IBM System/370
Extended Architecture

Principles of Operation

First Edition (March 1983)

Changes are made periodically to the information herein; before
using this publication in connection with tha operation of IBM
equipment, refer to the latest IBM System/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable and
current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any func-
tionally equivalent program may be used instead.

Publications are not stocked at the address given below.
Requests for IBM publications should be made to your IBM repre-
sentative or to the IBM branch office serving vour locality.

A form for reader's comments is provided at the back of this
publication. I¥ the form has been removed, comments may be
addressed to IBM Corporation, Product Publications, Department
B98, PO Box 390, Poughkeepsie, NY, U.S.A. 12602. IBM may use or
distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to vou.

© Copyright International Business Machines Corporation 1983

This publication provides, for reference

purposes, a detailed definition of the
machine functions performed by systems
operating in the System/370 extended-

architecture (370-XA) mode.

The publication applies only to systems

operating in the 370-XA mode. The IBM
System/370 Principles of Operation,

GA22-7000, should be consulted regarding
the functions of the architecture which
apply to systems operating in the
System/370 mode.

The publication describes each function
at the level of detail needed to prepare
an assembler-language program that
relies on that fTunction. It does not,
however, describe the notation and
conventions that must be employed in
preparing such a program, for which the
user must instead refer to the appropri-
ate assembler-language publication.

The information in this publication is
provided principally for use by
assembler-language programmers, although
anyone concerned with the functional
details of systems operating in the
370-XA mode will find it useful.

This publication is written as a refer-
ence and should not be considered an
introduction or a textbook. It assumes
the user has a basic knowledge of data-
processing systems and, specifically,
systems operating in the 370-XA mode, as
found in Introduction to IBM Data Proc-—
essing Systems, GC20-1684, and the 1IBM
System/370 System Summary: Processors,
GA22-7001. 1IBM publications relating to
systems operating in the 370-XA mode are
listed and described in the IBM
System/370 and 4300 Processors Bibli-

PREFACE

rized in the IBM System/370 System
Summary: Processors, GA22-7001.

Largely because this publication is
arranged for reference, certain words
and phrases appear, of necessity, earli-
er in the publication than the principal
discussions explaining them. The reader
who encounters a problem because of this
arrangement should refer to the index,
which indicates the location of the key
description.

The information presented in this publi-
cation 1is grouped in 17 chapters and
several appendixes:

Chapter 1, Introduction, highlights some
of the major facilities of systems oper-
ating in the 370-XA mode.

Chapter 2, Organization, describes the
major groupings within the system -- the
central processing unit (CPU), storage,
and input/output -- with some attention
given to the composition and character-
istics of those groupings.

Chapter 3, Storage,; explains the infor-
mation formats, the addressing of stor-
age, and the facilities for storage
protection. It also deals with dynamic
address translation (DAT), which,
coupled with special programming
support, makes the use of a virtual
storage possible in systems operating in
the 370-XA mode. Dynamic address trans-—
lation eliminates the need to assign a
program to a fixed location in real
storage and thus reduces the addressing
constraints on system and problem
programs.

Chapter 4, Control, describes the facil-

ography, GC20-0001.

in this publi-
necessarily available on
Furthermore, 1in some
instances the definitions have been
structured to allow for some degree of
extendibility, and therefore certain
capabilities may be described or implied
that are not offered on any model.
Examples of such capabilities are the
use of a 16-bit field in the subsystem-
identification word to identify the
channel subsystem, the size of the CPU
address, and the number of CPUs sharing
main storage. The allowance for this

All facilities discussed
cation are not
every model.

type of extendibility should not be
construed as implying any intention by
IBM to provide such capabilities. For

information about the characteristics
and availability of facilities on a
specific model, see the functional char-
acteristics publication for that model.
The availability of facilities is summa-

ities for the switching of system
status, for special externally initiated
operations, for debugging, and for

timing. It deals specifically with CPU
states, control modes, the program-
status word (PSW), control registers,

program—event recording, timing facili-
ties, resets, store status, and initial
program loading.

Chapter 5, Program Execution, explains
the role of instructions 1in program
execution, looks in detail at instruc-
tion formats, and describes briefly the
use of the program-status word (PSW), of
branching, and of interruptions. It
also details the aspects of program
execution on one CPU as observed by a
channel program or another CPU program.

Chapter 6, Interruptions, details the
mechanism that permits the CPU to change
its state as a result of conditions
external to the system, within the

1ii

system, or within the CPU
classes of interruptions
and described:

itself. Six
are identified
machine-check interrup-

tions, program interruptions, super-
visor-call interruptions, external
interruptions, input/output interrup-

tions, and restart interruptions.

Chapter 7, General Instructions,
contains detailed descriptions of

data formats
instructions
and floating-point

logical and binary—-integer
and of all unprivileged
except the decimal
instructions.

Chapter 8, Decimal Instructions,
describes in detail decimal data formats
and the decimal instructions.

Chapter 9, Floating—-Point Instructions,
contains detailed
floating-point data formats
floating-point instructions.

and the

Chapter 10, Control Instructions,
contains detailed descriptions of all of
the semiprivileged and privileged
instructions except for the I/0
instructions.) .

Chapter 11, Machine-Check Handling,
describes the mechanism for detecting,
correcting, and reporting machine

malfunctions.

Chapter 12, Operator Facilities,
describes the basic manual functions and
controls available for operating and
controlling the system.

Chapters 13-17 of this publication
provide a detailed definition of the
functions performed by the channel
subsystem and the logical interface

between the CPU and the channel subsys-
tem.
provides a

Chapter 13, 1/0 Qverview,

brief description of the basic compo-
nents and operation of the channel
subsystem.

Chapter 14, I/0 Instructions, contains
the description of the 370-XA 1I/0

instructions.

Chapter 15, Basic 1/0
describes the basic 1/0
performed by the channel
including the initiation
I/0 operations.

Functions,
functions
subsystem,
and control of

Chapter 16, 1/0 Interruptions, covers
I/0 interruptions, interruption condi-
tions, and the concluding of I/0 oper-

ations.

Chapter 17, 1/0 Support Functions,

describes such functions as channel-
subsystem usage monitoring, resets,
initial-program loading,

reconfiguration, and
recovery.

channel-subsystem

iv

descriptions of

The Appendixes include:

. Information about
tation

number represen-

. Instruction-use examples

. Lists of the instructions arranged
in several sequences

. A summary of the condition-code
settings

. A summary of the differences be-
tween the System/370 and 370-XA
modes.

. A table of the powers of 2

. Tabular information helpful in
dealing with hexadecimal numbers

. An EBCDIC chart

SIZE NOTATION

In this publication, the letters K, M,
and 6 denote the multipliers 210, 220,
and 23°, respectively. Although the
letters are borrowed from the decimal
system and stand for kilo (103), mega
(10%), and giga (10°), they do not have
the decimal meaning but instead repre-
sent the power of 2 closest to the
corresponding power of 10. Their mean-
ing in this publication is as follows:

Symbol Value
K (kilo) 1,024 = 21°
M (mega) 1,048,576 = 220
G (giga) 1,073,741,824 = 23°

The following are some examples of the

use of K, M, and G:

2,048 is expressed as 2K.

4,096 is expressed as %K.

65,536 is expressed as 64K
(not 65K).

224 js expressed as 16M.

231 is expressed as 26.

When the words "thousand” and "million"
are used, no special power-of-2 meaning
is assigned to them.

BYTES, CHARACTERS, AND CODES

Although the System/360 architecture was
originally designed to support the
Extended Binary-Coded-Decimal Inter-
change Code (EBCDIC), the instructions
and data formats of the architecture are

for the most part
external code

independent of the
which is to be processed
by the machine. For most instructions,
all 256 possible combinations of bit
patterns for a particular byte can be
processed, independent of the character
which the bit pattern is intended to
represent. For instructions which use
the =zoned format, and for those few
instructions which are dependent on a
particular external code, the instruc-
tion TRANSLATE may be used to convert
data from one code to another code.
Thus, a machine operating in the 370-XA
mode can process EBCDIC, ASCII, or any
other code which can be represented in
eight or fewer bits per character.

otherwise
for a byte
Thus, when a

In this publication, wunless
specified, the value given
denotes a binary value.

byte is said to contain a zero, the
value 00000000 binary, or 00 hex, is
meant, and not the value for an EBCDIC

character "0," which would be F0 hex.

OTHER PUBLICATIONS

The I/70 interface is described in the
System Library publication IBM
System/360 and Systems/370 I/0 Interface

Channel to Control Unit Original Equip-
ment Manufacturers' Information,
GA22-6974.

The assists for MVS/XA
the System Library
Assists for MVS/XA, SA22-7092.

are described in
publication IBM

vi

This page is intentionally left blank.

The meanings
common in this publication
the following list.
mnemonics

tion

complete
Appendix B.
shown in this list,

AFT
AFTO
AFX
AKM
ASN
AST
ASTE
ASTO
ASX
AT
ATL
ATO
AX
CBC
CCUW
CHPID
CPU
CR
CRW
DAT
EBCDIC

ECC

EKM
ESW

ET
ETL
ETO
EX

hex

that are
are given in
Only a few instruc-

appear here; for a
of the mnemonics, see
For other abbreviations not
see the index.

ASN first table
ASN-first—-table origin
ASN-first-table index

of abbreviations

list

authorization key mask
address-space number
ASN second table

AST entry

AST origin
ASN-second-table index
authority table
authority-table length
authority-table origin
authority index
checking-block code
channel-command word
channel-path identifier
central processing unit
control register
channel-report word
dynamic address translation

extended binary-coded—decimal
interchange code

error-checking-and-correction
code

entry key mask

extended-status word (word 3 of
the IRB)

entry table
entry-table length
entry-table origin
entry index; execute

hexadecimal

ID
IDAW
ILC
IML
I/
IPL
IRB

LPM
LPUM
LT
LTD
LTL
LTO
LX

0EMI

op code
ORB

PAM
PASN

PC
PC-cp
PC-ss

PCI

PER
PFRA
PIM
PKM
PMCUW

PNOM

COMMON ABBREVIATIONS

identifier; identification
indirect-data-address word
instruction-length code
initial microprogram loading
input/output

initial program loading
interruption—-response block
1,024 (bytes)

logical-path mask (in ORB)
last-path-used mask (in SCHIB)
linkage table

linkage-table designation
linkage-table length
linkage-table origin

linkage index

1,048,576 (bytes)

original equipment manufactur-
ers' information

operation code
operation—-request block
path-available mask (in SCHIB)
primary ASN

PROGRAM CALL

PROGRAM CALL to current primary

?ROGRAN CALL with space switch-
ing

program—-controlled interrup:ion
(flag in CCW or function)

program—event recording
page-frame real address
path-installed mask (in SCHIB)
PSW-key mask

path-management-control word
(words 0-6 of SCHIB)

path-not-operational mask (in
SCHIB)

vii

POM
PSTD

PSTL
PSTO
PSW
PT
PT-cp

PT-ss

PTL
PTO
PX
RR

RRE
RS

RX

SASN
SCHIB

viii

path-operational mask (in
SCHIB)

primary segment-table desig-
nation

primary segment-table length
primary segment-table origin
program-status word

PROGRAM TRANSFER

PROGRAM TRANSFER to current
primary

PROGRAM TRANSFER with space
suwitching

page-table length
page-table origin
page index

register-and-register instruc-
tion format (or operation)

register-and-register instruc-
tion format C(or operation)
using an extended operation
code

register-and-storage instruc-
tion format (or operation)

register-and~indexed-storage
instruction format (or opera-
tion)

implied-operand-and-storage in-—
struction format (or operation)

secondary ASN

subchannel-information block

SCSW
SI

SID
SLI

SS

SSAR
SSAR-cp

S55AR-s5

SSE

SSTD

SSTL
SSTO
STD
STL
STO
sync
TLB
T0D
XA

subchannel-status word
storage—-and-immediate-operand
instruction format (or opera-
tion)
subsystem-identification word

suppress length indication
(flag in CCW)

storage-and-storage instruction
format (or operation)

SET SECONDARY ASN

SET SECONDARY ASN to current
primary

SET SECONDARY ASN with space
switching

storage-and-storage instruction
format (or operation) using an
extended operation code

secondary segment-table desig-
nation

secondary segment-table length
secondary segment-table origin
segment-table designation
segment-table length
segment-table origin
synchronization
translation-lookaside buffer
time of day

extended architecture (archi-
tecture mode)

CHAPTER 1. INTRODUCTION « e e @
Highlights of 370-XA e e e e e
Compatibility . .
Compatibility Among Systems in
370-XA Mode - . .- .

Compatibility Between Systems in
System/370 Mode and in 370-XA
Mode . .

Control- Program Compatlb
Problem-State Compatibil

; . .
i
System Program e s e e .
Availability e e e + e =

CHAPTER 2. ORGANIZATION
Main Storage
Central Processing Unlt
Program—-Status Word .
General Registers .
Floating-Point Reglsters
Control Registers .« .
Input and Output « e e .
Channel Subsystem
Input/0Output Devices
Units e e e e e .
Operator Facilities
Service Processor .

CHAPTER 3. STORAGE .
Storage Addressing . .
Information Formats
Integral Boundaries
Address Types and Formats
Address Types . e e .
Absolute Address .« .
Real Address « e e .
Virtual Address « .
Primary Virtual Address
Secondary Virtual Address
Logical Address e e e .
Instruction Address . .
Effective Address .
Address Size and Nraparound
Address Wraparound . o
Storage Key e e e e e e e s
Protection . . .
Key-Controlled Protectlon
Fetch-Protection-Override
Control e e e e e e .
Page Protection . .
Low-Address Protectton
Reference Recording . .
Change Recording . . .
Prefixing « e e e e e .
Address Spaces e e e e
ASN Translation . .
ASN-Translation Controls
ASN-Translation Tables .
ASN-First-Table Entries
ASN-Second-Table Entries
ASN-Translation Process .
ASN-First-Table Lookup
ASN-Second-Table Lookup
Recognition of Exceptions
during ASN Translation
ASN Authorization . .
ASN-Authorization Controls
Control Register 4 « . .
ASN-Second-Table Entry .

.«

1
ty

LI N A

e« o ¢« O

3
e« ¢ 0o Qo
e« ¢ 0o O o

0
e 0 ¢ T e e ¢ e 0 0 0 e
e ¢ o TJe & s s 8 0 0 ¢ e
LR I R R A B A)

¢ o o o
o« & s e o o 0
e & o ¢ ¢ ¢ & e« @

¢ ¢ & o ¢ ¢ ¢ o ¢ 0

e ¢
¢ ¢ & o o & 4 4 & & e & @ ¢ ¢ s o & &

. 0 0 .

.

¢« & e e ¢ o 0
¢ &€ ¢ 4 4 & ¢ ¢ s 0

€ 6 0 ¢ & 4 0 4 6 ¢ o & & ¢ 0
¢ & 2 & ¢ ¢ ¢ ¢ & ¢ 8 4 0 e @

¢ & s ¢ 0
¢ ¢ ¢ ¢ 0

| I
UHN OO VORARUVMUVIVTUIVIVIAPLAPLUNNE VUV UTVWUWHWUHNNE TS D D

LI T N TR A N HUWUWUWWWHWHHUWWWHUWUHUHWWH NN NDRNRNNNONNN e e
b pod o fd ot ek ot UL L A L I e I O | i

u$uuuuuuuuu
[y ey
(S R)

3-15
3-16
3-17
3-17

3-18
3-18
3-18
3-18
3-18

CONTENTS

Authority-Table Entries .« .
ASN-Authorization Process . .
Authority-Table Lookup . e .
Recognition of Exceptions
during ASN Authorization
Dynamic Address Translation
Translation Control .
PSW « e e e e .
Control Register 0
Control Register 1
Control Register 7
Translation Tables
Segment-Table Entrles
Page-Table Entries . .
Summary of Segment-Table
Page-Table Sizes . .
Translation Process
Effective Segment- Table
Dasignation . . .
Inspection of Control Reglster
0

.

T Y B T]
D Y I I Y
¢ & & 6 6 & ¢ 2 e 0

3
e ¢ Qe o ¢ ¢ s s ¢ o 0

o o We o o ¢ o o o o

o . « e e

Segment Table Lookup e e e .
Page-Table Lookup

Formation of the Real Address
Recognition of Exceptions

during Translation . - .
Translation-Lookaside Buffer .
Use of the

Translation-Lookaside Buffer
Modification of Translation
Tables « e e e e e e e
Address Summary e e e e .
Addresses Translated . .
Handling of Addresses .
Assigned Storage Locations

-
-
-
.

« o 0 0 6
¢ ¢ o o &

CHAPTER 4. CONTROL e e e .
Stopped, Operating, Load, and
Check-S5top States o .

Stopped State .

.
.

Program—-Event Recording
Control-Register Allocati
Operation e e e . .

Identification of Cause
Priority of Indication
Storage-Area Designation
PER Events c e e o e e o
Successful Branching .
Instruction Fetching .
Storage Alteration . .
General-Register Alterati
Indication of Events
Concurrently with Other
Interruption Conditions

Operating State e e e e e e
Load State . e e e e e e .
Check-Stop State e e e e e
Program-Status Word c e e e .
Program-Status-Word Format .
Control Registers e e e e s .
Tracing e e e o o
Control- Reglster Alloc tion
Trace Entries e e e e e e e
Operation . « e .
on

.
.
¢ ¢ & 0 0 ¢ ¢ ¢ ¢ ¢ 0 0t 0 8 & 0 0 e

¢« ¢ & e ¢ ¢ s 0

(o)

Timing . « . . : : :
Time-of- Day Clock « e e
Format e e e e . . o e .

States « v s e .

T dpppdpbopnpop
trt 1t
PUNNRRROORBOOARUTIUWHUHUNNDN

R)
|
ot b ek ot b ot b |

4-14

ix

Changes in Clock State . .
Setting and Inspecting the

Shared Main Storage
CPU-Address Ident1f1cat1on
CPU Sighaling and Response .
Signal-Processor Orders .
Conditions Determining Response
Conditions Precluding
Interpretation of the Order

Clock . . e e e e e e
TOD-Clock Synchronwzatlon . .
* Clock Comparator e e e e e e .
CPU Timer . e e e e
Externally Inlt1ated Functions .
Service Signal “ e e e e e e .
Resets e e e s e e e e e e e .
CPU Reset e e e e e e
Initial CPU Reset e e e .
Subsystem Reset - s e e e .
Clear Reset e e e e e e e .
Power-0On Reset e e e e e e .
Initial Program Loading e e .
Store Status « e e e e e e e .
Multiprocessing c e 6 s e s e =
se

Code e e e e e e e e e e e
Status Bits e e e e e e e e
CHAPTER 5. PROGRAM EXECUTION
Instructions e e e e e e .
Operands . e . . .
Instruction Format -

Register Operands
Immediate Operands
Storage Operands .

R T B T T)
DRI T R B)
« o+ ¢ 0 ¢ o
¢ 4 e ¢ 4 0 e 0 6

L T T R TR B T |

Address Generation ¢ .

Bimodal Addressing . .

Sequential Instructron-Address

Generation e e e e e e e e .

Operand-Address Generation . .
Formation of the Intermediate
Value - e .
Formation of the Address . .

Branch-Address Generation .

Formation of the Branch Address
Instruction Execution and

Sequencing e e e e e e e e e e
Decision-Making « e e e e e .
Loop Control e e e e e e e e =
Subroutine Linkage e e e e e .
Interruptions e e e e e e e .
Types of Instruction Ending .

Completion e e e e e e e e .
Suppression e e e e e e e .
Nullification e e e e e e e
Termination . .« e e e .
Interruptible Instructlons . .
Point of Interruption e e .
Execution of Interruptible
Instructions . . .
Exceptions to Null!ficat1on and
Suppression . . .

Storage Change and Restoratlon
for DAT-Associated Access

Exceptions . e
Modification of DAT Table
Entries

Trial Executxon for Edvtlng
Instructions and TRANSLATE
Interlocked Update for
Nullification and Suppression
Authorization Mechanisms .
Mode Requirements . .
Extraction-Authority Control
PSW-Key Mask e e e e e e e

4-19

4-20
G-21
4-21
4-22
G-23
G~23
G-24
4-27
G-27
4-28
4-28
4-28
4-29
4-29
4-30
4-30
4-30
4-31

Bl)
1
W

]

11 [
N N ot b b o ok b e e] A ONON ooun (S, 08] DL DDDPNNNON E-R ¥

| T T T (O B IR I RGNS NS B RC RS RS | k:'lUl (SR RC R, RC RS RS, RV, RE)

(8, wn (SN RV NE RV NE R R
P N T T T

w
i
ot
(71

5-13
5-14

5-14
5-14
5-15
5-15
5-15

Secondary-Space Control .
Subsystem-Linkage Control
ASN-Translation Control .
Authorization Index « . .
PC-Number Translation .
PC~Number Translation Control
PC-Number Translation Tables .
Linkage-Table Entries « e .
Entry-Table Entries . . .
PC-Number-Translation Process
Linkage-Table Lookup e e e .
Entry-Table Lookup e e e e e
Recognition of Exceptions
During PC-Number Translation
Sequence of Storage References .
Interlocks for Virtual-Storage
References e e e e e e e .
Instruction Fetching .« e .
DAT-Table Fetches « e e .
Storage-Key Accesses “ . .
Storage-Operand References
Storage-Operand Fetch
References . e e e e
Storage-Operand Store
References e e e .
Storage- Operand Update
References e e e e e e .
Storage-Operand Consistency
Single-Access References .
Multiple-Access Operands .
Block-Concurrent References
Consistency Specification .
Relation Between Operand
Accesses . e e e e e .
Other Storage References .
Serialization e e e s e e @
CPU Serialization « e e .
Channel-Program Serialization

CHAPTER 6. INTERRUPTIONS .

Interruption Action e e e .
Interruption Code e e e .
Enabling and Disabling - .

Handling of Floating Interrup

¢ 0 s e 0

L Y B
¢« s o e

Conditions . .
Instruction- Length Code

Zero ILC . e .

ILC on Instructlon Fetchtng

« o 0 o0 0 e
-
¢ ¢ o O ¢ o o o

Exceptions . .
Exceptions Assocwated N!th the
PSW e e . - . . . e .

Early Exceptlon Recognlt1on
Late Exception Recognition
External Interruption e e .
Clock Comparator
CPU Timer . .
Emergency Slgnal
External Call .
Interrupt Key .
Malfunction Alert
Service Signal .
T0D-Clock Svnc Check
Input/Output Interruption
Machine-Check Interruption
Program Interruption e e e
Program-Interruption Conditio
Addressing Exception . . .
AFX-Translation Exception .
ASN-Translation-Specification
Exception e . « e = =
ASX-Translation Except!on .
Data Exception e e . « . .

R I T B)
D)
LR I B A I I A
R Y Y T S S
¢ ¢ ¢ e ¢ ¢ & & s &
R SR T T S R N S T SR SR B)

cJococoovcocut

Decimal-Divide Exceptlon .
Decimal-Overflow Exception

5-15
5-15
5-15
5-16
5-17
5-18
5-18
5-18
5-18
5-19
5-20
5-21

5-21
5-21

5-22
5-23
5-24
5-24
5-25

5-25
5-25

5-26
5-27
5-27
5-27
5-27
5-27

5-28
5-29
5-29

i
111 U HN
[=2N+)

P10t 11111111 1T & O OOV
1

(b b ok e b ek ok et ok ok foed b e | [||
VIHUNNEFR MO0 O00VWe o O UTUIN-

(oo N o R N W R e R e R R e R

Restart Interruption . e e .
Supervisor-Call Interruption
Priority of Interruptions .

CHAPTER 7.
Data Format e e . e e e e .
Binary-Integer Representatlon
Binary Arithmetic e e e e .

Signed and Logical

Execute Exception © v e e
Exponent-0Overflow Exception
Exponent-Underflow Exception
EX-Translation Exception . .
Fixed-Point-Divide Exception
Fixed-Point-Overflow Exception
Floating-Point-Divide
Exception
LX-Translation Exceptlon
Monitor Event e o e e
Operand Exception « e .
Operation Exception .
Page-Translation Exceptwon
PC-Translation-Specification
Exception e e e e e e e e
PER Event
Primary~Author1ty Exception
Privileged-Operation Exception
Protection Exception « . e .
Secondary-Authority Exception
Segment-Translation Exception
Significance Exception .« . .
Space-Switch Event « o . .
Special-Operation Exceptton

L T T B)
o o o 0 e e

Specification Exception . .
Programming Note “ e e e e
Trace-Table Exception . e .
Translation-Specification
Exception e e e e e . .

Collective Program- Interruptlon
Names . . . « . . .
Recognition of Access Exceptxons
Multiple Program-Interruption
Conditions e e e e e e e e
Access Exceptions o . .
ASN-Translation Exceptlons
Trace Exceptions « e e .

e« e ¢ ¢ & 0

¢ ¢ ¢ ¢

GENERAL INSTRUCTIONS

Signed Binary Arithmetic .« .
Addition and Subtraction .
Fixed-Point Overflow . e .

Unsigned Binary Arithmetic .

Comparison

Instructions e e e e e e e e e e
ADD e e e e e e e e e e e e
ADD HALFWORD e e e e e e e e .
ADD LOGICAL e e e e e e e e e
AND e e e e e e e e e e e e
BRANCH AND LINK e e e e e e .
BRANCH AND SAVE . e e e e
BRANCH AND SAVE AND SET MODE .
BRANCH AND SET MODE « e e e .
BRANCH ON CONDITION e e e e .
BRANCH ON COUNT e e e e e e e
BRANCH ON INDEX HIGH e e e e .
BRANCH ON INDEX LOW OR EQUAL .
COMPARE . e e e e e e e e
COMPARE AND SNAP . e e o o
COMPARE DOUBLE AND SNAP « . .
COMPARE HALFWORD e e e e e e e
COMPARE LOGICAL . « .
COMPQRE LOGICAL CHARACTERS UNDER

MAS e e e e e e
COMPARE LOGICAL LONG « e e o e
CONVERT TO BINARY e e e e e e
CONVERT TO DECIMAL e e e e e e
DIVIDE e e e e e e e e e e ..

6-16
616
6—16
6-17
6-17
6-17

6-17
6-17
6-18
6-18
6-18
6-19

6-19
6-19
6-19
6-20
6-20
6-21
6-21
6-21
6-21
6-22
6-22
6-23
6-23

6-23

6-24
6-24

6-26
6-29
6-30
6-31
6-31

o O
¥

(LR
N =

I

I SNNSNSNNSNNNNNNNNNN

|
b ot b ot ot b ot ot b et | ff L L F L

s NNISI SN NN NN

N~
| B |
[y
O P

s NN
UL I A |
NN = et
[~ X —RV. LN LN

/#bMuMNHHO°00@w$$MUuuMNNH

EXCLUSIVE OR . e e e s .
EXECUTE . . o« e e =
INSERT CHARACTER -

INSERT CHARACTERS UNDER MASK

INSERT PROGRAM MASK
LOAD N
LOAD ADDRESS . .
LOAD AND TEST .
LOAD COMPLEMENT
LOAD HALFWORD
LOAD MULTIPLE
LOAD NEGATIVE
LOAD POSITIVE
MONITOR CALL .
MOVE .« e e e .
MOVE LONG - .
MOVE NUMERICS
MOVE WITH OFFSET
MOVE ZONES .- . .
MULTIPLY .
MULTIPLY HALFWORD
OR .« e e e e e e
PACK . . .
SET PROGRAM MASK .
SHIFT LEFT DOUBLE .
SHIFT LEFT DOUBLE LOGICAL

¢ ¢ ¢ ¢ 0 ¢ ¥ 0

e ¢ ¢ ¢ 0 ¢ o 0 s 0 s ¢ ¢ &

L I L I T Y R Y A A
¢ € 6 ¢ 0 0 e & ¢ s 0 & 0 s 0 & s o s

20NN S I DR DK A A D D D R 2 D R D I I R

e 8 & s & & & & 8 & ¢ 0 8 & s s 0 & s ¢ 9

SHIFT LEFT SINGLE -
SHIFT LEFT SINGLE LOGICAL
SHIFT RIGHT DOUBLE . .
SHIFT RIGHT DOUBLE LOGICAL
SHIFT RIGHT SINGLE . -
SHIFT RIGHT SINGLE LOGICAL
STORE e e e e .
STORE CHARACTER e e e e e
STORE CHARACTERS UNDER MASK
STORE CLOCK - e e . -
STORE HALFWORD - .

STORE MULTIPLE ..
SUBTRACT - . .

SUBTRACT HALFWORD
SUBTRACT LOGICAL
SUPERVISOR CALL
TEST AND SET .- .
TEST UNDER MASK
TRANSLATE .
TRANSLATE AND TEST
UNPACK « e e e e .

¢ o 0 0 0
e 6 ¢ 0 0 0 ¢ 8 ¢ s 0
LI I S K D D Y I Y T
L2 I A O A L B e D

L T T S T B R T R B)

€ 8 8 & 0 & 6 & e & ¢ 0 2 & & s 0 e &t 9 8 0 4 e e e st e

CHAPTER 8. DECIMAL INSTRUCTIONS
Decimal-Number Formats e e e .
Zoned Format c e e e e s o .
Packed Format e e e e e e .
Decimal Codes e e e s e s
Decimal Operations .

Decimal-Arithmetic
Editing Instructions .

Execution of Decimal Instructlons
Decimal

Other Instructions for
Operands « e e .
Instructions « e e
ADD DECIMAL .« . .
COMPARE DECIMAL .
DIVIDE DECIMAL . .
EDIT
EDIT AND MARK .
MULTIPLY DECIMAL .

SHIFT AND ROUND DECIM

¢« ¢ 0 ¢ 0 e 0
¢« ¢ ¢ ¢ 4 e 9

L

SUBTRACT DECIMAL
ZERO AND ADD - .

CHAPTER 9. FLOATING-POINT
INSTRUCTIONS « e e e e .
Floating-Point Number
Representation e e e e .

¢ ¢ e & 0 & s ¢ @
.

