wiaiziao

fiuy uanol gl aul o) aping S Jaunuediodd 9y

|

Programmer’s
Guide to the
IBM Token Ring

William H. Roetzheim

A C Programmer’s
Guide to
the IBM Token Ring

William H. Roetzheim

Prentice Hall, Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

Roetzheim, William H.

A C programmer's guide to the IBM Token Ring / William H.

Roetzheim.
p. cm.

Includes bibliographical references (p.) and index.

ISBN 0-13-723768-5

.1. IBM Token-Ring Network (Local area network system) 2. C
(Computer program language)
TK5195.8.124R64 1991
005.265--dc20 80-14199

CIP

Editorial/production supervision: Brendan M. Stewart
Manufacturing buyer: Kelly Behr and Susan Brunke

© 1991 by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

This book can be made available to businesses and organizations at a special discount when ordered in large
quantities. For more information contact: Prentice-Hall, Inc., Special Sales and Markets, College Division,
Englewood Cliffs, N.J. 07632

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY:

The author and publisher of this book have used their best efforts in preparing this book
and software. These efforts include the development, research, and testing of the theories and pro-
grams to determine their effectiveness. The author and publisher make no warranty of any kind, ex-
pressed or implied, with regard to these programs or the documentation contained in this book. The
author and publisher shall not be liable in any event for incidental or consequential damages in con-
nection with, or arising out of, the furnishing, performance, or use of these programs.

Printed in the United States of America
10 9 87 6 543 21

ISBN 0-13-7237kL6-5

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

To my wife, Marianne, for being so incredibly fun.

Contents

Preface

Acknowledgements

Companion disk offer

1 Local Area Network Overview

1.1
1.2
1.3
14
1.5

What Is a Local Area Network 2
Network Components 3

To What Level Will You Code? 10
Road Map to This Book 13
Suggested Reading 14

2 Relying On The Redirector

2.1
22

2.3
2.4
2.5

PC LAN Memory Requirements 16
Supporting Network Paths in

Your Application 17

Using File and Record Locking 18
Hints and Warnings 31

Suggested Readings 32

15

Contents

3 Portability Using NetBIOS 33

3.1

NetBIOS Network Control Blocks 35

3.2 Naming Conventions and Procedures 41
3.3 Datagram-Oriented Communication 46
3.5 Miscellaneous NetBIOS Commands 58
3.6 NetBIOS Command Summary 61
3.7 NetBIOS Return Code Summary 74
3.8 Suggested Reading 78
4 Speed with DLC Programming 79
4.1 DLC Command Control Block Structure 81
42 Addressing While Using DLC 88
4.3 Adapter Initialization 94
44 Connectionless Communication Using DLC 103
4.5 Connection Oriented Communication Using DLC 116
4.6 Adapter Shutdown 122
4.7 Summary of DLC Commands 122
4.8 Summary of DLC Return Codes 176
4.9 Suggested Reading 182
5 Register Direct Programming 184
5.1 Talking to the Adapter 185
52 Programmed I/O 185
5.3 Memory Mapped I/O 188
54 Interrupt Status Registers 194
5.5 Shared RAM 199
5.6 Adapter Command Blocks 201
5.7 Suggested Readings
6 Token Ring Adapter Hardware 229
6.1 4-Mbps Adapter 229
6.2 16-Mbps Token Ring Adapter 230
6.3 Token Ring Network Adapter Cable 231

vii

Contents

6.4 Suggested Readings 232
7 Using APPC for Transaction Processing 233

7.1 APPC Overview 234

7.2 Addressing in an APPC/PC Environment 235

7.3 Communicating with APPC/PC 236

74 Sending a Transaction in APPC 247

7.5 Receiving Transactions Using APPC/PC 250

7.6 Summary of APPC/PC Commands 250

7.7 Primary Return Codes 256

7.8 Suggested Reading 259
A Glossary 260
B Acronyms 264
C References 266
Index 269

Preface

If you write application programs for the MS-DOS arena, you
must consider the operation of your software over the IBM Token
Ring Network. In the past, this requirement could only be met by
wading through dozens of highly technical, difficult to understand
reference documents. This book distills the key elements from these
documents and presents it in an easy to understand, concise fashion.
For most programmers, everything they ever need to know about the
IBM Token Ring Network can now be found in one convenient
volume. Programming for this environment is covered at the BIOS
redirector, NetBIOS, DLC, register direct, and APPC level. The token
ring hardware is described, with a particular emphasis on the
interaction between the hardware and your application program.
Dozens of tables and charts provide a convenient reference to all
interrupts, functions, and return codes. Each concept is illustrated with
complete C functions which serve both as examples and form the basis
of a working library to be used over and over. For advanced users
developing network oriented system software, detailed and highly
specific references are included to simplify the search for additional
details.

Acknowledgements

I would like to thank Dean Ostergaard for his valuable inputs
regarding the sample code in this book. Many functions reflect
improvements suggested by Dean.

I would also like to thank the Computer Support Corporation
for permission to use Arts and Letters'™, which was used to create the
figures and illustrations in this book. I would also like to thank IBM
for providing technical reference materials used in the book’s prepara-
tion, and Borland International for providing an advance copy of their
latest Turbo C compiler used to write and test all code examples.

Companion Disk Offer

The author has created a set of companion disks to A C
Programmer’s Guide to the IBM Token Ring to save you time typing and
proofreading the large number of token ring functions provided in this
book. The complete source code for all functions contained in this
book is available in 5.25 inch IBM format. If you have questions about
the files on these companion disks, you can contact the author through
Compuserve at [7653,1365].

The companion disks to A C Programmer’s Guide to the IBM
Token Ring are available only from William H. Roetzheim. To order,
send $14 (plus $2.50 per set for domestic postage and handling, $8 per
set for foreign orders) to: William H. Roetzheim & Associates, Attn:
Companion Disk Offer, 13518 Jamul Drive, Jamul, CA 92035.
Payment must be in U.S. funds. You may pay by check or money
order (payable to William H. Roetzheim & Associates). Sorry, no
COD or purchase orders are accepted.

1. Local Area Network Overview

More and more large companies are installing local area
networks, or LANs, in their offices. These networks are normally
installed to facilitate the sharing of data and equipment between
personal computers within the offices. If you write software which will
be used by large or midsized corporations, you must address the issue
of network compatibility for your program to be successful. For many
applications, the end users will not be satisfied if you claim that your
software is usable on their network; they want software that is designed
to take advantage of the capabilities offered by the network. This book
assumes that you are interested in developing application software that
might potentially operate on computers attached to a LAN. This book
provides sufficient information for you to develop LAN-based
applications successfully without having to wade through volumes of
technical details which are primarily of interest to system level
programmers. We have chosen to focus our discussion on IBM’s
Token Ring Network because of its popularity and growing market
share. By early 1989 the IBM Token Ring had captured S0 percent of
the microcomputer local area network market and over 20 percent of
all LAN applications worldwide (Glass, 1989). In addition, you will find
that much of the discussion will also apply to competing networks.
Examples shown were compiled and tested using Borland’s Turbo C

1

2 Chap. 1 Local Area Network Overview

version 2.0, although every effort was made to ensure compatibility
with Microsoft C version 5.1.

This chapter provides an introduction to networking in general
and IBM’s Token Ring Network in particular. The purpose of this
introduction is to familiarize the reader with basic networking concepts
which will be used later in the book.

1.1 What Is a Local Area Network?

Stallings defines a local area network as "a communications network
that provides interconnection of a variety of data communicating
devices within a small area" (Stallings, 1984). We can look at four
aspects of this definition to understand LANs better:

1. Communications network A LAN consists of a commu-
nications network. The communications are provided by
various protocols and drivers designed into the network
adapters or resident above the adapters in the host
device.

2. Interconnection The devices we are dealing with must be
connected via some form of cable (or other data trans-
mission path).

3. Data Communicating Devices LANs typically include
both other computers and shared devices, including
printers and disk drives.

4. Small area A local area network typically covers a small
geographic area. For our purposes, we can interpret this
to mean that data communications will be at a fairly
high rate. You will find performance over the IBM

Sec. 1.2 Network Components 3

Token Ring Network to be roughly equivalent to perfor-
mance using a slow hard disk.

1.2 Network Components

A network consists of user devices (computers and peripherals)
connected together by some form of transmission media. The devices
are connected to the transmission media using an adapter interface,
which can be a card plugged into the computer’s backplane or a chip
set already built into the motherboard of the device.

Transmission Media

Network transmission media normally consists of physical wires or
cables which must be installed throughout the building, although
wireless networks using infrared or radio wave transmissions have been
attempted with some success. These wires can be:

° Coaxial cables
® Fiber optic cable
] Twisted pair

Coaxial cable is familiar to most people because this is the
transmission media used by cable TV companies to broadcast their
programming. Coaxial cables can be either 75 ohm or 50 ohm. 50-
ohm cable is used for digital networks (on-off signaling), including
ethernet. 75-ohm cable is used by the cable TV companies and in
networking is typically used for broadband network transmissions using
analog waveforms. Broadband networks are normally used to connect
different buildings from one company, often combining video, voice,

4 Chap. 1 Local Area Network Overview

and digital information. Digital information on broadband networks
must be encoded for transmission using a modem.

Fiber optic cable is a thin, flexible cable with a center consisting
of a thread of glass or plastic, used to guide light. Fiber optic cable is
more expensive than coaxial cable, although reduced installation costs
(due to its light weight and immunity to nearby electrical energy) may
offset much of this difference. Light is generated using either a high-
intensity light-emitting diode (LED) or an injection laser diode.
Reception is accomplished using a photodiode. Modulation is typically
accomplished using the presence or absence of light at a given
frequency. Data rates over 3 gigabytes per second have been demon-
strated in the laboratory, and ranges of hundreds of megabytes per
second are common (Stallings, 1987). Token ring networks operating
at approximately 100 Mbps have been demonstrated (e.g., Housley,
1987; Tanimoto, 1987) using fiber optic cable. IBM supports a fiber
optic repeater which is normally used to extend the range of ordinary
token ring networks (without increasing the data rate).

Twisted pair wiring is used throughout most homes and offices
for telephone connections. IBM’s Token Ring Network operates over
twisted pair wires. When running at 4 Mbps, the token ring adapters
can use either IBM type 3 unshielded twisted pair cable (24 gauge
wire), or conventional twisted pair phone lines can be used with a
media filter. the media filter is a low-pass filter designed to filter out
high-frequency harmonics of the signal that might interfere with other
equipment near the network lines. When running at 16 Mbps, IBM
type 1 or 2 shielded twisted pair cable is required, and conventional
phone lines cannot be used. These cables contain 22 gauge twisted
pair wire with a metallic shield and plastic cover. Type 1 cable
contains two twisted pairs, while type 3 contains four pairs.

For the IBM Token Ring Network, the adapter (computer)
connector is a DB-9 connector. The other end of each workstation’s
wire consists of a special plastic connector, called a data connector, that

Sec. 1.2 Network Components 5

plugs into the multistation access unit (MAU). The multistation access
unit is described in the following section.

Connectivity

Fig. 1 illustrates four common network topologies. The star topology
involves centralized switching between pairs of stations and is often
used for digital PBX and digital data switch products. The bus
topology involves attaching all stations to a single wire. This is the
topology of most ethernet networks. The tree topology is a generaliza-
tion of the bus topology. Tree topologies are common for factory
automation networks. Finally, the ring topology consists of a set of
repeaters configured in a ring. The IBM Token Ring Network uses a
modified ring topology.

For the IBM Token Ring Network, the basic ring topology was
modified to look similar to Fig. 1.2. Although this topology resembles
the star topology at first, a closer look will reveal that it is simply a
ring in which each segment has been looped to a common point. This
modification of the basic ring was made to facilitate network mainte-
nance. It is useful when isolating network problems and simplifies
adding and deleting nodes from the ring.

At the center of the IBM Token Ring Network star you will find
one or more multistation access units. Each MAU allows up to eight
workstations to joining the network and also contains two plugs (called
ring-out and ring-in) to connect multiple MAUSs together. The MAU
is a box approximately 4 inches high, 6 inches deep, and 18 inches long
with all connectors on the front panel. The MAU is completely
passive, using the power from the network adapter to open a relay,
thus connecting the adapter into the network. When a computer is
disconnected from the network (or turned off), the network adapter
loses power, the relay opens, and the computer is automatically dis-
connected from the network. IBM also provides a battery-operated
test plug which allows the proper functioning of each MAU port to be

Chap. 1 Local Area Network Overview

= — PN
‘g 98
Star Tree
0 g g

Bus Ring

Fig. 1.1 Network topologies.

Sec. 1.2 Network Components 7

tested off-line.

.]

D A MAUx

Fig. 12 IBM Token Ring Network con-
figuration.

Media Access Method

The most significant difference between IBM’s Token Ring Network
and its leading competitor, ethernet, is the method used to control
media access. Ethernet networks operate with a bus topology using a
media access method called carrier sense multiple access/collision
detection, or CSMA /CD for short. Carrier sense multiple access implies
that each network adapter listens to the ethernet bus to determine
when the bus is available. Data is then transmitted. Because two
adapters may both listen, hear that the bus is available, and begin
transmitting at the same time,.it is possible for data to collide and be

8 Chap. 1 Local Area Network Overview

destroyed. This is where the collision detection capability comes into
play. When an ethernet adapter senses that its data was destroyed, it
waits for a period of time, and then retransmits it. The wait time is
normally a randomized, exponentially increasing number.

Token ring networks use a different media access method. An
electronic token (unique series of bits) is passed around the bus
continuously. When an adapter has data to transmit, it waits for the
token to arrive, removes the token, transmits its data, then puts the
token back on the bus. With this approach, the problem of collisions
is avoided.

Ethernet’s media access protocol is simpler to implement (in the
adapter), is less susceptible to errors due to adapter malfunctions, and
performs well as long as the network is lightly loaded. The biggest
single advantage of the token ring metwork’s media access protocol is
that the worst case delay time prior to being able to transmit is
deterministic. It is possible to look at the largest allowed network
packet size and the number of computers on the network and then
determine what the absolute worst case delay is between your desiring
to send data and the network becoming available. This information
can then be used when sizing your network requirements.

Network Adapters

A network adapter is a hardware interface which allows transmission
of data on a local area network. The network adapter often includes
firmware to support functions such as media access (who transmits
when), flow control, and error detection and correction or retransmis-
sion. Some "software-only" networks have been tried using a serial
port on the networked computers, but the low cost is offset by the poor
performance. Many VME-based single-board computers offer a built-
in ethernet interface as part of the motherboard. This is possible
because of the low cost and wide availability of VLSI chips supporting
the ethernet interface. IBM’s Token Ring Network currently requires

Sec. 1.2 Network Components 9

that a network adapter be purchased as a board which is plugged into
the computer’s backplane, although the introduction of a Texas
Instrument chip set supporting token ring network protocols (Carlo,
1986; Lang, 1989) may point to the future incorporation of the
adapter on some vendor’s motherboards.

Token ring adapters are available from IBM as well as third-
party vendors (e.g., Proteon, 3Com, and Lantana). Up to two adapters
can be put in one computer. Two adapters are used when you want
the computer to act as a bridge between two token ring networks.
Five adapter models are currently available from IBM:

1. The original adapter comes with 8 Kbytes of shared
RAM. This adapter operates at 4 Mbps.

2. The Adapter II improves performance by including 16
Kbytes of shared RAM. This adapter operates at 4
Mbps.

3. The Adapter/A is used on IBM PS/2 computers using

the MicroChannel architecture. This adapter operates
at 4 Mbps.

4. The 16/4 Adapter has 64 Kbytes of shared RAM. This
adapter operates at 4 or 16 Mbps. Frame sizes are
increased from 2 Kbytes to 18 Kbytes in 16 Mbps mode
or 4.5 Kbytes in 4 Mbps mode. In addition, the new
adapter implements an early token release capability to
decrease token propagation lag on large networks.

5. The 16/4 Adapter/A is identical to the 16/4 Adapter,
but is designed for use with the MicroChannel architec-
ture.

10 Chap. 1 Local Area Network Overview

Token ring adapters share RAM with the host system. This
shared RAM can be configured to start at 0xCC000 or 0xDCO000.
0xCCO000 is the default. The adapter can be set to operate using
hardware interrupt levels 2, 3, 6, or 7. Level 2 is the default, and level
6 should normally not be used (IRQ 6 is used by the disk controller).
Finally, the adapter must be told if it is the primary adapter (default)
or a secondary adapter in a system unit with two adapter cards
installed.

1.3 To What Level Will You Code?

As shown in Figure 3, programmers can work with the IBM Token
Ring Network at five different levels.

1. At the highest level, you can require that your users
install a local area network program (e.g., PC LAN) and
then rely on the BIOS redirector within the LAN pro-
gram to implement network data transfers. The PC
LAN program offered by IBM requires between 50 and
350 Kbytes of memory and uses enough CPU cycles to
slow down the routine operation of most applications.
Relying on this level of compatibility provides the
greatest amount of hardware and network protocol
independence. You can be reasonably sure that a
properly written application will operate on virtually all
LANs available for MS-DOS machines, including both
token ring network products and ethernet. This ap-
proach is the simplest for the application programmer to
implement. For applications which are primarily not
network oriented, but where network compatibility is
important, relying on the BIOS redirector is often best.
We discuss this level of network support in Chapter
Two.

Sec. 1.3 To What Level Will You Code? 11

| BI0S Redirector]

[NetBIOS]

APPC/PC]

DLC]

Register direct]

Fig. 1.3 To what level will you
code?

2. You can achieve a good degree of network portability by
programming using NetBIOS services. NetBIOS support
is available from many vendors for a wide range of netw-
orks, including several minicomputer networks running
UNIX and most PC ethernet networks. NetBIOS supp-
ort is also included in OS/2. NetBIOS support for the
IBM Token Ring Network will require approximately 24
Kbytes of RAM and normally does not have a noticeable
affect on CPU performance. NetBIOS programming is

12

Chap. 1 Local Area Network Overview

not difficult, although your application must be designed
to use NetBIOS services. For general-purpose applicati-
ons where network support is central to the application’s
success, NetBIOS programming is often appropriate.
We discuss this level of network support in Chapter
Three.

An alternative to NetBIOS is IBM’s Advanced Program-
to-Program Communication (APPC) protocol, which is
available for all IBM networks. APPC is a remote
transaction processing protocol that is common in the
IBM mainframe world. Because APPC is much less
popular than NetBIOS in the PC area (and APPC is
quite complex), the discussion of APPC is delayed until
Chapter Seven.

It is possible to improve the performance of network
data transfers significantly by programming at the Data
Link Control, or DLC, level. This involves programming
using the IEEE 802.2 standards for link level control
(LLC). DLC support is available with all IBM Token
Ring Network adapters and is built into OS/2. DLC
support requires approximately 16 Kbytes of RAM and
normally does not have a noticeable effect on CPU
performance. DLC programming is normally appropriate
for specialized, short network programs (a file transfer
utility, for example) or for callable network functions for
which performance is critical. If you wish to implement
a new network protocol (e.g., TCP/IP), it would proba-
bly be appropriate to program at the DLC level. We
discuss this level of network support in Chapter Four.

Sec. 1.4 Road Map to This Book 13

5. At the lowest level, it is possible to program the adapter
directly using the registers and shared RAM. The
adapter supports the IEEE 802.5 specifications for token
ring networks at this level of programming. This method
is obviously very hardware dependent. The code is
extremely timing sensitive. Shared RAM must be used
for data transfers, requiring careful attention to prob-
lems involving concurrent updates. Multilevel interrupts
must be handled, often with stringent timing constraints.
This level of programming is normally only appropriate
for diagnostic programs and perhaps for network pro-
grammers wishing to implement new low-level protocols
that will not operate efficiently over DLC. This level of
network support is briefly discussed in Chapter Five.

1.4 Road Map to This Book

As noted, Chapters Two through Five discuss programming for the
IBM Token Ring Network at varying levels of support. Chapter Six
presents a more technical description of the token ring hardware.
Chapter Seven discusses the APPC program interface.

Appendix A is a glossary, Appendix B is a list of acronyms, and
Appendix C is a list of references.

This book is designed to provide you with a broad understand-
ing of issues surrounding programming for the IBM Token Ring
Network. In addition, the book provides sufficient detail to allow you
to exploit 80 percent of the capabilities of the adapter. Many details
and exceptions are glossed over to simplify and clarify the key
requirements, capabilities, and procedures. For most applications, the
level of detail in this book will be completely adequate to do all
necessary programming to exploit IBM’s Token Ring Network fully.
If you find yourself working on one of those rare applications where
the information presented here is too broad or general, you can use

14 Chap. 1 Local Area Network Overview

the Suggested Reading section found at the end of each chapter to
delve further into the details.

1.5 Suggested Reading

Glass, B. (1989), "The Token Ring," Byte, Vol. 14, No. 1
(January), pp. 363 — 376.

Keller, H, and H.R. Mueller (1985), "Engineering Aspects for
Token-ring Design," Proceedings of the IEEE COMPINT 85
Conference, September, (Washington, D.C.: IEEE Computer
Society Press).

Stallings, William (1987), Handbook of Computer Communica-
tions Standards, (Volume 2) Local Network Standards, New
York: Macmillan.

Strole, N.C. (1987), "The IBM Token-ring Network: A Func-
tional Overview," IEEE Network, Vol. 1, No. 1, (January), pp. 23
—30.

Strole, N.C. (1989), "Inside Token Ring Version II, According
to Big Blue," Data Communications, (January), pp. 117 — 125.

Tanenbaum, Andrew (1988), Computer Networks, Englewood
Cliffs, NJ: Prentice-Hall.

Townsend, Carl (1987), Networking with the IBM Token-Ring,
Blue Ridge Summit, PA: Tab Books '

2. Relying On The Redirector

The easiest way to use IBM’s Token Ring Network is to simply
ignore it. When the token ring network is installed and a LAN
program is operating on each user’s computer, a small routine called
the BIOS Redirector is initialized. The BIOS Redirector was developed
by Microsoft under the name MS-NET and is offered with most PC-
based LAN programs. This routine intercepts BIOS and DOS
interrupts and redirects them, as necessary, to the appropriate network
handling routines. These routines provide an equivalent capability
(from your application’s perspective), but access data using the
network. Your program cannot tell the difference between opening,
reading, and closing a file on the local disk and doing the same
operations on a remote disk. The entire process is transparent.
Although your users must install the LAN program prior to running
your application program, this is also true for most other applications
and the user’s will expect it. The reduced available RAM must be
allowed for, and some degradation in application performance
anticipated. Because available RAM is so critical to many applica-
tions, we will begin by helping you estimate the amount of RAM that
your user’s LAN software will use. We will then discuss how to design
your application so that your users can gain the most utility from their
network, including discussions of file locking and record locking.

15

16 Chap. 2 Relying on the Redirector

Finally, we will discuss some specific warnings and hints that apply
when writing programs which may run on LAN-based computers.

In this chapter we will define the following BIOS redirector
support functions which will simplify the development of application
software at this level of network support:

° net_open() This function allows you to open files on
the network file server.

° lock_read() This function allows you to lock and
read a record from within a record structured file.

® lock_write() This function allows you to write then
unlock a record from within a record structured file.

] lock open() This function allows you to lock an
entire file when opening it.

° lock close() This function allows you to close and
unlock a file.

2.1 PC LAN Memory Requirements

There are four possible configurations that computers running the PC
LAN program can select (Fig. 2.1). The file server configuration is
used for the computer that stores shared files, although the file server
can also run application programs. By default, this configuration
requires 350 Kbytes of the system memory. This total can be reduced
by approximately 112 Kbytes if expanded memory is available or if the
IBM disk cache program is used to replace the network cache. The
total can be reduced by another 30 Kbytes if the file server will not
also act as a printer server. The file server is normally the only
computer which can share devices (disks, directories, printers).

Sec. 2.2 Supporting Network Paths in Your Application 17

LAN
configs.

receiver |

redirector

messenger]

Ea

Fig. 2.1 PC LAN configurations.

The messenger configuration can use network devices which
have been shared by the file server, but can not share its devices. The
messenger configuration can also access the PC LAN from within an
application through the use of network request keys, and can transfer
network messages (notes from one user to another). This configura-
tion requires approximately 160 Kbytes.

The receiver configuration requires 68 Kbytes of memory, which
allows it to use network devices and send and receive messages. This
configuration cannot access the PC LAN services from within an
application, resulting in the bulk of the memory saving relative to the
messenger configuration. This configuration is likely to be the most
popular configuration for your end user workstations on the PC LAN.

For applications requiring that the most possible memory be
available, the redirector configuration operates using a total of 50
Kbytes. This configuration can use network devices and send
messages, but it cannot receive messages.

In general, if your application will function well on a computer
with 70 Kbytes of memory allocated to an external application (the PC
LAN), it should operate well over a networked computer.

2.2 Supporting Network Paths in Your Application

You will open files on the network file server by using a path which
looks identical to paths used for current applications. For example,
you might open a file located at "D:\GST\DATA\file01". You must

18 Chap. 2 Relying on the Redirector

allow your users to configure your application to look at the path
(including drive designator) of their choice when opening files. Many
users might also wish to store files in a local drive which is at their
desk. The best solution is to define two global variables in your
program:

° path: This variable points to the local drive and directo-
1y, if any.

° net path: This variable points to the remote (network)
drive and directory.

By default, these variables point to the same local drive and
directory. If the user is operating over a network, a configuration
screen is called up and the net_path variable is modified to point to
the file server. In this manner you can create local files (including
temporary files) using the path variable, and read and write global data
using the net_path variable.

2.3 Using File and Record Locking

When operating over a network, extra precautions must be taken when
doing file input-output because more than one person might be
simultaneously manipulating the same file. For example, suppose we
have a file called DATAO1 that stores the account balance for each
customer. Let’s look at the following scenario:

1. User George opens DATAOQ1, reads in record 1, and
begins to record a payment of $150 (i.e., reduces the
amount due by $150).

Sec. 2.3 Using File and Record Locking 19

4.

User Mary opens the same file, reads in record 1, and
begins to record an invoice of $300 (i.e., increases the
amount due by $300).

User George writes out his modified record 1 to
DATAO1.

User Mary writes out her modified record 1 to DATAOQL.

At this point, user George thinks that the file has been modified
based on his entries, but the record of the customer’s $150 payment
was lost when user Mary wrote out the record. File and record locking
were features added to MS-DOS version 3.0 and higher to prevent this
type of problem. In general, software written to operate properly on
a LAN requires MS-DOS version 3.0 or higher for this reason.

When implementing file and record locking, the type of
protection which is appropriate depends on the nature of the data in

the file.

1.

Read only files. Files which are read only (they are
never written to) do not create any problems when used
over a network. These files can be opened, accessed,
and closed exactly as you would for a single user system.

Temporary files. Temporary files must be created to
ensure that the filename does not conflict with another
user creating the same temporary file at the same time.

Sequential files. Sequential files must be accessed using
the appropriate file locking calls.

Record oriented files - Record oriented files must be
accessed using the appropriate record locking calls.

20 Chap. 2 Relying on the Redirector

We will discuss the proper approach to handling temporary files,
sequential files, and record oriented files in the paragraphs that follow.

Temporary Files

You must be careful when creating temporary working files within your
application. For example, suppose you hard coded your application to
use a temporary file called MY-APP.TMP using a call to fopen()
designed to create the file; that is,

fp = fopen("MY-APP.TMP", "w+b");

Let’s look at what might happen to this code in a network environ-
ment:

1. User Susan runs your application and the file "MY-
APP.TMP" is created on the file server. She begins to
enter data which is stored in the temporary file.

2. User Bob runs your application and the file "MY-
APP.TMP" is created on the fileserver. Note that this
deletes the existing version of the temporary file. Bob
begins to enter data.

3. The next time Susan attempts to access the temporary
file, the program will bomb because the file has been
deleted (and Susan will lose her work to date).

Luckily, the solution is easy. Whenever you need to open a
temporary file, use the code fragment shown in Code Box 2.1. The
function tmpfile() creates a guaranteed unique file in the "w+b"
(binary read/write) mode. The files are created in your working
directory and named tmpXXXXX where XXXXX is a sequential number.

Sec. 2.3 Using File and Record Locking 21

The file is automatically deleted when closed or when your program
terminates normally. If your program terminates abnormally, these
temporary files will remain in your working directory. This is
especially common when using a debugger to debug the program. In
this case, you may need to periodically delete all files in your working
directory starting with tmp.

Record-Oriented Files

Record oriented files contain multiple blocks of data, with each block
the exact same size. For example, a file which stores an array of
structures would be a record oriented file. The blocks of data in the
file (records) are typically accessed and updated individually. For
example, suppose we defined a structure to contain name and address
information for our customers:

#include <stdio.h>
main()
{

FILE *fp;

fp = tmpfile(); /* open temporary file with unique name */
if (fp == NULL) perror("Could not open temporary file");
.

[
Application code here
°

fclose(£fp); /* close temporary file */

Code Box 2.1 Using temporary files.

22 Chap. 2 Relying on the Redirector

struct address

{
char name[41];
char addrl[41];
char addr2[41];
char city[21];
char state[3];
char zip[10];

s

We can then read, edit, and write an individual record within
the file using the approach outlined in Code Box 2.2. Unfortunately,
we are still faced with our familiar concurrency problem; i.e., two users
simultaneously read the record, then perform some updates, then write
the record out resulting in one update not being recorded. We can
overcome this problem by locking the record while we are working on
it.

Record locking capability is ot built into the resident BIOS on
the computers. These capabilities are built into a share, .exe or
.com program distributed with MS-DOS version 3.X and higher.
Share must be executed by the user prior to running your application
for record locking to be available. File locking (discussed in the
following section) is available without running share. Code Box 2.3
and Code Box 2.4 show a routine which will test for the presence of
the share software. If share is not installed, test_share()
attempts to install it. If share was found to be installed, or was
successfully installed, test_share () then disables the control-break
interrupt. This must be done to prevent the user from terminating
your application while record locks remain on a file (the results of
doing this are officially "undefined"). Prior to terminating your
program, you should call test_share() again with the input flag set
to RESTORE. This will restore the control-break interrupt vector.

Sec. 2.3 Using File and Record Locking 23

int fth;
struct address record;
int record_number;

fh = open("database", O_RDWR | O_CREAT | O_BINARY, S_IREAD | S_IWRITE);

record_number = 5; /* Update record number 5 */
lseek(fh, record number * sizeof(struct address), SEEK_SET);
read(fh, record, sizeof(struct address));

[}

.

]

Edit record

)

.

]

lseek(fh, record_number * sizeof(struct address), SEEK_SET);
write(fh, record, sizeof(struct address));

close(fh);

Code Box 2.2 Record-oriented file access.

Records only need to be locked if the user will (or might) write
the record back out to disk. There is no reason you need to prevent
multiple users from simultaneously reading the same record so the
approach described in Code Box 2.2 is satisfactory. When a write is
possible, each record is locked just prior to reading the data and then
is unlocked just after the data is written. The command used to lock
a specific portion of a file varies from one compiler to another. For
portability reasons, it is best localize this compiler dependency in one
function. We can conveniently work with record oriented network files
by defining and using three new functions. These functions will
supplement open(), read(), and write() in the previous sample
code fragment.

Code Box 2.5 shows the include file used with all BIOS
redirector support functions. This include file contains function
prototypes and compiler defines.

The net_open() function defined in Code Box 2.6 allows you
to open a network file without worrying about the appropriate path
each time. The global variable net_path should be initialized early

24 Chap. 2 Relying on the Redirector

#include <process.h>
#include <stdio.h>
#include <dos.h>
#include "redirect.h"
void interrupt do_nothing();
/*********************a*******************:k*******t****************
* test_share() - test to see if share is installed
*
* Parameters
* flag (in) - set to INSTALL or RESTORE
* Global
* Turbo C global variables for register values
*
* Returns:
* 0 for success, -1 for failure
*
* Notes:
* This function tests for share.exe. If the share program is
* not installed, it tries to install it. If share is successfully
* installed, it disables interrupt 0x23 to prevent
* abnormal termination (leaving locks in place). This interrupt
* is re-enabled by calling this function with the flag set to
* RESTORE.
*
* History:
* Ooriginal code by William H. Roetzheim
**/
int test_share(int flag)
{
void (*interrupt_function);
void interrupt do_nothing();

static *old_interrupt;
if (flag == RESTORE)

if (old_interrupt == NULL) return -1;

else

{
_AH = 0x25;
_AL = 0x23;
_DS = FP_SEG(old_interrupt);
_DX = FP_OFF(old_interrupt);
geninterrupt(0x21);
return 0;

}

}

... continued next code box

Code Box 2.3 test_share() function definition.

Sec. 2.3 Using File and Record Locking

25

. « . continued from previous code box

_AH = 0x10; /* test for share */
_AL = 0x00; /* get installed state */
geninterrupt(0x2F);

if (_AL == 0x00) /* not installed, OK to install */
{

spawnlp(P_WAIT, "share", "share", NULL);
_AH = 0x10; _AL = 0x00; geninterrupt(0x2F);

}
if (_AL == OXFF) /* successfully installed */
{

/* get original value */

_AH = 0x35;

AL = 0x23;

old_interrupt = MK_FP(_ES, _BX);

/* set new value */
interrupt_function = do_nothing;
_AH = 0x25;

_AL = 0x23;

_Ds = FP_SEG(interrupt_function);
_DX = FP_OFF(interrupt_function);
geninterrupt(0x21);

return O;

else return -1;

}
void interrupt do_nothing()
{

return;

Code Box 2.4 test_share() function definition (continued).

#define MAX_PATH 80 /* maximum path to network files */
#define RETRY 10 /* retrys on failure during read/lock */

#define INSTALL O
#define RESTORE 1

/* function prototypes */

int test_share();

int net_open(char *file_name, int access, unsigned mode);
int lock_read(int fh, char *buffer, unsigned int length);
int lock_write(int fh, char *buffer, unsigned int length);
int lock_open(char *filename, int access, unsigned mode);
int lock_close(int fh);

Code Box 2.5 redirector.h,

26 Chap. 2 Relying on the Redirector

#include <string.h>
#include <io.h>
#include "redirect.h"

extern char net_path[];

/**
* net_open() - open shared file

Parameters:

file name (in) - file name to be opened
access (in) - defined identical to open()
mode (in) - defined identical to open()

Global:
net_path - location of all shared files.

Assumes that net_path variable already contains
trailing backslash (if required).

Returns:
Same as return value from open()

*

*

*

*

*

*

*

*

*

* Notes:
*

*

*

*

*

*

* History:
*

*

Original code by William H. Roetzheim, 1989
*****t*t*************************tt*********t******t***t*t*t*********/

int net_open(char *file _name, int access, unsigned mode)

{
char file[MAX PATH];

strcpy(file, net_path);
strcat(file, file_ name);
return open(file, access, mode);

Code Box 2.6 net_open() function definition.

in your program using some form of configuration file which the user
can modify.

The lock_read() function shown in Code Box 2.7 works
exactly like read (), except that lock_read() locks the record prior
to reading. If the record cannot be locked (possibly because another
user has already locked it), the function retries at 1 second intervals
until either successful or timed out. lock_read() should be used
instead of read whenever you expect to write the record out to disk.

The lock_write() function shown in Code Box 2.8 works
exactly like write() except that lock_write() unlocks the record
just after writing. lock write() should be used anytime you write
a record to a network file, and must be used whenever you have
previously used lock_read() to read a record. If you use

Sec. 2.3 Using File and Record Locking

27

#
#
#
#

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

include <io.h>
include <errno.h>
include <dos.h>
include "redirect.h"

/*****ﬂ***********************tt**************t****************tk***

lock_read() - read shared data from a network file

Parameters:
handle (in) - file handle to read from
buffer (in) - buffer to place data in
count (in) - number of bytes to read

Returns:
Return code is identical to read()

Notes:
1. If the desired record is locked, this routine will
retry at 1 second intervals for RETRY attempts.

History:

Original code by William H. Roetzheim, 1989
t*******t*t**t***,

int lock_read(int fh, char *buffer, unsigned int length)
{

int timeout = RETRY;
unsigned int count = EACCES;

while ((lock(fh, lseek(fh, O, SEEK_CUR), length) != 0) && (timeout > 0))
{

timeout--;

sleep(l); /* wait one second */
}
if (timeout > 0) /* record is successfully locked */
{
count = read(fh, buffer, length);
}

return count;

Code Box 2.7 lock _read() function definition.

28 Chap. 2 Relying on the Redirector

#include <io.h>

#include <errno.h>

#include <dos.h>

#include "redirect.h"
JRRERRKIKRRIKRRKKRAKRRRRRKKR R KRR RKRRKRRRKRRKRRRRKRRKRRRRRKRRKRRKRRRKK
* lock_write() - write shared data to a network file

*

* Parameters:

* handle (in) - file handle to read from

* buffer (in) - buffer to place data in

* count (in) - number of bytes to read

*

* Returns:

* Return code is identical to write()

*

b Notes:

* 1. This routine assumes that the record to be written
b was previously read using net_read().

*

* History:

* Original code by William H. Roetzheim, 1989
*tt***tit********************t*t********t*t*******************t*****t*/

int lock_write(int fh, char *buffer, unsigned int length)
{
int count;

count = write(fh, buffer, length); /* write data out */
unlock(fh, lseek(fh, -length, SEEK_CUR), length);

return count;

Code Box 2.8 lock write() function definition.

lock_read() to lock and read a record, then decide to not write the
record back to disk at all, you must call unlock() directly in your
code.

Sequential Files

Sequential files are treated as a single entity which is either locked or
unlocked (file locking). The file is locked when it is opened, then
unlocked when it is closed. File locking is appropriate for any file
which is not record oriented. If you are reading (but not writing) data
from a sequential file, you should use the regular net_open() and
close() functions because there is no need to lock the file. If you

Sec. 2.3 Using File and Record Locking 29

may write new or modified data to the file, you will want to lock the
file just prior to opening it, then unlock it

after closing it. The function lock_open() as defined in Code Box
2.9 locks the file while opening it. Although Turbo C supports this
function with the addition of a flag to the open () function, you should
use a separate function here to isolate system dependencies.

#include <fentl.h>
#include <sys\stat.h>
#include <share.h>
#include <io.h>
#include "redirect.nh”

/**********t*******t***************R******t****t*t****t************
* lock_open() - lock, then open a file

Parameters:

filename (in) -~ filename to open
access (in) - defined as in open()
mode (in) -~ defined as in open()

return values identical to open()
Copyright:

Original code by William H. Roetzheim, 1989
*****ta************t*************t*ta*t****t***a**t******************/

*

*

x

*

*

*

* Returns:
®

*

*

*®

*

int lock_open(char *filename, int access, int mode)
{

return net_open(filename, access | SH_DENYRW, mode);

}

Code Box 2.9 lock_open() function definition.

30 Chap. 2 Relying on the Redirector

#include <sys\stat.h>

#include <stdio.h>

#include <string.h>

#include <io.h>

#include "redirect.h"

extern char net_path[];
/****tt************t******t*****k*tﬁt******************************
* lock_close - unlock and close a file

Parameters:
fh (in) - file handle for open file

Global:
net_path (in) - path to network files

Notes:
Assumes that net_path variable already contains
trailing backslash (if required).

Returns:
return value is identical to close()

LR IR B 2 R R R Bk BE kR IR R B 4

History:

Original code by William H. Roetzheim, 1989
tt******************/

%nt lock_close(int fh)

setmode(fh, S_IREAD | S_IWRITE);
return close(fh);

Code Box 2.10 lock close() function definition.

Sequential files must be unlocked after they are closed. The
function lock_close() (Code Box 2.10) can be used to perform this
operation. If your program fails to unlock a file (e.g. power fails prior
to closing the file), you will find that the file is left with the read only
bit set. The file can be unlocked using the DOS attrib command
with the following syntax attrib -r filename. You should
include clear instructions in your User’s Manual describing how to
unlock files which are accidentally left locked. You might also include
a built in capability within your application to unlock a locked file
(using a call to chmod()).

Sec. 2.4 Hints and Warnings 31

2.4 Hints and Warnings

The following miscellaneous hints and warnings will help smooth your
programming when relying on the BIOS Redirector:

Use the highest level of interrupt available for each
function. For example, print data by opening a printing
device and outputing to that device rather than directly
calling the routines to print a single character.

Do not directly modify the display mode, as this will
confuse the LAN software if the user attempts to pop up
a LAN

control screen from within your application. Use the
BIOS service routine for this instead, or simply use the
built in Turbo-C functions for modifying the display
mode.

It is possible for a non-file server configuration to allow
another PC to temporarily access its local devices (disk,
printer, etc.) Most application software does not use this
feature, but if your application would benefit from this
capability, look up the NET USE and NET SHARE com-
mands in your LAN manual and the permit command
in your DOS manual.

