
G

.. - -~ ~ ..

D D
Base Programming
Reference
Volume 2
SC33-0332-1

--------- -------- - ---- - - ----------- ' -

TM

Front Cover Pattern: Electronic Sunflower

The pattern on the front and back cover
was produced using this GDDM program.

INTEGER TYPE, VAL, COUNT, N, M
REAL Al, A2, Kl, K2, Rl, R2, X, Y
REAL XCEN, YCEN, XS, YS
K1=S.3333
K2=1.1
R1=2
XCEN=SO
YCEN=SO
CALL FSINIT
CALL GSPS(1.0,1.0)
K2=1.l*SQRT(2.4/K1)
A2=0
DO 40 M=l, 600

A2=A2+K1
R2=K2*(A2**.S)
XS=R2*COS(A2)+XCEN
YS=R2*SIN(A2)+YCEN
DO 30 N=O, 5

A1=2.*3.l42*(FLOAT(N)/S.)+A2
X=Rl*COS(A1)+XS
Y=R1*SIN(A1)+YS
IF (N) 20,10,20

10 CALL GSMOVE(X,Y)
20 CALL GSLINE(X,Y)
30 CONTINUE
40 CONTINUE

CALL AS READ (TYPE,VAL,COUNT)
CALL FSTERM
END

G

8C33-0332-1
File No. 8370/4300-40

D D
Base Programming
Reference

GDDM/MV85665-356
GDDM/VM 5664-200
GDDM/V8E 5666-328
GDDMjVMXA 5684-007

Version 2 Release 2

Licensed Programs

Volume 2 of2

--------- ----
:S:~:ffi:

Second Edition (September 1988)

This edition (Volume 2) applies to Version 2 Release 2 of the IBM GDDMTM (Graphical Data Display Manager) Series
of licensed programs. The programs and their numbers are:

GDDMIVM
GDDM/MVS
GDDMIVSE
GDDMIVMXA

5664-200
5665-356
5666-328
5684-007.

Changes are periodically made to the information herein; before using this publication in connection with the opera­
tion of IBM systems or equipment, refer to the latest IBM Systeml370, 30xx, and 4300 Processors Bibliography,
GC20-0001, for the editions that are applicable and current. If you need to order additional copies of this edition of
this book after any further revision has been published by IBM, use the temporary order number S033-0332.

Changes and additions to the text and illustrations are indicated by revision bars (vertical lines) to the left of the
change.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these
available in all countries in which IBM oper~tes.

Any reference to an IBM licensed program in this publication is not intended to state or imply that only IBM's
licensed program can be used; any functionally equivalent program can be used instead.

Publications are not stocked at the addresses given below. Requests for IBM publications should be made to your
representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has been removed, comments
may be addressed either to:

International Business Machines Corporation, Department 6R1H, 180 Kost Road,
Mechanicsburg, Pennsylvania 17055, U.S.A.

or to:

IBM United Kingdom Laboratories Limited, Information Development,
Mail Point 95, Hursley Park, Winchester, Hampshire, England, S021 2JN.

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

No part of this GDDM Base Programming Reference manual may be reproduced in any form or by any means,
including storing in a data processing system, without permission in writing from IBM. Permission is hereby granted
to licensees of GDDM/MVS, GDDMIVM, GDDMIVMXA, or GDDMIVSE Version 2 Release 2 Modification 0, but to no
other person, to copy and store the sample programs included in this manual into a data processing system and to
modify and use the stored programs in accordance with their Agreement for Licensed Program. No permission is
granted to use the sample programs in any other circumstances.

THE PUBLICATION OF THE INFORMATION CONTAINED HEREIN IS NOT INTENDED TO AND DOES NOT CONVEY ANY
RIGHTS OR LICENSES, EXPRESS OR IMPLIED, UNDER ANY IBM PATENTS, COPYRIGHTS, TRADEMARKS, MASK
WORKS OR ANY OTHER INTELLECTUAL PROPERTY RIGHTS OTHER THAN THE LIMITED PERMISSION GIVEN
ABOVE.

© Copyright International Business Machines Corporation 1980, 1981, 1983, 1984, 1985, 1986, 1987, 1988.
All rights reserved.

TM Trademark of IBM Corporation.

Preface (Volume 2)

This volume of the GDDM Base Programming
Reference provides detailed support information for the
IBM licensed program GDDM (Graphical Data Display
Manager). Version 2.

This Volume is complementary to the introductory
information and descriptions of the GDDM Base calls
given in the GDDM Base Programming Reference.
Volume 1.

For more information. see the Preface to Volume 1.

Preface (Volume 2) iii

Book structure (Volume 2)

Volume 2 (this volume) of the GDDM Base Program­
ming Reference contains:

Chapters 1 through 14
These chapters describe the GDDM environment from a
programming viewpoint. They give detailed informa­
tion that may be needed for some programming tasks
over and above the descriptions of the GDDM calls that
are contained in GDDM Base Programming Reference,
Volume 1.

Chapter 1, "Customizing your program and its
environment" ... pages 1 through 5.
Chapter 2, "Using GDDM under CICSNS" pages
7 through 22.
Chapter 3, "Using GDDM under IMSNS" pages
23 through 30.
Chapter 4, "Using GDDM under MVS/XA" pages
31 through 32.
Chapter 5, "Using GDDM under TSO" ... pages
33 through 40.
Chapter 6, "Using GDDM under VM/CMS" ... pages
41 through 46.
Chapter 7, "The GDDM print utilities" ... pages
47 through 63.
Chapter 8, "Symbol sets" ... pages 65 through 70.
Chapter 9, "Picture interchange format files"
pages 71 through 77.
Chapter 10, "Setting up color-master tables"
pages 79 through 84.
Chapter 11, "Application data structure for mapping"
... pages 85 through 102.
Chapter 12, "Special-purpose programming in
GDDM" ... pages 103 through 108.
Chapter 13, "GDDM high-performance
alphanumerics" ... pages 109 through 119.
Chapter 14, "Country-extended code pages" ... pages
121 through 126.

Appendixes A through L
These appendixes are reference sources for various
aspects of the GDDM programming interface that are
not described elsewhere.

Appendix A, "GDDM's default values" pages
127 through 148.
Appendix B, "Processing option groups and name­
lists" ... pages 149 through 162.

iv Base Programming Reference

Appendix C, "GDDM object file formats" ... pages
163 through 164.
Appendix 0, "GDF order descriptions" pages
165 through 193.
Appendix E, "Image object definitions" pages
195 through 198.
Appendix F, "Symbol-set formats" pages
199 through 202.
Appendix G, "Device characteristics tokens"
pages 203 through 207.
Appendix H, "Call format descriptor module"
pages 209 through 212.
Appendix I, "APL request codes module" ... pages
213 through 229.
Appendix J, "Request control parameter codes" ...
pages 231 through 247.
Appendix K, "Sample programs" pages
249 through 253.
Appendix L, "Format of a Composite Document Pres­
entation Data Stream" ... pages 255 through 261.

Index

Book structure (Volume 1)

Volume 1 of the GDDM Base Programming Reference
contains:

Chapter 1. Introduction to GDDM
This chapter is an introduction to GDDM, which briefly
describes its main features.

Chapter 2. Concepts of GDDM and use of functions
This chapter describes the main concepts of GDDM and
their uses.

Chapter 3. GDDM programming Interface
This chapter describes conventions for writing GDDM
programs.

Chapter 4. GDDM calls
This chapter is a complete list of all GDDM Base calls,
with their syntax and function. The calls are listed in
alphabetic order.

Glossary
This defines the abbreviations and terminology used in
both Volumes of the GDDM Base Programming
Reference manual.

Index

Table of contents (Volume 2)

Chapter 1. Customizing your program and its
environment 1

User default specifications 1
Passing a source-format UDS to GDDM 1
External defaults file 2
Converting a source-format UDS into an encoded

UDS 2
Passing an encoded UDS to GDDM 2
External defaults module 2

Using nicknames to define device characteristics 3
Source format of a nickname UDS . 3
Nickname scanning and matching 4
Encoded format of a nickname UDS 5

Chapter 2. Using GDDM under CICS/VS .. 7
Programming languages and restrictions 7
Compiling and link-editing GDDM application

programs 7
Compiling a PLII program 7
Link-editing a GDDM application program 7

Using the non reentrant interface of GDDM 8
Using the system programmer interface with

dynamic load 8
CICSIVS pseudoconversational applications 8
Data sets and file processing 10

File control facilities 10
Transient data facilities 11
Temporary storage facilities 11

Display terminal conventions 13
Using GDDM with Basic Mapping Support . 13

Using GDDM and Basic Mapping Support
consecutively 13

Using GDDM and BMS concurrently without
coordination mode 13

Using GDDM and BMS concurrently with
coordination mode 13

CICSIVS GDDM default error exit 14
Requesting transaction-independent services ... 14

Using the resource audit trails 14
GDDM application programs in VSE batch mode . 15
Sample JCL for GDDM under CICS/OSIVS using

PLII 17
Sample JCL for GDDM under CICS/OSIVS using

COBOL 18
Sample JCL for GDDM under CICS/OSIVS using

Assembler 19
Sample JCL for GDDM under CICS/DOSIVS using

PL/I 20
Sample JCL for GDDM under CICS/DOSIVS using

COBOL 21
Sample JCL for GDDM under CICS/DOSIVS using

Assembler 22

Chapter 3. Using GDDM under IMS/VS 23
Restrictions on the use of GDDM under IMSIVS .. 23
Application program structure 24
Link-editing a GDDM application program 24
Using the system programmer interface with

dynamiC load 25
Program specification blocks for GDDM applications 25
Data sets and file processing 26
The IMSIVS default error exit 26
GDDM and the Message Format Service . 26
GDDM DLII interface 26

Use of message queues 27
Use of data bases 27

IMSIVS considerations for GDDM utilities 28
GDDM object import/export utility 28
Sample JCL for GDDM under IMSIVS using PLII 29
Sample JCL for GDDM under IMSIVS using COBOL 30

Chapter 4. Using GDDM under MVS/XA 31
GDDM code above 16 megabytes 31
Application code above 16 megabytes 31
AMODE(31) applications and application

parameters above 16 megabytes 31
GDDM object compatibility between System/370

and System 370/XA 31
MVS/XA terminology 31

Subsystem-independent routines 31
CICSIVS-dependent routines 31
IMSIVS-dependent routines and TSO-dependent

routines 32
Application programming considerations 32

The SPINIT call 32
The FSEXIT call 32
User exits 32

Chapter 5. Using GDDM under TSO .. 33
Link-editing a GDDM application program 33

Using the system programmer interface by
means of dynamic load 33

Data sets and file processing 33
BPAM file processing 33
aSAM file processing 34
BDAM file processing 34
File-name usage 34

Display terminal processing 36
Using the CLEAR key in full-screen mode 36
Entering attention interrupts in full-screen mode 36
Reshow key processing in fUll-screen mode .. 36
Device errors in full-screen mode 37
Line-by-line input in full-screen mode 37
NOEDIT mode under TSO 37

Using APL terminals 37
Using GDDM under TSO batch 38
Using GDDM under MVS batch 38
Sample JCL for GDDM under TSO 40

Chapter 6. Using GDDM under VM/CMS 41
Compiling a GDDM PLII application program 41
Loading a GDDM application program 41
Running a GDDM application program or utility .. 41

ConSiderations for running multiple instances of
GDDM 42

Data sets and file processing 42
Native CMS file processing 42
Native CMS spool file processing 43

Display terminal conventions 44
Asynchronous interrupts on VM/CMS 44

Using APL terminals 45
Using nonqueriable displays with the APL feature 45
Using nonqueriable printers with the APL feature 45

Batch processing 46
GDDM application programs under VM/XA 46

Chapter 7. The GDDM print utilities 47
Processing for a printer device 47
Processing for a plotter device 47
CICSIVS print utility 48

Invocation 48
Printer and plotter operating instructions 48

Table of contents (Volume 2) V

Messages
The VSE print job utility
IMSIVS print utility

Invocation
Messages

TSO background print utility
The ADMPRINT print utility
Printing alphanumeric files
Deleting a print request
Printer and plotter operating instructions
Invocation
Messages
JES/328X

48
48
49
49
49
49
50
50
50
51
51
52
53

Usage 53
Examples 53
Printing alphanumeric files 54
Common errors 54
Interfaces 54

VM/CMS print utility 55
Invocation 55
Printing GDDM files through RSCS 55
Automatically initiating the VM/CMS print utility 56
Printer and plotter operating instructions . 56
Messages 56
Nonqueriable printers with the APL feature 56

Image Print Utility 56
Composite Document Print Utility 57

Running the CDPU application program 58
ADM4CDUx 58
Printers for composite documents ... 62
Color masters from CDPDS documents 62
Inline resources for AFPDS printers 62
GDDM error reporting 62
The GDDM font emulation and conversion tables 62
AFPDS structured fields supported by the CDPU 63

Chapter 8. Symbol sets 65
How GDDM handles symbol sets 65

Loading programmed symbol stores 65
PS store numbers 65
Symbol-set identification 65
Using preloaded PS sets 66
Selecting symbol sets by device type 67
USing PS with graphics 67
Loading graphics symbol sets 67
PS overflow caused by picture complexity ... 68
USing symbol sets in printing 68
Using DBCS symbol sets 68

Naming conventions for sample image symbol sets 68
Sample image symbol sets 69
Sample vector symbol sets 70

Chapter 9. Picture Interchange format flies
Processing PIF files under TSO

The conversion operation
The transfer operation
Commands to use under TSO
The format of a PIF file

Processing PIF flies under VM/CMS
The conversion operation
The transfer operation
Commands to use under VM/CMS
The format of a PIF file

Creating PIF data under GDDM
Creating PIF data using GDDM-PCLK
Creating PIF data at a work station
How PIF data relates to GDF data
Base PIF

Restrictions and considerations
The structure of a PIF file

vi Base Programming Reference

71
71
71
71
72
73
73
73
73
74
75
75
75
75
75
76
76
77

Chapter 10. Setting up color-master tables 79
The ADMMCOL T macro 79
The ADMDJCOL module 80

Chapter 11. Application data structure for mapping 85
Adjunct fields .. 85

COBOL example 86
Assembler language example 86
PLII example 86
Adjunct field names 86
Adjunct values 86

Character attributes 91
Setting character attributes from the terminal . 92

DeSignator characters for light-pen or cursor
selection 92

Map-defined input editing 92
AID translation 93
Folding 93
Justification and padding 93

Copying the application data structure into the
program 93

Overlaying application data areas 94
Double-byte character string fields 94
Mixed double-byte and single-byte character fields

in maps 94
GDDM-supplied mapping constants 95

Assembler mapping constants table -
ADMUAIMC 96

COBOL mapping constants table - ADMUCIMC 98
PLII mapping constants table - ADMUPIMC 101

Chapter 12. Special-purpose programming In
GDDM 103

USing the system programmer interface 103
Initialization . 103
Format of the system programmer interface

block 104
Specifying user exits 104

Exit values 105
GDDM user-exit conventions 105
The task switch exit 106
The call intercept exit 107
The coordination exit 107
Storage exit routines - interface specifications 108

Chapter 13. GDDM high-performance
alphanumerics 109

HPA data structure 109
The field list 109
The data buffer 112
The bundle list 112
How to use high-performance alphanumerics . 115

Chapter 14. Country-extended code pages 121
GDDM code page concepts and facilities 121
What you should consider doing 122
Code pages supported by GDDM 123
Specifying code pages 124
Compatibility with releases of GDDM before

Version 2 Release 2 124
Code page conversion in GDDM objects 125
Converting ICU charts 125
Editing symbol sets 125
Utility program for lagging GDDM object files

(ADMUOT) 125
Code page conversion by GDDM Print Utility 125
APL characters 125
4250 printer code page function 125
Symbol sets 126

Appendix A. GDDM's default values 127

GDDM's default values, listed by subsystem
Changing GDDM's default values
GDDM external defaults - CICSIVS
GDDM external defaults - IMSIVS
GDDM external defaults - TSO
GDDM external defaults - VM/CMS
GDDM external defaults - VSE/Batch

Alphabetic list of GDDM default values .

Appendix B. Processing option groups and
name-lists

Processing option groups: summary .. .
Processing option groups: full descriptions

Name-lists
Reserved names "*" and blanks ..
Family-l name-list
CICSIVS name-list ..
IMSIVS name-list
1S0 name-I ist
VM/CMS name-list

Appendix C. GDDM object file formats
Record structure ...

The header record
The data record

Appendix D. GDF order descriptions
Compatibility
Saving GDF orders
Format of GDF objects
Coordinates and aspect ratio

GDF orders: summary
Alphabetic list
Code value list
Process specific orders (PSC)

General structure
Order formats
Padding
Primitives
Coordinate lengths
Attributes

GDF orders: full descriptions
Arc
Arc parameters
Affia
Background color mix order
Call segment order
Character angle
Character box
Character-box spacing .
Character direction
Character precision
Character set
Character shear
Character string
Color
Comment
Current position
End area
Fillet
Foreground color mix
Fractional line width
Full arc
Image - begin
Image - data
Image - end
Line
Line type
Line width ..
Marker
Marker box

127
127
128
131
134
137
140
142

149
149
150
160
160
160
160
160
161
162

163
163
163
164

165
165
165
166
166
167
167
168
169
169
169
170
170
170
170
171
171
171
172
172
172
172
172
173
173
173
173
174
174
175
176
176
176
176
177
177
178
178
179
179
179
180
180
180
180

Marker scale
Marker type
Model transform
Pattern
Pick (tag) identifier
Pop
Process specific control
Symbol-set names
Begin Symbol-set mapping
Map Symbol-set identifier
End Symbol-set mapping

Picture prolog
Begin picture prolog
Set picture boundary
Set Picture Origin

Default process specific orders
Set default arc parameters
Set default background mix
Set default character angle
Set default character box
Set default Character-box spacing
Set default character direction
Set default character precision
Set default character set ..
Set default character shear
Set Default Coordinate Type
Set default extended color .
Set default foreground mix .
Set default fractional line width
Set default line type
Set default marker box
Set default marker type
Set default pattern symbol
Set Default Pick Identifier
Set Default Picture Scale
Set Default Text Alignment
Set default viewing window
End Picture Prolog
Relative line
Segment attribute
Segment attribute modify
Segment characteristics
Uses of the segment characteristics order
Segment end
Segment end prolog
Segment position
Segment start
Segment viewing window
Text alignment

Appendix E. Image object definitions
Formats and compression types

3193 data stream and composed-page printer
formats

Unformatted data
Objects in the GDDM object library

Appendix F. Symbol-set formats
Image symbol set component format
Vector symbol set component format

Format of symbol definitions

Appendix G. Device characteristics tokens
GDDM-supplied device tokens
Creating your own device tokens

Appendix H. Call format descriptor module ..
The address table
The call descriptor table
The parameter descriptor table

181
181
181
182
182
182
182
182
183
183
183
183
183
184
184
184
184
185
185
185
185
185
186
186
186
186
186
187
187
187
187
188
188
188
188
189
189
190
190
190
191
191
191
191
191
191
192
193
193

195
195

195
198
198

199
200
201
201

203
203
203

209
209
209
211

Table of contents (Volume 2) vii

Appendix I. APL request codes module 213
The address table 213
The request code table 213
GDDM Base calls and associated APL codes 214

GDDM Base APL codes, in alphabetic order .. 214
GDDM Base APL codes, in numeric order 219

GDDM-PGF calls and associated APL codes 225
GDDM-PGF APL codes, in alphabetic order 225
GDDM-PGF APL codes, in numeric order 227

Appendix J. Request control parameter codes .. 231
GDDM RCP codes 231

GDDM Base RCP codes, listed alphabetically . 231
GDDM Base RCP codes, listed numerically 237

GDDM-PGF RCP codes 243
GDDM-PGF RCP codes, listed alphabetically 243
GDDM-PGF RCP codes, listed numerically ... 245

Appendix K. Sample programs 249
The ADMUSC1, ADMUSF1, and ADMUSP1 sample

programs 249
IMSNS version . 249

The ADMUSC2, ADMUSF2, and ADMUSP2 sample
programs 249

viii Base Programming Reference

IMSNS version . 249
The ADMUSP3 sample program 249
The ADMUSP4 sample program 250
The ADMUSP7 sample program 250
The ADMUTMT and ADMUTMV sample program . 250

Compiling and link-editing under TSO 250
Running under TSO 250
Compiling and link-editing under VM/CMS ... 250
Running under VM/CMS 250
Using the sample task manager 251

Compiling, link-editing, and running the sample
programs 251

Compiling the programs 251
Link-editing the programs 251
Running the programs 253

Appendix L. Format of a Composite Document
Presentation Data Stream 255

Structured fields 255
Document structure 255
Structured field formats 256

Index 263

customizing your program

Chapter 1. Customizing your program and its environment

You can customize various aspects of the GDDM and
subsystem environment if you find that the defaults
supplied with the product do not suit the needs of your
application program exactly. You can modify GDDM to
suit the needs of your installation, both hardware and
software, the application programs that run in it, and
the end users of your GDDM programs.

Before Version 1 Release 4, a GDDM installer or user
had to change GDDM defaults by modifying and assem­
bling an Environmental Defaults Module, the specific
structure of which changed on each release. Since
Version 1 Reiease 4, GDDM lets you create an External
Defaults Module, the structure of which is such that a
GDDM installer or user does not have to remodify or
reassemble the module on subsequent releases. Also,
in some operating environments, you can keep source­
format defaults specifications on a locally-accessed
file.

By using the information in this chapter and the sup­
porting Chapters 2 through 6, you will be able to
modify:

• Defaults that apply to the GDDM environment.

You can change the defaults provided in GDDM.
The term delault covers a wide range of parame­
ters that you might want to change to support the
particular considerations for your installation, or
for your program.

They include, for example, naming conventions for
files and data sets, buHer sizes and other
performance-related factors, time, date, and
number punctuation conventions, the language
used in panels and error messages, and so on.

If you have upgraded from a previous release of
GDDM, you can continue to use the GDDM Environ­
mental Defaults Module for your particular sub­
system; they are as follows:

CICS/VS ADMADFC
IMS/VS ADMADFI
T50 ADMADFT
VM/CM5 ADMADFV.

Note that you can use the old method only for
defaults that you specified in your earlier release
of GDDM; newly supported defaults are available
only through the new methods described in this
manual.

For details of the GDDM-supplied defaults that you
can change, see Appendix A, "GDDM's default
values" on page 127.

• Exits, either for jndividual users or for the whole
installation.

This allows a system program to trap specific
events whenever an application program uses a
GDDM or system resource. Such events include
task-switching in TSO, intercepting some or all
GDDM calls, and so on.

For details of the GDDM user exits that you can
specify, see "Specifying user exits" on page 104.

• Synonyms (called nicknames) that remove the
need for specifying complex DSOPEN parameter
structures.

Nicknames help you to write application programs
that are more device-independent than they might
otherwise be. For example, you can write a
program that sends a picture to a display screen,
and, without having to change the source program
or recompile it, you can use the program to send
the picture to a file for later printing on a
composed-page printer.

For details of how to specify nicknames, see
"Using nicknames to define device characteristiCS"
on page 3.

GDDM provides an integrated method for changing
these items. A user delault specification (UDS) is the
means by which you define a specific value, or set of
values, for changing GDDM defaults, exits, and nick­
names.

User default specifications

GDDM has two formats of user default specifications
(UDSs):

• A source-format UDS

• An encoded (or assembled) UDS.

Both formats perform the same range of functions.
However, the source-format UDS has to be interpreted
by GDDM at run time; this involves an additional proc­
essing overhead in comparison with an encoded UDS.
Because of this overhead, It is recommended that you
use the source-format UDS only for changing defaults
that apply to individual end users.

There are three types of UDS:

• ADMMDFT or DEFAULT (see "Changing GDDM's
default values" on page 127)

• ADMMEXIT (see "Specifying user exits" on
page 104)

• ADMMNICK or NICKNAME (see "Using nicknames
to define device characteristics" on page 3).

Passing a source-format UDS to GDDM

Depending on the subsystem under which GDDM runs,
you pass your source-format UDS to GDDM In the fol­
lowing ways:

• Under all subsystems, by means of the ESSUDS
call, in which you specify the length and data area
containing the UDS. The ESSUDS call is described
in the GDDM Base Programming Reference,
Volume 1.

• Except under IMSIVS, by means of an External
Defaults File.

The value specified for a particular default in an
ESSUDS call overrides any value specified for that
default in an External Defaults File.

Chapter 1. Customizing your program and its environment 1

customizing your program

External defaults file

This section describes the format of an External
Defaults File, which can contain many source-format
UDSs. A GDDM External Defaults File must be F-format
or V-format, with an LRECL of no greater than 256. The
recommended format is F(SO).

An External Defaults File cannot be used under IMSIVS.
Under CICSIVS, it is Intended to be used for problem
determination purposes only; for details, see the GDDM
Diagnosis and Problem Determination Guide.

Under TSO, you must allocate (using the ALLOC
command) a corresponding file name, the GDDM
default of which is ADMDEFS, to the sequential data set
that represents the External Defaults File. This must be
done before you call GDDM.

In the associated OSIVTAM Print Utility environment,
you must allocate a corresponding ddname (the default
is ADMDEFS) in the Print Utility JCL to the sequential
data set that represents the External Defaults File.

Under VM/CMS, you must ensure that the External
Defaults File exists with a suitable filename and filetype
(the default is PROFILE ADMDEFS) on a currently
accessed disk.

The records in a GDDM External Defaults File must be
in one of the following forms:

[label] type value

[label] type value-partl.
value-part2.

value-partn

* comment text

[optional comments]

[optional comments]
[optional comments]

[optional comments]

The records must conform to Assembler-like coding
conventions. The conventions are:

• The labels are optional. If specified, they must
start in column 1 and must not be longer than S
characters; they are Ignored.

• The type must be preceded by at least one blank.

• The type and value parameters must be separated
by at least one blank.

• The value parameter(s) must not contain
embedded blanks.

• In a value parameter, a comma (,) followed by a
blank or an end-of-record marker indicates that the
value is continued on the next noncomment record.
The continuation must be preceded by at least one
blank. Any text that starts in column 1 is assumed
to be part of a label.

2 Base Programming Reference

• There is no limit on the number of continuation
records allowed.

• In a value parameter, a blank or an end-of-record
marker that is not preceded by a comma indicates
the end of that source-UDS.

• Any text that follows a blank after a value param­
eter is assumed to be comment text, and is
ignored.

• Comment records are optional; they require an
asterisk (*) in column 1. Comment records are
ignored in all circumstances.

• The source-format UDS can be entered in mixed
case. Any lowercase characters are converted to
uppercase before processing.

Converting a source-format UDS into an
encoded UDS

It is possible (using the GDDM-supplied ADMMDFT,
ADMMEXIT, and ADMMNICK macro instructions) to
assemble a source-format UDS so that it is converted
into the encoded version. You must use the ADMMDFT
(not DEFAULT) or ADMMNICK (not NICKNAME) form if
you are going to assemble the source-format UDS.

When assembling source-format UDSs to produce
encoded UDSs, ADMMDFT START and ADMMDFT END
macro invocations can be used to generate the associ­
ated length field required in the construction of an
External Defaults Module.

Passing an encoded UDS to GDDM

There are three ways of passing an encoded UDS to
GDDM for processing:

1. In an External Defaults Module
2. In the SPINIT call
3. In the ESEUDS call.

The value specified for a particular default in an
External Defaults File overrides any value specified for
that default in an External Defaults Module. Similarly,
the value specified for a particular default in a SPINIT
call overrides any value specified for that default in an
External Defaults File. Finally, a value specified for a
particular default in an ESEUDS or ESSUDS call over­
rides any value specified for that default in a SPINIT
call.

The SPINIT call is described in "Using the system pro­
grammer interface" on page 103; the ESEUDS call is
described in the GDDM Base Programming Reference,
Volume 1.

External defaults module

In all subsystems, a GDDM installer (and, possibly, an
end user) can create a GDDM External Defaults Module
by assembling a set of source UDSs, using
GDDM-supplied ADMMDFT, ADMMEXIT, or ADMMNICK
macros. The resultant module contains a 4-byte length
field, followed by a list of encoded-UDSs.

The source of a GDDM External Defaults Module must
contain a set of source-UDSs in the same format as the
External Defaults File (as described under "External
defaults file" on page 2). The set of source-format
UDSs must be delimited by ADMMDFT START and
ADMMDFT END macro invocations. Also, the source
must conform to Assembler-language macro-coding
conventions. For example, assuming that no ICTl
instruction is used:

• Continuations must begin in column 16.
• Continuations must be flagged by using a nonblank

character in column 72.
• The source-format UDSs must be entered in upper­

case.

The source of an External Defaults Module must be in
the following form:

ADMADFx CSECT

ADMMDFT START

[label] type value

[label] type value

[label] type value

ADMMDFT END

END

(See the note below)

[optional comments]

[optional comments]

[optional comments]

Note: ADMADFx is the name of the External Defaults
Module appropriate to the user's subsystem; that is,

ADMADFC under CICSIVS,
ADMADFD under VSE/Batch,
ADMADFI under IMSIVS,
ADMADFT under TSO, and
ADMADFV under VM/CMS.

Using nicknames to define device
characteristics

Another type of user default specification (UDS) is a
nickname. Nicknames provide a way of defining all the
characteristics of a device in a table, and then refer­
encing that device on a DSOPEN call just by using the
nickname.

Nicknames can be used in this way to extend the range
of devices supported by current applications, often
without requiring any modification to the applications.

Nicknames also extend the range of devices supported
by the GDDM Print Utilities, by providing a mechanism
for passing complex device definitions to the
asynchronously-called utilities.

Nicknames also enable complex devices to be prede­
fined by the installation programmer, thus simplifying
the tasks of the application programmer and the end
user. The application programmer and end user retain
the ability to override such predefinitions.

customizing your program

For examples of how to use nicknames, see the GDDM
Application Programming Guide, Volume 1.

The same mechanisms are available for specifying
nicknames as can be used for defaults; that is. they can
be derived from:

• The External Defaults Module
• The External Defaults File
• A SPINIT call
• An ESEUDS or ESSUDS call.

A nickname can either be in source or encoded format.
A source nickname UDS can be defined:

• In an external defaults file
• As an argument to the ESSUDS call.

An encoded nickname UDS can be defined:

• In an external defaults module
• As an argument to the SPINIT call
• As an argument to the ESEUDS call.

The ESEUDS and ESSUDS calls are described in the
GDDM Base Programming Reference, Volume 1.

The SPIN IT call is described in "Using the system pro­
grammer interface" on page 103.

Source format of a nickname UDS

The source-format syntax of a nickname UDS is as
follows:

[label] ADMMNICK
or
NICKNAME

[APPEND I REPLACE,]
[FAM=fami ly.]
[NAME=name-list,]
[TOFAM=to-family,]
[TONAME=to-name-list.]
[DEVTOK=device-token,]
[PROCOPT=procopt-list]

Any number of nickname UDSs can be defined. More
than one nickname UDS can be defined for the same
family. device name, or both of these.

The nickname parameters are described below. The
terms "family". "device token". "name-list". and
"procopt" are explained In the description of the
DSOPEN call in the GDDM Base Programming Refer­
ence, Volume 1.

label
Optional (ignored - it is not part of the UDS).

APPENDI REPLACE
Specifies whether this specification is to be added to
or replaces an existing specification. The default is
APPEND.

FAM=famlly
A nonnegative integer. The default is FAM =0.

The value for "family" does not have to be a valid
DSOPEN family number. Only the final "target­
family" must be valid.

NAME = name-list
A name-list in the form of a list of "name-parts,"
each being a string of from 0 through 8 nonblank
characters. A blank "name-part" is represented by
a string of 0 characters.

Chapter 1. Customizing your program and its environment 3

customizing your program

These are valid name-lists:
NAME"namel. one nonblank

part
name-

NAME=(namel), one nonblank name­
part

NAME=(). one blank name-part
NAME=(namel.name2.name3). three nonblank name­

parts
NAME=(namel •• name3). two nonblank name­

parts and one blank
name-part.

The name-list can be nUll, that is, it is entered as
NAME= •. This is the default. In this case, if any more
nickname parameters are entered, they must be
entered without any intervening blanks; all text after
a blank is taken as comment text and is ignored.

A name-part in the NAME parameter can also
contain a leading or trailing "?" generic character.
or both of these. Such a character is considered to
match any combination of characters in the same
position as the "1." Thus:
, ?abc' matches any name-part ending with

'abc?'

'?abc?'

'abc'
matches any name-part starting with
'abc'
matches any name-part containing 'abc'.

Embedded "?" characters are not allowed, and are
diagnosed as being in error.

It is not necessary for "name-list" to be a valid
DSOPEN device name-list. Only the final "target­
name-list" must be valid.

TOFAM=to-family
An integer (0 or greater). 0 is the default.

TONAME = to-name-list
A name-list in the same form as the NAME param­
eter (except that "1" generic characters are not
allowed). The default is a null to-name-list.

DEVTOK = device-token
A string of 0 through 8 nonblank characters. The
default is a null string.

The DEVTOK parameter enables an explicit
(non-"*", nonblank) device token to be used, when
the application program has specified a DSOPEN
device token of "*" (or blank). An explicit (that is,
non-"*". nonblank) device token specified in the
DSOPEN call cannot be overridden.

PROCOPT = procopt-I ist
A procopt-Iist in the form of a list of "procopt­
specifications" (procopt-specs). thus:

PROCOPT=«procopt-spec).(procopt-spec) •••••)

Each procopt-spec is a keyword identifying a spe­
cific DSOPEN processing option followed by a
number of arguments valid for that processing
option, thus:

PROCOPT=«keyword.argument.argument).
(keyword. argument), .•••)

The default is a null procopt-list.

Note that the following processing options accept a var­
iable number of arguments:

4
18
20
23
1002
1003

PRINTCTL
STAGE21D
ORIGINID
SPECDEV
CPSPOOL
CPTAG

4 Base Programming Reference

Also. the following variable-length proceSSing options
are "mergeable", as described below:

4 PRINTCTL
20 ORIGINID

Full details of all DSOPEN processing options currently
available are given in Appendix B. "Processing option
groups and name-lists" on page 149.

Nickname scanning and matching

GDDM maintains a "nickname-list" containing all the
nickname UDSs that have been defined, in the following
order:

1. Those defIned in an External Defaults Module
2. Those defIned in an External Defaults File
3. Those defined by means of the SPINIT call
4. Those defined by means of ESEUDS or ESSUDS

calls (in the order in which the calls are made).

When an application program issues a DSOPEN call,
GDDM constructs a "source DSOPEN parameter list"
that contains

"source-family"
"source-name-list"
"source-device-token"
"source-procopt-list"

and a "target DSOPEN parameter list" that contains

"target-family"
"target-name-list"
Utarget-device-token"
"target-procopt-list".

GDDM initializes both these parameter lists to the
DSOPEN cali parameters specified by the application
program. (The DSOPEN "device-id" parameter is not
affected by nickname processing.)

Nickname scanning

GDDM then scans the "nickname-list" for any nickname
UDSs whose FAM and NAME parameters match the
"source-family" and "source-name-list" (in the "source
DSOPEN parameter list"). GDDM updates the "target
DSOPEN parameter list" using the TOFAM, TONAME,
DEVTOK. and PROCOPT parameters of the matching
nickname UDSs in the manner described in "Nickname
matching" on page 5.

The resulting "target DSOPEN parameter list" is itself
subject to more nickname processing. After each scan.
GDDM reinltlallzes the "source DSOPEN parameter
list" from the resulting "target DSOPEN parameter Iist"·.
GDDM then rescans the "nickname-list" for any nick­
name UDSs that match the modified "source DSOPEN
parameter list" and updates the "target DSOPEN
parameter list" accordIngly.

Any nickname UDSs that are found to match on a scan
or a rescan for a DSOPEN are excluded from subse­
quent rescans for that DSOPEN. This applies even if
the nickname UDSs were ignored because the
REPLACE parameter was specified In a later nickname.

GDDM repeats the rescanning process until no more
matching UDSs are found. The final "target DSOPEN
parameter list" Is then processed, as described in the
description of the DSOPEN cali in the GDDM Base Pro­
gramming Reference, Volume 1.

Nickname matching

The DSOPEN parameter list specified by an application
program might not match any nickname UDSs in the
"nickname-list". In this case, the DSOPEN parameter
list is processed directly.

The rules for matching are as follows:

• The FAM value must be 0 or the same as the
current "source-family" value for the nickname to
match the current "source DSOPEN parameter
list" .

• For the nickname to match the current "source
DSOPEN parameter list", the name-list in the
NAME parameter must either be null or must •
match the current "source-name-list" .

The two name-lists match when the corresponding
name-parts are the same (after left-justification,
translation to uppercase, and padding with blanks).
In this respect, if the name-lists do not contain the
same number of name-parts, the shorter name-list
is extended with "*" name-parts for the purpose of
comparison. For example:

'FRED' and '(FRED)')
'FRED' and '(FRED,·)') match
'FRED' and '(FRED,·,·)')

but 'FRED' and '(FRED,ADMPRINT), - do not match
• If APPEND is specified in a matching nickname, the

effect of the nickname is merged with that of any
preceding nickname in the current scan or rescan,
according to the processing rules defined below.

If REPLACE is specified in a matching nickname, it
causes any preceding matching nickname in the
current scan or rescan to be ignored. It does not
cancel the effect of preceding scans or rescans.

If the nickname is found to match the current "source
DSOPEN parameter list", GDDM updates the "target
DSOPEN parameter list" as follows:

1. The TOFAM is examined.

TOFAM=O
The "target-family" is not changed.

TOFAM = nonzero
The "target-family" is changed to the value
to-family.

2. The TONAME is examined.

TONAME = null
The "target-name-list" is not changed.

TONAME = not-null
The "target-name-list" is changed to be the
value of the "to-name-list".

customizing your program

3. The DEVTOK is examined.

DEVTOK'" null, (that is, a null device-token)
The "target-devlce-token" is not changed.

DEVTOK = not-nUll
If the current "source-device-token" is "*" or
null, the "target-device-token" is changed to
be the value of the "device-token". Otherwise,
the "target-devlce-token" is not changed.

4. The PROCOPT is examined.

PROCOPT=, (that is, a null procopt-list)
The "target-procopt-list" is not changed.

PROCOPT= ((procopt-spec),)
The procopt-list Is Inserted into the "target­
procopt-list" such that It follows any procopt­
lists added so far during the current scan or
rescan, but precedes any procopt-lists that
were present at the start of the current scan or
rescan.

Note that, in a DSOPEN procopt-list, the latest
procopt-specificatlons take priority; that is to say,
where a procopt-list contains two or more procopt­
specs for the same processing option, the latest
will apply. (Exceptions to this rule are the
"mergeable" PRINTCTL and ORIGINID processing
options; see below.) This means that the
PROCOPT parameter enables an explicit procopt­
specification to be applied, if the application
program did not specify the corresponding proc­
essing option group in the DSOPEN call. A proc­
essing option group specified in the DSOPEN call
cannot be overridden.

Note: In a DSOPEN procopt-list, any procopt­
specifications that are not applicable to the
DSOPEN device family and device name-list are
ignored.

Encoded format of a nickname UDS

The encoded format of a nickname UDS is shown here.

The operation of an encoded nickname UDS is identical
to that of a source-format nickname UDS. However, the
following points should be noted:

• A null source-name-list Is expressed by specifying
o as the number of source-name-parts (N) and by
omitting the source-name-parts entirely.

• A null device token is expressed by specifying It as
all blanks or all X' 00' .

• A null procopt-list is expressed by specifying 0 as
the number of procopt-words (P) and by omitting
the procopt-words entirely.

• A null target-name-list Is expressed by specifying 0
as the number of target-name-parts (T) and by
omitting the target-name-parts entirely.

Chapter 1. Customizing your program and Its environment 5

customizing your program

Word 1

2

3

4

5

6

7

8

9

2N+4

2N+5

2N+6

2N+7

2N+8

2N+9

2N+l()

2N+1l

2N+P+9

2N+P+HI

2N+P+1l

2N+P+12

2N+P+13

2N+P+14

2N+P+2T+9

2N+P+2T+HI

Length (in full-words): 2N+P+2T+ID

UDS-code: 2DOl

Replace (D) or Append (1)

Source fami ly

Number of source name-parts (N)

Source-name-part 1 (8 bytes)
(padded with blanks, as necessary)

Source-name-part 2 (8 bytes)
(padded with blanks, as necessary)

Source-name-part N (8 bytes)
(padded with blanks, as necessary)

Target family

Device token (8 bytes)
(padded with blanks, as necessary)

Number of procopt words (P)

Procopt-word 1

Procopt-word 2

Procopt-word P

Number of target names (T)

Target-name-part 1 (8 bytes)
(padded with blanks, as necessary)

Target-name-part 2 (8 bytes)
(padded with blanks, as necessary)

Target-name-part T (8 bytes)
(padded with blanks, as necessary)

6 Base Programming Reference

CICS/VS

Chapter 2. Using GDDM under CICSNS

This chapter describes the use of GDDM under the
CICS/OSIVS and CICS/DOSIVS subsystems. It contains
these sections:

• Overview

• Programming languages and restrictions

• Compiling and link-editing GDDM application pro­
grams

• Using the non reentrant interface

• USing the system programmer interface by means
of dynamic load

• CICS pseudoconversatlonal applications

• Data sets and file processing

• Display terminal conventions

• Using GDDM with Basic Mapping Support

• CICSIVS GDDM default error exit

• Requesting transaction-independent services

• Using the resource audit trails

• Running application programs in VSE batch mode.