¢ ¢ o ¢ ¢ e ¢ o o 0

Instructions

LI Y Y ST T B T S]

L T T S R I R T O R R L S T T S T O Y R R L I R I Y I Y SRR BT S B SR I I B]

D I B Y)

¢ 0 0 4 ¢ ¢ ¢ ¢ 0 0 0

7-21
7-22
7-23
7-23
7-23
7-24
7-24
7-24
71-24
7-25
7-25
7-25
7-26
7-26
7-27
7-27
7-30
7-31
7-31
7-32
7-32
7-33
7-33
7-34
7-34
7-35
7-35
7-36
7-36
7-36
7-37
7-37
7-37
7-38
7-38
7-38
7-39
7-39
7-40
7-40
7-40
7-41
7-41
7-62
7-42
7-63

~
[

F-

F-3

I I I | LI UL T I |
HHEOOWOWAUIUTUTW W WUHN NN =t s

00 00 00 00
I 1 1000000000000 000000 0% 00 0000 00 N0
b et b | 1

xi

Normalization .

Floating-Point~- Data Format

Instructions e e e e
ADD NORMALIZED .
ADD UNNORMALIZED
COMPARE - e .
DIVIDE . .
HALVE
LOAD
LOAD
LOAD
LOAD

AND TEST
COMPLEMENT
NEGATIVE
LOAD POSITIVE
LOAD ROUNDED .
MULTIPLY - ..
STORE .
SUBTRACT NORMALIZED
SUBTRACT UNNORMALIZED

CHAPTER 10.
DIAGNOSE . . c e e oe
EXTRACT PRIMARY ASN .« e e .
EXTRACT SECONDARY ASN - -
INSERT ADDRESS SPACE CONTROL
INSERT PSW KEY - . . .
INSERT STORAGE KEY EXTENDED
INSERT VIRTUAL STORAGE KEY .
INVALIDATE PAGE TABLE ENTRY
LOAD ADDRESS SPACE PARAMETERS
LOAD CONTROL e e e e e e
LOAD PSW - . . .
LOAD REAL ADDRESS
MOVE TO PRIMARY .
MOVE TO SECONDARY
MOVE WITH KEY .
PROGRAM CALL . .
PROGRAM TRANSFER
PURGE TLB .
RESET REFERENCE BIT EXTENDE

o ¢ ¢ s 0

LI T)
¢ ¢ ¢ o 4 & s 0 ¢ o s 4 e

& ¢ ¢ & 0 & & ¢ ¢ s & 0

-
.
.
.
.
-
.
.
.
-
.
-
-
.
.

¢ & ¢ ¢ € & 0 & & ¢ s st s € 3 0 0
€ ¢ o & ¢ ¢ 0 & 0 4 s s s 8 0 4 e

-
.
-
-
.
.
-
-
.
-
.
-
-
-
-
-

¢ ¢ ¢ ¢ ¢ 0 0
¢« ¢ ¢ e 0 e e

4 ¢ o ¢ ¢ o o ¢

« ¢ o ¢ ¢ & o ¢ @

« ¢ o

.
.
.
.
D

SET ADDRESS SPACE CONTROL
SET CLOCK . e . .
SET CLOCK COMPARATOR . .
SET CPU TIMER e e e .
SET PREFIX . -
SET PSW KEY FROM ADDRESS
SET SECONDARY ASN .
SET STORAGE KEY EXTENDED
SET SYSTEM MASK .« e .

SIGNAL PROCESSOR - .

e 0 ¢ & ¢ & ¢ e ¢ ¢ 9 s 0 0

STORE CLOCK COMPARATOR .
STORE CONTROL « e e e
STORE CPU ADDRESS N
STORE CPU 1ID « s e s e .
STORE CPU TIMER « s e .
STORE PREFIX . o e .
STORE THEN AND SYSTEM MASK

R T T T T S T T S S O N O I I O Y Y A

STORE THEN OR SYSTEM MASK
TEST BLOCK e e e e e e e
TEST PROTECTION e e e s .
TRACE e e e e e e e e e
CHAPTER 11. MACHINE-CHECK
HANDLING - . « e e e
Machine-Check Detectwon .

CONTROL INSTRUCTIONS

¢ ¢ ¢ & ¢ & 8 4 ¢ 0 6 s s 0 0 s ¢

¢ ¢ ¢ ¢« & 4 e s

Correction of Machine Malfunct1ons

Error Checking and Correction
CPU Retry . . o v e
Effects of CPU Retry . . .
Checkpoint Synchronization
Handling of Machine Checks
During Checkpoint

Synchronization - . .
Checkpoint- Synchronizatlon
Operations e e e e e e .

xii

I

| OV VVOVOY
[}

NNHERHROORENAD[NN

eoo?coo
i fd oot (b o ot e |

9-13

Checkpoint-Synchronization
Action . « e e .
Channel - Subsystem Recovery
Unit Deletion . .
Handling of Machine Checks
Validation . . e
Invalid CBC in Storage .
Programmed Validation of
Storage . . .
Invalid CBC in Storage Keys
Invalid CBC in Registers
Check-Stop State,
System Check Stop . -
Machine-Check Interruption
Exigent Conditions . .
Repressible Conditions
Interruption Action -
Point of Interruption
Machine-Check-Interruption
Subclass « e e e s e e
System Damage . .
Instruction- Processxng
System Recovery
Timing-Facility Damage
Degradation . e e -
Harning
Channel Report Pending
Service-Processor Damage
Channel-Subsystem Damage
Time of Interruption Occurren
Backed Up . .
Synchronous Machlne Check
Interruption Conditions
Processing Backup « .
Processing Damage . .
Storage-Error Type . -
Storage Error Uncorrected
Storage Error Corrected -

« s o e
¢ ¢ & 8 0 @

¢ 6 e ¢ e ¢ ¢ 0

¢ e ¢ e o o 0
o o
¢ 6 0 6 ¢ T e O s e s s 0 e 0
[

[

¢ (Yo o ¢ o o s o D s

LY B}
e ¢t o o

Storage-Key Error Uncorrected
Machine-Check Interruption-Code

Validity Bits e e e e o o o
PSW-MWP Validity . . .
PSW Mask and Key ValldIty
PSW Program-Mask and

Condition-Code Validity .
PSW-Instruction—-Address

Validity . . .
Failing- Storage Address
Validity . . e .
Floating—-Point- Reglster
Validity . .

General- Reglster Va17d1ty
Control-Register Validity
Storage Lngical Validity -
CPU-Timer Validity . .« .
Clock-Comparator Va11d1ty
Machine-Check Extended
Interruption Information . .
Register-Save Areas « e e e
Failing-Storage Address . .
Handling of Machine-Check

Conditions e e ¢ o o o
Floating Interruptlon
Conditions c s * v e 2 o« &
Floating
Machine-Check-Interruption
Conditions . . .
Floating 1I/0 Interruptlons
Machine-Check Masking c e e W
Channel-Report-Pending
Subclass Mask e e e e e
Recovery Subclass Mask . .

Degradation Subclass Mask

« e s e 0 0

1

OO UL DD

bt b e et b b b b b e e et b
T T A N b o ok o b fok
[|

b o b b
1
bbb g |||

oot ot b
b
{
ot ot et
NN =

11-14
11-15
11-15
11-15
11-16
11-16
11-16
11-16
11-17
11-17
11-17
11-17
11-17

11-17
11-17
11-18
11-18
11-18
11-18
11-18

11-19
11-19
11-19

11-19
11-19
11-19

11-19
11-19
11-20
11-20
11-20
11-20

11-20
11-20
11-21

11-21
11-21
11-21
11-21
11-21
11-22

11-22
11-22

Timing-Facility-Damage
Subclass Mask e e e e e .
Warning Subclass Mask . .
Machine-Check Logout .
Summary of Machine-Check Mask1ng

CHAPTER 12. OPERATOR FACILITIES
Manual Operation
Basic Operator Fac1l|ttes .« .
Address-Compare Controls . .
Alter-and-Display Controls .
Architectural-Mode Indicator
Architectural-Mode-Selection
Controls .
Check-Stop Indlcator
IML Controls .- .
Interrupt Key .
Load Indicator .
Load-Clear Key .
Load-Normal Key
Load-Unit-Address Cont
Manual Indicator
Power Controls
Rate Control .
Restart Key .
Start Key . .
Stop Key . .
Store-Status Key
System—-Reset-Clear Key
System-Reset-Normal K
Test Indicator - .
TOD-Clock Control
Wait Indicator e . .
Multiprocessing Conflgurat'

CHAPTER 13. 1I/0 OVERVIEW
Comparison with System/370
The Channel Subsystem .
Subchannels .
Attachment of Input/Output De

.
.

-

ntrol

¢ ¢ ¢ ¢ 2
¢ ¢ ¢ ¢ 0 ¢ ¢ Qe s s 0o ¢ o

¢ ¢ ¢ & 1 ¢ & ¢ 1 o 8 s s 0

o
K

\Y

.
.
.
-
.
-
.
.
-
.
.
.
o e
-

L I I A R I I R e R N Y]

Ute ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ s o o

Q¢ o
3

Channel Paths « e e .
Control Units e e e .
I/0 Devices « e e e e
I/0 Addressing . . .
Channel-Path Identierr
Subchannel Number .« e .
Device Number .« . . .
Addresses Dependent on
Channel-Path Type e e e .

e ¢ 9 0 ¢ 2 s L e o 6 0
¢ 6 ¢ o o ¢ o (3 e s s

I/0 Operations . . . :
Start-Function. In1t1atlon .
Path Management e e e e e e

Channel-Program Execution
Conclusion of 1/0 Operations
I/0 Interruptions e e e e

CHAPTER 14. I/0 INSTRUCTIONS
Introduction e e e e e e
I/0-Instruction Formats .
I/0-Instruction Execution
Serialization e e .
Operand Access e e .
Condition Code « . .
Program Exceptions .
Instructions . . e e
CLEAR SUBCHAHNEL . .
HALT SUBCHANNEL . .

’

« e & s ¢

MODIFY SUBCHANNEL .
RESET CHANNEL PATH .
RESUME SUBCHANNEL .
SET ADDRESS LIMIT .
SET CHANNEL MONITOR .
START SUBCHANNEL - ..
STORE CHANNEL PATH STATU

L T T S T N R S T T I S S B)

L A T T S B I I)
L L I R Y R T T I R I B B

S

D R R R I || B R Y} L I T R T B T T T T S S B Y S N I] ¢ o o e 0

L T S A I)

L T S R I I T B S T)

11-22
11-22
11-22
11-22

12-1
12-1
12-1
12-1
12-2
12-2

12-2
12-2
12-3
12-3
12-3
12-3
12-3
12-3
12-3
12-3
12-4
12-4
12-4
12-4
12-4
12-5
12-5
12-5
12-5
12-5
12-5

13-1
13-1
13-2
13-2
13-3
13-3
13-4
13-4
13-5
13-5
13-5
13-5

13-5
13-6
13-6
13-6
13-7
13-7
13-8

14-1
14-1
14-1
14-1
14-1
16-2
14-2
14-2
14-2
14-3
14-4
16-6
14-6
14-8
14-9
164-10
14-11
14-13

STORE CHANNEL REPORT WORD

STORE SUBCHANNEL ..
TEST PENDING INTERRUPTION .
TEST SUBCHANNEL J

CHAPTER 15. BASIC I/0 FUNCTIONS
Control of Basic I/0 Functions
Subchannel-Information Block
(SCHIB) . e .
Path-Management- Control Nord
Subchannel-Status Word . .
Model~-Dependent Area . .
Summary of Modifiable Flelds
Channel-Path Allegiance -
Working Allegiance -
Active Allegiance . .
Dedicated Allegiance .
Channel-Path Availability
Control-Unit Type . .
Clear-Function Execution . .
Halt-Function Execution . .
Start-Function and
Resume-Function Execution .
Execution of I/0 Operations
Programming Note e e e .
Blocking of Data
Operation—-Request Block (ORB)

¢« o

-
-
.

« o ¢ 0

Channel-Command Word « e e .
Command Code - e e e .
Designation of Storage Area
Chaining e s e s e e e e e .
Data Chaining e e e e e
Command Chaining « e e e .
Skipping . . . e e e
Program- Controlled Interruptvo

CCH Indirect Data Addressing
Suspension of Channel-Program
Execution

Commands e v e e e e e e e
Write e e e e e e e e e .
Read e e e e e e e e e e e
Read Backward e e e e e .
Control e e e e e e e e .
Sense e e e e e e e e e .
Sense ID . . e e e e .
Transfer in Channel . . .

Command Retry

Concluding 1/0 Operatlons Durlng
Initiation . . .
Immediate Conclus1on of I/O
Operations . . .
Concluding 170 Operatrons Durlng
Data Transfer - . e e e .
Channel-Path-Reset- Functlon
Execution e e e e 4 a e e e =
CHAPTER 16. I/0 INTERRUPTIONS
Interruption Conditions « . e
Unsolicited Interruption
Condition . “ e e
Solicited Interruptlon
Condition - © e e e
Intermediate Interrupt1on
Condition

Primary Interruptlon Condrtlon

-

Secondary Interruption Condition

Alert Inter-~uption Condition
Priority of Interruptions -
Interruption Action .
Interruption-Response Block (IRB)

Subchannel-Status Word (SCSW)

Extended-Status Word . e .

Extended-Control Word . .
Subchannel-5Status-Hord Contents

14-13
16-16
14-15
14-16

15-1
15-1

15-1
15-2
15-6
15-6
15-6
15-9
15-9
15-9
15-10
15-10
15-11
15-11
15-13

15-15
15-17
15-17
15-18
15-19
15-20
15-22
15-22
15-23
15-26
15-27
15-28
15-29
15-30

15-31
15-32
15-33
15-34
15-34
15-35
15-36
15-38
15-39
15-39

15-39
15-40
15-41
15-42

16-1
16-2

16-3
16-3

16-4
16-4
16-4
16-5
16-5
16-6
16-6
16-7
16-8
16-8
16-8

xiii

Subchannel Key . e e e e

Suspend Control (S) . .
Extended-Status-Word Format
(¢ « . .

Deferred- Condltlon Code Contents

Format (F) e e o o o o o @
Prefetch (P) e e s e e e .
Initial-Status-Interruption
Request (I) .« . e . . .
Address-Limit- Checklng
Control (A) e e e e e e .
Suppress—-Suspended
Interruption (U) « .
Subchannel-Control- Fleld
Contents
Zero Condltvon Code (Z)
Extended Control (E)
Path Not Operational (N)
Function Control « . .
Activity Control « . .
Status Control . e e .
Device-Status Conditions
Attention . . .
Status Modlf!er .
Control-Unit End .
Busy
Channel End . .
Device End .« . .
Unit Check . . .
Unit Exception . .
Subchannel-Status Condi
Program-Controlled
Interruption .
Incorrect Length
Program Check
Protection Check
Channel-Data Check
Channel-Control Check
Interface-Control Check
Chaining Check . .
CCH-Address-Field Contents
Count-Field Contents . .
Extended-Status-Word Contents
Extended-Status Format 0
Extended-Status Format 1
Extended-5tatus Format §

.

.

« ¢ 0
e ¢ & 4 & & & ¢ & ¢ 46 ¢ 5 ¢ ¢ 8

e ¢ ¢ o ¢ 4 0

O ¢ ¢ ¢ o o ¢ o o

=]

Ne o ¢ o s o 6 0 ¢ ¢ ¢ o

-t

. o
. .
.- e .
.
.

« o ¢ & 0

.
e ¢ 4 & ¢ ¢ ¢ & o s

Extended-Status Format
Extended-Control Word

CHAPTER 17. 1I/0 SUPPORT
Address-Limit Checking e e e .
Channel-Subsystem-Monitoring
Facilities « . .
Channel- Subsystem-TImlng
Facility “ e e e e e e e
Channel~Subsystem Timer .
Measurement-Block-Update
Facility . . . e e e
Measurement Block e e .
Measurement-Block Origin
Measurement-Block Key .
Measurement-Block Index

« ¢ s s
¢ o ¢ o o

.

Measurement-Block-Updata Mo&e

Measurement-Block-Update
Enable . . .« .
Time-Interval- Measurement
Accuracy
Device-Connect- Tlme Measurement
Facility .- . .

Device-Connect- Ttme-Measurement

Mode . .

Devwce—Connect T\me—Measurement

Enable e e e e e e e e .
Signals and Resets c e o o o =

xiv

FUNCTIONS

17-7

17-7
17-8

Signals .« .
Halt Slgnal .
Clear Signal .
Reset Signal .

Resets .
Channel~- Path Reset
I1/0-System Reset « . .

Externally Initiated Function
Initial Program Loading
Reconfiguration of the 170

System . . « e e e e

Channel- Subsystem Recovery .

Channel-Report Word (CRW)

Channel Report e e e e s .

CRW Contents e e e e e e e

APPENDIX A. NUMBER REPRESENTATION
AND INSTRUCTION-USE EXAMPLES
Number Representation « e

Binary Integers « e e e e
Signed Binary Integers .
Unsigned Binary Integers

Decimal Integers e e e .

Floating-Point Numbers

Conversion Example . .

Instruction-Use Examples

Machine Format « e e

Assembler-Language Format
Addressing Mode in Examples

¢ s ¢ 0

¢ o ¢ ¢ e

¢ ¢ & o o @
LR I B A |
e« o s ¢ o o o
e 0 o o o 0 e

¢ Ne o o o ¢ o o

¢ & 0 0 0

L B S R}

[I)
¢ 8 o 8 e ¢ ¢ 0 0 0

¢ & 8 ¢ ¢ & ¢ ¢ o o 0

General Instructions e e e e e e
ADD HALFWORD (AH) « e e e e e
AND (N, NR, NI, NC) “ e e e .

And (NI . e . .

BRANCH AND LINK (BAL, "BALR)
BRANCH ON CONDITION (BC, BCR)
BRANCH ON COUNT (BCT, BCTR)
BRANCH ON INDEX HIGH (BXH) .

BXH Example 1 e e e v e e

BXH Example 2 .
BRANCH ON INDEX LON OR EQUAL

(BXLE) . « . e .

COMPARE HALFWORD (CH)

COMPARE LOGICAL (CL, CLC, CLI,
CLR) . . « .
Compare Loglcal (CLC) . .
Compare Logical (CLI) . .
Compare Logical (CLR) R
COMPARE LOGICAL CHARACTERS UNDE
MASK (CLM) . .
COMPARE LOGICAL LONG (CLCL)
CONVERT TO BINARY (CVB) . .

CONVERT TO DECIMAL (CVD) o .
DIVIDE (D, DR} e e e e e e .
EXCLUSIVE OR (X, XC, XI, XR)
Exclusive Or (XC) « e e .
Exclusive 0Or (XI) e e o
EXECUTE (EX) .
INSERT CHARACTERS UNDER MASK
(ICM) e e e e e e .
LOAD (L, LR) . e .
LOAD ADDRESS (LA)D
LOAD HALFWORD (LH)
MOVE (MVC, MVI) .
Move (MVC) « e .
Move (MVI) . . .
MOVE LONG (MVCL) .
MOVE NUMERICS (MVN)
MOVE WITH OFFSET (MV0O)
MOVE ZONES (MVZ) « e .
MULTIPLY (M, MR) e .
MULTIPLY HALFWORD (MH)
OR (0, OR, 0I, 0C) . .
Or (0I) e e e o o =
PACK (PACK) e e e e

e s 0 0 0 ¢ o ¢ o K s s o

.
-
-
-
.
-
-

O & & & ¢ 6 0 ¢ 8 s 8 &8 4 ¢ 0

P R R T T S T R R T S SR ST Y)
¢ 4 & ¢ 8 € 9 & 0 0 8 & 0 s s
P I R R R T T ST T S S R B)

17-8
17-8
17-8
17-8
17-9
17-9
17-9
17-12
17-12

17-14
17-14
17-15
17-15
17-16

i
N NN e OO0 VVRNINNNNUIVIEANNN -

I>>>>>>>>T>>>>>>>>>

[A | [} 1t
[Y N Sy

> > X X> > D> >3 3> 2> 2>
I A B |

ot o ot ot

NP P

A-15
A-15
A-16
A-17

A-17
A-138
A-18
A-19
A-19
A-19
A-20
A-20
A-21
A-21
A-22
A-22
A-23
A-23
A-23
A-23

SHIFT LEFT DOUBLE (SLDA) e . .
SHIFT LEFT SINGLE (SLA> . e .
STORE CHARACTERS UNDER MASK
(STCM)
STORE NULTIPLE (STM) - .
TEST UNDER MASK (TM) . .
TRANSLATE (TR) . . .
TRANSLATE AND TEST (TRT)
UNPACK (UNPK) e e e e
Decimal Instructions . .
ADD DECIMAL (AP) e e .
COMPARE DECIMAL (CP) .
DIVIDE DECIMAL (DP) .
EDIT (ED) . . .
EDIT AND MARK (EDMK) .
MULTIPLY DECIMAL (MP)
SHIFT AND ROUND DECIMAL
Decimal Left Shift .
Decimal Right Shift
Decimal Right Shift and Round
Multiplying by a Variable
Power of 10 e e e e e e e .
ZERO AND ADD (ZAP) e e e e e .
Floating-Point Instructions . .
ADD NORMALIZED (AD, ADR, AE,
AER, AXR) e e e e .
AEDRUNNORNALIZED (AU, AUR, AW,
WR)Y . e e e .
COMPARE (CD, CDR, CE, CER) .
DIVIDE (DD, DDR, DE, DER) .
HALVE (HDR, HER) e« e e e e .
MULTIPLY (MD, MDR, ME, MER, MXD
MXDR, MXR) e e e e e e e .
Floating-Point-Number Conversion
Fixed Point to Floating Point
Floating Point to Fixed Point
Multiprogramming and
Multiprocessing Examples . e .
Example of a Program Failure
Using OR Immediate .
COMPARE AND SWAP (CS, CDS)
Setting a Single Bit . .
Updating Counters .- .

e e e e &t 8 e & & 0 0 s 0
e 8 e o & & ¢ ¢ ¢ o ¢ ¢ 0

)

¢« “Je s ¢ o ¢ o 4 ¢ & 0 & 0 0

(SR

DR T Y)

Bypassing POST AND NAIT
BYPASS POST Routine .

L Y S I)
L I I A |

A-24
A-24

A-24
A-25
A-25
A-26
A-26
A-28
A-28
A-28
A-29
A-29
A-29
A-31
A-32
A-32
A-32
A-33
A-33

A-33
A-34
A-34

A-34

A-34
A-35
A-35
A-36

A-36
A-36
A-37
A-37

A-38

A-38
A-38
A-39
A-39
A-40
A-60

BYPASS WAIT Routine e e e e
LOCK/UNLOCK . e e e e e e .
LOCK/UNLOCK w1th LIF0 Queuing
for Contentions e e e e e .
LOCK/UNLOCK with FIFO Queuing
for Contentions c e e e .
Free-Pool Manipulatlon e e e e

APPENDIX B. LISTS OF INSTRUCTIONS

APPENDIX C. CONDITION-CODE
SETTINGS e e e e e e e e e .
APPENDIX D. COMPARISON BETWEEN

SYSTEM/370 AND 370-XA MODES .
New Facilities in 370-XA Mode
Bimodal Addressing . « .
31-Bit Logical Address1ng
31-Bit Real and Absolute
Addressing « e e e e s
Page Protection . e e .

¢« o 00

Tracing .
Comparison of Fac1llt1e5
Summary of Changes . . .

Changes in Instructions Pro

Input/0Output Comparison

Comparison of PSW Formats

Changes in Control-Register

A551gnment .

Changes in Asstgned Storage

Locations . « e e
SIGNAL PROCESSOR Changes . e .
Machine-Check Changes . e e .

e

. <o « ¢ 0 e
L] Q_c « ¢ 0
o o Qv 2 e o

.
.

Changes to
Changes to
Changes to
Addresses
APPENDIX E.
APPENDIX F.
APPENDIX G.

INDEX - .

Addressing Wraparound
LOAD REAL ADDRESS .
31-Bit Real Operand

e o ® e e . . - . -

TABLE OF POWERS OF 2
HEXADECIMAL TABLES
EBCDIC CHART - . .

= e e & = . . o e ® .

A-60
A-40

A-61

A-42
A-44

B-1

O
i
[N

[= Rl o B UU??UUUU oo o
O OOWWS N NOPPRANNNEF s

o Oo
]

e T T
L~

Xv

CHAPTER 1. INTRODUCTION

Highlights of 370-XAcuiriiriiecennceccsonosoncnnccncsoses 1-1
Compatibility ..ciceeriineeeerrceecesccocacosossnccncsscnossns 1-3
Compatibility Among Systems in 370-XA Modecceceveeenn 1-3
Compatibility Between Systems in System/370 Mode
and in 370-XA Mode ...cieeeeercencacecncossvennosscsanccccsns 1-4
Control-Program Compatibilityceeiuirieeteeeneannnn 1-4
Problem—-State Compatibility ...t eenennnans 1-4
System Program ct et s estcerssssteererr oot eesen 1-5
Availabi lity (oot iieiieeeeeeccacacecenosccnnnsacaccnses 1-5

This publication describes the architec-
ture of systems operating in the IBM
System/370 extended-architecture
(370-XA) mode.

The architecture of a system defines its
attributes as seen by the programmer,
that 1is, the conceptual structure and
functional behavior of the machine, as
distinct from the organization of the
data flow, the logical design, the phys-
ical design, and the performance of any
particular implementation. Several
dissimilar machine implementations may
conform to a single architecture. When
programs running on different machine
implementations produce the results that
are defined by a single architecture,
the implementations are considered to be
compatible.

HIGHLIGHTS OF 370-XA

The 370-XA mode has evolved from the
System/370 architecture, with special
attention paid to the implementation of
large systems. It incorporates a number
of significant new facilities beyond
System/370. Some facilities available
in the System/370 mode are changed or
not provided in the 370-XA mode. A
detailed comparison of the differences
in the facilities and functions which
are offered in the System/370 mode and
in the 370-XA mode appears 1in Appendix
D.

The most significant change from
System/370 is in the I/0 facilities
provided by the channel subsystem. It
includes these significant new capabili-
ties:

. Path-independent addressing of I1/0
devices, which permits the initi-
ation of I/0 operations with any
device without regard to which CPU
is executing the I/0 instruction or
how the I/0 device is attached to
the channel subsystem. Any I/0

interruption can be handled by any
CPU enabled for it.

Path management, whereby the chan-
nel subsystem determines what paths
are available for selection, choos-
es a path, and manages any busy
conditions encountered while
attempting to initiate 170 process-
ing with the associated devices.
These functions are performed with-
out interaction with the program.

Dvnamic reconnection, which permits
any 170 device using this capabili-
ty to reconnect to any available
channel path to which it has access
in order to continue execution of a
chain of commands. This capability
complements the path-management
capability; together, they permit
the channel subsystem and the I/0
device to choose the first avail-
able path to initiate or continue
execution of a chain of operations.

Programmable interruption sub-
classes, which permit the
programmed assignment of I/0-

interruption requests from individ-
ual I/0 devices to any one of eight
maskable interruption queues.

An additional CCW format for the
direct use of 31-bit addresses in
channel programs. The new CCH
format, called format 1, is
provided in addition to the
System/370 CCH format, now called
format 0. The format of the CCUWs
is specified when an I/0 operation
is initiated.

Address—1imit checking, which pro-
vides an additional storage-protec-
tion facility to prevent data
access to storage locations above
or - below a specified absoclute
address. The absolute address-
limit value can be set by an I/0
instruction, and individual sub-
channels can be set up by another
I/0 instruction to allow data
accesses to locations only at or

Chapter 1. Introduction 1-1

The following is a
extensions
mode:

1-2

above, or only below, the limit

address.

Monitoring facilities, which can be
invoked by the program to cause the
channel subsystem to measure and
accumulate, in main storage, key
I/0-resource usage parameters for
individual subchannels. The accu-
mulated data-transfer time for a
channel-program execution can be

passed to the program with the
ending status for that channel
program.

A set of 13 new I/0 instructions,

with associated control blocks,
which are provided for the control
of the channel subsystem.

summary of the other
incorporated in the 370-XA

Bimodal addressing provides two

operation: a 26-bit
addressing mode for running old
programs and a 31-bit addressing
mode. The mode is controlled by a

modes of

bit in the PSW, and unprivileged
instructions are provided that
examine and set the mode. These
instructions conveniently permit

which must
addressing
which can

31-bit

combining old programs,

operate in the 24-bit

mode, and new programs,
take advantage of the
addressing mode.

31-bit loagical addressing extends

the virtual address space from the
16M bytes addressable with 24-bit
addresses to 26G bytes
(2,1647,483,648 bytes). In the
31-bit mode, address arithmetic
and all logical addresses specified
by instructions, as well as the
address appearing in the program-
status word (PSW), are expanded to
31 bits. Addresses appearing in
control registers and permanently
assigned storage locations are 31
bigs, independent of the addressing
mode.

31-bit real and absolute addressing

provides addressability for up to
2G bytes of main storage. Associ-
ated with this extension, a number
of formats are changed to provide

for 31-bit address fields. These
include the dynamic-address-
translation and other table
entries, the associated control

registers, and the prefix register.
The 3Jl-bit-real-and-absolute-
addressing facility replaces the
extended-real-addressing facility
of System/370, where page-table-
entry bits 13 and 1% are used to
extend the real address to 26 bits.

The 370-XA protection facilities
reflect the adoption of the 4K-byte

370-XA Principles of Operation

status at

block as the basic unit of storage
allocation. Only one storage key
is allocated to a 4K-byte
protection block of storage; that
is, the System/370 2K-byte block is

not provided. Associated with the
4K-byte protection block is a
control, called the fetch-
protection-override control, =xhat
eliminates fetch protection for
locations 0-2047 so as to permit

access to status and control infor-
mation located in the first 2K
bytes of storage. Page protection,
which is controlled by a bit in the
page—table entry, replaces segment

protection introduced for later
models of System/370. The page-
protection facility permits
establishing read-only pages. As

in System/370, low-address protec-
tion provides additional protection
for the contents of storage
locations 0 through 511.

The tracing facility assists in the
determination of system problems by
providing an on-going - record in
storage of significant events.
Branch tracing and ASN tracing may
implicitly form entries in the
trace table, whereas entries may be

explicitly formed by the TRACE
instruction. Each of the three
types of tracing is separately
controllable. A separate trace

table is associated with each CPU.
This facility replaces the MVS-
oriented System/370 dual-address-
space tracing.

The two orders set prefix and store
address provide addi-
tional capability for communication
between CPUs by means of the SIGNAL
PROCESSOR instruction.

The DIVIDE (DXR) instruction
provides for an extended-precision
dividend, divisor, and quotient and
thus rounds out the set of
extended-precision floating-point
instructions.

