Phoenix

Mchnical Reference Series

ABIOS for
IBM PS/2
Computers and
Compatibles

The Complete Guide to
ROM-Based System Software for OS/2°

—rwere 0) ! A 4

Phoenix Technologies Ltd.

W echnical Reference Series

ABIOS for
IBM® PS/2°
Computers and
Compatibles

The Complete
Guide to
ROM-based
System
Software

for OS/2

Phoenix Technologies Ltd.

A
vy
Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book and Addison-Wesley was
aware of a trademark claim, the designations have been printed in initial- capital letters.

Limitation of Liability

While every reasonable precaution has been taken in the preparation of this book, the author
and the publishers assume no responsibility for errors or omissions, or for the uses made of
the material contained herein or the decisions based on such use. No warranties are made,
express or implied, with regard to the contents of this work, its merchantability,
or fitness for a particular purpose. Neither the author nor the publishers shall be liable
for direct, special, incidental, or consequential damages arising out of the use or inability to
use the contents of this book. ’ ' '

Library of Congress Cataloging-in-Publication Data

ABIOS for IBM PS/2 computers and compatibles : the complete guide to
ROM-based system software for OS/2 / Phoenix Technologies, Ltd.
p. cm. -- (The Phoenix technical reference series)

Includes index.

ISBN 0-201-51805-8 .

1. IBM Personal System/2 (Computer system) 2. Systems software.
3. Read-only storage. 4. Computer input-output equipment.
I. Phoenix Technologies, Ltd. Il. Title: ABIOS. IIl. Series.
QA76.8.125063A25 1989 005.4'469--dc 89-6449

Copyright © 1989, 1988, 1987 by Phoenix Technologies Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher. Printed in the
United States of America. Published simultaneously in Canada.

Cover design by Hannus Design Associates
Text design by Phoenix Technologies Ltd.
Set in 10-point Modern by Phoenix Technologies Ltd.

ABCDEFGHIJ-AL-89
First printing, June, 1989

Trademarks

This manual acknowledges the following trademarks:

Ashton-Tate and Framework are registered trademarks of Ashton-Tate
Corporation.

AST is a registered trademark of AST Research, Inc.

AT, IBM, Personal Systems/2, PS/2 and PC/AT are registered trademarks of
the International Business Machines Corporation. PC-DOS, PC/XT, VGA,
CGA, MCA, EGA, MDA, 0S/2 and Micro Channel are trademarks of the
International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

1-2-3, Lotus, and Symphony are registered trademarks of Lotus Develop-
ment Corp.

Motorola is a registered trademark of Motorola Semiconductor Products, Inc.

MS, MS-DOS, and Microsoft are registered trademarks of the Microsoft
Corporation.

NEC and Multisync are registered trademarks of Nippon Electric Corporation.

Quadram is a registered trademark of Quadram Corporation.

To Eric Enge, Stan Lyness, Paula Bishop, and the rest of the Phoenix
Technologies Ltd. BIOS Engineering Department. Their tireless efforts
have defined compatibility for the PC industry.

Table of Contents

About This Book

About This BOOK ... ittt it it it i i ettt i et e et aae e xvii

Acronyms and Abbreviations

Acronyms and Abbreviations i i i i i e e XXi

Chapter 1 — The ABIOS

L0 YT 1 1
ABIOS DBVICE SUPPOI & vt vt ittt ittt it ettt ettt i 4
The ABIOS Processing Modelttt 5
ABIOS Data StrUCIUrBS ... v ittt ittt ittt ettt inatee ey 10
ABIOS Initialization Factsottt ittt ettt i e e e 12
Request Block Initialization 15
Transfer ConveNntioNSt ittt ittt ettt ettt 17
ABIOS and Program ACCESS ...t vvviittnnnneenenneeeaneenenennnneesss 19
Accessing ABIOS via ABIOSCommonEntry, 20
Accessing ABIOS via ABIOSCallottt e e i e 23
Return Code Handlingo ittt ittt ittt s ittt et 24
ABIOS EXIENSIONS ..ttt ittt it ittt i e i e e e 26
Where to Find More Informationcciiiiiiiiiiitiriinnnnnnns 28

Chapter 2 — Hardware Environment

L@ Y= = 29
80286/80386/80386SX MICrOPrOCESSOrS « o v vttt vt et iienennennnenennens 31
Math COPrOCESSOrS .« v ittt it ittt ettt ettt et ei ittt 32
Y[TeT o T @ F- Y o T - I 33
1/0 Devices: Introductionccoviiinirrnnnnn.. R 35
I/0 Devices: Diskette and Disk Hardwareccivviiinininnn... 35
1/0 Devices: Video Hardwareccv ittt iiit e e i 36
I/0 Devices: Keyboard Hardwarecutitininennnnnnnnnnns 38
1/0 Devices: Parallel Port Hardwareccoiiiiiiiieeiinnnnnnn.. 39

continued

ABIOS for IBM PS/2 Computers and Compatibles vii

Chapter 2 — Hardware Environment, Continued

I/0 Devices: Serial Port Hardwareovtiiiiiin i nneesnn 40
System Time-Related Devices: Introduction 42
System Time-Related Devices: 82284 Clock Generator 42
System Time-Related Devices: 8254A PIT Chip, 43
System Time-Related Devices: MC146818A RTC Chipcovvvinn... 45
CMOS RAM SBIVICE .t ittt ittt ittt ettt nt e eannnensanns 46
DMA CoNtroller ..ottt et et e e e e 47
Programmable Option Select (POS)ttt it it 55
Intel 8259A Programmable Interrupt Controllerscvvv... 56
System Control Port Definitions e e 58
Power—0n Password it e 60
NME MaSK ..ot i i i i s s i s s e e 60
Hardware 1/0 POrt LISt .. vvvi ettt iiee ettt ettt et 61

10T V= 81
CommON Data ArBacit ittt ittt ettt et e 84
Function Transfer Table0ttt et 87
Device BIOCK ...ttt ittt it ittt i s e e e e 89
Related Information ... i i i e 94

Chapter 4 — ABIOS Initialization

L@ =T 1= 95
Step 1: Build the System Parameters Table 98
Step 2: Build ABIOS Initialization Tableccviiiiiinnneneennn 100
Step 3: Build the Common Data Areacouuiiiininennennenns 103
Step 4: Initialize Device Blocks and Function Transfer Tables 106
Step 5: Build Protected Mode Tablescooviiiiiiiininn... 110
Initializing Logical ID 2: ABIOS Internal Callscccvvviunn.. 113
How ABIOS Supports Multiple Instances of aDevicecoo.... 115
Related Informationottt ittt iie i, 117

continued

viii ABIOS for IBM PS/2 Computers and Compatibles

Chapter 5 — Request Block Structure

(0771 V7 1= 119
Request Block Parameterscoiiiiiiiiiii i, e 121
Request BIOCK StruCturec.cvvviinit ittt ittt 122
Related INformationcvovi ettt e e e 125

Chapter 6 — Calling ABIOS

(0= 1= 127
ABIOS Processing Modeliiiitiiiii it s 128
Request Block Initializationc.ccoiiiii i 132
A Generalized Look at Control Transfer, 134
ABIOS Transfer Conventionoiuitiiiieeniinnieennnnn 136
Operating System Transfer Conventioncoiiiiiiiiein. 137
Return Code Handlingcoiti ittt e e 139
Hardware Interrupt Handlers o i 142
Default Interrupt Handler oot e e e 147
Time-Out Handlers ...ttt ittt et e i 143
ABIOS and Program ACCESS .« .o vt vttt ittt ittt 151
Accessing ABIOS via ABIOSCommoONENtryc.coiviiiiinnnn. 152
Accessing ABIOS via ABIOSCallciiiiiiiiii ittt 155

