DO 4 4
D0 ¢ 1
20900800060600
ITH 1
r)
[]
'3
9000000 °00
[] (12}
2000000
. 111 oo
904 [D
804 @ b a
204 il 3
o0
oo
>
) D L 111}
ssee
44T
eenessee
sassseee
sensese
oee
2000
s00 13
00
)00 T
1] 1
[111] 00000
20040
JI111] o0d
00000006 o ® 4
0000060 © H >
[T11] 866
otee 900 4
[1] 2080 4 3
000006 o
® o
b o008
eoe
4
4
o ®
[L 4
s00s00000
seeasese
.....

H44-4443-5
114 ®
PO { &
L]
POO®
JI1l1 ®
4
(1L
4
po o ’e 208
)OO POOe
008 0808 _ 000
o0see
so0e
eove
o0
o0

D &

4
o
90

00
000

[4
®

O ¢

Licensed Material — Property of IBM

IBM System/3
Disk Systems
RPG Il

Logic Manual

Program Numbers:
5702-RG1 (Model 10 Disk System)
5703-RG1 (Model 6)
5704-RG1 (Model 15)
5704-RG2 (Model 15)
5705-RG1 (Model 12)

LY21-0501-5
File No. §3-28

Sixth Edition (December 1975)

This is @ major revision of, and obsoietes, LY 21-0501-4 and Technical Newsletters
LN215252 and LN21-7761. Information for the Model 12 RPG |1 Compiler has
been added. Changes are indicated by a vertical line to the left of the change; new
or extensivaly revised illustrations are denoted by a bullet {®) to the left of the
figure title.

This edition, a part of version 04, madification 00 of the IBM System/3 Model 15
RPG Il (Program Product Number 5704-RG1), also appiies to the IBM System/3
Model 6 RPG |1 {Program Product Number 5703-RG1), IBM System/3 Model 10
Disk System RPG Il {Program Product Number 5702-RG1), and iBM System/3
Model 12 RPG H {Program Product Number 5§705-RG1). This edition remains in
effect for all subsequent versions and modifications unless specifically altered by a
new edition or a technical newsletter. Changes are continually made to the specifi-
cations herein; before using this publication in connection with the operation of IBM
systams, consult the tatest /BM System /3 Bibliography, Order Number GC20-8080,
for the editions that are applicable and current.

Request for copies of 1BM publications should be made to your IBM representative or
to the {BM branch office serving your locality.

A form for readers’ comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to |BM Corporation, Publica-
tions, Department 245, Rachester, Minnesota 55901,

©cCopyright International Business Machines Corporation 1970, 1971, 1972, 1973, 1974, 1975

Licensed Material-Property of IBM

This publication describes the internal logic of the RPG Il
compilers and associated object programs for the following
IBM systems:

® IBM System/3 Model 6

IBM System/3 Model 8

IBM System/3 Model 10 Disk System

IBM System/3 Model 12

IBM System/3 Model 15

The System/3 Model 8 is supported by System/3 Model 10
Disk System control programming and program products.
The facilities described in this publication for the Model 10
are also applicable to'the Model 8, although the Model 8 is
not referenced. It should be noted that not all devices

and features which are available on the Model 10 are
available on the Model 8. Therefore, Model 8 users should
be familiar with the contents of IBM System/3 Model 8
Introduction, GC21-5114.

The purpose of the RPG II compiler is to produce an RPG
II object program. This manual enables the reader to deter-
mine the logic of specific areas of the object program and
to relate these areas to the program listing and dump.

In this publication the Model 15 logic (except that
designated as 5704-RG?2) refers to both System/3
Program Numbers 5704-RG1 and 5704-RG2.

Page of LY21-0501-5
Issued 24 September 1976
By TNL: LN21-5423

Preface

Related Publications

These IBM System/3 reference manuals are recommended
for additional information:

Model 6

® Components Reference Manual, GA34-0001
® Halt Guide, GC21-7541

® RPG II Reference Manual, SC21-7517
Model 10 Disk System

® Components Reference Manual, GA21-9.236
® Halt Guide, GC21-7540

® RPG II Reference Manual, SC21-7504
Modei 12

® Components Reference Manual, GA21-9236
® Halt Guide, GC21-5145

® RPG II Reference Manual, SC21-7504
Model 15

® Components Reference Manual, GA21-9236
® System Messages, GC21-5076

® RPG II Reference Manual, SC21-7504

Licensed Material-Property of IBM

The following program logic manuals are reference in this How this Publication is Organized
meanual via function/module names. The following charts
tie the function/module names to the correct manual: This publication is divided into the following sections:

Model 6, Model 10.Disk System, and Model 12.
1. Introduction contains an overview of operational,

Model 12 System Control Program Logic : environmental, and physical characteristics of the
Manual, SY21-0046 compiler.

Disk Systems System Control Program 2. Program Logic describes the functions of each phase
Logic Manual, §Y21-0502 (Models 6 and 10) and the program flow from phase to phase.

Disk Systems Data Management and Input/ 3. Data Areas describes the contents of all data areas used
Output Supervisor Logic Manual, SY21-0512 by two or more phases.

dels d 10
(Models 6 and 10) 4. Object Program contains the structure, logic flow,

Disk Systems Binary Synchronous Communi- and storage layout of the object program.
cations Programming Support Input{Output . . .
i 5. Appendixes describe the flowcharting techniques
i System L 1, SY21-0
Control System Logic Manual, S °26 used in this publication and the Dump Facility.
ALLOCATE|.|. |X[X
OPEN 0. XX
CLOSE « . -{X}. IX
EQJ « -] IX]IX
SYSLOG]] IXIX
D. M. (data management)|.{X]. |X
ROLLOUT|.]. [X]Ix
BSClI0CS|X
Mode! 15

Supervisor and 10S Logic Manus/, SY21-0033

Data Management Logic Manual, SY21-0034

Binary Sync_:hranaus Communications Program-
ming Support Input/Output Control System
Logic Manual, SY21-0526

ALLOCATE |-1.IX
OPEN|.|X
CLOSE- IX
SYSLOG 100X
D. M. {data management)]. [X
ROLLOUT.]-1.IX
BSC-lOCSdX

IBM System{3 Model 15 System Data Areas and Diagnostic
Aids, SY21-0032, contains all system data area formats.

Licensed Material-Property of IBM

SECTION 1. INTRODUCTION . .

Compiler Operation .
Compiler Contro] Region
Linkage Between Phases

SECTION 2. PROGRAM LOGIC .

Compiler Phase Descriptions
Input and Compression Phases
Assign and Diagnostic Phases .
Assemble 1 Phases .
Pre-Assemble Phases
Assemble II Phases .
Overlay Phases
Dump Control Phase

Interphase Control Routines Desm'iptmn

SECTION 3. DATA AREAS .

Compiler Control Region
Common ,
Parameters to RPG Il Halt Processor .
10B
1/O Pa:ameters
Control Routine Save Axea
Compression Block Tabie (CZATAB)
Compression Work Area .
Compression Formats .
Control Statement Compressxons .
File Description Compressions.
Extension Compressions
Line Counter Compressions
Input Compressions .
Dump Control Compressions .
Calculation Compressions , ., ., . . .
Output Format Compressions .
Telecommunications Compressions

Alternate Collating Sequence, File Translate and Compﬂe-

Time Table/Array Compressions . .
Chain Table . . . e e e e
Compile-Time Symbol Table
Data Management Entry Points and Module Names

Compressions .

Error File . .

File Input/Output Tab]e

Filename Table . . .

Final Segment List (Models 6, 10 and 12)

Final Segment List (Model 15)

General Storage Table
Internal Symbol Table (Models 6, 10 and 12) .
Name Table
Object Code Block .

Phase Load Compression

R
- . 13

5 |

.21
. 222

.31
. 316
. 316
. 316
. 316
. 317
. 317
. 317
. 317
- 317
. 3-18
. 318
. 318
.. - 318
. .. 318
. 318
. 318

. 354
. 3-54
. 354

. 3-54
. 3-585
. 3-56
. 3-57
. 3-57
. 357
. 3-58
. 3-58
. 3-59
. . 359
.+ 360

Segment List . P
Symbol Table .,
Telecommunications Table

Text -RLD Record . . .

Disk Work Areas

SECTION 4. OBJECT PROGRAM

Flowchart Techniques .

Overall Object Program Flow .

Detaijled Object Program Flow , .,
Open Mainline (Chart CA) . e e e
Input Processing Control (ChasitCB)
Output Processing Control (Chart CC) . .
Output Fields and Records Code (Chart CD)
Input Mainline (ChartCE)
Fetch Overflow (Chart CF)
Record ID (Chart CG) . .
Multifile and Matching Records Log1c (Cha:t CH) .
Control Fields Logic and Move (ChartCI) . . .
Chain and Read (Chart CJ) .. .
LR and Overflow Control Mainline (Chart Cl()
Move Input Fields Mainline (Chart CL) . . .
Program Close Mainline (Chart CM)

Calculations Object Code
Calculations Specification Descnptlons

Library of Subroutines .

Data Areas
Reserved Object Commumcatlons Area (ROCA)
Trailer Table.
Define the Table (DTT) ..
Define the File (DTF),
Alternating Collating Sequence and Translate Tables
Match Field Save Areas e e e e e e e
Control Field Save Area .
Constants, Edit Words, and Edit Codes
Error Recovery Procedure (ERP) Area
Input and Output Buffers . .
Completion Codes from Data Management .
Input/Output Control Block (I0CB) . .

| Oventays (Modeis 6, 10,and 12)

Overlay Concept
Segments.
Overlay Priority .,
Suboverlays . .
Overlay Technique . e e e e e
Overlay Editor
Overlay Fetch Routine .
Overlay Fetch Table
How To Find an Overlay

Overlays (Model 15) . . .
Overlay Category . . .

Dump Analysis . ..

Licensed Material-Property of IBM

Contents

. 360
- 3460
- 361

4-1

S|
S|
4-1

4-1
4-1
4-1
4.5

46
46
46

46
. 47

. 426

. 428

. 440

. 473

. 473

. 475

. 475

. 475

. 4-76

. 476

. 476
476

. 477

. 477

. 471
.. 478
.. 479
. 479

. 479

. 480

. 4.83

. 483

. 484

. 484

. 484

. 489

. 489

. 490

APPENDIX A. FLOWCHARTING TECHNIQUES . . . A-l

Chart Numbering Al
Symbols < < Al
Striped Processing Block A2
LibraryBlock « A2

EnteyBlock A2
ExitBlock, « . . A2
Connectors <« . - « 4 .+ . . « A2

APPENDIXB. DUMPFACILITY Bl
Dump ControlCard Format Bl

INDEX« « «X1

Licensed Material-Property of IBM

The IBM System/3 Model 6, Model 10 Disk System, Model

12, and Model 15 each use a separate, disk resident RPG
II compiler. These compilers convert RPG I source pro-
grams into machine language object programs. The com-
pilers can also produce source program listing with diag-
nostic messages. The compilers punch out the object
programs on cards or enter the object program into an
object library.

Since the Models 6, 10, 12, and 15 compilers are similar
both in function and physical characteristics, the term
compiler will refer to all four compilers. Descriptions
of compiler functions and routines apply to the four
compilers unless otherwise noted.

Section 1. Introduction

COMPILER OPERATION

The RPG H Compiler consists of six groups of phases
necessary to create an object program:

Input and Compression phases
Assign and Diagnostic phases
Assemble I phases
Pre-Assemble phases
Assemble II phases

Overlay phases

There are approximately 130 phases that make up the six
groups of phases. As each phase is brought into the Com-
piler Phase Area, the previous phase is overlaid. Figure 1-1
shows the order the groups of phases are loaded and also
lists the functions of each group of phases.

Introduction 1-1

Licensed Material-Property of IBM

éﬂer From System Loader {$$1NP2

Y

Input and Compression Phasas
(Ses Figure 2-2 for more detail)

RPG 11
Source
Statements

{from $SOURCE
in Models 6, 10, and
12 from System Input
in Model 15}

Initializes COMMON and parameter lists.

Reads, checks, and lists source staternsnits.
Compresses statements and tables.

Writes compressions 256 bytes at a time, or one
compression at a time if less than 1280 bytes are left

in the work area.
Astign and Disgnostic Phates
(See Figure 2-3 for more devali}

Listing of:

® Source Statéments

® Diagnostic
Messages

® Storage Map

® Symbol Table

[Assigns addresses for:
1. Edit pattems and indicator masks.
2. 1/O areas, I0CBs, DTFs.
3. Match and controtl field areas.
. Diagnoses syntax errors in:
1. Specification staternents.
2. Tables, errays.
e Bullds:
Preopen DTFs and 10C8s for files.
Table and array OTTs.
File translate and fila 1/O 1ables.
Alternate collating sequence table.
Symbol table.

4_'
Assembie | Phases

(See Figure 2-4 for more detail}

B WN -

L] Generates object coda for:

1. Input processing control routine.
Output processing control routina.
Multifile and matching records logic.
Control field logic and move.

Input mainline and Record 1D,
Move Input fields mainline.

Pre-Assemble Phases

{See Figure 2-5 for more detail)

Source
Statement

Compressions
{SWORK)

oUawN

L] Computes length and assigns entry address Object
for calcuiations and output compressions. Code

e Removes duplicate indicator tests, Blocks

L Build segment list and text records for {SWORK}
literals, constants, edit patterns, and
output DTF parameters.

_ ¥
Asssrmble |1 Phases

{See Figure 2-6 for more detail)

L) Generates object code for;
1. Open and Close Mainlines.
2. Calculation and output records.
3. Test and resulting indicators.

Overlay Phases

(See Figure 2-7 for mare detaif}

@ Models 6, 10.and 12
. Assigns overlays and subaverlays.
] Generates overlay table and Fetch routine.
o Generates phase contro! statement, entry

Legend: control statement, and external symbol list Listing of

. . isting of:
"> Data Flow for tinkage editor. — Overlay
- Control Fiow ° Model 15 Segments

° Generates R-Module output of the compiler.-

Model 15
Exit to Overlay
Linkags Editor
{SOLYNX)

odeis 6, 10 and
12 Exit to Linkage
Editor {SLINKB},

Figure 1-1. RPG II Compiler Overview

Licensed Material-Property of IBM

4.5K minimum

COMPILER CONTROL REGION

The Compiler Control Region, defined in phases $RPG
and $RPIC, contains information needed by more than
one phase. Figure 1-2 shows the contents of the Com-

piler Control Region. For a detailed description of this
area see Data Areas.

Model 15

25K

3.0K

all of the

(Model 15 uses

partition.

Compiler Control Region
e COMMON
e [nterphase Control Routines

Data Files, Tables, Work Aress, |OCBs,
Control Region Save Area

Models 6 and 10
1.6K

Compiler

Phase Area

} 2.75K

— — —— — {variable} — —

Work
Area

Input
Buffer
Output

a)
ovet'® o
- Buffer

/

.

Source GET or System Input {(Model 15 only)
SYSPRINT {Models 12 and 15)

Dump Control (Optional)

6512 bytes minimum

} 256 bytes (The remaining main storage

is used in 256-byte increments,}

Loaded to the high portion
of main storage available
to the compiler.

® Figure 1-2. Layout of Main Storage During Operation of RPG II Compiler

LINKAGE BETWEEN PHASES

Phases are linked together with a branch to Interphase

Control routine DRGCZZ and the 4-byte name of the next

phase. The calling routine branches to the system loader
which Joads the next phase into main storage following
the Interphase Control routines. Each new phase overlays
the previous phase. XR1 and XR2 are not saved between

phases. Some phases pass information to subsequent phases

in the form of tables and constants stored temporarily in
high-order main storage of the Compiler Control Region.

Licensed Material-Property of IBM

Mode! 12

2.0K

3.0K

3.0K

bytes
minimum

Introduction 1-3

This section consists of a series of diagrams showing the
functions, input, and output of each phase and each
Interphase Control routine.

COMPILER PHASE DESCRIPTIONS

Figure 2-1 shows charting techniques used on Figures 2-2
through 2-7 to describe each of the phases. Each figure
describes all the phases within a particular group of
phases.

Input and Compression Phases

The Input and Compression phases (Figure 2-2) read the
RPG II specifications and the user’s source statements,
diagnose and list the source program, and place a com-
pressed version of the source program in $WORK.

Assign and Diagnostic Phases

The Assign and Diagnostic phases (Figure 2-3) assign ad-
dresses to all fields and data areas in the object program.
These assigned areas are part of the overlay root segment
and may not be overlaid. All noncode areas, buffers,
control blocks, hold areas, work areas, input record fields,
and tables are in the root segment. The Assign and Diag-
nostic phases provide comprehensive error detection by
locating errors not found by the Input and Compression
phases. The error detection routines analyze errors both
within and across compressions. Errors found are indicated
by error numbers stored on disk and later printed out.

Assemble | Phases

The Assemble I phases (Figure 24) generate al) object
code blocks except the calculations and output specified
in the source program. Each phase checks for particular
information in the compressions and generates code if
that information is found. The generated object code
blocks are stored in $WORK.

Section 2. Program Logic

Pre-Assemble Phases

The Pre-Assemble phases (Figure 2-5) eliminate repetitive
indicator testing throughout the object program and mark
duplicate code segments, literals, and edit words for later
deletion. They also calculate the length of code to be
generated for calculations and output, assign relative ad-
dresses to code segments, select library subroutines, and
generate a segment list for the Overlay phases.

Assemble 11 Phases

The Assemble II phases (Figure 2-6) generate the object
code which performs calculations, output, initialization,
and end-of-job operations. The generated object code
blocks are stored in $SOURCE.

Overlay Phases

The Overlay phases (Figure 2-7) determines the overlay
structure of the object program, sort the blocks of gener-
ated object code into the required overlay segments, and
place the object program in the object library.

For Models 6, 10, and 12, the Overlay phases determine the
overlay structure of the object program, sort the blocks of
generated object code into the required overlay segments,
and place the object program in the object library.

For the Model 15, the Overlay phases generate the R-module
output of the compiler for input to the Overlay Linkage
Editor.

The Overlay phases are shown in Figure 2-7.

Dump Control Phase

This phase is loaded to the high portion of the main
storage available to the compiler when dump functions
are requested. It intercepts all next phase calls and all
text output calls. (See Appendix B.)

Program Logic 2-1

Licensed Material-Property of IBM

Formal phase name (name found on microfiche)

' / Descriptive phase name

$RPKB — Error Message List
® Prints error messages. << =
° Calls appropriate Phase ($RPKC-$RPKV) to get L
error message.

I> Errortable. &

<z Error messages. <
¢ If warning errors only <—

T L L LT LT e

SR~5,6 <

Next Phase

Figure 2-1. Explanation of Program Organijzation Charts

2-2

Licensed Material-Property of IBM

Functions of this phase

Input to this phase
Qutput from this phase
Major branches

The numbers (1, 2, 3, 4, etc.}
indicate the Interphase Control
routines used by this phase.
Numbers and Interphase
Control routines are listed at
the end of each figure.

Gnter From Program Setup (ssmPZ))

. $RPEE — Telecommunications Compression
SRPG — Compiler [nitialization
[Reads and diage teioec ication specifi
L] Initializes COMMON. . Builds telecommunication compression.
[} Reads and diagnoses cantrol statement. L Prints tslecommunication specification and any errors.
[} Moves 10B, storage size, and 1/0 > Telecommunications specitication.
parameters inta COMMON. <E Telecommunication compression on SWORK.,
[Builds control statement compression in COMMON.
[} Prints contral statement and any errors. SR—-1,2,3,4,5,6
[Reads, lists, and comprasses dump function
specifications. '
X Control statement, File allocation table built by
scheduler To Branch Table
<o Phase name compressions on $WORK.
Canltrol card compression in COMMON.
SR-4,5,8
$RPEA — File Description Compression $RPEI —~ Input Compression
® Reads and diagnoses tile description specification, ® Reads and diagnoses Jnput specifications.
® Builds file description compression. ® Builds input compression,
® Prints fila description specification and any errors. ® Prints input specification and any errors.
> File description spacification. > Input specification.
<x Fite description compression on $WORK. <Z Input compression on SWORK.
SR-1,2,3,4,6,6 SR —1,2,3,4,5,6
To Branch Table To Branch Table

$RPEK — Calculation Compression
$RPEB — Extension Compression [Reads and diagnoses calculation specifications.
] Builds caiculation compression.

L g Reads and diagnoses exteasion specification. [Prints calculation specification and any errors,
[Builds extension compression, x> Calculation specification.
® Prints extension specification and any error. <z Calculation comprestion on $WORK.

= Extension specification.

<E Extension compression on SWORK. SR—1,2,3,4,56
SR -1,2,3,4,5,6 '

To Branch Table

Ta Branch Table
BRANCH TABLE: Enter at the name of the phase that sent you to

the branch table. If the decigion answer on the line entered is no,

[d o g until a decision is snswered yes. Then proceed
o 10 the indicated phasa.
Enter
From Decision i::: 12]
Phase
$RPEC — Line Counter Compression
$RPEA | @it Extension Specification $RPES | A
[Raads and diagnoses line counter specifications.
® Builds llne counter compression. SRPEB | #f Line Counter Specification SRPEC | B
. Prints line counter specification and any errors.
> Linecounter specification. SRPEC | #if Telecommunication Specification | SRPEE | C
<x Line counter compression on $WORK.
SRPEE | #lf Input Specification $RPEI o]
SR-1,2,3,4,586
SRPEI #If Calculation Specification $RPEK | E
$RPEK | ®If Output Specification $RPEO | 2F
Yo Branch Table $RPEQ | #If End of File $RPFA | 2G

Figure 2-2 (Part 1 of 2). Input and Compression Phases

Program Logic 2-3

Licensed Material-Property of IBM

2-4

$RPEQ — Output-Formet Compression

Q&."

Reads end diagnoses output-format specifications,

Bullds output-format compression,

Prints output-format specification and any errors.
Output-format specitication.

Output-format compression on $WORK.

SR—-1,2,3,4,56

$RPFA — Copy Tables into Compressions

Copies file s aiternate ing seq

and compile-time tables from the input file to
compression file.

Builds a compression of data managament entry
points and module names,

System Input {(Model 15) or $SOURCE ({file
transiate table, alternate collating sequence
table, and compile-time table/array).

File translate, alternate collating, compile-time
tabiefarray, and data management compressions
on SWORK.

SR-1,2,3,456

Figure 2-2 (Part 2 of 2). Input and Compressions Phases

(Exit To Assign and Diagnostic pham)

Note: [nterphase Control routines that can be used by the Input
and Comprassion Phases ere:

SR1 — DRGCZA — Open a Compression Area
SR2 — DRGCZC — Write a Compression

SR3 — DRGCZE — Close a Compression

SR4 — DRGCZN — Get Next Source Record
SR5 — DRGCZP — Printer Control

SR6 — DRGCZZ — Call Next Compiler Phase
SR7 — PIOCS — Disk Control

See Figure 2-9 for a description of the Interphase Cantrol routines.

Note: Since figlds in COMMON are input and/or output for all
phases, COMMON is not Jisted as Input or output.

Licensed Material-Property of IBM

Page of LY21-0501-§
Issued 24 September 1976
By TNL: LN21-5423

Gnmr From Input and Compression phase)

v

SRPiC — Past Compression Initialization

. L oads and initializes the Dump Control SRPJIX — Check File Description Specifications 2

routine if required, ° Checks file descripti ion fi -disk
. Conmins the fouowlng In‘srphase Control routines: ecks file description comprestion far non-dis|
dependent errors.

PRGCZG, DRGCZH, DRGCFI, DRGCZK, DRGCZM, & Ifercor file full _.
and DRGCZZ. {PIOCS and DRGCZP remain in storage . N m
from the Input and Compression phases.) = Flle description com ons.

- <z Updated file description compressions and
errors indicated on error file. .

SR-6

' SR—-6,8,9,10, 11
$RPEW - Post Compression and Initlalizatidn '

L] Determines if Remote Terminat {col 4851} and Re- $RPJZ — Check File Description Specifications 3

mote Device (co! 65-70} are valid and compresses

them. . o Checks file description compressions for disk
[Resolves operation code to 1-byte mask. device errars.
° Converts fietd light to 1-byte mask. (Model 6) * (f error file full w
® Diagnoses SET and KEY operation codes, (Modet 8} > File description compressions.
[} Updatas calculation compressions. <z Updated file description compressions and errors
° Places error numbers #nd statement numbers indicated on error file.

in errar file for errars.

o oror i s i INEGCG————(] SR ~6,9,10,11
> Calculation compressions.

s Updated calculation compressions and errors. '

v

- 8,10, 1t
SR -6,8,8,10, $RPGF — Assign and Check Indicators

o Checks and assigns indicators
$RPIG — Chack File Description Continuation Cards ® Assigns each indicator a mask and displacement relative
to the beginning of the work area in ROCA.
® Detarmines hall indicators used.

o Chacks Fite Description campression for errors in A
Assigns overflow indicators if not specified but needed.

Keyword (col 54-59), Blank Device (col 7-52, 66-72), I _
and ASCI1, BUFOFF, ar Mode) 16 INDEX {cal. 54-58). I error fita full
= File description, input, calcutations, and
<z

>

e Checks for errors bacause of invalid tape record length,
invalid record length for tape ADDROUT flles, and
cantinuation specified for a non-tape file or files
other than special files.

L] Chedks compressions for érrars because of blanks in
Filename {co) 7-14) or File Type {col 15},

L] Checks compressions for errors becausa of blanks in
Device Entry (col 40-46) for Models 6, 10, and 12.

¢ If error file is full

> File Description compression,
Updated File Description compression and errors.

output-farmat compressions.
Updated compressions, listing of indicators and any
efrors.

SR—5,6,8,9,10,11

10,

$RPGG — Check Calculation Spacifications 2

- - L] Checks calculation compression for errors in duplicate
SR -6,8,8,10,11 labels and invalid branching to subroutines.
® Compresses and sets specification for numeric literals
1 in calculations.

* I error file ful)
$RPJE — Check Calculation Specitications 1 > Calculation compressions.

<z Updatsd calculation compressions and errors
° Checks calculation compressian for errors in field indicated an error file.
name, length, decimal position, AND/OR lines,
indicators, Factor 1, Factor 2, and Result field.

SR—-6,89,10, 11

¢ tf error file full
o] Calculation specifications.
<la Updated calculation specifications and errors on
error file, $RPGU — Build Name Teble
SR-6.8.9.10.1 ° Buitds a name table of compile-time and object-time
tables.
[Determines if there are duplicate symbols with
SRPJW — Check File Descrigtion Specifications 1 conflicting entries in the name table.
[Creatss an entry if no entry is found in the name
table.

L] Checks file description compression for non-device
dependent errors, L] Assigng a 2-byte address to each symbol in the name

. umrmmu table. _
Z> File description compressions. > Extenslon compressions.

<E Updated file description compréssions and any errors <X Name table and duplicate name errors,
indicated on error file.

SR -5,6,8,9,10, 11

SR -6,8,9,10, 11

Figure 2-3 (Part 1 of 6). Assign and Diagnostic Phases
Program Logic 2-5

Licensed Material-Property of IBM

Page of LY21-0501-5
Ismed 24 September 1976
By TNL: LN21-5423

SAPJA ~ Check Input Specifications 1

Chiecks input compression for eirors in field, field
length, sequence, look-ahead, AND/OR lines, and
spread records.
§f error file full
1f Model 15.
Input compressions and name table.
Input compressions and any errors indicated
on the error file.

QUee

SR -6.8,9,10. 11

SRPGV — Check Table/Array

. Sets bits in calculation compressions telling which
table/array contains the most elements.

[Indicates number af elements in each table/array
in output-format comprassions.

° Buitds filename table.

.

=
compressions and the symbol table.

hvd Filename table, update calculation and output-format
compressions, and any errors indicated on the
errar file,

SR -6,8,9,10,11

$RPJIK — Check File and Table/Array

° Checks for errars in filename, use of CONTD,
extension code, match fields, altarnate collating
sequence table, and file ranslate table.
If error fike full
if tables and/or arrays ars not used
Filename table, file description, extension,
afternste collating sequence table, and file
transiate table,

Updated compressions, and any efrors indicated
on the error file,

Ueo

SR —6,8,9,10, 11

SRPGW — Check Name Table

o Checks name table and tets bits on in the table

for unref; d object-time table/array names.
L Sets bits on in extension, input, calculation, and
output-format compressions indicating names
that are referenced.
Checks for multipla definitions.
Determines If index is invalid for arrays.
Name table, extension, input, calculation,
telecommunications, and output-format compressions.
Updated compressions, and any afrors indicated on
error file.

2 Yoo

SRPGB ~ Process MFCM Print Specifications (Model 15
only}

L4 Recognizes MECM printing.
L] Changes print end position to a buffer displace-

mant.
. Se1s bit in output compression to show print
only specified.
[Determines the required size of MFCM print
buffer.
= File description and output compressions.
<X Up 1 output compr . Highest tier

used for MFQM‘I {1st byte) and MFCM2 {2nd
byte) of COMBYC.

SR -6.8,8,10. 11

®

Jf error file full
Fila description, input calculation, output-format

SRPGX — Print Name Table

L4 Checks name table for unreferanced names.
L4 Generates gbject code for object time
table/array DT Ts.
L4 Diagnoses if indexing is used for tables.
3> Name table.
<z Listing of unraferenced table/array names and
error numbers, listing of table/array names, and
object code block of DTTs.

SR -5,6,12

$RPHA — Build Symbol Table

o Builds a symbeol table of tield names.
L Determines if there are duplicate symbols with
conflicting definitions in the symbal table.

* H error file full
> Input and calculation compressions.
<z Symbol table, symbol table on seratch flla for

any overflow, ang any errors indicated on error file.

SR —5,6,8,9,10, 1

SA-6,8,9,10, 11

Figure 2.3 (Part 2 of 6). Assign and Diagnostic Phases

$APHC — Check Symbol Table

L4 Checks symbol table and sets bits on in tabla for
unrefersnced fields.
L] Assigns a 2-byte address to each referenced symbot.
L] Sats bits on in input, calcutation, and output-format
compressions [ndicating names thet are referenced.
L4 Datermines it field name index is an alphabetic field.
L Determinaes |f indexing ix used for field name.
¢ if arror fite full
> Symbol table, input,
and output-format compressions.
<z v d symbol table end updated compressions.

SR -6,8,9, 10, 11

Licensed Material-Property of IBM

Page of LY21-0501-5
Issued 24 September 1976
By TNL: LN21-5423

$RPHD ~ Print Symbol Table SRPGH — Assign Filename and 10C8

e Scans symbol table and compressions for unreferenced L Builds file input/output table,
and undefined namet and writes tham. ® Generates some initial object code of a constant

+ if no compile-time tables/arrays area and some object-time addrasses.
> Symbol table, input, calculation, cutput-format, ® Calculotes |OCB address.
and tele ication compressi L4 Assigns addresses for 10CBs in file input/output
I <x Listing of symbol table, undefined and table,
N unreferenced names, and labels used. L Enters an internal code name for necessary data

management module in file description compressions.
+ If no file description compressions
X File description compressions, and file transidte
table compressions.

SR ~5,6,8,9,10, 11

<z File input/output table, updated file description
o . and file translate table compressions, and initiafization
SRPGY — Build Compile-Time Tables object code block.
L] Builds e compile-time symbol table of compile-time SR—6.80 10 11, 12

table/array entries and a DTT racord of table/array
entries basad on extension compressions.

. Replaces the table/array name in the extension, input,
calculation, and output-format compression with a

. ?:::,,: r,:m::;d‘ Ery RN . SRPGI — Assign Filename and DTF "
N n °
+ ::::‘l:?;::wl' caleulation, and output-format ® Replaces the symboliic filsname in the compressions
o . L with up to 13 bytes of file input/output table.
DTT records, updated compressions, and listing of . P
<« compile-time sypr:bol table, and compliie-time symbol L Assigns DTF addresses in file input/output table,
bl ' ¢ 1f no telecommunications
e > All compressions except file translate, and file
input/output table.
SR-5,6,8,0.10 112 <E Updated comprassions, and updated file input/output
T T bl
$RPGZ — Compile-Time Table/Array Code SR-6,8,9,10,11,12]
. Generates objact code blocks for compile-time '
table/arrays. . .
RPGK — Check Tel tions Specifications 1
> Compile-time table/array compressions and $ ok Telacomemunications Spe !
compila-tima symbol 1able. [4 Chacks for errors in filename, 1TBs, station IDs,

<z Compile-time table/array object code blocks. and ASCII,
Builds telecommunications table.
Updates file input/output teble,
if error tile fult
I1f 2770/2780 present
Telecommunication comgpressions and file
input/output table.
Telecommunications table, updated file input/output
o i table and telecommunication compressions, explicit
° Determines if compile-1ime table/array is in literal entries object code, and any errors are indicated
saquence when spaoified. on the error file.
. Determines if there is too much dats for table/array
entries, or if there is not enough data.
* If error file full
> Compile-time tabla/array compressions, and
compile-time symbol table.
<z Listing of all tabfes/arrays and any errors are
indicated on tha error file. SRPGL ~ Check Tel ications Specifications 2

SR-6,8,9,10,11,12

Q 600.0

$RAPJY — Check Compile-Time Tables/Arrays

SR -6,8,9,10,11,12

SR —5,8,9,10,1) ® Checks for errors in autocall/autoanswer, look-ahaad
fields, and matching fields.
* it error file full
I> All compressions, telecommunications table, and
File 170 1able.
o <& Updated telecommunications table, updated file
1/Q table, angd any errors indicated on error file.

SR -6,8.9,10, 11

Figure 2-3 (Part 3 of 6). Assign and Diagnostic Phases

Program Logic 2-7

Licensed Material-Property of IBM

$RPGN — Build DTFs

[Builds [OC8s for sach file defined.

L] Builds a pre-open DTF for each device used and
for: [Modals 8, 10, and 12) sach disk, Console,
BSCA, Ledger, DATADS, and SPECIAL file,
{Modal 16} each disk, CRT, BSCA, SPECIAL,
and Device independent tile,

[} Assigns logical output buffer.

3> File input/output table and telecommunications
table,

<X |0OCBsand pre-open DTFs.

SR - 6,12

¥

$RPHQ — Assign Alternate Collating Saquence and Fife
Translate Tables

o Generates objact code for alternata cotlating sequence
and file translate tables.
o Places address of file translete tables in |1OCB.
3 Places address of alternate sequence table in Root
segment.
> Alternate collating sequence tables compressions,
file translate tables compressions, file deseription
compressions, and |OCB.
<E Updated 10CB, object code blacks for file translate
and alternate collating tables.

$ROGS — Assign Shared 1/0 and Other Device Areas

L Assigns shared 1/0 aress and places sddress in
DTFs (Modets 8, 10, end 12).

L] Assigns 108s and axtra work areas for files
{Modets 8, 10, 12, and 15}.

o Assigns areas for KEYBORD, LEDGER,
TRACTR1, TRACTR2, DATADG, and CRTEE
{Mod 8).

L] Assigns araas for CRT77, Devics Independent

___ Devices, and DISKET {Mod 15}

I> File input/output tahle.

<X Updsted DTFs.

SR -6,8,9,10,11,12

SR-6, 12

3

$RPGR — Assign 1/0 Araas — for Models 8, 10, 12, and 15:
MFCU1, MFCU2, READA42,
SPECIAL
- for Model 15: MFCM1,
MFCM2 READD1
DISKET (Models 6, 10, and 12}
L] Generates object code for input/output areas,
108s for each file, and error recovery procedura
area,
[Places address of the generated object code inta
the 10CB,
® Places addrasses of the assigned 1/0 areas into
the DTF.
> File input/output table.
<E Generated object code block and updated DTFs

SR—6,12

S =

$RPGT — Assign 1/0 Areas — CONSOLE, DISK, PRINTER,
PRINTR2, PRINTS4, BSCA

° Generates objact code for input/output areas,
108s for each file, and error recovery procedure

area.
[} Places addass of ganerated object code into the
10C8.
® Places addresses of assigned 1/0 areas into the
DTF.

4 if Model 12 or 15

tables
> File input/output table,
<X Generated object code block end updated DTFs,

* I1f Model 8, or 10 and: ,
11 DrsKes s EMMEE———— ()
If Tape files
If no file translate or alternate collating i : .

SR - 6,12

Figure 2-3 (Part 4 of 6). Assign and Diagnostic Phases

$RPHS — Check Input Specifications 2

® Checks usage arrors in match and control flelds.

[Places fength of fields in COMMON.

] Builds a byte of information in input comprassions to
control processing of phases SRPPF, SRPPG, $RPPJ,
$RPPL, and $RPPM.

¢ iterror e ol I

> Input compressions.
<} Updated input compressions and any efrors are
indicated on error file.

SR -6,9,10,11,12

$RPGJ — Remote Terminal/Device Support

Checks terminal/davice relationship,
Sets correct Data Manegement modules.
Defaults block lengths.
If error file full
> Telecommunications table, fils input/output
table file description compressions, “T* comprassions.
<& Updated T’ table, fila input/output table.

000

SR ~5,8,9,10,11,12

$RPXA — Bulld DRF and 1/0 Area for DISK 45 {Models 10 and 12)
L] Disk 44, Disk 45 (Model 15},
3 Generates the pre-open DTF for each DISK45 or
DISKA4Q file.
Generates the 1/0 areas for each DISK45 or DISK40 fite,
Places addresses of 1/0 areas in DTF.
I1f TAPE files
if no alternate collating tables or files translate
tables
> Fila input/output table.
<z Generated object code for DTFs and 1/0 areas for
DISK45 or DISK4Q files.

> e 00

Licensed Material-Property of IBM

SRAPXB — Build DTF and 1/O Area for Tape

L] Generates the pra-open DTF for each tape file.
] Generates the /O area for each tapa file.
e Places addresses of 1/0 areas in the DTF,
* If no transtate or alternate collating tables

3> File input/output table.

<a Genevated object code for DTFs and 1/Q areas

for tape files.

SR - 6,12

$RPHT — Agsign Control and Match Field Hold Areas and
Edit Code Patterns

Assigns edit patterns,

Diagnoses errors in edit codes.
If error file full
1f limits not specified.
3> Output-format compressions.

* &0 0 00

code blocks.

Assigns hold areas for match fields and control fields.

Designates availability of different typas of output.

<& Outputformat compressions and hold area object

SR -6,9,11,12

SRPHU — Assign Limits File Hold Areas

o Assigns Key area for files processed by SETLL.
[} Places address of key area in pre-open DTF.

L] Processes SETLL diagnostics.

File description compressions, calculation
compressions

<z Updated calculation compressions

Y

..

SR -6,8,0,10,11,12

field move can be combined with a succeeding
control field move.

move.

control field move,

field move.

> Input compressions.
¢ Updated ioput compy

$RPJJ — Control Field and Match Field Move Optimization
L] Sets 3 bit on in input compressions when a control
] Sets a bit on in input compressions when a match field
move can be combined with a succeeding match field
L Updates the constant address and length for the

L] Updates the constant address and length for the match

SR -6,8,9,10, 11

Figure 2-3 (Part 5 of 6). Assign and Diagnostic Phases

$RPJP — Check Input Specifications 3

e Checks for errors in AND/QR line, field, filename,
field name, record identifying indicator, look-shead,
and length.

Input compressions.

Input compressions and eny errors are indicated

on the error file.

If output-format specifications next
if extension and line counter specifications
If catculations specifications next
If no more specifications or error file full

Al

LR R 2 4

SR—6,8,9,10, 11

$RPJS — Header/Traiter Assign and Diagnostics

o Generates trailer table.
® Checks for invalid use of look-ahead.
Checks for invalid file specifications for spread
card.

L4 Checks for more than 256 valid trailer specifications.
> Input compressions (128).
<z Input compressions, trailer table, and any esrors

are indicated on errar file.

¢ If arror file full

* If output-format specification next

¢ If extension and line counter specification.|
* If not Modet 6

SR-6,89

$RPJG — Check Calculation Specifications 3 {Model 6 only)

° Determines SET/KEY combination
® Checks KEY and SET operations for error.
= Calculation compressions,
<g Calculation compressions and any errors are indicated
on arror file,
¢ 1f error fite ful

SR -6,8,9,10, 1)

(7 ——

$RPJL — Check Calculations Specifications 4

o Checks for errors in length, sequence, FORCE,
EXCPT, DEBUG, LOKUP, COMP, TESTZ, MVR,
CHAIN, and result field.

= Calculation compressions,
<r Calculation compressions and any errors are indicated

an ervor file.
o it eror file full

SR-6,89 1011

r

Program Logic 2-9

Licensed Material-Property of IBM

$RPIM — Check Output-Format Specificatians

Checks for arrors in {etch overfiow, stacker, indicators,
record type, and line type,

3> Line counter and output-format comprassions.

<X Updated compressions and any errors are indicated

on error file.

If arvor file full

*

SR —6,8,9,10, 11

$RPKA — Error Sort and Print

L] Sorts errors by error and statement number.
L] Buifds sorted error table,

. Prints arror numbers and statement numbers.
Error file.

Error table and Hsting of error and statement
numbers.
* i no errors

wY

SR -5,6,9,10, 11

SRPJN — Check Qutput-Format Specifications 2

Checks for servars in PAGE, *PLACE, and end
positions, diagnose sterling sign relationships.
Output-format compressions.

Ry

Exit Te
Assemnble | Phases

Any errors ere indicated on error file.
¥ error tile ful —@

SR-6,8,9,101

$RPKB — Error Message List

Prints error messages.
Calls appropriate Phase (SRPKC-$RPKV) to get
error message (see nate 2},

SRPJO — Check Output-Format Specitications 3

Checks for errors in edit word, end position,
indexing, length, and record identification.

File description and output-format compressions.
Any errors are indicated on error file.
If error file futl

<Y

> Ervor table,

<T Error messages.
® If warning errors only
SR-5,6

SR—6,8,9,10, 11

$RPJY — Check Extension and Line Counter

o Checks extansion specifications for emrors in From
and To Filename, number of entries, table length, and
file type.

* Checks lina counter specifications for invalid type and
undefined or missing filename.

> Lins counter, and extsnsion compressions.
<u Any errors gre indicated on error fite.

SR-6,9,10,11

Figure 2-3 (Part 6 of 6). Assign and Diagnostic Phases

2-10

Exit To $$SSPES —
End of Job Transient
Note 1: Interphase Control rautines that can be used during the

Assign and Diagnostic Phases are:

SR5 — DRGCZP — Printer Control

SR6 — DRGCZZ — Call Next Compiler Phase

SR7 — PIDCS — Disk Control

SR8 — DRGCFI — Find Item in Compression

SR9 — DRGCZG — Open a Compression Block
SR10 — DRGCZH — Get Next Compression
SR11 — DRGCZK — Close a Compression Block
SR12 — DRGCZM — Writa an Object Code Block

See Figure 2-9 for & description of the Interphase Control routines.

Note 2: Phases $RPKC-8RPKV contain the error messages used
by phase $RPKB. These phases are optional. The phases
and message numbers of the messages gach phase contains

are:

Phase Entry Point Message Numbers
RPKC DRGKCI 32-63
RPKD DRGKDI 64-60
RPKE DRGKEI 91-118
RPKF DRGKF) 117-142
RPKG DRGKGL 143-189
RPKH DRGKHI 176198
RPKI DRGKI! 196-228
RPKJ DRGKJI 229-260
RPKK DRGKKI 251.276
RPKL DRGKLI 277-310
RPKM DRGKMI 311-340
RPKN DRGKNI 341-360
RPKO DRGKO) 361-379
RPKP DRGKPI 380-453
RPKQ DRGKQ} 454.541
RPKR DRGKRI 542-574
RPKS DRGKSI §75-597
RPKT DRGKTI 698-830
RPKU DRGKUL 631800

Note: Since fields in COMMON are input and/or output for
ail phases, COMMON is not listed as input or output.

Licensed Material-Property of IBM

(Enter From Assign and Diagnostic Ph@

SRPPE — Buijld Input Record Recognition 1 Code
$SRPPA — Generate IPCR

] Generates object code to:

e Generates object code for the Input Processing control 1. Check for first blank trailer on each spread
routine {IPCR). record.
[Generates a flag byte indicating the segments of 2, Move the parameter list created in $SRPPF 10
object code to be generated for the Qutput Processing identify input records.
. C.on(ro| m'uli.ne {OPCR). [} Inserts main record recognition entry point addresses
2> File Description comp s, and data r 9 for the record type into all record type input
entry points and module name compressions. compressions,
<z Object code block for IPCR and the flag byte. Input compressions.

@y

SR-6,8.8,10,11,12

Updated input compressions, object code blocks,
and address of return points to object code
generated in this phase.

SR -6,8,9,10, 11,12

$RPPB — Generate OPCR

[] Generates object code for OPCR,

. Generates 1he linkage to IPCR and OPCR, A link is
generated for each file, one for input and one for
output, The IPCR linkage loads the dsta management

$RPPF — Build Input Record Recognition 2 Code

[] Generates object code 1o:

module name in XR1. The OPCR linkage loads the 1. Recognize input records and check numeric
IOCB address in XR1 angd the data management sequence of @'d‘- .
module name in XR2. The address of each linkage is 2. Conwol reading of headar/trailer records.

[Initializes a parameter list to recognize input

ptaced in the file description compression.

= Flag byte from $RPPA, file description compressian, records.)) i
and data management entry points and madule . Stores address af parsmeter list in input compressions.
name compressions. L] Initializes bytes 19-28 of 10CB.

<X Generated object code for OPCR and IPGR and => Input compressians and addrmag passed from $RPPE.
OPCR linkages, and updated file description <z 10CB, Updated compressions, object code black, and

compressions. parameter list.

SR -6,8,9,10, 11,12 SR -§,8,9,10,11,12

$RPPG — File Selection and Match Field Extraction Code
$RPPC —~ input Mainline Cade

° Generates object cade to:

[] Generates object code to:) 1. Perform processing of multiple input tiles.
1. Set off specified overflow indicators and 2, Mave match figld records from the input
record resulting indlcators. buffer ta work area.
2. Check specified hait indicators (H1-H9) . Stores address of Match Field Extraction routine
and produce halt commands. into list built by SRPPF.
3. Setoff 1P, L1-L9 and se1 0n LO. > Input compraessians.
4, Determine if LR indicator is on. < Object code blocks.

5. Bypass otal time tirst cycle when keyboard is
primary file.
6. Produce input and Progracn Close Mainlines.
7. Produce branches for Record 1D, Contral
Fietds Logic-and Mova, and Multifile and
Matching Racords Logic rautines,
+ It keyboard primary file (Model B)
=yl Input campressions.
<z Object code blacks.

SR -6,9,10, 11, 12

Exit To $RPPO in
Assambla It Phases

SR-6,8,9,10,1112

Figure 2-4. Assemble I Fhases (Part 1 of 2)

Program Logic 2-11

Licensed Material-Property of IBM

Note: tnterphase Control routines that can be used during
a the Assemble | Phases are:

SRB — DRGCZP — Printer Contral

SR6 — DRGC2ZZ — Call Next Compiler Phase
SR7 — PIOCS. - Disk Control

SR8 -- DRGCFI — Find Item in Compression

$RPPJ — Control Field Extraction Code SR9 — DRGC2G —~ Open a Compression Block
SR10 — ORGCZH -~ Get Next Compression
- Generates object code to: SR11 — DAGCZK — Close a Compression Block
1. Bypass total calculations and total output on SR12 — DRGCZM — Write an Object Code Block

first pass of phase.
2. Move and compare control fields and set on

control level indicators, . .
3. Branch from input Mainlirie 10 code genersted Note: Since fields in COMMON are input and/or output for all

by this phase, phases, COMMON is not listed as input or output.

See Figure 2-9 for a description of the Interphase Control routines.

[] Stores address of control fields Logic and Move routine
in parameter list built by SRPPF.
. Picks up address of IPCR and OPCR linkages from
file description compressions and inserts them in
other compressions,
* If no input figlds
> File description, input, calculation, and output-format
compressions.
<z Object code block, updatad calculation, and output-
format compressions.

Exit To SRPLS8 in
Pre-Assemble Phases

SR -§,8,9,10,11, 12

SRPPL - Look-Ahead Field Extraction Code

L Generates object code for look-ahead field moves
from the buffer to the data field.
. Generates object code to branch from tnput Mainline
to code generated by this phase,
® Stores sddress of Move Input Fields Mainline in
parameter list built by SRPPF,
> Input compressions,
<X Object code block.

SR ~6.8,8,10,11,12

SRPPM - input Fieid Extraction Code

L} Generates object code:
1. For input field moves from buffer to data

tield.

2, Branch from Input Mainline to code generated
by this phase.

3. For wailer field moves from buffer to data
field.

4. To check for blank trailer or end of record ta
determine if a read is required.
I> input compeessions.
<z Ohbject code Mack.

SR -6,8,9,10, 11

Exit To SRPLS in
Pre-Assemble Phases

Figure 2-4. Assemble I Phases (Part 2 of 2)

212

Licensed Material-Property of IBM

(Emur From Assemble | Phases ’

$RPLB — Output Indicator Optimization

e Determines output time and outpot line information
useful for execution of later phases and passes
information In bit settings within the output-format
compressions,

o QOptimizes output indicators with the same displacements
by combining masks and etiminates tests for overfiow,
1P, and LR output records.

[Resets tetch switch in compressions if overflow Is
given on file description specifications but not an
output-format specifications.

> Outputformat compressions.
<! Updated output-format campressions.
SR -9, 10

SRAPLRA — Constan, Literal, Edit Word, DTF Parameter
Assign i1

L Generates object code for constants, adit word
patterns, literals, and output DTF parameters.
[Optimizes usage of DTF parameters.
. Generates segment list entries for the object code
blocks created.
® Places address of literal in calculation compression.
. Places address of DTF parameter in output-format
compression.
L Places sddress of constant or edit word in output-format
compression,
I> Calculation and output-format compressions, and
general storage table.
<z Updated calcuiation and output-format compressions,
and object code block.

SR-6,9,10,1

$RPLG — DTF Parameter Assign |
[Piaces calculation and output DTF parameters in
general storage table.
L] Ptaces length less one of DTF parameter in
compressions.
g Calculation and output-format compressions.
<z Updated calculations and output-format compressions,
and general storage table. Any overflow from general
storage table is placed on scratch file,
SR -6,8,9,10, 11,12

$RPLV — Output Fields Move Optimization

L4 Sets bit on in output-format compression when
an output field move can be combined with succeeding
fisld move.
. Updates constant address and length for output field
move.
> COMMON and output-format compressions.
<5 Updated output-format compressions.

SR -—86,8,0,10, 11

$RPLN — Constant, Literat, Edit Word Assign |
» Adds constants, edit words, and literals used by the
program to the general storage table.
» Replaces literal entrias with length and description
byte in calculation compression.
[Places length minus one of abject code in constant or
edit word entry in output-format campression.
* 1f no literals, constants, edit words, or output DTF
parameters|
> Calculation and output-format compressions.
<z Updated calculation and output-format compressions,
and general storage table.
SR-6,8,9,10 11

$RPMB — Pre-Assemble Calculations 1

. Initiatizes a length byte in the calculation compression
of the length of object code required for ADD,
Z-ADD, SUB, Z-5UB, EXSR, BEGSR, ENDSR, GOTO,
EXIT, EXCPT, RLABL, COMP, TESTZ, READ,
CHAIN, LOKUP, FORCE, SETON, SETOF, BITON,
TESTSB, and SETLL.

] Piaces a mask in the calculation compression to
determine what object code block to generate for
ADD, Z-ADD, SUB, Z-5UB, COMP, TESTZ,

SETON, SETOF, BITON, BITOF, and TESTB.

L} If Model 6 anly

> Calculation compressions.
<z Updated calculation compressions,

SR-6,8,8,10, 11,12

|
<z|

$RPLJ — Pre-Assemble Calculations 3 {(Mode) 6 only)

Initializes a jength byte in calculation comprassion
to length of object code required for SET and KEY.
Places a mask in calculation compressions to
determine what object code 10 generste for SET
and KEY.

Calculation compressions.

Updated calculation compressions.

$RPMG — Pre-Assemble Calculations 2

- Updates a length byte in calculation compression to
contain the length of object code required for each
TIME and DSPLY operation.
> Caleulation compressions.
<g Updated calculation compressions.

SR -6,.8,9,10,11.

SR-6,8,9,10, 1

Figure 2-§ (Part 1 of 2). Pre-Assemble Phases

Program Logic

Licensed Material-Property of IBM

2-13

$RPMH — Pre-Assemble Calculations 4

. Updates a [ength byte in the calculation compression
of the length of object cade required for MULT,
DIV, SQRT, MVR, XFOOT, MOVE, MOVEA,
MOVEL, MHLZO, MLHZO, MLLZO, and DEBUG.
L] Updates a length byte in the calculation compression
of the length of object code required far the srray
control for ADD, SUB, Z-ADD, Z-5UB, COMP,
TESTZ, MULT, SQRT, DIV, MVR, XFOOT, TESTB,
KEY, BITON, and BITOF.
L Piaces a matk in the calculation compressions to
determine what object code to generate for MULT,
DIV, SQRT, MVR, XFOOT, MOVE, MOVEL,
MHHZ0, MHLZO, MLLZO.
u Calculation compressions.
<z Updated calculation compressions.

$RPLZ — Output Indicator Testing

* Determines when jumps are generated after
indicator testing on autput recards,
3> Output-format compressions.
<& Updated output-format compressions.

SR -6,8,9,10, 11

SR-9,10

SRAPMK — Build Segment List

L Builds start address in COMMON for Open Maintine,
Program Close Mainline, detsil and total calculations,
1P cutput, LR caiculations, and controlled cancel,
Initializes segment list identification counter.
Generates segment list entries,

Extension and ingut compressions.

Imege of segment list an scratch file.

Q@..

$RPMI — Pre-Assamble Indicator Optimization

L] Determines and optimizes length required to test
for conditioning indicators on ¢alculations.

. Establishes the total length of detail calculations,
L0-19 calculations, and LR calculations specitied on
source and places tha length in COMMON.

= 04 Calculation compressions.
<z Updated calculation compressions.

SR -6,8,9,10, 11

SR —6.8,9,10, 11

SRPMA — Output Objsct Cade Block Length

L] Accumulates total length of each output object
code block for SRPMM.
L] Determines length of each outgut-format
compression block.
3> Control statement compressed in COMMON and
output-format compressions.
Updated output-format compressions end lengths
of object code blocks 1o be generated.

&

$RPMM — Output Segment List Entries Build

- Dsetermines addrasses of exception cutput, totsl
output, detail output, LR output, fetch overflow,
and LR and Overflow Contral Mainiing object code
in COMMON.

L] Places object code addresses in output-format
compressions for phases SRPPS, $RPPU, $RPPV,
and SRPPW.