The follouwing is a summary of the facil-

ities appearing

in the System/370 mode

but not provided in the 370-XA mode:

The System/370 I/0 instructions and
I1/0 interruptions, including all 10

24-bit addressas,

System/370 I/0 instructions, chan-
nel masks in control register 2,
the block-multiplexing control in
control register 0, and channel-set
switching with the associated two
instructions. These facilities are
replaced by the 370-XA channel
subsystem.

The Svstem/370 formats containing
which have been
replaced by formats providing for
31-bit addresses. These include
tables and control registers asso-

ciated with dynamic address
translation and the dual-address-
space facility.

. The basic-control mode and the
associated PSW format, as well as
the controls and information
formats of the interruption mecha-

nism. In the 370-XA mode, only the
functions and format of the
System/370 extended-control mode

are available.

. The interval timer at

location 80.

storage

. The 2K-bvte block associated with a
storage key and the instructions
INSERT STORAGE KEY, RESET REFERENCE
BIT, and SET STORAGE KEY.

. Direct control, including the
instructions READ DIRECT and WRITE
DIRECT and the external signals.

L4 Certain System/370 machine-check
and I/0O-recovery facilities. In
the 370-XA mode, these conditions
either are encoded differently or
the associated error-recording and
recovery functions are performed by
the machine without &a need for
bringing the associated information
to the attention of the program.
The facilities include the I/0
extended logout and the associated
control in control register 14,
machine-check extended logout and
the associated controls in control
registers 14 and 15, limited-
channel-logout extensions, and some
machine-check indications.

Additionally, the 370-XA mode differs
from the System/370 mode in that (1) the
control-register assignment has been
changed, (2) storage addresses for chan-
nel programs in the 24-bit mode cause an
I1/0 program check instead of wraparound,
(3) the extended-key instructions and
TEST BLOCK are subject to the 24-bit and
31-bit addressing modes, and (4) it is
unpredictable whether prefixing is
applied to addressing of dynamic—
address-translation tables.

Except for the facilities specifically
identified as not provided, the 370-XA
mode includes all facilities that are
defined in the
Operation. Most of
are considered features in the
Systems370 mode (bacause they are
optional or unavailable on some models)
are a standard part of the 370-XA mode.

the facilities that

Specifically, the 370-XA mode incorpo-
rates dynamic address translation,
including the common-segment bit and the
instructions INVALIDATE PAGE TABLE ENTRY
and TEST PROTECTION introduced for later
models of System/370. The table formats
are modified to accommodate 31-bit real
addresses, . and, in contrast to the

Svstem/370 Principles of .

facility in the System/370 mode, this
facility is available only with 1M-byte
segments and 4K-byte pages, reflecting
the larger virtual and real storage
available on systems operating in the
370-XA mode.

Similarly, the 370-XA
of the functions (except for DAS
tracing) of the Systems370 dual-
address—-space facility. The 370-XA mode
thus permits establishing addressability
for up to 65,536 address spaces of 26
bytes each. A number of control-
register and table formats, however, are

mode includes all

changed to accommodate the 31-bit
address fields.
The System/370 multiprocessing facil-

ities, which include prefixing, CPU-
address identification, CPU signaling
and response, and TOD-clock synchroniza-
tion are a basic part of the 370-XA
mode. Thus, the instructions SET
PREFIX, STORE PREFIX, STORE CPU ADDRESS,
and SIGNAL PROCESSOR are operative even
when no other CPU is in the configura-
tion.

Even though the System/370 I/0 facil-
ities have generally been replaced by
the channel subsystem in the 370-XA
mode, and although a new channel-
command-word (CCW) format is introduced
to accommodate 31-bit addresses, the
System/370 24-bit format, including the
command codes and flags, is carried into
the 370-XA mode. Similarly, the 370-XA
mode incorporates the functions of the
suspend-and-resume facility available on
the later System/370 models. Compati-
bility with System/370 is maintained
also in the physical attachment of I/0
control units via the System/370 1I/0
interface.

COMPATIBILITY

COMPATIBILITY AMONG SYSTEMS IN 370-XA
MODE

Although systems operating in the 370-XA
mode may differ in implementation and
physical capabilities, logically they
are upward and downward compatible.
Compatibility provides for simplicity in
education, availability of system
backup, and ease in system growth.
Specifically, any program wuwritten to
operate in the 370-XA mode gives identi-
cal results on any system operating in
that mode, provided that the program:

1. Is not time~dependent.
2. Does not depend on system facili-
ties (such as storage capacity, 1/0

equipment, or optional facilities)
being present when the facilities

Chapter 1. Introduction 1-3

are not included
tion.

in the configura-

3. Does not depend on system facili-
ties being absent when the facili-
ties are included in the
configuration. For example, the
program must not depend on inter-
ruptions caused by the use of
operation codes or command codes
that are not installed in some
models. Also, it must not use or
dapend on fields associated with
uninstalled facilities. For exam-
ple, data should not be placed in
an area used by another model for
logout. Similarly, the program
must not use or depend on unas-
signed fields in machine formats
(control registers, instruction
formats, etc.) that are not explic-
itly made available for program
use.

4. Does not depend on results or func-
tions that are defined in this
publication to be unpredictable or
model -dependent, or on special-
purpose functions (such as assists)
that are not described in this
publication. This includes the
requirement that the program should
not depend on the assignment of
device numbers and CPU addresses.

5. Does not depend on results or func-
tions that are defined in the
functional-characteristics publica-
tion for a particular model to be
deviations from the architecture
defined in this publication.

COMPATIBILITY BETWEEN SYSTEMS IN
SYSTEM/370 MODE AND IN 370-XA MODE

Control-Program Compatibility

were written to
operating in the
cannot be directly
thosea systems to
operating in the 370-XA mode.
because in the 370-XA mode the
BC mode 1is not present, new facilities
for I/0 are included, and the dynamic-
address—translation facility is
modified. (See Appendix D for a
detailed comparison between the
System/370 and 370-XA modes.)

Control programs that
run on systems
System/370 mode

transferred from
systems
This is

To provide full control-program compat-
ibility for the System/370 mode, all
models which provide the 370-XA mode
also offer manual controls that place
the machine in the System/370 mode.
Whaen the system is in this mode, the
operation of the system 1is as described
in the IBM Svystem/370 Principles of
Operation, GA22-7000.

1-4¢ 370-XA Principles of Operation

Problem-State Compatibility

A high degree of compatibility exists at
the problem-state level in going forward
from systems operating in the Systems/370
mode to systems operating in the 370-XA
mode. Because the majority of a user's
applications are written for the problem
state, this problem-state compatibility
is useful in many installations.

A program written to run in the problem
state on systems operating in the
System/370 mode will run on a system
operating in the 370-XA mode, provided
that the program:

1. Observes the limitations described
in the section "Compatibility Among
Systems in 370-XA Mode.™

2. Is not dependent on control-program
facilities which are unavailable on
the system.

3. Takes into account other changes
made to the System/370 architec-
tural definition that affect com-
patibility between the Systems/370
mode and the 370-XA mode. These
changes are described in Appendix

Programming Note

This publication assigns
various operation codes, to bit posi-
tions in instructions, channel-command
words, registers, and table entries, and
to fixed locations in the low 512 bytes
of storage. Unless specifically noted,
the remaining operation codes, bit posi-
tions, and low-storage locations are
reserved for future assignment to new
facilities and other extensions of the
architecture.

meanings to

To ensure that existing programs run if
and when such new facilities are
installed, programs should not depend on
an indication of an exception as a
result of invalid values that are
currently defined as being checked. If
a value must be placed in unassigned
positions that are not checked, the

program should enter =zeros. When the
machine provides a code or field, the
program should take into account that

new codes
the future.
unassigned low-storage
keeping information
locations may be assigned in the future
in such a way that the machine causes
this location to be changed.

and bits may be
The program

assigned in
should not use
locations for
since these

SYSTEM PROGRAM

The system is designed to operate with a
control program that coordinates the use
of system resources and executes all I/0
instructions, handles exceptional condi-
tions, and supervises scheduling and
execution of multiple programs.

AVATLABILITY

Availability is the capability of a
system to accept and successfully proc-
ess an individual job. Systems operat-
ing in the 370-XA mode permit
substantial availability by (1) allowing
a large number and broad range of jobs
to be processed concurrently, thus
making the system readily accessible to
any particular job, and (2) limiting the
effect of an error and identifying more
precisely its cause, with the result
that the number of Jjobs affected by
errors is minimized and the correction
of the errors facilitated.

Several design aspects make this possi-
ble.

- A program is checked for the
correctness of instructions and
data as the program is executed,
and program errors are indicated
separate from equipment errors.
Such checking and reporting assists
in locating failures and isolating
effects.

. The protection facilities, in
conjunction with dynamic address
translation, permit the protection
of the contents of storage from
destruction or misuse caused by
erroneous or unauthorized storing
or fetching by a program. This
provides increased security for the
user, thus permitting applications
with different security require-
ments to be processed concurrently
with other applications.

° Dynamic address translation allouws
isolation of one application from
another, still permitting them to

share common resources. Also, it
permits the implementation of
virtual machines, which may be used
in the design and testing of new
versions of operating systems along
with the concurrent processing of
application programs. Addition-
ally, it provides for the
concurrent operation of incompat-
ible operating systems.

Multiprocessing and the channel
subsystem permit better use of
storage and processing capabili-
ties, more direct communication
between CPUs, and duplication of
resources, thus aiding in the
continuation of system operation in
the event of machine failures.

MONITOR CALL, program-event re-
cording, and the timing facilities
permit the testing and debugging of
programs without manual interven-
tion and with little effect on the
concurrent processing of other
programs.

On most models, error checking and
correction (ECC) in main storage,
CPU retry, and command retry
provide for circumventing intermit-
tent equipment malfunctions, thus
reducing the number of equipment
failures.

An enhanced machine-check handling

mechanism provides model-
independent fault isolation, which
reduces the number of programs

impacted by uncorrected errors.
Additionally, it provides model-
independent recording of machine-
status iaformation. This leads to
greater machine-check handling
compatibility between models and
improves the capability for loading
and running a program on a differ-
ent model when a system failure
occurs.

A small number of manual controls
are required for basic system oper-
ation, permitting most operator-
system interaction to take place
via a unit operating as an 1I/0
device and thus reducing the possi-
bility of operator errors.

Chapter 1. Introduction 1-5

Main Storagecccecirececcecns

Central Processing Unit

Program-Status Word
General Registerscc.....
Floating-Point Registers
Control Registerscccvven
Input and OQutput
Channel Subsystem
Input/0utput Devices and Control Unitsccieeererenens
Operator Facilitiesc0...
Service Processorccececescs

Logically, a system consists of main
storage, one or more central processing
units (CPUs), operator facilities, a
channel subsystem, and I/0 devices. I/0
devices are attached to the channel
subsystem through control wunits. The
connection between the channel subsystem
and a control unit is called a channel
path. The physical identity of these
functions may vary among
implementations, called "models." The
figure "Logical Structure of a 370-XA
System With Two CPUs" depicts the
logical structure of a two-CPU multipro-
cessing system.

Specific processors may differ in their
internal characteristics, the installed
facilities, the number of subchannels,
channel paths, and control units which
can be attached to the channel
subsystem, the size of main storage, and
the representation of the operator
facilities. The differences in internal
characteristics are apparent to the
observer only as differences in machine
performance.

...........................

...........................

...........................

...........................

...........................

CHAPTER 2. ORGANIZATION

CPU

Channel

CPU Main Storage

Subsystem

ChannTI Paths

|
7 7

I /
cu

L] 11T/ 00
[__]ooo
Cu

' /

CUF—r—T1T—71—/
000

Logical Structure of a 370-XA System
with Two CPUs

Chapter 2. Organization

0

/

2-1

A system viewed without regard to its
I/0 devices is referred to as a config-
uration. All of the physical equipment,
whether in the configuration or not, is
referred to as the installation.
Model-dependent reconfiguration controls
may be provided to change the amount of
main storage and the number of CPUs and
channel paths in the configuration. In
some instances, the reconfiguration
controls may be used to partition a
single configuration into multiple
configurations. Each of the configura-
tions so reconfigured has the same
structure, that is, main storage, one or
more CPUs, and one or more subchannels
and channel paths in the channel subsys-
tem. Each configuration is isolated in
that the main storage 1in one configura-
tion is not directly addressable by the
CPUs and the channel subsystem of anoth-
er configuration. It is, however,
possible for one configuration to commu-
nicate with another by means of shared
I/0 devices or a channel-to-channel
adapter. At any one time, the storage,
CPUs, subchannels, and channel paths
connected together in a system are
referred to as being in the configura-
tion. Each CPU, subchannel, channel
path, and main-storage location can be
in only one configuration at a time.

MAIN STORAGE

Main storage, which is directly address-
able, provides for high-speed processing
of data by the CPUs and the channel

subsystem. Both data and programs must
be loaded into main storage from input
devices before they can be processed.

storage available on
the system depends on the model, and,
depending on the model, the amount in
the configuration may be under control
of model-dependent configuration
controls. The storage is available in
multiples of 4K-byte blocks. At any
instant in time, the channel subsystem
and all CPUs in the configuration have
access to the same blocks of storage and
refer to a particular block of main-
storage locations by using the same
absolute address.

The amount of main

Main storage may be either
integrated with a CPU

physically
or constructed as

standalone units. Additionally, main
storage may be composed of large-
capacity storage and a faster-access

buffer storage, sometimes called a
cache. Each CPU may have an associated
cache. The effects, except on perform-

ance, of the physical construction and
the use of distinct storage media are
not observable by the program.

2-2 370-XA Principles of Operation

CENTRAL PROCESSING UNIT

The central processing unit (CPU) is the
controlling center of the system. It
contains the sequencing and processing
facilities for instruction execution,
interruption action, timing functions,
initial program loading, and other
machine-related functions.

The physical implementation of the CPU
may differ among models, but the logical
function remains the same. The result
of executing an instruction is the same
for each model, providing that the
compatibility rules are observed.

The CPU, in executing instructions, can
process binary integers and floating-
point numbers of fixed length, decimal
integers of variable length, and logical
information of either fixed or variable
length. Processing may be in parallel
or in series; the width of the process-
ing elements, the multiplicity of the
shifting paths, and the degree of simul-
taneity in performing the different
types of arithmetic differ from one CPU
to another without affecting the logical
results.

Instructions which the CPU executes fall
into five classes: general, decimal,
floating-point, control, and 170
instructions. The general instructions
are used in performing binary integer
arithmetic operations and logical,
branching, and other nonarithmetic oper-
ations. The decimal instructions
operate on data in the decimal format,
and the floating-point instructions on
data in the floating-point format. The
privileged control instructions and the
I/0 instructions can be executed only
when the CPU is in the supervisor state;
the semiprivileged control instructions
can be executed in the problem state,
subject to the appropriate authorization
mechanisms.
To perform its functions, the CPU may
use a certain amount of internal
storage. Although this internal storage
may use the same physical storage medium
as main storage, it is not considered
part of main storage and is not address-
able by programs.

The CPU provides registers which are
available to programs but do not have
addressable representations in main
storage. They include the current
program-status word (PSW), the general
registers, the floating-point registers,
the control registers, the prefix regis-
ter, and the registers for the clock
comparator and the CPU timer. Each CPU
in an installation provides access to a
time-of-day (T0D) clock which may be
local to that CPU or shared with other
CPUs in the installation. The instruc-
tion operation code determines which
type of register is to be used in an

operation. See the figure "General,
Floating-Point, and Control Registers"”
later in this chapter for the format of
those registers.

PROGRAM-STATUS WORD

The program—status word (PSW) includes
the instruction address, condition code,
and other information used to control
instruction sequencing and to determine
the state of the CPU. The active or
controlling PSW is called the current
PSW. It governs the program currently
being executed.

The CPU has an interruption capability,
which permits the CPU to switch rapidly
to another program in response to excep-
tional conditions and external stimuli.

When an interruption occurs, the CPU
places the current PSW in an assigned
storage location, called the old-PSHW

location, for the particular class of
interruption. The CPU fetches a new PSW
from a second assigned storage location.
This new PSW determines the next program

to be executed. When it has finished
processing the interruption, the inter-
rupting program reloads the old PSW,

making it again the current PSW, so that
the interrupted program can continue.

There are six classes of interruption:
external, I/0, machine check, progran,
restart, and supervisor call. Each
class has a distinct pair of old-PSW and
new-PSH locations permanently assigned
in real storage.

GENERAL REGISTERS

Instructions may designate information
in one or more of 16 general registers.
The general registers may be used as
base-address registers and index regis-
ters in address arithmetic and as accu-
mulators in general arithmetic and
logical operations. Each register
contains 32 bits. The general registers
are identified by the numbers 0-15 and
are designated by a four-bit R field in
an instruction. Some instructions
provide for addressing multiple general
registers by having several R fields.
For some instructions, the use of a
specific general register is implied
rather than explicitly designated by an
R field of the instruction.

For some operations, two adjacent gener-
al registers are coupled, providing a

64~-bit format. In these operations, the
program must designate an even—-numbered
register, which contains the leftmost
(high-order) 32 bits. The next higher-
numbered register contains. the rightmost
(low-order) 32 bits.

In addition to their use as accumulators
in general arithmetic and logical oper-
ations, 15 of the 16 general registers
are also used as base-address and index
registers in address generation. In

these cases, the registers are desig-
nated by a four-bit B field or X field
in an instruction. A value of =zero in

the B or X field specifies that no base
or index 1is to be applied, and, thus,
general register 0 cannot be designated
as containing a base address or index.

FLOATING-POINT REGISTERS

Four floating-point registers are avail-
able for floating-point operations.
They are identified by the numbers 0, 2,
4, and 6 and are designhated by a four-—
bit R field in floating-point instruc-—

tions. Each floating-point register is
64 bits long and can contain eithuer a
short (32-bit) or a long (64-Lit)

floating-point operand. A short operand
occupies the leftmost bit positions ot a
floating-point register. The rightmost
portion of the register is ignored in
operations that wuse short operands and
remains unchanged in operations that
produce short results. Two pairs of
adjacent floating—point registers can be
used for extended operands: registers 0
and 2, and registers 4 and 6. Each of
these pairs, identified by the numbers 0
and &%, provides for a 128-bit format.

CONTROL REGISTERS

The CPU has provisions for 16 control
registers, each having 32 bit positions.
The bit positions in the registers are
assighed to particular facilities in the
system, such as program—-event recording,

and are used either to specify that an
operation can take place or to furnish
special information required by the
facility.

The control registers are identified by
the numbers 0-15 and are designated by
four-bit R fields 1in the instructions
LOAD CONTROL and STORE CONTROL. Multi-
ple control registers can be addressed
by these instructions.

Chapter 2. Organization 2-3

Control General Floating-Point Registers

Registers Registers
R Register
Field Number |e—32 bits—>| |e—32 bits—>| } &————64 bitg———>]|
— -
0000 0
0001 1
—
0010 2
0011 3
0100 %
0101 5
0110 6
0111 7
1000 8
1001 9 B
— Note: The brackets
1010 10 indicate that the two
registers may be coupled
as a double-register
pair, designated by
1011 11 specifying the lower-
— numbered register in
the R field. For ex-
— ample, the general-
1100 12 register pair 14 and
15 is designated by
1110 binary in the R
field.
1101 13
1110 14
1111 15

General, Floating-Point, and Control Registers

2-4 370-XA Principles of Operation

INPUT AND OUTPUT

Input/output (I/0) operations involve
the transfer of information between main
storage and an I/0 device. I/0 devices
and their control units attach to the
channel subsystem, wWhich controls this
data transfer.

CHANNEL SUBSYSTEM

The channel subsystem directs the flow
of information between I/0 devices and
main storage. It relieves CPUs of the
task of communicating directly with I/0
devices and permits data processing to
proceed concurrently with I/0
processing. The channel subsystem uses
one or more channel paths as the commu-
nication link in managing the flow of
information to or from 1/0 devices. As
part of I/70 processing, the channel
subsystem also performs the path-
management function of testing for
channel-path availability, selecting an
available channel path, and initiating
execution of the operation with the I/0
device. Within the channel subsystem
are subchannels.

One subchannel is provided for and dedi-
cated to each I/0 device accessible to
the channel subsystem. Each subchannel
contains storage for information
concerning the associated 170 device and
its attachment to the channel subsystem.
The subchannel also provides storage for
information concerning I/0 operations
and other functions involving the asso-
ciated I/0 device. Information
contained in the . subchannel can be
accessed by CPUs using I/0 instructions
as well as by the channel subsystem and
serves as the means of communication
between any CPU and the channel subsys-
tem concerning the associated I/0
device. The actual number of subchan-
nels provided depends on the model and
the configuration; the maximum number of
subchannels is 64K.

I/70 devices are attached through control
units to the channel subsystem via chan-
nel paths. Control units may be
attached to the channel subsystem via
more than one channel path, and an I/0
device may be attached to more than one
control unit. 1In all, an individual I/0
device may be accessible to the channel
subsystem by as many as eight different
channel paths, depending on the model
and the configuration. The total number
of channel paths provided by a channel
subsystem depends on the model and the
configuration; the maximum number of
channel paths is 256.

INPUT/0UTPUT DEVICES AND CONTROL UNITS

Input/output devices include such equip-
ment as card readers and punches,
magnetic-tape units, direct-access stor-
age, displays, kevyboards, printers,
teleprocessing devices, communications
controllers, and sensor-based equipment.
Many 1/0 devices function with an
external medium, such as punched cards
or magnetic tape. Some I/0 devices
handle only electrical signals, such as
those found in sensor-based networks.
In either case, I/0-device operation is
regulated by a control wunit. In all
cases, the control-unit function
provides the logical and buffering capa-
bilities necessary to operate the
associated I/0 device. From the
programming point of view, most
control-unit functions merge with I/0-

device functions. The control-unit
function may be housed with the 1I/0
device or in the CPU, or a separate

control unit may be used.

OPERATOR FACILITIES

The operator facilities provide the
functions necessary for operator control
of the machine. Associated with the
operator facilities may be an operator-
console device, which may also be used
as an 170 device for communicating uith
the program.

The main functions provided by the oper-
ator facilities include resetting,
clearing, initial program loading,
start, stop, alter, and display.

SERVICE PROCESSOR

Depending on the model, a service
processor may be provided. The servicc
processor, which is intended primarily
for maintenance of the system, may
perform (1) some or all of the functions
associated with initial microprogram
loading, resets, and other operator
facilities, (2) CPU retry and other
recovery actions associated wi th
machine-check handling, and (3) recon-
figuration operations.

Normally, the existence of the service
processor is not apparent to the program
since the functions involved could be
implemented by any physical unit in the
system with the same logical results.
However, the service processor can
generate two interruptions: a service-
signal external interruption and a
service-processor—damage machine-check
interruption.

Chapter 2. Organization 2-5

CHAPTER 3.

STORAGE

Storage Addressing ...ceceeeeeerececcsscercencnscosocsccnanenn 3-2
Information Formatscieiececenenaccecenes heoceseceons 3-2
Integral Boundarieseeeeeereceenccennconnesnnnenonns 3-3

Address Types and Formatsc.ceeeieereninneecrcensnnancnnes 3-4
Address TypeS cveevreereeccnesseseonsssaccancsssoanasnsnss 3-4%

Absolute Address ...cieeeicececceccasoncccnnacocnannsense 3-4
Real AdUressceeeeriveeecressosososeenrosansonanssees 3-4
Virtual Addresseieeeeeeeecrorceceeanssnsnnnnncannnens 3-5
Primary Virtual Addressceeeeeeeeeennncenceenonnse 3-5
Secondary Virtual Addressc.cctiiieereccencccaccaes 3-5
Logical Address t.ceeeeeeeeeeereeeresennonnosonnaoccens 3-5
Instruction Addresscceeeeceercerecerencacecocnenns 3-5
Effective AdAress ... ei e eeeeeeeeeeeeenneenoaoononenns 3-5
Address Size and Hraparoundc.ceerenenneeeccncnncnns 3-6
Address Wraparoundeeetcierreecensoconconoveoonns 3-6

StOrage KeY i ieeeeereeeeeeceeeeeecceeeecnsnnnsnsoanscneeees 3-8

Protection ...ttt eeeeececcncsoansanceoncessssssoooes 3-8
Key-Controlled Protectioniiieeriececccccccnaccnnns 3-9

Fetch-Protection-Override Controlccceeuveecncennn 3-10
Page Protectioncciieieerereeececoccccsosasascsccsancsese 3-10
Low—Address Protectionceeieeeeeeeeeieeeencnncnnonns 3-11

Raference Recording ...iiee et eeeestvsononconerorsoaveces 3-11

Change Recording ...ceeecieneencenncconcocnanoescenoees ceeenn 3-11

PrefixXing .. eeeeeeeeeesoeencscnoaneccacossnsensasnssnscancens 3-12

AdAdress SPaCeS . .iiiciencececeanceccscnsanssacssecsasascanssess 3-13

ASN Translation ...cceeeererrerecerscecesseonvosesosoncsosonce 3-14
ASN-Translation Controlscceeeerererencereccccncccnns 3-14
ASN-Translation Tablescctiiiereneacencenecocsceanns 3~15

ASN-First-Table Entriesc.ceerecccecnacecsscnccncnns 3-15
ASN-Second-Table Entriesc.ccieiitirererrrrenncnnans 3~15
ASN-Translation Processccecececcccocccncecoscsccscncns 3-16
ASN-First-Table Lookupciiiiiiiiireniecenncncannans 3-17
ASN-Second-Table LOOKUP ...t iiiteceeeencncerocncoaccenns 3-17
Recognition of Exceptions During ASN Translation 3-18

ASN Authorization ... ien it ititeteeeeeenennconsosccncanena 3-18

ASN-Authorization Controlsiiiiiiiriieerereoncnnnans 3-18
Control Register 4iceeererreenennncnceeenencccnans 3-18
ASN-Second-Table Entryeeeiieeeereeeceneeononsnsense 3-18
Authority-Table Entriesccceiriiiiieenenccccanaans 3-19

ASN-Authorization Processcceiieieineeencncsnncscancs 3-19
Authority-Table Lookupccieireeeeeccnncenoocncncnnse 3-20
Recognition of Exceptions During ASN Authorization3-21

Dvnamic Address Translationiciiiiiiieeeeerececcneans 3-21

Translation Control ...ttt eeieeeeneeecncccccnns 3-22
1 P 3-22
Control Register 0cciceeetiecececccccccrocnccncennse 3-23
Control Register 1 ceebsescsescsesesnsartseresroune 3-23
Control Register 7 ...iiiieiiieteeecececoccaccscncsncccans 3-24

Translation Tables cieeee it eerereereerecenescooaonnnssoens 3-24%
Segment-Table Entriesc.ictiieeerereecrecoocnccnnns 3-24
Page=Table Entries ..ceieeeeeeeeeeeeenneccncconncacanns 3-25
Summary of Segment-Table and Page-Table Sizes 3-25

Translation Process c..eeececeececnecececcnccnsaccnncoenrans 3-26
Effective Segment-Table Designationccteeeneen 3-26
Inspection of Control Register 0 ...ttt eenennn 3-29
Segment—-Table LookUpttt ierieeenennnoscnnonncnna 3-29
Page-Table LookUp ...t ereerrereeresecneccervocononnes 3-29
Formation of the Real Addresscieieeeeetceccnccons 3-30
Recognition of Exceptions During Translatlon 3-30

Translation-Lookaside Bufferc..cceeecereececocanens 3-30
Use of the Translation—-lLookaside Buffercccceec.. 3-31
Modification of Translation Tablescuieitieeeeennn. 3-34

Address SUMMArY ...ttt eeieeeresooocossensencsoenssennoees 3-36
Addresses Translatedcciiieieiieeeeenccanceceannnones 3-36
Handling of Addressescceeeererrcrenvenonveoconnnsones 3-37

Assigned Storage Locationsciiieiieieneeercncacccnnnne 3-38

Chapter 3. Storage 3-1

discusses the
tion of information in storage, the
addressing of information, protection,
and reference and change recording. The
aspects of addressing which are covered
include the format of addresses, the
concept of address spaces, the various
types of addresses, and the manner in
which one type of address is translated
to another type of address. A list of
permanently assigned storage locations
appears at the end of the chapter.

This chapter representa-

Main storage provides the system with
directly addressable fast-access storage
of data. Both data and programs must be
loaded into main storage (from input
devices) before they can be processed.

Main storage may consist of standalone
units or be integrated with a CPU.
Additionally, main storage may be
composed of a large-capacity storage and
a smaller faster-access buffer storage,
sometimes called a cache. Each CPU may
have an associated cache. The effects,
except on performance, of the physical
construction and use of distinct storage
media are not observable by the program.

Fetching and storing of data by a CPU
are not affected by any concurrent
channel-subsystem activity or by a
concurrent reference to the same storage
location by another CPU. When concur-
rent requests to a main-storage location
occur, access normally is granted 1in a
sequence that assigns highest priority
to references by the channel subsystem
and that rotates priority among CPUs.
If a reference changes the contents of
the location, any subsequent storage
fetches obtain the new contents.

Main storage may be volatile or nonvola-
tile. If it is volatile, the contents
of main storage are not preserved when
power is turned off. If it is nonvola-
tile, turning power off and then back on
does not affect the contents of main
storage, provided all CPUs are in the
stopped state and no references are made
to main storage by the channel subsystem
when power is being turned off. In both
types of main storage, the contents of
the storage key are not necessarily
preserved when the power for main stor-
age is turned off.

Note: Because most references in this
publication apply to virtual storage,
the abbreviated term "storage™ is often
used in place of "virtual storage." The
term "storage"™ may also be used in place

of "main storage," "absolute storage,"
or "real storage"™ when the meaning is
clear. The terms "main storage" and

"absolute storage" are used to describe
storage which is addressable by means of
an absolute address. The terms describe
fast-access storage, as opposed to
auxiliary storage, such as direct-access
storage devices provide. "Real storage"

3-2 370-XA Principles of Operation

is synonymous with "absolute storage”
except for the effects of prefixing.

STORAGE ADDRESSING

Storage is viewed as a long horizontal

string of bits. For most operations,
accesses to storage proceed in a left-
to-right sequence. The string of bits

is subdivided into units of eight bits.
An eight-bit unit is called a byte,
which is the basic building block of all
information formats.

Each byte location in storage is identi-
fied by a unidque nonnegative integer,
which is the address of that byte
location or, simply, the byte address.
Adjacent byte locations have consecutive
addresses, starting with 0 on the left
and proceeding in a left-to-right

sequence. Addresses are either 24-bit
or 3l-bit wunsigned binary integers and
are described in the section "Address

Size and Wraparound” in this chapter.