Chapter 7 — ABIOS Extensions

OV B VIBW o ittt ettt e e e e 157
Recommendations for Extending ABIOSciiiiiiiiinneennn 162
Requirement 1: Create Proper Extension Header 168
Requirement 2: Build Initialization Table Entry Routine 171
Requirement 3: Routine to Build Device Blocks and FTT 173
Requirement 4: ABIOS Service Codec.iiiiiiiiiiniennnnnns 176
Initialization: ABIOS ROM EXtensionsououtevinnrinnennnnnnnns 176
Initialization: ABIOS RAM EXtensionscouiuiininininnnenennn. 178
Examples of How to Modify an Existing Service 180
Example 1: Non-Intrusive Interceptionc.iiiiviineonn. 181
Example 2: Redirection of a Nonstaged Function 184
Example 3: Redirection of a Staged Function 186
continued

ABIOS for IBM PS/2 Computers and Compatibles ix

Chapter 8 — ABIOS Diskette Service

(Y= 1= 189
Hardware Environmentttt sttt ennessennnns 193
Error Handlingttt i et it e e i 195
Function: 00h — Default Interrupt Handlercovvvit, 196
Function: 01h — Return Logical ID Parameterscvunn 197
Function: 03h — Read Device Parameterscooviiviviinnn, 199
Function: 04h — Set Device Parametersoiiiiiiinnenns 202
Function: 05h — Reset/Initialize Diskette Subsystem 203
Function: 07h — Disable Diskettecciiiiiiiiiiiiii .. 206
Function: 08h — Read Disketteottt 208
Function: 0Sh — Writeto Diskette ittt 211
Function: OAh — Format Disketteot 214
Function: 0Bh — Verify Diskette Sectorso, 218
Function: OCh — Read Media Parameters i, 221
Function: ODh — Set Media Type for Format oo vnne. 223
Function: OEh — Read Change Line Signal Status 226
Function: OFh — Turn Diskette Motor Off i, 228
Function: 10h — Interrupt Statusciiii ittt it 229

Chapter 9 — ABIOS Fixed Disk Service

OV B VI BW o ittt ittt ettt i ittt e 231
Hardware Environmentc. ittt ittt iiinnanssans 235
Fixed Disk Service Parameters Table it 236
Error Handling ...ttt it ittt ittt ittt i i e e 238
Function: 00h — Default Interrupt Handler ot 239
Function: 01h — Return Logical ID Parameters J 240
Function: 03h — Read Device Parameterscciviiiinnen... 242
Function: 05h — Reset/Initialize Fixed Diskcvviiiiiiiiieennnn 244
Function: 08h — Read Fixed Diskcciiiiiiiiiiiiiinninneennnn 249
Function: 09h — Write to Fixed Disk i, 251
Function: OAh — Write and Verify Fixed Disk, 253

Chapter 10 — ABIOS Keyboard Service

L0 07T VT 259
Hardware EnVironmentttt ittt ittt ittt ittt it 261
continued

X ABIOS for IBM PS/2 Computers and Compatibles

Chapter 10 — ABIOS Keyboard Service, Continued

101-Key Keyboard Layoutccoiiiiiiniiniiiiiiiiennns 262
L Tox: U 0o o [=1= 263
System Scan CodES ... v v ittt e e e 264
Error Handlingt i e e e 268
Function: 00h — Default Interrupt Handler 0., 269
Function: 01h — Return Logical ID Parametersccivieeenn 270
Function 03h — Read Keyboard ID Bytescciiiiiieiinnnnnn 272
Function: 05h — Reset/Initialize Keyboard iuun. 274
Function: 06h — Enable Keyboard i i, 276
Function: 07h — Disable Keyboard iy 278
Function: 08h — Continuous Keyboard Read, 280
Function: OBh — Read Keyboard LED Status, 282
Function: OCh — Set Keyboard LED Statusot 284
Function: ODh — Set Typematic Rate and Delayot 286
Function OEh — Read Keyboard Scan Code Mode 289
Function 10h — Write Command(s) to Keyboard Controller 295
Function 11h — Write Command(s) and Data to Keyboard 300

Chapter 11 — ABIOS Video Service

OV IV BW & it ittt et e e e e e 305
Hardware Environment i ittt 307
[V T L= Yo T o Yo [J P 309
MOdE/MONItOr SUPPOM & v vv ittt it ettt ettt et et et 311
ROM-Resident FONtS ...ttt ittt i i i ettt e e e e 313
Error Handling . ..o vt e e 315
Function: 00h — Default Interrupt Handler vivunn. 316
Function: 01h — Return Logical ID Parameterscccivvuuun. 317
Function: 03h — Read Device Parametersccovviivenenennnnnn 319
Function: 05h — Set Video Modecciiiiiiiiiiiiiiiiiiinnnn 324
Function: 0Bh — Return ROM Fonts Information 331
Function: 0Ch — Save Video Environment cciiiiiinnnnn 333
Function: ODh — Restore Video Environmentot 335
Function: OEh — Select Character Generator Block 337
Function: OFh — Load Text Mode Fontcciiiiiiiiiinnnnnn. 339
Function: 10h — Enhanced Load Text Mode Font 342
Function: 11h — Read Palette Register i iiinnnn. 345
Function: 12h — Write Palette Registerc.ciiiitiiinennnns 347
continued

ABIOS for IBM PS/2 Computers and Compatibles Xi

Chapter 11 — ABIOS Video Service, Continued

Function: 13h — Read DAC Color Register i, 349
Function: 14h — Write DAC Color Register 351
Function: 15h — Read Block of Color Registers 354
Function: 16h — Write Block of DAC Color Registers 356

Chapter 12 — ABIOS Serial Communications Service

(07 7= oY/ 1= 359
Hardware Environmentottt ittt 361
Error Handling . ..o i ittt i it it e e e e 363
Function: 00h — Default Interrupt Handler 364
Function: 01h — Return Logical ID Parametersc.coov.... 365
Function: 03h — Read Device Parametersc.ouiiiiiinnnnnnnn 367
Function: 05h — Reset/Initialize Serial Port 370
Function: OBh — Set Modem Controlc.c.0 i ennenn 374
Function: OCh — Set Line Controloviiiiii it iiii e e eee e 375
Function: ODh — Set Baud Rateciiiiiiiiiiiiieeenennen 378
Function: OER — Transmit v ittt ittt i ettt e e et 379
Function: OFh — RECEBIVE i i ittt ittt ittt e i 389
Function: 10h — Transmit and Receive i, 399
Function: 11h — Modem Statuscoiiiiiiiiinnnr i nnneennn 404
Function: 120 — CancCelc ittt i ettt 407
Function: 13h — Return Line Status s, 409
Function: 14h — Return Modem Statusciiiiiiiiinnn .. 410
Function: 15h — Enable FIFO Controlc.ciiiiiiiiiiiinnnnne.. 412

Chapter 13 — ABIOS Parallel Port Service

[T QY 415
Hardware Environmentttt ittt ettt 417
Error Handling ... oo ittt i e i e e e e 418
Function: 00h — Default Interrupt Handler i, 419
Function: 01h — Return Logical ID Parameterscccvuuenn. 420
Function: 03h — Read Device Parametersccciiiiennnnnnnnn 421
Function: 04h — Set Device Parametersccouoeivinnerrnnnnnnn 423
Function: 05h — Reset/Initialize Parallel Portccviviirennn. 425
Function: 0Sh — Print BloCKt iii ittt ittt ittt ittt ettt e e e 427

continued

xii ABIOS for IBM PS/2 Computers and Compatibles

Chapter 13 — ABIOS Parallel Port Service, Continued

Function: OBh — Cancel Print BloCKo i it it e e i i e e e e e 430
Function: OCh — Return Printer Statusccciiiiiinnnenn.n, 432

Chapter 14 — ABIOS System Timer Service

OV BIVIBW o ottt i e e e e e e 435
Hardware Environment e e 436
Error Handling e e e ... 437
Function: 00h — Default Interrupt Handler 438
Function: 01h — Return Logical ID Parameters 439