Test your application with an appropriate amount of
RAM reserved for network software use. If your
computer does not have the network software installed,
set aside the appropriate amount of RAM by setting up
a RAM drive sized to the amount of memory (from
Section 2.1) that a LAN program will require to func-
tion.

32 Chap. 2 Relying on the Redirector

2.5 Suggested Readings

Borland International (1988), Turbo C Reference Guide, Scotts
Valley, CA: Borland International.

IBM (1987), IBM PC Local Area Network Program User’s Guide,
Austin, TX: International Business Machines Corporation.

Microsoft (1987), Microsoft C Run-Time Library Reference,
Redmond, WA: Microsoft.

Svobodova, Liba (1984), "File Servers for Network Based
Distributed Systems," ACM Computing Surveys, Vol. 16, no. 4,
(December).

Van Name, M.L. (1989), "Anatomy of a LAN Operating
System," Byte, Vol. 14., no. 6, (June), pp. 157-160.

Wiederhold, Gio (1983), Database Design, New York: McGraw-
Hill.

3. Portability Using NetBIOS

Programming to the NetBIOS interface provides the program-
mer with independence from the LAN hardware, the LAN protocol,
and the underlying operating system. In addition, NetBIOS provides
a high level of protocol support which handles many of the network
communication issues (e.g., error detection) common to network
communications. NetBIOS support is available on vitually all MS-DOS
and OS/2 machines which are attached to a LAN and requires very
little system memory to operate.

NetBIOS programming assumes that two processes (programs)
are cooperating to exchange data. For example, you cannot use
NetBIOS alone to open and read a file on a remote network node.
Rather, you must write and run a program on the remote system that
will listen for file input-output commands (over the network), read the
data locally, and then send it back to you.

NetBIOS works by first establishing a unique name (unique
within the network) for each participant. It is then possible for users
to exchange data using either a connection-oriented protocol or a
datagram protocol. A connection-oriented protocol (also called a virtual
circuit) offers guaranteed delivery of the data, but with a performance

33

34 Chap. 3 Portability Using NetBIOS

sacrifice. Guaranteed delivery in this context means that the data was
either safely and accurately delivered or else your application was
notified of the problem. Datagram protocols make a best effort to
deliver the data, but there is no guarantee that it was safely received,
nor are you notified in the event of a failure. A connection-oriented
protocol is normally appropriate for functions such as file transfers. A
datagram protocol is appropriate for functions such as periodic status
updates, where timeliness is more important than guaranteed delivery.
Datagram protocols are also used when your application is performing
its own flow control and error correction/detection processing.

In this chapter we will learn how to use NetBIOS to send and
receive data over the network. We begin by discussing the NetBIOS
Network Control Block and interrupt procedures. We then discuss
name conventions over NetBIOS and show how to register a name.
The next two sections are devoted to session-oriented data transmis-
sion and datagram oriented data transmission. We then wrap up our
discussion by describing some miscellaneous NetBIOS commands.
Finally, the end of the chapter contains a reference table of NetBIOS
commands and NetBIOS return codes.

The following functions are defined in this chapter:

init_ncb() This function initializes a network control block.
int_netbios() This function issues an interrupt to
NetBIOS, requesting the processing of a Network Control
Block.

init netbios() This function initializes NetBIOS and
registers an application name.

shutdown _netbios() This function terminates NetBIOS
processing and deletes an application name.

Sec. 3.1 NetBIOS Network Control Blocks 35

dg_write() Write a datagram using NetBIOS.

dg read() Receive a datagram using NetBIOS.
max_dg() Return the largest possible datagram size.
sn_open() Open a session over NetBIOS.
sn_read() Read data from a session.

sn_write() Write data over a session.
sn_close() Terminate a session.

sn_receive() Initiate a session-oriented receive operation
in background.

sn_send() Initiate a session-oriented send operation in back-
ground.

get_session_status() Get current session status.

3.1 NetBIOS Network Control Blocks

Communication between your application and the NetBIOS is
accomplished using a structure called the Network Control Block, or
NCB. The format for the NCB is shown in Code Box 3.1. The
structure description assumes that you are using unsigned characters
(a Turbo C compiler option) and that pointers are 32 bits long (large
or huge memory model). If you have your compiler defaulting to
signed characters, you should explicitely declare the structure variables
as unsigned char. If you are using a memory model with 16 bit
pointers for data, cast the pointer to buffer to be a far pointer. If

36

Chap. 3 Portability Using NetBIOS

you are using a memory model with 16 bit pointers for code, cast the
pointer to post to be a far pointer.
The variables in the structure have the following meanings:

command This is the command number to be executed.

ret_code This is the return code after completion of
the command.

1sn This is the logical session number assigned by
NetBIOS. This field is only used for connection oriented
communication as discussed in Section 3.3.

number This field contains the number assigned by
NetBIOS to your application program. This field is dis-
cussed in Section 3.2.

buffer This field points to your local buffer from
which data will be sent or into which data will be
received.

length For transmitted data, this field contains the
length of the data to send. For received data, this field

contains the number of characters received.

r_name Remote system name. This field is discussed
further in Section 3.2.

1 _name Local system name. This field is discussed
further in Section 3.2.

rto Receive time out in .5 second increments.

Sec. 3.1 NetBIOS Network Control Blocks 37

struct
{

net_control_block
char command;
char ret_code;
char 1sn; /* logical session number */

char number; /* application name table entry */

char *buffer;

unsigned int length; /* buffer length */
char r_name[16];

char 1_name[16];

char rto; /* receive time out */

char sto; /* send time out */

void *post; /* post routine location */

char adapter; /* adapter number */

char complete;

char reserved[14];

Code Box 3.1 net_control_block structure definition.

sto Send time out in .5 second increments.

post Address of post routine. This field is discussed
later in this section.

adapter Adapter number (in this computer): 0 for
the primary adapter, 1 for the alternate adapter (nor-
mally 0 except when performing gateway functions).

complete This field is set to OxFF during adapter
processing, then set to the same value as ret_code
upon completion. This field is discussed later in this
section.

reserved Used as a work area by NetBIOS during
processing.

38 Chap. 3 Portability Using NetBIOS

When you call NetBIOS to process the Network Control Block,
it is possible to instruct the adapter to perform its processing (e.g., data
transfer) independently (in background) while control is returned to
your application immediately. For example, you might use this
capability to prepare the next data packet while the current data
packet is being transmited. One way to tell when the adapter has
completed the current command is to use the post field of the
Network Control Block. The post field is a pointer to a function that
should get control after completion of the command. The function
pointed to by post should be a short interrupt handling function.
When called, the AX register will contain the completion code for the
command while the ES and BX registers will point to the Network
Control Block. The post routine should be declared to be of type
void interrupt. When the post handling function is done, it must
use an interrupt return instruction,' which is handled automatically by
Turbo C when you declare the routine to be of type interrupt.

The more common method of determining when the adapter
has finished processing the Network Control Block command is to
monitor the complete field in the structure. This field is set (by the
adapter) to OxFF during processing, so your application can simply test
this field until the value is something other than OxFF. Until the
complete field indicates that the adapter is done processing this
Network Control Block, you must not modify either the Network Control
Block structure contents nor the buffer contents pointed to by the Network
Control Block. When using this approach, the value in the post field
should be set to NULL, which tells the adapter that no post routine is
installed. This is the normal way the NetBIOS commands are handled.
Of course, if you do not use the NO_WAIT option to the commands,
your application program will be suspended until completion of the
adapter processing and you will not need to concern yourself with

! The post routine is slightly different if you are using OS/2. Refer
to the OS/2 specific chapter of this book for details.

Sec. 3.1 NetBIOS Network Control Blocks 39

either the post routine or monitoring the complete field in the
Network Control Block.

When the adapter is done processing the Network Control
Block, it sets both the complete field and the ret_code field to the
same return value. The adapter always uses 0x00 to indicate successful
completion of the command. The meaning of other possible return
codes (error conditions) are listed in Section 3.7.

The following listing shows the netbios . h header file used for
all NetBIOS support functions described in this chapter. This file
includes a number of defines to clarify NetBIOS calls, the
net_control_blockstructure definition, and our NetBIOS function

prototypes.

#define RECEIVE_TIMEOUT 0 /* no timeout, wait forever */
#define SEND_TIMEOUT 0

/* flags included for clarity */
#define CLIENT 0
#define SERVER 1
#define FIRST 0
#define NEXT 1

/* NetBIOS commands */

#define NCB_ADD_GROUP_NAME 0x36
#define NCB_ADD_NAME 0x30
#define NCB_CALL 0x10
#define NCB_CANCEL 0x35
#define NCB_CHAIN_SEND 0x17
#define NCB_CHAIN SEND_NO_ACK 0x72
#define NCB_DELETE_NAME 0x31
#define NCB_FIND_NAME 0x78
#define NCB_HANG_| 0x12
#define NCB_LAN_STATUS_ALERT OXF3
#define NCB_LISTEN Ox11
f#idefine NCB_RECEIVE 0x15
#define NCB_RECEIVE_| 0x16
#define NCB_RECEIVE_BROADCAST_ DATAGRAM 0x23
#define NCB_RECEIVE_DATAGRAM 0x21
#define NCB_RESET 0x32
#define NCB_SEND 0x14
#define NCB_SEND_BROADCAST DATAGRAM 0x22
#define NCB_SEND_DATAGRAM 0x20
#define NCB_SEND_NO_ACK 0x71
#define NCB_SESSION_STATUS 0x34
#define NCB_STATUS 0x33
#define NCB_TRACE 0x79
#define NCB_UNLINK 0x70
/* NetBIOS command flags */

#define WAIT 0x00

#define NO_WAIT 0x80

/* NetBIOS return values */
#define NO_NETBIOS 0x00

40

Chap. 3 Portability Using NetBIOS

#define INVALID_NAME OxFF
struct net_control_block
{
char command;
char retcode;
char 1sn; /* logical session number */
char number; /* application name table entry */
char *buffer;
unsigned int length; /* buffer length */
char r_name[16];
char 1_name[16];
char rto; /* receive time out */
char sto; /* send time out */
void *post; /* post routine location */
char adapter; /* adapter number */
char complete;
char reserved[14];
Y
struct session_status
{
char number; /* name table entry */
char number_of_sessions;
char outstanding_receive_datagram;
struct
{
char session_number;
char state;
char 1 _name[16];
char r_name[16];
char outstanding_receive;
char outstanding_send;
} session;
}i

/* function prototypes */

void
void
unsigned
unsigned
int
length);
int

int

int

int

int

int
struct
struct
struct

int
int

init_ncb(struct net_control_block *ncb);

int_netbios(struct net_control_block *ncb);

init_netbios(char *name);

shutdown_netbios(char *name);

dg_write(unsigned int number, char *destination, char *buffer, int

dg_read(unsigned int number, char *from, char *buffer, int length);
max_dg();

sn_open(char *from, char *to, int flag);

sn_read(char 1lsn, void *buffer, unsigned int nbytes);
sn_write(char 1sn, void *buffer, unsigned int nbytes);
sn_close(char 1lsn);

net_control_block *sn_receive(char lsn, void *buffer, unsigned int nbytes);
net_control_block *sn_send(char 1lsn, void *buffer, unsigned int nbytes);

session_status *get_session_status(char *name, int flag);

Sec. 3.2 Naming Conventions and Procedures 41

Most NetBIOS commands can be executed with or without
blocking.> When executed with blocking, your application program
blocks (waits) until the adapter has finished executing the command.
This is the default for all commands. When executed without blocking,
your application program continues to execute while the adapter
processes the command in background. To execute a command with
blocking, you would use the following syntax:

ncb.command = NCB_CALL | WAIT;

The WAIT flag is optional because this is the default for all
commands. NCB_CALL is one sample NetBIOS command defined in
netbios.h. To execute the same command without blocking, you
would use

ncb.command = NCB_CALL | NO_WAIT;

Our programming will be simplified with two support NetBIOS
functions, init_ncb() and int_netbios(). init_ncb() (Code
Box 3.2) clears a Network Control Block and sets the defaults for sent
timeout and receive timeout. int_netbios () (Code Box 3.3) clears
a Net Control Block and sets the defaults for sent timeout and receive
timeout. int_netbios () (Code Box 3.4) executes a NetBIOS NCB.

3.2 Naming Conventions and Procedures

Each IBM Token Ring Network adapter can store up to 255 network
user names. 0x00 and OxFF are not used, and 0x01 is permanently
assigned based on a unique number burned into each adapter, leaving
252 available name slots. Name 0x01 is used as a guaranteed unique
name which is assigned to each adapter. Names can be up to 16

2 The exceptions are NCB_RESET, NCB_CANCEL, and NCB_UNLINK.

42 Chap. 3 Portability Using NetBIOS

#include <string.h>
#include "netbios.h"

[RRRAKRKKAKKRRKAKRRKKRKRRKARK KRR KRR KA KRR KRR RR KRR AKRARRRARRKAKK KRR KRR KRR KK

* init ncb - clear and initialize net control block

*

* Parameters:

* ncb (in/out) - net control block to be cleared

*

* Notes:

* This code sets the network adapter number to 0 (primary)
*

* History:

* Original code by William H. Roetzheim, 1990
*t***********t*t**/

void init_ncb(struct net_control_block *ncb)

memset(ncb, 0, sizeof(struct net_control_block));
ncb->rto = RECEIVE_TIMEOUT;
ncb->sto = SEND_TIMEOUT;

Code Box 3.2 init_ncb() function definition.

characters long, although restrictions on the range of the last character
make it simpler to restrict names to 15 characters. Names are
normally assigned so that they are unique on any given network. For
example, if your application registered a unique name of
fileserver, no other adapter could use this name until you released
it. The only exception is group names, which may be shared among
adapters.

For two cooperating processes, you will normally know both the
registered network name of your application and the network name of
the other application. These two names can then be used to communi-
cate. This approach would not work very well for a file server,
however, because the file server has no way of knowing in advance
who will call on it for assistance. In this case, the file server name is
made available to other applications and the file server issues a receive
any network request. This will allow it to receive any messages
directed to it without requiring that it know the name of the sender a
priori. Client applications would then address messages to the server
by its previously known name.

Sec. 3.2 Naming Conventions and Procedures 43

#include <dos.h>

#include "netbios.h"

extern int net_error;
/******tﬁ*t*****t**********tt*tt*****t******tﬁ*i*****t*************
* int_netbios - interrupt NetBIOS with net control block
*

* Parameters:

* ncb (in/out) - initialized net control block
*

* Global:

* _ES - ES register

* _BX - BX register

* net_error - set to command return code

*

* History:

x

Original code by William H. Roetzheim
*******t*t*************************t************t**t*t**t*t****tk*****/

void int_netbios(struct net_control_block *ncb)
{

_ES = FP_SEG(ncb);

_BX = FP_OFF(ncb);

geninterrupt(0x5C);

net_error = ncb->retcode;

Code Box 3.3 int_netbios() function definition.

The NetBIOS commands which are related to naming are

° NCB_ADD_GROUP_NAME This command allows you to
add a group name to your adapter’s network name table.
Group names are not necessarily unique across the
network. The command will fail if another adapter has
previously registered the same name as a unique name.

° NCB_ADD NAME This command allows you to add a
unique name to your adapter’s network name table.
This command will fail if another adapter has previously
registered the same name as either a unique or group
name.

° NCB_DELETE_NAME This command deletes a name
from your adapter’s network name table.

44 Chap. 3 Portability Using NetBIOS

° NCB_FIND NAME This command uses a broadcast
message to find every adapter on the network with a
specified name registered. It uses the adapter unique
name (stored in slot 0x01 of the name table) to tell you
specifically which adapters are using the name.

Code Box 3.5 shows a function which should be used at the
beginning of your NetBIOS program. init netbios() begins by
testing to ensure that NetBIOS is installed and appears to be function-
ing properly. If this test fails, the function returns NO_NETBIOS
(defined in netbios.h). It then attempts to registered your
application name as a unique name. If this fails, it returns
INVALID NAME. You can then either display an error message or try
again with a different name. If NetBIOS is installed and the name is
successfully registered, init_netbios() returns the name table
number assigned to your unique name. This number will be needed
later if your are using NetBIOS datagram services.

When you are done using NetBIOS, you can use the
shutdown_netbios () function defined in Code Box 3.6 to delete
your application name from the adapter name table. It is important
that you delete unused names to avoid filling the adapter name table
with unused names as well as preventing other users on the network
from using those names. The NCB_RESET command can also be used
to delete your application name from the adapter name table because
this command deletes all names from the name table. Many books on
NetBIOS routinely use NCB_RESET to "clean up" when their applica-
tion is done. You must be careful with this approach because under
DOS NCB_RESET clears all names in the table, not just those that your
application registered (NCB_RESET works differently under OS/2).
This could cause obvious problems if other applications were using
NetBIOS (and the adapter name table) along with your program.

Sec. 3.2 Naming Conventions and Procedures

45

#include
#include

*
*
*
*x
*
*
*
*x
*
*
*
*
*
*
x
*
*
*
*
*
*

unsigned
{

<dos.h>
"netbios.h"

/t***************************t***************t**t**t***t*t*********
init_netbios - test for NetBIOS presence and register application

Parameters:
name (in) - application name for network use
Returns:
Name table number if successful, else:
NO_NETBIOS if NetBIOS not installed or adapter
failure
INVALID_NAME if name is already in use or invalid
Notes:
The name table number is required for datagram support but not
for connection oriented support.
Application names longer than 15 characters are truncated.
The first three characters of the name should not be "IBM".
History:

Original code by William H. Roetzheim

*******************tt**************%t*t**********************t*tt*kk*/

int init_netbios(char *name)

int i;

unsigned long int_vector;

struct net_control_block ncb;

/***%x* gtart by testing for NetBIOS installation ****xx/
/* is interrupt vector initialized? */
int_vector = (unsigned long) getvect(0x5C);
if ((1nt vector == 0x0000)]I (int_vector == 0xF000))
{
/* no interrupt handler installed */
return NO_NETBIOS;
}

/* is NetBIOS responding? */

init_ncb(&ncb);

ncb.command = OxFF; /* an invalid command */
int_netbios(&ncb);

if (ncb.retcode != 0x03) /* error, invalid command */

return NO_NETBIOS;
}

/* now attempt to register name on network */
init_ncb(&ncb);
for (1 = 0; 1 < 15; 1i++)

if (name[i] == 0) break;
ncb.l_name[i] = name[i++];

}

ncb.command = NCB_ADD_NAME;

if (ncb.retcode != 00) return INVALID _NAME;
else return ncb.number;

Code Box 34 init netbios() function

definition.

46 Chap. 3 Portability Using NetBIOS

#include <dos.h>
#include "netbios.h"

/*********t**
* shutdown_netbios - Clear name table entry

Parameters:
name (in) - application name used during init_netbios()

*
*
*
*
* Returns:

* 0 for success, else

* return codes defined for NCB_DELETE_NAME command
*
*
*
*

History:

Original code by William H. Roetzheim
********************t********************************t***************/

unsigned int shutdown_netbios(char *name)

int i;
struct net_control_block ncb;

init_ncb(&ncb);
for (1 = 0; 1 < 15; 1i++)

if (name[i] == 0) break;
ncb.l_name[i] = name[i++];

}
ncb.command = NCB_DELETE_NAME;
return ncb.retcode;

}

Code Box 3.5 shutdown_netbios() function definition.

3.3 Datagram-Oriented Communication

Datagrams are messages which are transmitted over the network
without any attempt to verify error free reception. They are fast, easy
on network resources, simple to use, and require a minimum of
coordination between the communicating programs. For these reasons,
datagrams are often used for functions such as status updates, initial
coordination to establish session-oriented communications (discussed
in the following section), and applications where your software will be
performing error correction and detection anyway.

The application which will be receiving datagram packets should
be initialized first. It then waits to receive any datagrams addressed
to it. The dg_read() function defined in Code Box 3.7 can be used
to receive datagrams. Its syntax is somewhat similar to the read()

Sec. 3.3 Datagram-Oriented Communication 47

function. You need to supply the function with the name table number
assigned to your application name. This is the number returned from
your call to init_netbios (). You also supply a pointer to a buffer
area and the length of the buffer. Note that you do not provide the
name of the application you expect to receive the datagram from.
Upon successful receipt of a datagram, the function returns the
number of bytes successful placed in the buffer. The adapter provides
us this information by modifying the length field of the Network
Control Block. The adapter also provides us with the name of the
application sending the datagram (using the r_name field), which is
returned as the from parameter. The from parameter should point
to a block of memory at least 16 bytes long.

In the event of an error, dg_read () returns minus 1 and sets
the global variable net_error equal to the NetBIOS error return
code. net_error is an integer which should be declared above your
main function. The possible return codes are defined in Section 3.7 of
this chapter.

The dg_write() function, shown in Code Box 3.8, is used to
send datagrams to another application. Unlike dg_read(), this
function requires that you include both your own name table entry
number and the name of the destination. The destination is addressed
by a 16-character name, not a name table entry number. You also
supply a pointer to a buffer containing the data to send and the
number of bytes of data to send. Note that the syntax is similar to the
standard write() function.

The maximum size of a datagram packet will vary from one
adapter to the next. There is no 100 percent consistent method of
determining the maximum packet size except to try various sizes until
you find the one which is just barely too big. Code Box 3.9 illustrates
a brute-force approach to performing this function. The function
max_dg() returns the largest acceptable datagram size for the current
adapter. This brute force approach is normally acceptable because this
function only needs to be performed one time, so optimization is not

48 Chap. 3 Portability Using NetBIOS

#include <string.h>
#include "netbios.h"

/*****************t***************************t***t*t*************t
* dg_read - read a datagram over the network
*

* Parameters:
* number (in) - your name table address number
* from (out) - name of user sending datagram
* buffer (in) - location to put received data
* length (in) - maximum number of bytes to receive
*
* Global:
* net_error - used to store NetBIOS return code for error
* processing.
*
* Returns:
* Number of bytes received for success, -1 for failure
*
* Notes:
* Number is the value returned from a successful init_netbios().
*
* This code assumes that you are using a memory model which will
* result in buffer being a far pointer.
*
* From must point to a block of memory at least 16 bytes long.
*
* History:
* Ooriginal code by William H. Roetzheim, 1990
t*******************/
int dg_read(unsigned int number, char *from, char *buffer, int length)
{
struct net_control_block ncb;

init_ncb(&ncb);

ncb.command = NCB_RECEIVE_DATAGRAM;
ncb.length = length;

ncb.buffer = buffer;

ncb.number = number;

int_netbios(&ncb);

memcpy(from, ncb.l_name, 16);

if (ncb.retcode == 0) return ncb.length;
else return -1;

Code Box 3.6 dg_read() function definition.

Sec. 3.3 Datagram-Oriented Communication 49

#include <string.h>
#include "netbios.h"

/**************t****tt*******ttt*****t***********t*****************
hd dg_write - write a datagram over the network

*
* Parameters:
* number (in) - your name table address number
* destination (in) - destination name (1-15 characters)
* buffer (in) - data to be transmitted
* length (in) - number of bytes to transmit
*
b Global
* net_error - global integer used to return net error codes.
* net_error is set to zero for normal return
*
* Returns:
* Number of bytes transmitted for success. -1 for failure.
* In the event of failure, the global variabla net_error is
* set to the NetBIOS return code for error processing.
*
* Notes:
* Destination must have already executed an
* NCB_RECEIVE_DATAGRAM command
*
* Number is the value returned from a successful init_netbios().
*
* This code assumes that you are using a memory model which will
* result in buffer being a far pointer.
*
* History:
* Original code by William H. Roetzheim, 1990
t**************t**t***/
int dg_write(unsigned int number, char *destination, char *buffer, int length)
{
struct net_control_block ncb;
char dest_name[16];
int i;

memset(dest_name, 0, 16);
for (i = 0; 1 < 15; i++)
{

if (destination[i] == 0) break;
else dest_name[i] = destination[i];
}

init_ncb(&ncb);

ncb.command = NCB_SEND_DATAGRAM;
ncb.length = length;

ncb.buffer = buffer;

ncb.number = number;

strepy(ncb.r name, dest_name);
int_netbios(&ncb);

if (ncb.retcode == 0) return length;
else return -1;

Code Box 3.7 dg_write() function definition.

50 Chap. 3 Portability Using NetBIOS

#include <string.h>
#include "netbios.h"

/************t*****t***t********t********t*********************t*t*
* max_dg - Determine largest acceptable datagram size
*

Parameters:

Returns:
Maximum valid datagram size in bytes

This code assumes that you are using a memory model which will
result in buffer being a far pointer.

*

*

*

*

*

* Notes:
*

*

*

* History:
*

*

Ooriginal code by William H. Roetzheim, 1990

*t*t**t*t*t******k**t***t*t**t*t**t****t*****************************/
int max_dg()

struct net_control_block nchb;
int length = 0;

init_ncb(&ncb);
while (ncb.retcode == 0)
{
length++;
init_ncb(&ncb);
ncb.command = NCB_SEND_DATAGRAM;
ncb.length = length;
ncb.number = 0x01; /* use our adapter standard name */
int_netbios(&ncb);

}
return length -1;

Code Box 3.8 max_dg() function listing.

very rewarding in terms of overall application performance. If you find
the running time to be burdensome, you can easily

modify the function to use a binary search algorithm to find the largest
acceptable size.

3.4 Session-Oriented Communication

Session-oriented communication is appropriate for the majority of
NetBIOS oriented data communication. This protocol provides
acknowledgments to give you some assurance that the data has been
received intact. Session-oriented communication is logically similar to
placing a telephone call. The steps involved are

Sec. 3.3 Datagram-Oriented Communication 51

1. You call a remote adapter (dial the number).

2. You send and receive data (talk and listen).

3. You terminate the session (hangup the phone).

We will describe four session-oriented communciation support
functions. These functions are designed to operate similar to standard
file I/O functions included with your C compiler. The functions we
will define are

o sn_open() This function opens a connection

° sn_write() This function write/da'ta over a connec-

tion.
[] sn_read () This function reads data over a connection.
° sn_close() This function closes a connection.

Code Box 3.10 shows the code for the sn_open() function.
This function opens a logical session (connection) between two
adapters. Two communicating application programs must both call
sn_open(). One must call sn_open() while setting the value for
the flag parameter to CLIENT while the other must set the flag
parameter to SERVER. It does not matter which application is the
client and which is the server, as long as they are not both one or the
other. The names used to establish a session are the names used by
each application program during their call to init_netbios().
sn_open() returns the logical session number for success, or minus
1 for error. If minus 1 is returned, the global variable net_error can
be checked to determine the exact error number. You use
sn_open() just like you would use open() and treat the return
value just like you would treat a handle returned by open().

52 Chap. 3 Portability Using NetBIOS

After you have opened a connection using sn_open(), you can
read and write data over the connection using sn_read() and
sn_write(). These functions are defined in Code Box 3.11 and
Code Box 3.12, respectively. The syntax is very similar to the syntax
for the read () and write () functions you are already familiar with,
except that
the file handle has been replaced with a logical session number
(returned by sn_open()).

Although the syntax is similar to read() and write(), you
must remember that there is a big difference between session oriented
communications and reading or writing to/from a disk drive. When
you are interacting with a disk drive, you are in command. The disk
controller waits for your command, the either performs the read or
write action as directed. When you are communicating over a
network, you are no longer automatically in control. If you execute an
sn_read(), the other application program must execute an
sn_write() for anything to happen. Similarly, if you execute an
sn_write(), the other application program must execute an
sn_read() for communication to be effective. This coordination
problem is often handled in one of two ways.

One approach is to establish a protocol for who should be
sending and who should be receiving at any point in time. For some
applications, there might be only one sender (the server) and one
receiver (the client). For other applications, it might be appropriate
for the application programs to take turns, alternating sending and
receiving. Another approach is to establish an in-band or out-of-band
coordination protocol. For an in band protocol, you might include
some header information at the beginning of each transmission to tell
if the receiver should continue to listen or should transmit after receipt
of the data buffer. Out-of-band coordination might involve using
communicating using datagrams (in addition to the session-oriented
communication) for coordination information.

Sec. 3.3 Datagram-Oriented Communication

53

#include <string.h>
#include "netbios.h"
/******ttt*tt**tttt***********t**************t****t************tt*t
* sn_open - open a connection oriented session using NetBIOS
*
* Parameters:
* from (in) - your application name
* to (in) - name of destination application
* flag (in) - CLIENT or SERVER
*
* Global
* net_error - integer giving latest net error condition
* Returns:
* logical session number (LSN) on success, -1 on error
*
* Notes:
* On error, check net_error for error number
*
* History:
* Original code by William H. Roetzheim, 1990
****'kt****************t*********t***t*****tt******t*******************/
int sn_open(char *from, char *to, int flag)
{
int i;
struct net_control_block ncb;
char name[16];

init_ncb(&ncb);

if (flag == SERVER) ncb.command = NCB_CALL;
else ncb.command = NCB_LISTEN;
memset(name,0,16);

for (1 = 0; 1 < 16; i++)

{

if (from[i] == 0) break;
else name[i] = from[i];

}
strcpy(ncb.1l_name, name);

memset(name, 0, 16);
for (1 = 0; 1 < 16; 1++)

if (to[i] == 0) break;
else name[i] = to[i];

strepy(ncb.r_name, name);
int_netbios(&ncb);

if (ncb.retcode == 0) return ncb.lsn;
else return -1;

Code Box 3.9 sn_open() function definition.

54 Chap. 3 Portability Using NetBIOS

#include <stdio.h>
#include "netbios.h"
/**************************************tt******************t**t****
* sn_read - read data from an already open logical session number
*
* Parameters:
* 1sn (in) - logical session number from sn_open()
* buffer (in) - far pointer to data buffer
* nbytes (in) - available size of buffer area
*
* Returns:
* number of bytes actually received, or -1 for error
*
* Notes:
* On error, check net_error for error number
*
* History:
* Original code by William H. Roetzheim, 1990
*t*********t****t********t*t***t***t**t*******************t***********/
int sn_read(char 1lsn, void *buffer, unsigned int nbytes)
{
struct net_control_block ncb;

init_ncb(&ncb);

ncb.command = NCB_RECEIVE;

ncb.lsn = 1sn;

ncb.length = nbytes;

ncb.buffer = buffer;

int_netbios(&ncb);

if (ncb.retcode == 0) return ncb.length;
else return -1;

Code Box 3.10 sn_read() function definition.

An alternate approach, which is often more appropriate if
extensive two-way communication is required, is to establish two
sessions simultaneously. One session is used for transmitting data from
application A to application B, while the other is used for transmitting
data from application B to application A. Basically, each of the
sessions is used as a simplex (one-way) communication link. One
approach to accomplishing this is as follows:

1. Call sn_open() twice to establish two sessions. You
do not need to use different names, nor do you need to
change the value for the flag. It is completely appropri-
ate, and normally best, to simply make two calls with the
identical parameters.

Sec. 3.3 Datagram-Oriented Communication

55

#include <stdio.h>
#include "netbios.h"
/*************************t**
* sn_write - write data to an already open logical session number
*
* Parameters:
* lsn (in) - logical session number from sn_open()
* buffer (in) - far pointer to data to transmit
* nbytes (in) - number of bytes to transmit
*
* Returns:
* number of bytes actually transmitted, or -1 for error
*
* Notes:
* On error, check net_error for error number
*
* History:
* Original code by William H. Roetzheim, 1990
*****t******************************t*************k*******************/
int sn_write(char 1lsn, void *buffer, unsigned int nbytes)
{
struct net_control_block ncb;

init_ncb(&ncb);

ncb.command = NCB_SEND;

ncb.lsn = 1lsn;

ncb.length = nbytes;

ncb.buffer = buffer;

int_netbios(&ncb);

if (ncb.retcode == 0) return ncb.length;
else return -1;

Code Box 3.11 sn_write() function definition.

2. Use sn_receive() (Code Box 3.13) rather than
sn_read(). sn_receive() is modified as follows:

® The NetBIOS command has been modi-

fied to use the NO_WAIT option.

° The net_control block variable has been
modified to be a static variable (so that it
will remain available after return from the

function).

56

Chap. 3 Portability Using NetBIOS

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

#include
#include

/***************x**********t***************************************
sn_receive - initialize a receive operation in background

Parameters:

Refurns:

Notes:

History:

x**********************/

struct net_control_block *sn_receive(char lsn, void *buffer, unsigned int nbytes)
{
static

init_ncb(&ncb);

ncb.command = NCB_RECEIVE | NO_WAIT;
ncb.lsn = 1lsn;

ncb.length = nbytes;

ncb.buffer = buffer;
int_netbios(&ncb);

return &ncb;

<stdio.h>
"netbios.h"

1sn (in) - logical session number from sn_open()
buffer (in) - far pointer to data buffer
nbytes (in) - available size of buffer area

address of net control block used during receive

Only one sn_receive() operation must be outstanding at a time

original code by William H. Roetzheim, 1990

struct net_control_block ncb;

Code Box 3.12 sn_receive() function definition.

[The function returns the address of the
net_control block variable rather than an
indication of the number of bytes received.

Use sn_send() (Code Box 3.14) rather than
sn_write(). sn_send() received the same modifica-
tions as sn_receive().

Call sn_receive() early in your application, using a
buffer area set aside for this purpose. Save the return
value as a pointer to the receive Network Control Block,
perhaps calling it receive_ncb. Periodically check the
complete field to determine if a message has arrived

Sec. 3.3 Datagram-Oriented Communication 57

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

#include
#include

/t***k*******k*******
sn_send - write data out in background

Parameters:

Returns:
Notes:

History:

********************t************t****k*t*********************t******,

struct net_control_block *sn_send(char lsn, void *buffer, unsigned int nbytes)
{
static struct net_control_block ncb;

init_ncb(&ncb);

ncb.command = NCB_SEND | NO_WAIT;
ncb.1lsn = l1sn;

ncb.length = nbytes;

ncb.buffer = buffer;
int_netbios(&ncb);

return &ncb;

<stdio.h>
"netbios.h"

1sn (in) - logical session number from sn_open()
buffer (in) - far pointer to data to transmit
nbytes (in) - number of bytes to transmit

Address of net control block used for write
Oonly one sn_send operation can be outstanding at a time

Original code by William H. Roetzheim, 1990

Code Box 3.13 sn_send() function definition.

(receive_ncb->complete will be some value other
than OxFF). If a message has arrived, immediately copy
the receive buffer contents to a working area, then call
sn_receive() again for the next message.

Call sn_send () whenever you need to send data, using
a buffer area set aside for this purpose (not the same
buffer area used for sn_receive()!). Save the return
value as a pointer to the send Network Control Block,
perhaps calling it send _ncb. Periodically check the
complete field to determine if the message has been
successfully transmitted (send_ncb->completewillbe

58 Chap. 3 Portability Using NetBIOS

some value other than 0xFF). After the message has
been sent, you may send another if desired.

Using this approach, it is possible to simultaneously conduct
two-way data communication over the two data connections (sessions).

3.5 Miscellaneous NetBIOS Commands

NCB_RESET is used to reset the adapter. When the adapter is reset
under DOS, all current NetBIOS names are deleted, all current
sessions are aborted, and all outstanding Network Control Blocks are
purged. In addition to the command field, three Network Control
Block fields are used by NCB_RESET:

1. adapter This field indicates the adapter number to
reset (0 for primary, 1 for secondary). init_ncb()
sets this field to 0.

2. 1sn This field is used to indicate the maximum number
of sessions the adapter should support. This number
cannot be greater than the maximum value specified as
a load parameter when NetBIOS was loaded. Setting
this field to 0 allows the adapter to select a logical
number. The adapter will use 6 if the load parameter
RESET .VALUES = no (default), or else it will use the
load parameter maximum sessions. init_ncb() sets
this field to 0.

3. number This field is used to indicate the maximum
number of outstanding Network Control Block com-
mands. This number can not be greater than the
maximum value specified as a load parameter when
NetBIOS was loaded. Setting this field to 0 allows the

Sec. 3.5 Miscellaneous NetBIOS Commands 59

adapter to select a logical number. The adapter will use
12 if the load parameter RESET.VALUES = no (de-
fault), or else it will us the load parameter maximum
commands. init_ncb() sets this field to 0.

NCB_SESSION_STATUS is used to monitor the status of all
currently active NetBIOS sessions on your adapter. The structure
session_status (as defined in netbios.h) is used to examine the
current status. The structure contains four fields which apply to all
outstanding sessions for a given name along with a structure called
session, which contains information for a single outstanding session.
If we declared a structure of type session status (e.g., struct
session_status ss), we would access the state field for a single
session as ss.session.state. The state field within the structure
has the following possible meanings:

0x01 - Listen outstanding
0x02 - Call pending

0x03 - Session established
0x04 - Hang up pending
0x05 - Hang up complete
0x06 - Session aborted

Because one application can have multiple sessions simulta-
neously outstanding, there may be more than one session portion of
the session_status structure. Code Box 3.15 shows one possible
approach to handling this possibility. The function
get_session_status() is initially called with the FIRST parame-
ter. A pointer to a session_status structure is returned and the
session portion of the structure is initialized to the first session.
get_session_status() can then be called repeatedly using the
NEXT parameter. Each call replaces the session portion of the
structure with the next session. When all sessions have been viewed,

60 Chap. 3 Portability Using NetBIOS

#include <stdio.h>

#include <string.h>

#include "netbios.h"

extern int net_error;

#define MAX_SESSIONS 12

#define BUFFER_SIZE (4 + (36 * MAX_SESSIONS))

/**********************kt****************t**t*t*******t************
get_session_status - get session status information

Parameters:
name (in) - name to inquire about
flag (in) - FIRST or NEXT

Global:
net_error - set if problem encountered

Returns:
Pointer to session_status structure, or NULL when no
more information
History:
* original code by William H. Roetzheim, 1990
*ﬁ*******t******************t***/

struct session_status *get_session_status(char *name, int flag)
{

IR EEREEREEREEERSE]

int i;
static int location;
char application_name[16];

static char buffer [BUFFER_SI2E];
static struct session_status ss;
struct net_control_block ncb;

if (flag == FIRST)
{

memset(buffer, 0, BUFFER_SIZE);

/* read status information into buffer */
init_ncb(&ncb);

ncb.command = NCB_SESSION_STATUS;
memset(application name, 0, 16);

for (1 = 0; 1 < 15; 1i++)

if (name[i] == 0) break;
else application_name[i] = name[i];

}

strcpy(ncb.l_name, application_name);

ncb.length = BUFFER_SIZE;

ncb.buffer = buffer;

int_netbios(&ncb);

/* copy initial portion to session status structure */
memcpy(&ss, buffer, sizeof(struct session_status));
location = sizeof(struct session_status);

else
if (location < 4 + (ss.number_of_sessions * 36))
memcpy(&ss.session, &buffer[location],
sizeof(struct session_status));
location += sizeof(struct session _status);
}
else location = -1; /* past end */

}
if (location = -1) return &ss;
else return NULL;

Code Box 3.14 get_session;status() function definition.

Sec. 3.6 NetBIOS Command Summary 61

a NULL is returned.

Sections 3.6 and 3.7 summarize all NetBIOS commands and
return values. Some less common NetBIOS commands were not
covered earlier in this chapter, so you should read these two sections
to be aware of all available NetBIOS commands. If you need to work
with the NetBIOS at a more detailed level than covered in this
chapter, you should refer to Section 3.8 (Suggested Readings) for
additional details.

3.6 NetBIOS Command Summary

The following table presents a summary of all NetBIOS
commands. The columns have the following meanings:

1. Command The command name. These names are
defined in netbios.h. These are the values to use for
the Network Control Block’s command field prior to
calling the NetBIOS for processing. All of these com-
mands can be used with the NO_WAIT flag (i.e., COM~

MAND | NO_WAIT) except for NCB_CANCEL,
NCB_LAN_STATUS_ALERT, NCB_RESET, and
NCB_UNLINK.

2. Input The fields within the Network Control Block (in
addition to command) that should be initialized prior to
using the command.

3. Outputs The fields within the Network Control Block
that are modified by the command during processing.

4. Summary A brief description of the command function.

62

Command

NCB_ADD_GR
OUP_NAME
(0x36)

NCB_ADD_GR
OUP_NAME
(0x30)

NCB_CALL
(0x10)

NCB_CANCEL
(0x35)

NCB_CHAIN_S
END

(0x17)

NCB_CHAIN_S
END_NO_ACK
(0x72)

NCB_DELETE_
NAME
(0x31)

NCB_FIND_NA
ME
(0x78)

NCB_HANG_UP
(0x12)

Inputs

adapter
buffer

adapter
buffer

Isn

r_name (bytes 0-1
length2, bytes 2-5
*buffer2)

length
buffer

r_name (bytes 0-1
length2, bytes 2-5
*buffer2)

adapter

1 name

length
buffer

T_name

adapter
Isn

Chap. 3 Portability Using NetBIOS

Outputs

retcode
number
reserved

retcode
number
reserved

retcode
Isn
reserved

retcode
reserved

retcode
reserved

retcode
reserved

reserved

length

retcode
reserve

Summary

Add shared name to adapter name
table.

