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PREFACE 
The 1973 Sagamore Computer Conference on Parallel Processing was held on August 22-24, 1973 at the 

former Vanderbilt summer estate in the Central Adirondack Mountains. The Conference was conceived to 

provide a secluded environment, a l300-acre preserve surrounding the private Sagamore Lake, for the 

participants with excellent opportunities for exchanging ideas and learning each others research activi­

ties. Thus, informative discussions may be made not only during the technical sessions but also through­

out the various sports and social gatherings provided by the Conference. 

The enthusiastic cooperation and response that we received throughout the Conference and during 

its preparation was indeed most heartening. We not only received many more papers than we could possibly 

schedule, but also the number of requests to attend exceeded the Sagamore accomodations. Thus, there 

seems to be a popular demand for such a conference in parallel processing. Another conference is being 

scheduled for the next year -- August 21-23, 1974. 

The success of such a conference requires the vigorous support of many individuals. In this respect, 

we are most grateful to all the authors who submitted their papers for consideration. It is our deep 

regret that not all qualified papers could be scheduled for the Conference. We are also much indebted 

to all the reviewers who, in order to meet the stringent review deadlines, put aside their own busy work 

schedule to carefully evaluate the papers sent for their judgement. Their valuable comments not only 

resulted a set of high-quality papers for the Conference, but also were sincerely appreciated by many 

authors. The generous help we received from the session chairmen also contributes much to the success 

of the Conference. In addition, we wish to acknowledge the excellent cooperation provided to us by 

IEEE, IEEE Computer Society, ACM, their local chapter chairmen, as well as the staff of various techni­

cal magazines. In particular, we are indebted to Mr. James J. Andover, Mr. Charles Casale, Dr. W. Smith 

Dorsey, Prof. Michael J, Flynn, Prof. Caxton C. Foster, Mrs. Irene Hollister, Mr. David Jacobsohn, Mr. 

John L. Kirkley, Mr. E. D. MacDonald, Prof. Harold S. Stone, and many others for their assistance in 

achieving such a cooperation. Special thanks are also due to members of various committees. Their time 

and effort devoted to the Conference are indeed invaluable. 

Tse-yun Feng 

Department of Electrical & Computer Engineering 

Syracuse University 
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1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

THE COORDINATE METHOD FOR THE 

PARALLEL EXECUTION OF DO LOOPS 

Leslie Lamport 

Massachusetts Computer Associates 

Wakefield, Massachusetts 01880 

Abstract -- An algorithm is presented 
which translates a program with nested sequential 
DO loops into one suitable for execution on a par­
allel array or vector computer. If necessary, 
extensive rearrangement of the program's structure 
is made. 

Introduction 

We consider the problem of compiling ordi­
nary sequential programs for execution on a par­
allel array or vector computer such as the Illiac N 
or the CDC Star-lOO. This problem is of practical 
importance for the following reasons: 

(1) There exist sequential programs which 
one would like to run on these parallel computers. 

(2) If a program is to be run on two dif­
ferent machines, it might be best to write it in 
sequential form and let each compiler find the most 
efficient parallel execution for its computer. 

(3) A com~iler may be able to find more 
parallelism in a program than the programmer can. 
(See [l].) 

The methods which we introduce shou1d 
also be useful in other areas of program optimiza~ 
tion. 

We consider a FORTRAN program containing 
DO loops, and describe a method of translating it 
into an extended FORTRAN program in which one or 
more of the DO loops is executed in parallel. 
This is an obvious approach, and has been used in 
[2] - [4]. The method presented here generalizes 
the coordinate method of [4], and is more general 
than the analogous methods of [2] and [3]. Al­
though our exposition is self-contained, it is best 
to read [4] first. 

We specify parallel execution with a 
DO SIM statement of the following form: 

DO 99 SIM FOR ALL I ( g , 
where 8 is a set of integers. The statements in 
its range are executed one after another as usual. 
However, each statement is executed simulta­
neously for all of the indicated values of I. An 
assignment statement is executed by first com.,. 
puting the right-hand side for each value of I, 
then simultaneously performing the assignments. 
Thus, the statement 

A(I) = A(I - 1) + B(I) 
would simultaneously set A(i) equal to the orig­
inal value of A(i - 1) plus B(i) , for each value 
ofiinS. 

1 

The coordinate method tries to change DO 
loops to DO SIM loops. We show that it suffices 
to consider one DO loop at a time. The basic 
method is the coordinate algorithm, which we il­
lustrate by an example. Suppose we are given 
the following progra m. 

Program 1: 

DO 100 1= 2, P 

o 
DO 10 J =1;1 

'---_---'-------II J 10 A=A+UCI+1,J)**2 

WJ~lli!J 

IF (B m . LT. 0) GO TO 25 

[@ 
DO 20 K = 2, Q m 

GJ 
~---------------~~----------------------'K 

U U, K) = 2 * U <I, K - 1) 

~ ~ 
B m = B m + ( U (1- 1, K) - U (l + 1, KJ) ** 2 

~ ~ ~ ~ 
20 C(K) = C(K) + K *U(1, K) 

@l ~ ~ 

D=D+B(J) 

@~~ 
25 DO 30 SIM FOR ALL L E f2, ... , 1001 

~-------------------------------------------,L 
DO 30 M = 4,50 

JM 
E(I,L,M) = EU-1, L-i-1,M-3) *B(1+1> 

~ ~ ~ 

100 CONTINUE 

This is a nonsensical program, but it will 
serve to illustrate most details of the algorithm. 
Each occurrence of a non-index variable is given 
a name, which appears in a box beneath it. Loop 
bodies are boxed and labeled for legibility. The 
L loop might have been changed from a DO to a 
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DO SIM loop by a previous application of the al­
gorithm. 

The coordinate algorithm can translate 
Program 1 into the following equivalent program. 

Program 2: 

TMP1 = P 

I!l 
r-----------~----------------------------lj1 

DO 901 II = 2, TMP1 

DO 10 J = 1, II 

10 A = A + u(f1 +l,J) **2 

L..--___ ----I
1J Irn ~ ~ 

901 CONTINUE 

DO 902 SIM FOR ALL I2 £ [ i : 2 ~ i" TMP11 

r-------------------~--------------------,~ 
TMP2 <12) = .NOT. (B (T2) .LT. 0) 

hll 
IF CTMP2 (12» TMP3 (12) = Q (12) 

III 
DO 30 SIM FOR ALL [ E [2, ... , 1001 

. 1. 
DO 30 M = 4, 50 

M 

30 E<12,L,M) = EcI2 -1, L+1, M - 3) * B (12 + 1J 

!ill ~ ffi1l 

902 CONTINUE 

DO 920 K = 2, MAXIMUM (fTMP3 (iJ : 

2" i" TMP1 .AND. TMP2 (iJ)) 

r-------------------------------------~K 
DO 904 SIM FOR ALL 14 E [i: K" TMP3 (j) 

.AND. 2", i" TMP1 .AND. TMP2 (iJ 1 

TMP4 (14 ) = U (14 +1, K) 
@ 

U cI4 ' K) = 2 * U (f4 , K - 1) 

~ ~ 
B (14 ) = B (14 ) +( U (f4 -1, K) - TMP4 (14)) ** 2 

~ ~ ~ 
TMPS (14 ) = K * U (14 , K) 

~ 
904 CONTINUE 

DO 905 Is = 2, TMP1 

~----------~----------------------~~ 
IF (TMP2 (Is) .AND. K~ TMP3 (Ts» 

C (K) = C (K) + TMPS Cis) 
[ill ~ 

905 CONTINUE 

920 CONTINUE 

(a) 
We need only assume that we know which 

data can be modified by a subroutine or function 
call, but this would complicate matters. 

2 

DO 903 13 = 2, TMP1 

IF CTMP2 (13)) 0 = 0 + B (J3) 

[4!J jgJ lliiI 
903 CONTINUE 

Observe that the I loop of Program 1 has 

been split into the five II' ••• , IS loops. Two 

of these are DO SIM loops, so Program 2 has 
more parallel execution than Program 1. Note the 
extensive rearrangement of Program 1 needed to 
achieve this parallelism. The L/M loop has 
been moved before the K loop; statement 20 has 
been split into two parts which appear inside dif­
ferent loops; the uS occurrence has been moved; 
etc. Of course, this e~mple is contrived to 
demonstrate the power of the algorithm. 

In general, we consider an extended 
FORTRAN program containing DO and DO SIM 
loops, with the following restrictions. 

1. There is no backward transfer of con­
trol other than that implied by the DO loops. 
Thus, if all DO and DO SIM statements were re­
moved, then the resulting program would have no 
loops. (Techniques for translating programmed 
loops into DO loops are described in [3].) 

2. There is no I/o statement. We assume 
that input/output is done with the initial/final 
values of variables. 

3. The increment of every DO loop is a 
constant which is known at compile time. 

. 4. There is no transfer of control from in-
side the range of a DO or DO SIM loop to outside 
its' range - i. e., no premature exits from loops. 

s. There is no subroutine call, and no 
function call which can change the value of a 
variable. The value of a function must depend 

only on the values of its arguments. (a) 
The program which we consider here may 

be any portion of an actual FORTRAN program 
having a single entry point. In particular, it may 
consist of a single DO loop. Hence, these re­
strictions are reasonable. 

Space limitations require that we eliminate 
many details, including the proofs of theorems. 
They will appear in [5]. 

Representation of the Program 

For our analysis, we need a way of repre­
senting a program which is more convenient than 
the original FORTRAN representation. To simplify 
the exposition, we assume that all DO loop incre­
ments equal 1. The generalization to arbitrary 
increments is described later. 

The Program Tree 

The first part of our representation is the 
program tree, which describes a program I s nested 
loop structure. The terminal nodes of the tree 
represent occurrences of variables. (Occurrences 
of DO and DO SIM index variables are excluded.) 
The non-termina.l nodes rellresent the DO and DO 
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SIM loop bodies. A dummy node, labeled 0 , is 
placed at the top of the tree. 

The program trees of Programs 1 and 2 are 
shown in Figures 1 and 2, respectively. (For 
Program 2, we have excluded occurrences of 
TMP 1, ••• , TMPS from the tree.) Occurrence 
nodes are denoted by boxes. Loop nodes are de­
noted by circles and labeled by the index variable 
name. 0Ne assume that each loop has a unique 
index variable.) 00 SIM nodes are distinguished 
by concentric circles. 

We use paternity relations to describe tree 
structure. In Figure l, the J node is the fa ther 
of the ul node and the son of the I node. The 
o node is an ancestor of all other nodes. 

We let 1I..@J denote the set of all nodes of 
a tree :r , and QfD denote the set of all terminal 
nodes. If a is any node of a tree, then :rea) 
denotes the subtree headed by a. We let ~ 
and (}(a) denote 71[ :r(a)] and (}[ :r(a)], respect-

ively. In Figure 2, (}(f2) = {bI, q, 9f, e2, b51. 
A non-empty sequence of nodes 

aI' ••. , an is called a branch of a tree if 0 is 

the father of aI' and each a k is the father of 

ak+l. Three branches of Figure i are: (1) I, 

K; (2) I, J, ~2; and (3) p • 

If a and f:l are two nodes of a tree, we 
let a n f:l denote their most recent common ances­
tor. In Figure 1, we have al n a2 = J , 
u3 n J = I and p n q = o. We define Ol n Ol 
to be the father of Ol • 

Let f and g be occurrences in a program. 
We say that f precedes g if there is a flow path 
from f to g in which each DO loop is executed 
at most once. In Program 1, u3 precedes u2, uS, 
e2, etc. By restriction 1, if f precedes g then 
g cannot precede f. 

The motive for the following definition 
comes from considering f ~ g to mean that the 
occurrence f must precede the occurrence g. 

* Then ~ contains precedence relations on the loop 
nodes implied by ~ • 

Definition 1: Let :r be a tree and let ~ be any 
relation on (}(:r) • The tree completion of ~ is 

* the smallest relation ~ on 71(:r) which satisfies 
rtle following conditions: 

. * 
(1) If f ~ g then f ~ g • 

* * (2) If Ol ~ f:l, f:l ~ y and a is neither 
* an ancestor nor a descendant of y , then a ~ y • 

Figure 1 

3 
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* (3) M 0: .... ~ , 0: I ~, 0:' is either the father 
df 0: or else 0:' = 0: , ~' is either the father of 

* ~ or else ~'= ~ , and 0:' 'I ~'; then 0:' .... ~' • 
The relation .... is said to be tree incon-

* sistent if 0: .... a for some node a. Otherwise, 
.... is said to be tree consistent. 

A partition of a set is a collection of pair­
wise disjoint subsets whose union equals the 
whole set. Let P = { 81, ••• , 8n } be a partition 

of a set 8 , and let .... be a relation on 8. The 

relation~ induced on P by .... is defined by 

8i .... 8j if and only if 81 I 8j and there exist 

s £ 8i and t £ 8j such that s .... t • 

A tree partition P of a tree :r is a par­
tition {N l' ••• , Nr } of 71 (:r) satisfying the 

following property: M d £ Ni ' ~ and y £ Nj , 

Ni I Nj and a is the father of ~ , then the father 

of y is contained in either Ni or Nj • We give 

P a tree structure by lett.ing the father/son rela­
tion be the one induced on P by the father/son 
relation of :r • 

As an example, let :r be the subtree :r(I;) 
of Figure 2. Then {b I}, n;, q, L}, {M, e 1, 

b5}, {e2} is a tree partition of :r. Its tree 
structure is shown in Figure 3. 

FlglWe 2 

4 

Index 8ets 

Let :.I:n denote the set of all n-tuples of 
integers, with the usual operations of addition 

and subtraction, and let 0' = (0, 0, ••• , 0). We 

define :.1:0 = {oJ • 
Let 0: be a loop node of a program tree, 

and let II, ••• , f1 be the branch with f1 = 0: • 
Then \a\ is defined to equal n .' We define 

:.I: to be the set :.I: \a' . 
a The relations '" and -< on:.l: are de-

j . II 
1 Jk 

fined as follows. Let I , ••• , I be the 00 

Figure 3 
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nodes among the Ij (the remaining Ij being DO 
81M nodes), with j 1 < ••• < jk' For any ele-

ments (aI, ••• , an) and (bI, ••• , bn ) of Zll" 
we let 

1 n 1 n) (1) (a , ••• , a ) ~ (b , ••• , b if 
j 1 jk j 1 jk 

(a , ••• ,a) = (b , ••• ,b). 
1 n 1 n) (2) (a , ••• , a ) -< (b , ••• , b if 

ji jk 
(a , ••• , a ) is lexicographically smaller than 

j 1 jk 
(b , ••• , b ), reading the components from left 
to right. 

In Figure I, we have I M I = 3, ZM = Z 3 , 

and (3,7,2) - (3, la, 2) -< (3, -1,4). 
1 n The element A = (a , ••• , a ) of Zll' re-

presents a possible execution of the body of the 

'" loop for 11 = a I, .•• , ~ = an. For any ele­
ment B of Z , A ~ B if the executions of the 

O! 
IX loop body for A and B occur simultaneously, 
and A -< B if the execution for A precedes the 
execution for B. Note that this defines the 
meaning of a DO loop inside a DO SIM loop. (It 
is not the meaning one might expect if the lower 
DO limit depends upon the DO SIM index variable. 

We define 101 = a , and let the relation 
to-. on Z = {a} be defined by a - a. If f is o 
an occurrence node whose father is ll' , then we 
let 1 fl = lex I and Zf = Zex' An element of 

Zf represents a possible execution of the occur­

rence ·f • 

Now let the IJ be as above and let \3 = 

f , k < n. We define the projection mapping 
....a - ....tY 1 n 1 
li~ : ZO! ~ Z\3 by Us (a , ••• , a ) = (a , ••• , 

a k). If an occurrence node f is the son of ex , 
then we let II~ = ~. In Figure I, 

n~1 : Z3 ~ Zl is defined by II~l (i, 1" m) = (i). 

The reader can verify the following fact. 

Proposition 2: Let f and g be occurrences, 
P f Zf and 0 € Zg' The execution of f for 

P precedes the execution of g for 0 if either 

(1) l1~ng(P) -< l1ing(O) , or 

(ii) l1~ng (P) ~ l1ing (Q) and f precedes g. 

For any node ex , we define the index set 
.8 to be the subset of Z consisting of those ex ex 
elements for which ex is actually executed. In 
Program I, we have: 

.9 a 1 = .9J = {(i, j i :; j~ 1 iT P and 

o9q = {(i) : 2 ~ i ~-P and B(i) ~ a} 

.9 2 = J K = (i,k): 2 ~i~P, 2~k~0(i) 
u and B (i) ~ a} • 

5 

Note that in general,.9 may depend upon the ex 
initial values of variables, and often will not be 
known at compile time. 

Occurrences 

An occurrence of a variable is called a 
generation if it appears on the left-hand side of an 
assignment statement, otherwise it is called a 
use. A relevant occurrence pair is an ordered pair 
of occurrences of a single variable, at least one 
of which is a genera tion. In Progra m I, there are 
three relevant pairs of occurrences of the variable 
E: (1) el, -e2; (2) e2, el; and (3) el, e1. 

Execution of the occurrence bS of Program 
1 for an element (i, 1" m) in .9bS references 

the (1+1) element of the array B. This defines 
1 the occurrence mapping TbS: J bS ~ Z given by 

TbS(i, t., m) = (1+1) • In general, let f be an 

occurrence of a k-dimensional array variable. (A 
scalar is considered to be a a-dimensional array.) 

Then T : J f ~ Zk. The mapping Tf may not be 
f (b) 

known at compile time. 

Definition 3: Let f, 9 be a relevant occurrence 
pair. We define «f, g» to be· the set 
{X f Zrn : there exist P € .9f and Q f.9g such 

g f 
that Tf(P) = Tg(O) and X = IIing(O) - IIfng(P)}. 

We define < f, g> to be some fixed sub­
set of Zrng , known at compile time, which 

contains «f, g» • 

An element X of «f, g» implies the 
existence of elements P f .9f and 0 f o9g such 

that the executions of f for P and g for 0 
reference the same array element. Since A -< B if 

B - A >- a , Proposition 2 implies that the reference 
by f precedes the reference by g if either 

(i) X >- 0' or (ii) X ~ 0' and f precedes g • 
Some «f, g» sets for Program 1 are: 
«el, e2» = {(I, -I, 3» () 
«u1, u2» = «I)} if .9K 'I ~ c 

«b2, b3» = {(a, k) : 2-0(1) ~ k < 
0(1) - 2 for some i f .9KT . 

The set < f, g > is the best "upper bound" 
on the set «f, g» which the compiler can 
find. Computing these sets is a major implemen­
tation problem which we will not discuss. We 
assume that the compiler finds the following 
< f, g > sets for Program 1. 

(b)1f f appears in a .00 SlM set expression, th~-; 
Tf could be a multi-valued mapping. To handle 

this case, replace any statement in this paper of 
the form " ••• Tf(P) ••• " by "there exists an 

X f Tf(P) such that •.• X •• ~" • 

(c) We let ~ denote the empty set. 
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< aI, al > = < aI, a2 > = < a2, al > = Z2 
< bI, b2 > = < b2, bi > = < b2, b4 > 

= < b4, b2 > = ( (O)) 
< b2, b2 > = < b2, b3 > = < b3, b2 > 

= ( (0, k) : k any integer} 
< b2, bS > = ((-l)} 
< b5, b2 > = ((In 
< c 1, c 1 > = < c 1, c2 > = < c2, c 1 > 

= ((i, 0) : i any integer} 

< dI, dl > = < dI, d2 > = < d2, dl > =:JI: I 
< e 1, e 1 > = ((0, 0, O)} 
< eI, e2 > = ((1, -1, 3)} 
< e2, el > = ((-1, 1, -3)} 
< u2, u2 > = < u2, u6 > = < u6, u2 > 

= ((0, On 
< uI, u2 > = ((I)) 
< u2, ul > = ((-I)} 
< u2, u3 > = ((0, I)} 
< u3, u2 > = ((0, -I)} 
< u2, u4 > = < uS, u2 > = ((1, OJ} 
< u4, u2 > = < u2, uS > = ((-1, O)} 

Precedence Relations 

The FORTRAN representation of a program 
usually specifies more precedence relations among 
the occurrences than are necessary. For example, 
b2 need not precede ci in Program 1. We now 
describe all the precedence relations that are 
necessary in order to specify the correct execution 
of a program. These are of two types. The first, 
denoted by =;> , describes those precedence re­
lations which are logically necessary for a mean­
ingful execution of the program. 

Definition 4: For occurrences f and g in a 
FORTRAN program, we write f =;> g in any of the 
following cases: 

1. (a) g is a generation and f appears 
on the right-hand side of the assignment 
statement of g • 

(b) f appears in a subscript expres­
sion of g • 
2. (a) f appears in the conditional ex­
pression of a conditional branch, and g 
appears in a statement whose execution is 
conditional upon which branch is taken. 

(b) f appears in the limits of a DO 
statement, or in the index set expression 
of a DO 8IM statement, whose range con­
tains g • 

In 2 (a), we conSider a conditional assign­
ment statement to consist of a conditional branch 
and an assignment statement. 

The relations =;:. for Program 1 are indi­
cated in Figure 4. E.g., the =;> in the a2 row, 
a 1 column denotes the relation a2 =;> a 1 • 

The second form of precedence relation, 
denoted by -t , is necessitated by data conflicts. 
If a generation and any other occurrence refer­
ence the same array element, then the order of the 
references must be specified. Our previous re­
marks then lead to the following definition. 

Definition S: For each relevant pair of occurrences 
f, g with f"l g. we let f -t g if and only if f 

6 

precedes g and there exists an element 
~ 

X £ < f, g > with X ~ 0 • 

The relations -t for Program 1 are shown in 
Figure 4. 

We let => denote the union of the rela­
tions -t and =;> , so f => g if f -t g or f =;> g • 
Then =0> gives all precedence relations neces­
sary for the proper execution of the program. It 
can be used to determine, for example, that during 
an iteration of the I loop of Program 1, the J and 
K loops can be executed concurrently by two in­
dependent processors. This yields a generaliza­
tion of the methods of [6]. However, this type of 
parallelism will not be discussed here. 

The Complete Representation 

We define a program specification S to 
consist of the following: 

81. A program tree, also denoted by g • 
82. The precedence relations -t and =;:. • 
83. A specification of the occurrence 
mapping for each occurrence. 
84. A specification of the index set of 
each occurrence and of the assignment 
values for each generation, in terms of 
occurrences. 

Part 84 is quite vague. For Program 1, it 
might include the following: 

• .9 = ((i) : 2 < i < p and bi > O} q - - -
al = a2 + uI**2 • 

83 is also vague if we consider occurrences like 
A(B(I), J). We will not need to define 83 and 84 
~ny more precisely because our translation proce­
dure will leave these parts of the specification 
essentially unchanged. 

There are many criteria which must be met 
for 81-84 to be a valid program specification. 
However, if 83 and 84 are assumed to be valid, 
then the following conditions are sufficient to in­
sure that the entire specification is valid. 

11.· (a) For each relevant pair of occur­
rences f, g with f t g: if there exists an .... 
X £ « f, g» with X '" 0 , then either f -t g or 
g-tf. . 

(b) For each generation g: if X 
~ .... 

£ «g, g» and X ~ 0 , then X = 0 • 

L2. The relat~on =0> is tree consistent. 

Note that to verify LI i it sufficeS to ver­
ify it with each set «f, g» replaced by 
< f, g> • 

Given a valid program specification, we 
can use it to write an extended FORTRAN program. 
For example, we define a program specification 
as follows: 

81. The program tree is given by Figure 2. 

82. We let T -t or =;:. 9 if the relation 

£ -t or =;> g appears in Figure 4. We also add the 

following relations: ul -t u2, u2 -t u4, 

uS -t u2, and bS -t b2 • 
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p al a2 ul bi q u2 u3 b2 b3 u4 u5 ci c2 u6 dl d2 b4 el e2 b5 I J K L M 

p F> ==;> ==;> ==;> I=;:: ==;> ==;> ==;> ==;> I=;:: ==;> ==;> ==;> ==;> =9 ==;> ==;> ==;> ==;> ==;> p 

al -~ --) al 

~ * a2 ~-;> a2 

ul F> * -...;> * * * * * ul 
=> 

bi I=;:: => I=;:: -+ => => => ==;> ==;> ==;> ==;> ==;> ==;> * bi 

q ==;> => => => => ==;> ==;> ==;> ==;> * * * * q 

u2 --> 
* * 

-+ u2 

u3 => * * * * * * * * u3 

b2 * * -+ b2 
==;> 

b3 -+ * * * b3 

u4 => 
* * * u4 

u5 --> => * * * * * * * u5 

ci --> -- ci 

c2 ~ c2 --> * 
u6 ==;> * u6 

dl --...;> -...;> dl 

d2 7 
* d2 --

b4 => * b4 

el el 

e2 ==;> e2 

b5 -- * * * ==;> * b5 

I I 

J * J 

K * * * K 

L * * * * * L 

M * * * * * M 

p al a2 ul bi q u2 u3 b2 b3 u4 u5 ci c2 u6 dl d2 b4 el e2 b5 I J K L M 

Figure 4 

7 
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83, 84. We obtain this from the specifica­
tion of Program 1 in the obvious way. E. g., we 
have 

a1 = a2 + u1 ** 2 

tu3(k, i) = Tu3(i, k) = (i, k-1) • 

The reader can check that this specification sat­
isfies L1 and L2. A simple-minded translation of 
this specification into an ext.ended FORTRAN pro­
gram gives Program 2. (A more efficient translation 
is pos sible. ) 

As this example shows, the problem of go­
ing from a valid program specification to a 
FORTRAN program can be difficult. However, it is 
always possible. A compiler would probably not 
do this, but would translate the program specifi­
cation into an internal form suitable for generating 
code. 

Program Mappings 

Linear Program Mappings 

Our basic idea is to transform a given pro 

gram specification g into a new one 3" which 
produces the same results, but has more parallel 

computation. The tree of i will be obtained by 
splitting apart and rearranging loop nodes of 3 • 

In the following definition, 9 -1 (a) is the set of 
nodes into which the loop node a € 71(g) is split. 

Definition 6: Let 3 and i be program trees.. A 

linear tree mapping 0 : :; ... i consists of: 

(1) A surjective mapping 9 : 71 (i) ... 71(3) 
such that: 

(a) 9 is a 1-1 correspondence between 

(}(i) and (}(~) • 

(b) If a is an ancestor of an occur­

rence node I of i , then 9 (ii) is an 

ancestor of 9 m . 
(c) For each I € (}(i) : I 9 (i)l = I fl . 

We denote 9 (f) by f for each I € (}(i) • 

(2) For each f € (}(g) , a linear 1-1 cor­
respondence Of: 7{;f ... 7{;I satisfying the follow-

ing condition: For any f, g € (}(!J) , the mapping 
0< f,g > : Zing ... 7{;Ing defined by 

0< f = rr~ _ 0 Of 0 frring'-l 
, g> ing ~ J 

is single-valued, and 0< f = 0 f > • , g> < g, 

As an example, let ~. , g be the trees of 
Figures 1 and 2, respectively. We define the 

linear tree mapping 0: g ... 3" as follows. Let 

9(11) = ••• = 9(15) = I, S(D = J, 9(al) = aI, etc. 

Let Of be the identity mappmg unless f is a 

descendant of K , in which case let 
Of{i, k) = (k, 1) • We then have 

8 

0< u2, u3>(i, k) 

0< u2, c1>(i, k) 

0<a1, c1> (i) = 0 

(k, i) 

(k) 

Definition 7: Let 3 , i be program specifications, 

A linear program mapping 0 : 3 ... i consists of a 
linear tree mapping 0 from the tree of g to that 

of g such that: 
(1) For each f € (}(g) , f and I are 

occurrences of the same variable, and Tf = rr 0 Of • 

i. 
(2) f ~ g in g. if and only if I ~ g in 

(3) Replacing each occurrence f by I 
:l:n 84 of the speCification g. gives 84 of i' . 

Part 3 of the definition is as vague as our 
definition of 84 of the program specification. 
However, its meaning should be clear from our ex­
ample. The mapping 0 defined above gives a 
linear program mapping from the specification of' 
Program I to that of Program 20 

We say that two program specifications 
are eguivalent if they produce the same output 
when run with the same legal input values. (Re-

call restriction 2.) Let 0: g ... i be a linear 
program mapping. To obtain the equivalence of 

~ and 3" , we will assume that 0 satisfies the 
following condition. 

EL. For each relevant pair of occurrences 
f, g in!J : II there exists an element X € < f, g> 

such that either (i) X> 0' or (11) X ~ 0' and 

f ... g , then either (i) 0< f (X) > 0' or (11) 
. , g> 

0< f, g >(X) ~ 0 and I ... g • 

Theorem 8: Let ~ be a valid program specifica­

tion, let 3" be a specification satisfying L2, and 

let 0 : !J ... 3" be a linear program mapping satis­
fying EL. Then 

(1) g is a valid program specification. 

(2) !J and i are equivalent. 
(3) For each relevant occurrence pair f, 

g of g : «I, g» = 0 f ( « f, g ») • < , g> 

Part 3 of the. theorem allows us to choose 

< i, g> to be 0< f « f, g ». The reader , g > 
can check that Theorem 8 implies the equivalence 
of Programs 1 and 2. 

Two Applications 

We now describe two simple ways of ob­

taining a new program specification g from a 
given specification g • We leave it to the reader 
to verify that Theorem 8 implies the equivalence of 
g. and i . 
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1. Interchange a tightly nested DO/DO 
SIM pair of nodes. E.g., let g be the specifica-

tion of the L loop of Program 1. Then 8' is the 
specification of the program: 

DO 30 M = 4, 50 
D030SrMFORALLL({2, ... , 100} 

30 E(r, L, M) = E(I-l, L+l, M-3) * B(I + 1) • 

2. Split a single DO SIM node into sever­
al - one for each son. Applying this to the above 

specification g then gives the specification g 
of the following program: 

DO 33 M = 4, 50 
DO 31 SIM FOR ALL Ll ( {2, ... , 100} 

31 TMPl(L1) = E(I-l, L1+l, M-3) 

DO 32 SIM FOR ALL L2 ( {2, 100} 

32 TMP2(L2) = B(r+l) 

DO 33 SrM FOR ALL L3 ( {2, ••• , 100} 

33 E(I, L3 , M) = TMPl(L3) * TMP2(L3) • 

Note that this new version describes one 
way that the L loop of Program 1 might actually 
be executed by an array computer, TMPI and TMP2 
representing arithmetic registers. 

In general, repeated application of these 
two rewriting procedures shows that DO SIM loops 
can always be rewritten in terms of vector assign­
ment sta telTl<mts. 

Coordinate Mappings 

The mapping Of for a linear program map­

ping 0 may be any linear 1-1 correspondence. 
This allows a generaliZation of the hyperplane 
method of [4], which will be done in a later paper. 
For the coordinate method, we restrict Of tobea 
permutation of the coordinates. 

To form the tree of i , we allow a DO 
node to be changed into one or more DO and/or 
DO SIM nodes, which may be moved lower in the 
tree. DO SIM nodes may not be changed, and no 
other rearrangement of nodes is allowed. 

Definition 9: A linear program mapping 

o : g .... if is a coordinate mapping if there is a sub­
set C of the 00 nodes of g , called the set of 
changed nodes, satisfying the following conditions 
(where 9 is as in Definition 6): 

-1 -;1l -
(1) For each f ((}(3) , let I , ••• , I , f 

be a branch of g , let Ij =9 (f j ), and let TT be 

the permutation such that rTT(l), ••• , rTT(n), f is a 
branch of g. Then 

(a) If j < k and TT(j) > TT(k), then 
rTT(j) ( C and rTT(k) , c . 

TT( 1) TT(n) _ ( 1 
(b) Of (x , ... , x ) - x , ... , 

xn) • 

(2) For each loop node a of 3 with 

OL' C: 9 -1 (a) consists of a single node of the 
same type (DO or DO SIM) as at • 

9 

The mapping 0 defined above from the 
specification of Program 1 to that of Program 2 is 
a coordinate mapping with C = {I}. Thus, only 
the r node of Program 1 is changed by 0 • 

For a coordinate mapping 0: g. .... ~ , we 
introduce the following condition. 

EC. For each relevant pair of occurrences 
f, g in g : 

(1) If f .... g , then f .... g • 
~ 

(2) For each X ( < f, g> with X> 0 I 

(a) 0< f >(X) > 0' I or 
I g ..... 

(b) 0< f, g >(X) ~ 0 and f .... g . 

either 

The reader can verify that if a coordinate 
mapping satisfies EC , then it satisfies EL. 
Theorem 8 then gives the following result. 

Theorem 10: Let 3 be a valid program specifica­

tion and 0 : S .... i" a coordinate mapping satisfying 

EC. If if satisfies L2 I then it is.a valid program 
specification and is equivalent to 8-. For any 

relevant occurrence pair f, g of if I we can let 

< f, g> equal 0< f,g> ( < f,g» • 

The following result shows that any coor­
dinate mapping can be obtained from a sequence of 
coordinate mappings I each of which changes just 
one node. 

Theorem 11: Let g. I if be valid program speci­

fications and 0: 3 .... g a coordinate mapping 
satisfying EC. Let a be any DO node of g which 
is changed by 0 such that no descendant of a is 
changed by O. Then there exists a valid program 
specification g. and coordinate mappings 

o· : g. .... 3' and 0" : 3' .... i satisfying EC such 
that 0' changes only a • 

The Coordinate Algorithm 

We now describe the coordinate algorithm. 
Given a program specification ~ and a DO node 
I of g I the coordinate algorithm generates a pro-

gram specification if and a coordinate mapping 

o : g .... g such that (i) 0 changes only rand 

satisfies EC I and (11)" 3" satisfies L2. Theorem 

10 implies that i is equivalent to $I. The al­
gorithm can find any possible coordinate mapping 
satisfying (i) and (11). By Theorem 11 I we want 
to apply the algorithm repeatedly I starting from 
the innermost loop nodes. 

We now describe, explain and illustrate 
the five maj or steps of the algorithm. 
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1. Let >->-, "'" be the relations >- , ~ 
on ~ which would result if the I node were 
changed to a DO SIM node. DefinE:! the relation 
---> on 0(I) and the subset 8 of 'T/ (I) as 
follows. For each relevant pair of occurrences f, 
g in 0{I) , and each X E < f, g > with 

(a) If X"'" 0' , then include the rela­
tion f ---> g • 

(b) If X« 0 , then: for each des­
cendant r of I which either equals or 
is an ancestor of f n g , if 

.!.!.~ng (X) « 0' , then let be an el-

ement of 8 . 

The relations ---> are the additional re­
lations -+ required if we were to simply change 
the I node to a DO SIM node. The existence of 
an X satisfying (b) immediately precludes this 
possibility. 

The nodes in 8 are "blocking nodes" • 
This means that for each J ( 8 , J cannot appear 
inside a DO SIM I node, and none of the nodes 
into which I is changed can be moved below J • 

Applying step 1 to the I node of Program 
1 gives the relations ---> shown in Figure 4. 
It finds 8 = [J} • E.g., for the occurrence pair 
u2, u4 we have (I, 0) E < u2, u4> , (I, 0) 

>- 0' and (I, 0) "'" 0'. Hence, (a) gives 
u2 ---> u4 • 

For the occurrence pair aI, a 1 : for any 

i> 0 we have (i, 0) «aI, al >, (i, 0) >- 0 and 

(i, 0) "'" o. Hence (a) gives al ---> al. For 
any j < 0 , we have (i, j) E < aI, al > , 

(i, j) >- 0 and (i, j) «0. Since II~InaI(i, j) 

= (i, j) , part (b) places J in 8. 
Note that if L were a DO node, then step 

1 applied to eI, e2 would place L in 8. This 
shows why the algorithm should be applied to 
inner loops first. 

2. Let ==> denote the relation on 0(I) 
formed by the union of the relations =;>, -+ and 

* ---;:. , and let ==> denote its tree completion. 
Complete the set 8 as follows: for each node 

* a of 71 (Il , if a ==> a then add a to 8. 

* For Program 1, every relation a ==> i3 on 
'T/{I) for which a ==> i3 does not hold is indicated 
by an "*" in Figure 4. Step 2 then adds the fol­
lowing nodes to 8: aI, a2, cI, c2, dI, d2. 

3. Choose a tree partition P of ;reI) 
such that: 

(a) Any non-terminal node of P con­
sists of a single loop node of mIl 
which is not in 8. 
(b) The relation induced on 0~) by 
==> is tree consistent. 

To obtain the maximum amount of parallel-
11sm, the partition P should be chosen to satisfy 
the following conditions as well: 

10 

(I) For any a ( 'T/(I) : if a 18 and 
'T/ (a) n 81 ~ , then [a ) is one of the sets 
of P • 
(2) For any a, i3 ( 'T/(I) : if'T/(a) n 8 = ~ 
and i3 ( 8 , then a and i3 belong to 
different sets of P • 

There is an algorithm for choosing such a 
P. Applying it to our example, and then com­
bining the resulting sets [dI, d2) and [b4} 
into a single set, gives the tree partition P 
shown in Figure S. In general, finding the best 
tree partition P is a major implementation prob­
lem • 

4. Let N l' ••• , Nm be the terminal 

nodes of P. Define the program tree of 1f as fol 
lows: 

(a) 'T/ ($') = f ii : a E ?7 (:~), a t I} U 

ill' ... , I L. III 

(b) For any nodes ex, S of gnat 

equal to I; ~ is a descendant of S 
if and only if ex is a descendant of i3. 
(c) For any node ex of :; not equal to 
1: 

(i) ~ is a descendant of I. if 
J 

and only if a ( N, • - J-

(il) « is an ancestor of T. if and 
J 

only if either a is an ancestor of 
I or fa} is an ancestor of Nj-" 

This defines a tree in which the I node is 

split into the nodes II' ••• , Im' For each j , 

'T/{IJ,) = [iX: ex ( N.}U [r.) . 
J J_ 

In our example, g has the tree of Figure 
2. 

S. Define the relation -+ on if as fol­

lows. For any occurrence i, 9,in :; , we let 

f -+ g if either: 
(a) f -+ g in g « or 
(b) f ---> g , f E Ni ' g (Nj and 

either (i) i t i, or (il) i = j and 

1j is a DO SIM node. 

In our example, step S (b) gives the follow­

ing relations: (i) ur -+ u2 , bS -+ b2 and 

(il) u2 -+ u4, uS -+ u2 • 

The mapping e of Definition 6 is defined 

by eG) = a if a 1 I , and e(I,) =' I. Parts S3 _ J 
and S4 of the specification g and the coordinate 

mapping 0 : g -+ if are then defined in the obvious 
way. 

The equivalence of g and i is implied 
by Theorem 10 and Theorem 12 below. Note that 
Theorem 10 indicates how to compute the sets 

< i, 9> in order to apply the coordinate algorithm 
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{ bl, q, L, M, el, e2, b5 } 

Figure 5 

again to g. Theorems 11 and 13 show that the 
coordinate algorithm can be used to obtain any de­
sired coordinate mapping. 

Theorem 12: Let g. be a valid program specifica­

tion, I a DO node of g , and let 3 and n : 
3 ... 3 be constructed by the coordinate alg~r1thm. 
Then 3 satisfies L2, and n is a coordinate map­
ping which satisfies EC. 

Theorem 13: Let g, 8 be valid program specifi­

cations, and let n: 3 ... i be a coordinate mapping 
satisfying EC which changes only the node I. 

Then if and n can be constructed from g by 
the coordinate algorithm. 

Concluding Remarks 

General DO Increments 

To handle arbitrary constant DO increments 
we need only change the definition of the set 

« f, g». Let II, ••• , f be the branch with 

f = f n g • Assume that for each j , the Ij loop 
is a DO loop of the following form: 

where the c j and d j are integer constants and 
j r ' 

1, is any expression not involving the f. More 

11 

general DO loops must be put into this form by 
changing the index variable. For purposes of the 

definition, replace a DO SIM Ij loop by any DO 
loop whose index set contains J j • 

I 

Now, define «f, g» to be the set of 
1 k all (x , ••• , x ) £ Zing such that there exist 

P (Jf and 0 (J with (yl, ••• , /) = rrgfn (O) 
f g 9 

- rrfng (P) and 
. j' j-l . 

yl=d xl+ l: clyr 
r=l r 

for each j • 
With this new definition, a'll of our results 

remain valid in the general case of arbitrary con­
stant be increments. 

Further Refinements 

Several refinements of the coordinate 
method to yield more parallelism are possible. For 
example, it is clear that the computation of 
U(I+l, n ** 2 in statement 10 of Program 1 could 
be done inside a DO SIM I loop. This involves 
first splitting the J loop into two ioops. In gen­
eral, any node in the set T3 of the coordinate al­
gorithm is a candidate for splitting. Such refine­
ments w1ll be described in [5]. 

Practical Problems 

There are many practical problems to be 
solved in implementing the coordinate method for 
a real compiler. We list some of these below. 
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Although described separately, they are all closel}' 
related. The solutions of these problems will de­
pend upon the particular parallel computer design. 

Choice of the DO Node I. To maximize 
parallelism, by Theorem 11 we would apply the 
coordinate algorithm successively to each DO 
node, working up from the bottom of the tree. How­
ever, this may produce more parallelism than can 
be exploited by the computer. Some procedure is 
needed to choose the nodes to which the coordin­
ate algorithm should be applied. 

Choice of the Tree Partition P. Maximiz­
ing the parallelism does not necessarily produce 
the best program. In our example, we q~sumed an 
algorithm clever enough not to put b4 into its own 
separate DO SIM I loop. However, we might have 
done better to further decrease the parallelism by 

putting u6 in the r;; loop, eliminating the need for 
TMP5. 

Translation of the Specification. It is 
necessary to translate the specification into either 
FORTRAN or some intermediate language from 
whioch the compiler can generate code. Our exam­
ple indicates that conditional branches can al-

[1] 

[2] 

[3] 
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Abstract 

A methodology to build models for parallel 
computation for some special class of algorithms, 
namely compilation, is presented. The control 
graph component of the model is of the extended 
Petri Net form with switches and token absorbers. 
A detailed example of the use of the graph is 
given and some formal properties such as conserv­
ation of token and proper termination are proven. 

1. Introduction. 

In recent years, we have seen the emergence 
of numerous graph models for parallel computa­
tion [3]. Depending on the investigators' back­
grounds (engineers, logicians, mathematicians), 
the objectives of the models have been varied 
(e.g. coherent design of modular parallel sys­
tems, correct flow of control in the execution 
of parallel algorithms, relations between sequen­
tial programs and their parallel representations, 
prediction of cost and performance of multipro­
cessors). 

In this paper, we present (first in Section 
II) the criteria which have led us to select 
some particular node and arc primitives and 
graph properties for the modeling of a specific 
class of algorithms, namely parallel compilation. 
The choice of this test vehicle for our modeling 
methodology is motivated by the following obser­
vations. First, techniques to handle automat­
ically the detection of parallelism are best 
suited for high-level languages and scientific 
applications and do not carryover well for comp­
ilation, which has most often been considered as 
a sequential process. Therefore some "human 
insight" appears necessary. Second, this will 
oblige us to try and uncover some parallelism in 
the compilation process through algorithm modi­
fication, changes in data structures, redundancy, 
etc. Finally, assuming the efficiency of multi­
processors at run-time, means must be found to 
use them efficiently at compile time. 

In Section III, we apply this modeling meth­
odology to an example taken from the compilation 
process. Different stages in the modeling are 
successively introduced. They show the impor­
tance and the need for the features introduced in 
Section II. 

Section IV defines formally the graph model 
and some of its properties. It is shown how the 
latter can be derived through techniques resem­
bling those used in the theory of formal lang­
uages. 
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II. Graph Primitives and Model Properties. 

In the rest of this paper, we assume the 
reader's familiarity with the basic concepts of 
graph theory. 

1. Places and Transitions of·the Control Graph. 

Like any other algorithmic process, compila­
tion has three components: control, computation 
and data. We shall separate the modeling into a 
control graph (control of operators) and a data­
flow graph (action of operators on data). In 
this paper, we investigate the control part. 

The amount of interpretation that is pre­
sent in a model depends mostly on the goals that 
one wants to achieve in the modeling process. 
If the primary objective is to describe specific 
algorithms or systems, then a total interpreta­
tion will be most convenient. Adam's Computa­
tion Graph [1] is such an example, and it can 
be regarded as a parallel programming language. 
On the other hand, if the derivation of general 
formal properties and the characterization of 
parallel algorithms are the main goals, then un­
interpretation is necessary and schemata have to 
be introduced [6]. In our case, we are dealing 
with compilation considered as a class of al­
gorithms and not with the modeling of a partic­
ular compiler. Hence, we will not choose total 
interpretation. At the same time, we wish to 
be able to retain some descriptive power and we 
have to rule out complete uninterpretation. 
Therefore our model is partially interpreted. 
Most of the interpretation takes place in the 
data graph, but some nodes/arcs of the control 
graph possess specific meanings. 

One can view compilation as a general pipe­
line process, namely: 

lexical analysis + syntax analysis + 

code generation. 

The unit of information flowing through the 
pipe can vary widely in size. For example, one 
could choose a subprogram, a block, a statement, 
a lexical or syntactical entity. Furthermore, 
each element of the pipe can be broken into a 
number of substages with appropriate latches. 
As we shall see in the next section, this pipe­
line concept can also exist at very.fine levels 
of detail. Independently of the size of the 
unit of information, a "token machine" is appro­
priate to represent pipe-line.flow. Therefore 
the control graph is based upon the Petri Net 
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concept [5,9J. The formal definition of the 
graph being given in Section IV, we recall here 
only that a Petri Net is composed of a set of 
transitions (corresponding to events and denoted 
by I in figures), a set of places (correspond­
ing to the holding of conditions and denoted 0 ), 
and a set of directed arcs linking (input) places 
to transitions and transitions to (output) places. 
Places are able to receive tokens which mark the 
holding of conditions. A place without token is 
empty; otherwise it is full and the presence of 
a token will be shown by ~ in the figures. An 
event can occur (equivalently a transition can 
fire) if all its input places are full. After 
the firing, a token is removed from each input 
place and a token is added to each output place. 
We do not allow a place to be input and output to 
the same transition in order to "clarify" the 
description of holdings. Figure 1 shows a two­
stage pipe-line process modeled by a Petri Net. 
When place 1 becomes full, stage 1 can be ini­
tiated through the firing of transition a. When 
stage 1 is completed, transition a l will fire 
and the latch will become full. Now transition 
b can fire, allowing the processing of stage 2 
and the possibility for transition a to fire 
anew if place 1 becomes full again. Thus, stages 
1 and 2 can be active simultaneously. This part­
icular instance of a pipe-line is built in such 
a way that stage 1 has to wait for the initiation 
of the i th computatio n of stage 2 before being 
able to initiate its own (i+l)th computation. In 
Figure 2, it is shown how a buffer can be intro­
duced between the two stages (the buffer here 
being of size 2). 

Figure 1. Modeling a Pipe-line Process with 
Petri Nets. 

Figure 2. Increasing the size of Buffers between 
Stages. 
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Petri Nets in the above form are not easily 
amenable to represent predicates. Extensions 
using conjunctive logic as above and disjunctive 
logic, i.e. EOR [2J, have been used to enhance 
the descriptive power of models [7J while, at the 
same time incurring no loss in some formal prop­
erties [4J. We follow the same approach here, 
denoting by + the presence of an EOR condition 
at either the input or output of a transition 
(cf. Figure 3). The conjunctive logic, i.e. AND 
condition, is the assumed default situation. We 
forbid mixed logics since we can always realize 
the desired boolean condition with the inclusion 
of appropriate "dummy" places and transitions 
with simple logic. 

(a) Input Disjunctive 
Logic. Only one of the 
input places can be 
full. Then a can 
fire. 

(b)Output Disjunctive 
Logic. After firing of 
a, only one of the out­
put places will receive 
a token. 

Figure 3. Disjunctive Logic. 

Although the EOR and AND logics have suffi­
cient properties to show the flow of control in 
algorithms, we introduce nevertheless a new type 
of place that we call switches. Switches bear 
some analogy with the construct of the same name 
found in programming languages and also with 
Nutt's resolution procedures [8J. However, their 
actions are purposely more restricted than these 
procedures so that their presence will not des­
troy formal properties of the model. As any 
other place, a switch can either be full or empty. 
The presence or absence of tokens in a switch does 
not influence the firing of the transition for 
which it is an input place; that is to say the 
conditions for firing are tested on the set of 
input places from which the switch has been re­
moved. A transition which has a switch as one 
of its input places (and there cannot be more 
than one switch per transition) is necessarily 
of EOR-output logic with only two output places 
corresponding respectively to a full switch 
(branch f) and to an empty switch (branch e). 
Figure 4 illustrates these concepts with the 
switches denoted by 0 . As we shall see in the 
next section, switches allow flexibility and 
short cuts in the modeling of algorithms. 
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(a) Empty switch 

(b) Full switch 

Figure 4. Illustration of the Firing of a 
Transition with an Input Switch. 

The transformation of a sequential program 
into parallel form might introduce some justifi­
able redundancy. However, processing which has 
become useless should not be allowed to be car­
ried on and to tie up resources that the rest of 
the system might need. This point is illustrated 
by the following example. We want to search a 
linear table for a given key and two processors 
can be available. Hence, we desire processor I 
to start at the low end of the table with indices 
being incremented and processor 2 at the other 
end with decrementing indices. As soon as one of 
the processors has found a matching entry, both 
computations should be terminated. Moreover, if 
processor I was started first and had found the 
match and processor 2 was not yet initiated, it 
is evident that processor 2 should be prevented 
from performing a useless task, and vice-versa. 
In our modeling process, we use arcs which are 
token absorbers to represent this situation. 
Token absorbers also permit token conservation, 
a property needed, as we see below, for modeling 
pipe-line processes. 

A token absorber is a multiarc with one 
head (a transition) and one or more tails 
(places). When the transition from where the 
head originates fires, tokens are removed from 
each of the full tail places. Figure 5 shows 
how this cancelling occurs for the previous ex­
ample. Transitions a and b correspond to the 
comparison process; places C and F are the 
conditions of no-matching; E and H also corre~ 
pond to no-match but in supplement they indicate 
that the ends of the (half) tables have been 
reached, and D and G correspond to a match. 
When either c or d fires, say c for exam­
ple, tokens which were possibly present on B, F, 
G and H are removed. (In this example the pre­
sence of a token on one of these places implies 
the emptiness of the three others.) If we had a 
match on both processors, because of duplicate 
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elements in the table, c and d could be ter­
minating at the same time. By convention, simi­
lar to the realization of an interrupt scheme 
without priority, two transitions cannot fire 
simultaneously. If the two signal completion at 
the same time, one of them will be chosen arbi­
trarily as the first one to finish. Therefore 
I and J cannot hold tokens simultaneously 
(EOR-input logic at transition e), and K 
corresponds to a match in the search process. On 
the other hand, transition f will fire when 
both processors report no success. 

a' 

Figure 5. Illustration of the Use of Token Ab­
sorbers. 

2. Execution Sequences and Properties of the 
Graph. 

b' 

A control graph with places and transitions 
as above cannot describe a computational process 
per se. A meaning must be given to places and 
transitions. A first element of this semantic 
attachment is the data-flow graph associated with 
the control flow graph. A transition of the con­
trol can be linked to an operator in the data­
flow graph. Each operator takes its inputs from 
a range of memory locations, performs a function 
and outputs values in a domain of memory loca­
tions. Furthermore, if the transition is of EOR­
output logic, the operator indicates the output 
place on which a token is to be placed. An in­
terpretation of the model consists of defining 
the data graph in terms of specific memory cells 
and their initial values, the operators' func-
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tion, ranges and domains, as well as an initial 
marking of the control graph. The latter indi­
cates which places are initially full, and the 
number of tokens on each place. In the sequel 
we will describe markings by the name of places 
which are full. The name of a place will occur 
as often as the number of tokens it holds. 
Starting with this initial marking, an execution 
sequence in the control graph is a sequence of 
transition firings. In the example of Figure 5, 
two out of the possible execution sequences, with 
an initial marking of a token on S, are: 

s a b b' b a' ace 

s a a' b b' a b a' b' b a f 

After each transition firing, the graph is in a 
new state, or marking. The execution sequence 
can also be given in terms of sequence of mark­
ings. For the two above, we have respectively: 

S,AB,BC,CF,BC,CF,AF,DF,I,K 

S,AB,BC,AB,AF,AB,BC,CF,BF,AB,AH,EH,L 

If the execution sequence is finite, the last 
state reached is called a terminal marking. 

The control graph should be constructed in 
such a way that given an initial marking MO and a 
set N of goals, i.e. terminal markings, all 
execution sequences starting with MO should be 
finite, reach one of the members of M and no 
other transition should be able to fire. This is 
akin to Gostelow's proper termination [4] and re­
sembles strongly the acceptance of strings by a 
finite state automaton. For the example of Fig­
ure 5, an initial marking MO of a token on S 
and a set of goals M = {K,L} yields proper 
termination for the graph, if one forbids infinire 
looping through transitions a,a' and b,b'. The 
rationale for this restriction will be explained 
in the following section. It is to be noticed 
that MO and M are at the discretion of the 
model builder, but proper termination is indep­
endent of the data graph and of the operators' 
functions. In supplement, since our model is 
oriented towards the representation of pipe­
lining, another important property, namely the 
conservation of tokens, should be considered in 
conjunction with proper termination. More pre­
cisely, stages in the pipe-line have to be re­
usable after each activation. Therefore the 
initial and terminal markings should differ only 
by the presence of tokens on places which re­
ceive or deliver tokens from or to other stages. 
(The foremost stage as well as the last one con­
stitute the environment or outside world [8,9J). 
The presence of token absorbers becomes very 
useful for the realization of this constraint. 

An important criterion to judge the formal 
power of some graph models is the determinacy 
condition [3,6]. A model is determinate if the 
sequence of values associated with each memory 
cell is unique. In our case, determinacy in­
volves the analysis of the data graph. But, 
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because of the token absorbers, one can already 
see that determinacy cannot be achieved here. 
Therefore our goal will only be to obtain I/O 
determinacy, which is the property defined~ 
the fact that for an initial set of input values 
all execution sequences will yield an identical 
set of output values. We shall not elaborate on 
this point, since the scope of this paper is res­
tricted to the control structure of the model. 
In a similar manner, we define the 1/0 equiva­
lence of two control graphs associated with a 
~n data graph as the property of the two 
graphs to be determinate and to yield identical 
output values for identical initial values. 

The programming of a large system should be 
modular. This structure has to be reflected in 
the model. Therefore, we need to be able to con­
nect subgraphs. As seen above, the property of 
conservation of tokens allows the linkage of 
stages in the pipe-line as shown in Figure 1. 
Subroutine calling is modeled, in the control 
graph, by application of an ALGOL-like copy rule 
[1]. Although other techniques have been pro­
posed [4J, none of them applies to reentrant sub­
routines, the only kind with which one is con­
cerned while writing compilers for multipro­
cessors. 

Finally, one objective of the modeling is 
to ascertain the amount of parallelism that one 
could achieve. The first element of parallelism 
is in the pipe-lining process. The second is in 
the potential concurrency within each stage. 
Therefore, one characteristic of a stage is its 
maximum parallelism, i.e. the maximum number of 
transitions which are ready to fire simultan­
eously. For the example of Figure 5 this number 
is 2. 

III. An Example of the Use of the Model. 

To illustrate our approach as well as the 
use of the model, we consider the following ex­
ample: During the lexical analysis phase of the 
compilation, it is known that either an identi­
fier or a reserved word is going to be scanned 
as soon as the first character of a lexical en­
tity has been recognized as a letter. The finite­
state automaton, translated in extended Petri Net 
form, "flow-charting" this simple algorithm is 
shown in Figure 6. 

b 
a 

Figure 6. Lexical Analysis: the Obvious Approach. 



1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

The places have the following meanings: 

1 the first character is a letter 

2 ready to scan next character 

3 character is either a letter or a digit 

4 separator (i.e. end of lexical entity) 

5 lexical entity is an identifier 

6 lexical entity is a key word. 

The transitions correspond to the following ac­
tions: 

a,b : scan next character (example of the 
copy rule for reentrant subroutines) 

c : dummy procedure to prevent place 2 
from being both input and output to tran­
sition a. 

d : look-up the table of reserved words. 

If during the scanning a digit is encoun­
tered, the lexical entity cannot be a reserved 
word. Therefore, we introduce a new output place 
to transition b with the new meanings: 

3 character is a letter 

7 character is a digit. 

If place 7 becomes full, then the lexical entity 
cannot be a reserved word and transition d 
should never be activated. This is accomplished 
in the graph model by the introduction of switch 
9 which becomes full after transition e has 
fired and the latter fires every time a digit is 
recognized. When a separator is encountered and 
place 4 becomes full, transition f fires, tak­
ing the f branch if a digit had been encoun­
tered, the e branch otherwise. Only in this 
latter case does place 10 become full and allow 
transition d, i.e. the reserved word search, to 
be activated. However, two defects are apparent 
in this graph (Figure 7): 

-Tokens are going to accumulate on switch 
9. When place 5 is reached, the number 
of tokens left on 9, if any, is the number 
of digits encountered minus one. Hence, 
we need to either introduce token absorb­
ers or change the logic of the graph. 

-No parallelism is yet apparent. 

17 

Figure 7. Introduction of a Switch. 

Figure 8 shows how this latter weakness is 
taken care of. As soon as place 1 has been 
reached, the search in the reserved word table 
could be initiated if the latter were ordered. 
For example, we could find pointers to the begin­
ning and end of the sub table corresponding to the 
letter scanned in place 1. To that effect, tran­
sition d is split into: 

d 

and g 

find begin and end pointers 

finish the search for the whole lexi­
cal entity, 

with places 11 and 12 initiating these transi­
tions. We could even refine further by allowing 
switch 9 to be an alternate output to transition 
d in case that there exists no reserved word 
starting with the letter scanned in place 1. 
However, our main point here is to show a poss­
ible concurrency between the scanning process 
(transition b) and the search process (transi­
tion d). 

d 

Figure 8. Introduction of parallelism with 
accumulation of tokens. 
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Finally. we have to "clean up" the graph - X P u T is a finite set of vertices with 
so that it terminates properly and shows conser-
vation of tokens (cf. Figure 9). In order to 
prevent accumulation of tokens on switch ~ two 
new places: 

13 the first digit is encountered 

14 a digit (not first) has been recog­
nized 

and a dummy transition h are placed between 
place 7 and switch 9. Another switch. 15. 
directs the output of h on either 13 or 14 and 
is filled at the beginning of the execution of 
the graph. i is a dummy transition between 14 
and 8 introduced for the same reason as was c. 
With this logic. switch 9 will receive at most 
one token. If for a particular execution se­
quenc~ switch 9 remains empty. then switch 15 
will be full when place 6 is reached. Hence a 
token absorber is sent from transition g to 
switch 15. Finally. the firing of transition e 
removes any token present on either place 11 or 
place 12 via a multiarc token absorber. Thus. 
if a digit is encountered before the first table 
searching. this latter computation is cancelled. 

Figure 9. The final Graph for Lexical Analysis. 

We have applied the same technique to 
other detailed algorithms with success. The 
"cleaning" of the graph is greatly facilitated 
by the procedure used to check for proper termin­
ation as presented in the next section. 

IV. Formal Definitions and Properties. 

1. Places. transitions and arcs. 

The control graph is a triple P = (X.A.e) 
where: 
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- A 

P {Pl'P2···· .Pn} being a finite set of 

places; 

T = {tl ·t2·····tm} being a finite set of 

transitions; 

S a possibly empty proper subset of P is 

a set of switches. 

I u 0 U N is a finite set of arcs with 

I {(Pi.tj) I Pi € p. tj € T} being the 

input arc set and Pi being an input place 

to tj 

0= {(t i •Pj ) ti € T. Pj € P} being the 

output arc set and Pj being an output 

place to ti 

N = {(tit [Pi.Pj ••••• PkJ ) I ti € T. Pi.Pj' • 

••• Pk € p} being the token absorber set 

and being the cancelled places 

- e is the control which associates with each 
transition a pair of logics. i.e. one of the 
possible combinations {(AND.AND).(AND.EOR). 
(EOR.AND).(EOR.EOR)}. 

The following topological restrictions are 

imposed. If (Pi' tj) € I. then (tj ,Pi) ~ o. 

If Pi € Sand (Pi,tj) € I, then no other 

switch is an input place to t j , tj is either 

of (AND,EOR) or (EOR,EOR) logic, and there are 

only two output places to t j , the two output 

arcs leading from t. being labeled respectively 
J 

f and e. 

2. Tokens, markings and firing expressions. 

A place p. is full if it holds at least 
one token. Oth~rwise it is empty. The set P 
and the number of tokens associated with each of 
its elements constitute a marking. Equivalently 
it can be represented by a multiset or bag [4J. 

The firing of a transition is controlled 
by the presence of tokens on its input places as 
well as by its logic. The latter also directs 
the outcome of the firing. The possible 
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situations are summarized below by firing expres­
sions [4] for a transition a with the following 
conventions: 

p. ,p. , ••• ,po 
11 12 1n 

input places to transi-

tion a 

p ,p , ••. ,p 
0 1 O2 om 

output places to transi-

tion a 

p ,p , •.• ,p 
nl n2 nq 

cancelled places by tran-

sition a and shows the absence of 

tokens 

Ps is a switch and Po 
e 

places to transition 

and Po the output 
f 

a in that case 

-(AND,AND) logic: 

(AND, EOR) logic: 

j = 1,2, •.. ,m 

or if a switch is present 

(EOR,AND) logic: p. 
1. 

J 

j 1,2, ... ,n 

(EOR,EOR) logic: 

j 1,2, ••. ,n; k 1,2, •.. ,m 

or if a switch is present 

Pi.Ps ->- p P P ••• p 
J 

0e n l n 2 nq 

Pi.Ps ->- p P P ..• p 
J 

of n l n2 nq 

j 1,2, ... ,n 

j 1,2, ••. ,n 

The firing expressions for the graph of Figure 9 
are shown in Figure 10. 
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1 ->- 2 11 15 7 15 ->- l3 

2 ->- 3 7 15 ->- 14 

2 ->- 4 8 ->- 2 

2 ->- 7 10 12 ->- 5 15 

3 ->- 2 10 12 ->- 6 15 

4 9 ->- 5 11 ->- 12 

4 "9 ->- 10 13 ->- 8 9 11 12 

14 ->- 8 

Figure 10. Firing Expressions for the 
Graph of Figure 9. 

3. Execution Seguences and ProEer Termination. 

A given marking indicates which transi­
tion(s), if any, can fire. After firing of one 
transition, a new marking is generated accord­
ing to one of the firing expressions of the fired 
transition. Starting with an initial marking 
M , the sequence of the transition firings (or 
e~uivalently of the generated markings) is called 
an execution sequence. A marking from which no 
transition can fire is called a terminal marking. 
For a given P and M, we are interested in the 
finiteness of the execRtion sequences as well as 
their terminal markings. Thus, we also define a 
set of goal terminal markings M. We consider 
now graph executions as the triple (P,M ,M). By 
definition, a graph execution has the prgperty of 
token conservation if it is properly terminating 
(cf. below) and, if for every terminal marking 
M. E M, the set of full places is composed ex­
clusively of places which either belong also to 
M - with the same number of tokens - or for 
wRich there is no transition admitting them as 
input places. 

Before defining the concept of proper term­
ination, we need to introduce two other proper­
ties of the graph, namely: 

-A control graph P is k-safe if places 
can hold at most k tokens (a I-safe graph 
is simply called safe). 

-A graph is repetition-free if the domain 
of (data) operators associated with (AND, 
EOR) and (EOR,EOR) logic transitions is 
modified between two consecutive firings of 
the transition [4,6]. 

Now, a k-safe, repetition free graph execu­
tion (P,M ,M) is properly terminating, if, 
for all in~erpretations and all execution se­
quences, if a terminal marking is reached, then: 

-No place will ever receive more than k 
tokens; 

-The terminal marking is a member of M. 
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-All members of M can be reached from M 
by some finite execution sequence. 

o 

Theorem: There exists an effective procedure 
to determine if the execution ("P,Mo,M) of a k­
safe, repetition free graph P is property 
terminating. 

Proof: The proof is by construction and resembles 
that of the word problem in automata theory. 

Let IPI be the number of places in the 
graph. If P is k-safe, fhf number of allowable 
markings is bounded by 2k p. CQn~ider now the 
state graph consisting of the 2klPI states (al­
lowable markings) and of a dead state 8 corres­
ponding to a tentative firing of a transition 
which would fill a place with more than k 
tokens. By convention no state can be reached 
from 8. We construct the connections between 
different states as follows. We start with M 
and build the set M as the set of states 0 

which can be reachedofrom M by the firing 
of one transition. We link OM with members of 
M , each link (or arc) being l~beled with the 
n~e of the transition. We repeat this process 
with each element of Mo yielding M'l and the 
labeled arcs between elements of Mo and M'l. 
Then the set Ml is defined by 

Ml = M'l - (Mo U {Mo})· 

At step i, i.e. upon reaching Mi _l , the con­
struction is as follows. Let M'. be the 
set of markings which can be reached 1 from an 
element of Mi _l by firing of a single transi­
tion. We connect elements ~f Mi _l with 
their appropriate successors in M i ana deter­
mine Mi by 

Mi = M'i - (Mi _l U Mi _2 U ••• U Mo U {Mo})· 

Since the number of states is fi~ife, this pro­
cedure halts for some j, j S 2klP , such that 
M. = I. Now, let M' be the set of markings 
bJlonging to aMi' 0 S i < j from which no 
other marking can be reached. The graph is pro­
perly terminating if and only if M' = M and 
there exists a path from any state belonging to 
some M. to at least one member of M. This 
latter Eondition is checked easily by some "suc­
cessor" algorithm. The necessary condition is 
evident. If M' ~ M, then there exists a term­
inal marking which was not in the set of goals. 
If M' c M, then some goal can never be reached. 
If some state, reachable from Mo cannot reach a 
member of M, then the execution sequence cannot 
terminate. The sufficient condition stems from 
the repetition free property which states in ef­
fect that every possible path constructed above 
will be taken for some interpretation and exe­
cution sequence. 

Q.E.D. 

Figure 11 shows the state diagram and con­
nections for the execution (P,l,{5,6}) of the 
safe graph P of Figure 9. States belonging to 
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M' have been noted @. 

Figure 11. Procedure for Proper Termination. 

It is worthwhile to remark that the above 
procedure allows also: 

-The determination of the value k for 
k-safety; k is the maximum number of 
repetitions of a place in any marking. 

-The determination of the number of transi­
tions which can fire simultaneously, i.e. 
the maximum parallelism. We explain the 
process informally here by the example of 
Figure 11. 

We write the execution sequences leading 
from M to the other reachable states as se­
quenceg of transition firings. We only consider 
paths between states which lead from a state in 
some set Mi to a state in some other set 
M.,j>i. From a given marking, a boolean expres­
sion - sum of products - indicates the possible 
connections. When a product is present, it 
shows possible concurrency in the firing or two 
(or more) transitions. An execution sequence is 
made up of concatenations of such expressions. 
From the example of Figure II, we have the devel­
opment: 

E = a o 
(unique transition firing possible) 

El = ab U ad U a(b n d) 

(either b or d or both can fire from 
(2 11 15» 

The concurrency (here b n d) is recognized when 
the firing expressions for two transitions have 
mutually exclusive left hand sides and these left 
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hand sides are subsets of the same marking. Now 
from El , we obtain EZ by considering the tran­
sitions out from each state of Ml and we ex­
pand appropriately the terms by recognizing 
which term (i.e. path) led to each marking. For 
example, (3 11 15) has been reached from ab 
and also from a(b n d). 

EZ = ab(c u d u (c n d» u abed u f u 

(d n f» u abed u h u (d n h» u adb 

u a(b(c u d u (c n d» u a(b(d u f u 

(d n f» n d) u a(b(d u h u (d n h» n d) 

u a(b n db) 

We consider next the union operators as distri­
butive since they correspond to distinct paths. 
Thus, we expand EZ while at the same time sup­
pressing from it those expressions which cor­
respond to paths leading uniquely to markings in 
Mo and MI' It yields 

EZ =~u abd u a~ u abf u abed n f) 

u abh u abed n h) u~ a~d) u 

~ u a(b~ d) u a(bf n d) u 

a~ n d) u a(bh n d) u a~ n 

d) u a~) 

The terms which are crossed are cancelled for the 
following reasons: 

- abc, a(bc n d) and ab(c n d) because 
they lead to markings belonging to Mo 
and M. or to the same marking as 
abd. 1 

- adb because it leads to the same marking 
as abd. 