The print utility is described in Chapter 7, "The GDDM
print utilities" on page 47.

Application programs. which must be written In the
command-level (EXEC) interface. are treated as normal
CICSIVS applications except that they must be link­
edited with GDDM interface modules.

A working knowledge of CICSIVS Is assumed
throughout.

Programming languages and
restrictions

GDDM can be used by CICSIVS command-level (EXEC)
application programs written in PLII, COBOL, or
Assembler language.

COBOL restriction: COBOL programs run under
CICSIVS must not use the STOP RUN statement.

Compiling and link-editing GDDM
application programs

Examples of the JCL that can be used to compile and
link-edit application programs written in COBOL, PLlI,
and Assembler language are listed on pages 17
through 22 at the end of this chapter.

Compiling a PL/I program

If you use the GDDM-supplied declarations In your
program, you must access the libraries containing
them before compiling.

Link-editing a GDDM application program

An application program using GDDM under CIC~IVS
must be link-edited with CICSIVS command-level
(EXEC) stubs In the usual way, as described In the
CICSIVS Installation and Operations Guide. Unless the
application program uses dynamic load facilities to
access GDDM using the System Programmer Interface
(see "Using the system programmer interface with
dynamic load" on page 8), the program must also be
link-edited with an appropriate GDDM Interface module
or modules.

Link-editing under CICS/OSNS

Under CICS/OSIVS, the required interface module can
be explicitly included in the link-edit process. Or, if the
application program uses one of the other FSINIT entry
points described In the GDDM Base Programming Ref­
erence, Volume 1, the Interface module can be Included
by linkage editor automatic library call facilities. The
following is a list of GDDM interface modules for
CICS/OSIVS:

Interface

Nonreentrant
Reentrant
System
programmer

Interface
module

ADMASNC
ADMASRC
ADMASPC
orADMASPKC
(see note)

FSINIT
alternative entry

FSINNC
FSINRC

Note: ADMASPKC Is an alias entry point for
ADMASPC, and Is provided for compatibility with
GDDM-PGF Version 1 Release 1.

Llnk-edltlng under CICS/DOSNS

Under CICS/DOSIVS, two GDDM interface modules are
required, and they should be explicitly included In the
link-edit process. The first Interface module should be
selected according to the form of Interface used by the
application program and the functions required, as
follows:

Interface Interface Functions
module Included

Nonreentrant ADMASNB GDDM
Reentrant ADMASRB GDDM
Nonreentrant ADMASNO GDDM and

GDDM-PGF
Reentrant ADMASRO GDDM and

GDDM-PGF
System ADMASP GDDM and

GDDM-PGF
programmer ADMASP GDDM and

GDDM-PGF

The second GDDM interface module required is
ADMASLC. It is used for all programs. This has an
alias entry point of ADMASKC. which is provided for
compatibility with GDDM-PGF Release 1.

Chapter 2. Using GDDM under CICSIVS 7

CICS/VS

In the absence of an explicit ENTRY statement it is
important to include the application program m'odule
before the relevant GDDM interface modules, to ensure
that the application program entry point is correctly
identified.

Thus, a CICS/DOSIVS PUI application program using
the reentrant interface to GDDM can be link-edited as
follows:

II JOB jobname
II OPTION CATAL

PHASE phase-name, *
INCLUDE DFHPLlI
INCLUDE pl/i-relocatable-module
INCLUDE ADMASRB
INCLUDE ADMASLC

II EXEC LNKEDT
1&

and a CICS/DOSIVS COBOL application program using
the non reentrant Interface to GDDM can be compiled
and link-edited as follows:

II JOB jobname

Standard
Translate Step

II OPTION CATAL
PHASE phase-name, *
INCLUDE DFHECI

II EXEC COBOL
INCLUDE ADMASNB
INCLUDE ADMASLC

II EXEC LNKEDT
1&

Using the non reentrant interface of
GDDM

GDDM provides a mechanism for using the
non reentrant interface form under CICSIVS while still
allowing GDDM and its invoking application program to
be quaSi-reentrant. To do so, the application pro­
grammer should reserve an area of 8 bytes in the asso­
ciated Transaction Work Area (TWA): This may require
changes in the corresponding transaction definition in
the CICSIVS Program Control Table (PCT). The pro­
grammer should then define an external control section
(CSECT) named ADMUOFF, to be link-edited with the
application program and the GDDM non reentrant inter­
face module. This should contain a full-word defining
the offset in the TWA of the area reserved for GDDM's
use.

Thus, for application programs that would not other­
wise require a TWA, the following would be sufficient:

1. Define a TWA of length 8 bytes by specifying the
corresponding option in the transaction definition
in the CICSIVS Program Control Table.

2. Define an ADMUOFF CSECT containing a full-word
of value zero, to be link-edited with the application
program.

8 Base Programming Reference

The ADMUOFF CSECT can be defined using standard
Assembler language facilities. Thus:

ADMUOFF CSECT
INIT DC F'e'

END

Or, high-level language constructs can be used, where
such are available. In PLII, the CSECT could be gener­
ated by a declaration of the form:

DECLARE ADMUOFF STATIC EXTERNAL FIXED BINARY (31)
INITIAL(n) ;

GDDM uses the area reserved in the TWA to store an
Application Anchor Block (AAB), in the format
described for the reentrant interface in the GDDM Base
Programming Reference, Volume 1. When the
nonreentrant interface is invoked, GDDM verifies that
the value contained in ADMUOFF is consistent with the
length of the TWA defined for the invoking transaction.

Through this mechanism, GDDM operates in a quasi­
reentrant way. Although the GDDM nonreentrant inter­
face module is not read-only, it does not prevent an
invoking transaction from servicing more than one
CICSIVS terminal at the same time.

Using the system programmer
interface with dynamic load

If an application uses only the system programmer
interface. all invocations of GDDM are through the
entry point ADMASP. This entry point can be resolved
by link-editing the application with the GDDM interface
module ADMASPC, as described under "Link-editing
under CICS/OSIVS" on page 7.

Or, the application can avoid these linkage-edit consid­
erations by using CICSIVS facilities (EXEC CICS LOAD)
to load dynamically a GDDM interface module
ADMASPLC containing the ADMASP entry point as
follows:

EXEC CICS LOAD PROGRAM(ADMASPlC) ENTRY (admasp-addr)
SET (dummy-var)

CICS/VS pseudoconversational
applications

A CICS pseudoconversational application is one which
appears to the terminal user as a normal conversa­
tional transaction, but is, in fact, a series of separate
transactions where the CONVERSE is implemented as
SEND and RECEIVE. One transaction ends with a
SEND, and the next starts with a RECEIVE.

In this way, system resources can be released for the
duration of "operator think time" thus making more effi­
cient use of CICS.

GDDM provides pseudoconversational support for pro­
cedural, mapped, or high-performance alphanumeric
data and output-only graphics and image by means of a
strictly defined protocol for GDDM application call
sequences.

Essentially, while operating in pseudoconversatlonal
mode, GDDM storage and resources (except for device
query data) are released at the termination of a partic­
ular transaction, and are reinitialized when the next
transaction is reinvoked by CICS to process the next
device input.

As no information is retained by GDDM across trans­
actions (other than device query data), it is the respon­
sibility of the application to ensure correct continuity of
the application; see below for details of the call
sequences to be used.

The following GDDM calls have a changed function
when pseudoconversational mode is being used:

DSOPEN
The PSCNVCTL processing option indicates to GDDM
whether pseudoconversational mode is in use, and
whether this is the Start of it, or a Continuation.

• The processing option group code is 25
• The length is 2 full-words
• The values are 0, 1, and 2 corresponding to NO,

START, and CONTINUE respectively
• The default is NO.

The nickname syntax for this processing option is:

(PSCNVCTL,{NOISTARTICONTINUE})

ASREAD
When the application is in "Continue
pseudoconversational" mode (PSCNVCTL,CONTINUE), the
first ASREAD call issued by the application causes the
output transmission to be suppressed, and only the
input part of the ASREAD call functions.

Subsequent AS READ calls work in the usual way, that
is, they result in output plus a "wait" for input. In this
way. transactions can drop into Conversational Mode if
they need to; see the description of the CLEAR key han­
dling and line-output errors below.

DSCLS
If pseudoconversational mode is in use, a DSCLS call
always causes the device keyboard to be unlocked.
Also, two options are provided that can be used by
pseudoconversational applications to end the pseudo­
conversational mode, and are available to conversa­
tional applications to cause explicit keyboard Unlock.

The complete DSCLS options and their meanings are:

o Erase the screen; if in pseudoconversational
mode, unlock the keyboard, and save any
changed device data.

1

2

3

Do not erase the screen; if in pseudo­
conversational mode, unlock the keyboard, and
save any changed device data.

Erase the screen and unlock the keyboard; if in
pseudoconversational mode, release the saved
device data.

Do not erase the screen but unlock the keyboard;
if in pseudoconversational mode, release the
saved device data.

The following application scenario illustrates the call
protocol for pseudoconversational mode:

• On the initial invocation of the transaction:

FSINIT

DSOPEN (Start pseudoconversational mode)

CICSIVS

Create alphanumeric data for the first screen

Create any graphics output

FSFRCE

DSCLS (Option 1 - do not erase the screen)

FSTERM

EXEC CICS RETURN TRANSID(Tname)
COMMAREA(Carea)

The array "Carea" should contain any infor­
mation required to continue the transaction
processing, for example, Application Data
Structures used for output of mapped data.

• On subsequent invocations of the transaction:

FSINIT.

DSOPEN (Continue pseudoconversational
mode).

Create alphanumeric data for the "previous"
screen using the identical set of calls used the
last time, and also, if mapping is used, with the
same Application Data Structures (as saved in
"Carea").

Do not issue any graphics calls.

AS READ.

Process input in the usual way.

Create alphanumeric data for the next screen.

Create any graphics output.

FSFRCE.

DSCLS (Option 1 - do not erase the screen).

FSTERM.

EXEC CICS RETURN TRANSID(Tname)
COMMAREA(Carea) LENGTH(Clen).

The array "Carea" should contain any infor­
mation required to continue the transaction
processing; in particular, it should contain the
ADSs used for the output of any mapped data.

• Use DSCLS with Option 2 or 3 to terminate the
pseudoconversation.

As stated above, the first ASREAD call in a transaction
specifying "Continue pseudoconversational" mode,
only performs the input function; all output is sup­
pressed.

There are, however, two exceptions to this rule.

The first exception, when using mapped alphanu­
merics. is where the map group requests automatic
handling of the CLEAR key.

In this case, the ASREAD call performs as usual; that
is, it bypasses output and processes the input data
(only a cursor address and the CLEAR aid), whereupon
mapping signals a screen refresh.

The result of this is as if a second ASREAD call has
occurred; that Is, the screen is output again and the
transaction waits for input.

Thus the ASREAD call effectively works in the usual
way, and the transaction becomes a conversation for
this invocation.

Chapter 2. USing GDDM under CICSIVS 9

CICS/VS

The other exception is where a GDDM line-output error
message occurs before the ASREAD call.

In this case, the screen contents have been destroyed,
and for GDDM to continue to process correctly, the
screen has to be created again.

Thus once more, the ASREAD call works in the usual
way; that is, output plus a "wait for input" and the
transaction becomes "conversational" for this invoca­
tion.

Always-unlock-keyboard mode
Use of the always-unlock-keyboard processing option
improves the performance of CICS pseudo­
conversational applications by unlocking the keyboard
at FSFRCE instead of DSCLS.

Data sets and file processing

When running under CICSIVS, GDDM Base and
GDDM-PGF use three types of file processing:

• CICSIVS command-level (EXEC) File Control facili­
ties, to read and write data on a VSAM key­
sequenced data set.

• CICSIVS command-level (EXEC) Transient Data
facilities, to write data for subsequent internal or
external processing.

• CICSIVS command-level (EXEC) Temporary
Storage facilities, to read and write data required
for queued printer and external defaults support.

GDDM-IMD uses additional types of file processing; for
details, see the GDDM Interactive Map Definition
manual.

File control facilities

GDDM uses the File Control facilities to:

• Store and retrieve Image Symbol Sets (ISS) and
Vector Symbol Sets (VSS) , as required by calls to
GSLSS, PSLSS, PSLSSC, SSREAD, and SSWRT,
and through the Image Symbol Editor.

• Store and retrieve device-dependent pictures, as
required by calls to FSSAVE, FSSHOR, and
FSSHOW.

• Retrieve GDDM-IMD-generated mapgroups, as
required by calls to MSPCRT, MSQADS, MSQGRP,
MSQMAP, and MSREAD.

• Store and retrieve Graphics Data Format
(ADMGDF) files, as required by calls to GSSAVE
and GSLOAD.

• Store and retrieve image files, as required by calls
to IMAPT and IMAGT.

GDDM maintains these symbol sets, pictures, gener­
ated mapgroups, and ADMGDF files as keyed records
in VSAM key-sequenced data sets shared by trans­
actions running in the CICSIVS subsystem. The VSAM
data sets are referred to within GDDM using CICSIVS
File Control statements, and the data sets specified in
the DATASET option of these statements must be
defined in the CICSIVS File Control Table (FCT). The

10 Base Programming Reference

VSAM data sets must be opened, either when CICSIVS
is initialized, or dynamically, before GDDM requires
access to them. The underlying OSIVS or DOSIVS data
sets must have characteristics as shown in Table 1 on
page 12. Procedures for creating and Initializing suit­
able VSAM data sets are described in GDDM Installa­
tion and System Management for MVS or GDDM
Installation and System Management for VSE.

The default VSAM data set names are as defined in
Table 1 on page 12. These names can be changed, if
required, after installation, as described in
Chapter 1, "Customizing your program and its
environment" on page 1.

The use of the VSAM data sets can be controlled by the
ESLIB routine whose syntax is described in the GDDM
Base Programming Reference, Volume 1. This routine
establishes the set of VSAM data sets that are to be
used to store or retrieve a given type of object. The
VSAM data sets used are identified to this routine by a
list of file names.

The VSAM data sets identified are searched in the
order given in an attempt to find an object. An object is
stored only by means of the first data set name of the
list, even though it may have been retrieved from
another one. If no data set name list is provided, only
the default data set name is used for retrieving and
storing GDDM objects.

GDDM uses CICSIVS Task Control ENQ/DEQ facilities
to ensure the integrity of data as it is written or read on
the VSAM data sets. Specifically, GDDM ensures that
the particular records defining the content of a symbol
set, picture, or generated mapgroup cannot be updated
by one transaction while being read by another. If
additional control of the use of the VSAM data sets is
required (such as restricted write access), this should
be implemented by security mechanisms external to
GDDM, such as described in the CICSIVS Facifities and
Planning Guide.

GDDM symbol sets, pictures, generated mapgroups,
and ADMGDF files are stored on the VSAM data sets as
400-byte records, with an embedded key in the first 20
bytes, as follows:

Byte
0 ...•• 7 8 .•.• 15 16 19 20 •.•

Record
Name Type sequence Data

number

Name is that specified in the GDDM call as "symbol­
set-name", "picture-name", "group-name", or
"name", subject to the character-substitution rules
described in "Selecting symbol sets by device type"
on page 67.

Type is an 8-byte character string identifying the type of
the record, for example, "symbol set" or "picture",
and is defined in Table 1 on page 12.

Record sequence number is a 4-byte binary full-word
that sequences and uniquely identifies each record
within a symbol set or picture.

This key format is such that, if required, all of the
records defining a specific symbol set or picture can be
deleted without calling GDDM. This can be done by
using the CICSIVS File Control GENERIC DELETE func­
tion:

EXEC CICS DELETE DATASET (VSAM-data-set-name)
RIDFLD (first-16-bytes-of-key)
KEYLENGTH(16)
GENERIC

The Interactive Chart Utility (part of GDDM-PGF)
includes a directory function that supports list, delete,
and copy operations on GDDM objects such as symbol
sets, pictures, generated mapgroups, and ADMGDF
files.

Transient data facilities

GDDM uses CICSIVS Transient Data facilities to:

• Write object modules resulting from requests from
the Image Symbol Editor.

• Write output destined for a system printer device
as the result of calls to DSOPEN and DSCLS.

• Write trace records resulting from the FSTRCE
function.

• Write error log records resulting from invocation of
the GDDM CICSIVS Default Error Exit.

O~ect modules are written consecutively to a single
transient data destination. This must be defined in the
CICSIVS Destination Control Table (OCT), typically in a
manner that would route the object modules to a prede­
fined extrapartltion data set. Each object module gen­
erated contains a control section (CSECT) with the
name as specified by the appropriate utility, and has a
form suitable for link-editing with an application
program for subsequent reference, typically using the
GSDSS or PSDSS calls.

System printer device output is written to the transient
data destination identified using the DSOPEN call. This
must be defined in the CICSIVS Destination Control
Table (OCT), typically in a manner that would route the
output to a predefined extrapartltlon spool data set. If
so routed, the definition should indicate the presence of
ASA control characters in the data generated by
GDDM.

GDDM uses CICSIVS Task Control ENQ/DEQ facilities
t~ ensure that system printer output resulting from a
Single DSOPEN ... DSCLS sequence remains contiguous,
and Is not interleaved with the output from another
CICSIVS transaction. The application programmer
should ensure that the use of these facilities In multiple
transactions does not introduce excessive transaction
delays or interlocks.

Trace records are written to a single transient data
destination. This must be defined in the CICSIVS Desti­
nation Control Table (OCT), typically in a manner that
would route the output to a predefined extrapartition
spool data set. If so routed, the definition should indi­
cate the presence of ASA control characters in the
records generated by GDDM.

Trace records from different transactions may be inter­
leaved. For this reason, each record contains the cor-

CICSIVS

responding transaction name and terminal identifier.
For a description of the use of the FSTRCE function,
and of the format of the trace records, see the GDDM
Diagnosis and Problem Determination Guide.

For information on the trace facilities obtainable with
the new GDDM external default TRCESTR, see the
GDDM Diagnosis and Problem Determination Guide.

The above Transient Data destination names are as
defined in Table 1 on page 12. These names can be
changed, if required, after Installation (by specifying a
value for the CICTRCE option, as described under
"GDDM external defaults - CICSIVS" on page 128).

Error log records are written as they occur, to a single
transient data destination, which must be defined in the
CICSIVS Destination Control Table (OCT), in a manner
to suit the installation's requirements. Typically, the
destination would be defined as an extrapartltlon desti­
nation, which would route the error log records to an
external data set for subsequent printing.

Error log records from different transactions may be
interleaved. For this reason, each record contains the
corresponding transaction name, number, and terminal
identifier. The format of these error log records Is
described under "CICSIVS GDDM default error exit" on
page 14.

The Transient Data destination name for error log
records is ADML, and cannot be changed.

The programmer should ensure that the Transient Data
destination names required are all defined In the
appropriate CICSIVS tables. The underlying OSIVS or
DOSIVS data sets must have characteristics as shown
in Table 1 on page 12.

Temporary storage facilities

GDDM uses CICSIVS Temporary Storage facilities to
write data to intermediate data sets used in the proc­
essing of calls to DSOPEN, DSCLS, FSOPEN, and
FSCLS for queued printer output. The temporary data
sets created are read by the GDDM CICSIVS Print
Utility, and after output to the printer Is completed, the
data sets are purged.

By default, for queued printer output, GDDM selects
temporary storage queue names beginning with the
prefix" ADMT". This prefix can be chan·ged, if required,
by s~ecifying a value for the CICTSPX option, as
descrtbed under "GDDM external defaults - CICSIVS"
on page 128.

GDDM also uses CICSIVS Temporary Storage facilities
to read temporary External Defaults files. Such files
are intended to be used for problem determination pur­
poses only. For details, see the GDDM Diagnosis and
Problem Determination Guide.

By default, for External Defaults files, GDDM assumes
temporary storage queue names beginning with the
prefix "ADMD" . This prefix can be changed, If
required, by specifying a value for the CICDFPX option,
as described under "GDDM external defaults -
CICSIVS" on page 128.

Chapter 2. Using GDDM under CICSIVS 11

CICS/VS

Also, GDDM uses temporary storage to hold Device
Query data when running in pseudoconversational
mode. The queue name Is formed from a prefix
"ADMQ", which can be changed, if required, by specl-

fying a value for the CICTQRY option as described
under "GDDM external defaults - CICSIVS" on
page 128, and the terminal identifier.

Table 1. GDDM data-set characteristics for CICSIVS

Type of data GDDM default name or record Data-set type Data characteristics
type

Symbol sets Data set name = ADMDF Records In RECORDSIZE (400400)

Record type = ADMSYMBL VSAM data set KEYS(20 0)

Pictures Data set name = ADMF Records in RECORDSIZE (400400)

Record type = ADMSAVE VSAM data set KEYS(20 0)

Generated Data set name = ADMF Records In RECORDSIZE (400 400)
mapgroup Record type = ADMGGMAP VSAM data set KEYS(20 0)

GDF files Data set name = ADMF Records in RECORDSIZE (400 400)

Record type = ADMGDF VSAM data set KEYS(20 0)

Obje'ct Queue name = ADMD Transient data Fixed-length records, length 80 bytes
modules queue

System Queue name = ADMS Transient data Variable-length records, length 142
printer output queue bytes or greater (see note 4)

Queued (assigned by GDDM) Temporary (assigned by GDDM)
printer files storage data

set

Trace records Queue name = ADMT Transient data Variable-length records, maximum
queue length 137 bytes (including 4-byte ROW)

Error log Queue name = ADML Transient data Variable-length records, maximum
records (cannot be modified) queue length 120 bytes

External Queue name = ADMDxxxx Temporary Variable-length records, maximum
defaults files (xxx x is the CICSIVS terminal storage data length 256 bytes

Identifier) set

Pseudo- Queue name = ADMQxxxx Temporary Assigned by GDDM
conversa- (xxxx is the CICSIVS terminal storage data
tionalsaved identifier) set
device infor-
mation

Notes:

1. Record types for data stored in VSAM data sets cannot be changed.
2. For Transient Data DOSIVS disk output data sets, another 8 bytes, required by LIOCS for creation of the

count field, should be added to the block size.
3. The definition of Transient Data queues for System Printer Output should indicate the use of ASA control

characters,
for OSIVS RECFORM = VARUNBA or VARBLKA
for DOSIVSE CTLCHR = YES

4. The record length specified for System Printer Output queues should be enough to contain the 4-byte Record
Descriptor Word (ROW), the ASA control character, any Translation Reference Character (TRC) for 3800
devices, and the maximum number of columns for the type of System Printer selected by the application.
The value of 142 is enough for any of the System Printer device characteristic tokens distributed with GDDM.

5. The output for all 3800 devices should contain table reference characters (TRCs) and so, for OSIVS, the
parameter DCB=OPTCD=J must be included in the output JCL. Under OSIVS or DOSIVS, additional DCB
or SETPRT parameters, such as CHARS, FLASH, FORMS, and so on, may be required.

6. For more information, see the OSIVS2 MVS JCL manual or the DOSIVSE System Control Statements manual.

12 Base Programming Reference

Display terminal co""entions

In general, the CLEAR key and all PA and PF keys are
available to be returned as terminal input by means of
the GDDM ASREAD function. However, specific PA
keys that were defined in the CICSIVS System Initializa­
tion Table for other purposes, such as printing, are not
available for GDDM purposes.

Using GDDM with Basic Mapping
Support

It is possible to write a CICSIVS transaction that uses
both Basic Mapping Support (BMS) and GDDM func­
tions to manage the screen. Three methods for doing
this are described below. Note that GDDM uses
CICSIVS Terminal Control facilities to manage the
screen directly. For this reason, GDDM pictures dis­
played on the terminal cannot be paged using BMS
paging mechanisms.

An application program that uses both CICSIVS Ter­
minal Control and GDDM functions for input/output
operations is subject to the same considerations.
However, once GDDM is initialized, no transmissions
should be sent by CICSIVS Terminal Control that would
alter the state of the device, other than the screen
buffer. In particular, no structured fields to alter the
state of PS sets (other than those reserved by the
GDDM PSRSV call) should be transmitted.

Using GDDM and Basic Mapping Support
consecutively

When GDDM has formatted the screen and displayed
data by means of calls to ASREAD, or FSFACE, or both
of these, the displayed panel can be replaced with one
generated by BMS using a command such as:

EXEC CICS SEND MAP('map-name') .•. ERASE
The ERASE option should be specified, because BMS is
not aware of the GDDM screen interactions that
occurred since the last BMS interaction. .

The BMS map can use any of the field description func­
tions supported by CICSIVS, including references to PS
sets loaded by GDDM calls. The application program
can then read data entered by the terminal user using
BMS.

When the BMS interactions are completed, GDDM can
be called again to present the original or updated data.
A call to FSREST(O) should be issued before calling
FSFRCE or ASREAD, because GDDM would not be
aware of the BMS screen interactions. GDDM inter­
actions can then continue until the application program
calls BMS again.

Using GDDM and BMS concurrently
without coordination mode

It is possible to use GDDM and BMS to display data at
the same time on the same screen. In this type of oper­
ation, it is recommended that GDDM be used only to
output graphics data, and that BMS be used for all
alphanumeric input/output processing. Specifically, the
GDDM ASMODE function should not be used to set the
character reply mode.

CICSIVS

The GDDM picture should be presented first, using
FSREST(O) if necessary to clear any preceding BMS
data. The BMS map(s) should then be transmitted,
omitting the ERASE option. The map(s) should be
defined so that all screen areas used by GDDM for
graphics are in protected fields with normal attributes
(nonhlghllghted, nonselectable, neutral color, normal
intensity, and standard character set). The application
program can then read data entered by the terminal
user using BMS.

On completion of terminal data entry, the GDDM
FSREST(O) call should again be used on resuming
GDDM operations.

If the FSCOPY call is used to copy a panel containing
both GDDM and BMS data, only the GDDM data is
printed, because GDDM is unaware of the BMS data.

Using GDDM and BMS concurrently with
coordination mode
Note: BMS is not supported with CICS pseudo-
conversational mode.

The difficulty with the above method of using both BMS
and GDDM is that whenever GDDM rewrites the screen
it may choose to totally erase the screen and start
afresh. This, of course, also removes any existing BMS
output.

This problem is avoided if the device used for output is
explicitly opened with the DSOPEN statement and the
"coordination" mode of operation selected.

When GDDM generates the data streams for such a
device it never totally erases the screen when an
FSFRCE or ASREAD is issued. Instead It just rewrites
the contents of the area covered by the graphics field.
Any screen erasure required then becomes the respon­
sibility of the application using either Terminal Control
or BMS requests.

The following pOints should be noted:

• GDDM protects the graphics field by a column of
attribute bytes to its left, or at the end of the pre­
ceding row if the graphics field is positioned In the
first column.

The BMS maps should not use the area used by
these attribute bytes. If they do, the results are
unpredictable.

• GDDM locks the keyboard when the device is
opened, to interrogate the device properties.
Therefore, any BMS request to release the key­
board should be issued after calling GDDM to open
the device.

• GDDM writes only to the area of the screen
covered by the graphics field. Further, no alphanu­
meric fields, even if they are within the graphics
field, are written to the screen.

• ASREAD does not wait for input - it behaves as
FSFRCE.

• Programmed symbol (PS) sets may stili be loaded
within coordination mode.

Chapter 2. Using GDDM under CICSIVS 13

CICS/VS

• The application program must erase the screen
before issuing the first GDDM output request, to
establish either the default or alternate screen
size.

• After receipt of a CLEAR key the application should
rewrite the BMS portions of the screen before
issuing FSREST and FSFRCE calls to reestablish
the GDDM picture.

• The action of the default error exit is to erase the
screen and display a prompting message. This
causes disruption of the BMS-managed screen
layout. Therefore, the application should use the
FSEXIT function to redefine the handling of errors.

CICS/VS GDDM default error exit

The function of the GDDM Default Error Exit is gener­
ally described in the GDDM Base Programming Refer­
ence, Volume 1. When GDDM is running under
CICSIVS, the Default Error Exit operates as follows:

• The screen is cieared, and diagnostic messages
describing the error are displayed.

• Another message, describing the other actions
available to the terminal user, is displayed.

• If the terminal user presses the CLEAR key at this
point, the screen is cleared and GDDM returns
control to the point in the application program
where the error exit was invoked. GDDM also
retransmits the screen buffer contents on the next
terminal input/output-related call.

• If the terminal user uses any key other than
CLEAR, GDDM calls the CICSIVS Command Level
ABEND facility with an ABCODE of "GOOO", indi­
cating that the ABEND is in response to an error
message displayed on the terminal.

In either of the above cases, GDDM tries to write one or
more error log records to the CICSIVS Transient Data
destination ADML, if it was specified In the CICSIVS
Destination Control Table. The error log records
contain the diagnostic messages displayed on the ter­
minal, prefixed by transaction identification Informa­
tion, as follows:

Byte
e ... 3 4 5 ••• 8 9 HI ••• 13 14 15 16 •••

Trans- Task Terminal Oiag-
action I I nostic

10 Number 10 Text

Note that in the special case of initialization errors a
choice of action is not available to the terminai user
after the diagnostic message is displayed. For these
errors, GDDM unconditionally ABENDS, with an
ABCODE of "GOOO", after displaying the corresponding
diagnostic message on the terminal.

14 Base Programming Reference

Requesting transaction-independent
services

When running under CICS, GDDM usually uses
transaction-dependent services to acquire storage and
load programs. That is, GDDM uses CICSIVS services
that ensure that storage and· program resources are
rei eased should the task terminate normally or abnor­
mally.

Application programs using SPIN IT to initialize GDDM
can request that transaction-independent services be
used, by setting the CICTIF = YES option in an encoded
UDSL in the SPINIT call; see "Format of the system pro­
grammer interface block" on page 104. This causes
GDDM to use CICSIVS storage and program services in
such a way that storage and program resources are not
released at task or transaction termination.

Care must be taken when using this option, to ensure
that resources are eventually released in all situations
including abnormal termination of the task or trans­
action. The audit trail functions described in the fol­
lowing section can be used to monitor and controi the
status of the resources.

Using the resource audit trails

Care must be taken when requesting transaction­
independent services as described above to ensure
that resources are released in all situations including
abnormal termination of the task or transaction.

Application programs requesting such services can
also request resource audit trails, by specifying the
CICAUD option in an encoded UDSL in the SPINIT call;
see "Format of the system programmer interface
block" on page 104. The application program can use
this option to provide the addresses of 4-byte audit trail
anchors for storage and program resources.

The storage audit trail is maintained as follows:

• All blocks of storage acquired but not yet released
by GDDM are chained together by 4-byte pointers
at offset + 0 in each storage block.

• The storage audit trail anchor, addressed by the
CICAUD option, is set by GDDM to locate this chain
of storage blocks.

• The 4-byte pOinter in the last storage block in the
chain Is set to the initial value of the storage audit
trail anchor, as defined by the application program.

• If all storage blocks were released (as at termi­
nation), the storage audit trail anchor is reset by
GDDM to its initial value.

Thus, if abnormal termination occurs, the storage audit
trail anchor can be used to locate those blocks of
storage that are not yet released by GDDM. To be
effective, the audit trail anchor should be initialized to
an identifiable value, such as O.

The program audit trail is maintained as follows,

• At initialization, GDDM allocates a "program hold"
table of 41 entries, each eight bytes In length. All
but the last entry are initialized to blanks. The last
entry is an "end-of-table" marker and Is Initialized
to a value of X'FFFFFFFF'.

• The program audit trail anchor located by the field
SPIBPRAP is set by GDDM to address this program
hold table.

• Whenever GDDM loads a program, It replaces a
blank entry in the program hold table with the
program name.

• Whenever GDDM deletes a program, It resets the
corresponding entry in the program hold table to
blanks.

Thus, if abnormal termination occurs, the program hold
table can be used to determine the names of those pro­
grams that are not yet deleted by GDDM.

Note that the program hold table Itself Is In a storage
block In the storage audit chain. Therefore, any proc­
essing of this table should be performed before proc­
essing the storage audit chain.

GDDM application programs in VSE
batch mode

I GDDM application programs can be run in batch mode
r under VSE, provided the only devices that they open
I are page printers - in GDDM terms, famlly-4 devices.
I GDDM page printer output takes the form of a file con­
I taining either a primary or a secondary data stream.

A primary data stream is a complete document suitable
for processing by a printer driver program - the Print
Services Facility (PSF) for 38xx output or the Composed
Document Print Facility (CDPF) for 4250 output, or
equivalent programs. Conversely, a page segment
must be Imbedded into a document by a formatting
program such as SCRIPTNS, which In turn produces a
complete document for processing by the printer driver
program.

More Information about printing on VSE systems is
given in GDDM Installation and System Management
for VSE.

In addition to user-written application programs, three
new GDDM utilities can run in VSE batch mode:

• the Image Print Utility, see page 56,

• the VSE Print Job Utility, see page 48,

• and the Composite Document Print Utility, see
page 57.

Instructions for running these are given In
Chapter 7, "The GDDM print utilities" on page 47.

CICS/VS

Llnk-edltlng

Before an application program can be run In VSE batch
mode, It must be link-edited with two GDDM Interface
modules. One of these, ADMASlD, supports VSE batch
mode. Here is some model job control language (JCl)
for a link-edit job:

I ***
I * This JCL assumes that DLBL, EXTENT, and LIBDEF*
I * statements have already been used to define *
I * the GDDM relocatable libraries *
I ***
I *
I II JOB jobname
I II OPTION CATAL
I PHASE phase-name,*
I INCLUDE phase-name
I *
I * In the following INCLUDE statement,
I * leave ADMASNB unchanged for GDDM Base using
I * nonreentrant interface
I * replace ADMASNB by ADMASRB for GDDM Base using
I * reentrant interface

* or by ADMASNO for GDDM Base + GDDM-PGF using
* nonreentrant interface
* or by ADMASRO for GDDM Base + GDDM-PGF using
* reentrant interface
* or by ADMASP if using the system programmer
* interface

INCLUDE ADMASNB
INCLUDE ADMASLD

/I EXEC LINKEDT
1*
1&

Chapter 2. Using GDDM under CICSNS 15

CICS/VS

Large 4250 page segments

A formatting program such as SCAIPTNS can imbed a
page segment in two ways: it can either include the
complete segment inline, which means physically
putting it into its output file; or include the name of the
segment, leaving the printer driver program to phys­
ically Imbed it in the final output.

The COPF program limits the size of inllne page seg­
ments to 40K bytes. If you have larger page segments,
they cannot be passed to COPF inllne. Instead, they
must be stored in a VSAM ESOS file, from where COPF
will read them when required. However, GOOM stores
any page segments that it creates in a phase library,
not in a VSAM file. To overcome this problem, there is
a GOOM utility called AOMUP2VD that copies page seg­
ments from the phase library to a VSAM ESOS file.

AOMUP2VO should not be used in the shared virtual
area (SVA).

Here is some sample JCl to copy a page segment from
a phase library to a VSAM ESOS file:

* $$ JOB JNM=CPYPHASE,CLASS=G,DISP=D
* $$ LST CLASS=A,DISP=D,DEST=(node,userid),JSEP=l
II JOB CPYPHASE
II DLBL gddm,'gddm.library.name'
II EXTENT ,volid
II DLBL libname,'phase.library.name'
II EXTENT ,volid
II LIBDEF *,SEARCH=(libname.sublib,gddm.sublib)
II DLBL IJSYSUC, 'user.catalog.name' "VSAM
II DLBL fname,'vsam.file.name' "VSAM
II EXEC IDCAMS,SIZE=AUTO
DELETE (vsam.file.name)

CLUSTER
1*
II EXEC IDCAMS,SIZE=AUTO
DEFINE CLUSTER

1*

(NAME(vsam.file.name)
NONINDEXED
RECORDFORMAT(V)
RECORDSIZE(4aOG 82e2)
TRACKS(5 5)
VOL(vol id»
DATA
(NAME(data.file.name)

IF $RC>4 THEN
GOTO $EOJ
II EXEC ADMUP2VD,SIZE=ADMUP2VD,PARM='fname'
1/*
11&
* $$ EOJ

Only the name of the phase to be copied must be speci­
fied on the PARM=' fname' parameter (up to eight charac­
ters long). The type PHASE must not be included.

16 Base Programming Reference

Spill flies

GOOM uses spill files when creating output for page
printers, unless told otherwise in a processing option.
This is true whether the processing is done by a user­
written application or a GO OM utility. The spill files
need to be defined. Some sample JCl for doing this is
shown below.

* $$ JOB JNM=DEFSPILL,CLASS=G,DISP=D
* $$ LST CLASS=A,DISP=D,DEST=(node,userid),

JSEP=l
* $$ LST CLASS=A,DISP=D,LST=lAG,

DEST=(node,userid),JSEP=l
II JOB DEFSPILL
II DLBL IJSYSUC,'user.catalog.name'"VSAM
II DLBL ADMGaG1,'ADMeGeG1.SPILL.FILE', ,VSAM
II DLBL ADMGaa2, 'ADMGaeG2.SPILL.FILE' "VSAM
II EXEC IDCAMS,SIZE=AUTO

DELETE (ADMaaaG1.SPILL.FILE)
CLUSTER

DEFINE CLUSTER
(NAME(ADMeeaa1.SPILL.FILE)
NONINDEXED
REUSE
RECORDSIZE(lGeG 26Ge)
RECORDS(1G HI)
VOL(PAC371))
DATA

(NAME(ADMeeeG1.SPILL.DATA»
DELETE (ADMaeeG2.SPILL.FILE)

CLUSTER
DEFINE CLUSTER

1*
/&
* $$ EOJ

(NAME(ADMGeeG2.SPILL.FILE)
NONINDEXED
REUSE
RECORDSIZE(leeG 2eGe)
RECORDS(1e 1e)
VOL(PAC371))
DATA

(NAME(ADMeeee2.SPILL.DATA»

*

*

You must decide how you want to use spill files. Either
one spill file can be deleted and defined in each print
job (as shown above) or several can be defined before
a print job is run.

If you define several spill files before the print job is
run, use the NOAllOC option in the define statement to
save space. Spill files that have not been emptied cor­
rectly (as a result of a previous job ending uncleanly)
should be erased periodically.

Sample JCL for GDDM under CICS/OS/VS using PL/I

11********************* CICS/OSIVS PL/I ********************************
11*
11* Sample JCL to translate. compile. and link-edit a GOOM/CICSIVS
11* sample program or user-written application.
11*
11* This JCL assumes the use of the CICS-supplied
11* cataloged procedure "OFHEITPL".
11*
11**
11*
IIjobname
II
11*

JOB accounting info •...••.•...
EXEC PROC=OFHEITPL

11* Translation step
11*
IITRN.SYSIN 00 *

Source deck here.
Remember to define AOMUOFF if the program uses the non reentrant
interface. (See "Using the Nonreentrant Interface of GODM", on page 8.)

11*
11*
11* Compilation step
1/*
11* Override SYSLIB to reference library containing GODM sample
11* PL/I declarations. as shown.
11* Add SYSLIB DO override statements to reference any additional user
11* libraries required, for example libraries containing GODM-IMO AOSs.
1/* as shown.
1/*
I/PLI.SYSLIB 00
II 00 OSN=GOOM.INST.GODMSAM.OISP=SHR
II 00 OSN=user.gddm.ads-lib.OISP=SHR
1/*
11* Link-edit step
11*
11* Insert INCLIB to reference library containing GOOM interface
11* modules, as shown.
1/*
11* In the specified INCLUDE statement.
11* leave ADMASNC unchanged if using the nonreentrant interface
11* replace ADMASNC by AOMASRC if using the reentrant interface
11* or by ADMASPC if using the system programmer interface
11*
IllKEO.INCLIB DO OSN=GOOM.INST.GOOMLOAO,OISP=SHR
IILKEO.SYSIN DO *

INCLUDE INCLIB(AOMASNC)
NAME xxxxxxxx(R) Sample Program or Application Name

1/*

CICS/VS

Chapter 2. Using GDDM under CICSNS 17

CICS/VS

Sample JCL for GDDM under CICS/OS/VS using COBOL

11********************* CICS/OS/VS COBOL *******************************
11*
11* Sample JCL to translate. compile. and link-edit a GooM/CICS
11* sample program or user-written application.
11*
11* This JCL assumes the use of the CICS-supplied
1/* cataloged procedure "oFHEITCL".
11*
11**
11*
Iljobname
II
11*

JOB accounting info •.....•••••
EXEC PROC=oFHEITCL.PARM.COB='as-required-by-CICS'

11* Translation step
11*
IITRN.SYSIN DO *

Source deck here.
Remember to define AoMUOFF if the program uses the non reentrant
interface. (See "Using the Nonreentrant Interface of GooM". on page 8.)

