Systems

Licensed Material — Property of IBM
LY20-2228-1

IBM System./370

Special Real Time
Operating System
Programming RPQ Z06751
Systems Logic Manual

Program Number 5799-AHE

This publication describes the internal logic and metiiod
of operation of the Special Real Time Operatinz System.
The purpose of this publication is to provide information
for systems analysts, programmers, systems engineers, and
maintenance personnel to facilitate making modifications,
diagnosing error situations, and performing maintenance.

Second Edition (August 1983)

This is a reprint of 1 Y20-2228-0 incorporating changes released in Technical Newsletter
LN20-3622 (dated 31 August 1976). This edition applies to Version 1, Modification 1 of
the Special Real Time Operating System PRPQ (Programming Request for Price Quotation)
number 5799-AHE, Version 1, Modification 1, and to all subsequent versions and modifi-
cations until otherwise indicated in new editions or Technical Newsletters.

References in this publication to IBM products, programs, or services do not imply that IBM
intends to make these available in all countries in which IBM operates.

Changes are periodically made to the specifications herein; before using this publication in
connection with the operation of IBM systems, consult the latest System/370 Bibliography
(GA22-6822) for the editions that are applicable and current.

The PRPQ described in this manual, and all licensed materials available for it, are provided
by IBM on a special quotation basis only, under the terms of the License Agreement for IBM
Program Products, Your local IBM branch office can advise you regarding the special
quotation and ordering procedures.

A form for readers’ comments has been provided at the back of this publication. If the form
has been removed, address comments to IBM Corporation, Dept. 824, 1133 Westchester Ave.,
White Plains, New York 10604. IBM may use or distribute whatever information you supply
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1976

Section
1

CONTENTS

Page

INTRODUCTION.QQ...0.‘OQ.....QD....Q...O.'.0...'..0...1-1
System Environment.ecececscescssoscscesscocesncssasel=2
Special Realtime Operating System OVerview.,....l=2
Online ExecutiON.esssesccoscesssscassoesecsosssaal=2
Offline EXeCUtiONescsescesssscacssscssncsscssssanseel=3

LOGIC DESCRIPTION...U....0..0....00.....050......00002-1
HOW to Read HIPO Diagrams...............-.......2-1

InitializZatioNeeeccesscseessccsensasasansessel=8

Task Management..veeccsesosecsescsosscsacanseel=d3

Time Management..ceeeucessssscsssassasscassssl84

Data Base Management.cesscecsceccscsesaassel2=106
Message HanAler.,.aeseescsssssasscccsnnsoeseal2=140
Input Message ProcesSing,cseceseccssessseses2=152
Report Data OutpPutecceccssscsssssscessssess2=160
Data Recording and PlaybacKe..ieeecescecoseee2~164
Duplicate Data Set SUpPPOrt.sceccscaceseses2-180
Supplementary ServiceS.:.iesesscccsscssnseees2=258
High-Level Language InterfaceS..csseeeesesa2=290
TWO CPU OperationS.ccccceoesesscccsosccessceal=346
Offline UtilitYesoeaecsesacocnosssncscassnsal2=375
Data Base COMPreSS...ceesasacsscsssccssscsel2=d71
Playback ROUtiN€..cseessoescessassssconsssal=q497
SYSGEN Utility.cesosevesceacsssssncscocnnese2=501

Sample Programs..oon.oo}.oouccooooou...00000000.2—505

PROGRAM ORGANIZATION DESCRIPTIONw-.l..t..-o--oooon.no3‘-1

DOMICEXTesecsesescescossassacsscsssasnssasesel3=3
DoMIRBT.a...ol.c.oooo...o-ol00000000.0000-03-3
DOMIRCMN, secseesescevssascocssscnssasonseseld~d
DOMIRCPY . ocessassoosossssscsesrssosssessossssseeld=d
DOMIRFLV,cseessccecesccassanscssccscsasansnseld=b
DOMIRFL2:ecececsocscsossscscsacsosacscssnssveld—?
DOMIRINT . coeesesvasccescsccsssscsessssceccesl=B
DOMIRNIP,ceoecocsnssocsscsecsocseassssssssseeld=9
DOMIRPRB. cocseocensctacccosssossscsscncsssseald=lO
DOMIRWT e ooascoscesssssssssscasaasesnsasessi=ll
DOMISVC].ceoeossacsoscasssancsscnsscansssssed—ll
DOMISVC2.esccososccosassssasssssccsasssssss3~ll
DOMISVCA o eeceocecocccassosscsasosansscssseseld=l2
DOMXSTGIQQGO0.00000-00....oooc00|000000.0003-12
DPCALCFloooooo-oogooucoooaoo'00o~-.uo.un-o-3”l3
DPCTIMEl...o....O----o..oooooooooo'oooo..-03‘13
DPCTIMEZ.-cnco.-oooocooc--oo-co-oa.o.oooo-o3-l3
DPCTSVCleaccoosasocassosssansssseasacsnsansas3d=l3
DPCTSVC2 . ecessassesscnsvsssssosesnsessnsssasold~ld

LICENSED MATERIAL — PROPERTY OF IBM

DPCTSVC3.Qoalocoo-ocon‘canco.oo.o-.oon.¢3-15
DPCTSVC4..-.....0.oolooootoot.voo--.c..'3-16

‘DPCUPCF]-OOC‘.‘..0.‘.b.'.‘.l.’wtl.w’l....3-16

DPCUPCF2,400csc0s00cssocccccsascsnsssceei=1lf
DPCUPCF3.cecsscsasccacncoscanascnsnssesecsld=l?
DPCUPCF44cceecescecoccnsscoasnsassssssesdli
DPIDBASl.ucoasastsussssnssanssscssasssss3~18
DPIDBASZ2.0eeseesssssasccosacsssnscasessssld—l8B
DPIDBAS3....o.onco---.no--ooo.aooo-cono.3-18
DPINITOlcsoceoossosacsacasncssonssnassese3=19
DPINITO2 . 0seseescecssscsscscsassesasasssesld=2]
DPINITO3 .0 eescessscosesansoscasssscsncss3~2
DPINITOZ.sccososssocsnvossssacnsncsansee3=27
DPINITO S . ccosavsacsoaasnasssssasanccsnssa3=32
DPINITOG . caveesnocsssssconsssasnoscescssse3=33
DPINITOB.ccosossssccsesasassossssssssacsa3~34
DPINIT]l.cenaseosansocssncocasssncnssoases =35
DPINIT]1l..ceousesosncesacsensancsscassaali—36
DPINIT2.0ascsecesseasascosacscscsconsess3=37
DPINIT3.4esssococscscasscscoscsssncnssees3~38
DPINIT . oeeeesoncessccosasascssscocsnessseld~39
DPPCALCF;.-...-.--oo-o..co.ooooo.‘oco.'QB“uo
DPPCPTIMuvnsecossosocccccasssesssnssonsol=dl
DPPCTIME . convsnsovnacncsnessssasanncess3=d2
DPPCTSVC . sasoeencacorassonannsssnssessesl—=qd2
DPPCUPCF .t esceesocscscnsscsscencnnnssanesld=q2
DPPDARAY . cuacesatoessnsacsssasoncnssnsecssd~d3
DPPDBLOK. csseeccesssosnssasassascnssacesssl~db
DPPDBSIF . veseconocssnsnecssncavssososocseeld=d?
DPPDFREQ.ceeeseseetsosscanssncecnssascaseel3=d?
DPPDGETL e eecstesecossosncssancosonsacscsnsesd~d’?
DPPDITEM. cccesnssescanccasaacscanocnnses3~48
DPPDPUTL.cceecaceesnsasccocarcnassanssoes3=52
DPPDRIFT . cacotesanssescscnscnnsssscsosseeld=53
DPPDSUB2.cecseesnsceseaancnsassncasaansa3=54
DPPDUMPL.ceeacrcacasvsessasecssasasscsseeld=55
DPPDUPDL. ccsecccacsnsasansscsncassnscsess3=56
DPPDWRST . 4 teeenccsnscsscnssssassscessssases3=57
DPPFAONC . ceeeceoscsccesessascssssssscnnee3=58
DPPFIXFReceesneceossansessscssssssnsassesald~59
DPPIDBAS . sseesscvacscasscnsasssasssssess3=60
DPPIIRBiuceevessosscnssonncnncacassasess3=60
DPPILOGN. coseaesosassascscosssssonnanssss3=6l
DPPINIT:ceceesvoacessasosessacssnnsssccnanss3=62
DPPINITOuecesassonossnssrsensscsncaonsese3—64
DPPINIT]l.oneeeossensscsonssancncsnsssssee3~66
DPPIPFIX.eaaceasocesssnanessasacsncanssse3=69
DPPIPFRE . ceeeeossesecassscassnocasanseanssed~7l
DPPISTAE . seseevenncncstsssnsasssasasens3=71
DPPITIMl.ciecerscooancnsoncsscannannssensesd=7?2
DPPMINIT . aeeeesscsasescassscnssancnasess3=?3
DPPMMSGaseeeeavsssansasnsensssroncnssassld=74
DPPMMSGV . ceeeasoccnsesesssscscasssassansald=75

LICENSED MATERIAL — PROPERTY OF IBM

DPPMMSGl. etsoeccsosceossssssssacascsaesl=’6
DPPARM, cccevacacccsncosccsctcscsassasness3=l?
DPPPIF ¢ccacsecssastcsacsossssvssnsacsssaal™’9
DPPSAMPl.secvscccososcssscessonsssnsansess3=84
DPPSASOC.-..ocoooccocoouoo--o-.ooooo-.oo3"84
DPPSBFST..obn-co.o-touoooonoo.c.ooco-o.o3"84
DPPSBFlesecsccssecsssssscscsesesasavnenses3=86
DPPSCHCKaeesvoossassoasvessnssaccsnensss3=86
DPPSCHK2 . esseosstetsoscsssacssassoscaneseces3=88
DPPSCHK3 . essaoeersssessscccssnsscscsasses3=89
DPPSCHK4 .4 e0eacscsserocscscssasssascscsaess3=90
DPPSCHPR.sosasscssosccsesscosssssncasesss3=90
DPPSCLUP . ceesteesssasesasssessasssnssses3=9l
DPPSCL].-......n.oooooooo-o.-ooo..--.-o..3"92
DPPSCMPR, vvoecnsososvesossoscssssassssesssl=93
DPPSCP2B.cessoasescnsasnscanscsncassessesld=95
DPPSCRBK.seesssssscsssssncsncssosssssesss3=96
DPPSCT2T eesessessssnnssacssnsasssossessesl3~97
DPPSDDSX . seosotssoosocnsassessseassassee3—101
DPPSINITcetescascesoscscssccssassnsesnases3=102
DPPSINIZ2 . ceeeseceoscscssascssnscsssaseses3—l03
DPPSINI3.cecscsoconscanssnsasasenssasssesl3—l04
DPPSINI4,eoacesassascasssosassssoasaasses3=105
DPPSINIS S susessassonsoscssnsasassasnsassesld=106
DPPSINIG.ceesassococoncsasaasaseasccssss3=l106
DPPSLOCK.seeesoootosesccccocasnvssoasass3—107
DPPSMSGlecencsascocscsecssssnsssscsansnsassas3d~l07
DPPSMSGOesececcsosasssssssscsscnncsscnse3—109
DPPSNOTE.ceecsecocssesacacssacscssscsnssas3~1ll0
DPPSNTPTeee0esososssscsscscsssansocssess3=110
DPPSOPCLusseosstossceoscscosscsasssanssessosld=lll
DPPSOPl.cssosscscesstsscenassannosnnssces3—ll2
DPPSOP2esusesesssasvsososscassascnsnanse3=1l3
DPPSPNTE c cesessscscsetscsccosnsooasnsesnses3~ll5
DPPSRCIO.ceacsecosessossssnsanscacasnssse3=ll5
DPPSRDWT . csevcoacsescoscnsssocnossscsseeea3—1l6
DPPSRDW2.ceecesocssocesnssnnssccascscansasel—ll?
DPPSRLSE.cescecsasecacsscsscscnsscncenseeal~ll?
DPPSRSRV.ciesccossoscsascccsoasasensnessa3i=1l18
DPPSRSTRuesacsocssccsccavesssosssacasseel—11l8
DPPSRTCP.csssveseososcscaccscccncesssnss3—lll
DPPSSHAR: ceecasacacosesesconsocacscscneesld=120
DPPSSRCH:esseeseeessssasosssosscsascsseees3~120
DPPSSTlaeeessscecesssassscccscssnosesseses3=l20
‘DPPSSWCH s eeeossseccscsscccasassseasasses3d=121
DPPSTBOSescecasscocoossssssesnsscscenaseee3=l2l
DPPSUNLKscocacesaoscscosnsscscssasesoness3=122
DPPSUNSH:cvsaessescsecscasvsscsoscossasces3=1l23
DPPSWRST.eseseeasecssssacccasascasanssssl=l2d
DPPSXTCBescsososconccassosscacssosnssssess3=l25
DPPTCBGT e esoeocacscsccssssesosscesasssoessld~l26
DPPTCSVCesceoncecesssavsnasccossassseseeld=127
DPPTDLMP.ssecsvoncvcccvsccascacsccansecesad=l27
DPPTDSVC ..t ecanscosscscesacsssssssnsssesl3—130
DPPTETXR.eieececacocsccsascscsesnsensossseasld=l3l

LICENSED MATERIAL — PROPERTY OF IBM

Vi

DPPTGWFW,csoe00ersesceccctcnssnssssccnsee3—l33
DPPTIMPS....ooocot-oitooooocco-oooooo.a.3‘l34
DPPTPMON..-...o‘QQoooooooo.o.-ooo..c‘-..3‘136
DPPTPSVC..-o.‘oooooooocooo---oo...-o....3‘138
DPPTPWQE.A.....-.-.-ooo-o-o-oo'-ooooo-.o3‘l40
DPPTOIMP..oo.oo.00'0..o.o-.l-l.o..00.00.3—141
DPPTRGWA...--....oooooo...o-oooocooon.oo3“142
DPPTRSVC.0‘.‘.0.t‘tOolooooc.oooc.ocwo.o-3‘l43
DPPTSMON. scevsaccecasssocascscsssssssscseel~ldd
DPPTSTAE...--..ocoooooaoocc-..o.cooooo-.3“l46
DPPTWODL s essssssoososceccscsssssnsecnssse3=148
DPPTWSVC . e seeesvscatcsossscessassssccenssese3=150
DPPUMSG.sesecssoseasscsscsssnsccsacessesssld=~l52
DPPUMSGI.o-oo.oooo.0onocooou.o....oooc.-3‘152
DPPUMSG2,.00es000s0ccsccsascsnssasscenese3d=152
DPPXDBAS,eceeatctacsacascscssscssssnasse3=153
DPPXDBAT......}.o.......................3-160
DPPXDBCP....00000.00.'Oo..o..........-"3-169
DPPXDBDA:ssesacocsssessssesssscasesseseald=l74
DPPXDBINseeseoeossesossasssacvansansosnse3=l79
DPPXDBLGecesseossasscsossacssscocesnsess3d=180
DPPXDEF L4 ceasosesocsccosassosscanasenese3=182
DPPXDPBysssseccosotsccossscnsnsssccaeess3=183
DPPXDRC....ol.c.locoolc-00000000000000003-184
DPPXDRCX..oo-ocooo-oo-coooooo-o.ooo.o-o.3‘186
DPPXIMPP.-ooooooooo-o-op..o'-oo.onoo.oo-3°186
DPPXIMPW,.ceseeeocesocsocssssacnsscncsess3~187
DPPXKILL.........-....oo-uoooo.ao.-co.o.3‘187
DPPXLOCKsseooaseeoesecssanansnsscsnsassess3I=187
DPPXNRTI....O....‘I..0......‘..‘..‘..‘0'3-188
DPPXPCONssosceesseacosscsnsansscnasesasees3=189
DPPXRDRQ..0.0‘.0........IICO.'...'.....Q3-189
DPPXRINT...Q..."..O..O..0.-'0.....0....3-190
DPPXRPRT.seeesectcocsacscsacesesacscesese3=191
DPPXSVCP....0..!‘00.00...0-..0...'......3-191
DPPXUTIL.o-...oooo.-u.ooe-o..-ooooo-o.no3°192
DPPZSAMP...'.Q..;...l.Q'......l...0...'.3_201
DPTCSVCI...-oanoo-ooocc.0-.-...-.;..-...3‘202
DPTDLMPl.sessesesencssecscssssonseansess3=203
DPTDLMP2,cseeescosecccacsosssncscnseeess3=204
DPTDLMP3.........0..-...-o.-..o--a;.-o..3'205
DPTDLMP4....-......oooonooo.yooo.-csooo.3‘205
DPTPLMPS.QQ.‘I‘.'0..OOIQ..Q..IQ0.0DI.O..3-205
DPTDSVCl....oo..o-oooooooo-o.oco-.o.-o--3‘206
DPTPMONI.....-....o.ooooooooo.o.ooo-cooo3‘208
DPTPMONZO.Q...OQ.............I.Q...'lt..3-210
DPTPMON3.ono-.00-ooo.‘--o-oooo-ooonoooot3“211
DPTPMON4..oo.Q.o..ocoo---ocooco.obotco-o3_213
DPTPMONS..;;.oooo..-.c-coo-o-.--.ocooonu3-2l4
DPTPMON6...J-..ooo.too-cooocoo...o-otooo3-2l4
DPTPSVCl..‘ooooo-to-ooooocoooocoo"o'on.3‘215
DPTPSVCZ...........-co-oocoo-ono-ooo.c-.3-216

LICENSED MATERIAL — PROPERTY OF IBM

APPFNDIX A,
APPENDIX B,
APPENDIX C.
APPENDIX D,

DPTPSVC3.eeeeescrssscoscccssscasesanesss3=217
DPTPSVC4.cuieeosceesosassasccsssacnsssssesl=219
DPTPSVCS cevevasooecentsanescasasnsovessesld=22]
DPTSMON] v eeeccaccasosasasosnasecnnanesseld=221
DPTWSVCleauoeoesoassuosoassasacsansaessald=222
DPTWSVC3 .o eeensosceasosoasensseascssesesld=222
DPXDBIN) s cveeeesessasnsasssssosocasssasssel=223
DPXDBINZ2,ceeeosossaecssasncscssassscsossesl3=223
DPXDBIN3 . usseeossoscesosacancsasssscsssa3=224
DPXDBINA.cseeeoosossorscassssssnssensnseal=225
DPXDBING.eecosasssasnsasnssncasssoseneesl3=225

DIRECTORY s eeseesasseocnssonssoecoccsssonceassA=l
STORAGF. ALLOCATION.cssececcesossassnsensacesassB-1
DATA AREAS. . cccecocscssscsassossssessanssnnsssl-l
INTERNAL MACROSseseesncssoasvsoasssasasnccssosebD=l

LICENSED MATERIAL — PROPERTY OF IBM

vii

LICENSED MATERIAL — PROPERTY OF IBM

PREFACE

Scope and Objectives

This publication describes the internal logic and method of operation of
the Special Real Time Operating System. The purpose of the publication is
to provide information to systems analysts, programmers, system engineers,
and maintenance personnel to facilitate making modifications, diagnosing
error situations, and performing maintenance work,

All of the general functions and services provided by the Special Real

Time Operating System are described in the DOM, as well as the details and
requirements for installing, operating, and customizing this PRPQ. However,
very little emphasis is given to individual programs that comprise these
services or to the overall organization of these programs. The SLM contains
the detailed material pertaining to the design and coding of the Special
Real I'ime Operating System. While the DOM concentrates on the services and
how to use them, the SLM concentrates on the load modules and how they per-
form their functions. The SIM is not intended to replace or duplicate any
information found in the DOM; it supplements the DOM with information for
diagnosing error situations, or making modificationms.

This publication contains three sections:

1. Section 1. Introduction

o summarizes general information about the Special Real Time
Operating System
o describes the relationship between the functional operations-

oriented information contained in the Special Real Time
Operating System Description and Operations Manual (S120-1773)
and the detailed program-oriented information contained in this
manual

o describes the relationships between the various sections and
appendixes of this manual

2. Section 2, Logic description
o summarizes the organization of the various functional areas
that compose the Special Real Time Operating System
0 defines the format of the diagram and the symbols used to

describe the individual programs that comprise the various
functional areas

o provides a visual description of the major logical processes
for the individual programs through use of Hierarchy Input
Process Output (HIPO) diagrams

viii

LICENSED MATERIAL — PROPERTY OF IBM

3. Section 3. Program Organization
o provides a detailed listing of the organization of the indivi-
dual programs and defines the major processes of those programs
through the use of Program Design Language (PDL)

This publication contains four appendixes:

1, Appendix A, Directory

o contains cross-references of the Special Real Time Operating
System CSECT names to the source members that comprise that
CSECT

o contains cross-references from CSECT name to the appropriate
HIPO and PDL information

o contains cross-references from Special Real Time Operating
System macro names to CSECT name

o contains cross-references from CSECT name to the functional area

2. Appendix B. Storage Allocation

o contains information concerning the amount of storage required
to execute the Special Real Time Operating System

3. Appendix C. Data Areas

0 contains charts describing the relationships between various
Special Real Time Operating System control blocks and data areas
o contains detailed description of each Special Real Time Operating

System control block used by multiple modules

4, Appendix D. Internal Macros - Contains Macros used internal to the
Special Real Time OPerating System

The page numbering structure of this manual is designed so that the first digit
is the section and the remaining digits are the page numbers. For example, 2-34
means you are in Section 2 on page 34.

The references within the logic diagrams are references to other figure numbers
not page numbers.

The reader must have a general knowledge of the concepts of Program Design
Language and must understand the concepts and techniques involved in using HIPO
function. Section 1 Introduction, can help in using this manual effectively.

In addition, the reader must have a thorough understanding of the concepts and a
knowledge of the terminology used in 0S/VS1.

LICENSED MATERIAL — PROPERTY OF IBM

PREREQUISITE PUBLICATIONS

The reader should be familiar with the concepts presented in the following
publications:

Special Real Time Operating System Description and Operations
Manual (SH19-0080)

IBM System/370 Principles of Operation (GA22-7000)

0S/vVS1 Planning and Use Guide (GC24-5090)

IBM System/370 System Summary (GA25-7001)

RELATED PUBLICATIONS

0S/VS1 Debugging Guide (GC24-5093)

0S/VS1 Supervisor Logic (SY24-5155)

LICENSED MATERIAL — PROPERTY OF IBM

Section 1. INTRODUCTION

The Special Real Time Operating System PRPQ is a group of programs that aug-
ments the services of 0S/VS1l to support realtime applications. Additional
services provide for lower supervisor overhead; new capabilities; and in-
creased flexibility in the areas of task management, time management, data
base, message handling, duplicate data set support, data recordings and
playback, failover/restart, and other supplementary services.

The services provided by 0S/VS1l are still available to a program or system
of programs utilizing the Special Real Time Operating System. However, in
some cases, the Special Real Time Operating System may act as an interface
between 0S/VS1l and user programs.

The Special Real Time Operating System is designed to enhance areas that are
critical to a realtime operation and to provide a stable operating environ~
ment which will minimize the impact of an abnormally terminating program.

SYSTEM ENVIRONMENT

The Special Real Time Operating System executes as an application program
under the contrgl of 0S/VS1l. There are two distinct modes of operation,
either an online job step which executes in conjunction with user programs
and/or other program products in a realtime environment, or an offline job
step which creates and/or modifies tables, data sets, etc., that are essen-
tial for the proper execution of the online job step.

The online job step includes supervisor call instruction (SVC) and contains
non-SVC routines which may attain supervisor state and/or supervisor protect
‘key while executing as application load modules. Any other program products
and user programs are executed as subtasks to the online job step task. In
this environmment, all the Special Real Time Operating System services
described in the Description and Operations Manual (DOM) are available to
the user programs, Special Real Time Operating System routines, and/or other
program products.

The offline job step (e.g., offline utility) executes as a separate indepen-
dent job step from the online (or realtime) job step and, in this environ-

ment, the Special Real Time Operating System services, as such, are not
available.

11

LICENSED MATERIAL — PROPERTY OF IBM
SPECIAL REAL TIME OPERATING SYSTEM OVERVIEW

The Special Real Time Operating System is separated into two modes of oper-
ation: online excution and offline execution. Each mode of operation is
composed of one or more functional areas as shown in Figure 2-4.

Note: When referring to an overview chart, the numbers following the de-

scription (usually found in the lower right corner of the boxes), refer to
either the figure number of another overview chart or the figure number of
the detailed HIPO diagram that describes the routine that is given control,

Each of the functional areas that comprises the Special Real Time Operating
System is represented in this section by a brief narrative of that function,
an overview chart, where applicable, followed by detailed HIPO charts of

the modules involved.

ONLINE EXECUTION

Online execution of the Special Real Time Operating System is initiated
through standard 0S/VS1l Job Control Language (JCL) statements with the

EXEC card specifying PGM=DPPINIT. The JCL defines to the Special Real Time
Operating System the data sets which have been created by the offline utility
and the Special Real Time Operating System SYSGEN procedures (described in
the Description and Operations Manual).

The JCL also defines the devices which are to be used by the online routines.
The module DPPINIT is responsible for initializing most of the functional
areas for online execution.

Once the basic initialization has been completed, the Special Real Time
Operating System performs meaningful processing only when its services are
requested, either by user programs executing user macro calls in a realtime
environment or by user interfaces such as Input Message Processing

commands and/or PATCH statements in the SYSINIT input stream. Figure 2-5
shows the relationships between the user macros and the functional areas,
The number following the macro name 1s the figure number of tbe HIPO dia-
gram that describes the module that receives control in response to - a
particular macro call,

Figure 2-6 shows the input message processing operator commands that are
recognized by the Special Real Time Operating System. It also shows the
entry point names that can be specified on a PATCH statement in the SYSINIT
input stream that result in processing by the Special Real Time Operating
System,

1-2

LICENSED MATERIAL — PROPERTY OF IBM

During normal execution, or as a result of a user request, the Special

Real Time Operating System may execute one or more internal macro calls, as
well as the user macro calls. Use of these internal macro calls is re-
stricted by the Special Real Time Operating System because they may be used
to obtain supervisor state, page fixing, etc, which, without strict con-
trols, could jeopardize the performance or the integrity of the operating
system, Figure 2-7 shows the internal macros used by the Special Real Time

Operating System, Appendix D contains a 1list of these macros and their
calling sequences.