= Fetch overflow code usage indicators, detsil overflow
output lengths, total overflow output lengths, printer
overflow indicators, and output-format compressions.

<z Updated output-format compressions, device types
for fetch code, DTF addresses for fetch code and
automatic skip code, IOCB addressss for automatic
skip code, overflow output addresses, and image of
segment list on scratch file.

SR~6,8,9,10, 11

L SR -6,8,9,10, 11

Figure 2-5. Pre-Assemble Phases (Part 2 of 2)

2-14

(Exll To Assemble 11 Phases }

Note: [nterphase Cantrol routines that can be used during
Pre-Assemble Phases are:

SRS — ORGCZP - Printer Control

SRE — DRGCZ2Z — Cait Next Compiler Phase

SR7 — PIOCS — Disk Control

SR8 — DRGCFI — Find Item in Compression

SR9 — DRGCZG — Open a Compression Block
SR10 — DRGCZR — Get Next Compression
SR11 — DRGCZK — Close s Compression Block
SR12 — DAGCZM — Write an Object Code Block

Note: Since fields in COMMON are input and/or output for all
phases, COMMON is not listed as input or output,

Licensed Material-Property of IBM

$RPPO — LR and Qverftow Control Mainline Cade

[} Generates object cade for LR and overflow processing.

L] Generates object code to test and set the matching
record {MR) Indicator,

[Generates object code to branch fram one mainline to
the next mainline.

L] Modifies addresses of object code blocks to he generated
so punching is performed first at execution time if
print fields are specified before punch tields in the

output-format compressions.
¢ If no chain or demand files
* If no calculation specifications.
> Output-format compressions.
<z Updated output-format compressions and obfect code
block.

[-' SR -6,9,10, 11

$RPMP — Build Calculation Segment List

° Builds the segment list for calculation operations.
L] Places address of calculation object code in the caicula-
tion comprassions,
L Generates segment list entries for chain and read code
blocks trom the chain/read table.
[Passes calculation segment list entries to $RPMQ on
the work fila.
[Replaces user-coded subroutine calculation names with
subroutine addresses, lengths, and identifiers,
3> Calculation compressions and chain table.
<z Updated calculation compressions and segment list
fite.

$RPPN — Chain and Read Files Code

L Generates object code to identify records for chain and
demand files.

L] Builds the chain 1able.

® Generates objact code 10 Jnitiatize the chain and reed
input portion of tha 10CB for CHAIN and DEMAND
files.

L4 Generates control code to identify and mave tields for
each chain file.

3> Input compressions.
< Chain table and object cade block.

SR-8,9 10 11,12

$RPMQ ~ Completes Calculation Segment List

. Builds segment list entries for RPG 11 subroutines.
[Passes calculation segment list entries to overlay
phases on the scratch file.
e Calculation compressions.
£Z Segment list entries on the scratch file.

SR -6,8,9,10, 11

$RPRW — Chain and Read Files Move Field Code

L Generates object cods to move flelds for chain or
demand files.
o Defines, in aach entry in the chain table, the subroutines
needed 10 process the chain or demand files.
L Puts the entry paint of each CHAIN or READ subseg
ment into the appropriate calculation compression.
° Initializes |OCB of output chain file for the initial read
operation.
* If not at the end of the compression
> Input compression and chaln table.
<I Updated chain table and object code block.

SR-6,8,9,10, 11,12

$RPPS — Qutput Record Cade

L Generates object code 10 mova §0OCS parameters to the
DTF.
L] Generates object code to test record typa output indi-
cator addresses and branch 10 output field subsegments.
L Generates object code 10 branch to Fetch routine.
L] Generates object code to point XR2 10 the ouput
buffer.
L) Genegrates object code to clear the work srea if the work
area is to be used 85 the COMMON output buffer.
L] Generates object code to point XR2 1o the IDCB and to
branch to the Qutput Pracessing Control routine.
L] Genarates object code for 1P forms alignment.
> Qutput-format compressions.
<z Object code block.

L SR—6,809,10,11, 12

Figure 2-6. Assemble I1 Phases (Part 1 of 4)

Licensed Material-Property of IBM

Program Logic

2-15

$RPPU ~ Output Figlds 1 Code

Generates object code 1o move output fislds to output
work ares.
Output-format compressions.

-
=
<E Object code block.

SR-5,6,8,0,10, 11,12

.
-4
<z

$RPQH — Caiculation Code 1.5 (Model 6 only}

Generates object cade for SET and KEY operation
codes.

Places length of object code in calculation compressians.,
Calculation comprassions.

SR -

Updated calculation compressions and object code block.
8,89, 10, 11,12

SRPPV ~ Output Fields 2 Code

Generates object code to move output fields associated
with edit patterns to output work area,
Output-format compressions.

®
=
<X Objsct code block,

L To Branch Table

SR —~§,6,8,9,10,11,12

S$SRPPW — Qutput Fisids 3 Code

L Generates object code to move input buffer to output
buffer when record length is greater than 256 bytes.
Output-format compressions,

o)
<E Object code block.

$RPQB — Calculation 2 Code
L] Generates object code for EXSR, BEGSR, ENDSR,
EXIT, RLABL, EXCPT, GOTO, and TAG.
> Calculation compressions.
<z Object code blocks,
$A-6,8,8 10 11
To Branch Table

SR-5,6,8,9,10,11, 12

>
<z

$RPQD — Calculation 3 Code

Generates the object code for ADD, 2-ADD, SUB, and
2-SUB.

Places tength of object code in calculation compression.
Places the address of any reference to Factor 1, Factor
2, and the Result Field within the code generated by this
phasa if the field is a table, array, or indexed array.
Calculation compressions.

Updated calculation compressions and object code
blocks.

SR —

6,8,9,10, 11, 12

To Branch Table

$RPQE -

® e

$RPQA - Calculations 1 Code

o Generates object code for the test and branch or jump
instructions for calculation conditioning indicators.

L] Generates object code for the linkage to reset resulting
indicators.

. Updates object code address and length in calculation
compressions with length of object code generated.

® Changes compare instructions in linkage from low to
high or from high to low when decimal positions in
Factor 1 are greater than Factor 2 for numeric compares
and the length of Factor 1 Is less than Faotor 2 for
alphameric compares,

. {rcrements object code address by length of object
code for ditioning i s in calculation compres-
sion.

. Subtracts the length of conditioning indicators and
resulting indicators from the length byte in calculation
comprassion.

> Calculation compressions.
<z Updates calculation compressions and object code block.
SR-6,8B,9,10, 11,12

1’)
<

To Branch Table

Figure 2-6. Assemble [I Phases (Part 2 of 4)

2-16

Caiculation 4 Code

Generates the object code for COMP and TESTZ.
Places length of ohject code in calculation compression.
Places the address of any reference to Factor 1, Factor
2, and the Result Field within the code generated by
this phase if the field is a tablg, array, or indexed array.
Calculation compressions.

Updated calculation compressions and object code
block,

SR—

6,8,9,10, 11, 12

To Branch Table

Licensed Material-Property of 1BM

=) -

$RPQF — Calculations 5 Code SRPQL — Calculations 8 Code
[Generates the object code for MULT, SQRT, MVR, and ° Generates object code for: MOVE, MOVEA, MOVEL,
XFOOT. MHHZO, MLLZO, MLHZO, and MHLZO.
3 Places length of object code in caleulation compression. L] Updates object code addrass in calculation compressions
[Places the address of any reference to Factor 1, Factor by sdding length of object code to address.
2, snd the Result Field within the code generated by I> Calcutation compressions.
this phase if the field is a table, array, or Indexed array. <X Updated caleulstion comprassions and object cods
X> Calculation compressions, block.
<E Updated calculation compressions and object code
block. SR—6,8,9,10,11,12

SR -6,8,9.10, 11,12

To Branch Tabie

To Branch Table

$RPQT — Caleulations § Code

$RPQG — Calculations 6 Code
L Generates object code for: CHAIN, FORCE, READ,
[Generates the object code for SETON, SETQF, LOKUP, and SETLL.
BITON, 8ITOF, and TESTB. > Calculstion compressions.
< Updated calculation compressions and object code

[Places length of object code in calculation compression.
L) Replaces the address of Factor 2 and/or the Result
Fiald (H the field is a table, arrey, or vasinble indexed
array) with the object-time address of the object code
that references Factor 2 or the Result Field,
Calculation compressions.

Updated calculation compressions and object code
block.

block.

SR-8,8,9, 10,11, 12

Qb

To Branch Table

SR-8§,89,10,11,12

To Branch Table

$RPQU — Calculations 10 Code

[Calculates length and type of object code needed for
TIME snd DSPLY oparation codes.
® Generates object code for DSPLY and TIME operations.
I> Celeulation compressions.
<z Updated caiculation and object code

$RPQK — Csiculations 7 Code
block.

. Generates object code for array control of all caiculs-
tion opération except LOKUP, CHAIN, and DEBUG.
[] Places address of object code generatad for resulting

SR-6,8,9,10,11, 12

di s In calculation pi 15
> Calculation compressions.
<z Updated calculation compressions and object code To Branch Table
block.

SR-6,8,9,10,11, 12

To Branch Table
$RPQV — Calculations 11 Code

Generates object code 10 move parametars to DTF.
Generates object code for DEBUG.

Calculation compressions.

Updated calculation comprassions and object code
block.

2, o

SR-6,8,9,10,11,12

Figure 2-6. Assemble II Phases (Part 3 of 4)

Program Logic 2-17

Licensed Material-Property of IBM

$RPRA — Initialization and Close Code
L] Generates object code to:
1. Move axternal indicator switches from the program level
communications area to tha indicator area in ROCA.
{See Data Aress in Section 4.)
2. Mova special word UDATE to the constant ares in main
storage.
3. Halt if an inquiry program is specitied and the inquiry
bit is not on in the supervisor communication area.
4. Setall indicators off except 1P and LO.
5. Allocate and open filas.
6. Call for a halt if at least one input flle is not opened.
7. Initialize all numeric fields and tables, alpha fields,
and tables, and the COMMON output buffer,
8. Initialize Program Ctose Mainline by setting on LR
indicator for a controlled cancel.
9. Call special 1/0 routines with an operation code of
X 10 for closa.
10. Branch ta LR calculations and/or output for cantrolled
cancel.
11. Close all files and cail the job terminatar.
12. GCall the Tabie Dump subsegment.
* if no pre-execution time tables/arrays ard no table
dump
<z Object code block.
SR~8,12

$RPRC — Table Load/Table Dump Code
L] Generates parameter list and objact coda to branch to
Load Object Tables subroutine.
® Generates parameter list and object code to branch to
Dump Object Tables subroutine.
o Generates object code to branch to Program Close
Mainling.
> Extension compressions.
<z Object code block,
SR -6,8,89,10, 11,12
EXIT
To Overlay Phese $RPRX

(Figure 2-7, Part 1 of 3, if
Mode! 6, 10, or 12; Figure
2-7, Part 3 of 3, if Madel 15)

Figure 2-6. Assemble II Phases (Part 4 of 4)

Branch Teble: Enter at the name of the phase that sent you to the
branch tabie. If the decision answer on the line entered is no, proceed

downword until a decision is d yes. Then pi d to the indi-
cated phase.
From Go To
Phase: Decision Phase: | ID
SRPOA | If using Model 6
$RPQH | 2C

$RPQOH | ¢ If EXSR, BEGSR, ENDSR, EXIT,

RLABL, EXCPT, GOTO, or TAG opera-

tion code $RPQB | 2D
$SRPQB | ¢ 1f ADD, Z-ADD, SUB, Z2-SUB operstion

code $RPQD | 2€
$RPQD | ¢ If COMP or TESTZ operation code $RPQE | 2F
S$RPQE | ¢ If MULT, SQRT, MVR, or XFOOT

operstion cods $RPQF | 3A
SRPAF | ¢ If SETON, SETOF, BITON, BITOF, or

TESTA aperation cade $RPQG | 38
SRPQG | ¢ If LOKUP, CHAIN, or DEBUG opera-

tion code $RPAK [3C
$RPQK | 11 MOVE, MOVEA, MOVEL, MHHZO,

MLLZO, MLHZO, or MHLZO operation

code. $RPOL |30
$RPAL | 4 1f CHAIN, FORCE, READ, LOKUP,

or SETLL operation code $RPQT | 3E
SRPQT | # (f DSPLY operation code $RPQU | 3F
$RPQU | ® If DEBUG operation code $RPQV | 3G

Note: Interphase Control routines that can be used during Assemble
11 phases are:

SR5. DRGCZP ~ Printer Control

SR6. DRGCZZ — Call Next Compiles Phase

SR7. PIOCS - Disk Control

SR8. DRGCFI ~ Find Itam in Comprassion

SR9. DRGCZG — Open a Compression Block
SR10. DRGCZH — Get Next Compression
SR11. DRGCZK ~ Close a Compression Black
SR12. DRGCZM — Write an Object Code Block

See Figure 2-9 for a description of the Interphase Control routines.

Note: Since fields in COMMON are input and/or output for all
phases, COMMON is not listed &s input or output.

Licensed Material-Property of IBM

Enter from Assemble |1 Phases for
Model 6, 10, or 12

Nate: Enter on Part 3 of this Figure

if Model 15.
$RPSP — Eliminate Duplicate Segment List Entries
$APRX — Initialize Segment List . Efimi all duphi 1] within the
substructure lists and set up equal element

® Initializes COMMON entries for Overlay phases. pointers.
® Expands segment elements to 16-bytes. I> Rebuilt segment fist
o Replaces 1/Q subroutine condensed names in the <z Updated sagment list.

segment list with an internal subroutine nama.
o Replaces internal data management module names SA-6,7

with external names from compression file.
® Sorts Root Segment and Mainlines.

o} File description specifications, segment list, and
comprassion table of intermal and external data
management madule names.
Qr Updatas segment list, object code biock, and data SRPSB — Overlay Editor 1
management entry points and module name
compression. o Determines which segments and subroutines are to
______ be overlays and flags them in the segment list,
SR —6,8, 9,10, 11,12 > Segmentiist.
<z Updated segmant list.
SR—6,7

$RPRY — Library of Subroutines Code

L] Generates EXTRN entry and new subroutine $RPSF — Overlay Editor 2
segment elements and passes subroutine text as
object code. @ Organizes overlays to make tha most efficient use of the
> Rebuilt segment list. overlay area.
<z Updated segment list, object code blocks, and - Segment list.
object code delimiter < Updated segment tist.
SR~-6,7,12 SR—-6,7
$RPSA — Resolve EXTRN $RPSC — Calcutate Start Address
° Passes object code and resolves all EXTRN in L] Calculates start addrass for each segment and overlay.
object code per entries in segment ist. =Y Updated ssgment list from SRPSB,
> Rebuilt segment list, and object code fiie. <z Final segment list.
<z Updated segment list and object code blocks. -
F-- SR —6,7
SR-86,7

$RPSD — Print Segment List

$RPSN — Sort Segment List
L] Prints the segment list.

. Sorts segmaent list into an overlay structure list. o3 Final segment list
Note: Before this time, pointers tied segment |ist <z Source listing of segmant list.
together; now the position of the element In the
segment list is important. SR—6.6.7

> Rebuilt segmant list.
<g Updated and sorted segment list.

SR-86,7

$RPSE ~ Sort Object Code

L] Sorts object code blocks generated by Assign and
Asgemble phases according to assembled addresses.
- Generates an internal object code table,
= Segment list, and abject code blocks.
<5 Internal object code 1able.

Sorted object code blocks.
* I1f no overlays

SR-86,7 |

Figure 2-7 (Part 1 of 3). Overlay Phases

Program Logic 2-19

Licensed Material-Property of IBM

2-20

$RPSG — Overlay Fetch and Transfer Vector Code

[Generates object code for:
1. Ovarlay Fetch routine
2. Overlay fetch tabla
3. Trenster vectors
2> Segment list, sorted object code blocks, and
internal object code table,

<& Sorted object code blocks for overlay fetch table
and Overlay Fetch routine.
Updated internal object code wble,
SR-8§,7

2B

$RPSI — Final Output Generation 1

. 8uilds the following for the linkage aditor;
1. PHASE control statement
2. ENTRY contral statement
3. External symbol list
> Sorted object code, and internal object code table
<x PHASE control statement
ENTRY control statement
External symbol list

SR~6,7

$RPSK — Final Output Generation 2

L] Generates final output of object code required by
the linkage editor, including skip records and text-RLD
records.
1> Segment list, sorted object code, and internal
abject code table.
<E Skiprecords or blank statements used to fill sectors
for the linkaga editor, text-RLD recards, and END
control statements,
[If not all overlays generated

SR-6,7

Exit To Linkage Editor (SLINK8B) via Supervisor
For Model §, 10, or 12

Figure 2-7 (Part 2 of 3). Overlay Phases

Nota: Interphase Cantrol routines that can be used by the
Overlay phases are:

SR5 — DRGCZP — Printer control

SR6 — DRGCZZ — Call next compiler phase
SR? — PIOCS — Disk Control

SR8 — ORGCFI — Find Item in Compression
SR9 — DRGCZG — Open a Compression Block
SR10 — DRGCZH — Get Next Compression
SH11 ~ DRGCZK — Close a Compression Block
SR12 — DRGC2ZM — Write an Object Code Block

See Figure 2.9 for a description of the Interphase Controt
routines.

Nate: Since fields in COMMON are input and/or output for ail
phases, COMMON is not listed as input or output.

Licensed Material-Property of IBM

Enter Fram Assemble (1 Phases
For Model 15

$RPRX — Reformat Segmant List

® Adds entries to segment list for DEBUG, user
subroutines, and data management,
) Expands segment list from 10 to 16 bytes.
> Segment list
<E Segment list on SWORK

SR-6,7.9,10, 11

SRPRY — Sort Object Code

L) Sorts object coda into ascending strings.

L Places text on SSOURCE followed by segment
Yist.

2> Segment list and object coda blocks,

Cz Final text on $SOURCE Jollowed by segment
list.

SR —6,7

$RPRZ — Generate R-Module Output

[} Scans object code and generatss entry segment
list elements.

L Produces ESL records from the segment list.

[} Produces TEXT-RLD records from the object
code.

[} Generates module EXTRNs from associations
in the sagment list,

L] Sets up EXTRNS-TO-ENTRY points from
address references in the object code.

. Sets up entry points from EXTRN-TO-ENTRY
points from other segments,

> Final text and segment list on $SOURCE,

<2 R-module output of compiler.

xit To Overiay Linkage Editor
{$SOLYNX) Via Supervisor For
odel 15

Figure 2-7 (Part 3 of 3). Overlay Phases

Licensed Material-Property of IBM

Program Logic

2-21

INTERPHASE CONTROL ROUTINES DESCRIPTION If only 512 or 718 bytes are available for the work area
and object code, the following Interphase Control routines

Figure 2-8 shows the charting techniques used on use other than the normal routines.

Figure 2-9 to describe the Interphase Control Routines.

DRGCZG —

The Interphase Control routines reside in the compiler
control region defined in phase $RPG and phase $RPIC.
These routines control all disk input and output.

During the Input and Compression phases the following DRGCZH —

Interphase Control routines are present:

Open a Compression Area (DRGCZA)

Write a Compression (DRGCZC) DRGCZK —

Close a Compression Area (DRGCZE)
Get Next Source Record (DRGCZN)
Printer Contro! (DRGCZP)

Call Next Compiler Phase (DRGCZZ) DRGCZM —

Disk Control (PIOCS)

When phase $RPIC overlays the last Input and Compres-
sion phase, the following Interphase Control routines are
loaded into the compiler control region, overlaying all
previous Interphase Control routines except PIOCS and
DRGCZP:

Find Item in Compression (DRGCFI)
Open a Compression Block (DRGCZG)
Get Next Compression (DRGCZH)
Close a Compression Block (DRGCZK)
Write an Object Code Block (DRGCZM)
Call Next Compiler Phase (DRGCZZ)

Some Interphase Control routines function in a special way
if less than the required work area is available for the
normal Interphase Control routines.

If only 1K or less is available for the work area and the
source input, the following Interphase Control routines
use other than normal routines.

DRGCZC - Basic function is same as normal, but allows
only one compression to be built and then
puts that compression out to disk. Shares the
512 bytes of work area with DRGCZN.

DRGCZE — Same function as normal, but works with
special DRGCZC.

DRGCZN — Same function as normal, but source shares
work area with compressions. One source
record is retrieved from disk and located in
main storage as required.

2-22

Basic function is same as normal, but only al-
lows one compression type in storage at one
time. Requires 512 bytes of available work
area.

Basic function same as normal, but only allows
one compression type in core at one time. Re-
quires two sectors of available work area.

Same function as normal, but works with
special DRGCZH. Always writes the updated
compressions.

Basic function is same as normal, but uses 256-
byte buffer area in the control region of storage
instead of normal object code area.

Licensed Material-Property of IBM

Formal name (name found on microfiche}

Descriptive name
Phase where this routine can be found
\L / 1/ on microfiche

DRGCZC — Write a Compression {$RPG)

Functions of this routine

] Writes one sector of compressions when a sector in the <%
work area is full.

3> Errortable. < input to this routine
<& Error messages. <& Output from this routine
PIOCS — Disk Control <& Interphase Control routines that are

used by this routine.

Figure 2-8. Description of the Format Used in Describing the Interphase Control Routines

Program Logic

Licensed Material-Property of IBM

2-23

224

DRGCZA -~ Open a Compression Ares ($RPG})

° Assures that three sactors are available in the work area.
L] Opens compression area by building compression block
table with the fallowing information:
1. Address where compression can begin in work
area.
2. Address of first sector available for new
compression block.
3. Statement number of first source statement in
current compression.
b One-byte parameter indicating the type of
specification for the compression block.
<E Address in XRT of the first byte in work area where a
compression can be generated and the compression
block table.

Return To Caller

i

DRGCZC — Write a Compression ($RPG)

L] increments statement countar.
Writes out on disk when 256 bytes are full.
L] Updates parameters in compression block each time

8 sector is written,

> Comgpression block table.

<x Updated compression block table and Address in
XR1 of the first byte in work area where a
compression may be generated.

PIOCS — Disk Controt

Return To Caller

i

DRGCZE — Close » Compression Area ($RPG)

° Marks end of fast compression block with X'FF".
L] Writes final sectors in a compression block.

> Compression hlock table.

<z Last sector in current compression biock.

PIOCS — Disk Control

Return To Caller

Figure 2-9 (Part 1 of 2). Interphase Control Routines

-

DRGCZN — Get Next Source Record {($RPG)

o Reads RPG || source records.
I> RPG |l souree racords in $SOURCE.
<t Address in XR2 of the next source record.

P1OCS — Disk Control

Retumn To Caller

Enter SR6

i-

DRGCZP — Printer Control ($RPG)

L] Passes parameters to the line printer.
=> One-byte parameter contalining:

Bit Contents

o 1 = Wait only
2 1 = Print followed by spacs

<z Printer line of infarmation in work area.

$$5TOP — Transient Halt/Systog®

Return To Caller

Enter SRé

-

DRGCZ2 — Call Next Compiler Phase {($RPG)

® Branches to supervisor to load and transfer comrol to
the next compiler phase.
> Four-byte parameter containing the name of the
phase to be loaded.

$$SPVR — NLOADR"*®

To Phase Loaded

Enter SR7

i

PIOCS — Disk Control ($RPG)

L4 Moves 1/0 parameter list to the disk 10B.
L4 Updates C/S address in the 1/0 parameter Hst for the
next operation.
L Branches to 1/0 Supervisor.
> Address of I0B in XR1 end a two-byta address which
points to 1/0 perameter list for the requested operation,
< C/S address in the 1/O parameter list incressad by sach
256 bytes executed.

DIODSP — Disk 105" DIODWT ~ Disk Wait® (Model 8, 10, or 12}
CAM — {Model 15)

Return To Caller

i

Licensed Material-Property of IBM

Enter SR8

-

DRGCG! — Find Item in Compression $RPIC)

Tests format blts of compression for presence of
requested item.

Returns displacement of requested item in COMMON
{X'FF"if requested item is not present}.

One-byte parameter containing the number of the
requested item, compression block table, snd all
compressions on SWORK.

Displacement of requested item in COMMON.

Return To Calter

Ly

Enter SR10

-
<=

DRGCZH — Get Next Compression ($RPIC).

Obtalns address of next compression in a compression
block,

Writes the previous sector onto disk.

Reads next sector of compressions into work area if next
compression is not completely in storage.

Compression block table.

Address in XR1 of the next comgression (X‘FF’ if end
block is reached)

of comp

P10OCS — Disk Control

DRGC2ZG —~ Open a Compression Block (S3RPIC)

Reads from disk the first sector or all sectors
|depending on the size of the work area) of
compressions in 3 requested compression biock if
thet compression block is not in storage.
Compression block teble and a two-byte parameter
oontaining:

Byte Bit Contents
1 Code indicating the compression
block required:
X'00’ = File description
X'02" = Extension
X04" = Line counter
X'06° = Data management
X'08’ = Input
X'0A’ = Calculations
X’10° = Output-format
X'12' = Telacommunications
X'14" = Compile-time
X’'16" = Tables
X‘18' = Error
X'1A’ = Scretch
1 = Update of compression
1 = Phase is generating object
code
27 Notused
Address in XR1 of the first compression in the
requested block (X'FF’ if the end of compression block
is reached) and Updated compression block table.

N
- o

PIOCS — Disk Controt

Figure 2-9. Interphase Control Routines (Part 2 of 2)

Return To Caller

Return To Caller

gl

>
<

ORGCZK — Close a Compression Black ($RPIC)

Rewrites current compression block If any
modifications were performed by the calling phase.
Compression block table.

Rewritten compression block.

P10CS — Disk Contro!

Return To Calter

-

>
<z

DRGC2ZM — Write an Object Code Block [$RPIC)

Moves generated object code into an ouput buffer.
Writes generated object code onto disk when the buffer
is fult.

Address in XA2 of the leftmost byte of object code
block t0 be written.

Object code block in the output buffer.

P10CS — Disk Control

Return To Caller

i-

* See /BM Sysiem/3 Disk Systems Data Management and Input/
Output Supervisor Logic Manual, SY21-0612.

* * See /BM Systern/3 Disk Systems System Contro! Program
Logic Menual, SY21-0502.

Licensed Material-Property of IBM

Program Logic

2-25

This section describes the format and contents of the con-
trol blocks and data areas created by the RPG 1I Compiler
and used by more than one phase of the compiler.

COMPILER CONTROL REGION

For Models 6 and 10, the compiler control region isa 1.5K
byte area in main storage following the end of the Super-
visor. For Model 12, the control region is a 2,0K byte area
in main storage at the starting address of the partition in
which the compiler is loaded. For Model 15, it is a 2.5K
byte area in main storage at the beginning of the partition
in which the compiler is loaded. The compiler control
region contains:

1. COMMON
2. Interphase Control routines

3. Datafiles, tables, buffers, IOCBs, control routine
save area

For a description of the Interphase Control routines, see
Interphase Control Routines Description in Section 2,
Program Logic.

Section 3. Data Areas

COMMON

COMMON is a 128-byte interphase area used to save infor-
mation used by more than one compiler phase. Each
phase can access information placed there by preceding
phases and can transfer information to following phases.
COMMON is located X°OA” from the end of the Super-
visor. Figure 3-1 shows the information found in COM-
MON, where this information is located, and the phases
where this information is defined and modified.

Data Areas 3-1

Licensed Material-Property of IBM

Page of LY21-0501-5
Issued 24 September 1976
By TNL: LN21-5423

COMMON
Hexadecimal
Name Displacement Bytes Defined Modified Explanation
COMAAC 00 0] $RPG $RPGF Control card specification information:
. $RPKA
$RPKE Bit 0 1 = Object program permanently in
library {C in col 10}
Bit 1 1 = Object program punched on cards
(P in col 10)
Bit 2 1 = No object program produced (col 11)
Bit3 1= No list v
Bit4 1 = Shared 1/0 (Models 8, 10, and 12 only)
Bit 5 1 = DEBUG operation (col 15)
Bit 6-7 00 = Domestic format (col 21)
01 = United Kingdom format {col 21)
10 = World Trade date format (I) col 21
11 = World Trade date format (J) col 21
COMABC 01 1 $RPG None Control statement information; object program
size {col 12-14)

COMACC 02 2 $RPG $RPGH Bit7 1 = Program exceeds 64K bytes of
$BPGI storage or disk overflow error
$RPGJ
$RAPGN
$RPGS
$RPGR
$RPGT
$RPXA
$SRPXB

| | comapc 03 3 $RPG $RPHC Control statement information:
$RPIM Bit0 . 1= No halt for unprintable characters

{col 45)

Bit 1 1 = Program allows inquiry interrupts
{col 37)

Bit 2 1 = Inquiry program (col 37)

Bit3 1 = Alternate collating sequence {col 26)

Bit 4 1 = Repeat 1P lines {col 41)

Bit5 1 = File translation {col 43)

Bit6 1 =MFCU or DATA96 zero suppression
(col 44)

Bit 7 1=UDATE field

Figure 3-1 (Pazt 1 of 14). COMMON

32
Licensed Material-Property of IBM

COMMON
Hexadecimal
Name Displacement Bytes Defined Modified Explanation
COMAEC 09 49 $RPG None Program identification specified on the control
statement (col 75-80)
COMAFC 0B 10-11 $RPG $RPIC Statement number of the compression in storage
$RPIW
$RPJZ
$RPJA
$RPHS
$RPJG
COMBIC 10 12-16 $RPG None The compression sequence number
COMAGC ocC 12 $RPGF 3$RPGU Error information for assign and diagnostic phases:
$SRPGW
$RPGX Bit0 1 = Unreferenced indicator
$RPHA Bit 1 1 = Undefined indicator
$RPHD Bit 2 1 = Multi-defined field
$RPHT Bit 3 1 = Unreferenced field
Bit 4 1 = Undefined field
$RPGU Bit5 1 = Multi-defined tables/arrays
Bit 6 1 = Too many tables/arrays
COMBCC aD 12-13 $RPPC None Branch address of the operand portion in lnput
Mainline to detail calculations
COMAVC OF 1415 $RPPC $RPPE Address of the return point in Input Mainline
COMAVC OF 14-15 $RPPE None Address of the Record ID routine
COMCKC OF 14-15 $RPRA None Address of Load Object Tables subroutine
COMAWC 1 16-17 $RPPC $RPPG Branch address of the operand portion in Input
Mainline to Multifile and Matching Records Logic
routine
COMAWC 11 16-17 $RPPG None Address of Multifile and Matching Records Logic
routine
COMFCC 1 16-17 $RPMM None Binary length of exception output
COMBJC 50 17-80 $RPG $RPEA Errors found in the Input and Compression
$RPEB phases
$RPEC
$RPEE
$RPEI
$RPEK
$RPEO
COMAXC 13 18-19 $RPPC $RPPJ Branch address of the operand portion of the
branch in Input Mainline to Control Fields Logic
and Move routine
COMAXC 13 18-19 $RPPJ $RPMK Address of Control Fields Logic and Move routine

Figure 3-1 (Part 2 of 14), COMMON

Data Areas 3-3

Licensed Material-Property of IBM

COMMON
Hexadecimat
Name Displacement Bytes Defined Modified Explanation
COMFDC 13 18-19 $RPMK $RPMM Compression sequence number of ISAM file that
requires record address file processing
COMDUC 14 19-20 $RPSE $RPSG Spindle address for file one
COMEDC 15 20-21 $RPPC $RPPE Address in Input Mainline to call RPG || Halt
Processor
COMAYC 15 20-21 $RPPL None Address of Input Fields routine
COMDVC 16 21-22 $RPSE $RPSG File one disk start address
COMAUC 17 2223 $RPPC None Address of Input Mainline
coMDWC 18 23-24 $RPSE None File one disk end address
COMAZC 19 24-25 $RPPC None Branch address of the operand portion in Input
Mainline to LR and Overflow Control Mainline
COMCDC 19 24.25 $RPGS Address of limits 1/0 save area
$RPGR
$RPGT
$RPXA
$RPXB
COMDXC 1A 25-26 $RPSE $RPSG Address of the next available sector
COMCEC B 26-27 $RPGS Limits shared 1/0 DTF address
$RPGT
$RPXA
COMEOC 18 26-27 $RPPA $RPFB BSCA IOCB®@ transmit with reply
$RPPJ
COMCWC 1B 26-27 $RPMK $RPRA Address of controlled cancel in Program Close
Mainline
COMDYC 1C 27-28 $RPSB $RPSF Byte 0, Bit0 1= Obiject program will not fit
in main storage
COMBNC 1C 28 $RPIW $RPJX Fife description information:
$RPJZ Bit0 1 = Ascending sequence
Bit 1 1 = Descending sequence
Bit 4 1 = Ascending sequence
Bit5 1 = Descending sequence
COMBAC 1C 28 $RPHQ None Alternate sequence character to initialize match
field save areas

Figure 3-1 (Part 3 of 14). COMMON

34

Licensed Material-Property of IBM

COMMON
Hexadecimal
Name Displacement Bytes Defined Modified Exptanation
comMBQC 1D 28-29 $RPHT None Address of decimal point for edit pattern 1
COMBOC 1E 29-30 $RPJW $RPJX File and indicator information:
$RPJZ Byte O, Bit O 1 = Overflow indicator used
Bit 1 1 = Primary file
Bit 2 1 = Record address file
Bit 3 1 = Input files conditioned by
external indicators
Bit 4 1= Input files
Bit 1 = Default second primary
to secondary
Bit 6 1 = Non-demand RA
associated file
Bit 7 1 = RA associated file
Byte 1, Bit 0 1 = External indicator used to con-
dition opening of a file
comDzC 1E 29-30 $RPSG None Address of overlay fetch table
COMBRC 1F 30-31 $RPHT None Address of decimal point for edit pattern 2
COMGAC 20 31-32 $RPSC None Length of object program
COMBSC 21 32-33 S$RPHT None Address of left slash of date edit pattern
COMGBC 22 33-34 $RPSC None Length of overlay area
COMBTC 23 34-35 $RPHS None The control field type. If the bit is set to O, the
control field is alphameric; if the bit is set to 1,
the field is numeric.
Byte 0, Bit7=L9
Byte 1, Bit0=1L8
Bit1=L7
Bit2=1L6
Bit3=L5
Bit4=1L4
Bitb=13
Bit6 =12
Bit7=L1
COMFBC 23 34-35 $RPMK $RPLN The next available segment list number
$RPLR
$RPMM
$RPMP
$RPRX
COMGCC 24 35-36 $RPSC None Length of suboverlay area

Figure 3-1 (Part 4 of 14). COMMON

Licensed Material-Property of IBM

Data Areas 3-§

COMMON
Hexadecimal
Name Displacement Bytes Defined Modified Explanation
comMBuUC 25 36-37 $RPHS None Two bytes indicating the match field type. |f the
bit is set to 0, the match field is alphameric; if the
bit is set to 1, the field is numeric.
Byte 0,Bit 7 =M9
Byte 1, Bit 0 = M8
Bit 1=M7
Bit 2= M6
Bit3=Mb
Bit4=M4
Bit5=M3
Bit 6 = M2
Bit 7 = M1
COMCRC 25 36-37 $RPMI $RPMK Length of detail calculations
COMCRC 25 36-37 $RPMK None Address of detail calculations
COMGDC 26 37-38 $RPSC None Length of Fetch routine and table
COMBEC 26 38 $RPJA $RPGH Field information:
$RPGI Bit 0 1 = Halt indicator H1 used
$RPHS Bit 1 1 = Direct file without ADDROUT
$RPPC Bit 2 1 = Limits file specification
$RPPJ Bit 3 1 = BSCA conversational transmit file
Bit 4 1 = Alphabetic and numeric fields
Bit5 1 = FORCE operation code
Bit6 1 = Numeric record |D sequence
Bit 7 1 = Look ahead field
COMBWC 26 38 $RPPN $RPPM Subroutines used by Input Fields:
Bit 0 1 = Unpack subroutine
Bit 1 1 = Not used
Bit 2 1 = Convert to Decimal routine
Bit 3 1 = Array Index subroutine
Bit 4 1 = Set Resulting Indicators subroutine
Bit b 1 = Not used
Bit 6 1 = Chain or demand file in program
Bit7 1 = First time entry switch
COMBFC 27 39 $RPJX $RPGF Qverflow indicators used:
Bit0 1=0V
Bit 1 1=0G
Bit 2 1=0F
Bit3 1=0E
Bit4 1=0D
Bit5 1=0C
Bit & 1=0B
Bit 7 1=0A

Figure 3-1 (Part 5 of 14). COMMON

3-6

Licensed Material-Property of IBM

COMMON

Hexadecimal
Name Displacement Bytes Defined Modified Explanation
COMBFC 27 39 $RPGF None Halt indicators used:
Bit 0 1=H9
Bit 1 1=H8
Bit 2 1=H7
Bit 3 1=H6
Bit 4 1=Hb5
Bit 6 1=H4
Bit6 1=H3
Bit 7 1=H2
COMGEC 28 39-40 $RPSC None Length of available object storage
COMBHC 29 40-41 $RPGH None Address of the file 1/O table
COMASC 2A 40-42 $RPHS $RPHT Bytes 0-1 Address of the high-order byte of
the first match field save area.
Byte 2 Length of the save area.
COMCTC 29 40-41 $RPMI $RPMK Length of total calculations
COMCTC 29 40-41 $RPMK None Address of total calculations
COMGFC 2A 41-42 $RPSC None Address of the overlay area
COMBKC 2B 42-43 $RPGI None Address of the FROM file DTF
COMFAC 2B 42-43 $RPPN None Address in chain control code where input fields
return after moving fields
COMGGC 2C 43-44 $RPSC $RPSG Address of suboverlay area
COMATC a3 4351 $RPPG None Length of each match field:
Byte 0 = Length of M1 field
Byte 1 = Length of M2 field
Byte 2 = Length of M3 field
Byte 3 = Length of M4 field
Byte 4 = Length of M5 field
Byte 5 = Length of M6 field
Byte 6 = Length of M7 field
Byte 7 = Length of M8 field
Byte 8 = Length of M9 field
COMBLC 2D 44-45 $RPGI None Address of the TO file DTF
COMEUC 2D 44-45 $RPPN None Statement number for SRPRW to begin processing
COMGHC 2€ 45-46 $RPSB None Length of Open-Close overlay

Figure 3-1 (Part 6 of 14). COMMON
Data Areas 3-7

Licensed Material-Property of IBM

COMMON
Hexadecimal
Name Displacement Bytes Defined Modified Explanation
COMBMC 2F 46-47 $RPJX $RPGH
$RPGI Byte 0 Not used
Byte1 Bit0Q 1 = Card print required
Bit 1 1= BSCA output file
Bit2 1=BSCA input file
Bit3 1= BSCA file given
Bit 4 1 = MFCU1 print buffer needed
(Models 12 and 15)
Bit 5 1 = MFCU2 print buffer needed
{Models 12 and 15)
COMGIC 30 47-48 $RPSB $RPSC Length of Open-Close suboverlay
COMCFC 30 48 $RPPL None Temporary save area for COMBWC
CcCOoMCQC 31 48-49 $RPMM None Address of first fetch code block
COMCGC 32 4950 $RPPL None Address of return to main code for move fields
COMGJC 32 4950 $RPSB None Address of $WORK
COMCIC 33 50-51 $RPPO None Address of last record in LR Qutput routine
COMAQC 36 5254 $RPHS $RPHT Bytes 0-1 Address of the high-order byte of
i the control field save area.
Byte 2 Length of the save area.
COMEYC 37 54-56 $RPLR $RPQU Address of DSPLY constant
COMARC 3F 55-63 $RPHS $RPPJ Length of each control field:
Byte 0 = Length of L1 field
Byte 1 = Length of L2 field
Byte 2 = Length of L3 field
Byte 3 = Length of L4 field
Byte 4 = Length of L5 field
Byte 6 = Length of L6 field
Byte 6 = Length of L7 field
Byte 7 = Length of L8 field
Byte 8 = Length of L9 field
CcoMCMC 3B 56-57 $RPMA $RPMK Length of 1P Qutput routine
COMCMC 39 56-67 $RPMK None Address of 1P Output routine
COMBDC 3B 58-50 $RPPL None Branch address of the operand portion in the
Move Input Fields to detail calculations
comMcpc 3D 6061 3$RPMA $RPMM Length of Exception Output routine
COMCPC 3D 60-61 $RPMM None Address of Exception Output routine

Figure 3-1 (Part 7 of 14). COMMON
3-8

Licensed Material-Property of IBM

COMMON
Hexadecimal
Name Displacement Bytes Defined Modified Explanation
COMGPC 3E 61-62 $RPSA $RPRY Largest item number in segment list
COMGPC 3E 61-62 $RPRY $RPSA Byte 1, Bit0 1= Entry point not found in
segment list
COMBPC 3F 63 $RPGU $RPGW Table and array information:
$RPHA Bit0 1 = Symbol table overflowed to disk
Bit 1 1 = No field names defined
Bits 2-4 Not used
Bit5 1 = Compile-time tables
Bit6 1 = Multi-defined field name heading
printed.
Bit7 1 = Multi-defined table/array name head-
ing printed
COMGQC 40 63-64 $RPRY $RPSN Address of the delimiter in the segment list
COMAPC 40 64 $RPJX $RPMM Overflow indicators specified:
Bit0 1=0V
Bit 1 1=0G
Bit 2 1=0F
Bit 3 1=0E
Bit 4 1=0D
Bit5 1=0C
Bit6 1=0B
Bit7 1=0A
COMAPC 40 64 $RPMM None Overflow segment needed
COMAOQOC 1 65 $RPGU S3RPGI File information:
$RPPC BitO 1 = ADDROUT file program specified
$RPMA Bit 1 1 = CHAIN file program specified
Bit 2 1 = Dual I0CBs required
Bit 3 1 = Table Load subroutine at object
time in program
Bit 4 1 = Table Dump subroutine required in
program
Bitb 0 = Single input file
1 = Multiple input files
Bit 6 1 = Match fields are ascending
Bit 7 1 = Match fields are descending

Figure 3-1 (Part 8 of 14). COMMON

Licensed Material-Property of IBM

Data Areas 3-9

COMMON

Name

Hexadecimal

Displacement Bytes Defined Modified

Explanation

COMANC

COMAMC

comcxc

43

45

45

66-67 $RPGN $RPGU
$RPGY
$RPHA
$RPLR
$RPGH
$SRPMK
$RPGI
SRPMM
$RPPO
$RPGK
$RPPN
$RPRW
$RPGS
$RPMP
$RPHQ
$RPHT
$RPPA
$RPPC
$RPPE
$RPPF
$RPPG
$RPPJ
$RPPL
$RPSC
$RPRZ
$RPHP
$RPRY
$RPJJ
$RPPM
$RPGR
$RPPB
$RPHU

68-69 $RPGY $RPGU
$RPHA
$RPHD
$RPGH
$RPGI
SRPGK
$RPGS
$RPHQ
$RPHT
$RPJS
$RPPA
$RPGR
$RPHU

68-69 $RPMK $RPHA

Address of next available byte in storage

Address of end of Root Segment

Address of normal close entry in Program Close
Mainline

Figure 3-1 (Part 9 of 14). COMMON

3-10

Licensed Material-Property of IBM

COMMON

Hexadecimal
Name Displacement Bytes Defined Modified Explanation
COMALC 47 70-71 $RPIC SRPQA Displacement of an item in a compression
$RPHS
$RPJA
COMAHKC 49 72-73 $RPGU None Address minus one byte of numeric tables
COMGRC 4B 73-74 $RPSN None The address of the first root element that is not a
mainline
COMAIC 4B 74-76 $RPGU $RPHA Address minus one byte of the end of numeric tables
(start address minus one byte of alphabetic tables)
COMGSC 4Cc 7576 $RPSN None The address of the first mainline element that is not
in the root element
COMA.C 4D 76-77 $RPGU $RPHA Address minus one byte of the end of either alphabetic
fields and tables or just alphabetic fields {start address
of numeric fields}
COMAKC 4F 7879 $RPHA $RPHD Address of end of numeric fields
COMBVC 51 80-81 $RPGU None Address of beginning of the object program
COMEEC 52 82 $RPGW $RPGN Where compile-time tables/arrays are specified:
$RPGR Bit0 1= KEYBORD blind mode only
Bit 1 Print used on MFCU
Bit2 1 =Dual I/O on printer
Bit3 1= Extension specifications
Bit4 1= Output-format specifications
Bit 6 1 = Calculation specifications
Bit6 1 = Input specifications
Bit 7 1 = BSCA specifications
COMBGC 52 82 $RPPA $RPPG RAF and unpack information:
$RPPJ Bit 0 1 = Unpack subroutine used by Multifile Logic
$RPMK Bits 1-2 Keyboard Input/Output Control routine
hooks required
Bit 3 1 = Unpack subroutine used by Control Fields
Bit4 Reserved
Bit 5 1 = Pack needed by Random Access File
Bit 6 1 = Unpack needed by Random Access File
Bit 7 1 = Get RAF used by Input Mainline
coMcLC 53 82-83 $RPPO None Address of total output
COMCYC 55 84-85 $RPPA $RPPB Address of Output Processing Control routine
COMIBC 55 85 $RPEA $RPEB Save area for specification type being processed
$RPEC
$RPEE
$RPEI
$RPEK
$RPEO

Figure 3-1 (Part 10 of 14), COMMON

Data Areas 3-11

Licensed Material-Property of IBM

COMMON
Hexadecimal
Name Displacement Bytes Defined Modified Explanation
comcze 67 86-87 $RPMK None Address of Open Mainline
COmMBBC 57 87 $RPMM None Number of SETLL files times 10
COMCHC 58 87-88 $RPG $RPEE Address of current compression for Input and
Compression phases
COMBYC 59 88-80 $RPGB $RPGN Common output buffer address
Byte O = High tier used for MFCM1 % Model 15
Byte 1 = High tier used for MFCM2
COMDAC BA 20 $RPG None Address of spindle file one
COMDBC 5C 91-92 $RPG $RPSC Address of beginning of disk file one
$RPSK
COMDCC 6E 9394 $RPG $RPSG Address of end of disk file one
COMDEC 5F 95 $RPG $RPSG Address of spindle file two
COMDFC 61 9697 S$RPG $RPSG Address of beginning of disk file two
COMDGC 63 98-99 $RPG $RPSG Address of end of disk file two
COMBXC 65 100-101 $RPGN None Output buffer length
COMDKC 64 100 $RPRX $RPSC Number of 256-byte segments in the segment list
COMDMC 66 " 101-102 $RPSC $RPSG Address of beginning of the sort strings of object code
COMHMC 67 102-103 $RPG None Time compile started {Model 15 only}
COMETC 67 102-103 $RPGH $RPGI Address of first table load DTF
COMDNC 68 103-104 $RPRY $RPRZ Number of 256-byte segments of object text
COMEFC 69 104-105 $RPEW $RPGV The number of errors found so far
$RPGK
$RPGL
$RPJA
$RPJK
$RPJJ
$RPHS
$RPHT
$RPJM
COMCNC 69 104-105 $RPPA None Address of Input Processing Control routine
COMEAC 6A 106 $RPPA None Length of Input Processing Control routine
_COMDSC 6A 105-106 $RPRY $RPRZ Address of the work area

Figure 3-1 (Part 11 of 14). COMMON

3-12
Licensed Material-Property of IBM

Page of LY21-0501-5

Issued 24 September 1976

By TNL: LN21-5423

$RPGL
$RPHS
$RPJW
$RPJZ

$RPEW
$RPHT

Bit O 1= Error file is full

Bit 1 1 = Error caught in Input and Compres-
sion phase

Bit 2 1 = Keyboard primary {Model 6)

Bit 3 Reserved

Bit4 1= Model 6

COMMON
Hexadecimal
Name Displacement Bytes Defined Modified Explanation
COMEGC 6C 108 SRPFA $RPGU File information:
8it0 1 = File description given
Bit 1 1 = Input file
Bit 2 1 = Object-time table/array
Bit 3 Not used
Bit 4 1 = Line counter specification
Bit b 1 = Extension specifications
Bit 6 Not used
Bit 7 1 = Compile-time table/array data
COMENC 6C 108 $RPPA SRPMK Number of special devices
COMEHC 6D 109 $RPG $RPGN Output information: '
SRPPB Bit0 1 = Match and/or control field present
$RPGH Bit 1 1 = Tractor 2 used for carbon (Model 6
$RPGI only)
$RPHS Bit 2 1=MR used with ledger card
$RPIM Bit 3 T =DSPLY used with numeric
Bit 4 1 = Overflow indicator with ledger card
Bit5 1 = Matrix printer in field mode (Model
6 only}
Bit 6 1 = Numeric printing on keyboard
(Model 6 or special devices used
with Model 10 or 12)
Bit 7 1 = Work area used as output buffer
COMEIC 6E 110 $RPPE $RPJS The number of trailer specifications in the program
release leve!
coMcuc 6F 110-111 $RPMI $RPMK The length of LR Calculations Mainiine
comMcuc 6F 110-111 $RPMK None Address of first byte of LR Calculations Mainline
COMEPC 6F 110-111 $RPG $RPGH Release level
COMEKC 70 112 $RPIC $RPGK Error and Keyboard information:

Bit5 1 = Header card column 11 =P (Partial list}

Bits 6-7 01 = Model 12

10 = Model 15
11 = External buffers specified
{Program Number 5704-RG2)

Figure 3-1 (Part 12 of 14), COMMON

Data Areas

Licensed Material-Property of IBM

3-13

Page of LY21-0501-5

Issued 24 September 1976

By TNL: LN21-5423

COMMON
Hexadecimal
Name Displacement Bytes Defined Modified Explanation
COMELC VA 113 $RPJE None Operation code information specified on calculation
specifications:
BitO 1=ADD, SUB, Z-SUB, Z-ADD
Bit 1 1=MULT, DIV, MVR, XFOOT, SQRT
Bit 2 1=MOVE, MOVEL, MHLZO, MLHZO,
MHHZO, MLLZO, MOVEA
Bit3 1=SETON, SETOF, BITON, BITOF,
" TESTB
Bit4 1=COMP, TESTZ
Bit 5 1= LOKUP, READ, CHAIN, FORCE, .
SETLL
Bit6 1=DEBUG
Bit7 1=GOTO, TAG, EXIT, EXCPT, BEGSR,
ENDSR, EXSR, RLABL
COMEMC 72 114 $RPG $RPMH Operation code information specified on calculation
$RPJIX specifications:
Bit 0 1=DSPLY or TIME
Bit 1 1 = Array control
Bit 2 1=SET or KEY (Model 6 only)
Bit 3 Not used
Bit 4 1 = CRT in program
Bit5 1 =1BM application program
Bit 6 1 = Halt for warning diagnostics
Bit 7 1 = IPCR is larger than 256 bytes;
when this bit is on, COMEAC
contains number of bytes over 256
COMEBC 74 115-116 $RPPA None Length of Output Processing Control routine
COMEVC 74 115-116 $RPG None Gold Key inforrhation:
Byte0 Not used
Byte1 Bit5 1 = Magnetic Tape
Bit6 1=5445 Disk
Bit 7 1=BSCA
COMEWC 75 117-118 $RPG None Application program ID in binary:
Byte0 Not used
Byte1 Bit0 1 =R module requested
{Model 15)’
Bit1 1=D card processed
Bits 2-7 Not used
COMEJC 77 119 $RPJE $RPGH File information:
$RPGI Bit0 1 = Exception output
$RPHT Bit 1 1 = Total output
Bit 2 1 = Demand files
Bit 3 1 = EXCPT op code in calculation
specifications
Bit 4 1 = Calculation specifications
Bit5 1 = Qutput-format specifications
Bit6 1 = Header/trailer in program
Bit7 Not used

Figure 3-1 (Part 13 of 14). COMMON

3-14

Licensed Material-Property of IBM

COMMON
Hexadecimal
Name Displacement Bytes Defined Modified Explanation
COMECC 79 120-121 $RPHA None Address of linkage to table dump routine
COMEZC 79 120-121 $RPGK $RPPC Address of the last IOCB
COMCAC 7A 122 $RPJU None Error information:
Bit0 1 = No compile time table data found
Bit 1 1 = Compile time table data not in
sequence
Bit 2 1 = Table/array full
Bit3 1 = Table/array too small
Bit 4 1 = Last entry in table/array blank
Bits 5-7 Date Bits
coMcvce 7A 122 $RPMM None Block of fetch code needed in the program
COMERC 7B 123 $RPGL None BSCA file number
COMEXC 7D 124-125 $RPG $RPGX Address of first byte of print buffer
COMDTC 7F 126-127 $RPGX $RPGY Address of end of work area
$RPGZ
comccce 7F 126-127 $RPGL None BSCA Record Available indicator

Figure 3-1 (Part 14 of 14). COMMON

Data Areas 3-15

Licensed Material-Property of IBM

Parameters to RPG |l Hait Processor

This area in main storage is used to store parameters
needed for the RPG II Halt Processor and can be found at
COMMON+X‘11C".

toB

Detailed descriptions of the input/output blocks (10Bs)
for all devices are given in [BM System/3 Disk Systems
Data Management and Input{Output Supervisor Logic
Manual, SY21-0512.

1/0 Parameters

This 18-byte area contains parameters which are moved
into the disk IOB by Interphase Control routine PIOCS.
PIOCS moves the parameters when this 18-byte area is
called by one of the other Interphase Control routines for
disk input or output. The I/O parameters are located at
COMMON + X‘BC’. These parameters are:

Byte Contents
0-5 Parameters for a read operation
6-11 Parameters for rewriting a modified
compression
12-17 Parameters for writing an object code
block
3-16

Control Routine Save Area

The 26-byte control routine save area, located at
COMMON + X‘15C’, contains addresses and pointers
vital to the functioning of the compiler. The contents
of this area are:

Byte Contents

01 Address of current entry in compression
block table

2-3 Address of next sector available for
compressions

4-5 Current compression name

67 Address of first byte of current com-

pression block

8-9 Address of the work area
10-11 Address of the last byte in the work area
12-13 End of the current compression block in

the work area

14-19 Three two-byte work areas

20-21 Pointer to compression in main storage
22-23 Start address of the output buffer
24-25 End address plus one of the work area

Licensed Material-Property of IBM

Compression Block Table (CZATAB)

This 126-byte table, located at COMMON + X*2F6’, con-
tains control information meaningful to the Interphase
Control routines. The table contains a 9-byte entry for
each compression type. Phases requesting a compression
block pass a flag to the Interphase Control routine indi-
cating the type of compression. This flag is multiplied by
4.5 to find the displacement into the table of the entry for
that compression type. Flags and displacements for the
different compression types are as follows:

Flag Displacement Type of compression block

X000 X000 File description specifications

X'02 X009 Extension specifications

X044 X112 Line counter specifications

X06° X1B’ Data management entry
points and module names

X08 Xx24 Input specifications

X'0A’ Xx92D° Calculations specifications

X0C X436’ Dump control compressions

X100 X*48’ Output-format specifications

X112 X571 Telecommunications
specifications

X‘14 X'5A° Compile time table
compressions

X116 X63’ Alternate collate and file
translate compressions

X18 X'6C Error file

X'1A> X775 Scratch file

Each 9-byte entry in the compression block table has the
following format:
Byte Contents
0 X‘08’ = Opened with update
X‘10’ = Opened with update (used if only
512 or 768 bytes are available for
work area and object code)
X'20’ = Last sector of compressions started
X*40’ = Beginning of this part is not in core
X‘80’ = Compression is completely in core

1-2 Address of first sector of compression on
disk

34 Number of disk sectors in current compres-
sion block

Byte Contents

5-6 Storage address of first compression in cur-
rent compression block, If the address
points to X’FF’, the block has not been
built.