11*
1/*
11* Compilation step
1/*
11* Add SYSLIB DO override statements to reference any additional user
11* libraries required. for example libraries containing GDoM-IMo AoSs.
1/* as shown.
11*
IICOB.SYSLIB DO
II DO oSN=user.gddm.ads-lib.oISP=SHR
11*
11* Link-edit step
11*
11* Insert INCLIB to reference library containing GooM interface
11* modules. as shown.
11*
11* In the specified INCLUDE statement.
11* leave AoMASNC unchanged if using the nonreentrant interface
11* replace ADMASNC by AoMASRC if using the reentrant interface
11* or by ADMASPC if using the system programmer interface
11*
IILKED.INCLIB DO DSN=GDDM.INST.GDDMLOAo.DISP=SHR
IILKED.SYSIN DO *

INCLUDE INCLIB(ADMASNC)
NAME xxxxxxxx(R) Sample Program or Application Name

11*

18 Base Programming Reference

Sample JCL for GDDM under CICS/OS/VS using Assembler

//********************* CICS/OS/VS ASSEMBLER ***************************
1/*
//* Sample JCL to translate, compile, and link-edit a GDDM/CICS
//* sample program or user-written application.
/1*
//* This JCL assumes the use of the CICS-supplied
//* cataloged procedure "DFHEITALQ.
//*
//**
//*
I/jobname
//
1/*

JOB accounting info,•..•••
EXEC PROC=DFHEITAL

//* Translation step
11*
//TRN.SYSIN DO *

Source deck here.
Remember to define ADMUOFF if the program uses the non reentrant
interface. (See "Using the Nonreentrant Interface of GDDM", on page 8.)

11*
1/*
/1* Compilation step
//*
//~ Add SYSLIB DO override statements to reference any additional user
1/* libraries required, for example libraries containing GDDM-IMD ADSs,
//* as shown.
//*
IIASM.SYSLIB DD
II DO
II DO DSN=user.gddm.ads-lib,DISP=SHR
1/*
1/* Link-edit step
11*
//* Insert INCLIB to reference library containing GDDM interface
//* modules, as shown.
1/*
11* In the specified INCLUDE statement,
/1* leave ADMASNC unchanged if using the nonreentrant interface
/1* replace ADMASNC by ADMASRC if using the reentrant interface
//* or by ADMASPC if using the system programmer interface
1/*
IILKED.INCLIS DO DSN=GDDM. INST.GDD~'LOAD,DISP=SHR
IILKED.SYSIN DO *

INCLUDE INCLIB(ADMASNC}
NAME xxxxxxxx(R) Sample Program or Application Name

1/*

CICS/VS

Chapter 2. Using GDDM under CICSNS 19

CICS/VS

Sample JCL for GDDM under CICS/DOS/VS using PL/I

********************* CICS/DOS/VS PL/I *******************************
*
* Sample JCL to translate, compile, and link-edit a GDDM/CICS
* sample program or user-written application.
*
* This JCL assumes that DLBL, EXTENT, and LIBDEF statements have
* already been used to:
* - Define the GDDM sample source statement libraries
* - Define the GDDM relocatable libraries
*
* Add additional statements to define any additional user source
* statement libraries required (for example, libraries containing
* GDDM-IMD ADSs).
*
**
*
II JOB jobname
II DLBL IJSYSPH,'PL/I.TRANSLATION',yy/ddd
II EXTENT SYSPCH,balance of extent information
ASSGN SYSPCH,DISK,VOL=volid,SHR
II EXEC DFHEPPl$
*PROCESS INCLUDE;

Source deck here.
Remember to define ADMUOFF if the program uses the nonreentrant
interface. (See "Using the Nonreentrant Interface of GDDW' , on page 8.)

1*
CLOSE SYSPCH,PUNCH
II DLBL IJSYSIN,'PL/I.TRANSLATION',yy/ddd
II EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=volid,SHR
II OPTION CATAL

*

PHASE phase-name,*
INCLUDE DFHPLlI

* In the following INCLUDE statement,
* leave ADMASNB unchanged for GDDM using nonreentrant interface
* replace ADMASNB by ADMASRB for GDDM using reentrant interface
* or by ADMASNO for GDDM + PGF using nonreentrant interface
* or by ADMASRO for GDDM + PGF using reentrant interface
* or by ADMASPC if using the system programmer interface
*

INCLUDE ADMASNB
INCLUDE ADMASLC

II EXEC PLIOPT
II EXEC LNKEDT
1&
II JOB RESET
CLOSE SYSIPT,SYSRDR
1&

20 Base Programming Reference

Sample JCL for GDDM under CICS/DOS/VS using COBOL

********************* CICS/DOS/VS COBOL ******************************
*
* Sample JCL to translate, compile, and link-edit a GDDM/CICS
* sample program or user-written application.
*
* This JCL assumes that DLBL, EXTENT, and LIBDEF statements have
* already been used to:
* - Define the GDDM sample source statement libraries
* - Define the GDDM relocatable libraries
*
* Add additional statements to define any additional user source
* statement libraries required (for example, libraries containing
* GDDM-IMD ADSs).
*
**
*
II JOB jobname
II DLBL IJSYSPH,'COBOL.TRANSLATION',yy/ddd
II EXTENT SYSPCH,balance of extent information
ASSGN SYSPCH,DISK,VOL=volid,SHR
II EXEC DFHECP1$

CBL LIB

Source deck here.
Remember to define ADMUOFF if the program uses the nonreentrant
interface. (See "Using the Nonreentrant Interface of GDDM", on page 8.)

1*
CLOSE SYSPCH,PUNCH
II DLBL IJSYSIN,'COBOL.TRANSLATION',yy/ddd
II EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=volid,SHR
II OPTION SYM,ERRS,NODECK,CATAL

*

PHASE phase-name,*
INCLUDE DFHECI

* In the following INCLUDE statement,
* leave ADMASNB unchanged for GDDM using non reentrant interface
* replace ADMASNB by ADMASRB for GDDM using reentrant interface
* or by ADMASNO for GDDM + PGF using nonreentrant interface
* or by ADMASRO for GDDM + PGF using reentrant interface
* or by ADMASPC if using the system programmer interface
*

INCLUDE ADMASNB
INCLUDE ADMASLC

II EXEC FCOBOL
II EXEC LNKEDT
1&
II JOB RESET
CLOSE SYSIPT,SYSRDR
1&

CICS/VS

Chapter 2. Using GDDM under CICSIVS 21

CICS/YS

Sample JCL for GDDM under CICS/DOS/VS using Assembler

********************* CICS/DOS/VS ASSEMBLER **************************
*
* Sample JCL to translate, compile, and link-edit a GDDM/CICS
* sample program or user-written application.
*
* This JCL assumes that DLBL, EXTENT, and LIBDEF statements have
* already been used to:
* - Define the GDDM sample source statement libraries
* - Define the GDDM relocatable libraries
*
* Add additional statements to define any additional user source
* statement libraries required (for example, libraries containing
* GDDM-IMD ADSs).
*
**
* II JOB jobname
II DLBL IJSYSPH,'ASM.TRANSLATION',yy/ddd
II EXTENT SYSPCH,balance of extent information
ASSGN SYSPCH,DISK,VOL=volid,SHR
II EXEC DFHEAPl$

Source deck here.
Remember to define ADMUOFF if the program uses the nonreentrant
interface. (See "Using the Nonreentrant Interface of GDDM", on page 8.)

1*
CLOSE SYSPCH,PUNCH
II DLBL IJSYSIN,'ASM.TRANSLATION',yy/ddd
II EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=volid,SHR
II OPTION SYM,ERRS,NODECK,CATAL

*

PHASE phase-name,*
INCLUDE DFHEAI

* In the following INCLUDE statement,
* leave ADMASNB unchanged for GDDM using nonreentrant interface
* replace ADMASNB by ADMASRB for GDDM using reentrant interface
* or by ADMASNO for GDDM + PGF using nonreentrant interface
* or by ADMASRO for GDDM + PGF using reentrant interface
* or by ADMASPC if using the system programmer interface
*

INCLUDE ADMASNB
INCLUDE ADMASLC

II EXEC ASSEMBLY
II EXEC LNKEDT
1&
II JOB RESET
CLOSE SYSIPT,SYSRDR
1&

22 Base Programming Reference

I MSIVS

Chapter 3. Using GDDM under IMS/VS

This chapter describes the use of GDDM under the
IMSIVS operating system. It covers the following
topics:

• Restrictions on the use of GDDM under IMSIVS

• Application program structure

• Link-editing a GDDM application

• Using the system programmer interface with
dynamic load

• PSBs for GDDM applications

• Data sets and file processing

• The IMSIVS default error exit

• GDDM and MFS

• GDDM DLII interface

• IMSIVS considerations for GDDM utilities

• GDDM object import/export utility

• Sample JCL.

The use of the IMS version of the GDDM print utility is
described in Chapter 7, "The GDDM print utilities" on
page 47.

Application programs for IMS should carefully follow
the instruction given under "Application program
structure" on page 24. Careful note of the restrictions
should also be taken. The IMSIVS samples in
Appendix K, "Sample programs" on page 249 can be
used as a model for application programs.

Two utilities are provided to assist in the use of GDDM
under IMSIVS:

• The data-base utility used when installing GDDM
and when the network is updated.

• The ImporUExport utility that allows symbol sets,
saved pictures, and other GDDM objects to be
moved out of, and into, an IMS/GDDM system.

The description in this chapter assumes a working
knowledge of IMSIVS.

Restrictions on the use of GDDM
under IMS/VS

The main restrictions on the use of GDDM in an IMSIVS
environment are:

• The IPDS printers are not supported.

• Picture interchange format (PIF) files are not sup-
ported.

• GDDM-IMD is not supported.

• GDDM-PCLK 1.1 is not supported.

• The 5080 Graphics System is not supported.

• GDDM only supports system network architecture
(SNA) connection for 3179-G and 3192-G display
stations, 3270-PC/G and 3270-PC/GX work stations,
and 5550-family work stations.

• For 327x displays the amount of data that can be
created by GDDM and successfully transmitted by
IMSIVS depends on the line protocol and access
method used to send this data to the terminal.

For terminals defined as SLUTYPE2, or remote
3270 devices specified with data transparency,
OPTIONS=XPAR, there are no restrictions.

For all other 3270 displays the amount of data that
may be created and sent by GDDM in one message
is controlled by the OUTBUF parameter specified
during system definition.

For very complex pictures the length of the data
streams generated by GDDM may exceed this
maximum value. In such cases, the output
message Is rejected by IMSIVS and an IMSIVS
error message is displayed at the terminal. If this
occurs and the device token being used specifies
COM PRES = NO, one way of reducing the length of
the data stream Is to use a different device token
(one that has COMPRES= YES) that allows data­
stream compression (assuming that the 3274
control unit is configured for PS compression). For
more details, see Appendix G, "Device character­
istics tokens" on page 203.

• For 3270-family terminals and printers output may
only be sent to logical terminals that are defined in
the GDDM System Definition data base. This con­
tains information that describes the phYSical char­
acteristics of the device.

The information in the data base is located using
the L TERM name of a message queue as a key
rather than the physical terminal name, because
only that piece of information is available to the
application and thus GDDM. To prevent trans­
mission errors the device to which the L TERM is
assigned must have the characteristics Identified
In the data base. Reassignment of L TERMS must
be reflected by changes to the data base.

• GDDM cannot be used to process input from the
terminals. The use of message queues and the
scheduling algorithms of an IMSIVS system are
unsuited to the direct interaction allowed in other
subsystems.

Information on the Interaction of GO OM and the
message format service (MFS) and a description of
how input from a display formatted by GDDM
should be processed, Is given on page 26.

• FSSAVE files generated under IMSIVS cannot be
used under another subsystem, such as TSO, nor
may such files created under other subsystems be
sent to a device attached to IMSIVS using the
FSSHOW functions.

• For the interactive utilities only, the use of PF key
12 allocated by IMSIVS to the COPY function
should be avoided. If the keyboard has only 12 PF
keys, the IMSIVS system definition for the terminal
should specify NOCOPY.

• Plotters attached to 3179-G or 3192-G display
stations or to 3270-PC/G or 3270-PC/GX work
stations are not supported under IMSIVS.

Chapter 3. USing GDDM under IMSIVS 23

IMS/YS

• The WINDOW processing option and operator
window functions are not supported under IMSNS.

• ICU flat-file data import is not supported under
IMSNS.

Application program structure

The following list contains the steps that an IMSNS
transaction program might make when using GDDM.

1. Issue a GU call to the 110 program communication
block (PCB) to acquire the first segment of the
Input message.

2. Issue FSINIT, or any of its aliases, to enable GDDM
processing.

3. Optionally issue an FSEXIT call to nominate a user­
provided error exit to replace the default exit pro­
vided with GDDM, or to raise the threshold of
errors below which errors are not reported.

4. Issue one or more ESPCB calls to identify to GDDM
the PCBs that it may use.

5. Issue one or more ESLIB calls to show which data
bases are to be searched when retrieving and
storing GDDM data.

6. If the 110 PCB has not been identified by an ESPCB
call above, or if output is to go to a destination
other than that of the 110 PCB, issue DSOPEN calls
to define to GDDM the possible output destinations.

If the PCB to be used by GDDM is modifiable, the
destination of the PCB must be set using the CHNG
call before the DSOPEN call is issued.

This step is not needed if output is to go to the
source of the input message and the 1/0 PCB has
been identified to GDDM because this is the default
destination and PCB used by GDDM.

7. Process the Input message using GN calls to
acquire subsequent message Input. Generate
output messages using the GDDM subroutines to
describe any field-formatted or graphics output.
Use the DSUSE statement to select the output des­
tination if devices have been explicitly defined by
DSOPEN.

8. Issue DSCLS statements for each device opened
using DSOPEN.

9. Issue the FSTERM call to end GDDM processing.

10. Repeat from step 1 to process any more input mes­
sages.

This arrangement of an application program ensures
that GDDM is inactive across a GU call that may reset
certain Information used by GDDM. Its drawback is the
repeated initialization and termination of GDDM. An
alternative structure that avoids this overhead is shown
below. Care should be taken to ensure that all devices
are closed across the GU call.

1. Issue FSINIT, or any of its aliases, to enable GDDM
processing.

2. Optionally issue an FSEXIT call to nominate a user­
provided error exit to replace the default exit pro­
vided with GDDM, or to raise the threshold of
errors below which errors -are not reported.

24 Base Programming Reference

3. Issue one or more ESPCB calls to identify to GDDM
the PCBs that it may use.

4. Issue one or more ESLIB calls to show which dat~
bases are to be searched when retrieving and
storing GDDM data.

5. Issue a GU call to the I/O PCB to acquire the first
segment of the input message.

6. If the I/O PCB has not been identified by an ESPCB
call above, or If output is to go to a destination
other than that of the I/O PCB, issue DSOPEN calls
to define to GDDM the possible output destinations.

If the PCB to be used by GDDM is modifiable, the
destination of the PCB must be set using the CHNG
call before the DSOPEN call is issued.

This step is not needed if output is to go to the
source of the input message and the I/O PCB has
been identified to GDDM because this is the default
destination and PCB used by GDDM.

7. Process the input message using GN calls to
acquire subsequent message Input. Generate
output messages using the GDDM subroutines to
describe any field-formatted or graphics output.
Use the DSUSE statement to select the output des­
tination If devices have been explicitly defined by
DSOPEN.

8. Issue DSCLS statements for each device opened
using DSOPEN.

If the default destination was used, GDDM automat­
ically opens a device with an identifier of O. This
should be closed using a statement of the form

CAll DSClS(e.l)
9. Repeat from step 5 to process any more input mes­

sages.

10. Issue the FSTERM call to end GDDM processing
when all input messages have been processed.

Link-editing a GDDM application
program

Examples of the JCL that can be used to compile and
link-edit application programs written in PLII or COBOL
are listed on pages 29 and 30.

Unless an application program uses dynamic load facil­
Ities to access GDDM through the system programmer
Interface (see below), a GDDM application program
must be link-edited with the appropriate GDDM inter­
face module as well as the DUI interface module. The
interface module used depends on the type of GDDM
interface used and the language of the application
program, or, to be precise, of the program specification
block (PSB) for the transaction.

The module to be used may be explicitly controlled by
linkage editor control statements, or one of the alterna­
tive versions of the initialization entry point can be
used. The latter causes the correct GDDM interface
modules to be loaded by the automatic library call
capability of the linkage editor.

Table 2. GDDM data-set characteristics for IMSIVS

Type of Data GDDM default Data set type
filename

Symbol sets ADMTRACE Sequential data
sets or SYSOUT
classes

There are four alternative initialization calls for GDDM
in an IMSIVS environment. They allow for a choice of
nonreentrant and reentrant interface and non-PUI and
PL/I PSBs. The names of the initialization calls are as
follows:

Interface

Nonreentrant
Reentrant

Non-PLII PSB

FSINNI
FSINRI

PL/I PSB

FSINNPI
FSINRPI

If direct control of the link-edit process is chosen, the
initialization call should be coded using the FSINIT (or
SPINIT) entry point, and the following modules explic­
itly included by the link-edit process:

Interface Non-PLII PSB

Nonreentrant ADMASNI
Reentrant ADMASRI
System Programmer ADMASPI

PL/I PSB

AOMASNJ
AOMASRJ
AOMASPJ

Using the system programmer
interface with dynamic load

If an application program uses only the system pro­
grammer interface (SPI), all invocations of GOOM are
through the entry point ADMASP. This entry point can
be resolved by link-editing the application program
with one of the GOOM interface modules, ADMASPI or
ADMASPJ, as described above.

However, the application program can avoid these
linkage-edit considerations by using system facilities
(the OS LOAD function) to dynamically load a GDDM
interface module (ADMASPLI for non-PLII PSBs or
ADMASPLJ for PLII PSBs). The main entry pOints for
these modules are defined both with their load module
names and with the name ADMASP.

Program specification blocks for
GDDM applications

The PSB for a GDOM application must include the PCBs
required by GDDM. These are:

• One TP PCB for each concurrently active device
(for example, for which a OSOPEN call was
issued).

IMSIVS

DCB characteristics

Record format Record length Block size
(RECFM) (LRECL) (BLKSIZE)

VA ~125 LRECL

VBA ~125 ~LRECL + 4

For family-1 and family-3 (3270-family and system
printer) devices, the L TERM quoted in the PCB
statement must be that of the terminal to which the
output is to be sent. For family-2 devices, the
NAME parameter should specify the transaction
code assigned to the GDDM print utility.

If the NAME or L TERM parameter is not supplied
on the PCB statement, the PCB should be defined
as modifiable and the application program should
issue a CHNG call to set the destination before
defining the PCB to GDDM.

• A DB PCB for the system definition data base if
GDDM output is to be generated. A PROCOPT of G
should be specified because no normal GDDM
operation can alter information in this data base.

A sample PCB statement for such a data base is:

PCB TYPE=OB,NAME=ADMSYSOF,PROCOPT=G,KEYLEN=8
SENSEG NAME=ADMSOSGM,PARENT=O
Ensure that the names used in the above sample
were not altered during the initialization process.
If they were, corresponding changes must be made
in the IMSSDBD and IMSSEGS options in GDDM's
external defaults, as described under "GDDM
external defaults - IMSIVS" on page 131.

• A DB PCB for each object data base required.

A sample PCB statement for such a data base is:

PCB TYPE=OB,NAME=ADMOBJl,PROCOPT=G,KEYLEN=20
SENSEG NAME=ADMOBROO,PARENT=O
SENSEG NAME=ADMOBOEP,PARENT=AOMOBROO
A PROCOPT of A should be specified if the
program is to alter information in the data base
using GDDM calls. Note the restriction that infor­
mation is written only to the first of the data bases
quoted in the ESUB parameter list for any given
type of object.

It is possible to vary the OBO and segment names
from those quoted above during IMS system gener­
ation. If they are changed, corresponding changes
must be made in the OBJFILE and IMSSEGS
options in GDDM's external defaults, as described
under "GODM external defaults - IMSIVS" on
page 131.

However, if only the data-base name is to be
altered, the ESUB statement can be used to notify
GDDM of the data-base name rather than altering
the external defaults. The name in the external
defaults is only used to find the data base to
search for objects if no ESUB statement is coded.

An ESPCB call should be coded in the application for
each PCB to be used by GDDM.

Chapter 3. Using GDOM under IMSIVS 25

IMSIVS

Data sets and file processing

When running under IMSIVS, GDDM uses two types of
file processing:

• QSAM (Queued Sequential Access Method) is used
to write data to sequential output destinations
when certain trace functions are requested using
the FSTRCE call. For more details, see the GDDM
Diagnosis and Problem Determination Guide.

• DllI Is used to read and write information into the
two types of DllI data base used by GDDM.

In the first type, GDDM refers to the file using a
ddname. The default value of this name is taken from
the IMSTRCE option in GDDM's external defaults. (For
details, see "GDDM external defaults - IMSIVS" on
page 131). If output is to be created from this file, the
dependent region JCl must be modified to include a DD
statement for It. The data set type and DCB character­
Istics should be as shown In Table 2 on page 25.

The structure and requirements of the DLII data bases
used by GDDM are described in the GDDM Installation
and System Management for VSE manual.

The Interactive Chart Utility (part of GDDM-PGF)
Includes a directory function that supports list, delete,
and copy operations on GDDM Dlil objects such as
symbol sets and pictures.

The IMS/VS default error exit

GDDM provides a default error exit, which is given
control when GDDM detects an error in its processing.
The user can control the severity level of an error that
causes the exit to be taken and may also identify a
user-written error exit, as described for FSEXIT in the
GDDM Base Programming Reference, Volume 1.

The default error exit provided in the IMSIVS environ­
ment reports the error using a IBROADCAST command
directed to the l TERM named in the I/O PCB. The
transaction must, therefore, be authorized to issue this
command. If the I/O PCB was not identified to GDDM
by the ESPCB call, or the CMD call fails, the error
message is Issued using a "write to operator" (WTO)
function. The route code and message descriptor for
this WTO function are contained in GDDM's external
defaults. The IMSWTOR and IMSWTOD options can be
changed to suit the installation. For details of how to
do this, see Chapter 1, "Customizing your program
and its environment" on page 1.

GDDM and the Message Format
Service

GDDM uses the Message Format Service (MFS)
BYPASS function to send output to 3270 displays and to
non-SCS printers. Output to SCS printers is sent using
Basic Edit.

For displays, each message created by GDDM contains
the information needed to format the screen. By
default, it is sent using a Message Output Descriptor
(MOD) with the name OFS.EDT (for a user application)
or OFS.EOTN (for a GOOM or GDDM-PGF interactive

26 Base Programming Reference

utility). When a message using one of these MODs is
detected by MFS, It does not format the information in
the message but instead assumes that it contains a
data stream that may be sent to the device without
more processing.

Any Input subsequently received from the device for a
user application is not processed against a Message
Input Descriptor (MID) but is instead passed to the
Basic Edit process. This removes the device­
dependent control information from the data stream
and replaces it with blanks.

Using GDDM it Is possible to create a message con­
taining a picture and one or more input fields. When
this has been displayed, the end user can enter the
next transaction request from the terminal by typing
into the input field and pressing the ENTER key.

The segment returned from the GU Dl/l function call In
the application program contains the contents of the
fields modified by the end user in a single segment.
There is no indication of the key (PF, ENTER, or PAl
that caused the data to be sent to IMSIVS. The fields
are of variable length, separated from each other by
one or more blanks.

For more information on the detailed formatting of the
input data stream, see the description of the Message
Format Service In the IMSIVS reference manuals; see
the Bibliography in Volume 1.

An installation can provide its own MOD to be used by
GDDM for transmitting nonconversational messages
from a user application to 3270-family devices. In this
way, an installation can make special provision for
processing subsequent input messages. To cause
GDDM to use a MOD name other than DFS.EDT, the
alternative MOD name must be specified in the
IMSMODN option in GDDM's external defaults, as
described under "GDDM external defaults - IMSIVS"
on page 131.

GDDM DL/I interface

The GDDM routines use the same Dl/l interface as a
standard application program. To do so, GODM needs
to know which of the PCBs, passed to the application
when it is scheduled, are to be used by GDDM. This
information is passed to GDDM by the ESPCB subrou­
tine call. The syntax of this function Is described in
detail in the GDDM Base Programming Reference,
Volume 1.

USing this function, the application program can identify
the I/O PCB, other TP PCBs, and DB PCBs. The use
GDDM makes of each of these types of PCB is
described in the next sections. The following general
rules apply to the sharing of PCBs between an applica­
tion and GDDM:

1. GDDM uses the TP PCBs to insert the data streams
that it generates to the message queues. Such a
PCB is considered to be in use between the times
that the GODM device services calls DSOPEN and
DSClS are issued. These calls are described in
more detail In the GDDM Base Programming Ref­
erence, Volume 1. While a PCB Is In use, the
application program must not also Insert data on
the queue through the same PCB nor must It cause

the data on the PCB to be enqueued by issuing a
GU to the 1/0 PCB or any other action that causes a
checkpoint.

2. If an application program tries to send output when
no primary device was explicitly defined, GDDM
tries to open a device to use the 1/0 PCB.

3. If the application needs to insert another message
to the message queue, using a PCB that was used
by GDDM, the first segment of the message must
be inserted using the DLII PURG function to
enqueue any message created by GDDM. GDDM
itself inserts the first message segment, using this
function to enqueue any application output already
placed on the message queue before a device is
opened.

Use of message queues

GDDM uses the 1/0 and TP PCBs to insert output to
message queues for the primary and alternate devices.
These devices can be 3270-famlly devices, queued
printer devices, or system printer devices.

The PCB used by any device depends on the way in
which the device was identified using the DSOPEN
function and on the type of device. The method used by
GDDM to select the PCB to be used is given below.

Each message is created by inserting one or more seg­
me!:lts. The number of segments is dependent on the
complexity of the output. For system printer devices,
each output segment is a print record. For the other
types of device, the message is segmented at arbitrary
pOints in the generated output. In this latter case, the
maximum size of the output segment is 84 bytes for a
queued printer device, and is taken from the value of
the 10BFSZ option in the current GDDM external
defaults for a 3270-family device.

3270-famlly devices

The NAME parameter on DSOPEN supplies the name of
the L TERM to which output is to be sent. GDDM selects
the PCB to be used by checking first the 1/0 PCB and
then each of the TP PCBs, in the order in which they
were identified by ESPCB calls, for a destination of the
given L TERM. It uses the first one of these PCBs that is
not already in use for another device.

If the NAME parameter is omitted, or coded as "*",
GDDM tries to use only the 1/0 PCB.

If no PCB with a matching name is found. or if all PCBs
checked are already in use, the DSOPEN function fails.

The number of messages generated by GDDM for this
family of device is dependent on the type of the target
terminal. If it is a display, the output created from each
FSFRCE or ASREAD call is sent as an individual
message. If the terminal is a printer, all output created
by the application program using the GDDM device is
sent in a single message.

If the application is conversational and the 1/0, or
another PCB, is selected by GDDM for use with a
display device, the application may only issue the
FSFRCE or ASREAD call once because, in this situ­
ation, GDDM cannot issue the DLIJ PURG request
required to cause the message created by the first call
to be enqueued.

IMS/VS

Queued printer devices

These devices generate output that is sent to the
GDDM-provided Print Utility for subsequent trans­
mission to a real 3270-family terminal. The NAME
parameter specified on DSOPEN identifies the L TERM
name of the latter terminal and cannot be omitted. The
output generated by GDDM directly from the application
program is inserted to the first PCB in which the
L TERM name is the transaction code of the GDDM print
utility. The default vaiue for this transaction name is
ADMPRINT, but the installation may change this by
altering the IMSPRNT option in the current GDDM
external defaults, as described under "GDDM external
defaults - IMSIVS" on page 131. If no such PCB can
be found, or if all such PCBs are already being used by
other GDDM devices, the DSOPEN function falls.

All the output created by GDDM between DSOPEN and
DSCLS for a device of this type is sent as a single
IMSIVS message.

System printer devices

The NAME parameter specified on DSOPEN should
identify an L TERM to which print records, including car­
riage control characters, can be sent. If omitted, a
default destination is assumed by GDDM. This is
ADM LIST, but the installation may change the value by
altering the IMSSYSP option in the current GDDM
external defaults, as described under "GDDM external
defaults - IMSIVS" on page 131.

The PCB to be used is again chosen by checking first
the 110 PCB, and then all TP PCBs, in the order identi­
fied by the application, for an L TERM name matching
that given or assumed on the DSOPEN call. If no match
is found, or if all matching PCBs are already in use, the
DSOPEN function fails.

All the output created by GDDM for anyone device of
this type forms a single IMSIVS message.

Use of data bases

GDDM uses two types of data base: one to contain the
terminal characteristics information, and another to
contain the "objects", such as symbol sets, saved pic­
tures, generated mapgroups, and ADMGDF files. The
DB PCBs that are to be used must be identified to
GDDM by the ESPCB call before executing any routine
that might require access to the data bases.

The use of the data bases containing objects is further
controlled by the ESLIB routine whose syntax is
described in the GDDM Base Programming Reference,
Volume 1. This routine establishes the set of data
bases that are to be used to store or retrieve a given
type of object. The data bases to be used are identified
to this routine as a list of DBD names. Before issuing
this call the user must have issued ESPCB calls that
referred to DB PCBs for all the data bases mentioned
on the ESLIB call.

The data bases are searched in the order given in an
attempt to find an object. An object is stored only in the
first data base of the list, even though it may have been
retrieved from another one.

Chapter 3. Using GDDM under IMSIVS 27

IMS/VS

The DBD name of the system definition data base is
taken from the value in the IMSSDBD option in the
current GO OM external defaults; see "GDDM external
defaults - IMSIVS" on page 131. The external
defaults also contain default DBD names for the data
bases to be used for each of the object types.

IMS/VS considerations for GDDM
utilities

Under IMSIVS, the GDDM and GDDM-PGF interactive
utilities are run under the control of a single transaction
that emulates the environment that they expect. The
transaction is a "wait for input" conversational trans­
action. In these notes, the transaction code for the
utility is assumed to be "ADM," but this may have been
changed by the installation.

• The transaction can support only a predefined
number of concurrent transactions. Any attempt to
start a new session with a utility that would cause
the limit to be exceeded is rejected with message
ADM0772.

The number of concurrent transactions allowed
may be altered by modifying the value in the
IMSUMAX option in the current GDDM external
defaults. For details, see "GDDM external defaults
- IMSIVS" on page 131.

• The transaction cannot continue conversations if,
for any reason, it is rescheduled during the lifetime
of a conversation. Such conversations are termi­
nated with message ADM077 4.

• A particular scheduling of the transaction usually
ends when it has no record of any existing conver­
sations. Because it is possible for a conversation
to be terminated without the transaction's being
aware of the fact (for example, because of partic­
ular error conditions), the transaction may not be
completed even though the end user has termi­
nated the conversation. In such a case, the end
user should enter the request:

ADM EXIT
which causes the utility to note that all conversa­
tions against the L TERM, from which the request
originates, were terminated.

28 Base Programming Reference

• To force a return to the region controller by the
transaction irrespective of the current state of any
active conversations, the request:

ADM SHUTDOWN
can be entered from an authorized terminal. By
default this authorized terminal has an L TERM
name of MASTER.

The keywords EXIT and SHUTDOWN, and the L TERM
name of the terminal authorized to issue the latter
request, are as defined in the IMSEXIT, IMSSHUT, and
IMSMAST options in the current GDDM external
defaults. For details, see "GDDM external defaults -
IMSIVS" on page 131.

• If, during a session with a utility, the current screen
format is destroyed (for example, by a high priority
or error message), it can be restored by entering
two blank characters as the next input message.

• On some terminals, IMSIVS reserves Program
Function key 12 for use as a print request key and
does not pass this as a valid interrupt to the utility
transaction. If the terminal has 24 rather than 12
PF keys, the use of PF key 12 can be avoided
because PF 24 usually has the same function.

If only 12 PF keys are available, the IMSIVS system
definition for a terminal should specify NOCOPY if
the GDDM utilities are to be accessed from that
terminal.

GDDM object import/export utility

The GDDM object import/export utility is used to
transfer GDDM objects (generated mapgroups from
GDDM-IMD, ADMGDF objects, symbol sets, chart
formats or data, or FSSAVE objects) between parti­
tioned data set(s), and the data base in which they are
kept for IMSIVS use, or to delete them from the data
base.

Its purpose is to enable objects to be transferred
between GDDM applications running· on one IMSIVS
system, and those running on either another IMSIVS
system, or in a totally different environment (for
example a TSO development system).

The operation and use of the utility are described in the
GDDM Installation and System Management for MVS
manual.

Sample Jel for GDDM under IMS/VS using Pl/l
//********************* IMS/VS PL/I ************************************
/1*
1/* Sample JCL to compile, and link-edit a GDDM/IMS
11* sample program or user-written application.
11*
1/* This JCL assumes the use of the IMS/VS-supplied
//* cataloged procedure "IMSPLl".
1/*
1/* The IMS/GDDM sample program or user-written application is
1/* placed in IMSVS.PGMLIB.
//*
/1* xxxxxxxx is the name under which the program load module is
//* generated.
//*
1/**
1/*
//jobname
II
//
1/*

JOB accounting info •..........
EXEC PROC=IMSPLI,MBR=xxxxxxxx,REGION.C=512K,

PARM.C=·XREF,A,OBJ,NODECK.INC,OPT(TIME)·

//* Compilation step
//*
//* Insert SYSLIB to reference library containing GDDM sample
11* PL/I declarations. as shown.
//*
/IC.SYSLIB DO OSN=GOOM.INST.GDDMSAM.OISP=SHR
//C.SYSIN DO *

Source deck here.

/*
//*
//* Link-edit step
//*
//* Insert INCLIB to reference library containing GOOM interface
//* modules, as shown.
1/*
/1* In the specified INCLUDE statement.
//* leave AOMASNJ unchanged if using the non reentrant interface
//* replace ADMASNJ by ADMASRJ if using the reentrant interface
//* or by AOMASPJ if using the system programmer interface
/1*
/IL.INCLIB 00 OSN=GOOM.INST.GDOMLOAO.OISP=SHR
//L.SYSIN DO *

INCLUDE INCLIB(AOMASNJ)
/*

IMSIVS

Chapter 3. Using GDDM under IMSIVS 29

IMS/VS

Sample JCL for GDDM under IMS/VS using COBOL
11********************* IMS/VS COBOL ***********************************
11*
11* Sample JCL to compile. and link-edit a GDDM/IMS
11* sample program or user-written application.
1/*
11* This JCl assumes the use of the IMS/VS-supplied
1/* cataloged procedure "IMSCOBOl".
11*
/1* The IMS/GDDM sample program or user-written application
11* is placed in IMSVS.PGMlIB.
1/*
//* xxx xxx xx is the name under which the program load module is
1/* generated.
11*
11**
11*
I/jobname
1/*
II
1/*

JOB accounting info •......•...

EXEC PROC=IMSCOBOl.MBR=xxxxxxxx

11* Compilation step
//*
IIC.SYSIN

..
DD

Source deck here.

/*
11*
11* link-edit step
1/*

*

1/* Insert INCLIB to reference library containing GDDM interface
//* modules, as shown.
1/*
1/* In the specified INCLUDE statement,
11* leave ADMASNI unchanged if using the nonreent~nt interface
11* replace ADMASNI by ADMASRI if using the reentrant interface
11* or by ADMASPI if using the system programmer interface
1/*
Ill.INClIB DD DSN=GDDM.INST.GDDMlOAD,DISP=SHR
Ill.SYSIN DD *

INCLUDE INCLIB(ADMASNI)
1*

30 Base Programming Reference

MVS/XA

Chapter 4. Using GDDM under MVS/XA

This chapter describes some special programming con­
siderations for 31-blt mode GDDM applications, and
provides general information on GDDM code and appli­
cation programs (for CICS/OSIVS, IMSIVS, and TSO)
that can run under the MVS/XA operating system. It
also discusses object compatibility between
System/370 and System 370/XA environments.

GDDM code above 16 megabytes

Under suitable subsystems and operating systems, the
main body of GDDM code can reside above 16 mega­
bytes. This is the default state.

Application code above 16 megabytes

Under suitable releases of TSO and CICS/OSIVS,
GDDM applications can reside above 16 megabytes.

IMSIVS applications cannot be run above 16 megabytes
because the DLII stub (ASMTDLI) is link-edited with the
application. GDDM presumes that the Dl/l stub always
runs in 24-bit mode.

AMODE(31) applications and application
parameters above 16 megabytes

Under TSO, CICSIVS, and IMSIVS, applications can run
in 31-bit mode and, if so, can pass to GDDM parame­
ters that are located above 16 megabytes.

If GDDM is called in 31-bit mode, it assumes that any
parameter addresses that are passed represent 31-bit
addresses.

GDDM object compatibility between
System/370 and System 370/XA

GDDM is object-compatible between System/370 and
System 370/XA, although it may contain instructions
that are unique to System 370/XA, which are run only if
the operating system is MVS/XA.

MVS/XA terminology

For a full definition of MVS/XA terminology, refer to the
associated MVS/XA documentation; see the Bibli­
ography in Volume 1. The following section gives a
short explanation of some of the relevant keywords.

AMODE(24), AMODE(31), AMODE(ANY)
This indicates that a module may be called in 24-bit
addressing mode only, in 31-bit addressing mode only,
or in either mode, respectively.

RMODE(24), RMODE(ANy)
This indicates that a module may be loaded only in
24-blt addressable storage (below 16 megabytes), or
anywhere in storage, respectively.

TRUE
Interfaces categorized as TRUE allow a program
running in 31-bit mode to use the interface and to pass
31-bit parameter addresses with values greater than 16
megabytes.

RESTRICTED
Interfaces categorized as RESTRICTED can only be
calJed by programs running in 24-bit mode.

HOLLOW
Interfaces categorized as HOllOW can be called by
programs running in 24-bit mode or 31-bit mode, but
the value of all address parameters must be less than
16 megabytes.

EITHER
Interfaces categorized as EITHER can be called by pro­
grams running in 24-bit mode or 31-blt mode, but
restrictions exist with respect to parameters.

The GDDM Application Interface is TRUE under TSO
and CICSIVS.

Subsystem-independent routines

All GDDM subsystem-independent routines (including
subsystem-independent adapter routines) are complied
with:

AMODE(ANY) I RMODE(ANY)

Under MVS/XA, the linkage Editor changes the attri­
butes of these routines to:

AMODE(31) I RMODE(ANY)

Provided ail routines within a load module have
RMODE(ANY), the linkage editor assigns RMODE(ANY)
to the load module, thus ailowing it to be located above
16 megabytes. Note, however, that if any routine within
a load module has RMODE(24), the linkage editor
assigns RMODE(24) to the load module, which is there­
fore constrained to reside below 16 megabytes.

When linked and called under an MVS/XA system,
AMODE(31) I RMODE(ANY) routines are cailed in 31-bit
mode, run entirely in 31-bit mode, and can reside any­
where in storage.

When cailed under a 370 system, these routines run in
24-bit mode and use no 370/XA-unique facilities.

CICS/VS-dependent routines

All CICSNS services used by GDDM are TRUE ser­
vices. Therefore, ail GDDM CICSNS-dependent rou­
tines are compiled with:

AMODE(ANY) I RMODE(ANY)

link-edit and execution considerations are as for
GDDM subsystem-independent routines (above).

Because the GDDM Application Interface routines have
RMODE(ANY), CICSIVS applications with RMODE(ANY)
may be link-edited to GDDM, and may be located above
16 megabytes.

Chapter 4. Using GDDM under MVS/XA 31

MVS/XA

Under CICSIVS, nearly all of GDDM can reside above
16 megabytes. The only exceptions are the Call Format
Descriptor Module and the APl Request Codes Module.
These modules have RMODE(24) to ensure address­
ability from 24-bit mode applications. The whole of an
application program can reside above 16 megabytes.

IMS/VS-dependent routines and
TSO-dependent routines

The system services and interfaces in the IMSIVS and
TSO environments are of all types: TRUE, HOllOW,
EITHER, and RESTRICTED. For simplicity, GDDM
treats most services that are not TRUE as RESTRICTED
(requiring invocation in 24-bit mode from below 16
megabytes). The one exception to this rule is R-format
GETMAIN and FREEMAIN used in the Application Inter­
face routines. This form of GETMAIN and FREEMAIN is
EITHER, and can therefore be invoked above 16 mega­
bytes to acquire or release storage located below 16
megabytes. Using this, and not treating the macro as
RESTRICTED allows GDDM application programs under
TSO to be run above 16 megabytes.

GDDM IMSIVS-dependent routines and TSO-dependent
routines that call only TRUE services are compiled with
AMODE(ANY) I RMODE(ANY) and are treated in the
same way as subsystem-independent routines.

GDDM IMSIVS-dependent routines and TSO-dependent
routines that call services that are not TRUE are com­
piled with AMODE(ANY) I RMODE(24), and are there­
fore located below 16 megabytes.

The non-TRUE services that these routines contain are,
in general, treated as RESTRICTED (although there are
exceptions). For these services;

• Before invoking the service, the routines enter
24-bit mode (if not already in 24-bit mode).

• On return from the service, the routines restore
31-bit mode (if entered in 31-bit mode).

Therefore, in most cases, the setting of 24-bit mode is
highly localized.

Application programming
considerations

Under all MVS/XA systems, a GDDM application
program may have any valid AMODE attribute, and
may call GDDM in any mode (24-bit or 31-bit) consistent
with its location. In fact, it is possible (though not
recommended) for an application program to call
GDDM in both 24-bit and 31-bit modes in the same
session.

32 Base Programming Reference

Under MVS/XA, the "normal" AMODE for a GDDM
instance is AMODE(31). The vast majority of GDDM
processing is performed in its "normal" AM ODE, with
AMODE(24) being forced only for the duration of system
service calls that are not known to be able to tolerate
being called in AMODE(31).

The Application Interface routines (that is, those parts
of the Application Interface that are link-edited with the
application program) always run in the AMODE of the
application. However, they mode-switch to the GDDM
"normal" AMODE when control is passed to the
dynamic part of GDDM.