OFFLINE EXECUTION

The offline functions of the Special Real Time Operating System are executed
through the use of standard 0S/VS1l Job Control Language (JCL). These func-
tions are the offline utility, data base BDAM data set compress, playback

of recorded data, and stage I of the system generation procedure,

LICENSED MATERIAL — PROPERTY OF IBM

Section 2. LOGIC DESCRIPTION

HOW TO READ HIPO DIAGRAMS

The HIPO diagrams illustrate the functions performed by the Special Real
Time Operating System, Each major functional area has a set of diagrams,
The first figure in each set is a visual table of contents for that func-
tional area.

The HIPO diagrams are read left to right, top to bottom, and illustrate the
input, the processing steps, and the output for each function performed.

The input to the function appears on the left and the output of the function
appears on the right. The processing is divided into a series of steps,

If further explanation of a processing step is needed, that step is num-
bered and the explanation appears in the Extended Description for that
diagram. The Extended Description also contains segment names, so that the
reader can refer to the proper PDL segment or pertinent code in the pro-
gram listing.

Arrows are used to signify data movement, data reference, and processing
flow. The arrow conventions are shown in Figure 2-1, Other conventions
used in the HIPO diagrams are illustrated in Figures 2-2 and 2-3.

Primary Flow of Control

|

Secondary Flow of Control

\Y

Data Movement

\

Data Pointer

— e e i s [P Data Reference

Figure 2-1. HIPO Arrow Conventions

lard

Disgrem Number

Indicates Where Control Came From.
i1t Is A Special Real Time Operating
System Module And Can Be Uniquely

Figure 2-04 (1 Of 2) Identified, An OFf Page Connector 2-048 < Disgram Number
will Be Used.
Title Or Module Function — Sample Diagram (ArmwMay 8&“’.)! ') SAMPLE Module Name
From INIT Macro Call
Input . Process Output
Register 1 c8

L oi(1]

Update CBFIELD >{ ceriELD

r Address Of CB }.--..

XTAB

XYZ

2

pup—
—> Find New Valve /

/ internal Routine

AT / “ Find 1t
Indicates Only —"] 219
T

XYZ Is Moved
' &

Record Change /
/ : External Routine

“ Record Change

208

XDATA YDATA

Subroutine Block Within Processing
Block Indicates Subroutine Contained
In Same Module (Moduie Name Is
‘Internal Routine’ And Tite Is

‘Find 2}

Subroutine Block Not Within
Processing Block Indicates
Subroutine Not In Same
Module {(Module Name 1s
‘External Routine’ And

Title Is ‘Record Change’)

l:} If Special Process

/

) - ERROR=<""
/ Retumn To Caller)
Indicates Both XDATA n Page Connectors May ~+———Indicates Where Control Is Ta Be
And YDATA Tables Are Be Used For Clarity Given. If It Is A Special Real-Time
Moved. May be A Bracket Operating System Module And Can
Rather Than A 8ox Be Uniquely identified, An Offpage

(bl) | e sl W

Figure 2-2 - Sample HIPO Diagram

Indicates Diagram Number
Of ‘Record Change’

An Offpage Connectar To Indicate
That Processing Continues On Another
Diagram (2-46). ERROR is The Modile
Name.

W8I 30 ALH3dOHd — TVIHILVA A3SNIDIT

Diagram Number

Disgram Number 204
Figure 2-04 (2 Of 2) Message Number —-\
Step Extended Description \AI;‘.N’D Ac"d| SPDS ¢
} L~ Notes For Step 1 \Mssom SAMPLE1
—"
Expanded Description 2] Notes For Step 2 SAMPLE3
Associsted With Process 3 Notes For Step 3 ABEND 004 | SAMPLE4

Step 1 . May Include
Detail Information About
Input Or Output As Well
As Process.

- User Abend Code

Figure 2-3 - Sample Extended Description

W8I 40 ALHIdOHd — TVIHILVW Q3ISN3oN

vz

Special Real Time Operating System

Online Execution

Offline Execution

2-152

Offline Utility

29

Task Mgt.
214

Time Mgt.

Message Handler
2-58
|

Input Message Processor
263
|

Report Data Output

2-154 i

Data Base Build
2-153

!

Message Definition
2-159

[

*User Utilities

J

. Data Base Compress

2-161

PLAYBACK
2-162

SYSGEN Uhility
2-163

267

Data Record And
Playback 269

Duplicate Data Set

Support 2.76
Two CPU Operation
2-140

]

N High-Level Language
Support 2-120

]
Suppiementary Services

2-107
J

Figure 2-4 - Special Real Time Operating System Overview

®Related Programs Or PRPQ’s May Receive Control From The
Offline Utility. These User Utility R

Wil 8e Dc

4

in The Related Programs System And Logic Manual.

W8I 40 ALH3IdOHd — TVIHILVYIN G3ISNIOIT

S-¢

Subroutine
Task Mgt.
2-14
PURGEWQ
2-24
—J
|
Data Base
2-44
GETARRAY/
PUTARRAY 2.57
|
GETITEM/
PUTITEM
UTI 249
|
GETBLOCK/
PUTBLOCK
248
|
GETLOG
2-52
!
PUTLOG
2-53
DUMPLOG
2:64
J
|
Message Handler 2-58
MESSAGE
2-60
—
Continued]

Subroutine
(Continued)

Data Record And

Special Real Time Operating System User Macro Calls

Playback P Y

2-69
RECORD
2-71
]
|
Duplicate Data Set
rt
Suppor 276
DDSOPEN
287
DDSCLOSE
2-86
DDSFIND
2-85
]
DDSSTOW
288
|
DDSBLDL
. 2-85
]
]
Supplementary Services 7]
2-10
DEFLOCK
2-115
|
LOCK
. 2-116
I
GETWA/FREEWA
2-108
- |
—d

Figure 2-5 - Special Real Time Operating System Macro Calls

Supervisor Call |
Task Mgt.]
21
PATCH
2-21
|
REPATCH
223
|
DPATCH
2:22
1
Time Mgt.
2-30
PTIME
2-34
—
1
Supplementary Services
2-107
CHAIN
2111
]

Wdl 40 ALH3d0Hd — TVIHILVIN Q3ISN3OIT

9¢

Operator Commands

User Interface

Task Mgt.
214

DLAP

2.

26

STAE
2

-28

Qs

280

Message Handier

MSGRC

262

Input Message Processor
263

CANCEL

2-66

STOP

264

—

I

Report Data Output
267

REPORT

Data Record And
Playback 269

DREC

Duplicate Data Set
Support 276

DDSCNTRL

289

-

Figure 2-6 - User Interface

PATCH Statements

Data Base

244

DPPOUPDL —
Data Base Refresh
24

—J

Message Handler
2-58

DPPXIMPP —

Message Routing Code,
. e ¥

T
|

Data Record And
Playback

267

DPPXPCON — Playback
273

J

Supplememary
Services 2107

DPPIPFIX — Page Fix
2-113

W8I 40 ALY3dOYd — IVIH3LVIN A3SNIOIT

Lc

Subroutine

Task Mgt. s tr——

*WQDEL

*These Routines Gain Control By Expanding The
Linkages internally Rather Than Executing A Macro
Calt.

Special Real Time Operating System Internal Macro Calls

Supervisor Call
Two CPU Operation
2-140
WTFAILDS
2-142
]
Supplementary Services
2-107
*GETMORE
2-109]
SETPSW
2-117
1
CBGET/CBFREE
2-112
DPPFIX
2113
DPPFREE
2-114

Figure 2-7 - Special Real Time Operating System internal Macro Calls

Wal 40 ALH3dOYd — TVIHILVIW Q3sSN3INN

LICENSED MATERIAL — PROPERTY OF IBM

Initialization

The Special Real Time Operating System's initialization module, DPPINIT,
is assembled during the SYSGEN procedure and contains the SYSGENed values
as data constants., This module receives control from the 0S/VS1l initiator
whenever an EXEC statement specifying PGM=DPPINIT is executed.

The module DPPINIT references the SYSGENed values (data constants) and

the SYSINIT input stream and initializes the realtime job step accordingly.
Once the basic initialization has been completed by DPPINIT, control is
transferred (XCTL) to the Special Real Time Operating System's system
monitor routine, DPPTSMON, and the realtime job step is ready for process-
ing to begin., Figure 2-8 provides an overview of the modules executed
during the initialization process.,

2-8

6C

DPPINIT —
Processing Flow
29
DPPINITO —
Read SYSINIT Input
Stream 2-11
|
DPPSINIT —
Initialize Duplicate Data
Set Support 2-77
DPPIDBAS —
Initislize Data Base
Routine 245
DPPMINIT —
Initialize Message Handler
Routines 2.59
R A——" .
1
DPPITIMI —
Initialize Time Mgt.
Routines 2-31
|
DPPILOGN —
Initialize Dats Base
Logging Routines 5 45|
1
DPPXIMPW —
Initialize tnput Message
Processor Routines 2.64
|
OPPINIT1
Process SYSINIT Input
Stream 212
Continued i

Special Reai Time Operating System Initialization

DPPINIT Processing
Flow {Continued)

DPPTPMON —
Task Mgt. PATCH
Monitor Routine

2-16

DPPTSMON —
Task Mgt. System
Monitor Routine

220

DPPISTAE —
N

STAE Exit Routine For
DPPTSMO!

2-13,

Figure 2-8 - Special Real Time Operating System Initialization Overview

Wal 40 ALH3dOUd — TVIHILYI Q3IsSN3OI

oL-¢

DPPINIT 0S/VS1 Initiator

Input Process Output
HEX 10’ cvT
f ovT — CVTTCBP
L L
New Old ! ; m
L Verify That This
4= = e —— = i Is The Job Step
TCB Task. If Not —
Abend With User
30.
TCBFTJST
— ,_.[_/
T _ 7T) =
CALL CARD
READ ROUTINE
DPPINITO
]
. ~ Card Read
input Control : .
Input Cont Routine 2-11
1 ; MAINBLOK
MAINTCBS > Override SYSGEN
MAINCBCR Values (TCB,
MAIN F GSZ GETWA, CBGET)

W81 4O A143dOHd — TVIH3ILVIN Q3ISN3OI

Control Block Figure 2-9
(3 Of 12)

Figure 2-9 (1 Of 12) - Special Real Time Operating System Initialization

Li-¢

Figure 29 {2 Of 12)

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

Special Real Time Operating System initialization must run under the
job step TCB. It cannot be an attached task. The CVT - new/old

pointers are used to get the TCB address under which initialization
is running. The TCB address is compared to the TCBFTJST address to

find if it is the job step task. If it is not, the job is ABENDed
with a code 30.

Program DPPINITO is branched to in order to have the input stream
read. See Figure 2-11 for detail.

Override SYSGEN values for number of advance TCBs and GETWA.
Override CBGET value.

USER 30

DPPINIT

DPPINIT

DPPINIT

W8I 40 ALH3d0OYd — TVIH3LVIAN GaSN3OIT

AR

From Figure 2-9
DPPINIT (1 0f12)
) input Process Output
XCVTSVC1
@ : XCVTSVC2
Caiculate Core Requirements For XCVTSVCA
XCVT And SCVT Plus Block > XCVTPGSZ
Identifiers
XCVTSBDT
XCVTCVTS
Get SP253 Core And Initialize
XCVT
‘ SCVTLOGI
Initialize SCVT > scviioss
| SCVTLOG3 |
SCVTTMCT
SCVTTIBR
@ SCVTT2BR
Link To DOMIRINT if Failover
Restart Or External Time Source SCVTP1LO
Has Been SYSGEN‘ed. SCVTPIHI
SCVTP2HI
SCVTP2LO
DOMIRINT
External Interrupt
<$<mmmm .. nivaiiza-
tion 2-142

b TMCTYDCVT

TMCTEFWD
TMCTEBKW

@ initialize TMCT]J

TMCTGFMB

W8l 40 AlH3d0Yd — TVIHILVIW G3ISN3DIN

Storage And Control Blocks
Figure 29 (7 Of 12)

Figure 2-9 (3 Of 12) - Task Management Control Block Initialization

gl-¢

Figure 2-9 (4 Of 12)

Messages and

SYSGENed, a link to routine DOMIRINT will be generated.

Step Extended Description ABEND Codes PDL Segment
1 The core required for the XCVT and SCVT is calculated by (XCVTLNTH DPPINIT
+ IDLNTH + SCVILNTH + IDLNTH). The ID is an 8-byte control block
identifier which precedes the control block in core and makes it
easy to locate the control block in a core dump.
2 The core for both the XCVT and the SCVT is obtained by one GETMAIN DPPINIT
from subpool 253, The XCVT identifier is put ahead of the control
block and then XCVT fields are initialized in the following order:
XCVTSVC1 - An executable type 1 SVC instruction (OAXX)
XX = SVC number
XCVTSVC2 -~ An executable type 2 SVC instruction (OAXX)
XX = SVC number
XCVISVC4 ~ An executable type 4 SVC instruction (OAXX)
XX = SVC number
XCVISBOP - Initial flags set (XCVTPRS, XCVT1PL, XCVTCPU) :
XCVTPGSZ - Size of page 2K - VS1
XCVICVTS - Pointer to SCVT
3 The SCVT ID is placed ahead of the control block. The SVCT fields DPPINIT
are then initialized in the following order:
SCVTLOG1
SCVTLCS2 } If logging is SYSGENed
SCYTLOG3
SCVIT1BR - Type 1 SVC branch table address
SCVTT2BR - Type 2 SVC branch table address
SCVTP1HI - Partition high address
SCVTPILO - Partition low address
SCVITMCT - Pointer to Task Management Control Table
4 If either failover/restart or external time source has been DPPINIT

W81 40 ALH3dOYd — TVIH3LVW Q3ISN3DI1

vi-g

Figure 2-9 (5 Of 12)

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

AG
™C

ETMAIN for the TMCT and GFMB. The TMCT ID is put ahead of the

T. The TMCT fields are then initialized in the following order:

TMCTEFWD : _
TMCTEBKW GETWA Type = PC dummy GFBE

TMCTGFMB - Pointer to the first GFMB
TMCTXCVT - Pointer to the XCVT

“,_. —_

DPPINIT!

W81 40 ALHIdOHd — TVIHILVIN AISNIDIT

LICENSED MATERIAL — PROPERTY OF IBM

Intentionally Blank

Figure 2-9 (6 of 12)

2-15

91-¢

From Figure 2.9
DPPINIT sorzy (&)
Input Process Output
(1 calcutate The
SYSGEN Values Amount Of Storage
(May Be Overridden > Required For
At Initialization) GETWA Control
Blocks And GETMAIN.
ABEND Job Step
if SRTOS GETWA GFMB
Reguirements Not Met
B GFMBFCNT
INITIALIZE | GFMB#BLK |
GFMB's ™ Fmesize
GFMBGFCB
Biock Of Subpool
GFCB Zero Core
B riatize GFCB's And G;CBGFMB
GFBE's And Get The GFCBNEXT
GETWA Core T>[_GrcaFRsT
Turn On The Initial GFCBLAST
Allocation Flag GFCEGFRE
-
w
o
w
(L]
Block Of SP
scvVT 253 Core
F
[Get cBGET core PSCBFCNT | PSCBID
> And Initialize N PSCBNEXT
PSCE's SCVTDNXT PSCBPREV
SCVTDPRV

W8I 40 ALHY3dOHd — TVIHILVIN d3SN3DIT

TCBX Create
Figure 2.9 (9 Of 12)

Figure 2-9 (7 Of 12) - Initializz GETWA And CBGET Storage And Control Blocks

[A%4

Figure 2-9 (8 Of 12)

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

The amount of protected storage required for GETWA control block
storage is calculated (number of sizes x GFCBLNTH) + (total number of
blocks x GFBELNTH). The storage required is GETMAINed from subpool
253. If a GETWA size of at least 1024 bytes is not requested, the job
step is ABENDed with a code 46.

The following fields are initialized in the GFMB
GFMBSIZE - Size of GETWA blocks
GFMBFCNT - Free count of GETWA blocks
GFMB#BLK - Initial number of blocks requested
GFMBGFCB ~ Pointer to corresponding GFCB
GFMBID ip (0, 1, 2, 3...31) maximum 31

The GFCB is initialized in the following manner
GFCBGFMB - Pointer to corresponding GFMB
GFMBGFBE Pointer to first GFBE (free queue)
All GFBEs are then queued to this free queue.
Low address of associated SP zero core
High address of associated SP zero core

GFCBFRST
GFCBLAST

The initial allocation flag (GFCBINIT) is turned on.

The amount of CBGET core is calculated if no value is given at initial-

ization time (CBGET statement) and core is obtained from subpool 253. A

Protected Storage Control Block (PSCB) is built in the first 12 bytes
of obtained core and is backward (PSCBREV) and forward (PSCBNEXT)
chained to the dummy PSCB in the SCVI. The number of 32 byte blocks
available is calculated from the number stored in the PSCBFCNT field.

USER 46

DPINIT1

DPINIT1

DPINIT1

DPINIT2

W8Il 30 A1H3d0Hd — TVIHILVYIN Q3SN3OIT

8L-C

DPPINIT From Figure 2-9(7 Of 12)
Input Process Output

i HEX 10’ i—— ovT

- — — — -
Load Task Management
Routines DPPTETXR,
ON, And
[T o Fras
. TCB ’
TCB
Build TCBX And Put It > TCBUSER
On The Job Step TCB TCBX
TCBXPRTY
TCBXTFWD
T™CT TCBXTBKW
> TCBXQFWD
TCB Control § . > Creste TCBX — TCB Poo! TCBXQBKW
Or SYSGEN Vsiues And Chain The Free Pool TMCTFREE TCBXDCVT
To The TMCT TMCTETXR
TMCT TCB
TMCT FRE
TMCT FIX TCBX TC8B
@ -, P 4
f two-partition oper-
ation, synchronize
the two partitions .
DPINITS TeBx Tes
” Two-Partition
Synch 2-10
TCBX yCc8

LINK To Functional
Area Initialization
Modules

DPPINIT

@ - ATTACH
INITY
ATTACH DPPINI PATCH Processor
212

W8l 40 ALY3dOHd — TVIHILVYW A3ISN3DIT

XCTL To DPPTSMON
Figure 2-20
Figure 2-9 (9 Of 12) - Create TCBX - TCB Pool

61-C

Figure 2-9 (11 Of 12)

is attached, then control is passed (XCTL) to the system monitor

(DPPTSMON) .

ATTACH DPPINT1
XCTL DPPTSMON.

Step Extended Description Al\geEs?\‘age ::2325 PDL Segment
5 Special Real Time Operating System subroutines are loaded or linked DPINIT3
in the following order:
LOAD DPPTSTAE - Store address in SCVTSTAE
LOAD DPPTPWQE - Store address in SCVTPWQE
LOAD DPPXDEFL - Store address in SCVIDEFL - LOCK
LOAD DPPTGWFW - Store address in SCVTGWBS
LOAD DPPXLOCK - Store address in SCVILOCK - DEFLOCK
LINK DPPSINIT - If DDS SYSGENed
LOAD DPPSOP1 - If DDS SYSGENed
LOAD DPPSCL1 - If DDS SYSGENed
LOAD DPPSBF1 - 1f DDS SYSGENed
LOAD DPPSST1 - If DDS SYSGENed
LOAD DPPXDRCX - Store address in SCVTREC - Data recording
LINK DPPIDBAS - Link to data base initialization
LINK DPPMINIT - Link to message handler initialization
LINK DPPITIMI - Link to time management initialization
LINK DPPILOGN - Link to logging initialization if
SYSGENed '
ATTACH DPPXIMPW - Input message processor
LOAD DPPIPFRE - Store address XCVTPFRE
LOAD DPPISTAE - Job step STAE routine
6 Initialization is complete so the PATCH stream processor (DPPINIT1) DPPINIT

W8I 40 ALH3dOHd — TVIHILVYW Q3SN3IDI

0c¢e

Figure 2-9 (10 Of 12)

Step

Extended Description

ABEND Codes

Messages and

PDL Segment

The Special Real Time Operating System task management routines are
brought into virtual storage via the LOAD macro.

LOAD DPPTSMON ,

LOAD DPPTETXR, store ETXR address in TMCTETXR

LOAD DPPTPMON, store interface entry point in SCVIPMON.

A TCBX is created and initialized and chained to the job step task
TCB. The TCBX fields are initialized as follows:
TCBXPRTY - TCB's dispatching priority
TCBXTFWD { Dummy GETWA type at GFBE
TCBXTBKW
TCBXQFWD
TCBXQBKW
TCBXDCVT

{ Dummy GETWA type at GFBE

Pointer to the XCVT

If enough CBGET storage cannot be obtained, the job step task is
terminated with a code 33.

A TCB pool is created by ATTACHing DPPTPMON for the number of
advance TCBs. A TCBX is created for each TCB (as in step 2) and the
free chain is chained to the TMCTFREE chain.

The two partition flags in the MAINBLOK are tested (MAINMSTR,
MAINSLAV); if either is on, the two partitions are synchronized
(see Figure 2-10).

USER 33

DPINIT3

DPINIT3

DPINIT3

DPINITS

W8I 40 ALH3d0Yd — TVIHILVYW G3ISN3OIT

LICENSED MATERIAL — PROPERTY OF IBM

Intentionally Blank

Figure 2~9 (12 of 12)

2-21

Call From DPPINIT

(Figure 2.9, 9 Of 1

DPPINIT
Input
MAINBLOK
MAINMS proeme e e w—
X 1D’
cvT
TCB TIOT
CVT HEAD -
TCB ‘ TIOT
=
TCB TiOT

2) Process

o e —— e — et

Check For A Two-
Partition Run

Check For
RESTART On
SLAVE If Yes
Eise

f This Is Initial
Start Check For
Other Partition
Started

1f Other Not
Started Wait And
Issue Message

If Other Is Started,’
Find Other And
POST Him

0]

Synchronize Two

Partitions

———] ——]

(®

if This Is Restart

On SLAVE, Find
MASTER And
Synchronize

Figure 2-10 (1

Of 2) - Two Partition Synchronization

Return To Caller

PARTN 1 | PARTN 2
SCVT |
SCVT2PTS >:< SCVT2PTS
SCVTP2L0 ! SCVIPILO
SCVTP2HI | SCVTP2H
|
> |
j
XCVT2PTX >| i XCVTZPTX
|
|
|

WEl 40 ALY3dOHd — TVIHILVYIN G3SN3OIN

(XA

Figure 2-10 (2 of 2).

Step

Extended Description

Messages and
ABEND Codes

—

PDL Segment

The MAINBLOCK MAINMS flags are checked for the presence of a MASTER
or SLAVE statement in the input stream. If none exists, the
synchronization routine is bypassed,

An ENQ for MASTER jobname - MASTER jobname is issued, if the resource
is available, this is an initial start. If it is not available, this
is a restart of a SLAVE partition, processing continues at step 5.

An ENQ is issued on MASTER jobname ~ SLAVE jobname to find if the
other partition is started. If the resource is available the other
partition has not started, a message is issued and the partition
WAITs. If the resource is not available, the other partition has
started and it is WAITing. The TCB ready queue is searched, looking
for the jobname in the TCB's TIOT; when the other job is found, its
XCVT is posted with this partition's XCVT address.

Each partition gets the other's low and high partition addresses and
puts these in his own SCVT, and gets the other's SCVT address and
puts it in his own SCVT.

If this is a restart on a SLAVE, the MASTER is located via the TCB
ready queue and if he is not currently ABENDing and does not already
have a SLAVE partition, he is given the SLAVE's low and high partition
boundaries, and the SLAVE's SCVT and XCVT address. The SLAVE gets

the MASTER's low and high partition boundaries, and the MASTER's

SCVT and XCVT addresses, the two partition bit is set on in each

XCVT, and the resync bit is set on in the MASTER's XCVT and
initialization continues,

DPP0O461

USER 36
USER 42
USER 43
USER 44

DPINITS

DPINITS

DPINITS

DPINITS

DPINITS

W81 40 ALH3d0Hd — TVIHILVW @3SN3OIT

ve-e

Call From DPPINIT

(Figure 2-9, 1 Of 12)
DPPINITO e o0 oss _—
MAINBLCK
1
Buiid A MAINBLOK
Set 2 Partition Flag If MAINFLAG
SYSGENed Turn On
DBREF YES Flag MAINFLGS
C 5
Read A Control Statement s
Listing
OR
’ > Print The Input Statement
PDS [z] One Complete
Membe:
e > Process All Continuations Control Statement
@ MAINBLOK INITCB
Identify Control Statement
Operation Type And Process OR
Operation Control Statement. (See
Field > Figure 2:11 (3 Of 12) For 8
More Detail)
Modified Created
Exit From READ LOOP
When END-OF-FILE MAINBLOK
{(EODAD) To
MAINBLOK From Figure 2-11 Figure 2-11
(70112) (30f12)
Modified
Build WAIT LIST!s) Chain

INITCB

See Figure 2-11 {110112)
For More Detait)

ABEND If Control

Statement Error Detected
Otherwise Return Control

: To DPPINIT MAINBLOK

From Address In Register 1

Figure 2-11
(11 0 12)

To
Figure 2-11
{11 Of 12)

Figure 2-11 (1 Of 12) - Statement Read Routine

Retum To Caller

\ INITCB

\ INITCB

WE!l 40 ALY3dOHd — TVIH3ILVIW G3SN3ON

gzt

Figure 2-11 (2 of 12i.