- Terms of the form a(Sx n yx), where 
a, Sand yare subsequences, are ex­
panded into a(S n yx) u a(Sx n y) since 
the firing of transition x cannot be 
duplicated. For example, a(b(d n f) n d) 
becomes a(bf n d) u. abed n f) and these 
last two terms are already present in EZ' 

Hence, we obtain: 

abd u abf u abh u abed n f) u abed n h) 

u a(bf n d) u a(bh n d) 

Continuing this process, we will have: 

E3 = abdf u abdh u abhe u abh(d n e) u 

abed n he) 

E4 = abdfg u abhec u abh(d n ec) u abed n hec) 
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E5 abhecb u abh(d n ecb) u abed n hecb) 

E6 abhecbh u abh(d n ecbh) u abed n hecbh) 

Now, the maximum parallelism MP is the maximum 
number of elements that are linked by an n 
sign in any given term belonging to an Ei • In 
this example, MP = Z. 

4. The Reduction Procedure. 

The number of steps in the above procedure 
grows exponentially with the number of places in 
the graph. In a recent paper [4], the U. C. L. A. 
group has shown how this procedure could be shor­
tened for a certain class of graphs of which our 
graph without token absorbers and switches is a 
subclass. This reduction procedure consists of a 
selective substitution of markings appearing on 
the lefthand side of the firing expression by the 
corresponding righthand sides. It can be shown 
that only a slight modification to the process is 
necessary to apply equally to the graphs we have 
defined above. The term reduction is used since 
the number of sets M. as well as their cardin­
alities is diminished1 through the activation of 
the procedure. A few steps of the process applied 
to the graph of Figure 9 are shown in Figure lZ(a) 
as well as the resultant state graph. 

Reducing Z 

1+31115 49 + 5 8 + 7 

1 + 4 11 15 49 + 10 10 lZ + 5 15 

1 + 7 11 15 7 15 + 13 10 lZ + 6 15 

3 + 3 7 15 + 14 11 + lZ 

3 +4 8 + 3 13 + 8 9 11 lZ 

3 + 7 8 + 4 14 + 8 

After reducing 3,8,11 and 14 

1 + 4 lZ 15 7 15 + 13 10 12 + 6 15 

1 + 7 12 15 7 15 + 4 13 + 4 9 12 

4 9 + 5 7 15 + 7 13 + 7 9 12 

4 9 + 10 10 12 + 5 15 

Final reduction 

1 + 4 12 15 7 15 + 13 10 12 + 5 15 

1 + 7 12 15 7 15 + 7 9 1Z 10 12 + 6 15 

4 9 + 5 

4 "9 + 10 7 15 + 7 

Figure lZ(a). 
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Figure 12. The Reduction Procedure and Terminal 
State Graph. 

V. Conclusion. 

In this paper we have presented a methodol­
ogy for modeling parallel computations by graph 
models. We have shown what features are partic­
ularly appropriate for a specific application, 
namely compilation. Descriptive aspects (e.g. 
switches), efficiency aspects (e.g. token ab­
sorbers) and formal aspects (e.g. proper termina­
tion) were considered. This work is still in its 
early stages, and it might be necessary to intro­
duce new features in the model. This will be done 
following the philosophy that we have put forward 
in this paper; that is, adjunctions to enhance 
the descriptive power of the model should not be 
made at the expense of destroying some formal 
properties, and, conversely, formal properties 
should not be sought if they do not relate to the 
application at hand. 
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* MEASUREMENTS OF PARALLELISM IN ORDINARY FORTRAN PROGRAMS 
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Abstract -- This paper reports the results 
of a measurement of parallelism at the statement 
level in 86 FORTRAN programs. The amount of par­
allelism is determined by an analyzer program and 
is measured in terms of speedup over serial exe­
cution, the number of independent processors re­
quired, the efficiency of parallel execution and 
other measures. 

The analysis techniques are only sketched in 
this paper, details may be found in the refer­
ences. We also outline some machine organization 
assumptions. 

Introduction 

In the folklore of computer architecture 
there has been much speculation about the effec­
tiveness of various machines in performing vari­
ous computations. While it is quite easy to 
design a machine (or part of a machine) and study 
its effectiveness on this algorithm or that, it 
is rather difficult to make general effectiveness 
statements about classes of algorithms and ma­
chines. We are attempting to move in this direc­
tion and the present paper contains experimental 
measurements of a rather wide class of algorithms. 
Such measurements should be quite helpful in 
establishing some parameters of machine organiza­
tion. 

The organization of algorithms and pro­
gramming for multioperation machines has been 
attacked in a great variety of ways in the past. 
These have included new programming languages, 
new numerical methods, and a variety of schemes 
to analyze programs to exploit some particular 
kind of simUltaneous processing. The latter have 
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included both hardware and software devices [5, 
15,27,32,33,35,37]. Multiprogramming often 
formed an important part of these studies. None 
of them apparently tried to extract from one pro­
gram as many operations as possible which could be 
executed simultaneously. For a comprehensive sUr­
vey of many related results see [3]. 

This paper contains little detail about ma­
chine organization--we merely sketch some gross 
simplifying assumptions below. Then we outline 
the organization of our program analyzer and dis­
cuss its improvements over an earlier version 
[23]. A set of 86 FORTRAN decks totalling over 
4000 cards has been analyzed and these are de­
scribed in general terms. Then we present a num­
ber of tables and graphs which summarize our ex­
periments. These include the possible speedup 
and number of processors required for the programs 
analyzed. Finally, we give some interpretations 
of these results. We conclude that some of the 
folklore has been in error, at least with respect 
to the kinds of programs we have measured. 

Goals, Assumptions and Definitions 

We are attempting to determine for computa­
tional algorithms, a set of parameters and their 
values, which would be useful in computer system 
design. A direct way of doing this is by the 
analysis of a large set of existing programs. We 
have chosen to analyze FORTRAN programs because 
of their wide availability and because their 
analysis is about as difficult as any high level 
language would be. A language with explicit ar­
ray operations, for example, would be easier to 
analyze but would restrict our analysis domain to 
array type algorithms. We are attempting to show 
that a very wide class of algorithms can be found 
to possess a good deal of parallelism. The pro­
grams we have analyzed in many cases have no DO 
loops at all, for example, and most decks have 
less than 40 cards. 

The experiments reported here are a substan­
tial improvement over those reported in Kuck, et 
al [23] for several reasons. First, we have ana­
lyzed more than four times as many programs. 
These have been drawn from a wide variety of 
sources as described below and represent a wide 
variety of applications including a number of non­
numerically oriented ones. Second, in an attempt 
to study the sensitivity of our analyses to mem­
ory assumptions we have made two sets of runs as 
described later (see Table III). Third, we have 
made several improvements to the analyzer itself. 
These include a new method of handling DO loops 
which we call the vertical scheme, and a new way 
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of treating IF statements within DO loops. These 
are discussed later in this paper. 

In order to interpret the results of our 
analysis, we must make a number of assumptions 
about machine organization. These cannot be dis­
cussed in any detail here, but most of them are 
backed by detailed study as given in our refer­
ences. Some are of course idealizations which we 
would not expect to hold in a real machine. Thus 
the results would be degraded to some extent. On 
the other hand, since our analyzer still is quite 
crude in several respects, we might expect these 
degradations to be offset by better speedups due 
to an improved analyzer. 

We ignore 1/0 operations, assuming that they 
do not exist in FORTRAN. We also ignore control 
unit timing, assuming that instructions are al­
ways available for execution as required and are 
never held up by a control unit. We assume the 
availability of an arbitrary number of proces­
sors, all of which are capable of executing any 
of the four arithmetic operations (but not neces­
sarily all the same one) at any time. Each of 
the arithmetic operations are assumed to take the 
same amount of time, which we call unit time. 

Two nonstandard kinds of processing are as­
sumed. To evaluate the supplied FORTRAN func­
tions we rely on a fast scheme proposed in 
De Lugish [13]. This allows SIN(X), LOG(X), etc., 
to be evaluated in no more than a few mUltiply 
times. We also assume a many-way jump processor. 
Given predicate values corresponding to a tree of 
IF statements, this processor determines in unit 
time which program statement is the successor to 
the statement at the top of the tree. With up to 
8 levels in such a tree, the gate count for the 
logic is modest [11,12). 

We assume the existence of an instanta­
neously operating alignment network which serves 
to transmit data from memory to memory, from 
processor to processor, and between memories and 
processors. Based on studies of the requirements 
of real programs, some relatively inexpensive 
alignment networks have been designed [22,25]. 
We assume the memory can be cycled in unit time 
and that there are never any accessing conflicts 
in the memory. In Lawrie [25], and Budnik and 
Kuck [7], memories are shown that allow the ac­
cessing of most common array partitions without 
conflict. Hence, we believe that for a properly 
designed system, accessing and alignment con­
flicts can be a minor concern and that under 
conditions of steady state data flow, good system 
performance could be expected. For more discus­
sion see [21]. 

Let the parallel computation time T be the 
p 

time measured in unit times required to perform 
some calculation using p independent processors. 
We define the speedup over a uniprocessor as 

Tl 
S = ~ , where Tl is the serial computation time, 

p p 

and we define efficiency as E 
p 

may be regarded as the quotient 

Tl 
T < I, which 
Pp-

of S and the 
p 

maximum possible speedup p. As explained in 
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Kuck, et al [23], computation time may be saved 
with the S;crifice of performing extra operations. 
For example, a(b+cde) requires four operations 
and T = 4, whereas ab + acde requires five 

p 
operations and T 3. If 0 is the number of 

p p 
operations executed in performing some computa­
tion using p processors, then we call R the 

p 
o 

operation redundancy and let R 
p 

= -E. > 1 where 
0-' 

1 
01 = Tl • Note that our definition of efficiency 

E is quite conservative since utilization of 
p 

processors by redundant operations does not im­
prove efficiency. Utilization is defined as 

o 
U = -¥- < 1 where 0 is the number of operations 

p p p - P 

which could have been performed. Using R , we 
p 

R 01 R Tl 
can rewrite U as U = ~ = ~ , and by the 

p p pTp pTp 

definition of E we have U R E. Thus, if an p p p p 
observer notices that all p processors are com­
puting all of the time he may correctly conclude 
that the utilization is 1, but he may not con­
clude that the efficiency is 1 since the re­
dundancy may be greater than 1. 

Analysis Techniques 

The analyzer accepts a FORTRAN program as in­
put and breaks it into blocks of assignment state­
ments, DO loop blocks, and IF .tree blocks. Dur­
ing analysis each block is analyzed independently 
of the others and Tl , T , p, and 0 are found for 

p p 
each block. Next, we find all traces through the 
program according to the IF and GO TO statements. 
We accumulate TI , T , and a for each block in 

p p 

each trace to give Tl , T , and O. The maximum p p p 
found in any block in each trace becomes p. 

are calculated for each trace. E , S , and U 
p P P 

R , 
p 

A block of assignment statements (BAS) is a 
sequence of assignment statements with no inter­
vening statements of any kind. Statements in a 
BAS can be made independent of each other by a 
process called forward substitution. For example, 
A = B + C; R = A + D by forward substitution be­
comes A = B + C; R = B + C + D. By using the 
laws of associativity, commutativity, and distri­
butivity as in Muraoka [30], and Han [16], we 
find the parallel parse tree for each statement. 
The algorithm of Hu [17] is applied to this 
forest of trees to give p. T is the maximum 

p 

height of the individual trees and (I is the sum 
p 

of the operations in the forest. This collection 
of techniques is called tree-height reduction. 

An IF tree block is a section of a FORTRAN 
program where the ratio of IF statements to as­
signment statements is larger than some pre­
determined threshold. An IF tree block is 
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transformed into (1) a BAS consisting of every 
set of assignment statements associated with each 
path through the decision tree, (2) a BAS con­
sisting of the relational expressions of the IF 
statements which have been converted to assign­
ment statements (i.e., X > Y is converted to 
B = SIGN(X-Y», and (3) a-decision tree into 
which the IF statements are mapped. The tree­
height reduction algorithm is then applied to (1) 
and (2) combined. Davis [11] shows how to evalu­
ate an eight-level decision tree in unit time. 
Thus a dual purpose is served: speedup is in­
creased by increasing the size of the BAS through 
combination of the smaller BAS's between IF state­
ments, and a number of decision points in a pro­
gram are reduced to a single multiple decision 
point which can be evaluated in parallel. The 
complete IF tree algorithm is described in Davis 
[11,12]. 

There are two types of parallelism in DO 
loop blocks which can be found most often in pro­
grams. First, the statement 

DO 1 I = 1, 3 

1 A(I) = A(I+l) + B(I) + e(I) * D(I) 

can be executed on a parallel machine in such a 
way that three statements, A(l) = A(2) + B(l) 
+ e(l) * D(l), A(2) = A(3) + B(2) + e(2) * D(2) 
and A(3) = A(4) + B(3) + e(3) * D(3) are computed 
simultaneously by 3 different processors. Thus, 
we reduce the computation time from Tl = 9 to 

T = 3. This type of parallelism (array opera-
p 

tions) we will call Type-l parallelism. If we 
apply tree-height reduction algorithms to each of 
these three statements, we can further reduce the 
computation time to 2 for a 6 processor machine. 

The second type of parallelism lies in state­
ments such as 

(i) DO 1 I = 1, 5 

1 P = P + A(I) 

(ii) DO 1 I = 1, 5 

1 A(I) = A(I-l) + B(I) 

which both have a recurrence relation between the 
output and input variables. In example (ii), if 
we repeatedly substitute the left-hand side into 
the right-hand side and apply the tree-height re­
duction algorithms to each resultant statement, we 
can execute aIlS statements in parallel, e.g., 
A(l) = A(O) + B(l), A(2) = A(O) + B(l) + B(2), 
••• , A(5) = A(O) + B(l) + B(2) + B(3) + B(4) 
+ B(5). This will decrease the computation time 
from 5 to 3. For a single variable recurrence re­
lation as in example (i), we can use the same 
techniques and compute only the last output P 
= P + A(l) + A(2) ••• + A(5) in 3 unit steps in­
stead of 5. We will call this type of parallel­
ism Type-O parallelism. 

In order to exploit these parallelisms in DO 
loops, an algorithm described in Kuck et al [23], 
called the horizontal scheme can be used to trans­
form the original loop into an equivalent set of 
small loops in which these potential parallelisms 
will be more obvious. A modification of that 
algorithm called the vertical scheme has now been 
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implemented. We illustrate these schemes with 
the following example: 

DO S6 I = 1, 3, 1 

Sl T(I) G(I) +M 

S2 G(I) T(I) + D(I) 

S3 E(I) F(I-l) + B(I) 

S4 F(I) E(I) + G(I) 

S5 H(I) A(I-l) + H(I-I) 

S6 A(I) G(I) + N 

Due to limited space, we are unable to de­
scribe the details of the implementation [20,23], 
and we only give the essential parts of the ver­
tical scheme: 

a) Find the dependence graph among state­
ments (Figure 1). In the dependence graph each 
node represents a statement; and a path from 
S. to S. indicates that an input variable of S. 

l J J 
during certain iterations has been updated by 
Si during the same or an earlier iteration, ac-

cording to the original execution order. 
b) Separate the dependence graph into com­

pletely disconnected subgraphs, and arrange each 
subgraph as a DO loop in parallel as shown in 
Figure 2(a). 

c) Apply the forward substitution technique 
to each subloop and the tree-height reduction 
algorithms to all resultant statements. 

After this, the statements can be computed in 
parallel. The required p and T for each subloop 

p 
resulting from use of the vertical and horizontal 
schemes are shown in Figure 2. 

For this example, both schemes give us a nice 
speedup: Tl = 18, Tp = 6 for the horizontal 

scheme and T = 4 for the vertical scheme. The 
p 

latter has a better speedup but uses more proces­
sors. Note also that the total number of proces­
sors listed in Figure 2, which is 12 for the 
horizontal scheme and 32 for the vertical scheme, 
can be further reduced by Hu's algorithm [16,17] 
without increasing the number of steps, provided 
that some of the subtrees formed by the resultant 
statements are not completely filled, which is 
usually the case in most programs • 

The basic difference between these two 
schemes is that the horizontal scheme tends to 
facilitate the extraction of Type-l parallelism 
while the vertical scheme helps to find Type-O 
parallelism. At present, we do not have a general 
method of determining, a priori which scheme will 
give a better result for a particular DO loop. 
Although many cases yield the same result using 
either scheme, in some cases a higher speedup 
(with or without lower efficiency of the use of 
processors) can be achieved using one scheme or 
the other. 

IF and GO TO statements increase the number 
of possible paths through a DO loop and complicate 
the finding of the dependence graph, when there 
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are more than a few IF and GO TO statements. We 
find all possible paths and then analyze each 
path separately and call this strategy DO path. 
Thus, when p, 0 , etc., are being calculated for 

p 
an entire program we treat each path through each 
DO loop separately rather than combining the 
numbers for each DO loop path into one set of 
numbers that describe the DO loop as a whole as 
was done in Kuck, et al [23]. 

Description of Analyzed Programs 

A total of 86 FORTRAN programs with a total 
of 4115 statements were collected from various 
sources for this set of experiments. They have 
been divided into 7 classes; JAN, GPSS, DYS, 
NUME, TIME, EIS, and MISC. JAN is a subset of 
the programs described in Kuck, et al [23], and 
came from Conte [10], IBM [18], Lyness [26], and 
the University of Illinois subroutine library. 
GPSS contains the FORTRAN equivalents of the 
GPSS (General Purpose Simulation System) as­
sembler listings [11] of 22 commonly used blocks. 
The DYSTAL (Dynamic Storage Allocation Language 
in FORTRAN [34]) library provided the programs in 
DYS. NUME contains standard numerical analysis 
programs from Astill, et al [2], Carnahan [8], 
and other sources. TIME is several time series 
programs from Simpson [36]. EIS is several pro­
grams from EISPACK (Eigensystem Package) which 
are FORTRAN versions of the eigenvalue programs 
in Wilkinson and Reinsh [38]. Waste paper bas­
kets provided elementary Computer Science student 
programs, civil engineering programs, and Boolean 
synthesis programs. These and programs from 
Kunzi, et al [24], and Nakagawa and Lai [31] make 
up MISC:- Table I and Figures 3 and 4 describe 
the 86 programs analyzed. 

Results 

The analyzer determines values of Tl , Tp' p, 

E , S , 0 , R , and U for each trace in a pro-p p p p p 
gram. Each program was analyzed separately using 
both the horizontal and vertical schemes of DO 
loop analysis. The results of vertical or hori­
zontal analysis were then used depending on which 
sCReme gave better results for a particular pro­
gram. The values of Tl , Tp' etc., for each trace 

were then averaged to determine an overall value 
for a program Tl , Tp' etc. Thus, we assume that 

each trace is equally likely, an assumption re­
quired by the absence of any dynamic'program 
information. We feel this assumption yields 
conservative values since the more likely traces 
which are probably large and contain more paral­
lelism are given equal weight with shorter, 
special case traces. Figures 5-9 are histograms 
showing Tl , T , E , S , U , respectively, versus 

p p p p 
the number of programs. 

The overall program values Tl'ATp'Aetc., are 

averaged to obtain ensemble values Tl , Tp' etc., 

for groups of related programs (see Table I). 
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Table II shows these ensemble values for each 
group of programs as well as for all programs 
combined. As we can see, for a collection of 
ordinary programs we can expect speedups on the 
order of 10 using an average of 37 processors 
with an average efficiency of 35%. The use of 
averages in these circumstances is open to some 
criticism but we feel it is acceptable in view of 
the facts that the data are well distributed and 
the final averages are reasonably consistent, 

A 

e.g., PEp~Sp. Such anomalies as Tl/Tp ~ Sp can 

be attributed to occasional large T values in 
p 

our raw data. 
At this time we should stress several points 

about our source programs. First, four programs 
were discarded because they contained nonlinear 
recurrence relations and caused analysis diffi­
culties. Their inclusion would have perturbed 
the results in a minor way, e.g., speedup would 
be low for these four. One was discarded be­
cause Tl was so large that it effected the final 

averages too strongly (Tl - 10953). Second, all 

the programs were quite small (see Table I). 
Third, the number of loop iterations was 10 or 
less for all but one of the programs (where it 
was 20) whose data is shown in Table II. Higher 
speedups, efficiencies, etc., 'would be expected 
using a more realistic number of iterations (see 
Figures 10-12). Finally, we have not employed 
any multiprogramming, i.e., we do not account for 
the fact that more than one program can be exe­
cuted simultaneously, (c.f. [11]). Multiprogram­
ming would of course allow the use of more proces­
sors, in general. 

For the results shown in Figures 5-12 and 
Table II, the analyzer accounts for memory stores 
but not for any memory fetches. The effect of 
accounting for fetches is shown in Table III, 
which lists the ensemble values for 65 programs 
run with and without memory fetches. As we can 
see, accounting for memory fetches improves our 
results. In reality, a lookahead control unit 
and overlapped processing and memory cycling would 
perhaps result in numbers somewhere between these 
values. 

Finally, Figures 10-12 show Sp versus Tl , p 
A A A 

versus Tl and S versus p, respectively, for each , p 

ensemble JAN, GPSS, etc., as well as for all pro­
grams. Additionally, we took the programs in JAN, 
GPSS. NOME, TIME, and EIS, which had DO loops 
with a variable limit (about 40% of the programs), 
and set the DO loop limits to 10. The resulting 
program values were averaged with all other pro­
grams in these groups and the final average plot­
ted in Figures 10-12. The analyses were repeated 
using DO limits of 20, 30, and 40. and the re­
sulting averages plotted as before. 

Conclusions 

Our experiments lead us to conclude that 
multioperation machines could be quite effective 
in most ordinary FORTRAN computations. Figure 12 
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shows that even the simplest sets of programs 
(GPSS, for example, has almost no DO loops) could 
be effectively executed using 16 processors. The 
overall average (ALL in Figure 12) as shown in 
Table III is 35 processors when all DO loop 
limits are set to 10 or less. As the programs 
become more complex, 128 or more processors would 
be effective in executing our programs. Note 
that for all of our studies, Tl ~ 10,000, so most 

of the programs would be classed as short jobs in 
a typical computer center. In all cases, the 
average efficiency for each group of programs was 
no less than 30%. While we have not analyzed any 
decks with more than 100 cards, we would expect 
extrapolations of our results to hold. In fact, 
we obtained some decks by breaking larger ones at 
convenient points. 

These numbers should be contrasted with cur­
rent computer organizations. Presently, two to 
four simultaneous operation general purpose ma­
chines are quite common. Pipeline, parallel and 
associative machines which perform 8 to 64 simul­
taneous operations are emerging, but these are 
largely intended for special purpose use. Thus, 
we feel that our numbers indicate the possibility 
of perhaps an order of magnitude speedup increase 
over the current situation. Next we contrast our 
numbers with two commonly held beliefs about ma­
chine organization. 

Let us assume that for 0 ~ Sk ~ I, (l-Sk) 

of the serial execution time of a given program 
uses p processors, while Sk of it must be per-

formed on k ~ p processors. Then we may write 

SkTl Tl 
(assuming 01 = Ok +Op) : Tp = -k- + (l-Sk) p 

and E 
Tl 1 For p .p.. SkTl+(l-Sk)Tl 1+S (.p.. - 1) 

k kk 

example, if k = I, p = 33, 1 
and Sl = 16 , then we 

1 
have E33 = 3' This means that to achieve E33 

1 
= 3 ' 15/16 of Tl must be executed using all 33 

processors, while only 1/16 of Tl may use a 

single processor. While E33 = 1/3 is typical of 

our results (see Figure 7), it' would be extremely 
surprising to learn that 15/16 of Tl could be 

executed using fully 33 processors. This kind of 
observation led Amdahl ,[I] and others [9,35] to 
conclude that computers capable of executing a 
large number of simultaneous operations would not 
be reasonably efficient, or to paraphrase them 
"Ordinary programs have too much serial code to 
be executed efficiently on a multioperation 
processor". 

Such arguments have an invalidating flaw, 
however, in that they assume k = 1 in the above 
efficiency expression. Evidently, no one who re­
peated this argument ever considered the obvious 
fact that k will generally assume many integer 
values in the course of executing most programs. 
Thus, the expression for E which we gave above 

p 
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must be generalized to allow all values of k up to 
some maximum. 

The technique used in our experiments for 
computing E is such a generalization. For some 

p 
execution trace through a program, at each time 
step i, some number of processors kei) will be 
required. If the maximum number of processors 
required on any step is p, we compute the effi­
ciency for any trace as 

E 
P 

T 
P 

1: k(i) 
i=l 
pR T 

P P 
, assuming p processors are 

available. Apparently no previous attempt to 
quantify the parameters discussed above has been 
successful for a wide class of programs. Besides 
Kuck, et al [23], the only other published re­
sults arelby Baer and Estrin [4], who report on 
five programs. 

Another commonly held opinion, which has 
been mentioned by Minsky [29] is that speedup S 

is proportional to 10g2 p. Flynn [14] further 
p 

discusses this, assuming that all the operations 
simultaneously executed are identical. This may 
be interpreted to hold 1) over many programs of 
different characteristics, 2) for one fixed pro­
gram with a varying number of processors, or 3) 
for one program with varying DO loop limits. 
That the above is false under interpretation 1 
for our analyses is obvious from Figure 12. Sim­
ilarly, it is false under interpretation 2 as the 
number of processors is varied between 1 and some 
number as plotted in Figure 12. As p is in­
creased still farther, the speedup and efficiency 
may be regarded as constant or the speedup may be 
increased at a decreasing rate together with a 
decreasing efficiency. Eventually, as p becomes 
arbitrarily large, the speedup becomes constant 
and in some region the curve may appear loga­
rithmic. Under interpretation 3, there are many 
possibilities--programs with multiply nested DO 
loops may have speedups which grow much faster 
than linearly, and programs without DO loops of 
course do not change at all. Rather than dis­
cuss the above any further, we turn to the fol­
lowing. 

Abstractly, it seems of more interest to re­
late speedup to Tl than to p. Based on our data, 

we offer the: 

Observation For many ordinary FORTRAN programs 
(with Tl ~ 10,000), we can find p such that 

1) T alog2 Tl p 

and 2) ~ 
Tl 

p .6 log2Tl 

such that Tl 
3) Sp ~ 10 10g2Tl 

for 2 ~ a ~ 10 

and E >.3. p-

The average a value in our experiments was about 
9. However, the median value was less than 4, 
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since there were several very large values. 
A complete theoretical explanation of this 

observation would be difficult, at present. But 
the following remarks are relevant. Theoretical 
speedups of O(Tl/logZTl ) for various classes of 

arithmetic expressions have been proved in Brent, 
et a1 [6], Maruyama [28], and Kogge and Stone 
1I9~ Many DO loops yield an array of expres-
sions to be evaluated simultaneously and this 

leads to speedups greater than 0(------1 Tl ). Other 
og2Tl 

parts of programs use fewer processors than the 
maximum and yield lower speedups. However, we 
have typically observed speedups of two to eight 
in programs dominated by blocks of assignment 
statements and IF statements, assuming the IF 
tree logic of Davis [11]. 

In practice one is generally given a set of 
programs to be executed. If the problem is to 
design a machine, i.e., choose p, then the above 
approach is a reasonable one. Alternatively, the 
problem may be to compile them for a given number 
of processors. If the number available is less 
than that determined by the above analysis, the 
speedup will be decreased accordingly. If the 
number to be used is greater than that determined 
above, one must face reduced efficiency or multi­
programming the machine. 

We gain several advantages by the analysis 
of programs in. high-level languages. First, more 
of a program can be scanned by a compiler than by 
lookahead logic in a control unit, so more global 
information is available. Second, in FORTRAN, an 
IF and a DO statement, for example, are easily 
distinguishable, but at run time the assembly 
language versions of these may be quite difficult 
to distinguish. Third, a program can be trans­
formed in major ways at compile time so it may be 
run on a particular machine organization. All of 
these lead to simpler, faster control units at 
the expense of more complex compilation. 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

[10] 

[11] 

J. L. Baer, "A Survey of Some Theoretical 
Aspects of Multiprocessing," Computing 
Surveys, Vol. 5, No.1 (March 1973), pp. 
31-80. 

J. L. Baer and G. Estrin, "Bounds for Maxi­
mum Parallelism in a Bilogic Graph Model of 
Computations," IEEE Transactions on Com­
puters, Vol. C-18, No. 11 (Nov. 1969), 
pp. 1012-1014. 

H. W. Bingham, E. W. Riegel and D. A. 
Fisher, "Control Mechanisms for Parallelism 
in Programs," Burroughs Corp., Paoli, Pa., 
ECOM-02463-7 (1968). 

R. Brent, D. Kuck and K. Maruyama, "The 
Parallel Evaluation of Arithmetic Expres­
sions Without Division," IEEE Transactions 
on Computers, Vol. C-22, No.5 (May 1973), 
pp. 532-534. 

P. Budnik and D. J. Kuck, "The Organization 
and Use of Parallel Memories," IEEE Trans­
actions on Computers, Vol. C-20, No. 12 
(Dec. 1971), pp. 1566-1569. 

B. Carnahan, H. A. Luther and J. O. Wilkes, 
Applied Numerical Methods, John Wiley and 
Sons, (1969). 

T. C. Chen, "Unconventional Superspeed Com­
puter Systems," AFIPS Conference Pro­
ceedings, Vol. 38 (1971), pp. 365-71. 

S. D. Conte, Elementary Numerical Analysis, 
McGraw-Hill (1965). 

E. W. Davis, Jr., A Multiprocessor for 
Simulation Applications, Ph.D. thesis, 
Dept. of Computer Science, University of 
Ill., Urbana, Rep. No. 527 (June 1972). 

Finally, we point out that a number of re- [12] E. W. Davis, Jr., "Concurrent Processing of 
alities of actual machines have been glossed over h" \Conditional Jump Trees," Compcon 72, IEEE 
in this paper. We mentioned a number of these in ~ , Computer Society Conference Proceedin2s, 
our section on Goals, Assumptions and Definitions. C. ,'- (Sept. 1972), pp. 279-281. 
A more detailed discussion of the philosophy of 'l~' 
our analysis work may be found in [21,23]. ") [13] B. De Lugish, A Class of Algorithms for 

Automatic Evaluation of Certain Elementary 
Functions in a Binary Computer, Ph.D. thesis, 
Dept. of Computer Science, University of 
Ill., Urbana, Rep. No. 399 (June 1970). 
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JAN GPSS DYS NUME TIME EIS MISC 

Av. /I BAS 
Outside DO 12.2 16.7 8.5 5.4 8.4 1.13 5.0 

Av. /I BAS 
Inside DO 3.7 0.3 2.5 4.3 3.5 6.6 4.4 

Av. /I 
DO Loops 1.8 0.3 1.5 1.9 3.1 1.5 2.4 

Av. /I 
Nested DOs 1.0 0.0 0.5 1.2 0.4 2.8 0.6 

Av. # IFs 6.9 11.3 4.9 3.4 4.1 3.0 3.6 

Av. # 
IF Trees 1.5 1.9 1.3 0.8 1.5 0.0 0.8 

Av. II Traces 75.5 36.1 21.4 29.7 12.1 5.5 24.6 

Av. # 
Statements 72.5 61.9 44.9 33.4 45.0 32.2 32.8 

Total /I 
Programs 12 22 10 10 8 8 16 

Table I. Characteristics of Analyzed Programs 

T1 T P E S 0 R U 
P P P P P P 

JAN 357 48 62 .37 12.1 654 2.3 .43 

GPSS 30 12 14 .30 3.2 67 2.5 .54 

DYS 224 146 19 .47 4.9 1969 2.4 .47 

NUME 654 77 51 .35 20.7 676 1.2 .38 

TIME 174 22 23 .42 7.1 207 1.5 .46 

EIS 896 208 82 .32 22.6 2292 2.8 .34 

MIse 274 32 39 .32 8.4 486 2.1 .41 

ALL 310 63 37 .35 9.8 739 2.2 .45 

Table II. Average Measured Values for Seven Program Groups and for all Programs Combined 

Without Memory With Memory 
Fetches Fetches 

T1 678 967 

T 148 164 
P 

P 35 35 

Table III. Comparison of E .33 .41 Average Measured Values With p 
and Without Memory Fetches 

S 9.2 11.1 
P 

0 
P 

1212 1443 

R 
P 

2.4 1.9 

U .45 .44 p 

30 
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DO 00 DO DO 
51 55 51 56 
5Z 56 ps3 p=3 
53 T =1 Tp=l 

54 ~ ~ 
p=7 DO DO 

Tp=Z 5Z 55 

p=3 p=4 
p=25 Tps1 Tp=Z 
Tp.4 

~ 
DO 
53 
54 

p=lZ 
Tp=3 

(a) (b) 

Vertical Scheme Horizontal Scheme 

Figure 1. Dependence Graph Figrue 2. Decomposition of DO Loops 
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A LANGUAGE FOR CONTROLLING PARALLEL PROCESSES 

Bill R. Hays 
Computer Science Department 

Brigham Young University 
Provo, Utah 84602 

Summary 

The design of computers with parallel capab­
ilities, either as complete processors or multiple 
units, has raised the question of how one can take 
advantage of this increased computational ability. 
The paper presents a language designed for control 
of parallel processes. 

There are many formal notations for parallel­
ism (1,2), but the approach here utilizes formal 
language concepts and reduces the notational com­
plexity. Parallel computer organization usually 
includes a control state and a similar idea is 
used here. In effect, one has a pushdown store 
automaton (3) controlling or scheduling other 
automatons. Parallel units will be called subac­
ceptors or acceptors for discussion. The control 
is either local or global with the distinction 
that one global control state can permit a subac­
ceptor to control another subacceptor (local con­
trol). The global control state can: (A) communi­
cate with the subacceptors, (8) sequence subaccep­
tors, (C) permit local control, and (D) select the 
proper subacceptor and determine if it is avail­
able. A stack is associated with each subacceptor 
for control and communication. Notationally, if 
Ai is a parallel subacceptor, then a symbol asso­
c1ated with its pushdown control state will be de­
noted by the subscript Ai. The production rules 
of the acceptors for parallel control are of the 
form: (i ,qj,<Pk)-+(qm,br,<Pll<P12 ..• <Pln)' with qj the 
current state, qm the next state, i the expected 
input symbol (s), <Pk the symbol(s) expected on top 
of the stack, br the output symbol (s), <Pll ... <P ln 
the output to the stack (n>O). The rules are ex­
ecuted by simultaneously examining the current sy­
mbol in the input string and the top symbol of the 
stack. A production is executed only if both sy­
mbols are present. Successive rules associated 
with a given state are considered until a rule is 
executed or no production remains (this implies 
one must specifically provide the production rules 
for error conditions). After execution, the scan 
device is moved to the next symbol and a transfer 
is male to the specified state. All of the actions 
do not have to be performed and Aindicates the ab­
sence of such an action. In practice, one would 
simply omit it. The rules: (A,c,<PA/r{Ai ,A) and 
(A,C,A)-+(A·,<PA ) illustrate a transition based on 

1 i 
reading the stack and no output with the second 
rule representing a transfer with output to the 
stack. Hence, the only required elements are the 
current state and next state. 

Direct control of subacceptors will be accom­
plished by an associative list. Each element of 
the list corresponds to a subacceptor or state and 

37 

contains control information. For example, if Ai 
and Ak are parallel subacceptors, then the list 
would contain <PA.,<PAk as acceptor equivalents. The 
presence of <PAi ~ndicates an acceptor is available 
and its absence indicates it is busy. <PAi will be 
a special symbol used only for selecting a subac­
ceptor and is included in production rules as if 
the associative list were a stack. A read selects 
the symbol from a fixed place in the list and a 
write, by the same production, places the output 
symbol in this sublist. Hence, production rules 
accessing the associative list can write only at 
the entry at which it reads. The distinct types 
of production rules are: 

(A) Standard read-only, erase-only, read­
write, read-erase and read-erase-write rules. (8) 
Control productions of the form: 1- (a,A,<PXi)-+ 
(Xi,<Pi ) which reads the associative control list 
and activates the parallel subacceptor Xi, assign­
ing it the stack <Pi. 2- (A,A,<PXi)+(Xi,<Pi<PA) which 
releases 'A' for further activation by placing <PA 
back on the associative control list. 3- (A,A,( 

<PXi<Pi)A<PXi)-+(Xi ,<Pi<PA) which reads a request for Xi 
to process the stack <Pj and performs the request 
by activating Xi and passing the required informa-
tion. (C) Local control productions of the form: 
1- (w,Xi,aiWi¢y)-+(y,Wj(<PX1~¢1¢A) which activates 
'Y' to process the stack <Pi and requests a return 
to state Xi. 2- (w,Xi,aiwi<Py)-+(Y,Wj<Pi<PXi) if no 
waitin~ is necessary. 

(D) Subacceptor productions of the form: 1-
(A,Xi,ai<Pc)-+(c,(<Pi¢Y)c<PX.) which request the con­

. 1 
trol state 'c' to actlvate Xi to process the push-
down store ~. 2- (A,Xi ,ai<PC)-+(C,(<PXi¢i¢Y)c<Px.) 

1 
which also requests a return to state Xi. 

The language could be used to write the pro­
cedures, but it would be expected that only the 
control procedures would be written in the langu-
age. 
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THE TRANSFORMATION OF FLOW DIAGRAMS INTO MAXIMALLY PARALLEL FORM 
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Abstract - The algorithmic transformation of flow 
diagrams into a goto- and variable-free parallel program 
representation is described. It is shown, how the control 
mechanism for these parallel programs works and that it 
exhibits dynamically maximum parallelism in a certain, 
well-defined sense. The method presented is new and 
gives the optimum that can be achieved in intra-task 
parallelism. 

Introduction 

General Introduction 

In an attempt to categorize the types of paral­
lelism, the following definitions are presented: 

1. Inter-task parallelism. Dependencies between 
concurrently executing work units are allowed. Synchro­
nization and deadlock prevention techniques are required 
as well as explicit language features for the specification 
of parallelism. 

2. Intra-task parallelism. No dependencies be­
tween concurrently executing work units are allowed. 
Required are methods for the automatic detection of 
parallelism. 

3. Parallelism on the hardware level. 

This paper is concerned with intra-task parallelism, 
and the area of particular interest is "maximum" parallel­
ism. Although it has been proven that the parallelization 
problem is an undecidable one [ 11, the results presented 
in this paper were possible because of a different under­
standing of the term "parallelization." 

Adding of redundancy, for instance, commonly is 
not regarded as parallelization. However in this paper 
also the detection and exploitation of an already exist­
ing redundancy is not regarded as parallel ization, but as 
optimization. Thus the above mentioned proof is regarded 
as a proof for the undecidability of the optimization prob­
lem and thus not conflicting with the contents of this 
paper. 

Scope of the presented parallelization method 

Core language. The method has been developed for 
an input language consisting of read and write statements, 
assignment statements, and branch and decision statements 
(flow diagrams). Expressions are restricted to either 
simple data variables (a, b, ••• ) or to simple expressions 
(a +b, f (a, b, c), ••• ). 
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Extended language. The method obviously also 
applies to each language being translatable into the core 
language. Thus it works for a language additionally 
containing composite expressions, fixed data structures, 
and constant references (A [ 11 for instance, as opposed 
to A [ il ). 

Extension possibilities. Not described in this paper, 
but known, are extensions of the method to a core lan­
guage containing subroutines and to the parallel ization 
of more than one task. 

Not covered. Not known at the present time are 
extensions to languages involving varying data structures, 
computed references (pointers, subscripted variables with 
subscripts to be evaluated dynamically), and exception 
handling. 

Maximum parallelism 

Based on the above core language, a more precise 
definition of the notion of "maximum parallelism" can be 
given. A statement obviously can be executed as soon as: 

1. all decisions on which this statement execution 
is dependent upon have been resolved (this kind of depen­
dency is called a control dependency), 

2. all input values required for the statement's 
execution have been generated (the corresponding depen­
dency is called an input dependency), and 

3. it is known that these input values have been 
generated (the corresponding dependency is called a data 
dependency); the need for the latter case, being more 
subtle than the previous ones, is illustrated in Figure 1. 

A 

no 

B 

C 

Fig. 1 - Flow Diagram Showing a Data Dependency 
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If a resolution of D to the no branch is assumed, 
then the input values for C have been produced before 
execution of D by the preceding A, but this fact becomes 
apparent only after resolution of D and thus C has to wait 
for D too. 

Sequencing constraints caused by control-, input­
and data dependencies only, are called necessary ones. 
Maximum parallelism now means that the only logical 
sequencing constraints to be followed at execution time 
are necessary sequencing constraints. 

Benefits of the method 

Most of the conventional parallelization methods 
[ 2] , [3] parallelize on a program basis, trying to divide 
a program into independent program blocks. Thus the 
parallelism which can be detected inherently is limited by 
the size of the given program. The presented method, how­
ever, parallelizes on a computation (program execution) 
basis, thus giving the more (potentially infinite) paral­
lelism, the lengthier the computation is. As byproducts, 
new and highly efficient program analysis methods as well 
as a quite unusual parallel program concept are developed. 
The latter gives both an insight into the nature of paral­
lelism on the intra-task level and a certain understanding 
of what a machine exploiting this kind of parallelism might 
look like. 

Paper overview 

The method is illustrated by means of the program 
in Figure 2 (the function y = ~ Vx is computed with an 

x=l 
error precision f for the square root calculations). "de­
notes the program beginning and /:; the program end. The 
capital letters are used later for the symbol ic reference of 
statements and program blocks, respectively. 

In the following, a thorough program anqlysis is 
made of this program, and based upon this analysis the 
program is translated at first into a "single assignment" 
form (in which each variable is written to, at most, once) 
and finally into a variable-free form. As auxiliary tool 
(regular) production systems from the theory of syntax are 
used. 

Program Analysis 

Control flow analysis 

1. Determination of the program logic. A program 
like the one shown normally is - because of the unlimited 
use of branching - a bowl of spaghetti. Thus the first 
step in the analysis is the determination of the logic (the 
structure) of the given program (for a more exhaustive de­
scription of this step see Reference [4l). 
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2 v:=x 
v:=v-n 
w: = 2x 
g : =v/w 
x: =x - g 
v: =1 g I 
p : = vsf 

x 
y 

A 
B 

C 

D 
E 
F 
G 
H 
I 

J 

P 

K 
L 

Q 

M 

R 

F· 2 - The Source Program to be Parallelized Ig. 

S 

As an auxiliary tool the notion of "immediate post 
dominator" is used [ 5], [ 6]. For a statement branching 
unconditionally, the immediate post dominator is identical 
to the successor of this statement. For decisions, the 
immediate post dominator is that (uniquely determined) 
statement at which all branches evolving from the 
decision join for the first time. Thus in the given example, 
decision P has the immediate post dominator K and 
decision Q the immediate post dominator Z. If a chain 
of succeeding immediate post dominators is referred to as 
a control flow, the control flow of the given program can 
be described by means of the following "production": 

" ::= X Y ABC D E F G HI J P K L Q Z fl 

The undefined elements in this production are "modules" 
P and Q, which again are described by productions as 
follows (e denotes the empty string; the first alternative 
describes the "true" branch and the second one the "false" 
branch): 

P ::= {e IDE F G H I J p} 
p 

Q::={e I MCDEFGHIJ PKLQ} 
q 
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Productions for decisions are derived by con­
structing the control flow for each successor of the deci­
sion and following it as long as the "scope" of the deci­
sion is not left {which means that the immediate post 
dominator of the decision itself is not yet reached}. 
Particularly, it thus can happen - as in the above 
example - that a decision alternative becomes empty. 

2. Program reduction. The translation of a flow 
chart into a goto-free form has,in essence, been achieved 
by the copying of program text {and not as in the Boehm! 
Jacopini method [71 by the introduction of "control 
switches"}. Thus the new program, in general, becomes 
much larger than the old one. This inconvenience is 
removed in the following by the introduction of abbre­
viations for lengthy strings occurring more than once. 

VX .. = SX SX • • = CW 

VV : : = SV SV •• = RV 

'lin : : = AW Sn Sn .• = CR 

VW .. = SW S" .. = R W 

vg· . = sg sg· . = R g 
V S 

v f : : = XW Sf Sf •• = Rf 

'liP: : = SP Sp· . = RP 

VY· . = B W SY ZR SY • • -.. - lXR 

vq· . = sq sq· . = L W 

'11m .. = yW Sm Sm •• = 2LR 

R X: : = DR pR IHR HW pX 

RV ,,= DW lER E W lC R I W IJR pV 

Rn • • = 2ER pn 

RW" = pW 2C R pW 
R 

Rg· • = CW 2HR IR pg 

Rf •• = lJRpf 

RP, • = JWpRpp 

This reduces the program to the dimensions of the source 
program. For the given example this results in: 

'11::= X Y A B S Z ~ 

S::=CRXLQ 

R"=DEPCHIJP 

{ E I R} 
P 

Q • • = .. ~E I M S} 
Data flow analysis 

1. Derivation of local production s~tems. From 
the above "global" production system, the forowing set of 
"local" production systems is derived, each of which de­
scribes the program from the point of view of a single data 
variable only. "MV" has the meaning "Module M as seen 
from variable v", "SR" means "read operation in statement 
S" and analogously "sw" means "write operation in state­
ment S". Productions for modules not containing a certain 
variable are omitted. Altogether this gives the results 
shown in Table I. 

RX 2XRQX r::= {E I RX} 

QV pV : : = {E I RV} 

Rn l£R Qn pn: : = {E I Rn} 

QW P pW: : = {E I RW} 

Qg pg::={EI R g} 

Qf pf : : = {E I R f } 

QP pP: : = {E I RP } 

XW QY 

QR Qq 

Qm 

QX, • = · . { E Sx} 

QV •• _ · .- { E I Sv} 

Qn: : = { E MR MWsn} 

QW' • = { E I Sw} 

Qg: : = { E I sg} 
Q 

Qf : : = { Sf} E I 

QP : : = { E sp} 

QY: : = { E I SY} 

Qq: : = { E I 'sq} 

Qm •• _ · .- { E Sm} 

Table I - Local Production Systems Describing the Flow of Data for the Given Source Program 
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2. Determination of module interfaces. A local 
r,lodule of the kind Mv defines (in syntactical terms) a 
certain language, the sentences of which are composed of 
read and write operations only. A module is called read­
like if the corresponding language contains read operations 
only. A modu Ie is said to require input (denoted by> M V), 
if at least one of the sentences defined by it starts with a 
read operation. Analogously it is said that output is 
required from a module (denoted by Mv <), if it is not a 
read-I ike module and if there is at least one occurrence 
of M V which is followed either by a read operation or by 
an input requiring module. 

3. Incorporation of data dependencies. Local 
modules from which an output is required almost behave 
like a write operation in the sense that a variable becomes 
redefined by them. This is, however, not always true. 
Whenever there is an alternative wh ich has a read-I ike 
behavior (only read operations are involved), then the 
external appearance of th is module becomes inconsistent. 
Sometimes it redefines the corresponding variable and 
sometimes it does not. This is exactly the situation which 
earlier was referred to as a data dependency. It is re­
moved by introducing copy statements (like x:=x) in those 

'IX •• = SX SX •• = 

'IV •• = SV Sv • • = 

alternatives of modules for which output is required (in 
which, otherwise, no redefinition would occur). Thus, in 
the given example, two copy statements (symbol ica Ily 
denoted by Nand 0) have to be introduced in the modules 
P x and Q Y, respectively. 

4. Introducing logical variables. Whenever one 
and the same physical variable becomes redefined, then 
from a logical point of view this is a new variable. This 
can be indicated by segmenting each alternative in such 
a way that after each write operation and after each local 
module from which output is required, a new segment 
(being the scope of a new logical variable) begins (denoted 
by AWl! sn for instance). In addition, each alternative of 
an inp~t requiring module also starts with a segment. The 
variable names for the segments can be chosen freely with 
the restrictions that (a) all variable names within the same 
alternative have to be different, (b) different alternatives 
of the same module have to begin and end with identically 
named variables, and (c) the last variable name in each 
alternative should be that of the corresponding physical 
variable. Altogether for the given example, the follow­
ing set of extended local production systems, incorporat-
ing all data flow analysis information, is obtained (Table II). 

CW II RX 2KRQX >pY;,. :: ={ IINRNwllllIRxl1 } 
xa x xa x xa x 

RV QV pv • • = { · . E I RV } 

'In •• = AWIiSn >Sn: :=IICRRn1LRQn >pn • • ={ · . E I II R n } n n n 

Vw .• = SW Sw • • = RWQw P pW • • = { · . E I R W } 
vg .• = sg sg .• = Rg Qg pg · • = { E Rg } · . 

S 
>S f : : = 'If •• = XWII Sf II Rf Qf >pf : : = { E IIIR f } 

f f f 

vP .• = sP sP •• = RPQP pP • • = { E · . I RP } 
VY •• = BWII SY II ZR >SY<.. : = II lKRKWl1 QY II 

ya y ya yb y 
Vq •• = sq sq· • = L W II QRQq 

q 

'1m •• = yWIlSm >Sm: : = II 2LR Q m 
m m 

x R FR IHR HWlbpxlI QX • • = { Sx} >R<::=IID E xa x x 

RV • • = DW II lER EW Jb IGR IWIIIJR pv QV •• = { E sv} .. 
va v 

>Rn : : = II 2ERpn >Qn: : = { E II MR MWII Sn ~ 
n na n 

R R W •• = F W II 2G R pw QW •• = { E SW} 
W 

Rg: : = GW Ir 2HR IR pg Q Qg: : = { E Sg} 
g 

>R f ::=1I 2J R p f >Qf::= 
f 

{ E P Sf} 

R P: : = JW II pR pP >Q'k: : = { lIoR OWn II SY II 
P ya y ya y 

Qq •• = {E I sq } 

>Q ill: : = {E I II s m } 
m 

Table II - Extended Local Production Systems Showing all Data Flow Analysis Information 
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Program Transformation 

Transformation into a "single assignment" form 

The information given by the data flow analysis 
makes it possible to translate the original global produc­
tion system into a program form in which each occurring 
variable is defined at most once (see References [ 8], [ 91). 
To do this, each module is associated with three kinds of 
parameters: 

1. A decision variable. Based on the value of 
this variable, a corresponding alternative is chosen. If 
the module is an unconditional one, there is no decision 
variable. 

2. A list of input variables. This is a list of all 
those variables that the data flow analysis has shown are 
required as input to this module. 

3. A list of out~ut variables. This is the list of 
all those variables that t e data flow analysis has shown 
are required as input to this module. 

The syntactic notation chosen is illustrated by the 
following example: 

Q (q) [ n, f, yb, m; y] (q is the decision 
variable, input and output variables are 
separated by a semicolon, and y is an 
output variable). 

The ~ight side of the definition of an unconditional 
module is an alternative, being a list of statements sep­
arated by semicolons and enclosed in braces. Condi­
tional modules are described by conditional expressions, 
for instance, in the form: 

p = 1 
p=2 

-- alternative 1 
-- alternative 2 

(the truthvalue true is represented by 1, and false by 2). 
The variables occurring in each statement are taken from 
the corresponding segment of the extended local produc­
tion systems. Altogether for the given example the 
single-assignment form shown in Table III is obtained 
(note that the previously introduced symbolic statement 
names are indicated above the lines). 

In such a program, the "basic statements"{assign­
ment and I/O statements) and "expansion statements" 
(module call statements) can be distinguished. The pro­
gram can be executed in parallel as follows: Starting with 
an instance (i. e. a copy) of the begin statement '1/ , 

execution of this statement expands into a set of state­
merit instances of the corresponding alternative. In this 
set, an instance of a basic instruction becomes executable 
as soon as all its input variables have a defined value 
(because of the single-assignment property there is no 
misinterpretation of the definition point possible). An 
instance of an expansion statement is executable, as soon 
as its decision variable - if any - has been defined. 
Thus instances of unconditional expansion statements 
always are executable. Execution of an expansion state­
ment instance evolves in an expansion incorporating the 
corresponding alternative, whereby passing by name of 
parameters is assumed and "internal" variables not occur­
ring in any parameter list are assumed to be newly created. 

This execution mechanism gives maximum paral­
lelism because the only sequencing constraints are given 
by the following facts: 1) a statement instance has to 
wait until it has been generated {which according to the 
program structure means that it has to wait until all con­
trol dependencies have been resolved}, and, 2) it has to 
wait for its inputs {coming either direct from the "input 
producer" in which case an input dependency is resolved 
or from a copy statement, in which case a data dependency 

X Y A B Z 
'1/ : := {read f: read m: n:=1: ya:=O: S [n,f,ya,m:yJ: write yl 

C K L 
S[n,f,ya,m; yJ::={xa:=n; R [xa,n,f:xJ; yb=ya+x: q:=n=m; 

Q(q)[n,f,yb,m:yJ} 

D E F G H 
R[xa,n,f:xJ::={va:=xa2 : vb:=va-n: w:=2xa: g:=vb/w: xb:=xa-g: 

I J 
v:=lgl; p:=v~f: P(p)[xb,n,f:xJ} 

P(p}[xa,n,f;xJ::= 
N 

p=1-{x:=xa} 
p=2- {R[ xa,n,f;x]} 

Q(q)[na,f,ya,m:yJ::= 
o 

q=1 - {y:=ya} 
M 

q=2 - { n:=na+1; S[n,f,ya,m;yJ} 

Table III - The Original Flow Diagram in "Single-Assignment" Form 
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is resolved), "Overhead" statements such as all uncon­
ditional expansion statements different from V, are no 
obstacle for maximum parallel ism, because their in­
stances are unconditionally executable and can be re­
garded as part of the expansion of the preceding con­
ditional expansion statement instance. For an equiva­
lence proof of the single-assignment program and the 
original flowchart, see Reference [ 10] • 

The drawback of the single-assignment representa­
tion is that the control mechanism is not totally explicit. 
Although logically it is clear when a variable gets a de­
fined value, the signalling of the arrival of this value to 
the involved statement instances is not shown in the con­
trol mechanism. This drawback is removed in the next 
and last transformation step. 

Transformation into a "variable-free" form 

1. Introduction of "distribution statements". In 
the single-assignment program form each variable is 
defined at most once. There is no limitation on the 
number of readings from one variable, however. By intro­
ducing distribution statements (being multiple assignments 
distributing a variable value to all places in an alter­
native where this value is needed) a program form can 
easily be reached, where each variable also is read at 
most once. The idea of this transformation is to store a 
generated value not indirectly to a data base (from where 
it can be retrieved under its name), but directly to all 
places where it is needed (which makes a "local" deter­
mination of executability possible). 

2. Introduction of "buffer statements". The 
problem with the exploitation of the previous transforma­
tion is that when a value has to be inserted directly in all 
reference places, then these places have to exist, i.e. 
they have to be allocated. This means that a synchroniza­
tion between "value definition" and "value place alloca­
tion" is necessary, which can subvert maximum parallelism. 

The solution to this problem is the introduction of 
"buffer statements" (being copy statements), which are 
inserted between a value generating basic- or expansion­
statement and the corresponding expansion statement re­
quiring this value as input. No buffer statements are 
used if the basic statement is a simple one (involves no 
expression evaluation). 

3. Replacing variables by addresses. In the 
following, each module alternative is assumed to be 
arranged linearly, so that each symbol occurring in it has 
an "address" (relative to this alternative). Each alterna­
tive later is assumed to be preceded by an "address vector'~ 
being the list of addresses of all madule parameters with 
respect to this alternative. (Note that addresses are de­
noted by an arrow over a variable name (e.g., a); they 
point to the place where the plain variable name occurs 
(e.g., a) which is not to be interpreted as a variable, but 
as a "placeholder"). When a parameter does not occur in 
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an alternative, the corresponding address is denoted by 
the "null" address, ..... Input parameters occurring in a 
basic statement are called direct input parameters; all 
other input parameters (occurring again in expansion 
statements) are indirect ones (denoted by an underlining 
of the corresponding address in the address vector). 

Within each alternative, each variable not being 
a global parameter occurs exactly twice. The general rule 
for the replacement of variables by addresses is that the 
place where the "allocation" is being done (or in case the 
allocation is done by the surrounding module, then the 
place where the definition is done) becomes the address of 
the corresponding mate and the mate is interpreted as a 
placeholder. Thus if both variable occurrences are in basic 
statements, then the definition place becomes the address 
of the reference place and if one variable occurrence is 
within an expansion statement (as "local" parameter) and 
the other in a basic statement, then the parameter becomes 
the address of the other variable occurence (independent of 
whether the latter is used for reference or for definition). 
Parameter I ists as well as the case distincting conditions 
become redundant now. All that is needed is a description 
of alternatives, which for the given example is a self 
explanatory form is given by Table IV. (Note that the 
symbolic statement names are indicated above the lines.) 

Program Execution 

A program obtained can be regarded as a parallel 
machine program being executed as follows: 

1. A copy of the "body" of the begin module V 
is fetched into a "control storage, " thereby replacing 
relative addresses by absolute ones. 

2. An instance of a basic statement becomes 
executable, if all its definition places are (absolute) 
addresses and all its reference places are values. It is 
executed by evaluating the "right side" expression, 
storing the obtained value to the indicated addresses (in 
case of a null address no storing takes place), and delet­
ing the executed statement instance in the control storage 
afterwards. 

3. An instance of an expansion statement be­
comes executable, if its reference place (the previous 
decision variable) - if any - is a value and if all of its 
parameter places are (absolute) addresses. It is ex­
ecuted by fetching a copy of the bady of the correspond­
ing alternative into the control storage (if there is enough 
space), thereby replacing absolute addresses by relative 
ones and performing the following "parameter passing": 
The address of a direct input parameter is written to the 
address given by the corresponding "actual" (contained 
in the invoking statement instance) parameter. Address­
es found in actual output or actual indirect input param­
eter places are, however, written to the address of the 
corresponding newly allocated "formal" parameter (thus 
in this case the passing of parameters has the "conven­
tiona I " direction, whereas in the former case the passing 
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x y A B S V z 
{ ++ ++-+ 

V::= read f; read m; n:=1; ya:=O; S[n,f,ya,m;yJ; write y} 

SN SF SM C RB RC 
-+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+-+ 

S::=[n,f,ya,m;yJ {na,nb,nc,nd:=n; fa,fb:=f; ma,mb:=m; xa:=na; naa:=nb; faa:=fa; 

RS K L 
R[x~,n~a,f~a;~J; yb:=ya+x; q:=nc=ma; 

~ ~ Q ~ ~ I 
Q(q)[nda,fba,yba,mba;yJr 

QA QB QC QD 
nda:=nd; fba:=fb; yba:=yb; mba:=mb; 

~ ~ ~ ~ ~ ~ ~RX ~ ~RN ~ ~RF ~ 0 ~ ->- E ~ F 
R::=[xa,n,f;xJ{xaa,xab,xac:=xa; na,nb:=n fa,fb:=f; va:=xaa 2 ; vb:=va-na; w:=2xab; 

~ G ~ ~RG ~ H ~ I J PA PB PC 
g:=vb/w; ga,gb:=g; xb:=xac-ga; v:=lgbl; p:=v~fa;xba:=xb; nba:=nb; fba:=fb; 

~ ~ P ->-
P(p) [xba,nba,fba;xJ} 

~ ~ ~ ~ N 
P1 : :=[xa, , ;xJ {x:=xa} 

~~ .. ~{ RP I P2: :=[~'~'E.;xJ R[xa,n,f;xJ r 

~ ~ ~ ~ ~ 0 
Q1::=[ , ,ya, ;yJ{y:=ya} 

~ ->- ~ ~ ~ ~ M SA + SQ 
Q2::= [na,!,ya,~;yJ{n:=na+1; na:=n; S[na,f,ya,m;yJ} 

Table IV - The Original Flow Diagram in "Variable-free" Representation 

direction is reversed). 

This execution mechanism is illustrated in Table V 
by a possible execution begin for the given program and 
the assumed input values f = 0.1 and m = 2. 

All execution possibilities for the previous pro­
gram inputs are described symbolically by the "precedence­
graph, " shown in Figure 3. 

Analysis of the graph shows that the computation 
of different square roots can be done in parallel (thus the 
"outer" loop in the original flow diagram is a parallel 
one), whereas the iterations required to compute the 
same square root have to be done in serial. 

Summary 

The paper has shown how flow diagrams of a 
certain restricted standard form automatically can be 
transformed (at compile time) into a set of goto-free and 
variable-free set of modules, constituting a highly paral­
lel program structure. The intelligence incorporated into 
the resulting programs not only allows the exploitation of 
maximum parallelism, but also provides for dynamic 
storage allocation, dynamic relocation and direct data 
processing (as opposed to indirect data processing implied 
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by the use of variables). 

The techniques used can, if properly understood, 
be very fruitfu I for the further development of many dif­
ferent areas including (optimizing) compilers, operating 
systems (paging techniques), and new (highly parallel) 
machine concepts. 
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Simultaneously 
performed state­
ment instances 

Result 

Yo Ao BO SVo Zo 
-+--+ -+-+-+ 

Yo read foiread rnoino:=1iyao;=OiS[no ,fo,yao,rno;Yo]iwrite Yo 

Xo Yo AO BO SNO SFO ... -+ -+ -+ -+ -+ -+ -+ -+-+ 
So read fo i read rno ino :=1 iyao :=Oina1,nb1,nc1,nd1 :=noifa1,fb1 :=fOi 

SMo Co RBo RCo RSo 
... ... 

mal ,mb 1 :=rno i 
-+ -+ -+-+ 

xa 1 :=na1 inaa 1 :=nb 1 i faa 1 :=faj R[xa1 ,naa1 , faa Ii xl] i 

... Ko ... ~o QAo QBo QCo QDo 
yb1:=yaO+X1iQ1 :=nc=rnai nda1:=nd1i fba1:=fb1i yba1:=yb1irnba1 :=rnb 1 i 

... ... ... ... SNo ... ... SFo ... ... SMo Co RBo 
na1 ,nb1 ,nC1 ,nd1 :=1 i fa 1 ,fbI :=0.1 i rna lrmb 1:=2i xa 1:=na1 i naa l:=nb Ii 

... Eo ... Fo ... Go ...... RG o ... Ho 
vb2 :=va 2-na2 i W2 :=2xab2 ig2 :=v~ /w2iga2, gb 2:=g2 i xb 2 :=xac2-ga2 i 

... Io ... Jo rAo PB o PC o 
V2:= I gbd iP2 :=V2 ~fa2ixba2 :=xb2 inba 2:=nb2 i fb"t=fb2 i 

. Zo_ 
wr~te Yoi 

Table V - Execution Begin of a Parallel, Variable-free Program 

45 



1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Fig. 3 - Precedence Graph, Describing Execution Possibilities of One Program Run 
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FORMAL TRANSFORMATIONS FOR PARALLEL PROCESSING LOGIC 

Edward P. Stabler 
Department of Electrical and Computer Engineering 

Syracuse University 
Syracuse, N.Y. 13210 

Abstract -- Formal transformations are de­
scribed which convert sequential processes into 
parallel processes preserving the logical behavior. 
The formal transforms are carried out on a logic 
design language. The results of the transfor­
mations are alternative designs expressed in the 
same language. The technique is applied to sever­
al sample design problems. 

Introduction 

Languages for describing the structure of 
computers and other digital systems are receiving 
increased attention. The motivation for such 
activity is a hope that higher order languages 
for hardware structures will provide the same 
sorts of benefits in hardware design as program­
ming languages provide for software design. In 
particular, a satisfactory system description 
language should provide a means for coping with 
the complexity found in typical logic systems. 

The structural complexity of parallel 
processing systems is greater than that of serial 
processors. As a result the need for control of 
complexity is increased and the task is more 
difficult. 

In this article the application of system 
description languages to parallel processor 
system is examined. The questions of interest 
are: 

1. Can a system description language provide 
adequate compact and precise description of 
parallel processing logic networks? 

2. What are the transformations which can 
be carried out on system descriptions which will 
affect the speed of operation (degree of parallel­
ism) while preserving the essential logical 
behavior? 

3. Can useful and economical designs for 
parallel processes be obtained utilizing formal 
transformations? 

4. What is the relationship between such 
formal transformations on the logic and related 
transformations on programs? 

The basic ideas behind the transformations 
required to increase parallelism of combinatorial 
and sequential logic designs are well-known [1]. 
However the implementation of these algorithms 
will depend critically on the representation 
system used for the design. Various methods of 
representing designs must be studied to determine 
the simplicity and efficiency of the operations 
to be carried out on the designs. 

The language should provide an adequate data 
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interface with other design automation programs 
for testing, layout, wiring, and simulation. The 
language described here is APL-based so it has 
the advantage of having a set of vector and array 
type operators. 

The paper describes the principal features 
of a system design language and some design 
transformations within the languages. Several 
useful logic design examples are considered. 
Designs with a high degree of parallelism 
activity are studied to determine whether these 
designs could be generated by a straight-forward 
application of automatic design transformations. 

The transformations are essentially logical 
in nature. A machine description is converted 
to a logically equivalent machine description 
where the derived machine exhibits more parallel­
ism than the original. 

The introduction of parallelism generally 
substitutes a spatial iteration of signals for 
the original time iteration. Hence the two ma­
chines are not equivalent in the sense usually 
used with respect to sequential machines. They 
are equivalent in the sense that there is a map­
ping of (output signal, time) of the original 
machine to (output signal, time) in the new 
machine which preserves the logical behavior of 
the machine. 

Register Transfer Language 

Many different notations have been suggested 
for describing systems. They can be divided into 
two broad classes, those which describe behavior 
and those which describe structure. The former 
type of description particularly useful for 
simulation while the latter is useful in design 
automation systems. 

The language used here utilizes many APL 
features and is a register transfer language in­
tended to describe the structure of a digital 
system. Since the descriptions tend to look like 
programs it is important to remember the differ­
ences between descriptions and programs. 

1. A system description describes a 
structure and not a process; 

2. The order in which the statements occur 
in a system description has no significance. 

The designer using a system description is usu­
ally thinking in terms of the behavior of the 
system rather than its structure. The description 
can be viewed as a specification of behavior or 
of a process. In what follows, the description 
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will be considered to specify a structure and the 
transformations will be designed to derive alterna­
tive structures with equivalent behavior. 

Kernel Language 

The kernel language is the most primitive 
form of the language which is adequate to describe 
any system describable by the complete language. 
The strategy used here is to define a very simple 
kernel language whose properties are simple. Then 
complex linguistic facilities are added to the 
language and these facilities are defined by a 
translation process which eliminates the oc­
currence of a complex feature and yields an 
equivalent description in the kernel language. If 
this technique is used the complete sophisticated 
language can describe no more than the kernel 
language. However the complete language will 
generally allow vastly more compact system 
descriptions with no loss of precls10n. The same 
technique has been suggested for defining program­
ming languages [2]. 

There are only five types of statement in the 
kernel language: 

1. The conditional register transfer, 
A i B +- C, having the form <name> i <name> +-<name> 

2. The synonym statement, A = B, having the 
form < name> = <name> 

3. The AND statement, A = AND (B, C, D) 
having the form <name> = AND « name lis t > ) 

4. The OR statement, A = OR (B, C, D) 
having the form <name > = OR « name lis t > ) 
and 5. The NOT statement, A = NOT (B) having 
the form < name >= NOT « name» 

With a sufficient number of statements in 
the kernel language any network of logic involving 
registers and logic gates can be represented. 
The form of the conditional transfer implies 
synchronous logic and the exact logic associated 
with the register input is unspecified. The 
kernel language cannot describe asynchronous 
objects such as delay lines and one-shots without 
the addition of new kernel statements. 

Ail the sophisticated linguistic facilities 
which are added from this point on are defined 
by means of a translation process which eliminates 
complex structure and derives an equivalent set 
of kernel statements. 

The kernel language is extended by 
1. extension of naming to allow naming of 

vectors and arrays of higher dimensions, 
2. extension of operations to apply to 

vectors and arrays 
3. addition of programming language to 

allow computation to generate primitive language 
statements, 

4. facilities for defining macro system 
descriptions with formal parameters, 

5. facilities for declaring types such as 
register, arithmetic variables, etc., and 

6. the addition of a set of functions whose 
values are related to the system description 
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parameters. 

With these extensions precise and compact 
descriptions of digital systems can be developed. 
The complex networks associated with MSI and LSI 
usually exhibit sufficient repetitive structure 
so that the facilities of the language can be 
used to good effect. 

APL conventions are used to extend the range 
of operators to vectors and arrays. The macro 
facility corresponds to function definition 
within a programming language. The mention of a 
macro name with actual parameters specified calls 
for the addition of the text which is the body 
of the macro, with formal parameters replaced 
by actual parameters. A conventional programming 
language can be used to control the generation 
of text and the computation of literal subscripts. 
It is important to realize that the programming 
language portion of the system description is 
not used to define a program but to generate a 
body of text. 