Chapter 15 — ABIOS Real Time Clock Service

OV IV BW &ttt i ettt e e e e e 441
Hardware Environmentttt ittt e e e 443
Real Time Clock Datacoiiiin ittt ettt et et 444
Error Handlingt e 445
Function: 00h — Default Interrupt Handler 446
Function: 01h — Return Logical ID Parameters cov..u. 447
Function: 03h — Read Device Parametersciviiiivnnnnnn 449
Function: 04h — Set Device Parametersc.oviieiennennnnnnn. 452
Function: OBh — Set Alarm Interruptttt i e 454
Function: 0Ch — Cancel Alarm Interrupt 457
Function: ODh — Set Periodic Interruptot e 458
Function: OEh — Cancel Periodic Interrupt i, 461
Function: OFh — Set Update-Ended Interrupt 462
Function: 10h — Cancel Update-Ended Interrupt, 464
Function: 11h — Read Time and Datecuuiirivennennnnnnn 465
Function: 12h — Write Time and Date cciiiiiinervnnnnn. 466

Chapter 16 — ABIOS System Services

OV IV BW i e e e e 469
Error Handling ot i i e e e e 470
Function: 01h — Return Logical ID Parametersc.cvvv.n. 471
Function: 03h — Read System Configurationcv.... 473

continued

ABIOS for IBM PS/2 Computers and Compatibles xiii

Chapter 16 — ABIOS System Services, Continued

Function: OBh — Switchto Real Modecc i 475
Function: OCh — Switch to Protected Modeo 478
Function: ODh — Enable Address Line 20cciiiininneeennan, 481
Function: OEh — Disable Address Line 20cciiiirnenen.n. 482
Function: OFh — Enable Speaker, 483

Chapter 17 — ABIOS Nonmaskable Interrupt (NMI) Service

OV BV BW ittt it ittt e i e ettt e e e e 485
Error Handling v ittt s e it et 487
Function: 01h — Return Logical ID Parameters oot 488
Function: 06h — Enable NMI it i i i e e e e 490
Function: 07h — Disable NMI i i i i i i en 491
Function: 08h — NMI Continuous Readcciiiiiiiiiiiineenenn.. 492

Chapter 18 — ABIOS Pointing Device Service

L@ =T = PN 495
Hardware Environmentttt 497
Error Handling ... oo oot it it i it e e 497
Function: 00h — Default Interrupt Handler viuenn. 498
Function: 01h — Return Logical ID Parametersc.c.ovvuvenennnn 499
Function: 03h — Read Device Parameterscciviuuernnnn. 500
Function: 05h — Resst/Initialize Pointing Device0ovuuenn. 503
Function: 06h — Enable Pointing Devicec.ovvuininnenenennn. 505
Function: 07h — Disable Pointing Deviceo, 507
Function: 08h — Pointing Device Continuous Readcvvuunn. 509
Function: OBh — Set Sample Ratecciiiiitiiiiiinnenns 512
Function: OCh — Set Resolution ...ttt 514
Function: ODh — Set Scaling Factorccviviiiinrnrnrnenenenenas 516
Function: OEh — Read Pointing Device Identification Code 519

Chapter 19 — ABIOS CMOS RAM Service

L= = 523
Hardware Environmentotiiii ittt ittt ittt 524
continued

Xiv ABIOS for IBM PS/2 Computers and Compatibles

Chapter 19 — ABIOS CMOS RAM Service, Continued

CMOSRAMData S T - Y24
Extended CMOS RAM Dataciiiiiiiiiiiiiineniinnnensn, 528
Error Handlingcoviiiiiiinnnennnenn. e ieeteeraaeaaena 532
Function: 01h — Return Logical ID Parametersc.cccoo... 533
Function: 03h — Read Device Parameterscovviiininennennn 534
Function: 08h — Read CMOS RAM i e i et 536
Function: 09h — Write to CMOS RAMttt it et e ae s 538
Function: 0Bh — Recompute Checksum e e e e 540

Chapter 20 — ABIOS Direct Memor.y’Access (DMA) Service

LYY 1 543
Hardware Environmentttt i ittt ettt 545
Error Handling i i i e e e 552
Function: 01h — Return Logical ID Parameters vuue.n 553
Function: 03h — Read Device Parameterso, 555
Function: OBh — Allocate Arbitration Level, 556
Function: OCh — Deallocate Arbitration Level 558
Function: ODh — Disable Arbitration Level 559
Function: OEh — DMA Transfer Statuscvititiiiineennnnnn 560
Function: OFh — Abort DMA Operationciitiiiiitine e 561
Function: 10h — DMA Transfer from Memory to /O 563
Function: 11h — Read from I/O and Write to Memory 565
Function: 12h — Load DMA Controller Parameterscvvveuunnnn 567

Chapter 21 — ABIOS Programmable Option Select Service

VIV W L e e e e e 569
Hardware Environmentttt ittt et e it 571
Error Handling . ..o oottt i i e e e 573
Function: 01h — Return Logical ID Parametersc.ccuuiue... 574
Function: OBh — Read Stored POS Data from CMOS RAM 575
Function: 0Ch — Write Stored POS Data from CMOS RAM 577
Function: ODh — Read POS Data from an Adapterc.covuunn 579
Function: OEh — Write Dynamic POS Data from an Adapter 581

continued

ABIOS for IBM PS/2 Computers and Compatibles XV

Chapter 22 — ABIOS Keyboard Security Service

L@ =Y T 583
Hardware Environment ittt ittt 585
System Scan CodeS ... v vttt ittt e e e e e e 586
Error Handling ... oo i it i ittt e e e 589
Function: 01h — Return Logical ID Parameterso, 590
Function: 03h — Read Device Parametersoiiiiiiiee... 592
Function: 06h — Enable Keyboard Securityo, 593
Function: OBh — Write Passwordottt ittt 595
Function: OCh — Write Invocation Bytet iiiiiienenns 597
Function: ODh — Write Match Bytettt 599
Function: OEh — Write Filter Byte 1 i 601
Function: OFh — Write Filter Byte 2 i, 603

Chapter 23 — ABIOS Error Log Service

L= 1P 605
Extended CMOS RAM ottt i et e it et e 607
Error Handling ..o v it i e e e e 609
Function: 01h — Return Logical ID Parametersccovvuuen.. 610
Function: 08h — Read Error LOgo vvit ittt e i e e ene s 612
Function: 0Sh — Write to Error Log ... oot v ii i e i e e i 614
Appendix A — ABIOS Return Codes 617
GlOSSaNY .. i 627
Additional Resourcesciiiiiii i 639
INdeX . 641

XVi ABIOS for IBM PS/2 Computers and Compatibles

About This Book

What this book is about

ABIOS for IBM PS/2 Computers and Compatibles is a detailed technical
reference that describes the ABIOS, the portion of the PS/2 ROM BIOS de-
signed to support multitasking operating systems such as OS/2. The informa-
tion provided in this book is applicable to all Micro Channel Architecture-
based IBM PS/2 and compatible computers.

Who should read this book

This book can be used by anyone interested in learning more about PS/2 or
compatible computers.

Programmers who wish to make direct calls to the ABIOS will find complete
instructions for accessing the ABIOS via any version of 0S/2 (e.g. IBM 0S/2)
that supports DevHIp services ABIOSCommonEntry and ABIOSCall.

Programmers writing device drivers for new peripheral devices will find the
general information on ABIOS services helpful. They will also find, in the
chapter on ABIOS extensions, a complete description of how ABIOS services
can be added, replaced, or modified.

Implementers of operating systems and other multitasking system software
and systems programmers will find all the information they need on ABIOS/
operating system interfaces.

ABIOS for IBM PS/2 Computers and Compatibles xvil

What we assume you know

This book assumes a basic knowledge of 80x86 assembly language program-
ming concepts, PC architecture, and operating system concepts. If you are
new to these subjects, use this book along with some of the excellent intro-
ductory books listed at the end of this book.

How Ito find information

Chapters 1-7 of ABIOS for IBM PS/2 Computers and Compatibles provide a.
general introduction to ABIOS concepts and describe how to use ABIOS
services. Chapters 8-23 describe the individual ABIOS services and serve as
a technical reference. The Appendix provides a comprehensive list of poten-
tial error messages and Return Codes. Most readers will want to read chap-
ters 1-7 first to get a basic grasp of the ABIOS features before turning to
the individual service descriptions.