7-8 Number of first statement in this com-

pression block.

COMPRESSION WORK AREA

The compression work area is built by the Compiler Initial-
ization phase (JRPG). This area is normally 1024 bytes
long, allowing 768 bytes for compressions and 256 bytes
for output. Some Interphase Control routines are used in
a special way if less than 1024 bytes of main storage are
available for the work area. See Interphase Control Rou-
tires for a description of these routines.

COMPRESSION FORMATS

Compressions of source records are of variable length de-
pending on the specifications. Each logical section of in-
formation in a compression is assigned an item number so
that a compiler phase may call the Find Item in Compres-
sion routine (DRGCFI) to obtain the displacement from
the beginning of the compression. Bits in the format

bytes (items 129-131) are set on by the Input and Com-
pression phases to indicate the presence of items in the
compression. The compression block table (CZATAB) tells
the type of the compression and its address.

Control Statement Compression

This compression contains information compressed from
the control statement specification and is placed in the
beginning of COMMON. See Figure 3-1 for the contents
of the compression.

File Description Compressions

These compressions contain information compressed from
each file description specification. The start address of

the first file description compression is found in bytes 5-6
of the compression block table. Figure 3-2 shows the com-
pression format.- See the Control Card and File Description
Specifications sheet for the columns referred to by this
figure. Phases are listed in order of use by the compiler.

Data Areas 3-17

Licensed Material-Property of IBM

Extension Compressions

These compressions contain information compressed from
each extension specification. The start address of the first
compression is found in bytes 14-15 of the compression
block table. Figure 3-3 shows the compression format.
See the Extension and Line Counter Specifications sheet
for the columns referred to by this figure. Phases are listed
in order of use by the compiler.

Line Counter Compressions

These compressions contain information compressed from
each line counter specification. The address of the first
compression is found in bytes 23-24 of the comptression
block table. Figure 3-4 shows the compression format.
See the Extension and Line Counter Specifications sheet
for the columns referred to by this figure. Phases are listed
in order of use by the compiler.

Input Compressions

These compressions contain information compressed from
each input specification. The address of the first com-
pression is found in bytes 41-42 of the compression block
table. See Figure 3-5 for the compression format and the
Input Specifications sheet for the columns referred to by
this figure. Phases are listed in order of use by the com-
piler.

Dump Contro! Compressions

See Appendix B.

Calculation Compressions

These compressions contain information compressed from
each calculation specification. The start address of the first
compression is in bytes 50-51 of the compression block
table. Figure 3-6 shows the compression format. See the
Calculation Specifications sheet for the columns referred

to by this figure. Phases are listed in order of use by the
compiler.

Output-Format Compressions

These compressjons contain information compressed from
each output-format specification. The start address of the
first compression is found in bytes 78-79 of the compres-
sion block table. Figure 3-7 gives the compression format.
See the Output-Format Specification sheet for the col-
umns referred to by this format. Phases are listed in the
order of use by the compiler,

Telecommunications Compressions

These compressions contain information compressed from
each telecommunication specification. The start address of
the first compression is found at bytes 86-87 of the com-
pression block table. Figure 3-8 gives the compression
format. See the File Description Specification sheet for
the columns referred to by this format. Phases are listed in
order of use by the compiler.

Licensed Material-Property of IBM

Page of LY21-0501-5
Issued 24 September 1976
By TNL: LN21-5423

Item Byte Definad/
Number Length Modified Description
128 1 $RPEA Langth of compression in binary
129 1 $RPEA Indicates presence of item in compression
130 1 Item 129 Bit® 1 = Item number 132 Item 130 Bit0 1 = Item number 140
Bit 1 1= Item number 133 8it1 1 = Item number 141
Bit2 1 = ltem number 134 Bit2 1 =ltem number 142
Bit3 1= ltem number 135 Bit3 1 =1tem number 143
Bit4 1 = ltem number 136 Bit4 1 =Item number 144
Bit5 1 = ltem number 137 Bit5 1= Item number 145
Bit6 1= ltem number 138 Bit6 1= Item number 146
Bit 7 1= Item number 139 Bit7 1= Item number 147
131 1 Itemn 131 Not used
132 1 $RPEA Bit 0 1 = Invalid compression Bit4 1 = Input or output table file
Bit 1 1 = Invalid filename (col 7-14) and Bit5 1= BSCA printer type device
compressed as X'0’ Bit6 1 = ASCII continuation specified
Bit 2 1 = Special |0S routine name invalid for this file
(col 54-59) and not compressed Bit 7 O = Fixed length records
Bit3 1 = Filenamse (col 7-14) missing 1 = Variable length records
$RPGV 8it 1 Setto 0
$RPJIK Bit 1 1 = Debug only output to this file
133 1 $RPEA Bits 0-3 0000 = Blank or invalid file type (col 15} Bits 47 0000 = Entry not specified {col 16}
1000 = Display file 0001 = Primary file
1001 = Input file 0010 = Secondary file
1010 = Output file 1000 = Chained file
1011 = Combined file 1001 = Demand file
1100 = Update filé 1010 = Record address file
1111 = Invalid 11Q0 = Table file
1111 = Invalid file
134 1 $RPEA Bits 0-1 00 = Entry not specified (col 18} Bits 45 00 = Entry not specified {col 66)
01 = Descending sequence 01 = Unorderad sequence
10 = Ascending sequence 10 = Invalid entry (assume A}
11 = Invalid sequence Bits 6-7 00 = Sequential file processed
Bits 2-3 00 = Entry not specifiad (col 17) consecutively (col 28) (blank)
10 = End of file 01 = Random
11 = Invelid entry 10 = Indexed file processed
sequentially within limits
11 = Invalid entry
$RPIK If no antry Is specified, bit O and 1 are set to 00 {not specified) or 10 {ascending sequence} by default
135 1 $RPEA 8its -1 00 = Entry not specified {col 39) Bit 4 Reserved
01 = Line counter specifications Bits 5-7 000 = Sequential or direct file —

10 = Extension specifications

11 = Invalid entry

00 = Sequential or direct file (col 31}
{blank)

01 = Packed keys

10 = Invalid entry/A/K

11 = ADDROUT file or file
processed by ADDROUT
fila

Bits 2-3

1/0 area (col 32) {blank)
011 = Sequential or direct file —
two /O areas
100 = ADDROUT file (T
entry in column 32}
110 = Indexed file
111 = Invalid entry

Figure 3-2 (Part 1 of 4). File Description Compressions

Licensed Material-Property of IBM

Data Areas 3-19

$RPGH

Bytes 0-7

Filename

Bytes 8-9 Address of 10CB

Byte 10 Bits 0-3

1000 =

1001

1010

1011

1100
1101

Byte 11 Model 6

X10°

X112
X‘40°
X'S5F’
X'80*
X'84°

x'90*
X'AQ’
XA’
XE1’
XE2
X'E9’

XF1°
X‘FF’

Modal 12

X110’

Boaoon

X'40" =
X680 =

X'5F’
X‘60°
X'80’
X84’
X"A0’

Xco’
X’EO*

X'E8’
X'FO’

X‘F8' =

X°FF’

Consecutive processing
Indexed file processed
randomly by key
Direct {disk address)
file

Direct (record nurmber)
file

Indexed file

Indexed file processed
sequentially within
limits

CONSOLE (printer-
keyboard)

KEYBORD (keyboard)
DISKET

Special 108 routins
BSCA

BSCA with first-time
logic

CRT (display station)
DISK (disk unit}
Multivolume Disk
TRACTR1 (tractor 1)
TRACTR2 (tractor 2)
LEDGER {ledger card
device)

DATAZ6 {data recorder)
Invalid entry

Console

DISKET

READ42 (1442 Card
Read-Punch)

Special

Tape

BSCA

BSCA (first time logic)
DISK (5444 simulation
area)

DISK40 or DISK45
{3340 main data area)
PRINTER — carriage 1
PRINTR2 — carriage 2
MFCU1 — primary hopper
MFCU2 — secondary
hopper

Invalid entry

Item Byte Defined/
Number Length Modified Description
136 12 $RPEA Filename {col 7-14)
Byte 11 {Madels 10 and 15) = V or D {(file format for variablas length tape files)
$RAPIG Byte 11 (Madels 10 and 15) = X00’

Bits 4-7

0001 = Input file

0010 = Output file

0011 = Update/com-
bined file

0100 = Add/print file

0101 = Input + add file

0110 = OQutput +add

file

0111 = Update/combined
+ add file

1000 = Output unordered
file

1010 = OQutput chain file

Modsl 10

X’10’ = CONSOLE (Printer-

keyboard)

X'40’' = DISKET

X‘60" = READ42 (1442 Card
Read-Punch)

X'6F’ = Special 10S routine

X'60° = TAPE

X'80" = BSCA

X‘'84" = BSCA with first-
time logic

X‘A0* = DISK (disk unit) Al
Multivolume disk

X'A1’ Muitivolume disk

X'co’ DISK45

X‘EQ' = PRINTER {line print-
er — carriage 1)

X'E8" = PRINTR2 (line print-
er — carriage 2)

X'FO' = MFCU1 {MFCU pri-
mary hopper)

X‘F8’ = MFCU2Z (MFCU
secondary hopper)

Model 15

X'01' = Device inde-
pendent input

X‘02' = Device inde-
pendent output

X'18' = CRY77

X‘40° = DISKET

X50° = READ42

X‘68° = READO1

X‘65F* = SPECIAL 10S

routine
X‘60' = TAPE
X'80" = BSCA

Figure 3-2 (Part 2 of 4), File Description Compressions

3-20

Licensed Material-Property of IBM

Itam Byte Definad/
Number Length Modified Daescription
Mode! 15 {continued)
X'‘AQ" = DISK44
X'CO" = DISKA45,
DISK40
X'EQ" = PRINTER
X‘E4’ = PRINTS84
X'FO" = MFCU1
X‘F2' = MFCM1
X'F4 = MFCM2
X‘F8' = MFCU2
X‘FF' = Invalid entry
$RPGI *Bytes 2-3. Address of DTF for this file
$RPGH *Bytes 10-11. Data management entry point
$RPGI *Bytes 10-11. Data management entry point
$RPPA *Bytes 4-5. Address of linkage to IPCR routine for this file
$RPPB *Bytes 6-7. Address of linkage to OPCR routine for this tile
137 2 $RPEA Block length in binary {(col 20-23)
138 2 $RPEA Record length in binary (col 24-27)
139 1 $RPEA Model 6 Model 10)
X'10° = CONSOLE (printer- X'00° = Blank device
kevboard}. X10' = CONSOLE (printer-
X'12° = KEYBORD keyboard)
(keyboard) X'40° = DISKET
X'40° = DISKET X’50" = READA42 (1442 Card
X‘6F* = Special |0S routine Read-Punch)
X’'80° = BSCA X’5F* = Special 10S routine
X‘B4’ = BSCA with first-time X'60° = TAPE
logic X80’ = BSCA
X‘80' = CRT (display station) X'84' = B‘SCA w_ith first
X'AQ' = DISK (disk unit} time logic
X‘E1' = TRACTR1 ltractor 1) X'AQ' = DISK (disk unit)
X’E2" = TRACTR2 (tractor 2) X'CO" = DISK45)
X'E9* = LEDGER {ledger card X’EQ” = PRINTER (line print-
device) er — carriage 1)
X'F1’ = DATA96 (data recorder) ~ X'E8" = PRINTR2 (line print-
or er — carriage 2)
DATA29 (80 col card X‘F0’ = MFCU1 {MFCU pri-
device) mary hopper)
X'FE' = Invalid entry X'F8' = MFCU2 (MFCU second
Model 12 ary hopper)
X'10’ = Console X'FF = Invalid entry
X‘40' = DISKET Model 15
X650’ = READ42 ‘1442 Card X'01° = Device indepen.
Read-Punch) dent input
XBF’ = Special X'02" = Device indepen-
X'60" = Tape dent output
X'B0' = BSCA X118 = CRT77
X84’ = BSCA (first time logic) X'40' = DISKET
X’A0’ = DISK (5444 simulation X'50° = READ42
area) X'58' = READO1
X‘CO’' = DISK40 or DISK45 (3340 X'6F” = SPECIAL 10S routine
main data area) X‘60° = TAPE
X‘EQ’ = PRINTER — carriage 1 X80’ = BSCA
X'E8’ = PRINTR2 — carriage 2 X'AD = DISK44
X'FO* = MFCU1 — primary hopper X'CD’ = DISK45, DISK40

* Indicates an addition or chanae to a previously defined area.

Figure 3-2 (Part 3 of 4). File Description Compressions

Data Areas

Licensed Material-Property of IBM

321

Item Byte Definad/
Number Length Modified Description

Model 12 (continued) Model 15 (continued)
X'F8' = MFCU2 — secondary X'EQ’ = PRINTER
hopper X'E4’ = PRINTS84
X'FF = Invalid entry X‘FO' = MFCU1
X‘'F2' = MFCM1
X'F4 = MFCM2
X‘F8 = MFCU2
X‘FF' = Invalid entry
140 1 $RPEA Keyfield or record address length in binary (col 29-30}
141 2 $RPEA Keyfield start location in binary (col 35-38)
142 2 $RPEA Cytinder index in binary (col 60-65}
143 1 $RPEA Number of extents (col 68-69)
$RPGI Maximum skip value
144 2 $RPEA Overflow indicator {col 33-34)
$RPJIX Overflow default
$RPJZ Overflow default
$RPGF Mask and displacemenit
145 2 $RPEA File conditioners U1 - U8 {ecol 71-72)
$RPGF Mask and displacement
146 6 $RPEA Name of special 10S routine {col 54-59), or array nams if continuation

$RPIW Bytes 0-1. Sequence number of extension specifications defining the array used,
if SPECIAL is specified
147 1 $RPEA Continuation Support

Bits 0-2 000 = Blank in cot 63
100 = SPECIAL used
010 = K in col 63
110 = Invalid

Bits 34 00 = Blank or invalid in co! 70
01 =Uincol 70
10=Rin col 70
11 =Nincol 70

Bits 5-7 Reserved

Figure 3-2 (Part 4 of 4). File Description Compressions

3-22

Licensed Material-Property of IBM

Page of LY21-0501-5

Issued 24 September 1976
By TNL: LN21-5423
Item Byte Defined/
Number Length Modified Description
128 1 $RPEB Compression length in binary
129 1 $RPEB Indicates presence of items in compression
130 1 [tem 129 Bit0 1 = {tem number 132 item 130 BitO 1 = item number 140
Bit 1 1 = Item number 133 Bit 1 1 = Item number 141
Bit 2 1 = Item number 134 Bit 2 1 = Item number 142
Bit 3 1 = Item number 135 Bits 3-7 Not used
Bit 4 1 = Item number 136
Bit 5 1 = Item number 137
Bit6 1 =Item number 138
Bit7 1 = Item number 139
131 1 Item 131 Not used
132 2 $RPEB Byte 0, Bit 0 1 = Invalid compression
Bit 1 1 = Invalid From Filename (col 11-18)
Bit 2 1 = Invalid To Filename {col 19-26)
Bit3 1 =Invalid Table or Array Name (col 27-32)
Bit 4 1 = Invalid Alternate Table or Array Name
{col 46-51)
Bit 5 Not used
$RPGW/ ®"ByteQ,Bit6 O = Object-time table or array name
$RPGY** 1 = Compile-time table or array name
*Bit 7 0= Object-time alternate table or array name
1 = Compile-time alternate tabie or array name
Byte 1 Not used
133 1 $RPEB Bit 0 * 1 = Table in ascending sequence {col 45)
Bit 1 1 = Table in descending sequence
Bits 2-3 00 = Unpacked or alphameric {col 43) or invalid
01 = Packed
10 = Binary
Bits 4-7 0000-1001 = Decimal positions entry {col 44)
1010 = Alphameric table or array
134 1 $RPEB BitQ 1 = Alternate table in ascending sequence {col 57)
Bit 1 1 = Alternate table in descending sequence
Bits 2-3 00 = Unpacked or alphameric {col 55)
01 = Packed
10'= Binary
Bits 4-7 0000-1001 = Decimal positions entry {col 56)
1010 = Alphameric table or array
135 14 $RPEB FROM filename {col 11-18)
$RPGI Defines bytes 0-11. See note 1
136 14 $RPEB TO filaname (col 19-26)
$RPGI Defines bytes 0-11. See note 1
$RPPJ *Byte 0,Bit0 1=MFCU print {Models 10 and 12)
*Byte 4, Bit6 1 =End of file
*Bit 7 1= File translate
*Bytes 12-13 Address of OPCR routine
* Indicates an addition or change to a previously defined area.
Figure 3-3. Extension Compressions (Part 1 of 3)
Data Areas 3-23

Licensed Material-Property of IBM

Page of LY21-0501-5
Issued 24 September 1976
By TNL: LN21-5423

Item Byte Defined/
Number Length Modified Desecription
137 6 $RPEB Table or array name (col 27-32)
$RPGW/ ByteO,
SRPGY** Alphameric langth = Length minus one
Numeric length = Length minus one In the numeric position;
number of decimal positions in the zone portion
Byte 1 Bit G 1 = Look-ahead field
Bit 1 Not used
Bits 2-3 01 = Array name
10 = Table name
Bits 4-5 00 = Table sequence not specified
01 = Table is descending
10 = Table is ascending
Bit 6 0 = Length is alphameric (see byte Q)
1 = Length is numeric
Bit 7 Not usad
Bytes 2-3. Address of rightmost byte of first element
Bytes 4-6. DTT address
138 2 $RPEH Number of entries per table or array in binary (col 36-39)
139 2 $RPEB Length of entry in binary {col 40-42}
$RPGW/ If the length specified is invalid, the langth is set to 15 {X'0F’).
$RPGY**
140 2 $RPEB Number of entries per record {col 33-35)
141 6 $RPEB Alternate table or array name {(col 46-51)
$RPGW/ ByteO
$RPGY** 1. Alphameric length = Length minus one
2. Numeric length = Length minus one In the numeric position;
number of decimal positions in the zone portion
Byte 1 BitD " 1 = Look-ahead field
Bit 1 Not used
Bits 2-3 31 = Array name
10 = Table name
Bits 4-5 00 = Table sequence not specified
01 = Table is descending
10 = Table is ascending
Bit 6 0 = Length is alphameric (see byte 0)
Bit 7 Not used
Bytes 2-3. Address of rightmost byte of first element
Bytes 4-5. DTT address
142 2 $RPEB Length of entry in binary {col 52-54)
$RPGW/ If the length specified is invalid, the length is set to 15 {X’OF’}.
$RPGY**

Figure 3-3. Extension Compressions (Part 2 of 3)

3-24

Licensed Material-Property of IBM

Note 1:

Byte O, Bits 3-7
Bytes 1-2

Byte 3 (Model 6)

Byte 3 {Model 10)

Byte 3 (Model 12)

Byte 3 {Model 15)

Sequence number
DTF address

X*10" = CONSOLE {printer-keyboard)
X*12' = KEYBORD (keyboard) >

X‘40" = DISKET

X'6F" = Special |0S routine

X80’ = BSCA

X’'84" = BSCA with first-time logic

X‘90" = CRT (display station)

X'A0Q" = DISK (disk unit)

X'E1’ = TRACTR1 {tractor 1)

X‘E2’ = TRACTR2 (tractor 2)

X'E9’ = LEDGER (ledger card device)
X'F1” = DATA96 (data recorder)
X‘FF’ = Invalid entry

X’10° = CONSOLE {printer-keyboard)

X‘40’ = DISKET

X‘560" = READA42 {1442 Card Read-Punch)
X'6F' = Special 108 routine

X'60' = TAPE

X'80" = BSCA

X‘84' = BSCA with first time logic

X°'A0’ = DISK (disk unit)

X'CO’ = DISK45

X'EQ’ = PRINTER (line printer — carriage 1)
X'E8’ = PRINTR2 {line printer — carriage 2)
X‘FO’ = MFCU1 {MFCU primary hopper)
X’F8’ = MFCU2 {MFCU secondary hopper)
X'FF’ = Invalid entry

X10' = Console
X'40’ = DISKET
X'50’ = AEAD42 (1442 Card Read-Punch)

X'6F* = Special
X'60" = Tape
X'80’ = BSCA

X'84' = BSCA (first time logic)
X'AQ’ = DISK (5444 simulation area)

X'CO’ = DISKA40 or DISK45 (3340 main data area)

X'EQ’ = PRINTER — carriage 1
X'E8’ = PRINTRZ2 — carriage 2
X'FO" = MFCU1 — primary hopper
X'F8° = MFCU2 — secondary hopper
X'FF’ = Invalid entry

X’01" = Device independent input
X’'02’ = Device independent output
X'18"' = CRT77

X'40" = DISKET

X680’ = READ42

X'58’ = HREADO1

X‘6F’ = SPECIAL 10S routine
X'60" = TAPE

X'80° = BSCA

X‘AQ’ = DISK44

X‘CO" = DISKA45, DISK40

X‘E0’ = PRINTER

X'E4’ =PRINT84

X‘FO* = MFCU1

X'FO' = MFCU1

Figure 3-3. Extension Compressions (Part 3 of 3)

Licensed Material-Property of IBM

Byte 4, Bits 0-3
Bits 4-5

Byte 5, Bits 0-1
Bits 2-3
Bits 4-6
Bit7

Byte 6, Bit 0
Bit 1
Bits 2-3
Bits 4-6
Bit 7

Byte 7

Bytes 8-9

Bytes 10-11

X'F2" = MFCM1
X‘F4’' = MFCM2
X'F8’' = MFCU2
X'FF’ = Invalid entry

0001 = Primary file

0010 = Secondary file
1000 = Chained file

1001 = Demand file -
1010 = Record address file
1100 = Table file

00 = No specified sequence
01 = Descending sequence
10 = Ascending sequence

00 = Sequential file

01 = Indexed file

10 = Direct file

11 = ADDROUT file

00 = Consecutive processing

01 = Random processing

10 = Indexed file processed sequentially by key
11 = Indexed file processed sequentially within limits
001 = Display file

011 = Update file

100 = Combined file

101 = Regular output file

110 = Input file

111 = Unordered sequence

1 = Addition specified

0 = Variable format

1 = Fixed format

D = Unblocked file format

1 = Blocked file format

01 = Extension specifications

10 = ExTernal indicators

000 = Indexed file processed consecutively
010 = Indexed key {alphameric)

011 = Indexed key (packed)

100 = Record identification {disk address)
110 = Record number

1= Dual I/0

Overflow mask
Record length

10CB address

* Indicates an addition or change to a previously defined area.
*# Either phase $RPGW or $RPGY is loaded depending on
whether an object-time table or a compile time table has

been [oaded.

Data Areas 3-25

Page of LY21-0501-5
Issued 24 September 1976
By TNL: LN21-5423

Sequence Number

Bytes 1-2 DTF address

Byte3 Model 6

X’10' = CONSOLE {printer-
keyboard)

X‘12" = KEYBORD (keyboard}

X'40' = DISKET

X'5F' = Special 108 routine

X‘80' = BSCA

X‘84" = BSCA with first-time
logic

X'90' = CRT ({(display station)

X'A0" = DISK {disk unit)

X'‘E1* = TRACTR1 (tractor 1)

X'E2" = TRACTR2 (wractor 2)

E‘EQ" = LEDGER (ledger card
device)

X‘F1’ = DATAS6 (data recorder)

X‘FF’ = Invalid entry

Model 12

X’10° = Console

X‘40’ = DISKET

X'60’ = READ42 (1442 Card
Read-Punch)

X'5F" = Special

X60° = Tape

X80' = BSCA

X'84' = BSCA (first time lagic)

X‘A0° = DISK (5444 simuiation
area)

X'CO" = DISK40 or DISKA45
(3340 main data area)

X'EQ’ = PRINTER — carriage 1

X‘E8" = PRINTR2 — carriage 2

X‘FQ' = MFCU1 — primary hopper

X'F8 = MFCU2 — secondary

. hopper
X'FF’ = |nvalid entry

itam Byte Defined/
Number Length Modified Description
128 1 $RPEC Compression length in binary
129 1 $RPEC Indicates presance of item in compression when bits are on (Bit=1)
Item 129 Bit 0 1 = Item number 132 Bit 3 1 = tem number 135
Bit 1 1 = Item number 133 Bits 4-7 Not used
Bit 2 1 = Item number 134
130 1 ftem 130 Not used
131 1 Itern 131 ‘Not used
132 1 $RPEC BitO 1 = Invalid compression
Bit 1 1 = Invalid or missing filename
Bits 2-7 Not used
133 13 $RPEC Filename (col 7-14)
$RPGI Byte0 Bits 3-7

Model 10

X’10° = CONSOLE (printer-
keyboard)

X‘40' = DISKET

X'60° = READA42 (1442 Card
Read-Punch)

X‘6F° = Spacial 1OS routine

X‘60’ = TAPE

X‘80' = BSCA

X'84' = BSCA with first-time
logic

X'A0" = DISK (disk unit)

X'CO" = DISK45

X'EQ" = PRINTER (line print-
er — carriage 1}

X'E8’ = PRINTR2 {line print-
er — carriage 2}

X‘FO' = MFCU1 (MFCU pri-
mary hopper)

X'F8 = MFCU2 (MFCU
secondary hopper)

X‘FF’ = Invalid entry

Model 16

X‘01" = Device Indepen-
dent input

X'02" = Device Indepen-
dent output

X‘18* = CRT77

X'40' = DISKET

X50° = READA42

X's8° = READO1

X'6F° = SPECIAL [0S
routine

X60" = TAPE

X'80° = BSCA

X‘A0" = DISK44

X’'CO" = DISK45, DISK40

X'EQ0’ = PRINTER

X'E4' = PRINT84

X‘FO' = MFCU1

Figure 34 (Part 1 of 2). Line Counter Compressions

3-26

Licensed Material-Property of IBM

Item Byte Defined/

Number Length

Modified Description

Byte 4

Byte 5

Byte 6

Byte 7

Bytes 89

Bits 0-3

0001 = Primary file

0010 = Secondary file
1000 = Chained file

1001 = Demand file

1010 = Record address file

Bits Q-1

00 = Sequential file
01 = Indexed file

10 = Direct file

11 = ADDROUT file

Bits 2-3

00 = Consacutive processing

01 = Random processing

10 = Indexed file processed
sequentially by key

11 = Indexad file processed
sequentially within limits

Bit 0

0 = Variable format

1 = Fixed format

Bit 1

0 = Unblocked file format

1 = Blocked file format

Bits 2-3

01 = Line Caunter
specifications

10 = External indicators

Overflow mask

Record Length

Bytes 10-11 10OCB address

Byte 12 Bits 0-3

134 2 $RPEC

135 2 $RPEC

Operation Code

Bits 4-7
Number of parameters

Form length in binary

Overflow number in binary

Mode! 15 {continued)
X‘FO* = MFCU1

X‘F2' = MFCM1

X‘F4 = MFCM2

X'F8 = MFCU2

X'FF* = Invalid entry
Bits 4-5

00 = No specified sequence
01 = Descending sequence
10 = Ascending sequence

Bit6
1 = End of file

Bits 4-6

001 = Display file

011 = Update file

100 = Combined file

101 = Regular output file

110 = Input fife
111 = Unordered sequence
Bit 7

1 = Addition specified

Bits 4-6

000 = Indexed file processed
consecutively

010 = Indexed key (alphameric)

011 = Indexed key {packed)

100 = Record identification
{disk address)

110 = Record number

Bit7
1 =Dual I/O

Figure 3-4 (Part 2 of 2). Line Counter Compressions

Licensed Material-Property of IBM

Data Areas 3-27

Item Byte Defined/
Number Length Modified Description
128 1 $RPEI Compression length in binary
129 1 $RPEI Indicates presence of item in compression when bits are on (Bit=1)
130 1 item 129 Bit0 1 = jtem number 132 Item 131 Bit 0 1 = [tem number 148
131 1 Bit 1 1 = Jtem number 133 Bit 1 1 = Item number 149
Bit 2 1 = Item number 134 Bit 2 1 = [tem number 150
Bit 3 1 = Item number 135 Bit 3 1 = Item number 151
Bit 4 1 = Item number 136 Bit4 1 = Item number 152
Bit5 1 = Jtem number 137 Bit5 1 = Item number 153
Bit 6 1 = Item number 138 Bit 6 1 = [tem number 154
Bit 7 1 = Item number 139 Bit 7 Reserved
Item 130 Bit 0 1 = ltem number 140
Bit 1 1 = [tem number 141
Bit 2 1 = (tem number 142
Bit3 1 = Item number 143
Bit4 1 = Item number 144
Bits 5-7 100 = Itern number 145
110 = Item numbers 145 and 146
{2-byte extension)
101 = [term numbers 145 and 147
{4-byte extension)}
132 3 $RPEI Byte 0, Bit O 1 = Invalid compression
Bit 1 1 = Invalid filename
Bit 2 1 = Invalid field name
Bit 3 1= TR {col 19-20)
Bytes 1-2 Seguence {co! 15-16)
$RPJA Bytes 1-2 X‘0000’
$RPGW/ *Byte1, Bit4 1 = Field name definition resolved
$RPGY** *Bit5 1 = Index resolved
*Bit 7 1 = Symbol in table (set by phase $RPHA)
$RPHC *Byte 1, Bit4 1 = Field name definition resolved
*Bit 5 1 = Index resolved
*Bit 7 1 = Symbol in table (set by phase $RPHA)
$RPJJ *Byte 0, Bit5 1 = Control fields move optimized
*Bit 6 1 = Match fields move optimized
*Bit 7 1 = Move field optimized
$RPJS Bytes 0-1 Address of the trailer table for the current
trailer specification is placed in the trailer
record type specification
Byte 0, Bit 0 1 = For all record type compressions (AND/OR
lines included) of header portion of spread card
to flag as header record
$RPPE *Bytes 1-2 Address for the record ID routine to return to when the record is identified
$RPPF *Bytes 1-2 Address of the record identification parameter
$RPPN *Bytes 1-2 Address of parameter list for chain and demand files

Figure 3-5. Input Compressions (Part 1 of 6)

3-28

Licensed Material-Property of IBM

Itam Byte Dafined/
Number Length Modified Description
133 1 $RPE| Bits 0-1 00 = Number is blank {col 17)
01 = Number contains a 1
10 = Number contains an N
11 = Invalid entry
Bit 2 1 = Option contains an 0 (col 18)
Bit 3 1=AND ’
Bit 4 1=0R
Bits 5-7 Stacker Select (col 42)
000 = blank or invalid
100 = stacker 4
101 = stacker 1
110 = stacker 2
111 = stacker 3
$RPJA *BitO 0 = Alphabetic sequence entry (col 15-16)
1 = Numeric sequence entry
*Bit 1 0 = Number cantains an N {col 17)
1 = Number contains a 1
*Bit 2 1 = Optional
$RPJS The length minus one of one trailer of current trailer specification is placed in the record type
specification.
134 1 $RPE! Bit 0 1 = Look-ahead field (col 19-20}
Bits 2-3 00 = Unpacked or alphameric (col 43)
01 = Packed
10 = Binary
Bits 4-7 0000-1001 = Decimal positions entry (col 52)
1010 = Alphameric field
$RPJA If bit is on, it is propagated for all look-ahead fields specified. A decimal position defaults to zero.
$RPGW/ *Bit0 0 = Alphabetic sequence entry (co! 15-16)
$RPGY** 1 = Numeric sequence entry
*Bit 1 0 = Object-time table or array name
1 = Compile-time table or array name
$RPHS This byte is not defined for demand or chain files.
*Bit 1 1 = Numeric sequence used in this file
*Bit 2 1 = Console file — record length needed in 10S parameter
*Bit 3 1 = Numeric sequence
*Bit4 1 = Match fields
*Bit 5 1 = Control fields
*Bit 6 1 = Input fields
*Bit 7 1 = Stacker select needed
$RPJJ *Bits 4-7. Numeric portion set to packed, binary, or sterling length
135 15 $RPEI Filename (col 7-14)
$RPGI Byte O, Bits 3-7 Sequence number

Bytes 1-2 Pre-open DTF address

Figure 3-5. Input Compressions (Part 2 of 6)

Data Areas

Licensed Material-Property of IBM

3-29

Iteam Byte
Number

Length Modified Description

Byte 3

Byte 4

Byte 5

Model 6

X*10* = CONSOLE (printer
keyboard)

X’12' = KEYBORD
(keyboard)

X‘40’ = DISKET

X‘6F* = SPECIAL (special
10S routine)

X'80' = BSCA

X‘84" = BSCA {BSCA with
first-time logic)

X'90' = CRT (display station)

X‘AQ’ = DISK (disk unit)

X‘E1’ = TRACTR1 (tractor 1)

X’E2' = TRACTR2 (tractor 2)

X‘E9Q* = LEDGER f(ledger card
device)

X‘F1° = DATA96 (data
recorder)

X'FF’ = Invalid entry

Moadel 12

X"10° = Caonsole

X‘40’ = DISKET

X'50' = READ42 (1442 Card
Read-Punch)

X'SF’ = Special

X'60' = Tape

X'80° = BSCA

X84" = BSCA (first time logic)

X'AQ' = DISK (5444 simulation
area)

X‘C0' = DISKA40 or DISK45
{3340 main dsta area)

X'EQ' = PRINTER — carriage 1

X’E8* = PRINTR2 — carriage 2

X'FO* = MFCU1 — primary hopper

X'F8’' = MFCU2 — secondary
hopper

X'FF’' = Invalidentry

Bits 0-3

0001 = Primary file

0010 = Secondary file
1000 = Chained file

1001 = Demand file

1010 = Record address file

Bits 0-1

00 = Sequential file
01 = Indexed file

10 = Direct file

11 = ADDROUT file

Model 10

X’10’ = CONSOLE (printer
keyboard)

X'40° = DISKET

X‘'50° = READ42 (1442 Card

Read-Punch)
X‘6F* = Special 10S routine
X'60° = TAPE
X‘80" = BSCA
X'84' = BSCA with first
time logic

X'A0* = DISK {disk unit)
X'CO' = DISKA45

X’EQ” = PRINTER (line print-

er — carriage 1)

X'E8’ = PRINTR2 {line print-

er — carriage 2)
X‘FO’ = MFCU1 (MFCU pri-
mary hopper)
X'F8' = MFCU2 {(MFCU
secondary hopper)
X'FF' = Invalid entry

Modsel 15

X001’ = Device inde-
pendent Input

X'02' = Device inde-
pendent output

X*18° = CRT77

X‘40' = DISKET

X'60° = READ42

X'58" = READOM

X*5F' = SPECIAL 10S

routine
X'60" = TAPE
X‘'80" = BSCA

X'A0 = DISK44

X'C0" = DISK45, DISK40
X'EQ’ = PRINTER

X‘E4’ = PRINT84

X'FO' = MFCU1

X‘F2' = MFCM1

X'F4' = MFCM2

X'F8' = MFCU2

X‘FF* = |nvalid entry

Bits 45

00 = No specified sequence
01 = Descending sequéence
10 = Ascending sequence

Bit6
1 = End of file

Bit 7
1 = File translate

Bits 4-6

001 = Display file

011 = Update file

100 = Combined file

101 = Regular output file

Figure 3-5. Input Compressions (Part 3 of 6)

3-30

Licensed Material-Property of IBM

Item Byte Defined/

Number

Length Modified Description

Byte 6

$RPPJ
136 2 $RPE|
$RPGF
137 2 $RPEI
$RPJJ
138 2 $RPEI
139 2 $RPE|
$RPJJ
140 2 $RPE|
141 2 $RPEI
$RPJJ
142 2 $RPEI
143 2 $RPEI
$RPJA
144 2 $RPEI
$RPJA
$RPJJ
145 6 $RPEI
$RPGF

Bits 2-3

00 = Consecutive processing

01 = Random processing

10 = Indexed file processed
sequentially by key

11 = Indexed file processed
sequentially within
limits

Bit 0
0 = Variable format
1 = Fixed format

Bit 1
0 = Unblocked file format
1 = Blocked file format

Bits 2-3

01 = Extension or line
counter specifications

10 = External indicators

110 = Input file
111 = Unordered sequence

Bit 7
1 = Addition specified

Bits 4-6

000 = Indexed file processed
consecutively

010 = Indexed key
(alphameric)

011 = Indexed key {packed)

100 = Record identification
{disk address)

110 = Record number

Bit 7
1 = Dual I1/O

*Bytes 13-14 Address of linkage to IPCR for this file

Record identification indicator {col 19-20)

Mask and displacement

Position in binary {col 21-24)

Position minus one

See note 1

Position in binary (col 28-31)

Position minus one

See note 1

Position in binary {col 35-38)

Position minus one

See note 1

FROM field location in binary (col 44-47)

See note 2

TO field location in binary {col 48-51)

See note 2

TO field location minus one

Field or array name {col 53-58)

See note 4

Byte 7 Overflow mask

Bytes 8-9 Record length
Bytes 10-11 JOCB address

Byte 12 Bits 0-3
Operation code

Bits 4-7
Number of parameters

Figure 3-5. Input Compressions (Part 4 of 6)

Licensed Material-Property of IBM

Data Areas

331

Item Byte Defined/
Number Length Modified Description
$RPGW/ If an array name, the following is set:
$RPGY"* Byte 0. See note 3
Byte 1. See note 4
Bytes 2-3. Address of rightmost byte of first element for an array or an array with a variable index,
or, the address of the rightmost byte of indexed stement for an array with a constant index.
Bytes 4-5. DTT address
$RPHC If a fietld name, the following is set:
Byte 0. See note 3
Byte 1. See note 4
Bytes 2-3. Address of the rightmost byte of the field
Bytes 4-5. X‘0000’
146 2 $RPGW/ For an array with a constant index, numeric value of the array index is set.
$SRPGY**
147 4 $RPHC For an array with a variable index, the following Is set:
Byts 0. See note 3
Byte 1. See note 4
Bytes 2-3. Address of rightmost byte of field
148 2 $RPEI Control level {col 59-60)
$RPHS Zone portion of byte zero is set off
149 1 $RPEI Match fields (col 61-62)
$RPHS Zone portion of byte is set off
150 2 $RPEI Field record relation indicator (col 63-63)
$RPGF Mask and displacement
151 2 $RPE] Plus indicator (col 66-66)
$RPGF Mask and displacement
152 2 $RPE| Minus indicator (col 67-68}
$RPGF Mask and displacement
153 2 SRPE} Zero or blank indicator {col 69-70}
$RPGF Mask and displacement
154 2 Reserved
Note 1: FROM Field Location entry defaults to 1.
TO Field Location entry defauits to 15 if numeric and to 256
Byte 0, Bit 0 1= N entry {col 25, 32, 39) if alphameric.
Bits 4-7 0011 = C entry {col 26, 33, 40)
0100 = D entry Note 3:
1001 = Z entry
0000 = Entry not specified Alphameric length = Length minus one
Numeric length = Length minus one in the numeric portion;
Byte 1 Character {col 27, 34, 41) number of decimal positions in the zone

portion

Note 2: If an invalid entry is spacified, then default values are

set:

Figure 3-5. Input Compressions (Part 5 of 6)

3-32

Licensed Material-Property of IBM

Note 4:
Bit 0
Bits 2-3

Bits 4-5

Bit 6

* |ndicates an addition or change to a previously defined area,

1 = Look-ahead field

00 = Field name

01 = Array name

10 = Table name

00 = Table sequence not specified

01 = Tabie is descending or field name is
UDATE related field

10 = Table is ascending or, if RLABL is
specified, field name or mask and
displacement of the indicator

0 = Length is alphameric

1 = Length is numeric

** Either phase $RPGW or $RPGY is loaded depending on
whether an object-time table or a compile-time table has

been loaded.

Figure 3-5. Input Compressions (Part 6 of 6)

Licensed Material-Property of IBM

Data Areas

3-33

Item Byte Defined/
Number Length Modified Description
128 1 $RPEK Compression length in binary
129 1 $RPEK Indicates the presence of an item in a compression
Item 129 Bit 0 1 = I1tem number 132
Bit 1 1 = Item number 133
Bit 2 1 = Item number 134
Bit 3 1 = item number 135
Bit 4 1 = ltem number 136
Bit5 1 = ltem number 137
Bit 6 1 = tem number 138
Bit7 1 = Item number 139
130 1 $RPEK Second format byte which indicates the presence of an item in a compression
Factor 1 definition — contents of Factor 1
Bits 0-3 1000 = Item number 140 — field or array name
1100 = Item numbers 140 and 141 (4-byte extension) — alphameric or numeric literal
1010 = Item numbers 140 and 142 (2-byte extension) — array with constant index
1001 = Item numbers 140 and 143 (6-byte extension} — array with variable index
Factor 2 definition — contents of Factor 2
Bits 4-7 1000 = Item number 144 — array or field name
1100 = 1tem numbers 144 and 145 (4-byte extension) — alphameric or numeric literal
1010 = 1tem numbers 144 and 146 (3-byte extension) — array with constant index
1001 = 1tem numbers 144 and 147 {6-byte extension) — array with variable index
1011 = 1tem numbers 144, 146, and 147 {9-byte extension) — filename
131 1 $RPGK Third format byte which indicates the presence of an item in a compression
Result field definition — contents of result field
Bits 0-2 100 = Item number 148 — field or array name
110 = Item numbers 148 and 149 {2-byte extension) — array with constant index
101 = Item numbers 148 and 150 (4-byte extension) — array with variable index

Figure 3-6. Calculation Compressions (Part 1 of 10)

334

Licensed Material-Property of IBM

{tem Byte Defined/
Number Length Modified

Description

132 4 $RPEK

$RPGV

$RPGW/
$RPGY**

$RPHC

$RPMB
$SRPMI

$RPLJ

$RPMG

$RPQA

Remainder of Calculation Specification defined

Bit 3 1 = Item number 151
Bit 4 1 = item number 152
Bit5 1 = Item number 153
Bit 6 1 = Item number 154
Bit7 Not used
Byte 3, BitQ 1 = Invalid compression
Bit 1 1 = Factor 1 (col 18-27) invalid
Bit 2 1 = Factor 2 (col 33-42) invalid
Bit 3 1 = Result Field {col 43-48} invalid
Bit 4 1 = Factor 2 contains a filename
Bit 5 1= Factor 2. *BOTH
“Byte 0, BitS 1 = Factor 1 table/array shortest
*Bit 6 1= Factor 2 table/array shortest
*Bit 7 1 = Result Field table/array shortest
*Byte 1, Bit0 1 = Factor 1 resolved
*Bit 1 1 = Factor 1 index resolved
*Bit 2 1 = Factor 2 resolved
*Bit 3 1 = Factor 2 index resolved
*Bit4 1 = Result Field resolved
*Bit5 1 = Result Field index resolved
*Bit7 1 = Symbol in table (set by phase $RPHA)
*Byte 1, Bit0 1 = Factor 1 resolved
*Bit 1 1 = Factor 1 index resolved
*Bit 2 1 = Factor 2 resolved
*Bit 3 1 = Factor 2 index resolved
*Bit4 1 = Result Field resalved
*Bit5 1 = Result Field index resolved
*Bit7 1 = Symbol in table (set by phase $RPHA)

*Byte 2. Length of object code block for the operation code

“Byte 2. Length of object code block for the compression

*Byte 2. Length of object code block for the operation code

Byte 2. Length of object code block for the operation code.

*Bytes 0-1. Address of generated object code

*Byte 2. Length of object code block for the operation

Figure 3-6. Calculation Compressions (Part 2 of 10)

Licensed Material-Property of IBM

Data Areas

3-35

Itam Byte Defined/
Number Length Modified Description

$RPMH “Byte 2. Length of object code block for the operation.

*Byte 3. Length of leading array control, or for move type operation code, the first byte
of a 2-byte mask (second byte is in item 134)

$RPMP *Bytes 0-1. Address of generated object code

133 1 $RPEK Bit 0 1 =S8R {co! 7-8)
Bit 2 1 = Half adjust (col 53)
Bit3 1 = AN (col 7-8)
Bit4 1 =0R (col 7-8)
Bit5 1 = Not {col 15)
Bit 6 1 = Not {col 12)
Bit 7 1 = Not {col 9)
$RPGG *Bit1 1 = DEBUG not specified so treat as comments
*Bit 2 0 = No half adjust {this bit is set off if a DIV operation is

followed by an MVR operation)
1 = Half adjust

$RPJG *Bit 1 1 = Compressions relative to SET operation on SET/KEY combinations are
flagged to be ignored when generating object code

$RPQAK Object code mask for determining what (if any) code to generate for
array control.
134 1 $RPEK Bits 0-3 Not used

Bits 4-7 X'0’-X'9" = Decimal position entry {col 52)
X'A’ = Alphameric field

$RPGW/ *Bit0 0 = Object-time table (Factor 1)
$RPGY** 1 = Compile-time table (Factor 1)
*Bit 1 0 = Object-time table (Result Field)
1 = Compile-time table (Result Field)
*Bit 2 0 = Object-time table (Factor 2)
1 = Compile-time table (Factor 2)
Bit 3 Not used

$RPGX *Bits 4-7. Not used
$RPLG Permanent length (bit 4 or 6 for SET or KEY)
$RPMB Mask of object code to be generated

$RPLY *Bits 0-2 000 = Tabset
100 = Space/skip and/or position print element
010 = Ledger card eject
001 = Key operation code resulting indicator

*Bits 4-7 0001 = Command keys (no manual mode or field name}
0010 = Manuzal mode {no command keys)
0011 = Manual mode {command keys)
0100 = Field name {no command keys)
0101 = Field name (command keys)

$RPMH Mask of remainder of object code to be generated or second byte of a 2-byte mask for a move
operation code. The first byte is in item 132,

135 5 $APEK Operation codes (contents of col 28-32)

Figure 3-6. Calculation Compressions (Part 3 of 10)

3-36

Licensed Material-Property of IBM

Item Byte Defined/
Number Length Modified Description
$RPEW Byte O. Operation code mask. See note 2
Byte 1. Field light mask. See note 2
$RPIG *Byte 1. X‘FF' = SET/KEY combination found
$RPHU If SETLL operation code, the following are set:
Byte 1. Key length minus 1
Bytes 2-3. Address of low key area
$RPLR Bytes 3-4. Address of parameter list if required for operation code.
136 2 $RPEK Control level indicator (col 7-8)
$RPGF Mask and displacement
$RPMI See note 1
137 2 $RPEK indicator (col 10-11)
$RPGF Mask and displacement
$RPGG *Byte 1. Bit 1 = zero in displacement if Not {N) is specified for indicator
$RPMI See note 1
138 2 $RPEK Indicator {co! 13-14)
$RPGF Mask and displacement
$RPGG *Byte 1. Bit 1 =zero in displacement if Not {N) is specified for indicator
$RPMI See note 1
139 2 $RPEK Iadicator {col 16-17)
$RPGF Mask and displacemant
$RPGG *Byte 1. Bit 1 = zero in displacement if Not {N) is specified for indicator
$RPMI See note 1
140 6 $RPEK Factor 1 {contents of col 18-27)}
$RAPGW/ |f an array name, the following are set:
$RPGY** Byte 0. See note 3
Byte 1. See note 4
Bytes 2-3. Address of rightmost byte of first element for an array or an array with a variable index, or
the address of rightmost byte of indexed slement for an array with a constant index
Bytes 45, DTT address
$APHC if a field name, the following are set:
Byte 0. See note 3
Byte 1. See note 4
Bytes 2-3. Address of rightmost byte of field
Bytes 4-5. X'0000°
$RPLN For a literal, the following are set:
Byte 0. See note 3
Byte 1. See note 4
$RPLR For a literal, the following are set;

Bytes 2-3. Address of rightmost byte of literal
Bytes 4-5. These bytes are not used

Figure 3-6. Calculation Compressions (Part 4 of 10)

Data Areas 3-37

Licensed Material-Property of IBM

Item Byte Definad/
Number Length Modified Description
SRPMP If BEGSR and EXSR are specified:
Bytes 0-1, Start address of subroutine
Bytes 2-3. Length of subroutine
Bytes 4-5, Subroutine identifier
$RPQD/ Bytes 2-3. Object code address where element address is to be placed (for array table or array with
$RPQG/ variable index)
$RPQH
141 4 $RPEK Item acts as 4-byte extension to item 140 when alphemeric or numeric literal is defined in Factor 1.
142 2 $RPEK ltern acts as 3 2-byte extension to item 140 when an array with constant index is specified in Factor 1.
143 6 $RPEK Item acts as a B-byte extension to item 140 when an array with variable index is specified in Factor 1.
$RPHC For an array with a veriable index, the following are set:
Byte 0. See note 3
Byte 1. See note 4
Bytes 2-3. Address of rightmost byte of Tag field
Bytes 4-5. X'0000’
144 6 $RPEK Factor 2 {contents of col 33-42)
$SAPGW/ If an array name, the following are set:
$RPGY** Byte 0. See note 3
Byte 1. See note 4
Bytes 2-3. Address of rightmost byte of first element for an array or an array with a variable index,
or, address of rightrnost byte of indexed element for an array with a constant index.
Bytes 4-5. DTT address
$RPHC I1f a field name, the following are set:

Byte 0. See note 3
Byte 1. See note 4
Bytes 2-3. Address of rightmost byte of field
Bytes 4-5. X'0000'

Figure 3-6. Calculation Compressions (Part 5 of 10)

3.38

Licensed Material-Property of IBM

tem
Number

Byte Defined/

Length Modified Description

$RPGI

If a filename, the following are set:
Byte 0, Bit 0 1 = MFCU print (Model 10)
Bits 3-7 Sequence number

Bytes 1-2 DTF address
Byte 3 ‘Model 6 Model! 10
X10° = CONSOLE (printer- X’10' = CONSOLE (printer-
keyboard) keyboard)
X*12' = KEYBORD (keyboard) X'40° = DISKET
X'40' = DISKET X'60' = READ42 (1442 Card
X'6F’ = Special 10S routine Read-Punch)
X'80° = BSCA X'6F = Special [0S routine
X'84° = BSCA with first-time X'60' = TAPE
logic X'80° = BSCA
X‘90’ = CRT (display station) X84’ = BSCA with first-time
X‘A0’ = DISK (disk unit} logic
X‘E1" = TRACTR1 {tractor 1} X‘A0’ = DISK (disk unit)
X‘E2' = TRACTR2 (tractor 2} X‘C0’ = DISKA4S
X'E9’ = LEDGER (ledger X‘EQ0’ = PRINTER — carriage 1
card device) X'E8’ = PRINTER — carriage 2
X‘F1' = DATA96 (data recorder) X‘FO’ = MFCU1 (MFCU primary
X'FF’ = |nvatid entry hopper)
X'F8' = MFCU2 {MFCU second-
ary hopper)
X'FF’ = Invalid entry
Model 12 Model 15
X‘10’ = Console X01' = Device indepen-
X'40" = DISKET dent input
X'60° = READA2 {1442 Card X‘02' = Device indepen-
Read-Punch) dent output
X‘6F* = Special X'18' = CRT77
X'60° = Tape X‘40 = DISKET
X‘80' = BSCA X650’ = READ42
X84’ = BSCA (first time logic) X'68' = READO1
X’A0’ = DISK (5444 simulation X‘6F’ = SPECIAL 10S
area) routine
X'C0’ = DISK40 or DISK45 X'60' = TAPE
{3340 main data area} X'80° = BSCA

X'EQ" = PRINTER — carriage 1 X‘AQ’ = DISK44
X'E8’ = PRINTR2 — carriage 2 X‘C0* = DISKA45, DISK40
X‘FO' = MFCU1 — primary hopper X'E0’ = PRINTER

X'F8’ = MFCU2 — secondary X'E4’ = PRINT84
hopper X'FO' = MFCU1
X‘FF’ = Invalid entry X'F0' = MFCU1

X'F2' = MFCM1
X‘F4" = MFCM2
X‘F8’ = MFCU2
X'FF’ = Invalid entry

Byte 4 Bits 0-3 Bits 4-5
0001 = Primary file 00 = No specified sequence
0010 = Secondary file 01 = Descending sequence
1000 = Chained file 10 = Ascending sequence
1001 = Demand file Bit 6
1010 = Record address file 1 = End of file
Bit 7

1 = File translate

Figure 3-6. Calculation Compressions (Part 6 of 10)

Data Areas

Licensed Material-Property of 1BM

3-39

Hem Byta Defined/
Number Length Modified Description

Byte 5 Bits 0-1 Bits 4-6
00 = Sequential file 001 = Display file
01 = Indexed file 011 = Update file
10 = Direct file 100 = Combined file
11 = ADDROUT file 101 = Regular output
Bits 2-3 file

00 = Consecutive processing 110 = Input file

01 = Random processing 111 = Unordered sequence
10 = Indexed file processed Bit 7
sequentially by key 1 = Addition specified

11 = Indexed file processed
sequentially within
limits

$APLN For a literal, the following are set:
Byte 0. See note 3
Byte 1. See note 4

$APMH Bytes 2-3 are modified if specified conditions exist:
1. Address of the leftmost byte of the element or fieid if MHHZO or MHLZO operation code specified.
2. Address of the rightmost byte of the part of the element or field to be moved if MOVEL operation
code specified or if the length of Factor 2 is greater than the length of the Result Field.

$RPLR For a litaral, the following are set:
Bytes 2-3. Address of rightmost byte of literal
Bytes 4-6. These bytes are not used

$SRPMP If BEGSR and EXSR are specified:
Bytes 0-1 Start address of subroutine
Bytes 2-3 Length of subroutine
Bytes 4-5 Subroutine identifier

$RPQD/ Bytes 2-3. Object code address of where element address is to be placed (for array tablg or array with
$RPQG/ variable index}

$RPQH
$RPQE
145 4 $RPEK Item acts as a 4-byte extension to item 144 when an alphameric or numeric literal is defined in
Factor 2.
146 3 $RPEK Item acts as a 3-byte extension to item 144 when an array with constant index is specified in Factor 2

or when filename is given.