INFORMATION FORMATS

Information is transmitted between stor-
age and the CPU or the channel subsystem
one byte, or a group of bytes, at a
time. Unless otherwise specified, a
group of bytes in storage 1is addressed
by the leftmost byte of the group. The
number of bytes in the group is either
implied or explicitly specified by the
operation to be performed. When used in
a CPU operation, a group of bytes is
called a field.

Within each group of bytes, bits are
numbered in a left-to-right sequence.
The leftmost bits are sometimes referred
to as the "high-order"™ bits and the
rightmost bits as the "low-order" bits.
Bit numbers are not storage addresses,
however. Only bytes can be addressed.
To operate on individual bits of a byte
in storage, it is necessary to access
the entire byte.

The bits in a byte are numbered 0
through 7, from left to right.

The bits in an address are numbered 8
through 31 for 24-bit addresses and 1
through 31 for 31-bit addresses. MWithin
any other fixed-length format of multi-
ple bytes, th2 bits making up the format
are consecutively numbered starting from

For purposes of error detection, and in
some models for correction, one or more
check bits may be transmitted with each
byte or with a group of bytes. Such
check bits are generated automatically
by the machine and cannot be directly

controlled by the program. References
in this publication to the length of
data fields and registers exclude
mention of the associated check bits.
All storage capacities are expressed in
number of bytes.

Whan the length of a
field is implied by the
of an instruction, the

storage-operand
operation code
field is said to

have a fixed length, which can be one,
two, four, or eight bytes. Larger
fields may be implied for some

instructions.

When the length of a storage-operand
field is not implied but 1is stated
explicitly, the field is said to have a
variable length. Variable-length oper-
ands can vary in length by increments of
one byte.

When information 1is placed in storage,
the contents of only those byte
locations are replaced that are included
in the designated field, even though the
width of the physical path to storage
may be greater than the length of the
field being stored.

INTEGRAL BOUNDARIES

must be on
storage. A

Certain units of information
an integral boundary in

a unit
its storage address
is a multiple of the length of the unit
in bytes. Special names are given to
fields of two, four, and eight bytes on
an integral boundary. A halfword is a

boundary is called integral for
of information when

group of two consecutive bytes on a
two-byte boundary and is the basic
building block of instructions. A word

is a group of four consecutive bytes on
a four-byte boundary. A doubleword is a
group of eight consecutive bytes on an
eight-byte boundary. (See the figure
"Integral Boundaries with Storage
Addresses.")

When storage addresses designate half-
words, words, and doublewords, the bina-
ry representation of the address
contains one, two, or three rightmost
zero bits, respectively.

Instructions must be on two-byte inte-
gral boundaries, and CCWs, IDAWs, and
the storage operands of certain
instructions must be on other integral
boundaries. The storage operands of
most instructions do not have boundary-
alignment requirements.

Chapter 3. Storage 3-3

: > Storage Addresses

Bytes 0 1§ 2 3 4 5 6 7 8
T T T T T
Halfwords 0 : 2 . 4 . 6 . 8 .
1 T T T T T T

- Words 0 4 8
1 1 1 1 1 1 1
T T T T T | R T

Doublewords 0 8
1] 1] 1 1 1]

Integral Boundaries with Storage Addresses

Programming Note absolute address is used for a storage
access without any transformations
performed on it.

For fixed-field-length operations with

field lengths that are a power of 2, The channel subsystem and all CPUs in
significant performance degradation is the configuration refer to a shared
possible when storage operands are not main-storage location by using the same
positioned at addresses that are inte- absolute address. Available main stor-—
gral multiples of the operand length. age is usually assigned contiguous abso-
To improve performance, frequently used lute addresses starting at 0, and the
storage operands should be aligned on addresses are always assigned in
integral boundaries. complete 4K-byte blocks on integral

boundaries. An exception is recognized
when an attempt is made to use an abso-
lute address in a block which has not
ADDRESS TYPES AND FORMATS been assigned to physical locations. On
some models, storage~reconfiguration
controls may be provided which permit
the operator to change the correspond-
ADDRESS TYPES ence between absolute addresses and
physical locations. However, at any one
time, a physical location is not associ-

For purposes of addressing main storage, ated Wwith more than one absolute
three basic types of addresses are address.

recognized: absolute, real, and

virtual. The addresses are distin- Storage consisting of byte locations
guished on the basis of the transf- sequenced according to their absolute
ormations that are applied to the addresses is referred to as absolute
address during a storage access. storage.

Address translation converts virtual to

real, and prefixing converts real to

absolute. In addition. to the three

basic address types, additional types Real Address

are defined which are treated as one or

another of the three basic types,

depending on the instruction and the A real address identifies a location in

current mode. real storage. When a real address is
used for an access to main storage, it
is converted, by means of prefixing, to
an absolute address.

Absolute Address

At any instant there is one real-address

: to absolute-address mapping for each CPU

An absolute address is the address in the configuration. When a real
assigned to a main-storage location. An address is used by a CPU to access main

3-4¢ 370-XA Principles of Operation

storage, it is converted to an absolute
address by prefixing. The particular
transformation is defined by the value
in the prefix register for the CPU.

Storage consisting of byte locations
sequenced according to their real
addresses is referred to as real
storage.

VYirtual Address

identifies a location

storage. When a virtual
used for an access to main
storage, it 1is translated by means of
dynamic address translation to a real
address, which is then further converted
by prefixing to an absolute address.

A virtual address
in virtual
address is

Primary Virtual Address

A primary virtual address is a virtual

address which is to be translated by
means of the primary segment—-table
designation. Logical addresses and

addresses are treated as
primary virtual addresses when in
primary-space mode. The first-operand
address of MOVE T0 PRIMARY and the
second-operand address of MOVE T0
SECONDARY are always treated as primary
virtual addresses.

instruction

Secondary Virtual Address

A secondary virtual address is a virtual

address which is to be translated by
means of the secondary segment—-table
designation. Logical addresses are

treated as secondary virtual addresses
when - in secondary—-space mode. The
second-operand address of MOVE TO PRIMA-
RY and the first-operand address of MOVE
TO SECONDARY are always treated as
secondary virtual addresses.

Logical Address

Except where otherwise specified, the
storage-operand addresses for
instructions are logical addresses.

treated as real
mode, treated as
virtual addresses in primary-
space mode, and treated as secondary
virtual addresses in secondary-space
mode. Some instructions have storage-
operand addresses or storage accesses
associated with the instruction which do
not follow the rules for logical
addresses. In all such cases, the

Logical addresses are
addresses in real
primary

from storage are

instruction definition contains a defi-

nition of the type of address.

Instruction Address

fetch
called
addresses. Instruction
treated as real addresses
treated as primary

instructions
instruction
addresses are
in real mode,
virtual addresses in

Addresses used to

primary—-space mode, and treated as
either primary virtual addresses or
secondary virtual addresses in
secondary—-space mode. The instruction

current PSW and the
of EXECUTE are instruc-

address in the
target address
tion addresses.

Note: lhen the CPU is in the
secondary-space mode, it is unpredict-
able whether instructions, and the
target of EXECUTE, are fetched from the
primary address space or the secondary
address space. However, all copies of
an instruction used in a single
execution are fetched from a single
address space, and the machine can
change to or from interpreting instruc-
tion addresses as primary virtual or
secondary virtual only between
instructions and only by issuing a
checkpoint-synchronizing function.

Programming Notes

1. Predictable program operation is
ensured in secondary—-space mode
only when the instructions are
fetched from virtual-address
locations which translate to the
same real address by means of both
the primary and secondary segment
tables. Thus, a program should aot
enter secondary-space mode if it is
not aware of the virtual-to-real
address mapping in both the primary
and secondary address spaces.

2. The requirement limiting when the
CPU can change the address space
used for fetching instructions
eliminates problems with CPU retry,
DAT pretesting, and trial execution
of instructions for the purposes of
determining PER events.

Effective Address

In some situations, it 1is convenient to
use the term "effective address." An
effective address is the address which
results from address arithmetic, before
address translation, if any, is

performed. Address arithmetic is the

Chapter 3. Storage 3-5

addition of the base and displacement or
of the base, index, and displacement.

ADDRESS SIZE AND WRAPAROUND

provided:
A 24-bit address can
accommodate a maximum of 16,777,216
(16M) bytes; with a 3l-bit address,
2,167,483,648 (2G) bytes of storage can
be addressed.

The bits of the address are numbered
8-31 and 1-31, respectively, correspond-
ing to the numbering of base-address and
index bits in a general register:

Two sizes of addresses are
24-bit and 3l-bit.

24-bit Address

31-Bit Address
0 1 31

A 24-bit virtual address is expanded to
31 bits by appending seven zeros on the
left before it is translated by means of
the DAT process, and a 2%-bit real
address is similarly expanded to 31 bits
before it is transformed by prefixing.
A 24-bit absolute address is expanded to
31 bits before main storage is accessed.
Thus, the 24-bit address always desig-
nates the first 16M-byte block of the

26-byte storage addressable by a 31-bit
address.
Unless specifically stated to the

definition
whenever

contrary, the following
applies in this publication:
the machine generates and provides +to
the program an address, a 31-bit value
imbedded in a 32-bit field is made
available (placed in storage or loaded
into a register). For 24-bit addresses,
bits 0-7 are set to zeros, and the
address appears in bit positions 8-31;
for 31-bit addresses, bit 0 is set to
zero, and the address appears in bit
positions 1-31.

The size of effective addresses 1is
controlled by bit 32 of the PSWH, the
addressing-mode bit. When the bit is
zero, the CPU is in the 24-bit address-
ing mode, and 24-bit operand and
instruction effective addresses are
specified. When the bit is one, the CPU
is in the 31-bit addressing mode, and
31-bit operand and instruction effective
addresses are specified (see the section
"Address Generation" in Chapter 5, "Pro-
gram Execution®).

The size of the real addresses yvielded
by the ASN-translation, PC-number-trans-
lation ASN-authorization, and tracing
processes, and the real (or absolute)

3-6 370-XA Principles of Operation

addresses yielded by the DAT process, is
always 31 bits.

The size of the data address in a CCW is
under control of the format-control bit
in the operation-request block specified
by a START SUBCHANNEL instruction. The
CClls with 24-bit and 31-bit addresses
are called format-0 and format-1 CCls,
respectively. Format-0 and format-1
CCls are described in Chapter 15, "Basic
I/0 Functions."

Address Wraparound

The CPU performs address generation when
it forms an operand or instruction
address or when it generates the address

of a table entry from the appropriate
table origin and index. it also
performs address generation when it

increments an address to access succes—
sive bytes of a field. Similarly, the
channel subsystem generates an address

when it increments an address to fetch a

CCWH, to fetch an IDAW, or to transfer
data.
When, during the generation of the

address is obtained that
exceeds the value allowed for the
address size (224 - 1 or 23! - 1), one
of the following two actions is taken:

address, an

1. The carry out of the high-order bit
position of the address is ignored.
This handling of an address of
excessive size is called
wraparound.

2. An interruption condition is recog-
nized.

The effect of wraparound is to
address space appear
address 0 appears to
allowable address. Address arithmetic
and wraparound occur before transforma-
tion, if any, of the address by DAT or
prefixing.

make an
circular; that is,
follow the maximum

Addresses generated by the CPU always
wrap, except for addresses generated for
DAT-table entries. For DAT-table
entries, it is unpredictable whether the
address wraps or whether an addressing
exception is recognized.

when the
the value for

For channel-program execution,
generated address exceeds
the address size (or, for the read-
backward command is decremented below
0), an I/0 program-check condition is
recognized.

The figure "Address-Space Wraparound”
identifies what limit values apply to
the generation of different addresses
and how addresses are handled when they
exceed the allowed value.

Handling When
Address} Address Would

Address Generation for Type Wrap

Instructions and operands when AM is L,I,R,V W24
zero

Successive bytes of instructions and I,L,v? W24
operands when AM is zero

Instructions and operands when AM is L,I,R,V W3l
one

Successive bytes of instructions and I,L,v? W3l
operands when AM is one

DAT-table entries when used for A or R? X31
implicit translation

DAT-table entries when used for LRA A or R2 X31

ASN-first-table, ASN-second-table, R W31

authorization-table, linkage-table,
and entry-table entries

I/0 measurement block A P31
For a channel program with format-0
CCWs:
Channel-program address in ORB A P24
Successive CCUs A P24
Successive IDAUs A P24
Successive bytes of I/0 data A P24

(without IDANWSs)

Successive bytes of I/0 data A P31
(with IDAWS))

For a channel program with format-1

CCWs:
Channel-program address in ORB A P31
Successive CCUs A P31
Successive IDAUWs A P31
Successive bytes of I/0 data A P31
(without IDAUWS)
Successive bytes of I/0 data A P31

(with IDAUWSs)

Address Wraparound (Part 1 of 2)

Chapter 3. Storage 3-7

Explanation:

A Absolute address.

AM Addressing mode bit in the PSW.
I Instruction address.

L Logical address.

R Real address.
v Virtual address.

X31 When the address exceeds 23! - 1,

224 and 231,
The choices are model-dependent.

P24 An 1/0 program—-check condition is recognized when the
address exceeds 22% - 1 or is decremented below zero.
P31 An I/0 program—-check condition is recognized when the
address exceeds 23! - 1 or is decremented below zero.

W24 Wrap to location 0 after location 224 - 1 and vice versa.
W31 Wrap to location 0 after location 2%* - 1 and vice versa.
it is model-dependent
whether the address wraps to location 0 after location
23! - 1 or whether an addressing exception is recognized.
Real addresses do not apply in this case since the in-
structions which designate operands by means of real ad-
dresses cannot designate operands that cross boundaries

Address Wraparound (Part 2 of 2)

STORAGE KE

A storage key is associated with each
4K-byte block of storage that is avail-
able in the configuration.

ACC |FIR]C
0 4 6

The bit positions in the storage key are
allocated as follows:

a refer-
key-controlled

Access-Control Bits (ACC): If
ence is subject to
protection, the four access-control
bits, bits 0-3, are matched with the
four-bit access key when information is
stored, or when information is fetched
from a location that is protected
against fetching. :

Fetch-Protection Bit (F): If a refer-

ence is subject to key-controlled
protection, the fetch-protection bit,
bit 4, controls whether key-controlled

protection applies to fetch-type refer-
ences: a zero indicates that only
store-type references are monitored and
that fetching with any access key is
permitted; a one indicates that key-

controlled protection applies both to
fetching and storing. HNo distinction is
made between the fetching of

instructions and of operands.

Reference Bit (R): The reference bit,
bit 5, normally is set +to one each time
a location in the corresponding storage
block is referred to either for storing
or for fetching of information.

3-8 370-XA Principles of Operation

Change Bit (C): The change bit, bit 6,
is set to one each time information is
stored at a location in the correspond-
ing storage block.

Storage keys are not part of addressable

storage. The entire storage key is set
by SET STORAGE KEY EXTENDED and
inspected by INSERT STORAGE KEY
EXTENDED. Additionally, the instruction

RESET REFERENCE BIT EXTENDED provides a
means of inspecting the reference and
change bits and of setting the reference
bit to zero. Bits 0-4 of the storage
key are inspected by the INSERT VIRTUAL
STORAGE KEY instruction. The contents
of the storage key are unpredictable
during and after the execution of the
usability test of the TEST BLOCK
instruction.

PROTECTION

Three protection facilities are provided
to protect the contents of main storage
from destruction or misuse by programs
that contain errors or are unauthorized:
key-controlled protection, page
protection, and low-address protection.
The protection facilities are applied
independently; access to main storage is
only permitted when none of the facili-
ties prohibit the access.

Key-controlled protection affords
protection against improper storing or
against both improper storing and fetch-
ing, but not against improper fetching
alone. .

KEY-CONTROLLED PROTECTION

The keys are said to match when the four

access-control bits of the storage key

are equal to the access key,

or when the

action is summarized in

When key-controlled protection applies access key is zero.
to a storage access, a store is permit-

ted only when the storage key matches The protection

the access key associated with the the figure

request for storage access; a fetch is Action."
permitted when the keys match or when

the fetch-protection bit of the storage

key is zero.

Conditions Is Access to
Storage Permitted?
Fetch-Protection
Bit of
Storage Key Key Relation Fetch Store
0 Match Yes Yes
0 Mismatch Yes No
1 Match Yes Yes
1 Mismatch No No

Match

Yes

No

Explanation:

The four access-control bits of the storage
key are equal to the access key, or the access
key is zero.

Access is permitted.

Access is not permitted. On fetching, the
information is not made available to the
program; on storing, the contents of the
storage location are not changed.

Summary of Protection Action

"Summary of Protection

Chapter 3. Storage

3-9

When the access to storage is initiated
by the- CPU, and key-controlled
protection applies, the PSW key is the
access key, except that, for the second
operand of MOVE WITH KEY and MOVE TO
PRIMARY and the first operand of MOVE TO
SECONDARY, the access key 1is specified

in a general register. The PSW key
occupies bit positions 8-11 of the
current PSH.

When the access to storage is for the

purpose of channel-program execution,
the subchannel key associated with that
channel program is the access key. The
subchannel key for a channel program is
specified in the operation-request block

(ORB). When, for purposes of channel-
subsystem monitoring, an access to the
measurement block is made, the

measurement-block key is the access key.
The measurement-block key is specified
by the SET CHANNEL MONITOR instruction.

When a CPU access is prohibited because
of key-controlled protection, the unit
of operation is suppressed or the
instruction is terminated, and a program
interruption for a protection exception
takes place. When a channel-program
access is prohibited, the start function
is ended, and the protection-chack
condition is indicated in the associated
interruption-response block (IRB). When
a measurement-block access is
prohibited, the I/0 measurement-block
protection—-check condition is indicated.

When a store access is
because of key-controlled
the contents of the protected location
remain unchanged. When a fetch access
is prohibited, the protected information
is not loaded into a register, moved to
another storage location, or provided to
an I/0 device. For a prohibited
instruction fetch, the instruction is
suppressed, and an arbitrary
instruction—-length code is indicated.

prohibited
protection,

Key—-controlled protection is independent
of whether the CPU is in the problem or
supervisor state and, except as
dascribed below, does not depend on the
type of CPU instruction or channel-
command word being executed.

Except where otherwise specified, all
accesses to storage locations that are
explicitly designated by the program and
that are used by the CPU to store or
fetch information are subject to key-
controlled protection.

Key-controlled protection is not applied
to access to the second operand of TEST
BLOCK.

All storage accesses
subsystem to access
block, or by a channel program to fetch
a CCW or IDAW or to access a data area
designated during the execution of a
CCW, are subject +to key-controlled pro-

by the channel
the 170 measurement

3-10 370-XA Principles of Operation

tection. However, if a CCW, an IDAW, or
output data is prefetched, an I/0
protection check is not indicated until
the CCW or IDAW is due to take control
or until the data is due to be written.

Key-controlled protection is nect applied
to accesses that are implicitly made for
any of such sequences as:

. An interruption

. CPU logout

. Fetching of
dynamic-address

table entries for
translation, PC—-

number translation, ASN transla-
tion, or ASN authorization

. Tracing

. A store-status function

. Storing in real locations 184-191

when TEST PENDING INTERRUPTION has
an operand address of zero

. Initial program loading
Similarly, protection does

accesses
facilities

not apply to
initiated via the operator

for altering or displaving
information. However, when the program
explicitly designates these locations,
they are subject to protection.

Fetch-Protection-Override Control

Bit 6 of control register 0 is the
fetch-protection-override control. When

the bit 1is one, fetch protection is
ignorea for locations at effective
addresses 0-2047. Fetch-protection

override applies to instruction fetch
and to the fetch accesses of
instructions whose operand addresses are
logical, virtual, or real. It does not
apply to fetch accesses made for the
purpose of channel-program execution or
for the purpose of channel-subsystem
monitoring. bhen this bit 1is set to
zero, fetch protection of locations at
effective addresses 0-2047 is determined
by the state of the fetch-protection bit
of the storage key associated with those
locations.

Fetch-protection override has no effect
on accesses which are not subject to
key-controlled protection.

PAGE PROTECTION

The page—-protection facility controls
access to virtual storage by using the
page—-protection bit in each page-table
entry. It provides protection against

improper storing.

The page-protection bit, bit 22 of the
page-table entry, controls whether stor-
ing 1is allowed into the corresponding
4K-byte page. When the bit is zero,
both fetching and storing are permitted;
when the bit is one, only fetching is
permitted. When an attempt is made to
store into a protected page, a program
interruption for protection takes place.
The contents of the protected location
remain unchanged.

Page protection applies to all store-
type references that use a virtual
address.

LOW-ADDRESS PROTECTION

The low—-address-protection facility
provides protection against the

destruction of main-storage information
used by the CPU during interruption
processing, by prohibiting instructions
from storing by using effective
addresses in the range 0 through 511.
The range criterion is applied before
address transformation, if any, of the
address by dynamic address translation
or prefixing.

Low-address protection is under control
of bit 3 of control register 0, the
low-address-protection-control bit.
When the bit is zero, low-address
protection is off; when the bit is one,
low-address protection is on.

If an access is prohibited because of
low-address protection, the contents of
the protected location remain unchanged,
a program interruption for a protection
exception takes place, and the unit of
operation is suppressed or the instruc-
tion terminated.

Any attempt by the program to store by
using effective addresses in the range 0
through 511 are subject to low-address
protection. Low-address protection is
applied to the store accesses of
instructions whose operand addresses are
logical, virtual, or real. Low-address
grg?ection is also applied to the trace
able.

Low-address protection is not applied to
accesses made by the CPU or the channel
subsystem for such sequences as inter-
ruptions, the storing of the I/0-
interruption code in real locations
184-191 by TEST PENDING INTERRUPTION,
and the 1initial-program-loading and
store-status functions, nor is it
applied to data stores during I/0 data
transfer. However, explicit stores by a
program at any of these locations are
subject to low-address protection.

Programming Note

Low-address protection and key~-
controlled protection apply to the same
store accesses, except that:

. Low-address protection does not
apply to storing performed by the
channel subsystem, whereas key-—
controlled protection does.

. Key-controlled protection does not
apply to tracing or the second
operand of TEST BLOCK, whereas

low-address protection does.

REFERENCE RECORDING

Reference recording provides informaiion
for use in selecting pages for replace-
ment. Reference recording uses ‘“he
reference bit, bit 5 of the storage kev.
The reference bit is set to one each
time a location in the corresponding
storage block is referred to either for
fetching or storing information, regard-
less of whether DAT is on or off.

Reference recording is always active and

takes place for all storage accesses,
including those made by any CPU, any
operator facility, or the channel

subsystem. It takes place for implicit
accesses made by the machine, such as
those which are part of interruptions
and I/0-instruction execution.

Reference recording does not occur for
operand accesses of the following
instructions since they directly refer
to a storage key without accessing a
storage location:

INSERT STORAGE KEY EXTENDED

INSERT VIRTUAL STORAGE KEY

RESET REFERENCE BIT EXTENDED (ref-
erence bit is set to zero)

SET STORAGE KEY EXTENDED (reference
bit is set to a specified
value)

The record provided by the reference bit

is substantially accurate. The refer-
ence bit may be set to one by fetching
data or instructions that are neither

designated nor used by the program, and,
under certain conditions, a reference
may be made without the reference bit
being set to one. Under certain unusual
circumstances, a reference bit may be
set to zero by other than explicit
program action.

CHANGE RECORDING

Change recording provides information as
to which pages have to be saved in

Chapter 3. Storage 3-11

auxiliary storage when they are replaced
in main storage. Change recording uses
the change bit, bit 6 of the storage
key.

The change bit is set to one each time a
store access causes the contents in the
corresponding storage block to be
changed. A store access that does not
change the contents of storage may or
may not set the change bit to one.

The change bit is not set to one for an

attempt to store if the access is
prohibited. 1In particular:

1. For the CPU, a store access is
prohibited whenever an = access
exception exists for that access,
or whenever an exception exists

which 1is of higher priority than
the priority of an access exception
for that access.

2. For the channel subsystem, a store
access is prohibited whenever a
key-controlled-protection violation
exists for that access.

Change recording is always active and
takes place for all store accesses to
storage, including those made by any
CPU, any operator facility, or the chan-
nel subsystem. It takes place for
implicit references made by the machine,
such as those which are part of inter-
ruptions.

Change recording does not take place for
the operands of the following
instructions since they directly modify
a storage key without modifying a stor-
age location:

RESET REFERENCE BIT EXTENDED

SET STORAGE KEY EXTENDED
bit is set to a
value)

(change
specified

Change bits which have been changed from
zeros to ohes are not necessarily
restored to zeros on CPU retry (see the
section "CPU Retry" in Chapter 11,
"Machine-Check Handling™). See the
section "Exceptions to Nullification and

Suppression” in Chapter 5, "Program
Execution,™ for a description of the
handling of the change bit in certain

unusual situations.

PREFIXING

Prefixing provides the ability to assign
the range of real addresses 0-4095 (the
prefix area) to a different block in
absolute storage for each CPU, thus
permitting more +than one CPU sharing

3-12 370~-XA Principles of Operation

main storage to operate concurrently-

with a minimum of interference, espe-
cially _in the processing of
interruptions.

Prefixing causes real addresses in the

range 0-4095 to correspond to the block
of 4K absolute addresses identified by
the value in the prefix register for the

CPU, and the block of real addresses
identified by the value in the prefix
register to correspond to absolute
addresses 0-4095. The remaining real
addresses are the same as the corre-
sponding absolute addresses. This

transformation allows each CPU to access
all of absolute main storage, inclucing
the first 4K bytes and the locatisns
designated by the prefix registers of
other CPUs.

The relationship between real and abso-
lute addresses is graphically depicted
in the figure "Relationship between Real
and Absolute Addresses.”

The prefix is a 19-bit
contained in bit positions 1-19
prefix register. The register
following format.

quantity
of the
has the

/ Prefix 188888428844

0 1 20 31

The contents of the register can be set
and inspected by the _privileged
instructions SET PREFIX and STORE
PREFIX, respectively. On setting, bits
corresponding to bit positions 0 and

20-31 of the prefix register are
ignored. On storing, zeros are provided
for these bit positions. When the
contents of the prefix register are

changed, the change is effective for the
next saequential instruction.

When prefixing is applied, the real
address is transformed into an absolute
address by using one of the following
rules, depending on bits 1-19 of the
real address:

1. Bits 1-19 of the address, if all
zeros, are replaced with bits 1-19
of the prefix.

2. Bits 1-19 of the address, if equal
to bits 1-19 of the prefix, are
replaced with zeros.

3. Bits 1-19 of the
all zeros and not
1-19 of the
unchanged.

address, if not
equal to bits
prefix, remain

In all cases, bits 20-31 of the address

remain unchanged.

_ Prefixing Prefixing
r— - -7~ 1 [{ﬂ_____'—'—'—_"——l
I | |
17— No Change—ﬁ-—b ...:, : | 1
> | I - | o~y
4 No Ch
@ @, flr e
s | | 1 | l 1
I | M I | [[
| S| | [
L | aA | L] | L
| & | %
S I + 2 | L
L l A | < L
T 1 | T Y | o~
- No Change —I-———{> | * [1
|
| : J Q———-l— No Change I
| % |
F | % | i | Sy | 1
[N | ’ AP l
L : 5| | 3 |
Q
&
1L I \\ ‘ | /?:;Gress ‘ / I 1 o Address
| D[| { 4096
|l Address | | lle-Address|) | . Address
0 0 0
Real Addresses Absolute Real Addresses
for CPU A Addresses for CPU B
(1) Real addresses in which bits 1-19 are equal to the prefix for this CPU (A or
B).
(2) Absolute addresses of the block that contains for this CPU (A or B) the real

locations 0-4095.

Relationship between Real and Absolute Addresses

Only the address presented to storage is
translated by prefixing. The contents
of the source of the address remain
unchanged.

The distinction between real and abso-
lute addresses is made even when the
prefix register contains all zeros, in
which case a real address and its corre-
sponding absolute address are identical.

ADDRESS SPACES

An address space 1is a consecutive

sequence of integer numbers (virtual
addresses), together with the specific
transformation parameters which allow

each number to be associated with a byte
location in storage. The sequence
starts at zero and proceeds left to
right.

used by a CPU
main storage, it 1is first

When a virtual address is
to access

by means of dynamic address

(DAT), to a real address,
by means of prefixing, to an
absolute address. DAT uses two levels
of tables (segment tables and page
tables) as transformation parameters.
The designation (origin and length) of a
segment table is found for use by DAT in
a control register.

converted,
translation
and then,

At any instant the CPU can translate
virtual addresses of two address
spaces -- the primary address space,
consisting of primary virtual addresses,
and the secondary address space,
consisting of secondary virtual
addresses. The segment table defining

address space is specified
and that defining
by control

the primary
by control register 1
the secondary address space
register 7.

Each address space 1is assigned an
address—-space number (ASN). An ASN-
translation mechanism is provided which,
given an ASN, can locate (by using a
two-level table lookup) the designation

Chapter 3. Storage 3-13

of the segment table which defines the
address space. Certain instructions use
ASN translation and load the resulting
segment-table designation into the
appropriate control register.

By using the ASN-translation mechanism,
any one of up to 64K address spaces can
be selected to become the primary or
secondary address space.

The ASNs for the primary and secondary
address spaces are assigned positions in
control registers. The ASN for the

primary address space, called the prima-

ry ASN, 1is assigned bits 16-31 of
control register 4, and that for the
secondary address space, called the

secondary ASN, is assigned bits 16-31 of
control register 3.

Control register 4

PASN
16 31

Control register 3

SASN
16 31

An instruction that uses ASN translation
and loads the primary or secondary
segment-table designation into the
appropriate control register also loads
the corresponding ASN into the appropri-
ate control register.

Note: Virtual storage consisting of
byte locations ordered according to
their virtual addresses in an address
space is usually referred to as
"storage.™

ASN TRANSLATION

ASN translation is the process of trans-
lating the 16-bit ASN to locate the
address—space-control parameters. ASN
translation 1is performed as part of
PROGRAM CALL with space switching
(PC-ss5), PROGRAM TRANSFER with space
switching (PT-ss), and SET SECONDARY ASN
with space switching (5SAR-ss). ASN
translation is also performed as part of
LOAD ADDRESS SPACE PARAMETERS. For
PC-ss and PT-ss, the ASN which is trans-

lated replaces the primary ASN in
control register 4. For SSAR-ss, the
ASN which 1is translated replaces the

secondary ASN in control
These two translation processes are
called primary ASN translation and
secondary ASN translation, respectively,
and both can occur for LOAD ADDRESS
SPACE PARAMETERS. The ASN-translation

register 3.

