SC30-3587-00

ETBIOS
Program Interfaces

2and N

ion

LAN Technical Reference

IEEE 802
Applicat

. .

-

o s

.

. .

o
.

e

. L -

LAN Technical Reference

IEEE 802.2 and NETBIOS
Application Program Interfaces

SC30-3587-00

Note

Before using this information and the products it supports, be sure to read the general information under “Notices”
on page Xv.

First Edition (December 1993)

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

Forms for readers’ comments appear at the front and back of this publication. If the forms have been removed, address your
comments to:

Dept. E02

Design & Information Development
International Business Machines Corporation
PO Box 12195

Research Triangle Park, NC 27709-9990
USA

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1986, 1993. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices e XV
Trademarks e XV
Preface XVii
How This Manual Is Organized Xvii
Related IBM Publications Xviii
Guide to Information About the TCP/IP Interface Xix

General Publications Xix

Programming Publications o oo XiX
Guide to Information About the Open Data-Link Interface (ODI) Xix
IBM Local Area Network OEMI XX

How This Manual Differs from the Fourth Edition of the IBM Local Area

Network Technical Reference xxi
Chapter 1. LAN Overview and Interfaces 1-1
About This Chapter 1-2
Drivers and Programs That Provide the Application Program Interfaces 1-2

NDIS and non-NDIS Adapters 1-2
IBM Programs to Support LAN Adapters 1-2
Where to Find Information About IBM Adapter Interfaces 1-3
Introduction to the Networks 1-3
LAN Networks 1-3
The IBM Token-Ring Network 1-3
The IBM PC Network (Broadband) 1-4
The IBM PC Network (Baseband) 1-4
Ethernet Support 1-4
Related Software 1-4
0S/2 Communications Manager (OS/2EE 1.3) 1-5
IEEE 802.2 Application Program Interface in OS/2 1-5
Differences Between the Dynamic Link Routine Interface and the Device
Driver Interface 1-6
Why Use IEEE 802.2 or NETBIOS? 1-7
IBM LAN Application Program Interfaces 1-7
IEEE 8022 Interface 1-9
The Direct Interface 1-9
The DLC Interface 1-9
The APPC/PC Interface 1-9
NETBIOS 1-10
Token-Ring Network Frame Definition, 1-10
Routing Information Field 1-12
Routing Control Field 1-12
Route Designator Fields 1-15
Frame Format on the PC Network 1-16
Ethernet IEEE 802.3 Frame Format 1-17
Ethernet DIX Version 2.0 Frame Format 1-19
Chapter 2. Programming Conventions for the IEEE 802.2 Interface 2-1
About This Chapter 2-2
IBM Program Products for LAN Adapter Support 2-2

© Copyright IBM Corp. 1986, 1993 iii

IEEE 802.2 Programming Conventions withDOS 2-3

Local Area Network Support Program (CCB1) Calling Conventions 2-3
Local Area Network Support Program (CCB1) Command Completion 2-3
Local Area Network Support Program (CCB1) Control Blocks 2-6
Programming Conventions with OS/2 2-7
The OS/2DLR Interface 2-7
The OS/2DD Interface 2-12
Control Blocks for AHCCBs 2-19
CCB Field Explanations 2-19
Addressing 2-26
Adapter Addresses 2-26
Stations, SAPs,and IDs 2-27
SAP Assignments 2-29
DLC . 2-30
Types of Service 2-31
Command Sequences 2-31
Link Station States 2-33
TiMers 2-35
Guidelines for Selecting Parameter Values 2-36
Transmitting, Receiving, andBuffers 2-39
Buffer Pools 2-40
Receive Buffers 2-41
TransmitBuffers 2-46
Chapter 3. The Command ControlBlocks 3-1
About ThisChapter 3-3
Command Descriptions 3-4
BUFFER.FREE 34
BUFFER.GET 3-5
DIR.CLOSE.ADAPTER i 3-6
DIR.CLOSE.DIRECT e 3-8
DIR.DEFINE.MIF.ENVIRONMENT 39
DIR.INITIALIZE e 3-11
DIRINTERRUPT e 3-16
DIR.MODIFY.OPEN.PARMS 3-16
DIR.OPEN.ADAPTER i 3-17
DIR.OPEN.DIRECT s 3-33
DIR.LREAD.LOG 3-34
DIR.RESET.MULT.GROUP.ADDRESS 3-37
DIR.RESTORE.OPEN.PARMS 3-37
DIR.SET.EXCEPTION.FLAGS 3-38
DIR.SET.FUNCTIONAL.AADDRESS 3-39
DIR.SET.GROUP.ADDRESS 3-41
DIR.SET.MULT.GROUP.ADDRESS 3-41
DIR.SET.USER.APPENDAGE 3-43
DIR.STATUS e 3-44
DIRTIMER.CANCEL i, 3-51
DIR.TIMER.CANCEL.GROUP 3-51
DIRTIMER.SET e 3-52
DLC.CLOSE.SAP e 3-53
DLC.CLOSE.STATION i 3-54
DLC.CONNECT.STATION 3-55
DLC.FLOW.CONTROL i 3-56
DLC.MODIFY e 3-57

iV LAN Technical Reference: 802.2 and NETBIOS APls

DLC.OPEN.SAP 3-60

DLC.OPEN.STATION 3-66
DLC.REALLOCATE e 3-70
DLC.RESET 3-71
DLC.SET.THRESHOLD 3-73
DLC.STATISTICS e 3-74
PDT.TRACE.OFF e 3-76
PDT.TRACE.ON e 3-77
PURGE.RESOURCES i 3-85
READ e 3-86
READ.CANCEL e 3-94
RECEIVE 3-95
RECEIVE.CANCEL i 3-102
RECEIVEMODIFY 3-103
TRANSMIT.DIR.FRAME 3-107
TRANSMIT.LFRAME 3-108
TRANSMIT.TEST.CMD 3-109
TRANSMITULFRAME 3-109
TRANSMITXID.CMD 3-109
TRANSMIT.XID.RESP.FINAL 3-110
TRANSMIT.XID.RESP.NOT.FINAL 3-110
Chapter 4. NETBIOS 4-1
About This Chapter 4-2
NETBIOS Overview 4-2
The Network Control Block 4-3
NCB Field Explanations 4-3
NETBIOS Operational Parameters 4-8
Local Area Network Support Program Old Parameters 4-8
Local Area Network Support Program New Parameters 4-13
NETBIOS 3.0 (OS/2EE) i 4-13
NETBIOS 4.0 e 4-13
NETBIOSDLC Timerst 4-14
NETBIOS Calling Conventions Using the Local Area Network Support
Program 4-14
NETBIOS Calling Conventions Using the Dynamic Link Routine Interface 4-14
NETBIOS Calling Conventions Using the Device Driver Interface 4-14
NCB Completion with Wait Type Commands 4-15
NCB Completion with No-Wait Type Commands 4-15
NETBIOS Command Descriptions 4-15
NCB.ADD.GROUP.NAME 4-15
NCB.ADD.NAME e 4-16
NCB.CALL e 4-16
NCB.CANCEL e 4-17
NCB.CHAIN.SEND i, 4-18
NCB.CHAIN.SEND.NO.ACK 4-19
NCB.DELETE.NAME 4-20
NCB.FIND.NAME 4-21
NCB.HANG.UP 4-22
NCB.LAN.STATUS.ALERT 4-23
NCB.LISTEN 4-24
NCB.RECEIVE e 4-25
NCB.RECEIVE.ANY 4-26
NCB.RECEIVE.BROADCAST.DATAGRAM 4-27

Contents V

vi

NCB.RECEIVE.DATAGRAM 4-27

NCB.RESET 4-28
NCB.SEND e 4-32
NCB.SEND.BROADCAST.DATAGRAM 4-33
NCB.SEND.DATAGRAM e 4-34
NCB.SEND.NO.ACK e 4-34
NCB.SESSION.STATUS e 4-35
NCB.STATUS e 4-37
NCB.TRACE e 4-41
NCB.UNLINK e 4-45
Chapter 5. The NETBIOS Frames Protocol 5-1
About This Chapter 5-3
Assumptions L 5-3
Related Documents 5-3
Terms and Definitions 5-3
NETBIOS Commands i, 5-4
General Information on Remote Name Directory 5-4
New NCB Commands 5-5
Header Format Overview 5-5
NETBIOS Header 5-6
NETBIOS Frame Summary 5-7
NETBIOS Frame Formats and Descriptions 5-11
ADD_GROUP_NAME_QUERY 5-11
ADD_NAME_QUERY e 5-12
NAME_IN_CONFLICT e 5-13
STATUS_QUERY 5-14
TERMINATE_TRACE 5-16
DATAGRAM e 5-16
DATAGRAM_BROADCAST e 5-17
NAME_QUERY e 5-18
ADD_NAME_RESPONSE 5-20
NAME_RECOGNIZED 5-21
STATUS_RESPONSE i 5-22
TERMINATE_TRACE e 5-24
DATA_ACK . . e 5-24
DATA_FIRST_MIDDLE 5-25
DATA_ONLY_LAST 5-28
SESSION_CONFIRM 5-30
SESSION_END 5-32
SESSION_INITIALIZE 5-33
NO_RECEIVE e 5-34
RECEIVE_OUTSTANDING 5-36
RECEIVE_CONTINUE 5-37
SESSION_ALIVE e 5-38
NETBIOS Protocol Examples Without RND 5-39
Name Management Examples 5-40
Remote Adapter Status Examples 5-43
Session Establishment Examples 5-46
Session Data Transfer Examples 5-49
NETBIOS Protocol Examples withRND 5-53
Session Establishment RND Examples 5-57
NETBIOS Protocol SEND.NO.ACK Examples 5-59
Session Establishment Examples 5-60

LAN Technical Reference: 802.2 and NETBIOS APIs

Session Data Transfer Examples 5-61

Chapter 6. Support of NDIS Adapters Using IBM OS/2 LAN Adapter and

Protocol Support 6-1
LAN Adapter and Protocol Support Overview 6-2
LAN Adapters Supported 6-3
Programming Information—IEEE 802.2 APl 6-3

Dynamic Link Interfface 6-3
Device Driver Interface 6-3
Memory Restriction 6-3
Programming Information—NETBIOS APl 6-4
No-Wait Command and Post Routines 6-4
Dynamic Link Interface 6-4
Device Driver Interfface 6-5
Memory Restriction 6-5
Resource Information 6-5
NCB Reserve Field Change 6-5
NCB.STATUS Command Extension 6-5
Piggybacked Acknowledgment Behavior 6-6
Differences and Restrictions Lo L. 6-6
Message Logging Facility 6-9
Operating System/2 Trace Facility 6-10
New Tracing Parameters for the NETBIOS and IEEE 802.2 APIs 6-11
Minor Codes for IEEE 802.2 Traces 6-13
PROTOCOL.INI TRACE Parameter—IEEE 802.2 6-15
Minor Codes for NETBIOS Traces 6-17
PROTOCOL.INI OS2TRACEMASK Parameter—NETBIOS 6-19
Tracing for OS/2 2.0 Virtual DOS LAN Support 6-20
Appendix A. Valid Commands A-1
DLC and Direct Interface Commands A-1
NETBIOS Commands A-3
Appendix B. ReturnCodes, B-1
About This Appendix B-2
CCB Return Codes Listed by Intefface B-2
CCB Return Codes Listed by Command B-5
CCB Return Codes Cause and Action B-14
DLC Status Codes e B-28
DLC Status Table B-29
DLC Status Codes B-30
Suggested Actions in Response to DLC Status B-31
NCBReturnCodes B-32
NCB Return Codes Listed by Command B-34
NCB Return Codes Cause and Action B-35
Adapter Status Parameter Table B-44
Frame Status B-46
Exception Indications L B-46
Adapter Check B-46
Adapter Check for CCB1 B-46
Adapter Check forCCB2 B-47
Adapter Check for CCB3 B-49
Token-Ring Network Adapter Check Reason Codes for AICCBs B-50
PC Network and Ethernet Adapter Check Reason Codes for All CCBs B-52

Contents Vii

viii

Network Status B-52

Network Status for CCB1 B-52
Network Status for CCB2 B-52
Network Status for CCB3, B-54
Token-Ring Network Status Codes for AICCBs B-55
PC Network and Ethernet Status Codes for AICCBs B-56
Bring-Up Errors for ANCCBs B-57
Token-Ring Network Adapter Open Errors for ACCBs B-58
Open Error Codes for AICCBs B-58
Suggested Actions in Response to Open Errors B-59
PC Network and Ethernet Adapter Open Errors for AICCBs B-63
PC System Detected Errors B-63
PC System Detected Errors for CCB1 B-63
PC System Detected Errors for CCB2 B-64
PC System Detected Errors for CCB3 B-67
System Action Exceptions for OS/2EE1.3 B-69
System Action ExceptionsforCCB2 B-69
System Action Exceptions for CCB3 B-72
Appendix C. Local Area Network Sample Program Listings Diskette .. C-1
Appendix D. The Local Area Network Support Program Interrupt
Arbitrator D-1
About This Appendix D-1
The Local Area Network Support Program Interrupt Arbitrator
(DXMAOMOD.SYS) D-1
Registration Process Overview D-2
Appendix E. Operating System/2 Extended Edition Information E-1
About This Appendix E-2
CONFIG.SYSCommands, E-2
Adapter Parameters E-3
DLC Parameters E-7
OS/2 EE NETBIOS Parameters E-11
OS/2EE Trace Facility E-11
Trace Code Definition E-12
Trace Entry Format E-12
Trace Code Formats E-14
0S/2 EE NETBIOS Trace Facility E-18
Appendix F. NDIS Overview F-1
About This Appendix F-1
Description of NDIS F-1
List of Abbreviations X-1
Glossary X-3
Index X-19

LAN Technical Reference: 802.2 and NETBIOS APls

Figures

1-2.
1-3.
1-4.
1-5.
1-6.

1-8.
1-9.
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
4-1.
5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.

5-10.
5-11.
5-12.
5-13.
5-14.

5-15.

5-16.

5-17.

© Copyright IBM Corp. 1986, 1993

DOS IEEE 802.2 and NETBIOS Interfaces 1-8
0S/2 EE Communications Manager Interfaces 1-8
Token-Ring Network Frame Format 1-11
Routing Information Field 1-12
Routing Control Field 1-12
Route Designator Field 1-15
PC Network Frame Format 1-16
IEEE 802.3 Frame Format 1-17
DIX Version 2.0 Frame Format 1-19
Universally Administered Adapter Address 2-26
Ethernet Universally Administered Adapter Address 2-27
Locally Administered Adapter Address 2-27
SAPs and Link Stations, 2-30
Receive Buffer Formats 2-42
TransmitBuffers 2-48
MAC Frame i 2-49
Non-MAC | Frame 2-49
Other non-MAC Frame 2-50
Byte 0: Adapter Number (0/1) and Activation Reason Code 3-82
TimerEntry 3-83
Initialize Entry 3-83
CRBENtry 3-83
ARBEntry 3-84
FCBENtry e 3-84
TXCBENtry 3-84
Trace Entry Format Example 4-42
NETBIOS Frame Example 5-5
General Format 5-6
NETBIOS Non-Session Frame Header (DLC Ul-Frame) 5-6
NETBIOS Session Frame Header (DLC I-Frame) 5-6
Add a Name to the Network Command Sequence 5-40
Name Already On Network Command Sequence 5-41
Receive Multiple Responses Command Sequence 5-42
Remote Adapter Status for a Name That Is Not on the Network
Command Sequence 5-43
Remote Adapter Status for a Name that Is on the Network
Command Sequence 5-44
Remote Adapter Status Data: Segmentation Command Sequence . 5-45
Call a Name: Name Not on Network Command Sequence 5-46
Call a Name: Name on Network but No Listen Command Sequence 5-47
Call a Name: Name Found—Start Session Command Sequence . . 5-48
Send Session Data: One Send and One Receive Command
SequeNnCe 5-49
Send Session Data: One Send and Multiple Receives Command
Sequence 5-50
Send Session Data: Segmentation and One Receive Command
Sequence 5-51
Send Session Data: Segmentation and Multiple Receives Command
SequEeNCEe 5-52
ix

5-18.
5-19.
5-20.

5-21.
5-22.

5-23.
5-24.

5-25.
5-26.
6-1.
6-2.
E-1.

E-3.
E-4.

E-6.
F-1.

Remote Adapter Status for a Name Not on Network or RND

Command Sequence 5-54
Remote Adapter Status for a Name Not in RND but on the Network
Command Sequence 5-55
Remote Adapter Status for a Remote Name That Is in RND

Command Sequence 5-56

Call a Name: Name Not on Network or RND Command Sequence 5-57
Call a Name: Name Not in RND but Is on Network—Start Session

Command Sequence 5-58
Call a Name: Name Found—Start Session Command Sequence .. 5-60
Send Session Data: One SEND.NO.ACK and No RECEIVE

Command Sequence 5-61
Send Session Data: One SEND.NO.ACK and One RECEIVE

Command Sequence 5-62
Send Session Data: One SEND.NO.ACK and Multiple RECEIVEs
Command Sequence 5-63
LAN Adapter and Protocol Support Diagram 6-2
Sample LANTRAN.LOG 6-9
CCBTrace Entry E-14
CCB Completion Trace Entry E-15
Receive Completion Trace Entry E-15
Status Exception Completion Trace Entry E-16
Interrupt Received Trace Entry E-17
Interrupt Error Trace Entry E-18
Major Components in the NDIS Environment F-1

X LAN Technical Reference: 802.2 and NETBIOS APls

Tables

2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.
2-10.
2-11.
2-12.
2-13.
2-14.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.
3-10.
3-11.
3-12.
3-13.
3-14.
3-15.
3-16.
3-17.
3-18.
3-19.
3-20.
3-21.
3-22.
3-23.
3-24.
3-25.
3-26.
3-27.
3-28.
3-29.
3-30.

3-31.
3-32.
3-33.
3-34.
3-35.

© Copyright IBM Corp. 1986, 1993

CCB1 Command Control Block
CCB2 Command Control Block
CCB3 Command Control Block
Command Completion Appendage Information Table
Start Command Sequence for CCB1andCCB3
Start Command Sequence forCCB2
End Command Sequence
DLC Parameters
Maximum I-field Length for Network Adapters
Buffer 1: Option = Not Contiguous MAC/DATA
Buffer 1: Option = Contiguous MAC/DATA
Buffer 2 and Subsequent Buffers
Transmit Buffers (XMIT_QUEUE_ONE and XMIT_QUEUE_TWO) .
Transmit Buffer SizeinBytes
CCB Parameter Table for BUFFER.FREE
CCB Parameter Table for BUFFER.GET
Appendage Instruction Sequence
CCB Parameter Table for DIR.DEFINE.MIF.ENVIRONMENT .
CCB Parameter Table for DIR.INITIALIZE
CCB Parameter Table for DIR.MODIFY.OPEN.PARMS
CCB Parameter Table for DIR.OPEN.ADAPTER
Adapter Parms Open Parameters
IBM Token-Ring Network Adapter OPEN_OPTIONS
ProductID Field
Direct Parms Open Parameters for CCB1
DLC Parms Open Parametersfor AICCBs
CCB Parameter Table for DIR.OPEN.DIRECT
CCB Parameter Table for DIR.READ.LOG
Log Formats for the AdapterLog
Log Formats for the Direct Interface Log.
DIR.RESET.MULT.GROUP.ADDRESS Parameter Table for CCB1
CCB Parameter Table for DIR.SET.EXCEPTION.FLAGS
DIR.SET.MULT.GROUP.ADDRESS Parameter Table for CCB1 .
CCB Parameter Table for DIR.SET.USER.APPENDAGE
CCB Parameter Table for DIR.STATUS
MICROCODE_LEVEL Fields
Extended Status Table,
GROUP_ADDRESS_LIST
CCB Parameter Table for DLC.CONNECT.STATION
CCB Parameter Table for DLC.MODIFY
CCB Parameter Table for DLC.OPEN.SAP
CCB Parameter Table for DLC.OPEN.STATION
CCB Parameter Table for DLC.REALLOCATE
CCB Parameter Table for DLC.SET.THRESHOLD Command and
Paramaters are for CCB2only
CCB Parameter Table for DLC.STATISTICS
Log Formats forthe SAPLog
Log Formats for the Link StatonlLog
CCB Parameter Table for PDT.TRACE.ON
CCB Trace Entry

xi

xii

3-36.
3-37.
3-38.
3-39.
3-40.
3-41.
3-42,
3-43,
3-44,
3-45.
3-46.
3-47.
3-48.
3-49.
3-50.
4-1,
4-2.
4-3,
4-4.
4-5.
4-6.
4-7.
4-8.
4.9,
4-10.
4-11.
5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9
5-10.
5-11.
5-12.
5-13.
5-14.
5-15.
5-16.
5-17.
5-18,
5-19.
5-20.
5-21.
5-22,
5-23,
5-24,
5-25.
5-26.
5-27.
5-28.

Byte1:Flags 3-79
Adapter Interrupt Trace Entry (Except Timer) 3-80
Byte 0: Interrupt Status Register Processor (ISRP) Even 3-80
Byte 1: Interrupt Status Register Processor (ISRP) Odd 3-80
Adapter Timer Interrupt Trace Entry 3-80
NCBTrace Entry 3-81
CCBTraceEntry 3-81
Byte 1: Flags 3-82
Interrupt Trace Entry 3-82
NCB Trace Entry 3-85
CCB Parameter Table for READ 3-87
Posted CCB Fields forEachEvent 3-90
CCB Parameter Table for RECEIVE 3-98
CCB Parameter Table for RECEIVE.MODIFY 3-104
CCB Parameter Table for TRANSMIT Commands 3-111
Network Control Block (NCB) 4-3
NCB_RESERVE for the Local Area Network Support Program 4-8
NCB_RESERVE forOS2EE 4-8
Local Area Network Support Program Old Parameters 4-9
Data Areas Returned for the NCB.FIND.NAME Command 4-22
Data Areas Returned for the NCB.SESSION.STATUS Command . 4-36
Data Areas Returned for the NCB.STATUS Command 4-37
Adapter Types 4-41
The Trace Table Header Format 4-42
Trace Entry Format (Bytes O through5) 4-43
Trace Entry Format (Bytes 6 through 31) 4-43
NETBIOS Frames Listed Alphabetically 5-7
NETBIOS Frames Listed Numerically 5-8
NETBIOS Name Management Frames 5-9
NETBIOS Session Establishment and Termination Frames 5-9
NETBIOS Data Transfer Frames 5-9
Additional NETBIOS Frames 5-9
NETBIOS Ul Frames to Functional Address, Single-Route Broadcast 5-10
NETBIOS Ul Frames to Specific Address, No Broadcast 5-10
NETBIOS Ul Frames to Specific Address, General Broadcast ... 5-10
NETBIOS |-Frames to Specific Address, No Broadcast 5-10
ADD_GROUP_NAME_QUERY Frame Format 5-11
ADD_NAME_QUERY Frame Format 5-12
NAME_IN_CONFLICT Frame Format 5-13
STATUS_QUERY Frame Format 5-14
TERMINATE_TRACE Frame Format 5-16
DATAGRAM Frame Format 5-16
DATAGRAM_BROADCAST Frame Format 5-18
NAME_QUERY Frame Format 5-19
ADD_NAME_RESPONSE Frame Format 5-20
NAME_RECOGNIZED Frame Format 5-21
STATUS_RESPONSE Frame Format 5-23
TERMINATE_TRACE Frame Format 5-24
DATA_ACKFrame Format 5-25
DATA_FIRST_MIDDLE Frame Format 5-26
DATA_ONLY_LAST Frame Format 5-29
SESSION_CONFIRM Frame Format 5-30
SESSION_END Frame Format 5-32
SESSION_INITIALIZE Frame Format 5-33

LAN Technical Reference: 802.2 and NETBIOS APls

5-29.
5-30.
5-31.
5-32.

6-2.
6-3.
6-4.
6-5.
A-1.
A-2,
B-1.
B-2.

B-4.
B-5.

B-7.
B-8.

B-10.

B-11.
B-12.
B-13.
B-14.
B-15.
B-16.
B-17.
B-18.
B-19.
B-20.
B-21.
B-22.
B-23.
B-24.
D-1.
D-2.
D-3.
D-4.
E-1.
E-2.
E-3.

NO_RECEIVE Frame Format
RECEIVE_OUTSTANDING Frame Format
RECEIVE_CONTINUE Frame Format
SESSION_ALIVE Frame Format
DLC Status Event Trace Entry
Exception Event Trace Entry
IEEE 802.2 TRACE Bit Definiton
DLC Status Event Trace Entry
NETBIOS OS2TRACEMASK Bit Definiton
DLC and Direct Interface Commands
NETBIOS Commands
CCB Return Codes Listed by Interface
DLC Status Table
DLC Status Codes
NCBReturnCodes
Token-Ring Network Adapter Status Parameter Table
PC Network and Ethernet Adapter Status Parameter Table
Adapter Check for CCB1
Adapter Check forCCB2
Adapter Check forCCB3
IBM Token-Ring Network Adapter Check Reason Codes for All
CCBs
IBM PC Network Adapter Check Reason Codes for All CCBs .
Network Status forCCB2
Network Status for CCB3
Token-Ring Network Status Codes for AICCBs
PC Network and Ethernet Status Codes for AICCBs
Bring-up Error Codes for All CCBs (Token-Ring Network Adapters)
Phases
Errors . . . e
Recommended Actions Table
PC Network and Ethernet Adapter Open Errors for All CCBs

PC System Detected Errors forCCB2
PC System Detected Errors for CCB3
System Action Exceptions forCCB2
System Action Exceptionsfor CCB3
Interrupt Arbitrator Return Codes
Interface Registration CCB Parameter Table
NCB Registration Parameter Table
CCB Parameter Table Structure
Token Release Table
NETBIOS 3.0 System Default Values
NETBIOS Trace Table

Tables

Xiii

XiV LAN Technical Reference: 802.2 and NETBIOS APls

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM’s product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, are the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 208 Harbor Drive, P.O. Box 10501, Stamford, CT
06904-2501.

Trademarks

© Copyright IBM Corp. 1986, 1993

The following terms, denoted by an asterisk (*) in this publication, are trademarks of
the IBM Corporation in the United States and/or other countries:

IBM 0s/2 Personal System/2
LANStreamer PC AT Presentation Manager
Micro Channel PC XT PS/2

Operating System/2

The following terms, denoted by a double asterisk (**) in this publication, are
trademarks of other companies:

CompuServe CompuServe

Intel Intel Corporation
Microsoft Microsoft Corporation
NetWare Novell, Inc.

NetWire Novell, Inc.

Novell Novell, Inc.

Windows Microsoft Corporation
3Com 3Com Corporation

XV

XVi LAN Technical Reference: 802.2 and NETBIOS APls

Preface

This manual describes the Institute of Electrical and Electronics Engineers (IEEE)
802.2 and the NETBIOS application program interfaces (APIs) provided by IBM
program products for LAN adapters on PC Networks, Token-Ring Networks, and
Ethernet networks. These APIs support LAN adapters in IBM Personal Computers
(PCs) and IBM" Personal System/2* (PS/2*) computers.

The chapters of the fourth edition of the IBM Local Area Network Technical
Reference that describe the application program interface are republished and
updated in this reference manual. You may need to use this manual if you prepare
programs that communicate on a LAN network from an IBM PC or PS/2. The LAN
adapters that attach the workstation to the LAN must be supported by IBM
software.

Note: If you need information about the adapter interfaces for IBM adapters, refer
to the IBM LAN Technical Reference: Adapter Interfaces, SBOF-6221, which is
described in “Related IBM Publications” on page xviii.

How This Manual Is Organized

This reference manual is divided into the following chapters and appendixes:

» Chapter 1 provides an overview of the IEEE 802.2 and NETBIOS interfaces
provided by IBM, and describes the frame formats of local area networks that
are supported.

¢ Chapter 2 describes methods of writing programs to the IEEE 802.2 and
NETBIOS interfaces.

¢ Chapter 3 describes the Command Control Blocks that can be issued to IBM
adapter support software.

¢ Chapter 4 describes the Network Basic Input/Output System (NETBIOS)
interface.

e Chapter 5 describes the NETBIOS protocol.

¢ Chapter 6 describes the support of NDIS adapters using the IBM OS/2 LAN
Adapter and Protocol Support.

e Appendix A contains a directory of all valid commands and the related
interfaces for each, as well as page references for all commands.

* Appendix B provides return codes and exception condition tables used in
programming.

e Appendix C describes the program listings on the sample diskette.

¢ Appendix D provides information specific to the Local Area Network Support
Program.

* Appendix E provides information specific to the Communications Manager of
IBM Operating System/2* (0S/2*) Extended Edition.

¢ Appendix F provides an overview of the NDIS interface.