$RPGW/ For an array with a constant index, the following are set:
$RAPGY** Bytes 0-1. Numeric value of the array index

Byte 2. X'00'
$RPGI If filename is specified in Factor 2, the following are set:
Byte 0, Bit0 0 = Variable format Byte 1 Overflow mask
1 = Fixed format Byte 2 First byte of record length,
Bit 1 0 = Unblocked file format second byte in item number
1 = Blocked file format 147

Bits 2-3 (01 = Extension or line counter
specifications
10 = External indicators

Figure 3-6. Calculation Compressions (Part 7 of 10)

Licensed Material-Property of IBM

Item Byte Datined/
Number Length Modified

Description

$RPRW

147 6 $RPEK

$RPHC

$RPGI

$RPPJ

$RPRW

Bits 4-6 000 = Indexed file
processed consecutively
010 = Indexed key (alphameric)
011 = Indexed key (packed)
100 = Record identification
(disk sddress)
110 = Record number
Bit 7 1 = Dual I1/O

If filename is specified, the following is set:
Byte 2. First byte of the address of the entry point to subsegment, if CHAIN or READ operation
code is specified. Second byte is contiguous in item number 147 for filename.

This item acts as a 6-byte extension to item 144 when factor 2 contains an array with variable index
or a filename (which combines with item 146 to form a 9-byte extension).

For an array with a variable index, the following are set:
Byte 0. See note 3

Byte 1. See note 4

Bytes 2-3. Address of rightmost byte of the Tag field
Bytes 4-5. X'0000°

When filename is specified in Factor 2, this item is modified as follows:

Byte 0. Second byte of record length (first byte given contiguously in item 146).
Bytes 1-2. 10CB address

Byte 3. Not used

Byte 4. Key length

Bytes 4-6. Address of OPCR routine if DSPLY, DEBUG, SET, or KEY operation code is specified;
address of IPCR routine if READ or CHAIN operation code is specified.

If filename is specified, the following is set:
Byte 0. Second byte of the address of the entry point to the subsegment of object code, if CHAIN
or READ operation code is specified, First byte was specified in item 146,

Figure 3-6. Calculation Compressions (Part 8 of 10)

Data Areas

Licensed Material-Property of IBM

341

Item Byte Defined/
Number Length Modified Description
148 6 $RPEK Resuit Field (contents of col 43-48)
$RPGW/ if an array, the following are set:
$RPGY** Byte 0. See note 3
Byte 1. See note 4
Bytes 2-3. Address of rightmost byte of first element for an array or an array with a variable index,
or, address of rightmost byte of indexed element for an array with constant index
Bytes 4-6. DTT address
$RPHC If a field name, the following are set:
Byte 0. See note 3
Byte 1. See note 4
Bytes 2-3. Address of rightmost byte of field
Bytes 4-56, X'0000°
$RPMH Bytes 2-3. These bytes are modified as follows, under the specified conditions:
1. Address of the leftmost byte of the element or field if MHHZ0 or MLHZ20 operation code
specified.
2. Address of the rightmost byte of the part of the element or field to be moved if MOVEL operation
code specified or if the length of Factor 2 is less than the length of the Result Field.
$RPQD/ Bytes 2-3. Object code address where element address is to be placed (for array table or array with
$RPQG/ variable index)
$RPCH
149 2 $RPEK This item acts as a 2-byte extension to item 148, when an array with constant index is defined in
the Result Field.
$RPGW/ For an array with a constant index, the following are set:
$RPGY** Bytes 0-1. Numeric value of the array index
150 4 $RPEK This item acts as a 4-byte extension to item 148, when an array with variable index is defined in the
Result Field.
$RPHC For an array with a variable index, the following are set:
Byte 0. See note 3
Byte 1. See note 4
Bytes 2-3. Address of rightmost byte of the field
Bytes 4-5. X'0000°
161 2 $RPEK Field iength in binary {co! 49-51)
152 2 $RPEK Plus indicator {col 54-55)
$RPGF Mask and displacement
153 2 $RPEK Minus indicator (col 56-567)
$RPGF Mask and displacement
154 2 $RPEK Zero or blank indicator {(col 58-59)
$RPGF Mask and displacement

Figure 3-6. Calculation Compressions {Part 9 of 10)

Licensed Material-Property of IBM

Note 1:
The indicators are reordered so that indicator strings that began
in this compression are placed back into the compression with

the longest first, in decreasing order by length., The start of an
indlicator string is flagged by setting Bit 0 equaf to zero in the
displacement for the indicator. In the next compression, the
length of the string minus the length of the group in which it
started is placed in the same relative position as in this com-
pression. In all subsequent compressions through which the
string continues, the indicator is replaced by X’'0000°, a no-
test indicator.
Note 2:
Byte O X’00' = ENDSR

X'01' = EXCPT

X'0OE’ = SETON

X‘OF" = SETOF

X'20' = RLABL

X‘23'= MVR

X'2E' = TESTZ

X’40°' = EXIT

X'41' = GOTO

X‘42' = EXSR

X'60' = DEBUG

X‘61" = DSPLY

X‘52’ = FORCE

X‘63' = READ

X‘60' = 2-ADD

X‘61'=Z-SUB

X‘62' = SORT

X863 = XFOOT

X’'64' = MHHZO

X’65' = MHLZO

X'66" = MLHZ0

X‘67' = MLLZO

X'68' = MOVE

X'69’ = MOVEL

X‘6A’' = MOVEA

X‘6C" = BITON

X‘6D’ = BITOF

X‘6E’' = TESTB

:,;; - SK:: Modsl 6 only

X‘80' = BEGSR

X'81" = TAG

X'84’ = TIME (Model 15 only)

X'CE’ = COMP

X'CF’ = LOKUP

X‘D0’ = CHAIN

X'D3 =SETLL

X‘EQ* = ADD

X‘E1'=8SUB

X'E2' = MULT

X‘E3' = DIV

X'FF’ = Invalid entry

Byte 1, Bit O 1 = Field light 1

{for Bit 1 1 = Field light 2

KEY or Bit 2 1 = Field light 3

SET Bit 3 1 = Fisld light 4

operation Bit4 1= Fieldlight 5 Model 6 only

codes) Bit5 1= Fieldlight6

Bit6 1 = Field light 7
Bit7 1 =Fieldlight8

Note 3:

1. Alphameric length = Length minus one
2. Numeric length = length minus one in the numeric portion;
number of decimal positions in the zone portion

Note 4:
Bit 0 1 = Look-ahead field
Bits 2-3 00 = Field name
01 = Array name
10 = Table name
Bits 4-5 00 = Table sequence not specified
01 = Table is descending or field name is
UDATE related field
10 = Table is ascending or, if RLABL
specified, field name or mask and
displacement or indicator
Bit 6 0 = Length is alphameric (see Note 10)
1 = Length is numaric
Bit 7 1 = Shorter array
During phase $RPHC, 1 = Field
is used

* Indicates an addition or change to a previously defined area.
#* Either phase $RPGW or $RPGY is loaded depending on
whether an object-time table or a compile-time table has
been loaded.

Figure 3-6. Calculation Compressions (Part 10 of 10)

Data Areas 343

Licensed Material-Property of IBM

Page of LY21-0501-5

Issued 24 September 1976

By TNL: LN21-5423

*Bytes 2-3. Address of ohject code block for MFCU punch and print

Item Byte Defined/
Number Length WModified Description
128 1 $RPEO Compression length in binary
129 1 $RPEO Indicates presence of an item in the compression.
130 1 Item 129 Bit 0 1 = [tem number 132 [tem 130 Bit 0 1 = Item number 140
Bit 1 1 = Item number 133 Bit 1 1 = Item number 141
Bit 2 1 = Item number 134 Bit2 1= ltem number 142
Bit 3 1 = Item number 135 Bits 3-5 100 = Item number 143
Bit4 1 = Item number 136 110 = Item number 144
Bit5 1 = Item number 137 (2-byte extension)
Bit 6 1 = Item number 138 101 = Item number 145
Bit 7 1 = Item number 139 (4-byte extension)
Bit & 1 = Item number 146
Bit 7 1= Item number 147
131 1 item 131 Bit0 1 = Item number 148
Bit 1 1 = Item number 149
Bits 2-7 Not used
132 4 $RPEO Byte 0, Bit 0 1 = Invalid compression
Bit 1 1 = Invalid Filename (col 7-14)
Bit 2 1 = Invalid Field Name (col 32-37)
Bit3 1 = Invalid constant (col 45-70)
Bit 4 1 = Field specification
$RPGV *Bytes 2-3. Number of elements in the table/array
$RPGW/ *Byte 1, Bit4 1 = Field name resolved
$RPGY** *Bit5 1 = Index resolved
*Bit 7 1= Symbol in table (set by phase $RPHA)
$RPHC *Byte 1, Bit4 1 = Field name resolved
*Bit5 1 = Index resoived
*Bit 7 1 = Symbol in table (set by phase $RPHA)
‘$RPJO *Byte 1, Bit0 1 = 4th tier print for ful} array greater than 96 {MFCU)
$RPJO Byte 1, Bits 0-3 High Print head used (MFCM)
$RPLB *Byte 0, *Bit 1 1 = Fourth tier print needed
*Bit 2 1 = Add file (first field line only}
*Bit 3 1 = *PRINT follows (first field line only
*Bit4 1 = First field line
*Bit S 1 = Subsegment fields code
*Bit6 1 = Last field line
*Bit 7 1 = Last record line
$RPLG Byte 0, Bit 1 is set t0 Q.
$RPLR *Byte 0, Bits 0-3 = Length minus one of the parameters to be moved to the DTF
$RPLV *Byte 0, X'80° = Output Field Move can be combined with the next output field move
$RPMA *Byte 0, X’80" = OQutput Field Move can be combined with the next output field move
*Byte 1. Length of object code
$RPMM *Bytes 2-3. Address of object code block to be generated for this compression
$RPPO *Byte O, BitGissetto 0

Figure 3-7. Output-format Compressions (Part 1 of 6)

344

Licensed Material-Property of IBM

Item Byte Defined/
Number Length Modified Dascription
133 1 $RPEO Bits 01 00 = Blank or invalid type (col 15)
01 = Heading or detail records
10 = Total records
11 = Records to be written during calculation time (E in col 15)
Bit 2 1= ADD (col 16-18)
Bit 3 1= AND (col 14-16)
Bit 4 1=0R {col 14-15)
Bits 5-7 000 = No entry in col 16
001 = Eject (Model 6 only)
010 = Fetch overflow
011 = Stacker 5 {Mode! 15 only)
100 = Stacker 4 (Mode! 10 or 12)
101 = Stacker 1 {Model 10 or 12)
110 = Stacker 2 {Model 10 or 12)
111 = Stacker 3 {Model 10 or 12)
$APMA Bité 1 = For ledger card (Model 6 only)
134 1 $RPEQ Bit5 1 = Not {(col 23)
Bit 6 1 = Not (col 26}
Bit 7 1= Not (co! 19}
$RPGW/ *Bit1 0 = Object-time table name
$RPGY** 1 = Compile-time table name
$RPLB *Bit0 1 = No field lines follow
*Bitg 1-2 01 = 1P indicator
10 = LR indicator
11 = Overflaw indicator
*Bit 3 1 = First recard for output type
*Bit4 1 = Last record or field for output record type
136 1 $RPEO Bit 0 1 = PAGE, PAGE1, or PAGE2 (col 32-37)
Bit 1 1 = Blank After {col 39|
Bits 2-3 00 = Unpacked or alphameric (col 44)
01 = Packed
10 = Binary
Bit4 1 = *PLACE (col 32-37)
Bit5 1 = Ledger card cantrol identification (N in cal 40)
Bit6 1= *PRINT (col 32-37) Model 10 or 12
Bit 7 1 = MFCU print (* col 40) Model 10 or 12
$RPGB Bit7 1 = MFCM print (Modsl 15 only)
$RPJO High print position on record (MFCM record specifications only},
$RPLR Parameter address if more than one byte of Data Management parameters
$RPLG X'00' = no parameter required
X’01’ = parameter required
136 2 $RPEO Space before/after (col 17-18)
Bits 0-3 X‘0" — X'9' = Space before entry
X‘F* = No entry
Bits 4-7 X'0* — X'9’ = Space after entry
X‘F’ = No entry
$RPJO Length of edited output (field specification only); high end position on
recard for VLR on tape {record specification only, Item 135 and byte 0
of item 136 used); high punch position on record (MFCM record
specifications only).,
$RPLR Parameter address (item number 135 and Byte O of item number 136)
$RPLV X'00’ = no parameter required
X'01° = parameter required
137 1 $HPEO Skip before in binary (col 19-20) (optional}

Figure 3-7. Qutput-format Compressions (Part 2 of 6)

Licensed Material-Property of IBM

Data Areas

345

0001 = Primary file

0010 = Secondary file
1000 = Chained file

1001 = Demand file

1010 = Record Address file

00 = No specified sequence

Item Byte Defined/
Number Length Modified Description
138 1 $RPEO Skip after in binary (col 20-21) (optional)
139 15 $RPEO Filename (col 7-14) (optional)
$RPGI Byte 0, Bit O 1 = MFCU print
Bits 3-7 Sequence number
Bytes 1-2 DTF address
Byte 3' Model 6 Model 10
X*10" = CONSOLE (printers- X’10’ = CONSOQLE {printer-
keyboard) keybaoard)
X'12*° = KEYBORD X‘40' = DISKET
(keyboard) X'50" = READA42 {1442 Card
X‘40' = DISKET ReadPunch}
X'SF° = Special 108 routine X'5F’ = Speciat 108 routine
X'80° = BSCA X‘60" = TAPE
X’'84" = BSCA {BSCA with X'80" = BSCA
first-time logic) X‘84° = BSCA with first-
X*90’ = CRT (display station) time logic
X‘A0' = DISK (disk unit) X'AQ' = DISK (disk unit)
X‘E1' = TRACTR1 (tractor 1) X'CO’' = DISKA5
X‘E2' = TRACTR2 (tractor 2) X‘E0’ = PRINTER {line print-
X‘E9’ = LEDGER (ledger card er — carriage 1)
device) X‘E8’ = PRINTR2 (line print-
X'F1’ = DATA96 (data er — carriage 2)
recorder) X‘FQ' = MFCU1 (MFCU pri-
X’'FF’ = Invalid entry mary hopper)
X‘F8 = MFCU2 (MFCU
secondary hopper)
X‘FF’ = Invalid entry
Model 12 Model 15
X‘10' = Console X‘01 = Device Indepen-
X'40' = DISKET dent Input
X'60' = READ42 (1442 Card X'02' = Device Indepen-
Read-Punch) dent Output
X'sF’ = Special X‘18' = CRT77
X60' = Tape X'40’ = DISKET
X‘80° = BSCA X‘'50° = READ42
X84’ = BSCA (first time Jogic) X’'68' = READO1
X'AQ’ = DISK (5444 simulation X‘6F" = SPECIAL 10S
area) routine
X‘CO’ = DISK40 or DISK45 X‘60’ = TAPE
(3340 main data area) X‘80° = BSCA
X'EQ' = PRINTER — carriage 1 X'AQ" = DISK44
X‘E8' = PRINTR2 — carriage 2 X'CO' = DISK45, DISK40
X'FO’ = MFCU1 —primary hopper X°E0’ = PRINTER
X'F8’ = MFCU2 — secondary X‘E4' = PRINT84
hopper X‘FO’ = MFCU1
X‘FF’ = Invalid entry X'F2' = MFCM1
X‘F4' = MFCM2
X'F8 = MFCU2
X‘FF’' = Invalid entry
Byte 4 Bits 0-3 Bits 45 Bit 7

01 = Descending sequence
10 = Ascending sequence

Bit 6

1 = End of file

Figure 3-7. Output-format Compressions (Part 3 of 6)

346

Licensed Material-Property of IBM

1 = File translate

Item Byta Defined/
Number Length Modified Description
Byte 5 Bits 0-1 Bits 4-6
00 = Sequential file 001 = Display file
01 = Indexed file 011 = Update file
10 = Direct file 100 = Combined file
11 = ADDROUT file 101 = Regular output file
Bits 2-3 11(1)j laput file
00 = Consecutive processing 111 = Unordered sequence
01 = Random processing Bit 7
10 = Indexed file processed 1 = Addition specified
sequentially by key
11 = Indexed file processed
sequentially within
limits
Byte 6 Bit0Q Bits 4-6
0 = Variable format 000 = Indexed file pro-
1 = Fixed format cessed consecutively
Bit 1 010 = Indexed k?y
0 = Unblocked file format {alphameric)
1 = Blocked file format 011 = Indexed key {packed]
. 100 = Record identification
Bits 2-3 {disk address)
01 = Extension or line 110 = Record number
counter specifications 3
10 = External indicators Bit 7
1 = Dual I/O
Byte 7 Overflow mask
Bytes 89 Record length
Bytes 10-11 10CB address
$RPPJ Bytes 12-13. Address of OPCR routine
140 2 $RPEO Output indicator {col 24-25) {optional}
$RPGF Mask and displacement
$RPLB For output record lines, 1P indicators are zeroed out for heading and detail output, or LR indicators
are zeroed on LR output. Overflow indicators are always zeroed out.
141 2 $RPEO Output indicator (col 27-28)} (optional)
$RPGF Mask and displacement
$RPLB For output record lines, 1P indicators are zeroed out for heading and detail output; LR indicators
are zeroed out for LR output. Overflow indicators are always zeroed out.
142 2 $RPEO Output indicator {col 30-31} {optional)
$RPGF Mask and displacement
$RPLB For output record lines, 1P indicators are zeroed out for heading and detail output; LR indicators
are zeroed out for LR output. Overflow indicators are always zeroed out.
Note: Items 143, 144, and 145 are related as follows:
143-field name (6 bytes}
143-array name (6 bytes)
143 and 144-array with constant index
143 and 145-array with variable index

Figure 3-7. Output-format Compressions (Part 4 of 6)

Data Areas 347
Licensed Material-Property of IBM

Page of LY21-0501-5
Issued 24 September 1976
By TNL: LN21-5423

ftam
Number

Byte
Length

Defined/
Modifiad

Description

143

144

145

146

147

148

149

6

7-25
(Variable
length
item)

$RPEO

$ARPGW/
SRPGY**

$RPHC

$RPJO

$SRPLV

$RPGW/
SRPGY**

$RPHC

$RPEO

$RPHT

$RPEO

$RPGH
$RPJO*

$RPEO

Field name {col 32-37) (optional)

{f an array name, the foilowing is set:
Byte 0 = 1. Alphameric length = length minus one
2. Numeric {ength = length minus one in the numeric portion; number of decimal
positions in the zone portion
Byte 1. See note 1
Bytes 2-3. Address of rightmost byte of last element for an array or an array with a variable index, or
address of rightmost byte of indexed element for an array with a constant index.
Bytes 4-5. DTT address

I1f a field name, the following is set:
Byte 0. 1. Alphameric length = length minus one
2. Numeric length = length minus one in the numeric portion; number of decimal
positions in the zone portion
Byte 1. See note 1
Bytes 2-3. Address of rightmost byte of field
Bytes 4-6. X'0000’

*Bytes 2-3. For arrays, address of rightmost byte of first element

*Bytes 0-1. Cumulative length of combined output fields move
*Byte 2, bit 6 is set to zero

For an array with a constant index, the following is set:
Bytes 0-1. Numeric value of the array index

For an array with a variable index, the following is set:
Byte 0. 1. Alphameric length = length minus one
2. Numeric length = length minus one in the numeric portion; number of decimal
positions in the zone portion
Byte 1. See note 1
Bytes 2-3. Address of rightmast byte of field

Edit codes {col 38) (optional)

Bit0 0 = Edit pattern 2 (no thousands demarcation)
1 = Edit pattern 1 (thousands demarcation)
Bit 1 1 = Date field
Bit 2 Q0 = Print zeros
1 = Print blanks for zero balance
Bit3 1 = CR for negative balance
8it4 1 = Minus sign for negative balance
8it6 1 = Asterisk fill
Bit 6 1 = Floating dollar sign
Bit 7 1 = Edit code Z (col 38)
End position in binary of the output record (col 40-43);
End position in *Tier/End Position Notation” for print
only on MFCM files.

Converted end position for Print Only on MFCM files.
End position minus 1 of the output record

Reserved

Byte O = length of constant or edit word without quotes
Bytes 1-24 = Constant or edit word (col 45-70)

Figure 3-7. Output-format Compressions (Part 5 of 6)

348

Licensed Material-Property of IBM

Page of LY21-0501-5

Issued 24 September 1976

By TNL: LN21-5423

X‘01’ = CR for negative balance

X'10° = Zero suppression

X*20° = Floating dollar sign

X'40’ = Fixed dollar sign

Zero suppression or asterisk fill iength minus one

Length minus one of start of edit word to end of status

Length minus one of start of edit word to start of status

Item Byte Dofined/
Number Length Modified Description
$RPLN Byte 0 = Length minus one
Bytes 1-24. If edit word:
Byte 3
X"80° = Asterisk fill
Byte 4
Byte 5
Byte 6
$RPLR
$RPLV

Bytes -1 = Address of constant or edit word

Byte 0 = cumulative length of combined Qutput Fields moves if a constant is present
Bytes 1-24 = If constant, address is adjusted by the length added to it

Note 1 {{tams 143, 145):

Bit 0 1 = Look-ahead field

Bits 2-3 00 = Field name

01 = Array name

10 = Table name

00 = Table saquence not specified

01 = Table is descending or field name is
UDATE related field

10 = Table is ascending or, if RLABL
specified field name or mask and
displacement of indicatar

Bits 4-5

Figure 3-7. Output-format Compressions (Part 6 of 6)

Bit6 0 = Length if alphameric
1 = Length is numeric

* indicates an addition or change to a previously defined area.
** Either phase SRPGW or $RPGY is loaded depending on
whether an object-time table or a compile-time table has
been loaded.

Data Areas

Licensed Material-Property of IBM

3-49

Page of LY21-0501-5
Issued 24 September 1976
By TNL: LN21-5423

[term Byte Defined/
Number Length Modified Description

128 1 $RPEE Compression length in binary
129 1 $RPEE Indicates presence of item in compression when bits are on (Bit=1)
Htem 129 Bit 0 1= Item number 132
Bit 1 1 = Item number 133

Bit 2 1 = Item number 134
Bit 3 1 = Item number 135
Bit 4 1 = Item number 136

Bit5 1 = ltem number 137

Bit 6 1 = Item number 138

Bit 7 1= Item number 139
130 1 {tem 130 Bits 0-3 1000 = Item number 140

1100 = Item number 140
and 141 {1-byte
extension)

1010 = Item number 140
and 142 (2-byte
extension)

1001 = Item number 140
and 143 {6-byte
extension)

Bits 4-7 1000 = Item number 144

1100 = Item number 144
and 145 (1-byte
extension)

1010 = Item number 144
and 146 (2-byte
extension}

1001 = Item number 144 and 147

131 1 Item 131 Bits 0-3 1000 = Item number 148

1100 = Item number 148
and 149 (1-byte
extension)

1010 = Item number 148
and 150 (2-byte
extension)

1001 = [tem number 148
and 151 (6-byte
extension}

Bit4 1 = ltem number 152
Bit 6 1 = Item number 153
Bit 6 1 = ttem number 154
Bit7 1 = [tem number 155

Figure 3-8, Telecommunications Compressions (Part 1 of 5)

3-50
Licensed Material-Property of IBM

Page of LY21-0501-5
Issued 24 September 1976
By TNL: LN21-5423

Item Byte Defined/
Number Length Modified Description
132 2 $RPEE Byte O, Bit O 1 = Invalid specification
Bit 1 1 = This station ID invalid
Bit 2 1 = Remote station ID invalid
Bit 3 1 = Dial Number invalid
Bit 4 1 = Filename missing or invalid
Bit 5 1 = Polling characters invalid
Bit6 1 = Addressing characters invalid
133 1 $RPEE Byte 0, Bits 0-1 00 = Transmitter (col 16)
01 = Receiver
10 = Not applicable
11 = Error
Bits 2-3 00 = Blank (col 17)
01 = Tributary
10 = Not applicable
11 = Error
Bits 4-5 00 = N/Blank (col 19}
01 = Yes, transparent feature
10 = Not applicable
11 = Error
Bits 6-7 00 = Blank (col 60}

01 = Last file processed
10 = Not applicable
11 = Error

Figure 3-8, Telecommunications Compressions (Part 2 of 5)

Licensed Material-Property of IBM

3-50.1

Item Byte Defined/
Number Length Modified Description
134 1 $RPEE Byte 0, Bits 04 Unused
Bits 5-7 000 = Explicit or symbolic entry for autocall {col 20}
001 = Autoanswer specified
010 = Manual answer
100 = Manual call
101 = Blank
111 = Error
135 1 $RPEE Byte O, Bits O-1 00 = Point to point nonswitched or blank {col 15)
01 = Switched
10 = Multipoint for nonswitched
11 = Error
Bit 2 0 = EBCDIC, blank or error (col 18)
1= ASCil
Bit 3 0 = Blank (col 52)
1 = Interblock check characters {1TB) or error
136 2 $RPEE Walt time in binary (col 55-57)
137 13 $RPEE Filename {col 7-14)
138 2 $RPEE Transmission terminator indicator (col 53-54)
139 2 $RPEE Record available indicator {col 68-569)
140 6 $RPEE This stations 1D {col 33-39)
$RPGW/ If an array name, the following is set:
$RPGY** Byte 0. See note 1
Byte 1. See note 2
Bytes 2-3. Address of rightmost byte of first element or indexed element
Bytes 4-5, DTT address
$RPHC If a field name, the following is set:
Byte 0. See note 1
Byte 1. See note 2
Bytes 2-3. Address of rightmost by te of field
Bytes 4-5. X‘0000°
$RPLN If a literal, the following is set:
Byte 0. See note 1
Byte 1. See note 2
$RPLR Bytes 2-3. Address of rightmost byte of literal
Bytes 4-5. These bytes are not used
141 1 $RPEE This station 1D {col 39)
142 2 $RPGW/ If an array with a constant index, numeric value of the index is set
$SRPGY**
143 6 $RPHC For an array with a variable index, the following is set:
Byte 0. See note 1
Byte 1. See nots 2
Bytss 2-3. Address of rightmost byte of index
Bytes 4-5. X'0000’

Figure 3-8. Telecommunications Compressions (Part 2 of 4)

Data Areas

Licensed Material-Property of IBM

3-51

Item Byte Defined/
Number Length Modified Daseription
144 6 $RPEE Remota station ID (col 41-47)
$RPGW/ If an array name, the following is set:
$RPGY** Byte 0. See note 1
Byte 1. See note 2
Bytes 2-3. Address of rightmost byte of first element or indexed element
Bytes 4-5. DTT address
$RPHC if a field name, the following is set:
Byte 0. See nate 1
Byte 1. See note 2
Bytes 2-3. Address of rightmost byte of field
Bytes 4-5. X'0000*
$RPLN 1f a literal, the following is set:
Byte 0. See note 1
Byte 1. See note 2
$RPLR Bytes 2-3. Address of rightmost byte of literal
Bytes 4-5, These bytes are not used
145 1 $RPEE Remota station ID (col 47)
146 2 $RPGW/ If an array with a constant index, numeric value of the index is set
$RPGY**
147 [$RPHC For an array with a variable index, the following is set:
Byte 0. See note 1
Byte 1. See note 2
Bytes 2-3. Address of rightmost byte of index
Bytes 4-5. X'0000'
148 11 $RAPEE Dial number {col 21-31)
$RPGW/ If an array name, the foilowing is set:
$RPGY** Byte 0. See note 1
Byte 1. See note 2
Bytes 2-3. Address of rightmost byte of first element or indexed element
Bytes 4-5. DTT sddress
$RPHC If a field name, the following is set:
Byte 0. See note 1
Byte 1. See note 2
Bytes 2-3. Address of rightmost byte of field
Bytes 4-5. X'0000’
$RPLN If a literal, the foliowing is set:
Byte 0. See note 1
Byte 1. See note 2
$RPLR Bytes 2-3. Address of rightmost byte of literal
Bytes 4-5. These bytes are not used
149 1 $RPEE Dial number {extension 1)
150 2 $RPGW/ If an array with a constant index, numeric value of the index is set
$RPGYQ!
151 6 $RPHC For an array with a variable index, the following is set:
Byte 0. See note 1
Byte 1. See note 2
Bytes 2-3. Address of rightmost byte of index
Bytes 4-5. X’'0000"

Figure 3-8. Telecommunications Compressions (Part 3 of 4)

3-52

Licensed Material-Property of IBM

Page of LY21-0501-5
Issued 24 September 1976
By TNL: LN21-5423

I1tem Byt Defined/
Number Length Modified Description

152 1 $RPEE Polling characters
1683 1 $RPEE Addressing characters

154 4 $RPEE Remote termina) (col 48-51)
2770 = 2770 channel 1
2771 = 2770 channel 1
2772 = 2770 channel 2
2773 = 2770 channel 3
2774 = 2770 channelt 4
2780 = 2780

$RPEW

Byte 0 Compressed Terminal value
X'40’ = 2770 channel 4
X‘60°' = 2770 channel 1
X‘60’ = 2770 channel 2
X‘70" = 2770 channel 3
X80 = 2780

Byte 1 Compressed Device value
2170
X'11' =22131
X12' = 22132
X‘13' = 5456-3
X‘14' = 5454
X'15" = 2502-1
X*16' = 2502-2
X‘17" = 5496-1
X'18’ = 6496-2

2780
X'01' = 14421
X'02' = 1442-2
X'03' = 1443

Byte 2 Device Type
X‘01’ = reader
X‘02’ = punch
X'03' = printer

Byte 3 Device Code

166 6 $RPEE Remote Device
1443 = |BM 1443 Printer
1442.1 = IBM 1442 Card Read/Punch {card read)
1442-2 = |BM 1442 Card Read/Punch (card punch}
2213-1 = IBM 2213 Printer, Model 1
22132 = |BM 2213 Printer, Modei 2
0545-3 = IBM 0545 Card Punch, Mode! 3
0545-4 = IBM 0545 Card Punch, Model 4
2502-1 = I|BM 2502 Card Reader, Model 1
2502-2 = IBM 2502 Card Reader, Model 2
5496-1 = IBM 5496 Data Recorder (ceard read)
5496-2 = |BM 5496 Data Recorder {card punch)

| * |ndicates an addition or change to a previously defined area. Note 2 (ltems 140, 143, 144, 147, 148, 151):

| Note 1 (iems 140, 143, 144, 147, 148, 151): Bit 0 1= Look-ahead field
—_— Bits 2-3 00 = Field name

01 = Array name
10 = Table name
Bits 4-5 00 = Table sequence not specified
01 = Table is descending or, if RLABL
specified, field name or mask and
displacement of indicator
Figure 3-8. Telecommunications Compressions (Part 5 of 5) Bit & 0 = Length is alphameric {see Note 1)
1 = Length is numeric

1. Alphameric length = Length minus one

2. Numeric length = length minus one in the numeric portion;
number of decimal positions in the zone portion

Data Areas 3-53
Licensed Material-Property of IBM

ALTERNATE COLLATING SEQUENCE, FILE
TRANSLATE, AND COMPILE-TIME TABLE/ARRAY.
COMPRESSIONS

At compile time, these three tables are compressed by

phase $RPFA into two compression types. The alternate
collating sequence and file translate tables form one
compression and the compile-time tables/arrays form another
compression. The first byte of each 97-byte compression
contains the length of the compression; the remaining

bytes contain the record specified. The compression

block table (CZATAB) tells the type of compression

and its address.

CHAIN TABLE

This table is built by phases $RPPN and $RPRW and
used by phase SRPMP. The table begins with a
2-byte field which contains the number of entries in
the table and ends with a 4-byte dummy entry to
show the last byte of the subsegment. Each entry in
the table is four bytes long:

Byte Contents

0 File sequence number

1-2 Start address of the subsegment

3 X08’ = Set Resulting Indicators
subroutine

X‘10’ = TAG subroutine
X*20’ = Convert to Decimal
subroutine
X*80’ = Unpack subroutine

COMPILE-TIME SYMBOL TABLE

The 17-byte compile-time symbol table is built by
phase SRPGY for each compile-time table/array:

Byte Bit Contents

0-5 Table/array name

6-7 Number of elements in the
table/array

89 Number of elements per input
record

10-11 Element length

3-54

12 0
2-3
4-5
6

13-14

15-16

1 = Look-ahead field

00 = Field name

01 = Array name

10 = Table name

00 = Table sequence not
specified

01 = Table is descending or field
name UDATE related field

10 = Table is ascending or, if
RLABL is specified, field
name or mask and displace-
ment of the indicator

0 = Length is alphameric

1 = Length is numeric

First element address (rightmost
byte)

DTT address

DATA MANAGEMENT ENTRY POINTS AND
MODULE NAMES COMPRESSIONS

Phase $RPFA builds compressions of data manage-
ment entry points and module names. These com-
pressions are used by later phases to generate

branches to data management. The first byte of each
compression is the length of the compression. This is
followed by a series of 2-byte internal entry points and
2-byte translated module names. The last two bytes of
each compression contains X‘EEEE".

The 2-byte entry point contains the following:

Byte

0 (Bits 0-3)

0 (Bits 4-7)

Licensed Material-Property of IBM

Contents

1000 = Sequential file
processed consecutively
1001 = Indexed file processed
randomly by key
1010 = Direct (disk address) file
1011 = Direct (record number) file
1100 = Indexed file processed
sequentially by key
1101 = Indexed file processed
sequentially within limits

0001 = Input file

0010 = Output file

0011 = Update/combined file

0100 = Add/print file

0101 = Input + add file

0110 = Output + add file

0111 = Update/combined + add
file

1000 = Output unordered file

1010 = Output chain file

1 (Model 6)

1 (Model 10)

2 (Model 12)

- XAl

X‘18’ = CONSOLE (printer-
keyboard)
= KEYBOARD
(keyboard)
X‘40’ = DISKET
X‘80’=BSCA
X'84’ = BSCA (BSCA with first-
time logic)
X‘94’ = CRT (display station)
X*AQ’ = DISK (disk unit)
X‘Al’ = Multivolume Disk
X‘E4’ = TRACTRI (tractor 1)
X‘E4’ = TRACTR2 (tractor 2)
X‘E8’ = LEDGER (ledger card
device)
X‘F4’ = DATA96 (data
recorder)
X‘FF’ = Invalid entry

X4

X‘10* = CONSOLE (printer-

keyboard)

DISKET

X*50° = READ42 (1442)

X‘60’ = TAPE

X‘80’ = BSCA

X'84’ = BSCA with first-time
logic

X‘A0’ =DISK (5444)

= Multivolume DISK (5444)

X‘CO’ = DISK45

X‘C1” = Multivolume DISK45

X‘E0’ = PRINTER (line printer-
carriage 1)

X‘E1’ =PRINTR2 (line printer-
carriage 2)

XF0’=MFCU1 (primary
hopper)

X‘FO’ =MFCU?2 (secondary
hopper)

X*10’ = Console

X'40’ = DISKET

X*'50’ =READ42 (1442 Card
Read-Punch)

X'5F’ = Special

X‘60’ = Tape

X‘80°’ = BSCA

X‘84’ = BSCA (first time logic)

X‘AQ’ = DISK (5444 simulation area)

X*C0’ = DISK40 or DISK45 (3340
main data area)

X'EQ’ = PRINTER — carriage 1

X'E8’ =PRINTER — carriage 2

X‘FO’ = MFCU1 — primary hopper

X‘F8 = MFCU2 — secondary hopper

X‘FF’ = Invalid entry

X440’ =

Page of LY21-0501-5
Issued 24 September 1976
By TNL: LN21-5423

1 (Model 15) X‘0Y’ = Device independent input
X‘02’ = Device independent output
X‘1C’=CRT77

X‘40’ = DISKET

X‘50'=READ42

X‘58'=READO1

X‘60’=TAPE

X‘80’=BSCA

X'84’ = BSCA with first-time logic
X‘A0’ = DISK (5444)

X‘A1’ = Multivolume DISK (5444)
X‘CO’ = DISK45, DISK40

X‘C1’ = Multivolume DISK45
X‘EQ’ = PRINTER

X‘E4’ = PRINT84

X‘F0’ = MFCU1

X'FO’ = MFCU2

X‘FC’ = MFCM

X‘FF’ = Invalid Entry

External module names are formed from a 16-
character EBCDIC alphabet. Each character is trans-
lated into a hexadecimal equivalent when the module
name is compressed. In this way, a 4-byte module
name is compressed into two bytes. The EBCDIC
characters used in module names and the correspond-
ing internal hexadecimal characters are as follows:

EBCDIC Character Corresponding Internal
in Module Name Hexadecimal Character

A 0

B 1

C 2

D 3

F 4

G 5

H 6

I 7

L 8

M 9

0] A

P B

R C

S D

T E

U F

Data Areas 3-55

Licensed Material-Property of IBM

Page of LY21-0501-5
1ssued 24 September 1976
By TNL: LN21-5423

On Model 15 Program Number 5704-RG2, when external

buffers are called, different data management modules are

called for disk devices.

The external buffer data management modules have the
same names as their corresponding internal buffer data
management modules except for the first alphabetic
character. (The name is changed in phase SRPRZ.) If
external buffers are specified, disk data management
modules with the first character of ‘C’ are changed to
‘W, a first character of ‘D’ is changed to ‘Y’, and a first
character of ‘T’ is changed to ‘X’. Until phase $RPRZ is
run, the translated name of the equivalent data manage-
ment module is carrled in the compression.

Example:

Disk file, external buffers specified

Internal buffers data management module name:
$SDFIM

Translated name in compression: X‘3479’

Changed data management module name in $RPRZ:
$SYFIM

3-56

ERROR FiLE

The error file can contain two different types of error
information. During the Input and Compression
phases, the error file is 64 bytes long. Each bit, going
from left to right, represents an error number. When
a bit is on, an error message must be printed for the
corresponding error number. For example, if the
eighth bit is on, then error message 8 must be printed.
See the IBM System/3 Model 6 RPG II Reference
Manugl, SC21-7517 or IBM System/3 RPG II Reference
Manual, SC21-7504 for a list of the errors and the
error messages.

Licensed Material-Property of IBM

During the Diagnostic phases, the error file builds a
5-byte entry for each error found. The entry is in this
format: 12
Byte Meaning
13
0 Length of entry
1-2 Statement number of error
34 Binary number of error number
The compression block table (CZATAB) gives the ad-
dress of the error file.
FILE INPUT/OUTPUT TABLE
14
This table is created by phase SRPGH and remains in
storage to be used by the remaining Assign phases.
There is one 33-byte entry in the table for each file in the
order defined on the file description specifications except
the primary file entry is first. The format of this table is:
Byte Bit Contents
0-7 Symbolic filename
8 0 1 = Look-ahead field
1 1 = *PRINT or * in column 40
(Models 10 and 12)
2 I = *PRINT used (Models 10
and 12)
3 1 = From Filename with address
placed in COMMON at
COMBKC 15
4 1 = To Filename with address
placed in COMMON at
COMBLC
5 1 = Line counter specifications
for this file
6 1 = Printer type file or BSCA
printer file '
9 Sequence number of file deserip-
tion compression in which file-
name is defined
10-11 IOCB address

Byte

Bit

4-5

o)

0-1

4-6

Licensed Material-Property of IBM

Page of LY21-0501-5
Issued 24 September 1976
By TNL: LN21-5423

Contents
Device type

0001 = Primary file
0010 = Secondary file
1000 = Chain file

1001 = Demand file
1010 = Record address file
1100 = Table

00 = No sequence

10 = Ascending file

01 = Descending file

1 = End of file (col 17)
1 = File translate

00 = Sequential file

01 = Indexed file

10 = Direct file

11 = ADDROUT file

00 = Consecutive processing

01 = Random processing

10 = Indexed file processed
sequentially by key

11 = Indexed file processed
sequentially within limits

110 = Input file

100 = Combined file

011 = Update file

101 = Ordered output specified

111 = Unordered output
specified

001 = Display file

1 = Add records

0= Variable record

1 = Fixed record

0= Unblocked file

1 = Blocked file

01 = Extension code specified
(col 39)

10 = External indicator used to
condition file

000 = Consecutive processing

010 = Key (alphameric)

011 =Packed key

100 = By ADDROUT file

110 = By relative record number

1 =Dual I/O

3-56.1

Byte
16-17
18-19
20-21
22

23

24
25-26
27

28

29
3031

32

FILENAME TABLE

Bit

Contents

Block length

Record length

Key start location

Key length

Overflow indicator mask
External indicator

Index in storage
Number of extents
Operation code and parameters
DTF length

DTF address

Unreferenced

This table is built by phase $RPGV and used by
phase $RPJK. The table contains one 12-byte entry
for each filename specified in this format:

Byte
0-7
89
10-11

Bit

0

10
11-15

Contents
Filename

Record length

1 = Filename not used

1 = Extension specified but not
found

1 = Line counter specified
but not found

1 = File sequence specified

1 = Match fields

00 = Blank

10 = Chain file

01 = Display file

11 = Demand file

1 = Input specifications not
found for input file

1 = Output specifications not found
for combined or update file or add

was specified.
1 = Ledger card device
TRACTRI or TRACTR2
Statement number

FINAL SEGMENT LIST {MODELS 6, 10, AND 12}

$RPSB takes the 16-byte segment list from $RPSP in the
following format:
Byte Bit Contents
0 01 Type
00 = Subroutine
01 =Table
10 = Mainline segment
11 = Subsegment
2 Segment is subsegmented or first of a
substructure list if Type = 10
3 User subroutine if Type = 00
4-6 100 = Segment is main overlay or
start of suboverlay
110 = Segment is contained in main
overlay
101 = Segment is contained in sub-
overlay
7 Overlay uses both areas (on mainline
only)
1 Overlay priority (X‘FF’ = duplicate
segment)
23 Address of object code
4.5 Length of object code
6-7 Substructure pointer
89 Identifier for each segment
10-11 Duplicate chain
12-13 Volatile duplicate flag
14-15 Transfer vector size

Phase $RPSC creates a 10-byte segmerit list by taking the
first 10-bytes of the final segment list. Bytes 6-7 are
changed to contain the relocated address of object storage.

FINAL SEGMENT LIST (MODEL 15)

$RPRX builds the 16-byte segment list and $RPRZ adds
toit. The format of 16-byte segment list is:

Byte Bit Contents

0 Type
00 = System subroutine
10 = User subroutine
20 =EXTRN to system subroutine
30=EXTRN to user subroutine
40 = Constants
80 = RPG mainline
AQ=EXTRN to ENTRY
CO = RPG subsegment

1 Priority or type of entry segment for
an EXTRN if TYPE = A0, 30, or 20.

Data Areas 3-57

Licensed Material-Property of IBM

Byte Bit Contents

23 Address of object code or:
— Entry point address if TYPE = A0,
30, or 20.
— X'0000’ if TYPE = 10 or 00.

4-5 Length of object code or:
— ID of referenced segment if
TYPE = A0, 30, or 20.
— X'0000’ if TYPE = 10 or 00.

6-7 Controlling identifier (a pointer which
chains entries together), or ID if
referencing segment if TYPE = AQ,

30, or 20.

89 Identifier for the segment or X‘0000’
if TYPE = AQ, 30, or 20.

10-13 Reserved

14-15 Name:

— Compressed name from 16-character
alphabet if TYPE = 00 or 20.

— Last two characters of user sub-
routine name if TYPE = 10 or 30.

— End + 1 address of referenced seg-
ment if TYPE = A0 and reference
segment TYPE = 40.

— End + 1 address of this segment if
TYPE = 40, 80, or CO.

GENERAL STORAGE TABLE

The general storage table is built by phase $SRPLN
and contains constants, edit patterns, literals, and
output DTF parameters. Phase $RPLR modifies and
uses this table. The format of the general storage
table is:

Byte Bit Contents

0 Length of table element
1-2 Statement number
3-58

Byte Bit

3
0
1
2
3
4
6
7

4.5

6-29

Contents

Usage mask

1 = Total calculations

1 = Detail calculations

1 = Program Close Mainline

1 = LR and Overflow Control
Mainline

1 = Open Mainline

1 = Total output

1 = Detail output

Object code address (built by
phase SRPLR)

Object code

| INTERNAL SYMBOL TABLE (MODELS 6, 10, AND 12}

The internal symbol table built by phase $RPSE is used by
phases SRPSG, $RPSI, and $RPSK. The 3-byte table

format is:

Byte Bit

0-1

2

3 0
1
2
3
4
5
6
7

Licensed Material-Property of IBM

Contents

Disk address of the first sector
of sorted object code blocks

Number of sectors of sorted object
code blocks

1 = Object code sorted
1 = Mainline routine is an overlay

1 =Mainline routine contains
suboverlays

1 =Mainline processed by final out-
put phases

0 =Root segment to be generated
I = Overlays to be generated

1 =Mainline completely in storage
Not used

1 = Number of sectors of sorted
object code blocks exceeds 225

NAME TABLE

Phase $RPGU builds a 16-byte entry for each object-
time tablefarray in the name table with this format:

Byte
0-5

6

&9

10-11
12-13

14.15

Bit

0-3

47

45

Contents
Table/array name

Number of decimal positions for
numeric fields

Length minus one in binary of a
table/array entry

1 = Look-ahead field
00 = Field name
01 = Array name
10 = Table name
00 = Table sequence not specified
01 = Table is descending or field
name is UDATE related field
10 = Table is ascending or, if RLABL
is specified, field name or mask
and displacement of the
indicator
0= Alphameric length minus one
1 = Number of decimal positions in
zone portion; length minus one
in numeric portion

Not used

Address of first entry in the table/
array
Address of second byte of the DTT

Number of entries in the table/array
in binary

Number of statement in which the
table/array is first defined

OBJECT CODE BLOCK

Object code blocks contain portions of sequenced object
text generated by the Assign and Assemble phases. These
blocks are written onto a disk work file ($SOURCE) during
compilation. The overlay phases sort the object code
blocks and generate text-RLD records required by the
linkage editor. Object code blocks contain up to 255 bytes,
in the following format:.

Byte

ntl

n+2-end

Contents

Length of the object code block

Length of object text contained in the block

Address of the leftmost byte of the text

Object text

Length of the relocation dictionary (RLD).
This entry is zero if no RLD is present

Relocation dictionary (RLD)

Each relocation dictionary entry contains two
or four bytes, as follows:

Byte
0

2-3

Licensed Material-Property of IBM

Contents

X*01’ = Transfer vector not allowed

X'04’ = Overlay code

X0C’ = Branch to transfer vector

X‘30’= RLD address is in ROCA

X‘4(’ = Relocate address outside of
current segment

X‘80’= External reference (RPG II
code) (if on, Bytes 2 and 3
are present)

X‘90’= External reference (subroutine)

X‘CO’= External reference (user sub-
routine)

Displacement from the beginning of
the text to the rightmost byte of
address to be relocated

Translated external module name

(see Data Management Entry Points
and Module Names Compressions)

Data Areas 3-59

PHASE LOAD COMPRESSION

Phase $RPG builds 11-byte compressions of load informa-
tion for each compiler phase. These compressions are used
to eliminate the find every time a new phase is called.

The format of these compressions is:

Byte Meaning

0 Length of entry (constant X‘0B’)

1-2 Last two characters of the phase
name

34 Cylinder/sector (location of phase on
disk)

5 Number of disk sectors to be loaded

6-7 Load point

8 Displacement to first RLD

9-10 Entry point

SEGMENT LIST

This list is built by phases SRPLR, $RPMK , $RPMM, and

$RPMP and is used by phases $RPRX and $RPSA (Models

6, 10, and 12). The segment list contains informatjon

about segments of code in this format:

Byte Contents

0 X‘FO” = EXIT subroutine specified
X*‘CO’ = Subroutine
X‘B0’ = IPCR,OPCR, or constants
X‘A0’ = Object code
X80’ = Mainline code

1 Overlay priority with O = lowest
priority to be overlaid (the last to
be overlaid)

2-3 Address of object code or subroutine
name

45 Length of object code
6-7 Controlling identifier (a pointer
which chains entries together for easy

identification by the Overlay phases)

89 Identifier for each segment

360

There is an entry for each mainline and an entry for each

subsegment. If the subsegment belongs to more than one

mainline, an entry is generated for each mainline to which
the subsegment belongs.

SYMBOL TABLE

The symbol table built by phase $RPHA remains to be
used by phases §RPHC and $RPHD. There is one 12-byte
entry in the table for each field name in the order defined
in the input and calculations specifications. The table
format is:

Byre Bit Contents
0-5 Field name
6 0-3 Number of decimal positions for

numeric field
47 Field length minus one in binary

7 0 1 = Look-ahead field
1 1 = Field unreferenced
2-3 00 = Field name
5 1 = UDATE related field
6 0 = Alphameric length minus one
1 = Number of decimal positions in
zone portion; length minus one
in numeric portion
7 Not used
8-9 Assigned address in the Root
Segment
10-11 Number of the statement in which

the field is first defined

TELECOMMUNICATIONS TABLE

Phase $RPGK builds a 33-byte telecommunications table
in main storage behind the file input/output table for each
telecommunications compression. For more information
on telecommunications compressions, see Figure 3-8. The
table format is:

Byte Contents

0-2 Format bytes

3-7 Note bytes

89 Wait time

10-11 Permanent error indicator

Licensed Material-Property of IBM

Byte Contents

12-13 Record available indicator

14-15 Address of the leftmost byte of this
station ID entry

16 Number of bytes in this station ID
entry

17-18 Address of the leftmost byte of
remote station ID entry

19 Number of bytes of remote station
ID entry

20-21 Address of leftmost byte of Dial
Number entry

22 Number of bytes of Dial Number entry

23-24 Address or polling characters

25-26 Address of corresponding file input/
output table entry

27 Remote device selected

28 Lines to space after

29 Lines to space before

30 Line count

" 31 Page size
32 Overflow line
TEXT-RLD RECORD

Models 6, 10, and 12

Text-RLD records are generated by overlay phase $RPSK
from sorted object code blocks for use by the linkage
editor. Each record is 64 bytes long in the following
format:

Byte Contents

0 T (denotes text-RLD record)

1 Length minus 1 of object text con-
tained in the record

2-3 Address of the rightmost byte of
object text in the record

4-63 Object text begins in byte 4; 1-byte

RLD (relocation dictionary) entries
are inserted beginning in byte 63
from right to left. Unused bytes (at
least one) between text and RLD
contain X'00°, RLD points to the
right end of the address displaced
from beginning of text,

Each RLD entry contains the displacement from the left-
most text byte in the record.

Model 15

See IBM Model 15 System Services Logic Manual,
SY21-0034, for text-RLD record format for the Model 15.

DISK WORK AREAS

The RPG II Compiler requires that two disk work areas be
provided, $WORK and $SOURCE. Figures 3-9 and 3-10
show the general usage of these areas. For more detailed
information on any phases mentioned, see the description
of these phases elsewhere in this manual.

Data Areas 361

Licensed Material-Property of IBM

segment list to 10-byte
(full) segment list

$RPSE 18-byte final segment
list and 10-byte (full)
segment list

Puts out 10-byte
segmant list and
sorted text for
root phase

Puts out 10-byte
segment list and sorted
text for each mainiine

segment list to 10-byte
(full) segment list

16-byte final segment
list and 10-byte (full}
segment list

Puts out 10-byte
segment list and
sorted text for
root phase

Puts out 10-byte
segment list and sorted
text for each mainline

Initiating Non-Overlay Qverlay
Phase SWORK $SOURCE SWORK $SOURCE
$$STAI* Unused Source data Unused Source data
$RPEA Compressions Compressions
$RPGX Object text blocks Object text blocks
$RPRX Initializes 16-byte Initializes 16-byte

long final segment long final segment

Iist list
$APSC Converts 16-byte finaf Converts 16-byte final

10-byte segment list

10-byte segment list and
sorted text for root phase
{updated with overlay
fetch routine, overlay fetch
table, and transfer vectors}

10-byte segment fist and
sorted text for each main-
line segment (updated
with transfer vectors)

segment segment
$RPSG
{called only
for overlay)
$RPS|** Phase and Entry Phase and Entry
records records
$RPSK** Text-RLD records Text-RLD records
$RPSK (just Copy of $SOURCE
prior to calling (Phase, Entry,
$LINKB) Text-RLD records)

**Called once for every overlay generated

Figure 3-9. Use of SWORK and ‘$SOURCE (Models 6, 10, and 12)

Licensed Material-Property of IBM

E—END RECORD

Initiating $SWORK $SOURCE
Phase
$RPEA Compressions Compressions
$RPGX Object text blocks
$RPRX Initializes 16-byte
long final segment list.
$RPRX 16-byte segment list | Final text block
$RPRY Sorted and merged
text blocks; Copy
of 16-byte seg-
ment list
$RPRZ Input to Overlay
(just prior to Linkage Editor:
calling
$OLYNX) OPTNS—QPTIONS
RECORD
S—ESL RECORDS
T-TEXT-RLD
) RECORDS
S—
T—
R. Modules
N S—
T—

Note: Usage of disk work areas is the same in Model 15 RPG 1,
whether or not overlays are used.

Figure 3-10. Use of $WORK and $SOURCE (Model 15)

Licensed Material-Property of IBM

Data Areas 363

This section describes the object program generated by the
RPG II Compiler in terms of:

° RPG I processing cycle (control flow through
object program)

° Object code generated for calculations
® Functions performed by subroutines
° Data areas used by the object program

° Overlay techniques employed by the RPG II
Compiler

This section also includés sample dump analysis as an aid
in examining areas of a storage dump of an RPG II

program,

Flowchart Technigques

Appendix A in this publication explains the general flow-
charting techniques used. The flowcharting conventions
in this section differ from the general flowcharting
techniques in these ways:

1. A striped process block signifies an operation
performed by a routine which is flowcharted in
this section.

2. A decision block labeled COMPILER **** signifies
a compiler decision. THIS DECISION IS NOT
ACTUALLY MADE IN THE OBJECT PRO-
GRAM, BUT IT INDICATES THE CONDI-
TIONAL PRESENCE OF SOME OBJECT CODE.
A compiler decision indicates a choice of two or
more alternatives, only one of which is present in
a given section of object code.

The narrative description of the routines only supplements
the flowcharts.

OVERALL OBJECT PROGRAM FLOW

Figure 4-1 shows the flow of the RPG Il processing cycle.

Figure 4-2 shows the cycle in more detail,

Section 4. Object Program

DETAILED OBJECT PROGRAM FLOW

The object program generated by the RPG II Compiler is
described in detail on Charts CA through CM. Parameter
lists and local hold areas are described in the individual
routine descriptions. Significant data areas are defined
in Data Areas in this section,

Open Mainline (Chart CA)

The Open Mainline performs key functions which control
the RPG II cycle. It opens files and initializes data areas,
indicators, and switches to allow a2 new processing cycle to

begin.