If the application program runs in AMODE(24), GDDM
clears the top byte of each parameter address word, in
a copy of the parameter list that it usually generates, to
prevent wrong addresses being formed in the main
code running in 31-bit mode.

The SPINIT call

The SPINIT call is a form of initialization that allows
parameters to be passed by a SPIB (SPI Initialization
Block). The SPIB contains a number of address words
that can be set by an application program.

If the SPINIT call is actually issued in 24-bit mode,
GDDM clears the top byte (minus the top bit) of each
address word that it processes.

The FSEXIT call

A user error exit, whose address is passed on an
FSEXIT call, is assumed to be executable in 31-bit
mode if either:

1. The application call is in 31-blt mode, or

2. The top bit of the address passed on the FSEXIT
call is on. (For example, the address uses the
MVS/XA convention that the top bit of the address
identifies its AMODE.)

The first condition enables a high-level language
program to pass the address of an exit that is link­
edited with itself. (It is difficult (or not possible) to set
the top bit of an address in, for example, FORTRAN.)

If a 24-bit application uses a 31-bit user error exit (by
setting the top bit of the address), it is the user exit's
responsibility to return control to the application in the
correct AMODE (because GDDM issues the equivalent
of an XCTl command to the exit).

User exits

A number of other user exits can be defined as
described under "Specifying user exits" on page 104.
That information describes MVS/XA considerations for
such exits.

TSO

Chapter 5. Using GDDM under TSO

This chapter describes the use of GDDM under the TSO
operating system. It covers these topics:

• Link-editing a GDDM application program

• Data sets and file processing

• Display terminal processing

• Using APL terminals

• Using GDDM under TSO or MVS batch

• Sample JCL.

An application program using GDDM has no particular
restrictions or requirements. However, if a PLII
program uses the GDDM-supplied declarations it must
have access to the library on which they are held.
Also, it must be link-edited with one of the interface
modules as described below.

Terminal users should be aware of the GDDM usage of
PA 1, PA2, and the CLEAR keys. Also, there is a possi­
bility of unexpected terminal responses after a GDDM
application program has ended abnormally. These
matters are described under "Display terminal
processing" on page 36.

Link-editing a GDDM application
program

An example of the JCL that can be used to link-edit
GDDM application programs is listed on page 40.

Unless the application program uses dynamic load
facilities to access GDDM by means of the system pro­
grammer interface (see below), an application program
using GDDM under TSO must be link-edited with an
appropriate GDDM interface module. This interface
module can be specifically included in the link-edit
process. Or, if the application program uses one of the
other FSINIT entry points described in the GDDM Base
Programming Reference, Volume 1, the required GDDM
interface module can be included by linkage editor
automatic library call facilities.

This is a list of the GDDM interface modules for TSO:

Interface Interface FSINIT
module alternative

entry

Nonreentrant ADMASNT FSINN
Reentrant ADMASRT FSINR
System programmer ADMASPT

USing the system programmer interface
by means of dynamic load

If an application program uses only the System Pro­
grammer Interface, all invocations of GDDM are
through the entry pOint ADMASP. This entry point can
be resolved by link-editing the application with the
GDDM interface module ADMASPT, as described
above.

Or, the application can avoid these linkage-edit consid­
erations by using system facilities (the OS LOAD func­
tion) to load dynamically a GDDM interface module
ADMASPLT. The main entry point for this module is
defined with both names: ADMASP and ADMASPL T.

Data sets and file processing

When running under TSO, GDDM-Base and GDDM-PGF
use three types of file processing:

• BPAM (Basic Partitioned Access Method) is used
to read and write members on partitioned data
sets.

• QSAM (Queued Sequential Access Method) is used
to read and write data to and from sequential desti­
nations, such as sequential data sets or suitable
SYSOUT classes.

• BDAM (Basic Direct Access Method) is used to
write data to direct access data sets, such as the
Master Print Queue data set used to control
queued printer devices.

GDDM-IMD uses additional types of file processing.
For details, see the GDDM Interactive Map Definition
manual.

BPAM file processing

BPAM is used by GDDM to:

• Store and retrieve Image Symbol Sets (ISS) and
Vector Symbol Sets (VSS) by calls to GSLSS,
PSLSS, PSLSSC, SSREAD, and SSWRT, and also
by using the Image Symbol Editor.

• Store and retrieve device-dependent pictures by
calls to FSSAVE, and FSSHOW.

• Retrieve GDDM-IMD-generated mapgroups, as
required by calls to MSPCRT, MSQADS, MSQGRP,
MSQMAP, and MSREAD. Retrieve and store
graphics data format (ADMGDF) files, as required
by calls to GSLOAD and GSSAVE.

• Read 4250 printer typographical font and code
page data, as required by calls to GSCPG and
GSLSS.

GDDM maintains these symbol sets, pictures, gener­
ated mapgroups, and ADMGDF files as members of
partitioned data sets. The member-names that GDDM
uses are those specified in the corresponding GDDM
calls as "symbol-set names", "picture-names", "group­
names", and "names" subject to modifications of these
names by any character-substitution rules that apply.

The use of partitioned data sets containing symbol sets,
pictures, generated mapgroups, and ADMGDF files can
be controlled by the ESLIB routine whose syntax is
described in the GDDM Base Programming Reference,
Volume 1. This routine establishes the set of parti­
tioned data sets that are to be used to store or retrieve
a given type of object. The partitioned data sets used
are identified to this routine by a list of file names.

Chapter 5. USing GDDM under TSO 33

TSO

The partitioned data sets allocated to the specified file
names are searched in the order given to try to find an
object. An object is stored only using the first file name
of the list, even though it may have been retrieved from
another one. If no file name list is provided, only the
default file name is used for retrieving and storing
GDDM objects.

GDDM uses OSIVS ENQ/DEQ services to ensure the
integrity of partitioned data sets as they are written to.
That is, GDDM ensures that at anyone time, no more
than one instance of GDDM has a particular partitioned
data set opened for output processing. Partitioned data
sets are kept open for output only while servicing the
corresponding GDDM call.

The Interactive Chart Utility (part of GDDM-PGF)
includes a directory function that supports list, delete,
and copy operations on GDDM objects such as symbol

• .• sets, pictures, generated mapgroups, and ADMGDF
files.

QSAM file processing

QSAM is used by GDDM to:

• Read an External Defaults File as part of initializa­
tion processing; see "External defaults file" on
page 2.

• Write object modules as the result of requests from
the Image Symbol Editor.

Within a single invocation of the Image Symbol
Editor, object modules are written consecutively to
the selected sequential output destination. Each
object module generated in this manner contains a
control section (CSECT) with the name as specified
by the editor, and is in a form suitable for link­
editing with an application program for subsequent
reference (typically, by the GSDSS or PSDSS
calls). The TSO LINK command can be used to call
the OS Linkage Editor for this purpose.

• Write data to intermediate sequential data sets
used in the processing of calls to DSOPEN, DSCLS,
FSOPEN, and FSCLS for queued printer output.
The temporary data sets created are read by the
TSO Print Utility, and after output to the printer is
completed, the data sets are purged.

• Write output destined for a System Printer device
as the result of calls to DSOPEN and DSCLS.

• Write data to high-resolution image files as the
result of calls to DSOPEN and DSCLS for family-4
devices.

• Write trace records resulting from the FSTRCE
function in GDDM. For a full description of the use
of the GDDM trace function, see the GDDM Diag­
nosis and Problem Determination Guide.

BDAM file processing

BDAM processing is used by GDDM to read and write
data to the Master Print Queue data set, used by GDDM
to control requests for queued printer output made by
calls to DSOPEN, FSOPEN, DSCLS, and FSCLS. GDDM
uses OS ENQ/DEQ services to ensure the integrity of
the Master Print Queue, because it is written to by mUl­
tiple TSO users and by the GDDM TSO Print Utility.
GDDM ensures that at anyone time, no more than one

34 Base Programming Reference

instance of GDDM has the Master Print Queue avail­
able for input/output processing.

File-name usage

GDDM uses file names to refer to all the partitioned
data sets and sequential destinations, with the excep­
tion of:

• The Master Print Queue and intermediate sequen­
tial data sets that are used in the processing of
queued printer output.

• (Optionally, in the absence of appropriate file
names): High-resolution image files used in the
processing of family-4 devices.

The file names used are as defined in Table 3 on
page 35. They can be changed, if required, after instal­
lation, by specifying new values in GDDM's external
defaults, as described in Chapter 1, "Customizing your
program and its environment" on page 1.

The user should ensure that the required file names
are allocated to suitable data sets or destinations
before GDDM is called. The data sets or destinations
should have Data Control Block (DCB) characteristics
as shown in Table 3 on page 35. The DCB character­
istics for the data sets that contain GDDM-IMD's gener­
ated application data structures (file name
ADMGNADS) and export files (file name ADMIFMT) are
given in the GDDM Interactive Map Definition manual.

If necessary, GDDM supplies default DCB character­
istics when ()utput data sets are first opened.

Required file names can be allocated to the selected
data sets or destinations using the TSO ALLOCATE
command. Or, the file names can be allocated by DO
statements in the user's TSO logon procedure, or by
dynamic allocation routines in the application program.

GDDM uses OSIVS dynamic allocation services to refer
to the Master Print Queue and associated intermediate
sequential data sets. The data-set names used include
a qualifier that is defined in the current GDDM external
defaults. This can be changed, if required, after instal­
lation, as described in Chapter 1, "Customizing your
program and its environment" on page 1. Or, the file
name ADMPRNTQ can be used to identify a Master
Print Queue data set other than that defined by the
current GDDM external defaults.

The intermediate sequential data sets are allocated
with a space allocation that is defined in the TSOS99S
option in the current GDDM external defaults. The
default allocation is equivalent to
SPACE = (13030,(57,57)). If required, this can be
changed after installation, as described under "GDDM
external defaults - TSO" on page 134.

Dynamic allocation services will also.be used if a print
request has been specified to go directly to JES - by
means of the PRINTDST processing option; see "TSO
background print utility" on page 49.

GDDM also uses OSIVS dynamic allocation services to
refer to high-resolution image files (for family-4 proc­
essing), unless suitable file names were previously
allocated.

TSO

Table 3. GDDM data-set characteristics for TSO

Type of Data GDDM default Data set type DCB characteristics
'lie name Record format Record length Block size

(RECFM) (LRECL) (BLKSIZE)

Symbol sets ADMSYMBL Partitioned F 400 400

FB 400 400*n

Pictures ADMSAVE Partitioned F 400 400

FB 400 400*n

Generated ADMSAVE Partitioned F 400 400
mapgroups FB 400 400*n

GDF files ADMGDF Partitioned F 400 400

FB 400 400*n

4250 fonts FONT4250 Partitioned V 2052 (includes ~ LRECL+4
(Note 3) VB ROW)

4250 code FONT4250 Partitioned V 2052 (includes ~ LRECL+4
pages (Note 3) VB ROW)

Object ADMDECK Sequential data F 80 80
modules sets or SYSOUT FB 80 80*n classes

System ADMDECK Sequential data VA ~142 (Notes 1 LRECL+4
Printer Output sets or SYSOUT VBA and 2)

~ LRECL+4 classes

Family-4 ADMCOLn or Sequential data V 2004 (for 4250) LRECL+4
Output ADM IMAGE sets 8202 (for 38xx)

(optional) VBM 2004 (for 4250) ~ LRECL+4
8202 (for 38xx)
(excludes ROW)

Master print ADMPRNTQ BDAM data set (Data set attributes provided when data set)
queue (optional)

Queued (Assigned by Sequential data FBM 80 3200
printer files GDDM) sets

Trace records ADMTRACE Sequential data VA ~ 125 LRECL+4
sets or SYSOUT VBA ~ 125 (includes ~ LRECL+4 classes ROW)

External ADMDEFS Sequential data F ~ 256 LRECL
default files sets FB LRECL*n

V LRECL+4

VB LRECL+4

Image files ADMIMG Partitioned F 400 400

FB 400 400*n
Image ADMPROJ Partitioned F 400 400
projection FB 400 400*n files

Notes:

1. The logical record length specified for files allocated for System Printer Output should be sufficient to
contain the 4-byte Record Descriptor Word (ROW), the ASA control character, any Translation Reference
Character (TRC) for 3800 devices, and the maximum number of columns for the type of System Printer
selected by the application. The value 142 is adequate for any of the System Printer device characteristic
tokens distributed with GDDM.

2. The output for all 3800 devices should contain table reference characters (TRCs). Consequently, the param-
eter DCB = OPTCD = J must be included In the output JCL. Additional parameters such as CHARS, FLASH,
or FORMS may be required. For more Information, see the OSIVS2 MVS JCL manual.

3. 4250 printer fonts and code pages are referenced by GDDM and are supplied as part of the 4250
typographical fonts licensed programs (program numbers 5771-AAA through 5771-AAW, and 5771-ACx,
where x varies).

Chapter 5. Using GDDM under TSO 35

TSO

In TSO foreground operation, GDDM allows the unit
specification for dynamically allocated data sets to be
defaulted from the TSO user attribute data set (UADS).

In TSO Batch or MVS Batch, GDDM uses a unit specifi­
cation taken from the TSOS99U option in the current
GDDM external defaults. The default specification is
"SYSDA". If required, this can be changed after instal­
lation, as described under "GDDM external defaults -
TSO" on page 134.

Display terminal processing

By default, the PA 1, PA2, and CLEAR keys are proc­
essed separately from other terminal input. The effects
of these keys are:

CLEAR clears the screen (no other action)
PA1 raises an TSO attention interrupt
PA2 raise a GDDM "reshow" condition.

The TSO CLEAR/PA1 protocol option of the DSOPEN
function can be used to suppress this separate proc­
essing of the PA 1 and CLEAR keys. The TSO Reshow
protocol option of the DSOPEN function can be used to
specify that a key other than PA2 should act as a
"reshow" key. The use of these DSOPEN options is
described in the GDDM Base Programming Reference,
Volume 1.

The processing of these key functions is described in
more detail below. Note that, because of this special
processing, these key functions cannot be returned as
terminal input by the ASREAD, FSSHOR, or MSREAD
call, unless the key processing was modified by use of
the DSOPEN protocol options.

Using the CLEAR key in full-screen mode

By default, terminal input using the CLEAR key is pre­
vented by full-screen-mode protocols from being
returned to GDDM and the application program. If the
terminal user presses the CLEAR key, the screen is
cleared, but no other operations occur. Specifically,
GDDM may still wait to read input from the terminal, as
a result of a call to ASREAD, FSSHOR, or MSREAD.
Subsequently, terminal input by the user may conflict in
format with that expected by GDDM; in this case, on
return to the application program, an ASREAD or
MSREAD operation issues this error message:

ADMa27a E SCREEN FORMAT ERROR

If this error message is issued, GDDM ensures that the
screen buffer contents are subsequently restored.

The TSO PA1/CLEAR protocol option of the DSOPEN
function can be used to suppress this special proc­
eSSing of the CLEAR key.

Entering attention interrupts in full-screen
mode

By default, PA1 may be used. while GDDM is operating
the terminal in full-screen mode. to cause an TSO
attention interrupt. Unless the application program has
established a special attention-processing function by
means of the TSO STAX macro, using PA1 suspends
the operation of both the application program and

36 Base Programming Reference

GDDM, and causes control to be passed to the terminal
user, with the terminal in READY mode.

At this pOint, normal TSO protocols allow the terminal
user to take the following alternative actions con­
cerning the application program and GDDM:

• Abandon. by entering a new command to be exe­
cuted

• Resume at the pOint of interruption, by using the
ENTER key.

In the latter case, if GDDM had been interrupted while
waiting for terminal input (as the result of a call to
ASREAD. FSSHOR, or MSREAD), the ASREAD,
FSSHOR, or MSREAD operation is completed without
reading any input. On return to the application
program, this error message is displayed:

ADMa405 E ATTENTION INTERRUPT

GDDM ensures that the screen buffer contents are sub­
sequently restored.

If the application program has established a special
attention-processing function by means of the TSO
STAX macro. using PA1 clears the screen and displays
an attention indicator, but does not force a paging con­
dition or otherwise indicate to GDDM that the screen
buffer contents were cleared. In these circumstances,
the application program should subsequently issue an
FSREST(1) call to cause the display buffer contents to
be restored.

The TSO PA1/CLEAR protocol option of the DSOPEN
function can be used to suppress this special proc­
essing of the PA1 key.

Reshow key processing in full-screen
mode

Under TSO, GDDM operates an IBM 3270 series display
in what is known as "full-screen mode". In this mode,
if the terminal is to receive a non-full-screen message,
such as an error message, or a message from another
TSO user, the display screen is cleared, the alarm is
sounded (if applicable), and the message is displayed.

If several such messages occur consecutively, the
screen is cleared once, the alarm is sounded, and the
messages are displayed in sequence. When the next
GDDM full-screen transmiSSion is received, a paging
condition (indicated by three asterisks. ***. at the
current line) is forced.

Pressing the ENTER key at this point queues a request
to GDDM to completely retransmit the display buffer
contents to the terminal (this is equivalent to the call
FSREST(1». Note that GDDM receives this reshow
request only if it is (or when it is next) testing for input
as a result of a call to ASREAD. FSSHOR, FSSHOW.
GSREAD, MSREAD. or FSFRCE. TSO protocols are
such that more partial GDDM transmissions may occur
before GDDM starts retransmission of the contents of
the buffers.

Using the reshow key (by default, PA2) during normal
full-screen processing Simulates the above conditions
and causes GDDM to retransmit the contents of the
buffers.

The TSO Reshow protocol option of the DSOPEN func­
tion can be used to define a key other than PA2 to act
as the reshow key.

Device errors in full-screen mode

Under TSO in full-screen mode, non-full-screen output
to the terminal can cause some full-screen trans­
missions to be "discarded" or wrongly Interpreted. In
some circumstances, this can cause device errors (dis­
played in the Operator Information Area of the terminal
as "X PROGnnn").

After non-full-screen output has been received at the
terminal, it is possible for more partial GDDM trans­
missions to occur before GDDM is able to begin
retransmission of the screen contents; see "Reshow
key processing in full-screen mode" on page 36.

In some circumstances, such partial GDDM trans­
missions may no longer be valid, and may cause
device errors; for example:

• A partial transmission may contain a reference to a
PS set. The PS set may not have been initialized
because:

- The particular PS set has not been used since
the device was powered on, and

The GDDM transmission initializing the PS set
was discarded by TSO in favor of a non-full­
screen message.

• A partial transmission may assume the existence
of a specific partition state on a 3290. The partition
state may not exist because the GDDM trans­
mission creating the partition state was followed
by non-full-screen output that cleared the screen
and thus destroyed the partition state.

If such device errors occur ("X PROGnnn" displayed In
the terminal Operator Information Area), the terminal
user should press the ENTER key to acknowledge the
transmission. More partial transmissions (and more
device errors) may occur until GDDM receives the
reshow request, at which time GDDM automatically
reconstructs the entire screen contents.

Llne-by-line input in full-screen mode

In full-screen mode, TSO does not update line counts
for any non-full-screen input entered at the terminal.
This may result in such input being obliterated by sub­
sequent non-full-screen output to the terminal.

Usually, this does not concern an application program
using GDDM, because the program expects to use
GDDM to read input from the terminal in full-screen
mode. Also, GDDM sets full-screen mode off when
invoked for termination by means of the FSTERM call.

However, if an application program ends without a call
to FSTERM (as the result of an ABEND or other error),
it is possible for the terminal user subsequently to be
prompted to enter line-by-Iine input with full-screen
mode still enabled for that terminal. In this situation,
the terminal user may be able to prevent obliteration of
the line-by-line input by using PAl. This raises an TSO
attention interrupt, and also turns off full-screen mode.

TSO

NOEDIT mode under T50

Under TSO, GDDM uses NOEDIT mode to operate a
"queriable" IBM 3270 series terminal (that is, a ter­
minal that supports the Read Partition (Query) Struc­
tured Field).

Usually, this would not concern an application program
using GDDM, because GDDM maintains this mode only
when reading from a terminal. However, if GDDM or
the application program is abnormally terminated, It is
possible for the terminal user subsequently to be
prompted to enter line-by-line input with the NOEDIT
mode still enabled for that terminal.

In this situation, the user may find that line-by-llne Input
cannot be correctly Interpreted, and may receive one of
these messages:

IKJ566elI COMMAND SYSTEM RESTARTING DUE TO CRITICAL
ERROR

IKJ566eeI UNRECOVERABLE COMMAND SYSTEM ERROR

To recover from this situation, and to prevent the TSO
logon session from being terminated, the terminal user
must press PAl; this causes an TSO attention Interrupt
and turns off the NOEDIT mode.

Using APL terminals

Under TSO, device information provided by the sub­
system does not distinguish between an IBM 3277
Model 2 display terminal and an IBM 3278 or 3279
Model 2 display terminal, unless the latter Is defined to
be "queriable"; that Is, is defined to support the Read
Partition (Query) Structured Field by the 3274 Con­
troller Configuration Support C and the Extended Char­
acter Set Adapter (feature number 3610).

By default, GDDM resolves this ambiguity by assuming
that the device is an IBM 3277 Model 2. If the device is
actually a nonqueriable IBM 3278 or 3279 Model 2 with
an APL Feature, and if the APL character set Is to be
referred to by an application, the GDDM default
assumption must be overridden to ensure correct oper­
ation of the device. The GDDM default can be over­
ridden in any of these ways:

1. The application can specify an explicit device
token (for example, ADMK762A) on a DSOPEN call
to initialize the device; see the GDDM Base Pro­
gramming Reference, Volume 1.

2. The TSOAPLF option in GDDM's current external
defaults can be modified to cause GDDM to
assume by default that a nonquerlable Model 2
display terminal is an IBM 3276 or 3279. This
option can be specified:

• In an External Defaults Module

• In an External Defaults File that was allocated
to ddname ADMDEFS, or

• In a SPINIT, ESSUDS, or ESEUDS call in an
application program.

See Chapter 1, "CustomiZing your program and
its environment" on page 1.

Chapter 5. USing GDDM under TSO 37

T50

Also, under TSO, device information provided by the
subsystem does not indicate whether a 3277 Model 2
display or a nonqueriable 3278 or 3279 display actually
has the appropriate APL feature.

By default~ GDDM assumes that such a device has the
APL feature, and It selects an appropriate set of trans­
lation tables. (For more details, see the description of
ASTYPE in the GDDM Base Programming Reference,
Volume 1 and the GDDM Installation and System Man­
agement for MVS manual.) If the device does not have
the APL feature, the use of character code points that
correspond to APL characters may result in incorrect
output at the device.

The GDDM default can be overridden in either of the
following ways. The application program can:

• Specify an explicit device token (for example,
ADMK7720) in a DSOPEN call to initialize the
device (see the GDDM Base Programming Refer­
ence, Volume 1) or by means of nickname facilities
(see "Using nicknames to define device
characteristics" on page 3).

• Use the ASTYPE call to specify the appropriate set
of translation tables, as follows:

Device type
3277
3277-APL
3278,3279
3278-APL, 3279-APL

Translation type number
3277
32771
3279
32791

For a full description of the operation of alphanu­
meric translation tables, see the GDDM Installation
and System Management for MVS manual.

Using GDDM under TSO batch

TSO Extensions (TSO/E) Is a licensed program
(program number 5665-285) that provides a TSO Batch
environment in which TSO commands and command
procedures can be run in the background. GDDM can
be used in this environment, in normal MVS Batch,
subject to the following considerations.

• TSO Batch applications must be link-edited using
the Information under "Link-editing a GDDM appli­
cation program" on page 33.

• GDDM processes any External Defaults File allo­
cated by means of a DO statement; the default
ddname is ADMDEFS.

• The GDDM default error exit reports errors using
WTP (Write-To-Programmer). These messages
usually appear on the JOB LOG output.

• GDDM dynamically allocates queued printer files
or high-resolution Image files for family-4 devices
using a unit specification that Is defined in the
TSOS99U option in the current GDDM external
defaults. The default unit specification is SYSDA.
If required, this can be changed, as described
under "GDDM's default values, listed by
subsystem" on page 127.

• The GDDM-supplled interactive utilities neces­
sarily use the default primary device (the "TSO
terminal"), unless called for noninteractive proc­
essing. Therefore, these utilities cannot be run
Interactively in TSO batch.

38 Base Programming Reference

• The default primary device (the simulated TSO ter­
minal) is not suitable for GDDM full-screen oper­
ations. GDDM diagnoses any attempt to use this
device.

Therefore, an application must include an explicit
DSOPEN to identify a nondefault primary device
(for example, a dummy device or non-family-1
device).

• The GDDM default error exit reports errors using
WTP (Wrlte-To-Programmer). User PROFILE
options can be used to cause the messages to
appear as part of the session output file
(SYSTSPRT). The TSO command to request that
WTP messages appear on the session output file
is:

PROFILE WTPMSG
and this should be Included in the session Input file
(SYSTSIN) before GDDM is used.

• Unless the application is running as part of a RACF
job with USERID, no default data-set-name prefix
or userld Is defined. A default data-set-name
prefix may be required by GDDM for dynamic allo­
cation of queued printer files or high-resolution
image flies (for family-4 devices). The TSO
command to establish a default data-set-name
prefix is:

PROFILE PREFIX(dsname-prefix)
and this should be included in the session Input file
(SYSTSIN) before GDDM Is used.

• GDDM uses the userid only for annotation pur­
poses (in print files and trace files). In the absence
of a use rid, GDDM uses the JOB name.

Using GDDM under MVS batch

These items are specific to processing under MVS
Batch:

• MVS Batch applications must be link-edited using
the information under "Link-editing a GDDM appli­
cation program" on page 33.

• GDDM processes any External Defaults File allo­
cated by means of a DO statement; the default
ddname Is ADMDEFS.

.' The GDDM default error exit reports errors using
WTP (Wrlte-To-Programmer). These messages
usually appear on the JOB LOG output.

• GDDM dynamically allocates queued printer flies
or high-resolution image files for family-4 devices
using a unit specification that Is defined in the
TSOS99U option In the current GDDM external
defaults. The default unit specification is SYSDA.
If required, this can be changed, as described
under "GDDM's default values, listed by
subsystem" on page 127.

• The GDDM-supplled interactive utilities neces­
sarily use the default primary device (the "TSO
terminal"), unless called for noninteractive proc­
essing. Therefore, these utilities cannot be run
interactively MVS Batch.

• The default primary device (the simulated TSO ter­
minal) is not available for GDDM full-screen oper­
ations. GDDM diagnoses any attempt to use this
device.

Therefore, an application should include an explicit
DSOPEN to identify a nondefault primary device
(for example, a dummy device or non-family-1
device).

• The default data-set-name prefixes or userlds that
are given under TSO are not applied. GDDM does
not apply such a prefix for dynamic allocation of
queued printer files or high-resolution image files
for family-4 devices. Queued printer files are allo­
cated with names of the form:

ADMPRINT.REQUEST.#nnnnn

TSO

where the string ADM PRINT is as provided in
GDDM's defaults. The name ADMPRINT can be
changed by specifying a new value in the
TSOPRNT option In GDDM's external defaults. For
full details, see "GDDM external defaults - TSO"
on page 134.

• GO OM uses the JOB name for annotation purposes
In print and trace files.

Chapter 5. Using GDDM under TSO 39

150

Sample JeL for GDDM under TSO

11************************ TSO ***
1/*
11* Sample JCL to link-edit a GDDM/TSO
11* sample program or user-written application.
1/*
11* xxx xxx xx is the name under which the program load module is
1/* generated.
1/*
11**
1/*
Iljobname
1/*

JOB accounting info •.•••••••••

11* Link-edit step
1/*
11* Include INCLIB to reference library containing GDDM interface
11* modules. as shown.
1/*
11* In the specified INCLUDE statement.
11* leave ADMASNT unchanged if using the nonreentrant interface
11* replace ADMASNT by ADMASRT if using the reentrant interface
11* or by ADMASPT if using the system programmer interface
1/*
IILKED
IISYSPRINT
IISYSUB
I/INCUB
IISYSLMOD
IISYSUTl
I/SYSUN

..

EXEC PGM=IEWL.PARM='XREF.LIST'.REGION=768K
DD SYSOUT"A
DD DSN=as-required-by-application.DISP=SHR
DD DSN=GDDM.OSPID.GDDMLOAD.DISP=SHR
DO OSN=user-load-module-dataset.DISP=SHR
DO UNIT=SYSOA.SPACE=(1024.(200.20»
DO *

Program object deck here.

INCLUDE INCLIB(ADMASNT)
NAME xxxxxxxx(R)

1*

40 Base Programming Reference

VM/CMS

Chapter 6. Using GDDM under VM/CMS

This chapter describes the use of GDDM under the
VM/CMS operating system. It contains the following
topics:

• Compiling a GDDM PUI application program

• Loading a GO OM application program

• Running a GDDM application program or utility

• Data sets and file processing

• Display terminal conventions

• Using APL terminals

• Batch processing

• Running programs under VM/XA.

How to use the GDDM print utility is described in
Chapter 7, "The GDDM print utilities" on page 47.

Note: GDDM cannot be run in the VM CMS/DOS envi­
ronment. Therefore, it cannot be successfully invoked
under VM/CMS by application programs compiled
using DOS compilers such as the PUI DOS Optimizing
Compiler.

When writing an application program, you must access
MACLIBs to compile your programs, if you are to
include the GDDM standard declarations. You must
also access TXTLIBs to load your program, and pos­
sibly to run your program, as described on page 41.

If you are a terminal user you must know the PA key
usage and other terminal conventions.

You must also be aware of the file usage of GDDM to
help you manage the storage of your virtual machine.

You should also be aware that under VM/CMS the print
utility may have to be invoked separately after Invoking
printing functions from the ICU or from an application
program. The print utility is described under
Chapter 7, "The GDDM print utilities" on page 47.

Compiling a GDDM PL/I application
program

If you use the GDDM-supplied declarations in your
program, you must access the library that contains
them before compiling, by issuing a command of the
form:

GLOBAL MACLIB ADMLIB

Loading a GDDM application
program

Before loading a VM/CMS application, the CMS
GLOBAL command must be executed to Identify the
appropriate GO OM TXTLIB to be searched for GDDM
function references.

The GO OM TXTLIB to be specified In the CMS GLOBAL
command depends on the type of GO OM interface being
used, as follows:

Interface

Nonreentrant
Reentrant
System programmer

GDDM TXTLIB

ADMNLIB
ADMRLlB
ADMPLIB

The command takes the form:

GLOBAL TXTLIB ADMxLIB
where ADMxLlB is one of the TXTLIBs above.

The application can then be loaded, typically with a
command of the form:

LOAD appl-name

Running a GDDM application
program or utility

All the required run-time GDOM facilities may have
been made available in a VM/CMS Discontiguous
Shared Segment (DCSS) as described in GDDM Instal­
lation and System Management for VM manual. If not,
before running a GOOM application program or utility,
the CMS GLOBAL command must be executed to iden­
tify appropriate GDOM TXTLIBs to be searched for rou­
tines required dynamically during execution.

If GDDMIVM or GODMIVMXA (uGOOM Base") only has
been installed, the installation procedure will have
placed the required routines in ADM GLIB TXTLIB.

If GDDM-PGF has also been installed, the installation
procedure will have placed additional GDDM-PGF rou­
tines in AOMPLIB TXTLIB.

If the GDOM National Language (GDDM NL) special
feature has also been Installed, the Installation proce­
dure will have placed additional GOOM NL routines in
AOMPLLlB TXTLIB (this contains language-dependent
routines for languages other than American English).

Therefore, the CMS GLOBAL command to be executed
is:

GODM Base only:

GLOBAL TXTLIB ADMGLIB
GDOM Base and GDDM-PGF:

GLOBAL TXTLIB ADMPLIB ADMGLIB
GDDM Base and GDDM Base NL:

GLOBAL TXTLIB ADMHLIB ADMGLIB
GO OM Base, GDDM-PGF NL, and both NL:

GLOBAL TXTLIB ADMHLIB ADMPLIB ADMQLIB ADMGLIB

Chapter 6. Using GDOM under VM/OMS 41

VM/CMS

If any other GDDM product besides GDDM Base has
been Installed, issue ADMGLlB as the last parameter in
the GLOBAL command parameters list. Failure to do
so may cause GDDM abend code 1064.

Having issued the GLOBAL command, if required, the
application can then be started, typically with a
command of the form:

START appl-entry-po;nt

If the application requires no special parameters on the
START command, the steps described above of loading
and starting an application can be combined. For
example:

GLOBAL TXTLIB ADM ,.
LOAD appl-name (START
Note: It is mandatory that ADM GLIB is specified after
ADMPLIB on the GLOBAL command.

Considerations for running multiple
instances of GDDM

An application using the reentrant or system pro­
grammer Interface to GDDM may invoke more than one
instance of GDDM concurrently. Such an application
should ensure that the first instance of GDDM to be Ini­
tialized (using FSINIT or SPINID is also the last to be
terminated (using FSTERM). This prevents any GDDM
Shared Segment (DCSS) being unloaded prematurely.

Data sets and file processing

When running under VM/CMS, GDDM/Base and
GDDM-PGF use two types of file processing:

• "Native" CMS file processing to read and write
conventional CMS disk files direct.

• "Native" CMS spool file processing to write output
to the punch device, 000, and the printer device,
OOE.

GDDM-IMD uses additional types of file processing.
For details, see the GDDM Interactive Map Definition
manual.

Native CMS file processing

Native CMS file processing is used by GDDM:

• To store and retrieve Image Symbol Sets (ISS) and
Vector Symbol Sets (VSS), as a result of calls to
GSLSS, PSLSS, PSLSSC, SSREAD, and SSWRT,
and through the Image Symbol Editor.

• To store and retrieve device-dependent pictures,
as a result of calls to FSSHOW, FSSHOR, and
FSSAVE.

• To retrieve GDDM-IMD-generated mapgroups, as
required by calls to MSPCRT, MSQADS, MSQGRP,
MSQMAP, and MSREAD.

• To retrieve and store Graphics Data Format
(ADMGDF) files, as required by calls to GSLOAD
and GSSAVE.

• To write text files, as a result of requests through
the Image Symbol Editor.

42 Base Programming Reference

• To write queued print files, as a result of calls to
DSOPEN, DSCLS, FSOPEN, and FSCLS, subse­
quently to be processed by the GDDM VM/CMS
Print Utility.

• To write system printer disk files, as the result of
calls to DSOPEN and DSCLS.

• To write data to high-resolution image files as the
result of calls to DSOPEN and DSCLS for family-4
devices.

• To read 4250 printer typographical font and code
page data, as required by calls to GSCPG and
GSLSS.

• To write trace output resulting from execution of
GDDM with the trace facility enabled. For a
description of the enablement and use of GDDM
trace facilities, see the GDDM Diagnosis and
Problem Determination Guide.

• To read an External Defaults File as part of initial-
Ization processing; see page 2.

All the above types of data are stored and retrieved
using CMS file identifiers where, by default:

filename is determined according to the type of data, as
follows:

• For symbol-sets, pictures, generated
mapgroups, ADMGDF files, print files, hlgh­
resolution image flies (for family-4 devices),
and 4250 printer fonts and code pages, the
filenames used are those speCified in the
corresponding GDDM calls as symbol-set
names, picture names, group names,
ADMGDF file names, print-destination
names, device names, and code-page
names, subject to modification of these
names by character-substitution rules.

• For text-files, the filenames used are those
specified through the symbol editor. Each
text file generated contains a
correspondingly-named control section
(CSECT), and Is in a form suitable for link­
editing with an application program for sub­
sequent reference, typically by the GSDSS or
PSDSS call.

• For trace output, the filename used is as
defined in Table 4 on page 43 or as modified
by the user In the CMSTRCE option in the
current GDDM external defaults; see "GDDM
external defaults - VM/CMS" on page 137.

• For External Defaults File input, the filename
used is as defined in Table 4 on page 43 or
as modified by the user in the CMSDFTS
option in the current GDDM external defaults;
see "GDDM external defaults - VM/CMS"
on page 137.

fUetype is determined by the GDDM default name (see
Table 4 on page 43) or as modified by the user in
the current GDDM external defaults (see "GDDM
external defaults - VM/CMS" on page 137).

fllemode is:

"A1" for output, causing data to be stored on the
A-disk (which should be accessed as read/write
for such operations).

"*" for input, causing accessed data to be
searched In the standard order.

VM/CMS

Table 4. GDDM data-set characteristics for VM/CMS

Type of data GDDM default flletype Record format (RECFM) Record length (LRECL)

Symbol sets ADMSYMBL F 400

Pictures ADMSAVE F 400

Generated mapgroups ADMGGMAP F 400

GDF files ADMGDF F 400

Text files ADMDECK F 80

System printer output ADMLlST (but directed to V according to device
virtual printer by default) characteristics

Family-4 output ADMCOLn or V :s; 2000 (for 4250)
ADMIMAGE :s; 8202 (for 38xx)

4250 printer fonts (see FONT4250 V :s; 2048
Note)

4250 printer code pages FONT4250 V :s; 2048
(see Note)

Queued printer files ADMPRINT F 80

Trace records ADMTRACE (default V :s; 121
filename is ADMOOO01)

External ADMDEFS F :s; 256

Files filename is PROFILE) V :s; 256

Image files ADMIMG F 400

Image Projection Files ADMPROJ F 400

Note: 4250 printer fonts and code pages are referenced by GDDM and are supplied as part of the 4250
typographical fonts licensed programs (program numbers 5771-AAA through 5771-AAW, and 5771-ACx, where x
varies).

The DSOPEN call allows the filenames, filetypes, and
filemodes of queued printer, system printer, and high­
resolution image (family-4) disk file devices to be
explicitly specified by means of the name-list param­
eter.

The Interactive Chart Utility (part of GDDM-PGF)
includes a directory function that supports list, delete,
and copy operations on GDDM objects such as symbol
sets, pictures, generated mapgroups, and ADMGDF
files.

Native eMS spool file processing

Native CMS spool file processing is used by GDDM:

• To write output to the virtual punch, as the result of
calls to DSOPEN and DSCLS.

• To write output to the virtual printer, as the result
of calls to DSOPEN and DSCLS.

• To write trace output resulting from the execution
of GDDM with the trace facility enabled. For a
description of enabling and using GDDM trace
facilities, see the GDDM Diagnosis and Problem
Determination Guide.

GDDM writes 3270 device (family-1) output either
directly to a 3270-type terminal or to the virtual punch,
according to the name specified in the DSOPEN call.
3270 device output written to a virtual punch is in the
form of 80-byte records in the following format:

Record 1 Virtual CCW (8 bytes) including SIO
count. The CCW opcode is one of the
following:

Record 2

Record n

Record n+1

X'01' Write
X'05' Erase/Write
X'OD' EraselWrite Alternate
X'11' Write Structured Field.

Data stream - as many SO-byte
records as are necessary to contain
"SIO count" bytes of data.

Virtual CCW (8 bytes) including SIO
count.

Data stream - as many 80-byte
records as are necessary to contain
"SIO count" bytes of data.

CP SPOOL and CP TAG commands should be used to
direct the virtual punch output to a destination that is
capable of processing data in the above format (such
as RSCS Networking Version 2). The CPSPOOL and
CPTAG processing options in DSOPEN can be used to
issue such commands automatically.

Chapter 6. Using GDDM under VM/CMS 43

VM/CMS

GDDM writes System Printer output either to a disk file
or to the virtual printer, according to the name speci­
fied by the DSOPEN call. Data written to a System
Printer device contains ASA control characters and, for
3800 devices, Translation Reference Characters
(TRCs). The CP SPOOL and CP TAG commands should
be used to specify additional special parameters such
as CHARS, FLASH, or FCB that may be required for
3800 devices.

GDDM writes trace output either to a disk file or to the
virtual printer, according to the filename defined in the
current GDDM external defaults (or modified in the
CMSTRCE option; see "GDDM external defaults -
VM/CMS" on page 137). If the filename is defined as
all blanks, GDDM directs the trace output to the virtual
printer.

Display terminal conventions

The following comments apply only when the display
terminal being used is the CMS user virtual console.

Under VM/CMS, by default, the PAl and PA2 keys are
processed separately from other terminal input. The
effect of using these keys is as follows:

PA1 Pressing this key causes CP mode to be entered
and a CP READ status to be displayed. In this
environment, any CP commands may be issued.
To return from the CP environment, issue the CP
command BEGIN.

PA2 PreSSing this key causes the CMS SUBSET envi­
ronment to be entered and a RUNNING status to
be displayed. In the CMS SUBSET environment,
any CMS commands that run in the transient area
may be issued. For example:

ACCESS lISTFIlE RENAME
CP PRINT RETURN
DISK PUNCH SET
ERASE QUERY STATE
EXEC READ CARD TYPE
To return from the CMS SUBSET environment,
issue the CMS SUBSET command RETURN.

On return from the CP or CMS SUBSET environment,
GDDM retransmits the screen buffer contents, and then
waits for more input.

As a result of the above special processing, PAl and
PA2 cannot, by default, be returned as terminal input by
the ASREAD, FSSHOR, or MSREAD call. However, the
CMS PA1/PA2 protocol option of the DSOPEN function
can be used to suppress this special processing selec­
tively. The use of this option to the DSOPEN function is
described in the GDDM Base Programming Reference,
Volume 1.

44 Base Programming Reference

Asynchronous interrupts on VM/CMS

The following comments apply only when the display
terminal being used Is the CMS user virtual console.