3-16¢ 370-XA Principles of Operation

process is the same for both primary and
secondary ASN translation; only the uses
of the results of the process are
different.

The ASN-translation process uses two
tables, the ASN first table and the ASN
second table. They are used to locate
the address—-space-control parameters and
a third table, the authority table,
which is used when ASN authorization is
performed.

For the purposes of this translation,
the 16-bit ASN is considered to consist
of two parts: the ASN-first-table index
(AFX) 1is the leftmost 10 bits of the
ASH, and the ASN-second-table index
(ASX) is the six rightmost bits.

ASN

AFX ASX
0 10 15
The AFX is used to

select an entry from
the ASN first table. The origin of the
ASN first table is designated by the
ASN-first—-table origin in control regis-
ter 14. The ASN-first-table entry
contains the origin of the ASN second
table. The ASX 1is used to select an
entry from the ASN second table. This
entry contains the address-space-control
parameters.

ASN-TRANSLATION CONTROLS

ASN translation is controlled by the
ASN-translation-control bit and rhe
ASN-first-table origin, both of which
reside in control register l4%.

Control Register 14

T AFTO

12 31

ASN-Translation Control (T): Bit 12 of
control register 14 is the ASN-
translation-control bit. This bit
provides a mechanism whereby the control
program can indicate whether ASN trans-
lation can occur while a particular
program is being executed. Bit 12 must
be one to allow completion of these
instructions:

LOAD ADDRESS SPACE PARAMETERS

SET SECONDARY ASN

PROGRAM CALL with space switching

PROGRAM TRANSFER with space switch-
ing

Othermwise, a special-operation exception
is recognized. The ASN-translation-

control bit is examined in both the

problem and supervisor states.

ASN-First-Table Origin (AFT0): Bits
13-31 of control register 1%, with 12
zeros appended on the right, form a
31-bit real address that designates the
beginning of the ASN first table.

ASN-TRANSLATION TABLES

The ASN-translation process consists in
a two-level lookup using two tables: an
ASN first table and an ASN second table.
These tables reside in real storage.

ASN-First-Table Entries

the ASN first
the availability
corresponding ASN

The entry fetched from
table (AFT) designates
and origin of the
second table.

An entry in the ASN first table has the
following format:

I ASTO 0000
0 1 | 28 31

The fields in the entry are allocated as
follows:

AFX-Invalid Bit (I): Bit 0 controls
whether the ASHN second table associated
with the ASN-first-table entry is avail-
able. When bit 0 is zero, ASN trans-
lation proceeds by using the designated
ASN second table. When the bit is one,
the ASN translation cannot continue.

ASN-Second-Table Origin (ASTO): Bits
1-27, with four zeros appended on the
right, are used to form a 31-bit real
address that designates the beginning of
the ASN second table.

Bits 28-31 of the AFT entry must be
zeros; otherwise, an ASHN-translation-
specification exception is recognized as
part of the execution of the instruction
using that entry for ASN translation.

ASN-Second-Table Entries

The entry fetched from the ASN second
table indicates the availability of the
address space and contains the address-
space-control parameters if the address
space is available.

The ASN second-table
following format:

entry has the

I ATO 00
0 1 31
AX ATL 6000
32 48 60 63
I STD 1
X STO /7777 STL
64 84 89 95
I LTD 1
v LTO LTL
96 121 127

The fields in the entry are allocated as
follows:

ASX-Invalid Bit (I): Bit 0 controls
whether the address space associated
with the ASHN-second-table entry is
available. When bit 0 is =zero, ASN

translation proceeds. When the bit is

one, the ASN translation cannot
continue.

Authority-Table Origin (ATO0): Bits
1-29, with two =zeros appended on the
right, are used to form a 31-bit real

address that designates the beginning of
the authority table.

Authorization Index (AX): Bits 32-47
are used as a result of primary ASN
translation by PROGRAM CALL and PROGRAM
TRANSFER and may be used by LOAD ADDRESS
SPACE PARAMETERS. The AX field is
ignored for secondary ASN translation.

Authority-Table Length (ATL): Bits
48-59 specify the length of the authori-
ty table in units of four bytes, thus
making the authority table variable in
multiples of 16 entries. The length of
the authority table, in units of four

bytes, is one more than the ATL value.
The contents of the ATL field are used
to establish whether the entry desig-
nated by a particular AX falls within
the authority table.

Segment-Table Designation (STD): Bits

64-95 are used as a result of ASN trans-
lation to replace the primary-segment-
table designation (PSTD) or the
secondary-segment-table designation
(SSTD). For SET SECONDARY ASN, the STD
field is placed in the SSTD, bits 0-31
of control register 7. For PROGRAM
CALL, the STD field is placed in the

PSTD, bits 0-31 of contrel register 1.
Each of these actions may occur inde-
pendently for LOAD ADDRESS SPACE

PARAMETERS. For PROGRAM TRANSFER, the
STD field is placed in both the PSTD and
S$STD, bits 0-31 of control registers 1
and 7, respectively. The contents of

Chapter 3. Storage 3-15

the entire STD field are placed
appropriate control registers
being inspected for validity.

in the
without

Space-Switch-Event Control (X): Bit 0 of
the segment-table designation 1is the
space-switch-event-control bit. When,

in PC-ss or PT-ss, this bit is one in
control register 1 either before or
after the execution of the PC-ss or

interruption for a
occurs after the
execution of the instruction is
completed. When, in LOAD ADDRESS SPACE
PARAMETERS, this bit is one during
primary ASN translation, this fact is
indicated by the condition code.

PT~ss, a program
space-switch event

Linkage-Table Designation (LTD): Bits
96-127 are used as a result of primary

ASN translation. The
designation field

linkage-table-
contains the

subsystem-linkage-control bit (V) (bit
96), the linkage-table origin (LT0)
(bits 97-120), and the linkage-table
length (LTL)Y (bits 121-127). The

contents of the LTD field are placed in
control register 5 as a result of prima-
ry ASN translation.

Bits 30, 31, and 60-63 of the AST entry
must be zeros; otherwise, an ASN-
translation-specification exception is
recognized as part of the execution of
the instruction using that entry for ASN
translation.

Proagramming Note

The unused portion of the STD field,

bits 84-88 of the AST entry, which
corresponds to bits 20-24 of the PSTD
and 5STD, should be set to zeros. These

bits are reserved for future expansion,
and programs which place nonzero values
in these bit positions may not operate
compatibly on future machines.

3-16 370-XA Principles of Operation

ASN-TRANSLATION PROCESS

This section describes the ASN-
translation process as it is performed
during the execution of PROGRAM. CALL
with space switching, PROGRAM TRANSFER
with space switching, and SET SECONDARY
ASN with space switching. ASN trans-
lation for LOAD ADDRESS SPACE PARAMETERS
is the same, except that AFX-translation
and ASX-translation exceptions do not
occur; such situations are instead indi-
cated by the condition code.
Translation of an ASN is performed by
means of two tables, an ASN first table
and an ASN second table, both of which
reside in main storage.

The ASN first index is used to select an
entry from the ASN first table. This
entry designates the ASN second table to
be used.

The ASN second index is used to select
an entry from the ASN second table.
This entry contains the address—space-
control parameters.

If the I bit is one in either the ASN-
first-table entry or ASN-second-table
entry, the entry 1is invalid, and the

ASN-translation process cannot be

completed. An AFX-translation exception
or ASX-translation exception is recog-
nized.

Whenever access to main storage is made
during the ASN translation process for
the purpose of fetching an entry from an
ASN first table or ASN second table,
key-controlled protection does not
apply.

The ASN translation process is shown in
the figure "ASN Translation.”

ASN

CR14 T AFTO AFX JASX
(x4096) (x4) (x16)
¥
l ASN First Table
>+

->

R I ASTO 0
(x16)

¥
l ASN Second Table
+

-
R I ATO 0 AX ATL |0 STD LTD
R: Address is real

ASN Translation

ASN-First-Table Lookup

The AFX portion of the ASN, in conjunc-

tion with the ASN-first-table origin, is
used to select an entry from the ASN
second table.

The 31-bit real address of the ASN-

first-table entry is obtained by append-
ing 12 =zeros on the right to the AFT
origin contained in bit positions 13-31
of control register 14 and adding the
AFX portion with two rightmost and 19
leftmost zeros appended. This addition
cannot cause a carry into bit position
0. All 31 bits of the address are used,
regardless of whether the current PSUW
specifies the 24-bit or 3l-bit address-
ing mode.

All four bytes of the ASN-first-table
entry are fetched concurrently. The
fetch access is not subject to
protection. When the storage address
which 1is generated for fetching the
ASN-first-table entry designates a
location which 1is not available in the

an addressing exception
and the operation is

configuration,
is recognized,
suppressed.

Bit 0 of the four-byte AFT entry speci-

fies whether the corresponding AST is
available. If this bit 1is one, an AFX-
translation exception is recognized. If

bit positions 28-31 of the AFT entry do
not contain zeros, an ASN-translation-
specification exception is recognized.
When no exceptions are recognized, the
entry fetched from the AFT is used to
access the AST.

ASN-Second-Table Lookup

The ASX portion of the ASN, in conjunc-
tion with the ASN-second-table origin
contained in the ASN-first-table entry,
is used to select an entry from the ASN
second table.

The 31-bit real address of +the ASN-
second-table entry is obtained by
Chapter 3. Storage 3-17

appending four zeros on the right to
bits 1-27 of the ASN-first-table entry
and adding the ASX with four rightmost
and 21 leftmost zeros appended. A
carry, if any, into bit position 0 is
ignored. All 31 bits of the address are
used, regardless of whether the current
PSW specifies the. 24-bit or 31-bit
addressing mode.

The 16 bytes of the ASN-second-table
entry are fetched left to right, a word
at a time. The fetch access is not
subject to protection. When the storage
address which is generated for fetching
the ASN-second-table entry designates a
location which 1is not available in the
configuration, an addressing exception
is recognized, and the operation is
suppressed.

Bit 0 of the l6-byte ASN-second-table

entry specifies whether the address
space is accessible. If this bit is
one, an ASX-translation exception is

recognized. If bit positions 30, 31,
and 60-63 of the ASN-second-table entry
do not contain zeros, an ASN-
translation-specification exception is
recognized.

Recognition of Exceptions during ASN
Translation

The exceptions which can be encountered
during the ASN-translation process are
collectively referred to as ASN-
translation exceptions. A list of these
exceptions and their priorities is given

in Chapter 6, "Interruptions."

ASN AUTHORIZATION

ASN authorization is the process of
testing whether the program associated
with the current authorization index is
permitted to establish a particular
address space. The ASN authorization is
performed as part of PROGRAM TRANSFER

with space switching (PT-ss) and SET
SECONDARY ASN with space switching
(SSAR-ss) and may be performed as part

of LOAD ADDRESS SPACE PARAMETERS. ASN
authorization 1is performed after the
ASN-translation process for these
instructions.

When performed as part of PT-ss, the ASN
authorization tests whether the ASN can
be established as the primary ASN and is
called primary=ASN authorization. When
performed as part of LOAD ADDRESS SPACE
PARAMETERS or SSAR-ss, the ASN authori-
zation tests whether the ASN can be
established as the secondary ASN and is
called secondary-ASN authorization.

3-18 370-XA Principles of Operation

The ASN authorization
means of

is performed by
an authority table in real

storage which is designated by the
authority-table-origin and authority-
table-length fields in the ASN-second-
table entry.

ASN-AUTHORIZATION CONTROLS

ASN authorization uses the authority-

table origin and the authority-table
length from the ASN-second-table entry,
together with an authorization index.

Control Reqgister &

For PT-ss and SSAR-ss, the current
contents of control register 6 contain
the authorization index. For LCAD
ADDRESS SPACE PARAMETERS, the value
which will become the new contents of
control register 4 is used. The regis-
ter has the following format:

AX
0 15

Authorization Index (AX): Bits 0-15 of
control register & are used as an index
to locate the authority bits in the
authority table.

ASN-Second-Table Entrv

The ASN-second-table entry which is
fetched as part of the ASN translation
process contains information which is
used to designate the authority table.

ATO 00
0 1 31
ATL 0000
32 48 60 64
Authority-Table Origin (AT0): Bits
1-29, with two =zeros appended on the
right, are used to form a 31-bit real

address that designates the beginning of
the authority table.

Authority-Table Length (ATL): Bits
48-59 designate the length of the
authority table in units of four bytes,
thus making the authority table variable
in multiples of 16 entries. The length
of the authority table, in units of four

bytes, is equal to one more than the ATL
value. The contents of the length field
are used to establish whether the entry
designated by the authorization index
falls within the authority table.

Authority-Table Entries

The authority table consists of entries
of two bits each; accordingly, each byte

of the authority table contains four
entries:

PS|PS|PS|PS

] 7

The fields are allocated as follows:

Primary Authority (P): The left bit of
an authority-table entry controls wheth-
er the program with the authorization
index corresponding to the entry is
permitted to establish the address space
as a primary address space. If the P
bit is5 one, the access is permitted. If
the P bit is =zero, the access is not
permitted.

Secondary Authority (5): The right bit
of an authority-table entry controls

whether the program with the correspond-
ing authorization index is permitted to
establish the address space as a second-
ary address space. If the S bit is one,

the access is permitted. If the S bit
is zero, the access is not permitted.

ASN-AUTHORIZATION PROCESS

This section describes the ASN-
authorization process as it is performed
during the execution of PROGRAM TRANSFER
with space switching and SET SECONDARY
ASN with space switching. For these two
instructions, the ASN-authorization
process 1is performed by using the
authorization index currently in control
register 4. Secondary authorization for
LOAD ADDRESS SPACE PARAMETERS is the
same, except that the value which will
become the new contents of control
register ¢ is used for the authorization
index, and a secondary-authority excep-
tion does not occur. Instead, such a
situation is indicated by the condition
code.

The ASN-authorization process is
performed by using the authorization
index, in conjunction with the

authority-table origin and length from

the AST entry, to select an authority-
table entry. The entry is fetched, and
either the primary- or secondary-

authority bit is examined, depending on
whether the primary- or secondary-ASN-
authorization process is being
performed. The ASN-authorization proc-
ess is shown in the figure "ASN
Authorization."

Chapter 3. Storage 3-19

CR4 AX

(x1/6)

ASN Second Table

ASN-Second-Table Entry

I ATO 0 AX

ATL

0 STD LTD

(x4%)

-

¥

ot

Authority Table

For primary ASN authorization (PT-ss only):
Primary—authority exception
zero or table length exceeded.

if P bit

For secondary ASN authorization (SS5SAR-ss only):

Secondary-authority exception

if S bit

zero or table length exceeded.

For secondary ASN authorization (LASP only):

Set condition code 2

if

table length exceeded.

R: Address is real
ASN Authorization

Authority-Table Lookup

The authorization index, in conjunction
with the authority-table origin
contained in the ASN-second-table entry,

is used to select an entry from the
authority table.

The authorization index is contained in
bit positions 0-15 of control register

-

Bit positions 1-31 of the AST entry
contain the 31-bit real address of the
authority table (AT0), and bit positions
48-59 contain the length of the authori-
ty table (ATL).

The 31-bit real address of a byte in the
authority table is obtained by appending
two zeros on the right to the

3-20 370-XA Principles of Operation

S bit zero or

authority-table origin and adding the 14
leftmost bits of the authorization index
with 17 zeros appended on the left.. A
carry, if any, into bit position 0 is
ignored. All 31 bits of the address are
used, regardless of whether the current
PSW specifies the 24-bit or 31-bit
addressing mode.
As part of the authority-table-entry-
lookup process, bits 0-11 of the author-
ization index are compared against the
authority-table length. If the compared
portion is greater than the authority-
table length, a primary-authority
exception or secondary-authority excep-
tion is recognized for PT-ss or S55AR-ss,
respectively.

The fetch access to the byte in the
authority table is not subject to
protection. lhen the storage address

which is generated for fetching the byte-

designates a location which is not
available in the configuration, an
addressing exception is recognized, and
the operation is suppressed.

The byte contains four authority-table
entries of two bits each. The rightmost
two bits of the authorization index,
bits 14 and 15 of control register 4%,
are used to select one of the four
entries. The 1left or right bit of the
entry is then tested, depending on
whether the authorization test is for a
primary ASN or a secondary ASHN. The
following table shows the bit which is
selected from the byte as a function of
bits 14 and 15 of the authorization
index and the instruction PT-ss,
SSAR~-ss, or LOAD ADDRESS SPACE PARAME-

TERS.
Bit Selected from
Authority-Table Byte
for Test
Authorization-
Index Bits S Bit

P Bit (S5S5AR-s5
14 15 (PT-ss) or LASP)

0 0 0 1

0 1 2 3

1 0 % 5

1 1 6 7

If the selected bit is one, the ASN is
authorized, and the appropriate
address—-space-control parameters from
the AST entry are loaded into the appro-

priate control registers. If the
selected bit is zero, the ASN is not
authorized, and a primary-authority

exception or secondary-authority excep-
tion is recognized for PT-ss or SSAR-ss,
respectively. For LASP, when the ASHN is
not authorized, condition code 2 is set.

Recognition of Exceptions during ASN
Authorization

The exceptions which can be encountered
during the primary- and secondary—-ASN-
authorization processes and their prior-
ities are described in the definitions
of the instructions in which ASN author-
ization is performed.

Programming Note

The primary- and secondary-authority
exceptions cause nullification in order
to permit dynamic modification of the
authority table. Thus, when an address

space is created or "swapped in," the
authority table can first be set to all
zeros and the appropriate authority bits
set to one only when required.

DYNAMIC ADDRESS TRANSLATION

address translation (DAT)
provides the ability to interrupt the
execution of a program at an arbitrary
moment, record it and its data in auxil-
iary storage, such as a direct-access

Dyr.amic

storage device, and at a later time
return the program and the data to
different main-storage locations for

resumption of execution. The transfer
of the program and its data between main
and auxiliary storage may be performed
piecemeal, and the return of the infor-
mation to main storage may take place in
response to an attempt by the CPU to
access it at the time it is needed for
execution. These functions may be
performed without change or inspection
of the program and its data, do not
require any explicit programming conven-
tion for the relocated program, and do
not disturb the execution of the program
except for the time delay involved.

With appropriate support by an operating
system, the dynamic-address-translation
facility may be used to provide to a
user a system wherein storage appears to
be larger than the main storage which is
available in the configuration. This
apparent main storage is referred to as
virtual storage, and the addresses used
to designate locations in the virtual
storage are referred to as virtual
addresses. The virtual. storage of a
user may far exceed the size of the main
storage which is available in - the
configuration and normally is maintained
in auxiliary storage. The virtual stor-
age occurs in blocks of addresses,
called pages. Only the most recently
referred-to pages of the virtual storage
are assigned to occupy blocks of phys-
ical main storage. As the user refars
to pages of virtual storage that do rot
appear in main storage, they are brought
in to replace pages in main storage that
are less likely to be needed. The swap-
ping of pages of storage may be
performed by the operating system with-
out the user's knowledge.

The sequence of virtual addresses asso-
ciated with a virtual storage is called
an address space. With appropriate
support by an operating system, the
dyvnamic-address—translation facility may
be used to provide a number of address
spaces. These address spaces may be
used to provide degrees of 1isclation
betuween users. Such support can consist
of a completely different address space
for each user, thus providing complete
isolation, or a shared area may be
provided by mapping a portion of each

Chapter 3. Storage 3-21

address space to a single common storage
area. Also, instructions are provided
which permit a semiprivileged program to
access more than one such address space.
Dynamic address translation provides for
the translation of virtual addresses
from two different address spaces with-
out requiring that the translation
varameters in the control registers be
changed. These two address spaces are
called the primary address space and the
secondary address space.

In the process of

main storage by new
external medium, it must be determined
which block to replace and whether the
block being replaced should be recorded
and preserved in auxiliary storage. To
aid in this decision process, a refer-
ence bit and a change bit are associated
with the storage key.

replacing blocks of
information from an

Dynamic address translation may be spec-
ified for instruction and data addresses
generated by the CPU but is not avail-
able for the addressing of data and of
CCWs and IDAWs in I/0 operations. The
CCH-indirect-data-addressing facility is
provided to aid I/0 operations in a
virtual-storage environment.

Address computation can be carried out
in either 24- or 31-bit addressing mode.
When address computation is performed in
24-bit addressing mode, seven zeros are
appended on the left +to form a 31-bit
address. Therefore, the resultant
logical address is always 31 bits in
length. All real addresses are 31 bits
in length.

Dynamic address translation is the proc-
ess of +translating a virtual address
during a storage reference into the
corresponding real address. When DAT is
off, the logical address is treated as a
real address. When DAT is on, the
virtual address may be either a primary
virtual address or a secondary virtual
address. Primary virtual addresses are
translated by means of the primary
segment-table designation and secondary
virtual addresses by means of the
secondary segment-table designation.
After selection of the appropriate
segment-table designation, the trans-
lation process is the same for both
types of virtual address.

In the process of translation, twe sizes

of information are recognized --
segments and pages. A segment is a
block of sequential virtual addresses
spanning 1M bytes and beginning at a

IM-byte boundary. A page 1is a block of

3-22 370-XA Principles of Operation

sequential virtual addresses spanning 4K
bytes and beginning at a 4K-byte bounda-
ry.

The virtual address, accordingly, is
divided into three fields. Bits 1-11
are called the segment index (SX), bits
12-19 are called the page index (PX),
and bits 20-31 are called the byte index
(BX). The virtual address has the
following format: .

/ SX PX BX
0 1 12 20 31

Virtual addresses are
real addresses by means of two trans-—
lation tables: a segment table and a
page table. These reflect the current
assignment of real storage. The assign-
ment of real storage occurs in units of
pages, the real locations being assigned
contiguously within a page. The pages
need not be adjacent in real storage
even though assigned to a set of sequen-
tial virtual addresses.

translated into

TRANSLATION CONTROL

Address translation is controlled by two
bits in the PSW and by a set of bits,
referred to as the translation parame-
ters, in control registers 0, 1, and 7.

Additional controls are located in the
translation tables.

PSW

The +two bits in the PSW that control
dvnamic address translation are bit 5,

the DAT-mode bit, and bit 16, the
address-space-control bit. When the
DAT-mode bit 1is zero, DAT is off, the
CPU is said to be in real mode, and
instruction and logical addresses are
treated as real addresses. When the
DAT-mode bit is one (DAT 1is on) and the
address-space-control bit 1is zero, the
CPU is said to be in primary-space mode,

and instruction and logical addresses
are treated as primary virtual
addresses. When DAT 1is on and the

address-space-control bit is one, the
CPU is said to be in secondary-space
mode, and logical addresses are treated
as secondary virtual addresses. The
various modes are shown in the figure
"Translation Modes."

Handling of Addresses
PSW Bit

Logical Instruction
5 |16 DAT Mode Addresses Addresses
0 - Off Real mode Real Real
1 0 On Primary-space mode Primary Primary

virtual virtual
1 1 On Secondary-space mode Secondary See note

virtual

Translation Modes

Note: When the CPU is in secondary-
is unpredictable whether
addresses are treated
primary virtual or secondary virtual.
copies of an instruction
are fetched 8

space mode, it

instruction

However, all

used in a single execution
from a single space, and the machine can

as

The control bits are encoded as follows:

Bits of Control Register 0

change the interpretation of instruction 1

addresses as primary
ary virtual only betuween
and only by issuing a checkpoint-

synchronizing

function.

Control Register 0

Six bits are provided

ter 0 which
dynamic addre

virtual or second-

instructions A

9 10 11 12 Valid
0 1 1 0 Yes
11 others No
When an invalid bit combination is
detected in bit positions 8-12, a

translation—-specification
gnized as part of the
instruction using

reco
an
tion

in control regis-

are used in controlling

ss translation. The

are assigned as follows:

bits

Cont

rol Register 1

address

exception is
execution of
transla-

D TF Control register 1 contains the primary
segment-table designation (PSTD). The
5 8 13 register has the following format:
Secondary-Space Contrel (D): Bit 5 of Primary Segment-
control register 0 is the secondary- X Table Origin PSTL
space-control bit. When this bit is
zero and execution of MOVE TO PRIMARY, 0 1 20 25 31

MOVE TO SECONDARY, or SET ADDRESS SPACE
attempted, a special-

CONTROL is

operation exception is recognized.
this bit is one, it indicates that the bit
secondary segment table is attached when exec

When

the CPU is in primary-space mode. sglﬁ
wi
ITranslation Format (TF): Bits 8-12 of comp
control register 0 specify the trans- inte
lation format, with only one combination even
of the five control bits valid; all LOAD
other combinations are invalid. it i

0 of control register 1 i

ution of PROGRAM CALL
ching (PC-ss) or
space switching

(PT-ss)

Space-Switch-Event-Control Bit (X}: When

s one and
with
PROGRAM TRANSFER

space

is

leted, a space-switch-event program
The space-switch-
also examined by

rruption occurs.

t-control bit is
ADDRESS SPACE PARAMETERS,
s ohe, condition code 3 is set.

and, if

Primary Seament-Table Origin (PSTO):
Bits 1-19 of control register 1, with 12

Zero

s appended on

the

right,

form an

address that designates the beginning of
It is unpre-

the primary segment table.

dictable whether the address
lute. This table

abso

primary segment table since it
translate virtual

to

primary address space.

Chapter 3.

Storage

is real or
called the

is used
addresses in

the

3-23

Primary Seagment-Table Length (PSTL):
Bits 25-31 of control register 1 specify
the length of the primary segment table
in units of 64 bytes, thus making the
length of the segment table variable in
multiples of 16 entries. The length of
the primary segment table, in units of
64 bytes, is one more than the PSTL
value. The contents of the length field
are used to establish whether the entry
designated by the segment-index portion
of a primary virtual address falls with-
in the primary segment table.

Bits 20-24 of control register 1 are not
assigned and are ignored.

Control Register 7

Control register 7 contains the second-
ary segment-table designation (SSTD).
The register has the following format:

Secondary Segment-)
Table Origin SSTL

0 1 20 25 31

Secondary Segment-Table Origin (SST70):

Bits 1-19 of control register 7, with 12
zeros appended on the right, form an
address that designates the beginning of
the secondary segment table. It is
unpredictable whether the address is
real or absolute. This table is called
the secondary segment table since it is
used to translate virtual addresses in
the secondary address space. i

Secondary Segment-Table Length (SSTL):
Bits 25-31 of control register 7 specify
the length of the secondary segment
table in units of 64 bytes, thus making
the length of the segment table variable
in multiples of 16 entries. The length
of the secondary segment table, in units
of 64 bytes, 1is one more than the SSTL
value. The contents of the length field
are used to establish whether the entry
designated by the segment-index portion
of a secondary virtual address falls
within the secondary segment table.

Bits 0 and 20-24 of control register 7
are not assigned and are ignored.

Programming Notes

1. The validity of the information
loaded into a control register,
including that pertaining to dynam-
ic address translation, is not
checked at the time the register is
loaded. This information is
checked and the program exception,

3-24 370-XA Principles of Operation

if any, is indicated at the time
the information is used.

2. The information
dynamic address translation is
considered to be used when an
instruction is executed with DAT on
or when INVALIDATE PAGE TABLE ENTRY
or LOAD REAL ADDRESS is executed.
The information is not considered
to be used when the PSW specifies
translation, but an 1I/0, external,
restart, or machine-check inter-
ruption occurs before an
instruction is executed, including
the case when the PSW specifies the
wait state.

pertaining to

TRANSLATION TABLES

The translation process consists in a
two-level lookup using two tables: a
segment table and a page table. These
tables reside in real or absolute stor-
age.

Segment-Table Entries

The entry fetched from the segment table
designates the origin, availability, and
length of the corresponding page table.
It also specifies whether the segment is
common or private. The segment tables
designated by the primary and secondary
sagment-table designations have the same
format.

An entry in the segment table has the
following format:

0 Page-Table Origin I{CIPTL

0 1 26 28 31

The fields in the segment-table entry
are allocated as follows: .

Page-Table Origin (PT0): Bits 1-25,
with six =zeros appended on the right,

form the address that designates the
beginning of a page table. It is unpre-
dictable whether the address is real or
absolute.

Seagment-Invalid Bit (I): Bit 26
controls whether the segment associated
with the segment-table entry is avail-
able. When the bit 1is zero, address
translation proceeds by using the
segment-table entry. When the bit is
onae, the segment-table entry cannot be
used for translation.

Common-Segment Bit (C): Bit 27 controls
the use of the translation-lookasi.de-
buffer (TLB) copies of the segment-talkle

entry and of the page table which it
designates. A zero identifies a private
segment; in this case, the segment-table
entry and the page table it designates
may be used only in association with the
segment-table origin that designates the
segment table in which the segment-table
entry resides. A one identifies a
common segment; in this case, the
segment-table entry and the page table
it designates may continue to be used
for translating addresses corresponding
to the segment index, even though a
different segment table is specified.

Page-Table Length (PTL): Bits 28-31
designhate the length of the page table
in units of 64 bytes (16 entries). The
length of the page table, in units of 64
bytes, is one more than the PTL value.
The contents of the length field are
used to establish whether the entry
designated by the page-index portion of
the virtual address falls within the
page table.

Bit 0 of the segment-table entry must be
zero; if it is not zero, a translation-
specification exception is recognized as
part of the execution of an instruction

using that entry for address transla-
tion.

Page-Table Entries

The entry fetched from the page table

indicates the
and contains
real address.
contains the

availability of the page
the leftmost bits of the

Additionally, the entry
page-protection bit. The

page-table entry has the following
format:

0 PFRA O|\L|P|Ojsr7/7/7777
0 1 20 24 31

The fields in the page-table entry are
allocated as follows:

Page-Frame Real Address (PFRA): Bits
1-19 provide the leftmost bits of a real
storage address. When these bits are
concatenated with the 12-bit byte-index

field of the virtual address on the
right, a 31-bit real address is
obtained.

Page-Invalid Bit (I): Bit 21 controls
whether the page associated with the

page-table entry is available. When the
bit is zZero, address translation
proceeds by using the page-table entry.
When the bit is one, the page-table
entry cannot be used for translation.

Page-Protection Bit (P): Bit 22 con-
trols uhether store accesses can be made
in the page. This protection mechanism
is in addition to the key-controlled-
protection and low-address-protection
mechanisms. The bit has no effect on
fetch accesses. If the bit is zero,
stores are permitted to the page,
subject to the other protection mech-
anisms. If the bit is one, stores are
disallowed. An attempt to store when
the page-protection bit is one causes a
protection exception to be recognized.

