
lI'
~ a
~ o

PROCEEDINGS
OF THE

~ 1973 SAGAMORE COMPUTER CONFERENCE
o
~

" c
1ft •
n
i j
;II
• In
Z n
In

ON

PARALLEL PROCESSING

PROCEEDINGS
OF THE

1973 SAGAMORE COMPUTER CONFERENCE
ON

PARALLEL PROCESSING

Papers presented on

August 22-24, 1973

Department of Electrical & Computer Engineering

SYRACUSE UNIVERSITY
in Cooperation with

IEEE ACM

Copyright<S>1973 by the Institute of Electrical and Electronics Engineers, Inc.,
345 East 47th Street, New York, N.Y. 10017

IEEE Catalog Number 73 CH08l2-8 C

Additional copies available from IEEE, 345 East 47th Street, New York, N.Y. 10017.

Price: $12.00 per copy

ii

PREFACE
The 1973 Sagamore Computer Conference on Parallel Processing was held on August 22-24, 1973 at the

former Vanderbilt summer estate in the Central Adirondack Mountains. The Conference was conceived to

provide a secluded environment, a l300-acre preserve surrounding the private Sagamore Lake, for the

participants with excellent opportunities for exchanging ideas and learning each others research activi­

ties. Thus, informative discussions may be made not only during the technical sessions but also through­

out the various sports and social gatherings provided by the Conference.

The enthusiastic cooperation and response that we received throughout the Conference and during

its preparation was indeed most heartening. We not only received many more papers than we could possibly

schedule, but also the number of requests to attend exceeded the Sagamore accomodations. Thus, there

seems to be a popular demand for such a conference in parallel processing. Another conference is being

scheduled for the next year -- August 21-23, 1974.

The success of such a conference requires the vigorous support of many individuals. In this respect,

we are most grateful to all the authors who submitted their papers for consideration. It is our deep

regret that not all qualified papers could be scheduled for the Conference. We are also much indebted

to all the reviewers who, in order to meet the stringent review deadlines, put aside their own busy work

schedule to carefully evaluate the papers sent for their judgement. Their valuable comments not only

resulted a set of high-quality papers for the Conference, but also were sincerely appreciated by many

authors. The generous help we received from the session chairmen also contributes much to the success

of the Conference. In addition, we wish to acknowledge the excellent cooperation provided to us by

IEEE, IEEE Computer Society, ACM, their local chapter chairmen, as well as the staff of various techni­

cal magazines. In particular, we are indebted to Mr. James J. Andover, Mr. Charles Casale, Dr. W. Smith

Dorsey, Prof. Michael J, Flynn, Prof. Caxton C. Foster, Mrs. Irene Hollister, Mr. David Jacobsohn, Mr.

John L. Kirkley, Mr. E. D. MacDonald, Prof. Harold S. Stone, and many others for their assistance in

achieving such a cooperation. Special thanks are also due to members of various committees. Their time

and effort devoted to the Conference are indeed invaluable.

Tse-yun Feng

Department of Electrical & Computer Engineering

Syracuse University

iii

The Secluded Environment of Sagamore

The Main Lodge

iv

TABLE OF CONTENTS

SESSION 1: SEQUENTIAL-PARALLEL TRANSFORMATION AND MODELLING
Chairman: Professor R. M. Keller

The Coordinate Method for the Parallel Execution of DO Loops
L. Lamport

Modelling for Parallel Computation: A Case Study
J. L. Baer •.

Measurement of Parallelism in Ordinary FORTRAN Programs
D. J. Kuck, P. B. Budnik, S.-C. Chen, E. W. Davis, J. C.-C. Han,

Page

1

13

P. W. Kraska, D. H. Lawrie, Y.Muraoka, R. E. Strebendt, R. 'A. Towle •...•. 23

SESSION 2: LANGUAGES
Chairman: Mr. D. E. McIntyre

A Language for Controlling Parallel Processes
B. R. Hays .•.••..•..•..••.•..•...

The Transformation of Flow Diagrams into Maximally Parallel Form
G. Urschler • • •..

Formal Transformations for Parallel Processing Logic
E. P. Stabler • . • . • • •

A Structured Approach to Concurrent Process Synchronization
S. K. Shrivastava . . •....•

SESSION 3: PARALLEL PROCESSING TECHNIQUES
Chairman: Dr. P. M. Kogge

Parallelism in Tape-Sorting
S. Even

A Parallel Algorithm for Maximum Flow Problem

37

38

47

54

55

Y. K. Chen, T. Feng • • , 60

Parallel-Sequential Processing of Finite Patterns
W. I. Grosky, F. Tsui •...... , ..•...•...•...•• 61

Parallel Implementation of a Two-Dimensional Model
V. Kransky, D. Giroux, G. Long. • . • . • • . . . •. 69

SESSION 4: SOFTWARE DESIGN
Chairman: Professor E. P. Stabler

A Parallel Assembler for ILLIAC IV
J. M. Randal ...

Process Communication Pre-Requisites or the IPC-Setup Revisited
M. J. Spier • . • . . • .•...•••.•••....

The Experimental Implementation of a Comprehensive Inter-Module Communication
Facility
M. J. Spier•...•.••..•••.••.•.•••.••..

v

78

79

89

TABLE OF CONTENTS (CONT/D,)

SESSION 5: PROCESSOR COMPONENTS
Chairman: Captain A. R. Klayton

A Novel Method of Constructing Sorting Networks
R. M. Keller • . • • • • • • • • • . • • •

High-Speed Multiple~/Divider Iterative A~rays
V. C. Hamacher, J, Gavilan • • . • . • • •

A Versatile Data Manipulator
T. Feng •••••••••

An Array of Computing Memory Cells
T. Della Torre, J. Roitman •.

SESSION 6: PROCESSOR ORGANIZATIONS
Chairman: Professor G. J. Lipovski

An Efficient Associative Processor Using Bulk Storage
H. H. Love, Jr. • •••.••.•

The Use of Two Levels of Parallelism to Implement an Efficient Programmable
Signal Processing Computer
J. P. Ihnat, T. G. Rauscher, B. P. Shay, H. H. Smith, W. R. Smith

Asynchronous Network of Specific Micro-Processors
F. Dromard, G. Noguez • • • • • . • . • • . .

SESSION 7: SCHEDULING
Chairman: Professor J. L. Baer

An Approach to a Restricted Scheduling-Problem for Multiprocessor Systems
S. Schindler, H. Ludtke •••.••••.•

A Scheduling Model for Computer Systems with Two Classes of Processors
R. E. Buten, V. Y. Shen • . • • • • • • • • • • • •

Scheduling in a Multiprocessor Environment
J. Gwynn, R. J. Raynor •••••••••

SESSION 8: RADCAP
Chairman: Mr. J. L. Previte

RADCAP: An Operational Parallel Processing Facility
J. D. Feldman, O. A. Reimann . • • .•••

STARAN/RADCAP Hardware Architecture
K. E. Batcher ••••.•

STARAN/RADCAP System Software
E. W. Davis

Application of STARAN to Support Region Analysis for a Mechnical Robot
J. M. Plante, D. J. Gondek. • • • • • ••.•.•••.•

A Data Management System Utilizing the STARAN Associative Processor
R. Moulder. • • • • • • . . • . • • • • • • • • . •••.•••

vi

Page

90

91

101

102

103

113

120

121

130

139

140

147

153

160

161

TABLE OF CONTENTS (CoNT'n,)
Page

SESSION 9: PEPE
Chairman: Mr. J. A. Cornell

Introduction to the Architecture of a 288-Element PEPE
A. J. Evensen, J. L. Troy 162

Operating System and Support Software for PEPE
J. R. Dingeldine, H. G. Martin, W. M. Patterson. • • • • • • • • • • • • • • • 170

Process-Construction for a Parallel-Sequential Computer Architecture
A. L. Barrett • • • •••••••••••••••••• 179

A Comparison of a Parallel and Serial Implementation of a Large Real Time Problem
P. T. Alexander, R. O. Parker • • • • . • • • • • • • • • • •• ••••••• 180

Computer Simulation of PEPE and its Host at the Instruction Level
J. L. Troy 187

AUTHOR INDEX 188

REVIEWERS .. 189

COMMITTEES • 190

vii

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

THE COORDINATE METHOD FOR THE

PARALLEL EXECUTION OF DO LOOPS

Leslie Lamport

Massachusetts Computer Associates

Wakefield, Massachusetts 01880

Abstract -- An algorithm is presented
which translates a program with nested sequential
DO loops into one suitable for execution on a par­
allel array or vector computer. If necessary,
extensive rearrangement of the program's structure
is made.

Introduction

We consider the problem of compiling ordi­
nary sequential programs for execution on a par­
allel array or vector computer such as the Illiac N
or the CDC Star-lOO. This problem is of practical
importance for the following reasons:

(1) There exist sequential programs which
one would like to run on these parallel computers.

(2) If a program is to be run on two dif­
ferent machines, it might be best to write it in
sequential form and let each compiler find the most
efficient parallel execution for its computer.

(3) A com~iler may be able to find more
parallelism in a program than the programmer can.
(See [l].)

The methods which we introduce shou1d
also be useful in other areas of program optimiza~
tion.

We consider a FORTRAN program containing
DO loops, and describe a method of translating it
into an extended FORTRAN program in which one or
more of the DO loops is executed in parallel.
This is an obvious approach, and has been used in
[2] - [4]. The method presented here generalizes
the coordinate method of [4], and is more general
than the analogous methods of [2] and [3]. Al­
though our exposition is self-contained, it is best
to read [4] first.

We specify parallel execution with a
DO SIM statement of the following form:

DO 99 SIM FOR ALL I (g ,
where 8 is a set of integers. The statements in
its range are executed one after another as usual.
However, each statement is executed simulta­
neously for all of the indicated values of I. An
assignment statement is executed by first com.,.
puting the right-hand side for each value of I,
then simultaneously performing the assignments.
Thus, the statement

A(I) = A(I - 1) + B(I)
would simultaneously set A(i) equal to the orig­
inal value of A(i - 1) plus B(i) , for each value
ofiinS.

1

The coordinate method tries to change DO
loops to DO SIM loops. We show that it suffices
to consider one DO loop at a time. The basic
method is the coordinate algorithm, which we il­
lustrate by an example. Suppose we are given
the following progra m.

Program 1:

DO 100 1= 2, P

o
DO 10 J =1;1

'---_---'-------II J 10 A=A+UCI+1,J)**2

WJ~lli!J

IF (B m . LT. 0) GO TO 25

[@
DO 20 K = 2, Q m

GJ
~---------------~~----------------------'K

U U, K) = 2 * U <I, K - 1)

~ ~
B m = B m + (U (1- 1, K) - U (l + 1, KJ) ** 2

~ ~ ~ ~
20 C(K) = C(K) + K *U(1, K)

@l ~ ~

D=D+B(J)

@~~
25 DO 30 SIM FOR ALL L E f2, ... , 1001

~---,L
DO 30 M = 4,50

JM
E(I,L,M) = EU-1, L-i-1,M-3) *B(1+1>

~ ~ ~

100 CONTINUE

This is a nonsensical program, but it will
serve to illustrate most details of the algorithm.
Each occurrence of a non-index variable is given
a name, which appears in a box beneath it. Loop
bodies are boxed and labeled for legibility. The
L loop might have been changed from a DO to a

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

DO SIM loop by a previous application of the al­
gorithm.

The coordinate algorithm can translate
Program 1 into the following equivalent program.

Program 2:

TMP1 = P

I!l
r-----------~----------------------------lj1

DO 901 II = 2, TMP1

DO 10 J = 1, II

10 A = A + u(f1 +l,J) **2

L..--___ ----I
1J Irn ~ ~

901 CONTINUE

DO 902 SIM FOR ALL I2 £ [i : 2 ~ i" TMP11

r-------------------~--------------------,~
TMP2 <12) = .NOT. (B (T2) .LT. 0)

hll
IF CTMP2 (12» TMP3 (12) = Q (12)

III
DO 30 SIM FOR ALL [E [2, ... , 1001

. 1.
DO 30 M = 4, 50

M

30 E<12,L,M) = EcI2 -1, L+1, M - 3) * B (12 + 1J

!ill ~ ffi1l

902 CONTINUE

DO 920 K = 2, MAXIMUM (fTMP3 (iJ :

2" i" TMP1 .AND. TMP2 (iJ))

r-------------------------------------~K
DO 904 SIM FOR ALL 14 E [i: K" TMP3 (j)

.AND. 2", i" TMP1 .AND. TMP2 (iJ 1

TMP4 (14) = U (14 +1, K)
@

U cI4 ' K) = 2 * U (f4 , K - 1)

~ ~
B (14) = B (14) +(U (f4 -1, K) - TMP4 (14)) ** 2

~ ~ ~
TMPS (14) = K * U (14 , K)

~
904 CONTINUE

DO 905 Is = 2, TMP1

~----------~----------------------~~
IF (TMP2 (Is) .AND. K~ TMP3 (Ts»

C (K) = C (K) + TMPS Cis)
[ill ~

905 CONTINUE

920 CONTINUE

(a)
We need only assume that we know which

data can be modified by a subroutine or function
call, but this would complicate matters.

2

DO 903 13 = 2, TMP1

IF CTMP2 (13)) 0 = 0 + B (J3)

[4!J jgJ lliiI
903 CONTINUE

Observe that the I loop of Program 1 has

been split into the five II' ••• , IS loops. Two

of these are DO SIM loops, so Program 2 has
more parallel execution than Program 1. Note the
extensive rearrangement of Program 1 needed to
achieve this parallelism. The L/M loop has
been moved before the K loop; statement 20 has
been split into two parts which appear inside dif­
ferent loops; the uS occurrence has been moved;
etc. Of course, this e~mple is contrived to
demonstrate the power of the algorithm.

In general, we consider an extended
FORTRAN program containing DO and DO SIM
loops, with the following restrictions.

1. There is no backward transfer of con­
trol other than that implied by the DO loops.
Thus, if all DO and DO SIM statements were re­
moved, then the resulting program would have no
loops. (Techniques for translating programmed
loops into DO loops are described in [3].)

2. There is no I/o statement. We assume
that input/output is done with the initial/final
values of variables.

3. The increment of every DO loop is a
constant which is known at compile time.

. 4. There is no transfer of control from in-
side the range of a DO or DO SIM loop to outside
its' range - i. e., no premature exits from loops.

s. There is no subroutine call, and no
function call which can change the value of a
variable. The value of a function must depend

only on the values of its arguments. (a)
The program which we consider here may

be any portion of an actual FORTRAN program
having a single entry point. In particular, it may
consist of a single DO loop. Hence, these re­
strictions are reasonable.

Space limitations require that we eliminate
many details, including the proofs of theorems.
They will appear in [5].

Representation of the Program

For our analysis, we need a way of repre­
senting a program which is more convenient than
the original FORTRAN representation. To simplify
the exposition, we assume that all DO loop incre­
ments equal 1. The generalization to arbitrary
increments is described later.

The Program Tree

The first part of our representation is the
program tree, which describes a program I s nested
loop structure. The terminal nodes of the tree
represent occurrences of variables. (Occurrences
of DO and DO SIM index variables are excluded.)
The non-termina.l nodes rellresent the DO and DO

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

SIM loop bodies. A dummy node, labeled 0 , is
placed at the top of the tree.

The program trees of Programs 1 and 2 are
shown in Figures 1 and 2, respectively. (For
Program 2, we have excluded occurrences of
TMP 1, ••• , TMPS from the tree.) Occurrence
nodes are denoted by boxes. Loop nodes are de­
noted by circles and labeled by the index variable
name. 0Ne assume that each loop has a unique
index variable.) 00 SIM nodes are distinguished
by concentric circles.

We use paternity relations to describe tree
structure. In Figure l, the J node is the fa ther
of the ul node and the son of the I node. The
o node is an ancestor of all other nodes.

We let 1I..@J denote the set of all nodes of
a tree :r , and QfD denote the set of all terminal
nodes. If a is any node of a tree, then :rea)
denotes the subtree headed by a. We let ~
and (}(a) denote 71[:r(a)] and (}[:r(a)], respect-

ively. In Figure 2, (}(f2) = {bI, q, 9f, e2, b51.
A non-empty sequence of nodes

aI' ••. , an is called a branch of a tree if 0 is

the father of aI' and each a k is the father of

ak+l. Three branches of Figure i are: (1) I,

K; (2) I, J, ~2; and (3) p •

If a and f:l are two nodes of a tree, we
let a n f:l denote their most recent common ances­
tor. In Figure 1, we have al n a2 = J ,
u3 n J = I and p n q = o. We define Ol n Ol
to be the father of Ol •

Let f and g be occurrences in a program.
We say that f precedes g if there is a flow path
from f to g in which each DO loop is executed
at most once. In Program 1, u3 precedes u2, uS,
e2, etc. By restriction 1, if f precedes g then
g cannot precede f.

The motive for the following definition
comes from considering f ~ g to mean that the
occurrence f must precede the occurrence g.

* Then ~ contains precedence relations on the loop
nodes implied by ~ •

Definition 1: Let :r be a tree and let ~ be any
relation on (}(:r) • The tree completion of ~ is

* the smallest relation ~ on 71(:r) which satisfies
rtle following conditions:

. *
(1) If f ~ g then f ~ g •

* * (2) If Ol ~ f:l, f:l ~ y and a is neither
* an ancestor nor a descendant of y , then a ~ y •

Figure 1

3

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

* (3) M 0: ~ , 0: I ~, 0:' is either the father
df 0: or else 0:' = 0: , ~' is either the father of

* ~ or else ~'= ~ , and 0:' 'I ~'; then 0:' ~' •
The relation is said to be tree incon-

* sistent if 0: a for some node a. Otherwise,
.... is said to be tree consistent.

A partition of a set is a collection of pair­
wise disjoint subsets whose union equals the
whole set. Let P = { 81, ••• , 8n } be a partition

of a set 8 , and let be a relation on 8. The

relation~ induced on P by is defined by

8i 8j if and only if 81 I 8j and there exist

s £ 8i and t £ 8j such that s t •

A tree partition P of a tree :r is a par­
tition {N l' ••• , Nr } of 71 (:r) satisfying the

following property: M d £ Ni ' ~ and y £ Nj ,

Ni I Nj and a is the father of ~ , then the father

of y is contained in either Ni or Nj • We give

P a tree structure by lett.ing the father/son rela­
tion be the one induced on P by the father/son
relation of :r •

As an example, let :r be the subtree :r(I;)
of Figure 2. Then {b I}, n;, q, L}, {M, e 1,

b5}, {e2} is a tree partition of :r. Its tree
structure is shown in Figure 3.

FlglWe 2

4

Index 8ets

Let :.I:n denote the set of all n-tuples of
integers, with the usual operations of addition

and subtraction, and let 0' = (0, 0, ••• , 0). We

define :.1:0 = {oJ •
Let 0: be a loop node of a program tree,

and let II, ••• , f1 be the branch with f1 = 0: •
Then \a\ is defined to equal n .' We define

:.I: to be the set :.I: \a' .
a The relations '" and -< on:.l: are de-

j . II
1 Jk

fined as follows. Let I , ••• , I be the 00

Figure 3

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

nodes among the Ij (the remaining Ij being DO
81M nodes), with j 1 < ••• < jk' For any ele-

ments (aI, ••• , an) and (bI, ••• , bn) of Zll"
we let

1 n 1 n) (1) (a , ••• , a) ~ (b , ••• , b if
j 1 jk j 1 jk

(a , ••• ,a) = (b , ••• ,b).
1 n 1 n) (2) (a , ••• , a) -< (b , ••• , b if

ji jk
(a , ••• , a) is lexicographically smaller than

j 1 jk
(b , ••• , b), reading the components from left
to right.

In Figure I, we have I M I = 3, ZM = Z 3 ,

and (3,7,2) - (3, la, 2) -< (3, -1,4).
1 n The element A = (a , ••• , a) of Zll' re-

presents a possible execution of the body of the

'" loop for 11 = a I, .•• , ~ = an. For any ele­
ment B of Z , A ~ B if the executions of the

O!
IX loop body for A and B occur simultaneously,
and A -< B if the execution for A precedes the
execution for B. Note that this defines the
meaning of a DO loop inside a DO SIM loop. (It
is not the meaning one might expect if the lower
DO limit depends upon the DO SIM index variable.

We define 101 = a , and let the relation
to-. on Z = {a} be defined by a - a. If f is o
an occurrence node whose father is ll' , then we
let 1 fl = lex I and Zf = Zex' An element of

Zf represents a possible execution of the occur­

rence ·f •

Now let the IJ be as above and let \3 =

f , k < n. We define the projection mapping
....a -tY 1 n 1
li~ : ZO! ~ Z\3 by Us (a , ••• , a) = (a , ••• ,

a k). If an occurrence node f is the son of ex ,
then we let II~ = ~. In Figure I,

n~1 : Z3 ~ Zl is defined by II~l (i, 1" m) = (i).

The reader can verify the following fact.

Proposition 2: Let f and g be occurrences,
P f Zf and 0 € Zg' The execution of f for

P precedes the execution of g for 0 if either

(1) l1~ng(P) -< l1ing(O) , or

(ii) l1~ng (P) ~ l1ing (Q) and f precedes g.

For any node ex , we define the index set
.8 to be the subset of Z consisting of those ex ex
elements for which ex is actually executed. In
Program I, we have:

.9 a 1 = .9J = {(i, j i :; j~ 1 iT P and

o9q = {(i) : 2 ~ i ~-P and B(i) ~ a}

.9 2 = J K = (i,k): 2 ~i~P, 2~k~0(i)
u and B (i) ~ a} •

5

Note that in general,.9 may depend upon the ex
initial values of variables, and often will not be
known at compile time.

Occurrences

An occurrence of a variable is called a
generation if it appears on the left-hand side of an
assignment statement, otherwise it is called a
use. A relevant occurrence pair is an ordered pair
of occurrences of a single variable, at least one
of which is a genera tion. In Progra m I, there are
three relevant pairs of occurrences of the variable
E: (1) el, -e2; (2) e2, el; and (3) el, e1.

Execution of the occurrence bS of Program
1 for an element (i, 1" m) in .9bS references

the (1+1) element of the array B. This defines
1 the occurrence mapping TbS: J bS ~ Z given by

TbS(i, t., m) = (1+1) • In general, let f be an

occurrence of a k-dimensional array variable. (A
scalar is considered to be a a-dimensional array.)

Then T : J f ~ Zk. The mapping Tf may not be
f (b)

known at compile time.

Definition 3: Let f, 9 be a relevant occurrence
pair. We define «f, g» to be· the set
{X f Zrn : there exist P € .9f and Q f.9g such

g f
that Tf(P) = Tg(O) and X = IIing(O) - IIfng(P)}.

We define < f, g> to be some fixed sub­
set of Zrng , known at compile time, which

contains «f, g» •

An element X of «f, g» implies the
existence of elements P f .9f and 0 f o9g such

that the executions of f for P and g for 0
reference the same array element. Since A -< B if

B - A >- a , Proposition 2 implies that the reference
by f precedes the reference by g if either

(i) X >- 0' or (ii) X ~ 0' and f precedes g •
Some «f, g» sets for Program 1 are:
«el, e2» = {(I, -I, 3» ()
«u1, u2» = «I)} if .9K 'I ~ c

«b2, b3» = {(a, k) : 2-0(1) ~ k <
0(1) - 2 for some i f .9KT .

The set < f, g > is the best "upper bound"
on the set «f, g» which the compiler can
find. Computing these sets is a major implemen­
tation problem which we will not discuss. We
assume that the compiler finds the following
< f, g > sets for Program 1.

(b)1f f appears in a .00 SlM set expression, th~-;
Tf could be a multi-valued mapping. To handle

this case, replace any statement in this paper of
the form " ••• Tf(P) ••• " by "there exists an

X f Tf(P) such that •.• X •• ~" •

(c) We let ~ denote the empty set.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

< aI, al > = < aI, a2 > = < a2, al > = Z2
< bI, b2 > = < b2, bi > = < b2, b4 >

= < b4, b2 > = ((O))
< b2, b2 > = < b2, b3 > = < b3, b2 >

= ((0, k) : k any integer}
< b2, bS > = ((-l)}
< b5, b2 > = ((In
< c 1, c 1 > = < c 1, c2 > = < c2, c 1 >

= ((i, 0) : i any integer}

< dI, dl > = < dI, d2 > = < d2, dl > =:JI: I
< e 1, e 1 > = ((0, 0, O)}
< eI, e2 > = ((1, -1, 3)}
< e2, el > = ((-1, 1, -3)}
< u2, u2 > = < u2, u6 > = < u6, u2 >

= ((0, On
< uI, u2 > = ((I))
< u2, ul > = ((-I)}
< u2, u3 > = ((0, I)}
< u3, u2 > = ((0, -I)}
< u2, u4 > = < uS, u2 > = ((1, OJ}
< u4, u2 > = < u2, uS > = ((-1, O)}

Precedence Relations

The FORTRAN representation of a program
usually specifies more precedence relations among
the occurrences than are necessary. For example,
b2 need not precede ci in Program 1. We now
describe all the precedence relations that are
necessary in order to specify the correct execution
of a program. These are of two types. The first,
denoted by =;> , describes those precedence re­
lations which are logically necessary for a mean­
ingful execution of the program.

Definition 4: For occurrences f and g in a
FORTRAN program, we write f =;> g in any of the
following cases:

1. (a) g is a generation and f appears
on the right-hand side of the assignment
statement of g •

(b) f appears in a subscript expres­
sion of g •
2. (a) f appears in the conditional ex­
pression of a conditional branch, and g
appears in a statement whose execution is
conditional upon which branch is taken.

(b) f appears in the limits of a DO
statement, or in the index set expression
of a DO 8IM statement, whose range con­
tains g •

In 2 (a), we conSider a conditional assign­
ment statement to consist of a conditional branch
and an assignment statement.

The relations =;:. for Program 1 are indi­
cated in Figure 4. E.g., the =;> in the a2 row,
a 1 column denotes the relation a2 =;> a 1 •

The second form of precedence relation,
denoted by -t , is necessitated by data conflicts.
If a generation and any other occurrence refer­
ence the same array element, then the order of the
references must be specified. Our previous re­
marks then lead to the following definition.

Definition S: For each relevant pair of occurrences
f, g with f"l g. we let f -t g if and only if f

6

precedes g and there exists an element
~

X £ < f, g > with X ~ 0 •

The relations -t for Program 1 are shown in
Figure 4.

We let => denote the union of the rela­
tions -t and =;> , so f => g if f -t g or f =;> g •
Then =0> gives all precedence relations neces­
sary for the proper execution of the program. It
can be used to determine, for example, that during
an iteration of the I loop of Program 1, the J and
K loops can be executed concurrently by two in­
dependent processors. This yields a generaliza­
tion of the methods of [6]. However, this type of
parallelism will not be discussed here.

The Complete Representation

We define a program specification S to
consist of the following:

81. A program tree, also denoted by g •
82. The precedence relations -t and =;:. •
83. A specification of the occurrence
mapping for each occurrence.
84. A specification of the index set of
each occurrence and of the assignment
values for each generation, in terms of
occurrences.

Part 84 is quite vague. For Program 1, it
might include the following:

• .9 = ((i) : 2 < i < p and bi > O} q - - -
al = a2 + uI**2 •

83 is also vague if we consider occurrences like
A(B(I), J). We will not need to define 83 and 84
~ny more precisely because our translation proce­
dure will leave these parts of the specification
essentially unchanged.

There are many criteria which must be met
for 81-84 to be a valid program specification.
However, if 83 and 84 are assumed to be valid,
then the following conditions are sufficient to in­
sure that the entire specification is valid.

11.· (a) For each relevant pair of occur­
rences f, g with f t g: if there exists an
X £ « f, g» with X '" 0 , then either f -t g or
g-tf. .

(b) For each generation g: if X
~

£ «g, g» and X ~ 0 , then X = 0 •

L2. The relat~on =0> is tree consistent.

Note that to verify LI i it sufficeS to ver­
ify it with each set «f, g» replaced by
< f, g> •

Given a valid program specification, we
can use it to write an extended FORTRAN program.
For example, we define a program specification
as follows:

81. The program tree is given by Figure 2.

82. We let T -t or =;:. 9 if the relation

£ -t or =;> g appears in Figure 4. We also add the

following relations: ul -t u2, u2 -t u4,

uS -t u2, and bS -t b2 •

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

p al a2 ul bi q u2 u3 b2 b3 u4 u5 ci c2 u6 dl d2 b4 el e2 b5 I J K L M

p F> ==;> ==;> ==;> I=;:: ==;> ==;> ==;> ==;> I=;:: ==;> ==;> ==;> ==;> =9 ==;> ==;> ==;> ==;> ==;> p

al -~ --) al

~ * a2 ~-;> a2

ul F> * -...;> * * * * * ul
=>

bi I=;:: => I=;:: -+ => => => ==;> ==;> ==;> ==;> ==;> ==;> * bi

q ==;> => => => => ==;> ==;> ==;> ==;> * * * * q

u2 -->
* *

-+ u2

u3 => * * * * * * * * u3

b2 * * -+ b2
==;>

b3 -+ * * * b3

u4 =>
* * * u4

u5 --> => * * * * * * * u5

ci --> -- ci

c2 ~ c2 --> *
u6 ==;> * u6

dl --...;> -...;> dl

d2 7
* d2 --

b4 => * b4

el el

e2 ==;> e2

b5 -- * * * ==;> * b5

I I

J * J

K * * * K

L * * * * * L

M * * * * * M

p al a2 ul bi q u2 u3 b2 b3 u4 u5 ci c2 u6 dl d2 b4 el e2 b5 I J K L M

Figure 4

7

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

83, 84. We obtain this from the specifica­
tion of Program 1 in the obvious way. E. g., we
have

a1 = a2 + u1 ** 2

tu3(k, i) = Tu3(i, k) = (i, k-1) •

The reader can check that this specification sat­
isfies L1 and L2. A simple-minded translation of
this specification into an ext.ended FORTRAN pro­
gram gives Program 2. (A more efficient translation
is pos sible.)

As this example shows, the problem of go­
ing from a valid program specification to a
FORTRAN program can be difficult. However, it is
always possible. A compiler would probably not
do this, but would translate the program specifi­
cation into an internal form suitable for generating
code.

Program Mappings

Linear Program Mappings

Our basic idea is to transform a given pro

gram specification g into a new one 3" which
produces the same results, but has more parallel

computation. The tree of i will be obtained by
splitting apart and rearranging loop nodes of 3 •

In the following definition, 9 -1 (a) is the set of
nodes into which the loop node a € 71(g) is split.

Definition 6: Let 3 and i be program trees.. A

linear tree mapping 0 : :; ... i consists of:

(1) A surjective mapping 9 : 71 (i) ... 71(3)
such that:

(a) 9 is a 1-1 correspondence between

(}(i) and (}(~) •

(b) If a is an ancestor of an occur­

rence node I of i , then 9 (ii) is an

ancestor of 9 m .
(c) For each I € (}(i) : I 9 (i)l = I fl .

We denote 9 (f) by f for each I € (}(i) •

(2) For each f € (}(g) , a linear 1-1 cor­
respondence Of: 7{;f ... 7{;I satisfying the follow-

ing condition: For any f, g € (}(!J) , the mapping
0< f,g > : Zing ... 7{;Ing defined by

0< f = rr~ _ 0 Of 0 frring'-l
, g> ing ~ J

is single-valued, and 0< f = 0 f > • , g> < g,

As an example, let ~. , g be the trees of
Figures 1 and 2, respectively. We define the

linear tree mapping 0: g ... 3" as follows. Let

9(11) = ••• = 9(15) = I, S(D = J, 9(al) = aI, etc.

Let Of be the identity mappmg unless f is a

descendant of K , in which case let
Of{i, k) = (k, 1) • We then have

8

0< u2, u3>(i, k)

0< u2, c1>(i, k)

0<a1, c1> (i) = 0

(k, i)

(k)

Definition 7: Let 3 , i be program specifications,

A linear program mapping 0 : 3 ... i consists of a
linear tree mapping 0 from the tree of g to that

of g such that:
(1) For each f € (}(g) , f and I are

occurrences of the same variable, and Tf = rr 0 Of •

i.
(2) f ~ g in g. if and only if I ~ g in

(3) Replacing each occurrence f by I
:l:n 84 of the speCification g. gives 84 of i' .

Part 3 of the definition is as vague as our
definition of 84 of the program specification.
However, its meaning should be clear from our ex­
ample. The mapping 0 defined above gives a
linear program mapping from the specification of'
Program I to that of Program 20

We say that two program specifications
are eguivalent if they produce the same output
when run with the same legal input values. (Re-

call restriction 2.) Let 0: g ... i be a linear
program mapping. To obtain the equivalence of

~ and 3" , we will assume that 0 satisfies the
following condition.

EL. For each relevant pair of occurrences
f, g in!J : II there exists an element X € < f, g>

such that either (i) X> 0' or (11) X ~ 0' and

f ... g , then either (i) 0< f (X) > 0' or (11)
. , g>

0< f, g >(X) ~ 0 and I ... g •

Theorem 8: Let ~ be a valid program specifica­

tion, let 3" be a specification satisfying L2, and

let 0 : !J ... 3" be a linear program mapping satis­
fying EL. Then

(1) g is a valid program specification.

(2) !J and i are equivalent.
(3) For each relevant occurrence pair f,

g of g : «I, g» = 0 f (« f, g ») • < , g>

Part 3 of the. theorem allows us to choose

< i, g> to be 0< f « f, g ». The reader , g >
can check that Theorem 8 implies the equivalence
of Programs 1 and 2.

Two Applications

We now describe two simple ways of ob­

taining a new program specification g from a
given specification g • We leave it to the reader
to verify that Theorem 8 implies the equivalence of
g. and i .

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

1. Interchange a tightly nested DO/DO
SIM pair of nodes. E.g., let g be the specifica-

tion of the L loop of Program 1. Then 8' is the
specification of the program:

DO 30 M = 4, 50
D030SrMFORALLL({2, ... , 100}

30 E(r, L, M) = E(I-l, L+l, M-3) * B(I + 1) •

2. Split a single DO SIM node into sever­
al - one for each son. Applying this to the above

specification g then gives the specification g
of the following program:

DO 33 M = 4, 50
DO 31 SIM FOR ALL Ll ({2, ... , 100}

31 TMPl(L1) = E(I-l, L1+l, M-3)

DO 32 SIM FOR ALL L2 ({2, 100}

32 TMP2(L2) = B(r+l)

DO 33 SrM FOR ALL L3 ({2, ••• , 100}

33 E(I, L3 , M) = TMPl(L3) * TMP2(L3) •

Note that this new version describes one
way that the L loop of Program 1 might actually
be executed by an array computer, TMPI and TMP2
representing arithmetic registers.

In general, repeated application of these
two rewriting procedures shows that DO SIM loops
can always be rewritten in terms of vector assign­
ment sta telTl<mts.

Coordinate Mappings

The mapping Of for a linear program map­

ping 0 may be any linear 1-1 correspondence.
This allows a generaliZation of the hyperplane
method of [4], which will be done in a later paper.
For the coordinate method, we restrict Of tobea
permutation of the coordinates.

To form the tree of i , we allow a DO
node to be changed into one or more DO and/or
DO SIM nodes, which may be moved lower in the
tree. DO SIM nodes may not be changed, and no
other rearrangement of nodes is allowed.

Definition 9: A linear program mapping

o : g if is a coordinate mapping if there is a sub­
set C of the 00 nodes of g , called the set of
changed nodes, satisfying the following conditions
(where 9 is as in Definition 6):

-1 -;1l -
(1) For each f ((}(3) , let I , ••• , I , f

be a branch of g , let Ij =9 (f j), and let TT be

the permutation such that rTT(l), ••• , rTT(n), f is a
branch of g. Then

(a) If j < k and TT(j) > TT(k), then
rTT(j) (C and rTT(k) , c .

TT(1) TT(n) _ (1
(b) Of (x , ... , x) - x , ... ,

xn) •

(2) For each loop node a of 3 with

OL' C: 9 -1 (a) consists of a single node of the
same type (DO or DO SIM) as at •

9

The mapping 0 defined above from the
specification of Program 1 to that of Program 2 is
a coordinate mapping with C = {I}. Thus, only
the r node of Program 1 is changed by 0 •

For a coordinate mapping 0: g. ~ , we
introduce the following condition.

EC. For each relevant pair of occurrences
f, g in g :

(1) If f g , then f g •
~

(2) For each X (< f, g> with X> 0 I

(a) 0< f >(X) > 0' I or
I g

(b) 0< f, g >(X) ~ 0 and f g .

either

The reader can verify that if a coordinate
mapping satisfies EC , then it satisfies EL.
Theorem 8 then gives the following result.

Theorem 10: Let 3 be a valid program specifica­

tion and 0 : S i" a coordinate mapping satisfying

EC. If if satisfies L2 I then it is.a valid program
specification and is equivalent to 8-. For any

relevant occurrence pair f, g of if I we can let

< f, g> equal 0< f,g> (< f,g» •

The following result shows that any coor­
dinate mapping can be obtained from a sequence of
coordinate mappings I each of which changes just
one node.

Theorem 11: Let g. I if be valid program speci­

fications and 0: 3 g a coordinate mapping
satisfying EC. Let a be any DO node of g which
is changed by 0 such that no descendant of a is
changed by O. Then there exists a valid program
specification g. and coordinate mappings

o· : g. 3' and 0" : 3' i satisfying EC such
that 0' changes only a •

The Coordinate Algorithm

We now describe the coordinate algorithm.
Given a program specification ~ and a DO node
I of g I the coordinate algorithm generates a pro-

gram specification if and a coordinate mapping

o : g g such that (i) 0 changes only rand

satisfies EC I and (11)" 3" satisfies L2. Theorem

10 implies that i is equivalent to $I. The al­
gorithm can find any possible coordinate mapping
satisfying (i) and (11). By Theorem 11 I we want
to apply the algorithm repeatedly I starting from
the innermost loop nodes.

We now describe, explain and illustrate
the five maj or steps of the algorithm.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

1. Let >->-, "'" be the relations >- , ~
on ~ which would result if the I node were
changed to a DO SIM node. DefinE:! the relation
---> on 0(I) and the subset 8 of 'T/ (I) as
follows. For each relevant pair of occurrences f,
g in 0{I) , and each X E < f, g > with

(a) If X"'" 0' , then include the rela­
tion f ---> g •

(b) If X« 0 , then: for each des­
cendant r of I which either equals or
is an ancestor of f n g , if

.!.!.~ng (X) « 0' , then let be an el-

ement of 8 .

The relations ---> are the additional re­
lations -+ required if we were to simply change
the I node to a DO SIM node. The existence of
an X satisfying (b) immediately precludes this
possibility.

The nodes in 8 are "blocking nodes" •
This means that for each J (8 , J cannot appear
inside a DO SIM I node, and none of the nodes
into which I is changed can be moved below J •

Applying step 1 to the I node of Program
1 gives the relations ---> shown in Figure 4.
It finds 8 = [J} • E.g., for the occurrence pair
u2, u4 we have (I, 0) E < u2, u4> , (I, 0)

>- 0' and (I, 0) "'" 0'. Hence, (a) gives
u2 ---> u4 •

For the occurrence pair aI, a 1 : for any

i> 0 we have (i, 0) «aI, al >, (i, 0) >- 0 and

(i, 0) "'" o. Hence (a) gives al ---> al. For
any j < 0 , we have (i, j) E < aI, al > ,

(i, j) >- 0 and (i, j) «0. Since II~InaI(i, j)

= (i, j) , part (b) places J in 8.
Note that if L were a DO node, then step

1 applied to eI, e2 would place L in 8. This
shows why the algorithm should be applied to
inner loops first.

2. Let ==> denote the relation on 0(I)
formed by the union of the relations =;>, -+ and

* ---;:. , and let ==> denote its tree completion.
Complete the set 8 as follows: for each node

* a of 71 (Il , if a ==> a then add a to 8.

* For Program 1, every relation a ==> i3 on
'T/{I) for which a ==> i3 does not hold is indicated
by an "*" in Figure 4. Step 2 then adds the fol­
lowing nodes to 8: aI, a2, cI, c2, dI, d2.

3. Choose a tree partition P of ;reI)
such that:

(a) Any non-terminal node of P con­
sists of a single loop node of mIl
which is not in 8.
(b) The relation induced on 0~) by
==> is tree consistent.

To obtain the maximum amount of parallel-
11sm, the partition P should be chosen to satisfy
the following conditions as well:

10

(I) For any a ('T/(I) : if a 18 and
'T/ (a) n 81 ~ , then [a) is one of the sets
of P •
(2) For any a, i3 ('T/(I) : if'T/(a) n 8 = ~
and i3 (8 , then a and i3 belong to
different sets of P •

There is an algorithm for choosing such a
P. Applying it to our example, and then com­
bining the resulting sets [dI, d2) and [b4}
into a single set, gives the tree partition P
shown in Figure S. In general, finding the best
tree partition P is a major implementation prob­
lem •

4. Let N l' ••• , Nm be the terminal

nodes of P. Define the program tree of 1f as fol
lows:

(a) 'T/ ($') = f ii : a E ?7 (:~), a t I} U

ill' ... , I L. III

(b) For any nodes ex, S of gnat

equal to I; ~ is a descendant of S
if and only if ex is a descendant of i3.
(c) For any node ex of :; not equal to
1:

(i) ~ is a descendant of I. if
J

and only if a (N, • - J-

(il) « is an ancestor of T. if and
J

only if either a is an ancestor of
I or fa} is an ancestor of Nj-"

This defines a tree in which the I node is

split into the nodes II' ••• , Im' For each j ,

'T/{IJ,) = [iX: ex (N.}U [r.) .
J J_

In our example, g has the tree of Figure
2.

S. Define the relation -+ on if as fol­

lows. For any occurrence i, 9,in :; , we let

f -+ g if either:
(a) f -+ g in g « or
(b) f ---> g , f E Ni ' g (Nj and

either (i) i t i, or (il) i = j and

1j is a DO SIM node.

In our example, step S (b) gives the follow­

ing relations: (i) ur -+ u2 , bS -+ b2 and

(il) u2 -+ u4, uS -+ u2 •

The mapping e of Definition 6 is defined

by eG) = a if a 1 I , and e(I,) =' I. Parts S3 _ J
and S4 of the specification g and the coordinate

mapping 0 : g -+ if are then defined in the obvious
way.

The equivalence of g and i is implied
by Theorem 10 and Theorem 12 below. Note that
Theorem 10 indicates how to compute the sets

< i, 9> in order to apply the coordinate algorithm

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

{ bl, q, L, M, el, e2, b5 }

Figure 5

again to g. Theorems 11 and 13 show that the
coordinate algorithm can be used to obtain any de­
sired coordinate mapping.

Theorem 12: Let g. be a valid program specifica­

tion, I a DO node of g , and let 3 and n :
3 ... 3 be constructed by the coordinate alg~r1thm.
Then 3 satisfies L2, and n is a coordinate map­
ping which satisfies EC.

Theorem 13: Let g, 8 be valid program specifi­

cations, and let n: 3 ... i be a coordinate mapping
satisfying EC which changes only the node I.

Then if and n can be constructed from g by
the coordinate algorithm.

Concluding Remarks

General DO Increments

To handle arbitrary constant DO increments
we need only change the definition of the set

« f, g». Let II, ••• , f be the branch with

f = f n g • Assume that for each j , the Ij loop
is a DO loop of the following form:

where the c j and d j are integer constants and
j r '

1, is any expression not involving the f. More

11

general DO loops must be put into this form by
changing the index variable. For purposes of the

definition, replace a DO SIM Ij loop by any DO
loop whose index set contains J j •

I

Now, define «f, g» to be the set of
1 k all (x , ••• , x) £ Zing such that there exist

P (Jf and 0 (J with (yl, ••• , /) = rrgfn (O)
f g 9

- rrfng (P) and
. j' j-l .

yl=d xl+ l: clyr
r=l r

for each j •
With this new definition, a'll of our results

remain valid in the general case of arbitrary con­
stant be increments.

Further Refinements

Several refinements of the coordinate
method to yield more parallelism are possible. For
example, it is clear that the computation of
U(I+l, n ** 2 in statement 10 of Program 1 could
be done inside a DO SIM I loop. This involves
first splitting the J loop into two ioops. In gen­
eral, any node in the set T3 of the coordinate al­
gorithm is a candidate for splitting. Such refine­
ments w1ll be described in [5].

Practical Problems

There are many practical problems to be
solved in implementing the coordinate method for
a real compiler. We list some of these below.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Although described separately, they are all closel}'
related. The solutions of these problems will de­
pend upon the particular parallel computer design.

Choice of the DO Node I. To maximize
parallelism, by Theorem 11 we would apply the
coordinate algorithm successively to each DO
node, working up from the bottom of the tree. How­
ever, this may produce more parallelism than can
be exploited by the computer. Some procedure is
needed to choose the nodes to which the coordin­
ate algorithm should be applied.

Choice of the Tree Partition P. Maximiz­
ing the parallelism does not necessarily produce
the best program. In our example, we q~sumed an
algorithm clever enough not to put b4 into its own
separate DO SIM I loop. However, we might have
done better to further decrease the parallelism by

putting u6 in the r;; loop, eliminating the need for
TMP5.

Translation of the Specification. It is
necessary to translate the specification into either
FORTRAN or some intermediate language from
whioch the compiler can generate code. Our exam­
ple indicates that conditional branches can al-

[1]

[2]

[3]

References

L. Lamport, Some Remarks on Parallel
Programming, Massachusetts Computer
Associates, CA-7211-20 11, (November,
1972), 17 pp.

Y. Muroaka, Parallelism Exposure and Ex­
ploitation in Programs, Ph. D. Thesis,
University of Illinois, Urbana (1971),
236 pp.

P.B. Schneck, "Automatic Recognition of
Vector and Parallel Operations", Proc. of
the ACM 25th Anniversary Conference
(August, 1972), pp. 772-779.

12

ways be handled by converting to conditional
assignment statements. However, this will not
always be the best procedure. Other improve­
ments are also needed. E. g ., in Progra m 2 we
can replace TMPI and TMP3 by new occurrences of
P and Q •

Our example shows how complicated these
problems can become. However, most real pro­
grams are simpler, and simple solutions will usu­
ally be good enough. For example, we might al­
ways choose P to consist of a single set. The
coordinate algorithm would then simply try to re­
write the program with a single DO SIM I loop.

Conclusion

We have presented a method of detecting
parallelism in sequential programs which gener­
alizes several previous methods. It forms the
basis of a sequential to parallel conversion phase
of a compiler for a parallel array or vector com­
puter. The techniques employed - particularly the
use of the < f, g > sets and the relation ~­
should be applicable to other areas of program op­
timization.

[4]

[5]

[6]

L. Lamport, "The Parallel Execution of riO
Loops" , to appear in the Comm. of the
ACM.

L. Lamport, The Complete Coordinate
Method, Massachusetts Computer
Associates, to appear.

C. V. Ramamoorthy, and M. J. Gonzalez,
"A Survey of Techniques for Recognizing
Parallel Processable Streams in Computer
Programs", AFIPS Proceedings, Fall Joint
Computer Conference (1969), pp. 1-15.

i973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL P.ROCESSING

MODELING FOR PARALLEL COMPUTATION: A CASE STUDY

J. L. Baer
Computer Science Group

University of Washington
Seattle, Washington 98195

Abstract

A methodology to build models for parallel
computation for some special class of algorithms,
namely compilation, is presented. The control
graph component of the model is of the extended
Petri Net form with switches and token absorbers.
A detailed example of the use of the graph is
given and some formal properties such as conserv­
ation of token and proper termination are proven.

1. Introduction.

In recent years, we have seen the emergence
of numerous graph models for parallel computa­
tion [3]. Depending on the investigators' back­
grounds (engineers, logicians, mathematicians),
the objectives of the models have been varied
(e.g. coherent design of modular parallel sys­
tems, correct flow of control in the execution
of parallel algorithms, relations between sequen­
tial programs and their parallel representations,
prediction of cost and performance of multipro­
cessors).

In this paper, we present (first in Section
II) the criteria which have led us to select
some particular node and arc primitives and
graph properties for the modeling of a specific
class of algorithms, namely parallel compilation.
The choice of this test vehicle for our modeling
methodology is motivated by the following obser­
vations. First, techniques to handle automat­
ically the detection of parallelism are best
suited for high-level languages and scientific
applications and do not carryover well for comp­
ilation, which has most often been considered as
a sequential process. Therefore some "human
insight" appears necessary. Second, this will
oblige us to try and uncover some parallelism in
the compilation process through algorithm modi­
fication, changes in data structures, redundancy,
etc. Finally, assuming the efficiency of multi­
processors at run-time, means must be found to
use them efficiently at compile time.

In Section III, we apply this modeling meth­
odology to an example taken from the compilation
process. Different stages in the modeling are
successively introduced. They show the impor­
tance and the need for the features introduced in
Section II.

Section IV defines formally the graph model
and some of its properties. It is shown how the
latter can be derived through techniques resem­
bling those used in the theory of formal lang­
uages.

13

II. Graph Primitives and Model Properties.

In the rest of this paper, we assume the
reader's familiarity with the basic concepts of
graph theory.

1. Places and Transitions of·the Control Graph.

Like any other algorithmic process, compila­
tion has three components: control, computation
and data. We shall separate the modeling into a
control graph (control of operators) and a data­
flow graph (action of operators on data). In
this paper, we investigate the control part.

The amount of interpretation that is pre­
sent in a model depends mostly on the goals that
one wants to achieve in the modeling process.
If the primary objective is to describe specific
algorithms or systems, then a total interpreta­
tion will be most convenient. Adam's Computa­
tion Graph [1] is such an example, and it can
be regarded as a parallel programming language.
On the other hand, if the derivation of general
formal properties and the characterization of
parallel algorithms are the main goals, then un­
interpretation is necessary and schemata have to
be introduced [6]. In our case, we are dealing
with compilation considered as a class of al­
gorithms and not with the modeling of a partic­
ular compiler. Hence, we will not choose total
interpretation. At the same time, we wish to
be able to retain some descriptive power and we
have to rule out complete uninterpretation.
Therefore our model is partially interpreted.
Most of the interpretation takes place in the
data graph, but some nodes/arcs of the control
graph possess specific meanings.

One can view compilation as a general pipe­
line process, namely:

lexical analysis + syntax analysis +

code generation.

The unit of information flowing through the
pipe can vary widely in size. For example, one
could choose a subprogram, a block, a statement,
a lexical or syntactical entity. Furthermore,
each element of the pipe can be broken into a
number of substages with appropriate latches.
As we shall see in the next section, this pipe­
line concept can also exist at very.fine levels
of detail. Independently of the size of the
unit of information, a "token machine" is appro­
priate to represent pipe-line.flow. Therefore
the control graph is based upon the Petri Net

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

concept [5,9J. The formal definition of the
graph being given in Section IV, we recall here
only that a Petri Net is composed of a set of
transitions (corresponding to events and denoted
by I in figures), a set of places (correspond­
ing to the holding of conditions and denoted 0),
and a set of directed arcs linking (input) places
to transitions and transitions to (output) places.
Places are able to receive tokens which mark the
holding of conditions. A place without token is
empty; otherwise it is full and the presence of
a token will be shown by ~ in the figures. An
event can occur (equivalently a transition can
fire) if all its input places are full. After
the firing, a token is removed from each input
place and a token is added to each output place.
We do not allow a place to be input and output to
the same transition in order to "clarify" the
description of holdings. Figure 1 shows a two­
stage pipe-line process modeled by a Petri Net.
When place 1 becomes full, stage 1 can be ini­
tiated through the firing of transition a. When
stage 1 is completed, transition a l will fire
and the latch will become full. Now transition
b can fire, allowing the processing of stage 2
and the possibility for transition a to fire
anew if place 1 becomes full again. Thus, stages
1 and 2 can be active simultaneously. This part­
icular instance of a pipe-line is built in such
a way that stage 1 has to wait for the initiation
of the i th computatio n of stage 2 before being
able to initiate its own (i+l)th computation. In
Figure 2, it is shown how a buffer can be intro­
duced between the two stages (the buffer here
being of size 2).

Figure 1. Modeling a Pipe-line Process with
Petri Nets.

Figure 2. Increasing the size of Buffers between
Stages.

14

Petri Nets in the above form are not easily
amenable to represent predicates. Extensions
using conjunctive logic as above and disjunctive
logic, i.e. EOR [2J, have been used to enhance
the descriptive power of models [7J while, at the
same time incurring no loss in some formal prop­
erties [4J. We follow the same approach here,
denoting by + the presence of an EOR condition
at either the input or output of a transition
(cf. Figure 3). The conjunctive logic, i.e. AND
condition, is the assumed default situation. We
forbid mixed logics since we can always realize
the desired boolean condition with the inclusion
of appropriate "dummy" places and transitions
with simple logic.

(a) Input Disjunctive
Logic. Only one of the
input places can be
full. Then a can
fire.

(b)Output Disjunctive
Logic. After firing of
a, only one of the out­
put places will receive
a token.

Figure 3. Disjunctive Logic.

Although the EOR and AND logics have suffi­
cient properties to show the flow of control in
algorithms, we introduce nevertheless a new type
of place that we call switches. Switches bear
some analogy with the construct of the same name
found in programming languages and also with
Nutt's resolution procedures [8J. However, their
actions are purposely more restricted than these
procedures so that their presence will not des­
troy formal properties of the model. As any
other place, a switch can either be full or empty.
The presence or absence of tokens in a switch does
not influence the firing of the transition for
which it is an input place; that is to say the
conditions for firing are tested on the set of
input places from which the switch has been re­
moved. A transition which has a switch as one
of its input places (and there cannot be more
than one switch per transition) is necessarily
of EOR-output logic with only two output places
corresponding respectively to a full switch
(branch f) and to an empty switch (branch e).
Figure 4 illustrates these concepts with the
switches denoted by 0 . As we shall see in the
next section, switches allow flexibility and
short cuts in the modeling of algorithms.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

(a) Empty switch

(b) Full switch

Figure 4. Illustration of the Firing of a
Transition with an Input Switch.

The transformation of a sequential program
into parallel form might introduce some justifi­
able redundancy. However, processing which has
become useless should not be allowed to be car­
ried on and to tie up resources that the rest of
the system might need. This point is illustrated
by the following example. We want to search a
linear table for a given key and two processors
can be available. Hence, we desire processor I
to start at the low end of the table with indices
being incremented and processor 2 at the other
end with decrementing indices. As soon as one of
the processors has found a matching entry, both
computations should be terminated. Moreover, if
processor I was started first and had found the
match and processor 2 was not yet initiated, it
is evident that processor 2 should be prevented
from performing a useless task, and vice-versa.
In our modeling process, we use arcs which are
token absorbers to represent this situation.
Token absorbers also permit token conservation,
a property needed, as we see below, for modeling
pipe-line processes.

A token absorber is a multiarc with one
head (a transition) and one or more tails
(places). When the transition from where the
head originates fires, tokens are removed from
each of the full tail places. Figure 5 shows
how this cancelling occurs for the previous ex­
ample. Transitions a and b correspond to the
comparison process; places C and F are the
conditions of no-matching; E and H also corre~
pond to no-match but in supplement they indicate
that the ends of the (half) tables have been
reached, and D and G correspond to a match.
When either c or d fires, say c for exam­
ple, tokens which were possibly present on B, F,
G and H are removed. (In this example the pre­
sence of a token on one of these places implies
the emptiness of the three others.) If we had a
match on both processors, because of duplicate

15

elements in the table, c and d could be ter­
minating at the same time. By convention, simi­
lar to the realization of an interrupt scheme
without priority, two transitions cannot fire
simultaneously. If the two signal completion at
the same time, one of them will be chosen arbi­
trarily as the first one to finish. Therefore
I and J cannot hold tokens simultaneously
(EOR-input logic at transition e), and K
corresponds to a match in the search process. On
the other hand, transition f will fire when
both processors report no success.

a'

Figure 5. Illustration of the Use of Token Ab­
sorbers.

2. Execution Sequences and Properties of the
Graph.

b'

A control graph with places and transitions
as above cannot describe a computational process
per se. A meaning must be given to places and
transitions. A first element of this semantic
attachment is the data-flow graph associated with
the control flow graph. A transition of the con­
trol can be linked to an operator in the data­
flow graph. Each operator takes its inputs from
a range of memory locations, performs a function
and outputs values in a domain of memory loca­
tions. Furthermore, if the transition is of EOR­
output logic, the operator indicates the output
place on which a token is to be placed. An in­
terpretation of the model consists of defining
the data graph in terms of specific memory cells
and their initial values, the operators' func-

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

tion, ranges and domains, as well as an initial
marking of the control graph. The latter indi­
cates which places are initially full, and the
number of tokens on each place. In the sequel
we will describe markings by the name of places
which are full. The name of a place will occur
as often as the number of tokens it holds.
Starting with this initial marking, an execution
sequence in the control graph is a sequence of
transition firings. In the example of Figure 5,
two out of the possible execution sequences, with
an initial marking of a token on S, are:

s a b b' b a' ace

s a a' b b' a b a' b' b a f

After each transition firing, the graph is in a
new state, or marking. The execution sequence
can also be given in terms of sequence of mark­
ings. For the two above, we have respectively:

S,AB,BC,CF,BC,CF,AF,DF,I,K

S,AB,BC,AB,AF,AB,BC,CF,BF,AB,AH,EH,L

If the execution sequence is finite, the last
state reached is called a terminal marking.

The control graph should be constructed in
such a way that given an initial marking MO and a
set N of goals, i.e. terminal markings, all
execution sequences starting with MO should be
finite, reach one of the members of M and no
other transition should be able to fire. This is
akin to Gostelow's proper termination [4] and re­
sembles strongly the acceptance of strings by a
finite state automaton. For the example of Fig­
ure 5, an initial marking MO of a token on S
and a set of goals M = {K,L} yields proper
termination for the graph, if one forbids infinire
looping through transitions a,a' and b,b'. The
rationale for this restriction will be explained
in the following section. It is to be noticed
that MO and M are at the discretion of the
model builder, but proper termination is indep­
endent of the data graph and of the operators'
functions. In supplement, since our model is
oriented towards the representation of pipe­
lining, another important property, namely the
conservation of tokens, should be considered in
conjunction with proper termination. More pre­
cisely, stages in the pipe-line have to be re­
usable after each activation. Therefore the
initial and terminal markings should differ only
by the presence of tokens on places which re­
ceive or deliver tokens from or to other stages.
(The foremost stage as well as the last one con­
stitute the environment or outside world [8,9J).
The presence of token absorbers becomes very
useful for the realization of this constraint.

An important criterion to judge the formal
power of some graph models is the determinacy
condition [3,6]. A model is determinate if the
sequence of values associated with each memory
cell is unique. In our case, determinacy in­
volves the analysis of the data graph. But,

16

because of the token absorbers, one can already
see that determinacy cannot be achieved here.
Therefore our goal will only be to obtain I/O
determinacy, which is the property defined~
the fact that for an initial set of input values
all execution sequences will yield an identical
set of output values. We shall not elaborate on
this point, since the scope of this paper is res­
tricted to the control structure of the model.
In a similar manner, we define the 1/0 equiva­
lence of two control graphs associated with a
~n data graph as the property of the two
graphs to be determinate and to yield identical
output values for identical initial values.

The programming of a large system should be
modular. This structure has to be reflected in
the model. Therefore, we need to be able to con­
nect subgraphs. As seen above, the property of
conservation of tokens allows the linkage of
stages in the pipe-line as shown in Figure 1.
Subroutine calling is modeled, in the control
graph, by application of an ALGOL-like copy rule
[1]. Although other techniques have been pro­
posed [4J, none of them applies to reentrant sub­
routines, the only kind with which one is con­
cerned while writing compilers for multipro­
cessors.

Finally, one objective of the modeling is
to ascertain the amount of parallelism that one
could achieve. The first element of parallelism
is in the pipe-lining process. The second is in
the potential concurrency within each stage.
Therefore, one characteristic of a stage is its
maximum parallelism, i.e. the maximum number of
transitions which are ready to fire simultan­
eously. For the example of Figure 5 this number
is 2.

III. An Example of the Use of the Model.

To illustrate our approach as well as the
use of the model, we consider the following ex­
ample: During the lexical analysis phase of the
compilation, it is known that either an identi­
fier or a reserved word is going to be scanned
as soon as the first character of a lexical en­
tity has been recognized as a letter. The finite­
state automaton, translated in extended Petri Net
form, "flow-charting" this simple algorithm is
shown in Figure 6.

b
a

Figure 6. Lexical Analysis: the Obvious Approach.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

The places have the following meanings:

1 the first character is a letter

2 ready to scan next character

3 character is either a letter or a digit

4 separator (i.e. end of lexical entity)

5 lexical entity is an identifier

6 lexical entity is a key word.

The transitions correspond to the following ac­
tions:

a,b : scan next character (example of the
copy rule for reentrant subroutines)

c : dummy procedure to prevent place 2
from being both input and output to tran­
sition a.

d : look-up the table of reserved words.

If during the scanning a digit is encoun­
tered, the lexical entity cannot be a reserved
word. Therefore, we introduce a new output place
to transition b with the new meanings:

3 character is a letter

7 character is a digit.

If place 7 becomes full, then the lexical entity
cannot be a reserved word and transition d
should never be activated. This is accomplished
in the graph model by the introduction of switch
9 which becomes full after transition e has
fired and the latter fires every time a digit is
recognized. When a separator is encountered and
place 4 becomes full, transition f fires, tak­
ing the f branch if a digit had been encoun­
tered, the e branch otherwise. Only in this
latter case does place 10 become full and allow
transition d, i.e. the reserved word search, to
be activated. However, two defects are apparent
in this graph (Figure 7):

-Tokens are going to accumulate on switch
9. When place 5 is reached, the number
of tokens left on 9, if any, is the number
of digits encountered minus one. Hence,
we need to either introduce token absorb­
ers or change the logic of the graph.

-No parallelism is yet apparent.

17

Figure 7. Introduction of a Switch.

Figure 8 shows how this latter weakness is
taken care of. As soon as place 1 has been
reached, the search in the reserved word table
could be initiated if the latter were ordered.
For example, we could find pointers to the begin­
ning and end of the sub table corresponding to the
letter scanned in place 1. To that effect, tran­
sition d is split into:

d

and g

find begin and end pointers

finish the search for the whole lexi­
cal entity,

with places 11 and 12 initiating these transi­
tions. We could even refine further by allowing
switch 9 to be an alternate output to transition
d in case that there exists no reserved word
starting with the letter scanned in place 1.
However, our main point here is to show a poss­
ible concurrency between the scanning process
(transition b) and the search process (transi­
tion d).

d

Figure 8. Introduction of parallelism with
accumulation of tokens.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Finally. we have to "clean up" the graph - X P u T is a finite set of vertices with
so that it terminates properly and shows conser-
vation of tokens (cf. Figure 9). In order to
prevent accumulation of tokens on switch ~ two
new places:

13 the first digit is encountered

14 a digit (not first) has been recog­
nized

and a dummy transition h are placed between
place 7 and switch 9. Another switch. 15.
directs the output of h on either 13 or 14 and
is filled at the beginning of the execution of
the graph. i is a dummy transition between 14
and 8 introduced for the same reason as was c.
With this logic. switch 9 will receive at most
one token. If for a particular execution se­
quenc~ switch 9 remains empty. then switch 15
will be full when place 6 is reached. Hence a
token absorber is sent from transition g to
switch 15. Finally. the firing of transition e
removes any token present on either place 11 or
place 12 via a multiarc token absorber. Thus.
if a digit is encountered before the first table
searching. this latter computation is cancelled.

Figure 9. The final Graph for Lexical Analysis.

We have applied the same technique to
other detailed algorithms with success. The
"cleaning" of the graph is greatly facilitated
by the procedure used to check for proper termin­
ation as presented in the next section.

IV. Formal Definitions and Properties.

1. Places. transitions and arcs.

The control graph is a triple P = (X.A.e)
where:

18

- A

P {Pl'P2···· .Pn} being a finite set of

places;

T = {tl ·t2·····tm} being a finite set of

transitions;

S a possibly empty proper subset of P is

a set of switches.

I u 0 U N is a finite set of arcs with

I {(Pi.tj) I Pi € p. tj € T} being the

input arc set and Pi being an input place

to tj

0= {(t i •Pj) ti € T. Pj € P} being the

output arc set and Pj being an output

place to ti

N = {(tit [Pi.Pj ••••• PkJ) I ti € T. Pi.Pj' •

••• Pk € p} being the token absorber set

and being the cancelled places

- e is the control which associates with each
transition a pair of logics. i.e. one of the
possible combinations {(AND.AND).(AND.EOR).
(EOR.AND).(EOR.EOR)}.

The following topological restrictions are

imposed. If (Pi' tj) € I. then (tj ,Pi) ~ o.

If Pi € Sand (Pi,tj) € I, then no other

switch is an input place to t j , tj is either

of (AND,EOR) or (EOR,EOR) logic, and there are

only two output places to t j , the two output

arcs leading from t. being labeled respectively
J

f and e.

2. Tokens, markings and firing expressions.

A place p. is full if it holds at least
one token. Oth~rwise it is empty. The set P
and the number of tokens associated with each of
its elements constitute a marking. Equivalently
it can be represented by a multiset or bag [4J.

The firing of a transition is controlled
by the presence of tokens on its input places as
well as by its logic. The latter also directs
the outcome of the firing. The possible

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

situations are summarized below by firing expres­
sions [4] for a transition a with the following
conventions:

p. ,p. , ••• ,po
11 12 1n

input places to transi-

tion a

p ,p , ••. ,p
0 1 O2 om

output places to transi-

tion a

p ,p , •.• ,p
nl n2 nq

cancelled places by tran-

sition a and shows the absence of

tokens

Ps is a switch and Po
e

places to transition

and Po the output
f

a in that case

-(AND,AND) logic:

(AND, EOR) logic:

j = 1,2, •.. ,m

or if a switch is present

(EOR,AND) logic: p.
1.

J

j 1,2, ... ,n

(EOR,EOR) logic:

j 1,2, ••. ,n; k 1,2, •.. ,m

or if a switch is present

Pi.Ps ->- p P P ••• p
J

0e n l n 2 nq

Pi.Ps ->- p P P ..• p
J

of n l n2 nq

j 1,2, ... ,n

j 1,2, ••. ,n

The firing expressions for the graph of Figure 9
are shown in Figure 10.

19

1 ->- 2 11 15 7 15 ->- l3

2 ->- 3 7 15 ->- 14

2 ->- 4 8 ->- 2

2 ->- 7 10 12 ->- 5 15

3 ->- 2 10 12 ->- 6 15

4 9 ->- 5 11 ->- 12

4 "9 ->- 10 13 ->- 8 9 11 12

14 ->- 8

Figure 10. Firing Expressions for the
Graph of Figure 9.

3. Execution Seguences and ProEer Termination.

A given marking indicates which transi­
tion(s), if any, can fire. After firing of one
transition, a new marking is generated accord­
ing to one of the firing expressions of the fired
transition. Starting with an initial marking
M , the sequence of the transition firings (or
e~uivalently of the generated markings) is called
an execution sequence. A marking from which no
transition can fire is called a terminal marking.
For a given P and M, we are interested in the
finiteness of the execRtion sequences as well as
their terminal markings. Thus, we also define a
set of goal terminal markings M. We consider
now graph executions as the triple (P,M ,M). By
definition, a graph execution has the prgperty of
token conservation if it is properly terminating
(cf. below) and, if for every terminal marking
M. E M, the set of full places is composed ex­
clusively of places which either belong also to
M - with the same number of tokens - or for
wRich there is no transition admitting them as
input places.

Before defining the concept of proper term­
ination, we need to introduce two other proper­
ties of the graph, namely:

-A control graph P is k-safe if places
can hold at most k tokens (a I-safe graph
is simply called safe).

-A graph is repetition-free if the domain
of (data) operators associated with (AND,
EOR) and (EOR,EOR) logic transitions is
modified between two consecutive firings of
the transition [4,6].

Now, a k-safe, repetition free graph execu­
tion (P,M ,M) is properly terminating, if,
for all in~erpretations and all execution se­
quences, if a terminal marking is reached, then:

-No place will ever receive more than k
tokens;

-The terminal marking is a member of M.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

-All members of M can be reached from M
by some finite execution sequence.

o

Theorem: There exists an effective procedure
to determine if the execution ("P,Mo,M) of a k­
safe, repetition free graph P is property
terminating.

Proof: The proof is by construction and resembles
that of the word problem in automata theory.

Let IPI be the number of places in the
graph. If P is k-safe, fhf number of allowable
markings is bounded by 2k p. CQn~ider now the
state graph consisting of the 2klPI states (al­
lowable markings) and of a dead state 8 corres­
ponding to a tentative firing of a transition
which would fill a place with more than k
tokens. By convention no state can be reached
from 8. We construct the connections between
different states as follows. We start with M
and build the set M as the set of states 0

which can be reachedofrom M by the firing
of one transition. We link OM with members of
M , each link (or arc) being l~beled with the
n~e of the transition. We repeat this process
with each element of Mo yielding M'l and the
labeled arcs between elements of Mo and M'l.
Then the set Ml is defined by

Ml = M'l - (Mo U {Mo})·

At step i, i.e. upon reaching Mi _l , the con­
struction is as follows. Let M'. be the
set of markings which can be reached 1 from an
element of Mi _l by firing of a single transi­
tion. We connect elements ~f Mi _l with
their appropriate successors in M i ana deter­
mine Mi by

Mi = M'i - (Mi _l U Mi _2 U ••• U Mo U {Mo})·

Since the number of states is fi~ife, this pro­
cedure halts for some j, j S 2klP , such that
M. = I. Now, let M' be the set of markings
bJlonging to aMi' 0 S i < j from which no
other marking can be reached. The graph is pro­
perly terminating if and only if M' = M and
there exists a path from any state belonging to
some M. to at least one member of M. This
latter Eondition is checked easily by some "suc­
cessor" algorithm. The necessary condition is
evident. If M' ~ M, then there exists a term­
inal marking which was not in the set of goals.
If M' c M, then some goal can never be reached.
If some state, reachable from Mo cannot reach a
member of M, then the execution sequence cannot
terminate. The sufficient condition stems from
the repetition free property which states in ef­
fect that every possible path constructed above
will be taken for some interpretation and exe­
cution sequence.

Q.E.D.

Figure 11 shows the state diagram and con­
nections for the execution (P,l,{5,6}) of the
safe graph P of Figure 9. States belonging to

20

M' have been noted @.

Figure 11. Procedure for Proper Termination.

It is worthwhile to remark that the above
procedure allows also:

-The determination of the value k for
k-safety; k is the maximum number of
repetitions of a place in any marking.

-The determination of the number of transi­
tions which can fire simultaneously, i.e.
the maximum parallelism. We explain the
process informally here by the example of
Figure 11.

We write the execution sequences leading
from M to the other reachable states as se­
quenceg of transition firings. We only consider
paths between states which lead from a state in
some set Mi to a state in some other set
M.,j>i. From a given marking, a boolean expres­
sion - sum of products - indicates the possible
connections. When a product is present, it
shows possible concurrency in the firing or two
(or more) transitions. An execution sequence is
made up of concatenations of such expressions.
From the example of Figure II, we have the devel­
opment:

E = a o
(unique transition firing possible)

El = ab U ad U a(b n d)

(either b or d or both can fire from
(2 11 15»

The concurrency (here b n d) is recognized when
the firing expressions for two transitions have
mutually exclusive left hand sides and these left

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

hand sides are subsets of the same marking. Now
from El , we obtain EZ by considering the tran­
sitions out from each state of Ml and we ex­
pand appropriately the terms by recognizing
which term (i.e. path) led to each marking. For
example, (3 11 15) has been reached from ab
and also from a(b n d).

EZ = ab(c u d u (c n d» u abed u f u

(d n f» u abed u h u (d n h» u adb

u a(b(c u d u (c n d» u a(b(d u f u

(d n f» n d) u a(b(d u h u (d n h» n d)

u a(b n db)

We consider next the union operators as distri­
butive since they correspond to distinct paths.
Thus, we expand EZ while at the same time sup­
pressing from it those expressions which cor­
respond to paths leading uniquely to markings in
Mo and MI' It yields

EZ =~u abd u a~ u abf u abed n f)

u abh u abed n h) u~ a~d) u

~ u a(b~ d) u a(bf n d) u

a~ n d) u a(bh n d) u a~ n

d) u a~)

The terms which are crossed are cancelled for the
following reasons:

- abc, a(bc n d) and ab(c n d) because
they lead to markings belonging to Mo
and M. or to the same marking as
abd. 1

- adb because it leads to the same marking
as abd.

- Terms of the form a(Sx n yx), where
a, Sand yare subsequences, are ex­
panded into a(S n yx) u a(Sx n y) since
the firing of transition x cannot be
duplicated. For example, a(b(d n f) n d)
becomes a(bf n d) u. abed n f) and these
last two terms are already present in EZ'

Hence, we obtain:

abd u abf u abh u abed n f) u abed n h)

u a(bf n d) u a(bh n d)

Continuing this process, we will have:

E3 = abdf u abdh u abhe u abh(d n e) u

abed n he)

E4 = abdfg u abhec u abh(d n ec) u abed n hec)

21

E5 abhecb u abh(d n ecb) u abed n hecb)

E6 abhecbh u abh(d n ecbh) u abed n hecbh)

Now, the maximum parallelism MP is the maximum
number of elements that are linked by an n
sign in any given term belonging to an Ei • In
this example, MP = Z.

4. The Reduction Procedure.

The number of steps in the above procedure
grows exponentially with the number of places in
the graph. In a recent paper [4], the U. C. L. A.
group has shown how this procedure could be shor­
tened for a certain class of graphs of which our
graph without token absorbers and switches is a
subclass. This reduction procedure consists of a
selective substitution of markings appearing on
the lefthand side of the firing expression by the
corresponding righthand sides. It can be shown
that only a slight modification to the process is
necessary to apply equally to the graphs we have
defined above. The term reduction is used since
the number of sets M. as well as their cardin­
alities is diminished1 through the activation of
the procedure. A few steps of the process applied
to the graph of Figure 9 are shown in Figure lZ(a)
as well as the resultant state graph.