. Messages and
Ste
p Extended Description ABEND Codes PDL Segment
1 A MAINBLOK is built in subpool O. DPPINITO
2 A read loop is established to read control statements. The only exit DPP8361 DPPINITO
from the read loop is end-of-file (EODAD) on SYSINIT. The label is DPP800IL DPINITO6
moved to the work area. If column 1 is nonblank and if the data in DPP8011
colum 1 is an asterisk (*¥), the statement is a comment statement, it DPP8021
is written to the INITLIST data set and the next card is read. If it DPP822L
is not a comment statement, the operation is moved to the work area, USER 40
then the operands are moved to the work area. All comments and blanks | DPP045IL
used as delimeters are removed, and only meaningful information is
moved to the work area. Blanks within the PARAM field are kept. A
flag is set to indicate continuation if column 72 is nonblank or the
last data column contained a comma. If column 72 was nonblank and the
last data column was not a comma, a flag is set to indicate that no
more operands are expected. If an error is found in control statement,
issue an error message.
3 The input control statement is written to the SYSLIST data set. DPPINITO
4 Continuation cards are read until there are no more continuations DPP804L DPINITO3
expected. If the maximum number of operands is not exceeded, the DPP8221
operands are moved to the work area.
5 The control statement operation type is identified. (See Figure 2-11
(3 of 12) for detail.)
6 At end-of-file, control is passed to program label BLDWTLST. DPINITO
7 See Figure 2-11 (11 of 12) for description of Build Wait List routine DPINITOS
(BLDWTLST) .
8 If any errors were detected during control statement processing, the USER 34 DPINITOS

job step is ABENDed with a code 34; otherwise, control is returned
to DPPINIT.

W8I 40 ALH3dOYd — TVIHILYW A3SN3DIT

9z¢

From Figure 2-11

(1 Of 12)
Process Output

MAINBLOK

M TeEB § T WMAINTCBS
MAINBLOK
CBGET S > MAINCBGT

MAINBLOK

3

GETWA S > MAIN¥GSZ

MAINBLOK

MASTER Statement

Or

DPPINITO
Input
MAINBLOK
Controi Statement
MAINBLOCK

w INITCB

>[§]

SLAVE Statement

> MAINMS

\ INITCB

>

)

INITCB

Figure 2-11 (3 Of 12) - Identify Control Statement Operation Routine :

MAINBLOK
N MAINFLGS
DBREF Statement v
Modified
INITCB Chain
WAIT § "
INITCB
ABEND §
RESTART St it
MAINQHBK
MAINQPBK
PATCH S t MAINSTBK 1
QHBK
QH Statement ~r
QPBK
QP Statement >‘
STAEXBK
- STAEX Statement

To Figure 2-11 (7 Of 12)

gl 40 ALY3dOHd — TVIHILVIA a3SNIOI

[XATA

Figure 2-11 (4 of 12).

Messages and

INITECB field, otherwise put the default time (30 seconds) in the
INITECB field.

Step Extended Description ABEND Codes PDL Segment
1 Ensure TCB field contains all decimal data, Convert data and store DPP8341 DPINITO4
value in MAINTCBS. DPP8Q5I
2 Ensure CBGET field contains all decimal data. Convert data and DPP8291 DPINITO4
storage value in MAINCBGT, DPP8OS5I
3 Ensure all decimal GETWA input and number suboperands do not exceed DPP0O371
32, Move the converted data to the MAINBLOK and sort the entries by DPP0O381L
GETWA size, Ensure that the number of blocks is not greater than DPP0O391L
4095 and the size is not greater than 30760. Ensure blocks which are |DPP040I
greater than 2K are 2K multiples. DPP0411
DPP0O421
DPP0431
4/5 | If two partition SYSGENed, accept MASTER or SLAVE statements., If DPP8061I DPINITO4
MAINMSTR and MAINSLAV are both off, no previous MASTER or SLAVE state- |DPP8131
ment has been encountered in the input stream. The MASTER= or DPP830L
SLAVE= operand is verified and if it is valid, the job name is moved |DPP845I
to the MAINNAME field and the appropriate flag (MAINMASTR if MASTER
or MAINSLAV if SLAVE) is turned on.
6 If DBREF NO request, turn off the refresh flag (MAINRIMI) in the DPP802L DPINITO4
MAINBLOK, If YES, the flag is left alone as it is already set, DPP 8051
7 Build an INITCB, chain it on the chain, and turn on the INITWAIT flag [DPP807I DP INITO4
to identify this is a WAIT control block, locate the INITCB with the
given label and verify that it is a PATCH block. If it is, calculate
the address of the PATCH blocks INITECB field and put it in the WAIT
blocks ECB field.
8 Build an INITCB, chain it on and turn on the INITABND flag to identify DPP833I DPINITO4
this ‘as an ABEND control block. If DUMP was requested, turn on the DPP8321
INITDUMP flag. If a time was specified, convert it and put it in the |[DPP831I

W81 40 ALH3d0OYd — TVIHILVIN Q3asSN3oIN

8Z¢C

Figure 2-11 (5 of 12).

Messages and

PDL Segment

DPP8551

Exte .
Step xtended Description ABEND Codes
9 Build and chain an INITCB and turn on the INITWRST flag to identify DPP8CS5I DPINITO4
this as a RESTART control block if no previous RESTART WRITE DPP808I
statement has been read., Set WRITE, PROBE, CMON, and CANCEL flags
as required.
10 See following pages for detailed description of PATCH statement
processing.
11 Build QPBK from data on QP statement and chair, Add to main QPBK DPQ805I DPINITOA
chair, DPP8131
DPP8141
DPP8281
DPP8481
DPP8491
DPP8521
DPP8531
DPP8541
DPP8571
12 Build QHBK from data on OH statement and add to main QHBK chair. DPP801I DPINITOA
DPP8111
DPP813I
DPP8481
DPP8521
DPP8561
13 Build STAX BX from data on STAEX statement and add to main STBK DPP801I
chair. DPP813T
DPP849T
DPP8531
DPP8541

W81 40 A1d3d0Hd — TVIY3LYW Q3SN3OIT

LICENSED MATERIAL — PROPERTY OF IBM

Intentionally Blank

Figure 2~11 (6 of 12)

0e-¢

DPPINITO

input

From Figure 2-11
(3 Of 12)

Process

Output

CREATE INITCB

INITCB

> INITFLGS

One C

plete Input

Control Statement

INITCB

INITCB
>@ If Keyword EP = >{ supep
INITCB
3
> If Keyword TASK = SUPTASK
INITCB
7
> 1f Keyword QL = > SUPQL
' PROBL
>@ If Keyword 1D = > PROBLID
NITCB
g . N
> If Keyword PRTY SOPPRTYN
SUPPRTYV
To ’
Figure 2-11 PROBL
From 3 (9 Of 12)
Figure 2-11 CREATE PROBL
(9 Of 12)

Check For EP

Reset Flags

Figure 2-11 (6 Of 12) PATCH Statement Processing

To Figure 2-11
{1 Of 12)

WEI 40 ALY3dOHd — TVIHILVIN Q3SNIONT

Le¢

Figure 2-11 (8 of 12).

L. Messages and
Ste
p Extended Description ABEND Codes PDL Segment

1 Create and chain an INITCB. Turn on the INITPTCH flag to identify DPINITO2
this as a PATCH control block and move control statement label to :
INITLABL.,

2 If no EP=keyword previously processed for this PATCH statement, turn DPP8091 DPINITO2
on the PTCHEP flag and move the EP name to the SUPL. The SUPL is DPP8171
part of the INITCB.

3 If no TASK=keyword previously processed for this statement, turn on DPP810I DPINITO2
the PTCHTASK flag and move the TASK name to the SUPL. DPP8171

4 If no QL=keyword previously processed for this statement, turn on the DPP8261 DPINITO2
PTCHQL flag. Validity check the QL data, convert it, and put the con- DPP8111
verted value in the SUPL. DPP8171

5 If no ID=keyword previously processed, turn on the PTCHID flag. DPP8271 DPINITO2
Validity check the ID value, convert the value, and save it to DPP8121
be moved later to the PROBL. DPP8171

6 If no PRTY=keyboard previously processed, the PTCHPRTY flag is turned DPP8141
on., If the first character of the operand is a left parenthesis, the DPP8151 DPINITO2
operand is of the format (job name, prty). The job name is moved to DPP8281
the SUPL and the priorty value is validity checked, converted, and DPP8161I
moved to the SUPL. If the first character is not a left parenthesis, . DPP8171
the operand is of the format JOBSTEP-n. The priority reference value
is validity checked, converted, and moved to the SUPL.

7 See Figure 2-11 (9 of 12) for processing description of PARAM. DPINITO1

8 If no PROBL exists. (no PARAM=keyword), create a PROBL. Move the ID to DPINITO2
the PROBL.

9 Check PTCHFLGS for PTCHEP flag to ensure EP=specified. DPP8351 DPINITO2

10 DPINITO2

Reset PTCHFLGS.

W8! 40 ALH3d0dd — TVIHILVIW G3ISN3IOIT

Ze-c

From Figure 2-11 (7 Of 12)® Process Output
PROBL
m IPROBFLG
Check For No _MQB.LHL._J
Previous PARAM = C ‘ABC
Keyword Build E ‘7Y’
PROBL X 120
@ Converted
‘> Dsta Identifier = ‘X’ Hexadecimal
Data
@ Converted
One Complete input -
Contro! S > Data Identifier = ‘F S:ltl:vord
> Data Identifier = °C’ Character
Data

To Figure 2-11 (7 Of 12) @'
Figure 2-11 (9 Of 12) - Build Wajt List Routine

Wbl 40 ALH3dOHd — TVIHILVYIN G3SN3DIN

{2 A

Figure 2-11 (10 of 12).

Messages and

Step Extended Descriptiqn ABEND Codes PDL Segment

1 If no previous PARAM=keyword has been processed, turn on the DPP824I DPINITO1
PTCHPRAM flag, The first data character is checked. If it is a left DPP8221
parenthesis, the operand is scanned, and the quote characters are DPP8281
counted. If the quotes are balanced (even number), a PROBL is
created. If no right parenthesis, then issue error message.

2 If data type is X, validity check the data, convert it, get storage DPP818T DPINITO1
for the data, and move the converted data to the storage area. The DPP8191
~address of the converted data is then placed in the PROBL along with
the data length.

3 If the data is F, four bytes of main storage is obtained, and the dataj DPP818I DPINITO1
is checked to see if a sign was specified. The data is converted,
and if a minus sign was specified, the data is complemented. The
converted data is placed in the obtained storage, and the address and
length are placed in the PROBL.

4 If the data type is C, storage is obtained and the character data is DPP8201 DPINITO1
moved to the storage. The address and length of the storage are DPP821I
placed in the PROBL. DPP8181

W81 40 A1H3d0Hd — IVIH3ILVYW G3SN3OIN

ve-e

DPPINITO

Input;

From Figues 2-11 (1 Of 12) v

MAINBLOK

MAINERR

MAINBLOK

INITCB

MAINBLOK

INITCB

INITCB

-

@

Check For Controt
Statement Errors

|

Build A Wait List
For The Write
Bilock

&

Buitd A Wait Biock

MAINQHBK

MAINQPBK

QHBK

F The Last
INITCB

QPBK

QHBK

Put Addr Of QPBK
Into QHBK And
Addr Of QHBK
Into QPBK

Check For Errors
in QPBK/QHBK
Cross Reference

Output
MAINBLOK
INITCB
Chain
INITCB
INITCB
INITCB
MAINBLOK
MAINQHBK - QHBK -
MAINOPBK BROPCT
QHBKQPAD
[—————'; "QHBK
QPBK
> oPBKQHCT
QPBKQHAD
=

Figure 2-11 (11 Of 12)

O/

To Figure 2-11 (1 O 12)

W8l 40 ALH3dOHd — TVIH3ILVIN A3SNIINT

Figure 2-11 (12 of 12).

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

If the MAINERR flag is on, a control statement error was detected and
the job step is ABENDed with code 34, otherwise, the wait list(s) are
built,

A count is made of the number of PATCH blocks. If there are no PATCH
blocks, the job step is ABENDed with a code 40. If a WRITE block
exists, the PATCH blocks preceding the WRITE block are counted, and a
wait list is created pointing to the INITECB field of each PATCH block.
The wait list address is placed in the WRITE blocks INITECB field, and
the count of entries in the wait list is placed in the INITWTCT field.

All PATCH blocks following the WRITE block (or all PATCH blocks if no
WRITE blocks exist) having the PARAM= (with greater than 8 bytes for a
PROBL length) parameter are counted and a wait list entry is created
for each, An INITCB is created and chained to the end of the INITCB
chain, the INITWAIT and INITWLST flags are turned on. The new block

is pointed to the wait list by the INITECB field, and the count of the
number of entries in the wait list is put in the INITWICT field.

The address of the QH blocks reference by each QP block is stand into
the QP block and the addr. of the QP block is stored into the QH block.
If more than 21 connections to any QH block, or referenced QH name not
found, output message and seter for flag.

If any errors found in plan QP/QH cross reference check, abend code 34,

DPP8461
DPP8471
DPP8571

DPINITO5

DPINITOS

DPINITOS

DPINTITOS

W8I 40 ALH3IdOHd — TVIHILYIW Q3SN3IOIN

9e-2

From DPPINIT

Output

Program PATCHed

D

PATCHed Program
Waited On

Via ATTACH
DPPINIT1 (Figure 2-9,9 Of 12)
Input Process
Register 1
)
%:?L%fi(. > Initial Processing
MAINBLOK
INITCB
' 2
PATCH Block > PATCH Block
INITCB
3
WAIT Block > WAIT Block
INITCB
CI
ABEND Block » > ABEND Block

Job Step ABENDed
User 22

Figure 2.12 (3 Of 4) @ '

Figure 2-12 (1 Of 4) - Initialization Subsystem PATCHor

W81l 40 ALH3IdOHd — TVIHILVIN Q3SN3IIN

Lec

Figure 2-12 (2 of 4).

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

Register comnventions, get the XCVT address. 1Issue message to indicate
PATCH processing has begun.

Get the PROBL and SUPL addresses from INITCB and issue the PATCH.

If PARAM= was coded, PATCH is issued with ECB option. Also if the
PATCH precedes a RESTART statement, the PATCH is issued with ECB
option; otherwise, no ECB option is specified. If PATCH return code
is nonzero, ABEND the job step with a code 31.

The INITWLST flag is checked to see if the WAIT is on a list of ECBs.
If it is, the INITWICT is obtained, and a WAIT is issued on the list,
If no wait list, the WAIT is issued on a single ECB with the ECB being
the INITECB field of the PATCH INITCB. When the ECB is posted, the
completion code is checked, and if no error occurred processing con-
tinues. If an error (POST code nonzero) occurs, an error message is
issued and the nonzero POST code is zerod. If the bad POST was for a
PATCH prior to the RESTART, the task ABENDs with a code 35.

The program issues a STIMER WAIT for the specified time. When the
time expires, the job step is ABENDed with a code 22,

DPPO41I

USER 31

DPPO44I

USER 35

USER 22

DPPINITI1

DPPINIT1

DPPINIT1

DPPINITI1

W8l 40 ALH3dOHd — IVIY3ILVYIN A3SN3DIT

8€-¢

DPPINIT1
Input
Register 1
Address Of
MAINBLOK
\ MAINBLOK

INITCB

RESTART

From Figure 2-12
(10f &)

>

BLOCK

INITCB

(i) 1F RESTART Request

DPPIIRB

LINK To DPPIIRE (Data
Base Create {RB Routine)

Sched IRB 2-150

Output

Write Faitover Data Set

LINK To DPPSRSTR
(DDS)

DPPSRSTR

2-79

L@ LINK To DPPIIRB

1

DPPIIRB

2-150

>l[§] IF PROBE Request

WW—

Failover Data Set

IRB

{nterrupt Request
8 "

PATCH DOMIRPWT
{(PROBE Routine}

|

DOMIRPRB

2-149

LINK To DPPIIRB

1

DPPIiRB

2-150

@ LINK To DPPSRSTR

T

DPPSPSTR

1.79

l@ LINK To DPPIIRB

T

DPPIIRB

2-150

{F RESTART Written
LINK To DPPILOGN

INITECB

Check Post Codes From
PATCHed Program

@ Release Control Block

DPPILOGN

246

Storage <

(5] 1f CANCEL, ABEND

Job Step

Returm To Caller

Figure 2-12 (3 Of 4) - Initialization Subsystem PATCHor

>

All Control Block
Storage Freed

W8I 40 ALH3dOYHd — TVIHILVIW G3SNIOIT

Figure 2-12 (4 of 4),

. Messages and
Ste Ext t
p xtended Description ABEND Codes PDL Segment
1 If RESTART request DPPINIT1
A Link to DPPIIRB (Data Base Create IRB Routine)
B A WAIT is issued on all previous PATCHes. The failover DPPO541
restart data set is then written and then the restart flags
are propagated to all PATCHes following the RESTART block.
The flags are stored in the PROBL:. If it is a SLAVE
partition that has been restarted, the WRITE RESTART is
bypassed and an error message is issued.
C Link to DDS failover restart routine (DPPSRSTR)
D Link to DPPIIRB
2 If PROBE request DPPINIT1
A Create IRB for the time function
B PATCH DOMIRPWI (PROBE Routine)
C Link to DPPIIRB
D Link to DPPSRSTR
E Link to DPPIIRB
3 All ECBs are checked. Nonzero POST codes will cause an error DPPO44L DPPINIT1
message to be issued,
4 All control block storage is FREEMAINed. DPPINIT1
5 ABEND job step with a code 45. USER 45 DPPINIT1

W81 40 ALH3dOHd — TVIHILVYIW QISN3IIT

ov-¢

DPPISTAE 0S/VS1 ABEND
input

Output

UNFIX Pages
Previously Fixed
By DPPIPFiIX

(a]

If This Is A Stave Partition

XCVT
1
Call The Page Free Routine —
XCVTPFRE :> DPPIPFRE l
DPPIPFRE
<)
Routine 2-114
XCVT
@ if External interrupts Were
XCVTSBOP Initialized, Clear FLAGS
CVT
@ If This Is A Singie Partiti
XCVT2PFG Operation s o

XCVT (Master)

Turn Off The Two Partition

XCVT2PFG

Flag In The Master Partition

(5]

if This Is A MASTER
PARTITION, Find The
Slave And ABEND It

N

Figure 2-13 (1 Of 2) - Job Step Task STAE Routine

0S/VS1 ABEND

WGl 40 ALH3dOYd — TVIH3ILVIN A3ISN3OIN

8 A

Figure 2-13 (2 of 2).

. Messages and
Ste

p Extended Description ABEND Codes PDL Segment

1 The page free (unfix) routine, DPPIPFRE, is branched to unfix any DPPISTAE

: pages fixed by the initialization routine.

2 If external interrupts have been initialized at initialization time, DPPISTAE
the flags (XCVISBOP) are reset.

3 If this is a single partition run, control is returned to ABEND DPPISTAE
with register 15 cleared to indicate no retry.

4 If this is a SLAVE partition in a two partition run, the MASTER DPPISTAE
partition's XCVT is found, and the two partition flag (XCVTF2PT) is
turned off, and control returned to ABEND with register 15 zero to
indicate no retry.

5 If this is a MASTER partition in a two partition run, the SLAVE USER 41 DPPISTAE

partition's job step task TCB is located, and the SLAVE job is
ABENDed with a code 41. Control is then returned to ABEND with
register 15 zero to indicate no retry.

W8I 30 ALH3dOHd — TVIHILVYIW a3sN30IN

e

Special Real Time Operating System Task Management
Monitor Routinés I Supervisor Call Routine - Subroutines] Operator Commands
) DPPTMQN DPPTPSVC — DPPTPWQE — DPPTDLMP —
e PATCN Monitor PATCH SVC — PURGEWQ Cail — DLMP Command
. 216 2-21 2-24 Processor 2-26
DPTMON3 | | |
User interface 217 DPPTDSVC — DPPTWQDL — DPPTIMPS —
DPTPMON2 DPATCH SVC WQDEL Calt ‘ STAE Command
HLL Entry 2-18 2.22 225 Processor 227
I] - |
DPTMONG
DPPTRSVC — DPPTSTAE -~
l QH/QP Interface 2-18.1 REPATCH SVC STAE Exit Routine For
7 J 2.23| DPPTPMON 228
4 . J
DPPTSMON —
System Monitor
2-20
DPPTETXR —
End Of Task Exit
Routine 2-19
3

Figure 2-14 (1 of 2) Special Real Time Operating System Task Management Overview

Wel 40 ALH3dOHd — IVIHILYW g3ISNI0IT

LICENSED MATERIAL — PROPERTY OF IBM

Task Management

The Special Real Time Operating System's task management services are an
extension of the 0S/VS1l tasks supervisor to make more efficlent use of sys-
tems resources in a real time processing system. These additional services
are provided by the Special Real Time Operating System through the use of
SVC routines, monitor routines, operator commands, and service subroutines
as shown in Figure 2-14.

The PATCH monitor routine and the system monitor routine, DPPTPMON and
DPPTSMON respectively, receive control from the Special Real Time Operat-
ing System initialization module, DPPINIT, and form the heart of task
management, DPPTSMON executes under the job step task and performs the
services required by the real time system as a whole (i.e., create new
subtasks, LOAD reentrant modules, etc,), DPPTPMON executes under each
subtask created by DPPTSMON and interfaces with the user routines as re-
quired on a PATCH macro call, The relationship between the user program
and the task management routines is shown in Figure 2-15,

The task management routines provide most of the communication between
partitions in a two-partition environment. This is done internally to
each routine and does not affect the overall logic flow or the function of
that routine.

SVC/Service Service

User Program | Routines Monitor Routines Subroutines
POST
* PATCH — DPPTSMON
DPPTPSVC | T ‘
- 1 DPPTWQDL
REPATCH POST ¥
]

POST DPPTPMON
——

4——|——>
|
=
I
DPATCH ‘—‘:——H DPPTDSVC
I
|

PURGEWQ ‘“—i—’ DPPTPWQE

Figure 2-15. Task Management-User Program Relationships

¢

ATTACHed By DPPTSMON

PPTPMON {Figure 2-18)
D input Process Qutput
TCB
TCBUSER Wait On TCBUSER For
TCBX Address
TCBX TCBX
@ Resource Tabte
TCBXRSTS ‘_> If No Resource Table j> TCBXRSTS
From Present Issue GETMAIN
Figure 2-16| 8 Bytes
(3 Of 4)
Issue STAE To Gain
Control Whenever Task
Abends
TCBX
\f TCBUSER Posted By
DPPINIT Wait On
TCBXWQ TCBXECB For First |
PATCH
Taoex 3\ > @ if TCBX Is A
QBEVE Processor
o DPTPMON
WONEXT A 6
CALL QP/QH TCBX
interface 2.81.1
WQE WQE @
- TCBXWQ
° WONEXT Process WQE's On >
Ci Work Qu:
etnup Work Pueue TCEXCUWA
WQE
) DPTPMON3
CALL
WQE WQE
Processor
217 WONEXT
TCBX
' If No DPATCH Occurred
TCBXFLAG2 Wait On TCBXECB For WOE

Figure 2-16 (1 Of 4) - PATCH Monitor

Next PATCH Or DPATCH

1f No DPATCH FLAG
SET Else And Not
Held Eise

&

To Figure 2-16 (3 Of 4)

A€l 40 ALYH3dOYd — TVIY3LVY Q3ISN3JIT

G¥-C

Figure 2-18 (2 of 4)

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

The PATCH monitor is attached by DPPINIT during Special Real Time
Operating System initialization or by the system monitor DPPTSMON
thereafter, The address of the TCBX is put into the TCBUSER field
via POST by the mother task.

It is checked if a resource table address is present in the TCBX and
if not, a resource table plus work area are obtained through GETMAIN
and the address stored into TCBXRSTB.

The STAE specifies DPPTSTAE as the exit routine,

If DPPINIT posted TCBUSER, this is an initial TCB on the FREE chain
(TMCTFREE), and the PATCH monitor waits here on TCBXECB for the first
PATCH.

If TCBX is a queue processor (QP), then segment DPTPMON6 is used to
select work from one of the queue holders associated with this QP..

If any WQEs are on the cleanup work queue TCBXCUWQ they are dechained,
DPPSCLUP is called and the WQE-DELETE routine is invoked through a
branch entry to delete the WQE., Then the top WQE is dequeued from
the TCBXWQ chain, it becomes the "current" WQE and its address is
kept in TCBXCWQ. Each WQE is processed as long as WQEs are present
on the queue and no DPATCH TYPE = U (unconditional) is received.

If no DPATCH occurred, indicating that the queue is empty, the PATCH
monitor waits here for a next PATCH or DPATCH.

If no DPATCH flag is set (TCBXFLG2) and not HELD (TCBFLG3), control
goes back to step 5 for processing of the received PATCH. Otherwise,
if a DPATCH was received, control goes to A. (Figure 2-16 (3 of 4)).
If task is being HELD, the PATCH monitor WAITs until released before
processing additional work queues.

DPPTPMON

DPPTPMON

DPPTPMON

DPPTPMON

DPPTPMON

DPPTPMON

DPPTPMON

DPPTPMON

W8l 40 ALH3dOHd — TVIHILVYIN d3SN3DI1T

9

gl 40 A1H3d04Hd — TVIHILVIN G3ISN3DIT

DPPTPMON F .
rom Figure 2-16 (1 Of 4
‘ Input 9u ! Process Output
TCBX
WQE TCBX
TCBXDWQ ¥ 0) &
> If DPATCH WQ Not A>
Empty Process WQE
On bwa
TCBX DPTPMON3
T™CT TCBXNEXT .
0 WQE Processor
217 TCBX
2 TCBXNEXT
TC;::)E(XT LCB TMCT
LCB Clean Up The TCBX;
LCBNEXT '¥) © Delete All LCB's:
> Delete All WQE's; > .
FREEWA AT — Type TCBX
TCBXLCB) Areas; DECHAIN TCBX .
Active Chain TCBXWQ
WQE WQE
waNexT PP o DpPTWQDL Modified
Active TCBX
TCBX “ WQE Delete Chain 5
0 2.25
If DOS Specified, DPPSCLUP
Then
PALLS DODS Cleanup
2.78
. TeBX Check #FREE TCBX's; ™CT TCBX
If Low Make TCBX > 0
TMCT > Look ‘INITIAL’
CHAP TASK To ZERO
PRTY; CHAIN TCBX ,'] TCBXNEXT |
TCBX TMCTFREE To FREE CHAIN TCBX
F““_“‘j‘o ? / TMCTFHEE |- TCBXNEXT
TMCT#FRE
N
TCBXNEXT ELSE FREEMAIN
Resource Table
; To Figure
e 2-16
4]
B gveexir tofa)

Figure 2-16 (3 Of 4) - PATCH Monitor Retum To OS/VS

JA o/

Figure 2-16 (4 of 4).