Input Processing Control (Chart CB)

The Input Processing Control routine (IPCR) handles
processing of input between RPG II and data manage-
ment. [PCR also handles some error recovery from data
management.

Output Processing Control {Chart CC)

The Output Processing Control routine (OPCR) handles
processing of output between RPG II and data manage-
ment. OPCR also handles some error recovery from data
management. For each file that has output, there is a
12-byte linkage in the program listing.

Output Fields and Records Code (Chart CD)
The Output Field and Records Code routine move fields
to the output buffer in main storage.
Qutput Records
The object code generated by compile-tirne phase RPPS is
divided into six overlay segments. These segments appear
in different areas of the program logic flow. The segments

in order of appearance are:

1. First Page Output routine

Licensed Material-Property of IBM

Object Program 4-1

Enter From $$INP2

Open Mainline
L] Opens files.
[Initializes data areas, indicators, and switches.
L] Reads and translates object-time tables.
L] Performs and translates 1P output.

4-2

Detall Qutput Mainline

| L4 Performs and translates heading and detail output.

Input Mainline

Reads records.

L] Resets specified overflow indicators and all H1-HS and
LO-L9 indicators.

] Resets record resulting indicators.

® Checks for program halts H1-H8 and displays them.

L] Checks for an and of file and sets on LR indicator if

end of job conditions are met.

Total Calculations

L] Performs total {LO-L9) calculations.

Total Output

° Performs total output.

Figure 4-1. Object Program Flow

LR and Overflow Control Mainline?

¢ If LR is on
(4 Performs overflow output if any for each file.
® Sets MR on or off depending on matching file status.

. '
Input Fields Mainline
3

Moves input data fislds from the input buffer to the
specified data areas.

L] Reads a record from the file being processed if the file
is a look-ahead of not a combined or update file.

L] Moves look-2head fields from all files to data areas.

Detail Calculations ‘

‘ L] Performs detail calculations.

L] Performs LR calculations and output when controiled cancel
has been selected for a hait or LR is on.

L] Dumps tables.

[Closes files.

Ctose Mainline

(Exit To End of Job Transient, $$SPEJ)

Licensed Material-Property of IBM

Enter From $$INP2

Open Mainline Chart CA
® Allocates files using $$STAl.
L] Opens files using S$OPEN.
L] Initializes data areas, indicators and switches.
L] Reads and translates files if necessary, using $3PGF |
{Chart EB).
. Perform and wranslate 1P output using Qutput Fields
and Racords Code {Chart CD).
Detail Output
L4 Performs and translates heading and detail output using
OPCR {Chart CC), Output Fields and Records Code
{Chart CDJ, and Fetch Overflow (Chart CF).
Input Mainline Chart CE
L4 Leaves overflow indicators on if fetched at detail time:
howaver sets overflow indicator off if performed last
cycla.
L4 Displays any H1-H9 halts if necessary.
* If operator selected immediate cancet 20
* If operator selected controlled cancel
. Sets off all record 1D, H1-HY, L1-L9, and 1P indicators.
* IfLRison
* If keyboard is primary on first cycle (Modet 6)
o Reads record using IPCR (Chart CB) and selected 1/0
modules,
o Mend ot e EEEE———)
o |dentify record using Record 1D (Chart CG).
o 1f record not identified or if record out of sequence,
display halt using $8SYRP {Chart EZ or E1)
* If operator selected immediate cancel w
* If apevator selected controlled cancel a

Figure 4-2 (Part 1 of 2). Intermediate Object Program Flow

Input Mainline
{continued}

@ Processas records using Multifile Logic {Chart CH)
* 1t end of file conditions are met, set on LR
° Process valid force file or multiple input files.

° 1t match file out of sequence, display helt using
$SSYRP {Chart EZ or E1)

* If operator selected immediate cancel
* if operator selected controlled cancel

® Satson record ID indicator being processed using Control
Fields Logic and Move {Chart CI). ’

. Sets on appropriate L indicators if there are control fields
in record or control breaks.

W first control wcie—®

Total Calcuiations

L] Pevforms total calculations (10-18) or LR calculations.

Total Qutput

° Performs total output or LR output using OPCR
{Chart CC), Qutput Fields and Records Code (Chart
CD}.

LR and Overflow Mainline Chart CK

¢ IfLRison —@
L4 Performs overflow and output for each file using Qutput

Fields and Records Code [Chart CD) and OPCR (Chart
CC).
e Set MR on or off depending on matching files status.

Object Program 4-3

Licensed Material-Property of IBM

Input Field Mainline Chart CL Close Mainline Chart CM

Perform LR calculations when job is cancelled.
Pertorm LR and 101! output when job is cancelled.
Dump tables.

Closa files using $$CLOZ.

L] Move fields to work area for file selected.
° Set tisld resuiting indicators,
L Read and translate for look shead.

Detail Calcutations
(Exit To End of Job Transient [$$SPEJ))

L} Perform detail calculations.

Figure 4-2, Intermediate Object Program Flow (Part 2 of 2)

44
Licensed Material-Property of IBM

2. Heading and Detail Output routine

3. Total Output routine

4. LR Output routiﬁe

5. Exception GCutput routine

6. Overflow Output routine (one segment per file).

The linkages between the segments are generated as fol-
lows. The First Page Output routine branches to the
Detail Output routine, and the Detail Output routine
branches to Input Mainline. The LR Output routine, the
Exception Output routine, and each segment of the
Overflow Output routine are closed subroutines which
store ARR and return branches.

Record Indicators: Overflow indicators are not tested in
the Overflow Output routine. This is done before the
routine is called. LR and IP indicators are not tested in
the First Page Output routine or the LR Output routine
since first page and last record processing occurs once.

Output Fields
The addresses of output fields may be found as follows:

Table Elements: The last referenced element {indicated in
the DTT) contains the addresses.

Array with No Index: Array loop control is used to in-
crement processing throughout the array.

Array with Variable Index: The Array Index subroutine
is used to find the desired field (see the Library of Sub-
routines for a description of the array index).

Array with Numeric Index: The address is calculated at
compile time and used directly.

Punch: Punch fields are all moved and execute first be-
fore all fields to be printed.

*PLACE: The highest previously used end position on
other than *PLACE lines is used for the move. The
length of the move is from the highest previously given
end position to position 1,

PAGE: If no conditioning indicators are given, 1 is added
to the field contents before the field is moved to the out-
put buffer, If conditioning indicators are given and the
conditions are met, the field is set to zero, 1 is added to

it, and the field is moved to the output buffer. If con-
ditioning indicators are given and the conditions are not
met, 1 is added to the field and the field is moved to the
output buffer. For 1P forms alignment, the PAGE fields
are not incremented on the first 1P line,

Editing: For edit words and edit codes:
1. Edit patterns are moved to the output buffer.
2. The field is edited into the pattern.

3. If the field is positive, the status is blanked out for
edit words.

4. For edit codes, if zero suppression is specified, then
zeros suppress everything to the left of the decimal
point, If the field has no value, it is zero sup-
pressed through the decimal point on edit codes 2,
4,B,D,K,and M.

For Blank After: Alphameric fields are cleared to blanks;
numeric fields are cleared to zeros.

Update FILES: An image of the update files is moved
from the input buffer to the output buffer before output
fields are moved in, except when adding to an update

file. An image of the update files will not be moved to the
output buffer in this case,

Input Mainline (Chart CE)

The Input Mainline routine generates code to get a record
and checks for end of job, In addition, it performs these
indicator functions:

1. Resets specified overflow indicators and all HI-H9
and 1.0-L9 indicators.

2. Resets record identifying indicators.

3. Checks for program halts (H1-H9) and displays
them.

4. Checks for an LR indicator and, if LR is found,

control is passed to Control Fields Logic and Move
routine,

Object Program 4-§

Licensed Material-Property of IBM

Fetch Overflow {Chart CF)

The Fetch Overflow routine determines if overflow has
occurred for the file being processed. If overflow has
occurred and is still pending, the overflow segment for
the file being processed is called and the second internal
indicator is set on. There is a fetch overflow routine for
each overflow mainline.

Record 1D (Chart CG)

The Record ID routine identifies a record, moves control
parameters into the JOCB, and sequence checks the nu-
meric sequence for all record types.

This routine also checks column 17 (Number) and column
18 (Option) of Input Specifications.

Multifile and Matching Records Logic (Chart CH)

Chart CH describes the three types of multifile and match-
ing record logic: multifiles with no matching fields, multi-
files with matching fields, and one input file with match-
ing records.

Four areas are described as work and save areas. H2 isa
work area located at the beginning of ROCA. Hl isa
storage area which is assigned to ROCA if H1 is not
greater than 72 bytes. If it is greater than 72 bytes, H1 is
generated as part of the matching records code. S1isa
save area assigned to the Root Segment containing the
matching values of the last selected file. [t is used for
sequence checking. S2 is a save area assigned to the Root
Segment containing the match values of the last sefected
primary file. It is used to control the setting of the MR
indicator.

The address of the primary file IOCB is stored at dis-
placement X‘98’-X‘99’ in ROCA, and the address of the
last selected IOCB is stored in ROCA at displacement
X9A’-X‘OB’. See Data Areas, Match Field Save Areas in
this section for further discussion.

Control Fields Logic and Move (Chart Cl)

The Control Fields Logic and Move routine determines
whether to bypass total output and total calculations for
the first RPG II cycle or bypass total output and total
calculations when the first control break occurs. The
routine also moves the control fields to a work area and
compares them against the last set of control fields. If

4-6

there is a control break, the appropriate level indicators and
all lower L indicators are set on.
Chain and Read (Chart CJ)

The Chain and Read routine performs three functions for
each file:

1. Identifies the input record.

2. Moves record control parameters to the IOCB.

3. Moves data fields from the data area to the output
buffer,

LR and Overflow Control Mainline (Chart CK)

The LR and Overflow Control Mainline performs four
functions:

1. Calls the Program Close Mainline if the LR
indicator is on.

2. Tests for overflow and, if on, calls the appropriate
Overflow routine.

3. Sets off all internal overflow indicators.

4, Sets the MR indicators.

Move Input Fields Mainline (Chart CL}

The Move Input Fields Mainline performs these major
functions:

1. Moves input data fields from the input buffer to the
specified data areas.

2. Readsarecord from the file being processed if the
file is a look-ahead and not a combined or update
file.

3. Moves look-ahead fields from all files to data areas.

Object code generated to perform these functions is de-
termined by the type of field:

Field Type Code Generated
Alphameric MVC instruction
Numeric ZAZ instruction

Licensed Material-Property of IBM

Field Type Code Generated
Pack Linkage to unpack subroutine
Binary Convert to Decimal subroutine

Alphameric array ~ MVC instruction for each
256 bytes of data

Numeric array ZAZ instruction and loop control

Program Close Mainline (Chart CM)

The Program Close Mainline performs the necessary

RPG 11 functions for end of job by processing LR calcula-
tions and LR output. It also closes files and dumps
tables,

Object Program 4.7

Licensed Material-Property of IBM

L X
s A ®
woee L] - L1l 1]
- L1 L d -
o A2 *ean ® A4 B
- b * L
LilL]
.‘.CONPILER‘OO' -
o 13 SeS AP ALEARIRS NS
*ASRAL PSRN EINS .t AN ", .® FILE ‘6 0 . -
~#CONDT . NI * R _NUM -
P emr 3 .l cuNEMoneo WO WP 3 FRBLESMNRIS 2
bl £l s, INDRS . - TO ZERDS -
SIS EE AN FE “e. 'y ., -
8, ¥ &, . ! SEREBREI PSRRI
YES La il YES bahdd
FROMT
SUPERVISOR * H2 » *C3
* - - -
ran L1t
«%*.COMPILER®®es o o%a
B8l ., Bi -, B3 ., “"I 4'"".."..
g *. 2* FILE ®, -3 .. - ALPHA
«* INQUIRY =». NO «*CONDITIONED®. NO »* EXTERNAL ¢, NQ *TABLES. ARRAYS y#
*, PROGRAM » == .. BY EhYERNAL ol ¢, INDICATOR ,#==— FIELOS TO ‘
.. ot *. INDRS _.* .. oN - ‘ 8 ANKS
", « ¥ L a® ., -
*, . *, .* x, L PREEIADSHARARARS
YES YES LT YES
- * L LT
* D2 x » .
- * % C3 %>
EEL L] * -
"axan
EZ/01/A1 -
e aSC kb dd ket s cz -, L SACIRARRIA Rk ..t.‘cbtﬂ".ll.ll
USSSYRP bd ., * »

B e .‘ (;x'r%uun. *, NO * INDICATE IN_ * ‘ CLEAR NUMERIC l
' RPGIT HALY * = *10C HAT FILE * ‘FIE\QS TO 1EROSe
. PROCESSOR = e, o* * lS OPEN - bd b

DISPLAY <5 % o « . * »
R 47 B O« .. esen
YES
sxsasD] 2 0 *
* . - » # CLEAR OUrF\[v »
SSET DF; C?NSOLE‘ 'CLEAR DEF HA?K » ‘SE" B EFER _FULL® *BFFR. TO BLANK &
. LIGH - » TD FORCE OT b T OFF be SIF LENGTH > 1440
» * . DPEN - : H * BYTES *
» L d =
Ass ORISR GON S L L e ey BEKOSARBLR ARSI & SPEXBSSRERHARAKAD
ead
» » e
*® El 2>
» *
T
HORASE | EShRS 5 HHE nntezt!nnuu £3° "s,
2L0AD ADDmE s JF
* PSOG ‘ INCREMENT TO =» NO .* PR! DR .,
l C HNUNICAT CN ‘ NEXT 10C8 - -=%, SEC FILE -
REA INTO XR2 ‘ L4 ‘.. ..‘
. -
SRR TSR SA KA BEE G ..-“.t.l'tt“‘llt v L .‘-
(12 YES
L L
" GI e Cmmm —
- »
Ll L]
- EP/OL/A2
1 F2 *.
. - ., *SSPGFI *
L4 LOAD ROCA * END OF *. NO o e e e ‘
*ADDRESS IN XRP * LN HJCS CHAIN .#-===
- . ot 'LOAD EBACH TAELE‘
. . e o * -
SEEBRORDSERN $ SR E LS v
YES s
-
* A2 e
.
ey
o% ,COMP[LER® 3%
".“Gb ShkER ks w ”“.82‘".."‘.“ SEEFRCINERRFRIERD o4 -
HET NG R Xl e e om0
. . . N
* g AREA IN = L4 XR DTF bd EBDK {R * .. GE*PET t——
« ROCA - * ADDR I XR2 ‘ ® CHAIN IN XR1 = *.SPECIFIED.*
- N 4 * - . ., atk
kN L
YES
EE R
L] L3
« H2 »->
- -
LTy
2ARIHIISEBE S So kR SREBEHIR S E P e Rk «3' e,
* »
*CLEAR INDICATOR® .+ "eno OF
* AREA * ® & ALLOCAT *, IMB CNA!N ‘—-- *
* » FILE *
* » * » s, ,t »
» . CEGEIRS AN EFERD S
VES P
. .
* K2 * == -
- *
sese
Sans)] kbb ok enes SEEsE 2 RORRERA NS 33" e 3 ‘s,
* n%t FTERNAL % *DPEN . eALL pri®. .. ., SRR JSHRISNS A0
* INDICATORS TO B e e * «* DR SEC s, NO «*% DETAIL * »
INDICATOR AREA:% * & * FILES at———w =, oyveut EXIT *
% SETON 1P,LD = ® XOPEN FILES * » *, CLOSED _.¥* -, . .
L4 * » *x - " *, a¥ EREESSSERRAREE b
. L& v . .t
% YES LT * YES
2hae - . TC: INPUT MAINUINE
. . « AG (CE/0L7A2)
* K2 *=> . *
sene
ALl
SERRAK LRI RE K TIN Y ‘it.tkzm!nnn..mu. v
- T - aLnA I En‘ BRRALIRASRARRES ETTYTZS YT A TT TN
‘-”‘E KATS L poces oYe XB0REST e * .
(g3 * -FRM IOCB INYQ ‘ * EXIT * * EXIT bd
‘AODR S lN XR2 » . b - .
- ‘ ‘ EI AT EEEEY LTS AARSEEARRSR RSN
”.t"ﬂ"!lll“t‘l - AR kR AR RS
TO! ::c:;gﬁ TO: QUTPUT FIELDS AND
rroctzsa REBIBE7aLF
LRt] Lt]
- L - L d
A2 * * A3 *
- * -
LI E XL L]

Chart CA. Open Mainline

Licensed Material-Property of IBM

t‘.‘oA)tooo‘.otot M...t_ ...OOAEOOOELL"I

EEE L YL L LI L] LT3 . ax; 5 » ..
* ’ 'EPE 1 N CD E * - ED ANY ‘. YES b
* ENTRY . L. ' FROM _IDCB T - >0, ERRORS F—————d® CALL R G IX
* * - « »01F 1f NEEDED s *. OCCUR .* $HALT PROCESSOR '
WEADS KNSR K NP Y L2 B
Searenreprenearns ., o natnnnnotu“
T NO
* *
. a4 x
* .
onen
Cha) ¥
saaveg p-rtn.nn 83 », B& .,
o IS ., =¥ .,
: SeoR sRETURD':D : ..‘DEVICE !FCU‘-.NO .-' RECORg ‘..VES
PY) . OUNI o——n
bt uo.E 153:E%2 : N JCONSODLE .o -, o
FEEIIRSRSR L RARND ‘s, ., o
VES * NG
. .convlLER--n .-. .
Cl ., BEEEICISSAAIRERE S 20BRNChoRkpkdRRIS
L) ., #MOVE STACKER LF' * =
ND .* LlﬂlTa "y LMT RS TE S - sMFECU FROM 10 » *ADD 3 TO RETURN'
—t, OR %80 ‘--—--).. FIL - * TO SYF lvuo L » = ADDRES, L4
\l BY LlHlTS . bd 10 ONLY) b * :
= .
.. .. EELTI AL LTI LT TY] ANSEYFNOER RO S AWY
96k AODR
* *
s HL = —————
- - <
"k
D}' .. DE' . ssens e---nn-nt 2H0AADLASAARRRUR S
o* THIS =, =% F{RST = MOVE RECORD » »
«® FILE READ =, NO =* Tt * LENGTH IF * *RELCAD [0OCB TQ »
- oW . THROUG = CONSOLE FROM # ®XR2y ROCA AREA =
‘..ADDROUT.-‘ I '.‘ CYCLE .= : IOCB TO DTF : : IN XR) e
‘e, o2 v " .. FERAB IR EARER NS KA EARSHANIRRSES
ES LIl YES 2%
- L) - -
*HL * * HI * e
. . * - .
002 seon <
¥ ,COMPILER® &2 %
Lt It ravRRgQ (Y3 Sexstanad E4¢ ¥,
* LDAD AOD OUT ' ® POINT XR} TO » =D, M, * o .,
- ?8 LE AOD! * LI . —m—————————— * F&E =. NO
s HUD. 60&. * INPUT/OUTPUT = L34 CatL hlld *, TRARSLATE o%-—=
Ed 1 » HODULE . ® *APPROPRIAYE® » #,5PECIFIED.*
* . . 13 2 *1{0 MODULE * * . o*
USRI LSRR RN B ERK RERSERTRG AP AR AR R &R P Lt ok ., .
* YES
sene anen
002+ 2002
0 G3 *=> o HT w>
* «
ner s
'.‘.‘Fl‘..“.“.. .“‘.FZ‘"'“.‘.‘. ll‘.'FaU"ID.l‘.“ ...‘.FQ.II..“..“
MOVE INPUT *
SLOAD A sncurEo- -LOAn Aisncurso- UBUFFER ADDRESS * HOYE X'Bo' TO *
t 1aca TO che " -PRINE WORK AFEAO
K 2 ' R2 - [iag *
b4 b - b3 *
. = tuuuomu.-n
4
%o .
anEkS XSSV ARSF AN 63 -,
= STD! WODILE * =% _WAS %, %4 El»
* ADORESS IN » «SCONTROLLED *. NO =REE E '. NO
* BRANCH YO 1/0 ¢ *, CANCE e ¥—n .TRANSI. 2 W=y
= MODULE * * REQUESTED.* NORMA ..
L4 » =, * e gOHP..
AEREESEEERARERER S *, ¥ ot
* YES YES
Lol
- L d
* HL =->
* *
L) Tor CALLING
- -COHPILER”” %, SYRP v EZ/D1/41 £B/OL/AL ROUTINE
H1 H2 -, P ot -t b LT T exdakHS SRAS IR RRES
o lgl ‘2. t ., =gSSYRP » 2ESPGAB 4 BERAHSER AP AN D
. TYPE *, YES o NQUIRY » - ——— [t - .
L e e AT S T T N i
Y i .. ot l - CESSOR 2 * Sy *IN - ARESBUEPANEPR NS
0, ., W v e R AR S RERE & HHIREERRNR NG EbR K
NO YES bhid
AR L d L d
. gL s ammanan P S ——
* 1 e> » »
L 11 J
(111 v NO
o, o¥ COMPILER® ®# % %
LT NICE TTTYE CN seaan D0 FEN S 36 0«
* om0 pocE w b . N et TEND oF *%a ND .8 LIMITS I
« e ™ - -
*ADDRESS IN XR1 * b r:xecgrs e =, FILE occun o =l 0% 15548 \' 4
* EROM XR2 . « * FOLLQUT = . SPEC(FI iLE
. = & TRANSIENT * # ‘., ..
R v ., .= v ‘x,
e * YES A LlHITs YES
» . 2002*
A4 « KL*
L) - =¥ v
MDOEL & LT . " 25k
T/01/42 y e
CREHRK L PERER I DAY 2% £ L ITIIIT Y L) xs° e,
. CISPGLR * » - o *,
e LOAD OTF & Beeccceeee— e #*SET ON EDF BIT ¢ <% IS THIS =. NO
:ADDFESS IN XR2 : ' '(;.AI.L EgHHAI.IgD ' : IN T0C8 : ‘-‘ “":I? 2‘ ..‘—~
- . L?GH'} 50008 2 H . o FILE Lo
AR EPEIER AR A QTR & "...‘ll“l“ PESPENRAR AP ER R R ", a* v
YES Lo dadd
FTT T LEL 1] 002+
L3 L L L] * His
->% 41 * =58 A4 » L)
oy > » L d » L dbddd
= -~ (11 ey *0Q2¢
= A3 * (3=
. » * e
e L]

Chart CB (Part 1 of 2). Input Processing Control Routine

Object Program 4-9

Licensed Material-Property of IBM

o2 ASSOCTATED o
T ASSPHIRTEC WY
N
2 vES

SRR C]9 "”‘l”:

”ICIDUEE Als :SS :
th XRTESS
SHESEIIFEARSE AV N

P

v
Pt nd I L e PR Y
»

Sobibec R, §

222NN NP ER S G B

A

F1 .,

- ..
? SA *. NO
», FH.E A? EQF .#——
-, .
., .
e .2
YES

:‘ttﬁsl.:n“t#“.
:SET YEFDFF BITE
Ed

L »
SR FP Sk Sh kb

Corm e e

H" e,
s ..
o FIESFAT N .
., -
Pone a0t :;5;:

YES * Fc*
» .
»

s3889) | SRSERsSRe #
. =
*LOA AM_10CB =
'AEDgElg 3 AT »
b4 EQF *
SELPASBRAK I RITI &
200

* .
KL *=>
* L]
frre)
....m]#lvﬂ“'i“‘
o

RELOAD ROCA '
-)‘ADDﬁESS IN XR1 *—-—---)'

“’.“.".”'"

N“...“..“m.

s*s» T0:
* bd ROUT

* &

001 % * K2 *
. * -
e nke vane

ANEIK2SIRNSRR AN
L

:---uc;v--notmno
E

:BU:SER aDD nsu

: le;RUgg?ON

BRAES ST OB D OR

snanen

TORDADIFESHERNES S

* LOAD KEY WORK ®
SAREA ADDR fROM »
¢ DTF TD XRL -

» .
P L LT
v
SROSRET 4B EREK SR

* MOV lsCmD
.;“2“ FFlKE“Al ‘
TQ XR1

AFIR S EAXRREIRRRR R

t‘ltlF;ll ll.ll...:

*
' INPU#/OU%PUT »
o LE ADDR 4
””.ﬂtll““ttt.

63 e,
. T '.. JNo
l. Fll. 88 o
“s. .. L et d
., .* *001*
» YES * Fle
L dd * 8
001
* K5 »=>
»
ene
b abbi = bttt did
AM 10 .
L%E L&D laﬁg *
* ADOR Y :
P P L P P Y
s
~->% K2 *
sann

Chart CB (Part 2 of 2). Input Processing Control Routine

4-10

Licensed Material-Property of IBM

.
L LTS LET PPrP T .cu ree
b FILES -,
: ENTRY : %, CLO&ED ‘.DV—'ES—>‘ BS *
SRAABAN S Db G 1 ‘o, ot wane o
S, @ - Ed
shes *"NO . Bs5
fa . .
* A3 L1 1]
+ 83 ‘—),
rne .
sy
= %, L
AR LARESE S AND 83" "=, : CO"NLER b
. Ld o .. -'§ Cll
Sme REYURN » . ». NO «® C NVERSA- « NOQ
» ODRESS AND o ®. OVERFLOW - Wm———a . TIONAL - ———
:HBNlE ADDRESS : ‘.IYPE FlLE.' I *. REPLY ‘..
SETIER BB NS SR AN ‘e, 2" v ‘e, 0"
YES ke YES
. *
* He &
= .
Rk
«$,COMPILERM*ae a¥e .
Cl ., C3 ‘. .,
NO_ .sZONDIVIQNE DS ¢ OVERELOH “w. YES s o s s .. YES
—oa! ng* uf" : TEoE e es s 22 F1 P Ercen” e 5
.. ‘e, UUTPUT % - »
*, . .. n--. ., -
Ty ¥ ‘. _. ., ,®
YES = NO = NO
[hat 3 -.o
.Dl *, ontuugo--tv"mn- D
o it 15 §e YeTohn st ot asoﬁekveu.'
“e, ‘ H 5214:! INST, =« ‘e, ..
., .t
. .x v DT T P T PP 2, -
NO b d YES
- *
——— * H2®
essx NMODEL 10 ONLY
SRPRA «® COMPILER®# % %, a¥,
E1 e, EE * €3 ‘%, FEERSESEASR AN SN
., «hfcy ofe, o s
o F ‘ NO " *, NO YES o* SKIP » PUT _10C8 *
*, TRA % A ‘————)‘ CU B INED o M——s . BLANK * ADORESS IN -
»,SPECIFIED.* FILE ¥ ., ¢ FORCE BUCKET =
. a® - i ., *
., % o, L% B, o SEEsEeRERRARSSSRER
YES YES NO
32" aty
SRS LEFanE e S0 & nOttht-mittcttt " S [p.' Fa ., PSASFFSURRS A RR R
* K ., - = .
* MOVE X'*87° YO STACKER ‘ ..AFTES\ EN‘RY.. YES 010 -« YES SFORCE YHIS FILE*
* RO AY DISP = .SELEq’B ER H DTF. « LESS THAN ,*— ———— Dk, UVSRF oW = 70 BE READ NEXT=*
> XYFFY » b4 1 ‘ ‘-‘ Llﬁg o - CCUR . bd CYCLE =
CERRER A ERRONERA R SEACARER SNBSS IAE ‘s, * TR SAELABSARERES ¥ A
NO NO ntu.
< > * K3 e ——
L]
TR REG LSRG KR FUER n.tn‘czt*ot.mn-n 53' ., GG
LOAD_10CR AD[R © > '-— YES . ke . INTEIE\;(AEF:ND H HE v e
Sl -.——-—n . ..
‘¥0XRE l?& ROCA CA . BEFAFE - = EXTERNAL = ‘BUFPE& gBEUIN »
= ADDR YOXR * » BLANK ,* e 'VERFLOW * - XR2 -
. 'S - * INDICATORS » »
S S D Soprk & @ bk ., .
NG Rl 2]
* HYy ¥-)
v 2nen
S, Hg' e, e, SRR SRR D W RH
o* BIEE », o* SKIP 5.4 R *o - b
NO .*NEE 0 _BE %, ®= BEFORE *, YES o OCLUR OR %, NO * LOAD RQCA *
~—%. TRANSLATED _.* ® . ENTRY & PREY o#~——— *, CONTROLLED o#%=—== *«ADORESS IN XRL ¢
‘l . ¥ *,POSITION o *, CANCEL . » »
-, * .. ot . .t * =
*, * . % ., P T
LT 1] YES NO (33 Rl
. » -
.« A3 ® ————————— . Bs
. »
L1L:) ELY]
EB/01/AL °*. EZ/OL/AL
havSSIFunRaRSARS Teear 2edertenacy FENE Saks JoaNeREIED S
2$$PGAB * » - -, ansvap - SEED J5ESASAKEAND
B l SUFAR CSHNON . %4 =, NO -
b4 ? 1 et UFFER ., OVERFLOH - +——= ‘ CM.I. G hd » EXIY =
bd RANSLATE » " TO ELANKS * OCCUR .= BHALY PRDCESSDR . .
- . .‘ * R 22 g Il Y L]
SRS SR | FR———-4 o, L0 PO P P T P2
* YES AN TO: CALLING
sonn » . ROUTINE
_————> - = ® He »
* K3 *=)> -
. * ene skas
LEZ 2 »
. ,cnnpugnnn * B5 &
KZ SRS I BN ENRRERER .
* . en e
¥CUNDITIDNE60. NO #SET ON [NTERNAL® LN
N PuY oW —== * AND EXTERNAL #~—~--D% H4 »
.. ILES o » INDICATOR . *
. ¥ . e
*, PEIEREBGERAESERE D
£ VES LAl L)
I Pasl
v = L 4
LE il L it
L L]
* A2 ®
L] L]
Ei 2L

Chart CC. Qutput Processing Control Routine

Licensed Material-Property of IBM

Object Program 4-11

Chart CD. Output Fields and Records Code

4-12

CreA L E b bin

»

L4 ENTRY L

- L]
ETT T Ty Tt Y

ntt'a[.ut“tnot.

H.DAD ADDRESS UF'
: BUFFER [N XR2 .

LJ
‘.l.““'l'...m.

SRPPS *COMPILER®#se
Cl ‘..

Lsasm p

", o®
YES

AEBBRD]I S ERAS S 0 »

. .
CLEAR BUFFER YD
: BLANKS :

. *
ARBAARISSORE XS24 S

(—— e

. -CDHPILER“O*
El.

t..-.-.)o ES t
.ALféxﬁm .’

‘. ..

NO

Ei 11}
»FL %>
Rl Tl
WS AE] SRS B akmE

»

HOVE QUTPUT *
PARAHETERS 10 9
TF .

Ed
P T T R Y

1" 0.
5 ..

. -.tn
BNDR"?N « YES “ a3 :
e, RECDR o » Ld

o Py
“a, '?ﬁ
%
* Hl : >
swa
nena

M LA IFER R AR N
0 MOYE PM! s T0 o

*14
‘DIFFERENT FROM ‘
PREV PARM *

. b
RESE SRR SRR DA S

it Fhod
‘FETCHJVFE

‘ CALL FETCH

SEESAB SR AP R OR ARG

.!.COHPXLEK""
.,

.® .,
- PUNCH »
®, AND P wT

*, ON MF .-'

«"YES

SERER0TARS RS AR
* MOVE PUNCH
. FLELDS TO

: QUTPUT BUFFER
EEBEOECORHN AR SRS

SEENAEINEOAIRERE Y
SaufRER THICH 03

- -
BISE RN BURAERE AN D

ERUPBFL AR ASRI RO

.

Stee RER1 002
4

PB TPUT BUFFER :

LLLZ I 21 o B2 223 T)

cC/Q1/
AEPXAGIRIBR SR M ER

' _OPCR VIA LINK

OPROCESS OUTPUT
BERERRRSRESENOR

)

A
L3
Ld
Ld
.

SeeRRpISEERTRRSI Y
*HMOVE_NEW PARMS
L4 70 OTF

LT Y

L d
Ledd i a2l Il lL]

FHAKS JIBARN TR SRS

MOVE RUNCH >
*INAGE FROM §0CA‘
bd 0 EHTFU .
* BUFFER

.
BEEBAPIAP SR RS A OB &

PIERBU TSR E R R
= HOVE RINB 2
hd FIELDS T 14
* DUTPUT BUFFER »

1]
:sz PRINY DNLY :
BERRARE B ERES S D0

Ll g
L3 »
* Ch »-)
» .
(12
V
bad a7 LTI 2T Y
1)

VLSRR

'Y
".“.‘.lltl’.".‘

hhe
L L]
* aS @

ok

Licensed Material-Property of IBM

CCIOI‘ 1

PEBRSAL AR RARS

A
-
=
® OPCR VYIA LINK »
Ll -

[II] /
$RPPS 5-‘ CQ?:’ILER"“

- .,
¥ LASY %, KO
. RECORD al——n
-, M
-, o
-®
YES b
.
» Hle
» x
sxen

PeRRCSEEReRNNES

.

» EXIT -

» -
FONARERRED SR NS

“.“Es'u.“‘.“.
0f Shgned
» KIP

ot d t ol i Lol g 12

——————>

SPBSFESSS RS IR NS
: UUTPUT
Gl

QR FRER DS b kD

L X3 &1

CC/01 IA 1
BEPBIG SHS &S0 4H

I_orca via uimk §

:PRUCES_S outPuY t
BEENES S OB O EERRORR

Re
¥ .“tmstlli‘slgé,‘l

*SSSVRP

_____..._.--.
-~—‘CALL RPGIT HALTS
* PROCESSER b4
R e dbovivid
CONT INUE

bl

BESHA P RARRES A0S

»
: ENTRY e
ABRABAS SuPR S SR
v
o*,
1
.‘ D¥El Lm
‘a0t
YES "ens
oo .
200zs Gl
. > - *
e sees
snee
" l :.-.ogg-.o.-‘--.:
TR “s. YES bd NAL »
->-.qu"|=|.8 %‘h LB I 10 I
. NDICATUR *
&, . -
., & EASESIAN S2E SRS
EEL g KO
*
sCl e
s <
SESERD 1P EHER PSR
® SET OFF 2RC =
* INTERNAL »
. OVERFLOW be
: INCICATDR :
AN SBEAEN IR SA 4R
E1" e, SERSBEI RSSO RS
o s, » F"E?E }8 EONTROLtEO".“ES.."“..‘
¥ T *. _NO b R .
*. OV LOW .‘--—nnyﬁ N ATOR $=———e *. OPERATOR — EXTF¥ *
* . INDICATOR .* . . 1 * DECISION .= CANCEL - .
. s » . .,) SesesRsesURT IR S
., . e T T Py T ., .®
XES 1121 TD: PROGRAM
. e hdddd CONTINUE ?
»Cl CR/DLZAL
- - * F4 3->
sene -
o
«*COMPILER®=P™
F1° ‘s, SRRLGEL 9SSR RAES
IAd ., = SET OFF ALL »
¥ ANY H ®, NO hd RECORD .
®. INDR IN PGM o ®—m—n s IDENTIFYING =
"o ..‘ : INDICATORS b
‘0, o8 PP T L g oy
YES aes
ssen - »
- . » Ey ¥
o GL *~> » .
* - 008
Pl 11
G1" s. SekeaGhRESEARLESe
. .. sens .
.. NY Te.NO & @ * SET OFF 1p; #
.. Hl—Aq ON a8$——=-D>% B§ * b4 Li L9' ﬁl 5&- .
., % » - . ON L0 -
.. .® sase * s
LIS LYY YT AT T EE L 1Y
YES
‘””m‘""yguu w e,
*$SSYRP N .,
—— SV, 4 LR s, YES
. F H1-H9 ON * *, IND[CATOR .#-=+—wewm
. ALL RFE 1L » . N .
SHAL pC SiER * - L bbodrod
Pl Lt 21T ', o »
NO * Dg*
s
%, +*.NDDEL 6 NODEL &
J1l ., J4 .,
o .. L NPT YT o ., s083)5e00ssenen
o* 4, CONTROLLED* b4 o *, YES . .
®, OPERAT a¥————==D8 EXIT L4 *, KEYBOARD .‘——-—-——-)‘ EXIT -
- DEEIS[DN " CANCEL * » ., PR[HARV ¥
*, ENESH ARSI PR HE SESAPRETEIAR A2 S
e -+ TO: PROGRAN "v'ﬁo va: TQT
,counnus) i
CH/01/a1
ofee
. .
* Bga s
. . baaidd Attt]
[T

*L0AD FIRST l(‘CB‘
‘AIJDRESS ‘

*
“nt‘.”nu-'tt

SRk
.noi‘
» gle
.

Chart CE (Part 1 of 2). Input Mainline

Object Program 4-13

Licensed Material-Property of IBM

a1” e,
JEBIITEFN &
_ePULL, FO7, e,
->«. o €LOsP
[o FI
L4

: READ A FILE

(TIPS T YR Y]

-
1 ..
. .

«* EKD OP *. YES
.. PILP a¥m—==
LIS -
. ..
a, e
e KO XY

Leewcomsmna) ®« C3
ooy

RSN 1004
*RECORDID

. I3
:ID!NTIPY RECORD:
LT T T T T Y

esseoflsesstesene
.

.
¢SET BUFPER PHLL®
: BIT ON :

. .
290000 0tbhbteEEeR

SRPPCJ,.’.EOHPILBh“"
L. ‘e, LX T
«®% TRAYIZR e, YFS @ .
.. EPCORD L¥——==>% 3 *
., . v L
.. .. cese
. .2
® NO
YT
’. *
=>% CY o
.
*ene

Chart CE (Part 2 of 2). Input Mainline

4-14

YTy
* g3 ¢
. .
tras
.é.
31 ..
- ..
.. erasr
.. TRATLEY
4. YLANK .
.. L
., ,*
NG ssena
s ue °Q0%e
. 3 I * Cle
°C% o> LR
) &
sese l

et e CIuseooveise
*

.
:LWAD NZXT TOCR

treebe

«
tdo kbt oREs kN

p3" e,
.. ..

END OF e, %O
IOCB CHAIN . #---n
-, .

LN .

-, '.
4 YES (11)]
* []

G3 ..
. *
.¢" END OF e. RO
[N FILE I
‘Y. .
. ‘.
«TYES

: ersor/an
sse0sIo0nssesnbe
AFLEAATCA :
*IF REQUIRED 70 *
o ALTCH FLDS &+
a(LTIPILE LOGIC
LEI S P P Ts 1] T |

— et

w0t jlesesttanne
* STORE ADDRESS ¢
* Q¥ SELECTRD ¢
* PILE INCB IN ¢
» ROCA

.
LA IR YT RYIYRIELY)

Licensed Material-Property of IBM

.
>+ PILEZ: SET OPP

‘ot
» =
« gy e
. *
sane

|

v
+*.CONPILFROesS
fu ., "sasspSenEs e

- . .
* PHOCESS TOTAL
----): CALCULATIONS

.o roTAL e, .
*ZCALCOLATYONS .o .
.. .* "

., .® «
L ssssEsnEEERERE
i 1Y
PO j
v
+®,CCATTL Res e
cu . SeCSeusN0tsen
Wt .,]
.. TOTAL .. * PROCESS TOTAL ¢
., onTeuT . == OUTPOT .
.. . * -
., .. * *
LI EERYITT P RPTYY Y Y 1)
* X0
sseas
001
e 0y e.) ,
sexs

esvaplesecscene
. - ‘.
. FXIT L et
L L4

LIAZ IS IT R Y TN]

TO: LR AND OVERPLOW COHTROL
ROUTINE, CF/0V/a1

(L R T Y Y Y Y Y YY)
*

SPLECT THIS

XXX

: AR I¥DICATOR

coscvicoinOERNO N,

es08) 08000888
. .
. ENTRY *
» »

[2] .081. (2121117
L] .
¢ STORE HETURN ®
. ADDRESS »
L] *
L]
L]

ssessC10bssbbbnns
L]

®5AVE PARAMETERS®
* Pﬂﬂg DTF IN :

s seETeeeS
:OUTPUTPLDS

¢PROCESS ODTPDT *
* OYERTLOW :

08590600502 000008

sssssPIsse0s000e
» *

¢ SET OKR SECOND *
b IRTEERAL .
: OVERPLON BIT :

L1 sevesesR

sEsssGIstsesebin
L

SET OPF FIBST
INTE
OVERFLOV BIT

stshtteskIREID NS

SESSOH (00t RIREY
[] *
. BESTORE .
SPARAMETERS FROM®
* ROCA TO DTF :

»
SO BES P APIIERINES

ses0J|veosssese
. *
» FXIT A
. »
sEesses SRR N

TO: CALLING BOGTINE

Chart CF. Fetch Overflow

Object Program 4-15

Licensed Material-Property of IBM

REAFALEA0SNRNRS
- ENTRY »
. »
PP ERRE LIRS RS

SEBURR | NEEEEDRROH

DAD INPUT
'BUFFER ADRRESS

*
»
*
b d
-

La R 2ot 2ottt 2]

C6/91/
s L L LT R
SUNSEQ
. PROCESS

* UNSEQUENCED ’

u-tutmmntttnt

aneRD>

e ne
- *

* EL &>
- »
L
SRPPF

a® COHPILER'

any
EILES ans ..,
EREE0 40"

-

o*
YES

tt.t.czt et
' g NCED
EoR

LTI e T

ion.-ttt

't‘.npzo
x NE

‘ UENCEO '

L ECA Ld

:PARAHETEQ INTO :

2EBEPIRY

at-*--no

rreRsesen

o
E2 .
.

. PROCESS *
:SEQUENCED FILES:
BREFEFR VTR RIS S B AR
(LT
- -
* Gl *-)
L] *
(LTS

SRANAG [K SH GRS AR
‘lNlT AMLIZE XR]l *

0 _MOVE *
' UNSEQUENCED *
: PART PARM, :
PEIANR RS ND AN N kb

‘#."H&!".l'..t‘:
* UNSEQUENCED =
he P)k’ BF PARN *
R
AEPIAN2AEH AR S

SRPPF .
JL

=* ANY
-'Fltis lYH L
., QUENCED
*, RECORDS .=
., e
" .t

LRl
- »
=>% G2 *
» .

e

YES * »
Temanade B2 8
- L]

*
v LY
LR # YES
* *
* G2 »
L] L]
T
FASS ELTT T
* [
=

SET ON »
SMANDATARY FOUND=
= BIT IN INCB =

SREREARREEINRRSND
EuE

- .

® G2 »=>
- -

LE L

snsG? sen

-

. EXTT -
- =
Ly e e S 1)

TG: INPUT MAINLINE
CE/02/R3

.COHPILEI"“

it

Chart CG (Part 1 of 2). Record ID

4-16

ey
"

« NQ o,
* 6L gcmmmel

ELELY

utntnsgnnn.toctto

s o
‘DlSPLd EHENT TG'<——-——___'_‘

* NEXT TRa
FLITTTE T S PE T T 1

UNSEQ

BEEBALREFEEERD D
.
* ENTRY »
* «
REREREAFR RN NS

e

. L

* B4 *->
. .
i

SRPPF % COMPILER® ses
.

BAREOLLRIRNRIIOEN
' CHANGE nﬁl 10 :

‘ 90@ lON N *
- FER .
:t.!.‘.”.l".‘t‘

.CONP!LER."'

YE< .' l?YNGRE .,

cict

e oo

‘e,
. NU

SRPPF .t.CUHPlLEthc.

- NeaoEs .
EATLER s

EERRAHLSSATEI RS
-

b4 LOA lgCB *
:ADDRES IN X®2 :

* L]
FARERRRFEAFERANED

v
LIRS NTRT LS L2 L]

»
* EXIY e
* »

YINEANIEISENRRY
T0: lN?UT
MATHLINE
CE/Ol/AZ

Licensed Material-Property of IBM

COMPILERSS #%
SRPPF ’,

‘.
" RE hd
ﬂECORDS ™
FILES .

YES
-

* ..-
«2"RECOROS N T
*, FILE .

-, Ml

LI
N

=]

.-..ﬁ5.¥nnonnn.
- -
* EXIT *
[PP e e

0 BRHATop

TRANSIENY

SEQ

AemBAZRR0RRN 04
»
* ENTRY] .
) »
AR REERSISONRY
sxae
& B2 #->
2w
82" ‘», Pl e LT TR
i JEL LT LT YT » »
=® KUME RDUS - YES * CLEAR REGORD »
= ENTRY 2 - *, MANDATORY | e’ >% FDUND BIT IN #
* .. SE - - 1oce »
BTSN EEASSSRND *, -*
LI) SR USREFRASNEIN S
* NO
<
SRPPF_ . .OCINPILE‘!“"
c2 O...'C:ootoo‘.v.o
(111} .'BIFFE
. » - . £ T o
® L2 =D, PO ;?Y .'--—----)'Cﬂﬂ?i é g
- hd *, QUTSIDI E -‘ * TEST Pl'lSl"DN ’
e ®, XRL .* .
. . oa-ton-t»ttonu-oo
NO
<
'- SllPPFD3 I COHP!LER*‘"
S
o
. POS !E? NEET WEs L P?&"!ﬂs --—->¢ 2y
Te, .0 Sy .
j ND
v
SRPPF .‘.CUHPILER‘OO. .
€2 EB U. BOFFEEL SR BONC OO K
o - -
YES .* ONE ‘- ‘ HERDUS “a, YES *RESET TD ENTRY *
—-——, HINDAEURY ¥ », NDl ORY s ¥-—=————=D 2 -
g SE « FOUND » .
. . . b .
o ‘el L ABEERAARDHSERR LS
EICT) * NO NO
* »
*x K2 *
- -
sy
LY SRPPF .x.CUHPlLER“"
FL~ e. 2 . SeereFdsitnanstes
- ., . .
YES .* RECORD ., YES <% NUMERCUS .‘- . ‘ﬂESET TO ENTRY ‘
—#%, FOQUND 8IT .8{————9%. MNANDATORY -
., OFF N . SEQ . ' ‘
*, - ., .. .
" . ., . o.'utt-'ctt---too
LT * NO NO
- »
» K2 &
- »
PTEE) >
SRPPF . # COMPILER#*»#e
6z ». v
SRBGINBASSS S
*. YES »
o nsc§28§ IN o9 » EXIT [Y S—— ——
ILE . l -
. . SesRRRRENRSERN
., .» v
“e N0 ol TC: CALLING RCUTINE
. B2 ¥
* .
ah
SRPPF . ®.CORFILERG#®®
H2 *,
o* v,
«® ALL SEQ ». %O
-, EC S et
’.EFTIONAL -
. o
., .4
YES .towa
g2
- -
sase
.
J2 .,
.* .,
., IN LCOP a¥mman
. "
., .»
YES s033
LE L] » L]
* * » BZ ¢
» K2 ¥=> * »
» . s
oo
v
SRAOKZe md n o AR
-
» EXIT »
* -
VEEVBBABLIRR NS

TO: £PS RALY OCES SOR
#RINSIENT EZ/OL7AY

Chart CG (Part 2 of 2). Record ID

Licensed Material-Property of IBM

Object Program 4-17

RfcRbrels
Alessess
. ENTRY :

“.il‘{iu“.li“‘
.

S5 DF‘
ILE »
INTO XR2 3

L2220)

tl'
o prIMary .
éus

s. FIL ECtOS

» OR
..
.,

Laddd e Ll il gl
. .

YES

'——-—)‘ SEY ON LR :

L)
”on'a----:uttu-
NO

., HESOD2ARE A SN
. 4

CH/OL/AS
PIRS S ASN S

OO‘IAS'

TN
WORK” AXEi® §
PARFPE SRS SRERD

EevesELaRRTNSIIRL

?‘\JIE WORK AREA .
: SAVE AREA »

. -
PRI A L

————>

greeiGiesnrsavey
b "y
‘SET OFfF WFFER *
FULL BIT = . E3 8¢
L
» » ssss
PO P T L T T

...tmlon:t.'nntn
IN ROCA®
MY
.

IR SEIRIAREE HEN S

ARPRJIFRRSORDEE

. .

» EXIT :
ETTE L PRI Y 2y
TO: {NPYY MAINLINE
0 t‘.EIglllzl

Chart CH (Part 1 of 2). Multifile Logic

4-18

RURITER FLRERMTT

ECJ CHECK HOVE
[TPTTR ITY YT PTY FEIS A4 INEB OIS Seosp500s0
. .
L4 ENTRY * L ENTRY = - ENTRY L4
Se000 0000800000 SeeIRseRAREIRAG 40Pt et sand Tk
2SSk eRI RIS ANNGN S :‘tl‘“.ult“‘..: ‘.‘.ﬂs*--t..tt‘.t
.
‘lNIT 12€ 1/0 » * MCYE PRIMARY @ ‘SAVE RECORD 1D
lDUT NE ADDRE S: : {ace INTD xR2 : ‘ !NDlg ?on EN
: » . . .
L4 . ssssssssesesebe
ey
.
® Cq 9>
L)
sane
shsesCiIssesanansy [TSR BRI SERBRTOTRRA
. .® .. . *
ND .® SN -
.., SPECZF!ED ‘FlELx‘g AN]’ H2 o
"o FOR FILE %" ‘
.
ARORNABARSIVES2E ., .o n'.".l.--l‘..l‘.i
YES
- CHMPILER®®e®
JLENL O e R 5
N .o prmary’te ..’ “s. NO ASCENDING " MO
—o, FILE AB EOF o ., EOF ¥ —— .SEQ S’EC[FIED.'---
., OR <L SED . *, »®
., . . o
‘e, o, ,® L YRS
VES YES 400 YES bbbl d
L
e] . Ga e . Jse
. s s
ssen sees
CHOlES L
#esEIoessssnans
[&NCREHE . YES
® NEXT E!.EHENT : ta—
. » "
PEERPINEPSEBOAEEY
s
13 s sses .
s L4 @ . * KSe
* £S5 =) P
asee . senn
e
SREFBFLISIATIARS S Pl T L DL T
. »
- . $SET OFF *FFGF be
- SET ON LR * » fULL BI
. . ToC8
. . »
BAERZXAENCXIRAAN D SHSEPEEER D kR
L3
* G4 &>
L) L)
esnes
OGE- .- nnu-!unou wESIGSEERRIESRS
ND oofILE RKOT ats,
., E0F OR * . EXIT . - EXIT -
, CLOSED
. . senesenessatER HOAEIRINSRNEISS
., ,®
YFS§ TO: JNPUY MAINLINE TO: RPG] HALY
sane EEN!IJa m&:egson
13 »* {€2/0174))
» 43 >
s
atncmgn.nucn.ot
= SET OFF INPUY n
.EUFFER FULL 8(Te
2
Tesenssansrenanss
»hew
P ———
)5 S—m
oo
ttntugtgoto;ttn‘ JS. ".
» STOR URRENT »
=[0CH ADDRESS INs . HZ <0R “e. NO
#ROCA AT X'98' £» sl abmm—y
L d x*gq9¢ . ., -
. b3 .. .
BIREAPREREXIERAD B o, .5 v
YES 2850
8o s ®
» » & F5e
K5) * e
. “exe
sens
¥
TISKIIRADSAY AN at.nxsoo.nn-n‘
- .
M EXIT ol » ExIT -
ssesvedeseInIse sessessssemn e
TO: FOJ CHECK TO: CALUING ROUTINE

Licensed Material-Property of IBM

BULTIPLE PILES WITH
HATCHIRG PIELDS
SRR TINEEE RO
L]
: ENTRY :
CEEBRERER GO Ok “orn e
» - . L]
. B2 e s B3 =
. - . .
L1 22 (311
.=, ..
SPRREP (PSR RASAE . B ., EEFXGOBSEI N RN R NS
= SET ON SN H <*SECORD-*. - L *, .
® T0 IWITIALIZE ¢ -®ARY PILE AT®. YES - s, YRS *«NOYE H2 XH S1*
4 “volo 3a . *. " BOP OR lemcsa . 2 = B1 #maieee—e>eAND H2 INTO 52 ®
- a) . *. CLOSED _.* *
. . ., . ., -* »*, o* * -
PERESERES SRS XB D ¥ _* -, *, .® L] [T 13 733 1) L]
*"¥0 *“yes *« N0
*
*C3 >
sees * -
EES
NOTE -
AEPFIC | EIREDRDAOS 2 ., CHERECINENEEE 20N CESSECHFEAE400 4%
. . «*SECOND- * . . .
. . .* aRY PILE 's. 3O . . “NOVE B2 INTO 511
* INITIALIZE H1 ® * HAVE MATCHING.®——-- *H0YE K1 INTD S1¥ *AND H2 INTO S2 *
. - ., BLDS » . » -
. 1
VBN EE SOOI OARES ., L0 FOSNE GRS RS OSSR SENREESEIAAIIRINS
* YES PRI TY
* * ..‘.
2 Pk »
» » -)0 Bq c
a0 E
....

2084419000 0ENES
. .
*¥QVE ADDRESS D!'

seER] 26
YE

*HOVE FIELDS 1EDe
*CHRECK SEQUENCE :

PITI IS T EY
.

