parallel algorithm for their solution at all grid points
simultaneously. Only values from neighbourhood points are
needed except for a few cases and thus routings between
non adjacent Processing Elements are kept at a minimum.
The resolution achieved with both available horizontal MPP
dimensions is adequate and is comparable with fine
resolution models currently in use. The exploitation of the
MPP architecture is described and some of the problems
facing the algorithm designer when confronting this novel
computer architecture together with suggestions for
handling them are indicated. Performance comparison
estimates indicate that the MPP could achieve equal or
better performance than more expensive supercomputers for
such a problem. It is concluded that the MPP can
competitively solve problems in the area of Numerical
Weather Prediction.

Introduction

The Massively Parallel Processor system (MPP) [1] is a
bit-serial SIMD computer designed and built as a
collaborative effort between the NASA Goddard Space
Flight Center and the Goodyear Aerospace Corporation,
primarily, to support high-speed Image Processing. We
intend to show here by means of a complete example how
the MPP can be used very eflectively to solve problems in
computational physics, in particular the shallow-water
equations occuring in numerical weather prediction. For a
system like the MPP which was designed primarily for one
particular area, namely Image Processing, we indicate how
the available massive parallelism, if used carefully, can give
excellent performance levels, comparable to, and for the
example better than, current supercomputers. This
application study shows that for some problems, the
dimensionality constraints imposed by such an architecture
are not a problem. The efficient use of the MPP in even a
small set of real problems in this area would help the
modellers in need of new and faster computational tools.
This is the first such study done for the MPP. It is based on
a parallel algorithm first set out by Kalnay and Takacs in

()Research supported in part by NASA under contract
NAS5-26405

0190-3918/83/0000/0029%$01.00 © 1983 IEEE

29

[2]). It is interesting to note, as mentioned in [2], that the
father of Numerical Weather Prediction L. F. Richardson, in
his pioneering work [3] had envisaged a “human parallel
computer’” for performing weather prediction. More
recently, references [4, 5, 6, 7] contain studies on the use of
unconventional architectures to solve problems occuring in
that area.

MPP Description

The Goodyear Massively Parallel Processor (MPP) is a
bit-serial ~ Single-Instruction =~ Multiple-Data computer
currently being built under NASA contract to support high-
speed Image Processing. It consists of four main components
[fig. 1]:

Array Unit (ARU)

Array Control Unit (ACU)

Program and Data Management Unit (PDMU)
Staging Memory (SM)

The ARU consists of a 128X128 array of bit-serial
Processing Elements (PE) [fig. 2], each having a 1K bit
RAM, extensible to 84K, giving an overall 2Mbyte ARU
memory capacity. The interconnection network is of
nearest-neighbour type with possible open, cylindrical,
toroidal and spiral connections for the edges, all under user
control. The ACU cycle time is 100ns. The ACU [fig. 3]
executes the applications programs, scalar and array
operations, and manages the I/O. It consists of the PE
Control Unit (PCU), the I/O Control Unit (IOCU) and the
Main Control Unit (MCU). These three modules operate in
parallel and thus array and scalar arithmetic and I/O can be
overlapped. Scalar data and application programs reside in
MCU memory. The PCU memory contains the routines
that operate on arrays of data in the ARU. Each PCU
instruction is 64-bit wide allowing several PE elementary bit
operations to be performed simultaneously. PCU routines
are called from application programs residing in the MCU
memory. A call-queue is provided to queue-up the calls from
the MCU to the PCU, enabling the MCU to work
concurrently. Since most of the MCU operations consist of
subroutine calls or scalar operations that take much less
time than the array operations, the PCU rarely waits for a
new call to be issued by the MCU.

The S-registers on each PE can shift planes of data without
interfering with the computations except when a bit-plane is
to be written into or read from ARU memory. Hence only 1
cycle for reading or writing is stolen every 128 PE activity
cycles (The time needed to bring a new 128X 128 bit-plane
in place in the S-registers.) The Staging Memory buffers
data between the ARU and the secondary storage devices.

The Program Development Software conmsists of two
assemblers, one each for the PCU and MCU, a System

Subroutine Library, a set of I/O Macros initiating I/O
functions, a Control and Debug module and a Linker.
Additionally a parallel version of Pascal, Parallel Pascal [8],
will be available.

" If assembly language is to be used in order to make the
most efficient use of the bit-serial features of the MPP, then
to make the task of large-scale programming feasible, a large
pumber of utility routines must be available. These routines
can be roughly classified as

1) array unit arithmetic (signed and unsigned integer,
floating point),

2) scalar-array arithmetic (eg scalar by array multipli-
cation),

3) scalar arithmetic,

4) array logical operations (all Boolean functions) and
comparisons,

5) routing operations,
6) search operations,

7) reduction operations,
8) others.

This is only a rough classification. Nevertheless it gives a
flavour of the type of utility routines that should be
available to the MPP programmer. At a somewhat higher
level, the standard mathematical functions (as in Fortran)
operating on array arguments, together with matrix and
vector manipulators, must all be available in the utility
library. The existence of efficient routines at that level is
imperative for maximizing the performance.

At the time of the experiment (Summer '82), the MPP
‘was still under development. Therefore the experiments
were done on an MPP simulator system [9]. This system
coordinates the execution of programs to emulate the
actions of the MPP system. The user can write his
programs in the MCU and PCU assembly languages using
any of the available library routines. The resulting modules
are loaded in the system and then the program trace can be
followed through the available Debugger. As such it
provides an excellent development tool for routines
developed for the MPP. Even when the MPP is available, it
would be more convenient to use the simulator first for code
debugging and testing. The simulator system records the
number of MCU and PCU cycles used during the execution
of the application programs. It is written in the C
programming language and runs under the Unix [10] or
VMS [11] operating systems.

Problem description

The problem under consideration is the solution of a
simplified form of the Navier-Stokes equations suitable for
weather prediction in meteorology. Our example here could
well serve as a guide for modellers in the need of faster
computer rates in other Fluid Mechanic areas.

The physical processes occuring in the atmosphere and
as a result their mathematical formulations are non-linear.
Even with the occasional simplifications, the arising
equations cannot be solved analytically and require good
numerical techniques.

To decide on the suitable simplifications to make to the
full set of equations describing the important physical

30

phenomena in the atmosphere one has to note that although
what principally determines the long-term statistical
properties of the atmosphere are the cumulative effects of
heating and friction, these terms are locally small compared
with the fluid-dynamical terms. Hence by concentrating on
these latter equations and terms the modeller can draw
important conclusions for the behaviour of the complete
system. The model to be solved concentrates on these terms
as a first step towards a complete model, similar to the one
described in [12]. It has been found that the so called
shallow-water or barotropic equations contain the essential
numerical aspects of the large scale prediction equations [13]
governing an incompressible, homogeneous and hydrostatic
fluid. These are strictly two-dimensional and thus refer to
phenomena at a single fluid layer. The spherical polar
coordinates (\,¢) where X is the longitude and ¢ the latitude
are chosen, as the most natural reference system for motions
around the globe. At time ¢ and at position (\,¢) the
dependent variables for the model are the height A of the
free atmospheric surface under consideration equal to
hy - hg, and the Eastward and Northward velocity
components u and v respectively. The equations, broken
down to X and ¢ components, are written as follows:

oh _ Oh oh
ot = Gh+ (G

(1a)

Ahu dhu Ahu
Y = (5t h+ (ot)

(1b)

dhv 3hv dhy
b — (2, 4 (O, (1¢)
where
QL) _ 1 Ohu
ot ™ acosg 1 Ix
. ‘
Shu, 1 A(hu)u gh Ohr utang
((‘)t h= acos¢[(228 J acosp O\ & a Juh

(g}ﬂ) _ 1 I(hu)v
at ™ acos¢p (22N
and
(_&l) _ .1 Shvcosd
at’ acos¢ d¢

(2 _ ;[6(kvcos¢)u]

ot acos¢ ¢
Ohvy 1 S(hvcosg)v gh Ohr utan¢
at Jo = acos¢ { J¢]' a 09 -+ [Jub

where f = 2Qsing (with Q the angular rotation frequency
equal to 7.292x 107 sec™!) is the Coriolis parameter. The first
equation comes from the law of mass conservation and the
last two from the law of momentum conservation. They can
be found in this form in [14]. For a model where bottom
orography is not included, hz = H, a constant, and thus the
hy variable above can be replaced by h,This is the quasi-
linear hyperbolic system that must be solved, given suitable
boundary and initial conditions. The equations are written
in fluz form, using the time derivatives of the height-velocity
products as this gives better results when discretized. The
characteristic speed for the above system correspond to i) a

pair of fast moving gravity waves having phase speeds of
order of magnitude VgH and to ii) a slow westward moving
Rossby wave which is of most importance for large scale
meteorological processes. The disparity of speeds between
these modes creates important constraints for the choice of
the integration time step.

Computational Grid and Discretization

A latitude-longitude grid with constant angular
increments A\ and A¢ has been used. The grid is non-
staggered (all variables are defined at each node.) Each node
lies at the intersection of selected latitude and longitude
circles. In contrast to the GLAS model [12] and as in [14]
Ag

the grid system is shifted by next to the poles. Hence

the polar singularity which arises from the acos¢ term in the
equations above is avoided. For m longitude and n latitude
circles

2n

AN=— A¢p= —
n

m

the first and last latitude circles lying next to the north and
JAY)

3
Boundary conditions are doubly periodic as with the GLAS
model. In the East-West direction for both scalar and vector
elements s(\+ 27m,¢)=s(\,¢). In the Nort-South direction,
when variables are needed across the poles, the values are
taken from the first grid point encountered by moving along
the same latitude circle 180° around the pole. To keep the
equations consistent the signs of the vector variables and the
trigonometric functions must be changed when combined

south poles respectively, correspond to ¢=:i:(%f

across the poles [15]. Hence
0k (4 25 = o ns (228 and

]

s(x,i(?+ %2-)) = s(M+ 7+ (For the solution of
the system, a set of initial condmons for h, u, v at all
locations must be available. For model testing, the
conditions used were derived analytically as in [16], instead

of extracting them from a weather map.

The objective is to write finite-difference expressions

and discretize the space derivatives (%'_67) on the
right-hand side of the equations (1). Then a time

differencing scheme can be applied to integrate one step
ahead in time and update the variables. The standard
notation for the average and difference operators will be
used: If a function s is defined on a grid having grid
increment Az then the difference operator acting on s would

be defined by

6»1 Si =

and the average operator

=

where s; means the value of the variable s evaluated at
point iAz. As a result, a second order approximation to g—i
at point ¢Az is given by

Si+1 ~ 8i1

8,57 =
#0i 24z

31

Extension to more dimensions are immediate.

By using the aforementioned operators, the right hand
sides of (1) could be discretized suitably and consistently as
follows:

Ohy o [s
at h= acosd [&hu

[S—

(2a)

Oh -1 h
(G, e —— [2] L wan,

.
at acos¢ acos¢ A+ (S +

hv (2b)

dhv
N

ot acoso (2)

(

and

(ﬂ) ~ 1
a1’ acos¢

[5¢(hvcos @] (3a)

dhu
at

o Ao — [%(hvcos 4)] (3b)

acos¢

(

Ohv
(_81_)‘° ~

L [)] L (7 + 280 (30)

acos@

where each variable and constant is evaluated at each grid
point. To advance forward in time an explicit leapfrog
scheme is used, giving that

(4)
where for notational simplicity s is the vector of unknowns

[h,hu,hv]T defined at each grid point.

Such a time-differencing scheme is frequently used with
current models. The relevant theory [17] imposes an upper
bound on the timestep that one could use to avoid the

80t =gl Dy QAL(Z_:)t:nAt

phenomenon of linear instability. Roughly, the finer the
resolution, the smaller that bound. In [l14] a stability
criterion is shown for the model. A latitude-longitude grid
with the converging meridians at the poles, forces a time
step much smaller at the polar regions rather than the
equators. As a result that minimum time step should be
used. The scheme is of second order in space and time . To
start the computations, data from two time levels are
needed since the chosen time-differencing scheme uses
information from the previous two time levels. This is
achieved by using a simple forward time scheme for a
fractional time step and then proceeding.

MPP Implementation

As mentioned above the problem was implemented on
an MPP simulator. The simulator's overhead and the
sequential processing done by the host machine, made
infeasible the simulation of a 128x128 ARU. Therefore a
32x32 ARU was simulated. It will be noted where that
difference would qualitatively alter the statements.
Although assembly language was used for the program, the
more elegant - Parallel Pascal constructs will be used to
indicate some features of the code. Explanations are
provided for the parallel extensions whenever they are used.
The spherical grid is mapped directly on the ARU: each PE
and PE memory contained the variables and constants for
the corresponding node. The northmost (southmost) PE row
corresponded to the longitude circle immediately to the
south (north) of the North (South) pole.

The variable elements that are only functions of
position like the Coriolis force component f, tang, cos¢ etc.

can all be precalculated before the start of the integration
loop and are constant (with respect to time) arrays. The
time dependent variables h, u, v and their combinations are
also defined at each point. Hence the above values are
stored in each PE memory at fixed locations and their
corresponding type declaration in a high-level language
environment supporting parallel constructs (eg. Parallel
Pascal) would be
parallel array [1 .. N, 1 .. M of real

where N is the number of rows (columns) of the grid and
corresponding ARU systems and where the parallel
declaration indicates that the array would be used heavily in
parallel operations and the compiler is informed of the
preference of the user to have the array stored in the ARU
memory for the sake of efficiency. The scalar data is either
global to the problem and used in the actual equations (2, 3)
or is used for counting purposes. To the former category
belong g, At, Ag, A\, a, 2 etc. and to the latter all the
variables keeping track of the number of steps and
simulated time since the last important event
(reinitialization, filtering etc.) The limited available memory
per PE (only 1024 bits) forces the programmer to look for
ways to economize as much space as possible by using the
Main Controller memory when appropriate. The availability
of scalar-array arithmetic routines avoids any timing penalty
for doing that. In order to avoid unnecessary repetition of
floating-point operations some constant arrays and scalars
can be combined from the initiation of the computations
with the appropriate scale factors (eg. At, A\ etc.) Thus by
storing in the ARU precomputed constant data, the number
of required floating operations, which are expensive, could
be reduced. This is not a problem for the example. For a

more complicated model however, as the first configuration
of the ARU memory is limited, the SM must be used. The
available East-West ARU topology readily provides for the
East-West, periodicity, the first and last PE columns
corresponding to A =0 and X\ = 27-A\ respectively. The
situation is slightly more complicated for the simulation of
the periodicity across the poles, as that cannot be mapped
to the available ARU topologies. To combine the
appropriate elements, the variable arrays would have to be
cylindrically rotated (using the same East-West

interconnection as above) by % columns. For the N = 82

case, the cycle count is underestimated for the routing
operations viz. the N = 128 case. As it will be seen however,
the operation is infrequent enough not to significantly
change the full timing estimates.

The corresponding angular increments for the
simulated and the real ARU are AN = 2A¢ =~ 11° and
AX = 2A¢ == 3° respectively. To compare, a currently used
GLAS model utilizes AX =5° and A¢ = 4° whereas an
'ultrafine’ version has A\ = 3° and A¢ = 2.5°. We thus see
that the MPP dimensions are adequate for the described
problem. Hence no 'dimensional sacrifice’ need be done to
size down the problem for a parallel implementation, an
unfortunate practice in some examples demonstrating the
usefulness of parallel computers.

The operations applied at each grid point (PE) for the
derivation of the spatial differences are local operations. The
only place where this is not so is at some of the calculations
for the latitudinal differences. For the scheme used, which is
of 2¢ order, only elements from the immediate neighbours
are needed. For a more accurate 4th order scheme, like the

32

one used in [12] the elements involved for a calculation at
PE(i,j) would lie in the surrounding PEs at distances of at
most 2.

The inner loop of the code would go through the
following steps in order to derive the new values at
t=(n+1)At out of known data at the two previous time
steps:

1) From the available values for A, u, v at time level n
use the equations (2,3) above to approximate the
space derivatives and by adding the X and ¢ contri-
butions at each grid point (PE) as in (1) derive an

approximation to 2At(%) for the current time
level.

2) Apply (4) to derive the values at the new time lev-
el. This only needs one addition per component of
the s vector.

3) Update the variables and counters.

The PE memory restriction of 1K bits was observed: only
680 bitplanes have been used and these could be further
reduced down to 600. The npumerical stability
considerations mentioned above mean that in going from the
simulated array to the real ARU a drastic reduction of time
step must be performed in order to satisfy the CFL
criterion. We have used At = 200sec for the case N = 32,
but a rough stability analysis gives that for N = 128 At=~20
seconds! This is a serious constraint in going to the real
ARU. Moreover, the allowed time steps near the equator are
much larger than the ones allowed near the poles, due to the
convergence of the meridians at the poles. Methods that

could be used to overcome this are the Fourier filtering of
the unstable waves [18] or the use of an implicit time
differencing scheme [19] with no stability restrictions.
Alternatively, since the time constraint is relaxed by going
to a coarser grid, the number of longitude circles can be
reduced (eg halved.) Since the North-South interconnections
are not used, two independent simulations could be run
concurrently (using the same global constants but different
initial conditions). The one system would lie in the north
half of the ARU (using half of the PE rows) and the other
would lie in the south half. At the end of each computation
cycle results for both systems would be simultaneously
obtained.

In order to avoid the phenomenon of mnon-linear
instability [20], a filtering procedure [21] was used. Such a
filter applied in the East-West direction to an array variable
q at location (4, j), repeatedly calculates Sjer 720y + Gy
and then combines the result with the original array values
gi;- As explained above, things are slightly more
complicated in the North-South direction. This filtering
results in the elimination of 2Az waves where Az is the
East-West grid distance which may introduce the instability.
This procedure was applied every hour on h, u, v, eight
times in each direction resulting in a 16" order filter. The
MPP implementation of the above operator is very efficient,
taking full advantage of the parallelism.

In a Parallel Pascal environment

const

order = 8 ;
type

arr = parallel array[l .. N, 1 .. M of real ;
var

q, qsv, temp : arr ;

i : integer ;
begin

g3y = q;

for 1 :==1 to order do

begin

temp := q - rotate(q, 0, 1);
q :=rotate(temp, 0, -1)- temp;

q:=q/2;
g:=gqf2
end;
q:=qsv- g

end;

The rotate(a, ¢, j) function returns an array conbsisting of
the elements of a circularly rotated by distances 1, j along
the two dimensions. The repeated divisions by 2 are done
by special purpose routines. The bit-serial nature of the
arithmetic makes divisions and multiplications by 2 and its
powers considerably faster than if using the floating point
division by 2 routines.

Description of results

The resulting simulation corresponded to east to west
moving wave patterns for A, u, v. At selected time intervals
the contents of the corresponding ARU memory locations
were examined. A software interface was set between the

simulator and a colour graphics display terminal and the
real valued array variables were scaled and mapped on a
gray scale. The resulting integer valued arrays produced an
image of the moving wave. On the real ARU this
correspondence can be handled very quickly. The scaling
and integer transformations occur at each grid point and full
advantage of the parallelism is taken. Thus even for this
output oriented consideration the MPP can be used very
efficiently. Because of the extraordinary software complexity
of the simulator and the slowness of the host machine, the
simulation was only for a few hours.

MPP Timings and Comparisons

The number of consumed cycles for each routine and
its function are given in the table. The number of PCU
cycles is more important as the MCU works ahead and in
parallel and takes less time.

The number of cycles given for each routine includes
the cycles spent by any called subroutines during the
routine's execution. As can be seen from the timing table, a
main step, consisting of the space derivative calculations
dtcale (by far the most time consuming routine amongst the
frequently called ones) and of update takes about 43,000 PE
cycles, or for 100 ns/cycle there are about 230 iterations/sec.
With a 200sec time step and excluding any overhead, we get
that about 1 day is simulated in 2 seconds. This of course is
a very rough estimate. If filtering is needed, once per hour
say, the time estimate above does not significantly increase
despite the cost of filter.

It is fair to say that there is little agreement on the
way the performance of unconventional machines could be

33

Name Description MCU PCU
(standard library floating-point routines)
fmul multiplication 63 787
fsub subtraction 61 381
fadd addition 51 381
fdiv division 101 1031
fhalf division by two 100 266
fmulsa scalar-array multiplication 64 791
(user-written special purpose routines)
barl longitude averages 162 745
barp latitude averages 176 1041
ndifr longitude finite differences 136 1269
ndifc latitude finite differences 163 1668
filter Shapiro 16" order filter 18357 96408
(user-written main step routines)
dtcalc space derivatives 4706 38835
update leapfrog update 390 3403

evaluated and compared. The MOPS/MFLOPS rates are
some of the most popular measures but even for those, their
uniform validity across the machine spectrum is disputed.
Other standards have also been proposed [22, 23, 24]. As
long as we are interested in particular problems and not
general evaluations a good strategy is to simply compare the
timings for their solution on the examined machines [25].
Even this however may not be a fair criterion since the

fastest algorithms for each machine would possess different
numerical properties. Dimensions also would probably be
chosen to suit the machine (magic numbers like 64 or 128
for the Cray, the DAP or the MPP) rather than the
modeller. Since our experiments have been conducted on a
simulator it is only approximate comparisons that we could
make. The DAP [26] array is 1/4 of the MPP array and also
has considerably slower MFLOP rates. As a result, for this
problem it would not compete with the MPP. On the other
hapd the currently used DAPs have 4K bits of memory per
PE (to be extended to 16K) and hence it could be used to
model a multi-level model, or one containing more equations,
without the constraints imposed by frequent 1/O exchanges
which might be needed for the MPP in its initial memory
configuration. Experiments on the CRAY-1 [19] for a similar
model with a resolution of AN = A¢ =12° required
8.5X107*sec [step, whereas with AN = A¢=14° the
integration required 4.97X107%sec /step. The AN = 2A¢ ~ 11°
resolution achieved with the MPP simulator took about
4.3X103sec [step. As the parallelism is almost fully exploited
and redundancy is kept at a minimum by going to the full
ARU this timing estimate would only increase slightly but
the available resolution would be A\ = 2A¢ = 3° which is
superior to the finer resolution in the Cray model above.
Therefore a better resolution and comparable or better
timing would be achieved with the MPP. Moreover, it would
be possible to have concurrent solutions, starting from
different initial data as mentioned above.

Conclusions

We have discussed the use of the MPP for the
integration of a set of non-linear PDEs frequently occuring

in Numerical Weather Prediction. We have found that the
MPP can be used for the solution of such problems. We
have talked about the problems facing the algorithm
designer and suggested methods for coping with them. The
MPP gives much better performances for integer
computations. It is thus worth investigating the possibility
of using fixed or block floating point arithmetic in the
computations. The use of the MPP makes efficient and
possible the simulation of General Circulation models over
the entire globe with adequate horizontal resolution.
Consequently the modeller doesn’t have to worry about
imposing artificial lateral boundary conditions. A complete
model would have multiple vertical levels. It would also take
account of thermal phenomena which here were ignored, by
incorporating more equations. A 4th order space differencing
scheme would be preferable. For multiple level simulation
the PE memory becomes inadequate. The addressing
capability of the PE index registers is for 64K bits per PE
memory and a future system could contain such memory.
Nevertheless the first available MPP will have to use its
Staging Memory as an immediate active buffer area. The SM
capacity would initially be 4Mbytes and can be expanded to
64Mbytes. In that configuration rates of 160 Mbytes/sec are
achieved. The available permutation network has many
capabilities for accessing subarrays or other patterns from
and to the storage area. A few of the not too frequently used
arrays for a large model could be stored in the stager and
brought in the ARU under some paging policy designed to
minimize interference with the computations. A preliminary
theoretical study of the problems related with memory
allocation and management for the Staging Memory can be
found in [8]. Real or various analytical initial data would be

gathered in a data base and from there it would initialize
the MPP arrays. Multiple concurrent simulations could then
be run as suggested above or a single fine-grid simulation
could be instigated and the results at selected time steps
would be displayed. For long predictions, periodic updating
of the variables could be done by utilizing new observed
data. Overall, the MPP would be a powerful computational
tool for modellers.

Acknowledgements

This work was done while the authors were working
with the Computer Development Section at the Goddard
Space Flight Center. We would like to thank Ken Wallgren,
Dr. Eugenia Kalnay, Larry Takacs, Jim Fisher and Dr. Jim
Strong of the Goddard Space Flight Center, Dennis Lynch
of CSC for the friendly environment and ‘the helpful
discussions, and Professor Dan Slotnick of the University of
Illinois for making this summer project possible.

References
[1] K. E. Batcher, “Design of a Massively Parallel
Processor,”” IEEE Transactions on Computers,
(September, 1980), pp. 836-840.
[2] E. Kalnay-Rivas and Larry Takacs, “A Simple
Atmospheric model on the Sphere with 100%
Parallelism,” Advances in Computer Methods for

PDE’s, R. Vichnevetsky ed., Vol. IV, IMACS 1981.

[3] L. F. Richardson, Weather Prediction by Numerscal
Process, Dover, (1965), 236 pp.

[4] A. B. Carrol and R. T. Wetherald, “Application of
Parallel Processing to Numerical Weather Prediction,”

34

(5]

(6]

(7]

(9]

(10]

(11]

(12]

(13]

(14]

(18]

[16]

(17]

(18]

(19]

Journal of the ACM, (July, 1967), pp. 591-614.

R. 1. Wilhelmson, ‘“Solving Partial Differential
Equations Using the Illiac IV,” Constructive and
Computational Methods for Differential and Integral
Equations, Springer-Verlag, (1974), pp. 453-475.

M. Graham and D. L. Slotnick, An Array Computer for
the Class of Problems Typified by the General
Circulation of the Atmosphere, Department of
Computer Science, University of Illinois at Urbana-
Champaign, Report UIUCDCS-R-75-761, (December,
1975), 289 pp.

J. B. Dennis and Ken K.-S. Weng, ‘“‘Application of
Data Flow Computation to the Weather Problem,”
High-Speed and Algorithm Organization, Academic
Press, (1977), pp. 143-157.

A. P. Reeves and J. D. Bruner, The Language Parallel
Pascal and other Aspects of the Massively Parallel
Processor, School of Electrical Engineering, Cornell
University, (December, 1982), 248 pp.

D. J. Kopetzky, An Array Simulator Generator,
Department of Computer Science, University of Illinois
at Urbana-Champaign, Report UIUCDCS-R-80-1031,
(September, 1980), 63 pp.

E. Gallopoulos, Scott McEwan and Dianna Visek, MPP
Simulator Manual, Department of Computer Science,
University of Illinois at Urbana-Champaign, Report
UIUCDCS-R-82-1075, (April, 1982), 35 pp.

D. Lynch, P. Jones, J.Reese, C. Weger, The Massively

Parallel Processor System, Computer Sciences
Corporation, Report CSC/TM-82/6034, (February,
1982).

E. Kalnay-Rivas and D. Hoitsma, Documentation of the
4th Order Banded Model, Laboratory for Atmospheric
Sciences, NASA Goddard Space Flight Center,
Technical Memorandum 80608, (December, 1979).