* Following the Appendixes are a list of abbreviations, a glossary list that defines
the terms used in this manual, and an index.

© Copyright IBM Corp. 1986, 1993 xvii

Related IBM Publications

The following IBM publications offer additional general information:

IBM LAN Technical Reference: Adapter Interfaces, SBOF-6221. This Bill of
Forms is a group of IBM publications that can be ordered under one publication
number or as separate manuals. Each is available as a single document when
ordered under its own publication number. At present, this Bill of Forms is
composed of the following individual technical references:

— IBM LAN Technical Reference: Token-Ring Network Adapter Interface,
SC30-3588

— IBM LAN Technical Reference: Ethernet Adapter Interface, SC30-3661

— IBM LAN Technical Reference: Token-Ring Network 16/4 Busmaster
Server Adapter/A Interface, SC30-3663

The appropriate LAN adapter documentation (provided with the adapter)
IBM Token-Ring Network Architecture Reference, SC30-3374*

A Building Planning Guide for Communication Wiring, G320-8059*

IBM Cabling System Planning and Installation Guide, GA27-3361*

Using the IBM Cabling System with Communication Products, GA27-3620*
IBM Token-Ring Network Introduction and Planning Guide, GA27-3677*
IBM PC Network Technical Reference

Extended Services Communications Manager Configuration Guide
Extended Services LAN Adapter and Protocol Support Configuration Guide

0S/2 LAN Server Network Administrator Reference Volume 2: Performance
Tuning

IBM NTS/2 LAN Adapter and Protocol Support Configuration Guide
IBM Personal Computer, Computer Language Series, Macro Assembler
IBM Token-Ring Network Problem Determination Guide, SX27-3710*
IBM Token-Ring Network Administrator’s Guide, GA27-3748*

Advanced Program-to-Program Communications for the IBM Personal
Computer Programming Guide

Advanced Program-to-Program Communications for the IBM Personal
Computer Installation and Configuration

IBM Local Area Network Support Program User’s Guide. Note that multiple
versions of the LAN Support Program are currently available, depending upon
your adapter environment.

IBM Micro Channel Technical Reference
IBM Personal System/2 Technical Reference

For assistance in obtaining IBM publications, see your place of purchase. For
items marked with an asterisk (*), see your IBM representative or IBM branch
office.

xXviii LAN Technical Reference: 802.2 and NETBIOS APIs

Guide to Information About the TCP/IP Interface

This is an abbreviated list of sources that may be helpful in understanding the
TCP/IP interface. This list is not intended as an endorsement or a promotion of
these particular sources. A fuller version of this TCP/IP bibliography is available in
the IBM Transmission Control Protocol/Internet Protocol Version 2.1 for DOS:
Programmer’s Reference.

General Publications

Internetworking With TCP/IP Volume I: Principles, Protocols, and Architecture,
Douglas E. Comer, Prentice Hall, Englewood Cliffs, New Jersey, 1991

Internetworking With TCP/IP Volume II: Implementation and Internals, Douglas
E. Comer, Prentice Hall, Englewood Cliffs, New Jersey, 1991

Programming Publications

IBM Transmission Control Protocol/Internet Protocol Version 2.1 for DOS:
Programmer’s Reference, SC31-7046

IBM Transmission Control Protocol/Internet Protocol Version 1.2.1 for OS/2:
Programmer’s Reference, SC31-6077

IBM AIX Version 3 for RISC/6000 Communication Concepts and Procedures
Volume 1, GC23-2203

IBM AIX Version 3 for RISC/6000 Communication Concepts and Procedures
Volume 2, GC23-2203

IBM AIX Version 3 for RISC/6000 Communications Programming Concepts,
SC23-2196

UNIX Network Programming, W. Richard Stevens, Prentice Hall, Englewood
Cliffs, New Jersey, 1990, ISBN 0-13-949876-1

Guide to Information About the Open Data-Link Interface (ODI)

Specifications and other Novell** development documentation can be acquired
through Internet, NetWire™, or NetWare™ Express. However, for the complete
procedures and documentation required, you should call 1-800-NETWARE.

Preface XiX

IBM Local Area Network OEMI

The following publications make up the IBM Token-Ring Network Other Equipment
Manufacture Interface (OEMI):

IBM Cabling System Technical Interface Information

IBM LAN Technical Reference: IEEE 802.2 and NETBIOS Application Program
Interfaces, SC30-3587 (this book)

IBM Token-Ring Network Architecture Reference, SC30-3374
Carrier Sense Multiple Access with Collision Detection, IEEE Std 802.3-1985

Token-Ring Access Method and Physical Layer Specification, |IEEE Std
802.5-1985

The following publications make up the IBM PC Network OEMI:

IBM NETBIOS Application Development Guide, S68X-2270

IBM PC Network Adapter Technical Reference

IBM PC Network Adapter Il Technical Reference

IBM PC Network Adapter Il/A Technical Reference

IBM PC Network Adapter Il - Frequency 2 Technical Reference
IBM PC Network Adapter Il/A - Frequency 2 Technical Reference
IBM PC Network Adapter Il - Frequency 3 Technical Reference
IBM PC Network Adapter Il/A - Frequency 3 Technical Reference
IBM PC Network Baseband Adapter Technical Reference

IBM PC Network Baseband Adapter/A Technical Reference

IBM PC Network Baseband Extender Technical Reference

IBM PC Network Translator Unit and Technical Reference

For assistance in obtaining IBM publications, see your place of purchase.

XX LAN Technical Reference: 802.2 and NETBIOS APIs

I

How This Manual Differs from the Fourth Edition of the IBM
Local Area Network Technical Reference

The chapters and appendixes of the IBM Local Area Network Technical Reference,
SC30-3383-03 that describe the application program interfaces (APIs) and the parts
of the Supplement to the LAN Technical Reference, SD21-0049-00 that deal with
the APIs are being replaced by this reference manual. Information about the
adapter interfaces is now published in the IBM LAN Technical Reference: Adapter
Interfaces, SBOF-6221.

The following topics that were not found in the previous technical reference are
included in this manual:

e New 0OS/2-based LAN Adapter and Protocol Support network communication
software

¢ New CCB commands to support multiple group addresses in adapters that
conform to the Network Driver Interface Specification (NDIS) interface and have
multiple group address capability

There are also minor corrections and additions to the material last published in the
fourth edition of the IBM Local Area Network Technical Reference, SC30-3383-03.

© Copyright IBM Corp. 1986, 1993 XXi

LAN Technical Reference: 802.2 and NETBIOS APls

Chapter 1. LAN Overview and Interfaces

About ThisChapter
Drivers and Programs That Provide the Application Program Interfaces -
NDIS and non-NDIS Adapters
IBM Programs to Support LAN Adapters
Where to Find Information About IBM Adapter Interfaces
Introduction to the Networks
LAN Networks
The IBM Token-Ring Network
The IBM PC Network (Broadband)
The IBM PC Network (Baseband)
Ethernet Support
Related Software
0S/2 Communications Manager (OS/2EE1.3)
|IEEE 802.2 Application Program Interface in OS/2
Differences Between the Dynamic Link Routine Interface and the Device
Driver Interface
Why Use IEEE 802.2 or NETBIOS?
IBM LAN Application Program Interfaces
IEEE 802.2 Interface
The Direct Interface
The DLC Interface
The APPC/PC Interface
NETBIOS
Token-Ring Network Frame Definiton
Routing Information Field
Routing Control Field
Broadcast Indicators
Length Bits
Direction Bit
Largest Frame Bitso
Reserved Bits
Route Designator Fields
Ring Number Portion
Individual Bridge Portion L.
Frame Format on the PC Network
Ethernet IEEE 802.3 Frame Format
Ethernet Frame Field Descriptions
Ethernet DIX Version 2.0 Frame Format

© Copyright IBM Corp. 1986, 1993

1-1

—
>
Z
o
<
o
<.
@
3

About This Chapter

This chapter introduces the software that provides the IEEE 802.2 and NETBIOS
application program interfaces (APIs) and then describes interfaces to the following
LANs: the IBM Token-Ring Network, the IBM PC Network, IBM Ethernet, and
non-IBM Ethernet. Ethernet support includes the Institute of Electrical and
Electronic Engineers Inc. (IEEE) 802.3 networks and Digital Intel Xerox (DIX)
Version 2.0. The frame formats used by these networks are also discussed.

Drivers and Programs That Provide the Application Program Interfaces

The two application program interfaces provided by IBM LAN support software are
IEEE 802.2 and NETBIOS. The IBM LAN support software is composed of
protocol drivers that provide communication between the application program
interface and the adapter. These protocol drivers provide the IEEE 802.2 and
NETBIOS interfaces in one of two ways:

¢ By interfacing with the network adapter hardware and microcode

* By interfacing with an adapter driver that provides the Network Driver Interface
Specificiation (NDIS) interface and is known as the NDIS MAC driver or the
network adapter driver.!

NDIS and non-NDIS Adapters

The NDIS MAC driver interfaces with the protocol driver at the NDIS layer and
interfaces with the adapter at the MAC layer. The protocol drivers that are
supported by NDIS MAC drivers are called NDIS protocol drivers. NDIS
configuration requires the NDIS MAC driver and an NDIS protocol driver (along with
some other required files, such as a protocol manager) to provide the IEEE 802.2
and NETBIOS interfaces.

When an adapter is supported by an NDIS MAC driver, it is referred to in this
manual as an NDIS adapter. When it is supported directly by protocol drivers, it is
referred to as a non-NDIS adapter.

The designation as a non-NDIS adapter depends not on the adapter design, but on
the type of protocol drivers used to provide the IEEE 802.2 or NETBIOS interfaces.
For example, the IBM Token-Ring Network adapters with shared RAM can be
either non-NDIS or NDIS. They are non-NDIS when they are supported by protocol
drivers that interface with the adapter and NDIS when they are supported by
protocol drivers that interface with the NDIS MAC driver.

IBM Programs to Support LAN Adapters

Examples of programs that provide protocol drivers to allow application programs to
address IEEE 802.2 or NETBIOS interfaces are the IBM LAN Support Program
(LSP) in DOS and several program products in 0S/2, including IBM Extended
Services for OS/2 Version 1.0 (ES), IBM OS/2 LAN Server Versions 2.0 and 3.0,
Network Transport Services/2 (NTS/2), and the Communications Manager delivered
with IBM OS/2 Extended Edition (EE) Version 1.3.

1 Appendix F, “NDIS Overview” provides an overview of NDIS.

1-2 LAN Technical Reference: 802.2 and NETBIOS APls

These programs, which are loaded in the host computer in which the LAN adapter
is installed, are included in the following list:

* The Local Area Network Support Program. Several versions of this program
are available, depending upon your adapter environment.

¢ The Communications Manager provided with OS/2 EE 1.3.

Note: The LAN protocol support delivered with EE 1.3 cannot operate under
0S/2 2.0. Therefore, the new LAN Adapter Protocol Support (LAPS) is
required for OS/2 2.0 or higher. The new LAPS will also run in the OS/2 1.3

environment.

e LAN Adapter and Protocol Support (LAPS) provided with ES 1.0, NTS/2, or
LAN Server 2.0 or 3.0.

Note: NDIS MAC drivers are shipped with the NDIS adapters, and may not be
included in the support program.

-
>
<
O
<
@
-
<
©
2

Where to Find Information About IBM Adapter Interfaces

The IBM Local Area Network Technical Reference has been divided into this
manual and a group of manuals that describe the adapter interfaces. See “Related
IBM Publications” on page xviii for the titles of the manuals that describe the

adapter interfaces.

Introduction to the Networks
The following local area networks use the interfaces described in this book:

* |BM Token-Ring Network
IBM PC Network

IBM PC Network (Baseband)
¢ Ethernet

IBM" Personal Computers (PCs) and Personal System/2" (PS/2") computers, often
referred to as workstations, can be connected on these networks. The appropriate
LAN adapters must be installed in the workstations; these adapters are supported
by the IBM program products listed in “IBM Programs to Support LAN Adapters” on

page 1-2.

LAN Networks

Following is a brief description of the applicable local area networks.

The IBM Token-Ring Network
The Token-Ring Network, a token-ring, star-wired local area network, can
accommodate on one ring up to 260 attaching devices (printers, processors,
controllers). Bridges can connect multiple rings together to form a network of more
than 260 devices. These attaching devices connect to one another by a series of
cables, access units, and special adapters installed in the attaching devices.

Application programs running in each workstation (such as a PC or PS/2 computer)

can direct the adapter to become a part of the ring. This book describes the
commands used by programs to control the Token-Ring Network adapter’s activity

Chapter 1. LAN Overview and Interfaces 1-3

on the network. Refer to IBM Token-Ring Network Introduction and Planning Guide
for more information about the network.

The IBM PC Network (Broadband)

The PC Network (Broadband) is a bus-attached, broadband local area network that
can accommodate up to 72 attaching devices with IBM components.

The IBM PC Network (Baseband)

The PC Network (Baseband) is a bus-attached, baseband, local area network that
can accommodate up to 80 attaching devices with IBM components.

Ethernet Support
Ethernet networks are bus-attached local area networks. IBM supports Ethernet
with the Operating System/2" Extended Edition Version 1 Release 3 (0S/2" EE
1.3), LAN Adapter and Protocol Support in OS/2, and the LAN Support Program
Version 1.2 or higher support in DOS for IEEE 802.3 and DIX Version 2.0. Refer
to the IBM Operating System/2 Extended Edition Version 1.3 System
Administrator's Guide for Communications, the documents for Extended Services
(ES) and Network Transport Services/2 (NTS/2) listed in “Related IBM Publications”
on page xviii, and the LAN Support Program User’s Guide for additional information
about the Ethernet adapters supported.

Related Software

The software listed below provides the interface to allow communication on the
networks using local area network adapters.

¢ For use with IBM Disk Operating System (DOS)

-~ The protocol drivers provided with the Token-Ring Network PC Adapter and
Token-Ring Network PC Adapter I

— The Local Area Network Support Program

— Advanced Program-to-Program Communications for the IBM PC
(APPC/PC)

* For use with 0S/2

— The Communications Manager provided with OS/2 EE 1.3
— The LAPS provided with ES 1.0, NTS/2, and LAN Server.

Note: The protocol support in Communications Manager provided with OS/2
EE 1.3 for Ethernet is NDIS-based. Beginning with LAPS for OS/2 2.0, all
adapter support is NDIS-based. See Chapter 6, “Support of NDIS Adapters
Using IBM OS/2 LAN Adapter and Protocol Support” for a discussion of OS/2
NDIS support.

Application programs use these interfaces to communicate on a local area network.

1-4 LAN Technical Reference: 802.2 and NETBIOS APIs

0S/2 Communications Manager (OS/2 EE 1.3)

Communications Manager is a component of OS/2 EE 1.3. It provides
comprehensive communication capabilities for a variety of interconnections.
Functions that were previously available only in various communications programs
for DOS are now combined with the functions of multitasking and expanded
memory support. Communications Manager enables users to connect to a range of
computers, including IBM and non-IBM host systems and other personal
computers. In addition, multiple connections can be active concurrently, giving
users access to information wherever it is located.

Communications Manager supports a wide range of communication capabilities that
include:

e 3270 terminal emulation
¢ 5250 terminal emulation
¢ ASCII terminal emulation
¢ IBM Server-Requester Programming Interface (SRPI)

¢ IBM Systems Network Architecture (SNA) Advanced Program-to-Program
Communication (APPC)

¢ |IBM Asynchronous Communications Device Interface (ACDI)

¢ IEEE 802.2 Application Program Interface (API)

e |BM NETBIOS API

¢ Emulator High-Level Language Application Program Interface (EHLLAPI).

Since OS/2 provides multitasking capability, the various communications options
can usually run concurrently. In many cases, this eliminates the need to load and
unload programs to communicate with different systems.

IEEE 802.2 Application Program Interface in 0S/2
The IEEE 802.2 API provided by the Communications Manager and LAPS supports
both the direct and data link control (DLC) interfaces described in this book.
Application programs can use the direct interface only or can use both the direct
and DLC interfaces.

Two methods are available to access the IEEE 802.2 API: the dynamic link routine
(DLR) interface, and the device driver (DD) interface. Using the device driver
interface, the protocol drivers interface directly with the LAN device drivers provided
by Communications Manager or LAPS.

Application programs communicate across the IEEE 802.2 AP| using command
control blocks (CCBs). For this communication, the DLR interface uses CCB2, and
the DD interface uses CCB3. Chapter 2, “Programming Conventions for the IEEE
802.2 Interface,” provides more information about CCBs.

A DLR accesses the NETBIOS API provided by Communications Manager.
Application programs communicate across the NETBIOS API with network control
blocks (NCBs). For more information on NETBIOS and the NCB commands, see
Chapter 4, “NETBIOS.”

Chapter 1. LAN Overview and Interfaces 1-5

To use the IEEE 802.2 API or the NETBIOS API with OS/2, Communications
Manager must be installed and configured. Refer to /IBM Operating System/2
Extended Edition Getting Started for information on installing Communications
Manager and the LAN device drivers. Refer to IBM Operating System/2 Extended
Edition System Administrator's Guide for Communications for information on
configuring Communications Manager.

Differences Between the Dynamic Link Routine Interface and the
Device Driver Interface

Two levels of OS/2 interfaces exist: the Dynamic Link Routine Interface and the
Device Driver Interface. An application program can use either interface, but
cannot use both interfaces at the same time and still be considered a single
application program. Resources provided to and resources obtained from one of
the OS/2 interfaces cannot be used at the other OS/2 interface.

An application program can easily use one of the DLR interfaces by making the
appropriate external references to an OS/2 DLR interface. In order for an
application program to use one of the DD interfaces, the application program itself
must be a device driver or have a device driver as one of its components. The
application program device driver must be set up to support communication
between device drivers so that the application program device driver can be called
by the protocol drivers for posting of events.

Several factors can be involved in determining the best OS/2 interface for your
programming needs. Consider these factors when choosing your OS/2 interface:

¢ The programming language used to develop your application programs

— Device driver components of application programs must be written in
Assembler because registers must be accessed and processed. In
addition, flags must be tested for error conditions.

¢ Performance

~ The DLR interfaces use semaphores and create threads for application
programs in order to post events; therefore, task switches are involved
when using the interface. When events occur that affect the application
program (for example, command completions and network status changes),
the application program can respond to the event after one of its threads is
dispatched by a semaphore being cleared.

— The DD interface calls the application program’s device driver to post
events. When an event occurs that affects the application program, the
application program is notified without delay and can respond immediately
to the event without a task switch.

¢ Complexity

— The DLR interface manages asynchronous events and allows the
application program to process event information at its convenience.

— While the DD interface does provide better performance to the application
program, it also requires the application program to share in some of the
responsibilities associated with processing asynchronous events. When
events occur, the protocol drivers call the application program to post the
event. No event information is queued for later notification or retrieval by
the application program. In addition, the application program device driver
is responsible for ensuring that data structures and buffers passed to the

1-6 LAN Technical Reference: 802.2 and NETBIOS APls

protocol drivers are located in valid memory segments and are locked to
prevent moving or swapping by OS/2.

Why Use IEEE 802.2 or NETBIOS?
The IEEE 802.2 and NETBIOS APIs consist of the following interfaces:
e |EEE 802.2 API

— Direct interface
— DLC interface

e NETBIOS API
— NETBIOS interface.

When choosing which interface to use, you should take into account these criteria:
* Usability of the interface

The NETBIOS interface provides a simple interface for the application program
and does not require the application program to understand DLC.

¢ The performance required by your application program

The IEEE 802.2 interfaces provide better performance but require the
application programs to be significantly more complex. Performance
advantages can be up to two times that of NETBIOS based on the amount of
data transferred between the application programs.

¢ The interfaces used by other application programs with which your application
program may interact.

IBM LAN Application Program Interfaces

The Local Area Network Support Program with DOS, Communications Manager
with OS/2 EE 1.3, and LAPS provide both IEEE 802.2 and NETBIOS interfaces.
Within the IEEE 802.2 interface, the direct interface and the DLC interface are
supported.

The application program can issue CCBs to the protocol drivers to interface with
the adapter. By using CCBs, the application program is freed from the burden of
interacting directly with the adapter. For information on CCBs and communicating
with the protocol drivers, see Chapter 2, “Programming Conventions for the IEEE
802.2 Interface,” and Chapter 3, “The Command Control Blocks.” For information
about interacting directly with the adapters, see the adapter interface books listed in
“Related IBM Publications” on page xviii. Figure 1-1 on page 1-8 shows the
relationship of application programs, the protocol drivers, and the network adapter
when using DOS. Figure 1-2 on page 1-8 shows the relationship of application
programs, the protocol drivers, and different adapters when using OS/2 EE 1.3.

Chapter 1. LAN Overview and Interfaces 1-7

Application Program Application Program
for the NETBIOS for the IEEE 802.2
Interface Interface
{ NETBIOS Interface | { IEEE 802.2 Interface |
{DLC Interface | Direct Interface |

.

IBM LAN Support Program J

i NDIS Interface |

| NDIS MAC Driver |

y
LAN Adapter's /O | | LAN Adapter's /O |

Figure 1-1. DOS IEEE 802.2 and NETBIOS Interfaces

Network Application Programs

Appc | SRPI
3101 (LU8-2) | 3570 EMUL.
VT100
EMUL. NETBIOS Common Service
ACDI IEEE802.2 (Service Verbs)
Operating System/2 Kernel

ASYNC| PCN | TRN |ETHERNET| SDLC| DFT

[Y Y
A y A J A

Communications Adapter's I/O

Figure 1-2. OS/2 EE Communications Manager Interfaces

A network application program assembles a control block containing a command
and related information for the adapter. Control passes to the protocol drivers, and
the application program awaits the results.

Appendix A, “Valid Commands,” contains a directory of all commands, their related
interfaces, and a page reference to a description of each. The functions of the
DLC interfaces of the adapter and the protocol drivers are compatible with the
service specifications of the IEEE 802.2 Logical Link Control (LLC). Detailed
information on these interfaces is contained in the IBM LAN Technical Reference:
Adapter Interfaces, SBOF-6221.

1-8 LAN Technical Reference: 802.2 and NETBIOS APls

Each of the following interfaces provides a means of communicating with the
adapter. Depending on which you choose, the code you provide shares the
responsibility for control of the adapter with the protocol drivers found in the IBM
support program you are using.

IEEE 802.2 Interface

This interface is implemented using CCBs and consists of two types of interface:
direct interface and DLC interface.

The Direct Interface
The direct interface allows control of the adapter using control blocks.

This interface provides the ability to open and close an adapter, obtain error status,
and set addresses. It also permits transmission and reception of Medium Access
Control (MAC) (Token-Ring adapter cards only) and non-MAC frames directly
without LLC protocol assistance.

Chapter 2, “Programming Conventions for the IEEE 802.2 Interface,” describes the
use of this interface in detail.

The DLC Interface

The DLC interface, together with the direct interface, provides an interface to
application programs using the LLC sublayer of data link control protocol. The DLC
protocol consists of the LLC sublayer and the medium access control (MAC) layer
protocol. The interface can be used in two ways.

¢ For IEEE Type 1 communication, which is connectionless communication
between devices providing no guarantee of delivery (through the DLC service
access point (SAP) interface).

¢ For IEEE Type 2 communication, which is connection-oriented services
(through the DLC station interface), providing point-to-point connectivity with
guaranteed delivery and retry.

The adapter and the protocol drivers provide much of the communication overhead
function, which permits less complex application programming.

Chapter 2, “Programming Conventions for the IEEE 802.2 Interface,” describes the
use of this interface in detail. The IBM Token-Ring Network Architecture Reference
explains communication using DLC in more detail.

The APPC/PC Interface

The APPC/PC program is a product that uses the protocol drivers provided with the
Local Area Network Support Program. Refer to Advanced Program-to-Program
Communications for IBM Personal Computer Installation and Configuration Guide.
Also, Advanced Program-to-Program Communications for the IBM Personal
Computer Programming Guide explains how to design and write APPC/PC
transaction programs.

Note: The Communications Manager provides the APPC/PC support for OS/2.

Chapter 1. LAN Overview and Interfaces 1-9

NETBIOS

The IBM NETBIOS API provides a program interface to the LAN so that an
application program can have LAN communication without programming to the
802.2 API. NETBIOS provides the necessary DLC communications for the
application program. NETBIOS names identify nodes on the LAN, and NETBIOS
supports two types of data transfer. Session support provides guaranteed delivery
of the data, while datagram support does not guarantee delivery.

NETBIOS application programs require that protocol drivers that provide NETBIOS
support be used. These drivers are part of the Local Area Network Support
Program or the OS/2 programs.2 See Chapter 4, “NETBIOS” for information about

NETBIOS and its use.

Token-Ring Network Frame Definition

A Token-Ring Network frame contains the following elements:

Start delimiter (SD)—1 byte

Frame control (FC)—1 byte

Destination address—®6 bytes

Source address—6 bytes

Optional routing field—up to 18 bytes
Optional DLC header field—3 to 4 bytes
Optional information (data) bytes

Frame check sequence (FCS)—4 bytes
End delimiter (ED)—1 byte

Frame status (FS)—1 byte.

Access control (AC)—1 byte with the frame bit on

Figure 1-3 on page 1-11 shows the Token-Ring Network frame format.

2 When the original PC Network Adapter or the PC Network Protocol Driver is used, the protocol drivers provided by the LAN

Support Program or the OS/2 support programs are not required.

1-10 LAN Technical Reference: 802.2 and NETBIOS APls

<+— LANHEADER

SD AC FC Dest. | Source | Rout. Info. | FCS ED FsS

Addr. | Addr. | 0-18 ;
Field | 4B 1B
1Byte | 1Byte | 1 Byte 6Bytes | 6Bytes | Bytes el ytes yte | 1Byte

Information
[«——— DLCHeader———<—— Figjg—*
//.

~

DSAP SSAP | Control Link Service

1Byte | 1Byte 1or2 Data Unit
Bytes O-nbytes
f /1 {
— /1l -/
MAC MAC MAC
LLID Subvector Subvector
4Bytes
f NI {
Oneormore MAC
Subvectors of variable
lengths

Figure 1-3. Token-Ring Network Frame Format. Bits are transmitted in bytes, most
significant bit (bit 7) first.

The physical, or LAN, header consists of the AC byte, the 1-byte FC field, 6 bytes
of destination address, 6 bytes of source address, and from zero to 18 bytes of
routing information. This is followed by the information field. Finally, the physical
trailer (PT) is included, consisting of 4 bytes of the FCS field, the ED byte, and the
FS byte.

The frame may be one of two types:

e MAC frame
* Non-MAC frame.

MAC frames contain information about the status of an adapter or the ring.

Certain MAC frames can be received by the adapter and provided to the application
program at the direct interface. Some MAC frames can be sent to the adapter for
transmission on the ring using the direct interface of IEEE 802.2.

Some non-MAC frames contain data and messages that users transmit to one
another.

Some non-MAC frames contain LLC protocol-only information transmitted by the
adapter. These frames are used for Type 2 protocol support.

Chapter 1. LAN Overview and Interfaces 1-11

The 2 most significant bits of the FC byte define the frame type. The types are:

B'00*' MAC frame
B'01' LLC frame (non-MAC)
B'10' Reserved
B'11' Reserved.

Routing Information Field
Bridges use the routing field to forward frames to their destination. This field is
required if the frame is forwarded by bridges to other rings.

Bit sequences described in the routing field may differ from IBM PC format in that
the most significant bit of a byte is designated 7 for the IBM workstation and may
be called 0 elsewhere. Only the representation differs; the byte’s content is not
altered.

This field, when present, consists of a 2-byte routing control field and up to eight
2-byte route designators, as shown below:

71

Routing | Segment | Segment Segment
Control | Number | Number . Number
2bytes 2bytes 2 bytes 2 bytes

Figure 1-4. Routing Information Field

Routing Control Field
The format for the routing control field is shown below:

1
Bit0 Byte0 Bit7 Bit0 Byte Bit7

! T T T I T T T T T T T T
|BIBIBILILILILiL| IDIFIFIFIrIrIrIr]

B = Broadcast Indicators
L = Length Bits

D = Direction Bit

F = Largest Frame Bits
r = Reserved Bits

Figure 1-5. Routing Control Field

Broadcast Indicators

The broadcast indicators indicate whether the frame is to be sent along a specified
path, to all the segments in a network (potentially resulting in multiple copies on a
given segment), or to all the segments so that only one copy of the frame appears
on each segment in the network.

e B'OXX' = Non-broadcast: This indicates that the route designator field contains
a specific route for the frame to travel through the network.

e B'10X' = All-routes broadcast: This indicates that the frame will be transmitted
along every route in the network to the destination station. Frames transmitted
as all-routes broadcast will result in as many copies at the destination station
as there are different routes to the destination station.