® LOAD XR2 WITH *
‘IOCB ADDRESS Il'
SAVE AREA

» I
SRR ERSGE0 GG EEE D BOFREERIEEREIISES ..‘ L1222 T2 1T]
<,
LT T T T Y 22 e, SHOSIESESLeree
. - - » »
¢ STORE XR2 IN .* SWITCE -, 5 b o) N1 .
* ROCA_AT DISP * - OR e IIDICITOR *
X*DE! - . . . -
. 'R
SERR O IRNRIR OB ORS - SES ORI NR I RO NS
* YBS

L
17 e, sensaplaesestensy P3 - SRRIUPLSASOIEIEE S
- - - ., L d - e PSACRI R RS
.*” PRINARY _®. YES M . . HO * SEY OFFP MR * .
o, FPILE EOF OR .®---~ *SET SWITCH OPY * o0 H2 € Bl at—aen ¢ CTNDICATOR * . PXIT »
. "CLosEp » » N .
s . l . . ' secsnssesttaIne
“w .= EIY T TTE LT DTS ., . RETTPTT EIRT LY 2
e 4 sann T0: INPUT
. . * MALNLIN
31 : J1 : CR/02/3
e > LITY]
a®.
Gj ., ssessnesn ENESGHIEENIRERNS
., . »
" HASCHING "%, NO . . ® STORE ¥a2 IK
. PIELDS O - O ——— ®NOVE H2 INTO BIi1* SX*9At AND X?9B!
« PRINARY .®* . L4 . .
E .* . . . »
e 2 ¥ LAZA IR L 2t] (LA AT RS 1 1 l] 2]
* YES LI L1
. »
» Py ®
* []
enen
CH/03/A1
sesssfissessasann sseesfIesenarsten
‘HO'B 002ASe * STORE XR2 Iw » Ses[iesnsInen
O - a—m— ®SECORDARY WORK * -
*HOVE PIELDS AND® * AREA AT DISP = . EXIT *
‘CHICK SEQUENCE ‘ . X‘DB’ . bd -
. sERBIBEETRERORS
LTI T T T P TS
10: EOJ CARCK
sene Ca/03/a4
->¢ J1 »
» *
L1 1]
ssesejesssunenss
» »
*NOVE ADDRESS OP»
*HZXT TOCH IKTO *
» XR2 :
T T P YT T
HY CONTAINS X'FP'S
IP ¥ATCH PIELDS IN
ASCEBDIRG _SEQUENCE
R ... 1/03/31 ORt X700*
K1 -, K2 ., .".‘Ka“"“."‘ DECENDING SRQUENCE
® L L ‘HO'B 0022 5'
«* PRIBAKY ¢. YES IMARY &_. NO .- ——— =W
L I0CB e s ~>%_ FILE EOP OB .®~—--==w- > Ho'l PI!L“S ANDe
e o 0SED o 'CHECK SEQUERCE :
Ce, .8 T o..."-o'-t'."o'
* NO * YBS
oo
1 ;
> C3 o
sxsn = ssee
. . ooy . .
* B2 e * B) &
. L] . -
"oy "Eew

Chart CH (Part 2 of 2). Multifile Logic
Object Program 4-19

Licensed Material-Property of IBM

LXILTYETITI LT

* ENTRY -

. »
LIRS AT T)

”“ wu-”ot

-paB‘éEiéeS‘ fise B2

ROCA INTO Xﬂl .
ARINERBISSIEBARRE

Ladddi']]'".”!ll‘=

®SET OFF ?FFEN .
o]V I8 §

L .
SR NS MR RARERHAB S

P it Ll LS o LT
ECORD *

S phAa S
OFS h‘ll?ﬁ CQRO=>
. TYRE be

. .
208600 00%RBRARES N

«®,COMPILER®®&n
L S
o® BSCA_ ».

«* WITH CON- o, ND

oo VERSATIONAL o%——
‘-‘ REPLY ..'

a e

YES

“ ‘tsé‘llsc':'l“l
iR ek

*
..tt..‘t‘n.‘.t“.i

[——

«* . COMPILEROw 0w
K1 v,

.t -. Py
-* CONTROL e. N .
S 101 0 T
*. PROGRAH .o . .
ELT Y]
'. .‘
* YES
-é,b; R Y1}
...'FIELESUHN -.. A
T, RIE&RD .- Haot
*, »hos
’, "
YES
LIl 2]
» -
» B3 »
- -
Lt 1]

Chart CI. Control Fields L.0gic and Move

4-20

bbbt - e bdeidutndataded
» MOV CDNYFDL .
* HOL Rs .
SPRTME WORK AREA‘
L IN ROC

- .
LAt ER LRSI 2]]

SEF _NOTEL
kAL IR EE DR,
®SET ON CONTROL *

:PROCE ggkgs INOR :
. IN ROCA .

- »
RRPPEIRRAERAOER S

¥ __SEE NUYEZ
ttcttn et 12

'ADDR% d
ZCHR RO ohIRER £
PENENPEIBSVINGIN N

SaevRflcnsANG AN S

.
* LOAD BUFFER_»
:ABDRESS IN XR2 :

* .
LZTTIYETI LTS L] Y

Ea TR T I TTT I Y)

RAresIIIBLIRENILS
.
.-ESRK [384
% HLO AREAS *. YES
*,0F CNTRL L at———a
*. "INDRS .
*.SANE .e
., .
NO
Ll L2]
& H3 »=>
nsas

'SET APPROPRIA"F.
ONTROL LEVEL =
= INDICATOR AND .
:ALL LOWER lNDRS:

SRRV ER DI AIARR Y

[S ——

Besev 3ERs s een
»

»
SR Rolh T "hGlos
: ARFA bd
SIxssutsttnsssnn

Note 1: This code tests the field record relation indicator.
If the indicators are on, the ficlds are moved. If the control
break is alphabetic, an MVC instruction is used for the
move. If the control break is numeric, a ZAZ instruction

is used. If the break is packed numeric, the Unpack sub-
routine is called.

Note 2: Control levels are check in descending sequence
from L9 to LO.

v G4 ®
- -
Er T

Gé& .,

" -
YES .* LR .,
—_—n, lNOéClTOR -*
L N -

NO

_.;IEDEE"B.DC. NO

afmm——

"o, weses 5e0asibsnn

v * SET ON Ti h!. -
——-—>-CVCLE 33! < lN:

L [P T T
* YE§
———————— —>
ssaskaslonsosns e
.
: EXIY : : EXIT -
2200000 ensseRn seseasesarnsene
TC: Y?TAL LALCS YO LR _AND WN?FLW
PROCESS C

{ CE’L!,W-

Licensed Material-Property of IBM

I ANTROL
Yle INPUY MATNL INE
CE/02/D%)

RS LITYCLTTITY]
.
. ENTRY -
s »
SRR SR IS FA kb

SPESABLAIRRAN SR

»
* STORE RETURN =
- ADDRESS *
» .
* *
EREDIEIRFRIRS D

FrseaClernenasien

.L AD WORK AREA t
DRESS IN XR2 ®» :

"
't.".'l’l.'tt‘t"

LTI TP PYYYY

»
RETURN =
ORESS

.

* STORE
b ADI “»
* »

bd »
LS B RERRXIRIND &

fatdd g t 2L T2 L1 Lol
t .

BESIVESIVE SE SRS S

nn‘wp-nt-t-"t
s

* SE ECORD =
TheRY (EYINE° 1

: INDIC. :
RSB UREEREBHES S

ut'm ---onttuv.
MOV, T
‘IDDRE

OF_ 0D E
‘FU? HOVE FlELDS.-—-—-_--

BRARCH .
BERIAERSEEVRD SRS

Iwersslaseensanyy
SBRANCH YO MOV

PE
ssua

» DS FOR TH St——-——-
FlEt . H

L
Eed P2 oL

SIS SUES S0
.

COMPILERS®S»
.....ogoolnoooot
EXIY »
¥ seskenaEINNFOIS
»®
READ TE: RPG HALT PROCESSOR
E2/0L/A1
EZ/01/A1
SEERIEANANKSFIRE
:llSYRP :

* 1 HALT »
» P OCESSOR -
» »

BBOEBASENINIES9D
CONT INUE

“”‘t RPN RN EHE
6¢ ROCA

e ADDR (1) XR%'

*ADD D RETURN®
*ADDR REREAD *
'ANOTNE ECORD »

REKSBEREAVETAINRS

FEDRGIRAARA S EDS
. EXIT &
. .

BRANCH ADOR
F MOVE FIELDS
.ll.l lS ESTABLISHED

Chart CJ. Chain and Read

Licensed Material-Property of IBM

Object Program 4-21

4-22

ssssj(sssvenesns

.
* ENRTRY =
. .
LLALI AR L LY L3 11
. .
¥ Bl s
. .
saes
v
% - &
BY . Bl ..
-® - TPy YTIS T Y] . .
- ¢ LR « YBS be * .* *. YE
. IHDICATOR .————--= =2 BXIT 4 ¢, INTEHHAL AR .*---~
. oN . . . ¢, INDE ON .
00NN NNEEEREINE ., e
., e
TO: PROGRAM ® NO

CL
ch/01,01

o2 «
* PROCESS .
: OVEERPLOW :
FERERERARUPIIEI O
P — 1

SaseRE | atBETERPPR
[.

¢ SET IO TEST ¢
& FEXT OVERPLOW ¢
: INDICATOR d

(22211 T 1]

5
2
:
B

00000 1090000800
.

e SET OPF AL
*PIRST INTERMN
SOYERFLOW IND]
LITY 1]

L 3

T TV ITY [T
.

[
®SET O EXTERNAL®
SAATCRING RECORD®
. INDICATOR :

L PRI T2 TP T L2

Chart CK. LR and Overflow Control Mainline

e esCIcsatantsss

CATORB 4
ssessosentRoseen

.

.

» SET OFF .
¢ EXTERNAL HR ¢
. INDI

L]

.

PO T mp——

« COAPILER® #os
., 2

D3 DG esesROREs S
L .

.
s ®PRAOCESS DETAIL
----->: CALCULATIONS

- ..
% DETAIL &,
®.CALCUOLATIONS
., ..
»

. .
COENERSENNONN OGRS

- eSS EF O REs oRERAS
-

C
.
., .
L ¢. YES *PROCESS DETAIL
T . >: oUTPeNT

sesePIcetsocans
-

.
. BXIT .
L] L]
S0RAGEE SO ARG ER
TO: INPUT MAYWLINE
CE/OV/AN

Licensed Material-Property of IBM

s808] 10esesanse
*

: ENInY 4
L
sesseesastbEL cren
l L *
* 03 &
» L
cone
*EESSQ IEs st s8¢ GIS kNN O NN N
M LUAD TOCB i - *
*ALCRESS OF FILFRe b UPDATE .
*PQCESSED FRUM = *JOISPLACEMENT TO*
: Lace : : NEXT TaAILER :
PEOCEEIEEHIBUSEEY SEEesAEREERE RS RS
-, -®e
c1 L cl *,
.* *,
. FIELUS . & END OF *, YFS
‘..TD BE NOVED o®==xa .., sBCOaD Wmm———
“e, Y ‘s, Lo
- - ¢,
* YES ses s « no
. *
« P3 & j
L *
seve
¥,
sssee] o sencoane D3 ., ssdsepysRsERECE NS
3 * e . . .
¢ LUAD INPUT = =* TRAILER *. YkS . .
*BUPF2s ADDEESS ¢ .. BLAKK a#=~~a~vew~>% KESET TABLE ¢
» INTO Xk2 . ‘.. ok - *
» . .
SePEEEEIEELEREEES Te, o0" VEEESNGELRENENEE Y
*« NO
CUB RSP 10C kR Re [ILYT S TR T YTy
& MOVE START ¢ . .
*ALDRESS OF ROVEe *SET BUFFER PULL®
¢ZIELD CGDE FkoOae .)] .
:IOCB TO ERANCL : : :
CLT LTI LYY P YL Y ssaNEEINENIRNSS
skee
. .
* P3 *->
. . L —————— X
=deos
- ®. CORPILFA% e &
S¥GESF I ovesRESERS P3 .,
& MHOVE FIELDS ¢ - -
*FHOM BUPFEN TO * - LOOX- ®. NQ
®FIELD AREA POR ¢ ®. AHEAD IX - Fmm————- d
*A HECOKD GhOUP *. FROGRAN .e v
. . ., .. casse
Se00ossoRsbéostes L S 2002
¢ YES . Jle
..
.

(AL TATTTE T YFT VY
L *
MY :LGAE ADDRESS OP:
:LODK-IHEID IOCB:

soes
- .
s P3 &
- *
sesd
(I REI TR I T Y Y [l dd EE LIS TITE L]
. DD . . SET OF? .
$CISPLACEMENT IN® *LOOK~AHEAD EOF =
b TQ . ® INDICATOR I¥
:CURRBIT TRAILER® : BOCA :
.
L T TR Y T Y T Y SeEREOEFIOSOIRROES
(LI I ARE LT ITT] 31 Lada A FELELEY YT EL XS
. . . »
. ’ * LOAD LINKAGE =
* NOYE TRAILEAS *» SADDRESS TO IPCna®
* b - IX¥ XEB1 .
. « . .
LTIV E L P Ty Y LTI L Y TR T Y
eee so0rs
. = 0002
* B3 * * AY*
. * . x

Chart CL (Part 1 of 2). Move Input Fields Mainline

Object Program 4-23

Licensed Material-Property of 1BM

P58 u1

/02/¢
CcLy02/r2

tensepjesees . eavsej)essrsascee eesoeifn000s00000

ONPAL . T .

. SLGCK=RBZAL FUE ® * STORE LETUUK =

. heay A . *“IKDICATCK Ix o PADDLESH: STOKE ®

SLLIK=ANEAT Fll.¢ . ROCA : ® XRY TH HRAHCH »

. - M .

28000000000V IdRS H000 0SSR IRIENRRS (LR

< ., sess ke

. READ &
:LOOK-AﬂEA.) riL
seesss

FEPPE 9. COMPILKpevee -..
F1 ., £2 L '....z,......l‘.. koo iuvennsstece AL LI LS LT RR R Y]]
.. . ., i * *S5ET 29 EOF FOb o . .
e T15¢ .. «* LIND CF *, YF5 * *OVE 9°'s e * LNOK-AHEAD . S5ET ON IDENTITY®
==t CEVICE - ., FILF aPeemaca— > eTu (UG EUFZR O0-------= >® JRUICATOR [H SSWITCH 1s IOCB ®
. .. ., FOCA . . .
.. K ., L. ® » . i . .
o, . s, .o dseersstesensnene sevennessssesnine (1Y
yis L
---------- >
. Sedsrsne
. . aseupnacsseensse
* USE CeedCh . . .
* OUTHOT RHFECE . EX ST .
. . . .
L] » L] 80040000 028000
TAPCBRFOSAPIOIDNGS shtvsentssEsORERY
TO3
CALI NG
leeecmmeme> 201 1a ¥
S FL UL ILENS TS
. sai|ss0wvvisy 32 - L .nv(;]n....tl
. .’ -, N
. +® LZTAIL S5 GXTAa
L4 ‘. CaLLS CTLATIORS
* . -
* ., «? «
. L avessesecenee
* N

savesi et ey ensens sessagiveesssenee
- o .

LCCF =l hD® .
o T £)elDy FPOM SoT aETAlL Tel vas 0n0CESY UETAlL ®
CHNPLFL I6 LATA * el cuiiif TemIlaeecnde JTMT .
eAeras Lol FILE @
13 LY

S9WSpIteveivesang . . RIGAABPOIBOTIRINGS

xsam] evesvenie
.

24

CALCULITT LSS
. *ECONDS £ WLE
. 27 « W oa 180t
Wor017ad)
EERR Y RS R YR AT)

v
sssseyteooer
]

LT

Chart CL (Part 2 of 2). Move Input Fields Mainline

Licensed Material-Property of IBM

CONTROLLED CANCEL
SBERA) S HORESENS
- »
: ENTER 1 b4
PERRk AR O TR ORI

THeeepl s avranes

) 4, _es 35" X

.. BEFBRE ..
.

hd -
unnunuua. ‘e, ®
i NO
L]
n--ocpiﬁut NORMAL EOJ
V00 0C 200 FREIS 0N
» SET_ON CEUSE -
‘ ENTER : * ENTER 2
» SOBSENIEI RS
*

“‘.-’ulﬂ““”

<

. .CUHP!L ER #4340

Dl
‘e,

tR
---‘.CALCULAT lDIS e
.‘
YES

HASSHE 0k ER ROTHY
»

.
* %DP THE .
SBRAMCH _TO TOTALx
: PUT *

»
P DS SR N ID $

badald 2 £ L2 T DL P
o PR S§ LR .
:CAL%EA‘?IDNS :

[.
=sesen eann

o
® TDTA "o, YES
.,] B‘ Y
., Y
*

.
3
**aho

B e)

[—

u---uouﬁuun:
¢ PROCESS TOTAL
* DE‘?NT t s
* .
.
-

-
S0 E R 09 ik kb S,

T ol et ot T T T
PRO R
Oflfgtsﬁ't

CEPPNO SV A kAR

senae
assaan

.--(.SUHP ILER »8en

Chart CM. Program Close Mainline

YES
L

«® ,COMPILFR ®ens
A3

.

oq JABLE L e.
->#. OR_ARRAY YO #=-ux
> o R BONvEg e

s, .0
YFS

EQ/017A1
P F s ety

-
ANFRRSPIR S HERE SN

>«

«%,COMP R sase
.I:S EO ILE

"s. NO
‘- SPE e
*8f EOE AN »®

. .0
YES

SEE NOTE 1

:anm;»unun

.

O A kk S £QR ®
is EéVlCE ‘

it brkaennanstre

bandde = hind bidtiid
xl éO' INTO »
€ap AlE# IN®
SPECIAL DOTE :
SERS PETIAD HAAENS

un-radn-nt--m
- A o
. CALL SEEECUL :

“-.““u........

SBECEGISERESIR IR
L d

L
®LDAO ADDRESS OF®
® FIRSY_10C® 1N »
- XR1 x

L L
XOREPAREDH ¢ RSREAD

tnnggm-tnnan
»CLOS 3

.
: :CLOSE
PY Pl T TR TTEY T

EX1Y
“‘.‘."'t."..
TO: SSPEJ

OFf JOA TRAES!ENT

Licensed Material-Property of IBM

Object Program 4-25

CALCULATIONS OBJECT CODE

This section discusses the sequence of operations per-
formed by the object code generated for each permis-
ible RPG II calculation operation code. Knowledge of
the following introductory information is required to
understand the discussions of individual specifications,

Abbrevigtions Used in This Section

ARR Address recall register

DF1 Number of decimal positions in Factor 1
DF2 Number of decimal positions in Factor 2
DRF Number of decimal positions in Result Field
DTT Define the table

Fl1 Factor 1 (refers to heading on RPG II Calcula-
tion sheet)

F2 Factor 2 (refers to heading on RPG II Calcula-
tion sheet)

IAR Instruction address register

10CB Input/output control block

LF1 Length of Factor 1

LEF2 Length of Factor 2

LRF Length of Result Field

RF Result Field (refers to heading on RPG II Cal-
culation sheet)

ROCA Reserved object communications area

XR1 Index register 1

XR2 Index register 2

Use of Entire Arrays

When any calculation specifies an unindexed array as a
factor, the calculation operation must be performed on
every element in that array. For example, when moving a
field to an array, the field must be moved to every ele-
ment in that array, If more than one array is used in an
operation, processing is terminated when the end of the
array with the fewest elements is reached.

Use of Tables

If tables are specified anywhere except as Factor 2 witha
LOKUP operation, only the last looked-up element is

used in the operation. If the table is referenced before

a LOKUP operation, the first element in the table is used.
For a description of LOKUP, see Library of Subroutines in
this section.

426

Use of RPG 1i Subroutines

Library subroutines used by the object program are
selected by Pre-Assemble phase SRPMP. During object
program execution, linkage to each subroutine is done
with an unconditional branch followed by a parameter
list. For a flowchart and description of each subroutine,
including the format of the parameter list, see Library of
Subroutines,

Use of XR1

Index register 1 (XR1) contains the address of ROCA. It
is always restored to that address if changed by any part
of the object program.

Use of Conditioning Indicators

Conditioning indicators must be set as specified in the
calculation specifications if each operation is to take
place. Indicators are tested based on how they aze spec-
ified in the Calculation Specifications sheet. If the indi-
cator must be ON to perform the operation, a TBN in-
struction is generated to test the indicator. If the
indicator must be OFF to perform the operation, then a
TBEF instruction is used to test the indicator. A JUMP
FALSE instruction is used to bypass an operation. If
there are any duplicate indicators, the operations they
condition are bypassed with a JUMP FALSE. For
example, if three adjacent indicators were:

01,02 ADD
01,02 SUB
02,03 ADD

The first group of indicators (01, 02) would be tested.
But the second group of indicators (01, 02) would not be
tested. They would be bypassed using a JUMP FALSE
instruction, since the second set of indicators is the same
as the first. The next indicator group tested would be
02, 03.

Obtaining Addresses Used in Calculations

The addresses of fields and constants are fixed and are
available to the Assemble phases when the object pro-
gram is generated. The individual discussions of calcula-
tion specifications make no reference to the procedure for
obtaining the table element or array field addresses unless
a different procedure is required. For example, a phase
sets a bit on if the table element address or array pointer
is moved into some instruction other than the mainline

Licensed Material-Property of IBM

instruction, The addresses of table elements and array
fields must be obtained by the object program in the
following manner,

Table Elements: Moves the address of the last-found (or
last looked-up) table element from the DTT of the
referenced table (see Data Areas for DTT description) into
the address portion of the main instruction.,

Array with Variable Index: Branches to the Array Index
subroutine with parameters telling the subroutine to move
the address of the specified element into the address
portion of the main instruction,

Array with Integer Index: Treats this array like a field
since the address of the desired or referenced element is
calculated at compile time.

Entire Arrays: Processes every field in the array using a
program loop to:

° Initialize the pointer to the array by placing the
address of the first element of the array given in
the DTT (see Data Areas) in either an index register
used by the mainline instruction or in the mainline
instructions.

® Process one array field.
® Add the length of one element to the array pointer.

® Compare the address contained in the array pointer
to the address of the last field in the DTT.

® Branch back to the mainline instruction if all ele-
ments have not been processed.

Methods of Preserving Decimal Integrity

Aligning the Decimal Point: Decimal alignment is neces-
sary only for addition or subtraction performed in the
prime work area of ROCA. In addition or subtraction, the
first decimal position is assumed to be at byte 17 in the
prime work area,

The compiler generates instructions to initialize the prime
work area. The prime work area is indexed by XR1 witha
displacement computed to assure that the first decimal
position is always in byte 17. The displacement is calcu-
lated by the formula, D = 16 + DF1 (D = 16, since byte 16

contains the last byte of the factor to the left of decimal
place), For example, to generate the instruction to move a
Factor 1 field which is eight digits long with four decimal
positions (D = 16 + 4 = 20), the instruction generation
would be:

ZAZ 20(16,XR1),F1(8)

Displacements for other factors are calculated in a similar
manner. In multiplication and division, decimal integrity
is maintained.

Half Adjusting: Half adjusting in an arithmetic operation
is meaningful only in the following cases:

1. Addition/subtraction — when DRF<DF1] or DF2,
2. Multiplication — when DRF<DF1 +DF2.

3. Division — all cases.

4. Square root — all cases.

After the result is calculated in the prime work area, the
one digit to the right of the sign position of the result is
added to itself and the Result Field. For example, a Re-
sult Field five digits long with three decimal positions is
calculated to be 17.6527. The sign position is the 2 so the
half adjust operation is as follows:

17.6527
7
17.6534

The position to the right of the sign is then dropped when
the result is moved from the work area to the field.

Retaining the Sign: IBM System/3 arithmetic operations
are performed on numeric fields in zoned decimal format
(see Calculation Specification Descriptions, SQRT). The
sign is always retained in the zone portion of the right-
most byte of the numeric field. Correct results from
arithmetic operations depend on the proper location of
the sign. Thus, before some arithmetic operations can be
performed on fields of unequal lengths, the sign position
of one of the fields must be adjusted (shifted left or
right) to match the sign position of the second field. In
the same way, if the calculated result contains a different
number of decimal positions than the Result Field, the
sign position of the result must be adjusted to match the
sign position of the Result Field. An MZZ instruction is
used to move the sign to its proper location. In general,
if the Result Field contains more decimal positions than

Object Program 4-27

Licensed Material-Property of IBM

either Factor 1 or Factor 2, the prime work area must
be cleared to binary zeros before the factors are proc-
essed there.

Calculation Specification Descriptions

Calculation specifications are discussed in alphabetical
order. Conditional instructions, present only in certain
cases, are enclosed in brackets ([]). Notes are included
where necessary.

ADD

The ADD specification causes Factor 1 and Factor 2 to
be added together and the sum placed in the Result Field.
The sequence of operations is:

[CLEAR the prime work area in ROCA to binary
zeros if DRF is greater than both DF1 and DF2.]

[MOVE the longest factor to the prime work area
using a ZAZ instruction. If the instruction which
clears the prime work area is present, an AZ in-
struction is used instead of a ZAZ instruction.]

[ADJUST the sign of the moved factor to match the

sign position:

1. The Result Field if either F1 or F2 = RF and
DF1 = DF2.

2. The shortest factor if DF1 = DF2 = DRF.]

ADD the factors using an AZ instruction, If F1 or
F2 = RF and the instruction which adjusts the sign is
present, the factor in the prime work area is added
directly to the Result Field; otherwise, the factors
are added in the prime work area.

[HALF ADJUST the sum.]

[ADJUST the sign position of the sum to match the
sign position of the Result Field.]

[MOVE the sum to the Result Field using a ZAZ
instruction.]

Note: See Methods of Preserving Decimal Integrity for a
discussion of sign adjustment and half adjusting.

4-28

BEGSR

The BEGSR (begin subroutine) specification signifies the
beginning of a subroutine written by the RPG I user. The
main instruction is:

STORE the ARR in the return branch generated by
the ENDSR specification. This instruction is followed
by the object code generated for the user-written sub--
routine.

BITON

The BITON specification causes the bits specified in
Factor 2 to be set on in the Result Field. A 1-byte field
name can be substituted for Factor 2. The bits from that
byte are then used. A special set of control instructions
are required if Factor 2 is not a literal and/or the Result
Field is a table/array tag. The main instruction is:

SET bits on using an SBN instruction.

BITOF

The BITOF specification causes the bits specified in
Factor 2 to be set off in the Result Field. A 1-byte name
can be substituted for Factor 2. The bits from that byte
are then used. A special set of control instructions are
required if Factor 2 is not a literal andfor the Result Field
is a table/array tag. The main instruction is:

SET bjts off using an SBF instruction.

CHAIN (Chart DA)

The CHAIN specification allows direct access to a disk
file during calculations in the program cycle. The se-
quence of operations is:

READ a record by branching to the Input Processing
Control routine (IPCR).

BRANCH to the Record ID routine and Move Input
Fields Mainline to identify the record and move fields.
cCOoMP
The COMP (compare) specification causes Factor 1 to be

compared to Factor 2. The factors must either be both
alphameric or both numeric. If one alphameric field is

Licensed Material-Property of IBM

" shorter than the other, the shorter field is padded to the
right with blanks before the compare. Numeric fields are
aligned according to the decimal point. Short fields are
padded to the left and right with zeros.

If an alternate collating sequence is specified, the sequence
of operation is:

[BRANCH to the Alternate Collating Sequence sub-
routine. The branch is followed by parameters (see
Library of Subroutines). The alternate collating se-
quence subroutine performs the comparison; no other
instructions are present for one COMP statement.]

Numeric fields are compared as follows:

[CLEAR the prime work area to binary zeros if
DF1#DF2.]

MOVE Factor 1 to the prime work area with a ZAZ
instruction if D1=D2 and subtract Factor 2 from
Factor 1. If DF1#DF2, the factor with shorter deci-
mals (either Factor 1 or Factor 2) is moved into the
prime work area.

[ADJUST the sign position of the factor in the prime
work area to match the sign position of the longer
factor if the instruction which clears the prime work
area is present.]

SET the condition register by subtracting the remaining
factor from the factor in the prime work area.

BRANCH to the Set Resuiting Indicators subroutine.
The branch is follwed by parameters (see Library of
Subroutines).

Alphameric fields of equal lengths are compared as
follows:

COMPARE the two factors using a CLC instruction
with the addresses of the factors,

Alphameric fields of unequal length are compared as
follows:

LOAD XR?2 with a pointer to a byte in the longest
factor such that the number of bytes to the left of
the pointer equals the number of bytes in the shorter
factor.

COMPARE the shorter factor to the bytes in the
longer factor to the left of the pointer using a CLC
instruction.

JUMP not equal around the following instructions to
the branch instruction.

TEST the first byte of the longer factor to the right of
the pointer for a blank using a CLI instruction.

JUMP, if not a blank, around the following instruction.

TEST the remainder of the longer field for blanks
using a CLC instruction.

Note: The condition register may be set by any of the
three compare instructions.

BRANCH to the Set Resulting Indicators subroutine.
The branch is follwed by parameters (see Library of
Subroutines).

DEBUG

The DEBUG specification provides a source listing during
program execution of:

1. All RPG Il indicators that are on.
2. Aliteral for identification purposes (optional).

3. The contents of any one field {optional). The main
instruction is:

BRANCH to the DEBUG subroutine. The branch is
followed by parameters (see Library of Subroutines).

DIv
The DIV (divide) specification causes Factor 1 to be
divided by Factor 2 with the quotient being placed in the
Result Field. The sequence of operations is:
[PLACE the addresses of table elements or array fields
in the ZAZ instructions which move the factors to the
prime work area of ROCA.]

CLEAR the prime work area to binary zeros.

MOVE Factor 2 to the prime work area using a ZAZ
instruction.

MOVE Factor 1 to the prime work area using a ZAZ
instruction,

BRANCH to the Divide subroutine. No parameters
follow the branch (see Library of Subroutines).

Object Program 4-29

- Licensed Material-Property of IBM

[HALF ADJUST the quotient.]

[ADJUST the sign position of the quotient to match
the sign position of the Result Field.]

MOVE the quotient to the Result Field using a ZAZ
instruction.

Note: See Methods of Preserving Decimal Integrity for a
discussion of sign adjustment and half adjusting,

| DSPLY (Chart DB - Models 6, 10, and 12; Chart EO -
Model 15)

The DSPLY specification displays either Factor 1, Result
Field, or both on a console device. If the Result Field is -
displayed, the operator is allowed to alter that field. The
sequence of operation is as follows:

Models 6, 10, and 12: Branch to OPCR to:

1. Print DSPLY.

2. Display contents of Factor 1 if specified.

3. Display contents of Result Field if specified.

4. Place the reply into the Result Field if there is a
reply.

Model 15:

1. Clear the prime work area of ROCA to binary zeros.

2. Move Factor 1 to bytes 0 — n of the prime work
area if specified.

3. Move Result Field to bytes 36 — n of the prime
work area if specified.

4, Setup 2-byte parameter list (see Library of Sub-
routines).

5. Branch to DSPLY subroutine.

Note: If the Result Field is alphameric, it is left justified;
if the Result Field is numeric, it is right justified.

ENDSR
The ENDSR (end subroutine) specification signifies the

end of a subroutine written by the RPG Il user. The main
instruction is:

4-30

BRANCH to the return address stored by the BEGSR
statement. Object code generated for the user-written
subroutine precedes this instruction.

EXCPT

The EXCPT (exception output) specification causes
output to be performed during detail or total calculations.
The main instruction is:

BRANCH to the output routine for all exception files.

Note: Records are built exactly as normal output records
are built (see Detailed Object Program Flow).

EXIT

The EXIT specification causes a branch of the main
routine to a subroutine. The EXIT specification can also
be used with the RLABL specification (see RLABL). The
main instruction is:

BRANCH to the subroutine specified. The subroutine
name is resolved by the linkage editor.

EXSR

The EXSR (execute subroutine) specification causes a
branch to be taken to a user-written subroutine for which
the first and last instructions were generated by BEGSR
and ENDSR statements. The main instruction generated
is:

BRANCH to the subroutine entry point. The compiler
places the subroutine entry point in the branch instruc-
tion.

FORCE (Chart DC)

The FORCE specification causes the next record for
processing to be taken from the file specified as Factor 2.
The sequence of operations is:

LOAD the address of the forced file IOCB into XR2.

TEST if file is at end of file. [so, jump around next
statement.

STORE addreses of the forced IOCB and the file
IOCB in the prime work area in ROCA.

Licensed Material-Property of IBM

GOT0
The GOTO specification causes a branch to be taken to
the specified TAG or ENDSR address. The main instruc-
tion is:
BRANCH to the TAG or ENDSR address. The com-
piler places the TAG or ENDSR address in the branch
instruction.
KEY (Model 6 Only)
The KEY specification allows fields to be keyed from the
keyboard at calculation time. Alphameric fields are left
justified, and numeric fields are right justified. Depend-
ing on what is specified, the operation is treated in one of

three ways:

1. Display Mode — Place keyed field into main
storage location and display on printer.

2. Store Only Mode — Place keyed field into main
storage location (no display).

3. Manual Mode — Keyed field is displayed (doesn’t
g0 into main storage).

Each KEY specification requires the following code:
MOVE parameters to the DTF
LOAD JOCB address into XR2
BRANCH to IPCR
If there are resulting indicators, the following code is
generated for a numeric field before the branch to the
Set Resulting Indicator routine:
o I-byte field
[LOAD the field address into XR2]
[ZAZ the field to set the condition code]
® Greater than 1-byte field

[LOAD the field address into XR2]

[ADD to register so it points to right end minus 1
of field]

[ZAZ the field to set the condition code]

[JUMP past following DC]

[DC a 2-byte constant of field length minus 2]
The following code is generated for an alphameric field:
® 1-byte field

[LOAD the field address info XR2]

[CLI the field to set the condition code]
® Greater than 1-byte field

[LOAD the field address into XR2]

[ADD to register so it points to right end minus
1 of field]

[CLI right byte of field to test for a blank]
[INE around next CLC]

[JUMP past following DC]

[DC a 2-byte constant of field length minus 2]

If the KEY field is an array element or 2 table element the
following code is generated first:

[SLC to adjust the right hand element address
(as determined by array control to the left hand
element address) to be used by the rest of the
KEY object code]

For SET/KEY combinations, see the description of the
SET operation code in this section,

LOKUP (Chart DD)

The LOKUP (look-up) specification causes elements of the
table or array specified as Factor 2 to be compared against
a field specified as Factor 1 until the userspecified setting
of the condition register is reached. The sequence of
operations is:

SET off resulting indicators.
MOVE the address of the last found element to the

LOKUP parameter list if Factor 1 is a table. If Factor
1 is an array with variable index:

Object Program 4-31

Licensed Material-Property of IBM

1. Branch to the Array Index subroutine

2. Store the calculated array element address in the
LOKUP parameter list.

BRANCH to the LOKUP subroutine,

SET on the appropriate resulting indicator if the de-
sired conditions have been met.

MHHZO

The MHHZO (move high-high zone) specification causes
the zone portion of the leftmost byte of Factor 2 to be
moved to the zone portion of the leftmost byte of the
Result Field. The sequence of operations is:

[OBTAIN the address of the leftmost byte of array
fields or table elements. If only one factor is an array
or table element:

1. Load XR2 with a negative constant, 1 minus L,
where L is the length of the field.

2. Add the field address XR2, If both factors are
arrays or table elements, the preceding procedure

is used for Factor 2 along with these instructions:

a. Load XRI1 with a negative constant, 1 minus
LRF.
b. Add the address of the Result Field to XR1.]

MOVE the zone portion of the leftmost byte of Factor
2 to the zone portion of the leftmost byte of the
Result Field using an MZZ instruction.

[RESTORE XR1.]

MHLZO

The MHLZO (move high-low zone) specification causes
the zone portion of the leftmost byte of Factor 2 to be
moved to the zone portion of the rightmost byte of the
Result Field. The sequence of operations is:

[OBTAIN the address of the leftmost byte of Factor 2
as follows if Factor 2 is an array or table element:

1. Load XR2 with a negative constant, 1-LF2.

2. Add the field address to XR2.]

4.32

MOVE the zone portion of the leftmost byte of Factor
2 to the zone portion of the rightmost byte of the
Result Field using an MZZ instruction.

MLHZO

The MLHZO (move low-high zone) specification causes
the zone portion of the rightmost byte of Factor 2 to be
moved to the zone portion of the leftmost byte of the
Result Field. The sequence of operations is:

[OBTAIN the address of the Result Field as follows
if the Result Field is an array or table element:

1. Load XR2 with a negative constant, 1 minus
LRF,
2. Add the field address to XR2.]

MOVE the zone of the ripghtmost byte of Factor 2 to
the zone of the leftmost byte of the Result Field using
an MZZ instruction.

MLLZO

The MLLZO (move low-low zone) specification causes
the zone portion of the rightmost byte of Factor 2 to be
moved to the zone portion of the rightmost byte of the
Result Field. The main instruction is:

MOVE the zone portion of the rightmost byte of
Factor 2 to the zone portion of the rightmost byte of
the Result Field using an MZZ instruction.

MOVE

The MOVE specification causes the specified Factor 2 to
be moved into the Result Field. If the Result Field is
shorter than Factor 2, the leftmost bytes of Factor 2 are
truncated. The main instruction is:

MOVE Factor 2 to the Result Field using an MVC
instruction,

Note: If the Result Field is numeric, 2 ZAZ instruction
is used instead of an MVC instruction.

Licensed Material-Property of IBM

MOVEA

The MOVEA (move array) specification causes characters
from Factor 2 to be moved to the leftmost positions of
the Result Field. If the Result Field is shorter than
Factor 2, the excess rightmost bytes of Factor 2 are not
moved. If the Result Field is longer than Factor 2, the
characters to the right of the data moved to the Result
Field will remain unchanged. The sequence of operations
is:

BUILD the ten-byte parameter list which follows the
branch instruction (see Library of Subroutines).

BRANCH to the MOVEA subroutine.

SET the move length to the shorter of the Factor 2
and Result Field lengths.

DETERMINE the proper addresses.

MOVE Factor 2 to the Result Field, using an MVC
instruction.

Note: Fither Factor 2 or the Result Field must reference
an alphameric array. However, both Factor 2 and the
Result Field cannot reference the same array.

MOVEL

The MOVEL (move-left) specification causes characters
from Factor 2 to be moved to the leftmost positions of
the Result Field. If the Result Field is shorter than Factor
2, the excess rightmost bytes of Factor 2 are not moved.
The sequence of operations is:

[ADJUST the address of the longer field to assure that
the leftmost bytes of the Result Field are filled by the
equal number of leftmost bytes of Factor 2
(LF2+#LRF):

1. Load XR2 with a negative constant, LS minus
LL, where LS is the length of the shorter field
and LL is the length of the longer field.

2. Add the address of the longer field to XR2.]

MOVE Factor 2 to the Result Field using an MVC
instruction.

Note: If the Result Field is numeric, a ZAZ instruction
is used instead of an MVC instruction.

MOVE the sign of Factor 2 to the sign position of the
Result Field using an MZZ instruction if the Result
Field is numeric and Factor 2 is longer than the
Resuit Field.

[FORCE the sign position (zone portion of the right-
most byte) of the result field to an F zone using an
SBN instruction, unless the sign of Factor 2 is minus;
then FORCE the sign position of the result field to a D

zone using a SBF instruction.]

MULT

The MULT (multiply) specification causes Factor 2 to be
multiplied by Factor 1 with the product being placed in
the Result Field. The sequence of operations is:

[PLACE the address of field, table, or array elements
in the ZAZ instructions which move the factors to or
from the prime work area in ROCA rather than in the

main instruction itself.]

MOVE Factor 1 to the prime work area using a ZAZ
instruction.

MOVE Factor 2 to the prime work area using a ZAZ
instruction.

MOVE length parameter to the prime work area using a
MVI instruction (Model 15 only).

BRANCH to the Multiply subroutine. No parameters
follow the branch (see Library of Subroutines).

[HALF ADJUST the product.]

[ADJUST the sign position of the product to match
the sign position of the Result Field.]

MOVE the product to the Result Field usinga ZAZ
instruction.

Note: See Methods of Preserving Decimal Integrity for a
discussion of sign adjustment and half adjusting.

Object Program 4-33

Licensed Material-Property of IBM

MVR

The MVR (move remainder) specification causes the re-
mainder of the preceding DIV operation to be moved to
the specified field. The sequence of operations is:

[ADJUST the sign position of the remainder to match
the sign positién of the Result Fieid.]

MOVE the remainder to the Result Field using a ZAZ
instruction.

READ (Chart DE)

The READ operation code calls for immediate input from
a demand file during calculations in the program cycle.
The sequence of operations is:

READ a record by branching to the Input Processing
Control routine (IPCR).

BRANCEH to the Chain and Read subsegment to
identify the record and move fields.

Note: K the continue option is taken on the un-
identified-record halt, another record is read imme-
diately from the demand file.

RLABL

The RLABL specification generates a 3-byte parameter
list for each field and array ftable and each indicator
with IN followed by two letters of a valid indicator
{example: INL3). The parameter list is used by the user-
coded subroutine used with EXIT. The sequence of
operations is:

BRANCH to a user-coded subroutine.
USE and check the RLABL parameter list.

RETURN to the next sequential instruction after the
RLABL parameter list.

SET (Madel 6)

The SET specification allows control of the printer
through spacing, skipping, and positioning the print ele-
ment and through setting command key indicators on or
off. If more than one function is specified, the printer
control code is generated before the command key code.

4-34

The following code is generated for printer control:
MOVE parameters to DTF

BRANCH to OPCR

The following code is generated if command key indi-
cators are specified:

LOAD IOCB address into XR?2
MOVE parameters to DTF
BRANCH TO IPCR

BRANCH to command key indicator set routine
followed by a parameter pointing to the allowed
command keys and the depressed command keys. See
Parameters to Data Management in this section for
more information about the parameters.

The fol]qwing code is generated for ledger card eject:
MOVE eject parameter to the DTF
BRANCH to OPCR

Tab sets are built into a table and followed by KEY,
which has a parameter pointing to the table.

The special SET/KEY combination will cause the
allowed command keys from the SET to be placed in the
KEY parameters. This eliminates the above command
key code except for branch to the Indicator Set routine
allowing both functions with one program start.

SETLL

The SETLL (set lower limit) specification causes the
content of Factor 1 to be moved to the low key limits
area associated with the file being processed by limits
given in Factor 2. EOF conditions are set in the DTF to
indicate to Data Management that a new set of limits
must be defined on subsequent read operations to the
specified file. An EOF condition is also set off in the
appropriate [OCB for IPCR considerations. The sequence
of operations is:

PACK the contents of Factor 1 (if the key is in unpacked

format and requires packing) via a branch to the Pack
routine.

MOVE Factor 1 to the low key area, using a MVC
instruction.

Licensed Material-Property of IBM

MOVE the EQOF condition to the DTF, using an MVI
instruction and a X‘42’ mask.

SET off the End of File bits in the IOCB, using the
SBF instruction and the X‘80° mask.

SET on the indicator bits in the DTF to indicate to
Data Management to check for EOF using an SBN
instruction and the X‘40’ mask.

SETOF

The SETOF (set indicator off) specification causes the
specified RPG 1l indicators to be set off. The main in-
struction is:

SET an indicator off by using an SBF instruction.

One SBF instruction is present for each indicator
specified in the SETOF specification if no optimization
can be performed. If a command key indicator is set
off, additional instructions LIO and DC are added for
each indicator to turn off the associated command key
light(s) on the console.

SETON

The SETON (set indicator on) specification causes the
specified RPG Ilindicators to be set on. The main in-
struction is:

SET an indicator on using an SBN instruction. One
SBN instruction is present for each indicator specified
in the SETON specification if no optimization can be
performed.

SQRT

The SQRT (square root) specification causes the square
root of Factor 2 to be placed in the Result Field. The
main instruction is:

BRANCH to the SQRT subroutine. The branch is
followed by parameters (see Library of Subroutines).
The parameters built by compiler phase $RPQF tell
this subroutine how to adjust the size of the source
‘field (Factor 2) to the size needed by the Result Field.
For every decimal and whole number in the Result
Field, two decimal places and whole numbers are
needed in the source field.

SuUB

The SUB (subtract) specification causes Factor 2 to be
subtracted from Factor 1 with the result being moved to
the Result Field. The sequence of operations is:

[CLEAR the prime work area in ROCA to binary zeros
if DRF>DF1 and DF2.}

MOVE Factor 1 to the prime work area using a ZAZ
instruction. If the instruction which clears the prime
work area is present, an AZ instruction is used instead
of a ZAZ instruction.

[ADJUST the sign pbsition of Factor 1 to match the
sign position of Factor 2.]

SUBTRACT Factor 2 from Factor 1 using an SZ
instruction.

[ADJUST the sign position of the result to match the
sign position of the Result Field.]

[MOVE the result of the Result Field using a ZAZ
instruction.]

Note: See Methods of Preserving Decimal Integrity fora
discussion of sign adjustment and half adjusting.

TAG

The TAG specification signifies a point to which any
GOTO statement may branch. No object code is gener-
ated for this statement.

TESTB

The TESTB (test bits) specification causes the bits speci-
fied in Factor 2 to be tested in the Result Field. A 1-byte
field name can be substituted for Factor 2. The bits from
that byte are then used. A special set of control instruc-
tions are required if Factor 2 is other than a literal and/or
if the Result Field is a table or array with variable index.
If all bits are off, an indicator in columns 54-55 is set on.
If all bits are on, an indicator in columns 58-59 is set on.
If the bits are mixed, an indicator in columns 56-57 is set
on, The main instructions are:

TEST bits on or off using a TBN or TBF instruction.
JUMP true or false (JT or JF).
SET on the RPG Il indicators as specified using a

SBN instruction. Indicators are set off if the condition
does not exist.

Object Program 4-35

Licensed Material-Property of IBM

TESTZ

The TESTZ (test zone) specification causes the leftmost
byte of an alphameric Result Field to be tested. Resulting
indicators are used to determine the results of the test.
The zone portion of the +and A through I characters
causes the plus indicator to be set on. The zone portion of
the -(minus) and J through R characters causes the minus
indicator to be set on. All other characters, when tested,
cause the blank indicator to be set on. The sequence of
operations is:

[OBTAIN the address of the array or table element
specified as the Result Field as follows:

1. Load XR2 with a nepative constant, 1 minus
LRF,

2. Add the field address to XR2.]

MOVE the leftmost byte of the Result Field to the
prime work area in ROCA.,

BRANCH to the Test Zone subroutine. No parameters
follow the branch (see Library of Subroutines).

TIME (Mode! 15 Only}

The TIME specification causes the TIME, or TIME and
system DATE to be placed in a field, indexed array element,
or table entry. Where it is placed depends on the 6 or 12
byte numeric result field. The sequence of operations is:

1. Point XR2 to the beginning of ROCA.

2. Move a flag byte of 0 to byte 0 of ROCA requesting
the time and date in decimal units.

3. Place time and system date in bytes 1-12 of ROCA
using Supervisor call with TIME of day RIB request

(X96").

4. Move the requested 6 or 12 bytes from ROCA to the
result field.

XFOOT
The XFOOT (crossfoot) specification causes all fields in
an array specified as Factor 2 to be added together. The

result is placed in another field specified as the Result
Field. The sequence of operations is:

CLEAR the prime work area to binary zeros.

ADD a field of the array to the prime work area.

4-36

Note: Normal array loop control is present. The main
instruction is executed for each field in the array.

[HALF ADJUST the sum.]

[ADJUST the sign position of the sum to match the
sign position of the Result Field.]

MOVE the sum to the Result Field using a ZAZ
instruction.

Note: See Methods of Preserving Decimal Integrity for
a discussion of sign adjustment and half adjusting.

Z-ADD

The Z-ADD (zero and add) specification causes Factor 2
to be added to the Result Field after the Result Field is
set to decimal zeros. The sequence of operations is:

MOVE Factor 2 to the prime work area in ROCA
using a ZAZ instruction.

[HALF ADJUST Factor 2.]

{ADJUST the sign position of Factor 2 to match the
sign position of the Result Field.] .

MOVE Factor 2 to the Result Field using a ZAZ
instruction.

Note: See Methods of Preserving Decimal Integrity for a
discussion of sign adjustment and half adjusting,

Z-SUB

The Z-SUB (zero and subtract) specification causes the
negative value of Factor 2 to be placed in the Result Field.
The sequence of operations is:

CLEAR the prime work area in ROCA to logical zeros.

SUBTRACT Factor 2 from the prime work area using
an SZ instruction.

{HALF ADJUST the result.]

[ADJUST the sign position of the result to match the
sign position of the Result Field.]

MOVE the result from the prime work area to the
Result Field.

Note: See Methods of Preserving Decimal Integrity for a
discussion of sign adjustment and half adjusting.

Licensed Material-Property of IBM

» g3 ®
L
$2PQT %, COMPILER®A%w $RPQT .#.COMPILER®%¢3 CL/QL/AL
B3 s, Bs s, [l it L
LT ST o2 PP EY *CHATNEREAD
» «* RECORD ». YES «® OUTPUT », NO B o e e e e
* ENTRY - ., FOUND o« S—————aD0, FILE bd >OHOVE FIELDS AND®
. » ., . ., STDENTEFY RECORD®
BEFSSRIIRISE LR ., - » »
., .= eIt tRnesn 2]
ND
SAPQY _+®.COMPILERY®¢»
SRR] BATRARSTRE 22U 280 EINB DS c3 ., v
L d » L d " ., BAKSCALERDRODHA A
» AD TQCB » ® SET INDICATOR * YES - .. . »
* ADDHESS ?ﬁ") » » BN Blmmmmmm B, !NDICAT')R e - EXIT .
L4 XR2 » L4 » », GIVEN .» » »
» i » . L - ELI 2 L L] (111]
- » ., L.®
N TO: CALLING ROUTINE
v
*neh
» »
* 3 Ch»
[} ., » [(LI R IITIITTTY]
at® . 2ok .
=" EFILE ». NO » hOAD 10C8 *
L OPEN o S ® AQDRESS INTO ¢
., - . XR1 .
' .x »
., . v BARASHOISAEIN SIS
YES sees
»
»Co®
» .
[11 0]
NN IRRRAS MRS BANRGL 3D
: : *$4SYRP .
*PREPARE 105 KEY® SCALL RPGII HALT®
: b : PROCESSOR .
s P T TR P TR

o

-

. » C4 :

SEAOUF [4848 00 Ukn » .

. . men
T oaEsnfile s
g N
BRSNS EIFIS 48 0Y
CB/OL/AL

saGleseissdnas
R .

——————

.
PROCESS INPUT :
EXTE T LI S T

Chart DA. CHAIN Operation Code

Object Progrtam 4-37

Licensed Material-Property of IBM

4-38

exen) fasesnwoae
- -
. ENTRY .
» -
SN FRGEO RSO RS

ssosspIeREERTRONS
. -
SHOVE 'DSPLY’ To*
* BYYFS 0-0 I¥ &
: OUTPUT BOPFER :
SEFFEFEIERURASONE

serReC e .99433{5
.

- -
:PROC!SS 00TROT :
WEEEESEONE RN BONR S

1 e,
»
a®

=, &
* YRS

"o essP |BSEes BN BED
L d [
*= NOVE FPACTOR 1 »
*T0 BYTES 1-N OF®
* QUTPUT BOPPER :
-

.-.--p1--n554- 42
*OPCR :
Emeceeramsan -

= -
:PROC!SS 0UTPOT :
EEEEEEEENE SN SRS &

Commmam=

.*_COMPIL®
G1 .,
P ..
-*® RESOLT .,
=, FIELD . *
'-EPECIP!!E.'

= YRS

RN IS EDNESENE D
»

»
* #OVE RESOLT =
SFIELD TO OITPUT®
= BOFPFER *
.

L]
EEEBLEVIROE NN

Chart DB. DSPLY Operation Code

1

. .,
PACTOR =, NO
‘.. SPECIFIED ..‘----

1

Resss

NO

—

L1L L]
.....53.".E${2:{=‘

s .
:?ROC!SS OUTPUT :

SESPEEASOKKFFRD D

1" e,
-. ‘-
. REPLY Teaaa
. e
L
" yrs

bbb ELLLITIE AL 1]

.
* BOYE_PEPLY TO *
: PIZLD :

. .
SEEADEREARERI GO 0D

SESSSTICNENERAEN S

* BLANK OUTPOT
: BOYTER

(XXX X}

-
SRS ESHEEEEEEE RO
"eee

- -

* P3 >
L] L]

SEXAPIN SRS RARRS

.
bd 2XIT .
- .

TO1 CALLING ROUTINE

Licensed Material-Property of IBM

BRG] 19000000 N
L]

: EBNTRY :

(ITITITATYTIT LT
LTIV LTI T2 T)
* ENTRY .
» .
S0UH O SRISO 00

LTI AL LI T T Y 2

. *

b4 LOAD YOCB .

ADDRESS_IETO *

: IR2 :

SOEUIIIITOGOIIRSSE
henep [ussnnsense

» b d
: es T;NG :
: INOICATORS :
ﬂ.o ~CONPILERS#e® P YT T T Ty o
P'ﬂ.l e,
%0 .& COIIDI X0 *.
p-m—o EXTAN .*
‘. 'l D -*
- a® ¥y
8, .= c1 ., o-oooczuu.nuo
L] ®
YES v¢" WHAT (S “s. TABLE orcve LAST FOUND'
—~%. FACTOR 1 .¢=————De EMENT
*, o -IAMHE (1 I. st H
EITHER ®, .®
. . We0esesev Rttt
M ARRAY- INDEX
D1 L
= ..
- FILE LI |
.. OPEN R
“e. ra “nnop--.u'-u:
., .8
" YES SCALCULATE SYARTE
s UHRSTAE 2
SAESASUTRIRI S0 H
.., —smmameaa)
RS ! “e. <
. END OY o, YESY
‘.. FILE ‘,o—--- senesE]e ‘gglgyll
" o 039p6(C
. . el ____.b
., . .
* B8O % PROCESS LOKUP
SRR IINIFIRRRIBRS
...."] » ‘Qh...‘.
RE ADDEESS ' M
oor roncxn Ioch 3 baiebd # M Adtvigubii
. o . . gsgﬂmc S
000080866600 00000 L4 {gxfw SuggES'S .
-
.l..‘..‘.....”.:
Cmmam
seeeG1e
. . M
: — : LTI T TTY P
SNBSS ROFENSOIT K : ExtT :
SEINTISOINNNTES
Chart DC. FORCE Operation Code Chart DD, LOKUP Operation Code

Obfect Program 4-39

Licensed Material-Property of IBM

SUNB 10 sRIRS RN

ERTRY
esttavensase e R

- L

c1’
"

L2400 A0 KN

EX1T
SEERECRED SRR ED

otou To CAL
ROV l
' c2

* C Oﬂsxgoukﬂﬁ ."!

v VES

-5t
*

L1123

o* . ot.n:zt;-:.g.-n
.. X AT
BP !CASC!L

[y

NSRS Rb R SN

SHIOSE A&

*
: PROCESS INPUT *
AEEIESEN SRR 0N &

Gl. “a

e

.

“see
L4 *
>t €3 '

ao--

.- YES

N
NO

ttu‘.‘..ttt
‘CHA!N AD -

tuOvE FIELDS Ano-
TNDENTIFY

“'."EEE“H'O'.'

" ‘.“
»*
., losgs?r?eo .’t————>- 63 .
i, % ..-n
.,
NO
.‘.‘
->n DL -
. ."

“e"

Chart DE. READ Operation Code

L LI T T PP Y
1867 c8¥on

L4
...l.t..“.‘..‘..

L d
[
*
v
ose
.
g3
- *
seae

*eaasD3 8s
‘lSSVﬂF

2T RPSIT RALT
PROCE SSGR

LI LIT LTI PE LTS B

.
E3
e

- - -, *
LS Stataenld -~ quRABIOR ..‘------>:CDNTROL CANCEL :
SR OEINRBAENIRED

’, Rl AN LT T LT

‘ .
“a" CONT INUE
e
L]

L
*« F3 8=>
L -
eas
»e

Lid
sERBIERTE
NOIC

.
AsEs bt b

31!-...::01
1F=

»

*
ATOR b4

.
e il Lt]

L
* -
G3 #-——=D0
- »

TEBEGIRSEEINONS
EX1T

LEZ AT LET T T T

O EibhidE

11

LIBRARY OF SUBROUTINES

Some RPG II functions and data conversions are per-
formed by subroutines rather than by in-ine sequential
instructions. For example, multiplication is performed by
the Multiply subroutine and table files are loaded by the
Load Object Tables subroutine. The subroutines reside

in the object library during compilation. They are selected
by the Pre-Assemble and Assemble phases and included

in the object program overlay segments by the Oveslay
phases.