Akira Kasahara, ‘‘Computational Aspects of Numerical
Weather Prediction and Climate Simulation,” Methods
in Computational Physics, Academic Press, (1977), pp.
1-65.

M. Grimmer and D. B. Shaw, ‘“Energy-Preserving
Integrations of the Primitive Equations on the Sphere,”
Quart. J. Roy. Meteor. Soc., (1967), pp. 337-349.

D. L. Williamson, “Difference Approximations for Fluid
Flow on a Sphere,” Numerical Methods in Atmospheric
Models, GARP Publication, (September, 1979), pp. 51-
120.

Norman Phillips, ‘“Numerical Integration of the

Primitive Equations on the Atmosphere,” Monthly
Weather Review, (September, 1959), pp. 333-345.

R. D. Richtmyer and K. W. Morton, Difference
Methods for Initial-Value Problems, Wiley(Interscience),
(1967).

D. L. Williamson, “Linear Stability of Finite-Difference
Approximations on a Uniform Latitude-Longitude Grid
with Fourier Filtering,” Monthly Weather Review,
(January, 1976), pp. 31-41.

R. L. Gilliland, ‘“Solution of the Shallow Water
Equations on the Sphere,” Journal of Computational
Physics, (September, 1981), pp. 79-94.

[20]

(21]

22]

23]

(24]

(26}

gz
T
= —
- BIT 128 - BIT
i:gUT ouTPUT
INTERFACE ARRAY UNIT INTERFACE

N. Phillips, “An Example of Nonlinear Computational
Instability,” The Atmosphere and Sea in Motion,
Rockefeller Inst. Press, (1959).

R. Shapiro, “Smoothing, Filtering and Boundary
Effects,” Rev. Geophys. and Space Phys., (May, 1970),
pp. 359-387.

L. J. Siegel, H. J. Siegel and P. H. Swain, ‘“Performance
Measurements for Evaluating Algorithms for SIMD
Machines,” IEEE Transactions in Software
Engineering, (July, 1982), pp.319-331.

D. J. Kuck, The Structure of Computers and
Computations, Wiley, (1978), 610 pp.

D. Hockney and J. Jesshope, Parallel Computers, Adam
Hilger, (1982), 423 pp.

D. Parkinson and H. Liddell, “The Measurement of
Performance on a Highly Parallel System,” IEEE
Transactions in Computers, (January, 1983), pp. 32-37.

P. M. Flanders, D. J. Hunt, S. F. Reddaway, and D.
Parkinson, ‘“Efficient High Speed Computing with the
Distributed Array Processor,” High Speed Computer
and Algorithm Design, Academic Press, (1977), pp.
113-128.

SWITCHES
SWITCHES

)

LA
Zs i
A ZzZ=4
L\\ 2=
STAGING
NEHORY CONTROL STATUS MEMORY
ARRAY CONTROL
UNIT (ACU)
PROGRAMS
i DATA comtnoL fISTATYS
PROGRAM & DATA W
MANAGEMENT UNIT
(POMU)
MAGNETIC DISK ALPHA- LINE
TAPE NUMERIC
TERMINAL PRINTER
\————————— EXTERNAL COMPUTER C__:___—'_J__J

Fig. 1 MPP System

35

UM CARR'

FULL ADDER

L

NBIT
8 swiFTRee. [A
(N-2.6.10.14
18,22.26 OR 30)
-
NBR =] E
re's <= P
pee
LoGic

DATA BUS

¥
N A — ~ conven
FROM PE TO PE [RANDOM-ACCES S|+
onwest | ¢ ON EAST v ADDRESS
Fig. 2 MPP Processing Element
PE PE
PDMU —=-{ CONTROL »{ 'CONTROL |- ARU
MEMORY | umir
QUEUE
MAIN
L={ conTROL
UNIT
MAIN
POMU —=| CONTROL ‘
MEMORY
o
CONTROL |- ARU
uNIT

Fig. 3 Array Control Unit (ACU)

AN M-STEP PRECONDITIONED CONJUGATE GRADIENT METHOD FOR PARALLEL COMPUTATION

Loyce Adams
Institute for Computer Applications in Science and Engineering
Hampton, Virginia 23665

Abstract - This paper describes a
preconditioned conjugate gradient method that can
be effectively implemented on both vector machines
and parallel arrays to solve sparse symmetric and
positive definite systems of 1linear equations.
The implementation on the CYBER 203/205 and on the
Finite Element Machine is discussed and results
obtained ‘using the method on these machines are
given.

Introduction

In this paper we are concerned with tic
solution of a sparse N X N system of symmetric
and positive definite linear equations

Ru = £ (1.1)

by preconditioned conjugate gradient (PCG) methods
on both vector computers and parallel arrays.
Several descriptions of these methods appear in
the 1literature; see for example, Concus, Golub,
O‘Leary [1976] and Chandra [1978]. Also, Schrieber
[1978] discussed the implementation of conjugate
gradient (CG) on vector computers and Podsiadlo
and Jordan [1981] discussed its implementation on
the Finite Element Machine under construction at
NASA Langley Research Center. R .

The PCG method solves the system Ku = f
where

K = Mk T, w=qlu, £=0qtg, .2)
Q 1is a nonsingular matrix, and the symmetric and
positive definite preconditioning matrix is given
by M = QQT. The algorithm for the solution of
u directly is described in Chandra [1978] and is
given below where wu, r, ¥, and p are vectors
and (x,y) denotes the inmer product x'y.

(1) Choose u°

) £ = f - k®

(3) Mr° = £©

) p° = 1°

(5) For k = 0,1,"'kmax

(1) a=1(:LE-IE%j

p »Kp

@) uk+1 = uk + 0‘pk
3y 1 W <6 then
stop, otherwise continue.
%) rk+1 _ rk _ cprk
(5) Mpktl o ktl
6) 8 [‘k+1 k+1]
(e*,rk)
(7 pk-!»l -]’_jk+1 + Bpk
Algorithm 1. PCG Algorithm
We mnote that the standard conjugate gradient

algorithm results by choosing M = I.

For vector machines, if M = I, all steps of
the iteration loop except (1) and (6) can be
vectorized. In particular, the multiplication
Kp, for K sparse, vectorizes after a suitable
ordering of the equations and will be discussed in
detail in Section 3. The difficulty arises in the
formation of the inner products necessary to
calculate @ and B. These calculations require
a phase in which N partial sums must be added
together and therefore do not vectorize well.

For parallel arrays like .the Finite Element

Machine (Jordan [1978], Adams [1982]), the
calculation of wu,r, and p can be distributed
to the individual processors and the necessary

communication between processors can be performed
on the dedicated local 1links. The convergence
test in (3) can be performed by using the flag
network. However, for a large number of
processors, the calculations of o and B can be
expensive since the number of values to be summed
for each inner product is equal to P, the number
of processors. Jordan [1979] realized that this
was potentially detrimental to the efficiency of
the method on this machine, and as a result, a
special hardware circuit (sum/max) was designed to
perform the P sums in 0(log2P) time.

Since Algorithm 1 has two inner products per
iteration that will become costly as N (on
vector machines) or P (on arrays) increases, a
natural goal is to devise a preconditioner that
will reduce the number of CG iterations, and hence
the number of inner products, while being
inexpensive to implement. In the next section
preconditioners that are based on taking m steps
of an iterative method are described. In Section
3, the implementations of these methods on the
CYBER 203/205 and the Finite Element Machine are

The research reported in this paper was supported in part by the National Aeronautics and Space
Administration under NASA Contract No. NAS1-46 while the author was at the University of Virginia,

Charlottesville, VA.

and in part by the National Aeronautics and Space Administration Contract Nos.

NAS1-15810, NAS1-17070 and NAS1-17130 while the author was in residence at ICASE, NASA Langley Research

Center, Hampton, VA 23665.

0190-3918/83/0000/0036$01.00 © 1983 IEEE

given for a system of equations that results from
an example structural engineering problem.
Results for this problem on the CYBER 203 and the
Finite Element Machine are given in Section 4.

2. M-Step Parallel Preconditiomers
2.1 Choosing M
The preconditioned conjugate gradient

algorithm of the last section requires a symmetric
and positive definite preconditioning matrix M.
The question is how to choose M so that the

~

condition number of K,
. maxA
K(K) = minii9
i

is as small as possible.

The best choice for M in the sense of
minimizing (R} .5 M=K but this gains
nothing since Kr = r is just as difficult to
solve as Ku = f. A .. e of preconditioners that
appears to be easily imp.emented on parallel

computers arises by choosing M to be a splitting

of K that describes a linear stationary
iterative method. As an example, the SSOR
splitting of K yields

M = 5% (4p-1)p71 (1p-v) (2.1)

are the diagonal, strictly
respective-

where D,-L, and -U
lower, and strictly upper parts of K

ly. This splitting has been considered extensive-
ly 1in the literature as a preconditioner; for
example, refer to Concus, Golub, O‘Leary [1976]

and the references therein. Now, if the matrix
K is ordered by the Multicolor ordering (Adams
and Ortega [1982]), the system Mr = can be
implemented on parallel computers as a forward
followed by a backward Multicolor SOR iteration

applied to Kr=r with initial guess (=0 and
will be explained in more detail in Section 3.
The question now arises whether it would be
beneficial to take more than one step of a linear
stationary iterative method to produce a
preconditioner M that more closely approximates
K. If this is done, the resulting preconditioning
matrix is

M = p(1+G+...+¢™)7L,

(2.2)
Now, M must be symmetric and positive definite to
be considered as a preconditioner. The necessary
and sufficient conditions for M to satisfy these
requirements are given in Adams [1982] and we only
note here that if P is the SSOR splitting matrix
these conditions are met. We also note that
Dubois, Greenbaum, and Rodrique [1979] fonsidered
a truncated Neumann series for K™ as a

preconditioner which corresponded to a Jacobi
splitting where P = diag(K).
Even though the preconditioner in (2.2) for

the SSOR splitting 1s symmetric and positive
definite, the question of how well the resulting
PCG method will reduce the number of CG iterations
must be answered. In Adams [1982], for the SSQR
splitting, the condition number of the matrix K

of (1.2) was proven to decrease as the number of
steps of the preconditoner in {2,2) increases;

KK
however, the maximum ratio of ——wl)
K

(Ry)

was shown to

37

be m. In practice, for larger m, this reduction
may not be enough to balance the increase in the
work that must be done by the preconditoner (as
results 1n Section 4 verify). However, by
parametrizing this preconditoner, the method is
very effective. This parametrization is briefly
discussed in the next section and the parameters
for the SSOR splitting are given.

2.2 Parametrizing M

Johnson, Micchelli, and Paul [1982]
suggested symmetrically scaling the matrix K to
have unit diagonal and then taking m terms of a
parametrized Newmann series for K™~ = 1-6)"! as
the value for M ~. This corresponds to a
symmetric preconditioning matrix whose inverse is
a polynominal of degree m-1 in G,

have

-1 _ 2 m-1
Mm aOI + alc + aZG +eoet am_IG (2.3)
derived from the Jacobi splitting,
K=1-6G (2.4)
of K; hence, the solution to Mm; =r can be

implemented by taking m
iterative method applied to

r(°) = 0. Johnson, et.al. choose the
o;”s so that the eigenvalues of M; K, and hence
those of , are positive on the interval
[Al’kn] that contains the eigenvalues of K
are as close to 1

steps of the Jacobi
Kr = r with initial

guess

and
as possible in some sense such

as the min-max or th least squares criteria.
Clearly, if lﬁ =1, Mo K = apK and the conditiomn
number of M "K is the same for all o # 0.

Hence, we are only interested in m > 1.
We now generalize this idea for any splitting
of the matrix K,
K =P -Q. (2.5)
If G = P—IQ, then by parametrizing (2.2), the
inverse of the m—step preconditioner becomes
-1

M

- -1y -1
- -(a01+oc Gta ™)P (2.6)

1 2
and will be symmetric if P
choose the values of @; so that the eigenvalues
of M; K are positive on the inteival [Al'xn]

that contains the eigenvalues of P”"K and are as
close to 1 as possible in some sense such as the
min-max or least squares criteria. For the least

G2+...+a
m~1

is symmetric. We

squares criteria, the values of o that
correspond to the SSOR splitting are given in
Table 1 for m = 2,3, and 4.

Table 1.
o Values for the m—step SSOR PCG Method

= %o 1 %2]
2 1.00 5.00

3 1.00 ~2.00 7.00

4 1.00 7.00 -24.50 31.50

In the next section we describe how to implement
the m-step parametrized SSOR PCG method on the

CYBER 203/205 and on the Finite Element Machine
and in Section 4, results on these machines are
given.

3. Implementation of the m—step SSOR PCG Method

. We first describe the algorithm for solving
Mr = r, where M 1s the preconditioning matrix
given by (2.6). To be concrete, this description
will be given for the following test problem.

The domain considered will be a rectangular
plate discretized with triangular finite elements
over which linear basis functions are defined. The
nodes of the triangles are colored Red, Black, and

Green so that nodes on a given triangle are
different colors as shown in Figure 1. This
coloring, as described in Adams and Ortega [1982],
decouples the equations so that an implementation
on either vector or array computers is possible as
will become more apparent later in this
discussion.
B G R B G R
Y
G R B G R B
R B G R B G
/]
B G R B G R
G R B G R B
y
R B G R B G |
X
Figure l. Plate (Triangular Elements)

The problem is to determine the displacements,
say u and v, in the x and y directions
respectively at each node in the plate whenever
the plate is loaded on one edge and constrained on
another. The partial differential equations of
plane stress that govern these displacements are
well known, see Norrie and DeVries [1978], but do
not contribute to the discussion here. The
important point to make is that the stiffness
matrix K of (l.1) will be symmetric and positive
definite and will have dimension 2ab x 2ab

where a 1is the number of rows of nodes and b
is the number of columns of unconstrained nodes (2
unknowns at each node), and each row of K will
contain at most 14 nonzero elements which
correspond to the grid point stencil for linear
triangular elements shown in Figure 2.

*(u,v) [(u',v)
. (u,v)
) (u,v)
*(u,v) eo(u,v)
Figure 2. Grid Point Stencil

Observe from Figures 1 and 2 that while there
is no coupling between the equations at two nodes
of the same color,. the equations at a given node

do couple. Hence, to completely decouple the
system, six colors are necessary; namely, Red(u),
Red(v), Black(u), Black(v), Green(u), and

38

Green(v). Now, if the equations at the nodes in
Figure 1 are numbered by these six colors from
bottom to top, left to right, the system Kr =r
has the form,

r O A7 -

D11 Biz Biz Bys Bys By | T1 Ffl

Bl Dyy By By, Bys Byl | x ry

B¥3 323 D33 B3, B3s Bag| | T3] |73

Bl, B, B3, Dy, Bys Bug| | T4 r,| 3.1

Bls B35 Bjs Blis Dss Bsg| | s rs

Bl Bj6 Bis Bis Bss Des| | T rg

- ~/ - - J
where Bj,,Bq,,Bs¢, and Dy, L = 1 to 6 are

diagonal matrices.

The SSOR iteration can be realized by a
forward followed by a backward Multicolor SOR
iteration, (Adams and Ortega [1982]), but is only
as expensive as one Multicolor SOR iteration since
a technique of Conrad and Wallach [1979] can be
used to save results in an auxiliary vector, y,
from the forward pass to be used in the backward
pass. The procedure is given below for solving
Mr r of Algorithm 1. The relaxation parameter
w of the SSOR method causes no problems in the
implementation and will be set to one here for
simplicity.

(1) £=0; y=0
(2) For s =1 to m
(1) For ¢c=1 to 6
c-1 N
(1) Form x = -) B.
4=1 ¢ 3
(2) Solve D.r, =x+y, +a _ r,
(3) Set vy, = %
(2) For ¢ =15 down to 2
6 R
(1) Form x= -) B 5f
j=c+1 el
(2) Solve D,r, =x+y, +oa .1,
(3) Set Y. = X
~ 6 n
(3) Solve Dir, = -1 Bljrj +y, oo

j=2

Algorithm 2. m-step 6-color SSOR

Notice that the values of « above are the
parameters that were given in Table 1, and if no
parametrization is desired, these are simply set
to one. We also point out that Algorithm 2 can
easily be modified to solve problems whose domains
are discretized by more complicated finite
elements or finite differences as 1long as a

multicolor ordering is used. For more details see
Adams and Ortega [1982]. We now turn to the
implementation of Algorithm 1 in conjunction with
Algorithm 2 on the CYBER 203/205.

3.1 CYBER 203/205 Implementation

On the CYBER 203/205, vectors consist of
contiguous storage locations and maximum
efficiency of vector operations 1is achieved for
very long vectors. For vectors of length 1000
around 90% efficiency 1is obtained, but this drops
to approximately 507 or less for vectors of length
100 and 10% for vectors of length 10.

To achieve the maximum vector length for our
test problem the u equations at the Red nodes
(left to right, bottom to top) 1including the
constrained nodes are numbered first, followed by
the corresponding v equations at the Red nodes,
then by the Black u, Black v, Green u, and Green
v equations. The numbering of the constrained
equations is necessary for ease of implementation
given the CYBER’s contiguous storage requirement
but 1150 increases the vector length from 1/3ab
to §a(b+l). 0f course, the actual updating of
the storage locations corresponding to these
constrained nodes 1is prohibited by the control
vector feature on this machine, see Ortega and

Voigt [1977], and for large values of a and b
little 1inefficiency 1is incurred. For a unit
square plate, the maximum vector length for our

a

test problem is § and is around 1000 when

a = 55, or equivalently when the width of each
triangle is equal to 1/54.

The contiguous storage requirement coupled
with the manner in which the nodes are colored
imposes a restriction on the number of nodes that
can be in each row of the plate. In particular,
the last node in the first row must be Black so
that the coloring R/B/G/R/B/G, etc- wraps around
from one row to the next. K

Now, the calculations of Ku® and Kp in
Algorithm 2 can be done by a straightforward
generalization of Madsen, Rodrique, and Karush’s

Figure 3a. 18 nodes/procesor

[1976] matrix multiplication by diagonals scheme
since K of (3.1) has the structure shown in
(3.2) (and will be stored by these diagonals as
well):

R B

<

/

u

1

7

(3.2)

ez
77

S S

L0770/ /-
0/ /I

TII1
//

L

Also, the multiplication of Bﬁcr and B.sr in
perfofmeg by the

Algorithm 2 can be same
techniqu%é+1 The subtraction 1in the convergence
test It -ul, < € vectorizes and the absolute

value 1is performed by the vector absolute value
function that 1is available on the CYBER. The
inner products for the calculation of o and B8
are done by a call to an inner product routine
which wutilizes the machine’s vector hardware;
however, the additions of the partial sums make
this operation considerably slower than the other
vector operations required in the algorithm.

Next, we turn to the implementation of
Algorithm 1 in conjuction with Algorithm 2 on the
Finite Element Machine.

3.2 Finite Element Machine Implementation
The first task for the implementation on this

machine is to assign the nodes (and hence
equations at the nodes) of the plate to the
processors. This is done by assigning each

processor, as nearly as possible, an equal number
of Red/Black/ and Green unconstrained nodes as
illustrated in Figures 3a, 3b, and 3c, where in
each Figure, the node colorings may repeat beyond
the region shown.

N
Z LS N RN
SRNHRN

\ | \

7
7

Figure 3b. 9 nodes/processor
L \ \
lc R ~1G R

N \“1"
ANAVANA

IAANAN
e

—B——G{o RR—B—F |~

AN

\ l\\

1;\m

“rR}=I8 G

R]__

Figure 3c.

39

\] \

3 nodes/processor

In contrast. to the CYBER implementation we need
not be concerned with numbering the constrained
nodes, but instead we should require that each
processor receive an equal distribution of each
color of the unconstrained nodes.

Since memory is distributed on the Finite
Element Machine, each processor stores the portion
of wu, p, r, ¥ and K that corresponds to its
collection of nodes. For each equation that is
assigned to a processor, l4 storage locations are
reserved for the nonzero coefficients of K that
correspond to the grid point stencil in Figure
2. For more information about these data
structures see Adams [1982]. 1In addition, storage
must be reserved in each processor for the portion
of P that must be received from neighbor
processors during the calculation of Kp each
iteration. For example, in Figure 3b, processor 1
must reserve storage for the components of p
that correspond to the 3 border nodes in processor
3 and the 3 border nodes in processor 2, but no
components are received from processor 4 since no
nodes in processors 1 and 4 share a common
triangle. This same storage may be used initially
for u® during the calculation of Kuoz
Similarly, storage must be reserved for the r
components associated with the equations at border
nodes in neighbor procesors for the

multiplications of BT r and B .r. in
je] cj™]
Algorithm 2.

The sending and receiving of the border p
components in each CG iteration in Algorithm 1 and
the border r components during each step of the
preconditioner in Algorithm 2 is only (for
rectangular regions) between neighbor processors
and in particular for our test problem will
require six of the machine’s eight nearest
neighbor links as shown in Figure 4 for processor
P.

-7

--——- m
- m

Figure 4. FEM Local Links

Hence, the communication required for the mstep
SSOR preconditioner on this machine is completely
local and the amount of data that a given
processor must communicate can be seen from Figure
3 to be dependent on its number of neighbors as
well as the dimension of the rectangle of nodes
assigned to it. To reduce the time required for
the 1/0, the values of each color to be sent to a
given neighbor can be packaged and sent as one
record and likewise for the values of a particular
color to be received from a given neighbor. If
this is done, it becomes advantageous to think of
the two equations at the same node as being the
same color, because, on this machine, it does not
matter that they couple since they will always be
assigned to the same processor.

The convergence test in Algorithm 1 is
implemented by the signal flag network. Each
processor raises its convergence flag whenever its
portion of u values are within the stopping
criterion. The processors are then synchronized

40

and tested to see if all flags are raised;
the iteration stops if not,
lowered and the iteration continues.

Lastly, we summarize our remarks about the
Finite Element Machine implementation of Algorithm
2 by providing a parallel version in Algorithm 3
that will be executed by processor P The
subscript p denotes the portion of a vector that
is assigned to processor p, the subscript n
denotes the portion of the vector that is received
from all of processor p’s neighbors and the
subscript t denotes the total vector which
consists of the components received by, as well as
those assigned to, processor p.

if so,
all flags are

(1) r, = 0; Vp = 0
(2) For s =1 to m
(1) For ¢c=1 to 6
c-1 ~
T
(1) x=-] B, r
j=1 jC J)t
(2) Dc,prc,p =x + yp + am_srp
3 = x
yP
(4) If ¢ mod 2 = 0 then
(1) Send ©border portion of
Te-1l,p and 1 p
(2) Receive gc—l,n and
Teyn
(2) For ¢ =5 down to 2
g ~
(1) x= = B .r,
j=ct+l e 3»t
(2) Dc,prc,p = x + Yo + “m—srp
3 = x
yP
(4) If cmod 2 # 0 then
(1) Send border portion of
Tetl,p and Te,p
(2) Receive ;c+1,n and
Teyn
~ 6 ~
(3) Solve Dl,prl,p = ;ZZBljrl,t + Yp + 4T

Algorithm 3. FEM m-step 6-color SSOR

4.Results

The example plane stress problem was run on
the CYBER 203 at the NASA Langley Research Center
for a unit square plate for varying mesh sizes.
Table 2 gives the number of iterations, I, and

time, T, in seconds to solve this problem using

are denoted by P. the number of rows in the plate

m = 0-10. The parametrized preconditioner results by a, and the maximum vector length by v.
Table 2. CYBER 203 Iterations and Timings m-step SSOR PCG
v = 22 v = 41 v = 132 v = 561 v = 1282 v = 2134
a=38 a =11 a = 20 a = 41 a = 62 a = 80
m I T I T 1 T 1 T 1 T 1 T
0 112 .133 157 .213 271 .565 536 3.293 788 11.845 929 22.780
1 52 -129 66 .184 111 454 214 2.373 311 7.832 395 17.194
2 38 .143 50 .208 79 478 152 2.428 221 7.773 280 17.380
2P 31 116 40 .167 61 .369 118 1.885 172 6.052 218 13.534
3 31 .155 39 .216 65 .520 124 2.585 181 8.174 229 18.469
3P 24 .121 30 .167 46 -369 88 1.836 129 5.828 163 13.151
4P 22 .138 24 166 35 .350 67 1.726 99 5.471 124 12.306
5P 19 2143 20 .167 29 347 56 1.716 82 5.345 104 12.260
6P 18 .159 18 .175 25 -348 47 1.670 70 5.263 88 12.011
7P 26 <413 43 1.739 64 5.451 80 12.410
8P 21 .375 36 1.634 54 5.139 69 11.985
9P 33 1.660 48 5.056 61 11.731
10P 31 1.709 44 5.070 55 11.594
It should be noted that the inner product routine The inequalities in (4.2) explain for larger

that was used for these results was developed at
Langley and 1s optimized for the CYBER 203.
Several observations can be made from these six
test cases-.

(1) The parametrized preconditioner is
better with respect to both the number
of iterations and the execution time
than the corresponding unparametrized
preconditioner.

(2) The optimal number of steps of the
p P
parametrized preconditioner increased
as the vector length increased.

In relation to (2), an interesting question
is to determine how many steps would be beneficial
for a large problem. The answer to this is quite
simple if the number of iterations, Nm, could bhe
expressed as a function of m, since the execution
time of the m-step method can be expressed as

T(m) = Nm(A + mB) (4.1)
where A is the time for one outer conjugate
gradient iteration and B is the time for 1 step
of the preconditioner. Now if we assume that
No+1 < Np, taking mwtl steps is more beneficial
than taking m steps whenever

(1) (m+1)N - mN_ < 0. (This means that
the total numbef of inner loops 1is less for. mt+l
steps)

N -N (4.2)

m mt+1
(m+1)Nm+1— mNm

or (2) B/A K<

41

problems when more steps of the preconditioner
should be taken. For instance, the values of the
left and right side of inequality (2) when m=9
are (.81,.15), (.68,.5), and (.76,6) for a =
41,62, and 80 respectively. Hence, ten steps
are preferable to nine only for a = 80.

We now give the Finite Element Machine
results. The example plane stress problem with 6
rows and 6 columns of nodes (60 equations) was
solved on a 1, 2 and then on a 5-processor Finite
Element Machine wusing the m-step SSOR PCG
method. For this problem the assignment of
unconstrained nodes to the processors is shown in
Figure 5.