1-12 LAN Technical Reference: 802.2 and NETBIOS APls

Note: An all-routes broadcast is independent of an all-stations broadcast,
which is indicated by all ones in the DA field. An all-stations broadcast implies
that every station on the segment will copy the frame, while an all-routes
broadcast implies that every bridge in a network will copy and forward the
frame to its adjoining segment (unless the next route designator already
appears in the routing information field).

* B'11X' = Single-route broadcast: This indicates that only certain designated
bridges will relay the frame from one segment to another with the result that the
frame will appear exactly once on every segment in the network.

Note: X'' means the bit can be either a 0 or a 1. Its value does not affect the
meaning of the indicator.

Length Bits »

The 5 length bits indicate the length in bytes of the routing information field. Ring
stations use the length to parse the rest of the frame correctly. (A ring station
parses a frame by separating it into its individual fields. When a station parses a
frame, it also checks for errors in the formatting of the frame.)

For all-routes or single-route broadcast frames, the originating ring station initializes
the length field to X'2', to represent the 2 routing control bytes. Bridges alter the
routing information field in broadcast frames by adding route designators.

For non-broadcast frames, which are already carrying routing information, the
length field indicates the length of the routing information field, and remains
unchanged as the frame traverses the network.

Each bridge checks the length bits. If the length is an odd number of bytes, or if it
is less than 2 bytes or greater than 18 bytes, the bridge does not forward the
frame.

For all-routes broadcast frames, the length field indicates to a bridge where to
append the route designator. The first bridge to forward the frame adds X'4' to
the length value (2 bytes for the first route designator and 2 bytes for the next ring’s
route designator). After that, every bridge that forwards the frame adds X'2' to the
length field (2 bytes for the next ring’s route designator).

At any given time after crossing the first bridge, the formula {[(Length - 2)/2] - 1}
indicates the number of bridges crossed.

Direction Bit
The direction bit enables the bridge to correctly interpret the route designators
when it forwards the frame.

If the direction bit is set to B'0', the bridge interprets the routing information field
from left to right; if it is set to B'1', it interprets the field from right to left. Using
this bit allows the list of ring numbers and bridge numbers in the routing information
field to appear in the same order for frames traveling in either direction along the
route.

For all-routes broadcast frames, the originating ring station sets the direction bit to
B'0'. Bridges do not need the direction bit in broadcast frames, but receivers
could uniformly complement the received bit when they obtain routing information
from frames with routing information fields.

Chapter 1. LAN Overview and Interfaces 1-13

For off-ring non-broadcast frames, the originating ring station sets the direction bit
to B'0' in all frames transmitted to the target, while the target sets the direction bit
to B'1' in all non-broadcast frames to the originating ring station.

Largest Frame Bits

These bits specify the largest-size information field for the frame, excluding
headers, that can be transmitted between two communicating stations on a specific
route.

A station that originates a broadcast frame sets the largest frame bits to B'111',
the largest possible frame that can travel any path. Bridges that relay a broadcast
frame examine the largest frame bits. If the designated size of the largest frame is
greater than the capability of that part of the route, the bridge reduces the largest
frame encoding to indicate the maximum information field.

The largest field value returned in the responses to the broadcast indicates the
largest possible frame each specified route can handle.

The largest frame code points have the following values:

¢ 000—As many as 516 bytes in the information field. 516 represents the
smallest maximum frame size that a medium access control must support
under ISO 8802/2 LLC and ISO connectionless-mode network service (ISO
8473).

e 001—As many as 1470 bytes in the information field. 1470 represents the
largest frame size that ISO 8802/3-standard local area networks can support.

¢ 010—As many as 2052 bytes in the information field. 2052 represents a frame
size that is useful for transferring a (typical) screen-full of data; that is, this
frame size will support the transfer of data for an 80 X 24 screen plus control
characters.

¢ 011—As many as 4399 bytes in the information field. 4399 represents the
largest frame size that can be transmitted using the Fiber Distributed Data
Interface (FDDI) Draft Proposed American National Standard. It is also the
largest frame size possible for ISO 8802/5-standard stations.

¢ 100—As many as 8130 bytes in the information field. 8130 represents the
largest frame size that 1ISO 8802/4-standard local area networks can support.

¢ 101—As many as 11407 bytes in the information field.

¢ 110—As many as 17 749 bytes in the information field. 17749 represents the
maximum frame size that a medium access control supports for ISO
8802/5-standard stations.

¢ 111—Used in all-routes broadcast frames and for values greater than 17749.

Note: Source-routing end stations on media with a maximum frame size should
not send frames in which the headers, routing information fields, and
information fields exceed that maximum frame size.

Bit definitions for the largest frame bits can be found in the international
standard: ISO/IEC 10038:1993 ANSI/IEEE Std 802.1d 1993 edition.

1-14 LAN Technical Reference: 802.2 and NETBIOS APls

Reserved Bits
These bits are reserved by IBM for future use. They are transmitted as B'0's;
their value is ignored by receiving ring stations.

Route Designator Fields
Each ring in a given multiple-ring network is assigned a unique ring number; each
bridge is assigned a bridge number, which may or may not be unique. Together,
the ring and bridge number form a route designator. When an all-routes broadcast
frame is transmitted, each bridge that forwards the frame to another ring adds its
bridge number and that ring’'s number to the frame’s routing information field.

When a bridge receives a frame to forward to a ring, the bridge compares the route
designators already present in the routing information field with its attached ring
numbers and bridge number.

« |f there is a target ring number match in an all-route or single-route broadcast
frame, the bridge discards the frame because it has already circled the target
ring.

o If there is not a target ring number match in an all-route or single-route
broadcast frame, the bridge adds its route designator to the frame’s routing
information field and forwards it.

¢ |If there is a ring number, bridge number, and ring number combination match in
a non-broadcast frame, the bridge forwards the frame to the indicated ring.

e |If there is not a ring number, bridge number, and ring number combination
match in a non-broadcast frame, the bridge discards the frame.

When the frame reaches its destination, the sequence of route designators
describes the path from the source ring to the destination ring.

The 2 bytes of the route designator are divided into the ring number portion (12
bits) and the individual bridge number portion (4 bits), as shown below. The
individual bridge portion allows parallel bridges to exist, and to share traffic between
the same two rings.

| RN | B |
(12) bits 4 bits

RN = Ring Number Portion
IB = Individual Bridge Portion

Figure 1-6. Route Designator Field

Ring Number Portion

Bridges that are attached to different rings have different values for the ring number
portion of the route designator; bridges that are attached to the same ring have the
same value.

Chapter 1. LAN Overview and Interfaces 1-15

Individual Bridge Portion

Bridges that are attached to the same ring can have the same value for the
individual bridge portion of the route designator. However, parallel bridges (those
that are attached to the same two rings) must have different values.

Because the end of a route is a ring and not a bridge, the individual bridge portion
of the last route designator in the routing information field is not defined (that is, it is
all B'0's).

Frame Format on the PC Network
A frame on the PC Network consists of the following fields:
» Start delimiter (SD)—1 byte

¢ Destination address—6 bytes
* Source address—6 bytes
e Zeroes—2 bytes
¢ Optional routing field—up to 18 bytes
e Optional DLC header field—3 to 4 bytes
¢ Optional information (data) bytes
¢ The frame check sequence (FCS)—4 bytes
¢ Frame status (FS)—1 byte
¢ Pad characters (flags) if needed to reach the minimum frame length.
«—— LANHEADER ——»
/ /.
SD | Dest. | Source | Zeros | Rout. | Info. | FCS FS Pad

Addr | Addr. 0-18
1Byte |6 Bytes| 6Bytes | 2Bytes | Bytes | Field | 4Bytes | 1Byte |Characters

/L

Information
«———DLCHeader ———»<—— Fjgild—"
A /L

DSAP SSAP | Control
1-2 Data
1Byte 1Byte Bytes

/. / /. /
! 1/ 7

Figure 1-7. PC Network Frame Format. Bits are transmitted in bytes, most significant bit
(bit 7) first.

The physical, or LAN, header consists of the destination and source addresses, 2
zero bytes, and from zero to 18 bytes of routing information. This is followed by
the user-provided data. The LAN header on the PC Network is different from that
on the Token-Ring Network, but to provide compatibility for application programs,
the difference is not reflected at the interface to the application program. In cases
where the application program provides the access control and frame control bytes
(used for the Token-Ring Network), the protocol drivers simply omit the bytes from
the transmitted frame and insert 2 bytes of zeroes following the source address.
Note, however, that the protocol drivers check to make sure that the frame control
byte specifies an LLC, not a MAC, frame. They transmit the address fields with the
bit sequence expected on the PC Network, not the bit sequence expected on the
Token-Ring Network.

1-16 LAN Technical Reference: 802.2 and NETBIOS APIs

The formats of the routing information, the DLC header, and the information fields
are identical on both networks; these formats are described in detail in the /BM
Token-Ring Network Architecture Reference. Bit sequences in that book, and
possibly other documentation, may differ from IBM PC format in that the most
significant bit of a byte is designated 7 for the IBM workstation and may be called 0
elsewhere. Only the representation differs; the byte’s content is not altered.

—
>
Z
O
<
@
<
®
2

Ethernet IEEE 802.3 Frame Format
IBM support for IEEE 802.3 Ethernet uses a frame that consists of the following
fields:

e Preamble—7 bytes
Start delimiter (SD)—1 byte
Destination address—6 bytes
Source address—6 bytes
LPDU length—2 bytes
LPDU
— Destination SAP address (DSAP)—1 byte
— Source SAP address (SSAP)—1 byte
— Control field—1 or 2 bytes
- Information field

e Pad—oO to 43 bytes
* Frame check sequence (FCS) or cyclic redundancy check (CRC)—4 bytes.

e o o o o

N Maximum Length Y2 Bytes * >

Preamble| SD | Dest. | Source | LPDU LPDU Pad | FCS
7 Bytes |1Byte| Addr. | Addr. | Length | Y1 Bytes® 4 Bytes

6 Bytes | 6 Bytes | 2 Bytes

\ 4

DSAP SSAP Control | Information
Addr. Addr. Field Field
1 Byte 1 Byte |1 or2Bytes

Figure 1-8. IEEE 802.3 Frame Format. * See Table 2-14 on page 2-50 for the values of
Y1 and Y2. See “Ethernet Frame Field Descriptions” for more information about these fields.

Ethernet Frame Field Descriptions
The following list gives field descriptions for the Ethernet frames:

Preamble
This field is a synchronization pattern that contains alternating binary
ones and zeros. For DIX Version 2.0, it is a 64-bit field that ends with a
frame start delimiter of two consecutive ones. For IEEE 802.3, it is a
56-bit field and does not end with the frame start delimiter of two

consecutive ones.

Chapter 1. LAN Overview and Interfaces 1-17

Start Frame Delimiter (IEEE 802.3)
This 1-byte field contains binary ones and zeros, and ends with two
consecutive ones. The contents of this field match the eighth byte of
the preamble field in DIX Version 2.0 frames.

Destination Address
This 6-byte field specifies the station to which the packet is being
transmitted.

¢ The first bit transmitted indicates whether the destination address is
an individual address (B'0') or a group address (B'1').

¢ The second bit transmitted indicates whether the address was
universally administered (B'0') or locally administered (B'1').

Source Address
This 6-byte field contains the unique address of the station transmitting
the packet.

¢ The first bit transmitted is always zero.

* The second bit transmitted indicates whether the address was
universally administered (B'0") or locally administered (B'1').

Type Field (DIX Version 2.0)
This 2-byte field contains the registered value that identifies the
high-level protocol that will interpret the LPDU. The value registered for
this frame description is X'80D5' for SNA communications. This same
Type Field value (X'80D5') is also used for any other application using
the IEEE 802.2 API (direct or DLC), including NETBIOS. Note that the
SAP values are different for SNA path control and NETBIOS. Refer to
the IBM Token-Ring Network Architecture Reference for more
information.

Data Field (DIX Version 2.0)
This data field contains an integral number of bytes ranging from 46 to
1500 bytes, inclusive. The minimum packet size ensures that valid
packets are distinguishable from collision fragments.

LPDU Length
This 2-byte field specifies the byte length of the LPDU, from the
destination SAP address to the last byte of the information field,
inclusive.

LPDU
This LLC protocol data unit consists of SAP addresses, a 1- or 2-byte
DLC field, and an optional information field. The field is 1497 bytes in a
DIX Version 2.0 frame, and 1500 bytes in an IEEE 802.3 frame.

Pad (IEEE 802.3)
This field is used when needed to reach the minimum frame size
requirement of 64 bytes. The pad can be up to 40 bytes. The protocol
drivers will add the appropriate pad bytes, if required. The minimum
frame size ensures that valid frames are distinguishable from collision
fragments.

Trailing Pad (DIX Version 2.0)
This field is used when needed to reach the minimum frame size
requirement of 64 bytes. The trailing pad can contain up to 43 bytes.
The protocol drivers will add the appropriate pad bytes, if required. The

1-18 LAN Technical Reference: 802.2 and NETBIOS APls

minimum frame size ensures that valid frames are distinguishable from
collision fragments.

FCS
This 4-byte frame check sequence is based on all fields, starting with
the destination address.

Ethernet DIX Version 2.0 Frame Format

IBM support for DIX Version 2.0 Ethernet uses a frame that consists of the
following fields:

¢ Preamble—8 bytes
» Destination address—6 bytes
¢ Source address—6 bytes
¢ Type field—2 bytes
¢ Data
— LPDU length—2 bytes
— Leading pad—1 byte
— LPDU
- Destination SAP address—1 byte
- Source SAP address—1 byte
- Control field—1 or 2 bytes
- Information field—n to 1494 bytes
— Trailing pad—O0 to 40 bytes
e FCS or cyclic redundancy check (CRC)—4 bytes.

v Maximum Length Y2 Bytes * <
Dest. Source Type Data
Pgeg;t"gs'e Addr. Addr. Field | y1 Bytes* 4',:3%5
6 Bytes 6 Bytes 2 Bytes

v
4* v
LPDU Leading -
lengh | Pad | Lppy | Ialing
2 Bytes 1 Byte
< LPDU >

A
v

DSAP SSAP Control .
Addr. Addr. Field lnfoFrmIadtnon
1Byte 1Byte [1or2Bytes| ''©

< »
< »

Figure 1-9. DIX Version 2.0 Frame Format. * See “Ethernet Frame Field Descriptions” on
page 1-17 for more information about these fields.

Chapter 1. LAN Overview and Interfaces 1-19

1-20 LAN Technical Reference: 802.2 and NETBIOS APIs

Chapter 2. Programming Conventions for the IEEE-§02.2
Interface

About This Chapter 2-2
IBM Program Products for LAN Adapter Support 2-2
IEEE 802.2 Programming Conventions withDOS 2-3
Local Area Network Support Program (CCB1) Calling Conventions 2-3
Local Area Network Support Program (CCB1) Command Completion 2-3
Appendages 2-4
Local Area Network Support Program (CCB1) Control Blocks 2-6
Programming Conventions with OS/2 2-7
The OS/2DLR Interface 2-7
Execution of Multiple Commands with the DLR Interface 2-7
User's Data Segment Restrictions with the DLR Interfface 2-7
User's Data Segment Guidelines with the DLR Interface 2-8

DLR Interface (CCB2) Calling Conventions 2-8

DLR Interface (CCB2) Command Completion 2-9
DLR-Interface (CCB2) Control Blocks 2-12

The OS/2DD Interface 2-12
User's Data Segment Restrictions with the DD Interface 2-12
User's Data Segment Guidelines with the DD Interfface 2-13

DD Interface (CCB3) Calling Conventions 2-13

DD interface (CCB3) Command Completion 2-14

DD Interface (CCB3) Control Blocks 2-18
Control Blocks for ANCCBs 2-19
CCB Field Explanations 2-19
Addressing L 2-26
Adapter Addresses 2-26
Stations, SAPs,andIDs 2-27
SAPs . . . 2-28

SAP Assignments 2-29
DLC . e 2-30
Types of Service 2-31
Command Sequences 2-31
Link Station States L 2-33
Timers . . . 2-35
Guidelines for Selecting Parameter Values 2-36
Transmitting, Receiving, and Buffers 2-39
Buffer Pools 2-40
Receive Buffers 2-41
Receive Buffer Formats, 2-42
Buffer Fields Explanations 2-45
Transmit Buffers 2-46
Transmit Buffer Formats 2-47

© Copyright IBM Corp. 1986, 1993 2-1

About This Chapter

This chapter includes a discussion of the programming conventions for application
programs that run on LANs and use the IEEE 802.2 application program interface.
Also included are a description of the command control blocks (CCBs) and the
fields of those CCBs, a description of the command sequence for DLC
communication, and a discussion of transmitting and receiving on the LANSs.

IBM Program Products for LAN Adapter Support

At this time, OS/2 EE 1.3 with Communications Manager, LAN Adapter and
Protocol Support in OS/2, NTS/2, OS/2 LAN Server, and the Local Area Network
Support Program in DOS are the IBM program products provided to support
adapters on LANs. This chapter discusses the IEEE 802.2 LAN interface provided
by these products. The 802.2 interface is implemented by commands which are
communicated to the protocol drivers of the support program products using CCBs.
Most of the commands used by the DOS and OS/2 program products are the same
and the structure of the commands is very similar. Where it is possible to discuss
one command that can be used for all products, the term Command Control Block
(CCB) is used. Where it is not possible to talk about them as one, each is
discussed separately as CCB1, CCB2, and CCB3. This chapter explains the major
differences in the CCBs. The different command control block structures are
referred to as follows:

CCB1 The command control block for the IEEE 802.2 interface provided by
the Local Area Network Support Program in DOS.

CCB2 The command control block for the DLR interface provided with the
Communications Manager of OS/2 EE 1.3 and with LAPS.

CcCB3 The command control block for the DD interface provided with the
Communications Manager of OS/2 EE 1.3 and with LAPS.

CcCB When CCB is used without a qualifier, the information refers to all three
interfaces.

The Local Area Network Support Program, OS/2 EE 1.3, and other OS/2 support
software provide software support for the adapter when using any of the supported
Token-Ring Network, PC Network, or Ethernet adapters. The Local Area Network
Support Program and OS/2 EE 1.3 support up to two adapters in one workstation.
The first adapter, numbered 0, is the primary adapter; the second adapter, if used,
is numbered 1 and is the alternate adapter.

Starting with LAPS in OS/2, the OS/2 support software provides support for up to
four adapters in one workstation. These adapters can be identified using any
numbers in the range 0-15.

Programs to support the adapter must be loaded into workstation memory. The
IEEE 802.2 interface provided by the protocol drivers offers three levels of entry to
the LAN:

¢ The direct interface
* The DLC SAP interface
¢ The DLC station interface.

If NETBIOS is also loaded into memory, an interface to NETBIOS commands is
provided. See Chapter 4, “NETBIOS,” for more information about NETBIOS.

2-2 LAN Technical Reference: 802.2 and NETBIOS APls

The support programs that provide the IEEE 802.2 interface allow an application
program to use the adapter by providing control blocks. When the application
program uses a CCB to issue a command, the support program calls various
protocol drivers that convey the information found in the CCB to the adapter. This
process frees the application program from the burden of interacting with the
adapter.

IEEE 802.2 Programming Conventions with DOS

The following sections describe the calling conventions, command completion, and
control block structures for the Local Area Network Support Program.

Local Area Network Support Program (CCB1) Calling Conventions

To issue a request to the Local Area Network Support Program, a network
application program assembles a control block containing a command and related
information for the adapter. The application program then puts the workstation’s
main memory address of this control block into the extra segment (ES) and base
(BX) registers.! At this point, the application program issues an X'5C' software
interrupt. The appropriate protocol driver responds to the X'5C' interrupt by
processing the control block. While processing the CCB, the protocol driver
enables interrupts.

Local Area Network Support Program (CCB1) Command Completion

The CCB_RETCODE is initially set to a value of X'FF'. Once any immediate
command processing is accomplished, control is returned to the application
program. At that point the application program can continue with other processing,
but cannot disturb the CCB or associated data. (The CCB_RETCODE is still
X'FF'.) When the command is completed, the protocol driver sets the return code
in both the AL register of the computer and the CCB_RETCODE field, and checks
the CCB_CMD_CMPL field. The CCB_CMD_CMPL field provides the protocol
driver with the address of a command completion appendage of an application
program.

¢ |f the CCB_CMD_CMPL field is not zero, the protocol driver transfers control to
the application program at the address provided. The application program
continues with the command completion appendage and returns control to the
protocol driver when completed.

Upon entry, the command completion appendage can obtain the final return
code from either the AL register or the CCB_RETCODE field.

¢ If the CCB_CMD_CMPL field contains X'00000000', the application program
has not supplied a command completion appendage. The protocol driver
performs no further action for this CCB and does not interrupt the application
program. In this case, the application program must monitor the
CCB_RETCODE for a change from X'FF', indicating that the adapter has
completed the command and updated the return code.

If the protocol driver immediately determines that the adapter cannot execute the
command, it sets the CCB_RETCODE field with the error code.

1 These are registers in the Intel™* microprocessors of an IBM PC or PS/2.

Chapter 2. Programming Conventions for the IEEE 802.2 Interface 2-3

There are some commands that execute entirely in the workstation and do not use
the adapter hardware. When this is the case, the foliowing happens:

¢ The completion code is set when the protocol driver returns from the interrupt
that initiated the command.

 If the command completion appendage is defined, it is given control before the
protocol driver returns from the interrupt.

This is an exception and is explained with the command descriptions to which it
applies.

Appendages

User-supplied appendages provide exit points from the protocol driver. These
appendages are short subroutines that may improve the application program’s
ability to handle information or events. See Chapter 4, “NETBIOS,” for routines
used with NETBIOS.

To ensure the integrity of the system, the appendages should have the following
characteristics:

¢ The amount of code executed should be limited, because this routine is an 1/0
appendage. The appendage is used because a point has been reached where
information should be saved for subsequent use.

e When the appendage is entered, the keyboard and DOS timer are disabled,
and no more interrupts can be serviced from this adapter until the appendage
is completed.

¢ When control passes to the appendage, interrupts are disabled, and it appears
to the appendage that the appendage was entered through an 8086 INT
instruction. The stack is established so that an 8086 IRET instruction properly
returns control and restores flags.

When appendage processing is complete, the appendage code must execute
the 8086 IRET as the last instruction.

The protocol driver saves all registers on the stack before giving control to the
appendage. Twenty-four bytes of the stack are used by the protocol driver
when processing the adapter interrupt. When the appendage is entered, there
are 242 bytes of stack space available.

¢ Execution of the IRET instruction by the appendage returns control to the
protocol driver at the point at which it had transferred control to the appendage.
The protocol driver restores all registers and returns control to the program that
was originally interrupted.

Upon entry to the appendages the following things happen:

The CX register contains the adapter number.

The CS register points to the appendage code (current segment).
The SS and SP registers define the current stack.

Other specific appendage descriptions define other registers.

The types of user appendages are:

Command completion appendage
A per-command exit that allows asynchronous command completion.
The application program can provide several command completion
appendages and selectively point to a specific one in each CCB.

2-4 AN Technical Reference: 802.2 and NETBIOS APls

The address in the CCB_CMD_CMPL field of the related CCB (which
should not be X'00000000', indicating no appendage) indicates the
entry point.

The address of the CCB that the adapter completed is in registers ES
and BX. The return code is in CCB_RETCODE and the AL register
(AH=X'00").

Data received appendage
The RECEIVED_DATA field of the parameter table of the RECEIVE
command defines this appendage. The address of the CCB is placed in
registers DS and Sl. The address of the first receive data buffer is
placed in registers ES and BX.

Exception or Status conditions
These appendages are a set of exit points that allow the protocol driver
to report hardware and software error conditions and certain status
information to the user. When any exception state occurs, all pending
adapter commands have the CCB_RETCODE field of their CCBs set for
the appropriate reason, and are queued and passed to the exception
appendage. The command completion appendage is not taken. See
the CCB_POINTER field description on page 2-20 for more about
queues. Following are the exception or status condition appendages.

ﬁ
m
m
(]
o
no
N
=7
—
)
-+
Q
o
)

PC-detected error appendage
This appendage is defined in the PC_ERROR_EXIT field of
the CCB for a DIR.INITIALIZE command and a
DIR.MODIFY.OPEN.PARMS command, or in the
PC_ERROR_EXIT field of the DIRECT_PARMS table of a
DIR.OPEN.ADAPTER command.

The protocol driver passes parameters to the appendage on
entry. Register CX contains the adapter number. Register
AX contains the error code. See “PC System Detected
Errors” on page B-63 for the code meanings.

Network status appendage
This appendage is defined in the NETW_STATUS_EXIT field
of the CCB for a DIR.INITIALIZE command and a
DIR.MODIFY.OPEN.PARMS command, or in the
NETW_STATUS_EXIT field of the DIRECT_PARMS table of
a DIR.OPEN.ADAPTER command.

The protocol driver passes parameters to the appendage on
entry. Register CX contains the adapter number. Register
AX contains the network status. See “Network Status” on
page B-52 for the code meanings.

Adapter check appendage
This appendage is defined in the ADAPTER_CHECK_EXIT
field of a DIR.INITIALIZE command and a
DIR.MODIFY.OPEN.PARMS command, or in the
ADAPTER_CHECK_EXIT field of the DIRECT_PARMS table
of a DIR.OPEN.ADAPTER command. See pages 3-11, 3-16,
and 3-17 for the descriptions of these commands. See
“Token-Ring Network Adapter Check Reason Codes for All
CCBs” on page B-50 for the reason code meanings.

Chapter 2. Programming Conventions for the IEEE 802.2 Interface 2-5

Adapter open errors take the normal command completion
appendage.

DLC status appendage
This appendage is defined in the DLC_STATUS_EXIT field of
the CCB parameter table for a DLC.OPEN.SAP command.

The protocol driver passes parameters to the appendage on
entry. Register CX contains the adapter number. Register
AX contains the DLC status code. Register Sl contains a
user-defined value from the USER_STAT_VALUE field in the
parameter table of the DLC.OPEN.SAP command. Registers
ES and BX point to the DLC status table. See to “DLC
Status Codes” on page B-28 for the code meanings and the
DLC status table.

Local Area Network Support Program (CCB1) Control Blocks

This section describes the format of the CCB1 for DOS. The content of the first
field indicates to the protocol driver which type of interface the application program
will use. If the first field contains either X'00' or X'01', the block is considered to
be a CCB and either the direct interface or the DLC interface is used. In the case
where that field is less than X'03', it is considered to be the CCB adapter field.
The values X'02' and X'03' cannot be used; they are reserved, and the protocol
driver returns an error code if they are used.

If the first field contains a byte greater than X'OF', the NETBIOS interface is used
and the control block is considered to be an NCB. The NCB is described under
“NCB Field Explanations” on page 4-3. NETBIOS must be loaded before a
NETBIOS command is issued, or the protocol driver returns an X'FB' return code.

Table 2-1. CCB1 Command Control Block

Byte 8086

Offset Field Name Length Type Description

0 CCB_ADAPTER 1 DB Adapter 0 or 1

1 CCB_COMMAND 1 DB Command field

2 CCB_RETCODE 1 DB Completion code

3 CCB_WORK 1 DB Adapter support
software work area

4 CCB_POINTER 4 DD Queue pointer and
protocol driver work
area

8 CCB_CMD_CMPL 4 DD Command completion
user appendage

12 CCB_PARM_TAB 4 - Parameters or pointer

to CCB parameter table

Note: Use this control block definition with both the direct interface and the DLC interface.

For a complete description of the fields, see “CCB Field Explanations” on
page 2-19.

2-6 LAN Technical Reference: 802.2 and NETBIOS APis

Programming Conventions with OS/2

The following sections describe the OS/2 DLR interface and the OS/2 DD interface
provided with OS/2 EE, OS/2 LAN Server, or NTS/2.

The 0OS/2 DLR Interface

DLR calling conventions, command completion, and control block structures are
described in the topics that follow.

Execution of Multiple Commands with the DLR Interface

To enhance the performance of the protocol driver, the application program can
request execution of multiple commands with a single invocation of the protocol
driver. This is accomplished by allowing application programs to queue CCB
requests using the CCB_POINTER field of the CCBs. All queued CCBs are then
linked with the CCB_POINTER fields pointing to the next CCB in the queue of
CCBs. All commands queued for a single invocation must be for the same adapter.
If the chained commands are not for the same adapter, the processing of the
queue is terminated with all'unprocessed commands returned to the user with the
CCB_RETCODE of the first CCB returned set to X'5F"'.

m
m
m
®
S
n
N
=1
—
@
S,
o
o
o

If an error is found while processing the queue of CCB requests, the remaining
CCB:s in the queue are not processed. The CCB containing the error plus a queue
of the commands that have not been processed is returned to the application
program using a Bad Command Pointer. The address of this pointer is passed to
the DLR interface. See “DLR Interface (CCB2) Calling Conventions” on page 2-8
for more information.