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

If the DPATCH work queue TCBXDWQ is not empty, that WQE is dechained
and its address is kept in TCBXCWQ. The WQE is processed like any
other WQE.

The TCBX will then be cleaned up. DPPSCLUP is called to clean up
DDS. Remaining WQEs are deleted by using the WQDL routine. AT-Type
GETWA areas are freed using the special entry to FREEWA. Remaining
LCBs are deleted, If there is a corresponding LCB on the TMCT-LCB
chain, that LCB's use-count is decremented. If it goes to zero, the
flags LCBFDEL and TMCTLCBD are set to cause DPPTSMON to delete the
program. If the program was not reentrant, it is deleted here. Then
the TCBX is dechained from its active independent or dependent task
chain, TMCTAIND or TMCTADEP, respectively.

A check is made for the number of TCBXs on the TMCTFREE chain. If it
is low, the TCBX is further cleaned up to look "initial" (TCBXNAME,
TCBXPARM, TCBXFLGs), the task is CHAP'ed down to zero priority, and
the TCBX is chained to the FREE chain. Control now goes back to
step 4 of Figure 2-16 (1 of 4), where the PATCH monitor will wait

for a new "first" PATCH.

If the limit number of free TCBXs is already reached, the flag
TCBX1TRM is set, and FREEMAIN of resource table plus work area is
done, Then SVC EXIT is issued to terminate the task.

DPPO16I

DPPTPMON

DPTPMON1

DPTPMON1

DPPTPMON

W8I 40 ALH3dOHd — TVIHILYW A3ISN3oIN

8v-¢

DPTPMON3

Input

CALL From DPPTPMON
Figure 2-16 (1 Of 4) Or
Figure 2.16 (3 Of 4)

TCBX TCBX-LCB
~ CHAIN

TCBXLCB

TCBXCWQ "]

LCB

LCBEPNAM

waLcs

TCc8X TCBX

[TMCTSMON | /4

I TCBXSMON 0

TCBX

o

m]

Find The Program

[Z] if Program
NONREENTRANT
Load Program

TCBX

TCBXCWQ /

@ if Program Is
REENTRANT
Chain TCBX To
TMCTSMON Chain
Post System Monitor
Wait On TCBXLECB

TCBX

TCBX

TCBX

TMCTSMON

TMCTSECB

WQE

waip

. WOPARAM

PROBL ~

TCBX-LCB
TCBX CH,

WQE

LCB

LCBEPNAM

TCBXLCB f WaLcs

TCBXCWQ

1F Not ID 255
o Load Parameter
e Transfer GETWA
Area
e Execute User's
Program

TMCTSE
Posted

CB

TCBXSMON

TCBXSMON

TCBXLECB

0

Wait On
TCBXLECB

CALL

=

User‘s Program
Return

@

If DELETE Was
Spec. And {f PGM
NONREENTRANT,
Delete User’s Program

Clean Up WQE
FREEWA AP-Type
Areas, Delete The
WQE :

Register 1

>

TCBX

XCVT

_[TCBXDCVT

Resource Table

" |TCBXRSTB

[TCBXPARM

\ PROBL]
]

TCBX

TCBXLCB

Figure 2-17 (1 Of 2) - WQE Processor

Return To Caller

g TCBX-LC8B Chain

W8l 40 A1lH3dOHd — TTVIH3ILVIAN A3asSN3IN

Figure 2-17 (2 of 2)

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

If the purge flag is set in the LCB pointed to by the current WQE,
DPPTPMON waits for dynamic load module PURGE to complete. If the
LCB is unresolved, a search is made to find the program on the
TMCT-LCB chain. If found, the TCBX-LCB is pointed to the TMCT-LCB,
the user count is incremented, and the EP address is copied. If not
found on the chain, a BLDL is issued to locate the program.

If the program is non-reentrant, it is LOADed and its EP address kept
in the LCB. If it is a Queue Processor task build a duplicate LCB
for this Q Proccessor Reentrant programs are task oriented and the CB
for the QH is not.

If the program is reentrant, flags LCBFLOAD and TCBX1LCB are set, and
the TCBX is chained to the TMCTSMON chain. Then the system monitor is
POSTed (TMCTSECB) and the PATCH monitor waits on TCBXLECB.

The address of the PROBL is stored into TCBXPARM. If ID is not 255,
the address of TCBXDCVT is loaded into register 1 and the user's
program is given control via BALR 14, 15.

The user's program will return here. If the program is nonreusable or
if it is reusable and DEL was specified, it is DELETEd.

If the purge flag is set and an ECB address was supplied by
DPPTDLMP, the ECB is POSTed. If any AP-type GETWA area is chained
to TCBXOFWD, FREEWA is executed (via the branch entry of FREEWA.)
Then the WQDL routine is invoked via branch entry to delete the
WQE. :

DPPO141
DPPO15I

DPTPMON3

DPTPMON3

DPTPMON 3

DPTPMON4

DPTPMON4

DPTPMONS

W8Il 40 ALH3dOHd — TVIH3ILVYIW A3ISNIDIT

0S¢

CALL From DPPPARM

DPTPMON2 (Figure 2139, 3 Of 10)
Input o Process Output
TCBXCWQ — WQE LCB
waics / LCBFLAGS >‘ if PURGE FLAG SET
Or if DELETE Was
WQFPATCH Spec. Set NZERO
Return Code Return To
ICaller
TCBX Is A TCBX . LcB
TCBX LCB Queue Processor
=~ WOE___ WOQE LCBEPNAM
TCBXLCB s WONEXT LCBEPNAM DPTPMONG TCBXLCB % 0
TCBXWQ waLcs TCBXWQ WOLC8
TCBXCWQ) Qr/QH TCBXCWQ
4 interface 2.18.1 \
WQPARAM WQE
TCBXPARM | u
:) PROBL waics
WQE > If Next WQE Requests >1
The Same Program, WQPARAM
WQLCB FREEWA AP'TyOpe
3 Areas, Invoke WQE —
WQFREELN DELETE RTN, Get
WQFREEAD Next WQE, Load
Parameters, Zero
RETURN Code Return To
i Caller
[4] 1f Next woE
LC8 LCB Requests Another
TCBX LCBNEXT 4] Program, Set
LCBEPNAM LCBEPNAM ggao RETURN
TCBXLCB e
TCBXWQ |Return To
TCBXCWQ E] Caller
WQE
WOE 0 :’> If No WQE On Chain, o....
WQONEXT Post User’s ECB,WAIT
WaLca WwaLcs ON TCBXECB User's ECB Posted
TCBX
- Upon Return:
TCBX TCBXWQ [Pegister 15
it NO DPATCH FLAG 1
TCBXFLG2 SET, ELSE Set NZERO
- RETURN Code Return Code

WEl 40 ALHIdOHd — TVIHILYW aISNIOI

Returm To Caller

Figure 2-18 (1 Of 2) - PATCH Monitor - High Level Language Entry

16-¢

Figure 2-18 (2 Of 2)

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

This part of the Patch Monitor is entered only from the high level
language interface programs (DPPPARM for PL/I or DPPFPRM for
FORTRAN) .

If the purge flag is set or if DEL was specified, return to caller
with a nonzero return code.

If TCBX is a queue processor (QP) then segment DPTPMQN6 is used to
select work from one of the queue holders associated with this QP.

A check is made if the next WQE requests the same program. If yes,

the old WQE is cleaned up; AP-Type GETWA areas are freed and the old
WQE deleted via branch entry to the WQDL Routine. Then the new WQE

is scheduled, and the PROBL address loaded into TCBXPARM. 1If ID is

not 255, the return code is set to zero and control returned to the

caller. If ID is 255, no return is performed, but the routine

continues to check the next WQE while WQEs are present on TCBXWQ and
no DPATCH flag is set,

If the next WQE requests a different program, the current control is
passed back to the caller with a nonzero return code.

If no WQE is on TCBXWQ, the user's ECB is posted to indicate that
processing of this work queue is completed, the ECB address is
cleared from the WQE, and the Patch Monitor waits on TCBXECB for a
next PATCH or DPATCH.

After TCBXECB is posted and if no DPATCH flag is set in TCBXFLG2,
the routine continues processing with step 2. If a DPATCH occurred,
the return code is set nonzero and control returns to the caller.

DPTPMON2

DPTPMON2

DPTPMON2

DPTPMON2

DPTPMON2

DPTPMON2

W8I 40 ALY3dOYd — TIVIHILVYIN Q3ISN3DIT

CALL From DPPTPMON
(Figure 2-16, 1 Of 9) And
DPTPMQNZ2 (Figure 2-18,

10f2)

Process

Output

>

Move WQE’s on the QH’s
Clean-Up Chair {TCBXCUWQ)
To The QP’s Clean-Up Chair.

S

B

Find A WQE One One Of
The Associated QH‘s Work
Queue Chair {TCBXWQ)
And Move {t To The QP’s
Work Queue Chair.

N
(9]
N DPTPMONG6
Input
TCBX-QPI TCBX-QH1
TCBXCUWQ
TCBXCUMQ TCBX-QH2
TCBXQCT
TCBXQADR TCBXWQ
TCBXCUWQ
TCBXOADA
WOQE WQE
A B
WQE
c
TCBX-QP1 WQE
A
TCBXWQ
TCBXQADDR TCBX-QH2
TCBX-QP2
TCBXECB TCBXQCT
TCBXQADR
TCBX-QP3
TCBXQADR

Figure 2-18.1 (1 Of 2) — QP/QH Interface

Eli This QP Has Not Selected
A WQE From The QH That
POSTed Him Or From The
QH That It Selected The
Previous WQE, The POST
Another QP To See if Addi-
tional Work Can Be Performed

~

TCBX-QP1 WaE
WONEXT
P
TCBXCUBWQ [— WOE
> 2
8
TCBX-QP1 was
A
TCBXWQ
TCBX-QP2
TCBXECB

Return To Caller

gl 40 ALH3dOHd — TVIHILVYIW Q3aSN3OIT

£€S5-¢

Figure 2-18.1 (2 Of 2).

Messages and

selected from is searched looking for a available QP (ie. a dormant
QP that is not HELD and has not been previously posted).

St ..
ep Extended Description ABEND Codes PDL Segment
1 The address of each associated QH TCBX is contained in the TCBX for DPTMONG

that QP. Since a QH is not associated to an QS task the clean-up
work queue for the WHs are moved to the TCBX for the QP.
2 The chain of QHs is searched looking for and available work queue (is DPTPMONG
a work queue on the work queue chain of a QH the QH is not HELD, and
the QH is not sequential with another work queue currently being
processed by another QP).
3 The chain of QPs associated with the QH that the work queue was

W81 40 ALHd3dOHd — TVIHILVYIN G3ISN3OIT

v&-¢

DPPTETXR

From OS/VS1 Task

Termination

Output

Process

>

Release All Locks
For This TCB

SCVT

LOC

KCBLKs

If Task ABENDED
Write Message, Chain

LOCKNEXT,

4

SCVTLKCB

TCBX

WQE

WQE

TCBXWQ

M WONEXT

]

TCBXCWQ

WQE To Clean Up
Work Queue. POST
System Monitor For
A New TCB

~J

Input
SCVT LOCKCBLKs
LOCKNEXT P} LOCKNEXT W]
/ © TCB
SCVTLKCB
Register 1 o TCB
TCBUSER
TCBX
TCBXWQ WQE WQE
TCBXCWA WONEXT "] 0
WQE
TCBX
TCB

If NORMAL
TERMINATION
Free The TCBX

TCBXCUWQ|

WQE
Y

TCBX

Figure 2-19 (1 Of 2) - End Of Task Exit Routine

@

DETACH The TCB
That Abended

Return To OS/VS1

Free CB-GET
Storage

Free Storage

NN
A
TCB
/\/‘J

gl 40 AlH3d0OHd — TVIHILVIN A3ISNIOIT

GG-

Figure 2-19 (2 of 2).

Messages and

Ste Extend ipti
p xtended Description ABEND Codes PDL Segment
The End of Task Exit routine is specified when the PATCH monitor is
attached by the Special Real Time Operating System initialization or
the system monitor and it executes as an asynchronous exit routine of
0S/VS1l task termination,
1 The SCVTLKCB chain is searched for any LOCKCBLK referring to the DPPTETXR
ABENDing TCB and if found, an UNLOCK is issued. If it is not a USER 64
daughter of the job step task, ABEND with a code 64,
2 If the task ABENDed (TCBCMP nonzero), a message is issued. If flag 'DPP010I DPPTETXR
TCBX1TRM is not set, the WQE is chained to the TCBXCUWQ cleanup work ‘DPPO111
queue., The flags TCBX1TCB and TCBX1CHP are set, and the TCBX is DPP0121
chained to the system monitors request chain TMCTSMON. Then the DPP013I
system monitor is posted (TMCTSECB). DPPO18I
3 If the task terminated normally (TCBX1TRM is set), the TCBX is freed. DPPTETXR
4 The ABENDing task's TCB is detached to remove it from the 0S/VS1 TCB DPPTETXR

chains and release its storage from fixed PQA. Then the routine
returns to 0S/VSl.

W8I 40 ALH3dOHd — TVIHILVIN Q3ISNIDIT

96-¢

From DPPINIT

(Figure 29,9 Of 12)

Via XCTL

Process

Qutput

>

a

DECHAIN TCBX
From CHAIN

>

It FLAG TCBX1LCB

Of TCBXFLG1 Set,

Search TMCT-LCB
CHAIN. if Not

Found Build And CHAIN
LCB, LOAD Program,
POST TCBXLECB

>

If FLAG TCBX17CB
Of TCBXFLG1 Set

TMCT

TCBX

TCBX

TCBX

> TMCTSMON

TCBXSMON

=

TMCT

LCB

LCB

LC8

LCBNEXT

LCBNEXT

0

> TMCTLCBA /

LCBEPAD

TCBX

TCBXLCB

LCBLCBA

TCBXLECB

LCBEPAD

TCB

TCBX

ATTACH PATCH

::> TCBUSER

TCBXTCB

Monitor, POST
TCBUSER With TCBX

DPPTSMON tnput
™CT
TCBX TCBX TCBX
TMCTSMON
TCBXSMON; [TCBXSMON 0
TMCT
LCB LCB
TMCTLCBA LCBNEXT M¥] 4]
LCBEPNAM| |LCBEPNAM
TCBX LCB
TCBXLCB LCBEPNAM
TCBXFLG1
" TCBX
TCBXFLGI
TCBXPRTY
TCB
TCBX
TCBUSER TCBXTCG
TCBXFLG!
TCBXPRTY
™CT
LC8 LCB LCB
| LCBNEXT T LCBNEXT 0
TMCTLCBA
TMCTFLG1 LCBFLAGS
T™MCT
TMCTECB

@
If FLAG TCBX1CHP
Of TCBXFLGH, Set

Tcse

TCBX

CHAP TCB To Req.

PRTY, POST
TCBXECB

@ While TCBX's ON
REQ CHAIN

TCBUSER / TCBXECB

T™MCT

LCB

a-CB

/ LCBNEXT

If FLAG TMCTLCBD

Set, DECHAIN LCB,
DELETE Program,
FREE LCB

Figure 2-20 (1 Of 4) - System Monitor

&

WAIT On TMCTSECB |

::>TMCTLCBA

WEl 40 ALY3dOYd — TVIHILVIN G3ISN3IN

LSC

Figure 2-20 (2 Of 4)

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

The System Monitor is entered via XCTL from the Special Real Time
Operating System initialization and executes under the job step task
TCB in a never ending loop as long as the real time system is running.

The first TCBX is dechained from the TMCTSMON chain, the system
monitors request chain, and the flag byte TCBXFLGl is inspected for
the kind of service requested.

If flag TCBX1LCB is set, the TMCT-LCB chain is searched for a program
with the same name. If found, the TCBX~LCB is pointed to the
TMCT-LCB, the EP address is copied, and the use count is updated.

If not found, a new LCB is built from CB-GET storage and chained, the
program is loaded, and the EP address stored in both LCBS. However,
if CB-GET storage for a new LCB is not available, the program is
treated nonreentrant, loaded and its EP address stored in the
TCBX-LCB only. Then the waiting PATCH monitor is posted (TCBXLECB).

If flag TCBX1TCB is set, a new patch monitor is attached with the
specified priority, the TCB address is stored into the TCBX, and the
TCBUSER field of the TCB is posted with the TCBX address.

If flag TCBXI1CHP is set, the requesting task is CHAPed to the proper
priority, and the waiting patch monitor is posted (TCBXECB).

While more TCBXs are chained to TMCTSMON, the system monitor continues

_to service these requests (step 1 above).

DPPO171

DPPTSMON

DPTSMON1

DPPTSMON

DPPTSMON

DPPTSMON

W8I 40 ALH3d0Hd — TIVIY3ILVIN QISN3DIT

Figure 2-20 (3 Of 4)

Messages and

TMCTSECB, and a POST for further service will pass control back to
step 1.

Step Extended Description ABEND Codes PDL Segment
6 If flag TMCTLCBD 1is set, the TMCT-LCB chain is searched for LCBs DPPTSMON
that are requesting a DELETE service (LCBFDEL). The LCBs are de-
chained, the programs deleted and the LCBs are freed. If any LCB had
the purge flag set, DPPTDLMP is posted.
7 After the system monitor has serviced all requests, he waits on DPPTSMON

WEI 30 ALH3dOYHd — IVIHILVYIN A3SNIOIT

LICENSED MATERIAL — PROPERTY OF I1BM

Intentionally Blank

Figure 2-20 (4 of 4)

2.59

09-¢

DPPTPSVC input

From PATCH Macro Call

m Validity Check input
Addresses

PROBL

SUPL

SUPECB

SUPTCBX

SUPFREEA

it Invalid Set Return

Code And Exit

Reg 15

Return Code

I Task Name Specified
Search For TCBX On
Independent Task Chain

Return To Caller|

>>{2 - TCBX invalid
12 - PROBL Invalid

14 - SUPL Invalid

18 - Free = Invalid

Address Of Existing

Kl

If No Task Specified Or
if Not Found On Chain
Get A TCBX

>

@ Build A WQE

scvT
SCVIPILO
feg 0 SCVTPIHI
PROBL SCVTP2LO
PROBLNTH SCVTP2HI ’_L_>
PROBID
PROBPARM
Reg 1 SUPL.
SUPTASK
SUPEP
SUPPRTYN] 17T
SUPFL AG TMCT,
o TMCTAIND
SUPPRTYV
bt TMCTFREE
SUPFREEL
SUPFREEA
SUPTCBX
TCBXNAME TCBXNEXT
TCEXNEXT 5
PROBL
PROBLNTH
PROSBID
L~
TCBX
ce Lc8 LcB
LCBNEXT | 0 —r———>
TCBXLCB [V
LCBEPNAM LCBEPNAM

~

Figure 2-21 (1 Of 4) - PATCH SVC Routine

&

If Task Has No LCB For
The Requested Load
Module Build An LCB
And Chain It To TCBX

TCBX With The
Specified Name
TCBX
TCBXNAME
TCBX
TCBXNAME WaE
WaTcex
TCBXLAL WOFLAGS
TCBXCAL WOFPATCH
TCBXHWOL
> WaiD
TCBXPRTY WOAECBAD
WQPTCB
WOFREELN
T WAFREEAD
WOPARAM
TCBX
TCBXLCE

&

To Figure 2-2%
(3 0f4)

LCBFLAGS

LCBREQCT

',,/‘] LCBNEXT
> LcB 0

LCBEPNAM

gl 40 AlYd3dOYdd — TVIH3LVIN G3SN3OIT

19-2

Figure 2-21 (20of 4).

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

The Problem Parameter List (PROBL) and Supervisor Parameter List
(SUPL) addresses passed to PATCH are checked, both must be nonzero.
ECB, TCBX, and FREE addresses may be specified; if so, the specified
address(es) are also checked. The addresses must be within the
partition in a single partition environment or within either the

MASTER or SLAVE partition in a two-partition environment,

If a task name was specified, the PATCH is for an independent task.

The independent task chain (TMCTAIND) is searched for the name given.,

If no task name was specified (the PATCH is for a dependent task), or
if a TCBX with the given name does not exist, a free TCBX is taken
from the FREE chain (TMCTFREE) or if none is available, CB-GET
storage is obtained and a new TCBX is built. Transfer GETWA area

if required.

A work queue element (WQE) is built from CB-GET storage.

The TCBXLCB chain is searched for an LCB with the given EP name.
If none is found, an LCB is built from CB-GET storage and chained
to the TCBX.

DPTPSVC1

DPPTPSVC

DPTPSVC4

DPTPSVC3

DPTPSVC3

W8l 30 ALH3dOYd — TVIHILYW G3SN3IIIN

c9¢

From Figure 2-21

DPPTPSVC input (1ot4 Process Output
TCBX TCBX
Lce LcB LCB LCB LCB LCB
TCBXLCB 0 m TCBXLCB (¥ . 0
) J> Point WQE To LCB ~> /'
TCBXWQ)\ And Chain WQE To -, TCBXWQ |\
TCBX As Requested
WQE WQE WQE WQE WOQE WOQE
0 WQNEXT 0
waLcs
TCBX TCBX
1f TCBX Was On
TCBXFLG! > Active Chain POST > TCBXECB | Posted
DPPTPMON
Active Chain TCBX TMCT Modified TCBX
Active Chain
TMCT 0 3@ TMCTAIND 0
TMCTAIND Eise — TCBX Was
TCEXNEXT > Buiit,Chain TCBX To x> TMCTSMON TCBXNEXT
mains;ﬂc?swrs Reauest L BXNEXT
TMCTSMON DPPTSMON, Chain Posted L
TCBX To Active TMCTSECB
TcBX _.'— Chain TeBX N
DPPTSMON's TCBX . —
DPPTSMON's
g::;:le“ — Request Chain Teex |ICEXGMON
o Modified
TCBX)
TCBXSMON
TCBXSMON
E] Register 1 l TCBX Address 1
Load TCBX Address
. Into Register 1
Register 15 ! Return Code]

Figure 2-21 (3 Of 4) - PATCH SVC Routine

Return To Caller

gl 40 ALY3dOHd — TVIHILVYIW g3SN30IN

£9C

Figure 2-21 (4 of 4).

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

Point the WQE to the LCB and chain the WQE to the TCBX as requested
in the QPOS operand of PATCH.
LAST - chain to the end of the TCBXWQ chain
FIRST - chain at the top of the TCBXWQ chain. In this case,
if the limit queue length is already reached, the
bottom WQE is dechained and chained to the cleanup
work queue TCBXCUWQ instead..
DPATCH -~ chain this WQE to TCBXDWQ (one WQE only can be chained
to the DPATCH work queue). QPQS-DPATCH is invaluable
for queue holders and queue processors.

If the TCBX was on the active chain (flag TCBX1CHP in TCBX is zero,
for no CHAP is necessary in this case), the Patch monitor DPPTPMON is
posted (TCBXECB). For PATCH is to queue holders the first inactive
available queue processor for that queue holders is posted.

Otherwise the TCBX is chained to the system monitor DPPTSMON's request
chain (TMCTSMON - TCBXSMON), and DPPTSMON is posted (TMCTSECB).

Also, the TCBX is chained to the top of the proper active chain in
the TMCT.

TMCTAIND ~ if task name specified

TMCTADEP ~ if no task name given

The DPATCH=W flag TCBX2DPW in the TCBX is set also in case it is a
dependent task to stop processing in DPPTPMON upon completion of this

"work request, '

The return code is loaded into register 15 and if it is less than or
equal to 8, the TCBX address is loaded into register 1l; otherwise, it

is cleared. Then the routine returns to the caller.

DPTPSVC3

DPTPSVC3

DPTPSVC4

DPPTPSVC

DPPTPSVC

W81 40 ALH3dOHd — IVIHILVYIWW Q3ISN3IIT

¥9-¢

From DPATCH Macro Call
DpPP TDSVC Input Process . Output

Register 0 Register 1 Register 15
r l ‘l E] Return Call
J > Validity Check
DPATCH Type Code PTN | Address Of inputs If Invalid 22 . Invalid PTN=
_ Flags | TCBX Name 24 - invalid Parameters
Return To
Caller
TCBX
TMCT TCBX - _TCBX TCBX
TMCTAIND | Lo/ TcexnexT] o (_r> Find TCBX O
tive CRain And
TCBXNAME Set DPATCH Flag > TCBXFLG2
In TCBX
TCBX .
[311f opATCH
Type =1
TCBXTCB ABTERM That
> Task With User
ABEND Code 65
TCBX
[« TCBXECB | Posted
Else
POST DPPTPMON
Register 15
Return Code
Set Return Code
4 -DEPATCHed - W
8 -DEPATCHed - U
12 - Not Dormant
16 - Not Removed
20 - No TCBX Found
4 22 -SLAVE PTN not
. active
24 -invalid Poranectors
28 -QH or QP task and
not TYPE lor A

wai 40 Ald43d0dd — TVId3LVYW Q3SN3OIT

Return To Caller

Figure 2-22 (1 Of 2) - DPATCH SVC Routine

59-C

Figure 2-22 (2 of 2).

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

to

The contents of register 0 and 1 are checked. If register 1 is zero,
the DPATCH is for the issuing task itself, in this case the TCBUSER
field is checked. It must be within partition boundaries. If
register 1 is nonzero, its content is the address of a storage field
with the TCBXNAME that is to be DPATCHed. The address must be within
partition boundaries. Register O must contain a valid TYPE code (O,
4, 8 or 12 corresponding to Type U, C, W, A, or I). Note: All type
DPATCHs to queue holders are invalid and only DPATCH type A or I is
valid for queue processors.

If register 1 is nonzero, the TMCTAIND active task chain is searched
for a TCBX with the specified name. A return code is loaded into
register 15 if it cannot be found.

The DPATCH - Flag corresponding to the DPATCH TYPE is set in the
TCBX. If the same or another flag was already set, a return code in
register 15 will indicate this.

If DPATCH TYPE = I (imaediate) was specified, the 0S/VS1 ABTERM
routine is invoked through a branch entry to ABTERM that task with
a USER ABEND code of 65.

‘Otherwise DPPTPMON is posted (TCBXECB).

The DPATCH SVC routine returns to the caller with a return code in
register 15.