Add unique name to adapter name
table.

Call to establish session oriented
connection.

Cancel command located at buffer.

Send one buffer, then immediately
send a second buffer.

Send on buffer, then immediately
send a second buffer. Do not re-
quest acknowledgments.

Delete a name from the adapter’s
name table.

Find the address of any adapters
which have registered a specific

Close a connection oriented session.

Sec. 3.6 NetBIOS Command Summary

NCB_LAN_STA
TUS_ALERT
(0xF3)

NCB_RECEIVE
(0x15)

NCB_RECEIVE
_ANY
(0x16)

NCB_RECEIVE
_BROADC

AST DATAGRA
M

(0x23)

NCB_RECEIVE
_DATAGR

AM

(0x21)

NCB_RESET
(032)

NCB_SEND
(0x14)

NCB_SEND_BR
OADCAST_
DATAGRAM
(0x22)

NCB_SEND_DA
TAGRAM
(0x20)

adapter
Isn
buffer

length
adapter
buffer

number

adapter
length
buffer

number

adapter
length
buffer

post
number

adapter

number

adapter

length
buffer

Isn

adapter
length
buffer

number

adapter
length
buffer

number
r_name

length

reserved

retcode
Isn

length
reserved
number

reserved

length

I_name

reserved

length

r_name

reserved

retcode
reserved

reserved

retcode
reserved

63

Used to notify an application in the
event of low- level ring errors.

Receive connection oriented data via
a session.

Receive connection oriented data
from any session.

Receive a datagram from any name
on the network sending a broadcast
datagram.

Receive a datagram addressed to
number.

Clear the adapter name table, abort
all sessions, purge all outstanding
NCB’s, and open the adapter.

Send data to the session partner
(identified by lsn).

Send a datagram to every station
with an outstanding
NCB_RECEIVE_BROADCAST._
DATAGRAM.

Send a datagram to a specific name
identified by r_name.

64

NCB_SEND_NO
_ACK
(ox71)

NCB_SESSION _
STATUS
(0x34)

NCB_STATUS
(0x33)

NCB_TRACE
(0x79)

NCB_UNLINK
(0x70)

adapter
length
buffer

Isn

adapter
length
buffer
post

adapter
buffer
length
r_name

post

adapter
buffer

length

Chap. 3 Portability Using NetBIOS

reserved

retcode
reserved

length

retcode
reserved

length

reserved
buffer

number (0xFF = trace length
on, 0x00 = local trace

off, 0x01 = local and

remote trace off)

adapter

reserved

Send data to a session partner with-
out requiring an acknowledgment
upon receipt.

Obtain the status of all sessions for
a local name or all sessions for all
local names.

Query the status of a local or remote
NetBIOS.

Activate or deactivate a trace of all
Network Control Blocks.

Provided for compatibility only.
Performs no function.

NetBIOS Command Specifics

NCB_ADD_GROUP_NAME
Add a group name to the local adapter name table.
Group names can be used by more than one adapter (or
application on an adapter). Group names can not also be
registered as unique names. The name must be 16 characters,
although the last character must not be in the range of 0x00
through 0x1F and the first three characters cannot be "IBM."
The add name request is processed by transmitting name query

Sec. 3.6 NetBIOS Command Summary 65

requests over the network and monitoring any responses. When
successful, the command returns the name table entry number.
This number is assigned between 0x02 and OxFE (0x00 and
OxFF are not used, 0x01 is permanently assigned based on the
adapter’s unique serial number). If more than 252 names are
registered, the later names overwrite the earlier names (i.e., the
numbers roll over). See also NCB_ADD NAME,
NCB DELETE NAME, NCB_FIND NAME.

NCB_ADD NAME
This command works identically to
NCB_ADD_GROUP_NAME except that the name must be unique
across the network. See also NCB_ADD GROUP_NAME,
NCB_DELETE NAME, NCB_FIND NAME.

NCB_CALL

Establish a session by calling a remote application. The
remote application must have an NCB_LISTEN outstanding for
this command to succeed. The session is opened with the
application that has a registered name of r_name. Multiple
sessions may be established between the same pair of names.
Timeout intervals (rto and sto) are 500 millisecond units,
with 0 implying no timeout. Upon success, a local session
number (1sn) is returned. Lsn’s are assigned in a round-robin
technique in the range of 0x01 — OxFE. See also
NCB_LISTEN, NCB_HANG_UP, NCB_SEND,
NCB_RECEIVE.

NCB_CANCEL
Cancel a Network Control Block (command). The
command which is cancelled is located at the address pointed
to by buffer. Canceling any session oriented command will

Chap. 3 Portability Using NetBIOS

automatically close the session. The following commands can
be canceled:

e NCB CALL

e NCB_CHAIN SEND

e NCB CHAIN SEND NO ACK
e NCB HANG UP

e NCB LAN STATUS ALERT
e NCB LISTEN

e NCB RECEIVE

e NCB RECEIVE ANY

e NCB_RECEIVE BROADCAST ANY
e NCB RECEIVE DATAGRAM
e NCB_SEND

e NCB SEND NO ACK

e NCB_STATUS

See also NCB_SESSION_STATUS, NCB_STATUS.

Sec. 3.6 NetBIOS Command Summary 67

NCB_CHAIN_SEND
This command allows two buffers to be automatically
concatenated together and sent at once. The meaning of the
r_name field is modified to contain the following information:

° Bytes 0 — 1 (length of second buffer)
° Bytes 2 — 5 (far pointer to second buffer)

Lengths between 1 and 65,535 are valid for each of the
two buffer, allowing this command to send up to 131,070 bytes.
See also NCB_CHAIN SEND NO ACK, NCB_SEND,
NCB RECEIVE.

NCB_CHAIN_SEND NO ACK
This command works identically to NCB_CHAIN_ SEND,
except that the receiving adapter is not required to send
acknowledgments back (this becomes an application responsi-
bility). See also NCB_CHAIN_SEND.

NCB_DELETE_NAME
Delete a name from the local name table. When data
is queued for transmission or reception over a session using this
name, the actual name deletion is delayed until the data
transmission/reception is complete. See also
NCB_ADD NAME.

NCB_FIND NAME
Find the network location of the adapter owning a 16
character name, including how the name is registered (unique
or group). If the name is not found, the retcode field is set
to 0x05 (command timed out). If one or more adapters did
respond, the length field is set to the length of the returned

68 Chap. 3 Portability Using NetBIOS

data. Data is placed at the location pointed to by buffer.
The number of responses will be the first two bytes located at
buffer. This number will always be 0x01 unless the name is
registered as a group name. The format of the remainder of
the data in the buffer varies and is described fully in (IBM,
1988).

NCB_HANG_UP
This command closes a session (connection) as specified
by the local session number (1sn). The command will com-
plete any Network Control Block which is in the process of
being sent, but will cancel all other outstanding Network control
blocks destined for this session. See also NCB_CALL,
NCB_LISTEN, NCB_CANCEL.

NCB_LAN_STATUS ALERT
This command always runs in the NO_WAIT mode. As
long as the token ring operates properly, this command is
queued by NetBIOS (does not return). The command complete
when a ring error condition occurs which lasts longer than one
minute. This command can be used for network administration

or network management software. See also
NCB_SESSION_STATUS, NCB _STATUS.

NCB_LISTEN

This command enables a session to begin with the
application identified as x_name. If the first character of the
r _name is an asterisk (’*’), a session will begin with any
network node that calls this application. An NCB_LISTEN for
a specific name will preempt data over an NCB_LISTEN for a
wildcard name. rto and sto are the timeout intervals in 500
millisecond increments, with 0 implying no timeout. This
command returns a local session number (1sn). If a wildcard

Sec. 3.6 NetBIOS Command Summary 69

name was used, the r_name is also modified to be the actual
name of the network node performing the NCB_CALL. See also
NCB_CALL, NCB_RECEIVE.

NCB_RECEIVE
After a session is established, this command is used to
receive data from a session partner. This command receives
data sent using

e NCB_CHAIN SEND

e NCB _CHAIN SEND NO ACK
e NCB SEND

e NCB_SEND NO ACK

NCB_RECEIVE has priority over NCB_RECEIVE_ANY.
See also NCB_SEND, NCB_RECEIVE _ANY, NCB_LISTEN.

NCB_RECEIVE ANY

This command receives data for any session registered
to the network node identified by number in the name table.
If number is set to OxFF, this command will receive data for
any session addressed to any name in the local adapter. The
NCB_RECEIVE command has priority over
NCB_RECEIVE_ANY. It is possible to use this command and
receive data destined for a different application running on the
local computer. See also NCB_RECEIVE.

NCB_RECEIVE_BROADCAST DATAGRAM
This command receives a broadcast datagram from any
application on the network which issued a

70 Chap. 3 Portability Using NetBIOS

SEND_BROADCAST DATAGRAM. The buffer length (specified
by length) must be large enough to receive the entire

datagram or the remaining data will be lost. See also
NCB_RECEIVE DATAGRAM, NCB_RECEIVE_ANY.

NCB_RECEIVE_DATAGRAM

This command receives a datagram from any name on
the network that issues an NCB_SEND_DATAGRAM to the local
name table entry given by number. If number is set to OxFF,
then datagrams addressed to any name in the local name table
will be received. This command will not receive a broadcast
datagram. See also NCB_RECEIVE _BROAD-
CAST DATAGRAM, NCB_RECEIVE.

NCB_RESET

The exact functioning of NCB_RESET is dependent on
the version of NetBIOS you are running and whether or not you
are running under OS/2. For all variations, NCB_RESET
deletes NetBIOS names from the name table, closes current
sessions, purges all outstanding NCBs, and turns the adapter on.
Under DOS, all names and sessions are closed, while under
OS/2 only those names and sessions specific to your local
process are closed. See also NCB_CANCEL.

NCB_SEND
This command sends the data located at buffer to the
session partner defined using the local session number (1sn).
If more than one NCB_SEND is pending, buffers are transmitted
in a FIFO order. Message buffers can be between 0 and 65,535
bytes long, with the length of the buffer passed in 1length. If

Sec. 3.6 NetBIOS Command Summary n

~ the NCB_SEND cannot be completed the session is closed. See
also NCB_RECEIVE, NCB_SEND _NO_ACK.

NCB_SEND_BROADCAST _DATAGRAM

This command sends a broadcast datagram to every
station with an NCB_RECEIVE BROADCAST DATAGRAM
outstanding. If the station transmitting the broadcast datagram
also has an NCB_RECEIVE_BROADCAST DATAGRAM outstand-
ing, it will receive its own transmission. Receipt of one
broadcast datagram satisfied all outstanding
NCB_RECEIVE_BROADCAST DATAGRAM commands (multiple
commands are not queued). See also
NCB RECEIVE BROADCAST DATAGRAM.

NCB_SEND_DATAGRAM
This command sends a datagram to any unique name or
group name on the network. The destination is shown in the

r_name field. The source (your name table entry) is passed in
the number field. See also NCB_RECEIVE_DATAGRAM.

NCB_SEND NO ACK
This command works exactly like NCB_SEND, except that
the recipient of the data is not required to transmit an acknowl-
edgment back (this becomes an application responsibility). See
also NCB_SEND.

NCB_SESSION_STATUS
This command is used to determine the status of all
sessions for a local name (it can also be used to determine the
status for all sessions for all local names). To return the status
for all local names, the first character of the 1_name field must
be an asterick ("*’). Normally, the 1_name field will tell the
local name you are interested. The space pointed to by buffer

72 Chap. 3 Portability Using NetBIOS

is used to store data, and its maximum size (shown in length)
should be at least 4 bytes plus 36 times the maximum number
of sessions you expect to be returned. The format of the
returned data was described in Section 3.6. See also
NCB_STATUS.

NCB_STATUS

This command returns the current status of a local or
remote NetBIOS. To return the local status, the first byte of
the r_name field must be an asterick ("*’). To return the
status of a remote adapter, the r_name field should contain the
name of the adapter. The status information is returned to the
memory location identified by buffer. The length of the
buffer (designated in length) must be at least 60 for this
command to succeed. If you want to receive all available
information, the length of the buffer must be 60 plus 18 times
the maximum number of names registered for the adapter. The
structure of the returned information is shown in Code Box
3.16. This command may not be available on non-IBM versions
of NetBIOS, or if available, the returned information may be
different. See also NCB_SESSION_STATUS.

NCB_TRACE

This command activates and deactivates a trace of all
Network Control Blocks processed by NetBIOS, including both
transmits and receives. This command only available under
DOS. The number field is used to determine the action of the
command (0xFF = trace on, 0x00 = local trace off, 0x01 =
local and all remote traces off). The field 1ength is set to the
length of your trace table (1024 bytes or larger) and buffer
points to the start of the trace table. The trace table contains
a 32 byte trace table header followed by by each trace entry.
The exact format of the trace table is somewhat complex, and

Sec. 3.6 NetBIOS Command Summary 73

struct ncb_status
char adapter([6]; /* encoded adapter address */
char release; /* NetBIOS version 1, 2, or 3 */
char reserved_1;
char netbios_1; /* OxFF = Token Ring Adapter */
/* OxFE = PC Network Adapter */
char netbios_2; /* NetBIOS version 1, software level */
/* NetBIOS version 2/3 */
/* bits 0-3 = software version; */
/* bits 4-7 = 0x1 */
/* for old parameters */
/* 0x2 for new parameters */
unsigned duration; /* Duration of rep period in minutes */
unsigned f_received; /* Number of frames received */
unsigned f_sent; /* Number of frames transmitted */
unsigned f_rec_error; /* Number of receive frames in error */
unsigned f_aborted; /* Number of transmissions aborted */
unsigned long packets_sent; /* Number of successfully */
/* transmitted packets */
unsigned long packets_rec; /* Number of successfully */
/* received packets */
unsigned f_sent_error; /* Number of transmit frames in error */
unsigned long reserved_2;
unsigned free_ncb; /* Number of free net control blocks */
unsigned max_ncb; /* Maximum number of net control blocks */
unsigned max_ncb_poss; /* Maximum number of net control blocks */
unsigned buf_not_avail; /* Number of times a xmit buf was not avail */
unsigned max_datagram; /* Maximum datagram size */
unsigned pend_ses; /* Number of pending sessions */
unsigned max_pend; /* Configured Max number of pending sessions */
unsigned max_pend_poss; /* Maxinum number of pending sessions */
unsigned max_packet; /* Maximum size of session data packet */
unsigned tot_names; /* Number of names in the local name table */
struct
{
char name[16];
char number;
struct
unsigned int type : 1; /* 0x00 = unique, 0x01 = group */
unsigned int reserved_3 : 4; /* bit field */
unsigned int status : 3; /* 0x0 being registered */
/* 0x4 registered */
/* 0x5 deregistered */
/* 0x6 detected duplicate */
/* 0x7 detected dup, pending */
} bit;
} name_table_entry([];

Code Box 3.15 NCB_STATUS return structure.

74 Chap. 3 Portability Using NetBIOS

interested readers are referred to (IBM, 1988) for the details.
See also NCB_STATUS, NCB_SESSION_STATUS.

NCB_UNLINK
This command acts like a NOP for IBM NetBIOS
implementations. It is provided for compatibility reasons only.

3.7 NetBIOS Return Code Summary

This section lists all return codes which are valid for the NetBIOS.
Return codes are returned in the retcode field of the Network
Control Block structure. If you are using the init_netbios()
function defined earlier in this chapter, the return code is also placed
in the global variable net_error. A return of 0x00 is always a valid
return without error. A return of anything other than 0x00 indicates
some type of error. The specific meaning of each possible return code
is as follows:

Code Name Description Action
0x00 SUCCESS Operation completed normal- None.
ly.
0x01 BUF_LENGTH The buffer length passed in Modify the length.
the Network Control Block
was invalid.
0x03 INVALID COMMAND Invalid NetBIOS command. Modify command.
0x05 TIME_OUT Command timed out. Check that a receive is out-
standing for any send com-
mand. Retry.
0x06 BUFFER _SIZE Received data could not fit in NCB_RECEIVE and
buffer. NCB_RECEIVE ANY - reis-

sue command to get remain-
ing data. Other commands,
the data is lost.

Sec. 3.7 NetBIOS Return Code Summary

0x11

0x13

BAD_PACKET

INVALID _LSN

RSESSION_FULL

SESSION_CLOSED

CANCELLED

DUP_NAME

NAME _FULL

SESSION_ACTIVE

LSESSION_FULL

NO_LISTEN

INVALID NUMB

NO_RESPONSE

INVALID NAME

One or more data packets
s end using
NCB_SEND_NO_ACK or
NCB_CHAIN_SEND NO_A
CK was not properly received.

The local session number (lsn)
specified is not valid.

The remote application pro-
gram does not have any avail-
able sessions remaining to
establish a new session.

The transmitting side closed
the session (this is the normal
return code in this case).

Command was cancelled.

Specified name is already in

The name table is full or has
exceeded the number defined
at initialization (default = 17).

The name was deregistered,
but active sessions are out-
standing.

The local session table is full.
The number of sessions can
be modified at initialization or
using NCB_RESET.

The remote node does not
have an outstanding
NCB_LISTEN command.

The name table number is not
valid.

No response to NCB_CALL
command.

The name was not found,
contains an asterick ("*’) as
the first charcter, or contains a
0x0 as the first character.

75

Application-level error recov-
ery is required.

Use correct Isn.

Try again later.

None.

None.

Use a different name.

Delete a name.

Close all sessions using this
name.

Close a session.

Wait until an NCB_LISTEN is

outstanding.

Use a valid number.

Check receiving application

for proper operation.

Use a valid name.

76

NAME _IN_USE

NAME DEL

SESSION_FAILURE

NAME_CONFLICT

BUSY

TOO_MANY_NCBS

INVALID ADAPTER

COMPLETED

CANT _CANCEL

NAME_DEFINED

NO_ENVIRONMENT

OS_OVERFLOW

APP_OVERFLOW

NO_SAPS

RESOURSE_AVAIL

Chap. 3 Portability Using NetBIOS

The name is already registered
by a remote NetBIOS.

The name was already deleted.

The session was terminated
abnormally. Normally this
occurs when a sending com-
mand times out while waiting
for a receive command to be
posted.

Two or more identical names
have been detected on the
network.

NetBIOS is busy or out of
local resources.

Too many Network Control
Blocks are outstanding.

An invalid adapter number
was specified.

Tried to cancel a command
which has already been com-
pleted.

Attempt to cancel a command
which can not be cancelled.

Another environment has
already defined the name.

The environment has not been
defined.

The operating system resourc-
es are exhausted.

The maximum number of
applications defined at load
time (NetBIOS 3.0 only) are
already running (OS/2).

The adapter has mo SAPs
available for NetBIOS (0S/2).

The requested resource is not
available (0S/2).

Use a different name.

Add the name to the name
table.

Use a longer timeout interval.

Delete the identical names.

Try again later.

Try later or increase the maxi-
mum.

Use 0x00 for primary, 0x01 for
secondary (if installed).

None.

None.

Use a different name.

Issue an NCB_RESET com-

mand.

Retry later.

‘Wait until another application
terminates.

Try later.

Use a smaller number of re-
sources.

Sec. 3.7 NetBIOS Return Code Summary

0x40

0x4E

0x4F

0xF6

INVALID_NCB

RESET_INVALID

INVALID_DD_ID

LOCK FAILED

DD_OPEN_FAIL

0S2_ERROR

NET _STATUS 1

NET_STATUS 2

CCB_ERROR

DIR_INIT ERROR

DIR_OPEN_ERROR

INTERNAL _ERROR

The Network Control Block
address is invalid or its length
will not fit in a segment. For
this error, the return value is
placed in register AL but not
in the Network Control Block
itself.

An NCB RESET command
was issued while the adapter
was processing a hardware
interrupt (device driver OS/2
interface using NetBIOS 3
only).

The device driver identifica-
tion was invalid (OS/2 using
device driver interface only).

NetBIOS attempted to lock
user storage (file locking) and
lock failed.

A device driver open failure.
Either the device driver did
not function properly or the
NetBIOS device driver was
not loaded.

OS_2 indicates an operating
system error.

Network hardware failure, bits
12, 14, or 15 indicate failure.

Network hardware failure, bits
8 — 11 indicate failure.

Unexpected error on CCB
completion (low level protocol
error).

Error attempting to perform
DIR_INITIALIZE (DLC
command).

Error attempting to perform
DIR_OPEN command.

NetBIOS support software
internal error.

77

Correct NCB address.

Correct application driver.

Correct DD_ID value.

Try later.

Ensure that NetBIOS is ini-
tialized properly with all re-
quired device drivers.

Issue NCB_RESET and try
again.
Issue NCB_RESET.

Issue NCB_RESET.

Issue NCB_RESET.

Issue NCB_RESET.

Issue NCB_RESET.

Issue NCB_RESET.

78

ADAPTER ERROR

BAD_NETBIOS

DLC_ERROR

Chap. 3 Portability Using NetBIOS

Adapter hardware error.

The NetBIOS code is either
not loaded or invalid.

Error attempting a

Issue NCB_RESET.

Load NetBIOS.

Issue NCB_RESET.

DIR_OPEN_ADAPTER or
DLC_OPEN_SAP.

ADAPTER_CLOSED The adapter was closed while Issue NCB_RESET.
NetBIOS was executing.

NO_NETBIOS The application program ex- Close the adapter and reissue
plicitly opened the adapter the NetBIOS command.

while NetBIOS was not opera-
tional.

3.8 Suggested Reading

Glass, B. (1989), "Understanding NetBIOS," Byte, Vol. 14, no.
1, (Jananuary), pp. 301—306.

IBM (1987), NetBIOS Application Development Guide, Research
Triangle Park, NC, International Business Machine Corpora-
tion.

IBM (1988), Local Area Network Technical Reference, Research
Triangle Park, NC: International Business Machine Corpora-
tion.

Schwaderer, W. David (1988), C Programmer’s Guide to
NetBIOS, Indianapolis, IN: Howard W. Sams.

4. Speed with DLC Programming

When a token ring network adapter card is installed, the user
modifies his/her config.sys file to install two new device drivers.
DxmaOmod.sys is a token ring network interrupt arbitrator and
dxmcOmod.sys is the adapter support device driver. These two drivers
plus firmware on the adapter card itself provide full support for the
IEEE 802.2 Logical Link Control (LLC) services, which are called
Data Link Control (DLC) services by IBM. The DLC support is
normally available on any computer with a token ring network adapter
installed, and requires a minimal amount of system RAM (less than 16
Kbytes). DLC support provides the programmer with both connection
oriented service (guaranteed delivery) and connectionless service
(datagrams). The NetBIOS (and all higher services) translate user
requests into appropriate DLC commands and use DLC for all actual
network operations.

Although DLC programs run fast, they are somewhat more
difficult to program than NetBIOS programs. You may also find that
DLC programs are less portable in the PC environment than NetBIOS
(although they may actually be more portable to some wide area
network environments). Using DLC services is very similar to using
NetBIOS. Instead of a Net Control Block (NCB), the DLC interface
uses a Command Control Block (CCB). As with the NCB, the CCB

79

80 Chap. 4 Speed with DLC Programming

contains both the command and the pass parameters. The CCB is
then executed using interrupt 0xSC. You might wonder how the same
interrupt (0x5C) can be used both for NetBIOS interrupts and for DLC
programming? The answer is that the adapter support software looks
at the first byte of the memory block that is passed to it. If the first
byte is a 0x00 or O0x01, it assumes that the block is a CCB and
processes it accordingly. If the first byte is greater than 0x03, it
assumes that the block is an NCB and passes the block on to NetBIOS
for processing (0x02 and 0x03 are reserved and return an error).

In this chapter, we begin by studying the CCB in more detail.
We then discuss addressing using the DLC interface, which is consider-
ably different from the addressing we used with NetBIOS. We are
then prepared to discuss adapter initialization, connectionless commu-
nication, connection oriented communication, and adapter shutdown.
Finally, we conclude the chapter with a summary of DLC commands
and a description of return values.

The following functions are defined in this chapter:

init_ccb() Initialize a Command Control Block (CCB).

int_adapter() Interrupt the adapter and instruct it to
execute a CCB.

init_adapter() Initialize the adapter to prepare it for
communication.

open_sap() Open a SAP (defined later) for communication.

build lan header() Build a token ring network LAN
header for use with connectionless DLC services.

transmit_ui_frame() Transmita datagram oriented frame
(data packet).

Sec. 4.1 DLC Command Control Block Structure 81

receive_dlc() Receive a datagram or connection oriented
DLC frame.

receive_process() Interrupt handler for incoming DLC
data frames.

buffer free() Return an adapter buffer list to the buffer
pool.

close_sap() Close a SAP.

open_station() Open a link access station for connection
oriented communication using DLC.

connect_station() Establish a connection.

xmit_i frame() Transmit a connection oriented frame
(data packet) using DLC.

4.1 DLC Command Control Block Structure

To execute DLC commands, a Command Control Block (CCB)
is used. Code Box 4.1 shows the format for all CCBs. The fields
within the structure have the following meanings:

adapter: This field is set to 0x00 if the primary adapter is to be
used, or 0x01 for the secondary adapter. Secondary adapters
are only used on PCs which are acting as a gateway (or bridge)
between networks.

command: This field defines the command to be performed.
Valid commands are shown in the dlc.h header file later in

82

Chap. 4 Speed with DLC Programming

this section, and are discussed in the remainder of this chapter.
OxFF is permanently defined as an invalid command code.

retcode: This command is set (by the adapter) to O0xFF while
the command is pending. Upon completion, it is set to 0x00 for
uccess or an error number for failure.

struct

};

command_control_block

char adapter;
char command;
char retcode;
char work;

void *queue;

void *post;

void *parameters;

Code Box 4.1 Command control block structure definition.

work: This field is a buffer for internal use by the adapter.

queue: While processing, this field is used internally by the
adapter. When the command is complete, this field may
contain a pointer to a CCB queue (a queue of CCBs). This
capability is used when sending DLC "I" frames and using the
post field (as discussed next).

post: This field contains a far pointer to an interrupt process-
ing function to be called upon completion of the command.
When your function is called, the address of the CCB block will
be found in registers ES and BX and the retcode field will be
copied to the AL register. If the CCB indicates that a DLC "T"
frame has been acknowledged, the queue field may point to
the next CCB in a list of CCBs which have all been acknowl-

Sec. 41 DLC Command Control Block Structure 83

edged. This approach is used because one acknowledgment
may acknowledge an entire series of "I" frames.

parameters: Most DLC commands require additional parame-
ters. If these parameters require four or fewer bytes, they are
passed in this field. If they require more than four bytes, this
field contains a far pointer to a buffer containing the additional
parameters.

The following listing shows the contents of the dlc.h header
file. This header file contains the DLC commands which are available
with the IBM token ring network, our function prototypes, and some
miscellaneous defines included to improve the clarity of function code.

#include "paramblk.h"

/* DLC Related Commands */

#define DIR_INTERRUPT 0x00
#define DIR_OPEN_ADAPTER 0x03
#define DIR CLOSE_ADAPTER 0x04
#define DIR_INITIALIZE 0x20
#define DLC_RESET 0x14
#define DLC_OPEN_SAP 0x15
#define DLC_CLOSE_ SAP 0x16
#define DLC_OPEN_STATION 0x19
#define DLC_CLOSE_STATION 0x1A
#define DLC_CONNECT_ STATION 0x1B
#define DLC_MODIFY 0x1c
#define DLC_FLOW_CONTROL 0x1D
#define DLC_STATISTICS Ox1E
#define RECEIVE 0x28
#define RECEIVE_CANCEL 0x29
#define RECEIVE_MODIFY 0x2A
#define TRANSMIT DIR_FRAME 0x0A
#define TRANSMIT I_FRAME 0x0B
#define TRANSMIT UI_FRAME 0x0D
#define TRANSMIT XID_CMD OxOE
#define TRANSMIT XID_RESP_FINAL 0xOF
#define TRANSMIT XID_RESP_NOT FINAL 0x10
#define TRANSMIT TEST CMD 0x11
#define BUFFER_FREE 0x27
#define BUFFER GET 0x26
#define PDT_TRACE_ON 0x24
#define PDT_TRACE_OFF 0x25

/* define received data message types */

84

Chap. 4 Speed with DLC Programming

#define MT_MAC 0x02
iidefine MT_I 0x04
#define MT_UI 0x06
#define MT_XID_CP 0x08
#define MT_XID_CNP 0x0A
#define MT_XID_RF 0x0C
#define MT_TEST_RF o0xoc
#define MT_TEST_ RNF 0x12
#define MT_OTHER 0x14
/* general defines for readability */

#define NO_ADAPTER 0
#define INIT FAILURE 1
#define OPEN_FAILURE 2
#define WAIT (4]
#define NO_WAIT 1
#define NOT RECEIVED 1
#define OVERLOAD 2
#define OTHER_ERROR 3

/* limitations */

#define DLC_MAX_ SAP 2
#define DLC_MAX STATIONS 6

#define WORK_AREA SIZE (48+(36*DLC_MAX SAP) + (6*DLC_MAX STATIONS))

struct
{

command_control_block

char
char
char
char
void
void
vold

adapter;
command;
retcode;
work;
*queue;
*post;
*parameters;

/* function prototypes */

void
void

unsigned int
unsigned int

void
void
int

int

void interrupt
unsigned int
unsigned int
unsigned int

unsigned int

int

init_ccb(struct command_control_block *ccb);
int_adapter(struct command_control_block *ccb, int wait);
init_adapter(void);

open_sap(int sap, int resv_link);

*buf(%(unsigned int station_id, int number);

build_lan_header(char destination[6], void *buffer);

transmit_ui_frame(unsigned int station_id, unsigned int sap,

char destination[6], unsigned int data_len, char *data);

receive_dlc(unsigned int station_id);

receive_process();

buffer_ free(unsigned int station_id, void *buffer);

close_sap(unsigned int station_id);

open_station(unsigned int station_id, unsigned int sap,
char destination(6]);

connect_station(unsigned int station_id);

xmit_i_ frame(unsigned int station_id, unsigned int sap,

unsigned int data_len, char *data);

In addition, a number of parameter structures will be used
throughout these chapters. These structures are defined as follows

Sec. 4.1 DLC Command Control Block Structure 85

(and described fully as they are used during the remainder of the

chapter):
struct dir initialize parameters
{
unsigned int bring_ups; /* Not normally used */
unsigned int sram_address; /* 0 will default to 0xD800 for */
/* adapter 0, 0xD400 for adapter 1 */
char work[4]; /* Work space */
/* --- Interrupt function pointers --- */
void (*adapter_error); /* Adapter error handler */
void (*netw_status_error); /* Network error */
void (*pc_error); /* Operating system or PC hardware */
};
struct dir_open_adapter_parameters
{
struct adapter_parms *ap; /* pointer to adapter param table */
struct direct_parms *dp; /* pointer to direct param table */
struct dlc_parms *dlcp; /* pointer to dlc param table */
struct ncb_parms *ncbp; /* pointer to NetBIOS param table */
}:
struct adapter_parms /* used by dir_open_adapter command */
{
unsigned int open_error_code; /* return - set by adapter */
unsigned int open_options; /* 16 bit flags */
char node_address[6]; /* this node’s address */
char group_address[4]; /* set group address */
char functional_addr(4]; /* set functional address */
unsigned int number_rcv_buffers; /* number of receive buffers */
unsigned int rcev_buffer_len; /* length of each receive buffer */
unsigned int dhb_buffer_length; /* length of transmit buffers */
unsigned char data_hold_buffers; /* number of transmit buffers */
char reserved;
unsigned int open_lock; /* protection code */
void *product_id_address; /* Address of 18 byte product ID */
}:
struct direct_parms
{
unsigned int dir_buf_size; /* size of direct buffers */
unsigned int dir_pool_blocks; /* length of buffers in segments */
void *dir_pool_address; /* location of buffer pool */
void (*adpt_chk_exit); /* adapter error interrupt hndlr */
void (*netw_status_exit); /* network status err int. hndlr */
void (*pc_error_exit); /* 0S or PC hdwr err int hndlr */
void *work_addr; /* adapter work area */
unsigned int work_len_req; /* requested work area size */
unsigned int work_len_act; /* required work area size */
H
struct dlc_parms
{
unsigned char dlc_max_sap; /* maximum number of SAPs */
unsigned char dlc_max_stations; /* maximum number of stations */
unsigned char dlc_max_gsap; /* maximum number of group SAPS */
unsigned char dlc_max_gmem; /* maximum group members per SAP */
unsigned char dlc_t1_tick_one; /* dlc timer t1 interval */

unsigned char

/* group 1 */
dlc_t2_tick_one; /* dlc timer t2 int, group 1 */

86

unsigned
unsigned
unsigned
unsigned

}:

struct ncb_parms

char
char
char
char

dlc_ti_tick_one;
dlc_tl1_tick_two;
dlc_t2_tick_two;
dlc_ti_tick_two;

Chap. 4

/*

/*
VA

char work_areal[4];
unsigned char ncb_timer_t1; /*
unsigned char ncb_timer_t2; /*
unsigned char ncb_timer_ti; /*
unsigned char ncb_maxout; /*
unsigned char ncb_maxin; /*
unsigned char ncb_maxout_incr; /*
*/
unsigned char ncb_max_retry; /*
char work_area2[4];
unsigned char ncb_access_pri; /*
unsigned char ncb_stations; /*
char work_area3[19];
unsigned char ncb_max_names; /*
unsigned char ncb_max; /*
unsigned char ncb_max_sessions; /*
char work_area4[2];
unsigned char ncb_options; /*
unsigned int ncb_pool_length; /*
void *ncb_pool_address; /*
unsigned char ncb_transmit_timeout; /*
unsigned char ncb_transmit_count; /*
}i
struct dlc_open_sap_parms
{
unsigned int station_id; /*
unsigned int user_stat_value; ;*
*
unsigned char timer_t1; /*
unsigned char timer_t2; /*
unsigned char timer_ti; /*
unsigned char maxout; /*
unsigned char maxin; /*
unsigned char maxout_incr; /*
unsigned char max_retry_cnt; /*
unsigned char max_members; /*
unsigned int max_i_field; /*
unsigned char sap_value; /*
unsigned char options_priority; /*
/%
unsigned char station_count; /*
/%
char reservedl[2];
unsigned char group_count; /*
void *group_list; /*
/%
void *dlc_status_exit; /*
/*
unsigned int dlc_buf_size; /*
unsigned int dlc_pool_len; /*
void *dlc_pool_addr; /*
}:
struct buffer_parms

{

Speed with DLC Programming

*/
*/
*/
*/

dlc timer ti int,
dlc timer t1 int,
dlc timer t2 int,
dlc timer ti int,

group 1
group 2
group 2
group 2

response timer value */
acknowledgment timer value */
inactivity timer */

transmit window size */
receive window size */

dynamic window increment value

N2 value */

ring access priority */
maximum netbios link stations */

maximum entries in name table */
maximum outstanding NCBs */
maximum number of sessions */

various bit options */

length of ncb buffer pool */
start of ncb buffer pool */
time to wait for one query */
max times to transmit queries */

SAP station ID */

User value passed back on */
DLC status */

T1 response timer value */

T2 ack timer value */

ti inactivity timer value */
Maximum xmits w/o receive ack */
Maximum rcvs w/o transmit ack */
dyn window increment value */
N2 value */

Maximum SAPs for a group SAP */
Max rcved information field */
SAP value to be assigned */
Sap options and ring */
access priority */

Number of link access */
stations to reserve */

Length of data in group_list */
Far pointer to address of */
group SAP values */

Function pointer to status */
change interrupt routine */
Size of each dlc buffer */
Size of entire dlc buf pool */
Far pointer to dlc buf pool */

Sec. 41 DLC Command Control Block Structure

unsigned
unsigned
unsigned
char
void

};

int
int
char

struct transmit_parms

{
unsigned
unsigned
unsigned
void
void
unsigned
unsigned
void
void

}:

struct
{
unsigned
char
struct
};

int
char
char

int
int

int

station_id;
buffer_left;
buffer_ get;
reservedl([3];
*first buffer;

station_id;
transmit_f£s;
rsap;
*xmit_queue_one;
*xmit_queue_two;
buffer_len_one;
buffer_len_two;
*buffer_one;
*buffer_two;

receive_buffer_type

data_length;
*data;

receive_buffer_type

struct receive parms

{
unsigned
unsigned
void
void
unsigned
}i

int
int

char

station_id;
user_length;
*received_data;
*first buffer;
options;

struct dlc_open_station_parms

{
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
char
void

}:

struct

{
unsigned
char
void

int

int

char
char
char
char
char
char
char
char
int

char

int

sap_station_id;
link_station_id;
timer t1;

timer_ t2;
timer_ti;
maxout;

maxin;
maxout_incr;
max_retry_cnt;
rsap_value;
max_i_field;
access_priority;
reservedl;
*destination;

dlc_connect_station_parms

station_id;
reserved[2];
*routing_addr;

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

/*

87

SAP station id */
number of buffs left in pool */
number of buffers to get */

addr of first buff obtained */

station sending data */
returned FS field */

remote SAP value */

address of the 1st xmit queue */
address of the 2nd xmit queue */
length of 1st xmit buffer */
length of 2nd xmit buffer */
address of 1st buffer */
address of 2nd buffer */

*next_buffer;

station receiving data */
length of user data in buffer */
user exit for received data */
pointer to first buffer */
receive options */

SAP station id */

1ink station id (Oxnnss) */
response timer value */
acknowledgment timer value */
inactivity timer value */

max xmits w/o an ack */

max receives w/o an xmit ack */
dynamic wind increment value */
N2 value */

remote SAP value */

max received info field */
ring access priority */

pointer to remote address */

link stat ID to be connected */

pnter to 18 bytes of rte info */

88 Chap. 4 Speed with DLC Programming

#include <string.h>
#include "dlc.h"
/t*****************t****t****ﬁ********n*t***t*tt*t*******ttt******t
* init_ccb - clear and initialize command control block
*
* Parameters:
* ccb (in/out) - command control block to be cleared
*
* Notes:
b This code sets the network adapter number to 0 (primary)
*
* History:
* Original code by William H. Roetzheim, 1990
tt****************t*t******t***t****t*************t*****************t*/
void init_ccb(struct command_control_block *ccb)
{
memset(ccb, 0, sizeof(struct command_control_block));
}

Code Box 42 init_ccb() function definition.

In addition, it will simplify the remainder of our examples if we
define two functions at this point. init_ccb() (Code Box 4.2)
initializes a CCB, which simply involves clearing the CCB.
int_adapter() (Code Box 4.3) performs an interrupt 0x5C using
the passed address of a CCB. int_adapter() is passed both the
address of your ccb and a flag which is set to either WAIT or
NO_WAIT based on whether or not you want the function to wait for
command completion prior to returning control to your program. As
with int_netbios(), int_adapter() sets a global variable
net_error equal to the return value in the ccb on return. You
should note that this value will only be valid if the WAIT option was
selected.

4.2 Addressing While Using DLC

Recall from our discussion of NetBIOS addressing that every IBM
token ring network adapter is identified by a unique 6 byte number (12
hexadecimal digits), which NetBIOS calls the permanent node name.
These six bytes are assigned by the manufacturer and are permanently

Sec. 4.2 Addressing While Using DLC

89

#include <dos.h>
#include "dlc.h"
extern int net_error;
/t********t****t******t*t********tt*tk*****t**i**tttt*t**t*******t*
* int_adapter - interrupt adapter with command control block
*
* Parameters:
* ccb (in/out) - initialized command control block
* wait (in) - flag set to WAIT or NO_WAIT
*
* Global:
* _ES - ES register
* _BX - BX register
* net_error - set to command return code
*
* Note:
* net_error will only be set to a valid value if the WAIT option
* is used. If the NO_WAIT option is used, the ccb.retcode must
* be checked and net_error set by the calling program.
*
* History:
* Original code by William H. Roetzheim
t****t**tt**t*t********t*****tt*****t*t*t**tt*t*itttt****************t/
void int_adapter(struct command_control_block *ccb, int wait)
{
_ES FP_SEG(ccb);

_BX FP_OFF(ccb);
geninterrupt(0x5C);
if (wait == WAIT)
{
while (ccb.retcode == OXxFF);

net_error = ccb.retcode;

Code Box 4.3 int_adapter/() function definition.

90 Chap. 4 Speed with DLC Programming

burned into the adapter card’s ROM, although it is possible to override
this number at boot time with a locally assigned 6-byte number.
NetBIOS simplified addressing by allowing us to register symbolic
names over the network which could then be used for addressing
instead of the 6-byte number. DLC programming requires that you
know your own 6 byte permanent node name and the 6 byte permanent
node name of every adapter you wish to communicate with. It is this
address which is used over the LAN to identify which adapter should
read a packet of information. You use the permanent node names
either when you establish a connection (connection oriented service)
or when you build your own LAN header (datagram-oriented service).
In most environments, this information is simply read (by an operator)
from the literature included with each adapter, then entered into a
table for use by your software. When an adapter is changed or new
users are added, the table is updated. It is also possible to implement
a protocol to transmit this information over the network (as is done by
NetBIOS), but this is beyond the scope of this book.