Not all commands should be chained, especially commands that are dependent on
the completion of other commands. For example, do not chain together
DLC.OPEN.SAP, DLC.OPEN.STATION, and DLC.CONNECT.STATION commands
because the later two commands are dependent upon the completion of the first
command. However, you can chain together synchronous commands that execute
in the workstation and commands that are independent of each other without
resulting in time-related errors. Commands such as TRANSMIT, READ,
BUFFER.FREE, BUFFER.GET, and commands for different station IDs can be
issued successfully in a chain of commands.

User’s Data Segment Restrictions with the DLR Interface

All application program data segments referred to in a call to the protocol driver
must be accessible by the OS/2 process that is calling the protocol driver. That is,
the CCB and all data areas pointed to by the CCB (for example, SAP buffers and
transmit buffers) must be in the current local descriptor table (owned by the current
OS/2 process) so the protocol driver has access to these areas in order to lock and
update them.

All control blocks (for example, parameter tables) referenced with an offset must be
located in the same segment as the associated CCB. As a performance
suggestion, control blocks should be limited to 1 segment (64 KB).

Chapter 2. Programming Conventions for the IEEE 802.2 Interfface 2-7

User’s Data Segment Guidelines with the DLR Interface

Place data to be processed by the protocol driver in separate segments. You can
separate segments that are supplied by application programs in requests from data
segments that contain static local variables of the application programs. Allocating
separate segments for data accessed by the protocol driver is not a requirement.
However, using separate segments limits the size of the data area that the protocol
driver locks. The protocol driver locks data to ensure that OS/2 does not move
data to disk or other segments when the data is not frequently accessed. At
interrupt time, the protocol driver must have immediate access to user data
associated with CCB requests. By locking the segments containing data, the
protocol driver ensures that OS/2 does not disturb the data. However, locking
segments consumes RAM area; therefore locking fewer segments allows more
physical RAM to be available. The following data structure types should each be
assigned to a separate allocated segment:

* Receive buffers
¢ Transmit buffers
e CCBs and associated parameter tables.

To maximize overall performance, an application program should use a single
segment to contain the above data structures. By providing a single segment, all
the associated data structures are locked as long as one of the structures remains
in the domain of the protocol driver. With the single segment locked, no additional
locks are required when requesting the protocol driver’s services, unless the CCB
of the request references a segment outside of the locked segment. Also,
performance is enhanced if all data structures start on an even byte boundary.

DLR Interface (CCB2) Calling Conventions
To request the DLR interface, you must place two parameters onto the stack.
These parameters are:

e CCB2 Pointer: Pointer to CCB to be processed
* Address of Bad Command Pointer: Address of a returned pointer value.

This parameter is the address of a DD (Double Word) pointer or Bad Command
Pointer. If an error is found with a command that is included in a chain of
CCBs passed to OS/2 EE or other OS/2 support software on a single
invocation, the address of the CCB containing the error with all unprocessed
CCB:s still chained to it is returned. The Bad Command Pointer points to these
commands upon return from the OS/2 EE invocation. The Bad Command
Pointer is valid only when the immediate return code in AX is set to X'0003"'.

If an immediate return code is set, the semaphores specified in the CCB are
not cleared.

The application program must have access to the segments referenced by all
pointers (for example, the CCB and all associated data structures).

When a list of commands are passed to OS/2 EE on a single invocation, all
chained commands must be for the same adapter.

For a given application program to make a request to OS/2 EE, it must:

e Push the selector of a CCB2 onto the stack.

¢ Push the offset of a CCB2 onto the stack.

¢ Push the selector of address for Bad Command Pointer onto the stack.
¢ Push the offset of address for Bad Command Pointer onto the stack.

2-8 LAN Technical Reference: 802.2 and NETBIOS APls

¢ Invoke the OS/2 EE DLR interface (ACSLAN module name within the ACSLAN
dynamic link library) using the Call Far/Return Far interface. ACSLAN removes
the push parameters from the stack before returning to the caller.

Upon return, the AX register contains one of the following immediate return codes:

X'0000' Command accepted or command was completed successfully
X'0001' Invalid CCB pointer

X'0002' CCB in error

X'0003' CCB in error; check Bad Command Pointer

X'0004' Unexpected operating system return code; adapter closed
X'0005' Unexpected operating system return code

X'0006' Invalid command pointer.

If, on return, the AX register is set to X'03', check the Bad Command Pointer. If
the Bad Command Pointer is non-zero, it points to a queue of commands that were
not processed, excluding the first CCB in this queue. The first of these commands
had an error and has the CCB_RETCODE field set. All other commands that are
queued to the first CCB have not been processed; therefore, no return code is
provided.

If, on return, the AX register is set to X'04', the adapter will be closed. If a READ
command is outstanding, application program resource information is returned to
the READ command’s parameter table. See the READ command description on
page 3-86 for more information.

If, on return, the AX register is set to X'05', check the CCB_WORK field for an
0S/2 EE function and the word at offset 24 of the CCB for the OS/2 EE return code
of the failing request.

DLR Interface (CCB2) Command Completion

User notification flags, semaphores, and return codes are used to post events to
the application programs. The choice of how each event is posted is left up to the
application program. Some events can be posted differently.

User notification flags are used to post events as follows:

1. To request that information relating to an event be placed onto a completion list
managed by the protocol driver. By placing an event onto the completion list,
you can retrieve information relating to the event at a later time.

2. To enable notification of critical exceptions that result in the adapter closing.
By enabling critical exception notification, you can be alerted of the event if a
READ command is pending before the event occurs.

All flags are 4 bytes long and are preserved across invocations. The flags are set
whenever non-zero values are used. If needed, these flags can contain
user-specific information. However, if the flags are equal to X'00000000', the flags
are considered not set. Nothing is placed onto the completion list, and no
notification is given for critical exceptions.

If an event is placed onto the completion list, the application program must issue a
READ command to remove the event from the completion list. See the READ
command description on page 3-86.

Chapter 2. Programming Conventions for the IEEE 802.2 Interface 2-9

Semaphores can be provided with all commands. Upon completion of a command,
the protocol driver clears the semaphore to alert the application program of the
command completion.

The application program can also poll the completion return code for each
command to determine when the command has completed its function.

User Notification Flags: Set the following user flags to place event information
onto the completion list.

Command completion flag (CCB_CMPL_FLAG)
For each command issued to the adapter support software, a
CCB_CMPL_FLAG is included in the CCB. If this flag is set to a
non-zero number, the address of the CCB is queued onto a completion
list upon completion of the command.

Receive data flag (RECEIVE_FLAG)
For each RECEIVE command issued to the protocol driver, a
RECEIVE_FLAG is included in the CCB’s parameter table. If this flag is
set to a non-zero number, the first receive buffer address is queued onto
a completion list upon reception of data.

DLC status change flag (DLC_STATUS_FLAG)
For each DLC.OPEN.SAP command issued to the protocol driver, a
DLC_STATUS_FLAG is included in the CCB’s parameter table. If this
flag is set to a non-zero number, detection of a DLC status change
results in a copy of the current DLC status table being queued onto a
completion list. See “DLC Status Codes” on page B-28 for a list of DLC
status codes.

User exception flags (for non-critical exceptions)
Use the DIR.SET.EXCEPTION.FLAGS command to set the user
exception flags. If these flags are set to a non-zero number, the
appropriate information is queued onto a completion list upon detection
of an exception condition. See the DIR.SET.EXCEPTION.FLAGS
command description on page 3-38. The following is a list of the user
exception flags that enable information to be placed onto the completion
list for non-critical exceptions:

e NETWORK_STATUS_FLAG
¢ SYSTEM_ACTION_FLAG.

Set the following user flags with the DIR.SET.EXCEPTION.FLAGS
command to enable notification of critical exceptions:

* ADAPTER_CHECK_FLAG
e NETWORK_STATUS_FLAG
* PC_ERROR_FLAG

e SYSTEM_ACTION_FLAG.

If these flags are set to a non-zero number and a READ command that
requests notification of critical exceptions is pending, then, when a
critical exception condition is detected, the appropriate information is
copied to the pending READ command’s parameter table. The READ
command is then posted as defined by the READ command’s CCB.

2-10 LAN Technical Reference: 802.2 and NETBIOS APIs

Note: For more information on the exception information, see “Adapter
Check for CCB3” on page B-49, “Network Status for CCB3” on

page B-54, “PC System Detected Errors for CCB3” on page B-67, and
“System Action Exceptions for CCB3” on page B-72.

Posting of Events: All commands issued to the protocol driver can be posted
using any combination of the three post mechanisms: setting the user flag along
with issuing a READ command, waiting on a semaphore, or polling the return code
set in the CCB. However, posting exceptions and DLC status changes must be
implemented with setting the user flags and issuing a READ command.

If the associated user flag is not set, the event is not queued to the completion list
and the user must use one of the other mechanisms to post the event.

For each command, a semaphore can be passed to the protocol driver within the
CCB. Upon completion of the command, the protocol driver clears the semaphore.
Thus, if an application program has a thread waiting on the semaphore, the thread
is dispatched. [f neither the user flag nor the semaphore is used, the application
program must poll the return code of the CCB to determine when the command has
completed.

If both the user flag and a semaphore are used, the semaphore is cleared when
the command routine is completed, and the CCB of the command is also placed
onto the completion list. By clearing the semaphore, the application program is
notified of the command completion. However, the application program must still
issue a READ command (if one is not already pending for the given event) to
remove the CCB from the completion list.

There are two special cases where events are chained together to lessen the
number of READ commands that must be issued to retrieve information from the
completion list. Both RECEIVE and TRANSMIT commands can be issued
specifying that event information relative to each command be linked together. If
the user chooses to have receive data frames chained together and the completed
TRANSMIT commands’ CCBs chained together, the following applies:

¢ If a RECEIVE command is issued with the CMD_CMPL_FLAG and the
RECEIVE_FLAG set, all receive data is placed onto the completion list. If the
RECEIVE command is issued requesting that received frames be chained and
a READ command is issued with one or more frames being received that meet
the READ command’s requirements, the frames are chained together using the
first receive buffer of each frame.

e [f multiple TRANSMIT commands containing the CMD_CMPL_FLAG set have
been executed and have requested chaining upon completion, then whenever a
READ command is issued and more than one TRANSMIT CCB is executed
that matches the READ command'’s requirements, the TRANSMIT CCBs are
chained together using the CCB_POINTER of the TRANSMIT CCB and are
returned to the application program.

Chagsr 2. Programming Conventions for the IEEE 802.2 Interface 2-11

DLR Interface (CCB2) Control Blocks
Table 2-2 describes the fields of the CCB2 for OS/2 EE 1.3 and LAPS using the
DLR interface.

Table 2-2. CCB2 Command Control Block

Byte 8086

Offset Field Name Length Type Description

0 CCB_ADAPTER 1 DB Adapter number

1 CCB_COMMAND 1 DB Command field

2 CCB_RETCODE 1 DB Completion code

3 CCB_WORK 1 DB Adapter support
software work area

4 CCB_POINTER 4 DD Queue pointer and
protocol driver work
area

8 CCB_CMPL_FLAG 4 DD Command completion
flag

12 CCB_PARM_OFFSET 2 DW Offset to CCB2
parameter table

14 CCB_PARAMETER_1 2 DW Parameter or reserved
for an application
program

16 CCB_SEMAPHORE 4 DD Command post
semaphore

20 CCB_APPL_ID 1 DB Application program ID

21 CCB_READ_FLAG 1 DB READ chained to CCB
flag

22 CCB_APPL_KEY 2 Dw Application program key
code

24 CCB_PARAMETER_2 2 DW Parameter for System

Key or reserved

Note: Use the control block definition above with both the direct interface and the DLC

interface.

For a complete description of the fields, see “CCB Field Explanations” on
page 2-19.

The 0S/2 DD Interface

DD calling conventions, command completion, and control block structures are

described in the topics that follow.

User’s Data Segment Restrictions with the DD Interface
All application program data segments referred to in a call to the protocol driver
must be accessible by the OS/2 process that is calling the adapter.

Make all segment references with either global descriptor table (GDT) selectors or
32-bit physical addresses (CCB addresses, SAP buffer addresses, transmit buffer
addresses) and lock all segments using the OS/2 Device Help routine. See
“RECEIVE.MODIFY” on page 3-103 and descriptions of the TRANSMIT commands

2-12 LAN Technical Reference: 802.2 and NETBIOS APls

on page 3-107 for use of the 32-bit physical addresses. Map all other commands
and data areas using the GDT selectors.

Locate all control blocks referenced with an offset (for example, parameter tables)
in the same segment as the associated CCB.

User’s Data Segment Guidelines with the DD Interface

Place data that is processed by the protocol driver in separate segments from data
segments that contain static local variables of the application programs. Allocating
separate segments for data accessed by the protocol driver is not a requirement.
However, using separate segments limits the size of the data area that the protocol
driver uses. The protocol driver assumes that data segments are locked before
they are called from an application program. Therefore, it is the application
program’s responsibility to lock the data areas. At interrupt time, the protocol driver
must have immediate access to user data associated with CCB requests. By
having the application program lock the segments containing data, the protocol
driver is ensured that OS/2 does not disturb the data. Following is a list of data
structure types that you should assign to a separate allocated segment:

* Receive buffers (use GDT selectors)
¢ Transmit buffers (use 32-bit physical addresses for better performance)
* CCBs and associated parameter tables (use GDT selectors).

DD Interface (CCB3) Calling Conventions

To request the DD interface, the application program device driver must place the
address of the CCB3 to be executed by the DD interface into registers ES and BX,
and push an invocation code of X'0000' onto the stack. The application program
device driver then issues a Call Far instruction to the OS/2 EE DD interface
intercommunication entry point.

Note: The application program device driver must do an ATTACH OS/2 Device
Help Function call to obtain the interdevice driver communication entry point of the
0S/2 DD interface (LANDDS$). Refer to the OS/2 command for details of the call.

Upon return from the DD interface, all registers contain their original values with the
exception of the AX register. The AX register contains the immediate return code.

For a given application program’s device driver to make a request to the DD
interface, it must:

¢ Set register BX to the address offset of the CCB3 to be executed

» Set register ES to the address selector of the CCB3 to be executed

¢ Push an invocation code of zero onto the stack

Call the OS/2 DD interface (LANDDS$) interdevice driver communication entry
point using the Call Far/Return Far interface.

Upon return, the AX register contains one of the following immediate return codes:

X'0000' Command accepted or command was completed successfully
X'0001' Invalid CCB pointer

X'0002' CCB in error

X'0004' Unexpected operating system return code; adapter closed
X'0005' Unexpected operating system return code

X'0007' Invalid invocation code.

Chapter 2. Programming Conventions for the IEEE 802.2 Interface 2-13

If, on return, the AX register is set to X'04"', the adapter will be closed. If the
application program has an appendage for workstation-detected errors, then the
function code of the Device Help request and the return code of the request that
failed are included in the information returned in the 20-byte information table of the
workstation-detected appendage.

DD Interface (CCB3) Command Completion
Use user appendages and return codes to post events to the application programs.
The choice of how each event is posted is left up to the application program.

Events are posted to user appendages by one of the following methods:

¢ Appendages request that information relating to an event be passed to the
application program by an appendage call from the protocol driver when an
event has occurred.

¢ Appendages enable notification of critical exceptions that result in the adapter
closing. By enabling critical exception notification, an application program can
be alerted of the event by an appendage call from the protocol driver.

The application program must pass the offsets to the appendages for these
different events:

e Completion of commands
¢ Reception of data
¢ DLC status change
¢ The following exceptions
— Adapter Check
— Network Status
— PC Detected Error
— System Action.

The application program can also poll the completion return code for each
command to determine when the command has finished processing.

Posting of Events: If event information is to be posted to the application program,
the user appendages described in this section must be defined by passing an offset
to the protocol driver through the different commands. The protocol driver enters
the application program’s device driver with a Call Far instruction using the
application program’s device driver entry point obtained when the
DIR.OPEN.ADAPTER command is issued. The application program’s device driver
must return using a Return Far instruction.

Note: For all appendage calls and the RECEIVE.MODIFY subroutine call, an
invocation code of X'0001' is pushed onto the stack. The called device driver
must remove the invocation code from the stack.

Command Completion
For each command issued to the protocol driver, a
CCB_APPNDG_OFFSET is included in the CCB. The offset is a 2-byte
Define Word (DW) field that the protocol driver uses for the address of
the appendage that the protocol driver passes to the application
program in register DI when the application program device driver is
called.

2-14 AN Technical Reference: 802.2 and NETBIOS APls

When the protocol driver calls the application program at the address
obtained by the ATTACHDD function, it provides the following
information:

* An invocation code of X'0001' was pushed onto the stack. Before
returning to the protocol driver, the application program must remove
the invocation code from the stack.

* Register DI contains the offset of the command completion
appendage.

¢ Register DS contains the application program’s device driver protect
mode data segment selector.

* Register CX contains the adapter number.
¢ Registers ES and BX contain the address of the CCB.

¢ Registers DX and Sl contain the address of a 12-byte information
table relating to the command. These registers are set to zero if no
information is available to be returned to the application program.
See Table 2-4 on page 2-22 for the information table.

* Register AX contains the CCB return code.

Receive Data
When an application program issues a RECEIVE command to the
protocol driver, a RCV_DATA_APPNDG is included in the CCB
parameter table of the RECEIVE command. The offset is a 2-byte DW
field that the protocol driver passes to the application program’s device
driver when receive data is available and the application program’s
device driver is called.

When the protocol driver calls the application program at the address
obtained by the ATTACHDD function, it provides the following
information:

¢ An invocation code of X'0001' was pushed onto the stack. Before
returning to the protocol driver, the application program must remove
the invocation code from the stack.

* Register DI contains the offset of the RECEIVE appendage.

+ Register DS contains the application program’s device driver protect
mode data segment selector.

* Register CX contains the adapter number.
* Registers ES and BX contain the address of the first SAP buffer.

¢ Registers AX and SI contain the address of the RECEIVE
command’s CCB for which receive data has been processed.

DLC Status
When an application program issues a DLC.OPEN.SAP command to the
protocol driver, a DLC_STATUS_OFFSET is included in the CCB
parameter table of the DLC.STATUS command. The offset is a 2-byte
DW field that the protocol driver passes to the application program’s
device driver when DLC status data is available and the application
program’s device driver is called.

Chapter 2. Programming Conventions for the IEEE 802.2 Interface 2-15

When the protocol driver calls the application program at the address
obtained by the ATTACHDD function, it provides the following
information:

e An invocation code of X'0001' was pushed onto the stack. Before
returning to the protocol driver, the application program must remove
the invocation code from the stack.

¢ Register DI contains the offset of the DLC status appendage as
defined by the DLC.OPEN.SAP command.

¢ Register DS contains the application program’s device driver protect
mode data segment selector.

¢ Register CX contains the adapter number.

¢ Registers ES and BX contain the address of a 20-byte information
table. See “DLC Status Codes” on page B-28 for description of
DLC status codes.

¢ Register AX contains the DLC status code.

* Register Sl contains the USER_STAT_VALUE defined with the
DLC.OPEN.SAP command.

Exception Conditions
The user appendages associated with exception conditions are set using
the DIR.SET.EXCEPTION.FLAGS command. See the
DIR.SET.EXCEPTION.FLAGS command description on page 3-1

An appendage offset is included in the DIR.SET.EXCEPTION.FLAGS
command for each of the conditions below. The offset is a 2-byte DW
field that the protocol driver passes to the application program’s device
driver when an exception occurs and the application program’s device
driver is called.

When the protocol driver calls the application program at the address
obtained by the ATTACHDD function, it provides the following
information for the different exception conditions:

Adapter Check
See “Adapter Check for CCB3” on page B-49 for more
information.

¢ An invocation code of X'0001' was pushed onto the
stack. Before returning to the protocol driver, the
application program must remove the invocation code
from the stack.

* Register DI contains the offset of the adapter check
appendage as defined by the
DIR.SET.EXCEPTIONS.FLAG command.

» Register DS contains the application program’s device
driver protect mode data segment selector.

¢ Register CX contains the adapter number.

* Registers ES and BX contain the address of a 20-byte
information table.

» Register AX contains the reason code.

2-16 LAN Technical Reference: 802.2 and NETBIOS APls

Network Status
See “Network Status for CCB3” on page B-54 for more
information.

¢ An invocation code of X'0001' was pushed onto the
stack. Before returning to the protocol driver, the
application program must remove the invocation code
from the stack.

¢ Register DI contains the offset of the network status
appendage as defined by the
DIR.SET.EXCEPTIONS.FLAG command.

¢ Register DS contains the application program’s device
driver protect mode data segment selector.

¢ Register CX contains the adapter number.

¢ Registers ES and BX contain the address of a 14-byte
information table.

>
)
=
Q
O
)

¢ Register AX contains the network status.

PC Detected Error
See “PC System Detected Errors for CCB3” on page B-67
for more information.

¢ An invocation code of X'0001' was pushed onto the
stack. Before returning to the protocol driver, the
application program must remove the invocation code
from the stack.

¢ Register DI contains the offset of the
workstation-detected error appendage as defined by the
DIR.SET.EXCEPTIONS.FLAG command.

¢ Register DS contains the application program’s device
driver protect mode data segment selector.

* Register CX contains the adapter number.

¢ Registers ES and BX contain the address of a 20-byte
information table.

¢ Register AX contains the error code.

System Action
See “System Action Exceptions for CCB3” on page B-72 for
more information.

¢ An invocation code of X'0001' was pushed onto the
stack. Before returning to the protocol driver, the
application program must remove the invocation code
from the stack.

¢ Register DI contains the offset of the system action
appendage as defined by the
DIR.SET.EXCEPTIONS.FLAG command.

¢ Register DS contains the application program’s device
driver protect mode data segment selector.

¢ Register CX contains the adapter number.

Chapter 2. Programming Conventions for the IEEE 802.2 Interface 2-17

¢ Registers ES and BX contain the address of a 14-byte
information table.

* Register AL contains the System Action ID.

¢ Register AH contains the SAP value associated with the
System Action ID.

If the associated user appendage is not defined, the event is not posted to the

user.

DD Interface (CCB3) Control Blocks
This table contains a description of the format of the CCB3 for OS/2 EE and other
OS/2 support programs using the DD interface.

Table 2-3. CCB3 Command Control Block

Byte 8086

Offset Field Name Length Type Description

0 CCB_ADAPTER 1 DB Adapter number

1 CCB_COMMAND 1 DB Command field

2 CCB_RETCODE 1 DB Completion code

3 CCB_WORK 1 DB Adapter support
software work area

4 CCB_POINTER 4 DD Queue pointer and
protocol driver work
area

8 CCB_APPNDG_OFFSET 2 DW Offset to CCB3
completion appendage

-reserved- 2 DW Reserved for application

program

12 CCB_PARM_OFFSET 2 DwW Offset to CCB3
parameter table

14 CCB_PARAMETER_1 2 DwW Parameter or reserved
for an application
program

16 CCB_RESOURCE_ID 2 DW Resource ID of
application program

-reserved- 2 DW process

Reserved for application
program

20 CCB_APPL_ID 1 DB Application program ID

21 1 DB Reserved for application
program

22 CCB_APPL_KEY 2 Dw Application program key
code

24 CCB_PARAMETER_2 2 DW Parameter for System

Key or reserved

Note: The above control block definition is to be used with both the direct interface and the
DLC interface.

For a complete description of the fields, see “CCB Field Explanations” on
page 2-19.

2-18 LAN Technical Reference: 802.2 and NETBIOS APIs

Control Blocks for All CCBs

The application program must prepare a control block to request an activity from
the adapter when using a protocol driver from one of the IBM support programs.
When the protocol driver analyzes the control block, it can determine which
interface is needed by the content of the first bytes.

The content of the control blocks is explained in “Local Area Network Support
Program (CCB1) Control Blocks” on page 2-6, “DLR Interface (CCB2) Control
Blocks” on page 2-12, and “DD Interface (CCB3) Control Blocks” on page 2-18.

CCB Field Explanations
The following CCB field descriptions apply to all three CCBs (CCB1, CCB2, and
CCBB3) unless otherwise stated.

CCB_ADAPTER
Explanation: This field defines which adapter is to be used.
For CCB1: The adapter number has the following binary format:
B'0000ceaa', where
e 0000 (bits 4-7) are always zero.

¢ ¢ (bit 3) is the common storage bit. If this bit is on, the CCB was issued
from common memory. This bit is used when running under the 3270
Workstation Program. See “3270 Workstation Support” on page D-8 for
more information.

+ e (bit 2) is the extended CCB bit. If this bit is on, the CCB is extended
2 bytes, with the last 2 bytes indicating bank switching information. This
bit is used when running under the 3270 Workstation Program. See
“3270 Workstation Support” on page D-8 for more information.

* aa (bits 0 and 1) are the adapter number, B'00' through B'11' (only
B'00' and B'01' are current valid adapter numbers). It must be either
X'00' to use the primary adapter or X'01' for the alternate adapter.

If bank switching in the 3270 Workstation Program is not implemented, the
extended bank switch information in the CCB is set to a null value:
X'FFFF'.

Common and extended bits apply to the 3270 Workstation Program only.
The following list describes these bits:

« If the common and extended bits are both zero (B'00'), the CCB was
issued by an application program in one of the memory banks.

+ If the common and extended bits are zero and one (B'01"'), the CCB is
a pseudo-CCB. This means that a CCB issued by an application
program in one of the memory banks was substituted with an internally
generated CCB containing the extended memory bank information.

« |If the common and extended bits are one and zero (B'10'), the CCB
was issued by code in the common storage area. NETBIOS issues this
bit value for all CCBs except transmits of user-defined data. Common

Chapter 2. Programming Conventions for the IEEE 802.2 Interface 2-19

storage is accessed by the protocol driver independent of the currently
active bank.

* |f the common and extended bits are one and one (B'11'), the CCB
was issued by code in the common storage area. The CCB has
extended memory bank information. NETBIOS issues this bit value for
CCBs that transmit user-defined data.

If the value is greater than X'OF', the control block is an NCB. Values of
X'02' and X'03' are reserved and, if used, a CCB_RETCODE of X'1D' is
returned. Values greater than X'03' cause the NETBIOS interface to be
used. See Chapter 4, “NETBIOS,” for more information about NETBIOS.

When used with a 3270 PC, the adapter number of a CCB has two
additional bits defined and has the format described above.

CCB_COMMAND

Explanation: This field indicates the command to perform. A value of X'FF' is a
permanently defined invalid command code. See Appendix A, “Valid Commands,”
for reserved and valid commands.

CCB_RETCODE

Explanation: This field contains the completion code as provided by the protocol
driver. For all commands, this field is set to X'FF' by the protocol driver when the
CCB is received. While the field is X'FF', the application program must not alter
the CCB or any associated data. When the adapter completes the command, the
protocol driver sets this field to the appropriate completion code. For all
commands, X'00' means successful completion.. See “CCB Return Codes Listed
by Interface” on page B-2 for descriptions of all return codes.

CCB_WORK

Explanation: This field is a work area for the protocol driver to use.

CCB_POINTER
Explanation:

For CCB1: While the CCB_RETCODE is X'FF', the protocol driver uses this field
for command processing.

The application program uses this field as follows:

* When the adapter is closed, the application program interrogates this
field to find the next command (CCB) in a queue of pending commands.

* When a DLC link station is sending | frames, multiple transmissions are
acknowledged at one time. All acknowledged | frames are queued and
presented at one time to the application program. That is, the protocol
driver issues an interrupt providing a return code in one CCB. The
CCB_POINTER field of that CCB contains the address of a queue of
CCBs containing an appropriate return code. This continues until a
CCB_POINTER field is zero, ending the queue.

For CCB2: While CCB_RETCODE is X'FF', the OS/2 EE DLR interface can use
this area for command processing.

2-20 LAN Technical Reference: 802.2 and NETBIOS APls

Application programs use this field under the following circumstances:

¢ When it is necessary for the application program to request that multiple
commands be processed as a result of a single invocation, the
CCB_POINTER is used to chain CCB2 requests.

* When it is necessary for the application program to have a READ
chained to the CCB2 to be used for its completion, the READ CCB2
address is placed in CCB_POINTER and the CCB_READ_FLAG is set
to a non-zero value.

¢ When the adapter is closed, a chained list of pending commands is
presented to the user through the CCB_POINTER of

— A CCB whose address is placed into the READ command’'s CCB
parameter table

— A DIR.CLOSE.ADAPTER command that has been completed
successfully.