USZR 65

DPTDSVC1

DPTDSVC1

DPPTDSVC

DPPTDSVC

W81 30 ALH3dOHd — TVIHILVYIN Q3SN3DIN

99-¢

DPPTRSVC input

From REPATCH

Register 0

Register 1

L]

| |

REPATCH Type Code

REPL — ADDR

REPL
SUPTASK
SUPEP
SUPPRTYN
SUPFLAG
suPOL
SUPPRTYV
SUPECB
SUPFREEL
| ___SUPFREEA |
sy
REPLPARM
REPLPROB
REPLAD |

Validity Check
inputs

If
nvalid

Output

Register 15

2 it Tvpe- Exec
tnvoke PATCH
SVC RTN

W We o

Retum To
Caller

DPPTPSVC

CALL

PATCH
Routine 2-21

Users

(3] 1t TYPE=PURGE
Issue FREEMAIN
To Process User's
FREE ='Request

» Return Code
32 — Invalid

Parameters

) A REPLAD
™CT)
REPL REPL REPL

Reg 1 User’s

REPL

TMCTREPL

@ Get REPL

DECHAIN From
TMCT — REPL
CBFREE The

REPL

WEI 40 ALH3dOYHd — VIHILYIN a3asN32IT

REPLAD |/)

REPLAD REPLAD

REPLCHN ¥

REPLCHN REPLCHN

Figure 2-23 (1 Of 2) - REPATCH SVC Routine

Return To Caller

User’s
TMCT REPL
REPLAD
REPL * REPL
TMCTREPL
REPLAD REPLAD
REPLCHN REPLCHN

(9C

Figure 2-23 (2 of 2).

Step

Extended Description

Messages and
ABEND Codes

—

PDL Segment

The contents of register O and 1 are checked. Register 0 must be O
or 1, and register 1 must be a valid address of a REPL. Addresses
are checked against partition boundaries of the own partition and if
outside and two-partition operation boundaries also. If invalid, a
return code of 32 is loaded into register 15, and the routine returns
to the caller.

If register 0 is zero (TYPE=EXEC), the input registers for the
PATCH SVC routine are set up, and DPPTPSVC is invoked wvia branch
entry. Any return code received upon return will be in turn passed
to the caller of REPATCH.

If register 0 is 1 (TYPE=PURGE) and a FREE= request was specified
on the original PATCH, the FREEMAIN is issued.

The address of the Special Real Time Operating System - supplied REPL
is obtained and the REPL is dechained from the TMCT - REPL chain
and freed,

The REPATCH SVC routine returns to the caller with a return code in
register 15,

DPPTRSVC

DPPTRSVC

DPPTRSVC

DPPTRSVC

- W81 40 ALH3dOHd — TVIHILYW G3asN3dIN

89-C

DPPTPWQE jopue

Register 1

A(PWQE)

PWQE

PWQETASK
PWQEEP
PWQEECB
PWQELNTH
PWQEADDR
PWQEPTN
PWQEID

From PURGEWQ

Macro

Call

Process

[_T_} Vaiidity Check Inputs
© Task Name Address
o EP Name Address
« ECB Address

Output

Register 15

24 —Invalid PTN

TMCT

TCBX

TMCTAIND

T YT

TMCTADEP

TCBX

TCBX

TCBX

« FREE Address
If Invalid Set
Return Code And
Return

>

Locate TCBX
Requested

> 28—Invalid
Parameters

]

Remove Specified
WQ's From TCBX
And Put It On The

Cleanup Work Queue,

TCBXCUWQ

‘Retumn To TCBX WQE
Caller /'
TCBXCWQ ’]
TCBXDWQ > wae
> TCBXWQ l I
\ WQE
WOE

<

Set The POST
Code To X' 46'
f ECB=Was
Specified On
PATCH

b TcBXCUWQ

WOE

WQECBOD

EJ Set The Free Address
And Length If Specified

On The PURGEWQ

Figure 2-24 (1 Of 2) - PURGEWQ Macro Call Routine

Return To Caller

WQFREELN

WQFREEAD

W81 40 A1H3dOHd — 1VIHILVIN G3ISNIOIN

69-C

Figure 2-24 (2 of 2).

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

The PWQE address is passed in register 1. The task name address
(PWQETASK), entry point name address (PWQEEP), ECB address (PWQEECB),
FREE address (PWQEADDR), and the requested partition are validity
checked to determine if the addresses are within the partition (or
within either the MASTER or SLAVE partition in a two-partition
environment),

The TMCT independent task chain (TMCTAIND) and dependent task chain
(TMCTADEP) are scanned to locate the specified TCBX.

The EP name and ID are used to identify which work queue elements are
to be removed and placed in the cleanup work queue. The work element
may be on the current work queue chain (TCBXCWQ), the DEPATCH work
queue chain (TCBXDWQ), or the active work queue chain (TCBXWQ).

For queue holders the associated queue processors must be scanned

for active work queues,

The free address and length specified on the PURGEWQ are moved into
the work queue element (WQFREEAD and WQFREELN) to be FREEMAINed when
the work queue is detected.

DPPTPWQE

DPPTPWQE

DPPTPWQE

DPPTPWQE

W81 40 A1LHY3d0¥d — TVIHILVYIN A3SNIDIT

From WQDEL Call — DPPTPMON

™ Figure 2-16
S DPPTWQDL Input
Reg 1
l /WQE Address l
{ WOE . Lcs
waLcs TCBX
wQTCcBX LCBEPNAM
WQFPATCH 'TCBXNAME
WQECBAD
WQFREELN
WQFREEAD TCBXLAL
WQPARAM TCBXPRTY
WQE
WQECBAD
LCB
LCBREQCT
WQE

Process

Qutput

M

If WQE Was Pushed

J> Out Of Queue And
if Repatch Option

Was Specified
Construct Repatch
tist (REPL) From
CB-GET Storage

Eise Process Free
Request

REPL

SUPTASK
SUPEP
SUPPRTYN
SUPFLAG
SUPQL
SUPPRTYV
SUPECB
SUPFREEL
SUPREEA
SUPTCBX
REPLPARM
REPLPROB
REPLAC
REPLAD

J> If Address Of User's
ECB Was Specified,

POST User's ECB

User’s ECB

|

@

Decrement Request
> Count In LCB If

Request Count Zero
And If Delete Was
Specified Free The
Lecse

Free CB-GET Storage

NN
LCB

)

(8]
> Free The WQE

’\/\/\—-

Free CB-GET Storage
\/\/\f
WQE

Figure 2-25 (1 Of 2) - WQDL Call Routine

Return To Caller

L]

/\/\/4

weai 40 XlHEIdOHd — IVIH3ILVIN d3SN3OIT

(YArA

Figure 2-25 (2 of 2).

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

If the WQE was pushed out of the queue (another PATCH with QPOS=FIRST

was issued and the queue was full) and REPATCH option was
specified (SUPFRPTH), a repatch list is constructed from CB-GET
storage, and the parameters necessary for REPATCH are copied from
TCBX, WQE, and LCB into the REPL.

Otherwise, if a FREE= request was specified at PATCH time, it is
processed and a FREEMAIN SVC is issued to free the user's area.

If an ECB address was specified, the ECB is posted with the REPL
address if step 1 above was executed; otherwise the completion code
is obtained from the WQE.

The request count in the LCB is decremented. If DELETE was specified
and the module is reentrant, the use count in the corresponding LCB
on the TMCT - LCB chain is also decremented. If it goes to zero,
flags LCBFDEL and TMCTLCBD are set and DPPTSMON is posted. If DELETE
was specified and the request count in the LCB is zero, the LCB is
dechained and freed.

The WQE must be dechained already at entry to the WQDL routine and
it is freed before the routine returns to the caller.

DPPTWQDL

DPPTWQDL

DPPTWQDL

DPPTWQDL

DPPTWQDL

Wl 40 ALH3dOYHd — IVIHILVYW @3asN3OIN

alc

PATCHed By IMP As Result

DPPTDLMP Input Of DLMP Operator Command Process Qutput
TCBX PROBL
1
Register 1 . e
A(TIME) > ﬁh:ﬁvkt ‘82\(2 Specified
TCBXDCVT A(NAME1)
TCBXRSTB ANAMEZ) Return To LOCKCBLK
TCBXPARM 2 0s/vs1 Lock Is Set For
A 1 Issue LOCK > DLMP | DLMP To Seriatize
) -~ PURGE Requests
TIME
MODULE -
NAME1
MODULE — tssue STIMER
NAME2
L
LC8
TMCT LCB
TCBX LCBNEXT r ; @ LCBECBAD
WQE] Scan All TCBX — LCB
WONEXT ! ; CHAINS For The > LCBFLAGS PURGE FLAG Set (X'10"
TCBXLCB 1 1 Specified Module And Set ! !
TcBXWa | (O H > Set The Purge Flag
— LCB
TMCT LCB
-
LCBNEXT n TMCT - LCB
> CHAIN For The S “©
ifi FLAG PURGE FLAG Set (X'10’
TMCTLCBA gep‘ec‘ll’r:zdPM;duEIeFAnd LCB {)
WAIT For Current ECBLIST . ECBs
or Curren
Users To Finish A(ECB-1) ECB1
Executing The Module
Or For STIMER To
Expire
ECB's Waited ON

Figure 2-26 (1 Of 4) - Dynamic Load Module Purge

To Figure 2:26 (3 Of 4) @

W8l 40 ALY43d04d — TVIH3ILVIN d3ISN3IDIN

€LT

Figure 2-26 (2 of 4).

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

Dynamic Load Module Purge is entered as a result of a DLMP operator
command through the input message processing interface.

A check is made if the specified time value exceeds the maximum
allowed (20 minutes); and if yes,message DPP019 is issued.

A LOCK is issued to serialize Load Module Purge requests and message
DPPO20 is issued.

A STIMER macro is issued with the specified time or a default of 2
seconds, if not specified.

All TCBXs on both the independent and the dependent task chain are
scanned for LCBs which reference the module names received in the

purge request. If a match is found, the purge flag is set in the LCB,

and if the LCB is referred to by the current WQE, an ECB is built and

- its address stored into the LCB.

The TMCT-LCB chain is scanned for the module names received in the

purge request. If a match is found, the purge flag is set in the LCB.

The program waits on an ECB list for all current users of ohe of the
modules to complete (DPPTPMON will POST the ECB) or for the STIMER

issued in step 3 to expire.

DPP0O19I

DPP0201

DPPTDLMP

DPPTDLMP

DPPTDLMP

DPTDLMP1

DPPTDLMP

DPPTDLMP

W8I 40 ALH3dOYd — TVIHILYW d3SNIDIT

/A4

Input

From Figure 2-26
(1 Of 4)

DPPTDLMP

Load Module
in Storage

Output

1f STIMER Expired
Else TTIMER
CANCEL

Module(s) Deleted

Storage FREEMAIN'ED | g

EP Address Cleared
> FromLCB And | LCBFLAGS
Plresolved. LCBEPAD
ECBLIST ECB's

A(ECB1) ECB1

ECB's Waited On

TCBX

TCBX
Lcs
TCBXLCB LCBNEXT W1 > E]'Ca:lsfgcr;es l_:_od;les
n o e
Deleted By The
LCBEPAD Task Which Issued
The LOAD
WAIT For All
DELETE's To
Complete
T™MCT
TMCTAIND I\ TCBX TCBX TCBX (2] Sean AW TCBXs
TMCTADEP And POST
> DPPTPMON if
Waiting For
. DPPTDLMP
TCBXPECB TCBXPECB TCBXPECB
TCBX TCBX
TCBXPECB| |TCBXPECB
LOCKCBLK @]
DLMP > Issue MESSAGE
And UNLOCK

- >{TCBXPECE

DPPO 211

Figure 2-26 (3 Of 4) - Dynamic Load Module Purge

Return To OS/VS1

N8l 40 ALH3d0Yd — TVIHILVIN Q3aSNIDIT

SLC

Figure 2-26 (4 of 4).

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

If the STIMER has expired issue an error message and give control
to step 4 below; otherwise TTIMER CANCEL is issued.

The modules to be purged must be deleted by the same task that issued
the LOAD. The program scans all TCBX-LCBs for both the purge flag
set and loaded by DPPTPMON. For each task with this condition an IRB
and ECB are built and the asynchronous delete routine DPTDLMPS issues
the DELETE, clears the purge flag, and posts the ECB. Also the
TMCT-LCB chain is scanned, and modules with the purge flag set are
also flagged for delete, and DPPTSMON is posted to process the
DELETE.

DPPTDIMP waits on an ECB list for all scheduled DELETE operations to
complete. A message is issued to indicate successful execution.

Both the independent and the dependent task chain are then scanned for
any DPPTPMON waiting on TCBXPECB. If waiting, TCBXPECB is posted so
that DPPTPMON will resume execution.

Messages are issued and UNLOCK is done, then the program returns to
the caller.

DPP0221T

DPP0O231

DPP021T

DPPTDLMP

DPTDLMP2

DPPTDLMP

DPTDLMP 3

DPPTDLMP

W81 40 ALH3dOYd — TVIHILYW Q3ISN3DIT

PATCHed By IMP As Resuit

Of STAE Operator Command

Process

1

Output

> Verify Option Specified. If Invalid lssue | —-—
Massage 24 And Exit

Return To
0s/VS$1

,\:‘ l DPPO24 l

Verify Load Module Names Specified. 1f

> DPPO2S

Any Are Invalid Issue M 25 For
Each Invalid Name.

(3] Scan For STAEBLK With This Name. I
One Is Found, Reset Option To Option

N
S DPPTIMPS nput
Register 1 PROBL
1 1o
A{OPTION)
A(NAME1)
A(NAME2)
A(XCVT) :
A{Resource} '
A(Parameter) :
1
A(NAMER)
STAEBLK
SCVT
SCVTDCHN
STAEBLK

> Specified On STAE Command, Else Build

New STAEBLK With Option Specified On
STAE Command And Chain Onto Chain
Of STAEBLKS

Return To OS/VS1

Figure 2-27 {1 of 2) STAE Command Processor - DPPTIMPS

STAEBLK

STAENEXT
STAEABND
STAEMAXD
STAEDPNO
STAELNAM
STAENAME

W81l 40 ALY3dOYd — IVIHILVYIN G3ISNIOI

e

Figure 2-27 (2 of 2).

L Messages and
Step Extended Description ABEND Codes PDL Segment
The STAE command processor is entered as a result of a STAE operator
command through the Input Message Processor (IMP) interface.
1 The valid options are DUMP, NODUMP, ONEDUMP, STEP, or OPTION. DPP0241 DPPTIMPS
2 The load module name must be alphameric or one of the special DPP0251 DPPTIMPS
characters $, #, or @. The first character must not be numeric.
3 The STAEBLKs are chained in collating sequence. DPPTIMPS

W8I 40 ALY3dOYd — TVIHILVYI Q3SN3DIT

0S/VS1 Abend

-

e o

Process

1f Abend Is A Step Abend Or User
Abend Then Zero Register 15 And
Return To Abend

Output

Register 1§

Search For PRB Of Abending
M

ule.

N
Ry DPPTSTAE input
oo}
TCB
TCBRBP
TCBCMP pom o o s o e e e ———
RB RB
XRBNM XRBNM
TCBX Lcs
TCBXCWQ
LCBEPNAM
wa Lce
watics ———ﬂ
LCBEPNAM

SCVTUSRX

STAEXBK

STAEXBK

STABKNXT

Search For LCB Of ing
Module. !f Not Found, Then
Return To Abend.

ScvT
SCVTDCHN

STAEBLK STAEBLK

v I 1
STAENAME | " |_STAENAME |

Search For User Exit
Routines For This
Module Name. If
Found Execute

User Routine.

STAEBLK

Search For Dump Control Block

{STAEBLK) For This Module Name.

If Not Found Then Return To
Abend.

STAEABND

STAEMAX

STAEDPNO

Figure 2-28 (1 Of 2) - STAE Exit Routine For Subtasks

Suppress Dump If NODUMP Option
Or if ONEDUMP Option And
Number Of Dumps Greater Than
One. Force Job Step Abend If
Option s STEP.

=
D
RB
Return To
Abend
LCB
T
[> |
Or
Return To
Abend
STAEX BK
User
Routine
I STAEBLK
Or
Return To
Abend
TC8

> TCBCMP

W8l 40 ALH3dOYHd — TVIHILVIN Q3SNIII

6L¢C

Figure 2-28 (2 of 2).

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

The TCB request block chain (RB) is scanned to find the first PRB
whose load module name is not DPPTPMON. This is to-identify any
routine that has been LINKed or SYNCHed to.

The work queue (WQE) load control block chain (LCB) is used to locate

the entry point name of the module given control from DPPTPMON. If it

is not a Special Real Time Operating System task, control is returned
to ABEND processing. ’

Using the PRB module nane (if found in step 1) or the LCB entry
point nane from step 2 as the name of the ABEND module, the user
STAE exit control block (STAESBR) chain is scanned to deter-

-mine if a user exit routine was specified for that module., If

so, the user exit routine, register 15 will contain zero if normal
SRTOS STAE processing is to continue zero, if normal SRTOS is a
plus for value, if 08 retry is requested and a negative four value
to by pass normal SRTOS STAE processing and OS retry.

Using the PRB load module name (if found in step 1) or the LCB entry
point name from step 2 as the name of the ABENDing module, the STAE
control block (STAEBLK) chain is scanned to determine if any special
processing has been requested for that module. If not, control is
returned to ABEND processing.

The optionbflags in the STAE control block (STAEABND) is used to
determine the processing requested on a previous STAE command.

DPPTSTAE

DPPTSTAE

DPPTSTAE

DPPTSTAE

W8I 40 ALY3dOHd — TVIHILVYIW Q3ISN3IIIT

08-¢

PATCHed By IMP
As A Result Of QS
Operator Command

Input

Process

[Register 1 _J—-]
S

Move input Parameters
To Internal Work Space.

Output

Internal Work Space

h

PATCH Probt -—l

-~ _3] Examine P1 And Build Mask

Byte To Select TCBX's To
Be Affected By Command.
if Specific TCBX Name
Specified, Save It.

[—- LEN 1D

L | Aawr2 "
L | AP

L A PY) _3_J Examine P2 And Build Mask

Byte To Modify Selected
TCBX‘s To Change Status.

Internal Work Space

i' Examine P3, Must Contain

Blanks Or ‘PURGE".

P1

P3

= 5]

if Any Errors Detected,
Qutput Error Message
And Exit.

Return To
Caller

Figure 2-28.1 (1 Of 4) - DPPTQIMP

2-28.1 (3 Of 4)

P1

P2

P3

W8I 40 ALH3dOHd—TIVIYILYIN ISNION

18-

Figure 2-28.1 (2 Of 4).

-

Step Extended Description A’g"gﬁ‘g‘*;g‘;‘:g PDL Segment
1 Standard save entry conventions are observed and space is GETMAINed DPPTQIMP
for internal work space.
2 Pl can contain any of the following: DPPTQIMP
QPnn - one specific queue processor to be affected
ALLQP - all queue processors to be affected
ALLQH - all queue holders to be affected
ALL - all queue processors, queue hclders and independent
tasks to be affected
name -~ one specific task or queue holder to be affected
3 P2 can contain any of the following: DPPTQIMP
SEQ - set selected TCBX(s) to sequential state
NONSEQ - set selected TCBX(s) to non sequential state
HOLD = - do not allow work to be started from work queue of
this TCBX '
REL - release hold state
NOPATCH - do not accept PATCHes to selected TCBXs
PATCH - accept PATCHes to selected TCBXs
STATUS - report status of above conditions without change
XREF - report status as above plus connections between queue
holders and queue processors. :
4 P3 can be omitted or contain the characters 'PURGE'. Any- DPPTQIMP
thing else will be an error condition.
5 Any errors detected processing Pl, P2, or P3 will cause the remaining DPP8641 DPPTQIMP
processing to be bypassed. The parameter that is in error is insert-
ed into the message.

W81 30 ALY3dOHd — TVIYILVYW QISN3DIT

28C

Input

2-28.1 (1 Of 4)

Process

Output

Internal Work Space

_1.] Loop Through TCBX Chain
And Modify Selected TCBX’s.
And Save Data From Each
For Message.

Internal Work Space

-Ll Loop Through Message Data That

Was Saved.
P3 P if ‘PURGE’ Was Specified Purge
l - Work For Selected TCBX's.
Message >, Output Status Messages For
Data ™ Selected TCBX's.

Message
Data

Return To Caller

Figure 2-28.1 (3 Of 4) - DPPTQIMP

~ Messages

862 And 863

W8I 40 ALH3dOUd-TVIHILVIN A3SNIDIT

£8-C

Figure 2-28.1 (4 Of 4).

Messages and

one or more times for each selected queue holder and queue processor.
It contains the names of the TCBX(s) that are connected to the select-
ed TCBX.

Step Extended Description ABEND Codes PDL Segment
1 All TCBXs are examined to determine if they are to be affected, based DPPXQIMP
on the mask byte and/or name. Those selected are modified if re-
quested and a message data block in the internal work space built for
each selected TCBX.
2 The data collected in the message data block(s) is formatted into DPP8621 DPPTQIMP
message DPP862I. If XREF was specified, message DPP863I is output DPP8631

gl 40 ALH3d0Hd — TVIHILVYIN A3SN3OIT

LICENSED MATERIAL — PROPERTY OF IBM

Time Management

The Special Real Time Operating System time management services fall into
two major categories. First, the Special Real Time Operating System time
and date are maintained independently of the 0S/VS1 time and date,
Second, the capability of issuing PATCHes on a cyclic—time interval is
provided through the PTIME macro call. This is accomplished by two sub-
tasks created during initialization by DPPITIMI and the PTIME SVC,
DPPCISVC. The time update routine, DPPCTIME, is responsible for updating
the time and date in the Special Real Time Operating System data base
array, DPPCTIMA, and for posting the PTIM monitor routine, DPPCPTIM,
whenever one or more PATCHes are to be issued.

The user communicates with the time management routine through a PTIME
macro call, This is shown in Figure 2-29,

At initialization, or at midnight, or whenever it 1is determined that the
time maintained by the Special Real Time Operating System is not correct, a
time management routine, DPPCALCF, is called to calculate a new correction
factor to be added to the time-of-day clock value to obtain the corrected
time, Another routine, DPPCUPCF, is called to update the correction factor.

Serial use of the array, and this PTQE chain by the time management
routines is via the use of LOCK requests specifying the resource
name 'TIME',

I Data Areas Tasks
User Program SVC Routine DPPCTIMA E‘ DPPCTIME
|
| S e LA ———
PTIME “ DPPCTSVC Update
| Routine
: PTQE
' — =
I . Post
) DPPCPTIM
l Control Block]
: PTIME
Monitor
l 5 PS T EETERy| Routine
1

Figure 2-29., Time Management-User Program Relationship

68-C

Monitor Routines

DPPITIMI —
Time Initialization
Routine

231

DPPCTIME —
Time Update Routine

2:32

DPPCPTIM —
PTIME Monitor Routine

233)

Figure 2-30 (1 of 2) Special Real Time Operating System Time Management Overview

Supervisor Call Routine

Special Real Time Operating System Time Management

DPPCTSVC —~
PTIME SVC

sl

DPCTSVCY —
RET Option

235)

DPCTSVC2 —
ADD Option

2-36

DPCTSVC3 ~
MOD Option

DPCTSVCA
DEL Option

2-38

Time Alteration
Routines

DPPCALCF —
Calculate Correction
Factor

2-39
]
DPPCUPCF —
Update Correction
Factor
240
i

W8l JO ALH3dOHd — TVIHILVIN A3ISN3JN

98¢

LINK From DPPINIT Figure 2-9 (9 Of 12)
DPPITIMI Input Process Output
| SCVT
OFreTms E] Locate And Initialize Time Array
(DPPCTIMA) If Unable, ABEND > SCVTTIME
jobstep With User Code:
‘001’ —-Invalid TCBX
002’ ~ invalid SCVT or XCVT
‘003’ — DPPCTIMA Not Defined
DPPCTIMA
(TIMEECB
@Caleulate Time TIMELOCK
Correction Factor
If Time Of Day Clock >< TIMEPRTY
Not Operational TIMEFREQ
ABEND Jobstep With FIMEUPD
User Code ‘003’
OPPCALCF
TIMEHS
& Calculate Correction TIMETOD
Factor 239 > TIMETDAY
TIMEEBC
@ TIMEBDAY
Update Time
Correction Factor
in DPPCTIMA, Set
Time and Date
DPPCUPCF
LINK
“ Update Correction
Factor 240
(4] DPPCPTIM
Establish PTIME ATTACH
Monitor Task PTIME Monitor
Task 2-33
{5] DPPCTIME
T | T v
Task 2-32

Return To DPPINIT

Figure 2-31 (1 of 2) Time Management Initialization - DPPITIMI

Wgl 4O ALH3dOdd — TVIH3ILVIN A3ISN3DIN

18¢

Figure 2-31 (2 of 2).

Messages and

Step Extended Descrtptlon ABEND Codes PDL Segment
1 A GETARRAY macro call is used to obtain the address of the time array, USER 1 DPPITIMI
DPPCTIMA. This address is stored into the SCVT. USER 2
USER 4
2 Module DPPCALCF is entered via a LINK SVC to calculate a time correc- USER 3 DPPITIMI
tion factor. The condition code is tested after a ''store clock"
instruction to determine if the TOD clock is operational.
3 Module DPPCUPCF is entered via a LINK SVC to update'the time correc- DPPITIMI
tion factor and set the current time in the time array.
4 Module DPPCPTIM is attached to create the PTIME monitor task. DPPITIMI
5 Module DPPCTIME is attached to create the time update task. DPPITIMI

W81 40 ALH3dOHd — IVIHILVW Q3ISNIOIN

88-¢C

DPPCTIME

ATTACH From
DPPCTIMI Figure 2-31 (1 Of 2)

Process

SCVT

SCVTTIME

DPPCTIMA

TIMECFAC

TIMEINTL

-

-

interval

mEsubﬁsh A Loop To Be
Executed On A Time

@

Array DPPCTIMA

Update Time In Data Base

DPPCTIMA

TIMEHS

Factor

@lf There Has Been A Time *
Error, Recalculate Correctionf

-——— —

DPPCALCF

LINK

~ Factor

Update Correction

Corvection Factor

if There Has Been A Time
Error Or if Time Exceeds
24 Hours, Update Time

i e e —— s

DPPCUPCF

LINK

<mmmp o

POST DPPCPTIM (ECB Is
TIMEECB In DPPCTIMA)}

1f There Are PTQE‘s

Update Correction

e — - —

Infinite Loop.