Reducing Z

1+31115 49 + 5 8 + 7

1 + 4 11 15 49 + 10 10 lZ + 5 15

1 + 7 11 15 7 15 + 13 10 lZ + 6 15

3 + 3 7 15 + 14 11 + lZ

3 +4 8 + 3 13 + 8 9 11 lZ

3 + 7 8 + 4 14 + 8

After reducing 3,8,11 and 14

1 + 4 lZ 15 7 15 + 13 10 12 + 6 15

1 + 7 12 15 7 15 + 4 13 + 4 9 12

4 9 + 5 7 15 + 7 13 + 7 9 12

4 9 + 10 10 12 + 5 15

Final reduction

1 + 4 12 15 7 15 + 13 10 12 + 5 15

1 + 7 12 15 7 15 + 7 9 1Z 10 12 + 6 15

4 9 + 5

4 "9 + 10 7 15 + 7

Figure lZ(a).

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Figure 12. The Reduction Procedure and Terminal
State Graph.

V. Conclusion.

In this paper we have presented a methodol­
ogy for modeling parallel computations by graph
models. We have shown what features are partic­
ularly appropriate for a specific application,
namely compilation. Descriptive aspects (e.g.
switches), efficiency aspects (e.g. token ab­
sorbers) and formal aspects (e.g. proper termina­
tion) were considered. This work is still in its
early stages, and it might be necessary to intro­
duce new features in the model. This will be done
following the philosophy that we have put forward
in this paper; that is, adjunctions to enhance
the descriptive power of the model should not be
made at the expense of destroying some formal
properties, and, conversely, formal properties
should not be sought if they do not relate to the
application at hand.

22

References

[lJ ADAMS, D. A., "A Computation Model with Data
Flow Sequencing", PhD Dissertation, Comp­
uter Science Department, Stanford Univer­
sity, 1968.

[2] BAER, J. L., BOVET, D. P., and G. ESTRIN,
"Legality and Other Properties of Graph
Models of Computations", JACM, 17, 543-552,
July 1970.

[3] BAER, J. L., "A Survey of Some Theoretical
Aspects of Multiprocessing", Computing Sur­
veys, 5,1, 1973.

[4] GOSTELOW, K., CERF, V., ESTRIN, G. and S.
VOLANSKY, "Proper-Termination of Flow of
Control in Programs Involving Concurrent
Processes", SIGPLAN Notices, 7, 11, Nov
1972.

[5] HOLT, A. W. and F. COMMONER, "Information
System Theory Project", Applied Data Re­
search, Inc., 1969.

[6] KARP, R. M. and R. E. MILLER, "Parallel Pro­
gram Schemata", Journal of Computer and
System Sciences, 3, 147-195, May 1969.

[7] NOE, J. D., "A Petri Net Model of the CDC
6400", Proceedings of the ACM/SIGOPS Work­
shop on Systems Performance Evaluation,
362-378, Apr 1971.

[8] NUTT, G. J., "Evaluation Nets for Computer
System Performance Analysis", Proceedings
AFIPS 1972 FJCC, 41, 279-786, 1972.

[9] PATIL, S. S. and J. B. DENNIS, "The Descrip­
tion and Realization of Digital Systems",
COMPeON 72, 223-227.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

* MEASUREMENTS OF PARALLELISM IN ORDINARY FORTRAN PROGRAMS

** ** ** David J. Kuck ,Paul P. Budnik ,Shyh-Ching Chen ,

Edward W. Davis, Jr.+, Joseph C-C. Han++, Paul W. Kraska+++,
** *** ** Duncan H. Lawrie ,Yoichi Muraoka ,Richard E. Strebendt

and
** Ross A. Towle

Abstract -- This paper reports the results
of a measurement of parallelism at the statement
level in 86 FORTRAN programs. The amount of par­
allelism is determined by an analyzer program and
is measured in terms of speedup over serial exe­
cution, the number of independent processors re­
quired, the efficiency of parallel execution and
other measures.

The analysis techniques are only sketched in
this paper, details may be found in the refer­
ences. We also outline some machine organization
assumptions.

Introduction

In the folklore of computer architecture
there has been much speculation about the effec­
tiveness of various machines in performing vari­
ous computations. While it is quite easy to
design a machine (or part of a machine) and study
its effectiveness on this algorithm or that, it
is rather difficult to make general effectiveness
statements about classes of algorithms and ma­
chines. We are attempting to move in this direc­
tion and the present paper contains experimental
measurements of a rather wide class of algorithms.
Such measurements should be quite helpful in
establishing some parameters of machine organiza­
tion.

The organization of algorithms and pro­
gramming for multioperation machines has been
attacked in a great variety of ways in the past.
These have included new programming languages,
new numerical methods, and a variety of schemes
to analyze programs to exploit some particular
kind of simUltaneous processing. The latter have

* This work was supported in part by NSF Grant
GJ-36936.

** Department of Computer Science
University of Illinois
Urbana, Illinois 61801

+ Goodyear Aerospace Corporation
Akron, Ohio

++Chung Shan Institute of Science and Technology
Hsien-Tien, Taipei, Taiwan

+++Control Data Corporation
Minneapolis, Minnesota

*** Nippon Telephone and Telegraph Corporation
Tokyo, Japan

23

included both hardware and software devices [5,
15,27,32,33,35,37]. Multiprogramming often
formed an important part of these studies. None
of them apparently tried to extract from one pro­
gram as many operations as possible which could be
executed simultaneously. For a comprehensive sUr­
vey of many related results see [3].

This paper contains little detail about ma­
chine organization--we merely sketch some gross
simplifying assumptions below. Then we outline
the organization of our program analyzer and dis­
cuss its improvements over an earlier version
[23]. A set of 86 FORTRAN decks totalling over
4000 cards has been analyzed and these are de­
scribed in general terms. Then we present a num­
ber of tables and graphs which summarize our ex­
periments. These include the possible speedup
and number of processors required for the programs
analyzed. Finally, we give some interpretations
of these results. We conclude that some of the
folklore has been in error, at least with respect
to the kinds of programs we have measured.

Goals, Assumptions and Definitions

We are attempting to determine for computa­
tional algorithms, a set of parameters and their
values, which would be useful in computer system
design. A direct way of doing this is by the
analysis of a large set of existing programs. We
have chosen to analyze FORTRAN programs because
of their wide availability and because their
analysis is about as difficult as any high level
language would be. A language with explicit ar­
ray operations, for example, would be easier to
analyze but would restrict our analysis domain to
array type algorithms. We are attempting to show
that a very wide class of algorithms can be found
to possess a good deal of parallelism. The pro­
grams we have analyzed in many cases have no DO
loops at all, for example, and most decks have
less than 40 cards.

The experiments reported here are a substan­
tial improvement over those reported in Kuck, et
al [23] for several reasons. First, we have ana­
lyzed more than four times as many programs.
These have been drawn from a wide variety of
sources as described below and represent a wide
variety of applications including a number of non­
numerically oriented ones. Second, in an attempt
to study the sensitivity of our analyses to mem­
ory assumptions we have made two sets of runs as
described later (see Table III). Third, we have
made several improvements to the analyzer itself.
These include a new method of handling DO loops
which we call the vertical scheme, and a new way

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

of treating IF statements within DO loops. These
are discussed later in this paper.

In order to interpret the results of our
analysis, we must make a number of assumptions
about machine organization. These cannot be dis­
cussed in any detail here, but most of them are
backed by detailed study as given in our refer­
ences. Some are of course idealizations which we
would not expect to hold in a real machine. Thus
the results would be degraded to some extent. On
the other hand, since our analyzer still is quite
crude in several respects, we might expect these
degradations to be offset by better speedups due
to an improved analyzer.

We ignore 1/0 operations, assuming that they
do not exist in FORTRAN. We also ignore control
unit timing, assuming that instructions are al­
ways available for execution as required and are
never held up by a control unit. We assume the
availability of an arbitrary number of proces­
sors, all of which are capable of executing any
of the four arithmetic operations (but not neces­
sarily all the same one) at any time. Each of
the arithmetic operations are assumed to take the
same amount of time, which we call unit time.

Two nonstandard kinds of processing are as­
sumed. To evaluate the supplied FORTRAN func­
tions we rely on a fast scheme proposed in
De Lugish [13]. This allows SIN(X), LOG(X), etc.,
to be evaluated in no more than a few mUltiply
times. We also assume a many-way jump processor.
Given predicate values corresponding to a tree of
IF statements, this processor determines in unit
time which program statement is the successor to
the statement at the top of the tree. With up to
8 levels in such a tree, the gate count for the
logic is modest [11,12).

We assume the existence of an instanta­
neously operating alignment network which serves
to transmit data from memory to memory, from
processor to processor, and between memories and
processors. Based on studies of the requirements
of real programs, some relatively inexpensive
alignment networks have been designed [22,25].
We assume the memory can be cycled in unit time
and that there are never any accessing conflicts
in the memory. In Lawrie [25], and Budnik and
Kuck [7], memories are shown that allow the ac­
cessing of most common array partitions without
conflict. Hence, we believe that for a properly
designed system, accessing and alignment con­
flicts can be a minor concern and that under
conditions of steady state data flow, good system
performance could be expected. For more discus­
sion see [21].

Let the parallel computation time T be the
p

time measured in unit times required to perform
some calculation using p independent processors.
We define the speedup over a uniprocessor as

Tl
S = ~ , where Tl is the serial computation time,

p p

and we define efficiency as E
p

may be regarded as the quotient

Tl
T < I, which
Pp-

of S and the
p

maximum possible speedup p. As explained in

24

Kuck, et al [23], computation time may be saved
with the S;crifice of performing extra operations.
For example, a(b+cde) requires four operations
and T = 4, whereas ab + acde requires five

p
operations and T 3. If 0 is the number of

p p
operations executed in performing some computa­
tion using p processors, then we call R the

p
o

operation redundancy and let R
p

= -E. > 1 where
0-'

1
01 = Tl • Note that our definition of efficiency

E is quite conservative since utilization of
p

processors by redundant operations does not im­
prove efficiency. Utilization is defined as

o
U = -¥- < 1 where 0 is the number of operations

p p p - P

which could have been performed. Using R , we
p

R 01 R Tl
can rewrite U as U = ~ = ~ , and by the

p p pTp pTp

definition of E we have U R E. Thus, if an p p p p
observer notices that all p processors are com­
puting all of the time he may correctly conclude
that the utilization is 1, but he may not con­
clude that the efficiency is 1 since the re­
dundancy may be greater than 1.

Analysis Techniques

The analyzer accepts a FORTRAN program as in­
put and breaks it into blocks of assignment state­
ments, DO loop blocks, and IF .tree blocks. Dur­
ing analysis each block is analyzed independently
of the others and Tl , T , p, and 0 are found for

p p
each block. Next, we find all traces through the
program according to the IF and GO TO statements.
We accumulate TI , T , and a for each block in

p p

each trace to give Tl , T , and O. The maximum p p p
found in any block in each trace becomes p.

are calculated for each trace. E , S , and U
p P P

R ,
p

A block of assignment statements (BAS) is a
sequence of assignment statements with no inter­
vening statements of any kind. Statements in a
BAS can be made independent of each other by a
process called forward substitution. For example,
A = B + C; R = A + D by forward substitution be­
comes A = B + C; R = B + C + D. By using the
laws of associativity, commutativity, and distri­
butivity as in Muraoka [30], and Han [16], we
find the parallel parse tree for each statement.
The algorithm of Hu [17] is applied to this
forest of trees to give p. T is the maximum

p

height of the individual trees and (I is the sum
p

of the operations in the forest. This collection
of techniques is called tree-height reduction.

An IF tree block is a section of a FORTRAN
program where the ratio of IF statements to as­
signment statements is larger than some pre­
determined threshold. An IF tree block is

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

transformed into (1) a BAS consisting of every
set of assignment statements associated with each
path through the decision tree, (2) a BAS con­
sisting of the relational expressions of the IF
statements which have been converted to assign­
ment statements (i.e., X > Y is converted to
B = SIGN(X-Y», and (3) a-decision tree into
which the IF statements are mapped. The tree­
height reduction algorithm is then applied to (1)
and (2) combined. Davis [11] shows how to evalu­
ate an eight-level decision tree in unit time.
Thus a dual purpose is served: speedup is in­
creased by increasing the size of the BAS through
combination of the smaller BAS's between IF state­
ments, and a number of decision points in a pro­
gram are reduced to a single multiple decision
point which can be evaluated in parallel. The
complete IF tree algorithm is described in Davis
[11,12].

There are two types of parallelism in DO
loop blocks which can be found most often in pro­
grams. First, the statement

DO 1 I = 1, 3

1 A(I) = A(I+l) + B(I) + e(I) * D(I)

can be executed on a parallel machine in such a
way that three statements, A(l) = A(2) + B(l)
+ e(l) * D(l), A(2) = A(3) + B(2) + e(2) * D(2)
and A(3) = A(4) + B(3) + e(3) * D(3) are computed
simultaneously by 3 different processors. Thus,
we reduce the computation time from Tl = 9 to

T = 3. This type of parallelism (array opera-
p

tions) we will call Type-l parallelism. If we
apply tree-height reduction algorithms to each of
these three statements, we can further reduce the
computation time to 2 for a 6 processor machine.

The second type of parallelism lies in state­
ments such as

(i) DO 1 I = 1, 5

1 P = P + A(I)

(ii) DO 1 I = 1, 5

1 A(I) = A(I-l) + B(I)

which both have a recurrence relation between the
output and input variables. In example (ii), if
we repeatedly substitute the left-hand side into
the right-hand side and apply the tree-height re­
duction algorithms to each resultant statement, we
can execute aIlS statements in parallel, e.g.,
A(l) = A(O) + B(l), A(2) = A(O) + B(l) + B(2),
••• , A(5) = A(O) + B(l) + B(2) + B(3) + B(4)
+ B(5). This will decrease the computation time
from 5 to 3. For a single variable recurrence re­
lation as in example (i), we can use the same
techniques and compute only the last output P
= P + A(l) + A(2) ••• + A(5) in 3 unit steps in­
stead of 5. We will call this type of parallel­
ism Type-O parallelism.

In order to exploit these parallelisms in DO
loops, an algorithm described in Kuck et al [23],
called the horizontal scheme can be used to trans­
form the original loop into an equivalent set of
small loops in which these potential parallelisms
will be more obvious. A modification of that
algorithm called the vertical scheme has now been

25

implemented. We illustrate these schemes with
the following example:

DO S6 I = 1, 3, 1

Sl T(I) G(I) +M

S2 G(I) T(I) + D(I)

S3 E(I) F(I-l) + B(I)

S4 F(I) E(I) + G(I)

S5 H(I) A(I-l) + H(I-I)

S6 A(I) G(I) + N

Due to limited space, we are unable to de­
scribe the details of the implementation [20,23],
and we only give the essential parts of the ver­
tical scheme:

a) Find the dependence graph among state­
ments (Figure 1). In the dependence graph each
node represents a statement; and a path from
S. to S. indicates that an input variable of S.

l J J
during certain iterations has been updated by
Si during the same or an earlier iteration, ac-

cording to the original execution order.
b) Separate the dependence graph into com­

pletely disconnected subgraphs, and arrange each
subgraph as a DO loop in parallel as shown in
Figure 2(a).

c) Apply the forward substitution technique
to each subloop and the tree-height reduction
algorithms to all resultant statements.

After this, the statements can be computed in
parallel. The required p and T for each subloop

p
resulting from use of the vertical and horizontal
schemes are shown in Figure 2.

For this example, both schemes give us a nice
speedup: Tl = 18, Tp = 6 for the horizontal

scheme and T = 4 for the vertical scheme. The
p

latter has a better speedup but uses more proces­
sors. Note also that the total number of proces­
sors listed in Figure 2, which is 12 for the
horizontal scheme and 32 for the vertical scheme,
can be further reduced by Hu's algorithm [16,17]
without increasing the number of steps, provided
that some of the subtrees formed by the resultant
statements are not completely filled, which is
usually the case in most programs •

The basic difference between these two
schemes is that the horizontal scheme tends to
facilitate the extraction of Type-l parallelism
while the vertical scheme helps to find Type-O
parallelism. At present, we do not have a general
method of determining, a priori which scheme will
give a better result for a particular DO loop.
Although many cases yield the same result using
either scheme, in some cases a higher speedup
(with or without lower efficiency of the use of
processors) can be achieved using one scheme or
the other.

IF and GO TO statements increase the number
of possible paths through a DO loop and complicate
the finding of the dependence graph, when there

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

are more than a few IF and GO TO statements. We
find all possible paths and then analyze each
path separately and call this strategy DO path.
Thus, when p, 0 , etc., are being calculated for

p
an entire program we treat each path through each
DO loop separately rather than combining the
numbers for each DO loop path into one set of
numbers that describe the DO loop as a whole as
was done in Kuck, et al [23].

Description of Analyzed Programs

A total of 86 FORTRAN programs with a total
of 4115 statements were collected from various
sources for this set of experiments. They have
been divided into 7 classes; JAN, GPSS, DYS,
NUME, TIME, EIS, and MISC. JAN is a subset of
the programs described in Kuck, et al [23], and
came from Conte [10], IBM [18], Lyness [26], and
the University of Illinois subroutine library.
GPSS contains the FORTRAN equivalents of the
GPSS (General Purpose Simulation System) as­
sembler listings [11] of 22 commonly used blocks.
The DYSTAL (Dynamic Storage Allocation Language
in FORTRAN [34]) library provided the programs in
DYS. NUME contains standard numerical analysis
programs from Astill, et al [2], Carnahan [8],
and other sources. TIME is several time series
programs from Simpson [36]. EIS is several pro­
grams from EISPACK (Eigensystem Package) which
are FORTRAN versions of the eigenvalue programs
in Wilkinson and Reinsh [38]. Waste paper bas­
kets provided elementary Computer Science student
programs, civil engineering programs, and Boolean
synthesis programs. These and programs from
Kunzi, et al [24], and Nakagawa and Lai [31] make
up MISC:- Table I and Figures 3 and 4 describe
the 86 programs analyzed.

Results

The analyzer determines values of Tl , Tp' p,

E , S , 0 , R , and U for each trace in a pro-p p p p p
gram. Each program was analyzed separately using
both the horizontal and vertical schemes of DO
loop analysis. The results of vertical or hori­
zontal analysis were then used depending on which
sCReme gave better results for a particular pro­
gram. The values of Tl , Tp' etc., for each trace

were then averaged to determine an overall value
for a program Tl , Tp' etc. Thus, we assume that

each trace is equally likely, an assumption re­
quired by the absence of any dynamic'program
information. We feel this assumption yields
conservative values since the more likely traces
which are probably large and contain more paral­
lelism are given equal weight with shorter,
special case traces. Figures 5-9 are histograms
showing Tl , T , E , S , U , respectively, versus

p p p p
the number of programs.

The overall program values Tl'ATp'Aetc., are

averaged to obtain ensemble values Tl , Tp' etc.,

for groups of related programs (see Table I).

26

Table II shows these ensemble values for each
group of programs as well as for all programs
combined. As we can see, for a collection of
ordinary programs we can expect speedups on the
order of 10 using an average of 37 processors
with an average efficiency of 35%. The use of
averages in these circumstances is open to some
criticism but we feel it is acceptable in view of
the facts that the data are well distributed and
the final averages are reasonably consistent,

A

e.g., PEp~Sp. Such anomalies as Tl/Tp ~ Sp can

be attributed to occasional large T values in
p

our raw data.
At this time we should stress several points

about our source programs. First, four programs
were discarded because they contained nonlinear
recurrence relations and caused analysis diffi­
culties. Their inclusion would have perturbed
the results in a minor way, e.g., speedup would
be low for these four. One was discarded be­
cause Tl was so large that it effected the final

averages too strongly (Tl - 10953). Second, all

the programs were quite small (see Table I).
Third, the number of loop iterations was 10 or
less for all but one of the programs (where it
was 20) whose data is shown in Table II. Higher
speedups, efficiencies, etc., 'would be expected
using a more realistic number of iterations (see
Figures 10-12). Finally, we have not employed
any multiprogramming, i.e., we do not account for
the fact that more than one program can be exe­
cuted simultaneously, (c.f. [11]). Multiprogram­
ming would of course allow the use of more proces­
sors, in general.

For the results shown in Figures 5-12 and
Table II, the analyzer accounts for memory stores
but not for any memory fetches. The effect of
accounting for fetches is shown in Table III,
which lists the ensemble values for 65 programs
run with and without memory fetches. As we can
see, accounting for memory fetches improves our
results. In reality, a lookahead control unit
and overlapped processing and memory cycling would
perhaps result in numbers somewhere between these
values.

Finally, Figures 10-12 show Sp versus Tl , p
A A A

versus Tl and S versus p, respectively, for each , p

ensemble JAN, GPSS, etc., as well as for all pro­
grams. Additionally, we took the programs in JAN,
GPSS. NOME, TIME, and EIS, which had DO loops
with a variable limit (about 40% of the programs),
and set the DO loop limits to 10. The resulting
program values were averaged with all other pro­
grams in these groups and the final average plot­
ted in Figures 10-12. The analyses were repeated
using DO limits of 20, 30, and 40. and the re­
sulting averages plotted as before.

Conclusions

Our experiments lead us to conclude that
multioperation machines could be quite effective
in most ordinary FORTRAN computations. Figure 12

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

shows that even the simplest sets of programs
(GPSS, for example, has almost no DO loops) could
be effectively executed using 16 processors. The
overall average (ALL in Figure 12) as shown in
Table III is 35 processors when all DO loop
limits are set to 10 or less. As the programs
become more complex, 128 or more processors would
be effective in executing our programs. Note
that for all of our studies, Tl ~ 10,000, so most

of the programs would be classed as short jobs in
a typical computer center. In all cases, the
average efficiency for each group of programs was
no less than 30%. While we have not analyzed any
decks with more than 100 cards, we would expect
extrapolations of our results to hold. In fact,
we obtained some decks by breaking larger ones at
convenient points.

These numbers should be contrasted with cur­
rent computer organizations. Presently, two to
four simultaneous operation general purpose ma­
chines are quite common. Pipeline, parallel and
associative machines which perform 8 to 64 simul­
taneous operations are emerging, but these are
largely intended for special purpose use. Thus,
we feel that our numbers indicate the possibility
of perhaps an order of magnitude speedup increase
over the current situation. Next we contrast our
numbers with two commonly held beliefs about ma­
chine organization.

Let us assume that for 0 ~ Sk ~ I, (l-Sk)

of the serial execution time of a given program
uses p processors, while Sk of it must be per-

formed on k ~ p processors. Then we may write

SkTl Tl
(assuming 01 = Ok +Op) : Tp = -k- + (l-Sk) p

and E
Tl 1 For p .p.. SkTl+(l-Sk)Tl 1+S (.p.. - 1)

k kk

example, if k = I, p = 33, 1
and Sl = 16 , then we

1
have E33 = 3' This means that to achieve E33

1
= 3 ' 15/16 of Tl must be executed using all 33

processors, while only 1/16 of Tl may use a

single processor. While E33 = 1/3 is typical of

our results (see Figure 7), it' would be extremely
surprising to learn that 15/16 of Tl could be

executed using fully 33 processors. This kind of
observation led Amdahl ,[I] and others [9,35] to
conclude that computers capable of executing a
large number of simultaneous operations would not
be reasonably efficient, or to paraphrase them
"Ordinary programs have too much serial code to
be executed efficiently on a multioperation
processor".

Such arguments have an invalidating flaw,
however, in that they assume k = 1 in the above
efficiency expression. Evidently, no one who re­
peated this argument ever considered the obvious
fact that k will generally assume many integer
values in the course of executing most programs.
Thus, the expression for E which we gave above

p

27

must be generalized to allow all values of k up to
some maximum.

The technique used in our experiments for
computing E is such a generalization. For some

p
execution trace through a program, at each time
step i, some number of processors kei) will be
required. If the maximum number of processors
required on any step is p, we compute the effi­
ciency for any trace as

E
P

T
P

1: k(i)
i=l
pR T

P P
, assuming p processors are

available. Apparently no previous attempt to
quantify the parameters discussed above has been
successful for a wide class of programs. Besides
Kuck, et al [23], the only other published re­
sults arelby Baer and Estrin [4], who report on
five programs.

Another commonly held opinion, which has
been mentioned by Minsky [29] is that speedup S

is proportional to 10g2 p. Flynn [14] further
p

discusses this, assuming that all the operations
simultaneously executed are identical. This may
be interpreted to hold 1) over many programs of
different characteristics, 2) for one fixed pro­
gram with a varying number of processors, or 3)
for one program with varying DO loop limits.
That the above is false under interpretation 1
for our analyses is obvious from Figure 12. Sim­
ilarly, it is false under interpretation 2 as the
number of processors is varied between 1 and some
number as plotted in Figure 12. As p is in­
creased still farther, the speedup and efficiency
may be regarded as constant or the speedup may be
increased at a decreasing rate together with a
decreasing efficiency. Eventually, as p becomes
arbitrarily large, the speedup becomes constant
and in some region the curve may appear loga­
rithmic. Under interpretation 3, there are many
possibilities--programs with multiply nested DO
loops may have speedups which grow much faster
than linearly, and programs without DO loops of
course do not change at all. Rather than dis­
cuss the above any further, we turn to the fol­
lowing.

Abstractly, it seems of more interest to re­
late speedup to Tl than to p. Based on our data,

we offer the:

Observation For many ordinary FORTRAN programs
(with Tl ~ 10,000), we can find p such that

1) T alog2 Tl p

and 2) ~
Tl

p .6 log2Tl

such that Tl
3) Sp ~ 10 10g2Tl

for 2 ~ a ~ 10

and E >.3. p-

The average a value in our experiments was about
9. However, the median value was less than 4,

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

since there were several very large values.
A complete theoretical explanation of this

observation would be difficult, at present. But
the following remarks are relevant. Theoretical
speedups of O(Tl/logZTl) for various classes of

arithmetic expressions have been proved in Brent,
et a1 [6], Maruyama [28], and Kogge and Stone
1I9~ Many DO loops yield an array of expres-
sions to be evaluated simultaneously and this

leads to speedups greater than 0(------1 Tl). Other
og2Tl

parts of programs use fewer processors than the
maximum and yield lower speedups. However, we
have typically observed speedups of two to eight
in programs dominated by blocks of assignment
statements and IF statements, assuming the IF
tree logic of Davis [11].

In practice one is generally given a set of
programs to be executed. If the problem is to
design a machine, i.e., choose p, then the above
approach is a reasonable one. Alternatively, the
problem may be to compile them for a given number
of processors. If the number available is less
than that determined by the above analysis, the
speedup will be decreased accordingly. If the
number to be used is greater than that determined
above, one must face reduced efficiency or multi­
programming the machine.

We gain several advantages by the analysis
of programs in. high-level languages. First, more
of a program can be scanned by a compiler than by
lookahead logic in a control unit, so more global
information is available. Second, in FORTRAN, an
IF and a DO statement, for example, are easily
distinguishable, but at run time the assembly
language versions of these may be quite difficult
to distinguish. Third, a program can be trans­
formed in major ways at compile time so it may be
run on a particular machine organization. All of
these lead to simpler, faster control units at
the expense of more complex compilation.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

J. L. Baer, "A Survey of Some Theoretical
Aspects of Multiprocessing," Computing
Surveys, Vol. 5, No.1 (March 1973), pp.
31-80.

J. L. Baer and G. Estrin, "Bounds for Maxi­
mum Parallelism in a Bilogic Graph Model of
Computations," IEEE Transactions on Com­
puters, Vol. C-18, No. 11 (Nov. 1969),
pp. 1012-1014.

H. W. Bingham, E. W. Riegel and D. A.
Fisher, "Control Mechanisms for Parallelism
in Programs," Burroughs Corp., Paoli, Pa.,
ECOM-02463-7 (1968).

R. Brent, D. Kuck and K. Maruyama, "The
Parallel Evaluation of Arithmetic Expres­
sions Without Division," IEEE Transactions
on Computers, Vol. C-22, No.5 (May 1973),
pp. 532-534.

P. Budnik and D. J. Kuck, "The Organization
and Use of Parallel Memories," IEEE Trans­
actions on Computers, Vol. C-20, No. 12
(Dec. 1971), pp. 1566-1569.

B. Carnahan, H. A. Luther and J. O. Wilkes,
Applied Numerical Methods, John Wiley and
Sons, (1969).

T. C. Chen, "Unconventional Superspeed Com­
puter Systems," AFIPS Conference Pro­
ceedings, Vol. 38 (1971), pp. 365-71.

S. D. Conte, Elementary Numerical Analysis,
McGraw-Hill (1965).

E. W. Davis, Jr., A Multiprocessor for
Simulation Applications, Ph.D. thesis,
Dept. of Computer Science, University of
Ill., Urbana, Rep. No. 527 (June 1972).

Finally, we point out that a number of re- [12] E. W. Davis, Jr., "Concurrent Processing of
alities of actual machines have been glossed over h" \Conditional Jump Trees," Compcon 72, IEEE
in this paper. We mentioned a number of these in ~ , Computer Society Conference Proceedin2s,
our section on Goals, Assumptions and Definitions. C. ,'- (Sept. 1972), pp. 279-281.
A more detailed discussion of the philosophy of 'l~'
our analysis work may be found in [21,23]. ") [13] B. De Lugish, A Class of Algorithms for

Automatic Evaluation of Certain Elementary
Functions in a Binary Computer, Ph.D. thesis,
Dept. of Computer Science, University of
Ill., Urbana, Rep. No. 399 (June 1970).

Acknowled2ment

We gratefully acknowledge the contributions
of C. Cartegini, J. Claggett, W. Hackmann, D.
Romine, W. Tao, and D. Wills, who provided pro­
gramming assistance. This research was supported
by the National Science Foundation, Grant No. GJ-
36936 and by NASA, Contract No. NAS2-6724.

References

[1] G. M. Amdahl, "Validity of the Single Proces­
sor Approach to Achieving Large Scale
Computing Capabilities," AFIPS Conference
Proceedings, Vol. 30 (1967), pp. 483-485.

[2] K. N. Astill and B. W. Arden, Numerical Al­
gorithms: Origins and Applications, Addison­
Wesley, (1970).

28

[14] M. Flynn, "Some Computer Organizations and
Their Effectiveness," IEEE Transactions on
Computers, Vol. C-2l, No.9 (Sept. 1972),
pp. 948-960.

[15] C. C. Foster and E. M. Riseman, "Percola­
tion of Code to Enhance Parallel Dis­
patching and Execution," IEEE Transactions
on Computers, Vol. C-2l, No. 12 (Dec. 1972),
pp. 1411-1415.

[16] J. Han, Tree Height Reduction for Parallel
Processing of Blocks of FORTRAN Assignment
Statements, M.S. thesis, Dept. of Computer
Science, University of Ill., Urbana, Rep.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

[17]

[18]

[19]

[20]

No. 493, (Feb. 1972).

T. C. Hu, "Parallel Sequencing and Assembly
Line Problems," Operations Research, Vol. 9
(Nov.-Dec. 1961), pp. 841-848.

IBM, "Systeml360 Scientific Subroutine Pack­
age Version III," GH 20-0205-4 (Aug •. 1970).

P. Kogge and H. S. Stone, A Parallel Al­
gorithm for the Efficient Solution of a
General Class of Recurrence Eguations,
Dig. Systems Lab., Stanford, Calif., Rep.
No. 25 (Mar. 1972).

D. J. Kuck, NASA Final Report, Contract
NAS2-6724 (Dec. 1972).

[21] D. J. Kuck, "Multioperation Machine Computa­
tional Complexity," Proceedings of Symposium
on Complexity of Seguential and Parallel
Numerical Algorithms, invited paper, May 1973,
to be published by Academic Press.

[22]

[23]

[24]

D. J. Kuck, D. H. Lawrie and Y. Muraoka,
"Interconnection Networks for Processors and
Memories in Large Systems," Compcon 72, IEEE
Computer Society Conference Proceedings
(Sept. 1972), pp. 131-134.

D. J. Kuck, Y. Muraoka and S-C. Chen, "On
the Number of Operations Simultaneously Exe­
cutable in FORTRAN-Like Programs and Their
Resulting Speed-up," IEEE Transactions on
Computers, Vol. C-2l, No. 12 (Dec. 1972).

H. P. Kunzi, H. G. Tzschach and C. A.
Zehnder, Numerical Methods of Mathematical
Optimization with ALGOL and FORTRAN, (Werner
C. Rheinboldt, tran.), Academic Press (1971).

[25] D. H. Lawrie, Memory-Processor Connection
Networks, Ph.D. thesis, Dept. of Computer
Science, University of Ill., Urbana, Rep.
No. 557 (Feb. 1973).

[26] J. N. Lyness, "AlgOrithm 379 SQUANK (Simpson
Quadrature Used Adaptively--Noise Killed),"
Communications of the ACM, Vol. 13, No.4
(April 1970).

[27] D. Martin and G. Estrin, "Experiments on
Models of Computations and Systems," IEEE
Trans. Electron. Comput., Vol. EC-16 (Feb.
1967), pp. 59-69.

[28] K. Maruyama, "On the Parallel Evaluation of
Polynomials," IEEE Transactions on Computers.
Vol. C-22, No.1 (Jan. 1973), pp. 2-5.

[29] M. Minsky. "Form and Content in Computer
Science," 1970 ACM Turing Lecture. Journal
of the ACM, Vol. 17, No.2 (1970), pp. 197-
215.

[30] Y. Muraoka, Parallelism Exposure and Exploi­
tation in Programs, Ph.D. thesis, Dept. of
Computer Science, University of Ill., Urbana,

29

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Rep. No. 424 (Feb. 1971).

T. Nakagawa and H. Lai, Reference Manual of
FORTRAN Program ILLOD--CNOR-B) for Optimal
NOR Networks, Dept. of Computer Science,
University of Ill., Urbana, Rep. No. 488
'(Dec. 1971).

C, V. Ramamoorthy and M. Gonzalez, "A Sur­
vey of Techniques for Recognizing Parallel
Processable Streams in Computer Programs,"
AFIPS Conference Proceedings, Vol. 35,
AFIPS Press (Fall 1969), pp. 1-15.

E. M. Riseman and C. C. Foster, "The In­
hibition of Potential Parallelism by Condi­
tional Jumps," IEEE Transactions on Com­
puters, Vol. C-2l, No. 12 (Dec. 1972), pp.
1405-1411.

J. M. Sakoda, "DYSTAL Manual," Dept. of
Sociology and Anthropology, Brown Univ.,
Providence, R. I. (1965).

D. Senzig, "Observations on High-Performance
Machines," AFIPS Conference Proceedings,
Vol. 31 (1967), pp. 791-799.

S. M. Simpson, Jr., Time Series Computations
in FORTRAN and FAP, Vol. I, Addison-Wesley
(1966).

G. Tjaden and M. Flynn, "Detection and Par­
allel Execution of Independent Instruc­
tions," IEEE Transactions on Computers,
Vol. C-19 (Oct. 1970). pp. 889-895.

J. H. Wilkinson and C. Reinsh, Linear
Algebra, F. L. Bauer, ed., Springer Verlag
(1971) •

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

JAN GPSS DYS NUME TIME EIS MISC

Av. /I BAS
Outside DO 12.2 16.7 8.5 5.4 8.4 1.13 5.0

Av. /I BAS
Inside DO 3.7 0.3 2.5 4.3 3.5 6.6 4.4

Av. /I
DO Loops 1.8 0.3 1.5 1.9 3.1 1.5 2.4

Av. /I
Nested DOs 1.0 0.0 0.5 1.2 0.4 2.8 0.6

Av. # IFs 6.9 11.3 4.9 3.4 4.1 3.0 3.6

Av. #
IF Trees 1.5 1.9 1.3 0.8 1.5 0.0 0.8

Av. II Traces 75.5 36.1 21.4 29.7 12.1 5.5 24.6

Av. #
Statements 72.5 61.9 44.9 33.4 45.0 32.2 32.8

Total /I
Programs 12 22 10 10 8 8 16

Table I. Characteristics of Analyzed Programs

T1 T P E S 0 R U
P P P P P P

JAN 357 48 62 .37 12.1 654 2.3 .43

GPSS 30 12 14 .30 3.2 67 2.5 .54

DYS 224 146 19 .47 4.9 1969 2.4 .47

NUME 654 77 51 .35 20.7 676 1.2 .38

TIME 174 22 23 .42 7.1 207 1.5 .46

EIS 896 208 82 .32 22.6 2292 2.8 .34

MIse 274 32 39 .32 8.4 486 2.1 .41

ALL 310 63 37 .35 9.8 739 2.2 .45

Table II. Average Measured Values for Seven Program Groups and for all Programs Combined

Without Memory With Memory
Fetches Fetches

T1 678 967

T 148 164
P

P 35 35

Table III. Comparison of E .33 .41 Average Measured Values With p
and Without Memory Fetches

S 9.2 11.1
P

0
P

1212 1443

R
P

2.4 1.9

U .45 .44 p

30

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

DO 00 DO DO
51 55 51 56
5Z 56 ps3 p=3
53 T =1 Tp=l

54 ~ ~
p=7 DO DO

Tp=Z 5Z 55

p=3 p=4
p=25 Tps1 Tp=Z
Tp.4

~
DO
53
54

p=lZ
Tp=3

(a) (b)

Vertical Scheme Horizontal Scheme

Figure 1. Dependence Graph Figrue 2. Decomposition of DO Loops

(J1

L: 0-
a: N
a:
C)

0
a: 0-

a..

CARDS

Figure 3. Number of Programs Versus Number of Cards in Program

31

0-
(T')

en
~ 0-
0: C\J
a:::
C)

0
a::: 0-

0...

0-
(T')

en
~ 0-
0: C\J

a:::
C)
0
a::: 0-

0...

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

en
~
0:
a:::
C)
0
a:::
0...

c

0

III
N

~ -

0.0 0.1 0.2 0.3 O.~ 0.5 0.6 0.7 0.8

OLJ

Figure 4. Number of Programs Versus Fraction DO Loops

0-
(T')

0-
C\J

0-

2

~
~

N ...
2

~so 100 200 500 1000

T (1)

Figure 5. Number of Programs Versus II

(Q
N

... -... ...

~

r.l ?
I I

10000 >10000

~ B 16 32 128 256 512

p

Figure 6. Number of Programs Versus p

32

0.9 1.0

10~ >1~

en
~
a:
a:
C)
o
a:
a.....

*'

en
~
a:
a:
C)
o
a:
a.....

en
~
a:
a:
C)
o
a:
a.....

*'

o­
N

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

o

0.0 0.1

CD ...
...
N

0.2

III
N

0.3

E (P)

en ...

0.1l 0.5 0.6 0.7

Figure 7. Number of Programs Versus E . p

0.8 0.9 1.0 >1.0

61 2 3 Il 5 6 7 8 9 10 20 30 "0 50 60 70 80 90 100)100

o

0.0 0.1

s (P)

Figure 8.

ID

0.2

... ...

0.3

U (Pl

Figure 9.

Number of Programs Versus S p

0.1l

en ...

0.5

""' N

0.6

CD

0.7

Number of Programs Versus ij
p

33

o

0.8 0.9 1.0 1.0

o
c:i
::I

o
.,; ...

o
.,;

a.. N
::>
C
lJ.J
lJ.J
0..0
((')0

N

o
2

o
.,;

)!(GPSS

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

)!(JAN

)!(ALL

)!(:a: Mise

TIME

)!(OYS

)!(40

o
·r-------+I-------+I------+I------+�------+�------~I------~I------~I------~I------~I

9b.0 2.0 q.O 6.0 8.0 10.0 12.0 Iq.O 16.0 18.0 20.0
• ~F SERIRL OPERRTIONS(XI02

Figure 10. Sp Versus T1

34

.,.
9

en­
a: o
en
en
ILl w.,.
00 a: CD
Cl..

l&­eo
aO
o ...

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

~JAN

~MISC

~ALL
~TIME

~DYS
~GPSS

~IO

~40

~30

~EIS

~ ~20
NUME

o
~+.O------~2.~O------q~.O------6~.-O------8~.O------1+O-.O----~12~.O------l~q.-O-----l~6-.0------18~.-O----~~.O

• Of SERIRL OPERRTIONS(XI02)

Figure 11. p Versus T1

35

o
on
::t'

o
o
::t'

o
on ..,

o
o ..,

o
on o..N

=>
Cl
W
W
0..0
eno

N

o

'"

15.0

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

:a: 40

:a: ALL

:a: 10:a: :a:M1SC LOG 2 (P)

TIME~ ___ -=~--------------------~~~~--------------------DYS -_

30.0 115.0
I I I

60.0 75.0 90.0
• Of PROCESSORS

Figure 12. S Versus p
p

36

105.0 120.0 135.0 150.0

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

A LANGUAGE FOR CONTROLLING PARALLEL PROCESSES

Bill R. Hays
Computer Science Department

Brigham Young University
Provo, Utah 84602

Summary

The design of computers with parallel capab­
ilities, either as complete processors or multiple
units, has raised the question of how one can take
advantage of this increased computational ability.
The paper presents a language designed for control
of parallel processes.

There are many formal notations for parallel­
ism (1,2), but the approach here utilizes formal
language concepts and reduces the notational com­
plexity. Parallel computer organization usually
includes a control state and a similar idea is
used here. In effect, one has a pushdown store
automaton (3) controlling or scheduling other
automatons. Parallel units will be called subac­
ceptors or acceptors for discussion. The control
is either local or global with the distinction
that one global control state can permit a subac­
ceptor to control another subacceptor (local con­
trol). The global control state can: (A) communi­
cate with the subacceptors, (8) sequence subaccep­
tors, (C) permit local control, and (D) select the
proper subacceptor and determine if it is avail­
able. A stack is associated with each subacceptor
for control and communication. Notationally, if
Ai is a parallel subacceptor, then a symbol asso­
c1ated with its pushdown control state will be de­
noted by the subscript Ai. The production rules
of the acceptors for parallel control are of the
form: (i ,qj,<Pk)-+(qm,br,<Pll<P12 ..• <Pln)' with qj the
current state, qm the next state, i the expected
input symbol (s), <Pk the symbol(s) expected on top
of the stack, br the output symbol (s), <Pll ... <P ln
the output to the stack (n>O). The rules are ex­
ecuted by simultaneously examining the current sy­
mbol in the input string and the top symbol of the
stack. A production is executed only if both sy­
mbols are present. Successive rules associated
with a given state are considered until a rule is
executed or no production remains (this implies
one must specifically provide the production rules
for error conditions). After execution, the scan
device is moved to the next symbol and a transfer
is male to the specified state. All of the actions
do not have to be performed and Aindicates the ab­
sence of such an action. In practice, one would
simply omit it. The rules: (A,c,<PA/r{Ai ,A) and
(A,C,A)-+(A·,<PA) illustrate a transition based on

1 i
reading the stack and no output with the second
rule representing a transfer with output to the
stack. Hence, the only required elements are the
current state and next state.

Direct control of subacceptors will be accom­
plished by an associative list. Each element of
the list corresponds to a subacceptor or state and

37

contains control information. For example, if Ai
and Ak are parallel subacceptors, then the list
would contain <PA.,<PAk as acceptor equivalents. The
presence of <PAi ~ndicates an acceptor is available
and its absence indicates it is busy. <PAi will be
a special symbol used only for selecting a subac­
ceptor and is included in production rules as if
the associative list were a stack. A read selects
the symbol from a fixed place in the list and a
write, by the same production, places the output
symbol in this sublist. Hence, production rules
accessing the associative list can write only at
the entry at which it reads. The distinct types
of production rules are:

(A) Standard read-only, erase-only, read­
write, read-erase and read-erase-write rules. (8)
Control productions of the form: 1- (a,A,<PXi)-+
(Xi,<Pi) which reads the associative control list
and activates the parallel subacceptor Xi, assign­
ing it the stack <Pi. 2- (A,A,<PXi)+(Xi,<Pi<PA) which
releases 'A' for further activation by placing <PA
back on the associative control list. 3- (A,A,(

<PXi<Pi)A<PXi)-+(Xi ,<Pi<PA) which reads a request for Xi
to process the stack <Pj and performs the request
by activating Xi and passing the required informa-
tion. (C) Local control productions of the form:
1- (w,Xi,aiWi¢y)-+(y,Wj(<PX1~¢1¢A) which activates
'Y' to process the stack <Pi and requests a return
to state Xi. 2- (w,Xi,aiwi<Py)-+(Y,Wj<Pi<PXi) if no
waitin~ is necessary.

(D) Subacceptor productions of the form: 1-
(A,Xi,ai<Pc)-+(c,(<Pi¢Y)c<PX.) which request the con­

. 1
trol state 'c' to actlvate Xi to process the push-
down store ~. 2- (A,Xi ,ai<PC)-+(C,(<PXi¢i¢Y)c<Px.)

1
which also requests a return to state Xi.

The language could be used to write the pro­
cedures, but it would be expected that only the
control procedures would be written in the langu-
age.

References

(l) J. Dennis and E. C. Van Horn,"Programming Se­
mantics for Multiprogrammed Computation"
CACM, 9 (March, 1966), pp. 143-155.

(2) E. W. Dijkstra, "Cooperating Sequential Pro­
cesses",Programming Languages, F. Genuys, Ed.
Academic Press, 1968.

(3) Hopcroft and Ulman, Formal Languages and
Their Relation to Automata, Addison, Wesley,
1969.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

THE TRANSFORMATION OF FLOW DIAGRAMS INTO MAXIMALLY PARALLEL FORM

G. Urschler
System Development Division

IBM Corporation
Endicott, N.Y. 13760

Abstract - The algorithmic transformation of flow
diagrams into a goto- and variable-free parallel program
representation is described. It is shown, how the control
mechanism for these parallel programs works and that it
exhibits dynamically maximum parallelism in a certain,
well-defined sense. The method presented is new and
gives the optimum that can be achieved in intra-task
parallelism.

Introduction

General Introduction

In an attempt to categorize the types of paral­
lelism, the following definitions are presented:

1. Inter-task parallelism. Dependencies between
concurrently executing work units are allowed. Synchro­
nization and deadlock prevention techniques are required
as well as explicit language features for the specification
of parallelism.

2. Intra-task parallelism. No dependencies be­
tween concurrently executing work units are allowed.
Required are methods for the automatic detection of
parallelism.

3. Parallelism on the hardware level.

This paper is concerned with intra-task parallelism,
and the area of particular interest is "maximum" parallel­
ism. Although it has been proven that the parallelization
problem is an undecidable one [11, the results presented
in this paper were possible because of a different under­
standing of the term "parallelization."

Adding of redundancy, for instance, commonly is
not regarded as parallelization. However in this paper
also the detection and exploitation of an already exist­
ing redundancy is not regarded as parallel ization, but as
optimization. Thus the above mentioned proof is regarded
as a proof for the undecidability of the optimization prob­
lem and thus not conflicting with the contents of this
paper.

Scope of the presented parallelization method

Core language. The method has been developed for
an input language consisting of read and write statements,
assignment statements, and branch and decision statements
(flow diagrams). Expressions are restricted to either
simple data variables (a, b, •••) or to simple expressions
(a +b, f (a, b, c), •••).

38

Extended language. The method obviously also
applies to each language being translatable into the core
language. Thus it works for a language additionally
containing composite expressions, fixed data structures,
and constant references (A [11 for instance, as opposed
to A [il).

Extension possibilities. Not described in this paper,
but known, are extensions of the method to a core lan­
guage containing subroutines and to the parallel ization
of more than one task.

Not covered. Not known at the present time are
extensions to languages involving varying data structures,
computed references (pointers, subscripted variables with
subscripts to be evaluated dynamically), and exception
handling.

Maximum parallelism

Based on the above core language, a more precise
definition of the notion of "maximum parallelism" can be
given. A statement obviously can be executed as soon as:

1. all decisions on which this statement execution
is dependent upon have been resolved (this kind of depen­
dency is called a control dependency),

2. all input values required for the statement's
execution have been generated (the corresponding depen­
dency is called an input dependency), and

3. it is known that these input values have been
generated (the corresponding dependency is called a data
dependency); the need for the latter case, being more
subtle than the previous ones, is illustrated in Figure 1.

A

no

B

C

Fig. 1 - Flow Diagram Showing a Data Dependency

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

If a resolution of D to the no branch is assumed,
then the input values for C have been produced before
execution of D by the preceding A, but this fact becomes
apparent only after resolution of D and thus C has to wait
for D too.

Sequencing constraints caused by control-, input­
and data dependencies only, are called necessary ones.
Maximum parallelism now means that the only logical
sequencing constraints to be followed at execution time
are necessary sequencing constraints.

Benefits of the method

Most of the conventional parallelization methods
[2] , [3] parallelize on a program basis, trying to divide
a program into independent program blocks. Thus the
parallelism which can be detected inherently is limited by
the size of the given program. The presented method, how­
ever, parallelizes on a computation (program execution)
basis, thus giving the more (potentially infinite) paral­
lelism, the lengthier the computation is. As byproducts,
new and highly efficient program analysis methods as well
as a quite unusual parallel program concept are developed.
The latter gives both an insight into the nature of paral­
lelism on the intra-task level and a certain understanding
of what a machine exploiting this kind of parallelism might
look like.

Paper overview

The method is illustrated by means of the program
in Figure 2 (the function y = ~ Vx is computed with an

x=l
error precision f for the square root calculations). "de­
notes the program beginning and /:; the program end. The
capital letters are used later for the symbol ic reference of
statements and program blocks, respectively.

In the following, a thorough program anqlysis is
made of this program, and based upon this analysis the
program is translated at first into a "single assignment"
form (in which each variable is written to, at most, once)
and finally into a variable-free form. As auxiliary tool
(regular) production systems from the theory of syntax are
used.

Program Analysis

Control flow analysis

1. Determination of the program logic. A program
like the one shown normally is - because of the unlimited
use of branching - a bowl of spaghetti. Thus the first
step in the analysis is the determination of the logic (the
structure) of the given program (for a more exhaustive de­
scription of this step see Reference [4l).

39

2 v:=x
v:=v-n
w: = 2x
g : =v/w
x: =x - g
v: =1 g I
p : = vsf

x
y

A
B

C

D
E
F
G
H
I

J

P

K
L

Q

M

R

F· 2 - The Source Program to be Parallelized Ig.

S

As an auxiliary tool the notion of "immediate post
dominator" is used [5], [6]. For a statement branching
unconditionally, the immediate post dominator is identical
to the successor of this statement. For decisions, the
immediate post dominator is that (uniquely determined)
statement at which all branches evolving from the
decision join for the first time. Thus in the given example,
decision P has the immediate post dominator K and
decision Q the immediate post dominator Z. If a chain
of succeeding immediate post dominators is referred to as
a control flow, the control flow of the given program can
be described by means of the following "production":

" ::= X Y ABC D E F G HI J P K L Q Z fl

The undefined elements in this production are "modules"
P and Q, which again are described by productions as
follows (e denotes the empty string; the first alternative
describes the "true" branch and the second one the "false"
branch):

P ::= {e IDE F G H I J p}
p

Q::={e I MCDEFGHIJ PKLQ}
q

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Productions for decisions are derived by con­
structing the control flow for each successor of the deci­
sion and following it as long as the "scope" of the deci­
sion is not left {which means that the immediate post
dominator of the decision itself is not yet reached}.
Particularly, it thus can happen - as in the above
example - that a decision alternative becomes empty.

2. Program reduction. The translation of a flow
chart into a goto-free form has,in essence, been achieved
by the copying of program text {and not as in the Boehm!
Jacopini method [71 by the introduction of "control
switches"}. Thus the new program, in general, becomes
much larger than the old one. This inconvenience is
removed in the following by the introduction of abbre­
viations for lengthy strings occurring more than once.

VX .. = SX SX • • = CW

VV : : = SV SV •• = RV

'lin : : = AW Sn Sn .• = CR

VW .. = SW S" .. = R W

vg· . = sg sg· . = R g
V S

v f : : = XW Sf Sf •• = Rf

'liP: : = SP Sp· . = RP

VY· . = B W SY ZR SY • • -.. - lXR

vq· . = sq sq· . = L W

'11m .. = yW Sm Sm •• = 2LR

R X: : = DR pR IHR HW pX

RV ,,= DW lER E W lC R I W IJR pV

Rn • • = 2ER pn

RW" = pW 2C R pW
R

Rg· • = CW 2HR IR pg

Rf •• = lJRpf

RP, • = JWpRpp

This reduces the program to the dimensions of the source
program. For the given example this results in:

'11::= X Y A B S Z ~

S::=CRXLQ

R"=DEPCHIJP

{ E I R}
P

Q • • = .. ~E I M S}
Data flow analysis

1. Derivation of local production s~tems. From
the above "global" production system, the forowing set of
"local" production systems is derived, each of which de­
scribes the program from the point of view of a single data
variable only. "MV" has the meaning "Module M as seen
from variable v", "SR" means "read operation in statement
S" and analogously "sw" means "write operation in state­
ment S". Productions for modules not containing a certain
variable are omitted. Altogether this gives the results
shown in Table I.

RX 2XRQX r::= {E I RX}

QV pV : : = {E I RV}

Rn l£R Qn pn: : = {E I Rn}

QW P pW: : = {E I RW}

Qg pg::={EI R g}

Qf pf : : = {E I R f }

QP pP: : = {E I RP }

XW QY

QR Qq

Qm

QX, • = · . { E Sx}

QV •• _ · .- { E I Sv}

Qn: : = { E MR MWsn}

QW' • = { E I Sw}

Qg: : = { E I sg}
Q

Qf : : = { Sf} E I

QP : : = { E sp}

QY: : = { E I SY}

Qq: : = { E I 'sq}

Qm •• _ · .- { E Sm}

Table I - Local Production Systems Describing the Flow of Data for the Given Source Program

40

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

2. Determination of module interfaces. A local
r,lodule of the kind Mv defines (in syntactical terms) a
certain language, the sentences of which are composed of
read and write operations only. A module is called read­
like if the corresponding language contains read operations
only. A modu Ie is said to require input (denoted by> M V),
if at least one of the sentences defined by it starts with a
read operation. Analogously it is said that output is
required from a module (denoted by Mv <), if it is not a
read-I ike module and if there is at least one occurrence
of M V which is followed either by a read operation or by
an input requiring module.

3. Incorporation of data dependencies. Local
modules from which an output is required almost behave
like a write operation in the sense that a variable becomes
redefined by them. This is, however, not always true.
Whenever there is an alternative wh ich has a read-I ike
behavior (only read operations are involved), then the
external appearance of th is module becomes inconsistent.
Sometimes it redefines the corresponding variable and
sometimes it does not. This is exactly the situation which
earlier was referred to as a data dependency. It is re­
moved by introducing copy statements (like x:=x) in those

'IX •• = SX SX •• =

'IV •• = SV Sv • • =

alternatives of modules for which output is required (in
which, otherwise, no redefinition would occur). Thus, in
the given example, two copy statements (symbol ica Ily
denoted by Nand 0) have to be introduced in the modules
P x and Q Y, respectively.

4. Introducing logical variables. Whenever one
and the same physical variable becomes redefined, then
from a logical point of view this is a new variable. This
can be indicated by segmenting each alternative in such
a way that after each write operation and after each local
module from which output is required, a new segment
(being the scope of a new logical variable) begins (denoted
by AWl! sn for instance). In addition, each alternative of
an inp~t requiring module also starts with a segment. The
variable names for the segments can be chosen freely with
the restrictions that (a) all variable names within the same
alternative have to be different, (b) different alternatives
of the same module have to begin and end with identically
named variables, and (c) the last variable name in each
alternative should be that of the corresponding physical
variable. Altogether for the given example, the follow­
ing set of extended local production systems, incorporat-
ing all data flow analysis information, is obtained (Table II).

CW II RX 2KRQX >pY;,. :: ={ IINRNwllllIRxl1 }
xa x xa x xa x

RV QV pv • • = { · . E I RV }

'In •• = AWIiSn >Sn: :=IICRRn1LRQn >pn • • ={ · . E I II R n } n n n

Vw .• = SW Sw • • = RWQw P pW • • = { · . E I R W }
vg .• = sg sg .• = Rg Qg pg · • = { E Rg } · .

S
>S f : : = 'If •• = XWII Sf II Rf Qf >pf : : = { E IIIR f }

f f f

vP .• = sP sP •• = RPQP pP • • = { E · . I RP }
VY •• = BWII SY II ZR >SY<.. : = II lKRKWl1 QY II

ya y ya yb y
Vq •• = sq sq· • = L W II QRQq

q

'1m •• = yWIlSm >Sm: : = II 2LR Q m
m m

x R FR IHR HWlbpxlI QX • • = { Sx} >R<::=IID E xa x x

RV • • = DW II lER EW Jb IGR IWIIIJR pv QV •• = { E sv} ..
va v

>Rn : : = II 2ERpn >Qn: : = { E II MR MWII Sn ~
n na n

R R W •• = F W II 2G R pw QW •• = { E SW}
W

Rg: : = GW Ir 2HR IR pg Q Qg: : = { E Sg}
g

>R f ::=1I 2J R p f >Qf::=
f

{ E P Sf}

R P: : = JW II pR pP >Q'k: : = { lIoR OWn II SY II
P ya y ya y

Qq •• = {E I sq }

>Q ill: : = {E I II s m }
m

Table II - Extended Local Production Systems Showing all Data Flow Analysis Information

41

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Program Transformation

Transformation into a "single assignment" form

The information given by the data flow analysis
makes it possible to translate the original global produc­
tion system into a program form in which each occurring
variable is defined at most once (see References [8], [91).
To do this, each module is associated with three kinds of
parameters:

1. A decision variable. Based on the value of
this variable, a corresponding alternative is chosen. If
the module is an unconditional one, there is no decision
variable.

2. A list of input variables. This is a list of all
those variables that the data flow analysis has shown are
required as input to this module.

3. A list of out~ut variables. This is the list of
all those variables that t e data flow analysis has shown
are required as input to this module.

The syntactic notation chosen is illustrated by the
following example:

Q (q) [n, f, yb, m; y] (q is the decision
variable, input and output variables are
separated by a semicolon, and y is an
output variable).

The ~ight side of the definition of an unconditional
module is an alternative, being a list of statements sep­
arated by semicolons and enclosed in braces. Condi­
tional modules are described by conditional expressions,
for instance, in the form:

p = 1
p=2

-- alternative 1
-- alternative 2

(the truthvalue true is represented by 1, and false by 2).
The variables occurring in each statement are taken from
the corresponding segment of the extended local produc­
tion systems. Altogether for the given example the
single-assignment form shown in Table III is obtained
(note that the previously introduced symbolic statement
names are indicated above the lines).

In such a program, the "basic statements"{assign­
ment and I/O statements) and "expansion statements"
(module call statements) can be distinguished. The pro­
gram can be executed in parallel as follows: Starting with
an instance (i. e. a copy) of the begin statement '1/ ,

execution of this statement expands into a set of state­
merit instances of the corresponding alternative. In this
set, an instance of a basic instruction becomes executable
as soon as all its input variables have a defined value
(because of the single-assignment property there is no
misinterpretation of the definition point possible). An
instance of an expansion statement is executable, as soon
as its decision variable - if any - has been defined.
Thus instances of unconditional expansion statements
always are executable. Execution of an expansion state­
ment instance evolves in an expansion incorporating the
corresponding alternative, whereby passing by name of
parameters is assumed and "internal" variables not occur­
ring in any parameter list are assumed to be newly created.

This execution mechanism gives maximum paral­
lelism because the only sequencing constraints are given
by the following facts: 1) a statement instance has to
wait until it has been generated {which according to the
program structure means that it has to wait until all con­
trol dependencies have been resolved}, and, 2) it has to
wait for its inputs {coming either direct from the "input
producer" in which case an input dependency is resolved
or from a copy statement, in which case a data dependency

X Y A B Z
'1/ : := {read f: read m: n:=1: ya:=O: S [n,f,ya,m:yJ: write yl

C K L
S[n,f,ya,m; yJ::={xa:=n; R [xa,n,f:xJ; yb=ya+x: q:=n=m;

Q(q)[n,f,yb,m:yJ}

D E F G H
R[xa,n,f:xJ::={va:=xa2 : vb:=va-n: w:=2xa: g:=vb/w: xb:=xa-g:

I J
v:=lgl; p:=v~f: P(p)[xb,n,f:xJ}

P(p}[xa,n,f;xJ::=
N

p=1-{x:=xa}
p=2- {R[xa,n,f;x]}

Q(q)[na,f,ya,m:yJ::=
o

q=1 - {y:=ya}
M

q=2 - { n:=na+1; S[n,f,ya,m;yJ}

Table III - The Original Flow Diagram in "Single-Assignment" Form

42

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

is resolved), "Overhead" statements such as all uncon­
ditional expansion statements different from V, are no
obstacle for maximum parallel ism, because their in­
stances are unconditionally executable and can be re­
garded as part of the expansion of the preceding con­
ditional expansion statement instance. For an equiva­
lence proof of the single-assignment program and the
original flowchart, see Reference [10] •

The drawback of the single-assignment representa­
tion is that the control mechanism is not totally explicit.
Although logically it is clear when a variable gets a de­
fined value, the signalling of the arrival of this value to
the involved statement instances is not shown in the con­
trol mechanism. This drawback is removed in the next
and last transformation step.

Transformation into a "variable-free" form

1. Introduction of "distribution statements". In
the single-assignment program form each variable is
defined at most once. There is no limitation on the
number of readings from one variable, however. By intro­
ducing distribution statements (being multiple assignments
distributing a variable value to all places in an alter­
native where this value is needed) a program form can
easily be reached, where each variable also is read at
most once. The idea of this transformation is to store a
generated value not indirectly to a data base (from where
it can be retrieved under its name), but directly to all
places where it is needed (which makes a "local" deter­
mination of executability possible).

2. Introduction of "buffer statements". The
problem with the exploitation of the previous transforma­
tion is that when a value has to be inserted directly in all
reference places, then these places have to exist, i.e.
they have to be allocated. This means that a synchroniza­
tion between "value definition" and "value place alloca­
tion" is necessary, which can subvert maximum parallelism.

The solution to this problem is the introduction of
"buffer statements" (being copy statements), which are
inserted between a value generating basic- or expansion­
statement and the corresponding expansion statement re­
quiring this value as input. No buffer statements are
used if the basic statement is a simple one (involves no
expression evaluation).

3. Replacing variables by addresses. In the
following, each module alternative is assumed to be
arranged linearly, so that each symbol occurring in it has
an "address" (relative to this alternative). Each alterna­
tive later is assumed to be preceded by an "address vector'~
being the list of addresses of all madule parameters with
respect to this alternative. (Note that addresses are de­
noted by an arrow over a variable name (e.g., a); they
point to the place where the plain variable name occurs
(e.g., a) which is not to be interpreted as a variable, but
as a "placeholder"). When a parameter does not occur in

43

an alternative, the corresponding address is denoted by
the "null" address, Input parameters occurring in a
basic statement are called direct input parameters; all
other input parameters (occurring again in expansion
statements) are indirect ones (denoted by an underlining
of the corresponding address in the address vector).

Within each alternative, each variable not being
a global parameter occurs exactly twice. The general rule
for the replacement of variables by addresses is that the
place where the "allocation" is being done (or in case the
allocation is done by the surrounding module, then the
place where the definition is done) becomes the address of
the corresponding mate and the mate is interpreted as a
placeholder. Thus if both variable occurrences are in basic
statements, then the definition place becomes the address
of the reference place and if one variable occurrence is
within an expansion statement (as "local" parameter) and
the other in a basic statement, then the parameter becomes
the address of the other variable occurence (independent of
whether the latter is used for reference or for definition).
Parameter I ists as well as the case distincting conditions
become redundant now. All that is needed is a description
of alternatives, which for the given example is a self
explanatory form is given by Table IV. (Note that the
symbolic statement names are indicated above the lines.)

Program Execution

A program obtained can be regarded as a parallel
machine program being executed as follows:

1. A copy of the "body" of the begin module V
is fetched into a "control storage, " thereby replacing
relative addresses by absolute ones.

2. An instance of a basic statement becomes
executable, if all its definition places are (absolute)
addresses and all its reference places are values. It is
executed by evaluating the "right side" expression,
storing the obtained value to the indicated addresses (in
case of a null address no storing takes place), and delet­
ing the executed statement instance in the control storage
afterwards.

3. An instance of an expansion statement be­
comes executable, if its reference place (the previous
decision variable) - if any - is a value and if all of its
parameter places are (absolute) addresses. It is ex­
ecuted by fetching a copy of the bady of the correspond­
ing alternative into the control storage (if there is enough
space), thereby replacing absolute addresses by relative
ones and performing the following "parameter passing":
The address of a direct input parameter is written to the
address given by the corresponding "actual" (contained
in the invoking statement instance) parameter. Address­
es found in actual output or actual indirect input param­
eter places are, however, written to the address of the
corresponding newly allocated "formal" parameter (thus
in this case the passing of parameters has the "conven­
tiona I " direction, whereas in the former case the passing

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

x y A B S V z
{ ++ ++-+

V::= read f; read m; n:=1; ya:=O; S[n,f,ya,m;yJ; write y}

SN SF SM C RB RC
-+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+-+

S::=[n,f,ya,m;yJ {na,nb,nc,nd:=n; fa,fb:=f; ma,mb:=m; xa:=na; naa:=nb; faa:=fa;

RS K L
R[x~,n~a,f~a;~J; yb:=ya+x; q:=nc=ma;

~ ~ Q ~ ~ I
Q(q)[nda,fba,yba,mba;yJr

QA QB QC QD
nda:=nd; fba:=fb; yba:=yb; mba:=mb;

~ ~ ~ ~ ~ ~ ~RX ~ ~RN ~ ~RF ~ 0 ~ ->- E ~ F
R::=[xa,n,f;xJ{xaa,xab,xac:=xa; na,nb:=n fa,fb:=f; va:=xaa 2 ; vb:=va-na; w:=2xab;

~ G ~ ~RG ~ H ~ I J PA PB PC
g:=vb/w; ga,gb:=g; xb:=xac-ga; v:=lgbl; p:=v~fa;xba:=xb; nba:=nb; fba:=fb;

~ ~ P ->-
P(p) [xba,nba,fba;xJ}

~ ~ ~ ~ N
P1 : :=[xa, , ;xJ {x:=xa}

~~ .. ~{ RP I P2: :=[~'~'E.;xJ R[xa,n,f;xJ r

~ ~ ~ ~ ~ 0
Q1::=[, ,ya, ;yJ{y:=ya}

~ ->- ~ ~ ~ ~ M SA + SQ
Q2::= [na,!,ya,~;yJ{n:=na+1; na:=n; S[na,f,ya,m;yJ}

Table IV - The Original Flow Diagram in "Variable-free" Representation

direction is reversed).

This execution mechanism is illustrated in Table V
by a possible execution begin for the given program and
the assumed input values f = 0.1 and m = 2.

All execution possibilities for the previous pro­
gram inputs are described symbolically by the "precedence­
graph, " shown in Figure 3.

Analysis of the graph shows that the computation
of different square roots can be done in parallel (thus the
"outer" loop in the original flow diagram is a parallel
one), whereas the iterations required to compute the
same square root have to be done in serial.

Summary

The paper has shown how flow diagrams of a
certain restricted standard form automatically can be
transformed (at compile time) into a set of goto-free and
variable-free set of modules, constituting a highly paral­
lel program structure. The intelligence incorporated into
the resulting programs not only allows the exploitation of
maximum parallelism, but also provides for dynamic
storage allocation, dynamic relocation and direct data
processing (as opposed to indirect data processing implied

44

by the use of variables).

The techniques used can, if properly understood,
be very fruitfu I for the further development of many dif­
ferent areas including (optimizing) compilers, operating
systems (paging techniques), and new (highly parallel)
machine concepts.

[1 1

[21

[31

[41

[5]

References

A. J. Bernstein, "Analysis of Programs for Paral­
lel Processing," IEEE Trans. of Electr. Compo
(Oct. 1966), pp. 757-763.

H. W. Bingham et ai, Automatic Detection of
Parallelism in Computer Programs, Burroughs
Corp., Paoli, Pa., Technical Report (Nov. 1967)

M. R. Shapiro et ai, The Representation of Al­
gorithms, Applied Data Research Inc., New
York, N. Y., Technical Report, (Sept., 1969).

G. Urschler, "Automated Functional Program­
ming, " paper available from author.

R. T. Prosser, "Application of Boolean Matrices
to the Analysis of Flow Diagrams, " 1959 Proc. of
the EJCC, pp. 133-138.

[6]

[7]

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

E. S. Lowry and C. W. Medlock, "Object Code
Optimization," CACM, Vol. 12, (Jan., 1969).

C. Boehm and G. Jacopini, "Flow Diagrams,
Turing Machines and Languages with only two
Formation Rules, " CACM, Vol. 9, (1966)
pp. 366-371. --

[8]

[9]

L. G. Tesler and H. J. Enea, "A Language
Design for Concurrent Processes, " Proc. of the
SJCC 1968, pp. 403-408.

D. D. Chamberlin, "The 'Single Assignment'
Approach to Parallel Processing," Proc. of the
FJCC 1971, pp. 263-269.

[10] G. Urschler, The Inherent Parallelism of Flow
Diagrams, IBM Lab, Vienna, Technical Report
25.129 (July, 1972) p. 40.

Simultaneously
performed state­
ment instances

Result

Yo Ao BO SVo Zo
-+--+ -+-+-+

Yo read foiread rnoino:=1iyao;=OiS[no ,fo,yao,rno;Yo]iwrite Yo

Xo Yo AO BO SNO SFO ... -+ -+ -+ -+ -+ -+ -+ -+-+
So read fo i read rno ino :=1 iyao :=Oina1,nb1,nc1,nd1 :=noifa1,fb1 :=fOi

SMo Co RBo RCo RSo
... ...

mal ,mb 1 :=rno i
-+ -+ -+-+

xa 1 :=na1 inaa 1 :=nb 1 i faa 1 :=faj R[xa1 ,naa1 , faa Ii xl] i

... Ko ... ~o QAo QBo QCo QDo
yb1:=yaO+X1iQ1 :=nc=rnai nda1:=nd1i fba1:=fb1i yba1:=yb1irnba1 :=rnb 1 i

... SNo SFo SMo Co RBo
na1 ,nb1 ,nC1 ,nd1 :=1 i fa 1 ,fbI :=0.1 i rna lrmb 1:=2i xa 1:=na1 i naa l:=nb Ii

... Eo ... Fo ... Go RG o ... Ho
vb2 :=va 2-na2 i W2 :=2xab2 ig2 :=v~ /w2iga2, gb 2:=g2 i xb 2 :=xac2-ga2 i

... Io ... Jo rAo PB o PC o
V2:= I gbd iP2 :=V2 ~fa2ixba2 :=xb2 inba 2:=nb2 i fb"t=fb2 i

. Zo_
wr~te Yoi

Table V - Execution Begin of a Parallel, Variable-free Program

45

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Fig. 3 - Precedence Graph, Describing Execution Possibilities of One Program Run

46

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

FORMAL TRANSFORMATIONS FOR PARALLEL PROCESSING LOGIC

Edward P. Stabler
Department of Electrical and Computer Engineering

Syracuse University
Syracuse, N.Y. 13210

Abstract -- Formal transformations are de­
scribed which convert sequential processes into
parallel processes preserving the logical behavior.
The formal transforms are carried out on a logic
design language. The results of the transfor­
mations are alternative designs expressed in the
same language. The technique is applied to sever­
al sample design problems.

Introduction

Languages for describing the structure of
computers and other digital systems are receiving
increased attention. The motivation for such
activity is a hope that higher order languages
for hardware structures will provide the same
sorts of benefits in hardware design as program­
ming languages provide for software design. In
particular, a satisfactory system description
language should provide a means for coping with
the complexity found in typical logic systems.

The structural complexity of parallel
processing systems is greater than that of serial
processors. As a result the need for control of
complexity is increased and the task is more
difficult.

In this article the application of system
description languages to parallel processor
system is examined. The questions of interest
are:

1. Can a system description language provide
adequate compact and precise description of
parallel processing logic networks?

2. What are the transformations which can
be carried out on system descriptions which will
affect the speed of operation (degree of parallel­
ism) while preserving the essential logical
behavior?

3. Can useful and economical designs for
parallel processes be obtained utilizing formal
transformations?

4. What is the relationship between such
formal transformations on the logic and related
transformations on programs?

The basic ideas behind the transformations
required to increase parallelism of combinatorial
and sequential logic designs are well-known [1].
However the implementation of these algorithms
will depend critically on the representation
system used for the design. Various methods of
representing designs must be studied to determine
the simplicity and efficiency of the operations
to be carried out on the designs.

The language should provide an adequate data

47

interface with other design automation programs
for testing, layout, wiring, and simulation. The
language described here is APL-based so it has
the advantage of having a set of vector and array
type operators.

The paper describes the principal features
of a system design language and some design
transformations within the languages. Several
useful logic design examples are considered.
Designs with a high degree of parallelism
activity are studied to determine whether these
designs could be generated by a straight-forward
application of automatic design transformations.

The transformations are essentially logical
in nature. A machine description is converted
to a logically equivalent machine description
where the derived machine exhibits more parallel­
ism than the original.

The introduction of parallelism generally
substitutes a spatial iteration of signals for
the original time iteration. Hence the two ma­
chines are not equivalent in the sense usually
used with respect to sequential machines. They
are equivalent in the sense that there is a map­
ping of (output signal, time) of the original
machine to (output signal, time) in the new
machine which preserves the logical behavior of
the machine.

Register Transfer Language

Many different notations have been suggested
for describing systems. They can be divided into
two broad classes, those which describe behavior
and those which describe structure. The former
type of description particularly useful for
simulation while the latter is useful in design
automation systems.

The language used here utilizes many APL
features and is a register transfer language in­
tended to describe the structure of a digital
system. Since the descriptions tend to look like
programs it is important to remember the differ­
ences between descriptions and programs.

1. A system description describes a
structure and not a process;

2. The order in which the statements occur
in a system description has no significance.

The designer using a system description is usu­
ally thinking in terms of the behavior of the
system rather than its structure. The description
can be viewed as a specification of behavior or
of a process. In what follows, the description

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

will be considered to specify a structure and the
transformations will be designed to derive alterna­
tive structures with equivalent behavior.