Using the ENTER key

Unless the application program has established any
special attention-processing functions, the ENTER key
(and no other attention key) may be used while GDDM
is operating to cause an asynchronous CMS attention
interrupt. This suspends the operation of both the
application program and GDDM, and causes control to
be passed to the terminal user, with the terminal in
line-by-line VM READ mode.

In this mode, normal CMS protocols usually allow the
terminal user to take one or more of the following
actions:

• Resume at the point of interruption, by pressing the
ENTER key.

• Enter an "immediate" CMS command (for
example, HO, HT, HX, RO, RT, or SO).

• Enter other commands - such commands are
stacked for execution at the next entry into normal
CMS or CMS SUBSET mode.

After any of the above actions (except HX), GDDM
ensures that the screen buffer contents are restored.

Using other attention keys

Application programs can request extended processing
of asynchronous interrupts by specifying the CMS
attention handling option (processing option group
1001) of the DSOPEN call.

Requesting "extended attention handling" indicates
that an application program attention feedback block
may have been located by means of the DSOPEN CMS
attention option.

If this is done, an attention key may be used while
GDDM is operating to cause an asynchronous CMS
attention interrupt (unless a line-by-line message has
already placed the terminal into line-by-line mode, in
which case, only ENTER causes an attention interrupt).
An exception is the PA1 key, which causes CP mode to
be entered, unless the PAl special processing was
suppressed as described above.

Also, if the attention feedback block is of nonzero
length, GDDM stores up to two words of information in
this block (according to the length specified), indicating
the nature of the interrupt. The information stored Is as
follows:

• Attype - attention type (full-word integer)

• Attval - attention type value (full-word integer).

where these are as defined for the ASREAD call (see
the GDDM Base Programming Reference, Volume 1).

An application program may Intercept such attention
interrupts by establishing a special attention­
processing exit using the VM/CMS simulation of the
TSO STAX macro. A STAX exit of this form should be
established before the device representing the virtual
console is initialized (that is, before SPINIT/DSOPEN),
and should not be cleared until after the device has
been terminated (that Is, after FSTERM/DSCLS). A
STAX exit may examine the contents of the attention
feedback block to determine the cause of the interrupt.
GDDM must not be Invoked from a STAX exit if GDDM
was already running at the time of the interrupt.

GDDM disables all STAX exits and attention-processing
functions before Initiating the CMS SUBSET environ­
ment, and restores them on return.

VM-Inltlaied asynchronous Interrupts

VM/CMS may generate "virtual" asynchronous inter­
rupts before the display of a priority message.

If such an interrupt occurs while the terminal user is
entering data in response to an ASREAD, FSSHOR, or
MSREAD call, GDDM allows the priority message to be
displayed immediately, but saves and restores any
data entered by the terminal user. An interrupt occur­
ring at this time may also cause any application
program attention-processing exit to be entered, with
an attention feedback block indicating an interrupt of
type 6 ("Undefined").

VM-initiated asynchronous interrupts are not otherwise
apparent to the GDDM terminal user or application
program.

Interactions with non-GDDM device interrupt
handling

An application program that uses GDDM to communi­
cate with the CMS virtual console and uses the CMS
HNDINT macro as part of Its own interrupt handling for
devices not controlled by GDDM must be written in
such a way as to avoid recursion of the CMS HNDINT
macro.

If the virtual console operator causes an asynchronous
attention interrupt, GDDM's STAX exit gains control.
This exit attempts to read from the terminal to deter­
mine the nature of the interrupt. During this proc­
essing, GDDM issues a CMS HNDINT WAIT macro.

If the application program already has a CMS HNDINT
WAIT macro active at the time, interference between
the macros occurs, and the application program's
HNDINT WAIT macro is likely to complete immediately,
with random results.

To prevent this type of interaction, the application
program should suppress GDDM's STAX exit (and the
attention-processing functions that go with it) over the
duration of its own HNDINT WAIT macro. The applica­
tion program can do this by clearing (and saving) the
value in the T AXEADDR field in the CMS Nucleus Con­
stant Area (NUCON) before invoking HNDINT WAIT and
by restoring the value in T AXEADDR after the HNDINT
WAIT macro has completed.

YM/CMS

USing APL terminals

This section describes how GDDM Interacts with
nonqueriable displays and printers that have the APL
feature.

Using nonqueriable displays with the APL
feature

Under VM/CMS, device information provided by the
subsystem does not indicate whether a nonquerlable
3278 or 3279 display has the appropriate APL feature.
(A "queriable" terminal is one that supports the Read
Partition (Query) structured field.)

If the CP TERM APL ON command was issued, GDDM
assumes by default that such a device has the APL
feature, and selects an appropriate set of translation
tables. (For more details, see the description of
ASTYPE in the GDDM Base Programming Reference,
Volume 1 and the GDDM Installation and System Man­
agement for VM manual.) If the device does not have
the APL feature, the use of character code points corre­
sponding to APL characters may result in wrong output
at the device.

If the CP TERM APL OFF command was issued, GDDM
assumes that such a device does not have the APL
feature.

The GDDM default can be overridden in either of the
following ways. The application program can:

• Specify an explicit device token (for example,
ADMK7720) in a DSOPEN call to initialize the
device (see the GDDM Base Programming Refer­
ence, Volume 1) or by means of nickname facilities
(see "Using nicknames to define device
characteristics" on page 3).

• Use the ASTYPE call to specify the appropriate set
of translation tables, as follows:

Device type Translation type number
3278,3279 3279
3278-APL, 3279-APL 32791

For a full description of alphanumeric translation
tables, see the GDDM Installation and System Man­
agement for VM manual.

Using nonqueriable printers with the APL
feature

Under VM/CMS, device information provided by the
subsystem does not distinguish between IBM 3270
printers, unless they are "querlable" (that is, unless
they support the Read Partition (Query) Structured
Field).

By default, GDDM assumes that any APL feature on a
nonquerlable printer Is the APLlText Feature, rather
than the Data Analysis - APL Feature. If a printer
(such as an IBM 3284 or 3286) has the Data Analysis -
APL Feature, and If the APL character set is to be refer­
enced, the GDDM default assumption must be over­
ridden to ensure correct operation of the device.

Chapter 6. Using GDDM under VM/CMS 45

VM/CMS

The CMSAPLF option in GDDM's external defaults can
be modified (by specifying the value DATAANAL) to
cause GDDM to assume by default that an APL feature
installed 00 a nonqueriable IBM 3270 printer terminal is
the Data Analysis - APL Feature. This option can be
specified:

• In an External Defaults Module, or

• In an External Defaults File.

See Chapter 1, "Customizing your program and its
environment" on page 1.

Batch processing

A disconnected Virtual Machine, such as a machine
using the CMS batch facility, can simulate batch proc­
essing. In such an application, you cannot communi­
cate with the default primary device because there is
no such device. The application must use DSOPEN to
indicate the device that is to be used; for example:

• A dummy device

• A queued printer

• A high-resolution image file

• A dialed-in display station

• An attached printer.

In batch processing, an application might:

• Create queued printer output for subsequent
printing by the GDDM print utility. The queued
printer output would, perhaps, be created by using
the chart utility noninteractively.

• Create a high-resolution image file for a family-4
device.

• Create FSSAVE files for subsequent interactive use
with FSSHOW. The flies would be created by using
a dummy device.

46 Base Programming Reference

GDDM application programs under
VM/XA

The Base product, GDDMIVMXA, enables GDDM and
application programs to exploit VM/XA SP, in particular
31-bit addresses and virtual machines bigger than 16
megabytes. Generally, programming for GDDMIVMXA
is no different from programming for GDDMIVM,
although there are a few special considerations.

Migration: To run under VM/XA SP, modules must be
generated with GDDMIVMXA. To run under VM/SP,
they must be generated with GDDMIVM. Programs
transferred from one system to the other must there­
fore be re-generated.

User exits: Programmers should take care when spec­
ifying the addresses of user exits to GDDM. GDDM
uses the convention that the top bit of such addresses
identifies its addressing mode (AMODE). Also, if
GDDM is Initialized with the SPINIT call, and this call
was issued in 24-bit mode, GDDM clears bits 1 through
7 of each address word that it processes.

Interception of PA1: Programs that request (with the
GDDM CMSINTRP processing option) that PA 1 key
interrupts be passed to them will cause the CP TER­
MINAL BRKKEY value to be set to NONE, regardless of
its original setting. This action is consistent with that of
CMS when its full-screen mode is entered.

Dialed devices: If GDDM is used to drive a dialed
display device, then when that device is closed it will
also be dropped from the virtual machine. This is due
to a feature of the CMS Console Services support that
causes a dialed device to be dropped when the last
console path to it Is closed.

Chapter 7. The GDDM print utilities

There are several utility programs provided as a part of
GDDM: the queued printer support facility, the image
print utility, and the composite document print utility.
They are described in that order In this chapter.

The main GDDM print utility is a queued printer support
facility that consists of two parts operating asynchro­
nously:

• The GDDM printing subroutines

These are invoked by call statements In the appli­
cation program. When a queued printer Is closed
by a call to FSCLS or DSCLS, a request Is queued
to the output print utility, and all output to be
printed is copied to a print file.

• The output print utility

This is supplied in a version appropriate for the
subsystem In use. Invocation and operating
Instructions for each version are given below.
Messages issued by the utility are listed In the
GDDM Messages manual. The output print utility
can write a print file both to a 3270-famlly printer
and (except under IMSNS) to a plotter that is
attached to a 3179-G or 3192-G color display
station, or a 3270-PC/G or 3270-PC/GX work
station.

Note: In general, print files produced under one
GDDM release cannot be printed using the print
utility of another release.

On printers (but not on plotters), a header page Is
printed at the start of each file (unless It was explicitly
suppressed when the FSOPEN or DSOPEN call was
Issued). The header page Identifies the origin of the
print file and the date and time that it was created. The
origin of the file depends upon the subsystem as
follows:

CICSIVS the transaction identifier
IMSIVS the userid, if available, or the logical ter­

minal name
(or asterisks, *, If neither Is available)

TSO the userld
VM/CMS the userld.

The formats of the date and time are defined in the
current GDDM defaults. For details of how to change
these values, see "Changing GDDM's default values"
on page 127.

For plotters, the ORIGINID processing option In
DSOPEN (see the GDDM Base Programming Refer­
ence, Volume 1) can be used to superimpose an alpha­
numeric field containing similar Information on each
plotted page.

Processing for a printer device

By default, GDDM performs a page eject at the end, but
not at the start, of a print file. This action Is controlled
by setting the appropriate value In the current GDDM
defaults. For details, see "Changing GDDM's default
values" on page 127.

printing

If any errors are detected during the printing process,
an error page Is printed that summarizes a maximum
of 19 errors. Each error message is prefixed by the
number of the page that was being generated when the
error was detected, and, If possible, by the function that
GDDM was running at the time the error was detected.
(The count starts with the header page, If there was
one.)

If multiple copies are being printed, an error page is
printed after each copy during the printing of which
errors were detected. If only a single page Is being
printed for each copy, the processing Is optimized so
that some errors are only detected during the printing
of the first copy. In other circumstances, errors may be
repeated for each copy.

Serious errors where the messages cannot be printed
(for example, errors occurring at initialization of the
print utility), are written to a system-dependent destina­
tion as follows:

CICS/VS
IMSIVS
TSO
VM/CMS

the error log
broadcast to the Master Terminal Operator
the system operator
the terminal operator.

Processing for a plotter device

To cause the GDDM print utility to write a print file to a
plotter, It Is usually necessary to specify the DSOPEN
processing option, STAGE21D, when the print file is
created. For full details, see Appendix B, "Processing
option groups and name-lists" on page 149.

To ensure that control Information for the plotter is
honored by GDDM, nickname statements are required
in the defaults file. For example, to change the pen
velocity:

AOMMNICK NAME=QPlOT,TOFAM=2.
TONAME=lUNAME,OEVTOK=L7372.
PROCOPT={(STAGE2ID,PLOTTER»

ADMMNICK NAME=PLOTTER,FAM=l.
TONAME={*,ADMPLOT),
PROCOPT={{PlTPENV,19»

In the above example, the user would direct the output
to "QPLOT".

The GDDM print utility begins to plot on a device as
soon as it receives a print file for that device. At the
same time, It sends a status message to the associated
3179-G or 3192-G color display station, 3270-PC/G or
3270-PC/GX work station, or device supported by
GDDM-PCLK.

The GDDM print utility pauses at the end of each page
that is plotted to give the operator an opportunity to
reload the plotter device. GDDM sends another status
message at that time and prompts the operator to press
any attention key to cause plotting to continue, or to
complete the processing of the print file.

At any time, the plotting of the current page may be
canceled by preSSing the CLEAR key on the associated
work station.

Chapter 7. The GDDM print utilities 47

printing

If any errors are detected during the plotting process,
the error messages are added to the status messages
on the associated 3179-G or 3192-G color display
station, 3270-PC/G or 3270-PC/GX work station, or
device supported by GDDM-PCLK. These messages
are accumulated; each error message Is prefixed by
the number of the page that was being plotted when the
error was detected and, if possible, by the function that
GDDM was running at the time the error was detected.

If multiple copies are plotted, the process is repeated
for each copy.

Serious errors, where the messages cannot be dis­
played (for example, errors that occur when the print
utility is Initialized), are written to the error log (under
CICSNS), the system operator (under TSO), or the ter­
minal operator (under VM/CMS).

Note: Any nickname processing for the associated
3179-G color display station, or 3270-PC/G or
3270-PC/GX work station, is suppressed during the time
that plotting takes place.

CICS/VS print utility

The CICSNS version is ADMOPUC, and runs as a
transaction that automatically processes print requests.

Invocation

No explicit Invocation is required. Print requests auto­
matically schedule the transaction, using the Interval
Control facilities of CICSNS. Note that CICSNS
Interval Control uses CICSNS Temporary Storage facil­
Ities. If this Is defined as recoverable, the transaction
Is not initiated until a synchronization pOint Is reached.
Printing may therefore be delayed until the display task
terminates or until a user synchronization point Is
reached. The GDDM-PGF Interactive Chart Utility (ICU)
does not contain any explicit synchronization pOints.

Printer and ploUer operating Instructions

The printer or plotter must be prepared for use
according to the operating Instructions for the model,
and the paper must be aligned to the top of the page.

SCS mode PA switches

For a printer operating in SCS mode, the PA1 and PA2
switches can be used. These switches ailow limited
communication with the utility, and are used with the
Hold PrinVEnable Print switch, as described In the
Component Description and Operator's Guide for the
appropriate printer. The effect of each switch Is as
follows:

PA1 Sending a PA1 switch code to the utility
causes It to restart printing of the current
request at the page after the header page. For
a multiple-copy request, printing is resumed at
the start of the copy being processed at the
time of the Interrupt.

PA2 Sending a PA2 switch code to the utility
causes it to restart printing of the current
page.

48 Base Programming Reference

Messages

Most messages are Issued as part of the output from
the utility. If it is not possible to send the error mes­
sages to the terminal, they are sent to the GDDM error
log by Transient Data Facilities as described In
Chapter 2, "Using GDDM under CICSNS" on page 7.

The VSE print job utility
The VSE Print Job Utility creates print files for 38xx and
4250 printers, from ICU chart format and data
(ADMCFORM and ADMCDATA) flies, GDDM graphics
data format (GDF) flies, and GDDM Images (ADMIMG
flies). Further detailS, including Its end-user interface,
are given In the GDDM Release Guide.

The user Interface program ADMUPRTC merges values
entered Into a menu with skeletal JCL supplied by a
system programmer, to form a job-stream that It
submits to VSE for batch processing. The skeletal JCL
Is defined when GDDMNSE is Installed: instructions
are given in GDDM Installation and System Manage­
ment for VSE manual.

The VSE Print Job Utility creates a primary data
stream, unless a page segment (secondary data
stream) is specified In a GDDM proceSSing option when
the utility is invoked. The print program stores any
page segments it creates In a subllbrary. You will
need:

LIBDEF *.CATALOG= .•••
in the job stream that Invokes the print program to
create a page segment, otherwise you will get a GDDM
abend with the code SVC6E. If ADMUPRTC Is used, the
LIBDEF statement must be added to the skeletal JCL.

Running the VSE print program without using
ADMUPRTC

You do not have to use the ADMUPRTC utility to gen­
erate and submit the batch Jobs that Invoke the print
program ADMUCDSD. You can create and submit the
job yourself. Some sample JCL for creating a primary
data stream for a 38xx printer is shown below.

1) * $$ JOB JNM=jobname.CLASS=x.DISP=y
2) * $$ LST CLASS=x.DISP=y.DEST=(node.user;d). *

JSEP=l
3) * $$ LST CLASS=x.DISP=y.DEST=(.psf;d). *

LST=cuu.JSEP=l
4) II JOB jobname
5) II DLBL l;bname.'name.of.a.l;brary'
5) II EXTENT .vol;d
6) II LIBDEF *.SEARCH=(11.sl.12.s2 ••••• 1i.si)
7) II DLBL IJSYSUC.'user.catalog.name' •• VSAM
8) II DLBL ADMF.'gddm.objects.f;le.name' •• VSAM
9) II ASSGN SYSyyy.cuu
19) II EXEC ADMUCDSD.SIZE=ADMUCDSD. *

1*
1&
* $$ EOJ

PARM='filename f;lename 99 4 token *
(procopts) (SYSyyy),

1. This is the POWER JOB statement for the GDDM
batch job.

2. This is the POWER LST statement for the SYSLST
output.

3. This is the POWER LST statement for the primary
data stream to go to the 3800 printer at address
cuu.

4. Job name card.
5. DLBL and EXTENT statements for every library

named in the L1BDEF statement. EXTENT only, if
the library is not VSAM controlled.

6. Search chain for all the libraries you want to read
from, that is the library containing GDDM.

7. DLBL for the user catalog (contains ADMF).
8. DLBL for GDDM objects file.
9. This assignment statement links the programmer

logical unit SYSyyy to the device cuu, the spooled
3800 printer.

10. EXEC card for ADMUCDSD.

To write secondary data stream to the VSE phase
library, a few changes are necessary in the above job
stream. The differences are in the way that PSF is
Invoked.

A LIBDEF *,CATALOG=lib.sulib statement must be
included for the library to which you write the page
segment. The name of phase written to replace SYSyyy
on the EXEC card, and the processing options, must be
altered to specify a secondary data stream (replace 0
with 1 in the processing options). Some example JCL
for printing a primary data stream on the 4250 Is shown
below.

1) * $$ JOB JNM=jobname,CLASS=x,DISP=y
2) * $$ LST CLASS=x,DISP=y,DEST=(node,userid),

JSEP=1
3) II JOB jobname
4) II DLBL lib1,'cdpf.library.name'
4) II EXTENT ,volidl
4) II DLBL lib2,'font.library.name'
4) II EXTENT ,volid2
5) II LIBDEF *,SEARCH=(libl.sublib1,lib2.sublib2)
6) II DLBL usercat, 'user.catalog.name' "VSAM
7) II DLBL INPUT,'print.file.name' "VSAM,

CAT=usercat,DISP=(OLD,DELETE)
8) II EXEC BFUCDPF,SIZE=AUTO,

1*
1&

PARM='PRINT (BRACKET vtam_printer_name)'

* $$ EOJ

*

*

*

1. This Is the POWER JOB statement for the GDDM
batch job.

2. This is the POWER LST statement for the SYSLST
output.

3. Job name card.
4. DLBL and EXTENT statements to define the

libraries containing CDPF and the FONTLIB.
5. Search chain for the libraries containing CDPF and

the fonts.
6. DLBL statement for the user catalog.
7. DLBL statement for the print file.
8. EXEC card for CDPF.

printing

Note that the DELETE option on the DLBL statement for
the print file means that the input file is deleted after it
is printed. Use the option KEEP if you want to keep the
print file.

IMS/VS print utility

The IMSIVS version Is ADMOPUI, and runs as either a
message-processing program or batch message
program (BMP).

Note: The IMSIVS print utility does not support plot­
ters.

Invocation

No explicit invocation is required if the transaction Is
defined as a message-processing program. Standard
JCL is required to initiate the transaction as a BMP.

Messages

Most error messages are issued as part of the output
from the utility. If it is not possible to send the error
message to the L TERM for which the output is destined,
the utility issues a IBROADCAST MASTER command
containing the error message.

TSO background print utility

Under TSO, there are two methods of printing GDDM
files available to the user:

• By means of a queue of requests (the ADM PRINT
queue), which is serviced by the ADMOPUT print
utility

• By means of the JES/328X Print Facility Version 2
Release 2 Modification 0, and the ADMOPUJ print
utility.

Note: Throughout both volumes of the GDDM Base
Programming Reference, references to JES/328X indi­
cate the JES/328X Print Facility Version 2 Release 2
Modification 0, unless stated otherwise.

The user has complete control over which of these
methods to use, and can use both.

Using the ADMPRINT queue means using a master
print queue, which consists of pOinters to print data­
sets. These print datasets are created by GDDM when
the user requests a print.

In turn, the GDDM ADMOPUT print utility runs as a
Batch Job servicing this queue, and performing the
print.

With GDDM/MVS Version 2, another method is avail­
able that has no need for the ADM PRINT queue.

This method entails the installation of the JES/328X
Program Offering - Version 2 Release 2 - which
interfaces directly to JES2 or JES3.

With this method, when the user requests a print, the
print dataset created is written directly to the JES
Spool.

,Chapter 7. The GDDM pri,:!t utilities ,49.
<; '.

printing

JES passes these requests to the JES/328X print utility,
which runs as a Batch Job, and JES/328X passes each
GDDM Print request to a GDDM program, ADMOPUJ,
that performs the actual printing.

While these print datasets are within the JES Spool,
they can be manipulated like any other JES Spool file,
thus giving the installation greater control over the
print requests.

The PRINTDST processing option is used to determine
the destination of the print request and thus which
method of printing is to be used.

The three possibie destinations are:

o The existing ADMPRINT queue destination

This sends the print request to the ADM PRINT
queue for processing by ADMOPUT (as described
below).

This can be done by using the PRINTDST proc­
essing option in a nickname statement containing:

PROCOPT=«PRINTDST,*,*»

which is the default.

o Directly to JES

This sends the print request directly to the JES
Spool for processing by JES/328X and ADMOPUJ
(as described below).

This can be done by using the PRINTDST proc­
essing option in a nickname statement containing:

PROCOPT=«PRINTDST,class,destname»

where c1 ass is the system-deflned ciass for punch
output, and destname is the JES Remote Work
Station destination name.

o To an Intermediate user dataset for subsequent
processing

This sends the print request to a dataset for later
processing, either by means of Batch JCl, or the
JES/328X DSPRINT command.

This can be done by using the PRINTDST proc­
essing option in a nickname statement containing:

PROCOPT=«PRINTDST,*,ddname»

where ddname is a previously allocated ddname.

The ADMPRINT utility is described in detail in the next
section, and JES/328X is described on page 53.

The ADMPRINT print utility

The ADM PRINT print utility has the name ADMOPUT. It
manages one or more printers, and uses the VTAM
interface to communicate with them.

Print requests for each device are processed in the
order in which they are received, and the queue of print
requests is maintained on a direct-access device to
avoid the loss of output should a system failure occur.

A printer can be left unattended, with only an occa­
sional check on the paper supply. Output from each
print request is usually preceded by a descriptive
header (printed on a separate page) for Identification.

50 Base Programming Reference

Thus, one printer can be shared efficiently by a number
of terminal operators, and Interactive application pro­
grams need not wait until printing is completed.

Printing alphanumeric files

The GDDM Sequential File Print Program (ADMOPRT)
allows files to be printed that contain alphanumeric
data. ADMOPRT converts a sequential file into a
graphics print file. The GDDM print utility then prints It.

The syntax of the command that calls the GDDM
Sequential File Print Program is:

CALL 'data-set-name(ADMOPRT), 'file-name ON
printer-name [(NOCC]'

where:

data-set-name
Is the name of the data set into which ADMOPRT was
Installed.

file-name
is either a ddname allocated to the data set to be
printed or (if such a ddname is not present) the name
itself of the data set to be printed.

If file-name represents a data set name, it must be
entered using normal TSO naming conventions; in this
case, ADMOPRT does not support a data set name that
represents a member of a partitioned data set.

Note: From Version 2 Release 2 of GDDM, ADMOPRT
uses the values given by the PRINTCTl processing
option for the number of characters per line and the
number of lines per page. Previously It used values of
132 and 66 respectively. To obtain the same results as
under previous releases, use a nickname statement
that specifies
PROCOPT=«PRINTCTL,l,l,66,e,e,a,132».

ON
is a required keyword that must be specified before the
name of the printer.

printer-name
Is the name of the queued printer on which the file is to
be printed.

NOCC
indicates that any existing carriage-control characters
are to be ignored. If NOCC is not specified, the pres­
ence or absence of carriage-control characters is
determined by ADMOPRT according to the record
format of the input file.

Carriage-control characters are processed as
described for FSlOGC in the GDDM Base Programming
Reference, Volume 1.

Deleting a print request

A print request can be purged, if it is not in the process
of printing, by deleting the OS data set representing the
request. If this happens, the utility prints a diagnostic
noting that the request was deleted, and it then pro­
ceeds with any other requests. All TSO request data
sets are cataloged with the user-nominated data set
name prefix (by default, the userid) as a first qualifier,
and the request sequence number as a last qualifier.
The TSO LlSTC command can, therefore, be used to
identify the names and order of pending print requests
for a specific use rid.

When a request has started to print, it may not be pos­
sible to delete the corresponding OS data set, because
this would require exclusive (DISP=OLD) access. In
this case, the output can be canceled at the printer, as
described under "Canceling printer output" below.

Some types of errors prevent a request from pro­
ceeding to the point where it can be canceled in this
manner, but they can still let the Print Utility retry the
request at regular intervals. In this case, exclUSive
access to the request data set (for the purpose of
deletion) can be acquired by first stopping the utility as
described under "Invocation." It should then be pos­
sible to delete the request data set, before restarting
the utility.

Printer and plotter operating instructions

The printer or plotter must be prepared for use
according to the appropriate operating instructions for
the model, and the paper must be aligned to the top of
the page.

Canceling printer output

Printer output can be canceled after it has started, by
switching the printer off and on at least three times
during the printing of a single page. After each
power-on, the utility tries to reprint the interrupted
page. The printer must be powered off during the
reprinting of this page to maintain the cancelation
sequence.

For a printer operating in SCS mode, the CANCEL
PRINT switch can be used, as described below.

Canceling plotter output

Plotter output can be canceled by preSSing the CLEAR
key on the associated 3179-G or 3192-G color display
station, 3270-PC/G or 3270-PC/GX work station, or
device supported by GDDM-PCLK.

SCS mode PA and CANCEL PRINT switches

For a printer operating in SCS mode, the PA1/PA2 and
CANCEL PRINT switches can be used. These switches
allow limited communication with the utility, and are
used with the Hold Print/Enable Print switch, as
described in the Component Description and Operator's
Guide for the appropriate printer. The effect of each
switch is as follows:

PA1 Sending a PA1 switch code to the
utility causes it to restart printing of
the current request at the page after
the header page. For a multiple-copy
request, printing is resumed at the
start of the copy being processed at
the time of the interrupt.

PA2 Sending a PA2 switch code to the
utility causes it to restart printing of
the current page.

CANCEL PRINT Sending a CANCEL PRINT switch
code to the utility causes it to cancel
printing of the current request.

printing

Invocation

Before the utility is run, the print queue data set must
be initialized to the format described in the GDDM
Installation and System Management for MVS manual.

The devices to be used can be activated before the
utility is started. Under VTAM: this is achieved by com­
mands:

VARY NET,ACT,IO=printername

If a device is activated alter the utility is started, the
utility may have to be notified that the device is avail­
able. This can be done explicitly by using the LOGON
operand when the device is activated, as follows:

VARY NET,ACT,IO=printername,LOGON=applname

where "applname" is the Print Utility's VTAM applica­
tion name (usually ADMPRINT). This command can be
entered to notify the print utility, even if the device is
already active.

Or, the VTAM network can be defined such that the
print utility is automatically notified when a device is
activated. This is done by nominating ADMPRINT (or
applname) as the controlling application by the
LOGAPPL parameter on network terminal definition
macros.

The utility is started by submitting the job-control state­
ments listed beiow, modified as necessary (for
example, to respecify the library on which the utility is
kept).

The utility can be started either as a submitted batch
job or as a started task. The example below gives the
alternative statements for doing this.

The job control statements are usually held in
SYS1.PROCLIB. They take the form:

FOR STARTING AS A BATCH JOB

Ilapplname
1/

EXEC PGM=ADMOPUT.DYNAMNBR=n.REGION=mK,
PARM='NAME=xxxx,AUTO.MAXPRTRS=nnn'
DSN= I/STEPLIB DO

/I AOMS YMB L DO
IIAOMGGMAP DO
IIAOMPRNTQ DO
IIADMOEFS DO
IISYSABENO DO

DSN=
DSH=
OSN=
OSN=
SYSOUT=A

FOR STARTING AS A STARTED TASK

[optional]
[optional]
[optional]

1/
/I

PROC PGM=AOMOPUT.DYNAMNBR=n.REGION=mK,
PARM='NAME=xxxx,AUTO,MAXPRTRS=nnn'
OSN= IISTEPLIB DO

IIAOMSYMBL DO
/I ADMGGMAP DO
IIADMPRNTQ DO
IIADMOEFS DO
IISYSABEND DO

DSN=
OSN=
DSN=
OSN=
SYSOUT=A

[optional]
[opti onal]
[optional]

Chapter 7. The GDDM print utilities 51'

printing

The VTAM application name ("applname") used by the
print utility must be defined by the APPL macro in the
VTAM network definition. The name is usually
ADMPRINT but this can be changed if required.
"applname" is derived as follows:

• For a batch job that does not use a cataloged pro­
cedure, "applname" is taken from the job step
name.

• For a batch job that uses a cataloged procedure,
"applname" is taken from the procedure step
name.

• For a started task with no task identifier specified
in the START command, "applname" is taken from
the member name in the procedure library of the
started-task JCL.

• For a started task with a task identifier specified in
the START command, "applname" is taken from
the task identifier.

The DYNAMNBR parameter should specify at least one
more than the number of printers to be operated at the
same time. Note that this does not impose a limit on
the number of printers that can be run at the same
time; that is done by the MAXPRTRS parameter. The
region size should be calculated as described in the
GDDM Installation and System Management for MVS
manual.

If you have a large number of printers defined to the
print utility, you do not have to specify a region size
sufficient for that number. Instead, you can limit the
number of printers that ADMOPUT services at the same
time using the MAXPRTRS parameter, described
below. ADMOPUT processes work for printers that
would otherwise be beyond the MAXPRTRS limit after
work for other printers has completed.

After the PARM parameter, any combination of these
optional parameters can be specified (In any order):

NAME=name
indicates that the name specified is to be used in any
messages to the operator to identify which instance of
ADMOPUT issued the message. If the NAME param­
eter Is not specified, the VT AM application name is
used.

AUTO
indicates that no outstanding reply to the operator is
generated. ADMOPUT is terminated automatically
when there are no more active print subtasks running.

MAXPRTRS = nnn
indicates the maximum number of printers that the
print utility tries to operate at anyone time.

The STEPLIB DO statement specifies the data set on
which the GDDM load library resides.

The ADMSYMBL DO statement specifies the data set on
which symbol sets reside.

If at the time the print request was made, named
symbol sets had been identified for use through one or
more of the GoDM statements GSDSS, GSLSS, PSDSS,
PSLSS, or PSLSSC (see the GDDM Base Programming

52 Base Programming Reference

Reference, Volume 1) the TSO user requesting the
printer must ensure that the symbol sets required
reside in the data set Identified by the AoMSYMBL DO
statement.

The ADMGGMAP DO statement specifies the data set
on which IMD-generated mapgroups reside. This state­
ment is required if the user's application programs
issue FSCOPY against mapped pages.

The ADMPRNTQ DO statement Is optional, and, if sup­
plied, is taken to identify the Master Print Queue data
set. If this DO statement is omitted, GDDM dynamically
al/ocates to the data set:

'xxxxxxxx. REQUEST. QUEUE ,

where xxxxxxxx (usually ADMPRINT) is defined in the
current GDDM external defaults (for the details, see
"Changing GDDM's default values" on page 127). This
may be modified by the installation, if desired.

The ADMDEFS DO statement is optional; if supplied, it
identifies an External Defaults File. This is described
under "External defaults file" on page 2. For the print
utility, you are recommended to use a data set as an
External Defaults File, and not inline data (that is, not
IIADMDEFS DO *). In some operating environments,
the implementation of inline data is such that it may be
read and acted upon only by the first of the many sub­
tasks that ADMOPUT uses.

If AUTO is not specified, this message is received at
the system console:

ADM2eee I ADMOPUT(instance-name). TO TERMINATE,
REPLY 'STOP', 'STOPQ', OR 'STOPS'

The system operator can cause ADMOPUT to terminate
printing by replying STOP, STOPQ, or STOPS; the effect
of each of these replies is:

STOP ADMOPUT terminates when all requests in
process have been completed.

STOPQ ADMOPUT terminates immediately. (The
current requests are restarted when
ADMOPUT Is next initialized.)

STOPS If this is entered, GDDM issues the message
ADM2019, which gives the operator the choice
of either

• Entering STOPQ, causing ADMOPUT to
stop immediately, or

• Ignoring this message, in which case
ADMOPUT continues to run until all
requests in process have been completed.

Thus, the utility terminates when VTAM is halted, when
a request is made to terminate by a reply to message
ADM2000, or if AUTO is specified and there are no
more active print subtasks running.

Messages

Messages issued by the TSO version of the print utility
are numbered from ADM2000. These messages are
described in the GDDM Messages manual.

JES/328X

The JES/328X Print Facility Program Offering Version 2
Release 2 Modification Level 0 extends the support of
Remote Job Entry (RJE) devices provided by MVS JES2
and JES3 to include the wide range of 3270 printers, or
printers that are compatible with them, and the family
of IPDS (Intelligent Printer Data Stream) printers. JES
stands for Job Entry Subsystem.

Output can be routed to these printers by :

• JCL
• The TSO ALLOCATE command
• The JES/328X SYSOUT command
• The JES/328X OSPRINT command.

Because' all output can be spooled by JES, the JES
operator commands can be used to provide such func­
tions as rerouting, queue reordering, and output
cancelation.

JES/328X does not require any changes to JES code. It
operates as a VT AM secondary application when com­
municating with JES, and appears to JES as a Remote
Work Station. Having received the data from JES,
JES/328X then operates as a primary VTAM application
when communicating with the printer.

When processing GDDM print requests (or files des­
tined for IPDS printers) JES/328X invokes the GDOM
print utility ADMOPUJ, to process the print request.

The installation and operation of JES/328X is fully
described in the JES/328X Print Facility Program
Description and Operators Manual.

An overview of this process is contained in the GDDM
Installation and System Management for MVS manual.

Usage

As mentioned above, GOOM (by means of the
PRINTDST processing option) now provides the ability
to send a print request either into the JES Spool for
processing by JES/328X, or to a file. Using the second
method, the user can process the print request in a
number of ways:

• Transfer the file to VM for processing there.

• Send the file to JES for JES/328X processing, by
means of either the JES/328X OSPRINT command,
or JCL.

• Send the file directly to the printer, by means of the
JES/328X OSPRINT command.

While the request is in the JES Spool, it can be manipu­
lated by the usual JES operator commands. For
example, the request can be rerouted to another desti­
nation, it can be canceled, or its place in the queue can
be reordered. Also, JES/328X provides ISPF panels to
enable the user to issue some JES2, JES3, or JES/328X
commands.

Full details are given in the JES/328X Print Facility
Program Description and Operators Manual.

printing

Examples

The following examples illustrate the various methods
of printing available.

They assume that:

• JES/328X has been installed.

• The JES/328X DSPRINT command has superseded
the TSO DSPRINT command.

• Remote destinations RMT1 and RMT2 have been
defined to JES with the printers serving Class P
and the punches serving Class G.

• Remote destinations RMT1 and RMT2 have been
defined to VTAM.

• Remote destinations RMT1 and RMT2 have been
defined to JES/328X, as follows:

- RMT1 is a 3287 device with an LUNAME of
L870, and GDDM is called to process all
requests for CLASS G
(PASSTHRU=JSXGDDM and CLASS=G spec­
ified)

- RMT2 is an IPDS device with an LUNAME of
L8S0 (data destined for IPDS devices automat­
ically causes GOOM to be invoked provided
PASSTHRU = INTERNAL is specified).

• The TSO user's AOMOEFS file has these entries:

NICKNAME NAME=R187,FAM=2,
PROCOPT=«PRINTDST,G,RMTl»

NICKNAME NAME=R2IP,FAM=2,DEVTOK=X4224SE,
PROCOPT=«PRINTDST,G,RMT2»

NICKNAME NAME=DA87,FAM=2,
PROCOPT=«PRINTDST,*,DD87»

NICKNAME NAME=DAIP,FAM=2,DEVTOK=X4224SE,
PROCOPT=«PRINTDST,*,DDIP»

• Invocations of the Interactive Chart Utility use the
above AOMOEFS file, and have OONAMES 0087
and DDIP allocated to datasets
USER.GODMPRT.DATA and USER.IPOSPRT.OATA
respectively.

• The user has a dataset USER.PRINT.DATA con­
taining alphanumeric data (specifically the dataset
does not have carriage-control set).

• The JES/328X Print Facility Job is running.

The order of events is:

1. The Chart Utility is invoked and a print is created
for R187:

This sends the print request (formatted for a 3287)
directly into the JES Spool, where it is passed to
JES/328X. JES/328X, in turn, passes the request to
GDDM for printing.

2. The Chart Utility is invoked and a print is created
for R2IP:

The same as above, but the print request is for­
matted for an IPDS printer.

3. The Chart Utility is invoked and a print is created
for OA87:

This outputs the print request (formatted for a
3287) to the dataset USER.GDDMPRT.DATA.

Chapter 7. The GDDM print utiliti~ 53

printing

4. The Chart Utility is invoked and a print is created
for DAIP:

This outputs the print request (formatted for an
IPDS printer) to the dataset USER.IPDSPRT.DATA.

In the first two examples, the print requests are sent
automatically through the system to GDDM for printing.
However, in the last two examples, the user now has a
choice of methods available to process the requests.
The user can:

• Transfer the files to VM for processing.

Because the format of the print request is
subsystem-independent, the print request can be
processed on either VM or TSO.

• Send the files through JES for printing using
JES/328X and GDDM.

The following commands will do this:

DSPRINT 'USER.GDDMPRT.DATA' RMTI CLASS(G) NONUM
DSPRINT 'USER. IPDSPRT.DATA' RMT2 CLASS(G) NONUM
These commands result in message DSP012, indi­
cating that the print requests have been sent to
JES for subsequent processing.

• Print the files directly using JES/328X and GDDM,
thereby bypassing the JES Spool.

This facility is particularly useful where data of a
confidential nature is being printed and the user
does not want the print request to be sent by way
of the "public" spool faCility. Typically, the user is
not far from the printer and can thus ensure that
the print is collected as soon as it is finished.

The following commands will do this:

DSPRINT 'USER.GDDMPRT.DATA' L870 GDDM
DSPRINT 'USER. IPDSPRT. DATA , LS90 GDDM
These commands result in a foreground print oper­
ation, the end of which is signaled by message
DSP040, indicating that the print has been com­
pleted.

Because this is a foreground process, the user's
terminal is "locked out" for the duration of the print
request. Also, any symbol sets required for
printing have to be allocated by the user before
the JES/328X DSPRINT command.

Printing alphanumeric files

As with printing GDDM files, the user has two methods
of printing files containing alphanumeric data:

1. By sending the files through JES for printing using
JES/328X (and GDDM if the printer is an IPDS
device).

The following commands will do this:

DSPRINT 'USER.PRINT.DATA' RMTI CLASS(P) NONUM
DSPRINT 'USER.PRINT.DATA' RMT2 CLASS(P) NONUM
These commands result in message DSP012, indi­
cating that the print requests have been sent to
JES for subsequent processing.

54 Base Programming Reference

2. By printing the files directly using JES/328X and
GDDM.

The following commands will do this:

DSPRINT 'USER.PRINT.DATA' LS70 GDDM NONUM
DSPRINT 'USER.PRINT.DATA' LS90 GDDM NONUM
These commands result in a foreground print oper­
ation, the end of which Is signaled by message
DSP040 indicating that the print has been com­
pleted.

Common errors

ADM0244 E INVALID PRINT RECORD SEQUENCE
This message appears on the print request if GDDM
has been called to process invalid data. A common
way for this to occur is to send alphanumeric data
through JES to JES/32SX using the class defined for
GDDM files.

DSPRINT 'USER. PRINT. DATA , RMTI CLASS(G) NONUM
The above command sends the alphanumeric data
through JES to JES/32SX as CLASS G output. JES/328X
insists that GDDM data has carriage-control set on, and
ignores all records without carriage-control. If this
should happen this message is sent to the operator
console:

JSX209 - NON-GRAPHICS RECORDS IGNORED
and an empty file is sent to GDDM. GDDM then sends
message ADM0244 to the printer; for more information,
refer to the GDDM Messages manual.

Interfaces
GDDM·to-JES

GDDM uses SVC99 Dynamic Allocation services to
output a print request directly into the JES Spool with
the CLASS and DEST parameters set from the
PRINTDST Class and Destname values respectively.