Figure 2-32 (1 Of 2) - Time Management Time Update Routine

Note: This Routine Will Not
Complete. It is in An

TIMETOD

TIMEJDAY

TIMEECB

W8I 30 ALH3dOYd — TVIHILVIW Q3ISN3DI1

68-¢

<

Figure 2-32 (2 of 2).

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

A STIMER WAIT is issued specifying the SYSGENed time interval. After
all processing has been completed, DPPCTIME branches back to the top
of the program and reissues the STIMER., The time interval is contain-
ed in the time array, DPPCTIMA, which was defined during SYSGEN.

The 0S/VS1 time-of-day clock value and the time correction value are
used to calculate the current time of day.

If the Special Real Time Operating System time is less than or greater
than the expected time by.a predefined tolerance value, DPPCTIME

links to DPPCALCF to recalculate the correction factor. Message 38 is
issued to inform the user of this condition.

If the Special Real Time Operating System time is greater than 24 hours,
a 24-hour value is subtracted from the correction value, and DPPCTIME

" Yinks to DPPCUPCF to update the Special Real Time Operating System

time array DPPCTIMA with the new correction factor, time, and date.

If the Special Real Time Operating System time was found to be in
error in step 3, DPPCTIME LINKs to DPPCUPCF to update the Special

Real Time Operating System time array with the new correction factor,
time, and date.

The TIMEECB ECB is posted . Module DPPCPTIM WAITs on this ECB. When
posted , DPPCPTIM processes all PTQEs in the time interval. :

DPP0O381

DPPCTIME

DPPCTIME

DPCTIME2

DPCTIMEL

DPPCTIME

W8I 40 ALH3d0Hd — TVIHILVYW A3SN3DIT

06-Z

ATTACH From DPPITIM! Figure 2-31 (1 Of 2)

DPPCPT iM Input
scvT
SCVITQET (: ”
SCVTTIME
‘OPPCTIMA
TIMEECB? _[===—=====T === T~
i
|
PTQE PTQE :
PTQENEXT PTQENEXT ' }
PTQEFLG! PTQEFLGT =
T H i
| MR EENEPII JEPS |
scvT
SCVITQET
SCVTTIME
OPPCTIMA
TIMEECE P —————=— {3~ — 1~
|
|
PTQE PTQE :
PTQENEXT PTQENEXT |
|
PTQETIME FTQETIME]
]
1
ORI SN

Process

1

Establish A Loop To Be Activated
8y A POST From Either DPPCTSVC
Or DPPCTIME.

Output

AEQU *

>» WAIT ECBLIST

If TIMEECB2 Has Been POSTed By
DPPCTSVC, Process All PTQE's

Marked To Be Deleted (i.e., Remove
The PTQE From The PTQE Chain).

f TIMEECB Has Been POSTed By
DPRCTIME, Process All PTQE’s That
Have Expired During This Time
Interval By PATCHing The Specified
User Routine.

8 A

SCVT
v SCVTTQET
/',
S
PTQE PTQE
-

Deleted PTQE o

SCVT

> SCVITQET

PATCH ’

User Routine

Note: This Routine Will
Not Complete. It s In
An infinite Loop.

Figure 2-33 (1 Of 2) - Time Management PTIME Monitor Routine

> PTQE

W8l 30 ALH3dOHd — TVIHILVIN G3ISN3OIT

16-C

Figure 233 (2 of 2).

current Special Real Time Operating System time plus the SYSGENed time
interval are processed. That is, a PATCH is issued specifying the
TASK as defined in the PTIME macro. If this is the last PATCH
requested or if the PATCH return code is greater than 8, a DPATCH is
issued if the user had requested it. The PATCH ECB is posted with an
X'4F' if the user had supplied an ECB. The problem parameter list

(if any) is then freed. The PTQE is removed from the PTQE chain and
the CBGET core is freed. If the PATCH return code is greater than 8,
an error message is issued,

_ Messages and
Step Extended Description ABEND Codes PDL Segment
1 DPPCPTIM waits on an ECBLIST (TIMEECB & TIMEECB2). After all pro- DPPCPTIM
cessing has been completed, DPPCPTIM branches back to the top of the
program and reissues the WAIT.
2 Bit 7 of the PTQEFLGl is used to determine if the PTQE is to be DPPCPTIM
deleted. A DPATCH is issued if the user had requested it. The PATCH
ECB is posted with an X'4F' if the user had supplied an ECB. The
problem parameter list (if any) is then freed. The PTQE is removed
from the PTQE chain and the CBGET core is freed.
3 All PTQEs with a time of next PATCH value (PTQETIME) less than the DPPO61I DPPCPTIM

W8I 40 ALH3dO"d — TVIH3LVIN AISN3OIT

6¢

DPPCTSVC

Input

Reg O

PTIME SVC

Option Flags:

0 = Ret
4 = Add
8 = Mod
12 = Del

Reg 1

A(PTIMEL)
tf Not 'Ret’

Option

Output

Reg 0

> Current Time

Reg 1

> ADPPCTIMA)

SCVT

SCVTTQET

PTQE PTQE
PTQENEXT T PTQENEXT

Macro Cali Process
O DPCTSVC1
1t 'Ret’ Option, CoLL *Ret’ Option
Then Calculate - Rom'nepg?as
Current Time L
2] DPCTSVC2
0! 1
i o *Add’ Option
Then Build PTQE Routine 2-36
@ DPCTSVC3
if 'MOD’ Option, CALL —
Then Modify Mod" Option
Existing PTQE Routine 2-37
] DPCTSVCA
’ . i CALL
If "DEL’ Option, e .
Then Delete ” Del” Option
Existing PTQE Routine 2-38

Set Return Code in
Register 15

Reg 15

Return Code
0 = Successful

Figure 2-34 (1 Of 2) - Time Mangement PTIME SVC

Return To Caller

> 4 = {nvalid Interval

8 = PTQE Not Found
12= Task Or EP Name invalid
16= No CBGET Core

W8I 40 ALH3dOY¥d — TVIHILVYIN Q3ISN3DIT

£6°C

Figure 2-34 (2 of 2).

o Messages and |
Step Extended Description ABEND Codes PDL Segment
1 Call subroutine DPCTSVCl to calculate current time. DPPCTSVC
2 Call subroutine DPCTSVC2 to build a new PTQE. DPPCTSVC
3 Call subroutine DPCTSVC3 to modify an existing PTQE. DPPCTSVC
4 ~Call subroutine DPCTSVC4 to delete an existing PTQE. DPPCTSVC

WgI 40 A1H43d0Yd — TVIHILVYW Q3ISN3IIT

v6-¢

DPCTSVC1 Call From DPPCTSVC

{Figure 2-34)

Process

thput ’

DPPCTIMA

TIMECFAC
TIMEJDAY

a

Calculate Current

Time

Output

Req 0

Current Time

Reg 1

Address Of
DPPCTIMA

- Figure 2-35 (1 Of 2) - Time Management “RET" Option

Return To Ca||,

W8l 40 ALH3dOYd — TVIHILVIN d3aSNION

A

Figure 2-35 (2 of 2).

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

On entry to DPPCISVC, general purpose register 1 contains 0 to
indicate a RET PTIME option request. The Special Real Time Operation
System correction factor is subtracted from the 0S TOD clock value

to obtain the current Special Real Time Operation System time.

DPCTSVC1

W8I 30 ALY3d0Ydd — TVIHILVIN Q3ISN3O1T

96-C

DPCTSVC2

Input

SCVT

SCVTTQET

SCVTTIME

Call From DPPCTSVC (Figure 2-34)

Process

DPPCTIMA

TIMEHS

TIMEINTL

TIMEPRTY

Output

]

PTIMEL

PTIMSFLG
PTIMSTRT
PTIMIFLG
PTIMINTL
PTIMEFLG
PTIMSTOP
PTIMPTCH
PTIMPARM

SUPL

SUPTASK
SUPEP
SUPPRTIN
SUPFLAG

PROBL

PROBID

Obtain CBGET Storage And
Initialize PTQE

PTQE

Add The PTQE To PTQE Chain

PTQETIME
PTQEINVL
PTQECNT
PTQEFLG1
PTQEFLG2
PTQETASK
PTQEPREF
PTQEEP
PTQEFLAG
PTQEQL
PTQEPRTY
PTQEECB
PTQEFREL
PTQEFREA
PTQETCBX
PTQEPRBL
PTQEQRGS

]

PTQE

SCVT
SCVTTQET

PTQE

PTQENEXT

Return

PTQEID

Reg 1

New PTQE

. Figure 2-36 (1 Of 2) - Time Management “ADD" Option

Return To Caller

PTQEID

W8I 40 AlH3d0Yd — TVIH3ILVIN G3ISN3DIT

L6C

Figure 2-36 (2 of 2).

Messages and

Step Extended Description ABEND Codes PDL Segment
1 On entry to DPPCTSVC, general purpose register O contains 4 to DPCTSVC2
indicate an ADD PTIME option request, and register 1 contains the
address of the PTIME input parameter list, PTIMEL.
If the PROBL length is less than 8, it is saved in the PTQE.
The SYSGENed time interval is the minimum acceptable value for the
start, stop, or interval times. The user is informed of this condi-
tion through a return code in register 15. (See Figure 2-34.) If
neither a stop time nor a count value is specified, the PTIME is
assumed to be infinite.
2 The newly created PTQE is added to a chain of PTQEs via a CHAIN macro DPCTSVC2
call. This PTQE chain is ordered in ascending sequence according to
the value in the PTQETIME field. If a PTQE ID was not specified,
then the storage address of the PTQE is used for the PTQE ID.
3. The PTQE ID is returned to the caller in register 1.

W8l 40 ALH3dOHd — TVIHILVYIN Q3ISN3IIT

86-C

DPCTSVC3 Cail From DPPCTSVC

wail 40)\.LHHdOHd = AVIY3L1VIN a3SN3DIT

Input (Figure 2:34) Process Output
SCVT
SCVTTIME PTQE
SCVTTQET m
—> Locate The Requested
PTQE / PTQE ggé é:: nRemove From|
PTQENEXT PTQENEXT
PTQETASK . PTQETASK
PTQEEP PTQEEP Z <
—) PTQE
> Update the PTQE l l PTQETIME
> PTQEINVL
PTQECNT
PTQEFLG1
PTIMEL PTQEPARM
PTIMSFLG PTQEFLG2
PTIMSTRT ’ PTQETASK
PTIMIFLG : PTQEEP
PTIMINTL SUPL PTQEPREF
PTIMEFLG SUPTASK PTQEFLAG
PTIMSTOP SUPRTYN PTQEQL
PTIMPTCH SUPFLAG PTQEPRTY
PTIMPARM : PTQEECB
PROBL PTQEFREL
PROBID PTQEFREA
: PTQETCBX
PTQEPRBL
@& PTQEORGS
Replace The PTQE
8;: The PTQE PTQE
amn
SCVT /l PTQENEXT
> SCVTTQET
PTQE

Figure 2-37 (1 Of 2) - Time Management “MOD"” Option Return To Cafler

Figure 2-37 (2 of 2).

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

On entry to DPPCTSVC, general purpose register 0 contains 8 to
indicate a MOD PTIME option request, and register 1 contains the
address of the PTIME input parameter list PTIMEL.

The PTQE chain is searched in order to locate the correct PTQE (or
PTQEs). Either the task name and/or entry point must have been
specified in the PTIME macro. All PTQEs containing the specified task
name, and/or entry point name, and/or ID are modified. If a PTQEID

is not specified. If a PTQEID is supplied then only that PTQE is
modified.

The PTQEs are rebuilt from this information contained in the PTIMEL.

The update PTQEs are added to a chain of PTQEs via a CHAIN macro call,

DPCTSVC3

DPCTSVC3

DPCTSVC3

W8I 40 ALH3d0Ud — TVIH3LVYW Q3SN3DIT

00lL-¢

DPCTSVC4

Input

SCVTTIME
SCVTTQET

CALL From DPPCTSVC

(Figure 2-34)

PTQE

PTQE

PTQENEXT
PTQETASK
PTQEEP

PTQENEXT
PTQETASK
PTQEEP

DPPCTIMA

TIMEECB2

Figure 2-38 (1 Of 2) - Time Management

o]

> PTQE(s) And Set A

Delete Flag in Each

2

~>. POST DPPCPTIM

SCVTTIME
SCVTTQET

PTQE

PTQE

PTQENEXT
PTQEFLG?

PTQENEXT
PTQEFLG1

DPPCTIMA

VAP Y =

Return To Caller

TIMEECB2

Wl 40 ALHIdOHd — TVIHILVIW Q3ISNION

1oL-¢

Figure 2-38 (2 of 2).

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

On entry to DPPCTSVC, general purpose register 0 contains 12 to
indicate a DEL PTIME option request, and register 1 contains the
address of the PTIME input parameter list PTIMEL.

The PTQE chain is searched in order to locate the correct PTQE (or
PTQEs). Either the task name and/or entry point must have been
specified in the PTIME macro. All PTQEs containing the specified
task name, and/or entry point name, and/or ID are modified (i.e., bit
7 of the PTQEFLGl is turned on to indicate that this PTQE is to be
deleted), if a PTQE ID is not specified. IF a PTQE ID is supplied
then only that PTQE is modified.

The TIMEECB ECB is posted. Module DPPCPTIM waits on this ECB, When
posted, DPPCPTIM removes all PTQEs with bit 7 of the PTQEFLGl set to
one.

DPCTSVC4

DPCTSVC4

W81 40 ALH3dOHd — TVIHILVYIW A3ISN3DIT

Zo1-¢

DPPCALCF LINK From
’ DPPITIMI (Figure 2-31) or
input DPPCTIME (Figure 2-32) Process Output
Parameter Area
A(XCVT)
P Calculate External -
Time.
A{PARM)
A(XCVT)
A{PARM)
CALDSECT &
Calculate System
Real Time,
CALTIME
CALDATE CALDSECT
@) CALTIME
Caleut
Correction Factor, > . CALDATE

Wgl 40 A1H3dOHd — TVIHILVIN G3aSN3IIN

Return To Calier

Figure 2-39 (1 Of 2) - Time Management - Calculate Correction Factor

£0lL-¢

Figure 2-39 (2 of 2).

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

Register 1 contains the address of a 3-word parameter area. The time
and date obtained from the external time source is stored in CALTIME
and CALDATE, respectively. The time is binary in 10 millisecond units.
The date is a Julian date of the form "OOYYDDDF" where YY is the last
two digits of the year and DDD is the day of the year.

NOTE: The default external time source is the standard 0S time
routine. Segment DPCALCFl may be replaced by a user written
interface program to support another time source.

A PTIME macro call with the RET option is used to obtain the current
time.

The time is subtracted from the time provided by the external time
source to provide an algebraic sum to be added to the current
correction factor.

DPCALCF1

DPPCALCF

DPPCALCF

W81 30 ALH3dOHd — IVIH3LVYW A3asSN3oN

volL-¢

DPPCUPCF LINK From DPPITIMI (Figure 2-31)

Input Or DPPCTIME (Figure 2-32) Pr

Output
DPPCTIMA
Parameter Area
A[XCVT) o
: > Update Time > TIMECFAC
Correction
(A(PARM)
CALDSECT
. @
Update <
CALTIME ‘Time Of Day J DPPCTIMA
TIMEHS
CALDATE
. : TIME TOD
SCvT » DPPCTIMA
SCVTTIME /. 3 <]
- TIMECFAC Update
SCVTTQET ' Date | > DPPCTIMA
TIMEJDAY
TIMEBDAY
TIMEMDAY
PTQE) /.> PTQE
PTQENEXT PTQENEXT & SCVT
PTQEINVL PTQEINVL —> Update PTOES >
SCVTTQET

PTQE /P PTQE
~ PTQENEXT PTQENEXT
PTQEINVL PTQEINVL
PTQECNT PTQECNT
PTQETIME PTQETIME

Return To Caller

Figure 2-40 (1 Of 2} - Time Management - Update Correction Factor Routine

Ngl 40 AlH3dOYHd — TVIHILVIN Q3sSN3DIT

solL-¢

Figure 2-40 (2 of 2).

Messages and

Ste ipti ’

p Extended Description ABEND Codes PDL Segment

1 Register 1 contains the address of a 3-word parameter area. The DPPCUPCF
CALTIME field contains an algebraic sum to be added to the current DPCUPCF1
correction factor.

2 The current time is updated based on the new correction factor,. DPCUPCF2

3 The date stored in the CALDATE field is stored into the time array DPCUPCF3
as the current date.

4 If the time is adjusted backward, then the time and count values in DPPO391 DPCUPCF4

the PTQEs are reset (back to the original start time if necessary).
If the time is adjusted forward, then it is assumed that the interven-
ing time intervals were skipped.

NOTE: Message 39 is issued to inform the user that the time correc-
tion factor has been updated. :

W8I 40 ALH3d04d — TVIHILVW Q3SN3IOIT

LICENSED MATERIAL—PROPERTY OF IBM

Data Base Management

The Special Real Time Operating System data base is designed to fulfill the
needs of data storage and access of a realtime operating system. The
Special Real Time Operating System data base subroutines provide the user
with an interface to the information contained in the data base. Through
the use of these subroutines, dataymay be retrieved from or replaced in the
data base. In addition, sections of the data base may be copied to a direct
access device to provide a historical log.

During a normal start, i.e., when the job is initially started through
standard 0S/VS Job Control statements with the EXEC card specifying
PGM=DPPINIT, the data base initialization programs will read in the initial
data for all VS resident arrays that specified '"INIT=YES'" on the ARRAY

macro in the offline utility phase. Those VS arrays for which "INIT=YES"
was not specified have VS storage space allocated, but no data is moved

into the space.

During a refresh start, i.,e., when the job is reinitialized from a restart
data set, or during a normal start when the SYSINIT input stream does not
contain a "'DBREF NO" control statement, the data base initialization pro-
gram will refresh all VS resident arrays that specified "REINIT=YES"

and that requested logging in the offline utility phase with the last
logged copy of that array. The log arrays are initialized to resume log-
ging with the last logged copy of each loggable VS resident array.

The Data Base Initialization program, DPPIDBAS, is responsilble for the
initial load of the VS resident data base, building the data base control
blocks, and loading the data base subroutines (DPPDBLOK (GETBLOCK/PUTBLOCK),
DPPDITEM (GETITEM/PUTITEM), and DPPDARAY (GETARRAY/PUTARRAY)). These sub~
routines are independent with littlé or no communication with each other

and provide the user interface with the data contained in the data base

as shown in Figure 2-41, '

The Data Base Logging Initialization program, DPPILOGN, is responsible for
loading the logging subroutines (DPPDGETL (GETLOG), DPPDPUTL (PUTLOG), and
NPPDUMPL (DUMPLOG), initiating time-driven logging (DPPDFREQ), and re-
freshing user-specified VS resident arrays (DPPDUPDL). The three logging
subroutines are also independent of each other but use GETBLOCK, PUTBLOCK,
etc, to actually retrieve the requested data as shown in Figure 2-42,

Data base is the only functional area that requires special routines used
primarily for communications between partitions in a two-partition en-
vironment, Since the 0S/VS1 I/0 control blocks used to read and write data
from the DA resident data base exist only in the MASTER partition, any
data base request must be executed by a task in the MASTER partition.

This is accomplished by a SLAVE partition interface routine, DPPDSUB2,
which receives control in the SLAVE partition as the result of a user
macro call (i.e., GETBLOCK, PUTLOG, etc.) DPPDSUB2 PATCHes a MASTER parti-
tion interface routine, DPPDBSIF, in the MASTER partition. DPPDBSIF then
branches to the appropriate subroutine (i.e., DPPDBLOK, DPPDPUTL, etc.).to
perform the requested service as shown in Figure 2-43,

2-106

User Program

LICENSED MATERIAL—-PROPERTY OF IBM

Data Base
Subroutines

|
I
I C it
{—f# opPDITEM | lomp e Data Base
GETITEM | | Data Set Vs
PUTITEM I Resident
‘_.:__ - I Array
| |
| I S
—}#-{ DPPDBLOK } DA
GETBLOCK | | | Al VS
PUTBLOCK I gfgg(eer;t
ﬂ—:— i I Array
"'—'L.' DPPDARAY i - VS
csaneay| | |
INon Biocked
"‘l— - l onArr:: ®
|
| I
Figure 2-41., Data Base Subroutines
|“ Data Base Logging l Data Base |
User Program ' Subroutine | Subroutine Data Base
<>
GETLOG —-l-—> DPPDGETL ——l—u DPPDBLOK ——f’
l . ' {GETBLOCK) ‘ DA
| Array
' ' 1
B APY —+—{ oeeosLOK or
PUTLOG DPPDPUTL PUTBLOCK
- — -——t—] () 4—-:—
| | 11w
N —1™] DPPDBLOK '—1"’ Array
DUMPLOG | DPPDUMPL I (GETBLOCK) beg l
i | |

Figure 2-42. Data Base Logging Subroutines

2-107

LICENSED MATERIAL-—-PROPERTY OF IBM

!
I , ; » Data Base

User Routine Slave Partition Master Partition Subroutine Data Base
l Data Basey
l Subroutine
PATCH | (ie, |
L DPPDSUB2] DPPDBSIF | g DPPDBLOK, }— ;
DPPDPUTL,
|) DA
Data Base etc. Array
Macro Call I
{i.e., :
GETBLOCK, |
PUTLOG, or
etc.) l
VS
1
L‘ l Array
|
— — 7N —
SLAVE MASTER

Figure 2-43, Data Base Two Partition Operation

2-108

N

—
o
©

Initialization

Special Real Time Operating System Data Base

Data Base
Subroutines

DPPIDBAS ~
Data Base
Initialization

245

DPPILOGN —

Initialization

Data Base Logging

246

DPPDBLOK —
GETBLOCK/
PUTBLOCK

248

DPPDITEM
GETITEM/
PUTITEM

249

DPPDUPDL —
Refresh Array

247

DPPDARAY
GETARAY/
PUTARAY

2-51

DPPDFREQ —

Time Driven Logging

255

]

Figure 2-44 - Special Real Time Operating System Data Base Overview

Data Base Logging
Subroutines

DPPDGETL —
GETLOG R

252

DPPDUMPL —
DUMPLOG Routine

2-54/

Data Base Two Partition
Execution

DPPDSUB2
Slave Interface

2-56,

I
DPPDBSIF
Master Interface

257

WEl 40 Al43doYd - TVIHILVIN Q3ISNIIN

oLL-C

DPPIDBAS LINK From DPPINIT
Input (Figure 2-9, 9 Of 12),

Process

If Master Partition Initialization
Data Base Initialization

Verify Control Blocks

> If invalid, issue ABEND

[Z] Read Data Base Control
Blocks Into Storage
If Invalid, Issue ABEND

Build Page Boundary Table

[4] Read In Initiai Data For

DBINIT

VS Resident Arrays And

OPEN DA Resident Arrays/

DCB’s If Invalid DCB,
Issue ABEND

LOAD The Data Base Access
Routines, DPPDBLOK,
DPPDITEM, And DPPDARAY

Eise, If Slave Partition Initiali-

zation LOAD The Siave Parti-
tion interface Routine
DPPDSUB2

Figure 2-45 (1 Of 2) - Data Base Initialization

Return To Caller

SCVT
SCVTALOC
DBALTPRI DBALTSEC
oBALTIND b
DBALTLCB
DBALTDD
~~DBLOGCB DBDADD
SCVT DBPBT
DBPBTNAM
SCVTAPBT DBPBTALT
SCVTALOC
DBALTPRI DBALTSEC
> DBALTZND }~ 7 [DBALTPBT
> DBALTPR! VS Array
-CBALTDD
DBALTDTA
DBDADD
> DPPDARAY
DBDDDCB
ScVT ,_DPPDITEM
> SCVTGETA
SCVTPUTA
SCVIGET!
SCVTPUT! DPPDBLOK
SCVTGETB
SCVTPUTE

Wel 40 ALH3dOHd — TVIHILVN Q3asN3aIT

Li-c

Figure 2-45 (2 Of 2)

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

If there is an invalid XCVT, SCVT, or TCBX, job step.

The partitioned data set referenced through the DBINIT DD card con-
tains the four primary data base control blocks (the Primary Array
Locator Table, the Secondary Array Locator Table, the Data Base
Logging Control Block, and the Data Base DD name table). These were
built by the offline data base utility program DPPXDBIN. If there is
not an QINIT member, ABEND job step. If unable to locate log array,

‘ABEND job step.

NOTE: The DBALTPRI and DBALTSEC are read into supervisor storage,
and DBLOGCB and DBDADD are read into user storage.

The DBPBT contains the name of the last array in each page of the
DBALTSEC. This will allow the data access routines to locate the
requested array with a minimum number of page faults to the DBALTSEC.

The data for VS resident arrays is read into storage from the parti-
tioned data set referenced through the DBINIT DD card. All data sets
containing the direct access resident arrays are opened. If unable
to open, ABEND job step.

USER 10
USER 11

USER 13
USER 54

USER 12

DPPIDBAS
DPIDBAS1

DPIDBAS2

DPIDBAS3

weal 40 AlY3dOHd — IVIHILVYW @3ISN3oIN

clic

DPPILOGN LINK From DPPINIT
Input (Figure 2-9, 9 Of 12)

XCVT

XCVTCVTS

XCVTSBQOP

SCVT

SCVTLOG1

if It Is Pre-restart, LOAD
Logging Routines.

if It Is Pre-restart, Build A <:L

PUTLOG Array Number List

For Each Logging Frequency

@ {f It Is Pre-restart, Initialize K

First Log Copy Of Each Log
Array

SCVTLOG2

SCVTLOG3

If It is Pre-restart, Initiate
Time Driven Logging For Each <::__—_r—

Output
DPPDGETL
SCVT
SOVTGLoG DPPDPUTL
SCVTPLOG
SCVTDLOG
\ DPPDUMPL
I SCVT DBALTPRI
SCVTALOG / DBALTLCB
DBLOGCB
DBLGNUM
DBLGFRQO
DBLGFRQ1
DBLGFRQZ
DBLGFRQ3

PTIME

Non-Zero Logging Frequency

E!f it is A Restart Or If
REFRESH Is Requested,
Refresh The Data Base And
Resume Logging With The
Last Log Copy For Each Array

LINK

Figure 2-46 (1 Of 2) - Logging Initialization

Retumn To Caller

DPPDUPDL

Refresh Routine
247

W8l 40 AlH3dOHd — TVIHILVIN G3ISNIIIN

ELL-c

Figure 2-46 (2 of 2).