Each service-specific chapter (8-23) is organized in a similar fashion. There
is a description of the service and its hardware environment, a discussion on
how errors are handled, and complete descriptions of each service function.
The function descriptions include a description of what the function does, a
graphic outline of the required Request Block structure and a list of Return
Codes.

Other volumes in this series

ABIOS for IBM PS/2 Computers and Compatibles is one of several volumes
about BIOS software in the Phoenix Technical Reference Series published by
Addison-Wesley. Other volumes are:

CBIOS for IBM PS/2 Computers and Compatibles — a complete
technical reference describing the portion of a PS/2 BIOS designed
to support single-tasking operating systems such as MS-DOS.

System BIOS for IBM PCI/XTIAT Computers and Compatibles — a
complete technical reference for the BIOS in all standard architec-
ture computers.

The BIOS volumes of the Phoenix Technical Reference Series provide the
most comprehensive source of information about IBM and compatible system
BIOSs available today. Each volume lists complete I/O port addresses, CMOS
RAM, and BIOS data definitions. Every function is described in detail, and
complete lists of error messages are provided.

The volumes of this series are a natural companion for anyone who owns
and programs an IBM PC, XT, AT, or PS/2 model, or any compatible
system.

xviii ABIOS for IBM PS/2 Computers and Compatibles

No writing project as large as this can be completed without significant
contributions from many individuals. We would like to acknowledge the
Phoenix employees whose time and effort helped make this book possible.

First and foremost, we gratefully acknowledge the vision and technical skill of
Neil Colvin, founder, CEO, and Chief Scientist of Phoenix Technologies Ltd.
We also gratefully acknowledge the expert guidance of Lance Hansche,
President of Phoenix Technologies Ltd. Without Neil and Lance’s leadership,
Phoenix would not be in the position of technological preeminence it now
enjoys.

In the marketing area, Phoenix Vice President Rich Levandov's foresight and
support made this book possible. And Product Marketing Manager Henry
Suwinsky'’s tactful and dauntless guidance shepherded this project through all
phases of its existence.

On the technical side, we acknowledge the Phoenix engineers who developed
the Phoenix PS/2 BIOS. Eric Enge, Director of PC Product Engineering, Paula
Bishop, and Stan Lyness have been endlessly patient with us and tireless in
their efforts to ensure quality PS/2-compatible BIOS products and documen-
tation. We also must acknowledge the efforts expended by other Phoenix
engineers, including Bruce Cairns, Paul Chicoine, Greg Honsa, Suzanne
Laferriere, Malcolm Pordes, Debbie Schuitz, and Trevor Western.

In the production of this volume, many people contributed significantly. Chief
among these were Kathy Schiff, Manager of Technical Communications, who
provided editorial guidance and direction. Writers Marianne Adams and

Dr. George Elliott Tucker contributed critical and essential writing, editing,
and production assistance. And last but not least, a special thanks goes to
Sandie Zierak, Chief Production Coordinator, for her invaluable contributions
in the fields of graphics, document design, and document production.

The Authors

Mike Boston
Paul Narushoff

Phoenix Technologies Ltd.
Norwood, MA
March, 1989

ABIOS for IBM PS/2 Computers and Compatibles Xix

Acronyms and Abbreviations

The following abbreviations and acronyms are used in this manual:

ASCI
ASIC
b
BCD
BIOS
bps
CDA
CGA
CRC
CMOSs
DB
DMA
DSR
ECC
EGA
EOI
ESDI
FTT
h

INT
110
IRQ
ISR
K
Kbs
LID
LSB
LSI
M, MB
MDA
MFM
MHz

American Standard Code for Information Interchange
Application-Specific Integrated Circuit
Binary

Binary coded decimal

Basic input/output system

Bits per second

Common data area

Color graphics adapter

Cyclic redundancy check
Complementary metal oxide semiconductor
Device Block

Direct memory access

Device service routine

Error checking and correction
Enhanced graphics adapter

End of interrupt

Enhanced small device interface
Function transfer table
Hexadecimal

Interrupt

Input/Output

Interrupt request line

Interrupt service routine
Kilobytes

Kilobits per second

Logical ID

Least significant byte

Large scale integration
Megabytes

Monochrome Display Adapter
Modified frequency modulation
Megahertz

continued

ABIOS for IBM PS/2 Computers and Compatibles xxi

Acronyms and Abbreviations, Continued

MSB Most significant byte

NMI Nonmaskable interrupt

0S/2 Operating System/2

PGA Professional graphics adapter
POS Programmable Option Select
POST Power-on self test

PTL Phoenix Technologies Ltd.
RAM Random access memory

RB Request block

RLL Run length limited

ROM Read-only memory

RTC Real time clock

VGA Video graphics array

VLSI Very large scale integration

xXil ABIOS for IBM PS/2 Computers and Compatibles

Chapter 1
The ABIOS

Overview

What is the PS/2 BIOS?

The ROM BIOS contained in Micro Channel Architecture-based IBM PS/2 and
compatible computers performs the same function that all basic input/-
output systems do: it isolates the operating system from direct manipulation
of hardware registers, timings, and attachments.

When compared with the ROM BIOS contained in IBM PC XT/AT and compat-
ible computers, however, the PS/2 ROM BIOS has one critical difference — it
is designed to support two kinds of operating systems. As such, the PS/2
ROM BIOS is divided into two discrete parts: the ABIOS and the CBIOS.

The CBIOS

The CBIOS part of the PS/2 ROM BIOS provides IBM PS/2 and compatible
computers backward compatibility with single-tasking, Intel 80x86 real ad-
dress mode operating systems such as PC-DOS or MS-DOS. As a result,
the CBIOS consists of a superset of the services and functions available in
the IBM PC/XT/AT ROM BIOS, and it interfaces with the operating system in
the same well understood way.

continued

The ABIOS 1

Overview, Continued

The ABIOS

The ABIOS part of the PS/2 ROM BIOS provides IBM PS/2 and compatible
computers with forward compatibility with multitasking, bimodal (real mode,
protected mode, or both) operating systems, such as IBM 0S/2. The ABIOS
supports the same hardware devices as the CBIOS, but its interface and
data structures are specifically constructed to facilitate the muiltitasking,
bimodal nature of its design.

Program accessibility

The program accessibility of any ROM BIOS depends on the architecture of
the operating system interfaced with the BIOS.

® ABIOS Accessibility
Starting with IBM 0S/2 Version 1.1, programs have full access to the
ABIOS through the operating system via the two IBM OS/2 DevHIlp serv-
ices: ABIOSCommonEntry and ABIOSCall. ABIOS accessibility for versions
of OS/2 other than IBM’s varies from vendor to vendor. Programmers who
are not using IBM 0S/2 should refer to their OS/2 documentation to deter-
mine if their version of OS/2 supports program access to the ABIOS.

m CBIOS Accessibility

Under the totally open architecture of PC-DOS or MS-DOS, application
programs interface directly with the CBIOS. In fact, many MS-DOS appli-
cation programs attempt to improve performance by bypassing MS-DOS
system services in favor of the more direct CBIOS services.

Scope of this document

This book describes the ABIOS component of the PS/2 BIOS. The information
is 100 percent applicable to both the IBM and the Phoenix Technologies Ltd.
versions of ABIOS.

continued

2 ABIOS for IBM PS/2 Computers and Compatibles

Overview, Continued

In this chapter
This chapter outlines the major concepts and design features of the ABIOS.
The following topics are discussed:
= ABIOS Device Support
= The ABIOS Processing Model
= ABIOS Data Structures
= ABIOS Initialization Facts
= Request Block Initialization
= Transfer Conventions
= ABIOS and End User Access
= Accessing ABIOS via ABIOSCommonEntry
= Accessing ABIOS via ABIOSCall
= Return Code Handling
= ABIOS Extensions
= Where to Find More Information

For more information on the CBIOS

For a complete treatment of the CBIOS, see CBIOS for IBM PS/2 Computers
and Compatibles in this series.