Kernel Language

The kernel language is the most primitive
form of the language which is adequate to describe
any system describable by the complete language.
The strategy used here is to define a very simple
kernel language whose properties are simple. Then
complex linguistic facilities are added to the
language and these facilities are defined by a
translation process which eliminates the oc­
currence of a complex feature and yields an
equivalent description in the kernel language. If
this technique is used the complete sophisticated
language can describe no more than the kernel
language. However the complete language will
generally allow vastly more compact system
descriptions with no loss of precls10n. The same
technique has been suggested for defining program­
ming languages [2].

There are only five types of statement in the
kernel language:

1. The conditional register transfer,
A i B +- C, having the form <name> i <name> +-<name>

2. The synonym statement, A = B, having the
form < name> = <name>

3. The AND statement, A = AND (B, C, D)
having the form <name> = AND « name lis t >)

4. The OR statement, A = OR (B, C, D)
having the form <name > = OR « name lis t >)
and 5. The NOT statement, A = NOT (B) having
the form < name >= NOT « name»

With a sufficient number of statements in
the kernel language any network of logic involving
registers and logic gates can be represented.
The form of the conditional transfer implies
synchronous logic and the exact logic associated
with the register input is unspecified. The
kernel language cannot describe asynchronous
objects such as delay lines and one-shots without
the addition of new kernel statements.

Ail the sophisticated linguistic facilities
which are added from this point on are defined
by means of a translation process which eliminates
complex structure and derives an equivalent set
of kernel statements.

The kernel language is extended by
1. extension of naming to allow naming of

vectors and arrays of higher dimensions,
2. extension of operations to apply to

vectors and arrays
3. addition of programming language to

allow computation to generate primitive language
statements,

4. facilities for defining macro system
descriptions with formal parameters,

5. facilities for declaring types such as
register, arithmetic variables, etc., and

6. the addition of a set of functions whose
values are related to the system description

48

parameters.

With these extensions precise and compact
descriptions of digital systems can be developed.
The complex networks associated with MSI and LSI
usually exhibit sufficient repetitive structure
so that the facilities of the language can be
used to good effect.

APL conventions are used to extend the range
of operators to vectors and arrays. The macro
facility corresponds to function definition
within a programming language. The mention of a
macro name with actual parameters specified calls
for the addition of the text which is the body
of the macro, with formal parameters replaced
by actual parameters. A conventional programming
language can be used to control the generation
of text and the computation of literal subscripts.
It is important to realize that the programming
language portion of the system description is
not used to define a program but to generate a
body of text.

The addition of the sophisticated linguistic
facilities does not extend the range of system
which can be described. Each of the added
linguistic types can be translated into an
equivalent set of primitive statements. The
technique has been proposed to simplify the
concepts underlying conventional programming
languages. The advantage is that the range
meaning of a description is not changed by the
sophisticated techniques of description. The
description still corresponds to specification
of a network of gates and registers.

However repeated use of macro system
descriptions permit the design objects to
correspond to more and more complex networks.
The system description language provides desira­
ble simplification of the description as long as
there is some regularity and iterative structure
in the network.

Register Transfers

The basic algorithm to be used for speeding
up sequential logic has the effect of doubling
the computational rate. The derived machine
does in one clock cycle what the original machine
does in two cycles. The equivalence relation
between the two machines relates pairs of inputs,
and outputs which occur in time sequence to
pairs which occur in spatial sequence. The
algorithm generates a set of combinatorial logic
equations virtually identical to the original
register transfer equations. The combinatorial
logic equations generate the intermediate values
of the register variables so a double time step
is performed on each clock beat.

The following single statement is a de­
scription of binary counter.

I i A +- X
NET(A:X)

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

V NET(B:C)
C = B + D
NET2 (B:D)

Definition of NET

v NET2 (E:F) Definition of NET2
1-<-0
F[I] = 1

G: F[I + 1] = F[I] A E[I]
->- «I -<,- I + 1) <; pE) IG

The definition of NET2 specifies a network
with input E and output F as formal parameters.
The value of F is 1 in all positions corresponding
to consecutive l's in E and in the position of
the first O. The diagram is shown in Figure lao
The network defined by NET includes an occurrence
of NET2 and has a bank of exclusive-or gates in
addition. Hence, the total diagram is as shown
in Figure lb.

To describe the system which will count two
for each unit of time it is only necessary to
duplicate the network

1. '$ A-<-Y
NET(A:X)
NET(X:Y)

yielding a net of the form shown in
Figure 2.

Our example is a very simple one but the
basic idea is the same in what follows. The next
step in our simple example is to take advantage
of the array naming features of the system
description language. Consider the extension to
an array of logic which causes the counter to count
by N in each unit of time. A network generating
macro call UNET can be used to replicate the
net\vork to form an array.

1 '$ A-<-W(;N)
UNET(A: N: NET: W)

V UNET(a: n: net:w)
i -<- 0
w[; 0] = a

C: net(w[; i]: w[; i + 1])
->- (n > i -<- i + 1) I C

The macro UNET when mentioned generates the
system description of a network of N binary counter
networks connected end to end so that a count up
by N occurs. Refer to Figure 3.

The example is a simple one involving only
one register, no conditional transfers and no
inputs. The transformation method can be ex­
tended to cover the more general case. A de­
scription of a serial adder is the two statements
shown below. It is a slow serial adder since
the shifting and the addition are not overlapped
in time.

t '$ S -<- + (A, B, C); C -<- MAJ(A, B, C);
n

t -<- ~ t
t '$ S -<- ~ S; t -<- ~t

49

A and B are assumed to be input strings
representing the numbers to be added.

The conditionals can be brought over to the
right hand side to obtain

1 ~ S -<- X; C -<- Y; t -<- tl

X = (t A (A + B + C), 1 + S) v (~ t) A ¢ S
Y = (t A MAJ(A,B,C)) v ~ t A C
tl = ~t

Networks with formal parameters can be defined

NET4 (a: b: c: s: t:x)

NET5 (a: b: c: s: t:y)
where the defining equations are essentially as
above.

A and B are external input sequences for
which subscripts can be used to designate
successive inputs to an array. The macro
definition of a network for doing n steps of the
original machine is

V UNET2 (a: b: c: s: t: x: y: n)
el[O] = c
i -<- 0

C: NET4 (a[i]; b[i]: cl[i]: sl[i]: t[i]
xli])

NET5 (a[i]: b [i]: cl[i]: sl[i]: t [i]
y[i])

cl[i + 1] = yl[i]
sl[;i + 1] = xl[;i]
t[i + 1] = t[i]

->- (n > i -<- i + 1) Ic
y yl[i]
x = xl[;i]
V

A single mention of UNET2 with n = 2 will
result in a logic network which overlaps in time
the shifting and adding. It can be seen that
actually two independent systems are formed. The
first does a shift and add simultaneously while
the other does an add and shift simultaneously.
The network is a spatial sequence of combinatorial
networks. Only one of the two networks will be
active depending on the initial value of t.

This phenomenon of generating multiple
systems is a general one in the transformation.
The transformation generates n machines which
differ from one another in phase. The initial
conditions will normally cause a selection of
one of the machines. For example, in the case
of the serial adder are initial condition oft=l
selects the machine which adds and then shifts
in the spatial iteration.

If the transformation is applied again with n N
an N!bit parallel adder array is produced.

Combinatorial Logic

The combinatorial portion of system de­
scription corresponds to a set of boolean
equations. The equations describe a multiple

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

input, multiple output network. Usually the de­
signer will have utilized the facilities of the
language to describe the iterative portions of
the combinatorial logic but the description can
be translated to a large set of primitive
equations when necessary.

For networks of this type the maximum depth
is defined as the maximum number of gates which
must be passed through in going from an input
through the network to an output. The trans­
formations described have the effect of in­
creasing this depth so that very large deep
combinatorial nets can be generated for array
type logic. The delay through the network is
proportional to its depth and the delay can
become a decisive faster in the overall speed
of the system.

The algebraic identities needed to reduce
the depth of a network of gates are well-known
and various strategies can be utilized in trans­
forming a network. Depth reduction transformations
are shown in Figure 5. The process using DeMorgan's
theorem is used to push the inverters through the
AND, OR gates in order to produce subnetworks on
which the processes of parenthesis removal or
multiplying out can be performed. In practice a
number of practical constraints must be observed.
The transformations must not eliminate output
wires and gates whose outputs drive more than one
gate must be transformed with care. In addition
there are normally fan-in and fan-out limits which
will eventually be exceeded. Fan-out limits do
not affect the achievable speed since network
duplication can be used to provide the necessary
number of outputs.

The structured nature of the system de­
scriptions permits a kind of controlled reduction
of the delay in the combinatorial portion of the
network which is different from the technique of
reducing to primitive statements and applying
boolean algebra transformations. We expect that
the large delay values will be generated by
network forms such as shown in Figure 6. A
combinatorial net is replicated and interconnected
in such a fashion that the delay is proportional
to the degree of replication. In the system
description this would appear as a definition in
which the outputs and inputs wires are connected
according to some recursion formula.

To reduce the total delay there are two
main choices; reduce the value of ~ the delay
per network element, or form a new network
element which need be replicated by a lower factor
without increasing ~ by the same factor as shown
in Figure 7. The replicated network is assumed
to be arbitrary complexity.

If the system description for the combi­
natorial network is simply translated by macro
substitution to form a large set of primitive
gate statements, the iterative structure of the
network is lost, or at least hidden. As a result

50

the task of transforming the set of equations to
an alternative set which has smaller depth cannot
easily take advantage of the iterative structure.
It is desirable to separate the two methods of
reducing overall depth. In the first case an
attempt is made to reduce the value of ~, the
delay associated with one element of the repli­
cated network. This requires reduction of that
element to primitive gate statements and the
application of the boolean algebra transformations
to reduce the delay. Having done the calculation
once, the result can be used to realize the
replicated elements.

The second case requires definition of a
larger more complex network element so that the
replication factor is reduced. Then the larger
defined element is processed to reduce the depth
and to reduce the total delay. The definition
of the more complex network element can be
obtained in a straight-forward way from the
definitions of the orginal network.

Assume that the replication factor is to be
divided by 2 by combining the functions performed
by two elements. If the interconnection is
simple linear one then the process proceeds as
shown in Figure 8.

Assume NET (A: B: C: D) is defined and is a
replicated element. Then if I, Z are n element
vectors the linear interconnection can be
defined by

'i/ LINET(I:Z)

NET(I: E: Z: F)
E = 1 <I> F

A double element equivalent to two linearly
interconnected NET elements with linear inter­
connection would be NET2(A; B; C; D) and defined
by

'i/ NET2(A: B: C :D)

NET(A[O]: B: C[O]: X)
NET(A[l]: X: C[l): D)

II
The linear interconnection of ,our elements

is shown in Fifure Bb.
The maximum de ay is unaffected by the change.
The advantage of the new form is that NET2 can
now have its delay reduced using the boolean
transformations of the primitive statements
corresponding to NET2: The complete network is
can be described by a n/2 replication of NET2.
For the more general case combining N netwoLks
into a single element UNETN may be defined which
consists of N of the original elements with the
internal connections defined by the recursion
formula of the original network.

The main steps in forming NETN are given
below:

1. Replicate NET

NETN = N p NET

2. Form internal connections

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

from the definition of casade structure
we have:

DII] = Blf(I)]

where typically fII] = I + CaNST
Hence, an internal connection is specif­
ied if

(f(I) + N) = a for I < N

otherwise an external connection is
needed.

3. Form a Linear Structure of NETN elements

LS = K P NETN

4. Form of Connections between the NETN
elements

DII] = BIf(I)]

DIL; M] = BIf(M*N+L) IN] If(M*N+L) +6]

Which includes previously defined in~r
ternal connections.

Comparisons

The processes described here are intended
for use in a software system to aid the logic
designer. The techniques shown are quite differ­
ent from those which are under study for parallel
programming and for parallel organization of
computing systems. In parallel programming
studies a basic control mechanism is assumed and
parallelism consists of allowing two or more
controllers to proceed more or less independently.
The logical and arithmetic processes being per­
formed are considered only to the extent that
they influence the flow of control. In register
transfer system descriptions no real distinction
is made between control and processing activity
although such distinctions may play an important
role in the thinking of the designer.

When a logical transformation is performed
on the system to speed it up the logical networks
are replicated if there is no possibility for
concurrent operation. However the net'vork is
not replicated if concurrent operation is possi­
ble. This is illustrated in the example of the
serial adder in the paper. The first speedup
caused an time overlapping of shift and add with
essentially no increase in hardware. Further
transformations to create parallel addition
required replication of the basic adding network.

References

[1] F"G.. Hennie, Finite State Models for
Logical Machines, John Wiley, 1968.

I2] A. van Wijngaarden, "Recursive Definition
of Syntax and Semantics", Formal Language
Description Languages, North Holland, 1966.

I3] O.L. MacSorley, "High Speed Arithmetic in
Binary Computers", PlRE, January 1961,
pp. 67-91. --

x

x

y

51

Form of NET2
Figure la

Form of NET
Figure lb

A

NET(A:X)

NET(X:Y)

1

Double Step Counter
Figure 2

a
b

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

w

B A

Next value of C

N Step COtmter
Figure 3

S

Next value of S

-----}

Figure 4. Add and Shift Spatial Sequence

Sa. Multiplying Out

5b. DeMorgan's Theorem
Figure 5. Depth Reduction for Combinatorial Nets

52

Add

Shift

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

D

I

Figure 6. Network Form with Large Delay

Figure 7. Network Form with Reduced Delay

A

~B
C

B

, t I
~

(~ 1\
V

-
Figure 8. Reduction of Replication Factor

53

Elementary Network

Unit 8a

Linear Network of 4

Unit 8b

Network of Complex Units

C [0;]

C[0;2]

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

A STRUCTURED .APPROACH TO CONCURRENT PROCESS SYNCHRONISATION

Santosh K. Shrivastava(a)
Computer Laboratory, University of Cambridge, England

Summary

This paper briefly describes a concurrent process
synchronisation method to be used with secretaries
[1] or monitors [2]; an operating system structur­
ing concept developed by Dijkstra and Hoare.

The well known example of readers and writers
[4] is used below to illustrate the method and
the monitor concept.
file:monitor;
begin rr, aw:shared integer; free: shared boolean;
nowriter:condition (aw = 0);
noreader:condition (rr = 0 & free);
procedure start read;
begin await nowriter; with rr do rr:=rr+l; end
procedure endread;
begin switch:boolean; switch:=false;
with rr do begin rr:=rr-lj
if rr=o then switch:=true; end
if switch then test noreader;­
end endrea~--
procedure startwrite;
begin with aw do aw:=aw+l; await noreader;
with free do free:=false;
end startwrite;
procedure endwrite;
begin switch:boolean; switch:=false;
with free, aw do begin free:=true;
aw:=aw-l; if aw=o then switch:=true; end
if switch then tes~ nowriter else test noreader
end endwri te; ----
with aw,rr, free do begin aw,rr:=o; free:=true;end
note give initial values;
end file;
-- A file is to be used for reading or writing.
Any number of 'readers' may read simultaneously,
but 'writer' must have exclusive use; further,
writers are given priority.

Calls on a monitor procedure are of the form:
monitor name.procedure name (--parameters--);
Thus, the readers will use the code: file. start­
read; 'read operation'; file.endread; to use the
file. A monitor is treated as a critical region
so that processes have exclusive use of it. A
'condition variable' represents some condition
for the resource use, expressed as a boolean ex­
pression involving the monitor variables. With
each condition variable we also associate at com­
pile time, (a) two boolean variables 'state' and
'current', when 'current' is true, the value of
'state' is taken to represent the value of the
expression, when 'current' is false, this is not
so, and (b) a queue for waiting processes. The
operation 'await condition name' is defined as
follows: if 'current' and 'state' of that condition
variable are true, the executing process continues;
if 'current' is true and 'state' is false the
proces~ releases the monitor exclusion and waits

(a)
On leave from the Plessey Co. Ltd.
Poole, Dorset, England.

54

on that condition's queue; if 'current' is false,
the process evaluates the expression and sets
'state' accordingly, 'current' is made true, the
process now continues or waits as described above.
The operation 'test condition name' is defined as
follows: if 'current' and 'state' of that condition
variable are true, the executing process removes
~ waiting process (if any) from the condition's
queue and puts it on the queue of processes trying
to enter the monitor; of 'current' is false, the
process evaluates the expression, sets 'state'
accordingly, 'current' is made true, if 'state'
is now true, a waiting process is scheduled as
described above. A 'testall condition name'
operation is similar, except that instead of one,
all the waiting processes are scheduled. A
resumed process, when given entry to the monitor,
reexamines the 'await' condition as described.
The monitor variables that occur in the condition
expressions are declared shared, operations on ·a
shared variable are permitted only through the
notation 'with shared variable name do S.' This
operation is defined as follows: all~he 'current'
bits of the condition variables, condition ex­
pressions of which refer to that shared variable,
are made false, then S is executed. No 'test'
or 'await' is permitted inside S.

It is now easily seen that in this syn­
chronisation method, evaluation of condition ex­
pressions is kept to a minimum. Thus, when
readers are reading, the first writer to find
this will make 'state' of 'noreader' condition
false and 'current' true. Any other writers
entering the monitor consequentively now, do not
evaluate 'noreader' to find out that they must
wait. As conditions can be arbitrarily complex,
when resources are heavily utilized, this method
particularly becomes attractive.

The method can be incorporated in high-level
software writing languages with the monitor
concept. A detailed evaluation of various syn­
chronisation techniques, including the existing
proposals [2,3] and parallel programming tech­
niques using monitors will appear in the author's
Ph.D. thesis.

References

[1] E.W. Dijkstra, "Hierarchical Ordering of
Sequential Processes", Acta Informatica 1
(1971), pp. 115-138.

[2] C.A.R. Hoare, "Monitors: an Operating System
Structuring Concept", (to be published).

[3] P.B. Hansen, "Structured Multiprogramming"
C.A.C.M. (July 1972), pp. 574-578.

[4] P.J. Courtois, F. Heymans, D.L. Parnas,
"Concurrent Control With Readers and Writers"
CACM (October 1971).

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

PARALLELISM IN TAPE-SORTING

Shimon Event
Department of Applied Mathematics
The Weizmann Institute of Science

Rehovot, Israel

Abstract -- Two methods for employ­
ing parallelism in tape-sorting are pre­
sented. Method A is the natural way to
use parallelism. Method B is new. Both
approximately achieve the goal of reduc­
ing the processing time by a divisor
which is the number of processors.

I. Introduction

It is reasonable to assume that one
is willing to use P processors instead
of one if the computation time is cut
down by the same factor. In certain ap­
plications this has been shown to be im­
possible.

Fortunately, this kind of saving in
time is possible in the case of external
sorting. Two methods for achieving this
goal are described. The first one is
natural and uses known techniques. The
second method uses new ideas and is be­
lieved to be more elegant and easier to
program.

The description is in terms of tapes,
but any linear mass storage can be used
instead.

II. Method A

Assume we have N records, P pro­
cessors and 4P tapes. Also assume that
initially the N records are all stored
on one tape. The sorting is achieved
through the following steps:

(1) The N records are distributed to
2P tapes in such a way that each of them
has approximately N/2P records. This
step takes N units of time.

(2) Everyone of the P processors is
assigned 4 tapes: two of them are loaded,
with N/2P records on each, and two are
empty. Each processor performs the well­
known algorithm of tape-sorting using the
4 tapes it controls. (For a few more de­
tails see the Appendix.) This step takes

units of time.

!!. N
P 10g2 P

(3) We now have P tapes which are each
loaded with a group of N/P records and

t Visiting at the Department of Computer
Science, Cornell University, Ithaca, New
York, summer 1973.

55

the records on each of these tapes are
sorted. We perform 10g2P phases of
sort through merge. In the first phase
every two groups are sort-merged into a
group of 2N/P records. In the i-th
phase every two groups of

2 i - I N
P

records are sort-merged into one group of

2 i N
P

records, etc. The whole process takes

log P N
L 2i

P
i=l

2N _ 2N
P

units of time. We conclude that the time
method A takes is

The method can be used even with a
very large P. In the extreme case when
P = N/4 the sort time reduces to 3N.
However, the more practical cases are
when P ~ 10g2N , when (1) is well ap­
proximated by

N
P 10g2 N + 3N . (2)

Except for the 3N term this
achieves the best possible saving; namely,
the best sorting time for one processor,
which is N 10g2N, is divided by the num­
ber of processors.

III. Method B

For simplicity, let us assume first
that N is a power of 2 and that the
number of processors available is

P = 10g2 N + 1

We shall use 4P tapes (in addition to
the input tape). As we shall see later,
the number of processors can be reduced
to log2N and the number of tapes to
4(10g2N - 1).

The tapes are divided into quadru-
ples:

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

for i = 1,2, ••• ,P. Time is measured in
the unit of time necessary for reading
and writing one record. The processors
are denoted by il l ,il 2 , ••• ,ilp •

During time 1 ~ t ~ N ill reads the
input tape and writes the records on

T:, T~ , Tl
s and T~,

according to the following rule:

(i) if t - 1 (mod 4), ill writes on Tl
1

(H) if t - 2 (mod 4) , ill writes on Tl
2

(Hi) if t - 3 (mod 4) , ill writes on Tl
s

and

(iv) if t == 0 (mod 4) , ill writes on T~ .
ilk is active during

2k - 1 ~ t < N + 2k _ 2

For k = 2,3, ••• ,P its activity is as fol­
lows: It reads from tapes of the (k-1)st
quadruple and writes on tapes of the k-th
quadruple. It performs, repeatedly, a
sort-merge of two sorted lists of length

2k-2

into one sorted list of length

2k - 1

The tapes are used according to the fo1-{a)
lowing rule:

(i) if

then ilk reads from

T~-l and T~-l

and writes on

Tk
1

(H) if

rt-,k +'1 2k - 1 - 2 (mod 4)

then ilk reads from

k-1
Ts and k-1

T4

and writes on

(a) Let rxl denote the least inte~er
which does not exceed x, i.e. f3.51 =
r41 = 4.

56

(iii) if

then ilk reads from

T~-l and T~-l

and writes on

Tk d
s ' an

(iv) if

then ilk reads from

k-1 k-1
T sand T 4

and writes on

An example of N 8 is shown in
the diagram on the next page. Successive
rows represent successive time. A solid
line in the column

Tk
i

in row t means that ilk is writing on

Tk
i

during time t; a broken line means that

may be reading from it.
The reader may establish for himself

the validity of the following claims:

(1) Every tape is emptied (the records
it has contained are read) before it is
loaded again with a sorted list. Thus, a
tape of the k-th quadruple never contains
more than

records.

(2) The reason for the difference in the
starting times is that ilk is waiting
for

k-1 k-1 ilk _1 to load Tl and T2

This takes 2k - 1 units of time. Thus the
starting time is

k namely, 2 -1

2k - 1 _ 1 + 2k - 1

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

(3)

Thus,

t T1
1

T1
2

T1
3

T1

"
1 I
2 I

I

I 3 I

I
I , I I 4 I

I

I I I 5 I I I I , I I
6 I I I I

I
I

7 I
I

8 ,
9

10

11

12

13

14

15

16

17

18

19

20

21

22

P-2
T" is first loaded during

t

t = 2P- 2 - 1 + 3 0 2P- 3

2P - 1 + 2 P - 3 - 1,

5 t=4N - 1

or

For N > 4 this is larger than N .
Since T: is not used after t = N , we
can use the same tape for both tasks.

(4) T;-l is first loaded during

t = 2P - 1 _ 1 + 2P - 2

I

T 3
1

T 3
2

Figure 1.

57

Thus,

3 t='2N - 1

For N > 2 this is larger than N.
Since Ti is not used after t = N , we
can use the same tape for both tasks.

P-1 P-1
(5) T3 and T" are never used.

(6) T~ is first loaded during

For N > 3
Since T~
we can use

t = 2P - 1 = 2N - 1 .

this is larger than N + 2 .
is not used after t N + 2
the same tape for both tasks.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

(7) TL T;
(8) Claims
4(1og2 N- 1)

and T~ are never used.

(3) to (7) imply that only
tapes are necessary.

(9)

can be the same.
(6). Thus, only
required.

and II
p

The reasons are as in
10g2N processors are

(10) During t = N there are 10g2N
processors in action and 4(10g N-1)
tapes are occupied. Thus, no further
saving is possible unless basic changes
are made in the procedure.

The whole process takes 3N-2 units
of time, and

TP
1

is the output tape. This compares favor­
ably with Method A (see (2» which re­
quires approximately 4N units of time
in case P = logaN. In my opinion,
Method B is more elegant md easier to
implement.

Let us now discuss the case
P ~ 10g2N. (The reader should notice
that we have started with P = 10g2N + 1
but have reduced the number of processors
to 10g2N)

Method B is not suitable for using
much more than 10g2N processors.
Clearly, when log2N is not integral we
can use

processors and pretend we have

2 f10g 2Nl

records by filling in "dummy records".
(Some improvements on this are possible
but essentially the processing time is

3_2f10g2Nl_ 2

A similar problem occurs in Method A if
P is not a power of 2.) However, there
is no way to use more than

without changing the method considerably.
More interesting is the case when

P < 10g2N. For simplicity, let us dis­
cuss the case of

where both P
tegers. Let

N

and Q are positive in-

The computation is done in Q

58

passes. In each pass the output tape
contains output lists which are M times
longer than before. The number of pro­
cessors used is P and the number of
tapes is 4P - 2. (Ignore here the sav­
ings discusses in Claims (3) to (10);
only

and

are not needed.)
In the first pass we use the same

procedure as discussed before, except
that after

is loaded with a sorted list of length M
another sorted list is loaded next to it,
etc. This continues until all N re­
cords are on

TP
1

in sorted lists of length M.
In the second pass

TP
1

is used as the input tape and

TP 2

as the output tape. The length of the
list on

Tk
i

, k < P , is M 2k - 1

and the timing is now in multiples of M.
The lists on

length M2. are now of
After

p1ete.
Q passes the sorting is com-

The i-th pass takes

N + Mi - 1 (2P - 2)

units of time. Thus, the total time is

Q-N + (2P-2) ~ Mi - 1
i=l

Q
Q-N + (2P -2) M -1

M-1

+ 2(N-1)
P-1

which is similar to (2).

(4)

The method can be improved by start­
ing the next pass before the present one
is over. However, this will only reduce

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

the second term of (4).

Appendix: Tape-Sorting ~ One Processor

and ~ Tapes

This well-known and widely used algo­
rithm runs as follows: Assume the re­
cords are stored on two tapes, T1 and
T2 ' each containing n/2 records, while
the other two tapes, Ts and T~ are
empty. Also, assume the data on T1 and
T2 is already partially sorted in the
following way: The n/2 records are di­
vided into groups of

2i

records. Each of these groups is already
sorted, say from low to high, and the
groups are stored consecutively on the
tape. Thus, the number of groups on each
tape is

n
2i+1

Initially i = 0 For simplicity, let
us assume that

n = 2R,

The algorithm goes through R, Phases.
In Phase 1 we read the first record

from each input tape (T 1 and T2) and
store both on Ts in increasing order.
Next we read the second record from each
input tape and store both on T~ in in­
creasing order. Next we return to load a
group of two on Ts ,etc. After n
units of time (since each record is read
once and is written once) all the records
are distributed to Ts and T~ in or­
dered groups of size 2 (=2 1).

59

In Phase i, i < R, , we perform a
merge of the two groups which are present­
lyon top of the two input tapes and store
the merged double size group on one of the
output tapes, alternatively. (If i is
odd then T1 and T2 are the input tapes
and Ts and T~ are the output tapes;
if i is even, tasks are reversed.) The
merging of these two groups is achieved by
reading the top record from each group and
writing the smaller one on the output
tape. After each such writing the top
record from the same group. as the one
which has just been written, is read and
compared with the record still in memory,
etc. This is continued until one of the
groups is exhausted; the remainder of the
other group is directly transferred to the
output tape.

We continue merging groups of size

i-1 2 ,

one from each input tape, into groups of
size

which are stored on the output tapes,
changing the output tape after each
group.

In Phase R" there is one sorted
group of size

R,-1 n
2 = 2"

on each input tape and they are merged
into one sorted group of size n which
is stored on one of the output tapes.

The whole operation takes n log 2n
units of time.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

A PARALLEL ALGORITHM FOR MAXIMUM FLOW PROBLEM

Yu K. Chen and Tse-yun Feng
Department of Electrical and Computer Engineering

Syracuse University
Syracuse, New York 13210

Summary

This algorithm is developed for solving the
maximum flow problem in an associative processor.
It is based upon the matrix multiplication
approach [1] for finding the flow route. Given

a capacity matrix cl [cij], with C~j to be the

capacity from node i to node j and c~. = 00 for
l() n

all values of i, and Cl a to be the first row of

Cl , C2 3 m 1 one can generate l' Cl "'" to Cl successive y

by the matrix multiplication C~ = c~I x Cl where

the ordinary matrix product is performed with the
following modifications: (1) cik ' ~j = min

(cik ' ~j)' and (2) ; cik = m~x (cik). Under

the new definitions of matrix multiplication,

c~i' the i's element of C~, clearly represents the

maximum flow between the source and the node i by
means of paths which have m branches or less. The

multiplication process stops either when c~n ~ 0

or when m = n - 1. Unlike the previously
proposed sequential labeling methods [2] - [3]
that the trace of the path has to be carried out
along with the labeling process, the construction
of a trace matrix T = [ti .] proposed here can be
performed at the conclusIJn of the matrix
multiplication. Matrix T is a zero-one matrix.

m m-l
t ij = 1 if clj= cli . cij > 0, and i ~ j.;

otherwise, t ij = O. Matrix T contains one or more

paths. To select a single path matrix P = [Pij]'

backward trace technique can be used. The
algorithm is designed to fully utilize the word­
parallel and the fast search-retrieval capabili­
ties of the associative processor to gain

(a)
Node 1 is assumed to the source node and node
n to be the sink node

60

execution speed. A few transpose operations are
required in this algorithm. Therefore, if a data
manipulator [4] with the transpose function in it
is provided will certainly help the execution
speed. The multi-terminal network flow [5] - [6]
is not considered. This algorithm has been coded
in APL to emulate its execution in associative
processor [7]. Results are compared with the
algorithm proposed in [B]. Approximately two­
to-one improvement in execution time is
indicated.

References

[1] M. Pollack, "The maximum capacity through a
network", OR B(1960), pp. 733-736

[2] L.R. Ford, Jr. and D.R. Fulkerson, "Maximal
flow through a network", Canadian J. Math
B(1956), pp. 399-404

[3] L.R. Ford, Jr. and D.R. Fulkerson, "A simple
algorithm for finding maximal network flows
and an application to the Hitchcock problem",
Canadian J. Math 9(1957), pp. 2l0-2lB

[4] T. Feng, "A versatile data manipulator"
Proceedings of the Sagamore Computer
Conference, 1973

I5] R.E. Go1llOry, and T.C. Hu, "Multi-terminal
network flows", J. SIAM Vol. 9, No. 4 (1961)
pp. 551-570

[6] W. Mayeda, "Terminal and branch capacity
matrices of a communcation net", IRE Trans.
on Circuit Theory 7(1960), pp. 251-269

[7] Y.K. Chen, Ph.D. dessertation, in prepa­
ration

[B] V.A. Orlando, "Associative processors in
the solution of network problems", Ph.D.
dessertation, Syracuse University, 1972

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

PARALLEL - SEQUENTIAL PROCESSING OF FINITE PATTERNS*

Wi 11 i am I. Grosky and Frank Tsui
School of Information and Computer Science

Georgia Institute of Technology
Atlanta, Georgia 30341

Abstract -- The various basic conditions
under which parallel, sequential and mixed par­
allel-sequential processing in tessellation
structures, using the same local transformations,
are equivalent "in terms of pattern generation
are studied. Various necessary conditions and
sufficient conditions for equivalence are derived.
We then illustrate a 'mutually destructive' con­
dition where sequential and parallel processing
cannot be made equivalent, and study this condi­
tion further. We finally relax some of our hypoth­
eses and countenance the notion of simulation
between parallel, sequential and mixed parallel­
sequential processing, giving sufficient condi­
tions for such simulations to exist.

Several recent research efforts are aimed at
strengthening the theoretical understanding of
parallel and sequential modes of picture and
pattern processing [I, 2, 4, 5, 6, 9]. Rosenfeld
and Pfaltz [7] have shown that any picture
transformation that can be accomplished by a
series of parallel local operations with Moore
neighborhood index can also be accomplished by a
series of sequential local operations with Moore
neighborhood index, and conversely; but, the local
operations may be different for the two types of
process i ng.

In "this paper, we first concentrate our in­
vestigation on the equivalence of parallel, seq­
uential and mixed parallel-sequential local oper­
ations of arbitrary neighborhood index in arbit­
rary dimensions, where the local operator is the
same for each mode of processing. We then relax
this latter condition and explore the notion of
simulation in general. The methodology used in
this work is that of tessellation automata. We
have generalized previously formulated definitions
of these entities to take into account sequential
processing, and we call our new entities the class
of stratified mixed mode tessellation automata. ----

Stratified Mixed Mode Tessellation Automata

Definition I: For n ~ I, an n-dimensional strati­
fiedlilixed mode tessellation automaton, TA~

4.,.tuple <S,Zn ,NI ,GT>, where,

I) S is a finite, non-empty set of ~

2) Zn is the set of n.,.tuples of integers. For

f. e Zn, we call f. a cell of TA. The set CON = {g

g:Zn + "S}is called the set of configurations of
of TA

* This work was supported in part by NSF Grant
GN..,655

61

3) NI is an ordered q-tuple of elements of zn,
for some q ~ I, and is called the neighborhood
index of TA. Suppose NI = <r.1' ••• 'Iq>. Then, for

~ e zn, Ne (~) = <f."'1:.1' ••• &+r..q> is ca II ed the
neighborhood of f..

4) GT ~ ~, called the set of global transfor­
mations, is a finite subset of CONCaN which is
the union of GT , GT ,GT and GT ,the sets p s p,S S,p
of parallel, sequential, parallel-sequential and
sequential-parallel global array transformations,
defined as follows,

a) Suppose p E GT and let c e CON. Then p
p(c) = c' e CON, where, for some cr :SC! + S,

p
called a local transformation,. we have, for each

£ e Zn, that c· (0 = cr p (c(~"'1:.I) , ••• ,c(~+rq» •
c' is called the successor configuration of c
with respect to p. Thus, the state of a particu­
lar cell in a successor configuration of c de­
pends on the states of the neighborhood of that
cell in configuration c.

b) Suppose p e GT U GT U GT • Then s p,s S,p

p(c) = c' e CON, where, for some cr :sq + Sand
U 0 p

Teo (Zn)J V (Zn)w, for T injective, cal led
p J~W P n

a trajectory, we now define c'(y for f. e Z ,

i) Suppose p e GTs • Then we require Tp to
be surjective as well as injective. For

a ~ i 1; T -I (?J, define c~y e CON as fo I lows,
p •

c(~) = c
a

-I() n For a ~ k , rp i: -I and £ e Z ,

((r;) () (d ()) o. f {cr ck- £+x.1 , ••• ,ck- £+:Y.q ,
ck,-+r;)1 (£) = { p

{ () £ = T (k)
{ckf. (£) otherwise p

Then, c' (Q
k)

c I (~
T- (~
p

ii) Suppose p e GT • Then we require T p,S P
to be non-surjective. Define c* e CON by

{cr (c(£+x.l)' ••• ,c(~+xq» if
{ p £ i range (T)

icC£) otherwise p

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Then,
{c*(].;) if 1; rt range (-r)
{ - - p

c' (£}'" {c,&J . (1;) if 1; e: range ('r)
{ (-r p f range ('r » -I <0 - - p

P
iii) Suppose p e: GT • Then we requ i re 'rp s,p

to be non-,surj.ective. Define c** e: CON by,

{c(~ I (;) if ~ e: range('rp)

c**'(;) ... {{ (-r p f range ('r » - (q
- p

{c(f) iff. f/ range ('rp)

Then,
{c**(1;) i f 1; E range ('r)
{ - - p
{a p (c*'~ (~+r.1) , ••• ,c**(~+Y » i f

"'-q ~ rt range ('r p)

c' (~)

In the above three cases, the trajectory
indicates the sequential order in which the cells

of Zn are processed. Case i) is pure sequential
processing in which the state of a particular cell
in a successor configuration of c is determined
by the states of th'e neighborhood of that cell in
configuration c#, where c# differs from c only in
that we update the states of all cells processed
before the given one. Case i i} results when some
cells are first processed in parallel and then the
remaining cells are processed sequentially. Case
iii} results when some cells are first processed
sequentially and then the remaining cells are
processed in parallel.

Suppose a:sq + S. We define parCO') e: Gp to be

the parallel global array transformation deter­
mined by 0', s~q'r(O") e: Gs to be the sequenti al

global array transformation determined by 0' and
the surjective trajectory 'r, par-se~ «(1) e: Gp,s

to be the parallel-sequential global array trans­
formation determined by 0' and the non-surjective
traj ectory 'r, and seq-pa r (0") e: G to be the

T s,p
sequential-paralle~l-g~l~o~b-a~l--a-rray transformation
determined by 0' and the non-surjective trajectory
'r.

We now define various concepts which will
prove to be useful in the balance of this paper.

DEFINITION 2: For a:Sq + S, if 0" is independent
of its j-th argument, for I ~ j ~ q, we call cell
~~j an independent neighbor of ~ with respect to

0', for each ~ e: Zn.

DEFINITION 3: For ~ E Zn and 'r a trajectory, we
define the preprocessed ~ of ~ with respect to
'r for pure sequential, parallel-sequential and
sequential-parallel processing,

a) Let T be a surjective trajectory. Then the

set {-r(0), ••• , .. <-r-1(])-1)} () Ne(]) is called the
preprocessed set of 1; wi th respect to 'r for pure
sequential processing

b) Let T be a non-surjective trajectory,

j) Suppose.1;.. e: rangeh). Then, the set

62

((do) , •.• ,d hI rangeh » -I (]) ... In V

(zn - range (T») II Ne (z;) is ca 11 ed the pre­
processed set of 1; with respect to 'rfor parallel
sequential processing.

i j) Suppose 1; I range h). Then the p re­
processed set of ~ with respect to 'r for parallel
sequential processing is ~.

c) Let'r be a non-surjective trajectory.

i} Suppose 1; e: range (-r). Then the set

h (0) , ••• ,-r(C-r[- (.»-l(z;)_I)} /) Ne(r,) is
range 'r - -

called the preprocessed set of 1; with respect to
'r for sequential-parallel processing.

i i} Suppose 1; i range h). Then the p re­
processed set of ~with respect to T for sequen­
tial-parallel processing is range(T) " Ne(£).

Briefly, the preprocessed set of 1; with
respect to 'rin the various methods of processing
is just the collection of neighbors of 1; which
were processed before £. -
DEFINITION 4: We call a local transformation

a:Sq ->, S surjective of degree !5L9.., for 0 < k ~ q,
if, by varying the values of any k arguments of
0', we can produce as output every element of S,
regardless of the values of the other q-k argu­
ments. That is, letting I ~ i l < ••• < i k ~ q,

the function a#:Sk + S defined by

a#(x. , ••• ,x.) = a(yl' ••• ,yq)' where, for
II I k

I ~ j ~ q, Yj = Xj if j e: {il, ••• ,i k}, while

Yj = Sj e: S if j {{ip ••• ,i k}, is surjective.

DEFINITION 5: Cell 1; is said to be a related
neighbor of cell f if there exists a chain of
cells 2...1' ••• '~' for m::: 2, such that 2...1 =~,
<5 =;, and, for I ~i ~ m-I, <5. e: Ne (<5. I). -m - . -1-1+

DEFINITION 6: Suppose p e: G (Gs)(G)(Gs). p p,s ,p
The seed set of p, SS (p), is that set of local
transformations 0' such that p = parCO') (p =
seq (0') for some 'r) (p = par-seq (0) for some

T . 'r
'r) (p = seq-pa r'r (q) for some 'r)

V.arious Notions of Simulation

In this section we examine numerous notions
of the simulation of one tessellation automaton
by another. One general definition of simulation
which we will use is that of A.R. Smith [8]:

DEFINITION 7: Let TA = <S,Zn,NI,GT> and TA* =
<S,~,Zn,NI*,GT'~ be two n-dimensional stratified
mixed mode tessellation automata. For t,t::: I,
we say that TA* s imul ates Tin tlr times real
time, if thereare effectivelY computable injec­
tlve mappings n:CON + CON* and r:GTr + GT*t, such
that, for any c e: CON and <pI, ••. ,P r > e: Gyr, we
have,

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

t:.~r(••• PI(c» ••• }) = pt(••• (P~(t:.(c») •••). where

<py ••••• pf =r«p)'···.r.>t)· If t = r = I. we say
that TA* simulates TA in real time.

The type of simulation we examine first is
called strict simulation.

DEFINITION 8: Let TA = <S.Zn .NI,GT> and TA* .. <S*.

Zn',NI*,GT*> be two n-dimensional stratified mixed
mode tessellation automata which are such that
S* .. Sand NI* = NI. We say that TA* strictly
simulates TA if, in Definition 6, t - r = I, t:.
is the identity map, and, for p e: GT,
SS(p) It ss(r (p)} (: ,.

In exploring this notion of strict simula­
tion. we are really just trying to detenmine when
global transformations of the form par(a) ,
sea_ (a), par-sea (a) and seq-par (a) are equal

"t" I "t"2 T 3

for various a, T I r T2, T 3' We thus concentrate

on the latter formulation.
Our first result, being fairly obvious, is

presented without proof,

THEOREM I: Fora :sq + Sand T)' T2, T3 trajector-

ies of the appropriate type, a sufficient condi­
tion for {par(a) ,se~ (a) ,par-seqT (a),

I 2
seq-par (a)} to be pairwise equal is that for

T3
each cell f. e: Zn, the preprocessed set of Z;; with
respect to TI ('7,) (T3) for sequential (parallel-

sequential) (sequential-parallel) processing con­
sist entirely of independent neighbors of Z;; with
respect to a.

The converse does not hold as the following
example demonstrates.

Let n = 1. NI = <-1.0>, S = {1,2,3}, and
a(I,I) = a(2,1) = a(3,1) = a(3,2) = I, a(I,3)
a(2,3) = a(3,3) = 3, and a(I,2) = a(2,2) = 2.

It is easily verified that par(a) =
seq (a) = pa r-seq (a) = seq-pa r (a) for all

TI T2 T3
appropriate trajectories, while a is neither
independent of its first nor second arg'urnent.

We do have the following, though,

THEOREM 2: For a:Sq + 5 and TI' T2, T3 trajector­
ies of the appropriate type, suppose that {par(a),
seq (a), par-seq (a). seq-par (a)}·are pair-

TI T2 T3
wise equal. Letting SETi be the preprocessed set

of j; with respect to Ti' for some I ~ i ~ 3,

suppose that for each i e: SET i , a is surjective

of degree a~q, where,

a,£ = q-INe(Q IJ Ne(I) I-I Ne<,~) " V Nel!> I.
ie:SETi -{,[,}

63

Then. each element of SET. is an independent
neighbor of I. '

~ OF THEOREM~: It is easily seen that if
a~ > 0, then there are at least a~ cells in the
neighborhood of ~ - not including-~ - which are

neither in the neighborhood of ~ nor in the

neighborhood of any other cell in SET •• Since ,
a is surjective of degree ar!q. by varying the

states in these a~ cell s, we can force ce II ~ to

be in any state in S before we process cell ~.

Consider any initial configuration c. Suppose the
next state of cell f. is Sz;; if c is processed in

a parallel mode. Thus, the next state of cell Z;;
is sf. if c is processed in any of the other three

modes, regardless of the states of the cells in
SET i • Since each cell in SETi can be put in ~
state, our result follows.

QED
COROLLARY I: Let Z;; e: Zn and I sl ,I Ke(Z;;) 1 > I.
Suppose that for each ~ e: Ne(z;;)' - {z;;T, the local
transformation a is surjective of d:egree a~/q > 0

where a~ = q .,;. I Ne(.0 n Ne(i,)I. Then. there
exist appropriate trajectories T)' T2, T3 such

that {par(a), se~ (a), par-se~(a),
I 2

seq-par (a)} are not pai rwise equal.
T3

PROOF OF COROLLARY I: Suppose that for all appro­
priate trajectories T)' T 2, T3, we have that

{par(a), se~ (a), par-se~(a), seq-parT (a)}
I 2 3

are pairwise equal. Choose trajectories Tl' T~,

and T3 such that, for each I , i , q, there is a

cell f.i such that f.i-+:r..i is the only element in
the preprocessed set of Z;;.' with respect to TTl'" -,

T*2" and TT3,. By Theorem 2, Z;;.of'y., for I ~ i , q, -, -,
is an independent neighbor of Z;;. with respect to
a. Thus, either a is a constant'function or the
next state of any cell depends just on its pre­
vious state. Thus, a is not surjective of degree
ag!q > O.

QED

From Theorem I, we see that if trajectories
TI ,T2,T3 can be found such that for each applic-

ation of the local transfonnation a to a cell i,
each cell in Ne(~) is not in the preprocessed set
of i with respect to Tl , ~,T3' or, if it is, is
either an independent neighbor of ~ with respect
to a or is in a state which never changes, then
par(a) = seq (a) = par-seq (a) = seq-par (a).

TI T2 T3
We now look into the question of finding such
trajectories. For this question, we restrict our
attention to the ~ configurations and a
sub-set of them called the ~ configurations.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Our definition of strict simulation is likewise
restricted to strict simulation over finite or
fixed configurirtT6ii'S by restricting the domaTii"
Cit"'ir""to these sub-sets. .

DEFINITION 9: A state s E S is called quiescent

with respect toO":sq+ S ifO"(s, ••• ,s) = s. A --q

configuration c is called finite with respect to

O":sq+ S if only a finite number of cells of c
are non-quiescent with respect to 0".

DEFINITION 10: A state s E S is called null with

respect to O":sq + S if c(r;) = s +r parCO") (c) (r;) =
s. A configuration all of whose cells are in-a
null state is of size O. A configuration c is of
size III ~ 1 if, when the absolute value of any
coordinate of a cell r; is larger than m, then
ck) is null. A configuration is called fixed of
degree m if m is the least integer such that cis
of size m. The window set of a fixed configura­
tion of degree m:;-o-is-the set consisting of
those cells which are such that the absolute
value of each of their coordinates is less than
or equal to m. We denote it by 'W '. The window
set of a configuration all of whoWe cells are in
alnull state is ~.

Of course, all configurations which are
fixed of degree m are finite.

LEMMA 1: Let ~I Rn .12 +r i.l' .5.2 e: Zn and.fl is a

related neighbor of ~2 and let En = {<f&.>
~ E in}. Then R IJ E is a transitive, reflexive
relation. n n

THEOREM 3: Let 0": sq + Sand N I = <l..l ' ••• ;Y.q> ,
for l..l""'~ E Zn. A sufficient condition for
{pa dO"), sea (0"), pa r-sea (0"), seq-pa r (O")}

"T 1 "T 2 '1:3
to be pair-wise equal over fixed configurations of
degree Ill> 0 for some trajectories '1:1,'1: 2 ,'1: 3 is

that no two different cells of Zn are related
neighbors of each other.

PROOF OF THEOREM 3: We claim that Rn V En is a

partial order over Zn. From Lemma I, Rn v En is

transitive and reflexive. Suppose i.1 (Rn V En) ~

and .12 (Rn v En) ..11' By our hypotheses, it is

impossible to have ~I Rn ~ and ~ Rn ~I' Thus,

we must have that ~I = ~. Thus, we have our

result. This, in turn implies that (Rnv En) n
(Wm x Wm) is a partial order over Wm• We then

embed (R V E) n (W x W) in a total order n n m m
e. Thus, for all .11' ..!lz E Wm' ..11 Rn ~ + 1.1 e ~2"

Let<~. ,'" ,.1' > be a listing of Wm Such
111m"

64

that for I ~ u < v ~ mn, r;. e 1; .• Note that
""'l. -l.

U V

for 1 ~ u < v ~ mn, 1;. t Ne(1;.). For,
-l. -l.

V U

suppose~. E Ne(~.). Thus, r;. is a related
l. l. -l.

V U V

neighbor of ~i and hence 1.i Rn ~i ' which
u v u

implies that 1.i e ~i ,which, in turn, implies
v u

that j2 ~ jl' which Is a contradiction.

Thus, for pure sequential processing, we
can choose any trajectory '1:1 such that, if

kl < k2 , '1: 1 (k l) == 1.i. ' '1:1(k2) = ~i. ' for
JI J2

1 ~ jl,j2 ~ mn, then j2 < jl'

For parallel-sequential processing, we can
choose any trajectory '1: 2 which is such that
either,

I) the range of '1:2 doesn't include any

element..1. for I ~ j ~ mn; or
I j

2) the range of '1: 2 includes each element

of{~. ,r;. , ••• ,1;.}, for some 1 ~ j ~ mn, is
II -1 2 -I j

disjoint from {r;. , ••• ,r;.}, and is such that
-I j+1 -Imn

if kl < k2' '1: 2(k l) = 1.i. ' "2 (k2) = ~i. ' for
JI J2

I ~ jl,j2 ~ j, then j2 < jl'

For sequential-parallel processing we can
choose any· trajectory '1:3 which is such that
either,

1) the range of '1:3 doesn't include any

element r;. for 1 ~ j ~ mn; or
-I.

J

2) the range of '1:3 includes each element

of {~. , ••• ,1;. } for some 1 ~ j ~ mn, is dis-
Ij -Imn

joint from {I.. , •• " &. } and
II I j_1

kl < k2' '1: 3(k l) = I.i . ' '1: 3 (k2)
Jl

j ~ jl,j2 ~ mn, then j2 < jl"

is such that if

= 1.i. ' for
J2

QED

We now give a necessary and sufficient con­
dition for two different cells of Zn to be
related neighbors of each other; but first we
show,

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

LEMMA 2: Suppose NI '" <vl, ••• ,V > for VI, ••• ,V
- -<i - -<i

members of Zn. Then cell 1;; is a related neighbor of
cell e, for 1;; -I e, iff 1;;-'" 0 • V. + ••• +6. V .

- - - - JI-JI Jp-J p
+ e for some I ~ p ~ q, where O. > 0 and V. -I 0

- Jk -Jk-
for I ~ k ~ p.

PROOF OF LEMMA 2: Suppose 1;; is a related neighbor
of e. Thus, there is a chain of cells ~I""'~'

for s ~ 2, such that s:.1 '" f., f.s '" !L, and, for

I ~ i ~ s-I, s:.i E: Ne(f..i+I)· Thus, ~I '" ~2 + 4 '
2

1.2 '" 1.3 + 4 , ... , f.s - I '" ~ + 4 ' fo r I .,; k2,···,
3 s

ks ~ q. We then get that s:.1 '" 4 + 4 + ••• +
2 3

:'L!<s + S '" 0 • 1... + ••• + o. r.. + ~, where
~ J I JI J p J p

I ~ p ~ q, o. > 0 and Y.... -I 0 fo r I ~ k ~ p.
Jk Jk-

Our result follows trivially since £1 '" 1;; and
fs '" e.

Suppose 1;; '" o. V. + ••• + O. V. + e for
- JI-JI Jp-J p

some 1 .,; p ~ q, where O. > 0 and V. -10 for
Jk -Jk-

I ~ k ~ p. We thus get that e + V. £ Ne(e),
- -J p -

e + 2V. E: Ne (e + V.), ••• , e + O. Y.... E: Ne (~ +
- -J p - -J p - J p J p

(0. -l)y.), e + v. + o. V. E: Ne(e + O. v.),
J p -J p - -Jp-l Jp-J p - Jp-J p

••• , e + O. V. + O. y. £ Ne (~+ (0. - J).
- Jp_I-Jp_1 Jp-J p Jp-l

Y . + O. Y.), ••• , 1;; £ Ne « o. -I)Y, + O. y. +
-Jp_1 Jp-J p - JI -Jl J2-J2

e.

+ O. y.). Hence, f is a related neighbor of
Jp-J p

QED

We now present,

THEOREM 4: Suppose NI '" <r.l""'Yq> for r.1"'"
y E: Zn. Then there exists 2 different cells,
---q
f and ~, which are related neighbors of each

other iff uk YK + ••• + uk ~ '" Q for some
lIs s

2 , s , q, where Uk. > 0 and YK. -I Q for 1 ~ ~s.
I I

PROOF OF THEOREM 4: Suppose 2 different cells, f

and e, are related neighbors of each other. By
Lemma 2,1;; '" O. y. + ••• + O. Y + e and

- JI-JI Jp-jp-

e '" S y + ••• + S y + ffor 1 ~ p,u ~ q,
- rl~1 ru~u

where u. > 0 and Y. -I Qfor.l"; ~ p, and
J i -J i

65

S > 0 and Y -I 0 for I ~ i ~ u. Thus,
r i "'"'ii-

1;; ",o.V. + ••• +o.y. +S Y + ••• +
JI-Jl Jp-J p r -rl

Sr Lr +.5., and our result follows.
u u

Suppose Uk ~ + ••• + Uk ~ '" Q for some
I Iss

2 ~ s ~ q, where Uk. > 0 and ~. -I Q for
I I

1 .,; i ~ s. Thus, letting i'" Uk ~ + .,. +
2 2

Uk ~ -I Q, we see that Q'" Uk ~ + i, and
s s I I

i '" Uk ~ + ••• + Uk ~ + Q. Thus, by Lemma
2 2 s s

2, 0 and ~ are related neighbors of each other.

Thus, we have,

COROLLARY 2: Let <J:Sq-r Sand NI '" <YI, ••• ,Y >
- -<i

for YI, ••• ,Y E: Zn. Then, a sufficient condition
- -<i

for {par(<J), seqT (<J), par-seqT(<J),
I 2

seq-parT (<J)} to be pairwise equal over fixed
3

configurations of degree m > 0, for some trajec­
tories T I ,T 2 , T3, is that,

IU k I~ + ••• + IU k I~ '" Q
I Iss

for 2 ~ s ~ q, where ~. -I Q for I ~ ~ s,
I

implies that Uk '" ••• '" Uk '" O.
I s

We can generalize this in the following
fashion,

DEFINITION II: Let <J be a local transformation.
We say that pure parallel processing using <J is
weakly equivalent to pure sequential processing
using <J, over a set of configurations C,

par(<J) ~C seq(<J),

if, for every c E: C, there exists an appropriate
trajectory T, such that park) (c) seq (<J) (c).

T

We have similar definitions for the other methods
of processing.

We then have,

COROLLARY 3: Let <J:Sq -r Sand NI '" <r..I, ••• ,rq>,
n

for r..1""'lq E: Z • Then, a sufficient condition
for {par(<J), seq(<J), par-seq(<J), seq-par(<J)} to
be pairwise weakly equivalent with respect to the
set of finite configurations is that,

IUk 11K + ••• + IUk 11K '" Q
I Iss

for 2 ~ 5 .,; q, where 4. -I Q for I .,; i .,; s,
I

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

implies that <Xk = ••• = <Xk = O.
I s

PROOF OF COROLLARY 3: This follows directly from
Corollary 2 and Theorem 3. QED

Let us now present an example of a neighbor­
hood index and local transformation cr such that
par(cr) ~ seqT(cr) for all trajectories T. We let

NI = <-1,0,1> - each cell is in Z - S = {O,I} and
cr(I,O,O) = cr(O,O,I) = I, cr(O,O,O) = cr(O,I,O) =
cr(O,I,]) = cr(J,O,]) = cr(J,I,O) = cr(J,I,J) = O.

Consider the configuration c = 010010; that is,
there is an iO e Z such that c(i O) = c(i O+3) = I

and c(i) = 0 otherwise. It is easily verified
that parCcr) ~ seqT(cr) for any trajectory T. It

is also easily verified that this example does
not meet the sufficient conditions mentioned in
the previous theorems. Here we see clearly what
the Concept of related neighbors portends; there
are cells which are related neighbors of each
other and which are such that whichever one is
processed first destroys the possibility that
the other will be in a state so that the resul­
tant configuration is the same as if the original
configura·tion were processed in parallel. We call
this the mutually destructive condition. If this
condition exists in a given situation, we have
that par(cr) ~ seqT(cr) for any trajectory T. The

preceding theorems gave sufficient conditions
for this condition not to exist.

We now present some theorems regarding the
general notion of simulation. But first, we must
define the following entities,

DEFINITION 12: A stratified mixed mode tessella­
tion automaton is called pure parallel if and
only if the union of its sets of sequential,
parallel-sequential, and sequential-parallel
global array transformations is empty.

DEFINITION 13: A stratified mixed mode tessella­
tion automaton is called pure sequential if and
only if the union of its sets of parallel,
parallel-sequential, and sequential-parallel
global array transformations is empty.

We now have the following,
n THEOREM 5: Let TA = <S,Z ,<yl, ••• ,y >,GT>. Then,

- "-<I
there is a pure sequential stratified mixed mode
tessellation automaton, STA, which simulates TA
in 2 times real time.

PROOF OF THEOREM 5:

Case I: Suppose y. ~ _0 for all I, j ~ q
--- -J

Let GTp = {PI""'P~' GT s = {Pr+I""'P r+s}'

GT p,s = {p r+s+I'···'P r+s+t}' and

GTs,p = {Pr+s+t+I""'Pr+s+t+)' 61 = {al'a2,a3,
a4} and 62 = {b l ,b2}, where 61 " S = 62 n S = II.

(6) r+s+t+u We then let STA = <S x S x 6 I X 2 '

zn,<yl, ••• ,y ,O>,GT*>, where GT* will be defined
- "-<1-

66

presently. Before we specify what ~ and rare,
let us do the following,

We first define a map M:GT V GT v GT p s p,s

V GT + {T I T: w+ Zn, T is I-I and onto} as s,p
follows (this will be the set of trajectories
used in STA):

a) For P e GTp' let M(p) be arbitrary

b) For P e GTs ' p is determined by some

trajectory T*. Let M(p) = T'~

c) For p e GT , p is determined by some p,s
trajectory T**. Let M(p) be any trajectory such
that,

i) Suppose ~'£2 are two different
cells of Zn in the range of 1** and that
T'h~-I (t.) < T**-I (z;;). Then

""::1 -2 '

(M(P»-I(l) < (M(P»-I(5,.z).

(The order of sequential processing is preserved.)

ii) Suppose ~ e range(T**),

~ t range(T**) and ~ £ Ne(~) or ~ £ Ne(~). Then,

(M(p»-I(~) < (M(p»-I(~).
(A cell processed sequentially in TA may be pro­
cessed any time in STA as long as all cells in its
neighborhood or which have it as a neighbor, which
were processed in parallel in TA, are processed
fi rst.

d) For p e GT , p is determined by some s,p
trajectory T***. Let M(p) be any trajectory such
that,

i) Suppose £1'£2 are two different

cells of Zn in the range of T*** and that

T*** -I (J;I) < T*'~* -I (£2)' Then,

(M (p)) -I (£1) < (M (p)) - I (£2) •

i i) Suppose £ I. range(T'~**),

£ £ range(T***) and ~ £ Ne(f) or ~e Ne(Il. Then,

(M(p» -I (£> < (M(p» -I (~.
(A celt processed in parallel in TA may be pro­
cessed any time in STA as long as all cells in its
neighborhood or which have it as a neighbor, which
were processed sequentially in TA, are processed
fi rs t.

For I ~ j :< r+s+t+u, let T. = M(p.).
J J

We now specify the map ~:CONTA + CON STA •

Let c e CONTA • Then, ~(c) =c*, where, for

~ e Zn, if c(~ = s, then c*(£) = <s,S,«a. ,b. >,
I I I I

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

a) ~ is a fixed element of S

b) For I ~ j ~ r, we have i j = I, for

r+1 ~ j ~ r+s, we have i. = 2, for r+s+1 ~ j ~
J

r+s+t, we have i j = 3, and for r+s+t+1 ~ j ~

r+s+t+u, we have i. = 4. (This indicates the
J

total range of processing: parallel, sequential,
parallel-sequential and sequential-parallel.)

c) For I ~ j t;; r+s+t+u, b. indicates
I j

whether or not cell ~ is in the range of the
trajectory corresponding to Pj • That is, for

I ~ j ~ r, we let i. = I, while for r+1 ~ j ~
J

r+s+t+u, i. = I if and only if cell ~ is not
J - -

in the trajectory which determines p .•
J

As a notational convenience, for

IX = «a. ,b. >, ••• ,<a. ,b, » E
I I I I I r+s+t+u I r+s+t+u

() r+s+t+u] e 1 x e 2 ' let IX [k = <a. , b. >, fo r
Ik Ik

I ~ k ~ r+s+t+u, and IX [k][I] = a. and IX [k][2]
Ik

Now, the map r:GT + GT*2 is defined by

rep) = <p* p*> where we now define p* and p*.
I' 2 ' I 2

Suppose p = Pi' for I ~ i ~ r+s+t+u. Now, p

is defined via some local transformation crp • We

have that p'~ is defined via the trajectory t".
I I

M(p) and local transformationcr* , where,
PI

*(J\ ") crPI <sl,sl,IXI>,···,<Sq+I,Sq+I'IXq+l> =

i<Sq+1 ,crp (sl , ••• ,Sq+l) ,IXq+I>, if either

{ 1 ~ i ~ r, or r+s+l ~ i ~ r+s+t and
{ IX +1 [j] [2] = bl , or r+s+t+1 ::; i ::;
{ q
{ r+s+t+u and IXq+1 [i] [2] = b1

i<crp (sl, ••• ,Sq+l) 'S'q+1 ,IXq+I>, if either

{ r+ I lS i ~ r+s, 0 r r+s+t+ I ~ i ~
{ r+s+t+u and IX +1 [i] [2] = b2 { q

i <cr p (s i ' ... , s ~+ I) , S' q+ I ,IX q+ 1>' if

{ r+s+1 ~ i ~ r+s+t and IXq+l [i] [2]=b2,
{
{
{
{
{
{
{
{

where, for I ~ kt;; q+l,

{sk i f IX k [il [2] = b2
s';~ - {

k -
{"
{sk if IXk [il [2] = b1

(j)

67

We also have that P~ is defined via local

transformation cr* and an arbitrary trajectory,
where, P2

r. . I = 0 for some I ~ j I ~ q
J -

This case is similar to the above.

It is straightforward to show that STA
simulates TA in 2 times real time.

QED

Before we present our last theorem, we
define the following concept,

DEFINITION 14: Let TA = <s,zn,<r.I, ••• ,rq>,GT>.

Suppose ~ E Zn and p E GT V GT v GT • We - s p,s S,p
now define what we call the ~ of cell £ with
respect to ~, denoted by,

as follows,

TA
typef.,P'

a) Suppose p E GT • Let t" be the trajectory s p
which determines p. Set So = {*}, and, for i ~ 0,

q • -I () let S'+I = S. v S •• For 0 ~ J ~ t" ~, we
I I I P -

define E~f) :Zn + S., (Thus, EO(.0 is the constant
J J

function which maps Zn into {*}.) For 0 ~ k ~

t"-1(~)_1 and §.. E Zn, we define,
p -

{ (~)(I:") (d(l:") 'If
(~) _ {<EC Z.+r.1 , ••• ,Ek- z.+.Iq >

E k+1 (§..)- { 1;= t" (k)
{ - P
{E (.0 (I;) otherwise

k -
TA Then, type,.. z.,p

b) Suppose P E GT • Let t" be the trajec-
p,s P

tory which determines p. Set TO = {*,<*~~},

and, for i ~ 0, let Ti+1

Suppose that f. I.
TA type £,p = <<;': •••. 'i':>.
~

q

= T, Ioi T~.
I I

rangeC-r).
P

Then,

Suppose that ~ E range(t"). Let
- P

q

p
. -I () = t"1 (). For 0 lS J ~(j) .. ~, we define

prange t" p P

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

TA
e-typef,p

{* if 1; t range(T }
{- p

{e (f) (1;) otherwi se
~n~l(f) -

we then have that,

TA type,..
.z.,p

TA {S-type,.. if 1; e range(T) = { .z.,p - p

{<e-typeTA etTA { , ••• , - ype,..+y >
{ I+r.I'P .z. ~,p

{
{ otherwise

68

We then have the following,

THEOREM 6: Let TA = <s,zn'~I' ••• 'lq>,GT>. For

each p e GTs V GT IJ GT ,suppose that p,s s,p

Then, there is a pure parallel stratified mixed
mode tessellation automatonwh'ich simulates TA
in real time.

PROOF OF THEOREM 6: This is similar to the proof

of Theorem I in Grosky and Tsui[3].
QED

REFERENCES

[1] S. Amoroso and G. Cooper, "Tessellation
Structures for Reproduction of Arbitrary
Patterns," Journal of Computer and' Sys tem
Sciences (v. 5, 197TT, pp. 455-~

[2] S.K. Chang, "On the Parallel Computation
of Local Operations," Third Annual ACM
Sympos i um ~ T~eory) ofCOiiipu~Shaker
Heights, Ohio 1971 , pp. 101-115

[3] W.I. Grosky and F. Tsui, "Pattern Generation
in Non-Standard Tessellation Automata,"
Proceedings of the ACM 1973 National
Conference, Atlanta:-Georgia, pp. 345-348

[4] E. Lieblein, A Theory of Patterns in Two­
Dimensional Tessellation Space, Ph.D:' Thesis
Department of Electrical Engineering,
University of Pennsylvania, 1968

[5] M. Minsky and S. Papert, Perceptrons, MIT
Press, Cambridge, Massachusetts, 1969

[6] A. Rosenfeld, "Isotonic Grammars, Parallel
Grammars, and Picture Grammars," Machine
Intelligence 6, (eds.) B. Meltzer and D.
Michie, Edinburgh University Press (1970)
pp. '281-294

[7] -- and J.L. Pfaltz, "Sequential Opera­
tions in Digital Picture Processing,"
Journal of the ACM, (v. 13, 1966),
pp. 471:'1i'94--

[8] A.R. Smith III, "Cellular Automata Complex­
ity Trade-Offs," Information and Control,
(v. 18, 1971), pp.466-'482 -

[9J H., Yamada and S. Amoroso, "A Completeness
Problem for Pattern Generation in Tessella­
tion Automata," Journal of Computer and
System Sciences, (v.4,]:970), pp. 137-176

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

PARALLEL IMPLEMENTATION OF A TWO-DIMENSIONAL MODEL(a)

Valere J. Kransky, E. Dick Giroux, and Gary A. Long
Lawrence Livermore Laboratory, University of California

Livermore, California 94550

Abstract-A large, serially programmed,
two-dimensional mathematical model has been
reprogrammed for the CDC STAR-I00 and the
CDC 7600 computers using parallel programming
techniques. The parallel program is currently
running on the CDC 7600. The concepts, tech­
niques, and the results of its use are discussed.
The parallel program executes efficiently, can
be modified easily, and requires no major re­
design or reprogramming for conversion to other
large-scale parallel machines.

Introduction

The Lawrence Livermore Laboratory
began seriously investigating the programming of
"parallel" machines in 1969. Our group was
assigned the task of reprogramming a large,
two-dimensional phySical simulation model
called HEMP [1]. The equations are Lagrangian
and the difference scheme is explicit. Included
in the model are hydrodynamics, elastic-plastic
flow, multiple Sliding, multiple materials, and
fracturing. We established the following pro­
grammatic goals:

(1) To formulate parallel programming
techniques and methods for general use.

(2) To develop a program that would
execute with the same source deck on different
types of computers. (This is particularly im­
portant at LLL because of our history of ac­
quiring new types of large-scale computers.)

(3) To achieve optimum execution rates on
parallel computers.

(4) To design the program in a manner that
would provide maximum flexibility for frequent
modifications.

Vector Programming

After analyzing several different large­
scale parallel computers (see Appendix A), we
decided that vector programming techniques
would satisfy our needs. We define a vector to
be a contiguous array of data whose boundaries
are specified by a descriptor word. The data
contained in a vector may be:

(1) floating point
(2) integer
(3) bits
(4) bytes
(5) characters

A descriptor is a pointer whose low-order bits
are a bit-base address that points to the data and
whose high-order bits contain the item count of
the data set.

The ease with which one can manipulate
data is the essential feature of vector program-

mingo We can manipulate vectors with such
operations as:

(1) Compress - selects a subset of a vector
under the control of a bit
vector.

(2) Merge - puts together two vectors
under the control of a bit
vector.

(3) Compare - generates bits in a bit vec­
tor as a results of com­
paring two vectors.

(4) Transmit
index list - collects into a contiguous

result vector, discontig­
uous elements from
another vector by using an
index vector.

(5) Transmit
index des-
tination - stores into discontiguous

locations the contiguous
elements of another vector
by using an index vector.

Such instructions as these permit the "massag­
ing" of data for the various equations found in
large-scale scientific programs.

Vectorization of the HEMP Equations

The HEMP problem-solving procedure
consists of repeated solutions of explicit equa­
tions over a large. two-dimensional grid. Each
complete pass through the equations for all grid
points (nodes) and zones is a "problem cycle."

Nongeneral Calculations

Certain parts of the two-dimensional mesh
(see Fig. 1) must be treated in special. non­
general ways in the solution of practical prob­
lems. Three of the more important of these are
described below: (The problem shown in Fig. 1
is not a typical HEMP problem; most problems
are more complex and much larger.)

(1) Most of the phySical system calculated
by the HEMP program include more than one
type of material. The materials are in contact
with each other at interior boundaries. Often.
large displacements along these surfaces take
place as the system is solved on the computer.
In the program this necessitates the inclusion
of special" slide-line" calculations and logic to
simulate the surfaces with a decoupled grid.

(2) There are usually two or more mate­
rials in a HEMP problem. The behavior of
these materials is modeled by equations-of­
state. The program must associate the proper
equation-of-state with the appropriate grid zone,
and calculate material behavior.

(a)Work performed under the auspices of the U. S. Atomic Energy Commission.

69

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

(3) Various boundary conditions are
associated with the exterior boundaries of the
system. These require that the program do
selective calculations for certain boundary
points.

HEMP Difference Scheme

The HEMP equations-of-motion require the
calculation of a line integral at each node. This
is represented by the dashed line shown con­
necting nodes I. II. III. and IV in Fig. 2. In
addition. zonal data must be accessed at zones
(0. (2). (3 >. and (4). The exterior boundary­
line integrals are calculated in a manner similar
to that of the four-zone case. except that coor­
dinates of the node being accelerated are also
assigned to one of the surrounding nodes (see
Fig. 3).

It was determined that the movement of the
boundary pOints. while subject to various non­
general conditions, could be substantially cal­
culated with the same equations (and therefore in
the same vector) as the interior grid points. For
the purpose of describing the vector techniques
used in doing some of the calculations. a tiny
grid with a slide-line is shown in Fig. 4. In
order that we may treat all nodes with the same
equations to obtain a "tentative" acceleration. we
expand the nodal vectors with a "geometric bit
string." By geometric bit string, we mean a bit
string whose bit pattern is dictated by the grid1s
shape and size. This expansion creates a vector
that has vacant elements for the insertion of
"phony node" values. The expanded grid is
shown in Fig. 5. Through the use of compres­
sion. expansion. and controlled-store operations,
the phony nodes are assigned the values of the
adjoining real boundary nodes. The zonal
quantities are expanded out in a similar manner.
Now we have a grid that includes phony nodes and
phony zones.

Compression with appropriate geometric
bit strings is done to isolate the diagonal end
pOints. The diagonal differences (which are
zonal-centered quantities) are calculated. These
diagonal differences are compressed with
another set of geometric bit strings to produce

Special
bound­
ari

CYCLE TIlE
zia 5.1019'

Fig. 1. A HEMP problem.

Slide-
1 ine
Axis
of

70

nodal-centered values. These are used to cal­
culate the acceleration terms. New velocities
are calculated that are used to reposition the
nodes.

The acceleration terms are needed for the
boundary calculations (including slide-lines);
therefore. it is efficient to calculate acceleration

III

I

Fig. 2. HEMP acceleration arms.

IV

Fig. 3. HEMP boundary arms.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

terms tn one vector pass. For boundary points"
the position is only tentative and may be over­
ridden by subsequent calculations.

The Slide- Line Calculation Logic

Slide-line calculations are complex. They
require that nodes and zones on each side of the
slide-line be associated with nearby nodes and
zones on the opposite side of the slide-line.
Figure 6 shows how zones must be mapped
across a slide-line. This relationship can

Fig. 4. A simple HEMP grid.

Fig. 5. HEMP grid with phony zones and nodes.

I I I I I
I I I I I
I I I I I

I I I I
I I I I

I I I I

Fig. 6. Slide-line mapping.

71

change from problem cycle to problem cycle. A
search procedure is require to determine this
relationship. This was at first thought to be an
inherently serial process, and therefore not
amenable to vector programming procedures.
We vectorized this procedure so that it is done
in a few iterations, through the us e of cascading
compare and compress operations.

An "ordering index" vector is calculated
and saved from cycle to cycle. This vector
describes the relative nodal positions at that
cycle. During each cycle, the ordering index
vectors are updated to reflect positional changes.
To update the ordering index numbers, all nodes
on one side of the line are checked against their
previously known solution points on the other
side to determine if those solutions are currently
correct. The currently correct nodes are com­
pressed out of the vector. A trial ordering
adjustment is made with the reduced vector. If
found to be satisfactory, these solutions are
compressed out. This iterative procedure is
continued until all solutions are found. The
relative positions of the slide-line nodes change
little from cycle to cycle. Ordinarily, one to
three iterations are required to update all the
ordering index numbers. This process quickly
cascades from full-length slide-line vectors to
much shorter vectors. Although they are more
involved, subsequent slide-line calculations that
use these ordering numbers cascade in a similar
manner.

Slide-line manipulation includes the build­
ing and use of dynamic bit strings. These con­
ditional bit strings are used to compress a
sequential index set that is used to fetch or store
elements of data within the slide-line vectors.
Slide-lines are relatively short, and we may have
several slide lines in a problem. Therefore,
they are catenated together so that all slide-
lines car be calculated in one vector pass. Since
the acceleration equations are the same for both
sides of the slide-line, alternate sides are cat­
enated together so that all common parts of the
calculation can be done in one vector pass.