. Messages and
Ste
p Extended Description ABEND Codes PDL Segment
1 Logging routines DPPDGETL, DPPDPUTL, and DPPDUMPL are loaded into DPPILOGN
storage and their addresses are stored in the SCVT.
2 A PUTLOG macro call is issued for each log frequency (0, 1, 2, and 3) DPPILOGN
using the array number list as input. :
3 A PTIME macro call is issued for log frequencies 1, 2, and 3 specify- DPPILOGN
ing TASK and EP name DPPDFREQ if the SYSGENed time interval for that
particular log frequency is nonzero. Log frequency 0 is used for
arrays that are to be logged on a demand basis only.
4 If an array has been defined as refreshable during the data base DPPILOGN

offline compilation, it will be refreshed from the last logged copy
of that array following a restart or if data base refresh had been

specified through the use of a DBREF statement in the SYSINIT input
stream during a normal start. In addition, logging will be resumed
with last logged copy for all logging arrays.

W81 40 ALH3dOYd — TVIHILVYW QISN3OIN

vLi-C

DPPDUPDL

Input

LINK From DPPILOGN (Figure 2-46)

T > Read The Refresh Array, @REFRSH,

Into Storage

Output

GETBLOCK

DPPDBLOK

<mmum)

GETBLOCK/
PUTBLOCK
Routine 248

"> Locate The Data Address For Each

PALT-@REFRSH
DBALTDTA DA Resident
Data Base
ScvT DBALTPRI - Origin
OBALT2ND
SCVTALOC
SCVTPBT
DBPBT DBALTSEC -Origin
DBPBTALT
M
DBALTNAM DBPBTNA

DA Resident
Log Array

VS Resident Array To Be Refreshed

6]

Figure 2-47 (1 Of 2) - Data Base Refresh Routine

> Read The Last Log Copy Into The
VS Resident Data Base

@REFRSH

Array #| Bik #

Array #| Blk #

Array SI Blk #

VS Resident Data Base

F—————

>

Array 1

OPPDBLOK -

GETBLOCK

<4mmEmm)>

GETBLOCK/
PUTBLOCK
Routine 248

Return To Caller

WEl 40 ALHY3dOYd — TVIHILVIW a3SN3OIT

Sii-e

Figure 2-47 (2 of 2).

resident data base.

L. Messages and _
Step Extended Description ABEND Codes PDL Segment
1 A GETARRAY macro call 1is used to find the size and number of blocks DPPDUPDL
in. the refresh array, @REFRSH. Then a GETBLOCK macro call is used
to retrieve the array.
2 The Page Boundary Table and the Secondary Array Locator Table are DPPDUPDL
used to calculate the array number for the named arrays. The array
number is used as an index into the Primary Array Locator Table. The
DBALTPRI contains the address of the VS resident array.
3 A GETBLOCK macro call is used to read the last log copy into the VS DPPDUPDL

W81 40 ALY3d0OYd — TVIH3LVYIN QISNIIIT

9L1-¢

DPPDBLOK

Entry Via A GETBLOCK/PUTBLOCK

Process

@

Locate Array Data Area
Or TTR Address

LOCK Data Base If
PROTECT = YES
Requested

DBALTPRI VS Resident Array
DBALTDTA ! Aray Data
] Array Data

|
!
]
|
]
|
|
I

Move (Or READ) Data <

Into User Area If

GETBLOCK Request

Input Macro Calt
SCvT DBPBT
DBPBTNAM
4 SCVTALOC DBPBTALT
SCVTPBT
Ny
DBALTPR! DBALTSEC >
DBALT2ND . DBALTPBT
DBALTNAM
User. Data Block
User Data
User Data .

User Data Block

Array Data
> Array Data

Array Data
Array Data

Nt

"1]-——1

Move (Or WRITE) Data
into Array Block(s) If <

DA
Resident
Asray

e o

PUTBLOCK Request

VS Resident Array

UnLOCK Data Base If
PROTECT = YES
Requested

User Data
User Data

Figure 2-48 (1 Of 2) - GETBLOCK/PUTBLOCK Routine

Return To Caller

W8l 40 ALH3dOYHd — TVIH3ILVIN A3SNIDIT

LIL-C

Figure 2-48 (2 Of 2)

Messages and

Step Extended Description ABEND Codes PDL Segment
1 The DBPBT and the DBALTSEC are used to calculate the array number for DPPDBLOK
the named arrays. The array number is used as an index into the
DBALTPRI and- DBALTPRI contains the address of the data for VS
resident arrays or the relative track address of the data for DA
resident arrays.
2 If protect=YES is specified, the entire VS resident data base is DPPDBLOK
~ locked for VS resident arrays or one Direct Access data set is locked
for that DA resident array.
3 Only the user specified blocks of the array are accessed or modified DPPDBLOK
ang | ©°® GETBLOCK and/or PUTBLOCK requests.
4

W81 40 ALH3d0Hd — TVIHILYW A3ISN3OIN

8LLl-¢

DPPDITEM From User Via GETITEM

Input Or PUTITEM Macro P Output

Convert Input
> Options To
h - Iinternal Format

GPR 15| Opt. FLAG

Internal Work Source

[2)f User Supplied
item Names -

‘ » Convert Item A(NAME)lLEN JTypel Disp {AID] RPT
GPR 1! Address Names/Address > Names To

Array ID And
Displacement
Specifications

NAMESOLV

“ Resolve Item
Names 2-50

If User Requested <
Item Specifications . [
®Move

GPR 0 Address Users Area

i w
To User's Area

Elster Requested

Data Or Addresse:-Q Internal Work Space
o Convert
Specifications I 1 N item Item Address
To Data -] LEN
Addresses

If User Requested
Data Addresses

> @ Move Data l

Addresses To

User’s Area

User’s Area

VYV

if User Requested
o <

* Move Data To Data Base
Or From .

User’s Area

ngl 30 ALYIJOHd — TVIHIALVIN Q3ISNIDIT

Return To Caller

Figure 2-49 (1 Of 2) - Access Data Base Items

6LL-C

Figure 2-49 (2 of 2).

if a GETITEM is being processed or from the user's area to the data
base if a PUTITEM is being processed., .

. Messages and
Step Extended Description ABENgeCodes PDL Segment

1 |This program may be entered for GETITEM or PUTITEM processing. The DPPDITEM
user may supply the name of a single item for which data is to be '
processed or a list of items,

2 |Program segment NAMESOLV converts item names to internal format. DPPDITEM

3 |Program segment MOVESPEC will move the specification data to the user's DPPDITEM
area,

4 |Program segment CONVSPEC will convert the specification data to DPPDITEM
addresses,

5 |Program segment MOVEADDR will move the item addresses to the user's DPPDITEM
area,

6 Program segment MOVEDATA will move the item data to the user's area DPPDITEM

WE! 30 ALH3IdOYd — TVIHILVYIN Q3SN3IIT

(S TAN4

DPPDITEM

From DPPDITEM

Input (Figure 2-49) Process

. Output

nt

NAMESOLV
Allocate Work

> Space And Mowve

Addrestes Of

Item Names To It. |

- Sort Name
User Supplied

Addi Based
List Of Item Upon Name
Names Represented

VA

internal Work Space

™| aname)[Len | Type [oip [ain] meT

[1]Scan Each Block

Of Array @CIDS
To Retrieve The <
Specification

Duta For .Each
item in The
List

@cips]
Array

\WAVAV/

Sort Work Space
. Entries Back To
Original Sequence

@CcIDS
index Table

if Any ltem i
Names Not . Register 15
Found, Set
Return Code
To 4

W8I 40 ALY3dOYd — TVIHILYW Q3ISN3OIT

Return To Caller

Figure 2-50 (1 Of 2} - Access Data Base Items (NAMESOLV)

1ei-¢

Figure 2-50 (2 of 2).

array that contains the specified item name, if it exists. This
reduces the number of I/0 operators required to locate this item name.

o Messages and '
Step Extended Description ABENge:Z odes PDL Segment
1 | The array named @QCIDS contains the item specifications for every item DPPDITEM
defined to the system.,
2 | The @CIDS index table is used to locate the block of the DA resident

W8I 40 ALH3dOHd — TVIH3ILVYW A3SN30I

AAN4

DPPDARAY

input

User Request
Parameters

R1 Addr Of Array Name Or
Number Or List Of Array
Names Or Numbers

RO Addr Of Area Or List Of
Address To Which Data
Is To Be Moved

R15 Byte Zero Contains Option
Code

From User Via GETARRAY

Or PUTARRAY Macro

Array Locator Tables

VS Resident Data Base

> (J transiate nput Options To

Bit Masks

@ it PROTECT = YES And

)> TYPE = DATA Or PUTARRAY,

Set Data Base Lock

3 if Array Name(s) Or Number(s)

Supplied
—T——> o Resolve Name(s) Or Number(s)
Yo Array {D

> « If TYPE = ADDR, Move Array

Address Data To User’s
Area

o if TYPE = SPEC, Move Array
Spec Data ’

SPECMOVE

2-51 (5

Code Segment To

“ Retrieve
Specifications

ftem

of 6)

1f TYPE = DATA, Move Array
Data

MOVEDATA

Code Segment To
“ Move Array Data
2-51 (3 of &)

@ if Array Addresses Were
Supplied, Move Array Data To
Or From User‘s Area

If Lock Was Set, Reiease Lock

USER AREA

.

Returmn To Caller

Figure 2-51 (1 Of 6) - GETARRAY/PUTARRAY Processor

Data To Be Moved To
Or From Data Base

W8I 30 ALHY3d0OHd — TVIHILVYIN Q3ISN3OIT

I XARA

Figure 2-51 (2 of 6).

Messages and

name resolution on each use of a list. The addresses passed are used
as the address of the array. ‘

Step Extended Description ABEND Codes PDL Segment

1 The processing for GETARRAY or PUTARRAY is identical with the exception DPPDARAY
of the direction of the data movement if TYPE=DATA.

2 The protect function disallows a user from moving data into or out of DPPDARAY
the data base until previous users have completed their data moves,

3 The user may specify a single array name, number or address or a list DPPDARAY
of array names, numbers or addresses. In either case, the processing
is similar with the exception that the program loops through this logic
1f lists are supplied.

4 |Array addresses may be resolved and passed to this program to bypass DPPDARAY

W81 30 ALY3dOYd — TVIHILYW A3ISN3DIN

174X

From DPPDARAY
DPPDARAY nput (Figure 2.51, 1 Of 6)

Primary Array
Locator Table

Secondary Array
Locator Table

(1] movepaTa
— -r____ —__—-->| o If Array Is D.A.
Set RETURN User Area

CODE = 4
Data To Be Moved

Or Else
Resident D: A A—> <:
vs ata « Caiculate Site > To Or From Data

And Address Of
Array

® Move Data To
Or From Data
Base

gl 4O ALY3dOYd — TVIHILVYIW A3ISN3OIN

Retum To Cdl«'

Figure 2-51 (3 Of 6) - GETARRAY/PUTARRAY Processor (MOVEDATA)

AR

Figure 2-51 (4 of 6).

Step

Extended Description

7Messages and
ABEND Codes

PDL Segment

GETARRAY and PUTARRAY processing is identical with the exception of
the direction of the movement of data if TYPE=DATA.

DPPDARAY

W81 30 ALY3dOYd — IVIHILVYWN Q3ISN30IN

9zlL-¢

DPPDARAY input

DBINIT
Data
Set

From DPPDARAY
(Figure 2-51(1 Of 6))

Data Set

FREEMAIN Save Area l

' Process Output
SPECMOVE
GETMAIN Storage For
> Save Area User’s Area
Item Name
Set Lock For DBINIT
Data Set Length
Data Type
Read item Definition
Record For Selected > Dispt
Array Into User’s Area
Array D
Release Lock Of DBINIT Rept. Ct.

L,

Repeat Of Above
For Each item
~ Defined In Array G

Return To Ca!le,

Figure 2-51 (5 Of 6) - GETARRAY/PUTARRAY Processor (SPECMOVE)

W8l 40 ALH3d0Yd — TVIHILVY Q3SN30IT

e

Figure 2-51 (6 of 6).

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

The DBINIT data set contains a logical record for each array which
consists of a 16-byte entry for each item defined for the array.

DPPDARAY

W81 40 ALY3dOYd — TVIHILVIN GISNIOIT

8clL-¢

Entry From A GETLOG

DPPDGETL Input. Macro Call Process Output
SCVT DBALTPRI - Origin . VS DBALTPRI VS Resident Array
DBALT2ND m o : g head i
. ogheader
SCVTALOC - - > Locate The Logable Array DBALTDTA -
SCVTPBT . PALT, Logheader, And Data Dat:
Addresses Jata
DBPBT DBALTSEC — Origin
DBPBTNAM /"' DBALTPBT
DBPBTALY DBALTNAM
SCVT DBALTPR! — Origin) Log DBALTPRI . ng DBLOGCB
2] DBLGCTIM
DBA 3
DBALTLCB > Locate The Log Array PALT DBALTNDX DBLGCBLK
SCVTALOC And Logging Control Block DBLGFTIM
DBLGLTIM
DBLOGCB — Origin : < J L J
Search For Requested Log Copy
By GETBLOCK Macro Call
DPPDBLOK
<$mmmmd| ceroLocy
PUTBLOCK 248
User Area
Read in Requested Log Copy >
> Into User Area By GETBLOCK User Area
Macro Calf
OPPDBLOK
<z ccveLock
PUTBLOCK 248

gl 40 ALH3d0Hd — TVIHILVYIN 3ISNIDIN

Retum To Caller

Figure 2-52 (1 Of 2) - GETLOG Routine

6zLe

Figure 2.52 (2 of 2).

Messages and

Step Extended Description ABEND Codes PDL Segment

1 The DBPBT and the DBALTSEC are used to calculate the array number for DPPDGETL
the named arrays. The array number is used as an index into the ’
DBALTPRI. The DBALTPRI contains the address of the VS resident array.
The logheader precedes the array data in storage.

2 The VS array logheader contains the array number for the associated DPPDGETL
log array. The log array number is used as an index into the
DBALTPRI. The DBALTPRI for the loggable array contains an index into
the data base logging control block.

3 The time fields in the DBLOGCB are used to reduce the search for the DPPDGETL
requested log copy. GETBLOCK subroutine is used to read the log-
header from the log copies until the correct log copy 1is found.

4 GETBLOCK subroutine is used to read the entire log copy into the user DPPDGETL

provided area.

W8I 40 ALH3IdOYd — TVIHILVYIN Q3SN3OI

0ELT

DPPDPUTL tnput

Entry From A PUTLOG
Macro Cali

©

Output

- Locate Array DBALTPRI,

Logheader, And Data
Addrasses

>

[Z] 1f LOGHDR Is Specified,
Issue PUTBLOCK On Number
List Built Based On User
Specified Logheader

DBALTPRI VS Resident Array
“DBALTDTA Logheader .
DATA

Tl

|

DPPDBLOK

<=

GETBLOCK/
PUTBLOCK 248

[3) 1 BLKLIST Is Specified,

List Built Based On Current
VS Logheader And User
Supplied Block Numbers

Issue PUTBLOCK On Numb <

DPPDBLOK

<=

GETBLOCK/
PUTBLOCK 248

SCVT DBALTPRI
/ DBALT2ND
SCVTALOC
SCVIPBT
DBPBT DBALTSEC
__DBPBTNAM DBALTPBT
DBPBTALT DBALTNAM
ER L
Logheader
DATA
USER Block. List
Logheader
\ VS Resident Armay LOG DBALTPRI
{ DBLHLAID /
({ DATA
Asray
Data

@ If Neither LOGHDR Or

]

DBALTPRI

VS Resident Array

DBLHCTIM

DBALTDTA

DBLHCDAY

BLKLIST Are Specified,

Update VS Logheader And
Log Controi Block.

E

Issue PUTBLOK On
Number List Built Based
On Updated VS Logheader

DBLHCBLK

-DBLHPTIM

LOG-DBALTPRI

DBCHPDAY

DBLHPBLK

1f Last Log Copy, PATCH

DPPDBLOK

User -Routine (If Any)-

-

GETBLOCK/
PUTBLOCK
248

Figure 2-53 (1 Of 2) - PUTLOG Routine

Return To Caller

DBALTNDX

DBLCB

DBLGCTIM

DBLGCDAY

DBLGCBLK -

DBLGFTIM

DBLGFDAY

DBLGLTIM

DBLGLDAY

wal 4o AlH3d0dd ~ TVIHILVIN G3SNIOIT

(3] 34

Figure 2-53 (2 of 2).

. Messages and
Step Extended Description ABENge Codes PDL Segment
1 The DBPBT and the DBALTSEC are used to calculate the array number for DPPDPUTL
the named arrays. The array number is used as an index into the
DBALTPRI. The DBALTPRI contains the address of the VS resident array.
The logheader precedes the array data in storage.
} 1 The LOGHDR option is used to replace a log copy in the log array. DPPDPUTL
3 The BLKLIST option is used to update blocks within the current log DPPDPUTL
copy of the Log Array.
4 The logheader and Log Control Block are modified to point to the next DPPDPUTL
log copy.
5 Normal logging copies the current VS resident array and its log header DPPDPUTL

into the next log copy. If it is determined that wraparound will occur
with the next PUTLOG request, the user defined wraparound processor
(1f any) 1is patched.

W8l JO ALH3dOYd — TVIHILVIN GISNIDIT

eel-c

DPPDUMPL jnpur

User DUMPLOG DCB

Entry From A DUMPLOG

Macro Call

Process

0l

Qutput

JFCB For DUMPLOG DD

DBALTPRI — Origin

Position DUMPLOG Data
> Set For Next Output

DBALTPRI And Loghead

DUMPLOG Data Set

>

VS Resident Array

scvy
/q DBALT2ND
SCVTALOC _
SCVTPBT
DBPBT DBALTSEC — Origin
DBPBTNAM DBALTPBT
DBALTNAM

DBPBTALT

SCVT

/1

DBALTPR} — Origin

SCVTALOC

> @ Locéte Logable Array

@

Locate The Log Array
DBALTPRI And Logging

DBALTLCB

DBLOGCB — Origi

Figure 2-54 (1 Of 2) - DUMPLOG Routine

_-: > Control Block

VS DBALTPRI
Logheader

> DBALTDTA Data
Log DBALTPRI Log DBLOGCB
> DBLGCTIM
‘DBLGCBLK
DBALTNDX DBLGFTIM
DBLGLTIM

Read In Requested Logcopy <

By GETBLOCK Macro Call

DPPDBLOK

G

GETBLOCK/
PUTBLOCK 248

Write This Log Copy To The

DUMPLOG Data Set

Retum To Caller

DUMPLOG Data Set

W8I 40 ALY3d0Hd — TVIHILYN a3SN3DI

gel-¢

Figure 2-54 (2 of 2).

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

The user supplied DD name defines the DUMPLOG data set. This data set
is opened and positioned according to the options specified on the
DUMPLOG macro.

The DBPBT and the DBALTSEC are used to calculate the array number for
named arrays. The array numbers used as an index into the DBALTPRI.
The DBALTPRI contains the address of the data for the VS resident

array, and the logheader immediately precedes the array data in stor-

age.

The VS array logheader contains the array number for the associated
log array. The log array number is used as an index into the
DBALTPRI. The DBALTPRI for the loggable array contains an index into
the data base logging control block.

The requested log copy is read into VS storage.

The log copy is then written to the DUMPLOG data set using variable
blocked spanned records. ‘ .

DPPDUMPL

DPPDUMPL

DPPDUMPL

W81 40 ALH3dOHd — TVIHILVIN G3SN3OIT

peLz

DPPDF R EQ Input

Entry Via A PATCH

Register 1 |
LIST _PROBL
LISTXCVT [w
LISTPARM
XCVT & SCVT

/ f__scviaLoc
4

XCVTSVTS

DBALTPR

/ DBLO?CB

o
DBALTLCB

>

Figure 2-55 (1 Of 2) - Time Driven Logging

Process Output
If ID Is Nonzero Then psLoGes
DBLGFRQO
m . Locate PUTLOG Numb DBLGFRQ1
List o > DBLGFRQ2
DBLGFRQ3
Issue PUTLOG Macro ,(‘
Cali . N I
DPPDPUTL
“ PUTLOG Routine
Else DBREFRSH
@ DBREAID
Build A Table Of Current >
L B
. Log Copies DBREBLK

[3] Update The Refresh Array
Via A PUTBLOCK Macro

Call

DPPDBL.OK

<)

GETBLOCK/
PUTBLOCK

Routine
248

Return To Caller

W8I 40 ALHIdOYd — TVIYILVYI G3SN3DIT

egle

Figure 2-55 (2 of 2).

. Step

Extended D_escri_btidh :

Messages and

refresh array, @REFRSH,

ABEND Codes| " 0L Segment
"1 . |The ID passed through the PATCH macro (4 8, or 12) is used as an index DPPDFREQ
- linto the table of PUTLOG number lists contalned in the Log Control
|Block. The patch is the result of the PTIME SVCs issued by DPPILOGN
during initialization.
2 |The DBLOGCB tables are used to build the DBREFRSH table which contains DPPDFREQ
- the current block number for each log array.
MGETBLOCK macro call is used to write the DBREFRSH table into the DPPDFREQ

W8I 40 ALH3d0Yd — TVIHILVIN Q3ISN3DIT

9ELZ

From Deta Base Mearo Calt

(GETARRAY, GETITEM,
GETBLOCK, Y
o PUTARRAY, PUTITEM,
S N) PUTBLOCK, PUTLOG,
. _DPPDSUB2 . it [Or DU ""‘“" Proces v Output
op
' S th C The Dats [
: Boquessed B ot o The -
N B 41
. EYARRAY/PUTARRAY{ uted In r
DPOSUB2I |GETITEMPUTITEM 91
orosumiesnwcmmtocx g
 loposus2cceTLos L
foeosuszefPuTLoG PROBL z
o - : ‘ [teogn. | | 10 >
[oPOsuBzOPUMPLOG :]| aloutese paTeH - S Asubroution =
Reg 0 =
>
-~
Reg 1 '
: <
@ 2
PATCH The %
‘| MASTER m
Routine DPPOBSIF =
Yo Perform Service -
) DPPDBSIF <
(o]
- Master interface m
" Routine 267 -
i]
g.

Return To Caller '

Figure 2.66 (1 Of 2) - Data Base SLAVE Interface

LEL-C

Figure 2-56 (2 of 2).

Messages and

Ste S N . A
P Extended Description ABEND Codes PDL Segment‘

1 Each macro call in the SLAVE partition branches to a unique location in DPPDSUB2
load module DPPDSUB2. The location is used to determine correct
subroutine to be executed in the MASTER partitiom.

2 The PATCH parameter list consists of the address (in the MASTER parti- DPPDSUB2
tion) of the data base subroutine to be executed and registers 0 and 1
as passed to DPPDSUB2 by the user as the result of the macro call,

3 DPPDBSIF is patched in the MASTER partition to branch to the subroutine, DPPDSUB2

DPPDSUB2 WAITS until the PATCH has completed. .

W8I 40 ALH3dOHd — TVIHILYW AISN3DIN

8eL-Z

DPPDBSIF ot
Register 1
Length 1]
AXevT) AlSubrouitine]
A(Resource) *Reg 0
A{Parms) .R' 1
eg

Call

*Reg O And 1 As Passed To
DPPDSUB2 On User Macro

From DPPDSUB2
{Figure 2-57)

Process

Via PATCH '

o

Branch To Data
Base Subroutine,
Address Passed By
DPPDSUB2.

Qutput

Data Base
~ Subroutines

Figure 2-57 (1 Of 2) - Data Base MASTER Interface

Return To Calle’

W8l 40 ALY3d0Yd — TVIHILVYIN G3SNIDI

AN

Figure 2-57 (2 of 2).

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

The address of the data base subroutine to be executed is passed as a

parameter,

DPPDBSIF

Wgl 40 ALH3dOHd — VIHILVIN GQISNIDIT

LICENSED MATERIAL — PROPERTY OF IBM

Message Handler

" The SpeciaItRéél Time Operating System's message handler interfaces with
the user either through a MESSAGE macro call or an MSGRC operator command.,

The MESSAGE macro processor, DPPMMSG, is responsible for validating the in-~
put parameters from the MESSAGE macro call and formatting the actual mes-
sage. The message handler output routine, DPPMMSGI, is patched by DPPMMSG
and is responsible for output of the message to the appropriate device(s).

The message routing code STATUS/CHANGE routine gains control from the

input message processor via a PATCH macro call as the result of a MSGRC
operator command. :

2-140

vi-e

Special Real Time Operating System Message Handler

Initialization Routine MESSAGE Macro
Processor
. DPPMMSG
DPPMINIT ’ Message Macro Processor
259 260
7 .

DPPMMSG1
Message Output Routine
261

]

Figure 2-58 - Special Real Time Operating System Message Handler Overview

MSGRC Input
Message Processing
Command Processor

DPPMMSGYV

Message Routing Code

Status Change Facility
262

W8I 40 ALlH3d0Yd — TVIHILVIAN AaSN3OIN

(A4 N4

From DPPINIT

DPPMINIT inpur

(Figure 2-9, 9 Of 12) Process

PATCH DPMMSG1 With a
255 PATCH ID

RCT

DPPMMSG1

)

Message Qutput
Routine
2-61

ARRAY . >
DOMXSMRC

P

Re

trieve Address of RCT (Message

Routing Code Table Array DOMXSMRC)

1t

Array Not Found, ISSUE ABEND.

XCVT

]

Move Message Data Set DCB To MDT
(Message DCB Table). .