« |f transmissions specify that completed transmission request CCB2s be
chained, the CCB2s are linked together upon completion using the
CCB_POINTER. For this case the READ command must be used to
retrieve the completed command’s CCB2. The address of the first CCB
is placed into the READ command’s CCB2 parameter table.

For CCB3: While CCB_RETCODE is X'FF', the protocol driver can use this area
for command processing.

When the adapter is closed, the application program interrogates this field
to find the next command (CCB) in a queue of pending commands.

CCB_CMD_CMPL

Explanation: This field is the address of a user appendage to which the protocol
driver goes upon command completion. The appendage allows the user to obtain
control after a command has been completed. See “Appendages” on page 2-4 for
more information. When the user's appendage receives control at this point, the
address of the completed CCB is in registers ES and BX, and the CCB_RETCODE
is in register AL. Register AH is X'00'. See “Local Area Network Support
Program (CCB1) Command Completion” on page 2-3 for more information.

CCB_CMPL_FLAG

Explanation: This flag indicates whether or not a completed command should be
posted using the READ command. The protocol driver checks this field after
command completion. If the flag is not zero, the completion is posted to the
application program with a READ command. If a READ command is already
pending for command completions, this completed command is posted immediately.
If there is no pending READ, the command completion is queued internally to the
protocol driver that is waiting for a READ for command completions. If the flag is
zero, the completion is not posted to the application program with a READ
command. After completion, the return code is set. '

If the CCB_CMPL_FLAG is not set, the application program either uses the
CCB_SEMAPHORE or polls the CCB_RETCODE field for notification of the
command completion. It is the application program’s responsibility to poll the
CCB_RETCODE field for a value other than X'FF'. The value X'FF' signifies that

Chapter 2. Programming Conventions for the IEEE 802.2 Interface 2-21

the command is in progress, and that the CCB and its associated data should not
be altered. '

Notes:

1.

See the READ command description on page 3-86 for details on posting
command completions.

. As soon as the protocol driver performs any immediate command processing,

the command is queued and control is returned to the application program that
is using the protocol driver (CCB_RETCODE is set to X'FF'). At that point,
the application program can continue with other processing (not disturbing the
CCB or any associated data). When the command is completed, the return
code is set and the application program is posted if a READ command is
pending.

CCB_APPNDG_OFFSET

Explanation: This field is the offset of a user appendage within the application
program device driver's code segment that handles the command’s completion.
When the command is completed, the protocol driver calls the application program
device driver at its intercommunication entry point, pushing the invocation code of
X'0001"' onto the stack. The appendage offset is passed in the DI register. The
application program device driver must call the appendage located at the address
offset specified in the DI register.

When the protocol driver calls the application program device driver at the
intercommunication entry point, the following information is provided:

An invocation code of X'0001' has been pushed onto the stack. Before
returning to the protocol driver, the application program must remove the
invocation code from the stack.

Register DI contains the appendage offset as defined by each individual
command.

Register DS contains the application program’s device driver protect mode data
segment selector.

Register CX contains the adapter number.
Registers ES and BX contain the address of the completing CCB.

Registers DX and Sl contain the address of a 12-byte information table
pertaining to the command which has been executed (see Table 2-4). If no
information is available for the command, these registers contain zeroes.

Register AX contains the CCB3 return code.

Table 2-4 (Page 1 -of 2). Command Completion Appendage Information Table

Byte 8086
Offset Field Name Length Type Description
0 CCB_COUNT 2 DW Count of CCBs chained

to
EVENT_CCB_POINTER

2-22 LAN Technical Reference: 802.2 and NETBIOS APIs

Table 2-4 (Page 2 of 2). Command Completion Appendage Information Table

Byte 8086

Offset Field Name Length Type Description

2 EVENT_CCB_POINTER 4 DD Pointer to CCB
terminated as a result
of the CCB addressed
with the ES and BX
registers

6 BUFFER_COUNT 2 DwW Count of buffers
chained to
FIRST_BUFFER_ADDR

8 FIRST_BUFFER_ADDR 4 DD Address of first receive
buffer for buffer pool

CCB_PARM_TAB

Explanation: This field points to additional parameters that are command-specific.
These parameters are explained with the related command descriptions.

If the parameters required 4 or fewer bytes, they are provided in the
CCB_PARM_TARB field instead of in an area pointed to by the field.

CCB_PARM_OFFSET

Explanation: This field points to additional parameters that are command-specific.
These parameters are explained with the related command descriptions.

If the parameters require 2 or fewer bytes, they are provided in the
CCB_PARM_OFFSET field. If the parameters require more than 2 bytes, the field
contains the offset within the selector of the parameter table for this command.

CCB_PARAMETER_1

Explanation: This field can contain another 2 bytes of parameter data to combine
with the CCB_PARM_OFFSET field for a total of 4 bytes, or it can contain
user-specific data, for example, the segment or selector.

CCB_SEMAPHORE

Explanation: A system semaphore can be used to notify an application program
of a command completion. When the command has been executed, the protocol
driver clears the CCB_SEMAPHORE field to alert the application program that the
command has been completed. To specify a system semaphore, the
CCB_SEMAPHORE field must contain a handle of a system semaphore that is
returned from OS/2 EE when the system semaphore is created or opened .
System semaphore handles provided on the DIR.OPEN.ADAPTER command
should be used to obtain optimum performance.

Only the OS/2 EE process that issues the DIR.OPEN.ADAPTER command and
provides system semaphore handles can use these handles. All other processes
associated with the application program must provide a handle returned from OS/2
EE for the given process when the system semaphore is created or opened.

If the application program does not use a semaphore, the CCB_SEMAPHORE field
should be coded as zero. |f the CCB_SEMAPHORE field contains an invalid

Chapter 2. Programming Conventions for the IEEE 802.2 Interface ~ 2-23

2-24

system semaphore handle (excluding zeros), the process is terminated by OS/2 EE
whenever the handle is used in an OS/2 EE call.

Notes:

1. The system semaphore must be created so that exclusive ownership is not
required.

2. The protocol driver does not set the CCB_SEMAPHORE; it only clears it.

CCB_RESOURCE_ID

Explanation: A resource ID must be used to allow proper clean-up of resources
owned by terminating processes of an application program. All control blocks that
have been passed to the protocol driver can have a resource ID associated with
them. This allows the protocol driver to know which resources are associated with
which application programs. This ID is required when an application program
consists of more than one OS/2 EE process. When a process terminates, the
application program’s device driver must clean up the resources associated with the
process by issuing the PURGE.RESOURCES command with a
PURGE_RESOURCE_ID. All control blocks that have a resource ID matching the
PURGE_RESOURCE_ID are freed by the protocol driver.

Memory passed to LANDDS in the form of CCBs or buffers can be owned by
different processes of an application program or by an application program’s device
driver. Since the LAN device drivers cannot guarantee that the active process is
the owner of memory being passed to it, all control blocks and buffers are
associated with the resource ID. The resource ID is passed as a parameter with
the CCB and associated with the CCB and all other control blocks (logs, buffers)
referenced by the CCB.

If an application program consists of more than one OS/2 EE process, it is the
application program’s responsibility to manage the clean-up of each process’s
resources. For example, if an application program has two OS/2 EE processes
(that have both been allocated memory being used in the application program’s
SAP buffer pool), when one of the processes ends the application program should
notify LANDD$ with the PURGE.RESOURCE command. The resource ID is
passed as a parameter to specify which control blocks should be removed (cleaned
up) from the LAN device driver’s internal queues.

CCB_APPL_ID

Explanation: This field contains the ID of the application program issuing the
command. The CCB_APPL_ID is returned on the DIR.OPEN.ADAPTER request
and must be used by the application program for all following commands that the
application program issues. Some of the CCBs can be issued with the System
Key, such as DIR.SET.GROUP.ADDRESS, DIR.READ.LOG and others, in which
case the CCB_APPL_ID field is not needed. Otherwise, all of the CCBs (with the
exception of the DIR.STATUS command) are required to use CCB_APPL_ID, which
is returned on DIR.OPEN.ADAPTER CCB.

Note: System Key is for system administrator use only.

LAN Technical Reference: 802.2 and NETBIOS APIs

CCB_READ_FLAG

Explanation: An application program can specify that a READ command is
chained to this CCB using the CCB_POINTER field. This READ command is used
to process the completion of this CCB only, and not other commands that may
have been executed previously.

CCB_APPL_KEY

Explanation: This field contains a key code used to provide resource security for
application programs. For the given command to succeed, the CCB_APPL_KEY
parameter must match the CCB_APPL_KEY code provided by the user on the
DIR.OPEN.ADAPTER request. If the user chooses not to use a key code (key
code is set to zero) when issuing the DIR.OPEN.ADAPTER command, the
CCB_APPL_KEY parameter is not checked by the protocol driver when a request is
made. Some commands can be issued with the System Key, such as
DIR.SET.GROUP.ADDRESS, DIR.READ.LOG, and others. When this is done the
CCB_APPL_KEY field is not checked. If the command is issued without the
System Key, the CCB is required to have the same CCB_APPL_KEY as the
application program did in the DIR.OPEN.ADAPTER command.

Note: The System Key is for system administrator use only.

CCB_PARAMETER_2

Explanation: Command parameters (2 bytes of parameter data) are usually used
for the System Key parameter.

For System Key: This parameter is used to enable only a system administrator to
perform operations that could stop ring communication for application
programs.

This key code is used for the following tasks:

* Change functional address

¢ Change group addresses

* Reset selected SAPs and stations or all SAPs and all stations
¢ Relinquish ownership of direct stations

* Force a physical close for an adapter

¢ Force the adapter to initialize

* Read and reset adapter error and direct interface logs.

The System Key is not typically used by application programs, but rather for
maintenance and problem determination.

This command can be issued by a system administrator with the System
Key as defined by configuration parameters. If the adapter has not been
opened by the system administrator, only polling of the CCB_RETCODE
field can be used for posting of this command completion. CCB2 can post
the command completion also using an OS/2 system semaphore. If the
adapter has been opened and an application program ID has been
returned, this command can be posted like any other command. See
“System Action Exceptions for OS/2 EE 1.3” on page B-69 for more
information on the System Key.

If the System Key is not used, this field should be coded as X'0000'.

Chapter 2. Programming Conventions for the IEEE 802.2 Interface 2-25

Addressing

Each adapter using the network has an address called the node address. When
frames are sent on the network by adapters, the frame contains two of these
addresses: a source address and a destination address. The frame is sent to the
destination address adapter by the source address adapter.

All network addresses, including Ethernet addresses, must be in non-canonical
format at the CCB interface. This form of address specification is different from the
canonical bit ordering used by Ethernet, where the bits of each byte appear
reversed from their representation on the LAN medium. For example, the locally
administered group address X'C00000000FBC' (non-canonical) would be
represented as X'03000000F03B"' using canonical bit ordering.

Additional address and link information to be used in other transmission layers may
be included in the frame following the LAN addresses. Additional addressing is
used in the implementation of both the LLC and NETBIOS. The LLC sublayer uses
an address known as a service access point (SAP), described in the next section.
NETBIOS addressing is described further in Chapter 4, “NETBIOS.”

An adapter is provided with a permanent, universally administered address.
Additionally, the application program has the capability to provide a temporary
replacement for this address and to provide a group address for the adapter.

Note: The NODE_ADDRESS field can only be changed by the configuration
parameters when CCB2 or CCB3 is used. Group and functional addresses can be
set and used as destination addresses; they cannot be used as source addresses.

Refer to the IBM Token-Ring Network Architecture Reference for uses and
restrictions for these types of addresses.

Adapter Addresses

Adapters are able to identify the intended recipient of any frame because each
adapter has a unique address. There are two types of addresses: universally
administered and locally administered.

All Token-Ring and PC Network adapters manufactured by IBM have universally
administered addresses encoded on them. These addresses use the following
format:

00 : MFID : Univc:ersallyAdministered%

Byte0 1 2 3 4 5

Figure 2-1. Universally Administered Adapter Address

The first two bits (B'00') indicate that the address is a universally administered
address. The MFID field contains the manufacturer's identification. The IEEE
ensures that every universally administered address is unique.

The format of the universally administered address for Ethernet Networks is
different. These addresses use the following format:

2-26 LAN Technical Reference: 802.2 and NETBIOS APls

v

00< J' Universally A:dministered :
ByteO 1 2 3 4 5

Figure 2-2. Ethernet Universally Administered Adapter Address

The first two bits (B'00') indicate that the address is a universally administered
address. The IEEE assures that every universally administered address is unique.

The application program can assign locally administered addresses. A locally
administered address overrides the universally administered address encoded on
the adapter. These addresses use the following format:

01 ! " Locally Administered - >
1 | 1 |
Byte 0 1 2 3] 5

Figure 2-3. Locally Administered Adapter Address

The first two bits (B'01') identify the address as locally administered. Because of
restrictions placed on addresses by certain networking protocols, you should assign
addresses in the range 00000001 to 79999999 9999 (decimal). Your network
administrator is responsible for preserving the uniqueness of these addresses.

For additional information about maintaining addresses, refer to the /BM
Token-Ring Network Administrator's Guide.

Stations, SAPs, and IDs
The direct station, service access points (SAPs), and link stations can be defined to
the IEEE 802.2 interface. They are referred to by the STATION_ID field in
command descriptions. The direct station, which is automatically assigned when
the CCB interface is opened, is referred to by three station IDs. This station is
automatically prepared to receive frames from the network when the
DIR.OPEN.ADAPTER command (for DOS) or the DIR.OPEN.DIRECT command
(for OS/2) is issued; however, the application program must issue a RECEIVE
command to make the information available at the direct interface. The three
station IDs, which differ only in how they receive frames, are described in the
following list:

Station ID Description

X'0000' This station ID of the direct station receives all frames (MAC and
non-MAC) not directed to other defined stations. This station can
transmit MAC and non-MAC (data) frames.

X'0001' This station ID of the direct station receives MAC frames and transmits
either MAC or non-MAC frames. The PC Network and Ethernet
Networks do not use MAC frames.

X'0002' This station ID of the direct station receives non-MAC frames and
transmits either MAC or non-MAC frames.

Chapter 2. Programming Conventions for the IEEE 802.2 Interface ~ 2-27

2-28

SAPs

SAPs can be opened for communications with SAPs in other devices connected to
the network. It is possible to design an application program to communicate with
any SAP. However, the NETBIOS interface is designed to communicate only with
the NETBIOS SAP (X'F0').

Both uses of the DLC interface, connectionless and connection operations, use
SAPs for communication on the network. An application program can open several
SAPs for a workstation and each SAP can have several link stations opened that
are associated with it. These link stations can then be directed to connect to link
stations in other adapters (or even the same adapter). A SAP can operate in one
of two ways:

* To have exchange ID (XID) command frames handled by the LLC sublayer
* To have XID command frames passed to the application for handling.

When the SAP is opened, an option is set that defines the handling of received XID
commands. XID responses are always passed to the application program. See
“Transmitting, Receiving, and Buffers” on page 2-39.

When an application program opens a SAP, the application program assigns a SAP
value (in the SAP_VALUE field) and the protocol driver assigns a station ID.
Communication between the application program and the protocol driver refers to a
SAP by the 2-byte station ID. For SAPs, the first byte of the STATION_ID field
identifies the SAP and the second byte is zero. When a link station is associated
with a SAP, a new station ID is assigned. That station ID is 2 bytes: the first byte
identifies the associated SAP, and the second byte is the link station number. All
link station numbers are unique for a given adapter. Both SAPs and link stations
are referenced by using the STATION_ID field. For example, X'0100' represents
a SAP and X'0108' represents a link assigned to that SAP.

When a SAP is used to communicate with another SAP, the application program
provides the station ID to identify the local SAP and provides a destination address
and SAP value (SAP_VALUE) to identify the remote SAP. The same information is
needed to open a link station. When both devices have a SAP and link station
opened, a connect command actually initiates the link connection.

The LLC header part of a frame contains two 1-byte SAP values: the destination
SAP (DSAP), and the source or sending SAP (SSAP). The SAP value actually
uses only 7 of the 8 bits. One bit of the SSAP is used to indicate whether the
frame is an LLC command or response, and one bit of the DSAP is used to identify
the target SAP as a group or individual SAP. The bit used is the low-order bit of
the SAP value supplied by the user in the various SAP commands. An individual
SAP value is always even, and a group SAP value is always odd.

A group SAP is a set of open individual SAPs. The global SAP is a special case of
a group SAP for which the set consists of all currently open individual SAPs. When
a frame is sent to a group SAP, a copy of the frame is passed to each individual
SAP that is a member of the group. Note that frames cannot be sent from a group
SAP because the bit that indicates group or individual has a different meaning in
the SSAP.

A SAP can be opened as an individual SAP, a group SAP, or both. This is done
using the option bits and the SAP value provided in the parameter list of the
DLC.OPEN.SAP command. If the individual option is chosen, frames containing a

LAN Technical Reference: 802.2 and NETBIOS APIs

DSAP equal to the SAP value with the low order bit off are accepted. If the group
option is chosen, frames containing a DSAP equal to the SAP value with the
low-order bit set on are accepted. If both options are selected, both odd and even
DSAP values are recognized.

An additional option bit is used to specify group membership. A SAP opened with
the individual option can be designated to be a member of one or more group
SAPs, provided that the group member option is also selected. The group SAPs to
which it will belong can be specified in the DLC.OPEN.SAP and DLC.MODIFY
commands. Membership is deleted using the DLC.MODIFY command before
closing the SAP. The only restriction is that all members of a particular group must
have selected the same XID handiing option.

See Figures 1-3 and 1-7 starting on page 1-11. For a transmitted frame, the
destination address in the LAN header is the remote node address. The source
address in the LAN header is the local node address. The DSAP is the destination
SAP_VALUE (RSAP_VALUE), and the SSAP is the local SAP value. At the
receiving end, the interpreting of local and remote fields is exchanged. For
example, the destination address field is the local node address of the receiving
adapter.

The maximum number of user-assigned group and individual SAPs possible is 127.
The maximum number of link stations per adapter is 255 (all of which may be
assigned to the same SAP). However, RAM and memory constraints limit the
number of SAPs and link stations that can be open at one time.

More information about these SAPs and links is included with related command
descriptions.

SAP Assignments

The following SAPs are opened automatically:

e Null SAP X'00'
* Global SAP X'FF'.

The Null SAP is opened automatically (with a SAP value of X'00'). !t represents
the LLC as a whole. The Null SAP provides the ability to respond to remote nodes
even when no SAP has been activated. This SAP supports only connectionless
service and responds only to XID and Test Command frames. The Null SAP is not
accessible to the local application program.

The Global SAP is opened automatically (with a SAP value of X'FF'). Itis a group
SAP with all open individual SAPs as members. XID, TEST, and Ul frames
directed to the Global SAP are passed to each open SAP in turn, with the DSAP
field in the received frame buffer set equal to the receiving individual SAP value,
where they are handled according to frame type.

Note: In both DOS and OS/2, an NDIS token-ring network adapter with LLC
microcode discards frames sent to the global SAP. These frames are not received
by the protocol driver.

SAP X'E4' is opened automatically for the PC Network or Ethernet Networks.
This SAP is used for management.

If NETBIOS is used, it uses SAP X'F0O'. SAPs X'F1' to X'FE' are reserved.

Chapter 2. Programming Conventions for the IEEE 802.2 Interface 2-29

Figure 2-4 on page 2-30 shows that you can have more than one SAP on a station
and more than one link on a SAP. Type 2 connection-oriented communication is
shown by the solid lines. Type 1 connectionless communication is indicated by the
dotted line that connects two SAPs rather than two stations.

LinkO1 Link 05
R | sap | Linkoz Link06 | SAP |
n . n
Link 04 .
g Link07 g
t : t
a Link 06 Link 02 a
t . t
Link05 |—
i | sap n Link03 | SAP | i
o o
n Link 04 n
HAI - i — [IBll
Linko1 [— Link 01
R . R
i | SAP | Link02 Link04 | SAP | ;
n n
g Link03 Link 05 g
S Link 07 S
t t
a Link 02 a
t t
i Link03 | SAP | i
o o
n Link 06 n
IICII n DII

Figure 2-4. SAPs and Link Stations

DLC

The DLC interface provides an interface to application programs using the LLC
sublayer of data link control protocol. This interface can be used in two ways:

¢ For IEEE Type 1 communication, which is connectionless communication
between devices providing no guarantee of delivery

¢ For IEEE Type 2 communication, which is connection-oriented services.

2-30 LAN Technical Reference: 802.2 and NETBIOS APls

Much of the communication overhead function is provided by the protocol driver, so
that programming is simplified. Refer to the IBM Token-Ring Network Architecture
Reference for more about communication using DLC and LLC.

Types of Service
The IBM Token-Ring Network and IBM PC Network support IEEE 802.2 Type 1
and Type 2 service as described in the IBM Token-Ring Network Architecture
Reference. Type 1 is connectionless service allowing transmission and receipt of
Ul frames, XID frames, and TEST frames. Type 1 uses unnumbered LPDUs.
Frames sent using this type of service are not followed by a transmission from the
receiving device verifying correct receipt and sequence of events unless provided
by an application program in that device. Recovery and retry actions must be
controlled by the application program. Type 2 is connection-oriented service
providing guaranteed delivery and using numbered LPDUs.

Command Sequences
When LLC protocols are used, commands must be issued in certain sequences to
obtain the desired result.

In all cases, the adapter must be initialized and opened prior to the use of any
TRANSMIT and RECEIVE commands.

Possible command sequences are listed in Tables 2-5, 2-6, and 2-7.

Table 2-5. Start Command Sequence for CCB1 and CCB3

CCB1

and CCB3

Command , Comments

DIR.INITIALIZE Select, clear, and test the adapter

DIR.OPEN.ADAPTER Make ready, set parameters, and connect the adapter to the

ring
For CCB3: Perform a logical open and return parameters
DIR.SET.EXCEPTION.FLAGS For CCB3: Enable exception notification

DIR.OPEN.DIRECT For CCB3: Open the direct station for one application program
RECEIVE Prepare for received data for the direct station

DLC.OPEN.SAP Allocate a SAP

RECEIVE Prepare for received data for this SAP

DLC.OPEN.STATION Prepare a link station

RECEIVE Prepare for received data for this link station
DLC.CONNECT.STATION Initiate the communication link with the remote station

For CCB1 only: The DIR.INITIALIZE command should be issued only if the
adapter is known to be dedicated to the application program. The return code on
the DIR.INTERRUPT command can be used to determine if a DIR.INITIALIZE
command is needed.

Chapter 2. Programming Conventions for the IEEE 802.2 Interface 2-31

Table 2-6. Start Command Sequence for CCB2

¢CB2 Command Comments
DIR.OPEN.ADAPTER Perform a logical open and return parameters
DIR.STATUS Obtain the current status of the network

DIR.SET.EXCEPTION.FLAGS Enable exception notifications

READ Allow for posting of exception events

DIR.OPEN.DIRECT Open the direct station for one application program

RECEIVE Receive for direct stations

READ Allow posting for direct stations, receive data

DLC.OPEN.SAP Allocate a SAP

READ Allow posting for DLC status change

READ Allow posting for SAP station and its link station receive data
DLC.OPEN.STATION Prepare a link station

DLC.CONNECT.STATION Initiate the communication link with the remote station

After this sequence has been completed, the application program can transmit and
receive data on a link station in the following manner:

Receiving Data
Check the RECEIVE command’s return code if no appendage was used,
or check to see if the appendage routine has received data. After
moving data from the receive buffer, issue a BUFFER.FREE command
to return the buffer to the pool.

Transmitting Data
Any buffer can be used or the application program can issue a
BUFFER.GET command to obtain enough buffers to contain the transmit
data, move the data to the buffers, and issue a TRANSMIT.I.FRAME
command. Issue a BUFFER.FREE command when the transmit is
completed to return buffers that were originally retrieved from the buffer
pool, with the exception of buffers referenced by the
XMIT_QUEUE_TWO fields of the TRANSMIT command.

When preparing to leave the application program, or when network communication
is no longer required, the following commands should be issued:

Table 2-7. End Command Sequence

Command Comments

DLC.CLOSE.STATION Close the link station

DLC.CLOSE.SAP Close the SAP

DIR.CLOSE.DIRECT For CCB2 and CCB3: Close the direct station
DIR.CLOSE.ADAPTER Remove from the ring

2-32 LAN Technical Reference: 802.2 and NETBIOS APls

Link Station States

LLC Type 2 protocol maintains primary and secondary states for each link station.
Only one of the primary states can be active at a time. If the application program
issues a command to a link station that is not valid for the current state, the
command is rejected with a return code of X'41'. The DLC.MODIFY and
DLC.FLOW.CONTROL commands are accepted in all states. If a link station is not
established, there is no control block, and no primary and secondary states exist.
Therefore, the link station is “non-existent.”

Changes in the DLC status of the link station are reported to the interface. See
“DLC Status Codes” on page B-28 and “Suggested Actions in Response to DLC
Status” on page B-31 along with the following state information.

The link station primary states are:

Link Closed
All received frames are ignored in this state. The state is entered when:

+ A DM response to a SABME or DISC has been queued for
transmission. The close command that caused the transmission is
executed when the transmission is completed.

e A DM or UA response to a DISC has been received. The close
command that caused the transmission is executed when the
transmission is completed.

¢ A reset command has been received, but a transmission has
already been queued or is in process and must be completed before
the link station can be released.

Disconnected
The following two frames are not ignored in the disconnected state:

¢ DLC frames with the poll bit set and for which a DM is transmitted
* A SABME which is reported to the workstation.

A DLC.CLOSE.STATION or DLC.CONNECT.STATION command is
accepted when this state is active. The state is entered when:

e« A DLC.OPEN.STATION command has been accepted.
* A SABME for a previously non-existent station has been accepted.

+ A DM response or DISC command from the paired station has been
received.

* The retry count has been exhausted because of timeouts.

Disconnecting
This state is normally entered when the initial in-process return code is
supplied after receipt of a DLC.CLOSE.STATION command. This state
is maintained until one of the following occurs:

* Either a UA or DM response to the transmitted DISC command is
received.

e A SABME command is received, and a DM response has been
successfully transmitted.

* The retry count expires.

Chapter 2. Programming Conventions for the IEEE 802.2 Interface 2-33

Exit from this state is normally to link-non-existent or link-closed state.
Since the DLC.CLOSE.STATION command remains in process while
the link is in disconnecting state, no other commands are accepted. All
received frames other than SABME, DISC, UA, and DM are ignored
while the link station is in this state.

This disconnecting state can also be entered upon expiration of the retry
count in FRMR received. In this case, exit is to the disconnected state.

Link Opening
Unexpected received frames are ignored in this state. The link station
enters this state when a DLC.CONNECT.STATION command is issued
by the workstation. Before entering this state, the adapter transmits
either a SABME command, or a UA response if a SABME has been
received from the remote station.

If a SABME was transmitted, the adapter expects a UA response. On
receipt of the UA response, the adapter transmits an RR command-poll
and changes to the link-opened (checkpointing) state.

If a UA was transmitted, the adapter expects either a supervisory
command or an information frame. After reception, the adapter changes
its state to a link-opened state (possibly with remote busy).

If the expected frame is not received and the retry count is exhausted,
the link is returned to the disconnected state unless a SABME has been
received.

The DLC.CONNECT.STATION command is completed with a successful
return code or with an indication that the remote station failed to
respond.

Resetting
All received frames except DISC, DM, FRMR, and SABME are ignored.
Only DLC.CLOSE.STATION and DLC.CONNECT.STATION commands
are accepted by the adapter when in this state. The state is entered
when a SABME command frame is received from the remote station
when the link is open and not in disconnected state or link-closed state.

Frame Reject Sent
All received frames except DISC, DM, FRMR, and SABME are ignored.
Only DLC.CLOSE.STATION and DLC.CONNECT.STATION commands
are accepted by the adapter when in this state. The state is entered
when an illegal frame is received and an FRMR frame has been
transmitted.

Frame Reject Received
All received frames except DISC, DM, and SABME are ignored. Only
DLC.CLOSE.STATION and DLC.CONNECT.STATION commands are
accepted by the adapter when in this state. The state is entered when
an FRMR frame has been received.

Link Opened
This is the only state that allows information transfer and accepts
TRANSMIT commands. In this state, the adapter handles sequential
delivery and acknowledgment of information frames, together with
retransmission if required. The state is entered when the adapter
passes from the link-opening state after the SABME-UA exchange,
which completes the connection protocol.

2-34 AN Technical Reference: 802.2 and NETBIOS APis

Timers

The link station secondary states are:

Checkpointing
A poll is pending; | frame transmission is suspended.

Local Busy (user)
A DLC.FLOW.CONTROL command with a set-local-busy option has
been accepted. | frame reception is suspended until a
DLC.FLOW.CONTROL command with a reset-local-busy (user) option
has been accepted.