The ABIOS 3

ABIOS Device Support

Introduction

The ABIOS occupies 64K of the 128K PS/2 BIOS. The ABIOS supports 16
kinds of physical devices. There is one ABIOS device service for each

physical device.

ABIOS supported devices

The table below lists the physical devices supported by the ABIOS and the

ABIOS device IDs assigned to them.

Device ID | Device Type/Service Device ID | Device Type/Service
00h ABIOS Internal Calls 0Bh Pointing Device
01h Diskette 0Ch Reserved
02h Fixed Disk 0Dh Reserved
03h Video 0Eh CMOS RAM
04h Keyboard OFh Direct Memory Access
05h Parallel Port 10h Programmable Option Select
06h Serial Port 11h Error Log
07h System Timer 12h-15h Reserved
08h Real Time Clock Timer 16h Keyboard Security
09h System Services 17h-FFFFh | Reserved
0Ah Nonmaskable Interrupt fiiia

Standard ABIOS functions

Functions numbered 00h-0Sh are standard functions across all ABIOS serv-

ices. Functions 10h-xxh are tailored

to the device being serviced.

Function Description
00h Default Interrupt Handler
01h Return Logical ID Parameters
02h Reserved
03h Read Device Parameters
04h Set Device Parameters
05h Reset/Initialize
06h Enable
07h Disable
08h Read
09h Write

ABIOS for IBM PS/2 Computers and Compatibles

The ABIOS Processing Model

Introduction

In a traditional PC-based ROM BIOS (such as the CBIOS), all functions are
processed on the single-staged, call/process/return model. Once a function
is invoked, the CPU is prevented from turning to other work until the function
completes and returns. If the function called must interface with slower
external hardware, the BIOS initiates a Wait and suspends CPU processing
until the hardware interrupt occurs. The resulting amount of idle CPU time
can be considerable.

Single-staged processing/single-tasking operating systems

Although this single-staged call/return method is somewhat inefficient, the
fact that the BIOS is interfaced with a single-tasking operating system mini-
mizes the method’s impact on system throughput. A BIOS that processes
functions exclusively on the single-staged model is therefore best suited for
single-tasking operating systems.

Multistaged processing/multitasking operating systems

For a multitasking operating system to be interfaced with a BIOS, issues
surrounding system throughput have to be handled more carefully than they
are with a single-tasking operating system. The CPU must be free to pro-
cess other tasks while a BIOS function is waiting for a hardware interrupt to
occur. In order to do this, the BIOS must process functions in a way that
minimizes BIOS control of CPU time. This is accomplished by processing
function calls in muitiple stages.

Where the ABIOS fits in

The ABIOS is written specifically for multitasking operating systems. As such,
the ABIOS interface and the methods ABIOS employs to process function
calls are specifically designed to minimize ABIOS control of processor time.

continued

The ABIOS 5

The ABIOS Processing Model, Continued

Processing models

The ABIOS and CBIOS methods of processing function calls are contrasted

below:

ABIOS

CBIOS

Start |— Complete

SINGLE-STAGED FUNCTION

When processing single-staged functions,
the ABIOS performs input/output immedi-
ately and returns to the operating system.
ABIOS requests that can be completed with
a minimum of processor time are executed
in this way.

Start — Complete

SINGLE-STAGED FUNCTION

The CBIOS processes all function calls on
the single-staged call/process/return mod-
el. Once a CBIOS function is invoked, the
processor is prevented from turning to
other work until the function completes and
returns.

Start |— Stage —J Stage] Complete

DISCRETE MULTISTAGED FUNCTION

ABIOS functions that require a greater
amount of processor time are processed In
multiple stages.

In discrete multistaged functions, the caller
initiates input/output and returns to the op-
erating system, moving from stage to stage
until the function call is complete. Discrete
multistaged functions are driven from stage
to stage by an interrupt from the device
being serviced or by the expiration of a
function-requested time period.

DISCRETE MULTISTAGED FUNCTION

NOT SUPPORTED

Start —[_S;]

CONTINUOUS MULTISTAGED FUNCTION

When processing continuous multistaged
functions, ABIOS initiates input/output and
returns to the operating system. Continu-
ous multistaged functions can be consid-
ered “standing requests” in that they never
reach a completion point. Like discrete
multistaged functions, they are driven from
stage to stage by a hardware interrupt at
the expiration of a function-requested time
period.

CONTINUOUS MULTISTAGED FUNCTION

NOT SUPPORTED

continued

ABIOS for IBM PS/2 Computers and Compatibles

The ABIOS Processing Model, Continued

What drives multistaged functions
Multistaged functions are driven from stage to stage by either:
= hardware interrupt or
= elapse of a function requested period of time.

Some multistaged functions are driven purely by hardware interrupt. Others
are driven purely by time period. Others still are driven by some combination
of both hardware interrupt and time period.

Interrupt driven stages

Each interrupt-driven ABIOS service is associated with one hardware interrupt
level. The ABIOS assumes that all hardware interrupt handlers are under the
control of the operating system.

When a hardware interrupt occurs, the operating system must call the func-
tion associated with the interrupt so that the interrupting condition can be
serviced. The ABIOS resets the interrupting condition at the hardware level.
The operating system’s hardware interrupt handler must perform end-of-
interrupt processing at the interrupt controller level.

A service can have more than one active function request. When this hap-
pens, the hardware interrupt handler calls each function until the ABIOS
replies that the hardware interrupt has been serviced.

Time period driven stages

Some ABIOS functions are driven from stage to stage by the elapse of a
function-requested period of time. The ABIOS assumes that time-period
stage handlers are under the control of the operating system. When the time
period requested by the function expires, the operating system’'s time period
handler must call the given ABIOS function.

continued

The ABIOS 7

The ABIOS Processing Model, Continued

Hardware interrupt stages and hardware time-out

All hardware interrupt driven stages of a function indicate a maximum time
(in seconds) to wait for the hardware interrupt. The ABIOS assumes that all
hardware time-out handlers are under the control of the operating system.
Should the hardware time-out period associated with a given interrupt driven
function elapse, the operating system must call the ABIOS to terminate the
function and reset the hardware.

Hardware time-out vs. time period stages

The terminology surrounding time-period driven stages and hardware time-
out handling is similar. However, it is important not to confuse the process-
ing associated with the hardware time-out handling and time-period stage
handling.

Hardware time-out handling is associated exclusively with those stages of a

multistaged function that are driven by hardware interrupt and is designed to
handle function termination cleanly. Execution of a time-out handling routine
is symptomatic of a hardware error.

Time-period handling is associated with those stages of a multistaged func-
tion that are driven by time periods. Execution of a time-period handling
routine indicates the elapse of a function-requested time delay and should
not be associated with a hardware error.

continued

8 ABIOS for IBM PS/2 Computers and Compatibles

The ABIOS Processing Model, Continued

How handlers call ABIOS functions: ABIOS Entry Routines

Although we have mentioned that the various handlers under the control of
the operating system must call ABIOS functions, we have not mentioned how
this is done: Each ABIOS Service is associated with a set of function entry
routines. There are three kinds of entry routines:

m Start Routine

The start routine associated with a service is called when a function is first
started.

m Interrupt Routine

The Interrupt Routine associated with a service is called when the function
interrupts or when a time period driven function requires servicing.

m Time-out Routine

The Time-out Routine associated with a service is called when a interrupt-
driven function suffers a hardware time-out.

To reduce caller overhead, the ABIOS also contains a set of Common Entry
Routines: Common Start, Interrupt, and Time-out Routines. The Common
Entry Routines do some initial processing then transfer control to the entry
routine tied to the specific service.

The ABIOS 9

ABIOS Data Structures

Introduction

The ABIOS makes use of four kinds of data structures. Three of the struc-
tures — the Function Transfer Table, the Device Block, and the Common
Data Area are roughly analogous to the data structures found in the CBIOS.

The fourth structure is a function-specific, parameter block, called the
Request Block. The Request Block has no data structure analog in the
CBIOS, but it provides the ABIOS with the same parameter passing capability
as is provided to the CBIOS by the processor’s register set.