Output

MDT

MDTMSG

XCVTSBOP

Open Message Data Set. If Data Set
Not Opened ISSUE ABEND

MDTQSAM1
MDTQSAM2 |

>

Data

XCVTPRS

——— e e s i e e . e i e S] e s

E

If Pre-restart Flag in XCVT Is ON,

Set MDATFLAG Flag to Pre-restart

Set

ELSE If Pre-restart Flag is Off
Set MDATFLAG Flag to Post-restart

&

Move Message DCB Address to MDAT

[MDATFLAG]

MDATLCK

MDATLCKO

MDATRCT

_> MDATMDCB

Figure 2-59 (1 Of 4) - Message Handler Initialization

&

Figure 2-59 (3 Of 4)

MDATQDCB

MDATQDCB

8! 40 ALH3dOYHd — TVIHILVYIN Q3SN3OIT

gvi-c

Figure 2-59 (2 of 4).

Messages and

Step Extended Description ABEND Codes PDL Segment

1 The message handler initialization routine, DPPMINIT, will create a DPPMINIT
Special Real Time Operating System task with task name DPPMMSGl for
the message output task (DPPMMSGl).

2 The address of the message routing code table (array DOMXSMRC) will USER 23 DPPMINIT
be obtained from the data base. If the array cannot be found, ABEND
23 will be issued.

3 | The contents of the message data set will be moved to the message DPPMINIT
DCB table (MDT). :

4 The message data set pointed to by the MSGDS DD card will be USER 20 DPPMINIT
opened as a BPAM input data set. If the data set cannot be opened,
ABEND 20 will be issued.

5 The MDAT flag is a one bit flag in the message address table (MDAT). DPPMINIT
This flag will be turned off (set to 0) if the pre-restart flag
(XCVTSBOP) in the XCVT is on. The flag will be turned on (set to 1)
if XCVTSBOP is post-restart. '

6 The address of the message DCB will be placed in the MDAT. DPPMINIT

Wa! 40 ALYIJOHd — IVIH3ILVIW 3SN3OIT

vvi-¢

DPPMINIT _ input

RCT

Array DOMXSMRC

>

From Figure 2-59 (1 Of 4) @
Process
(3]

if Output Data Set Specified in
Array DOMXSMRC

MOT

MDTMSG

MDTQSAM1

@ Move All Cutput DCBS

MDTQSAM2

To MDT

Open All Output Data Sets

It Data Set Not Opened
Issue Error Message m—

&

l \VAVAY/

Move Address Of All

Output DCB’s to MDAT

[Ztoad DPPMMSG In Storage And Move
Address To Location SCVTMSGH In The|
SCVT. .

&

@ Move MDAT Address To Location

SCVTMWA In The SCVT,

E]Build Lock Control Block For

MODAT

DPPMMSG And Place Address in MDAT

(8] Build Lock Control Biock For

DPPMMSG1 And Place Address in

MDAT

[

@ Move Address Of Array DOMXSMRC

To MDAT

MDATFLAG

MDATLCK

SCVT

SCVTMWA

Retum To Caller

Figure 2-59 (3 Of 4) - Message Handler Initialization

SCVTMSGH

MDATLCKO
MDATRCT

MDATMODCB
MDATQDCB
MDATQDCB

W81 40 AlH3d0OHd — TVIH3LVIN g3sSN3dIT

Sy

Figure 2-59 (4 of 4).

Step Extended Description ANéeésl\? ge an:;zs PDL Segment
1 When message output data sets DD names are specified in Array DPPMINIT
-| DOMXSMPC, DPPMINIT will do the following:
A, Move all message output data sets DCBs to MDT,
B. Open message output data sets DCBs as QSAM output data sets, DPP898I1
If any message output data set is not opened, error message
DPP898 will be issued.
C. Place address of all message output data sets in MDAT, DPPMINIT
2 The MESSAGE macro processor (DPPMMSG) will be loaded into core and its DPPMINIT
address will be placed in the SCVT,
3 The address of MDAT will be placed in the SCVT. DPPMINIT
4 A Special Real Time Operating System ldck control block will be built DPPMINIT
for DPPMMSG and it's address will be placed in MDAT.
5 A Special Real Time Operating System lock control block will be built DPPMINIT
for DPPMMSGl, and its address will be placed in MDAT.
6 The address of array DOMXSMRC will be placed in MDAT. DPPMINIT

W8I 40 ALH3d0dd — TVIH3ILVI G3SN3DIT

avi-¢

input

'DPPMMSG

Register 1

M Macro

From User Via a

Message Macro Call

Process

Expansion

Address

Number of
Routing Codes

Number of
Variables

Message Number

Message Action
Code

Message Return
Address

Message Routing
Codes

Message Variables

m Save Address Of MESSAGE Macro
Expansion.

Data

Set

SCVT

ANy4

SCVTMWA

MDAT

MDATLCK

Find Address Of The SCVT And
From The SCVT Get The Address

Of The MDAT And From The MDAT
Get The Address Of The Lock Control
Block For DPPMMSG. LOCK
DPPMMSG.

[3] Get Address Of Message DCB From
MDAT.

>

MDATMDCB

Figure 2-60 (1 of 2) - Message Macro Processor

[4] Find Specified Message On Message
Data Set.

If Message Not Found. Set Return
Code To 8.

1f Variable Count In Message Macro
Expansion’ Less Than Defined
(DEFMSG MACRO) Message Set
Return Code To 4

Else If Variable Count In Message
Macro Expansion Greater Than
Defined Message. Set Return
Code To 2.

@ Format Message With Time And/Or
Date, Action Code And All User
Variables.

]

If User Message Return Area Specified
Pass Message To User.

Output

Return Codes

DPPnnn HH:MM:SS:¢
T >{pomMM/YY

Check Routing Codes For Validity.

if Routing Codes Not Valid-
Set Return Code To 12

Eise PATCH DPPMMSG) (Message

Output Routine)

>©

DPPMMSG1

Message Output

261
J

Return to Calier

|Message Text

gl 40 ALH3dOHd — TVIHILVIN G3SN3OIT

A d%4

Figure 2-60 (2 of 2).

Step

Extended Description

Messages and
ABEND Codes

PDL Segment

On entry to DPPMMSG, register 1 will contain the address of the
MESSAGE macro expansion.

A Special Real Time Operating System LOCK macro will be issued for
DPPMMSG with the lock control block found at location MDATLCK in the
MDAT. ~

Save address of the message data set DCB found at location MDATMDCB

| in the MDAT.

If the specified message is found in the message data set, it will be
read into virtual storage. If the message is not found, the return
code will be set to 8.

The specified message will be formatted with all variables converted
to EBCDIC, The time is converted to (HH:mm:SS.t, HH-Hours, MM-
Minutes, SS-seconds, t-tenths of seconds), and if requested the date
(DD/MMM/YY, DD-DAY, MMM-Month, YY-year) and the action code
(I-information, A-action, D-decision).

'If the address of a user return area is specified in the MESSAGE

macro expansion, the message will be moved into the area.

If no routing codes are passed in the MESSAGE macro expansion, the one
on the defined (DEFMSG) message will be used. The routing codes are
checked against the valid routing codes in the DOMXSMPC array (RCT
message routing code table) in the data base., If the routing codes
are not valid, the return code is set to 12. If the routing codes

are valid, the message will be passed to DPPMMSGl via a PATCH macro.
Routing code 255 is a no operation (DPPMMSGl is not patched),

DPPMMSG

DPPMMSG

DPPMMSG

DPPMMSG

DPPMMSG

DPPMMSG

DPPMMSG

Wdl 40 ALY3dOHd — TVIHILVYIN GISNIDIT

8vL-¢

PATCHed By DPPMINIT
{Figure 2-59) Or By

DPPMMSG1 Input Dmmse {Figure 2-60) Process -

PATCH Parameters :> Save Address Of Message
Address : ’
Message Address
SCVT
>@ Get Address Of Message Address Table
SCVTMWA {MDAT) From SCVT.
MDAT
[moatFiG | 6]
MDATLCKO Y Get Address Of The Lock Control Block
For DPPMMSG1 From MDAT And Issue A
Lock Macro For DPPMMSG1
MDATFLG
....... X > @ If MDATFLG Filag Is Off (Flag Set To Pre-
restart)
Output To System Console
Eise If MDATFLG Is On (Flag Set To Post-
restart). DPPran
RCT (Array DOMXSMAC) > ooMMMIYY
" N Message
Routing Code
bkl Find Specified Routing Code In RCT (Array Text.
Routing Code DOMXSMRC) And Output M To
Specified Devices.
p—
Retum To Caller

Figure 2-61 (1 Of 2) - Message Output Routine

WEI 30 ALY3dOYd — TVIHILYIN G3ISN3OI

6vi-C

Figure 2-61 (2 of 2).

Messages and

Step Extended Description ABEND Codes PDL Segment
1 |Save address of message. DPPMMSG1
2 ’The MDAT is built by DPPMINIT and its address is stored in the SCVT DPPMMSG1
at location SCVTMWA
3 The address of the Special Real Time Operating System Lock DPPMMSG1
Control Block for DPPMMSGl is found in the MDAT at location
[MDATLCKO. A LOCK.macro using this lock control block will be issued to
lock DPPMMSGI.
4 1f the MDATFLG flag is off (flag set to prerestart) and a restart is DPPMMSG1

to be taken, issue all messages to the system console before the
restart,

Lf the MDATFLG flag is on (flag set to post-restart), find the specified
routing codes in RCT (Array DOMXSMRC). The formatted message is then
putput to the devices specified in the table.

W8I 30 A1Hd3d0dd — TVIHILVIN A3SN3DIT

0GL-¢

DPPMMSGV

Input

PATCHed By IMP As Result

Of MSGRC Operator Command

Patch Parameters

m Save Passed Parameters Address
2
Save Address Of RCT

If Alternate Route Code Not Active
Issue Error Message 33

Output

> DPP033

Set Error Flag

o ’

if Routing Code = Alternate Route Code
Then Issue Error Message 34

Set Error Flag

&

if Error Flag Not Set

5

Place Specified Routing Code In Or Out
Of Service Or

> DPPO34

RCT

Route Codes

> Route Codes

Routing Code

INJOUT/STATUS/
STATALL

Aiternate

Routing Code

RCT _

Message Routing

Code Table ARRAY)
DOMXSMRC

Display Status Of Routing Code

——

if Invalid Parameter Pagsed Issue Error
Message 35

=4

~

@

> DPPO29-32

DPPMMSGV
Register
Save Area

Retu}n To Caller

Figure 2-62 (1 Of 2) - Message Routing Code Status Change Facility

Error Flag

s
Registers

Wgl 40 ALH3dOYd — TVIHILVIN GBSNBOI'I

1si-¢

Figure 2-62 (20f 2).

Messages and

Step Extended Description ABEND Codes PDL Segment
1 Save the address of the passed parameters. DPPMMSGV
2 Save the address of the RCT (message routing code table array DPPMMSGV
DOMXSMRC) , ‘

3. |If an alternate routing code is passed which is not active, issue error|DPP0O331 DPPMM8GV
message 33 and set the error flag in the register save area used by
DPPMMSGV pointed to by register 13, '

4 If the routing code = alternate route code, issue error message 34 DPP034I DPPMMSGV
and set the error flag in the register save area used by DPPMMSGV
pointed to by register 13,

5 If the error flag is not on:

Place the routing code in service if in-parameter passed. If the out-
parameter passed, place routing code out-of-service.
If the STATUS or STATALL parameter passed, display status of routing DPP0291
code(s) via system messages 29 through 32. ' DPP0O30I
. DPPO311
DPP0321
6 If invalid parameters passed, issue error méssage 35. DPPO351

W8I 40 ALH3dOYHd — TVIHILVYIW QISNIDIT

LICENSED MATERIAL — PROPERTY OF IBM

Input Message Processing

The Special Real Time Operating System provides a facility to allow for
operator - Special Real Time Operating System communication or for the
operator to communicate with a subsystem, This facility is the Input
Message Processor. The Special Real Time Operating System, during initial-
ization, issues a WTOR and leaves the reply outstanding. At a later time,
the operator may reply with a predefined IMP command. The Input Message
WIOR routine, DPPXIMPW, receives control and as the result of this reply
patches the input message processing routine, DPPXIMPP, DPPXIMPP is re-
sponsible for validating the operator command and patching the specified
user routine. 2

2-152

€GlL-¢

Input Message Processing
WTOR (Operator
Command) Routine

Special Real Time Of

g Sy Input Message Pr

input Message Processing
Command Processor -

DPPXIMPW

264

DPPXIMPP

265

input Message Processing
CANCEL Command

DPPXKILL

266

Figure 2-63 - Special Real Time Operating System Input Message Processing Overview

| gl 40 ALH3d0Yd — TVIHILVYW Q3ISN3ON

valL-e

DPPXIMPW

nput

From 370/Operator Reply

Special Real Time

Op g Sy Input

ge Pre g
{IMP} Command

Output

DPPXIMPW WTOR

Input Message
Issue DPPXIMPW e e o it .
WTOR And Wait Reply

On iMP Command

2

1f STOP IMP
Command ABEND
JOBSTEP With
222 Code

@ Pass IMP
ICommand To

DPPXIMPP. PATCH|

input Message

 liopeximep)

{Processing Routine

o]

fssue Diagnostic
Message

PATCH

DOPPXIMPP

input Message
Process Routine

265

J>‘ IMP Command

Input Message

Figure 264 (10f 2)- Input Message WTOR Routine

> Pr g
Command Accepted

wal SO Ald43d0OHd — TVIHILVIW Q3SN32I

SG1-C

Figure 2-64 (2 of 2).

’ L Messages and
Step Extended Description ABEND Codes|PPL Segment
1 The System/370 operator will issue an IMP Command to a WTOR issued by DPPXIMPW
DPPXIMPW, INPUT MESSAGE PROCESSING AWAITING REPLY.
2 If the STOP command is entered, ABEND job step with dump code USER 222 DPPXIMPW
222, '
3 |The IMP command will be passed to DPPXIMPP via PATCH. DPPXIMPW
4 DPPXIMPW will issue a diagnostic WIO message to the System/370 DPPXIMPW

operator, INPUT MESSAGE PROCESSING COMMAND ACCEPTED.

W81 40 ALY3dOHd — TVIHILVYW Q3aSN3OIT

9G1-¢

DPPXIMPP

PATCH
PARAMETERS
ADDRESS

From DPPXIMPW (Figurs 2-84) Via
A PATCH Macro Call Or From A
PATCH Statement In SYSINIT

input Stream ' Process

IMP C d

if IMP Commaend invalid fssue System
Message 26, 70, 79

8]

The {MP Command Parameters Passod

- —> Io_DPPXCMFP Will Be Converted To

; , or EBIDIC
Formst. The Formats Are Specified
In The IMP Table

‘Pass Conwverted IMP Commend
o T Process

Output
Transiate and
E.] Test Table
Build Trensiste And Test Table 100000...00200
Area
)@ Retrieve IMP C d And Move Work
To DPPXIMPP Work Ares Pointed
To By Register 13 M Comm-\d
Find Address Of IMP (Input Msssage
Processing Table Array DPPXIMP)
Table
{4] Search IMP Table For The Passed
IMP Command Systom

28, 70, Or 79:

Converted IMP

¥ oF
> Soecified In IMP Table Vis A

PATCH Macro Call

PATCH

=)

User Routine

Figure 2-65 (1 Of 2) - Input Message Pioeesing Routine

Return To Caller

Parameters

gl 40 ALlH340Hd — TVIHILVW Q3aSN3OI

LS1-C

Figure 2-65 (2 of 2).

Messages and

IMP commands., The IMP command converted parameters will be passed to

the processing program via a PATCH macro to either the MASTER or

SLAVE partition.

Ste ipti
P Extended Description ABEND Codes PDL Segment
1 A 255 byte translate and test table will be built where byte 0 is 1 DPPXIMPP
' and byte 107 is 2 and the other 253 bytes are set to O.
L2 Register 13 points to a work area used by DPPXIMPP. The IMP command DPPXIMPP
will be moved to this area.
3 The address. of the IMP table (arrayDPPXIMP) will be obtained via a DPPXIMPP
: GETARRAY nacro.
4 A search is made of the IMP table for the passed IMP command. DPPO261 DPPXIMPP
: ‘ DPP0701
If the command is invalid, system message 26, 70, 72, or 79 will be DPP0O721
issued. DPPO791
5 The IMP table contains the parameter format for the passed IMP DPPXIMPP
Command parameters. The parameters will be converted to fullword
. hexadecimal, or EBCDIC format.
6 The IMP table contains the name of the processing programs for all DPPXIMPP

W8I 40 ALHY3dOHd — TVIHILVYW Q3SN3DIN

851-¢

DPPXKILL input

Patch Parameters
Address

From DPPXIMPP (Figure 2-65)

Via A PATCH

Cancel Input
Message Proc-
essing {IMP]
Command
Parameters

DUMP/.
NODUMP

Operator
Comments

>

IMP Command Parameters. Output Operator
Comments Via System Message 60.

Process Output
>m Save Passed Parameters
If Operator Comments Passed With CANCEL

OPPO&0

D

@lf Dump Parameter Passed Then ABEND
With A Completion Code Of 122. Issue
0OS/VS ABEND Dump.

0OS/VS ABEND

Figure 2-66 (1 Of 2) - Cancel Routine

ELSE f NODUMP Parameter Passed Then

ABEND With A Completion Code of 222.

E . tnvalid Action Specified. issue Error
Message 27.

oump

DPPO27

Return To Caller

W8l 40 ALY3dOHd — TVIH3ILVIW g3SN3IT

6S1-C

Figure 2-66 (2 of 2).

Messages and

Step Extended Description ABEND Codes PDL Segment

1 Save address of the CANCEL Input Message Processing (IMP) command DPPXKILL
parameters, ;

2 If operator comments passed with the CANCEL IMP parameter, output the |DPP060I DPPXKILL
operator comments via message 60,

3 If the DUMP parameter is passed, issue ABEND macro with the dump USER 122 DPPXKILL
option and a completion code of 122.
If the NODUMP parameter is passed, issue ABEND macro without the USER 222
dump option and a completion code of 222,

4

If action requested is not DUMP or NODUMP, an error message is

‘issued.

DPPO271

DPPXKILL

W81 40 ALH3d0Yd — TVIHILVIN G3SN3DIT

LICENSED MATERIAL — PROPERTY OF IBM

Report Data Output

The report data output facility provides the capability of transferring
user-generated data from one or more user-defined sequential data sets to

a single user-defined sequential data set, The report data output facility
is invoked through a REPORT input message processing command.

2-160

191-¢

Special Reat Time Operating Sy;mn Report Data Qutput Faciiity

REPORT input Message
Processing Command
Processor

DPPXRPRT

268

Figure 2-67 Special Real Time Operating System Report Data Output Facility Overview

WE1 30 ALH3dOYd — TVIHILYW aISNIOIT

Z291-¢

DPPXRPRT Input

From DPPXIMPP (Figure 2-65)
Via A PATCH Macro Cal

Process

Register 1

PATCH
Parameters

Address

Report Input

Message

Processing {IMP)
. Command

Parameters

NEW/ADD

_.____—._._.___..4_%

6]

Save Passed REPORT IMP Commands
Parameters

(2

OPEN Output Data Set DCB. If DCB
Not OPENED Issue System
Message 53 And Exit

Qutput

Output DDNAME

input DDNAME
Input DDNAME

Input Data Sets

> If NEW Parameter Passed Position

Output Data Set To Beginning Of
Output Data Set

Return To
Caller

@]

> OPEN Input Data Set. If input Data

Set Not OPEN lissue System
Message 53 And Exit

>

&

Move Data From Input Data Sets To
Output Data Sets

DPPO53

|Return To
Caller

Figure 2-68 (_1 Of 2) - Report Data Output Facility

Return To Caller

Output Data Set

W81 40 ALH3dOHd — TVIHILYIN a3ISNIoI

€91-C

Figure 2-68 (2 of 2).

.. Messages and ‘
Ste
o] Extended Description ABEND Codes PDL Segment

1 Save the address of the passed REPORT IMP command parameters. DPPXRPRT
2 OPEN the passed output data set. If the data set was not opened, DPPO53I

issue system message 53. '
3 If the NEW parameter was passed with the REPORT IMP command, the- DPPXRPRT

output data set will be positioned at the beginning of the output

data set, :
4 Open the passed input data set. If the data set was not opened, issue |DPP053I DPPXRPRT
' system message 53, '
5 |All data in the inpixf: data sets is moved into the output data set, DPPXRPRT

The 'output data set must be large enough to contain the data.

W81 40 ALHY3dOHd — TVIHILVW Q3aSN3IIN

LICENSED MATERIAL — PROPERTY OF IBM

Data Recording and Playback

Data recording and playback enable the user to record data in a realtime
environment and to play it back at a later time either in a realtime
environment or in an offline environment,

Data recording is enabled (or disabled) by DPPXRINT as the result of a DREC
operator command. When data recording is enabled DPPXDRC receives control
from the user via a RECORD macro call and is responsible for formatting

and recording the requested data, When data recording is disabled a stub
routine, DPPXDRCX, replaces DPPXDRC, DPPXDRCX sets a return code and
returns to the user without recording any data.

Data playback is initiated in the online system by a PATCH to module
DPPXPCON, This routine is responsible for converting the input playback
parameters to a form acceptable to the playback routine, DPPXDPB. DPPXDPB
gains control from DPPXPCON by a LINK macro call and is responsible for
playing back the requested data. '

Data playback is initiated in the offline system by executing module
DPPXNRTI on an EXEC statement specifying PGM=DPPXNRTI. This routine is
responsible for building a parameter list in a form acceptable to

DPPXPCON and then linking to that routine. Once DPPXPCON receives control,
the playback operation is the same as for the online system previously
described. ‘

2-164

991-¢

DREC input Message
Processing Command
Processing

Specisl Real Time Operating System Data Recording And Playback

RECORD Macro Processor

DPPXRINT
Data Recording
Initjalization

2:70

“Offtine Execution .o
**Online Or Offline Execution

Data Playback Routines

DPPXNRTI®

Data Playback Non-Real

Time initialization
2-162

DPPXDRC

Data Recording Routine
21

DPPXDRCX

Dummy Data Recording
Routine
2.72

J

DPPXPCON"®*
Data Playback Parameter
Conversion Routine

2.73|

DPPXDPB®*®
Deta Playback Routine

2-74
DPPXRDR"*
Hex Dump Routine
2.74.1

69 - Special Real Time Operating System Data Record And Playback Overview

WEl 30 ALY3d0Yd — TvIH3ILVIW Q3ISNIDIT

991-¢

From DPPXIMPP

W8I 4O AlH3dOHd — TVIH3ILVIN Q3ISN3OIT

{Figure 2-65)
Via A PATCH Macro
DPPXRINT input Call Process Output
Register 1
4
PATCH | .
Parameters > Save Address Of The REPORT Input
Address Message Processing Cq d
Data Recording
Report Input Lock Control
Processing Block
s 0 Command B Build Special Real-Time Operating Sys >i RECD
Lock Contro! Block For Data Recording
8 (RECD), Lock DPPXRINT
id d ENABLE/
ress DISABLE .
12 B J 0 SCVT
Parameter r—=1* Kl If DISABLE Parameter Passed
Address \ | 3 VTRE
- \
b Er— i EJ Clear SCVTRWA Field In SCVT [A ::2 SCVTREC
Address : P SCVTRWA
ADD/DEL/ALL s Bl LoAD DPPXDRCX (Dummy Data
Recording Routine) And Store
i DPPXDRCX Address in SCVT At
Location SCVTREC . '
&————— E Close Data Recording Data Set
2 D } J T
1D
. N
: e e S ppifd] it ENABLE Parameter Passed
A] OPEN Data Recording Data Set if DCB
Not Opened ISSUE Message 50 And Exit >
Toad Data Recording Routine DPPXDRC ’ 0 DAT
Date And Place Address in SCVT At Location | _ _:—'2 DRTTIME
Recording SCVTREC 59| DRTCOUNT
Data Set DRTID
(DRECOUT Build Data Recording Table (DRT) And 83
DO Card) . Store Address In SCVT At Location DRTDCB
. SCVTRWA. o
] Data Recording
Store Address Of DRT At L i i P
FJ DRTAG In Program DPPXDRC. [o Routine O PXDR:;
: 4 20l LOCKNAME
Store Address Of The Time Array 8 QSAMBUF
(DPPCTIME) At Location SCVTTIME DRTAS SCVTTIME

N

Pr DPPXDRC.
in Program LocK

Figure 2-70 @ '

Figure 2-70 (1 Of 4) - Data Recording Initialization Routine

L91-¢

Figure 2-70 (2 of 4).

Messages and

Ste ipti
P Extended Description ABEND Codes PDL Segment
1 When DPPXRINT is entered, the address of the REPORT input message DPPXRINT
processing command will be saved.
2 A Special Real Time Operating System DEFLOCK macro will be issued to DPPXRINT
build a LOCK control block (RECD) for data recording routines
(DPPXRINT and DPPXDRC) A LOCK macro will be issued to lock DPPXRINT,
3 If the DISABLE parameter was passed, DPPXRINT
A, Clear location SCVTRWA in the SCVT.
B, Issue a LOAD macro for DPPXDRCX (dummy data recording
-routine) and the address of DPPXDRCX will be stored at
location SCVIREC in the’ SCVT.
C. Close the data recording data set.
4 If ENABLE parameter was passed. DPP0501 DPPXRINT

A,

OPEN data reéording data set, If DCB is not opened, issue
message 50.

Issue a LOAD macro for DPPXDRC (data recording routine).

Build data recording table (DRT) and store address at location
SCVTRWA in the SCVT, '

Store address of DRT at location DRTAB in program DPPXDRC (the
first 36 bytes of DPPXDRC are used as a control table).

The Special Real Time Operating System time array (DPPCTIME)
address will be stored at location SCVITIME in program
DPPXDRC (see 4-D),

W81 40 ALH3d0Hd — TVIH3LYIN @3SN30IN

891-C

DPPXRINT Input

REPORT input
Message Proc-
essing- Command

0

ENABLE/
DISABLE

ADOD/DEL/ALL

From Figure 2-70 {1 Of 4)

Process

It ENABLE Parameter Passed

Move Data Recording {RECD) Lock Control
Block Name To Location LOCKNAME In
Program DPPXDRC

Store Address Of Data Recording Lock
Control Block At Location LOCK In
Program DPPXDRC. .

i€l :
Get Address Of GSAM Output Buffer And

Store Address At Locationn QSAMBUF In
Program DPPXDRC.

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>