Local Busy (buffer)
An out-of-buffer return code has been set by the workstation in response
to a request for data service on a receive. | frame reception is
suspended until a DLC.FLOW.CONTROL command with a
reset-local-busy (buffer) option has been accepted.

Remote Busy
An RNR frame has been received from the remote station. | frame
transmission is suspended until a receive ready or reject response, a
SABME command, or an in-sequence | response frame with the F bit
set to B'1' has been received.

Rejection
An out-of-sequence | frame has been received from the remote station
and an REJ transmitted. | frame reception is suspended until an
in-sequence | frame or a SABME has been received.

Clearing
A poll is pending, and a confirmation of clearing local busy is required
after the response is received.

Dynamic Window
The remote station is on a different ring, and there appears to be
congestion through the bridge or bridges.

The DLC functions use three timers:

T1 Response timer
Ti Inactivity timer
T2 Receiver Acknowledgment timer.

Refer to the IBM Token-Ring Network Architecture Reference for details about the
timers.

The rate at which each of these timers is stepped and the value at which they time
out are selectable by parameters. The rate of stepping is referred to as the “tick”
and is defined as follows:

For CCB1: Define the “tick” with fields in the DLC open parameters provided to
the adapter with the DIR.OPEN.ADAPTER command.

For CCB2 and CCB3: Define the “tick” with the configuration parameters at
system initialization time. '

Each timer requires a short timer tick (TICK_ONE) and a long timer tick
(TICK_TWO). The period between timer ticks is some number of 40-ms intervals.

Chapter 2. Programming Conventions for the IEEE 802.2 Interface 2-35

The timer value, or count at which it expires and interrupts the adapter, is selected
with parameters provided to the adapter when a DLC.OPEN.SAP,
DLC.OPEN.STATION, or DLC.MODIFY command is issued.

A timer value is selected by using a number between 1 and 10. Each timer is
divided into two groups of possible values:

¢ If the number selected is between 1 and 5, the short timer tick (TICK_ONE) is
used and is referred to as group 1. The timer value is equal to the number
selected multiplied by the short timer tick value (number_selected x
short_tick_value).

¢ If the number selected is between 6 and 10, the long timer tick (TICK_TWO) is
used and is referred to as group 2. The timer value is equal to number
selected minus 5 multiplied by the long timer tick value ((number_selected - 5)
x long_tick_value)

Therefore, there are three timers, with two rates selectable for each, which provide
a total of six parameters to be selected.

Each DLC.OPEN.SAP command sets the values for the three timers for that
specific SAP using the rates selected for the entire adapter. For example, if the
value of the T1 timer in one SAP is 4 and the value for the T1 timer in another SAP
is 7, the short rate of stepping is selected for the Response timer on the one SAP,
and the long rate of stepping is selected for the Response timer in the other SAP.
The group-2 timer values should be used when longer delays are expected, such
as when in a multi-ring environment.

The time of expiration is not exact, but falls into a range starting with the calculated
time.
For example, if a given timer chose the following tick values:

Group-1 tick: 200 ms
Group-2 tick: 1 second

then the following timer values would be available:

Group 1 (in ms) Group 2 (in seconds)

Number Value Actual Range Number Value Actual Range
1 200 200- 400 6 1 1-2
2 400 400- 600 7 2 2-3
3 600 600- 800 8 3 3-4
4 800 800-1000 9 4 4-5
5 1000 1000-1200 10 5 5-6

The next section includes guidelines for selecting timer values.

Guidelines for Selecting Parameter Values

2-36

Following are some basic guidelines to consider when selecting parameter values
for the network adapter. There are several basic parameters that can affect the
performance obtained when you are using the DLC functions of the adapter. In
most cases the default values provide efficient operation. See “Timers” on

page 2-35 and the parameter fields of the DLC.OPEN.SAP, DLC.MODIFY, and
DLC.OPEN.STATION commands. Table 2-8 on page 2-37 lists the parameters
that are outlined here.

LAN Technical Reference: 802.2 and NETBIOS APIs

Table 2-8. DLC Parameters

Parameter

Pseudo Parameter

Response Timer (T1)

The TIMER_T1 parameter of a DLC.OPEN.SAP,
DLC.MODIFY, or DLC.OPEN.STATION command

Inactivity Timer (Ti)

The TIMER_Ti parameter of a DLC.OPEN.SAP,
DLC.MODIFY, or DLC.OPEN.STATION command

Receiver Acknowledgment
Timer (T2)

The TIMER_T2 parameter of a DLC.OPEN.SAP,
DLC.MODIFY, or DLC.OPEN.STATION command

Maximum Length I-Field
(N1)

The MAX_I_FIELD parameter of a DLC.OPEN.SAP,
DLC.MODIFY, or DLC.OPEN.STATION command

Maximum Number of
Retransmissions (N2)

The MAX_RETRY_CNT parameter of a DLC.OPEN.SAP,
DLC.MODIFY, or DLC.OPEN.STATION command

Number of I-Format LPDUs
Received before Sending
Acknowledgment (N3)

The MAX_IN parameter of a DLC.OPEN.SAP,
DLC.MODIFY, or DLC.OPEN.STATION command

Number of
Acknowledgments Needed
to Increment Ww (Nw)

The MAXOUT_INCR parameter of a DLC.OPEN.SAP,
DLC.MODIFY, or DLC.OPEN.STATION command

Maximum Number of
Outstanding I-Format LPDUs

(W)

Response Timer (T1)

The MAXOUT parameter of a DLC.OPEN.SAP,
DLC.MODIFY, or DLC.OPEN.STATION command

The Response timer (T1) is maintained by the sending adapter

whenever an |-format LPDU or a command LPDU with the poll bit set to

B'1' is sent. If this timer expires before a response is received, the
sending adapter solicits remote link station status by sending a

supervisory command LPDU with the poll bit set to B'1'. The T1 timer

value should, therefore, be greater than the total delay time that the
frame might encounter within the sending node, the network, and the

m
m
m
(@)
o
o
N
=]
—
D
=
QO
(@]
D

receiving node. Normal settings for the T1 parameter should be in the
range of 1 to 2 seconds. For instance, a setting above 2 seconds can
result in noticeable delays to those responses that must be retransmitted
(typically less than 3 percent of the total frames).

Inactivity Timer (Ti)
The Inactivity timer (Ti) runs whenever the Response timer (T1) is not
running. If this timer expires, the link may have been lost. The
Inactivity timer (Ti) value should be five to ten times greater than the T1
value, and it is recommended that the minimum be 30 seconds. The
default is 30 seconds.

Receiver Acknowledgment Timer (T2)
A link station starts T2 when an I-format LPDU is received into
workstation memory. T2 is stopped when an acknowledgment is sent
either with an outgoing frame or when the number of I-format LPDUs
received before the sending acknowledgment (N3) value is reached. If
T2 expires, the link station must send an acknowledgment as soon as
possible. The value of T2 must be less than that of T1 to ensure that
the remote link station receives the delayed acknowledgment before T1
expires. Typical values for T2 are 80 to 256 ms.

Chapter 2. Programming Conventions for the IEEE 802.2 Interface 2-37

2-38

Maximum Length of I-Field (N1)
The Maximum Length of I-Field (N1) parameter is used primarily to
enable a pair of stations to establish the maximum size frame that can
be received by either station. For example, one station may be able to
transmit and receive frames up to 2 KB each while the other can only
send and receive frames of 1 KB or smaller. Under no circumstance
should the N1 value exceed the total amount of receive memory
available.

A key factor in selecting the N1 value is the receive buffer capacity of
the destination adapter. Server devices, for example, can support
several sessions concurrently, and therefore have a more limited buffer
capacity than a workstation.

Table 2-9. Maximum I-field Length for Network Adapters

Token-Ring Network Token-Ring PC Network
at 4 Mbps Network at 16 Mbps Adapter Ethernet
4464 Bytes 17960 Bytes 2042 Bytes 1490 Bytes

N1 should never exceed 2042 bytes with the Token-Ring Network PC
Adapter or with PC Network adapters, or 1490 bytes with Ethernet
adapters. N1 values smaller than 512 bytes can result in a perceived
decrease in station-to-station response times.

Maximum Number of Retransmissions (N2)
The Maximum Number of Retransmissions (N2), or MAX_RETRY_CNT,
defines the maximum number of attempts in which a sending adapter
performs the checkpoint procedure following the expiration of the T1
timer. The combination of T1 and N2 values should be great enough to
allow for error detection and recovery on the network. This count also
prevents continual retransmission of the same | frame.

Typical values for N2 are 10 or less.

Maximum Number of Outstanding I-Format LPDUs (TW) and Number of

I-format LPDUs Received before Sending Acknowledgment (N3)
The TW and N3 counts should be considered together since they
establish the ratio of acknowledgment frames to |-Format LPDU frames.
However, the N3 value should be compared only with the TW value of
the remote link station, not the local station. The values of TW and N3
can affect the response perceived by the user in some cases. However,
in most instances, the default values provide the best general
performance. The following guidelines should be considered:

e The TW count allows the sender to transmit TW frames before it is
forced to halt and wait for an acknowledgment. Therefore, the
receiver should be able to absorb that number of frames, either in its
SAP buffers or within the buffers in workstation memory. A small
value of TW reduces the chances that frames are retransmitted due
to buffer congestion at the receiver. The TW-to-N3 ratio thus
provides a flow control mechanism to prevent overruns at the
receiver.

e The TW value should always be at least twice the N3 value.
Network response can be severely degraded if N3 exceeds TW.

LAN Technical Reference: 802.2 and NETBIOS APls

¢ Very little network overhead or adapter processing is required to
send or receive an acknowledgment frame. Therefore, every frame
can be acknowledged without a perceptible degradation in
performance.

¢ Even though the maximum values allowed for TW and N3 are 127
each, practical values should not exceed 8 for TW or 4 for N3.

Note: For more information, refer to the /IBM Token-Ring Network
Architecture Reference.

Working Window (Ww), and Window Increment (Nw)
There are two counts associated with the dynamic window algorithm for
flow control. The purpose of the dynamic window algorithm is to allow
the sending station to temporarily reduce the transmit window (Tw)
whenever network or receive adapter congestion is resulting in lost
frames. By temporarily reducing the window size, the flow of frames
over that link is reduced, thus permitting the congested node to recover
from the temporary overload.

The DLC interface provides an interface to application programs using
the LLC sublayer of DLC protocol. The interface can be used in two
ways:

¢ For IEEE Type 1 communication, which is connectionless
communication between devices providing no guarantee of delivery

¢ For IEEE Type 2 communication, which is connection-oriented
services.

Much of the communication overhead function is provided by the
adapter and the protocol driver, both of which permit simple
programming. The IBM Token-Ring Network Architecture Reference
contains more information about communication using DLC and LLC.

Transmitting, Receiving, and Buffers

Data exchanged between application programs is sent on the network in frames. A
frame consists of headers and data. All frames have a LAN header, although the
format is slightly different depending on whether the IBM Token-Ring Network, IBM
PC Network, or Ethernet Networks are being used. MAC frames, transmitted only
on the IBM Token-Ring Network, consist of the LAN header and a data field. In
non-MAC frames the LAN header is followed by the DLC header. The data field
that follows the LAN header in MAC frames, and the DLC header in non-MAC
frames, is the data provided by the application program. (The data field itself may
contain further headers, in a format defined by the application programs exchanging
the data.)

The length of the LAN header varies depending on the length of the Routing

Information field (if present). The length of the DLC header varies depending on
the frame type: the I-frames used to exchange data in Type 2 protocols have a
4-byte DLC header; the frames used for Type 1 protocols have a 3-byte header.

Chapter 2. Programming Conventions for the IEEE 802.2 Interface ~ 2-39

Buffer Pools

The type of frame being transmitted also affects the amount of information that the
application program must provide, and how it is provided. There are three cases:

MAC frames The application program provides the complete LAN header and
the data field. The source address in the LAN header is
overwritten with the address being used by the adapter.

I-frames The application program provides only the data when it wants to
transmit a frame. The information required to build the headers
is provided in the DLC.OPEN.STATION and
DLC.CONNECT.STATION commands.

Direct frames The application program provides the LAN header and the data
in its own buffers. It provides the information needed to build the
DLC header with the TRANSMIT command (the remote SAP
value and the command type). The source address field in the
LAN header is overwritten with the address in use by the
adapter.

The application program must have the data, and if required, the LAN header, in
buffers prepared in a format understood by the protocol driver. These buffers are
in workstation memory belonging to the application program. This memory may be
entirely controlled by the application program, or may be given to the protocol driver
to manage, in which case it is part of the buffer pool discussed in “Buffer Pools.”

The protocol driver receives frames from the network and moves the frames
received from the network to application program buffers, provided that an active
RECEIVE command is used to pass the buffers to the application program, and
that there is application program buffer space to hold the incoming frame. The
application program provides the buffer space in the form of a buffer pool,
described in “Buffer Pools.” Once the protocol driver has moved the data to
workstation memory, it uses the RECEIVE command (and optionally the READ
command for CCB2 users) to tell the application program that it has received a
frame. See page 3-86 for a description of the RECEIVE command and page 3-95
for a description of the READ command.

A buffer pool is an area of workstation memory provided by the application program
to the protocol driver. Each buffer pool is divided into buffers. Received frames
are put into buffers from the buffer pool by the protocol driver. These buffers must
be returned to the pool (using BUFFER.FREE commands) after the application
program has finished with the frame data. When the application program transmits
a frame, it can use buffers from a separate area of memory or buffers from the
buffer pool (obtained by issuing a BUFFER.GET command). The following
commands are associated with generating, defining, and handling buffer pools:

DIR.OPEN.ADAPTER
Allocates direct interface buffer pool (for CCB1 only).

DIR.OPEN.DIRECT
Allocates direct interface buffer pool (for CCB2 and CCB3 only).

DIR.MODIFY.OPEN.PARMS
Changes direct interface buffer pool allocation (for CCB1 only).

DLC.OPEN.SAP
Allocates DLC interface buffer pool for a specific SAP.

2-40 LAN Technical Reference: 802.2 and NETBIOS APIs

BUFFER.GET
Gets one or more buffers from a SAP pool and DIRECT pool.

BUFFER.FREE
Returns one or more buffers to a pool.

RECEIVE
Receives data into buffers.

RECEIVE.MODIFY
Receives data into optional buffers.

TRANSMIT
Sends data from buffers.

Buffer pools can be allocated for every SAP defined to the adapter and for the
direct interface direct station at station IDs X'0000', X'0001', and X'0002'.
Station ID X'0001' is not used on the PC Network or Ethernet Networks. Every
SAP defined can have one pool of buffers defined for its use.

ﬁ
m
m
o)
S
N
(V)
=1
—
@

=1
o

o)

o

Each buffer pool is independent of the others and has the following characteristics:

* The protocol' driver uses these buffers to satisfy the RECEIVE command. Their
use is optional for TRANSMIT commands.

¢ All link stations associated with a specific SAP use the same buffer pool.
* All buffers in a pool have the same length.

* Every buffer has a 12-byte overhead to contain a forward pointer and length
information controlled by the protocol driver.

¢ When you are defining a buffer pool:

— The buffer length defined must be a multiple of 16 bytes.

— The user-defined length includes the 12-byte overhead.

— The minimum user-defined length is 80 bytes (68 data bytes plus 12 bytes
of overhead).

e The application program can allow the protocol driver to prepare the buffer
pool, or it can take that responsibility itself. Buffer pools are controlled by the
protocol driver and individual buffers are obtained and returned by
BUFFER.GET and BUFFER.FREE commands. If the application program
controls the buffers, it must prepare the control fields in the prescribed format.
Since the buffers controlled by the protocol driver must be used for receives,
either buffers prepared by the protocol driver are used, or the application
program provides a prepared buffer to the protocol driver by issuing a
BUFFER.FREE command.

Note: If a SAP has no more available buffers, the reception of data is impacted.
See the RECEIVE command description on page 3-95.

Receive Buffers
Data is received from the network into adapter buffers. If there is a RECEIVE
command pending for the SAP or link station, the protocol driver moves the data to
the appropriate buffer pool in workstation memory. The application program then
processes the data and issues a BUFFER.FREE command to return the buffer to
the pool. An application program can simultaneously return more than one buffer.

Chapter 2. Programming Conventions for the IEEE 802.2 Interface 2-41

Receive Buffer Formats

The USER_OFFSET field (bytes 8 and 9 of each buffer) allows all buffers to be
handled similarly regardiess of the amount of information in the buffer prior to the
actual received data. When more than one buffer from the buffer pool is used to
receive a frame, the format for the first buffer (Buffer 1) is different from the format
of the other buffers used to contain this frame. Buffer 2 is an example of the
format of the subsequent buffers. By interrogating the contents of the
USER_OFFSET field, you can determine the format of any buffer. See the
RECEIVE and the RECEIVE.MODIFY command descriptions for buffer assignment.

0 4
| Next Buf Pointer ||=irst buffer data | - Buffer 1
Pointer=X'00000000' if there is no additional data
0 4

——[Next Buf Pointer] Otherbufferdata| «—— Buffer 2

Pointer=X'00000000' if there is no additional data

— Next buffer, if pointer not X '00000000'

Figure 2-5. Receive Buffer Formats

Table 2-10 and Table 2-11 on page 2-43 show the formats of the receive buffers
in detail. The NOT CONTIGUOUS MAC/DATA option means that the received
data does not include the DLC header, but begins with the portion of the LAN
frame that follows the DLC header; the CONTIGUOUS option means that the
received data includes the LAN header and the DLC header.

Table 2-10 (Page 1 of 2). Buffer 1: Option = Not Contiguous MAC/DATA

Off- Byte 8086

set Field Name Length Type Description

0 BUF_POINTER 4 DD Pointer to the next buffer or X'00000000' if no additional
buffers.

4 RCV_LEN 2 bw Length of entire receive frame.

6 LENGTH_IN_BUFFER 2 DW Length of data in buffer beginning at byte X (received data).

For CCB1

8 USER_OFFSET 2 DW Offset from the beginning of the buffer to the USER_SPACE

field. Use this value with the buffer
segment-segment+offset.

For CCB2 and CCB3

8 USER_OFFSET 2 DW Offset from the beginning of the buffer to the USER_SPACE
field. Use this value with the buffer selector-selector+offset.

For all CCBs

10 USER_LENGTH 2 DW The length of the USER_SPACE field defined by the
USER_OFFSET parameter.

12 STATION_ID 2 DW Receiving station ID.

14 OPTIONS 1 DB Option byte from RECEIVE parameter table.

15 MESSAGE_TYPE 1 DB Type of message received.

16 BUFFERS_LEFT 2 DwW The number of buffers left in the SAP buffer pool.

18 RCV_FS 1 DB Received Frame Status field.

2-42 AN Technical Reference: 802.2 and NETBIOS APIs

Table 2-10 (Page 2 of 2). Buffer 1: Option = Not Contiguous MAC/DATA

Off- Byte 8086

set Field Name Length Type Description

19 ADAPTER_NUM 1 DB Adapter number (0 or 1).

For CCB1

20 LAN_HEADER_LENGTH 1 DB The length of the LAN header field (bytes 22-53).

21 DLC_HEADER_LENGTH1 DB The length of the DLC_HEADER (bytes 54-57). If the value
is X'00', this is for the direct interface.

22 LAN_HEADER 32 DB The LAN header received with the frame. The actual length
is defined by LAN_HEADER_LENGTH.

54 DLC_HEADER 4 DB The DLC header received with the frame, if applicable. The
actual length is defined by DLC_HEADER_LENGTH.
(Contents undefined if DLC LENGTH = 0.)

58 USER_SPACE - - An area in the buffer for use by the application program.
The length is defined by USER_LENGTH (bytes 10-11).

X RCVD_DATA - DB The data received following the DLC header in the frame.

For CCB2

20 NEXT_FRAME 4 DD A pointer to the next receive frame.

For CCB3

20 4 DD Reserved for the application program.

For CCB2 and CCB3

24 LAN_HEADER_LENGTH1 DB The length of the LAN header field (bytes 26-57).

25 DLC_HEADER_LENGTH 1 DB The length of the DLC_HEADER (bytes 58-61). If the value
is X'00', this is for the direct interface.

26 LAN_HEADER 32 DB The LAN header received with the frame. The actual length
is defined by LAN_HEADER_LENGTH.

58 DLC_HEADER 4 DB The DLC header received with the frame, if applicable. The
actual length is defined by DLC_HEADER_LENGTH.
(Contents undefined if DLC LENGTH = 0.)

62 USER_SPACE - -- An area in the buffer for use by the application program.
The length is defined by USER_LENGTH (bytes 10-11).

X RCVD_DATA - DB The data received following the DLC header in the frame.

Table 2-11 (Page 1 of 2). Buffer 1: Option = Contiguous MAC/DATA

Off- Byte 8086

set Field Name Length Type Description

0 BUF_POINTER 4 DD Pointer to the next buffer or X'00000000' if no additional
buffers.

4 RCV_LEN 2 Dw Length of entire receive frame.

6 LENGTH_IN_BUFFER 2 DW Length of data in buffer beginning at byte X (received data).

For CCB1

8 USER_OFFSET 2 DW Offset from the beginning of the buffer to the USER_SPACE

field. Use this value with the buffer
segment-segment+offset.

Chapter 2. Programming Conventions for the IEEE 802.2 Interface 2-43

Table 2-11 (Page 2 of 2). Buffer 1: Option = Contiguous MAC/DATA

Off- Byte 8086

set Field Name Length Type Description

For CCB2 and CCB3

8 USER_OFFSET 2 DW Offset from the beginning of the buffer to the USER_SPACE
field. Use this value with the buffer selector-selector+offset.

For all CCBs

10 USER_LENGTH 2 DW The length of the USER_SPACE field defined by the
USER_OFFSET parameter.

12 STATION_ID 2 DW Receiving station ID.

14 OPTIONS 1 DB Option byte from RECEIVE parameter table.

15 MESSAGE_TYPE 1 DB Type of message received.

16 BUFFERS_LEFT 2 DW The number of buffers left in the SAP buffer pool.

18 RCV_FS 1 DB Received Frame Status field.

19 ADAPTER_NUM 1 DB Adapter number (0 or 1).

For CCB1

20 USER_SPACE - -- An area in the buffer for use by the application program.
The length is defined by USER_LENGTH (bytes 10-11).

X RCVD_DATA - DB The data received in the frame including the LAN header
and the DLC header.

For CCB2

20 NEXT_FRAME 4 DD A pointer to the next receive frame.

For CCB3

20 4 DD Reserved for the application program.

For CCB2 and CCB3

24 USER_SPACE - -- An area in the buffer for use by the application program.
The length is defined by USER_LENGTH (bytes 10-11).

X RCVD_DATA - DB The data received in the frame including the LAN header

and the DLC header.

2-44 | AN Technical Reference: 802.2 and NETBIOS APls

Buffer Fields Explanations
MESSAGE_TYPE
Explanation: This field indicates the type of message received (byte 15).

X'02' MAC frame (Direct Station on the Token-Ring Network only)

X'04' |I-frame (Information frame—application program data—link stations only)
X'06' Ul frame

X'08' XID command (poll bit)

X'0A' XID command (not poll bit)

X'0C' XID response (final bit)

X'OE' XID response (not final bit)

X'10' TEST response (final bit)

X'12' TEST response (not final bit)

X'14' Other; used for non-MAC frame (Direct Station only).

RCVD_FS
Explanation: This field contains the Frame Status (FS) (byte 18).
Note: This field is only valid on the Token-Ring Network.

BIT MEANING

Address recognized indicator (A)
Frame copied indicator (C)
Reserved

Reserved

Address recognized indicator (A)
Frame copied indicator (C)

-0 Reserved.

m
m
m
o
S
n
N
=1
—
5]
=
)
o
@

WHOON

- N

NEXT_FRAME
Explanation: This field contains a pointer to the next frame in the chain.

When the application program specifies that received frames are to be chained, the
NEXT_FRAME field of the first buffer of each frame is used to point to the next
frame that was received.

USER_SPACE

Explanation: This space can be loaded by the application program. It is not
altered by the protocol driver or by the received frame data.

RCVD_DATA
Explanation: The value of this field occupies byte X to end of buffer.

If the option is CONTIGUOUS, this data begins with the LAN header from the
received frame.

If the option is NOT CONTIGUOUS, then:

o If MESSAGE_TYPE is X'02' or X'14', this is the data immediately following
the LAN header from the received frame.

e If MESSAGE_TYPE is not X'02' or X'14", this is the data immediately
following the DLC header from the received frame.

Chapter 2. Programming Conventions for the IEEE 802.2 Interface 2-45

Additional data that is not able to fit into this buffer is placed in buffer 2 and
subsequent buffers.

Table 2-12. Buffer 2 and Subsequent Buffers

Off- Byte 8086

set Field Name Length Type Description

0 BUF_POINTER 4 DD Pointer to the next buffer or
X'00000000' if no additional
buffers.

RCV_LEN 2 DW Length of entire receive frame.
LENGTH_IN_BUFFER 2 DwW Length of data in buffer beginning

at byte X (received data).

For CCB1

8 USER_OFFSET 2 DW Offset from the beginning of the
buffer to the USER_SPACE field.
Use this value with the buffer
segment-segment-+offset.

For CCB2 and CCB3

8 USER_OFFSET 2 DW Offset from the beginning of the
buffer to the USER_SPACE field.
Use this value with the buffer
selector-selector+offset.

For all CCBs

10 USER_LENGTH 2 DW The length of the USER_SPACE

field defined by the
USER_OFFSET parameter.

12 USER_SPACE - - An area in the buffer for use by the
application program. The length is
defined by USER_LENGTH (bytes
10-11).

X RCVD_DATA - DB A continuation of the data received
in the frame.

Transmit Buffers

The application program issues a BUFFER.GET command, or creates a buffer,
moves data into the assigned buffer and adds necessary header information, and
issues the TRANSMIT command. The protocol driver moves the contents of the
buffer into shared RAM or work space and interrupts the adapter to proceed with
the transmission. When the TRANSMIT command is executed, the application
program issues a BUFFER.FREE command for all buffers originally obtained from
the buffer pool except the XMIT_QUEUE_TWO buffer, which is freed by the
protocol driver when the transmission is successful (return code is zero).

The total amount of data in all buffers of one issued command must fit into one
adapter transmit buffer in shared RAM.

For CCB1: The adapter transmit buffer size is defined by the
DIR.OPEN.ADAPTER command DHB_BUFFER_LEN parameter, with the
maximum being dependent on the type of adapter being used.

For CCB2 and CCB3: The adapter transmit buffer size is defined by configuration
parameters, with the maximum being dependent on the type of adapter being used.

2-46 LAN Technical Reference: 802.2 and NETBIOS APis

For all LAN network types, the data in the buffer is described as follows:
» Six bytes are used as overhead.

e Fourteen bytes are reserved for the LAN header. On the Token-Ring Network
these 14 bytes are used for the access control (AC) byte, the frame control
(FC) byte, and the LAN header source and destination address fields. For PC
networks and Ethernet, the protocol driver verifies that the FC byte specifies a
non-MAC frame, examines the source address to determine the presence of
routing information, and uses the destination address to build a LAN header
appropriate for the network type.

¢ The remaining length is reduced if routing information is used (up to 18 bytes)
and if a DLC header is included (up to 4 bytes). The routing information field is
ignored for Ethernet Networks. For more information on buffer space, see
Figures 2-7, 2-8, and 2-9 starting on page 2-49.

Note: The LAN and DLC headers are not placed in the transmit buffer for an
I-frame transmission as a result of a TRANSMIT.I.FRAME command, making
an additional 36 bytes available.

Transmit Buffer Formats

Transmit buffers are different for each supported LAN network protocol
(Token-Ring, PC Network, and Ethernet). However, to provide compatibility for
application programs, the difference is not reflected at the interface to the protocol
driver in the IBM support program, so that the transmit buffer is the same for all
network protocol types.

For CCB1: For NDIS adapters, the TRANSMIT command is returned with a
return code of X'23"' if the frame is contained in more buffers than are supported
by the NDIS MAC driver. Up to eight buffers are always available. See the
maximum number of data blocks defined by the NDIS MAC driver for your adapter
to determine how many buffers are supported.

The transmit buffers must be formatted as defined here.

Four groups of buffers are definable by TRANSMIT commands. See “Transmit
Command Specifics” on page 3-110. They are:

o XMIT_QUEUE_ONE
¢ XMIT_QUEUE_TWO
« BUFFER_ONE
¢ BUFFER_TWO.

XMIT_QUEUE_ONE and XMIT_QUEUE_TWO can each consist of one or more
buffers.