Equation-of-State Handling

Each problem can have associated with it a
number of equations-of-state. In practice, the
same equation-of-state is associated with many
contiguous zones. This enabled us to:

(1) select zones with like material proper-
ties;

(2) arrange the zonal variables into
material-related vectors, and

(3) calculate similar zones in one series of
vector operations.
A particular zonal grid vector is composed of
packed integer fields. One field is a group of
numbers that are associated with a particular
equation-of-state form. Another field is a
material number within that form. The material
number within the form is used as an index to
access equations-of-state coefficients within that
form. When the material properties are to be
calculated within a problem cycle, this vector is
unpacked (using vector operators) into a number
of full-word vectors. A vector compare is done

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

to determine which zones are associated with
each equation-of-state form. The appropriate
variables are then compressed out using the re­
sulting bit string. The corresponding material
within the form numbers is also compressed out.
The form number is used to control a branch to
the appropriate equation-of-state coding. The
material within the form number is used as an
index to select the appropriate equation-of-state
coefficients for the material. The program
makes repeated passes through this procedure
until all zonal material properties are calculated.
Because the program is provided with a list
of forms for a given problem, only as many s
passes are made as there are forms in the
problem.

Forking

'the equation-of-state calculations are ex­
amples'of program fork handling. (By forks we
mean the selection of various calculational
operations. In a serial program this would be
done by conditional branching.) Many forks in
the program are done dynamically (dynamic
forking). In general, a particular vector com­
pare produces a different bit string each prob­
lem cycle. The bit string is used to control the
calculations. We use two methods of control
logic. One method is the previously mentioned
vector compare-compress-calculate-expand­
and-store series of operations. There is over­
head in doing the compressions and expansions
in this method. A second method is to use full­
length (uncompressed) vectors through both
sides of the fork, and -then use a bit string(s) to
control the storing of results. Here we are
calculating many results that are going to be
unused, and therefore wasted. Whether to us e
the compress-expand method or the controlled­
store method depends on the bit denSity of the
fork bit string and the amount of calculation on
each side of the fork,

When the bit string is relatively sparse on
the long side of the fork, it may be more effi­
cient to compress, calculate, expand, and store.
When the bit string is relatively dense on the
long side of the fork, it may be more efficient
to calculate the entire vector both ways and use
the controlled store. The method to use is
determined through the use of an equation that
has in it the vector lengths, the operation types,
and the number of operations on each side of
the fork [2]. The decision is made dynamically
each problem cycle. (This calculation is
practical because our vectors are long, and
some forks require many operations on one or
both sides of the fork.)

Operation Skipping

The issuance of one vector instruction
produces a large number of results. This has
introduced another time-saving flow-control
technique that is not available in serial pro­
gramming-operation skipping [2]. Some of the
HEMP equations contain terms that are not used
in a particular problem. In serial programming,
it is more expensive to check a flag and possibly

72

skip an operation each time through a loop than
it is to issue the unnecessary instruction(s). In
vector programming, a single flag check can
cause a sequence of vector instructions to be
skipped, saving hundreds or thousands of unre­
quired operations. This test can also be done on
the length field of a vector descriptor.

Character Vector Techniques

The HEMP program produces large
quantities of printer output. To make this an
efficient process, we have used character vector
operations to convert binary data to BCD
(binary coded decimal). This is one application
of vector techniques to areas other than
arithmetic number crunching.(a)

Tree Structures

Some index sets, bit strings, and other
data sets are constructed at generation time;
others are built dynamically during execution.
Because of the wide divergence of HEMP prob­
lem sizes, shapes, and options, the use of fixed
blocks of memory to store this data would be a
waste of storage space. To conserve core, we
pack this data in memory. We access this data
through a series of linked descriptors or "tree
structures" that point to the data. The top
descriptor points to a vector of descriptors, each
of which points to another vector of descriptors
or data. Each descriptor tree eventually points
to data. If an unusually large data set is re­
quired, it takes the needed space for that prob­
lem only. If a data set is not required for a
particular problem run, it consumes no memory.
Tree structures are used in the slide-line, the
boundary condition, and other sections of the
program. A simple example is shown in Fig. 7.

Core Allocation

Allocation of storage for all vectors needed
by the HEMP program is done dynamically, at
execution time [4). The program never allocates
more vector space than it needs and/or is
physically available in core. (b) The allocation of
core is based on the contents of a HEMP data file
(Appendix C).

Temporary Results Vectors

The evaluation of a typical vector
arithmetic expression requires temporary

(a)Charcter vector operations facilitate the
writing of interactive, timeshared, and inter­
preti ve routines. Character vector techniques
can be applied to compilers, loaders, and other
system software packages [3].

(b)For some problems the entire grid cannot
be held in memory. The program explicitly
handles the transfer of data between core
memory and disk. Even though a computer
(like the CDC STAR-IOO) may have virtual
memory. the overhead associated with page
faulting is too costly.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Level a fixed-location descriptor

Length Address 1
Level I variable-location descriptor

~ Length Address Level II variab
~ 1 ocati on data

Length Address Data

le-

Length Address

~
Level II Data
variable-location descriptors

L.., Length Address

Length Address

~ Level III variab le-
location data

Level II I r---
Data

~ Could point
to >-------additional
levels

Fig. 7. A tree structure.

vectors of the same length as the result vector.
The length of result vectors in a typical
HEMP problem is about 1500 words long. As in
serial programming. certain calculational re­
sults must be saved for later use. In serial
programs. this does not present a memory
management problem. since each saved result
only needs one word of core. In vector
programming. this is a serious problem. Each
saved result is a vector that requires a large
amount of core memory. To alleviate this
problem. we reuse the same dynamic vector
space as much as possible. This is done
through the use of a simple "saved vector"
allocation scheme.

The base addresses of saved vectors are
kept in a stack. The base addresses of "saved
bit vectors" are kept in another stack. Initially.
the base addresses in a stack are in ascending
order. The number of words between any two
adjacent entries in a stack is the same (the
length of the longest result vector needed).
When a calculation needs a result vector. it
takes the next entry (address) from a stack.
When a result vector is no longer needed. the
address is returned to the stack.

73

Multiple Vector Passes

When discussing the equations. it was
assumed that all vectors were full grid size.
This was a simplistic view. taken to make the
discussion easier to understand. In actual
practice. a problem must be calculated by
making multiple passes through the equations.
This is necessary because current computers
do not have enough core memory available for
the save-vectors to be the length of a full grid
vector. The number of passes through the
equations is a function of the maximum size of
a saved result vector and the size of a grid
vector.

Prior to each pass through the equations.
the grid variable descriptors are adjusted to
point to that part of the grid that is to be cal­
culated. If a sUde-line(s) is included in a pass.
the necessary data vectors and vectors of
descriptors for the slide-line equations are con­
structed. The coordinate vectors and the
velocity vectors are merged with phony nodes.
The geometric bit vectors are also dynamically
constructed each pass. (a)

Vector Programming Aids

The implementation of our vector program
has been facilitated by the use of:

(1) an APL interpreter (Appendix D).
(2) programming language extensions

(Appendix E). and
(3) new debugging routines (Appendix F).

Current Status

The vector HEMP program is currently
running on the CDC 7600 through the use of
vector software kernels (Appendix G). Vector
HEMP demonstrates marked improvement in
execution rate over the serial FORTRAN pro­
gram (Appendix H). The same vector HEMP
source deck that is in useonthe CDC 7600 will
be used on the CDC STAR-lOa computer
(Appendix I).

Summary and Conclusion

The following vector techniques were
developed and used:

(1) geometric bit strings
(2) phony nodal and zonal elements
(3) dynamic bit strings
(4) static forking
(5) dynamic forking
(6) operation skipping
(7) cascading vector solutions
(8) character vectors for printing results
(9) descriptor tree structures

The vectorization of large scientific computer
programs is accomplished by complete redesign
and reprogramming.<b) In general. improve­
ments in execution rates will not be achieved by

(a>we- have a full set of Boolean bit vector
operations to facilitate the construction of the
geometric bit strings [5].

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

simply "vectorizing" a few subroutines. Vector
programming techniques can be successfully
applied to a wide variety of large-scaIe parallel
computers.

Appendix A. Parallel Computer Analysis

The pursuit of our goals necessitated a
detailed analysis of parallel computers. By
parallel we mean any computer on which a
single operator at the source level will cause
multiple. identical machine operations to occur.
The operators may invoke a single hardware
instruction or a sequence of instructions.

The parallel computers studied included
multiprocessor computers. array computers.
pipeline computers. and associative computers.
Our attention was focussed mainly on large­
scale computers in existence or in the planning
stage. The computers we investigated were:

(1) the CDC STAR-100 [6]
(2) the Burroughs ILLIAC IV [7]
(3) the Texas Instrument ASC [81. [9]
(4) the CDC 7600 [10]

The STAR-100 and ASC computers use "pipes"
through which operands from contiguous memory
locations are streamed. The ILLIAC IV uses
64 separate processing elements (PE's) that can
all execute the same instruction simultaneously.
The STAR-100. ASC. and ILLIAC IV all use "bit
logic II to control the storing of operands to
memory. For bit logic operations. the STAR-
100 has a much more complete set of instruc­
tions than either the ASC or the ILLIAC IV. In
parallel computation. bit logic replaces the
indexes used in serial programming and is the
most important nonarithmetic capability of the
computers.

The CDC 7600. while not a pipeline or
multiprocessor computer. can be an efficient
vector machine through the implementation of
software kernels (Appendix G).

Appendix B. Vector I/O Library

We used character vector techniques exten­
sively in writing a vector I/O library. All I/O is
done by suhroutine calls to this library.
The HEMP source deck contains no READ.
WRITE. etc. type of statement. Only a small
part of this library (that part which interfaces
directly with the operating system) has been
written in a machine-dependent manner. One
subroutine in this library is used for printing
vectors of numbers. This vector "write" routine
can execute up to six times faster than serial
FORTRAN" write" routines on the CDC 7600.

(b)Because of the extreme disparity in the
calculational speed between a truly vectorized
algorithm and a calculation done in a loop on a
parallel machine. it does little good to vectorize
just part of a program and leave the rest in
serial mode. If parallel machines are to per­
form at anywhere near their capability. all
array-type calculations must be vectorizea. If
arrays are calculated serially. the performance
of parallel computers will be degraded by
factors of 10 to 30.

74

Appendix C. HEMP Data File

A HEMP data file is composed of three
parts (F ig. 8):

Part I contains various scalar information
about the problem and the size (number of words)
of Part II (this size changes from problem to
problem).

Part II contains descriptor tree structures
and data vectors. The data vectors in Part II
contain information about:

(1) the size of the grid. .
(2) the number of grid variables (the

number of variables varies from problem to
problem).

(3) the order of the grid variables.
(4) the attributes of the grid variables

(i.e •• nodal. zonal. etc.).
(5) the boundary conditions.
(6) the slide-line surfaces. and
(7) the equations-of-state.
Part III contains the grid variables. them­

selves.

Appendix D. APL Interpreter

LLL's APL interpreter was used heavily
during the design and algorithmic development
phases of vector HEMP programming. Many
data manipulation concepts were checked out in
APL. The design of the very complex slide-line
algorithms was particularly aided through its
use. Without APL this would have been a much
more difficult task. The value of APL is due
primarily to three things:

(1) its interactivity.

Part I

Part II

Part III

T

512 words long and contains the
length of part II

Descriptor tree structures:
(1) Grid description
(2) Boundary description
(3) Slide surface description
(4) Equations-of-state description
(5) Data for structures

Grid data

Fig. 8. HEMP data file.

T

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

(2) the fact that it includes in its operation
set most of the vector operators, and

(3) its extensive debug features [11] - [13].

Appendix E. Programming Language Extensions

The source deck for the HEMP program is
written in LRLTRAN [14] and [15]. LRLTRAN is
a super-set of FORTRAN IV. LRLTRAN has
scalar and vector extensions to FORTRAN IV.
The scalar extensions most used were:

(1) The .LOC. statement. Given:
J = .LOC .X, then J would contain the absolute
core location of the variable, X.

(2) The PARAMETER statement. Given:
PARAMETER (LWDB = 60), then all occurrences
of the name, LWDB, in the source deck would be
replaced by the literal, 60.

(3) A MACRO processor. We only use the
character substitution part of the MACRO proc­
essor.

Vector Language Extensions

We used the following vector extensions in
LRLTRAN:

(1} VECTOR (DV1, V1}- declares VI to be
a vector and DVI to be the descriptor of vector
VI.

(2) BIT Bl VECTOR (DBl, B1}- declares
Bl to be a bit vector and DBI to be the de­
scriptor of BL

(3) CALL Q8CMPRS-generates code for
the vector compress instruction.

CALL Q8MERGE-generates code for
the vector merge instruction.

CALL Q8XPND-generates code for the
vector expand instruction.

CALL Q8MASK - generates code for the
vector mask instruction.

(4) The .CTRL. operator. VI = B1.CTRL.
V2 says store V2 into VI, under the control of
bit vector BL

(5) CALL Q8INLINE(op-code, argument
list for the op-code). Op-code 1S the sTAR-lOO
hexadectmal operabon code, and the argument
list must match the fields for the operation as
defined in the STAR-100 reference manual [6].

The compiler generates inline coding for
the STAR-lOO for the vector operations. For
the 7600, the compiler produces calls to soft­
ware kernels for vector operations. The source
deck f.or the HEMP program contains only dyadic
expressions. This was done primaril'Y"tO
minimize allocation of scratch vector space for
complicated equations.

Appendix F. Vector Debugging Routines

When debugging serial programs, octal (or
hexadecimal) and/or decimal dumps are suf­
ficient. Vector programs require more sophis­
ticated dumping procedures. We wrote a sub­
routine, VDUMP, to print "snapshots" of core
while running a problem and a utility routine,
VDUMP, to do post-mortem dumps. Both
routines will dump in the following formats:

(1) bit (pure binary, ones and zeroes)
(2) ASCII

75

(3) descriptors (on the 7600, they print the
octal word address as well as the octal bit base
address, and the length field in base 10).

(4) floating point
(5) hexadecimal
(6) integer (base 10)
(7) octal

The routines will also dump vectors of all of the
above formats. When printing a vector, the
routines always print the descriptor first.

Subroutine VDUMP will also trace a de­
scriptor tree structure, printing all intermediate
descriptors and the data vector at the end of each
branch. The type of data at the end of a branch
is determined by the subroutine and formatted
accordingly.

Utility routine VDUMP was written using
character vector techniques. It executes about
three times faster than our serial dump routine.

Appendix G. Vector Kernels

In evaluating large-scale parallel com­
puters we reached the conclusion that they all
could be considered to be "pipe-line" computers.
This makes it possible to emulate a sequence of
arithmetic and/or logical computer operations.
Efficient subprograms called kernels can be
written if a computer has:

(1) a reasonable number of registers,
(2) several arithmetic units that can be run

in parallel, and
(3) partitioned memory, so that multiple

memory references can be made at the same
time.
The 7600 lends itself to the vector kernel con­
cept. During the design phase of the HEMP pro­
gram, two coworkers (Frank McMahon and
LanSing Sloan) were programming 7600 vector
routines to improve execution speed of FORTRAN
programs [16], [17]. We had already developed
and simulated similar vector kernels for the
ILLIAC IV in 1970. Coordinating with McMahon,
we decided to emulate a subset of the STAR-lOO's
arithmetic and bit-byte instruction set for the

Table I

Results per Microsecond
Process '600 STAR-iOu

Unoptimized FORTRAN 1.2 - 1.9
Optimized FORTRAN 1.6 - 3.3

?
?

Vector Operations (Dyads)

Transmit

(+, -, *, /)
Compress
Merge
Boolean string
Transmit index list

15

Arithmetic

2 - 10
5 - 100

4
100 - 400

7

50

12.5 - 50
25
25

400
4

Vector Operations (Triads)

Products per Microsecond

(VI * V2 * V3) 10 25

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

7600. When using these vector kernels
(labeled "in-stack loops" or simply "stack­
loops") exclusively, we have what we call a
vector 7600. These stack loops are mostly
dyadic operations (VI = V2.op.Y3), but some are
triadic (VI = [V2.op.V3].op.V4), where VI, V2,
V3, V4 are all vectors. Dyadic operations on
the 7600 achieve around seven floating-point re­
sults per microsecond, while triadic operations
attain around ten floating point results per micro­
second. Vector execution rates are a function of
the item count of the vector operations and the
look-ahead techniques used to achieve complete
concurrent CPU utilization; The stack-loops,
like the STAR-lOO vector instructions, require a
fixed amount of start-up time. This start-up
time becomes negligible for vectors of lengths
greater than 400 operands.

Table I compares'the results per micro­
second of the 7600 stack-loops, normal
FORTRAN, and the STAR~lOO.

Appendix H. Timin~ of Vector HEMP vs.
Serla HEMP

At present the HEMP program is running
on the 7600 using the vector stack-loops. To
date, timing comparisons show that the vector
HEMP program executes 2.2 times faster than
the serial FORTRAN HEMP program (Fig. 9).
With additional programming improvements and
the use of the vectorized editing routines,
throughput factors of three are predicted. The
approximate number of vector operations per­
formed per pass through the HEMP equations
are:

(1) 950 arithmetic operations (including
simple data transfers),

(2) 200 full-word logic operations (com­
pare, compress, merge, etc.), and

(3) 100 bit-string operations (bit and byte).

Appendix I. Spanning Computers

None of the vector language extensions
appearTrithe HEMP source deck. All vector
operations and descriptor manipulations are
buried in Simple macros. We have different
macro files for the STAR-lOO and the 7600.
Separate macro files are needed because:

(1) there are differences between the for­
mats of STAR-lOO and 7600 descriptors;

(2) different PARAMETERS are used;
(3) some operations require multiple

vector instructions on the STAR-lOO, whereas on
the 7600 a subroutine is called.

Another reason for limiting ourselves to
dyadic vector expressions is the Simplicity of
moving the HEMP program to computers other
than the STAR-lOO and the 7600. A relatively
Simple preprocessor would handle the macro
expansions and the parameter substitutions. The
resulting deck would then be FORTRAN IV­
compatible (Le., calls to software kernels would
be done during preprocessing).

The use of vectors on a machine like the
ILLIAC IV eliminates the necessity of memory
management techniques such as "skewing" for
optimum PE usage and boundary condition cal-

76

9

"'C 8
c
0
u

7 eu
en

Os 6

s-eu 5 0.

"'C eu 4 en
en
eu
u
0 3 s-o.
en 2,
c
0

Q..

Serial program

0.20.4 0.6 0.8 1.0 1.2 1.4 1.6
Length of vectors in thousands of words

Points per Time for Number of
millisecond cycle grid points

4.45 11 50
Serial 4.25 94 400

4.20 399 1600
2.75 18 50

Vector 8.50 47 400
9.30 180 1600

Fig. 9. Timing comparison of vector-vs.-serial
7600 HEMP program.

culations. The use of vectors also results in
very little wasted memory, since the memory is
packed. For someone who is accustomed to
sequential (serial) programming, vector pro­
gramming presents new challenges. However,
our experience at LLL shows that if the equations
of a model are appropriate to the use of vectors,
they can be programmed in a straightforward
manner.

Acknowledgment

We would like to acknowledge the contribu­
tion of Jerry L. Owens during the initial design
phases of the vector HEMP program.

[1]

[2]

References

M. L. Wilkins, Calculation of Elastic­
Plastic Flow, Lawrence Llvermore
Laboratory, UCRL-7322, Rev. 1 (Jan.
1969), 101 pp.

J. L. Owens, The Influence of Machine
Organization on Alf,0rLthms. Lawrence
LLVermore Labora ory, UCRL-74795
(May 1973), 20 pp.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL P.ROCESSING

[3]

[4]

[5]

[6]

[7]

[8]

Mary Zosel, A Parallel Approach to Com­
pilation, to be pubhshed.

R. E. von Holdt, An Almost Optimum
STAR-100 Memory ALlocatLOn Scheme,
Lawrence LlVermore Laboratory,
UCID-30042 (March 1972), 21 pp.

G.A. Long and J. L. Owens, Bit and BPoe
Vector Operations and an Introduchon 0
STARTRAN, Lawrence LlVermore
Laboratory, UCID-30005 (April 1971),
58 pp.

Control Data Corporation, STAR-100 Com­
puter System Hardware Reference Manual
(1971), 125 pp.

Burroughs Corporation, Illiac IV System
Characteristics and Programmmg Manual
(June 1969), 120 pp.

Texas Instruments, Inc., Description of
the ASC System, M1001P (July 1972),
60 pp.

[9] Texas Instruments, Inc., The ASC Central
Processor, H1005P-7112 (Dec. 1971),
50 pp.

77

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Control Data Corporation, 7600 Computer
System Reference Manual (1971), 110 pp.

K. E. Iverson," A Programming Language,
Wiley (1962), 286 pp.

K. E. Iverson, "A Common Language of
Hardware, Software, and Applications,"
F JCC (1962), pp. 121-129.

H. W. Bingham, Use of APL in Micropro­
grammable Machme Modelmg, Burroughs
Corp., pp. 105-109.

R. Zwakenberg, LRLTRAN Extensions,
Lawrence Livermore Laboratory, UCID-
30019 (July 1971) 17 pp.

R. Zwakenberg, CHAT-A Conversational
Compiler, LTSS, Part III, ch. 207 (Nov.
1968), 68 pp.

L. J. Sloan, private communication.

F. H. McMahon, private communication.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

A PARALLEL ASSEMBLER FOR ILLIAC IV

J. M. Randal
Computing Services Office
University of Illinois
Urbana, Illinois 61801

Summary

One of the difficulties envisioned in run­
ning a computer of the power of ILL lAC IV, is
that of keeping it adequately supplied with a
stream of ready-to-run jobs. This paper reports
on the progress made in providing an assembler,
compatable with one already provided and running
on a Burroughs B6700, that runs on ILLIAC IV.
Through detailed timing and functional simuation
an assembler has been produced which assembles
correctly executable object code at, at least
300,000 cards a minute, virtually replacing the
need for an "assemble-load-and-go" phase by an
"assemble-and-go" phase 100 times faster. From
the users point of view the parallel assembler

78

is indistinguishable from the existing serial
one, even though its functions are spread over
two machines. The paper catalogues other reasons
for undertaking the project. Two principal ap­
proaches that enhance parallelism in an assembly
process, that of arranging the source code in
the machine so that it is most amenable to paral­
lel attack, and the delaying of as much semantic
analysis as possible as long as possible are
outlined. The paper goes on to describe how
parallelism is achieved for each stage of the
assembly process, an the measured amounts of
parallelism are compared and discussed. The
paper concludes with a few observations on the
practicality of parallel compilation of higher
level languages and other so called "inherently
serial" processes.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

PROCESS ca-M.NICATION PREREQUISITES OR THE IPC-SETUP REVISITED
Michael J. Spier

Software Engineering Department,
Digital Equipment corporation,

146 Main Street,
Maynard, Massachusetts 01754, USA

Abstract -- A careful examination of any ex­
isting inter-process communication (IPC) mechanism
invariably uncovers the underlying existence of a
more fundamental IPC mechanism, which in turn is
built on a yet more fundamental IPC mechanism •••
etc.

This study resolves this indefinite recursion
of a self defining mechanism by proposing a certain
causality, expressed in terms of a finite list of
process communication prerequisites, and based on
a non-mechanistic postulate which calls for an area
of communication (or maiZbox) that is by its very
nature impervious to mutual interference by the
communicating processes.

Given arbitrary processes for which these pre­
requisites hold, we may logically construct the
"very first" eZementary IPC mechanism, i.e., the
one which is not dependent upon its own pre-exist­
ence. Such a mechanism is developed in this paper;
it is capable of transmitting a single, one-way,
one-bit message among processes.

It is suggested that the proposed causality,
altho,ugh arbitrary in many ways (and openly admit­
ted as such) may serve as a convenient intellectual
tool with which autonomous sequential processes may
be observed and studied.

Keywords: inter-process communication, IPC, IPC­
Setup, mailbox, mutual exclusion, pro­
cess, synchronization.

CR Categories: 1.3 4.32

INTRODUCTION

The Inter-Process Corrununication Setup (or IPC­
Setup for short (a» is an initial communication
which establishes the conventions by which two o~
more asynchronous sequential processes agree upon
a pattern of harmoniously cooperative behavior.

The concept has been introduced in a previous
paper (11) where it was incidental to the main
subject. Subsequent reflection has convinced me
that this concept deserves a much more 'thorough
investigation. I have observed that the imple­
mentability of any given inter-process communica­
tion (IPC) mechanism is contingent on the previous
availability of a more fundamental IPC mechanism
(e.g., in order to implement a producer/consumer
buffered communication mechanism [5] we need some
mutual exclusion functions such as P and V (7),
which in turn require a mechanism to guarantee
their internal indivisibility in time, which in
turn ••••• etc.) The recursion seems indefinite.

Consider the following causality, which dis­
plays a most pe~lexing dilemma. In order for two
processes to synchronize themselves (e.g., using
Dijkstra's PlY functions) they must have had some
(a)

The term LPC-Setup was originally coined by
Elliott I. Organick.

79

previous communication to establish the semaphore's
identity as well as their agreement to make proper
use of the synchronizing primitives. Thus,

- In order for processes to communicate, they
must synchronize themselves,

- In order to synchronize themselves, they must
have had an earlier communication,

- Which implies a yet earlier act of synchroniza­
tion,

- Which had to be based on a yet earlier act
of communication,
Which ••••

That the dilemma is not practically insurmount­
able is amply demonstrated by the various func­
tional IPC mechanisms that we know of. Evidently,
at some basic level (typically the hardware level)
the dilemma was resolved through an arbitrary act
of Gordian-knot cutting (typically hardware­
provided mutual exclusion). Experience has shown,
however, that whenever the nature of processes
changes (e.g., by the transition into virtual
time) lower level synchronization machinery may
no longer be valid. When we attempt to design a
multi-level processing system, with nested levels
of (virtual) parallelism where each successive
act of (virtual) processor multiplexing increas­
ingly removes us from our hardware base, it is we
who have to provide the Gordian-knot cutting serv­
ice at appropriate levels of implementation. As
we implement successive layers of abstraction, the
complexity of our underlying machinery increases.
Whereas at the hardware level of a uni-processing
computer we achieve the desired mutual exclusion
through the simple act of interrupt inhibition,
at a much higher level of implementation we may
have to consider the properties of virtual proc­
essors, the effects of invisible page fault inter­
ruptions, the effects of an externally generated
user interrupt (when an interactive user presses
the attention key), etc.

Also, to deal with two mechanisms which are
defined in terms of one another is intellectually
very frustrating. We may have to accept the
"chicken or egg" dilezmna when confronted with the
real universe, we may wish however to have firmer
intellectual control over our artifacts (e.g.,
computers, computer processes), at least in the
sense of establishing a certain causality whose
fundamental postulates are external to the observed
mechanisms. It is the pu~ose of this study to
suggest such a causality, in the form of a list of
conditions which have to be true in order to guar­
antee n arbitrary processes ~ senders and n-m
receivers) the ability to exchange a single, one­
way, one-bit communication. This intellectual
exercise has one ground rule: no pre-existing
underlying mechanism is admitted, lest it contain
a hidden IPC mechanism and thus leave us no further
advanced than before. Therefore, I shall discuss
implementation-independent abstract processes.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

A valid question to be raised is: why
worry about processes which are external to the
computer?" As Naur [10] points out, we are crea­
tures of habit and have the inherent tendency to
visualize concepts in those terms with which we
are most familiar. Being computer professionals,
we intuitively think of proaess in the context of
exeauting aomputer program, it being implicitly
understood that aomputer translates to "hardware
level machine". As operating systems become more
sophisticated and the hardware base hidden by
intermediary levels of abstraction, our earlier
simplistic notion of "process" may no longer hold,
indeed become an intellectual impediment. Any
insight gained into the properties of the
implementation-independent abstract process will
however hold true.

In the following unconventional view of non­
computer processes, I have guided (indeed biased)
the development towards those kinds of processes
with which we deal within the confines of the
sequential digital computer, and added computer­
derived examples to illustrate specific points.

WHAT IS A PROCESS?

Webster's Dictionary succinctly defines the
term "process" as "something going on". By
selectively narrowing down our choices from this
initial vague definition, we can derive an accept­
able definition of "process" as it applies to our
field of interest.

Let us think of proaess as being the manifes­
tation of Time, in spaae. The universe in which
we exist is subject to the Flow of Time so that
it presents itself under different configurations
at different points in Time. I apply the term
"process" to some time-dependent evolution from
one configuration to another. We might visualize
the universal set of processes as "threads" of
"control" indefinitely stretching from the past
into the future, hopelessly intertwined beyond
human comprehension.

In order to make sense out of them, study and
even manipulate them (e.g., within the confines of
a sequential digital computer), we must selectively
choose -- among the universal processes -- those
specific evolutions in Time (.. threads") which we
deem worthy of consideration. Thus, I choose to
declare "process" to be a subjeative quality,
existing only in the eyes of the observer, who
explicitly ignores all other peripheral "threads"
in order to avoid confusion.

Examples of such humanly selective observations
may range from the macroscopic level, exemplified
by the Astronomer contemplating the birth-and-death
process of suns and galaxies (or even the, to us,
ultimate process of the universe's expansion and
contraction), through the Historian tracing the
evolution of Mankind or the lifecycle of nations,
down to the microscopic level of the Quantum
Physicist observing the incredibly short lifespan
of some sub-atomic particle.

An observer has to choose for himself not only
that one specific "thread" which is of interest to
him, but also the intervaZ in Time between two
successive observations (named "grain of time" in

80

(8],[11]). I attribute the necessity for a sub­
jective choice of intervals to the human brain's
limited capacity to assimilate details, and I
suggest that there exists a certain "Subjective
Time Flow" within our minds, in terms of which
sequential processes are best visualized.

We may assume that the human brain cannot make
sense out of a visualized process if that process
consists of too many discrete details, and that
for the sake of coherency the subjective process
contains only a limited number of them. Thus,
when a human observer translates an evolution in
Real Time into an evolution in Subjective Time,
he typically chooses intervals between observa­
tions which are proportionate to the observed
process's period of existence.

And effectively, the Astronomer chooses his
interval in terms of billions of years, while the
Physicist's interval may be expressed in terms of
billionths of a billionth of a second. Yet,
within the minds of both these observers, th~ir
respective processes may unwind at the same sub­
jective rate of speed, covering a similar number
of discrete observations, and may abstractly be
related to one another.

Given the periodic nature of observations, the
process can no longer be made literally analogous
to a continuous thread; rather, it is better rep­
resented as a discrete sequence of dots which are
laid along the axis of the imaginary thread, where
each dot corresponds to an observation and where
spaces separating the dots correspond to the time
intervals between successive observations.

The human observer typically chooses to ignore
the existence of the intervals, which to him are
irrelevant, and to pretend that the dots are
effectively adjacent to one another. Consequently,
the discrete sequence of observations may artifi­
cially coalesce once more into a humanly coherent,
subjectively unbroken thread. By eliminating the
real time intervals, we effect the translation of
the process's evolution into the flow of Subjective
Time. Compare this to Dijkstra's notion of
"ordered markers on a scaleless time axis" [5].

Relating the above to our area of interest,
namely the study of those processes which exist
within digital computers, we see that the notion
of "process" is still a subjective quality, depen­
dent on the human observer's choice. A process
may, for example, consist of some high level lan­
guage (e.g., FORTRAN, ALGOL) program where obser­
vations relate to source language variables and
where the interval of time between two successive
observations is known to span one or more hardware
ayaZes, while from the (interactive or batch)
user's point of view a process may consist of a
series of system commands, the interval between
which may comprise one or more high-level language
programs.

Lastly, a process may be sequentiaZ or non­
sequentiaZ (b) Briefly, the former denotes a
(b)

In "Cooperative Sequential Processes" [5],
Dijkstra illustrates the distinction between
sequential and non-sequential processes.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

process in which the interval between two succes­
sive observations is assumed to consist of a
single logical evolutionary step, while the latter
denotes a process in which the interval between
two successive observations is assumed to consist
of a compound logical evolution. The difference
between the two is largely subjective and I believe
it is safe to state that the non-sequential process
has the property that any of its changes of state
may be decomposed into a number of parallel sequen­
tial pro.cesses.

In this paper I adopt the point of view that
the sequential process is the "elementary" kind of
process. I shall henceforth ignore the
non-sequential one by simply choosing to observe
my processes at those points of their evolution
where they display a single logical change of
state (concerning this arbitrary choice of perspec­
tive, the reader is referred to observation #1
further on). This choice coincides with our pro­
fessional custom to consider the computer's fetch­
decode-execute cycle as a truly sequential progres­
sion, even though they might consist internally of
two parallel overlapping execute current instruc­
tion while fetching the next one operations, or
even though at a more elementary level the entire
computer is known to be implemented as a highly
complex parallel hardware logic.

This paper, then, restricts itself to the
study of observably sequential processes.

PROCESS DEFINITION PARAMETERS

For the purpose of this intellectual exercise,
I wish to study processes which are known to exist.
The following definitions apply to subjectively
observed processes which mayor may not inhabit
the insides of a digital computer. Therefore I
have chosen intentionally to ignore the processor
stateword concept whose hardware-level definition
is clear whereas its implementation-independent
definition would not substantially add to our pre­
sent abstract discussion. The following definition
of the term process as it applies to a selectively
observed "thread" is borrowed from a previous
publication [II].

A process is a discrete progression, in Time, of
discernible changing states.

Though correct from the abstract point of view,
this definition may not prove of great practicality
when it comes to the consideration of computer
processes. In order to relate it more closely to
professional terminology, I introduce the term
memory space (named "state variable set" in [8])
to denote the set of variables whose changing
states may be observed:

A memory space, subjected to the Flow of Time,
presents ever changing configurations of discern­
ible states.

An additional helpful concept which allows us
to attach somewhat more of a tangible substance to
the "time" abstraction is that of the processor (c)
(c) The term is used in its most abstract conno­

tation, and must not be taken literally in
the meaning of "hardware CPU".

81

The processor is an abstract "execution agent"
(comparable to Johnston's "clerk" [9], and to
Dennis' & Van Horn's "locus of control" [4]) which
activates an ordered sequence of modifications on
the various components of the memory space. If we
can hypothesize a memory space which is unaffected
by the Flow of Time (e.g., the memory of an in­
active computer), we can define the processor as .
being:

A catalyst capable of subjecting a memory space
to the Flow of Time.

With the help of these two terms, we may now
devise a definition of "process" which is much
closer to our professional terminology:

A process is the activity of a processor
within a memory space.

The memory space may assume various aspects,
and depending upon its nature the contained vari­
ables may be discretely identifiable, or not. By
intentionally biasing the discussion towards the
kind of processes in which we are interested, I
shall postulate for our convenience that the vari­
ables with which we deal are discretely addressable
by means of universally unambiguous identifiers,
or names. In the following, the term mailbox name
is used in the connotation of "universally unambig­
uous identifier of a memory space component of the
type mailbox".

Returning once more to the universal processes,
we can envision their flow in Time as individual
intertwined threads, where one particular thread
represents our process of choice. This thread
reache~ both backwards and forwards into infinity.
It would be useful to delimit the extremities of
that portion of the thread which we actually hold
under observation. I would thus add the following
two parameters to the definition of a process,
these being its creation time and its termination
time, corresponding to the extremities of the
thread-portion pointing towards "past" and "future",
respectively.

For example, we may consider a human being,
going through his daily routine, to be a sequential
process. Evidently, his dates of birth and death
are relevant parameters in the definition of such
a process (if only to preclude any notion of the
feasibility of communicating present-day computer
science concepts to the late Charles Babbage).

Following is a list of parameters applicable to
a single observably sequential process. By assign­
ing values to these parameters, we may talk more
precisely about some specific process:

Parameter #1: The intervals between successive
change-of-state observations (d).

Parameter #2: A memory space comprised of all the
variables which may be affected by
the processor.

Parameter #3: A process creation time at which
the combination processor/memory
space becomes meaningful.

(d) Note that while the intervals need not be of
uniform size, their rough order of magnitude is
a relevant parameter.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Parameter #4: A process termination time at
which the combination processor/
memory space ceases to be
meaningful (e).

I shall also refer to the combined parameters
3,4 as the ppocess's Zifespan.

Observation #1: I wish to emphasize the fact
that the previous definitions and parameters are
arbitrarily chosen in order to provide a useful
handle on the kind of processes in which we are
interested. From the absolute point of view,
both definition and parameters are highly ambig­
uous. Consider: the parameters relate' to a
poption of a thread which is our chosen process.
From the larger thread's perspective, the above
"creation" and "termination" may be considered
to be changes of state where the "lifespan" in
between is considered to be the intervaZ. Thus,
we may state that a process is a change of state
and that consequently a ppocess is a discpete
ppogression, in Time, of pPOcesses. This phenom­
enon of recursive self-definition is a marked
property of the general area of discussion. By
considering the process from a conveniently
chosen subjective point of view, and by making
some well placed arbitrary definitions and pos­
tulates, we may gracefully extricate ourselves
from this "chicken or egg" situation, which per­
sistently manifests itself in the study of IPC
mechanisms. Compare this to the discussion of
"image processes" in [8].

INTER-PROCESS COMMUNICATION

Returning again to the universal processes, we
may intuitively think of inter-process communica­
tion as being an interaction of sorts between two
or more threads. The term "communication" conveys
the meaning of commonality, or togetherness. I
postulate that processes cannot engage is communi­
cation unless they aZpead,y have something in
common. I further postulate that such commonality
must relate to the memory space component of the
process.

While arbitrary, the postulates make sense
when we consider that the process consists of only
two components, 1) the pPOcessop, and 2) the memopY
space. While commonality in Time (such as the
co-existence of otherwise unrelated computers) does
not -- in itself -- provide us with the ability to
communicate, commonality in Space (such as connec­
ting those computers to a common memory bank)
definitely does. We can visualize the processes,
communicating with one another by depositing
messages in the common memory space and/or extrac­
ting messages from it. Supposing that the memory
space consists of a medium which lends itself well
to the exchange of messages, we may state that:

Processes communicate by e~changing messages
in a commonZy accessibZe medium.

Even though I shall henceforth employ the term
maiZbo~ (as suggested in [11]) to designate the
locality in which messages are exchanged, I have

(e) Note that it is the meaningful association which
determines the process's existence, and that the
disassociation implies the termination of
neither processor nor memory space.

82

expressly used the term "medium" in the definition,
in order to emphasize the rather large variety of
possible overlapping memory spaces. While the
point is very obvious in non-cOlllputer communica­
tions, e.g., one person talking to another (the
medium being the surrounding air), it applies as
well to certain less conventional instances of
communication in the cOlllputer world, such as the
radio link connecting the remote cOlllponents of
the ALOHA system [1], or the IMP's and transcon­
tinental lines of the ARPA network [3], or simply
the tapes or disk-packs which may be manually
shuttled between independent computer installa­
tions.

Of the two process components, pPOcessop and
memopY space, I have chosen to dismiss the pro­
cessor as a possible vehicle for the elementary
commonality. Is such a dismissal justified?
Would an exactly synchronized rate of progression
not provide a suitable basis for the communica­
tion of two spatially-independent processes? ~
answer is an emphatic no! Two such processes
which knowingly tick along in an exactly synchro­
nized rate may each perform a function based upon
the assumed concurrent activity of the other,
however they do not communicate because each acts
independentZy of the othep's e~stence (i.e., one
such process may be terminated without affecting
the other's behavior, the survivor's activity
continues even though its premise of concurrency
no longer holds). Still, while a synchronous
rate of progression is not in itself sufficient to
form the basis for a communication mechanism, it
may be usefully applied to an IPC mechanism based
on memory space commonality, as shown in the last
section of this paper.

I therefore consider that commonality of
memory space is the essential condition which has
to be satisfied if processes are to communicate
at all (f). Processes whose memory spaces are
exclusive are by definition incapable of mutual
communication, in fact are said to be pPOtected
from one another [12]!

COHERENT COMMUNICATION

our processes communicate by exchanging mes­
sages in a commonly accessible mailbox. Depending
on whether or nat message depositions and extrac­
tions happen concurrently (remember, at this point

(f)A question was raised about this last state-
ment, and critics argued that in systems such
as the RC4000 [2] processes communicate not
through a shared data base but rather through
the intermediary services of the system
monitor. I wish to point out that the present
study does not concern itself with the more
complex ways of building IPC mechanisms, but
only with the prerequisites for the most
primitive "first" communication. Moreover,
the fact that a user process's memory space
consists in part of a protected portion of the
monitor does not invalidate the fact that
within that monitor there is a shared data
base in which messages are exchanged; remove
that message buffer from the RC4000 system,
and inter-process communication is guaranteed
to work no more.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

we know nothing specific about these processes
and their pattern of behavior, excepting the fact
that they share a commonly accessible mailbox) ,
such communication may be aoherent or interfering.
The communication is said to be interfering if the
value extracted from the mailbox by some receiving
process B is not identical to the same value pre­
viouslydeposited in the mailbox by some sending
process A. Interference (and the resulting message
incongruity) may occur when several depositions are
made concurrently, or when extraction is attempted
while deposition is still under way. The commu­
nication is said to be coherent when it is not
interfering.

Coherent communication is characterized by the
fact that a message extracted from a mailbox is
guaranteed identical to the same message previously
deposited in the mailbox. We may not know who
deposited that message in the mailbox, nor what
it means, but we are assured of the congruity of
that; message.

It is the coherent message which is of interest
to us. A way to assure coherency must definitely
be an important constituent of the process commu­
nication prerequisites that we seek. I shall
therefore further postulate that the mailbox
itself, by its nature, possesses a property of
guaranteed message congruity such that whenever
two or more processes simultaneously attempt to
either deposit a message in it, or extract a mes­
sage from it, only one process at a time will be
allowed to do SOl the exact succession into which
this enforced sequentiality will be resolved is
undefined and immaterial (g). Not knowing who
created the mailbox with its magical property, nor
how this property is> functionally enforced, we can
only surmise that it is the handiwork of some
benevolent instrumentality. still, assuming the
mailbox's availability, we may state that:

Coherent inter-proaess aommunication is an
interferenae free e~ahange of messages in
a aommonZy acaessibZe maiZbo~.

In the following, I shall refer to the mailbox
as being "interference-proof". The interested
reader may wish to study the details of the ALOHA
system [1], whose mailbox (i.e., a certain
bandwidth of the electromagnetic spectrum) is not
guaranteed to be coherent; ingenious encoding
techniques reduce the probability of interference
to a very low factor, but the fact remains that
coherency is not guaranteed.

Observation #2: Let us for the time being accept
the premise of a mailbox which allows only ex­
changes of coherent information, even though it
is unclear how such a mailbox might be construc­
ted. Later on I shall 1) postulate a very ele­
mentary two-state mailbox whose implementability
will not be subject to doubt, and 2) suggest that
more elaborate mailboxes may be constructed with
the help of the elementary one.

(g) The necessity for such a mailbox (and its
magical property of coherency) is a fundamental
postulate of any multiple processor computer
system; e.g., at any given time, memory is
interlocked to all but a single processor.

83

MEANINGFUL COMMUNICATION

Let us attempt to construct an initial model
of communicating processes. For the sake of sim­
plicity, I shall deal with two processes only, a
sender and a receiver. The following is, however,
valid for any number m of sending processes, and
n of receiving processes.

At this point, all that we may assume about
our processes are the characteristics discussed
earlier; namely, their sequentiality and their
memory spaces which overlap a commonly-accessible,
interference-proof mailbox. Two processes named
A and B communicate as follows: 1) the sender,
process A, deposits a message Msg in the mailbox;
2) the receiver, process B, copies the contents
of the mailbox into some private locality L. The
sender would perform

maiZbo~ ;= Msg;

and the receiving operation would be

L ;= maiZbo~;

Even though the communication is coherent, it
is completely meaningless. Consider the following:

1) By what right can it be assumed that process
A has ever had the intention of depositing
anything whatsoever in the mailbox? Assuming
that it did have such an intention,

2) Are processes A and B actually referring to the
same mailbox? Is it not possible that process
A innocently deposits its message in some
mailboxl while process B persists on extracting
an a.ssumed message from some other mailbOx2?
We may graciously submit that the mailbox ~s
one and the same, still

3) Process B may be the speedy one, extracting an
assumed message from the mailbox before the
slower process A has ever had the chance to
perform the intended deposition. And if we
agree to discard this possibility as well, then

4) Having received its coherent message, process
B is no further advanced because it has no way
of kn?~tng what the message is supposed to
mean •

If we wish to engage in meaningful communica­
tion, we have to make sure that the above uncer­
tainties are satisfactorily resolved. We may not,
at this point, have any specific remedy; this need
not deter us from describing the effect of such a
solution by establishing a list of conditions
which are essential to meaningful communication:

Condition #1: The processes have to agree in
advanae (and that means prior to the creation

(h)we may better appreciate this fact if we con­
sider the task of the military cryptographer,
faced with the decoding of an intercepted
coherent enemy message; he is capable of success
because he knows the other guy's language.
Process B's task is hopeless, it knows absolutely
nothing about process A. Consider the hopeless­
ness of deciphering Egyptian hieroglyphs prior
to the Rosetta Stone Discovery.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

time of any of the communicants) on their inten­
tion to communicate some time in the future.
Remember, we still choose to remain in a state
of blissful ignorance concerning these processes,
thus the pre-nataZ instance is the only logically­
safe point in time.

Condition #2: They must agree on the exact iden­
tity of the single mailbox in which messages will
be exchanged.

Condition #3: They must agree on their respective
sender/receiver roles.

Condition #4: Mandatory sequentiality has to be
imposed on the act of communication. First the
sender has to deposit his message, and only then
may the receiver extract it from the mailbox.

Condition #5: The communicating processes have
to have agreed, in advance, upon the way in
which messages are to be interpreted and under­
stood.

PROCESS SYNCHRONIZATION

In the above list, condition #4 requires that
the communicating processes adjus~their relative
speeds; as they progress independently in Time,
when their respective instances of communication
arrive, these instances have to become aZigned in
Time in a predetermined way. We use the term
"synchronization" to denote such an alignment.

We still know nothing specific about these
processes, hence cannot trivially choose between
alternate schemes of synchronization which may all
seem a priori to be equally attractive. Possibil­
ities may include 1) the sender having the ability
to slow down the receiver's progression in Time,
2) the receiver having the ability to cause the
sender's speed to be accelerated, etc.

A simple, though arbitrarily chosen, scheme to
assure that message extraction will happen later
in Time than message deposition would have the
receiver process voZuntariZy enter a waiting state
if the message has not yet arrived. This method
is chosen because it lends itself best to the
kind of process synchronization practiced within
digital computers, and is hence typical of existing
computer program IPC mechanisms. Its adoption
requires that we add two more conditions to our
list.

Condition #6: The receiving process is capable
of determining at any given moment whether or
not a message had actually been deposited in the
mailbox.

Condition #7: If a message had not yet been de­
posited, the receiver must be willing, and cap­
able (1), of suspending its progression until
such time when the message has arrived.

This. introduces one last complication. ~
tion #6 calls for the process's ability to inspect
the mailbox's contents and determine whether or
not a message had arrived. Presumably it will do
so by testing the mailbox for some specific value
which may be either a non-message or a message
value. What can that value be? If the receiver
tests for a non-message value, it is not possible
that the sender has innocently used that very same

value for its message and thereby mislead the
receiver? Or if the receiver tests for a message
value, is it not possible that the mailbox
might -- by some unfortunate chance -- have been
pre-initialized to that very same value thus mis­
leading the speedier receiver into acceptance of
a supposed communication, when in fact no such
transaction has yet taken place? We must there­
fore complete our list of conditions with the
following two:

Condition #8: The communicating processes have
to have agreed on a single non-message value
Vinit to be interpreted as "no message has yet
arrived" (by agreeing on a non-message value,
we leave the door open for a possible variety
of meaningful message values).

Condition #9: The mailbox is guaranteed to have
been initialized to the non-message value Vinit
prior to the creation time of any of the commu­
nicating processes (again, within the present
context of discussion, this is the only
logically defensible point in time).

PROCESS COMPATIBILITY

Having established the need for process syn­
chronization, we must preclude from our consider­
ation those processes which are -- by virtue of
their temporal characteristics -- inherently in­
compatible with one another from a synchronization
point of view. Of the process definition param~
eters, the intervaZ and the Zifespan may assume
values which would make the processes incapable
of meaningful synchronization. I wish to remind
the reader that this paper does not engage in
the exercise of process construction, but in the
observation of already existing processes. Thus,
the three incompatibilities listed below are valid
so long as we recognize our inability to influence
the processes' temporal parameters (i.e., we pre­
clude from our consideration artifacts such as
"clocking processes" [8]).

InCOmpatibility #1: The processes' lifespans
may be exclusive; one process's termination
time may 'have passed well before the other
process's creation time has yet arrived. This
case was exemplified by the earlier mentioning
of Charles Babbage. This condition is asymmet­
rical in that the expiration of the sending
process might still be acceptable (i.e., Charles
Babbage effectively did leave a message for
posterity) whereas the premature expiration of
the receiver is obviously inadmissible. If we
postulate that the elementary communication
mechanism that we seek should be indifferently
functional for any sender/receiver configuration
(i.e., should allow any two or more processes to
adopt either role) then we have to insist that
the processes' lifespan overlap the period of
communication.

InCompatibility #2: The processes' lifespans
may overlap the period of communication, but
only partially so that the sender's termination
time arrives before it has had the opportunity
to properly conclude its part of the transac­
tion. This may cause the receiving process
indefinitely to suspend its progression in

i973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

anticipation of a message whose deposition was
never satisfactorily carried out. For processes
to engage in guaranteed non-fatal meaningful
communication, the sender's termination time
must lie well outside the period of communica­
tion, known as the critical section in the
process' lifespan [51.

Incompatibility #3: The size or relative order
of magnitude of the processes' respective inter­
vals must be compatible. It is difficult to be
very specific about the exact kind of interval
compatibility that is desired; the reader must
have noticed by now that the main thesis of
this paper consists of emphasizing the very
nebulous nature of the overall subject.

Nonetheless, this is a very real problem best
exemplified by the inability of a virtual pro­
cessor, executing within a paged virtual memory,
to correctly service real-time applications.
The interval between two successive virtual
machine cycles is undetermined, while the corre­
spondent real-time process requires guaranteed
service within specific time bounds.

ELEMENTARY COMMUNICATION MECHANISM

Let us now construct the "first" and most ele­
mentary communication mechanism which would sat­
isfy all of the requirements mentioned earlier.
The processes are assumed to be inherently suitable
for mutual communication in the dual sense of over­
lapping memory space and temporal compatibility.
Concentrating on the communication mechanics alone,
we are faced with one major difficulty which is
the creation of the interference-proof mailbox.

It is possible to construct a very primitive
mailbox which has the capacity for a single bit of
information only. The domain of the mailbox is
thus restricted to two possible values which we
shall name TRUE and FALSE. By nature of its de­
finition, the mailbox could never be found in a
state which is neither TRUE nor FALSE and it
therefore fulfills our requirement of inherent
coherency.

If we assume that such a mailbox was ori~inally
created by some benevolent instrumentality (~),
placed in the common memory space and thoughtfully
initialized by the instrumentality to the FALSE
state, then we may establish the following scheme
for communication, where a sender process sets the
mailbox to TRUE, and where the receiver process
interprets the TRUE state as meaning "a message
has arrived".

Also, the receiver process would interpret the
FALSE state of the mailbox as meaning "a message
has not yet arrived". The receiver may now suspend
its logical progression by insistently testing the
mailbox for a TRUE state. The mechanism would
work as follows: the sending O operation corresponds
to

(i)
mailbox := TRUE;

The computer hardware designer who provides us
with an interlocked memory, or even with
hardware implemented semaphores [71, is a
good example of what I would call "instrumen­
tality".

85

while the receiving operation is of the form

busy loop:
IF mailbox = FALSE THEN GOTO busy loop;

Observation #3: It is important to note that
while the receiving process's progression in
Time is by no means affected, we have achieved
the functionally desired effect by imposing on
that process a rule of behavior which guarantees
that its memory space is subjected to no further
modification while the mailbox = FALSE condition
prevails. As mentioned in the last section of
this paper, computer processes have the highly
interesting property in that their Flow of Time
may be literally stopped and restarted.

The above mechanism is the most rudimentary
imaginable, capable only of a single one-bit one­
way (or "simplex") communication. By reciprocally
using two mailboxes and by inverting the processes'
sender/receiver roles, we may construct a mechanism
capable of sending two single one-bit messages in
opposite directions (known as "duplex" communica­
tion channel). Combinatorial usage of many such
mechanisms allows us to construct a "multiplex"
channel, or a "bus" (parallel simplex channels)
as encountered in the innards of computers. The
information transmission capability of the ele­
mentary mechanism is very poor. Each mailbox may
be used only once, and the existence of the mes­
sage is also its value. We may detect the arrival
of such a message, but may not transmit any addi­
tional intelligence.

I name the mechanism which allows us to trans­
act a single one-way one-bit communication
elementary communication mechanism, and re-state
that its existence is contingent on the availa­
bility of a magical interference-proof mailbox,
provided (in a properly initialized state) by
some benevolent instrumentality. If we do not
accept the premise of such an initial mailbox,
we may never be able to construct the very first
IPC mechanism.

MUTUAL EXCLUSION

There is no point in elaborating the limited
usefulness of the elementary communication mech­
anism. Its significance lies in the fact that
it might serve us as a building block for the
construction of more useful, more sophisticated
IPC mechanisms. For example, a useful mechanism
-- such as the WAIT/NOTIFY functions suggested in
[~11 -- would be capable of a continuous sequen­
t~al transmission of variable-length information­
laden messages, and would also have a buffering
effect minimizing the necessity for non-productive
waits. We may visualize the communication-channel
effect of such a mechanism in the form of a
one-way information "pipeline"; the sender stuffs
messages into one end, the receiver opens his
faucet whenever necessity requires and draws
information out of the other end. The realization
of such a mechanism hinges on our ability to
construct an interference-proof "pipeline"-type
mailbox.

Yet if we reconsider the meaning of
"interference-proof" we realize that all that is
necessary is the assurance that among N communi-

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

cating processes, N-l would refrain from accessing
the mailbox while the Nth process is manipulating
it. Our primitive mailbox guarantees this by its
very nature; the same effect can be achieved for
any arbitrary component of the memory space if the
processes agree voluntarily to adopt such a pattern
of non-interfering behavior whenever the mailbox
is being accessed.

Such agreement should be semantically express­
ible. Let us postulate a pair of functional .
mutual-exclusion brackets names MVTEX/XETUM (J)
Whenever a process intends to access the mailbox,
it announces the intention by performing a
MVTEX(mailbo~). When it has finished manipulating
the mailbox it signals the mailbox's availability
by performing a XETUM(mailbo~). The logic of
these functional brackets is such that at any
given time at most a single process will be manip­
ulating the mailbox.

Observation #4: The nature of our mailbox is now
radically changed! While the elementary mailbox
guaranteed coherency by its very nature no
matter how the processes chose to access it, a
mailbox whose coherency is achieved via the
application of MVTEX/XETUM will remain
interference-proof only as long as the communi­
cating processes choose harmoniously to cooperate
with one another. Let a single communicating
process "do its own thing" and we are faced with
an unbridgeable communication gap.

And how would we manufacture these functional
mutual-exclusion brackets? Their nature implies
a whole new dimension of underlying communication
and cooperation among processes, and it might be
argued that it is foolhardy to re-invoke the
"chicken or egg" situation by proposing to solve
a problem through a mechanism which manifests the
same problem. We might have been forced arbitra­
rily to postulate the existence of MVTEX/XETUM
as we have done earlier. Luckily, in his "Solution
of a Problem in Concurrent Programning" [6],
Dijkstra has demonstrated that the availability of
an interference-proof mailbox is sufficient to
assure the implementability of MUTEX/XETUM (k).
And once we have constructed these mutual-exclusion
brackets, the road is clear to the construction of
mailboxes of arbitrary complexity and sophistica~
tion.
(j)

The use of the inverted left bracket clause to
designate the right bracket is inspired by the
BLISS [13] systems programming language. The
name MUTEX, originally used by Dijkstra [5] to
designate a mutual exclusion semaphore, has for
some time been used by rank-and-file programmers
to designate the mutual-exclusion P [7] opera­
tion (possibly because of the confusion between
mutual-e~clusion and private semaphores); it is
employed here post facto.

(k)Note that Dijkstra's mechanism requires, in ad­
dition to the coherent binary mailbox, a coher­
ent integer mailbox k. Disregarding the possi­
bility of modifying the algorithm to all-binary,
we can safely postulate the integer mailbox for
our.purposes, because the hardware designer
knows how to build it out of binary mailboxes
(flip-flops) •

86

THE IPC-SETUP

The existence of the elementary communication
mechanism is conditional, depending upon a number
of arbitrary postulates and conditions. These
were introduced in a sequence dictated by the
orderly development of the subject. These process
communication prerequisites are the essence of
this study, I shall therefore re-state them in an
organized fashion. They are subdivided into three
classes 1) conditions relating to the very nature
and existence of processes, 2) conditions relating
to the postulated, instrumentality-given mailbox,
and 3) conditions relating to the processes'
cooperative behavior.

First, we have to delimit our consideration to
processes whose nature makes them capable of
meaningful mutual communication. Processes which
wish to communicate belong to a "set of compatible
processes". The set is defined by the processes
which communally display all of the properties
listed below. A process that does not possess all
of the properties peculiar to a given set does not
belong in that set, but assuredly belongs in some
other set.

Property #1: All N communicating processes must
be sequential (1)

Property #2: All N memory spaces of the communi­
cating processes must overlap (at least) a
single common subset.

Property #3: All N lifespans of the communicating
processes must overlap in Time.

Property #4: The intervals typical of all N
communicating processes must be compatible.

Property #5: None of the N processes' termination
times must arrive during the respective process'
critical section.

Second, we have to postulate the availability
of an interference-proof mailbox. This requires
in turn that we postulate the existence of a
benevolent deus e~ machina or "instrumentality"
which has a vested interest in letting the
processes communicate, and which manifests this
interest by conveniently providing the required
mailboxes.

Postulate #1: There exists an instrumentality
whose purpose it is to create mailboxes.

Postulate #2: A mailbox has the natural inherent
property that its contents can never be in an
unstable or incoherent state.

Postulate #3: The mailboxes are accessible to
all N communicating processes because the
instrumentality saw to it that they reside in
the common memory space(s).

Postulate #4: The instrumentality has thought­
fully pre-set all the mailboxes to a non-message
Vinit state at a point in Time which precedes

(1) This condition applies to the communication
model developed in this paper. By devising a
list of different process communication
prerequisites, a model conductive to non­
sequential process communication may undoubtedly
be devised.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

the creation time of anyone of the N communi­
cating processes.

Third and last, the processes' rules of behav­
ior must be set up in a manner which will guarantee
that they always adopt a pattern of harmoniously
cooperative behavior insofar as communication is
concerned. For this purpose we conveniently pos­
tulate another entity, that of the programmer ~
who is responsible for implementing these rules
of behavior into the logic of those N communica­
ting processes. The cooperative behavior is made
possible by the adoption of certain conventions
which all N processes agree to respect. Such
common knowledge of conventions is in itself a
manifestation of a previously transacted communi­
cation. As suggested in [11] I name this mani­
festation of pre-natal communication lPC-Setup.
It originates in the single mind of the single
programmer (thus, no "chicken or egg" dilemma)
who incorporates it into the essence of the N
processes prior to their creation time. The nature
of the conventions depends on the nature of the
communication; following is the list of conventions
required for the existence of our elementary commu­
nication mechanism:

IPC-Setup #1: The N communicating processes agree
on the common name of the single (commonly acces­
sible) mailbox to be used.

IPC-Setup #2: The processes agree to use that
mailbox for the purpose of communication.

IPC-Setup #3: The processes agree on their res­
pective sender/receiver roles.

IPC-Setup #4: The N communicating processes
agree to interpret the value Vinit, with which
the instrumentality is known to:have initialized
the mailbOX, as a non-message implying "no mes­
sage has yet arrived".

IPC-Setup #5: The receiving processes agree to
interpret any non-Vinit state of the mailbox as
implying "a message has arrived".

IPC-Setup #6: They further agree to assign a
meaning to any non-Vinit state of the mailbox
and to interpret that value in some meaningful
way.

BACK TO PRACTICALITY

A thesis was presented to the effect that
organized, deliberate and meaningful communication
does not spontaneously erupt into being; rather,
it can always be traced to some pre-existing in­
stance of preparation and communication. Many
definitions, decisions and postulates made during
the development of this paper were admittedly
arbitrary, and openly acknowledged as such. My
purpose was not to insist on a certain dogmatic
point of view, I do not believe that this nebulous
subject would ever accommodate dogmatism, but
rather to convey some insight into the complex
issues that have to be resolved before we can
safely communicate a single bit of information,
once only, between processes.

This study was motivated by the need to
resolve the "chicken-or-egg" dilemma. It proposes
a certain hierachy of causality: the interference-

87

proof mailbox, the IPC-Setup, the elementary
communication mechanism, and lastly the mutual
exclusion function. some other such hierarchy
and its related list of communication prerequisites
may undoubtedly be developed; I doubt that such a
list of different prerequisites would be any less
voluminous than the one proposed.

The causality (and terminology) developed in
this paper lend themselves to the description and
understanding of various IPC mechanisms. To
illustrate, let me present the workings of the
asynchronous serial simplex channel connecting a
sending source to an electro-mechanical printing
device (e.g., teletypewriter).

Both sending and receiving process are essen­
tially devoid of buffering memory. The sender
generates its message, the receiver intercepts it
and acts on it. The commonly accessible mailbox
consists of an electrically conducting wire
connecting both machines. The presence/absence
of current, or a high/low voltage arrangement
represent the two value-states of the mailbox.
The mailbox is reasonably coherent but is not
interference-proof; it is said to be susceptible
to "noise".

The list of process communication prerequi­
sites applicable to this example is somewhat
different from the one developed in this paper.
In order to make the mailbox capable of transmit­
ting two meaningful kinds of messages, namely
bits aero and one~ the mechanism does not support
the notion of a non-message Vinit. Instead, by
means of two (instrumentality-provided) synchro­
nous clocking devices respectively incorporated
into the two processes, each process is decomposed
into a continuous sequence of "mini-processes"
(the reader may wish. to re-read observation #1).
The lifespan of each mini-process is delimited to
the duration of a single clock tick, and the
mailbox is reset to the FALSE state at mini­
process creation time. If a TRUE state is detec­
ted by the receiving process during its short
lifespan, it is interpreted to mean "a one-bit
has been received", otherwise upon its termina­
tion time a aero-bit message is assumed. A new
mini-process is created and the same communication
ritual is re-enacted.

By adding a clocking device and modifying the
IPC-Setup, we have instilled more usefulness into
the elementary communication mechanism. Also
note that the judicious choice of "which process
do I wish to observe" (i.e., "mini-process" vs.
the larger "thread") is the key to this function­
al presentation.

The elementary communication mechanism is not
very useful to the programmer. The effort of
manufacturing functions MUTEX/XETu.M~ with which
then to construct a more elaborate communication
mechanism, is far from negligible. We therefore
habitually require the availability of some pre­
fabricated mutual exclusion primitives (such as
interrupt inhibition) which we then consider,
from the programming point of view, as elementary.

IPC mechanisms are typically designed to be
easily applicable to the kind of processes which

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

exist within computer systems. They therefore are
cognizant of two peculiarities of the computer
process 1) the process is typically of a cyclic
nature (i.e., may be decomposed into a repetitious
sequence of essentially identical "mini-processes"),
and 2) the virtual time flow in which the processes
exist may literally be stopped and started.

The process's cyclic nature implies that unless
the correspondent processes are pre-synchronized,
harmoniously ticking away as does the exemplified
teletype, a yet un-received message may erroneously
be overwritten by the next, and the next ••• etc.
We typically rule such pre-synchronization out
because asynchronous processes can normally be put
to better use. Instead, we implement a "pipeline"
capability into even the binary mailbox, trading
off inherent synchronization vs. inherent buff­
ering effect. Such a buffer, or list of one-bit
messages, is trivially implemented in the form of
a binary counter. Assuming the availability of
MUTEX/XETUM, the sending operation is now:

MUTEX (maiZbox);
maiZbox := maiZbox + 1;
XETUM(maiZbox) ;

and assuming that the zero state implies "mailbox
is empty", the receiving operation is

busyZoop:
MUTEX(maiZbox);
IF maiZbox = ¢ THEN
BEGIN

XETUM(maiZbox) ;
GOTO busyZoop;

END;
maiZbox := maiZbox - 1;
XETUM(maiZbox) ;

Virtual processors are artificial constructs
derived from some real life hardware CPU resource.
In a system with N virtual processors, any non­
productive activity of one is to the detriment of
all others, wastefully misusing a finite CPU
resource which could be put to some good produc­
tive use elsewhere. Our busyloop is archtypical
of such wasteful behavior.

It is therefore economically desirable to
include in the IPC mechanisms which are put at
the programmer's disposal a provision by which
a waiting process not only suspends its ZogiaaZ
progression, but literally causes its virtual
time j10w to stop. Once stopped, the process is
said to be "dormant" and can no longer insistently
test the mailbox for the awaited message. It is
the cooperative sending process which, after
having deposited its message, helpfully "nudges"
the dormant process back into wakefulness.

88

REFERENCES

1) Abramson N, "The ALOHA System", Computer
Communication Networks, Abramson & Kuo
Editors, Chapter 14, Prentice Hall 1972.

2) Brinch Hansen P, "The Nucleus of a Multi­
programming System", CACM April 1970,
pp. 238-242.

3) Carr C, Crocker 5, Cerf V, "Host/Host
Communication Protocol in the ARPA Network",
Proc. 1970 SJCC, pp. 589-597.

4) Dennis J B, Van Horn E C, "Programming
Semantics for MultipJ;ogrammed Computations",
CACM March 1966, pp. 143-155.

5) Dijkstra E W, "Co-operating Sequential
Processes", Programming Languages, Genuys
Editor, Academic Press 1968, pp. 43-112.

6) Dijkstra E W, "Solution of a Problem in
Concurrent Programming", CACM September
1965, pp. 569.

7) Dijkstra E W, "Synchronizing Primitives",
Appendix to "The Structure of the 'THE'
Multiprogramming System", CACM May 1968,
pp. 345-346.

8) Horning J J, Randell B, "Process Structuring",
ACM Computing Surveys, vol 5 #1, March 1973,
pp. 5-30.

9) Johnston J B, "Structure of Multiple Activity
Algorithms", Proc. 2nd ACM SIGOPS SOSP,
October 1969, pp. 80-82.

10) Naur P, "The Place of Programming in a World
of Problems, Tools and People", Proc. IFIP
Congress 1965, pp. 195-199.

11) Spier M J, Organick E I, "The Multics
Interprocess Communication Facility", Proc.
2nd ACM SIGOPS SOSP, October 1969, pp. 83-91.

12) Spier M J, Hastings T N, Cutler D N, "An
Experimental Implementation of the
Kernel/Domain Architecture", Proc. 4th ACM
SIGOPS SOSP, October 1973.

13) Wulf W 5, Russel D B, Haberman A N, "BLISS:
A Language for Systems Programming", CACM
December 1971, pp. 780-790.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

THE EXPERIMENTAL IMPLEMENTATION
OF A COMPREHENSIVE INTER-MODULE COMMUNICATION FACILITY

MICHAEL J. SPIER
Department of Software Engineering{a)

Digital Equipment Corporation, Maynard, MA 01754

Summary

In 1972, The Digital Equipment Corporation sponsored
a limited-objective research project to investigate
the properties of the new kernel/domain systems archi­
tecture, whose theoretical model was earlier developed
by Spier [1]. A companion paper [2] reports on that
project. The domain is a monitor (or supervisor,
executive) -like local independent address space which
may be mapped over a collection of (mostly) exclusive
memory space partitions to provide a protected run­
time environment. Similar to the classical monitor,
control may be transferred into the domain through pre­
designated inter-domain entry points named gates [1].
In a domain system, supervisory code no longer resides
in a single monolithic monitor, but is distributed
among a number of supervisory domains; of these, the
most central and most critical supervisory domain is
named kernel [1] [2] [3]. The kernel is responsible for
basic resource management only and is by definition
devoid of any decision making code.

If we view the term process as meaning the aativity
of a processor wi thin a memory space [4] then the
execution of a processor wi thin a domain (read, ex­
clusive memory space) is an independent process. In a
domain system where a single user computation may cause
the activation of many domains, that computation's
sequentiality may be viewed as the sequential activa­
tion of many processes. For the sake of conformity,
we chose to apply the term process to the larger sequen­
tiality, and coined the term domain-incarnation [2] to
designa te the execution of a single domain by a single
processor. The transfer of control from one domain to
another, although synchronous and sequential, dis­
plays some of the properties inherent to interprocess
cOImllunication (IPC) mechanisms [4]. Our kernel­
implemented comprehensive inter-module communication
mechanism handled the following cases:
1. The explicit sequential activation of a procedure

entry point, expressed in the form
CALL procedure(argument-listJ;

2. The implicit sequential activation of a procedure
entry point, currently known to be the handler
for some predesignated condition, expressed in
the form SIGNAL condition(argument-listJ;

3. The explicit non-sequential acti va tion of a pro­
cedure entry point by some other process, ex­
pressed in the form
IN~RRUPT process,procedure(argument-listJ;

4. The :unplicit non-sequential activation of a proce­
dure entry point by some other process, where the
procedure is currently known to be the handler for
some predesignated event, expressed in the form
NOTIFY event(argument-listJ;

Notice that the event declaration always included the
declaration of the currently handling process (es) , so
that the process identity did not have to be explicitly
mentioned within the NOTIFY sequence.

(a) This paper reports on a pure-research project,
and may not be construed to imply any product
commitment by the Digital Equipment Corporation.

89

5. The abnormal cancellation of a sequence of calls
through a non-local GOTO to a predesignated en­
try point declared to be a handler for the
unwind condition, expressed in the form UNWIND;

Note that both conditions and events came in two
flavors: 1) LOCAL to remain in effect only as long
as the procedure activation that declared them, and
to automatically be terminated upon RETURN from that
procedure activation, and 2) GLOBAL to indefinitely
remain in effect until explicitly terminated.

Thus, all the above inter-module cOImllunication
functions were kernel-managed and invariably re­
sulted in the argument-carrying formal activation
of a procedure entry point, to uniformly be dis­
missed via a formal RETURN; Both of our inter­
process cOImllunication functions were a software
simUlation of the classical hardware interrupt.
Given our predominant concern to keep the kernel
application independent, the software interrupt
facility seemed to be the most general mechanism
conceivable. A special kernel-call of the form
SLEEP (time-UmitJ ; would put the calling process into
a dormant state to be re-awakened when either 1) an
INTERRUPT or NOTIFY signal is received, or 2) the
time-limit has expired, whichever happened first.

The asynchronous nature of INTERRUPT and NOTIFY im­
plied a certain minimal argument-buffering facility
wi thin the kernel. Also, the activation of a procedure
entry point by either of the asynchronous invocations
caused all further asynchronous signalling to that
same process to be inhibited, until a return was made.
We had additional, more specific kernel-calls to more
finely control the inhibition/reactivation of inter­
process signals, as well as mutual exclusion functions
MUTEX/XETUM [4] which were also kernel-implemented.

Finally, note that our choice of the software­
interrupt facility did not preclude the availability
of more classical IPC interfaces, such as
MSG:=WAIT(mailbozJ; and NOTIFY(mailboz,MSGJ; [5].
Such mechanisms could be implemented within dedicated
supervisory domains by means of the tools just des­
cribed. One of the reasons for choosing these more
general tools was to provide the ability for virtual
user computations to be multiprograImlled.

References

[I] Spier MJ, A Model Implementation for Protective
Domains, International Journal of Computer &

Information Sciences, vol 2 #3, 1973.
[2] Spier M J, Hastings TN, CUtler D N, An Experimen­

tal Implementation of the Kernel/Domain Arahitec­
ture, Proc. 4th ACMSOSP, October 1973.

[3] SpoonerC R, A Software Architecture fot'the '10 's:
Part I - The General Approaah, Software Practice &

Experience, vol 1 #1, 1971.
[4] Spier M J, Proaess Communication Prerequisi tes,

or the IPC-Setup Revisited, Proc. 1973 Sagamore
Conference on Parallel Processing, August 1973.

[5] Spier M J, Organick E I, The Mul tics Inter-process
Communication Facility, Proc. 2nd ACM SOSP,
October 1969.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

A NOVEL METHOD OF CONSTRUCTING SORTING NETWORKS

Robert M. Keller
Department of Electrical Engineering

princeton University
Princeton, New Jersey 08540

Summary

The construction of sorting networks
has been a topic of much recent discussion
[1] - [5]. In view of the apparent dif­
ficulty of verifying whether a reasonably
large proposed sorting network actually
does sort, the most useful approach fOr
constructing large networks seems to be to
devise a recursive scheme which constructs
a network which is guaranteed to sort, ob­
viating the verification phase. EXamples
of this approach are presented in [1],[5].
In this note, another such approach is
presented.

The most economical l6-line sorter
known has been constructed by Green [3],
[4]. His approach is to successively sort
lines whose indices differ in one compon­
ent of the binary expansion. This yields
a partial ordering of the lines which is
isomorphic to a Boolean "n-cube" configu­
ration. This configuration is then further
sorted to yield a linear order. The net­
work fOr accomplishing this is constructed
in a clever, but ad hoc manner, and no
techniques for extending this approach to
larger numbers of lines have appeared.

In this note such a technique is pre­
sented. However, it suffers from the fact
that it produces networks which are no more
economical than the odd-even merge networks
of Batcher [1]. Nevertheless, some in­
sight may result from a knowledge of this
technique.

The approach is to reduce an n-cube
configuration to an n-m cube in which the
vertices represent linear orders of m com­
ponents. A recursive rule is given which
applies this technique to obtain a complete
sorting network and the correctness of the
rule is proved. It is then shown that the
number of comparisons for an n-line net­
work are the same as Batcher's constructio~
although the networks are definitely not
isomorphic to Batcher's. For certain
numbers of lines, this method yields net-

This work was sponsored by the National
Science Foundation through grant GJ-30l2,
and by the Bell Laboratories, Murray Hill, N. J.

works which are related to Batcher's by a
kind of "flipping" operation described in
[2]. Precisely what relation holds be­
tween these two constructions has not yet
been discovered.