The addition of the sophisticated linguistic 
facilities does not extend the range of system 
which can be described. Each of the added 
linguistic types can be translated into an 
equivalent set of primitive statements. The 
technique has been proposed to simplify the 
concepts underlying conventional programming 
languages. The advantage is that the range 
meaning of a description is not changed by the 
sophisticated techniques of description. The 
description still corresponds to specification 
of a network of gates and registers. 

However repeated use of macro system 
descriptions permit the design objects to 
correspond to more and more complex networks. 
The system description language provides desira­
ble simplification of the description as long as 
there is some regularity and iterative structure 
in the network. 

Register Transfers 

The basic algorithm to be used for speeding 
up sequential logic has the effect of doubling 
the computational rate. The derived machine 
does in one clock cycle what the original machine 
does in two cycles. The equivalence relation 
between the two machines relates pairs of inputs, 
and outputs which occur in time sequence to 
pairs which occur in spatial sequence. The 
algorithm generates a set of combinatorial logic 
equations virtually identical to the original 
register transfer equations. The combinatorial 
logic equations generate the intermediate values 
of the register variables so a double time step 
is performed on each clock beat. 

The following single statement is a de­
scription of binary counter. 

I i A +- X 
NET(A:X) 
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V NET(B:C) 
C = B + D 
NET2 (B:D) 

Definition of NET 

v NET2 (E:F) Definition of NET2 
1-<-0 
F[I] = 1 

G: F[I + 1] = F[I] A E[I] 
->- «I -<,- I + 1) <; pE) IG 

The definition of NET2 specifies a network 
with input E and output F as formal parameters. 
The value of F is 1 in all positions corresponding 
to consecutive l's in E and in the position of 
the first O. The diagram is shown in Figure lao 
The network defined by NET includes an occurrence 
of NET2 and has a bank of exclusive-or gates in 
addition. Hence, the total diagram is as shown 
in Figure lb. 

To describe the system which will count two 
for each unit of time it is only necessary to 
duplicate the network 

1. '$ A-<-Y 
NET(A:X) 
NET(X:Y) 

yielding a net of the form shown in 
Figure 2. 

Our example is a very simple one but the 
basic idea is the same in what follows. The next 
step in our simple example is to take advantage 
of the array naming features of the system 
description language. Consider the extension to 
an array of logic which causes the counter to count 
by N in each unit of time. A network generating 
macro call UNET can be used to replicate the 
net\vork to form an array. 

1 '$ A-<-W(;N) 
UNET(A: N: NET: W) 

V UNET(a: n: net:w) 
i -<- 0 
w[ ; 0] = a 

C: net(w[; i]: w[; i + 1]) 
->- (n > i -<- i + 1) I C 

The macro UNET when mentioned generates the 
system description of a network of N binary counter 
networks connected end to end so that a count up 
by N occurs. Refer to Figure 3. 

The example is a simple one involving only 
one register, no conditional transfers and no 
inputs. The transformation method can be ex­
tended to cover the more general case. A de­
scription of a serial adder is the two statements 
shown below. It is a slow serial adder since 
the shifting and the addition are not overlapped 
in time. 

t '$ S -<- + (A, B, C); C -<- MAJ(A, B, C); 
n 

t -<- ~ t 
t '$ S -<- ~ S; t -<- ~t 
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A and B are assumed to be input strings 
representing the numbers to be added. 

The conditionals can be brought over to the 
right hand side to obtain 

1 ~ S -<- X; C -<- Y; t -<- tl 

X = (t A (A + B + C), 1 + S) v (~ t) A ¢ S 
Y = (t A MAJ(A,B,C) ) v ~ t A C 
tl = ~t 

Networks with formal parameters can be defined 

NET4 (a: b: c: s: t:x) 

NET5 (a: b: c: s: t:y) 
where the defining equations are essentially as 
above. 

A and B are external input sequences for 
which subscripts can be used to designate 
successive inputs to an array. The macro 
definition of a network for doing n steps of the 
original machine is 

V UNET2 (a: b: c: s: t: x: y: n) 
el[O] = c 
i -<- 0 

C: NET4 (a[i]; b[i]: cl[i]: sl[i]: t[i] 
xli]) 

NET5 (a[i]: b [i]: cl[i]: sl[i]: t [i] 
y[i]) 

cl[i + 1] = yl[i] 
sl[;i + 1] = xl[ ;i] 
t[i + 1] = t[i] 

->- (n > i -<- i + 1) Ic 
y yl[i] 
x = xl[;i] 
V 

A single mention of UNET2 with n = 2 will 
result in a logic network which overlaps in time 
the shifting and adding. It can be seen that 
actually two independent systems are formed. The 
first does a shift and add simultaneously while 
the other does an add and shift simultaneously. 
The network is a spatial sequence of combinatorial 
networks. Only one of the two networks will be 
active depending on the initial value of t. 

This phenomenon of generating multiple 
systems is a general one in the transformation. 
The transformation generates n machines which 
differ from one another in phase. The initial 
conditions will normally cause a selection of 
one of the machines. For example, in the case 
of the serial adder are initial condition oft=l 
selects the machine which adds and then shifts 
in the spatial iteration. 

If the transformation is applied again with n N 
an N!bit parallel adder array is produced. 

Combinatorial Logic 

The combinatorial portion of system de­
scription corresponds to a set of boolean 
equations. The equations describe a multiple 
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input, multiple output network. Usually the de­
signer will have utilized the facilities of the 
language to describe the iterative portions of 
the combinatorial logic but the description can 
be translated to a large set of primitive 
equations when necessary. 

For networks of this type the maximum depth 
is defined as the maximum number of gates which 
must be passed through in going from an input 
through the network to an output. The trans­
formations described have the effect of in­
creasing this depth so that very large deep 
combinatorial nets can be generated for array 
type logic. The delay through the network is 
proportional to its depth and the delay can 
become a decisive faster in the overall speed 
of the system. 

The algebraic identities needed to reduce 
the depth of a network of gates are well-known 
and various strategies can be utilized in trans­
forming a network. Depth reduction transformations 
are shown in Figure 5. The process using DeMorgan's 
theorem is used to push the inverters through the 
AND, OR gates in order to produce subnetworks on 
which the processes of parenthesis removal or 
multiplying out can be performed. In practice a 
number of practical constraints must be observed. 
The transformations must not eliminate output 
wires and gates whose outputs drive more than one 
gate must be transformed with care. In addition 
there are normally fan-in and fan-out limits which 
will eventually be exceeded. Fan-out limits do 
not affect the achievable speed since network 
duplication can be used to provide the necessary 
number of outputs. 

The structured nature of the system de­
scriptions permits a kind of controlled reduction 
of the delay in the combinatorial portion of the 
network which is different from the technique of 
reducing to primitive statements and applying 
boolean algebra transformations. We expect that 
the large delay values will be generated by 
network forms such as shown in Figure 6. A 
combinatorial net is replicated and interconnected 
in such a fashion that the delay is proportional 
to the degree of replication. In the system 
description this would appear as a definition in 
which the outputs and inputs wires are connected 
according to some recursion formula. 

To reduce the total delay there are two 
main choices; reduce the value of ~ the delay 
per network element, or form a new network 
element which need be replicated by a lower factor 
without increasing ~ by the same factor as shown 
in Figure 7. The replicated network is assumed 
to be arbitrary complexity. 

If the system description for the combi­
natorial network is simply translated by macro 
substitution to form a large set of primitive 
gate statements, the iterative structure of the 
network is lost, or at least hidden. As a result 
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the task of transforming the set of equations to 
an alternative set which has smaller depth cannot 
easily take advantage of the iterative structure. 
It is desirable to separate the two methods of 
reducing overall depth. In the first case an 
attempt is made to reduce the value of ~, the 
delay associated with one element of the repli­
cated network. This requires reduction of that 
element to primitive gate statements and the 
application of the boolean algebra transformations 
to reduce the delay. Having done the calculation 
once, the result can be used to realize the 
replicated elements. 

The second case requires definition of a 
larger more complex network element so that the 
replication factor is reduced. Then the larger 
defined element is processed to reduce the depth 
and to reduce the total delay. The definition 
of the more complex network element can be 
obtained in a straight-forward way from the 
definitions of the orginal network. 

Assume that the replication factor is to be 
divided by 2 by combining the functions performed 
by two elements. If the interconnection is 
simple linear one then the process proceeds as 
shown in Figure 8. 

Assume NET (A: B: C: D) is defined and is a 
replicated element. Then if I, Z are n element 
vectors the linear interconnection can be 
defined by 

'i/ LINET(I:Z) 

NET(I: E: Z: F) 
E = 1 <I> F 

A double element equivalent to two linearly 
interconnected NET elements with linear inter­
connection would be NET2(A; B; C; D) and defined 
by 

'i/ NET2(A: B: C :D) 

NET(A[O]: B: C[O]: X) 
NET(A[l]: X: C[l): D) 

II 
The linear interconnection of ,our elements 

is shown in Fifure Bb. 
The maximum de ay is unaffected by the change. 
The advantage of the new form is that NET2 can 
now have its delay reduced using the boolean 
transformations of the primitive statements 
corresponding to NET2: The complete network is 
can be described by a n/2 replication of NET2. 
For the more general case combining N netwoLks 
into a single element UNETN may be defined which 
consists of N of the original elements with the 
internal connections defined by the recursion 
formula of the original network. 

The main steps in forming NETN are given 
below: 

1. Replicate NET 

NETN = N p NET 

2. Form internal connections 
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from the definition of casade structure 
we have: 

DII] = Blf(I)] 

where typically fII] = I + CaNST 
Hence, an internal connection is specif­
ied if 

(f(I) + N) = a for I < N 

otherwise an external connection is 
needed. 

3. Form a Linear Structure of NETN elements 

LS = K P NETN 

4. Form of Connections between the NETN 
elements 

DII] = BIf(I)] 

DIL; M] = BIf(M*N+L) IN] If(M*N+L) +6] 

Which includes previously defined in~r 
ternal connections. 

Comparisons 

The processes described here are intended 
for use in a software system to aid the logic 
designer. The techniques shown are quite differ­
ent from those which are under study for parallel 
programming and for parallel organization of 
computing systems. In parallel programming 
studies a basic control mechanism is assumed and 
parallelism consists of allowing two or more 
controllers to proceed more or less independently. 
The logical and arithmetic processes being per­
formed are considered only to the extent that 
they influence the flow of control. In register 
transfer system descriptions no real distinction 
is made between control and processing activity 
although such distinctions may play an important 
role in the thinking of the designer. 

When a logical transformation is performed 
on the system to speed it up the logical networks 
are replicated if there is no possibility for 
concurrent operation. However the net'vork is 
not replicated if concurrent operation is possi­
ble. This is illustrated in the example of the 
serial adder in the paper. The first speedup 
caused an time overlapping of shift and add with 
essentially no increase in hardware. Further 
transformations to create parallel addition 
required replication of the basic adding network. 
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A STRUCTURED .APPROACH TO CONCURRENT PROCESS SYNCHRONISATION 

Santosh K. Shrivastava(a) 
Computer Laboratory, University of Cambridge, England 

Summary 

This paper briefly describes a concurrent process 
synchronisation method to be used with secretaries 
[1] or monitors [2]; an operating system structur­
ing concept developed by Dijkstra and Hoare. 

The well known example of readers and writers 
[4] is used below to illustrate the method and 
the monitor concept. 
file:monitor; 
begin rr, aw:shared integer; free: shared boolean; 
nowriter:condition (aw = 0); 
noreader:condition (rr = 0 & free); 
procedure start read; 
begin await nowriter; with rr do rr:=rr+l; end 
procedure endread; 
begin switch:boolean; switch:=false; 
with rr do begin rr:=rr-lj 
if rr=o then switch:=true; end 
if switch then test noreader;­
end endrea~--
procedure startwrite; 
begin with aw do aw:=aw+l; await noreader; 
with free do free:=false; 
end startwrite; 
procedure endwrite; 
begin switch:boolean; switch:=false; 
with free, aw do begin free:=true; 
aw:=aw-l; if aw=o then switch:=true; end 
if switch then tes~ nowriter else test noreader 
end endwri te; ----
with aw,rr, free do begin aw,rr:=o; free:=true;end 
note give initial values; 
end file; 
-- A file is to be used for reading or writing. 
Any number of 'readers' may read simultaneously, 
but 'writer' must have exclusive use; further, 
writers are given priority. 

Calls on a monitor procedure are of the form: 
monitor name.procedure name (--parameters--); 
Thus, the readers will use the code: file. start­
read; 'read operation'; file.endread; to use the 
file. A monitor is treated as a critical region 
so that processes have exclusive use of it. A 
'condition variable' represents some condition 
for the resource use, expressed as a boolean ex­
pression involving the monitor variables. With 
each condition variable we also associate at com­
pile time, (a) two boolean variables 'state' and 
'current', when 'current' is true, the value of 
'state' is taken to represent the value of the 
expression, when 'current' is false, this is not 
so, and (b) a queue for waiting processes. The 
operation 'await condition name' is defined as 
follows: if 'current' and 'state' of that condition 
variable are true, the executing process continues; 
if 'current' is true and 'state' is false the 
proces~ releases the monitor exclusion and waits 

(a) 
On leave from the Plessey Co. Ltd. 
Poole, Dorset, England. 
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on that condition's queue; if 'current' is false, 
the process evaluates the expression and sets 
'state' accordingly, 'current' is made true, the 
process now continues or waits as described above. 
The operation 'test condition name' is defined as 
follows: if 'current' and 'state' of that condition 
variable are true, the executing process removes 
~ waiting process (if any) from the condition's 
queue and puts it on the queue of processes trying 
to enter the monitor; of 'current' is false, the 
process evaluates the expression, sets 'state' 
accordingly, 'current' is made true, if 'state' 
is now true, a waiting process is scheduled as 
described above. A 'testall condition name' 
operation is similar, except that instead of one, 
all the waiting processes are scheduled. A 
resumed process, when given entry to the monitor, 
reexamines the 'await' condition as described. 
The monitor variables that occur in the condition 
expressions are declared shared, operations on ·a 
shared variable are permitted only through the 
notation 'with shared variable name do S.' This 
operation is defined as follows: all~he 'current' 
bits of the condition variables, condition ex­
pressions of which refer to that shared variable, 
are made false, then S is executed. No 'test' 
or 'await' is permitted inside S. 

It is now easily seen that in this syn­
chronisation method, evaluation of condition ex­
pressions is kept to a minimum. Thus, when 
readers are reading, the first writer to find 
this will make 'state' of 'noreader' condition 
false and 'current' true. Any other writers 
entering the monitor consequentively now, do not 
evaluate 'noreader' to find out that they must 
wait. As conditions can be arbitrarily complex, 
when resources are heavily utilized, this method 
particularly becomes attractive. 

The method can be incorporated in high-level 
software writing languages with the monitor 
concept. A detailed evaluation of various syn­
chronisation techniques, including the existing 
proposals [2,3] and parallel programming tech­
niques using monitors will appear in the author's 
Ph.D. thesis. 
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PARALLELISM IN TAPE-SORTING 

Shimon Event 
Department of Applied Mathematics 
The Weizmann Institute of Science 

Rehovot, Israel 

Abstract -- Two methods for employ­
ing parallelism in tape-sorting are pre­
sented. Method A is the natural way to 
use parallelism. Method B is new. Both 
approximately achieve the goal of reduc­
ing the processing time by a divisor 
which is the number of processors. 

I. Introduction 

It is reasonable to assume that one 
is willing to use P processors instead 
of one if the computation time is cut 
down by the same factor. In certain ap­
plications this has been shown to be im­
possible. 

Fortunately, this kind of saving in 
time is possible in the case of external 
sorting. Two methods for achieving this 
goal are described. The first one is 
natural and uses known techniques. The 
second method uses new ideas and is be­
lieved to be more elegant and easier to 
program. 

The description is in terms of tapes, 
but any linear mass storage can be used 
instead. 

II. Method A 

Assume we have N records, P pro­
cessors and 4P tapes. Also assume that 
initially the N records are all stored 
on one tape. The sorting is achieved 
through the following steps: 

(1) The N records are distributed to 
2P tapes in such a way that each of them 
has approximately N/2P records. This 
step takes N units of time. 

(2) Everyone of the P processors is 
assigned 4 tapes: two of them are loaded, 
with N/2P records on each, and two are 
empty. Each processor performs the well­
known algorithm of tape-sorting using the 
4 tapes it controls. (For a few more de­
tails see the Appendix.) This step takes 

units of time. 

!!. N 
P 10g2 P 

(3) We now have P tapes which are each 
loaded with a group of N/P records and 

t Visiting at the Department of Computer 
Science, Cornell University, Ithaca, New 
York, summer 1973. 
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the records on each of these tapes are 
sorted. We perform 10g2P phases of 
sort through merge. In the first phase 
every two groups are sort-merged into a 
group of 2N/P records. In the i-th 
phase every two groups of 

2 i - I N 
P 

records are sort-merged into one group of 

2 i N 
P 

records, etc. The whole process takes 

log P N 
L 2i 

P 
i=l 

2N _ 2N 
P 

units of time. We conclude that the time 
method A takes is 

The method can be used even with a 
very large P. In the extreme case when 
P = N/4 the sort time reduces to 3N. 
However, the more practical cases are 
when P ~ 10g2N , when (1) is well ap­
proximated by 

N 
P 10g2 N + 3N . (2) 

Except for the 3N term this 
achieves the best possible saving; namely, 
the best sorting time for one processor, 
which is N 10g2N, is divided by the num­
ber of processors. 

III. Method B 

For simplicity, let us assume first 
that N is a power of 2 and that the 
number of processors available is 

P = 10g2 N + 1 

We shall use 4P tapes (in addition to 
the input tape). As we shall see later, 
the number of processors can be reduced 
to log2N and the number of tapes to 
4(10g2N - 1). 

The tapes are divided into quadru-
ples: 
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for i = 1,2, ••• ,P. Time is measured in 
the unit of time necessary for reading 
and writing one record. The processors 
are denoted by il l ,il 2 , ••• ,ilp • 

During time 1 ~ t ~ N ill reads the 
input tape and writes the records on 

T:, T~ , Tl 
s and T~, 

according to the following rule: 

(i) if t - 1 (mod 4), ill writes on Tl 
1 

(H) if t - 2 (mod 4) , ill writes on Tl 
2 

(Hi) if t - 3 (mod 4) , ill writes on Tl 
s 

and 

(iv) if t == 0 (mod 4) , ill writes on T~ . 
ilk is active during 

2k - 1 ~ t < N + 2k _ 2 

For k = 2,3, ••• ,P its activity is as fol­
lows: It reads from tapes of the (k-1)st 
quadruple and writes on tapes of the k-th 
quadruple. It performs, repeatedly, a 
sort-merge of two sorted lists of length 

2k-2 

into one sorted list of length 

2k - 1 

The tapes are used according to the fo1-{a) 
lowing rule: 

(i) if 

then ilk reads from 

T~-l and T~-l 

and writes on 

Tk 
1 

(H) if 

rt-,k +'1 2k - 1 - 2 (mod 4) 

then ilk reads from 

k-1 
Ts and k-1 

T4 

and writes on 

(a) Let rxl denote the least inte~er 
which does not exceed x, i.e. f3.51 = 
r41 = 4. 
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(iii) if 

then ilk reads from 

T~-l and T~-l 

and writes on 

Tk d 
s ' an 

(iv) if 

then ilk reads from 

k-1 k-1 
T sand T 4 

and writes on 

An example of N 8 is shown in 
the diagram on the next page. Successive 
rows represent successive time. A solid 
line in the column 

Tk 
i 

in row t means that ilk is writing on 

Tk 
i 

during time t; a broken line means that 

may be reading from it. 
The reader may establish for himself 

the validity of the following claims: 

(1) Every tape is emptied (the records 
it has contained are read) before it is 
loaded again with a sorted list. Thus, a 
tape of the k-th quadruple never contains 
more than 

records. 

(2) The reason for the difference in the 
starting times is that ilk is waiting 
for 

k-1 k-1 ilk _1 to load Tl and T2 

This takes 2k - 1 units of time. Thus the 
starting time is 

k namely, 2 -1 

2k - 1 _ 1 + 2k - 1 
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(3) 

Thus, 

t T1 
1 

T1 
2 

T1 
3 

T1 

" 
1 I 
2 I 

I 

I 3 I 

I 
I , I I 4 I 

I 

I I I 5 I I I I , I I 
6 I I I I 

I 
I 

7 I 
I 

8 , 
9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

P-2 
T" is first loaded during 

t 

t = 2P- 2 - 1 + 3 0 2P- 3 

2P - 1 + 2 P - 3 - 1, 

5 t=4N - 1 

or 

For N > 4 this is larger than N . 
Since T: is not used after t = N , we 
can use the same tape for both tasks. 

(4) T;-l is first loaded during 

t = 2P - 1 _ 1 + 2P - 2 

I 

T 3 
1 

T 3 
2 

Figure 1. 
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Thus, 

3 t='2N - 1 

For N > 2 this is larger than N. 
Since Ti is not used after t = N , we 
can use the same tape for both tasks. 

P-1 P-1 
(5) T3 and T" are never used. 

(6) T~ is first loaded during 

For N > 3 
Since T~ 
we can use 

t = 2P - 1 = 2N - 1 . 

this is larger than N + 2 . 
is not used after t N + 2 
the same tape for both tasks. 



1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

(7) TL T; 
(8) Claims 
4(1og2 N- 1) 

and T~ are never used. 

(3) to (7) imply that only 
tapes are necessary. 

(9) 

can be the same. 
(6). Thus, only 
required. 

and II 
p 

The reasons are as in 
10g2N processors are 

(10) During t = N there are 10g2N 
processors in action and 4(10g N-1) 
tapes are occupied. Thus, no further 
saving is possible unless basic changes 
are made in the procedure. 

The whole process takes 3N-2 units 
of time, and 

TP 
1 

is the output tape. This compares favor­
ably with Method A (see (2» which re­
quires approximately 4N units of time 
in case P = logaN. In my opinion, 
Method B is more elegant md easier to 
implement. 

Let us now discuss the case 
P ~ 10g2N. (The reader should notice 
that we have started with P = 10g2N + 1 
but have reduced the number of processors 
to 10g2N) 

Method B is not suitable for using 
much more than 10g2N processors. 
Clearly, when log2N is not integral we 
can use 

processors and pretend we have 

2 f10g 2Nl 

records by filling in "dummy records". 
(Some improvements on this are possible 
but essentially the processing time is 

3_2f10g2Nl_ 2 

A similar problem occurs in Method A if 
P is not a power of 2.) However, there 
is no way to use more than 

without changing the method considerably. 
More interesting is the case when 

P < 10g2N. For simplicity, let us dis­
cuss the case of 

where both P 
tegers. Let 

N 

and Q are positive in-

The computation is done in Q 
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passes. In each pass the output tape 
contains output lists which are M times 
longer than before. The number of pro­
cessors used is P and the number of 
tapes is 4P - 2. (Ignore here the sav­
ings discusses in Claims (3) to (10); 
only 

and 

are not needed.) 
In the first pass we use the same 

procedure as discussed before, except 
that after 

is loaded with a sorted list of length M 
another sorted list is loaded next to it, 
etc. This continues until all N re­
cords are on 

TP 
1 

in sorted lists of length M. 
In the second pass 

TP 
1 

is used as the input tape and 

TP 2 

as the output tape. The length of the 
list on 

Tk 
i 

, k < P , is M 2k - 1 

and the timing is now in multiples of M. 
The lists on 

length M2. are now of 
After 

p1ete. 
Q passes the sorting is com-

The i-th pass takes 

N + Mi - 1 (2P - 2) 

units of time. Thus, the total time is 

Q-N + (2P-2) ~ Mi - 1 
i=l 

Q 
Q-N + (2P -2) M -1 

M-1 

+ 2(N-1) 
P-1 

which is similar to (2). 

(4) 

The method can be improved by start­
ing the next pass before the present one 
is over. However, this will only reduce 
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the second term of (4). 

Appendix: Tape-Sorting ~ One Processor 

and ~ Tapes 

This well-known and widely used algo­
rithm runs as follows: Assume the re­
cords are stored on two tapes, T1 and 
T2 ' each containing n/2 records, while 
the other two tapes, Ts and T~ are 
empty. Also, assume the data on T1 and 
T2 is already partially sorted in the 
following way: The n/2 records are di­
vided into groups of 

2i 

records. Each of these groups is already 
sorted, say from low to high, and the 
groups are stored consecutively on the 
tape. Thus, the number of groups on each 
tape is 

n 
2i+1 

Initially i = 0 For simplicity, let 
us assume that 

n = 2R, 

The algorithm goes through R, Phases. 
In Phase 1 we read the first record 

from each input tape (T 1 and T2) and 
store both on Ts in increasing order. 
Next we read the second record from each 
input tape and store both on T~ in in­
creasing order. Next we return to load a 
group of two on Ts ,etc. After n 
units of time (since each record is read 
once and is written once) all the records 
are distributed to Ts and T~ in or­
dered groups of size 2 (=2 1). 
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In Phase i, i < R, , we perform a 
merge of the two groups which are present­
lyon top of the two input tapes and store 
the merged double size group on one of the 
output tapes, alternatively. (If i is 
odd then T1 and T2 are the input tapes 
and Ts and T~ are the output tapes; 
if i is even, tasks are reversed.) The 
merging of these two groups is achieved by 
reading the top record from each group and 
writing the smaller one on the output 
tape. After each such writing the top 
record from the same group. as the one 
which has just been written, is read and 
compared with the record still in memory, 
etc. This is continued until one of the 
groups is exhausted; the remainder of the 
other group is directly transferred to the 
output tape. 

We continue merging groups of size 

i-1 2 , 

one from each input tape, into groups of 
size 

which are stored on the output tapes, 
changing the output tape after each 
group. 

In Phase R" there is one sorted 
group of size 

R,-1 n 
2 = 2" 

on each input tape and they are merged 
into one sorted group of size n which 
is stored on one of the output tapes. 

The whole operation takes n log 2n 
units of time. 
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A PARALLEL ALGORITHM FOR MAXIMUM FLOW PROBLEM 

Yu K. Chen and Tse-yun Feng 
Department of Electrical and Computer Engineering 

Syracuse University 
Syracuse, New York 13210 

Summary 

This algorithm is developed for solving the 
maximum flow problem in an associative processor. 
It is based upon the matrix multiplication 
approach [1] for finding the flow route. Given 

a capacity matrix cl [cij ], with C~j to be the 

capacity from node i to node j and c~. = 00 for 
l( ) n 

all values of i, and Cl a to be the first row of 

Cl , C2 3 m 1 one can generate l' Cl "'" to Cl successive y 

by the matrix multiplication C~ = c~I x Cl where 

the ordinary matrix product is performed with the 
following modifications: (1) cik ' ~j = min 

(cik ' ~j)' and (2) ; cik = m~x (cik). Under 

the new definitions of matrix multiplication, 

c~i' the i's element of C~, clearly represents the 

maximum flow between the source and the node i by 
means of paths which have m branches or less. The 

multiplication process stops either when c~n ~ 0 

or when m = n - 1. Unlike the previously 
proposed sequential labeling methods [2] - [3] 
that the trace of the path has to be carried out 
along with the labeling process, the construction 
of a trace matrix T = [ti .] proposed here can be 
performed at the conclusIJn of the matrix 
multiplication. Matrix T is a zero-one matrix. 

m m-l 
t ij = 1 if clj= cli . cij > 0, and i ~ j.; 

otherwise, t ij = O. Matrix T contains one or more 

paths. To select a single path matrix P = [Pij]' 

backward trace technique can be used. The 
algorithm is designed to fully utilize the word­
parallel and the fast search-retrieval capabili­
ties of the associative processor to gain 

(a) 
Node 1 is assumed to the source node and node 
n to be the sink node 

60 

execution speed. A few transpose operations are 
required in this algorithm. Therefore, if a data 
manipulator [4] with the transpose function in it 
is provided will certainly help the execution 
speed. The multi-terminal network flow [5] - [6] 
is not considered. This algorithm has been coded 
in APL to emulate its execution in associative 
processor [7]. Results are compared with the 
algorithm proposed in [B]. Approximately two­
to-one improvement in execution time is 
indicated. 
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PARALLEL - SEQUENTIAL PROCESSING OF FINITE PATTERNS* 

Wi 11 i am I. Grosky and Frank Tsui 
School of Information and Computer Science 

Georgia Institute of Technology 
Atlanta, Georgia 30341 

Abstract -- The various basic conditions 
under which parallel, sequential and mixed par­
allel-sequential processing in tessellation 
structures, using the same local transformations, 
are equivalent "in terms of pattern generation 
are studied. Various necessary conditions and 
sufficient conditions for equivalence are derived. 
We then illustrate a 'mutually destructive' con­
dition where sequential and parallel processing 
cannot be made equivalent, and study this condi­
tion further. We finally relax some of our hypoth­
eses and countenance the notion of simulation 
between parallel, sequential and mixed parallel­
sequential processing, giving sufficient condi­
tions for such simulations to exist. 

Several recent research efforts are aimed at 
strengthening the theoretical understanding of 
parallel and sequential modes of picture and 
pattern processing [ I, 2, 4, 5, 6, 9]. Rosenfeld 
and Pfaltz [ 7] have shown that any picture 
transformation that can be accomplished by a 
series of parallel local operations with Moore 
neighborhood index can also be accomplished by a 
series of sequential local operations with Moore 
neighborhood index, and conversely; but, the local 
operations may be different for the two types of 
process i ng. 

In "this paper, we first concentrate our in­
vestigation on the equivalence of parallel, seq­
uential and mixed parallel-sequential local oper­
ations of arbitrary neighborhood index in arbit­
rary dimensions, where the local operator is the 
same for each mode of processing. We then relax 
this latter condition and explore the notion of 
simulation in general. The methodology used in 
this work is that of tessellation automata. We 
have generalized previously formulated definitions 
of these entities to take into account sequential 
processing, and we call our new entities the class 
of stratified mixed mode tessellation automata. ----

Stratified Mixed Mode Tessellation Automata 

Definition I: For n ~ I, an n-dimensional strati­
fiedlilixed mode tessellation automaton, TA~ 

4.,.tuple <S,Zn ,NI ,GT>, where, 

I) S is a finite, non-empty set of ~ 

2) Zn is the set of n.,.tuples of integers. For 

f. e Zn, we call f. a cell of TA. The set CON = {g 

g:Zn + "S}is called the set of configurations of 
of TA 

* This work was supported in part by NSF Grant 
GN..,655 
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3) NI is an ordered q-tuple of elements of zn, 
for some q ~ I, and is called the neighborhood 
index of TA. Suppose NI = <r.1' ••• 'Iq>. Then, for 

~ e zn, Ne (~) = <f."'1:.1' ••• &+r..q> is ca II ed the 
neighborhood of f.. 

4) GT ~ ~, called the set of global transfor­
mations, is a finite subset of CONCaN which is 
the union of GT , GT ,GT and GT ,the sets p s p,S S,p 
of parallel, sequential, parallel-sequential and 
sequential-parallel global array transformations, 
defined as follows, 

a) Suppose p E GT and let c e CON. Then p 
p(c) = c' e CON, where, for some cr :SC! + S, 

p 
called a local transformation,. we have, for each 

£ e Zn, that c· (0 = cr p (c(~"'1:.I) , ••• ,c(~+rq» • 
c' is called the successor configuration of c 
with respect to p. Thus, the state of a particu­
lar cell in a successor configuration of c de­
pends on the states of the neighborhood of that 
cell in configuration c. 

b) Suppose p e GT U GT U GT • Then s p,s S,p 

p(c) = c' e CON, where, for some cr :sq + Sand 
U 0 p 

Teo (Zn)J V (Zn)w, for T injective, cal led 
p J~W P n 

a trajectory, we now define c'(y for f. e Z , 

i) Suppose p e GTs • Then we require Tp to 
be surjective as well as injective. For 

a ~ i 1; T -I (?J, define c~y e CON as fo I lows, 
p • 

c(~) = c 
a 

-I( ) n For a ~ k , rp i: -I and £ e Z , 

( (r;) () (d ( ) ) o. f {cr ck- £+x.1 , ••• ,ck- £+:Y.q , 
ck,-+r;)1 (£) = { p 

{ ( ) £ = T (k) 
{ckf. (£) otherwise p 

Then, c' (Q 
k) 

c I (~ 
T- (~ 
p 

ii) Suppose p e GT • Then we require T p,S P 
to be non-surjective. Define c* e CON by 

{cr (c(£+x.l)' ••• ,c(~+xq» if 
{ p £ i range (T ) 

icC£) otherwise p 
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Then, 
{c*(].;) if 1; rt range (-r ) 
{ - - p 

c' (£}'" {c,&J . (1;) if 1; e: range ('r ) 
{ (-r p f range ('r » -I <0 - - p 

P 
iii) Suppose p e: GT • Then we requ i re 'rp s,p 

to be non-,surj.ective. Define c** e: CON by, 

{c(~ I (;) if ~ e: range('rp ) 

c**'(;) ... {{ (-r p f range ('r » - (q 
- p 

{c(f) iff. f/ range ('rp ) 

Then, 
{c**(1;) i f 1; E range ('r ) 
{ - - p 
{a p (c*'~ (~+r.1 ) , ••• ,c**(~+Y » i f 

"'-q ~ rt range ('r p) 

c' (~) 

In the above three cases, the trajectory 
indicates the sequential order in which the cells 

of Zn are processed. Case i) is pure sequential 
processing in which the state of a particular cell 
in a successor configuration of c is determined 
by the states of th'e neighborhood of that cell in 
configuration c#, where c# differs from c only in 
that we update the states of all cells processed 
before the given one. Case i i} results when some 
cells are first processed in parallel and then the 
remaining cells are processed sequentially. Case 
iii} results when some cells are first processed 
sequentially and then the remaining cells are 
processed in parallel. 

Suppose a:sq + S. We define parCO') e: Gp to be 

the parallel global array transformation deter­
mined by 0', s~q'r(O") e: Gs to be the sequenti al 

global array transformation determined by 0' and 
the surjective trajectory 'r, par-se~ «(1) e: Gp,s 

to be the parallel-sequential global array trans­
formation determined by 0' and the non-surjective 
traj ectory 'r, and seq-pa r (0") e: G to be the 

T s,p 
sequential-paralle~l-g~l~o~b-a~l--a-rray transformation 
determined by 0' and the non-surjective trajectory 
'r. 

We now define various concepts which will 
prove to be useful in the balance of this paper. 

DEFINITION 2: For a:Sq + S, if 0" is independent 
of its j-th argument, for I ~ j ~ q, we call cell 
~~j an independent neighbor of ~ with respect to 

0', for each ~ e: Zn. 

DEFINITION 3: For ~ E Zn and 'r a trajectory, we 
define the preprocessed ~ of ~ with respect to 
'r for pure sequential, parallel-sequential and 
sequential-parallel processing, 

a) Let T be a surjective trajectory. Then the 

set {-r(0), ••• , .. <-r-1(])-1)} () Ne(]) is called the 
preprocessed set of 1; wi th respect to 'r for pure 
sequential processing 

b) Let T be a non-surjective trajectory, 

j) Suppose.1;.. e: rangeh). Then, the set 
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((do) , •.• ,d hI rangeh » -I (]) ... In V 

(zn - range (T») II Ne (z;) is ca 11 ed the pre­
processed set of 1; with respect to 'rfor parallel 
sequential processing. 

i j) Suppose 1; I range h). Then the p re­
processed set of ~ with respect to 'r for parallel 
sequential processing is ~. 

c) Let'r be a non-surjective trajectory. 

i} Suppose 1; e: range (-r). Then the set 

h (0) , ••• ,-r(C-r[ - (.»-l(z;)_I)} /) Ne(r,) is 
range 'r - -

called the preprocessed set of 1; with respect to 
'r for sequential-parallel processing. 

i i} Suppose 1; i range h). Then the p re­
processed set of ~with respect to T for sequen­
tial-parallel processing is range(T) " Ne(£). 

Briefly, the preprocessed set of 1; with 
respect to 'rin the various methods of processing 
is just the collection of neighbors of 1; which 
were processed before £. -
DEFINITION 4: We call a local transformation 

a:Sq ->, S surjective of degree !5L9.., for 0 < k ~ q, 
if, by varying the values of any k arguments of 
0', we can produce as output every element of S, 
regardless of the values of the other q-k argu­
ments. That is, letting I ~ i l < ••• < i k ~ q, 

the function a#:Sk + S defined by 

a#(x. , ••• ,x. ) = a(yl' ••• ,yq)' where, for 
II I k 

I ~ j ~ q, Yj = Xj if j e: {il, ••• ,i k}, while 

Yj = Sj e: S if j {{ip ••• ,i k}, is surjective. 

DEFINITION 5: Cell 1; is said to be a related 
neighbor of cell f if there exists a chain of 
cells 2...1' ••• '~' for m::: 2, such that 2...1 =~, 
<5 =;, and, for I ~i ~ m-I, <5. e: Ne (<5. I). -m - . -1-1+ 

DEFINITION 6: Suppose p e: G (Gs)(G )(Gs ). p p,s ,p 
The seed set of p, SS (p), is that set of local 
transformations 0' such that p = parCO') (p = 
seq (0') for some 'r) (p = par-seq (0) for some 

T . 'r 
'r) (p = seq-pa r'r (q) for some 'r) 

V.arious Notions of Simulation 

In this section we examine numerous notions 
of the simulation of one tessellation automaton 
by another. One general definition of simulation 
which we will use is that of A.R. Smith [ 8]: 

DEFINITION 7: Let TA = <S,Zn,NI,GT> and TA* = 
<S,~,Zn,NI*,GT'~ be two n-dimensional stratified 
mixed mode tessellation automata. For t,t::: I, 
we say that TA* s imul ates Tin tlr times real 
time, if thereare effectivelY computable injec­
tlve mappings n:CON + CON* and r:GTr + GT*t, such 
that, for any c e: CON and <pI, ••. ,P r > e: Gyr, we 
have, 
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t:.~r( ••• PI(c» ••• }) = pt( ••• (P~(t:.(c») ••• ). where 

<py ••••• pf =r«p)'···.r.>t)· If t = r = I. we say 
that TA* simulates TA in real time. 

The type of simulation we examine first is 
called strict simulation. 

DEFINITION 8: Let TA = <S.Zn .NI,GT> and TA* .. <S*. 

Zn',NI*,GT*> be two n-dimensional stratified mixed 
mode tessellation automata which are such that 
S* .. Sand NI* = NI. We say that TA* strictly 
simulates TA if, in Definition 6, t - r = I, t:. 
is the identity map, and, for p e: GT, 
SS(p) It ss(r (p)} (: ,. 

In exploring this notion of strict simula­
tion. we are really just trying to detenmine when 
global transformations of the form par(a) , 
sea_ (a), par-sea (a) and seq-par (a) are equal 

"t" I "t"2 T 3 

for various a, T I r T2, T 3' We thus concentrate 

on the latter formulation. 
Our first result, being fairly obvious, is 

presented without proof, 

THEOREM I: Fora :sq + Sand T)' T2, T3 trajector-

ies of the appropriate type, a sufficient condi­
tion for {par(a) ,se~ (a) ,par-seqT (a), 

I 2 
seq-par (a)} to be pairwise equal is that for 

T3 
each cell f. e: Zn, the preprocessed set of Z;; with 
respect to TI ('7,) (T3) for sequential (parallel-

sequential) (sequential-parallel) processing con­
sist entirely of independent neighbors of Z;; with 
respect to a. 

The converse does not hold as the following 
example demonstrates. 

Let n = 1. NI = <-1.0>, S = {1,2,3}, and 
a(I,I) = a(2,1) = a(3,1) = a(3,2) = I, a(I,3) 
a(2,3) = a(3,3) = 3, and a(I,2) = a(2,2) = 2. 

It is easily verified that par(a) = 
seq (a) = pa r-seq (a) = seq-pa r (a) for all 

TI T2 T3 
appropriate trajectories, while a is neither 
independent of its first nor second arg'urnent. 

We do have the following, though, 

THEOREM 2: For a:Sq + 5 and TI' T2, T3 trajector­
ies of the appropriate type, suppose that {par(a), 
seq (a), par-seq (a). seq-par (a)}·are pair-

TI T2 T3 
wise equal. Letting SETi be the preprocessed set 

of j; with respect to Ti' for some I ~ i ~ 3, 

suppose that for each i e: SET i , a is surjective 

of degree a~q, where, 

a,£ = q-INe(Q IJ Ne(I) I-I Ne<,~) " V Nel!> I. 
ie:SETi -{,[,} 
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Then. each element of SET. is an independent 
neighbor of I. ' 

~ OF THEOREM~: It is easily seen that if 
a~ > 0, then there are at least a~ cells in the 
neighborhood of ~ - not including-~ - which are 

neither in the neighborhood of ~ nor in the 

neighborhood of any other cell in SET •• Since , 
a is surjective of degree ar!q. by varying the 

states in these a~ cell s, we can force ce II ~ to 

be in any state in S before we process cell ~. 

Consider any initial configuration c. Suppose the 
next state of cell f. is Sz;; if c is processed in 

a parallel mode. Thus, the next state of cell Z;; 
is sf. if c is processed in any of the other three 

modes, regardless of the states of the cells in 
SET i • Since each cell in SETi can be put in ~ 
state, our result follows. 

QED 
COROLLARY I: Let Z;; e: Zn and I sl ,I Ke(Z;;) 1 > I. 
Suppose that for each ~ e: Ne(z;;)' - {z;;T, the local 
transformation a is surjective of d:egree a~/q > 0 

where a~ = q .,;. I Ne(.0 n Ne(i,)I. Then. there 
exist appropriate trajectories T)' T2, T3 such 

that {par(a), se~ (a), par-se~(a), 
I 2 

seq-par (a)} are not pai rwise equal. 
T3 

PROOF OF COROLLARY I: Suppose that for all appro­
priate trajectories T)' T 2, T3, we have that 

{par(a), se~ (a), par-se~(a), seq-parT (a)} 
I 2 3 

are pairwise equal. Choose trajectories Tl' T~, 

and T3 such that, for each I , i , q, there is a 

cell f.i such that f.i-+:r..i is the only element in 
the preprocessed set of Z;;.' with respect to TTl'" -, 

T*2" and TT3,. By Theorem 2, Z;;.of'y., for I ~ i , q, -, -, 
is an independent neighbor of Z;;. with respect to 
a. Thus, either a is a constant'function or the 
next state of any cell depends just on its pre­
vious state. Thus, a is not surjective of degree 
ag!q > O. 

QED 

From Theorem I, we see that if trajectories 
TI ,T2,T3 can be found such that for each applic-

ation of the local transfonnation a to a cell i, 
each cell in Ne(~) is not in the preprocessed set 
of i with respect to Tl , ~,T3' or, if it is, is 
either an independent neighbor of ~ with respect 
to a or is in a state which never changes, then 
par(a) = seq (a) = par-seq (a) = seq-par (a). 

TI T2 T3 
We now look into the question of finding such 
trajectories. For this question, we restrict our 
attention to the ~ configurations and a 
sub-set of them called the ~ configurations. 
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Our definition of strict simulation is likewise 
restricted to strict simulation over finite or 
fixed configurirtT6ii'S by restricting the domaTii" 
Cit"'ir""to these sub-sets. . 

DEFINITION 9: A state s E S is called quiescent 

with respect toO":sq+ S ifO"(s, ••• ,s) = s. A --q 

configuration c is called finite with respect to 

O":sq+ S if only a finite number of cells of c 
are non-quiescent with respect to 0". 

DEFINITION 10: A state s E S is called null with 

respect to O":sq + S if c(r;) = s +r parCO") (c) (r;) = 
s. A configuration all of whose cells are in-a 
null state is of size O. A configuration c is of 
size III ~ 1 if, when the absolute value of any 
coordinate of a cell r; is larger than m, then 
ck) is null. A configuration is called fixed of 
degree m if m is the least integer such that cis 
of size m. The window set of a fixed configura­
tion of degree m:;-o-is-the set consisting of 
those cells which are such that the absolute 
value of each of their coordinates is less than 
or equal to m. We denote it by 'W '. The window 
set of a configuration all of whoWe cells are in 
alnull state is ~. 

Of course, all configurations which are 
fixed of degree m are finite. 

LEMMA 1: Let ~I Rn .12 +r i.l' .5.2 e: Zn and.fl is a 

related neighbor of ~2 and let En = {<f&.> 
~ E in}. Then R IJ E is a transitive, reflexive 
relation. n n 

THEOREM 3: Let 0": sq + Sand N I = <l..l ' ••• ;Y.q> , 
for l..l""'~ E Zn. A sufficient condition for 
{pa dO" ), sea (0"), pa r-sea (0"), seq-pa r (O")} 

"T 1 "T 2 '1:3 
to be pair-wise equal over fixed configurations of 
degree Ill> 0 for some trajectories '1:1,'1: 2 ,'1: 3 is 

that no two different cells of Zn are related 
neighbors of each other. 

PROOF OF THEOREM 3: We claim that Rn V En is a 

partial order over Zn. From Lemma I, Rn v En is 

transitive and reflexive. Suppose i.1 (Rn V En) ~ 

and .12 (Rn v En) ..11' By our hypotheses, it is 

impossible to have ~I Rn ~ and ~ Rn ~I' Thus, 

we must have that ~I = ~. Thus, we have our 

result. This, in turn implies that (Rnv En) n 
(Wm x Wm) is a partial order over Wm• We then 

embed (R V E ) n (W x W ) in a total order n n m m 
e. Thus, for all .11' ..!lz E Wm' ..11 Rn ~ + 1.1 e ~2" 

Let<~. ,'" ,.1' > be a listing of Wm Such 
111m" 
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that for I ~ u < v ~ mn, r;. e 1; .• Note that 
""'l. -l. 

U V 

for 1 ~ u < v ~ mn, 1;. t Ne(1;. ). For, 
-l. -l. 

V U 

suppose~. E Ne(~. ). Thus, r;. is a related 
l. l. -l. 

V U V 

neighbor of ~i and hence 1.i Rn ~i ' which 
u v u 

implies that 1.i e ~i ,which, in turn, implies 
v u 

that j2 ~ jl' which Is a contradiction. 

Thus, for pure sequential processing, we 
can choose any trajectory '1:1 such that, if 

kl < k2 , '1: 1 (k l ) == 1.i. ' '1:1(k2) = ~i. ' for 
JI J2 

1 ~ jl,j2 ~ mn, then j2 < jl' 

For parallel-sequential processing, we can 
choose any trajectory '1: 2 which is such that 
either, 

I) the range of '1:2 doesn't include any 

element..1. for I ~ j ~ mn; or 
I j 

2) the range of '1: 2 includes each element 

of{~. ,r;. , ••• ,1;.}, for some 1 ~ j ~ mn, is 
II -1 2 -I j 

disjoint from {r;. , ••• ,r;.}, and is such that 
-I j+1 -Imn 

if kl < k2' '1: 2(k l ) = 1.i. ' "2 (k2) = ~i. ' for 
JI J2 

I ~ jl,j2 ~ j, then j2 < jl' 

For sequential-parallel processing we can 
choose any· trajectory '1:3 which is such that 
either, 

1) the range of '1:3 doesn't include any 

element r;. for 1 ~ j ~ mn; or 
-I. 

J 

2) the range of '1:3 includes each element 

of {~. , ••• ,1;. } for some 1 ~ j ~ mn, is dis-
Ij -Imn 

joint from {I.. , •• " &. } and 
II I j_1 

kl < k2' '1: 3(k l ) = I.i . ' '1: 3 (k2) 
Jl 

j ~ jl,j2 ~ mn, then j2 < jl" 

is such that if 

= 1.i. ' for 
J2 

QED 

We now give a necessary and sufficient con­
dition for two different cells of Zn to be 
related neighbors of each other; but first we 
show, 
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LEMMA 2: Suppose NI '" <vl, ••• ,V > for VI, ••• ,V 
- -<i - -<i 

members of Zn. Then cell 1;; is a related neighbor of 
cell e, for 1;; -I e, iff 1;;-'" 0 • V. + ••• +6. V . 

- - - - JI-JI Jp-J p 
+ e for some I ~ p ~ q, where O. > 0 and V. -I 0 

- Jk -Jk-
for I ~ k ~ p. 

PROOF OF LEMMA 2: Suppose 1;; is a related neighbor 
of e. Thus, there is a chain of cells ~I""'~' 

for s ~ 2, such that s:.1 '" f., f.s '" !L, and, for 

I ~ i ~ s-I, s:.i E: Ne(f..i+I)· Thus, ~I '" ~2 + 4 ' 
2 

1.2 '" 1.3 + 4 , ... , f.s - I '" ~ + 4 ' fo r I .,; k2,···, 
3 s 

ks ~ q. We then get that s:.1 '" 4 + 4 + ••• + 
2 3 

:'L!<s + S '" 0 • 1... + ••• + o. r.. + ~, where 
~ J I JI J p J p 

I ~ p ~ q, o. > 0 and Y.... -I 0 fo r I ~ k ~ p. 
Jk Jk-

Our result follows trivially since £1 '" 1;; and 
fs '" e. 

Suppose 1;; '" o. V. + ••• + O. V. + e for 
- JI-JI Jp-J p 

some 1 .,; p ~ q, where O. > 0 and V. -10 for 
Jk -Jk-

I ~ k ~ p. We thus get that e + V. £ Ne(e), 
- -J p -

e + 2V. E: Ne (e + V. ), ••• , e + O. Y.... E: Ne (~ + 
- -J p - -J p - J p J p 

(0. -l)y. ), e + v. + o. V. E: Ne(e + O. v. ), 
J p -J p - -Jp-l Jp-J p - Jp-J p 

••• , e + O. V. + O. y. £ Ne (~+ (0. - J). 
- Jp_I-Jp_1 Jp-J p Jp-l 

Y . + O. Y. ), ••• , 1;; £ Ne « o. -I)Y, + O. y. + 
-Jp_1 Jp-J p - JI -Jl J2-J2 

e. 

+ O. y. ). Hence, f is a related neighbor of 
Jp-J p 

QED 

We now present, 

THEOREM 4: Suppose NI '" <r.l""'Yq> for r.1"'" 
y E: Zn. Then there exists 2 different cells, 
---q 
f and ~, which are related neighbors of each 

other iff uk YK + ••• + uk ~ '" Q for some 
lIs s 

2 , s , q, where Uk. > 0 and YK. -I Q for 1 ~ ~s. 
I I 

PROOF OF THEOREM 4: Suppose 2 different cells, f 

and e, are related neighbors of each other. By 
Lemma 2,1;; '" O. y. + ••• + O. Y + e and 

- JI-JI Jp-jp-

e '" S y + ••• + S y + ffor 1 ~ p,u ~ q, 
- rl~1 ru~u 

where u. > 0 and Y. -I Qfor.l"; ~ p, and 
J i -J i 
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S > 0 and Y -I 0 for I ~ i ~ u. Thus, 
r i "'"'ii-

1;; ",o.V. + ••• +o.y. +S Y + ••• + 
JI-Jl Jp-J p r -rl 

Sr Lr +.5., and our result follows. 
u u 

Suppose Uk ~ + ••• + Uk ~ '" Q for some 
I Iss 

2 ~ s ~ q, where Uk. > 0 and ~. -I Q for 
I I 

1 .,; i ~ s. Thus, letting i'" Uk ~ + .,. + 
2 2 

Uk ~ -I Q, we see that Q'" Uk ~ + i, and 
s s I I 

i '" Uk ~ + ••• + Uk ~ + Q. Thus, by Lemma 
2 2 s s 

2, 0 and ~ are related neighbors of each other. 

Thus, we have, 

COROLLARY 2: Let <J:Sq-r Sand NI '" <YI, ••• ,Y > 
- -<i 

for YI, ••• ,Y E: Zn. Then, a sufficient condition 
- -<i 

for {par(<J), seqT (<J), par-seqT(<J), 
I 2 

seq-parT (<J)} to be pairwise equal over fixed 
3 

configurations of degree m > 0, for some trajec­
tories T I ,T 2 , T3, is that, 

IU k I~ + ••• + IU k I~ '" Q 
I Iss 

for 2 ~ s ~ q, where ~. -I Q for I ~ ~ s, 
I 

implies that Uk '" ••• '" Uk '" O. 
I s 

We can generalize this in the following 
fashion, 

DEFINITION II: Let <J be a local transformation. 
We say that pure parallel processing using <J is 
weakly equivalent to pure sequential processing 
using <J, over a set of configurations C, 

par(<J) ~C seq(<J), 

if, for every c E: C, there exists an appropriate 
trajectory T, such that park) (c) seq (<J) (c). 

T 

We have similar definitions for the other methods 
of processing. 

We then have, 

COROLLARY 3: Let <J:Sq -r Sand NI '" <r..I, ••• ,rq>, 
n 

for r..1""'lq E: Z • Then, a sufficient condition 
for {par(<J), seq(<J), par-seq(<J), seq-par(<J)} to 
be pairwise weakly equivalent with respect to the 
set of finite configurations is that, 

IUk 11K + ••• + IUk 11K '" Q 
I Iss 

for 2 ~ 5 .,; q, where 4. -I Q for I .,; i .,; s, 
I 
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implies that <Xk = ••• = <Xk = O. 
I s 

PROOF OF COROLLARY 3: This follows directly from 
Corollary 2 and Theorem 3. QED 

Let us now present an example of a neighbor­
hood index and local transformation cr such that 
par(cr) ~ seqT(cr) for all trajectories T. We let 

NI = <-1,0,1> - each cell is in Z - S = {O,I} and 
cr(I,O,O) = cr(O,O,I) = I, cr(O,O,O) = cr(O,I,O) = 
cr(O,I,]) = cr(J,O,]) = cr(J,I,O) = cr(J,I,J) = O. 

Consider the configuration c = 010010; that is, 
there is an iO e Z such that c(i O) = c(i O+3) = I 

and c(i) = 0 otherwise. It is easily verified 
that parCcr) ~ seqT(cr) for any trajectory T. It 

is also easily verified that this example does 
not meet the sufficient conditions mentioned in 
the previous theorems. Here we see clearly what 
the Concept of related neighbors portends; there 
are cells which are related neighbors of each 
other and which are such that whichever one is 
processed first destroys the possibility that 
the other will be in a state so that the resul­
tant configuration is the same as if the original 
configura·tion were processed in parallel. We call 
this the mutually destructive condition. If this 
condition exists in a given situation, we have 
that par(cr) ~ seqT(cr) for any trajectory T. The 

preceding theorems gave sufficient conditions 
for this condition not to exist. 

We now present some theorems regarding the 
general notion of simulation. But first, we must 
define the following entities, 

DEFINITION 12: A stratified mixed mode tessella­
tion automaton is called pure parallel if and 
only if the union of its sets of sequential, 
parallel-sequential, and sequential-parallel 
global array transformations is empty. 

DEFINITION 13: A stratified mixed mode tessella­
tion automaton is called pure sequential if and 
only if the union of its sets of parallel, 
parallel-sequential, and sequential-parallel 
global array transformations is empty. 

We now have the following, 
n THEOREM 5: Let TA = <S,Z ,<yl, ••• ,y >,GT>. Then, 

- "-<I 
there is a pure sequential stratified mixed mode 
tessellation automaton, STA, which simulates TA 
in 2 times real time. 

PROOF OF THEOREM 5: 

Case I: Suppose y. ~ _0 for all I, j ~ q 
--- -J 

Let GTp = {PI""'P~' GT s = {Pr+I""'P r+s}' 

GT p,s = {p r+s+I'···'P r+s+t}' and 

GTs,p = {Pr+s+t+I""'Pr+s+t+)' 61 = {al'a2,a3, 
a4} and 62 = {b l ,b2}, where 61 " S = 62 n S = II. 

( 6 ) r+s+t+u We then let STA = <S x S x 6 I X 2 ' 

zn,<yl, ••• ,y ,O>,GT*>, where GT* will be defined 
- "-<1-
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presently. Before we specify what ~ and rare, 
let us do the following, 

We first define a map M:GT V GT v GT p s p,s 

V GT + {T I T: w+ Zn, T is I-I and onto} as s,p 
follows (this will be the set of trajectories 
used in STA): 

a) For P e GTp' let M(p) be arbitrary 

b) For P e GTs ' p is determined by some 

trajectory T*. Let M(p) = T'~ 

c) For p e GT , p is determined by some p,s 
trajectory T**. Let M(p) be any trajectory such 
that, 

i) Suppose ~'£2 are two different 
cells of Zn in the range of 1** and that 
T'h~-I (t.) < T**-I (z;; ). Then 

""::1 -2 ' 

(M(P»-I(l) < (M(P»-I(5,.z). 

(The order of sequential processing is preserved.) 

ii) Suppose ~ e range(T**), 

~ t range(T**) and ~ £ Ne(~) or ~ £ Ne(~). Then, 

(M(p»-I(~) < (M(p»-I(~). 
(A cell processed sequentially in TA may be pro­
cessed any time in STA as long as all cells in its 
neighborhood or which have it as a neighbor, which 
were processed in parallel in TA, are processed 
fi rst. 

d) For p e GT , p is determined by some s,p 
trajectory T***. Let M(p) be any trajectory such 
that, 

i) Suppose £1'£2 are two different 

cells of Zn in the range of T*** and that 

T*** -I (J;I) < T*'~* -I (£2)' Then, 

(M (p) ) -I (£1) < (M (p) ) - I (£2) • 

i i) Suppose £ I. range(T'~**), 

£ £ range(T***) and ~ £ Ne(f) or ~e Ne(Il. Then, 

(M(p» -I (£> < (M(p» -I (~. 
(A celt processed in parallel in TA may be pro­
cessed any time in STA as long as all cells in its 
neighborhood or which have it as a neighbor, which 
were processed sequentially in TA, are processed 
fi rs t. 

For I ~ j :< r+s+t+u, let T. = M(p.). 
J J 

We now specify the map ~:CONTA + CON STA • 

Let c e CONTA • Then, ~(c) =c*, where, for 

~ e Zn, if c(~ = s, then c*(£) = <s,S,«a. ,b. >, 
I I I I 
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a) ~ is a fixed element of S 

b) For I ~ j ~ r, we have i j = I, for 

r+1 ~ j ~ r+s, we have i. = 2, for r+s+1 ~ j ~ 
J 

r+s+t, we have i j = 3, and for r+s+t+1 ~ j ~ 

r+s+t+u, we have i. = 4. (This indicates the 
J 

total range of processing: parallel, sequential, 
parallel-sequential and sequential-parallel.) 

c) For I ~ j t;; r+s+t+u, b. indicates 
I j 

whether or not cell ~ is in the range of the 
trajectory corresponding to Pj • That is, for 

I ~ j ~ r, we let i. = I, while for r+1 ~ j ~ 
J 

r+s+t+u, i. = I if and only if cell ~ is not 
J - -

in the trajectory which determines p .• 
J 

As a notational convenience, for 

IX = «a. ,b. >, ••• ,<a. ,b, » E 
I I I I I r+s+t+u I r+s+t+u 

( ) r+s+t+u ] e 1 x e 2 ' let IX [k = <a. , b. >, fo r 
Ik Ik 

I ~ k ~ r+s+t+u, and IX [k][ I] = a. and IX [k][2] 
Ik 

Now, the map r:GT + GT*2 is defined by 

rep) = <p* p*> where we now define p* and p*. 
I' 2 ' I 2 

Suppose p = Pi' for I ~ i ~ r+s+t+u. Now, p 

is defined via some local transformation crp • We 

have that p'~ is defined via the trajectory t". 
I I 

M(p) and local transformationcr* , where, 
PI 

*( J\ ") crPI <sl,sl,IXI>,···,<Sq+I,Sq+I'IXq+l> = 

i<Sq+1 ,crp (sl , ••• ,Sq+l) ,IXq+I>, if either 

{ 1 ~ i ~ r, or r+s+l ~ i ~ r+s+t and 
{ IX +1 [j] [2] = bl , or r+s+t+1 ::; i ::; 
{ q 
{ r+s+t+u and IXq+1 [i] [2] = b1 

i<crp (sl, ••• ,Sq+l) 'S'q+1 ,IXq+I>, if either 

{ r+ I lS i ~ r+s, 0 r r+s+t+ I ~ i ~ 
{ r+s+t+u and IX +1 [i] [2] = b2 { q 

i <cr p (s i ' ... , s ~+ I ) , S' q+ I ,IX q+ 1>' if 

{ r+s+1 ~ i ~ r+s+t and IXq+l [i] [2]=b2, 
{ 
{ 
{ 
{ 
{ 
{ 
{ 
{ 

where, for I ~ kt;; q+l, 

{sk i f IX k [il [2] = b2 
s';~ - { 

k -
{" 
{sk if IXk [il [2] = b1 

(j) 
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We also have that P~ is defined via local 

transformation cr* and an arbitrary trajectory, 
where, P2 

r. . I = 0 for some I ~ j I ~ q 
J -

This case is similar to the above. 

It is straightforward to show that STA 
simulates TA in 2 times real time. 

QED 

Before we present our last theorem, we 
define the following concept, 

DEFINITION 14: Let TA = <s,zn,<r.I, ••• ,rq>,GT>. 

Suppose ~ E Zn and p E GT V GT v GT • We - s p,s S,p 
now define what we call the ~ of cell £ with 
respect to ~, denoted by, 

as follows, 

TA 
typef.,P' 

a) Suppose p E GT • Let t" be the trajectory s p 
which determines p. Set So = {*}, and, for i ~ 0, 

q • -I ( ) let S'+I = S. v S •• For 0 ~ J ~ t" ~, we 
I I I P -

define E~f) :Zn + S., (Thus, EO(.0 is the constant 
J J 

function which maps Zn into {*}.) For 0 ~ k ~ 

t"-1(~)_1 and §.. E Zn, we define, 
p -

{ (~)(I:") (d(l:") 'If 
(~) _ {<EC Z.+r.1 , ••• ,Ek- z.+.Iq > 

E k+1 (§..)- { 1;= t" (k) 
{ - P 
{E (.0 (I;) otherwise 

k -
TA Then, type,.. z.,p 

b) Suppose P E GT • Let t" be the trajec-
p,s P 

tory which determines p. Set TO = {*,<*~~}, 

and, for i ~ 0, let Ti+1 

Suppose that f. I. 
TA type £,p = <<;': •••. 'i':>. 
~ 

q 

= T, Ioi T~. 
I I 

rangeC-r ). 
P 

Then, 

Suppose that ~ E range(t" ). Let 
- P 

q 

p 
. -I ( ) = t"1 (). For 0 lS J ~(j) .. ~, we define 

prange t" p P 
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TA 
e-typef,p 

{* if 1; t range(T } 
{- p 

{e (f) (1;) otherwi se 
~n~l(f) -

we then have that, 

TA type,.. 
.z.,p 

TA {S-type,.. if 1; e range(T ) = { .z.,p - p 

{<e-typeTA etTA { , ••• , - ype,..+y > 
{ I+r.I'P .z. ~,p 

{ 
{ otherwise 
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We then have the following, 

THEOREM 6: Let TA = <s,zn'~I' ••• 'lq>,GT>. For 

each p e GTs V GT IJ GT ,suppose that p,s s,p 

Then, there is a pure parallel stratified mixed 
mode tessellation automatonwh'ich simulates TA 
in real time. 

PROOF OF THEOREM 6: This is similar to the proof 

of Theorem I in Grosky and Tsui[ 3]. 
QED 
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PARALLEL IMPLEMENTATION OF A TWO-DIMENSIONAL MODEL(a) 

Valere J. Kransky, E. Dick Giroux, and Gary A. Long 
Lawrence Livermore Laboratory, University of California 

Livermore, California 94550 

Abstract-A large, serially programmed, 
two-dimensional mathematical model has been 
reprogrammed for the CDC STAR-I00 and the 
CDC 7600 computers using parallel programming 
techniques. The parallel program is currently 
running on the CDC 7600. The concepts, tech­
niques, and the results of its use are discussed. 
The parallel program executes efficiently, can 
be modified easily, and requires no major re­
design or reprogramming for conversion to other 
large-scale parallel machines. 

Introduction 

The Lawrence Livermore Laboratory 
began seriously investigating the programming of 
"parallel" machines in 1969. Our group was 
assigned the task of reprogramming a large, 
two-dimensional phySical simulation model 
called HEMP [1]. The equations are Lagrangian 
and the difference scheme is explicit. Included 
in the model are hydrodynamics, elastic-plastic 
flow, multiple Sliding, multiple materials, and 
fracturing. We established the following pro­
grammatic goals: 

(1) To formulate parallel programming 
techniques and methods for general use. 

(2) To develop a program that would 
execute with the same source deck on different 
types of computers. (This is particularly im­
portant at LLL because of our history of ac­
quiring new types of large-scale computers.) 

(3) To achieve optimum execution rates on 
parallel computers. 

(4) To design the program in a manner that 
would provide maximum flexibility for frequent 
modifications. 

Vector Programming 

After analyzing several different large­
scale parallel computers (see Appendix A), we 
decided that vector programming techniques 
would satisfy our needs. We define a vector to 
be a contiguous array of data whose boundaries 
are specified by a descriptor word. The data 
contained in a vector may be: 

(1) floating point 
(2) integer 
(3) bits 
(4) bytes 
(5) characters 

A descriptor is a pointer whose low-order bits 
are a bit-base address that points to the data and 
whose high-order bits contain the item count of 
the data set. 

The ease with which one can manipulate 
data is the essential feature of vector program-

mingo We can manipulate vectors with such 
operations as: 

(1) Compress - selects a subset of a vector 
under the control of a bit 
vector. 

(2) Merge - puts together two vectors 
under the control of a bit 
vector. 

(3) Compare - generates bits in a bit vec­
tor as a results of com­
paring two vectors. 

(4) Transmit 
index list - collects into a contiguous 

result vector, discontig­
uous elements from 
another vector by using an 
index vector. 

(5) Transmit 
index des-
tination - stores into discontiguous 

locations the contiguous 
elements of another vector 
by using an index vector. 

Such instructions as these permit the "massag­
ing" of data for the various equations found in 
large-scale scientific programs. 

Vectorization of the HEMP Equations 

The HEMP problem-solving procedure 
consists of repeated solutions of explicit equa­
tions over a large. two-dimensional grid. Each 
complete pass through the equations for all grid 
points (nodes) and zones is a "problem cycle." 

Nongeneral Calculations 

Certain parts of the two-dimensional mesh 
(see Fig. 1) must be treated in special. non­
general ways in the solution of practical prob­
lems. Three of the more important of these are 
described below: (The problem shown in Fig. 1 
is not a typical HEMP problem; most problems 
are more complex and much larger.) 

(1) Most of the phySical system calculated 
by the HEMP program include more than one 
type of material. The materials are in contact 
with each other at interior boundaries. Often. 
large displacements along these surfaces take 
place as the system is solved on the computer. 
In the program this necessitates the inclusion 
of special" slide-line" calculations and logic to 
simulate the surfaces with a decoupled grid. 

(2) There are usually two or more mate­
rials in a HEMP problem. The behavior of 
these materials is modeled by equations-of­
state. The program must associate the proper 
equation-of-state with the appropriate grid zone, 
and calculate material behavior. 

(a)Work performed under the auspices of the U. S. Atomic Energy Commission. 
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(3) Various boundary conditions are 
associated with the exterior boundaries of the 
system. These require that the program do 
selective calculations for certain boundary 
points. 

HEMP Difference Scheme 

The HEMP equations-of-motion require the 
calculation of a line integral at each node. This 
is represented by the dashed line shown con­
necting nodes I. II. III. and IV in Fig. 2. In 
addition. zonal data must be accessed at zones 
(0. (2). (3 >. and (4). The exterior boundary­
line integrals are calculated in a manner similar 
to that of the four-zone case. except that coor­
dinates of the node being accelerated are also 
assigned to one of the surrounding nodes (see 
Fig. 3). 

It was determined that the movement of the 
boundary pOints. while subject to various non­
general conditions, could be substantially cal­
culated with the same equations (and therefore in 
the same vector) as the interior grid points. For 
the purpose of describing the vector techniques 
used in doing some of the calculations. a tiny 
grid with a slide-line is shown in Fig. 4. In 
order that we may treat all nodes with the same 
equations to obtain a "tentative" acceleration. we 
expand the nodal vectors with a "geometric bit 
string." By geometric bit string, we mean a bit 
string whose bit pattern is dictated by the grid1s 
shape and size. This expansion creates a vector 
that has vacant elements for the insertion of 
"phony node" values. The expanded grid is 
shown in Fig. 5. Through the use of compres­
sion. expansion. and controlled-store operations, 
the phony nodes are assigned the values of the 
adjoining real boundary nodes. The zonal 
quantities are expanded out in a similar manner. 
Now we have a grid that includes phony nodes and 
phony zones. 