Within the adapter, DLC programming requires that you use
one or more protocol engines called service access points, or SAPs.
SAPs contain data link level protocol capabilities, including windows,
timeouts, media access, etc. SAPs can be initialized to receive all
frames (packets) addressed to this adapter, only Media Access Control
(MAC) frames, or only non-MAC frames. MAC frames are used for
direct communication (by-passing DLC) as covered in the next chapter.
Non-MAC frames are DLC and NetBIOS frames.

When you open a SAP, a SAP number is returned to you for
use during communications. Each adapter supports up to 255 different
SAPs, although the actual maximum is set when the adapter is
initialized and is normally closer to 2 user defined SAPs (plus the 3
just mentioned). Within DLC programming, SAPs are used for
connectionless communication.

Sec. 42 Addressing While Using DLC 91

As with NetBIOS names, SAPs can be either unique (individu-
al) or group. A unique SAP number is always even while a group SAP
number is always odd.

If you are using DLC’s connection-oriented protocols, you need
to establish a connection between you and another adapter. This
connection is called a link access point, and is assigned as a connection
over a SAP. When you open the connection, the link access point
number is provided to you by the adapter for use during subsequent
communications. Each adapter can support up to 255 simultaneous
link access points (connections), although the actual number supported
is established when the adapter is initialized. These link access points
can be distributed among your available SAPs however you chose. For
example, you could have 255 link access points assigned to a single
SAP, or you could have 1 link access point assigned to each of 255
SAPs.

The SAP number and, optionally, a link access point number
within the SAP are combined and called the Station ID. The first byte
of this two byte number is the SAP number, the second byte is the link
access point number. SAPs alone would be represented as a number
of the form 0xSS00 where SS was replaced with the SAP number and
second byte was set to 0. Link access points are represented as
O0xSSLL, where SS is the SAP number and LL is the link access point
number. Station IDs are used extensively in DLC programming.

When the token ring adapter is initialized, two SAPs are
automatically opened:

] 0x00 is automatically opened and provides the capability
to respond to remote nodes when no other SAPs have
been opened. This SAP responds to only XID and Test
Command frames (discussed later).

[OxFF is a group SAP with all individual open SAPs as
members. Sending frames to an adapters group SAP

92 Chap. 4 Speed with DLC Programming

(OxFF) will ensure that the frames are passed to each of
the individual SAPs that are opened.

In addition, three station IDs are automatically established
when the adapter is open:

[0x0000 receives all frames not directed to other defined
stations within this adapter.

] 0x0001 receives just MAC frames not directed to other
defined stations within this adapter.

L 0x0002 receives just non-MAC frames not directed to
other defined stations within this adapter.

Any of these three stations (0x0000 — 0x0002) can be used to
transmit MAC and non-MAC frames. You should also keep in mind
that the ability to receive frames via a SAP does not imply that data is
received. Some type of receive command must be initiated prior to
receipt of any data via a SAP.

Sec. 4.2 Addressing While Using DLC

93

#include <string.h>

#include <stdio.h>

#include <dos.h>

#include "dlc.h"
/*i****tt*tt**ttttt*t**it**tk*t*it!**t**k***it**tt*************t***

* init_adapter - test for adapter presence and initialize adapter

b Returns:

* 0 for success, or

* NO_ADAPTER if adapter or dlc driver not installed
* INIT_FAILURE if error during initialization

* OPEN_FAILURE if error during adapter open

hod Notes:

* If INIT_FAILURE or OPEN_FAILURE is returned, net_error can
* be checked for the specific error return code.

* History:

*

Ooriginal code by William H. Roetzheim
tti****tt**t**t*tt***t**t*t*t***t***************ttﬂ**t***i*t****t****il

unsigned int init_adapter()
{

unsigned long int_vector;
struct command_control_block ccb;
struct dir_initialize parameters init_parm;
struct dir_open_adapter_parameters parm;
struct adapter_parms adapter;
struct direct_parms direct;
struct dlc_parms dlc;

/***x** gtart by testing for adapter installation ****x/
/* is interrupt vector initialized? */

int_vector = (unsigned long) getvect(0x5C);

if ((int_vector == 0x0000) II (int_vector == 0xF000))

{

/* no interrupt handler installed */
return NO_ADAPTER;

}

init_ccb(&ccb);

ccb.command = DIR_INTERRUPT;

ccb.retcode = OxFO; /* invalid code */
int_adapter(&ccb, WAIT);

if (ccb.retcode == 0xF0) return NO_ADAPTER;
/* adapter and driver are installed */

/* now initialize adapter */

init_ccb(&ccb);

ccb.command = DIR_INITIALIZE;

memset(&init_parm, 0, sizeof(struct dir_initialize parameters));
ccb.parameters = &init_parm;

int_adapter(&ccb, WAIT);

if (ccb.retcode != 0x00) return INIT FAILURE;

***** continued next code box

Code Box 44 init_adapter() function definition.

94

Chap. 4 Speed with DLC Programming

}

**xx%* Continued from previous code box

/* now open the adapter */

init_ccb(&ccb);

ccb.command = DIR_OPEN_ADAPTER;

ccb.parameters = &parm;

parm.ap = &adapter;

parm.dp = &direct;

parm.dlcp = &dlc;

parm.ncbp = NULL; /* use default for NetBIOS */
memset (&adapter, 0, sizeof(struct adapter_parms));
memset(&direct, 0, sizeof(struct direct_parms));
memset(&dlc, 0, sizeof(struct dlc_parms));
dlc.dlc_max_sap = DLC_MAX_ SAP;
dlc.dlc_max_stations = DLC_MAX STATIONS;
int_adapter(&ccb, WAIT);

if (ccb.retcode != 0x00) return OPEN_FAILURE;
return 0;

Code Box 4.5 init_adapter() function definition continued.

4.3 Adapter Initialization

Code Boxes 4.4 and 4.5 show the code for our function,
init_adapter/(), which tests for the adapters presence, ensures that
the drivers are loaded, initializes the adapter, and opens the adapter.
The function operates as follows:

We begin by testing that the interrupt vectors at 0x5C
are properly initialized. This will ensure that the drivers
are installed.

We then interrupt the adapter with a nop (no operation)
type instruction after first placing an invalid return code
into the retcode field of our ccb structure. If the
returned ccb still has the same invalid return code, we
know that the adapter is not installed (or responding) or
that there is some other problem with the driver at
0xSC. If the return code is valid, we know that the
adapter and driver appear to be installed and working

properly.

Sec. 4.3 Adapter Initialization 95

We then initialize the adapter. This command resets all
adapter tables and buffers and forces the adapter to run
the bring-up tests. You should note that this command
will cause any outstanding ccbs to be lost. The
DIR_INITIALIZE command is covered in more depth
later in this section.

Finally, we open the adapter with the
DIR_OPEN_ADAPTER command. This command makes
the adapter ready for normal network communication
and sets adapter parameters and limitations. This
command is also covered in more depth later in this
section.

The structure fields discussed in the remainder of this section
are defined in the paramblk.h include file which was listed earlier
in this chapter.

4.3.1 DIR_INITIALIZE command

When using DIR_INITIALIZE, the parameters field of the ccb
must be set equal to the address of a dir_initialize para-
meters structure. The contents ofdir_initialize_parameters
can be set to zero and the adapter will use default values for all fields.
The sample code sets all parameters to zero (default). The fields
within the dir_initialize parameters structure have the
following meanings:

bring ups: This field should be initialized to zero.
If the adapter detects an error during initialization, it
will return a return code (in the CCBs retcode field)
of 0x07 and will put an amplifying error description in

96

Chap. 4 Speed with DLC Programming

this field for use by your application. These "bring-up
errors" are listed at the end of this chapter.

sram_address: This field contains the segment where
the adapter shared RAM should be located. If the field
is zero, the default values of 0xD800 for the primary
adapter or 0xD400 for the secondary adapter. If you
select a different value, you must ensure that the address
is on an even boundary of the adapter shared RAM size
(e.g., for an adapter with 16 Kbytes of shared RAM, the
segment must be on a 16K memory boundary).

adptr_chk _exit: This field contains a far pointer to
a function which the adapter should call whenever it
encounters an adapter hardware failure. This address is
stored in the adapter for use until the adapter is
reinitialized or the value is changed by your application.
A value of zero means that no error handler is installed
for this type of error.

netw_status_exit: This field is identical to
adptr_chk_exit, except that it is called whenever a
network error is encountered.

pc_error_exit: This field is identical to
adptr_chk_exit (above), except that it is called
whenever an operating system or PC hardware failure is
encountered.

4.3.2 DIR_OPEN_ADAPTER Command

When using this command, the parameters field of the CCB

structure

must be initialized to point to a

Sec. 4.3 Adapter Initialization 97

dir_open_adapter_parameters structure. This structure is used
for double indirect address, containing four far pointers to other
structures:

1. adapter_parms: Contains adapter initialization
parameters.
2. direct_parms: Contains direct interface initialization

parameters. We discuss the adapter’s direct interface in
the next chapter.

3. dlc_parms: Contains DLC interface initialization
parameters.

4, ncb_parms: Contains NetBIOS interface initialization
parameters.

The first three pointers must be initialized to point to valid
structures. Null pointers (zero) are not accepted. The last pointer,
ncb_parms can be set to NULL to instruct the adapter to use default
values for NetBIOS. The contents of the three structures can be
initialized to zeros, which will instruct the adapter to use the default
values for each class of initialization. The sample code sets most of
these parameters to zero (default).

The adapter_parms structure contains the following fields
which you can set, if desired:

° open_error_code: This field is used to return (to
your application) the adapter error code upon opening.
If the CCB retcode field is 0x07, you should check this
field to determine the specific problem. The error codes
are documented at the end of this chapter.

98

Chap. 4 Speed with DLC Programming

open_options: This field contains bit fields which
are used to turn on (or off) varous options. 1 indicates
on, 0 indicates off. 0 is the default (and usual) value for
each field. The only bit field you will probably be
interested in is bit 9. If this bit is set to 1 and the
DIR_OPEN_ADAPTER command is called, the fields in
the adapter parms structure will be set to their
current values (i.e. to the values the adapter is currently
using). Other bit field meanings are documented in
IBM (1988).

node_address: If the NODE_ADDRESS parameter
was provided by the user when the adapter support
software was loaded, this field is strictly used to return
the current adapter node address to you. If the
NODE_ADDRESS parameter was not specified, this field
may be used to override the default (hardware) adapter
NODE_ADDRESS. If the field is all zeros, the hardware
address will be used and returned in this field.

group_address: Sets the adapter’s group address for
receipt of group messages. Zero means the adapter
belongs to no groups.

functional_addr: Sets the adapter’s functional
address. Zero means the adapter belongs to no func-
tional group. Functional addresses are discussed later.

number_ rcv_buffers: If this field is less than 2, the
adapter will only successfully open if 8 receive buffers
are available. If you wish to run with less than 8 buffers,
you must set the required number of buffers in this field.

Sec. 43 Adapter Initialization 99

° rcv_buffer_ len: Each receive buffer uses 8 bytes
for overhead and stores data in the remaining space.
The default receive buffer size (used if this field is zero)
is 112 bytes, or 104 bytes of data. This field can change
the buffer size to a value between 96 and 2048, although
the new value must be a multiple of 8. Although
received data which overflows a buffer will be chained,
your application performance can be improved if you
match the receive buffer size to your expected packet
(message) size.

[dhb_buffer_ length: The length of each transmit
buffer. The data space within the buffer is equal to the
buffer length minus 6 bytes overhead. The default
(obtained using zero for this field) is 600 bytes (594
bytes of data). The maximum size available for the
original token ring network adapters was 2048. If all
adapter cards on the network are the newer models, the
maximum size is 4464 at 4 Mbps or 17960 at 16 Mbps.

° data_hold buffers: The number of transmit
buffers on the card. This number should be two or less
to protect the integretity of your data. If this field is
zero, the default value of one buffer is used. Transmis-
sion efficiency will be improved somewhat by setting this
value to two, but you will have less space available for
receive buffers.

] open_lock: This field allows the adapter to be
protected in a multi-tasking DOS environment. If this
field is set to anything other than zero, the adapter is
opened in a keyed mode where the key value is the
number passed in this field. The adapter can then only

100

Chap. 4 Speed with DLC Programming

be closed (or initialized) by a program using the proper
number in this field.

product_id_address: This field should always be
initialized to all zeros.

The direct_parms structure contains the following fields
which you can set, if desired:

dir_buf size: The size of buffers in the direct
buffer pool. The number must be at least 80 bytes and
must be a multiple of 16. The default (zero) value is
160.

dir_pool_blocks: This parameter is only used if
the dir_pool_address field is nonzero. This field
indicates the number of 16 byte blocks assigned as the
direct station buffer pool, with a default of 256 (4096

bytes).

dir pool_address: A far pointer to the address
where the adapter should build a buffer pool. If this
field is zero, the application program must build its own
buffer pool using BUFFER_FREE and BUFFER_GET.

adpt_chk exit: This field is identical to the same
field described under DIR_INITIALIZE.

netw_status_exit: This field is identical to the
same field described under DIR_INITIALIZE.

pc_error_exit: This field is identical to the same
field described under DIR_INITIALIZE.

Sec. 4.3 Adapter Initialization 101

work_addr: The adapter work area can be internal to
the adapter or external to the adapter (in your applica-
tion memory space). The amount of space required is
48 plus (36 * DLC_MAX SAPS) plus (6 *
DLC_MAX STATION). If you chose to use your applica-
tion memory as the adapter work space, this field should
point to the memory location to be used.

work len req: If this field is zero, the adapter’s
internal memory will be used. If you chose to identify
the adapter work area, this field points to the buffer size
of the space located at work _addr. The space must be
at least as large as the size identified.

work_len_act: This field contains the actual work
area space which will be used by the adapter. If this
number is greater than work_len_req, the open fails
and a return code of 0x12 is returned.

The dlc_parms structure contains the following fields which
you can set, if desired:

dlc_max_sap: The maximum number of simulta-
neously opened SAPs. If NetBIOS is installed, it uses a
SAP which is not counted in this total. The default is
two, the maximum is 126.

dlc_max stations: The maximum number of
simultaneously opened link stations. The default is 6,
the maximum is 255.

102

Chap. 4 Speed with DLC Programming

dlc_max gsap: The maximum number of simulta-
neously open group SAPs. The default is zero, the
maximum is 126.

dlc_max gmem: The maximum number of SAPs that
can be assigned to any given group. The default is zero,
the maximum is 127.

dlc_tl1_tick one: The number of 40-millisecond
intervals between timer ticks for the T1 timer. The T1
timer is the response timer. The default is 5 (200
milliseconds).

dlc_t2_tick_one: The number of 40-millisecond
intervals between timer T2 ticks. The T2 timer is the
receiver acknowledgment timer. The default is one (40
milliseconds).

dlc_ti_tick _one: The number of 40 millisecond
intervals between timer Ti ticks. The Ti timer is the
inactivity timer. The default is 25 (1 second).

dlc_tl1_tick _two: Each of the three timers has a
long value associated with it. The default for this field
is 25 40-millisecond ticks (1 second).

dlc_t2_tick_two: The default for this field is 10
40-millisecond ticks (400 milliseconds).

dlc_ti_tick_two: The default for this field is 125
40-millisecond ticks (5 seconds).

Sec. 4.4 Connectionless Communication Using DLC 103

After the adapter is successfully opened, you can communicate
using DLC in either a connectionless or connection-oriented mode.
Recall that connectionless communication uses the SAPs while
connection oriented communication uses link stations. We will begin
by discussing DLC communication using connectionless protocols.

4.4 Connectionless Communication Using DLC

In this section we will describe how to use the token ring adapter to
perform datagram communication at the DLC level. The steps
involved are as follows:

1. Open a service access point. SAPs were discussed fully
in section 4.2. This SAP is a protocol engine which can
be used for DLC communication. Both the sending
adapter and the receiving adapter must open a SAP on
their token ring adapter cards. The SAPs can be (and
often are) the same number for both the sending
adapter and the receiving adapter. If your application
will be the only application running on both the sending
and receiving computers, you can use one of the stan-
dard SAPs if desired (see Section 4.2). In general, it is
best to designate a specific SAP number to support your
application over the network. The process of opening a
SAP is covered in Section 4.4.1.

2. Build a LAN header. As shown in Figure 3.1, the LAN
header is one of the most outermost layers of a frame
on the network. This header is used to identify the
destination adapter. When communicating at the
datagram level, your application must build the LAN
header. The process of building the LAN header is cov-
ered in Section 4.4.2.

104

Chap. 4 Speed with DLC Programming

AC
1 byte

FC
1 byte

Dest. Add. LAN
6 bytes header

Src. Addr.
6 bytes

Routing info.
0-18 bytes

DSAP
1 byte

SSAP DLC
1 byte header

Control
2 bytes

Data bytes

Fig. 3.1 Frame header
layering.

Transmit datagrams using DLC. Data packets are then
transmitted over the network. Your applications are
responsible for ordering of data between packets, ac-
knowledging packets, and so on. The token ring network
makes a "best effort" to deliver the packet in an error

free condition. In addition, the circular nature of the to-
ken ring allow your adapter to determine if the packet
was successfully removed from the network by an
adapter (hopefully, the destination adapter). This is pos-
sible because the receiving adapter sets a specified bit in

Sec. 4.4 Connectionless Communication Using DLC 105

the data frame prior to sending it on its way (eventually
back to you). This process is covered in Section 4.4.3.

4. Receive datagrams from the network. We will see that
the receive processing is identical whether the received
data is datagram or connection oriented. To avoid
losing new packets while processing an adapter, we will
implement the receive processing as an interrupt-driven
background process. This approach then also serves as
an example for programmers wishing to implement other
functions as background processes. This process is
covered in Section 4.4.4.

5. Received datagrams are temporarily stored in buffers
under the control of the token ring adapter. We will
want to remove the data from these buffers as quickly as
possible, the tell the adapter that the buffer is free. This
process is also covered in Section 4.4.4.

4.4.1 Opening a SAP

We normally open one SAP for each application using the token ring
network. The SAP is can be opened with unique values for timers,
window sizes (windows in the sense of protocol based acknowl-
edgments), and so on. When you want to communicate with another
application, you address the adapter card the process resides on and
the SAP within the card.

In general, opening a SAP is a relatively simple matter (see
Code Box 4.6). This is because zero for any of the parameters
automatically causes the adapter to open the SAP with a predefined
default value. If you look at the fields defined in the
dlc_open sap parms structure, you will find that most of them are
identical to fields we saw when initializing or opening the adapter itself

106 Chap. 4 Speed with DLC Programming

#include <string.h>
#include "dlc.h"
extern int net_error;
/*t'k*****t*************************************ﬁt***t**************
* open_sap() - open a SAP on this adapter
*
* Parameters:
* sap (in) - SAP number to use
* resv_link (in) - number of link access stations to reserve
*
* Global:
* net_error is set by int_adapter().
*
* Returns:
* The opened SAP station id on success, 0 for failure
*
* Notes:
* This routine assumes that your application only opens one SAP
* at a time. If you open multiple SAPs, you must modify the code
* to use malloc() to allocate the buffer space used by the SAP
* (and free the memory when the SAP is closed).
*
* History:
* Original code by William H. Roetzheim
***************k*****t***t********************t****************t******/
unsigned int open_sap(int sap, int resv_link)
{
struct dlc_open_sap_parms parms;
struct command_control_block ccb;
static char buffer[4096]; /* SAP buffer space */

init_ccb(&ccb);
ccb.command = DLC_OPEN_SAP;
ccb.parameters = &parms;

memset(&parms, 0, sizeof(struct dlc_open_sap_parms));
parms.sap_value = sap;

parms.station_count = resv_link;

parms.dlc_pool_addr = buffer;

int_adapter(&ccb, WAIT);

if (net_error == 0) return parms.station_id;

else return 0;

Code Box 4.6 open_sap() function definition.

Sec. 44 Connectionless Communication Using DLC 107

(Section 4.3). When you open a SAP, the default is to use the values
specified for the adapter when it was initialized or opened. However,
you are allowed to override these values if they should be different for
one specific SAP (perhaps to test two different protocols, for example).

The code shown assumes that this application will open only
one SAP at a time, so the SAP local buffer pool is initialized to a
static storage area within this function. If you may open multiple SAPs
simultaneously, this would obviously not work (multiple SAPS would
be trying to use the same storage space). In this case, you would need
to assign each SAP its own storage space, probably using malloc ()
to obtain the memory. You must then keep track of the various
memory pointers so that they can be freed up when you are done.

After the SAP is successfully opened, a station id is
returned which can be used to identify this SAPs location for outgoing
packets. Incoming packets will address this SAP by its SAP number,
not its station_id.

4.4.2 Building the LAN Header

When communicating over the token ring network, DLC programming
uses a non-MAC frame. Media access control frames are used for
direct programming as discussed in the next chapter. The non-MAC
frame, or packet, consists of three parts:

1. A LAN header used by the token ring adapter to route
the frame to its intended adapter.

2. A DLC header used by the destination adapter to route
the frame to the appropriate SAP (and link station when
applicable).

3. The data itself.

108 Chap. 4 Speed with DLC Programming

The DLC header is always provided by the adapter itself. The
data portion of the frame is always provided by your application. The
LAN header is provided by your application if you are using datagram-
oriented DLC communication or is provided by the adapter if you are
using connection oriented communication. Luckily, the LAN header
can normally be built once, and then used for all outgoing frames
without change.

The LAN header consists of five fields:

1. A 1-byte access control (AC) bit field, which specifies
things like priority.

2. A 1-byte frame control (FC) bit field, which specifies
things like the type of frame.

3. A 6-byte destination address (the destination adapter
number in hex).

4. A 6-byte source address (your address).

5. A 0 — 18 bytes routing information field specifying up to
three intermediate gateway adapter addresses.

Creating the header is not as complicated as this might lead you
to believe. The first two bytes are automatically filled in by the
adapter, so you don’t need to worry about them. The 6-byte destina-
tion address must be filled in by your application. The 6-byte source
address is automatically filled in by your adapter, so you don’t need to
worry about this. Finally, the routing information field is required only
if you will be sending data from one token ring network to another
token ring network.

Sec. 44 Connectionless Communication Using DLC 109

/********t***t***t*******t**tt***tt***t********t*******************
build_lan_header() - build LAN header in a buffer

x
*
* Parameters:

* destination (in) - six byte destination address

* buffer (in/out) - address of buffer for LAN header
*
*
*
*

History:

Original code by William H. Roetzheim
tt******t****tt***tt*t**t*t**t**t******tt**ttt***tttt********tt******/

void build_lan_header(char destination[6], char *buffer)
{
int i;

memset(buffer,0,14);

/* byte 0 = Access Control: supplied by adapter */

/* byte 1 = Frame Control: supplied by adapter */

/* bytes 2-7 = destination address */
memcpy(&buffer[2], destination, 6);

/* bytes 8-13 = source address: supplied by adapter */

Code Box 4.7 build_lan header() function definition.

Code Box 4.7 shows sample code to build an LAN header. If
you wish to go through a gateway to another token ring network, you
must add the routing information.

4.4.3 Transmitting Datagrams Using DLC

For connectionless (datagram) DLC service, the transmit routine is
called TRANSMIT UI_FRAME. This routine needs to know your
station_id (assigned when you opened the SAP), the destination
SAP number (which is normally the same as your local SAP number),
and the destination address. In addition, a pointer to your data and an
unsigned integer indicating the length of data in the buffer are
required. The data length should be small enough to fit within one
frame.

The TRANSMIT UI_FRAME command takes two buffers (and
buffer lengths) in its parameter table. The first buffer and length
describes the LAN header. This buffer will normally be used for all
outgoing transmissions to a given destination adapter. The second

110 Chap. 4 Speed with DLC Programming

#include <string.h>
#include "dlc.h"

[ERIRRARKIRKRRKRKKRKKRKRK KKK R KRR AR KRR KA KRKRKRRRRKARKRKKR KRR KR RRA KA KK

* transmit_ui_frame() - transmit datagram at DLC level
*
* Parameters:
* station_id (in) - value returned from DLC_OPEN_SAP
b sap (in) - SAP number used for communication
* destination (in) - destination address
bd data_len (in) - length of data in bytes
* data (in) data to transmit
*x
* Global:
* net_error is set by int_adapter()
*
* Returns:
* 0 for success, NOT_RECEIVED if the frame was not copied from
* the ring, OVERLOAD if the destination was overloaded and
* did not receive the frame, or else OTHER_ERROR
*
* History:
* Original code by William H. Roetzheim
*****t***t******t***************************************#*************/
int transmit_ui_frame(unsigned int station_id, unsigned int sap,
char destination[6], unsigned int data_len,
char *data)
{
struct command_control_block ccb;
struct transmit_parms parms;
char lan_header[14];

init_ccb(&ccb);

ccb.command = TRANSMIT UI_FRAME;

ccb.parameters = &parms;

memset(parms, 0, sizeof(struct transmit_parms);

parms.station_id = station_id;

parms.rsap = sap;

build_lan header(destination, lan_header);

parms. butfer len_one = 14; 7* buffer 1 MUST be the lan header */
parms. buffer one = lan header, /* The adapter will take buffer 1, */
parms.buffer_len_two = data_len; /* add the DLC header, then the data */
parms.buffer_two = data; /* and transmit the entire frame */
int_adapter(&ccb, WAIT);

switch (parms.transmit_fs)

{

case OxCC: return 0;
case 0x00: return NOT_ RECEIVED;
case 0x88: return OVERLOAD;

}
return OTHER_ERROR;

Code Box 4.8 transmit _ui_frame() function definition.

Sec. 4.4 Connectionless Communication Using DLC 111

buffer and length contains the actual data. Code Box 4.8 shows sample
code allowing you to transmit a datagram frame.

After the data is successfully transmitted, the adapter can look
at the frame control field to determine if the frame was successfully
removed from the ring. The three possibilities are

1.

The frame could have been received successful (at least
as far as the hardware is concerned). The defined
function then returns 0x00.

The frame could have been removed successfully from
the token ring network (by the destination adapter) but
never successfully picked up by the destination software.
This often indicates that the destination adapter is
temporarily too busy or that all buffers are temporarily
filled. This routine then returns OVERLOAD. It would
also be logical to modify the function so that when this
condition occurs, the function is called again
(recursively) to retransmit the data. You might include
a static variable indicating the level of recursion to
prevent infinite recursion (and an eventual crash).

The frame could have gone all the way around the
network without ever being removed by the destination
adapter. This normally indicates a hardware problem
with the destination adapter (perhaps it is turned off)
and is indicated by a return value of NOT_RECEIVED.
You should not immediately try to recursively send the
packet again if this error is returned (it probably won’t
do any good).

Note that when you are sending multiple packets, you normally
only need to change the value for data and data_len. The routine,

112 Chap. 4 Speed with DLC Programming

as written, will build a new LAN header for each outgoing data packet.
As mentioned earlier, this is normally not necessary and you can
modify the code to reflect this fact if performance is really critical.

4.4.4 Receiving DLC Data Packets

Under DLC, the identical receive function is used to receive all
types of frames, including datagrams and connection oriented frames.
The function receive_dlc () shown in Code Box 4.9 can be used to
start the receive process running. This function takes as an argument
a station_id as returned by open_sap() for datagram service or
open_station() for connection-oriented service (as we will see in
Section 4.5). This function only needs to be called once for each SAP
or link access station. It then sets up the interrupt vectors so that
incoming frames will be received continuously until the SAP/station is
closed or an error occurs. The interrupt processing routine that it sets
up is called receive_process (). This is the routine which actually
processes incoming frames upon demand. Because this interrupts the
adapter with the NO_WAIT option, the proper return value is OxFF,
showing that the command is running after the return.

Code Box 4.10 and Code Box 4.11 show our interrupt routine
designed to handle incoming frames. This function is setup by
receive_dlc() and should never be directly called by your
application. It is called (via interrupt) by the adapter itself when a
frame is available. When the function is called, registers ES and BX
point to the first receive buffer, while registers DS and _SI point to
the Command Control Block used during the call.

Our goal is to move the received data from the adapter work
area to user buffer space as quickly as possible so that the adapter is
free to receive additional buffers. We have created a structure, called
receive buffer type to identify received data available for user
processing. This structure contains a pointer to the received data
(stripped of header information) and the length of data at the address.

Sec. 44 Connectionless Communication Using DLC

113

#include <string.h>
#include <stdlib.h>
#include "dlc.h"
extern int net_error;
/k*******************t***********************t*********************
* receive_dlc() - receive dlc frame data
*
* Parameters:
* station_id (in) - station id to receive frames from
*
* Global:
* net_error is set by int_adapter().
*
* Returns:
* 0 for success, net_error for error
*
* Notes:
* This function runs continuously (in background) to receive
* data from the specified station_id. Data is placed in
* receive buffer (a linked list of received buffers). The
* command terminates when the SAP or Link Station is closed.
*
* History:
* original code by William H. Roetzheim
********************t***/
int receive_dlc(unsigned int station_id)
{
struct receive_parms parms;
struct command_control_block cchb;
void receive_ process();

init ccb(&ccb),
ccb.command = RECEIVE;
ccb.parameters = &parms;

memset (&parms, 0, sizeof(struct receive_parms));
parms.station_id = station_id;

parms. received data = (*receive_process),
int_adapter(&ccb, NO_WAIT);

if (net_error == OxFF) return 0;

else return net_error;

Code Box 4.9 receive_dlc() function definition.

114 Chap. 4 Speed with DLC Programming

#include <dos.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "dlc.h"
extern struct receive_buffer_type rb;
/*****k******************t****t**tt******************t***tt******t*
* receive_process() - interrupt function to receive buffers
*
* Global:
bl rb - used to store incoming buffer
* _ES, _BX - pseudo-variables used by Turbo C for these registers
*
* Returns:
* None - interrupt function
*
* Notes:
* Data buffers pointed to by rb should be freed when you
* are done with them (use free()).
*
* This function is automatically "called"™ by the adapter
* every time a frame is received. It is NOT called by
* your application. It is initialized by receive_dlc(),
* which IS called by your application.
*
* History:
* Ooriginal code by William H. Roetzheim
t**t*****ﬂ***********k***t***t*t**t**t*****#***********tt******t***k**/
void interrupt receive_process()
{
char *first_buffer;
int start;
int length;
unsigned int station_id;
int receive_ index;
char *working_buffer;
struct receive buffer type *rb_ptr;
struct command_control_block *ccb;
struct receive_parms *parms;

/* find first available receive buffer */
/* NOTE: if multiple applications might use the same receive */

/* buffer linked list, the next three lines of code */
/* should be protected by a semaphore or executed with */
/* interrupts turned off */

rb_ptr = &rb;

while (rb_ptr->next buffer != NULL) rb_ptr = rb ptr->next_buffer;
rb_ptr->next_buffer = malloc(sizeof(struct receive_buffer_type));
« « « Continued in next code box

Code Box 4.10 receive process () function definition.

Sec. 44 Connectionless Communication Using DLC 115

/* ... continued */

first buffer = MK _FP(_ES, _BX); /* init first buffer to _ES and _BX */
ccb = MK FP(_Ds, SI), /* points to CCB *x/

parms = ccb->parameters;

station_id = parms->station_id;

/* find length of DATA portion of buffers */

rb_ptr->data_length = 0;

for (working buffer = first_ buffer; working buffer != NULL;
working_buffer = *(char **) (&working_buffer[0]))

{

rb_ptr->data_length += *(unsigned int *)(&working_buffer([6]);
}
rb_ptr->data = malloc(rb ptr->data_length);

/* read data from buffers into our application buffer */

receive_index = 0;

for (working_ buffer = first buffer; working_buffer != NULL;
working buffer = *(char *¥*) (&working buffer[0]))

{

start = *(unsigned int *) (&working_buffer[8]) +
*(unsigned int *) (&working_ buffer[10]);
length = *(unsigned int *) (&working_buffer([6]);
memcpy(&rb_ptr->data[receive_index], &working_buffer[start],
length);
receive_index += length;

}
buffer_free(station_id, first_buffer);

Code Box 4.11 receive process () function definition.

Because we may receive more than one frame before the user
processes the data, we will use a linked list of these structures. The
last structure in the list is available for our use. The other members
of the chain contain data received previously which has not been
processed by the user.

We begin by moving down the linked list to determine the last
structure in the list, which is the one we will use. The final element
is identified by the next_buffer field being NULL. We then "claim"
this structure for our use by using malloc() to add a new structure
to the list. If you are running in a multitasking environment, this
process should be protected by semaphores (or in some other way) to
avoid contention for the buffer structure.

We then process all buffers containing the frame information.
Received frames are stored in the adapters frame pool as a linked list
of buffers. The exact format of each buffer will vary based on whether

116 Chap. 4 Speed with DLC Programming

this is the first buffer in the list or one of the subsequent buffers, but
the important field are common to all buffers as follows:

° The first four bytes are a pointer to the next buffer, or
NULL for the final buffer.

° Bytes 6 and 7 contain the length of the data portion of
the buffer.

° Bytes 8 and 9 contain the offset to an area of the buffer
called the user space.

] Bytes 10 and 11 contain the length of the user space.

The data portion of the buffer begins at the end of the user
space, or bytes 8 and 9 (the start of the user space) plus bytes 10 and
11 (the length of the user space).

We traverse the buffer list initially just to determine the total
length of user data in the buffers. This number is then used to
allocate memory for storage of the user data. We then traverse the
buffer list again, copying the data from the buffers to the allocated
memory block. Finally, we tell the adapter that its buffers are now
available using the buffer_free() command, shown in Code Box
4.12.

4.5 Connection Oriented Communication Using DLC
Datagram communication involves communication between two
applications using the SAPs on their token ring adapters. By their
definition, datagram architectures provide no guarantees

] That the data was successfully received.

Sec. 4.5 Connection Oriented Communication Using DLC

117

#include <string.h>

#include "dlc.h"

extern unsigned int net_error;
/*****ttt*i*tt**tttl**tt***tt***ttt*t*t*t**t*ti***t**t******i***t*t
* buffer_ free() - free a buffer from the dlc buffer pool

*

* Parameters:

* station_id (in) - station id of opened SAP to use
* buffer (in) - pointer to buffer to be freed

*

* Global

* net_error is set by int_adapter()

* Returns:

* 0 for success, net_error for failure

*

* Notes:

* The buffer size is determined when the SAP is opened. The
b default is 160 bytes.

*

* History:

* Original code by William H. Roetzheim
tt*****t*****t****t*t**tti**t****t*tt*t****'kt*****t*****tﬁt***********/

unsigned int buffer_free(unsigned int station_id, void *buffer)
{

struct command_control_block ccb;
struct buffer parms parms;

init_ccb(&ccb);
ccb.command = BUFFER_FREE;
ccb.parameters = &parms;

memset(&parms, 0, sizeof(struct buffer_ parms));
parms.station_id = station_id;
parms.first_buffer = buffer;

int_adapter(&ccb, WAIT);

return net_error;

Code Box 4.12 buffer_ free() function definition.

118

Chap. 4 Speed with DLC Programming

That groups of datagrams will be delivered in the order
they were transmitted.

That the received data is not corrupted.

That flow control will prevent buffer overflow.

The architecture of the token ring network improves the
situation somewhat for all transmissions, including datagrams.

Specifically,

The circular nature of the network allows you to confirm
that a frame was successfully removed from the network.

The token passing protocol inherent in the token ring
network assures that datagrams will be delivered in
order (although there may be some gaps if frames were
not successfully delivered).

Receipt of corrupted data can be ignored for all but the
most critical applications because of the inherent
reliability of the network, a media access control ap-
proach which eliminates collisions, and built-in
hardware-level error detection. The exceptions typically
involve transaction-oriented systems where an error
would be very damaging (e.g., bank money transfers),
but these applications will almost certainly build in
application-level error detection features no matter how
reliable the underlying network was.

In spite of these advantages, it is often easier to use a connec-
tion-oriented approach to communications. Connections automatically
provide you with complete assurance that the data was successfully

Sec. 4.5 Connection Oriented Communication Using DLC 119

received by the destination application. This is accomplished through
the use of acknowledgements and automatic retransmissions as
necessary. In addition, the protocols used for connection oriented
service automatically provide you with flow control between your
application and the destination application.

Under DLC, connection oriented communication is accom-
plished via link access stations. As discussed in Section 4.2, link access
stations are an additional level of protocol which runs on top of the
existing datagram service available through a SAP. In this section, we
will

° Describe how to open a link access station.

] Describe how to open a connection over a link access
station.

° Describe how to transmit data over a connection.

Note that we do not address receipt of data over a connection.
This is because the function previously defined to receive datagram
packets will operate, without change, for both receipt of datagram
frames and connection-oriented frames. In fact, the receive buffers are
identical for both forms of transmission.

4.5.1 Opening a Link Access Station

To perform connection oriented communication using DLC, you must
first open a link access station. To open a DLC link access station,
you use the open_station() function defined in Code Box 4.13.
This function takes your local station_id (as returned from your call to
open_sap(), the SAP number you wish to communicate with at your
destination, and your destination address. Remember, the destination
address is 12 hexadecimal digits assigned by the manufacturer or set

120 Chap. 4 Speed with DLC Programming

#include <string.h>
#include "dlc.h"

extern int net_error;

/**t*t*************************ﬁ***********************************
* open_station() - open a link access station on this sap

Parameters:
station_id (in) - value returned from DLC_OPEN_SAP
sap (in) - SAP number used for communication
destination (in) - destination address

*
*
*
*
*
*
* Global:

: net_error is set by int_adapter().
*

*

*

*

*

*

Returns:
The opened link station_id for success, 0 for failure

History:
Original code by William H. Roetzheim
***/

unsigned int open_station(unsigned int station_id, unsigned int sap,
t char destination([6])

struct dlc_open_station _parms parms;
struct command_control_block ccb;

init_ccb(&ccb);
ccb.command = DLC_OPEN_STATION;
ccb.parameters = &parms;

memset(&parms, 0, sizeof(struct dlc_open_station_parms));
parms.sap_station_id = station_id;

parms.rsap_value = sap;

parms.destination = destination;

int_adapter(&ccb, WAIT);

if (net_error == 0) return parms.link_station_id;

else return 0;

Code Box 4.13 open_station() function definition.

Sec. 4.5 Connection Oriented Communication Using DLC 121

when the adapter is initialized, all stored in 6 bytes. Other parameters
available allow you to tailor the protocol parameters to your applica-
tion by setting values for timers and windows. One field you may
decide to use is access_priority. This field lets you assign
different priorities to various applications using the token ring network.
Higher-priority applications will be able to transmit data prior to low-
priority applications.

#include <string.h>
#include "dlc.h"
extern int net_error;
/***tttt***********t************************************t*****t****
* connect_station() - connect to a link access station
*
* Parameters:
* station_id (in) - value returned from DLC_OPEN_SAP
*
* Global:
* net_error is set by int_adapter().
*
* Returns:
* 0 for success, net_error for failure
*
* History:
* Original code by William H. Roetzheim
t****t*********t*****tt***t*tt****t********t****t***********k**tt***t*/
unsigned int connect_station(unsigned int station_id)
{
struct dlc_connect_station_parms parms;
struct command_control_block ccb;

init_ccb(&ccb);
ccb.command = DLC_CONNECT_STATION;
ccb.parameters = &parms;

memset(&parms, 0, sizeof(struct dlc_connect_station_parms));
parms.sap_station_id = station_id;

int_adapter(&ccb, WAIT);

return net_error;

Code Box 4.14 connect_station() function definition.

122 Chap. 4 Speed with DLC Programming

4.5.2 Establishing a Connection

When you open a link access station, all processing is local (i.e., within
your adapter). You must still establish the connection between your
application and the destination application prior to communicating.
This process involves physically establishing connectivity over the
network and allocating buffer space at both ends of the connection.
To establish a connection, you use the connect_station() function
shown in Code Box 4.14.

4.5.3 Transmitting a Connection-Oriented Data Packet

After a connection is established, the xmit_i_frame() function can
be used to transmit data over the connection. Unlike the
transmit_ui_frame() function, both the DLC header and the
LAN header are automatically created by the adapter. You simply
pass the local station _id, the remote SAP number, a pointer to the
data to send (data only), and the length of the data. This function is
defined in Code Box 4.15.

4.6 Adapter Shutdown

When you are done communicating, you should close your SAP.
Closing the SAP automatically closes all link access stations associated
with the SAP. To close a SAP, you can use the close_sap()
function shown in Code Box 4.16.