A complete presentation of these
results appears in [6]. The construction
is derived for the more general k-ary n­
cube, but upper bounds are only shown for
k = 2 (the "Boolean" case). Whether other
values of k yield better results has not
been thoroughly investigated. Proofs of
correctness are done in terms of partial
orders, using a useful and general lemma
about "cross products" of partial orders
and the technique of Liu [7].

References

[1] K.E. Batcher, "Sorting Networks and
Their Applications." AFIPS Conf.
~., (Spring, 1968), pp. 307-314.

[2] R.W. Floyd and D.E. Knuth, The Bose­
Nelson Sorting Problem, COmpo Sci.
Dept., Stanford University, Stanford
CS-70-l77 (November, 1970).

[3] M.W. Green, "Some Improvements in Non­
adapti ve Sorting Algorithms." ~.
Sixth Annual Princeton Conf. on In­
formation Sciences and Systems,
(March, 1972), pp. 387-391.

[4] D.E. Knuth, The Art of computer Pro­
gramming, voL 3: Sorting and Search­
ing, Addison-Wesley, (1973).

[5] D.C. Van voorhis, Large [gld] Sorting
Networks, Compo Sci. Dept., Stanford
University, Stanford CS-7l-239,
August, 1971).

[6] R.M. Keller, Another Recursive Tech­
nique for the Construction of Sorting
Networks, Princeton univ., COmpo Sci.
Lab., Tech. Report TR-126, (JUne 1973).

[7] C.L. Liu, "Analysis of sorting Algori­
thms," Proc. IEEE Twelfth Ann!. Symp.
on switching and Automata Theory,
october, 1971), pp. 207-215.

90

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

HIGH SPEED MULTIPLIER/DIVIDER ITERATIVE ARRAYS

V. C. Hamacher
J. Gavilan

Departments of Electrical Engineering and Computer Science
University of Toronto

Toronto, Ontario, Canada

Abstract -- Various 2-dimensional iterative
arrays for the combined parallel implementation
of signed binary multiplication and division are
presented. Speed and cost comparisons are made
with both commercial arithmetic units and recent
design and prototype studies. It is shown that
combined function arrays can be both speed and
cost competitive with separate function arrays.

Introduction

Large, iteratively structured, combinat~onal
networks for all four basic arithmetic funct10ns
(Add, Subtract, Multiply, 'and Divide) have become
a practical reality in high-speed, general- .
purpose scientific computers [1],[2] and ~pec1al
purpose applications [3],[4]. Recent.des1gn ~nd
prototype studies [5],[6],[7] on feas1ble var1a­
tions have also been reported.

The parallel processing speed of the sub­
system units for each arithmetic function has been
enhanced from a system throughput viewpoint by
employing both duplicated units and pipelining.
[1],[2]. On a uniprocessor system, the effect1ve­
ness of these latter system designs depends to a
large extent on program and instruction mix as
well as depth of instruction lookahead.

In most of the references cited above, there
is a tendency towards optimizing a large combina­
tional subsystem unit for each arithmetic func­
tion. Duplicating or pipe lining these separate
function units then achieves the desired system
speed. A commercial exception is [1] in which a
particular unit performs multiply or. divide under
appropriate conditioning and seque~c1ng .. Also,
the design studies of [8] and [9] 1nvest1gated a
planar logic array that combines the same two
functions.

The purpose of this paper is to present new
combined Multiplier/Divider (MD) iterative arrays
and analyze their effectiveness as compared to
current alternatives. The MD arrays are 2-
dimensional and accept two, signed, binary
operands in 2's-complement notation along with a
binary signal to denote M or D. A double-length
product, or quotient and remainder, are gener~ted
after a specified delay. The basic approach 1S
to start with a simple (but relatively slow) con­
figuration, called MDl, that is similar in com­
plexity to [8] and [9]. Design changes to
increase speed are then incorporated in 3 suc­
cessive steps that result in the MD4 array that is
comparable in speed to the fast individual func­
tion arrays of [6] and [7], while at the same

91

time has a cost much less than the sum of the
costs of the individual function arrays.

The two basic parameters that are used for
comparisons throughout the study are logic delay
and cost. Delay is expressed in terms of a nor­
malized value T that represents delay through a
functional level (AND-OR, NAND-NAND, NOR-NOR,
etc.) under reasonable fan-in constraints on all
gates. Processing rates based on pipelining are
covered elsewhere [10]. Two different cost
criteria are considered. Gate costs assuming
individual gate counting is used, as well as in­
tegrated circuit count for reasonable assumptions
on MSI level circuits. Both of these methods are
justified in terms of currently available integ­
rated circuits.

The Basic Comparison Parameters

Logic Delay

As stated above, all delay expressions will
be stated in terms of a normalized value T that
represents delay through a functional level. The
choice of a delay unit such as T is not a
straightforward one. Hopefully, the reason for
choosing a delay unit in any logic design is to
arrive at as simple and as accurate a measure as
possible of the delay through an implementation
of the design in some particular logic circuit
family. This is achieved by substituting a
typical value of time (say 12-16 nanoseconds in
some TTL technologies) for T in the delay express­
ion. Now consider where this technique causes
problems. In arithmetic arrays, the full adder
(FA) function (three inputs, sum (S) and carry (C)
outputs) and the exclusive-or (EX-OR) function
usually account for a large part of the logic
design components. If we assign T on a functional
leve 1, as indicated above, all three outputs, S,
C, and EX-OR, will occur with delay T after inputs
are available. (It should be noted that we ignore
any input inversions needed in both delay and cost
computations.) But, in many TTL integrated cir­
cuits, the delays in producing these three func­
tions can be appreciably different. For instance,
EX-OR might be 1·2 times the delay of a single
NAND gate, and C is typically substantially faster
than S. This presents a fundamental problem in
attempting a general delay measure that is useful
in comparing various logic designs to gauge their
implementation effectiveness. Our compromise is
to use delay expressions involving T as defined
above. We then claim that, although they might
not be accurate enough to compute absolute delays
achievable in implementing various designs (based

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

on some average , for a certain logic circuit
family), they suffice for our purposes of getting
some quantitative figure of merit for comparisons.
In fact, we depend on the 5, C, and EX-OR type of
discrepancies being averaged out along the longest
delay path in the various designs.

Logic Cost

The technology used (wired-o.r capability,
etc.) and level of integration (551, MSI, etc.)
assumed complicate the definition of a suitable
logic cost measure probably to a greater degree
than they affect the adoption of a simple delay
measure, as discussed above. In this paper, we
will base logic cost on one of two distinct
measures. The simplest and most often used
measure will be total gate count. Since we are
discussing relatively large combinational arrays
of logic circuits, where fan-in ranges normally
from 2 through 4, we will not explicitly include
inputs in our gate cost measure. Implicitly, of
course, the basic gate cost unit, g, can be taken
to mean the cost of some "average" gate which
"on the average" might have 3 inputs. Another
cost measure that we will use in one instance is
that of integrated circuit count under some
reasonable current technology complexity level.
This technique will be given in more detail later
when it is applied.

Other Possible Parameters

Other design parameters that might illuminate
the comparative merits among various logic designs
are possible. Interconnection crossover complex­
ity, array cell regularity, standard function
utilization are among these. We will not work
out the details on any other than delay and cost
as defined above; however, we present logic
diagrams, for all four arrays discussed, in enough
detail that anyone can derive particular figures
of merit that might be of interest.

Four Multiplier/Divider (MO) Arrays

The most familiar binary multiplication
algorithm is to shift the multiplicand (B) left
once for each multiplier (R) bit position, after
adding B into an accumulating partial product
(A) if the corresponding R bit is I, until A
finally becomes the product P = B·R when all
multiplier bits, low order to high order, have
been used. This scheme has been stated for posi­
tive operands; but, by modification due to Booth
[11], it can be made to work for signed operands
in 2's complement representation, yielding P
directly in the correct 2's complement form.
Subtraction of the multiplicand, as well as addi­
tion, is possible. Each operation decision is
the result of inspecting the appropriate mUltip­
lier bit and its right-hand neighbour at each
step.

One of the standard division algorithms is
the non-restoring algorithm operating on a divi­
dend A with a divisor B to generate a quotient Q.

92

The altered dividend is referred to as the partial
remainder at each step. An operation cycle is as
follows: The sign of A is inspected. If it is
positive, B is subtracted from A and if it is
negative, B is added to A. The quotient bit
generated is the complement of the sign bit of the
new partial remainder. The divisor is shifted one
binary position right after each cycle. Many
authors have discussed this scheme; see, for
example, Guild [12]. This algorithm can also be
modified to operate on signed operands; however,
the quotient generated is correct if it is posi­
tive; but it is in l's complement if it is nega­
tive, so a one must be added later to convert it
to 2's complement notation. Separate planar
arrays of cells, each usually containing a full
adder with controlled inputs, can be constructed
fairly directly from these or similar algorithms.
For instance see, Majithia and Kitai [13],
Bandyapadhyay, et al [14], Deegan [15], and Hoff­
man, et al [16] for array implementations of
multiplication based on variations of the above
basic scheme. Division array implementations
based on variations of the above discussion appear
in Guild [12], Dean [17], Gardiner [18], and
Gardiner and Hont [19].

MOl Array

When we attempt to combine the separate
arrays, the only sensible arrangement seems to be
to associate the B vector (multiplicand or divi­
sor) positions with each other and the A vector
(partial product or dividend and partial remain­
der) positions with each other, moving downward
through the rows of the array. That is why we
have combined their names. The mUltiplier, R,
and quotient, Q, are pOSitioned at the left
column edge of the array. There is one complica­
tion. In multiplication, B is shifted left with
respect to A; but in division, B is shifted right
with respect to A. The solution is to shift B
right with respect to A in multiplication, and
inspect and use the multiplier bits high order to
low order instead of in the other direction as
above. This is the scheme developed by Majithia
and Kitai [13]. The arrays can then be combined
as MOl in Figure 1. In general, the B, Q and R
vectors are n bits long, including the sign bit
in the case of Band R. The A vectors are 2n-l
bits long, including the sign bit. It is con­
venient to consider the operands in fraction form,
with A and B normalized in the case of division.
We then have, (where all coefficients = 0 or 1):

R (Multiplier) Ro·Rl·· • Rn-I
Ro2o+ R12- 1 + .•• + Rn_12-(n-l)

Q (Quotient) QO·QI ... Qn-l
Qo2o+ Q12- 1 + ••• + Qn_12-(n-l)

A (Partial Product 011 Remainder) = Ao·AI"· A2.n-1
_Ao2o+ AI2- I + ••• +A2.n-l 2- (2.n-l)

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

In the case of division, Qo is not the sign bit,
but is a significant bit of the answer. This is
because l/z ~ Q ~ 2 for l/Z ~ A,D ~ 1. The sign
bit for Q is thus not indicated in our arrays.
The output of the M function in ~!.! 1 ~ MDl
(Figure l(b)) is given by M = D1DZBi + D1DZBi·
The "function" signal, F, is set to 0 for multip­
lication and 1 for division; cell 2 (Figure l(c))
then routes the multiplier bit pairs Rk, Rk+1 for
Booth algorithm control in multiplication, or
routes the sign bit control for division. Note
that all Ri bits must be set to 0 when division
is being performed. Thus, cell 2 acts as a con­
trol column of cells, and the M function in celli
uses the control signals to appropriately apply
the correct version of the B vector to the A vec­
tor. The cost and delay expressions are:

MDl cost = (1Bnz + 2n) g

MDl multo delay = (2n + l)T

MDl div. delay = (nz + 2n)T

(la)

(lb)

(Ic)

The combined multiplier divider arrays of Gex [B],
and Gardiner and Hont [9] are similar in complex­
ity of design and have about the same cost and
delay properties.

MD2 Array

Our procedure is now going to be to intro­
duce substantial design changes in three success­
ive steps starting from MDI. They are substantial
in that the basic algorithms for carrying out the
arithmetic operations are altered significantly.
In MD2, the partial product/remainder vector A is
not developed explicitly at each row level but is
represented by two binary vectors S and C, which,
if added would produce the correct vector A at
that row level. This is the familiar carry-save
reduction technique that was originally introduced
by Wallace [20] in a 3-dimensional multiplier
logic design. The two vectors Sand C are the
result of a 3-to-2 carry-save reduction on the
previous row's Sand C vectors and the proper ver­
sion of the B vector. In the case of mUltiplica­
tion, this necessitates a length 2n-l fast adder
operating on the S and C outputs of the last row
to produce the product P. This is indicated in
Figure 2(a). Since the division process requires
the sign of A to determine the subsequent row
operation, this must be determined by a carry
lookahead network L at the leftend of each row.
It operates on generate and propagate functions
formed in the type 3 cells. These Gi and Pi
functions are formed from the S and C vector out­
puts of each row. An examination of the non­
restoring division algorithm reveals that the
carry-out from the sign bit position directly
yields the quotient bit, so this is the way it is
done in Figure 2. This observation actually
constitutesa suggested improvement to the design
in [6]. Qi is then fed to the control cell 5 of
the next row. The L cell must be redesigned for
each operand length, and if fan-in is constrained
to equal to or less than eight, then a two-level
(2T) lookahead scheme must be employed for

93

n ~ 10. This is reflected in the cost and delay
figures shown below. The cost and delay express­
ions are:

MD2 cost = (2lnZ - n)g for n < 10 (2a) (2lnZ + 2n/ii) g for 10 ~ n s: 64

MD2 multo delay = (n + 2) T (2b)

MD2 div. delay = (6n)T for n < 10 (2c) (7n)T for 10 ~ n ~ 64

The cost increase from MDI to MD2 is small com­
pared to the speed gain, especially in the case of
division, which has been made essentially linear
in n over practical operand ranges. This form of
array division algorithm is due to Cappa and
Hamacher [6] and the carry-save technique (along
with multiplier bit grouping) has been used by
Ramamoorthy and Economides [7] in a high-speed
planar multiplier array. It is to be noted that
the cost and delay of the Fast Adder has not been
included in the above expressions. It can be
designed (with carry lookahead techniques) so that
it does not change any of the expressions by more
than about 20%. To our knowledge, MD2 and the
next two arrays have not appeared in the litera­
ture.

MD3 Array

The next change to make is to decode the
multiplier bits in pairs and generate two quotient
bits at a time. Although this increases the com­
plexity of each row of cells in the array, the
number of rows is reduced by a factor of two. A
net cost saving then results. We get MD3, as
shown in Figure 3, by making these two changes to
the MDI structure. When the MD2 techniques of
carry-save reduction and carrY-lookahead are also
incorporated into MD3 we will finally have evolved
to MD4 which is in the next subsection. The mul­
tiplier bit grouping technique is well known and
has been used by Wallace [20] and Ramamoorthy and
Economides [7] in their arrays so it will not be
detailed here. The technique for generating two
quotient bits at a time is somewhat more complex
but has also been adequately described in detail
by Flores [21]. It necessitates having 3/2 the
divisor available as an input vector. We assume
that this is formed before division is begun and
is presented as one of the inputs. The r, s, t
bundle of inputs into cell 6 (Figure 3(b)) is
really a bit position of 1/2 B, B, and 3/2 B in
the case of division; and in the case of mUltip­
lication, r and s represent one bit position of
1/2 B and B, respectively, with t not being used.
The control signals T1 and Tz, which are outputs
from control cell 7 (Figure 3(d)) are used to
select appropriately among r, s, t or their com­
plements. This selection is done in the E logic
(Figure 3(c)) of cell 6 (Figure 3(b)). The D
signal decides complementation or not. An ins­
pectionof the wiring of cell 6 should convince
the reader that the 2-place shift per row of B is
performed correctly. The signals T1, Tz and Dare
determined by a multiplier bit pair and its adja­
cent bit neighbour on the right in the case of

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

multiplication; and by the leading three bits of
A and bits BO and B2 in the case of division.
This is all accomplished in control cell 7
(Figure 3(d)) along with the generation of two
quotient bits in the case of division. The cost
and delay expressions are:

MD3 cost = (13n2 + 37n + 2S)g

MD3 multo delay = (2n + 3)T

MD3 div. delay = (n2 /2 + 2n + 3)T

(3a)

(3b)

(3c)

There are actually small variations in these
expressions depending on whether n is even or odd,
but in each situation we have given the worst
case. Compared to MDI, in MD3 the cost is
appreciably lower, multiplication time is about
the same, and division time has been halved. MD3
is slower than MD2, but costs less. The final
evolution to MD4, which incorporates the MD2 tech­
niques of carry-save reduction and carry-Iookahead
will prove to be the best design on all counts.
It should again be noted before we leave this
section that the time and cost involved in genera­
ting 3/2 B has been neglected. For practical
values of n, this is a reasonable assumption.

MD4 Array

If the carry save and carry lookahead tech­
niques described in the MD2 subsection are applied
to the MD3 structure, we obtain the MD4 array
shown in Figure 4. Since the control cell 7 is
Figure 3(d) , no further discussion of it is
needed. Also, the E function in the main body
cells 8 and 9 (Figures 4(b) and (c)) is the same
as in Figure 3(c). The remainder of cells 8 and
9 is much the same as in cell 6 (Figure 3(b)) of
MD3, the differences being that Sand C vectors
are produced to represent A, and P and G functions
are included to provide inputs to the lookahead
computation. The L cell of Figure 4(a) is similar
to the L cell of Figure 2 and is used in.MD4 to
produce the carry-in to the A2 position. This
carry and the Sand C vector bits for partial
remainder positions AO' Al, and A2 are inputs to
the CL cell (Figure 4(d)). The CL cell computes
Ao, Al, and A2 which are needed in the control
cell 7 for the division process. The cost and
delay expressions are:

MD4 cost = (lSn2 + 47n + 33)g
for 7 s n s 13

(lSn2 + 47n + 33 + (n+I)~/2)g
for 14 s n S 68

MD4 mUlto delay = (n/2 + 4)T

(4a)

(4b)

MD4 div. delay = (3n + S)T for 7 s n s 13 (4c)
(4n + 6)T for 14 s n s 68

Again, as in MD2, the Full Adder has been omitted
from both cost and delay expressions, as well as
the formation of 3/2 B.

94

CODIpa.i'isons

If we substitute the practical range of
values n = 8, 16, 32, and 64 into equation sets
(I), (2), (3), and (4), we obtain Table I, which
allows convenient comparisons among the MD arrays.
It is easy to conclude that MD4 is the best design
from the cost/delay effectiveness standpoint. The
rest of this section will be devoted to comparing
MD4 to members of two classes of multipliers and
dividers.

Other Logic and Prototype Designs

In this subsection, MD4 is compared to two
high-speed planar separate function arrays that
have been reported. The multiplier array (RE) of
Ramamoorthy and Economides [7], that uses bit
grouping of the multiplier and carry-save reduct­
ion as in MD4, has approximate cost and delay
expressions as follows:

RE array cost = (IOn2 + 8n + 26)g

RE array mUlto delay = (n/2 + 2)T
(Sa)

(5b)

The division array (CH) of Cappa and Hamacher [6]
that uses carry-save reduction and carry lookahead
but generates only one quotient bit per row as in
MD2, has approximate cost and delay expressions
as follows:

CH array cost = (17n2 + IOn)g for n< 10
(17n2 + Un + 2nlti) g

for 10 S n s; 65

CH array div. delay = (4n)T
(Sn)T

for n < 10
for 10s;nS6S

(6a)

(6b)

Table II allows a concise comparison of the RE,
CH, and MD4 arrays.

Commercial Structures

The Advanced Micro Devices (AMO) Co. [22]
produces a 2 bit x 4 bit 24-pin MSI multiplier
chip (the AM250S) and a 4 bit 24-pin MSI adder
chip (the AM9340) that can be used as the basic
cells in a multiplication array. They use bit
grouping of the multiplier, do not use carry-save
reduction, but use a carry lookahead scheme for
fast propagation of the carries along each row of
AM2505's. The AM9340's are used in parallel to
accumulate a set of partial products into the full
product. At an operand length of n = 16, the
delay is approximately 30T as compared to about
17T for MD4. The AMD array delay value is derived
by evaluating the logic equivalent of their chip
in a manner consistent with our evaluation of the
MD, RE, and CH arrays. Since the AMD array gene­
rates the product P, we have included in the 17T
MD4 delay a plausible amount (ST) for the 32-bit
lookahead adder needed in conjunction with the
basic MD4 structure.

There are 32 AM2S05 chips and 16 AM9340 chips
needed at n = 16. Now if we consider that 4 of
the main body cells (8 and 9) in the MD4 are

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

implemented in a single 40-pin MSI chip, the MD4
would require about 40 of these chips plus the
final full adder (8 AM9340 type of chips) and the
left column of control logic (cells 7, CL and L).
If we estimate this control logic at about the
equivalent of 24 MSI chips, the total MD4 array
has an MSI chip count of about 72, so that it
would be about 50% more expensive. It is also
instructive to estimate the equivalent gate count
in the AMD array as compared to a gate count for
the MD4 which can be derived from expression (4a)
above plus a reasonable full adder gate count. If
we do this for the n = 16 case, we get an approxi­
mate equivalent gate count of 4,400 for the AMD
array and 5,300 for the MD4.

The 56-bit floating point fraction multiplier
and divider circuitry in the IBM S360/9l [1] com­
puter has equivalent logic delays of approximate­
ly 36T and 110T, respectively. The comparable
figures for MD4 (including the Fast Adder) are
38T and l85T. It should be noted that this com­
mercial unit performs division by the iterative
multiplication technique which is completely
different from the MD4 technique, but makes very
effective use of the multiplication structure.
Detailed cost comparisons of this unit with MD4
will not be attempted.

Acknowledgement

This research was partly supported by Grant
A 5192 from the National Research Council of
Canada.

[1]

[2]

[3]

[4]

[5]

References

S.F. Anderson, et aI, "The IBM System 360/91:
Floating Point Execution Unit," IBM Journal
of Research and Development, (January,
(1967), pp. 34-53.

P. Bonseigneur, "Description of the 7600 Com­
puter System," Computer Group News, Vol. 2,
No.9, (May, 1969), pp. 11-15.

S.D. Perazis, "A 40-ns l7-bit by l7-bit Array
Multiplier," IEEE Trans. Comp. (Short
Notes), Vol. C-20, (April, 1971), pp. 442-
4'4'7-:-

A. Habibi, and P.A. Wintz, "Fast Multip­
liers, II IEEE Trans. Comp., Vol. C-19,
(February, 1970), pp. 153-157.

R. Stefanelli, "A Suggestion for a high-speed
parallel binary divider," IEEE Trans .Comp,. ,
Vol. C-2l, (January, 1972), pp. 42-55.

95

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

M. Cappa, and V.C. Hamacher, "An Augmented
Iterative Array for High-Speed Binary
Division," IEEE Trans. on Comp., Vol. C-22,
No.2, (February, 1973), pp. 172-175.

C.V. Ramamoorthy, and S.C. Economides, "Fast
Multiplication Cellular Arrays for LSI Im­
plementation," 1969 FJCC, AFIPS Press,
(Montvale, N.J.), pp. 89-98.

A. Gex, ''Multiplier-Divider Cellular Array,"
Elec. Lett., Vol. 7, No. 15, 29 July 1971.

A.B. Gardiner, and J. Hont, "Cellular-Array
Arithmetic Unit with Multiplication and
Division," Proc. lEE, Vol. 119, (June,
1972), pp. 659-660.

T.G. Hallin, and M.J. Flynn, "Pipelining of
Arithmetic Functions," IEEE Trans. on Compo
(Short Notes), Vol. C-2l, No.8, (August,
1972), pp. 880-885.

A.D. Booth, "A Signed Binary Multiplication
Technique," Quart. J. Mech. Appl. Math.,
Vol. 4, Pt. 2, (1951), pp. 236-240.

H.H. Guild, "Some Cellular Logic Arrays for
Non-restoring Binary Division," The Radio
and Electronic Engineer, Vol. 39, (1970),
pp. 345-348.

J.C. Majithia, and R. Kitai, "An Iterative
Array for Multiplication of Signed Binary
Numbers," IEEE Trans. on Comp., (February,
1971), pp. 214-216.

S. Bandyopadhyay, et aI, "An Iterative Array
for Multiplication of Signed Binary Num­
bers," IEEE Trans. on Comp., Vol. C-2l,
No.8, pp. 921-922.

I.D. Deegan, "Cellular Multiplier for Signed
Binary Numbers," Elec. Lett., Vol. 7,
No. 15, 29 July 1971.

Hoffman, et aI, ''Multiplieur parallele a cir­
cuits logiques iteratifs," Elec. Lett.,
Vol. 4, (1968), p. 178.

K.J. Dean, "Binary Division Using a Data De­
pendent Iterative Array," Elec. Lett.,
Vol. 4, No. 14 (July, 1968), pp. 283-284.

A.B. Gardiner, "Fast Economical Binary Divi­
der," Elec. Lett., Vol. 7, No. 23, (Nov.,
1971) .

A.B. Gardiner, and J. Hont,"Comparison of
Restoring and Non-restoring Cellular-Array
Dividers," Elec. Lett., Vol. 7, No.8,
(April, 1971), pp. 172-173.

C.S. Wallace, "A Suggestion for a Fast MUl­
tiplier," IEEE Trans. on Elec. Compo ,"
(February, 1964), pp. 14-17.

I. Flores, "The Logic of Computer Arithmetic
Prentice-Hall, Englewood Cliffs, N.J. (1963).

Advanced Micro. Devices Co., Application
Notes for the AM9340 (April, 1972) and the
AM2505 (November, 1971).

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Cc) Cell 2

Ca) The array

D1-+---+-+-+
~2-+-~+4-4----~-+-

Cb) Cell 1

MOl - Multiplier/Divider iterative array

i+o1

Figure 1.
using Booth and Non-restoring algorithms ,for n=4.

B1 4i C +1 B

B~-

I
Ci

i r
!

G P S C

Cd) Cell 5 (c) Cell 4 (b) Cell 3

Figure 2. MD2 - Multiplier/Divider array using Booth and Non-restoring
algorithms and carry-save along with carry lookahead, for n=4.

96

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

FAST ADDER

pl2 P~
L = Go + PoGl + PoPlG2

(a) The array

Figure 2 (cont'd.). MD2 - Multiplier/Divider array using Booth and Non­
restoring algorithms and Carry-save along with Carry
lookahead, for n=4.

E

FA

(c) E function (b) Cell 6

Figure 3. MD3 - M~ltiple:/Divider array using multiplier bit pairing
and 2-b1t quot1ent generation, for n=5.

97

F

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

(a) The array

B p B
~

A p A A

~ r----

,- ! 1'\

-!:: ~:
t-<t-{ ------r f-< .I'

~J r----I-

~K
11K L r------r

1--(I J j-;:::j EK l
I L/
.

~~~ ~ =D-

l)-'-BA>-

<JLc€_ 
I 

~~~ 

....... -

--~

(d)

par

D

Cell 7

sign of new
tial remain­

der

Figure 3 (cont'd,), MD3 - Multiplier/Divider array using multiplier
bit pair grouping and 2-bit quotient generation, for n=5,

98

\0
\0

(a) The array

Figure 4. MD4 - Multiplier/Divider array using multiplier
bit pairing and 2-bit quotient generation with

carry-save and carry lookahead technique, for
n=6,

p

(Bi)

r

t

Tl
Tz
D

s"",

"-1'0
~

-
-

-

- ---i

E

I
FA

Ai

L--

(c) Cell 9 s

C.
1+1

[-

~

. 1

-

~
-

\-
"'" '

C

........
I.D
'-I
\.N

en » en
»
3 o
:::0
ITI

" o
3
"'tJ
C
-I
ITI
:::0

" o
Z
."
ITI
:::0
ITI
Z
n
ITI

o
z
-c
»
:::0
»
r
r
ITI
r
""C
:::0
o
n
ITI
(J)
(J)

z
.::n

r

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

G P S C

(b) Cell 8

,
,--',.\+H-+- ~~

E=~~=:J: G3
3

(f.4..-I--If-- A l'
--Cl '

1-+1--if-J..-------l4-4-- G4

&4~------------l~--P4

f/--------+-- A2 I

'- I!.----4-- C2 '

L

(d) Cell CL

Figure 4 (cont'd.). MD4 - Multiplier/Divider array using multiplier bit
pairing and 2-bit quotient generation with carry-save

and carry lookahead technique. for n=6.

Table I: Cost and Delay Comparisons Among the MD Arrays

~ Cos t g Mu1t. Delay T Div. Delay

MOl MD2 MD3 MD4 MD1 MD2 MD3 MD4 MD1 M02 MD3

8 1.168 1.336 1.153 1.369 17 10 19 8 80 48 51

16 4.640 5.504 3.945 4.659 33 18 35 12 288 112 163

32 18.296 21.888 14.521 16.996 65 34 67 20 1.088 224 I 579

64 73.856 87.040 55.641 64.741 129 66 131 36 4.224 448 2.179

Table II: Cost and Delay Comparisons Among the RE. CH. and MD4 Arrays

~ Cos t g Mu1t.de1ay T Div.de1ay T

RE CH MD4 RE MD4 CH MD4

8 730 1.168 1.369 6 8 32 29

16 2.714 4.656 4.659 10 12 80 70

32 10.522 18.144 16.996 18 20 160 134

64 41.498 71.360 64.741 34 36 320 262

100

T

MN

29

70

134

262

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

A VERSATILE DATA MANIPULATOR

Tse-yun Feng
Department of Electrical and Computer Engineering

Syracuse University
Syracuse, N. Y. 13210

Summary

The main deviation of a parallel processor
organization from a conventional (sequential) one
can be seen to be in the data manipulating
functions which are defined to be the functions
required for preparing appropriate operands for
fetching, execution, and storing [1]. Thus, data
manipulating functions involve unary operations
and they can be classified in the following
categories: permuting, replicating, spacing,
masking, and complementing.

The structure of a vers~t~le data manipu­
lator [2] is shown in Fig. l\a).

The basic circuit has an N-by-N array con­
struction (or N2 cells). Each cell consists of
four gates. The circuit can easily be partitioned.
Thus, implementation of this circuit requires
only one circuit type. At present state-of-the­
art up to 8x8 cells and their decoders may be
implemented on one chip.

This data manipulator is capable of achieving
all the data manipulating functions mentioned
above. Furthermore, it can achieve not only
these functions for 2's-power data sets (or strings)
and replications, but non-2's-power functions as
well. Such a data manipulator is particularly
attractive in applications requiring extensive
spacing functions. Thus operations such as
counting, multiple additions, bubbling process [3],
can all be easily achieved. It is also evident
that the system availability or self-repairability
can be improved or provided by applications of
the spacing functions.

[1]

(a)

References

T. Feng, Parallel Processor Characteristics
and Implementation of Data Manipulating
Functions. Tech. Report TR-73-l, Department
of Electrical and Computer Engineering,
Syracuse University (April 1973) , Tech.Report
RADC-TR-73-l89 (July 1973) , 74 pp.

It is noted that the complementing and
comparison circuits which may be located at
either the input or the output side of the
structure are omitted from Fig. 1 for clarity.

101

[2] T. Feng, The Design of a Versatile Line
Manipulator, Tech. Report TR-73-5,
Department of Electrical and Computer
Engineering, Syracuse University (June 1973) ,
85 pp.

[3] B. H. McCormick, "The Illinois Pattern
Recognition Computer - ILLIAC III," IEEE
Trans. on EC (December 1963) , pp. 701-813.

~ ICR

(01)

N Bits

....

-
IMR

(Ul)

N Bits

Input -

ACR's
BLMC

N n-Bit N
R e~De~rs NxN Cells

II j-th
II Column

11/ - Cell (i, j) II

---?it--
-1-thROW# II - -

'--- '-- II

ACR Address Control Register
BLMC Basic Line-manipulator Circuit
ICR Input Control Register (01)
IMR Input Mask Register (Ul)
OCR Output Control Register (00)
OMR Output Mask Register (Uo)

,...

,...-

'-

-

r+"

'-

f4

I--

oc
(0

N

0

R

0)

Bits

MR

0) (U

N Bits

-- Output

Fig. 1 The Structure of a Versatile Data
Manipulator

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

AN ARRAY OF COMPlITING MEIDRY CELLS

E. Della Torre and Jorge Roitman
Department of Electrical Engineering,

McMaster University,
Hamilton, Ontario, Canada

Summary

A memory cell has been designed and construc­
ted as an element of a highly parallel general
purpose computer of a modified SOLOIDN structure
[1]-[2]. This cell has been interfaced to a PDP-
11/20 computer and can perform array operations
under central processor asynchronous control. The
cell size has been minimized leaving, however, the
capability of computing certain transcendental
functions and performing iterative calculations in
either the integer or the floating point modes.

The basic SOLOMON communication structure has
been extended to include a ROW/COLUMN vector of
cells. Each cell of the vector can communicate
with all the cells of the corresponding row and
column. With such a structure, array operations,
such as the matrix transposi~on and a solution of
Laplace's equation by the Jacobi type' methods or
the SOR methods, can be achieved efficiently. The
cells normally operate in unison under the central
processor control. Each cell has, however, the
capabilities of performing individual operations
under certain conditions. The array can be micro­
programmed to perform iterative computations in­
dependent of the central processor until certain
convergence condition has been achieved.

Each cell is a triple-address machine consis­
ting of 15 words and arithmetic hardware. It ope­
rates between words or bytes of its own memory,
or between one of its words or bytes and a word or
a byte of another cell it can communicate with.
The number of words was chosen so that various
algorithms for computing transcendental functions
can be implemented within a cell. This organiza­
tion permits the simultaneous computation of cer­
tain functions for sets of argument ~alues.

The addressing system has been designed to
permit selecting a particular cell, a row, a

102

column, the even rows, the odd. rows, or all the
cells of the array. In addition, three modes of
cell addressing are available: direct, concatena­
ted, and automatic allowing a very efficient way
of the cell selection. The system operates by
inhibiting all but the addressed cells.

Associative-memory capabilities [3] can be
easily incorporated to the system. The existing
inhibit hardware can be used for detecting the
cells in which certain specified conditions are
satisfied. The addresses of those cells can be
read out sequentially by incorporating a cell
priority detection address system.

The cell has been satisfactorily tested by
using several algorithms. A multi-cell system has
been simulated on a PDP-ll/20 computer. A compiler
has been written for the PDP-ll/20 to translate
the user mnemonic language into the appropriate
contents of the 32-bit instruction register. Sev­
eral standard subroutines have been provided for
integer division, floating point arithmetic, and
computation of transcendental functions.

References

[1] D.L. Slotnick, W.C. Bork, and R.C.McReynolds,
"The SOLOMON Computer", Proc. AFIPS, Fall
Joint Compo Conference, 1962, pp. 97-107.

[2] E. Della Torre and F. Ho, "Implementation of
a Cellular Computing Memory Array", Proc. of
the Symposium of Computers and Automata,
Brooklyn, N.Y., April 1971, pp. 625-634.

[3] C. Y. Lee and M.C. Paull, "A Content Address­
able Distributed Logic Memory with Applica­
tion to Information Retrieval", Proc. IEEE,
June 1963, pp. 924-932.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

AN EFFICIENT ASSOCIATIVE PROCESSOR
USING BULK STORAGE

Hubert H. Love, Jr.
Equipment Engineering Divisions

Hughes Aircraft Company
Los Angeles, CA 90005

Abstract -- A hybrid associative process­
ing system using an MOS shift-register bulk
memory is described, together with its applica­
tion to large-scale fact-retrieval applications.
The system fulfills several criteria for balanced,
efficient design of highly-parallel machines.
A comparison with similar machines using
rotating memories is made.

Introduction

The processor organization to be de­
scribed here is an outgrowth of the Association­
Storing Processor (ASP) project. (aJ The
object of the project effort was the develop­
ment of processor organizations biased toward
nonarithmetic applications. As a first step
in this direction, a representative application,
namely fact retrieval (i. e. , question-answer­
ing), was chosen. The next step in the project
was the development of a language, the ASP
language, which expresses the data organiza­
tions and the processes of concern in the
application. Following this, three proce s sor
organizations were designed, using the lan­
guage as a guide. The organization described
here is related to the third of these [3], and
is an attempt to ac hieve efficient operation
of an as sociative memory when the data base
resides in a large, inexpensive bulk memory.

Speed, Cost and Balance

The justification for the associative/bulk
memory combination lies in the desire to
simultaneously achieve higher processing
speed and throughput, lower cost and a bal­
anced, efficient system. Processing speed
has been a particular problem in such sophis­
ticated fact-retrieval applications as military
strategic command and control and the trans­
lation or interpretation of natural languages.
This is because such applications involve very
large data bases (at least the order of 10 9
bits), and because very often (such as when
deductive inference is used in the retrieval
process) many retrieval operations must be
performed and many records processed in
order to answer a single query. The ability
of associative memories to search and process
data in a highly-parallel fashion makes these
devices natural candidates for consideration.

The large size of the data bases used in
the applications of interest is the principal
cost consideration in the processor design,

(a) See references [1] through [3].

103

and is the justification for the use of an in­
expensive bulk memory as the primary data
3torage medium. It is particularly important
in this respect that the ratio of associative
memory to bulk memory size be small, and

at it not increase as the size of the data
base increases.

System balance and efficiency are closely
related terms. A balanced system, as defined
here, is a system in which no major part of
the system normally waits for another part
to complete its task. Balance is particularly
important with respect to the associative
memory in the system to be described and,
to a lesser extent, with respect to the bulk
memory. A system is said to be efficient
if all principal subsystems are performing
a non-trivial task all or nearly all of the time
during normal operation. Both balance and
efficiency directly affect cost and performance
in any computer organization, and they are
the keys to the des ign of the one to be de­
scribed here.

T he system concept is developed around a
hybrid as sociative-memory / mas s-memory
hardware organization, a data structure and a
processing strategy. These three ideas shall
be described in that order.

System Organization

The general organization of the system is
shown in Figure 1. The principal components
are a set of associative memories and a bulk
memory consisting of static MOS shift registers.

T he as sociative memorie s are conventional
in organization and bit- serial in operation.
Each word contains a 64-bit static shift register
for the storage of data. Each associative mem­
ory is capable 0 f the following operations.

1. A simultaneous comparison of the
contents of every word in the memory with
t he contents of an external register, called
the compare register. A flip-' flop , called the
match flip-flop, is set at each word satisfying
the comparison. T he operation is field - selective,
with the fields being defined by the contents of
another external register.

2. An ordered serial retrieval or loading
of those words having their match flip-flops set.

3. A field-selective mass-write operation,
in which the contents of an external register
are written into the selected fields of every
word having its match flip-flop set.

4. The transfer of the states of the match
flip- flops to the inputs of the data storage reg­
isters for the corresponding words, and vice­
versa.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

CHANNELl

CHANNEL 2

r-----
I
I
I

AM NO.1
SHIFT

REGISTER
BULK

MEMORY • •
CHANNEL 10

SWITCHING
MATRIX

KEY:

CONTROL
CHANNEL
DATA
CHANNEL

---,
I
I
I
I

I
I
I
I

I I
----J------...J

L-_______ _

INPUT/OUTPUT
CHANNELS

INSTRUCTION
PROCESSOR

INSTRUCTION
ALGORITHM

MEMORY

I
I
I
I
I

t-
I
I
I

i
I
I
I
I
I
I
I
I
I
I
L

AM NO.2

• • • • •
• •

AM NO. 10

Figure 1. Associative/Shift-Register Processor Organization

5. Several logical operations involving
the match flip-flops and two auxiliary sets of
flip- flops, called the Il and T 2 flip- flops,
whose functions will be described.

6. A number of auxiliary operations,
such as the setting and resetting of all match
flip- flops.

These operations are common to most
"clas sical" as sociative memory designs.
The number of words in each associative
memory (ten memories are shown in the
figure) is a function of the size of a subset
of the average record in the data base, as
will be discussed. The shift rate for the data
registers of the associative memories during
parallel operation is a nominal 5 MHz.

The bulk memory for the system consists
of a set of individually-addressable MOS static
shift registers.(a) These should be very large,
at least 16,000 bits each, in order that the

104

size of the address encoding and decoding
matrices, and thus the cost of the memory,
be as low as pos sible.

There are as many data transfer channels
to the bulk memory (each channel bit-serial)
as the number of associative memories.
Those registers and only those registers assigned
to a channel will shift their contents when data
transfer commands are executed. This makes
it possible to shift registers that are not
involved in data transfers, by assigning them

(a)The newly-emerging charge transfer tech­
nology may make such devices equally or more
suitable as a bulk memory for this system, it
being a requirement that it be possible to
suspend the shifting operation for brief periods
(100 msec.) without loss of information. The
magnetic bubble memory is another potential
candidate.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

to data transfer channels and not enabling the
outputs at the other end of the channels.

The shift rate of the registers in the bulk
memory is the same as that for the as sociative
memories, that is, of the order of 5 MHz.

The interface between the bulk memory
and the set of associative memories is a
switching network. This network permits
each associative memory to be assigned to
a data transfer channel from the bulk memory,
and also permits the associative memories
to be connected together in parallel in various
combinations. This latter is accom.plished by
connecting the external registers of the
associative memories in parallel and connecting
the propagating channels (used for control of
serial input and output operations on words in
the memories) in series. This capability makes
it pos sible for several 0 f the as sociative mem­
ories to operate as a single large associative
memory when the amount of data requires- it,
or to operate individ.ually in si.multaneous
independent operation.

The remainder of the system organization
consists of

1. an instruction processor, which con­
trols the execution of the special processing
algorithms used in the retrieval and modifi­
cation operations. These algorithms are stored
in a read-only instruction algorithm memory.

2. a control processor of more conven­
tional organization, together with a random­
access memory. This processor performs
part of the control of the bulk memory opera­
tion, and also controls input and output
operations.

Data Organization

The data bases are cpp-structed from ordered
triples, called relations. \a) The three items
in each relation are called, respectively, the
subject, attribute and value of the relation.
T he relations are organized into records.
Each record is constructed from all of the
relations involving a particular item, called
the head item for the record. Each data entry
in a record consists of the other two items in
a relation. The data entries are unordered.
There is a record in the data base for every
item in the data, the item being the head item
for that record.

In the records, each item is represented
by a 24-bit number, called the item number.
The user represents the item by a unique
corresponding symbol string, called the item
name.

Since the size of the data records and the
physical records (i. e., the s~ift register s in
the bulk memory) are different, the data
records must be segmented. Each segment is
stored bit-serial on a physical record.

(a)This is the data structure of the ASP
language [2].

105

All entries in every segment are 64 bits
in length. The first entry in each segment is
a header word containing the item number for
the head item for the record. This is used in
locating the segme nt and in identifying the
corresponding record. One of the segments,
called the head segment, contains the bulk
memory addresses of all of the other seg­
ments in the entries immediately following
the header. The other segments each contain
only the address of the head segment in the
entry immediately following the header. The
remaining entries in all of the segments are
the data entries, each consisting of a pair of
24-bit item numbers stored contiguously and
left-justified in the entry.

Operation of the System

The principal function of the system is the
selective retrieval from and modification of
the data base. The criteria for the retrieval
and modification are each specified by a set
of relations, called the retrieval structure
and the replacement structure, respectively. (b)
In these structures, the known items are repre­
sented by their item numbers. Unknown items,
to be determined by the retrieval operation,
are each represented by one of a set of special
numbers reserved by the software for this
purpose.

Both the retrieval and replacement
structures may contain unknown items. In
the replacement structures, each relation
specifies a set of relations to be inserted into
the data base. Relations appearing in the
retrieval structure but not in the replacement
structure each specify a set of relations to be
deleted from the data base.

The central process from which the re_
trieval operation is constructed is that of
context addressing an unknown item. This
is the process of identifying all items in the
data that satisfy the "context" of relations
in which an unknown appears in the retrieval
structure. An item is said to satis fy this
context if, for every relation in the control
structure containing the given unknown, there
corresponds a relation in the data containing
the given item in place of the unknown, and
which is otherwise identical. If there is
another unknown in the relation in the re­
trieval structure, a relation in the data is
considered "identical" for any item corres­
ponding to that unknown, if it is identical
otherwise.

Only the retrieval operations will be
de scribed here. The data modification
operations are described in [3] for a similar
system.

All retrieval operations are performed
by first context-addressing all of the individual

(b) This is also the structure of the ASP
language [2].

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

unknowns in the retrieval structure, and then
resolving any relations involving more than
one unknown. For brevity in describing
the processes, all unknowns in the following
discus sion will be either items or values,
but not attributes. The processes can easily
be extended to cases in which an unknown
is an attribute.

To perform a context-addressing operation,
two different processes are used. They are,
respectively, the Load Subrecord operation .
and the Compare Record operation. To de­
scribe these operations, a retrieval structure
consisting of several relations involving a
single unknown shall be assumed. The un­
known item shall be assumed to be either the
subject .or the value in each one of these
relations.

The Load Subrecord Operation

To begin the context-addressing operation,
one of the relations in the retrieval structure
is selected (at random, if desired), and the
head segment of the record for the subject
or value (one of these will be a known item)
is accessed in bulk memory. The Load Sub­
record operation is then executed to load a
subset of the record into one or more of the
as sociative memories. This subrecord con­
sists of all record entries which contain the
same attribute as the relation from the re­
trieval structure. The operation is the
following.

1. As the shift register containing the
horne segment is shifted, one entry at a time,
those entries for which the attribute is the same
as the attribute of the corresponding relation
from the retrieval structure are selected and
loaded into one of the associative memories.
The selection is made by comparing each
entry with the contents of a register called
the selection register. With each entry so
loaded, the Tl flip-flop in the word is set.
This tag bit, at the completion of the context
address, will be set at all entries con-
taining values of the unknown item. At the
same time, the addresses of the other seg­
ments of the record are retrieved (from the
horne segment) and the shift registers con­
taining them are shifted to make the segments
available for proces sing.

2. As the processing of a segment is
completed, and as another segment becomes
available at the output of a shift register,
the process is repeated for that seg-
ment. If the associative memory becomes
filled, another associative memory is selected
by the system and is loaded in turn.

When the processing of all segments
of the record is completed, the associative
memory or memorie s will contain the entrie s
for all values for the unknown item that are
specified by the retrieval structure relation.
If the retrieval structure contained only
that one relation, the entire context-addressing
operation would now be completed.

The Load Subrecord operation is illus­
tration in Figure 2. The example is shown for
the retrieval structure relation (A, Rl, X),
in which the unknown item is represented
by the X. That relation is also shown in the
upper left-hand part of the figure in directed­
graph form (which is the ASP language repre­
sentation). The record being processed is
the one having the item A as the head item.

Five contiguous entries from the record
are shown in the figure. These are the entries
(Rl, Bl), (R2, Bl), (Rl, B3), (R9, B9) and
(R I, B6). In the illustration, the first and third
of these entries have already been selected and
loaded into the as so ciative memory. The input
(Le., compare) register is shown containing
the most recently loaded entry.

The selection criterion (which -is that
the attribute of the entry be the item R 1)
is shown as the contents of the corresponding
field of the selection register, with the symbol
"D/C", representing "don't care", shown in
the other fields. In the associative memory,
the column labeled T 1 represents the T 1 flip­
flops, which are set for each loaded entry.
The column labeled MFF (match flip-flop)
shows the flip-flop set for the most recently
loaded entry. This represents the use of the
match flip-flop to identify a single word in the
associative memory for which some operation

. (in this case, the load operation) is to be
performed.

The Il and 12 fields in the associative
memory words are the 24-bit fields for the
item numbers for the other two items (that is,
other than A) in each data entry. At the con­
clusion of the operation, the 12 fields will
contain the values of the unknown item which
satisfy the relation (A, Rl, X).

106

The operation establishes the criterion
for the size of the associative memories,
vir.hich should be that of the average subrecord
in the data· base, rather than the size of the
entire record.

It can be seen that the Load Subrecord
operation is essentially balanced, in that
neither the associative memory nor the bulk
memory must wait for the other to complete
an operation. The only exception is the delay
in accessing the home segment, and a possible
delay in accessing another segment. The
operation, however, is not efficient, since the
associative memory is not performing a paral­
lel operation, but is only being loaded. As will
be seen, the remaining operations in the context­
addressing process are both balanced and
efficient.

The Compare Record Operation

During the Load Subrecord operation,
the horne segment of the record corresponding
to one of the other relations in the retrieval
structure (that is, having the known subject
or value from the relation as its head item)
is being accessed. When the Load Subrecord

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

11 12 T1 MFF

R1 B1 " R1 B3 .y V

R1
A tx

I--AM

Figure 2. Load Subrecord Operation

operation is completed, this second record
is processed, entry-by-entry, against the
contents of the associative memory. This
operation is called the Compare Record
operation and, for each entry, is as
follows.

1. The attribute of the entry is compared
with the attribute from. the corresponding re­
trieval structure relation. As in the Load
Subrecord operation, the selection register
is used in this proces s.

2. At the same time, the entry is com­
pared sim.ultaneously with all entries in the
as sociative m.em.ory (i. e., the subrecord
already loaded), com.paring only the value
fields and the Tl flip-flops. If both com.­
parisons 1 and 2 are successful, the m.atch
flip-flop is set at each m.atching entry in the
as sociative mem.ory. (All m.atc h flip- flops
are reset before the first entry is processed.)

After the last entry in the record has
been so proces sed, the T 1 flip- flops and the
(corresponding) m.atch flip- flops are logically
ANDed together, and the results stored in the
Tl flip-flops. Those entries that now have
their T 1 flip- flops set are the entries which
contain, in their 12 fields, all values of the
unknown item that satisfy both of the re­
trieval structure relations thus far processed.
If there are no other relations in the retrieval
structure, the context addressing operation is
now com.pleted.

The Com.pare Record operation is illus­
trated in Figure 3, which shows a retrieval
structure of two relations. The first of these,
(A, R I, X)' is shown as already having been
processed, using the Load Subrecord opera­
tion. The second relation in the retrieval

107

structure is the relation (B, R2, ~), and the
record shown being processed, using the
Com.pare Record operation, is the record for
the item B. The selection register is shown
containing the attribut.e from. the relation in
its 12 field.

Five contiguous en.tries from the record
for B are shown, with the first three of these
having already been processed. It is seen
that the first and third of these entries have
satisfied both com.pare operations, and the
m.atch flip- flops are set at the second and
fourth words in the associative m.em.ory as
a result.

If there are more than two relations in
a retrieval stx:ucture involving a given unknown,
the third, fourth, etc. of the relations are
processed exactly like the second, using
the Com.pare Record operation.

It is seen that the Compare Record
operation is both balanced and efficient.
It is balanced in the sam.e way as the Load
Subrecord operation, and it is also efficient
since, unlike the former operation, the
associative m.em.ory is perform.ing parallel
com.pare operations for every entry in the
record. Moreover, the access delays ex­
perienced in connection with the processing
of the first record will seldom. if ever be
encountered for the rem.aining records.
This is because all of the records involved
in the context of the unknown are known at
the start of the context-addressing operation,
and thus can be searched for sim.ultaneously.
By the tim.e the first record is processed,
at least one of the other records will be
accessible for processing in turn.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

11 12 Tl MFF

RECORD
FOR B

A

B

Rl .x
y

COMPARE
REGISTER

SELECTION
REGISTER

Rl

R1

Rl

Rl

Rl

Bl ../
B3 ../

B6 V
B89 V

B23 ../

V-

V-

RECORD FOR A,
- SUBRECORD FOR Rl

/AM

Figure 3. Compare Record Operation

If a replacement structure contains several
unknowns, the system design permits several
of them to be context-addressed simultaneously
in the fashion just described. This is a result
of having more than one associative memory
and more than one data transfer channel
between the bulk memory and the associative
memories. The simultaneity is limited only
by the number of associative memories and
by the fact that more than one associative
memory may be required for the selected
entries from an unusually la!ge record (se­
lected by the Load Subrecord operation).

If there are no relations in the retrieval
structure involving more than one unknown, the
process of identifying all values of all unknowns
in the retrieval structure can be accomplished
by the processes already described. If there
are such relations, a number of other operations
have been defined. All of these operations
require the use of more than one associative
memory, and also special logic for operating
on the success/fail results of the various
comparison operations. All of these operations
are performed, when applicable, after all
individual unknowns have been separately (and
simultaneously) context addressed. Three
of the operations shall be described here.
Each of them applies to a particular con­
figuration of interrelated unknown items.
For other configurations, the corresponding
operations can be derived by reference to
these.

The Find Pairs Operation

The first of the operations for interrelated
unknown items, called the Find Pairs operation,
identifies all corresponding pairs of values for

108

two unknown items that are in a single re­
lation in the retrieval structure. Each of these
pairs corresponds to some entry in that record
that has the attribute from the retrieval
structure relation as its head item. These
matching entries each represent relations
in the data which have the same attribute
as the retrieval structure relation, and
whose subject and value are each candidates
for the respective unknown items in the
retrieval structure relation. The candidates
are those items that have been identified by
the earlier context addressing of the two
unknowns.

Once the entries for the corre sponding pairs
of values have been identified, one or more of
the following operations is performed.

1. The entries themselves are tagged
directly in the record in the bulk memory by
setting bits in the tag fields of the entries
(bits 48-63).

2. The entries are written in an unused
associative memory for later processing. Ex­
amples of such processing will be shown.

3. The entries are written into an unused
(blank) physical record in the data base for later
processing.

4. The entries are retrieved for output to
the user (assuming that the entire retrieval
operation has been completed with the comple­
tion of the current operation).

Figure 4 shows the hardware configuration
of registers, associative memories and data
records used in the Find Pairs operation, and
illustrates the use of the operation in connection
with an example retrieval structure. The figure
shows three of the associative memories from
the system, labeled AM# I, AM#2, and AM#3.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

11 Tl MFF

A~ ;yC
yJil .!!!.-Ji2 ~ NO.1

8 D

Rl 81

Rl 83 V' I"
Rl 86

Rl 889 I"
Rl 823

889 Cl V'

83 Cll I" I"

AM NO.3

I

RECORD FOR
A, SU8RECORD
FOR Rl

AM NO.2

11

R3

R3

R3

R3

R3

C4

C5

Cll

Cl

C6

T1 MFF

I"

I" I"

I"

RECORD FOR
C, SU8RECORD
FOR R3

/

Figure 4. Find Pairs Operation

AM# land AM#2 each contain entries from the
record that was processed first in context
addre ssing one of th~ two unknown items. AM# 1
contains the entries involving the subject of the
relation involving the two unknowns. AM#2
contains the entries involving the value of the
relation. The configuration in the figure also
includes part of a record, drawn as though it
were a tape, that is being processed against
the contents of AM# 1 and AM#2. The third
associative memory, AM#3, is a spare memory
that has been assigned for holding the match­
ing entries from the record (io e., the corre­
sponding pairs of values for the two unknowns)
if that option is specified in the operation.

To begin the Find Pairs operation, AM#3
is cleared, and the match flip-flops in all of
the associative memories are reset. Follow­
ing this, the firstmatchflip-flop in AM#3 is set,
"Don't care" (D/C) conditions are put into the
compare registers of AM# land AM#2, as
shown, and the Tl fields of all three compare
registers are set.

109

Now each entry from the record for the
attribute of the retrieval structure relation is
processed as follows.

1. The contents of the Il field in the entry
are transferred to the 12 field of the compare
register of AM# l. The contents of the 12 field
of the entry are transferred to the 11 field of the
compare register of AM#2. Following this, the
record is shifted to the next entry.

2. A simultaneous compare operation is
performed on both associative memories at the
same time, and the two sucess/fail conditions
are ANDed together. (The success condition is
indicated by the setting of at least one match flip­
flop in an associative memory.)

3. If both compare operations are success­
ful, the current entry (which is now known to
contain a corresponding pair of values for the
two unknowns) can be copied into the current
entry position of AM#3 (the entry being defined
by the setting of the match flip-flop). Or, if
desired, the entry can be copied into another

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

record, reserved for the purpose, in bulk
memory. As a third alternative, the entry can
be tagged directly in the record in its Tl field
(or in one of bits 48-63).

After all of the entries in the record have
been processed as just described, those entries
that contain corresponding pairs of values for
the two unknowns will have been identified and
tagged and/or copied.

The example illustrated in Figure 4 illus­
t:rates the Find Pairs operation for the retrieval
structure consisting of the five relations (A, Rl.
Xl), (B, R2, Xl), (Xl, R5, X2), (e, R3,X2) and
(n, R4, ~2). -The two unknoWn items are repre­
sented by the symbols Xl and X2. AM#l con­
tains the candidates for~l, as-determined by
the context addressing of Xl. They are in the
12 fields of those entries that have tag Tl set.
Similarly, AM#2 contains the candidates for ~2.

Six entries from the record for R5 are
shown being processed against the contents of
AM# 1 and AM#2. R5 is the attribute of the
relation that interrelates the two unknowns.
Each entry in that record co~tains pairs of
potential values of Xl and X2. The first three
entries have already been processed, and it is
seen that the first and third of these have
matched. They are both tagged in the Tl fields
of the entries themselves and have also been
copied into AM# 3. In particular, the third
entry has just been tested, and the match flip­
flops in AM#l and AM#2 are set at the match­
ing entries.

The Process Threes and Process
Fours Operations

There are a number of possible retrieval
structure configurations which involve three
or more interrelated unknown items. For
each such configuration there is a corre­
sponding instruction with its hardware config­
uration and processing algorithm. The
hardware configurations for two of these
instructions, the Process Threes and Process
Fours instructions, are shown in Figures 5
and 6, respectively, together with example
retrieval structures. The two figures are
given for illustration only. The operations
themselves are described in detail in refer­
ence (3) for a similar system. Only a brief
discussion is given here.

The Process Threes operation determines
pairs of corresponding values of two unknown
items that are indirectly related in a retrieval
structure through a third unknown item. (In
the example in Figure 5, the third unknown
item is X2.) The Process Fours operation
determines such pairs of values for cases in
which the two unknowns are related through
two intervening unknown items (X2 and X3 in
the example in Figure 6.) - -

Both operations are performed after all
corresponding pairs of values for the directly
related unknown items in the retrieval structure

110

have been determined using the Find Pairs
operation. These corresponding pairs have
been variously stored on blank records or in
associative memories as required for the
current operation.

For the Process Threes operation, only
one associative memory is required. (The
second one shown in Figure 5 is for optional
storage of the corresponding pairs determined
by the operation.) The Process Fours oper­
ation requires two associative memories.

Cost and Performance Considerations

The associative/shift-register system is
essentially a balanced system with respect to
its two primary subsystems, the associative
memories and the bulk memory. The shift
rates for both memories are the same, and
both memories are kept operating at or near
that shift rate during normal operation.

Access delay is small in all processing of
records from bulk memory. This is because
all segments of a record except the first can
be accessed nearly simultaneously and, once
accessed. can be kept in readiness for immedi­
ate processing. There is a delay in accessing
the home segment; this averages 1.6 msec ..•
for the 16. OOO-bit registers in the bulk mem­
ory. Access delays for the remaining seg­
ments of the record, and for the segments of
any other record being accessed at the same
time for later processing, will be small or
nonexistent.

As an example, consider a record con­
sisting of 640 segments divided into ten seg­
ments of 64 data entries each. The total
processing time for such a record (for the
Load Subrecord and Compare Record operations)
will be very dose to the 1. 6 msec. average
access time for the home segment plus 0.8msec.
for processing each segment. a total of 9.6 msec.

For rotating memories, the limitation on
processing speed is largely a function of the
rate of rotation, since the instantaneous data
transfer rates for modern fixed-head disks and
drums are high. For such memories, the
processing of most records will require an
entire revolution (33 msec. for the typical disk
rotating at 1800 rpm.) plus a fraction of a disk
revolution for accessing the first segment to
be processed. (a)

. A large part of the advantage of using shift
regIsters rather than rotating memories lies
not in the increased speed but in the relative
simplicity of system design and operation.

(a)It . d h 'f . . IS assume t at 1 a dIsk 1S used as the bulk
memory, every segment of a record would
contain the addresses of the remaining seg­
ments. If cueing of access were then used
one of the segments could be accessed in a~
average of l/n +1 of a disk revolution where
n is the number of segments. '

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL P-ROCESSING

11 12 T1 MFF

(Xl.X21 PAIRS~ B89 Cl V ~REAOLINES
B3 Cll V V'

B2 C4 V'

AMNO.l B6 Cl V

R5 RIO
Xl • X.1 • X,}

B89 03 V
AM NO.2 B6 D3 V

B3 07 V V

(Xl.X31 PAIRS

11 12 Tl MFF

Figure 5. Process Threes Operation

Shift registers, for example, do not require
cueing of accesses in order to minimize aver­
age access time per record. And they do not
require the related buffering or the processing
effort needed to handle the buffering and cueing
operations. Moreover, such el<}.borate tech­
niques as deferred modification,\a) are much
less needed when shift registers are:used.

(a)This is a technique for increasing record­
processing throughput in which modifications
to the data base are made in a reserved
region in fast memory as soon as they are
determined, rather than in bulk memory.
The main data base is then modified later
from the contents of this buffer, overlapping

111

The present ratio of costs for MOS shift
registers to fixed-head disks is of the order of
9 to 1. At this ratio, the sacrifice in process­
ing speed, processing and buffering costs and
design effort when disks are used may still be
justified. However, with the reduced costs of
LSI to be expected in the near future (charge­
transfer devices costing about 1/4th the cost
of disks are being announced), the simpler
shift-register memory should be considered in
any present effort to achieve a balanced asso­
ciative system.

later operations. In this way, subsequent
operations on the data base can proceed
immediately. This technique requires that
all search operations must include a search
of the buffer as well as the bulk memory,
and is in general very complicated to
implement.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

RECORD FOR Rl /
(Xl,X2) PAIRS

\ I I
BLANK RECORD FOR
(Xl,X4) PAIRS

11 12

B89 Cl
B3 Cll
B2 C4
B6 Cl

I I

Tl

1/
V V

V

I I
B6

[~

12 Tl

El V
E5 V
El V
E9
E6 V
E6

E5 I V I B89 E6 I V I ~
B89 El I V I B89 E5 I V I \--+

Figure 6. Process Fours Operation

References

[1] D.A. Savitt, H.H. Love, and R.E. Troop,
Association-Storing Processor Study,
Defense DocUInentation Center, Document
No. AD 488538, (June 1966), 202 pp.

[2] Donald A. Savitt, Hubert H. Love,
Richard E. Troop, Association Storing
Proce s sor, Defense DocUInentation Center

112

AD 818529 and AD 818530, (June 1967),
2 vol., 182 pp. and 300 pp.

[3] Hubert H. Love, An Associative Processor
Using Bulk Storage, Rome Air Development
Center, Report NUInber RADC-TR-180,
(June 1969), 146 pp. (also available from
DDC).

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

THE USE OF TWO LEVELS OF PARALLELISM
TO IMPLEMENT AN EFFICIENT PRcx}RAMMABLE SIGNAL PROCESSING COMPUTER

John P. Ihnat, Tomlinson G. Rauscher, Barry P. Shay,
Harold H. Smith, and William R. Smith
Information Processing Systems Branch

Communications Sciences Division
Naval Research Laboratory
Washington, D. C. 20375

Abstract -- The use of two levels of
parallelism facilitates the design of an effi­
cient programmable signal processing computer.
At the system level, multiple functional units
(multiprocessors) perform distinct functional
tasks such as data gathering, data organization,
and signal transformation. At the implemen­
tation level, horizontal microprogrammed control
of parallel resources effects flexible and effi­
cient processing.

Introduction

Modern signal processing systems perform
many tasks by sampling analog signals and
transforming the sampled digital data. In
systems like radar and sonar there is typically
so much information to analyze that it has been
necessary to develop special-purpose hardwired
devices to sample and transform the data in
real time. The emergence of LSI circuit tech­
nology and high speed memories provides the
capability of developing programmable signal
processors which would reduce proliferation of
special purpose devices, reduce the manufact­
uring cost (by economies of scale), and simplify
maintenance. The use of two levels of paral­
lelism facilitates the design of such a program­
mable Signal processor [IJ.

Parallelism at the System Level

At the system level, an efficient signal
processing computer assigns distinct processes
to different functional units which operate in
parallel. For system supervision and simple
data organization and transformation, the
system employs a sophisticated controller. For
signal transformations a specialized arithmetic
processor is required. Additional functional
units collect and store data and control com­
munication among other units. In the AN/UYK-17
(AADC/SPE) computer [2J (see Figure 1) separate
functional units perform such distinct pro­
cesses.

The Microprogrammed Control Unit (MCU) is
the system controller. Its functions include
data management, process scheduling, I/O con­
trol, interrupt handling, and some applications
routine processing. The MCU massages (e.g. by

113

ordering or scaling) signal information,
placed in buffer memories by r/o devices, into
a form amenable to transformation by signal
processing algorithms, and leaves it in buffer
memory for processing by a special purpose
arithmetic unit. After the data is trans­
formed, the MCU may perform some post pro­
cessing functions and store information for
later retrieval. The MCU also performs system
functions such as handling operator requests,
controlling displays, etc.

The Signal Processing Arithmetic Unit
(SPAU) is the system arithmetic processor. Its
function is to perform high speed execution of
processing operations on arrayed data. These
operations include spectrum generation, convo­
lution, correlation, and digital filtering.
SPAU processing is scheduled by the MCU.
After SPAU processing is initiated, the SPAU
operates independently of the MCU.

The AN/UYK-17 contains up to eight buffer
storage modules (BSMS), which provide central,
high speed (150 nanosecond cycle time) memory
for the system. Each BSM contains 4096 32-bit
words. The BSMs provide storage for MCU execu­
tive and application data tables, system data
arrays, working storage for MCU and SPAU pro­
cessing operations, and buffer areas for I/O
data movement. Because the MCU supervises I/O
operations and storage of data in the BSMs,
the SPAU need not consider the problems of I/O
processing; its data resides in the high speed
BSMs.

To provide a fast and flexible means of
moving data between BSMs and peripheral
devices, the AN/UYK-17 contains one or more
selector channel controllers (SCCs). The stor­
age control unit (SCU) provides a switching
interface between the independent BSMs and
other system components. Because each MCU,
SPAU, and SCC can access BSMs every clock
cycle, the SCU switches each unit to the BSM
it is addressing and resolves conflicts by a
priority mechanism.

To provide general intermodule communi­
cation, the AN/UYK-17 contains a connector
called the Z-bus which consists of sixteen

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

BSM • • • BSM

~~ 1\

~

'If \It

seu "

J J~ 4

" "
,

SPAU MCU see i.- I/a r ,.

~ ~~ 4\

Z Bus

Figure 1. AN/UYK-17 System Block Diagram

bidirectional data lines and fourteen control
lines. In addition, there is a sophisticated
interrupt system through which system com­
ponents and peripheral devices can notify cen­
tral control, the MCU, of changes in their
operation or status.

Parallelism at the Implementation Level

In the implementation of system components
that perform multiple functions of a similar
nature, the use of parallelism can significantly
improve the performance of the components and
hence of the system. In the AN/UYK-17 the MCU
and the SPAU contain several resources that
operate in parallel. User written horizontal
microprograms control these resources.

Parellism in the SPAU

The capability to effect the second order
recursive filter and the FFT butterfly is funda­
mental in signal processing [1,3J. Figure 2 shows

114

the general configuration of a second order
recursive filter [lJ. Z-l in Figure 2 repre­
sents a unit delay while the circles indicate
addition or multiplication by a constant. The
output y at any time can be described in the
following two step computation, which uses the
labels defined in Figure 2:

Wo = x - B1Wl - B2W2

Y = Wo + ~Wl + ~W2

The data flow graph shown in Figure 3 follows
from these equations. Squares in Figure 3
represent data items and circles represent
multiplication or addition. "p," "q," "r" and
"s" are intermediate data items, while Tl and
T2 represent delay operators. Note the possi­
bilities of performing the operations in
parallel.

Figure 4 shows the arithmetic section of
the SPAU. As in the data flow graph of

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

x y

Figure 2. Second order recursive filter

Figure 3. Data flow graph for second order recursive filter

Figure 3 there are four multipliers. These
multipliers operate in parallel and produce a
product every clock cycle (150 nanoseconds).
Although there are four a.d.ciers, the results of
adders one and three may be inputs to adders
two and four, respectively, in the same cycle;
so two pairs of additions can be performed con­
secutively in a single cycle. This is equiva­
lent to two three-input adders. The X and Y
local stores are used to store intermediate
results and to hold data that have been read
from or will be written to BSMs. The adders,
buffer reads and writes, and additional register

115

transfers operate in parallel with each other
and with the multipliers.

Fundamental to the computation of the
fast Fourier transformation (FFT) is the FFT
butterfly [4J. For data points represented as
complex numbers, Figure 5 shows the data flow
graph for computing the FFT butterfly. In
this figure :xm(i) and :xm(j) are data inputs to
the butterfly while :xm(i+l) and :xm(j+l) are
output items. Wk is a weight term, where
k (2n:k) _~ . {2n:k\

W-R = cos ~ and WI = -s1n'~J with N = the

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

TO .5GU

~

~
F~o~ RIK~ LIT •. -----.~+-_4----_N~~_t----~~t__+--__,

RJ ~~
RI KS

II" It'"
III If:t
)" '12.

III AI

%3. z. .,
-----V-~ 7. Y
To "'~S e",J lito,.,

Figure 4. SPAU arithmetic section

total number of input data points to the FFT.
BY considering the data flow graph in Figure 5
two conclusions can be reached that may assist
computation:

1) No memory cell in the data flow graph
is reused by subsequent operators.
Hence, the computation may be executed
in a pipe1ined fashion.

2) The left-right symmetry in the data
flow graph permits an increase in
throughput when the input data points
are all real rather than complex.

Referring again to Figure 4, the effect of the
FFT butterfly computation on the design of the
SPAU arithmetic section is apparent.

Note that the schemata for the computation
of the FFT butterfly and second order recursive
filter were similar enough so that the same
hardware could easily be used to effect both
algorithms. Register selectors facilitate dyna­
mic reconfigurabili ty. Control of the SPAU is

116

effected by horizontal microprograms; 160 bit
microinstructions which contain 63 fields con­
trol the resources of the arithmetic section
and also the addressing section (which has
three independent address formation units for
computing buffer and ROM addresses) and
sequencing mechanism.

Parallelism in the MCU

Like the SPAU, the MCU (see Figure 6) is
controlled by horizontal microinstructions which
execute in 150 nanoseconds, the system cycle
time. Microinstructions in the MCU contain 64
bits which define seventeen fields. These
fields control specific MCU facilities:

1) buffer input and output

2)

3)

4)

source and destination register
selection for the ALU!shifter

ALU!shifter operation

interrupt control

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

w'

t===='--.v"":====~ '===~v~~==-:j
Xm+,(i) Xm+,(j)

Figure 5. Data flow graph for FFT butterfly

5) auxiliary register transfers

6) sequence control.

As in the SPAU, the facilities operate in
parallel. Thus throughput is normally greater
than for standard systems. For example, the
MCU can transpose a 40 by 40 matrixlinvolving
3200 memory references) in less than 1700
cycles.

AN/UYK-17 Configurations

Because the ANIUYK-17 system provides
general intermodule communication facilities
(the Z-bus and the interrupt capabilities),
system components can be configured in a
variety of ways. The basic simplex system
consists of an MCU, a SPAU, an SCU, four BSMs,
and an SCC. Additional components may be
connected; an example (see Figure 7) follows
the architecture of the CDC 6600 computer. One
or more MCUs can serve as peripheral processing
units that control I/O devices. A master MCU
can serve as a (scoreboard) scheduler which
manages the buffer memories and schedules the
operation of the parallel functional units,
i.e., the SPAUs. The SPAUs execute various
arithmetic processes, communicate only with
the high speed buffer memories, and are
subservient to the master MCU.

117

References

[lJ Barry P. Shay, Design Considerations of a
Programmable Predetection Digital Signal
Processor for Radar Applications,
Information Systems Group, Naval Research
Laboratory, NRL Report 7455, (December,
1972), 54 pp.

[2J W. R. Smith, Jr., J. P. Ihnat,
H. H. Smith, N. M. Head, Jr., E; Freeman,
Y. S. Wu, and B. Wald, AN/UYK",17 Signal
Processing Element Arcn~tecture, Informa­
tlon Processing Systems Branch,
Communications Sciences Division, Naval
Research Laboratory, NRL Report 7668,
(in press).

[3J Tomlinson G. Rauscher and Barry P. Shay,
"The Influence of Computation Schemata
Representations of Signal Processing
Algorithms on the Architecture of the
AN/UYK-17 Computer," Symposium on
Complexity of Sequential and Numerical
Algorithms, (May, 1973).

[4 J Bernard Gold and Charles M. Rader,
"Digital ProceSSing of Signals", McGraw
Hill, New York, 1969.

j::
00

I,
12 I ~AOVFF

INTERRUPT I BARA
CONTROL I~ BARB

UNIT lu Z
(lCU) I! ACSAR

1\I'l-COFF
FSCR

TIME COUNTER
LSA

UJ I I , ' I TO ADDER

BUFFER I. DIRECT
STORAGE""" __ !:: co MEMORY
MOOULE I wZ I I ACCESS

I I
Cl;::> _ M I CHANNEL
<....I:;:)

I I a: Ou N r-- ;
I I oa:en DIRECT - I--BUFFER ~ en Z ... MEMORY

STORAGE ... 0 ~ ACCESS u
MODULE CHANNEL

.. '---1
BUS A CONTROL J l BUS B CONTROL

,t.

~1
' ~ I d ~!

I SELECT I
~J11 :;:) Ql~l~Jr

SELECT J
MP r- r- II en u

.. r- MP -. N -
~~ t; a: LOCAL SELECT I SELECT I

COCAC 1!l "~ '.Il!!::- ~ - ~ - STORE .. STORE ~I. ~ ~
W....l A I BARB J BI W . .r~ L-

BARA ~"l

tl ~ I TO FSDR TO
ICU FSCR !oo- ICU

jl 1
-FS~ 1 I=ICO 0

~l jl oe .. L..rT w
~rl COUNTER t • t TO ICU

ADDER L/R SELECT
()

AOV AD~OV t ..
TEST FF RESULT = 0 / BARREL SAR I
LOGIC MOST 1 ADDER SHIFTER jf COFF LEAST I

I
BULK Ir---~~---'

CARRY
ICU • .. ,.

j -STORE

MP
CONTROL

STORE

T' :lICU

DRIVERS DRIVERS I
I t

~CI ZBUS- I)

Figure 6, Microprogrammed Control Unit

Z SELECT

Z I
I
t TO ICU

.......
1.0
\.N

en »
m »
~
:;0
m

S
3:
"'tI
c:
-I
m
;:0

\)
o
Z
."
m
:;0
m
z
n
m
o
z
-C »
:;0
»
r
r
m
r
"'t:I
:;0
o
n
m
en
en -z
m

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Figure 7. Alternate Configuration

119

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

ASYNCHRONOUS NETWORK OF SPECIFIC MICROPROCESSORS

Fran~ois DROMARD and Gerard NOGUEZ
Institut de Programmation

Universite PARIS VI
4 place Jussieu 75005 Paris FRANCE

Summary

This paper is a summary of another one [11 ,[21
where the multimicroprocessors architecture
(MICROPUS) is described. The attempt here is to
clarify the exchange mechanism between the micro­
processors.