Bit positions 0, 20, and 23 of the entry
must contain zZeros; otheruwise, a
translation-specification exception is
recognized as part of the execution of
an instruction wusing that entry for
address translation. Bit positions
24-31 are unassignhed and are not checked
for zeros; thus, they are available for
programming use.

Summary of Segment-Table and Page-Table
Sizes

segment tables and page
summarized in the figure
Segment Tables and Page

The sizes of
tables are
"Sizes of
Tables.”

Chapter 3. Storage 3-25

Segment-Table Parameters
Corresponding
Virtual Segment Table Segment-~
Address Number of Table
Size Addressable Maximum Usable Increment
(Bits) Segments Size (Bytes)|Length Code (Bytes)
241 16 64 0 -
31 2,048 8,192 127 64
Page-Table Parameters?
Corresponding
Page Table Page~-
Number of Table
Pages Maximum Usable Increment
in Segment |Size (Bytes)|Length Code (Bytes)
256 1,024 15 64

Explanation:

1

A virtual address specified by the program in the

24-bit addressing mode consists of a 24-bit value
embedded in a 31-bit address.

address size.

Sizes of Segment Tables and Page Tables

TRANSLATION PROCESS

This section

process
before a
access main

translating the operand

REAL ADDRESS

same,

as it

except

describes the
is performed
virtual address
The
address of LOAD
PROTECTION is the 1
segment-translation

storage.

and TEST
that

is
process

translation
implicitly

used to
of

The page-table size is independent of the virtual

Effective Seament-Table Designation

The segment-table designation used for a
particular address translation is called
the effective segment-table designation.
Accordingly, when a primary virtual
address is translated, control register
is used as the effective segment-table
designation, and when a secondary virtu-

and page-translation exceptions do not al address is translated, control

occur; such situations are instead indi- register 7 1is used as the effective

cated in the condition code. seagment-table designation.

Translation of the operand address of

LOAD REAL ADDRESS also differs in that The segment-index portion of the virtual

the CPU may be in real mode and the address is used to select an entry from

translation-lookaside buffer is not the segment table, the starting address

used. and length of which are specified by the
effective segment-table designation.

Translation of a virtual address is This entry designates the page table to

performed by means of a segment table be used.
and a page table both of which reside in
real or absolute storage. It is The page-index portion of the virtual
controlled by the DAT-mode bit and the address is used to select an entry from
address—space-control bit, both in the the page table. This entry contains the
PSW. The translation tables are speci- leftmost bits of the real address that
fied by the translation parameters in represents the translation of the virtu-
control registers 1 and 7. al address and provides the page-
protection bit.
The byte-indax field of the virtual

3-26

370-XA Principles of Operation

address is used unchanged as the right-
most bit positions of the real address.

segment-table
the entry
translation process cannot be completed
this virtual
translation
exception

page—-table

r page-translation
is recognized.

In order to eliminate
references
tables in real or
information

the delay associ-
translation
absolute storage,
fetched from

the translation-lookaside buffer
translations
entries may be

subsequent
involving the same table

performed by using the information
recorded in the TLB. The operation of
the TLB is described in the section
"Translation-Lookaside Buffer™ in this
chapter.

Whenever access to real or absolute
storage is made during the address-
translation process for the purpose of
fetching an entry from a segment table
or page table, key-controlled protection
does not apply.

The translation process, including the

effect of the TLB, is shown graphically
in the figure "Translation Process."

Chapter 3. Storage 3-27

Control Register 1 Control Register 7 Virtual Address

PSTD S§STD $X PX BX
(x4%) (x4)

Effective STD v
STO STL
(x4096)

€ ey

. Segment Table
+

5]
PTO PTL

R7A
(x66)
¥
¥
I Translation
Lookaside
¥ Buffer (TLB)
Page Table
1
¥
EI, N
-> PFRA PFRA
R7A

» v [2]
*
¥

. Real Address
R/7A: Address is either real or absolute

Translation Process (Part 1 of 2)

3-28 370-XA Principles of Operation

Control register 1 provides the primary segment-table designation for
translation of a primary virtual address, and control register 7
provides the secondary segment-table designation for translation of a

secondary virtual address.

2| Information, which may include portions of the virtual address and the

— effective segment-table origin, is used to search the TLB.

3| If a match exists, the page-frame real address from the TLB is used in

~— forming the real address.

4] If no match exists, table entries in real or absolute storage are fetched.

The resulting fetched entries, in conjunction with the search information,

are used to translate the address and may be used to form an entry in the

TLB.

Translation Process (Part 2 of 2)

Inspection of Control Register 0

The interpretation of the virtual
address for translation purposes
requires that there be a valid trans-
lation format specified by bits 8-12 of
control register 0. If bits 8-12
contain an invalid code, a translation-

specification exception is recognized.

Segment-Table Lookup

The segment-index portion of the virtual
address, in conjunction with the
segment-table origin contained in the
effective segment-table designation, is
:sg? to select an entry from the segment
able.

The 31-bit real address of the segment-
table entry is obtained by appending 12
zeros to the right of bits 1-19 of the
effective segment-table designation and
adding the segment index with two right-
most and 18 leftmost =zeros appended.
When a carry into bit position 0 occurs
during the addition, an addressing
exception may be recognized or the carry
may be ignored, causing the table to
wrap from 23! - 1 to zero. All 31 bits
of the address are used, regardless of
whether the current PSW specifies the
24-bit or 31-bit addressing mode.

As part of the segment-table-lookup
process, bits 1-7 of the virtual address
are compared against the segment-table
length, bit positions 25-31 of the
effective segment-table designation, to
establish whether the addressed entry is
within the segment table. If the value
in the segment-table-length field is
less than the value in the corresponding
bit positions of the virtual address, a
segment-translation exception is recog-
nized.

All four bytes of the segment-table
entry are fetched concurrently. The
fetch access is not subject to
protection. When the storage address
generated for fetching the segment-table
entry designates a location which is not
available in the configuration, an
addressing exception is recognized, and
the unit of operation is suppressed.

Bit 26 of the entry fetched from the
segment table specifies whether the
corresponding segment is available.
This bit is inspected, and, if it is
one, a segment-translation exception is
recognized. If bit 0 of the entry is
one, a translation—-specification excep-
tion is recognized.

kKhen no exceptions are recognized in the
process of segment-table lookup, the
entry fetched from the segment table
dasignates the length and beginning of
the corresponding page table.

The common—-segment bit, bit 27 of an
entry fetched from the segment table., is
used only for the purpose of forming a
TLB entry (see the section "Use of the
Translation-Lookaside Buffer™ later in
this chapter).

Page-Table Lookup

The page-index portion of the virtual
address, in conjunction with the
page-table origin contained in the
segment-table entry, is used to select
an entry from the page table.

The 31-bit real address of the page-
table entry is obtained by appending six
zeros to the right of the page-table
origin and adding the page index, with
two rightmost and 21 leftmost zeros
appended. A carry into bit position 0

Chapter 3. Storage 3-29

may cause an addressing exception to be
recognized, or the carry may be ignored,
causing the page table to wrap from
231 - 1 +to zero. .All 31 bits of the
address are used, regardless of whether
the current PSW specifies the 24-bit or
31-bit addressing mode.

As part of the page-table-lookup

process, the four leftmost bits of the
page index are compared against the
page-table length, bits 28-31 of the

segment-table entry, to establish wheth-
er the addressed entry is within the
table. If the value in the page-table-
length field 1is less than the value in
the four leftmost bit positions of the
page—-index field, a page-translation
exception is recognized.

All four bytes of the
are fetched

page-table entry
concurrently. The fetch
access 1s not subject to protection.
When the storage address generated for
fetching the page-table entry designates
a location which is not available in the
configuration, an addressing exception
is recognized, and the unit of operation
is suppressed.

The entry fetched from
indicates the availability of the page
and contains the leftmost bits of the
page-frame real address. The page-
invalid bit is inspected to establish
whether the corresponding page is avail-
able. If this bit is one, a page-
translation exception is recognized. If
bit position 0, 20, or 23 contains a
one, a translation-specification excep-
tion is recognized.

the page table

Formation of the Real Address

When no exceptions in the translation
process are encountered, the page-frame
real address obtained from the page-
table entry and the byte-index portion
of the virtual address are concatenated,
with the page-frame real address forming
the leftmost part. The result is the
real storage address which corresponds
to the virtual address. All 31 bits of
the address are used, regardless of
whether the current PSW specifies the
24-bit or 31-bit addressing mode.

Recognition of Exceptions during ITrans-—
lation

Invalid addresses and invalid formats
can cause exceptions to be recognized
during the translation process.
Exceptions are recognized when informa-
tion contained in control registers or
table entries is used for translation

and is found to be incorrect.

3-30 370—-XA Principles of Operation

The information pertaining to DAT is
considered to be used when an instruc-
tion is executed with DAT. on or when
LOAD REAL ADDRESS 1is executed. The
information is not considered to be used
when the PSW specifies DAT on but an
I/0, external, restart, or machine-check
interruption occurs before an instruc-
tion is executed, including the case
when the PSWH specifies the wait state.
Only that information required in order
to translate a virtual - address is
considered to be in wuse during the
translation of that address, and, in
particular, addressing exceptions that
would be caused by the use of the PSTD
or the SS5TD are not recognized when the
translation of an address uses only the
SSTD or only the PSTD, respectively.

A list of translation exceptions, with
the action taken for each exception and
the priority in which the exceptions are
recognized when more than one is appli-
cable, is provided in the section
"Recognition of Access Exceptions" in
Chapter 6, "Interruptions.™

TRANSLATION-LOOKASIDE BUFFER

To enhance performance, the dynamic-
address—-translation mechanism normally
is implemented such that some of the
information specified in the segment and
page tables 1is maintained in a special
buffer, referred to as the translation-
lookaside buffer (TLB). The CPU neces-—
sarily refers to a DAT-table entry in
real or absolute storage only for the
initial access to that entry. This
information may be placed in the TLB,
and subsequent translations may be
performed by using the information in
the TLB. The presence of the TLB
affects the translation process to the
extent that a modification of +he
contents of a table entry in real or
absolute storage does not necessarily
have an immediate effect, if any, on tha
translation.

The size and the structure of the TLB
depend on the model. For instance, the
TLB may be implemented in such a way as
to contain only a few entries pertaining

to the currently designated segment
table, each entry consisting of the
leftmost portion of a virtual address

and 1its corresponding page-frame real
address and page-protection bit; or it
may contain arrays of values where the
page-frame real address and page-
protection bit are selected on the basis
of the effective segment-table origin
and the leftmost bits of the virtual
address. Entries within the TLB are not
explicitly addressable by the program.

The description of the logical structure
of the TLB covers the implementation by
all systems operating in the 370-XA

mode. The TLB entries are considered as
being of two types: TLB segment-table
entries and TLB page-table entries. A
TLB entry is considered as containing
within it both the information obtained
from the table entry in real or absolute
storage and the attributes used to fetch
the entry from storage. Thus, a TLB
segment-table entry would contain the
following fields:

STO SX |PTO |PTL c

STO The segment-table origin in effect
when the entry was formed

SX The segment index used to select

the entry

PTO The page-table origin fetched from
the segment-table entry in real or
absolute storage

PTL The page-table length fetched from
the segment-table entry in real or
absolute storage

Cc The common-segment bit fetched
from the segment-table entry in
real or absolute storage

A TLB page-table entry would contain the
following fields:

PTO | PX |PFRA| P

PTO The page-table origin in effect
when the entry was formed

PX The page index used to select the
entry

PFRA The page-frame real address

fetched from the page-table entry
in real or absolute storage.

P The page-protection bit fetched
from the page-table entry in real
or absolute storage

Depending on the implementation, not all
of the above items are required in the
TLB. For example, if the implementation
combines into a single TLB entry (1) the
information obtained from a page-table
entry and (2) the attributes of both the
page-table entry and the segment-table
entry, then the page-table-origin and
page-table-length fields are not
required.

Note: The following sections describe
the conditions under which information
may be placed in the TLB and information
from the TLB may be used for address
translation, and they describe how
changes to the translation tables affect
the translation process. Information is

not necessarily retained in the TLB
under all conditions for which such
retention is permissible. Furthermore,
information in the TLB may be cleared
under conditions additional to those for
which clearing is mandatory.

Use of the Translation-lLookaside Buffer

The formation of TLB
effect of any manipulation
contents of a table entry in real or
absolute storage by the program depend
on whether the entry is valid, on wheth-
er the entry is attached to a particular
CPU, on whether a copy of the entry can
be placed in the TLB of a particular
CPU, and on whether a copy in the TLB of
the entry is usable.

entries and the
of the

The valid state of a table entry denotes
that the segment or page associated with
the table entry is available. An entry
is valid when the segment-invalid bit or
page-invalid bit in the entry is zero.

The attached state of a table entry
denotes that the CPU to which it 1is
attached can attempt to use the table

entry for implicit address translation.
The table entry may be attached to more
than one CPU at a time. When a table
entry is described as attached, the term
"to a CPU"™ is implied.

The usable state of a TLB entry denotes
that the CPU can attempt +to use the TLB
entry for implicit address translation.

A secgment-table entry or a page-table
entry may be placed in the TLB only when
the entry is attached and valid and
would not cause a translation-
specification exception if used for
translation. Except for these
restrictions, the entry may be placed in
the TLB at any time.

A segment-table entry is attached when
all of the following conditions are met:

1. The current PSH specifies DAT on.

2. The current PSW contains no errors

which would cause an early excep-
tion to be recognized.
3. The current translation format,

bits 8-12 in control register 0, is
valid.

4. The entry meets the requirements in
a or b below.

a. The entry is within the segment
table specified by the primary
segment-table designation in
control register 1.

b. The entry is within the segment
table specified by the second-

Chapter 3. Storage 3-31

ary segment-table designation
in control register 7 and
either of the following re-
quirements is met:

- The CPU is in
space mode.

. The secondary-space con-
trol, bit 5 of control reg-
ister 0, is one.

secondary-

A page-table entry is attached when it
is within the page table designated by
either a usable TLB segment-table entry
or by an attached and valid segment-
table entry which would not cause a
translation-specification exception if
used for translation.

A TLB segment-table entry is in the
usable state when all of the following
conditions are met:

1. The current PSW specifies DAT on.
2. The current PSW contains no errors

which would cause an early excep-
tion to be recognized.

3. The current translation format,
bits 8-12 in control register 0, is
valid.

4. The TLB segment-table entry meets
at least one of the following re-

quirements:

. The common-segment bit is one
in the TLB entry.

- The segment-table-origin field
in the TLB entry is the same as
the current PSTO.

- The segment-table-origin field
in the TLB entry is the same as
the current S5T0, and either
PSW bit 16 1is one or bit 5 of
control register 0 is one.

A TLB segment-table entry
for implicit address translation only
when the entry is in the usable state,
the segment index of the entry matches
the segment index of the virtual address
to be translated, and either the
common-segment bit is one in the TLB
entry or the segment-table-origin field
in the TLB entry matches the segment-
table origin used to select it.

may be used

is in the usable
following condi-

A TLB page-table entry
state when all of the
tions are met:

1. The TLB page-table
selected by a usable

table entry or by an
valid segment-table entry which
would not cause a translation-
specification exception if used for
translation.

entry is
TLB segment-
attached and

3-32 370-XA Principles of Operation

2. The page-table-origin field in the
TLB page-table entry matches the
page-table-origin field in the

segment—table entry which selects
it.
3. The page-index field in the TLB

page-table entry is within the
range permitted by the page-table-
length field in the segment-table
entry which selects it.

A TLB page-table entry may be used for
implicit address translation only when
the TLB entry is in the usable state as
selected by the segment-table entry
being used and only when the page index
of the TLB page-table entry matches the
page index of the virtual address being
translated.

The operand address of LOAD REAL ADDRESS
is translated without the use of the TLB
contents. Translation in this case is
performed by the use of the designated
tables in real or absolute storage.

are cleared
means of the INVALIDATE
PAGE TABLE ENTRY instruction. All
information in the TLB is necessarily
cleared only by execution of PURGE TLB,
SET PREFIX, or CPU reset.

Selected page-table entries
from the TLB by

Programming Notes

1. Although a
copied into

may be
when the

table entry
the TLB only

table entry is both wvalid and
attached, the copy may remain in
the TLB even when the table entry
itself is no longer valid or
attached.

2. No entries can be copied into the
TLB when DAT 1is off because the
table entries at this +time are not
attached. In particular, transla-
tion of the operand address of LOAD
REAL ADDRESS, with DAT off, does
not cause entries to be placed in
the TLB.

Conversely, when DAT 1is on, infor-
mation may be copied into the TLB
from all translation—-table entries
that could be used for address
translation, given the current
translation parameters, the setting
of the address-space-control bit,
and the setting of the secondary-
space-control bit. The loading of
the TLB does not depend on whether
the entry is used for translation
as part of the execution of the
current instruction, and such load-
ing can occur when the wait state
is specified.

3. More than one copy of a table entry
may exist in the TLB. For example,

some implementations may
copy of a valid table entry to be

placed in the TLB
segment-table origin

by which the
entry becomes attached.

cause a 4. The states and
entries in both storage
for each TLB are summarized
"Summary of DAT Entries."

State or Function

Conditions to Be Met

STE is attached by means
of PSTD (applies only to
STE in storage)

STE is attached by means
of SSTD (applies only to
STE in storage)

STE in storage is usable
for a particular instance
of implicit translation

STE can be placed in TLB

STE in TLB is usable

STE in TLB is usable for
a particular instance of
implicit translation

PTE is attached (applies
only to PTE in storage)

PTE in storage is usable
for a particular instance
of implicit translation

¢

¢ 0 00

DAT on

No early PSH exception

TF valid

STE in segment table defined by
PSTD in CR1

DAT on

No early PSW exception

TF valid

STE in segment table defined by
SSTD in CR7

PSW bit 16 one or bit 5 of CRO
ohe

STE in segment table defined and
attached by STD being used for
the translation

STE selected by S5X

STE attached

STE I bit zero
No TS

DAT on

No early PSW exception

TF valid

STE selectable by an STD:

- C bit one, or

- ST0 matches PSTO0, or

- ST0 matches SST0, and PSW bit
16 one or bit 5 of CRO one

DAT on

No early PSW exception

TF valid

STE selected by STD being used
for the translation:

- ST0 matches, or

- C bit one

SX matches

PTE in page table defined by
usable STE in the TLB, or de-
fined by an STE that can be
placed in the TLB

PTE attached by means of STE
being used for the translation
PTE selected by PX

Summary of DAT Entries (Part 1 of 2)

Chapter 3. Storage

DAT

and in the
figure

3-33

State or Function

Conditions to Be Met

* No TS

a particular instance of
implicit translation

PTE can be placed in TLB * PTE attached
e PTE I bit =zero

PTE in TLB is usable * PTE selectable by a usable STE
in the TLB or by an STE that
can be placed in the TLB:

- PTO matches and

- PX within PTL

PTE in TLB is usable for * PTE selected by STE being used
for the translation:
- PTO0 matches and
- PX within PTL

e PX matches

Explanation:

C bit
I bit

Common-segment bit in STE
Invalid bit in table entry

PSTO Primary segment-table origin
PTE Page-table entry

PTL Page—-table length

PTO Page-table origin

PX Page index

PSTD Primary segment-table designation

SSTD Secondary segment-table designation
SSTO Secondary segment-table origin

STD Segment-table designation

STE Segment-table entry

STO Segment-table origin

SX Segment index

TF Translation format (control register 0, bits 8-12)
TS Translation-specification exception

Summary of DAT Entries (Part 2 of 2)

Modification of Translation Tables

When an attached and invalid table entry
is made valid and no usable entry for
the associated virtual address is in the
TLB, the change takes effect no later
than the end of the current unit of
operation. Similarly, when an unat-
tached and valid table entry is made
attached and no usable entry for the
associated virtual address is in the
TLB, the change takes effect no later
than the end of the current unit of
operation.

When a valid and attached table entry is
changed, and when, before the TLB is
cleared of entries which qualify for
substitution for that entry, an attempt
is made to refer to storage by using a
virtual address requiring that entry for
translation, unpredictable results may
occur, to the following extent. The use
of the new value may begin betuween
instructions or during the execution of
an instruction, including the instruc-
tion that caused the change. Moreover,
until the TLB is cleared of entries
which qualify for substitution for that

3-3%4 370-XA Principles of Operation

entry, the TLB may contain both the old
and the new values, and it is unpredict-
able whether the old or new value is
selected for a particular access. If
both old and new values of a segment-
table entry are present in the TLB, a
page-table entry may be fetched by using
one value and placed in the TLB associ-
ated with the other value. If the new
value of the entry is a value which
would cause an exception, the exception
may or may not cause an interruption to
occur. If an interruption does occur,
the result fields of the instruction may
be changed even though the exception
would normally cause suppression or
nullification.

Entries are cleared from the TLB in
accordance with the following rules:

1. All entries are cleared from the
TLB by the execution of PURGE TLB
and SET PREFIX and by CPU reset.

2. Selected entries are cleared from
all TLBs in the configuration by
the execution of INVALIDATE PAGE
TABLE ENTRY by any of the CPUs in
the configuration.

Some or all TLB entries may be
cleared at times other than those
required by PURGE TLB, SET PREFIX,
CPU reset, and INVALIDATE PAGE
TABLE ENTRY.

Programming Notes

1.

Entries in the TLB may continue to
be used for translation after the
table entries from which they have
been formed have become unattached
or invalid. These TLB entries are
not necessarily removed unless
explicitly cleared from the TLB.

A change made to an attached and
valid entry or a change made to a
table entry that causes the entry

to become attached and valid 1is
reflected in the translation proc-
ess for the next instruction, or
earlier than the next instruction,
unless a TLB entry qualifies for
substitution for that table entry.
However, a change made to a table
entry that causes the entry to
become unattached or invalid is not
necessarily reflected in the trans-—

lation process wuntil the TLB is
cleared of entries which qualify
for substitution for that table

entry.

Exceptions associated with dynamic
address translation may be estab-
lished by a pretest for operand
accessibility that is performed as
part of the initiation of the
instruction execution. Consequent-
ly, a segment-translation or page-
translation exception may be
indicated when a table entry is
invalid at the start of execution
even if the instruction would have
validated the table entry it uses
and the table entry would have
appeared valid if the instruction
was considered to process the oper-
ands one byte at a time.

A change made to an attached table
entry, except to set the I bit to
zero or to alter the rightmost byte
of a page-table entry, may produce
unpredictable results if that entry
is used for translation before the
TLB is cleared of all copies of

that entry. The use of the new
value may begin between
instructions or during the
execution of an instruction,
including the "instruction hat
caused the change. When an
instruction, such as MOVE (MVC),

makes a change to an attached table
entry, including a change that
makes the entry invalid, and subse-
quently uses the entry for
translation, a changed entry is
being used without a prior clearing

of the entry from the TLB, and the
associated unpredictability of
result values and of exception
recognition applies.

Manipulation of attached table
entries may cause spurious table-
entry values to be recorded in a
TLB. For example, if changes are
made piecemeal, modification of a
valid attached entry may cause a
partially updated entry to be
recorded, or, if an intermediate
value is introduced in the process
of the change, a supposedly invalid
entry may temporarily appear valid
and may be recorded in the TLB.
Such an intermediate value may be
introduced if the change is made by
an I/0 operation that 1is retried,
or if an intermediate value is
introduced during the execution of
a single instruction.

As another example, if a segment-
table entry is changed to designate
a different page table and used
without clearing the TLB, then the
new page-table entries may be
fetched and associated with the old
page-table origin. In such a case,
execution of INVALIDATE PAGE TALLE

ENTRY designating the new page-
table origin will not necessarily
clear the page-table entries

fetched from the new page table.

To facilitate the manipulation of
translation tables, INVALIDATE PAGE
TABLE ENTRY is provided, which sets
the I bit in a page-table entry to
one and clears all TLBs in the

configuration of entries formed
from that table entry.
INVALIDATE PAGE TABLE ENTRY is

useful for setting the I bit to one
in a page—-table entry and causing
TLB copies of the entry to be
cleared from the TLB of each CPU in
the configuration. The following
aspects of the TLB operation should
be considered when using INVALIDATE
PAGE TABLE ENTRY. (See also the
programming notes following INVALI-
DATE PAGE TABLE ENTRY.)

a. INVALIDATE PAGE TABLE ENTRY
should be issued before making
ahy change to a page-table
entry other than changing the
rightmost byte; otherwise, the
selective clearing portion of
INVALIDATE PAGE TABLE ENTRY may
not clear the TLB copies of the
entry.

b. Invalidation of all the
page-table entries within a
page table by means of INVALI-
DATE PAGE TABLE ENTRY does not
necessarily clear the TLB of
the copies, if any, of the
segment-table entry designating

Chapter 3. Storage 3-35

3-36

the page table. When it is
desired to invalidate and clear
the TLB of a segment-table
entry, the rules in note 5
below must be followed.

c. When a large number of
page-table entries are to be
invalidated at a single tinme,
the overhead involved in using
PURGE 'TLB and in following the
rules in note 5 below may be
less than in issuing INVALIDATE

PAGE TABLE ENTRY for each
page-table entry.
Manipulation of table entries

should be in accordance with the
following rules. If these rules
are observed, translation is

performed as if the table entries
from real storage were always used
in the translation process.

a. A valid table entry must not be
changed while it is attached to
any CPU except either to inval-
idate the entry by using INVAL-
IDATE PAGE TABLE ENTRY or to
alter bits 24-31 of a page-
table entry.

b. When any change is made to a
table entry other than a change
to bits 24-31 of a page-table
entry, each CPU which may have
a TLB entry formed from that
entry must issue PURGE TLB or
SET PREFIX or perform CPU
reset, after the change occurs
and prior to the use of that
entry for implicit translation
by that CPU, except that the
purge is unnecessary if the
change was made by using INVAL-
IDATE PAGE TABLE ENTRY.

c. When any change is made to an

invalid table entry in such a

way as to allow intermediate

valid values - to appear in the
entry, each CPU to which the
entry is attached must issue

PURGE TLB or SET PREFIX or

perform CPU reset, after the

change occurs and prior to the
use of the entry for implicit
adSress translation by that

CPU.

made to a
page-table

d. When any change is
segment-table or
length, each CPU to which that
table has been attached mnmust
issue PTLB after the length has
been changed but before that
table becomes attached again to
the CPU.

Note that when an invalid page-

table entry is made valid without

introducing intermediate valid
values, the TLB need not be cleared
in a CPU which does not have any

3J70-XA Principles of Operation

usable TLB copies for
Similarly, when an invalid
segment-table entry is made valid
without introducing intermediate
valid values, the TLB need not be
cleared in a CPU which does not
have any usable TLB copies for that
segment-table entry and which does
not have any usable TLB copies for
the page-table entries attached by
it.

that entry.

The execution of PURGE TLB and SET
PREFIX may have an adverse effect
on the performance of some models.
Use of these instructions should,
therefore, be minimized in conform-
ity with the above rules.

ADDRESS SUMMARY

ADDRESSES TRANSLATED

Most addresses that are explicitly spec-
ified by the program and are used by the
CPU to refer to storage for an instruc-
tion or an operand are logical addresses
and are subject to implicit translation
when DAT is on. Analogously, the corre-
sponding addresses indicated to the
program on an interruption or as the
result of executing an instruction are
logical. The operand address of LOAD
REAL ADDRESS 1is explicitly translated,
regardless of whether the PSH specifies
DAT on or off.

Translation is not applied to quantities
that are formed from the values desig-
nated in the B and D TFields of an
instruction but that are not used to
address storage. This includes operand
addresses in LOAD ADDRESS, MONITOR CALL,
and the shifting instructions. This
also includes the addresses in control
registers 10 and 11 designating the
starting and ending locations for PER.

With the exception of INSERT VIRTUAL
STORAGE KEY and TEST PROTECTION, the
addresses explicitly designating storage
keys (operand addresses in SET STORAGE

KEY EXTENDED, INSERT STORAGE KEY
EXTENDED, and RESET REFERENCE BIT
EXTENDED) are real addresses.

Similarly, the addresses implicitly used
by the CPU for such sequences as inter-
ruptions are real addresses.

Th§ addresses used by channel programs
tor transfer data and to refer to CCWs or
IDAWs are absolute addresses.

The handling of storage addresses asso-
ciated with DIAGNOSE is model-dependent.

including
and prefix-
the section

The processing of addre§ses,
dynamic address translation
ing, is discussed in

"Address Types” in this chapter.
Prefixing, when provided, is applied
after the address has been translated by
means of the dynamic-address-translation
facility. For a description of prefix-
ing, see the section "Prefixing" in this
chapter.

HANDLING OF ADDRESSES

The handling of addresses is summarized
in the figure "Handling of Addresses."
This figure lists all addresses that are
encountered by the program and specifies
the address type.

Virtual Addresses

Operand address in LOAD REAL ADDRESS

exception

Instruction Addresses

Instruction address in PSW
Branch address
Target of EXECUTE

gram interruption for PER

PROGRAM CALL

Logical Addresses

wise specified
TRANSLATE AND TEST
COMPARE LOGICAL LONG
is nonzero

Real Addresses

BLOCK

Segment-table origin?