4.7 Summary of DLC Commands

The following table presents a summary of all DLC commands. The
columns have the following meanings:

Sec. 4.7 Summary of DLC Commands

123

#include <string.h>
#include "dlc.h"
extern int net_error;
/******t*t*******kt*ttt****'kk'k************t******t***t****tt**t*'ktt
* xmit_i frame() - transmit datagram with connection service
*
* Parameters:
* station_id (in) - value returned from DLC_OPEN_SAP
* sap (in) - SAP number
bd data_len (in) - length of data in bytes
* data (in) data to transmit
*
* Global:
* net_error is set by int_adapter()
*
* Returns:
* 0 for success, net_error for failure
*
* History:
hd Original code by William H. Roetzheim
****t*****tt*t*******tt*t*******k*t**'kt***ttt*tt**t*****************t*/
int xmit_3i_frame(unsigned int station_id, unsigned int sap,
unsigned int data_len, char *data)
{
struct command_control_block ccb;
struct transmit_parms parms;
init_ccb(&ccb);
ccb.command = TRANSMIT I_FRAME;
ccb.parameters = &parms;
parms.station_id = station_id;
parms.rsap = sap;
parms.buffer_len_one = data_len;
parms.buffer one = data;
int_adapter(&ccb, WAIT);
return net_error;
}

Code Box 4.15 xmit_i_frame () function definition.

124

Chap. 4 Speed with DLC Programming

#include
#include

extern int

Notes:

* % % % N R N % N ¥

unsigned int
{

/*t***t****t*************tt**t***tt*t**t*tt****t*i*tt*t*******i****
* close_sap() - close a SAP on this adapter

Parameters:

Returns:

*
*
* History:
*
*

****t********t****ttttt*tt**t*t****************t*t*t*ttttt*tt********/

struct

init_ccb(&ccb);

ccb.command = DLC_CLOSE_SAP;

ccb.parameters = (void *) (unsigned long) station_idqd;
int_adapter(&ccb, WAIT);

return net_error;

<string.h>
"dlc.h"

net_error;

sap (in) - station id to close (returned from open_sap())

0 for success, net_error for failure

This routine assumes that your application only opened one SAP
at a time. If you opened multiple SAPs, you must modify the code
to use free the buffer memory space allocated by open_sap().

Original code by William H. Roetzheim

close_sap(unsigned int station_id)

command_control_block ccb;

Code Box 4.16 close_sap() function definition.

1.

Command The command name. These names are
defined in dlc.h. These are the values to use for the
Command Control Block’s command field prior to
calling the adapter for processing.

Inputs The fields within the Command Control Block
(and in associated parameter structures) which are used
as input.

Outputs The fields within the Command Control Block
and associated parameter structures which are modified
by the command during processing.

Summary A brief description of the command function.

Sec. 4.7 Summary of DLC Commands

Command

BUFFER_FREE
(027)

BUFFER_GET
(0x26)

DLC_CLOSE_SAP
(0x16)

DLC_CLOSE_STATION
(0x1A)

DLC_CONNECT _STAT
ION
(0x1B)

DLC_FLOW_CONTROL
(0x1D)

DLC_MODIFY
(1)

Inputs

station_id (*)
first_buffer (*)

station_id (*)
buffer_get

station_id (*)
station_id (*)

station_id (*)
routing addr

station_id (*)
flow_control (¥)

station_id (*)
timer t1
timer_t2
timer_ti
maxout
maxin
maxout_incr
max_retry cnt
access_priority
group_count
group_list

Outputs

buffer_left

buffer_left
first_buffer

125

Summary

Returns one or more buff-
ers to the SAP’s buffer pool.

Gets one or more buffers
from the SAP’s buffer pool.

Closes a SAP.
Closes a link access station.

Places both local and re-
mote stations in data
transfer state.

Sets a SAP or link access
station busy status.

Modify working parameters
for an open SAP or link
access station.

126

DLC_OPEN_SAP
(0x15)

DLC_OPEN_STATION
(0x19)

DLC_RESET
(0x14)

DLC_SET THRESHOL
D
(0x33)

DLC_STATISTICS
(0x1E)

DLC_CLOSE_ADAPTE
R
(0x04)

Chap. 4 Speed with DLC Programming

timer t1 station_id
timer_t2

timer_ti

maxout

maxin
maxout_incr
max_retry cnt
max_members
max i field
sap_value (*)
options_priority
group_count
group_list

dic _status_exit
dlc_buf size
dic_pool len
dic_pool_addr (*)

sap_station_id (*)
timer t1
timer_t2
timer ti
maxout

maxin
maxout_incr
max_retry_cnt
rsap_value (*)
max i field
access_priority
destination (*)

link_station_id

station_id (*)

station_id (*)
buffer_threshold (*)
alert_semaphore (*)

sap_station_id (*)
log buf length (*)
log_buf addr (*)
options

log_act_length

lock_code (if opened with
a lock code)

Activate a SAP and reserve
SAP link access stations. A
buffer pool is also assigned
for the SAP.

Allocates local resources for
a link access station in prep-
aration for establishing a
connection.

Reset a SAP and all asso-
ciated link access stations.
If a station_id of 0x0000 is
used, all SAPs and link
access stations are reset.

This command applies to
0S/2 only and is not avail-
able for DOS.

Read (and optionally reset)
a DLC log.

Close an adapter and ter-
minate network communi-
cation.

Sec. 4.7 Summary of DLC Commands

DIR_CLOSE_DIRECT
(0x34)

DIR_DEFINE_MIF_EN
VIRONMENT
(0x2B)

DIR_INITIALIZE
(0x20)

DIR_INTERRUPT
(0x00)

DIR_MODIFY_OPEN_
PARMS
(0x01)

DIR_OPEN_ADAPTER
(0x03)

DIR_RESTORE_OPEN
_PARAMETERS
(0x02)

DIR_SET EXCEPTION
_FLAGS
(0x2D)

ncb_input (*)
ncb_open (*)
ncb_close (*)

sram_address
adptr_chk_exit
netw_status_exit
Ppc_error_exit

dir_buf size
dir_pool blocks
dir_pool _address
adpt_chk_exit
netw_status_exit
pc_error_exit
open_options

adapter_parms (*)
direct_parms (*)
dic_parms (*)

ncb_parms

(NOTE: The contents of
the four structures are de-
scribed fully in Section
432)

ncb_enable

bring ups
sram_address

Various - see section
432

127

This command applies to
0S/2 only and is not avail-
able for DOS.

This command allows a
NetBIOS emulator to oper-
ate with the adapter support
software.

This command initializes
the adapter, resets all adapt-
er tables and buffers, and
performs bring-up tests.

This command forces an
adapter interrupt but per-
forms no action (a NOP).

This command allows you
to modify many default
values set when an adapter
was opened.

This command opens the
adapter and reinitializes all
buffers and tables. Parame-
ter structures set defaults for
use within the adapter.

This command is used to
restore adapter parameters
set when the adapter was
opened after they have been
modified with
DIR_MODIFY_OPEN PA
RMS.

This command applies to
0S/2 only.

128

DIR_SET_FUNCTION
AL ADDRESS
(0x07)

DIR_SET_GROUP_AD
DRESS
(0x06)

DIR_SET_USER_APPE
NDAGE
(0x2D)

DIR_STATUS
(0x21)

DIR TIMER_CANCEL
(0x23)

DIR_TIMER_CANCEL
_GROUP
(0x2C)

DIR_TIMER_SET
(0x22)

bits_to_change (*)

bits_to_change (*)

adpt chk_exit
netw_status_exit
pe_error_exit

ccb_pointer (*)

post (*)

time (*)

Chap. 4 Speed with DLC Programming

encoded_addr
node_address
group_address
functional _addr
max_sap

open_sap
max_station
open_station
avail_station
adapter_config
microcode_level
adapter_parms_addr
adapter_mac_addr
tick_cntr_addr
last ntwk status

This command allows you
to temporarily modify the
adapter’s internal address
used for receiving frames
from the token ring netw-
ork.

This command allows you
to temporarily modify the
adapter’s internal group
address.

This command allows you
to set (or modify) the adapt-
ers interrupt service func-
tions you wish called on
certain conditions.

This command returns sta-
tus information about the
adapter.

This command cancels a
timer set with
DIR TIMER_SET.

This command cancels all
timers whose post address
(from the CCB) is equal to
post.

This command starts a pro-
grammable timer set to
interrupt your application at
time * 5 seconds. Upon
expiration, the post routine
(from the CCB block) will
be executed.

Sec. 4.7 Summary of DLC Commands

PDT_TRACE ON
(©x24)

PDT_TRACE_OFF
(0x25)

PURGE_RESOURCES
(0x36)

READ
©31)

READ CANCEL
(0x32)

RECEIVE
(0x28)

RECEIVE_CANCEL
(0x29)

RECEIVE_MODIFY

(0x2A)

TRANSMIT I FRAME
(0x0B)

TRANSMIT_TEST CMD
(0x11)

table_length (*)

station_id (*)
user_length (*)
received_data
options

station_id (*)

station_id (*)
user_length
received_data
subroutine (*)

station_id (*)
rsap (*)
xmit_queue_one
xmit_queue_two
buffer_len_one
buffer_len two
buffer_one
buffer_two

station_id (*)
rsap (*)
xmit_queue_one
xmit_queue_two
buffer len_one
buffer_len two
buffer_one
buffer_two

current_off
start_tick 0
stop_tick 0
start_tick 1
stop_tick 1

first_buffer

first_buffer

transmit fs

transmit_fs

129

This command logs all in-
terrupts for adapter traffic.

This command stops loging
of all interrupts for adapter
traffic.

This command applies to
OS/2 only.

This command applies to
0S/2 only.

This command applies to
0OS/2 only.

This command is used to
receive all DLC data,
whether connection oriented
or datagram.

This command cancels an
outstanding receive com-
mand.

This command receives
specially formated data and
places it into both the SAP
buffer pool and a user buff-
er.

This command transmits a
frame of data over a con-
nection.

This command transmits a
test command frame with
the poll bit set.

130

TRANSMIT_UI FRAME
(0x0D)

TRANSMIT_XID_CMD
(0x0E)

TRANSMIT XID_RESP
_FINAL :
(0x0F)

TRANSMIT_XID_RESP
ONSE_NOT _FINAL
(0x10)

BUFFER_FREE

station_id (*)
msap (%)
xmit_queue_one
xmit_queue_two
buffer_len one
buffer_len_two
buffer_one
buffer_two

station_id (¥)
rsap (*)
xmit_queue_one
xmit_queue_two
buffer_len one
buffer_len two
buffer_one
buffer two

station id (*)
rsap (*)
xmit_queue_one
xmit_queue_two
buffer_len one
buffer_len_two
buffer_one
buffer_two

station_id (*)
msap (*)
xmit_queue_one
xmit_queue_two
buffer_len one
buffer_len_two
buffer_one
buffer_two

DLC Command Specifics

Chap. 4 Speed with DLC Programming

transmit_fs

transmit_fs

transmit_fs

transmit fs

This command transmits a

This command transmits an
XID (transmit ID) com-
mand with the poll bit set to
on.

This command transmits an
XID response with the final
bit on.

This command transmits an
XID response with the final
bit off.

This command returns a linked list of buffers to the SAP’s

buffer pool. The address of the first buffer in the linked list is passed
as a buffer address. The parameters are passed indirectly (using the
parameter pointer in the CCB) in the following format:

Sec. 4.7 Summary of DLC Commands 131

Offset Parameter

station_id
buffer_left
reserved
first_buffer

o S~ DNNO

station_id:

buffer left:

first buffer:

BUFFER_GET

Type

(in) unsigned int
(out) unsigned int
4 bytes

(in) far pointer

SAP number using buffer. Only SAP
number portion of station id is used (the
link access station portion is ignored).

Upon completion, this variable will be set
to the total number of buffers available in
the SAP buffer pool.

Pointer to first buffer to be added to the
pool. A NULL value will cause an imme-
diate return with no buffers freed.

This command gets one or more buffers from the SAP buffer
pool. The parameters are passed indirectly (using the parameter
pointer in the CCB) in the following format:

Offset Parameter

0 station_id
2 buffer left
4 buffer get
5 reserved

8 first_buffer

Type

(in) unsigned int
(out) unsigned int
(in) unsigned int
3 bytes

(out) far pointer

132 Chap. 4 Speed with DLC Programming

station_id: SAP number using buffer. Only SAP
number portion of station id is used (the
link access station portion is ignored).

buffer_left: Upon completion, this variable will be set
to the total number of buffers available in
the SAP buffer pool.

buffer get: The number of buffers to return, or 1 if
the default value is requested (i.e., the
field is set to zero).

first_buffer: Pointer to first buffer available.

The first four bytes of each buffer (bytes 0 — 3) are a far.
pointer to the next buffer in the linked list of buffers. The final buffer
in the list will contain a NULL pointer for the first four bytes. User
data is placed in the buffer starting at byte number 4.

DLC_CLOSE_SAP

This command closes a service access point. Prior to calling this
command, all associated link access stations must be closed using the
DLC_CLOSE STATION command. The station_id of the SAP to
close is placed in the first two bytes of the parameter field of the
CCB. There is no parameter structure associated with this command.

DLC_CLOSE_STATION

This command closes a link access station. The station_id of
the link access station to close is placed in the first two bytes of the
parameter field of the CCB. There is no parameter structure
associated with this command.

Sec. 4.7 Summary of DLC Commands 133

DLC_CONNECT_STATION

This command is used to complete a connection between two
applications using link access stations to perform connection-oriented
communications. Both applications must issue a
DLC _CONNECT STATION for this command to work. The
parameters are passed indirectly (using the parameter pointer in the
CCB) in the following format:

Offset Parameter Type
0 station_id (in) unsigned int
2 reserved 2 bytes
4 routing_addr (in) far pointer
station_id: This is the link access station ID to be

connected, as returned by the
DLC_OPEN_STATION command.

routing addr: This is a far pointer to a routing address.
If the pointer is NULL, the station is
assumed to be on the local token ring
network. The routing address consists of
up to three 6-byte addresses of interme-
diate gateway nodes.

DLC_FLOW_CONTROL

This command is used to control the flow of frames through a
SAP (which will affect both datagram communications and all link
access stations for that SAP). The first two bytes of the parameter
field of the CCB contain the station_id of the SAP you are interested

134 Chap. 4 Speed with DLC Programming

in controling. The third byte contains the flow control option byte.
This bytes functions as follows:

° If bit 7 is off (0), the SAP enters a "local busy" state. If
bit 7 is on, the adapter exits its "local busy" state in
accordance with bit 6.

° If bit 6 is off, the adapter exits from a user set "local
busy" state. If this bit is on, the adapter exits from an
adapter set "local busy" state.

DLC_MODIFY

This command is used to modify default values for an open link
access station or SAP. The parameters are passed indirectly (using the
parameter pointer in the CCB) in the following format:

Offset Parameter

0 reserved

2 station_id

4 timer_t1

5 timer t2

6 timer_ti

7 maxout

8 maxin

9 maxout_incr
10 max retry_cnt
11 reserved

14 access_priority
15 reserved

19 group_count
20 group list

Type

2 bytes

(in) unsigned int
(in) unsigned char
(in) unsigned char
(in) unsigned char
(in) unsigned char
(in) unsigned char
(in) unsigned char
(in) unsigned char
3 bytes

(in) unsigned char
1 byte

(in) unsigned char
(in) far pointer

Sec. 4.7 Summary of DLC Commands 135

station_id:

timer_ tl1:

timer t2:

timer_ ti:

maxout:

maxin:

SAP or link access station to be modified.

Number of timer ticks to wait for an ac-
knowledgement prior to generating an
interrupt. The value of each tick is set
when the adapter is opened (or as a con-
figuration parameter when the adapter
software is loaded). Valid range is 1
through 10.

Number of timer ticks to delay prior to ac-
knowledging a connection-oriented frame.
This delay allows multiple frames to be re-
ceived and acknowledged simultaneously.
Valid range is 1 through 10. If the value
is over 10, the delay is set to zero. If the
value is zero, the current value is un-
changed.

Number of timer ticks to wait for link
activity prior to generating an interrupt.
Valid range is 1 through 10

Number, between 1 and 127, of outstand-
ing frames that can be transmitted over a
connection prior to receipt of an acknowl-
edgment. This value is called the transmit
window in many protocol books.

Number, between 1 and 127, of received
frames that the station can receive over a
connection prior to sending an acknowl-

136

maxout_incr:

max retry cnt:

Chap. 4 Speed with DLC Programming

edgment. This value is called the receive
window in many protocol books.

This parameter is designed to reduce
bridge congestion over multiple network
connections. If the t1 timer expires and
the adapter is forced to retransmit a
frame, the transmit window is reset to a
size of one. Each successful acknowledg-
ment then causes the adapter to increase
the transmit window by maxout_incr
until it is eventually restored to the origi-
nal value set in maxout.

Number of retry attempts, between 1 and
255, for transmissions where no acknowl-
edgement is received.

access_priority: The transmit access priority for the

group_count:

group_list:

token ring network. Valid numbers are 0
through 3, with 3 being the highest priori-
ty. The actual access priority is left shift-
ed five places prior to storing in this byte
(i.e., the format is B’'nnn00000’.

Number of entries in group list (below).

Far pointer to group list. Each entry in
the group list is a 1-byte SAP number with
the low order bit set to zero to join that
SAP’s group or 1 to leave that SAP’s

group.

Sec. 4.7 Summary of DLC Commands 137

For all parameters, a value of zero will leave the current
settings unchanged.

DLC_OPEN_SAP
This command is used to open a SAP and override default

parameters. The parameters are passed indirectly (using the parame-
ter pointer in the CCB) in the following format:

Offset Parameter

0 station_id

2 user_stat value
4 timer tl

S timer t2

6 timer _ti

7 maxout

8 maxin

9 maxout_incr

10 max retry cnt
11 max_members
12 max i field

14 sap value

15 options_priority
16 station_count
17 reserved

19 group_count
20 group list

24 dlc_status_exit
28 dlc_buf size

30 dlc_pool len

Type

(out) unsigned int
(in) unsigned int

(in) unsigned char
(in) unsigned char
(in) unsigned char
(in) unsigned char
(in) unsigned char
(in) unsigned char
(in) unsigned char
(in) unsigned char
(in) unsigned int

(in) unsigned char
(in) unsigned char

(in) unsighed char

2 bytes

(in) unsigned char
(in) far pointer
(in) far pointer
(in) unsigned int
(in) unsigned int

138

32

dlc_pool_addr

station_id:

Chap. 4 Speed with DLC Programming

(in) far pointer

Station_id for the opened SAP. This
value should be stored, as it will be used
to identify this SAP for other functions.

user_stat_value: On entry to the DLC status inter

timer_ t1l:

timer t2:

timer ti:

rupt function (as set in
dlc_status_exit), this value is passed
back to the user function in register SI.

Number of timer ticks to wait for an ac-
knowledgement prior to generating an
interrupt. The value of each tick is set
when the adapter is opened (or as a con-
figuration parameter when the adapter
software is loaded). Valid range is 1
through 10. The default is S.

Number of timer ticks to delay prior to ac-
knowledging a connection oriented frame.
This delay allows multiple frames to be re-
ceived and acknowledged simultaneously.
Valid range is 1 through 10. If the value
is over 10, the delay is set to zero. If the
value is zero, the default value of 2 is
used.

Number of timer ticks to wait for link
activity prior to generating an interrupt.
Valid range is 1 through 10. The default
is 3.

Sec. 4.7 Summary of DLC Commands 139

maxout:

maxin:

maxout_incr:

max retry cnt:

max members:

Number, between 1 and 127, of outstand-
ing frames that can be transmitted over a
connection prior to receipt of an acknowl-
edgement. This value is called the trans-
mit window in many protocol books. The
default is 2.

Number, between 1 and 127, of received
frames that the station can receive over a
connection prior to sending an acknowl-
edgment. This value is called the receive
window in many protocol books. The
default is 1.

This parameter is designed to reduce
bridge congestion over multiple network
connections. If the t1 timer expires and
the adapter is forced to retransmit a
frame, the transmit window is reset to a
size of one. Each successful acknowledge-
ment then causes the adapter to increase
the transmit window by maxout_incr
until it is eventually restored to the origi-
nal value set in maxout. The default is 1.

Number of retry attempts, between 1 and
255, for transmissions where no acknowl-
edgment is received. The default is 8.

If this SAP is a group SAP, this field
designates the maximum number of indi-
vidual SAPs that may join this group.
This field should normally be left at zero,

140

max _i_field:

sap_value:

Chap. 4 Speed with DLC Programming

because this will default to the value
specified in DIR_OPEN_ADAPTER, which
is the largest permissible value anyway.

This parameters specifies the largest I
frame that can be received by this SAP. I
frames are the data packets used for
connection-oriented service. The default
is 600 bytes.

The SAP value you wish assigned to this
SAP. This value should be an even num-
ber because the low order bit is used by
the adapter to designate if this SAP is an
individual or group SAP.

options_priority:

station_count:

Bit field with the following meaning:

Bits 75, ring access priority; normally 0

Bit 4, reserved; set to zero

Bit 3, XID option; 0 means adapter han-
dles XID frames, 1 means XID

frames are passed to your applica tion

Bit 2, individual SAP bit (1 implies indi

vidual SAP)

Bit 1, group SAP bit (1 implies group

SAP)

Bit 0, group member bit (1 implies member
of group SAP)

Link stations to reserve within this SAP.
A value of zero will reserve no link sta-

Sec. 4.7 Summary of DLC Commands 141

group_count:

group list:

tions and prevent you from performing
connection-oriented communication.

Number of entries in group list (below).

Far pointer to group list. Each entry in
the group list is a 1-byte SAP number with
the low-order bit set to zero to join that
SAP’s group or one to leave that SAP’s

group.

dlc_status_exit: Interrupt function to call if the DLC

dlc_buf size:

dlc_pool len:

status changes.

The size of the buffers in the SAP buffer
pool. The minimum size is 80, and the
number must be a multiple of 16. The
default is 160 bytes.

The number of 16 byte blocks (not buff-
ers) in the buffer pool. The default is 256
(4096 bytes).

dlc_pool_addr: The location within PC memory where the

DLC_OPEN_STATION

adapter should build the SAP buffer pool.

This command is used to open a link access station and override
default parameters. The parameters are passed indirectly (using the
parameter pointer in the CCB) in the following format:

142

Offset Parameter

0 sap_station_id
2 link station_id
4 timer_t1

5 timer t2

6 timer_ti

7 maxout

8 maxin

9 maxout_incr
10 max retry cnt
11 rsap _value

12 max i field

14 access_priority
15 reserved

16 destination

Chap. 4 Speed with DLC Programming

Type

(in) unsigned int
(out) unsigned int
(in) unsigned char
(in) unsigned char
(in) unsigned char
(in) unsigned char
(in) unsigned char
(in) unsigned char
(in) unsigned char
(in) unsigned char
(in) unsigned int
(in) unsigned char
1 byte

(in) far pointer

sap_station_id:

link station_id:

timer_tl:

Station_id for the opened SAP, as
returned by DLC_OPEN_SAP.

This is the link access station
station_id which is returned by the
adapter for later use by you.

Number of timer ticks to wait for
an acknowledgment prior to gen-
erating an interrupt. The value of
each tick is set when the adapter is
opened (or as a configuration pa-
rameter when the adapter software
is loaded). Valid range is 1
through 10. The default is 5.

Sec. 4.7 Summary of DLC Commands

timer_t2:

timer ti:

maxout:

maxout_incrs

143

Number of timer ticks to delay
prior to acknowledging a connec-
tion-oriented frame. This delay
allows multiple frames to be re-
ceived and acknowledged simulta-
neously. Valid range is 1 through
10. If the value is over 10, the
delay is set to zero. If the value is
zero, the default value of 2 is used.

Number of timer ticks to wait for
link activity prior to generating an
interrupt. Valid range is 1 through
10. The default is 3.

Number, between 1 and 127, of
outstanding frames that can be
transmitted over a connection prior
to receipt of an acknowledgment.
This value is called the transmit
window in many protocol books.
The default is 2.

Number, between 1 and 127, of re-
ceived frames that the station can
receive over a connection prior to
sending an acknowledgment. This
value is called the receive window
in many protocol books. The de-
fault is 1.

This parameter is designed to re-
duce bridge congestion over multi-

144

max_retry cnt:

rsap _value:

max i field:

access_priority:

Chap. 4 Speed with DLC Programming

ple network connections. If the t1
timer expires and the adapter is
forced to retransmit a frame, the
transmit window is reset to a size
of one. Each successful acknowl-
edgment then causes the adapter to
increase the transmit window by
maxout_incr until it is eventually
restored to the original value set in
maxout. The default is 1.

Number of retry attempts, between
1 and 255, for transmissions where
no acknowledgement is received.
The default is 8.

This is the SAP number you wish
to communicate with on the desti-
nation adapter. Note that this is a
SAP number, not a station_id for
the remote adapter (which you
would have no way of knowing).

This parameters specifies the larg-
est I frame that can be received by
this station. I frames are the data
packets used for connection orient-
ed service. The default is the num-
ber set with DIR_OPEN_ADAPTER.

The access priority, between 0 and
3, to be used for transmitted
frames. The format is B'nnn00000’.

Sec. 4.7 Summary of DLC Commands 145

The default is zero. Using num-
bers larger than zero will cause the
open to fail if the adapter is not
authorized to use the higher priori-

ty.

destination: Far pointer to a 6-byte location
which contains the destination node
address.

DLC_REALLOCATE

This command is used to increase or decrease the number of
link stations available for a given SAP. The parameters are passed
indirectly (using the parameter pointer in the CCB) in the following
format:

Offset Parameter Type

0 station_id (in) unsigned int

2 option_byte (out) unsigned char

3 station_count (in) unsigned char

4 adapter_available stns (out) unsigned char

5 sap_available stns (out) unsigned char
station_id: The SAP station_id to be modified.
option_ byte: Bit 7 indicates if you want the

number of link stations increased
(0) or decreased (1). Bits 0
through 6 are reserved and should
be set to zero.

146

Chap. 4 Speed with DLC Programming

station_count: The number of link stations to be
added or deleted (in accordance
with the option byte).

adapter_available stns: Number of available link
stations remaining for this adapter
after this command completes.

sap_available stns: Number of available link stations
remaining for this SAP after this
command completes.

DLC_RESET

This command resets one or more SAPs and their associated

link access stations. The SAPs are closed after queued transmissions
are completed. The station_id to reset is placed in the two high order
bytes of the parameter field of the CCB. If the station_id is zero, all
SAPs (and their link access stations) will be reset.

LLC_SET THRESHOLD

This command applies to OS/2 only.

DLC_STATISTICS

This command reads the DLC logs and can also be used to

reset the logs. The parameters are passed indirectly (using the
parameter pointer in the CCB) in the following format:

Offset Parameter Type

0

sap_station_id (in) unsigned int

Sec. 4.7 Summary of DLC Commands

= 00 A N

Bytes
0-3
47

147

log_buf length (in) unsigned int
log_buffer addr (in) far pointer
log_act_length (out) unsigned int
options (in) unsigned char

sap station_id:

log buf_ length:

log buffer_ addr:

log_act_length:

options:

The station_id of the SAP or link
access station you are interested in.

The length of your buffer space
you have allocated for the log buff-
er.

A pointer to the log buffer space
that you have allocated for this

purpose.

The actual length of the data trans-
ferred to your log buffer. If this
length is greater than
log_buf_length the remaining
data is simply discarded by the
adapter.

Bit 7 on causes logs to be reset, off
leaves logs intact. Bits 0 through 6
are reserved and should be zero.

For a SAP, the log format is as follows:

Type Meaning
unsigned long Number of frames transmitted.
unsigned long Number of frames received.

148

8-11

unsigned long

12—1S5 unsigned long
16—17 unsigned int

Chap. 4 Speed with DLC Programming

Number of frames discarded (no receive
outstanding)

Number of times data was lost.

Numbers of buffers available in buffer
pool.

For a link access station, the log format is as follows:

Bytes Type

0—1 unsigned int
2-3 unsigned int

4 Unsigned char
5 Unsigned char
6—7 unsigned int

8 unsigned char
9 unsigned char
10 unsigned char
11 unsigned char
12 unsigned char
13 unsigned char
14 unsigned char
15 unsigned char
16—47 charf]

DIR_CLOSE_ADAPTER

Meaning

Number of I frames transmitted
Number of I frames received
Number of I frame receive errors
Number of I frame xmit errors
Number of times t1 expired

Last command/response received
Last command/response sent
Link primary state

Link secondary state

Send state variable

Receive state variable

Last received NR

Length of network header in xmits
Network header being used

This command will shut down the adapter and terminate all
outstanding CCBs. If the adapter was opened with a lock code, the
lock code must be placed in the first two bytes of the parameter
field of this CCB. Trying to close the adapter with an invalid lock
code results in a return code of 0x05.

Sec. 4.7 Summary of DLC Commands 149

DIR CLOSE DIRECT
This command applies to OS/2 only.
DIR_DEFINE_MIF_ENVIRONMENT

This routine allows you to write a NetBIOS emulator which
processes NetBIOS NCBs using your own code. See IBM (1988) if you
are interested in this area.

DIR_INITIALIZE

This command initializes the adapter, resetting all tables and
buffers and causing the adapter to run the bring-up tests. If this
command is executed while the adapter is already open, all outstanding
CCBs are lost. The parameters are passed indirectly (using the
parameter pointer in the CCB) in the following format:

Offset Parameter Type
0 bring_ups (out) unsigned int
2 sram_address (in/out) unsigned int
4 reserved 4 bytes
8 adptr_chk_exit (in) far pointer
12 netw_status_exit (in) far pointer
16 pc_error_exit (in) far pointer
bring ups: If the adapter detects an error

during bring-up tests, it returns a
value of 0x07 for this CCB and sets
the bring_up field to the specific
error detected. Bring-up error

150

sram address:

adptr_chk _exit:

netw_status_exit:

pc_error_exit:

Chap. 4 Speed with DLC Programming

codes are included in the next section.

This field is a segment value. If a
nonzero number is included in this
field on command execution, the
adapter will locate shared RAM at
the specified address. A zero as
input causes the adapter to use the
default values (0xD800 for the
primary adapter, 0xD400 for the
secondary). Upon command com-
pletion, this field is set to the actu-
al shared RAM segment.

This field is a function pointer to
your interrupt function you want
the adapter to call if it detects an
adapter hardware error during
execution. If the field is zero, no
user function will be called.

This field is a function pointer to
your interrupt function you want
the adapter to call if it detects a
network problem. If the field is
zero, no user function will be
called.

This field is a function pointer to
your interrupt function you want
the adapter to call if it detects a
PC hardware or operating system
€rror.

Sec. 4.7 Summary of DLC Commands 151

DIR_INTERRUPT

This command forces an adapter interrupt, but performs no
action.

DIR_MODIFY_OPEN PARMS

This command allows you to temporarily modify many values
set when the adapter was initially opened. The parameters are
restored with the DIR_RESTORE_OPEN_PARMS command. This
command will fail if a receive command is outstanding. After this
command has been completed, it may not be used again until after a
DIR RESTORE_OPEN_PARMS has been issued. The parameters are
passed indirectly (using the parameter pointer in the CCB) in the
following format:

Offset Parameter Type

0 dir_buf size (in) unsigned int
2 dir_pool_blocks (in) unsigned int
4 dir_pool address (in) far pointer

8 adptr_chk_exit (in) far pointer

12 netw_status_exit (in) far pointer

16 pc_error_exit (in) far pointer

20 open_options (in) unsigned int

dir buf size: The size of each buffer in the di-

rect buffer pool, including over-
head. The minimum is 80, and the
length must be a multiple of 16.
The default is 160.

152

dir_pool blocks:

dir_pool_address:

adptr_chk exit:

netw_status_exit:

pc_error_exit:

open _options:

Chap. 4 Speed with DLC Programming

The length of the direct buffer pool
in terms of 16-byte blocks.

Far pointer to the beginning of the
buffer pool.

This field is a function pointer to
your interrupt function you want
the adapter to call if it detects an
adapter hardware error during
execution. If the field is zero, no
user function will be called.

This field is a function pointer to
your interrupt function you want
the adapter to call if it detects a
network problem. If the field is
zero, no user function will be
called.

This field is a function pointer to
your interrupt function you want
the adapter to call if it detects a
PC hardware or operating system
error.

Various options, each represented
by one bit. A bit turns the option
on, 0 turns it off. Bit 15 is the
leftmost bit.

The open_options bit fields have the following meanings:

Sec. 4.7 Summary of DLC Commands | 153

bit meaning

15 Wrap interface. All user transmissions will be wrapped around
as received data without going on the network.

14 Disable hard error. Prevents network hard errors from causing
interrupts.

13 Disable soft error. Prevents network soft errors from causing
interrupts.

12 Pass adapter MAC frames. Causes all adapter class MAC
frames which are not recognized by the adapter to be passed to
the application (they are ignored by default) MAC frames are
covered in the next chapter.

11 Pass attention MAC frames. Causes all attention MAC frames
to be passed to the adapter. Multiple identical attention MAC
frames will only result in one frame being passed to your
application (the first one). By default, these frames are not
passed to the application.

10 Reserved. Set to zero.

9 Pass parameter table. If the adapter is already open and this
bit is set, all fields will be filled with the current values being
used by the adapter.

8 Contender. This option allows the adapter to participate in
contention for token ring media access protocols if necessary.

154 Chap. 4 Speed with DLC Programming

7 Pass beacon MAC frames. Passes all unique beacon MAC
frames to the application.

6 Reserved. Set to zero.

5 Remote program load. This bit prevents your adapter from
joining the ring until at least one other adapter is up on the
ring.

4 Token release. This bit turns off the early token release option

of the newer 16/4 adapters. This capability is discussed in the
token ring network hardware section.

0-3 Reserved. Set to zero.
DIR_OPEN_ADAPTER

This command opens the adapter. The parameters were
discussed in detail in Section 4.2.

DIR_OPEN_DIRECT

This command applies to OS/2 only.
DIR_READ LOG

This command reads and resets the direct logs. The parameters
are passed indirectly (using the parameter pointer in the CCB) in
the following format:

Offset Parameter Type

0 log id (in) unsigned int

Sec. 4.7 Summary of DLC Commands 155

2 log_buf length (in) unsigned int
4 log buf addr (in) far pointer
8 log_act _length (out) unsigned int
log id: Identifies the log to read, as fol-
lows: 0x0000 — read adapter error
log; 0x0001 — read direct interface
error log; 0x0002 — read both logs.
log buf length: The length of your buffer space
you have allocated for the log buff-
er.
log buffer addr: A pointer to the log buffer space
that you have allocated for this
purpose.
log_act_length: The actual length of the data trans-
ferred to your log buffer. If this
length is greater than
log_buf_length, the remaining
data is simply discarded by the
adapter.
For the adapter, the log format is as follows:
Bytes Type Meaning
0 unsigned char Line errors
1 unsigned char Internal errors
2 unsigned char Burst errors
3 unsigned char A/C errors
4 unsigned char Abort delimiter

156 Chap. 4 Speed with DLC Programming

5 1 byte Reserved

6 unsigned char Lost frames

7 unsigned char Receive congestion

8 unsigned char Frame copied errors

9 unsigned char Frequency errors

10 unsigned char Token errors

11 3 bytes Reserved

For the direct interface, the log format is as follows:

Bytes Type Meaning

0-3 unsigned long Number of frames transmitted

4-7 unsigned long Number of frames received

8-11 unsigned long Number of frames discarded (no receive
outstanding)

12-15 unsigned long Number of times data was lost

16-17 unsigned int Numbers of buffers available in buffer
pool

DIR_RESTORE _OPEN_PARMS

This command restores the default parameters to the adapter
after they have been temporarily reset using
DIR_MODIFY_ OPEN_PARMS.
DIR_SET_EXCEPTION_FLAGS

This command only applies to OS/2.

Sec. 4.7 Summary of DLC Commands 157

DIR_SET FUNCTIONAL ADDRESS

This command allows you to modify the functional address for
the adapter. The four bytes of the parameter field contain a bit
pattern representing the bits fo change, not the actual new address.
The bits field is formated as a 4-byte character array. The least
significant and most significant bit are ignored. For example,
OxFFFFFFFF will reset all address bits, while 0x00000060 will reset
bits 5 and 6.

DIR_SET GROUP_ADDRESS

This command allows you to set a group address which the
adapter will use to receive messages. The parameter field contains
4-byte character array which represents the group address which should
be added.

DIR_SET USER APPENDAGE

This command allows you to modify the interrupt functions set
when the adapter was opened or initialized. The parameters are
passed indirectly (using the parameter pointer in the CCB) in the
following format:

Offset Parameter Type

0 adptr_chk_exit (in) far pointer
4 netw_status_exit (in) far pointer
8 pc_error_exit (in) far pointer

adptr_chk exit: This field is a function pointer to
your interrupt function you want
the adapter to call if it detects an

158 Chap. 4 Speed with DLC Programming

adapter hardware error during
execution. If the field is zero, no
user function will be called.

netw_status_exit: This field is a function pointer to
your interrupt function you want
the adapter to call if it detects a
network problem. If the field is
zero, no user function will be
called.

pc_error_exit: This field is a function pointer to
your interrupt function you want
the adapter to call if it detects a
PC hardware or operating system
error.

An NULL pointer for any field will restore that function pointer
to the address being used before the last call to
DIR_SET USER_APPENDAGE.

DIR_STATUS
This command returns adapter status information. The

parameters are passed indirectly (using the parameter pointer in the
CCB) in the following format:

Offset Parameter Type

0 encoded_addr (out) char[6]
6 node_address (out) char[6]
12 group_address (out) char[4]

16 functional addr (out) char{4]

Sec. 4.7 Summary of DLC Commands

20
21
22
23
24
25
26
36
40
44
48

max_sap
open_sap
max_station
open_station

avail station
adapter_config
microcode_level
adapter_parms_addr
adapter_mac_addr
tick_cntr_addr
last_ntwk_status

encoded_addr:

node_address:

group_address:
functional_ addr:

max_sap:

open_sap:

max station:

159

(out) unsigned char
(out) unsigned char
(out) unsigned char
(out) unsigned char
(out) unsigned char
(out) unsigned char
(out) char[10]

(out) far pointer
(out) far pointer
(out) far pointer
(out) unsigned int

The permanent address encoded by
the manufacturer on the adapter.

The adapter’s network address,
which will equal the encoded_addr
unless modified (for example, dur-
ing DIR_OPEN_ADAPTER).

The adapter’s group address.
The adapter’s functional address.

The maximum number of SAPs al-
lowed for this adapter.

The number of SAPs which are
currently open.

The maximum number of link
access stations allowed for this
adapter (across all SAPs).

160

open_station:

avail_station:

adapter_config:

microcode level:

adapter_parms_addr:

adapter_mac_addr:

tick cntr_addr:

Chap. 4 Speed with DLC Programming

The number of link access stations
which are currently open.

The number of link access stations
which are available. Link access
stations are considered unavailable
if the either are already open or if
they were reserved when a SAP
was opened.

A bit field in which bit 7 indicates
if this is an original PC network
adapter, bit 4 indicates if the early
token release capability of the 16/4
adapter is turned on, and bit 0
indicates the adapter’s data rate (0
= 4,1 = 16 Mbps).

A number representing the release
of the adapter microcode.

The address of the adapter’s mem-
ory containing adapter parameters.
This memory cannot be written by
an application program.

The address of the adapter’s mem-
ory containing MAC buffers. This
memory cannot be written by an
application program.

The address of an unsigned long
containing the number of 100-milli-

Sec. 4.7 Summary of DLC Commands 161

second intervals that have ellapsed
since the last DIR_INITIALIZE
command.

last_ntwk _addr: The most recent network status
change.

DIR TIMER CANCEL

This command cancels a timer set with the DIR_TIMER SET
command. The parameter field of the CCB contains a far pointer
to the CCB block used to start the timer.

DIR_TIMER CANCEL GROUP

This command cancels a group of timers. The parameter
field of the CCB contains a far pointer to an interrupt function. The
interrupt function is the function which DIR_TIMER SET was
instructed to call when the timer expired. All timers using this
interrupt function as their exit function will then be canceled.

DIR TIMER SET

This command starts a timer. The first two bytes of the
parameter field contain an unsigned integer indicating the number
of timer ticks to wait. The valid range is 0 through 13,107. Each timer
tick is .5 seconds. When the command completes, the interrupt
function pointed to in the post field of the CCB is called.

162 Chap. 4 Speed with DLC Programming

PDT_TRACE_ON

This command starts an interrupt trace for all adapter traffic.
The trace capability stores all CCBs which are started, all CCBs which
are completed, all NCBs which are started, and all adapter interrupts
of the PC. Timer interrupts are stored and a count is output when a
non-timer interrupt occurs. The parameters are passed indirectly
(using the parameter pointer in the CCB) in the following format:

Offset Parameter Type
0 table length (in) unsigned int
2 current_off (out) unsigned int
4 start_tick 0 (out) unsigned long
8 stop_tick 0 (out) unsigned long
12 start_tick 1 (out) unsigned long
16 stop_tick 1 (out) unsigned long
20 reserved 12 bytes
31 table char[?7?]
table length: The length of the trace table you

have setup in your memory space.
The minimum value is 256 bytes.
Each entry in the trace table is 16
bytes long.

current_off: This is the offset into the trace
table. This field is updated contin-
uously as the trace table is updat-
ed. The trace table wraps when
full.