The studied network is designed on a local
scale. It is composed of:

I) microprocessors
2) paths between them.
The microprocessors have specific functions

and sometimes a specific structure). They have
their own storage which contains their specific
data and working area.

At a logical level, a task consists of a se­
quence of specific sub-tasks.Each sub-task is pro­
cessed by one and only one microprocessor.Only one
sub-task can be processed at a given time.So that,
at any time, a task needs just one resource: a mi­
croprocessor or a path (in order to be transmitted
to the next microprocessor capable of processing
next sub-task). At the same time,it is possible to
have several tasks in the network.

The exchange between microprocessors are asyn­
chronous. It implies the paths are buffered. The
network local scale allows designing a common
mechanism to manage all the paths. this exchange
set is composed of a finite number of:

I) containers
2) stations.

The stations can be attached to the micropro­
cessors or can be used to collect free containers
(collectors). A path is the connection between two
stations.Only one container can stay in a station.
The others are waiting for on one or more paths. A
microprocessor can have one or several stations.In
order to transmit information to another one,a mi­
croprocessor must use a container staying in one
of its own stations. If there is none, it can re­
quest a container to a collector. If there is no
free container, the microprocessor cannot emit and
has to wait for the free container collecting. Du­
ring this waiting time,no container is kept by the
microprocessor. So, there is no deadlock.

Such an exchange mechanism can be implemented
in two different ways using:

I) semaphores and queues
2) double linked looped lists.

120

The first way is simpler than" producer-con­
summer" algorithm, because semaphores are associa­
ted to the stations and not to the paths. Only one
semaphore is attached to each station.Transmitting
a container involve ctacrementing (P operation) the
emitter station semaphore and incrementing (V ope­
ration)the receiver station one. The sum of sema­
phores values is constant and equal to the initial
containers number.A collector station also has its
semaphore processed like the others.

In the second way, the exchange mechanism is
made of a double linked Iht memory. A looped list
is associated to each station. Such a list heading
stitch points to:

1) the stitch attached to the staying station
container (downstream link).

2)the stitch attached to the last waiting con­
tainer of the station (upstream link).
Let S the stations number and C the containers one.
There are S lists and the list memory contains -at
mos t- S+C s t itches. .

There are two basic operations:
I)checking a list is empty or not (demand).
2)transmitting a container from a list to an

other one (supply).

The demand consists of testing if the heading down
stream link points to itself or not. Transmitting a
container (supply) involves the following linking
operations:

I)extracting first container from emitter list
and looping this list on itself.

2) inserting this container in receiver list
(pointed by the heading downstream link).
Getting a free container then needs the following
operations:

I)the microprocessor demands to the collector.
2)100ps until this list is not empty.
3)does a supply operation from the collector

list to its own one.

References

[11 F.DROMARD G.NOGUEZ "Asynchronous network of
specific microprocessors ". International
Workshop on Computer Architecture, June 1973
Universite de Grenoble, FRANCE.

[21 Item at the Sixth Annual Workshop on Micro­
programming, September 1973, University of
Maryland.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

AN APPROACH TO A RESTRICTED SCHEDULING-PROBLEM
FOR MULTIPROCESSOR SYSTEMS

Sigram Schindler and Harald Ludtke
Fachbereich 20 (Kybernetik)

Technische Universitat Berlin

Abstract

The problem of scheduling N tasks - the ope­
rational precedence structure, -, of which is re­
presented as a finite, acyclic, directed, weighted
graph G - on a multiprocessor system consisting of
M identical processors is studied. The weight WI
of node I, 1 SIS N, we regard as the processing
time of the task represented by node I, and we
want all N tasks to be processed completely within
total processing time CT. We assume that no pre­
emptions are allowed. Memory for instructions and
data ~s assumed to be infinitely large. Processor
switching time is neglected.

In this paper some results are derived for
the case that - can be put together. from forests
and antiforests in a simple way. For the case that

is the disjoint union of a 1-tree and a 1-anti­
tree, the set of all suitable schedules is gi­
ven for arbitrary M and CT.

I. Introduction

The paper investigates the problem of sche­
duling M identical processors if the computational
work to be done is known in advance and if memory
(or channel) requirements can be neglected. The
computational work for the processors is described
by a finite set of 'programs', or 'tasks' which
have to be executed (or processed) and each of
which can be assigned for execution to an arbitra­
ry one of the M processors. Such an assignment can
last until the task is completely executed or its
execution can be interrupted because the executing
processor is needed for another task which has no
processor. Schedules for the processors that allow
such interrupts are called preemptive schedules;
schedules that do not allow interrupts are called
nonpreemptive schedules. The set of N tasks Ti,
1 SiS N, their execution times and their opera­
tional precedence structure, -, are represented
by a finite, acyclic, weighted, directed graph G
(abbreviated as FAWD G). The N nodes of this FAWD

G stand for the given tasks Ti, the weight Wi of
task Ti, 1 SiS N, is regarded as its processing
time, sometimes called length of the task Ti. We
assume that all tasks in G have positive lengths.
We can assign a processor to a task (and vice ver­
sa) iff the task is free, i.e. it has no predeces­
sor • As soon as a processor is assigned to a
task it starts reducing the length of the task,
i.e. processing the task; this reduction of the
length of a task takes place with a constant, po­
sitive and finite speed. If the length of the task
is reduced to 0, the task together with all its
outgoing arrows is deleted from the graph. The
units of length and time are determined such that
a processor reduces a task by one unit of length
in one time unit.

121

For given FAWD G and M processors we are in­
terested in CTmin(G;M), i.e. the minimal total
processing time for G by M processors. Given fur­
thermore an upper bound CT ~ CTmin(G;M) for the
total processing time of G by the M processors we
are. interested in not only a single schedule but
in the class A(G;M;CT) of all schedules that meet
these conditions. This latter interest arises from
the attempt to take into account further parameters
of a computer, like for example, memory size,
channel, transfer rate and memory control, and not
only the number of processors, M.

The foregoing model is obviously not suit­
able to describe problems of effective resource
utilization in today's general purpose computers.
But it seems reasonable for the investigation of
the processor allocation problem in a computer
system of SIMD-type or MIMD- type (see [4]), if a
few complexes of programs have to be processed
very often by this system. The importance of the
processor allocation problem in such systems can
be derived from [16,17,18], where it is shown that
processor utilization tends to be lower than 30 %
if scheduling considerations are omitted.

At the moment the problem formulated above
cannot be solved effectively in full generality.
Moreover it was shown recently in [19] and [20]
that probably no algorithm exists at all for com­
puting an element from A(G;M;CTmin(G;M» for which
the number of steps is bOunded by a polynomial in
N. This result that the problem of determining
time-optimal schedules (i.e. elements from
A(G;M;CTmin(G;M») probably cannot be solved effec­
tively in the general case even holds if certain
restrictions ([20]) are imposed on the problem. On
the other hand there exists a long list of results
saying that ~ due to other restrictions - the pro­
blem to determine time-optimal schedules is poly­
nomially solvable in the cases investigated ([1,2,
3,6,7,8,10,11,21,22,23]).

In order to make clear how the results of
this paper are related to previous work we now
discuss this point in some more detail. Restric­
tions can be put upon the general problem by

specializing the number of processors
(e.g. to M=2),
specializing the weights
(e.g. to Wi=l, 1 SiS N),
specializing the precedence relation,
-, of G (e.g. to G being a tree) ,
forbidding preemptions.

Polynomial bounded algorithms to determine
CTmin(G;M) and an element from ~(G;M;CTmin(G;M)
are derived for the case

M=2, Wi=l, 1 SiS N, preemptions forbid­
den, arbitrary - in [6-8];
M=2, arbitrary Wi' preemptions allowed,
arbitrary - in [24] and [21], furthermore

A(G;2;CT) for arbitrary CT is given
in L21];

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

arbitrary M, Wi=l, 1 SiS N, preemptions
forbidden, G is a forest(a) in [1], and
in [23] if G is an anti-forest(a);
arbitrary M, arbitrary Wi' preemptions
allowed, G is a forest in [2], and [11],
furthermore A(G;M;CT) for arbitrary CT is
given in [lOT;
arbitrary M, arbitrary Wi, preemptions
allowed, G is an anti-forest in [23],
where !(G;M;CT) for arbitrary CT is gi­
ven, too.

The importance of these restrictions can be
seen from [20], where the cases '

M=2, arbitrary Wi, preemptions forbidden,
- empty;
M=2, Wi=l or 2, 1 SiS N, preemptions
forbidden, - arbitrary;
M arbitrary, Wi= 1, 1 SiS N, preemp­
tions forbidden, - arbitrary;
M arbitrary, Wi arbitrary, preemptions
allowed, - arbitrary

are investigated. There it is shown that - even
with these restrictions - the problems listed are
'polynomial complete' (see [19]), i.e. essential­
ly that a polynomial bounded algorithm to deter­
mine a time-optimal schedule for such a problem
would provide us with quite many polynomial boun­
ded algorithms to solve well known problems for
which polynomial bounded algorithms are not known
today.

that
From this short survey we see especially

the nonpreemptive time-optimal scheduling
problem for a general FAwn G with Wi=l,
1 SiS N, and arbitrary M is polynomial
complete, but
the same problem is polynomial bounded if
either M=2 orG is a forest or anti-fo­
rest.

This paper shows that for arbitrary M the
restriction to forests or anti-forests is not ne­
cessary to get polynomial bounded scheduling algo­
rithms and derives such algorithms for other ,

FAwn's: For an arbitrary elementary FAWO(b)
G, with Wi=l, 1 SiS N, arbitrary integers M> 0
and CT > 0 the set of all nonpreemptive schedules
for M processors to process G completely within
time CT, An(G;M;CT), is described by a scheduling
scheme, the algorithms of which are polynomial
bounded in N. So the attempt to keep track of the
increase of complexity when generalizing the sche­
duling problem is made wi,th 'arbitrary M, allowing

(alA FAWD G is called a forest (anti-forest) iff
each node in G has at~one immediate suc­
cessor (predecessor). If a forest (or anti­
forest) G is connected, it is called a tree
(or anti-tree).

(b)A tree (anti-tree) is called 1-tree (l-anti­
tree) iff all nodes with indegree (outdegree)
~ 2 are located on one path (respectively) and
for each edge of G its target (source)-node
lies on this path. A FAwn G is called an ele­
mentary ~ iff G is the disjoint union ~
1-tree and 1-anti-tree (see figure 1).

122

the precedence relation to become somewhat more
complex than that of a forest or anti-forest, and
not the other way around, with arbitrary FAwn G,
allowing M to become larger than 2.

For the preemptive case and arbitrary Wi,
1 SiS N, the authors will submit further and
more general results in [26].

II. Results

Let G be a basic FAwn and let Wi=l,
1 SiS N. For the case that preemptions are not
allowed an algorithm bounded by NM+3 is derived
first that determines CTmin(G;M). If G is an ele­
mentary FAWD moreover the set An(G;M;CT) of all
nonpreemptive schedules will be described for an
arbitrary given CT ~ CTmin(G;M). The problem of
determining Mmin(G;CT) for arbitrary CT > 0 such
that An(G;Mmin(G;CT);CT) # ~ will be investigated
elsewhere. For ease of presentation we introduce
the follOWing notions.

For a basic FAWD G we ~efine G- to be a ma­
ximal anti-forest of G and G to be the subgraph
of G consisting of all nodes of G not contained in
G- and all edges betwe~n these nodes in G (see
figure 1). Obviously G is a forest. Note that in
general G- is not uniquely defined and that the
algorithm for constructing it is polynomial boun­
ded (see [25]). We do not represent a graph G in
the usual way (see figure 1) but use the self-ex­
planatory representation 'of G in figure 2. Such a
representation of G is called stripe representation
R(G). Note that for each G there are infinitely
~ stripe representations R(G). For an arbitrary
stripe representation R(G) of G let b(R;G;CT-tl
for 0 S t S CT be the number of tasks cut by a
height-line through CT-t (see figure 2). For an
arbitrary G, M and CT, the stripe representations
of ,principal interest are those for which

,0 b(R;G;CT-t)dt=N and b(R;G;CT-t)S' M, OStSCT;
JCT

these are called (M,CT)-stripe representations ~
G. An (M,CTl-stripe representation R(G) of G is
called monotonic increasing (decreasing) iff
b(R;G;CT-t) S b (R;G;CT-t') (b(R;G;CT-tl
~ b(R;G;CT-t'), respectively) in this representa­
tion R(G) for 0 S t S t' S CT.

For arbitrary integers CT > 0 and M > 0 and
an arbitrary subgraph G' of G let pd(G';CT-t) be
a mapping: {[i-1, i) ~ i"l, ••• ,CT} {O,l ,2, ••• ,M} ,
called the processor distribution ~~. For
oS t S CT the value of pd(G';CT-t) gives us the
number of processors available for processing of
G' .at time t. We sometimes use the'shorter nota­
tion pd when no confusion is possible. For arbi­
trary pd let An(G';pd;CT) denote the set of all
schedules for-complete processing of G' with pd
processors in CT time units. An (M,CT)-stripe re­
presentation R(G') of G' such that
b(R;G';CT-t) S pd(G';CT-t), 0 S t S CT, is called
a (pd,CT)-stripe representation ~~.

Lemma 1: Let G be a FAWD, let CT> 0 and let
pd:= pd(G;CT-t). Then
An (G;pd;CT) # ~ * 3 (pd,CT)-stripe represen­
tation R(G) of G.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Proof:

- The level-by-level schedule, using
pd(G;CT-t) processors at time t and ap­
plied to G in representation R(G), is
in !.n(G;pd;CT).

• Let sEA (G;pd;CT). Processing G according
S defines a (pd,CT)-stripe representation
of G. q.e.d.

Theorem l: Let G be an arbitrary ba,!.ic FA~ with
weights Wi=l, lSi S N, and G and G de­
rived from G as defined above. Let CT and M
be arbitrary integers such that An(G;M;CT)
;& <1>. -
Then there exists a pd-:= pd(G-;CT-t), mono­
tonic inc~easing, and a
pd+:,=pd(G ;CT-t), monotonic decreasing, such
th~t _ + +
pd (G ;CT-t) + pd (G ;CT-t)S M, 0 S t S CT,
~d_ _ n + +
!. (G ;pd ;CT) ;& <I> and!. (G ;pd ;CT) ;& <1>.

Proof: From An(G;M;CT) ;& <I> and Lemma 1 we get an
(M,CT)-stripe representation R(G) of G and
therefo~e the stripe represe~tations R~G-)
and R(G), too. If these R(G) and R(G) are
not monotonic increasing and decreasing, re­
spectively, then we change them - without
violating precedence rules in G - such that
the r~sulting stripe representations of'G­
and G have this property. The way this ex­
change is done can easily be seen from fi­
gure 3 and is described now. In this case
there exists an integer to, 1 S t S CT,
such $hat at least on~ of the two equalities
b(R;G ;CT-~) = b(R;G ;CT-~+l) + Kl and
K2 + b(R;G ;CT-tol = b(R;G ;CT-to+l) holds
for some KI, K2 > O. We show how to proceed
in the case that both equalities hold; the
case that only one of them holds is treated
by applying only a part of the procedure de­
scribed subsequently. We first investigate
the case KI = K2 = 1.

+ +
A~ b(R;G ;CT-tol = b(R;G ;CT-to+l) + I and
G i~ a forest there is'at least one task T
in G starting on heightli~e CT-to in the
present representation R(G), that has no
predecessor ending on heightline CT-to. The­
refore it could be shifted up by ~ne, lea­
ding to a new representation R' (G), if by
this action no precedence constraint of the
original graph G were violated. Let us as­
sume that we violated such a precedence con­
straint of G. Then there is a ta~k T' in G-,
which is a predecessor of T in G • Then be­
cause G- is a maximal anti-forest the task
T belongs to G-, what is a contradiction.
Therefore T can be shifted up by one to
start on heightline CT-to+l. The analogous
argument allows us to shift one of the
tasks of G- ending on heightline CT-to down
by one to start on CT-to. This is true be­
cause G is a basic FAWD.

If KI and/or K2 are greater than one and/or
there exist several to, for which the above
equalities hold, finite repetition of this

123

Figure la-

An example of a basic FAWD G represented in
the usual way.

Figure Ib

A_decomposition Of G !nto a maximal anti-forest
G and a forest G • G is the subgraph of G con­
sisting of all nodes of G not contained in G­
and all edges between these nodes in G.
The edges deleted from G are drawn by dashed­
lines.

Figure lc

An example of a I-tree and a l-anti-tree,
respectively.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

procedure eventually provides us with a mo­
notonic_de~reasin~ (M,CT)-stripe represen­
tation R(G) of G and a monotonic increa­
sing one R(G-) of G-. Obviously then G is
brought to another (M,CT)-stripe represen­
~at~on, i~ed~ately defined by
R(G) and R(G).

We now define pd+:= b(R;G+;CT-t) and

pd := b(R;G-;CT-t), 0 S T S CT.

Then obviously pd+ and pd- are monotonic de­
cr~asing_and increasing, respectively, and
pd + pd S M.

Applyin~ the leyel-by-Ievel sch~du!e ([11])
!.it!:!.. pd and pd processors to R(G) and
R(G), respectively, shows that
n-- n++" ~ (G ;pd ;CT) # ~ and A (G ;pd ;CT) # ~.

q.e.d.

Corollary 1: Let the assumptions of Theorem
be true.
Then pd+ and pd- from Theorem 1 can be cho­
sen such ~at at leas~ one of the inequali­
ties+pd(G ;CT) ~pd(G ;CT) # 0 and
pd(G ;0) • pd(G ;0) # 0 holds.

Proof: Let R(G) be the (M,CT)-stripe representa­
tion of G con~tr~cted for ~he-proof of Theo­
re~ 1~ Let b(RLG LCT) • b(R;G ;CT)= 0 and
b(R;G ;0) • b(R;G ;0) = 0 (otherwise no fur­
ther proof is needed).

Apply the exchanging procedure described
above to a highes~ t~sk T in R(G-) and
lowest task T' in R(G) such that T is moved
up and T' is moved down and such that the
r~sultin~ (M,CT)-stripe representations of
G and G are monotonic again. Repeat this
step as long as necessary until the asser­
tion becomes true (see [25]). q.e.d.

It seems to be not difficult to generalize
Theorem 1 to an arbitrary FAWD G whose underlying
undirected graph is acyclic. In this case the pro­
blem arises to determine an appropriate decompo­
sition of G into a ~aximal anti-forest G- and its
associated forest G ; this latter problem disap­
pears if G is assumed to be a basic FAWD. But dif­
ficulties arise if_one at~empts to extend the
above notions of G and G such that Theorem 1
holds for the case that G's underlying undirected
graph contains cycles (see example in figure 4) •

Given an elementary FAWD G and an arbitrary
pd we often will make use of the so called 'high­
est task first'-schedule, SHTF(G), for selecting
free tasks for assignment to the pd processors
while processing G. This schedule was investigated
first for G being a tree in [1] and for G being an
anti-forest in [23]; in both cases pd = M was as­
sumed.

CT=10

/
/

J l
" I " /

/
J

CT-3.5

CT-5 -l

f
o

/
/

I

Figure 2a

" " height-line CT-6

The stripe representation R(G) of G. The lines
represent the nodes, the weights of which deter­
mine the lengths of the lines (in this case
Wi =1, 1 SiS N).The precedence rules in G are
shown by the dashed lines; in this example
b(R,G,CT-3.5) = 2 and b(R,G,CT-6) = 1.

CT-5 I
4-

124

t~-L _J
",----.---- H(G)

o

Figure 2b

The special stripe representation RL(G) of G.
The lines are placed as low as possible; in this
stripe representation b(RL,G,CT-6) = 4 and
b(RL,G,CT-8) = 2.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Lemma 2: Let G be an arbitrary i-tree or l-anti­
tree. Let CT > 0 and pd be an arbitrary
processor distribution for G. Then the im­
plication holds:

n n '" SHTF(G)q~ (G;pd;CT) ~ ~ (G;pd;CT) = ~

The proof of this Lemma is an elementary modifi­
cation of arguments used in [10,11,22,23], and is
therefore omitted here.

Theorem 2: Let G be an arbitrary elementary FAWD
and M > o. Then CTmin(G;M) can be computed
by testing (at most) NM different processor­
distributions, i.e.: CTmin(G;M) can be com­
puted by an algorithm the number of steps of
which is bounded by const • M • NM+3•

Proof: Due to Theorem 1 we may restrict ourselves
to monotonic processor-distributions, the
total number of which is NM•
F~r a given pro£essor dis~ribution pd+ for
G we define pd :=+M - pd_. By appl¥ing the
SHTF-schedule to G and G (with pd and pd
processors, respectively) and using Lemma 2
it can be decided i~ at+most const • M • N2
steps, whether An(G ;pd ;CT) # $ and
An (G-;pd-;CT) #-<1>. In order to find the
smallest such CT at most N repetitions of
the whole procedure are required. q.e.d.

Remarks:

1) Note that without Theorem 1 it would have been
necessary to test (2N)M different processor-dis­
tributions instead of NM•

2) The restriction of G to be an elementary FAWD
is sufficient but not necessary for validity of
Theorem 2. The restriction allows us to use the
simple SHTF for deciding the question, whether for
an arbitrary given .1-tree or 1-anti-tree G',
CT> 0 and pd the set An(G';pd;CT) is nonempty. If
we omit this restriction totally, no effective al­
gorithm is known at present to decide the same
question for the resulting more general case. The
authors will give an investigation of this problem
elsewhere and hope to be able to derive polynomial
bounded algorithms to solve the more general prob­
lem.

3) Obviously we used extremely crude bounds. The­
se bounds can substantially be improved by taking
into account the structure of the graph investi­
gated (see [25]).

Let G be an elementary FAWD, CT an integer,
pd(G;CT-t) a processor distribution for G and CT.
Then the triple (G;pd;CT), as well as all its com­
ponents, are called admissible iff ~n(G;pd;CT)# ~.
For given G and CT let PD(G;CT) denote the set of
all admissible pd's. Le~G+ and G- be G's under­
lying 1-tree and 1-anti-tree, respectively; let
pd+EPD(G+;CT-t) and pd-EpD(G-;CT-t) and let
pa(G;CT-t) denote the processor distribution for
G with pa(G;CT-t):= pd+(G+;CT-t) + pd-(G-;CT-t),
o ~ t ~ CT, which only allows pd+ processors for
G+ and pd~ processors for G- at any time t,
o ~ t ~ CT. Let (G;pd;CT) be an arbitrary admis­
sible triple; then an assignment X of atmost

125

b(R,G+,CT-t +1)
CT-t +1 0

b(R,G-,CT-t +1)
o

o

CT-t o

T
J

.;
T

CT-t -1
o

I I o
2 3 4 5

Figure 3

Situation before exchanging

Figure 4

Figure 5

An example for the case M 3.

ill
6 7 8

1973 SAGAMORE COMPUTER CONFERENCE.ON PARALLEL PROCESSING

pd(G,CT) processors to free tasks of G is called
admissible iff the triple (G\T(X),pdICT-l) is ad­
missible, where T(X) denotes the set of tasks from
G assigned by x7' let !.(G,pd,CT) denote the set
of all admissible assignments X for (G,pd,CT).

Theorem 3: Let G be an elementary FAWO and let G +
and G- be its underlying I-tree and l-anti­
tree I let CT > O. Let pd+ (~,CT-t) be an
arbitrary processor distribution for G+.+Let
G+ and G- be processed with pd+ and M-pd
processors, respectively, both according to
SBTF·
Then pd is not admissible if G is not pro­
cessed completely after time CT.

The proof of Theorem 3 is an elementary
application of Lemma 2. Remember that the
complexity of the SHTr scheduling algorithm
is bounded by const • M • N2. Note also that
SHTF for M processors applied to an elemen~
tary FAWO'G (omitting the processor distri­
bution prescription) need not imply complete
processing of G in CT time units (see fi­
gure 5).

We will now explain the form of the solution
to the problem of describing An(G,M,CT) that one
would like to get and that one we are able to de­
rive at present.

For an arbitrary given admissible triple
(G,M,CT), where G is an elementary FAWD, we give
a scheduling scheme p from that all schedules from
An(G,M,CT) could be derived (by appropriate inter­
pretation of this scheme) provided that we can
find suitable algorithms x and z.

SCHEMA P

(Start)
J.

I Input: Elementary FAWO G, J
admissible integers M > 0 and CT > 0

I t:= 0, ~:= (6 I
- Apply the algorithm z to the admissible

triple (G;M,CT-t) in order to compute the
sets PD+(~,M;CT-t) C PD(G+,M;CT-t) and
PD-(G-,M,CT-t) C PO(G-,M;CT-t) such that
(M-pd+)€PD-(G-,M;CT-t) for each
pd"€fQ+(G+;M,CT-t) •

- Choose an arbitrary pd+EPO+(G+,M;CT-t).
- Apply the algorithm x to the admissible trip-

les (G+;pd+;CT-t) and (G-;M-pd+;CT-t) in or­
der to compute the sets x+:= ll(G+,pd+,CT-t)
and X-:= X(G-,M-pd+,CT-t).

- Choose an arbitrary assignment x~x+ and
X""€ X-. -

- S:" iu ((t,T(X+) U T(X-»}, delete
i(x+") U !(x=) from-G,
t:= t+l.

~----------------NO-<t~YES
loutput: Sequencing-list ~ I

(Stop

We first note that scheme p becomes a sche­
duling algorithm as soon as it is interpreted, i.
e. a rule is added, how to choose pd+e:PD+ ,x+e:A+and
x-€X-. The algorithms z and x are not affected by
thill specification. Second we see that scheme p
would provide us with the most general solution to
the scheduling problem in this case At the be­
ginning of each time interval O,I,2, ••• ,CT-l, the
algorithm z first shows us what possibilities
exist for the choice of admissible pd's. After
having chosen a suitable pd+, algorithm x tells us
what possibilities exist for the choice of X that
are compatible with the already fixed Pd.

As the investigations concerned with an al­
gorithm z are quite elaborate ([25]), another
scheme a for describing the set An(G,M,CT) for an
arbitrary admissible (G,M,CT) is-presented. Com­
pared to the above scheme p this new scheme (J will
not contain the algorithm z but an algorithm sche­
me ~ which describes the set PO+(G+,M,CT-t) and
therefore PO-(G-,M,CT-t), too~we give this sche­
me ~ first. As we are interested mainly in poly­
nomial boundedness we can afford to construct a
simple ~.

SCHEMA ~

(Start)
IInput: Elementary FAWO G, admissible M and CT I

- Apply the algorithm y to the admissible tri­
ple (Gt,M,CT-t) in order to compute
Q(t):= (q(t)/ 0 S q(t) S M such that
Pd+(G+,CT-t'):= q(t') and
pd-(Gi;CT-t'):= M - q(t'), 0 S t' S t, define
a 'prefix' of length t of an admissible Pd
for G and CT} •

- Choose an arbitrary q€Q(t) let q(t):= q
and delete 2.(t)\{q}. - +
Delete q(t) highest free tasks from Gt and
M - q(t) highest free tasks from Gt (if on­
ly q' < q(t) and/or q" < M - q(t) free tasks
are available in Gt and Gi, respectively,
delete these q' and/or q" tasks).
t:= t +1.

~ ____________ ~N~O~~
~

I Output: Pd:= {(q(t),M - q(t»/ 0 S t S CT:-.~D
J,

(Stop) ----
Note that for algorithm y we can use a sim­

ple modification of an algorithm y' to compute
CTmin (G,M) accord.1ng Theorem 2, then y is bounded
by const • M2. ~3.

Theorem 4: Let (G,M,CT) be an admissible triple,
where G is an elementary FAWO. Then the al­
gorithm scheme ~ describes the set of all
admissible pd's for the triple (G,M,CT).

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Again we do not give a formal proof but note
that

each interpretation of W leads to an ad­
missible po for (G,M,CT),
each admissible pd for (G;M;CT) can be
obtained from w by an appropriate inter­
pretation (defined by this pd).

For the rest of the paper we are mainly con­
cerned with the definition and investigation of
the algorithm x from p. We will define x only for
the case that G is a l-tree G+; the case that G
is a l-anti-tree can be treated similarly. Let
us remember that x is to be a polynomial bounded
algorithm the application of which to an admissi­
ble triple (G+;pd;CT) provides us with the set
~(G+;pd;CT) of all admissible assignments. This
set 1l will essentially be defined by a 'lowest
assignment function Xc' which has the property
that an arbitrary X belongs to Jl. iff x's 'associ­
ated' assignment function if is 'higher' than XC.
Explicitly this means: Xo is a total function from
{t,2", ••• B(G)} - {0,1, ••• ,k} such that
B(G) _
1=1 Xc(i) = k, where k is defined by x, for an

arbitrary assignment X its associated assiqnment
function X: {t,2, ••• ,B(G)} - {O,l, ••• ,k} is total
and defined by Xli) = number of processors assig­
ned to tasks of G+ starting on height-line i,
1 s: i s: B(G). if is higher than Xc iff

it, X(B (G) -i) ~ it, Xc (B (G) -i) for all

j = O,l, ••• ,B(G) - 1.

Definition of algorithm x

Let an arbitrary admissible aSSignment
(G+,pd;CT) be given, where G+ is a l-tree in
RL(G~ representation. "
1) Determine the maximal number k' of processors
that might be left idling by an admissible assign­
ment XfX(G+;pd,CT). (This k' can be computed by
applying the SBTF for l-anti-tree to the 'inver­
sed' of G+, see [23]). Let k:= pd(G+;CT) - k'.
If k = 0 then Stop, (because an arbitrary assign­
ment of k" processors, 0 S k" s: pd(G+;CT), to ar­
bitrary tasks of G+ is in JO .In this case there­
fore algorithm x ends here.

We now determine Xo for k processors. Let
initially Xo(i):= 0, 1 SiS: B(G). Let i = 1,
Gt:= G+ and h(i):= 1.

2) If i > k ~ Stop, i.e. in the case k > 0
algorithm x ends here.

begin
L: if check (Gt;CT-l;h(i» then

begin Xo(h(i»:= Xo(h(i» +1;
i:= i+l;
delete one task from Gt-l on height­
line h(i-1) and call the result Gt,
goto 2;

end; !!.!!.
begin h(i):= h(i) + 1,

end;
end;

goto L;

127

+ The boolean procedure check (Gi ,CT-1;h(i»
returns the value true iff

L + a) in R (Gi) there is a free task T on height-
line h(i) and

b) deletion of task T and the highest k-i free
tasks from Gt results in a graph G+' such that
(G+';pd;CT-1) is an admissible triple.

End of description of algorithm x.

Theorem 5: Let G+ be a 1-tree, let the triple
(G+,pd;CT) be admissible and let the algo­
rithm x, and the result k and Xc of its app­
lication to (~;pd;CT) be as defined above.
Finally let X be an arbitrary assignment of
k processors to free tasks from G+ and if its
associated assignment function. Then the
following implication tolds:
XfX(G+;pd;CT) .. X is higher than X •

- 0

Remark: If IT(X)I > k then only k of the tasks
assigned by X are subject to the above constraint.

The proof of Theorem 5 is elaborate and vo­
luminous; therefore only its main ideas are cha­
racterized by listing the Lemmas involved. A com­
plete proof is given in [25].

Lemma 3: Let (G+;pd;CT) be admissible, let
XfX(~,pd,CT) and let x' be an arbitrary
aSSignment with I.!.(x') I ~ I.T.(X) I.
The following implication holds:
X' is higher than X" X'€!(G+;pd;CT) •

As Xo defined by algorithm x is admissible
by construction, the Lemma 3 assures that all
assignments 'lying above' Xc are admissible, too,
i.e. Lemma 3 proves - from Theorem 5.

Lemma 4: Let the assumptions of Theorem 5 be true
and let Xf~(G+;pd;CT). Then

a) if X6(i) = 0, 0 s: i s: i' .. Xli) = 0,
OS:iSi'.

b) if X(i) = X6 (i)
os: i s: i' .. if(i'+1) ~ ifo(i'+l).

By Lemma 4 the monotonic increase of h(i) in al­
gorithm x is justified.

Lemma 5: Let (G+;pd;CT) be an admissible triple.
Let X be an arbitrary assignment such that
there exist i', i", 0 S i'< i'+2 S i" s: B(G),
for which Xli) SXo(i), 0 SiS: i' and
i" s: i s: B(G) and Xli) > Xc(i), i'"< i < i".
Then X¢!(~'Pd;CT) •
By the last Lemma the uniqueness of Xc is

established. The proof of implication" from
Theorem 5 follows essentially from Lemma 4 and
Lemma 5. Note finally that the complexity of the
algorithm x is bounded by const • (M+N) • M2• ~+ 3•

We summarize the results of this paper in

Theorem 6: Let (G;M,CT) be an admissible triple,
where G is an elementary FAWD. Then
scheme a, defined by the diagram

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

SCHEMA CJ

Input: Elementary FAWD G
and admissible integers M and CT

--''---------_ _-/

Invoke scheme p in order to obtain an I
admissible pdEPD(GiMiCT-t).+ + '
Apply the algorithm x to (G ipd iCT-t)
and (G-ipd-iCT-t) in order to obtain
the sets x+ and x-.
Choose an--arbitrary X~X~ and x-Ex-.
S:= S U t(t,T(X+) U TOn)), -
delete i(X+) U :!'.(x-=-) from G.
t:= t+1

L....... _______ ..,--______ J

list ~

Stop

characterizes the set An(G+iMiCT). All algorithms
involved are polynomial bounded.

References

[1] HU, T. c.: Parallel Sequencing and Assembly
Line Problems, Qperations·Research 9, No.6
(1961), 841-848.

[2] MUNTZ, R. r. and COFFMAN, E. G.: Preemptive
Scheduling for ~al-Time Tasks on Multipro­
cessor Systems, JACM, Vol.17, No.2 (April 70)
324-338. --

[3] SCHINDLER, S.: On Optimal Schedules for Mul­
tiprocessor Systems, Princeton Conference on
Information Sciences and Systems (March 72).

[4] FLYNN, M. J.: Some Computer Organisations
and Their Effectiveness, IEEE Transactions
on Computers, vol.C 21, No.9 (Sept.72)

[5] MOWLE, F. J. and JULIUSSEN, J. E.: Multiple
Microprocessors with a Common Microprogram
Memory, Princeton Conference on Information
Sciences and Systems, (March 72).

[6] M. FUJII, T. KASAMI, K. NINOMIYA: Optimal
Sequence of Two Eyuivalent Processors, SIAM
Journal of Applied Mathematics, 17, No.-3--­
(1969), 784-789.

[7] Erratum,
SIAM Journal of Applied Mathematics 20, No.1
0971), 141.

128

[8] COFFMANN, E. G. and GRAHAM, R. L.: Optimal
Scheduling for Two-Processor Systems, Acta
Informatica 2 (1972).

[9] BARSKIY, A. B.: Minimizing the Number of
Computing Devices Needed to Realize a Com­
putational Process within a Specified Time,
Engineering Cybernetics, No.6 (1968).

[10] SCHINDLER, S.: Classes of Qptimal Schedules
for Multiprocessor Systems, 2. Jahrestagung
der Gesellschaft fur Informatik, Karlsruhe,
(Oct. 1972).

[11] SCHINDLER, S.: Quantitative Aspects of Opti­
mal Schedules for Multiprocessor Systems,
Workshop on Parallel Computation, Seattle,
(June 1972).

[12] LIU, C.L.: Optimal Scheduling on Multipro­
cessor Computing Systems, Conference on
Swi tching and Automata Theory, Maryland,
(Oct. 1972).

[13] FERNANDEZ, E. B. and BUSSEL, B.: Bounds on
the Number of Processors in Parallel Compu­
tation, Workshop on Parallel Computation,
seattle, (June 1972).

[14] GRAHAM, R. L.: Bounds on Multiprocessing
Timing Anomalies, SIAM Journal of Applied
Mathematics, Vol. 17, No.2 (March 1969).

[15] C. V. RAMAMOORTHY, K. M. CHANDY, M. J.

[16]

[17]

[18]

[19]

[20]

[21]

GONZALES: Optimal Scheduling Strategies in
a Multiprocessor System, IEEE Transactions
on Computers, Vol. C-21, No.2 (Feb. 1972).

STONE, H. S.: Problems of Parallel Computa­
~, Symp.on Complexity of Sequential and
Parallel Numerical Algorithms, Carnegie­
Mellon University, Pittsburgh, (May 1973).
FLYNN, M. J. et al.: A Multiple Instruction
Stream Processor with Shared Resources, in:
Parallel Processor Systems, Technologies and
Applications, Spartan Books, (1970).

KUCK, J. K., MURAOKA, Y., CHEN, S. S.: On
the Number of Operations Simultaneously Exe­
cutable in Fortran-like Programs and Their
Resulting Speedup, IEEE Transactions on Com­
puters, Vol. C-21, No.12, (Dec. 1972).

KARP, R. M.: Reducibility Among Combinatori­
al Problems,Technical Report 3, Department
of Computer Science, University of Califor­
nia at Berkeley, (April 1972).

ULLMAN, J. D.: Polynomial Complete Schedu-'
ling Problems, Technical Report 9, Dept. of
Computer Science, University of California
at Berkeley, (March 1973).

SCHINDLER, S. and SIMONSMEIER, W.: The Class
of All Optimal Schedules for Two-Processor
Systems, Princeton Conference on Information
Sciences and Systems, (March 1973).

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

[22] SCHINDLER, S.: The Complexity of Scheduling
Algorithms for Multiprocessor Systems, Sym­
posium on Complexity of Sequential and Paral­
lel Numerical Algorithms, Carnegie-Mellon
University, Pittsburgh, (May 1973).

[23] : Scheduling a Multiprocessor
Systems on Anti-Forests, SIAM-SIGNUM Fall
Meeting, Austin (Oct. 1972).

[24] MUNTZ, R. R. and COFFMAN, E. G.: Optimal
Preemptive Scheduling on TWo-Processor Sy­
stems, IEEE Transactions on Computers, C-18,
No.ll, (Nov. 1969).

129

[25] LtlDTKE, H .• and SCHINDLER, S.: Scheduling
Multiprocessor Systems ·on Finite Acyclic
Weighted Directed Graphs, Technical Report,
to be published.

[26] SCHINDLER, S. and LUDTKE, H.: Polynomial
Bounded Preemptive Schedules for Multipro­
cessor Systems, to be published.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

A SCHEDULING MODEL FOR
COMPUTER SYSTEMS WITH TWO CLASSES OF PROCESSORS

R. E. Buten
V. Y. Shen

Computer Sciences Department
Purdue University

Lafayette, Indiana 47907

Abstract -- This paper describes a simple
algorithm to schedule a restricted set of jobs on
a multiprocessor system with two classes of pro­
cessors. Through deterministic analysis an upper
bound is established for the behavior of the al­
gorithm. This bound is seen to compare favorably
with the upper bound intrinsic to the model. Sim­
ulation results show the algorithm to be useful in
scheduling less restricted job sets.

1. INTRODUCTION

In recent years computing systems have been
routinely called upon to support a variety of on­
line services in addition to carrying an ever in­
creasing computing load. One major mainframe man­
ufacturer's response to these divergent needs is
a multiprocessor system composed of two types of
processors.

One class or type of processor is primarily
designed to perform floating-point arithmetic
operations very efficiently. Accordingly, absent
from its instruction set are many functions re­
quired by general purpose usage. Notable among
these are character oriented and I/O instructions.
Let the type and number of this kind of processor
be designated as A and m respectively.

The other class of processor is equipped with
a very low level instruction set. Character op­
erations if not elegant are at least straight­
forward. Its significant aspect, however, is the
ability of this class of processor to perform I/O.
In like manner, let the type and number of this
kind of processor be designated as B and n, re­
spectively. Any job run on such a system will
necessarily require both kinds of resource.

The resource requests of a job may be re­
presented by a weighted, directed, and acyclic
graph as shown in Figure 1. The graph is called
the resource request graph of a job. This graph
completely specifies the resource requests on the
two types of processors and their precedence re­
lations. As indicated in the graph, the two types
of requests are made to processors A and B,
respectively.

A

B

Figure 1
Resource request graph for a typical job.

Given a collection of such jobs it is the function
of the scheduling algorithm to assign tasks (nodes
in the resourse request graph) to available pro­
cessors. A task is the. basic unit of allocation,
i.e. once begun on a processor, it executes with­
out interruption to completion. This is to say,
consideration will be restricted to non-preemptive
scheduling algorithms.

The performance of a scheduling algorithm may
be measured in several ways. Some of these are:
mean throughput, average response time, and dead­
line compliance. The measure used in this paper,
however, shall be the amount of time needed to
complete the entire set of jobs. An optimal sched­
ule, therefore, is one in which the entire set of
jobs is completed in the minimal time.

It is generally acknowledged, based on anal­
ysis of similar models, that the generation of
optimal schedules for such a general problem~re­
quires an exponential numb~r of steps. If a prob­
lem of this nature were to have very large nodes,
then the benefits derivable from the optimal
schedule might very well justify a branch-and­
bound approach, or perhaps even an exhaustive
search. Since this is not the case under consid­
eration, the hope for problems of this type lies
in the development of simple heuristic algorithms
which will produce optimal or near optimal results
for the models in question. Where the models
themselves defy analysis, it may be useful to
develop heuristics which apply to simplified sub­
sets. This approach seems to be the underlying
motivation for work done on several similar models.

T. C. Hu obtained results scheduling a tree
of equal length nodes on a system of n identical
processors [5]. Fujii, et al [2,3] and Coffman
and Graham [1] have treated arbitrary acyclic
graphs composed of equal length nodes and achieved
optimal results for two processors of equal
abili ty.

Optimal results were also achieved with a
simple algorithm for flow-shop jobs run on two
machines [7]. Extensions were made to this result
which produced optimal schedules for two machines
and all jobs with resource graphs of two nodes [6].

130

This research was supported in part by the
Atomic Energy Commission.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

The possibilities are shown below:

A

~ ~
CD

B G)
Type 1 Type 2 Type 3

Figure 2
!esource graphs treated by Jackson.

Graham [4] points out the existence of, and
bounds the anomalous behavior of acyclic graphs
executed on n identical processors when demand
scheduling is used. Simulation results presented
by Manacher [8] show the occurrence of anomalous
behavior to be a common occurrence. This leads one
to suspect that the bounds achieved for such cases
may be a valid indicator of expected behavior.

Shen and Chen [9] have achieved bounds for a
multiprocessor system with two classes of pro­
cessors when the job set is a restricted class of
flow-shop jobs. This suggests a valid starting
point for this analysis: the unrestricted flow
shop.

2. Analysis of the Flow-Shop Model

Definition of the Model

Let S denote a system composed of m pro­
cessors of type A, and n processors of type B.
Let F = {fl,f2, .•• ,fr_l,fr} be a set of flow-shop

jobs. Each job in F is represented by a two­
tuple, (ai,b i), where ai = A-processor request

and bi = B--processor request, and ai must precede

bi • That is to say, F is the set of jobs of

type 1.

Algorithm

Johnson's optimal solution [7] is for the
special case of the model for which m=n=l. His
strategy consisted of ordering the jobs according
to the following simple criterion:

fi procedes fj if: min(ai,b j) < min(aj,bi)

A job set in which all its members have been
sorted by the above criterion is said to follow a
Johnson Order (JO). The optimality of the result­
ing schedules was shown by proving that the order­
ing minimiZes the wait time on the B - processor.
Furthermore, the existence of ties, when the left
and right side of the relation are equal, indi­
cates the non-uniqueness of the optimal schedule •.

The ordering as it stands is unsuitable for
use on multiprocessor systems since it fails to
take account of the number of processors of each
type. One would like to measure the impact of a
node on the total resources of the system. This
suggests a modification to the Johnson ordering

131

as follows:
a. b. a. b.

fi precedes fj if: min em \t) < min(~-'n 1)

in case of equality, largest f first.
This Modified Johnson Ordering (MJO) has a comfort­
able intuitive feeling since one is obtaining the
optimal schedule on a Johnson machine of equiva­
lent power. Denote this system as S'. S' has a
single A'-processor of speed=m.speed(A), and a
single B'-processor with speed=n. speed(B). It is
also noteworthy that MJO is a generalization of
JO, in that they are identical for m=n=l.

One would hope that the demand schedule re­
sulting from the MJO is optimal on S as well.
The following example shows such a case.
Example 1: Let m=n=2 and F = {(9,O),(9,O),

(1,S),(1,S),(1,10)}
A demand schedule for the job list ordered as
given results in a worst case schedule, TL.

t : I~~ A

B

Figure 3

Worst case schedule for example 1.

MJO causes the jobs to be executed in the reverse
order of their appearance in F. This produces the
optimal schedule for this set, shown below

A I ~111 ~-T]

~ 10

5 5
B

Figure 4
Optimal schedule for example 1.

Optimal schedules, however, are not always pro­
duced by MJO. The next example shows MJO generat­
ing a schedule which is much larger than optimal.

Example 2: Let m=n=2 and F={(1,S),(1,S)l2,lO)} •
The jobs as listed are sorted by MJO. The demand
schedule, which is actually a worst case, is
shown below.

AfJ
B !a--_:--~----l_O----~

Figure 5
Worst case schedule for example 2.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Reversing the job list results in a better
schedule:

A~
B VL.l-.l _----rlO~---,r-l

If. 5 I 5

Figure 6
Optimal schedule for example 2.

These examples prompt two questions regarding MJO.
How much of a saving can MJO produce? And, how
badly can it perform?

Bounds

In deriving the MJO algorithm for S, we
made intuitive use of S', a Johnson Machine of
equi~alent power. Perhaps it would be instruct­
ive to further compare these two systems in order
to determine the performance of MJO. The re­
quests for resource usage on S was represented
by a two-tuple, (ai,bi). This same job, when
executed on S' requ1res resource usage of
(al,bi)' where

a!
1

a.
1.

m b!
1 n (1)

Since S' has the equivalent power of S and is
of simpler structure, one would intuitively
expect that it could perform the same work load
as S.
Formalizing this expectation we have:
Lemma 2.1: Given a schedule for a job set F,

on a system S whose completion time is T ,
then there exists a schedule on S' with a e
completion time of T~ such that

T' < T e - e -

Proof: The proof is by construction of the re­
quired schedule on S'.

As a first step, one considers a simulation
by S' of the schedule yielding Te on S. To

accomplish this we divide the schedule into unit
time slices. For each time slice on S from 1 to
Te , let A' execute a unit portion of that task

executing on each of the m A-processors, while
B' executes a unit portion of that task executing
on each of the n B - processors. Since speed (A')

=m.speed(A) and speed(B')=n-speed(B), it is
clear that S' can keep up with the progress of
S. Let a time slice of a. or b. executed on S'

1 1

be denoted by ai and bi respectively, where

b~
1

b.
1

nTe (2)

A time slice in which no task is executing is
said to be executing the idle task, denoted.by x.

132

Define
Tai
Th.

1

time of the last occurrence of ai

time of the first occurrence of b~
----- 1

The second step is to rearrange this simu­
lated preemptive schedule into a non-preemptive
permutation schedule. The following procedure is
used:

Step 1. Sort the list of Ta's in ascending order.
Do the same for the list of Th's.

Step 2. Relabel the time slices as follows:

a~ -+- a'! where j
1 J

is the rank of Ta. in 1
the sorted list of Ta's

M -+- b'! where j is the rank of Th. in
1 J 1
the sorted list of Th's

Step 3. Apply the following interchange rules
until no further interchanges are possi­
ble, i.e. until all slices of each task
are juxtaposed.

Rule 1. If ai immediately precedes

a; and i >j, or if x immedi­

ately precedes a:-, then inter­
J

change the two.

Rule 2. If b:- immediate ly precedes b:-
1 J

and i > j or if b: immediately
1

precedes x, then interchange
the two.

Rule 1 has the property that no Tai is ever in-

creased, i.e. the completion time of no A task
is delayed by the use of Rule 1. Rule 2 has the
complementary property in which no Thi is ever

decreased, meaning that all precedence constraints
between A- and B- tasks are preserved.

After all time slices for each task are jux­
taposed, the third step is to replace the time
slice notation with the job notation. The order
of appearance of these jobs on A' is a permuta­
tion of F which will produce this schedule or
one better. The schedule thus constructed is a
permutation schedule since the order of completion
of A- tasks is the same as the order of the initi­
ation of B - tasks, which for S' is the same as
the order of initiation of A - tasks.

Since there could exist wait time between the
completion of an A task and the initiation of
its associated B task, the schedule produced
thus far is not necessarily a demand schedule.
Therefore, the final step is to convert that sche~
ule to a demand schedule by advancing the start of
all b.'s until either the time their associated ~

1

process completed or the completion of the previ­
ous B -task, whichever is greater.

The following example will serve to clarify
the proof as well as to show the need for such a

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

mechanism to guarantee the inequality.

Example 3: Let m=n=3, and F={f1,f2,f3,f4,fs}where

fl=f2=(4,0),f3=(1,3),f4=(1,2),fs=(1,1)

The schedule producing Te is shown below

Figure 7
Optimal schedule for F on S.

The first step produced a simulated schedule on S'
as follows: .

A'

Figure 8
Simulation of Te by S'

The second step first sorts the lists of times:

Index Ta's Th's

1 Ta3 Th3
2 Ta4 Th4
3 Tas Ths
4 Tal
5 Ta2

then re-1abels the the time slices using rank in
the sorted lists.

A' t t t t t t t t t t t
a4 as al a4 as a2 a4 as a3 a4 as x

B' x x x bt
1 bt bt t t t x x 1 2 x b l b2 b3

Step three performs all possible interchanges re-
sulting in

* * * * * * * * * * * A' a3 a4 as a1 a1 a1 a1 a2 a2 a2 a2 x

* * * * * * B' x x x x x x b3 b3 b3 b4 b4 bs
The ordering of F which produces T~ is now clea~

namely f3,f4,fs,fl,f2' The transformation by the

last step to a demand schedule results in a time
T' 3.67. e

As pointed out in Example 2, MJO may not
always produce an optimal schedule on S. Since
it does produce the optimal schedule on S', it is
of interest to compare the performance of MJO on
S to that on S'. A multiprocessor system such
as S since its power is based on parallel execu­
tion of many jobs, cannot f1.Ulction effective 1y
when severely "1.Ulderloaded". To obtain a meaning­
ful comparison we would therefore like to discard

cases where a single job dominates the schedule.
This may be accomplished by requiring the follow­
ing loading constraint (LC):

l<i<r (3)

Lemma 2.2: Given a job set F, subject to LC and
ordered by MJO. If Th and Th are the comple-

tion times of a demand schedule on S and S'
respectively, then

1
< 2 max (m,n)

Proof: The proof is by contradiction. We shall
assume that there exists a set of jobs which vio­
lates the b01.Uld. We may further assume that the
number of jobs, r, is minimal. That is, br is the

last B process to terminate on S when ar is

the last job started, i.e. the last job in MJO.

We can make the above assumption because if
bk is the last terminating process and k < r, we

can consider the truncated set f 1,f2, .•. ,fk • The

completion time on S for the tr1.Ulcated set, Ph'

is exactly Th . On the other hand, the completion

time on S' of the truncated set, Ph' is less than

or equal to Th since there are less jobs in the

tr1.Ulcated set. Therefore,

Ph Th
--- >--- > 2

P'
h T'

h

1 ,
max(m,n)

and the tr1.Ulcated set forms a smaller C01.Ulter­
example to the lemma. We shall therefore consider
r to be minimal.

The proof divides into two cases:

Case 1: The last task to complete is on a
B processor

Case 2: The last task to complete is on an
A processor.

Case 1:

Let Tai denote the time ai completes execution

and Thithe time bi begins execution for all i.

The proof of this case shall be treated in three
subcases.

Case la: Ta = Th
r r

Demand scheduling requires there be no im­
bedded idle time on the A or A' processors,
i.e. the schedule is compact to the left. The
latest time at which ar can begin is immediately

133

after the completion of all other tasks. Thus
for s,

(4)

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Correspondingly the time on S' is given by

r
+ br T' >.!. l: a. (5) h-m i=l l. --n

Dividing (4) by (5) yields

1 + • (6)

Since the set forms a counter-example to the lemma
T a (m-1)+b en-I)

2 _ 1 < J!. < 1 + r m r n ~7)
max(m,n) T'

h
T'
h

which reduces to

T' max(m,n)-l < (a +b) max(m,n)-l • (8)
h max(m,n) r r max(m,n)

And this is a contradiction by the loading con­
straint (3).

Since consideration is restricted to demand type
schedules, the following cases which treat
Tb r > Tar necessarily have all B processors

busy on the interval [Tar,Tbr), as shown in

Pigure 9. We use Tk to indicate the end of the

last idle period on the B processors prior to
Tb. r

A

B

Til' 14,. b~

Figure 9

Case Ib: Tbr>Tar & Tk = 0

If there is no idle time on the B processors
except terminal idle then the latest start time
for the last B process is immediately after all
other B processes have completed, or

r-l
T <.!. l: b. + b (9)
h - n i=l l. r

If there is no initial wait time on the B - pro­
cessors then the first m A processes must be
zero. And the time needed on S' is

r
T >.!. l:b
h - n i=l i

The desired ratio is

1 +
n-l b

n r·
T'
h

(10)

(11)

which leads to the same contradiction as (6).

134

Case Ie: Tb > Ta & Tk > 0
r r

Prom Pigure 9, one sees that the schedule for P
which produces Th is first A-bound, and then B-

bound. All previous cases dealt exclusively with
one class of processors or the other. Therefore,
to facilitate treatment of this case one would
like to treat separately each group of jobs.
Define partitioned job sets as follows:

Job set 1, pI, contains every job which completes
before Tk in addition to the truncated portions of

those jobs in execution at that time. Or,

(a~,b~) , l<i<r such that
l. l. --

a~= max(O,min(a.,Tk-Ta.-a.))
l. l. l. l.

b~= max(O,min(b.,Tk-Tb.))} •
l. l. l.

Job set 2, p2, contains the remainder of all jobs

truncated to form pI as well as all jobs which
begin execution after Tk • Or

2 2 (ai,b i) , l.s.i.sF such that

a~= max(O,min(a.,Ta.-Tk))
l. l. l.

bi= max(O ,min (bi' Tb i +b i -Tk)) }

Each job set has r jobs as before although ad­
mittedly many are null. This manner of defini­
tion, however, leaves the indices constant. Por
the treatment of these partitioned job sets to
have relevance in bounding the total set, the
following relation must be established.

, (12)

where are the completion times of each

of the partitioned job sets, sorted by MJO,and
executed on S.

The composition of P may be divided into
the following subsets according to the makeup of

p2. Define

x = set of job indices l=o , xEX x

Y = set of job indices 2 yEY a =a y y'

U = set of job indices 0<a2<a , uEU u u

Referring to the ordering of the original set
it is clear that

fu precedes fy for all uE' U and

for all yEY •
Since the set was subjected to MJO

a b a b

P,

(13)

Min (mu , t-) < min(iif- ' nU) for all uEU
(14)

and for all yEY

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Therefore

fx2 precedes ~ precedes f2
u y (15)

for X, U, & y

Since the validity of (14) cannot be altered

merely by the reduction of au/m when all else re-

mains equal, all fx' having zero A - requests,

precede all else. Therefore, the execution of

jobs in p2 is identical to their execution in P
to within a permutation of processor numbers.
Therefore,

And
1 r 1 1

T=-};al..~Th
k m i=l

Substituting (17) into (16) produces

1 2
Th ~ Th + Th

and the validity of (12) is established.

(16)

(17)

(18)

Consider next the relationship between Th
l' 2' and Th + Th ' the sum of execution times on S'

of pI and p2 ordered by MJO. Prom the definition
of this sub case and the description of the part-

itioning, the exeeution time of T~' is governed by
l' 2' the A - tasks. Thus when Th + Th is considered,

no additional time is required for execution of
the A--tasks. The only source of increased ex­
ecution time for the two subsets arises when the
execution of all or part of a B task is "held
up" due to the construction of the partitioned
sets. This can happen in two ways.

Pirst, the "rele~e" of b. for consideration l.
by B' in the partitioned set is governed by the
schedule of the A -- tasks on S. If ai is an

initial task on S, the release time of bi is

exactly ai • If ai is also chosen to be an initial

task on S', then the new release time is ai/m.

Thus it is possible to delay the release of bi by

a maximum of a. em-I) due to the partitioning of l. m
the job set. If ai is not an initial task on S,

the earliest possible time to schedule ai on S'

can not be sooner than the schedule time of ai on

S. Therefore for tasks whose ordering are not
changed by the partitioning of the job set, the
release time of the B- tasks on B' can be de-

m-l layed up to ai(-m-), where ai is the largest A-

task.

135

The second source of delay is an A-task
whose ordering is altered by the partitioning it­
self. There are at most m A-tasks which were al­
tered by the partitioning. Designate this set as
U and let au be any member of the set. When the

job set is executed as a whole, the time at which

bu is released to B' is given by:

u a.
RCil = .}; ..!.
u i=l m

(19)

When p2 is executed, the members of U may be re­
ordered. The release time for bu in the sequential

execution of the partitioned sets is given by

u-l a.
RP < }; ...2. + };

a.
1.

u - i=l m i E U m
a.

}; _l.
iEU m
i;iu

Let a i denote the largest member of U.

becomes
RP < RCil + (m-l) a
u - u m i

(20)

(21)

Then (21)

(22)

Since on S', the B - tasks are executed se­
quentially, the delay experienced by the last B­
task is bounded above by the largest delay pre­
vious to it. Thus we have established the desired
relation between the execution time of the whole
set to that of the two partitioned sets,

l' 2' m-l
Th + Th ~ Th + (-m-) ai (23)

Prom the construction of the partition we have,

l'
Th = Tk

Substituting this into (16)

l' 2
Th ~ Th + Th

l' 1 r 2 n 1
< Th + - }; b. + (-=-) b
- n i=l l. n r

And from S' we have

(24)

(25)

(26)

T2' > 1. f b~ (27)
h-n i=l l.

Substituting this into (26) leaves

l' 2' n-l
Th ~ Th + Th + (n) br (28)

which using (23) reduces to

m-l n-l
Th ~ Th + (-m-) ai + (n) br (29)

The assumption of a minimal set requires i~r in
the MJO, for any A task which is all or in part

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

contained in Fl. This implies
. a,Q, br . ar b,Q,

mm (m ' fi) < mm (iii ' fi) (30)

This requires either b < b or a < a
r - ,Q, ,Q, - r

making the appropriate substitution leaves

Th < Th' +
- h

(m-l)
m a,Q, + (n-l)

n b,Q, (3la)

or Th < Th' + (m-l) a + (n-l) b (3lb) - h m r n r

Dividing (3l~ and (3lb) by Th leaves equations of

the same form as (6), which leads to the same con­

tradiction of the loading constraint.

Case 2: An A process is last to terminate. With
the exception that b =0, this case produces the

r
same equation as (4) and of course leads to the
same contradiction.

All cases and sub cases treated are seen to
lead to a contradiction and thus the lemma is
proved.

The two previous lemmas may be used to prove
the following theorem which provides a performance
bound for MJO.

Theorem 2.1:

where T
e

F Th For a job set , T'::' 2
e

completion time of the

1
max(m,n)

shortest

schedule possible for F on S,

completion time of the MJO sched­

ule.

Proof: Lemma 2.2 provides

Th 1
Th .::. 2 - max (m,n)

By Johnson's result Th is optimal, thus

T' < T '
h - e

By Lemma 2.1, T' < T
e - e

Combining yields

Q.E.D.

Example 4: Let F = {n(n-l) jobs of the form (E,l)}
1 job of the form (2E,n)

in a system that m=n.

The MJO schedule is shown in Figure 10:

A

B l!lliJ
Figure 10

136

The optimal schedule is shown in Figure 11:

A ~
B ~ ot j .

Figure 11

From Figures 10 and 11, we have

Th 2n-l+E
2 _ 1+3E + 2 1

T = n+2E = - -n+2E n e

Example 4 shows that the bound of Theorem 2.1
is approachable. If we remove the "largest first
rule" to break ties in MJO, whi ch is not used in
the proof of Theorem 2.1, the bound may be reached
by scheduling n(n-I) jobs of the form (0,1) and
one job of the form (O,n).

The following theorem gives the worst case
bound for the flow-shop model with two classes of
processors.

Theorem 2.2: For a given job set F, where Te is

the earliest completion time possi­
ble for a demand schedule on S, the
latest completion time, T,Q,' is given

by

3 - max(m,n)

Proof:

Consider a schedule which produces T 1:

A

B

Ilk T<)

Figure 12

The following notations are used in Figure 12:

last task to complete

A-task associated with b r
time ar completes execution

time br begins execution

time of the last idle time on any
B-processor before Tb .

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

The following are lower bounds on the earliest
completion time possible:

r
T > 1 2: ai' time needed to execute all

e - m i=l A tasks (32a)

r
T > 1 ~ b., time needed to execute all

e - n i=l 1 B tasks (32b)

The proof is divided into three cases.

Case 1: Tar=Tbr , i.e. the last B-task to complete

begins execution immediately after the
completion of its associated A task.

By the constraint of demand

1 r m-l
T < - ! a. + (-)

t - m i=l 1 m

scheduling

(33)

which reduces immediately by (32a) and (32c) to

T < 2T
t - e or

Tt
< 2

(34)

Case 2: Tar f Tb r & Tk 0, i.e. there is no im­

bedded wait time on a B processor. The time is
then given by

Tt ::'l2: b i + (n~l) b t
n i=l

(35)

which also reduces with the application of (32a)
and' (32c) to

Tt
T < T + (n-l) T or - < 2

t - e n e

By definition

And the time that
bounded by

1
Tb ::. Tk + -n

the

n-l
~

i=l

last

b.
1

T
e

B-task

1 - -
n

(36)

(37)

starts can be

(38)

And the time of the last idle time on a B-pro­
cessor is bounded by

1 r-l
Tk < T < - ~ a1· + ar a - m i=l (39)

Substituting (38) and (39) into (37) gives

1 r-l 1 r-l
Tt < - ! a. + - ~ b. + a + b

m i=l 1 n i=l 1 r r
(40)

137

Re-arranging ,
1 r 1 r 1

T t <-! a. +- ! b. + (a +b) 9..:.:!:.
mi=l 1 ni=l 1 r r q

where q = max(m,n).

Applying (32a) , (32b), and (32c)

T < T + T + ~ T or
tee q e

leaves
Tt 1
-<3-­
T q

e

which is the largest of the case bounds.

(41)

, (42)

Q.E.D.

The following example shows that the bound is
approachable for a large set of jobs.

Example 5: m jobs of the form (n,o)}
Let F = {n(n-l) jobs of the form (E,l)

1 job of the form (E,n)

The demand schedule with the longest completion
time, T looks like

AI ~I[
B ~'I11t1

Figure 13

It follows that T = 3n-l + E (!!.)
e m

The demand schedule with the shortest completion
time, T is

B I 1f#+. I
Figure 14

And T n + n(n-l) E +E
e m

Tt = 3n-l+ E(n/m)

T n+!!.E+E
e m

Tt
lim

E+O T
e

3 _ I
n

Table I places this flow-shop result in per­
spective with known results of simple heuristic
algorithms for similar models.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

SYSTEM JOB SET ALGORITHM TL/TE TAITE TA/TL

2 processors of Flow-shop Johnson Ordering 1/2
different types

n identical independent largest 2-l/n (4/3)-(1/3n) (4n-l) / (6n-3)
processors tasks first

M A's and Flow-shop Modified Johnson 3 1
max(m.n)

1
2- max(m.n) (2n-l)/(3n-l)

n B's Ordering

Table 1: Comparison of several known results on similar models

3. Extensions of the Model

In the previous section we dealt exclusively
with jobs of type 1. Define G={gl,g2, ... ,gs-1,gs}

to be a set of flow-shop jobs of type 2, i. e. the
first of two nodes must be executed on a B pro­
cessor. The MJO criterion can be restated for
jobs of type 2:

a i ~ a j b i
gj preceeds gi if: min Cm>n) < min CiiI'n)

in case of equality, largest g first.

From symmetry considerations the bounds for type 1
jobs also apply to type 2 jobs. Jobs of type 3
may be considered as two jobs, a type 1 and a
type 2.

It would be of interest to see if MJO thus
extended is of value in scheduling jobs with more
general resource graphs. To be applicable, the
more complex structures must be mapped into the
two nodes of the model. This is done by taking
the first available node of the resource graph as
the first of two in the model. The second node
of the model is constructed from the scaled sum
of all nodes remaining. It is assumed to belong
to the processor opposite to that selected as the
first node, in accordance with the constraints of
the model. Nodes belonging to the opposite kind
of processor are scaled by min or nlm, whichever
is necessary to convert all nodes to the same
dimension.

The pseudo jobs thus created conform to all
the constraints of the model. These pseudo jobs
are then sorted according to MJO. Assignments to
processors are then made on a demand basis. When
the first node of any pseudo job, the real one,
completes a new pseudo job is computed for all
nodes whose execution was precluded by the node
now complete. Pseudo jobs are created in this
manner until only two real nodes remain for a job,
at which time there is no further need of pseudo
jobs.

A simulation test of this extension was con­
ducted. The structure of the resource graphs was
limited to two parallel paths, one A - request
and one B-request. A given node could depend on
the previ ous A - node, B -- node, or both. 10 , 000
jobs were constructed in this fashion with the
number of nodes per job being a uniformly distrib­
uted random number between n+m and 2mn. The pre­
CAdence relations of each node were also determined
by a random variable. The size of the nodes was
also uniformly distributed between zero and the
respective number of processors.

138

The job set was executed with the MJO ex­
tension described above, and then again using the
task list as generated. The MJO extension was
found to provide job times that were on the
average 4-8% smaller than produced by the random
ordering. It is interesting to note that Manacher

[8] quotes 5-15% as the typical savings of a
heuristic over random in scheduling tasmon a
system of n identical processors.

REFERENCES

1. E. G. Coffman, Jr. and R. L. Graham, "Optimal
Scheduling for Two-Processor Systems" Acta
Informatica 1:. (1972), pp 200-213. --

2. M. Fujii, T. Kasami, K. Ninomiya, "Optimal
Sequencing of Two Equivalent processors"
SIAM J. Appl. Math. ~, No.3 (1969),
pp 784-789.

3. ----- "Erratum", SIAM J. Appl. Math. 20, No.1
(1971), pp 141.

4. R. L.Graham,"Bounds on Multiprocessing
Timing Anomalies" SIAM J. Appl. Math. ~,
No.2 (March 1969), pp 416-429.

5. T. C. HU,"Parallel Sequencing and Assembly
Line Problems" Oper Res 9, No.6 (1961),
pp 841-848.

6. J. R. Jackson, "An Extension of Johnson's
Resul ts on Job-Lot Scheduling" Naval Res.
Log. Quart. 3, No.3 (1956).

Also, Theory of Scheduling, R. W. Conway,
et al., Reading Mass: Addison-Wesley, 1967,
Chapter 5.

7. S. M. Johnson, "Optimal Two- and Three-Stage
Production Schedules with Setup Times Included'
Navel Res. Log. Quart. 1, No.1 (1954).

Also, Theory of Scheduling, R. W. Conway,
et al., Reading Mass: Addison-Wesley, 1967,
Chapter 5.

8. G. K. Manacher, "Production and Stabilization
of Real-Time Task Schedules" JACM 14, No.3
(1967) pp 439-465. -- - - -

9. V. Y. Shen, Y. E. Chen, "A Scheduling Strategy
for the Flow-Shop Problem in a System with
Two Classes of Processors" Proc. 6th An.
Princeton Conf. on Infor. Science and Systems
(1972), pp 645-649.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

SCHEDULING IN A MULTIPROCESSOR ENVIRONMENT(a)

J.M. Gwynn and R.J. Raynor
School of Information and Computer Science

Georgia Institute of Technology

Summary

In a multiprocessor system, the handling of
interrupts generated by jobs in the processors is
assigned to a supervisory program and associated
data base. Techniques for deciding which proc­
essor executes the supervisor includes master­
slave. floating executive control, and others[l].
Regardless of the technique employed, queueing of
requests to the supervisor may occur. In a
master-slave system, the master processor can
handle only one request at a time. In a floating
executive system, only one processor can access
the supervisor's data base at a time[2].

Madnick has developed a finite-source
queueing model which explicitly relates the num­
ber ~f processors in the system to the average
number of processors idle due to clustering of
requests to the supervisor. As an indication of
the severity of the problem, his model predicts
that a system with 21 processors will have an
average of 2.8 processors idle due to supervisor
clustering[2]. Due to the nature of his model,
however, this may be a pessimistic estimate.

A resolution to this problem can exist only
if the supervisor is not saturated, ie, if the
total expected execution time of the supervisor
during a given period is not greater than the
length of that period. Stated another way, the
supervisor will not be saturated if the system is
designed such that the supervisor is not a
limiting resource. Assuming an unsaturated sys­
tem, the natural solution to the problem would
seem to be to schedule jobs to the processors in
such a way that they would cause an interrupt at
a time when the supervisor was idle[3]. The
assumption implicit in this solution is that, for
each job in the system, the time until the next
interrupt must be predictable from the job's
history of execution. While prediction of this
information has not been implemented in many sit­
uations, Pass has used a single exponential
smoothing formula and corrector which dynamical­
ly modifies the smoothing constant at each inter­
rupt with promising success[4]. It will there­
fore be assumed that this information, as well as
the length of time the supervisor requires to
handle an interrupt, can be predicted with some
degree of accuracy.

The algorithm to implement this solution
would be a simple two table search. The first
table would have an entry for each ready job in
the mix specifying the time until the next inter­
rupt and the supervisor time required to handle
that type of interrupt. The other table would be
a schedule of supervisor idle periods. For each
job in the mix, a decision would be made as to
whether the supervisor had an idle period corre­
sponding to the period from current time plus

(a)This research was supported in part by NSF
Grant GN-655.

139

process time to current time plus process time
plus supervisor time. A match would cause that
job to be scheduled. The order in which the
first table is searched may be determined by
priority or some other external criteria.

While the algorithm just described is
simple, the amount of computation involved would
perhaps be prohibitive. For this reason a sub­
optimal algorithm was developed which requires
much less computation at the price of a small
decrease in effectiveness. This algorithm is
based on the original but with a discretization
of time into blocks of time. Based on the num­
ber of comparisons in the search, the sub-optimal
algorithm is approximately 2(P+l)/F times faster
than the optimal one; where P is the number of
processors and F is the ratio of average super­
visor time to block size. A more important point
is that the sub-optimal algorithm would allow a
hardware implementation, using only a few special
registers, which would reduce the search to a
few logical operations.

For F=l, a case in which the hardware imple­
mentation would be especially feasible, a GPSS
simulation model has predicted that for 21 proc­
essors there would be a reduction in average
number of idle processors to 0.7, with a corre­
sponding increase in thruput of 12%. While this
is 75% of optimal improvement, it is expected
that this could be improved, possibly to 90%,
thru fine tuning of the algorithm parameters.

Since the mix size is assumed to be large
enough to find a job that will interrupt during a
supervisor idle period, it is likely that some
jobs may be delayed an excessive amount of time.
The standard procedure for dealing with this
problem is dynamic priority assignment. Current
investigations are underway to determine the
effect of this and other such modifications on
the performance improvement gained thru the use
of the algorithm developed here.

References

[lJ Goutanis, R.J. and Viss, N.L. "A Method of
Processor Selection for Interrupt Handling
in a Multiprocessor System", Proceedings of
the IEEE, v54, #12, (1966), 1812-1819.

[2] Madnick, S.E. "Multi-Processor Software
Lockout", Proc '68 ACM Nat. Conf., 19-24.

[3J Meridallio, R.A. and Holland, R.C. "Simula­
tion Design of a Multiprocessing System",
AFIPS FJCC, (1968), 1399-1410.

[4J Pass, E.M. An Adaptive Microscheduler for a
Multiprogrammed Computer System, Ph.D.
Dissertation, (1973), Georgia Tech, Atlanta,
Georgia.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

RADCAP: AN OPERATIONAL
PARALLEL PROCESSING FACILITY

James D. Feldman
Goodyear Aerospace Corporation

Akron, Ohio 44315

Oskar A. Reimann
Rome Air Development Center

Rome, N. Y.

Summary: An overview is presented of RADCAP,
the operational associative array processor (AP)
facility installed at Rome Air Development Center
(RADC). Basically, this facilJ-ty consists of a
Goodyear Aerospace STARANla) associative array
(parallel) processor and various peripheral devices,
all interfaced with a Honeywell Information Systems
(HIS) 645 sequential computer, which runs under
the Multics time-shared operating system. The
RADCAP hardware and software are described
briefly here because they are detailed in companion
papers presented at this conference (1) (2). The
latter part of this paper dwells on the objectives of
the RADCAP facility and plans for its use.

(a)TM. Goodyear Aerospace Corporation. Akron. Ohio.

RADCAP Facility

Figure 1 shows a block diagram of the hard­
ware within the RADCAP facility. The 645, which
has been in existence at RADC for several years,
is a very large computer system with a multitude
of peripherals typical of large time-shared systems.
In March 1973, hardware was delivered to RADC
in the form of a STARAN parallel processor with
four arrays, a custom input/output unit (CIOU). a
hardware performance monitor, and a variety of
peripherals. Subsequently, the CIOU was used to
interface STARAN with a 645 I/O channel. At the
same time, STARAN software was interfaced with
the 645 Multics time-shared operating system.