This is the one case where GDDM creates an Output
Print request without carriage-control; this is so the
data can be correctly passed through to GDDM.

However, when sending the Output Print request to a
dataset, GDDM sets the carriage-control indicator on in
the dataset - even if it is a pre-allocated dataset.

DSPRINT caters for this automatically, but if the user
wants to route the data through JES by some other
means, for example by an IEBGENER process, the
RECFM will need to be overridden:

11*
11* ** SEND GDDM DATA THROUGH JES TO JES/32SX
11*
IIGENERI EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSUT2 DD SYSOUT=G,DEST=RMTl,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=1600)
IISYSUTI DD DSN=USER.GDDMPRT.DATA,DISP=SHR
IISYSIN DD DUMMY

JES/328X-to-GDDM

The GDDM - JES/328X utility ADMOPUJ is called from
the JES/328X special exit JSXGDDM, to either process
a print request or, at initialization and termination time,
to OPEN and CLOSE the VT AM ACe.

JSXGDDM passes this parameter list, the address of
which is in Register 1:

JXEACBN

JXEDEST

JXEDSN

JXECOMM
JXESHUT
JXEMSG

address of an 8-byte area containing the
VTAM ACe name
address of an 8-byte area containing the
VTAM LUname of the printer destination
address of a 44-byte area containing the
ddname of the GDDM input print file
address of a 4096 common area
address of the full-word JES Shutdown ECe
address of 160-byte Return Message area.

The JXEDSN ddname has two special values, namely
OPEN and CLOSE; these indicate initialization and ter­
mination requests respectively.

The Common area is used as a work area by GDDM.

The JES shutdown ECe enables GDDM to detect a shut­
down request.

The Message area enables GDDM to inform JES/328X
of any errors detected in printing.

VM/CMS print utility

Under VM/CMS, the print utility is named ADMOPUV; it
controls a printer or plotter attached to the invoking
virtual machine or it can send the printer data stream
as a punch file to another destination for processing
(such as RSCS Networking Version 2). The printer may
have been explicitly attached by the system operator or
authorized user using the CP ATTACH command, or
may be automatically attached at logon by its inclusion
in the directory of the invoking virtual machine.

A print request by a GDDM subroutine is created as a
file on the user's A-disk. The file is subsequently
printed by running ADMOPUV, specifying the file and
the virtual address of the printer or plotter as parame­
ters.

If the DSOPEN processing option (INVKOPUV,YES) was
specified, function equivalent to that performed by
ADMOPUV is called automatically, after which the print
file is erased. Otherwise, if the installation has pro­
vided an ADMQPOST EXEC, GDDM calls this after cre­
ating the print file. An ADMQPOST EXEC can be used,
typically, to send the print file to a separate, possibly
automatic, virtual machine for processing. For details
of this facility, see the GDDM Installation and System
Management for VM manual.

printing

Invocation

The utility is started by this command:

ADMOPUV filename [filetype [filemode]] [ON cuu]
[([CC I NOCC] / [DEY dey-token])]

where optional parameters are indicated by [... J. The
meanings of the parameters are:

filename
is the name of the file to be printed. It must be speci­
fied.

lIIetype
is the type of the file to be printed. If this parameter is
not specified, ADMPRINT is used as the default (unless
a different filetype was specified in the current GDDM
external defaults).

fIIemode
is the mode of the file to be printed. If this is not speci­
fied, "*" is the default.

euu
can be used to specify the printer device name or
address. If euu is omitted, the device is identified by
the STAGE21D processing option group (18 in DSOPEN)
specified when the print file was created. If this proc­
essing option group was not specified, the default is
061.

CC
(the default) interprets the first character of each
record as a carriage-control character.

HOCC
interprets the first character as part of the data.
Carriage-control characters are processed as
described for FSLOGC; see the GDDM Base Program­
ming Reference, Volume 1.

DEV
indicates that a device token is to be specified.

dev-Ioken
can be used to override the device characteristics that
GDDM usually infers. It identifies a device character­
istics token, as defined in Appendix G, "Device char­
acteristics. tokens" on page 203.

Printing alphanumeric flies

As well as printing files that were created under GDDM,
ADMOPUV lets you print files that contain alphanu­
meric data.

Printing GDDM files through RSCS

If the Remote Spooling Communication Subsystem
(RSCS) Networking Version 2 (under VM/SP Release 4)
Is available at your location, output can be directed to a
printer connected to RSCS.

The way to do this is to specify the special device name
"PUNCH" in the ADMOPUV command, as a result of
which GDDM writes 3270 device output to the virtual
punch. If the virtual punch is spooled to RSCS, and is
suitably tagged, RSCS prints the device output on the
required printer.

Chapter 7. The GDDM print utilities 55

printing

A nickname of the following form can be used to
encapsulate the necessary device, spool, and tag infor­
mation:

ADMMNICK FAM=l,NAME=prt-name,
TONAME=PUNCH,DEVTOK=L87,
PROCOPT=«CPSPOOL,TO,RSCS),
(CPTAG,node,prt-name,S0,PRT=GRAF»

and enables the ADMOPUV command to be entered
simply as:

ADMOPUV filename ON prt-name

Notes:

1. For a full discussion on nicknames, see "Using
nicknames to define device characteristics" on
page 3.

2. For a full explanation of the CPTAG string, see VM
RSCS Networking Version 2: Operation and Use
manual.

3. Specify a device token corresponding to the printer
to be used.

4. Printing on IPDS printers requires RSCS Version 2
Release 2.

Automatically initiating the VM/CMS print
utility

The DSOPEN processing option, INVKOPUV, can be
used to cause function equivalent to that performed by
ADMOPUV to be called automatically, whenever a print
file is created. For full details, see the GDDM Base
Programming Reference. Volume 1.

A nickname can be used to get the same effect, but
without the need for changing the application program.
For example,

ADMMNICK FAM=2,NAME=prt-name,
PROCOPT=«INVKOPUV,YES»

This nickname could effectively be used together with a
nickname set up to direct printer output to RSCS, as
described above.

An ICU user could use these nicknames to cause the
ICU print panel to initiate asynchronous printing on a
printer attached to RSCS.

Printer and ploUer operating instructions

The printer or plotter must be prepared for use
according to the appropriate operating instructions for
the model, and the paper must be aligned to the top of
the page. This should be done before the ADMOPUV
command is issued.

Messages

Messages generated by the VM/CMS version of the
printer utility are numbered from ADM2101, and are
described in the GDDM Messages manual.

56 Base Programming Reference

Nonqueriable printers with the APL
feature

By default, under VM/CMS, the GDDM Print Utility
assumes that any APL feature installed on an IBM 3270
printer is the APLlText Feature. This default must be
overridden if printer output containing APL characters
is to be directed to a printer, such as an IBM 3284 or
3286, with the Data Analysis - APL Feature.

The CMSAPLF option in GDDM's external defaults can
be modified (by specifying the value DATAANAL) to
cause GDDM to assume by default that an APL feature
Installed on a nonqueriable IBM 3270 printer is the Data
Analysis - APL Feature. This option can be specified:

• In an External Defaults Module, or
• In an External Defaults File.

See Chapter 1, "Customizing your program and its
environment" on page 1.

Image Print Utility
The Image Print Utility creates page printer files from
GDDM Image (ADMIMG) files. It can be run under
CMS, MVS (including TSO), and VSE (in batch mode).
The entry name and parameter format depend on the
environment:

eMS
ADMUIMPV
('name')('scale')('prtname')('procopts')
('token')('field')

MVS
ADMUIMPT
'name(scal e)prtname(procopts)token(fiel d) ,

VSE
ADMUiMPD
'name(scale)prtname(procopts)token(field) ,

The meanings of the six parameter groups are shown
below. All parameters except groups 1 (name) and 3
(prtname) are optional. The utility will assign default
values to empty groups.

name
Name of image file to be printed:

Under CMS: fi 1 ename fi 1 etype fi 1 emode
Under TSO: ddname
Under VSE: dl b 1

scale
Scaling control:

o Field to fit image: dimensions In field
ignored Forced if fieldh or fieldv = 0.

1

2

3

prtname

Original image size: image may be clipped
or spaced (default).

Scale to fit field: image may be distorted.

Re-scale with same aspect ratio: image may
contain blank space.

Name to be assigned to print file:

Under CMS: fi 1 ename fi 1 etype fi 1 emode
Under TSO: ddname
Under VSE: dl b 1

procopts
Processing options (procopts) to be used In
DSOPEN for printer.

token

field

Printer device token. Default is IMG24fl.

Image field size, in this format:

Under CMS: fieldh fieldv fields
Under TSO: fi el dh, fi el dv, fi el ds
Under VSE: fieldh, fieldv, fields

where:
fieldh = Horizontal dimension (default 0)
fieldv = Vertical dimension (default 0)
fields = Units for above:

fl = tenths of inches (default)
I = millimeters.

Sample code invoking these modules is supplied with
the GDDM Base programs, as follows:

• ADMUIMP, a REXX-Ianguage CMS procedure that
invokes ADMUIMPV. It will produce a file that can
be printed on a 3S00 Model 3 printer as a page
segment to fit an area 6 inches wide and 4 inches
deep. The procedure can be amended to suit your
installation and users. Normally, you should
choose the device token and type (document or
page segment), and select the most appropriate
output file type (by assigning the required value to
outft).

• ADMUJT10, sample MVS JCL that invokes
ADMUIMPT.

• ADMUJD10, sample VSE JCL that invokes
ADMUIMPD.

Composite Document Print Utility

The utility is invoked by a call to CDPU. This function Is
part of the GDDM Base programming interface, and the
CDPU call must be part of a GDDM application
program. You can either write such a program your­
self, or use a ready-made program called ADM4CDUx
(where x is subsystem-dependent) supplied with
GDDM. This is described in "ADM4CDUx" on page 5S.

Two sets of PLII DECLARE statements for GDDM func­
tions are provided. These will be useful if you write a
CDPU-calling program in PLII. They are:

ADMUPINK - calls starting CD .. Jor non reentrant use.
ADMUPIRK - calls starting CD .. Jor reentrant use.

For more details about GDDM-supplied PLII DECLARE
statements, refer to the GDDM Base Programming Ref­
erence, Volume 1.

See Appendix L, "Format of a Composite Document
Presentation Data Stream" on page 255 and "AFPDS
structured fields supported by the CDPU" on page 63
for more information about the format of CDPU input
files.

Example program

The program shown creates an AFPDS file from a
CDPDS file. By omitting the DSOPEN and DSUSE calls,
the program can be used to view a document on CICS,
MVSITSO, or CMS.

printing

SAMPLE: PROCEDURE OPTIONS(MAIN);

/* DECLARE GDDM ENTRY POINTS */
%INClUDE AOMUPIND; /* NAMES BEGINNING D ••• */
%INClUDE ADMUPINF; /* NAMES BEGINNING F ••• */
%INClUDE ADMUPINK; /* NAMES BEGINNING CD •• */

/* OTHER DECLARES */
DClDEVID FIXED BIN(31) INIT(11);
DCl FAMILY FIXED BIN(31) INIT(4);
DCl DEVTOK CHAR(S) INIT('A4');
DClIN(I) CHAR(S) INIT('CDPIN'):
DCl OUT(I) CHAR(S) INIT('CDPOUT');
DCl NONE(l) FIXED BIN(31); /* DUMMY ARRAY */

/* INITIALIZE GDDM */
CAll FSINIT;

/* OPEN THE DEVICE */
CAll DSOPEN(DEVID, FAMILY, DEVTOK, e, NONE,

I, OUT);
CAll DSUSE(I, DEVID):

/* PRINT THE DOCUMENT */
CAll CDPU(1, IN, fl, NONE);

/* TERMINATE GDDM */
CAll FSTERM:
END SAMPLE;

Application control

If an application calls the CDPU with the view control
parameter set to a nonzero value, the application can
control how the document Is browsed. The CDPU
creates a GDDM page containing the specified docu­
ment page, but does no Input or output. The application
must issue its own AS READ (or other Input/output call)
and interpret the returned values. Additionally, the
application can:

• Define a graphics field for the document page to be
shown in. The default is a field covering the whole
screen.

• Display instructions to the user.

• Test for requests for document pages beyond the
document end.

Specifying the device

The output from the CDPU goes to the primary device
specified by the DSOPEN and DSUSE calls. The
DSOPEN specification can be modified without
changing the application by using GDDM nickname
statements.

The device can be a directly connected (In GDDM
terms, family-1) graphics or IPDS printer, a queued
(family-2) graphics or IPDS printer, a page (famlly-4)
printer, or the user's terminal (a family-1 device).

When the CDPU call is executed, the CDPU checks the
type of primary device that the application program has
opened, and generates the appropriate data stream.

The default primary device is the terminal, which Is
why the CDPU displays the document at the terminal If
the DSOPEN and DSUSE calis are omitted.

Chapter 7. The GDDM print utilities 57

printing

If the device is family-2 or -4 printer, an intermediate
print file is created. Its name is taken from the name­
list parameter of the DSOPEN call. If a file with the
same name already exists, it is deleted without
warning.

Running the CDPU application program

The application program that calls the CDPU, whether it
is ADM4CDUx or a user-written program, can be exe­
cuted under CMS, TSO, or CICS, or in MVS or VSE
batch mode. You will need to supply any necessary
commands or JCl to invoke it.

A sample CMS REXX-Ianguage procedure,
ADMUBCDV, and TSO command list (ClIST),
ADMUBCDT, are supplied with GDDMNM,
GDDMIVMXA, and GDDM/MVS as appropriate. These
call ADM4CDUx to browse a file at the terminal.

Other CMS example procedures are shown on pages
59 and 60. The first sends the document to a 4224
printer, and the second sends It to a 38xx AFPDS
printer. The first is similar to ADMUBCDV, except that
the devtok and namel i st variables are set to printer
values.

In ail cases - the ADMUBCDx samples in addition to
the procedures shown here - the document must be in
the form of a CDPDS or AFPDS file, the filename and,
optionally, filetype and filemode, of which, are passed
as parameters to the procedure.

ADM4CDUx

The entry name of the ADM4CDUx program varies
depending on the environment:

CICS ADM4CDUC
VSE Batch ADM4CDUD
MVS Batch ADM4CDUT
TSO ADM4CDUT
VM/CMS ADM4CDUV
CMS/XA ADM4CDUX.

ADM4CDUx can be invoked by the user to process and
print the CDPDS or AFPDS. Under CICS, MVSITSO, and
CMS, It can also be used to view CDPDS or AFPDS
flies. The parameter list, described below, is read as
up to six groups, each group being separated by a
blank or comma. All groups are optional, with default
values. Groups are positional, and may be empty.

58 Base Programming Reference

In the CICS environment, the standard transaction Iden­
tifier is ADM4. This name may have been changed at
your Installation. The parameter list Is specified In the
from option of the CICS START.

The parameter groups are:

1. Composite document presentation data stream
Identifier

The requirements and defaults for this parameter
are the same as for the cd-name parameter of the
CDPU call (see GDDM Base Programming Refer­
ence, Volume 1).

2. Printing options corresponding to those described
for the CDPU call:

a. Number of uncollated copies of document

b. Duplex control

c. View control.

The default values are the same as for the CDPU
call.

The remaining groups correspond to parameters on a
call to DSOPEN:

3. Device name list

There Is no default value - the parameter must be
specified explicitly - except when the program Is
being run under CMS and famlly-4 Is specified (or
defaulted) in parameter 6. In that case, the default
name is the same as the Input file name.

4. Device proceSSing options, as a sequence of
decimal numbers

The default Is none.

5. Device token

The default is S4224QE (SNA-attached 4224) under
CICS, or A4 (38xx AFPDS printer) under other
systems.

6. Device family

The default is family-1 under CICS, or family-4
under the other subsystems.

A simple parameter list to print a CDPDS file called
DOC, on a 38xx page printer defined by the device
token IMG240, using 20 swathes, would be:

(DOC) () () (7 29) (IMG249)

/* Name : CD42SAMP - sample exec (4224 printer) */
/* This is a sample user exec that takes a Composite Document */
/* Presentation Data Stream (CDPDS) file and prints the document on */
/* a 4224 printer. */

Arg fn ft fm .
/* Check invocation parameters */
If fn = '?' I fn = " . 1* If parameters are incorrect */

then signal prompt /* prompt user ..•.. */
/* Substitute default value for filetype & filemode if non-specified */
Parse Value ft "LlSTCDP" With ft . 1* I/P file type */
Parse Value fm "*,, With fm • 1* I/P file mode */

/*"Set default parameters for ADM4CDUV */
copi es = "1" /* number of copi es * /
duplex = "1" /* 1 = simplex */

1* 2 = "normal duplex */
/* 3 = tumble duplex */

procopts = "" /* Processing options */
devtok = "X4224QE"
family = "I"
namelist = "961"

/* Devi ce token * /
/* GDDM Family */
/* Namelist entry (print address) */

/* Check that the specified CDPDS file exists */
address command 'STATE' fn ft fm /* Look for specified file */
If rc ~= 9 then /* If not, issue error message */

do; /* and exit with CMS return code */
~y 1* */
say fn ft fm 'NOT FOUND' /* */
say 1* */
exit rc /* */

end; /* */

/* Start the GDDM Composite Document Print Utility */
address command 'ADM4CDUV ' fn ft fm '(' copies duplex ')',

'(' namelist ')(' procopts ')(' devtok ')(' family')'
exi t rc

/* Provide a description of the invocation parameters for this exec */
prompt : parse source . . execname .
say 'This exec reads a Composite Document Presentation Data Stream (CDPDS),
say 'file and prints the composite document on a 4224 printer. '
say'
say
say'
say
say
say
say
say
say ,
exit 9

Format

'execname' filename filetype filemode

where filename is the input filename
filetype is the input filetype
filemode is the input filemode

Figure 1. REXX procedure for printing composite document on 4224 under CMS

printing

Chapter 7. The GDDM print utilities 59

printing

/* Name : CD38SAMP - sample exec (38xx AFPDS printer) */
/* This is a sample user exec that takes a Composite Document */
/* Presentation Data Stream (CDPDS) file and creates a LIST38PP */
/* file for printing by a 38xx AFPDS printer. */

Arg fn ft fm •

/* Check invocation parameters */
If fn = '?' I fn = " /* If parameters are incorrect */

then signal prompt /* prompt user * /
/* Substitute default value for filetype & filemode if non-specified */
Parse Value ft "LISTCDP" With ft • /* I/P file type */
Parse Value fm "*,, With fm • /* I/P file mode */

/* Set default parameters for ADM4CDUV */
copi es = "I II /* number of copi es * /
duplex = "1" /* 1 = simplex */

procopts = "9 1 7 21:)"

devtok = "IMG241:)"
fami ly = "4"
postproc = "PRT3812"

outfn = fn
outft = n LIST38PP"
namelist = outfn outft

/* 2 = norma 1 duplex * /
/* 3 = tumble duplex * /
/* GDDM processing options */
/* 9 = 1 Formatted output */
/* 7 = 21:) Swathes * /
/* 32 = I:) no inline resources */
/* Devi ce token * /
/* GDDM Family */
/* Post processing */
/* PRT3812 - print on 3812 */
/* PSF - print on 3sel:)-3 */
/* O/P file name */
/* O/P file type */
1* output fi 1 e name * /

/* Check that the specified CDPDS file exists */
address command 'STATE' fn ft fm /* Look for specified file */
If rc -.= 0 then /* If not. issue error message * /

do; /* and exit with CMS return code */
say 1* */
say fn ft fm 'NOT FOUND' /* */
say /* */
exit rc 1* */

end; /* */

/* Erase the output file if it already exists
address command 'STATE' outfn outft 'A'
If rc = I:) then

address command 'ERASE' outfn outft 'A'

*/

Figure 2 (Part 1 of 2). REXX procedure for printing composite document on 38xx AFPDS printer under eMS

60 Base Programming Reference

/* Start the GDDM Composite Document Print Utility */
address command 'ADM4CDUV ' fn ft fm '(' copies duplex ')',

'(' namelist ')(' procopts ')(' devtok ')(' family')'

/* Post processing */
Select

/*Invoke PRT3812 to print the file*/
When postproc = 'PRT3812' then
'PRT3812 ' namelist ' (COPIES' copies

/* Invoke PSF to print the file */
When postproc = 'PSF' then

Do
'SPOOL PRINTER CLASS B FORM PAGEQUAR NOHOLO'
'PSF' namelist' (COPY' copies

/* If procopt 32 c 1 use the following line instead */
/* 'PSF' namelist' (COPY' copies 'FORMDEF (FIADMOel», */

End

Otherwise;
End

exit rc

/* Provide a description of the invocation parameters for this exec */
prompt : parse source • • execname .
say 'This exec reads a Composite Document Presentation Data Stream (CDPOS),
say 'file and creates a LIST3BPP file for printing on a 38xx printer. '
say
say' Format:-
say
say
say ,
say
say
say
say

exit e

'execname' filename filetype filemode

where filename is the input filename
filetype is the input filetype
filemode is the input filemode

printing

Figure 2 (Part 2 of 2). REXX procedure for printing composite document on 38xx AFPDS printer under eMS

Chapter 7. The GDDM print utilities 61

printing

Printers for composite documents

The IBM printers that support composite documents
are:

3800 model 3 and model 8
3812
3812 Model 2 with 3270 Attachment Feature
3820
4224.

GDDM uses, two data streams to support them. The
Advanced Function Presentation Data Stream (AFPDS)
supports all except the 3812 Model 2 with a 3270
Attachment Feature and the 4224; these are supported
through the Intelligent Printer Data Stream (lPDS).

IPDS enables you to use text, image, and graphics to
produce composite documents that can be printed in
color on the 4224 printer. However, rotation of com­
posite document pages, rotation of lines of text, and
rotated fonts are not supported.

Use of 4224 memory

GDDM Version 2.2 stores text and graphics in the
memory of the 4224 printer before the page is printed.
Because the text is stored first, there is less memory
available to store graphic drawing orders. So, a
graphics object that printed correctly on the 4224
printer using GDDM Version 2.1 may not print correctly
as part of a composite document using GO OM
Version 2.2.

Fonts, page sizes, and characters

GDDM does not check the suitability of the code pages
or the fonts for the target printer. The application
program that generates the CDPDS or AFPDS must
ensure that the correct ones are selected. The applica­
tion program must also ensure that the text is formatted
to fit within the page.

GO OM does not issue messages for undefined charac­
ters. Checks for such characters are handled by the
printer for IPDS output and by the print server for
AFPDS.

Color masters from CDPDS documents

Only one color master is allowed from a CDPDS docu­
ment. In other words, the only valid value for the
MASTERS parameter of the ADMMCOL T macro is 1.
The IBM-supplied color table ADM00006 uses this
value, and is suitable for translating colors in CDPDS
documents into a gray scale.

Inllne resources for AFPDS printers

To print a CDPDS document correctly on an AFPDS
printer, you may need to use a new processing option
when the printer is opened by GDDM. This is because
the CDPDS document may have information at the front
to control how the rest should be printed. The informa­
tion is called Inllne resources. Inline resources contain
Information such as page offsets, overlay names,
simplex/duplex control, and paper source. Processing

62 Base Programming Reference

option 32 indicates whether or not the CDPU is to
transfer inline resources from the CDPDS input to the
AFPDS output.

Not all AFPDS printer drivers support inline resources
but if the version installed in your environment does
support them, they can be generated using processing
option 32.

A suitable nickname is:

NICKNAME FAM=4,PROCOPT=((INRESRCE,YES»

The CDPU supports inline resources in CDPDS input
and AFPDS output only. Inline resources contained in
AFPDS Input files are ignored.

GDDM error reporting

It is possible that users of programs that create and
print composite documents will see GDDM messages.
These messages are prefaced by the letters ADM.
GDDM messages are explained in the GDDM Messages
manual.

Generally, errors that do not cause the printer to stop
are collected into an error report. The error report is
printed on a separate page at the end of the document.
Message ADM2779 is displayed on the screen if there
is such an error report.

Errors In data streams

The following message can be generated with a reason
code of 4 if the printer cannot process the color sepa­
ration required, or a reason code of 5 if the printer
cannot process image and graphics on the same page:

ADM3179 W IMAGE CANNOT BE SHOWN, REASON CODE n

When you are using IPDS, if the printer detects an
error, printing stops and GO OM issues an error
message.

Errors In user environment or Invocation of CDPU

Errors can be generated by invalid data. Messages
returned by application programming interface calls
are also reported.

Errors in the programming Interfaces

One overall message, ADM2779, is returned to th'e
caller of the SPI or API if an error report has been
produced.

The GDDM font emulation and conversion
tables

These two tables contain Information about fonts and
code pages that the CDPU uses to emulate CDPDS and
AFPDS documents on screens (the font emulatIon table)
and to print them on IPDS printers (the AFPDS to IPDS
font and code page conversion table). One table of
each type is supplied with GDDM. They are suitable for
most applications. You do not need to change them
unless you have special requirements.

Each entry in the font emulation specifies:

• Name of CDPDS or AFPDS font, coded font, or code
page to be emulated

• Name of GDDM symbol set to be used for the emu-
lation

• Symbol set character width
• Symbol set character height
• Symbol set character shear
• Symbol set color
• Symbol set code page
• Code page Identifier for coded font or code page.

The AFPDS to IPDS conversion table allows the code
page, or the font, or both to be converted. Each entry
specifies:

• What is to be converted: name of AFPDS font, code
page, or coded font (font/code page combination)

• Type of IPDS printer to which the entry applies
• Identifier of IPDS font or code page, or both, to be

used
• IPDS font width: normal or wide
• IPDS font weight: normal or bold
• IPDS font descriptor: normal or italic, or double-

struck, or both.

Each table is In a module. The one for the font emu­
lation table is cal/ed ADM4FONT, and that for the
AFPDS to IPDS conversion table Is cal/ed ADMDKFNT.
TI\ey are link-edited with GDDM. A copy of each
module is supplied with GDDM for instal/atlons that
want to add new fonts, or change the fonts or code
pages used by GDDM. Entries In ADM4FONT are gen­
erated using the ADMMFONT macro, and In
ADMDKFNT using the ADMMKFNT macro. Instructions
are given In the GDDM Installation and System
Management manuals.

The comments in the IBM-supplied ADMDKFNT table
contain some guidance on how to obtain a best approx­
Imation to AFPDS output on an IPDS printer. In prin­
ciple, it is necessary to use only AFPDS fonts, code
pages, and coded fonts that can be converted into exact
IPDS equivalents. Where this is not possible, some
characters may sometimes print incorrectly.

Users who installed GDDM Version 2 Release 1 Modifi­
cation 1 and modified the font emulation table should
inspect the ADM4FONT macros shipped with Version 2
Release 2. They contain definitions for the emulation of
4250 fonts, which these users may want to add to their
own versions of the table.

printing

AFPDS structured fields supported by the
CDPU

The Composite Document Print Utility (CDPU) permits
printing and viewing of a document, a page segment or
an overlay in Advanced Function Presentation Data
Stream (AFPDS) format. The AFPDS file can be for­
matted for a 38xx or 4250 device (in, for example,
LlST38PP, LlST4250, LlSTAPA, PSEG38PP, PSEG4250,
OVLY38PP, or OVLY4250 format).

The AFPDS cannot contain multiple documents or page
segments. The structured field length must not exceed
8202 bytes. Input formatted for the 4250 can only be
viewed. A document may contain page segments
In line. Secondary input is not supported. Page seg­
ments that contain text cannot be printed unless they
are Imbedded In a document.

The formats of individual structured fields, such as
"begin-document", are defined in the PSF Data Stream
Reference for MVS and VSE and CDPF Data Stream
Interface Typographic Fonts Interface.

Summary of AFPDS structured fields supported by
theCDPU

Hex code

D3A67B
D3A69B
D3A6AF
D3A77B
D3A79B
D3A85F
D3A87B
D3A89B
D3A8A8
D3A8AF
D3A8C9
D3A8DF
D3A95F
D3A97B
D3A99B
D3A9A8
D3A9AF
D3A9C9
D3A9DF
D3AC7B
D3B18A
D3EE7B
D3EE9B

Meaning

Image input descriptor (liD)
Composed text descriptor (CTD)
Page descriptor (PGD)
Image output control (IOC)
Composed text control (CTC)
Begin page segment (BPS)
Begin image block (BIM)
Begin composed text block (BCT)
Begin document (BDT)
Begin page (BPG)
Begin active environment group (BAG)
Begin medium overlay (BMO)
End page segment (EPS)
End image block (ElM)
End composed text block (ECT)
End document (EDT)
End page (EPG)
End active environment group (EAG)
End medium overlay (EMO)
Image cell position (ICP)
Map coded font (MCF)
Image raster data (IRD)
Composed text data (CTX)

The include page segment structured field Is not sup­
ported. If found, it will be treated as an error.

Structured field introducer extensions (bit 0, flag byte 5
of SFI) are not supported. If found, they will be treated
as errors. Padding bytes (bit 4, flag byte 5 of SFI) are
not supported.

Chapter 7. The GDDM print utilities 63

Chapter 8. Symbol sets

This chapter describes the ways In which GDDM proc­
esses its various symbol set operations for the different
device types.

The chapter also contains descriptions of the GDDM
sample Image and Vector symbol sets that are supplied
with GDDM. The sample symbol sets can be used by
application programs Instead of the defaults provided
with GDDM.

How GDDM handles symbol sets

GDDM provides facilities for loading and using symbol
sets other than the default characters, markers, and
shading patterns. These may be Image symbol sets
(ISS), or vector symbol sets (VSS). Two methods of
loading symbol sets are available:

• Loading Image symbol sets directly Into pro­
grammed symbol (PS) stores in the device

• Loading image symbol sets or vector symbol sets
Into GDDM storage.

PS stores are used for alphanumerics and mode-1
graphics text, GDDM storage for mode-2 and mode-3
graphics text.

For these operations, the symbol sets can be loaded
from auxiliary storage, or passed as data from the
application program.

In addition to being loaded by these operations, symbol
sets can be passed as data between the application
program and auxiliary storage.

Symbol sets can be tagged with country-extended code
page (CECP) identifiers. CECP sets are automatically
converted when they are used. So a set tagged with
code page identifier 00037 (for the United States) is
converted to represent code page 00297 when it Is
loaded Into a French device.

Where possible, GDDM loads symbol sets into device
storage. For example, for 3270-PC/G and 3270-PC/GX
work stations, both Image symbol sets and vector
symbol sets can be loaded into the device, whereas for
3179-G and 3192-G, only Image sets can be loaded.

Nole: No symbol sets can be loaded into the
5550-famlly work stations.

Loading programmed symbol stores

Display devices and printers equipped with the pro­
grammed symbol (PS) feature contain PS stores that
can be loaded with symbol definitions. These PS stores
are used for:

• Storing additional or special symbol sets

• Storing symbols or cell definitions used in con­
structing a picture.

symbols

Symbol sets that are to be loaded Into PS stores must
have the same matrix dimensions as the device char­
acter cell. These are:

PS store numbers

The PS store number may optionally be specified as a
parameter of the loading call (PSLSS or PSDSS). If
specified, it must exist on the device in use at the time,
and It must be a triple-plane store If a multlcolor
symbol set is to be loaded. Call statements are avail­
able to determine the number and types of PS stores in
the device.

The specified store number controls the function key
that can be used by the terminal operator to select the
symbol set for data entry. The correspondence
between store numbers and keys is:

Table 5. PS store number and PS key relationship

PS store number PS key and Indicator

2 A
3 B
4 C
5 D
6 E
7 F

A store number should always be specified If data entry
using the symbol set is expected. The number need
not be specified if data entry Is not allowed by the
application program.

When no store number is specified, the symbol set is
loaded Into an appropriate PS store, if one is available.
Monochrome symbol sets may be loaded into either
single-plane or triple-plane stores (for example:
numbers 2, 3, 4, 5, 6, and 7 on a 3279 display), but
multicolor symbol sets require triple-plane stores (for
example: numbers 4, 5, and 7 on a 3279 display).

Symbol-set identification

Displays and printers Identify loaded symbol sets by a
one-byte symbol-set identifier. Usually, symbol sets
are held on auxiliary storage. When a set is loaded
Into the PS store, a symbol-set Identifier specified as a
parameter in the loading call is associated with the
data. It is then used to identify the symbol set during
execution of the application program.

Reference to the symbol-set identifier takes one of two
forms:

• A single character

This form must have a character code greater than
X '40', and it is used when Identifying the symbol
set associated with individual characters, as in the
ASCSS call. If this function or the related query
function ASQSS is used, it Is likely that the
symbol-set identifier chosen will be an alphanu­
meric character.

Chapter 8. Symbol sets 65

symbols

Table 6. Device cell-size dimensions

Device Models Character cell

Width Height

3179-G and 3192-G color display All 9 12 (see note below)

3268 printer 2C 10 8

PCLK adapter with CGA card All 8 8

PCLK adapter with EGA card (64 K) All 8 8

PCLK adapter with EGA card (128+ K) 24-row screen 8 14

PCLK adapter with EGA card (128+ K) 32-row screen 8 11

PCL~ adapter with MCGA card 24-row screen 8 19

PCLK adapter with MCGA card 32-row screen 8 14

PCLK adapter with VGA card 24-row screen 8 19

PCLK adapter with VGA 32-row screen 8 14

8514/A + 8503, 8512 or 8513 24-row screen 8 19

8514/A + 8503, 8512 or 8513 32-row screen 8 14

8514/A + 8514 24-row screen 12 30

8514/A + 8514 32-row screen 12 23

8514/A + 8514 43-row screen 12 17

8514/A + 8514 27-row by 132 col screen 7 24

327Q-PC display All 9 14

3270-PC/G work station All 9 10 or 16 (selectable)

327Q-PC/GX work station All 12 20

3278 display 2,3 9 16
4 9 12

3279 display 2B,3B 9 12

3287 printer All 10 8

3290 information panel display All 9 16

4224 printer 1E2, 1C2 20 18

8775 display 1, 11 9 16
1, 12 9 12 or 16 (selectable)

Note: The alphanumeric ceil-size on a 3179-G or 3192-G can be either 9 by 12, or 9 by 16. The actual cell-size is
governed by the depth of the GDDM page and subsystem-related factors. Usually, any page with 24 rows or less
causes a cell:,size of 9 by 16, with other page sizes receiving a cell-size of 9 by 12. The substitution character for
a 3179-G or 3192-G is independent of the page size, and always corresponds to the 9 by 12 cell.

• A full-word integer

This form Is used when specifying the symbol-set
Identifier to be associated with given data, an
alphanumeric field, or a graphics character string.

The correspondence between the integer and the char­
acter specifications is:

• Characters "0" and" 1" correspond to the Integers
o and 1. These refer to "read-only" character sets.

• Other characters correspond to their character
codes. For example, "A" corresponds to 193.

Integer symbol-set Identifiers In the range 224 through
239 are reserved for graphics use and cannot be
assigned to loaded symbol sets.

66 Base Programming Reference

Using preloaded PS sets

When GDDM is initialized, the current state of the PS
stores is determined by a device query, which returns
the identifier of any loaded sets. These preloaded sets
are noted by the GDDM PS management routines,
which maintain knowledge of the contents of the PS
stores.

GDDM's PSLSSC call conditionally loads a symbol set
into a PS store only if the PS store does not already
contain a symbol set with the specified Identifier. Con­
ditional loading can be used to optimize PS loading, but
it must be used with care, because incorrect results
occur If different symbol sets have the same Identifier.
For example, an application program may load a
symbol set with a given identifier, and another program
running subsequently on the same device may attempt
a conditional load of a different set having the same
identifier. This situation can be avoided if a convention

is adopted that assigns unique identifiers to specific
symbol sets.

Selecting symbol sets by device type

If an application program is designed to be used with
different devices, it may be necessary to control
symbol set loading on the basis of cell size. This can
be done by using a GDDM symbol-set naming conven­
tion. The symbol-set name is specified as a parameter
of the loading call. If the last character of the name is
the period character M.", GDDM replaces it by another
character, depending on the current device.

In this way, a symbol set that matches the device in use
can be retrieved from auxiliary storage and loaded. As
a particular application, if a display containing PS is to
be printed, this function allows the selection of a
symbol set specific to the printer when printing begins.

For the details of which symbol sets are loaded for a
particular device cell size, see Table 7 on page 69.

Using PS with graphics

This section does not apply to 3179-G or 3192-G color
display stations, 3270-PC/G and 3270-PC/GX work
stations, 4224 printers, 5550-family work stations, the
5080 graphics system, and devices supported by
GDDM-PCLK, because PS is not used to construct the
graphics for these devices.

When GDDM is constructing a picture, the assumption
is made that all PS stores in the device are available
for use except those that have either been loaded with
symbol sets, or explicitly reserved by the application
program. Because the number of PS stores is limited,
if an application program uses both additional PS char­
acter sets and graphics construction, special attention
to PS allocations may be required. This is especially
true for printers, because only one PS store can hold a
multicolor symbol set.

In general, PS stores should be loaded with any addi­
tional symbol sets before graphics picture construction
Is started, because the PS stores are also used for
picture display. An attempt to load a symbol set when
graphics are displayed is usually rejected by GDDM.
Only when all graphics Items are deleted from all
pages do the PS stores become released for loading
symbol sets.

If the programmer antiCipates the need to load a PS
store while graphics data is present, the PSRSV call is
available to reserve a PS store. This must be done
before any graphics calls are issued. The specified PS
store Is not used for graphics data, and Is explicitly
referred to in the call statement to load the symbol set.
When the symbol set is no longer needed, the symbol
set can be released from the reserved PS store, and
another symbol set can be loaded, or, the PS store
itself can be released.

In a windowing environment, the PS stores are allo­
cated in the following order:

1. For symbol sets in the active window

2. For graphics In the active window

symbols

3. For graphics for window borders (all windows)

4. Any remaining PS slots are allocated for symbol
sets and graphics in non-active windows.

Loading graphics symbol sets

Symbol sets that are not suitable for loading into PS
stores can be loaded into GDDM storage. (For
3270-PC/G and 3270-PC/GX work stations, these
symbol sets can also be loaded into the device; for the
3179-G and 3192-G, image symbol sets can be loaded
into the device.)

Four types of symbol sets can be loaded In this way:

• Image symbol sets used as graphics text
• Image symbol sets or vector symbol sets used as

marker symbols
• Image symbol sets used for shading graphics

areas
• Vector symbol sets used for graphics text.

Unlike when loading into PS stores, there is no
restriction on symbol size when loading image symbol
sets into GDDM storage. Any size that can be created
with the Image Symbol Editor can be used. 'However,
when shading patterns are used, the symbol is trun­
cated or padded to the cell size and repeated al cell
Inlervals. Therefore, in most circumstances shading
patterns should be the same size as the cell.

Devices other than work stations, 3179·G8,
3192·Gs,4224s, and GDDM·PCLK devices

For these devices, in graphics there is occasionally a
choice between loading a symbol set into a PS store for
use in mode 1, and loading it into GDDM storage and
using mode 2. Mode 2 is required if the character set
does not match the device, or if exact positioning is
required. If neither of these conditions exists, It should
be remembered that the PS load transmits all charac­
ters in the symbol set to the device once only. Using
the characters in mode 2 requires the transmission of
only those characters actually used, but more than one
cell definition may be transmitted for each.

For details of how to set the mode, see the GDDM Base
Programming Reference, Volume 1.

Also, for guidance information on mode-1 and mode-2
usage for graphics, see the GDDM Application Pro­
gramming Guide, Volume 1.

3270·PC/Gs, 3270·PC/GXs, 3179·Gs, and 3192·Gs

Nole: This section also applies to 3179-G and 3192-G
color display stations, except that they cannot be
loaded with vector symbol sets.

Image and vector character sets can be stored in the
work stations themselves. Also, these displays support
a maximum of two monoplane PS stores; the precise
number depends on how the display has been config­
ured. Programmed symbol sets are not used to con­
struct graphics because the displays have their own
graphics capability. Up to 8 character sets can exist in
the display at anyone time. For reasons of perform­
ance, the device-provided default character sets should
be used whenever possible. Only PS sets can be used
for alphanumeric characters.

Chapter 8. Symbol sets 67

symbols

Note: The 3179-G or 3192-G display stations, and
3270-PC/G or 3270-PC/GX work stations have a dif­
ferent pixel aspect ratio and default graphics
character-box size from displays such as the 3279.
Thus, character mode 1 graphics character strings and
character mode 2 text and images appear differently on
the two types of device.

To prevent storage problems in the display, any symbol
sets that have been loaded (by using GSDSS or GSLSS
calls) should be released when they are no longer
needed. The storage occupied by these symbol sets is
common to that used for storing segments, so loading
unnecessary symbol sets can cause segment storage
to be exhausted (thereby causing GDDM to enter unre­
tained mode with a subsequent effect on performance).

Note also that unless the work station has enough
symbol-set storage to hold the current user-defined
pattern sets, the default shading patterns are used
(GDDM issues a warning message when this happens).

For details of how to set the mode, see the GDDM Base
Programming Reference, Volume 1.

Also, for guidance information on mode-1 and mode-2
usage for graphics, see the GDDM Application Pro­
gramming Guide, Volume 1.

PS overflow caused by picture complexity

PS overllow cannot occur on 3179-G and 3192-G display
stations, 3270-PC/G and 3270-PC/GX work stations,
5550-family work stations, the 5080 Graphics System,
or on devices supported by GDDM-PCLK; therefore,
ignore this section for these devices.