Sec. 4.7 Summary of DLC Commands

start_tick 0:

stop_tick O0:

start_tick_1:

stop_tick 1:

table:

163

This is the value of the timer 0 tick
counter when the trace started.

This is the value of the timer 0 tick
counter when the trace stopped.

This is the value of the timer 1 tick
counter when the trace started.

This is the value of the timer 1 tick
counter when the trace stopped.

This is the space where the actual
trace table entries are made. This
array must be equal is size to the
number specified in
table length.

Four trace entry formats are used (and will be intermixed in the
trace table). Each entry is 16 bytes long. The valid ranges for byte 0
of each entry are different for each of the four formats, allowing the
type of interrupt to be determined. The four valid formats are

CCB Trace Entry
Byte Meaning

0 Adapter number (0/1)

1 Bit flags

7 = adapter initialized
6 = initialize in process
5 = adapter opened

4 = open in process

3 = SRB busy

2 = Block bit on

164

2

3
4-7
8-11

Chap. 4 Speed with DLC Programming

1 = always 0
0 = no adapter found
CCB command
Return code
SS:SP registers
Pointer to interrupted application program code

12-15 Pointer to CCB

Adapter Interrupt Entry
Byte Meaning

0

47

Interrupt status register processor (ISRP) even bit
flags

7 = always 1

6 = always 1

5 = reserved

4 = programmable timer interrupt

3 = error interrupt

2 = access interrupt

1 = always 1
0 = adapter number (0/1)
ISRP odd-bit field

7 = reserved
6 = adapter check
5 = SRB response
4 = ASB free
3 = ARB command
2 = SSB response
1 = reserved
0 = reserved
Command code of interrupt
Return code
SS:SP registers

Sec. 4.7 Summary of DLC Commands 165

8-11 Address of interrupted application code

12-15

CCB address, or zero if interrupt not result of
CCB

Adapter Timer Interrupt Entry

Byte Meaning

0 0xD2 for primary adapter, 0xD3 for secondary

1 0x00

2-3 Total timer interrupts (both adapters)

4-7 SS:SP registers

8-11 Address of the interrupted application code

12-15 CCB address if this interrupt causes a
DIR_TIMER SET command to be completed,
0x00 otherwise

NCB Trace Entry

Byte Meaning

0 0xOF when NCB first issued
0x1F when executing user post routine
0x2F when returning from post routine

1 adapter number (0/1)

2 NCB command

3 return code

4-7 SS:SP registers

8-11 address of interrupted application program code

12-15 pointer to NCB

PDT_ TRACE OFF

This command turns off the adapter trace capability. There are

no parameters.

166 Chap. 4 Speed with DLC Programming

PURGE_RESOURCES

This command applies to OS/2 only.
READ

This command applies to OS/2 only.
READ_CANCEL

This command applies to OS/2 only.
RECEIVE

This command receives all types of DLC frames and places
them in the buffer pool for use by your application. If an interrupt
handler is defined in the receive command, the command remains
active and continues to receive frames until specifically canceled. If no
interrupt handler is defined, the command terminates upon completion
and must be started again after a frame is received. The parameters
are passed indirectly (using the parameter pointer in the CCB) in
the following format:

Offset Parameter Type
0 station_id (in) unsigned int
2 user_length (in) unsigned int
4 received_data (in) far pointer
8 first_buffer (out) far pointer
12 options (in) unsigned char
station_id: The station id to receive frames

for. This is the number returned

Sec. 4.7 Summary of DLC Commands

user_length:

received data:

first buffer:

167

by DLC_OPEN_SAP or
DLC_OPEN_STATION. In addition,
the following station_ids are auto-
matically established when the
adapter is opened:

0x0000 to receive MAC and
non-MAC frames

0x0001 to receive MAC
frames

0x0002 to receive non_MAC
frames

This allows you to tell the adapter
to reserve a space at the start of
each buffer for user data. The
length of this user space is speci-
fied in this field.

This is a far pointer to a function
which should be called each time a
frame is received. When this inter-
rupt handler is called, the DS:SI
registers are set to point to the
CCB and the ES:BX registers are
are set to point to the first received
buffer.

The address of the first received
buffer.

168

options:

Chap. 4 Speed with DLC Programming

Bit flags with the following mean-

7 — (on) store all MAC
frames contiguously and in
their entirety; (off) store
MAC frame headers in
buffer 1, remaining frame
data in the second buffer

6 — same as 7, but applies
to non-MAC frames

5 — place all data in second
buffer, leaving first buffer
empty except for header
information

0-4 reserved, set to zero

The buffer format for noncontiguous receipts (the default) is as

follows:

Buffer One format

Offset Type

0 far pointer
4 unsigned int
6 unsigned int
8 unsigned int

Meaning

Pointer to next buffer, or
NULL for last

Length of entire received
frame

Number of frame bytes in
this buffer

Offset from buffer start to
user field

Sec. 4.7 Summary of DLC Commands

10
12
14
16
18
19
20
21
22
54
58

7?

unsigned int
unsigned int
unsigned char
unsigned int
unsigned char
unsigned char
unsigned char
unsigned char
char[32]
char[4]
char[?77]

char[??7]

169

Length of user field
Receiving station_id
Option byte used in receive
Buffers remaining

Frame status field from frame
Adapter number (0/1)
LAN header length

DLC header length

LAN header

DLC header

User space defined by
user_length

Received data

Note that the received data always starts at the value user_offset

plus user_length.

Buffer Two format

Offset Type

0 far pointer
4 unsigned int
6 unsigned int
8 unsigned int
10 unsigned int
12 char[???]

7?

char[???]

Meaning

Pointer to next buffer, or
NULL for last

Length of entire receive
frame

Number of frame bytes in
this buffer

Offset from buffer start to
user field

Length of user field
User space defined by
user_length

Received data

170 Chap. 4 Speed with DLC Programming

RECEIVE _CANCEL

This command cancels an outstanding receive command for a
station_id. The station_id you are interested in is placed in the first
two bytes of the parameter field of the CCB as an unsigned int.

RECEIVE_MODIFY

This command receives data and puts some of the data into a
local user buffer (not one assigned from the SAP buffer pool). This
command is not normally used by application programmers. If
necessary, refer to the suggested readings for command specifics.

TRANSMIT I FRAME

This command transmits one or more buffers using a connection
over a link access station. All buffers are transmitted (and must fit
within) one frame. This size is limited based on the least capable
adapter you will encounter on your network. The limitations are 2025
for the original adapters, 4441 for the 16/4 adapters running at 4
Mbps, and 17937 for the 16/4 adapters running at 16 Mbps. The
adapter software automatically adds the frame’s DLC and LAN
header, so each buffer contains actual data only. The parameters are
passed indirectly (using the parameter pointer in the CCB) in the
following format:

Offset Parameter Type

0 station_id (in) unsigned int

2 transmit_fs (out) unsigned char
3 reserved 1 byte

4 xmit_queue one (in) far pointer

8 xmit_queue two (in) far pointer

Sec. 4.7 Summary of DLC Commands 171

12
14
16
20

buffer len_one (in) unsigned int
buffer len_two (in) unsigned int
buffer one (in) far pointer
buffer two (in) far pointer

The adapter will send all data pointed to by the transmit

queues/buffers in the following order:

Transmit queue one will be used.
Transmit queue two will be used.
Buffer one will be used.
Buffer two will be used.

BN

You may put your outgoing data in any combination of the four

queues/buffers, although applications typically do all transmissions
using buffer one only. The field descriptions are as follows:

station_id: The station_id of the link station as
returned by DLC_OPEN_STATION.

transmit_fs: The frame status field values after
the frame has made a complete
circuit around the ring.

xmit_queue one: The first of a linked list of transmit
buffers. Each buffer starts with a
far pointer to the next buffer (or
NULL for the last buffer), followed
by

° A 2-byte reserved
field.

172 Chap. 4 Speed with DLC Programming

° An unsigned int
giving the lenght of
actual data in this
buffer.

° An unused unsigned
int for user use.

° An unsigned int
giving the size of
user space.

[A character array
equal in size to the
user space just speci-
fied.

° The actual data.
xmit_queue two: The first of another linked list of

transmit buffers using the same for-
mat as transmit queue one.

buffer_len one: The length of the first transmit
buffer.

buffer len two: The length of the second transmit
buffer.

buffer one: The address of the first buffer of

data to transmit. The buffer con-
tains data only.

Sec. 4.7 Summary of DLC Commands 173

buffer two: The address of the second buffer of
data to transmit. The buffer con-
tains data only.

Transmit queue one and two buffers can be obtained from the
SAP buffer pool using buffer_get. If this approach is used, transmit
queue two buffers will be automatically freed (using buffer_free)
after the frame is successfully transmitted. This is not true of transmit
queue one.

TRANSMIT TEST CMD

This command transmits a test command frame with the poll bit
set. This command is normally not used by application programs.
Refer to the Suggested Readings for further information.

TRANSMIT_Ul_FRAME

This command transmits a datagram over a SAP (not a link
access station). The application program is responsible for providing
the LAN header, although the adapter will add the DLC header. All
buffers are transmitted (and must fit within) one frame. This size is
limited based on the least capable adapter you will encounter on your
network. The limitations are 2025 for the original adapters, 4441 for
the 16/4 adapters running at 4 Mbps, and 17937 for the 16/4 adapters
running at 16 Mbps. The parameters are passed indirectly (using the
parameter pointer in the CCB) in the following format:

Offset Parameter Type
0 station_id (in) unsigned int
2 transmit_fs (out) unsigned char

3 rsap (in) unsigned char

174

12
14
16
20

reserved
buffer_len_one
buffer_len_two
buffer_one
buffer two
station_id:

transmit_fs:

rsap:

buffer_len_one:

buffer len two:

buffer one:

buffer_ two:

Chap. 4 Speed with DLC Programming

8 bytes, set to zero
(in) unsigned int
(in) unsigned int
(in) far pointer
(in) far pointer

The station_id of the link station as
returned by DLC_OPEN_SAP.

The frame status field values after
the frame has made a complete
circuit around the ring.

The remote SAP number you wish
the data sent to. Note that this
number is not necessarily equal to
the remote station_id associated
with this SAP.

The length of the first transmit
buffer.

The length of the second transmit
buffer.

The address of the first buffer to
transmit. This buffer must contain
the LAN header only.

The address of the second buffer of
data to transmit. The buffer con-
tains data only.

Sec. 4.7 Summary of DLC Commands 175

The LAN header has the following format:

Offset Type Meaning

0 unsigned char AC byte, added by adapter

1 unsigned char FC byte, added by adapter

2 char[6] Destination node address (12 digits)

8 char[6] Your node address, added by
adapter

14 char[?7?] 0-16 bytes of routing information

The only field you are required to enter is the destination node
address. You need to enter 1, 2, or 3 intermediate node addresses
(routing information) if the frame must be routed through 1, 2, or 3
gateway nodes to different token rings. The remaining fields are filled
in by your adapter automatically.

TRANSMIT _XID CMD

This command transmits an XID command with the pool bit set
on. This command is normally not used by an application program.
Refer to the Suggested Readings for command specifics.

TRANSMIT XID RESP FINAL

This command transmits an XID response with the final bit on.
This command is normally not used by an application program. Refer
to the Suggested Readings for command specifics.

176 Chap. 4 Speed with DLC Programming

TRANSMIT XID RESP NOT FINAL

This command transmits an XID response without the final bit
on. This command is normally not used by an application program.
Refer to the Suggested Readings for command specifics.

4.8 Summary of DLC Return Codes

CCB command return codes are returned in the retcode field
of the Command Control Block structure. If you are using the
int_adapter() function defined earlier in this chapter, the return
code is also placed in the global variable net_error. A return of
0x00 is always a valid return without error. A return code of OxFF
indicates that the command is continuing to operate. A return of
anything else indicates some type of error. The specific meaning of
each possible return code is as follows:

Code Name Description Action
0x00 SUCCESS Operation completed normally. None.
0x01 INVALID_COMMAND The command code passed in the Use a valid code.
CCB was invalid.
0x02 DUPLICATE_COMMA Only one command of this type Wait for the earlier com-
ND can be outstanding at a time, but mand to complete.

you tried to execute a second
one.

0x03 ADAPTER_OPEN This command requires that the Close the adapter.
adapter be closed, but the
adapter is already open.

0x04 ADAPTER_CLOSED This command requires that the Open the adapter.
adapter be open, but the adapter
is closed.

0x05 MISSING_PARAM A required parameter was not Check your input param-
provided. eters to be sure that no

required parameters are
coded to zero.

Sec. 4.8 Summary of DLC Return Codes

INVALID_OPTIONS

UNRECOVERABLE F
AILURE

UNAUTHORIZED_PR
IORITY

NOT_INITIALIZED

USER_CANCEL

CLOSE_CANCEL

NOT_OPEN_SUCCESS

NETBIOS_FAILURE

TIMER_ERROR

WORK_AREA_OVERF
LOW

INVALID_LOG_ID

An invalid option was provided,
or a combination of options is
invalid.

The adapter has been closed
because of an unrecoverable
error condition.

The requested access priority is
not authorized for this adapter.

The adapter must be initialized
for this command to work, and it
has not been initialized.

The command was successfully
lled per user req

The adapter was closed while this
command was in progress.

The command completed, alth-
ough the adapter is not opened.

NetBIOS was accessed but it is
not loaded, or one or more
NetBIOS parameters used during
the adapter open command was
invalid.

A timer value for timer set or
timer_cancel is not in the range
of 0-13107, or you tried to cancel
a timer which was never set.

The available work area has over-
flowed. The work area includes
the adapter’s internal memory
and the application provided
work space.

The requested log_id is not de-
fined.

177

Check your option lists
and try again.

Determine the cause of
the error, correct the
error if necessary, then
initialize and open the
adapter.

Use a lower priority. 0is
always valid.

Initialize the adapter.

None.

Determine why the adapt-
er was closed.

None.

If you will be using
NetBIOS, close the
adapter, correct the prob-
lems, then reopen the
adapter.

Correct and try again.

Reduce the values for
max_station and/or
max sap. You can also
increase the memory
made available to the
adapter to match the
value returned in the
work_len_act field.

Correct and retry.

178

0x16

0x17

0x1B

INVALID_RAM

LOG_OVERFLOW

BUFFER_TOO_LARGE

NETBIOS_OPERATIO
NAL

INVALID_BUFFER_L
ENGTH

NO_BUFFERS

USER_LENGTH_TOO_
LARGE

PARAMATER INVALI
D

INVALID_POINTER
INVALID_CCB_ADAP
TER

LOST_DATA_NO_BUF
FERS

Chap. 4 Speed with DLC Programming

The shared RAM segment or size
is invalid

The buffer allocated for the log
was too small, resulting in the
loss of some statistics. The infor-
mation that overflowed is perma-
nently lost if the command indi-
cated reset.

The requested buffer size cannot
be satisfied using the SAP buffer

pool.

Attempt to change a NetBIOS
parameter which is currently
being used by NetBIOS.

The specified SAP buffer size is
invalid.

Inadequate buffers remain to
satisfy the request.

The user requested area is too
large for the available buffer
sizes.

The CCB parameter field pointer
is invalid. This can be caused by
the pointer pointing into the PC
system interrupt vector area or
being too near the end of the
segment which will cause wrap-
around for some of the fields.

A pointer within a parameter
table is invalid.

The ccb_adapter value is outside
of the prescribed range.

There were no available buffers
in the SAP’s buffer pool when a
frame was received, resulting in
lost data. This error only occurs
for connectionless transmissions.

Adjust the value. Values
must often be even multi-
ples of 16.

Be sure to use a buffer
size¢ which is large
enough.

Increase the SAP buffer
pool size or decrease the
requested buffer size.

Close, then reopen the
adapter.

‘The size must be at least
80 bytes and a multiple of
16.

Retry with fewer buffers
or wait for more buffers
to become available.
Reduce the user length
field value.

Correct and retry.

Correct and retry.

Correct and retry.

Free some buffers
(buffer_free), then retry.

Sec. 4.8 Summary of DLC Return Codes

LOST_DATA_BUFFER
_OVERFLOW

TRANSMIT_ERROR

FRAME_ERROR

UNAUTHORIZED MA

MAX_XMIT_CMDS

LINK_NOT_AVAILAB
LE

INVALID_FRAME _LE
NGTH

INADEQUATE_RCV_
BUFFERS

NODE_ADDRESS

INVALID_REC BUF L
EN

There was inadequate space in
the SAP’s buffer pool to hold a
received frame. Part of the frame
will be lost. This message only
occurs for connectionless trans-
missions.

The frame was not successfully
transmitted.

A frame error was detected dur-
ing transmission. This may indi-
cate that corrupted data was
received by the destination.

An attempt was made to send a
MAC frame which this adapter
was not authorized to do. Pos-
sible causes include an invalid
source class, an attempt to send a
MAC fram or a SAP, or an at-
tempt to send a MAC frame on
the PC Network (not token ring).

128 transmit commands are al-
ready cued for this station.

An error was detected over a
connection, causing the connec-
tion to be closed.

The frame length is to short to
contain header information or
too long for the transmit buffer.
If you are using a connection,
this error also causes the con-
nection to enter a disconnected
state.

There were an inadequate num-
ber of receive buffers allocated
when the adapter was opened.

The defined node address is in-
valid.

The receive buffer length is over
the allowed maximum, less than
the allowed minimum, or not a
multiple of 8.

179

Free some buffers, then
retry.

Check the FS byte in the
CCB to determine the
cause of failure.

Application specific.

Adjust the source class
value and try again.

Wait for some commands
to complete.

Try to re-open the con-
nection using
dic_connect_station.

Modify the frame length.
For connection, re-open
the connection.

Free up RAM using open
adapter parameters.

‘The node address con-
tains an unallowed bit or
number.

Adjust and retry.

180

0x40

0x41

0x42

0x49

INVALID_XMIT_BUF_
LEN

INVALID_STATION ID

PROTOCOL_ERROR

PARAMETER_TOO L
ARGE

INVALID_SAP

INVALID ROUTE

INVALID_GROUP_RE
QUEST

INADEQUATE_LINK_
STATIONS

LINK_STATION OPEN

GROUP_SAP_FULL

SEQUENCE_ERROR

STATION_CLOSE_NO_
ACK

Chap. 4 Speed with DLC Programming

The transmit buffer length is over
the allowed maximum, less than
the allowed minimum, or not a
multiple of 8.

The station id either does not
exist or is not valid for this par-
ticular command.

Attempt to connect a link station
while the link is disconnected or
closed (you must first open it), or
to transmit over a connection
which is not connected.

One or more parameters exceed
the maximum allowed.

The SAP value is either invalid
or already in use.

The routing field is too short,
larger than 18 bytes, or an odd

' number of bytes long.

An attempt was made to join a
nonexistent group.

‘When opening a SAP, this error
indicates that the adapter has
inadequate link stations remain-
ing to satisfy the request. When
opening a station, this error indi-
cates that all assigned link sta-
tions for this SAP are already in
use.

An attempt was made to close a
SAP which has one or more link
stations open.

The group SAP is currently full

The station is closing or estab-
lishing a connection while you
are attempting to execute a com-
mand.

The station closed without re-
mote acknowledgment.

Adjust and retry.

Be sure that you are us-
ing the SAP or link ac-
cess station station id as

assigned by the adapter.

Correct your application
code.

Correct and retry.

Invalid SAPs are the null,
global, and group sap.
Correct and retry.

Correct and retry.

Correct and retry.

Correct and retry.

Close the link stations
prior to closing the SAP.

Application specific.
Wait for the command to

complete before trying
your comand.

Application specific.

Sec. 4.8 Summary of DLC Return Codes 181

0x4C OUTSTANDING_COM Attempt to close a link station Wait until commands
MANDS while outstanding commands are complete or issue a reset.
queued.
0x4D NO_CONNECTION The link station could not estab- Verify rsap values, rout-
lish a connection. ing information, the re-
mote adapter address,
and physical connectivity,
then try again.
0x4F INVALID_ADDRESS The remote address is not valid Correct the remote ad-
because the high bit is set to 1 dress.
which indicates a group address,
but a group address is not al-
lowed for this command.

Other types of data which the adapter passes to your application
are covered individually:

Adapter Status Parameter Table
This information is returned in response to a DIR_STATUS
COMMAND:

Offset Name Type Meaning

0 phys_addr char{4] Adapter physical address

4 up_node_addr char{6] Address of next node in ring
10 up_phys_addr char{4] Physical address of next node
14 poll_addr char{6] Last poll address

20 auth_env charf2] Authorized environment
22 acc_priority char{2] Transmit access priority
24 source_class charf2] Source class authorization
26 att_code char{2] Last attention code

28 source_addr char{6] Last source address

M4 beacon_type charf2] Last beacon type

36 major_vector char{2] Last major vector

38 netw_status char{2] Network status

40 soft_error char{2] Soft error timer value

42 fe_error charj2] Front end error counter
44 local ring char{2] Ring number

46 mon_error charf2] Monitor error code

48 beacon_transmit char{2] Beacon transmit type

50 beacon_receive charf2] Beacon receive type

52 frame_correl char{2] Frame correlation save
54 beacon_naun char{6] Beaconing station NAUN
60 reserved char{4]

182 Chap. 4 Speed with DLC Programming

64 beacon_phys char{4] Beaconing station physical address

Frame Status Byte

After each frame makes a circuit around the ring, the frame
status (FS) byte can be examined. Some values and their meanings are

0xCC The frame was copied
0x00 No adapter recognized the address
0x88 The destination adapter saw the frame but didn’t copy it.

Bring-up Error Codes

Code Meaning

0x0020 Diagnostics could not execute

0x0022 ROM diagnostics failed

0x0024 Shared RAM diagnostics failed

0x0026 Processor instruction test failed

0x0028 Processor interrupt test failed

0x002A Shared RAM interface register diagnostics failed
0x002C Protocol handler diagnostics failed

0x0040 Adapter’s programmable timer for the PC system failed
0x0042 Cannot write to shared RAM

0x0044 Cannot read from shared RAM

0x0046 Allowed to write into shared RAM read-only area
0x0048 Initialization timed out

4.9 Suggested Reading

IBM (1988), Local Area Network Technical Reference, Research
Triangle Park, NC: International Business Machines Corpora-
tion.

Sec. 4.9 Suggested Reading 183

IBM (1987), Token-Ring Network Architecture Reference,
Research Triangle Park, NC: International Business Machines
corporation.

Poo, Gee-Swee and Wilson Ang (1989), "Data Link Driver
Program Design for the IBM Token Ring Metwork PC Adapt-
er", Computer Communications, Vol. 12, no. 5, (October), pp.
266-272.

5. Register Direct Programming

It is possible to program the adapter without requiring that any
adapter support software be loaded to provide such "fluff" as DLC
control, NetBIOS support, or heaven forbid, BIOS redirectors. The
question you must ask yourself is why would anyone in his or her right
mind want to do this? I must confess that it is interesting to have an
understanding about how the adapter works when you strip away the
insulating shells, and there is a certain macho pride in feeling like you
can do it if you really need to . . . but let’s stop at that point and not
really try to do things the hard way. With that warning in mind, this
chapter will explain how the adapter works at the lowest possible level
and will provide sufficient information to give you a good head start
if you ever find an application that absolutely requires you to work at
this level. We will not try to present detailed code examples or sample
applications for this level of programming. If you need to "make it
work", use this chapter as a starting point; then read Chapter seven of
IBM (1988) about 15 times and it will start to make sense.

184

Sec. 5.2 Programmed I/O 185

5.1 Talking to the Adapter

Communication between your application and the adapter is accom-
plished using three mechanisms:

1. The adapter supports programmed I/O (PIO) ports at
fixed memory locations. In Turbo C these ports can be
accessed using inport(), inportb(), outport(),
and outportb() functions. PIO ports are discussed
further in Section 5.2.

2. The adapter supports memory-mapped I/O (MMIO),
which is accessed as fixed addresses relative to a starting
address which can change. MMIO addresses can be
accessed in Turbo C using peek(), peekb(), poke(),
and pokeb (). MMIO addresses are actually mapped to
RAM/ports on the adapter. MMIO is discussed in
Section 5.2.

3. The adapter supports shared RAM in your application’s
address space. This shared RAM is used for passing

control blocks and actual data back and forth. Shared
RAM is discussed in Section 5.5.

5.2 Programmed I/0
You can perform three functions using PIO with ordinary PC adapters:
1. Control adapter interrupts.

2. Determine the starting address of the MMIO area and
the current interrupt level.

186 Chap. 5 Register Direct Programming

3. Control adapter resets.
5.2.1 Controlling Adapter Interrupts

You can enable interrupts for all installed adapters (primary and
alternate) with a write to address 0x02Fn, where "n" is the desired
interrupt level. Valid interrupt levels are 0 through 3, with the
meaning of each discussed in Section 5.2.2. For example, to enable
interrupts using interrupt level 0 for all installed adapters, you would
write

outportb(0x02F0, 1);

The actual value output (1, in this case) is irrelevant. The
simple act of writing anything is what performs the desired action.

Similarly, you can enable interrupts for just the primary adapter
by writing to address 0x0A23, or just the alternate adapter by writing
to address 0x0A27. In this case, the interrupt level cannot be changed.

5.2.2 Determining MMIO Starting Location

The primary and alternate adapter will each have an independent
memory mapped I/O (MMIO) area, and each will be located at a
different location. To determine the starting address for the MMIO
for the primary adapter, you read from a port located at 0x0A20 (the
address is 0x0A24 for the alternate adapter). The byte value can be
read as follows:

unsigned char byte;
byte = inportb(0x0A20);

Bits 2 through 7 indicate the starting address of the MMIO area
(bits 0 and 1 will be discussed momentarily). The following code

Sec. 5.2 Programmed I/O 187

converts the byte value returned into a far pointer to the start of the
MMIO:

void *mmio;
unsigned int segment;

byte &= 0x03; /* mask lower two bits */
segment = byte; /* convert to integer */
segment <<= 7; /* left shift by 7 */

mmio = MK _FP((segment, 0);

Before you start writing me letters, yes I know that there are
much more efficient ways to do the same thing I do in this code
fragment. In all code examples in this chapter, I am describing the
algorithm using straightforward, crude, often inefficient C code to
make it very clear what is going on. If you have read this far, you are
probably a better C programmer than I anyway, and you will not have
any difficulties taking my examples and making them more efficient to
your hearts content!

You can also mask off bits 2 through 7 of the byte and use the
remaining two bits (bits 0 and 1). These two bits tell you the current
interrupt level set for the adapter as follows:

Value PC I/O Bus Micro Channel
0 IRQ2 TIRQ2

1 IRQ3 IRQ3

2 IRQ6 IRQ10

3 IRQ7 IRQ11

We will see how to use these numbers later when using
interrupts to communicate with the adapter.

188 Chap. 5 Register Direct Programming

5.2.3 Controlling Adapter Resets

You can force the adapter to enter a reset mode which is similar to
the power-on state. To force the adapter to enter the reset mode,
write to address 0x0A21 (or 0x0A25 for the alternate adapter). The
adapter will then stay in this reset mode until you write to the adapter
reset release port (0x0A22 for the primary adapter, 0x0A26 for the
alternate).

5.3 Memory Mapped 1/0

Allright, the two key things you’ve used the PIO to learn are the
starting location of the MMIO area and the interrupt level of the
adapter. Let’s put that information to some use. We will start with
the MMIO segment, determined as described in Section 5.2.2.

In that section we combined the segment with a zero offset to
determine the starting location of the MMIO area. To actually
perform MMIO functions, we need to modify the offset as follows:

° Bits 0 - 4 select a particular register of interest.

] Bits S and 6 select the operation to perform on the
register.

° Bits 7 and 8 select the area of interest within the MMIO
area.

Let’s talk about each of these categories individually, starting
with bits 7 and 8. These bits operate as follows:

° 00 selects the attachment control area. This is the
normal selection.

Sec. 53 Memory Mapped I/O 189

01 is reserved.

10 selects the adapter identification area A containing
the adapter encoded address.

11 selects the adapter identification area B containing
test patterns.

In general, you will only be concerned with the attachment
control area, as this is where the MMIO registers are located. Bits 5
and 6 allow you to perform four operations on these registers:

11 is used to read from a register.
00 is used to write to a register.
10 is used to bitwise OR a byte with a register.

01 is used to bitwise AND a byte with a register.

Bits 0 through 4 select the register you are interested in. There
are 18 registers, as follows (9 pairs of even and odd):

RRR (shared RAM relocation registers) — even and odd
WRBR (write region base registers) — even and odd

WWCR (write window close registers) — even and odd
WWOR (write window open registers) — even and odd

ISRP (interrupt status registers — PC system) — even and
odd

190

Chap. 5 Register Direct Programming

ISRA (interrupt status registers — adapter) — even and
odd

TCR (timer control registers) — even and odd
TVR (timer value registers) — even and odd

SRPR (shared RAM paging registers) — even and odd

RRR even uses bit pattern 0000, RRR odd uses bit pattern
0001, WRBR even uses bit pattern 0010, WRBR odd uses bit pattern
0011, and so on. We will discuss the purpose of these registers next,
but first a hint about accessing them. The following example shows a
convenient way to address various registers assuming that the variable
segment was previously set to point to the top of the MMIO area:

#define RRR_EVEN 0x00
#define RRR_ODD 0x01

#define WRBR_EVEN 0x02
#define WRBR_ODD 0x03
#define WWCR_EVEN 0x04
#define WWCR_ODD 0x05
#define WWOR_EVEN 0x06
#define WWOR_ODD 0x07
#define ISRP_EVEN 0x08
#define ISRP_ODD 0x09
#define ISRA_EVEN 0x0A
#define ISRA_ODD 0x0B
#define TCR_EVEN 0x0C
#define TCR_ODD 0xO0D
#define TVR_EVEN OxOE
#define TVR _ODD OxOF
#define SRPR_EVEN 0x10
#define SRPR_ODD 0x11
#define READ 0x60
#define OR 0x40
#define AND 0x20
#define WRITE 0x00
unsigned int segment;

unsigned char byte;

/* write 0x00 to RRR_EVEN */
pokeb(segment, RRR_EVEN | WRITE, 0x00);

/* read TVR EVEN into byte */
byte = peekb(segment, TVR_EVEN | READ);

Sec. 5.3 Memory Mapped I/O 191

Now let’s talk about each of the registers individually, starting
with the RRR registers. RRR_EVEN is used to set the starting
address of shared RAM (this register is unused for PCs with the Micro
Channel bus). Bits 1 through 7 of this register map to bits 13 through
19 of the shared RAM address, so writing 0x02 to this register sets the
shared RAM address to 8K, 0x04 to 16K, 0x06 to 24K, and so on. The
shared RAM address boundary set using this register must be an even
multiple of the shared RAM size, which brings us to register
RRR_ODD.

RRR_ODD is used to determine the amount of shared RAM
used by your adapter. Bits 2 and 3 of this register can be read to
determine the shared RAM size as follows:

[00 for 8K

L] 01 for 16K
] 10 for 32K
] 11 for 64K

You must remember to mask the remaining bits prior to doing
your comparison.

We’ve now used the MMIO’s RRR registers to determine the
amount of shared RAM supported by the adapter and to set the
shared RAM starting location to a value we have allocated from the
global heap. Note that because the shared RAM must begin on a
fixed boundary, you will normally need to allocate more memory than
required (using malloc()), then use as your address the first valid
address within the allocated block of memory. Don’t forget to save
your original pointer so that the memory block can be freed when you
are done. The next question is, How is the shared memory controlled
to prevent the adapter and our application program from simulta-

192 Chap. 5 Register Direct Programming

neously accessing the same memory area? The answer is the write
management register pairs.

Although your application can always read data from anywhere
in the shared RAM area, there are only two regions where writes are
allowed (writes to other areas generate a PC access error interrupt).
These two regions are called the write region and the write window.
The write region base register (WRBR) points to the start of the write
region. The top of the write region is the end of the shared RAM
block which was setup. Similarly, the write window wpen register
(WWOR) points to the start of the write window within the shared
RAM, while the write window close register (WWCR) points to the
end of the write window. Either the write region or the write window
(or both) may zero size (closed). If any of these registers has a value
of zero, the associated window is closed for all writing. If the value is
nonzero, you must convert the register value into an actual address as
described next.

Recall that each of these three registers (WRBR, WWCR, and
WWOR) is actually a pair of registers, one even and one odd. The
even and odd register values are combined to produce a 16-bit offset
into the shared RAM. The even register contains the most significant
byte of this offset, while the odd register contains the least significant
byte of the offset.

The interrupt status registers (ISRA and ISRP) are used by the
adapter to interrupt your application and by your application to
interrupt the adapter. These registers are covered in depth in Section
54.

Three timer registers are used by your application:

° TCR_EVEN is used to control the timer.

° TCV_ODD is used to select a countdown timer initial
value.

Sec. 5.3 Memory Mapped I/0 193

TCV_EVEN contains the actual value of the timer.

TCR_EVEN contains 6 bits for your use. The bits have the
following meanings:

Bit 2: PC system interlock. This bit is set when the
adapter wants to prevent your application from accessing
any of the timer registers while critical functions are
being performed.

Bit 3: PC system programmable timer count status.
This bit is set by the adapter when the countdown timer
contains a nonzero value.

Bit 4: PC system programmable timer overrun status.
This bit is set by the adapter when the countdown timer
expires and is not reset by your application.

Bit 5: PC system programmable timer count gate. This
bit is used by the application program to control the
countdown timer. Writing a one to this location starts
the countdown timer counting. Writing a zero pauses
the timer. Writing a one when the timer has already
expired (reached zero) causes the timer to be reloaded
and restarted.

Bit 6: PC system programmable timer reload mode. If
this bit is one, the timer is automatically reloaded when
it expires. If this bit is zero, the timer must be manually
reloaded using bit S.

Bit 7: PC system programmable timer interrupt mask.
If this bit is one, the timer will interrupt your application

194 Chap. 5 Register Direct Programming

when the countdown timer expires. If this bit is zero,
the timer will not interrupt your application and you
must manually check the timer values periodically. The
discussion of ISRP and ISRA in the next section discuss
the process of interrupting your application in more
detail.

The timer value registers (even and odd) contain timer values
in 10 millisecond increments. The timer value is initially written to
TVR_ODD (and changed by writing a value to TVR_ODD. It must
then be transferred to TVR_EVEN and started when you want it to
commence counting. This is accomphshed using the appropriate bits
in TCR_EVEN, as discussed earlier.

The shared RAM page register (even) is used for paging of
shared RAM to and from your PC-accessible memory (the odd register
is not used). This register is only used on computers supporting RAM
paging. For details, refer to IBM (1988).

5.4 Interrupt Status Registers

Your application and the adapter communicate using interrupts.
These interrupts are initiated via the interrupt status register adapter
(ISRA) and the interrupt status register PC (ISRP). The ISRA_ODD
register is used by your application to interrupt the adapter. To
interrupt the adapter, a specific bit is written to the ISRA ODD
address using a pokeb() call. To understand these interrupts fully,
we must first look ahead and examine how you communicate com-
mands and data to the adapter.

You application write three types of data into the shared RAM:
Data Holding Buffers (DHBs), System Request Blocks (SRBs), and
Adapter Status Blocks (ASBs). You read four types of data from
shared RAM: System Status Blocks (SSBs), Adapter Request Blocks
(ARBs), Receive Buffers (RBs), and SAP and Link Station Control

Sec. 5.4 Interrupt Status Registers 195

Blocks. The exact nature of each of these blocks will be covered in
the next section.
With this in mind, the following bits may be used:

° Bit 5 indicates that you have placed a new command in
the SRB and are ready for the adapter to process the
command.

° Bit 4 indicates that you have placed a response (an

ASB) in the shared RAM which is available for the
adapter’s use.

] Bit 3 indicates that you are ready to put an SRB in the
shared RAM, but that a previous command is still
pending. The adapter will then interrupt you when the
previous command is completed.

] Bit 2 indicates that you are ready to put an ASB in the
shared RAM, but that a previous ASB is still pending.
The adapter will then interrupt you when the previous
ASB is copied.

The ISRA _EVEN register bits provide current adapter status
information. These bits are normally not used by an application
program, but their meaning is as follows:

° Bit 7 — Internal parity error (on adapter’s internal bus)

° Bit 6 — Timer interrupt pending

] Bit 5 — Access interrupt (attempt by adapter to access
illegal address)

196 Chap. 5 Register Direct Programming

] Bit 4 — Adapter microcode problem (microcode dead-
man timer expired)

° Bit 3 — Adapter processor check status
° Bit 2 — Reserved

° Bit 1 — Adapter hardware interrupt mask (prevents
internal interrupts)

° Bit 0 — Adapter software interrupt mask (prevents
internal software interrupts)

The ISRP registers are used by the adapter to interrupt your
application. The actual interrupt will occur as a hardware interrupt
using the IRQ number available at MMIO address 0x0A20 (primary
adapter) or 0x0A24 (alternate adapter). The selected IRQ number is
mapped to an MS-DOS interrupt number by taking the IRQ number
and adding 0x08 (i.e., IRQ0 = MS-DOS interrupt 0x08, IRQ1 = MS-
DOS interrupt 0x09, etc.). Prior to activating the token ring adapter,
you must ensure that the MS-DOS interrupt vector for the appropriate
interrupt number is set to your interrupt handler. The interrupt
handler is simply a function declared to be of type void interrupt.
The procedure for changing the normal interrupt processing is as
follows:

1. Determine the MS-DOS interrupt number by first
finding (or setting) the adapter’s internal IRQ number.

pA Use getvect () to read and store the current value for
this interrupt. The stored value will be a far pointer to
the current interrupt processing code.

Sec. 5.4 Interrupt Status Registers 197

Use setvect () to modify the current value for this
interrupt to your own interrupt function. setvect() is
passed the interrupt number of interest and a far pointer
to your interrupt function.

Within your interrupt function, use values stored in
ISRP_ODD and ISRP_EVEN (discussed next) registers
to determine if the interrupt was generated by the
adapter for you.

If the interrupt was for you, process the interrupt
expeditiously and return. If the interrupt was not for
you, call the original interrupt code returned from
getvect (); then return.

As we just mentioned, most of the bits in ISRP_EVEN and
ISRP_ODD are designed to let you know if an interrupt was for you,
and if so, what the nature of the interrupt was. Starting with
ISRP_ODD, the meaning of appropriate bits is

Bit 6 — Adapter check. The adapter has encountered a
serious problem and has closed itself. There are proce-
dures, described in IBM (1988), for determining the
cause of the problem.

Bit 5 — SRB response. The adapter has accepted an
SRB request and set the return code within the SRB.

Bit 4 — ASB free. The adapter has read the ASB and
this area can be safely reused. This interrupt is only
used if your aplication has set the ASB free request bit
in ISRA_ODD or if an error was detected in your
response.

198

Chap. 5 Register Direct Programming

Bit 3 — ARB command. The adapter has given you a
command for action. The command is located in the
ARB area of shared memory.

Bit 2 — SSB response. The adapter has posted a re-
sponse to your SRB (the response is located in the SSB

area of shared memory).

Bit 1 — Bridge frame forward complete.

Within ISRP_EVEN, the following bits are used to describe
interrupt conditions:

Bit 4 — Timer interrupt. The TVR_EVEN timer has
expired.

Bit 3 — Error interrupt. The adapter has had an internal
error.

Bit 2 — Access interrupt. You have attempted to write
to an invalid area of shared RAM or an invalid register
within the MMIO.

In addition, the following bits within ISRP_EVEN can be
turned on or off by you to control the interrupt processing:

Bit 7 — If 0 the adapter will issue a CHCK, if 1 an IRQ.
This should normally be set (by you) to 1.

Bit 6 — Interrupt enable. If 0, no interrupts will occur.
If 1, interrupts will occur normally. Normally set to 1.

Bit 0 — Primary or alternate adapter. Set to zero if this

Sec. 5.5 Shared RAM 199

adapter is the primary adapter, 1 if this adapter is the
alternate adapter.

We’ve kind of danced around the terms DHBs, SRBs, ASBs,
etc., alluding to the fact that they are areas within the shared RAM.
Now that you understand how ISRP and ISRA registers are used to
communicate (via interrupts) back and forth between the adapter and
your application, we are ready to discuss the structure of shared RAM.