------------------GACHARDWARE--------------------, ,..---------- RADC HARDWARE-------------

... ... c
~a::

a::'" ",CI ... c c a::

HARDWARE
PERFORMANCE
MONITOR

STARAN S/1000P
ASSOCIATIVE PROCESSOR
(4 ARRAYS)

c...
a:: ... c ... CI ...

C a:: a:: CI
~ ",a:: c'" a:::e ~12 :e'" CI
... 2 >- 2C
C= "'a:: ='" ~ a::

a::
'" ~

"'2
~=

CUSTOM
I/O
UNIT

... ...
",a::
ClCI
-~ a:: ...
~~ a:: ...
C-...CI

Figure 1.

...
T1 T2 => "'c :e ...

= ... 2 ... c- "--, :e Cl
...~
"'a:: c ...

RADCAP Facility

140

645 COMPUTER
WITH MULTICS
TIME SHARED
OPERATING SYSTEM

T3 T4

'V"
USER
TERMINALS

8
~

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

At present, the RADCAP facility is totally
operational and includes system software to allow
for operation in both a STARAN stand-alone mode
and an integrated STARAN/Multics mode.

STARAN Parallel Processor

STARAN can perform search, arithmetic,
and logical operations simultaneously on either all
or selected words of its memory. Figure 2 shows
the basic STARAN elements. The most important
is the associative array and its unique multi-dimen­
sional access capability which, along with the other
elements, are described in more detail in refer­
enced publications (1) (3) (4). Listed below are
brief descriptions of the STARAN elements:

1. Associative array: provides multi-dimen­
sional aCCE;SS, content-addressable memory with
65,536 (2 10) bits of storage and 256 processing ele­
ments; permits parallel arithmetic, search, and
logical operations.

2. AP control: performs data manipulation
within associative arrays as directed by program
stored in AP control memory.

3. AP control memory: stores AP control
instructions. Can also store data and act as buffer
between AP control and other system elements.

AP CONTROL MEMORY

MEMORY PORT LOGIC

4. Sequential controller and memory: per­
forms maintenance and test functions, controls
peripherals, maintains job control, provides means
for operator communication between various
STARAN elements and, assembles STARAN pro­
grams written in MAPPLE (Macro-~ssociative
Erocessor Erogramming banguag~).

5. External function: transfers control infor­
mation among STARAN elements.

STARAN has been designed to provide a flexible
I/O capability. The standard peripherals for
STARAN are listed below, along with a typical list
of optional peripherals:

1. Standard: cartridge disk drive and control,
paper tape reader, paper tape punch, and keyboard
printer.

2. Optional: line printer, card reader, mag­
netic tape, keyboard crt, and other peripherals, as
desired, that are compatible with the Digital Equip­
ment Corporation (DEC) PDP-ll.

All these peripherals interface with the
STARAN system's sequential controller, a PDP-ll
mini-computer. STARAN also provides facilities
for interfacing with other processors. The four
buses provided, (see STARAN block diagram, Fig­
ure 2) are the direct memory access, the buffered
I/O, external function, and parallel I/O.

DIRECT
MEMORY
ACCESS
(OMA)

~ BUFFEREO

1 INPUTI

l t
OUTPUT
(BIO)

AP SEQUENTIAL K:) CONTROL

I
I
I

I
I L ___

ASSOCIATIVE
ARRAY 0
256 X 256

OPTIONAL
ASSOCIATIVE
ARRAY
(UP TO 32 TOTAL)
256 X 256

Figure 2.

CONTROLLER

t
I EXTERNAL FUNCTION LOGIC

STARAN Block Diagram

111.1

1
r

EXTERNAL
FUNCTION
(EXF)

\
PARALLEL
INPUTI
OUTPUT
(PIO)

/

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

The direot memory access is a 32-bit bus for
STARAN to address external memory. The AP
control or the sequential controller can access
external memory at a rate dependent upon this
memory's cycle time.

The buffered I/O is a 32-bit bus for processors
to address STARAN. Depending upon which portion
of control memory is accessed, the access rate is
0.4 to 1.0 micro sec per 32-bit word.

The external function is a bus for exchange of
control signals. Discrete signals and interrupts
can be both generated and accepted across this bus.

The parallel I/O is a bus for STARAN array
I/O. Up to 256 bits per array (e. g., one bit per
array word) can be provided. If all 32 arrays are
implemented, up to S192 bits can be 'utilized in
parallel at a transfer rate less than one micro­
second, dependent upon the desired application.

STARAN Performance Summary

In a high-speed, asynchronous, pipe-line type
processor such as STARAN, it is difficult to sum­
IDarize perforIDance since speeds vary with instruc­
tion types, types of loops, etc. Also, the overall
effective speed depends upon the number of words
in the arrays over which the siIDultaneous opera­
tions are occurring. However, an effort is IDade
below to list the perforIDance and features of a 256
x 256 associative array, the control unit, and the
interface portion of STARAN:

Associative Array Features

Up to 32 Arrays per systeID

Multi-diIDensional access (bit slice or word slice)

Array IDodule speed:

Typical search: 150 nsec/bit

Typical add or subtract: SOO nsec/bit

Read bit or word slice (256 bits): 150 nsec

Write bit or word slice (256 bits): 300 nsec

Control Unit Features

Two separate processors: AP control, sequential
controller

Solid-state controlIDeIDory capacity: 2K x 32
standard, 4K x 32 IDaxiIDum

Solid-state controlIDeIDory speed: 150 nsec/
instruction (typical)

Bulk core capability: 16K x 32 standard, 32K x
32 IDaxiIDum

Bulk core speed: 1 microsec (read or write)

Interface Capabilities

STARAN to address externalIDeIDory: rate­
IDeIDory dependent

142

External processor to address STARAN: 0.4 to
1. 0 IDicrosec/32-bit word

Parallel I/O to/frOID associative arrays: less
than 1.0 IDicrosec/S192 bits (IDaxiIDum)

Control signals and interrupts

CUStOID Input/Output Unit (CIOU)

Figure 3 shows a siIDplified block diagraID of
the STARAN/RADCAP CUStOID input/output unit
(CIOU). As indicated, the CIOU contains a parallel
input/output (PIO) IDodule, a 645 cOIDputer interface,
and an internal perforIDance IDonitor. The CIOU
functions as a mini-processor IDuch the saIDe as the
control unit portion of STARAN. Processing within
one array IDodule (e. g., under STARAN control)
IDay be concurrent with I/O in another array IDodule
(e. g., under PIO control).

PARALLEL I/O MODULE

MEMORY
645 INTERNAL
INTERFACE t-------- PERFORMANCE
LOGIC

I-

Figure 3.

MONITOR

CONTROL

-- --- --
PORTS

SiIDplified Block DiagraID
of CuStOID I/O Unit

As directed by instructions stored in PIO con'"
trolIDernory, the optional PIO IDodule IDanipulates
data aIDong and within the associative arrays con­
current with operations as directed by AP control.
The PIO IDodule contains eight ports, with 256 bits
per port to accolDIIlodate associative array I/O and
to perIDute data.

The 645 interface logic provides a cOIDIDunica­
tion path between the 645 cOIDputer and the STARAN
systeID. This iIt erface logic contains a 30-charac­
ter queue and a 32-bit status register which are tied
to a 645 I/O channel. The status register contains
interface control signals, and the queue buffers data
being transferred to or frOID the 645.

The internal perforIDance IDonitor, although
contained in the CIOU, is best discussed in the
following description of the hardware perforIDance
Inonitor.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Hardware PerforIllance Monitor

To help Illeet a RADCAP facility objective of
Illeasuring systeIll perforIllance, a hardware perfor­
Illance Illonitoring capability has been provided by an
internal perforIllance Illonitor in the CIOU cabinet
and an external perforIllance Illonitor systeIll. Meas­
ureIllents can be Illade to deterIlline instruction ex­
ecution tiIning, control IlleIllory and bus utilization,
array utilization, and activity in the pager, the PIO
Illodule, and the 645 interface.

The internal perforIllance Illonitor is used ex­
clusively for STARAN instruction execution times
and instruction event tiIlles. The events counted
and tiIlled are the execution of flagged instructions
in AP control. Between a start flag and an end flag,
a tiIller increIllents at a 100 -nsec rate. Overflows
froIll this counte.r interrupt the sequential controller.
In addition, the sequential controller can interrogate
the event counter and tiIller.

Th.e external perforIllance Illonitor is a self­
contained systeIll that can Illonitor any point of
STARAN or the custOIll I/O. Data are acquired
via probes that detect logical signal changes in either
an event count or elapsed tiIlle Illode. Several probes

can be logically connected via a patchboard to trigger
a counter. At regular intervals, the contents of the
counters are written as a record on a magnetic tape
unit. The perforIllance Illonitor software then eval­
uates the collected data and produces the results in
the forIll of reports and graphs. The software for
the perforIllance Illonitor runs on the 645.

Physical Description of Hardware

All the eleIllents shown in the STARAN block
diagraIll (Figure Z), including the associative
arrays, are built using dual-in-line IC's (integrated
circuits) Illounted on Illulti-Iayer printed circuit
boards. Thus, the physical construction of
STARAN and the CIOU is siIllilar to that of typical
high-speed sequential processors.

Figure 4 shows Goodyear Aerospace's STARAN
deIllonstration and evaluation facility. Table I gives
the approxiIllate nUIIlbers of cabinets, boards, and
IC's for the various STARAN Illodels. These fig­
ures do not account for I/O logic, since this varies
froIll one installation to another. The STARAN/
RADC~P CIOU, which includes the parallel I/O
option for all four arrays, contains approxiIllately
ZOO boards and 8,000 IC's.

Figure 4. STARAN DeIllonstration and Evaluation Facility

143

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

* Table 1. Approximate 5TARAN Component Count

5TARAN* No. of No. of
Model Arrays Cabinets

5-250 1 3

5-500 2 3

5-750 3 3

S-lOOO 4 4

S-1250 5 4

S-1500 6 4

S-1750 7 5

S-2000 8 5

S-4000 16 8

* Without input/output

Although up to three arrays can be packaged in
one cabinet, the RADCAP configuration has two
arrays per cabinet for symmetry. Figure 5 shows
the equipment that was delivered to RADC. This
includes a sequential control cabinet, an AP control
cabinet, two AP memory cabinets for the four
associative arrays, and a CIOU cabinet. The disk
drive and line printer are mounted in separate
cabinets. The keyboard/printer, the card reader,
and the graphics display console can be mounted on
table tops or pedestals. As mentioned earlier, the
internal performance monitor is packaged within
the CIOU cabinet. The external performance moni­
tor, not shown in Figure 5, mounts on a table top.

LINE PRINTER

GRAPHICS DISPLAY

No. of Printed No. of Integrated
Circuit Boards Circuits

220 9,000

276 11,500

332 14, 100

412 16,700

468 19,300

524 21,900

604 24,900

660 27,500

1156 48,700

Summary of System Software

The system software available for STARAN/
RADCAP is capable of operating STARAN in a
stand-alone mode or when integrated with the 645,
in a STARAN/Multics configuration. The system
software is based upon a disk operating system,
which provides ready access to system programs,
device independent I/O, and a file system. Opera­
tion of STARAN can be under direct control of the
user at the control console or run in a batch mode
with a control stream from an input device like the
card reader.

SEQUENTIAL CONTROL CABINET

CONTROL CONSOLE

Figure 5. STARAN Complex at RADC

141.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

The total assembly package for STARAN has a
macro language processor, an APPLE assembler,
and a relocating linker. Programs are written in
the APPLE and MAPPLE languages. Extensive
string handling and substitution are implemented in
the macro-preprocessor. APPLE is a symbolic
language that includes mnemonics for parallel and
associative operations. The linker combines
separately assembled object modules by relocating
code as necessary and resolving globally defined
symbols.

Control of processing in STARAN is through
interactive system routines. These routines are
the interface between application program execu­
tion and the user. They allow the user to start and
halt STARAN, to load programs and overlays, and
to debug programs with trace, memory modification,
and dump commands.

Diagnostic programs for STARAN hardware are
disk resident. The programs can be called individ­
ually, in groups related to specific parts of the hard­
ware, or as a total set for complete system testing.
Fault detection and location are provided.

Additional software for the integrated STARAN/
Multics operation is designed to handle the interface
between the computers and the use of STARAN from
Multics. For the interface, a special device driver
module has been added to the STARAN disk operating
system. This driver is similar to drivers used for
peripherals. It has been specialized for Multics
and can accommodate 16 open files simultaneously.
A device interface module (DIM) has been added to
Multics as the counterpart to the device driver.
These two modules are basic parts of each machine's
operating system and are transparent to the pro­
grammer.

STARAN can be operated from Multics by
commands a user inputs at a terminal or from a
file. File control procedures handle STARAN re­
lated keyboard inputs, and provide the interface
between the DIM and the MULTICS storage system.
With these procedures, a user process executing
in the 645 can call for execution of a STARAN
program.

To facilitate the assembly of STARAN programs,
a cross assembler is provided for time-shared use
in Multics. This assembler accepts MAPPLE and
APPLE as inputs.

Objectives and Uses

The basic objective of the RADCAP facility is
to explore the performance of a hybrid computer
configuration (STARAN associative processor in­
terfaced with a 645 sequential processor) on real­
world, real-time problems. A specific goal is to
determine the cost-effectiveness of associative/
parallel processing in such an environment. Asso­
ciative processing has been studied extensively in
both theoretical and simulation studies, but no
significant practical operating experience with
them exists. Experimentation is necessary to pro-

145

vide "hard" data and fill in the presently existing
void. Practical operating experience also is re­
quired so that a general-purpose associative proc­
essor configuration could be developed if results
warrant it.

The RADCAP facility will be used in an experi­
mental program to evaluate the internal performance
of this hybrid computer configuration by means of
hardware and/or software performance monitors
to determine internal component utilization and
system bottlenecks. Programming aspects of asso­
ciative processing also will be investigated. Asso­
ciative-processing programming is not well under­
stood and represents radical departures from the
traditional programming approach. The program
loop is being replaced by hardware processing ele­
ments. This requires a whole new programming
attitude. Programming languages suitable for
associative processors probably will be quite dif­
ferent from present ones. This basic uncertainty
must be explored and some practical operating
experience gained. As a test problem, indicative
of high data rate and real-time processing require­
ments, the data processing functions of an air
surveillance system (AWACS) have been chosen.
The primary functions to be investigated are track­
ing (both passive and active), display processing,
and weapons control.

The scope of the research program can be
described with the aid of Figure 6. The flow will
begin with the development of associative-sequen­
tial algorithms for each of the AWACS data proc­
essing functions. As these algorithms are being
developed, the application engineers will make
known to a language and system software group
those instruction level and system routine functions
required to support the AWACS processing func­
tions.

Based on this input, the language group will
develop a language and implement this language on
the RADCAP testbed. The system software activity
will implement routines to support the command
language. The applications program will then be
run on the testbed using, where possible, nonsyn­
thesized data as input. The machine activity will
be monitored to gather statistics on utilization,
identify system bottlenecks, and determine the
efficiency with which the algorithms provide solu­
tion.

The data collected will then be analyzed to
determine where cost effective improvements can
be made to software and/or hardware in order to
improve the cost-effective performance of the
system. These changes will be incorporated into
the system via micro program or software routines.
If the change is to be a hardware design, that de­
sign will be made to the gate level so that perfor­
mance and cost effectiveness determination can be
made.

When the solution to the problem is finally
refined, it will be contrasted with known sequential
solutions.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

LIVE/SIMULATED I L DATA DEVELDP HIGHER ORDER SYSTEM
ALGORITHMS LANGUAGE SOFTWARE
FOR FUNCTIONS DEVELOPMENT DEVELOPMENT

l
RUN PROGRAM ~ I PERFORMANCE I
ON TESTBED MONITORING

I l t
IMPROVE
SOLUTION EVALUATE
ALGORITHM I SOLUTION

I 1 ! FINAL PERFORMANCE

ASSOCIATIVE PROCESSOR
ANAL YSIS AND

COMPUTER SYSTEM
EVALUATION

DESCRIPTION ! I I 'OCIIMEMY 1j LANGUAGE

I SPECIFICATION
RESULTS

I OPERATING SYSTEM I J SPECIFICATION

Figure 6. Flow of RADCAP Research Project

Initially each of the AWACS data processing
functions will be treated separately. The final
task will then be to develop a system executive and
integrate all the functions to reflect the real world.

References

(1) K.E. Batcher. STARAN/RADCAP Hardware
Architecture, GER -15947, Goodyear Aerospace
Corporation (ZZ August 1973).

146

(Z) E. W. Davis. Jr. STARAN/RADCAP System
Software. GER-15948. Goodyear Aerospace
Corporation (ZZ August 1973).

(3) K. E. Batcher, "Flexible Parallel Processing
and STARAN." 197Z WESCON Technical Papers.
Session l.

(4) J.A. Rudolph, "A Production Implementation
of an Associative Array Processor - STARAN,"
197Z Fall Joint Computer Conference Proceed­
ings, (December 197Z), pp. ZZ9 - 241.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

STARAN/RADCAP HARDWARE ARCIDTECTURE

Kenneth E. Batcher

Goodyear Aerospace Corporation
Akron, Ohio 44315

Summary: Hardware architecture is described
for RADCAP, the operational associative array
proces sor (AP) facility installed at Rome Air De­
velopment Center (RADC), N. Y. Basically, this ()
facility consists of Goodyear Aerospace STARAN a
parallel processor and various peripheral devices
interfaced with a Honeywell Information Systems
(HIS) 645 sequential computer, which runs under
the Multics time -shared operating system. The
hardware of STARAN/RADCAP is described with
particular emphasis on the parallel processing
elements.

Introduction

Companion papers presented at this confer­
ence describe the potential use of the RADCAP
facility and its software (I) (2). The STARAN as­
sociative array (parallel) processor (3) employed
in RADCAP has been modified to include a custom
parallel input/output (PIO) unit and an interface
to the 645 computer.

The parallel processing capability of STARAN
resides in four array modules. Each array module
contains 256 small processing elements (PE's).
They communicate with a multi-dimensional access
(MDA) memory through a "flip" network, which
can permute a set of operands to allow inter-PE
communication. This gives the programmer a
great deal of freedom in using the proces sing
capability of the PEls. At one stage of a program,
he may apply this capability to many bits of one or
a few items of data; at another stage, he may apply
it to one or a few bits of many items of data.

The remainder of this paper deals with the
MDA memories, the STARAN array modules, and
the STARAN/RADCAP elements.

Multi-Dimensional Access (MDA) Memories

A common implementation of associative
processing is to treat data in a bit-sequential
manner. A small one-bit PE (processing element)
is associated with each item or word of data in
the store, and the set of PEls accesses the data
store in bit-slices; a typical operation is to read
Bit i of each data word into its associated PE or
to write Bit i from its as sociated PE.

The memory for such an associative processor
could be a simple random-access memory with the
data rotated 90 deg, so that it is accessed by bit­
slices instead of by words .. Unfortunately, in most
applications, data come in and leave the processor
as items or words instead of as bit-slices. Hence,

(a)
TM, Goodyear Aerospace Corporation, Akron,
Ohio.

147

rotating the data in a random-access memory com­
plicates data input and output.

To accommodate both bit-slice accesses for
associative processing and word-slice accesses
for STARAN input/output (I/O), the data are stored
in a multi-dimensional access (MDA) memory
(Figure I). It has wide read and write busses for
parallel access to a large number (256) of memory
bits. The write-mask bus allows selective writing
of memory bits. Memory accesses (both read and
write accesses) are controlled by the address and
access mode control inputs; the access mode se­
lects a stencil pattern of 256 bits, while the address
positions the stencil in memory.

For many applications, the MDA memory is
treated as a square array of bits, 256 words with
256 bits in each word. The bit-slice access mode
(Figure 2A) is used in the associative operations

REAo!WRITE CONTROL ,
WRITE-MASK BUS (256)

MoA WRITE BUS (256)

MEMORY

(65,536 BITS)

READ BUS (256)

t ADDRESS BUS

ACCESS MODE BUS

Figure 1. Multi-Dirn.ensional Access Mern.ory

A - BIT·SLlCE ACCESS MODE B - WORD ACCESS MODE

256 256

256 256

Figure 2. Bit-Slice and Word Access Modes

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

to access one bit of all words in parallel, while
the word access mode (Figure 2B) is used in the
I/O operations to access several or all bits of one
word in parallel.

The MDA memory structure is not limited to
a square array of 256 by 256. For example, the
data may be formatted as records with 256 8 -bit
bytes in each record. Thirty-two such records
can be stored in an MDA memory and accessed
several ways. To input and output records, one
can access 32 consecutive bytes of a record in par­
allel (Figure 3A). To search key fields of the data,
one can access the corresponding bytes of all rec­
ords in parallel (Figure 3B). To search a whole
record for the presence of a particular byte, one
can access a bit from each byte in parallel (Figure
3C).

The MDA memories in the RADCAP array
modules are bipolar. They exhibit read cycle times
of less than 150 nsec and write cycle times of less
than 250 nsec.

A - ACCESS TO 32 CONSECUTIVE BYTES
OFA RECORD

256 8-BIT BYTES

32

B - ACCESS TO CORRESPONDING BYTES
OF ALL RECORDS

256 8-BIT BYTES

32

C - ACCESS TO ONE BIT OF EVERY

32

Figure 3. Accessing 256-Byte Records

148

STARAN Array Modules

A STARAN array module (Figure 4) contains
a MDA memory communicating with three 256 -bit
registers (M, X, and Y) through a flip (permutation)
network. One may think of an array module as hav­
ing 256 small processing elements (PE' s), where a
PE contains one bit of the M register, one bit of the
X register, and one bit of the Y register.

The M register drives the write mask bus of
the MDA memory to select which of the MDA mem­
ory bits are modfied in a masked-write operation.
The MDA memory also has an unmasked-write oper­
ation that ignores M and modifies all 256 accessed
bits. The M register can be loaded from the other
components of the array module.

In general, the logic associated with the X reg­
ister can perform any of the 16 Boolean functions of
two variables; that is, if Xi is the state of the ith
X -register bit, and fi is the state of the ith flip net­
work output, then:

where ~ is any Boolean function of two variables.
Similarly, the logic associated with the Y -register
can perform any Boolean function:

Yi -~ (Yi' fi) (i = 0, 1, ...• ,255)

where Yi is the state of the ith Y -register bit. The
programmer is given the choice of operating X
alone, Y alone, or X and Y together.

If X and Yare operated together, the same
Boolean function, ~, is applied to both registers:

Xl·"~ (x., f.)
1 1

The programmer also can choose to operate
on X selectively using Y as a mask:

(where Yi = 1)

(where Yi = 0)

Another choice is to operate on X selectively
while operating on Y:

(where Yi = 1)

(where Yi = 0)

In this case, the old state of Y (before modi­
fication by ~) is used as the mask for the X oper­
ation.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

8 ADDRESS LINES
INPUT PLUS ACTIVITY-DR

256

" 256 t t r:ESDLVE~ I SELECTOR I " 256
256

! ",. 256

256

MDA MASK MASK 256

MEMORY 256 M X 256 Y
REG f--C

REG REG I--
(256 X 256) FLIP

NETWORK I--
f--- C LOGIC I--- C LDGIC r--C

256 " 256 ~ 256 256 256

8 AOORESS

t t t t 8 MODE MIRROR, OUTPUT
SHIFT
CONTROL

NOTE: C; CONTROL SIGNALS CONTROL
SIGNALS -

Figure 4. STARAN Array Module

For a programming example, the basic loop
of an unmasked add fields operation is selected.
This ope ration adds the contents of a Field A of
all memory words to the contents of a Field B of
the words and stores the sum in a Field S of the
words. For n-bit fields, the operation executes
the basic loop n times. During each execution of
the loop, a bit-slice (a) of Field A is read from
memory, a bit-slice (b) of Field B is read, and a
bit-slice (s) of Field S is written into memory. The
operation starts at the least significant bits of the
fields and steps through the fields to the most sig­
nificant bits. At the beginning of each loop exe­
cution, the carry (c) from the previous bits is
stored in Y and X contains zeroes:

o

C.
1

The loop has four steps:

Step 1: Read Bit-slice a and exclusive-or(E9) it to
X selectively and also to Y:

149

The states of X and Yare now:

x.
1

a.c.
1 1

a. @e.
1 1

Step 2: Read Bit-slice b and exclusive-or it to X
selectively and also to Y:

Registers X and Y now contain the carry and sum
bits:

x.
1

a.c· @ a.b. @b.c
11 11 Ii

I
c· 1

Step 3: Write the sum bit from Y into Bit-slice s
and also complement X selectively:

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

The states of X and Yare now:

Step 4: Read the X-register and exclusive-or it
into both X and Y:

This clears X and stores the carry bit into Y to
prepare the registers for the next execution of
the loop:

o
,

Yi = c i·

Step 3 takes less than 250 nsec, while Steps I,
2, and 4 each take less than 150 nsec. Hence, the
time to execute the basic loop once is less than
700 nsec. If the field length is 32 bits, the add
operation takes less than 22.4 microsec plus a
small amount of setup time. The operation per­
forms 256 additions in each array module. This
amounts to 1024 additions, if all four array modules
are enabled, to achieve a processing power of
approximately 40 MIPS (million-instructions -per­
second).

The array module components communicate
through a network called the flip network. A se­
lector chooses a 256 -bit source item from the
MDA memory read bus, the M register, the X
register, the Y register, or an outside source.
The bits of the source item travel through the flip
network, which may shift and permute the bits in
various ways. The permuted source item is
presented to the MDA memory write bus, M reg­
ister, X register, Y register, and an outside
destination.

The permutations of the flip network allow
inter-PE communication. A PE can read data
from another PE either directly from its registers
or indirectly from the MDA memory. One can per­
mute the 256-bit data item as a whole or divide it
into groups of 2, 4, 8, 16, 32, 64, or 128 bits and
permute within groups.

The permutations allowed include shifts of
I, 2, 4, 8, 16, 32, 64, or 128 places. One also
can mirror the bits of a group (invert the left­
right order) while shifting it. A positive shift of
mirrored data is equivalent to a negative shift of
the unrnirrored data. To shift data a number of
places, multiple passes through the flip network
may be required. Mirroring can be used to re­
duce the number of passes. For example, a
shift of 31 places can be done in two passes: mir­
ror and shift 1 place on the first pass, and then
remirror and shift 32 places on the second pass.

The flip network permutations are particularly
useful for fast-fourier transforms (FFT's). A 2n
point FFT requires n steps, where each step pairs
the 2n points in a certain way and operates on the
two points of each pair arithmetically to form two
new points. The flip network can be used to re­
arrange the pairings between steps. Bitonic sort­
ing (4) and other algorithms (5) also find the per­
mutations of the flip network useful.

Each array module contains a resolver reading
the state of the Y register. One output of the re­
solver (activity-or) indicates if any Y bit is set.
If some Y bits are set, the other output of the re­
solver indicates the index (address) of the first
such bit. Since the result of an associative search
is marked in the Y register, the resolver indicates
which if any words respond to the search.

ST ARAN/RADCAP Elements

Each of the four array modules in STARAN/
RADCAP (Figure 5) contains an aSSignment switch
that connects its control inputs and data inputs and
outputs to AP(associative processor) control or the
PIO (parallel input/output) module.

The AP control unit contains the registers and
logic necessary to exercise control over the array
modules assigned to it. It receives instructions
from the control memory and can transfer 32 -bit
data items to and from the control memory. Data
busses communicate with the assigned array mod­
ules. The busses connect only to 32 bits of the
256-bit-wide input and output ports of the array
modules (Figure 4), but the permutations of the
array module flip networks allow communication
with any part of the array. The AP control sends
control signals and MDA memory addresses and
access modes to the array modules and receives
the resolver outputs from the array modules.

Registers in the AP control include:

1. An instruction register to hold the 32 -bit in­
struction being executed.

2. A program status word to hold the control
memory address of the next instruction to be exe­
cuted and the program priority level.

3. A common register to hold a 32 -bit search com­
parand, an operand to be broadcast to the array
modules, or an operand output from an array
module.

4. An array select register to select a subset
of the assigned array modules to be operated on.

5. Four field pointers to hold MDA memory ad­
dresses and allow them to be incremented or de­
cremented for stepping through the bit-slices of
a field, the words of a group, etc.

6. Three counters to keep track of the number of
executions of loops, etc.

150

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

CONTROL MEMORY

32 32 16

INSTR DATA
SEQUENTIAL

AP CONTROL CONTROL
(PDP-11)

DATA EXF EXF 16

I t
t

EXF LOGIC

32 I
T J I J I I
ARRAY ARRAY ARRAY ARRAY

HIS 645 CHANNEL t
HIS 645
INTERFACE
REGISTERS

t
I

32

SEQUENTIAL
CONTROL
MEMORY DATA INSTR

J ~ PERIPHERALS I
PIO CONTROL

EXF

DATA

32

7

{-6
SPARE - 5 PIO

256 ,-4
FLIP

256
3
2

256 1
/256 0

,....

n
I
I

.-1

l
I
I
I
I
I

MODULE MODULE MODULE MODULE

I
I
I
I
I

3 2 1 0

--1- L -=-_ ~t --_-_ -j .--=.. =- J-.- ARRAY CONTROL --- - --------- - ----I

Figure 5. STARAN/RADCAP Block Diagram.

7. A data pointer to allow stepping through a set
of operands in control memory.

8. Two access mode registers to hold the MDA
memory access modes.

The parallel input/output (PIO) module con­
tains a PIO flip network and PIO control unit (Fig­
ure 5). It is used for high bandwidth I/O and inter­
array transfers.

The PIO flip network perm.utes data between
eight 256 -bit ports. Ports 0 through 3 connect to
the four array modules through buffer registers.
Port 7 connects to a 32-bit data bus in the PIO con­
trol through a fan-in, fan-out switch. Ports 4, 5,
and 6 are spare ports intended for future connec­
tions to high bandwidth peripherals, such as paral­
lel-head disk stores, sophisticated displays, and
radar video channels. The spare ports also could
be used to handle additional array modules. High
bandwidth inter-array data transfers up to 1024

151

bits in parallel are handled by permuting data be­
tween Ports 0, I, 2 and 3. Array I/O is handled
by permuting data between an array module port
and an I/O port. The PIO flip network is controlled
by the PIO control unit.

The PIO control unit controls the PIO flip net­
work and the array modules assigned to it. While
AP control is processing data in sQme array mod­
ules the PIO control can input and output data in
the other array modules. Since most of the regis­
ters in the AP control are duplicated in PIO con­
trol, it can address the array modules associatively.

The control memory holds AP control programs,
PIO control programs, and microprogram sub­
routines. To satisfy the high instruction fetch rate
of the control units (up to 7. 7 million instructions
per second), the control m.em.ory has five banks of
bipolar memory with 512 32 -bit words in each bank.
Each bank is expandable to 1024 words. To allow
for storage of large programs, the control memory

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

also has a 16K-word core memory with a cycle time
of 1 microsec. The core memory can be expanded
to 32K words. Usually the main program resides in
the core memory and the system microprogram sub­
routines reside in bipolar storage. For flexibility,
users are given the option of changing the storage
allocation and dynamically paging parts of the pro­
gram into bipolar storage.

A Digital Equipment Corporation (DEC) PDP-
11 minicomputer is included to handle the periph­
erals, control the system from console commands,
and perform diagnostic functions. It is called se­
quential control to differentiate it from the STARAN
parallel processing control units. The sequential
control memory of 16K 16-bit words is augmented
by a 8K X 16 -bit "window" into the main control
memory. By moving the window, sequential con­
trol can access any part of control memory. The
window is moved by changing the contents of an
addressable register.

The STARAN/RADCAP peripherals include a
disk, card reader, line printer, paper-tape reader/
punch, console typewriter, and a graphics console.

Synchronization of the three control units (AP
control, sequential control, and PIO control) is
maintained by the external function (EXF) logic.
Control units issue commands to the EXF logic to
cause system actions and read system states. Some
of the system actions are: AP control start/stop/
reset, PIO control start/stop/reset, AP control
interrupts, sequential control interrupts, and ar­
ray module assignment.

152

RADCAP connects to a common peripheral
channel of a 645 computer. Channel characters
are 6 bits wide. Instead of interfacing the channel
to one of the three control units in RADCAP, the
channel interface is assigned a set of control mem­
ory addresses so it can be addressed by any con­
trol unit. The interface has a 30-character first-in,
first-out, (FIFO) queue to buffer the data transfer
between the two machines. To reduce the number
of queue accesses, the control units transfer queue
data by character-pairs, 12 bits at a time.

References

(1) J. D. Feldman and O. A. Reimann, RADCAp':
An Operational Parallel Processing Facility,
GER-15946, Goodyear Aerospace Corporation
and Rome Air Development Center (22 August
1973).

(2) E. W. Davis, Jr., STARAN/RADCAP System
Software, GER-15948, Goodyear Aerospace
Corporation (22 August 1973).

(3) K. E. Batcher, "Flexible Parallel Processing
and STARAN," 1972 WESCON Technical
Papers, Session 1.

(4) K. E. Batcher: "Sorting Networks and Their
Applications," 1968 Spring Joint Computer
Conference, AFIPS Proceedings, Vol 32, pp
307-314.

(5) H. S. Stone, "Parallel Processing with the
Perfect Shuffle, " IEEE Transactions on Com­
puters, Vol C-20, No.2, February 1971,
pp 153-161.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

STARAN/RADCAP SYSTEM SOFTWARE

Edward W. Davis
Goodyear Aerospace Corporation

Akron, Ohio 44315

Summary: System software is described for RAD­
CAP, the operational associative array processor
(AP) facility installed at Rome Air Development
Center (RADC), N. Y. The description covers the
software for the stand-alone operation of the Good­
year Aerospace STARAN(a) associative array
(parallel) processor, which is supported by a disk
operating system with a macro-assembler, a
relocating linker and loader, an interactive debug
package, and control procedures. Also described
is the software for the STARAN processor when
integrated with the Honeywell Information Systems
(HIS) 645 sequential computer, which runs under
the Multics time-shared operating system.

Introduction

The potential use of RADCAP and its hard­
ware architecture are described in companion
papers presented at this conference (1) (2). Basi­
cally, the RADCAP facility consists of an opera­
tional STARAN associative array (parallel) proc­
essor (2) (3) and various peripheral devices, all
interfaced with a 645 computer.

There are two modes of RADCAP operation.
First, STARAN can be operated as a stand-alone
parallel processing system. Peripherals for this
mode include a card reader, line printer, paper
tape reader and punch, and cartridge type disk
unit. Second, STARAN and the 645 can be oper­
ated in an integrated fashion. This means that (1)
commands to the STARAN disk operating system
can originate in Multics, (2) the Multics storage
system is available to STARAN users for program
or data storage, and (3) a single task can use both
machines to satisfy its processing requirements.
All peripherals belonging to a stand-alone
STARAN and to the HIS 645 are available when the
machines are integrated.

This paper describes the software for the
STARAN stand-alone mode of operation, then
covers the additional software used with the inte­
grated mode.

Since the STARAN processor architecture is
detailed in a companion paper (2), only a basic dia­
gram is given in Figure 1. The multi-dimensional
access associative arrays and their controls are
the main architectural features. The sequential
control, a Digital Equipment Corporation (DEC)
PDP-ll minicomputer, has a minor role in the
architecture, but is important for software con­
siderations. Other architectural features are
mentioned later in the paper.

(a)TM, Goodyear Aerospace Corporation,
Akron, Ohio.

153

Software For STARAN Stand-Alone Mode

Software for the STARAN stand-alone mode
of operation can be discussed from the standpoints
of the operating system, language processing, and
operational software.

Batch Disk Operating System

In this paper, an operating system means the
collection of routines that give the user appropri­
ate control of the computing system, inform him
of system status, provide input/output (I/O) facil­
ities, and provide access to system programs.
STARAN features a disk operating system (DOS)
and has a batch processing capability. The batch
command stream can be assigned to any ASCII
character input device, allowing control to origi­
nate at the control console or from a user's file
on the batch device.

ASSOCIATIVE COMMON
CONTROL -- MEMORY r--
MEMORY (WINDOW)

I
SEQUENTIAL

ASSOCIATIVE CONTROL

CONTROL MEMORY

I

rG SEQUENTIAL
CONTROL

I
STANDARD
PERIPHERAL
DEVICES

MU L TIDIMENSIONAL 256

r- ACCESS - PROCESSING r--
ARRAY 0 ELEMENTS

~:ULTIOIMENSIONAL 256
PARALLEL

ACCESS - PROCESSING f--
110

ARRAY 1 ELEMENTS

I
~ MULTIDIMENSIONAL 256

ACCESS PROCESSING
ARRAY n (n_32) ELEMENTS

Figure 1. STARAN Block Diagram

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

The disk is a file structured bulk storage
mediUIIl. All system software is resident on the
device for easy, rapid access by the user.

Listed below are the standard programs
supplied with the DEC PDP-ll batch system:

Program Name

MACRO
LINK
LffiR
PIP
EDIT
ODT
FORTRAN

Function

~acro-assembler
Linker
Librarian
File utility package
Text editor
On-line debugging package
Fortran compiler

These programs are not covered in detail since
primary emphasis in this paper is on the STARAN­
related software that has been added to the above
list to build the STARAN disk operating system.

One general rule used in software develop­
ment was to avoid changes to the basic DEC batch
system. This rule was intended to simplify any
future change to a new'DEC release.

Language Processing

APPLE. P~ograms for STARAN are written
in the APPLE(b} assembly language (~ssociative
~rocessor ~rogramming !Ianguag!;). This lan­
guage has some mnemonics that generate one
machine language instruction and others that gen­
erate a sequence of machine instructions (5). The
one-to-many mnemonics generally implement a
para11el algorithm for arithmetic or search oper­
ations using the arrays. Thus, APPLE is at a
higher level than sequential machine assembly
languages.

APPLE produces relocatable or absolute
program sections and has a conditional assembly
capability. Groups of instructions in the language
are listed below:

1. Assembler directives
2. Branch instructions
3. Register load and store
4. Associative instructions

a. Loads
b. Stores
c. Para11el searches
d. Para11el moves
e. Para11el arithmetic operations

5. Control and test instructions
6. Input/output (I/O) instructions

~ost of these groups of instructions resemble
those of other typical assemblers. The unique
group - associative instructions - deals with oper­
ations on the multi-dimensional access arrays and
the registers in their processing elements (PE).

(b)T~, Goodyear Aerospace Corporation,
Akron, Ohio.

Some general comments apply to all the associa­
tive instructions listed above. Operations take
place only on arrays enabled by the array select
register (2). Fields are of variable length within
each array word and are defined for various in­
structions by field pointers and length counters.
The common register, a part of associative con­
trol, can contain an operand which is used in com­
mon by a11 selected array words.

~ore detail is presented below on the associ­
ative instructions; i. e., loads, stores, para11el
searches, para11el moves, and para11el arithmetic
operations.

The load associative instructions load the
processing element (PE) registers or the common
register with data from the arrays. Logical oper­
ations may be performed between the current PE
register contents and the array data. The language
has mnemonics for the common logical operations,
while the machine supports all 16 functions of two
logical variables. A given load instruction can
increment, decrement, or leave as is an array
field pointer. Thus, a single one of these instruc­
tions can load registers, perform logic, and change
pointer values. Operations to set, clear, or ro­
tate the PE register are included in this group.

The store associative instructions are used to
move PE or common register data into the arrays.
A mask feature is provided that a110ws writing
only in mask enabled array words. As with the
load instructions, logical operations may be per­
formed between the current PE register contents
and the array data. Also, the array field pointer
can be incremented, decremented, or left un­
changed.

The para11el search associative instructions
a110w the programmer to search for particular
conditions in the arrays. Only those words enabled
by the mask register take part in the searches.
Searches can be performed that compare a value

154

in the common register with a value in a field of
all array words. Another variety of search com­
pares one field of a word with a second field of the
same word for a11 array words. Comparisons can
be made for such conditions as equal, not equal,
greater than, greater than or equal, etc. ~axi­
mUIIl and minimum searches also can be perform­
ed. Combinations of searches yield such functions
as between limits and next higher. Additional
mnemonics in this group are provided to resolve
multiple responders to the searches.

The para11el move instructions are provided
to move an array memory field to another field
within the same array word. As with searches, a
word is active for this instruction only when ena­
bled by the mask register. Types of moves are
direct, complement the field, increment or decre­
ment the field, and move the absolute value.

The parallel arithmetic operation associative
instructions a110w the programmer to perform such
para11el operations in the arrays. These opera­
tions are subject to mask register word enabling.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Arithmetic can use a value in the common register
as one operand and a value in a field of all array
words as the parallel operand. Alternatively, one
field of a word can be arithmetically combined
with a second field of the same word for all array
words. Operations supplied by APPLE are add,
subtract, multiply, divide, and square root.

Macro. A macro language is provided to in­
crease the userls flexibility at assembly time (6).
The macro language has a large set of arithmetic,
logical, relational, and string manipulation opera­
tors. Adding macro variable symbol handling,
conditional expansion capability, and ability to nest
macro calls make it possible to write powerful
macro instructions. A system macro library
feature has been implemented.

Benefits to the user are the ability to define
new mnemonics, redefine existing mnemonics, and
conveniently generate standard instruction sequences.

Mnemonics have been added to the basic
APPLE language for RADCAP by writing macros
and putting them in the system library. Primarily,
the added mnemonics are floating point instructions.
They are fixed field length operations in both single
and double precision.

Building Load Modules. Software used to con­
vert source language programs into executable
load modules includes an APPLE assembler,
macro-preprocessor, and relocating linker. Fig­
ure Z shows this software and the flow of programs
or modules through it.

Building load modules begins with the original
program written in APPLE. This source program
may contain macro instructions. Translation of
the source into a machine language object module
is by MAPPLE, (APPLE assembler with Macro­
preprocessor on the front end). If it is known that
the source program does not contain macro instruc­
tions, it is possible to input the source directly to
the APPLE assembler.

APPLE SOURCE
PROGRAM

I
I
I
I
I
I
I

MAPPLE MACRO-ASSEMBLER

APPLE SOURCE
INTERMEOIATE FILE

I
I

:
I
I
I

A relocatable object module is converted to
an absolute load module by the STARAN linker.
Multiple object modules may be input to the linker
since it has the function of resolving symbols de­
fined across object module boundaries (global
symbols) as well as adjusting addresses for relo­
cation.

Use of the language processing software is
fully described in the STARAN userls guide (7).

Operational Software

Operational software is discussed below from
the standpoints of loading, executing, and debug­
ging programs on STARAN. Four modules are
involved: loader plus STARAN program super­
visor, debug module, and control module.

Loader. Output of the STARAN linker is shown
in Figure Z as an absolute load module. The loader
has the straightforward task of moving a load mod­
ule into STARAN control memory beginning at the
address specified in a text block. Options on load­
ing are to load and not execute or to load and begin
execution either at an address given with the load
module or at one given with the load command.

The load module can be linked with a user pro­
gram to enable calling for a load from an executing
program. This means that overlay modules can be
brought in dynamically.

STARAN Program Supervisor (SPS). The SPS
is the software interface between the associative
and sequential portions of STARAN. This module
has services for system users when programming
in APPLE and when programming a PDP-ll rou­
tine to interact with an APPLE program.

For the APPLE program, SPS makes the I/O
instructions of the disk operating system (DOS)
available, provides a program overlay capability.
and provides a programmable interrupt to a PDP-
11 routine. The PDP-II routine interacts through

OBJECT
MODULE

I
I
I
I
I
I
I

LOAD
MODULE

I
I
I
I
I
I
I
I

I MACRO- I APPLE I STARAN I
PREPROCESSOR

/
/

APPLE SOURCE
WITH NO MACROS

ASSEMBLER LINKER

/
ADDITIONAL
OBJECT MODULES

Figure Z. Language Processing Software

155

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

a software link, which receives the APPLE inter­
rupts, and through the issuing of control inform.a­
tion to the associative control logic.

In addition, the SPS supplies interface ser­
vices. It transfers data between associative and
sequential m.em.ory through the com.m.on m.em.ory
window (Figure 1). The SPS also fields associative
processor error interrupts.

Concurrent execution of associative and sequen­
tial routines, with interaction, is m.ade possible by
the SPS.

STARAN Debug Module (SDM). The SDM helps get
rid of bugs in APPLE program.s by giving the user
control of the execution of the program. being de­
bugged, and access to m.em.ory and registers. Such
features as single step, trace, and breakpoint pro­
vide good execution control. Dum.ps of all m.em.ory
areas can be taken, with both word slice and bit
slice available for the m.ulti-dim.ensional access
arrays. All m.em.ory locations also can be m.odified.

STARAN Control Module (SCM). This final opera­
tional m.odule is the interface between the user and
execution of a STARAN program.. By running the
SCM, the user enters a m.ode in which STARAN
related com.m.ands are recognized. Such com.m.ands
as start, halt, and continue execution are processed
directly by the SCM. When the load com.m.and is
used, the SCM passes control to the loader for that
function. If debug aids are needed, a sim.ple com.­
m.and adds all debug m.odule features to the SCM.

All the operational software m.odules are de­
scribed m.ore fully in the STARAN user's guide (7).

Software for STARAN/645 Multics Mode

General

In the RADCAP facility, the integrated use of
the STARAN parallel processor and the 645 sequen­
tial com.puter m.akes additional software necessary.
One m.ajor concern is the interface between the
com.puters; this requires a software m.odule in both
m.achines. A second concern involves reasonable
ease of use for the integrated m.ode; four procedure
packages that execute totally in the 645 were added
to satisfy this concern.

Figure 3 shows the relationship between soft­
ware m.odules in STARAN and the 645. As indica­
ted, the Multics tim.e-shared operating system. of
the 645 contains three categories of software:
com.m.and level, user process, and system. related.
Com.m.and level software is brought into execution
by user-supplied com.m.ands, as from. a Multics
term.inal. User process software consists essen­
tially of subroutines called from. a user program..
System.-related software is the collection of rou­
tines that support use of the system., such as
handling input and output, and are usually called
indirectly by the user program..

Additional details on the design and use of soft­
ware are described in the STARAN/645 user's guide
(8).

Interface Modules

The two m.odules for the interface, shown in
Figure 3, are the 645 device driver in the STARAN
batch disk operating system. (DOS) and the STARAN
device interface m.odule (DIM). These m.odules
are discussed below.

645 Device Driver. This driver provides the
interface between the DOS m.onitor and the 645
com.puter. It com.m.unicates with the m.onitor as
do other device drivers for standard peripherals.
If the device looks like an input for character in­
form.ation, then batch com.m.ands can com.e from. it.
The batch stream. can be assigned to the device.
This is the significance, for Multics, of the batch
feature on the DOS.

In reality, the device treated by the 645 driver
is used for m.uch m.ore than character input. The
645 appears as three logical devices with unit num.­
bers 0, 1, and 2.

Unit 0 looks like the disk, logically. Before
transferring data, it is necessary to "open" a file
using a file nam.e and extension in the DOS form.at.
The driver supports both ASCII and binary trans­
fer m.odes, both form.atted -and unform.atted. A
data-set rem.ains open until a "close" call is issued.
At anyone tim.e, up to 14 data-sets m.ay be open
on unit O.

Unit 1 looks like a card reader, logically. It
is a read-only device with an ASCII transfer m.ode.
This unit serves as the batch com.m.and stream in­
put so a Multics user can control the system.

156

Unit 2 looks like a paper tape punch, logically.
It is a write-only device with ASCII and binary
transfer modes. Job log output, in the integrated
m.ode, is always assigned to this unit.

Because of the nature of the 645 device and its
expected usage, the device driver has two custom
functions built in. An "idle" function is used to
tell Multics when the com.mand stream. file has been
processed. A "detach" function, called when a
Multics user detaches from. STARAN, perform.s
cleanup and m.akes STARAN ready for a new Multics
user.

STARAN DIM. In Multics term.inology, a
device interface module (DIM) coordinates com­
munications with a particular physical device.
The four major functions are performed by the
DIM are: (1) attachm.ent, (2) read com.m.and
from. STARAN, (3) respond to STARAN com.mand,
and (4) detachment.

Attachm.ent is the function through which a
user process gains access to STARAN. The inter­
face is initialized by a call to the attachment entry
point in the DIM. STARAN is available as a Multics
system resource to only one process at a tim.e.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

GACSTARAN HIS 645

STARAN I MULTICS
DISK OPERATING SYSTEM

I (DDS)

I SYSTEM RELATED SOFTWARE
I
I

HIS 645 I STARAN

DEVICE DRIVER I DEVICE INTERFACE MDDU LE r-
(DIM)

USER PROCESS SOFTWARE

ARITHMETIC
FILE CONTROL

I- MULTICS
FORMAT

PROCEDURES l- f-- STORAGE
ROUTINES ~ SYSTEM

COMMAND LEVEL SOFTWARE

CROSS "STARAN" :-
ASSEMBLER COMMAND

I
-1

MULTICS
TERMINAL

Figure 3. STARAN/645 System Software Relationship

Therefore, further calls to the DIM can be made
only after a successful attachment.

The function of reading a command from
STARAN occurs after attachment. The first com­
mand should be to read ASCII on the command
stream input device. As noted above, Unit I of the
645 device driver is provided for this purpose.

Once the initial sequence is past, the DIM must
respond to STARAN commands. The call made by
the Multics process is determined by the previous
STARAN command. For example, if STARAN
issues a read call, Multics must write.

Finally, the detachment function severs the
link between the user process and STARAN.

Data manipulation by the DIM assumes all
Multics data is in character form. It converts
characters into the form needed for output to
STARAN and converts data received from STARAN
into Multics character form. This means, for

157

example, that Multics arithmetic data must be con­
verted to a character form prior to output, and
from characters following input. The conversion
is done by a procedure superior to the DIM. The
DIM also handles retransmission of bad data and
reports a failure to its caller after a specific num­
ber of unsuccessful tries on the same data.

In the Multics software structure, the DIM is
located in a position inferior to the file control
procedures, shown in Figure 3 and described in
the next part of this paper.

System Use Modules

File Control Procedure (FCP). The FCP
greatly simplifies operation of STARAN from
Multics. It enables a Multics user process (pro­
gram) to interact with STARAN by initializing the
interface, handling communication between the
machines, and terminating the interface. The
FCP also makes the necessary calls to the DIM to

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

initialize and terminate the interface. CO'nununi­
catiO'n is described in the fO'llO'wing paragraphs.

Once the interface has been established,Mul­
tics appears to' STARAN as a set O'f three 10'gical
devices, defined above as Units 0, 1, and 2.

Unit 0 is like a disk. All O'peratiO'ns O'n this
file-structured device are initiated within STARAN
by I/O instructiO'ns and are perfO'rmed within Mul­
tics. The FCP represents the interface between
the DIM and Multics stO'rage for all file O'peratiO'ns.
It handles the O'pening and clO'sing O'f files, makes
file names knO'wn to' Multics, and issues apprO'­
priate calls to' the DIM fO'r read and write O'pera­
tiO'ns.

Unit 1 is like a card reader. It is the sO'urce
O'f batch stream cO'nunands to' the STARAN O'pera­
ting system. The FCP must recO'gnize requests
fO'r these cO'mmands, read the cO'nunands frO'm the
sO'urce in Multics, and write them to' STARAN.
The sO'urce can be either a Multics terminal O'r
named file. All calls to' the DIM are made by the
FCP.

Unit 2 is the destinatiO'n O'f jO'b 10'g output. The
FCP sorts this O'ut and directs it to' a Multics ter­
minal O'r named file. Again, all calls to' the DIM
are handled by the FCP.

With FCP, a user prO'cess, executing in the
645, can call fO'r STARAN, and it can pass cO'm­
mands, prO'grams, and data to' STARAN. The FCP
raises the point at which the user becomes invO'lved
frO'm sequences O'f calls to' the DIM to' a more sym­
bO'lic call to' FCP rO'utines frO'm the user prO'cess.

STARAN CO'mmand. User invO'lvement in the
interface to' STARAN is raised still higher frO'm
the user prO'cess to' the Multics cO'nunand level by
a "STARAN" mO'dule. Essentially, this mO'dule is
a supplied user prO'cess that passes parameters
used in the terminal cO'nunand to' the FCP. The
parameters identify the STARAN batch cO'mmand
stream input and O'utput devices. The mO'dule calls
apprO'priate FCP rO'utines to establish interactiO'n
with STARAN.

In typical operatiO'n O'f STARAN frO'm a ter­
minal, this Multics cO'mmand is used with STARAN
cO'mmands alsO' coming frO'm the terminal. Ini­
tializing and terminating the interface are nO't a
cO'ncern O'f the user. The Multics terminal be­
cO'mes very similar to' the STARAN contrO'l consO'le
when this mO'dule is used.

Arithmetic FO'rmat RO'utines (AFR). STARAN
and the 645 differ in the lengths of their data
representatiO'ns. STARAN has a 32-bit cO'ntrol
memory, while the 645 has a 36-bit word length.
Arithmetic format rO'utines are provided to' con­
vert either integer O'r floating pO'int data between

158.

the 645 fO'rmat and the format used by the DIM for
transmissiO'n to' STARAN.

In the Multics to STARAN directiO'n, integer
data are cO'nverted by truncating the mO'st signifi­
cant fO'ur bits. A check is made to' verify that the
integer can be represented in 32 bits. FlO'ating
pO'int data are cO'nverted by truncating the least
significant bits O'f the mantissa.

FrO'm STARAN to' Multics, integer cO'nversiO'n
is done by extending the sign bit. FlO'ating pO'int
cO'nversion is done by filling the 10'w order mantissa
bits with zerO's.

Cross Assembler. This is a functiO'nally
equivalent version O'f the MAPPLE assembler,
written in PL/l, to be run in Multics. It is avail­
able to' terminal users on a time-shared basis. It
accepts APPLE and macrO' statements and prO'­
duces STARAN object cO'de in the Multics character
fO'rmat required by the DIM fO'r transmission to'
STARAN.

CO'nclusiO'n

A brief description has been given O'f the sO'ft­
ware that makes up the O'perating system for oper­
atiO'nal STARAN assO'ciative array prO'cessO'r in­
stalled in the RADCAP facility. AlsO' described is
the additional sO'ftware that makes STARAN O'pera­
tiO'nal when integrated with 645 sequential computer.
The gO'al O'f all the sO'ftware is to provide tO'O'ls to'
use STARAN in the stand alone and integrated mO'des.
The tO'O'ls are intended to' increase cO'nvenience fO'r
the user and imprO've tO'tal system thrO'ughput.

Many modules have been discussed. SO'me O'f
these are essentially transparent to the user,
sO'me may nO't be needed by certain users, and
sO'me may be required by all users. For stand­
alO'ne STARAN O'peratiO'n, the prO'grammer must
know APPLE and the use O'f the assembler and
linker. He must be able to' run the cO'ntrO'l mO'dule
and 10'ad prO'grams. He will probably be interested
in the debug mO'dule. The STARAN prO'gram super­
visO'r is transparent fO'r mO'st users. It is nO't
necessary to' knO'w any O'f the sequential contrO'l
program O'r languages.

TO' use STARAN frO'm a Multics terminal, the
O'nly additiO'nal requirement is to' knO'w hO'w to'
cO'nnect STARAN and Multics using the Multics
"STARANII conunand. If the user wishes to' have
a Multics user prO'cess (i. e., a prO'gram) interact
with STARAN, then the calls to' the file cO'ntrol
prO'cedures and use O'f the arithmetic fO'rmat
rO'utines becO'me impO'rtant. The 645 device driver
and the STARAN DIM are transparent to' users.
The cross assembler is a cO'nvenience fO'r Multics
users and may be used instead O'f the assembler
in STARAN.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

References

(1) J. D. Feldman and O.A. Reim.ann, RADCAP:
An Operational Parallel Processing Facility,
GER-15946, Goodyear Aerospace Corporation
and Rom.e Air Deve1opm.ent Center (ZZ August
1973)

(Z) K. E. Batcher, STARAN/RADCAP Hardware
Architecture, GER-15947, Goodyear Aero­
space Corporation (ZZ August 1973).

(3) J.A. Rudolph, "A Production Im.p1em.entation
of an Associative Array Processor - STARAN, "
197Z Fall Joint Com.puter Conference Proceed­
ings, (Decem.ber, 1912), pp. ZZ9-Z41.

(4) E. I. Organick, The Multics System., MIT
Press, 1912.

159

(5) STARAN S APPLE Progranunmg Manual,
GER-15637A, Goodyear Aerospace Corporation
(August, 1973).

(6) STARAN S MACRO Program.m.ing Manual,
GER-15643, Goodyear Aerospace Corporation
(August, 1973).

(7) STARAN Users Guide, GER-15644, Goodyear
Aerospace Corporation (August, 1973).

(8) STARAN/HIS-645 Users Guide, GER-15641,
Goodyear Aerospace Corporation (August, 1973).

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

APPLICATION OF STARAN TO SUPPORT REGION ANALYSIS
FOR A MECHANICAL ROBOT

J. M. Plante and D. J. Gondek
Rome Air Development Center (IRDA)

Griffiss Air Force Base, New York 13441

Summary

For the past seven years the Advanced
Research Projects Agency (ARPA) has sponsored
research at Stanford Research Institute (SRI) in
the area of artificial intelligence. The primary
goal of this project has been to investigate
techniques in artificial intelligence applied to
the control of a mobile automaton (robot) in a
real environment. The main emphasis has been on
the design of a hierarchy of algorithms that will
accept visual and other sensory information
gathered by the automaton. Specifically
algorithms are developed to support the analysis
of the controlled environment in which the auto­
maton resides (1). The potential application of
STARAN to support a selected subset of these
algorithms (i.e. Region Analysis) was investigated
and is summarized in this paper.

The Region Analysis algorithm uses a decision
tree. Nodes in the tree correspond to an operator
to be applied, and branches emanating from a node
correspond to the results of that operation. Any
path through the decision tree eventually leads
to a terminal node corresponding to a description
of the location, and possibly the identification
of an object in the scene. Repeated passes
through the tree produce a list of such informa­
tion describing the scene.

The Region Analysis algorithm is designed to:

(1) Assign region numbers and identify
related neighbors within the overall environment.

(2) Assign scores for "Best Guess Region
Type". This information is derived from the afore
mentioned Scan and Merging Heuristic Algorithms.

(3) Object identification within regions,
as related to the overall environment.

The data (identified regions) is then used as
input for further Scene Analysis before being
passed to the main body of robot programs (i.e.
question-answering, navigation/route plotting,
problem solving, etc.)

160

The Scene Analysis program as executed on a
sequential computer, uses a number of special
purpose subroutines to extract evidence from or
to apply to a picture/scene. These low-level
routines operate in a quasi-intelligent fash­
ion, in that they perform some operation and
return an answer based on previous results and
the sensibleness of their answers.

The highly iterative Region Analysis algor­
ithm (which are a subset of the Scene Analysis
algorithms) have not been currently implemented
on any conventional sequential machines due to
the excessive computational time required to
execute them. Since this particular subtask per­
forms many repetitive sequential operations
which collect very similar samples/packets of
related data elements, parallel processing tech­
niques for performing the Region Analysis
functions were investigated. The conclusion of
the study was that the application of the STARAN
Associative Processor is a viable solution which
readily lends itself to this programming task.

For information concerning the design and
operation of the mechanical robot and supporting
programming subtasks consult references (1) and
(2) •

For supporting technical data on the STARAN
Associative Processor system, the reader is dir­
ected to reference (3).

References

(1) R. O. Duda, "Some Current Techniques for
Scene Analysis", Stanford Research Ins­
titute, A.I. Group, Tech Note 46, Project
8259, (October, 1970), pp. 1-20.

(2) C.R. Brice, and C.L. Fennema, "Scene Analy­
sis Using Regions", Stanford Research Inst­
itute, A.I. Group, Tech Note 17, Projects
7494 and 8259, (April, 1970), pp. 1-19.

(3) Goodyear Aerospace Corporation, STARAN Dev­
elopment Division, Akron, Ohio 44315.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

A DATA MANAGEMENT SYSTEM
UTILIZING THE STARAN
ASSOCIATIVE PROCESSOR

Richard Moulder
Digital Systems, D/472

Goodyear Aerospace Corporation
Akron, Ohio 44315

SUMMARY

An on-line data base management system (DBMS)
utilizing the STARAN Associative Processor has
been designed and implemented at Goodyear
Aerospace. The hardware configuration is composed
of Goodyear's STARAN S-lOOO ,lith a parallel head­
per-track disc (PHD) and a Xerox Data Systems
Sigma 5 computer. Communications between the two
computers is via Direct Memory Access (DMA). The
PHD is for peripheral data storage and consists
of a single disc with 64 tracks. Each track has
a head and read/write electronics. This design
allows data to be read into or out of the associa­
tive arrays over a communications channel which is
64 bits wide.

A four level hierarchical data base was selected
and implemented in our DBMS. The technique used
for actually storing the data on the PHD was the
Associative Normal Form (ANF) suggested by
DeFiore and others [1]. Employing ANF we
developed a data base having no external indices
and no organization by record type. This allowed
a significant saving in peripheral storage with
little or no degradation in query or update
response times. This was made possible because
of the parallel input/output and parallel content
searching capabilities of STARAN. The benefits
of a fully inverted data base were achieved with­
out the attendant increase in peripheral storage.

The software system was composed of four basic
modules. These modules can be found in most DBHS
and are the Define, Create, Interrogate, and
Update Modules. The Define module describes the
logical data structure to the computer system.
In our implementation, the Define module was
similar to IBM's G 13/2 [2]. The Create module
populates the data base by mapping the logical
data structure to the ANF and writing the data
to the PHD. The most used modules are the
Interrogate and Update modules. These modules
are used via a graphic display console to query
and change the data base. A non-procedural
language tailored after 3DC's SACCS Data ~~nage­
ment System [3] was employed. Any data item
or attribute of a record can participate in the
search criteria with multiple criteria being per­
mitted. Besides the standard query and update
functions that were provided, an additional
function called "Hove" was introduced. This
command allowed the restructuring of the hier­
archical data base without going through a
"Delete" and an "Add."

161

A user's request is typed on the graphic display
terminal and then transmitted to the Sigma 5.
The request is passed through an input valida­
tion software module. Following validation, the
request is processed by a translation module.
This translation includes the restructuring of
the selection criteria according to the rules
for Reverse Polish Notation. A task list of I/O
functions involving the search criteria is con­
structed and transmitted via D}~ to the STARAN.
The task list is executed and records that satis­
fy the search criteria are transmitted back to
the Sigma 5. Information is extracted from the
records, formatted, and displayed.

Our results to date show that associative proc­
essors working in concert with sequential proc­
essors performing in a DBMS environment are an
excellent marriage of two computer concepts.
With multiprocessing capabilities, greater
throughput can be achieved. Timing results show
that for the implemented data base, query and
update times are nearly equal. Our results also
show that a DBMS employing Associative Processors
will require less software. This is due to the
simplicity of the data storage techniques. For
a more detailed description of the Data Manage­
ment System implemented on STARAK, the reader
is directed to references [4] and [5J.

REFEREECES

[1] C.R. DeFiore, N.J. Stillman, P.B. Berra,
"Associative Techniques in the Solution of
Data Management Problems," Proceedings of
ACM (1971), pp. 28-36.

[3] R.G. Curtis, Description of the SACCS Data
YJanagement Sys tem, Hi tre Corpora tion, ESD­
TR-70-295, (Sept. 1970) 114 pp,

[5]

R. Moulder, "An Implementation of a Data
:Management System on an Associative Proc­
essor," Proceedings of .'\.FIPS, NCC 73 (1973),
pp. 171-176.

R. Houlder, C. Bruno, J. Ernst, P. Gilmore,
"Associative Processor Data :Management
Research and Development", Goodyear Aerospace
Corporation, GER-15806, (Dec. 1972), 138 pp.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

INTRODUCTION TO THE ARCHITECTURE OF A 288-ELEMENT PEPE

Alf J. Evensen & James L. Troy
Huntsville Operations

System Development Corporation
Huntsville. Alabama 35805

Abstract -- The PEPE (Parallel Element
Processing Ensemble) is a parallel-associative
processor which can attain order-of-magnitude
performance and cost-effectiveness improvements
over conventional machines when employed on
problems containing inherent parallism. This
paper describes the architectural features of a
new large-scale PEPE system now being constructed
to operate with a CDC 7600 Host.

General Description

When compared with conventional sequential
multi-processing computers. PEPE provides much
faster data processing rates. It does this at
relatively low cost and with inherent reliability
since its architecture is made up largely of
disconnectable. rather simple but triple-process­
ing element modules which are replicated many
times throughout the design. Failure in anyone
element affects neither the remaining hardware nor
the software.

Each PEPE element may simultaneously respond
to instruction execution microsteps from each of
three control units. Therefore, a 288-element
PEPE may effectively execute up to 864 instruc­
tions simultaneously.

Elements may be added to the configuration
if required, with no effect on the software. The
capability of associative addressing allows the
software to be indifferent to the number of
elements that are present. Individual elements
are activated or deactivated from participation in
the execution of an algorithm based upon compari­
sons of sequential and/or parallel data.

PEPE uniquely puts its parallel processing
capabilities to work by providing completely over­
lapped input and output functions. The current
large-scale PEPE model provides architecture to
interface the parallel processing environment with
a computing world which is sequentially oriented.
Input/output conversion units. an input correla­
tion control unit and an associative output
control unit are utilized to allow the parallel
arithmetic architecture to execute virtually with­
out I/O overhead. Within the correlation and
associative output control units data are block
transferred from and to external devices simulta­
neously with the transfer of other data into or
out of selected elements. The PEPE then is a
complete parallel data processing system providing
an unrestricted throughput relative to its
parallel arithmetic capabilities (see Figure 6).
[1] [2]

Host Interface

Although the current model PEPE will contain
its own instructions. programs. interrupt mechan-

162

isms. clocks, etc •• a close interface with a stan­
dard sequential computing system is desirable for
quickly processing non-array-oriented portions of
problems and for peripheral device control. This
sequential system may also be used for utility
functions such as compiling PEPE programs. For
these purposes, the current PEPE configuration
will utilize the ABMDA Research Center CDC 7600
computer which is connected to PEPE through three
MUX (Input/Output Multiplexor) channels.(a)

PEPE Instructions

Both sequential control and parallel instruc­
tions can be intermixed in a program unit. The
sequential instruction repertoire is required for
program control functions and includes branching,
I/O, active element count. and a limited data
conversion capability (shift, mask. integer
arithmetic). The parallel instruction repertoire
includes two types of instructions: those which
select element activity. and functional instruc­
tions such as floating point and integer arithme­
tic. shift and mask. The floating point capabil­
ity in the Arithmetic Units includes floating
point - integer conversion instructions and a
square root instruction (see Figure 1). The 32-

R· ROUTING CODE

SEQUENTIAL INSTRUCTIONS:

o· INSTRUCTION (23-0) MODifiCATION
1· OPERAND FROM PROGRAM/DATAMEMORV
2· OPERAND FROM INSTRUCTION 115-0)

PARALLEL INSTRUCTIONS:

3. OPERAND FROM ELEMENT MEMORY

OPERAND/ADDRESS
12'11

4. OPERAND FROM CONTROL UNIT A·REGISTER
5. OPERAND FROM PROGRAM/DATA MEMORY
6. OPERAND fROM INSTRUCTION

o

7. OPERAND FROM PROGRAM MEMORY (PROGRAM COUNTER PLUS ONE)

Fig. 1. PEPE Instruction Format

(a)7600 PPUs (Peripheral Processing Units)
utilized for this connection because of
tion time penalties.

are not
execu-

This work was supported by the U.S. Army Advanced
Ballistic Missile Defense Agency (ABMDA),
Huntsville, Ala., under Contract DAHC60-73-C-0060.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

bit instruction format has an 8-bit op code field
(0), a I-bit memory unit selection field (M), a
3-bit routing field (R), a 4-bit index register
field (X) (there are 15 index registers in each
control unit), and a l6-bit address field (A).
The routing field determines the source of the
operand and whether the instruction is sequential
or parallel. The instruction "Load A-register,"
for instance, can cause the sequential control
unit A-register or one or more parallel A-regis­
ters to be loaded depending upon the routing field
setting. If a parallel routing is specified,
parallel element A-registers will be loaded only
in "active" elements set by a previous "select"
instruction.

E

Detailed Description

Physical Configuration

The PEPE design will accommodate 288 process­
ing elements partitioned into eight element bays.
The element bays are installed radially to reduce
cable length. Current plans call for the instal­
lation of only one element bay containing 36
processing elements. All processing element
operations are controlled from the control console
which also provides the interfaces required for
connection to the CDC 7600 and test and mainte­
nance equipment. PEPE will be implemented with
standard emitter-coupled logic (ECL) contained in

L B
E A
M Y
E
N 3
T

L
___ E_L_E_M_E_N_T __ ~~ __ _ BAY 5 !

PEPE
CONTROL
CONSOLE

ELEMENT
BAY 1

PEPE TEST &
CDC 7600 MAINTENANCE

EQUIPMENT

Fig. 2. PEPE Physical Configuration

163

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Dual In-Line Packages (DIPs) which are mounted on
multilayer printed circuit boards. The printed
circuit boards will be approximately 16" x 18" and
will have an average component density of 275 DIPs
in the element bay and a maximum of 150 DIPs in
the control console. PEPE will be cooled by means
of forced air and chilled water. Figure 2 illus­
trates the PEPE physical configuration.

Control Console. The control console dimen-
sions are approximately:

SO" high
50" wide
26" deep

Power dissipation is approximately 6000 watts.

Element Bay. The element bay dimensions are
approximately:

80" high
7S" wide
26" deep

Power dissipation is approximately 30.000 watts
per element bay.

ARITHMETIC CONTROL UNIT

- OUTPUT DATA CONTROL

Test & Maintenance Equipment. A Burroughs
B1714 computer will be utilized for dynamic test
and maintenance of the PEPE system and its indi­
vidual printed circuit boards and processing
elements.

PEPE Processing Element

Each processing element (PE) contains an
Arithmetic Unit. Associative Output Unit.
Correlation Unit and Element Memory as shown in
Figure 3. The PE contains no instruction execu­
tion control logic and must receive all timing
and control signals from the control console.

The ensemble of processing element units
receives timing and control signals from corres­
ponding control console execution units as
follows:

PE Unit
Arithmetic Unit
Associative Output
Unit

Correlation Unit
Element Memory

Control Console Unit
Arithmetic Control Unit
Associative Output Control

Unit
Correlation Control Unit
Element Memory Control

r- CORRELATION CONTROL UNIT

ELE MENTMEMORY
TROL CON

ASSOCIATIVE OUTPUT
CONTROL
CONSOLE

CONTROL UNIT

\
I I I

\ I I I SIGNAL I I
I

I I DISTRIBUTION I I
I I I SYSTEM

I I
I I I I I

ARITHMETIC ASSOCIATIVE
CORRELATION OUTPUT UNIT

UNIT UNIT

ELEMENT

ELEMENT

MEMORY

Fig. 3. PEPE Processing Element

164

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Each PE unit (except element memory) contains
an Activity register (one bit). When a control
unit performs a parallel instruction all corres­
ponding active (Activity register = "1") PE units
respond so that a maximum of 288 PE units may
simultaneously execute that instruction. Since
the processing element contains three computa­
tional units corresponding to three independent
control units, an ensemble of 288 PEs may be
responding to three simultaneous and independent
parallel instructions thereby effectively execut­
ing 864 simultaneous (subject to element memory
conflicts) instructions.

An Activity Stack has been added to the
Arithmetic Unit and Associative Output Unit. It
is a 2l-level hardware implemented "push-pop"
stack connected to the Activity register. The
Activity Stack is used to save and restore multi­
ple subsets of PE units.

All processing element units contain an
8-bit, bit addressed Tag register which is used
to perform associative matches on data received
from the control unit.

Arithmetic Unit. Each Arithmetic Unit (AU)
contains conventional A (accumulator), B (operand)
and Q (quotient or product) registers which
support execution of the parallel integer, logical
and floating point instructions. The AU A-regis­
ter is additionally utilized to provide associa­
tive output to its control unit via a data bus
shared with the Associative Output Units. Various
"select" instructions operate upon the AU Activity
register, Activity Stack and Tag register to
determine which Arithmetic Units participate in
subsequent parallel instructions and to remember
and restore previously active element sets.

Associative Output Unit. Each Associative
Output Unit (AOU) contains conventional A and B
registers which support execution of parallel
integer and logical instructions. The AOU
A-register is additionally utilized to provide
associative output to its control unit via a data
bus shared with the Arithmetic Units. Various
"select" instructions operate upon the AOU
registers exactly as in the AUs.

Correlation Unit. Each Correlation Unit (CU)
contains a B-register and 16 Correlation registers
(contained in a l6-word ECL RAM). These registers
support execution of parallel integer and logical
instructions. Correlation register-to-register
operations are permitted. No means are provided
for the CU to output data to its control unit.
Various "select" instructions operate upon the CU
Activity register and Tag register to determine
which Correlation Units participate in subsequent
parallel instructions. There is no Activity Stack
in the CU since the correlation process requires
the rapid identification of elements in which to
store new data, rather than maintenance of a
history of previous sets of activity as in the AUs
and AOUs.

165

Element Memory. Each element memory (EM)
consists of lK words of ECL storage and receives
address and mode information from the control
console Element Memory Control (EMC). All
ensemble EMs receive identical information from
EMC during execution of a particular parallel
instruction. EM is connected to the AU, AOU, and
CU by means of a common data bus and consequently
EMC directs the sharing of element memory with
the following priority assignments: (1) CU,
(2) AOU, (3) AU. This priority scheme has been
established since the CU instructions tend to be
short (200-300 nanoseconds) and the AU instruc­
tions tend to be considerably longer (floating
point multiply requires 1.9 microseconds). Pro­
gram execution times are expected to increase by
no more than 5% due to element memory conflicts.
Simulation experiments have shown that reversing
the priority order greatly increases program
execution times.

PEPE Control Console

The control console provides instruction
execution control for the entire PEPE. It
contains three control units (see Figure 4) which
are connected to the ensemble of processing
elements as described above. Additionally, the
control console contains functional units which
support the following operations:

° Inter-control unit interrupts
° Error recovery
° Processing element output
° Element memory conflict resolution
° Maintenance and diagnostic tasks
° Input/Output data conversion

The system function of each control unit is:

° ACU - Manipulates the parallel data base
contained in the ensemble of element
memories.

°AOCU - Outputs data resulting from parallel
data base manipulations.