Compression with appropriate geometric 
bit strings is done to isolate the diagonal end 
pOints. The diagonal differences (which are 
zonal-centered quantities) are calculated. These 
diagonal differences are compressed with 
another set of geometric bit strings to produce 

Special 
bound­
ari 

CYCLE TIlE 
zia 5.1019' 

Fig. 1. A HEMP problem. 

Slide-
1 ine 
Axis 
of 
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nodal-centered values. These are used to cal­
culate the acceleration terms. New velocities 
are calculated that are used to reposition the 
nodes. 

The acceleration terms are needed for the 
boundary calculations (including slide-lines); 
therefore. it is efficient to calculate acceleration 

III 

I 

Fig. 2. HEMP acceleration arms. 

IV 

Fig. 3. HEMP boundary arms. 
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terms tn one vector pass. For boundary points" 
the position is only tentative and may be over­
ridden by subsequent calculations. 

The Slide- Line Calculation Logic 

Slide-line calculations are complex. They 
require that nodes and zones on each side of the 
slide-line be associated with nearby nodes and 
zones on the opposite side of the slide-line. 
Figure 6 shows how zones must be mapped 
across a slide-line. This relationship can 

Fig. 4. A simple HEMP grid. 

Fig. 5. HEMP grid with phony zones and nodes. 

I I I I I 
I I I I I 
I I I I I 

I I I I 
I I I I 

I I I I 

Fig. 6. Slide-line mapping. 
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change from problem cycle to problem cycle. A 
search procedure is require to determine this 
relationship. This was at first thought to be an 
inherently serial process, and therefore not 
amenable to vector programming procedures. 
We vectorized this procedure so that it is done 
in a few iterations, through the us e of cascading 
compare and compress operations. 

An "ordering index" vector is calculated 
and saved from cycle to cycle. This vector 
describes the relative nodal positions at that 
cycle. During each cycle, the ordering index 
vectors are updated to reflect positional changes. 
To update the ordering index numbers, all nodes 
on one side of the line are checked against their 
previously known solution points on the other 
side to determine if those solutions are currently 
correct. The currently correct nodes are com­
pressed out of the vector. A trial ordering 
adjustment is made with the reduced vector. If 
found to be satisfactory, these solutions are 
compressed out. This iterative procedure is 
continued until all solutions are found. The 
relative positions of the slide-line nodes change 
little from cycle to cycle. Ordinarily, one to 
three iterations are required to update all the 
ordering index numbers. This process quickly 
cascades from full-length slide-line vectors to 
much shorter vectors. Although they are more 
involved, subsequent slide-line calculations that 
use these ordering numbers cascade in a similar 
manner. 

Slide-line manipulation includes the build­
ing and use of dynamic bit strings. These con­
ditional bit strings are used to compress a 
sequential index set that is used to fetch or store 
elements of data within the slide-line vectors. 
Slide-lines are relatively short, and we may have 
several slide lines in a problem. Therefore, 
they are catenated together so that all slide-
lines car be calculated in one vector pass. Since 
the acceleration equations are the same for both 
sides of the slide-line, alternate sides are cat­
enated together so that all common parts of the 
calculation can be done in one vector pass. 

Equation-of-State Handling 

Each problem can have associated with it a 
number of equations-of-state. In practice, the 
same equation-of-state is associated with many 
contiguous zones. This enabled us to: 

(1) select zones with like material proper-
ties; 

(2) arrange the zonal variables into 
material-related vectors, and 

(3) calculate similar zones in one series of 
vector operations. 
A particular zonal grid vector is composed of 
packed integer fields. One field is a group of 
numbers that are associated with a particular 
equation-of-state form. Another field is a 
material number within that form. The material 
number within the form is used as an index to 
access equations-of-state coefficients within that 
form. When the material properties are to be 
calculated within a problem cycle, this vector is 
unpacked (using vector operators) into a number 
of full-word vectors. A vector compare is done 
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to determine which zones are associated with 
each equation-of-state form. The appropriate 
variables are then compressed out using the re­
sulting bit string. The corresponding material 
within the form numbers is also compressed out. 
The form number is used to control a branch to 
the appropriate equation-of-state coding. The 
material within the form number is used as an 
index to select the appropriate equation-of-state 
coefficients for the material. The program 
makes repeated passes through this procedure 
until all zonal material properties are calculated. 
Because the program is provided with a list 
of forms for a given problem, only as many s 
passes are made as there are forms in the 
problem. 

Forking 

'the equation-of-state calculations are ex­
amples'of program fork handling. (By forks we 
mean the selection of various calculational 
operations. In a serial program this would be 
done by conditional branching.) Many forks in 
the program are done dynamically (dynamic 
forking). In general, a particular vector com­
pare produces a different bit string each prob­
lem cycle. The bit string is used to control the 
calculations. We use two methods of control 
logic. One method is the previously mentioned 
vector compare-compress-calculate-expand­
and-store series of operations. There is over­
head in doing the compressions and expansions 
in this method. A second method is to use full­
length (uncompressed) vectors through both 
sides of the fork, and -then use a bit string(s) to 
control the storing of results. Here we are 
calculating many results that are going to be 
unused, and therefore wasted. Whether to us e 
the compress-expand method or the controlled­
store method depends on the bit denSity of the 
fork bit string and the amount of calculation on 
each side of the fork, 

When the bit string is relatively sparse on 
the long side of the fork, it may be more effi­
cient to compress, calculate, expand, and store. 
When the bit string is relatively dense on the 
long side of the fork, it may be more efficient 
to calculate the entire vector both ways and use 
the controlled store. The method to use is 
determined through the use of an equation that 
has in it the vector lengths, the operation types, 
and the number of operations on each side of 
the fork [2]. The decision is made dynamically 
each problem cycle. (This calculation is 
practical because our vectors are long, and 
some forks require many operations on one or 
both sides of the fork.) 

Operation Skipping 

The issuance of one vector instruction 
produces a large number of results. This has 
introduced another time-saving flow-control 
technique that is not available in serial pro­
gramming-operation skipping [2]. Some of the 
HEMP equations contain terms that are not used 
in a particular problem. In serial programming, 
it is more expensive to check a flag and possibly 
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skip an operation each time through a loop than 
it is to issue the unnecessary instruction(s). In 
vector programming, a single flag check can 
cause a sequence of vector instructions to be 
skipped, saving hundreds or thousands of unre­
quired operations. This test can also be done on 
the length field of a vector descriptor. 

Character Vector Techniques 

The HEMP program produces large 
quantities of printer output. To make this an 
efficient process, we have used character vector 
operations to convert binary data to BCD 
(binary coded decimal). This is one application 
of vector techniques to areas other than 
arithmetic number crunching.(a) 

Tree Structures 

Some index sets, bit strings, and other 
data sets are constructed at generation time; 
others are built dynamically during execution. 
Because of the wide divergence of HEMP prob­
lem sizes, shapes, and options, the use of fixed 
blocks of memory to store this data would be a 
waste of storage space. To conserve core, we 
pack this data in memory. We access this data 
through a series of linked descriptors or "tree 
structures" that point to the data. The top 
descriptor points to a vector of descriptors, each 
of which points to another vector of descriptors 
or data. Each descriptor tree eventually points 
to data. If an unusually large data set is re­
quired, it takes the needed space for that prob­
lem only. If a data set is not required for a 
particular problem run, it consumes no memory. 
Tree structures are used in the slide-line, the 
boundary condition, and other sections of the 
program. A simple example is shown in Fig. 7. 

Core Allocation 

Allocation of storage for all vectors needed 
by the HEMP program is done dynamically, at 
execution time [4). The program never allocates 
more vector space than it needs and/or is 
physically available in core. (b) The allocation of 
core is based on the contents of a HEMP data file 
(Appendix C). 

Temporary Results Vectors 

The evaluation of a typical vector 
arithmetic expression requires temporary 

(a)Charcter vector operations facilitate the 
writing of interactive, timeshared, and inter­
preti ve routines. Character vector techniques 
can be applied to compilers, loaders, and other 
system software packages [3]. 

(b)For some problems the entire grid cannot 
be held in memory. The program explicitly 
handles the transfer of data between core 
memory and disk. Even though a computer 
(like the CDC STAR-IOO) may have virtual 
memory. the overhead associated with page 
faulting is too costly. 
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Level a fixed-location descriptor 

Length Address 1 
Level I variable-location descriptor 

~ Length Address Level II variab 
~ 1 ocati on data 

Length Address Data 

le-

Length Address 

~ 
Level II Data 
variable-location descriptors 

L.., Length Address 

Length Address 

~ Level III variab le-
location data 

Level II I r---
Data 

~ Could point 
to >-------additional 
levels 

Fig. 7. A tree structure. 

vectors of the same length as the result vector. 
The length of result vectors in a typical 
HEMP problem is about 1500 words long. As in 
serial programming. certain calculational re­
sults must be saved for later use. In serial 
programs. this does not present a memory 
management problem. since each saved result 
only needs one word of core. In vector 
programming. this is a serious problem. Each 
saved result is a vector that requires a large 
amount of core memory. To alleviate this 
problem. we reuse the same dynamic vector 
space as much as possible. This is done 
through the use of a simple "saved vector" 
allocation scheme. 

The base addresses of saved vectors are 
kept in a stack. The base addresses of "saved 
bit vectors" are kept in another stack. Initially. 
the base addresses in a stack are in ascending 
order. The number of words between any two 
adjacent entries in a stack is the same (the 
length of the longest result vector needed). 
When a calculation needs a result vector. it 
takes the next entry (address) from a stack. 
When a result vector is no longer needed. the 
address is returned to the stack. 
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Multiple Vector Passes 

When discussing the equations. it was 
assumed that all vectors were full grid size. 
This was a simplistic view. taken to make the 
discussion easier to understand. In actual 
practice. a problem must be calculated by 
making multiple passes through the equations. 
This is necessary because current computers 
do not have enough core memory available for 
the save-vectors to be the length of a full grid 
vector. The number of passes through the 
equations is a function of the maximum size of 
a saved result vector and the size of a grid 
vector. 

Prior to each pass through the equations. 
the grid variable descriptors are adjusted to 
point to that part of the grid that is to be cal­
culated. If a sUde-line(s) is included in a pass. 
the necessary data vectors and vectors of 
descriptors for the slide-line equations are con­
structed. The coordinate vectors and the 
velocity vectors are merged with phony nodes. 
The geometric bit vectors are also dynamically 
constructed each pass. (a) 

Vector Programming Aids 

The implementation of our vector program 
has been facilitated by the use of: 

(1) an APL interpreter (Appendix D). 
(2) programming language extensions 

(Appendix E). and 
(3) new debugging routines (Appendix F). 

Current Status 

The vector HEMP program is currently 
running on the CDC 7600 through the use of 
vector software kernels (Appendix G). Vector 
HEMP demonstrates marked improvement in 
execution rate over the serial FORTRAN pro­
gram (Appendix H). The same vector HEMP 
source deck that is in useonthe CDC 7600 will 
be used on the CDC STAR-lOa computer 
(Appendix I). 

Summary and Conclusion 

The following vector techniques were 
developed and used: 

(1) geometric bit strings 
(2) phony nodal and zonal elements 
(3) dynamic bit strings 
(4) static forking 
(5) dynamic forking 
(6) operation skipping 
(7) cascading vector solutions 
(8) character vectors for printing results 
(9) descriptor tree structures 

The vectorization of large scientific computer 
programs is accomplished by complete redesign 
and reprogramming.<b) In general. improve­
ments in execution rates will not be achieved by 

(a>we- have a full set of Boolean bit vector 
operations to facilitate the construction of the 
geometric bit strings [5]. 
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simply "vectorizing" a few subroutines. Vector 
programming techniques can be successfully 
applied to a wide variety of large-scaIe parallel 
computers. 

Appendix A. Parallel Computer Analysis 

The pursuit of our goals necessitated a 
detailed analysis of parallel computers. By 
parallel we mean any computer on which a 
single operator at the source level will cause 
multiple. identical machine operations to occur. 
The operators may invoke a single hardware 
instruction or a sequence of instructions. 

The parallel computers studied included 
multiprocessor computers. array computers. 
pipeline computers. and associative computers. 
Our attention was focussed mainly on large­
scale computers in existence or in the planning 
stage. The computers we investigated were: 

(1) the CDC STAR-100 [6] 
(2) the Burroughs ILLIAC IV [7] 
(3) the Texas Instrument ASC [81. [9] 
(4) the CDC 7600 [10] 

The STAR-100 and ASC computers use "pipes" 
through which operands from contiguous memory 
locations are streamed. The ILLIAC IV uses 
64 separate processing elements (PE's) that can 
all execute the same instruction simultaneously. 
The STAR-100. ASC. and ILLIAC IV all use "bit 
logic II to control the storing of operands to 
memory. For bit logic operations. the STAR-
100 has a much more complete set of instruc­
tions than either the ASC or the ILLIAC IV. In 
parallel computation. bit logic replaces the 
indexes used in serial programming and is the 
most important nonarithmetic capability of the 
computers. 

The CDC 7600. while not a pipeline or 
multiprocessor computer. can be an efficient 
vector machine through the implementation of 
software kernels (Appendix G). 

Appendix B. Vector I/O Library 

We used character vector techniques exten­
sively in writing a vector I/O library. All I/O is 
done by suhroutine calls to this library. 
The HEMP source deck contains no READ. 
WRITE. etc. type of statement. Only a small 
part of this library (that part which interfaces 
directly with the operating system) has been 
written in a machine-dependent manner. One 
subroutine in this library is used for printing 
vectors of numbers. This vector "write" routine 
can execute up to six times faster than serial 
FORTRAN" write" routines on the CDC 7600. 

(b)Because of the extreme disparity in the 
calculational speed between a truly vectorized 
algorithm and a calculation done in a loop on a 
parallel machine. it does little good to vectorize 
just part of a program and leave the rest in 
serial mode. If parallel machines are to per­
form at anywhere near their capability. all 
array-type calculations must be vectorizea. If 
arrays are calculated serially. the performance 
of parallel computers will be degraded by 
factors of 10 to 30. 
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Appendix C. HEMP Data File 

A HEMP data file is composed of three 
parts (F ig. 8 ): 

Part I contains various scalar information 
about the problem and the size (number of words) 
of Part II (this size changes from problem to 
problem). 

Part II contains descriptor tree structures 
and data vectors. The data vectors in Part II 
contain information about: 

(1) the size of the grid. . 
(2) the number of grid variables (the 

number of variables varies from problem to 
problem). 

(3) the order of the grid variables. 
(4) the attributes of the grid variables 

(i.e •• nodal. zonal. etc.). 
(5) the boundary conditions. 
(6) the slide-line surfaces. and 
(7) the equations-of-state. 
Part III contains the grid variables. them­

selves. 

Appendix D. APL Interpreter 

LLL's APL interpreter was used heavily 
during the design and algorithmic development 
phases of vector HEMP programming. Many 
data manipulation concepts were checked out in 
APL. The design of the very complex slide-line 
algorithms was particularly aided through its 
use. Without APL this would have been a much 
more difficult task. The value of APL is due 
primarily to three things: 

(1) its interactivity. 

Part I 

Part II 

Part III 

T 

512 words long and contains the 
length of part II 

Descriptor tree structures: 
(1) Grid description 
(2) Boundary description 
(3) Slide surface description 
(4) Equations-of-state description 
(5) Data for structures 

Grid data 

Fig. 8. HEMP data file. 

T 
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(2) the fact that it includes in its operation 
set most of the vector operators, and 

(3) its extensive debug features [11] - [13]. 

Appendix E. Programming Language Extensions 

The source deck for the HEMP program is 
written in LRLTRAN [14] and [15]. LRLTRAN is 
a super-set of FORTRAN IV. LRLTRAN has 
scalar and vector extensions to FORTRAN IV. 
The scalar extensions most used were: 

(1) The .LOC. statement. Given: 
J = .LOC .X, then J would contain the absolute 
core location of the variable, X. 

(2) The PARAMETER statement. Given: 
PARAMETER (LWDB = 60), then all occurrences 
of the name, LWDB, in the source deck would be 
replaced by the literal, 60. 

(3) A MACRO processor. We only use the 
character substitution part of the MACRO proc­
essor. 

Vector Language Extensions 

We used the following vector extensions in 
LRLTRAN: 

(1} VECTOR (DV1, V1}- declares VI to be 
a vector and DVI to be the descriptor of vector 
VI. 

(2) BIT Bl VECTOR (DBl, B1}- declares 
Bl to be a bit vector and DBI to be the de­
scriptor of BL 

(3) CALL Q8CMPRS-generates code for 
the vector compress instruction. 

CALL Q8MERGE-generates code for 
the vector merge instruction. 

CALL Q8XPND-generates code for the 
vector expand instruction. 

CALL Q8MASK - generates code for the 
vector mask instruction. 

(4) The .CTRL. operator. VI = B1.CTRL. 
V2 says store V2 into VI, under the control of 
bit vector BL 

(5) CALL Q8INLINE(op-code, argument 
list for the op-code). Op-code 1S the sTAR-lOO 
hexadectmal operabon code, and the argument 
list must match the fields for the operation as 
defined in the STAR-100 reference manual [6]. 

The compiler generates inline coding for 
the STAR-lOO for the vector operations. For 
the 7600, the compiler produces calls to soft­
ware kernels for vector operations. The source 
deck f.or the HEMP program contains only dyadic 
expressions. This was done primaril'Y"tO 
minimize allocation of scratch vector space for 
complicated equations. 

Appendix F. Vector Debugging Routines 

When debugging serial programs, octal (or 
hexadecimal) and/or decimal dumps are suf­
ficient. Vector programs require more sophis­
ticated dumping procedures. We wrote a sub­
routine, VDUMP, to print "snapshots" of core 
while running a problem and a utility routine, 
VDUMP, to do post-mortem dumps. Both 
routines will dump in the following formats: 

(1) bit (pure binary, ones and zeroes) 
(2) ASCII 
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(3) descriptors (on the 7600, they print the 
octal word address as well as the octal bit base 
address, and the length field in base 10). 

(4) floating point 
(5) hexadecimal 
(6) integer (base 10) 
(7) octal 

The routines will also dump vectors of all of the 
above formats. When printing a vector, the 
routines always print the descriptor first. 

Subroutine VDUMP will also trace a de­
scriptor tree structure, printing all intermediate 
descriptors and the data vector at the end of each 
branch. The type of data at the end of a branch 
is determined by the subroutine and formatted 
accordingly. 

Utility routine VDUMP was written using 
character vector techniques. It executes about 
three times faster than our serial dump routine. 

Appendix G. Vector Kernels 

In evaluating large-scale parallel com­
puters we reached the conclusion that they all 
could be considered to be "pipe-line" computers. 
This makes it possible to emulate a sequence of 
arithmetic and/or logical computer operations. 
Efficient subprograms called kernels can be 
written if a computer has: 

(1) a reasonable number of registers, 
(2) several arithmetic units that can be run 

in parallel, and 
(3) partitioned memory, so that multiple 

memory references can be made at the same 
time. 
The 7600 lends itself to the vector kernel con­
cept. During the design phase of the HEMP pro­
gram, two coworkers (Frank McMahon and 
LanSing Sloan) were programming 7600 vector 
routines to improve execution speed of FORTRAN 
programs [16], [17]. We had already developed 
and simulated similar vector kernels for the 
ILLIAC IV in 1970. Coordinating with McMahon, 
we decided to emulate a subset of the STAR-lOO's 
arithmetic and bit-byte instruction set for the 

Table I 

Results per Microsecond 
Process '600 STAR-iOu 

Unoptimized FORTRAN 1.2 - 1.9 
Optimized FORTRAN 1.6 - 3.3 

? 
? 

Vector Operations (Dyads) 

Transmit 

(+, -, *, /) 
Compress 
Merge 
Boolean string 
Transmit index list 

15 

Arithmetic 

2 - 10 
5 - 100 

4 
100 - 400 

7 

50 

12.5 - 50 
25 
25 

400 
4 

Vector Operations (Triads) 

Products per Microsecond 

(VI * V2 * V3) 10 25 
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7600. When using these vector kernels 
(labeled "in-stack loops" or simply "stack­
loops") exclusively, we have what we call a 
vector 7600. These stack loops are mostly 
dyadic operations (VI = V2.op.Y3), but some are 
triadic (VI = [V2.op.V3].op.V4), where VI, V2, 
V3, V4 are all vectors. Dyadic operations on 
the 7600 achieve around seven floating-point re­
sults per microsecond, while triadic operations 
attain around ten floating point results per micro­
second. Vector execution rates are a function of 
the item count of the vector operations and the 
look-ahead techniques used to achieve complete 
concurrent CPU utilization; The stack-loops, 
like the STAR-lOO vector instructions, require a 
fixed amount of start-up time. This start-up 
time becomes negligible for vectors of lengths 
greater than 400 operands. 

Table I compares'the results per micro­
second of the 7600 stack-loops, normal 
FORTRAN, and the STAR~lOO. 

Appendix H. Timin~ of Vector HEMP vs. 
Serla HEMP 

At present the HEMP program is running 
on the 7600 using the vector stack-loops. To 
date, timing comparisons show that the vector 
HEMP program executes 2.2 times faster than 
the serial FORTRAN HEMP program (Fig. 9). 
With additional programming improvements and 
the use of the vectorized editing routines, 
throughput factors of three are predicted. The 
approximate number of vector operations per­
formed per pass through the HEMP equations 
are: 

(1) 950 arithmetic operations (including 
simple data transfers), 

(2) 200 full-word logic operations (com­
pare, compress, merge, etc.), and 

(3) 100 bit-string operations (bit and byte). 

Appendix I. Spanning Computers 

None of the vector language extensions 
appearTrithe HEMP source deck. All vector 
operations and descriptor manipulations are 
buried in Simple macros. We have different 
macro files for the STAR-lOO and the 7600. 
Separate macro files are needed because: 

(1) there are differences between the for­
mats of STAR-lOO and 7600 descriptors; 

(2) different PARAMETERS are used; 
(3) some operations require multiple 

vector instructions on the STAR-lOO, whereas on 
the 7600 a subroutine is called. 

Another reason for limiting ourselves to 
dyadic vector expressions is the Simplicity of 
moving the HEMP program to computers other 
than the STAR-lOO and the 7600. A relatively 
Simple preprocessor would handle the macro 
expansions and the parameter substitutions. The 
resulting deck would then be FORTRAN IV­
compatible (Le., calls to software kernels would 
be done during preprocessing). 

The use of vectors on a machine like the 
ILLIAC IV eliminates the necessity of memory 
management techniques such as "skewing" for 
optimum PE usage and boundary condition cal-
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9 

"'C 8 
c 
0 
u 

7 eu 
en 

Os 6 

s-eu 5 0. 

"'C eu 4 en 
en 
eu 
u 
0 3 s-o. 
en 2 ...., 
c . .... 
0 

Q.. 

Serial program 

0.20.4 0.6 0.8 1.0 1.2 1.4 1.6 
Length of vectors in thousands of words 

Points per Time for Number of 
millisecond cycle grid points 

4.45 11 50 
Serial 4.25 94 400 

4.20 399 1600 
2.75 18 50 

Vector 8.50 47 400 
9.30 180 1600 

Fig. 9. Timing comparison of vector-vs.-serial 
7600 HEMP program. 

culations. The use of vectors also results in 
very little wasted memory, since the memory is 
packed. For someone who is accustomed to 
sequential (serial) programming, vector pro­
gramming presents new challenges. However, 
our experience at LLL shows that if the equations 
of a model are appropriate to the use of vectors, 
they can be programmed in a straightforward 
manner. 
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A PARALLEL ASSEMBLER FOR ILLIAC IV 

J. M. Randal 
Computing Services Office 
University of Illinois 
Urbana, Illinois 61801 

Summary 

One of the difficulties envisioned in run­
ning a computer of the power of ILL lAC IV, is 
that of keeping it adequately supplied with a 
stream of ready-to-run jobs. This paper reports 
on the progress made in providing an assembler, 
compatable with one already provided and running 
on a Burroughs B6700, that runs on ILLIAC IV. 
Through detailed timing and functional simuation 
an assembler has been produced which assembles 
correctly executable object code at, at least 
300,000 cards a minute, virtually replacing the 
need for an "assemble-load-and-go" phase by an 
"assemble-and-go" phase 100 times faster. From 
the users point of view the parallel assembler 
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is indistinguishable from the existing serial 
one, even though its functions are spread over 
two machines. The paper catalogues other reasons 
for undertaking the project. Two principal ap­
proaches that enhance parallelism in an assembly 
process, that of arranging the source code in 
the machine so that it is most amenable to paral­
lel attack, and the delaying of as much semantic 
analysis as possible as long as possible are 
outlined. The paper goes on to describe how 
parallelism is achieved for each stage of the 
assembly process, an the measured amounts of 
parallelism are compared and discussed. The 
paper concludes with a few observations on the 
practicality of parallel compilation of higher 
level languages and other so called "inherently 
serial" processes. 
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PROCESS ca-M.NICATION PREREQUISITES OR THE IPC-SETUP REVISITED 
Michael J. Spier 

Software Engineering Department, 
Digital Equipment corporation, 

146 Main Street, 
Maynard, Massachusetts 01754, USA 

Abstract -- A careful examination of any ex­
isting inter-process communication (IPC) mechanism 
invariably uncovers the underlying existence of a 
more fundamental IPC mechanism, which in turn is 
built on a yet more fundamental IPC mechanism ••• 
etc. 

This study resolves this indefinite recursion 
of a self defining mechanism by proposing a certain 
causality, expressed in terms of a finite list of 
process communication prerequisites, and based on 
a non-mechanistic postulate which calls for an area 
of communication (or maiZbox) that is by its very 
nature impervious to mutual interference by the 
communicating processes. 

Given arbitrary processes for which these pre­
requisites hold, we may logically construct the 
"very first" eZementary IPC mechanism, i.e., the 
one which is not dependent upon its own pre-exist­
ence. Such a mechanism is developed in this paper; 
it is capable of transmitting a single, one-way, 
one-bit message among processes. 

It is suggested that the proposed causality, 
altho,ugh arbitrary in many ways (and openly admit­
ted as such) may serve as a convenient intellectual 
tool with which autonomous sequential processes may 
be observed and studied. 

Keywords: inter-process communication, IPC, IPC­
Setup, mailbox, mutual exclusion, pro­
cess, synchronization. 

CR Categories: 1.3 4.32 

INTRODUCTION 

The Inter-Process Corrununication Setup (or IPC­
Setup for short (a» is an initial communication 
which establishes the conventions by which two o~ 
more asynchronous sequential processes agree upon 
a pattern of harmoniously cooperative behavior. 

The concept has been introduced in a previous 
paper (11) where it was incidental to the main 
subject. Subsequent reflection has convinced me 
that this concept deserves a much more 'thorough 
investigation. I have observed that the imple­
mentability of any given inter-process communica­
tion (IPC) mechanism is contingent on the previous 
availability of a more fundamental IPC mechanism 
(e.g., in order to implement a producer/consumer 
buffered communication mechanism [5] we need some 
mutual exclusion functions such as P and V (7), 
which in turn require a mechanism to guarantee 
their internal indivisibility in time, which in 
turn ••••• etc.) The recursion seems indefinite. 

Consider the following causality, which dis­
plays a most pe~lexing dilemma. In order for two 
processes to synchronize themselves (e.g., using 
Dijkstra's PlY functions) they must have had some 
(a) 

The term LPC-Setup was originally coined by 
Elliott I. Organick. 
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previous communication to establish the semaphore's 
identity as well as their agreement to make proper 
use of the synchronizing primitives. Thus, 

- In order for processes to communicate, they 
must synchronize themselves, 

- In order to synchronize themselves, they must 
have had an earlier communication, 

- Which implies a yet earlier act of synchroniza­
tion, 

- Which had to be based on a yet earlier act 
of communication, 
Which •••• 

That the dilemma is not practically insurmount­
able is amply demonstrated by the various func­
tional IPC mechanisms that we know of. Evidently, 
at some basic level (typically the hardware level) 
the dilemma was resolved through an arbitrary act 
of Gordian-knot cutting (typically hardware­
provided mutual exclusion). Experience has shown, 
however, that whenever the nature of processes 
changes (e.g., by the transition into virtual 
time) lower level synchronization machinery may 
no longer be valid. When we attempt to design a 
multi-level processing system, with nested levels 
of (virtual) parallelism where each successive 
act of (virtual) processor multiplexing increas­
ingly removes us from our hardware base, it is we 
who have to provide the Gordian-knot cutting serv­
ice at appropriate levels of implementation. As 
we implement successive layers of abstraction, the 
complexity of our underlying machinery increases. 
Whereas at the hardware level of a uni-processing 
computer we achieve the desired mutual exclusion 
through the simple act of interrupt inhibition, 
at a much higher level of implementation we may 
have to consider the properties of virtual proc­
essors, the effects of invisible page fault inter­
ruptions, the effects of an externally generated 
user interrupt (when an interactive user presses 
the attention key), etc. 

Also, to deal with two mechanisms which are 
defined in terms of one another is intellectually 
very frustrating. We may have to accept the 
"chicken or egg" dilezmna when confronted with the 
real universe, we may wish however to have firmer 
intellectual control over our artifacts (e.g., 
computers, computer processes), at least in the 
sense of establishing a certain causality whose 
fundamental postulates are external to the observed 
mechanisms. It is the pu~ose of this study to 
suggest such a causality, in the form of a list of 
conditions which have to be true in order to guar­
antee n arbitrary processes ~ senders and n-m 
receivers) the ability to exchange a single, one­
way, one-bit communication. This intellectual 
exercise has one ground rule: no pre-existing 
underlying mechanism is admitted, lest it contain 
a hidden IPC mechanism and thus leave us no further 
advanced than before. Therefore, I shall discuss 
implementation-independent abstract processes. 
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A valid question to be raised is: .... why 
worry about processes which are external to the 
computer?" As Naur [10] points out, we are crea­
tures of habit and have the inherent tendency to 
visualize concepts in those terms with which we 
are most familiar. Being computer professionals, 
we intuitively think of proaess in the context of 
exeauting aomputer program, it being implicitly 
understood that aomputer translates to "hardware 
level machine". As operating systems become more 
sophisticated and the hardware base hidden by 
intermediary levels of abstraction, our earlier 
simplistic notion of "process" may no longer hold, 
indeed become an intellectual impediment. Any 
insight gained into the properties of the 
implementation-independent abstract process will 
however hold true. 

In the following unconventional view of non­
computer processes, I have guided (indeed biased) 
the development towards those kinds of processes 
with which we deal within the confines of the 
sequential digital computer, and added computer­
derived examples to illustrate specific points. 

WHAT IS A PROCESS? 

Webster's Dictionary succinctly defines the 
term "process" as "something going on". By 
selectively narrowing down our choices from this 
initial vague definition, we can derive an accept­
able definition of "process" as it applies to our 
field of interest. 

Let us think of proaess as being the manifes­
tation of Time, in spaae. The universe in which 
we exist is subject to the Flow of Time so that 
it presents itself under different configurations 
at different points in Time. I apply the term 
"process" to some time-dependent evolution from 
one configuration to another. We might visualize 
the universal set of processes as "threads" of 
"control" indefinitely stretching from the past 
into the future, hopelessly intertwined beyond 
human comprehension. 

In order to make sense out of them, study and 
even manipulate them (e.g., within the confines of 
a sequential digital computer), we must selectively 
choose -- among the universal processes -- those 
specific evolutions in Time ( .. threads") which we 
deem worthy of consideration. Thus, I choose to 
declare "process" to be a subjeative quality, 
existing only in the eyes of the observer, who 
explicitly ignores all other peripheral "threads" 
in order to avoid confusion. 

Examples of such humanly selective observations 
may range from the macroscopic level, exemplified 
by the Astronomer contemplating the birth-and-death 
process of suns and galaxies (or even the, to us, 
ultimate process of the universe's expansion and 
contraction), through the Historian tracing the 
evolution of Mankind or the lifecycle of nations, 
down to the microscopic level of the Quantum 
Physicist observing the incredibly short lifespan 
of some sub-atomic particle. 

An observer has to choose for himself not only 
that one specific "thread" which is of interest to 
him, but also the intervaZ in Time between two 
successive observations (named "grain of time" in 
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(8],[11]). I attribute the necessity for a sub­
jective choice of intervals to the human brain's 
limited capacity to assimilate details, and I 
suggest that there exists a certain "Subjective 
Time Flow" within our minds, in terms of which 
sequential processes are best visualized. 

We may assume that the human brain cannot make 
sense out of a visualized process if that process 
consists of too many discrete details, and that 
for the sake of coherency the subjective process 
contains only a limited number of them. Thus, 
when a human observer translates an evolution in 
Real Time into an evolution in Subjective Time, 
he typically chooses intervals between observa­
tions which are proportionate to the observed 
process's period of existence. 

And effectively, the Astronomer chooses his 
interval in terms of billions of years, while the 
Physicist's interval may be expressed in terms of 
billionths of a billionth of a second. Yet, 
within the minds of both these observers, th~ir 
respective processes may unwind at the same sub­
jective rate of speed, covering a similar number 
of discrete observations, and may abstractly be 
related to one another. 

Given the periodic nature of observations, the 
process can no longer be made literally analogous 
to a continuous thread; rather, it is better rep­
resented as a discrete sequence of dots which are 
laid along the axis of the imaginary thread, where 
each dot corresponds to an observation and where 
spaces separating the dots correspond to the time 
intervals between successive observations. 

The human observer typically chooses to ignore 
the existence of the intervals, which to him are 
irrelevant, and to pretend that the dots are 
effectively adjacent to one another. Consequently, 
the discrete sequence of observations may artifi­
cially coalesce once more into a humanly coherent, 
subjectively unbroken thread. By eliminating the 
real time intervals, we effect the translation of 
the process's evolution into the flow of Subjective 
Time. Compare this to Dijkstra's notion of 
"ordered markers on a scaleless time axis" [5]. 

Relating the above to our area of interest, 
namely the study of those processes which exist 
within digital computers, we see that the notion 
of "process" is still a subjective quality, depen­
dent on the human observer's choice. A process 
may, for example, consist of some high level lan­
guage (e.g., FORTRAN, ALGOL) program where obser­
vations relate to source language variables and 
where the interval of time between two successive 
observations is known to span one or more hardware 
ayaZes, while from the (interactive or batch) 
user's point of view a process may consist of a 
series of system commands, the interval between 
which may comprise one or more high-level language 
programs. 

Lastly, a process may be sequentiaZ or non­
sequentiaZ (b) Briefly, the former denotes a 
(b) 

In "Cooperative Sequential Processes" [5], 
Dijkstra illustrates the distinction between 
sequential and non-sequential processes. 
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process in which the interval between two succes­
sive observations is assumed to consist of a 
single logical evolutionary step, while the latter 
denotes a process in which the interval between 
two successive observations is assumed to consist 
of a compound logical evolution. The difference 
between the two is largely subjective and I believe 
it is safe to state that the non-sequential process 
has the property that any of its changes of state 
may be decomposed into a number of parallel sequen­
tial pro.cesses. 

In this paper I adopt the point of view that 
the sequential process is the "elementary" kind of 
process. I shall henceforth ignore the 
non-sequential one by simply choosing to observe 
my processes at those points of their evolution 
where they display a single logical change of 
state (concerning this arbitrary choice of perspec­
tive, the reader is referred to observation #1 
further on). This choice coincides with our pro­
fessional custom to consider the computer's fetch­
decode-execute cycle as a truly sequential progres­
sion, even though they might consist internally of 
two parallel overlapping execute current instruc­
tion while fetching the next one operations, or 
even though at a more elementary level the entire 
computer is known to be implemented as a highly 
complex parallel hardware logic. 

This paper, then, restricts itself to the 
study of observably sequential processes. 

PROCESS DEFINITION PARAMETERS 

For the purpose of this intellectual exercise, 
I wish to study processes which are known to exist. 
The following definitions apply to subjectively 
observed processes which mayor may not inhabit 
the insides of a digital computer. Therefore I 
have chosen intentionally to ignore the processor 
stateword concept whose hardware-level definition 
is clear whereas its implementation-independent 
definition would not substantially add to our pre­
sent abstract discussion. The following definition 
of the term process as it applies to a selectively 
observed "thread" is borrowed from a previous 
publication [II]. 

A process is a discrete progression, in Time, of 
discernible changing states. 

Though correct from the abstract point of view, 
this definition may not prove of great practicality 
when it comes to the consideration of computer 
processes. In order to relate it more closely to 
professional terminology, I introduce the term 
memory space (named "state variable set" in [8]) 
to denote the set of variables whose changing 
states may be observed: 

A memory space, subjected to the Flow of Time, 
presents ever changing configurations of discern­
ible states. 

An additional helpful concept which allows us 
to attach somewhat more of a tangible substance to 
the "time" abstraction is that of the processor (c) 
(c) The term is used in its most abstract conno­

tation, and must not be taken literally in 
the meaning of "hardware CPU". 
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The processor is an abstract "execution agent" 
(comparable to Johnston's "clerk" [9], and to 
Dennis' & Van Horn's "locus of control" [4]) which 
activates an ordered sequence of modifications on 
the various components of the memory space. If we 
can hypothesize a memory space which is unaffected 
by the Flow of Time (e.g., the memory of an in­
active computer), we can define the processor as . 
being: 

A catalyst capable of subjecting a memory space 
to the Flow of Time. 

With the help of these two terms, we may now 
devise a definition of "process" which is much 
closer to our professional terminology: 

A process is the activity of a processor 
within a memory space. 

The memory space may assume various aspects, 
and depending upon its nature the contained vari­
ables may be discretely identifiable, or not. By 
intentionally biasing the discussion towards the 
kind of processes in which we are interested, I 
shall postulate for our convenience that the vari­
ables with which we deal are discretely addressable 
by means of universally unambiguous identifiers, 
or names. In the following, the term mailbox name 
is used in the connotation of "universally unambig­
uous identifier of a memory space component of the 
type mailbox". 

Returning once more to the universal processes, 
we can envision their flow in Time as individual 
intertwined threads, where one particular thread 
represents our process of choice. This thread 
reache~ both backwards and forwards into infinity. 
It would be useful to delimit the extremities of 
that portion of the thread which we actually hold 
under observation. I would thus add the following 
two parameters to the definition of a process, 
these being its creation time and its termination 
time, corresponding to the extremities of the 
thread-portion pointing towards "past" and "future", 
respectively. 

For example, we may consider a human being, 
going through his daily routine, to be a sequential 
process. Evidently, his dates of birth and death 
are relevant parameters in the definition of such 
a process (if only to preclude any notion of the 
feasibility of communicating present-day computer 
science concepts to the late Charles Babbage). 

Following is a list of parameters applicable to 
a single observably sequential process. By assign­
ing values to these parameters, we may talk more 
precisely about some specific process: 

Parameter #1: The intervals between successive 
change-of-state observations (d). 

Parameter #2: A memory space comprised of all the 
variables which may be affected by 
the processor. 

Parameter #3: A process creation time at which 
the combination processor/memory 
space becomes meaningful. 

(d) Note that while the intervals need not be of 
uniform size, their rough order of magnitude is 
a relevant parameter. 
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Parameter #4: A process termination time at 
which the combination processor/ 
memory space ceases to be 
meaningful (e). 

I shall also refer to the combined parameters 
3,4 as the ppocess's Zifespan. 

Observation #1: I wish to emphasize the fact 
that the previous definitions and parameters are 
arbitrarily chosen in order to provide a useful 
handle on the kind of processes in which we are 
interested. From the absolute point of view, 
both definition and parameters are highly ambig­
uous. Consider: the parameters relate' to a 
poption of a thread which is our chosen process. 
From the larger thread's perspective, the above 
"creation" and "termination" may be considered 
to be changes of state where the "lifespan" in 
between is considered to be the intervaZ. Thus, 
we may state that a process is a change of state 
and that consequently a ppocess is a discpete 
ppogression, in Time, of pPOcesses. This phenom­
enon of recursive self-definition is a marked 
property of the general area of discussion. By 
considering the process from a conveniently 
chosen subjective point of view, and by making 
some well placed arbitrary definitions and pos­
tulates, we may gracefully extricate ourselves 
from this "chicken or egg" situation, which per­
sistently manifests itself in the study of IPC 
mechanisms. Compare this to the discussion of 
"image processes" in [8]. 

INTER-PROCESS COMMUNICATION 

Returning again to the universal processes, we 
may intuitively think of inter-process communica­
tion as being an interaction of sorts between two 
or more threads. The term "communication" conveys 
the meaning of commonality, or togetherness. I 
postulate that processes cannot engage is communi­
cation unless they aZpead,y have something in 
common. I further postulate that such commonality 
must relate to the memory space component of the 
process. 

While arbitrary, the postulates make sense 
when we consider that the process consists of only 
two components, 1) the pPOcessop, and 2) the memopY 
space. While commonality in Time (such as the 
co-existence of otherwise unrelated computers) does 
not -- in itself -- provide us with the ability to 
communicate, commonality in Space (such as connec­
ting those computers to a common memory bank) 
definitely does. We can visualize the processes, 
communicating with one another by depositing 
messages in the common memory space and/or extrac­
ting messages from it. Supposing that the memory 
space consists of a medium which lends itself well 
to the exchange of messages, we may state that: 

Processes communicate by e~changing messages 
in a commonZy accessibZe medium. 

Even though I shall henceforth employ the term 
maiZbo~ (as suggested in [11]) to designate the 
locality in which messages are exchanged, I have 

(e) Note that it is the meaningful association which 
determines the process's existence, and that the 
disassociation implies the termination of 
neither processor nor memory space. 
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expressly used the term "medium" in the definition, 
in order to emphasize the rather large variety of 
possible overlapping memory spaces. While the 
point is very obvious in non-cOlllputer communica­
tions, e.g., one person talking to another (the 
medium being the surrounding air), it applies as 
well to certain less conventional instances of 
communication in the cOlllputer world, such as the 
radio link connecting the remote cOlllponents of 
the ALOHA system [1], or the IMP's and transcon­
tinental lines of the ARPA network [3], or simply 
the tapes or disk-packs which may be manually 
shuttled between independent computer installa­
tions. 

Of the two process components, pPOcessop and 
memopY space, I have chosen to dismiss the pro­
cessor as a possible vehicle for the elementary 
commonality. Is such a dismissal justified? 
Would an exactly synchronized rate of progression 
not provide a suitable basis for the communica­
tion of two spatially-independent processes? ~ 
answer is an emphatic no! Two such processes 
which knowingly tick along in an exactly synchro­
nized rate may each perform a function based upon 
the assumed concurrent activity of the other, 
however they do not communicate because each acts 
independentZy of the othep's e~stence (i.e., one 
such process may be terminated without affecting 
the other's behavior, the survivor's activity 
continues even though its premise of concurrency 
no longer holds). Still, while a synchronous 
rate of progression is not in itself sufficient to 
form the basis for a communication mechanism, it 
may be usefully applied to an IPC mechanism based 
on memory space commonality, as shown in the last 
section of this paper. 

I therefore consider that commonality of 
memory space is the essential condition which has 
to be satisfied if processes are to communicate 
at all (f). Processes whose memory spaces are 
exclusive are by definition incapable of mutual 
communication, in fact are said to be pPOtected 
from one another [12]! 

COHERENT COMMUNICATION 

our processes communicate by exchanging mes­
sages in a commonly accessible mailbox. Depending 
on whether or nat message depositions and extrac­
tions happen concurrently (remember, at this point 

(f)A question was raised about this last state-
ment, and critics argued that in systems such 
as the RC4000 [2] processes communicate not 
through a shared data base but rather through 
the intermediary services of the system 
monitor. I wish to point out that the present 
study does not concern itself with the more 
complex ways of building IPC mechanisms, but 
only with the prerequisites for the most 
primitive "first" communication. Moreover, 
the fact that a user process's memory space 
consists in part of a protected portion of the 
monitor does not invalidate the fact that 
within that monitor there is a shared data 
base in which messages are exchanged; remove 
that message buffer from the RC4000 system, 
and inter-process communication is guaranteed 
to work no more. 
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we know nothing specific about these processes 
and their pattern of behavior, excepting the fact 
that they share a commonly accessible mailbox) , 
such communication may be aoherent or interfering. 
The communication is said to be interfering if the 
value extracted from the mailbox by some receiving 
process B is not identical to the same value pre­
viouslydeposited in the mailbox by some sending 
process A. Interference (and the resulting message 
incongruity) may occur when several depositions are 
made concurrently, or when extraction is attempted 
while deposition is still under way. The commu­
nication is said to be coherent when it is not 
interfering. 

Coherent communication is characterized by the 
fact that a message extracted from a mailbox is 
guaranteed identical to the same message previously 
deposited in the mailbox. We may not know who 
deposited that message in the mailbox, nor what 
it means, but we are assured of the congruity of 
that; message. 

It is the coherent message which is of interest 
to us. A way to assure coherency must definitely 
be an important constituent of the process commu­
nication prerequisites that we seek. I shall 
therefore further postulate that the mailbox 
itself, by its nature, possesses a property of 
guaranteed message congruity such that whenever 
two or more processes simultaneously attempt to 
either deposit a message in it, or extract a mes­
sage from it, only one process at a time will be 
allowed to do SOl the exact succession into which 
this enforced sequentiality will be resolved is 
undefined and immaterial (g). Not knowing who 
created the mailbox with its magical property, nor 
how this property is> functionally enforced, we can 
only surmise that it is the handiwork of some 
benevolent instrumentality. still, assuming the 
mailbox's availability, we may state that: 

Coherent inter-proaess aommunication is an 
interferenae free e~ahange of messages in 
a aommonZy acaessibZe maiZbo~. 

In the following, I shall refer to the mailbox 
as being "interference-proof". The interested 
reader may wish to study the details of the ALOHA 
system [1], whose mailbox (i.e., a certain 
bandwidth of the electromagnetic spectrum) is not 
guaranteed to be coherent; ingenious encoding 
techniques reduce the probability of interference 
to a very low factor, but the fact remains that 
coherency is not guaranteed. 

Observation #2: Let us for the time being accept 
the premise of a mailbox which allows only ex­
changes of coherent information, even though it 
is unclear how such a mailbox might be construc­
ted. Later on I shall 1) postulate a very ele­
mentary two-state mailbox whose implementability 
will not be subject to doubt, and 2) suggest that 
more elaborate mailboxes may be constructed with 
the help of the elementary one. 

(g) The necessity for such a mailbox (and its 
magical property of coherency) is a fundamental 
postulate of any multiple processor computer 
system; e.g., at any given time, memory is 
interlocked to all but a single processor. 
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MEANINGFUL COMMUNICATION 

Let us attempt to construct an initial model 
of communicating processes. For the sake of sim­
plicity, I shall deal with two processes only, a 
sender and a receiver. The following is, however, 
valid for any number m of sending processes, and 
n of receiving processes. 

At this point, all that we may assume about 
our processes are the characteristics discussed 
earlier; namely, their sequentiality and their 
memory spaces which overlap a commonly-accessible, 
interference-proof mailbox. Two processes named 
A and B communicate as follows: 1) the sender, 
process A, deposits a message Msg in the mailbox; 
2) the receiver, process B, copies the contents 
of the mailbox into some private locality L. The 
sender would perform 

maiZbo~ ;= Msg; 

and the receiving operation would be 

L ;= maiZbo~; 

Even though the communication is coherent, it 
is completely meaningless. Consider the following: 

1) By what right can it be assumed that process 
A has ever had the intention of depositing 
anything whatsoever in the mailbox? Assuming 
that it did have such an intention, 

2) Are processes A and B actually referring to the 
same mailbox? Is it not possible that process 
A innocently deposits its message in some 
mailboxl while process B persists on extracting 
an a.ssumed message from some other mailbOx2? 
We may graciously submit that the mailbox ~s 
one and the same, still 

3) Process B may be the speedy one, extracting an 
assumed message from the mailbox before the 
slower process A has ever had the chance to 
perform the intended deposition. And if we 
agree to discard this possibility as well, then 

4) Having received its coherent message, process 
B is no further advanced because it has no way 
of kn?~tng what the message is supposed to 
mean • 

If we wish to engage in meaningful communica­
tion, we have to make sure that the above uncer­
tainties are satisfactorily resolved. We may not, 
at this point, have any specific remedy; this need 
not deter us from describing the effect of such a 
solution by establishing a list of conditions 
which are essential to meaningful communication: 

Condition #1: The processes have to agree in 
advanae (and that means prior to the creation 

(h)we may better appreciate this fact if we con­
sider the task of the military cryptographer, 
faced with the decoding of an intercepted 
coherent enemy message; he is capable of success 
because he knows the other guy's language. 
Process B's task is hopeless, it knows absolutely 
nothing about process A. Consider the hopeless­
ness of deciphering Egyptian hieroglyphs prior 
to the Rosetta Stone Discovery. 
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time of any of the communicants) on their inten­
tion to communicate some time in the future. 
Remember, we still choose to remain in a state 
of blissful ignorance concerning these processes, 
thus the pre-nataZ instance is the only logically­
safe point in time. 

Condition #2: They must agree on the exact iden­
tity of the single mailbox in which messages will 
be exchanged. 

Condition #3: They must agree on their respective 
sender/receiver roles. 

Condition #4: Mandatory sequentiality has to be 
imposed on the act of communication. First the 
sender has to deposit his message, and only then 
may the receiver extract it from the mailbox. 

Condition #5: The communicating processes have 
to have agreed, in advance, upon the way in 
which messages are to be interpreted and under­
stood. 

PROCESS SYNCHRONIZATION 

In the above list, condition #4 requires that 
the communicating processes adjus~their relative 
speeds; as they progress independently in Time, 
when their respective instances of communication 
arrive, these instances have to become aZigned in 
Time in a predetermined way. We use the term 
"synchronization" to denote such an alignment. 

We still know nothing specific about these 
processes, hence cannot trivially choose between 
alternate schemes of synchronization which may all 
seem a priori to be equally attractive. Possibil­
ities may include 1) the sender having the ability 
to slow down the receiver's progression in Time, 
2) the receiver having the ability to cause the 
sender's speed to be accelerated, etc. 

A simple, though arbitrarily chosen, scheme to 
assure that message extraction will happen later 
in Time than message deposition would have the 
receiver process voZuntariZy enter a waiting state 
if the message has not yet arrived. This method 
is chosen because it lends itself best to the 
kind of process synchronization practiced within 
digital computers, and is hence typical of existing 
computer program IPC mechanisms. Its adoption 
requires that we add two more conditions to our 
list. 

Condition #6: The receiving process is capable 
of determining at any given moment whether or 
not a message had actually been deposited in the 
mailbox. 

Condition #7: If a message had not yet been de­
posited, the receiver must be willing, and cap­
able (1), of suspending its progression until 
such time when the message has arrived. 

This. introduces one last complication. ~ 
tion #6 calls for the process's ability to inspect 
the mailbox's contents and determine whether or 
not a message had arrived. Presumably it will do 
so by testing the mailbox for some specific value 
which may be either a non-message or a message 
value. What can that value be? If the receiver 
tests for a non-message value, it is not possible 
that the sender has innocently used that very same 

value for its message and thereby mislead the 
receiver? Or if the receiver tests for a message 
value, is it not possible that the mailbox 
might -- by some unfortunate chance -- have been 
pre-initialized to that very same value thus mis­
leading the speedier receiver into acceptance of 
a supposed communication, when in fact no such 
transaction has yet taken place? We must there­
fore complete our list of conditions with the 
following two: 

Condition #8: The communicating processes have 
to have agreed on a single non-message value 
Vinit to be interpreted as "no message has yet 
arrived" (by agreeing on a non-message value, 
we leave the door open for a possible variety 
of meaningful message values). 

Condition #9: The mailbox is guaranteed to have 
been initialized to the non-message value Vinit 
prior to the creation time of any of the commu­
nicating processes (again, within the present 
context of discussion, this is the only 
logically defensible point in time). 

PROCESS COMPATIBILITY 

Having established the need for process syn­
chronization, we must preclude from our consider­
ation those processes which are -- by virtue of 
their temporal characteristics -- inherently in­
compatible with one another from a synchronization 
point of view. Of the process definition param~ 
eters, the intervaZ and the Zifespan may assume 
values which would make the processes incapable 
of meaningful synchronization. I wish to remind 
the reader that this paper does not engage in 
the exercise of process construction, but in the 
observation of already existing processes. Thus, 
the three incompatibilities listed below are valid 
so long as we recognize our inability to influence 
the processes' temporal parameters (i.e., we pre­
clude from our consideration artifacts such as 
"clocking processes" [8]). 

InCOmpatibility #1: The processes' lifespans 
may be exclusive; one process's termination 
time may 'have passed well before the other 
process's creation time has yet arrived. This 
case was exemplified by the earlier mentioning 
of Charles Babbage. This condition is asymmet­
rical in that the expiration of the sending 
process might still be acceptable (i.e., Charles 
Babbage effectively did leave a message for 
posterity) whereas the premature expiration of 
the receiver is obviously inadmissible. If we 
postulate that the elementary communication 
mechanism that we seek should be indifferently 
functional for any sender/receiver configuration 
(i.e., should allow any two or more processes to 
adopt either role) then we have to insist that 
the processes' lifespan overlap the period of 
communication. 

InCompatibility #2: The processes' lifespans 
may overlap the period of communication, but 
only partially so that the sender's termination 
time arrives before it has had the opportunity 
to properly conclude its part of the transac­
tion. This may cause the receiving process 
indefinitely to suspend its progression in 
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anticipation of a message whose deposition was 
never satisfactorily carried out. For processes 
to engage in guaranteed non-fatal meaningful 
communication, the sender's termination time 
must lie well outside the period of communica­
tion, known as the critical section in the 
process' lifespan [51. 

Incompatibility #3: The size or relative order 
of magnitude of the processes' respective inter­
vals must be compatible. It is difficult to be 
very specific about the exact kind of interval 
compatibility that is desired; the reader must 
have noticed by now that the main thesis of 
this paper consists of emphasizing the very 
nebulous nature of the overall subject. 

Nonetheless, this is a very real problem best 
exemplified by the inability of a virtual pro­
cessor, executing within a paged virtual memory, 
to correctly service real-time applications. 
The interval between two successive virtual 
machine cycles is undetermined, while the corre­
spondent real-time process requires guaranteed 
service within specific time bounds. 

ELEMENTARY COMMUNICATION MECHANISM 

Let us now construct the "first" and most ele­
mentary communication mechanism which would sat­
isfy all of the requirements mentioned earlier. 
The processes are assumed to be inherently suitable 
for mutual communication in the dual sense of over­
lapping memory space and temporal compatibility. 
Concentrating on the communication mechanics alone, 
we are faced with one major difficulty which is 
the creation of the interference-proof mailbox. 

It is possible to construct a very primitive 
mailbox which has the capacity for a single bit of 
information only. The domain of the mailbox is 
thus restricted to two possible values which we 
shall name TRUE and FALSE. By nature of its de­
finition, the mailbox could never be found in a 
state which is neither TRUE nor FALSE and it 
therefore fulfills our requirement of inherent 
coherency. 

If we assume that such a mailbox was ori~inally 
created by some benevolent instrumentality (~), 
placed in the common memory space and thoughtfully 
initialized by the instrumentality to the FALSE 
state, then we may establish the following scheme 
for communication, where a sender process sets the 
mailbox to TRUE, and where the receiver process 
interprets the TRUE state as meaning "a message 
has arrived". 

Also, the receiver process would interpret the 
FALSE state of the mailbox as meaning "a message 
has not yet arrived". The receiver may now suspend 
its logical progression by insistently testing the 
mailbox for a TRUE state. The mechanism would 
work as follows: the sending O operation corresponds 
to 

(i) 
mailbox := TRUE; 

The computer hardware designer who provides us 
with an interlocked memory, or even with 
hardware implemented semaphores [71, is a 
good example of what I would call "instrumen­
tality". 
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while the receiving operation is of the form 

busy loop: 
IF mailbox = FALSE THEN GOTO busy loop; 

Observation #3: It is important to note that 
while the receiving process's progression in 
Time is by no means affected, we have achieved 
the functionally desired effect by imposing on 
that process a rule of behavior which guarantees 
that its memory space is subjected to no further 
modification while the mailbox = FALSE condition 
prevails. As mentioned in the last section of 
this paper, computer processes have the highly 
interesting property in that their Flow of Time 
may be literally stopped and restarted. 

The above mechanism is the most rudimentary 
imaginable, capable only of a single one-bit one­
way (or "simplex") communication. By reciprocally 
using two mailboxes and by inverting the processes' 
sender/receiver roles, we may construct a mechanism 
capable of sending two single one-bit messages in 
opposite directions (known as "duplex" communica­
tion channel). Combinatorial usage of many such 
mechanisms allows us to construct a "multiplex" 
channel, or a "bus" (parallel simplex channels) 
as encountered in the innards of computers. The 
information transmission capability of the ele­
mentary mechanism is very poor. Each mailbox may 
be used only once, and the existence of the mes­
sage is also its value. We may detect the arrival 
of such a message, but may not transmit any addi­
tional intelligence. 

I name the mechanism which allows us to trans­
act a single one-way one-bit communication 
elementary communication mechanism, and re-state 
that its existence is contingent on the availa­
bility of a magical interference-proof mailbox, 
provided (in a properly initialized state) by 
some benevolent instrumentality. If we do not 
accept the premise of such an initial mailbox, 
we may never be able to construct the very first 
IPC mechanism. 

MUTUAL EXCLUSION 

There is no point in elaborating the limited 
usefulness of the elementary communication mech­
anism. Its significance lies in the fact that 
it might serve us as a building block for the 
construction of more useful, more sophisticated 
IPC mechanisms. For example, a useful mechanism 
-- such as the WAIT/NOTIFY functions suggested in 
[~11 -- would be capable of a continuous sequen­
t~al transmission of variable-length information­
laden messages, and would also have a buffering 
effect minimizing the necessity for non-productive 
waits. We may visualize the communication-channel 
effect of such a mechanism in the form of a 
one-way information "pipeline"; the sender stuffs 
messages into one end, the receiver opens his 
faucet whenever necessity requires and draws 
information out of the other end. The realization 
of such a mechanism hinges on our ability to 
construct an interference-proof "pipeline"-type 
mailbox. 

Yet if we reconsider the meaning of 
"interference-proof" we realize that all that is 
necessary is the assurance that among N communi-



1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

cating processes, N-l would refrain from accessing 
the mailbox while the Nth process is manipulating 
it. Our primitive mailbox guarantees this by its 
very nature; the same effect can be achieved for 
any arbitrary component of the memory space if the 
processes agree voluntarily to adopt such a pattern 
of non-interfering behavior whenever the mailbox 
is being accessed. 

Such agreement should be semantically express­
ible. Let us postulate a pair of functional . 
mutual-exclusion brackets names MVTEX/XETUM (J) 
Whenever a process intends to access the mailbox, 
it announces the intention by performing a 
MVTEX(mailbo~). When it has finished manipulating 
the mailbox it signals the mailbox's availability 
by performing a XETUM(mailbo~). The logic of 
these functional brackets is such that at any 
given time at most a single process will be manip­
ulating the mailbox. 

Observation #4: The nature of our mailbox is now 
radically changed! While the elementary mailbox 
guaranteed coherency by its very nature no 
matter how the processes chose to access it, a 
mailbox whose coherency is achieved via the 
application of MVTEX/XETUM will remain 
interference-proof only as long as the communi­
cating processes choose harmoniously to cooperate 
with one another. Let a single communicating 
process "do its own thing" and we are faced with 
an unbridgeable communication gap. 

And how would we manufacture these functional 
mutual-exclusion brackets? Their nature implies 
a whole new dimension of underlying communication 
and cooperation among processes, and it might be 
argued that it is foolhardy to re-invoke the 
"chicken or egg" situation by proposing to solve 
a problem through a mechanism which manifests the 
same problem. We might have been forced arbitra­
rily to postulate the existence of MVTEX/XETUM 
as we have done earlier. Luckily, in his "Solution 
of a Problem in Concurrent Programning" [6], 
Dijkstra has demonstrated that the availability of 
an interference-proof mailbox is sufficient to 
assure the implementability of MUTEX/XETUM (k). 
And once we have constructed these mutual-exclusion 
brackets, the road is clear to the construction of 
mailboxes of arbitrary complexity and sophistica~ 
tion. 
(j) 

The use of the inverted left bracket clause to 
designate the right bracket is inspired by the 
BLISS [13] systems programming language. The 
name MUTEX, originally used by Dijkstra [5] to 
designate a mutual exclusion semaphore, has for 
some time been used by rank-and-file programmers 
to designate the mutual-exclusion P [7] opera­
tion (possibly because of the confusion between 
mutual-e~clusion and private semaphores); it is 
employed here post facto. 

(k)Note that Dijkstra's mechanism requires, in ad­
dition to the coherent binary mailbox, a coher­
ent integer mailbox k. Disregarding the possi­
bility of modifying the algorithm to all-binary, 
we can safely postulate the integer mailbox for 
our.purposes, because the hardware designer 
knows how to build it out of binary mailboxes 
(flip-flops) • 
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THE IPC-SETUP 

The existence of the elementary communication 
mechanism is conditional, depending upon a number 
of arbitrary postulates and conditions. These 
were introduced in a sequence dictated by the 
orderly development of the subject. These process 
communication prerequisites are the essence of 
this study, I shall therefore re-state them in an 
organized fashion. They are subdivided into three 
classes 1) conditions relating to the very nature 
and existence of processes, 2) conditions relating 
to the postulated, instrumentality-given mailbox, 
and 3) conditions relating to the processes' 
cooperative behavior. 

First, we have to delimit our consideration to 
processes whose nature makes them capable of 
meaningful mutual communication. Processes which 
wish to communicate belong to a "set of compatible 
processes". The set is defined by the processes 
which communally display all of the properties 
listed below. A process that does not possess all 
of the properties peculiar to a given set does not 
belong in that set, but assuredly belongs in some 
other set. 

Property #1: All N communicating processes must 
be sequential (1) 

Property #2: All N memory spaces of the communi­
cating processes must overlap (at least) a 
single common subset. 

Property #3: All N lifespans of the communicating 
processes must overlap in Time. 

Property #4: The intervals typical of all N 
communicating processes must be compatible. 

Property #5: None of the N processes' termination 
times must arrive during the respective process' 
critical section. 

Second, we have to postulate the availability 
of an interference-proof mailbox. This requires 
in turn that we postulate the existence of a 
benevolent deus e~ machina or "instrumentality" 
which has a vested interest in letting the 
processes communicate, and which manifests this 
interest by conveniently providing the required 
mailboxes. 

Postulate #1: There exists an instrumentality 
whose purpose it is to create mailboxes. 

Postulate #2: A mailbox has the natural inherent 
property that its contents can never be in an 
unstable or incoherent state. 

Postulate #3: The mailboxes are accessible to 
all N communicating processes because the 
instrumentality saw to it that they reside in 
the common memory space(s). 

Postulate #4: The instrumentality has thought­
fully pre-set all the mailboxes to a non-message 
Vinit state at a point in Time which precedes 

(1) This condition applies to the communication 
model developed in this paper. By devising a 
list of different process communication 
prerequisites, a model conductive to non­
sequential process communication may undoubtedly 
be devised. 
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the creation time of anyone of the N communi­
cating processes. 

Third and last, the processes' rules of behav­
ior must be set up in a manner which will guarantee 
that they always adopt a pattern of harmoniously 
cooperative behavior insofar as communication is 
concerned. For this purpose we conveniently pos­
tulate another entity, that of the programmer ~ 
who is responsible for implementing these rules 
of behavior into the logic of those N communica­
ting processes. The cooperative behavior is made 
possible by the adoption of certain conventions 
which all N processes agree to respect. Such 
common knowledge of conventions is in itself a 
manifestation of a previously transacted communi­
cation. As suggested in [11] I name this mani­
festation of pre-natal communication lPC-Setup. 
It originates in the single mind of the single 
programmer (thus, no "chicken or egg" dilemma) 
who incorporates it into the essence of the N 
processes prior to their creation time. The nature 
of the conventions depends on the nature of the 
communication; following is the list of conventions 
required for the existence of our elementary commu­
nication mechanism: 

IPC-Setup #1: The N communicating processes agree 
on the common name of the single (commonly acces­
sible) mailbox to be used. 

IPC-Setup #2: The processes agree to use that 
mailbox for the purpose of communication. 

IPC-Setup #3: The processes agree on their res­
pective sender/receiver roles. 

IPC-Setup #4: The N communicating processes 
agree to interpret the value Vinit, with which 
the instrumentality is known to:have initialized 
the mailbOX, as a non-message implying "no mes­
sage has yet arrived". 

IPC-Setup #5: The receiving processes agree to 
interpret any non-Vinit state of the mailbox as 
implying "a message has arrived". 

IPC-Setup #6: They further agree to assign a 
meaning to any non-Vinit state of the mailbox 
and to interpret that value in some meaningful 
way. 

BACK TO PRACTICALITY 

A thesis was presented to the effect that 
organized, deliberate and meaningful communication 
does not spontaneously erupt into being; rather, 
it can always be traced to some pre-existing in­
stance of preparation and communication. Many 
definitions, decisions and postulates made during 
the development of this paper were admittedly 
arbitrary, and openly acknowledged as such. My 
purpose was not to insist on a certain dogmatic 
point of view, I do not believe that this nebulous 
subject would ever accommodate dogmatism, but 
rather to convey some insight into the complex 
issues that have to be resolved before we can 
safely communicate a single bit of information, 
once only, between processes. 

This study was motivated by the need to 
resolve the "chicken-or-egg" dilemma. It proposes 
a certain hierachy of causality: the interference-
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proof mailbox, the IPC-Setup, the elementary 
communication mechanism, and lastly the mutual 
exclusion function. some other such hierarchy 
and its related list of communication prerequisites 
may undoubtedly be developed; I doubt that such a 
list of different prerequisites would be any less 
voluminous than the one proposed. 

The causality (and terminology) developed in 
this paper lend themselves to the description and 
understanding of various IPC mechanisms. To 
illustrate, let me present the workings of the 
asynchronous serial simplex channel connecting a 
sending source to an electro-mechanical printing 
device (e.g., teletypewriter). 

Both sending and receiving process are essen­
tially devoid of buffering memory. The sender 
generates its message, the receiver intercepts it 
and acts on it. The commonly accessible mailbox 
consists of an electrically conducting wire 
connecting both machines. The presence/absence 
of current, or a high/low voltage arrangement 
represent the two value-states of the mailbox. 
The mailbox is reasonably coherent but is not 
interference-proof; it is said to be susceptible 
to "noise". 

The list of process communication prerequi­
sites applicable to this example is somewhat 
different from the one developed in this paper. 
In order to make the mailbox capable of transmit­
ting two meaningful kinds of messages, namely 
bits aero and one~ the mechanism does not support 
the notion of a non-message Vinit. Instead, by 
means of two (instrumentality-provided) synchro­
nous clocking devices respectively incorporated 
into the two processes, each process is decomposed 
into a continuous sequence of "mini-processes" 
(the reader may wish. to re-read observation #1). 
The lifespan of each mini-process is delimited to 
the duration of a single clock tick, and the 
mailbox is reset to the FALSE state at mini­
process creation time. If a TRUE state is detec­
ted by the receiving process during its short 
lifespan, it is interpreted to mean "a one-bit 
has been received", otherwise upon its termina­
tion time a aero-bit message is assumed. A new 
mini-process is created and the same communication 
ritual is re-enacted. 

By adding a clocking device and modifying the 
IPC-Setup, we have instilled more usefulness into 
the elementary communication mechanism. Also 
note that the judicious choice of "which process 
do I wish to observe" (i.e., "mini-process" vs. 
the larger "thread") is the key to this function­
al presentation. 

The elementary communication mechanism is not 
very useful to the programmer. The effort of 
manufacturing functions MUTEX/XETu.M~ with which 
then to construct a more elaborate communication 
mechanism, is far from negligible. We therefore 
habitually require the availability of some pre­
fabricated mutual exclusion primitives (such as 
interrupt inhibition) which we then consider, 
from the programming point of view, as elementary. 

IPC mechanisms are typically designed to be 
easily applicable to the kind of processes which 
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exist within computer systems. They therefore are 
cognizant of two peculiarities of the computer 
process 1) the process is typically of a cyclic 
nature (i.e., may be decomposed into a repetitious 
sequence of essentially identical "mini-processes"), 
and 2) the virtual time flow in which the processes 
exist may literally be stopped and started. 