Most combinations of XMIT_QUEUE_ONE, XMIT_QUEUE_TWO, BUFFER_ONE,
and BUFFER_TWO can be selected for use. BUFFER_TWO can be used only if
BUFFER_ONE is also being used. However, they are transmitted sequentially
beginning with XMIT_QUEUE_ONE and ending with BUFFER_TWO whenever two
or more are selected. XMIT_QUEUE_ONE could contain header information that
seldom or never needs modifying. XMIT_QUEUE_TWO could contain data or
device-specific header information. BUFFER_ONE could contain the actual data to
be transmitted. BUFFER_TWO, if used, might contain additional data. Buffers in
XMIT_QUEUE_TWO are freed by the protocol driver if the transmission is
successful (return code is zero). These buffers are always returned when you are
using OS/2, regardless of the return code.

Chapter 2. Programming Conventions for the IEEE 802.2 Interface 2-47

BUFFER_ONE and BUFFER_TWO are user-defined and can contain any type of
information. Any buffer group can be excluded by providing a buffer length of zero
in the TRANSMIT command CCB.

The buffers defined by XMIT_QUEUE_ONE and XMIT_QUEUE_TWO are
described in Table 2-13.

Table 2-13. Transmit Buffers (XMIT_QUEUE_ONE and XMIT_QUEUE_TWO)

Byte 8086

Offset Field Name Length Type Description

0 BUF_POINTER 4 DD Pointer to the next buffer or
X'00000000' if there are no
additional buffers.

4 2 -- Reserved.

LENGTH_IN_BUFFER 2 DW Length of data in buffer beginning

at byte 12 plus the
USER_LENGTH.

8 USER_DATA 2 DwW Available for user.

10 USER_LENGTH 2 bDw Length of the USER_SPACE

starting at byte 12.

12 USER_SPACE 2 DW USER_SPACE followed by data to
be transmitted. If there is no user
data, the transmit data starts at
byte 12.

14 — X DB Data to be transmitted.

The USER_SPACE can be loaded by the application program. The USER_SPACE
information is not transmitted.

0 4 6 8 10 12
NextBuf | Reserved | Length | User | User User Datatobe
Pointer inBuf | Data | Length | Space | Transmitted

Pointer=X'00000000' ifthere is no additional data

0 4 6 8 10 12
.| NextBuf | Reserved | Length | User User User Additional Data
Pointer inBuf | Data | Length | Space | tobetransmitted

Pointer=X'00000000' ifthere is no additional data
L—»-Next buffer, if Pointer not X '00000000'

Figure 2-6. Transmit Buffers

2-48 AN Technical Reference: 802.2 and NETBIOS APls

The information in the transmit buffer can be transmitted in one of three frame
formats: MAC frame, non-MAC I-Frame, or other non-MAC frame. The frame
formats are shown in the following figures:

Application - Supplied

L
1 /

AC | FC Dest. Source Routing Data Field
1 1 | Address | Address Info.
Byte | Byte | 6Bytes | 6Bytes | 0-18Bytes 0-X1Bytes*

L—-— LAN Header 14-32 Bytes ———4

- Maximum Length X2 Bytes * >

* See Table 2-14 on page 2-50 for the values of X1 and X2.
Figure 2-7. MAC Frame

Application
Supplied
— /
AC | FC Dest. | Source Routing | DSAP | SSAP| Control | DataField
1 1 Address | Address Info. 1 1 2
Byte | Byte | 6Bytes | 6Bytes | 0-18Bytes | Byte | Byte | Bytes | O-Y1Bytes*
//.
DLC Header "
l«———— LANHeader 14-32 Bytes =L 4Bytes—>;
- Maximum Length Y2 Bytes* >

* See Table 2-14 on page 2-50 for the values of Y1 and Y2.
Figure 2-8. Non-MAC | Frame

Chapter 2. Programming Conventions for the IEEE 802.2 Interface 2-49

2-50

Application

(4———— Application Supplied *** ——»‘4— Seebelow™** “*r—supplied—’{
/].

AC
1

Byte

FC
1
Byte

Dest.
Address
6Bytes

Source
Address
6Bytes

Routing
Info.
0-18Bytes

DSAP
1
Byte

SSAP| Control

1
Byte

1
Byte

DataField

0-Z1Bytes*

//.

MaximumLength Z2 Bytes*

* See Table 2-14 for the values of Z1 and Z2.

** The adapter places the DLC header values in 3 bytes of the adapter
transmit buffer. None of the application program’s buffer space
is needed for the DLC header.

*** The LAN header space, including the destination address and routing
information fields, is provided by the application program in the first
buffer. The adapter fills in the source address, AC, and FC field values.
Some adapters may require the application program to provide these
fields. Refer to the documentation for your specific adapter type for
details.

Figure 2-9. Other non-MAC Frame

Table 2-14. Transmit Buffer Size in Bytes

DLCHead
l«——— LANHeader 14-32 Bytes 3Bytes

N

7/

h 4

Token-Ring
Network
PC Token-Ring
Adapter, Token-Ring Network
PC Network 16/4
Adapter II, 16/4 Adapters PC Ethernet Ethernet
and Adapters at 16 Network DIX V.2 IEEE 802.3
Value Adapter/A at 4 Mbps Mbps Adapters Adapter Adapter
X1 2028 4444 17940 N/A N/A N/A
X2 2060 4476 17986 N/A N/A N/A
Y1 2042 4458 17954 2042 1493 1496
Y2 2078 4494 17972 2078 1532 1532
21 2025 4441 17937 2028 1494 1497
z2 2060 4476 17972 2063 15632 1532

LAN Technical Reference: 802.2 and NETBIOS APIs

Chapter 3. The Command Control Blocks

About This Chapter 3-3
Command Descriptions 34
BUFFER.FREE 3-4
BUFFER.GET 3-5
DIR.CLOSE.ADAPTER i 3-6
DIR.CLOSE.DIRECT e 3-8
DIR.DEFINE.MIF.ENVIRONMENT 3-9
DIR.INITIALIZE 3-11
DIR.INTERRUPT e 3-16
DIR.MODIFY.OPEN.PARMS, 3-16
DIR.OPEN.ADAPTER 3-17
DIR.OPEN.DIRECT i 3-33
DIR.READ.LOG e 3-34
LogFormats 3-36
DIR.RESET.MULT.GROUP.ADDRESS 3-37
DIR.RESTORE.OPEN.PARMS 3-37
DIR.SET.EXCEPTION.FLAGS 3-38
DIR.SET.FUNCTIONALADDRESS 3-39
DIR.SET.GROUP.ADDRESS 3-41
DIR.SET.MULT.GROUP.ADDRESS 3-41
DIR.SET.USER.APPENDAGE 3-43
DIR.STATUS 3-44
DIRTIMER.CANCEL 3-51
DIR.TIMER.CANCEL.GROUP 3-51
DIRTIMER.SET 3-52
DLC.CLOSE.SAP e 3-53
DLC.CLOSE.STATION i 3-54
DLC.CONNECT.STATION 3-55
DLC.FLOW.CONTROL i 3-56
DLC.MODIFY 3-57
DLC.OPEN.SAP 3-60
DLC.OPEN.STATION e 3-66
DLC.REALLOCATE i 3-70
DLC.RESET e 3-71
DLC.SET.THRESHOLD 3-73
DLC.STATISTICS e 3-74
LogFormats 3-75
PDT.TRACE.OFF e 3-76
PDT.TRACE.ON e 3-77
Trace Table Formats for the Non-NDIS Token-Ring Network Adapters 3-79
Trace Table Formats for the PC Network and NDIS Adapters 3-81
PURGE.RESOURCES 3-85
READ 3-86
DLC Status Change Events 3-94
READ.CANCEL 3-94
RECEIVE e 3-95
RECEIVE.CANCEL 3-102
RECEIVE.MODIFY 3-103
TRANSMIT.DIR.FRAME 3-107
TRANSMIT.LFRAME 3-108

© Copyright IBM Corp. 1986, 1993 3-1

Transmit Completion
TRANSMIT.TEST.CMD e
TRANSMIT.ULFRAME
TRANSMIT.XID.CMD e
TRANSMIT.XID.RESP.FINAL

TRANSMIT.XID.RESP.NOT.FINAL
Transmit Command Specifics

3-2 LAN Technical Reference: 802.2 and NETBIOS APIs

About This Chapter

This chapter describes all the commands that you can issue to the IEEE 802.2
application interface, both the direct interface and the DLC interface. The
commands are listed alphabetically, so you can easily find a particular command.

The commands fall into one of three groups based on which version of the IBM
program products you are using.

CCB1 The command control block for the IEEE 802.2 protocol drivers provided
with the original Token-Ring Network PC Adapter, Token-Ring Network
PC Adapter I, and the IEEE 802.2 protocol drivers supplied with the
Local Area Network Support Program.

CCB2 The command control block for the Dynamic Link Routine (DLR)
interface provided with OS/2 EE 1.3 and LAPS.

cCcB3 The command control block for the Device Driver (DD) interface
provided with OS/2 EE 1.3 and LAPS.

Throughout this chapter the term CCB is used when information is common to all
three groups. You can find detailed information on the types of CCBs used by
various program products in “Control Blocks for All CCBs” on page 2-19. This
section also describes the various CCB fields.

The commands also fall into four functional groups:

¢ Commands issued to the direct interface

 Commands issued to the DLC (IEEE 802.2) interface—both SAP and station
interfaces

¢ Commands issued for transmitting and receiving frames

¢ Commands issued for problem determination (CCB1 only).

The direct interface enables you to perform control functions on the adapter using
standard control blocks and parameters. It also enables you to open and close an
adapter, obtain error status, and set addresses.

Note: When you are using OS/2 EE, the direct interface commands
DIR.OPEN.ADAPTER and DIR.CLOSE.ADAPTER logically open and close an
adapter on an application program basis. You must use a System Key to
physically close an adapter.

The direct interface also permits transmission of frames directly with no protocol
assistance. When you are using the direct interface, an application program can
communicate with another application program without links and link stations. The
direct interface supports three direct stations, as discussed in “Stations, SAPs, and
IDs” on page 2-27. All received frames not directed to an active SAP or link
station default to the direct station.

The DLC interface provides application programs with an interface to the logical link
control (LLC) sublayer of data link control protocol, which offers both connectionless
and connection-oriented services. See “DLC” on page 2-30 for more details.

You can find information on the use of the TRANSMIT and RECEIVE commands,
buffer pools, and buffer formats in “Transmitting, Receiving, and Buffers” on
page 2-39.

Chapter 3. The Command Control Blocks 3-3

BUFFER.FREE

Command Descriptions

BUFFER.FREE

All the commands use a control block, as described in Chapter 2, “Programming
Conventions for the IEEE 802.2 Interface.” All differing uses of variables in the
control block and additional control information, such as parameter tables, are
included with these command descriptions. A list of the possible return codes for
each command is found in “CCB Return Codes Listed by Command” on page B-5.

Each command description begins with a box containing the command name. The
hexadecimal number at the top of the box is the command code value. Whenever
parameter tables are included, descriptions of the parameters follow the table.

— Hex 27
BUFFER.FREE

Command Description: This command returns one or more buffers to the SAP’s
buffer pool or to the direct station buffer pool.

Command Specifics: When the buffer is placed back in the buffer pool, bytes 4
and 5 (buffer length) of the buffer are set to zero. This command is executed
entirely in the workstation. The return code is available to the application program
upon return from the protocol drivers.

For CCB1 and CCB3: The command completion appendage is taken if provided.

For CCB2: Either a semaphore or a READ command can be used for command
completion.

Valid Return Codes: See “CCB Return Codes Listed by Command” on page B-5.

Table 3-1. CCB Parameter Table for BUFFER.FREE

Byte 8086

Offset Parameter Name Length Type Description
0 STATION_ID 2 Dw SAP/direct station ID;

defines the buffer pool.
2 BUFFER_LEFT 2 DwW Number of buffers left in

the pool.*

DB Reserved.
FIRST_BUFFER 4 DD Address of the first

buffer to be added to
the pool. The value is
set to zero on return.

* Indicates a returned value.

STATION_ID

Explanation: This parameter defines the SAP to which the buffer is currently
assigned. The SAP_NUMBER portion of the STATION_ID field must identify a
valid opened SAP or X'00' (direct station); the STATION_NUMBER portion is
ignored.

3-4 LAN Technical Reference: 802.2 and NETBIOS APIs

BUFFER.GET

BUFFER.GET

BUFFER_LEFT

Explanation: This parameter defines the number of buffers in the pool after the
command is completed. The protocol driver returns the value when the command
has been executed.

FIRST_BUFFER

Explanation: This parameter is the address of the first buffer to be added to the
pool. If this value is zero, no buffer is freed, and the command is completed with a
CCB_RETCODE of X'00'.

— Hex 26
BUFFER.GET

Command Description: This command gets one or more buffers from the SAP’s
buffer pool or the direct station buffer pool.

Command Specifics: This command is executed entirely in the workstation. The
return code is available to the application program upon return from the protocol
driver.

For CCB1 and CCB3: The command completion appendage is taken if provided.

For CCB2: Either a semaphore or a READ command can be used for command
completion.

Valid Return Codes: See “CCB Return Codes Listed by Command” on page B-5.

Table 3-2. CCB Parameter Table for BUFFER.GET

Byte 8086
Offset Parameter Name Length Type Description
0 STATION_ID 2 DW SAP/direct station ID;
defines the buffer pool
2 BUFFER_LEFT 2 DW Number of buffers left in
the pool *
4 BUFFER_GET 1 DB Number of buffers to
get
DB Reserved
8 FIRST_BUFFER 4 DD Address of first buffer
obtained *

* Indicates a returned value.

STATION_ID

Explanation: This parameter defines the SAP buffer pool from which the buffer is
to be taken. The SAP_NUMBER portion of the STATION_ID field must identify a
valid opened SAP or X'00' (direct station); the STATION_NUMBER portion is
ignored.

Chapter 3. The Command Control Blocks 3-5

DIR.CLOSE.ADAPTER

BUFFER_LEFT

Explanation: This parameter defines the number of buffers in the pool after the
command is completed. The protocol driver returns the value when the command
is completed.

BUFFER_GET

Explanation: This parameter defines the number of buffers to get from the pool.
If there is an inadequate number of buffers in the pool, the command terminates
with a CCB_RETCODE of X'19'. If the value is set to 0, the default of 1 is used.

Note: This command could cause a link station to go into a local-busy state if too
many buffers are taken.

FIRST_BUFFER

~ Explanation: This parameter is the address of the first buffer that was obtained.
The adapter returns the value when the command is completed. If no buffers are
obtained, this field is set to X'00000000"'.

DIR.CLOSE.ADAPTER
— Hex 04

DIR.CLOSE.ADAPTER

Command Description: This command closes the adapter and terminates all
network communications or terminates the open wrap test.

Command Specifics: The command forces an immediate shutdown of network
communications, and all pending commands will have the control block field
CCB_RETCODE set with X'0B'.

For CCB1: If the adapter was opened with a lock code, this command must have
the same hexadecimal value in the first 2 bytes of the CCB_PARM_TAB field in
order to close the adapter. If the key code is not provided or is not correct, the
DIR.CLOSE.ADAPTER command will be rejected with a CCB_RETCODE of X'05'
(required parameters not provided).

For CCB2: For this interface, the close works on a per application program basis.
The adapter does not close physically.

The CCB_POINTER field will be set with the address of a queue of CCBs
that have been terminated by this command.

If the application program has any SAP stations or link stations open, they
will be reset (closed) prior to the command completing.

0S/2 is a multitasking operating system. Therefore, multiple application
programs can interface with the protocol drivers. This command can be
issued by a system administrator using the System Key as defined by the
configuration parameters. A physical close resulting from the
DIR.CLOSE.ADAPTER command being issued occurs only if this command
is issued by the system administrator with the System Key.

Application programs affected by a DIR.CLOSE.ADAPTER command issued
with the System Key can be notified of the event. See “System Action

3-6 LAN Technical Reference: 802.2 and NETBIOS APls

DIR.CLOSE.ADAPTER

Exceptions for OS/2 EE 1.3” on page B-69 for more information. The
System Key should be placed in the CCB_PARAMETER_2 field, if defined.

Whenever a physical close occurs resulting from the use of the System

Key, all pending commands for all application programs will be set with the
CCB_RETCODE of X'62'. Commands on a per application program basis
will be chained to the first command canceled for each application program.

If the application program has previously set bits of the functional address

with the DIR.SET.FUNCTIONAL.ADDRESS command, the protocol driver

resets the bits. Bits defined by the configuration parameters, however, are
not affected.

If the CCB_CMPL_FLAG field is non-zero, an attempt will be made to
update a READ command’s parameter table with pointers to outstanding
CCBs, freed SAP buffers, and outstanding receive frames. If there is a
READ command chained to the DIR.CLOSE.ADAPTER command (if
CCB_READ_FLAG is non-zero and CCB_POINTER contains the address of
a READ CCB), that READ command will be used to return the outstanding
data areas of the application program. If there is no READ command
chained to the DIR.CLOSE.ADAPTER command, but there is a pending
READ command that specifies notifications of command completions, it will
be used to return outstanding data areas of the application program. If
there is no READ pending that specifies notifications of command
completions, free SAP buffer, and outstanding receive frames will not be
posted to the user but the pending CCBs will be chained to the
CCB_POINTER field of this command.

"For CCB3: For this interface, the close works on a per application program basis.
The adapter does not close physically.

The CCB_POINTER field will be set with the address of a queue of CCBs
that have been terminated by this command.

If the application program has any SAP stations or link stations open, they
will be reset (closed) before the command has finished executing.

0S/2 is a multitasking operating system. Therefore, multiple application
programs can interface with the protocol drivers. This command can be
issued by a system administrator using the System Key as defined by the
configuration parameters. A physical close resulting from the
DIR.CLOSE.ADAPTER command being issued occurs only if this command
is issued by the system administrator with the System Key.

Application programs affected by a DIR.CLOSE.ADAPTER command issued
with the System Key can be notified of the event. See “System Action
Exceptions for OS/2 EE 1.3" on page B-69 for more information. The
System Key should be placed in the CCB_PARAMETER_2 field, if defined.

Whenever a physical close occurs resulting from the use of the System

Key, all pending commands for all application programs will be set with the
CCB_RETCODE of X'62'. Commands on a per application program basis
will be chained to the first command canceled for each application program.

If the application program has previously set bits of the functional address

with the DIR.SET.FUNCTIONAL.ADDRESS command, the protocol driver

resets the bits. Bits defined by the configuration parameters, however, are
not affected.

Chapter 3. The Command Control Blocks 3-7

DIR.CLOSE.DIRECT

The canceled commands and freed SAP buffers are returned to the
application program device driver entry point for the system action event if
the SYSTEM_ACTION_APPNDG field is defined.

An application program using the DD interface must issue the
DIR.CLOSE.ADAPTER command when it no longer requires the services
provided by the protocol drivers, since the protocol drivers cannot determine
when an application program using the DD interface terminates. If the
DIR.CLOSE.ADAPTER command is not issued, the internal control blocks
used by the protocol drivers to support an application program will not be
available for other application programs.

Valid Return Codes: See “CCB Return Codes Listed by Command” on page B-5.

DIR.CLOSE.DIRECT

3-8

— Hex 34
DIR.CLOSE.DIRECT

Command Description: This command is for CCB2 and CCBS3 only. It releases
ownership of all direct stations.

Command Specifics: This command is executed entirely in the workstation. The
return code is available to the application program upon return from the protocol
driver. This command can be issued by a system administrator with the System
Key as defined by the configuration parameters. The System Key code can be
used and is located in the CCB_PARAMETER_2 field. This key code is used to
force the availability of the direct stations. If the System Key is used, all pending
commands and buffers from the direct buffer pool can be returned to the application
program. See “System Action Exceptions for OS/2 EE 1.3” on page B-69 for more
information. This function is not typically used by an application program.

For CCB2: If a READ command is used to post this command, the buffers from
the direct buffer pool are returned in the READ command parameter table. If the
System Key is used, all pending commands and buffers from the direct buffer pool
are returned to the application program affected when a READ command issued by
the application program is executed for a system action event.

For CCB3: This command completion can be posted to the completion
appendage specified in the CCB of the command. When the completion
appendage is defined, all pending commands and the direct buffer pool are
returned in the information table when this command is executed. If the System
Key is used, all pending commands and the direct buffer pool are returned to the
application program if a SYSTEM_ACTION_APPNDG field is defined.

Valid Return Codes: See “CCB Return Codes Listed by Command” on page B-5.

LAN Technical Reference: 802.2 and NETBIOS APls

DIR.DEFINE.MIF.ENVIRONMENT

DIR.DEFINE.MIF.ENVIRONMENT
— Hex 2B

DIR.DEFINE.MIF.ENVIRONMENT

Command Description: This command is for CCB1 only. It defines the
environment required for a NETBIOS emulation program to operate with the
protocol drivers.

Command Specifics: This command informs the protocol drivers of the
interactive routines to be provided by the NETBIOS emulation program. The
adapter number in the CCB must be a value from X'00' to X'03"', but the
environment will be defined for all adapters supported by the Local Area Network
Support Program, if they are installed in the workstation. This command does not
have any effect on the original PC Network Adapter if one is installed and if the
Local Area Network Support Program is not being used. The command can be
issued when an adapter is either open or closed. The command is executed
entirely in the protocol drivers in the workstation. Therefore, the command
completion appendage is not required, as the command is complete upon return.
However, the command completion appendage will be taken if provided.

Note: A NETBIOS emulation program must at some time post a completion code
to the Network Control Block (NCB) that was presented to it by an
application program. If no command completion appendage
(NCB_POST @) has been provided, the emulation program should end with
an IRET instruction to return to the protocol driver, which will return to the
application program.

If an appendage has been defined, the emulation program should end with
the following instruction sequence to cause the protocol driver to call the
appendage.

Table 3-3. Appendage Instruction Sequence
CLI

LES BX,NCBADDR ES and BX point to the NCB
STC Set carry flag to indicate POST
RET FAR 2 Return (around flags on stack)

This special handling of the flags is the indication to the protocol driver that
the appendage (NCB_POST®@) is to be called. That appendage should end
with an IRET instruction.

Valid Return Codes: See “CCB Return Codes Listed by Command” on page B-5.

Chapter 3. The Command Control Blocks 3-9

DIR.DEFINE.MIF.ENVIRONMENT

Parameters:

Table 3-4. CCB Parameter Table for DIR.DEFINE.MIF.ENVIRONMENT

Byte 8086

Offset Parameter Name Length Type Description

For CCB1 only:

0 NCB_INPUT@ 4 DD The address of NCB

’ module

4 NCB_OPEN@ 4 DD The address of the
open module

8 NCB_CLOSE@ 4 DD The address of the
close module

12 NCB_ENABLE@ 4 DD The address of the

interrupt module *

* Indicates a returned value.

NCB_INPUT

Explanation: This field must have a value other than zero. It must contain the
address of a module or routine that the protocol driver can call when it has
determined that the control block is an NCB rather than a CCB. Registers ES and
BX will point to the NCB. Register AL contains flags as defined in the PDT.TRACE
CCB entry byte 1. See page 3-79 for more information.

The specified module or routine must end with an IRET instruction back to the
application program that issued the NCB. It does not return to the protocol driver.

The module will be entered with the same stack used by the application program
that issued the NCB. It is the responsibility of the module to return the stack and
registers as they were when the module was entered. Only the return address and
flags are on the stack when the module is entered.

NCB_OPEN

Explanation: This field must have a value other than zero. It must contain the
address of a module or routine that the protocol driver can call when it has opened
an adapter. It does this to inform the NETBIOS emulator that the adapter is open.
Registers ES and BX will point to the CCB used to open the adapter. Register CX
contains the adapter number.

The specified module or routine must end with a Far Return instruction back to the
protocol driver, with register AL set to indicate the return code. If the AL register is
set to zero, the NETBIOS emulator indicates a good return. If AL is not zero, the
DIR.OPEN command is completed with a return code of X'10'.

NCB_CLOSE

Explanation: This field must have a value other than zero. It must contain the
address of a module or routine that the protocol driver can call when it has closed
an adapter for any reason. Register CX contains the adapter number.

The specified module or routine must end with a Far Return instruction back to the
protocol driver.

3-10 LAN Technical Reference: 802.2 and NETBIOS APls

DIR.INITIALIZE

NCB_ENABLE

Explanation: The protocol driver returns the address of a routine that is to be
called when interrupts are to be enabled.

DIR.INITIALIZE

— Hex 2C
DIR.INITIALIZE

Command Description: This command initializes the IBM support program
protocol driver areas in the workstation, resets all adapter tables and buffers, and
directs the adapter to run the bring-up tests. Bring-up tests are for the Token-Ring
network only. The adapter's programmable timer is started and set to interrupt the
workstation at 100-ms intervals.

For purposes of system integrity, the DIR.INITIALIZE command loops with
interrupts enabled (except in the hardware interrupt appendage for CCB1 as
explained below) until one of the following occurs:

e The adépter interrupts, indicating completion.
+ Time expires (approximately 12 seconds for a Token-Ring Network adapter).

The 12-second period that may elapse is due to the implementation of a 3-second
timeout and retry function. The initialization attempt is not aborted until at least four
attempts have been made to initialize the adapter and execute diagnostics.

Command Specifics: This command is executed entirely in the workstation. The
return code is available to the application program upon return from the protocol
driver.

For CCB1: Because the command loops until it is completed, no command
completion appendage needs to be defined. The CCB_RETCODE is
available upon return.

The command can be issued at any time. It resets the adapter, and any
CCBs in process will not be returned. No attempt is made to recover
pending CCBs.

This command must be issued before any other command can be issued.
This command will also preempt any other command queued for the
protocol driver. It will execute immediately.

For CCB2 and CCB3: This command can be issued at any time by a system
administrator with the System Key as defined by the configuration
parameters. The System Key should be placed in the
CCB_PARAMETER_2 field, if defined.

When issued, DIR.INITIALIZE resets the adapter. It also returns pending
CCBs and buffer resources to the application program that issued them as
system action exception information. That is, the returned command’s
CCB_RETCODE will be set to X'62".

Application programs affected by a DIR.INITIALIZE can be notified of the
event. See “System Action Exceptions for OS/2 EE 1.3” on page B-69 for
more information.

Valid Return Codes: See “CCB Return Codes Listed by Command” on page B-5.

Chapter 3. The Command Control Blocks 3-11

DIR.INITIALIZE

Parameters:

Table 3-5 (Page 1 of 2). CCB Parameter Table for DIR.INITIALIZE

Offset Parameter Name

Byte
Length

8086
Type

Description

0 BRING_UPS

2

DW

Bring-up error code. *

This parameter is not

set on the PC network
or on Ethernet.

For CCB1:

2 SRAM_ADDRESS

DW

Segment value of
adapter shared RAM. *
This parameter is not
recognized on the PC
Network or on Ethernet.

Reserved.

ADPTR_CHK_EXIT

DD

I/0 appendage exit,
adapter check.

12 NETW_STATUS_EXIT

DD

I/O appendage exit,
network status change.

16 PC_ERROR_EXIT

DD

I/O appendage exit,
error in the workstation.
This parameter is not
set on the PC Network
or on Ethernet.

For CCB2 and CCB3:

2 SRAM_ADDRESS

Dw

Configured address of
shared RAM. * This
parameter is not
recognized on the PC
Network or on Ethernet.

4

DB

Reserved. *

5

15

DB

Reserved.

For CCB2:

20 VIRTUAL_SRAM_ADDRESS

DD

Virtual address of
shared RAM.*

For the PC Network or
for Ethernet, this is the
address of RAM
containing link stations,
SAPs, and so on.

24 VIRTUAL_MMIO_ADDRESS

DD

Virtual address of
MMIO. *

This is not set on the
PC Network or on
Ethernet.

* Indicates a returned value.

3-12 LAN Technical Reference: 802.2 and NETBIOS APIs

DIR.INITIALIZE

Table 3-5 (Page 2 of 2). CCB Parameter Table for DIR.INITIALIZE

Byte 8086
Offset Parameter Name Length Type Description

28 DATA_SEG_ADDRESS 4 DD Virtual address of
device driver's data
segment. *

For CCB3:

20 VIRTUAL_SRAM_ADDRESS 4 DD Virtual address with
GDT selector of shared
RAM. *

For the PC Network or
Ethernet, this is the
address of RAM
containing link stations,
SAPs, and other data
structures.

24 VIRTUAL_MMIO_ADDRESS 4 DD Virtual address with
GDT selector
of MMIO. *

This is not set on the
PC Network or on
Ethernet.

28 DATA_SEG_ADDRESS 4 DD Virtual address with
GDT selector of device
driver's data segment. *

* Indicates a returned value.