NN

Two Processors

B [C R _® TSN EINEREAER
NN MR
R—NB NG B T\ X
flL*—\i' - 8 N[(-\n.‘\-‘\):‘
o Sk 3 RN

%\\l

|
NN

d -

[F—=

Five Processors

Figure 5. FEM Processor Assignments

Observe from Figure 5 that for the two and five
processor assignments each processor has an equal
number of R, B, and G nodes as well as an

equal number of border nodes to be communicated- The number of iterations and the time 1in
Therefore, in the absence of communication time seconds for the above assignments are given in
and any differences in processor speeds, a speedup Table 3. The speedups for the two and five
of two (five) over the one processor case should processor assignments also are included.
be realized.
Table 3. FEM Iterations, Timings, Speedups mstep SSOR PCG
p=1 p =2 p=35
m I T I T Speedup I T Speedup
0 48 63.35 48 33.01 1.92 48 17-70 3.58
1 19 47.90 19 25.85 1.85 19 14.85 3.23
2 13 48.75 13 26.65 1.83 13 15.50 3.15
2P 11 41.95 11 22.95 1.83 11 13.30 3.15
3 11 54.95 11 30.15 1.82 11 17.65 3.11
3p 8 41.25 8 22.75 1.81 8 13.25 3.11
4 10 62.40 10 34.30 1.82 10 20.20 3.09
4P 6 39.80 6 22.00 1.81 6 12.90 3.09
5P 5 40.60 5 22.50 1.80 5 13.25 3.06
6P 5 47.05 5 26.20 1.80
problems. This method does not face the usual
Several observations can be made from Table 3. difficulty in choosing the optimal relaxation
(1) The effectiveness of the preconditioner parameter, , for the multicolor SSOR method,
as a function of m was the same for the since for this ordering and few colors w =1 is
sequential and two and five processor a good choice, see Adams [1983]. A problem still
cases (4p,5p,3p,2p,1,2,3,4). remains in applying the method to irregular
regions since the grid must be colored and for
(2) Taking more than one step of the array machines must also be distributed to the
unparametrized preconditioner was not processors in light of this coloring.
advantageous.
(3) The overhead for the CG(m=0) algorithm REFERENCES
was less than that for the PCG Algorithm
because for two and five processors the Adams, L., Ortega, J. [1982]. "A Multi-Color SOR
communications for the preconditioner Method for Parallel Computation," Proceedings 1982
rather than for the 1immer products Conference on Parallel Processing, Bellaire,
dominate the overhead. Michigan.
In regard to (3), if we keep the number of nodes Adams, L. [1982]. '"Iterative Algorithms for Large
per processor fixed and continue to add processors Sparse Linear Systems on Parallel Computers,"
up to a certain number, say n_, the overhead for Ph.D. thesis, University of Virginia (Oct.
the preconditioner will still be more than that 1982). Also NASA Contractor Report 166027, NASA
for the CG method and hence m = 3P or 2P may Langley Research Center.
become optimal; however, as the number of
processors increases beyond 0, the value of Adams, L. [1983]. "M-Step Preconditioned
B/A in (4.2) will continue to decrease until Conjugate Gradient Methods." To appear as an
m > 4p steps of the preconditioner will be ICASE Report.
optimal. The behavior of the m-step PCG Algorithm

can be modelled as a function of the number of
processors, the problem size, and the relative
speed of arithmetic to communication times for the

machine. For more details, see Adams [1982].
5. Summary and Conclusions
The m-step multicolor SSOR preconditioned
conjugate gradient method described herein has

been shown to be effective on vector computers and
for a small problem was effective on the Finite
Element Machine. As more processors and the
sum/max hardware circuit become available on this
machine, the method will be tested on larger

42

Chandra, R. [1978]. '"Conjugate Gradient. Methods
for Partial Differential Equations," Ph.D. thesis,

Research Report # 129, Department of Computer
Science, Yale University.

Concus, P., Golub, G.. O‘Leary, D. [1976]. "A
Generalized conjugate Gradient Method for the
Numerical Solution of Elliptic Partial
Differential Equations," Sparse Matrix
Computations, eds. J. Bunch, D. Rose, Academic
Press, pp. 309-332.

Conrad, V., Wallach, Y. [1979]. "Alternating

Methods for Sets of Linear Equations," Numerische

Letters, Vol. 5, No. 2, pp. 41-45.

Mathematik, Vol. 32, pp. 105-108.

Dubois, P., Greenbaum, A., Rodrique, G. [1979].
"Approximating the Inverse of a Matrix for Use in
Iterative Algorithms on Vector Processors,"
Computing, Vol. 22, pp. 257-268.

Hestenes, M., and Stiefel, E. [1952]. 'Methods of
Conjugate Gradients for Solving Linear Systems,"
J. Res. Nat. Bur. Std., pp. 409-436.

Johnson, 0., Micchelli, €., Paul, G. [1982].
"Polynominal Preconditioners for Conjugate
Gradient Calculations,'" IBM Research Report 40444,
IBM Thomas J. Watson Research Center, Yorktown
Heights, N.Y.

Jordan, H. [1978]. "A Special Purpose

Architecture for Finite Element Analysis,”" Proc.
1978 Int. Conf. on Par. Proc., pp. 263-266.

Madsen, N., Rodrique, G., KXarush, J. [1976].
"™Matrix Multiplication by Diagonals on a

Vector/Parallel Processor,'" Information Processing

¥orrie, D., DeVries, G. [1978]. An Introduction
to Finite Element Analysis, Academic Press, N.Y.

Ortega, J., Voigt, R. [1977]. "Solutions of
Partial Differential Equations on Vector
Computers," Proc. 1977 Army Num. Anal. Conf., pp-
475-526.

Podsiadlo, D., and Jordan, H. [1981]. '"Operating
Systems Support for the Finite Element Machine,"
Computer Science Design Group University of

Colorado, Boulder, Colorado.

Reid, J. [1971]. "On the Method of Conjugate
Gradients for the Solution of Large Sparse Systems
of Linear Equations," Proc. Conf. on Large Sparse

Sets of Linear Equations, Academic Press, New
York.
Schreiber, R. [1981]. "Implementation of the

Conjugate Gradient Method on a Vector Computer,”
Submitted to SIAM Journal on_ Scientific and

Statistical Computation.

43

MINIMIZING INNER PRODUCT DATA DEPENDENCIES
IN CONJUGATE GRADIENT ITERATION

John Van Rosendale
Institute for Computer Applications in Science and Engineering
Hampton, VA 23665

Abstract

The amount of concurrency available in
conjugate gradient 1interation 1s limited by the
summations required in the ianer product
computations. The inner product of two vectors of
length N requires time c*log(N), if N or more
procesors are available.

This paper describes an algebraic
restructuring of the conjugate gradient algorithm,
which minimizes data dependencies due to inner
product calculations. After an initial start up,
the new algorithm can perform a conjugate gradient
iteration in time c*log(log(N)).

Introduction

Conjugate gradient interation 1is a method of

linear equation solution of great practical
importance. It can be used to solve any linear
system
Au = b

where A 1is symmetric, positive definite, and can
be quite efficient when coupled with various
preconditioning techniques. However, CG
(conjugate gradient) iteration involves the
computation of inner products at every
iteration. On parallel computers with large
numbers of processors, the data dependencies

inherent in these inner product calculations will
limit the speed of conjugate gradient iteration

for large sparse linear systems. See, for
example, Schreiber [1981] and Adams [1982]. In
fact, given sufficiently many processors, the
summation fan-ins in the ianer product

calculations will dominate the computation time on
nearly all large sparse linear systems occurring
in practice.

Conjugate Gradient Iteration

This paper presents a solution to this
problem through an algebraic restructuring of the
CG Algorithm. Consider first the standard CG
iteration. One of a number of mathematically
equivalent forms of it may be given as follows:

u(O) arbitrary,

LD ())\np(n), n=0,1,°°°,
p(n) - r(n), 0=0,
r(n) + anp(n'l), n=1,2,°°,
£ o D) Xn_lAp(n_l), n=1,2,¢°°,
(n) (n)
= r r = oo e
% 7 (r(n—l) r(n—l))’ n=1,2, ’
(n) _(n)
" (™ 80" ™)

The data dependencies here are severe.

(r(n),r(n))

One cannot

generate until a and A are
n-1 n-1

known. But these quantities involve inner

products dependent on r(n_l). As pointed out

above, an 1inner product on vectors of length N
requires time c*log(N). Thus it would seem that
a CG 1iteration could not be done Ffaster than 1in
time c*log(N).

Idea of New Algorithm

This natural seeming 1idea,
iteration on vectors of length N cannot be done
faster than in time c*log(N), turns out to be
incorrect. To see why, consider the computation
of a typical inner product required,

that a CG

(r(n)’r(n))'
By the formulas above, r(n) is given as
(n) _ _(n~1) _ (n-1)
T =T An—lAp M
Now suppose we know r(0=1) anq p(nﬁl) but

not the value of A -1 In this case we would be

unable to evaluate (r(n),r(n))

, but we could

Research supported by the National Aeronautics and Space Administration under NASA Contract Nos. NASL-
17070 and NAS1-17130 while the author was in residence at ICASE, NASA langley Research Center, Hampton,

VA 23665.

0190-3918/83/0000/0044$01.00 © 1983 IEEE

work 1involved in
Specifically, we

still perform most of the
evaluating this inner product.
can write the recurrence

(r(n) r(n)J - (r(n-l),r(n—l))

- o (D D)

2 n-1 n-1
+ *n_l(Ap() ap™71))
and can proceed to evaluate all inner products on
the right here. TIf subsequently someone told us
the value of A 1 Ve could compute the value of

(r(n)’r(n))

very rapidly, since only a few more
real operatious would then be needed to complete
evaluation of the recurrence relation.

It is easy to see how this idea can be used
to speed the computation of the CG algorithm on
parallel computers. We have replaced an inner
product computation requiring data not present
until iteratin n with inner products of vectors
present at interation n~l. Since these vectors
are present sooner, we have that much longer to
perform their inner products, to achieve the same
parallel computation speed. Stated differently,
assuming only the inner products limit the speed
of the computation, the use of this recurrence

(n) _(n)
(r s T J

(p(n),Ap(“)]

double the parallel speed of CG iteration, where
it is assumed that sufficiently many processors
are available, and communications cost can be
neglected.

and the

will

relation for analogous

relation for approximately

of a large class of such relations which can be
exploited to speed up CG 1iteration. These
relations will be given in detail in Van Rosendale
[1983], but for now we consider only the general
form of such recurrence relatiouns. Consider the
typical inner product:

(r(n)’r(n))

The value of this 1inner product may be given in
terms of the values of 1inner products of vectors
occurring at any previous iteration together with
the values of the real parameters

a o ces
n-1’ "n-2’ 4

>\n--l’)\n—Z’ *

For example, for any ¥ > 0,
recurrence relations of the form

one can derive

2k
- y ai(r(n—k) ’Air(n—k)]

(= ™) -
i=0

2k
Db (O ARM)

1=0
2k

+ JYe
1=0

i(p(n—k)’Aip(n-k)).

The coefficients {a } {bi}’ {ci}

. occurring here
are polynomials in tﬁé parameters

LA

{an—l’an—2’...’an-k’xn—l’xn—Z’. ’ n-k}'

Similar recurrence relatinns are available for the

other type of inner product occurring in CG
Recurrence Relations {teration, (p(n)’Ap(n)).
The recurrence relation just described is one
- - -1
L0 o (poktl) LD ey
p(n—k) _ p(1r1—k+l) > e » P(Tl"l) p(n) | N
r(n-—k) r(n—k+l) r-\n—l) Y(n)

inner product

Figure 1.

recurrence

recurrence

relations relations

calculations

Principal Data Movement in New CG Algorithm.

45

New Algorithm

To construct a more parallel variant of CG
iteration based on these recurrence relations, one
begins by selecting a value for the constant k,
which may be thought of as a look—-ahead
parameter. Then at iteration n - k, when vectors

r(n—k) and p(n_k) become available one begins
forming all of the inner products

(200 AL (70 g1, e, 2,

(2070 p L (a=kdy 0,1, e, 2k,

(™ AL) | ymg 1,0, 2k

The values of these inner products are needed in
the recurrence relations for the inner products

(™), (6, ™)

at 1iteration n. Thus we arrive at an algorithm
whose data movements are sketched in Figure 1.

Clearly the problems of the delays caused by
the summations in the 1inner products 1is now
solved. If we chose k log(N), the inner
product summation delays will have no inpact on
algorithm speed. However, two new issues now
arise. First, we have not dealt with the way in
which the parameters

{an—l’an-Z’an-k’...xn-l’xn-Z’...An-k}

enter into the recurrence relations. In
principle, there could be severe data dependencies
here. Second, there seem to be a large number of
inner products required now, most involving a
relatively high power of the matrix A.

Neither of these problems is as serious as it
first appears. TFor the first, it turns out the

PRICRITE

relations above are polynomials in the parameters

coefficients in the recurrence

Y

{an—l’an—Z"..an-k’xn—l’kn—Z’ n—k}

which are at most quadratic in each parameter

separately. This fact, coupled with the
observation that the parameters
0‘n—k’mn-k+1’.'.’>\r1-k’)\1‘1--k+1’.”

gradually become available, enables us to
effectively perform the coefficient evaluations in
a pipelined fashion. Thus at {iteration n, when
we need the inner product (r(n),r(n)], we can
have the recurrence relation (*) completely

evaluated, except for performing these summations,
or the analogous summations in the recurrence for

(p(n),Ap(n)). This requires parallel time
log(k) = log(log(N)).

The second problem mentioned
occurence of high powers of the matrix

above, the
A in the

46

recurrence realtion (*), can be resolved by the
use of additonal recurrence relations. First,
observe that there is no need to compute powers of
the matrix A, since we have the recurrences:

Al (M) i (n-1) An_1A1+1p(n-1),
Ap(® L ALy 3D,

k
1=0 and

can be updated with only one matrix

Thus the set of vectors {Aip(n)}

i_(n)1k
{a%r }1=o
vector product.

Vext observe that nearly all of the inner
products needed can also be obtained by
recurrences. We have

(r(n) ,Air(n)) - (r(n-l) ,Air(n_l))

_ an_l(r(ncl),Ai-"lp(n_l))
2 (p(n-l) Ai+2p(n-1))

+ An—l

and similar recurrences for the other types of
inner products occurring in relation (*). f%iven
the values of the inner products
n i (n) 12k
{1'()’A T()}i=0’
n) ,i (n))2k
e aty()}1=0’
n i (n) 2k
[p™ ,atp¢)}{:o’
at iteration n, we can obtain nearly all of the
inner products needed at iteration unt+l. Only two
inner products need to be computed directly.

Computational Complexity

the summations in the
require time

As pointed out above,
recurrence relations (%)

log(k) = log(log(N)).

A has at most d nonzeroes per
this algorithm requires parallel

Thus if matrix
row or column,
time

max (log(d),log(log(N))).

The sequential complexity of this algorithm is
essentially the same as that of the usual CG
algorithm; we still need two inner products and a
matrix vector product at every iteration.

REFERENCES

Adams, L. [1982]. "Iterative Algorithms for Large
Sparse Linear Systems on Parallel Computers," NASA
Contractor Report 166027, WNASA Langley Research
Center.

Schreiber, R. [1981]. "Implementation of the
Conjugate Gradient Method on a Vector Computer,"
submitted STIAM J. Sci. Statist. Comput..

NEW MATRIX EQUATION SOLVERS IN GF(2) EMPLOYING CRAMER WITH CHIO METHOD

Yoshiyasu TAKEFUJI, Takakazu KUROKAWA,
Masato ISHIZAKI, and Hideo AISO

Department of E.E. KEIO University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223 JAPAN

ABSTRACT

In our former paper [6] a parallel and pipelined
fast matrix equation solver employing the conventional
Gauss Jordan Elimination Method in GF(2) has been pro-
posed where the elements are Os or 1s. In this paper
two new solvers employing Cramer with Chio method [2]
are proposed which are more suitable for VLSI implemen-
tation. The new solvers have a much more flexible ex-
pandability toward the increase of the matrix size.
O(n') gates are required for realizing an n-pyramid
solver through solving

AX =0Db
where A is a regular matrix of n«n, X and b are vectors
respectively. The solvers can be applied to the real-
time decryption [110310[41C51, hashing, error
correction/detection [1], and so on,

1. INTRODUCTION

In our former paper [6] an ultra high speed solver
for the regular matrix equations in GF(2)* has been
proposed where the elements are Os or 1s. The parallel
and pipelined solver composed of the iterative logic
circuits which are suitable for VLSI implementation can
be realized by employing the conventional Gauss Jordan
Elimination Method [6]. However, the solver has a
drawback on flexibility in expanding hardware logic
circuits according to the increase of the matrix size
[61.

In this paper two new solvers employing Cramer
with Chio Method are proposed which can overcome the
drawback. The design of the new solvers is discussed
from the viewpoints of the total number of gates and
that of gate stages for computation. The proposed
solvers can be applied to the decryption of encrypted
codes [3], and hashing, and so on.

In order to decrypt a polynomial from multiresidue
polynomials in GF(2), a regular matrix equation

AX=hb
has to be solved where A is a regular matrix of nsn, X
and b are vectors respectively. In the next section an
example of Cramer with Chio method is described.

* Note that GF(2) means Galois Fields 2.

0190-3918/83/0000/0047$01.00 © 1983 IEEE

2. CRAMER WITH CHIO METHOD

Cramer with Chio method [2] can be used for solv-
ing the regular matrix equation

AX=Db

where A is a regular matrix of nxn, X is a vector of
X = (xxpx3 -~ xn)t

and b is also a vector of
b= (bbyby ---b)t

It is believed that the Cramer scheme is unsuitable for
the large size of matrices because the number of compu-
tations becomes too large. When Cramer with Chio
method in GF(2) is employed for solving
AX = b,

the Cramer scheme is attractive because the number of
computations can be drastically reduced by Chio method
; 0(n!) = 0(n*), and the basic operations become sim-
ple in GF(2); multiplication and addition correspond to
AND and Exclusive OR functions in GF(2) respectively.

A simple example of Cramer with Chio method is
shown as follows:

< example 1 >
Find X = (x x_x_) where
123
fo 1 17x 1
1
1 10 |fx = 0
2
0 1 0{fx 1
3
Solution:
x_ = 1 1 1 = 1 1 1 = 1 0y = 1
1
o 1 0 (U [o 1
1 10 0o 0 1
///,/—1r—~\\\\V
x =10 1 1 = 1 0 1 = 1 0 1 = 1 0 = 1
2
1 0o 0 0 1 0 o 1 0 o 1
0 1 0 1 0 0 0o 0 1
Ty
x_ =10 1 1 = |1 0 1] = |1 0o 1 = |1 11 = 0
3
1 1 0 1 1 0 0 1 1 0o 0
[1 1 0 1 e 0 O

* column exchange

3. 3-DIMENSIONAL MATRIX EQUATION SOLVER

A 3-dimensional matrix equation solver employing
Cramer with Chio method is proposed in this section.

The 3-dimensional parallel and pipelined " solver for
solving '

AX =D

where A is a regular matrix of nxn is composed of n py-
ramids as shown in Fig.1. A pyramid which can produce
one element of vector x consists of n-stage pipes. A
single pipe of the ith stage shown in Fig.2 is composed
of a panel of kxk D Flip Flops where k is n-i+1, a 1-
detector, a column .exchanger, and a logic unit shown in
Fig.3-6 respectively. The 1-detector in the ith -stage
detects the leftmost element to be 1 and produces the
row number of the element for exchanging the leftmost
column with the column of the row number. The row
number corresponds to the output of case i in Fig.l4.
The column exchanger exchanges the required two
columns. The logic unit described in Fig.6 calculates
the arithmetic operations in GF(2). In GF(2) the addi-
tion and subtraction corresponds to the function of Ex-
clusive OR logic and the multiplication to that of AND
logic. The division corresponds to no-operation when
the divisor is 1. In order to find X, for

Qj Gyp - By Qi
ag G2+ P2--- %n
X = . : :
an] anz -+~ bn--- Apn

ith. column

the required data flows from bottom to top through a
pyramid and the x| can be obtained as shown in Fig.1.
The proposed solver is suitable for VLSI implementation
because of a high regularity of iterative logic cir-
cuits. The solver has a flexible expandability to the
increase of a matrix size. The solver for solving a
regular matrix equation of
AX =D

where A is a regular matrix of (m+1)x (n+1), can be
easily realized by appending the (n+1)th pipe to the
bottom of a pyramid composed of n-stage pipes.

The total number of required gates for realizing a
matrix solver to solve

AX=Db

where A is a regular matrix of nxn, is shown in Table 1
and Fig.7. The total number of required gates and that
of required gate stage for solving a regular matrix
equation are described in Fig.T. o(n*) gates are re-
quired for realizing a n-pyramid matrix solver where n
is the size of vector X.

1-1
XK oy - - - oy
ayy . .+ 0Of
T AR R
\ ay - - oall
X Nore
1 dy
0 o
N
0 aij]
| T Qjk= Qjy+ Oy Qi
1, O (mod2)
1 On0y * - ¢
e . l|.u,.».,m.n
. L Rl 2,0t
aly gz -« - o)
[- cotumn exchange
o Opp -+ by-ee Oy Oy O + -+ » Gy |
" Y "
az e P2 Om n onoy -+ - On
any Ong -+ Bn-o Oy DRF Lt
an Gz + + + O
1th. column "o "

Fig.l Cramer with Chio method

48

i SE
i/ll s
&\ U\ 1 detector levej ; ' @,
P /; - / l://rcw/
=

coiumn

k = n-i+l

Fig.2 A single pipe of the ith stage

ap—~{o o}~ ay a0 - ay, a0 of+ay,
T 7 T
251D Q=37 3,570 Q[+ 3y,
k T T
30

a

H az‘

k=n-i«l

Fig.3 A panel of D Flip Flops of the ith stage

a aig an Al
1st row DQHDG ba ba
. ; I R T
k=n-i+1 i d l

casel case2 case3 - - .- casek

Fig.4 A l-detector of the ith stage

a a an < i
| th row Da 1 D Q 12 D Q| DQ
T . e .
lse
case
cases
case t L L +- {
) Lj
L + -
C
ay ap ay e iy

12 a5 - PEREICICR a 1k
a;; o
4, dss ! aIM Ak
1
2y 4 275 a 7%

Fig.6 A logic unit of the ith stage

10
10
8
10
»
a2
w
<
@ 6
a
a 10
@
2
j<}
2
@
w
o
[
@
4
=
S 10
=z
o
—
an-pyramid solver
2 No. of gates
10 — — ——---- recurring solver
— -— .— . a-pyramid solver
No. of gacte
Stages | .. ___ recurring solver
0 50 100

THE SIZE OF A" MATRIX

Fig.7 Evaluation of the matrix solvers

¥ =n -1 + 1
K= k-1
L=12,3,---k
1'=1 -1

Table 1 The number of required gates of the matrix solver
AND 0 R NOT X 0 R DFF
PaneL oF 0 0 0 0 (n-i+1)2
DFF
1 - DETECTOR n - i 0 n -1 0 0
Covum (3n-31+1) (n-1+1) (2n-24+1) (n-1+1) 0 0 0
EXCHANGER
Lo6iC WNIT (n-1)? 0 n (n-1)? 0
412 - (Bnes)i 217 - (4ned)d o 2o an2| 12200
TOTAL + (4n2+5n+]) + (2n2+3n+1) " " + (nZ+2n+1)
AONT OF WHOLE STAGES
The nuber of required gates = l% o+ 200+ % "2 - 6n

49

S39YL1S 31VH 40 HIQWAN IH]|

INT:

clock[

Gna Gin2

Qy, Qg Qin-2

Fig.9 Attached hardware for data iteration

4. RECURRING MATRIX SOLVER

A simplified recurring matrix solver is proposed

in this section. The recurring solver for solving

AX=b
where A is a regular matrix of nxn, is composed of a
single pipe together with an attached hardware shown in
Fig.8. Once the required data is set, the elements
circulate from bottom to top where the attached
hardware synchronously masks the needless elements for
calculation. An example of masking is shown in Fig.10.

The attached hardware is composed of an (n-1)-

stage D Flip Flop circuit and AND-logic circuits shown
in Fig.9. Initial seed of the D Flip Flop circuit is

(Q, 080 =~ Q) = (011 -4 1),
and in the next clock

(6n6n-1¢12 6'1)=(001---1).
The recurring matrix solver can drastically reduce the
amount of required hardware for solving a regular ma-
trix equation as shown in Fig.T. o(n?) gates are re-
quired for realizing a recurring matrix solver where n
is the size of vector X. The number of required gate-
stage is also shown in Fig.T.

5. CONCLUSION

The matrix equation in GF(2) should be solved in
various application fields [6]. Two new matrix equa-
tion solvers in GF(2) employing Cramer with Chio method

50

—> answer

cdon't care

Fig.1l0 An example of

masking

were proposed. The one is an n-pyramid solver where n
is tne size of vector X. A pyramid is composed of n-
stage pipes. The other is a recurring matrix solver
employing only a single pipe for saving the hardware
amount. The total number of required gates for realiz-
ing the solvers and that of gate-stage are discussed.
The proposed solvers can be implemented by 3-
dimensional VLSI circuits because of a high regularity
of the iterative 1logic. The solvers have a flexible
expandability to the increase of the matrix size.

6. REFERENCES

[1] Nicholas S. Szabo, Richard Tanaka, "Residue Ar-
ithmetic and its Applications to computer tech-
nology," McGraw Hill (1967).

Louis A, Pipes, Shahen A. Hovanessian, "Matrix
Computer Methods in Engineering,™ John Wiley &
Sonns, Inc. (1969).

Yoshiyasu Takefuji, Koichiro Tsujino, Mari Ibuki,
and Hideo Aiso, ™"A NOVEL APPROACH TO PARALLEL
PROCESSING CRYPTOSYSTEM," Proc. of ICPP (1982).
Yoshiyasu Takefuji, PhD Dissertation, "A STUDY OF
FAULT- TOLERANT HARDWARE," (1983).

Takakazu Kurokawa, BS paper, "A proposal of mul-
tiresidue codes in polynomial ring applied to ci-
pher codes," (1983).

Yoshiyasu Takefuji, Takakazu Kurokawa, and Hideo
Aiso, "FAST MATRIX SOLVER in GF(2)," Proc. of
Computer Arithmetic (1983).

(2]
[3]

[4]
[5]

[6]

SPECIFICATION AND IMPLEMENTATION OF AN INTEGRATED
PACKET COMMUNICATION FACILITY FOR AN ARRAY COMPUTER

Bharat Deep Rathi, Sanjay Deshpande, Matthew Sejnowski, Don Walker®
Roy Jenevein**, G. J. Lipovski and J. C. Browne*

Departments of Electrical Engineering and *Computer Science
University of Texas at Austin, Texas
**Department of Computer Science
University of New Orleans

ABSTRACT

Four
requirements

distinct packet communication
for network architectured computer
systems are: system control, dataflow data type
movement, SIMD, data realignment and movement of
high volume data between MIMD configurations when
memory sharing 1is wunavailable or too costly.
This paper defines and describes a packet
switching mechanism which meets each of these
requirements. Mechanisms are also defined and
described for breaking and restoring SIMD
execution structures which are required to
complete the implementation of packet switching
for SIMD execution. The mechanisms were defined
and are described in the context of the Texas
Reconfigurable Array Computer (TRAC), but should
be in 1large measure adaptable to other network
architectured systems.

1.0 PROBLEM STATEMENT AND OVERVIEW

A computer system incorporating a multistage
netowrk can utilize either packet switching or
circuit switching or both. The choice of modes
may depend upon other architectural factors, such
as whether the network couples processing
elements to memories or processors to processors,
or whether the system model of computation is
SIMD or MIMD, and also may depend upon the
selection of problems the system is intended to
execute.