The process's cyclic nature implies that unless 
the correspondent processes are pre-synchronized, 
harmoniously ticking away as does the exemplified 
teletype, a yet un-received message may erroneously 
be overwritten by the next, and the next ••• etc. 
We typically rule such pre-synchronization out 
because asynchronous processes can normally be put 
to better use. Instead, we implement a "pipeline" 
capability into even the binary mailbox, trading 
off inherent synchronization vs. inherent buff­
ering effect. Such a buffer, or list of one-bit 
messages, is trivially implemented in the form of 
a binary counter. Assuming the availability of 
MUTEX/XETUM, the sending operation is now: 

MUTEX (maiZbox); 
maiZbox := maiZbox + 1; 
XETUM(maiZbox) ; 

and assuming that the zero state implies "mailbox 
is empty", the receiving operation is 

busyZoop: 
MUTEX(maiZbox); 
IF maiZbox = ¢ THEN 
BEGIN 

XETUM(maiZbox) ; 
GOTO busyZoop; 

END; 
maiZbox := maiZbox - 1; 
XETUM(maiZbox) ; 

Virtual processors are artificial constructs 
derived from some real life hardware CPU resource. 
In a system with N virtual processors, any non­
productive activity of one is to the detriment of 
all others, wastefully misusing a finite CPU 
resource which could be put to some good produc­
tive use elsewhere. Our busyloop is archtypical 
of such wasteful behavior. 

It is therefore economically desirable to 
include in the IPC mechanisms which are put at 
the programmer's disposal a provision by which 
a waiting process not only suspends its ZogiaaZ 
progression, but literally causes its virtual 
time j10w to stop. Once stopped, the process is 
said to be "dormant" and can no longer insistently 
test the mailbox for the awaited message. It is 
the cooperative sending process which, after 
having deposited its message, helpfully "nudges" 
the dormant process back into wakefulness. 
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Summary 

In 1972, The Digital Equipment Corporation sponsored 
a limited-objective research project to investigate 
the properties of the new kernel/domain systems archi­
tecture, whose theoretical model was earlier developed 
by Spier [1]. A companion paper [2] reports on that 
project. The domain is a monitor (or supervisor, 
executive) -like local independent address space which 
may be mapped over a collection of (mostly) exclusive 
memory space partitions to provide a protected run­
time environment. Similar to the classical monitor, 
control may be transferred into the domain through pre­
designated inter-domain entry points named gates [1]. 
In a domain system, supervisory code no longer resides 
in a single monolithic monitor, but is distributed 
among a number of supervisory domains; of these, the 
most central and most critical supervisory domain is 
named kernel [1] [2] [3]. The kernel is responsible for 
basic resource management only and is by definition 
devoid of any decision making code. 

If we view the term process as meaning the aativity 
of a processor wi thin a memory space [4] then the 
execution of a processor wi thin a domain (read, ex­
clusive memory space) is an independent process. In a 
domain system where a single user computation may cause 
the activation of many domains, that computation's 
sequentiality may be viewed as the sequential activa­
tion of many processes. For the sake of conformity, 
we chose to apply the term process to the larger sequen­
tiality, and coined the term domain-incarnation [2] to 
designa te the execution of a single domain by a single 
processor. The transfer of control from one domain to 
another, although synchronous and sequential, dis­
plays some of the properties inherent to interprocess 
cOImllunication (IPC) mechanisms [4]. Our kernel­
implemented comprehensive inter-module communication 
mechanism handled the following cases: 
1. The explicit sequential activation of a procedure 

entry point, expressed in the form 
CALL procedure(argument-listJ; 

2. The implicit sequential activation of a procedure 
entry point, currently known to be the handler 
for some predesignated condition, expressed in 
the form SIGNAL condition(argument-listJ; 

3. The explicit non-sequential acti va tion of a pro­
cedure entry point by some other process, ex­
pressed in the form 
IN~RRUPT process,procedure(argument-listJ; 

4. The :unplicit non-sequential activation of a proce­
dure entry point by some other process, where the 
procedure is currently known to be the handler for 
some predesignated event, expressed in the form 
NOTIFY event(argument-listJ; 

Notice that the event declaration always included the 
declaration of the currently handling process (es) , so 
that the process identity did not have to be explicitly 
mentioned within the NOTIFY sequence. 

(a) This paper reports on a pure-research project, 
and may not be construed to imply any product 
commitment by the Digital Equipment Corporation. 
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5. The abnormal cancellation of a sequence of calls 
through a non-local GOTO to a predesignated en­
try point declared to be a handler for the 
unwind condition, expressed in the form UNWIND; 

Note that both conditions and events came in two 
flavors: 1) LOCAL to remain in effect only as long 
as the procedure activation that declared them, and 
to automatically be terminated upon RETURN from that 
procedure activation, and 2) GLOBAL to indefinitely 
remain in effect until explicitly terminated. 

Thus, all the above inter-module cOImllunication 
functions were kernel-managed and invariably re­
sulted in the argument-carrying formal activation 
of a procedure entry point, to uniformly be dis­
missed via a formal RETURN; Both of our inter­
process cOImllunication functions were a software 
simUlation of the classical hardware interrupt. 
Given our predominant concern to keep the kernel 
application independent, the software interrupt 
facility seemed to be the most general mechanism 
conceivable. A special kernel-call of the form 
SLEEP (time-UmitJ ; would put the calling process into 
a dormant state to be re-awakened when either 1) an 
INTERRUPT or NOTIFY signal is received, or 2) the 
time-limit has expired, whichever happened first. 

The asynchronous nature of INTERRUPT and NOTIFY im­
plied a certain minimal argument-buffering facility 
wi thin the kernel. Also, the activation of a procedure 
entry point by either of the asynchronous invocations 
caused all further asynchronous signalling to that 
same process to be inhibited, until a return was made. 
We had additional, more specific kernel-calls to more 
finely control the inhibition/reactivation of inter­
process signals, as well as mutual exclusion functions 
MUTEX/XETUM [4] which were also kernel-implemented. 

Finally, note that our choice of the software­
interrupt facility did not preclude the availability 
of more classical IPC interfaces, such as 
MSG:=WAIT(mailbozJ; and NOTIFY(mailboz,MSGJ; [5]. 
Such mechanisms could be implemented within dedicated 
supervisory domains by means of the tools just des­
cribed. One of the reasons for choosing these more 
general tools was to provide the ability for virtual 
user computations to be multiprograImlled. 
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Summary 

The construction of sorting networks 
has been a topic of much recent discussion 
[1] - [5]. In view of the apparent dif­
ficulty of verifying whether a reasonably 
large proposed sorting network actually 
does sort, the most useful approach fOr 
constructing large networks seems to be to 
devise a recursive scheme which constructs 
a network which is guaranteed to sort, ob­
viating the verification phase. EXamples 
of this approach are presented in [1],[5]. 
In this note, another such approach is 
presented. 

The most economical l6-line sorter 
known has been constructed by Green [3], 
[4]. His approach is to successively sort 
lines whose indices differ in one compon­
ent of the binary expansion. This yields 
a partial ordering of the lines which is 
isomorphic to a Boolean "n-cube" configu­
ration. This configuration is then further 
sorted to yield a linear order. The net­
work fOr accomplishing this is constructed 
in a clever, but ad hoc manner, and no 
techniques for extending this approach to 
larger numbers of lines have appeared. 

In this note such a technique is pre­
sented. However, it suffers from the fact 
that it produces networks which are no more 
economical than the odd-even merge networks 
of Batcher [1]. Nevertheless, some in­
sight may result from a knowledge of this 
technique. 

The approach is to reduce an n-cube 
configuration to an n-m cube in which the 
vertices represent linear orders of m com­
ponents. A recursive rule is given which 
applies this technique to obtain a complete 
sorting network and the correctness of the 
rule is proved. It is then shown that the 
number of comparisons for an n-line net­
work are the same as Batcher's constructio~ 
although the networks are definitely not 
isomorphic to Batcher's. For certain 
numbers of lines, this method yields net-

This work was sponsored by the National 
Science Foundation through grant GJ-30l2, 
and by the Bell Laboratories, Murray Hill, N. J. 

works which are related to Batcher's by a 
kind of "flipping" operation described in 
[2]. Precisely what relation holds be­
tween these two constructions has not yet 
been discovered. 

A complete presentation of these 
results appears in [6]. The construction 
is derived for the more general k-ary n­
cube, but upper bounds are only shown for 
k = 2 (the "Boolean" case). Whether other 
values of k yield better results has not 
been thoroughly investigated. Proofs of 
correctness are done in terms of partial 
orders, using a useful and general lemma 
about "cross products" of partial orders 
and the technique of Liu [7]. 
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Abstract -- Various 2-dimensional iterative 
arrays for the combined parallel implementation 
of signed binary multiplication and division are 
presented. Speed and cost comparisons are made 
with both commercial arithmetic units and recent 
design and prototype studies. It is shown that 
combined function arrays can be both speed and 
cost competitive with separate function arrays. 

Introduction 

Large, iteratively structured, combinat~onal 
networks for all four basic arithmetic funct10ns 
(Add, Subtract, Multiply, 'and Divide) have become 
a practical reality in high-speed, general- . 
purpose scientific computers [1],[2] and ~pec1al 
purpose applications [3],[4]. Recent.des1gn ~nd 
prototype studies [5],[6],[7] on feas1ble var1a­
tions have also been reported. 

The parallel processing speed of the sub­
system units for each arithmetic function has been 
enhanced from a system throughput viewpoint by 
employing both duplicated units and pipelining. 
[1],[2]. On a uniprocessor system, the effect1ve­
ness of these latter system designs depends to a 
large extent on program and instruction mix as 
well as depth of instruction lookahead. 

In most of the references cited above, there 
is a tendency towards optimizing a large combina­
tional subsystem unit for each arithmetic func­
tion. Duplicating or pipe lining these separate 
function units then achieves the desired system 
speed. A commercial exception is [1] in which a 
particular unit performs multiply or. divide under 
appropriate conditioning and seque~c1ng .. Also, 
the design studies of [8] and [9] 1nvest1gated a 
planar logic array that combines the same two 
functions. 

The purpose of this paper is to present new 
combined Multiplier/Divider (MD) iterative arrays 
and analyze their effectiveness as compared to 
current alternatives. The MD arrays are 2-
dimensional and accept two, signed, binary 
operands in 2's-complement notation along with a 
binary signal to denote M or D. A double-length 
product, or quotient and remainder, are gener~ted 
after a specified delay. The basic approach 1S 
to start with a simple (but relatively slow) con­
figuration, called MDl, that is similar in com­
plexity to [8] and [9]. Design changes to 
increase speed are then incorporated in 3 suc­
cessive steps that result in the MD4 array that is 
comparable in speed to the fast individual func­
tion arrays of [6] and [7], while at the same 
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time has a cost much less than the sum of the 
costs of the individual function arrays. 

The two basic parameters that are used for 
comparisons throughout the study are logic delay 
and cost. Delay is expressed in terms of a nor­
malized value T that represents delay through a 
functional level (AND-OR, NAND-NAND, NOR-NOR, 
etc.) under reasonable fan-in constraints on all 
gates. Processing rates based on pipelining are 
covered elsewhere [10]. Two different cost 
criteria are considered. Gate costs assuming 
individual gate counting is used, as well as in­
tegrated circuit count for reasonable assumptions 
on MSI level circuits. Both of these methods are 
justified in terms of currently available integ­
rated circuits. 

The Basic Comparison Parameters 

Logic Delay 

As stated above, all delay expressions will 
be stated in terms of a normalized value T that 
represents delay through a functional level. The 
choice of a delay unit such as T is not a 
straightforward one. Hopefully, the reason for 
choosing a delay unit in any logic design is to 
arrive at as simple and as accurate a measure as 
possible of the delay through an implementation 
of the design in some particular logic circuit 
family. This is achieved by substituting a 
typical value of time (say 12-16 nanoseconds in 
some TTL technologies) for T in the delay express­
ion. Now consider where this technique causes 
problems. In arithmetic arrays, the full adder 
(FA) function (three inputs, sum (S) and carry (C) 
outputs) and the exclusive-or (EX-OR) function 
usually account for a large part of the logic 
design components. If we assign T on a functional 
leve 1, as indicated above, all three outputs, S, 
C, and EX-OR, will occur with delay T after inputs 
are available. (It should be noted that we ignore 
any input inversions needed in both delay and cost 
computations.) But, in many TTL integrated cir­
cuits, the delays in producing these three func­
tions can be appreciably different. For instance, 
EX-OR might be 1·2 times the delay of a single 
NAND gate, and C is typically substantially faster 
than S. This presents a fundamental problem in 
attempting a general delay measure that is useful 
in comparing various logic designs to gauge their 
implementation effectiveness. Our compromise is 
to use delay expressions involving T as defined 
above. We then claim that, although they might 
not be accurate enough to compute absolute delays 
achievable in implementing various designs (based 
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on some average , for a certain logic circuit 
family), they suffice for our purposes of getting 
some quantitative figure of merit for comparisons. 
In fact, we depend on the 5, C, and EX-OR type of 
discrepancies being averaged out along the longest 
delay path in the various designs. 

Logic Cost 

The technology used (wired-o.r capability, 
etc.) and level of integration (551, MSI, etc.) 
assumed complicate the definition of a suitable 
logic cost measure probably to a greater degree 
than they affect the adoption of a simple delay 
measure, as discussed above. In this paper, we 
will base logic cost on one of two distinct 
measures. The simplest and most often used 
measure will be total gate count. Since we are 
discussing relatively large combinational arrays 
of logic circuits, where fan-in ranges normally 
from 2 through 4, we will not explicitly include 
inputs in our gate cost measure. Implicitly, of 
course, the basic gate cost unit, g, can be taken 
to mean the cost of some "average" gate which 
"on the average" might have 3 inputs. Another 
cost measure that we will use in one instance is 
that of integrated circuit count under some 
reasonable current technology complexity level. 
This technique will be given in more detail later 
when it is applied. 

Other Possible Parameters 

Other design parameters that might illuminate 
the comparative merits among various logic designs 
are possible. Interconnection crossover complex­
ity, array cell regularity, standard function 
utilization are among these. We will not work 
out the details on any other than delay and cost 
as defined above; however, we present logic 
diagrams, for all four arrays discussed, in enough 
detail that anyone can derive particular figures 
of merit that might be of interest. 

Four Multiplier/Divider (MO) Arrays 

The most familiar binary multiplication 
algorithm is to shift the multiplicand (B) left 
once for each multiplier (R) bit position, after 
adding B into an accumulating partial product 
(A) if the corresponding R bit is I, until A 
finally becomes the product P = B·R when all 
multiplier bits, low order to high order, have 
been used. This scheme has been stated for posi­
tive operands; but, by modification due to Booth 
[11], it can be made to work for signed operands 
in 2's complement representation, yielding P 
directly in the correct 2's complement form. 
Subtraction of the multiplicand, as well as addi­
tion, is possible. Each operation decision is 
the result of inspecting the appropriate mUltip­
lier bit and its right-hand neighbour at each 
step. 

One of the standard division algorithms is 
the non-restoring algorithm operating on a divi­
dend A with a divisor B to generate a quotient Q. 
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The altered dividend is referred to as the partial 
remainder at each step. An operation cycle is as 
follows: The sign of A is inspected. If it is 
positive, B is subtracted from A and if it is 
negative, B is added to A. The quotient bit 
generated is the complement of the sign bit of the 
new partial remainder. The divisor is shifted one 
binary position right after each cycle. Many 
authors have discussed this scheme; see, for 
example, Guild [12]. This algorithm can also be 
modified to operate on signed operands; however, 
the quotient generated is correct if it is posi­
tive; but it is in l's complement if it is nega­
tive, so a one must be added later to convert it 
to 2's complement notation. Separate planar 
arrays of cells, each usually containing a full 
adder with controlled inputs, can be constructed 
fairly directly from these or similar algorithms. 
For instance see, Majithia and Kitai [13], 
Bandyapadhyay, et al [14], Deegan [15], and Hoff­
man, et al [16] for array implementations of 
multiplication based on variations of the above 
basic scheme. Division array implementations 
based on variations of the above discussion appear 
in Guild [12], Dean [17], Gardiner [18], and 
Gardiner and Hont [19]. 

MOl Array 

When we attempt to combine the separate 
arrays, the only sensible arrangement seems to be 
to associate the B vector (multiplicand or divi­
sor) positions with each other and the A vector 
(partial product or dividend and partial remain­
der) positions with each other, moving downward 
through the rows of the array. That is why we 
have combined their names. The mUltiplier, R, 
and quotient, Q, are pOSitioned at the left 
column edge of the array. There is one complica­
tion. In multiplication, B is shifted left with 
respect to A; but in division, B is shifted right 
with respect to A. The solution is to shift B 
right with respect to A in multiplication, and 
inspect and use the multiplier bits high order to 
low order instead of in the other direction as 
above. This is the scheme developed by Majithia 
and Kitai [13]. The arrays can then be combined 
as MOl in Figure 1. In general, the B, Q and R 
vectors are n bits long, including the sign bit 
in the case of Band R. The A vectors are 2n-l 
bits long, including the sign bit. It is con­
venient to consider the operands in fraction form, 
with A and B normalized in the case of division. 
We then have, (where all coefficients = 0 or 1): 

R (Multiplier) Ro·Rl·· • Rn-I 
Ro2o+ R12- 1 + .•• + Rn_12-(n-l) 

Q (Quotient) QO·QI ... Qn-l 
Qo2o+ Q12- 1 + ••• + Qn_12-(n-l) 

A (Partial Product 011 Remainder) = Ao·AI"· A2.n-1 
_Ao2o+ AI2- I + ••• +A2.n-l 2- (2.n-l) 
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In the case of division, Qo is not the sign bit, 
but is a significant bit of the answer. This is 
because l/z ~ Q ~ 2 for l/Z ~ A,D ~ 1. The sign 
bit for Q is thus not indicated in our arrays. 
The output of the M function in ~!.! 1 ~ MDl 
(Figure l(b)) is given by M = D1DZBi + D1DZBi· 
The "function" signal, F, is set to 0 for multip­
lication and 1 for division; cell 2 (Figure l(c)) 
then routes the multiplier bit pairs Rk, Rk+1 for 
Booth algorithm control in multiplication, or 
routes the sign bit control for division. Note 
that all Ri bits must be set to 0 when division 
is being performed. Thus, cell 2 acts as a con­
trol column of cells, and the M function in celli 
uses the control signals to appropriately apply 
the correct version of the B vector to the A vec­
tor. The cost and delay expressions are: 

MDl cost = (1Bnz + 2n) g 

MDl multo delay = (2n + l)T 

MDl div. delay = (nz + 2n)T 

(la) 

(lb) 

(Ic) 

The combined multiplier divider arrays of Gex [B], 
and Gardiner and Hont [9] are similar in complex­
ity of design and have about the same cost and 
delay properties. 

MD2 Array 

Our procedure is now going to be to intro­
duce substantial design changes in three success­
ive steps starting from MDI. They are substantial 
in that the basic algorithms for carrying out the 
arithmetic operations are altered significantly. 
In MD2, the partial product/remainder vector A is 
not developed explicitly at each row level but is 
represented by two binary vectors S and C, which, 
if added would produce the correct vector A at 
that row level. This is the familiar carry-save 
reduction technique that was originally introduced 
by Wallace [20] in a 3-dimensional multiplier 
logic design. The two vectors Sand C are the 
result of a 3-to-2 carry-save reduction on the 
previous row's Sand C vectors and the proper ver­
sion of the B vector. In the case of mUltiplica­
tion, this necessitates a length 2n-l fast adder 
operating on the S and C outputs of the last row 
to produce the product P. This is indicated in 
Figure 2(a). Since the division process requires 
the sign of A to determine the subsequent row 
operation, this must be determined by a carry 
lookahead network L at the leftend of each row. 
It operates on generate and propagate functions 
formed in the type 3 cells. These Gi and Pi 
functions are formed from the S and C vector out­
puts of each row. An examination of the non­
restoring division algorithm reveals that the 
carry-out from the sign bit position directly 
yields the quotient bit, so this is the way it is 
done in Figure 2. This observation actually 
constitutesa suggested improvement to the design 
in [6]. Qi is then fed to the control cell 5 of 
the next row. The L cell must be redesigned for 
each operand length, and if fan-in is constrained 
to equal to or less than eight, then a two-level 
(2T) lookahead scheme must be employed for 
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n ~ 10. This is reflected in the cost and delay 
figures shown below. The cost and delay express­
ions are: 

MD2 cost = (2lnZ - n)g for n < 10 (2a) (2lnZ + 2n/ii) g for 10 ~ n s: 64 

MD2 multo delay = (n + 2) T (2b) 

MD2 div. delay = (6n)T for n < 10 (2c) (7n)T for 10 ~ n ~ 64 

The cost increase from MDI to MD2 is small com­
pared to the speed gain, especially in the case of 
division, which has been made essentially linear 
in n over practical operand ranges. This form of 
array division algorithm is due to Cappa and 
Hamacher [6] and the carry-save technique (along 
with multiplier bit grouping) has been used by 
Ramamoorthy and Economides [7] in a high-speed 
planar multiplier array. It is to be noted that 
the cost and delay of the Fast Adder has not been 
included in the above expressions. It can be 
designed (with carry lookahead techniques) so that 
it does not change any of the expressions by more 
than about 20%. To our knowledge, MD2 and the 
next two arrays have not appeared in the litera­
ture. 

MD3 Array 

The next change to make is to decode the 
multiplier bits in pairs and generate two quotient 
bits at a time. Although this increases the com­
plexity of each row of cells in the array, the 
number of rows is reduced by a factor of two. A 
net cost saving then results. We get MD3, as 
shown in Figure 3, by making these two changes to 
the MDI structure. When the MD2 techniques of 
carry-save reduction and carrY-lookahead are also 
incorporated into MD3 we will finally have evolved 
to MD4 which is in the next subsection. The mul­
tiplier bit grouping technique is well known and 
has been used by Wallace [20] and Ramamoorthy and 
Economides [7] in their arrays so it will not be 
detailed here. The technique for generating two 
quotient bits at a time is somewhat more complex 
but has also been adequately described in detail 
by Flores [21]. It necessitates having 3/2 the 
divisor available as an input vector. We assume 
that this is formed before division is begun and 
is presented as one of the inputs. The r, s, t 
bundle of inputs into cell 6 (Figure 3(b)) is 
really a bit position of 1/2 B, B, and 3/2 B in 
the case of division; and in the case of mUltip­
lication, r and s represent one bit position of 
1/2 B and B, respectively, with t not being used. 
The control signals T1 and Tz, which are outputs 
from control cell 7 (Figure 3(d)) are used to 
select appropriately among r, s, t or their com­
plements. This selection is done in the E logic 
(Figure 3(c)) of cell 6 (Figure 3(b)). The D 
signal decides complementation or not. An ins­
pectionof the wiring of cell 6 should convince 
the reader that the 2-place shift per row of B is 
performed correctly. The signals T1, Tz and Dare 
determined by a multiplier bit pair and its adja­
cent bit neighbour on the right in the case of 
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multiplication; and by the leading three bits of 
A and bits BO and B2 in the case of division. 
This is all accomplished in control cell 7 
(Figure 3(d)) along with the generation of two 
quotient bits in the case of division. The cost 
and delay expressions are: 

MD3 cost = (13n2 + 37n + 2S)g 

MD3 multo delay = (2n + 3)T 

MD3 div. delay = (n2 /2 + 2n + 3)T 

(3a) 

(3b) 

(3c) 

There are actually small variations in these 
expressions depending on whether n is even or odd, 
but in each situation we have given the worst 
case. Compared to MDI, in MD3 the cost is 
appreciably lower, multiplication time is about 
the same, and division time has been halved. MD3 
is slower than MD2, but costs less. The final 
evolution to MD4, which incorporates the MD2 tech­
niques of carry-save reduction and carry-Iookahead 
will prove to be the best design on all counts. 
It should again be noted before we leave this 
section that the time and cost involved in genera­
ting 3/2 B has been neglected. For practical 
values of n, this is a reasonable assumption. 

MD4 Array 

If the carry save and carry lookahead tech­
niques described in the MD2 subsection are applied 
to the MD3 structure, we obtain the MD4 array 
shown in Figure 4. Since the control cell 7 is 
Figure 3(d) , no further discussion of it is 
needed. Also, the E function in the main body 
cells 8 and 9 (Figures 4(b) and (c)) is the same 
as in Figure 3(c). The remainder of cells 8 and 
9 is much the same as in cell 6 (Figure 3(b)) of 
MD3, the differences being that Sand C vectors 
are produced to represent A, and P and G functions 
are included to provide inputs to the lookahead 
computation. The L cell of Figure 4(a) is similar 
to the L cell of Figure 2 and is used in.MD4 to 
produce the carry-in to the A2 position. This 
carry and the Sand C vector bits for partial 
remainder positions AO' Al, and A2 are inputs to 
the CL cell (Figure 4(d)). The CL cell computes 
Ao, Al, and A2 which are needed in the control 
cell 7 for the division process. The cost and 
delay expressions are: 

MD4 cost = (lSn2 + 47n + 33)g 
for 7 s n s 13 

(lSn2 + 47n + 33 + (n+I)~/2)g 
for 14 s n S 68 

MD4 mUlto delay = (n/2 + 4)T 

(4a) 

(4b) 

MD4 div. delay = (3n + S)T for 7 s n s 13 (4c) 
(4n + 6)T for 14 s n s 68 

Again, as in MD2, the Full Adder has been omitted 
from both cost and delay expressions, as well as 
the formation of 3/2 B. 
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CODIpa.i'isons 

If we substitute the practical range of 
values n = 8, 16, 32, and 64 into equation sets 
(I), (2), (3), and (4), we obtain Table I, which 
allows convenient comparisons among the MD arrays. 
It is easy to conclude that MD4 is the best design 
from the cost/delay effectiveness standpoint. The 
rest of this section will be devoted to comparing 
MD4 to members of two classes of multipliers and 
dividers. 

Other Logic and Prototype Designs 

In this subsection, MD4 is compared to two 
high-speed planar separate function arrays that 
have been reported. The multiplier array (RE) of 
Ramamoorthy and Economides [7], that uses bit 
grouping of the multiplier and carry-save reduct­
ion as in MD4, has approximate cost and delay 
expressions as follows: 

RE array cost = (IOn2 + 8n + 26)g 

RE array mUlto delay = (n/2 + 2)T 
(Sa) 

(5b) 

The division array (CH) of Cappa and Hamacher [6] 
that uses carry-save reduction and carry lookahead 
but generates only one quotient bit per row as in 
MD2, has approximate cost and delay expressions 
as follows: 

CH array cost = (17n2 + IOn)g for n< 10 
(17n2 + Un + 2nlti) g 

for 10 S n s; 65 

CH array div. delay = (4n)T 
(Sn)T 

for n < 10 
for 10s;nS6S 

(6a) 

(6b) 

Table II allows a concise comparison of the RE, 
CH, and MD4 arrays. 

Commercial Structures 

The Advanced Micro Devices (AMO) Co. [22] 
produces a 2 bit x 4 bit 24-pin MSI multiplier 
chip (the AM250S) and a 4 bit 24-pin MSI adder 
chip (the AM9340) that can be used as the basic 
cells in a multiplication array. They use bit 
grouping of the multiplier, do not use carry-save 
reduction, but use a carry lookahead scheme for 
fast propagation of the carries along each row of 
AM2505's. The AM9340's are used in parallel to 
accumulate a set of partial products into the full 
product. At an operand length of n = 16, the 
delay is approximately 30T as compared to about 
17T for MD4. The AMD array delay value is derived 
by evaluating the logic equivalent of their chip 
in a manner consistent with our evaluation of the 
MD, RE, and CH arrays. Since the AMD array gene­
rates the product P, we have included in the 17T 
MD4 delay a plausible amount (ST) for the 32-bit 
lookahead adder needed in conjunction with the 
basic MD4 structure. 

There are 32 AM2S05 chips and 16 AM9340 chips 
needed at n = 16. Now if we consider that 4 of 
the main body cells (8 and 9) in the MD4 are 
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implemented in a single 40-pin MSI chip, the MD4 
would require about 40 of these chips plus the 
final full adder (8 AM9340 type of chips) and the 
left column of control logic (cells 7, CL and L). 
If we estimate this control logic at about the 
equivalent of 24 MSI chips, the total MD4 array 
has an MSI chip count of about 72, so that it 
would be about 50% more expensive. It is also 
instructive to estimate the equivalent gate count 
in the AMD array as compared to a gate count for 
the MD4 which can be derived from expression (4a) 
above plus a reasonable full adder gate count. If 
we do this for the n = 16 case, we get an approxi­
mate equivalent gate count of 4,400 for the AMD 
array and 5,300 for the MD4. 

The 56-bit floating point fraction multiplier 
and divider circuitry in the IBM S360/9l [1] com­
puter has equivalent logic delays of approximate­
ly 36T and 110T, respectively. The comparable 
figures for MD4 (including the Fast Adder) are 
38T and l85T. It should be noted that this com­
mercial unit performs division by the iterative 
multiplication technique which is completely 
different from the MD4 technique, but makes very 
effective use of the multiplication structure. 
Detailed cost comparisons of this unit with MD4 
will not be attempted. 
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Cc) Cell 2 
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Figure 2. MD2 - Multiplier/Divider array using Booth and Non-restoring 
algorithms and carry-save along with carry lookahead, for n=4. 
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FAST ADDER 

pl2 P~ 
L = Go + PoGl + PoPlG2 

(a) The array 

Figure 2 (cont'd.). MD2 - Multiplier/Divider array using Booth and Non­
restoring algorithms and Carry-save along with Carry 
lookahead, for n=4. 
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Figure 3. MD3 - M~ltiple:/Divider array using multiplier bit pairing 
and 2-b1t quot1ent generation, for n=5. 
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G P S C 

(b) Cell 8 
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Figure 4 (cont'd.). MD4 - Multiplier/Divider array using multiplier bit 
pairing and 2-bit quotient generation with carry-save 

and carry lookahead technique. for n=6. 

Table I: Cost and Delay Comparisons Among the MD Arrays 

~ Cos t g Mu1t. Delay T Div. Delay 

MOl MD2 MD3 MD4 MD1 MD2 MD3 MD4 MD1 M02 MD3 

8 1.168 1.336 1.153 1.369 17 10 19 8 80 48 51 

16 4.640 5.504 3.945 4.659 33 18 35 12 288 112 163 

32 18.296 21.888 14.521 16.996 65 34 67 20 1.088 224 I 579 

64 73.856 87.040 55.641 64.741 129 66 131 36 4.224 448 2.179 

Table II: Cost and Delay Comparisons Among the RE. CH. and MD4 Arrays 

~ Cos t g Mu1t.de1ay T Div.de1ay T 

RE CH MD4 RE MD4 CH MD4 

8 730 1.168 1.369 6 8 32 29 

16 2.714 4.656 4.659 10 12 80 70 

32 10.522 18.144 16.996 18 20 160 134 

64 41.498 71.360 64.741 34 36 320 262 
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A VERSATILE DATA MANIPULATOR 

Tse-yun Feng 
Department of Electrical and Computer Engineering 

Syracuse University 
Syracuse, N. Y. 13210 

Summary 

The main deviation of a parallel processor 
organization from a conventional (sequential) one 
can be seen to be in the data manipulating 
functions which are defined to be the functions 
required for preparing appropriate operands for 
fetching, execution, and storing [1]. Thus, data 
manipulating functions involve unary operations 
and they can be classified in the following 
categories: permuting, replicating, spacing, 
masking, and complementing. 

The structure of a vers~t~le data manipu­
lator [2] is shown in Fig. l\a). 

The basic circuit has an N-by-N array con­
struction (or N2 cells). Each cell consists of 
four gates. The circuit can easily be partitioned. 
Thus, implementation of this circuit requires 
only one circuit type. At present state-of-the­
art up to 8x8 cells and their decoders may be 
implemented on one chip. 

This data manipulator is capable of achieving 
all the data manipulating functions mentioned 
above. Furthermore, it can achieve not only 
these functions for 2's-power data sets (or strings) 
and replications, but non-2's-power functions as 
well. Such a data manipulator is particularly 
attractive in applications requiring extensive 
spacing functions. Thus operations such as 
counting, multiple additions, bubbling process [3], 
can all be easily achieved. It is also evident 
that the system availability or self-repairability 
can be improved or provided by applications of 
the spacing functions. 

[1] 

(a) 
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It is noted that the complementing and 
comparison circuits which may be located at 
either the input or the output side of the 
structure are omitted from Fig. 1 for clarity. 
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AN ARRAY OF COMPlITING MEIDRY CELLS 

E. Della Torre and Jorge Roitman 
Department of Electrical Engineering, 

McMaster University, 
Hamilton, Ontario, Canada 

Summary 

A memory cell has been designed and construc­
ted as an element of a highly parallel general 
purpose computer of a modified SOLOIDN structure 
[1]-[2]. This cell has been interfaced to a PDP-
11/20 computer and can perform array operations 
under central processor asynchronous control. The 
cell size has been minimized leaving, however, the 
capability of computing certain transcendental 
functions and performing iterative calculations in 
either the integer or the floating point modes. 

The basic SOLOMON communication structure has 
been extended to include a ROW/COLUMN vector of 
cells. Each cell of the vector can communicate 
with all the cells of the corresponding row and 
column. With such a structure, array operations, 
such as the matrix transposi~on and a solution of 
Laplace's equation by the Jacobi type' methods or 
the SOR methods, can be achieved efficiently. The 
cells normally operate in unison under the central 
processor control. Each cell has, however, the 
capabilities of performing individual operations 
under certain conditions. The array can be micro­
programmed to perform iterative computations in­
dependent of the central processor until certain 
convergence condition has been achieved. 

Each cell is a triple-address machine consis­
ting of 15 words and arithmetic hardware. It ope­
rates between words or bytes of its own memory, 
or between one of its words or bytes and a word or 
a byte of another cell it can communicate with. 
The number of words was chosen so that various 
algorithms for computing transcendental functions 
can be implemented within a cell. This organiza­
tion permits the simultaneous computation of cer­
tain functions for sets of argument ~alues. 

The addressing system has been designed to 
permit selecting a particular cell, a row, a 

102 

column, the even rows, the odd. rows, or all the 
cells of the array. In addition, three modes of 
cell addressing are available: direct, concatena­
ted, and automatic allowing a very efficient way 
of the cell selection. The system operates by 
inhibiting all but the addressed cells. 

Associative-memory capabilities [3] can be 
easily incorporated to the system. The existing 
inhibit hardware can be used for detecting the 
cells in which certain specified conditions are 
satisfied. The addresses of those cells can be 
read out sequentially by incorporating a cell 
priority detection address system. 

The cell has been satisfactorily tested by 
using several algorithms. A multi-cell system has 
been simulated on a PDP-ll/20 computer. A compiler 
has been written for the PDP-ll/20 to translate 
the user mnemonic language into the appropriate 
contents of the 32-bit instruction register. Sev­
eral standard subroutines have been provided for 
integer division, floating point arithmetic, and 
computation of transcendental functions. 
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AN EFFICIENT ASSOCIATIVE PROCESSOR 
USING BULK STORAGE 

Hubert H. Love, Jr. 
Equipment Engineering Divisions 

Hughes Aircraft Company 
Los Angeles, CA 90005 

Abstract -- A hybrid associative process­
ing system using an MOS shift-register bulk 
memory is described, together with its applica­
tion to large-scale fact-retrieval applications. 
The system fulfills several criteria for balanced, 
efficient design of highly-parallel machines. 
A comparison with similar machines using 
rotating memories is made. 

Introduction 

The processor organization to be de­
scribed here is an outgrowth of the Association­
Storing Processor (ASP) project. (aJ The 
object of the project effort was the develop­
ment of processor organizations biased toward 
nonarithmetic applications. As a first step 
in this direction, a representative application, 
namely fact retrieval (i. e. , question-answer­
ing), was chosen. The next step in the project 
was the development of a language, the ASP 
language, which expresses the data organiza­
tions and the processes of concern in the 
application. Following this, three proce s sor 
organizations were designed, using the lan­
guage as a guide. The organization described 
here is related to the third of these [3], and 
is an attempt to ac hieve efficient operation 
of an as sociative memory when the data base 
resides in a large, inexpensive bulk memory. 

Speed, Cost and Balance 

The justification for the associative/bulk 
memory combination lies in the desire to 
simultaneously achieve higher processing 
speed and throughput, lower cost and a bal­
anced, efficient system. Processing speed 
has been a particular problem in such sophis­
ticated fact-retrieval applications as military 
strategic command and control and the trans­
lation or interpretation of natural languages. 
This is because such applications involve very 
large data bases (at least the order of 10 9 
bits), and because very often (such as when 
deductive inference is used in the retrieval 
process) many retrieval operations must be 
performed and many records processed in 
order to answer a single query. The ability 
of associative memories to search and process 
data in a highly-parallel fashion makes these 
devices natural candidates for consideration. 

The large size of the data bases used in 
the applications of interest is the principal 
cost consideration in the processor design, 

(a) See references [1] through [3]. 
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and is the justification for the use of an in­
expensive bulk memory as the primary data 
3torage medium. It is particularly important 
in this respect that the ratio of associative 
memory to bulk memory size be small, and 

at it not increase as the size of the data 
base increases. 

System balance and efficiency are closely 
related terms. A balanced system, as defined 
here, is a system in which no major part of 
the system normally waits for another part 
to complete its task. Balance is particularly 
important with respect to the associative 
memory in the system to be described and, 
to a lesser extent, with respect to the bulk 
memory. A system is said to be efficient 
if all principal subsystems are performing 
a non-trivial task all or nearly all of the time 
during normal operation. Both balance and 
efficiency directly affect cost and performance 
in any computer organization, and they are 
the keys to the des ign of the one to be de­
scribed here. 

T he system concept is developed around a 
hybrid as sociative-memory / mas s-memory 
hardware organization, a data structure and a 
processing strategy. These three ideas shall 
be described in that order. 

System Organization 

The general organization of the system is 
shown in Figure 1. The principal components 
are a set of associative memories and a bulk 
memory consisting of static MOS shift registers. 

T he as sociative memorie s are conventional 
in organization and bit- serial in operation. 
Each word contains a 64-bit static shift register 
for the storage of data. Each associative mem­
ory is capable 0 f the following operations. 

1. A simultaneous comparison of the 
contents of every word in the memory with 
t he contents of an external register, called 
the compare register. A flip-' flop , called the 
match flip-flop, is set at each word satisfying 
the comparison. T he operation is field - selective, 
with the fields being defined by the contents of 
another external register. 

2. An ordered serial retrieval or loading 
of those words having their match flip-flops set. 

3. A field-selective mass-write operation, 
in which the contents of an external register 
are written into the selected fields of every 
word having its match flip-flop set. 

4. The transfer of the states of the match 
flip- flops to the inputs of the data storage reg­
isters for the corresponding words, and vice­
versa. 
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Figure 1. Associative/Shift-Register Processor Organization 

5. Several logical operations involving 
the match flip-flops and two auxiliary sets of 
flip- flops, called the Il and T 2 flip- flops, 
whose functions will be described. 

6. A number of auxiliary operations, 
such as the setting and resetting of all match 
flip- flops. 

These operations are common to most 
"clas sical" as sociative memory designs. 
The number of words in each associative 
memory (ten memories are shown in the 
figure) is a function of the size of a subset 
of the average record in the data base, as 
will be discussed. The shift rate for the data 
registers of the associative memories during 
parallel operation is a nominal 5 MHz. 

The bulk memory for the system consists 
of a set of individually-addressable MOS static 
shift registers.(a) These should be very large, 
at least 16,000 bits each, in order that the 
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size of the address encoding and decoding 
matrices, and thus the cost of the memory, 
be as low as pos sible. 

There are as many data transfer channels 
to the bulk memory (each channel bit-serial) 
as the number of associative memories. 
Those registers and only those registers assigned 
to a channel will shift their contents when data 
transfer commands are executed. This makes 
it possible to shift registers that are not 
involved in data transfers, by assigning them 

(a)The newly-emerging charge transfer tech­
nology may make such devices equally or more 
suitable as a bulk memory for this system, it 
being a requirement that it be possible to 
suspend the shifting operation for brief periods 
(100 msec.) without loss of information. The 
magnetic bubble memory is another potential 
candidate. 
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to data transfer channels and not enabling the 
outputs at the other end of the channels. 

The shift rate of the registers in the bulk 
memory is the same as that for the as sociative 
memories, that is, of the order of 5 MHz. 

The interface between the bulk memory 
and the set of associative memories is a 
switching network. This network permits 
each associative memory to be assigned to 
a data transfer channel from the bulk memory, 
and also permits the associative memories 
to be connected together in parallel in various 
combinations. This latter is accom.plished by 
connecting the external registers of the 
associative memories in parallel and connecting 
the propagating channels (used for control of 
serial input and output operations on words in 
the memories) in series. This capability makes 
it pos sible for several 0 f the as sociative mem­
ories to operate as a single large associative 
memory when the amount of data requires- it, 
or to operate individ.ually in si.multaneous 
independent operation. 

The remainder of the system organization 
consists of 

1. an instruction processor, which con­
trols the execution of the special processing 
algorithms used in the retrieval and modifi­
cation operations. These algorithms are stored 
in a read-only instruction algorithm memory. 

2. a control processor of more conven­
tional organization, together with a random­
access memory. This processor performs 
part of the control of the bulk memory opera­
tion, and also controls input and output 
operations. 

Data Organization 

The data bases are cpp-structed from ordered 
triples, called relations. \a) The three items 
in each relation are called, respectively, the 
subject, attribute and value of the relation. 
T he relations are organized into records. 
Each record is constructed from all of the 
relations involving a particular item, called 
the head item for the record. Each data entry 
in a record consists of the other two items in 
a relation. The data entries are unordered. 
There is a record in the data base for every 
item in the data, the item being the head item 
for that record. 

In the records, each item is represented 
by a 24-bit number, called the item number. 
The user represents the item by a unique 
corresponding symbol string, called the item 
name. 

Since the size of the data records and the 
physical records (i. e., the s~ift register s in 
the bulk memory) are different, the data 
records must be segmented. Each segment is 
stored bit-serial on a physical record. 

(a)This is the data structure of the ASP 
language [2]. 
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All entries in every segment are 64 bits 
in length. The first entry in each segment is 
a header word containing the item number for 
the head item for the record. This is used in 
locating the segme nt and in identifying the 
corresponding record. One of the segments, 
called the head segment, contains the bulk 
memory addresses of all of the other seg­
ments in the entries immediately following 
the header. The other segments each contain 
only the address of the head segment in the 
entry immediately following the header. The 
remaining entries in all of the segments are 
the data entries, each consisting of a pair of 
24-bit item numbers stored contiguously and 
left-justified in the entry. 

Operation of the System 

The principal function of the system is the 
selective retrieval from and modification of 
the data base. The criteria for the retrieval 
and modification are each specified by a set 
of relations, called the retrieval structure 
and the replacement structure, respectively. (b) 
In these structures, the known items are repre­
sented by their item numbers. Unknown items, 
to be determined by the retrieval operation, 
are each represented by one of a set of special 
numbers reserved by the software for this 
purpose. 

Both the retrieval and replacement 
structures may contain unknown items. In 
the replacement structures, each relation 
specifies a set of relations to be inserted into 
the data base. Relations appearing in the 
retrieval structure but not in the replacement 
structure each specify a set of relations to be 
deleted from the data base. 

The central process from which the re_ 
trieval operation is constructed is that of 
context addressing an unknown item. This 
is the process of identifying all items in the 
data that satisfy the "context" of relations 
in which an unknown appears in the retrieval 
structure. An item is said to satis fy this 
context if, for every relation in the control 
structure containing the given unknown, there 
corresponds a relation in the data containing 
the given item in place of the unknown, and 
which is otherwise identical. If there is 
another unknown in the relation in the re­
trieval structure, a relation in the data is 
considered "identical" for any item corres­
ponding to that unknown, if it is identical 
otherwise. 

Only the retrieval operations will be 
de scribed here. The data modification 
operations are described in [3] for a similar 
system. 

All retrieval operations are performed 
by first context-addressing all of the individual 

(b) This is also the structure of the ASP 
language [2]. 
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unknowns in the retrieval structure, and then 
resolving any relations involving more than 
one unknown. For brevity in describing 
the processes, all unknowns in the following 
discus sion will be either items or values, 
but not attributes. The processes can easily 
be extended to cases in which an unknown 
is an attribute. 

To perform a context-addressing operation, 
two different processes are used. They are, 
respectively, the Load Subrecord operation . 
and the Compare Record operation. To de­
scribe these operations, a retrieval structure 
consisting of several relations involving a 
single unknown shall be assumed. The un­
known item shall be assumed to be either the 
subject .or the value in each one of these 
relations. 

The Load Subrecord Operation 

To begin the context-addressing operation, 
one of the relations in the retrieval structure 
is selected (at random, if desired), and the 
head segment of the record for the subject 
or value (one of these will be a known item) 
is accessed in bulk memory. The Load Sub­
record operation is then executed to load a 
subset of the record into one or more of the 
as sociative memories. This subrecord con­
sists of all record entries which contain the 
same attribute as the relation from the re­
trieval structure. The operation is the 
following. 

1. As the shift register containing the 
horne segment is shifted, one entry at a time, 
those entries for which the attribute is the same 
as the attribute of the corresponding relation 
from the retrieval structure are selected and 
loaded into one of the associative memories. 
The selection is made by comparing each 
entry with the contents of a register called 
the selection register. With each entry so 
loaded, the Tl flip-flop in the word is set. 
This tag bit, at the completion of the context 
address, will be set at all entries con-
taining values of the unknown item. At the 
same time, the addresses of the other seg­
ments of the record are retrieved (from the 
horne segment) and the shift registers con­
taining them are shifted to make the segments 
available for proces sing. 

2. As the processing of a segment is 
completed, and as another segment becomes 
available at the output of a shift register, 
the process is repeated for that seg-
ment. If the associative memory becomes 
filled, another associative memory is selected 
by the system and is loaded in turn. 

When the processing of all segments 
of the record is completed, the associative 
memory or memorie s will contain the entrie s 
for all values for the unknown item that are 
specified by the retrieval structure relation. 
If the retrieval structure contained only 
that one relation, the entire context-addressing 
operation would now be completed. 

The Load Subrecord operation is illus­
tration in Figure 2. The example is shown for 
the retrieval structure relation (A, Rl, X), 
in which the unknown item is represented 
by the X. That relation is also shown in the 
upper left-hand part of the figure in directed­
graph form (which is the ASP language repre­
sentation). The record being processed is 
the one having the item A as the head item. 

Five contiguous entries from the record 
are shown in the figure. These are the entries 
(Rl, Bl), (R2, Bl), (Rl, B3), (R9, B9) and 
(R I, B6). In the illustration, the first and third 
of these entries have already been selected and 
loaded into the as so ciative memory. The input 
(Le., compare) register is shown containing 
the most recently loaded entry. 

The selection criterion (which -is that 
the attribute of the entry be the item R 1) 
is shown as the contents of the corresponding 
field of the selection register, with the symbol 
"D/C", representing "don't care", shown in 
the other fields. In the associative memory, 
the column labeled T 1 represents the T 1 flip­
flops, which are set for each loaded entry. 
The column labeled MFF (match flip-flop) 
shows the flip-flop set for the most recently 
loaded entry. This represents the use of the 
match flip-flop to identify a single word in the 
associative memory for which some operation 

. (in this case, the load operation) is to be 
performed. 

The Il and 12 fields in the associative 
memory words are the 24-bit fields for the 
item numbers for the other two items (that is, 
other than A ) in each data entry. At the con­
clusion of the operation, the 12 fields will 
contain the values of the unknown item which 
satisfy the relation (A, Rl, X). 
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The operation establishes the criterion 
for the size of the associative memories, 
vir.hich should be that of the average subrecord 
in the data· base, rather than the size of the 
entire record. 

It can be seen that the Load Subrecord 
operation is essentially balanced, in that 
neither the associative memory nor the bulk 
memory must wait for the other to complete 
an operation. The only exception is the delay 
in accessing the home segment, and a possible 
delay in accessing another segment. The 
operation, however, is not efficient, since the 
associative memory is not performing a paral­
lel operation, but is only being loaded. As will 
be seen, the remaining operations in the context­
addressing process are both balanced and 
efficient. 

The Compare Record Operation 

During the Load Subrecord operation, 
the horne segment of the record corresponding 
to one of the other relations in the retrieval 
structure (that is, having the known subject 
or value from the relation as its head item) 
is being accessed. When the Load Subrecord 
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Figure 2. Load Subrecord Operation 

operation is completed, this second record 
is processed, entry-by-entry, against the 
contents of the associative memory. This 
operation is called the Compare Record 
operation and, for each entry, is as 
follows. 

1. The attribute of the entry is compared 
with the attribute from. the corresponding re­
trieval structure relation. As in the Load 
Subrecord operation, the selection register 
is used in this proces s. 

2. At the same time, the entry is com­
pared sim.ultaneously with all entries in the 
as sociative m.em.ory (i. e., the subrecord 
already loaded), com.paring only the value 
fields and the Tl flip-flops. If both com.­
parisons 1 and 2 are successful, the m.atch 
flip-flop is set at each m.atching entry in the 
as sociative mem.ory. (All m.atc h flip- flops 
are reset before the first entry is processed.) 

After the last entry in the record has 
been so proces sed, the T 1 flip- flops and the 
(corresponding) m.atch flip- flops are logically 
ANDed together, and the results stored in the 
Tl flip-flops. Those entries that now have 
their T 1 flip- flops set are the entries which 
contain, in their 12 fields, all values of the 
unknown item that satisfy both of the re­
trieval structure relations thus far processed. 
If there are no other relations in the retrieval 
structure, the context addressing operation is 
now com.pleted. 

The Com.pare Record operation is illus­
trated in Figure 3, which shows a retrieval 
structure of two relations. The first of these, 
(A, R I, X)' is shown as already having been 
processed, using the Load Subrecord opera­
tion. The second relation in the retrieval 
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structure is the relation (B, R2, ~), and the 
record shown being processed, using the 
Com.pare Record operation, is the record for 
the item B. The selection register is shown 
containing the attribut.e from. the relation in 
its 12 field. 

Five contiguous en.tries from the record 
for B are shown, with the first three of these 
having already been processed. It is seen 
that the first and third of these entries have 
satisfied both com.pare operations, and the 
m.atch flip- flops are set at the second and 
fourth words in the associative m.em.ory as 
a result. 

If there are more than two relations in 
a retrieval stx:ucture involving a given unknown, 
the third, fourth, etc. of the relations are 
processed exactly like the second, using 
the Com.pare Record operation. 

It is seen that the Compare Record 
operation is both balanced and efficient. 
It is balanced in the sam.e way as the Load 
Subrecord operation, and it is also efficient 
since, unlike the former operation, the 
associative m.em.ory is perform.ing parallel 
com.pare operations for every entry in the 
record. Moreover, the access delays ex­
perienced in connection with the processing 
of the first record will seldom. if ever be 
encountered for the rem.aining records. 
This is because all of the records involved 
in the context of the unknown are known at 
the start of the context-addressing operation, 
and thus can be searched for sim.ultaneously. 
By the tim.e the first record is processed, 
at least one of the other records will be 
accessible for processing in turn. 
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Figure 3. Compare Record Operation 

If a replacement structure contains several 
unknowns, the system design permits several 
of them to be context-addressed simultaneously 
in the fashion just described. This is a result 
of having more than one associative memory 
and more than one data transfer channel 
between the bulk memory and the associative 
memories. The simultaneity is limited only 
by the number of associative memories and 
by the fact that more than one associative 
memory may be required for the selected 
entries from an unusually la!ge record (se­
lected by the Load Subrecord operation). 

If there are no relations in the retrieval 
structure involving more than one unknown, the 
process of identifying all values of all unknowns 
in the retrieval structure can be accomplished 
by the processes already described. If there 
are such relations, a number of other operations 
have been defined. All of these operations 
require the use of more than one associative 
memory, and also special logic for operating 
on the success/fail results of the various 
comparison operations. All of these operations 
are performed, when applicable, after all 
individual unknowns have been separately (and 
simultaneously) context addressed. Three 
of the operations shall be described here. 
Each of them applies to a particular con­
figuration of interrelated unknown items. 
For other configurations, the corresponding 
operations can be derived by reference to 
these. 

The Find Pairs Operation 

The first of the operations for interrelated 
unknown items, called the Find Pairs operation, 
identifies all corresponding pairs of values for 
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two unknown items that are in a single re­
lation in the retrieval structure. Each of these 
pairs corresponds to some entry in that record 
that has the attribute from the retrieval 
structure relation as its head item. These 
matching entries each represent relations 
in the data which have the same attribute 
as the retrieval structure relation, and 
whose subject and value are each candidates 
for the respective unknown items in the 
retrieval structure relation. The candidates 
are those items that have been identified by 
the earlier context addressing of the two 
unknowns. 

Once the entries for the corre sponding pairs 
of values have been identified, one or more of 
the following operations is performed. 

1. The entries themselves are tagged 
directly in the record in the bulk memory by 
setting bits in the tag fields of the entries 
(bits 48-63). 

2. The entries are written in an unused 
associative memory for later processing. Ex­
amples of such processing will be shown. 

3. The entries are written into an unused 
(blank) physical record in the data base for later 
processing. 

4. The entries are retrieved for output to 
the user (assuming that the entire retrieval 
operation has been completed with the comple­
tion of the current operation). 

Figure 4 shows the hardware configuration 
of registers, associative memories and data 
records used in the Find Pairs operation, and 
illustrates the use of the operation in connection 
with an example retrieval structure. The figure 
shows three of the associative memories from 
the system, labeled AM# I, AM#2, and AM#3. 
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Figure 4. Find Pairs Operation 

AM# land AM#2 each contain entries from the 
record that was processed first in context 
addre ssing one of th~ two unknown items. AM# 1 
contains the entries involving the subject of the 
relation involving the two unknowns. AM#2 
contains the entries involving the value of the 
relation. The configuration in the figure also 
includes part of a record, drawn as though it 
were a tape, that is being processed against 
the contents of AM# 1 and AM#2. The third 
associative memory, AM#3, is a spare memory 
that has been assigned for holding the match­
ing entries from the record (io e., the corre­
sponding pairs of values for the two unknowns) 
if that option is specified in the operation. 

To begin the Find Pairs operation, AM#3 
is cleared, and the match flip-flops in all of 
the associative memories are reset. Follow­
ing this, the firstmatchflip-flop in AM#3 is set, 
"Don't care" (D/C) conditions are put into the 
compare registers of AM# land AM#2, as 
shown, and the Tl fields of all three compare 
registers are set. 
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Now each entry from the record for the 
attribute of the retrieval structure relation is 
processed as follows. 

1. The contents of the Il field in the entry 
are transferred to the 12 field of the compare 
register of AM# l. The contents of the 12 field 
of the entry are transferred to the 11 field of the 
compare register of AM#2. Following this, the 
record is shifted to the next entry. 

2. A simultaneous compare operation is 
performed on both associative memories at the 
same time, and the two sucess/fail conditions 
are ANDed together. (The success condition is 
indicated by the setting of at least one match flip­
flop in an associative memory.) 

3. If both compare operations are success­
ful, the current entry (which is now known to 
contain a corresponding pair of values for the 
two unknowns) can be copied into the current 
entry position of AM#3 (the entry being defined 
by the setting of the match flip-flop). Or, if 
desired, the entry can be copied into another 
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record, reserved for the purpose, in bulk 
memory. As a third alternative, the entry can 
be tagged directly in the record in its Tl field 
(or in one of bits 48-63). 

After all of the entries in the record have 
been processed as just described, those entries 
that contain corresponding pairs of values for 
the two unknowns will have been identified and 
tagged and/or copied. 

The example illustrated in Figure 4 illus­
t:rates the Find Pairs operation for the retrieval 
structure consisting of the five relations (A, Rl. 
Xl), (B, R2, Xl), (Xl, R5, X2), (e, R3,X2) and 
(n, R4, ~2). -The two unknoWn items are repre­
sented by the symbols Xl and X2. AM#l con­
tains the candidates for~l, as-determined by 
the context addressing of Xl. They are in the 
12 fields of those entries that have tag Tl set. 
Similarly, AM#2 contains the candidates for ~2. 

Six entries from the record for R5 are 
shown being processed against the contents of 
AM# 1 and AM#2. R5 is the attribute of the 
relation that interrelates the two unknowns. 
Each entry in that record co~tains pairs of 
potential values of Xl and X2. The first three 
entries have already been processed, and it is 
seen that the first and third of these have 
matched. They are both tagged in the Tl fields 
of the entries themselves and have also been 
copied into AM# 3. In particular, the third 
entry has just been tested, and the match flip­
flops in AM#l and AM#2 are set at the match­
ing entries. 

The Process Threes and Process 
Fours Operations 

There are a number of possible retrieval 
structure configurations which involve three 
or more interrelated unknown items. For 
each such configuration there is a corre­
sponding instruction with its hardware config­
uration and processing algorithm. The 
hardware configurations for two of these 
instructions, the Process Threes and Process 
Fours instructions, are shown in Figures 5 
and 6, respectively, together with example 
retrieval structures. The two figures are 
given for illustration only. The operations 
themselves are described in detail in refer­
ence (3) for a similar system. Only a brief 
discussion is given here. 

The Process Threes operation determines 
pairs of corresponding values of two unknown 
items that are indirectly related in a retrieval 
structure through a third unknown item. (In 
the example in Figure 5, the third unknown 
item is X2.) The Process Fours operation 
determines such pairs of values for cases in 
which the two unknowns are related through 
two intervening unknown items (X2 and X3 in 
the example in Figure 6. ) - -

Both operations are performed after all 
corresponding pairs of values for the directly 
related unknown items in the retrieval structure 
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have been determined using the Find Pairs 
operation. These corresponding pairs have 
been variously stored on blank records or in 
associative memories as required for the 
current operation. 

For the Process Threes operation, only 
one associative memory is required. (The 
second one shown in Figure 5 is for optional 
storage of the corresponding pairs determined 
by the operation.) The Process Fours oper­
ation requires two associative memories. 

Cost and Performance Considerations 

The associative/shift-register system is 
essentially a balanced system with respect to 
its two primary subsystems, the associative 
memories and the bulk memory. The shift 
rates for both memories are the same, and 
both memories are kept operating at or near 
that shift rate during normal operation. 

Access delay is small in all processing of 
records from bulk memory. This is because 
all segments of a record except the first can 
be accessed nearly simultaneously and, once 
accessed. can be kept in readiness for immedi­
ate processing. There is a delay in accessing 
the home segment; this averages 1.6 msec ..• 
for the 16. OOO-bit registers in the bulk mem­
ory. Access delays for the remaining seg­
ments of the record, and for the segments of 
any other record being accessed at the same 
time for later processing, will be small or 
nonexistent. 

As an example, consider a record con­
sisting of 640 segments divided into ten seg­
ments of 64 data entries each. The total 
processing time for such a record (for the 
Load Subrecord and Compare Record operations) 
will be very dose to the 1. 6 msec. average 
access time for the home segment plus 0.8msec. 
for processing each segment. a total of 9.6 msec. 

For rotating memories, the limitation on 
processing speed is largely a function of the 
rate of rotation, since the instantaneous data 
transfer rates for modern fixed-head disks and 
drums are high. For such memories, the 
processing of most records will require an 
entire revolution (33 msec. for the typical disk 
rotating at 1800 rpm. ) plus a fraction of a disk 
revolution for accessing the first segment to 
be processed. (a) 

. A large part of the advantage of using shift 
regIsters rather than rotating memories lies 
not in the increased speed but in the relative 
simplicity of system design and operation. 

(a)It . d h 'f . . IS assume t at 1 a dIsk 1S used as the bulk 
memory, every segment of a record would 
contain the addresses of the remaining seg­
ments. If cueing of access were then used 
one of the segments could be accessed in a~ 
average of l/n +1 of a disk revolution where 
n is the number of segments. ' 
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Figure 5. Process Threes Operation 

Shift registers, for example, do not require 
cueing of accesses in order to minimize aver­
age access time per record. And they do not 
require the related buffering or the processing 
effort needed to handle the buffering and cueing 
operations. Moreover, such el<}.borate tech­
niques as deferred modification,\a) are much 
less needed when shift registers are:used. 

(a)This is a technique for increasing record­
processing throughput in which modifications 
to the data base are made in a reserved 
region in fast memory as soon as they are 
determined, rather than in bulk memory. 
The main data base is then modified later 
from the contents of this buffer, overlapping 
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The present ratio of costs for MOS shift 
registers to fixed-head disks is of the order of 
9 to 1. At this ratio, the sacrifice in process­
ing speed, processing and buffering costs and 
design effort when disks are used may still be 
justified. However, with the reduced costs of 
LSI to be expected in the near future (charge­
transfer devices costing about 1/4th the cost 
of disks are being announced), the simpler 
shift-register memory should be considered in 
any present effort to achieve a balanced asso­
ciative system. 

later operations. In this way, subsequent 
operations on the data base can proceed 
immediately. This technique requires that 
all search operations must include a search 
of the buffer as well as the bulk memory, 
and is in general very complicated to 
implement. 
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Abstract -- The use of two levels of 
parallelism facilitates the design of an effi­
cient programmable signal processing computer. 
At the system level, multiple functional units 
(multiprocessors) perform distinct functional 
tasks such as data gathering, data organization, 
and signal transformation. At the implemen­
tation level, horizontal microprogrammed control 
of parallel resources effects flexible and effi­
cient processing. 

Introduction 

Modern signal processing systems perform 
many tasks by sampling analog signals and 
transforming the sampled digital data. In 
systems like radar and sonar there is typically 
so much information to analyze that it has been 
necessary to develop special-purpose hardwired 
devices to sample and transform the data in 
real time. The emergence of LSI circuit tech­
nology and high speed memories provides the 
capability of developing programmable signal 
processors which would reduce proliferation of 
special purpose devices, reduce the manufact­
uring cost (by economies of scale), and simplify 
maintenance. The use of two levels of paral­
lelism facilitates the design of such a program­
mable Signal processor [IJ. 

Parallelism at the System Level 

At the system level, an efficient signal 
processing computer assigns distinct processes 
to different functional units which operate in 
parallel. For system supervision and simple 
data organization and transformation, the 
system employs a sophisticated controller. For 
signal transformations a specialized arithmetic 
processor is required. Additional functional 
units collect and store data and control com­
munication among other units. In the AN/UYK-17 
(AADC/SPE) computer [2J (see Figure 1) separate 
functional units perform such distinct pro­
cesses. 

The Microprogrammed Control Unit (MCU) is 
the system controller. Its functions include 
data management, process scheduling, I/O con­
trol, interrupt handling, and some applications 
routine processing. The MCU massages (e.g. by 
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ordering or scaling) signal information, 
placed in buffer memories by r/o devices, into 
a form amenable to transformation by signal 
processing algorithms, and leaves it in buffer 
memory for processing by a special purpose 
arithmetic unit. After the data is trans­
formed, the MCU may perform some post pro­
cessing functions and store information for 
later retrieval. The MCU also performs system 
functions such as handling operator requests, 
controlling displays, etc. 

The Signal Processing Arithmetic Unit 
(SPAU) is the system arithmetic processor. Its 
function is to perform high speed execution of 
processing operations on arrayed data. These 
operations include spectrum generation, convo­
lution, correlation, and digital filtering. 
SPAU processing is scheduled by the MCU. 
After SPAU processing is initiated, the SPAU 
operates independently of the MCU. 

The AN/UYK-17 contains up to eight buffer 
storage modules (BSMS), which provide central, 
high speed (150 nanosecond cycle time) memory 
for the system. Each BSM contains 4096 32-bit 
words. The BSMs provide storage for MCU execu­
tive and application data tables, system data 
arrays, working storage for MCU and SPAU pro­
cessing operations, and buffer areas for I/O 
data movement. Because the MCU supervises I/O 
operations and storage of data in the BSMs, 
the SPAU need not consider the problems of I/O 
processing; its data resides in the high speed 
BSMs. 

To provide a fast and flexible means of 
moving data between BSMs and peripheral 
devices, the AN/UYK-17 contains one or more 
selector channel controllers (SCCs). The stor­
age control unit (SCU) provides a switching 
interface between the independent BSMs and 
other system components. Because each MCU, 
SPAU, and SCC can access BSMs every clock 
cycle, the SCU switches each unit to the BSM 
it is addressing and resolves conflicts by a 
priority mechanism. 

To provide general intermodule communi­
cation, the AN/UYK-17 contains a connector 
called the Z-bus which consists of sixteen 



1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

BSM • • • BSM 

~~ 1\ 

~ 

'If \It 

seu " 

J J~ 4 

" " 
, 

SPAU MCU see i.- I/a r ,. 

~ ~~ 4\ 

Z Bus 

Figure 1. AN/UYK-17 System Block Diagram 

bidirectional data lines and fourteen control 
lines. In addition, there is a sophisticated 
interrupt system through which system com­
ponents and peripheral devices can notify cen­
tral control, the MCU, of changes in their 
operation or status. 

Parallelism at the Implementation Level 

In the implementation of system components 
that perform multiple functions of a similar 
nature, the use of parallelism can significantly 
improve the performance of the components and 
hence of the system. In the AN/UYK-17 the MCU 
and the SPAU contain several resources that 
operate in parallel. User written horizontal 
microprograms control these resources. 

Parellism in the SPAU 

The capability to effect the second order 
recursive filter and the FFT butterfly is funda­
mental in signal processing [1,3J. Figure 2 shows 
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the general configuration of a second order 
recursive filter [lJ. Z-l in Figure 2 repre­
sents a unit delay while the circles indicate 
addition or multiplication by a constant. The 
output y at any time can be described in the 
following two step computation, which uses the 
labels defined in Figure 2: 

Wo = x - B1Wl - B2W2 

Y = Wo + ~Wl + ~W2 

The data flow graph shown in Figure 3 follows 
from these equations. Squares in Figure 3 
represent data items and circles represent 
multiplication or addition. "p," "q," "r" and 
"s" are intermediate data items, while Tl and 
T2 represent delay operators. Note the possi­
bilities of performing the operations in 
parallel. 

Figure 4 shows the arithmetic section of 
the SPAU. As in the data flow graph of 
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Figure 2. Second order recursive filter 

Figure 3. Data flow graph for second order recursive filter 

Figure 3 there are four multipliers. These 
multipliers operate in parallel and produce a 
product every clock cycle (150 nanoseconds). 
Although there are four a.d.ciers, the results of 
adders one and three may be inputs to adders 
two and four, respectively, in the same cycle; 
so two pairs of additions can be performed con­
secutively in a single cycle. This is equiva­
lent to two three-input adders. The X and Y 
local stores are used to store intermediate 
results and to hold data that have been read 
from or will be written to BSMs. The adders, 
buffer reads and writes, and additional register 
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transfers operate in parallel with each other 
and with the multipliers. 

Fundamental to the computation of the 
fast Fourier transformation (FFT) is the FFT 
butterfly [4J. For data points represented as 
complex numbers, Figure 5 shows the data flow 
graph for computing the FFT butterfly. In 
this figure :xm(i) and :xm(j) are data inputs to 
the butterfly while :xm(i+l) and :xm(j+l) are 
output items. Wk is a weight term, where 
k (2n:k) _~ . {2n:k\ 

W-R = cos ~ and WI = -s1n'~J with N = the 
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total number of input data points to the FFT. 
BY considering the data flow graph in Figure 5 
two conclusions can be reached that may assist 
computation: 

1) No memory cell in the data flow graph 
is reused by subsequent operators. 
Hence, the computation may be executed 
in a pipe1ined fashion. 

2) The left-right symmetry in the data 
flow graph permits an increase in 
throughput when the input data points 
are all real rather than complex. 

Referring again to Figure 4, the effect of the 
FFT butterfly computation on the design of the 
SPAU arithmetic section is apparent. 

Note that the schemata for the computation 
of the FFT butterfly and second order recursive 
filter were similar enough so that the same 
hardware could easily be used to effect both 
algorithms. Register selectors facilitate dyna­
mic reconfigurabili ty. Control of the SPAU is 
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effected by horizontal microprograms; 160 bit 
microinstructions which contain 63 fields con­
trol the resources of the arithmetic section 
and also the addressing section (which has 
three independent address formation units for 
computing buffer and ROM addresses) and 
sequencing mechanism. 

Parallelism in the MCU 

Like the SPAU, the MCU (see Figure 6) is 
controlled by horizontal microinstructions which 
execute in 150 nanoseconds, the system cycle 
time. Microinstructions in the MCU contain 64 
bits which define seventeen fields. These 
fields control specific MCU facilities: 

1) buffer input and output 

2) 

3) 

4) 

source and destination register 
selection for the ALU!shifter 

ALU!shifter operation 

interrupt control 
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5) auxiliary register transfers 

6) sequence control. 

As in the SPAU, the facilities operate in 
parallel. Thus throughput is normally greater 
than for standard systems. For example, the 
MCU can transpose a 40 by 40 matrixlinvolving 
3200 memory references) in less than 1700 
cycles. 