The entry point to each subroutine is the last four
characters of the phase name. The exit from each of the
subroutine is to the calling routine, Figure 4-3 shows the
object program flow of the subroutines.

Licensed Material-Property of IBM

Input

- Asray to be saarched,
. Addrass in ARR which points to the
following 7-byte parameter fist:

Procass

-E

Output

$SPGAA Chert: EA
Array Index Subroutine

Retrieves address of the nth fiefd in an array, where n is the
value of the index in an input, calculations, or output-format
specification. This subroutine is used when a specified tield in
an array is required.

> Address of the specified array field in the
2-byte area pointed to by bytes 5-8 of the
parameter list.

Byte Contents

01 Addressof DTT.

23 Address of index.

4 Length minus one of index.

56 Destination of calculated add|
of specitied entry.

U -

® Addressof ROCAIn XRI[
® Address of the 10CB in XR2

e Buffer length in the IOCB

[] Translate table

L] Switch in ROCA at X'FF’ to tell if this
call is to translate input or transiete

$3SPGAB Chart: EB

File translate Subroutine

Replsces characters in an entry in the translate table. The
tirst character of each 2-byte element in the table is compared
against the input data in the input buffer. When a comparison
is found, the second byte of the transiate table is replaced

by the first byte. For output the first byte of the transiate
table is replaced by the second by1e,

[Translated buffer

output:

X'BO" = Input
X‘B7" = Output

Return

) -

® XRipoinstoROCA[
e First 130 bytes of the prime work ares
in ROCA
e ARR which points to 3 8-byte parameter
list in this format:
Contents
Rightmost address of the number
10 be processed

$$PGAC Chart: EC
Square Root Subrautine

Finds the square root of any zoned decimal number with or
without decimal places by tinding the number of significant
digits in the source and squaring sucoessively smatier numbers
until the exact root Is found. The result is automatically

hslf adjusted.

:> The resuit is placed in the address located in
bytes 3-4 of the parameter list.

Rightmost address ot the resulting

root

4 Length minus one of fisld to be
processad in bits 0-3 and length
minus one of result tield In bits
4.7

5 Number of places 10 adjust decimal
positions of the field to be pro-
cessed

6 Number of places ta adjust decimal
positions of the tield atter square
root completed

7 Number of places to adjust source

to find proper result

-

Figure 4-3 (Part 1 of 9). Library of Subroutines

Licensed Material-Property of IBM

Note 1: SQRT requires adjusting the source
tields to fit the result field. For every
decimal and whole number in the
result field, thers must be two
decimals and two whole numbers in
the source field. In-ine object code
sends parameters to the Square Root
subroutine tetling how to adjust the
source field {reduce it or enlarge it).
The meaximum length a source field
can be adjusted to is 30 bytes.

Object Program 4-41

Input

0,

Output

e BSCA preopen DTF "> $3PGBB

BSCA Logic for Transmit and Receive

L] Translate table

Chart: €D

Places table element address into the BSCA pre-open
DTF if the table element address was specified for Dial
Number or Station |Ds on the telacommunications
specifications.

Updated BSCA pre-open DTF

L Translated Station 1Ds

@ BSCA pre-open DTF |

L Translate wsble

° Translatas station |Ds using the translate table, if file
wenslation was specified for the BSCA file.
> $SPGBC Chart: EE

BSCA Logic for Conversational

Places tabla elemant address into the BSCA pre-open
DTF it the table slement address was specified for dial
number or station (Ds an the telecommunications
specifications.

Translates station |1Ds to USA Standerd Code for
Information intarchange (ASCII) by using the trans-
Iate 1able, if ASC1) is specified on the telecommunica-
tions specifications.

Updated BSCA pre-open DTF

] Translated station 1Ds

i

. BSCA pre-open DTF

. Translate table

Address in ARR which points to the following
Sbyte parametes list:

Byte Contents

01 Rightmost address of the decimal
field.

23 Displacement from XR2 of the
rightmost part of the binary field.

4 Binary length minus one in bits
0-3 and decimel length minus one
in bits 4-7.

$$PGBG

Chart: EF

8SCA Logic for Receive

Places table element address into the BSCA pre-open
DTF if the table element address was specified for dial
number or station IDs on the tlecommunications
specifications.

Translates station 1Ds to USA Standard Code for
Information Interchange (ASCIL) by using the translate
1able, # ASC is specified on the telecommunications
spacifications.

>

] Translated station IDs

Updated BSCA pre-open DTF

1y

—>

S$PGBI

Chart: EG

Convert to Binary Subroutine

Converts a decimal number to its binary equivslent.

A 2-byte or 4-byte binary number in two's-
complement notation {a 1 to 4-digit decimal
number converts to a 2-byts binary number and
a b to 9 digit decimal number converts to a
4-byte binary number). If the decimal number

Figure 4-3 (Part 2 of 9). Library of Subroutines

b

Licensed Material-Property of IBM

is larger than what can be contained In four
bytes, anly the overflow portion is shown,

Input

Process

u

Address in ARR which points to the following [P
5-byte parameter list:

Byte Contents

01 Displacement of input from XR2

23 Address of convertad decimal
number.

4 Length minus one of the decimal
number.

$$PGRO

Chart: €M
Convert to Decimal Subroutine

Converts 8 binary number to its decimal equivalent. (The
length will be either X'04’ or X'09' depending on the size of
the field specified in the extension or input specifications.
if the size is two bytas binary, then the length will be
X'08'. If the number is larger than what can be contained
in four bytes, only the overflow portion is shown.)

-

Qutput

A signed decimal number | at the
specified by bytes 3-4 of the parameter list.

L4 BSCA pre-open DTF |

® Translzte table

$$PGBP

Chart: Et
BSCA Logic for Transmit

L] Places table element eddress into the BSCA pre-apen
DTF if the table element address was specified for disl
number of station |Ds an the telecommunications
specifications.

L] Translates station I1D¢ to USA Standard Code for
Information Interchange (ASCII} by using the translete
table, if ASC\I is specified on the telscommunications
specitications.

Updated BSCA pre-open DTF

::>o

L] Translated station 1Ds

-

The ARR points 10 8 2-byte sddress that points |':>
to the DTF whaere four bytes tell which keys

are allowed and which keys have been pressed.

For more information about the DTF, see /8M

System/3 Disk Systems Dats Management and

Input/Output Supervisor Loglc Manusl,

SY21-0512,

$3PGCB

Chart: EJ {Model 6}

Commend Key Indicator Set Routine
Sats off allowed command key indicators and then sets on

any of the indicators that hed their assoclated command key
LS pressed.

:>Proper 'd key indi ings

Return

i

ARR which points to 8 5-byte parametar |:>

list following the branch in this format:

$$PGCI

Chart: EK
Unpack Subroutine
Converts a packed decimel field with a maximum length of

eight bytes to a signed unpacked decimal field up 10 16 bytes
long.

npacked decimal field in the location specified
in bytes 3-4 in the paramater list.

8yte Cantents

¢ Displacement from XR2 of the
rightmast address of the packed
field

2.3 Address-of the unpacked decimel
number

4 Length minus one of the unpacked
decimal

Figure 4-3 (Part 3 of 9). Library of Subroutines

-

Licensed Material-Property of IBM

Object Program 4-43

ARR which points to 8 5-by1s parameter fist: [

8y

[3]

input

L

Output

Packed decimal field with a meximum length
of eight bytes at the location specified by
bytes 34 in the parameter list.

$$PGCO Chart: EL
Contents Pack Subroutine
Address of the field to be packed Converts an unpacked decimal field up to 15 bytes long into a
packed field with a meximum length of eight bytes. The sign
Address of the packed field is maintained.
displacement from XR2
Packed length minus one in bits 0-3
and unpacked length minus one in m
bits 4-7
Address in ARR which points to a variable $$PGDC Chart: EM

length (7-16 bytes) paramenter Hlst:

Byts

0

810

11-12
13
14-15

Contents

X‘00' = No options used for
record 1

X071’ = Literal identification used

X'02" = Fieid value option used

X‘04° = Field is numeric

X068’ = Field is an array

DEBUG Subroutine

Proguces sither one or two records depanding upon the
parameters passed by object code ganerated in Assemble
phase RPQV. One record contains a fist of all indicators
which ars 'on at the time the DEBUG operation code was
encountered. Tha second record shows the contents of any
one fiald, array, array alement, or table elemant.

—>.

Record 1 in this format:

X'10° = Field is 3 table

X'20’ = Asray is Indexed by an
integer

X'40 = Asray is indexed by a
variable field

Address of input/output control

block

Address of Output Processing

Control routine

Length minus one of literal, if

specified

Address of literal, if specified, or

statement number of DEBUG

operation code in program {bytes

5 and 6 only)

Length minus one of field, if table

specitied, or length minus one of

elerment, if arvay specified

Address of field, if specified, or

address of DTT, if array specified

Address of variable index for array

Length minus one of index field

Address of Array Index subroutine

Tha statement number of the DEBUG operation
code is two bytes long (bytes 5 and €). There-
maining bytes are shifted left one byta if they
are applicable to the program.

Byte

01

34

-

Byte Contents

o7 ‘DEBUG’

815 Constant entered in Factor 1 or the
statement number of the DEBUG
operation code in the program

1817 Blank

18.33 ‘INDICATORS ON —*

34 The names of all indicators on.

Each is separated by 8 blank. The
number of bytes used depends on
how many indicators are on. More
than ane record may be needed.

- Record 2 in this formet if a result field

is speciiied:
Byte Contems
013 "FIELD VALUE’ or 'TABLE
VALUE' or ‘ARRAY VALUE’
14 The contents of the Result Fieid or

table/array (up to 256 characters
per element), More than one
record may be needed.

Two alphameric fislds to be compared. | }
Address of ROCA in XR1.

Alternate collating sequence table

associated with the fields.

Address in ARR which points to the

following 6-byte parameter {ist:

$$PGOI Chart: EN
Alternate Collating Sequence Subroutine

Compares two alphameric fields when ane or both ara not
in narmal collating sequence.

:>H|gh, low, or equal setting of the condition
register.

Contents

Address of fefimost byte of first
field.

Length minus one of first field.
Address of leftmost byte of second
field.

Length minus one of the second
fieid.

Figure 4-3 (Part 4 of 9). Library of Subroutines

444

Licensed Material-Property of IBM

OQutput

—

ARR points to a2 2-byte paremetsr list in the follow-
ing format:
Byte Bit Contants
0 Flag byte
1 = Factor 1 prosent
Not used
Not used
Not used
1 = Resuit field present

XR1 points to RCCA

$$PGDP (Modal 16 Only) Chart: EO

Display Subroutine

Sets up a parameter list and branches to SYSLOG trans-
lent to display the contents of the bufter which contains
the data. Upon return from SYSLOG, the wbroutine
‘will return to the calling routine if only Factor 1 was to
be disptayed. 1f the Resuit Field was displayed, the

resp is checked, adjusted, and placed in bytes 0-35
of the work area before returning to the calling routine.

> @ |f Factor 1 present only, no output

® |f Result Field present, updated result
fiald data in bytes 0-35 of ROCA.

Mhauanw-—-0

0 = R/F slphameric

1 = R/F numeric

Not used

Not used

1 Result Field length (length - 1)

~ o

ARR which points 10 » 26-byte parameter lst [>

gﬂ; Bit Contents

1 Number of entries per record

23 Number of entries per table/array

4.5 Address of the |0CB

6 Length of element in the
input record

78 Rightmost address of the

first table/array entry

g Length of the table/array
in storage

10 Type mask for primary
wble/array

1 = Ascending

7 = Descending

1 = Binary

1 = Packed

1= Numesic

1 = Alternate table/srray
11 Length of elemsnt for
altarnate table/array
Rightmost address of first
alternete

14 Length of alternate table/array
15 Type mask for alternate
table/array

1 = Ascanding

1 = Dascending

1 = Binary

1 = Packed

1= Numeric

1 = Alternate table/array
Address of Input

Processing Control routine {IPCR}
Address of Unpack subroutine
Address of Convert to

Decimal subroutine

ID of primary table/array

1D of alternate table/array

ThWwN—-o

1213

SaWN -

16-17

18-18
20-21

2223
2425

$$PGFI Chart: EP
Load Object Tables Subroutine

Loads any pre-execution time table/srray and its altemate into
storage and performs sequence checking.

>l oaded pre-execution time table/array

Figure 4-3 (Part 5 of 9). Library of Subroutines

Licensed Material-Property of IBM

Object Program 445

[nput Procass QOutput
ARR which points to a 26-byts perameter list: [> $$PGFQ Chart: EQ Ohbject-tima table/array on the appropriate
Byte Bit Contents . device
o1 Number of antries per record Dump Object Tables Sutroutine
23 Number of entries per table/array ;
45 Address of the {OCB Dumps object-tima table/array and its ahternsta onto the
6 Length of element In the appropriate davice at last-record (LR) time if the extension
input record specification for this table/array has a To Filename entry
78 Rightmost address of first specified.
table/array entry
] Length of the entry in storage
10 Type mask for tabie/array
3 1 = Packed
4 1 = Numeric
5 1= Aiternate
[} 1 = Device Data Recorder
{punch/® following dump}
" Length of element for
alternate table/srray
1213 Rightmost address of first
alternate table/array entry
14 Length of altarnate table/
array in storage
16 Type mask for alternate
table/array
2 1 = Binary
3 1 = Packed _
4 1 = Numeric
5 1 = Alternate
6 1 = Device Dsta Recorder
(punch/® following dump}
1617 Address of Qutput
Processing Controf routine (OPCR)
18-19 Address of Pack subroutine
20-21 Address of Convert to
Binary subroutine
22:23 1D of primary table/array
24.25 1D of alternata table/array

Enter

XR1 points to the prime work ares. [>| $$PGIC Chart: ER

The first 62 bytes of the work area contain:

Divide Subroutine

Divides two numbers in the prime work area of ROCA and
leaves the quotient and remainder in the prime work area in
case a MVR operation code follows.

Byte Contents
o1 Sign
233 Dividend

34-42 Overflow area
4357 Divisor
58-61 Overflow area

Both divisor and dividend are integers in zoned
decimal format.

Figure 4-3 (Part 6 of 9). Library of Subroutines

4-46

Licensed Material-Property of IBM

The quotient in bytes 0-18 of the prime

wark gres

The remainder in bytes 19-34 of the
prime work arsa

input

ARR which points to an 11-byte parameter list:

Byte Bit Contents
01 Addvress of the search
ergument
2 Length minus one of the
search argument
34 Factor 2 DTT sddress
686 Address of first element to
be examined
7 Length of Factor 2 variable
index, if specified
89 Address of alternata 1able/
array, or Factor 2 variable
index, if specified
10 Conditions on LOKUP
(1] 0 = Alphameric table/array
1 = Numeric table/array
1 0= No alternate table
1 = Alternate table
2 0= Normal LOKUP
1 » Abnormal LOKUP
(LOKUP high on de-
scending table or low
on ascending table)

3 1 = Factor 2 has a variable
index which indicates
which array element is
to be examined first

5 1 = LOKUP high
8 1= LOKUP low
7 1= LOKUP equsal

XR1, which points to the prime work area, [___
Dispt Xc7 in bits indicating
which lights should be turned on. The format

of each of these entries is:

Byte 1 Displscement Byta 2 Displacemant

XC6' XY
Bit0=KH Bit 0= KQ
Bit 1=KG Bit 1 = KP
Bit2 = KF Bit 2= KN
Bit3=KE Bit 3= KM
Bit 4= KD Bit4= KL
fBit5 = KC Bit 6 = KK
8it6=KB Bit6=KJ
Bit7 = KA Bit7=Kl

Process

$$PGLC Chert: ES

LOKUP Subroutine

Compares a field or search argument against the entries in a
given table or array until a specified setting of the condition
register results and returns the address of the table/srray

slemant which caused the register 10 be set.

$PGLG Chart: ET

Command Key Indicator Light Restorer Routine

(Made! 6}

Restores command key indicator lights when inquiry is used.

Figure 4-3 (Part 7 of 9). Library of Subroutines

Licensed Material-Property of IBM

Output

11 the search ks successful, the address of

the looked-up element will be placed in
bytes 6-6 of the array table OTT. 1fa
table was referenced in the result field,
the address of the corresponding elemsnt
will be placed in bytes 5-6 of the DTT
for thet table. |f Factor 2 contained an
array with a varisble index, the index
will be updated to point to the selected
element.

If the ssarch was not successful, the array
table DT Ts will not be changed. if a
varisble index was used with an array in
Factor 2, that index will be sst to one.

> Command key indicator lights

Object Program 447

Input

XR1 points to ROCA. ARR points to a
10-bytie paramater list with the following
format:

Byte Contents
0 Factor 2 flag byte

1f bit 0= 0, Factor 2 is a field;
if bit 0 = 1, Factor 2 is an array.

Bits 1-3 — not used.

Bits 4.7 — length of variable index,
if used (maximum fength = 15),

1-2 it operand is an array and is
variabley indexed, bytes 1-2
contain the address of the variable
index; if operend is an array and
is not veriably indexed, they
contain the address of the refar-
enced element; if the operand is a
field, they contain the address of
the field.

34 1f the operand is an array, bytas
3-4 contain the address of the
array DTT; if the operand is 8
field, they contain the address
of the field

5 Result Fiald flag byte

1 bit @ = 0, Result Fiald is a field;

if bit 0= 1, Result Field is an array.

Bits 1-3 — not used.

Bits 4-7 ~ lenpth of variable indax,
if used {maximum length = 18).

69 Refer to Bytes 1-4, above.

XR1 points to ROCA. The prime woark area :>

contains:
Byts Bit Contents

20.34 Multiplies
35-48 Muluplicand

58 0-3 Length-1 of multiplicand {Modet 15)

4-7 Sixteens complement of the
multiplier fength (Modei 15)

Both multiplicand and multiplier are integers
in some decimal format, See Calculations
Object Code far discussion of decimal align-
ment.

Process

|__—_">l $$PGMA

Chert: EU

Mova Array Subsoutine

Moves date from a field to an arrgy, from an array to s fiald,
or from an array to an array, If an array it variably indexed,

this routina will csleulste the address of the indaxed slement.

Data is moved from Factor 2 to the Result Fiald; the length
of the move is the shorter of the lengths of Factor 2 and the

>

Result Field.
$3PGMC Chart: EV and EW

Multiply Subroutine

Multiplies the two integers in tha prime work ares in ROCA.

Figure 4-3 (Part 8 of 9). Library of Subroutines

Licensed Material-Property of IBM

Qutput

Factor 2 daa {as specifiad)
moved to the Result Field.

Prime work area containing the product in
bytey 0:33. The sign of the result is left in the
rone of byte 33.

Input Process Output

"t

ARR which points to a variable length pars- :> $$PGRI Chart: EX :>Proper indicator settings. The indicetors sre
mater list in this format: set off if the condition code Is not met and set
1. Avarisble number of 3-byta entries Set Resulting | ndicators Subroutine on if the condition code s met,

describing each rasulting indicetor to be

set. The formet of each of these Sets specified resulting indicators on or off as required by the

entriag is: object program.

Byte Contents

0 Condition in program status
register (PSR} on which the
specified indicator should be

set on

1 Mask byte by which the speci-
fied indicator is selected

2 Displacement of the indicator
from the beginning of ROCA

2. One byte of X'00° which denotes the end
of the parameter list.
3. PSR set to desired condition,

L

XRA1 points to ROCA which contains the byte |:> $SPGTC Chart: EY The condition register contains the high, low,
to be tested first. or equal setting as follows:

Test Zone Subroutine TestByte Condition Register Setting

Tests the zone of a byts loaded into the prime wark ares and & High
sets the condition register. - (minus} Low
At High
J-A Low

All others Equai

1l

@ XR2 points to the first byte of a 5-byte |:> S$SSYRP Chart: EZ or E1 :>. Updatad 5-byte parametar listin ROCA
parameter Jist. pointed to by XR2.
RPG 1] Halt Processor
® XR1 points to the beginning of the pro- @ Updated the return address in the PLCA
gram level communications area [PLCA) Called by the supervisor whenever 2 hait is requested by an depending on the halt option taken.
which contains registers saved from the RPG 1} compiler phate of RPG]| object program, Thisis
problem program. o transient. When an error occurs, the halt transient is call-

ed which sets up a 5-byte parameter list to be passed to the
Halt/Syslog Transient. For a deseription of errory, error
codes, and displays, see /5M System/3 Mods! 10 Disk Sys-
tem Halt Guide, GC21-7540, /BM System/3 Modsi 6 Halt
Guide, GC21.7541, or /8M Systern/3 Mode! 15 System
Maessages, GC21-6076, For information about the Hait/Sys-
log Transient, see /8M System/3 Disk Systems Contro! Pro-
gram Logic Manual, SY21-0502, or /8M System /3 Mode!
15 Scheduler Logic Manual, SY 21-0035.

® XR2 points to the first byte of 8 5-byte [>| :> ® Updated 5-byta paramater list in ROCA
parameter list. $$5YR1 Chart: E2 [Model 15 Only) pointed to by XR2.

RPG 1I Helt Processar Library called by the supervisor
if $$SYRP does not have the required text for the halt
being issued. This Is a transient that performs ths ssme
function as $$SYRP except that it handles & different
group of halts. See $$SY RP for reference.

o XR1 points to the beginning of the pro-
gram level communications area (FLCA)
which contains registers saved from the
problem program.

® Updated current address in the PLCA
depending on tha halt option taken.

Figure 4-3 (Part 9 of 9). Library of Subroutines

Object Program 449

Licensed Material-Property of IBM

PGAA

sRespAlevaR R ene
L d
: ENTRY :
PEAKS NS EES kY ¥E .‘...
L)
L]
L 1)
AL0010 v

S9A9Q L SORMRR SUNR .,
. - T .,
SHOYE PARANETER + DE %, NO
» LIST TO PRINE ®» Vo e
* WORK AREA ¢ £
PO TP ST .’

YES

v 930 E2/01781
233N | *ResC R bbb H SESEOCIREVASSNEN S
* m¥s apomess ¢ $33SYRP »
o ANRBENSIE OF 2 o CALL RPG IT #
* CROUTINE 8 SHALT PROCESSOR 3
SRR IR RS RS KO KD [IIITTI TR I 1 11T)
ALODSD

”‘..uxo".‘...... SREPRDINRENEENER S
s Lo oy - .
s ADORESS AND * SINDEX =1, MOVE &
¢ vOve INDex Ta ¢ o FIRSY ELEMENT o
¢ WORK AREA @ ¢ KODRESS ~ »
SEIRPEE RPN FS R NS & (1)

(o

SeE3e

AL0020 %
13} *.

K
.® NDEX
.o. '>oe

HMOVE RESWT

L1122

A

LogsgitFl.--. ITITTYY
® MOYE FIRST »
'ELEE!NT ADORESS®
: TO WORK AREA :
PO P T s

.
ARSI BGER S

—_—

SERt A L SdkNE R SO0
. .
e b .
SISJ.DEX : bd EXIT :
CHE 00O EEBEEBARS

LTIy DS PR T
& INDEX =
H LI

- »
2400 AN UIIRINS
TO:CALLING ROUTINE

Hl .
a® reou
B INDEX ., »
>0 s Smmmadb® B3 ®
., . »
.. " ey
o .®
YES

Lt it Al]]

ALOO40 %,
K1 .,
® .,
ND .* ADDRESS . YES
—. xcEE0 Uity
. AGE .® I

s

Chart EA. Array Index Subroutine

Licensed Material-Property of IBM

PGAB
SOIA L d0N IR 0NN
.
= ENTRY .
* -
TR YR L

’ooooo.--
RETURN
BASED ¢
METER =
-
-
.

AEPAEE RSP BRI Ok &

APGOO3
l'..tg se0s008 09
‘SET DI“TER T0 '

‘ TR‘NSL TE ‘
aTABLEy SAVE MO 3
» EnTR M

.‘.‘#..‘..‘
Wk
.

.
® Pl s=)
. .

APGOQ*
veplesensarany
SET UpP
‘CH!R!CYEﬁ CHECK‘
REPLACE o
. CHARACTER :

...“-‘."““‘.'I

L]

L

R FDI
LE PO N .
Tad

0 es(loshedssEse
SSET POI&YER T0
s NEXT TABLE

' RGUM ENT

Ottoooo.o‘oc..ooo

L XX X XY

H e,
NO .¢ ENO DF *, YES
el TABKE temid .
., «®
- ‘e
., ¥
L]

APGO20
.l...Fz“..l..t‘.

O PEPLACE FIELD *
NTA' I1TH L4
:TANLF FUNCTION :

SIS A KEESREDONO S

APGO3C
Seses28d0eo ks

[*
® POINT TO NEXT @
® FIELD ENTSY :

s s
LA LI E ST ETTL L]

H2 ..
«¢ END OF *, NO
FIELD O
®. ENTRIES .* ,
. «®
2, , v
* YES ssns
. »
* Dl *
- »
sons

TR AT IR Y]
*

RESTAORE
REGISTERS

S9sSK260 0000 ERE
v

* EX1T .
- *
sessesesetunEse

TO:CALLING RCUTINE

Chart EB. File Translate Subroutine

Licensed Material-Property of IBM

Object Program

4-51

PGAC
snneplee
. I3
. ENTRY b
- =
S LI LT LE I 222 1]

PO

[SET LYY TEITYY
* STORE RETURN
R

=
Lol oDl 2l l)]

tanne

nonc [0"0‘.“.‘:
3 TRE §9%G

‘
PSR IV RS IRD X

-omuou--nnn“

L d

‘ “OKE PARMS TO 0
APPRDPR {AT; -

: INSTRUCT :

A TTL TR EL T 1Y

SAPRRE | S8R 8 SR wR

»
& CLEAR RESULT
* FEELD T0O 0

*
BRSNS ORONAE S

¥ E2/01/A)
F1 *, ”e oFStn-A--o.o.
“*source ‘v, ves it S :
<t OSHHRES tauJEE e 3
‘-!EGAT]VE‘- WA\.T WOCESSOR :
‘e, .o teesasensrsnenies
. NO
LYY l]
->* £E5 &
° L
...
e e
..
-, ..
LIS V‘.
o P
% E5 &
oo
PURRRTIEJL..°1 1 .
: 1! RATE :
:oBHRTE
» RESULT F1ELD :
-

oYLt PLET el]

ASORD | LSRRAIREIED
a ALCULATE

4
iR

F
DIEI‘I'

ansen

AFEEIRBEEO SR EOh &

exe

Chart EC. Square Root Subroutine

4-52

Licensed Material-Property of IBM

SrasafIeTaREER SN
.

* MOV 19r YO o
- PREEEI%I’ 300\' .
* POSITION :
CEEPOHEIERONS IR S

—————>

SORBICIABANBE M OH
v

b
EEDEBITESAPBIEEN B

LENR
«* 15 .,
= SQUARED s. YES
+ROCT < SOURCE.‘-——-
.

n[go--nnnn

‘S BTRACT FROK'
ESE% k

o* .,
" GIT ..
-—.- IN Q& {
‘e, .o
..
VES

P S NE—.

.
* .
* SHIFT TO NEXY #
* DIGIT IN ROOT »
. .
» .
SEBENS RN EP kN k

.l‘
H3® e
a® .“.
A AT o .
oCAE noF ‘..---)o B3 *
*.80SITIONS. .
», onoo
€ .0
YES
LLr LT NE R TIITY TS

FEBRESEDERAVAGOS Y

cannn

. *
" §5 &
(1317

ey

.
uo..t; crerence *oe
.":> 33 f.c'

", .=
* YES

sssel Seesshinp o
4

.
: A00 1 TO ROOT

(X X2 X)

.
ERGTOER AR WE AR SR OE

S50 805 A0k kIb Rl k0
SMOVE RESULT TO
: FIELD

-
TRAEEINR XS SRR S AS
[l 1]

. []
* E5 %>
- »
L1 1t

*4esESARRL bR S
[EXIT *
. ®

SO ET NS SHORESD

To: CALLING
OUTTNE

.1
BaRAL 0N BNDAUR
» ENTRY -
2 2
222 2GRS HHES

«®s
Bl .,
.

- .
- 187 *. NO
.. BSCA o
® REFERENCE.*
., -®

o .0 v
YES wone
H .
. J1l »
PIT
:uotcznnunu
.
YES . VE TABLE b
‘-—-—*—)‘ lDDﬂESS INYO :
.‘ »
. nn[a”nn
e
lst --tttpzt..o...t.:
.‘gTATKDN lD *, YES MOVE TABLE .
., A TABLE h—-----)' ADDRESS NTQ ¢
L ELENENT o ‘ :
s, ." A EORPIARISNR SR ME
ND
<
E1" e, APSRRE2OSO0RNS 0RO
2®REMOTE »,
.'STAT*ON LO s, YES b HO!E TABLE .
. A a!t o ¥———————>* ADD E3§ INYO o
‘-.ELE ENY.- » F .
Te, 0" CHEES SR GRFRRRIED
NO
<
o®e
Fl L2
a*
L]
o e
. o”
L
* YES

t..-m [.".t.l“..

ﬂRAN t!:i? {i ;

.Ot..t..ut.tt.t.t

”“m[‘"“‘..“.

TRANS »
-neno?ﬁ kn o e
s seetrfien :
[IEET T30 T Y 2) 1])
[F 1)

. P,
* g1 4>

L] L]

LI11]
at.n.ut---utut-
*85C-10CS

o e e e e t

* BRANCH TO

T IR

LEL L QRIS L o]
=
» EXIT *
» .
299N SORIN SIS
TOzCALLING ROUTINE

Chart ED. BSCA Logic for Transmit and Receive

Object Program 4-53

Licensed Material-Property of IBM

PGBC

SONBALISSRS S S
.
» ENTRY »
.
200eRENONESR OGS

817 s,
o0 1ST e,
Hi) .. HO
o, PREFERENCE . o—=n
‘e, "
» }
YES "
. -
* J1
» L]
[111]
Tt .
. Nun“k e, vES TABLE *
M L’ '------->- i s NTe 2
‘-'ELEHENY . .
‘s, FETTTTY Pr PP ey
<
‘D*; ntntomottnont--:
Lo8TaTiES 15%e. ves E TABLE *
’, A Eag 7 .-——--—)0 ADDRES; INTO o
v ELENEN ..- :
‘8, a0 .
NO
¢
€1 s essenE2ovennesese
SREMQTE », .
LoIRFTORC 10 e, vEs s MOVE TABLE #
ol 7 TAELE #asiaan_->e ADDRESS INTO ®
®. ELEMENT .o . oTF *
.'. .'. RSO LO B e RbER R
*°ND
!<
.Fx' ‘-..
o BEE TM
' o
., _o'
«“YES
antid 2 bttt ol s
»' T 0
DR
spéctiko

* .’”..1-‘."....

:.""1 ;".”.”..
SREMOTE STATICN #
10
* sigbibieo
SRS SR SN EbO kbR RS
LI L]
» . e mma— o———
.31 8->
* *
e

PN D)] dessEEOR
*BSC-10C »

B e e
L4 : IRANCH T0o» »

acs »
..!...SESDEI..:.:

2000105200 R0S
L

» EXIT »
» »

10t CALLING RCUTINE

Chart EE. BSCA Logic for Conversational

4-54

Licensed Material-Property of IBM

[£-1.13
WASSA 0NN NN SRS
b ENTRY -
TRBAEACI RS RASN
v
L
83 .,
L .,
a® 18T », NO
., BSCA - W—
‘-§EFEREKE.' I
“e YES hte
- -
. g1 e
L2 1]]

EYT4 LT TTRR LY

LI TAC TA

<
' ‘e se8esD20ss0ss00s s
L
.‘STAT¥6N tb *, YES MOVE TABLE v
*, TABLE o Smmmmncacds “ESS INTO »
®, ELEHEM..‘ : :
‘o, .0 saandsunasesaunes
* ND
<
v
"
EL SPE20eRnt YIRS
«175710 H
SR H
0.‘EtEn b4
‘e, CHERHR R SNSRI U
L
l<
0t
. ‘e,
- ASCIT *, NO
.. USED Chamun]
., .®
., ”
o .
YES

.Gl‘u..to.":
it T L
: SPECIFIE

P AT PAT 2 LIS Tt

P L] .u‘..-onnn
= TRANSLATE

tREFUYE STATICN ‘
o SPECIFIED *
* »

P EPBERRS DI S

. s et w2
* J1 8->
w *
"
MRINEIINEONSS
v!SC-lDt
' ‘ !R‘NCN 10 @ %=
19¢s »
.. SDG) o
P L T PR

20K 180 KPES IaE

- EXIT :
225920080249 080

TOSCALLING ROUTINE

Chart EF. BSCA Logic for Receive

PGal
sResA[sessresee

- -
s ENTRY *
* 2]
CEEREBBUSRIIIE R
£GBO
LA TSR LA LT RS
.
* ENTRY -
* -
LT Y P Y LT PP
Bl ‘e, ITIT L PITIT TR T T
., -
-' LODK!HEAG *. YES s MOVE 9°'5 TQ =
. END R FILE Le-m-o-——>d FIELD :
R Y . .
., L P T LT TP YT PGAO&D
NO CHAESRIOEATRAwRR
eees * »
. . . Esnwe. .
->8 K2 * . conp EHEN .
A . * BINARY nunaEl *
sxen . »
FRARIOEEISRENIONS
non-tc1n- LTI
‘HUVE PIKAHETERS.
s TO SAVE
* t
» .
CAAEBLARO IO PGAOSO v
-tt:.céoatn‘o-t.-
* MDY IRSTY
® PARAMETER TN @
® STORAGE AND =
: CLEAR RSSULT :
SO0 HEASEB0000008 S
t..‘tDl. sssesten
. DETERMINI
& DUTPUT LEN TK ‘
: AND ADORE e ————->
PRI EIIT LT IT TS 1) PGACE0Q %,
0l -, esss()Pt0seskbadn
o® MIGH o, s TLR gn .
«* ORDER BIV *, YES * NRDER RIT AND ®
*, [N LEFTNOSY #=mmrwe—e>® ADD X°F9% VO =
‘..BVTE o .e : RESULT FLELD :
PFAO3D v T YT T T
SOEOE] SESANMUN N s ND
SAVE SIGN
.POSIT#DN POINT®
1 T0 RUMNBER »
YD RE CONVERTED®
senssaIsASRERETLS M
SBEIIEL 0000 R00SSS
SMOVE HALF BYTE *
. RER J© »
¢ PORTIDNOE 8
: F~20NE FIELD :
20900008820 08008S
.ot.tFxOH...O-O..
'CLEAA WORK AQEAO
s FDR RESULTY
- . <
. *
SEESEATNISE RO RN S PGALOQ
o-utt;lc ouo-ooot
' ADD MODIF
*F~20NE FIELD TO'
————————)
PEAQ4D o
seheN; 0080080088 G2 *,
$40D HIGH ORDER 3 = *aunzer “*s. w0
s A . -
:DIGIY ?D RESU{T: —->‘.. NEGATIVE ..'---ﬂ
. . e, ..’ v
PREIIGORERISALES ., .8 PGALIO . .t
* YES . [c}3 ., 62 *.
.* ., * .,
o« ALL *, YES +® NUMRER *, ND
s, 8IVS o8mmeac——=>8, NEGATIVE S
®.PRDCESSED.® .. -
. ot ., .
L v ., . 5, L0 v
HY &, 0..““7‘..‘....‘: * N YES .'..o.
. .,
F ALL *, YES - CUHDhEKENY * e J2 =
., 8ITS o B b HUMBER b . *
®,PROCESSED.* : : ssen
‘e o0 T R I T T v
* NO 2SS 2800000808 sa0s0p20%ass008e
SHULTIPLY FLELN ¢ - PY
L LEFT TO AE » & SET SIGN QF &
& CONVERTED BY o SRESULT TQ mINUSS
. RASE 16 : : :
Yy PFAQGD 58888008080 RNE VEAESESEASPANSSON
sesse jl sesdastns s .t‘.thotctttttt- .ss
- -
SCONVERT B8ITS TO* *MOVE QUTPUT AND' » .
L4 BINARY . - . $)2 &>
. . ® REGISTERS ? * - .
. . . =e
SEEEESSANEETEEIN N R T TR R P TR T Y Y 1 v PGALSN
ssste | e0onnsesen
sees [. SaugjIrvensated
. . ®SET POINYER TO '
- K2 *-) -—— LOOK AT - EXIY .
- . * LEFTMDST BYTE . . .
wsde L] . EI LI Y YT]
SEssetessENOOINRS
oootcxlutootcto-c Yy TH: CALLING RCUTINE
LTI T¥ T 2 22)
0 POINT xR1 ;0 : : YIT M
---% "NEXT plGIT 9 : g : Chart EH. Convert to Decimal Subroutine
. . S0 00NNBAOSISE
s0ssbpittbosIEN

T)sCALLING PQUTINE

Chart EG. Convert to Binary Subroutine

Object Program 4-55

Licensed Material-Property of IBM

456

PGef

PRIRA SRS R RN
.
. ENTRY .
t 4 -
(P2 2T 121 112)
RN
81" e,
T 18T sl N0
** o REFERE .
-BEFERENCE. |
.
* YES L1l
» g1 :
»
[T1])
SHBC 200090 B0 SRS
»
YES VE TABLE *
®—Z——---># ADDRESS INTO =»
* DT *
eSSV RREIRR IR
<
D M '..Dz.‘........
15 ‘A, .
+STATION 1D %, YES ® MDVE TABLE *
VA VABLE . e———=-=>% ADDRESS INTO ®
®. ELEMENT % . OTF .
. «® - -
L 1Y ..
o NO
<
»
[.. SOEQes2 kBB RS
'ngnots ., .
Jo3Tat(ON 1D e, YES 3 hove Tapte
#2 7 A TABLE .#==amm=-=>% ADDRESS INTQ #
», ELEMENT .* . DIF »
.. ot . -
L Y. BRI ICARBIOINERSS
*"ND
<
v
...
.'Fl ., ..
L*7 ASCIT . NOD
.l USED R
. K
. L8
Yes

BAAAGL RO RRRIRS S

L d
STRANSLATE THIS *
SI3AYibA e N IE 2
. SPECIELED :
PERRRSRRBREI I IRGR

T
SREMOTE STATION &
» »
e SPECIFIED *
SOHAIBINEDUBESOR D

[F L]
[] »
» 41 o8>
.
Ll il

nnn}u sEsesdetnn
»8SC-10C .

| - pmo @
* = BRANCH 70 * *
e » JOCS e
» » {(34B850P) = =
SRARBERIIB ARSI §

tnmp-ftu‘-n
-
» EXIT »
- L
sndsderssnadd ok
TO:CALLING RCUTINE

Chart EI. BSCA Logic for Transmit

Licensed Material-Property of IBM

PGCI
HEDKA | S0 EKANIS

. 13
* ENTRY *
. .
2ss02 885800800 %
L
PGCA 81 s, 2282602402080
o ., » =
ssenpisensnnste «3LO0K-AHEAD #, YES ® MAVE 9'S TH &
* . *, AT END OF L s---om=—=)% FIELD .
v ENTRY - *, FILE «* * b4
- - -, ® L] =
L P E T TYTY ", ® T ITY I ITTTTI T
* ND

seedaC|RRaRenERS
*

*MOYE PARAMETER ¢
® LIST 7O SAVE =*
. AREFA *

:""Bl‘t-uotuo:u

L]
*SET POINTER TO &
: PYTESD%¥ TBR :
L4 * PHERSRSSESSAISRKS
»

PSR ERRGEERRNESR

E€EFAQLO
AEREBD] B0 NS ERSSS

:l"'c" 000 EES L] o Ac €

. & MOVE PACKED »
*SET OFF ALLDWEDS® * FIELD TO WORK *=
R AL
* b SeeEREISIEEERIRESR

Ssee T LEKRREOESE S

L EIIINTI PR T E LT

[SALA ST T 2T TYYS T & EXPAND EACH
. SET Ok . = BYTE, EXCEPT
*+ DEPRESSED * *LON ORDER “BYTE, »
* COMBAKD KEY * * T TWO BYTES
* THDITATORS . -
= . NORNEBRS RN ONRREEED
SREEEEERAIG USRS
PERERF] VP ESRENRY
#7-ADD_WORK AREAS
LI AT Y Py * 7O ITSELF FOR =
. » * -IONE L3
: RETORN : . POSITIONS :
L LT T PR Y) P T T TP T PT T
Chart EJ. Command Key Indicator Set Routine (Model 6) EEADZ0
P T L S LTSIV T
* MOVE UNPACKED »
* FIELD TC THE =
SSPECLFIED ADDR »
: IN PARM LIST :
ST T T TYTY Y
< [P -
EFAC3D
BESBH] tEsBRERE S
-
L4 EXIV =
. .

eAUREEERBINS NS
TO: CALLING ROQUTINE

Chart EK. Unpack Subroutine

Object Program 4-57

Licensed Material-Property of IBM

PGDC
SEREALSPNEEIRS L
* L4
. ENTRY *
- .
LI Y I IT AT

v
| bt L Rttt
* MOVE HEADING ¢
*AND LTITERAL ID
* TO QUTPUT .
BUFFER .

»Gca H .
....Al.......‘. SOPPSSERESPIO NS %
E
* ENTRY .
L] *
EII 3T TR ITITE L IR

c1” e,
'. ‘l
.¢° Qureur s, NO
. BUFFER FULL le=--a

PK 2000 v * .
s80aen [soNtNRRAS ‘. .

.
*CLEAR WORK AREA®
* AND SAVE L
: RFGISTERS :
RIS ABEEBAORRR KD

.®
YES

®O0D] 0000 0ROSEKES

L] PR]NTIPENCH *
RECORD FROM
¢ QUTPUT BUFFERe

Pr I e T e T
*
[
(AL TYE LTI 2] 1] v
.t
El .,
.. *,
* *, NO
*, INDICATOR ,#=——
*, ON ¥
T Iy ‘-. o
[L . .
#PACK WORK_AREA ¢ YES
*USING HALFRBYTE @
. MOVES 4
CERBSSARAGAOPRERE
:o-tlsltutttt-nco
.
¢ MOVE SYMBOLIC *
* INDICATOR T @
PKAO20 * OQUTPUT BUFFER ¢
:‘...El‘ii..'.‘.: SEIRREPOES R NSRS
® PLACE PACKED *
s "HEEOINTES 3 PR
: QUTPUT AREA :
LIAETE TSI T T 2]}

.

(34 .,

o .,
YES .¢ MOV *,
--Et. XNDIEA$2§S .
*, TQ TE ®
», *
SesseF eRevevne et
. »
TOR
ES ?EE

« .
R NO
REGISTERS

soen
(2 X 2]

HOESSSEESOPIPIIGDP

SRH]S0S4 CRSUES
PRI

LA
INDICATOR
* DATA
aseeGLReRNIINNS AL KERRR R AOSARS
* EX1T .
L] *
RIS TR L2 807
TO=CALLING RQOUTINE .!,
J1 », 288209000000 040K
«® *, PRINT/PUNI
T 11X
Chart EL.. Pack Subroutine '-.yecmsg.-' . it
"o .-' SASENESREEIES ISR
* NO
<

-.tt;:t!oota-u-
L d
* EXIT *
. »
LTI TTY T T TR
TOsCALLING ROUT(NE

Chart EM. DEBUG Subroutine

4-58

Licensed Material-Property of IBM

GO1
Shakp] KoeEEEIES

.
. ENTRY -
* *
SAEIFFEOREOYINS

ADO0OQO v
SIFIOR | HSHNIRENES
* »
#MOVE _PARAMETER
* LIST YO PRIME »
RK AREA *
2EXRIAEEI IR IESOI S

e ——=)

AD0010
VR [e ERRSVEIIS
* MOVE ONF BYTE *
*EACH FI1ELD YO Ae
* SEPARAYE HOLOD »
* AREA -

= *
SESERE SRRV ESRNEN

o PO

: ALTSEQ TABLE :
SEEEERREERNBE IS

[S

tt‘.G[t!..t‘.t‘
*
* €x1T b
- *
SEEEBRRSESEEEEN
TO CALLING ROUTINE

Chart EN. Alternate Collating Sequence Subroutine

Licensed Material-Property of IBM

Object Program 4-59

4-60

LIPS RS Ll 1)

AHEPIE LIRS ITRIIR N
.

®*SAVE REGS, CALC®
‘REYURN ADBRESS t

“‘.“‘.‘.‘.“Oll

DP0O000
L LTIl ot

*
®STORE PARAMETER®
: LIST =

[E1 ST ST ET]
P LT L]
=% G2 *
Pl E 1)
RFCHLY
l‘..lcz.‘.‘.‘l...
CREM NY ESPkY‘
->‘T XT l
= -
:"“‘l‘llt"".!
L] ‘l
*
1°23
er s c—emeem——
80TH

Py P
*INITIALIZE *
* BRANCH AY
* DPOIEO 10 »
= $UCB *

EARORNZERNEIBIE RN
» »
* MAKE TEXT =

=>¢ LENGTH = 72 »
b BYTJES

»
* * *
RASIPRNBSRASAERR S PO T T LTI P
-
. *
» 02 * P
- »
sxn
SS9 waE | & 1‘*““1 SAEASE2A NS ABES
. =
*SET OSPLY TEX c BSET HE;;ASS }D -
'ADR-!R& « = (Y T200R =
. . .
. * - =
F1™ e, SASF20 kNI KNR
. - *
<" ARE F1 *, YES SCALC REPLY_ADOR®
.. i Rttty * = XRI ¢ 72 =
®, PRESENT .% ' L4 -
., E%d . -
. % v bt LA E LT EETEY D1
NQ e
. s mesw
= D2 & 001=*
* - 62 *=>
aves]
CALL
PRI ET 2R ET PRT Y]
* -
» POINT XRY YD bd
% START OF 10 =
s BYTE BUFFER -
. *
P wha
° sesanHZERIIIR RIS
» *
1S _RF », YES » LOAO THE ADOR *
PRESENT o Ww ey *0F PARM LIST To=*
¥ : XR2 -
=
Te, o' PIPPAIRIRIRESOSNS
NO L)
A4
®C2¥
sxax
Anan] [UsaRBRage SRR JORSRREAEINE
* 'SVSLDG b
ASET HMESSAGE 'D » ———m e an smaand
s = *iyTio0 ¢ - “lSSUE HYO #* =
. » WIOR = =
* . .. » »
spen n
= - * -
* B2 = * B4
s » » *
eee sanw

XRl POINYS TO WORK AREA:

2- 07 - ;EPLV

Chart EO (Part 1 of 2). Display Subroutine (Model 15)

Licensed Material-Property of IBM

BuSIBAIBE SR KER

=====> ® RE-ENTRY FROM :

: FrSYSLOG*®
ARSI ERASSEER

DPO1CO o*a
Ca .
..
. 1 ..
. BRANLH = .=
- AUCD -
= .
2, *
NO

-
L3I TE TR

vy
“.l‘H‘t‘tltl‘i‘

‘ MO RESULY
‘ FL OLgEPLV

annaw

l
AERAS AR BB AR RRRAGR

P E— -—

0PD200D
ilcattlt-n..

»

bd lN”’[A&l ZE »
* INGEX TO 106 =
- 6A° b

-
sasa 0283

» Al®
s
————
DPO210 o
. o* sees sore
AL - »
YES *« B2 »
» -
avas
. OPQ400 .,
““'31 LY
» ¥ .,
.DECREHENT INCEX® - 15 . NO
BY ONE (1) * « RESULTY FtD Pt
. » NUNERIC .»
t . ., ..
*, . *
YES
1" e, salZenesede °'°252..53._-..'.-..
. - * -
o IS e * SET SW AT » DECRENENT .
—-—%, INDEX = 71 .*% b DPO610 TO * 'DISPLAEEH NT BY»
‘-. ..' #NO=-DP : INE .
- »
‘0. 0@ s SARBRBBERRR PRSKARESARRASRND ¥
YE
BLKRES -t Y
01 ., AR EIRD2B ¢ hkhkkas
o .. *1ERQ DU; BYTES »
U&% L] » Q- o; -
RES! FLD %—— L aﬁFFER—— AX @
= NUMER]IC .* * NUMERIC LEN = =
B . ® BYTES -
Ty o® » ChASEPN EB R
YES
&
SENNSE et nes SEMEPEIHHRS D kNS
- -
wZERD T BYTES * * M : INDEX ®
2-87 OF WORK * . 9XEVE T .
3 AREA - * YRESLEN® :
»
CEB SRS R ARG VEN D AT ORI AUBERNED
L1t
DPO300C
SENCSE] $P000E wHE BEIISFZERURS AR 0L [e T Y T
» » » * CALC RESPONSE »
SMOVE REPLY FLD * *DECREMENT INDEX#* W ENGTH: RESLEN »
L4 Y0 F1 FLD » - BY ONE . *~ 80 a LENGTH -»
. L4 * - .
. b3 * . b »
FESRSRASAUNRR RIS B LI LI TR TP
e e
. -
* Je = *,
'] - 62 - b
PE T . .,
-
L]NDE{S> 79 _ot=—n F
XtaFy | D
. S
. . v L] -
YES Tt »*Na
a2 Fa :
LI
v
0pos20 DPOG&LO %o
CRAPEHZB ISR R DO .,
-
#SET 20NE_AT XRI*
®+ INDEX TO NEG »
: X*0o :
I T T PY TP TPy LN
* KD
R l
- .
- J2 l-)
P L L]
s - -
DPOSOO * Bb *
2ESAEE S % . L
[113

-mﬁﬂ'ﬁﬂl‘.?.

' lNDEX '
= L]
seankE RN

v
LRl LS

Chart EQ (Part 2 of 2). Display Subroutine (Model 15)

Licensed Material-Property of IBM

v
(LI
* -

* B3
.
asak

v
amen

290¥

LTty
LT

(XYY
[Ty}

DPOT0Q v
SUBLRNAMER

SET ?SEO

.lchi".t...
‘ SET_up FRUH t
ADDRESS .

. »
ELIEL T ST 221]

-.og.u.ttt.
-

‘ SET *
b LENGTH OF .
., ROVE - o

t.t.."..oto

bPo710
BEEXNCLAEFRRRNER D

: N
-REKEVOHEAF'% !"..-—>. J& @
» F1 AREA [» *

-
ELETASTRI L2 2L LTS
l‘.‘

T
-

"aaw
ERROR

A ERFLNAKIEIER 4

»

® POINT XRZ AT
:HALT PARM LIST

LI Y]

.
(2R a Ty 2l il ot

EllD;IAl
SHERAGLERR SADE S &
'GCSVNP b

et
‘CALL RFG;; NALT:~--—-—;
»0ERS

*001s
* G2%
L

FOUAN AN ASERSIN U AN

Pl

U
LR

[TINTY e T T

RESTORE
REGISTERS

ssane
s

RSB CASERAN IS RSN

SR EKKG RUES REBED
* RETURN TO »
- CALLER »

RERIEE D ERD AN DS

Object Program

4-61

462

*

A" e,
2" «*SEQUENCE” ‘e NO
» A4 m———pm] guggx' ——
» - . NEEOED 1
BB SIEPRENDR ENDEK "y L "
B, ¥ !
YES .. (1]
* D4 *
- L
LEL
SUBPRP] RERREHSSN S Pt et e T
». [] »
SMCVE PARAMETERS* - .
* TO WORK AREZ * BCHECK SEQUENCE »
* » » -
- * * L d
S EEPOFUIIB SRS BET BT SR b ERRREN T
L
L d .
*C1 %>
L »
LE 12
. o
€1 *, ..
‘.. -, €s BAVSC 240 NNRR NS . *, €s PTT L T P TP
*, Y ., Y »
o’ ks o> EXIT . e >e EXIT .
., .. = * o .
..‘ Ll [T TTT1T 2 TT LT] SO PRSS S hikd b
L
%4 TD:z CAI.I.INg TO: RPGI} MLI
sone . . ROUTIN PROCESSOR{ $3SYRP
. . C2
» D] ®-> - .
L] L1
L 12 1]
CB/70L/7A1
sensflntansrsske [N
SIPCR - - .
b6 A o 0 ., YES
* .. ., nk* T
2GET NEXT RECCADS . & €S, .»
ELLE LI PTEL PR 2 L) ". .t.
NO
ansesEISNES LS
#33SYRP [
€S -~ tae0ians
S#m~e—r>*CALL RPGI] HAL », HAVE ALTER
PROCESSOR 2 l v, NATE
SHeeRNTEERES BED ‘e, o0
YES
EZ/ Al
”t'tﬁgttontt--a [
2385y » - »
s petuth * INCREMENT »
—=———=>%CALL RPGI] HALT®-—mo * POINTER Y »
* PROCESSOR » * INPUT. BUFFER 3
RIS EITTEIE L2 11T) v
Lt 2l
- »
* D) *
L] L]
"hed
¥y ®e
G2 .. (=3 .,
. ., .. .,
BINARY 4. NG YES o*PROCESSING
DATA AN —~e. ALTERNATE _.»
. . s, ENTRY .
L .. . e
L »
“w'vES “e'NO
-
»
»
Ellgllll EG/0L/A1L
CIRONH | SRS S ATAN ARSPRHIBERSERN A PERGEHL FS B SRS RERA
*$3PGL * 2$$PGCH w bl
. b ®SUBYRACT 1 FROM#
*CONVERT PACKED ® SCONVERT RINARY @ ® TABLE ENTRIES #
2 DATA 2 H DATA . . COUNTER »
BSERPRAE IR NCRERPRE
PP I—— G —
>
p
SESRJ20 0D GOSN IS 3" e, COABJSHISRENS SN D
. £ ON ENTRY 3 o *counrer’ e, vES * zen RIES o
* N
» O TABLE . L .0 oES oo TEEP RRIDMES i
. * COUNTER - L
. Ld *, ¥ »
BIREFERS 24RO ERIRS L EZIT T LT LT)]
ND P L)
L] L]
*« Dl»
L4 L
2EeN
v ¥,
nt-.nbt'tn.oocu: KS ..‘
*SUBTRACT 1 FROM® .»" RECORD YES
TEECORD COUNTER 3——————->s_ COUNTER = 0 #--—
. » “a. b '
(IITTE LRI EE LT LS T) -

Chart EP. Load Object Tables Subroutine

Licensed Material-Property of IBM

BANA | S UBREIRR
: ENTRY *
(LY TP Y T e Y

."“‘ax."t.“"“

‘HOVE PAIMETHS‘
TO WORK

»
Srerisiressasennn
“ese
* Ll s>
-
seen
BAREC (R RSN RITAS
. .
*LCAD AQDRESS gF‘
: 0C8 INTO XR, :

* »
TEOROR S SR kb AN

o1 .,

i d ..
=® FILE ., YES
*, CLOSED P]
* *

‘e, .
L v
NO 2R
* *
» E5 &
» *
LLLL]

SRORSE [skssvegsE
'IN Tllké E THE

.RE U;FER

LELTIEL I YL 2 1

[2 11)
] »
» FL %>
.