The Texas Reconfigurable Array Computer
(TRAC) [SEJ80] uses 1its network to create
configurations by coupling processing elements to

memories to form processors and then coupling
processors to form SIMD tasks, if desired
[BRO82]. Tasks, whether SISD or SIMD, run
independently from each other in MIMD fashion.
TRAC is thus capable of SIMD and MIMD models of
computation. The varistructure capabilities
[LIPT77] of the architecture are implemented

through carry look-ahead techniques which are
similar to SIMD synchronization techniques. The
breadth of representation capability of TRAC has
forced us into a thorough analysis of the
requirements of network architectured systems for
the packet switching mode of network
communication. This paper reports the results of
this study.

There are four distinct communication
requirements for network architectured systems
which can be met by appropriate packet switching
facilities. These are:
and

1. system control (both inter

intra-task communication)

0190-3918/83/0000/0051$01.00 © 1983 IEEE

51

2. data movement for dataflow models of

computation (inter-task communication)

3. data realignment for SIMD processing of
arrays (intra-task communication)

and

4, movement of data between MIMD
configurations when either circuit
switching is not provided, or when the
switch configuration required for
establishment of circuits, needed to
link specific process/data pairs, cannot
be realized or realized only with
excessive reorganization cost

(inter-task communication)

All of these communication requirements have

previously recognized and discussed in the
literature. This paper defines a coherent
integrated implementation of packet switching
which serves all of these requirements. Some of
the mechanisms and implementation schemes have
been previously reported [TRI79,PRE79]. The
overlap with this integrated discussion will be
noted in the text at the appropriate places.

been

Commonly, packets will be sent to some
subset of the processors in an SIMD task. The
selection of packet switching as a mode of
communication thus requires an efficient
mechanism for desynchronizing and resynchronizing
SIMD tasks. Two such mechanisms are implemented
as a part of the communication functionality for

TRAC. This capability is particularly
significant for TRAC since tasks of data width
greater than a single byte may be constructed

through SIMD synchronization of single byte wide
processors., However, both should be adaptable to
other architectures. :

The next section states the requirements in
the context of the TRAC architecture. Section 3
gives an overview of the packet switching
capabilities and their implementation. Section 4
defines the desynchronizing and resynchronizing
functions and their implementation. Section 5
describes the implementation scheme including
software requirements. Section 6 analyzes the

design space for implementation and justifies the
selections.

2.0 RE%UIREMENTS FOR PACKET SWITCHING FUNCTION-
ALITY IN TRAC

Although TRAC has been previously described
[SEJ80,PRE79] we review the background for packet

communication. We emphasize that software design
and application studies have been conducted in
parallel and sometimes in advance of definition
and implementation of architectural features.
The integrated packet communication facilities
are an example of the interplay of requirements
and architecture.

TRAC uses circuit switching to establish
task spaces (partitions) of resources conforming
to some desired model of computation. The tasks
may be SIMD or SISD. Partitions run
independently of each other in MIMD fashion. A
circuit switching mode of communication and data
movement 1is available within a task space.
Circuits are used as broadcast buses for
instructions and carry linkage. They are also
used to implement explicit sharing of memory
between processors, since any one of the
processors can explicitly detach a memory, and
another can explicitly select this memory in a
single instruction. Reconfiguration of the
network can also be used to move memory units and
thus data between configurations. There would,
however, be many restrictions on possible usage
of the system if these circuit switch functions
were all that were available for interprocess
communication. System control functions could be
executed only by extensive reconfiguration. It
would be awkward to implement the dataflow model
of computation, for more than a small number of
processors (the number which can effectively
communicate through a single switchable memory
unit). Data realignment between phases of SIMD
computations (such as transposing a matrix) would
have to be serialized. Network blocking would
restrict the set of configurations which could
realize sharing among configurations and be
useful for MIMD processing. On the other hand,
packets provide complete processor-processor
communication capability. However, the
disadvantage of packet mechanism 1is that the
packets arrive at the receiving process at a
non-deterministic time, thereby forcing a set of
receiving processors out of synchronisms, thus
requiriing resynchronism overhead.

Each of these functions
different capabilities
communication mechanism.
small interrupting

requires somewhat
from the packet
System control requires
packets. Dataflow and
realignment requires carrying of addresses
together with data. General data movement
between MIMD configurations requires efficient
transmission of large volumes of data.

The mechanisms described in succeeding
sections integrate implementation of all of these
requirements. The succeeding discussion
clarifies the mechanisms as inter- or intra-task
depending on their functions.

3.0 OVERVIEW OF TRAC'S PACKET SUPPORT

On TRAC each task is assigned its own task
space of processors, memories and I/0 devices
that are interconnected as required. One
processor of each task space is called its
task-head. This processor is chosen during task

52

set up time and implements the required
synchronization, security, authorization
mechanism and other operating system functions
needed to support inter/intra task packet
communication. When any task executes, the
processors assigned to it execute in SIMD mode

(in lock step). Therefore the processors
assigned to this task are simultaneously informed
about any intra-task communication. But for any
inter-task packet communication, a sending task
needs to inform the receiving task of its desire
to communicate. This is done by the use of an
inter-task protocol implemented strictly through
interrupting packets (described below).

On TRAC, packets can be transmitted within a
task space and between task spaces. The packet
network provides full interconnection between the
'w' processors in the system. The SW-banyan
network provides this communication using less
than w¥*¥2 links; this implies that links must be
shared. Transmission delays dependent on traffic
patterns may be introduced by blocking in the
network.

The addition of a
and forward) network

packet switching (store
increases the switch cost
only marginally. This is due to the fact that
the switch can be time multiplexed. The time
slice devoted to packet forwarding on the switch
corresponds to the period where primary memory is
executing a read or a write cycle (i.e. when it

cannot receive data nor send data on the circuit
switch "bus"). The extra hardware needed
consists of some control circuitry, and buffers

to provide the store and forward function for the
packet network. Thus this hardware requires some
additional logic (chip area) which is relatively
inexpensive. Further it does not require any
additional pins, since the pins already used for
circuit switching are data multiplexed.

A packet consists of an address header and a
number of data words. The addressing scheme for
directing the packet movement in the banyan
network is the one suggested by Tripathi and

Lipovski [TRI79]. An improved method has been
suggested by Siegel and McMillen [SIE81]. A
processor Pi transmits a packet to another

processor Pj by first loading relevant data into
a packet generating unit, in a designated primary
memory module in its private memory ensemble. As

links and nodes become available the packet
proceeds towards the target processor along a
unique path. Some form of arbitration is
provided at the switch nodes to resolve any

packet conflicts. The details of this store and
forward hardware on TRAC are given in [SEJ81].

The inter- and intra-task packet
communication use this packet network. The
primary difference between intra- and inter-task
packets is the amount of context switching
required for their reception at a target
processor. Packets which cause interrupts upon
reception are called interrupting packets, while
packets which are explicitly sent and explicitly
received are called mapping packets.

Interrupting packets are wused to transmit
small amounts of control information. Mapping
packets are used when movement of substantial
amounts of data is required, but a small amount
of controlling data movement is needed to
initiate the activity. These two types of
packets use the packet network at different times
(i.e., the network is time-multiplexed).
Therefore, in effect we have an interrupting
packet channel and a mapping packet channel.

Inter-task mapping packet communication is
initiated by following a "request-acknowledge"

protocol. This protocol requires that the
sending task's task head send an interrupting
packet to the receiving task's task head. This

packet will indicate the desire for multi-byte
wide data communication between these two tasks
(since there are multiple processors in either
task). On receiving such an interrupting packet,
the receiving task head is interrupted along with
all other processors of the receiving task. This
task head then reviews and validates this
interrupting packet and sends an "acknowledge"
packet to the requesting task head. It then
informs other processors in the receiving task to
execute a "receive MAP" instruction. The sending
task's task head receives the acknowledge and
instructs its task's processors to execute a
"send MAP" instruction. These "MAP" instructions
are executed by microcode 1in the processors.
Both instructions have a parameter, which is the
number of bytes to be sent or received. After
the multi-byte wide data communication is

initiated, the processors of the sending and
receiving tasks operate at their own pace. A
processor sends a packet whenever its packet

input port is free, and/or receives one when it
arrives. This communication is terminated when
the send/receive counts in the respective tasks'
processors reach zero. Resynchronization to SIMD
mode is needed because each processor can finish
its MAP instruction at different times (due to
blocking in the network). This synchronization
of the processors is achieved by mechanisms
defined later.

Intra-task mapping packet communication does
not require this "request-acknowledge" protocol.
This is because the processors of the task are
operating in lock step and therefore initiate
this communication together. This 1is done by
initiating the execution of a "send MAP/receive
MAP" instruction. This instruction handles the
required sending and receiving of mapping
packets. It executes in a similar manner as the
"send/receive MAP" instructions described above.

To support dataflow implementation on TRAC,
we might need multiple tasks to send to a single
receiving task simultaneously. Since we cannot
ensure that these sending tasks will enter the
MAP function at the same time, we need to
implement the MAP instructions so that they can
be interrupted by another sending task wishing to
join the MAP function. This allows the sending
tasks to join the MAP function "asynchronously"
(they still have to follow the

53

"request-acknowledge" protocol described
preceding). The advantage gained by this scheme
is that the sending tasks are made to wait for
the least amount of time (time required for a
transmit acknowledge). The two other schemes
are : 1) to completely serialize the senders in
the request order, and 2) to enable transmission
(from all the senders) only after the last sender

has requested transmit permission. The
disadvantage with the first scheme is that it
does not allow parallel communication and good

dataflow implementation. The disadvantage in the

second alternative scheme is that new senders
have to wait wupon the 1last sender. Another
possible problem with this scheme is that the

senders may have to wait indefinitely, if any one
of them does not join the MAP request.

TRAC packets are in fact trains
wide words and 8 bytes long.
formats for mapping packets. These formats

(Fig. 1 and 2) allow us to communicate
information for all the applications cited above.
In the first format (called an address/data
packet format) the memory address in the
destination processor, where the data will be
stored, always accompanies the data. Here we can
either send one byte of data (Fig. 1(a)), or two
bytes of data per packet (Fig. 1(b)). If we send

of 1 byte
There are two basic

Byte # MSB & bits LSB 4 bits
0 Pkt. Tvp. Info. I Dest. Prec. ID
1 Dest. Addr. Hizh byte
2 Dest. Addr. Low byte
3 Data byte
4 4
5 (Security/Authorization
6 Information)

]
’ !

o~

a) Address-data packet format type-1

Pke. Typ. Info. | Dest. Proc. ID
1st Dest. Addr. High byte
1st Dest. Addr. Low byte

1st Data byte
2nd Dest. Addr. digh byte

2nd Dest. Addr. Low byte

2nd Data byte

NV s W N O

(Security/Authorization Information)

(b) Address-data packet format type-2

Figure 1: Address-Data Packet Formats

o Pkt. Typ. Info. I Dest. Proc. ID
1

: |

3 Data/Control

4 Information

5

: |

7 v

Figure 2: Data/Control Information
Packet Format

only one byte of data per packet, then the
remaining three bytes in the packet can contain
any security/authorization information if needed.
In the second format (Fig. 2) the packet contains
6 bytes of data/control information. The
microcode in the receiving task implicitly knows
the destination address for placing the packet
data, or it is informed of this address prior to
receiving this information. The microcode need
not be aware of the contents of the packet data.
This information is analyzed by the local higher
level software construct. The format of Fig. 2
is also used for interrupting packets.

There is the need for the simultaneous use
of both packet formats for mapping packets on
TRAC. The address-data format of Fig. 1 1looks
attractive for supporting dataflow algorithms and
data realignment in SIMD tasks. While the
data/control packet format of Fig. 2 may be more
suitable for transferring "large" amounts of data
between tasks. Looking at the two formats we see
that the formats in Fig. 1 are special cases of
the format in Fig. 2. The two formats must be
distinguished because these two formats require
different microcode (or hardware) for handling
them.

Some information will be needed in each
packet to indicate its format. The first byte of
a packet contains 4 bits of destination processor
ID, which is required to route the packet through
the banyan to one of the sixteen processors (in
the current configuration of TRAC). The other 4
bits of this byte are used to indicate the packet
type information required to indicate the
packet's format to the microcode. This also

facilitates the reception of multi-typed packets
concurrently. For example tasks A and B send
data simultaneously to task C wusing mapping

packets. Then it is possible that task A sends
packets of the type shown in Fig. 1(a) and task B
sends packets of the type shown in Fig. 2. The
microcode is thus required to recognize the
packet type for each packet received.

4,0 RESYNCHRONIZATION MECHANISMS

The protocols for executing packet transfers
require the use of the desynchronizing and
resynchronizing mechanisms. The processors of a
SIMD task are desynchronized when a task is
broken into subtasks, or during exception
handling, or during the execution of an
instruction that requires the processors of a
task to operate independently (e.g., "MAP"
instruction execution). There are two
resynchronization mechanisms. One is intended to
reassemble the sub-tasks into the original task
structure when all the sub-tasks have terminated.
The second is designed for wuse when a single
processor requires to interrupt the synchronous
execution of a single task. This mechanism can
also be used to reassemble the original task
structure. Both of these resynchronization
mechanisms are supported in hardware.

54

4.1 Resynchronization Mechanism - A

This mechanism is used to synchronize the
sub-tasks into their original task, when the
sub-tasks have terminated. It is used only when
the circuit switched path linking the processors
(called the instruction tree) of the task has
been broken to create the sub-tasks. The
instruction tree is a tree-shaped broadcast path,
rooted at a memory module, and can be recreated
by a single instruction. The logic elements of
the instruction tree of interest here are
illustrated in Figure 3.

After breaking a task into sub-tasks, the
task head processor places the count of the
number of processors to be resynchronized in the
synchronization register in the memory module at
the root of the instruction tree. After
finishing asynchronous processing each processor
acquires this memory module and decrements the
count by 1. Mutual exclusion for such an access
is provided by hardware in the interconnection
network. If the count is non-zero the processor
simply activates the part of the instruction tree
that 1links it to the memory module at the root.
It then executes an arithmetic operation so that
it asserts a true propagate, but does not produce
a generate in the carry-lookahead logic that is
part of the instruction tree (Fig. 3). The
processor then waits for the incoming carry to
become true. The last processor to acquire the

Memory module at the root of
the instruction tree

Generate signal —=» Propagate signal

Carry signal

Carry-Lookahead
logic signals
following the
instruction tree

Switch modules

Processor modules connected by
the instruction tree

Resynchronfzation Mechanism-1
(Only the carry-lookahead signals following
the instruction tree are shown here.)

Figure 3

shared memory module sees a zero count in the
synchronization register. It creates its branch
of the instruction tree and then executes an
arithmetic operation to assert the generate
signal. All the processors of the original task
see a carry due to this operation. This
indicates that the original instruction tree has
been recreated and that the processors are
resynchronized.

4,2 Resynchronization Mechanism - B

The following hardware mechanism is used
when a single processor wants to communicate an
asynchronous event to the other processors of the

desynchronized tasks. It can also be used to
bring the processors back in synchrony. This
mechanism can be used when the instruction tree

is active or has been deactivated.

When an asynchronous event which has to be
communicated to the rest of the processors occurs
in any one of the processors of a task, the
processor recognizing the event, asserts a
signal-A via a tree shaped single 1line (see
Figures 4 and 5). This signal goes down to the
root of the tree over line-A, gets turned around
and comes back up along the broadcast tree to all
the task's processors over line-B. This signal
is recorded in all the processors, including the
asserting processor, by setting of the SYNC
flip-flop.

As each processor completes its current
"atomic" operation it tests this flip-flop. If
it is set, it recognizes that an asynchronous
event has occurred and that it needs to get back

into 1lock step with its companion task
processors. If the SYNC flip-flop is not set, it
continues to execute the next "atomic" operation

independently. On recognizing the occurrence of
an asynchronous event it clears the SYNC
flip-flop and waits for a wire-AND line (Fig. 5)
to become TRUE. This 1line connects all the
processors in a task.

While in an asynchronous mode of operation

the 1inverted output of the SYNC flip-flop is fed
onto this wire-AND line. Before entering the
asynchronous mode this flip-flop is cleared and
the wire-AND line is set TRUE. Whenever any of
the SYNC flip-flops attached to this wire-AND
line is set, this line is set FALSE. Thus after
the asynchronous event has occurred and this
wire-AND line is TRUE, it 1is known that the
processors once again are 1in lock step. They
then proceed ahead in lock step to service the
event.
—]

Processor
| _I_—‘J

SYNC
£flip-flop

Asserted <«=—
Line-A

Root of broadcast tree

Figure 4: Resynchronization Hardware

dechanism

55

=
L

SYNC flip-flop

T

Processo
i

TFiyure 5 - Wire and Logic

The "MAP" instruction's microcode uses part
of the second resynchronization mechanism to
resynchronize the original task's processors. An
overview of the "MAP" function's microcode
operations and the use of the resynchronization
mechanism by a processor is given in Fig. 6.

Further analysis of the resynchronization
hardware 1is very much dependent on the processor
implementation. The implementation in TRAC is
described in a report [RAT83].

5.0 IMPLEMENTATION OF THE MAP FUNCTION

we discuss the
operations and hardware
mechanisms required for the sender in a MAP
function. Here we state only the basic
requirements and indicate the sequence required
of the microcode to support such data
communication. Then we propose a communication
scheme to transmit the information required by
the receiver,

In this section
data structures,

operands,

The two cases of multi-byte communication
are the intra- and inter- task data
communication/realignment. Their initiation and
execution sequence has been discussed in Section
3.

In
described

the two
above

cases of task communication
we found that we need a

resynchronization mechanism at the end of the MAP
function to bring the processors of the original
task back in lock step. The resynchronization
mechanism described in Section 4.2 is used for

this purpose.
;\
MAP fucntion initiated i
S—

Set SyNC |
flip-flop i

I —

Transmit/receive a packet |

L 1
l Decrement required counis |

Send cownt = 0
end
Receive count = O

No

‘t Do the necessary
end initializazic:

Set SYNC flip-rlot:

Get back in lock
continue task ex

Figure 6: Overview of the use of the
hardware resynrchronization mechanism

to terminate the MAP function

5.1 THE MAP FUNCTION SENDER

Regardless of the mapping packet format used
by any two communicating tasks the microcode
requires the following minimum information for
implementing the MAP function :

1. Send Count : Number of
processor will transmit.

packets a

2. Receive Count : Number
processor will receive.

of packets a

3. Destination Processor IDs : This is
required by the packet network to route
the packet to the required processor,

4. A pointer to the memory of the sender
task where the data to be transmitted is
located.

5. A pointer to the memory of the
destination processor where the data is
to be stored. This may be a specified
index register or an absolute address in
the receiving task's space.

Some additional information may also be required
to allow the operating system to exercise its
data security ‘and authorization mechanisms.

56

This information can be provided by one of
the following three schemes:

1. Load time binding : Here a compiler
creates the template for the
transformation or the data

communication, and the loader binds the
addresses, destination processor numbers

IDs, and the send and receive counts.
This 1is done for all communicating
tasks.

2. Dynamic binding : The interrupting

packet and/or the mapping packets are
used to communicate this information.

3. A combination of the above two schemes.

The first scheme 1is suitable for the
address-data packet format (Fig. 1), while the
second/third scheme seems more suitable for the
data/control information packet format (Fig. 2).

5.2 COMMUNICATION TO THE RECEIVER

We assume here that the required send
counts, destination processor IDs and pointer to
the data to be sent, have been specified to the
sending task's processors in some fashion. We
are concerned here with the specification of the
packet receive counts for the receiving task.

The receiving task receives an interrupting
"request" packet when a sender wants to
communicate with it, The task head recognizes

this packet, and after checking authorization and
security of this communication, it acknowledges
the sender appropriately. If mapping packets are
to be received it must inform its task's
processors of this. After the processors of the
receiving task are made aware of a sender, they
initialize their packet receive counts and then
start reading the MAP packets. It 1is possible
that while servicing one sender other senders
also may desire communication. As each new
sender is allowed to communicate, all the
processors of the receiving task must update
their packet receive counts appropriately.
Therefore a scheme is needed to allow us to do
this initializing/updating of the packet receive
counts properly.

Four schemes were considered.
in whether the receiver would be given
information at load time, by means of
interrupting packets or by means of the mapping
packet mechanism. They all required the sender
have descriptors and templates set up at load
time, requiring the loader to execute two passes
to create and bind the operands for a MAP
function. A detailed analysis of these schemes
is available in a report [RAT83].

They differed

The scheme we have selected for
implementation assumes that the MAP functions'
"receive operands" are bound at load time in the

sending task's
desires to

space. When the sending task
execute a MAP function it must

communicate the necessary "receive operands" to
the receiving task dynamically, that is the
"receive operands" are sent during execution
time. These operands are sent over the mapping
packet channel.

The actual sequence of operations 1is as

follows :-

1. The sending task's task head sends a
"request" interrupt packet to the
receiving task's task head.

2. The receiving task head validates this
request and sends an appropriate
acknowledgement.

3. On receiving a "{ransmit-enable"
acknowledge the sending task head

directs its task's processors to start

MAP packet communication.
4, Each sending task processor first sends
a special "receive operand" mapping
packet. This packet's type 1is set to
indicate 1its contents. After sending
this packet it continues to send the
required data MAP packets.

5. Each receiving task's
receiving a packet, checks the packet
type. If it contains "receive operand"
information it updates its receive count
(maintained in its working registers)
and destination address (if any) using
the packet data. Otherwise on receiving
a data packet it stores the data at the
required location.

processor on

6.0 ANALYSIS OF TRAC IMPLEMENTATION

This section completes the definition of the
integrated packet switching mechanism and
discusses the selections among design
alternatives.

The packet formats (Figs. 1 and 2) must both
be supported. Each is suitable for different
applications (as cited in Section 3). When
handling MAP packets the microcode must know
which format it 1is transmitting or receiving.
The sending task's processors have to know the
format so that they can write the packet data
appropriately, the receiving task's processors
need to know the format so that they can read the
contents properly, and also because they need to
know the destination address to place this data.
For the address-data packet format (Fig. 1) this
address is specified in the packet. But for the
data/control packet format (Fig. 2), the
receiving task already knows this address
implicitly, or has been informed of this prior to

the multi-Byte data communication. This packet
_type information is indicated by 4 bits in the
first byte of each packet (Fig. 1 and 2).

It is necessary because of the way the
destination addresses for the data/control packet
format (Fig. 2) are specified to restrict the
number of simultaneous senders of data/control

57

format MAP packets. While receiving this format

the receiving task's processors holds the data
destination address in an internal working
register. An internal register needs to be used

if the microcode has to receive the packet in
reasonable time. On TRAC the number of internal
registers available is limited. Therefore when
multi-byte data communication is done, using MAP
packets of data/control format, we restrict the

receiver to receive them from only one sender at
a time. This serialization of communication
leads to 1loss of parallelism. It does now,

however, affect the basic application. Such MAP
packets were assumed to be used by the operating
system and/or by tasks for transmitting "large"
amounts of data between tasks. They will not be
used to support dataflow or data realignment.
Removal of the internal register restriction or
providing the processor with a greater number of
internal working registers would allow multiple
senders to a single receiver increasing potential
parallelism.

It 1is possible to receive address-data
packets (Fig. 1) from multiple senders, because
the destination address for the data is specified
in the packet. The microcode in the receiving
task's processors does not have to use its
internal working registers to store this address.
Therefore there is no restriction imposed by the
microcode on the number of simultaneous senders
of address/data packets to a single receiver.
Dataflow and data realignment can be effectively
implemented with packets of this format.

It is possible that while handling
address/data senders, another sender requesting
transmission of a data/control format packet
requests to join the transmission. It is

possible for the microcode to receive packets
from one such sender along with the other
address-data packet senders. The receiving task
will not allow a second data/control packet
sender to join the transmission, until the

previous such sender terminates. On terminating,
the sending task's task-head indicates completion
by sending an interrupting packet of a special
format. On receiving this interrupting packet
the receiving task enables another data/control
packet sender if any are queued. In order to
allow such a mix of packet formats to be
received, the microcode must to identify the
packet format for each MAP packet it receives.
The restrictions of simultaneous packet
reception can be implemented by the receiving
task head. Whenever a sending task requests
mapping packet communication, it will specify the
packet format to be used. This is specified in
the "request" interrupting packet sent to the
receiving task head. This receiving task's task
head checks its mapping packet status data to see
if it can allow packet communication in the
request format. The task head will not allow two
data/control packet senders to transmit at the
same time. If the task head finds that the
sender can join the MAP function, it acknowledges
that sender. If not, the task head either sends
a "transmit-deny" acknowledge to the sender

immediately; or it queues this request and sends
the acknowledge at the end of the current
data/control format MAP function execution. In
this case the task head will also have to inform
its task's processors about this new sender at
the end of the current MAP function. In the
first case the sender will try to gain permission
at a later time. If we choose this option, there
is a possibility of congesting the interrupting
channel with request-deny/acknowledge packets.
This overhead is reduced in the second case since
the request is queued and the sender waits to
receive the transmit acknowledgement.

The next implementation option to be
reviewed is the specification of the MAP
function's operands. These are the send count

(number of packets to be sent), the destination
processor ID and the source address of the data
to be sent, for each processor in the sending
task. Each processor of the task must know the
receive counts (number of packets to be received)
and the destination address of the data. These
MAP function operands must be specified and bound
at compile and load time. Special data
descriptors and data structures (templates) are
used to store them. The sending task's -operands
are bound in its task's space.

This scheme somewhat increases the
complexity of the systems loader. The MAP
information is bound at load time to the sending

tasks address space and therefore requires a two
pass loader. It does not require any space in
the receiving task to store the '"receive
operands". It thus gives a small storage space
overhead. Further it does 'not congest the
interrupting packet channel and uses only the
mapping packet channel to communicate its control
and data interrupted explicitly to transfer
"receive operands" it does not require
resynchronization within the MAP instruction. It
does, however, require resynchronization to
terminate the MAP instruction.

7.0 CONCLUSION

This paper has defined a multi-purpose
packet data movement capability for a network
architectured multiprocessor computer system. It
has been shown that such capabilities can be
effectively implemented in an integrated manner,
and that the packet switching functions are
compatible with and complimentary to a circuit
switching functionality for the network. This
integrated packet communication system is
operational in the current four processor, nine
memory configuration of TRAC. Exploration of the

design space for implementation gave a clear
resolution of desirable choices. The
functionality and the implementation techniques

are largely independent of the choice of network
structures. The implementation concepts should
be broadly applicable to network architectured
multiprocessors.

58

8.0 ACKNOWLEDGEMENTS

This work was

sponsored by the National

Science Foundation under Grant Number MCS-8116099

and by the Department of Energy under Grant
Number DE-AS05-81ER10987.
REFERENCES
1. [BRO82] J.C. Browne and G.J. Lipovski;

"Reconfigurable Network Architectured
Computer Systems: An Environment for
Parallel Computing", Int. Workshop on
High-Level Language Computer
Architecture; Fort Lauderdale, Florida;
pp. 40-49, 1982.