Each ABIOS data structure is defined further below.

ABIOS Data Structures

Function Transfer Table

. Each ABIOS Service Is assoclated with one Function Transfer

Function Table. Each Function Transfer Table contains a list of pointers to
Transfer Table| the Start, Interrupt, and Time-out Routine associated with its
ABIOS service, as well as a list of vectors to the start of each
function contained in that ABIOS Service.

Device Block

An ABIOS Service Is usually associated with one Device Block. The
Devi Block Device Block contains the interrupt level, the arbitration level, and

evice bloc other information about the hardware device associated with a
ABIOS device service. Some ABIOS services are assoclated with
more than one physical instance of a device. When this is the case,
that service is associated with more than one Device Block.

Common Data Area

The Common Data Area contains a list of pointers to the Function

Common Transfer Table/Device Block pair associated with each ABIOS Serv-

Data Area ice. Each pair of pointers in the table Is identified by a unique

Logical ID. Logical IDs are assigned dynamically when the ABIOS is

Igltializ:d and are used by the caller as an index into the Common
ata Area.

Request Block

Each ABIOS function is Interfaced with the caller via a function-spe-
Request cific structure called the Request Block. All input and output pa-

Block rameters are passed between the caller and the ABIOS through the
Request Block. Offset 0Ch of all Request Blocks Is reserved for a
function status indicator called the Return Code.

continued

10 ABIOS for IBM PS/2 Computers and Compatibles

ABIOS Data Structures, Continued

ABIOS initialization

The Common Data Area, all Function Transfer Tables, and all Device Blocks

are initialized (with segment:offset pointers) as part of ABIOS real mode

initialization. In bimodal operating environments, the operating system insures
bimodal access to the ABIOS by initializing (in selector:offset format) a

parallel Common Data Area and a parallel set of Function Transfer Tables.

Once they are initialized, the Common Data Area, the Function Transfer
Tables, and the Device Blocks stay resident in system RAM for as long as
the ABIOS is in use.

Request Block initialization

Before a given ABIOS function can be started, the caller must initialize its

Request Block. The Request Block associated with a function call stays

resident in system RAM for the life of the call. Request Blocks associated
with completed function calls can be reused, or the memory they occupy
can be reallocated for some other purpose.

Table: CBIOS/ABIOS analogs

End users familiar with CBIOS structures and conventions may find the table
of analogies below useful.

Action cBIOS ABIOS

Pass Parameters CPU Registers Request Block
(bidirectional) (bidirectional)

Identify BIOS service Interrupt number Logical ID

Locate BIOS service

Interrupt vector table

Logical ID index into
Common Data Area

Locate BIOS function

Jump table internal to
CBIOS code

Vector in Function Trans-
fer Table

The ABIOS

11

ABIOS Initialization Facts

Introduction

Initializing ABIOS is a matter of initializing ABIOS data structures that stay
resident in system RAM for as long as the ABIOS is in use: The Common
Data Area, the Function Transfer Tables, and the Device Blocks. ABIOS is
initialized by the operating system in a five-step process involving both the
CBIOS and the ABIOS.

Key facts to remember
= Before ABIOS can be initialized, CBIOS must be initialized and the operat-
ing system must be booted.
= ABIOS can only be initialized in the microprocessor’s real mode.
= |nitializing ABIOS means initializing the ABIOS data structures.

= In bimodal environments, the operating system must initialize parallel sets
of Common Data Areas and Function Transfer Tables.

continued

12 ABIOS for IBM PS/2 Computers and Compatibles

ABIOS Initialization Facts, Continued

ABIOS initialization flow

ABIOS initialization flow is illustrated below.

Initialization Flow

CBIOS INT 15h
AH=04h

Build System
Parameters Table

y

CBIOS INT 15h
AH=05h

Build Initialization
Table

Buiid Common
Data Area

Y

Bulld:
Device Blocks
Function Transfer
Tables

.
1

Y

STEP 1: Build System Parameters Table

The operating system calls CBIOS INT 15h AH = 04h Build
System Parameters Table. The CBIOS builds the System
Parameters Table in system RAM. The table describes
the system stack requirements, the number of devices
installed in the system, and the entry points to the rou-
tines used during the ABIOS Calling Convention.

STEP 2: Build ABIOS Initialization Table

The operating system calls CBIOS INT 15h AH = 05h Build
Initialization Table. The CBIOS builds the Initialization Table
in system RAM. The table defines the information used to
initialize the Device Block and Function Transfer Table
associated with each ABIOS device.

STEP 3: Build Common Data Area

The operating system allocates system memory for the
Common Data Area, Device Blocks, and Function Transfer
Tables. The operating system builds the Common Data
Area, Initializes all Device Block and Function Transfer
Table pointers, and assigns Logical IDs.

STEP 4: Initialize DBs and FTTs

The operating system calls the ABIOS to initialize the
Device Block (DB) and Function Transfer Table (FTT)as-
soclated with each ABIOS service. The Common Data
Area, Device Blocks, and Function Transfer Tables reside
In RAM for as long as ABIOS is active.

Build Protected
Mode:
Common Data
Area Function
Transfer Tables

STEP 5: Build Protected Mode Structures

In bimodal or protected mode environments, the operating
system must build protected mode versions of the Com-
mon Data Area and Function Transfer Tables. This proc-
ess converts real mode segment:offset pointer to pro-
tected mode selector:offset format.

The ABIOS

continued

13

ABIOS Initialization Facts, Continued

Data structure relationships

The graphic below shows how the ABIOS Data Structures relate to each
other once they have been initialized.

Anchor Pointer Data Structure Relationships
Common ABIOS Service
Data Area
Device Block
Logical ID
Entries @
Device -
Block Pointers Device Status
Function
Transfer Table - Function
Pointers Transfer Table -
Function ABIOS
Pointers Functions
Hardware Device
Data Pointers » Device Memory
Legend

@ The Function Transfer Table contains address pointers to each ABIOS function.

@ The Device Block is used by the ABIOS to store interrupt levels, device status infor-
mation, and hardware port addresses.

The Common Data Area contains a linked list of the Function Transfer Table and De-
vice Block pointer pairs associated with each service, as well as device memory point-
ers (if any) associated with the given device.

14 ABIOS for IBM PS/2 Computers and Compatibles

Request Block Initialization

Introduction

Each ABIOS function is interfaced with its caller via a function-specific struc-
ture called the Request Block. Before starting an ABIOS function the caller
must initialize its Request Block.

Physical device vs. logical device

A hardware device is a device that physically exists in a system configura-
tion. Physical devices are identified by a Device ID; for instance, all hard
disks are associated with device ID 02h. Logical IDs, on the other hand, are
used to reference individual device services. They are assigned dynamically
at initialization, and their assignments will change when: system configuration
changes. The first device to be initialized will be assigned a Logical ID of 1;
the second will be assigned Logical ID 2, and so on.

Logical IDs are mandatory input

Logical IDs are assigned to each ABIOS service during ABIOS initialization
when the operating system builds the Common Data Area. A service’s
Logical ID is used from then on as an index into the Common Data Area
location where the service’s Function Transfer Table and Device Block point-
ers are stored. A service's Logical ID is a mandatory input into each function
Request Block calling on that service.

Request Block lifespan

Once initialized, Request Blocks stay resident in system RAM for as long as
the function call is active. That is to say, those Request Blocks associated
with multistaged functions stay resident in system RAM for the life of the
function. Request Blocks associated with completed functions may be
reused, or the memory they occupy can be deallocated.

continued

The ABIOS 15

Request Block Initialization, Continued

Rules governing Request Block use
The general rules associated with Request Block use are illustrated below.

INPUT Rules

Request Block fields marked Reserved
must be initialized to zeros.

The content of input fields is not changed
throughout a multistaged request.

Initialize the Return Code to FFFFh before
calling any ABIOS Start Routine.

OUTPUT Rules

Output fields need not be
initialized

The contents of an output
REQUEST BLOCK field must not be altered
during any stage of a
multistaged request.