NPgT ®, YES
PACKED PO S
..DEC XHAL. -

[T
.. .
LT *. ND
ol slNaRy le-co

. s
YES

€6/ l Al
RSBSOS RR S xt
"‘PG!!
’CONVERT DEC WAL

’FIEI.D 70 81 IRV'

.t...t.--ltttol“-.

[SR ——

EL/01/AL
n.topac..t... ..
[4]

o

Cl(OECINAL b

» FIELD L]
»

SEXUNAXTEIDIRIRAS

<
ut‘ult—.n--n:
® WOVE ENTRY TQ »
: OUTPUT BUFFER :

. »
LI IT YT 7T T2 T i

v
LI 1]

“ne
@
w

san

Chart EQ. Dump Object Table Subroutine

Licensed Material-Property of 1BM

arstsfisvesnreEn e
* .

-
-TAOLEIAI iv ANDO
OVECORD CDUN’TERS‘

..--u.m-.tnn.-

.
£3 s,
+®ENTRIESS,

NO . BER .,
==, TABLE/ARRAY ,»
», a0 ®

snwe * YES
» »
» Fl e [SO
abaw
v
a®.
.F3 '..
. .
. », YES
®, ALTERNATE L o=-—~
=, SHITCH DNo»
., ¥
. v
* NO ELL L]
L]

SeeRGIsRRNAIkARD
- »
L 4 -
® POINT TO IDCA »
. -

» .
ARAEPSARSR A ENED S

CCr01/81
sasusHlensss0es
*OPC

W e .

* WRITE OUTPUT
. EILE

.
SEANSAIININEINAN L

. .
. B85 9

.
ek

L1l
[d
. ps *
*
li“
v
-..‘
ofivarfts,
o “TpeR .
TABLE/ARRAY ¢
., =0 -
., o®
B, o
1T YES
L) £l
s CL ®
* *
LIl]]

CC/01/A1
naozopsauocoottot

*
:NRITE ’e RECMD:
YT TTYIIT LT
sses

- .
 E5 *-)>
.

sevs

[T ——

eaneESesaveraes
. »
* EXIT »
. *
PRSP EHSORRNE S
TOzCALLING ROUTINE

Object Program 4-63

4-64

PGIC

LLEITYIC A 2221
.
. ENTRY »
. »
RS EH ARERIX S RER

oIS 2 LTI PY PN
SAVE SIGNS
FORCE TO '
PASITIVE

RESEINERRSESBRAb

renas
sssus

SEA) LEIESE SRR N

M RESUL
BEASIRISSREERDIS

10 e

.
., .t
-, .
YES

CHAQ30
SERALE LSRNy

.
*ADOD FACTOR 2 TO®
: RESULT :

- .,
N
'™ »

ERRSRE 2R RN RRN R AR S

-

. INCGRENENT
b SR

-
»
L4
L] »
TRHA OSSN N A NARE

s » .'-, e
BANDAEIBIEIRED SR 0 ., ¥
*YES
L4
L] L]
* G2 0>
L 4 -
e
CHAQTO
FRAARG | B R d W :t--lcztnnotctto:
» L
. . SSET UP APG HALT*
* INCREMENT XR2 * * PARAMETER *
* - Ed L]
» » » [
.=, CHADBO EZ/01/A1
M ., ”'llﬂilll..‘t‘..‘
$ 3535 b
10N Do
AS

aner

-2
. C »
:HlLY PROCESSOR :
PREBARREESERANEN S

v
ERaAH J2EPBHRARARA
- »

Ld
: CLEAR RESULT

LR X RS

*
LI ELEL bl 2 il 1])

Chart ER. Divide Subroutine

CHA D40
FEEER0IIRSISIRAND

g,
CHAQSO

YES .® 1G1
~—%. 80TH
‘.2! Mk

.,
S _«®
.2‘"

SEEBICTASIRNEENS

FERCE s1
EGATIV

XYY ¥
sesanss

*

* MOVE SIG? t0 »
» RESUL *
: '

i
BEESARR RV 4B NuEAS S

SARREEISNNRRED
*

*

sCLEAR FACTOR 2 8
» .

® »
S 000 o

i13

- »
¢ F3 Ae>
L] »

ARERFIPRaREARED
EXIT :

LT YT TP PO

TO:CALLING ROUTINE

-
.

Licensed Material-Property of IBM

PGLC
Bese) 1banstnbTe
«

: ENTRY :
R sEbEREEAEEDE LT
. 4
= B3 *
» -
PRI
!
.
bbb - AR L LT 212 2 1] SESRUBIAECREAESSS 53 ¥,
be bd ¢ SBET POINTER * >,
*NOVE PARAMETER * ‘ BACK ONE * ;AB *,
* LIST T0 PRINE » ELENENY llD ‘(--------' -*
: WORK AREA be ‘ STORE OLD PSR * .:BIOﬂHIL..‘
S6EE2EA0ARNEERED t.tot..tt.atttttt ‘e, e
* NO

CEOORCI KRNI SRR
*NOYE lDDBESSBS

*
>
=
=)
e
o

oz

wnQ

=4
ey

: CONPARYZ INSTR
LRI T2 2L P T

CEESEC INBARETRRT &
» -
¢ STORE CURRENT *
*PSR_FRON STATOS®
. REGISTER *

EEEMEPEEERPERRRE Y

>

rns
. .
* 01 >
. .
=aRE
EEEAD) EEBRRIEEEE
. CONPARE *
= IBLB ll“l’ b
¢ F !H b
* Fal TDR \ *
. -
R AL e 2 AT ES T E2 L L L]
-%
B1" e, SESEPIRERSERGERE
i - *ADD LERGTH OF 1%
P *. NO 'BLBH!'T TO LAS ‘
*. CONDITION ,¢-==-—==--- D IN
‘-. RET ..‘ :TIBLE/IP?AY DTT:
T s CAEEEIAIEAENANNRG
" yes
LI
= =
* B3 e RE
* "7 . p2" s,
sans * .,
«* E¥D 0P *, %O
*, TABLE B]
., L
-, ..
= ,x
+yes Py P
L
* Dl »
=
LA 2L s
¥,
EEERRGIAERERRRRER G2 -,
- » .,
* b TNDEX .
SET INDEX TO 1t PACTOR 2 .
* RIABLE .»*
= * ¥
EEERRRSRR AR EEERE L .
* RO
>
EREEHIEERRRRRER
-
» BXYT «
= L
EEESERERDERNRRS

TO:CALLING ROUTINE

Chart ES. LOKUP Subroutine

Licensed Material-Property of IBM

€OEOINIETO OO RN RS

L4

* UPDATE DTT TQ
¢POINT_ YO POOUND
hd ELEXE

(XYY ¥

b
PR ARt £ 222 1))

t.tttz;tﬂttttttlt
OUPBAT! InDEX IP'
* PACTOR 2

: VARIABLE :

XX EAFREIIRERNNS

4
2XAPIHNRARIIEN
. -
* XIT *
* -
TP ERR I 2o E Y

TO:CALLIAG ROUTINE

Object Program 4-65

PGLG
cansplsetusanes

£ »
* SYARY *
. -

LTI LT LY LT LT

sseesAl kesees st N
» .
® SAVE ADORESS
:RECALL RFGISTER:

L] .
RIS LI LT]2

(12 ARLII Il IYL]
» .

®SET COMMAND KEY®
: COUNT TO 16 :

» .
AR ABER SRS ENRNEEN

SESEIN] SO N RIS SN
-

» MDVYE KEY

SINQOICATOR BITS
: TO WORK AREA
FOSXOENENEEEIENEN

XYL

D el

CSORRE] senetbaEy
L] L]
* SHIEY KEY *
*INDICATOR RITS *
: ONE BIT LEFT :
SrEssEIEIELERIRS
[PAREOF 240400000
L4 ., . *
¥ ». YES * MOVE COMMAND *
s, OVERFLOW ¢Gm—m—e—==d>8 KEY COUNT TO *
'.. o * LOAD [/0 :
", o0 SRERARAREEIEATEEE
* NO
! v
2EIANG] SN ERESI b kR SEEGIEHAIENNNN0S
* .
- DEC REMENT * ® TURN COMMAND =
* COMMAND KEY #{--—-om—— KEY L1GHT ON
* COUNT BY ONE * .
SRRERESASFORIIIRS T
v
-,
H1 L
o s,
NO .* COMMANO .

---o, KEY COUNT = .®
.. 0 .
.. -

L

‘.‘.Jl.!.i'..l..
LDAD 1AR WITH
ARA

*
.
.
»
L d
.
»

.
0SB E00RkNENEN S

senni] rrrrinens

.

- RETURN -

- *
SUSNA RSN EESANED

Chart ET. Command Key Indicator Light Restorer Routine (Model 6)

Licensed Material-Property of IBM

S$SPGHA

SessALANSERD NS
.
- ENTRY L4
L] -
e sene onne nen
- . .
* B2 * 83 » * g5 *
. . . . stnn
sune e . asee
" B4 #——
-
Yy i
1 v HAS00 Ma520 v HA900
. » P4 rﬁﬁs‘si Lo . N . w SEYUP ~TQ= % - .
* slg REGS AND *AD! 0 FIELD ® LOAD_ADDR QF # *ADDR AND STORE * L b
» ST Eobllsrunu » LENGYH . ® FIRST ELEMENT #-—ew ® RESULT FIELD =» * MDVE OATA »
» Al - hd RESLEN . - b4 hd LEzGTH AT - b hd
» » » N . * . - RESLEN . . -
Lot LoV TR T g2t T]]]
L1 L)
[]
* C4 o>
(12
HAS L MATOO
”-..tl."‘.'.m: it et LI LI) sparnCitoensnsoss AR STSHIORIRDES R
. " £ d » - A
* POINT XR a = R OR ‘ s SET T bd *SET MO LENGTH®
: ‘ARN L}5¥ : —>‘&WLE“£?|‘4 68 :&QU L ¥B kE?LEN: : = be-E :
. b . - . »
sessIseratens aanS .- -
Rt T]
- .
* D2 #——=
- .
ok
BA200 v NMA520 %,
sonenns SARERDIPR AR K EIRY SeusepIssssensses D&’ e, SRRSADERS RS U S 4D
‘lNl llLllE . *STORE ARRAY DTTe A4 . .DECRE"EN" "’0' ‘
o BRelord e >+ ELLM ADOR'AT SOECREREN] TNOERS RestEy ¢ Toatfl 3 ADDRESSES BY 3
— -— . -l
» .N&-UP .‘ * REFELE : : T : L ELEN .-‘ ‘ . s I?Ea ‘
SAEIEESRES® ENNEEIIN RSN RS Wk LITIA TR S LT TITTTL . L] b - ... v“.“.”.“..
L 112
o %
s Go ®
. »
[223
1”7 "o,) 3t s, surenEh
-* I 0 s e SET 10T :
1 YES " RAY », N Al
., FACT& Z AN :l—--) ., VA‘? é‘. oo-— ——w%, TNOEX SQUIL e ‘EQUAL 8 k;ELE"‘ ‘TOTLEC SV Q’LEN‘
ARRAY .* ‘. INDEXED * *, YO * .
- . N .. L4 L4 t n
. ‘e, e T
NO YES YES
FLOARR Ma300 v v
OSSO [SRR TS EEEE S 2ENBERBOUSS dy 4 s F 4
» -

STORE FIELD » * STORE INDEX * SOECREMENT wTO™ » ® SET Q-LER = *
uoon AND_FTECD » . VAL UE » ®ADGR BY LENGTH &—— s “Uxeioo® .
SUENGTH mEACCEN"S : 2 OLFFERENCE : :
Sersarerressnsren SR TR INRCER RN S YT Tr I P T
L] * L] L1 1)

» . =02 * .
. Gy 8-> » 2 8 Go e
» » haw * -
LLl 2] - (i1
MAL100 MATLC ¥ L
R G3 .
« - . : 3 CRE?E:‘[BV g . "_ Is ‘.. Yes
» REMENT . b Cok ULGY SUFRON® - g}kfg .
- L4 - A Al - - - - W
» 'u!uSER 8 3 - bl LENG"gLENMEY » = 01 !E'E‘sEnCE - ., P E * l
- L] - - - » ., ¥
PPPPRCRRPPPEINT P [., .
P wons
L d -
* Che
.« e
[1. 1]
MASL0 %, MA720
tqﬂ,tun“t- K3 ‘- *
L ® JERD M. ?lDER L4 * »
. SE" BRANCH . > . 18 JU"F ‘- NI} * BYTE. EX LD » b RESTORE -
*, AT HAGL0 IO e tcu.b ae6LL gALT- . eg 10— * ORDER BYTE DF #<—- » REGISTERS =
» P it i . —LEN . - .
.o * TOTLEN®S & . .
P S ETYI 2T L] """.‘ll"..‘... .. "l v
& YES LEL 1
x B »
- »
[12 1]
T A s an szl unsvares PUSOPYTYS SPTTOn adnen jissnanennns
o . 9 » s SET UP FROM @ susej5usNSISBEE
I? . YVES #SET INDEX EQUAL® wAQDOR AND STORE #* ‘SE" MOVE LENGYH® - RETURN TO »
*, ﬁEsUk FLO atev—— - ™1 * *FACTOR 2 LENGTH® *w Q-LEN KINUS l‘ * CALLER .
sAN ARRAY .* - . AT FACLEN - L4 *
., . - - - - ‘_ SRt
. a® kD BB S poe »
L 1]
ELAE L]
- »
->¢ Gl *
e L - » N
- - * - e * -
® g2 . B3 .85
- - - * * -
e ®eae wons

Chart EU. Move Array

Licensed Material-Property of IBM

Object Program 4-67

PGMC
AR [0dddnasy
»
* ENTRY *
» »
200000t dRR

(St LI SR T L EL L DT
. *
* SAVE SIGNS OF #
* ROTH FIELDS :

* -
LAES PRS2 TR 2L ST

PRSP RCLEsnnETAS SN
* L
FORCE BOTH =
:FIELDS POSIT(VE:

* *
PIBERRERRERESANES

- > <

C0A0Q10
PEERED | BEFRTTRERD
» »
#SUBTRACT 1 _FROM*
PRODUCT :

tee

Ll
PESP RIS BEEESIRRED

CDAD20
SPusFlsssnssnnn

0

»

b FORCE

*

: PDS!TIJE
-

P

SEERTINBBPEENS PN

XX XX)

[addad b S IT L LR T T Y
* *
. »
SCLEAR FACTOR 2 »
* .

» *
PEEEEREE Ea Ll 2]

€0an3o
LI ST I

*

* EXIT *

- *
SEBERANSRAEES N

TO:CALLING ROUTINE

Chart EV, Multiply Subroutine (Models 6, 10, and 12)

>
-

SESENE2 NSRRI N

. .

ADD FACTDR 2 TD
PAGDUCY

» *
TR BRREEEREISIRS

24088 29085808858
* »

- -
---):SET T0 NEGATIVE:

» »
ITTATERL ISR E]

PGNC
ERRBAZIRRRED NS
*
* ENTRY *
* *
RESRERSSARFB RPN

CDAOSE

AEIREE 2R R KRB
= INITIALIZE »
* MULTIPLIER »
» ETART *
: DISPLACEMENT :

BESBLISTAINRRR AR

.t..th-!a.tt.ntl
-

SAVE SIGNS OF
B80TH FIELDS

XYY}

SEIBRRANEERRS DDA

:ll.‘oznnlu"'ll

*
® FORCE BOTH .
» FIELDS TO »
* POSITIVE :

»
BENBANSI R IRN R AR

Ly
»
* €2 a->
. .
ok
£DAO10 a®a
E2 . LYY PP YT RL
o ., »
® ®, NO *SUBTRACT 1 FRCM»
*. MULVIPLIER .#~———===>% "HULTIPLIER »
'~9|GIT = 2.' » oIGIT .
‘e, o° PP PP
* YES
CDADZO _ CDADYS
* [NCREHENT » H »
20 SELILERRT vos SnuetebiPano Tod
b hEl#‘%SS?TION » . PRODUCT .
» = » »
» .
oan
. -
£DA 025 N ® E2 o
Gz . ’ »
.. .. LTy
® hd NO .#* .,
o E2 sC-———%. MULTIPLY o=
- *.COPPLETE ,*
awen -, -
», 8
YES
S ANEHZROEIRES NS
- -
* CLEAR TH -
. HUL*EPL!CAED -
- AREA H
SRIFVABAND SESRAR
327 e, [I TN PRI
g ., »
o ., . PR y =
ol BENE TnMod 7 RESRVY 3
‘e Ky . »
. e SeREreNEsERIRELDS
* YES
<

CDAQ30
SEARK 2R RS RAS R AE
» -
» EXIT -
* -

BNEARERO R RE KRS

T0: CalLING ROUTING

Chart EW. Multiply Subroutine (Model 15)

Licensed Material-Property of IBM

FGTC
seés) 1000000000
.
. FNTaY e
. .

sssesBeEEseOInS

PGRY
S8 0%) 1eksaNEROR
* .
= ERTRY e sesssgirenenenses
sessasIrns NNy SHOYE 5% TO 'Uﬁl:
- AREA bd
*rsn * M
: d thesssaseResEe s
* B1 >
- »
s
N BPO08O
81 »,
.* s, EELE):PREEEL Y B
+* END OF *. YE * - e
%, PARAHEBTER .#-- —-—>% EXIT b c1 -,
*. LIST .» * * .* -,
., .. AEFS SR SR RIORN S#CHARACTER =¥, YES
. " *_ANPE NDA{Z) o#-==
oo TO:zCALLING ROCTIRE gArERSIND () | N
., «*
L
¢ N
|
c1’ e, l
«* ..
«* SHOULD *, YFS -t
*. JINDICATOR .%e=ce= D} ..
*,BE SET ON.+ . .
. - . YBS
, _. ®, CHARACTER = .#-—==
* NO = ATHUS (=) .
., o
., L,
NO
CEERED I RSERRRENEY
-CHIHGB op COD! *
Y SET IR *
‘!HSTBUCTIOI TD ' (TR AR TR R
SET O : ITUhH OFF *
t.tl'l'!tttt‘lt.t - };;‘ﬁéﬁEPQET, .
. cs -
- L]
mmrmceama=) AN SIINEENAI RSN O

BP0032
.t tt;‘u-.ttt.ttt

‘ SELECT PROPER ' -t
'IIDICITOB Ug!lc' Fi .
a® .
LY T T T .:. §°g§ ; .'.355-
.
'... e
., .*
¢ HO
BP0CGaQ

t R SEET TR L LT
.

.
: SET INDICATOR : -.n-tn1oonotcntso
- 'PUHCF 'C' ZONE ‘
* * AND MOVE TO =»
. SORK ALEA .
» .
.

AT TTS I 2 11T L)

*
SEEEANERTIEEPENS

PR R—

CEFFAG THIEEITER AN,

L4 *

*CRANGE aP CODE »

: TQ 5BT ON » CPAEQQ‘.H1..........
. .

- . . SET '
EOLRENENENEEEANS S * CQNDITIQN .
. REGISTER .
ey . [
- . ARG OENGIEIENINOS

->¢ B1 o

- -

L2 L]

Chart EX. Set Resulting Indicators Subroutine

seenJincessness
. .
. EXIT .
- -

XTI Y TR TS

TO: CALLING ROUTINZ

Chart EY. Test Zone Subroutine

Object Program 4-69
Licensed Material-Property of IBM

SYRP SEE NDTE
28SA] 000NN 4N
-
. ENTRY . ——~—=-— NOTE® FOR MODEL 15
SEE CHARY El
RBERIMAMESRENE
RGHOLQ
PEEPLASATSESRRS
-
#SYCRE REGISTERS®
. A 134 -
. SHITCHES .
. asue
SRR IAVTEETIBAINS . -
e Cc3 e
. .
e
o, RGHCS0 RGHO60 v
[S uo..cz-.tto--‘.- BACH KL IRRVS RIS &
L] ., *SYSLOG he
NOQ . SRﬁDR - ‘ Pg nT XR2 TO ———
===, CUOE = 40 .* ONTRCLLED
*, o *CANCEL ADDRESS vISSUE
R
YES
RGHL4D a,
SERND2AVEE ARSI S n3 L
= » - .® .,
* POINT XRL TO ¢ * * YES .#CDNTROLLED «.
: oTE : : c2 :<_ ‘. CANC ,l‘._E .
Pl * snem '!‘Eques .9'
sshdenvsensnne ., *
ND
R -
€1 e, GHL00 £ e,
0 ¥ .,
-* ‘e, ES ND _.®= BYPASS L
., EENPLE‘IDN Teasis -—=®, REQUESTED _.»*
*,(00E = 61 -, "
. . ., *
8 . *. .
NO bl ol * YES
- »
02
» »
LT
RGHILO .
2eskeF |00 .cnmn.v REPROEINONSIREIS S
- »
‘CCFPLETIDN CCDE & POINT XR2 TO »
& BECO Eé ERROR ' *BYPASS ADORESS *
- 00E - - A .
. . -
SHRRSEARS LKA APRE BUKEUDRHEONIARES S
> ———————
>
R
5"239-‘5‘.,.”."". Reni30
» REARGIERRRTAPRE
» SEAREH ERRER hd - -
: ODE TA : : EXIT *
hd - P ERRSS R EAN RS E
AEIHNB IS A AN S
TOD:CALLING PRDGRAM
RGHO4O o, RGHOSO o,
HL ., H2 "
- o -, LT
o ERROR *. NO " =, NO by bd
*, CDOE = !0 .’—————)t. CLDSE #—==D>% (3 *
®, T0 3 «® [] »
*e B «® saxn
., . .
b YES * YES
RGHO% L v
FEEIRI I SRR S SIS 208282 sktdntdan
» * *« s%a
* GET FILE » » £ * »
b NnﬁEERK » SREMOTE OPTION 2%—=—>% (3 »
» * « » » *
» » » . kR
PHEBDED PSS K KR & ISV ONBIPUGEIR N
skew
- »
. C3 ®
» .
*eew

4-70

Chart EZ. RPG Halt Transient (Models 6, 10, and 12)

Licensed Material-Property of IBM

SYRGOO
LTI

: ENTRY
ARTARINAE

SYROL10
PORONG R B AIN OGNS
L)

® GET PARNS AKD »
- DETERHINE *
:REYlmN ADDRESS :
BBOANANSDIRBADRD

\
achadd’ % *
® SAVE RPG_FILE *
hd NUMBER .
- »
* »
BERERNIS D LD RN &

el Lot LY L]

L4
SCCMPLETION CODE*
* BECOMES ERROR =
- CODE >

SERBRB ARSI EBEBRD @

)

SYRO20

SYRQ40
SRS EIRRR BN

SET HALY
DgFAlL1 13
PTIONS
RASHEN bRERED S wPRD

seaan
LT XY 2]

SYRD6O -,

., L
Qas *, NO . »
ERED ad——==D>8 B4 &
., .
LT

.‘...Kl.i-.....--

.
*SEY DEFAULT = 3% h
* AND REMOVE om0 B4 A
* CPTION 2 bd - .-

=
RV ReRIRNEVIISER S

unE
»

Lt lTd

LAl

» *

* g »

» »

Lt
SR, S ERBESNDD
P
GEY CORE fFCOA *
® PARM_& BUILD »
» PARM »
» »
SENBANAASSADERAND

OBBCAIBSNABAS B
EXITY .
»
- - BRARNSBDRDSIED S
s, .8
YES
Y0: YRANSIENY WITH
TEXT ($$SYR1)
E2/01/A2
5YR080 -,
sEsvAlZeveiedians D4 '
» -
» - YES 1P _HAl -,
®SET OPTION TO O#(—————— — & SPUOLING .*
: : . ALYIV
PP T Te.
NO

SYrRo85
RANISEL DR IRES AN

GET TEXT FOR
HALT

LYY

»
.
»
»
»
»

RIKEIEEERARISAS&

BORURFL &G REEES
*SYSLOG »
[Suthbotbe S
* % HMT VIA
* : URRENT
AEEIRBERI RIS

ST Y]

SARVAGARSANSNINN S

-
» SEY UP CANCEL
: E AHDRESSCE

» .
CEBBRRNIET O S ERAN Y
amen
- »
=0 K4 ®
- »

EEET]

Chart E1. RPG II Halt Transient (Model 15)

>V
L
SYRL2S G4 .
o* .
. .,
T a A RE Thor” 1
, 2) o
LEPO
"+ no

SYR130)
He

AR JHRERIRR AR N
» »
* SEY UP BYPASS
. ADDRESS :

Ld
P AKSRSERS

oy
SYR150
CARFKG ¥R ekEROY

»

. EXIT »

» »
LEAIAT RS ot L el

TD: CALLING ROQUTINE

Object Program 4-71

Licensed Material-Property of IBM

4-72

SYROOQ
SIS A 29 KRKANIIS

» ENYRY *

.“‘.‘...“"tl.

Pealt AT IL PA L TY L)
» »
SLOAD POINTER TO®
: CORE 2REA :

» -
SERFEIIABAIRLR NS

YR v
s ggektczl"‘to--n-
* -

® GET TEXY FOR »
L4 NAET »
3 »
»

CITIISIE R RS I L)

ARERRN2BREBE SHBW
*SYSLOG N

® » HALY ViA * #
RE&T e

* ¢ CLR
* & SY 95 "
SREKS N ARERSFE AN

P) g2" s,
» N g,
¢ SET UP CANCEL * YES .* CﬂNYR?L .
. AODRESS mmamans-d, CANCEL (OPT ,*
> . s, 21 e
. .

- -
RIS LL R R », .
NO

SYR130 e
F2 ..
- L)
-* BYPASS =, NO
» . (0PT 21 ..v—-q

*, -

LI
YES

29909G 2R NKRF SRR

-
= SEY g BYPASS *
: AQORESS :

* -
*EASREINI AP RD NS

Qo e

BEAMH 20 kSR SR FB A
» *
* EXIT *
.

FRRIESS R ER IR

TO: CALLING ROUTINE

Chart E2. RPG II Halt Transient Library 1 (Model 15)

Licensed Material-Property of IBM

DATA AREAS

This section describes the layout and contents of data
areas used by the object program. Although lengths and
locations of data areas vary with the source program,
absolute addresses and fixed lengths of data areas are
given where appropriate.

Reserved Object Communications Area (ROCA)

The reserved object communications area is the first 256
bytes of the Root Segment for every RPG II program.
Only part of ROCA is actually generated since most of it
is composed of work areas.

Prime Work Area

This 144-byte work area is located in the beginning of
ROCA from X00’ to X‘8F°. The following blocks of
object code use the prime work area:

Object Code Bytes Used

TESTZ X00-X03’

Z-ADD X00-XOF’

ADD X00-X19’

Z-SUB X00-X19’

SUB X00-X19’

Multiply X‘00’-X‘32’ (Models 6, 10, and 12)

X‘00’-X‘3A’ (Model 15)

Divide X00-X3D’

SQRT X00-X3D’

LOKUP X00-X3D’

Control fields X00-X8F’

Matching fields X00-X8F’

Chain packed keys X07-X0F

MVR X‘1B-X2A’

Table load X60-X‘83°

*PRINT X00'-X8F

TIME X00’-X‘0C’ (Model 15 only)
Constant Area

The 50-byte constant area follows the prime work area in
ROCA. This area is located from X90" to X'C1°. Com-
piler phase $RPGH builds the constant area and phases
$RPPC and $RPPO make additions to it. The constant
area contains:

Byte

X90-X97

X98-X99’

X9A-X9B’

X9C-X9D
X9E-X9F°

X‘A0-X‘Al”

XA2-XAT

X‘A2-X ‘A3’

X‘A4>-X*AS’

X'A6-X‘AT

X‘A8-XAY

X‘AA’-X'AB’

X‘AC-X‘AF’

X‘B0-X‘B3’

X‘B4-X‘B8’

X‘B9>-X‘BA’

X‘BB-X‘BD’

X‘BE*-X‘BF’

XC0-XC1’

Licensed Material-Property of 1BM

Contents

Constants used by many routines:
X‘40FFFF0000010002’

Address of first IOCB in the IOCB
chain

Address of IOCB of file currently
being processed

Address of IOCB of a forced file
Address of first table load DTF

1P save area containing the error
restart address for the First Page Out-
put routine

UDATE in user-specified format

UMONTH (UDAY if using European
method of notation)

UDAY (UMONTH if using European
method of notation)

UYEAR
Month and day of compile

Time of compile (HHHMM Model 15
only)

Branch to controlled cancel
Branch to Input Mainline

Halt parameters used by the RPG II
Halt Processor

X‘B4’ = X‘43’

X‘B5’ = X40’

X‘B6’ - X‘B7’ = Console stick-light
mask (see Halt/Syslog, IBM System/3
Disk Systems System Control Pro-
gram Logic Manual, SY21-0502)
X‘B8’ = Acceptable restart options

Address of alternate collating se-
quence table

Constants used by output routines
‘CR*’

Address of ROCA

Reserved
Object Program 4-73

Note: The Dump Object Tables subroutine may use bytes

X9E'-X'AB’ to receive inline code for use by the
subroutine.

Indicator Table

The indicator table is located in ROCA at bytes
X‘C2-X‘'D9’ immediately following the constant area.
Each possible RPG II indicator is assigned a location in

the 26-byte table (Figure 4-4).
Command key
indicators
(Model 6 only)
Hex Byte Mask
Displacement
from XR1 80 40 20 10 08 04 02 01
C2 H4 H3 H2 H1 MR {Int.} MR {Ex.| 1P
Cc3 L1 Lo LR H9 H8 H? H6 HS
c4 L9 L8 L7 L6 L5 L4 L3 L2
c5 U1 u2 u3 U4 us us Uz Us
cée KH KG KF KE KD KC KB KA|
(o7} KQ KP KN KM KL KK KJ Kl N
c8
c9 07 06 05 04 03 02 (4]
CA 15 14 13 12 11 10 09 08
Cc8 23 22 2 20 19 18 17 16
cC 31 30 29 28 27 26 25 24
CcD 39 38 37 36 35 34 33 32
CE 47 46 45 44 43 42 41 40
CF 55 54 53 52 51 50 49 48
Do 63 62 61 60 59 58 57 56
D1 n 70 69 68 67 66 65 64
D2 79 78 77 76 75 74 73 72
D3 87 86 85 8 83 82 81 80
D4 95 94 93 92 91 90 89 88
D56 99 98 97 96
D6 OV Ex. OG Ex. OF Ex. OE Ex. 0D Ex. OC Ex. OB Ex. OA Ex.
D7 OV 1st OG 1st OF 1st OE 1st OD 1st OC 1st OB 1st OA 1st
Int. Int. Int, Int. Int. Int. lat. Int.
D8 OV 2nd 0OG 2nd OF 2nd OE 2nd OD 2nd OC 2nd OB 2nd OA 2nd
Int. Int. Int. Int. Int. Int. Int, Int.
D9 Total Control Overflow EOF on Close * * RESERVED
cycle fields being look- has been
switch processed processed ahead entered

Note: For each overflow indicator there are two internal indicators. The first internal indicator indicates that overflow has occurred; the
second indicator indicates that the overflow output code has been fetched.

Ex. = External
Int. = Internal

Figure 44, Indicator Table

474

Licensed Material-Property of IBM

Secondary Work Area

Byte X‘DA’ is not used. Byte X‘DB’ contains the modifi-
cation level of the compiler that generated the program.
Byte X‘DC’ contains the release (version) number of the
compiler that generated the program. The remaining

34 bytes in ROCA are used by the subroutines as a work
area. The bytes from X‘DD’ to X‘FF’ are used as follows:

Subroutine Bytes Used
Load Object Tables XDD-X‘EC’
Dump Object Tables X‘B9*-X‘DQ’
X‘DA’-XEA’
DTF Parameter Save X‘DD-X‘E2’
Area For Fetch
Unpack X‘E7T-XFF’
Convert to Binary X'E&-X'FF
Command Key Indicator X‘EA-XED’
Set Routine
Alternate Collating Sequence X'EA-X'FF
Convert to Decimal X‘EC-X‘FF’
Pack X‘ED-X‘FF’
File Translate X‘F1’-X‘FF°
Array Index X‘F3-X‘FF’
Set Resulting Indicators X‘FA-XFF’

Trailer Table

This 8-byte table is generated by phase $RPJS for each
valid trailer record (TR) specification group found in the
input specifications. The table format is:

Byte Contents

0-1 Displacement in record to the low order
end of the first trailer

2-3 Displacement to the low order end of
the last trailer in group

4-5 Displacement to current trailer (initially
first)
6-7 Actual length of one trailer

Define the Table {DTT)

One 8byte DTT is associated with each array or table in
the object program. The DTT address may be found in the
source listing. Each DTT is in the following format:

Byte Contents

01 Address of rightmost byte of the first
array/table element

23 Address of rightmost byte of the last
array/table element

4-5 Address of rightmost byte of last
looked-up element if a table (used for
work area if an array)

Note: These bytes are initially the same
as bytes 0-1.

6-7 Length of one element

Define the File (DTF)

The DTF is the primary external interface to a program
calling an access method. Compile-time phase $RPGN
builds a pre-open DTF for each device specified. The pre-
open DTF is passed to data management. During program
open, data management modifies the pre-open DTF and
returns it to RPG II as a post-open DTF. The size of the
pre-open DTF built by phase SRPGN for disk files
depends on the access method being used to process the
file. For a detailed description of pre-open and post-open
DTFs, see IBM System/3 Disk Systems Data Management
and Input {Output Supervisor Logic Manual, SY21-0512,
and/or IBM System/3 Model 15 System Data Areas and
Diagnostic Aids, SY21-0032.

Object Program 4-75

Licensed Material-Property of IBM

Alternating Collating Sequence and Translate Tables

The alternate collating sequence and translate tables
immediately precede the match field save area at X'BA’ in
ROCA. These two tables have the same format and similar
uses.

The first entry in each table is one byte containing the
number of entries in the table. The remaining entries are
two bytes each. The first byte is the external value; the
second byte is the internal value. Each 2-byte entry
corresponds to one user-specified entry (see Library of
Subroutines).

Match Field Save Areas

Match field save areas are allocated in the Root Segment.
The match field save areas can be found by locating the
multifile logic code in the source listings. The first
compare instruction contains the address of the first
match field save area.

If one file is specified as a match file, then one save area
is set aside. If two or more files are designated as match
files, two match field save areas are allocated in the Root
Segment. Each area is only as long as the number of
match levels specified. For example, if match field levels
M1, M3, and M4 are specified, then the save area would
only be large enough to hold ‘MIM3M4°.

Phase $RPHS generates and diagnoses the use of the
match field save areas. Phase $RPHT generates the initial-
izing object code. The first save area contains the match-
ing values of the last selected file and is used for sequence

4-76

checking. The second save area contains the match values
of the last selected primary file and is used to control the
setting of the MR indicator. See Detailed Object Program
Flow, Multifile and Matching Records Logic for further
discussion.

Control Field Save Area

The control field save area is located in the Root Segment
immediately following the match field save areas. Control
fields are defined on the input specifications. The control
field save area can be found by locating the control field
logic in the source listing. The address in the second MVC
instruction is the address of the save area.

The control field save area is only as long as the sum of all
the control levels defined. If there are three control levels,
then the control field save area will be only large enough
to contain the three levels. The levels are generated in
descending order from L9 to L1. Phase SRPHS generates
and diagnoses the use of the control fields. Phase SRPHT
generates the initializing object code.

Constants, Edit Words, and Edit Codes

Constants and edit words are specified on the output-
format specifications and generated as subsegments at
compile time by phases SRPLN and $RPLR. When placed
in the Root Segment, constants and edit words are
optimized. For example, if constants ‘1 2 3’ appear twice
in output-format specifications, they are combined and
entered in the Root Segment as ‘1 2 3°. Edit words can be
optimized in a similar way.

Licensed Material-Property of IBM

Edit codes are specified on the output-format specifica-
tions. Compiler phase SRPHT generates the edit patterns
for the edit codes. Edit code patterns are placed in the
Root Segment.

Error Recovery Procedure {(ERP) Area

For every device used within the program, a 5-byte error
recovery procedure area is set aside in the Root Segment.
Data management returns addresses in the ERP area of
where to go when an error occurs for each device. Each
ERP area immediately follows the corresponding device
DTF.

Input and Output Buffers

Main storage contains two buffer areas — an input buffer
area and an output buffer area. There is one input buffer
for each device type. The input buffer address can be
found in the IOCB at post-open time (see JOCB in this
section).

An output buffer is assigned for each device specified. If
the output buffer length is less than 144 bytes and if
*PRINT is not used (Model 10 or 12), the output buffer is
located in the prime work area in ROCA. At post-open
time, the address of the output buffer area may be found
in the IOCB.

Completion Codes from Data Management
Data management passes a series of completion codes to

RPG Il in the post-open DTF at X'OE’. For a READ or
GET the following codes are passed:

Code Meaning

40 Normal completion

41 Controlled cancel requested

42 End of file

44* No record found, out of extent,
DU, DG, DO

46* Duplicate conversation reply requested
(BSC)

Code Meaning

4B* Invalid ASCII code
4D* Invalid call by user
4E* Programmer lost communication

For a PUT, WRITE, or ADD the following codes are
passed:

Code Meaning

40 Normal completion

41 Controlled cancel requested

44 Updating a record not found

46 Conversational reply requested (BSC)

48 Overflow

4B* Invalid ASCII code

4D* Invalid call by user

4E* Programmer lost communication

50* Key changed

60* Duplicate add

62* Add or load out of sequence

64* Key too low or too high for indexed
random multivolume online file.

68* Sequence ADD to multivolume indexed
file because high key missing from
previous volume.

70* End of extent

72* Key too high for last volume of multi-

volume indexed file.

* = These completion codes are sent to the RPG Halt
Processor Transient ($$SYRP).

For information about the RPG II Halt Processor
Transient, see Library of Subroutines.

RPG Ii passes a parameter list for each file device to data

management in the DTF starting at X‘'OF". The Input
Processing Control routine (IPCR) moves the parameters

Object Program 4-77

Licensed Material-Property of IBM

from the IOCB to the DTF location. See Figures 4-5 and Byte Bit
4-6 for parameter contents. For output, the parameters

are moved by the output code to the DTF. For SET/KEY 1
operations, the parameters are moved by the SET/KEY

code to the DTF (Model 6 only).

[R o)

.'h(.p)
(=5}

Input/Qutput Control Block (I0CB)

The input/output control block (IOCB) contains informa-

tion about files. Compile-time phase $RPGN builds a

17-byte IOCB for each output file and a 38-byte [OCB 7
for each input file. The address of the first IOCB may be

found at X99* of ROCA. 10CBs are chained together 2.3

with the address of the next IOCBlocation at bytes 2-3

of each 10CB. The chain and read record parameters are 4.5

moved into bytes 24-30 by the Chain and Read routine.

Bytes 21-37 are entered into the IOCB at object time by 6-7

the Record ID routine. Each IOCB contains:

89
Byte Bit Contents

1 = End of file has occurred

1 = File not open 10

1 = Identify look-ahead file

1 = Non-input control file (not 11-12
primary or secondary)

1 = Translate file 13-14

1 = End-of-file specified on file
description specifications 15

7 1 = Buffer full (does not need to be

read from this cycle) 16

0

W =0

[o 00 8

4-78
Licensed Material-Property of IBM

Contents

1 = BSCA ‘last’ file
1 = Limits file
1 = Combined file
1 = Update file
Record address type
000 = Data base
010 = Key
100 = Record ID
110 = Record number
1 = Record address file

IOCB chain address

DTF address

Translate table address

File relation address (‘from’ or ‘to’
IOCB addresses for record address
files or tables)

Overflow indicator mask

Record length

Address of output work area

Sequence number (in binary)

External indicator

If the file is an output file only, the following entries will
not be present:
Bit Contents

Byte

17-18 Input buffer address

19-20 Alphabetic sequence input record
processing address

21-23 Address of last numeric input record
processed and sequence information
(byte 23 identical to byte 37)

24 Communication byte X‘01’ = Stacker
select request (Models 10 and 12)
X‘02’ = Data fields present in record
X‘04’ = Control fields present in
record
X*08’ = Matching fields present in
records
X*10’ = Numeric sequence in record
X‘20’ = Console file
X‘40’ = Numeric sequence in this
file
X‘80° = Recycle check bit (If all
numeric sequence checking
is optional, this bit is used
to determine if a record
does not fit any of the
numeric sequences, indicating
an error.)
25-26 Resulting indicator mask and
displacement
27 Operation code for I0CS
28 04 If MFCU stacker, not used;
if console, entire byte con-
tains input buffer length
000 = No select Model
010 = Print 4 tiers 10 or
100 = Stacker 4 12
101 = Stacker 1
110 = Stacker 2
111 = Stacker 3
0-7 X'00’ = No select
X‘01’ = Stacker 1
X02’ = Stacker 2
X‘03’ = Stacker 3
X‘04’ = Stacker 4
X‘05’ = Stacker 5 MFCM only

MFCU
and

MFCM 15

only

Model

Byte Bit Contents

29-30 Address of Move Input Fields, code
for this record type

31-32 Address of Control Fields Move
code for this record type

33-34 Address of Matching Records moves
code for this record type

35-36 Address of next numeric sequence
checking code for this file

37 Numeric sequence information
X‘01’ 1= Numerous
0=0One
1 = Mandatory record found
1 = Mandatory
0 = Optional

X'02°
X'04

OVERLAYS (MODELS 6, 10, and 12}

The RPG II Compiler uses a unique overlay system. This
discussion concerns three areas of the overlay structure.
First, the basic overlay concepts are discussed and defined.
Then, the technique employed in RPG II is discussed in-
cluding the Overlay Fetch routine and the overlay fetch
table. Finally there is a section to help determine how to
find an overlay and its contents in a source listing.

Overlay Concept

When the size of the program to be generated exceeds the
size of main storage, an overlay program is required. An
overlay program uses the same areas in main storage dur-
ing different stages of a problem. When one segment of
code is no longer needed in main storage, another seg-
ment can replace all or part of it. The RPG II Compiler
uses an automatic overlay editor which determines
during compile time the overlay structure of the object
program.

Segments

The first step required to generate overlays is to divide
the object program into segments. A segment is part of a
program that is a logical unit of code and can be identi-
fied separately from other object code. There are three
segment types in RPG I1: the Root Segment, mainline
segments, and subsegments.

Object Program 4-79

Licensed Material-Property of IBM

Root Segment

The Root Segment is unique since it is the only segment
that remains in main storage throughout execution of the
program. It cannot be overlaid. The Root Segment has
no fixed size. It contains the RPG II work area including
indicators, DTFs, IOBs, IOCBs, buffers, data fields, and
tables. In short, all data used in more than one cycle
during execution must be-stored in the Root Segment.
The Overlay Fetch routine (see Overlay Fetch Routine in
this section) is the only routine that is required in the
Root Segment.

A segment may access the Root Segment at anytime with
any instruction. The Root Segment, however, can access
other segments only by using a branch instruction.
Mainline Segments

The mainline segments contain cycle control for the
RPG II object program. Mainline segments may be
called only by other mainlines with only simple branches
(no branch and return) allowed. The mainlines in RPG II
are.

1. Open

2. Detail Output

3. Input Records

4. Total Calculations

5. Total Output

6. LR and Overflow Control

7. Input Fields

8. Detail Calculations

9. Program Close

Subsegments
Subsegments are routines or subroutines that can be
called by mainline segments or other subsegments. Con-
trol is always returned to the calling segments or sub-
segments. The RPG II subsegments are:

All library subroutines

Record ID Processing

4-80

Multifile Logic Processing
Control Fields Processing

LR Output

LR Calculations

0A-OV Overflow

Input Processing Control routine
Output Processing Control routine
Exception Output

Fetch Overflow

Chain Code Blocks

I/O Interface Blocks

Output Field Moves, not inline

Overlay Priority

Each program contains segments of code which are fre-
quently used and others which are seldom required during
execution, The overlay editor (phases $RPSB and $RPSE)
calculates an effective overlay structure.

Each segment or subsegment gets a priority number
assigned specifying the frequency with which it is called.
For practical reasons, the numbers are assigned in reverse
order, which means that the highest priority is represented
by the lowest number. The highest priority is reserved for
the Root Segment because it must be in storage at all
times. The priorities are:

Priority (hex) Description

00 Root Segment

00 Overlay Fetch routine

00 Transfer vector table (to call main
overlays)

00 Overlay area

00 File Translate subroutine

01 Detail Qutput Mainline

01 Input Mainline

o1 Total Calculations Mainline

01 Total Output Mainline

01 LR and Overflow Control Mainline

01 Input Processing Control routine
(IPCR) Subsegment

Licensed Material-Property of IBM

.00.X 18 WBS 1M {) DY Aq pessed Jsjewiried PIBOOA3) 3yl JO MBIS Byl ‘BPOW 803G JO AR|dSI(10, ,

‘paiyioads Aides yym 103812d0 01 a1LM = HOLM,

L Aay "wod= 38

m Jud
g Aay| ‘wo)=0 7'z IAg L (7] -y ¢
6 Aay| ‘wog=¢ -.m_m 1is0d
. . pajuisd
L Aay| "W] 1A -
9 3 "wod=0 v_mu__.: >mm_ g 9q 0 sa1Aq 9
PUBWILIOS PEMO||Y ajqes qgey 30 Jaqunpn
§0 sse1ppY uonysod
sew s .E_ﬁ g
46| pjaty veis
L A3 "wiod=¢ M_m
13148
Bu
yiBuaj piaty v || g Aoy -won=0 ng'z a1rg adeds v
6 A9 "Wwod=L Hmm
¢ 01 A8 ‘Wwop=~Q 1g’} kg | ‘OHe%08ds uBig Mw“ 1sye ¢
epow Aedsiq 9 psews Aay 1048q evedg :eu0Z weig dig
: PUBLLLUOD PaMmO| | "
po Aay puljg [ssews 2HOIM 8.10j8q asopaq
uo pBal aq o} saul z
pley ousunN | v 3401 pretd sa1Aq 30 Jaquiny ueig s08as
£ ¢ 1030
pajuud aq 0} ueelds |_ ‘JouB alojaq
uanlal Juawaly =08,X 183} L
z $33AQ O Jaqunp jue|g asadg ans
184)nq Indino
Z Joyoes] L 8pow |Bnuey a3 18819 30U 0Q L
Ajuo
L JoioedL Y sia19maeY2 1dasay 9
]
z
1 4
s3y6is| Aax (1]
. PUBWILIOD JO LN €
P13y jo Youngd s1epdn 4
ssauppy 8poo
C 1010e4] «Inding uopesado g PPw/ind 3
0 8poo
| 103081 »3ndu} uonessdo peay 139 1]
(oo 81015 10 Avidsiq) ' (apoiy |enuepy) 1opr026y
g |e: ajosw 106 smsul S ug | e
. .pisoghey | M8 [P8 pizoqAsy josuod 1HD pa) d e18q ¥sia | va | elAg

Figure 4-5. Model 6 Data Management Parameters

Object Program 4-81

Licensed Material-Property of IBM

Byta Bit MFCU Disk Printer Console Special BSCA

] Read Get Input* Input Input

1 Print Put/Add Print Output* Output QOutput

Punch Update
3 Move “1""-type inquiry
program

0 4

5

6 Accept characters only

7 Do not clear output buffer

2 Print 4
1 lines Skip Number of bytes to

57 Stacker before be printed

select
2 Space Number of bytes to
befora be read on WTOR*
3 Skip Zone: Space befora
Digit: Space after
4 Space
after

*WTOR = Write to operator with reply specified

| Figure 4-6. Models 10 and 12 Data Management Parameters

4-82

Licensed Material-Property of IBM

Priority (hex) Description

01 Input fields

01 Output Processing Control routine
(OPCR) Subsegment

01 Literals, constants, edit patterns, and
parameters

01 Detail Calculations Mainline

01 Record Identification processing

01 Multi-file Logic processing

01 Control Fields processing

03 Alternate Collating Sequence sub-
routine

04 Set resulting Indicators subroutine

08 Array Index subroutine

15 Multiply subroutine

15 1/0 Hook

15-1A* Calculzation subroutines (SR in
cols 7 and 8)

16 Exception Output Subsegment

20 LOKUP subroutine

22 Pack subroutine

22 Unpack subroutine

25 Divide subroutine

28 TESTZ subroutine

30 Convert to Binary subroutine

30 Convert to Decimal Subroutine

32 RA File Process subroutine

32 Square Root subroutine

32 Chain code block

36 DEBUG subroutine

40 Fetch Overflow Subsegment

40 OA Overflow Subsegment

40 OB Overflow Subsegment

40 OC Overflow Subsegment

40 OD Overflow Subsegment

40 OE Overflow Subsegment

40 OF Overflow Subsegment

40 OG Overflow Subsegment

40 OV Overflow Subsegment

56 Open Mainline

56 Program Close Mainline

64 LR Output Subsegment

64 LR Calculations Subsegment

64 Load Object Tables

64 Dump Object Tables

*The first Calculation subroutine in the source code will
receive a priority of 15, the second 16, and so forth until
1A is assigned. After that, all other calculation sub-
routines will receive 1A priorities.

Suboverlays

RPG II has a 2-level overlay structure. Mainline segments
may become overlays. They are loaded in the main over-

lay area. The main overlay area has a minimum size of 256
bytes (one sector). Subsegments may become suboverlays
which are stored in the suboverlay area. The minimum
size of the suboverlay area is also 256 bytes (one sector).
Suboverlays can be called only by mainlines. If a sub-
segment calls another subsegment, only one suboverlay
containing both subsegments is generated. With this
method, overlays that are too large for storage space can
be reduced by breaking out some subsegments and
generating suboverlays. The size of the overlay areas is
increased to the size of the largest overlay if this proves
necessary. Multiple suboverlays may be generated for one
mainline. However, only one of these may be in main
storage at any given time.

Overlay Technique

If the available storage size specified on the control state-
ment is smaller than the object program size, overlays are
required. The Overlay phases have two different func-
tions. First, they format the object code generated by

the Assign and Assemble phases for use by the linkage
editor. Second, they create overlays by using an automatic
overlgy editor (phases $RPSB and $RPSF). Chart FA gives
a general description of the overlay phases.

Overlay Editor

If it is determined that overlays are necessary, phase
$RPSB acts as the overlay editor. Using the segment list
built by the previous overlay phases, the overlay editor
begins the following 3-step cycle for each segment and
subsegment in the list:

1. Flags the segment or subsegment that has the
lowest priority and has not previously been flagged
as a main overlay or suboverlay.

2. Determines the length of the main overlay or sub-
overlay areas and adds the length to the total pro-
gram.

3. Subtracts the length of the main overlay or sub-
overlay from the total program.

These three steps are repeated until one of two things
happen:

1. The total program is reduced to a size that will fit
in main storage.

2. All of the segments and subsegments are flagged as
main overlays or suboverlays and the total program
is still too big. In this case, an error message is
written.

Object Program 4-83

Licensed Material-Property of IBM

If the 3-step cycle is completed successfully, the overlay
editor completes the task of flagging the remaining seg-
ments and subsegments as overlays and suboverlays.

Next the overlay editor (phase $RPSF) checks to see if,
during the process of taking segments and subsegments
out of the total program (overlaying), the total program
was reduced so that it has some unused storage space.
The unused storage space is then refilled with overlays
previously taken out.

In addition to the overlay cycle described, the overlay
editor does some optimizing of the overlays. Two or
more smaller overlays are often combined to make one
larger one if their combined size does not exceed the
main overlay and/or suboverlay areas. In addition,
small suboverlays can be combined with a small main
overlay if they will be used by the small main overlay
and the created overlay does not exceed the combined
size of the overlay areas.

Overlay Fetch Routine

The Overlay Fetch routine, built by phase $RPSG, is 128
bytes long. The main function of this routine is to fetch
overlays from access devices into the overlay areas in
main storage. In addition, bits are set in the overlay fetch
table telling where the overlays are.

The Overlay Fetch routine requires three parameters as
input. They are:

1. Overlay number (1 byte)
2. Entry address of the overlay (2 bytes)
3. Return address from the overlay (2 bytes)

Phase $RPSG builds a transfer vector containing the input
to the Overlay Fetch routine. The transfer vector con-
tains these instructions:

Save the return address

Call the Overlay Fetch routine
One byte containing the
overlay number minus one
Two-byte entry address

ST OVFRSI,ARR
B OVFR
DC 1,X‘NN’

DC 2,A‘ENTRY’

The Overlay Fetch routine checks to see if the overlay
passed is in main storage. If it is, the routine branches
to the overlay. If it is not in main storage, the overlay
fetch table entries are checked to see if they use the
same main storage. If they do, the overlay is flagged as
not being in main storage.

After checking all entries in the overlay fetch table, the
entry of the overlay to be called in is flagged as in main
storage and the overlay is loaded into main storage. The
Overlay Fetch routine exits to the overlay. Chart FB
gives a description of the Overlay Fetch routine.

Overlay Fetch Table

The overlay fetch table built by compiler phase SRPSG
contains one 7-byte entry for each overlay or suboverlay
in this format:
Byte Bit Contents
01 Cylinder/sector address of overlay
relative to the Root Segment

2 Number of text sectors

34 Storage address where overlays are
loaded

5 Displacement of relocation dictionary
in last text sector

1 = Overlay in storage now
1 = Overlay using overlay area (bit 2
can also be on)
2 1 = Overlay using suboverlay area
(bit 1 can also be on)
36 Unused
1 = Special OPEN/CLOSE mainline

Yt

~

How to Find an Overlay

The following steps may be used to determine what over-
lays are in main storage when a process check occurs and
where to find them.

1. Locate the address of the Overlay Fetch routine on
the core usage map of the source listing (Figure 4-7
part 1),

3

2. Locate the overlay fetch table in the dump. The
overlay fetch table is 115 bytes past the start
address of the Overlay Fetch routine. It can be
obtained by this hex formula: Address of Overlay
Fetch routine +X‘73’ = Overlay fetch table (Figure
4-7, part 2).

3. Mark off every 7-byte entry in the overlay fetch

table until the last entry is reached. The last entry
is X‘FF* (Figure 4-7, part 2).

Licensed Material-Property of IBM

R L IRER LSS il<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>