BRING_UPS

Explanation: Indicates the results of the adapter bring-up testing for IBM
Token-Ring Network Adapters. A value is entered only if the adapter fails bring-up.
If the adapter passes bring-up, the value of this parameter is X'0000'. If the
adapter fails bring-up, the command terminates with a CCB_RETCODE of X'07".
See “Bring-Up Errors for All CCBs” on page B-57 for a list of bring-up error codes
and descriptions.

This parameter is not set on the PC Network or on Ethernet.

SRAM_ADDRESS

Explanation: This defines the workstation memory segment where the adapter
shared RAM is to be addressed. This field is ignored on the PC Network or
Ethernet.

For CCB1:
* For Token-Ring Network adapters with ISA Bus

If the application program specifies a non-zero number for shared RAM
when loading the protocol drivers, that value is used as the segment
address for the shared RAM.

If zero is coded here, the defaults (X'D800' for adapter 0, X'D400' for
adapter 1) are used.

Chapter 3. The Command Control Blocks 3-13

DIR.INITIALIZE

The value must be on the same address boundary as the shared RAM
size mapped into the workstation (for example, on an 8 KB boundary for
8 KB of shared RAM, on a 16 KB boundary for 16 KB of shared RAM,
and so on).

¢ For Token-Ring Network adapters with Micro Channel

The input value is ignored (the shared RAM segment address is set
using the Reference Diskette shipped with the workstation). A non-zero
value coded here does not update the shared RAM address, and no
error code is returned to the application program.

The value returned will be the segment address used for the shared RAM
on both Token-Ring Network adapters with ISA Bus and Token-Ring
Network adapters with Micro Channel.

For CCB2 and CCB3:
e For Token-Ring Network adapters with ISA Bus

The shared RAM segment address is defined using the configuration
parameters. See Appendix E, “Operating System/2 Extended Edition
Information,” for additional information.

¢ For Token-Ring Network adapters with Micro Channel

The input value is ignored. The shared RAM segment address is set
using the Reference Diskette shipped with the workstation.

The value returned will be the segment address used for the shared RAM
on both Token-Ring Network adapters with ISA Bus and Token-Ring
Network adapters with Micro Channel. This value cannot be used directly
by the system administrator while the workstation is running in protect
mode.

ADPTR_CHK_EXIT

Explanation: The address of a user-provided appendage routine that is taken
when an adapter error condition is detected. If the value is zero, no exit is defined.
This exit can also be overridden by the DIR.OPEN.ADAPTER,
DIR.SET.USER.APPENDAGE, and DIR.MODIFY.OPEN.PARMS commands. See
“Exception Indications” on page B-46 for adapter check error codes.

NETW_STATUS_EXIT

Explanation: The address of a user-provided appendage routine that is taken
when the network status changes. This exit may also be overridden by the
DIR.OPEN.ADAPTER, DIR.SET.USER.APPENDAGE, and
DIR.MODIFY.OPEN.PARMS commands. See “Exception Indications” on

page B-46 for network status codes.

PC_ERROR_EXIT

Explanation: The address of a user-provided appendage routine that is taken
when the protocol driver detects an error condition in the workstation. This is not
used on the PC Network or on Ethernet. This exit can also be overridden by the
DIR.OPEN.ADAPTER, DIR.SET.USER.APPENDAGE, and
DIR.MODIFY.OPEN.PARMS commands. See “Exception Indications” on

page B-46 for workstation errors.

3-14 LAN Technical Reference: 802.2 and NETBIOS APls

DIR.INITIALIZE

VIRTUAL_SRAM_ADDRESS
Explanation:
For CCB2: Virtual address of adapter shared RAM.

This parameter defines the address (selector:offset) that can be used to
access the Token-Ring Network adapter's shared RAM.

It also can define the address (selector:offset) that can be used to access
the workstation RAM that has been allocated to the PC Network or Ethernet
adapters.

An entry for this memory segment is made into the logical descriptor table
(LDT) of the OS/2 EE process that issues this command. This command is
only valid for the process that issued it.

For CCB3: Virtual address with global descriptor table (GDT) selector of adapter
shared RAM.

This parameter defines the address with GDT selector (selector:offset) that
can be used to access the Token-Ring Network adapter's shared RAM.

It can also define the address with GDT selector (selector:offset) that can
be used to access the workstation RAM that has been allocated to the PC
Network or Ethernet adapters.

MMIO_ADDRESS

Explanation:

For CCB2: Virtual address of adapter memory mapped input output (MMIO).

This parameter defines the address (selector:offset) that can be used to
access the adapter MMIO.

This parameter is not returned when you are using PC Network or Ethernet
adapters.

An entry for this memory segment is made into the LDT of the OS/2 EE
process that issues this command. This command is only valid for the
process that issued it.

For CCB3: Virtual address with GDT selector of adapter MMIO.

This parameter defines the address with GDT selector (selector:offset) that
can be used to access the adapter MMIO.

This parameter is not returned when you are using PC Network or Ethernet
adapters.

DATA_SEG_ADDRESS
Explanation:

For CCB2: Virtual address of the data segment in which the protocol drivers are
located.

This parameter defines the address (selector:offset) that can be used to
access the data segment in which the protocol drivers are located.

This memory segment has been mapped in the GDT of the OS/2 EE
process that issues this command.

Chapter 3. The Command Control Blocks 3-15

DIR.MODIFY.OPEN.PARMS

An entry for this memory segment is made into the LDT of the OS/2 EE
process that issues this command. This command is only valid for the
process that issued it.

For CCB3: Virtual address with GDT selector of the data segment in which the
protocol drivers are located.

This parameter defines the address with GDT selector (selector:offset) that
can be used to access data segment in which the protocol drivers are
located.

DIR.INTERRUPT

—— Hex 00
DIR.INTERRUPT

Command Description: This command only forces an adapter interrupt. It
performs no operation.

For CCB1: The adapter must have been initialized, but does not have to be
opened for this command to be accepted.

For CCB2 and CCB3: The adapter must be opened before this command is
issued.

Command Specifics: No parameter table is required.
Valid Return Codes: See “CCB Return Codes Listed by Command” on page B-5.

DIR.MODIFY.OPEN.PARMS

— Hex 01
DIR.MODIFY.OPEN.PARMS

Command Description: This command is for CCB1 only. It is used to modify
certain values set by the DIR.OPEN.ADAPTER command.

Command Specifics: This command is rejected if either a BUFFER.FREE
command has been issued, or a RECEIVE command is active at the direct
interface, or if a direct interface buffer pool has been defined.

After this command has been issued successfully, it cannot be issued again until a
DIR.RESTORE.OPEN.PARMS command has been issued and successfully
completed.

Valid Return Codes: See “CCB Return Codes Listed by Command” on page B-5.

Table 3-6 (Page 1 of 2). CCB Parameter Table for DIR.MODIFY.OPEN.PARMS

Byte 8086
Offset Parameter Name Length Type Description
For CCB1 only:
0 DIR_BUF_SIZE 2 bDw The size of the new
direct interface SAP
buffers

3-16 LAN Technical Reference: 802.2 and NETBIOS APis

DIR.OPEN.ADAPTER

Table 3-6 (Page 2 of 2). CCB Parameter Table for DIR.MODIFY.OPEN.PARMS

Byte 8086

Offset Parameter Name Length Type Description

2 DIR_POOL_BLOCKS 2 DW The length in 16-byte
blocks, of buffers in the
new direct interface
buffer pool

4 DIR_POOL_ADDRESS 4 DD The starting segment of
the new direct interface
buffer pool

8 ADPT_CHK_EXIT 4 DD New |/O appendage
exit, adapter check

12 NETW_STATUS_EXIT 4 DD New I/O appendage
exit, network status

16 PC_ERROR_EXIT 4 DD New |/O appendage
exit, error in workstation

20 OPEN_OPTIONS 2 DW New options (wrap

See the parameter descriptions for the DIR.OPEN.ADAPTER command.

DIR.OPEN.ADAPTER

option is ignored)

— Hex 03
DIR.OPEN.ADAPTER

Command Description:

For CCB1: This command makes the adapter ready for normal network
communication. All buffers and tables will be reinitialized.

For CCB2 and CCB3: This command makes the protocol drivers ready for

normal network communications on all network adapters for a given
application program. In addition, this command provides the application
program with DLC and direct interface information necessary for network
communications.

The DIR.OPEN.ADAPTER command must be issued and executed

successfully before any network communication can start. The only
commands that can be issued before opening the adapter are those
commands that use the System Key as defined by the configuration
parameters or the DIR.STATUS command.

Since OS/2 EE is a multitasking operating system, where multiple
application programs can interface with the protocol drivers, each
DIR.OPEN.ADAPTER command results in a logical open. This command is
executed entirely in the workstation when a logical open is performed. The
return code is available to the application program upon return from the
protocol drivers. A physical open occurs only if the adapter has been
physically closed due to a system action or an unrecoverable error. When
a physical open does occur, all buffers and tables in the adapter are
reinitialized.

Chapter 3. The Command Control Blocks 3-17

DIR.OPEN.ADAPTER

Command Specifics:

For CCB1: This command cannot be issued unless the adapter is in a closed

state, such as that following a DIR.INITIALIZE or a DIR.CLOSE.ADAPTER
command. The only commands that should be issued before the
DIR.OPEN.ADAPTER command are DIR.INITIALIZE, DIR.INTERRUPT, and
DIR.STATUS.

This command also makes the adapter ready for an adapter wrap test on
Token-Ring Network adapters.

I the first DIR.OPEN.ADAPTER is in process when the second

DIR.OPEN.ADAPTER is issued, the value for NODE_ADDRESS may be
invalid.

If the OPEN_OPTIONS bit 9 (Pass Parm Table bit) is on when the
DIR.OPEN.ADAPTER command is issued, all the ADAPTER_PARMS and
DLC_PARMS values in the parameter table that were set to use default
values are updated with the default value actually used. If the adapter is
open when this command is issued and the open option bit 9 is on, the
command will be executed with the X'03' return code and also have its
parameter tables updated with the currently active open parameter values.
The actual values for the ADAPTER_PARMS and DLC_PARMS fields are
returned. The actual values for the OPEN_LOCK and
PRODUCT_ID_ADDRESS fields are not returned; a value of zero is stored
in these fields. If the DLC interface is not open, zeros are returned in the
DLC_PARMS field.

The DIR.OPEN.ADAPTER parameter table has four pointers to
function-oriented tables. These tables contain open parameters for the
adapter itself, the direct interface, the DLC interface, and NETBIOS. See
Chapter 4, “NETBIOS,” for using NETBIOS.

For CCB2: This command cannot be issued unless the adapter is in a logically

closed state for the application program issuing the command. A logically
closed state exists after one of the following occurs: adapter initialization,
detection of a fatal error, or the execution of a DIR.CLOSE.ADAPTER
command.

* After a DIR.OPEN.ADAPTER command is issued, no commands (other
than commands using the System Key or the DIR.STATUS command)
are allowed from the application program until the DIR.OPEN.ADAPTER
command is executed.

¢ Posting of the DIR.OPEN.ADAPTER command can only be done using
a system semaphore or polling of the return code.

¢ The adapter must be logically closed at the time the
DIR.OPEN.ADAPTER command is issued.

e The CCB_SEMAPHORE is the posting semaphore.
e The CCB_APPL_ID is the application program ID.

A unique ID is returned for each application program. The protocol
drivers use this ID to reference application program resources. The
application program ID returned must be used for all subsequent
commands that the application program issues.

e The CCB_APPL_KEY is a key code.

3-18 LAN Technical Reference: 802.2 and NETBIOS APls

P

DIR.OPEN.ADAPTER

The key code is used for the application program’s resource security.
The key code logically locks the resources of application programs. No
resource of an application program can be used, discarded, or modified
without this key code. If you do not want to have resources controlled
for an application program, specify X'0000'. If a key code is specified,
all following commands must also specify a key that matches this
CCB_APPL_KEY code.

The DIR.OPEN.ADAPTER command’s parameter table contains two
pointers to function-oriented tables. The fields of these two tables are
returned by the protocol driver and contain open parameters for the adapter
itself and for the DLC interface.

The OS/2 EE process that actually issues the DIR.OPEN.ADAPTER
command is considered the “application program.” When this process is
terminated, all application program control blocks used to maintain the
logical relationship between the application program and the protocol driver
are cleaned up and made available for other application programs.

After the DIR.OPEN.ADAPTER command has been issued, the application
program should ensure that the network is in working order by issuing the
DIR.STATUS command to retrieve the current network status.

For CCB3: This command cannot be issued unless the adapter is in a logically
closed state for the application program issuing the command. A logically
closed state exists after one of the following occurs: adapter initialization,
detection of a fatal error, or the execution of a DIR.CLOSE.ADAPTER
command.

e After a DIR.OPEN.ADAPTER command is issued, no commands (other
than commands using the System Key) are allowed from the application
program until the DIR.OPEN.ADAPTER command is executed.

e Posting of the DIR.OPEN.ADAPTER command can only be done using
an appendage or polling of the return code.

* The adapter must be logically closed at the time the
DIR.OPEN.ADAPTER command is issued.

e The CCB_APPL_ID is the application program ID.

A unique ID is returned for each application program. The protocol
driver uses this ID to reference application program resources. The
application program ID returned must be used for all subsequent
commands that the application program issues.

e The CCB_APPL_KEY is a key code.

The key code is used for the application program’s resource security.
The key code logically locks the resources of application programs. No
resource of an application program can be used, discarded, or modified
without this key code. If you do not want to have resources controlled
for an application program, specify X'0000'. If a key code is specified,
all subsequent commands must also specify a key that matches this
CCB_APPL_KEY code.

The DIR.OPEN.ADAPTER command’s parameter table contains two
pointers to function-oriented tables. The fields of these two tables are
returned by the protocol driver and contain open parameters for the adapter
itself and for the DLC interface.

Chapter 3. The Command Control Blocks 3-19

DIR.OPEN.ADAPTER

3-20

After the DIR.OPEN.ADAPTER command has been issued, the application
program should ensure that the network is in working order by issuing the
DIR.STATUS command to retrieve the current network status.

Valid Return Codes: See “CCB Return Codes Listed by Command” on page B-5.

Parameters:

Table 3-7. CCB Parameter Table for DIR.OPEN.ADAPTER

Byte 8086

Offset Parameter Name Length Type Description

For CCB1:

0 ADAPTER_PARMS 4 DD Pointer to the adapter
parameters.

4 DIRECT_PARMS 4 DD Pointer to the direct
interface parameters.

8 DLC_PARMS 4 DD Pointer to the DLC
parameters.

12 NCB_PARMS 4 DD Pointer to the NETBIOS
parameters.

For CCB2 and CCB3:

0 ADAPTER_PARMS_OFFSET 2 DW Offset to the adapter
parameters.

2 2 DW Reserved for the
application program.
Can be used for the
segment or selector.

DD Reserved.
DLC_PARMS_OFFSET DW Offset to the DLC

parameters.

10 2 DW Reserved for the
application program.
Can be used for the
segment or selector.

12 4 DD Reserved.

ADAPTER_PARMS and ADAPTER_PARMS_OFFSET

Explanation: These parameters point to a parameter table (see Table 3-8 on

page 3-21).

For CCB1: This parameter is required and points to a parameter table. There
must be a non-zero value provided for this parameter.

For CCB2 and CCB3: This parameter is an offset that points to a parameter
table. This pointer should be provided so that global adapter parameters

can be returned to the application program.

Most parameters are retumned values that have been defined by

configuration parameters.

LAN Technical Reference: 802.2 and NETBIOS APls

DIR.OPEN.ADAPTER

DIRECT_PARMS

Explanation: This parameter is used by the direct station only and points to a
parameter table (see Table 3-11 on page 3-28). There must be a non-zero value
provided for this parameter.

DLC_PARMS and DLC_PARMS_OFFSET

Explanation: These parameters point to a parameter table (see Table 3-12 on
page 3-31).

For CCB1: This parameter is required and points to a parameter table. It must be
defined (not zero) if any interface other than the direct interface is to be used. If
this field value is zero, the DLC interface and NETBIOS are not operational.

For CCB2 and CCB3: This parameter is an offset that points to a parameter
table. This pointer should be provided so that global DLC parameters can
be returned to the application program.

Most parameters are returned values that have been defined by
configuration parameters.

NCB_PARMS

Explanation: This field is a pointer to a parameter table. If this field value is zero
when NETBIOS is used, all default values are used. See page 4-8 for information
about the NETBIOS operational parameters.

Parameters:

Table 3-8 (Page 1 of 2). Adapter Parms Open Parameters

Byte 8086
Offset Parameter Name Length Type Description
0 OPEN_ERROR_CODE 2 Dw Open adapter errors
detected. Set by the
adapter. **
OPEN_OPTIONS 2 DW Various options. *
NODE_ADDRESS 6 DB This adapter's address.
10 GROUP_ADDRESS 4 DB Set group address. *
14 FUNCTIONAL_ADDR 4 DB Set functional address.
18 NUMBER_RCV_BUFFERS 2 DW Number of receive
buffers. *
20 RCV_BUFFER_LEN 2 DW Length of the receive
buffers. *
22 DHB_BUFFER_LENGTH 2 DW Length of the transmit

data hold buffers. *

* Indicates a returned value for CCB2 and CCB3.

** Indicates a returned value for all CCBs.

Chapter 3. The Command Control Blocks 3-21

DIR.OPEN.ADAPTER

Table 3-8 (Page 2 of 2). Adapter Parms Open Parameters

Byte 8086

Offset Parameter Name Length Type Description

24 DATA_HOLD_BUFFERS 1 DB Number of transmit data
hold buffers. *

This parameter is not
recognized on the PC
Network or on Ethernet.
Is used only by the
Token-Ring Network.

For CCB1:

25 DB Reserved.

26 OPEN_LOCK 2 DW A protection code to
control closing the
adapter.

28 PRODUCT_ID_ADDRESS 4 DD Address of the 18-byte
product ID.

For CCB2 and CCB3:

25 DB Reserved.

28 PRODUCT_ID_OFFSET DW Offset of 18-byte
product ID.

30 2 DW Reserved for the
application program.
Can be used for the
segment or selector.

32 BRING_UPS DW Bring up errors. *

34 INIT_WARNINGS DW Initialization warnings. *

For CCB2:

36 SEMAPHORE_COUNT 2 DW Count of system
semaphore handles.

38 SYS_SEMAPHORE_TABLE 4 DD Address to system
semaphore table.

For CCB3:

36 2 Dw Reserved for the
application program.

38 4 DD Reserved for the
application program.

42 DDNAME 8 DB Device driver name.

* Indicates a returned value for CCB2 and CCB3.

** Indicates a returned value for all CCBs.

OPEN_ERROR_CODE

Explanation: Indicates the results of the open adapter testing. If the value is not
X'0000', the command terminates with a CCB_RETCODE of X'07'. See
“Token-Ring Network Adapter Open Errors for All CCBs” in Appendix B, “Return

Codes,” for open error codes.

3-22 LAN Technical Reference: 802.2 and NETBIOS APls

DIR.OPEN.ADAPTER

OPEN_OPTIONS

Explanation: Various options, each defined by a bit. A bit on (1) indicates that
the option is to be taken. Bit 15 is the high-order (leftmost) bit. Only bit 9 is
recognized on the PC Network or on Ethernet.

For CCB2 and CCB3: These are returned values.

Table 3-9 (Page 1 of 2). IBM Token-Ring Network Adapter OPEN_OPTIONS

Bit Name Description
15 Wrap interface The adapter will not attach itself to the network. Instead, it
causes all user transmit data to be wrapped as received
data.
14 Disable Hard Error Prevents network status changes involving “Hard Error”
and “Transmit Beacon” bits from causing interrupts.
13 Disable Soft Errors Prevents network status changes involving the “Soft Error”
bit from causing interrupts.
12 Pass Adapter MAC Passes, as direct interface data to the workstation, all
Frames adapter class MAC frames that are received but not
supported by the adapter. If this bit is set to off, these
frames are ignored.
11 Pass Attention MAC Passes, as direct interface data to the workstation, all
Frames attention MAC frames that are not the same as the last
received attention MAC frame. If this option is set to off,
these frames are not passed to the application program.
10 Reserved Should be zero, but this bit is not checked by the protocol
driver.
9 For CCB1: If the adapter is already open, the options used when
Pass Parm opening the adapter are returned to the user parameter
Table table.
For CCB2 and Should be zero, but this bit is not checked by the protocol
CCBa3: driver.
— BReserved
8 Contender When the contender bit is set to on, the adapter
participates in monitor contention (claim token) if the
opportunity occurs. When the contender bit is set to off,
and the need is detected by another adapter, this adapter
does not participate.
If the need for determining a new active monitor is
detected by this adapter, monitor contention (claim token)
processing will be initiated by this adapter whether the
contender bit is set to on or off.
7 Pass Beacon MAC Passes, as direct interface data to the workstation, the first
frames beacon MAC frame and all subsequent beacon MAC
frames that have a change in the source address or the
beacon type.
6 Reserved Should be zero, but this bit is not checked by the protocol
driver.
5 Remote Program This bit is only implemented in 16/4 adapters. It prevents

Load

the adapter from becoming a monitor during the open
process. If this bit is set to on, the adapter fails the open
process if there is no other adapter on the ring when it
attempts to insert on the ring.

Chapter 3. The Command Control Blocks 3-23

DIR.OPEN.ADAPTER

3-24

Table 3-9 (Page 2 of 2). IBM Token-Ring Network Adapter OPEN_OPTIONS

Bit Name Description

4 Token Release This bit is only available for 16/4 adapters when operating
at 16 Mbps. If the bit is not set, 16 Mbps adapters use
early token release (the default). Setting this bit on selects
no early token release for an adapter operating at 16
Mbps.

For CCB1: If Token Release is selected by using the
command line parameter, this bit will be set on when the
DIR.OPEN.ADAPTER command is executed.

0-3 Reserved Should be zero, but these bits are not checked by the
protocol driver.

Refer to the IBM Token-Ring Network Architecture Reference for more information
about network operation.

NODE_ADDRESS

Explanation: The 6-byte specific node address of this station on the network.
The value must not be all ones. The two high-order (leftmost) bits must be B'01"'.
For other restrictions and details about addresses, refer to the IBM Token-Ring
Network Architecture Reference.

If the NODE_ADDRESS parameter was provided when the protocol drivers were
loaded, that address is used rather than the address provided in this parameter
field. The address used is returned in this field by the protocol driver for return to
the application program.

For CCB1: If the value is zero, the address encoded on the adapter is the node
address by default, and that value is placed in this field by the protocol
driver for return to the application program.

If the OPEN_LOCK field is coded as zero, then:

¢ If a locally administered address was specified when the protocol
drivers were loaded, the locally administered address is used regardless
of the contents of this field.

¢ If a zero was specified when the protocol drivers were loaded, the
encoded address is used regardless of the contents of this field.

For CCB2 and CCB3: See Appendix E, “Operating System/2 Extended Edition
Information.”

GROUP_ADDRESS

Explanation: Sets the group address for which the adapter will receive messages.
If the value is zero, no group address is set.

LAN Technical Reference: 802.2 and NETBIOS APIs

DIR.OPEN.ADAPTER

FUNCTIONAL_ADDR

Explanation: Sets the functional address the adapter will receive messages for.
The most significant bit and the least significant bit of this field are ignored by the
adapter. If the value is zero, no functional address is set.

For CCB1: If NETBIOS is made operational, it will reissue a
DIR.SET.FUNCTIONAL.ADDRESS command using all bits set in the
current functional address and adding X'00000080" to the bits being used.

For Ethernet adapters, if a functional address is specified in the
DIR.OPEN.ADAPTER command, the same actions will be taken as
described for the DIR.SET.FUNCTIONAL.ADDRESS command. If the
number of bits to be set for the functional address exceeds the number of
available muiticast addresses, the DIR.OPEN.ADAPTER command will not
be executed and a return code of X'1E' will be posted in the CCB.

NUMBER_RCV_BUFFERS

Explanation: The number of receive buffers needed for the adapter to open. The
adapter configures all remaining RAM as receive buffers after other memory
requirements have been met. If the number available is less than the number
requested, the DIR.OPEN.ADAPTER command fails. If the number available is
greater than the number requested, no action occurs. If this value is less than 2,
the default of 8 is used.

If you are using DXMEOMOD.SYS, you may find you have inadequate work space.
The NDIS MAC driver for an NDIS adapter specifies the largest frame size the
adapter can process. When the DIR.OPEN.ADAPTER command is issued, the
receive buffer length and the number of receive buffers are checked to make sure
one maximum size frame can be received in them. (Receive frames can occupy
more than one receive buffer.) If the maximum size frame does not fit, the
DIR.OPEN.ADAPTER command returns X'30' Inadequate receive buffers for
adapter to open.

To correct this problem, you need to specify a larger work space for the adapter.
To do this, increase the value of the work space parameter on the command line of
the protocol driver DXMEOMOD.SYS.

To increase the work space for a PC Network Adapter, alter the work space
parameter on the DXMGnMOD.SYS protocol driver.” Refer to the Local Area
Network Support Program User’s Guide for more information.

RCV_BUFFER_LENGTH

Explanation: The length of each of the receive buffers. The value must be a
multiple of 8 with 96 as the minimum, and 2048 as the maximum.

If the value is zero, the default of 112 is used. When DXMEOMOD.SYS is used,
each buffer holds 14 fewer bytes of data than the specified length; otherwise, each
buffer holds 8 fewer bytes of data than the specified length. Therefore, a buffer
defined as 112 bytes can hold only 104 bytes of data. If a frame received from the
network is longer than one buffer, receive buffers will be chained.

1 The letter n stands for the version of DXMGnMOD.SYS, 0, 1, or 2.

Chapter 3. The Command Control Blocks 3-25

DIR.OPEN.ADAPTER

For CCB1: For Ethernet adapters, the minimum and default receive buffer length
is 208. If the user specifies a buffer length between 96 and 200, length of the
receive buffer is automatically incremented to 208 without flagging an error or
notifying the application.

DHB_BUFFER_LENGTH
Explanation: The length of each of the transmit data hold buffers.2
For the following Token-Ring Network adapters, the maximum DHB length is 2048:

¢ Token-Ring Network PC Adapters and PC Adapter lIs
» Token-Ring Network Adapter/As.

For all new Token-Ring Network adapters operating at 4 Mbps that are supported
by IBM support programs, the maximum DHB length is 4464, and for all
Token-Ring Network adapters operating at 16 Mbps that are supported by IBM
support programs, the maximum DHB length is 17 960.

Note: If a length greater than 2048 is used, it is important to make sure that all
adapters receiving these frames can also handle the larger frame length.

For CCB1: For Ethernet adapters, the maximum DHB buffer length is 1496.

If the value is zero, the default of 600 is used. Each buffer holds 6 fewer bytes of
data than the specified length. Therefore, a buffer defined as 600 bytes can hold
only 594 bytes.

DATA_HOLD_BUFFERS

Explanation: Defines the number of transmit data hold buffers in the adapter in
which data from the workstation is stored. This parameter is not recognized on the
PC Network or on Ethernet.

The adapter accepts any value between zero and 255, but the integrity of adapter
operation cannot be guaranteed if the value is greater than 2. Requesting two
buffers may improve adapter performance by allowing a frame to be moved into the
second buffer while the adapter is transmitting from the first. However, this reduces
the storage available for receive buffers. Transmit buffers are not chained. If the
value is zero, the default of 1 is used.

OPEN_LOCK

Explanation: A code provided to the application program to lock the adapter
open. Only a DIR.CLOSE.ADAPTER command that has a matching key code can
close the adapter. When using this feature, you must make sure that the adapter is
closed when the application program is finished, or all application programs using
the adapter must follow consistent rules about opening and closing the adapter.
This field permits one application program to supervise adapter closing when more
than one application program or operation has access.

It is recommended that the application program code this field as zero.
This field is not returned by coding the OPEN_OPTION bit 9.

2 This value must be a multiple of 8.

3-26

LAN Technical Reference: 802.2 and NETBIOS APIs

DIR.OPEN.ADAPTER

PRODUCT_ID_ADDRESS

Explanation: The address in workstation memory where an 18-byte product ID is
located.

The product ID provides indications about the workstation and programs used. The
field can point to a location containing all zeros, or point to a product ID field
prepared as shown in Table 3-10.

This field is not returned by coding the OPEN_OPTION bit 9.

PRODUCT_ID_OFFSET

Explanation: The offset in workstation memory where an 18-byte product ID is
located.

The product ID provides indications about the workstation and programs used. The
field must point to a location containing all zeros or point to a product ID field
prepared as in Table 3-10.

Table 3-10. Product ID Field

Offset Description

Byte 0 X'01' indicates workstation.

Byte 1 X'10'.

Bytes 2-5 The machine type from the serial number tag at rear of workstation

(the last 4 digits). Enter in EBCDIC. For example, for serial
number=61382, code the field as (FO FO FO F6 F1 F3 F8 F2).
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>