Offset| Size Input: ' Output:

00h Word Request Block length
02h | Word Logical ID

04h Word Unit

06h Word Function

08h Word Reserved

0Ah | Word Reserved

OCh | Word Return Code Return Code
OEh Word Time-out
10h Word Reserved

12h Word | Data pointer 1
16h Word | Reserved

18h Word Reserved

1Ah Word Data pointer 2
1Eh | word | Reserved

20h Word | Relative block address
24h Word | Reserved

Rules Governing
Request Block Reuse

Request Blocks associated
with completed functions
can be reused.

Reuse Request Blocks only
If the Request Block
Length for the new func-

28h SEEEEEE : tions is the same or
2Ch Number of blocks read larger.
2Eh Caching
Bits 7-1 = Reserved
Bit 0 = Caching
0 Yes
1 No

16 ABIOS for IBM PS/2 Computers and Compatibles

Transfer Conventions

Introduction

Once its Request Block has been initialized, the caller is free to transfer
control to the ABIOS function. The process of transferring control to an
ABIOS function is divided into two basic tasks:

1. PUSH required entry pointers onto stack frame, and

2. CALL the function entry routine.

The difference between the two methods of calling ABIOS lies in the process
used to locate pointers and load them onto the stack.

Two tasks

The graphic below details each control transfer task.

Control Transfer Tasks

PUSH POINTERS ON STACK

The caller pushes pointers to the Request
Block and the Common Data Area onto the
stack. Depending on which convention is used
to transfer control to ABIOS, the caller may
optionally push pointers to the Function Trans-

STACK

<4— Pointer to Common Data Area

«4— Pointer to Request Block

<4— Pointer to Function Trans. Table

<4— Pointer to Device Block

fer Table and Device Block.

FUNCTION TRANSFER
TABLE

Vector —b

Function 01h Vector —p
Vector —»
Function nnh Vector —P

TRANSFER CONTROL TO FUNCTION

There are two kinds of function entry routines:
= Service-specific Entry Routines
= Common Entry Routines

By convention, control can be transferred to a
given ABIOS function via either set of entry
routines. The ABIOS transfer convention indi-
cates that control be transferred to ABIOS
functions via the Common Entry Routines. The
Operating System Transfer Convention indi-
cates that control be transferred to functions
via the Service-Specific Entry Routines.

The ABIOS

continued

17

Transfer Conventions, Continued

ABIOS transfer convention

In the ABIOS transfer convention, the operating system transfers control to
the ABIOS function requested via the ABIOS Common Start Routine. From
the caller’s point of view, the ABIOS Transfer Convention is the simpler of
the two transfer conventions in that it reduces programming overhead when
ABIOS functions are called in a bimodal environment.

When using this method, the operating system:
= builds the Request Block,

= pushes pointers to the Common Data Area and Request Block onto the
stack,

= pushes place holders for the Function Transfer Table and Device Block
onto the stack, and

= calls the ABIOS Common Entry Routine requested. When control is trans-
ferred to the Common Entry Routine, the Common Entry Routine loads
pointers to the Function Transfer Table and the Device Block onto the
stack. The operating system then transfers control to the ABIOS service’s
Service-Specific Entry Routine.

Operating system transfer convention

In the operating system transfer convention, the operating system transfers
control to the function requested via the ABIOS service-specific routines.

This transfer convention is more direct and may result in slight performance
improvements. It is most effective when used to handle interrupts from
programmed |/O devices (such as the keyboard) that require repeated
access to one function.

When using this method, the operating system:

= builds the Request Block,

= pushes pointers to the Common Data Area, Request Block, Function
Transfer Table, and Device Block onto the stack, and

= calls the service-specific entry routine associated with the service/function
requested.

18

ABIOS for IBM PS/2 Computers and Compatibles

ABIOS and Program Access

Introduction

For now, OS/2 is the primary operating system using ABIOS. OS/2 itself
provides end user programs with powerful functionality which makes bypass-
ing the operating system in favor of the ABIOS or hardware largely unneces-
sary. However, the need may arise for the greater hardware control provided
by direct access to ABIOS Services.

The Anchor Pointer, OS/2, and program access

When ABIOS is initialized under 0S/2, the segment address of the Common
Data Areas is stored by the operating system in a nonpublic variable called
the Anchor Pointer. Control cannot be transferred to an ABIOS function

without first accessing the information contained in the Common Data Area.

Therefore, access to the ABIOS is impossible from a program running under
0S/2 unless it is supported by the operating system. Although it does not
make the Anchor Pointer public, IBM OS/2 (versions 1.1 and beyond), sup-
port program access of the ABIOS via calls to two DevHIp services: ABIOS-
CommonEntry and ABIOSCall.

Programmers who are not using IBM OS/2 should refer to their OS/2 docu-
mentation to determine if their version of OS/2 supports direct access to the
ABIOS.

The ABIOS 19

Accessing ABIOS via ABIOSCommonEntry

Description

The IBM 0S/2 service ABIOSCommonEntry is used to call an ABIOS func-
tions via the ABIOS Transfer Convention, that is to say via the ABIOS Com-
mon Entry Routines.

ABIOSCommonEntry initializes the stack frame with pointers in the format
required by the current processor mode. It then calls the Common Entry
Routine specified in DH. On return, ABIOSCommonEntry cleans up the stack
before returning to the caller.

Caller must locate Logical ID

Before invoking ABIOSCommonEntry, the caller must first initialize the Re-
quest Block associated with the ABIOS function to be called. Since a serv-
ice’s Logical ID is a mandatory input into each function Request Block, the

caller is responsible for determining the Logical ID assigned to the service
being called.

Locating Logical ID via function 01h

Because the Anchor Pointer to the Common Data Area is a nonpublic vari-
able, the only way for the caller to determine a service's Logical ID is to
invoke function 01h, Return Logical ID Parameters, for each entry in the
Common Data Area.

To do this, the caller must use ABIOSCommonEntry to invoke function 01h,
“Return Logical ID Parameters” for Logical IDs 03h to nnh. The Request
Block associated with function 01h of each ABIOS service is fixed at 20h
bytes. When called, function 01h returns to offset 12h the hardware Device
ID associated with the service. From this value, the caller can determine
which device service is linked to a given Logical ID.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Accessing ABIOS via ABIOSCommonEntry, Continued

ABIOS supported devices

The ABIOS supports 16 kinds of physical devices. There is one ABIOS device
service for each device. The table below lists the physical device ID and the
ABIOS device services tied to those devices.

Device ID | Device Type/Service Device ID | Device Type/Service
00h ABIOS Internal Calls 0Bh Pointing Device
01h Diskette 0Ch Reserved
02h Fixed Disk 0Dh Reserved
03h Video OEh CMOS RAM
04h Keyboard OFh Direct Memory Access
05h Parallel Port 10h Programmable Option Select
06h Serial Port 11h Error Log
07h System Timer 12h-15h Reserved
08h Real Time Clock Timer 16h Keyboard Security
09h System Services Reserved
0Ah Nonmaskable Interrupt

ABIOSCommonEntry Input/Output

Input:

MOV SI, Request_Block_Offset

MOV DH, Which_Com_Routine

; Offset in DS of Request Block

; Indicate in DH which Common
; Routine to call, where:

; 00h
; Ol1lh
; 02h

MOV DL, DevHlp_ ABIOSCommonEntry
CALL [Device_Help]

Common Start Routine
Common Interrupt Routine
Common Time-out Routine

Output:
CF = 0 If call was successful
= 1 If error occurred
AX = Error Code
ABIOS not present.
Unknown ABIOS command.
continued
The ABIOS 21

Accessing ABIOS via ABIOSCommonEntry, Continued

To avoid suspension in the background

ABIOS functions can sometimes be suspended if the operating environment
is shifted from OS/2 mode to the DOS compatibility box. This can occur
when functions executed in the DOS compatibility box put the service’s

operating environment in a state that is unknown to the function called in
0S/2 mode.