5.5 Shared RAM

There are four formatted control blocks used for communication
between the adapter and your application:

1. The System Request Block (SRB)
2. The System Status Block (SSB)

3. The Adapter Request Block (ARB)
4. The Adapter Status Block (ASB)

The System Request Block is used to pass a command and its
associated parameters from your application to the adapter. The SRB
is functionally identical to the Net Control Blocks and Command
Control Blocks discussed in earlier chapters. If the command is
completed immediately, the return values will be passed back in the
SRB space. If the command is accepted but not completed, the SRB
return code field is set to OxFF.

The System Status Block is used when the adapter accepts a
command but does not complete the command immediately. The SSB
is used to pass back return values when the SRB command is finally
completed.

200 Chap. 5 Register Direct Programming

The Adapter Request Block is used by the adapter to communi-
cate with your application. If the ARB contains information only, your
application should note the information, then inform the adapter that
the ARB has been read. If the ARB asks for some type of response,
you notify the adapter that the ARB has been read and pass your
response to the adapter using the ASB (discussed next).

The Adapter Status Block is used by your application to
respond to an ARB issued by the adapter.

All four blocks are located in the previously identified shared
RAM, but where? You begin by initializing the adapter using PIO and
MMIO operations. After the adapter is initialized, the WRBR register
tells you the base of the write region offset within the shared RAM.
This is where you place your first SRB, a command to open the
adapter. After the adapter is open, the response returned by the
adapter tells you the location of the four block areas within the shared
RAM (i.e., the SRB location, SSB location, ARB location, and ASB
location). You store these four addresses and use them until the
adapter is closed (due to a DIR_CLOSE_ADAPTER, DIR_CONFIG-
URE_BRIDGE_RAM, DIR OPEN ADAPTER or error condition
which causes the adapter to automatlcally close). You must then
repeat the procedure and store the shared RAM addresses. In
summary, the steps involved in opening the adapter are

1. Issue an adapter reset PIO command.

2. Delay for at least 50 milliseconds to ensure that the
adapter responds.

3. Issue an adapter release PIO command.

4. Set the interrupt enable bit (bit 6) in the ISRP_EVEN
register.

Sec. 5.6 Adapter Command Blocks 201

5. Wait for the adapter to interrupt you (via ISRP_ODD
bit 5). This takes between one and three seconds. At
that point you can can use the WRBR to determine the
address of a SRB containing diagnostic information
regarding the adapter, if necessary.

6. Use the shared RAM segment address combined with
the WRBR offset to post a DIR_OPEN_ADAPTER
command. The specifics of this command are covered
in the following section.

7. When the DIR_ OPEN_ADAPTER command completes
(you will be interrupted with ISRP_ODD bit 5), read
bytes 6 through 15 in the SRB to determine the value
for ASB _address, SRB_address, ARB_address, and
SSB_address. These addresses are the offset from the
start of shared RAM to the area used for
reading/writing the specified block of data. Unless
specifically mentioned, the internal structure of the SRB
and SSB are identical.

Now that the mechanics of communicating with the adapter are
more or less clear, it is time to cover some specifics. This involves
looking at the ASB, SRB, ARB, and SSB blocks in more detail. As
you read the following section, you will find that the block structures
(and the parameters they contain) are very similar to the structure of
the associated CCB as discussed in the previous chapter.

5.6 Adapter Command Blocks
You control the adapter using command blocks called System Request

Blocks. The general procedure for issuing a command to the adapter
is as follows:

202

Chap. 5 Register Direct Programming

The appropriate SRB structure is filled with parameters
and moved into the SRB area of shared RAM.

ISRA_ODD bit § is set to interrupt the adapter. The
adapter checks the validity of the SRB contents and
either

L Completes the command, sets a return
code other than OxFF, and interrupts the
PC using ISRP_ODD bit 5.

L Performs initial processing only, sets the
return code to OxFF, and provides a com-
mand correlator. The PC will normally
not be interrupted at this point. An ex-
ception is that if you have told the adapter
that you have another SRB to send (using
ISRA_ODD bit 3), the adapter will inter-
rupt you using ISRP_ODD bit 5 to con-
firm that it has performed initial process-
ing on the SRB.

For some commands, the adapter may then request
further data using the ARB and DHB blocks (and
interrupts to tell you about the request). The PC system
uses the ASB command block to respond to these
commands.

When a command is completed that was started (i.e., the
return code was set to 0xFF in the SRB), the adapter
puts the final return code in the SSB and interrupts the
PC using ISRP_ODD bit 2.

Sec. 5.6 Adapter Command Blocks 203

5. After you read the data from an SSB, you inform the
adapter that you are done reading it by setting
ISRA _ODD bit 0.

The following commands are available using the adapter direct
interface. For common commands, the command specifics are
included. For less common commands, the command is summarized
and interested readers are referred to IBM (1988) for more details.
In most cases the parameters are identical (in name and function) to
the parameters used for the identical CCB discussed in the previous
chapter. In addition, the valid return codes (and their meaning) is
identical to the CCB return codes covered in the last chapter.

204 Chap. 5 Register Direct Programming

5.6.1 DIR_CLOSE_ADAPTER (0x04)

This command is used to close the adapter. The command does not
return until completed. The SSB and SRB structure definition is

struct

{
unsigned char command;
unsigned char reserved;
unsigned char retcode;

IS

5.6.2 DIR_INTERRUPT (0x00)

This command forces an adapter interrupt, but performs no operation.
The command does not return until completed. The SSB and SRB
structure definition is

struct

{
unsigned char command;
unsigned char reserved;
unsigned char retcode;

b

5.6.3 DIR_MODIFY_OPEN_PARMS (0x01)

This command is used to modify the open_options parameters for the
adapter, normally temporarily. The format of the open_options field
is covered under DIR_OPEN_ADAPTER. The command does not

Sec. 5.6 Adapter Command Blocks

205

return until completed. The SSB and SRB structure definition is

struct

{
unsigned char
unsigned char
unsigned char
unsigned char
R_WORD

b

command;
reservedl;
retcode;
reserved2;
open_options;

5.6.4 DIR_OPEN_ADAPTER (0x03)

This command is used to open the adapter for normal ring communi-
cations (or for adapter loopback testing). The command does not
return until completed. The SSB structure definition is

struct

{
unsigned char
unsigned char
R_WORD
char
char
char
R_WORD
R_WORD
R_WORD
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

command;
reservedl;
open_options;
node_address[6];
group_address[4];
funct_address[4];
num_rcv_buf;
rev_buf len;
DHB_length;
num_DHB;
reserved2;
dic_max sap;
dlc_max_sta;
dlc_max_gsap;

206 Chap. 5 Register Direct Programming

unsigned char dlc_max _gmem;
unsigned char dic_t1_tick one;
unsigned char dlc_t2 tick one;
unsigned char dlc_ti_tick one;
unsigned char dlc_t1_tick two;
unsigned char dlc_t2 tick two;
unsigned char dlc ti_tick two;
char product_id[18];

|5

The parameters are identical to the similarly named parameters
discussed for DIR_OPEN_ADAPTER in Chapter four. One discrep-
ancy is that the transmit buffers from Chapter four are called DHB
buffers when using the adapter direct interface.

The SRB response for this command is not identical to the SSB.
The format of the SRB response is

struct

{
unsigned char command;
unsigned char reservedl;
unsigned char retcode;
char reserved2[3];
R_WORD open_error_code;
R_WORD ASB_address;
R_WORD SRB_address;
R_WORD ARB_address;
R_WORD SSB_address;

b

The four addresses are offsets from the beginning of the shared
RAM area to the start of the specified block.

Sec. 5.6 Adapter Command Blocks 207

5.6.5 DIR_READ LOG (0x08)

This command reads log data and resets the adapter error counters.
The command does not return until completed. The SSB structure is
identical to the SRB structure and is defined as

struct

{
unsigned char command;
unsigned char reservedl;
unsigned char retcode;
char reserved2[3];
unsigned char log_data[14];

b

Upon return, the 14 bytes of log data have the following
meaning:

log_data[0] = line errors
log_data[1] = internal errors
log_data[2] = burst errors
log_data[3] = a/c errors
log_data[4] = abort delimiters
log_data[5] = reserved
log_data[6] = lost frames
log_data[7] = receive congestion count
log_data[8] = frame copied errors
log_data[9] = frequency errors
log_data[10] = token errors
log_data[11-13] = reserved

208 v Chap. 5 Register Direct Programming

5.6.6 DIR_RESTORE_OPEN_PARMS (0x02)

This command restores the adapter parameters to their values prior to
calling DIR_MODIFY_OPEN_PARMS. This command does not
return until complete. The open_options field is set (by you) to the
values stored in the adapter prior to calling DIR_MODIFY_O-
PEN PARMS. The structure of the SRB and SSB are identically
defined as follows

struct

{
unsigned char command;
unsigned char reservedl;
unsigned char retcode;
unsigned char reserved2;
R_WORD open_options;

b

5.6.7 DIR_SET_FUNCT ADDRESS (0x07)

This command is used to set the functional address for the adapter to
receive messages. Bits 31, 1, and 0 of the functional address are
ignored. This command does not return until complete. The structure
of the SRB and SSB are identically defined as follows

struct

{
unsigned char command;
unsigned char reservedl;
unsigned char retcode;
unsigned char reserved2;

unsigned char funct_address[4];
b

Sec. 5.6 Adapter Command Blocks 209

5.6.8 DIR_SET GROUP_ADDRESS (0x06)

This command is used to set the group address for the adapter to
receive messages. This command does not return until complete. The
structure of the SRB and SSB are identically defined as follows

struct

{
unsigned char command;
unsigned char reservedl;
unsigned char retcode;
unsigned char reserved2;

unsigned char group_address[4];
b
5.6.9 DLC_CLOSE_SAP (0x16)
This command is used to close a SAP (see Chapter four for a

discussion of SAPs). This command does not return until complete.
The structure of the SRB and SSB are identically defined as follows

struct

{
unsigned char command;
unsigned char reservedl;
unsigned char retcode;
unsigned char reserved2;
R_WORD station_id;

b

210 Chap. 5 Register Direct Programming

5.6.10 DLC_CLOSE_STATION (0x1A)

This command is used to close a station (see Chapter four for a
discussion of stations). This command returns immediately (with a
return code of 0xFF) if the initial values are valid, and then interrupts
your application with the final return code when the station is
successfully closed. The structure of the SRB and SSB are identically
defined as follows

struct

{
unsigned char command;
unsigned char cmd_correlate;
unsigned char retcode;
unsigned char reserved2;
R_WORD station_id;

b

The cmd correlate field is used to provide a unique
identifier for this command block so that you will be able to identify
the block later when the command actually completes.

5.6.11 DLC_CONNECT_STATION (0x1B)

This command is used to establish a connection with a remote adapter
via an already opened station. This command returns immediately
(with a return code of OxFF) if the initial values are valid, then
interrupts your application with the final return code when the
connection is successfully established. The structure of the SRB and
SSB are identically defined as follows

Sec. 5.6 Adapter Command Blocks 211

struct

{
unsigned char command;
unsigned char cms_correlate;
unsigned char retcode;
unsigned char reserved2;
R_WORD station_id;
char routing_info[18];

b

The cmd_correlate field is used to provide a unique
identifier for this command block so that you will be able to identify
the block later when the command actually completes.

5.6.12 DLC_FLOW CONTROL (0x1D)

This command is used to control the flow of information into your
application via the adapter. This command returns only upon
completion. The structure of the SRB and SSB are identically defined
as follows

struct

{
unsigned char command;
unsigned char reservedl;
unsigned char retcode;
unsigned char reserved2;
R_WORD station_id;
unsigned char flow_options;

b

Flow option bits are defined as follows:

212

Bit 7

Bit 6

Bits 5-0

Chap. 5 Register Direct Programming

Exit (bit value of one) or enter (bit value of zero)
a local busy state.

If this bit is one, then a zero in bit 7 will reset
the local busy state. If this bit is zero, then a
zero in bit 7 will reset the system set busy state
(buffer busy).

Reserved

5.6.13 DLC_MODIFY (0x1C)

This command is used to modify the adapter parameters. The
command does not return until completed. The SSB and SRB are

identically defined as

struct
{

unsigned char
unsigned char
unsigned char
char
R_WORD
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

command;
reservedl;
retcode;
reserved2;
station_id;
timer_t1;
timer_t2;
timer_ti;
maxout;

maxin;
maxout_incr;
max_retry_count;
access_priority;

Sec. 5.6 Adapter Command Blocks 213

unsigned char sap_gsap_mem;
unsigned char gsaps[13];
b

The parameters are identical to the similarly named parameters
discussed for DLC_OPEN_STATION in Chapter four. The group sap
member list (gsaps) contains 0 to 13 items (the exact number is
specified by sap_gsap_mem. If the low-order bit of a SAP value is
1 then membership in that group SAP is canceled, a 0 indicates that
the group SAP should be joined.

5.6.14 DLC_OPEN_SAP (0x15)

This command is used to open a SAP. The command does not return
until completed. The SSB and SRB are identically defined as

struct

{
unsigned char command;
unsigned char reservedl;
unsigned char retcode;
char reserved2;
R_WORD station_id;
unsigned char timer_t1;
unsigned char timer_t2;
unsigned char timer_ti;
unsigned char maxout;
unsigned char maxin;
unsigned char maxout_incr;
unsigned char max_retry_count;
unsigned char gsap_max_mem;
R_WORD max _i_field;

unsigned char sap_value;

214 Chap. 5 Register Direct Programming

unsigned char sap_options;
unsigned _char station_count;
unsigned char access_priority;
unsigned char sap_gsap_mem,;

unsigned char gsaps[13];
b

The parameters are identical to the similarly named parameters
discussed for DLC_OPEN_STATION in Chapter four. The group
SAP member list (gsaps) contains 0 to 8 items with the exact number
specified by sap_gsap_mem. If the low-order bit of a SAP value is
1 then membership in that group SAP is canceled, a 0 indicates that
the group SAP should be joined.

5.6.15 DLC_OPEN_STATION (0x19)
This command is used to open a link access station. The command

does not return until completed. The SSB and SRB are identically
defined as

struct

{
unsigned char command;
unsigned char reservedl;
unsigned char retcode;
char reserved2;
R_WORD station_id;
unsigned char timer_t1;
unsigned char timer_t2;
unsigned char timer_ti;
unsigned char maxout;
unsigned char maxin;

unsigned char maxout_incr;

Sec. 5.6 Adapter Command Blocks

unsigned char
unsigned char
R _WORD
unsigned char
unsigned char
char

|

215

max_retry_count;
rsap_value;
max i field;
station_options;
reserved;
remote_address[6];

The parameters are identical to the similarly named parameters
discussed for DLC_OPEN_STATION in Chapter four.

5.6.16 DLC_REALLOCATE (0x17)

This command is used to increase or decrease the number link stations
which a SAP can support. The command does not return until
completed. The SSB and SRB are identically defined as

struct

{
unsigned char
unsigned char
unsigned char
char
R_WORD
unsigned char
unsigned char
unsigned char
unsigned char

|5

command;
reservedl;
retcode;
reserved2;
station_id;
option_byte;
station_count;
adapter_count;
sap_count;

The option byte can be zero to make more link stations
available to a SAP, or one to make less link stations available to a
SAP. The field station_count is the number of link stations to add or

216 Chap. 5 Register Direct Programming

delete. The adapter returns the retcode field and also sets the field
adapter_count equal to the number of link stations available for
the adapter (not allocated to a SAP) and sets sap_count equal to the
number of link stations available for this SAP.

5.6.17 DLC RESET (0x14)
This command is used to reset either one SAP and all of its link

stations or all SAPs and their link stations. The command does not
return until completed. The SSB and SRB are identically defined as

struct

{
unsigned char command;
unsigned char reservedl;
unsigned char retcode;
char reserved2;
R_WORD station_id;

b

If station_id is 0x0000, then all SAPs and their link stations
will be reset. Otherwise, the specified SAP and its associated link
stations will be reset.

5.6.18 DLC_STATISTICS (Ox1E)

This command reads (and optionally resets) statistics for a link station.
The command does not return until completed. The SSB and SRB are
identically defined as

struct
{

unsigned char command;

Sec. 56 Adapter Command Blocks

unsigned char
unsigned char
char
R_WORD

R WORD

R WORD
unsigned char
unsigned char

b

217

reservedl;
retcode;
reserved2;
station_id;
counters_addr;
header_addr;
header_length;
reset_option;

The counters_addr is an offset from the start of the SRB to a
table of counters. This table contains the following information:

struct

{
R_WORD
R_WORD
unsigned char
unsigned char
R_WORD
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

|5

i frame xmit_count;
i frame rcv_count;
i_frame xmit_err;
i_frame rcv_err;
t1_expired;
station_rcvd_cmd;
station_sent_cmd;
station_prmy _state;
station_scdy_state;
station_vs;
station_vr;
station_va;

Most fields are self-explanatory. The station_rcvd_cmd and
station_sent_cmd variables are the last command sent or received,
not the total. The station_prmy state variable is a bit field with

the following meanings:

218 Chap. 5 Register Direct Programming

° Bit 7: Link closed

° Bit 6: Disconnected

° Bit 5: Disconnecting
s ° Bit 4: Link opening

° Bit 3: Resetting

[Bit 2: FRMR sent

° Bit 1: FRMR received

° Bit 0: Link opened

The station_scdy_state variable is a bit field with the
following meanings:

] Bit 7: Checkpointing

° Bit 6: Local busy (user set)
] Bit 5: Local busy (buffer set)
L Bit 4: Remote busy

° Bit 3: Rejection

° Bit 2: Clearing

° Bit 1: Dynamic window algorithm running

Sec. 5.6 Adapter Command Blocks 219

° Bit 0: Reserved (may be 0 or 1)

The header_addr is an offset within the SRB to a copy of the
LAN header being used.

5.6.19 TRANSMIT DIR_FRAME (0x0A)
This command is used to transmit a MAC frame on the token ring

network. The command completes as soon as the validity of the SRB
has been checked. The format for the SRB is as follows

struct

{
unsigned char command;
unsigned char cmd_correlate;
unsigned char retcode;
unsigned char reserved;
R_WORD station_id;

b

When the adapter is ready for you to transfer the actual data to
it, it will request the data using a TRANSMIT DATA REQUEST
ARB. This command is covered later.

After the command completes, the adapter returns an SSB in
the following format

struct

{
unsigned char command;
unsigned char cmd_correlate;
unsigned char retcode;
unsigned char reserved;

R_WORD station_id;

220 Chap. 5 Register Direct Programming

unsigned char transmit_error;

|5

5.6.20 TRANSMIT | FRAME (0x0B)

This command is used to transmit data over a connection using a link
access station. The procedure and syntax is identical to that for
TRANSMIT DIR_FRAME covered in Section 5.6.21.

5.6.21 TRANSMIT_UI_FRAME (0x0D)

This command is used to transmit a datagram using a SAP. The
procedure and syntax is identical to that for TRANSMIT DIR_FRAME
covered in Section 5.6.21.

5.6.22 TRANSMIT XID_CMD (0xOE)

This command is used to transmit an XID command. This command
is normally used by the link station protocol driver, not an application
program. The procedure and syntax is identical to that for TRANS-
MIT DIR FRAME covered in Section 5.6.21.

5.6.23 TRANSMIT_XID RESP_FINAL (0xOF)

This command is used to transmit an XID response (final). This
command is normally used by the link station protocol driver, not an
application program. The procedure and syntax are identical to that
for TRANSMIT DIR_FRAME covered in Section 5.6.21.

Sec. 5.6 Adapter Command Blocks 221

5.6.24 TRANSMIT _XID_RESP_NOT_FINAL (0x10)

This command is used to transmit an XID response (not final). This
command is normally used by the link station protocol driver, not an
application program. The procedure and syntax is identical to that for
TRANSMIT DIR FRAME covered in Section 5.6.21.

5.6.25 TRANSMIT_TEST_CMD (0x11)

This command is used to transmit a test command. The procedure
and syntax is identical to that for TRANSMIT DIR_FRAME covered in
Section 5.6.21.

5.6.26 DLC STATUS (0x83)

This command is issued (via interrupt) from the adapter to your
application. The command is found in the ARB area of shared RAM
and must be acknowledged via ISRA_ODD bit 1. This command
requires no response. The adapter is informed of the presence of a
response by setting ISRA_ ODD bit 4. This command indicates that
there has been a change in DLC status. The ARB contains the
following information:

struct
{
unsigned char command;
char reserved[3];
R_WORD station_id;
R WORD status;
char FRMR _data[5];

unsigned char access_priority;

222 Chap. 5 Register Direct Programming

char remote_address[6];
unsigned char rsap_value;

b
status is a bit field where each bit has the following meaning:
(] Bit 15: Link lost
° Bit 14: DM or DISC received or DISC acknowledged
o Bit 13: FRMR received
L Bit 12: FRMR sent
] Bit 11: SABME received for an open link station
° Bit 10: SABME received, link station opened
L Bit 9: Remote station has entered local busy state
L Bit 8: Remote station has left local busy state
L Bit 7: Ti timer has expired
® Bit 6: DLC counter overflow
° Bit 5: Access priority reduced
5.6.27 RECEIVED_DATA (0x81)

This command is used by the adapter to tell you that a data frame has
been received. The format for the ARB is

Sec. 5.6 Adapter Command Blocks

struct

{
unsigned char
char
R WORD
R_WORD

unsigned char
unsigned char
R _WORD

unsigned char

b

223

command;
reserved[3];
station_id;
receive_buffer;
lan_header_length;
dic_hdr_length;
frame_length;
ncb_type;

The field receive buffer is the offset to the first receive
buffer in shared RAM. The buffer format is

] Two reserved bytes

° 2-byte R_WORD offset to next buffer + 2

° One reserved byte

° 1-byte FS/Address match (last buffer only)

° 2-byte buffer length (length of data)

° Frame data (n bytes)

The fields lan_header_ length and dlc_hdr_length are
the length (in the first buffer) of the LAN and DLC header. The field
ncb_type can take on any one of the following values based on the

frame type:

° 0x02: MAC frame

224 Chap. 5 Register Direct Programming

° 0x04: I frame

L 0x06: UI frame

® 0x08: XID command poll

L 0x0A: XID response final

° 0x0C: XID response not_final

L 0x10: TEST response final

° 0x12: TEST response not_final

o 0x14: Other or unidentified

You must copy the data from the shared RAM to your local
memory and then inform the adapter that the data has been transfered
by providing a return code to the adapter in an ASB, copying it to the
appropriate area of shared RAM, and setting ISRA_ODD bit 4. The

format of the ASB used by you to send a message back to the adapter
is

struct

{
unsigned char command;
char reservedl;
unsigned char retcode;
char reserved2;
R_WORD station_id;
R_WORD receive_buffer;

|5

Sec. 5.6 Adapter Command Blocks 225

The retcode field can be 0x00 for success, or 0x20 for "Lost
data on receive, no buffers available."

5.6.28 RING_STATUS CHANGE (0x84)

The adapter uses this ARB to indicate a change in the network status.
The format of the ARB is as follows:

struct

{
unsigned char command;
char reserved[S];
R_WORD netw_status;

b

netw_status is defined fully in IBM (1988).
5.6.29 TRANSMIT_DATA REQUEST (0x82)
The adapter informs you that it is ready to receive actual data (in

response to a transmit SRB) by sending you a TRANSMIT DATA -
REQUEST ARB. The format of this ARB is as follows

struct

{
unsigned char command;
unsigned char cmd_correlate;
char reserved[2];
R_WORD station_id;
R_WORD dhb_address;

b

After receiving this ARB, you should read it, then acknowledge

226 » Chap. 5 Register Direct Programming

it to the adapter using ISRA_ODD bit 1. You then use the Data Hold
Buffer (DHB) offset from the ARB to prepare the data for the
adapter. This offset is relative to the start of shared RAM. The data
written to the DHB address is

L The data only for I frames.

° The entire message (including LAN header) for direct
frames (MAC frames).

° For all other frames the format is the LAN header with
space reserved for the source address to be inserted by
the adapter, followed by three bytes for the adapter to
insert the DLC header, followed by the data.

After the data has been transfered to the Data Hold Buffer in
shared RAM, an ASB response structure is completed, transfered to
the ASB area of shared RAM, and transmitted to the adapter by
setting ISRA_ODD bit 4. The ASB structure is defined as follows

struct

{
unsigned char command;
unsigned char cmd_correlate;
unsigned char retcode;
char reserved;
R_WORD station_id;
R_WORD frame_length;
unsigned char header_length;
unsigned char rsap_value;

|

Sec. 5.7 Suggested Readings 227

5.7 Suggested Readings

IBM (1988), IBM Local Area Network Technical Reference,
Research Triangle Park, NC: International Business Machines
Corporation.

6. Token Ring Adapter Hardware

This chapter briefly discusses the token ring adapter hardware.
We begin by discussing the 4-Mbps adapter, then discuss the newer
4/16 Mbps, and finally discuss the adapter cables used to connect
adapter cards to the media access unit (MAU).

6.1 4 Mbps Adpaters

The majority of token ring network adapter cards (4 Mbps) are
based on the TMS380 chipset. This chipset provides support for token
ring networks at the physical and media access control (MAC) level in
hardware. The physical layer functions supported are signal coding,
clocking, and control of the physical connection to the ring. At the
MAC level the chipset supports controlled access to the ring, frame
transport service at the MAC level, and error detection. To support
these functions, the adapter provides hardware support for

[LAN processing to ensure that frames have the correct
headers and control information.

228

Sec. 6.1 4-Mbps Adapter 229

° LAN buffers for local storage of transmit and receive
data awaiting transfer to shared RAM.

] Host interface to support interrupt-based communication
with the host application.

° Ring operation and signaling to support correct ring
voltages for signaling, data transmission, and token
regeneration.

° Maintenance and management to assist in maintaining
accurate clocks, detection of faulty ring functioning, and
removal of malfunctioning adapters.

The TMS380 chipset consists of five major components:

1.

4 and 5.

The system interface chip controls communication
between the adapter and the host PC.

The communications processor is a microprocessor
which executes the MAC processing firmware and
controls the on-board buffers.

The actual MAC protocol code is stored on the
protocol handler chip (a ROM).

The ring interface and transceiver chips interface
with the ring itself. Data on the token ring is
transmitted in analog format, so these two chips
are the interface between the analog world of the
ring and the digital world of the remainder of the
adapter.

230 Chap. 6 Token Ring Adapter Hardware

0sC
I Protocol Analog Rng
& arbitrat, handler end '

Addr.

Custom
micro-
processor

User data ¢mmmp| DRVR

RCVR
User addr. ==
User Shared
trol RAM DRVR DRVR
User cntl & “decode control RCVR RCVR
1 ‘
Addr. U Data
ROM/RAM/PROM

Fig. 6.1 Chip set functional diagram.

6.2 16-Mbps Token Ring Adapter

The newer, 16-Mbps token ring adapters have replaced the five
chips required by the original token ring adapter with a single CMOS
VLSI module which performs all major LAN adapter functions. Fig.
6.1 is a functional block diagram of the chip. You will notice that all
of the functional components found in the earlier chipset are still
present within the newer VLSI module. The module is supported by
external PROM and RAM modules. The module supports

° Analog data encoding and decoding.

Sec. 6.3 Token Ring Network Adapter Cable 231

° Address recognition.

] Frame assembly and disassembly.

° Linked buffer list processing.

° Interrupt control.

° Token capture.

] Serialization and deserialization of frames.

In addition, the protocol handler within the module supports
state machines to automatically transmit and receive frames. The
custom microprocessor shown in the diagram is a 16-bit microprocessor
running at 32-MHz and yielding a performance of 3 MIPS. In
addition, the microcode within the module has been expanded to
support the LL.C protocol directly (on chip). For those of you who are
into raw numbers, the module contains 106,000 transistors.

6.3 Token Ring Network Adapter Cable

The token ring network adapter uses a cable with a 9-pin D
connector at the computer end and a custom 6-pin modular plug at the
MAU end. The nine pins at the computer end function as follows:

1. Receive
S. Transmit
6. Receive

9, Transmit

232

Chap. 6 Token Ring Adapter Hardware

Other pins are unused. The D ring housing is used as shield
(ground). For IBM cables, within the cables the wiring is as follows:

The cables shielding is used for ground.
The red wire is for pin 1.

The black wire is for pin S.

The green wire is for pin 6.

The orange wire is for pin 2.

6.4 Suggested Readings

East, W. (1988), "New Developments Lead to Further Integra-
tion of a High Performance Token Ring Adapter," Proceedings
of the Networking Technology and Architectures, (Pinner, UK:
Blenheim Online), pp. 89-105.

Lank, K. (1989), "A 16 MBPS Adapter Chip for the IBM Token
Ring Local Area Network," Proceedings of the IEEE 1989
Custom Integrated Circuits Conference, (May), pp. 11.3.1-11.3.5.

Strole, N. (1989), "Inside Token Ring Version II, according to
Big Blue," Data Communications, Vol. 18, no. 1, (January), pp.
117-125.

7. Using APPC For Transaction
Processing

Many network-oriented software applications are basically
transaction oriented. An application "calls up" another application
(normally on a different computer), passes a record structure, and
requests that some action be performed on that structure. A typical
example might be a hospital. A central database containing all patient
information might be maintained on an IBM mainframe computer.
Local PCs throughout the hospital are used to read/update the
information in this central database. For example, the pharmacy
might access the patient database to review patient allergies, update
the database with the medications the patient is taking, and then later
access the patient database to determine the patient’s room number so
that the medicine can be delivered. The hospital kitchen, switchboard,
nurse’s stations, and accounting office might also use PCs to access and
update this same database. Similar requirements arise from a wide
variety of other fields, including airline reservations, point-of-sale
systems, and automatic bank teller machines. IBM handles this type
of transaction-oriented network environment using the Application
Program-to-Program Communication, or APPC. This chapter describes

233

234 Chap. 7 Using APPC For Transaction Processing

the PC version of APPC, known as APPC/PC, and presents some
examples illustrating how to use APPC/PC. APPC/PC is sufficiently
rich (i.e.,, complex) that this book cannot do it justice in a single
chapter. We can, however, present a sufficient flavor of APPC/PC for
you to know if it is worthwhile to pursue the topic using the Suggested
Readings.
- The following functions are defined in this chapter:
° test_appc() test for presence of APPC/PC

° int_appc() process appc command block

[ascii_to_ebcdic() convert ASCII string to
EBCDIC

° attach_pu() attach a physical unit

7.1 APPC Overview
APPC/PC works over both token ring networks and synchronous data
link control (SDLC) connections. Using APPC/PC, it is possible to
implement a transaction oriented application which communicates
transparently with a wide range of computers, including the following:
° IBM System /370 CICS/VS
] IBM System /370 IMS LU 6.2 Adapter
° IBM System /38

° IBM System /34

Sec. 7.2 Addressing in an APPC/PC Environment 235

o IBM System /1
° IBM System /88
] Other IBM PCs

In general, a connection is established only long enough to
complete a transaction. The time required to process a transaction will
vary widely, because a transaction can be as short as a record update
or as lengthy as a file transfer. When using dial-up phone lines for
connectivity, you can set up APPC/PC so that dialing in to the host
computer is performed as part of the transaction initiation procedure.

APPC/PC provides a PC based Systems Network Architecture
(SNA) programming environment. APPC/PC functions as an SNA
logical unit (LU) 6.2 platform and as an SNA physical unit (PU) 2.1
network node. LUs and PUs are discussed further in the following
section.

7.2 Addressing in an APPC/PC Environment
There are five addresses you use in an APPC/PC environment:

1. The network name is an application defined unique
name used for APPC/PC communication. This value
must be eight characters long, so names less than eight
characters must be blank padded on the right. This
name must be known by all other applications wishing to
communicate with you.

2. The physical unit (PU) name is an 8-character name
which is used to tag error messages logged to the system
log. This name is normally the same as the network
name.

236 Chap. 7 Using APPC For Transaction Processing

3. The logical unit (LU) name which is the same as your
network name.

4. Your LU local address, which is only used for terminals
attached to mainframe computers. This value should be
set to zero for PCs.

5. Your LU adapter address, which is the 16-byte adapter
address (either the ROM address or the address set
during adapter configuration).

To complicate the situation further, IBM does not use ASCII
for any of these addresses. Each of the addresses must be converted
to EBCDIC prior to transmission, and converted back to ASCII for
received messages if you intend to display the messages to the user.
At least the task is simplified somewhat by a conversion capability built
into APPC/PC (discussed later).

7.3 Communicating with APPC/PC

From a network layer perspective, APPC/PC is roughly similar to
NetBIOS. Both operate on top of the underlying DLC layer to provide
a hardware /network protocol-independent method of communicating
with other applications. You will also find that communicating with
APPC/PC is roughly similar to working with NetBIOS. You fill in a
structure with the command and pass parameters; you call APPC/PC
using one of the PC’s interrupt vectors; and then you read return
values in your structure.

The first thing you must do is test to ensure that APPC/PC is
installed and running on your PC. This can be accomplished using the
code shown in Code Box 7.1. APPC/PC uses interrupt 0x68. Recall
that because each interrupt vector is a far pointer, this interrupt vector
is stored at 0x68 * 4. We can read this interrupt vector value, and

Sec. 7.3 Communicating with APPC/PC 237

#include <dos.h>
#include "appc.h"
/*tt****k**tt*'k***t********t***tt*t*t**tt******t***tk*t*******
* test_appc() - Test for presence of APPC/PC
*
* Returns:
* 0 for success (APPC/PC installed)
* -1 for failure
*
* History:
b Original code by William H. Roetzheim, 1990
*t*t**t***********t***tt****t*****R*******t*******t**i***t******k’
int test_appc ()
{
int i;
char *appc;

char *valid = "APPC/PC";
appc = (char *) getvect(0x68);
for (1 = 0; 1 < 7; i++)
if (appc[-9 + i] != valid[i]) return -1;

return 0;

Code Box 7.1 test appc() function definition.

then determine if APPC/PC is installed by looking at the memory
location 9 bytes prior to the address pointed to by the interrupt vector
and looking for the string "APPC/PC."

The actual call to APPC/PC involves filling a structure which
is unique to each command, pointing the DS:DX register pair to the
beginning of this structure, setting the AH register to the command
type, then executing an interrupt 0x68. The function int_appc()
shown in Code Box 7.2 shows how this can be done.

The header file appc.h (shown below) defines each of the
appc commands, each of the appc command structures, and all return
codes.

/* APPC Commands */

#define ALLOCATE 0x0001
#define ALLOCATE_FAMILY 0x02
#define CONFIRM 0x0003
#define CONFIRM_ FAMILY 0x02
#define CONFIRMED 0x0004
#define DEALLOCATE 0x0005

#define DEALLOCATE_FAMILY 0x02

238

Chap. 7 Using APPC For Transaction Processing

*

#include
#include

extern int

<dos.h>
"appc.h"

/***********t***********k*tt****tt**k*kt******t********t*******t***
int_appc() - execute an appc command block

net_error;

*x
* Parameters:
* command_block (in) - pointer to command block
* command_family (in) - command family to execute
*x
* Global:
* net_error - updated with primary return code value
*
* Returns:
: 0 for success, net_error for error
* History:
* Original code by William H. Roetzheim, 1990
*****************t**t***t********t*******************t***t***********k’
int int_appc(void *command block, unsigned char command_family)
{
char *cb = command_block;
_DS = FP_SEG(command_block);
_DX = FP_OFF(command_block);
_AH = command_family;
geninterrupt(0x68);
net_error = * (int *) (& cb[20]);
return net_error;
}
Code Box 7.2 int_appc() function definition.
#define FLUSH 0x0006
#define FLUSH_FAMILY 0x02
#define GET_ATTRIBUTES 0x0007
#define GET_ATTRIBUTES_FAMILY 0x02
#define GET_TYPE 0x0008
#define GET_TYPE FAMILY 0x02
#define POST_ON_RECEIPT 0x0009
#define POST_ON_RECEIPT FAMILY 0x02
#define PREPARE TO_RECEIVE 0x000A
#define PREPARE_TO_ RECEIVE_FAMILY 0x02
#define RECEIVE_AND_WAIT 0x000B
#define RECEIVE AND_WAIT_FAMILY 0x02
#define RECEIVE_IMMEDIATE 0x000C
#define RECEIVE_IMMEDIATE_ FAMILY 0x02
#define REQUEST_TO_SEND O0x000E
#define REQUEST TO SEND_FAMILY 0x02
#define SEND_ERROR 0x0010
#define SEND_ERROR_FAMILY 0x02
f#define TEST 0x0012
#define TEST_FAMILY 0x02
#define WAIT 0x0013
#define WAIT_ FAMILY 0x02
#define CNOS 0x0015
#define CNOS_FAMILY 0x06
#define ACCES_LU_LU_PW 0x0019
#define ACCESS_LU_LU_PW_FAMILY 0x02
#define CONVERT 0x001A
#define CONVERT_FAMILY 0x251

Sec. 7.3 Communicating with APPC/PC

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

typedef
typedef

DISPLAY
DISPLAY_ FAMILY

TRANSFER_MS_DATA
TRANSFER_MS_DATA_FAMILY

ATTACH_PU

ATTACH_PU_FAMILY

ATTACH_LU

ATTACH_LU_FAMILY

CREATE_TP

CREATE_TP_FAMILY

TP_STARTED

TP_STARTED_FAMILY

TP_ENDED

TP_ENDED_FAMILY

sYSLOG
SYSLOG_FAMILY
DETACH_PU

DETACH_PU_FAMILY

GET_ALLOCATE

GET_ALLOCATE_FAMILY

TP_VALID

TP_VALID_FAMILY

CHANGE_LU

CHANGE_LU_FAMILY

ACTIVATE_DLC

ACTIVATE_DLC_FAMILY

unsigned int

RWORD;

unsigned long

0x001B
0x01
0x001C
0x05
0x0020
0x01
0x0021
0x01
0x0023
0x01
0x0024
0x03
0x0025
0x04
0x0026
0x01
0x0027
0x01
0x0028
0x03
0x0029
0x04
0x002A
0x03
0x002B
0x01

/* byte reversed integer */
RLONG; /* byte reversed long */

/* structure definitions for APPC/Commands */

struct

{

}:

struct
{

¥

struct

{

access_lu_lu_pw

char
unsigned int
char
char
char
char
char
char

activate_dlc

char
unsigned int
char
RLONG
char
char

allocate

char
unsigned int
char
char
RWORD
RLONG
char
RLONG
char
char

reserved[12];
command;
lu_id[8];
lu_name([8];

partner_lu_name[8];
partner_lu_fully qualified_lu name[17];
password_available;

password[8];

reservedl1[12];
command;
reserved2(6];
return_code;
dlc_name[8];

adapter_number;

reservedl[12];
command;

verb_extension_code;

reserved2(5];

primary_return_code;
secondary_return_code;

tp_id[8];
conv_id;

conversation_type;

sync_level;

239

240

struct

{

char

char

char

char

char

unsigned char
char

char

char

unsigned char
char

unsigned char
char

unsigned int

far

attach_lu

char

unsigned int
char

RLONG
unsigned int
char

char

unsigned char
unsigned char
far

char

far

char

unsigned char
unsigned char
far

char

unsigned int

struct

{

unsigned
unsigned

char

unsigned
unsigned
unsigned

char

unsigned
unsigned

char

unsigned
struct

{

Chap. 7 Using APPC For Transaction Processing

reserved3[2];
return_control;
reserved4[8];
partner_lu_name[8];
mode_name[8];
tp_name_length;
tp_name[64];
security;
reserved5[11];
password_length;
password[10];
user_id_length;
user_id[10];
pip_data_length;
*pip_data;

reserved1[12];

command;

reserved2([6];

return_code;
offset_to_partner_lu_record_length_field;
lu_name[8];

lu_id[8];

lu_local_address;

lu_session_limit;

*create_tp_exit;

reserved3[4];

*gystem_ log_exit;

reserved4([4];

max_tps;

queue_dpeth;

*1lu_lu_password_exit;
*reserved5([4];
total_length_of_partner_lu_records;

int length_of_this_partner_lu_ record;

int offset_to_start_of_mode_records;
partner_lu name[8];

char partner_lu_security capabilities;

char partner_lu_session_limit;

int partner_lu max mc_send 11;
partner_lu dlc name([8];

char partner_lu_adapter_ number;

char length_of_ partner_lu_address;
partner_lu_adapter_address[16];

int total_length of_all mode_name_records;

unsigned int
char

unsigned int
unsigned int
unsigned char
unsigned int

mode_name[8];
ru_size_high_bound;
ru_size_low_bound;

pacing_size;

} modename [MAX MODE];
} partner_lu [MAX PARTNER LU]};

length_of_this_mode_name_record;

mode_max_negotiable session_limit;