[LIP77] G.J. Lipovski and A. Tripathi;
'A Reconfigurable Varistructured Array
Processor'; 1977 Int. Conf . on
Parallel Processing; pp 165-174; August
1977.

[PRE79] U.V. Premkumar, R.N. Kapur and
G.J. Lipovski; 'Interprocessor
Communication on the Texas
Reconfigurable Array Computer'; Proc.
of the 1st Int. Conf. on Dist. Comp.
Systs.; Huntsville, Alabama; pp 51-62;

October 1-5, 1979.
[RAT83] B.D. Rathi,
R. Jenevein, M. Sejnowski, D. Walker,
G.J. Lipovski and J.C. Browne;
"Inter/Intra Task Packet Communication
on the Texas Reconfigurable Array
Computer"; TRAC Technical Report; Dept.
of Elect. Eng. and Comp. Seci.; U.T.
at Austin; 1983.

S. Deshpande,

[SEJ80]
R.N. Kapur,

M.C. Sejnowski, E.T. Upchurch,
D.P.S. Charlu, and
G.J. Lipovski; 'An Overview of the Texas
Reconfigurable Array Computer'; Proc.
of AFIPS NCC Conf.; pp 631-641; 1980.

[SEJ81] M.C. Sejnowski; 'Packet Support
in the Texas Reconfigurable Array
Computer'; M.A. Report; Dept. of Comp.
Sci.; U.T at Austin; Texas-T78712; 1981.

[SIE81] H.J. Siegel and R. McMillen;
"The Multistage Cube : A Versatile
Interconnection Network"; COMPUTER

Vol.14, No.12; pp 65-76; December, 1981.

[TRI79] A. Tripathi
'Packet Switching
6th Annual Symp.

and G.J. Lipovski;
in Banyan Networks';
on Comp. Arch.; 1979.

TIMING CONTROL OF VLSI BASED NLOGN AND CROSSBAR NETWORKS®

Sanjay Dhar, Mark A. Franklin and Donald F. Wann
Department of Electrical Engineering,
Washington University,
St .Louis, Missouri 63130.

ABSTRACT

Two basic data flow control methods for circuit
switched, pipelined networks of the general NLogN
and Crossbar (CB) topologies are modelled and
their effects on overall data rates achievable are
determined. The synchronous method uses a global
clock and as network modules grow, clock skew and
and clock tree charge/discharge times grow
resulting in lower data rates. The asynchronous
method relies on local request/acknowledge signals
to control data movement and hence 1it”s
performance is less affected by system growth.

1.0 Introduction
Advances in
available a number

VLSI technology have made
of 1low cost yet powerful
microprocessor chips. This has led to a host of
proposals ([8], [9], [10]) for the design of
closely coupled multiple processor systems 1in
which a number of processors are connected
together by a communications network. The network
handles interprocessor communication and enables
resource sharing. Its design is a key factor 1in
determining overall system performance.

The principal issue of interest in this
is the type of control scheme to be used for
control of data movement in a large circuit
switched interconnection network environment where
the network 1is partitioned into a number of
subnetwork chips [2], and data transfer through
the network is pipelined. Two principal methods
that can be used in controlling data movement
along the network are referred to as the
synchronous (or clocked) and the asynchronous (or
self-timed) schemes [7]. The synchronous control
scheme has been traditionally favoured, especially
in small systems, because of its logic design
simplicity. The presence of global clock signals,
however, makes such systems difficult to expand

paper

and as the system grows, system performance may
deteriorate due to the increases in clock skew.
The absence of any global signals in an
asynchronous system makes it inherently modular
and expandable and hence it becomes attractive in
systems where the size of the system cannot be

predicted in advance, where a number of subsystems

operate independently, or where system size (and
clock skew) require inordinately large clock
periods for proper operation.

The analysis in this paper follows that of
[11], focusing here, however, on the data rates
achievable in both CB and NlogN networks when
asynchronous and clocked control schemes are
utilized. The analysis provides a quantitative
approach to making the CB/NlogN,
asynchronous/synchronous design decisions.
Decision curves are provided for a particular

example to illustrate the procedure.

* This work was supported in part by NSF Grant
MC5-78-20731 and ONR Contract N00014-80-C-0761.

0190-3918/83/0000/0059$01.00 © 1983 IEEE

59

2.0 Protocol Issues

A complete interconnection network requires
control provisions for path establishment,
transfer of data from source to destination,
detection of a blocked path and indication of end
of transmission with path clearing. We will
assume that these requirements are satisfied as
shown in [2] and that the network has been
partitioned following a bit slice architecture
approach with one bit per plane. The present
analysis focuses on the data rates achievable
after a path has been established from a source to
a destination. Hence this analysis will hold for
systems where the average message length is much
larger than the average number of modules in a
path in the network, that is, data tranfer time is
much larger than path establishment time.

For the asynchronous network, a delay
insensitive control structure is adopted. That
is, insertion of arbitrary delay between modules
will not cause the network to malfunction. Also
transition sensitive logic is employed. Figure 1
shows the interconnection between two asynchronous

modules. A transition on Rl indicates the
presence of a "1" data bit, while a transition on
RO indicates the presence of a "0" data bit. The

YA" line supplies the acknowledge response signal.

Interconnection of two synchronous modules is
shown in Figure 2. For the synchronous network,
the standard two-phase level sensitive clock 1is

used for the data transfer. Data at the input of
a module is captured at phase one of the clock and
is transferred to the output of the module at
phase two of the clock.

3.0 Asynchronous Banyan Delay Model

Huffman finite state machine
representation of a logical implementation of the
asynchronous module is shown in Figure 3. If we
assume that the environment of the module can
cause a change at the module input as soon as the
environment receives a change at the module
output, then it can be shown [1] that the
sufficient conditions on the various delays to
achieve race-free operation are given by the
relations

dF >= dL (3.1)

d0 >= dF + dL (3.2)
where dL is the maximum delay of the combinational
logic.

A pair of communicating modules i and j in a
path k is modelled as shown in Figure 4.
Considering module i, the maximum propagation
delay from any dinput to any output of the
combinational logic is dLi, the propagation delay
of the feedback path is dFi and the propagation
delay from module i to module j is dPij.
Similarly for module j, we have dLj and dFj and
dPji, the propagation delay in the acknowledge
path from module j to module i. The delay from
the output of the combinational logic of module i

The

through the combinational logic of module j to the
input of the combinational 1logic of module i,
corresponding to the term dO of Figure 3, is given
by i

d0 = max(dFi,dPij) + dLj + max(dFi,dPji) (3.3)
If we assume that condition (3.1) 1is satisfied
(dFi >= dLi and dFj >= dLj), then dO given by

(3.3) satisfies condition (3.2).

The minimum delay in transferring two
successive pieces of data (e.g. successive words
which are part of the same message) between the
pair of Asynchronous BA modules i and j is equal
to the maximum loop delay as given below.

dABAij = dLi + max(dFi,dPij) + dLj

+ max(dFi,dPji) (3.4)
Consider next all of the pairs of communicating
modules along a particular path k in the network.
Since data transfer 1is pipelined, we next
determine the maximum delay between module pairs
on that path.

The path k is modelled as shown in Figure 5
where each pair of communicating modules and the
maximum loop delay associated with that pair is
shown. Since the mnetwork 1is pipelined, the
minimum time between transfer of two successive
data items along the path k, dABAk, is given by
the maximum of the delays dABAL2, dABA23,....,
dABA(n-1)n.

dABAk = 2dL + 2(max(dPk,dF)) (3.5)
where dL and dF are the maximum values associated
with the combinational logic and feedback delays;

dPk is the maximum delay between modules for path
k, that is ‘
dPk = max(dPij,dPji) for all (3.6)

communicating modules i and j in path k
Notice that dPk will be dependent on the
particular path wunder consideration since this
delay reflects the layout of module chips on a
printed circuit board and that layout is in turn
dependent on the topology of the network being
considered. The average of dABAk over all paths
(a total of M are present) in the network gives
the average delay between successive data
transfers. Assuming all paths in the network are
equally used this average can be expressed as

M
dABA = () dABAk)/M (3.7)
k=1

We will assume here that the maximum delays
associated with the combinational logic and
feedback are equal for all paths in the network.
Then if dPk >= dF for all k, equation (3.7)
becomes:
M
dABA = 2dL + 2() dPk)/M (3.8)

k=1
Letting dPBA be the average of dPk over all paths
we obtain

dABA = 2dL + 2dPBA (3.9)
M
where dPBA =) dPk/M
k=1
3.1 Synchronous Banyan Delay Model

A pair of synchronous modules in a path from a
source to a destination is modelled as a finite
state machine in Figure 6. A two phase clocking
scheme 1is used to clock the memory elements 1 and
2 of each module. Considering module i, the

60

maximum combinational 1logic delay is dLi, the
memory delays are dMil and dMi2, the
interconnection path delay from module i to module
j is dPij, and the clock delays are.dCil and dCi2.
Similarly for module j.

The following three constraints on the clock
period (obtained as in [11]) must hold to ensure
proper operation:

T >= dMil+dMi2+dPij+dLj+(dCil-dCjl) (3.10)
T >= dMi2+dPij+dLj+dMjl+(dCi2-dCj2) (3.11)
T >= dMil+dMi2+dLi (3.12)
In most designs the third constraint on T is

smaller than either of the first two and will not
be considered further. The quantities (dCil-dCjl)
and (dCi2 - dCj2) are the differences between the

times the phases 1 and 2 of the clock arrive at:
the corresponding memory elements of the two
modules and are referred to as the clock skew,
defined as

deltaCl = dCil - dCjl (3.13)

deltaC2 = dCi2 - dCj2 (3.14) .
If dM, dPBAmax, dL and delta represent maximum
values which can occur over any data path, then
the constraints of (3.10) and (3.11) can be
written as

T >= dL + 2dM + dPBAmax + delta (3.15)

where dPBAmax is the maximum path delay between
any pair of communicating modules over the entire
network, that is,

dPBAmax = max(dPij,dPji) for all

communicating modules (3.16)

Another constraint on the clock period relates
to the clock tree charge/discharge time. For
reliable operation of the system the clock period
must be greater than the time required to charge
and discharge the clock tree to voltage 1levels
which can be reliably sensed by the gates in the
network. Let this time be represented by tau and
thus T >= tau. The worst case condition clock
period for the Synchronous BA network, dSBA, is
now given by

dSBA = max(dL+2dM+dPBAmax+delta, tau) (3.17)

3.2 Asynchronous Crossbar Delay Model
The delay model for the CB network is obtained
in a similar manner as for the BA network. The

maximum Asynchronous CB loop delay for modules i
and j is then obtained as

dACBij = dLi + max(dPij,dFi) + dLj

+ max(dPji,dFi) (3.18)

Since data is pipelined as in the BA network, we
obtain the average delay as dACB given by

dACB = 2dL + 2*max(dPCB,dF) (3.19)
where dPCB is the path delay Dbetween two
communicating modules. It should be noted that
because of the planar construction of the CB
network, the distance between two interchip
communicating modules is constant independent of
network size. The maximum path delay between two
communicating modules is a constant not dependent
on any particular path being considered. This is
a key difference in the analysis of the two
networks. If dPCB >= dF then equation (3.19) can
be written as

dACB = 2dL + 2dPCB (3.20)

3.3 Synchronous Crossbar Delay Model
The synchronous delay model for the CB network
is similar to the model developed for the BA

network (Figure 6). is
given by dSCB where

dSCB = max(dL + 2dM + dPCB + delta, tau) (3.21)
Note that in the CB network, dPCB is also the

‘maximum delay between two communicating modules.

The delay in the network

4.0 Delay Parameters

Consider next the various delay parameters
needed for evaluation of dABA, dSBA, dACB and dSCB
in Equations (3.9), (3.17), (3.20) and (3.21)
respectively. To estimate these values the
synchronous and asynchronous modules were designed
using NMOS technology with a minimum feature size

of 2.5 microns. From these designs values for dL

and dF were obtained (see section 5.0).
Considering the path delays dPBA, dPBAmax and
dPCB, the delay of on-chip paths is negligible
compared to the delay of off-chip paths. The
off-chip delay can be minimized by wusing
exponential drivers and is given by [5]:

dP = d*e*1n(CL/Cg) (4.1)

where Cg is the capacitance of an elemental gate
and CL is the load capacitance. The capaciatance
CL consists of two pin capacitances (Cpin) and the
external path capacitance.
maximum path length between communicating modules
in any path is L2 (Figure 7), and (4.1) becomes:
dPCB = d*e*1n((2Cpin+Cb*L2)/Cg) (4.2)
where Cb is the capacitance per unit length of the
printed circuit board. For the BA case dPBA and
dPBAmax are derived in [12] as:
dPBA = d*e*1n(2Cpin + Cb*Ll
+ ((N*%241)%(N-1) /2N*%*4)*N“*Cb*L2/Cg) (4.3)
dPBAmax = d*e*1n((2Cpin + Cb*Ll
+ (N-1)*N“*Cb*L2/N**4)/Cg) (4.4)
where Ll and L2 are the spacing between chips used
in the BA and CB networks as shown in Figure 7, N

is the network size in a chip module and N” the
overall network size. This more complex
expression reflects the changing path lengths
between banyan network stages.

We next consider the clock skew. For this
analysis it is assumed that the clock as presented
to the individual chip modules has no skew and
that all skew occurs within the chip. The clock
skew can be attributed to :

(a)
(b)

Differences in line lengths.
Differences in the passive line parameters
like resistance, dielectric constant that
determine the line time constant.
Differences in the threshold voltages of
the two modules.
One possible clock distribution scheme that
guarantees equal length paths, thus eliminating
(a) from consideration is shown in Figures 8 and
9. As shown in Figures 8 and 9, the section AB of
the clock tree is common to all the modules in the
chip and hence does not contribute towards the
clock skew. Let the maximum and minimum time
constants of the clock tree from B to all the leaf
nodes be RCmax and RCmin. Then, given equal
length paths the clock skew can be found as [11]:
delta = RCmin*1n(1-(VImin/Vdd))

~ RCmax*1n(1-(VImax/Vdd)) (4.5)
where VImax and VImin are the maximum and minimum
values
the gates of the network and Vdd is the power
supply voltage. RCmax and RCmin can be obtained
as functions of the clock tree time constant RC

(c)

associated with the threshold voltages of:

For the CB case, the

61

(e.g. RCmax=kl1*RC, RCmin=k2%RC).
Determination of the clock tree time constant
is a problem that has been solved in [4] and [6].
Using the development of [4] for the tree starting
at B (Figures 8,9) we get RC as:
3
RC = 9*%(1-1/N)*(N - 1)*R0CO/7 (4.6)
where RO and CO are the resistance and capacitance

of the last (and smallest) section of the clock

tree. The time constant (RCf) for the entire
clock tree (starting at A) is:
3

RCf = (3 - 2/N)*(10N - 3)*R0OCO/7 (4.7)

The total time to charge and discharge the clock

tree, has been derived in [12] and is given

by
Vdd-VTmin+Vn) VTmax+Vn
tau = RCf* ln()+ 1n<) (4.8)

tau,

Vdd-VTmax—Vn VImin-Vn.

where Vn is the noise margin rquired for reliable
circuit operation. Notice that for this
simplified analysis RCf 1is a function of the

module size N and not the overall network size N7.
That is, only the clock tree charge/discharge time
within the chip module is considered.

5.0 Example

As an example let us consider a N"*N” network
built from N*N size module chips which are laid on
copper printed circuit boards. The pin
capacitance for this type of construction is about
4pF and the capacitance of an elemental gate is

0.01pF. The various delays are:
d = 2 nsec; dM = 4 nsec
dL = dF = 45 nsec. for synchronous module
dL = dF = 34 nsec. for asynchronous module

We will assume that the size of the largest chip
available is lem*lem on which a single bit slice
32%32 network can be implemented. Assume that
only one layer of metal 1is available. Let a
fraction q of the clock line be distributed in
diffusion and the rest in metal. If Rd is the
resistance per square of diffusion, Cd and Cm the

capacitance per unit area in pF/sq.micron of
diffusion and metal respectively, then the time
constant of the last section of the clock tree

ROCO is given by [12]:
ROCO = ((10000/32)%%2)*Rd¥*q*(2%q*Cd

+ 3*%(1-q)*Cm) /8000 nsec (5.1)

The fabrication constants of the current NMOS
technology have the following values:
-4
Rd = 20 ohms/sq., Cm = 10 pf/sq. micron,
-4
Cd = 0.3*¥10 pF/sq. micron
Also, the variation of time constant and threshold
voltage during fabrication is about 20% (i.e.
RCmax=1.2*RC, RCmin=0.8%RC). We take the supply

voltage Vdd=5 V, the typical threshold voltage as
2,5V and the noise margin as 0.5 V. Then
VImax=3,0 V, VImin=2.0 V and Vn=0.5 V. For
illustration purposes, take q=5%, Ll=l inch, L2=2

inches and Cb=l pF/inch (note values of L1 and L2
are dependent on board technology factors such as
whether multilayer, wirewrap or other technology
is used). The delays dABA and dACB for the
asynchronous modules and the delays dSBA and dSCB
for the synchronous modules of the BA and CB
networks are plotted in Figures 10 and 1l against

N”, the network size. In F¥igure 1Z tne same
delays are plotted against N, the module size.

From Figure 12 we can make a comparison of the
delays associated with the asynchronous and
synchronous control schemes. It is clear that in
the case of the Banyan network, for small N the
synchronous control scheme results in a smaller
delay. Consider a particular network size N”.
From the intersection of the curves for the
asynchronous and synchronous control schemes for
this value of N, we can obtain the range of
values of N for which a particular control scheme
is better. For example, for N"=512 we get the
following result:
‘ Synchronous control better for N < 20
BANYAN
l Asynchronous control better for N > 20

Similar conclusions can be reached for the CB
network. network curves. Notice that the CB
network delays are independent of the network size
because the intermodule distances are constant
independent of the module or network size. Thus
‘we get the following result:

; Synchronous control better for N < 24
CROSSBAR
IAsynchronous control better for N > 24
Conclusions

The Banyan and the Crossbar networks have been
modelled according to the type of control scheme
used. These models were used to obtain the delay
associated with

6.0

scheme. The delay equations were then used to
obtain the delay curves of Figures 10 and 11 and
Figure 12.

Comparison of the delays in the Banyan and the
Crossbar network were, made for both types of
control schemes, the synchronous and the
asynchronous. It can be observed from Figure 10

that the BA network delays increase with N7, the
network size, because of the increase in the
physical inter=-chip path lengths. The
asynchronous mnetwork delay decreases with the
module size because the implementation of a
network of a given size requires fewer modules
chips and hence the physical path lengths between
communicating modules decrease. Physical path
lengths decrease with N for the synchronous case

also, however here large modules result in larger
clock skew which dominates the inter~-chip delay.
The synchronous network delay is the maximum of
two terms. For small module sizes the first term
{(includes inter-chip delay and clock skew) of
(3.17) dominates, while for large module sizes
(e.g. N=32) the clock tree charge/discharge time,
tau,dominates. Tau increases rather rapidly
(0(N**3)) with the module size and this results in
the steep rise in Figure 12 for 1large N. The
behaviour of the delays of the Crossbar network
were similar except that the planar construction
of the network resulted in smaller delays. Notice
also that only a single curve is obtained for the
asynchronous case because of the modular and
planar structure of the Crossbar network. This
was also the reason for the delays in the Crossbar

network for both types of control schemes being
less than those in the Banyan network. Delay
curves were obtained for a particular example

clearly showing the delay tradeoffs for the Banyan
and Crossbar networks, and the synchronous and the

each type of network and control.

62

isynchronous control schemes.
REFERENCES

[1] Fang,T.P. "On the Design of Hazard Free
Circuits", Comp. Sys. Lab., Tech. Mem.
285, Washington University, St.Louis, MO (Nov.
81).

Franklin,M.A., Wann,D.F. and Thomas,W.J.

"Pin Limitations and Partitioning of VLSI
Interconnection Networks'", IEEE Trans. on
Comp., Vol. C-31, No. 11, Nov. 1982.
Goke,L.R. and Lipovski,G.J., "Banyan Networks
for Partitioning Multiprocessor Systems",
Proc. lst Annu. Symp. Comput. Arch., 1973.
Kung, S.Y. and Gal-Ezer,R.J. "Synchronous vs
Asynchronous Computation VLSI Array
Processor", Proc. SPIE, Vol. 341, May 1982.
Mead,C. and Conway,L., INTRO. TO VLSI
SYSTEMS, Addison-Wesley Pub.Co. Reading
(1980).

Penfield, P. and Rubinstein,J.
Delay in RC Tree Networks", Proc.
Auto. Conf., June 1981.
Seitz,C.L., "Self-timed VLSI Systems", Proc.
Caltech Conf. VLSI, Jan.1979.
Sejnowski,M.C.,et. al. “An overview of the
Texas Reconfigurable Computer”, AFIPS Proc.,
Nat. Comp. Conf. (1980).
Sullivan,H. and Bashkow,T.R.
Homogeneous, Fully Distributed
Machine I, Proc. 4th Ann. Symp.
Arch. (March 1977).

[10] Swan, R.J. et. al. “Cm* A Modular Multi-
Microprocessor”, AFIPS Proc. Nat. Comp.
Conf. (1977).

Wann, D.F. and Franklin, M.A. "Asynchronous
and Clocked Control Structures for VLSI Based

[2]

(3]

[4]

in

(51
JMA

(6] "Signal

18th Design
[7]
[8]

[9] ‘A Large Scale
Parallel

on Comp.

[11]

Interconnection Networks", IEEE Trans. on
Comput., March 1983.

[12] Dhar,S., Franklin,M.A. and Wann,D.F.
"Piming Control of VLSI based NlogN and

Crossbar Networks'", Center for Computer
Systems Design, Washington Univ., St. Louis,
MO, Tech. Rpt. CCSD83-101 (May 1983).

—— Ve LOGIC
dLi dLj
MEMORY MEMORY MEMORY MEMORY
o a2 [T aman aMj2 aMj L
i2 il j2

RI —— o R1
MODULE i MODULE j
—_— RO
RO =
D s | A
A A
Figurc 1: TInterconnection of two asynchronou=

R
DATA ——>
MODULE i DATA MODULE
2, ? 2
¢2 et] 2————

Tigure 2:

module.

Interconnection

modules.

of two synchronous

INPUTS

OUTPUT .
DELAY
do -

Figure 3:

—

LOGIC
dL

FEEDBACK

dF

Huf fman asynchronous circuit model

DATA

Lt

le
C

———

[deI

-{ dPij }_

3

Figure 6: Model for two adjacent synchronous modules.

NUTPUTS

LOGIC

-"-""1 max (dF1,dPij)

dLi

FEEDBACK
dFi

LOGIC
dLj

FEEDBACK
dFj

max (dFi,

Figure 4:

Delay model for two adjacent asynchronous modules.

dPji)

MODULE 1 MODULE 2
MAX. LOOP =1 MAX. LOOP
DELAY DELAY
dABAL2 dABA23
Figure 5:

MODULE (n-1)

—’JMAX Loop

DELAY
dABA (n-2) (n~1

MODULE n
[MAX. LOOP
DELAY

dABA(n-1)n

——

Delay model for a path in the
asynchronous Banyan network.

63

r-Ll—4

(a) Crossbar (b) Banyan

Figure 7: 8#%8 Crossbar and Banyan networks
built from 2*2 module chips.

CHO OH
LR]

ChE | OO0 OO | By
HO O RO OH O

>

[O
CH| TR

Figure 8: Clock distribution for a

16*16 Banyan network.

¥9

BANYAN NETWORK DELAY VS N’ CROSSBAR NETWORK DELAY VS N°

300.00 - 300,00 b

L e e e o e — = e — — — =% N=12 I — - - — N=32
L e e e e e — ¥ — —% N=
250.00 - 250.00

~ I - -

6 r g L

g 200.00 4 @ 200.00 ~

L s | St
r 16 Asynchronous ~ L

x i 32‘(501id ne) > i

=) b]

w i} -

9 150,00 | Q 150,00 |-
+ Synchronous - ~6— Asynchronous
L (dashed line) L (solid line)

100.00 — 100.00 - 16
I I N LR SRR SETE =TT % Spnenronous
L . (dashed line)
L L
so.00 I I 84, Ill] 128.100 ZSB.IUJ 512, ICD 1024. ICNJ zms.to-' 50. 00 L i 1 1 L 1 L n
8.00 18.00 32.00 8.00 16.00 32.00 84.00 128.00 256. 00 512.00 1024. 00 2048. 00

N’ NETWORK SIZE
iati function of
i : Delay variation of Banyan network as a . o .
Figure 10 ethrk cize N' with module size N as a parameter. Figure 11: Delay variation ofCrossbar network as a function of
n network size N' with module size N as a parameter.

N’ NETWORK SIZE

DELAY VS N

' 0
250. 00 L
~ I
5 L
8 200.00 |- . |
kS L
[Banyan
E 3[R 0
: L
d 150.00 |- Crossbar Ij m m
[} | async.
r
i Banyan
100.00 - syne-
Crossbar
L sync.
[L L
00 0 I.IIJD 8. Im') 16.00 32.00
N module size A
Figure 12: Delay variation of Crossbar and Banyan networks Figure 9: Clock distribution for an 8%8 Crossbar network.

as a function of module size N with network
size N' as a parameter.

Easily-Testable
(N,K) Shuffle/Exchange Networks

David C.H. l ee’

and John Paul Shen

Department of Electrical Engineering
Carnegie-Mellon University
Schenley Park, Pittsburgh PA 15213 U.S.A.

Abstract -- This paper focuses on the testing of an important
class of interconnection networks called (N,K) shulifle/exchange
networks. A sequential circuit model is used for the basic switching
element. A general fault model for the switching element is
introduced. A testing strategy is presented which involves the
exhaustive testing ot each switching element without exhaustively
testing the entire network. Each switching element is exhaustively
tested via the application of a checking sequence. It is shown that
the class of (N,K) shuffle/exchange networks is C-testable. A
neiwork is C-testable if it can be fully tested using a constant
number of test patterns. A test sequence of constant length is
constructed which when applied to a (N,K) shuffle/exchange
network will fully test the entire network.

1. Introduction
Previous works

In recent years, many multistage interconnecticn networks have
veen proposed and extensively studied. Most research efforis
focus on the network topologies, routing algorithms, and potential
applications [7]. More recently, issuses involving reliability, fault
tolerance and fauit diagnosis are being addressed [1]. There has
been limited investigation of the testing and testability of such
networks, which constitute the focus of this paper.

Most of the pievious works assumed each basic switching
elarnent to be a combinational circuit and each requires a separate
contro! line. Most of the fault models assumed are quite restrictive.
Frequently only faulis involving single line stuck at a logic value or
single switching element stuck at a switch state are considered. A
more general fault model is needed.