ROMCritSection sets a flag that prevents entry into the DOS compatibility
box until the function called via ABIOSCommonEntry has executed to com-
pletion. Since there is no way to determine in advance whether or not a
given function is susceptible to suspension, the caller has two choices:

= Call 0S/2 ROMCritSection before calling ABIOSCommonEntry, or
= Test the function by calling it via ABIOSCommonEntry and switching to
the DOS compatibility box.

if ROMCritSection is called to prevent entry into the DOS compatibility box,

then it must be called again after the ABIOS function completes to re-enable
entry.

ROMCiritSection Input/Output

DS must point to the ABIOS Device Driver's data segment. Reset DS if it has
been previously used in a PhysToVirt call.

MOV AL, enter_or_exit ;Critical Section Flag
; = 0 exit
; <> 0 enter

MOV DL,DevHlp ROMCritSection

CALL [Device_Help]

For more information

For more information on calling ABIOS functions via ABIOSCommonEntry,

refer to the IBM document IBM Operating System/2 Technical Reference
Volume 1.

22 ABIOS for IBM PS/2 Computers and Compatibles

Accessing ABIOS via ABIOSCall

Description

The IBM 0S/2 service ABIOSCall is used to call an ABIOS functions via the
Operating System Transfer Convention, that is to say via the ABIOS Service-
Specific Entry Routines.

ABIOSCall initializes the stack frame with pointers in the format required by
the current processor mode. Then, it calls the Service-Specific Entry Routine
specified in DH. On return, ABIOSCall cleans up the stack before returning
to the caller.

ABIOSCall Input/Output

Input:

MOV AX, LID ;Service’s Logical ID

MOV SI,RB Offset ;:Data Segment DS offset to
;caller’s Request Block

MOV DH,Entry_ Point ;Service-Specific Routine

;00h = Start Routine
;01h Interrupt Routine
;02h Time-out Routine

MOV DL,DevHlp ABIOSCall
CALL [Device_Help]

Output:
CF

0 Call was successful

1 Error occurred

AX = Error Code

ABIOS not present.
Unknown ABIOS command.

To avoid suspension in the background

ABIOS functions can sometimes be suspended if the operating environment
is shifted from 0S/2 mode to the DOS compatibility box. To avoid this, the
caller may occasionally be advised to call 0S/2 ROMCritSection before
calling ABIOSCommonEntry, as described on the previous page.

The ABIOS 23

Return Code Handling

Introduction

ABIOS signals the status (successful, unsuccessful, etc.) of a function call
by returning a code to the Request Block for the operating system.

The rules that the operating system must follow when handling this field are

listed in the illustration below.

Offset | Size Input: Output:
00h Word Request Block Length
02h Word Logical ID
04h Word - Unit
06h Word Function (0005h)
08h Word Reserved (initialize to 0000h)
0Ah Word Reserved (initialize to 0000h)
0Ch Word eturn Code Return Code
OEh Word |} G Time-ou
10h Word Reserved (Initialize to 0000h)

Return Code Field Rules

Input

Output

Always Initialize the Return Code field
to FFFFh before Initiating any ABIOS
Start Routine.

During hardware Interrupts, the oper-
ating system should call the interrupt
routine for each request on that inter-
rupt level that has bit 0 Resume Stage
after Interrupt set in the Return Code
field until an interrupt is claimed (bit 2
Not:My Interrupt Is.returned clear).

Because both a Start Routine and an Inter-
rupt Routine may be operating on the same
Request Block from different stack frames,
the operating system should maintain a flag
to indicate if a request has executed the
Start Routine Return Code Field Bit Deter-
mination code. If an interrupt occurs before
the operating system determines the Re-
turn Code for the Request Block, the flag
indicates that the Interrupt Routine cannot
be processed yet, since the Start Routine
is not completed. If the operating system
has determined the Return Code, interrupts
can be processed, since the the Start Rou-
tine is completed.

If there Is an outstanding Request Block at
interrupt time, the operating system must
first see if the Return Code field is FFFFh,
If it is, the operating system must not at-
tempt to resume this request. The ABIOS
can process the request and set the Return
Code appropriately when the interrupt is
executed.

24

continued

ABIOS for IBM PS/2 Computers and Compatibles

Return Code Handling, Continued

Return codes

The following table contains a general listing of the ABIOS Return Codes.
ABIOS may generate any value that can occur in a 16-bit ABIOS field, so all
operating system routines that test ABIOS Return Codes should be prepared
for any value (that is, each bit in the Return Code field should be tested).

Code Description

0000h Successful

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

0005h Not My Interrupt, Resume Stage after Interrupt
0009h Attention, Resume Stage after Interrupt

0081h Unexpected Reset, Resume Stage after Interrupt
8000h Device in Use, Request Refused

8001h-8FFFh

9000h-90FFh

Service-Specific Unsuccessful Operation
Device Error G

9100h-91FFh

Retryable Device Error

9200h-9FFFh

Device Error

A000h-AOFFh

Time-out Error

A100h-A1FFh

Retryable Time-out Error

A200h-AFFFh

Time-out Error

BOOOh-BOFFh

Device Error With Time-out

B100h-B1FFh

Retryable Device Error With Time-out

B200h-BFFFh

Device Error With Time-out

CO000h Invalid Logical ID

C001h Invalid Function

C002h Reserved

CO003h Invalid Unit Number

C004h Invalid Request Block Length

C005h-CO01Fh

Invalid Service-Specific Parameter

C020h-FFFEh

Service-Specific Unsuccessful Operation

FFFFh

Return Code Field Not Valid

The ABIOS

25

ABIOS Extensions

Introduction

Under 0S/2, ABIOS data structure addresses and service/function entry

points are only known to the operating system. As such, enhancements to
system software or hardware that require ABIOS extensions must insure that:

= The undefined interstage state information and work areas contained in
the pre-existing service’s Device Block are not overwritten.

= The extension maintains control of all function entry points, and

= The extension will only be initialized if its revision level is greater than the

revision level of the pre-existing service.

Requirements for ABIOS extensions

In order to satisfy the considerations listed above, all ABIOS extensions must

meet the requirements outlined in the illustration below:

Extension
Service

Init. code

common
code

start
routine

entry int.
routines routine

time-out
routine

Requirement 1: File Header

All ABIOS extension routines must be identified to
the system via an extension file header.

Requirement 2: Routine to Build Initialization
Table Entry

ABIOS extensions must contain a routine that
can be called during the ABIOS Initialization proc-
ess to build the extension’s entry into the ABIOS
Initialization Table.

Requirement 3: Routine to Build DB and FTT

All ABIOS extensions must contain a routine to
Initialize an extension-specific Device Block (DB)
and Function Transfer Table (FTT).

(func. 1
start

func. 2
start

function { fur:c . t3
starts star

Requirement 4: Service Code
Each ABIOS service must contain

= A complete set of extension-specific entry
routines.

= Run time code to service a device.

func. n
start

26

continued

ABIOS for IBM PS/2 Computers and Compatibles

ABIOS Extensions, Continued

Two types of ABIOS implementations

As long as it meets the four requirements for creating valid ABIOS exten-
sions, an extension can be implemented either in ROM or in RAM.

The differences between the two types of implementations are described
below.

Type Description

ROM extension ABIOS ROM extensions:

= Exist in the same peripheral card ROM that contains
their CBIOS counterparts.

= Contain manufacturer-specific ABIOS device services.

= Are located and initialized as part of the overall ABIOS
ROM initialization process.

RAM extension ABIOS RAM extensions exist as files that will be located
and initialized into system RAM during the overall ABIOS
ROM Initialization process. If they are to be implemented
under OS/2, extension file names must be listed in the
file ABIOS.SYS. The following facts apply:

= ABIOS.SYS must contain a list of filespecs separated
by either blanks or new lines.

= Both ABIOS.SYS and any files listed in ABIOS.SYS
must reside in the root directory of the OS/2 IPL
volume.

= The files listed in ABIOS.SYS are loaded into memory
in the order in which they are listed.

= The sector size of all RAM extension files must be a
multiple of 512K.

= All ABIO<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>