AN/UYK-17 Configurations 

Because the ANIUYK-17 system provides 
general intermodule communication facilities 
(the Z-bus and the interrupt capabilities), 
system components can be configured in a 
variety of ways. The basic simplex system 
consists of an MCU, a SPAU, an SCU, four BSMs, 
and an SCC. Additional components may be 
connected; an example (see Figure 7) follows 
the architecture of the CDC 6600 computer. One 
or more MCUs can serve as peripheral processing 
units that control I/O devices. A master MCU 
can serve as a (scoreboard) scheduler which 
manages the buffer memories and schedules the 
operation of the parallel functional units, 
i.e., the SPAUs. The SPAUs execute various 
arithmetic processes, communicate only with 
the high speed buffer memories, and are 
subservient to the master MCU. 

117 

References 

[lJ Barry P. Shay, Design Considerations of a 
Programmable Predetection Digital Signal 
Processor for Radar Applications, 
Information Systems Group, Naval Research 
Laboratory, NRL Report 7455, (December, 
1972), 54 pp. 

[2J W. R. Smith, Jr., J. P. Ihnat, 
H. H. Smith, N. M. Head, Jr., E; Freeman, 
Y. S. Wu, and B. Wald, AN/UYK",17 Signal 
Processing Element Arcn~tecture, Informa­
tlon Processing Systems Branch, 
Communications Sciences Division, Naval 
Research Laboratory, NRL Report 7668, 
(in press). 

[3J Tomlinson G. Rauscher and Barry P. Shay, 
"The Influence of Computation Schemata 
Representations of Signal Processing 
Algorithms on the Architecture of the 
AN/UYK-17 Computer," Symposium on 
Complexity of Sequential and Numerical 
Algorithms, (May, 1973). 

[4 J Bernard Gold and Charles M. Rader, 
"Digital ProceSSing of Signals", McGraw 
Hill, New York, 1969. 



j:: 
00 

I, 
12 I ~AOVFF 

INTERRUPT I BARA 
CONTROL I~ BARB 

UNIT lu Z 
(lCU) I! ACSAR 

1\I'l-COFF 
FSCR 

TIME COUNTER 
LSA 

UJ I I , ' I TO ADDER 

BUFFER I. DIRECT 
STORAGE""" __ !:: co MEMORY 
MOOULE I wZ I I ACCESS 

I I 
Cl;::> _ M I CHANNEL 
<....I:;:) 

I I a: Ou N r-- ; 
I I oa:en DIRECT .......... - I--BUFFER ~ en Z ... MEMORY 

STORAGE ... 0 ~ ACCESS u 
MODULE CHANNEL 

.. '---1 
BUS A CONTROL J l BUS B CONTROL 

,t. 

~1 
' ~ I d ~! 

I SELECT I 
~J11 :;:) Ql~l~Jr 

SELECT J 
MP r- r- I ....I en u 

.. r- MP -. N -
~~ t; a: LOCAL SELECT I SELECT I 

COCAC 1!l "~ '.Il!!::- ~ - ~ - STORE .. STORE ~I. ~ ~ 
W....l A I BARB J B ....I W . .r~ L-

BARA ~"l 

tl ~ I TO FSDR TO 
ICU FSCR !oo- ICU 

jl 1 
-FS~ 1 I=ICO 0 

~l jl oe .. L..rT w 
~rl COUNTER t • .... t TO ICU 

ADDER L/R SELECT 
() 

AOV AD~OV t .. 
TEST FF RESULT = 0 / BARREL SAR I 
LOGIC MOST 1 ADDER SHIFTER jf COFF LEAST I 

I 
BULK Ir---~~---' 

CARRY 
ICU • .. ,. 

j -STORE 

MP 
CONTROL 

STORE 

T' :lICU 

DRIVERS DRIVERS I 
I t 

~CI ZBUS- I) 

Figure 6, Microprogrammed Control Unit 

Z SELECT 

Z I 
I 
t TO ICU 

....... 
1.0 ...... 
\.N 

en » 
m » 
~ 
:;0 
m 

S 
3: 
"'tI 
c: 
-I 
m 
;:0 

\) 
o 
Z 
." 
m 
:;0 
m 
z 
n 
m 
o 
z 
-C » 
:;0 
» 
r 
r 
m 
r 
"'t:I 
:;0 
o 
n 
m 
en 
en -z 
m 



1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

Figure 7. Alternate Configuration 

119 



1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

ASYNCHRONOUS NETWORK OF SPECIFIC MICROPROCESSORS 

Fran~ois DROMARD and Gerard NOGUEZ 
Institut de Programmation 

Universite PARIS VI 
4 place Jussieu 75005 Paris FRANCE 

Summary 

This paper is a summary of another one [ 11 ,[ 21 
where the multimicroprocessors architecture 
(MICROPUS) is described. The attempt here is to 
clarify the exchange mechanism between the micro­
processors. 

The studied network is designed on a local 
scale. It is composed of: 

I) microprocessors 
2) paths between them. 
The microprocessors have specific functions 

and sometimes a specific structure). They have 
their own storage which contains their specific 
data and working area. 

At a logical level, a task consists of a se­
quence of specific sub-tasks.Each sub-task is pro­
cessed by one and only one microprocessor.Only one 
sub-task can be processed at a given time.So that, 
at any time, a task needs just one resource: a mi­
croprocessor or a path (in order to be transmitted 
to the next microprocessor capable of processing 
next sub-task). At the same time,it is possible to 
have several tasks in the network. 

The exchange between microprocessors are asyn­
chronous. It implies the paths are buffered. The 
network local scale allows designing a common 
mechanism to manage all the paths. this exchange 
set is composed of a finite number of: 

I) containers 
2) stations. 

The stations can be attached to the micropro­
cessors or can be used to collect free containers 
(collectors). A path is the connection between two 
stations.Only one container can stay in a station. 
The others are waiting for on one or more paths. A 
microprocessor can have one or several stations.In 
order to transmit information to another one,a mi­
croprocessor must use a container staying in one 
of its own stations. If there is none, it can re­
quest a container to a collector. If there is no 
free container, the microprocessor cannot emit and 
has to wait for the free container collecting. Du­
ring this waiting time,no container is kept by the 
microprocessor. So, there is no deadlock. 

Such an exchange mechanism can be implemented 
in two different ways using: 

I) semaphores and queues 
2) double linked looped lists. 
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The first way is simpler than" producer-con­
summer" algorithm, because semaphores are associa­
ted to the stations and not to the paths. Only one 
semaphore is attached to each station.Transmitting 
a container involve ctacrementing (P operation) the 
emitter station semaphore and incrementing (V ope­
ration)the receiver station one. The sum of sema­
phores values is constant and equal to the initial 
containers number.A collector station also has its 
semaphore processed like the others. 

In the second way, the exchange mechanism is 
made of a double linked Iht memory. A looped list 
is associated to each station. Such a list heading 
stitch points to: 

1) the stitch attached to the staying station 
container (downstream link). 

2)the stitch attached to the last waiting con­
tainer of the station (upstream link). 
Let S the stations number and C the containers one. 
There are S lists and the list memory contains -at 
mos t- S+C s t itches. . 

There are two basic operations: 
I)checking a list is empty or not (demand). 
2)transmitting a container from a list to an 

other one (supply). 

The demand consists of testing if the heading down 
stream link points to itself or not. Transmitting a 
container (supply) involves the following linking 
operations: 

I)extracting first container from emitter list 
and looping this list on itself. 

2) inserting this container in receiver list 
(pointed by the heading downstream link). 
Getting a free container then needs the following 
operations: 

I)the microprocessor demands to the collector. 
2)100ps until this list is not empty. 
3)does a supply operation from the collector 

list to its own one. 
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Abstract 

The problem of scheduling N tasks - the ope­
rational precedence structure, -, of which is re­
presented as a finite, acyclic, directed, weighted 
graph G - on a multiprocessor system consisting of 
M identical processors is studied. The weight WI 
of node I, 1 SIS N, we regard as the processing 
time of the task represented by node I, and we 
want all N tasks to be processed completely within 
total processing time CT. We assume that no pre­
emptions are allowed. Memory for instructions and 
data ~s assumed to be infinitely large. Processor 
switching time is neglected. 

In this paper some results are derived for 
the case that - can be put together. from forests 
and antiforests in a simple way. For the case that 

is the disjoint union of a 1-tree and a 1-anti­
tree, the set of all suitable schedules is gi­
ven for arbitrary M and CT. 

I. Introduction 

The paper investigates the problem of sche­
duling M identical processors if the computational 
work to be done is known in advance and if memory 
(or channel) requirements can be neglected. The 
computational work for the processors is described 
by a finite set of 'programs', or 'tasks' which 
have to be executed (or processed) and each of 
which can be assigned for execution to an arbitra­
ry one of the M processors. Such an assignment can 
last until the task is completely executed or its 
execution can be interrupted because the executing 
processor is needed for another task which has no 
processor. Schedules for the processors that allow 
such interrupts are called preemptive schedules; 
schedules that do not allow interrupts are called 
nonpreemptive schedules. The set of N tasks Ti, 
1 SiS N, their execution times and their opera­
tional precedence structure, -, are represented 
by a finite, acyclic, weighted, directed graph G 
(abbreviated as FAWD G). The N nodes of this FAWD 

G stand for the given tasks Ti, the weight Wi of 
task Ti, 1 SiS N, is regarded as its processing 
time, sometimes called length of the task Ti. We 
assume that all tasks in G have positive lengths. 
We can assign a processor to a task (and vice ver­
sa) iff the task is free, i.e. it has no predeces­
sor • As soon as a processor is assigned to a 
task it starts reducing the length of the task, 
i.e. processing the task; this reduction of the 
length of a task takes place with a constant, po­
sitive and finite speed. If the length of the task 
is reduced to 0, the task together with all its 
outgoing arrows is deleted from the graph. The 
units of length and time are determined such that 
a processor reduces a task by one unit of length 
in one time unit. 
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For given FAWD G and M processors we are in­
terested in CTmin(G;M), i.e. the minimal total 
processing time for G by M processors. Given fur­
thermore an upper bound CT ~ CTmin(G;M) for the 
total processing time of G by the M processors we 
are. interested in not only a single schedule but 
in the class A(G;M;CT) of all schedules that meet 
these conditions. This latter interest arises from 
the attempt to take into account further parameters 
of a computer, like for example, memory size, 
channel, transfer rate and memory control, and not 
only the number of processors, M. 

The foregoing model is obviously not suit­
able to describe problems of effective resource 
utilization in today's general purpose computers. 
But it seems reasonable for the investigation of 
the processor allocation problem in a computer 
system of SIMD-type or MIMD- type (see [4]), if a 
few complexes of programs have to be processed 
very often by this system. The importance of the 
processor allocation problem in such systems can 
be derived from [16,17,18], where it is shown that 
processor utilization tends to be lower than 30 % 
if scheduling considerations are omitted. 

At the moment the problem formulated above 
cannot be solved effectively in full generality. 
Moreover it was shown recently in [19] and [20] 
that probably no algorithm exists at all for com­
puting an element from A(G;M;CTmin(G;M» for which 
the number of steps is bOunded by a polynomial in 
N. This result that the problem of determining 
time-optimal schedules (i.e. elements from 
A(G;M;CTmin(G;M») probably cannot be solved effec­
tively in the general case even holds if certain 
restrictions ([20]) are imposed on the problem. On 
the other hand there exists a long list of results 
saying that ~ due to other restrictions - the pro­
blem to determine time-optimal schedules is poly­
nomially solvable in the cases investigated ([1,2, 
3,6,7,8,10,11,21,22,23]). 

In order to make clear how the results of 
this paper are related to previous work we now 
discuss this point in some more detail. Restric­
tions can be put upon the general problem by 

specializing the number of processors 
(e.g. to M=2), 
specializing the weights 
(e.g. to Wi=l, 1 SiS N), 
specializing the precedence relation, 
-, of G (e.g. to G being a tree) , 
forbidding preemptions. 

Polynomial bounded algorithms to determine 
CTmin(G;M) and an element from ~(G;M;CTmin(G;M) 
are derived for the case 

M=2, Wi=l, 1 SiS N, preemptions forbid­
den, arbitrary - in [6-8]; 
M=2, arbitrary Wi' preemptions allowed, 
arbitrary - in [24] and [21], furthermore 

A(G;2;CT) for arbitrary CT is given 
in L21]; 
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arbitrary M, Wi=l, 1 SiS N, preemptions 
forbidden, G is a forest(a) in [1], and 
in [23] if G is an anti-forest(a); 
arbitrary M, arbitrary Wi' preemptions 
allowed, G is a forest in [2], and [11], 
furthermore A(G;M;CT) for arbitrary CT is 
given in [lOT; 
arbitrary M, arbitrary Wi, preemptions 
allowed, G is an anti-forest in [23], 
where !(G;M;CT) for arbitrary CT is gi­
ven, too. 

The importance of these restrictions can be 
seen from [20], where the cases ' 

M=2, arbitrary Wi, preemptions forbidden, 
- empty; 
M=2, Wi=l or 2, 1 SiS N, preemptions 
forbidden, - arbitrary; 
M arbitrary, Wi= 1, 1 SiS N, preemp­
tions forbidden, - arbitrary; 
M arbitrary, Wi arbitrary, preemptions 
allowed, - arbitrary 

are investigated. There it is shown that - even 
with these restrictions - the problems listed are 
'polynomial complete' (see [19]), i.e. essential­
ly that a polynomial bounded algorithm to deter­
mine a time-optimal schedule for such a problem 
would provide us with quite many polynomial boun­
ded algorithms to solve well known problems for 
which polynomial bounded algorithms are not known 
today. 

that 
From this short survey we see especially 

the nonpreemptive time-optimal scheduling 
problem for a general FAwn G with Wi=l, 
1 SiS N, and arbitrary M is polynomial 
complete, but 
the same problem is polynomial bounded if 
either M=2 orG is a forest or anti-fo­
rest. 

This paper shows that for arbitrary M the 
restriction to forests or anti-forests is not ne­
cessary to get polynomial bounded scheduling algo­
rithms and derives such algorithms for other , 

FAwn's: For an arbitrary elementary FAWO(b) 
G, with Wi=l, 1 SiS N, arbitrary integers M> 0 
and CT > 0 the set of all nonpreemptive schedules 
for M processors to process G completely within 
time CT, An(G;M;CT), is described by a scheduling 
scheme, the algorithms of which are polynomial 
bounded in N. So the attempt to keep track of the 
increase of complexity when generalizing the sche­
duling problem is made wi,th 'arbitrary M, allowing 

(alA FAWD G is called a forest (anti-forest) iff 
each node in G has at~one immediate suc­
cessor (predecessor). If a forest (or anti­
forest) G is connected, it is called a tree 
(or anti-tree). 

(b)A tree (anti-tree) is called 1-tree (l-anti­
tree) iff all nodes with indegree (outdegree) 
~ 2 are located on one path (respectively) and 
for each edge of G its target (source)-node 
lies on this path. A FAwn G is called an ele­
mentary ~ iff G is the disjoint union ~ 
1-tree and 1-anti-tree (see figure 1). 
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the precedence relation to become somewhat more 
complex than that of a forest or anti-forest, and 
not the other way around, with arbitrary FAwn G, 
allowing M to become larger than 2. 

For the preemptive case and arbitrary Wi, 
1 SiS N, the authors will submit further and 
more general results in [26]. 

II. Results 

Let G be a basic FAwn and let Wi=l, 
1 SiS N. For the case that preemptions are not 
allowed an algorithm bounded by NM+3 is derived 
first that determines CTmin(G;M). If G is an ele­
mentary FAWD moreover the set An(G;M;CT) of all 
nonpreemptive schedules will be described for an 
arbitrary given CT ~ CTmin(G;M). The problem of 
determining Mmin(G;CT) for arbitrary CT > 0 such 
that An(G;Mmin(G;CT);CT) # ~ will be investigated 
elsewhere. For ease of presentation we introduce 
the follOWing notions. 

For a basic FAWD G we ~efine G- to be a ma­
ximal anti-forest of G and G to be the subgraph 
of G consisting of all nodes of G not contained in 
G- and all edges betwe~n these nodes in G (see 
figure 1). Obviously G is a forest. Note that in 
general G- is not uniquely defined and that the 
algorithm for constructing it is polynomial boun­
ded (see [25]). We do not represent a graph G in 
the usual way (see figure 1) but use the self-ex­
planatory representation 'of G in figure 2. Such a 
representation of G is called stripe representation 
R(G). Note that for each G there are infinitely 
~ stripe representations R(G). For an arbitrary 
stripe representation R(G) of G let b(R;G;CT-tl 
for 0 S t S CT be the number of tasks cut by a 
height-line through CT-t (see figure 2). For an 
arbitrary G, M and CT, the stripe representations 
of ,principal interest are those for which 

,0 b(R;G;CT-t)dt=N and b(R;G;CT-t)S' M, OStSCT; 
JCT 

these are called (M,CT)-stripe representations ~ 
G. An (M,CTl-stripe representation R(G) of G is 
called monotonic increasing (decreasing) iff 
b(R;G;CT-t) S b (R;G;CT-t') (b(R;G;CT-tl 
~ b(R;G;CT-t'), respectively) in this representa­
tion R(G) for 0 S t S t' S CT. 

For arbitrary integers CT > 0 and M > 0 and 
an arbitrary subgraph G' of G let pd(G';CT-t) be 
a mapping: {[i-1, i) ~ i"l, ••• ,CT} {O,l ,2, ••• ,M} , 
called the processor distribution ~~. For 
oS t S CT the value of pd(G';CT-t) gives us the 
number of processors available for processing of 
G' .at time t. We sometimes use the'shorter nota­
tion pd when no confusion is possible. For arbi­
trary pd let An(G';pd;CT) denote the set of all 
schedules for-complete processing of G' with pd 
processors in CT time units. An (M,CT)-stripe re­
presentation R(G') of G' such that 
b(R;G';CT-t) S pd(G';CT-t), 0 S t S CT, is called 
a (pd,CT)-stripe representation ~~. 

Lemma 1: Let G be a FAWD, let CT> 0 and let 
pd:= pd(G;CT-t). Then 
An (G;pd;CT) # ~ * 3 (pd,CT)-stripe represen­
tation R(G) of G. 
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Proof: 

- The level-by-level schedule, using 
pd(G;CT-t) processors at time t and ap­
plied to G in representation R(G), is 
in !.n(G;pd;CT). 

• Let sEA (G;pd;CT). Processing G according 
S defines a (pd,CT)-stripe representation 
of G. q.e.d. 

Theorem l: Let G be an arbitrary ba,!.ic FA~ with 
weights Wi=l, lSi S N, and G and G de­
rived from G as defined above. Let CT and M 
be arbitrary integers such that An(G;M;CT) 
;& <1>. -
Then there exists a pd-:= pd(G-;CT-t), mono­
tonic inc~easing, and a 
pd+:,=pd(G ;CT-t), monotonic decreasing, such 
th~t _ + + 
pd (G ;CT-t) + pd (G ;CT-t)S M, 0 S t S CT, 
~d_ _ n + + 
!. (G ;pd ;CT) ;& <I> and!. (G ;pd ;CT) ;& <1>. 

Proof: From An(G;M;CT) ;& <I> and Lemma 1 we get an 
(M,CT)-stripe representation R(G) of G and 
therefo~e the stripe represe~tations R~G-) 
and R(G ), too. If these R(G) and R(G ) are 
not monotonic increasing and decreasing, re­
spectively, then we change them - without 
violating precedence rules in G - such that 
the r~sulting stripe representations of'G­
and G have this property. The way this ex­
change is done can easily be seen from fi­
gure 3 and is described now. In this case 
there exists an integer to, 1 S t S CT, 
such $hat at least on~ of the two equalities 
b(R;G ;CT-~) = b(R;G ;CT-~+l) + Kl and 
K2 + b(R;G ;CT-tol = b(R;G ;CT-to+l) holds 
for some KI, K2 > O. We show how to proceed 
in the case that both equalities hold; the 
case that only one of them holds is treated 
by applying only a part of the procedure de­
scribed subsequently. We first investigate 
the case KI = K2 = 1. 

+ + 
A~ b(R;G ;CT-tol = b(R;G ;CT-to+l) + I and 
G i~ a forest there is'at least one task T 
in G starting on heightli~e CT-to in the 
present representation R(G ), that has no 
predecessor ending on heightline CT-to. The­
refore it could be shifted up by ~ne, lea­
ding to a new representation R' (G ), if by 
this action no precedence constraint of the 
original graph G were violated. Let us as­
sume that we violated such a precedence con­
straint of G. Then there is a ta~k T' in G-, 
which is a predecessor of T in G • Then be­
cause G- is a maximal anti-forest the task 
T belongs to G-, what is a contradiction. 
Therefore T can be shifted up by one to 
start on heightline CT-to+l. The analogous 
argument allows us to shift one of the 
tasks of G- ending on heightline CT-to down 
by one to start on CT-to. This is true be­
cause G is a basic FAWD. 

If KI and/or K2 are greater than one and/or 
there exist several to, for which the above 
equalities hold, finite repetition of this 
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Figure la-

An example of a basic FAWD G represented in 
the usual way. 

Figure Ib 

A_decomposition Of G !nto a maximal anti-forest 
G and a forest G • G is the subgraph of G con­
sisting of all nodes of G not contained in G­
and all edges between these nodes in G. 
The edges deleted from G are drawn by dashed­
lines. 

Figure lc 

An example of a I-tree and a l-anti-tree, 
respectively. 
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procedure eventually provides us with a mo­
notonic_de~reasin~ (M,CT)-stripe represen­
tation R(G ) of G and a monotonic increa­
sing one R(G-) of G-. Obviously then G is 
brought to another (M,CT)-stripe represen­
~at~on, i~ed~ately defined by 
R(G) and R(G ). 

We now define pd+:= b(R;G+;CT-t) and 

pd := b(R;G-;CT-t), 0 S T S CT. 

Then obviously pd+ and pd- are monotonic de­
cr~asing_and increasing, respectively, and 
pd + pd S M. 

Applyin~ the leyel-by-Ievel sch~du!e ([11]) 
!.it!:!.. pd and pd processors to R(G ) and 
R(G ), respectively, shows that 
n-- n++" ~ (G ;pd ;CT) # ~ and A (G ;pd ;CT) # ~. 

q.e.d. 

Corollary 1: Let the assumptions of Theorem 
be true. 
Then pd+ and pd- from Theorem 1 can be cho­
sen such ~at at leas~ one of the inequali­
ties+pd(G ;CT) ~pd(G ;CT) # 0 and 
pd(G ;0) • pd(G ;0) # 0 holds. 

Proof: Let R(G) be the (M,CT)-stripe representa­
tion of G con~tr~cted for ~he-proof of Theo­
re~ 1~ Let b(RLG LCT) • b(R;G ;CT)= 0 and 
b(R;G ;0) • b(R;G ;0) = 0 (otherwise no fur­
ther proof is needed). 

Apply the exchanging procedure described 
above to a highes~ t~sk T in R(G-) and 
lowest task T' in R(G ) such that T is moved 
up and T' is moved down and such that the 
r~sultin~ (M,CT)-stripe representations of 
G and G are monotonic again. Repeat this 
step as long as necessary until the asser­
tion becomes true (see [25]). q.e.d. 

It seems to be not difficult to generalize 
Theorem 1 to an arbitrary FAWD G whose underlying 
undirected graph is acyclic. In this case the pro­
blem arises to determine an appropriate decompo­
sition of G into a ~aximal anti-forest G- and its 
associated forest G ; this latter problem disap­
pears if G is assumed to be a basic FAWD. But dif­
ficulties arise if_one at~empts to extend the 
above notions of G and G such that Theorem 1 
holds for the case that G's underlying undirected 
graph contains cycles (see example in figure 4) • 

Given an elementary FAWD G and an arbitrary 
pd we often will make use of the so called 'high­
est task first'-schedule, SHTF(G), for selecting 
free tasks for assignment to the pd processors 
while processing G. This schedule was investigated 
first for G being a tree in [1] and for G being an 
anti-forest in [23]; in both cases pd = M was as­
sumed. 

CT=10 

/ 
/ 

J l 
" I " / 

/ 
J 

CT-3.5 

CT-5 -l 

f 
o 

/ 
/ 

I 

Figure 2a 

" " height-line CT-6 

The stripe representation R(G) of G. The lines 
represent the nodes, the weights of which deter­
mine the lengths of the lines (in this case 
Wi =1, 1 SiS N).The precedence rules in G are 
shown by the dashed lines; in this example 
b(R,G,CT-3.5) = 2 and b(R,G,CT-6) = 1. 

CT-5 I 
4-
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t~-L _J 
",----.---- H(G) 

o 

Figure 2b 

The special stripe representation RL(G) of G. 
The lines are placed as low as possible; in this 
stripe representation b(RL,G,CT-6) = 4 and 
b(RL,G,CT-8) = 2. 
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Lemma 2: Let G be an arbitrary i-tree or l-anti­
tree. Let CT > 0 and pd be an arbitrary 
processor distribution for G. Then the im­
plication holds: 

n n '" SHTF(G)q~ (G;pd;CT) ~ ~ (G;pd;CT) = ~ 

The proof of this Lemma is an elementary modifi­
cation of arguments used in [10,11,22,23], and is 
therefore omitted here. 

Theorem 2: Let G be an arbitrary elementary FAWD 
and M > o. Then CTmin(G;M) can be computed 
by testing (at most) NM different processor­
distributions, i.e.: CTmin(G;M) can be com­
puted by an algorithm the number of steps of 
which is bounded by const • M • NM+3• 

Proof: Due to Theorem 1 we may restrict ourselves 
to monotonic processor-distributions, the 
total number of which is NM• 
F~r a given pro£essor dis~ribution pd+ for 
G we define pd :=+M - pd_. By appl¥ing the 
SHTF-schedule to G and G (with pd and pd 
processors, respectively) and using Lemma 2 
it can be decided i~ at+most const • M • N2 
steps, whether An(G ;pd ;CT) # $ and 
An (G-;pd-;CT) #-<1>. In order to find the 
smallest such CT at most N repetitions of 
the whole procedure are required. q.e.d. 

Remarks: 

1) Note that without Theorem 1 it would have been 
necessary to test (2N)M different processor-dis­
tributions instead of NM• 

2) The restriction of G to be an elementary FAWD 
is sufficient but not necessary for validity of 
Theorem 2. The restriction allows us to use the 
simple SHTF for deciding the question, whether for 
an arbitrary given .1-tree or 1-anti-tree G', 
CT> 0 and pd the set An(G';pd;CT) is nonempty. If 
we omit this restriction totally, no effective al­
gorithm is known at present to decide the same 
question for the resulting more general case. The 
authors will give an investigation of this problem 
elsewhere and hope to be able to derive polynomial 
bounded algorithms to solve the more general prob­
lem. 

3) Obviously we used extremely crude bounds. The­
se bounds can substantially be improved by taking 
into account the structure of the graph investi­
gated (see [25]). 

Let G be an elementary FAWD, CT an integer, 
pd(G;CT-t) a processor distribution for G and CT. 
Then the triple (G;pd;CT), as well as all its com­
ponents, are called admissible iff ~n(G;pd;CT)# ~. 
For given G and CT let PD(G;CT) denote the set of 
all admissible pd's. Le~G+ and G- be G's under­
lying 1-tree and 1-anti-tree, respectively; let 
pd+EPD(G+;CT-t) and pd-EpD(G-;CT-t) and let 
pa(G;CT-t) denote the processor distribution for 
G with pa(G;CT-t):= pd+(G+;CT-t) + pd-(G-;CT-t), 
o ~ t ~ CT, which only allows pd+ processors for 
G+ and pd~ processors for G- at any time t, 
o ~ t ~ CT. Let (G;pd;CT) be an arbitrary admis­
sible triple; then an assignment X of atmost 
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b(R,G+,CT-t +1) 
CT-t +1 0 

b(R,G-,CT-t +1) 
o 

o 

CT-t o 

T 
J 

.; 
T 

CT-t -1 
o 

I I o 
2 3 4 5 

Figure 3 

Situation before exchanging 

Figure 4 

Figure 5 

An example for the case M 3. 

ill 
6 7 8 
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pd(G,CT) processors to free tasks of G is called 
admissible iff the triple (G\T(X),pdICT-l) is ad­
missible, where T(X) denotes the set of tasks from 
G assigned by x7' let !.(G,pd,CT) denote the set 
of all admissible assignments X for (G,pd,CT). 

Theorem 3: Let G be an elementary FAWO and let G + 
and G- be its underlying I-tree and l-anti­
tree I let CT > O. Let pd+ (~,CT-t) be an 
arbitrary processor distribution for G+.+Let 
G+ and G- be processed with pd+ and M-pd 
processors, respectively, both according to 
SBTF· 
Then pd is not admissible if G is not pro­
cessed completely after time CT. 

The proof of Theorem 3 is an elementary 
application of Lemma 2. Remember that the 
complexity of the SHTr scheduling algorithm 
is bounded by const • M • N2. Note also that 
SHTF for M processors applied to an elemen~ 
tary FAWO'G (omitting the processor distri­
bution prescription) need not imply complete 
processing of G in CT time units (see fi­
gure 5). 

We will now explain the form of the solution 
to the problem of describing An(G,M,CT) that one 
would like to get and that one we are able to de­
rive at present. 

For an arbitrary given admissible triple 
(G,M,CT), where G is an elementary FAWD, we give 
a scheduling scheme p from that all schedules from 
An(G,M,CT) could be derived (by appropriate inter­
pretation of this scheme) provided that we can 
find suitable algorithms x and z. 

SCHEMA P 

( Start ) 
J. 

I Input: Elementary FAWO G, J 
admissible integers M > 0 and CT > 0 

I t:= 0, ~:= (6 I 
- Apply the algorithm z to the admissible 

triple (G;M,CT-t) in order to compute the 
sets PD+(~,M;CT-t) C PD(G+,M;CT-t) and 
PD-(G-,M,CT-t) C PO(G-,M;CT-t) such that 
(M-pd+)€PD-(G-,M;CT-t) for each 
pd"€fQ+(G+;M,CT-t) • 

- Choose an arbitrary pd+EPO+(G+,M;CT-t). 
- Apply the algorithm x to the admissible trip-

les (G+;pd+;CT-t) and (G-;M-pd+;CT-t) in or­
der to compute the sets x+:= ll(G+,pd+,CT-t) 
and X-:= X(G-,M-pd+,CT-t). 

- Choose an arbitrary assignment x~x+ and 
X""€ X-. -

- S:" iu ((t,T(X+) U T(X-»}, delete 
i(x+") U !(x=) from-G, 
t:= t+l. 

~----------------NO-<t~YES 
loutput: Sequencing-list ~ I 

( Stop 

We first note that scheme p becomes a sche­
duling algorithm as soon as it is interpreted, i. 
e. a rule is added, how to choose pd+e:PD+ ,x+e:A+and 
x-€X-. The algorithms z and x are not affected by 
thill specification. Second we see that scheme p 
would provide us with the most general solution to 
the scheduling problem in this case At the be­
ginning of each time interval O,I,2, ••• ,CT-l, the 
algorithm z first shows us what possibilities 
exist for the choice of admissible pd's. After 
having chosen a suitable pd+, algorithm x tells us 
what possibilities exist for the choice of X that 
are compatible with the already fixed Pd. 

As the investigations concerned with an al­
gorithm z are quite elaborate ([25]), another 
scheme a for describing the set An(G,M,CT) for an 
arbitrary admissible (G,M,CT) is-presented. Com­
pared to the above scheme p this new scheme (J will 
not contain the algorithm z but an algorithm sche­
me ~ which describes the set PO+(G+,M,CT-t) and 
therefore PO-(G-,M,CT-t), too~we give this sche­
me ~ first. As we are interested mainly in poly­
nomial boundedness we can afford to construct a 
simple ~. 

SCHEMA ~ 

( Start ) 
IInput: Elementary FAWO G, admissible M and CT I 

- Apply the algorithm y to the admissible tri­
ple (Gt,M,CT-t) in order to compute 
Q(t):= (q(t)/ 0 S q(t) S M such that 
Pd+(G+,CT-t'):= q(t') and 
pd-(Gi;CT-t'):= M - q(t'), 0 S t' S t, define 
a 'prefix' of length t of an admissible Pd 
for G and CT} • 

- Choose an arbitrary q€Q(t) let q(t):= q 
and delete 2.(t)\{q}. - + 
Delete q(t) highest free tasks from Gt and 
M - q(t) highest free tasks from Gt (if on­
ly q' < q(t) and/or q" < M - q(t) free tasks 
are available in Gt and Gi, respectively, 
delete these q' and/or q" tasks). 
t:= t +1. 

~ ____________ ~N~O~~ 
~ 

I Output: Pd:= {(q(t),M - q(t»/ 0 S t S CT:-.~D 
J, 

( Stop ) ----
Note that for algorithm y we can use a sim­

ple modification of an algorithm y' to compute 
CTmin (G,M) accord.1ng Theorem 2, then y is bounded 
by const • M2. ~3. 

Theorem 4: Let (G,M,CT) be an admissible triple, 
where G is an elementary FAWO. Then the al­
gorithm scheme ~ describes the set of all 
admissible pd's for the triple (G,M,CT). 
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Again we do not give a formal proof but note 
that 

each interpretation of W leads to an ad­
missible po for (G,M,CT), 
each admissible pd for (G;M;CT) can be 
obtained from w by an appropriate inter­
pretation (defined by this pd). 

For the rest of the paper we are mainly con­
cerned with the definition and investigation of 
the algorithm x from p. We will define x only for 
the case that G is a l-tree G+; the case that G 
is a l-anti-tree can be treated similarly. Let 
us remember that x is to be a polynomial bounded 
algorithm the application of which to an admissi­
ble triple (G+;pd;CT) provides us with the set 
~(G+;pd;CT) of all admissible assignments. This 
set 1l will essentially be defined by a 'lowest 
assignment function Xc' which has the property 
that an arbitrary X belongs to Jl. iff x's 'associ­
ated' assignment function if is 'higher' than XC. 
Explicitly this means: Xo is a total function from 
{t,2", ••• B(G)} - {0,1, ••• ,k} such that 
B(G) _ 
1=1 Xc(i) = k, where k is defined by x, for an 

arbitrary assignment X its associated assiqnment 
function X: {t,2, ••• ,B(G)} - {O,l, ••• ,k} is total 
and defined by Xli) = number of processors assig­
ned to tasks of G+ starting on height-line i, 
1 s: i s: B(G). if is higher than Xc iff 

it, X(B (G) -i) ~ it, Xc (B (G) -i) for all 

j = O,l, ••• ,B(G) - 1. 

Definition of algorithm x 

Let an arbitrary admissible aSSignment 
(G+,pd;CT) be given, where G+ is a l-tree in 
RL(G~ representation. " 
1) Determine the maximal number k' of processors 
that might be left idling by an admissible assign­
ment XfX(G+;pd,CT). (This k' can be computed by 
applying the SBTF for l-anti-tree to the 'inver­
sed' of G+, see [23]). Let k:= pd(G+;CT) - k'. 
If k = 0 then Stop, (because an arbitrary assign­
ment of k" processors, 0 S k" s: pd(G+;CT), to ar­
bitrary tasks of G+ is in JO .In this case there­
fore algorithm x ends here. 

We now determine Xo for k processors. Let 
initially Xo(i):= 0, 1 SiS: B(G). Let i = 1, 
Gt:= G+ and h(i):= 1. 

2) If i > k ~ Stop, i.e. in the case k > 0 
algorithm x ends here. 

begin 
L: if check (Gt;CT-l;h(i» then 

begin Xo(h(i»:= Xo(h(i» +1; 
i:= i+l; 
delete one task from Gt-l on height­
line h(i-1) and call the result Gt, 
goto 2; 

end; !!.!!. 
begin h(i):= h(i) + 1, 

end; 
end; 

goto L; 
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+ The boolean procedure check (Gi ,CT-1;h(i» 
returns the value true iff 

L + a) in R (Gi ) there is a free task T on height-
line h(i) and 

b) deletion of task T and the highest k-i free 
tasks from Gt results in a graph G+' such that 
(G+';pd;CT-1) is an admissible triple. 

End of description of algorithm x. 

Theorem 5: Let G+ be a 1-tree, let the triple 
(G+,pd;CT) be admissible and let the algo­
rithm x, and the result k and Xc of its app­
lication to (~;pd;CT) be as defined above. 
Finally let X be an arbitrary assignment of 
k processors to free tasks from G+ and if its 
associated assignment function. Then the 
following implication tolds: 
XfX(G+;pd;CT) .. X is higher than X • 

- 0 

Remark: If IT(X)I > k then only k of the tasks 
assigned by X are subject to the above constraint. 

The proof of Theorem 5 is elaborate and vo­
luminous; therefore only its main ideas are cha­
racterized by listing the Lemmas involved. A com­
plete proof is given in [25]. 

Lemma 3: Let (G+;pd;CT) be admissible, let 
XfX(~,pd,CT) and let x' be an arbitrary 
aSSignment with I.!.(x') I ~ I.T.(X) I. 
The following implication holds: 
X' is higher than X" X'€!(G+;pd;CT) • 

As Xo defined by algorithm x is admissible 
by construction, the Lemma 3 assures that all 
assignments 'lying above' Xc are admissible, too, 
i.e. Lemma 3 proves - from Theorem 5. 

Lemma 4: Let the assumptions of Theorem 5 be true 
and let Xf~(G+;pd;CT). Then 

a) if X6(i) = 0, 0 s: i s: i' .. Xli) = 0, 
OS:iSi'. 

b) if X(i) = X6 (i) 
os: i s: i' .. if(i'+1) ~ ifo(i'+l). 

By Lemma 4 the monotonic increase of h(i) in al­
gorithm x is justified. 

Lemma 5: Let (G+;pd;CT) be an admissible triple. 
Let X be an arbitrary assignment such that 
there exist i', i", 0 S i'< i'+2 S i" s: B(G), 
for which Xli) SXo(i), 0 SiS: i' and 
i" s: i s: B(G) and Xli) > Xc(i), i'"< i < i". 
Then X¢!(~'Pd;CT) • 
By the last Lemma the uniqueness of Xc is 

established. The proof of implication" from 
Theorem 5 follows essentially from Lemma 4 and 
Lemma 5. Note finally that the complexity of the 
algorithm x is bounded by const • (M+N) • M2• ~+ 3• 

We summarize the results of this paper in 

Theorem 6: Let (G;M,CT) be an admissible triple, 
where G is an elementary FAWD. Then 
scheme a, defined by the diagram 
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SCHEMA CJ 

Input: Elementary FAWD G 
and admissible integers M and CT 

--''---------_ .... _-/ 

Invoke scheme p in order to obtain an I 
admissible pdEPD(GiMiCT-t).+ + ' 
Apply the algorithm x to (G ipd iCT-t) 
and (G-ipd-iCT-t) in order to obtain 
the sets x+ and x-. 
Choose an--arbitrary X~X~ and x-Ex-. 
S:= S U t(t,T(X+) U TOn)), -
delete i(X+) U :!'.(x-=-) from G. 
t:= t+1 

L....... _______ ..,--______ J 

list ~ 

Stop 

characterizes the set An(G+iMiCT). All algorithms 
involved are polynomial bounded. 
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Abstract -- This paper describes a simple 
algorithm to schedule a restricted set of jobs on 
a multiprocessor system with two classes of pro­
cessors. Through deterministic analysis an upper 
bound is established for the behavior of the al­
gorithm. This bound is seen to compare favorably 
with the upper bound intrinsic to the model. Sim­
ulation results show the algorithm to be useful in 
scheduling less restricted job sets. 

1. INTRODUCTION 

In recent years computing systems have been 
routinely called upon to support a variety of on­
line services in addition to carrying an ever in­
creasing computing load. One major mainframe man­
ufacturer's response to these divergent needs is 
a multiprocessor system composed of two types of 
processors. 

One class or type of processor is primarily 
designed to perform floating-point arithmetic 
operations very efficiently. Accordingly, absent 
from its instruction set are many functions re­
quired by general purpose usage. Notable among 
these are character oriented and I/O instructions. 
Let the type and number of this kind of processor 
be designated as A and m respectively. 

The other class of processor is equipped with 
a very low level instruction set. Character op­
erations if not elegant are at least straight­
forward. Its significant aspect, however, is the 
ability of this class of processor to perform I/O. 
In like manner, let the type and number of this 
kind of processor be designated as B and n, re­
spectively. Any job run on such a system will 
necessarily require both kinds of resource. 

The resource requests of a job may be re­
presented by a weighted, directed, and acyclic 
graph as shown in Figure 1. The graph is called 
the resource request graph of a job. This graph 
completely specifies the resource requests on the 
two types of processors and their precedence re­
lations. As indicated in the graph, the two types 
of requests are made to processors A and B, 
respectively. 

A 

B 

Figure 1 
Resource request graph for a typical job. 

Given a collection of such jobs it is the function 
of the scheduling algorithm to assign tasks (nodes 
in the resourse request graph) to available pro­
cessors. A task is the. basic unit of allocation, 
i.e. once begun on a processor, it executes with­
out interruption to completion. This is to say, 
consideration will be restricted to non-preemptive 
scheduling algorithms. 

The performance of a scheduling algorithm may 
be measured in several ways. Some of these are: 
mean throughput, average response time, and dead­
line compliance. The measure used in this paper, 
however, shall be the amount of time needed to 
complete the entire set of jobs. An optimal sched­
ule, therefore, is one in which the entire set of 
jobs is completed in the minimal time. 

It is generally acknowledged, based on anal­
ysis of similar models, that the generation of 
optimal schedules for such a general problem~re­
quires an exponential numb~r of steps. If a prob­
lem of this nature were to have very large nodes, 
then the benefits derivable from the optimal 
schedule might very well justify a branch-and­
bound approach, or perhaps even an exhaustive 
search. Since this is not the case under consid­
eration, the hope for problems of this type lies 
in the development of simple heuristic algorithms 
which will produce optimal or near optimal results 
for the models in question. Where the models 
themselves defy analysis, it may be useful to 
develop heuristics which apply to simplified sub­
sets. This approach seems to be the underlying 
motivation for work done on several similar models. 

T. C. Hu obtained results scheduling a tree 
of equal length nodes on a system of n identical 
processors [5]. Fujii, et al [2,3] and Coffman 
and Graham [1] have treated arbitrary acyclic 
graphs composed of equal length nodes and achieved 
optimal results for two processors of equal 
abili ty. 

Optimal results were also achieved with a 
simple algorithm for flow-shop jobs run on two 
machines [7]. Extensions were made to this result 
which produced optimal schedules for two machines 
and all jobs with resource graphs of two nodes [6]. 
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The possibilities are shown below: 

A 

~ ~ 
CD 

B G) 
Type 1 Type 2 Type 3 

Figure 2 
!esource graphs treated by Jackson. 

Graham [4] points out the existence of, and 
bounds the anomalous behavior of acyclic graphs 
executed on n identical processors when demand 
scheduling is used. Simulation results presented 
by Manacher [8] show the occurrence of anomalous 
behavior to be a common occurrence. This leads one 
to suspect that the bounds achieved for such cases 
may be a valid indicator of expected behavior. 

Shen and Chen [9] have achieved bounds for a 
multiprocessor system with two classes of pro­
cessors when the job set is a restricted class of 
flow-shop jobs. This suggests a valid starting 
point for this analysis: the unrestricted flow 
shop. 

2. Analysis of the Flow-Shop Model 

Definition of the Model 

Let S denote a system composed of m pro­
cessors of type A, and n processors of type B. 
Let F = {fl,f2, .•• ,fr_l,fr} be a set of flow-shop 

jobs. Each job in F is represented by a two­
tuple, (ai,b i ), where ai = A-processor request 

and bi = B--processor request, and ai must precede 

bi • That is to say, F is the set of jobs of 

type 1. 

Algorithm 

Johnson's optimal solution [7] is for the 
special case of the model for which m=n=l. His 
strategy consisted of ordering the jobs according 
to the following simple criterion: 

fi procedes fj if: min(ai,b j ) < min(aj,bi ) 

A job set in which all its members have been 
sorted by the above criterion is said to follow a 
Johnson Order (JO). The optimality of the result­
ing schedules was shown by proving that the order­
ing minimiZes the wait time on the B - processor. 
Furthermore, the existence of ties, when the left 
and right side of the relation are equal, indi­
cates the non-uniqueness of the optimal schedule •. 

The ordering as it stands is unsuitable for 
use on multiprocessor systems since it fails to 
take account of the number of processors of each 
type. One would like to measure the impact of a 
node on the total resources of the system. This 
suggests a modification to the Johnson ordering 
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as follows: 
a. b. a. b. 

fi precedes fj if: min em \t) < min(~-'n 1) 

in case of equality, largest f first. 
This Modified Johnson Ordering (MJO) has a comfort­
able intuitive feeling since one is obtaining the 
optimal schedule on a Johnson machine of equiva­
lent power. Denote this system as S'. S' has a 
single A'-processor of speed=m.speed(A), and a 
single B'-processor with speed=n. speed(B). It is 
also noteworthy that MJO is a generalization of 
JO, in that they are identical for m=n=l. 

One would hope that the demand schedule re­
sulting from the MJO is optimal on S as well. 
The following example shows such a case. 
Example 1: Let m=n=2 and F = {(9,O),(9,O), 

(1,S),(1,S),(1,10)} 
A demand schedule for the job list ordered as 
given results in a worst case schedule, TL. 

t : I~~ A 

B 

Figure 3 

Worst case schedule for example 1. 

MJO causes the jobs to be executed in the reverse 
order of their appearance in F. This produces the 
optimal schedule for this set, shown below 

A I ~111 ~-T] 

~ 10 

5 5 
B 

Figure 4 
Optimal schedule for example 1. 

Optimal schedules, however, are not always pro­
duced by MJO. The next example shows MJO generat­
ing a schedule which is much larger than optimal. 

Example 2: Let m=n=2 and F={(1,S),(1,S)l2,lO)} • 
The jobs as listed are sorted by MJO. The demand 
schedule, which is actually a worst case, is 
shown below. 

AfJ 
B !a--_:--~----l_O----~ 

Figure 5 
Worst case schedule for example 2. 
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Reversing the job list results in a better 
schedule: 

A~ 
B VL.l-.l _----rlO~---,r-l 

If. 5 I 5 

Figure 6 
Optimal schedule for example 2. 

These examples prompt two questions regarding MJO. 
How much of a saving can MJO produce? And, how 
badly can it perform? 

Bounds 

In deriving the MJO algorithm for S, we 
made intuitive use of S', a Johnson Machine of 
equi~alent power. Perhaps it would be instruct­
ive to further compare these two systems in order 
to determine the performance of MJO. The re­
quests for resource usage on S was represented 
by a two-tuple, (ai,bi ). This same job, when 
executed on S' requ1res resource usage of 
(al,bi)' where 

a! 
1 

a. 
1. 

m b! 
1 n (1) 

Since S' has the equivalent power of S and is 
of simpler structure, one would intuitively 
expect that it could perform the same work load 
as S. 
Formalizing this expectation we have: 
Lemma 2.1: Given a schedule for a job set F, 

on a system S whose completion time is T , 
then there exists a schedule on S' with a e 
completion time of T~ such that 

T' < T e - e -

Proof: The proof is by construction of the re­
quired schedule on S'. 

As a first step, one considers a simulation 
by S' of the schedule yielding Te on S. To 

accomplish this we divide the schedule into unit 
time slices. For each time slice on S from 1 to 
Te , let A' execute a unit portion of that task 

executing on each of the m A-processors, while 
B' executes a unit portion of that task executing 
on each of the n B - processors. Since speed (A') 

=m.speed(A) and speed(B')=n-speed(B), it is 
clear that S' can keep up with the progress of 
S. Let a time slice of a. or b. executed on S' 

1 1 

be denoted by ai and bi respectively, where 

b~ 
1 

b. 
1 

nTe (2) 

A time slice in which no task is executing is 
said to be executing the idle task, denoted.by x. 
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Define 
Tai 
Th. 

1 

time of the last occurrence of ai 

time of the first occurrence of b~ 
----- 1 

The second step is to rearrange this simu­
lated preemptive schedule into a non-preemptive 
permutation schedule. The following procedure is 
used: 

Step 1. Sort the list of Ta's in ascending order. 
Do the same for the list of Th's. 

Step 2. Relabel the time slices as follows: 

a~ -+- a'! where j 
1 J 

is the rank of Ta. in 1 
the sorted list of Ta's 

M -+- b'! where j is the rank of Th. in 
1 J 1 
the sorted list of Th's 

Step 3. Apply the following interchange rules 
until no further interchanges are possi­
ble, i.e. until all slices of each task 
are juxtaposed. 

Rule 1. If ai immediately precedes 

a; and i >j, or if x immedi­

ately precedes a:-, then inter­
J 

change the two. 

Rule 2. If b:- immediate ly precedes b:-
1 J 

and i > j or if b: immediately 
1 

precedes x, then interchange 
the two. 

Rule 1 has the property that no Tai is ever in-

creased, i.e. the completion time of no A task 
is delayed by the use of Rule 1. Rule 2 has the 
complementary property in which no Thi is ever 

decreased, meaning that all precedence constraints 
between A- and B- tasks are preserved. 

After all time slices for each task are jux­
taposed, the third step is to replace the time 
slice notation with the job notation. The order 
of appearance of these jobs on A' is a permuta­
tion of F which will produce this schedule or 
one better. The schedule thus constructed is a 
permutation schedule since the order of completion 
of A- tasks is the same as the order of the initi­
ation of B - tasks, which for S' is the same as 
the order of initiation of A - tasks. 

Since there could exist wait time between the 
completion of an A task and the initiation of 
its associated B task, the schedule produced 
thus far is not necessarily a demand schedule. 
Therefore, the final step is to convert that sche~ 
ule to a demand schedule by advancing the start of 
all b.'s until either the time their associated ~ 

1 

process completed or the completion of the previ­
ous B -task, whichever is greater. 

The following example will serve to clarify 
the proof as well as to show the need for such a 
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mechanism to guarantee the inequality. 

Example 3: Let m=n=3, and F={f1,f2,f3,f4,fs}where 

fl=f2=(4,0),f3=(1,3),f4=(1,2),fs=(1,1) 

The schedule producing Te is shown below 

Figure 7 
Optimal schedule for F on S. 

The first step produced a simulated schedule on S' 
as follows: . 

A' 

Figure 8 
Simulation of Te by S' 

The second step first sorts the lists of times: 

Index Ta's Th's 

1 Ta3 Th3 
2 Ta4 Th4 
3 Tas Ths 
4 Tal 
5 Ta2 

then re-1abels the the time slices using rank in 
the sorted lists. 

A' t t t t t t t t t t t 
a4 as al a4 as a2 a4 as a3 a4 as x 

B' x x x bt 
1 bt bt t t t x x 1 2 x b l b2 b3 

Step three performs all possible interchanges re-
sulting in 

* * * * * * * * * * * A' a3 a4 as a1 a1 a1 a1 a2 a2 a2 a2 x 

* * * * * * B' x x x x x x b3 b3 b3 b4 b4 bs 
The ordering of F which produces T~ is now clea~ 

namely f3,f4,fs,fl,f2' The transformation by the 

last step to a demand schedule results in a time 
T' 3.67. e 

As pointed out in Example 2, MJO may not 
always produce an optimal schedule on S. Since 
it does produce the optimal schedule on S', it is 
of interest to compare the performance of MJO on 
S to that on S'. A multiprocessor system such 
as S since its power is based on parallel execu­
tion of many jobs, cannot f1.Ulction effective 1y 
when severely "1.Ulderloaded". To obtain a meaning­
ful comparison we would therefore like to discard 

cases where a single job dominates the schedule. 
This may be accomplished by requiring the follow­
ing loading constraint (LC): 

l<i<r (3) 

Lemma 2.2: Given a job set F, subject to LC and 
ordered by MJO. If Th and Th are the comple-

tion times of a demand schedule on S and S' 
respectively, then 

1 
< 2 max (m,n) 

Proof: The proof is by contradiction. We shall 
assume that there exists a set of jobs which vio­
lates the b01.Uld. We may further assume that the 
number of jobs, r, is minimal. That is, br is the 

last B process to terminate on S when ar is 

the last job started, i.e. the last job in MJO. 

We can make the above assumption because if 
bk is the last terminating process and k < r, we 

can consider the truncated set f 1,f2, .•. ,fk • The 

completion time on S for the tr1.Ulcated set, Ph' 

is exactly Th . On the other hand, the completion 

time on S' of the truncated set, Ph' is less than 

or equal to Th since there are less jobs in the 

tr1.Ulcated set. Therefore, 

Ph Th 
--- >--- > 2 

P' 
h T' 

h 

1 , 
max(m,n) 

and the tr1.Ulcated set forms a smaller C01.Ulter­
example to the lemma. We shall therefore consider 
r to be minimal. 

The proof divides into two cases: 

Case 1: The last task to complete is on a 
B processor 

Case 2: The last task to complete is on an 
A processor. 

Case 1: 

Let Tai denote the time ai completes execution 

and Thithe time bi begins execution for all i. 

The proof of this case shall be treated in three 
subcases. 

Case la: Ta = Th 
r r 

Demand scheduling requires there be no im­
bedded idle time on the A or A' processors, 
i.e. the schedule is compact to the left. The 
latest time at which ar can begin is immediately 

133 

after the completion of all other tasks. Thus 
for s, 

(4) 
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Correspondingly the time on S' is given by 

r 
+ br T' >.!. l: a. (5) h-m i=l l. --n 

Dividing (4) by (5) yields 

1 + • (6) 

Since the set forms a counter-example to the lemma 
T a (m-1)+b en-I) 

2 _ 1 < J!. < 1 + r m r n ~7) 
max(m,n) T' 

h 
T' 
h 

which reduces to 

T' max(m,n)-l < (a +b ) max(m,n)-l • (8) 
h max(m,n) r r max(m,n) 

And this is a contradiction by the loading con­
straint (3). 

Since consideration is restricted to demand type 
schedules, the following cases which treat 
Tb r > Tar necessarily have all B processors 

busy on the interval [Tar,Tbr ), as shown in 

Pigure 9. We use Tk to indicate the end of the 

last idle period on the B processors prior to 
Tb. r 

A 

B 

Til' 14,. b~ 

Figure 9 

Case Ib: Tbr>Tar & Tk = 0 

If there is no idle time on the B processors 
except terminal idle then the latest start time 
for the last B process is immediately after all 
other B processes have completed, or 

r-l 
T <.!. l: b. + b (9) 
h - n i=l l. r 

If there is no initial wait time on the B - pro­
cessors then the first m A processes must be 
zero. And the time needed on S' is 

r 
T >.!. l:b 
h - n i=l i 

The desired ratio is 

1 + 
n-l b 

n r· 
T' 
h 

(10) 

(11) 

which leads to the same contradiction as (6). 
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Case Ie: Tb > Ta & Tk > 0 
r r 

Prom Pigure 9, one sees that the schedule for P 
which produces Th is first A-bound, and then B-

bound. All previous cases dealt exclusively with 
one class of processors or the other. Therefore, 
to facilitate treatment of this case one would 
like to treat separately each group of jobs. 
Define partitioned job sets as follows: 

Job set 1, pI, contains every job which completes 
before Tk in addition to the truncated portions of 

those jobs in execution at that time. Or, 

(a~,b~) , l<i<r such that 
l. l. --

a~= max(O,min(a.,Tk-Ta.-a.)) 
l. l. l. l. 

b~= max(O,min(b.,Tk-Tb.))} • 
l. l. l. 

Job set 2, p2, contains the remainder of all jobs 

truncated to form pI as well as all jobs which 
begin execution after Tk • Or 

2 2 (ai,b i ) , l.s.i.sF such that 

a~= max(O,min(a.,Ta.-Tk)) 
l. l. l. 

bi= max(O ,min (bi' Tb i +b i -Tk)) } 

Each job set has r jobs as before although ad­
mittedly many are null. This manner of defini­
tion, however, leaves the indices constant. Por 
the treatment of these partitioned job sets to 
have relevance in bounding the total set, the 
following relation must be established. 

, (12) 

where are the completion times of each 

of the partitioned job sets, sorted by MJO,and 
executed on S. 

The composition of P may be divided into 
the following subsets according to the makeup of 

p2. Define 

x = set of job indices l=o , xEX x 

Y = set of job indices 2 yEY a =a y y' 

U = set of job indices 0<a2<a , uEU u u 

Referring to the ordering of the original set 
it is clear that 

fu precedes fy for all uE' U and 

for all yEY • 
Since the set was subjected to MJO 

a b a b 

P, 

(13) 

Min (mu , t-) < min(iif- ' nU ) for all uEU 
(14) 

and for all yEY 
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Therefore 

fx2 precedes ~ precedes f2 
u y (15) 

for X, U, & y 

Since the validity of (14) cannot be altered 

merely by the reduction of au/m when all else re-

mains equal, all fx' having zero A - requests, 

precede all else. Therefore, the execution of 

jobs in p2 is identical to their execution in P 
to within a permutation of processor numbers. 
Therefore, 

And 
1 r 1 1 

T=-};al..~Th 
k m i=l 

Substituting (17) into (16) produces 

1 2 
Th ~ Th + Th 

and the validity of (12) is established. 

(16) 

(17) 

(18) 

Consider next the relationship between Th 
l' 2' and Th + Th ' the sum of execution times on S' 

of pI and p2 ordered by MJO. Prom the definition 
of this sub case and the description of the part-

itioning, the exeeution time of T~' is governed by 
l' 2' the A - tasks. Thus when Th + Th is considered, 

no additional time is required for execution of 
the A--tasks. The only source of increased ex­
ecution time for the two subsets arises when the 
execution of all or part of a B task is "held 
up" due to the construction of the partitioned 
sets. This can happen in two ways. 

Pirst, the "rele~e" of b. for consideration l. 
by B' in the partitioned set is governed by the 
schedule of the A -- tasks on S. If ai is an 

initial task on S, the release time of bi is 

exactly ai • If ai is also chosen to be an initial 

task on S', then the new release time is ai/m. 

Thus it is possible to delay the release of bi by 

a maximum of a. em-I) due to the partitioning of l. m 
the job set. If ai is not an initial task on S, 

the earliest possible time to schedule ai on S' 

can not be sooner than the schedule time of ai on 

S. Therefore for tasks whose ordering are not 
changed by the partitioning of the job set, the 
release time of the B- tasks on B' can be de-

m-l layed up to ai(-m-), where ai is the largest A-

task. 
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The second source of delay is an A-task 
whose ordering is altered by the partitioning it­
self. There are at most m A-tasks which were al­
tered by the partitioning. Designate this set as 
U and let au be any member of the set. When the 

job set is executed as a whole, the time at which 

bu is released to B' is given by: 

u a. 
RCil = .}; ..!. 
u i=l m 

(19) 

When p2 is executed, the members of U may be re­
ordered. The release time for bu in the sequential 

execution of the partitioned sets is given by 

u-l a. 
RP < }; ...2. + }; 

a. 
1. 

u - i=l m i E U m 
a. 

}; _l. 
iEU m 
i;iu 

Let a i denote the largest member of U. 

becomes 
RP < RCil + (m-l) a 
u - u m i 

(20) 

(21) 

Then (21) 

(22) 

Since on S', the B - tasks are executed se­
quentially, the delay experienced by the last B­
task is bounded above by the largest delay pre­
vious to it. Thus we have established the desired 
relation between the execution time of the whole 
set to that of the two partitioned sets, 

l' 2' m-l 
Th + Th ~ Th + (-m-) ai (23) 

Prom the construction of the partition we have, 

l' 
Th = Tk 

Substituting this into (16) 

l' 2 
Th ~ Th + Th 

l' 1 r 2 n 1 
< Th + - }; b. + (-=-) b 
- n i=l l. n r 

And from S' we have 

(24) 

(25) 

(26) 

T2' > 1. f b~ (27) 
h-n i=l l. 

Substituting this into (26) leaves 

l' 2' n-l 
Th ~ Th + Th + (n) br (28) 

which using (23) reduces to 

m-l n-l 
Th ~ Th + (-m-) ai + (n) br (29) 

The assumption of a minimal set requires i~r in 
the MJO, for any A task which is all or in part 
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contained in Fl. This implies 
. a,Q, br . ar b,Q, 

mm (m ' fi) < mm (iii ' fi) (30) 

This requires either b < b or a < a 
r - ,Q, ,Q, - r 

making the appropriate substitution leaves 

Th < Th' + 
- h 

(m-l) 
m a,Q, + (n-l) 

n b,Q, (3la) 

or Th < Th' + (m-l) a + (n-l) b (3lb) - h m r n r 

Dividing (3l~ and (3lb) by Th leaves equations of 

the same form as (6), which leads to the same con­

tradiction of the loading constraint. 

Case 2: An A process is last to terminate. With 
the exception that b =0, this case produces the 

r 
same equation as (4) and of course leads to the 
same contradiction. 

All cases and sub cases treated are seen to 
lead to a contradiction and thus the lemma is 
proved. 

The two previous lemmas may be used to prove 
the following theorem which provides a performance 
bound for MJO. 

Theorem 2.1: 

where T 
e 

F Th For a job set , T'::' 2 
e 

completion time of the 

1 
max(m,n) 

shortest 

schedule possible for F on S, 

completion time of the MJO sched­

ule. 

Proof: Lemma 2.2 provides 

Th 1 
Th .::. 2 - max (m,n) 

By Johnson's result Th is optimal, thus 

T' < T ' 
h - e 

By Lemma 2.1, T' < T 
e - e 

Combining yields 

Q.E.D. 

Example 4: Let F = {n(n-l) jobs of the form (E,l)} 
1 job of the form (2E,n) 

in a system that m=n. 

The MJO schedule is shown in Figure 10: 

A 

B l!lliJ 
Figure 10 
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The optimal schedule is shown in Figure 11: 

A ~ 
B ~ ot j . 

Figure 11 

From Figures 10 and 11, we have 

Th 2n-l+E 
2 _ 1+3E + 2 1 

T = n+2E = - -n+2E n e 

Example 4 shows that the bound of Theorem 2.1 
is approachable. If we remove the "largest first 
rule" to break ties in MJO, whi ch is not used in 
the proof of Theorem 2.1, the bound may be reached 
by scheduling n(n-I) jobs of the form (0,1) and 
one job of the form (O,n). 

The following theorem gives the worst case 
bound for the flow-shop model with two classes of 
processors. 

Theorem 2.2: For a given job set F, where Te is 

the earliest completion time possi­
ble for a demand schedule on S, the 
latest completion time, T,Q,' is given 

by 

3 - max(m,n) 

Proof: 

Consider a schedule which produces T 1: 

A 

B 

Ilk T<) 

Figure 12 

The following notations are used in Figure 12: 

last task to complete 

A-task associated with b r 
time ar completes execution 

time br begins execution 

time of the last idle time on any 
B-processor before Tb . 
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The following are lower bounds on the earliest 
completion time possible: 

r 
T > 1 2: ai' time needed to execute all 

e - m i=l A tasks (32a) 

r 
T > 1 ~ b., time needed to execute all 

e - n i=l 1 B tasks (32b) 

The proof is divided into three cases. 

Case 1: Tar=Tbr , i.e. the last B-task to complete 

begins execution immediately after the 
completion of its associated A task. 

By the constraint of demand 

1 r m-l 
T < - ! a. + (-) 

t - m i=l 1 m 

scheduling 

(33) 

which reduces immediately by (32a) and (32c) to 

T < 2T 
t - e or 

Tt 
< 2 

(34) 

Case 2: Tar f Tb r & Tk 0, i.e. there is no im­

bedded wait time on a B processor. The time is 
then given by 

Tt ::'l2: b i + (n~l) b t 
n i=l 

(35) 

which also reduces with the application of (32a) 
and' (32c) to 

Tt 
T < T + (n-l) T or - < 2 

t - e n e 

By definition 

And the time that 
bounded by 

1 
Tb ::. Tk + -n 

the 

n-l 
~ 

i=l 

last 

b. 
1 

T 
e 

B-task 

1 - -
n 

(36) 

(37) 

starts can be 

(38) 

And the time of the last idle time on a B-pro­
cessor is bounded by 

1 r-l 
Tk < T < - ~ a1· + ar a - m i=l (39) 

Substituting (38) and (39) into (37) gives 

1 r-l 1 r-l 
Tt < - ! a. + - ~ b. + a + b 

m i=l 1 n i=l 1 r r 
(40) 
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Re-arranging , 
1 r 1 r 1 

T t <-! a. +- ! b. + (a +b ) 9..:.:!:. 
mi=l 1 ni=l 1 r r q 

where q = max(m,n). 

Applying (32a) , (32b), and (32c) 

T < T + T + ~ T or 
tee q e 

leaves 
Tt 1 
-<3-­
T q 

e 

which is the largest of the case bounds. 

(41) 

, (42) 

Q.E.D. 

The following example shows that the bound is 
approachable for a large set of jobs. 

Example 5: m jobs of the form (n,o)} 
Let F = {n(n-l) jobs of the form (E,l) 

1 job of the form (E,n) 

The demand schedule with the longest completion 
time, T looks like 

AI ~I[ 
B ~'I11t1 

Figure 13 

It follows that T = 3n-l + E (!!.) 
e m 

The demand schedule with the shortest completion 
time, T is 

B I 1f#+. I 
Figure 14 

And T n + n(n-l) E +E 
e m 

Tt = 3n-l+ E(n/m) 

T n+!!.E+E 
e m 

Tt 
lim 

E+O T 
e 

3 _ I 
n 

Table I places this flow-shop result in per­
spective with known results of simple heuristic 
algorithms for similar models. 
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SYSTEM JOB SET ALGORITHM TL/TE TAITE TA/TL 

2 processors of Flow-shop Johnson Ordering 1/2 
different types 

n identical independent largest 2-l/n (4/3)-(1/3n) (4n-l) / (6n-3) 
processors tasks first 

M A's and Flow-shop Modified Johnson 3 1 
max(m.n) 

1 
2- max(m.n) (2n-l)/(3n-l) 

n B's Ordering 

Table 1: Comparison of several known results on similar models 

3. Extensions of the Model 

In the previous section we dealt exclusively 
with jobs of type 1. Define G={gl,g2, ... ,gs-1,gs} 

to be a set of flow-shop jobs of type 2, i. e. the 
first of two nodes must be executed on a B pro­
cessor. The MJO criterion can be restated for 
jobs of type 2: 

a i ~ a j b i 
gj preceeds gi if: min Cm>n ) < min CiiI'n) 

in case of equality, largest g first. 

From symmetry considerations the bounds for type 1 
jobs also apply to type 2 jobs. Jobs of type 3 
may be considered as two jobs, a type 1 and a 
type 2. 

It would be of interest to see if MJO thus 
extended is of value in scheduling jobs with more 
general resource graphs. To be applicable, the 
more complex structures must be mapped into the 
two nodes of the model. This is done by taking 
the first available node of the resource graph as 
the first of two in the model. The second node 
of the model is constructed from the scaled sum 
of all nodes remaining. It is assumed to belong 
to the processor opposite to that selected as the 
first node, in accordance with the constraints of 
the model. Nodes belonging to the opposite kind 
of processor are scaled by min or nlm, whichever 
is necessary to convert all nodes to the same 
dimension. 

The pseudo jobs thus created conform to all 
the constraints of the model. These pseudo jobs 
are then sorted according to MJO. Assignments to 
processors are then made on a demand basis. When 
the first node of any pseudo job, the real one, 
completes a new pseudo job is computed for all 
nodes whose execution was precluded by the node 
now complete. Pseudo jobs are created in this 
manner until only two real nodes remain for a job, 
at which time there is no further need of pseudo 
jobs. 

A simulation test of this extension was con­
ducted. The structure of the resource graphs was 
limited to two parallel paths, one A - request 
and one B-request. A given node could depend on 
the previ ous A - node, B -- node, or both. 10 , 000 
jobs were constructed in this fashion with the 
number of nodes per job being a uniformly distrib­
uted random number between n+m and 2mn. The pre­
CAdence relations of each node were also determined 
by a random variable. The size of the nodes was 
also uniformly distributed between zero and the 
respective number of processors. 
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The job set was executed with the MJO ex­
tension described above, and then again using the 
task list as generated. The MJO extension was 
found to provide job times that were on the 
average 4-8% smaller than produced by the random 
ordering. It is interesting to note that Manacher 

[8] quotes 5-15% as the typical savings of a 
heuristic over random in scheduling tasmon a 
system of n identical processors. 
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SCHEDULING IN A MULTIPROCESSOR ENVIRONMENT(a) 

J.M. Gwynn and R.J. Raynor 
School of Information and Computer Science 

Georgia Institute of Technology 

Summary 

In a multiprocessor system, the handling of 
interrupts generated by jobs in the processors is 
assigned to a supervisory program and associated 
data base. Techniques for deciding which proc­
essor executes the supervisor includes master­
slave. floating executive control, and others[l]. 
Regardless of the technique employed, queueing of 
requests to the supervisor may occur. In a 
master-slave system, the master processor can 
handle only one request at a time. In a floating 
executive system, only one processor can access 
the supervisor's data base at a time[2]. 