Operand address in INSERT VIRTUAL STORAGE KEY

Operand addresses in MOVE TO PRIMARY and MOVE TO SECONDARY
Address stored in the word at real location 144 on a program
interruption for page-translation or segment-translation

Address stored in the word at real location 152 on a pro-

Address placed in general register by BRANCH AND LINK,
BRANCH AND SAVE, BRANCH AND SAVE AND SET MODE, and

* Addresses of storage operands for instructions not other-
® Address placed in general register 1 by EDIT AND MARK and
* Addresses in general registers updated by MOVE LONG and

® Address for TEST PENDING INTERRUPTION provided the address

* Operand address in INSERT STORAGE KEY EXTENDED, RESET
REFERENCE BIT EXTENDED, SET STORAGE KEY EXTENDED, and TEST

Page-table origin in INVALIDATE PAGE TABLE ENTRY
in control registers 1 and 7
Page-table origin! in segment-table entry
Page-frame real address in page—-table entry
Trace-entry address in control register 12
ASN-first-table origin in control register 14
ASN-second-table origin in ASN-first-table entry
Authority-table origin in ASN-second-table entry
Linkage-table origin in control register 5
Entry-table origin in linkage-table entry

Handling of Addresses (Part 1 of 2)

Chapter 3. Storage 3-37

* The translated address generated by LOAD REAL ADDRESS
® Address! of segment-table entry or page-table entry provided
by LOAD REAL ADDRESS

Permanently Assigned Real Addresses

¢ Address of the doubleword at location 184 into which TEST
?ENDING INTERRUPTION stores when the second-operand address
is zero

® Addresses of PSWs, interruption codes, and the associated
information used during interruption

* Addresses used for machine-check logout and save areas

Absolute Addresses

® Prefix value

Channel-program address in ORB

Data address in CCW

IDAK address in a CCW specifying indirect data addressing
CCW address in a CCN specifying transfer in channel

Data address in IDANW

Measurement-block origin specified in SET CHANNEL MONITOR
Address limit specified in SET ADDRESS LIMIT

Addresses used by the store-status-at-address SIGNAL
PROCESSOR order

Failing-storage address stored in the word at real loca-
tion 248

s CCW address in SCSW

s 6 6 0 6 0 ¢

Permanentlv Assiagned Absolute Addresses

* Addresses used for the store-status function
¢ Addresses of PSW and first two CCWs used for initial pro-
gram loading

Addresses Not Used t

Reference Storage

e PER starting address in control register 10

* PER ending address in control register 11

* Address stored in the word at real location 156 for a
monitor event

® Address in shift instructions and other instructions speci-
fied not to use the address to reference storage

® Parameter stored in the word at real location 128 for a
service-signal external interruption

 I/0 interruption parameter stored in the word at real loca-
tion 188 for an I/0 interruption

It is unpredictable whether these addresses are treated as
real or absolute.

Handling of Addresses (Part 2 of 2)

ASSTIGNED STORAGE LOCATIONS

The figure "Assigned Storage Locations"”

PSW at the completion of the IPL
operation. These locations may
also be used for temporary stor-
age at the initiation of the IPL

Restart New PSW: The new PSW is
locations 0-7
during a restart interruption.

shows the format and extent of the operation.
assigned locations in storage. The
locations are used as follows. 0-7 (Real Address) '
0-7 (Absolute Address)
fetched from
Initial-Program-Loading PSW:
The Ffirst eight bytes read
during the initial-program- 8-15 (Absolute Address)

loading (IPL) initial-read oper-
ation are stored at locations
0-7. The contents of these
locations are used as the new

3-38 370-XA Principles of Operation

Initial-Program-lLoading CCWl:
Bytes 8-15 read during the
initial-program-loading (IPL)

8-15

16-23

26-31

32-39

40-647

48-55

56-63

88-95

96103

initial-read operation
stored at locations 8-15.
contints of these
ordinarily used as

are
The
locations are
the next CCW

in an IPL CCW chain after
completion of the IPL initial-
read operation.
(Real Address)
Restart 0ld PSW: The current

PSW i1s stored as the old PSW at
locations 8-15 during a restart
interruption.

(Absolute Address)

Initial-Program-Loading CCW2:
Bytes 16-23 read during the
initial-program loading (IPL)
initial-read operation are
stored at locations 16-23. The
contents of these locations may
be used as another CCW in the
IPL CCW chain to follow IPL
CCHWl.

(Real Address)

External 0ld PSW: The current

PSW is stored as the old PSW at
locations 26-31 during an
external interruption.

(Real Address)

Supervisor-Call 0ld PSW: The
current PSW is stored as the old
PSW at locations 32-39 during a
supervisor-call interruption.

(Real Address)

Program 0ld PSW: The current
PSW is stored as the old PSW at
locations 40-47 during a program
interruption.

(Real Address)

Machine-Check 0ld PSW: The
current PSW is stored as the old
PSW at locations 48-55 during a
machine-check interruption.

(Real Address)

Input/Output 0ld PSW: The
current PSW is stored as the old
PSW at locations 56-63 during an
I/0 interruption.

(Real Address)

External New PSW: The new PSW
is fetched from locations 88-95
during an external interruption.

(Real Address)

Supervisor—-Call New PSW: The
new PSW is etched from
locations 96-103 during a

supervisor-call interruption.

104-111

112-119

120-127

128-131

132-133

134-135

136-139

1640~-143

(Real Address)

Program New PSW: The new PSW is
fetched from locations 104-111
during a program interruption.

(Real Address)

Machine-Check New PSW: The new
PSW is fetched from locations
112-119 during a machine-check
interruption.

(Real Address)

Input/0Output New PSW: The new
PSW is fetched from locations
120-127 during an 1I/70 inter-
ruption.

(Real Address)

External-Interruption Parameter:
During an external interruption

due to service signal, the
parameter associated with the
interruption is stored at

locations 128-131.
(Real Address)

CPU Address: During an external
interruption due to malfunction
alert, emergency signal, or
external call, the CPU address
associated with the source of
the interruption is stored at
locations 132-133. For all
other external-interruption
conditions, zeros are stored at
locations 132-133.

(Real Address)

External-Interruption Code:
During an external interruption,

the interruption code is stored
at locations 134-135.

(Real Address)

Supervisor-Call-Interruption

Identification: During a
supervisor-call interruption,
the instruction-length code is
stored in bit positions 5 and 6
of location 137, and the inter-

ruption code is stored at
locations 138-139. Zeros - are
stored at location 136 and in

the remaining bit positions of
137.

(Real Address)

Proagram—-Interruption Identifi-
cation: During a program inter-
ruption, the instruction-length
code is stored in bit positions
5 and 6 of location 141, and the
interruption code is stored at

locations 142-143. Zeros are
stored at location 140 and in
Chapter 3. Storage 3-39

146-147

148-149

150-151

3-40

the remaining bit positions of
141.

(Real Address)

Translation-Exception Identifi-
cation: During a program inter-
ruption due to a segment-
translation exception or a
page—translation exception, the
segment—-index and page—index
portion of the virtual address
causing the exception 1is stored
at locations 144-147. This
address is sometimes referred to

as the translation—exception
address. The rightmost 12 bits
of the address are unpredict-
able. Bit 0 of location 144 is
set to =zero if the translation
was relative to the primary
segment table designated by

control register 1, or it is set
to one if the translation was
relative to the secondary
segment table designated by
control register 7.

During a program interruption
due to an AFX-translation, ASX-
translation, primary-authority,

or secondary-authority excep—
tion, the ASN being translated
is stored at locations 1646-147.
Locations 144-145 are set to
zZeros.

During a program interruption

event, the
appears in bits
16-31 of control register 64
before the execution of a
space-switching PROGRAM CALL or
PROGRAM TRANSFER instruction, is
stored at locations 146-147.
The old space-switch-event-
control bit 1is placed in bit
position 0, and zeros are placed
in bit positions 1-15 at
locations 1644-145.

for a space-switch
old PASN, which

During a
due to an

program interruption
LX-translation or EX-

translation exception, the PC
number is stored in bit posi-
tions 12-31 of the word at

location 14%.
to zeros.

(Real Address)

Bits 0-11 are set

Monitor-Class Number: During a
program interruption due to a
monitor event, the monitor-class
number 1s stored at location
149, and zeros are stored at
location 148.

(Real Address)

PER Code: During a program
interruption due to a PER event,
the PER code is stored in bit
positions 0-3 of location 150,

370-XA Principles of Operation

152-155

156-159

184-187

188-191

216-223

216-223

224-231

226-231

232-239

and zeros are stored in bit
positions 6-7 and at location
151.

(Real Address)

PER Address: During a program
interruption due to a program

event, the PER address is stored
at locations 152-155. Bit 0 of
location 152 is set to =zero.

(Real Address)

Monitor Code: During a program

interruption due to a monitor
event, the monitor code is
stored in the word at location
156.

(Real Address)

Subsystem-Identification Word:
During an I/0 interruption, the
subsystem—identification word is
stored in these locations.

(Real Address)

Interruption Parameter: During
an I/0 interruption, the inter-
ruption parameter from the asso-
ciated subchannel is stored in
these locations.

(Absolute Address)

Store-Status - CPU-Timer Save
Area: During the execution of
the store-status operation, the
contents of the CPU timer are
stored at locations 216-223.
(Real Address)

Machine-Check CPU-Timer Save

machine-check
contents of
stored at

Area: During a
interruption, the
the CPU timer are
locations 216-223.

(Absolute Address)

Store-Status Clock-Comparator
Save Area: During the execution
of the store-status operation,
the contents of the clock compa-
rator are stored at location
2264-231.

(Real Address)

Machine-Check Clock-Comparator
Save Area: During a machine-
check interruption, the contents
of the clock comparator are
stored at location 224-231.

(Real Address)

Machine-Check-Interruption Code:
During a machine-check interrup-
tion the machine-check-interrup~

248-251

256-271

266-267

352-383

tion code is stored at locations
232-239.

(Real Address)

During
interruption, a

Failing-Storage Address:
a machine-check
failing-storage address may be
stored at locations 248-251.
Bit 0 of location 248 is set to
zero.

(Real Address)

Fixed-lLogout Area: Depending on
the model, logout information
may be placed in this area
during a machine-check interrup-

tion.

(Absolute Address)

Store-Status Prefix Save Area:
During the execution of the
store-status operation, the

contents of the prefix register
are stored at location 264-267.

(Absolute Address)

Store-Status Floating-Point-
Register Save Area: During the
execution of the store-status
operation, the contents of the
floating-point registers are
stored at locations 352-383.

352-383

3864-447

3864-447

448-511

448-511

(Real Address)

Machine-Check Floating—-Point-
Register Save Area: During a

machine-check interruption, the
contents of the floating-point
registers are stored at
locations 352-383.

(Absolute Address)

Store-Status General-Register
Save Area: During the execution

of the store-status operation,
the contents of the general
registers are stored at
locations 384-4647.

(Real Address)

Machine-Check General-Register
Save Area: During a machine-
check interruption, the contents
of the ogeneral registers are

stored at locations 384-447.
(Absolute Address)

Store-Status Control-Register
Save Area: During the execution
of the store-status operation,
the contents of the control
registers are stored at
locations 448-511.

(Real Address)

Machine-Check Control-Register
Save Area: During a machine-
check interruption, the contents
of the control registers are
stored at locations 448-511.

Chapter 3. Storage 3-4l

Hex Dec
0 6 Initial-Program-Loading PSW; or Restart New PSW
& G

8 8 Initial-Program-Loading CCWl; or Restart 0ld PSW
c 12

10 16 Initial-Program Loading CCW2
14 20

18 26 External 0ld PSW

i¢ 28

20 32 Supervisor—-Call 0ld PSH]

24 36

28 60 Program Old PSW

2C 46

30 48 Machine-Check 0ld PSW

34 52

38 56 Input/Output 01d PSW

3C 60

40 64

G4 68

48 72

4C 76

50 80

54 84

58 88 External New PSHW

5C 92

60 96 Supervisor-Call New PSHW

64 100

68 104 Program New PSW

6C 108

70 112 Machine-Check New PSW

74 116

78 120 Input/0utput New PSHW

7C 124

Assigned Storage Locations (Part 1 of 3)

3-62 370-XA Principles of Operation

Hex Dec

80 128 External-Interruption Parameter

8¢ 132 CPU Address External-Interruption Code
88 136 |0 0 0 0 0 0 0 0 0 0 0 0 O}JILCJO|] SVC-Interruption Code
8C 140 |0 0 0 0 0060 00 O0O0 O OJILC|{O] Program-Interruption Code

90 144 Translation-Exception Identification

96 148 Monitor-Class Number PER Cde|0 O 0 0 0 0 0 0 0 0 0 O
98 152 PER Address i
9C 156 Monitor Code

A0 160
A4 164
A8 168
AC 172
B0 176
B4 180

B8 184 Subsystem-Identification Word

BC 188 I/0-Interruption Parameter
co 192
C4 196
c8 200
cC 204
D0 208
D4 212

D8 216 Store-Status CPU-Timer Save Area; or Machine-Check CPU-Timer
Save Area
DC 220

E0 224 Store-Status Clock-Comparator Save Area; or Machine-Check
Clock-Comparator Save Area

E4¢ 228

E8 232 Machine-Check Interruption Code

EC 236

FO 240
F& 244

F8 248 Failing-Storage Address
FC 252

Assigned Storage Locations (Part 2 of 3)

Chapter 3. Storage 3-43

Hex

Dec

100
104

256
260

Store-Status PSW Save Area; or Fixed Logout Area (Part 1)

108

266 .

Store-Status Prefix Save Area; or Fixed Logout Area (Part 2)

10C

268

Fixed Logout Area (Part 3>

110

158
15C

272

344
348

160
164
168
16C
170
174
178
17¢C

352
356
360
364
368
372
376
380

Store-Status Floating-Point-Register Save Area; or Machine-
Check Floating-Point-Register Save Area

180
184
188
138C

1B4
1B8
1BC

384
388
392
396

436
440
444

Store-Status General-Register Save Area; or Machine-Check
General-Register Save Area

ico
1C4
1cs
1cC

1F4
1F8
1FC

448
452
456
4690

500
504
508

Store-Status Control-Register Save Area} or Machine-Check
Control-Register Save Area

Assigned Storage Locations (Part 3 of 3)

3-44 370-XA Principles of Operation

facilities

for controlling, measuring, more CPUs.

Chapter 4. Control

CHAPTER 4. CONTROL
Stopped, Operating, Load, and Check-Stop States G-2
Stopped State cececeseeccetretssssanssescsstneneons G-2
Operating Stateciiiiiiieiitiecreteenenocssssnncsnnns 4-2
Load State ...ccceeeecececeoncsscsceconsevscnccsccosncens 4-3
Check-Stop Stateieiiiiereerecsccanoncrsoononcsnnnsns 4-3
Program-Status Wordc..iiieieeereeeeececacasoascnncnaans 4-3
Program-Status-UWord Formatc.iciiiiiintencenccancss 4-5
Control Registerscccceecencccreasercsosscssconvaoncncccs 4-6
TraCING et eeeeennsscoccosssocancscsscsnssssssssssssansnsscses 4-8
Control—-Register Allocationcciiecercercenscenansnes 4-8
Trace Entries ci.iceeeeeeeeeccccossosasoscncsscsssscccasansnos 4-9
Operation ...cceceeceerccncececrocnsosvonnos ceceeserecscnens 4-10
Program—-Event Recordingceeceeieeeccccccascccncsnscncscs 4-11
Control-Register Allocationcecvvennnces ceceeeenanns 4-11
OPEration .. ieeeeeeeeeeeeeeeococenssonnenssoecnscossnnnnses 4-12
Identification of CausSe ceceieerrereeccccccoccnssnconncns 4-12
Priority of Indicationc.eitieereeeeeencecnccccconcons 4-13
Storage-Area Designation ceeecsescsssassssconene 4-14
PER Eventscivireerrveeevreanosaosnosccsocooosssccnonsasns 4-14
Successful Branchingcetiiirerreceeccenceccocncannns 4-14
Instruction Fetching (..ciciiiieicreeenccercncancanenons 4-14
Storage Alterationcceeeecececcesssccocccncncnncns 4-15
General—-Register Alterationciiiiiiirecerccnccens 4-15
Indication of Events Concurrently with Other
Interruption Conditions ..ceeeretriereceeneoancccsnnonnnans 4-16
TimMiNG .t oieeineeeeeeceecooscassacsosasscsosnsssscsoscssssssosensses 4-18
Time—o0f-Day CloCK ..ueeeeeeeeeeeeeeeeccaccncocconsnscnnas 4-18
Formatieeeiieeeceeececereaecceosasececanccansnossns 4-18
1 o o =X S 4-19
Changes in Clock State (...t iteccnrernnccnnncncns 4-19
Setting and Inspecting the Clockccciiececeenenn 4-20
TOD-Clock Synchronizationcceececeecnccasonccnscoscns 4-21
Clock Comparatorccieecececcccnscsacsccccnsccnssanss 4-21
CPU Timer ..ciceeeeeees Ceecevessestescstssensecsessnnoonee 4-22
Externally Initiated Functionsceeeieeeeeeencecoennans 4-23
Service Signali.iiiiiicnrcrrscncccssaorsesnrsasasces 4-23
Resets tececcesnrcessscessssessecseeserseesessns 4-24
CPU Reset ceevevesrecrerresrsennnnoes ceveanone 4-27
Initial CPU Reseticiieeeeerececeeccescssscnccnnnns 4-27
Subsystem Reset (...t irieecreetecescnsncssssnecasan 4-28
Clear Reset ...iiceeirteeetececcosccnnssascsoasansansenscss ¢-28
Power=0n Reset ...c.iiitieeerreccecssosncscssssonassnons 4-28
Initial Program Loading ... eeeieieeeeeecaceccacoccenncns 4-29
Store Status ...ttt eieerecceeroerosesenccosnsssnnssnnsnse 4-29
MULtiprocessing . ov.eeeeeceeronceacsesacssvsccnsonssnsensosss 4-30
Shared Main Storagececceee Geevresecverroseccsacscanse 4-30
CPU-Address Identification ...iciiiieeiiicecreccccnncecnas 4-30
CPU Signaling and ResSponsec.cieccncecnccnnnne ceeeeeennn 4-31
Signal-Processor Ordersccceeececccacecccssscnnssssns 4-31
Conditions Determining Responsecciccccnccesencsesces 4-33
Conditions Precluding Interpretation of the Order
(0 < Y 1= 4-33
Status Bits .c...vieeeerrreecevoocooosessccnsnsasannesss 4-34
chapter describes in detail the and recording the operation of one or

4-1

g;gPPED, QPERATING, LOAD, AND CHECK-STOP
TES

The stopped, operating, load, and

check-stop states are four mutually
exclusive states of the CPU. When the
CPU is in the stopped state,

instructions and interruptions, other
than the restart interruption, are not
executed. In the operating state, the

CPU executes instructions and takes
interruptions, subject to the control of
the program-status word (PSHW) and
control registers, and in the manner
specified by the setting of the
operator-facility rate control. The CPU
is in the load state during the
initial-program—loading operation. The
CPU enters the check-stop state only as
the result of machine malfunctions.

A change between these four CPU states
can be effected by use of the operator
facilities or by acceptance of certain
SIGNAL PROCESSOR orders addressed to
that CPU. The states are not controlled
or identified by bits in the PSW. The
stopped, load, and check-stop states are
indicated to the operator by means of
the manual indicator, load indicator,
and check-stop indicator, respectively.
These three indicators are off when the
CPU is in the operating state.

The CPU timer is updated when the CPU is
in the operating state or the load
state. The TOD clock is not affected by
the state of any CPU.

STOPPED STATE

The state of the CPU
operating to
tion.
when:

is changed from
stopped by the stop func-
The stop function is performed

L4 The stop key is activated while the
CPU is in the operating state.

. The CPU accepts a stop or stop-
and-store-status order specified by
a SIGNAL PROCESSOR instruction
addressed to this CPU while it is
in the operating state.

. The CPU has finished the execution
of a unit of operation initiated by
performing the start function with
the rate control set to the in-
struction-step position.

When the stop function is performed, the
transition from the operating to the
stopped state occurs at the end of the
current unit of operation. When the
wait-state bit of the PSW is one, the
transition takes place immediately,
provided no interruptions are pending
for which the CPU is enabled. In the
case of interruptible instructions, the

4-2 370-XA Principles of Operation

amount of data processed in a unit of
operation depends on the particular
instruction and may depend on the model.

Before entering the stopped
means of the stop function, all pending
allowed interruptions are taken while
the CPU is still in the operating state.
They cause the old PSH to be stored and
the new PSK to be fetched before the
stopped state is entered. MWhile the CPU
is in the stopped state, interruption
conditions remain pending.

The CPU is also
state when:

state by

placed in the stopped

L4 The CPU reset is completed. Howev-
er, when the reset operation is
performed as part of initial
program loading, then the CPU is
placed in the load state and does
not necessarily enter the stopped
state.

indicates
on the match

. An address comparison
equality and stopping
is specified.

The execution of resets 1is described in
the section "Resets" in this chapter,
and address comparison is described in
the section "Address-Compare Controls"”
in Chapter 12, "Operator Facilities."

If tha CPU is in the stopped state when
an INVALIDATE PAGE TABLE ENTRY instruc-
tion is executed on another CPU in the
configuration, the invalidation may be
performed immediately or may be delaved
until the CPU leaves the stopped state.

OPERATING STATE

The state of the CPU 1is changed from
stopped to operating when the start
function is performed or when a restart
interruption (see Chapter 6) occurs.

if the
stopped state and (1) the

The start function is performed
CPU is in the

start key associated with that CPU is
activated or (2) that CPU accepts the
start order specified by a SIGNAL

PROCESSOR instruction addressed to that
CPU. The effect of performing the start
function is unpredictable when the
stopped state has been entered by means
of a reset.

When the rate contrel is set to the
process position and the start function
is performed, the CPU starts operating
at normal speaead. When the rate control
is set to the instruction-step position
and the wait-state bit is =zero, one
instruction or, for interruptible
instructions, one unit of operation is
executed, and all pending allowed inter-
ruptions are taken before the CPU
returns to the stopped state. When the

to the instruction-
step position and the wait-state bit is
one, the start function causes no
instruction to be executed, but all
pending allowed interruptions are taken

rate control is set

before the CPU returns to the stopped
state.

LOAD STATE

The CPU enters the load state when the
load-normal or load-clear key is acti-
vated. (See the section "Initial
Program Loading” in this chapter. See

also the section "Initial Program Load-
ing™ in Chapter 17, "1/0 Support Func-
tions.") If the initial-program-loading
operation is completed successfully, the
CPU state changes from load to
operating, provided the rate control is
set to the process position; if the rate
control is set to the instruction-step
position, the CPU state changes from
load to stopped.

CHECK-STOP STATE

The check-stop state, which the CPU
enters on certain types of machine
malfunction, is described in Chapter 11,
"Machine-Check Handling." The CPU
leaves the check-stop state when CPU
reset is performed.

Programming Notes

1. Except for the relationship between
execution time and real time, the
execution of a program is not
affected by stopping the CPU.

2. When, because of a machine malfunc-
tion, the CPU is unable to end the
execution of an instruction, the
stop function is ineffective, and a
reset function has to be invoked
instead. A similar situation
occurs when an unending string of
interruptions results from a PSH
with a PSW-format error of the type
that is recognized early, or from a
persistent interruption condition,
such as one due to the CPU timer.

3. Pending 1I/0
initiated, and

opaerations may be
active I/70 oper-

ations continue to suspension or
completion, after the CPU enters
the stopped state. The inter-
ruption conditions due to

suspension or completion of 1/0
operations remain pending when the
CPU is in the stopped state.

PROGRAM-STATUS WORD

The current program-status word (PSW) in
the CPU contains infermation required
for the execution of the currently
active program. The PSW is 64 bits in
length and includes the instruction
address, condition code, and other
control fields. In general, the PSW is
used to control instruction sequencing
and to hold and indicate much of the
status of the CPU in relation to the
program currently being executed. Addi-
tional control and status information is
contained in control registers and
permanently assigned storage locations.

The status of the CPU can be changed by
loading a new PSW or part of a PSW.

Control is switched during an inter-
ruption of the CPU by storing the
current PSW, so as to preserve the
status of the CPU, and then loading a
new PSW.

Execution of LOAD PSW, or the successful
conclusion of the initial-program-
loading sequence, introduces a new PSW.
The instruction address 1is updated by
sequential instruction execution and
replaced by successful branches. Other
instructions are provided which operate
on a portion of the PSW. The figure
"Operations on PSW Fields" summarizes
these instructions.

A new or modified PSW becomes active
(that is, the information introduced
into the current PSW assumes control
over the CPU) when the interruption or

instruction that
completed. The

the execution of an
changes the PSHW is
interruption for PER associated with an
instruction that changes the PSW occurs
under control of the PER mask that is
effective at the beginning of the opera-
tion.

Bits 0-7 of the PSW are collectively
referred to as the system mask.

Chapter 4. Control 4-3

Condition
Address~ Code and
Problem Space Program Addressing
System Mask PSW Key State Control Mask ode
(PSW Bits (PSW Bits (PSW (PSW (PSW Bits (PSW
0-7) 8-11) Bit 15) Bit 16) 18-23) Bit 32)
Instruction Saved] Set [Saved| Set |Saved| Set]Saved] Set |Saved| Set |Saved| Set
BRANCH AND LINK No No No No No No No No AM No AM No
BRANCH AND SAVE No No No No No No No No No No Yes No
Bkﬁggg AND SAVE AND SET No No No No No No No No No No Yes Yas2
BRANCH AND SET MODE No No No No No No No No No No Yes!| Yes?
INSERT PROGRAM MASK No No No No No No No No Yes No No No
INSERT PSW KEY No No Yes No No No No No No No No No
IN%E§¥RSEDRESS SPACE No No No No No No Yes No No No No No
PROGRAM CALL No No No No Yes Yes No No No No Yes Yes
PROGRAM TRANSFER No No No No No Yes!| No No No No No Yes
SET ADDRESS SPACE CONTROL No No No No No No No Yes No No No No,
SET PROGRAM MASK No No No No No No No’ No No Yes No No
SET PSW KEY FROM ADDRESS No No No Yes No No No No No No No No
SET SYSTEM MASK No Yes No No Ho Ho No No No No No No
STORE THEN AND SYSTEM MASK| Yes ANDs{ No No No No No No No No No No
STORE THEN OR SYSTEM MASK Yes ORs No No No No No No No No No No

Explanation:

1 Cannot be changed from one to zero.

2 The action takes place only if the associated R field in the instruction is nonzero.

AM The action depends on the addressing mode, bit 32 of the current PSW.

ister. In 31-bit addressing mode,
bit address, replace the leftmost byte of the register.

replaces the current system mask.

In 24-bit mode,
the condition code and program mask are saved in the leftmost byte of the general reg-
the addressing mode, along with bits 1~-7 of the 31-

ANDs The logical AND of the immediate field in the instruction and the current system mask
replaces the current system mask.
ORs The logical OR of the immediate field in the instruction and the current system mask

Operations on PSW Fields

Programming Note

which save
addressing
address is
"Subroutine
"Program

A summary of the operations
or set the problem state,
mode, and instruction
contained in the section
Linkage" in Chapter 5,
Execution.™

4-4 370-XAk Principles of Operation

~=sw

PROGRAM-STATUS-WORD FORMAT

IlE Prog
0{R|0 0 O|T|O|X] Key {1|M|WIP}S]|0}jC C|] Mask |0 0 0 0 0 0 0 O
0 5 8 12 16 18 20 24 31
A Instruction Address
32 63
PSW Format

The following is a summary of the func-

tions of the PSW fields. (See the
figure "PSW Format.™)
PER Mask (R): Bit 1 controls whether

the CPU 1is enabled for interruptions
associated with program-event recording
(PER). When the bit is zero, no PER
event can cause an interruption. When
the bit is one, interruptions are
permitted, subject to the PER-event-mask
bits in control register 9.

DAT Mode (T): Bit 5 controls whether
implicit dynamic address translation of
logical and instruction addresses used
to access storage takes place. When the
bit is zero, DAT is off, and logical and
instruction addresses are treated as
real addresses. When the bit is one,
DAT is on, and the dynamic-address—
translation mechanism is invoked.

1/0 Mask (10):
the CPU
interruptions.

Bit 6 controls

enabled for 170
When the bit is zero, an
I/0 interruption cannot occur. When the
bit is one, I/0 interruptions are
subject to the I/0-interruption-
subclass-mask bits in control register
6. When an I/70-interruption-subclass
mask is zero, an I/0 interruption for
that I/0-interruption subclass cannot
occur; when the I70-interruption-
subclass mask is one, an 1/0
interruption for that I/0-interruption
subclass can occur.

whether

is

External Mask (EX): Bit 7
whether the CPU is enabled for inter-
ruption by conditions included in the
external class. When the bit is zero,
an external interruption cannot occur.
When the bit is one, an external inter-
ruption is subject to the corresponding
external subclass-mask bits in control
register 0; when the subclass—-mask bit
is zero, conditions associated with the
subclass cannot cause an interruption;
when the subclass-mask bit is one, an
interruption in that subclass can occur.

controls

PSW Key: Bits 8-11 form the access key

for storage references by the CPU. If
the reference is subject to key-
controlled protection, the PSW key is

matched with a storage key when informa-
tion is stored or when information 1is
fetched from a location that is
protected against fetching. However,
for accesses to the second operand of
MOVE TO PRIMARY and MOVE WITH KEY, the
third operand is used instead of the PSW
key. The third operand 1is also wused
instead of the PSW key for accesses to
the first operand of PMOVE TO SECONDARY.

Machine-Check Mask (M): Bit 13 con*rols
whether the CPU is enabled for inter-
ruption by machine-check conditions.
When the bit is zero, a machine-check
interruption cannot occur. When the bit
is one, machine-check interruptions due
to system damage and instructisn-
processing damage are permitted, bLut
interruptions due to other machine-
check-subclass conditions are subject to
the subclass-mask bits in control regis-
ter 14.

Wait State (W):
CPU is waiting; that is, no instructions
are processed by the CPU, but inter-
ruptions may take place. When bit 1% is
zero, instruction fetching and execution
occur in the normal manner. The wait
indicator is on when the bit is one.

Problem State (P): When bit
the CPU is in the problem

bit 15 is zero, the CPU
visor state. In the supervisor state,
all instructions are valid. In the
problem state, only those instructions
are valid that provide meaningful infor-
mation to the problem program and that
cannot affect system integrity. The
instructions that are never valid in the
problem state are called privileged
instructions. When a CPU in the problem
state attempts to execute a privileged
instruction, a privileged-operation
exception is recognized, and a program
interruption takes place. Another group
of instructions, called semiprivileged
instructions, are only executed by a CPU

When bit 14 is one, the

15 is one,
state. When
is in the super-

Chapter 4. Control 6-5

in the problem state if specific author-
ity tests are met; otherwi se, a
privileged-operation exception or a
special-operation exception 1is recog-
nized, and a
place.

Address—-Space Control (S): Bit 16, in
conjunction with PSW bit 5, controls the
address—space mode. See the discussion
of the PSW under "Translation Control™
in Chapter 3, "Storage."

Condition Coda (CC): Bits 18 and 19 are
the two bits of the condition code. The
condition code is set to 0, 1, 2, or 3,
depending on the result obtained in
executing certain instructions. Most
arithmetic and logical operations, as
well as some other operations, set the
condition code. The instruction BRANCH
ON CONDITION can specify any selection
of the condition-code values as a crite-
rion for branching. A table in Appendix
C summarizes the condition-code values
that may be set for all instructions
which set the condition code of the PSW.