° CCU - Inputs new data.

Control Units. The three control units (ACU,
AOCU, CCU) are of a common design which is
functionally configured as shown in Figure 5.
Each control unit has its own program and data
memory. Communication between control units may
occur via the Intercommunication Logic Unit (ICL)
as illustrated in Figure 4.

Programs are executed from the program memory and
consist of any sequence of:

° sequential instructions to be executed in the
Sequential Control Logic (SCL)

° parallel instructions which are routed through
the SCL to the Parallel Instruction Control
Unit (PICU)

The SCL contains conventional A,B,Q and
index registers which support execution of
sequential integer, logical and branch instruc-

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

PEPE TEST & MAINTENANCE
EQUIPMENT

I

ARITHMETIC
CONTROL
UNIT

1 I
MAINT. ~ CONTROL &
DIAGNOSTIC

INTER-

UNIT
I-- COMMUNICATION

LOGIC

OUTPUT
DATA

CDC 7600

ASSOCIATIVE
OUTPUT
CONTROL
UNIT

I

CORRELATION
CONTROL
UNIT

ELEMENT
MEMORY

t
EXTERNAL
COMPUTERS

CONTROL CONSOLE

CONTROL CONTROL

" SIGNAL DISTRIBUTION SYSTEM
I I .
I I : I .
I ASSOC~ATIVE ARITHMETIC

UNITS OUTPUT UNITS

I 1

I I 7. I I
I I L LCORR ELATION

ELEMENT UNITS
MEMORIES

ELEMENT
ENSEMBLE

ASSOCIATIVE ARITHMETIC

1
OUTPUT UNITS UNITS

Fig. 4. PEPE Control Console Components

tions. It also responds to parallel instructions
which:

o cause output from the PE (except CCU)
o allow branching based upon element activity
o cause inter-control unit interrupts
o support error recovery

Sequential instruction operands may be con­
tained either in the instruction or in program/
data memory as specified by the appropriate
instruction fields.

Parallel instructions (with indexable
operands) are routed to the PICU which is a micro­
programmed execution unit in which the micropro­
gram memory outputs are utilized to control the
switching networks in the processing element.
When required during execution of a parallel
instruction the PICU transmits address. request

and mode data to element memory control. It then
transmits a data strobe to the PE when an acknow­
ledge is received from EMC indicating that the
PICU has been selected for EM service. Parallel
instruction operands may be contained either in
the instruction or in element memory as specified
by the appropriate instruction fields.

166

Because of its large (32K) program memory.
ACU cycle time is a relatively slow 200-300 ns
(other program/data memory cycle times are lOOns).
Moreover, the ACU has responsibility for execution
of relatively slow parallel floating-point
instructions, so the ACU parallel instructions are
routed through a l6-step queue (Parallel Instruc­
tion Queue) prior to execution in the ACU-PICU.
This queue effectively speeds up average ACU
instruction rate.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

TEST & MAINTENANCE

EQUIPMENT CDC 7600

I I
INPUT INPUT
OUTPUT OUTPUT
UNIT UNIT

I I I

SEQUENTIAL
CONTROL
LOGIC

CONTROL UNIT

PARALLEL INSTRUCTION QUEUE

(ACU)

PARALLEL
INSTRUCTION
CONTROL
UNIT

PROGRAM
MEMORY

I

I--

I--

~ I
SIGNAL DISTRIBUTION SYSTEM I

I
PROCESSING ELEMENT UNIT

Fig. 5. PEPE Control Unit

167

DATA
MEMORY

I

INTER·COMMUNICATI ON LOGIC

OL OUTPUT DATA CONTR

MAINTENANCE CONT ROL&
DIAGNOSTIC UNIT

ELEMENT MEMORY C ONTROL

<.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Input/OUtput. Each control unit has two
Input/Output Units (IOU) to provide for control
and fully duplexed data transfer to and from the
CDC 7600 and test and maintenance equipment.
These IOUs are capable of:

o Block transfer of data to control unit
program/data memory initiated by CDC 7600
(T&M equipment)

o Block transfer of data from (to) control
unit program/data memory to (from)
CDC 7600 T&M equipment) initiated by
sequential instruction execution

o Control unit interrupts
o Control unit start/stop (master clock)

IOU capability has been expanded to allow
overlap of IOU data transfer with parallel/
sequential instruction execution. This feature
alone is responsible for halving the time it takes
to correlate new data received by the CCU with
existing data residing in element memory.

Element Memory Control (EMC). EMC receives
requests from the three control unit PlCUs for
element memory service. It performs any needed
conflict resolution, transmits required control
information to the ensemble EMs and responds to
the PICU when the selected EMs have been properly
switched to service the AU, AOU, or CU.

OUtput Data Control (ODC). ODC receives
requests from the ACU/AOCU to transfer AU/AOU
A-register contents to the A-register in the ACU/
AOCU SCL. It performs conflict resolution and
places the active AU/AOU A-register contents on a
common data bus to the control console. ODC then
transmits an acknowledge to the ACU/AOCU SCL to
achieve the data transfer. More than one AU/AOU
in an active state will cause an error condition
to be processed by the Inter Communication Logic.

Inter Communication Logic (ICL). ICL pro­
vides the mechanism for:

o AOCU interrupt of the ACU
o CCU interrupt of the ACU
o Control unit interrupts from IOU
o ACU control of control unit registers
o Error interrupts from ACU
o Real-Time Clock
o Interval Timer
o System data collection

Neither the AOCU nor the CCU have floating
point instructions. Therefore, they have been
given the capability to interrupt the ACU in order
to execute subroutines which require floating
point manipulations. The ICL prevents interrupt
"nesting" by either AOCU or CCU, and contains four
registers (two each for the CCU and the AOCU)
which may be utilized for inter-control-unit
interrupt data transfer. Provision has been made
for the inclusion of a lK-word ICL memory in the
event that extensive inter-control unit communica­
tion becomes necessary.

Each Input/OUtput Unit transmits control unit
interrupt requests to the ICL. Three registers
(one for each control unit) provide the means of
transmitting an interrupt message to the control
units with each interrupt request from either the
CDC 7600 or the test and maintenance equipment.

Error conditions within the PEPE signal the
ICL to generate an error interrupt to the ACU.
An error identification code is placed in an ICL
register.

The ACU SCL error-recovery software utilizes
supervisory instructions which can read and write
all control unit registers to and from the
A-register in the ACU SCL.

A Real-Time Clock (46 bits) and Interval
Timer (24 bits) are contained in the ICL. Both
count with lOOns granularity and are fully
accessible from all control units. An ACU
interrupt may be generated when:

o The Interval Timer decrements to zero
o The Real-Time Clock equals the value con­

tained in the Real-Time Clock Buffer (fully
accessible from all control units)

Eight counters (24 bits) are available in
the ICL for monitoring software/hardware perform­
ance.

Maintenance Control and Dia ostic Unit
MCDU). The MCDU is the diagnostic interface

which couples the test and maintenance equipment,
the PEPE control console, and the maintenance
technician.

168

Future Development

Although the PEPE Program is continuing under
the direction of ABMDA for the purpose of develop­
ing an advanced ballistic missile defense system,
nonmilitary applications for PEPE have been
studied with the permission of ABMDA. These
applications could include air traffic control,
satellite tracking, auto traffic control and
weather data processing.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

References

[1] J.A. Cornell, "Parallel Processing of
Ballistic Missile Defense Radar Data with
PEPE," COMPCON 72 Computer Conference, 1972

[4] C.Y. Lee, "Intercommunicating Cells, Basis
for a Distributed Logic Computer," Proc.
Fall Joint Computer Conference, 196-2--

[2] J.A. Cornell, "PEPE Application and Support
Software," Western Electronic Show and
Convention, 1972

[5] C.Y. Lee and M.C. Paull, "A Content Address­
able Distributed Logic Memory with
Applications to Information Retrieval,"
Proc. of the IEEE, June 1964

[3] M.D. Johnson, "The Architecture and Implemen­
tation of a Parallel Element Processing
Ensemble," Western Electronics Show and
Convention, 1972

[6] B.A. Crane and J.A. Githens, "Bulk Processing
in Distributed LogiC Memory," Proc. of the
~, April 1965

PEPE
SEQUENTIAL
PROCESSING
LOGIC

PEPE
PARALLEL
PROCESSING
UNITS

T&M
COMPUTER

DATA
MEMORY
2K

PROGRAM
MEMORY
2K

SEQUENTIAL CONTROL
UNIT & REGISTERS

PARALLEL CONT. UNIT

INTER
COM.
LOGIC

T&M

DATA
MEMORY
3K

PROGRAM
MEMORY
32K

T&M

DATA PROGRAM
MEMORY MEMORY
2K 2K

SEQUENTIAL CONTROL
UNIT & REGISTERS

SEQUENTIAL CONTROL
UNIT & REGISTERS

OUT-PUT
CONTR'L

PARALLEL CONT. UNIT

CU. PARALLEL OUTPUT AU. PARALLEL AU., AOU. AOU.
MEMORY CONTROL MEMORY
CONTROL

I-
I r---L----.

I
I
I
I
I
I ,
I
I
I
I
I

FROM

---,
I
I
I
I
I
I I
, •• ·1
I I
I I
f I

I •••

I I
I I

I MEMORY UNIT lK I
L ______ _ L ________ ...1

Fig. 6. PEPE Architecture

169

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

OPERATING SYSTEM AND SUPPORT SOFTWARE FOR PEPE

J.R. Dinge1dine, H.G. Martin, W.M. Patterson
Huntsville Operations

System Development Corporation
Huntsville, Alabama 35805

Abs~ract -- Software for the CDC 760o-PEPE
configuration consists of a constructab1e real­
time tactical process and the support software
required to develop and execute the real-time
process. This paper discusses: 1) the develop­
ment and the real-time characteristics of the
Operating System; 2) the procedure oriented lan­
guage, Parallel FORTRAN (PFOR), used to develop
tactical programs; and 3) the PFOR Translation
System. A PEPE instruction level simulator and
the process constructor are covered by other
papers in this set. [3] [4]

Operating System Software

Figure 1 is a simplified picture of the PEPE
system and its host. Three bi-directiona1
communications paths connect the host computer
(CDC 7600) with each of the PEPE controllers. The
system is a network of controllers each of which
requires compatible parts of the operating system.
These interfacing parts, together with real-time
executive functions, are the subject of this
section. Comments are made on design goals, real­
time executive functions, process execution
control tables, and system performance under
functional simulations.

CDC 7600 HOST

LCM SCM

I/O BUFFER :

I

OS,RTC,
PCT's
INPUT/
OUTPUT
HANDLERS

PEPE ENSEMBLE

~~C~C~U~-------------~---------­
DATA STORE

INPUT BUFFER, PCT',

PROGRAM STORE
INPUT INTERRUPT
HANDLER, INITIATOR

IU ACU-
DATA STORE

INPUT BUFFERS, PCT:,

PROGRAM STORE
INPUT, TIMER, ERROR, CCU­
AOCU INTERRUPT HANDLERS,
RTI:, OUTPUT HANDLER

--ll
P
A
R
A
L
L
E
L

E
L
E
M
E
N

IU AOCU- T
DATA STORE S

I PROGRAM STORE
INPUT BUFFERS, PCT's JJ

I INPUT INTERRUPT HANDLER, L _ :UTPUT HANDLER, INITIATO_R _____ _

Fig. 1. PEPE/CDC 7600 Computer Network

170

This work was supported by the U.S. Army Advanced
Ba11iBtic Missile Defense Agency (ABMDA),
Huntsville, Ala., under Contract DAHC60-73-C-0060.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

Fig. 2.

1. SIMPLICITY TO PROMOTE EASE OF USE

2. RESPONSIVE TO EXTERNAL STIMULI

3. FLEXIBLE

4. TABLE DRIVEN FOR CONSTRUCTABILITY

5. TASK TRIGGERING IN RESPONSE TO

TIME EVENTS

DATA EVENTS

SETTINGS DF SETS OF CONDITIONS

DIRECTLY BY OTHER TASKS (DYNAMIC)

Real-Time Executive Design Goals

Following experience with the previous PEPE
feasibility model and study of other existing and
proposed multi-computer operating systems, a pre­
liminary operating-system model was designed with
the goals listed in Figure 2 in mind. A func­
tional simulation model was generated to aid in
evaluating the system's effectiveness. The
results from the runs revealed excessive executive
and interrupt handling times. Response to
external stimuli was poor. The basic design was
flexible enough and table driven as required, but
the interrupt and overhead tasks were time
consuming.

A second simulation model was generated with
emphasis on simplicity in the hope that flexibil­
ity and responsiveness would follow. The current
system is an outgrowth of the second model.
Figure 3 is a flow chart of the real-time execu­
tive loop. It has only three steps: (1) If there
has been a change in the status of any condition,
make any indicated enablements using process con­
trol tables; (2) Select the highest priority task;
(3) If a task is selected, clear the software
interrupt flag, and call the task. When the task
is completed, it returns control to the executive
and the cycle is repeated. This basic executive
cycle is supported by interrupt handlers and out­
put routines which accomplish process control
table changes when messages requiring actions are
intercepted.

Timing tests on CDC 7600 code for the execu­
tive produced favorable results. Conditional
enablements, step (1), were made in 4.620 micro­
seconds using a three entry table. Task selection,
step (2), required 4.950 microseconds, while task
initiation, step (3), used 4.263 micro-seconds.
So, a task may be running in the host within 10
microseconds after it is enabled. This quick
response is due to the simple structure of the
process control tables, Figure 4.

171

Fig. 3.

NO

YES

SAVE NEW STATE OF CONDITIONS.
MAKE ANY CONDITIONAL
ENABLEMENTS

SELECT HIGHEST PRIORITY TASK

NO

YES

CLEAR SOFTWARE INTERRUPT
FLAG

PEPE/CDC 7600 Real-Time Executive

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

TASK ENABLE FLAGS

SOFTWARE INTERRUPT FLAG

STATUS OF CONDITIONS

CONDITIONS FOR ENABLEMENT

CONDITION STATES

SET DEFINITION MASK

ENABLI NG FLAGS

TIME EVENTS

TIME

PERIOD

ENABLING FLAGS

TASK DESCRIPTION

Fig. 4.

NAME

RESIDENCY

ENTRY POINT

SIZE
INPUT BUFFERS AND CONTROLS
(SCM AND LCM BUFFERS)

PEPE Process Control Tables

The Task Enable Flags are arranged in prior­
ity order. The first flag found in the On State
represents the next task to run. The Software
Interrupt Flag is set any time a task is enabled
which has a higher priority than a running task.
Any task which runs longer than the software
interrupt interval (say 250 microseconds) must
enable itself. adjust controls for continuing its
operation later. and return control to the execu­
tive. The status of conditions is maintained by
the running tasks. The Conditions for Enab1ement
Table has thr~e parts per entry: a set of condi­
tion states, a mask for selecting the set of
conditions. and task enabling flags (tasks are
identified by flag positions as in the Task Enable
Flags Table). All entries in the table are
processed when a change in the status of condi­
tions is detected. The Time Events Table is a
chronological list of scheduled time events with
associated periods between events and task
enabling flags. The Task Description Table
identifies the task name. size. and location in
task priority (number) order. A buffer pointer
leads the executing task to its input data.

The process control tables are accessible to
the running task. the executive. and all interrupt
handlers. Tasks are triggered in other control­
lers by messages in standard form. Time Event
Change and Task Enable messages are completely
processed by the message handlers.

The simplicity of the real-time control
process permits similar control mechanisms in all
system controllers (see Figure 1). The capabi1i-

172

ties of the controllers dictate the amount of
local executive control. The PEPE Arithmetic
Controller has full interrupt features with an
interval timer and error interrupts. It, there­
fore, has full real-time executive controls. The
other two PEPE controllers have only input
interrupt, task initiation controls, and output
handler features.

It is interesting to note that with the rede­
sign of PEPE to include program storage, the total
system executes as a sequential computer network.
The only operational difference is shorter
execution times. Thus, changes to the host's
commercial operating system are required only to
support the input/output channels and for the
addition of a real-time interval timer.

The real-time controls as described accom­
plish the original design goals (Figure 2) favor­
ably. The simplicity is illustrated by the
executive (Figure 3) itself. Responsiveness
results from the simple requirement of the inter­
rupt handlers. The time controls are maintained
in time order to eliminate time consuming
searches or sorts. Up to 48 tasks may be enabled
by one condition table entry. The task triggering
methods together with the rapid response to
enablements permits efficient calls to scheduling
algorithms or deadline functions. For example, a
deadline task may be time enabled when the dead­
lined task is scheduled. If the task executes
before the deadline. it simply deletes the time
table entry which would trigger the deadline
action. The table structure obviously permits
many process construction forms such as enable
tasks. set time event, set/reset conditions. etc.
Simulation model testing and actual instruction
timings conducted at the ABMDA Research Center in
Huntsville substantiate these statements.

The simplicity of the real-time controls
coupled with the ease of operating with the rede­
signed PEPE appear to have produced an efficient
and effective real-time system.

Support System Software - Parallel FORTRAN (PFOR)

Overview

The Parallel FORTRAN (PFOR) sections of this
paper emphasize language extensions and changes to
the PFOR Translation System developed since the
presentation of papers on the Parallel Element
Processing Ensemble (PEPE) and its support soft­
ware at COMPCON 72 and WESCON 72 [1]. [2]. The
referenced papers describe the basic PFOR lan­
guage and language processors as implemented on
the laboratory PEPE IC (Integrated Circuit) model
used to demonstrate the feasibility of PEPE in a
Ballistic Missile Defense (BMD) environment.

PFOR Language

PFOR is a procedure oriented, higher order
FORTRAN-like language tailored to the new PEPE MSI
(Medium Scale Integration) model. The language
consists of: 1) PEPE FORTRAN, the minimal subset

1973'SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

of standard FORTRAN required for the sequential
control of parallel algorithms in the PEPE Sequen­
tial Control Logic (SCL) hardware, 2) Parallel
FORTRAN or PFOR, the extensions to FORTRAN for the
declaration of data and the parallel and associa­
tive processing of data in the PEPE elements, and
3) PEPE Assembly Language (PAL) machine instruc­
tions, extended mnemonics, and pseudo operations.

PFOR is currently being used to develop PEPE
tactical processes. It is the sole source lan­
guage for the three PEPE control units with unique
machine code generated by the compiler for each
control unit; whereas for the PEPE IC model, PFOR
was used to program only the Arithmetic Control
Unit (ACU). A macro assembly language (CUAL) was
used to program the Correlation Control Unit (CCU)
and sequential control was exercised in the host
IBM S/360-65. The IC model hardware did not
contain an Associative Output Control Unit (AOCU).
The capability of intermixing PFOR. FORTRAN. and
PAL statements in a source program has been
retained. For the MSI model the PAL assembly lan­
guage statements are bracketed by the PFOR
primitives MODE(DIRECT) and MODE(PFOR). Each
block of PAL code is processed as a single PFOR
source statement.

PEPE FORTRAN

The FORTRAN declarative statements, impera­
tive statements. and logical. relational. and
arithmetic operators defined for sequential
execution in PEPE are listed in Figures 5 and 6.

The arithmetic operators * and / are not
defined since the sequential portion of the PEPE
hardware supports only 24-bit integer addition
and subtraction. Address (16-bit) multiplication
is implemented in the sequential hardware which
allows the compiler to generate efficient code
for array references which contain variables in
the array subscript.

A minimal subset of standard FORTRAN required
to exercise sequential control of parallel.
tactical processes has been defined for PEPE.

FORTRAN REAL variables are limited in use
since the SCL hardware does not perform floating
point operations. These variables are used dur­
ing data transfer between the host and the
ensemble.

PFOR Extensions

The PFOR language has previously been
described by Wilson [1] and Cornell [2] at
COMPCON 72 and WESCON 72. The basic PEPE IC
model PFOR primitives and operators which have
been retained for implementation on the MSI model
are listed in Figure 7.

Several features have been added to the PFOR
language for the PEPE MSI model. To support
parallel double precision ihteger arithmetic. the
data description forms PAR DOUBLE (element memory
double word) and PAR COR DOUBLE (correlation

173

BLOCK DATA

COMMON (LABELEDI

DATA

DIMENSION

EQUIVALENCE

INTEGER

LOGICAL

REAL (LiMITEDI

DOUBLE

PROGRAM

SUBROUTINE

END

Fig. 5. PEPE FORTRAN Subset Dec1aratives

CALL

CONTINUE

DO

GOTO (UNCONDITIONAL, COMPUTEDI

IF (LOGICAL, ARITHMETICI

RETURN

STOP

.AND., .OR., .NOT.

.L T., .LE., .GT., .GE., .Ea., .NE.

+,-

Fig. 6.
PEPE FORTRAN Subset Imperatives and Operators

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

INTEGER!
PAR LOGICAL

REAL

PAR COR I ~J~~~~ I
REAL I

DESCRIPTOR (NAME, LOCATION [, FBIT, LBIT])

DO \ ~SC I SEQ

WHERE
WHERE MAX
WHERE MIN

IF

ALL
ANY
MANY
NONE
ONE

(ARITHMETIC ATTRIBUTE)
(ARITHMETIC ATTRIBUTE)
(LOGICAL ATTRIBUTE)

(LOGICAL ATTRIBUTE)
(ARITHMETIC ATTRIB\.ITE)
(ARITHMETIC ATTRIBUTE)

(LOGICAL ATTRIBUTE)

MOVE, PEPECOUNT, PEPEDUMP

PFIX, PFLOAT, PSORT

,AND., .OR., .NOT.

.L T., .LE., .GT., .GE., .EO., . NE.

+, -, * ,I

Fig. 7. Basic PFOR Primitives and Operators

register file double word) have been added. For
example,

PAR DOUBLE PV

declares PV to be a double precision, integer
parallel variable. In all examples in this paper,
names prefixed by the letter P denote parallel
variables.

The set of PFOR statements which allow order­
ed selection of PEPE elements in sequential,
ascending, and descending fashion (DO SEQ, DO ASe,
and DO DESe) select the elements ~ at a time.
These have been augmented by the DO UP and DO DOWN
constructs which allow sets of elements to be
utilized in an ascending:or descending manner.
The code sequence

100

WHERE
DO UP
PW" I

(PTEST) 100
100 (PV) 10,1

acts like a DO ASe statement if, in the elements
passing the test (the set of elements remaining
active by virtue of the parallel logical variable
PTEST being true), the ascending algebraic values
of PV are unique. In this ~ase in the active

174

element where PV has the lowest algebraic value,
PW is set to one; in the active element where PV
has the next lowest value, PW is set equal to two,
etc. However, if PV is duplicated in one or more
of the elements passing the test, a "tie" exists.
Assume for example the two lowest algebraic values
of PV are identical in the active set of elements.
The DO ASe construct causes PW to be set equal to
one in the first physically available active
element of the two. PW is set to two in the other
element and then looping continues with PW = 3,
PW" 4, etc., until at most ten elements are
looped over. Upon completion of the DO ASe loop,
I is set to indicate the number of elements
involved in the processing (i.e., elements where
PW has been set) for there may be less than ten
elements which passed the test.

For the DO UP construct, PW is set to one for
both elements where the lowest value of PV is
Identical; then PW is set to two in the active
element where PV has the next lowest value, etc.;
until at most ten sets of elements are looped
over. Upon completion of the loop, I is set to
indicate the number of sets of elements involved
in the processing (sequentially tagged in the
example) for there may be less than ten sets of
elements which passed the test.

The WHERE class of statements (WHERE, WHERE
MAX, WHERE MIN), which are used to specify a
content-addressed subset of PEPE elements, have
been augmented by the addition of WHERE FIRST,
WHERE NOT, WHERE SET, and CONVERGE constructs.
The general form

WHERE (logical attribute) sU

causes the subset of elements satisfying the
given attribute to remain active and to partici­
pate in processing through the range of the
statement labeled sU.

The WHERE class of statements illustrates
the explicit associative aspects and the implicit
parallel aspects of the PFOR language. The
attribute parameter explicitly denotes the asso­
ciative or content based addressing. The
parallel execution of the statements in the range
of the WHERE statement (to and including the
statement labeled sU) is implicit.

The statements in the range of a WHERE FIRST
statement (through sU) are executed only in the
first physically available element of the active
set. No attribute is specified. For example,
suppose we wanted to calculate (PZ)2 in one and
only one element where PX is greater than PY.
This could be realized by the program sequence

WHERE (PX .GT. py) 10
WHERE FIRST 10

10 Pz.. PZ * PZ

which calculates a new value of PZ in the first
physically available element of the subset of
elements which pass the test.

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

A WHERE NOT statement must reside within the
range of a WHERE, WHERE MAX, or WHERE MIN state­
ment and does not require specification of an
attribute. The statements in the range of a
WHERE NOT statement (through sU) are executed only
in those elements made inactive by the preceding
WHERE statement. Upon execution of the range
terminating statement (labeled sU), the element
activity reverts to the set of elements active by
virtue of the preceding WHERE-type statement.
Assuming a 288-e1ement ensemble where 100 elements
are active at the time the simple WHERE statement
is executed and 75 elements of the 100 pass the
test in the simple WHERE statement, the program
sequence

WHERE (PX .GT. PY) 10
PFLAG" 1
WHERE NOT 5

5 PZ - PZ + 1
10 PZ - PZ * PZ

sets PFLAG equal to one and PZ - (PZ)2 in the set
of 75 active elements where PX is greater than PY
and sets PZ equal to PZ plus one in the set of 25
elements made inactive by virtue of P~X.

The WHERE SET construct allows the user to
temporarily activate a set of elements. This may
expand (or contract) the set of active elements
as opposed to the typical nesting of WHERE state­
ments which subset elements into smaller sets and
reinstate the element activity level by level as
the program reverts from inner levels to outer
levels. Assuming a 288-e1ement ensemble where
100 elements are active, 75 remain active by
virtue of passing the test in the simple WHERE
statement, and PW is greater than zero in 250 of
the 288 elements in the ensemble, the program
sequence

WHERE (PX .GT. PY) 10
PZ - PZ * PZ + 1
WHERE SET (PW • GT. 0) 5

5 PX" 0
Py = 1

10 CONTINUE

computes a new value of PZ in the 75 elements of
the set of 100 where PX is a1gebraic1y greater
than PY, sets PX equal to zero in all elements of
the ensemble where PW is greater than zero, sets
Py equal to one in the 75 elements of the set of
100, and then reverts the ensemble activity back
so that the original 100 are active. The normal
nesting of WHERE statements allows sub setting of
element activity and, when the range terminator
statement labeled sU has been executed, the
previously active set of elements becomes
reactivated.

A simpler, faster-executing content-address­
able method of sub setting element activity has
been implemented for CCU-targeted program units in
the form of the CONVERGE construct. The CONVERGE
statement is used for typical correlation algo­
rithms which involve short iterations of code.

The general form of the CONVERGE statement is

CONVERGE (logical attribute) sU

CONVERGE statements may be nested but the range
terminator statement labeled sU must be identical
for each CONVERGE statement in the nested set.
The element activity reverts to its previous
state once for each set of nested CONVERGE state­
ments; whereas, for WHERE-type statements the
element activity is restored following the range
terminator statement of each WHERE in the nested
set. A set of nested WHERE statements may also
have the same range terminator statement label
but, for each nested WHERE, code must be
generated to revert the element activity step by
step from inner level to outer level. The
CONVERGE statement executes faster only when
nested with other CONVERGE statements. The
element subsetting of CONVERGE and WHERE state­
ments can be illustrated by the following code
sequences where the numbers in parentheses
indicate the number of active elements:

175

(100) (100)
CONVERGE (PY • GT • PX) 15 WHERE (PY .GT. PX) 15

(50) (50)
CONVERGE(PM .LE. PN) 15 WHERE (PM .LE. PN) 10

(30) (30)
15 CONTINUE 10 CONTINUE

(100) (50)
15 CONTINUE

(100)

The INHIBIT INTERRUPT and ALLOW INTERRUPT
constructs are used to bracket short, fast-execut­
ing code sequences in ACU-targeted program units
to inhibit Host, CCU, and AOCU interrupts. This
feature has been implemented because PFOR programs
are not re-entrant.

The MODE (processor) and MODE OFF (processor)
constructs are used to bracket subordinate code
sequences targeted for execution in another
processor. The WHILE construct is used to specify
a primary code sequence which is to continue
execution in an overlap mode while the subordinate
code sequence executes in another processor. In,
for example, a CCU-targeted program unit, the
program sequence

MODE (ACU)
PV=PX+PY
MODE OFF (ACU)

causes the ACU to be interrupted, the activity
state of the CUs (Correlation Units) to be trans­
ferred to the AUs (Arithmetic Units), and the
bracketed code sequence to be executed by the
ACU under the control of the ACU resident Real­
Time Executive Interrupt Handler. Also, in a CCU­
targeted source program, the program sequence

MODE (ACU)
PV-PX+PY
WHILE
CALL CORLAT
MODE OFF (ACU)

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

causes the ACU to be interrupted and the code
sequence bracketed by MODE (ACU) and WHILE to be
executed in the ACU. In an overlap fashion CCU
resident subroutine CORLAT is called and executed.
The statement following the MODE OFF (ACU) state­
ment is executed only after both the ACU code
sequence (bracketed by the MODE (ACU) and WHILE
statements) and the CCU code sequence (bracketed
by the WHILE and MODE OFF (ACU) statements) have
been executed to completion.

The function PABS is used to obtain the abso­
lute value of a parallel expression. The PEPESTAT
construct allows the programmer to transfer the
status of element activity from one control unit
to another via the shared element memory and
allows an ACU or AOCU targeted program unit to
extend element subsetting beyond the normal limit
of 21 levels.

The READ. WRITE. and WRITE-with-End-of-Record
(WRITER) constructs are used to pass data between
the CDC 7600 host and the PEPE SCL data memory.
These constructs are PEPE oriented in that 1) no
FORTRAN FORMAT capability is required. 2) data
are converted by the hardware from CDC format to
PEPE format or vice versa as specified in a PEPE
resident control word referenced by the PEPE
I/O machine instructions. and 3) data conversions
are performed based on the PFOR type specification
statements for the variables. Figure 8 lists the
extensions to PFOR being implemented for the PEPE
MSI model.

PAR DOUBLE

PAR COR DOUBLE

I FIRST I
NOT
SET

WHERE

CONVERGE

INHIBIT INTERRUPT

ALLOW INTERRUPT

MODE DIRECT, MODE PFOR

(ARITHMETIC ATTRIBUTE)

NO ATTRIBUTE REQUIRED
NO ATTRIBUTE REQUIRED
(LOGICAL ATTRIBUTE)

(LOGICAL ATTRIBUTE)

MODE (PROCESSOR), MODE OFF (PROCESSOR)

WHILE

PABS, PEPESTAT

READ, WRITE, WRITER

Fig. 8. PFOR Extensions for PEPE MSI Model

176

Additional features incorporated in the PEPE
MSI model PFOR language allow ACU and AOCU
targeted subroutines containing parallel state­
ments to be nested to any level. Also. PFOR
statements may be extended as continuation lines
in the FORTRAN fashion.

The advantages of the PFOR language are that
it is easy to learn (like FORTRAN). the associa­
tive aspects are explicit. the parallel aspects
are implicit. and it is used as a common source
language for the three PEPE processors.

Minor constraints include certain limitations
on usage; i.e •• some language forms cannot be
utilized in all three processors because each
processor has unique hardware designed for its
particular application (input. processing. output~
Moreover. the utilization of mixed parallel and
sequential forms in a single source program is
sometimes a source of confusion to programmers
oriented towards sequential processing computer
systems.

PFOR Translation System

Background

The PFOR language translation system for the
laboratory PEPE IC model resided on the IBM
S/360-65. It consisted of 1) PFOR Monitor.
2) PFOR precompiler, 3) PAL assembler. 4) S/360
FORTRAN compiler. and 5) S/360 assembler. The
PFOR precompiler was a preprocessor which con­
verted the PFOR source language to FORTRAN for
execution in the host and PAL for execution in
PEPE. FORTRAN source text was passed without
error checking except to ensure that statement
label references (GOTO.DO, etc.) did not conflict
with PFOR construct context rules. The PFOR
language translation system has been described in
detail by Wilson [1]. Following is a brief over­
view. The PFOR preprocessor converted PFOR source
text to FORTRAN and PAL. FORTRAN and PAL source
text were not modified. The PAL assembler con­
verted blocks of PAL code to S/360 assembly lan­
guage named data sets and generated a FORTRAN call
statement to a run time PEPE initiator routine
(PINIT) for each named data set. The intermixed
input and generated FORTRAN statements were passed
to the S/360 FORTRAN compiler and the generated
assembly language CSECT and DC pseudo operations
representing the named data sets containing the
blocks of PAL code were passed to the S/360 assem­
bler. At run time. under control of the code
segments executing in the host, blocks of PEPE
instructions were streamed over a selector channel
to the ACU for execution and PEPE data were
returned to the host via the same channel follow­
ing host invocation of the PINIT interface routine.
The stream of instructions received by the ACU
were decoded and broadcast one by one for simul­
taneous execution in the ensemble Arithmetic Units
(AUs). The PFOR translation system processed only
PEPE code destined for ACU execution. A separate
Correlation Unit Assembly Language (CUAL) imple­
mented as S/360 assembler language macros was used
to generate blocks of PEPE code (as S/360 named

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

data sets) for transmission over another selector
channel to the CCU.

Current Implementation Design

The PFOR language translation system for the
PEPE MSI model is designed to execute on the
CDC 7600 under the control of SCOPE 2.0. A common
source language for the three PEPE control units
is accepted, and the source text is converted to
a triple object language, namely, unique parallel
and sequential code for each target controller
(ACU, CCU, and AOCU).

The PFOR compiler consists of two passes
operating under the control of the PFOR monitor.
The monitor performs control statement cracking
to determine, for example, if the program unit (or
batch of program units) is destined for execution
in the ACU, CCU, or AOCU. Pass 1 of the compiler
contains the first pass of a conventional two-pass
assembler. Pass 1 also performs syntax analysis

PROCESS CONSTRUCTION SYSTEM

PFOR

and grammar checking on the source text. A source
listing, error diagnostics and a PEPE memory map
are output to a list file. A file containing an
encoded pseudo binary unit record for each assem­
bly language statement (PAL source input or
generated PAL) and a dictionary or symbol table
file are prepared by Pass 1 for input to Pass 2,
the assembly pass. The assembler generates an
object listing and a cross reference listing of
symbol utilization. A re10catab1e binary object
module is generated which can be placed in a
library file or directly input to the Process
Consolidator for linkage and binding into a core
image absolute binary load module suitable for
loading (from the CDC 7600) and execution in PEPE.

ACU-executing code sequences embedded in a
CCU or AOCU targeted source program (parent pro­
gram) are placed on disk by Pass 1. Parallel
variable entries in the symbol table are saved in
compiler memory. When the compilation of the
parent program is complete, each subordinate code
sequence destined for ACU execution is processed
as a separate, unique compilation utilizing the
saved symbol table containing entries for parallel
variables which reside in element memory. In PEPE
a single element memory is shared by the three
control units so parallel variables can be declar­
ed and referenced in both parent programs and
subordinate code sequences. An overview of the
PFOR Translation System is depicted in Figure 9.

~~~J~:cu,CCU) r---------------------, 

SOURCE LISTING 

ERROR 
MESSAGES 

OBJECT 
LISTING 

CROSS 
REFERENCE 
LISTING 

PSEUDO 
BINARY 

OPTIONS 

PASS I 
(COMPILER PASS) 

DICTIONARY 
(SYMBOL TABLE) 

PASS 2 
(ASSEMBLY PASS) 

ACU 
AOCU 
CCU 

PROCESS CONSOLIDATOR/LIBRARY 

F1.g. 9. PFOR Translation System 

177 



1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Summary and Conclusions 

The PEPE MSI model PFOR compiler accepts a 
single source language and generates a triple 
object language. Language forms have been 
expanded to provide more flexibility to the 
tactical applications programmer. Using PEPE, an 
increase in data volume (as opposed to an increase 
in the complexity or sophistication of data 
manipulation) can be straightforwardly handled by 
increasing the number of elements in the ensemble. 
The PEPE software will still perform effectively 
with no changes; i.e., an increase in system 
capability obtained by adding more hardware is not 
necessarily accompanied by software breakage 
problems. This latter point is illustrated by the 
fact that in the PEPE IC model, tactical software 
for tracking targets was checked out using a 16-
element simulator, run on the 16-e1ement IC model 
hardware, and then transferred to a 100-e1ement 
simulated ensemble with ~ changes. 

References 

[1] D.E. Wilson, "The PEPE Support Software 
System," IEEE Compcon 72 Digest (Sept, 
1972), pp. 61-64. 

[2] J.A. Cornell, "PEPE Applications and 
Support SOftware," IEEE Wescon 72 Digest 
(Sept, 1972). 

[3] J.L. Troy, "Computer Simulation of PEPE and 
its Host at the Instruction Level," 1973 
Sagamore Computer Conference on Parallel 
Processing. 

[4] A.L. Barrett, "Process-Construction for a 
Parallel-Sequential Computer Architecture," 
1973 Sagamore Computer Conference on 
Parallel Processing. 

178 



1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

PROCESS-CONSTRUCTION FOR A PARALLEL-SEQUENTIAL COMPUTER ARCHITECTURE [1] 

Arthur L. Barrett 
Huntsville Operations 

System Development Corporation 
Huntsville, Alabama 35805 

Summary 

The purpose of process construction is to 
facilitate the transition from process design to 
operating process. Five successive states com­
prise this transition: modification, translation, 
compilation, consolidation, and operation. 

The PEPE process constructor currently 
excludes the modification stage; it is performed 
by a commercial utility routine. Statements of 
design and implementation are updated and sorted 
to produce a file of process definitions and a 
file of source statements for the components of 
the object process. These are inputs to the 
translation stage. 

Definitions are translated first to produce 
object statements defining the process data base 
and to provide information for the translation 
routines to use in handling the operative state­
ments. The latter are translated as they are 
detected in the ensuing examination of the source 
file. Unrecognizable statements in that file are 
passed in proper sequence to either the PFOR [2] 
task file or the FORTRAN task file. This stage 
also produces a control file for the consolida­
tion stage. 

The process constructor invokes each of the 
compilers to produce a file of object modules; 
one for the PEPE and one for the host. The 
consolidation stage reads these and other files, 
such as the system subroutine libraries. Direc­
tives to the consolidator from the translator and 
information included in the object modules enable 
this stage to create modules to be loaded into 
each memory of the PEPE-host configuration and 
operation is begun. 

The approach to tactical software develop­
ment in the PEPE program is one of evolution from 
process design and functional simulation to live 
operation. As an aid to this approach the con­
structor uses the Software Development Language 
(SDL). This language meets the requirements of 
flexibility and ease of use through its syntax; 
keyword followed by parameter. Statements are 
formed from sequences of keyword-parameter sets. 
Three field delimiters each have the same meaning 
and are used interchangeably for readability. 
The simple. rigorous syntax enables the tab1e­
driven SDL translator to be highly generalized, 
thus the language is open-ended. requiring only 
changes or additions to the data in the transla­
tor's control tables for modification or addition 
of a statement to the language. 

A tactical process design is described in 
SDL statements and such PFOR and FORTRAN state­
ments as are needed to manipulate data for a 

179 

functional simulation. The process is then con­
structed for simulation, merging the simulation 
package with the process. As the various routines 
of the process are implemented. their code is 
added directly to the source library. The code 
thus becomes part of the process and is executed 
during operation. but it does not affect the 
functional simulation. When the tactical code is 
fully implemented the process can be constructed 
for live operation. The translator recognizes 
statements that are peculiar to a simulation and 
removes them or, in some cases, provides a trans­
lation more appropriate to a live process. 

The basic data entities are PARCELs (parallel 
cells grouped into PARTITIONs) in PEPE ensemble 
memories, and ELEMENTs. Both translate into 
variables and arrays of up to three dimensions. 
aside from the PARCEL's innate vector across the 
ensemble. The PARCEL also may be positioned and 
packed in bit groups smaller than word size with 
more than one parcel per word. ELEMENTs comprise 
QUEUEs in host secondary storage. accessed by a 
data manager utility. They also appear as members 
of SETs, translating into labelled common in host 
primary memory and the data memories of the 
respective PEPE Control Units. 

To date the application of process construc­
tion methods directly to the PEPE-re1ated segments 
of the object processes to be built is extremely 
limited. Because of this it is not clear to what 
extent such methods will aid implementation of 
parallel processes. Also there are capabilities 
now available, or soon to be available, that will 
allow the description of a process to be stated in 
"neutral" terms; neither specifically sequential 
nor parallel. Then, via directives to the process 
constructor the designer can alter the distribu­
tion of data and functions over the para11el­
sequential architecture to determine the optimal 
assignment of functions. 

References 

[1] A.J. Evensen. and J.L. Troy, "Introduction to 
the Architecture of A 288-E1ement PEPE," 1973 
Sagamore Computer Conference on Parallel 
Processing. 

[2] J.R. Dinge1dine. H.G. Martin. and W.M. 
Patterson, "Support & Operating System Soft­
ware for PEPE," 1973 Sagamore Computer 
Conference on Parallel Processing. 

This work was supported by the U.S. Army Advanced 
Ballistic Missile Defense Agency (ABMDA), 
Huntsville, Ala., under Contract DAHC60-73-C-0060. 



1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

A COMPARISON OF A PARALLEL AND SERIAL IMPLEMENTATION 
OF A LARGE REAL TIME PROBLEM 

Peter T. Alexander 
Richard O. Parker 

Science & Technology Division 
General Research Corporation 

Santa Barbara, California 93105 

Abstract -- The mapping of an existing large 
real-time application onto PEPE is discussed. A 
set of measures describing the utilization of 
hardware by software and the match of the combi­
nation of hardware and software to the problem 
are suggested. The tools used to gather data for 
both the serial and the parallel implementation 
are described. Preliminary data is presented. 

Introduction 

SETS [1] is a computer program currently im­
plemented on a Control Data Corporation 7600 con­
sisting of approximately 150 modules and 120,000 
machine instructions. It is designed to execute 
in real time and to model the complete environ­
ment external to a tactical data processor in a 
ballistic missile defense scenario. The primary 
task of SETS is to generate realistic radar re­
turns in response to radar commands which are 
communicated through an interface with another 
computer. The salient characteristics of this 
problem are: (1) there is a large, time-varying 
data base describing the changing environment 
which must be input and maintained; (2) as many 
as 5000 radar commands per second may cross the 
interface; (3) the amount of processing required 
to generate a return is highly dependent upon the 
changing environment; and (4) average response 
times as short as 200 microseconds are required. 
This is a large real time problem characterized 
by high data rates, a dynamically changing data 
base, unpredictable computational requirements, 
and short response times. Some of these charac­
teristics are common to other real time problems 
(e.g., Air Traffic Control and command and con­
trol systems). This particular application can 
be considered, in general terms, as a problem 
which requires that a dynamic data base be main­
tained and that the data base be accessed to 
respond, in real time, to questions related to 
that data base. 

In an effort to extend the capacity and 
fidelity of the simulation, parts of the simula­
tion are being implemented on PEPE, which will 
serve as an adjunct to the CDC 7600. The result­
ing configuration will be one in which PEPE and 
the CDC 7600 cooperate to respond to an inquiry. 

The following two sections of the paper will 
summarize the current serial implementation and 
describe the mapping of the problem onto PEPE. 
The final sections will present some preliminary 
thoughts and data describing the performance of 
each implementation. 

180 

The reader's familiarity with the PEPE archi­
tecture and nomenclature is assumed. The preced­
ing papers in this session should provide suffi­
cient background and references. A knowledge of 
the CDC 7600 architecture is needed to understand 
some of the measurement data. 

The Serial Implementation 

Serial implementation of this problem have 
been designed, executed, measured and refined for 
three years [2,3]. In the current version, a 
single inquiry is processed to completion before 
starting work on the next. Although off-line pre­
processing is used to increase throughput, no 
attempt is made to anticipate an inquiry. The 
relevant parts of the data base are updated as 
part of the inquiry processing. 

Data Structures 

The basic data structure used is the linked 
list. This was chosen because of the varying 
storage requirements of different scenarios and 
the logical interconnections of the data. 

Control Structures 

The process is data driven by the presence 
of new inqu1r1es. Computations are initiated 
under the control of a time ordered task list. 
Input/output interrupts are transparent to the 
applications code. 

Input/Output Structures 

The data base is double buffered into Large 
Core Memory (LCM) at approximately one second 
intervals. The data is then transferred into 
Small Core Memory (SCM) as needed by the applica­
tions program. References to data are made 
through a Dynamic Storage Allocation system (DSA) 
[4] providing memory management that is trans­
parent to the user. Inquiries and responses re­
side in circular buffers. The management of 
these buffers and the interface between computers 
is performed by special purpose interrupt hand­
lers and Peripheral Processor Unit (PPU) routines 
transparent to the applications code. 

This research was supported by the Advanced Bal­
listic Missile Defense Agency under contract 
DAHC60-73-C-0037. 



1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

The Parallel Implementation 

The parallel implementation consists basi­
cally of two tasks: (1) responding to inquiries 
and (2) updating the data base. The division is 
in contrast to the serial implementation where 
the relevant portions of the data base are up­
dated in response to each inquiry. These tasks 
have several sub tasks. The PEPE implementation 
requires that the subtasks be assigned to the 
PEPE units so as to (1) maximize the number of 
simultaneously active instruction streams, (2) 
have access to an instruction set which is suited 
for the subtask, and (3) maximize the number of 
distinct data streams for parallel subtasks. 

Description of the Major Sub task Distribution 
Among Units 

Input of the data base is performed by the 
ACU/AU and the data is primarily stored in ele­
ment memory. This choice was dictated by the 
need for coordination between data base input and 
data base updates. 

Inquiries are input into a circular buffer 
in the CCU data memory (SCDATA) under the control 
of the CDC 7600 or a special interface computer. 
The CCU transfers this data from SCDATA into the 
appropriate Element Memories and handles the 
ilssociated bookkeeping. This assignment was 
based upon the estimated utilization of the units 
which indicated that the CCU would be under­
utilized and thus available for this essentially 
serial process. 

Decoding of the inquiries, selecting rele­
vant parts of the data base and linear data base 
updates are performed by the ACU/AU. The ACU/AU 
is assigned to this task by an interrupt from the 
CCU/CU. These functions would probably have been 
assigned to the CCU/CU if fast shift instructions 
and a fixed point mUltiply were available. 

The generation of responses and output func­
tions are assigned to the AOCU/ADU. The gener­
ation function is primarily fixed point arith­
metic and associative computations. Outputting 
of the data requires serially moving data from 
element memory to the ADCU data memory (SODATA) 
and its subsequent transfer to the CDC 7600. 
The high speed AOCU data and program memories 
appear well suited to these functions. The lack 
of a fixed point mUltiply might become signifi­
cant in the future, if the generation function 
becomes more complex. 

Data base maintenance is a parallel numeri­
cal task which is a background ACU/AU operation. 
This task keeps the data base current enough to 
allow rapid generation of responses. 

Data Structures 

The data structures are fixed arrays and 
circular buffers. The associative properties of 
PEPE and the natural partitioning derived by 
assigning data to different elements within the 
ensemble obviates the need for a software equiv­
alent of linked lists. 

181 

Control Structures 

The CCU is data driven by the presence of 
inquiries in SCDATA. Their presence is detected 
by the application software. The ADCU is also 
data driven by the presence of decoded inquiries 
in element memory. The ACU participates in the 
generation of a response to an inquiry when it is 
interrupted by the CCU. In addition, the ACU 
periodically inputs data base information and up­
dates this information as a background process. 

Comparison of the Serial and 
Parallel Implementation 

Introduction 

If both machines were executing functionally 
identical software, it would be meaningful to 
compare the execution times for representative 
sets of input data. This is not possible at the 
present time. Also, the approach yields little 
insight about the relationship of the hardware, 
the software, and the problem. We propose to 
discuss some preliminary attempts to determine, 
for each of the two machines, how well the soft­
ware is matched to the hardware, and how well the 
combination of hardware and software is matched 
to the problem. 

In the following paragraphs we will describe 
these comparisons. We will then outline the tools 
which are available to gather the data. Finally, 
we will present the preliminary data that is 
available. 

Basis of Comparison 

In principle, the applications software may 
be dichotomized into those pieces of code which 
are performing the computations (arithmetic and 
logical) specified by the functional description 
of the problem (call it problem code) and those 
pieces performing such functions as controlling 
the flow of the computational process, accessing 
data, and maintaining data structures (support 
code). Execution times will be influenced by 
both software design and the machine architecture 
that the software runs on. The ratio of problem 
code execution time to the total execution time 
(problem code plus support code) is a measure of 
the match between the hardware and software and 
the original problem. More generally stated, 
this is a measure of the resources required by a 
set of algorithms divided by the resources of 
the problem solution in which the algorithms are 
embedded. 

Although we cannot give a precise quantifi­
cation of this measure, some of the available 
data does provide a basis for an initial estimate. 
In the serial implementation, most of the data 
access, data transfer, and data structure mainte­
nance functions are performed via FORTRAN sub­
routine calls to a Dynamic Storage Allocation 
system (DSA) and thus are identifiable. There 
are two limitations to using DSA execution time 



1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

as a measure of the support code time. First, 
many of the variables used in the arithmetic com­
putations are singly or doubly indexed. The time 
necessary to perform the index arithmetic should 
be included in the data access time, but is not 
included in the measure of DSA. The second limi­
tation is that some of the logic of the computa­
tions is simplified by the data structure. This 
time, which is included in the DSA total, should 
be charged to problem code. These two omissions 
bias the answer in opposite ways and thus, for a 
zero order approximation, can be ignored. 

In our particular code--the skeletal PEPE 
SETS code--the problem code is executed in the 
ensemble and most of the support code is executed 
in the sequential control logic (SCL). The SCL 
code is controlling the process, is transferring 
data from Element Memory into the control unit 
data memories, and is performing address arith­
metic. The parallel support code is primarily 
concerned with maintaining the Activity Stack 
and inputting inquiries. 

A commonly used measure of the match of 
software to computer architecture is the amount 
of parallelism actually achieved, compared to the 
amount of parallelism inherent in the hardware. 
(For example, a system profile obtained with a 
hardware monitor is often used for this purpose.) 
We will consider this in the context of PEPE and 
the CDC 7600 central processing unit. 

In the 7600 there is the potential for in­
struction fetch and execution overlap, and simul­
taneous execution of multiple instructions. The 
latter is accomplished with multiple functional 
units, most of which are segmented for pipelined 
operation. The maximum execution rate is one 
instruction each cycle. 

Three types of parallelism must be consid­
ered for PEPE: the simultaneity of instructio~ 
streams, the presence of multiple, independent 
data streams, and the overlap of instruction 
fetch, routing, and execution. Many of the PEPE 
instructions execute in one or two clock periods. 
The degree to which instruction fetching, routing, 
and execution are overlapped can affect the exe­
cution rate by 100% or more. 

Measurement tools have been developed and 
are being used to gather data describing the 
achieved parallelism on each of the computers. 

The task of comparing the two implementa­
tions is just beginning. The data is sparse, 
and the conclusions tentative. There is a simu­
lation of the 7600 [5] to evaluate the serial 
implementation. A software monitor package [6] 
exists to gather timing and execution path data 
for 7600 programs. As a check on the 7600 simu­
lator there is timing and dynamic instruction 
mix data gathered with a hardware monitor [7] 
using a CDC 6400 executing a non-real time ver­
sion of the application program. 

182 

The CDC. 7600 simulator (SIM7600) is a pro­
gram developed by General Research Corporation 
which simulates hardware functions of the CDC 
7600 at a clock cycle level. The SIM7600 program 
is executed as an ordinary batch job under the 
control of the operating system on either CDC 
6000 or 7000 series equipment. SIM7600 models 
the Central Processor Unit (CPU), the first level 
Peripheral Processors Unit (PPU), the Maintenance 
Control Unit (MCU), a variety of external equip­
ment, and the connecting communication channels. 

The CDC 7600 software monitor instruments 
object code to record the sequence of entries, 
exists and execution times of selected program 
modules. Reports are then generated describing 
the module characteristics and the relationships 
between modules. 

The hardware monitor experiments investi­
gated the characteristics of selected programs 
running on a CDC 6400 computer system. The goals 
of the study were to evaluate the use of hardware 
monitors for measuring the performance of real 
time computer systems, and to investigate the 
characteristic use of the CDC 6400 by the SETS 
program. 

A PEPE computer simulation has been develop­
ed in order to aid the design and testing of pro­
gram code, to provide insight into the operation 
and interaction of the various control and compu­
tational elements of the system, and to establish 
preliminary timing estimates for the algorithms 
which are being developed. The simulator repre­
sents current PEPE specifications [8] and con­
tains all of the salient characteristics of the 
real hardware design. 

The micro-code sequences were not modeled 
for each instruction algorithm. However, register 
contents, control signal values, execution delays 
and overall timing have been faithfully observed. 
Since the time-base of the simulation clock has 
the same granularity as the clock period in the 
PEPE system (100 ns), substantial data are avail­
able for collection and evaluation. The follow­
ing data are currently being collected: 

Clock cycle of instruction issue to each of 
the sequential and parallel units (relative 
to the beginning of simulation). 

Element activity counts at each clock cycle. 

Total of instruction issues for each unit 
(sequential and parallel). 

Distribution of issued instructions by 
major (high order 5-bit) instruction cate­
gory. 

Count of references to element memory for 
each unit (AOU, AU, CU). 

Count of the cycles of concurrent execution 
for parallel and sequential unit combina­
tions (AOCU/ADU, ACU/AU, CCU/CU). 



1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Accumulated cycles of concurrent idle time 
for sequential and parallel unit combina­
tions (AOCU/AOU, ACU/AU, CCU/CU). 

Calculated effective instruction rate. 

In addition, a detailed trace facility has been 
incorporated to provide register contents, con­
trol signal status and element activity on a 
clock cycle basis. The trace facility may be 
enabled or disabled under object program control 
by utilizing one of the unused test and mainte­
nance instructions. 

In order to facilitate writing object code 
to be measured with the simulation tool described 
above, a cross assembler was developed to trans­
late PEPE mnemonic instruction formats to appro­
priate bit-field definitions. The assembler 
permits data as well as instructions to be gener­
ated for any of the global (program or data) 
memories and, in addition, permits data to be 
preset into element memory. The cross assembler 
is implemented with the COMPASS assembly language 
of the CDC 6000-7000 computer systems. It allows 
the use of all of the standard features of the 
COMPASS assembler. 

Serial Implementation Data 

Using the software monitor we measured the 
elapsed central processor time, operating system 
services time, wall clock time, and the number of 
invocations for each module and major sequence of 
modules in the SETS code. Only the central pro­
cessor time is considered for two limiting cases 
to derive the ratio of support code time to total 
execution time. The first case was one in which 
the computations required to generate a response 
to an inquiry were minimal, in the other case 
the number of computations were maximized. The 
support code data, presented in Figure 1, is the 
sum of the time spent in the data access and data 
structure maintenance routines (primarily DSA) 
and the time spent in routines which transfer 
data within the central processor memory systems. 
The high support code values for the minimum case 
is indicative of the amount of data handling 
activities performed in processing an inquiry 
independent of the complexity of the response. 

Figure 2 presents some preliminary measure­
ments which describe the parallelism achieved by 
the CDC 7600 CPU for a particular execution of 
the SETS program. The SETS program was in this 
case responding to a typical inquiry. This data 
was derived by running SETS with the CDC 7600 
simulation. 

The measures used are millions of instruc­
tions issued per second (MIPS), the fraction of 
cycles waiting to issue the next instruction, and 
the ratio of execution time to the execution time 
of an equivalent serial instruction stream com­
puted by summing the execution time of all in­
structions issued. Instruction issue is delayed 
by contentions for registers, certain functional 

183 

units, and the unavailability of an operand or 
instruction word being fetched from memory. 

The CDC 7600 has a maximum instruction issue 
rate of one instruction every 27.5 nanoseconds. 
On this basis the SETS code issues instructions 
at approximately one-third the maximum rate. In 
the sample code, almost 15% of the total CPU time 
was spent initiating the fetch of instruction 
words from memory. In an additional 47% of the 
machine cycles no instruction issue occurred due 
to the delays mentioned in the preceding para­
graph. Although it appears that much of this 
delay time is spent waiting for operands to be 
fetched from memory, more work is required to 
fully understand the mechanisms. It is expected 
that the CDC 7600 simulator will supply the data 
necessary to illuminate the causes of the delays. 

Parallel Implementation Data 

In the serial implementation the majority of 
the code is concerned with small pieces of logic 
arising from the need to consider a wide range of 
input scenarios. This diversity is lacking in the 
current PEPE code. We believe that these omis­
sions cause the data base update to have more 
simultaneous data streams (active elements) and 
simpler data base update algorithms than would 
exist in the complete code. The complete code 
will probably require some additional associative 
operations to select the relevant portions of the 
data base for a given inquiry. In addition, the 
complete code will probably include a background 
process in the CCU/CU as part of the data base 
maintenance process. It is our guarded belief 
that the skeletal version does accurately repre­
sent the degree of interaction between the units. 

The support code/problem code data for one 
case was derived from the instruction trace out­
put of the PEPE simulator. The input for this 
example consisted of only one inquiry. The re­
sult is that the AOCU and CCU spend most of the 
time waiting for the arrival of data. In the 
full PEPE SETS there would be background tasks 
assigned to these units as well as a steady flow 
of inquiries. The effect of the limited inquiry 
data is to bias the execution towards a high per­
centage of support code. The support code con­
sumed 44.8% of the total execution time. 

Figure 3 presents a summary of the execution 
characteristics of a 100 microsecond time inter­
val which included the complete processing of an 
inquiry. Polling for new inquiries and data base 
maintenance were background processes. The effec­
tive instruction rate is the sum of the average 
number of instructions issued each second to the 
three bodies of Sequential Control Logic (SCL) 
and the three Parallel Instruction Control Units 
(PICU). Thus any backlog remaining in the Paral­
lel Instruction Queue (PIQ) at the termination of 
a run is not included in the total. 

Regarding instruction issues as a measure of 
execution rate bypasses the problem of scaling 



1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

SERIAL IMPLEMENTATION 
SUPPORT CODE TIMING 

(Percent of Total CPU Execution) 

Data Acess 
and 

Structuring 
(DSA) 

Data 
Transfer 

Minimum 
Response 

Computation 

17.2 

17.5 

34.7 

Figure 1. 

Maximum 
Response 

Computation 

5.5 

2d... 
12.6 

PRELIMINARY MEASUREMENTS 
OF CDC 7600 CPU PARALLELISM 

% Cycles Waiting to Issue 

% Cycles Used Initiating the 
Fetch of a New Instruction Word 

MIPS 

Elapsed Time 
Equivalent Serial Execution Time 

Figure 2. 

47.5% 

14.8% 

13.7% 

0.59% 

184 

AOCU 

227 

PEPE EXECUTION SUMMARY 

(Measurement = 1000 Clock Periods) 

NUMBER OF INSTRUCTIONS ISSUED 

AOU 

280 

ACU 

86 

AU 

194 

CCU 

437 

CU 

14 

NUMBER OF REFERENCES TO ELEMENT MEMORY 

AOCU 

38.1 

AOU 

64 

AU 

132 

CU 

6 

EFFECTIVE INSTRUCTION RATE 
6 (Issues x 10 per second) 

12.38 

Figure 3. 

PEPE INSTRUCTION STREAM ANALYSIS 

INDIVIDUAL UNIT ACTIVITY 
(Percent of Total Time) 

AOU 

49.5 

ACU 

9.5 

AU 

65.6 

CCU 

50.3 

OVERLAPPED UNIT ACTIVITY 
(Percent of Total Time) 

AOCU/AOU 

5.3 

ACU/AU 

5.8 

CCU/CU 

0.7 

OVERLAPPED UNIT IDLE PERIODS 
(Percent of Total Time) 

AOCU/AOU 

17.7 

ACU/AU 

30.7 

Figure 4. 

CCU/CU 

47.5 

CU 

2.9 



1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

the parallel instruction execution rates by the 
number of active elements to derive a MIPS esti­
mate. We chose this approach for two reasons. 
First, the utility and accuracy of the above 
MIPS estimate is questionable. Second, the num­
ber of active elements is often a function of the 
input data. We are attempting to consider the 
relationshii' between the hardware and software 
independent of the particular set of input data 
whenever possible. 

The data in Figure 4 is part of the summary 
output from the PEPE simulation for the example 
considered in the preceding paragraph. The indi­
vidual unit activity represents the percentage of 
time that each unit was executing instructions. 
(For the SCL the S_SCLF flags were monitored to 
determine activity for each cycle. For the PICU 
the S_IREQ flag was used.) The overlapped acti­
vity is the percentage of time that a sequential 
unit and its associated parallel unit were both 
active. The overlapped idle time is the percen­
tage of time that a sequential and parallel unit 
were simultaneously not executing instructions. 
We present a preliminary interpretation of some 
of these values in order to give some information 
concerning the operation of PEPE and to show the 
types of analysis which can be performed using 
the simulation output. The interpretations are 
based upon the summary output and upon the cycie­
by-cycle instruction trace, which is not shown. 

Individual Activity 

The low utilization of the ACU and the CUs 
is due to the few instructions in the skeletal 
code which execute there. The high utilization 
of the AUs is due in part to the relatively long 
execution times of many of the AU instructions. 
It is also the result of the lack of delay be­
tween successive AU instructions. This in turn 
is due to the PIQ which mitigates the effects of 
the relatively slow (300 ns) ACU program memory 
(SAPRGM) • 

Overlapped Activity 

The low overlap of the AOCU/AOU activity, 
in spite of the many instructions executing 
there, is due to the short instruction executions 
times and the absence of a PIQ. However since 
the ADCU/AOU code sequences tend to be short and 
the presence of OTA instructions (output from an 
element A-register to the sequential A-register) 
frequent, a PIQ would probably provide little 
additional throughput. The relatively high over­
lap between the ACU and the AUs is due to the 
PIQ. The CCU/CU overiap is low because of the 
inactivity of the CUs and the factors considered 
for the ADCU/AOU. 

Overlapped Idle 

Since the CUs are idle most of the time, the 
CCU/CU idle time is primarily due to the non­
overlap of instruction fetch with SCL instruction 
execution. This effect is less prominant in the 
AOCU/AOU due to the greater percentage of 

185 

parallel instructions and thus increased overlap 
of fetch and execution. 

Space limitations prevent the inclusion of 
a copy of the dynamic instruction trace or full 
execution trace. However the instruction trace 
is useful to determine the occurrence and dura­
tion of execution delays such as those caused by 
non-overlapped routing and execution, waiting for 
the PIQ to empty before OTA or branch instruc­
tions, or waiting for interrupts to be completed 
or accepted. (In the current code all of these 
delays tended to be of short duration, no more 
than 3 cycles. In test cases, however, delays 
in excess of 10 cycles have been observed.) 
Periods of inactivity for a particular unit and 
the effects of code segment rearrangement are 
easily seen on the trace. The inclusion in the 
trace of instruction issues to the PIQ, as well 
as to the PICU and SCL, provides insight into 
PIQ/SCL dynamics. The full execution trace has 
proved a valuable aid in debugging the PEPE code. 

Summary 

Continued work is planned in several areas. 
The PEPE SETS code will be expanded. At the same 
time the PEPE simulation"will be enhanced by the 
addition of models for the interfaces between 
Input/Output Units (IOU) and external computers. 
We will continue to measure the characteristics 
of the PEPE code and develop methods for compar­
ing them with those of the CDC 7600 implementa­
tion of SETS. The measurements will also be ex­
tended to consider the effects of input/output 
on the performance of both versions of SETS. 

References 

[1] T. o. Sullivan, P. T. Alexander, N. W. Hill, 
Jr., H. D. Wade, ABMDA SETS 1 Program CU). 
General Research Corporation CR-lO-245, 
January 1973 (SECRET). 

[2] K. E. Takacs, et al., The Simulation for the 
Analysis of Computer Systems (SACS)(three 
volumes), General Research Corporation. 
TM-1563, March 1972. 

[3] R. L. Stone, et al., The Test Bed Demonstra­
tion Simulation System, General Research 
Corporation. TM-130l, July 1970. 

[4] R. L. Stone, A Dynamic Storage Allocation 
System for FORTRAN Programs, General Research 
Corporation IMR-1249, January 1970. 

[5] N. B. Brooks, SIM 7600 User Guide, General 
Research Corporation. July 1973. 

[6] E. E. Balkovich. The Design and Application 
of a Software Monitor for the CDC 7600, 
General Research Corporation (in preparation) 
August 1973. 



1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

[7] E. E. Ba1kovich, P. T. Alexander, Hardware 
MOnitor Measurements of SETS Performance, 
General Research Corporation (Working Notes) 
1973. 

[8] PEPE System Functional Design Specification, 
Vol. II. Hardware Specification, System 
Development Corporation, July 1973. 

1~ 



1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

COMPUTER SIMULATION OF PEPE AND ITS HOST AT THE INSTRUCTION LEVEL 

James L. Troy 
Huntsville Operations 

System Development Corporation 
Huntsville, Alabama 35805 

Summary 

A serious problem emerges when an attempt is 
made to simulate parallel processing at the 
instruction level: execution time may be imprac­
tically slow. The faster a parallel processor 
executes, the slower will its instruction level 
simulator execute, and PEPE is very fast. The 
first attempt to simulate a 100-element PEPE at 
the instruction level (on an IBM 360/65, executing 
a BMD problem) produced a snail's-pace real-to­
simulated time expansion of 11,000 to 1. This 
ratio was quickly reduced to a more practical 1000 
to 1 by reducing the size of simulated element 
memory to fit the available core space. But be­
cause of the increased complexity and power of the 
current larger scale PEPE new solutions to the 
problem of excessive time expansion were 
sought. [1] Adding to the problem, however, were 
new requirements: the executions of all three 
control units were to be simulated "simultaneous­
ly" to accurately measure inter-unit memory access 
conflicts; element expandability (from 36 to 800 
elements) was to be provided with particular 
emphasis on the efficient simulation of a 288-
element PEPE; and instruction time was to be accu­
rately modeled. A CDC 7600 was selected to 
execute this simulation since it is also being 
used as PEPE's "Host" to execute sequentially­
oriented system tasks. Its relatively fast execu­
tion speed and large core storage are helpful in 
alleviating some of the problems inherent with 
sequential machines simulating PEPE; i.e., the use 
of such machines requires looping through many 
arrays which represent element data. The 7600, 
however, requires time-consuming data conversions 
between its 60-bit l's complement and PEPE's 
32-bit 2's complement formats. 

The main approach taken to reduce execution 
time has been to eliminate code. There are, for 
instance, very few error checks. Erroneous condi­
tions (such as, in PEPE, arithmetic operations 
with unnormalized floating point numbers) are not 
simulated where these conditions would surely lead 
to a program abort anyway. A preprocessing scheme 
eliminates several thousand word tables that would 
have otherwise been required in the online envir­
onment to provide instruction routing, execution 
times, legal field combinations and other informa­
tion. This core space savings translates into 
considerable time saved due to Large Core Memory 
access-time characteristics of the CDC-7600. 
Dynamic instruction modification is disallowed by 
the software, so some instruction execution tasks 
can be preprocessed. Data, such as illegal 
instruction flag, execution time, address field 
size (which varies) and traps for parameter test­
ing, are stored during a preprocessing pass into 
the 28 remaining bits of the 60-bit CDC 7600 word 
reserved in the load module for each 32-bit PEPE 
instruction. 

187 

FORTRAN was chosen as the programming lan­
guage though code generation has been monitored 
closely to avoid inefficient object code. 
Extended FORTRAN for the CDC 7600 provides the 
necessary shift and mask statements to manage 
packed data. It was felt that the code generated 
by a modern compiler is efficient enough and the 
programming time thus saved is better spent inter­
preting the complexities of parallel hardware. 

The PEPE simulator is instruction-driven and 
time is incremented following the occurrence of 
events which effect time. When PEPE simulation 
is interrupted due to I/O or interrupts between 
PEPE and external equipment, control is temporar­
ily returned to a simulation control program 
(SDC's PEPSIE) which is event/time driven and in 
charge of coordinating I/O transactions between 
PEPE and the outside world. 

The element expandability requirement pro­
duces a data variance of a million words, far too 
varied for one all-encompassing FORTRAN data 
block. So, three simulator versions are being 
produced in which up to 36, 300 or 800 elements 
can be modeled. If fewer elements are desired the 
space required for the maximum is blocked but not 
used. The 800-element version contains a disc­
paging algorithm in which a block of contiguous 
addresses of element memory (for all elements) is 
maintained in core. This method was chosen based 
upon tests which showed that subsequent element 
memory accesses tend to stay in one "neighborhood" 
of memory for relatively long durations. The 
36-element simulator is expected to reside in 7600 
core at all times along with "Host" programs, the 
simulation controller, and executive programs. 
Disc transfer is expected to be required for the 
300-element configuration only between the 
execution of major program segments. 

Through the use of these techniques the PEPE 
instruction level simulator is expected to be a 
valuable tool in checking out the software utility 
package for the MSI Model PEPE currently being 
constructed and to validate the hardware design of 
the current model or of future large-scale 
integration PEPE models. 

Reference 

[1] A.J.Evensen, and J.L. Troy, "Introduction 
to the Architecture of A 288-Element PEPE," 
1973 Sagamore Computer Conference on 
Parallel Processing. 

This work was supported by the U.S. Army Advanced 
Ballistic Missile Defense Agency (ABMDA), 
Huntsville, Ala., under Contract DAHC60-73-C-0060. 



1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

AUTHOR INDEX 

Author Page Author Page 

Alexander, P. 180 Lamport, L. 1 

Baer, J. L. 13 Lawrie, D. H. 23 

Barrett, A. L. 179 Long, G. 69 

Batcher, K. E. 147 Love, H. H. 103 

Budnik, P. E. 23 Ludtke, H. 121 

Buten, R. E. 130 Martin, H. G. 170 

Chen, S. -c. 23 Moulder, R. 161 

Chen, Y. K. 60 Muraoka, Y. 23 

Davis, E. W. 23, 153 Noguez, G. 120 

Della Torre, T. 102 Parker, P. o. 180 

Dinge1dine, J. R. 170 Patterson, w. M. 170 

Dromard, F. 120 Plante, J. M. 160 

Even, S; 55 Randal, J. M. 78 

Evensen, A. J. 162 Rauscher, T. G. 113 

Feldman, J. D. 140 Raynor, R. J. 139 

Feng, T. 60, 101 Reimann, o. A. 140 

Gavi1an, J. 91 Roitman, J. 102 

Giroux, D. 69 Schindler, S. 121 

Gondek, D. J. 160 Shay, B. P. 113 

Grosky, w. r. 61 Shen, v. Y. 130 

Gwynn, J. 139 Shri vas tava , S. K. 54 

Hamacher, v. c. 91 Smith, H. H. 113 

Han, J, C. -C. 23 Smith, w. R. 113 

Hays, B. R. 37 Spier, M. J. 79, 89 

Ihnat, J. P. 113 Stabler, E. P. 47 

Keller, R. M. 90 Strebendt, R. E. 23 

Kransky, v. 69 Towle, R. A. 23 

:Kraska, P. w. 23 Troy, J. L. 162, 187 

Kuck, D. J. 23 Tsui, F. 61 

Ursch1er, G. 38 

188 



1973 'SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Prof. J. L. Baer 

Dr. Kenneth E. Batcher 

Prof. H. C. Brearley 

Prof. P. Bruce Berra 

Mr. Wei-tih Cheng 

Mr. J. A. Cornell 

Dr. H. R. Downs 

Dr. Philip H. Enslow, Jr. 

Prof. Michael J. Flynn 

Prof. Garth H. Foster 

Prof. Bernard A. Galler 

Dr. Mario Gonzalez, Jr. 

Mr. Dale C. Gunderson 

Prof. Richard E. Horton 

Mr. Chao P. Hsieh 

Prof. M. Hu 

Prof. Keki B. Irani 

Prof. Robert M. Keller 

Dr. Alan R. Klayton 

Dr. Peter M. Kogge 

Prof. David Kuck 

Prof. Duncan H. Lawrie 

Mr. Chung C. Lee 

Prof. Gerald J. Lipovski 

Prof. John G. Marzolf 

Mr. David McIntyre 

Prof. Shtihas Patil 

Dr. William W. Patterson 

Mr. James L. Previte 

Prof. C. V. Ramamoorthy 

Dr. Greg Schmitz 

Prof. Edward P. Stabler 

Prof. Harold S. Stone 

Dr. Ken Thurber 

Mr. Ross A. Towle 

Prof. Roy J. Zingg 

REVIEWERS 

189 

University of Washington 

Goodyear Aerospace 

Iowa State University 

Syracuse University 

Syracuse University 

System Development Corp. 

Systems Control, Inc. 

Office of the Communication Policy 

The Johns Hopkins University 

Syracuse University 

University of Michigan 

Texas Instruments 

Honeywell, Inc. 

Iowa State University 

Syracuse University 

Syracuse University 

University of Michigan 

Princeton University 

Rome Air Development Center 

IBM 

University of Illinois 

University of Illinois 

Syracuse University 

University of Florida 

LeMoyne College 

University of Illinois 

Massachusetts Institute of Technology 

Rome Air Development Center 

Rome Air Development Center 

University of California, Berkeley 

Honeywell, Inc. 

Syracuse University 

Stanford University 

Honeywell, Inc. 

University of Illinois 

Iowa State University 



1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Program Committee 

Col. Philip H. Enslow 

Prof. Tse-yun Feng 

Prof. Bernard A. Galler 

Dr. Peter M. Kogge 

Prof. G. Jack Lipovski 

Mr. James L. Previte 

Prof. Harold S. Stone 

Executive Committee 

Prof. Tse-yun Feng 

Prof. Garth H. Foster 

Prof. Ming K. Hu 

Prof. Edward P. Stabler 

Local Arrangement 

Miss Diane Sims 

Miss Anne Woods 

COMMITTEES 

190 

Office of the Communciation Policy 

Syracuse University 

University of Michigan 

IBM 

University of Florida 

RADC 

Stanford University 

Syracuse University 

Syracuse Universtiy 

Syracuse University 

Syracuse University 

Syracuse University 

Syracuse University 