(N,K) shuffle/exchange networks

A B-element is a 2 x 2 switching element that can be set to one of
two states, namely the "Through" (0) state or the "Cross" (1) state,
corresponding to the two possible permutations of its two input
terminals; see Figure 1a . A B-element can be impiemented as a
two-state sequential circuit; see Figure 1b. Each B-element in a
network can be independentily set to either the 0 or the 1 state. To
facilitate seif-routing and to reduce the number of I/0 pins needed,
Levitt et al [6] propose a B-element which uses the two data inputs
a and b for transmitting data as well as destinaticn address tag bits
used for routing. A third input, ¢, determines whether the input
terminal lines centain <data or routing tag bits. Similar routing
scheme is assumed in this paper. Details of it can be found in [5].

A N_x N shuffle/exchange stage has N input terminals and N
output terminals and consists of a perfect shutfle connection {9}
followed by (N/2) 8-elemenis. For convenience, N is assumed to
be a power of 2. let m = l«.‘)g?i\x, then each terminal can be

0190-3918/83/0000/0065$01.00 © 1983 IEEE

control input
c

}

input terminals output terminals
a-——p —— X
b Y

(a) The beta element

input vector <abc>
33{;&‘§i‘i’y> 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
current 0] 0700 | 0/00 | 0/01 | 0/01 | 0/10 | 1710 | 0711 | 1/11
state 111700 | 0/00 | 1710 | 0710 | 1701 | 1701 | 1711 | 111

(b) The state table of the beta element
Fig. 1. The 3 element and its state table.

identified by a binary number of m hita. Starting from the top, each
B-element can be identified by a binary number of m-1 bits. All the
P£-elements in the same stage examines synchronously the routing
tag bits. A single control signal ¢ can be used for all the B-elements
in the same stage. This scheme reduces the number of control
signals needed from (N/2) down to one per stage.

000 I‘J—'l 000 r—L‘lﬁ I_J‘—'I 00
001 00 001 00 001 00 001 00
010 010 010 010
011 01 o1 01 o1 01 011 01
100 100 100 100
101 10 101 10 101 10 101 10
110 110 110 110
m 11 111 11 m 1 111 11
| S— | | S|
stage 1 2 3 4
Fig. 2. The (8,4) shuffle/exchange network.
A has N input terminals, N

output terminals, and consists of a cascade of K identical N x N
shuffle/exchange stages. The stages can be numbered trom left to
right as 1,2,...,.K. The outputs from stage i are connected to the
inputs of stage i + 1 as shown in Figure 2. (8, , 5m.3"-/30)p denotes
the B-element (B , B ma-By) in the jth stage.

It is assumed that the (N,K) shuffle/exchange network uses a
routing scheme involving destination address tags [6]. Before
inputing data at an input terminal a K-bit routing address tag (d,

65

d2...dK), cne for each stage, is used to set the switches so as to
provide the desired connection path. The B-element in the ith

stage examines d, and sets its state according to the value of di.

Many well known networks are (N,K) shuffle/exchange neiworks
[7]. When K = log,N, the (N,K) shuffle/exchange network is the
cmega network, and is topologically equivalent to a class of well-
kriown networks. These networks include the modified data
manipulator, the flip network used in STARAN, the indirect binary
n-cube network and the regular SW banyan network with spread
and fanout of 2. When K =1, itis the well known shuifle/exchange
natwork proposed by Stone [9].

In Section 2, the fauit model and the testing strategy is formally
introduced. In Section 3, the concept of C-testability is introduced
and applied to the testing of (N,K) shufile/exchange networks. In
Section 4, it is shewn that the class of (N,K) shuffle/exchange
networks is C-testable. A test sequence is constructed whose
length is independent of the network size.

2. Testing Mathodology

Beta-element fault model

The state table of a sequential machine completely characterizes
the machire’s behavior. Since a B-element is modelied as a 2 state
sequential machine, any B-element failure which causes an
arbitrary change to ihe original state table is considered a fault.
Qur fault model assumes:

1. A faultin a B8-element is any arbitrary deviation from the

As shown in Figures 3, 4 and 5, a conventicnal fault involving
either a line stuck at some logical value or a f8-element stuck at the
0/1 state can be represented using this fault model. Many other
fault types can be modelled. This fault model is quite compatible
with VLS! implementations. On a VLSI chip, faults tend to be
arbitrary but confined to certain area of the chip.

Exhaustive testing of beta elements

Since the fault model allows a f3-element to fail in an arbitrary
way, each B-element must be exhaustively tested. A B-element,
modelled as a 2 state sequential machine, can be exhautively tested
usina the checking experiment approach. Hennie described a
method for sequential machine identification using a checking
experiment [3]. A checking experiment for a machine involves the
construction of a checking sequence of the rnachine. A checking
sequence consists of an input sequence and the. corresponding
output sequence- which can uniquely characterize a sequential
machine. The sequential machine must have a strongly connected
state diagram and a distinguishing sequence in order for a
checking sequence to exist. A distinguishing sequence is an input
sequence the application of which allows the current state of the
machine to be determined from the output sequence. A checking
sequence must perform the following three functions: (1) Initialize
the machine into a known state S. (2) Verify the number of states in
the machine. (3) Starting from state S, for every entry in the state
table, an input vector is applied to stimulate that entry and then a
distinguishing sequence is applied to verify the state transition.

If at any time during the checking experiment, the actual machine

fault-free state tabie of the fB-element without responds in a manner other than that dictated by the expected
increasing the number of states. output sequence, the sequential machine must be faulty. If a
B-element behaves correctly throughout the checking experiment
. 0 and assuming the number of states has not been increased by a
2. There is at most one fauity B-element. '
001 /oo 000/00 ooo/oo “’ o1
3. The fault is permanent. 10'/10
010/01 10/‘0
* : faulty signals $
input vector <abc> 011/01 111/11
next state/ 001/ °°
outputs <xy> | 000 001 010 | o111 100 101 110 191 110/11 110711 100/01
. . » . (a) State Transition Diagram
current 0| /10 | 1710} 0/11 | 1/11]0/10 | 1/10 | 0/11 | 1/11
state N . 001/00 ‘
® |
1117017 Vo 1] 1117 17117 1/01 | 1701 [1/11 | 1/11 . o2 oo
Fig. 3. Input line astuck at 1. °$‘0
input vector <abc> o & s
next state/
outputs <xy> 000 001 010 011 100 101 110 111 100/‘0 110/11 110/11 100/01
L
current 0| 0701} 0/0 1’ 0/01 | 0/01 | o/1 1' 1/1 1* o/11 | 1711 (b) Distinguishing sequences: <010>,<{100>
state L * * -
11 1/01] 0/01|1/11|0/11 | 1/01 | 1/01 | 1/11 [1/11 11/01
001/00 000/00 000/00
Fig. 4. Output line y stuck at 0. 101710 010/10
B A (
input vector <abc> $_
next state/
outputs<xy> | 000 | 001 | 010 [011 | 100 | 101 | 110 | 111 011701 ’ wwo 1
current 0] 1700 | 1000 | 1713| 1/40] 1731 1707 1711 | 1711 100/10 10711 v/ ‘°°’°‘
state * -
111700 |1/00 | 1/10 |1/10 }1/01 | 1/01 | 1/11 | 1/11 (c) Synchronizing sequences: <001>,<111>

Fig. 5. B-element stuck at the 1 state.

Fig. 6. State transition diagram and some
useful input sequences of the B-element.

fault, then the state table of this machine must be the same as the
fault free one. By carefully designing the input checking sequence,
the length of the sequence can be reduced [3]. Figure 6 shows the
state transition diagram and some useful inout sequences of the
B-element. The diagram is strongly connected. It has two
distinguishing sequences of length one, namely the two input
vectors <abc> <0i0> and <100>. Futhermore it has two
synchronizing sequences, <001> and <111>, also of length one. (A
synchrorizing sequence is an input sequence which when applied
to a machine results in a unique final state independent of the initial
state.)

The checking experiment for the pB-element involves the
application of a synchronizing sequence (001> or <111>) followed
by the activation of a state transition and then followed by a.
distinguishing sequence (010> or <100>) for each of the 16 entries
or state transitions in the state table. A (N,K) shuffle/exchange
network has N/2*K B-elements. if the entire network is considered
as a single sequential machine, it will have N2 " Kogtates. 1t is
infeasible to design a checking sequence for such a state machine
even for relatively small N and K. Consequently, the appropriate
testing strategy is to exhaustively test each B-element without
exhaustively testing the entire networik. The main task now is to
construct the smallest possible sequence of network input test
natterns which will result in the efficient simultaneous application
and observation of the checking sequiences to all the f8-elements.

3. C-testability and Test Vectors

C-testability

The problem of testing iterative arrays was first studied by Kautz
[4], who assumed that an individual cell can be tested for all its
possible faults only by applying all possible input vectors to that
cell. The necessary and sufficient conditions were given by Kautz
for testing an iterative array with a single faulty cell. Friedman [2]
studied a class of one-dimensional unilateral combinational
iterative arrays which requires a constant number of tests to detect
all faults, independent of the size of the array. He called them
C-testable iterative arrays. He also assumed that there is only one
faulty cell in the array. In this paper, the concept of C-testability is
generalized and applied to two-dimensional (N,K) shuffle/exchange
networks. Unlike the combinational arrays studied by Kautz and
Friedman, a (N,K) shuffle/exchange network consists of cells which
are scquential circuits. Applying Kautz's necessary and sufficient
conditions to (N,K) shuffle/exchange networks we have the
following:

Definition 1: A (N,K) shuffle/exchange network is testable if the
following conditions are met:

1. For each B-element, all entries in the state table can be
stimulated, i.e. all the state transitions can be activated,
and then verified.

2. For each B-element, any fauity signal produced by a
faulty B-element can be propagated to an observable
network output.

Condition 1 is necessary and sufficient for the exhaustive testing
cf every B-element. Condition 2 ensures the detection of any faulty
signal.

Definition 2: A (N,K) shuffle/exchange network is C-testable if it
is testable and the number of network test vectors, or test,patterns,
required is a constant and independent of the size of the network.

67

Four useful test vectors

A test vector for the (N,K) shuffle/exchange network consists of
two sub-vectors. The first sub-vector consists of the data inputs to
the B-elements in the first stage, and the second sub-vector are the
K control signals, Cpvv v O Since all K control signals are
normally inactive except when new communication paths are being
established by routing tag bits, during which time the same active
signal is applied to all K control lines sequentially, hence all K lines
can be considered as one logical control line. T = <t t, ...tN_1>° is
used to denote the test vector, where li is the input to the ith input
terminal of the (N,K) shuffle/exchange network and c is the control
signal input. A shift register can be used to shift a ¢ pulse to
successive stages in synchronism with the arrival of destination
acdldress tag bits at the data inputs of successive stages. T is used
to denote <f,, r1...rN_1>°, where f. = O (or 1) if ¢, = 1 (or 0).

Definition 3: The ith terminal of any stage with i = (pmv1
m-1

pm_z,‘.po) is even-weighted if }‘.‘.:0 p, = an even number, and is
odd-weighted if Zl'“_g) p; = an odd number.

Four useful network test vectors are now introduced. Let (p_ ,
pm>2...p0) be the binary representation for i, denoting the ith input
terminal of the network. We defina the four test vectors as follows:

1.T,° = <00...0>°%1e.t; = Ofor 0 <i <N-1
2.T,%=At1..1DC%et = 1for0 <i <N-1
8.T,° = <01...1>° where

a. t = Oforall even-vieighted t.

b. to=1 for all odd-weighted t.
4.T,° = <10...0>° where

at=1 for all even-weighted t.

b. t = O for al! odd-weighted t.

Note that T°° ~T—1° and T2° = ?:;C. The four test vectors for a
shuffle/exchange network with N = 8 are illustrated below:

Input

terminal Toc T, T,° T,
000 0 1 0 1
001 0 1 1 0
010 0 1 1 0
011 0 1 0 1
100 0 1 1 0
101 0 1 0 1
110 0 1 0 1
111 0 1 1 0

Under the fault free condition, the test vector Toc will apply <00c>
to each B-element in the (N,K) shuffle/exchange network and the
test vector T1° will apply <11c> to each B-element in the (N,K)
shuffle/exchange network. When the pB-elements in a
shuffle/exchange stage are all in state 0, then the input terminal
(pm_1 pm»z"'po) to this stage is connected to the output terminal

(P2 Prm.g--Pg Pry.q) OF the same stage [8]. When the B-elements in

a shuffle/exchange stage are all in state 1, then the input terminal
(pm_vl p m_2...p0) to this stage is connected to the output terminal
;) of the same stage [8].

(pm-2 pm-3“'p0 pn1~

Lemma 1 lnder the fault free condition, the test vector To1 will
apply <C01> ta each f-element and set all B-elements in a (N,K)
shuffle/exchange network to the 0 state; the test vector TOO will
apply <000> to each B-element regardless of the current states of
the B-elements.

Proof: By definition, the test vector To1 will apply <001> to every
B-element in the first stage. From the state table of a 8-element, the
outputs should be <00> and the next state will be state 0. The
output from the first stage are all 0’s, then the input to the following
stage are all 0’s too. Hence every B-element in the subsequent
stages will receive the input vector <001>. 'I'Oo will apply <000> to
each B-element in the first stage. The same foregoing argun:3nt
applies except the next state is still the same as the current state. A

Lemma 2 Under the fault free condition, the test vector T11 will
apply <111> to each B-element and set all B-elements in a (N,K)
shuffle/exchange network to the 1 state; the test vector T10 will
apply <110> to each B-element regardless of current states of the
B-elements.

Proof: Similar to the proof of Lemma 1.

Theorem 1 Under the fault free condition, if every B-element in a
(N,K) shufile/exchange network is in state 0, then the test vector
T2O (or '1'30) will apply the same input vector (tot1 ...tN_1>° to all K
stages. Every §-element remains in state 0 after the test vector is
applied to the network.

Proof: We know that the ith stage of §-elements simply connect
the input terminal (pm"pm_'z...po) of stage i to the output terminal
(pm_zpm_a...popm_Q of stage.i, which is also the input terminal
(pm_2pm_3“.p0pm_1) of stage i+ 1, forall 1 < i < K. Since the ith
stage only permutes the terminal (pm_1pmv2...p'0), the input values t.,
0 <j < N-1,of the (i+ 1)th stage is the same as that of the it

stage. So if the test vector for the first stage is <tot1...tN-1>O, then ©

every subsequent stage will receive the same vector <t0t1...lN.1>°
under fault free condition. Since the control signal ¢ is 0, the
B-elements do not change states. A

Figure 7 illustrates Theorem 1. The current state, x, and the next
state, y, of each B-element are denoted as x/y.

Fig. 7. ustration of Theorem 1 using Téo.

Theorem 2 Under the fault free condition, if every f-elementin a
(N,K) shuffle/exchange network is in state 1, then the test vector
T2° (or Tao) will apply the input vector <t0!1...tN_1>0 to the input
terminals of the firct stage of B-elements. For all the subsequent
stages, TﬁO (or T3°) will apply the same vector <tot1 ...tN_1>° to the
input terminals of the odd stages, and the complemented vector <t‘o

t‘1...t‘N_1>° to the input terminals of the even stages. All the

B-elements remain in state 1.
Proof: The proof is similar to the proof of Theorem 1. A

4. C-Testable (N.K) Shuffle-Exchange Networks

Test Sequence | : Stimulation

The stimulation of each entry in the state table of every
B-element is considered first. If the test sequence 9, = {T,° T,°
T2° 1‘30} is applied to a (N,K) shuffle/exchange network, with all its
B-elements in state 0, the entries with current state = 0 and input
vectors <000>, <010>, <100> and <110> will be stimulated. For
convenience, the symbol [s,<xxx>] is used to denote the entry in the
state table with current state s and input vector <xxx>. Thus the
above stated entries ars denoted as [0,<000>], [0,<010>], [0,<100>]
and [0,<110].

It all the B-elements are in state 1, by Theorem 2, the test
sequence 7, = {T,° 7,9 T, T, will stimulate the following
entries [1,<000%], [1,<010>], [1,<100>] and [1,K110D]. The
stimulation of those entries in the state table involving state
changes are now considered. Using similar arguments as in the
proofs for Theorems 1 and 2, we can derive the following results.

Theorem 3 Under the fault free condition with all the 8-elements
in state 0, the test vector Tz1 will apply the same input vector to the
input terminals of every stage of the network. All the B-elements
Boo Buma-Bo With }J;"l'gﬂj = even will receive the input vector
<011> and remain in state 0 and the S-elements with):.":gﬁ. = odd
will receive the input vector <101> and then change from state 0 to
state 1. (See Figure 8.)

~o

o -

EWe) o =

Fig. 8. lllustrati~n of Theorem 3 using T21.

Corollary 1 Under the same circumstance as in Theorem 3, the
test vector Ts1 will apply the same input vector to the input
terminals of every stage of a (N,K) shuffle/exchange network.
Every B-element with E.'“_'%B. = odd will receive the input vector
<011> and remain in state 0, while every B-element with 2’";;")/2 =
even will receive the input vector <101> and then change from sgate
0 to state 1.

Theorem 4 Under the fault free condition with all the 8-elements
in state 1, the test vector T21 will apply the input vectgr <,
t1...tN_1>1 to all odd stages and the input vector <t’0t' ...21‘N_>I to all
even stages. For a 8-element in the jth stage, if j + 21:0[}. = odd,
the B-element will receive the input vector <011> and change from
state 1 to state 0, and if | + ~2‘.).‘“=‘(2)/3i = even, the B-element will
receive the input vector <101> and remain in state 1. (See Figure 9.)

68

O= =0

- O O -

Fig. 9. lMustration of Thecrem 4 using T, "

Corollary 2 2 Under the same circumsiance as in Thf‘orem 4, the
test vector T will apply the mput ve\,tor <i‘ .. fN>1 to all odd
otaoes and the input vector gy tyeee (> to a!l even stages. Fora

i-element in the jth stags, ifj + Em 0[3 = odd, the f3-clement will
rece*ve the input vector <101> and remain in state 1, and if j +

- ﬁl even, the B-element will receive the input vector <011>

and change frcm state 1 to state 0.

From Lemma 1, Theorem 2 and Corollary 1, if all the B-elements
in the nctwork are in state G ancl the entire netvvork is fault free,
applying the test vequence“J = {T To T3 T 1} will stirnulate
the four entries, [0,K011>], [0, <OO1 >l [O 101>}, and [1,<001>], in alt
the S-elements. After the test sequence, all the B-elements of the
network will be back in state 0 as they were in before the
application of this test sequence.

Another iest sequence 7, = {T,"' T,’ T,' 7,7} is useful when
afl the f-elements are in swte 1. Anam assummg the entire network
is fault free, then from Lemma 2, Theoram 4 and Coroliary 2, this
test sequence will stimulate the four entries, [1,<101>], [1,<111>],
[1,X011>], and [0,<111>], in all the B-elements. In the process of
applying ‘d;, all the f3-elements start in state 1 and return tc state 1.
As can be seen, using the foregoing four test sequences, ali sixteen
entries in the state table of each j3-element can be stimuiated.
Figure 10 iilustrates the entries stimulated by the four test

SqUCHCes.

input vector <abc>
next state/
outputs<xy>| 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
EA A A A T A B
current © 1 4 ! 4 ! ! 3
. O] O] o
state °f2 g, ﬂ; J:,’ g; 9]'3 f2 A

Fig. 10. Entries stimulated by ?]’1, T, '{!'3, ﬂ;.
Test Sequeance II: Verification

Under the fault free condition, as, the above test sequences are
applied, the entire network at any pomt in time can be.in only one of
°5x possible states. Denote the jth -element of ith stage with (B

BBl where By Bon.oBg = I- These six states of the network
are:

e S, allthe f-elements are in state 0

o S, rallthe B-elements are in state 1

© S5, 1. B-elements with Lm ?[)’ = even are in state 0

2"

2. B-elements with 2,'“ ~of; = odd arein state 1

°S,: 1. B-elements with z"' 2B = even are in state 1
2. B-elements with 22’5{{1 = odd are in state 0
S, 1. every (i), isin state 0 if i + 2."" 2/3‘ = odd
2. every (), isin state 1if + Ej";‘g/}j = even
°S,: 1 every (), isin state 1if i + 2’";5/}] = odd

2. every (i);isin state 0 if i + 21."1‘38'. = even

For each of the six possible network states, a set of network test
vector(s) is needed to verify the current states of all the L-elements.

Definition _4: A set of input vector(s) to a (N,K)
shufile/exchange network is a distinguishing sst of test vectors or
simply distinquishing set if when they are applied to the network, a
distinguishing sequence, i.e. the ingut vector <010> or <1005, is

applied to each S-element in the network.

} is a disiinguishing set, if the network is in state
{T O is also a distinguishing set for state Sq or

Theeorem 5 {7,
So or state S1.
state S .

Proof: The f-element Br-28 . 5B, [?0 receives its input a
from the input terminal (C)/S'm oe ,8 B5) and input b from the input
terminal (1/3m 9 ,(3 [f When T,Y is applied to a network, a
B-element will recelve a <010> if 2 o B; = evenand a <100> if 2™ -2
of. = odd. Similarly, when T, Vs anplied, a/l clemenit will receive
a<100> if Zm)0,8 = even and a <010» if ZM2 ‘0/{. = cdd From the
discussion above, it is easy to see that either T.,9 or T will apply a
distinguishing sequence to each B-element in the network if all the
B-elements arc in the same state. A

To verify that all the B-elements are in state 0, i.e. the network is
in SO, we rieed to apply the distinguishing set, T 0 (or T O) to the
network after the a,)ph(,atnon of each of ihe four t@st vkcturs in 51'1
Similarily, T, o (or T3) is needed after each test vector in “.T2 to
verify that nII the fi-elements remain in state 1. Note that each of
these distinguishing sets consists of only one input vector.

Two particular test vectors, to be used for constructmg
distinguishing sets, are now defined. A test vector called V odd
<v Vit VoY v0 U is defined as foliows: v, =0 for all terminal i =
<pm1 Pm po> such that 2‘ odd P = even, and v; 1 for all
tormmal i su(,h that 2. p. = odd. Similarilv, another test
vector called Veven is Jerined as follows: v, = 0 for all i such that
2. even, and v, =

éaevgn P, = p= 1 for all i such that Ei:evan p.
odd.

i

Theorem 6 {V_,.} constitutes a distinguishing set for a (N,K)

shuffle/exchange network, if the network is in one of the states, 82,
S, S, and S5 and Iog2N is odd.

The proof of this Theorem is 1ather lengthy and is omitted here
but is fully documented in [5].

Complete Test Sequence

Before the construction of a complete test sequence, we must

69

show that any erroneous signal produced by a faulty B-element is Each of the four states: S, S5, $,, and Sy, occurs only once
always propagated to and visible at a network output. Any faulty during the application of the orf iginal 18test patterns for stimulation.
B-element in a (N,K) shuffle/exchange network, will generate a Hence the distinguishing set {V_,,,V, .}, consisting of two test
faulty signal D, denoting a logic 0 becoming a faulty logic 1, or D) vectors, need to be applied only four times. Consequentiy, if |092

denoting a logic 1 becoming a faulty logic O, in response to the is even, the total number of test patterns needed for verification is

network test sequence.

terminals.
propagation of D. Since our fault model assumes that there is only
cne faulty B-element in a network, the faulty signal D or D once
generated, will always be propagated to an output terminal of the
Kth stage.

input vector <abc>
D10 | D11 |0DO |0 D1

0/0 D
1/ DO

next state/ -
outputs <xy>

D00 | DO1 1D0|1 D1

0/ D1
1/1D

0{0/ DO
1|1/0D

D/DO
D0 D

D/D1
D/1D

0/0 Dy
0/ D0

0/1D
1/ D1

1/1D|
1/D1

current
state

Fig. 11. Fauity signal propagation by a 8-element.

We can construct a complete test sequence for a (N,K)
shuifle/exchange network with no limitations on N and K by using
the test sequences discussed above. This complete test sequence,
under the fault free condition, will stimulate and verify every entry in
the state table of every B-element. First, use TO1 to se. all the
B- elements mto stateo The test sequence 7, U ¥, = {T T T, o
T T T T T 1} is then applied. After the dpphcation of thlS
sequencp a|| the /3 -elements should be in state 0. Now T1 is
applied to set all the B-elements into state 1. The test sequence 7,
UTy = (T 1,0 1,0 1,01, 7, 7,7 7, "} is then applied. The
composition of the above test sequences produces a test sequence
of lf\ﬂgth 18 consisting of the followmg 18 test patterns TOoU °J' L}
6l’uTU“J'u?I'_{TTTTTTTTTT
T *o T, 10T T T T 10T3 T 1) The appllcalon of thxs set of18
tevf patterns wull fully exercise aII 16 transitions in the state table of
every B-element.

The application of each of the above 18 test patterns must be
followed by a distinguishing set to verify that all the B-elements are
indeed in the correct states. We assume that m IogzN is odd
Based on Theorem 5, if the network is in either state S or S
distinguishing set {T 0} or {T 0) can be used. lf the neiwork is in
one of the remaining four states S,, S3, S, or S based on
Theorem 6, {V d} can be used as the dlstmguushmg set Hence,
the complete test sequence must include the original 18 test
patterns for stimulating all the state table entries of each S-element
and another 18 test patterns, i.e. distinguishing sets, for the
verification of network states. - Hence the lengih of the complete
test sequence, assuming m IogzN is odd, is 36 and is
independent of the network size. The foregoing discussions lead fo
the following resuit.

Theorem 7 A (N,K) shuff'le/exchange network, with logzN =
odd integer, is C-testable and requires a test sequence of 36 test
patterns.

if IogzN is an even integer, it is believed that the following
conjectures are true:

Conjecture 1 {Vodd,veven} constitute a distinguishing set for a
(N,K) shuifle/exchange network, if the network is in one of the
following states, S, Ss' S, and Ss, and IogzN is even.

If a D or D singal from a previous stage 22 instead of 18. Hence,
arrives at an input terminal of a fault free B-element, the fault free
B-element will always propagate the D or D to one of its output
This is illustrated in Figure 11 for the case of the

Conjecture 2 A (N,K) shuifle/exchange network, with Iog2N =
an even integer, is C-testable and requires a test sequence of 40
test vecters.

The state table of a B-element has 16 entries. In crder to perform
the exhaustive testing of a B-element, it is necessary and sufficient
to stimulate all 16 entries and verify all the state transitions. A
minimum of two test vectors are needed for every entry in the state
table, thus a minimum of 32 test vectors are needed to exhaustively
test a B-element. Furthermore, the initialization of the B-element
requires another two test vectors. Hence the minimum number of
test vectors required for testing an entire (N,K) shuffle/exchange
network is at least 34. The test sets obtained in this section

consisting of 36 or 40 test vectors, depending on whether Iog2N is
odd or even, is believed to be the actual minimum.

Conjecture 3 The class of (N,K) shuffle/exchange networks is
C-testable and the minimum number of test patterns required is 36
if logzN is odd, and is 40 if IogzN is even.

A C-testable (16,5) shuffle/exchange network has been
designed, using three micron NMOS technology, and a layout has
been generated. Details of this design are documented in [5].