When a picture is extremely complex, it may require
more PS stores than GDDM and the device can handle.
This is known as PS overflow. When PS overflow
occurs, message ADM0273 is issued to inform the user
that the picture cannot be accurately completed.

In a windowing environment, this message is only
issued if the overflow occurs In the active window.

The 4224 printer performs its own vector-to-raster con­
version for graphics data. The graphics data stream
that is sent to these printers contains GDF orders. The
amount of storage available in these printers may not
be enough to hold all of the graphics data that defines
the picture. When this occurs, message ADM3282 is
issued to inform the user that the picture cannot be
accurately completed.

The FSCHEK function can be used to discover if PS
overflow will occur when a picture is displayed. If PS
overflow would occur, the error can be intercepted and
action taken to simplify the picture or delete segments
until it can be shown.

Using symbol sets in printing

When a call is Issued to copy screen data to the printer,
the names of symbol sets in use, both on the screen
and in GDDM storage, are noted. These names include
the final character "." if it was originally specified, not
the character that was substituted for it.

68 Base Programming Reference

When the print operation begins, an attempt is made to
reload the symbol sets. The appropriate substitution
character replaces the ".n, so that a printer symbol set
is retrieved, if one exists on auxiliary storage. If not,
the default symbol set is used and an error message is
issued.

Note that if the symbol set was loaded Into the display
by a conditional PS load, a conditional load is also per­
formed before printing. Therefore, the convention
associating symbol sets with unique identifiers must
apply for both displays and printers.

Because there may be more PS stores available on a
display than on a printer, if an application program
explicitly uses PS stores, a picture that can be dis­
played may not print. Also, because only one triple­
plane store Is available in the 3287 Printer (Models 1C
and 2C), if the application reserves this store for a non­
graphics symbol set when the print request is proc­
essed, multicolor graphics printing is not performed
correctly.

USing OBCS symbol sets

For Kanji/Hangeul applications that have double-byte
character string (DBCS) symbol sets installed, this type
of symbol set can be used directly (by the application
program loading the required symbol set and using the
definition in the normal manner) or Indirectly (by the
application program indicating that it requires to use
DBCS symbol sets). In the second case, If the GSCS
call specifies character set 8 (DBCS) or if mixed
(single-byte and double-byte) character strings are
enabled (by specifying MIXSOSI = YES in GDDM's
external defaults), GDDM recognizes DBCS characters
and uses the first byte of the character to identify the
symbol set to be loaded and the second byte to retrieve
the symbol definition.

GDDM's external defaults define whether mixed strings
are enabled and indicate the maximum number of
DBCS symbol sets of each type that are to be loaded
concurrently. When this maximum number is reached,
the least recently used symbol set Is unloaded to allow
the currently required symbol set to be loaded. For
details on how to change the settings of these GDDM
external defaults, see the information on the MIXSOSI
and DBCSLlM processing options in Chapter 1, "Cus­
tomizing your program and Its environment" on
page 1.

For graphics, DBCS symbol sets are available for mode
2 and mode 3 only.

Naming conventions for sample
image symbol sets

Except for shading patterns with a final character of N
or R (and ADMDHIPK), the final character of the name
of each image symbol set conforms to the convention
for generic retrieval by GDDM, showing the cell size of
the symbol set.

The shading patterns with Nand R as the final char­
acter differ in that the patterns are defined on an 8 by
12 cell size. This allows complete shading, as defined
in the GSLSS call; see the GDDM Base Programming
Reference, Volume 1.

The following table shows the character that GDDM
uses to replace the "." substitution character that Is
used In a GSLSS call (for a graphics symbol-set name),
In a PSLSS or PSLSSC call (for an alphanumerics
symbol-set name), or In an SSREAD or SSQF call (for
either alphanumerics or graphics).

Table 7. Cell sizes for sample Image symbol sets

Substituted Cen size In display points (width by
tlnal char- depth)

acter

A 9 by 16
C 9 by 12 (monochrome)
D 9 by 12 (multlcolor)
E 9 by 10 (alphanumerics only)
G 10 by 8 (monochrome)
H 10 by 8 (multlcolor)
J Famlly-4 high-resolution symbol

sets (400 pixels per Inch or greater)
K 20 by 18 (alphanumerics only)
L Famlly-4 medium-resolution (less

than 400 pixels per Inch)
M See Note 4
N 8 by 16 (graphics only)
Q 24 by 30 (monochrome)
R 12 by 20

12 by 24
U Plotter symbol sets

Notes:

1. If the device has a cell size that Is not one listed
above, GDDM selects the character that corre­
sponds to the smallest containing cell size. For
example, for a device cell size of 9 by 14, GDDM
selects an Image symbol set with a cell size of 9 by
16 (character A).

2. If the device cell size does not fit Into any of the
cell sizes given In the table, GDDM selects an
image symbol set with a cell size of 9 by 16 (char­
acter A).

3. For a famlly-3 printer, the character A Is always
used as the final character.

4. GDDM provides a sample image symbol set with M
as the last character. However, M Is not one of the
characters In the substitution rules.

Sample image symbol sets

Table 8. Sample Image symbol sets

Set name Contents

ADMCOLSD Sample shading patterns, which
ADMCOLSN create the appearance of 64 color
ADMCOLSR shades.

ADMDHIIA The standard CECP set of charac-
ADMDHIIC ters.
ADMDHIIE
ADMDHIIG
ADMDHIIK
ADMDHIIN
ADMDHIIQ
ADMDHIIR

symbols

Table 8. Sample Image symbol sets

Set name Contents

ADMDHIMA Ten standard markers, which cor-
ADMDHIMC respond to the defaults provided
ADMDHIMG with GDDM. See the description of
ADMDHIMK the GSMS call In the GDDM Base
ADMDHIMN Programming Reference, Volume
ADMDHIMQ 1.
ADMDHIMR

ADMDHIPA Seventeen standard patterns,
ADMDHIPC which correspond to the defaults
ADMDHIPG provided with GDDM. See the
ADMDHIPJ description of the GSPAT call in
ADMDHIPM the GDDM Base Programming Ref-
ADMDHIPN erence, Volume 1. ADMDHIPJ Is
ADMDHIPR for use on an IBM 4250 high-

resolution printer, and ADMDHIPM
is for use on IBM 3800-3 and
3800-8 medium-resolution printers.

ADMDHIPK Eight patterns, which can be used
when producing color masters on
high-resolution and medlum-
resolution printers. For more
information, see "The ADMMCOL T
macro" on page 79.

ADMDHIPL Sample shading patterns, which
can be used for converting colors
into shades of gray on high and
medium-resolution printers.

ADMIPATA Seventeen standard patterns,
ADMIPATC which correspond to the defaults
ADM I PATG provided with GDDM. Used with
ADMIPATN the Image symbol Editor INFILL
ADMIPATR function. See the description of

the GSPAT call in the GDDM Base
Programming Reference, Volume
1.

ADMITALA Sample Italic CECP characters.
ADMITALC
ADMITALG
ADMITALK
ADMITALN

ADMPATTA Sixty-four sample geometric
ADMPATTC shading patterns. See the
ADMPATTG description of the GSPAT call in
ADMPATTN the GDDM Base Programming Ref-
ADMPATTR erence, Volume 1.

ADMIKxx Sample double-byte character set
image characters, where MXX" is In
the range X'41' through X'68'.

ADMDISKA Contain image symbols for use
ADMDISKC with Katakana displays and
ADMDISKG printers.

ADMDISKN Contain 8x16 and 12x24 image
ADMDISKP symbols for use with 5550-famlly
ADMDISKR work stations.

Note: The symbol sets are only provided as
samples. GDDM does not ensure that all styles of
characters and patterns are provided for all pos-
sible suffix characters.

Chapter 8. Symbol sets 69

symbols

Sample vector symbol sets

GDDM's sample vector symbol sets are as shown
below:

Table 9. Sample vector symbol sets

Set name Contents

ADMDHIMJ Contains the GDDM vector marker
symbols for use by the Interactive
Chart Utility.

ADMDHIMV Contains ten standard vector
markers that correspond to the
defaults provided with GDDM.

AD~DHIVJ Contains the default vector symbol
set for the 4250 page printer.

ADMDHIVK Contains the default vector symbol
set for a 4224 page printer.

ADMDHIVM Contains the default vector symbol
set for a 3800 Model 3 or a 3800
Model 8 page printer.

ADMDHIVa Contains the default vector symbol
set for a 3812 Model 2 page
printer.

ADMDVIH Contains the default vector symbol
set for 3270-PC/G or 3270-PC/GX
work stations.

ADMDVECP CECP default vector symbol set

ADM DVSS The default vector symbol set for
code page 00351 (USA version).
The default character codes are
shown in the description of the
ASTYPE call in the GDDM Base
Programming Reference, Volume
1.

ADM DVSSB National Language versions of the
ADMDVSSD vector symbol sets for code page
ADMDVSSE 00351, see note 5.
ADM DVSSF
ADM DVSSG
ADMDVSSI
ADMDVSSN
ADM DVSSS
ADMDVSSV

ADMDVSSK The default vector symbol set for
code page 00290. See the
description of the ASTYPE call in
the GDDM Base Programming Ref-
erence, Volume 1.

70 Base Programming Reference

Table 9. Sample vector symbol sets

Set name Contents

Sample CECP vector symbol sets:

ADMU*ARP Area Filled Roman Principal
ADMU*CIP Complex Italic Principal
ADMU*CRP Complex Roman Principal
ADMU*CSP Complex Script Principal
ADMU*DRP Duplex Roman Principal
ADMU*FSS Filled Sans Serif
ADMU*GEP Gothic English Principal
ADMU*GGP Gothic German Principal
ADMU*GIP Gothic Italian Principal
ADMU*KRF Thick Round Filled
ADMU*KRO Thick Round Outlined
ADMU*KSF Thick Square Filled
ADMU*KSO Thick Square Outlined
ADMU*MOD Modern
ADMU*NSF Thin Filled
ADMU*NSO Thin Outline

.ADMU*ORP Outline Roman Principal
ADMU*SHD Shadow
ADMU*SRP Simplex Roman Principal
ADMU*TIP Triplex Italic Principal
ADMU*TRP Triplex Roman Principal
ADMU*TSS Triplex Sans Serif

*lsU - proportionally spaced

*lsV - nonproportlonally spaced

*lsW - proportionally spaced -
wider space for compatibility
with GDDM Version 1.

See GDDM Typefaces and Shading
Patterns manual.

ADMVKxx Sample double-by1e character set
vector characters, where "xx" is In
the range X'41' through X'68'.

Notes:

1. It Is not possible to use the Image Symbol Editor on
the sample vector symbol sets. The Vector Symbol
Editor Is part of GDDM-PGF.

2. As supplied, CECP symbol sets are ordered
according to the USA CECP, 00037, and are so
tagged. GDDM converts them to the device code
page when they are loaded by an application
program.

3. All the IBM-supplied sample vector symbol sets
have names starting with" ADM"; this aids identifi­
cation and serviceability. However, installations
may find it more convenient to generate copies of
these symbol sets, using other names. If neces­
sary, the Image or Vector Symbol Editor can be
used to save the symbol sets under different
names. The symbol sets are shown in GDDM
Typefaces and Shading Patterns manual.

4. It should not normally be necessary to alter a
CECP set. However, If an editor is used to change
a CECP symbol set, the application code page
should first be set to be the same as that of the
symbol set being edited. GDDM supplies the CECP
sets ordered according to code page 00037.

5. The "E" suffix character refers to UK-EngliSh, not
US-English.

PIF flies

Chapter 9. Picture interchange format files

Application programs can transfer picture Information
between GDDM running in a host system and the
3270-PC/G or 3270-PC/GX work station as picture Inter­
change format (PIF) files by using the GDDM-supplied
GDF conversion utility (ADMUPCTN) and the 3270-PC
Graphics Control Program file transfer function.

A PIF file can also be generated on a work station that
uses GDDM-PCLK, through "user control mode" (for
details, refer to the GDDM-PCLK Guide).

As the PIF files on the host have different internal
formats to those on a work station, when files are trans­
ferred from one system to the other, they must also be
converted to the relevant format before they can be
used.

This conversion can be done at the same time as the
transfer operation or as a separate operation.

The methods used to process PIF files vary according
to the subsystem that the GDDM host session is
running under. This chapter explains:

• Processing PIF files under TSO

• Processing PIF files under VM/CMS.

Note: GDDM does not support PIF files under CICSNS
or IMSNS.

These topics are discussed for each subsystem:

• How PIF data relates to GDF data

• How to create PIF information under GDDM

• How to create PIF information at a work station

• What a PIF file must contain if It is to be used under
GDDM

• The structure of a PIF file

• Base PIF flies.

The commands needed to convert and transfer PIF flies
are defined In the sections that follow; for more infor­
mation, refer to the GDDM Guide for Users.

Processing PIF files under 1S0

The conversion operation
The GDF file-converslon utility

The conversion utility Is distributed as a module called
ADMUPCT. This utility converts GDDM ADMGDF
objects Into PIF files, or converts PIF flies from the
work station into a format that is suitable for use under
GDDM Release 4 (ADMGDF objects).

The conversion utility also converts files (created by
applications from GSGET calls and often named GDDM
Release 2 and 3 GDF files) into ADMGDF files; see
"Saving GDF orders" on page 165.

Figure 3 on page 72 shows the flow of events.

When the IND$FILE CUST executes, the ADMUPCT
command is invoked to run the conversion utility if the
ADMGDF option has been specified in a SEND or
RECEIVE command.

The transfer operation

If the commands described in "Commands to use under
TSO" on page 72 did not work, check that the INO$FILE
CUST is available at your installation, and that the
library search order searches CLiSTs before searching
commands. Refer to the preamble to CLIST
ADMUPCFT (listed under AOMUPCFT in the index) in
the GDDM Installation and System Management for
MVS manual.

GDF data files must be converted into PIF files before
they can be sent from GOOM to the work station. There
are four components in the procedure for transferring
and converting the flies:

• The SEND and RECEIVE commands that are issued
at the work station.

These commands generate the INO$FILE command
on the current host session, with the first param­
eter set to either PUT or GET.

• The INO$FILE CUST that is issued at the host
(GODM).

This CUST controls the file transfer program and
the conversion utility (see below).

• The INO$FILE file transfer command.

• The GDF conversion utility, which converts GODM
ADMGOF object files to PIF files, and conversely.

Of these four components, the SENO and RECEIVE
commands have already been described above. The
other components are described in greater detail
below.

The IND$FILE CLiST

These examples of the commands work with the
IND$FILE CUST that is supplied with GODM.

Nole: The CUST is distributed with the name
AOMUPCFT CUST; it is recommended that it is
renamed to IND$FILE CUST by the systems pro­
grammer, after GOOM has been instailed.

The IND$FILE CUST invokes the INO$FILE file transfer
program at the work station.

Notes:

1. On heavily-loaded systems, It may be advisable to
perform the file transfer separately from the con­
version; for details, see "Commands to use under
TSO" on page 72; for further information. refer to
the GDDM Guide for Users.

2. For GODM Version 2 Release 1, there is a new
version of the CUST called AOMUPGT, which
maintains the structure of the PIF (Including default
tags and segment orders), but produces AOMGOF
files that may not be compatible with some GODM
Version 1 Release 4 applications.

Chapter 9. Picture interchange format files 71

PIF flies

GDDM in the host processor

GDDM R4
ADMGDF
object

ADMUPCT
conmand

•

ADMUPCT
cOlll\1and

~

Picture
interchange
fonnat file

Application­
written GDF
containing
data

327e-PC

IND$FILE
conmand

~
Picture
interchange
fonnat file
on 3279-PC
diskette or
fixed disk

obtained from
GSGETS calls)

-------IND$FILE EXEC ------·SEND/RECEIVE
(supplied as conmand
ADMUPCFT CLIST, but :
renamed to IND$FILE
when GDDM is installed)

Figure 3. GDF file conversion procedure under TSO

3. If the ADMUPCFT CUST has been renamed to a
name other than IND$FILE CUST, the work station
SET command can be used to invoke the appro­
priate CUST when a SEND or RECEIVE command
Is issued. For details of the SET command, refer to
the IBM Personal Computer Disk Operating System
manual.

The IND$FILE file transfer command

This is the command that transfers flies between a
work station and the host processor.

Note: The file transfer command requires the 3270-PC
Graphics Control Program (feature number 1507) and
the File Transfer Program (licensed program number
5665-311), which runs on MVSITSO.

Commands to use under T50
To transfer a PIF file from the work station to host

1. Ensure that th'e host session is ready to receive an
operator command (that is, it Is in a READY state).

2. From the PC session of the work station enter:

SEND picture.pif 'pi f-dataset-name ,
The "plf-dataset-name" data set Is automatically
allocated If It does not already exist, and Is created
as a sequential data-set with fixed-length SO-byte
records (unblocked). The "plf-dataset-name" if it
already exists may be sequential or partitioned. If
partitioned, the member-name must be Included in
"pif-dataset-name ...

72 Base Programming Reference

To transfer a GDDM GDF picture from the host to
the work station

1. Enter the RECEIVE command from the work station
(In a PC session) as follows:

RECEIVE picture.pif 'pif-dataset-name'
This sends the file "plf.dataset-name" from the
host (GDDM) system to the current work-station
directory, converting it from the ADMGDF format to
a PIF format.

If the SEND or RECEIVE command was not suc­
cessful, there may be some options not set up on
your system, and you should consider this:

To convert a PIF file Into a GDDM ADMGDF object

1. Use the commands:

ALLOC F(ADMPIF) DA('pif-dataset-name')SHR
ALLOC F(ADMGDF) DA('admgdf-dataset-name')SHR
CALL 'GDDM.OSPID.GDDMLOAD(ADMUPCT),

'pif-member (PUT admgdf-member options'
Where "admgdf-dataset-name" must exist, and
must be partitioned. The data set usually has the
attributes LRECL(400) and RECFM(F) but these
may be altered.

If "plf-dataset-name" Is sequential, pifmember
should be omitted.

To convert a GDDM ADMGDF object Into a PIF file
1. Use the commands:

ALLOC F(ADMPIF) DA('pif-dataset-name')SHR
ALLOC F(ADMGDF) DA('admgdf-dataset-name')SHR
CALL 'GDDM.OSPID,GDDMLOAD(ADMUPCT),

'pif-member(GET admgdf-member,options'
Where Uadmgdf-dataset-name" must exist, and
must be partitioned. The data set usually has the
attributes LRECL(400) and RECFM(F) but these
may be altered.

If "plf-dataset-name" Is sequential, plfmember
should be omitted.

Noles:

1. The admplf-member-name is either a member
name of the PIF data set or blank if a sequential
data set is being used.

2. The ADMPIF data set defaults are LRECL=400 and
RECFM = F, but these may be changed.

3. A user's CLiST must allocate two DDnames:

• ADMPIF - for the PIF sequential or parti­
tioned data set.

• ADMGDF - for the partitioned data set with
member "admgdf-name."

4. The GDDM-supplled IND$FILE CLiST accepts the
SEND and RECEIVE commands from the work
station, or it can run independently when Invoked
from GDDM in the host. See the GDDM Installation
and System Management for MVS manual for a
source listing of this CLiST.

The format of a PIF file

The format of a PIF file under GDDM In the host
processor depends on the subsystem being used;
under TSO, it can be a sequential data set or a member
of a partitioned data set.

In a 3270-PC/G or 3270-PC/GX work station, and
devices supported by GDDM-PCLK, the PIF file is a
standard PC-DOS 2.1 file.

In both the host and the work station, the orders in a
PIF file can span records.

Processing PIF files under VM/CMS

The conversion operation
The GDF flle-converslon utility

The conversion utility is distributed as a module called
ADMUPCV. This utility converts ADMGDF objects into
PIF files, or converts PIF files from the work station Into
a format that is suitable for use under GDDM Release 4
(ADMGDF objects).

The conversion utility also converts files (created by
applications from GSGET calls and often named GDDM
Release 2 and 3 GDF files) into ADMGDF flies; see
"Saving GDF orders" on page 165.

Figure 4 on page 74 shows the flow of events.

PIF flies

When the IND$FILE EXEC executes, the ADMUPCV
command is invoked to run the conversion utility if the
ADMGDF option has been specified in a SEND or
RECEIVE command.

The transfer operation

If the commands described in "Commands to use under
VM/CMS" on page 74 did not work, check that the
IND$FILE EXEC is available at your installation.

GDF data files must be converted into PIF files before
they can be sent from GDDM to the work station. There
are four components in the procedure for transferring
and converting the files:

• The SEND and RECEIVE commands that are Issued
at the work station.

These commands generate the IND$FILE command
on the current host session, with the first param­
eter set to either PUT or GET.

• The IND$FILE EXEC that is issued at the host
(GDDM).

This EXEC controls the file transfer program and
the conversion utility (see below).

• The IND$FILE file transfer command.

• The GDF conversion utility, which converts GDDM
ADMGDF object files to PIF files, and conversely.

Of these four components, the SEND and RECEIVE
commands have already been described above. The
other components are described in greater detail
below.

The IND$FILE EXEC

These examples of the commands work with the
IND$FILE EXEC that is supplied with GDDM.

Note: The EXEC is distributed with the name
ADMUPCFV EXEC; it is recommended that it is
renamed to IND$FILE EXEC by the systems pro­
grammer, after GDDM has been Installed.

The IND$FILE EXEC invokes the IND$FILE file transfer
program at the work station.

Notes:

1. On heavily-loaded systems, it may be advisable to
perform the file transfer separately from the con­
version; for details, see "Commands to use under
VM/CMS" on page 74; for more information, refer
to the GDDM Guide for Users.

2. For GDDM Version 2 Release 1, there Is a new
version of the CLiST called ADMUPGT, which
maintains the structure of the PIF (including default
tags and segment orders), but produces ADMGDF
files that may not be compatible with some GDDM
Version 1 Release 4 applications.

3. If the ADMUPCFV EXEC has been renamed to a
name other than IND$FILE EXEC, the work station
SET command can be used to Invoke the appro­
priate EXEC when a SEND or RECEIVE command is
issued. For details of the SET command, refer to
the IBM Personal Computer Disk Operating System
manual.

Chapter 9. Picture interchange format files 73

PIF flies

GDDM in the host processor

ADMUPCV
cOll111and

GDDM R4
ADMGDF
object

4

ADMUPCV
cOll111and

•
Picture
interchange
fonnat file

Application­
written GDF
containing
data

3279-PC

IND$FILE
cOl11lland

~
Picture
interchange
fonnat file
on 3270-PC
diskette or
fixed disk

obtained from
GSGETS ca 11 s)

-------IND$FILE EXEC ------SEND/RECEIVE
(s upp 1 i ed as cOl111land
ADMUPCFV EXEC, but
renamed to IND$FILE
when GDDM is installed)

Figure 4. GDF file conversion procedure under VM/CMS

The IND$FILE file transfer command

This is the command that transfers flies between a
work station and the host processor.

Note: The file transfer command requires the 3270-PC
Graphics Control Program (feature number 1507) and
the File Transfer Program (licensed program number
5664-281 for VM/SP) which runs on VM/SP Release 3.

Commands to use under VM/CMS
To transfer a PIF file from the work station to host

1. Ensure that the host session is ready to receive an
operator command (for example. ensure that the
host session is not running the Interactive Chart
Utility).

2. Ensure that the CMS default SET IMPEX ON is in
operation.

3. Enter the SEND command from the work station (in
a PC session) as follows:

SEND picture.PIF picture (ADMGDF
This sends the file picture.PIF from the current
work-station directory. converts it to GDDM format
(because of the ADMGDF keyword). and stores the
file as a GDDM ADMGDF picture in the host.

If you want to transmit the file again unchanged
(for back-up or transmission to another work
station). do not use the keyword option ADMGDF
as this option may result in some details of the
picture being lost.

74 Base Programming Reference

To transfer a GDDM GDF picture from the host to
the work station

1. Ensure that the host session Is ready to receive an
operator command (for example. ensure that the
host session is not running the Interactive Chart
Utility).

2. Ensure that the CMS default SET IMPEX ON Is in
operation.

3. Enter the RECEIVE command from the work station
(in a PC session) as follows:

RECEIVE picture.PIF picture (ADMGDF
This sends the GDDM ADMGDF picture file from
the host ADMGDF object library to the current
work-station directory.

If you want to transmit the file again unchanged
(for back-up or transmission to another work
station). do not use the keyword option ADMGDF.
as this option may result in some details of the
picture being lost.

To convert a PIF file Into a GDDM ADMGDF object

1. Use the command:

ADMUPCV admpif-file-id (PUT admgdf-name options
The options are:

• {NEWFileIREPlace} - creates a new GDF
object or replaces an existing object of the
same name.

• {FlXedIFLOAT} - creates the GDF object in
fixed- or floating-point format.

To convert a GDDM ADMGDF object Inlo a PIF file

1. Use the command:

ADMUPCV admpif-file-id (GET admgdf-name options
The options are:

• {NEWFileIREPlace} - creates a new PIF file
or replaces an existing file of the same name.

• {FIXedIFLOAT} - creates the PIF file in fixed­
or floating-point format. If the PIF file is to be
sent to a work station, this parameter must be
specified as FIXed.

• LRECL {400In} - specifies the length of each
record for fixed-length files, or the maximum
record length for variable-length files. The
value of n must be in the range 16 through
2000.

• RECFM {FIV} - specifies the record format as
fixed length or variable length.

Nole: The admpif-file-id is a standard CMS file identi­
fier.

The format of a PIF file

The format of a PIF file under GDDM in the host
processor depends on the subsystem being used;
under VM/CMS, it is a normal VM/CMS file, conven­
tionally of filetype PIF.

In a 3270-PC/G or 3270-PC/GX work station, and
devices supported by GDDM-PCLK, the PIF file is a
standard PC-DOS 2.1 file.

In both the host and the work station, the orders in a
PIF file can span records.

Creating PIF data under GDDM

The graphics data in PIF files is essentially the same as
that in fixed-point GDF files. USing GDDM's GSGETS
call (see the GDDM Base Programming Reference,
Volume 1), with the options for returning fixed-point
coordinate data with a picture prolog, produces PIF
orders.

Creating PIF data using
GDDM-PCLK

PIF data can also be generated using GDDM-PCLK. For
details, refer to the GDDM-PCLK Guide.

Creating PIF data at a work station

There are two ways of creating PIF data at a work
station:

1. By capturing alphanumerics or alphanumerics and
graphics data that is displayed on a monitor. This
is done by:

a. Pressing the Ws Ctrl key

b. Pressing the Print or Print and Shift keys.

This spools a file called INDPRTnn.PIF to the user's
INDPRT directory for printing at the work station.

PIF flies

2. By writing an application program to create and
save alphanumerics or graphics data, or both of
these.

If they are to be transferred to GDDM, the PIF files
created at a work station must contain only those
drawing orders that are recognized as GDF orders; the
GDF orders are listed and described in
Appendix D, "GDF order descriptions" on page 165.
The GDF utility converts orders where possible and
diagnoses any changes made.

Nole: Spooling a GDDM picture locally causes struc­
tural information to be lost because GDDM optimizes
the data stream for display. Therefore, if possible you
should create your PIF files at the host rather than
spooling them locally into PC disk storage and
retrieving them from the work station.

How PIF data relates to GDF data

The formats of data in PIF files and in files created by
applications from the results of GSGET calls differ, in
some respects, from those of Version 1 Release 4 GDF
(ADMGDF) files created from GSSAVE calls. The con­
version utility converts from one form to the other. The
differences are:

• PIF files contain special control information as
detailed below.

• Fixed-point GDF is, usually, a subset of PIF func­
tion. However, some GDF orders before Version 1
Release 4 are ignored by the work stations. The
GDF utility makes the appropriate conversions.
The orders are:

X'11' Fractional Line Width
X'41' Marker Scale
X' 53' Segment Position
X'71' Segment End
X'72' Segment Attribute
X'73' Segment Attribute Modify.

The work station treats all these orders as no oper­
ations.

• Fixed-point GDF End Area (X '6800') is treated as a
Begin Area order by work stations.· End Area
should be shown using X '6000' .

For a full list of the drawing orders supported by the
work station, see the IBM 3270 Personal ComputerlG or
IGX: Reference Information for Picture Interchange
Format manual. See also the IBM 3270 Personal
ComputerlG or IGX: Supplementary Reference Infor­
mation for Picture Interchange Format manual.

Pictures created at the work station for use under
GDDM should contain only those GDF orders listed in
Appendix D, "GDF order descriptions" on page 165
and should adhere to the restrictions that GDDM places
on their use.

Chapter 9. Picture interchange format files 75

PIF flies

The conversion utility removes or changes orders in.
the PIF file that are not accepted by GOOM. In partic­
ular, note that symbol-set definitions are removed by
the GOF conversion utility. For example, if a chart that
uses symbol sets is created under GOOM's Interactive
Chart Utility (lCU), and is stored using the Print Spool
function, GOOM may use different symbol sets when
the chart is sent to GOOM and displayed at the host.
This is because PIF files created in this way do not ref­
erence the original symbol sets and because the
symbol-set definitions In the PIF file are discarded.

Base PIF

For GOOM Version 2, there is a subset of GOF orders
known as Base PIF. All Base PIF files can be imported
intoGOOM.

Restrictions and considerations

To ensure that AOMGOF files convert to Base PIF so
that they can be exported, the following must be borne
in mind:

Creating flies

Avoid any GOOM calls involved with:

• Multiple-connected areas; for example a ring
• Image data
• Image symbols
• ,Loaded marker and pattern sets
• Foreground color mixing other than overpaint.

The spool print function

The same restrictions listed above must be observed
when the Spool Print function is used to produce a PIF
file from a picture originally created by a GOOM appli­
cation.

76 Base Programming Reference

The GDDM sample program ADMUSP4

PIF flies imported into GOOM cannot be edited directly
by the GO OM sample program AOMUSP4; see
Appendix K, uSample programs" on page 249.

Composed-page printing

There is no function provided, either in GDDM Base or
GDOM-PGF, for sending ADMGDF flies to a composed­
page printer.

ADMUPCV and ADMUPCT utilities

When using these utilities to create PIF flies, avoid gen­
erating files that have a floating-point format.

LCLMODE processing option

Ensure that the LCLMODE processing option Is
enabled. This ensures that the maximum amount of
picture detail Is present in a PIF file resulting from
Spool Print. In the absence of local mode, GDDM opti­
mizes the data stream (for example, an arc is
expanded into a series of line segments), such that, at
the original scale, a picture is displayed correctly.
However, exporting the resulting PIF file to another
product such as DisplayGraphics, would not give the
intended result.

GGXA file conversion

PIF files created by GGXA that contain pictures drawn
with black lines will not be visible when imported into
GODM and viewed using a GDDM application, such as
the ICU. They will, however, be plotted and printed
successfully by GOOM.

DlsplayGraphlcs

PIF files created by DisplayGraphics should be drawn
white with black background. They, when imported into
GDDM and viewed using a GDDM application, such as
the ICU, display correctly as a white image on a black
background, and print as black on white background.

PIF flies

The structure of a PIF file

A PIF file consists of the GDF orders that are listed and described in Appendix D, "GDF order descriptions" on
page 165. Also, it can contain specific orders from the work station.

The structure of a PIF file created at a work station is as follows:

Table 10. The structure of a PIF file

File Descriptor order

Begin Symbol Set Mapping order

Map Symbol Set Identifier order

...
End Symbol Set Mapping order

Begin Line Type Mapping order

Map Line Type Identifier order

End Line Type Mapping order

Begin Picture Prolog order

Set Picture Coordinates order

Set Picture Boundary order

Set Page Color order

"picture default" orders

End Picture Prolog order

Begin Segment order

"segment attribute" orders

End Segment Prolog order

"drawing" orders

End Segment order

Begin Symbol Set Definition order

Load Symbol Set structured field

Continue Symbol Set Definition order

Load Symbol Set structured field

...
End Symbol Set Definition order

Begin Line Type Definition order

Load Line Type structured field

End Line Type Definition order

Noles:

1. Where present, the File Descriptor, Symbol Set
Mapping, Line Type Mapping, Picture Prolog,
Picture Segments, Symbol Set Definition, and Line
Type Definition orders must be in the sequence
shown.

2. The symbol-set definition orders are repeated for
each internal symbol-set definition.

3. COMMENT and NOOP orders can be placed any­
where in the file except between the Begin Symbol
Set Definition and End Symbol Set Definition
orders, and between the Begin Line Type Definition
and End Line Type Definition orders.

One for each identifier

Repeated for each segment of the picture

See Note 2 below

Repeated as needed for multi plane image symbol
sets

4. The GDDM-supplied conversion utility
(ADMUPCTIV) removes these orders when the PIF
file is converted to GDDM format:

• The Line Type Mapping and Line Type Defi­
nition orders

• The Symbol-Set Definition orders
• The Set Page Color order.

The File Descriptor and Line Type Mapping orders, and
the Set Page Color order, have no corresponding
GDDM GDF orders. The format of these orders is
described in the IBM 3270 Personal Compute riG or
IGX: Reference Information for Picture Interchange
Format manual.

Chapter 9. Picture interchange format files 77

color-master tables

Chapter 10. Setting up color-master tables

The GDDM page printer support provides the facility for
creating a set of output files that represent the compo­
nents in a subtractive (or additive) color-separation
process.

In this mode. several output files are created for every
picture. Each file represents one of the component
colors and can be used to create the relevant printing
plate.

To allow maximum flexibility. the separation process is
determined by a table. ADMDJCOL. which can be con­
structed using a supplied macro. ADMMCOL T. and an
image pattern set. which can be constructed using the
Image Symbol Editor. ADMISSE.

ADMDJCOL contains multiple instances of the
ADMMCOL T macro. each of which describes the spe­
Cific patterns to be used for each GDDM color.

For guidance on composed-page printing and the use of
color-separation masters. see the GDDM Application
Programming Guide, Volume 1.

The ADMMCOL T macro

The syntax of the macro invocation is:

&NAME ADMMCOLT codes, START I END I Pattern codes
SETID=, Set 10
PATTERN=, Pattern set
SETS=, Number of sets defined
COLORS=, Number of colors
MASTERS= Number of masters per color

codes

SETID

PATTERN

SETS
COLORS

MASTERS

START For initial invocation.

END For final invocation.

(x1.x2.x3.xi •... ,xn) For all Intermediate
invocations.

Where xi is a 2-digit hex code that iden­
tifies the pattern in the pattern symbol
set to be used by color master i. and n is
the total number of masters.

Name of set (up to 8 characters of the
form ADMnnnnn, where nnnnn is in the
range 00001 through 99999). GDDM sup­
plies seven sets (ADM00001. ADM00002,
ADM00003, ADM00004. ADMOOO05,
ADM00006. ADM00007).

Name of pattern symbol set.

This must be a monochrome image char­
acter set having a cell size of 32 by 32
pixels. GDDM supplies a sample called
ADMDHIPK.

The number of sets defined.

The number of colors defined for this
set.

The number of masters to be created for
this set.

You may have to contact your systems programmer to
help you install the modified color-master table;
however, first see the GDDM Installation and System
Management manual that applies to the subsystem in
use.

Chapter 10. Setting up color-master tables 79

color-master tables

The ADMDJCOL module

The ADMDJCOL module supplied by IBM provides seven color master tables, as shown below:

ADMDJCOL CSECT •

*
* DESCRIPTIVE NAME: GDDM HIGH-RESOLUTION IMAGE GENERATOR
* DEFAULT COLOR TABLES
*
*
*
*
*

5664-2ee.5665-356.5666-328
(C) COPYRIGHT IBM CORP. 1979. 1986.
LICENSED MATERIALS - PROPERTY OF IBM

* FUNCTION:
*
* THIS MODULE GENERATES THE SAMPLE COLOR TABLES FOR THE COLOR
* SEPARATION PROCESS IN FAMILY-4 DEVICE SUPPORT.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

ADMDHIPK PATTERN CODES HAVE THE FOLLOWING MEANING:

CODE X'41'
CODE X'42'
CODE X'43'
CODE X'44'
CODE X'45'
CODE X'46'
CODE X'47'
CODE X'48'

a % (NO COLOR)
= lea % (SOLID COLOR)

5e % (1ST HALF COLOR)
5e % (2ND HALF COLOR)
25 % (1ST QUARTER COLOR)
25 % (2ND QUARTER COLOR)

= 25 % (3RD QUARTER COLOR)
25 % (4TH QUARTER COLOR)

ADMDHIPL PATTERN CODES HAVE THE FOLLOWING MEANING:
--

THERE ARE 33 SHADES OF GRAY. THE PATTERN CODES START AT X'41'
(NO COLOR) AND FINISH AT X'61' (ALL BLACK). EACH SHADE HAS
APPROXIMATELY 3% MORE PIXELS SET ON THAN ITS PREDECESSOR.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* ***

AOMDJCOL AMODE ANY
AOMDJCOL RMODE ANY

ADMMCOLT START.SETS=7
*

* TABLE 1. SUBTRACTIVE COLORS FOR PRINTERS * ***
*
ADMeaea1 ADMMCOLT PATTERN=ADMDHIPK.COLORS~la.MASTERS=4.SETID=ADMeeee1

*
* *-------------*
* COLOR MASTER: * 1 2 3 4 *
* COLOR SEPS: * YY MM CC BB * (YELLOW. MAGENTA, CYAN, BLACK)
* *-------------*
*
DEFAULT
BLUE
RED
PINK
GREEN
TURQSE
YELLOW
NEUTRAL
BACKGRD
ALlBlK

ADMMCOLT (41,41,41,42)
ADMMCOlT (41.43,44,41)
ADMMCOlT (43,44,41.41)
ADMMCOLT (41,42,41,41)
ADMMCOLT (43,41.44,41)
ADMMCOLT (41,41,42.41)
AOMMCOLT (42.41.41,41)
ADMMCOLT (41.41,41,42)
ADMMCOLT (41,41,41,41)
AOMMCOLT (42.42,42.42)

80 Base Programming Reference

*

* TABLE 2. ADDITIVE COLORS FOR DISPLAYS *

*
ADMeeee2 ADMMCOLT PATTERN=ADMDHIPK,COLORS=9,MASTERS=3,SETID=ADMaaae2

*
* *----------*
* COLOR MASTER: * 1 2 3 *
* COLOR SEPS: * RR BB GG * (REO, BLUE, GREEN)
*
*
DEFAULT
BLUE
REO
PINK
GREEN
TURQSE
YELLOW
NEUTRAL
BACKGRD

ADMMCOLT (42,42,42)
ADMMCOLT (41,42,41)
ADMMCOLT (42,41,41)
ADMMCOLT (42,42,41)
ADMMCOLT (41,41,42)
ADMMCOLT (41,42,42)
ADMMCOLT (42,41,42)
ADMMCOLT (42,42,42)
ADMMCOLT (41,41,41)

color-master tables

Chapter 10. Setting up color-master tables 81

color-master tables

*

* TABLE 3. GENERAL COLOR MASTER TABLE *

*
ADM00003 ADMMCOLT PATTERN=ADMDHIPK,COLORS=2S6,MASTERS=S,SETID=ADMOe003

*
* *-------------------------*
* COLOR MASTER: * 1 2 3 4 S 6 7 S *
* COLOR SEPS: * ** ** ** ** ** ** ** ** *
*
*

COLOO ADMMCOLT (41,41,41,41,41,41,41,41)
COlOl ADMMCOlT (42,41,41,41,41,41,41,41)
COL02 ADMMCOLT (41,42,41,41,41,41,41.41)
COl03 ADMMCOlT (42,42,41,41,41,41,41,41)
COl04 ADMMCOlT (41,41,42,41,41,41,41,41)
COlOS ADMMCOLT (42,41,42,41,41,41,41,41)
COl06 ADMMCOlT (41,42,42,41,41,41,41,41)
COL07 ADMMCOlT {42,42,42,41,41,41,41,41}
COlOS ADMMCOlT (41,41,41,42,41,41,41,41)
COL09 ADMMCOlT (42,41,41,42,41,41,41,41)
COlOA ADMMCOLT (41,42,41,42,41,41,41,41)
CO LOB ADMMCOlT (42,42,41,42,41,41,41,41)
COlOC ADMMCOlT (41,41,42,42,41,41,41,41)
COlOD ADMMCOLT (42,41,42,42,41,41,41,41)
COLOE ADMMCOLT (41,42,42,42,41,41,41,41)
COlOF ADMMCOlT (42,42,42,42,41,41,41,41)
* .
• The first and last 16 values of a binary progression are shown

*
COLFO ADMMCOlT (41,41,41,41,42,42,42,42)
COlFI ADMMCOlT (42,41,41,41,42,42,42,42)
COlF2 AOMMCOlT (41,42,41,41,42,42,42,42)
COlF3 ADMMCOlT (42,42,41,41,42,42,42,42)
COlF4 ADMMCOlT {41,41,42,41,42,42,42,42}
COlFS ADMMCOlT (42,41,42,41,42,42,42,42)
COlF6 ADMMCOLT (41,42,42,41,42,42,42,42)
COlF7 ADMMCOlT (42,42,42,41,42,42,42,42)
COlFS ADMMCOlT (41,41,41,42,42,42,42,42)
COlF9 ADMMCOlT (42,41,41,42,42,42,42,42)
COlFA AOMMCOlT (41,42,41,42,42,42,42,42)
COlFB AOMMCOlT (42,42,41,42,42,42,42,42)
COlFC ADMMCOlT (41,41,42,42,42,42,42,42)
COlFD ADMMCOlT (42,41,42,42,42,42,42,42)
COlFE ADMMCOlT (41,42,42,42,42,42,42,42)
COlFF ADMMCOlT (42,42,42,42,42,42,42,42)

82 Base Programming Reference

*

* TABLE 4. SUBTRACTIVE COLORS FOR PRINTERS WITH CLUSTER PATTERNS *

*
ADM00004 ADMMCOLT PATTERN=ADMDHIPL.COLORS=17.MASTERS=1.SETID=ADM00004

* *-------*
* * GDDM *
* * COLOR *
* *-------*
*
DEFAULT ADMMCOLT (43) a
BLUE ADMMCOLT (59) 1
RED ADMMCOLT (51) 2
PINK ADMMCOLT (4A) 3
GREEN ADMMCOLT (55) 4
TURQ ADMMCOLT (4E) 5
YELLOW ADMMCOLT (45) 6
NEUTRAL ADMMCOLT (41) 7
BACKGRD ADMMCOLT (61) B
DKBLUE ADMMCOLT (59) 9
ORANGE ADMMCOLT (55) 10
PURPLE ADMMCOLT (51) 11
DKGREEN ADMMCOLT (59) 12
TURQSE ADMMCOLT (45) 13
14USTARD ADMMCOLT (4E) 14
GRAY ADMMCOLT (44) 15
BROWN ADMMCOLT (57) 16
*

* TABLE 5. SUBTRACTIVE COLORS FOR PRINTERS WITH CLUSTER PATTERNS
* (THIS IS THE BVBTSO DEFINITION WITH APPROX 6% BETWEEN SHADES)

*
*

*
ADM00005 ADMMCOLT PATTERN=ADMDHIPL.COLORS=17.MASTERS=1.SETID=ADM00005

* * -------* *--------*
* * GDDM * * PIXELS *
* * COLOR * * % *
* *-------* *--------*
*
DEFAULT ADMMCOLT (42) 0 3.1
BLUE ADMMCOLT (5C) 1 84.3
RED ADMMCOLT (58) 2 71.8
PINK ADMMCOLT (54) 3 59.3
GREEN ADMMCOLT (51) 4 50.0
TURQ ADMMCOLT (47) 5 18.7
YELLOW ADMMCOLT (4C) 6 34.3
NEUTRAL AOMMCOLT (41) 7 00.0
BACKGRD ADMMCOLT (61) 8 100.0
DKBLUE ADMMCOLT (56) 9 65.6
ORANGE ADMMCOLT (4F) 10 43.7
PURPLE ADMMCOLT (4A) 11 28.1
DKGREEN ADMMCOLT (53) 12 56.2
TURQSE ADMMCOLT (45) 13 12.5
MUSTARD ADMMCOLT (49) 14 25.0
GRAY ADMMCOLT (43) 15 6.2
BROWN ADMMCOLT (5A) 16 78.1

color-master tables

Chapter 10. Setting up color-master tatlles 83

color-master tables

*

* TABLE 6. COLOR TONING SET FOR 3899/3B29 PRINTERS *

*
ADMeeee6 ADMMCOLT PATTERN=ADMDHIPL.COLORS=17.MASTERS=I.SETID=ADM99996

* *-------*
* * GDDM *
* * COLOR *
* *-------*
*
DEFAULT ADMMCOLT (61) 0
BLUE ADMMCOLT (5A) 1
RED ADMMCOLT (54) 2
MAGENTA ADMMCOLT (4A) 3
GREEN ADMMCOLT (4F) 4
CYAN ADMMCOLT (46) 5
YELLOW ADMMCOLT (42) 6
NEUTRAL ADMMCOLT (61) 7
BACKGRD ADMMCOLT (41) 8
DKBLUE ADMMCOLT (5D) 9
ORANGE ADMMCOLT (4C) 10
PURPLE ADMMCOLT (51) 11
DKGREEN ADMMCOLT (56) 12
TURQSE ADMMCOLT (47) 13
MUSTARD ADMMCOLT (49) 14
GRAY ADMMCOLT (44) 15
BROWN ADMMCOLT (58) 16
*

* TABLE 7. COLOR TONING SET FOR 4250 PRINTER *

*
ADMgee07 ADMMCOLT PATTERN=ADMDHIPL.COLORS=17.MASTERS=I.SETID=ADMeeee7

* *-------*
* * GDDM *
* * COLOR *
* *-------*
*
DEFAULT ADMMCOLT (61) 9
BLUE ADMMCOLT (55) 1
RED ADMMCOLT (40) 2
MAGENTA ADMMCOLT (47) 3
GREEN ADMMCOLT (49) 4
CYAN ADMMCOL T (44) 5
YELLOW ADMMCOLT (42) 6
NEUTRAL ADMMCOLT (61) 7
BACKGRD ADMMCOLT (41) 8
DKBLUE ADMMCOLT (59) 9
ORANGE ADMMCOLT (48) Ie
PURPLE ADMMCOLT (4B) 11
DKGREEN ADMMCOLT (4F) 12
TURQSE ADMMCOLT (45) 13
MUSTARD ADMMCOLT (46) 14
GRAY ADMMCOLT (43) 15
BROWN ADMMCOLT (51) 16
*

ADMMCOLT END
END

84 Base Programming Reference

application data structures

Chapter 11. Application data structure for mapping

The basic purpose of the application data structure Is to
define an inpuUoutput area for use in transferring data
between your application program and GDDM. You
include the application data structure declaration
created by GDDM-Interactive Map Definition
(GDDM-IMD) in your application to define the layout of
one or more areas of storage. GDDM also keeps a
copy in its own storage of the data area associated with
each mapped field that you define, and it uses its copy
to create the display that the operator sees, and to
record the changes made by the operator.