Madnick has developed a finite-source 
queueing model which explicitly relates the num­
ber ~f processors in the system to the average 
number of processors idle due to clustering of 
requests to the supervisor. As an indication of 
the severity of the problem, his model predicts 
that a system with 21 processors will have an 
average of 2.8 processors idle due to supervisor 
clustering[2]. Due to the nature of his model, 
however, this may be a pessimistic estimate. 

A resolution to this problem can exist only 
if the supervisor is not saturated, ie, if the 
total expected execution time of the supervisor 
during a given period is not greater than the 
length of that period. Stated another way, the 
supervisor will not be saturated if the system is 
designed such that the supervisor is not a 
limiting resource. Assuming an unsaturated sys­
tem, the natural solution to the problem would 
seem to be to schedule jobs to the processors in 
such a way that they would cause an interrupt at 
a time when the supervisor was idle[3]. The 
assumption implicit in this solution is that, for 
each job in the system, the time until the next 
interrupt must be predictable from the job's 
history of execution. While prediction of this 
information has not been implemented in many sit­
uations, Pass has used a single exponential 
smoothing formula and corrector which dynamical­
ly modifies the smoothing constant at each inter­
rupt with promising success[4]. It will there­
fore be assumed that this information, as well as 
the length of time the supervisor requires to 
handle an interrupt, can be predicted with some 
degree of accuracy. 

The algorithm to implement this solution 
would be a simple two table search. The first 
table would have an entry for each ready job in 
the mix specifying the time until the next inter­
rupt and the supervisor time required to handle 
that type of interrupt. The other table would be 
a schedule of supervisor idle periods. For each 
job in the mix, a decision would be made as to 
whether the supervisor had an idle period corre­
sponding to the period from current time plus 

(a)This research was supported in part by NSF 
Grant GN-655. 
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process time to current time plus process time 
plus supervisor time. A match would cause that 
job to be scheduled. The order in which the 
first table is searched may be determined by 
priority or some other external criteria. 

While the algorithm just described is 
simple, the amount of computation involved would 
perhaps be prohibitive. For this reason a sub­
optimal algorithm was developed which requires 
much less computation at the price of a small 
decrease in effectiveness. This algorithm is 
based on the original but with a discretization 
of time into blocks of time. Based on the num­
ber of comparisons in the search, the sub-optimal 
algorithm is approximately 2(P+l)/F times faster 
than the optimal one; where P is the number of 
processors and F is the ratio of average super­
visor time to block size. A more important point 
is that the sub-optimal algorithm would allow a 
hardware implementation, using only a few special 
registers, which would reduce the search to a 
few logical operations. 

For F=l, a case in which the hardware imple­
mentation would be especially feasible, a GPSS 
simulation model has predicted that for 21 proc­
essors there would be a reduction in average 
number of idle processors to 0.7, with a corre­
sponding increase in thruput of 12%. While this 
is 75% of optimal improvement, it is expected 
that this could be improved, possibly to 90%, 
thru fine tuning of the algorithm parameters. 

Since the mix size is assumed to be large 
enough to find a job that will interrupt during a 
supervisor idle period, it is likely that some 
jobs may be delayed an excessive amount of time. 
The standard procedure for dealing with this 
problem is dynamic priority assignment. Current 
investigations are underway to determine the 
effect of this and other such modifications on 
the performance improvement gained thru the use 
of the algorithm developed here. 
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RADCAP: AN OPERATIONAL 
PARALLEL PROCESSING FACILITY 

James D. Feldman 
Goodyear Aerospace Corporation 

Akron, Ohio 44315 

Oskar A. Reimann 
Rome Air Development Center 

Rome, N. Y. 

Summary: An overview is presented of RADCAP, 
the operational associative array processor (AP) 
facility installed at Rome Air Development Center 
(RADC). Basically, this facilJ-ty consists of a 
Goodyear Aerospace STARANla ) associative array 
(parallel) processor and various peripheral devices, 
all interfaced with a Honeywell Information Systems 
(HIS) 645 sequential computer, which runs under 
the Multics time-shared operating system. The 
RADCAP hardware and software are described 
briefly here because they are detailed in companion 
papers presented at this conference (1) (2). The 
latter part of this paper dwells on the objectives of 
the RADCAP facility and plans for its use. 

(a)TM. Goodyear Aerospace Corporation. Akron. Ohio. 

RADCAP Facility 

Figure 1 shows a block diagram of the hard­
ware within the RADCAP facility. The 645, which 
has been in existence at RADC for several years, 
is a very large computer system with a multitude 
of peripherals typical of large time-shared systems. 
In March 1973, hardware was delivered to RADC 
in the form of a STARAN parallel processor with 
four arrays, a custom input/output unit (CIOU). a 
hardware performance monitor, and a variety of 
peripherals. Subsequently, the CIOU was used to 
interface STARAN with a 645 I/O channel. At the 
same time, STARAN software was interfaced with 
the 645 Multics time-shared operating system. 

------------------GACHARDWARE--------------------, ,..---------- RADC HARDWARE-------------

... ... c 
~a:: 

a::'" ",CI ... c c ... ... a:: 

HARDWARE 
PERFORMANCE 
MONITOR 

STARAN S/1000P 
ASSOCIATIVE PROCESSOR 
(4 ARRAYS) 

c... 
a:: ... c ... CI ... 

C a:: a:: CI 
~ ",a:: c'" a:::e ~12 :e'" ...... ... CI 
... 2 >- 2C 
C= "'a:: ='" ...... ~ ... ... a:: 

a:: 
'" ~ 

"'2 
~= ... ... 

CUSTOM 
I/O 
UNIT 

... ... 
",a:: 
ClCI 
-~ a:: ... 
~~ a:: ... 
C-...CI 

Figure 1. 

... 
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RADCAP Facility 
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OPERATING SYSTEM 

T3 T4 

'V" 
USER 
TERMINALS 

8 
~ 



1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

At present, the RADCAP facility is totally 
operational and includes system software to allow 
for operation in both a STARAN stand-alone mode 
and an integrated STARAN/Multics mode. 

STARAN Parallel Processor 

STARAN can perform search, arithmetic, 
and logical operations simultaneously on either all 
or selected words of its memory. Figure 2 shows 
the basic STARAN elements. The most important 
is the associative array and its unique multi-dimen­
sional access capability which, along with the other 
elements, are described in more detail in refer­
enced publications (1) (3) (4). Listed below are 
brief descriptions of the STARAN elements: 

1. Associative array: provides multi-dimen­
sional aCCE;SS, content-addressable memory with 
65,536 (2 10 ) bits of storage and 256 processing ele­
ments; permits parallel arithmetic, search, and 
logical operations. 

2. AP control: performs data manipulation 
within associative arrays as directed by program 
stored in AP control memory. 

3. AP control memory: stores AP control 
instructions. Can also store data and act as buffer 
between AP control and other system elements. 

AP CONTROL MEMORY 

MEMORY PORT LOGIC 

4. Sequential controller and memory: per­
forms maintenance and test functions, controls 
peripherals, maintains job control, provides means 
for operator communication between various 
STARAN elements and, assembles STARAN pro­
grams written in MAPPLE (Macro-~ssociative 
Erocessor Erogramming banguag~). 

5. External function: transfers control infor­
mation among STARAN elements. 

STARAN has been designed to provide a flexible 
I/O capability. The standard peripherals for 
STARAN are listed below, along with a typical list 
of optional peripherals: 

1. Standard: cartridge disk drive and control, 
paper tape reader, paper tape punch, and keyboard 
printer. 

2. Optional: line printer, card reader, mag­
netic tape, keyboard crt, and other peripherals, as 
desired, that are compatible with the Digital Equip­
ment Corporation (DEC) PDP-ll. 

All these peripherals interface with the 
STARAN system's sequential controller, a PDP-ll 
mini-computer. STARAN also provides facilities 
for interfacing with other processors. The four 
buses provided, (see STARAN block diagram, Fig­
ure 2) are the direct memory access, the buffered 
I/O, external function, and parallel I/O. 

DIRECT 
MEMORY 
ACCESS 
(OMA) 

~ BUFFEREO 

1 INPUTI 

l t 
OUTPUT 
(BIO) 

AP SEQUENTIAL K:) CONTROL 

I 
I 
I 

I 
I L ___ 

ASSOCIATIVE 
ARRAY 0 
256 X 256 

OPTIONAL 
ASSOCIATIVE 
ARRAY 
(UP TO 32 TOTAL) 
256 X 256 

Figure 2. 

CONTROLLER 

t 
I EXTERNAL FUNCTION LOGIC 

STARAN Block Diagram 

111.1 

1 
r 

EXTERNAL 
FUNCTION 
(EXF) 

\ 
PARALLEL 
INPUTI 
OUTPUT 
(PIO) 

/ 
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The direot memory access is a 32-bit bus for 
STARAN to address external memory. The AP 
control or the sequential controller can access 
external memory at a rate dependent upon this 
memory's cycle time. 

The buffered I/O is a 32-bit bus for processors 
to address STARAN. Depending upon which portion 
of control memory is accessed, the access rate is 
0.4 to 1.0 micro sec per 32-bit word. 

The external function is a bus for exchange of 
control signals. Discrete signals and interrupts 
can be both generated and accepted across this bus. 

The parallel I/O is a bus for STARAN array 
I/O. Up to 256 bits per array (e. g., one bit per 
array word) can be provided. If all 32 arrays are 
implemented, up to S192 bits can be 'utilized in 
parallel at a transfer rate less than one micro­
second, dependent upon the desired application. 

STARAN Performance Summary 

In a high-speed, asynchronous, pipe-line type 
processor such as STARAN, it is difficult to sum­
IDarize perforIDance since speeds vary with instruc­
tion types, types of loops, etc. Also, the overall 
effective speed depends upon the number of words 
in the arrays over which the siIDultaneous opera­
tions are occurring. However, an effort is IDade 
below to list the perforIDance and features of a 256 
x 256 associative array, the control unit, and the 
interface portion of STARAN: 

Associative Array Features 

Up to 32 Arrays per systeID 

Multi-diIDensional access (bit slice or word slice) 

Array IDodule speed: 

Typical search: 150 nsec/bit 

Typical add or subtract: SOO nsec/bit 

Read bit or word slice (256 bits): 150 nsec 

Write bit or word slice (256 bits): 300 nsec 

Control Unit Features 

Two separate processors: AP control, sequential 
controller 

Solid-state controlIDeIDory capacity: 2K x 32 
standard, 4K x 32 IDaxiIDum 

Solid-state controlIDeIDory speed: 150 nsec/ 
instruction (typical) 

Bulk core capability: 16K x 32 standard, 32K x 
32 IDaxiIDum 

Bulk core speed: 1 microsec (read or write) 

Interface Capabilities 

STARAN to address externalIDeIDory: rate­
IDeIDory dependent 
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External processor to address STARAN: 0.4 to 
1. 0 IDicrosec/32-bit word 

Parallel I/O to/frOID associative arrays: less 
than 1.0 IDicrosec/S192 bits (IDaxiIDum) 

Control signals and interrupts 

CUStOID Input/Output Unit (CIOU) 

Figure 3 shows a siIDplified block diagraID of 
the STARAN/RADCAP CUStOID input/output unit 
(CIOU). As indicated, the CIOU contains a parallel 
input/output (PIO) IDodule, a 645 cOIDputer interface, 
and an internal perforIDance IDonitor. The CIOU 
functions as a mini-processor IDuch the saIDe as the 
control unit portion of STARAN. Processing within 
one array IDodule (e. g., under STARAN control) 
IDay be concurrent with I/O in another array IDodule 
(e. g., under PIO control). 

PARALLEL I/O MODULE 

MEMORY 
645 INTERNAL 
INTERFACE t-------- PERFORMANCE 
LOGIC 

I-

Figure 3. 

MONITOR 

CONTROL 

-- --- --
PORTS 

SiIDplified Block DiagraID 
of CuStOID I/O Unit 

As directed by instructions stored in PIO con'" 
trolIDernory, the optional PIO IDodule IDanipulates 
data aIDong and within the associative arrays con­
current with operations as directed by AP control. 
The PIO IDodule contains eight ports, with 256 bits 
per port to accolDIIlodate associative array I/O and 
to perIDute data. 

The 645 interface logic provides a cOIDIDunica­
tion path between the 645 cOIDputer and the STARAN 
systeID. This iIt erface logic contains a 30-charac­
ter queue and a 32-bit status register which are tied 
to a 645 I/O channel. The status register contains 
interface control signals, and the queue buffers data 
being transferred to or frOID the 645. 

The internal perforIDance IDonitor, although 
contained in the CIOU, is best discussed in the 
following description of the hardware perforIDance 
Inonitor. 
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Hardware PerforIllance Monitor 

To help Illeet a RADCAP facility objective of 
Illeasuring systeIll perforIllance, a hardware perfor­
Illance Illonitoring capability has been provided by an 
internal perforIllance Illonitor in the CIOU cabinet 
and an external perforIllance Illonitor systeIll. Meas­
ureIllents can be Illade to deterIlline instruction ex­
ecution tiIning, control IlleIllory and bus utilization, 
array utilization, and activity in the pager, the PIO 
Illodule, and the 645 interface. 

The internal perforIllance Illonitor is used ex­
clusively for STARAN instruction execution times 
and instruction event tiIlles. The events counted 
and tiIlled are the execution of flagged instructions 
in AP control. Between a start flag and an end flag, 
a tiIller increIllents at a 100 -nsec rate. Overflows 
froIll this counte.r interrupt the sequential controller. 
In addition, the sequential controller can interrogate 
the event counter and tiIller. 

Th.e external perforIllance Illonitor is a self­
contained systeIll that can Illonitor any point of 
STARAN or the custOIll I/O. Data are acquired 
via probes that detect logical signal changes in either 
an event count or elapsed tiIlle Illode. Several probes 

can be logically connected via a patchboard to trigger 
a counter. At regular intervals, the contents of the 
counters are written as a record on a magnetic tape 
unit. The perforIllance Illonitor software then eval­
uates the collected data and produces the results in 
the forIll of reports and graphs. The software for 
the perforIllance Illonitor runs on the 645. 

Physical Description of Hardware 

All the eleIllents shown in the STARAN block 
diagraIll (Figure Z), including the associative 
arrays, are built using dual-in-line IC's (integrated 
circuits) Illounted on Illulti-Iayer printed circuit 
boards. Thus, the physical construction of 
STARAN and the CIOU is siIllilar to that of typical 
high-speed sequential processors. 

Figure 4 shows Goodyear Aerospace's STARAN 
deIllonstration and evaluation facility. Table I gives 
the approxiIllate nUIIlbers of cabinets, boards, and 
IC's for the various STARAN Illodels. These fig­
ures do not account for I/O logic, since this varies 
froIll one installation to another. The STARAN/ 
RADC~P CIOU, which includes the parallel I/O 
option for all four arrays, contains approxiIllately 
ZOO boards and 8,000 IC's. 

Figure 4. STARAN DeIllonstration and Evaluation Facility 
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* Table 1. Approximate 5TARAN Component Count 

5TARAN* No. of No. of 
Model Arrays Cabinets 

5-250 1 3 

5-500 2 3 

5-750 3 3 

S-lOOO 4 4 

S-1250 5 4 

S-1500 6 4 

S-1750 7 5 

S-2000 8 5 

S-4000 16 8 

* Without input/output 

Although up to three arrays can be packaged in 
one cabinet, the RADCAP configuration has two 
arrays per cabinet for symmetry. Figure 5 shows 
the equipment that was delivered to RADC. This 
includes a sequential control cabinet, an AP control 
cabinet, two AP memory cabinets for the four 
associative arrays, and a CIOU cabinet. The disk 
drive and line printer are mounted in separate 
cabinets. The keyboard/printer, the card reader, 
and the graphics display console can be mounted on 
table tops or pedestals. As mentioned earlier, the 
internal performance monitor is packaged within 
the CIOU cabinet. The external performance moni­
tor, not shown in Figure 5, mounts on a table top. 

LINE PRINTER 

GRAPHICS DISPLAY 

No. of Printed No. of Integrated 
Circuit Boards Circuits 

220 9,000 

276 11,500 

332 14, 100 

412 16,700 

468 19,300 

524 21,900 

604 24,900 

660 27,500 

1156 48,700 

Summary of System Software 

The system software available for STARAN/ 
RADCAP is capable of operating STARAN in a 
stand-alone mode or when integrated with the 645, 
in a STARAN/Multics configuration. The system 
software is based upon a disk operating system, 
which provides ready access to system programs, 
device independent I/O, and a file system. Opera­
tion of STARAN can be under direct control of the 
user at the control console or run in a batch mode 
with a control stream from an input device like the 
card reader. 

SEQUENTIAL CONTROL CABINET 

CONTROL CONSOLE 

Figure 5. STARAN Complex at RADC 
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The total assembly package for STARAN has a 
macro language processor, an APPLE assembler, 
and a relocating linker. Programs are written in 
the APPLE and MAPPLE languages. Extensive 
string handling and substitution are implemented in 
the macro-preprocessor. APPLE is a symbolic 
language that includes mnemonics for parallel and 
associative operations. The linker combines 
separately assembled object modules by relocating 
code as necessary and resolving globally defined 
symbols. 

Control of processing in STARAN is through 
interactive system routines. These routines are 
the interface between application program execu­
tion and the user. They allow the user to start and 
halt STARAN, to load programs and overlays, and 
to debug programs with trace, memory modification, 
and dump commands. 

Diagnostic programs for STARAN hardware are 
disk resident. The programs can be called individ­
ually, in groups related to specific parts of the hard­
ware, or as a total set for complete system testing. 
Fault detection and location are provided. 

Additional software for the integrated STARAN/ 
Multics operation is designed to handle the interface 
between the computers and the use of STARAN from 
Multics. For the interface, a special device driver 
module has been added to the STARAN disk operating 
system. This driver is similar to drivers used for 
peripherals. It has been specialized for Multics 
and can accommodate 16 open files simultaneously. 
A device interface module (DIM) has been added to 
Multics as the counterpart to the device driver. 
These two modules are basic parts of each machine's 
operating system and are transparent to the pro­
grammer. 

STARAN can be operated from Multics by 
commands a user inputs at a terminal or from a 
file. File control procedures handle STARAN re­
lated keyboard inputs, and provide the interface 
between the DIM and the MULTICS storage system. 
With these procedures, a user process executing 
in the 645 can call for execution of a STARAN 
program. 

To facilitate the assembly of STARAN programs, 
a cross assembler is provided for time-shared use 
in Multics. This assembler accepts MAPPLE and 
APPLE as inputs. 

Objectives and Uses 

The basic objective of the RADCAP facility is 
to explore the performance of a hybrid computer 
configuration (STARAN associative processor in­
terfaced with a 645 sequential processor) on real­
world, real-time problems. A specific goal is to 
determine the cost-effectiveness of associative/ 
parallel processing in such an environment. Asso­
ciative processing has been studied extensively in 
both theoretical and simulation studies, but no 
significant practical operating experience with 
them exists. Experimentation is necessary to pro-
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vide "hard" data and fill in the presently existing 
void. Practical operating experience also is re­
quired so that a general-purpose associative proc­
essor configuration could be developed if results 
warrant it. 

The RADCAP facility will be used in an experi­
mental program to evaluate the internal performance 
of this hybrid computer configuration by means of 
hardware and/or software performance monitors 
to determine internal component utilization and 
system bottlenecks. Programming aspects of asso­
ciative processing also will be investigated. Asso­
ciative-processing programming is not well under­
stood and represents radical departures from the 
traditional programming approach. The program 
loop is being replaced by hardware processing ele­
ments. This requires a whole new programming 
attitude. Programming languages suitable for 
associative processors probably will be quite dif­
ferent from present ones. This basic uncertainty 
must be explored and some practical operating 
experience gained. As a test problem, indicative 
of high data rate and real-time processing require­
ments, the data processing functions of an air 
surveillance system (AWACS) have been chosen. 
The primary functions to be investigated are track­
ing (both passive and active), display processing, 
and weapons control. 

The scope of the research program can be 
described with the aid of Figure 6. The flow will 
begin with the development of associative-sequen­
tial algorithms for each of the AWACS data proc­
essing functions. As these algorithms are being 
developed, the application engineers will make 
known to a language and system software group 
those instruction level and system routine functions 
required to support the AWACS processing func­
tions. 

Based on this input, the language group will 
develop a language and implement this language on 
the RADCAP testbed. The system software activity 
will implement routines to support the command 
language. The applications program will then be 
run on the testbed using, where possible, nonsyn­
thesized data as input. The machine activity will 
be monitored to gather statistics on utilization, 
identify system bottlenecks, and determine the 
efficiency with which the algorithms provide solu­
tion. 

The data collected will then be analyzed to 
determine where cost effective improvements can 
be made to software and/or hardware in order to 
improve the cost-effective performance of the 
system. These changes will be incorporated into 
the system via micro program or software routines. 
If the change is to be a hardware design, that de­
sign will be made to the gate level so that perfor­
mance and cost effectiveness determination can be 
made. 

When the solution to the problem is finally 
refined, it will be contrasted with known sequential 
solutions. 
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LIVE/SIMULATED I L DATA DEVELDP HIGHER ORDER SYSTEM 
ALGORITHMS LANGUAGE SOFTWARE 
FOR FUNCTIONS DEVELOPMENT DEVELOPMENT 

l 
RUN PROGRAM ~ I PERFORMANCE I 
ON TESTBED MONITORING 

I l t 
IMPROVE 
SOLUTION EVALUATE 
ALGORITHM I SOLUTION 

I 1 ! FINAL PERFORMANCE 

ASSOCIATIVE PROCESSOR 
ANAL YSIS AND 

COMPUTER SYSTEM 
EVALUATION 

DESCRIPTION ! I I 'OCIIMEMY 1j LANGUAGE 

I SPECIFICATION 
RESULTS 

I OPERATING SYSTEM I J SPECIFICATION 

Figure 6. Flow of RADCAP Research Project 

Initially each of the AWACS data processing 
functions will be treated separately. The final 
task will then be to develop a system executive and 
integrate all the functions to reflect the real world. 
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STARAN/RADCAP HARDWARE ARCIDTECTURE 

Kenneth E. Batcher 

Goodyear Aerospace Corporation 
Akron, Ohio 44315 

Summary: Hardware architecture is described 
for RADCAP, the operational associative array 
proces sor (AP) facility installed at Rome Air De­
velopment Center (RADC), N. Y. Basically, this ( ) 
facility consists of Goodyear Aerospace STARAN a 
parallel processor and various peripheral devices 
interfaced with a Honeywell Information Systems 
(HIS) 645 sequential computer, which runs under 
the Multics time -shared operating system. The 
hardware of STARAN/RADCAP is described with 
particular emphasis on the parallel processing 
elements. 

Introduction 

Companion papers presented at this confer­
ence describe the potential use of the RADCAP 
facility and its software (I) (2). The STARAN as­
sociative array (parallel) processor (3) employed 
in RADCAP has been modified to include a custom 
parallel input/output (PIO) unit and an interface 
to the 645 computer. 

The parallel processing capability of STARAN 
resides in four array modules. Each array module 
contains 256 small processing elements (PE's). 
They communicate with a multi-dimensional access 
(MDA) memory through a "flip" network, which 
can permute a set of operands to allow inter-PE 
communication. This gives the programmer a 
great deal of freedom in using the proces sing 
capability of the PEls. At one stage of a program, 
he may apply this capability to many bits of one or 
a few items of data; at another stage, he may apply 
it to one or a few bits of many items of data. 

The remainder of this paper deals with the 
MDA memories, the STARAN array modules, and 
the STARAN/RADCAP elements. 

Multi-Dimensional Access (MDA) Memories 

A common implementation of associative 
processing is to treat data in a bit-sequential 
manner. A small one-bit PE (processing element) 
is associated with each item or word of data in 
the store, and the set of PEls accesses the data 
store in bit-slices; a typical operation is to read 
Bit i of each data word into its associated PE or 
to write Bit i from its as sociated PE. 

The memory for such an associative processor 
could be a simple random-access memory with the 
data rotated 90 deg, so that it is accessed by bit­
slices instead of by words .. Unfortunately, in most 
applications, data come in and leave the processor 
as items or words instead of as bit-slices. Hence, 

(a) 
TM, Goodyear Aerospace Corporation, Akron, 
Ohio. 
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rotating the data in a random-access memory com­
plicates data input and output. 

To accommodate both bit-slice accesses for 
associative processing and word-slice accesses 
for STARAN input/output (I/O), the data are stored 
in a multi-dimensional access (MDA) memory 
(Figure I). It has wide read and write busses for 
parallel access to a large number (256) of memory 
bits. The write-mask bus allows selective writing 
of memory bits. Memory accesses (both read and 
write accesses) are controlled by the address and 
access mode control inputs; the access mode se­
lects a stencil pattern of 256 bits, while the address 
positions the stencil in memory. 

For many applications, the MDA memory is 
treated as a square array of bits, 256 words with 
256 bits in each word. The bit-slice access mode 
(Figure 2A) is used in the associative operations 

REAo!WRITE CONTROL , 
WRITE-MASK BUS (256) 

MoA WRITE BUS (256) 

MEMORY 

(65,536 BITS) 

READ BUS (256) 

t ADDRESS BUS 

ACCESS MODE BUS 

Figure 1. Multi-Dirn.ensional Access Mern.ory 

A - BIT·SLlCE ACCESS MODE B - WORD ACCESS MODE 

256 256 

256 256 

Figure 2. Bit-Slice and Word Access Modes 
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to access one bit of all words in parallel, while 
the word access mode (Figure 2B) is used in the 
I/O operations to access several or all bits of one 
word in parallel. 

The MDA memory structure is not limited to 
a square array of 256 by 256. For example, the 
data may be formatted as records with 256 8 -bit 
bytes in each record. Thirty-two such records 
can be stored in an MDA memory and accessed 
several ways. To input and output records, one 
can access 32 consecutive bytes of a record in par­
allel (Figure 3A). To search key fields of the data, 
one can access the corresponding bytes of all rec­
ords in parallel (Figure 3B). To search a whole 
record for the presence of a particular byte, one 
can access a bit from each byte in parallel (Figure 
3C). 

The MDA memories in the RADCAP array 
modules are bipolar. They exhibit read cycle times 
of less than 150 nsec and write cycle times of less 
than 250 nsec. 

A - ACCESS TO 32 CONSECUTIVE BYTES 
OFA RECORD 

256 8-BIT BYTES 

32 

B - ACCESS TO CORRESPONDING BYTES 
OF ALL RECORDS 

256 8-BIT BYTES 

32 

C - ACCESS TO ONE BIT OF EVERY 

32 

Figure 3. Accessing 256-Byte Records 
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STARAN Array Modules 

A STARAN array module (Figure 4) contains 
a MDA memory communicating with three 256 -bit 
registers (M, X, and Y) through a flip (permutation) 
network. One may think of an array module as hav­
ing 256 small processing elements (PE' s), where a 
PE contains one bit of the M register, one bit of the 
X register, and one bit of the Y register. 

The M register drives the write mask bus of 
the MDA memory to select which of the MDA mem­
ory bits are modfied in a masked-write operation. 
The MDA memory also has an unmasked-write oper­
ation that ignores M and modifies all 256 accessed 
bits. The M register can be loaded from the other 
components of the array module. 

In general, the logic associated with the X reg­
ister can perform any of the 16 Boolean functions of 
two variables; that is, if Xi is the state of the ith 
X -register bit, and fi is the state of the ith flip net­
work output, then: 

where ~ is any Boolean function of two variables. 
Similarly, the logic associated with the Y -register 
can perform any Boolean function: 

Yi -~ (Yi' fi ) (i = 0, 1, ...• ,255) 

where Yi is the state of the ith Y -register bit. The 
programmer is given the choice of operating X 
alone, Y alone, or X and Y together. 

If X and Yare operated together, the same 
Boolean function, ~, is applied to both registers: 

Xl·"~ (x., f.) 
1 1 

The programmer also can choose to operate 
on X selectively using Y as a mask: 

(where Yi = 1) 

(where Yi = 0) 

Another choice is to operate on X selectively 
while operating on Y: 

(where Yi = 1) 

(where Yi = 0) 

In this case, the old state of Y (before modi­
fication by ~) is used as the mask for the X oper­
ation. 
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8 ADDRESS LINES 
INPUT PLUS ACTIVITY-DR 

256 

" 256 t t r:ESDLVE~ I SELECTOR I " 256 
256 

! ",. 256 

256 

MDA MASK MASK 256 

MEMORY 256 M X 256 Y 
REG f--C 

REG REG I--
(256 X 256) FLIP 

NETWORK I--
f--- C LOGIC I--- C LDGIC r--C 

256 " 256 ~ 256 256 256 

8 AOORESS 

t t t t 8 MODE MIRROR, OUTPUT 
SHIFT 
CONTROL 

NOTE: C; CONTROL SIGNALS CONTROL 
SIGNALS -

Figure 4. STARAN Array Module 

For a programming example, the basic loop 
of an unmasked add fields operation is selected. 
This ope ration adds the contents of a Field A of 
all memory words to the contents of a Field B of 
the words and stores the sum in a Field S of the 
words. For n-bit fields, the operation executes 
the basic loop n times. During each execution of 
the loop, a bit-slice (a) of Field A is read from 
memory, a bit-slice (b) of Field B is read, and a 
bit-slice (s) of Field S is written into memory. The 
operation starts at the least significant bits of the 
fields and steps through the fields to the most sig­
nificant bits. At the beginning of each loop exe­
cution, the carry (c) from the previous bits is 
stored in Y and X contains zeroes: 

o 

C. 
1 

The loop has four steps: 

Step 1: Read Bit-slice a and exclusive-or(E9) it to 
X selectively and also to Y: 
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The states of X and Yare now: 

x. 
1 

a.c. 
1 1 

a. @e. 
1 1 

Step 2: Read Bit-slice b and exclusive-or it to X 
selectively and also to Y: 

Registers X and Y now contain the carry and sum 
bits: 

x. 
1 

a.c· @ a.b. @b.c 
11 11 Ii 

I 
c· 1 

Step 3: Write the sum bit from Y into Bit-slice s 
and also complement X selectively: 
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The states of X and Yare now: 

Step 4: Read the X-register and exclusive-or it 
into both X and Y: 

This clears X and stores the carry bit into Y to 
prepare the registers for the next execution of 
the loop: 

o 
, 

Yi = c i· 

Step 3 takes less than 250 nsec, while Steps I, 
2, and 4 each take less than 150 nsec. Hence, the 
time to execute the basic loop once is less than 
700 nsec. If the field length is 32 bits, the add 
operation takes less than 22.4 microsec plus a 
small amount of setup time. The operation per­
forms 256 additions in each array module. This 
amounts to 1024 additions, if all four array modules 
are enabled, to achieve a processing power of 
approximately 40 MIPS (million-instructions -per­
second). 

The array module components communicate 
through a network called the flip network. A se­
lector chooses a 256 -bit source item from the 
MDA memory read bus, the M register, the X 
register, the Y register, or an outside source. 
The bits of the source item travel through the flip 
network, which may shift and permute the bits in 
various ways. The permuted source item is 
presented to the MDA memory write bus, M reg­
ister, X register, Y register, and an outside 
destination. 

The permutations of the flip network allow 
inter-PE communication. A PE can read data 
from another PE either directly from its registers 
or indirectly from the MDA memory. One can per­
mute the 256-bit data item as a whole or divide it 
into groups of 2, 4, 8, 16, 32, 64, or 128 bits and 
permute within groups. 

The permutations allowed include shifts of 
I, 2, 4, 8, 16, 32, 64, or 128 places. One also 
can mirror the bits of a group (invert the left­
right order) while shifting it. A positive shift of 
mirrored data is equivalent to a negative shift of 
the unrnirrored data. To shift data a number of 
places, multiple passes through the flip network 
may be required. Mirroring can be used to re­
duce the number of passes. For example, a 
shift of 31 places can be done in two passes: mir­
ror and shift 1 place on the first pass, and then 
remirror and shift 32 places on the second pass. 

The flip network permutations are particularly 
useful for fast-fourier transforms (FFT's). A 2n 
point FFT requires n steps, where each step pairs 
the 2n points in a certain way and operates on the 
two points of each pair arithmetically to form two 
new points. The flip network can be used to re­
arrange the pairings between steps. Bitonic sort­
ing (4) and other algorithms (5) also find the per­
mutations of the flip network useful. 

Each array module contains a resolver reading 
the state of the Y register. One output of the re­
solver (activity-or) indicates if any Y bit is set. 
If some Y bits are set, the other output of the re­
solver indicates the index (address) of the first 
such bit. Since the result of an associative search 
is marked in the Y register, the resolver indicates 
which if any words respond to the search. 

ST ARAN/RADCAP Elements 

Each of the four array modules in STARAN/ 
RADCAP (Figure 5) contains an aSSignment switch 
that connects its control inputs and data inputs and 
outputs to AP(associative processor) control or the 
PIO (parallel input/output) module. 

The AP control unit contains the registers and 
logic necessary to exercise control over the array 
modules assigned to it. It receives instructions 
from the control memory and can transfer 32 -bit 
data items to and from the control memory. Data 
busses communicate with the assigned array mod­
ules. The busses connect only to 32 bits of the 
256-bit-wide input and output ports of the array 
modules (Figure 4), but the permutations of the 
array module flip networks allow communication 
with any part of the array. The AP control sends 
control signals and MDA memory addresses and 
access modes to the array modules and receives 
the resolver outputs from the array modules. 

Registers in the AP control include: 

1. An instruction register to hold the 32 -bit in­
struction being executed. 

2. A program status word to hold the control 
memory address of the next instruction to be exe­
cuted and the program priority level. 

3. A common register to hold a 32 -bit search com­
parand, an operand to be broadcast to the array 
modules, or an operand output from an array 
module. 

4. An array select register to select a subset 
of the assigned array modules to be operated on. 

5. Four field pointers to hold MDA memory ad­
dresses and allow them to be incremented or de­
cremented for stepping through the bit-slices of 
a field, the words of a group, etc. 

6. Three counters to keep track of the number of 
executions of loops, etc. 
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Figure 5. STARAN/RADCAP Block Diagram. 

7. A data pointer to allow stepping through a set 
of operands in control memory. 

8. Two access mode registers to hold the MDA 
memory access modes. 

The parallel input/output (PIO) module con­
tains a PIO flip network and PIO control unit (Fig­
ure 5). It is used for high bandwidth I/O and inter­
array transfers. 

The PIO flip network perm.utes data between 
eight 256 -bit ports. Ports 0 through 3 connect to 
the four array modules through buffer registers. 
Port 7 connects to a 32-bit data bus in the PIO con­
trol through a fan-in, fan-out switch. Ports 4, 5, 
and 6 are spare ports intended for future connec­
tions to high bandwidth peripherals, such as paral­
lel-head disk stores, sophisticated displays, and 
radar video channels. The spare ports also could 
be used to handle additional array modules. High 
bandwidth inter-array data transfers up to 1024 
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bits in parallel are handled by permuting data be­
tween Ports 0, I, 2 and 3. Array I/O is handled 
by permuting data between an array module port 
and an I/O port. The PIO flip network is controlled 
by the PIO control unit. 

The PIO control unit controls the PIO flip net­
work and the array modules assigned to it. While 
AP control is processing data in sQme array mod­
ules the PIO control can input and output data in 
the other array modules. Since most of the regis­
ters in the AP control are duplicated in PIO con­
trol, it can address the array modules associatively. 

The control memory holds AP control programs, 
PIO control programs, and microprogram sub­
routines. To satisfy the high instruction fetch rate 
of the control units (up to 7. 7 million instructions 
per second), the control m.em.ory has five banks of 
bipolar memory with 512 32 -bit words in each bank. 
Each bank is expandable to 1024 words. To allow 
for storage of large programs, the control memory 
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also has a 16K-word core memory with a cycle time 
of 1 microsec. The core memory can be expanded 
to 32K words. Usually the main program resides in 
the core memory and the system microprogram sub­
routines reside in bipolar storage. For flexibility, 
users are given the option of changing the storage 
allocation and dynamically paging parts of the pro­
gram into bipolar storage. 

A Digital Equipment Corporation (DEC) PDP-
11 minicomputer is included to handle the periph­
erals, control the system from console commands, 
and perform diagnostic functions. It is called se­
quential control to differentiate it from the STARAN 
parallel processing control units. The sequential 
control memory of 16K 16-bit words is augmented 
by a 8K X 16 -bit "window" into the main control 
memory. By moving the window, sequential con­
trol can access any part of control memory. The 
window is moved by changing the contents of an 
addressable register. 

The STARAN/RADCAP peripherals include a 
disk, card reader, line printer, paper-tape reader/ 
punch, console typewriter, and a graphics console. 

Synchronization of the three control units (AP 
control, sequential control, and PIO control) is 
maintained by the external function (EXF) logic. 
Control units issue commands to the EXF logic to 
cause system actions and read system states. Some 
of the system actions are: AP control start/stop/ 
reset, PIO control start/stop/reset, AP control 
interrupts, sequential control interrupts, and ar­
ray module assignment. 
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RADCAP connects to a common peripheral 
channel of a 645 computer. Channel characters 
are 6 bits wide. Instead of interfacing the channel 
to one of the three control units in RADCAP, the 
channel interface is assigned a set of control mem­
ory addresses so it can be addressed by any con­
trol unit. The interface has a 30-character first-in, 
first-out, (FIFO) queue to buffer the data transfer 
between the two machines. To reduce the number 
of queue accesses, the control units transfer queue 
data by character-pairs, 12 bits at a time. 
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STARAN/RADCAP SYSTEM SOFTWARE 

Edward W. Davis 
Goodyear Aerospace Corporation 

Akron, Ohio 44315 

Summary: System software is described for RAD­
CAP, the operational associative array processor 
(AP) facility installed at Rome Air Development 
Center (RADC), N. Y. The description covers the 
software for the stand-alone operation of the Good­
year Aerospace STARAN(a) associative array 
(parallel) processor, which is supported by a disk 
operating system with a macro-assembler, a 
relocating linker and loader, an interactive debug 
package, and control procedures. Also described 
is the software for the STARAN processor when 
integrated with the Honeywell Information Systems 
(HIS) 645 sequential computer, which runs under 
the Multics time-shared operating system. 

Introduction 

The potential use of RADCAP and its hard­
ware architecture are described in companion 
papers presented at this conference (1) (2). Basi­
cally, the RADCAP facility consists of an opera­
tional STARAN associative array (parallel) proc­
essor (2) (3) and various peripheral devices, all 
interfaced with a 645 computer. 

There are two modes of RADCAP operation. 
First, STARAN can be operated as a stand-alone 
parallel processing system. Peripherals for this 
mode include a card reader, line printer, paper 
tape reader and punch, and cartridge type disk 
unit. Second, STARAN and the 645 can be oper­
ated in an integrated fashion. This means that (1) 
commands to the STARAN disk operating system 
can originate in Multics, (2) the Multics storage 
system is available to STARAN users for program 
or data storage, and (3) a single task can use both 
machines to satisfy its processing requirements. 
All peripherals belonging to a stand-alone 
STARAN and to the HIS 645 are available when the 
machines are integrated. 

This paper describes the software for the 
STARAN stand-alone mode of operation, then 
covers the additional software used with the inte­
grated mode. 

Since the STARAN processor architecture is 
detailed in a companion paper (2), only a basic dia­
gram is given in Figure 1. The multi-dimensional 
access associative arrays and their controls are 
the main architectural features. The sequential 
control, a Digital Equipment Corporation (DEC) 
PDP-ll minicomputer, has a minor role in the 
architecture, but is important for software con­
siderations. Other architectural features are 
mentioned later in the paper. 

(a)TM, Goodyear Aerospace Corporation, 
Akron, Ohio. 
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Software For STARAN Stand-Alone Mode 

Software for the STARAN stand-alone mode 
of operation can be discussed from the standpoints 
of the operating system, language processing, and 
operational software. 

Batch Disk Operating System 

In this paper, an operating system means the 
collection of routines that give the user appropri­
ate control of the computing system, inform him 
of system status, provide input/output (I/O) facil­
ities, and provide access to system programs. 
STARAN features a disk operating system (DOS) 
and has a batch processing capability. The batch 
command stream can be assigned to any ASCII 
character input device, allowing control to origi­
nate at the control console or from a user's file 
on the batch device. 

ASSOCIATIVE COMMON 
CONTROL -- MEMORY r--
MEMORY (WINDOW) 

I 
SEQUENTIAL 

ASSOCIATIVE CONTROL 

CONTROL MEMORY 

I 

rG SEQUENTIAL 
CONTROL 

I 
STANDARD 
PERIPHERAL 
DEVICES 

MU L TIDIMENSIONAL 256 

r- ACCESS - PROCESSING r--
ARRAY 0 ELEMENTS 

~:ULTIOIMENSIONAL 256 
PARALLEL 

ACCESS - PROCESSING f--
110 

ARRAY 1 ELEMENTS 

I 
~ MULTIDIMENSIONAL 256 

ACCESS PROCESSING 
ARRAY n (n_32) ELEMENTS 

Figure 1. STARAN Block Diagram 
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The disk is a file structured bulk storage 
mediUIIl. All system software is resident on the 
device for easy, rapid access by the user. 

Listed below are the standard programs 
supplied with the DEC PDP-ll batch system: 

Program Name 

MACRO 
LINK 
LffiR 
PIP 
EDIT 
ODT 
FORTRAN 

Function 

~acro-assembler 
Linker 
Librarian 
File utility package 
Text editor 
On-line debugging package 
Fortran compiler 

These programs are not covered in detail since 
primary emphasis in this paper is on the STARAN­
related software that has been added to the above 
list to build the STARAN disk operating system. 

One general rule used in software develop­
ment was to avoid changes to the basic DEC batch 
system. This rule was intended to simplify any 
future change to a new'DEC release. 

Language Processing 

APPLE. P~ograms for STARAN are written 
in the APPLE(b} assembly language (~ssociative 
~rocessor ~rogramming !Ianguag!;). This lan­
guage has some mnemonics that generate one 
machine language instruction and others that gen­
erate a sequence of machine instructions (5). The 
one-to-many mnemonics generally implement a 
para11el algorithm for arithmetic or search oper­
ations using the arrays. Thus, APPLE is at a 
higher level than sequential machine assembly 
languages. 

APPLE produces relocatable or absolute 
program sections and has a conditional assembly 
capability. Groups of instructions in the language 
are listed below: 

1. Assembler directives 
2. Branch instructions 
3. Register load and store 
4. Associative instructions 

a. Loads 
b. Stores 
c. Para11el searches 
d. Para11el moves 
e. Para11el arithmetic operations 

5. Control and test instructions 
6. Input/output (I/O) instructions 

~ost of these groups of instructions resemble 
those of other typical assemblers. The unique 
group - associative instructions - deals with oper­
ations on the multi-dimensional access arrays and 
the registers in their processing elements (PE). 

(b)T~, Goodyear Aerospace Corporation, 
Akron, Ohio. 

Some general comments apply to all the associa­
tive instructions listed above. Operations take 
place only on arrays enabled by the array select 
register (2). Fields are of variable length within 
each array word and are defined for various in­
structions by field pointers and length counters. 
The common register, a part of associative con­
trol, can contain an operand which is used in com­
mon by a11 selected array words. 

~ore detail is presented below on the associ­
ative instructions; i. e., loads, stores, para11el 
searches, para11el moves, and para11el arithmetic 
operations. 

The load associative instructions load the 
processing element (PE) registers or the common 
register with data from the arrays. Logical oper­
ations may be performed between the current PE 
register contents and the array data. The language 
has mnemonics for the common logical operations, 
while the machine supports all 16 functions of two 
logical variables. A given load instruction can 
increment, decrement, or leave as is an array 
field pointer. Thus, a single one of these instruc­
tions can load registers, perform logic, and change 
pointer values. Operations to set, clear, or ro­
tate the PE register are included in this group. 

The store associative instructions are used to 
move PE or common register data into the arrays. 
A mask feature is provided that a110ws writing 
only in mask enabled array words. As with the 
load instructions, logical operations may be per­
formed between the current PE register contents 
and the array data. Also, the array field pointer 
can be incremented, decremented, or left un­
changed. 

The para11el search associative instructions 
a110w the programmer to search for particular 
conditions in the arrays. Only those words enabled 
by the mask register take part in the searches. 
Searches can be performed that compare a value 
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in the common register with a value in a field of 
all array words. Another variety of search com­
pares one field of a word with a second field of the 
same word for a11 array words. Comparisons can 
be made for such conditions as equal, not equal, 
greater than, greater than or equal, etc. ~axi­
mUIIl and minimum searches also can be perform­
ed. Combinations of searches yield such functions 
as between limits and next higher. Additional 
mnemonics in this group are provided to resolve 
multiple responders to the searches. 

The para11el move instructions are provided 
to move an array memory field to another field 
within the same array word. As with searches, a 
word is active for this instruction only when ena­
bled by the mask register. Types of moves are 
direct, complement the field, increment or decre­
ment the field, and move the absolute value. 

The parallel arithmetic operation associative 
instructions a110w the programmer to perform such 
para11el operations in the arrays. These opera­
tions are subject to mask register word enabling. 
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Arithmetic can use a value in the common register 
as one operand and a value in a field of all array 
words as the parallel operand. Alternatively, one 
field of a word can be arithmetically combined 
with a second field of the same word for all array 
words. Operations supplied by APPLE are add, 
subtract, multiply, divide, and square root. 

Macro. A macro language is provided to in­
crease the userls flexibility at assembly time (6). 
The macro language has a large set of arithmetic, 
logical, relational, and string manipulation opera­
tors. Adding macro variable symbol handling, 
conditional expansion capability, and ability to nest 
macro calls make it possible to write powerful 
macro instructions. A system macro library 
feature has been implemented. 

Benefits to the user are the ability to define 
new mnemonics, redefine existing mnemonics, and 
conveniently generate standard instruction sequences. 

Mnemonics have been added to the basic 
APPLE language for RADCAP by writing macros 
and putting them in the system library. Primarily, 
the added mnemonics are floating point instructions. 
They are fixed field length operations in both single 
and double precision. 

Building Load Modules. Software used to con­
vert source language programs into executable 
load modules includes an APPLE assembler, 
macro-preprocessor, and relocating linker. Fig­
ure Z shows this software and the flow of programs 
or modules through it. 

Building load modules begins with the original 
program written in APPLE. This source program 
may contain macro instructions. Translation of 
the source into a machine language object module 
is by MAPPLE, (APPLE assembler with Macro­
preprocessor on the front end). If it is known that 
the source program does not contain macro instruc­
tions, it is possible to input the source directly to 
the APPLE assembler. 

APPLE SOURCE 
PROGRAM 

I 
I 
I 
I 
I 
I 
I 

MAPPLE MACRO-ASSEMBLER 

APPLE SOURCE 
INTERMEOIATE FILE 

I 
I 

: 
I 
I 
I 

A relocatable object module is converted to 
an absolute load module by the STARAN linker. 
Multiple object modules may be input to the linker 
since it has the function of resolving symbols de­
fined across object module boundaries (global 
symbols) as well as adjusting addresses for relo­
cation. 

Use of the language processing software is 
fully described in the STARAN userls guide (7). 

Operational Software 

Operational software is discussed below from 
the standpoints of loading, executing, and debug­
ging programs on STARAN. Four modules are 
involved: loader plus STARAN program super­
visor, debug module, and control module. 

Loader. Output of the STARAN linker is shown 
in Figure Z as an absolute load module. The loader 
has the straightforward task of moving a load mod­
ule into STARAN control memory beginning at the 
address specified in a text block. Options on load­
ing are to load and not execute or to load and begin 
execution either at an address given with the load 
module or at one given with the load command. 

The load module can be linked with a user pro­
gram to enable calling for a load from an executing 
program. This means that overlay modules can be 
brought in dynamically. 

STARAN Program Supervisor (SPS). The SPS 
is the software interface between the associative 
and sequential portions of STARAN. This module 
has services for system users when programming 
in APPLE and when programming a PDP-ll rou­
tine to interact with an APPLE program. 

For the APPLE program, SPS makes the I/O 
instructions of the disk operating system (DOS) 
available, provides a program overlay capability. 
and provides a programmable interrupt to a PDP-
11 routine. The PDP-II routine interacts through 

OBJECT 
MODULE 

I 
I 
I 
I 
I 
I 
I 

LOAD 
MODULE 

I 
I 
I 
I 
I 
I 
I 
I 

I MACRO- I APPLE I STARAN I 
PREPROCESSOR 

/ 
/ 

APPLE SOURCE 
WITH NO MACROS 

ASSEMBLER LINKER 

/ 
ADDITIONAL 
OBJECT MODULES 

Figure Z. Language Processing Software 
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a software link, which receives the APPLE inter­
rupts, and through the issuing of control inform.a­
tion to the associative control logic. 

In addition, the SPS supplies interface ser­
vices. It transfers data between associative and 
sequential m.em.ory through the com.m.on m.em.ory 
window (Figure 1). The SPS also fields associative 
processor error interrupts. 

Concurrent execution of associative and sequen­
tial routines, with interaction, is m.ade possible by 
the SPS. 

STARAN Debug Module (SDM). The SDM helps get 
rid of bugs in APPLE program.s by giving the user 
control of the execution of the program. being de­
bugged, and access to m.em.ory and registers. Such 
features as single step, trace, and breakpoint pro­
vide good execution control. Dum.ps of all m.em.ory 
areas can be taken, with both word slice and bit 
slice available for the m.ulti-dim.ensional access 
arrays. All m.em.ory locations also can be m.odified. 

STARAN Control Module (SCM). This final opera­
tional m.odule is the interface between the user and 
execution of a STARAN program.. By running the 
SCM, the user enters a m.ode in which STARAN 
related com.m.ands are recognized. Such com.m.ands 
as start, halt, and continue execution are processed 
directly by the SCM. When the load com.m.and is 
used, the SCM passes control to the loader for that 
function. If debug aids are needed, a sim.ple com.­
m.and adds all debug m.odule features to the SCM. 

All the operational software m.odules are de­
scribed m.ore fully in the STARAN user's guide (7). 

Software for STARAN/645 Multics Mode 

General 

In the RADCAP facility, the integrated use of 
the STARAN parallel processor and the 645 sequen­
tial com.puter m.akes additional software necessary. 
One m.ajor concern is the interface between the 
com.puters; this requires a software m.odule in both 
m.achines. A second concern involves reasonable 
ease of use for the integrated m.ode; four procedure 
packages that execute totally in the 645 were added 
to satisfy this concern. 

Figure 3 shows the relationship between soft­
ware m.odules in STARAN and the 645. As indica­
ted, the Multics tim.e-shared operating system. of 
the 645 contains three categories of software: 
com.m.and level, user process, and system. related. 
Com.m.and level software is brought into execution 
by user-supplied com.m.ands, as from. a Multics 
term.inal. User process software consists essen­
tially of subroutines called from. a user program.. 
System.-related software is the collection of rou­
tines that support use of the system., such as 
handling input and output, and are usually called 
indirectly by the user program.. 

Additional details on the design and use of soft­
ware are described in the STARAN/645 user's guide 
(8). 

Interface Modules 

The two m.odules for the interface, shown in 
Figure 3, are the 645 device driver in the STARAN 
batch disk operating system. (DOS) and the STARAN 
device interface m.odule (DIM). These m.odules 
are discussed below. 

645 Device Driver. This driver provides the 
interface between the DOS m.onitor and the 645 
com.puter. It com.m.unicates with the m.onitor as 
do other device drivers for standard peripherals. 
If the device looks like an input for character in­
form.ation, then batch com.m.ands can com.e from. it. 
The batch stream. can be assigned to the device. 
This is the significance, for Multics, of the batch 
feature on the DOS. 

In reality, the device treated by the 645 driver 
is used for m.uch m.ore than character input. The 
645 appears as three logical devices with unit num.­
bers 0, 1, and 2. 

Unit 0 looks like the disk, logically. Before 
transferring data, it is necessary to "open" a file 
using a file nam.e and extension in the DOS form.at. 
The driver supports both ASCII and binary trans­
fer m.odes, both form.atted -and unform.atted. A 
data-set rem.ains open until a "close" call is issued. 
At anyone tim.e, up to 14 data-sets m.ay be open 
on unit O. 

Unit 1 looks like a card reader, logically. It 
is a read-only device with an ASCII transfer m.ode. 
This unit serves as the batch com.m.and stream in­
put so a Multics user can control the system. 
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Unit 2 looks like a paper tape punch, logically. 
It is a write-only device with ASCII and binary 
transfer modes. Job log output, in the integrated 
m.ode, is always assigned to this unit. 

Because of the nature of the 645 device and its 
expected usage, the device driver has two custom 
functions built in. An "idle" function is used to 
tell Multics when the com.mand stream. file has been 
processed. A "detach" function, called when a 
Multics user detaches from. STARAN, perform.s 
cleanup and m.akes STARAN ready for a new Multics 
user. 

STARAN DIM. In Multics term.inology, a 
device interface module (DIM) coordinates com­
munications with a particular physical device. 
The four major functions are performed by the 
DIM are: (1) attachm.ent, (2) read com.m.and 
from. STARAN, (3) respond to STARAN com.mand, 
and (4) detachment. 

Attachm.ent is the function through which a 
user process gains access to STARAN. The inter­
face is initialized by a call to the attachment entry 
point in the DIM. STARAN is available as a Multics 
system resource to only one process at a tim.e. 
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Figure 3. STARAN/645 System Software Relationship 

Therefore, further calls to the DIM can be made 
only after a successful attachment. 

The function of reading a command from 
STARAN occurs after attachment. The first com­
mand should be to read ASCII on the command 
stream input device. As noted above, Unit I of the 
645 device driver is provided for this purpose. 

Once the initial sequence is past, the DIM must 
respond to STARAN commands. The call made by 
the Multics process is determined by the previous 
STARAN command. For example, if STARAN 
issues a read call, Multics must write. 

Finally, the detachment function severs the 
link between the user process and STARAN. 

Data manipulation by the DIM assumes all 
Multics data is in character form. It converts 
characters into the form needed for output to 
STARAN and converts data received from STARAN 
into Multics character form. This means, for 
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example, that Multics arithmetic data must be con­
verted to a character form prior to output, and 
from characters following input. The conversion 
is done by a procedure superior to the DIM. The 
DIM also handles retransmission of bad data and 
reports a failure to its caller after a specific num­
ber of unsuccessful tries on the same data. 

In the Multics software structure, the DIM is 
located in a position inferior to the file control 
procedures, shown in Figure 3 and described in 
the next part of this paper. 

System Use Modules 

File Control Procedure (FCP). The FCP 
greatly simplifies operation of STARAN from 
Multics. It enables a Multics user process (pro­
gram) to interact with STARAN by initializing the 
interface, handling communication between the 
machines, and terminating the interface. The 
FCP also makes the necessary calls to the DIM to 
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initialize and terminate the interface. CO'nununi­
catiO'n is described in the fO'llO'wing paragraphs. 

Once the interface has been established,Mul­
tics appears to' STARAN as a set O'f three 10'gical 
devices, defined above as Units 0, 1, and 2. 

Unit 0 is like a disk. All O'peratiO'ns O'n this 
file-structured device are initiated within STARAN 
by I/O instructiO'ns and are perfO'rmed within Mul­
tics. The FCP represents the interface between 
the DIM and Multics stO'rage for all file O'peratiO'ns. 
It handles the O'pening and clO'sing O'f files, makes 
file names knO'wn to' Multics, and issues apprO'­
priate calls to' the DIM fO'r read and write O'pera­
tiO'ns. 

Unit 1 is like a card reader. It is the sO'urce 
O'f batch stream cO'nunands to' the STARAN O'pera­
ting system. The FCP must recO'gnize requests 
fO'r these cO'mmands, read the cO'nunands frO'm the 
sO'urce in Multics, and write them to' STARAN. 
The sO'urce can be either a Multics terminal O'r 
named file. All calls to' the DIM are made by the 
FCP. 

Unit 2 is the destinatiO'n O'f jO'b 10'g output. The 
FCP sorts this O'ut and directs it to' a Multics ter­
minal O'r named file. Again, all calls to' the DIM 
are handled by the FCP. 

With FCP, a user prO'cess, executing in the 
645, can call fO'r STARAN, and it can pass cO'm­
mands, prO'grams, and data to' STARAN. The FCP 
raises the point at which the user becomes invO'lved 
frO'm sequences O'f calls to' the DIM to' a more sym­
bO'lic call to' FCP rO'utines frO'm the user prO'cess. 

STARAN CO'mmand. User invO'lvement in the 
interface to' STARAN is raised still higher frO'm 
the user prO'cess to' the Multics cO'nunand level by 
a "STARAN" mO'dule. Essentially, this mO'dule is 
a supplied user prO'cess that passes parameters 
used in the terminal cO'nunand to' the FCP. The 
parameters identify the STARAN batch cO'mmand 
stream input and O'utput devices. The mO'dule calls 
apprO'priate FCP rO'utines to establish interactiO'n 
with STARAN. 

In typical operatiO'n O'f STARAN frO'm a ter­
minal, this Multics cO'mmand is used with STARAN 
cO'mmands alsO' coming frO'm the terminal. Ini­
tializing and terminating the interface are nO't a 
cO'ncern O'f the user. The Multics terminal be­
cO'mes very similar to' the STARAN contrO'l consO'le 
when this mO'dule is used. 

Arithmetic FO'rmat RO'utines (AFR). STARAN 
and the 645 differ in the lengths of their data 
representatiO'ns. STARAN has a 32-bit cO'ntrol 
memory, while the 645 has a 36-bit word length. 
Arithmetic format rO'utines are provided to' con­
vert either integer O'r floating pO'int data between 
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the 645 fO'rmat and the format used by the DIM for 
transmissiO'n to' STARAN. 

In the Multics to STARAN directiO'n, integer 
data are cO'nverted by truncating the mO'st signifi­
cant fO'ur bits. A check is made to' verify that the 
integer can be represented in 32 bits. FlO'ating 
pO'int data are cO'nverted by truncating the least 
significant bits O'f the mantissa. 

FrO'm STARAN to' Multics, integer cO'nversiO'n 
is done by extending the sign bit. FlO'ating pO'int 
cO'nversion is done by filling the 10'w order mantissa 
bits with zerO's. 

Cross Assembler. This is a functiO'nally 
equivalent version O'f the MAPPLE assembler, 
written in PL/l, to be run in Multics. It is avail­
able to' terminal users on a time-shared basis. It 
accepts APPLE and macrO' statements and prO'­
duces STARAN object cO'de in the Multics character 
fO'rmat required by the DIM fO'r transmission to' 
STARAN. 

CO'nclusiO'n 

A brief description has been given O'f the sO'ft­
ware that makes up the O'perating system for oper­
atiO'nal STARAN assO'ciative array prO'cessO'r in­
stalled in the RADCAP facility. AlsO' described is 
the additional sO'ftware that makes STARAN O'pera­
tiO'nal when integrated with 645 sequential computer. 
The gO'al O'f all the sO'ftware is to provide tO'O'ls to' 
use STARAN in the stand alone and integrated mO'des. 
The tO'O'ls are intended to' increase cO'nvenience fO'r 
the user and imprO've tO'tal system thrO'ughput. 

Many modules have been discussed. SO'me O'f 
these are essentially transparent to the user, 
sO'me may nO't be needed by certain users, and 
sO'me may be required by all users. For stand­
alO'ne STARAN O'peratiO'n, the prO'grammer must 
know APPLE and the use O'f the assembler and 
linker. He must be able to' run the cO'ntrO'l mO'dule 
and 10'ad prO'grams. He will probably be interested 
in the debug mO'dule. The STARAN prO'gram super­
visO'r is transparent fO'r mO'st users. It is nO't 
necessary to' knO'w any O'f the sequential contrO'l 
program O'r languages. 

TO' use STARAN frO'm a Multics terminal, the 
O'nly additiO'nal requirement is to' knO'w hO'w to' 
cO'nnect STARAN and Multics using the Multics 
"STARANII conunand. If the user wishes to' have 
a Multics user prO'cess (i. e., a prO'gram) interact 
with STARAN, then the calls to' the file cO'ntrol 
prO'cedures and use O'f the arithmetic fO'rmat 
rO'utines becO'me impO'rtant. The 645 device driver 
and the STARAN DIM are transparent to' users. 
The cross assembler is a cO'nvenience fO'r Multics 
users and may be used instead O'f the assembler 
in STARAN. 
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APPLICATION OF STARAN TO SUPPORT REGION ANALYSIS 
FOR A MECHANICAL ROBOT 

J. M. Plante and D. J. Gondek 
Rome Air Development Center (IRDA) 

Griffiss Air Force Base, New York 13441 

Summary 

For the past seven years the Advanced 
Research Projects Agency (ARPA) has sponsored 
research at Stanford Research Institute (SRI) in 
the area of artificial intelligence. The primary 
goal of this project has been to investigate 
techniques in artificial intelligence applied to 
the control of a mobile automaton (robot) in a 
real environment. The main emphasis has been on 
the design of a hierarchy of algorithms that will 
accept visual and other sensory information 
gathered by the automaton. Specifically 
algorithms are developed to support the analysis 
of the controlled environment in which the auto­
maton resides (1). The potential application of 
STARAN to support a selected subset of these 
algorithms (i.e. Region Analysis) was investigated 
and is summarized in this paper. 

The Region Analysis algorithm uses a decision 
tree. Nodes in the tree correspond to an operator 
to be applied, and branches emanating from a node 
correspond to the results of that operation. Any 
path through the decision tree eventually leads 
to a terminal node corresponding to a description 
of the location, and possibly the identification 
of an object in the scene. Repeated passes 
through the tree produce a list of such informa­
tion describing the scene. 

The Region Analysis algorithm is designed to: 

(1) Assign region numbers and identify 
related neighbors within the overall environment. 

(2) Assign scores for "Best Guess Region 
Type". This information is derived from the afore 
mentioned Scan and Merging Heuristic Algorithms. 

(3) Object identification within regions, 
as related to the overall environment. 

The data (identified regions) is then used as 
input for further Scene Analysis before being 
passed to the main body of robot programs (i.e. 
question-answering, navigation/route plotting, 
problem solving, etc.) 
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The Scene Analysis program as executed on a 
sequential computer, uses a number of special 
purpose subroutines to extract evidence from or 
to apply to a picture/scene. These low-level 
routines operate in a quasi-intelligent fash­
ion, in that they perform some operation and 
return an answer based on previous results and 
the sensibleness of their answers. 

The highly iterative Region Analysis algor­
ithm (which are a subset of the Scene Analysis 
algorithms) have not been currently implemented 
on any conventional sequential machines due to 
the excessive computational time required to 
execute them. Since this particular subtask per­
forms many repetitive sequential operations 
which collect very similar samples/packets of 
related data elements, parallel processing tech­
niques for performing the Region Analysis 
functions were investigated. The conclusion of 
the study was that the application of the STARAN 
Associative Processor is a viable solution which 
readily lends itself to this programming task. 

For information concerning the design and 
operation of the mechanical robot and supporting 
programming subtasks consult references (1) and 
(2) • 

For supporting technical data on the STARAN 
Associative Processor system, the reader is dir­
ected to reference (3). 
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A DATA MANAGEMENT SYSTEM 
UTILIZING THE STARAN 
ASSOCIATIVE PROCESSOR 

Richard Moulder 
Digital Systems, D/472 

Goodyear Aerospace Corporation 
Akron, Ohio 44315 

SUMMARY 

An on-line data base management system (DBMS) 
utilizing the STARAN Associative Processor has 
been designed and implemented at Goodyear 
Aerospace. The hardware configuration is composed 
of Goodyear's STARAN S-lOOO ,lith a parallel head­
per-track disc (PHD) and a Xerox Data Systems 
Sigma 5 computer. Communications between the two 
computers is via Direct Memory Access (DMA). The 
PHD is for peripheral data storage and consists 
of a single disc with 64 tracks. Each track has 
a head and read/write electronics. This design 
allows data to be read into or out of the associa­
tive arrays over a communications channel which is 
64 bits wide. 

A four level hierarchical data base was selected 
and implemented in our DBMS. The technique used 
for actually storing the data on the PHD was the 
Associative Normal Form (ANF) suggested by 
DeFiore and others [1]. Employing ANF we 
developed a data base having no external indices 
and no organization by record type. This allowed 
a significant saving in peripheral storage with 
little or no degradation in query or update 
response times. This was made possible because 
of the parallel input/output and parallel content 
searching capabilities of STARAN. The benefits 
of a fully inverted data base were achieved with­
out the attendant increase in peripheral storage. 

The software system was composed of four basic 
modules. These modules can be found in most DBHS 
and are the Define, Create, Interrogate, and 
Update Modules. The Define module describes the 
logical data structure to the computer system. 
In our implementation, the Define module was 
similar to IBM's G 13/2 [ 2]. The Create module 
populates the data base by mapping the logical 
data structure to the ANF and writing the data 
to the PHD. The most used modules are the 
Interrogate and Update modules. These modules 
are used via a graphic display console to query 
and change the data base. A non-procedural 
language tailored after 3DC's SACCS Data ~~nage­
ment System [3] was employed. Any data item 
or attribute of a record can participate in the 
search criteria with multiple criteria being per­
mitted. Besides the standard query and update 
functions that were provided, an additional 
function called "Hove" was introduced. This 
command allowed the restructuring of the hier­
archical data base without going through a 
"Delete" and an "Add." 
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A user's request is typed on the graphic display 
terminal and then transmitted to the Sigma 5. 
The request is passed through an input valida­
tion software module. Following validation, the 
request is processed by a translation module. 
This translation includes the restructuring of 
the selection criteria according to the rules 
for Reverse Polish Notation. A task list of I/O 
functions involving the search criteria is con­
structed and transmitted via D}~ to the STARAN. 
The task list is executed and records that satis­
fy the search criteria are transmitted back to 
the Sigma 5. Information is extracted from the 
records, formatted, and displayed. 

Our results to date show that associative proc­
essors working in concert with sequential proc­
essors performing in a DBMS environment are an 
excellent marriage of two computer concepts. 
With multiprocessing capabilities, greater 
throughput can be achieved. Timing results show 
that for the implemented data base, query and 
update times are nearly equal. Our results also 
show that a DBMS employing Associative Processors 
will require less software. This is due to the 
simplicity of the data storage techniques. For 
a more detailed description of the Data Manage­
ment System implemented on STARAK, the reader 
is directed to references [4] and [5J. 
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INTRODUCTION TO THE ARCHITECTURE OF A 288-ELEMENT PEPE 

Alf J. Evensen & James L. Troy 
Huntsville Operations 

System Development Corporation 
Huntsville. Alabama 35805 

Abstract -- The PEPE (Parallel Element 
Processing Ensemble) is a parallel-associative 
processor which can attain order-of-magnitude 
performance and cost-effectiveness improvements 
over conventional machines when employed on 
problems containing inherent parallism. This 
paper describes the architectural features of a 
new large-scale PEPE system now being constructed 
to operate with a CDC 7600 Host. 

General Description 

When compared with conventional sequential 
multi-processing computers. PEPE provides much 
faster data processing rates. It does this at 
relatively low cost and with inherent reliability 
since its architecture is made up largely of 
disconnectable. rather simple but triple-process­
ing element modules which are replicated many 
times throughout the design. Failure in anyone 
element affects neither the remaining hardware nor 
the software. 

Each PEPE element may simultaneously respond 
to instruction execution microsteps from each of 
three control units. Therefore, a 288-element 
PEPE may effectively execute up to 864 instruc­
tions simultaneously. 

Elements may be added to the configuration 
if required, with no effect on the software. The 
capability of associative addressing allows the 
software to be indifferent to the number of 
elements that are present. Individual elements 
are activated or deactivated from participation in 
the execution of an algorithm based upon compari­
sons of sequential and/or parallel data. 