5. References

[1] Agrawal, D.P., "Testing and Fault Tolerance of Multistage
Interconnection Networks," Computer, pp. 41-53, April, 1982.

[2] Friedman, A.D., "Easily Testable lterative Systems," |[EEETG,
pp. 1061-1064, Dec., 1973.

[3] Hennie, F.C., Finite State Models for Logical Machines, Wiley,
1968.

[4] Kautz, W.H., "Testing for Faults in Celluar Logic Arrays," Prog.
Symp. Switch. and Autom., pp. 161-174, 1967.

[5] Lee, D.C.H., "Fault -Diagnosis of (N,K) Shuffle/Exchange
Networks," M.S. Thesis, EE Dept., CMU, Feb., 1983.

[6] Levitt, K.N., M.W. Green and J. Goldberg, "A Study of the Data
Commutation Problems in a Self-Repairable Multiprocessor," Proc.
€ SJCC, pp. 515-527, 1968.

[7] Masson, G.M., G.C. Gingher, and S. Nakamura, "A Sampler of
Circuit Switching Networks," Computer, pp. 32-48, June, 1979.

[8] Shen, J.P., "Fault Tolerance Analysis of Several
Interconnection Networks," Proc. ICPP, pp.113-122, 1982.

[9] Stone, H.S., "Parallel Processing with Perfect Shuffle,"
IEEETC, pp. 163-161, Feb., 1971.

This research was supported in part by the Semiconductor
Research Corporation (SRC) under contract No. 82-11-007.

* Mr. David C.H. Lee is currently with the Digital Equipment
Corporation, 200 Forest Street, Marlboro MA 01752,

70

FAULT TOLERANCE SCHEMES IN

SHUFFLE-EXCHANGE TYPE INTERCONNECTION NETWORKS

Krishnan Padmanabhan
Laboratory for Advanced Supercomputers
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

ABSTRACT

As a solution to the fault tolerance problem of the
shuffle-exchange type networks, a class of networks is
proposed which provide non-unique paths between inputs
and outputs. The topology of the multiple paths is
specified by means of a redundancy graph and the pro-
cedure to construct a multipath network with a specified
redundancy graph is presented. We provide practical
schemes for utilization of the alternate paths and evalu-
ate how well they perform in the presence of faults in
the network.

1. INTRODUCTION

Several topologically equivalent multistage intercon-
nection networks have been proposed in the literature for
applications in closely coupled multiple processor sys-
tems [3]. Such networks possess the property that
between any input and any output there is a unique
path made up of switching nodes. Breakdown of any
such node or an edge thus makes some outputs inaccessi-
ble to certain inputs.

As a solution to this fault tolerance problem of the
shuffle-exchange type networks, we introduce in this pa-
per several classes of networks called Multipath Omega
Networks. Such networks provide multiple ways of get-
ting from an input to an output and their close relation
to the Omega topology [5] helps maintain all the connec-
tion and control properties of the latter in a no-fault si-
tuation. Multipath networks behave as gracefully de-
grading systems, operating at a reduced level of perfor-
mance in the presence of faults, but nevertheless provid-
ing full connectivity.

Several papers in the recent past have considered the
idea of using more than one path to get from a source to
a destination in multistage networks. Some networks in-
herently possess this property ([2], [9]), while others are
obtained by augmenting an existing network to provide
the multiple paths [1]. The extra stage approach in [1]
will be seen to be a special case of the class of networks
we discuss in this paper.

We present, in the next section, the theoretical
development of the multiple path networks. We first in-
troduce a convenient means of specifying the topology of
the redundant paths, and show how a Multipath Omega
Network of any size with a specified redundancy graph
can be constructed. We then provide some schemes for
implementing the networks and utilizing the alternate

This work was supported in part by the National Science Founda-
tion under Grants No. US NSF MCS81-00512 and US NSF MCS80-
01561, the US Department of Energy under Contract No. US DOE
DE-AC02-81ER 10822, and by the Department of Computer Science
at the University of Illinois at Urbana-Champaign.

0190-3918/83/0000/0071$01.00 © 1983 IEEE

71

and Duncan H. Lawrie

paths in practice, along with evaluations of their perfor-
mance in the presence of faults.

2. MULTIPLE PATH NETWORKS

A B™ X B™ Omega Network [5] consists of m stages
of B XB crosspoint switches with B+B™"! shuffles inter-
connecting the stages. A P+*Q shuffle is a permutation of
P@ elements, 0<i<PQ-1, whose effect when ¢ is
represented as a p+ ¢ bit binary number is to rotate left
the bits by p positions. A 16X 16 Omega Network con-
structed out of 4X 4 switching elements is shown in Fig.
1. In its general form, an Omega Network of N inputs
and N outputs, where N is an arbitrary integer, is con-
structed out of a set of switches the sizes of which
correspond to a complete set of factors of N.

In an Omega Network, there is exactly one path
between any source S and any destination D. Such a
path can be characterized by concatenating the
n(=logsN) destination address bits to the n source ad-
dress bits [5]:

3031...3"_1d0dl...d"_|

(1)

In addition, the terminal (of a switch) that a path occu-
pies at the output of stage ¢ (0<i<m) is given by the
n-bit window in (1) starting at bit position b¢ where
b=log,B:

8081 [S6iShig1--Saadodydy |y o dy o (2)

The existence of such a unique path between each
source and destination is what leads to many of the use-
ful properties of the Omega Network [5] and its distri-
buted control algorithm. However, the uniqueness of
paths implies that a fault anywhere in the network will
destroy its connectivity. While reinforcing the links and
the logic within the switches will mask some failures as
when they occur [6], a more fundamental form of toler-
ance is provided by eliminating this uniqueness property
and providing more than one way to get from a source
to a destination. In this case, if one path is faulty, it
may be possible to find an alternate route to the destina-
tion. We now characterize the construction and proper-
ties of Modified Omega Networks with multiple paths
between sources and destinations.

An ordered factorization of N corresponds to an f-
tuple <B|,B,,.,B,> of factors satisfying B,B,..B,=N.
The (1-path) Omega Network corresponding to such a
factorization [5] consists of f stages of crosspoint
switches, with stage ¢ made up of B; X B; switches. In
addition, each stage is preceded by the B; *g— shuffle in-

terconnection.

Define a pseudofactorization of N to be an f-tuple
<B,,B,,...B;> of integers, with B,B,..B,=B, that satisly

the following conditions:
B>N and B/B; < N 1<;</.

Let B/N be equal to R. Then an R-path Omega Net-
work corresponding to the above pseudofactorization
consists of f stages of crosspoint switches with stage ¢
consisting of B; X B; switches; each stage ¢ is preceded

by k; B; X;%—_ shuffles (k; >1) such that there are exact-
ly R ways to éet from each source to each destination.

We will refer to B as the redundancy of the mul-
tipath Omega Network. Figs. 2 and 4 show two 4-path
16 X16 Omega Networks (corresponding to the pseu-
dofactorizations <2,4,2/4> and <2,2,4,4> of 16). The
two networks are different in the manner in which the
four different paths from a source to a destination in-
teract. The topology of the redundant paths is specified
by means of a redundancy graph indicated below each
network.

2.1 Redundancy Graphs

A redundancy graph is a flow graph with the follow-
ing restrictions:

(1) The set of nodes in the graph is divided into S
classes corresponding to the S stages of switches in the
network.

(2) Each edge connects a node in class ¢ to a node in
class i+ 1, 1<i<S-1.

(3) -‘The in-degrees of all nodes in a class are the same
and so are the out-degrees of all nodes in a class.

Three examples of redundancy graphs are shown in
Fig. 3. Fig. 3a corresponds to a disjoint path network (all
redundant paths are disjoint) [7], while Fig. 3c is the
redundancy graph of a standard (1-path) Omega Net-
work. The nodes in the graph correspond to switches in
the network and the edges to links. In that sense the
redundancy graph is a subgraph of the network and the
subgraph connecting any input to any output in the net-
work will be isomorphic to the redundancy graph. The
number of faults a network can tolerate is given by \-1,
where X\ is the line connectivity of its redundancy graph.

The control scheme for setting up the paths in such a
network is the distributed tag control scheme, much like
the one for the standard Omega Network. Each stage ¢
is controlled by b;=log,B; bits so that the entire desti-
nation tag consists of)b, bits. The difference, of course,
is that the destination tag in an R-path network consists
of n+ r bits where r=logy/Z. Only n of these bits are
the destination address bits dyd...d,_; and a particular
path out of the R alternates is chosen by a specific set-
ting of the r redundant bits. We go into this in more de-
tail in section 2.2. The broad scheme for using the mul-
tiple paths is to backtrack, in the event of a fault, up to
the point of the last fork and then take an alternate
route. This backtracking can also be done in case of
blocking along one of the paths. Referring to Fig. 3, it
can be seen that the graphs for a given S and R differ
basically in the following three aspects:

(1) The stage(s) at which fork/join is done
(2) The magnitude of the fork/join done at each stage

(3) The number of disjoint paths between source and
destination

72

The effect of these variables on the performance and cost
of the system is considered in [8].

2.2 Derivation of NW from Redundancy Graph

A redundancy graph specifies both the number of
stages S and the redundancy R. The total number of
bits needed to control the network, irrespective of how it
is constructed, is n+ r. The only variables are the sizes
of the switches used in different stages and the distribu-
tion of the redundant bits among the S stages. Note
that at any stage the smallest switch that can realize an
out-degree (or in-degree) D is a D X D switch.

The terminal an input-output path occupies at the
output of stage 1 is given by the n-bit window defined
earlier in (2). Consider such a window W, at stage +:

'll}o’wl.... wnvb_lwn_b .w,,_l
switch terminal

For a fork size of D at this stage, exactly d=logD of
the redundant bits rgr;...r, should be a part of the
subwindow w, _;...w,_;; this will ensure that from the
same switch D paths will fork out. Similarly, if at this
stage there are k disjoint paths in the graph, i.e., there
are k nodes at this stage in the redundancy graph, then
logk of the redundant bits should be a part of the
subwindow wqw,...w, _;_;. The above two conditions will
yield the subgraph shown below at stage i:

-1 i

Consider joins now. A join of size D at stage ¢
reduces the number of disjoint paths by a factor of D,
i.e., d of 'the redundant bits in window W;_; are replaced
by destination bits in W;. The b; tag bits at stage ¢ al-
ways replace the least significant b; bits in W;_;; hence
the removal of the d redundant bits is achieved by
choosing an appropriate shuffle to precede stage ¢. This
may necessitate choosing shuffles other than the B; *—

B;
shuffle.

Parallel edges correspond to a join immediately fol-
lowing a fork; in this case, the redundant bits introduced
in the terminal subwindow w, ,..w,_, in stage -1
should be replaced by d-bits at stage ¢. For a join in the
absence of parallel edges, r-bits in the switch subwindow
wowy...w,_s_; should be replaced (resulting in a net
reduction in the number of redundant paths). This can,
in general, be achieved by choosing the shuffle connec-
tion preceding the stage appropriately.

Other than the above conditions and the inclusion of
the right number of r-bits and a minimum number of
d-bits at each stage, we have a lot of freedom in choos-
ing the sizes of switches at each stage.

Consider, as an example of the above procedure, the
construction of a 4-path 16X 16 Omega Network with
the redundancy graph shown in Fig. 4. We have r=2
(redundant bits ry and r;) and n=4 (destination address
bits dg, d,, ds, and dj). Since stages 1 and 2 involve a

binary fork each, ry has to be a part of stage 1 and r,,
of stage 2. Stages 3 and 4 involve a join each and hence
one r bit each should be replaced by d-bits in these
stages; at stage 3, the r-bit introduced in stage 2 (in the
terminal subwindow) should be replaced and at stage 4
the r-bit introduced in stage 1 should be replaced. There
are many ways to distribute the remaining two d-bits
among the four stages. Consider the following distribu-
tion as an illustration:

dy dydy

This would correspond to using 4 X4 switches in the first
and last stages and 2X2 switches in the intermediate
stages. Let us determine the connections to precede each
stage to realize the above redundancy graph. A 4#4
shuffle preceding stage 1 would give W =s3847r,dy. Thus
at the output of this stage, we have two alternate termi-
nals (s35,0d, and s3s,1d,) that a path could occupy to
get to the same destination. A 2#8 shuffle preceding
stage 2 will make Wy=s,rodor,. Now the redundancy is
increased to four, with the four paths occupying two
different switches (s,0d, and s41d,). In stage 3, r; must
be replaced by d, (to ensure the join and parallel edges);
hence stage 3 is preceded by the identity connection
making Wjy=s,rodod,. Stage 4 is just preceded by the
4+4 shuffle leading to W =dyd,d,d;, the correct desti-
nation. This results in the network shown in Fig. 4.

3. IMPLEMENTATION SCHEMES FOR
DISJOINT PATH NETWORKS

rodo 1y

Disjoint path networks have been dealt with in detail
in [7]. They provide the highest tolerance to faults
(among all multiple path networks) - an R-path network

of this type can tolerate (R-1) arbitrary internal stage
faults and potentially many more. The set of internal
switches and links in such a network can be divided into
R disjoint classes; a path from a source to a destination
consists of (internal) switches and links from only one
such class. In addition, the path has counterparts in each
of the other R-1 classes. Classes containing no faults in
essence support the paths that would encounter faults in
the other classes.

A modular organization of a B X B crosspoint switch
is shown in Fig. 5a. A connection is established in the
switch when an input module is connected to an output
module. When a request is made to an input module ¢
along with a base B address j, the input module ¢ re-
quests module 5 for connection; if the output module is
not currently in use (and if it is not faulty - a situation
we will consider shortly), such a connection can be set
up. Following this setup, direct connections are available
between input ¢ and output j in the switch for all con-
trol and data signals. The technique to set up a se-
quence of such switches is the set—and-forward scheme.
In cycle 2¢-1, stage ¢ is set up and in cycle 21, the ad-
dress for stage i+ 1 is passed on to the next stage by
stage ¢. In 25 cycles, the entire path is set up (if no ez-
ceptions arise in between).

Two exceptions could arise in the process of setting
up such a path - a block, and a fault. A block is sig-
nalled first by the BL line in the switch where the block
occurred, and then propagated back to the source. Once
a fault is detected, generation and propagation of the F
signal takes place in a manner similar to that of the
block signal.

73

3.1 Fault Recognition

Most published research on fault analysis in networks
([4], LIO]) have used as the model of a fault an entire
switch being stuck at one of its states. We outline here a
more realistic model used in [8]. We shall consider each
module along with the lines leaving it as our units, in
the sense that we shall not be concerned with the logic
within the blocks (Fig. 5¢). Such a unit will be con-
sidered to be faulty if any value of the input vector does
not produce an appropriate output vector.

Such a general class of faults can be detected by a re-
plication check, where we duplicate or triplicate every
module in the switch. (See [6] for such a design.) We pro-
pose a self-checking scheme inherent in our protocol,
which is less versatile than replication, but requires little
increase in hardware. The purpose of every control sig-
nal is to ezercise a portion of the logic in the receiving
module. If a plausible response is elicited for an output
signal (resulting in a proper handshake as specified in
Fig. 5b), it is reasonable to expect that the portion of
the logic exercised by that signal works properly. Con-
sider Fig. 5c. When an output module B initiates a
handshake by asserting the REQ line, it monitors the
three input lines ACK, BL, and F. If none, or more than
one of these is asserted, the unit C is assumed to be faul-
ty. If B did not assert the REQ line properly as it should
have, it will not find any input signal asserted and will
know of a fault. (Note that the return-to-zero protocol
detects all line stuck-at faults.) Thus each module checks
a portion of the logic in the next module as a path gets
set up. When a fault is detected, two actions are taken
by the detecting module. It makes a note of this by set-
ting a fault flag within the module. And it signals the
fault back by asserting the F line which propagates back
to the source. By setting the fault flag in the module,
subsequent requests to the module are notified immedi-
ately of the fault. (Note that the state-updating portion
of the logic in the second module is not exercised by
handshaking.)

We have considered here only the control portion of
each module. To ensure that data (which includes ad-
dress and data bits) is transferred properly from module
to module, an encoding scheme can be used.

3.2 Fault Notification

For the purposes of this section it is convenient to
consider each sequence of the form output
module—link—input module as a single entity called an
element. The reasons for this are twofold. First, faults
anywhere within such an element affect the operation of
the network in the same manner. Second, the terminal
an input-output path occupies in a stage is given by such
an element. The network, in this view, consists of S+ 1
stages of elements. There are several options for
notification of faults back to the sources and the subse-
quent action to be taken.

Non-adaptive Routing: In this approach, each path
learns of a fault only when it reaches the faulty element.
When the fault signal reaches the source, it sends the
same request out on the next alternate path, without re-
taining knowledge of the presence of the fault along the
path just tried. Advantages of this scheme are that non-
faulty paths will be utilized to the maximum extent and
that there is almost no additional hardware required.
The drawback of the approach is that a long time could

be spent trying alternate paths (especially if the faults
are located in the later stages of the network).

Adaptive Routing - Notification on Demand: In
this scheme, knowledge of the location of the faults en-
countered in various tries is maintained at the sources
and is used in subsequent routing decisions. A source
learns of a faulty element upon requesting it the first
time. It can determine, by keeping count of the number
of clock cycles after which the fault signal is received,
where along the path (the stage and element) the fault is
located. The ID’s of the faults thus determined can be
stored in a set of B tables associated with the B termi-
nals that a source could branch into at the first stage.
Trying a path now entails first checking the appropriate
table to see if the path would encounter any of the faults
currently in the table.

Adaptive Routing - Broadcast Notification: This is
a conceptual scheme that would be difficult to imple-
ment in practice. However the network performance
under this scheme will provide us a standard to evaluate
the previous proposals. Under the broadcast scheme,
notification of a fault is done immediately upon recogni-
tion (or occurrence) to all the sources that could poten-

tially use that element. Once the fault ID’s reach the-

sources, they are handled in exactly the same manner as
in the demand notification scheme.

In the two adaptive schemes above, the size of the
fault tables maintained at the sources is an important
parameter. When a table of size T is maintained, a ter-
minal will have to be shutdown when more than T
faults are reported at that terminal. A larger T increases
not only the logic complexity and the storage required,
but also the initial overhead associated with searching it.
Reducing the table size would close down terminals fas-
ter leading to increased traffic along fewer paths and ear-
lier shutdown of the system. The effect of T on the per-
formance is considered in the next section.

3.3 Some Evaluation Studies

Fig. 6 presents the average normalized delay in a
64X 64 network as a function of the percentage of faulty
elements, for a variety of cases. Normalized delay is
defined as the ratio of the actual delay to the minimum
delay. (Faults are permitted only in the internal stages
of the network.) The request rate m is the probability of
a source making a new request in a cycle when it has no
outstanding request; requests are not allowed to be
queued at the sources. The 2-path network is construct-
ed using seven stages.of 2X2 switches; the 4-path net-
work uses four stages of 4 X4 switches.

Let us briefly account for the shape of the curves first.
Recall that the set of intermediate elements can be di-
vided into R classes and that the non-faulty classes sup-
port the paths that will encounter the faulty elements.
As the number of faults increases, so does the number of
paths that a non-faulty class supports. Effectively then,
the load on the non-faulty paths is much higher with a
higher redundancy. This accounts for the higher delay of
the 4-path networks as F' gets higher. Breakdown of the
system is said to occur when all R paths from some
source to some destination contain faults. To obtain the
numbers in Fig. 6, we have kept the system running
after such breakdowns.

The non-adaptive scheme performs very close to the

74

adaptive scheme and does better than the latter with
very small table sizes because it uses non-faulty ele-
ments to the maximum possible extent. The T=0 op-
tion in the adaptive routing scheme closes down termi-
nals (or classes) much earlier than necessary leading to
increased load on the rest of the alternates. This overkill
results in it performing worse than the non-adaptive
scheme.

4. CONCLUSION

We have, in this paper, introduced schemes for fault-
tolerance in shuffle-exchange type networks based on
redundant paths between inputs and outputs. The in-
teraction of the multiple paths between each source and
destination is specified by means of a redundancy graph,
and the derivation of a network with a given redundancy
graph is discussed. We have also considered some practi-
cal schemes for using the multiple paths in practice and
shown that some inexpensive schemes provide good per-
formance in the presence of faults.

REFERENCES

[1] GB. Adams and H.J. Siegel, “The Extra Stage
Cube: A Fault-Tolerant Interconnection Network for
Supersystems,” IEEE Trans. Computers, Vol. C-31,
No. 5, May 1982, pp 443-454.

V.E. Benes, Mathematical Theory of Connecting Net-

works and Telephone Traffic, Academic Press, New

York, 1965.

Computer, IEEE Press, Vol. 14, No. 12, December

1981.

T.-Y. Feng and C.-L. Wu, “Fault-Diagnosis for a

Class of Multistage Interconnection Networks,”

IEEE Trans. Computers, Vol. C-30, No. 10, Oct.

1981, pp 743-758.

D.H. Lawrie, Memory-Processor Connection Nel-

works, Department of Computer Science Report No.

UIUCDCS-R-73-557, University of Illinois at

Urbana-Champaign, February 1973.

C. Leung and J. Dennis, Design of a Fault-Tolerant

Packet Communication Architecture, MIT Laborato-

ry for Computer Science, Computation Structures

Group Memo 196, July 1980.

K. Padmanabhan and D.H. Lawrie, “A Class of

Redundant Path Multistage Interconnection Net-

works,” To appear in IEEE Trans. Computers.

K. Padmanabhan and D.H. Lawrie, Techniques for

Fault Tolerance in Omega Type Interconnection Net-

works, Cedar Document 11, Laboratory for Ad-

vanced Supercomputers, University of Illinois at

Urbana-Champaign, February 1983. ,

D.S. Parker and C.S. Raghavendra, “The Gamma

Network: A Multiprocessor Interconnection Network

with Redundant Paths,” Proceedings of the 9th An-

nual Symposium on Computer Architecture, 1982, pp

73-80.

[10] J.P. Shen and J.P. Hayes, “Fault Tolerance of a
Class of Connecting Networks,” Proceedings of the
7th Annual Symposium on Computer Architecture,
1980, pp 61-71.

(2]

B8l
(4]

(5]

(6]

(7]

(8]

(9]

(¢)
Fig. 1. A 16 X 16 Omega Network Fig. 3. Examples of redundancy graphs

i
|
i

Fig. 4. The 4-path Omega Network considered in sec. 2.2

REQ IN /REQ OouT
ADDR U‘Q 7 ADDR OUT
ACK OUT =P IP ||} .|| OP |[EE>2ACK IN
F OUT——5] 1 - 1 |=EsS-FIN
DATA~ DATA
BL ouT” ‘ . NBL IN
P oP
) B B
Fig. 2. A 4-path Omega Network and its redundancy graph () .
a

L mew T
30- —— T=0/Adaptive % ADDR IN

e T'=4 \-Demand ACK OUT

------Non-adaptive (b) REQ OUT
—.—-T=4 Adaptive - Br. ADDR OUT [——=
_ SETUP FORWARD
2.5
N —_ N
A = B g .
e [s
Unit \\ ______
NS '
N IR
2.0~ (c) N !
Switch Pe T

Average Normalized Delay

Fig. 5 a. Modular organization of a BXB switch
b. Handshake protocol between switches
c. Definition of unit and element

0 1 2 3 4 5 6 7 8
Percentage of Faulty Elements

Fig. 6 Average normalized delay in the network

75

A CONDITION KNOWN TO BE SUFFICIENT FOR REARRANGEABILITY OF THE BENES CLASS
OF INTERCONNECTION NETWORKS WITH 2X2 SWITCHES IS ALSO NECESSARY

S.C. Kothari and S. Lakshmivarahan
School of Electrical Engineering and Computer Science
University of Oklahoma
Norman, Oklahoma 73019

Abstract

An NxN (N inputs and outputs) multistage in-
terconnection network is said to be rearrangeable
if it can realise all the possible connections of
the N input terminals to the N output terminals in
a one-to-one fashion. Starting with the pioneer-
ing works of Clos and Benes to this date a variety
of sufficient conditions for rearrangeability
are known in the literature. In this paper it is
shown that the well known sufficient condition due
to Benes on the link permutation is also necessary
for rearrangeability if the network is made up of
2x2 switches.

Introduction

An NxN switching network (with N inputs and N
outputs) is an arrangement of switches which is
capable of performing certain permutations of in-
puts. The combinatorical power (CP) of a given
switching network is often measured [2] as the
ratio of the number permutations the network can
realise to the total number of possible permuta-
tions of N inputs. Clearly 0<CP<l. A switching
network is said to be rearrangeable if CP=1, that
is, there exist settings of its component switches
such that, the switching network as a whole, can
realise all the N! permutations. The well known
NxN cross-bar switch has CP=1. Most of the early
studies on (rearrangeable) switching networks have
been exclusively in the context of telephone net-
works [1][2][6]. The interest in multistage (re-
arrangeable) switching networks revived recently
in connection with the development of parallel
computers and parallel algorithms [4][13]. At the
present time there is considerable interest in the
interconnection network as evidenced by the special
issue on this topic [8] as well as the extensive
bibliography in [6][12].

Clos in 1953[1] in a fundamental paper exhib-
ited for the first time a three stage switching
network which is rearrangeable. Benes in a-series
of papers analysed a rich class of switching net-
works from the point of view of rearrangeability.
Among many other interesting results, Benes gave a
method for the design of a multistage switching
network made up of odd number of stages and with
square (cross-bar) switches. We call this class
of networks as the general Benes class (GBC). The
contributions by Benes are succinctly summarised
in his now classic book [2]. Most of our nota-
tions follow those of Benmes [2]. Consider the
following subclass of the GBC defined recursively
using 2x2 switches. For easy reference, we call
this subclass as the class of block structured net-

stage however, has two copies of N/2 x N/2 block
structured networks called blocks A and B. The N
outputs of stage i are connected to N inputs of
stage i+l by an interconnection scheme @#; called
the link permutation i=1,2. Referring to figure
1, let Xq, X2-~-XN/2 and Yl,Yz,...YN/z denote the
2x2 switches at the first and third stages. No-
tice 2i-1 and 2i are the inputs of Xj and 2j-1

and 2j are the outputs of Ys. In the following we
define a special class of 1link permutatiomns.
Definition 2: The link permutation @#1(@#;) in the
block structured network is said to be distribu-
tive if the two outputs (inputs) of each of the
switch X;(Y;) are connected one to each of the two
blocks A ané B at the input (output). Similarly,
when the blocks are furthur reduced to three stage
networks of proper sizes, the link permutations in
each of these reductions could be required to
satisfy the above condition of distributivity.
From theorem 3.9 of Benes [2], it readily follows
that a block structured network is rearrangeable
if all the link permutations are distributive. In
this paper, we prove that distributivity of all
the link permutations is indeed necessary for the
class of block structured networks to be rear-
rangeable.

Main Result

Our main result is the contents of the follow-
ing:

Theorem: A block structured network is rearrange-

of Benes [2].

work (BSN). Let N=2n,

Definition 1: An NxN block structured network is
" made of three (3) stages. The first and the third
stages are each made of 2x2 switches and there are
N/2 of them in each of these stages. The middle

- 0190-3918/83/0000/0076$01.00 © 1983 IEEE

distributive.