20-23 are the four
Each bit is associ-

Program Mask: Bits
program-mask bits.

ated with a program exception, as
follows:
Program-
Mask Bit Program Exception
20 Fixed-point overflow
21 Decimal overflow
22 Exponent underflow
23 Significance

When the mask bit is one, the exception

results in an interruption. When the
mask bit is =zero, no interruption
occurs. The setting of the exponent-—

underflow-mask bit or
mask bit also determines the manner in
which the operation is completed when
the corresponding exception occurs.

the significance-

Addressing Mode (A): Bit 32 controls
the size of effective addresses and
effective-address generation. When the

bit is zero, 24-bit addressing is speci-

fied. When the bit is one, 31-bit
addressing is specified. The addressing
mode does not control the size of PER

addresses or of addresses used to access
DAT, ASN, linkage, entry, and trace
tables. See the section "Address Gener-—
ation" in Chapter 5, "Program
Execution,”™ and the section "Address
Size and Wraparound”" in Chapter 3, "Sto-
rage."

Instruction Address: Bits 33-63 form
the instruction address. This address
designates the location of the leftmost
byte of the next instruction to be
executed, unless the CPU is in the wait
state (bit 14 of the PSW is one).

4-6 370-XA Principles of Operation

program interruption takes

Bit positions 0, 2-4, 17, and 24-31 are
unassigned and must contain zeros. A
specification exception is recognized
when these bit positions do not contain
zeros. MWhen bit 32 of the PSW specifies
24-bit addressing mode, bits 33-39 of
the instruction address must be zeros;
otherwise, a specification exception is
recognized. A specification exception
is also recognized when bit position 12
does not contain a one.

CONTROL REGISTERS

The control registers provide for main-—
taining and manipulating control infor-
mation outside the PSW. There are
sixteen 32-bit control registers.

All control-register bit positions in
all 16 control registers are installed,
regardless of whether the bit position
is assigned to a facility. One or more
specific bit positions in control regis-
ters are assigned to each facility
requiring sucn register space.

The LOAD CONTROL instruction causes all
register positions, within those regis-
ters designated by the instruction, to
be loaded from storage. The
instructions LOAD ADDRESS SPACE PARAME-
TERS, SET SECONDARY ASN, PROGRAM CALL,
and PROGRAM TRANSFER offer specialized
control over which register positions
are loaded and the source of the infor-
mation to be loaded. Information loaded
into the control registers becomes
active (that is, assumes control over
the system) at the completion of the
instruction causing the information to
be loaded.

At the time the registers are loaded,
the information is not checked for
exceptions, such as invalid
translation—-format code or an address

unavailable or a
protected location. The validity of the
information is checked and the
exceptions, if any, are indicated at the
time the information is used.

The STORE CONTROL instruction causes all
register positions, within those regis-
ters designated by the instruction, to
be placed in storage. The instructions
EXTRACT PRIMARY ASN, EXTRACT SECONDARY
ASN, and PROGRAM CALL offer specialized

designating an

control over which register positions
are to be loaded into a general
register.

Only the general structure of control
registers is described here; a defi-

nition of the register positions appears
with the description of the facility
with which the register position is
associated. The figure "Assignment of
Control-Register Fields" shows the
control-register positions which are

assigned and the initial
field
reset.

upon

All control-register

value of the
initial CPU
positions

execution of

not listed in the figure are initialized

Programming Note

To ensure that existing programs run if

to zero. and when new facilities using additional

control-register positions are instal-

led, the program should load zeros in

unassigned control-register positions.
Ctrl Initial
Reg |Bits Name of Field Associated with Value
0 1 SSM-suppression control SET SYSTEM MASK 0
0 2 TOD-clock-sync control T0D clock 0
0 3 Low-address—-protection control Low-address protection 0
0 4 Extraction-authority control Dual-address—-space control 0
0 5 Secondary-space control Dual-address-space control 0
0 6 Fetch-protection override Key-controlled protection 0
0 8-12|Translation format Dvnamic address translation 0
0 16 Malfunction-alert subclass mask Interruptions 0
0 17 Emergency-signal subclass mask Interruptions 0
0 18 External-call subclass mask Interruptions 0
0 19 T0D-clock sync-check subclass mask |Interruptions 0
0 20 Clock-comparator subclass mask Clock comparator 0
0 21 CPU-timer subclass mask CPU timer 0
0 22 Service-signal subclass mask Service signal 0
0 24 Unused!? 1
0 25 Interrupt-key subclass mask External interruptions 1
(] 26 Unused? 1
0 30 IUCV subclass mask? Virtual machines 0
0 31 VMCF subclass mask? Virtual machines 0
1 0 Space-switch-event control Dual-address—-space control 0
1 1-19iPrimary segment-table origin Dynamic address translation 0
1 {25-31|Primary segment-table length Dynamic address translation 0
3 0-15|{PSW-key mask Dual-address—space control 0
3 |16-31|Secondary ASN Dual-address—space control 0
4 0-15]Authorization index Dual-address—space control 0
4 [16-31|Primary ASN Dual-address—space control 0
5 0 Subsystem—-linkage control Dual-address—space control 0
5 1-24jLinkage-table origin PC-number translation 0
5 |25-31|{Linkage-table length PC-number translation 0
6 0-7 |I/0-interruption-subclass mask I/0 0
7 1-19|Secondary segment-table origin Dynamic address translation 0
7 |25-31|Secondary segment-table length Dvnamic address translation 0
8 16—31 Monitor Masks MONITOR CALL 0
9 0 Successful-branching-event mask Program-event recording 0
9 1 Instruction-fetching-event mask Program—event recording 0
9 2 Storage-alteration-event mask Program-event recording 0
9 3 GR-alteration-event mask Program—-event recording 0
9]16-31|PER general-register masks Program-event recording 0
10 1-31|PER starting address Program-event recording 0
11 1-31|{PER ending address Program—-event recording 0
Assignment of Control-Register Fields (Part 1 of 2)
Chapter 4. Control 4-7

ctrl Initial
Reg |Bits Name of Field Associated with Value
12 0 Branch-trace control Tracing 0
12 1-29|Trace-entry address Tracing 0
12 30 ASN-trace control Tracing 0
12 31 'Explicit-trace control Tracing 6
14] Unused! 1
14 1 Unused? 1
14 3 Channel-report-pending subclass I70 machine-check handling 0
mask
14 4 Recovery subclass mask Machine-check handling 0
14 5 Degradation subclass mask Machine—-check handling 0
14 6 Timing-facility-damage subclass Machine-check handling 1
mask
14 7 Warning subclass mask Machine-check handling 0
14 12 ASN-translation control ASN translation 0
14 113-31}1ASN-first-table origin ASN translation 0
Explanation:
The fields not listed are unassigned.
1 This bit is not used but is initialized to one for consistency with the
System/370 definition.
2 This bit is used only in a control register of a virtual machine; in a real
machine, this bit is reserved.

Assignment of Control-Register Fields (Part

TRACING

Tracing assists in the determination of
system problems by providing an on~going
record in storage of significant events.
Tracing consists of three separately
controllable functions which cause
entries to be made in a trace table:
branch tracing, ASN tracing, and explic-
it tracing. Branch tracing and ASN
tracing together are referred to as
implicit tracing.

When branch tracing is on, an entry is
made in the trace table for each
execution of certain branch instructions
when they cause branching. The branch
address is placed in the trace entry.
The trace entry also indicates the
addressing mode in effect after branch-
ing. The branch instructions that are
traced are:

BRANCH AND LINK (BALR only) when
the Ry, field is not zero

BRANCH AND SAVE (BASR only) when
the R, field is not zero

BRANCH AND SAVE AND SET MODE when
the R, field is not zero

When ASN tracing is on, an entry is made
in the trace table for each execution of
the following instructions:

PROGRAM CALL
PROGRAM TRANSFER

-8 370-XA Principles of Operation

2 of 2)

SET SECONDARY ASN

When explicit tracing is on, execution
of TRACE causes an entry to be made in
the trace table. This entry includes
bits 16-63 from the TOD clock, the
second operand of the TRACE instruction,
and the contents of a range of general
registers.

CONTROL-REGISTER ALLOCATION

The information to control tracing is
contained in control register 12 and has
this format:

B Trace-Entry Address AlE
0 1 30 31

Branch-Trace—-Control Bit (B): Bit 0 of
control register 12 controls whether
branch tracing is turned on or off. If
the bit is zero, branch tracing is off;
if the bit is one, branch tracing is on.

Trace-Entry Address: Bits 1-29 of
control register 12, with two zero bits
appended on the right, form the real
address of the next +trace entry to be
made.

ASN-Trace-Control Bit (A):

tracing is turned on or off.
is zero, ASN tracing is off;
is one, ASN tracing is on.

Explicit-Trace-Control Bit (E):

Bit 30
control register 12 controls whether
If the
if the

of control register
explicit tracing
If the bit is zero,
off, which causes

is turned

to be executed as a no-operation;
the execution of the TRACE

bit is one,

31-Bit Branch

12 controls whether
on or
explicit tracing is
the TRACE instruction

of
ASN
bit
bit

instruction
trace table,

Bit 31
TRACE ENTRIES

off.

if the

creates

an entry

except that

1 Branch Address
0 1 31
24-Bit Branch
00000000 Branch Address
0 8 31
SET SECONDARY ASN
00010000{00000000 New SASN
0 8 16 31
PROGRAM CALL
PSW
00100001 |Key PC Number GR 14 After
0 8 12 32 63
PROGRAM TRANSFER
PSW
00110001 |Key 0000 New PASN R, Before
0 8 12 16 32 63
TRACE
0111| N 00000000 TOD-Clock Bits 16-63
0 % 8 16 63
/
TRACE Operand (Ry) = (R3)
/

64

Trace-Entry Formats

96

95 + 32(N+1)

Chapter 4. Control

in
no entry
made when bit 0 of the second operand of
the TRACE instruction is one.

the
is

Trace entries are of six types, as shouwn
in the figure "Trace-Entry Formats."

-9

Branch Address: The branch address is
the address of the next instruction to
be executed when the branch is taken.
When the 31-bit addressing mode is in
effect after branching, bit positions
1-31 of the trace entry for a branch
instruction contain the branch address.
When the 24-bit addressing mwmode is in
effect after branching, bit positions
8-31 contain the branch address.

New SASN: Bit positions
trace entry for SET SECONDARY ASN
contain the ASN value loaded into
control register 3 by the instruction.

16-31 of - the

PSW Key: Bit positions 8-11 of the
trace entries made on execution of
PROGRAM CALL and PROGRAM TRANSFER
contain the PSW key from the current
PSW.

PC Number: Bit positions 12-31 of the

trace entry made on execution of PROGRAM
CALL contain the value of the rightmost
20 bits of the second-operand address.

GR14 After: Bit positions 32-63 of the
trace entry made on execution of PROGRAM
CALL contain the information which is
placed in general register 14: the
addressing bit, the return address, and
the problem-state bit.

New PASN: Bit positions 16-31 of the
trace entry made on execution of PROGRAM
TRANSFER contain the new PASN (which may
be zero) specified by the instruction.

R2 Before: Bit positions 32-63 of the
trace entry made on execution of PROGRAM
TRANSFER contain the contents of the
general register specified by the R,
field of the instruction. Bits 0-30 of
the general register specified by the R,
field replace bits 32-62 of the PSW.
Bit 31 of the same general register
replaces the problem-state bit of the
PSW.

Humber of Registers (MN): Bits 4-7 of
the trace entry for TRACE contain a
value which is one less than the number
of general registers which have been
provided in the trace entry. The value
of N ranges from zero, meaning the
contents of one general register are
provided in the trace entry, to 15,
meaning the contents of all 16 general
registers are provided.

TOD-Clock Bits 16-63: Bits 16-63 of the
trace entry for TRACE are obtained from
bit positions 16-63 of the TOD clock, as
would have been provided by a STORE
CLOCK instruction executed at the time
the TRACE instruction was executed.

TRACE Operand: Bits 64-95 of the trace
entry for TRACE contain a copy of the 32
bits of the second operand of the TRACE
instruction for which the entry is made.

4-10 370-XA Principles of Operation

(R1)-(R3): The four-byte fields start-
ing with bit 96 of the trace entry for
TRACE contain the contents of the gerer-
al registers whose range is designeted

by the R, and R; fields of the TRACE
instruction. The general registers are
stored in ascending order of register
numbers, starting with the registoar

specified by Ry and continuing up to and
including the register specified by Rj;:
with register 0 following register 15.

Programming Note

The size of the trace entry for TRACE in
units of words is 3 + (N + 1). The
maximum size of an entry is 19 words, or
76 bytes.

OPERATION

When an instruction which 1is subject to
tracing is executed, and the correspond-
ing tracing function 1is turned on, a
trace entry of the appropriate format is

made. The real address of the trace
entry is formed by appending two zero
bits on the right to the value in bit

positions 1-29 of control register 12.
The address in control register 12 is
subsequently increased by the size of
the entry created.

No trace entry is stored if the incre-
menting of the address in control regis-
ter 12 would cause a carry to be
propagated into bit position 19 (that
is, the trace-entry address would be in
the next 4K-byte block). If this would
be the case for the entry to be made, a
trace-table exception is recognized, and
instruction execution is nullified. For

the purpose of recognizing the trace-
table exception in the case of a TRACE
instruction, the maximum length of 76
bytes is used instead of the actual
length.

The storing of a trace entry is not

subject to key-controlled protection
(nor, since the trace-entry address is
real, is it subject to page protection),
but it is subject to low—address
protection; that 1is, if the address of
the trace entry due to be created is in
the range 0-511 and bit 3 of control
register 0 is one, a protection excep-
tion 1is recognized, and instruction
execution is suppressed. If the address
of a trace entry is invalid, an address-

ing exception is recognized, and
instruction execution is suppressed.
The three exceptions associated with

storing a trace entry (addressing,
protection, and trace table) are collec-
tively referred to as trace exceptions.

If a program interruption takes place
for a condition which is not a trace-
exception condition and for which

execution of an instruction is not
completed, it is unpredictable whether
part or all of any trace entry due to be
made for such an interrupted instruction
is stored in the trace table. Thus, for
a condition which would ordinarily cause
nullification or suppression of instruc-
tion execution, storage locations may
have been ‘'altered beginning at the
location designated by control register
12 and extending up to the length of the
entry that would have been created.

The order in which information is placed
in a trace entry is undetermined.
Furthermore, as observed by other CPU or
channel programs, the contents of a byte
of a trace entry may change more than
once before completion of the instruc-
tion for which the entry is made.

address in control
register 12 is updated only on
completion of execution of an instruc-
tion for which a trace entry is made.

The trace-entry

A serialization and checkpoint-
synchronization function is performed at
the beginning and also at the completion
of the tracing operation.

The CPU operation is delayed until all
previous storage accesses by this CPU
have been completed, as observed by
other CPU and channel programs. All
previous checkpoints, if any, are
canceled, and the results of all previ-
ous stores are released, if held

exclusive, to permit other CPU and chan-
nel programs to access the results.

When the tracing operation is completed,
a second serialization and checkpoint-
synchronization function is performed,
as Tfollows. The CPU operation is
delayed until all storage accesses due
to this instruction have been completed,
as observed by other CPU and channel
programs. All previous checkpoints, if
any, for this instruction are canceled,
and the results of all stores for this
instruction are released, if held exclu-
sive, to permit other CPU and channel
programs to access the results.

PROGRAM-EVENT RECORDING

The purpose of the program-event-
recording (PER) facility is to assist in
debugging programs. It permits the
program to be alerted to the following
types of PER events:

branch

. Execution of a successful

instruction.

. Fetching of an instruction from the
designated storage area.

. Alteration of the contents of the

designhated storage area.

- Alteration of the contents of
designated general registers.

The program can selectively specify that
one or more of the above types of events
be recognized. The information concern-
ing a PER event is provided to the
program by means of a program inter-
ruption, with the cause of the
interruption being identified in the
interruption code.

CONTROL-REGISTER ALLOCATION

The information for controlling PZ=R
resides in control registers 9, 10, and
11 and consists of the following fields:

Control Register 9:

EM Gen.—-Reg. Masks
0 % 16 31

Control Register 10:

Starting Address

Control Register 1l1l:

Ending Address
0 1 31

PER-Event Masks (EM): Bits 0-3 of

which types
The bits are

control register 9 specify
of events are recognized.
assigned as follows:

Bit 0: Successful-branching event
Bit 1 Instruction-fetching event
B

it 2: Storage-alteration event

it 3 General-register-alteration
event
Bits 0-3, when ones, specify that the’
corresponding types of events be recog-
nized. When a bit is zero, the corre-
sponding type of event is not
recognized.

PER General-Register Masks: Bits :6-31

of control register 9 specify which
general registers are designated for
recognition of the alteration of their
contents. The 16 bits, in the sequence
of ascending bit numbers, correspond one
for one with the 16 registers, in the
sequence of ascending register numbers.

Chapter 4. Control 6-11

When a bit is one, the alteration of the
associated register is recognized; when
it is zero, the alteration of the regis-
ter is not recognized.

PER Starting Address: Bits 1-31 of
control register 10 are the address of
the beginning of the designated storage
area.

PER Ending Address: Bits 1-31 of
control register 11 are the address of
the end of the designated storage area.

Programming Note

Models may operate at reduced perform-
ance while the CPU is enabled for PER
events. In order to ensure that CPU
performance is not degraded because of
the operation of the PER facility,
programs that do not use it should disa—
ble the CPU for PER events by setting
either the PER mask in the PSW to zero
or the PER-event masks in control regis—
ter 9 to zero, or both. No degradation
due to PER occurs when either of these
fields is zero.

However, some degradation may be experi-
enced on some models every time control
registers 9, 10, and 11 are loaded, even
when the CPU is disabled for PER events

(see the programming note under
"Storage—-Area Designation™).

OPERATION

PER is under control of bit 1 of the

PSH, the PER mask. When the PER mask, a
particular PER-event mask bit, and, for
general-register-alteration events, a
particular general-register mask bit are
all ones, the CPU is enabled for the
corresponding type of event; otherwise,
it is disabled.

a PER event is
the execution of

An interruption due to
normally taken after

the instruction responsible for the
event. The occurrence of the event does
not affect the execution of the instruc-

tion, which may be either completed,
partially completed, terminated,
suppressed, or nullified.

When the CPU is disabled for a partic-
ular PER event at the time it occurs,

either by the PER mask
the masks in control
event is not recognized.

the PER mask in the PSHW or
to the PER control fields in control
registers 9, 10, and 11 affects PER
starting with the execution of the imme-
diately following instruction. If a PER
event occurs during the execution of an

in the PSW or by
register 9, the

A change to

4-12 370-XA Principles of Operation

instruction which changes the CPU from
being enabled to being disabled for that
type of event, that PER event is recog-
nized.

PER events may be
execution of an
quently the

recognized in a trial
instruction, and subse-
instruction, DAT-table
entries, and operands may be refetched
for the actual execution. If any
refetched field was modified by another
CPU or by a channel program between the
trial and actual executions, it is
unpredictable whether the PER events
indicated are for the trial execution or
the actual execution.
For special-purpose instructions that
are not described in this publication,
the operation of PER may not be exactly
as described in this section.

Identification of Cause

PER sets bit
code to one and

A program interruption for
8 of the interruption
places identifying information in real
storage locations 150-155. The format
of the information stored is as follous:

Locations 150-151:

PERC| 000000000000
0 4 15

Locations 152-155:

0 PER Address
0 1 31

PER Code (PERC): The occurrence of PER
events is indicated by ones in bit posi-
tions 0-3 of real location 150, the PER
code. The bit position in the PER code
for a particular type of event 1is the
same as the bit position for that event
in the PER event-mask field in control
register 9. When a program interruption
occurs, more than one type of PER event

can be concurrently indicated. Addi-
tionally, if another program-
interruption condition exists, the

interruption code for the program inter-
ruption may indicate both the PER events

and the other condition. Zeros are
stored in bit positions 6-7 of location
150.

PER Address: The PER
locations 152-155 contains
tion address used to fetch the instruc-
tion in execution when one or more PER
events were recognized. When the
instruction 1is the target of EXECUTE,
the instruction address used to fetch

-address at
the instruc-

the EXECUTE instruction is placed in the
PER-address field. Zeros are stored in
bit position 0 of real location 152.

Instruction Address: The instruction
address in the program old PSW is the
address of the instruction which would
have been executed next, unless another
program condition is also indicated, in
which case the instruction address is
that determined by the instruction
ending due to that condition.

ILC: The ILC indicates the length of
the instruction designated by the PER
address, except when a concurrent spec-
ification exception for the PSW intro-
duced by LOAD PSW or a supervisor-call
interruption sets an ILC of 0.

Priority of Indication

When a program interruption occurs and
more than one PER event has been recog-
nized, all recognized PER events are
concurrently indicated in the PER code.
Additionally, if another program-
interruption condition concurrently
exists, the interruption code for the
program interruption indicates both the
PER condition and the other condition.

In the case of an instruction-fetching
event for SUPERVISOR CALL, +the program
interruption occurs immediately after
the supervisor-call interruption.

If a PER event
execution of

is recognized during the
an instruction which also
introduces @ new PSW with the type of
PSW-format error which 1is recognized
early (see the section "Exceptions. Asso-
ciated with the PSW™ in Chapter 6,
"Interruptions"), both the specification
exception and PER are indicated concur-
rently in the interruption code of the
program interruption. However, for a
PSW-format error of the type which is
recognized late, only PER 1is indicated
in the interruption code. In both
cases, the invalid PSW 1is stored as the
program old PSW.
Recognition of a PER event does not
normally affect the ending of execution
of an instruction. However, in the
following cases, execution of an inter-
ruptible instruction is not completed
normally:

. When the instruction is due to be
interrupted for an asynchronous
condition (I/0, external, restart,
or repressible machine-check condi-
tion), a program interruption for
the PER event occurs first, and the
other interruptions are taken subse-
quently (subject to the mask bits in
the new PSW) in the normal priority
order.

. When the stop function is performed,
a program interruption indicating
the PER event occurs before the
stopped state is entered.

. When any program exception is recog-
nized, PER events recognized for
that instruction execution are indi-
cated concurrently.

the model, in certain
situations, recognition of a PER
event may appear to cause the
instruction to be interrupted prema-
turely without concurrent indication
of a program exception, without an
interruption for any asynchronous
condition, or without the stopped
state being entered.

. Depending on

Programming Notes

1. In the following cases, an instruc-
tion can both cause a program
interruption for a PER event and
change the value of masks control-
ling an interruption for PER
events. The original mask values
determine whether a program inter-
ruption takes place for the PER
event.

a. The instructions LOAD PSW, SET
SYSTEM MASK, STORE THEN AND
SYSTEM MASK, and SUPERVISOR
CALL can cause an instruction-
fetching event and disable the
CPU for PER interruptions.
Additionally, STORE THEN AND
SYSTEM MASK can cause a
storage-alteration event to be
indicated. In all these cassus,
the program old PSW associated
with the program interruption
for the PER event may indicate
that the CPU was disabled for
PER events.

b. An instruction-fetching event
may be recognized during
execution of a LOAD CONTROL
instruction which also changed
the value of the PER-event
masks in control register 9 or
the addresses in control regis-
ters 10 and 11 controlling
indication of instruction-
fetching events.

2. No instructions can both change the
values of general-register-
alteration masks and cause a

general-register—-alteration event
to be recognized.

3. When a PER interruption occurs
during the execution of an inter-

ruptible instruction, the ILC indi-

cates the length of that
instruction or EXECUTE, as appro-
priate. When a PER interruption

Chapter 4. Control 4-13

occurs as a result of LOAD PSW or
SUPERVISOR CALL, the ILC indicates
the length of these instructions or
EXECUTE, as appropriate, unless a
concurrent specification exception
on LOAD PSW calls for an ILC of 0.

4. When a PER interruption is caused
by branching, the PER address iden-
tifies the branch instruction (or
EXECUTE, as appropriate), whereas
the old PSW points to the next
instruction to be executed. When
the interruption occurs during the
execution of an interruptible
instruction, the PER address and

the instruction address in the old
PSW are the same.

STORAGE-AREA DESIGNATION

Two types of PER events -- instruction

fetching and
involve the

storage alteration -~
designation of an area in
storage. The storage area starts at the
location designated by the starting
address in control register 10 and
extends up to and including the location
designated by the ending address in
control register 11. The area extends
to the right of the starting address.

An instruction-fetching event occurs
whenever the first byte of an instruc-
tion or the first byte of the target of
an EXECUTE instruction is fetched from
the designated area. A storage-
alteration event - occurs when a store
access is made to the designated area by
using an operand address that is defined
to be a logical or a virtual address. A
storage-alteration event does not occur
for a store access made with an operand
address defined to be a real address.

The set of addresses
instruction~fetching and
alteration events wraps around at
address 2,147,483,647; that 1is, address
0 is considered to follow address
2,147,483,647. When the starting
address is less than the ending address,
the area is contiguous. When the start-
ing address is greater than the ending
address, the set of locations designated
includes the area from the starting
address to address 2,147,683,647 and the
area from address 0 to, and including,
the ending address. When the starting
address is equal to the ending address,
only that one location is designated.

Address comparison for
alteration and instruction-fetching
events is always performed by using
31-bit addresses. This is accomplished
in 24-bit addressing mode by extending
the virtual, logical, or instruction
address on the left with seven zero bits
before comparing it with the starting
and ending addresses. .

storage-

storage-

4-14 370-XA Principles of Operation

Programming Note

designated for

In some models, performance degradation
due to address-range checking is
avoided, for those pages not in the
designated storage area, by means of an
extension to each page-table entry in
the TLB. In such an implementation,
each page-table entry in the TLB is
marked as to whether the corresponding
page does or does not contain locations
in the designated storage area. Loading
the contents of control registers 10 and
11 when the instruction-fetching or
storage-alteration event mask is one, or
setting either of these PER-event masks
to one, may cause the TLB to be cleared
of entries. This degradation may be
experienced even when the CPU is disa-
bled for PER events. Thus, when
possible, the program should avoid load-
ing control registers 9, 10, or 11.

PER EVENTS

Successful Branching

A successful-branching event
whenever one of the
instructions causes branching:

BRANCH AND LINK (BAL, BALR)

BRANCH AND SAVE (BAS, BASR)

BRANCH AND SAVE AND SET MODE
(BASSM)

BRANCH AND SET MODE (BSM)

BRANCH ON CONDITIOM (BC, BCR)

BRANCH ON COUNT (BCT, BCTR)

BRANCH ON INDEX HIGH (BXH)

BRANCH ON INDEX LOW OR EQUAL (BXLE)

occurs
following

A successful-branching event also occurs
whenever one of the following
instructions is completed:

PROGRAM CALL (PC)
PROGRAM TRANSFER (PT)

A successful-branching event causes a
successful-branching PER event to be
recognized if bit 0 of the PER-evant
masks is one and the PER mask in the I’SW
is one.

A successful-branching PER event is

indicated by setting bit 0 of the PER
code to one.
Instruction Fetching /

occurs if
of the instruction is

An instruction-fetching event
the first byte

fetched from the storage area designated
by control register 10 and 11. An
instruction-fetching event alsoc occurs
if the first byte of the target of
EXECUTE is within the designated storage
area.

&n instruction-fetching event
instruction-fetching PER event to be
recognhized if bit 1 of the PER-event
gasks is one and the PER mask in the PSW
is one.

causes an

The instruction-fetching PER
indicated by setting bit
code to one.

event is
1 of the PER

Storage Alteration

A storage-alteration event occurs when-
ever a CPU, by using a logical or virtu-
al address, makes a store access without
an access exception to the monitored
storage area.

The contents of storage are considered
to have been altered whenever the CPU
executes an instruction that causes all
or part of an operand to be stored with-
in the designated storage area. Alter-
ation is considered to take place
whenever storing is considered to take
place for purposes of indicating
protection exceptions, except that
recognition does not occur for storing

of data by a channel program. (See the
section "Recognition of Access
Exceptions" in Chapter 6,

"Interruptions.m) Storing constitutes
alteration for PER purposes even if the
va%ue stored is the same as the original
value.

Implied locations, which are referred to
by the CPU in the process of performing
an interruption, are not monitored.
These locations, houwever, are monitored
when information is stored there explic-
itly by an instruction. Similarly,
monitoring does not apply to storing of
data by a channel program.

The I70 instructions are considered to
alter the second-operand location only
when storing actually occurs.

Storage alteration does not apply to
instructions whose operands are speci-
fied to be real addresses. Thus, stor-
age alteration does not apply to
INVALIDATE PAGE TABLE ENTRY, RESET
REFERENCE BIT EXTENDED, SET STORAGE KEY
EXTENDED, TEST BLOCK, and TEST PENDING
;NTERRU?TION (when the effective address
is zero).

event causes a

event to be
of the PER-event
PER mask in the PSW

A storage-alteration
storage-alteration PER
recognized if bit 2
mask is one and the
is one.

A storage-alteration PER event is indi-
cated by setting bit 2 of the PER code
to one.

General-Register Alteration

A general-register-alteration event
occurs whenever the contents of a gener-
al register are replaced.

The contents of a general register are
considered to have been altered whenever
a new value is placed in the register.
Recognition of the event 1is not contin-
gent on the new value being different
from the previous one. The execution of
an RR-format arithmetic, logical, or
movement instruction is considered to
fetch the contents of the register,
perform the indicated operation, if any,
and then replace the value in the regis-
ter. A register can be designated by an
RR, RRE, RS, or RX instruction or
implicitly, such as in TRANSLATE AND
TEST and EDIT AND MARK.

The instructions EDIT AND MARK and
TRANSLATE AND TEST are considered to
have altered the contents of general
register 1 or 2 only when these
instructions have caused information to
be placed in the register.

The instructions MOVE LONG and COMPARE
LOGICAL LONG are always considered to
alter the contents of the four registers
specifying the two operands, including
the cases where the padding byte is
used, when both operands have zero
length. However, when condition code 3
is set for MOVE LONG, the general regis-
ters containing the operand lengths may
or may not be considered as having been
altered.

The instruction INSERT CHARACTERS UNDER
MASK 1is not considered to alter the
general register when the mask is zero.

The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP are considered
to alter the general register, or
general-register pair, designated by R,,
only when the contents are actually
replaced, that is, when the first and
second operands are not equal.

A general-register-alteration event
causes a general-register-alteration PER
event to be recognized if bit 3 of the
PER-event masks is one, the PER mask in
the PSW is one, and the corresponding
bit in the PER general-register mask is
one. . It is indicated by s