Sec. 7.3 Communicating with APPC/PC

struct

attach_pu

char

unsigned int
char

RLONG

char

unsigned char
unsigned char
char

char

char

far

char

unsigned char

struct change_lu

{

char

unsigned int
char

RLONG

char

far

char

far

char

unsigned char
unsigned char
far

char

struct cnos

{

struct

char
unsigned int
char

RWORD

RLONG

char

char

char

char

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
char

unsigned char

confirm

char

unsigned int
unsigned char
char

RWORD

RLONG

reservedl[12];
command ;
reserved2([6];
return code;
reserved3([2];
version;
release;
net_name[8];
pu_name[8];
reserved4[8];
*gystem_log_exit;
reserved5[4];
return_control;

reserved1[12];
command;
reserved2[6];
return_code;
reserved3[2];

*lu_id create_tp_exit;
reserved4([4];
*gystem_log_exit;
reserved5([4];
max_tps;
queue_allocates;
*1lu_lu_password_exit;
reserved6(4];

reservedl[12];
command;

reserved2[6];

primary return_code;
secondary_return_code;
lu_id[8];
reserved3[8];
partner_lu_name[8];
mode_name[8];
mode_name_select;

partner_lu_mode_session_limit;

min_conwinners_source;
min_conwinners_target;
auto_activate;
reserved4;
termination_settings;

reservedl1[12];
command;
verb_extension_code;
reserved2(5];

primary return code;
secondary_return_code;

241

242

char
RLONG
unsigned

struct confirmed

{
char
unsigned
unsigned
char
RWORD
RLONG
char
RLONG

struct convert

{
char
unsigned
char
RLONG
unsigned
unsigned
unsigned
char
char

struct create_tp

{
char
unsigned
char
RLONG
char
char
RLONG
unsigned
unsigned
char
unsigned
char
char
unsigned
far
char
unsigned
char
char
char
unsigned
char
unsigned
char
unsigned

char

int
char

int

char
char
int

int

char
char

char

int

int

char

char

char

Chap. 7 Using APPC For Transaction Processing

tp_id[8];
conv_id;
request_to_send_received;

reservedl[12];
command;
verb_extension_code;
reserved2[5];

primary return_code;
secondary_return_code;
tp_id[8];

conv_id;

reservedl[12];
command;
reserved2([6];
return_code;
direction;
character_set;
length;
*gource;
*target;

reservedl[12];

command;

reserved2([6];

sense_code;

tp_id[8];

lu_id[8];

conv_id;

type;

sync_level;

reserved3;

transaction_program_ name_length;
tpn[64];

reserved4([6];
length_of_error_log_data_to_return;
*pointer_to_error_log_data_to_return;
partner_lu_name([8];
length_of_fully qualified partner_lu_ name;
partner_fully qualified_lu_name[17];
mode_name[8];

reserved5[12];

length_of_password;

password[10];

length_of_user_id;

user_id;

already verified;

Sec. 7.3 Communicating with APPC/PC

struct deallocate

{

}:

struct

char

unsigned int

unsigned char
char

RWORD

RLONG

char

RLONG

char

unsigned char
unsigned int

far

detach_lu

char
unsigned int
char
RLONG
char
char

detach_pu

char
unsigned int
char
RLONG
char

display

char

unsigned int
char

RLONG

char

char

char

char

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

flush

char

reservedl[12];

command;
verb_extension_code;
reserved2([5];

primary return_code;
secondary_return_code;
tp_id[8];

conv_id;

reserved3l;

type;
length_of_error_log_data;
*address_of_error_log_data;

reservedl[12];
command;
reserved2([6];
sense_code;
lu_id([8];
reserved3;

reservedl[12];
command;
reserved2[6];
sense_code;
type;

reservedl1[12];
command;
reserved2(6];
sense_code;
reserved3(2];
lu_id[8];
partner_lu name([8];
mode_name[8];
lu_session_limit;

mode_max_negotiable_session_ limit;

current_session_limit;
min_negotiated_winner_limit;
min_negotiated_loser_limit;
active_session_count;

active_conwinner_session_count;
active_conloser_session_count;

session_termination_count;
termination_settings;

reserved1[12];

243

244 Chap. 7 Using APPC For Transaction Processing

unsigned int command;

unsigned char verb_extension_code;
char reserved2[5];

RWORD primary return_code;
RLONG secondary_return_code;
char tp_1id[8];

RLONG conv_id;

¥

struct get_allocate

{
char reservedl[12];
unsigned int command;
char reserved2([6];
RLONG sense_code;
char reserved3(2];
char lu_id[8];
unsigned char type;
far *pointer_to_create_tp_record;

struct get_attributes

{
char reservedl1[12];
unsigned int command;
unsigned char verb_extension_code;
char reserved2(5];
RWORD primary return_code;
RLONG secondary_return_code;
char tp_id[8];
RLONG conv_id;
char 1lu_id;
char reserved3;
unsigned char sync_level;
char mode_name[8];
char own_net_name[8];
char own_lu_name[8];
char partner_lu_name[8];
unsigned char length_of_partner_fully qualified lu_name;
char partner_fully qualified lu_name[17];
char reserved4;
unsigned char length_of_user_id;
char user_id[10];

}i

struct get_type

{
char reservedl[12];
unsigned int command;
char reserved2(6];
RWORD primary return_code;
RLONG secondary_return_code;
char tp_id[8];
RLONG conv_id;
char type;

};

struct post_on_receipt

{
char reservedl[12];
unsigned int command;

Sec. 7.3 Communicating with APPC/PC 245

char

RWORD

RLONG

char

RLONG
unsigned int
unsigned char

struct prepare_to_receive

char
unsigned int
unsigned char
char

RWORD

RLONG

char

RLONG
unsigned char
unsigned char

struct receive_and_wait

char

unsigned int
unsigned char
char

RWORD

RLONG

char

RLONG
unsigned char
unsigned char
unsigned char
unsigned int
unsigned int
far

struct receive_immediate
{
char
unsigned int
unsigned char
char
RWORD
RLONG
char
RLONG
unsigned char
unsigned char
unsigned char
unsigned int
unsigned int
far

reserved2(6];

primary return_code;
secondary_return_code;
tp_1id[8];

conv_id;

max_length;

£111;

reservedl[12];
command ;
verb_extension_code;
reserved2([5];

primary return_code;
secondary_ return_code;
tp_1d[8];

conv_id;

type;

locks;

reservedl1[12];
command;
verb_extension_code;
reserved2([5];
primary_return_code;
secondary_return_code;
tp_id[8];

conv_id;
what_received;

£111;
request_to_send_received;
max_length;
data_length;
*data_ptr;

reservedl[12];
command;
verb_extension_code;
reserved2([5];
primary_return_code;
secondary_ return_code;
tp_id[8];

conv_id;
what_received;

£111;
request_to_send_received;
max_length;
data_length;
*data_ptr;

246

struct request_to_send
{
char
unsigned int
unsigned char
char
RWORD
RLONG
char
RLONG

struct send_data

{
char
unsigned int
unsigned char
char
RWORD
RLONG
char
RLONG
unsigned char
char
unsigned int
far

struct send_error

char

unsigned int
unsigned char
char

RWORD

RLONG

char

RLONG
unsigned char
unsigned char
char

unsigned int
far

struct tp_ended

{
char
unsigned int
char
RLONG
char
char

struct tp_started

{
char
unsigned int
char
RLONG

Chap. 7 Using APPC For Transaction Processing

reserved1[12];
command;
verb_extension_code;
reserved2(5];
primary_return_code;
secondary_return_code;
tp_id[8];

conv_id;

reservedl1[12];
command ;
verb_extension_code;
reserved2[5];

primary_ return_code;
secondary_return_code;
tp_id[8];

conv_id;
request_to_send_received;
reserved3l;
data_length;
*data_ptr;

reservedl[12];
command;
verb_extension_code;
reserved2([5];
primary_return_code;
secondary_ return_code;
tp_id[8];

conv_id;
request_to_send_received;
type;

reserved3f4];
log_data_length;
*log_data;

reservedl1[12];
command;
reserved2([6];
return_code;
reserved3[2];
tp_id[8];

reservedl[12];
command;
reserved2(6];
return_code;

Sec. 74 Sending a Transaction in APPC

char
char
char

¥

struct tp_valid
{
char
unsigned int
char
RLONG
char
char
far

}i

/* function prototypes */

char *attach_lu(char *local_lu, char *remote_lu[], char *remote_address[]);
int test_appc (void);

int int_appc(void *command_block, unsigned char command_family);

char *ascii_to_ebcdic (char *ascii);

reserved3([2];
lu_id([8];
tp_id[8];

reservedl1[12];

command;

reserved2[6];

return_code;

reserved3[2];

tp_1id[8];
*create_tp_ptr;

247

7.4 Sending a Transaction in APPC

To establish an outgoing connection in APPC/PC, five APPC/PC
commands are used:

attach pu() defines a local APPC physical unit
(PU).

attach_1lu() defines a local APPC logical unit (LU)
for your use. Although a given PC will normally only
have one PU, it is possible for the same computer to
have multiple LUs. For example, if you wish to establish
full-duplex communication with a remote host, you
would normally use two LUs (one for send, one for
receive).

cnos (), which stands for change number of sessions, is
used to establish or teardown an actual connection.
Establishing a connection involves raising the session
limit for a given partner LU from 0 to 1 and telling if
the connection should be a transmit connection or a

248 Chap. 7 Using APPC For Transaction Processing

receive connection. Other parameters (not discussed)
come into play if you have multiple simultaneous
sessions and you want negotiations to be performed
between APPC/PC nodes for network resources.

4. activate_dlc() is used to activate APPC over the
token ring network adapter. If you were also using an
SDLC adapter, you would need an additional call to
activate_dlc() to activate the SDLC adapter.

5. allocate() is used to reserve buffers and prepare the
connection for use by the application.

Code Box 7.3 shows sample code for attach_pu(). This code
is included for illustrative purposes only to demonstrate how typical
APPC/PC commands are executed. The end result of this entire
procedure will be a valid tp_id (transaction program ID) and
conv_id (conversation ID). The transaction program ID is an 8-
character string (blank padded), while the conversation ID is a 4-
character string (blank padded). Both strings are EBCDIC (not
ASCII), and neither is null terminated.

For some commands, you may wish to modify a parameter
which is defined as a RWORD or RLONG. These parameters are
unsigned integer or long integer variables where they byte (and word)
order is reversed from that used in the IBM-PC. For example, you may
have noticed that all the return values passed back from APPC/PC are
returned in byte (and for longs, word) reversed order. You may wish
to modify int_appc() to reverse the return values prior to storing
the value in net_error.

After you have established a connection (called a conversation),
actually sending the transaction is relatively simple. You use the
req_send command to request permission to send data, the send the
data using send_data. The data is EBCDIC and consists of two

Sec. 7.4 Sending a Transaction in APPC 249

#include <string.h>
#include "appc.h"

extern int net_error;

/***********t*******t**t*****t*t********************i**************
* attach_pu -~ attach physical unit to network

Parameters:
network (in) - network name, 8 characters w/blank padding

Returns:
0 for success, net_error for failure

History:
Original code by William H. Roetzheim, 1990

*****t******t**t***********k*t**t**********k********t*kk**t********tt*/

* % % N K ¥ F N ¥

int attach_pu(char *network)

{
struct attach_pu apu;

memset (&apu, 0, sizeof (struct attach_pu));

apu.command = ATTACH_PU;

memcpy (apu.net_name,ascii_to_ebcdic (network), 8);

memcpy (apu.pu_name, apu.net_name, 8);

apu.system log_exit = (void *) OxFFFFFFFF; /* none */
apu.return_control = 0x00; /* complete */
int_appc(&apu, ATTACH_PU_FAMILY);

return net_error;

Code Box 7.3 attach pu() function definition.

bytes specifying the length (in reversed order from the IBM-PC)
followed by the actual data in any format you desire.

Part of establishing the conversation involves specifying a
transaction program name. This name is specified in EBCDIC and is
up to 64 characters long. When the receiving computer receives a
transaction, it uses this name to load the program specified by this
transaction program name. For example, if the transaction program
name was command.com the computer would look for and load
command.com when the conversation was established; The data
passed as an actual transaction is then given as input to the newly
loaded program.

When you are done, the conversation must be terminated. This
involves freeing up resources (deallocate), calling cnos() to

250 Chap. 7 Using APPC For Transaction Processing

change the number of sessions from 1 to 0, and calling detach_1lu()
and detach_pu() to terminate the conversation.

7.5 Receiving Transactions Using APPC/PC

To a large extent, the receiving program’s tasks are the mirror image
of the sending program’s tasks. You still must use the functions
attach pu, attach lu, cnos, and activate_dlc to establish
a connection. In this case, the partner_1lu related fields might
include multiple partners, one for each remote system from which you
may be receiving transactions. When transactions arrive, they can
either be queued or you can be notified of their arrival via an
interrupt. A structure is available to you which includes the name of
the transaction program (in EBCDIC) which should be executed. If
the transaction program requested exists, you issue a tp_wvalid to
confirm the conversation to the remote computer. You then use the
receive_and_wait or receive immediate command to receive
the actual data for the transaction program. You then use the
tp_ended command to tell APPC/PC that the program is done,
calling cnos () to change the number of sessions from 1 to 0 and
calling detach_1lu() and detach pu() to terminate the conversa-
tion.

7.6 Summary of APPC/PC Commands

The following table presents a summary of all APPC/PC commands.
The columns have the following meanings:

1. Command — The command name. These names are
defined in appc.h. These are the values to use for the
command structure’s command field prior to calling
APPC for processing. The command family (to be
placed in register AH) is also defined in APPC.h.

Sec. 7.6 Summary of APPC/PC Commands

Command

ACCESS_LU_LU_PW

ACTIVATE _DLC

251

Inputs — The fields within the command structure which

are used as input.

Outputs — The fields within the command structure
which are modified by the command during processing.

Summary — A brief description of the command func-

tion.

Inputs

command

lu_id

lu_name
partner_lu_name
partner_fully_qualified lu-
_hame

dic name adapter num-
ber

command
verb_extension code
tp_id
conversation_type
sync_level
return_control
partner_lu_name
mode_name
tp_name_length
tp_name

security
user_id_length
user_id
pip_data_length
pip_data

Outputs

password_available
password

return_code

primary_return_code
secondary_return_code
conv_id

Summary

Request (by APPC/PC)
for you to provide a pass-
word for a specified part-
ner LU.

Activates a DLC adapter.
This command must be
issued for each DLC ad-
apter installed. DLC ada-
pters include the Token
Ring Adapter and the
SDLC adapter.

Allocates a session be-
tween the local LU and a
remote LU and identifies
the remote transaction
program the local LU
wishes to talk to.

252

ATTACH_LU

ATTACH_PU

Chap. 7 Using APPC For Transaction Processing

command return_code
offset_to_partner_lu_re- lu_id
cord_length field
lu_name

lu_local address
lu_session_limit
create_tp_exit
system_log exit

max_tps

queue_depth
Iu_lu_password_exit
total_length_of partne-
r_lu_records
length_of_this_partner-
_lu_record
offset_to_start_of_mod-
e_records
partner_lu_name
partner_lu_security_cap-
abilities
partner_lu_session_limit
partner_lu_max mc sen-
du
partner_lu dic name
partner_lu_adapter_num-
ber

length of partner lu_ada-
pter_address
partner_lu_adapter_add-
ress

total length_of_all mo-
de_name_records
length_of_this_mode_-
name_record
mode_name
ru_size_high bound
ru_size_low_bound
mode_max_negotiable_-

session_limit

pacing size

command return_code
net_name version
pu_name release
system_log_exit

return_control

Creates a local LU with
the specified parameters.

Defines a local physical
parameters.

Sec. 7.6 Summary of APPC/PC Commands

CHANGE_LU

CNOS

CONFIRM

CONFIRMED

CONVERT

DEALLOCATE

DETACH_LU

DETACH _PU

command

lu_id

create_tp_exit
system_log_exit
max_tps
queue_allocates
lu_lu password_exit

command

lu_id

partner_lu_name
mode_name

mode _name_select
partner_lu_mode_sessi-
on_limit
min_conwinners_source
min_conwinners_target
auto_activate
termination_settings

command
verb_extension_code
tp_id

conv_id

command
verb_extension _code
tp_id

conv_id

command
direction
character_set
length
source
target

command
verb_extension_code
tp_id

conv_id

type

length of error_log data
log_data

command
Iu id

command
type

primary_return_code
secondary_return_code

primary_return_code
secondary_return_code
request_to_send_received

primary_return_code

secondary_return_code

return_code

primary_return_code
secondary_return_code

return_code

return_code

253

Alters specified parame-
ters for an existing local
LU.

Establishes a session for a
given LU to LU conver-
sation.

Sends a request for con-
firmation to a remote
transaction program and
waits for a reply.

Sends a confirmation
reply to a remote transac-
tion program (partner).

Converts between ASCII
and EBCDIC.

Terminates the specified
conversation.

Terminates a local LU.

Terminates the local PU.

254

DISPLAY

FLUSH

GET_ALLOCATE

GET_ATTRIBUTES

GET_TYPE

POST_ON_RECEIPT

Chap. 7 Using APPC For Transaction Processing

command

lu_id
partner_lu_name
mode_name

command
verb_extension_code

conv_id

command

lu_id

command
verb_extension_code

conv_id

return_code
Iu_session_limit
partner_lu_session_limit
mode_max_negotiable-
_session_limit
current_session_limit
min_negottiated_winn-
er_limit
min_negotiated_loser_-
limit
active_session_count
active_conwinner_sess-
ion_count
active_conloser_sessio-
n_count

session termination count
termination_settings

primary_return_code
secondary return_code

return_code
pointer_to_create_tp_-
record

primary_return_code

secondary_return_code

lu_id

sync_level

mode_name

own_net name

own_lu_name

partner_lu_name

partner_fully qualified lu-
name

rength_of_user_id
user_id

return_code
type

primary_return_code
secondary_return_code

Returns the current pa-
rameters associated with a
local LU.

Flushes the send buffer
for the local LU.

Returns the next incomm-
ing allocate request which
has been queued.

Returns parameters de-
scribing a specified con-
versation.

Tells you whether a con-
versation is basic or
mapped.

During a conversation,
instructs APPC/PC to
interrupt you when it re-
ceives the next incomm-
ing data buffer.

Sec. 7.6 Summary of APPC/PC Commands

PREPARE_TO_REC-
EIVE

RECEIVE_AND_WAIT

RECEIVE_IMMEDIATE

REQUEST _TO_SEND

SEND_DATA

SEND_ERROR

command
verb_extension_code
tp_id

conv_id

type

locks

command
verb_extension_code
tp_id

conv_id

fill

max_length
data_ptr

command
verb_extension_code
tp_id

conv_id

fill

max_length

command
verb_extension_code
tp_id

conv_id

command
verb_extension_code
tp_id

conv_id

data_length
data_ptr

command
verb_extension_code
tp_id

conv_id

type

log_data length
log_data

command
verb_extension_code
tp_id

conv_id

test

primary_return_code
secondary_return_code

primary_return_code
secondary_return_code
what_received
request_to_send_received
data_length

primary_return_code
secondary_return_code
what_received
request_to_send_received
data_length

primary_return_code
secondary_return_code

primary_return_code
secondary_return_code
request_to_send_received

primary_return_code
secondary_return code
request_to_send_received

primary_return_code
secondary_return_code

255

Changes a basic conversa-
tion from the send state
to the receive state.

Waits for data to arrive
for a specified conversa-
tion, then places the inco-
mming data into the ap-
plication designated buff-

€r area.

If information is avail-
able, receives the infor-
mation. If no informa-
tion is available, returns.

Tells the partner LU that
the local LU wishes to
enter a send state.

Sends one data record to
a partner LU.

Tells the partner LU that
an error was detected.

Tests the specified con-
versation to determine if
the conversation has been
posted or if a request t-
o_send has been received.

256

TP_ENDED

TP_STARTED

TP_VALID

TRANSFER_MS_DATA

7.7 Primary Return Codes

Code

0x0000

0x0001

0x0003

Chap. 7 Using APPC For Transaction Processing

command
tp_id

command
lu id

command
tp_id
create tp ptr

data_type
verb_options
data_length

Name

OK

PARAMETER CHECK

STATE_CHECK

ALLOCATION_ERROR

return_code

Description

Command completed

normally.

A parameter is bad in the
command structure.

Attempt to increase the
session limit (without
starting at zero).

Conversation could not
be allocated.

Tells APPC/PC that the
specified transaction pro-
gram has exited (termi-
nated).

Tells APPC/PC that a
transaction program has
successfully been started
and requests APPC/PC
to assign a tp_id to the
new proram. Programs
automatically started as a
result of an incoming
allocate do not require a
call to tp_started.

Tells APPC/PC that the
program named in an
and is valid.

Transfers network man-

agement information be-
tween nodes.

Action

None.

Check the secondary re-
turn code for the specific
parameter which is bad.

The session limit must
first be set to zero, then
modified.

Check secondary return
code for reason.

Sec. 7.7 Primary Return Codes

0x0007

0x0014

0x000B

DEALLOCATE ABEND

DEALLOCATE_ABEN-
D_PROG

DEALLOCATE_ABEN-
D_SVC

DEALLOCATE_ABEN-
D_TIMER

DEALLOCATE_NORM-
AL

UNSUCCESSFUL

DATA_POSTING_BL-
OCKED

POSTING_NOT_ACT-
IVE

PROG_ERROR_NO-

_TRUNC

The remote transaction
program cancelled the
conversation unexpected-
ly.

The remote transaction
program cancelled the
conversationunexpectedly
and set the deallocate flag
to "prog".

The remote transaction
program cancelled the

co ic pectedly
and set the deallocate flag
to "svc”.

The remote transaction
program cancelled the
conversationunexpectedly
and set the deallocate flag
to “timer”.

The conversation was
terminated normally.

The program specified re-
turn control immediate
but APPC was not able
to allocate the conversa-
tion because no sessions
were available.

The APPC internal space
is full.

Posting is not active for
the specified conversation
and you tested the con-
versation.

The remote program de-
tected a transmission
error but no logical re-
cord was affected.

257

Check the transaction
program for errors.

Check the transaction
program for errors.

Check the transaction
program for errors.

Check the transaction
program for errors.

None.

Re-issue using return
control when session
activated.

Issue areceive_immediate
or receive_and wait to
empty some APPC buff-
ers.

Issue post_on_receipt
before testing the conver-
sation.

Check the secondary -
return_code for the error

type.

258

0x000E

0x000D

0x000F

0x0010

0x0011

0x0012

0x0013

0x0014

0x0018

0x0019

Chap. 7 Using APPC For Transaction Processing

PROG_ERROR _PURG-
ING

PROG_ERROR TRUNC

CONV_FAILURE_RE-

TRY

CONV_FAILURE_NO-

_RETRY

SVC_ERROR_NO_TR-
UNC

SVC_ERROR_TRUNC

SVC_ERROR_PURG-

ING

UNSUCCESSFUL

CNOS_PARTNER_REJ-
ECT

CONVERSATION_TY-
PE_MIXED

INCOMPLETE

The remote program de-
tected a transmission
error and logical records
were affected (and

purged).

The remote program de-
tected a transmission
error and logical records
were truncated.

A temporary failure
caused an abnormal ter-
mination.

Conversation was abnor-
mally terminated.

The remote program
issued a svc error but did
not truncate any logical
records.

The remote program de-
tected a transmission
error and logical records
were truncated.

The remote program
issued a svc error and is
purging one or more logi-
cal records which were
received in error.

‘There is nothing to re-
ceive.

The partner LU rejected
the CNOS request.

Use of both basic and
mapped commands in
one conversation.Issue
only one type of verb.

The issued command was
suspended without com-
pleting.

Check the error and pre-
pare to re-transmit the
data.

Check the error.

Establish the connection
again.

Normally indicates a
hardware problem.

Check the secondary -
return_code for the error

type.

Check the error.

Check the error and pre-
pare to retransmit the
data.

None.

Check the secondary re-
turn code for the reason.

To avoid deadlock, issue
verbs on any other trans-
action programs desired,
then issue get_allocate to
empty the incoming
queue, then re-issue this

Sec. 7.8 Suggested Reading 259

command without cnan-

ging any parameter.
0xF005 INCOMPLETE ALTER- A command that was re- Modify your code to
ED_VERB turned as incomplete was properly handle incom-

changed and re-issued (or plete commands.
you issued a new com-
mand to a transaction
program with an incom-
plete command out-

standing).
OxFFFF INVALID_VERB The command code is Check the command code
wrong. and the command family
(in register AH).
0x0012 SVC_ERROR _TRUNC The remote program de- Check the error.

tected a transmission
error and logical records
were truncated.

7.8 Suggested Reading

IBM (1987), APPC/PC User Application Interface, Document
number GG24-3025-0, Boca Raton, FL: International Business
Machine Corporation.

IBM (1986), Advanced Program-to-Program Communication for
the IBM Personal Computer Programming Guide - 2nd edition,
Raleigh, NC: IBM product 84X0561.

IBM (1986), An Introduction to Programming for APPC/PC,
Document number GG24-3034, Raleigh, NC: International
Business Machine Corporation.

Appendix A
Glossary

Advanced Program-to-Program Communication A set of
protocols that provides communication capabilities between computer
programs, often on diverse hardware.

alias An alternate name that you can be known by on the network.

alignment error The number of frames received with excessive or
missing bits causing a CRC error.

application program interface The set of commands used by
the application program to communicate with a lower level process in
general (or APPC in particular in this book).

bind Establish an LU 6.2 session.

buffer Memory area temporarily reserved for use in performing
input/output operations.

260

Glossary 261

collisions When a transmitting adapter detects any type of line
noise during transmission of a frame, the adapter stops transmitting
and registers a collision.

contention loser In APPC, the LU that must request and receive
permission from the session partner LU to allocate a session.

contention-loser polarity = The designation that an LU is the
contention loser for a session.

contention winner The LU that can allocate a session without
requesting permission from the session partner LU.

contention-winner polarity The designation that an LU is the
contention winner for a session.

control verb Commands an application subsystem issues under
APPC to set up the hardware and software to perform a remote
transaction.

conversation The communication between two transaction
programs under APPC.

conversation type Under APPC, either basic or mapped.

cyclic redundancy check An error detection algorithm using a
cyclic algorithm.

datagram A single data packet delivered with best effort. No
retransmissions or automatic resequencing of multiple packets is
performed.

262 Appendix A Glossary

deadlock A situation in which two or more processes are waiting
for resources held by each other which will never become available.
In APPC, deadlock can occur when using transaction processing
commands.

duplex Simultaneous two-way independent transmission.

exhausted resources The number of frames discarded because
of a lack of memory.

flow control The process of managaging the rate at which data
packets or transactions are sent and received.

frame A low level packet of information which is used to implement
all higher level protocols.

hot carrier A transmitter locked in transmit mode.

local session number A unique number assigned to each session
established by an adapter.

logical unit A set of logical services allowing one user to communi-
cate with each other using sessions.

pacing window size In APPC, the number of RUs that a
program can send before getting permission to send more.

point-to-point A connection between exactly two nodes on a
network.

virtual connection A transport layer connection between two
network nodes that supports reliable data communication.

Appendix B
Acronyms

APPC Advanced Program-to-Program Communication

APl Application Program Interface

ASCIl American National Standard Code for Information Exchange
BIOS Basic Input Output System

CICS Customer Information Control System

CICS/VS Customer Information Control System for Virtual Storage
CRC Cyclic Redundancy Check

DLC Data Link Controld

EBCDIC Extended Binary-Coded Decimal Interchange Code
263

264 Appendix B Acronyms

FMH Function Management Header

GDS General Data Stream

LU Logical Unit

NAU Network Addressable Unit

NCB Network Control Block

NetBIOS Network Basic Input Output System
NMVT Network Management Vector Transport
PIP Program Initialization Parameter

PLU Primary Logical Unit

PU Physical Unit

RAM Random Access Memory

RH Request/response Header

ROM Read Only Memory

RU Request/response Unit

SDLC Synchronous Data Link Control

SLU Secondary Logical Unit

Acronyms 265

SNA Systems Network Architecture
SSCP System Services Control Point
SDLC Synchronous Data Link Control

VTAM Virtual Terminal Access Method

Appendix C
References

266

Carlo, J. T., and G. R. Samsen (1986), "High-Level Communica-
tion Protocols on the Token-Ring Network," Proceedings of the
Localnet 86 Conference, November 18-20.

East, W. (1988), "New Developments Lead to Further Integra-
tion of a High Performance Token Ring Adapter," Proceedings
of the Networking Technology and Architectures (Pinner, UK:
Blenheim Online), pp. 89-105.

Housley, N. (1987), "An IBM Token Ring Backbone Facility,"
Networks 87, Proceedings of the European Computer Communica-
tions Conference (Pinner, UK: Online International).

IBM (1988), Local Area Network Technical Reference, Research
Triangle Park, NC: International Business Machine Corpora-
tion.

Lang, K. W. et. al. (1989), "A 16 MBPS Adapter Chip for the
IBM Token-Ring Local Area Network," Proceedings of the IEEE
1989 Custom Integrated Circuits Conference, May 15-18.

Lank, K. (1989), "A 16 MBPS Adapter Chip for the IBM Token
Ring Local Area Network," Proceedings of the IEEE 1989
Custom Integrated Circuits Conference, May (New York: IEEE),
pp. 11.3.1-11.3.5

References 267

Stallings, W. (1987), Handbook of Computer Communications
Standards (Vol. 2): Local Network Standards, New York:
Macmillan.

Stallings, W. (1984), Local Networks: An Introduction, New
York: Macmillan.

Strole, N. (1989), "Inside Token Ring Version II, according to

Big Blue," Data Communications, Vol. 18, no. 1, (January) pp.
117-125.

Tanimoto, M., et. al. (1987), "Development of a High Speed
Fiber Optic LAN to Connect Heterogeneous Computers in the
Department of Information Engineering at Kyoto University,"
Sumitomo Electronics Technical Review, (January) Japan, pp.
131-136.

Index

16/4 Adapter/A 9 Adapter_parms 97

16/4 Adapter 9 Adapter_parms structure 85
50 ohm 3 Addressing 88

75 ohm 3 Adptr_chk_exit 96

Access control field 108 Allocate function 248
Access lu_lu_pw structure 239 Allocate structure 239
Activate_dlc function 248 APPC 12, 233

Activate_dlc structure 239 Appch 237

Adapter 37, 81 Ascii_to_ebcdic function 234
Adapter/A 9 Attach_lu function 247
Adapter field 58 Attach_lu structure 240
Adapter hardware 228 Attach _pu function 247, 234, 249
Adapter IT 9 Attach_pu structure 241
Adapter interface 3 Attrib command 30
Adapter interrupts 185 BIOS redirector 10, 15
Adapter models 9 Blocking 41

Adapter request blocks 194, 199 Bridge 9

Adapter resets 186, 188 Bring-up error codes 182
Adapter shutdown 122 Bring_ups 95

Adapter status block 194, 199 Broadband 3

Adapter status parameter table Buffer 36, 115

181 BUFFER _FREE 130

269

270

Buffer_free function 81, 116, 117
BUFFER_GET 131
Buffer_parms structure 86

Build lan_header function 80, 109
Bus topology 5

Cable 229

Carrier sense multiple access 7
CCB 79, 81

Change lu structure 241

Chipset 228

Chmod command 30

CLIENT 51

Close_sap function 81, 122

Cnos function 247

Cnos structure 241

Coaxial cables 3

Command 36, 81

Command control block structure
82

Command control block 79, 81
Communications network 2
Communications processor 229
Complete 37

Config.sys 79

Configurations 16

Confirm structure 241
Confirmed structure 242
Connect_station function 81, 121,
122

Connection establishment 122
Connection oriented protocol 33
Connection oriented communica-
tion 116

Connectionless communication
103

Convert structure 242

Index

Create_tp structure 242
CSMA/CD 7

Data communicating devices 2
Data connector 4

Data holding buffers 194

Data Link Control 12, 79

Data rates 4

Datagram 34, 46, 103

Deallocate structure 243
Detach _lu structure 243
Dg_read function 35, 46, 48,
Dg_write function 35, 47, 49
DHB 194
DIR_CLOSE_ADAPTER 204
DIR_DEFINE MIF_ENVIRON-
MENT 149

DIR_INITIALIZE 95, 149
Dir_initialize parameters structure
85

DIR_INTERRUPT 151, 204
DIR_MODIFY_OPEN_PARMS
151, 204

DIR_OPEN _ADAPTER 95, 96,
154, 205
Dir_open_adapter_parameters
structure 85

DIR_OPEN DIRECT 154
DIR_READ LOG 154, 205
DIR_RESTORE _OPEN_PARMS
156, 208

DIR SET EXCEPTION FLAGS
156

DIR_SET FUNCT_ADDRESS
208

DIR_SET FUNCTIONAL ADD-
RESS 157

Index

DIR_SET GROUP_ADDRESS
157, 209

DIR_SET USER_APPENDAGE
157

DIR_STATUS 158
DIR_TIMER_CANCEL 161
DIR_TIMER _CANCEL GROUP
161

DIR_TIMER _SET 161
Direct_parms 97, 100
Direct_parms structure 85
Display structure 243

DLC 12,79, 112

DLC addressing 88

DLC return codes 176
DLC_CLOSE_ADAPTER 148
DLC _CLOSE_DIRECT 149
DLC_CLOSE_SAP 132, 209
DLC_CLOSE_STATION 132,210
DLC_CONNECT STATION 133,
210

Dic_connect_station_parms struc-
ture 87

DLC FLOW_CONTROL 133,
211

DLC_MODIFY 134, 212

DLC _OPEN_SAP 137, 213
Dic_open_sap_parms structure 86
DLC _OPEN_STATION 141, 214
Dic_open_station_parms structure
87

DIc_parms 97, 101

Dic_parms structure 85

DLC _REALLOCATE 145, 215
DLC RESET 146, 216
DLC_STATISTICS 146, 216

271

DLC STATUS 221
DxmaOmod.sys 79

Establish a connection 122
ethernet 7

Fiber optic 3

File locking 18

File server 16, 42

Flush structure 243

Frame control field 108

Frame pool 115

Frame status byte 182
Get_allocate structure 244
Get_attributes structure 244
Get_session_status function 35,
60

Get_type structure 244

Group names 42

Guaranteed delivery 34
Hardware 228

Header 103, 107

Hints and warnings 31

Host interface 229

IEEE 802.2 12,79

IEEE 802.5 13

In-band 52

Init_adapter function 80, 93, 94
Init_ccb function 80, 88
Init_ncb function 34, 41, 42
Init_netbios function 34, 44, 47,
51

Int_adapter function 80, 88, 89
Int_appc function 234, 238
Int_netbios function 34, 41, 43, 88
Interconnection 2

Interrupt 10

Interrupt status registers 194

272

Interrupts 185

ISRA_ EVEN 195

L name 36

LAN buffers 229

LAN definition 2

LAN header 103, 107

Length 36

Link access point 90

Link access station 119

LLC 79

LLC SET THRESHOLD 146
Local address 236

Lock_close function 16, 30
Lock_open function 16, 26, 29
Lock_read function 16, 27, 28
Lock_write function 16, 26
Logical link control 79
Logical unit 236

Low-pass filter 4

Lsn 36

Lsn field 58

LU 236

Maintenance and management
229

Market share 1

MAU 5

Max_dg function 35

Max_dg function 47, 50
Media access control 90
Media access method 7
Memory mapped I/O 188
Messenger 17

MicroChannel 9

MMIO 185, 186

Multistation access unit 5
NCB_ADD_GROUP_NAME 43,

Index

64

NCB_ADD_NAME 43, 65
NCB CALL 65

NCB_CANCEL 65
NCB_CHAIN_SEND 67
NCB_CHAIN_SEND NO_ACK
67

NCB_DELETE _NAME 43, 67
NCB FIND _ NAME 44, 67
NCB HANG UP 68

NCB LAN | STATUS ALERT 68
NCB_LISTEN 68

Ncb_parms 97

Ncb_parms structure 86
NCB_RECEIVE 69

NCB RECEIVE_ANY 69

NCB _ _RECEIVE_BROADCAST -
DATAGRAM 69
NCB_RECEIVE_DATAGRAM
70

NCB_RESET 44, 58, 70
NCB_SEND 70
NCB_SEND_BROADCAST DA-
TAGRAM 71
NCB_SEND_DATAGRAM 71
NCB_SEND NO_ACK 71
NCB_SESSION_STATUS 59, 71
NCB_STATUS 72
NCB_STATUS return structure 73
NCB_TRACE 72
NCB_UNLINK 74

Net_control block 37
Net_control_block structure 39
Net_error 47, 74

Net_open function 16, 23, 26
Net_path 18, 23

Index

NetBIOS 11, 33

NetBIOS command specifics 64
NetBIOS command summary 61
NetBIOS return codes 74
Netbios.h 39

Netw_status_exit 96

Network adapter cable 229
Network components 3
Network name 235

NO_WAIT 38

Number 36

Number field 58

Open function 51

Open_sap function 106, 112
Open_sap function 80
Open_station function 81, 112,
119, 120

Opening a SAP 105

0S/2 12

Out-of-band 52

PC LAN configurations 16
PCLAN 10

Pc_error_exit 96

PDT _TRACE _OFF 165
PDT_TRACE ON 162
Physical unit 235

Post 36, 37, 82

Post_on_receipt structure 244
Prepare_to_receive structure 244
Primary adapter 10
Programmed I/O 185

Protocol handler chip 229

PS/2 9
PURGE_RESOURCES 166
Queue 82

R name 36

273

R name field 47

RAM 10

READ 166

READ_CANCEL 166
RECEIVE 166

Receive any 42

Receive buffers 194
Receive_and wait structure 244
Receive_buffer_type structure 87
RECEIVE_CANCEL 170
Receive _dlc function 81, 112, 113
Receive immediate structure 244
RECEIVE_MODIFY 170
Receive_parms structure 87
Receive_process function 81, 112,
114

RECEIVED DATA 222
Receiver 17

Receiving DLC packets 112
Receiving transactions 250
Record locking 18

Record oriented files 21, 23
Redirector 10, 15, 17
Redirector.h file 25
Request_to_send structure 246
Resets 186, 188

Ret_code 36

Retcode 82

Return Codes 176, 256

Ring interface 229

Ring operation 229

Ring signaling 229

Ring topology 5

Ring-in 5

Ring-out 5
RING_STATUS_CHANGE 225

274

Routing information 108
RRR_EVEN 191
RRR_ODD 191

Rto 36

SAP 90, 105

Secondary adapter 10
Send_data structure 246
Send_error structure 246
Sequential files 28

SERVER 51

Service access points 90
Session-oriented communication
50

Session_status 59
Session_status structure 40
Share 22

Shared RAM 10
Shutdown_netbios function 34, 44,
46

Simplex 54

Small area network 2
Sn_close function 35, 51
Sn_open function 35, 51, 53
Sn_read function 35, 51, 54
Sn_receive function 35, 56
Sn_send function 35, 57
Sn_write function 35, 51, 55
Sram_address 96

SRB 194

Star topology 5

Starting address 185

Station ID 90

Sto 37

System interface chip 229
System request blocks 194, 199
System status blocks 194, 199

Index

TCR_EVEN 192

TCV_EVEN 193

TCV_ODD 192

Temporary files 20

Test_appc function 234, 237
Test_share function 22, 24
Tmpfile function 20

TMS380 228

Token 8

Topology 5

Tp_ended structure 246
Tp_started structure 246
Tp_valid structure 247
Transceiver 229

Transmission 247

Transmission media 3
TRANSMIT DATA_REQUEST
225

TRANSMIT DIR_FRAME 219
TRANSMIT I FRAME 170, 220
Transmit_parms structure 87
TRANSMIT TEST CMD 173,
221

TRANSMIT UI FRAME 109,
173, 220

Transmit_ui_frame function 80,
110

TRANSMIT XID_CMD 175,220
TRANSMIT XID_RESP FINAL
175, 220

TRANSMIT XID_RESP_NOT -
FINAL 176, 221

Tree topology 5

Twisted pair 3

Virtual circuit 33

VME 8

Index 275

Warnings 31

Work 82

WRBR 192

Write function 47

WWCR 192

WWOR 192

Xmit_i_frame function 81, 122

b
Programmer’s
Guide to the

IBM Token Ring

William H. Roetzheim

This book distills the key elements from the IBM Token Ring Network
reference documents and presents it in an easy-to-understand, concise
fashion. For most programmers, everything you will ever need to know
about the IBM Token Ring Network can now be found in this convenient
volume. Programming for the Token Ring environment is covered at the
BIOS redirector, NetBIOS, DLC, register direct, and APPC level. Token Ring
hardware is described, with a particular emphasis on the interaction
between the hardware and your application programs. Dozens of tables
and charts provide a convenient reference to all interrupts, functions, and
return codes. Each concept is illustrated with complete C functions which
serve both as examples and form the basis of a working library to be used
over and over. For advanced users, detailed and highly specific references
are included to simplify the search for additional details.

A

PRENTICE HALL, Englewood Cliffs, N.J. 07632

ISBN 0-23-7237k8-5

m m‘ ” I
9780137237685)

r