PEPE uniquely puts its parallel processing 
capabilities to work by providing completely over­
lapped input and output functions. The current 
large-scale PEPE model provides architecture to 
interface the parallel processing environment with 
a computing world which is sequentially oriented. 
Input/output conversion units. an input correla­
tion control unit and an associative output 
control unit are utilized to allow the parallel 
arithmetic architecture to execute virtually with­
out I/O overhead. Within the correlation and 
associative output control units data are block 
transferred from and to external devices simulta­
neously with the transfer of other data into or 
out of selected elements. The PEPE then is a 
complete parallel data processing system providing 
an unrestricted throughput relative to its 
parallel arithmetic capabilities (see Figure 6). 
[1] [2] 

Host Interface 

Although the current model PEPE will contain 
its own instructions. programs. interrupt mechan-
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isms. clocks, etc •• a close interface with a stan­
dard sequential computing system is desirable for 
quickly processing non-array-oriented portions of 
problems and for peripheral device control. This 
sequential system may also be used for utility 
functions such as compiling PEPE programs. For 
these purposes, the current PEPE configuration 
will utilize the ABMDA Research Center CDC 7600 
computer which is connected to PEPE through three 
MUX (Input/Output Multiplexor) channels.(a) 

PEPE Instructions 

Both sequential control and parallel instruc­
tions can be intermixed in a program unit. The 
sequential instruction repertoire is required for 
program control functions and includes branching, 
I/O, active element count. and a limited data 
conversion capability (shift, mask. integer 
arithmetic). The parallel instruction repertoire 
includes two types of instructions: those which 
select element activity. and functional instruc­
tions such as floating point and integer arithme­
tic. shift and mask. The floating point capabil­
ity in the Arithmetic Units includes floating 
point - integer conversion instructions and a 
square root instruction (see Figure 1). The 32-

R· ROUTING CODE 

SEQUENTIAL INSTRUCTIONS: 

o· INSTRUCTION (23-0) MODifiCATION 
1· OPERAND FROM PROGRAM/DATAMEMORV 
2· OPERAND FROM INSTRUCTION 115-0) 

PARALLEL INSTRUCTIONS: 

3. OPERAND FROM ELEMENT MEMORY 

OPERAND/ADDRESS 
12'11 

4. OPERAND FROM CONTROL UNIT A·REGISTER 
5. OPERAND FROM PROGRAM/DATA MEMORY 
6. OPERAND fROM INSTRUCTION 

o 

7. OPERAND FROM PROGRAM MEMORY (PROGRAM COUNTER PLUS ONE) 

Fig. 1. PEPE Instruction Format 

(a)7600 PPUs (Peripheral Processing Units) 
utilized for this connection because of 
tion time penalties. 

are not 
execu-

This work was supported by the U.S. Army Advanced 
Ballistic Missile Defense Agency (ABMDA), 
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bit instruction format has an 8-bit op code field 
(0), a I-bit memory unit selection field (M), a 
3-bit routing field (R), a 4-bit index register 
field (X) (there are 15 index registers in each 
control unit), and a l6-bit address field (A). 
The routing field determines the source of the 
operand and whether the instruction is sequential 
or parallel. The instruction "Load A-register," 
for instance, can cause the sequential control 
unit A-register or one or more parallel A-regis­
ters to be loaded depending upon the routing field 
setting. If a parallel routing is specified, 
parallel element A-registers will be loaded only 
in "active" elements set by a previous "select" 
instruction. 

E 

Detailed Description 

Physical Configuration 

The PEPE design will accommodate 288 process­
ing elements partitioned into eight element bays. 
The element bays are installed radially to reduce 
cable length. Current plans call for the instal­
lation of only one element bay containing 36 
processing elements. All processing element 
operations are controlled from the control console 
which also provides the interfaces required for 
connection to the CDC 7600 and test and mainte­
nance equipment. PEPE will be implemented with 
standard emitter-coupled logic (ECL) contained in 

L B 
E A 
M Y 
E 
N 3 
T 

L 
___ E_L_E_M_E_N_T __ ~~ __ _ BAY 5 ! 

PEPE 
CONTROL 
CONSOLE 

ELEMENT 
BAY 1 

PEPE TEST & 
CDC 7600 MAINTENANCE 

EQUIPMENT 

Fig. 2. PEPE Physical Configuration 
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Dual In-Line Packages (DIPs) which are mounted on 
multilayer printed circuit boards. The printed 
circuit boards will be approximately 16" x 18" and 
will have an average component density of 275 DIPs 
in the element bay and a maximum of 150 DIPs in 
the control console. PEPE will be cooled by means 
of forced air and chilled water. Figure 2 illus­
trates the PEPE physical configuration. 

Control Console. The control console dimen-
sions are approximately: 

SO" high 
50" wide 
26" deep 

Power dissipation is approximately 6000 watts. 

Element Bay. The element bay dimensions are 
approximately: 

80" high 
7S" wide 
26" deep 

Power dissipation is approximately 30.000 watts 
per element bay. 

ARITHMETIC CONTROL UNIT 

- OUTPUT DATA CONTROL 

Test & Maintenance Equipment. A Burroughs 
B1714 computer will be utilized for dynamic test 
and maintenance of the PEPE system and its indi­
vidual printed circuit boards and processing 
elements. 

PEPE Processing Element 

Each processing element (PE) contains an 
Arithmetic Unit. Associative Output Unit. 
Correlation Unit and Element Memory as shown in 
Figure 3. The PE contains no instruction execu­
tion control logic and must receive all timing 
and control signals from the control console. 

The ensemble of processing element units 
receives timing and control signals from corres­
ponding control console execution units as 
follows: 

PE Unit 
Arithmetic Unit 
Associative Output 
Unit 

Correlation Unit 
Element Memory 

Control Console Unit 
Arithmetic Control Unit 
Associative Output Control 

Unit 
Correlation Control Unit 
Element Memory Control 

r- CORRELATION CONTROL UNIT 

ELE MENTMEMORY 
TROL CON 

ASSOCIATIVE OUTPUT 
CONTROL 
CONSOLE 

CONTROL UNIT 

\ 
I I I 

\ I I I SIGNAL I I 
I 

I I DISTRIBUTION I I 
I I I SYSTEM 

I I 
I I I I I 

ARITHMETIC ASSOCIATIVE 
CORRELATION OUTPUT UNIT 

UNIT UNIT 

ELEMENT 

ELEMENT 

MEMORY 

Fig. 3. PEPE Processing Element 
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Each PE unit (except element memory) contains 
an Activity register (one bit). When a control 
unit performs a parallel instruction all corres­
ponding active (Activity register = "1") PE units 
respond so that a maximum of 288 PE units may 
simultaneously execute that instruction. Since 
the processing element contains three computa­
tional units corresponding to three independent 
control units, an ensemble of 288 PEs may be 
responding to three simultaneous and independent 
parallel instructions thereby effectively execut­
ing 864 simultaneous (subject to element memory 
conflicts) instructions. 

An Activity Stack has been added to the 
Arithmetic Unit and Associative Output Unit. It 
is a 2l-level hardware implemented "push-pop" 
stack connected to the Activity register. The 
Activity Stack is used to save and restore multi­
ple subsets of PE units. 

All processing element units contain an 
8-bit, bit addressed Tag register which is used 
to perform associative matches on data received 
from the control unit. 

Arithmetic Unit. Each Arithmetic Unit (AU) 
contains conventional A (accumulator), B (operand) 
and Q (quotient or product) registers which 
support execution of the parallel integer, logical 
and floating point instructions. The AU A-regis­
ter is additionally utilized to provide associa­
tive output to its control unit via a data bus 
shared with the Associative Output Units. Various 
"select" instructions operate upon the AU Activity 
register, Activity Stack and Tag register to 
determine which Arithmetic Units participate in 
subsequent parallel instructions and to remember 
and restore previously active element sets. 

Associative Output Unit. Each Associative 
Output Unit (AOU) contains conventional A and B 
registers which support execution of parallel 
integer and logical instructions. The AOU 
A-register is additionally utilized to provide 
associative output to its control unit via a data 
bus shared with the Arithmetic Units. Various 
"select" instructions operate upon the AOU 
registers exactly as in the AUs. 

Correlation Unit. Each Correlation Unit (CU) 
contains a B-register and 16 Correlation registers 
(contained in a l6-word ECL RAM). These registers 
support execution of parallel integer and logical 
instructions. Correlation register-to-register 
operations are permitted. No means are provided 
for the CU to output data to its control unit. 
Various "select" instructions operate upon the CU 
Activity register and Tag register to determine 
which Correlation Units participate in subsequent 
parallel instructions. There is no Activity Stack 
in the CU since the correlation process requires 
the rapid identification of elements in which to 
store new data, rather than maintenance of a 
history of previous sets of activity as in the AUs 
and AOUs. 
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Element Memory. Each element memory (EM) 
consists of lK words of ECL storage and receives 
address and mode information from the control 
console Element Memory Control (EMC). All 
ensemble EMs receive identical information from 
EMC during execution of a particular parallel 
instruction. EM is connected to the AU, AOU, and 
CU by means of a common data bus and consequently 
EMC directs the sharing of element memory with 
the following priority assignments: (1) CU, 
(2) AOU, (3) AU. This priority scheme has been 
established since the CU instructions tend to be 
short (200-300 nanoseconds) and the AU instruc­
tions tend to be considerably longer (floating 
point multiply requires 1.9 microseconds). Pro­
gram execution times are expected to increase by 
no more than 5% due to element memory conflicts. 
Simulation experiments have shown that reversing 
the priority order greatly increases program 
execution times. 

PEPE Control Console 

The control console provides instruction 
execution control for the entire PEPE. It 
contains three control units (see Figure 4) which 
are connected to the ensemble of processing 
elements as described above. Additionally, the 
control console contains functional units which 
support the following operations: 

° Inter-control unit interrupts 
° Error recovery 
° Processing element output 
° Element memory conflict resolution 
° Maintenance and diagnostic tasks 
° Input/Output data conversion 

The system function of each control unit is: 

° ACU - Manipulates the parallel data base 
contained in the ensemble of element 
memories. 

°AOCU - Outputs data resulting from parallel 
data base manipulations. 

° CCU - Inputs new data. 

Control Units. The three control units (ACU, 
AOCU, CCU) are of a common design which is 
functionally configured as shown in Figure 5. 
Each control unit has its own program and data 
memory. Communication between control units may 
occur via the Intercommunication Logic Unit (ICL) 
as illustrated in Figure 4. 

Programs are executed from the program memory and 
consist of any sequence of: 

° sequential instructions to be executed in the 
Sequential Control Logic (SCL) 

° parallel instructions which are routed through 
the SCL to the Parallel Instruction Control 
Unit (PICU) 

The SCL contains conventional A,B,Q and 
index registers which support execution of 
sequential integer, logical and branch instruc-
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Fig. 4. PEPE Control Console Components 

tions. It also responds to parallel instructions 
which: 

o cause output from the PE (except CCU) 
o allow branching based upon element activity 
o cause inter-control unit interrupts 
o support error recovery 

Sequential instruction operands may be con­
tained either in the instruction or in program/ 
data memory as specified by the appropriate 
instruction fields. 

Parallel instructions (with indexable 
operands) are routed to the PICU which is a micro­
programmed execution unit in which the micropro­
gram memory outputs are utilized to control the 
switching networks in the processing element. 
When required during execution of a parallel 
instruction the PICU transmits address. request 

and mode data to element memory control. It then 
transmits a data strobe to the PE when an acknow­
ledge is received from EMC indicating that the 
PICU has been selected for EM service. Parallel 
instruction operands may be contained either in 
the instruction or in element memory as specified 
by the appropriate instruction fields. 
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Because of its large (32K) program memory. 
ACU cycle time is a relatively slow 200-300 ns 
(other program/data memory cycle times are lOOns). 
Moreover, the ACU has responsibility for execution 
of relatively slow parallel floating-point 
instructions, so the ACU parallel instructions are 
routed through a l6-step queue (Parallel Instruc­
tion Queue) prior to execution in the ACU-PICU. 
This queue effectively speeds up average ACU 
instruction rate. 
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Input/OUtput. Each control unit has two 
Input/Output Units (IOU) to provide for control 
and fully duplexed data transfer to and from the 
CDC 7600 and test and maintenance equipment. 
These IOUs are capable of: 

o Block transfer of data to control unit 
program/data memory initiated by CDC 7600 
(T&M equipment) 

o Block transfer of data from (to) control 
unit program/data memory to (from) 
CDC 7600 T&M equipment) initiated by 
sequential instruction execution 

o Control unit interrupts 
o Control unit start/stop (master clock) 

IOU capability has been expanded to allow 
overlap of IOU data transfer with parallel/ 
sequential instruction execution. This feature 
alone is responsible for halving the time it takes 
to correlate new data received by the CCU with 
existing data residing in element memory. 

Element Memory Control (EMC). EMC receives 
requests from the three control unit PlCUs for 
element memory service. It performs any needed 
conflict resolution, transmits required control 
information to the ensemble EMs and responds to 
the PICU when the selected EMs have been properly 
switched to service the AU, AOU, or CU. 

OUtput Data Control (ODC). ODC receives 
requests from the ACU/AOCU to transfer AU/AOU 
A-register contents to the A-register in the ACU/ 
AOCU SCL. It performs conflict resolution and 
places the active AU/AOU A-register contents on a 
common data bus to the control console. ODC then 
transmits an acknowledge to the ACU/AOCU SCL to 
achieve the data transfer. More than one AU/AOU 
in an active state will cause an error condition 
to be processed by the Inter Communication Logic. 

Inter Communication Logic (ICL). ICL pro­
vides the mechanism for: 

o AOCU interrupt of the ACU 
o CCU interrupt of the ACU 
o Control unit interrupts from IOU 
o ACU control of control unit registers 
o Error interrupts from ACU 
o Real-Time Clock 
o Interval Timer 
o System data collection 

Neither the AOCU nor the CCU have floating 
point instructions. Therefore, they have been 
given the capability to interrupt the ACU in order 
to execute subroutines which require floating 
point manipulations. The ICL prevents interrupt 
"nesting" by either AOCU or CCU, and contains four 
registers (two each for the CCU and the AOCU) 
which may be utilized for inter-control-unit 
interrupt data transfer. Provision has been made 
for the inclusion of a lK-word ICL memory in the 
event that extensive inter-control unit communica­
tion becomes necessary. 

Each Input/OUtput Unit transmits control unit 
interrupt requests to the ICL. Three registers 
(one for each control unit) provide the means of 
transmitting an interrupt message to the control 
units with each interrupt request from either the 
CDC 7600 or the test and maintenance equipment. 

Error conditions within the PEPE signal the 
ICL to generate an error interrupt to the ACU. 
An error identification code is placed in an ICL 
register. 

The ACU SCL error-recovery software utilizes 
supervisory instructions which can read and write 
all control unit registers to and from the 
A-register in the ACU SCL. 

A Real-Time Clock (46 bits) and Interval 
Timer (24 bits) are contained in the ICL. Both 
count with lOOns granularity and are fully 
accessible from all control units. An ACU 
interrupt may be generated when: 

o The Interval Timer decrements to zero 
o The Real-Time Clock equals the value con­

tained in the Real-Time Clock Buffer (fully 
accessible from all control units) 

Eight counters (24 bits) are available in 
the ICL for monitoring software/hardware perform­
ance. 

Maintenance Control and Dia ostic Unit 
MCDU). The MCDU is the diagnostic interface 

which couples the test and maintenance equipment, 
the PEPE control console, and the maintenance 
technician. 
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Future Development 

Although the PEPE Program is continuing under 
the direction of ABMDA for the purpose of develop­
ing an advanced ballistic missile defense system, 
nonmilitary applications for PEPE have been 
studied with the permission of ABMDA. These 
applications could include air traffic control, 
satellite tracking, auto traffic control and 
weather data processing. 
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OPERATING SYSTEM AND SUPPORT SOFTWARE FOR PEPE 

J.R. Dinge1dine, H.G. Martin, W.M. Patterson 
Huntsville Operations 

System Development Corporation 
Huntsville, Alabama 35805 

Abs~ract -- Software for the CDC 760o-PEPE 
configuration consists of a constructab1e real­
time tactical process and the support software 
required to develop and execute the real-time 
process. This paper discusses: 1) the develop­
ment and the real-time characteristics of the 
Operating System; 2) the procedure oriented lan­
guage, Parallel FORTRAN (PFOR), used to develop 
tactical programs; and 3) the PFOR Translation 
System. A PEPE instruction level simulator and 
the process constructor are covered by other 
papers in this set. [3] [4] 

Operating System Software 

Figure 1 is a simplified picture of the PEPE 
system and its host. Three bi-directiona1 
communications paths connect the host computer 
(CDC 7600) with each of the PEPE controllers. The 
system is a network of controllers each of which 
requires compatible parts of the operating system. 
These interfacing parts, together with real-time 
executive functions, are the subject of this 
section. Comments are made on design goals, real­
time executive functions, process execution 
control tables, and system performance under 
functional simulations. 

CDC 7600 HOST 

LCM SCM 

I/O BUFFER : 

I 

OS,RTC, 
PCT's 
INPUT/ 
OUTPUT 
HANDLERS 

PEPE ENSEMBLE 

~~C~C~U~-------------~---------­
DATA STORE 

INPUT BUFFER, PCT', 

PROGRAM STORE 
INPUT INTERRUPT 
HANDLER, INITIATOR 

IU ACU-
DATA STORE 

INPUT BUFFERS, PCT:, 

PROGRAM STORE 
INPUT, TIMER, ERROR, CCU­
AOCU INTERRUPT HANDLERS, 
RTI:, OUTPUT HANDLER 

--ll 
P 
A 
R 
A 
L 
L 
E 
L 

E 
L 
E 
M 
E 
N 

IU AOCU- T 
DATA STORE S 

I PROGRAM STORE 
INPUT BUFFERS, PCT's JJ 

I INPUT INTERRUPT HANDLER, L _ :UTPUT HANDLER, INITIATO_R _____ _ 
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Fig. 2. 
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DIRECTLY BY OTHER TASKS (DYNAMIC) 

Real-Time Executive Design Goals 

Following experience with the previous PEPE 
feasibility model and study of other existing and 
proposed multi-computer operating systems, a pre­
liminary operating-system model was designed with 
the goals listed in Figure 2 in mind. A func­
tional simulation model was generated to aid in 
evaluating the system's effectiveness. The 
results from the runs revealed excessive executive 
and interrupt handling times. Response to 
external stimuli was poor. The basic design was 
flexible enough and table driven as required, but 
the interrupt and overhead tasks were time 
consuming. 

A second simulation model was generated with 
emphasis on simplicity in the hope that flexibil­
ity and responsiveness would follow. The current 
system is an outgrowth of the second model. 
Figure 3 is a flow chart of the real-time execu­
tive loop. It has only three steps: (1) If there 
has been a change in the status of any condition, 
make any indicated enablements using process con­
trol tables; (2) Select the highest priority task; 
(3) If a task is selected, clear the software 
interrupt flag, and call the task. When the task 
is completed, it returns control to the executive 
and the cycle is repeated. This basic executive 
cycle is supported by interrupt handlers and out­
put routines which accomplish process control 
table changes when messages requiring actions are 
intercepted. 

Timing tests on CDC 7600 code for the execu­
tive produced favorable results. Conditional 
enablements, step (1), were made in 4.620 micro­
seconds using a three entry table. Task selection, 
step (2), required 4.950 microseconds, while task 
initiation, step (3), used 4.263 micro-seconds. 
So, a task may be running in the host within 10 
microseconds after it is enabled. This quick 
response is due to the simple structure of the 
process control tables, Figure 4. 
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PEPE Process Control Tables 

The Task Enable Flags are arranged in prior­
ity order. The first flag found in the On State 
represents the next task to run. The Software 
Interrupt Flag is set any time a task is enabled 
which has a higher priority than a running task. 
Any task which runs longer than the software 
interrupt interval (say 250 microseconds) must 
enable itself. adjust controls for continuing its 
operation later. and return control to the execu­
tive. The status of conditions is maintained by 
the running tasks. The Conditions for Enab1ement 
Table has thr~e parts per entry: a set of condi­
tion states, a mask for selecting the set of 
conditions. and task enabling flags (tasks are 
identified by flag positions as in the Task Enable 
Flags Table). All entries in the table are 
processed when a change in the status of condi­
tions is detected. The Time Events Table is a 
chronological list of scheduled time events with 
associated periods between events and task 
enabling flags. The Task Description Table 
identifies the task name. size. and location in 
task priority (number) order. A buffer pointer 
leads the executing task to its input data. 

The process control tables are accessible to 
the running task. the executive. and all interrupt 
handlers. Tasks are triggered in other control­
lers by messages in standard form. Time Event 
Change and Task Enable messages are completely 
processed by the message handlers. 

The simplicity of the real-time control 
process permits similar control mechanisms in all 
system controllers (see Figure 1). The capabi1i-
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ties of the controllers dictate the amount of 
local executive control. The PEPE Arithmetic 
Controller has full interrupt features with an 
interval timer and error interrupts. It, there­
fore, has full real-time executive controls. The 
other two PEPE controllers have only input 
interrupt, task initiation controls, and output 
handler features. 

It is interesting to note that with the rede­
sign of PEPE to include program storage, the total 
system executes as a sequential computer network. 
The only operational difference is shorter 
execution times. Thus, changes to the host's 
commercial operating system are required only to 
support the input/output channels and for the 
addition of a real-time interval timer. 

The real-time controls as described accom­
plish the original design goals (Figure 2) favor­
ably. The simplicity is illustrated by the 
executive (Figure 3) itself. Responsiveness 
results from the simple requirement of the inter­
rupt handlers. The time controls are maintained 
in time order to eliminate time consuming 
searches or sorts. Up to 48 tasks may be enabled 
by one condition table entry. The task triggering 
methods together with the rapid response to 
enablements permits efficient calls to scheduling 
algorithms or deadline functions. For example, a 
deadline task may be time enabled when the dead­
lined task is scheduled. If the task executes 
before the deadline. it simply deletes the time 
table entry which would trigger the deadline 
action. The table structure obviously permits 
many process construction forms such as enable 
tasks. set time event, set/reset conditions. etc. 
Simulation model testing and actual instruction 
timings conducted at the ABMDA Research Center in 
Huntsville substantiate these statements. 

The simplicity of the real-time controls 
coupled with the ease of operating with the rede­
signed PEPE appear to have produced an efficient 
and effective real-time system. 

Support System Software - Parallel FORTRAN (PFOR) 

Overview 

The Parallel FORTRAN (PFOR) sections of this 
paper emphasize language extensions and changes to 
the PFOR Translation System developed since the 
presentation of papers on the Parallel Element 
Processing Ensemble (PEPE) and its support soft­
ware at COMPCON 72 and WESCON 72 [1]. [2]. The 
referenced papers describe the basic PFOR lan­
guage and language processors as implemented on 
the laboratory PEPE IC (Integrated Circuit) model 
used to demonstrate the feasibility of PEPE in a 
Ballistic Missile Defense (BMD) environment. 

PFOR Language 

PFOR is a procedure oriented, higher order 
FORTRAN-like language tailored to the new PEPE MSI 
(Medium Scale Integration) model. The language 
consists of: 1) PEPE FORTRAN, the minimal subset 
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of standard FORTRAN required for the sequential 
control of parallel algorithms in the PEPE Sequen­
tial Control Logic (SCL) hardware, 2) Parallel 
FORTRAN or PFOR, the extensions to FORTRAN for the 
declaration of data and the parallel and associa­
tive processing of data in the PEPE elements, and 
3) PEPE Assembly Language (PAL) machine instruc­
tions, extended mnemonics, and pseudo operations. 

PFOR is currently being used to develop PEPE 
tactical processes. It is the sole source lan­
guage for the three PEPE control units with unique 
machine code generated by the compiler for each 
control unit; whereas for the PEPE IC model, PFOR 
was used to program only the Arithmetic Control 
Unit (ACU). A macro assembly language (CUAL) was 
used to program the Correlation Control Unit (CCU) 
and sequential control was exercised in the host 
IBM S/360-65. The IC model hardware did not 
contain an Associative Output Control Unit (AOCU). 
The capability of intermixing PFOR. FORTRAN. and 
PAL statements in a source program has been 
retained. For the MSI model the PAL assembly lan­
guage statements are bracketed by the PFOR 
primitives MODE(DIRECT) and MODE(PFOR). Each 
block of PAL code is processed as a single PFOR 
source statement. 

PEPE FORTRAN 

The FORTRAN declarative statements, impera­
tive statements. and logical. relational. and 
arithmetic operators defined for sequential 
execution in PEPE are listed in Figures 5 and 6. 

The arithmetic operators * and / are not 
defined since the sequential portion of the PEPE 
hardware supports only 24-bit integer addition 
and subtraction. Address (16-bit) multiplication 
is implemented in the sequential hardware which 
allows the compiler to generate efficient code 
for array references which contain variables in 
the array subscript. 

A minimal subset of standard FORTRAN required 
to exercise sequential control of parallel. 
tactical processes has been defined for PEPE. 

FORTRAN REAL variables are limited in use 
since the SCL hardware does not perform floating 
point operations. These variables are used dur­
ing data transfer between the host and the 
ensemble. 

PFOR Extensions 

The PFOR language has previously been 
described by Wilson [1] and Cornell [2] at 
COMPCON 72 and WESCON 72. The basic PEPE IC 
model PFOR primitives and operators which have 
been retained for implementation on the MSI model 
are listed in Figure 7. 

Several features have been added to the PFOR 
language for the PEPE MSI model. To support 
parallel double precision ihteger arithmetic. the 
data description forms PAR DOUBLE (element memory 
double word) and PAR COR DOUBLE (correlation 
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Fig. 7. Basic PFOR Primitives and Operators 

register file double word) have been added. For 
example, 

PAR DOUBLE PV 

declares PV to be a double precision, integer 
parallel variable. In all examples in this paper, 
names prefixed by the letter P denote parallel 
variables. 

The set of PFOR statements which allow order­
ed selection of PEPE elements in sequential, 
ascending, and descending fashion (DO SEQ, DO ASe, 
and DO DESe) select the elements ~ at a time. 
These have been augmented by the DO UP and DO DOWN 
constructs which allow sets of elements to be 
utilized in an ascending:or descending manner. 
The code sequence 

100 

WHERE 
DO UP 
PW" I 

(PTEST) 100 
100 (PV) 10,1 

acts like a DO ASe statement if, in the elements 
passing the test (the set of elements remaining 
active by virtue of the parallel logical variable 
PTEST being true), the ascending algebraic values 
of PV are unique. In this ~ase in the active 
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element where PV has the lowest algebraic value, 
PW is set to one; in the active element where PV 
has the next lowest value, PW is set equal to two, 
etc. However, if PV is duplicated in one or more 
of the elements passing the test, a "tie" exists. 
Assume for example the two lowest algebraic values 
of PV are identical in the active set of elements. 
The DO ASe construct causes PW to be set equal to 
one in the first physically available active 
element of the two. PW is set to two in the other 
element and then looping continues with PW = 3, 
PW" 4, etc., until at most ten elements are 
looped over. Upon completion of the DO ASe loop, 
I is set to indicate the number of elements 
involved in the processing (i.e., elements where 
PW has been set) for there may be less than ten 
elements which passed the test. 

For the DO UP construct, PW is set to one for 
both elements where the lowest value of PV is 
Identical; then PW is set to two in the active 
element where PV has the next lowest value, etc.; 
until at most ten sets of elements are looped 
over. Upon completion of the loop, I is set to 
indicate the number of sets of elements involved 
in the processing (sequentially tagged in the 
example) for there may be less than ten sets of 
elements which passed the test. 

The WHERE class of statements (WHERE, WHERE 
MAX, WHERE MIN), which are used to specify a 
content-addressed subset of PEPE elements, have 
been augmented by the addition of WHERE FIRST, 
WHERE NOT, WHERE SET, and CONVERGE constructs. 
The general form 

WHERE (logical attribute) sU 

causes the subset of elements satisfying the 
given attribute to remain active and to partici­
pate in processing through the range of the 
statement labeled sU. 

The WHERE class of statements illustrates 
the explicit associative aspects and the implicit 
parallel aspects of the PFOR language. The 
attribute parameter explicitly denotes the asso­
ciative or content based addressing. The 
parallel execution of the statements in the range 
of the WHERE statement (to and including the 
statement labeled sU) is implicit. 

The statements in the range of a WHERE FIRST 
statement (through sU) are executed only in the 
first physically available element of the active 
set. No attribute is specified. For example, 
suppose we wanted to calculate (PZ)2 in one and 
only one element where PX is greater than PY. 
This could be realized by the program sequence 

WHERE (PX .GT. py) 10 
WHERE FIRST 10 

10 Pz.. PZ * PZ 

which calculates a new value of PZ in the first 
physically available element of the subset of 
elements which pass the test. 
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A WHERE NOT statement must reside within the 
range of a WHERE, WHERE MAX, or WHERE MIN state­
ment and does not require specification of an 
attribute. The statements in the range of a 
WHERE NOT statement (through sU) are executed only 
in those elements made inactive by the preceding 
WHERE statement. Upon execution of the range 
terminating statement (labeled sU), the element 
activity reverts to the set of elements active by 
virtue of the preceding WHERE-type statement. 
Assuming a 288-e1ement ensemble where 100 elements 
are active at the time the simple WHERE statement 
is executed and 75 elements of the 100 pass the 
test in the simple WHERE statement, the program 
sequence 

WHERE (PX .GT. PY) 10 
PFLAG" 1 
WHERE NOT 5 

5 PZ - PZ + 1 
10 PZ - PZ * PZ 

sets PFLAG equal to one and PZ - (PZ)2 in the set 
of 75 active elements where PX is greater than PY 
and sets PZ equal to PZ plus one in the set of 25 
elements made inactive by virtue of P~X. 

The WHERE SET construct allows the user to 
temporarily activate a set of elements. This may 
expand (or contract) the set of active elements 
as opposed to the typical nesting of WHERE state­
ments which subset elements into smaller sets and 
reinstate the element activity level by level as 
the program reverts from inner levels to outer 
levels. Assuming a 288-e1ement ensemble where 
100 elements are active, 75 remain active by 
virtue of passing the test in the simple WHERE 
statement, and PW is greater than zero in 250 of 
the 288 elements in the ensemble, the program 
sequence 

WHERE (PX .GT. PY) 10 
PZ - PZ * PZ + 1 
WHERE SET (PW • GT. 0) 5 

5 PX" 0 
Py = 1 

10 CONTINUE 

computes a new value of PZ in the 75 elements of 
the set of 100 where PX is a1gebraic1y greater 
than PY, sets PX equal to zero in all elements of 
the ensemble where PW is greater than zero, sets 
Py equal to one in the 75 elements of the set of 
100, and then reverts the ensemble activity back 
so that the original 100 are active. The normal 
nesting of WHERE statements allows sub setting of 
element activity and, when the range terminator 
statement labeled sU has been executed, the 
previously active set of elements becomes 
reactivated. 

A simpler, faster-executing content-address­
able method of sub setting element activity has 
been implemented for CCU-targeted program units in 
the form of the CONVERGE construct. The CONVERGE 
statement is used for typical correlation algo­
rithms which involve short iterations of code. 

The general form of the CONVERGE statement is 

CONVERGE (logical attribute) sU 

CONVERGE statements may be nested but the range 
terminator statement labeled sU must be identical 
for each CONVERGE statement in the nested set. 
The element activity reverts to its previous 
state once for each set of nested CONVERGE state­
ments; whereas, for WHERE-type statements the 
element activity is restored following the range 
terminator statement of each WHERE in the nested 
set. A set of nested WHERE statements may also 
have the same range terminator statement label 
but, for each nested WHERE, code must be 
generated to revert the element activity step by 
step from inner level to outer level. The 
CONVERGE statement executes faster only when 
nested with other CONVERGE statements. The 
element subsetting of CONVERGE and WHERE state­
ments can be illustrated by the following code 
sequences where the numbers in parentheses 
indicate the number of active elements: 
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(100) (100) 
CONVERGE (PY • GT • PX) 15 WHERE (PY .GT. PX) 15 

(50) (50) 
CONVERGE(PM .LE. PN) 15 WHERE (PM .LE. PN) 10 

(30) (30) 
15 CONTINUE 10 CONTINUE 

(100) (50) 
15 CONTINUE 

(100) 

The INHIBIT INTERRUPT and ALLOW INTERRUPT 
constructs are used to bracket short, fast-execut­
ing code sequences in ACU-targeted program units 
to inhibit Host, CCU, and AOCU interrupts. This 
feature has been implemented because PFOR programs 
are not re-entrant. 

The MODE (processor) and MODE OFF (processor) 
constructs are used to bracket subordinate code 
sequences targeted for execution in another 
processor. The WHILE construct is used to specify 
a primary code sequence which is to continue 
execution in an overlap mode while the subordinate 
code sequence executes in another processor. In, 
for example, a CCU-targeted program unit, the 
program sequence 

MODE (ACU) 
PV=PX+PY 
MODE OFF (ACU) 

causes the ACU to be interrupted, the activity 
state of the CUs (Correlation Units) to be trans­
ferred to the AUs (Arithmetic Units), and the 
bracketed code sequence to be executed by the 
ACU under the control of the ACU resident Real­
Time Executive Interrupt Handler. Also, in a CCU­
targeted source program, the program sequence 

MODE (ACU) 
PV-PX+PY 
WHILE 
CALL CORLAT 
MODE OFF (ACU) 
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causes the ACU to be interrupted and the code 
sequence bracketed by MODE (ACU) and WHILE to be 
executed in the ACU. In an overlap fashion CCU 
resident subroutine CORLAT is called and executed. 
The statement following the MODE OFF (ACU) state­
ment is executed only after both the ACU code 
sequence (bracketed by the MODE (ACU) and WHILE 
statements) and the CCU code sequence (bracketed 
by the WHILE and MODE OFF (ACU) statements) have 
been executed to completion. 

The function PABS is used to obtain the abso­
lute value of a parallel expression. The PEPESTAT 
construct allows the programmer to transfer the 
status of element activity from one control unit 
to another via the shared element memory and 
allows an ACU or AOCU targeted program unit to 
extend element subsetting beyond the normal limit 
of 21 levels. 

The READ. WRITE. and WRITE-with-End-of-Record 
(WRITER) constructs are used to pass data between 
the CDC 7600 host and the PEPE SCL data memory. 
These constructs are PEPE oriented in that 1) no 
FORTRAN FORMAT capability is required. 2) data 
are converted by the hardware from CDC format to 
PEPE format or vice versa as specified in a PEPE 
resident control word referenced by the PEPE 
I/O machine instructions. and 3) data conversions 
are performed based on the PFOR type specification 
statements for the variables. Figure 8 lists the 
extensions to PFOR being implemented for the PEPE 
MSI model. 

PAR DOUBLE 

PAR COR DOUBLE 

I FIRST I 
NOT 
SET 

WHERE 

CONVERGE 

INHIBIT INTERRUPT 

ALLOW INTERRUPT 

MODE DIRECT, MODE PFOR 

(ARITHMETIC ATTRIBUTE) 

NO ATTRIBUTE REQUIRED 
NO ATTRIBUTE REQUIRED 
(LOGICAL ATTRIBUTE) 

(LOGICAL ATTRIBUTE) 

MODE (PROCESSOR), MODE OFF (PROCESSOR) 

WHILE 

PABS, PEPESTAT 

READ, WRITE, WRITER 

Fig. 8. PFOR Extensions for PEPE MSI Model 
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Additional features incorporated in the PEPE 
MSI model PFOR language allow ACU and AOCU 
targeted subroutines containing parallel state­
ments to be nested to any level. Also. PFOR 
statements may be extended as continuation lines 
in the FORTRAN fashion. 

The advantages of the PFOR language are that 
it is easy to learn (like FORTRAN). the associa­
tive aspects are explicit. the parallel aspects 
are implicit. and it is used as a common source 
language for the three PEPE processors. 

Minor constraints include certain limitations 
on usage; i.e •• some language forms cannot be 
utilized in all three processors because each 
processor has unique hardware designed for its 
particular application (input. processing. output~ 
Moreover. the utilization of mixed parallel and 
sequential forms in a single source program is 
sometimes a source of confusion to programmers 
oriented towards sequential processing computer 
systems. 

PFOR Translation System 

Background 

The PFOR language translation system for the 
laboratory PEPE IC model resided on the IBM 
S/360-65. It consisted of 1) PFOR Monitor. 
2) PFOR precompiler, 3) PAL assembler. 4) S/360 
FORTRAN compiler. and 5) S/360 assembler. The 
PFOR precompiler was a preprocessor which con­
verted the PFOR source language to FORTRAN for 
execution in the host and PAL for execution in 
PEPE. FORTRAN source text was passed without 
error checking except to ensure that statement 
label references (GOTO.DO, etc.) did not conflict 
with PFOR construct context rules. The PFOR 
language translation system has been described in 
detail by Wilson [1]. Following is a brief over­
view. The PFOR preprocessor converted PFOR source 
text to FORTRAN and PAL. FORTRAN and PAL source 
text were not modified. The PAL assembler con­
verted blocks of PAL code to S/360 assembly lan­
guage named data sets and generated a FORTRAN call 
statement to a run time PEPE initiator routine 
(PINIT) for each named data set. The intermixed 
input and generated FORTRAN statements were passed 
to the S/360 FORTRAN compiler and the generated 
assembly language CSECT and DC pseudo operations 
representing the named data sets containing the 
blocks of PAL code were passed to the S/360 assem­
bler. At run time. under control of the code 
segments executing in the host, blocks of PEPE 
instructions were streamed over a selector channel 
to the ACU for execution and PEPE data were 
returned to the host via the same channel follow­
ing host invocation of the PINIT interface routine. 
The stream of instructions received by the ACU 
were decoded and broadcast one by one for simul­
taneous execution in the ensemble Arithmetic Units 
(AUs). The PFOR translation system processed only 
PEPE code destined for ACU execution. A separate 
Correlation Unit Assembly Language (CUAL) imple­
mented as S/360 assembler language macros was used 
to generate blocks of PEPE code (as S/360 named 
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data sets) for transmission over another selector 
channel to the CCU. 

Current Implementation Design 

The PFOR language translation system for the 
PEPE MSI model is designed to execute on the 
CDC 7600 under the control of SCOPE 2.0. A common 
source language for the three PEPE control units 
is accepted, and the source text is converted to 
a triple object language, namely, unique parallel 
and sequential code for each target controller 
(ACU, CCU, and AOCU). 

The PFOR compiler consists of two passes 
operating under the control of the PFOR monitor. 
The monitor performs control statement cracking 
to determine, for example, if the program unit (or 
batch of program units) is destined for execution 
in the ACU, CCU, or AOCU. Pass 1 of the compiler 
contains the first pass of a conventional two-pass 
assembler. Pass 1 also performs syntax analysis 

PROCESS CONSTRUCTION SYSTEM 

PFOR 

and grammar checking on the source text. A source 
listing, error diagnostics and a PEPE memory map 
are output to a list file. A file containing an 
encoded pseudo binary unit record for each assem­
bly language statement (PAL source input or 
generated PAL) and a dictionary or symbol table 
file are prepared by Pass 1 for input to Pass 2, 
the assembly pass. The assembler generates an 
object listing and a cross reference listing of 
symbol utilization. A re10catab1e binary object 
module is generated which can be placed in a 
library file or directly input to the Process 
Consolidator for linkage and binding into a core 
image absolute binary load module suitable for 
loading (from the CDC 7600) and execution in PEPE. 

ACU-executing code sequences embedded in a 
CCU or AOCU targeted source program (parent pro­
gram) are placed on disk by Pass 1. Parallel 
variable entries in the symbol table are saved in 
compiler memory. When the compilation of the 
parent program is complete, each subordinate code 
sequence destined for ACU execution is processed 
as a separate, unique compilation utilizing the 
saved symbol table containing entries for parallel 
variables which reside in element memory. In PEPE 
a single element memory is shared by the three 
control units so parallel variables can be declar­
ed and referenced in both parent programs and 
subordinate code sequences. An overview of the 
PFOR Translation System is depicted in Figure 9. 

~~~J~:cu,CCU) r---------------------, 
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OBJECT 
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F1.g. 9. PFOR Translation System 
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Summary and Conclusions 

The PEPE MSI model PFOR compiler accepts a 
single source language and generates a triple 
object language. Language forms have been 
expanded to provide more flexibility to the 
tactical applications programmer. Using PEPE, an 
increase in data volume (as opposed to an increase 
in the complexity or sophistication of data 
manipulation) can be straightforwardly handled by 
increasing the number of elements in the ensemble. 
The PEPE software will still perform effectively 
with no changes; i.e., an increase in system 
capability obtained by adding more hardware is not 
necessarily accompanied by software breakage 
problems. This latter point is illustrated by the 
fact that in the PEPE IC model, tactical software 
for tracking targets was checked out using a 16-
element simulator, run on the 16-e1ement IC model 
hardware, and then transferred to a 100-e1ement 
simulated ensemble with ~ changes. 
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PROCESS-CONSTRUCTION FOR A PARALLEL-SEQUENTIAL COMPUTER ARCHITECTURE [1] 

Arthur L. Barrett 
Huntsville Operations 

System Development Corporation 
Huntsville, Alabama 35805 

Summary 

The purpose of process construction is to 
facilitate the transition from process design to 
operating process. Five successive states com­
prise this transition: modification, translation, 
compilation, consolidation, and operation. 

The PEPE process constructor currently 
excludes the modification stage; it is performed 
by a commercial utility routine. Statements of 
design and implementation are updated and sorted 
to produce a file of process definitions and a 
file of source statements for the components of 
the object process. These are inputs to the 
translation stage. 

Definitions are translated first to produce 
object statements defining the process data base 
and to provide information for the translation 
routines to use in handling the operative state­
ments. The latter are translated as they are 
detected in the ensuing examination of the source 
file. Unrecognizable statements in that file are 
passed in proper sequence to either the PFOR [2] 
task file or the FORTRAN task file. This stage 
also produces a control file for the consolida­
tion stage. 

The process constructor invokes each of the 
compilers to produce a file of object modules; 
one for the PEPE and one for the host. The 
consolidation stage reads these and other files, 
such as the system subroutine libraries. Direc­
tives to the consolidator from the translator and 
information included in the object modules enable 
this stage to create modules to be loaded into 
each memory of the PEPE-host configuration and 
operation is begun. 

The approach to tactical software develop­
ment in the PEPE program is one of evolution from 
process design and functional simulation to live 
operation. As an aid to this approach the con­
structor uses the Software Development Language 
(SDL). This language meets the requirements of 
flexibility and ease of use through its syntax; 
keyword followed by parameter. Statements are 
formed from sequences of keyword-parameter sets. 
Three field delimiters each have the same meaning 
and are used interchangeably for readability. 
The simple. rigorous syntax enables the tab1e­
driven SDL translator to be highly generalized, 
thus the language is open-ended. requiring only 
changes or additions to the data in the transla­
tor's control tables for modification or addition 
of a statement to the language. 

A tactical process design is described in 
SDL statements and such PFOR and FORTRAN state­
ments as are needed to manipulate data for a 
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functional simulation. The process is then con­
structed for simulation, merging the simulation 
package with the process. As the various routines 
of the process are implemented. their code is 
added directly to the source library. The code 
thus becomes part of the process and is executed 
during operation. but it does not affect the 
functional simulation. When the tactical code is 
fully implemented the process can be constructed 
for live operation. The translator recognizes 
statements that are peculiar to a simulation and 
removes them or, in some cases, provides a trans­
lation more appropriate to a live process. 

The basic data entities are PARCELs (parallel 
cells grouped into PARTITIONs) in PEPE ensemble 
memories, and ELEMENTs. Both translate into 
variables and arrays of up to three dimensions. 
aside from the PARCEL's innate vector across the 
ensemble. The PARCEL also may be positioned and 
packed in bit groups smaller than word size with 
more than one parcel per word. ELEMENTs comprise 
QUEUEs in host secondary storage. accessed by a 
data manager utility. They also appear as members 
of SETs, translating into labelled common in host 
primary memory and the data memories of the 
respective PEPE Control Units. 

To date the application of process construc­
tion methods directly to the PEPE-re1ated segments 
of the object processes to be built is extremely 
limited. Because of this it is not clear to what 
extent such methods will aid implementation of 
parallel processes. Also there are capabilities 
now available, or soon to be available, that will 
allow the description of a process to be stated in 
"neutral" terms; neither specifically sequential 
nor parallel. Then, via directives to the process 
constructor the designer can alter the distribu­
tion of data and functions over the para11el­
sequential architecture to determine the optimal 
assignment of functions. 
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A COMPARISON OF A PARALLEL AND SERIAL IMPLEMENTATION 
OF A LARGE REAL TIME PROBLEM 

Peter T. Alexander 
Richard O. Parker 

Science & Technology Division 
General Research Corporation 

Santa Barbara, California 93105 

Abstract -- The mapping of an existing large 
real-time application onto PEPE is discussed. A 
set of measures describing the utilization of 
hardware by software and the match of the combi­
nation of hardware and software to the problem 
are suggested. The tools used to gather data for 
both the serial and the parallel implementation 
are described. Preliminary data is presented. 

Introduction 

SETS [1] is a computer program currently im­
plemented on a Control Data Corporation 7600 con­
sisting of approximately 150 modules and 120,000 
machine instructions. It is designed to execute 
in real time and to model the complete environ­
ment external to a tactical data processor in a 
ballistic missile defense scenario. The primary 
task of SETS is to generate realistic radar re­
turns in response to radar commands which are 
communicated through an interface with another 
computer. The salient characteristics of this 
problem are: (1) there is a large, time-varying 
data base describing the changing environment 
which must be input and maintained; (2) as many 
as 5000 radar commands per second may cross the 
interface; (3) the amount of processing required 
to generate a return is highly dependent upon the 
changing environment; and (4) average response 
times as short as 200 microseconds are required. 
This is a large real time problem characterized 
by high data rates, a dynamically changing data 
base, unpredictable computational requirements, 
and short response times. Some of these charac­
teristics are common to other real time problems 
(e.g., Air Traffic Control and command and con­
trol systems). This particular application can 
be considered, in general terms, as a problem 
which requires that a dynamic data base be main­
tained and that the data base be accessed to 
respond, in real time, to questions related to 
that data base. 

In an effort to extend the capacity and 
fidelity of the simulation, parts of the simula­
tion are being implemented on PEPE, which will 
serve as an adjunct to the CDC 7600. The result­
ing configuration will be one in which PEPE and 
the CDC 7600 cooperate to respond to an inquiry. 

The following two sections of the paper will 
summarize the current serial implementation and 
describe the mapping of the problem onto PEPE. 
The final sections will present some preliminary 
thoughts and data describing the performance of 
each implementation. 
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The reader's familiarity with the PEPE archi­
tecture and nomenclature is assumed. The preced­
ing papers in this session should provide suffi­
cient background and references. A knowledge of 
the CDC 7600 architecture is needed to understand 
some of the measurement data. 

The Serial Implementation 

Serial implementation of this problem have 
been designed, executed, measured and refined for 
three years [2,3]. In the current version, a 
single inquiry is processed to completion before 
starting work on the next. Although off-line pre­
processing is used to increase throughput, no 
attempt is made to anticipate an inquiry. The 
relevant parts of the data base are updated as 
part of the inquiry processing. 

Data Structures 

The basic data structure used is the linked 
list. This was chosen because of the varying 
storage requirements of different scenarios and 
the logical interconnections of the data. 

Control Structures 

The process is data driven by the presence 
of new inqu1r1es. Computations are initiated 
under the control of a time ordered task list. 
Input/output interrupts are transparent to the 
applications code. 

Input/Output Structures 

The data base is double buffered into Large 
Core Memory (LCM) at approximately one second 
intervals. The data is then transferred into 
Small Core Memory (SCM) as needed by the applica­
tions program. References to data are made 
through a Dynamic Storage Allocation system (DSA) 
[4] providing memory management that is trans­
parent to the user. Inquiries and responses re­
side in circular buffers. The management of 
these buffers and the interface between computers 
is performed by special purpose interrupt hand­
lers and Peripheral Processor Unit (PPU) routines 
transparent to the applications code. 

This research was supported by the Advanced Bal­
listic Missile Defense Agency under contract 
DAHC60-73-C-0037. 



1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING 

The Parallel Implementation 

The parallel implementation consists basi­
cally of two tasks: (1) responding to inquiries 
and (2) updating the data base. The division is 
in contrast to the serial implementation where 
the relevant portions of the data base are up­
dated in response to each inquiry. These tasks 
have several sub tasks. The PEPE implementation 
requires that the subtasks be assigned to the 
PEPE units so as to (1) maximize the number of 
simultaneously active instruction streams, (2) 
have access to an instruction set which is suited 
for the subtask, and (3) maximize the number of 
distinct data streams for parallel subtasks. 

Description of the Major Sub task Distribution 
Among Units 

Input of the data base is performed by the 
ACU/AU and the data is primarily stored in ele­
ment memory. This choice was dictated by the 
need for coordination between data base input and 
data base updates. 

Inquiries are input into a circular buffer 
in the CCU data memory (SCDATA) under the control 
of the CDC 7600 or a special interface computer. 
The CCU transfers this data from SCDATA into the 
appropriate Element Memories and handles the 
ilssociated bookkeeping. This assignment was 
based upon the estimated utilization of the units 
which indicated that the CCU would be under­
utilized and thus available for this essentially 
serial process. 

Decoding of the inquiries, selecting rele­
vant parts of the data base and linear data base 
updates are performed by the ACU/AU. The ACU/AU 
is assigned to this task by an interrupt from the 
CCU/CU. These functions would probably have been 
assigned to the CCU/CU if fast shift instructions 
and a fixed point mUltiply were available. 

The generation of responses and output func­
tions are assigned to the AOCU/ADU. The gener­
ation function is primarily fixed point arith­
metic and associative computations. Outputting 
of the data requires serially moving data from 
element memory to the ADCU data memory (SODATA) 
and its subsequent transfer to the CDC 7600. 
The high speed AOCU data and program memories 
appear well suited to these functions. The lack 
of a fixed point mUltiply might become signifi­
cant in the future, if the generation function 
becomes more complex. 

Data base maintenance is a parallel numeri­
cal task which is a background ACU/AU operation. 
This task keeps the data base current enough to 
allow rapid generation of responses. 

Data Structures 

The data structures are fixed arrays and 
circular buffers. The associative properties of 
PEPE and the natural partitioning derived by 
assigning data to different elements within the 
ensemble obviates the need for a software equiv­
alent of linked lists. 
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Control Structures 

The CCU is data driven by the presence of 
inquiries in SCDATA. Their presence is detected 
by the application software. The ADCU is also 
data driven by the presence of decoded inquiries 
in element memory. The ACU participates in the 
generation of a response to an inquiry when it is 
interrupted by the CCU. In addition, the ACU 
periodically inputs data base information and up­
dates this information as a background process. 

Comparison of the Serial and 
Parallel Implementation 

Introduction 

If both machines were executing functionally 
identical software, it would be meaningful to 
compare the execution times for representative 
sets of input data. This is not possible at the 
present time. Also, the approach yields little 
insight about the relationship of the hardware, 
the software, and the problem. We propose to 
discuss some preliminary attempts to determine, 
for each of the two machines, how well the soft­
ware is matched to the hardware, and how well the 
combination of hardware and software is matched 
to the problem. 

In the following paragraphs we will describe 
these comparisons. We will then outline the tools 
which are available to gather the data. Finally, 
we will present the preliminary data that is 
available. 

Basis of Comparison 

In principle, the applications software may 
be dichotomized into those pieces of code which 
are performing the computations (arithmetic and 
logical) specified by the functional description 
of the problem (call it problem code) and those 
pieces performing such functions as controlling 
the flow of the computational process, accessing 
data, and maintaining data structures (support 
code). Execution times will be influenced by 
both software design and the machine architecture 
that the software runs on. The ratio of problem 
code execution time to the total execution time 
(problem code plus support code) is a measure of 
the match between the hardware and software and 
the original problem. More generally stated, 
this is a measure of the resources required by a 
set of algorithms divided by the resources of 
the problem solution in which the algorithms are 
embedded. 

Although we cannot give a precise quantifi­
cation of this measure, some of the available 
data does provide a basis for an initial estimate. 
In the serial implementation, most of the data 
access, data transfer, and data structure mainte­
nance functions are performed via FORTRAN sub­
routine calls to a Dynamic Storage Allocation 
system (DSA) and thus are identifiable. There 
are two limitations to using DSA execution time 
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as a measure of the support code time. First, 
many of the variables used in the arithmetic com­
putations are singly or doubly indexed. The time 
necessary to perform the index arithmetic should 
be included in the data access time, but is not 
included in the measure of DSA. The second limi­
tation is that some of the logic of the computa­
tions is simplified by the data structure. This 
time, which is included in the DSA total, should 
be charged to problem code. These two omissions 
bias the answer in opposite ways and thus, for a 
zero order approximation, can be ignored. 

In our particular code--the skeletal PEPE 
SETS code--the problem code is executed in the 
ensemble and most of the support code is executed 
in the sequential control logic (SCL). The SCL 
code is controlling the process, is transferring 
data from Element Memory into the control unit 
data memories, and is performing address arith­
metic. The parallel support code is primarily 
concerned with maintaining the Activity Stack 
and inputting inquiries. 

A commonly used measure of the match of 
software to computer architecture is the amount 
of parallelism actually achieved, compared to the 
amount of parallelism inherent in the hardware. 
(For example, a system profile obtained with a 
hardware monitor is often used for this purpose.) 
We will consider this in the context of PEPE and 
the CDC 7600 central processing unit. 

In the 7600 there is the potential for in­
struction fetch and execution overlap, and simul­
taneous execution of multiple instructions. The 
latter is accomplished with multiple functional 
units, most of which are segmented for pipelined 
operation. The maximum execution rate is one 
instruction each cycle. 

Three types of parallelism must be consid­
ered for PEPE: the simultaneity of instructio~ 
streams, the presence of multiple, independent 
data streams, and the overlap of instruction 
fetch, routing, and execution. Many of the PEPE 
instructions execute in one or two clock periods. 
The degree to which instruction fetching, routing, 
and execution are overlapped can affect the exe­
cution rate by 100% or more. 

Measurement tools have been developed and 
are being used to gather data describing the 
achieved parallelism on each of the computers. 

The task of comparing the two implementa­
tions is just beginning. The data is sparse, 
and the conclusions tentative. There is a simu­
lation of the 7600 [5] to evaluate the serial 
implementation. A software monitor package [6] 
exists to gather timing and execution path data 
for 7600 programs. As a check on the 7600 simu­
lator there is timing and dynamic instruction 
mix data gathered with a hardware monitor [7] 
using a CDC 6400 executing a non-real time ver­
sion of the application program. 
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The CDC. 7600 simulator (SIM7600) is a pro­
gram developed by General Research Corporation 
which simulates hardware functions of the CDC 
7600 at a clock cycle level. The SIM7600 program 
is executed as an ordinary batch job under the 
control of the operating system on either CDC 
6000 or 7000 series equipment. SIM7600 models 
the Central Processor Unit (CPU), the first level 
Peripheral Processors Unit (PPU), the Maintenance 
Control Unit (MCU), a variety of external equip­
ment, and the connecting communication channels. 

The CDC 7600 software monitor instruments 
object code to record the sequence of entries, 
exists and execution times of selected program 
modules. Reports are then generated describing 
the module characteristics and the relationships 
between modules. 

The hardware monitor experiments investi­
gated the characteristics of selected programs 
running on a CDC 6400 computer system. The goals 
of the study were to evaluate the use of hardware 
monitors for measuring the performance of real 
time computer systems, and to investigate the 
characteristic use of the CDC 6400 by the SETS 
program. 

A PEPE computer simulation has been develop­
ed in order to aid the design and testing of pro­
gram code, to provide insight into the operation 
and interaction of the various control and compu­
tational elements of the system, and to establish 
preliminary timing estimates for the algorithms 
which are being developed. The simulator repre­
sents current PEPE specifications [8] and con­
tains all of the salient characteristics of the 
real hardware design. 

The micro-code sequences were not modeled 
for each instruction algorithm. However, register 
contents, control signal values, execution delays 
and overall timing have been faithfully observed. 
Since the time-base of the simulation clock has 
the same granularity as the clock period in the 
PEPE system (100 ns), substantial data are avail­
able for collection and evaluation. The follow­
ing data are currently being collected: 

Clock cycle of instruction issue to each of 
the sequential and parallel units (relative 
to the beginning of simulation). 

Element activity counts at each clock cycle. 

Total of instruction issues for each unit 
(sequential and parallel). 

Distribution of issued instructions by 
major (high order 5-bit) instruction cate­
gory. 

Count of references to element memory for 
each unit (AOU, AU, CU). 

Count of the cycles of concurrent execution 
for parallel and sequential unit combina­
tions (AOCU/ADU, ACU/AU, CCU/CU). 
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Accumulated cycles of concurrent idle time 
for sequential and parallel unit combina­
tions (AOCU/AOU, ACU/AU, CCU/CU). 

Calculated effective instruction rate. 

In addition, a detailed trace facility has been 
incorporated to provide register contents, con­
trol signal status and element activity on a 
clock cycle basis. The trace facility may be 
enabled or disabled under object program control 
by utilizing one of the unused test and mainte­
nance instructions. 

In order to facilitate writing object code 
to be measured with the simulation tool described 
above, a cross assembler was developed to trans­
late PEPE mnemonic instruction formats to appro­
priate bit-field definitions. The assembler 
permits data as well as instructions to be gener­
ated for any of the global (program or data) 
memories and, in addition, permits data to be 
preset into element memory. The cross assembler 
is implemented with the COMPASS assembly language 
of the CDC 6000-7000 computer systems. It allows 
the use of all of the standard features of the 
COMPASS assembler. 

Serial Implementation Data 

Using the software monitor we measured the 
elapsed central processor time, operating system 
services time, wall clock time, and the number of 
invocations for each module and major sequence of 
modules in the SETS code. Only the central pro­
cessor time is considered for two limiting cases 
to derive the ratio of support code time to total 
execution time. The first case was one in which 
the computations required to generate a response 
to an inquiry were minimal, in the other case 
the number of computations were maximized. The 
support code data, presented in Figure 1, is the 
sum of the time spent in the data access and data 
structure maintenance routines (primarily DSA) 
and the time spent in routines which transfer 
data within the central processor memory systems. 
The high support code values for the minimum case 
is indicative of the amount of data handling 
activities performed in processing an inquiry 
independent of the complexity of the response. 

Figure 2 presents some preliminary measure­
ments which describe the parallelism achieved by 
the CDC 7600 CPU for a particular execution of 
the SETS program. The SETS program was in this 
case responding to a typical inquiry. This data 
was derived by running SETS with the CDC 7600 
simulation. 

The measures used are millions of instruc­
tions issued per second (MIPS), the fraction of 
cycles waiting to issue the next instruction, and 
the ratio of execution time to the execution time 
of an equivalent serial instruction stream com­
puted by summing the execution time of all in­
structions issued. Instruction issue is delayed 
by contentions for registers, certain functional 
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units, and the unavailability of an operand or 
instruction word being fetched from memory. 

The CDC 7600 has a maximum instruction issue 
rate of one instruction every 27.5 nanoseconds. 
On this basis the SETS code issues instructions 
at approximately one-third the maximum rate. In 
the sample code, almost 15% of the total CPU time 
was spent initiating the fetch of instruction 
words from memory. In an additional 47% of the 
machine cycles no instruction issue occurred due 
to the delays mentioned in the preceding para­
graph. Although it appears that much of this 
delay time is spent waiting for operands to be 
fetched from memory, more work is required to 
fully understand the mechanisms. It is expected 
that the CDC 7600 simulator will supply the data 
necessary to illuminate the causes of the delays. 

Parallel Implementation Data 

In the serial implementation the majority of 
the code is concerned with small pieces of logic 
arising from the need to consider a wide range of 
input scenarios. This diversity is lacking in the 
current PEPE code. We believe that these omis­
sions cause the data base update to have more 
simultaneous data streams (active elements) and 
simpler data base update algorithms than would 
exist in the complete code. The complete code 
will probably require some additional associative 
operations to select the relevant portions of the 
data base for a given inquiry. In addition, the 
complete code will probably include a background 
process in the CCU/CU as part of the data base 
maintenance process. It is our guarded belief 
that the skeletal version does accurately repre­
sent the degree of interaction between the units. 

The support code/problem code data for one 
case was derived from the instruction trace out­
put of the PEPE simulator. The input for this 
example consisted of only one inquiry. The re­
sult is that the AOCU and CCU spend most of the 
time waiting for the arrival of data. In the 
full PEPE SETS there would be background tasks 
assigned to these units as well as a steady flow 
of inquiries. The effect of the limited inquiry 
data is to bias the execution towards a high per­
centage of support code. The support code con­
sumed 44.8% of the total execution time. 

Figure 3 presents a summary of the execution 
characteristics of a 100 microsecond time inter­
val which included the complete processing of an 
inquiry. Polling for new inquiries and data base 
maintenance were background processes. The effec­
tive instruction rate is the sum of the average 
number of instructions issued each second to the 
three bodies of Sequential Control Logic (SCL) 
and the three Parallel Instruction Control Units 
(PICU). Thus any backlog remaining in the Paral­
lel Instruction Queue (PIQ) at the termination of 
a run is not included in the total. 

Regarding instruction issues as a measure of 
execution rate bypasses the problem of scaling 
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SERIAL IMPLEMENTATION 
SUPPORT CODE TIMING 
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Figure 1. 
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PRELIMINARY MEASUREMENTS 
OF CDC 7600 CPU PARALLELISM 
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Figure 2. 
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PEPE EXECUTION SUMMARY 

(Measurement = 1000 Clock Periods) 
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14 
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6 
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Figure 3. 

PEPE INSTRUCTION STREAM ANALYSIS 
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Figure 4. 
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the parallel instruction execution rates by the 
number of active elements to derive a MIPS esti­
mate. We chose this approach for two reasons. 
First, the utility and accuracy of the above 
MIPS estimate is questionable. Second, the num­
ber of active elements is often a function of the 
input data. We are attempting to consider the 
relationshii' between the hardware and software 
independent of the particular set of input data 
whenever possible. 

The data in Figure 4 is part of the summary 
output from the PEPE simulation for the example 
considered in the preceding paragraph. The indi­
vidual unit activity represents the percentage of 
time that each unit was executing instructions. 
(For the SCL the S_SCLF flags were monitored to 
determine activity for each cycle. For the PICU 
the S_IREQ flag was used.) The overlapped acti­
vity is the percentage of time that a sequential 
unit and its associated parallel unit were both 
active. The overlapped idle time is the percen­
tage of time that a sequential and parallel unit 
were simultaneously not executing instructions. 
We present a preliminary interpretation of some 
of these values in order to give some information 
concerning the operation of PEPE and to show the 
types of analysis which can be performed using 
the simulation output. The interpretations are 
based upon the summary output and upon the cycie­
by-cycle instruction trace, which is not shown. 

Individual Activity 

The low utilization of the ACU and the CUs 
is due to the few instructions in the skeletal 
code which execute there. The high utilization 
of the AUs is due in part to the relatively long 
execution times of many of the AU instructions. 
It is also the result of the lack of delay be­
tween successive AU instructions. This in turn 
is due to the PIQ which mitigates the effects of 
the relatively slow (300 ns) ACU program memory 
(SAPRGM) • 

Overlapped Activity 

The low overlap of the AOCU/AOU activity, 
in spite of the many instructions executing 
there, is due to the short instruction executions 
times and the absence of a PIQ. However since 
the ADCU/AOU code sequences tend to be short and 
the presence of OTA instructions (output from an 
element A-register to the sequential A-register) 
frequent, a PIQ would probably provide little 
additional throughput. The relatively high over­
lap between the ACU and the AUs is due to the 
PIQ. The CCU/CU overiap is low because of the 
inactivity of the CUs and the factors considered 
for the ADCU/AOU. 

Overlapped Idle 

Since the CUs are idle most of the time, the 
CCU/CU idle time is primarily due to the non­
overlap of instruction fetch with SCL instruction 
execution. This effect is less prominant in the 
AOCU/AOU due to the greater percentage of 

185 

parallel instructions and thus increased overlap 
of fetch and execution. 

Space limitations prevent the inclusion of 
a copy of the dynamic instruction trace or full 
execution trace. However the instruction trace 
is useful to determine the occurrence and dura­
tion of execution delays such as those caused by 
non-overlapped routing and execution, waiting for 
the PIQ to empty before OTA or branch instruc­
tions, or waiting for interrupts to be completed 
or accepted. (In the current code all of these 
delays tended to be of short duration, no more 
than 3 cycles. In test cases, however, delays 
in excess of 10 cycles have been observed.) 
Periods of inactivity for a particular unit and 
the effects of code segment rearrangement are 
easily seen on the trace. The inclusion in the 
trace of instruction issues to the PIQ, as well 
as to the PICU and SCL, provides insight into 
PIQ/SCL dynamics. The full execution trace has 
proved a valuable aid in debugging the PEPE code. 

Summary 

Continued work is planned in several areas. 
The PEPE SETS code will be expanded. At the same 
time the PEPE simulation"will be enhanced by the 
addition of models for the interfaces between 
Input/Output Units (IOU) and external computers. 
We will continue to measure the characteristics 
of the PEPE code and develop methods for compar­
ing them with those of the CDC 7600 implementa­
tion of SETS. The measurements will also be ex­
tended to consider the effects of input/output 
on the performance of both versions of SETS. 
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COMPUTER SIMULATION OF PEPE AND ITS HOST AT THE INSTRUCTION LEVEL 

James L. Troy 
Huntsville Operations 

System Development Corporation 
Huntsville, Alabama 35805 

Summary 

A serious problem emerges when an attempt is 
made to simulate parallel processing at the 
instruction level: execution time may be imprac­
tically slow. The faster a parallel processor 
executes, the slower will its instruction level 
simulator execute, and PEPE is very fast. The 
first attempt to simulate a 100-element PEPE at 
the instruction level (on an IBM 360/65, executing 
a BMD problem) produced a snail's-pace real-to­
simulated time expansion of 11,000 to 1. This 
ratio was quickly reduced to a more practical 1000 
to 1 by reducing the size of simulated element 
memory to fit the available core space. But be­
cause of the increased complexity and power of the 
current larger scale PEPE new solutions to the 
problem of excessive time expansion were 
sought. [1] Adding to the problem, however, were 
new requirements: the executions of all three 
control units were to be simulated "simultaneous­
ly" to accurately measure inter-unit memory access 
conflicts; element expandability (from 36 to 800 
elements) was to be provided with particular 
emphasis on the efficient simulation of a 288-
element PEPE; and instruction time was to be accu­
rately modeled. A CDC 7600 was selected to 
execute this simulation since it is also being 
used as PEPE's "Host" to execute sequentially­
oriented system tasks. Its relatively fast execu­
tion speed and large core storage are helpful in 
alleviating some of the problems inherent with 
sequential machines simulating PEPE; i.e., the use 
of such machines requires looping through many 
arrays which represent element data. The 7600, 
however, requires time-consuming data conversions 
between its 60-bit l's complement and PEPE's 
32-bit 2's complement formats. 

The main approach taken to reduce execution 
time has been to eliminate code. There are, for 
instance, very few error checks. Erroneous condi­
tions (such as, in PEPE, arithmetic operations 
with unnormalized floating point numbers) are not 
simulated where these conditions would surely lead 
to a program abort anyway. A preprocessing scheme 
eliminates several thousand word tables that would 
have otherwise been required in the online envir­
onment to provide instruction routing, execution 
times, legal field combinations and other informa­
tion. This core space savings translates into 
considerable time saved due to Large Core Memory 
access-time characteristics of the CDC-7600. 
Dynamic instruction modification is disallowed by 
the software, so some instruction execution tasks 
can be preprocessed. Data, such as illegal 
instruction flag, execution time, address field 
size (which varies) and traps for parameter test­
ing, are stored during a preprocessing pass into 
the 28 remaining bits of the 60-bit CDC 7600 word 
reserved in the load module for each 32-bit PEPE 
instruction. 
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FORTRAN was chosen as the programming lan­
guage though code generation has been monitored 
closely to avoid inefficient object code. 
Extended FORTRAN for the CDC 7600 provides the 
necessary shift and mask statements to manage 
packed data. It was felt that the code generated 
by a modern compiler is efficient enough and the 
programming time thus saved is better spent inter­
preting the complexities of parallel hardware. 

The PEPE simulator is instruction-driven and 
time is incremented following the occurrence of 
events which effect time. When PEPE simulation 
is interrupted due to I/O or interrupts between 
PEPE and external equipment, control is temporar­
ily returned to a simulation control program 
(SDC's PEPSIE) which is event/time driven and in 
charge of coordinating I/O transactions between 
PEPE and the outside world. 

The element expandability requirement pro­
duces a data variance of a million words, far too 
varied for one all-encompassing FORTRAN data 
block. So, three simulator versions are being 
produced in which up to 36, 300 or 800 elements 
can be modeled. If fewer elements are desired the 
space required for the maximum is blocked but not 
used. The 800-element version contains a disc­
paging algorithm in which a block of contiguous 
addresses of element memory (for all elements) is 
maintained in core. This method was chosen based 
upon tests which showed that subsequent element 
memory accesses tend to stay in one "neighborhood" 
of memory for relatively long durations. The 
36-element simulator is expected to reside in 7600 
core at all times along with "Host" programs, the 
simulation controller, and executive programs. 
Disc transfer is expected to be required for the 
300-element configuration only between the 
execution of major program segments. 

Through the use of these techniques the PEPE 
instruction level simulator is expected to be a 
valuable tool in checking out the software utility 
package for the MSI Model PEPE currently being 
constructed and to validate the hardware design of 
the current model or of future large-scale 
integration PEPE models. 
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