Proof: The if part follows from the theorem 3.9
To prove the only if part, first
assume that @1 is not distributive but @y is.
Referring to figure 2, let both the outputs of Xj
be connected to the block A, Now any permutation
which takes both the inputs to the switch Xj to
the output of a single switch Yy (say) for any
k=1,2...N/2 is not realisable by the overall net-
work. A similar argument follows if @y or @7 and
@2 are mot distributive [15].

The above analysis clearly establish the fact
that for the rearrangeability of the overall net-
work it is necessary that @7 and @) be distribu-
tive. Now to show that all the link permutations
that are embeded in the blocks A and B must also
be distributive, assume without loss of general-
ity, there is a link permutation which is part of
the block A that is not distributive. Then, by
inductive hypothesis it follows that there exists
a permutation n(on N/2 objects) which is not real-
isable by block A. Since @3 is distributive,
there exists subassignment ¥j of the switches Xj
i=1 to N/2 to the inputs of block A which are num-
bered from 1 to Nf2. That is, referring to figure
3 ¥1(X4)=j if an output of the switch X; is con-
nected to input j of block A under @, Similarly,
¥2(r)=Yg if the output terminal r of block A is

connected to an input of the switch Yg under @,.

Define
Pp: {Xs$s=1 to N/2}>-{Y,.|r=1 to N/2} where
Pp=¥5.n.¥;. Consider a permutation p (on N ob-

jects) which takes the two inputs to switch Xj to
the two outputs of Y. where pA(Xi)=Yj. This per-
mutation p is clearly not realisable by the over-
all network since n is not realisable by block A.
The proof that distributivity is necessary when

n=2 (the basis for the induction) is very similar
to the one presented above. Hence the theorem.

COMMENTS

1. 1In all the examples of the Benes network
given in the literature [3][9][10], it is assumed
that @p=@1~1 and ¢, is distributive. Our result
shows that one can choose $1 and @2 independently
so long as they are distributive.

2. One of the interesting open questions in
the context of the shuffle-exchange-type networks
is whether or not two passes of the Omega network
is rearrangeable [14]. Looking at this problem
from the point of view of necessary conditions,
we found out, for N=8, by simply rewriting the
network and fixing the states of certain switches
as in figure 4, that two passes of Omega network
is rearrangeable. In particular, the first and
third switches in the 4th stage of figure 4 are
set to the "straight" (S) state but the second and
fourth switches are set to the '"cross" (C) state.
If the state of a switch is fixed, it can as well
be replaced by permanent connections. The link
permutation between stages 3 and 5 resulting from
this elimination of switches in the 4th stage is
shown in figure 5. The rest of the stages 1,2,3,
5, and 6 as well as the inputs to the stage 1 in
figure 5 are all obtained by permuting the switch-
es in figure 4. A closer examination of figure 5
reveals that it is a block structured network
where all the link permutations are distributive.
Hence, by our theorem it is rearrangeable. Since
rearrangeable networks remain rearrangeable even
if the inputs are permuted, the input terminals
in figure 5 without loss of generality can be re-
numbered in the natural order 1 through 8 instead
of as shown in figure 5. It is interesting to
note that while Parker [14] has also arrived at
the same conclusion for N=8, he uses brute force
enumeration method instead.

REFERENCES

[1] C. Clos. "A Study of Non-Blocking Switching

Networks." The Bell System Technical Jour-

nal, Vol. 32, 1953, pp. 406-424.

[2] V.E. Benes. Mathematical Theory of Connect-—
ing Networks and Telephone Traffic, Academic
Press, 1968.

[3] A. Waksman. "A Permutation Network." Journal
of ACM, Vol. 15, 1968, pp. 159-163.

[4] T. Feng. "A Survey of Interconnection Net-
works." Computer, Vol. 14, 1981, pp. 12-27.

[5] H. J. Siegel. '"Interconnection Networks for

SIMD Machines." Computer, Vol. 12, 1979,

pp. 57-66.

K.J. Thurber.

Survey and Assessment.

"Interconnection Networks-A
" Proceedings of NCC,

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

1974, pp. 909-919.

N. Pippenger. '"On Rearrangeable and Non-
Blocking Switching Networks.'" Journal of
Computer and System Science. Vol. 17, 1978,
pp. 145-162.

C. Wu. (Editor) "Interconnection Networks."
Special Issue. Computer, Vol. 14, Issue num-
ber 12, December 1981.

D.C. Opferman and N.T. Tsao-Wu. '"On a Class
of Rearrangeable Switching Network, Part I
Control Algorithm." The Bell System Techni-
cal Journal. Vol. 50, 1971, pp. 1579-1600.
R. W. Hockney and C.R. Jesshope. Parallel
Computers. Adam Hilger Ltd., Bristol 1981.
D.H. Lowrie. "Access and Alignment of Data

In An Array Processor.'" IEEE Transactions

on Computers. Vol. 24, 1975, pp. 1145-1155.
J. T. Schwartz. '"Ultra Computers.'" ACM
Transactions on Programming Languages, Vol.
2, 1980, pp. 484-521.

H.S. Stone. "Parallel Processing with Perfect
Shuffle." IEEE Transactions on Computers,
Vol. 20, pp. 153-161.

D.S. Parker Jr. '"Notes on Shuffle/Exchange
Type Switching Networks." IEEE Transactions
on Computers, Vol. 29, 1980, pp. 213-222.
S.C. Kothari and S. Lakshmivarahan. "A condi-
tion know to be sufficient for rearrangeabil-
ity of the Benes class of interconnection
networks with 2x2 switches is also neces-
sary." Technical Report, School of EECS,
University of Oklahoma, January 1983.

N

FET B S S
%3 — o J
25 -
N~
. s
H ~
; BLOCK
H
:
|
./
: _— ?
. /
N-1-—- . g S
N
N 7z /
Figure 1: BLOCK STRUCTURED NETWORK

Figure 3.

@18 DISTRIBUTIVE BUT KOT 6,

Figure 3.

BLOCK B

@ A%D) ARE DT
HAS A LINK PERMUT
DISTRIBUTIVE

|

BUTTIVE BUY
IOW 11iAT 15 RWOT

.
"il
'
.
.
.

=

4 4
X . ! [] .
f_j.furel‘:. TWO PASSES OF OMEGA NETWORK
L STAGES
&
R =1
1

Fipgor

78

A BLOCK STRUCTURED NETWORK OBTAINED FROM 8A

A FAST ALGORITHM FOR CONCURRENT LU DECOMPOSITION AND MATRIX INVERSION*

Ming-Yang Chern and Tadao Murata
Department of Electrical Engineering and Computer Science
University of I11inois at Chicago

P.0. Box 4348, Chicago, I11linois

Abstract —- This paper presents an efficient
algorithm for LU decomposition and matrix inver-
sion based on the concurrent data-loading array
architecture. The algorithm performs the LU

decomposition of a strongly nonsingular matrix A
initially loaded in the array, in parallel with
computing the inverse matrices L™%, U™ and A”!

the L ° and U ' can be taken out together with L
and U; and A"l will appear in the array at the end
of the computation. For an n x n matrix executed

on the array of the same size, the total time
required for the above computation is “(ta+tm+td)3
where t_, tps and ty represent the time for addi-
tion, multiplication, and division, respectively.
A simple augmentation of this algorithm can lead
to the solution of a linear system of equations
without additional time. The performance of this
algorithm 1is analyzed and compared favorably with
an improved version of systolic arrays.

I. Introduction

Many scientific and engineering problems can
be reduced to the problem of solving linear sys-
tems of equations (LSEs). The recent availability
of low cost, high density, fast VLSI devices has
opened a new avenue for using processor arrays to
perform special-purpose parallel computations.
Efficient algorithms and cost-effective hardware
structures have been intensively searched. The
VLSI computing structures related to solving LSEs
have been suggested by several researchers. Kung
[3,4] proposed systolic arrays which can be used
for LU decomposition, matrix multiplication, and
linear convolution. Preparata and Vuillemin [7]
analyzed an implementation of triangular matrix
inversion from small construction modules. Hwang
and Cheng [5] presented a complete set of computa-—
tional structures for solving LSEs. This set
includes some special modules for LU decomposi-
tion, solving a triangularized LSE, triangularized
matrix, and matrix multiplication.

In Hwang and Cheng”s design, the modulized
construction units can also be integrated to LU-
decompose large-scale matrices as reported in
their partitioned matrix algorithms [6]. These
modules and linear equation solvers were recently
applied to a system for image processing and data-
base management [9]. The wusefulness of these
modules 1is evident. However, the utilization of
processing elements (PEs) in these modules 1is
still 1low. Moreover, these modules, like other

* This work was supported by the National Science
Foundation under Grant ECS 81-05649.

0190-3918/83/0000/0079$01.00 © 1983 IEEE

79

60680
systolic arrays, suffer from the data reshaping
problem. The data of a dense matrix must be
reshaped before being fed into the processor ar-
ray. The scheme of using on-chip delay latches

can solve the problem partially, but evoke a more
severe problem in the array chip interconnection.

The process of
designs is divided into

solving LSEs 1in the above

several steps, where a
different hardware wmodule 1is used in each step.
Some of these steps can not be executed con-
currently. For example, the computation of U~
can not start unless the LU decompostion is com—
pleted. In addition, the output data of a step
may not be arranged in the same way as required by
the input of the next computational module. Some
special provision must be arranged. This may need
extra hardware and cause extra time delay.
According to [6], four types of VLSI arithmetic
module chips are required. Four is not a large
number. However, it is still desirable to use
fewer types of module chips.

This paper presents a highly efficient algo-
rithm based on a Concurrent Data-Loading Array

Processor (CDLAP) [2]. Only one type of module
chip 1is required for the construction of LSE
solvers. According to our algorithm, the CDLAP

can perform LU decomposition a little faster than
Hwang and Cheng”s design [5], and the inverse
matrices of U, L, and A can all be obtained in the
same process. Further, the solution vector or
matrix in a LSE can be concurrently computed on an
associated CDLAP array.

II. LU Decomposition and Matrix Inversion

For LU decomposition of an n X n matrix A =
[aij]’ we consider only the case in which all the
principal minor submatrices of A are nonsingular.
This provides a necessary and sufficient condition

to produce a unique lower triangular matrix
L={1,.] with all l,i = 1, and a unique upper tri-
angulidr matrix U = fu i.] such that L * U = A.

Both L and U are n x nonsingular matrices. 1In
Crout”s reduction method [10], the matrix A =1L *
U 1is decomposed according to the following compu-—
tations:

For i = 1,2,, n,
i-1
L ;Eilijujk for i < k £ n;
i-1
= -_ i . 1
lki (aki ggilkjuji)/uii for i < k < m3} (1)
1,.=1.
ii

Equation (1) can be transformed into another
form more suited for parallel computations. We
(k) :
use a_. to denote the a, . YT}“e in the kth recur-
sion of“computation. Se Jalit = a . at the begin-
ning. Using "t" as a var%gble td denote the re-
cursion sequence from 1 to n, we have the follow—
ing algorithm equivalent to (1) :
For t = 1,2,, n,
t = aég) for j > t (2.a)
1, =a'Y/u for 1 > t (2.b)
it it "ttt
(t+1) (t) .
aij = aij - 1itutj for i,j > t (2.c)
In each recursion, the above three equations are

executed in the order (2.a), (2.b), and (2.c).
(The same convention will apply to the equations
(4), (6), (8), (10), and (12) in the following.)

When t equals n, the above computation ends after
computing (2.b). Note that the corputation of lit
in (2.b) is not necessary for i = t, since 1t is

always equal to 1. t

To illustrate the comfutation of the inverse
matrices of L and U, let L "= M = [m;:] and U=V
= [v;.]. since L and U are nonsingular, both M
and v'do exist and are unique. It is easily veri-
fied that M is an n x n lower triaungular matrix
with all its diagonal elements equal to 1, just
like L. Similarly, V is an n X n upper triangular
matrix like U. To compute M, we make use of the
relation L * M = I, where I is the identity matrix
of order n. Thus we may write

ey = 1 for k=1, 2,...., nj

i-1 (3)
my = —éé% likmkj for 1 < j<i<n
As in the previous case, (3) can be transformed

into the following recursive algorithm:

For t =1, 2, , n,
_ o (t) R (&) _ .
m = m 1 it 0 for i > t;
~(4.a)
m, ., = m(t) for j < t.
t] t]
(t+) () _)
mij = mij litmtj fori>t, j<t (4.c)
Note that (4.b) is missing. The labeling

(4.c) is used instead of (4.b) for the convenience
of later illustration. The computation of V based
on the relation V * U = I can be written as:

v, . = 1l/u for k =1, 2,...., n;
k.k k 3 3 3 b
2! (5)
Vi< T (ég% Vikukj)/ujj for 1 <i< j<n
which in turn can be transformed into the follow-
ing recursive algorithm:
For t =1, 2, «.c0cee, N,
w_ .) _ .
e 1 vtj 0 for j > t (6.a)
v,, = v(t)/u for i < t (6.b)
it it 'Ttt =
(VI (o
vij = vij Vitutj fori<t, j>t (6.c)
When t equals n, the inversions of L and U

will be completed after the (a), (b)

computing

80

portions of the above equations.

To describe the inversion of matrix A, let S

= {Si'] =al. Since A=L * U, we have § = U } *
17l 2y« . Thus, for any i and j,
n n
s =N vom = ¥ v.om. 7
ij =1 1kmk3 k=max (1,3} ikka
Transforming (7) into the recursive algorithm, we
have:
Fort =1, 2,, n,
(v () _ .
Si¢ Stj 0 for i, j <t (8.a)
(D) () .
sij sij itmtj for i, j <t (8.c)
After the above n recursions, set
_ _ {otD)
sy5 " éij (8.4)
Step (8.d) at t = nt+l is added, since é;glgt t=n

is equal to - s, ..
iJ

III. Parallel Computation Architecture

The Concurrent Data-Loading Array Processor
(CDLAP) is introduced in [2]. The architecture is
most suited for the computations in which process-
ing elements (PEs) in the same row or same column
share the same operand data as in a column-row
vector multiplication. By accumulating resultant
values in the PEs, the array processor can be used

for computations involving recursive algorithms.
The CDLAP has been shown to have an excellent
efficiency in performing matrix multiplications
[2]. The one-dimensional case of the concurrent
data-loading design is reported in [8].

The careful examination of the recursive
algorithms in Section 1II reveals some important
characteristics of the algorithms. Consider the
following three groups of equations:

{(2.a), (4.a), (6.a), (8.a)} -—- group (a)
{(2.b), (6.b)} —-—- group (b)
{(2.¢), (4.c), (6.c), (8.c)} -—— group (c)

The equations 1in each of the above groups can be
executed concurrently. For group (a) in each
recursion, there are always 2ntl new superscripted
variables assigned. All these variables are set
to zero except m{t and vt | which are both set to

)
1. In addition,tEhe totgf number of the variables
Yes; and mg (without superscript) assigned is nt+l
£67 any t. “For group (b), there are exactly n
divisions

sharing the same divisor (operand) u_, .,

. t
Group (c) has more complex sharing of operands.
In the recursion of t = k, (n-k) x n and k x n PEs

are required for concurrently executing equation
sets {(2.¢), (4.c)} and {(6.c), (8.c)}, respec-
tively. Here each operand 1, will be

or V.
shared by exactly n PEs. The same cha%gcteristics
can be observed for the other combination of the
equation sets; that is, n x (n-k) and n x k PEs
are needed for the equation sets {(2.c), (6.c)}
and {(4.c), (8.c)}, respectively. Again, each

operand u . or m_; will be shared by exactly n
PEs. J]

The CDLAP configuration suited for the above
complex computation requirements is shown in Fig.l
for the case n = 4. For the LU decomposition and
matrix inversion of an n x n matrix A, the CDLAP
must have n dividers and n x n adder/multipliers.
The PEs in the same row can share the same operand
and the PEs in the same column can share the other
common operand. The shifts are in the diagonal
direction to the upper-left PEs. At the upper
boundary of this array, ntl bus registers are pro-—
vided. These registers are used to hold the data
for output and for the concurrent data-loading in
the corresponding columns. The dividers
represented by circles in Fig. 1 have similar bus
registers for output and for the concurrent data
loading in the corresponding rows. Hence, there
are totally 2n+l output channels. (One of them is
not necessary, since it is always 1 for this com-
putation.) At the bottom and right boundaries,
there are a total of 2nt+l input channels. The
channels 1y and Ig w%%} alwayg be set to 1 since
they correspond to m_ 'and v , and the remaining
input channels will be set to zeros.

In order to illustrate the computation pro-
cess on the CDLAP, we may consider the case n = 4
without loss of generality. The recursive algo-
rithms in Section II can be extended, grouped, and
illustrated in the following detailed computation

steps.
Step 0: Initial data loading of matrix A:
 _ .
i.e., aij = aij for all i, j.
Step 1: 1Initial shift:
_ s = .
u1j = alj for j 1, 2, 3, 4;
- (1) . (l) .
my =Wy = 1; LI =0 for i > 1;
(1) 1) _ . .
Vi = 1; vlj =0 for j > 1;
(U
11 = ©
Step 2: Division:
_ (1) .
lil = / vy for i > 1;
_ (1) _
Vip =V / u for i = 1.
Step 3: Multiplication and accumulation:
2)_ (1) _ .
aij = aij 1il u1j for i, j > 1;
2 _ (D _ 1.
mij = mij 1il m1j for i > 1, j 1;
@ _ W _ _ Co
vij = vij Vi1 ulj for 1 1, 3> 1;
2) _ (L _ -
sij sij Vi1 mlj for i, j 1.
Step 4: Shift:
_ (2 . .
u2j = aZj for j > 2;
2 _ .. (2) _ .
oy, = 1; m, = 0 for i > 2;
_ @ .
mzj = m2j for j < 2;

81

for

for

for

for

for

i> 2

i, < 2.

i> 2

i<o2.

i, 3> 2

@ _ (2)
Vo = 13 Vo3 = O
(2) (2)
Si2 2 0
Step 5: Division:
_ (2)
112 = / u,
v = V(2)/ u
i2 i2
Step 6: Multiplication and accumulation:
a(3)_ (2)_ i
13 243 12 Y23
3 _ (2)
m i

i3 Mij 12 23
@ 2 u
Vig T Vi3 T Vi2 Y2
S @ n
1j 1j i2 ™23
Step 7: Shift:
(3

Y35 7 3
3 3)
myy = 13 i3 0
Y
"33 7 My
3 . 3 _
V33 = 1, v3j 0
®_ 6
Si3 7 3J =0
Step 8: Division:
RE)
i3 =233 / ugy
_ (3)
Vi3 T / ug

for

for

for

for

for

for

for

for

for

for

i>2, <2

i> 3,

1< 3.

Step 9: Multiplication and accumulation:

@) _ (3)

i3 = 213 " i3 Y3y
(4) (3) -1 . m
iJ iJ i3 "33
(4) (3) V.. u
ij 1J i3 "33
JB
i3 ij i3 ™35

Step 10: Shift:

u | = a(4)
43 43
@ _ . @
My T L Ty T T4y
@) _
Vay = L
4) (4)
Si4 = 8450
Step 11: Division:
- (A)
Vi4 /vy,

for

for

for

for

for

for

for

for

i, 3> 3;

i> 3, j<3;

[
v
=

1, j < 4.

i< 4.

Step 12: Multiplication and accumulation:

G _
513 ij it M43

Step 13: Sign change:

for

i, 3 < 4.

(5)
S, .
1]
According to the above computation steps, the
operation of the CDLAP is repetitive and regular
except the initial data loading and the sign
change in the last step. In each recursion, the
three steps corresponding to equation groups (a),
(b), and (c) are executed sequentially; shift
first, then division, and then multiplication and
accumulation. For each shift step, all data will
be moved one position in the upper-left direction.
The labeling of each datum shifting within the
(n+l) x n PEs is not changed. The initial values
of all variables V(t), m(t), and sft) are set to
either 1 or O at ehe time these enter the array.

On the other hand, the data a(t)and Y become u
t] t] t]
and m

for i, j £ 4.

at the time they enter the output regis—
ters at the upper boundary. Similarly, after the
division step, the 1, and v; values are sent to
the output registers. The ata in the output
registers are also wused as the operands in next
step of multiplication and accumulation.

Fig. 2 shows the data flow of the above com-—
putation process. The four snapshots display the
position of variables at the beginning of Steps 3,
6, 9, and 12, respectively. The L, U, L~ and
U'1 values can be obtained from the output ports,
and the inverse matrix A~ will appear in the
array at the end of the last step. Detailed input
and output sequences are shown in Tables 1 and 2,
where the last two columns under IA. and 0y; will
be refered to later in Section IV. J J

IV. Solving Linear Systems of Equations

Consider a family of linear equations A * X =

B, where B = [bi'] is a given n x m matrix and X =
[Xi'] is an n x unknown matrix. When m = 1,
thed B becomes a vector b= [b] and X becomes an

[x;1.

L * U, we have L * U * X =

unknown vector x =

Since A= B. Let

U * =D = [d,.]. Then we have the relation L * D
= B. Using thig relation, we can write
i
by T &;& Lindis

Since 1ii = illwe have

dij= bij —k=1 11kdkj for any i and j. (9)
Equation (9) can then be transformed into the
recursive algorithm shown below.
For t =1, 2, «cce. , n,

)

dtj btJ (10.a)

N2 N (o) .

iJ bij 1itdtj for i > t (10.¢)

This computation, similar
sition, will end at t ='n

to that for LU decompo-
after completing (10.a).

For U * X = D, the
Using the relation X = U~

algorithm is similar.
*¥D = V * D, we can write

82

(11)

for any i and j.

_Z vlk kj

Transformlng (11) into a recursive form, we have:

For t =1, 2,, n,
<=0 (12.a)
t]
B N T T for 1 < t (12.¢)
iJ ij it tj -
After completing (12.c) at t = n, the following

sign change must be done to obtain the correct x

value.

A
1]

To perform the above computations, an extra

n x m CDLAP will be needed. This extra array must
be associated with the original array from which
the and v;, data are transferred to the hor-
1zontai data buses of the associated array. The
data of matrix B are initially loaded into this
associated array and the shift must be in the "up”

(12.4d)

X, . for all i and j.
1]

or ‘"north” direction. The configuration can be
implemented as shown in Fig. 3. The detailed
steps for n = 4 are listed in the following (where
i=1l,2, «.c.., m).
Step 0: Data loading:
b}¥)= b, . for i =1, 2, 3, 4.
1] 1]
Step 1: 1Initial shift:
.M SV
TR FIE ER
Step 3: Multiplication and accumulation:
2) [$8] .
= - 1.
bij bij lildlj for i >
(2) _ (1) .
xij iJ ildlj- for i < 1.
Step 4: Shift:
_ .. (2) 2) _
dyy =Pyy > %3=0
Step 6: Multiplication and accumulation:
3 (2) _
biJ = 1j 112d23 for i > 2.
(3) 2)
ij =Xy i2dZj for i £ 2.
Step 7: Shift:
_ .3 (3)
d3j = b3j s 3j 0
Step 9: Multiplication and accumulation:
(4) (3) :
bij ij li3d33 for i > 3.
(& (3)
xij iJ i3d3j for i £ 3.
Step 10: Shift:
_ W 4)
d4j = bAj , xAj 0
Step 12: Multiplication and accumulation:
(5) (4) R
xij 1j ViAdAj for i < 4.

Step 13: Sign change:
X,, = - xgé) for i =1, 2, 3, 4.
1] 1]
The numbering of the above steps follows the

system in Section III. Fig. 4 shows the data flow

of this process in the asociated array. Referring
to Tables 1 and 2, the input and output sequences
are listed under 1,5 and 05:, respectively. The

i
corresponding time unfts can Be easily verified.

To solve A * x = b directly, the associated
array is actually not necessary. The computation
process 1is the same as LU decomposition except

that the b data must be input through the channels
IO to I3 at step 1. The snapshots of data flow
for n = 47are shown in Fig. 5. At the end of Step
13, the solution vector x is obtained in the ar-
ray. This scheme offers an efficient way to solve
LSEs (for m = 1) without extra hardware.

V. Estimation of Data Broadcast Delay

In analyzing the time required for one recur-
sion of the above computations, it is necessary to
consider the time required for setting up data
signals on the data-loading lines before the data
can be loaded. This data broadcast delay may be a
controversial point about the CDLAP. However, the
following estimates of this delay on some practi-—
cal design indicate encouraging results. The phy-

sical parameters wused in this estimation are as
listed in Mead and Conway [l]:
Resistance Capacitance
Metal 0.03 ohms/O 0.3 * 10 4pf/ m?
diffusion 10 ohms/O 1 % 10" pf/pm
poly 15-100 ohms/0O 0.4 * 10 pf/um
gate—-channel 4 * 10’4pf/pm

Assume that we have a VLSI array chip of 1.2

cm square, PE of 1 mm square, metal line of 6 um
(3X) wide, metal line space of 6 pm, and 16 bits
per word. The data-loading buses are mostly made

of metal lines and partly connected by polysilicon
or diffusion layer as shown in Fig.6. Then the
width of the one data-loading channel would be
about 200 pm or 0.2 mm. For the horizontal load-
ing lines, there is a 0.2 mm diffusion 1link for
every 1 mm of metal line. The diffusion link is
assumed to have the same width as the metal line.
Under this situation, the R_*C, value of a verti-
cal data line would be 0.13 nsec (R,= 60 ohms, C.=
2.2 pf); while for a horizontal line, it is about
10 nsec (R,= 3400 ohms, C.= 3.0 pf). Here, R is
the resis%ance along the data line, and C, is the
capacitance due to the data line itsel The
R,*C. value gives us a rough estimate of the in-
trinsic time delay due to the data bus itself; it
is about two times that of the real time constant.

Two—layer metal lines were used in a recent

work [l1] in which a 32-bit processor was fabri-
cated. This technique allows smaller chip area
and easier layout cross-over. Using this tech-

nique in our implementation, both the horizontal
and vertical loading buses will have the same high
speed. Thus, the time delay is mainly caused by

83

the output impedance of the driver circuit and the
capacitance of the gates and non-metal pathways.
For the layout shown in Fig.6, the longest diffu-
sion link needed to connect the data bus to the
input buffer of a PE is about the layout width of
the data bus, about 200 pm in our calculation

above. Let Rg be the resistance along this diffu-
sion link, and Cg be the capacitance due to the
diffusion 1link and 1its associated gate area.

Assume this diffusion link has the width of 4 um
(2 N). Then the maximum Rg is about 340 ohms.
The maximum capacitance due to this diffusion link
is 0.08 pf. If the area of the gate and other
diffusion regions connecting to this 1link is
within 200 pm® (which should be large enough), the
Cg value for one PE would be less than 0.16 pf.

Taking a practical estimate, the output
resistance of a driver circuit in the chip is
assumed to be 1K ohms. The maximum resistance R
to any gate ar