Your program modifies the GDDM data area by filling in
values in its own area, then passing the area to GDDM
using an MSPUT call. It finds out the values in the
GDDM data area by using an MSGET call, which copies
the GDDM area into the program's data area. Usually,
MSGET is used so that the program gets access to the
operator's input, though it can be used at other times;
for example, after MSDFlD, to initialize the program's
data area to the default values.

When you have finished the GDDM-IMD map-definition
and generation processes, you will not only have one
or more generated mapgroups, but you will also have
an application data structure for each map. The data
structure and the fields that it defines depends on the
selections made during the map-definition process.
Full details of this process are given in the GDDM Inter­
active Map Definition manual.

The application data area can be used for these pur­
poses:

• Most of an application data structure is data fields,
each data field corresponding to a map-defined
display field. You place into the data fields the
character data that you want to be displayed.

• You can position the cursor in a display field by
setting the field's cursor adjunct. By default, the
cursor is placed under the first character of the
field, but you can change this by using the
MSCPOS call before you use MSPUT.

• Selector adjuncts provide additional control over,
and information about, a field's data value. You
can selectively update a field, reset a field to its
map-defined default value, and determine whether
a field has been modified by the operator.

• Length Adjuncts show the length of the data in the
field. If the data in a field is shorter than the map­
defined display field length, GDDM pads the data
with nulls when it displays the field. After operator
input the length adjunct is set to the number of
characters provided by the operator.

• Usually, field attributes are specified for the
various fields on a map during map definition.
However, at run time the application program can
change these attributes by placing attribute values
in attribute adjunct fields in the application data
structure. One or more adjunct fields can be asso-

ciated with a given data field In the application
data structure during map definition. Each attri­
bute adjunct controls a different type of attribute.

• Some devices allow different attributes to be
applied to individual characters in the same field.
Character attributes are controlled using a sepa­
rate copy of the application data area. The data
fields in this copy contain the character attribute
data instead of the normal character data. Each
character in the character attribute data area
determines the attributes of the corresponding
character in the normal application data area.

• The application program can be designed to allow
detection (or selection) of fields in a displayed
panel by a light pen or, on some devices, the
Cursor Select (CURSR SEL) key. The type of
detection that occurs is determined by the first
data character in the field; this character is called
a designator character.

• If specified in the map during map definition,
GDDM edits input data entered by the terminal
operator. To process this edited input, you need to
know how GDDM presents it in the application data
structure.

This chapter gives valid settings and explanations of
adjunct fields, character attributes, and designator
characters, and describes the format of edited input. It
also describes how to copy the application data struc­
ture Into the application program.

Adjunct fields

Each data field in the application data structure may
have associated adjunct fields, depending on the
options selected during the Field Naming step of map
definition. The possible adjunct fields for a data field
are shown below. They appear in the data structure in
the order given, immediately before the data field.

Adjunct Length (bytes)

Selector 1
Cursor 1
Base attribute - 2
Extended highlighting 2
Color 2
Programmed symbols (PS) 2
Validation 2
Outlining 2
Length 2

Thel base attribute, extended highlighting, color, PS,
validation, and outlining adjunct fields shown above are
eacll subdivided into two one-byte fields. In each case,
the I first byte acts as a selector to let GDDM know
whether or not the value held In the second byte is to
be used during program execution.

Chapter 11. Application data structure for mapping 85

application data structures

COBOL example

Suppose that in the Map Characteristics frame (2.1) of
GDDM-IMD, you entered:

PROGRAM LANGUAGE ==> COBOL

Next, suppose that in the Application Structure Review
frame (2.5), you are defining the characteristics of a
data field that you have named SPECNAME. You want
to be able to:

1. Set the cursor In the field under application
program control

2. Have dynamic control of extended highlighting

3. Specify the length of data in the field.

You therefore enter n#Hl" in the ADJUNCT column
against the field name.

As a result of this entry, the application data structure
contains, for the field SPECNAME, a cursor adjunct (1
byte), a highlighting adjunct (2 bytes), a length adjunct
(2 bytes), plus the data field itself, whose length is as
defined in the map (say 25 bytes).

GDDM-IMD names the adjunct fields by suffixing the
data field name supplied by the user. So, for example,
the cursor adjunct field is named SPECNAME-CURSOR.

The portion of the application data structure that is gen­
erated for SPECNAME Is:

10 SPECNAME-CURSOR
10 SPECNAME-HI-SEL
10 SPECNAME-HI
10 SPECNAME-LENGTH
HI SPECNAME

PIC X.
PIC X.
PIC X.
PIC 999 COMPo
PIC X(25).

Table 11. Adjunct field naming conventions

Assembler language example

Assume that instead of entering COBOL as the program
language in the above example, you enter ASM, and, to
comply with Assembler,.language length restrictions,
you name the data field SPEC. The generated code
(assuming the other selections were the same as those
given above) is:

SPECCR OS X
SPECHS OS X
SPECH OS X
SPECL OS AL2
SPEC OS XL25

PL/I example

Similarly, if you use PlII as the program language and
call the data field SPECNAME, the generated code is:

10 SPECNAME CURSOR CHAR(I) ,
10 SPECNAME-HI SEL CHAR(I),
10 SPECNAME-HI-CHAR(I) ,
10 SPECNAME:LENGTH FIXED BIN(15),
10 SPECNAME CHAR(25),

Adjunct field names

The above examples show that GDDM-IMD suffixes the
name you have given to a data field to create unique
names for each adjunct field in the application data
structure. The full set of suffixes that GDDM-IMD uses
for COBOL, Assembler, and Plil data structures is
shown in Table 11.

Adjunct values

Table 12 on page 87 summarizes valid settings for
adjunct fields. Details are given for each type of
adjunct on the following pages.

The application program sets the values required for a
send request. GDDM sets the values associated with
input data returned for a receive request. On a send
request, each field must contain one of the settings
given for it in Table 12.

Adjunct Length COBOL name Assembler name PLII name

Selector 1 XXX-SEL XXXS XXX_SEL

Cursor 1 XXX-CURSOR XXXCR XXX_CURSOR

Base 1 XXX-A ITR-SEl XXXAS XXXA XXX AITR SEL
attribute 1 XXX-AITR XXX-AITR-

Extended 1 XXX-HI-SEL XXXHS XXX HI SEl
highlighting 1 XXX-HI XXXH XXX:HI-

Color 1 XXX-COl-SEl XXXCS XXX COL SEl
1 XXX-COL XXXC XXX-COl-

PS 1 XXX-PS-SEl XXXPS XXX PS SEL
1 XXX-PS XXXP XXX:PS-

Validation 1 XXX-VAl-SEL XXXVS XXX VAL SEL
1 XXX-VAL XXXV XXX-VAL-

Outlining 1 XXX-OUT-SEl XXXOS XXX OUT SEL
1 XXX-OUT XXXO XXX:OUT-

length 2 XXX-LENGTH XXXL XXX LENGTH

86 Base Programming Reference

application data structures

Table 12 (Page 1 of 2). Values used in adjunct fields

Adjunct Value (See Note 1) Meaning

Selector C" MSPUT: Any data value is ignored.
Note 2).

The field is unchanged (see

MSGET: Neither the application nor the operator has put a value
in it.

C'1' MSPUT: The field contains a value.

MSGET: The field contains a value that the operator has just mod-
ified.

C'2' MSPUT: The field is to be reset to its map-defined default value.
The data value is ignored. On a subsequent MSGET, the field
contains its default value and the selector is C·3'.

MSGET: not used.

C'3' MSPUT: The field contains a value. (that is, the same as C'1 ').

MSGET: The field contains a value that has not just been modified
by the operator.

Cursor C' , MSPUT: The cursor is not in this field.

MSGET: The cursor is not in this field.

C'1' MSPUT: The cursor is in this field.

MSGET: The cursor is in this field (set only if map is a cursor
receiver).

The position within the field can be controlled by using the MSCPOS call, and verified by
using the MSQPOS call.

Attribute Selector C" The attribute is unchanged (see Note 2). The attribute byte (the
(first byte of second byte) is ignored.
adjunct) C'1' Change the attribute to the value in the second byte.

C'2' Reset the attribute to the map-defined default value.

C'3' Change the attribute to the value in the second byte (same as
C·1'). After an MSGET, the attribute selector is set to C'3' and the
attribute byte set to the current attribute value.

Attribute Value Ignored unless the attribute selector is C'1' or C·3'. Otherwise, the valid value depends
(second byte of on the attribute type, as follows:
attribute adjunct) C' , Default for all attributes.

X'OO'

Base attribute A valid 3270 attri- These values are defined mnemonically in ADMUAIMC (Assem-
bute if used bier), ADMUCIMC (COBOL), and ADMUPIMC (PLII).

For example: C" Unprotected
C'H' Unprotected, Intensified
C'-' Protected
C'Y' Protected, Intensified
C'O' Autoskip

B'xx ••••••
,

Ignored (set by GDDM)
B' •• 1 ...•• Protected
B' •• a

,
Unprotected

B' ••• a
,

Alphanumeric
B' •• a1. ... ' Unprotected numeric
B' •• 11 , Autoskip
B· •••• ao .. , Normal
B' •••• 01. • . Selectable
B· 1a .. , Intensified selectable
B· •••• 11 .• , Nondisplay
B· x.' Ignored (set by GDDM)
B· l· Modified data tag set
B' •••.••• 0' Modified data tag not set

Chapter 11. Application data structure for mapping 87

application data structures

Table 12 (Page 2 of 2). Values used in adjunct fields

Adjunct Value (See Note 1) Meaning

Extended high- C" No extended highlighting.
lighting attribute C'1' Blinking.

C'2' Reverse video.

C'4' Underscore.

Color attribute C' , Default.

C',' Blue.

C'2' Red.

C'3' Magenta (pink).

C'4' Green.

C'5' Turquoise (cyan).

C'S' Yellow.

C'T White/Neutral.

PS attribute C" Default character set.

X'41'-X'DF' PS code of any symbol set specified in PS Set Management in
GDDM-IMD, or loaded using PSDSS, PSLSS, or PSLSSC.

Validation attribute C' , No validation.

X'OO' No validation.

X'O" Trigger.

X'02' Mandatory enter.

X'04' Mandatory fill.

These values can be ORed together to give two or more validation attributes to the same
field. For example, specify X'03' to give a field the mandatory enter and trigger attributes
(X'02' OR X'O" = X'03').

Outlining attribute C" No outlining.

X'OO' No outlining.

X'O" Underline.

X'02' Vertical line on right.

X'04' Overline.

X'OS' Vertical line on left.

These values can be ORed together to give two or more outlining attributes to the same
field. For example, specify X'03' to give a field with underlining and a vertical line on the
right (X'02' OR X'01' = X'Oa').

Length Binary value Length, in characters, of the data.

Notes:

1. In Table 12 on page S7, "C" indicates character data type, "X" indicates hexadecimal, and "B" indicates bit.
2. On an MSPUT call with option 0 ("WRITE"), all fields and attributes are reset to their map-defined default

value, before the application data area is processed. Therefore, an attribute selector or field selector of C' ,
has the net effect of resetting the value to default, when used on an MSPUT call with option 0, or of leaving
the value unchanged, when used on an MSPUT call with option other than zero.

88 Base Programming Reference

Selector adjunct

The selector adjunct provides additional control over
an individual field in the application data structure, and
shows, after an MSGET, whether the data field has just
been modified by the operator.

The control function is most useful when using MSPUT
with option 1 (REWRITE) or 2 (REJECT), particularly if
the application program does not maintain a complete
copy of the application data area. A partially com­
pleted application structure can be used. Fields whose
selector is blank are ignored and so need not be set by
the application. Their value is unchanged. Fields
whose selector is C'1' or C'3' are processed by placing
the current data value in GDDM's copy of the data area
with the value from the program's data area.

Note: Fields that do not have a selector are always
processed.

The control function can also be used to set a field to its
map-defined default value. This is the constant text
placed into the field during GDDM-IMD's Field Defi­
nition or Field Initialization steps. This is the value of
the fieid immediately after a mapped field is defined by
MSDFLD. Note that if the field has no selector, any
MSPUT call replaces this default value with the value
from the application data area (even if the field is all
blanks). If the field has a selector adjunct, Its value can
be reset to the map-defined default value by specifying
a selector of C'2' on any MSPUT call.

Notes:

1. The map-defined default character attributes are
always "default." GDDM-IMD does not support
character attributes.

2. An MSPUT with option 0 (WRITE) sets all fields
(attributes and so on) back to their default value
before processing the application data area.

When a selector value of C'2' Is specified, GDDM con­
verts it into C'3', and places the default field value into
the data field in GDDM's copy of the data area so that
the program can access it using MSGET. (The
program's data area is not modified during an MSPUT.)

After an MSGET, a selector adjunct shows whether the
field has just been modified by the operator. A value of
C'1' shows that the field has been modified by one of
these events:

• The operator has typed into the field

• The operator has selected the field with a light-pen
(If the field is selectable)

• The field has been set by AID translation.

Note: "Modified" includes the degenerate case of the
operator modifying the field back to Its original value.

Usually, modification indicators are reset when the
operator is next given an opportunity to enter data (for
example, an ASREAD). Your program can avoid this
resetting by issuing an MSPUT call with option 2
(REJECT) on any map within the page, before the
ASREAD call.

application data structures

Cursor adjunct

The cursor adjunct is used to set the cursor In a field
dynamically (thus overriding any static cursor setting
specified in the map), and to show whether the cursor
was left in a field on input.

Static setting of the cursor Is specified In the Field Attri­
bute Definition step of GDDM-IMD; for details, see the
GDDM Interactive Map Definition manual.

To set the cursor in a field dynamically, the application
program sets the associated cursor adjunct to 1. This
causes the cursor to be placed In the field when the
field is displayed. By default, the cursor is placed
under the first character of the field. To position the
cursor elsewhere, use the MSCPOS call to specify the
position, just before issuing the MSPUT call. The posi­
tion Is a number between 0 and the length of the field,
thus:

o Means "under the attribute byte"
1 Means "under the first character"
2 Means "under the second character" and so on.

When the position specified is greater than the length of
the field, GDDM places the cursor under the last char­
acter in the field.

GDDM places the cursor at the last dynamic setting it
meets for a page. In the absence of any dynamic set­
tings, GDDM places the cursor at the first static setting.

To determine the position of the cursor on input, the
map must have been defined as a cursor-receiver map
in the Map Characteristics step of map definition. if the
map has been so defined, GDDM sets the cursor
adjunct of the field in which the cursor lies to C'1' when
the field has a cursor adjunct. The position of the
cursor within the field can be found using the MSQPOS
call after the MSGET call.

Note: The Mcursor-recelver" map characteristic is pro­
vided so that applications that use cursor adjuncts only
for output cursor control do not have to search for, and
turn off, cursor adjuncts after an MSGET call. If the
cursor adjuncts were left on, GDDM might misinterpret
the application's intention when the application data
area is next used in an MSPUT call.

AHrlbute adjuncts

An Attribute adjunct is used to change the attribute of a
field from its map-defined default vaiue. There are
several types of attribute adjuncts; one "base" attribute
that controls a compound set of basic field properties,
and one attribute type for each of a set of "extended"
properties.

Each attribute adjunct field consists of two subfields; an
attribute selector byte, and an attribute value byte. The
valid values for the attribute selector are the same for
all attribute adjuncts (and the same as those for a Field
Selector):

C" Ignore the value provided. Leave the attribute at
its current value. if the mapped field has just
been defined, or if the operator is an MSPUT with
option 0 (WRITE), the current value is the map­
defined value. Otherwise, the value Is that set by
previous MSPUT operations.

Chapter 11. Application data structure for mapping 89

application data structures

C',' Change the attribute to that specified In the attri­
bute adjunct.

C'2' Reset the attribute to the map-deflned value.

C'3' Change the attribute to that specified In the attri­
bute adjunct (that Is, the same as C'1'). After an
MSGET, all attribute adjunct selectors are set to
C'3', and the attribute value byte Is set to the
current attribute value.

The second byte of an attribute adjunct Is the value to
be used (for selector value C'1' and C'3'). The range of
valid values Is dependent on the attribute type.

GDDM provides, as part of GDDM-IMD, a set of declara­
tions In Assembler, COBOL, and PUI, for the values
that can be used In attribute adjuncts. These are In the
flies ADMUAIMC (Assembler), ADMUCIMC (COBOL)
and ADMUPIMC (PUI) In the GDDM Sample Library.

Note that all attribute adjunct types can be used on all
devices supported by GDDM for mapping, but they have
no effect on the presentation If the device does not
support the corresponding function.

Base drlbute adjunct

Base attributes are the baSic (as opposed to extended)
fI~ld attributes that are supported by all display devices
supported by GDDM. They can be specified for Indi­
vidual fields on a map during map definition and reset
during program execution by base-attribute adjuncts.
They Include:

• Protected/unprotected/autosklp
• Intenslfled-display/normal-dlsplay/nondlsplay
• Detectable/nondetectable
• MDT bit on/off
• Alphanumeric/numeric.

The attribute adjunct value byte can contain any valid
IBM 3270 basic attribute code. GDDM sets the
reserved and meaningless bits of the attribute cor­
rectly, so all one-byte values are accepted.

The base attribute adjunct value byte completely speci­
fies the combination of base attributes to be used for
the field on the device. It Is not merged In any way with
previous base-attribute specifications for the field, or
with the value specified In the associated map.

Extended highlighting adjunct

The extended highlighting adjunct can be used by the
application program to override any extended high­
lighting attribute defined for a field in the map.
Extended highlighting is available only on specific
devices, and can be used In addition to the
Intensification control of the base attribute. It lets you
specify whether a field should blink, be underscored, or
be displayed In reverse video.

Possible settings In the attribute adjunct value byte are
as shown In Table 12 on page 87.

90 Base Programming Reference

Color adjunct

Possible settings In the attribute adjunct value byte are
again as shown in Table 12.

Note that this adjunct cannot be used to control color
on devices whose color Is determined by means other
than the color extended attribute. For example, it can
be used to control color on seven-color display
devices, but not on four-color display devices.

Programmed symbols adjunct

The programmed symbols (PS) adjunct lets you specify
that the special characters and symbols defined in a
given symbol set apply for the field associated with the
PS adjunct in the application data structure. You can
define your own symbol sets using the Image Symbol
Editor, as described in the GDDM Image Symbol Editor
manual. You can also use the predefined symbol sets
supplied by IBM.

Your application program can use characters from a
particular symbol set only if that symbol set is loaded
Into a PS store in the device. A symbol set can be
loaded when defining a mapgroup containing maps that
use symbol sets. You can specify that the symbol sets
are to be loaded automatically by GDDM when a
MSPCRT request naming the mapgroup is issued; for
more details, see the GDDM Interactive Map Definition
manual. Symbol sets loaded in this way are available
to the application program for the life of the page.

The required symbol set is identified by the PS code (or
PSID), which is a slngle-character Identifier in the
range X '41' through X' OF' , designated by you or your
installation. The PS code is designated when the
mapgroup is defined, if GDDM is to handle symbol-set
loading, or during the loading operation, if your appli­
cation program or your Installation is handling
symbol-set loading directly.

Validation adjunct

The validation attribute is supported only by the
IBM 8775 Display Terminal (with the appropriate
feature). On all other devices it Is ignored.

Possible settings In the attribute adjunct value byte are
as shown in Table 12. The IBM 8775 handles operator
input according to the validation attribute, as follows:

1 Mandatory Enter Attribute
If the operator tries to transmit data (for example,
by pressing the ENTER key) while there Is a man­
datory enter field that has not had data entered Into
It, the transmiSSion falls and Input Is inhibited. The
cursor is repositioned to the start of the first empty
mandatory enter field. The operator can proceed
by pressing the RESET key. Then, the operator
can either enter data In the mandatory enter field,
or use the ERASE EOF or Error Override key to set
the MDT. For the Error Override key, an error
value (X'3F') Is returned to the application
program in the mandatory enter field.

2 Mandatory Fill Attribute
If data is entered into a mandatory fill field, the
field must be completely filled before the cursor
can be moved out of It. If an attempt Is made to
move the cursor out of the field before It has been
filled, further input Is inhibited.

The operator can proceed by pressing the RESET
key, and completing the entry of data into the man­
datory fill field. Or, the Error Override key can be
used to fill the fieid with error val ues (X' 3F ')
before continuing.

3 Trigger Fill AHrlbute
The trigger fieid attribute enables the application
program to receive data entered into a particular
field as soon as the data entry for that field Is com­
plete and the cursor leaves the field. The operator
can continue keying data while the trigger field is
being checked, but the data entered is placed on a
queue In the device (and is not displayed).

Cursor exit from a modified trigger field causes the
inbound transmission of this single field with a
"trigger" AID. The application can access the
trigger field data in the usuai way using MSGET.

The application program must then decide whether
to accept the trigger field (and hence the
operator's queued keystrokes) by issuing a posi­
tive acknowledgment, or to reject the field (and
lose the operator's queued keystrokes) by issuing
a negative acknowledgment.

A positive acknowledgment is generated by issuing
an MSPUT call specifying that the keyboard is to be
unlocked. By default, this is true of options 0
(WRITE) and 1 (REWRITE).

A negative acknowledgment is generated by
issuing an MSPUT call specifying that the keyboard
is to remain locked. By default, this is true of
option 2 (REJECT).

Note: The relationship between the MSPUT option
and locking the keyboard is defined in
GDDM-IMD's Map Characteristics step.

Field outlining

Outlining is only available on specific devices; if the
device does not support outlining the adjunct is
ignored. Possible settings in the attribute adjunct byte
are shown in Table 12 on page 87.

Length adjunct

The length adjunct is a two-byte field that can contain
values in the range·O through the length of the field. It
indicates the length of the data in the data field. GDDM
treats a value greater than the field length as if it were
equal to the field length.

When a field is displayed, GDDM pads the data with
nulls, from the length specified in the length adjunct, to
the length of the display field.

After the operator modifies a field, the length adjunct
specifies the number of bytes of data placed in this field
by the input operation.

If right-hand justification has been specified for the field
during map definition, the length adjunct is set on input
to the length of the field in the application data struc­
ture. If left-hand justification has been specified, the
length adjunct is set to the number of characters in the
field up to the first padding character.

application data structures

Character attributes

Highlighting, color, and PS attributes can be specified
for individual characters within a field. Usually, char­
acter attributes are used to emphasize a particular
character string in a field.

Note: GDDM supports character attributes in mapped
variable fields, but not in constant or initial values held
in the map.

To controi any type of character attribute, the program
needs an additional application data area. This area
has the same structure as the usual application data
area (including adjunct fieids), but the data fields are
interpreted as character attributes rather than char­
acter data.

To declare several data areas using the same struc­
ture, you can use an array of structures or (in PLII) the
LIKE attribute.

COBOL

Ell ALLAREAS.
El2 DATA-AREA OCCURS 3 TIMES.

COPY MAP.

PLII

Declare
1 DATA AREA,

%INCLUDE MAP;
Declare

1 COLOR_AREA LIKE DATA_AREA;

In the former case, the individual application areas
(and fields and adjuncts within them) can be referred to
using an array index. In the second case, they can be
referenced using name qualification
(DATA_AREA.FIELD1, COLOR_AREA.FIELD1, and so
on).

The character attribute data areas are filled In the
same way as are the . usual application data areas,
except that the data fields contain characters repres­
enting attributes. For example:

DATA AREA.FIELD1 c'data value';
COLOR_AREA.FIELD1='1111111121';
Adjunct fields in the character attribute application data
area have the same meaning as in the normal data
area. Seiector and Length adjuncts apply to the char­
acter attribute data field.

Each application data area is passed to GDDM with a
separate MSPUT call. The character attribute type is
specified as an option on MSPUT. The character attri­
butes should be MSPUT after the data values, because
changing the data value of any field automatically
resets the character attributes of the field to the default
value (C' '). Also, an MSPUT with option 0 (WRITE)
resets all the character attributes of all fields in the
map to default.

The allowable attribute types and attribute values are
listed in Table 3 92. GDDM checks attribute types and
does not transmit those that the device does not
support. Invalid attribute values are rejected.

Chapter 11. Application data structure for mapping 91

application data structures

Table '3. Character attribute types and values

Type Value Meaning

All X'OO' Default. Take the attri-
C" bute value from field's

attribute.

Extended C',' Blinking
highlighting C'2' Reverse video

C'4' Underscore

Color C',' Blue
C'2' Red
C'3' Magenta (pink)
C'4' Green
C'5' Turquoise (cyan)
C'S' Yellow
C'7' White/Neutral

Programmed X'41 ' PS code. Note that a
symbols through symbol-set must be

X'DF' loaded before any ref-
erence to it is made.
See "Programmed
symbols adjunct".

Note: In the above table, "C" indicates character
data type, and "X" indicates hexadecimal.

Setting character attributes from the
terminal

If the application program uses the ASMODE call and
an appropriate keyboard is In use, the terminal oper­
ator can set the attributes of data characters entered
from the terminal. The program can read these attri­
butes using MSGET with the correct option.

The procedure for setting character attributes from the
terminal can be found in the appropriate terminal
operator's guide.

Designator characters for light-pen
or cursor selection

You specify that a field can be selected by a light pen,
or, on some terminals, the CURSR SEL key, by giving it
a "detectable" attribute at map-definition time. The
"detectable" attribute can be defined for a field using
GDDM-IMD's Field Attribute Definition step, and can be
controlled dynamically using the base attribute adjunct.

However, the type of selection that occurs on using the
light pen is determined by the first character (the desig­
nator character) in the data field. You must set the
required designator character In the first byte of the
data field. If the field contains constant data, the desig­
nator character is set in the map; otherwise, it is set in
the application data structure. When the field is dis­
played, the designator character appears on the screen
along with the rest of the data in the field.

A field having a "detectable" attribute but not starting
with a valid designator character is not selectable.

The types of selection that can be set are:

1. Delayed detection. When selected by the operator,
the field is marked as "modified" but nothing is

92 Base Programming Reference

transmitted until the operator performs another
action associated with field modification (such as
selecting an "immediate detection" field or
pressing ENTER). The designator character for
this type of field is "?" (X 'SF'). If the field is
detected, the deSignator character changes to ">"
(X 'SE'); another detection restores It to "?" and
cancels the modification indication.

2. Immediate detection without data. The deSignator
character is a blank (X '40'). Selection of this type
of field causes immediate input transmission. No
data from any of the fields is transmitted, however.
The effect is thus:

a. The ASREAD (or MSREAD) returns an Atten­
tion Type of 2 indicating light-pen selection.

b. If the application issues an MSGET, any field
that was modified or delay-detected has its
selector set to C','; its data value, however, is
unchanged even if the operator typed into the
field.

c. GDDM restores all display fields to their ori­
ginal value at the next FSFRCE, ASREAD, or
GSREAD.

3. Immediate detection with data. (Not possible with
the IBM 3277 Display Terminal). The deSignator
character is "&" (X '50'). The effect is the same as
pressing ENTER.

For more details of the mechanics of light-pen detection
and the use of deSignator characters, refer to the
appropriate component description manual.

Map-defined input editing

Using GDDM-IMD's Field Naming or Application Data
Structure Review steps, you can specify that the fol­
lowing transformations are to be performed automat­
ically by GDDM on Input data passed to the application
program. The transformations are specified for indi­
vidual fields.

• Folding: translation to uppercase of all alphabetiC
input entered into the field.

• Justification and padding: right- or left-alignment
and padding of data entered into the field.

• Attention identifier translation: translation of the
AID associated with the input transmission into a
predetermined character string.

For details of how to specify these transformations on a
map, see the Application Data Structure Review step of
GDDM-IMD in the GDDM Interactive Map Definition
manual. The information given in the remainder of this
section relates to the application program's view of the
transformed fields returned in response to a receive
request.

Notes:

1. The transformations take place on input from the
operator, for receipt by the application on an
MSGET. Data that is placed into the application
data area by the application's MSPUT and map­
defined default data is not transformed, even
though it may be read back using MSGET.

The effect of the transformations is not imme­
diately visible to the operator. However, if the
application does not modify the field, delete the
mapped field, or delete the page, the transformed
data is displayed to the operator on the next
ASREAD, FSFRCE, or GSREAD call.

2. If more than one of these transformations have
been specified for a given field, processing is done
in this order:

a. AID translation
b. Folding
c. Justification and padding.

AID translation

At map definition time, you can associate an AID trans­
lation table with an input field on a map. This field is
called an .. AID receiver" field.

The translation table is set up during map definition. It
defines character strings for the various terminal func­
tion keys (and the light pen, trigger fields, operator ID
card reader, and magnetic slot reader, if required).

When the operator uses the corresponding key, GDDM
places the corresponding character string into the des­
ignated field.

AID translation is not restricted to a single field on the
map. You can associate several fields with the same
or different translation tables and thus receive different
character strings in the fields on input.

AIDs can be specified as "do not translate," in which
case, the existing field value remains unchanged. For
AIDs not explicitly named in the table, a default trans­
lation value can be specified; on the other hand, these
AIDs can be specified as "do not translate."

An AID receiver field can have a corresponding display
field, although this is not mandatory. If the receiver
field has a corresponding unprotected display field,
operator input into that field is overwritten by the trans­
lated AID value unless the operator uses an interrupt
key that Is designated (explicitly or Implicitly) "do not
translate. "

Folding

When specified, folding always occurs irrespective of
what other attributes have been specified for the field.

The folding transformation uses the Lowercase-to­
Uppercase Translation Table in the GDDM Alphanu­
merics Defaults Table (ADMDATRN).

Justification and padding

During map definition, you can specify that a field
should be right-justified, left-justified or not justified,
and, if you want, that it should be padded with a partic­
ular character. If you do not specify a padding char­
acter, defaults are used; that is, character zero for
right-justified fields, blank for left-justified fields.

application data structures

For right-justified fields:

1. The rightmost significant (that is, nonblank,
nonnulI) character is aligned with the rightmost
boundary of the field in the application data struc­
ture. Leading blanks or nulls are then changed to
the padding character.

2. The length adjunct (if one was specified for the
field) is set to the application data structure field
length.

For left-justified fields:

1. The leftmost significant (that is, nonblank, nonnulI)
character is aligned with the leftmost boundary of
the field in the application data structure. Trailing
padding characters are then added to fill the field.

2. The length adjunct (if one was specified) is set to
the number of characters in the field up to the first
padding character.

For fields for which no justification Is specified, the
input data is left unchanged (that is, leading and trailing
blanks are not removed), and the rest of the field is
filled with blanks. The length adjunct, if specified, is
set to the number of characters (including leading and
trailing blanks) entered by the terminal operator.

If the input data Is longer than the field in the applica­
tion data structure, it is truncated on the right, irrespec­
tive of any justification specification, before leading and
trailing blanks are suppressed, and a warning message
is Issued when MSGET is used on the map.

Copying the application data
structure into the program

When you have finished the map definition and gener­
ation processes, you will have an application data
structure for each map, each having the same name as
the associated map. You can copy these application
data structures into your application program, if it is a
COBOL or PLII program.

For an Assembler program, you must include macro
instructions in your program having the same names
as the maps. These expand into DSECTs at assembly
time.

An example showing the code that might be used for a
COBOL program is given below. For Illustration,
assume that there is a page that is constructed from
three separate maps named HEADER, DATAREC, and
TRAILER. The maps belong to a mapgroup called
MAPGRP.

01 HEADER.
COPY HEADER.

01 DATAREC.
COPY DATAREC.

el TRAILER.
COPY TRAILER.

Chapter 11. Application data structure for mapping 93

application data structures

Note: As part of the application structure declaration,
GDDM-IMD generates a declaration of a variable with
name "mapname-ASLENGTH" (COBOL)
"mapname_ASLENGTH" (PLlI) that is initialized with
the length, in bytes, of the application structure. This
variable can be used as the length parameter in
MSPUT and MSGET calls.

Overlaying application data areas

Sometimes, for programming reasons such as con­
serving storage, it Is convenient to overlay the storage
used by one of several application data structures.
Generally, the structures are not the same length. In
this situation, COBOL requires that the longest record
description occurs first. To avoid needing to know in
advance which record is the longest, you can specify

LARGE STRUCTURE ===> YES
in frame 3.0 of the generation step of GDDM-IMD. This
causes GDDM-IMD to generate an additional structure
in a file with the same name as the mapgroup con­
taining a single data item of length equal to that of the
largest record.

The following code in the relevant section of the
COBOL program then creates the necessary overlaid
record descriptions:

(31 MAPGRP.
COPY MAPGRP.

81 HEADER REDEFINES MAPGRP.
COPY HEADER.

81 DATAREC REDEFINES MAPGRP.
COPY DATAREC.

81 TRAILER REDEFINES MAPGRP.
COPY TRAILER.

COBOL also has the restriction on the placement of
declarations using REDEFINES. To satiSfy this
restriction GDDM-IMD does not generate variables ini­
tialized to the application structure length, if you
request

LARGE STRUCTURE=YES
Note: If one of the maps has a name that is the same
as the mapgroup name, the application data structure
for that map is expanded by a dummy data item (if nec­
essary) to make it as long as the longest application
data structure.

Double-byte character string fields

Double-byte character strings (DBCS) fields are spe­
cially treated in some cases. (Double-byte character
string fields are used for Kanji and Hangeul applica­
tions).

A field can be deSignated as DBCS by using
GDDM-IMD's Field Definition steps, or Field Attribute
Definition steps, or both of these.

A field can also be changed to or from DBCS by using a
PS attribute adjunct and specifying a value of X' FS'
(C'S') for DBCS, or C' , (or any other valid value) for
EBCDIC.

94 Base Programming Reference

However, the special treatment of length adjuncts and
cursor positioning provided for OBCS fields depends
only on how the fields were defined to GODM-IMD.
Dynamically changing a field to or from DBCS does not
change this treatment.

The special treatment is:

Length adjuncts
If a field is designated at map definition time as a DBCS
field, the field's length adjunct is always interpreted as
several two-byte characters. Hence, the length of the
data in bytes is twice the value of the length adjunct.

Cursor pOSition
If a field is deSignated at map definition lime as a DBCS
field, the cursor position specified by MSCPOS and
returned by MSQPOS is interpreted as several two-byte
characters. Hence, the position within the field in bytes
is twice the value speCified (minus 1).

Mixed double-byte and single-byte
character fields in maps

Some Asian languages, including Chinese, Kanji, and
Hangeul are displayed and printed using double-byte
character sets (DBCS), which means that each char­
acter is represented by two bytes. European lan­
guages use Latin single-byte character sets (SBCS).
The IBM 5550 Multistation and Personal System/55
work stations will display and print both SBCS and
OBCS characters.

Sometimes, the two types need to be mixed In a single
alphanumeric field. The 5550 and Personal System/55
allow this.

The internal representation of mixed character strings
makes use of shift-out (SO) and shift-in (SI) control
characters, X' OE' and X' OF', to indicate the start and
end of a DBCS substring.

There are two ways of displaying mixed character
strings, called mixed-with-position and mixed-without­
position. The display method to be used is speCified in
the map definition for each field.

• 'Mixed-with-position

The SOlS I codes occupy one character position
each, and are displayed as either a blank or a
speCial character - the terminal user can select
which.

• Mixed-without-position.

The SO/SI codes do not occupy a character posi­
tion on the screen.

The initial input mode of the work stations is SBCS. To
enter DBCS characters, the operator presses a special
shift key to change the mode. After entering the DBCS
string, pressing another shift key returns the terminal
to SBCS mode, so further single-byte characters can be
entered.

GDDM-supplied mapping constants

This section lists the contents of the GDDM-supplied
declarations that contain mapping constants. By
including these declarations in your program, you can
simplify the setting of the second byte of attribute
adjuncts by using a mnemonic name rather than a bit
value.

application data structures

The declarations contain mnemonically-named vari­
ables for every attribute, and for combinations of attri­
butes. The variables are initialized to the bit patterns
required in the 3270 attribute bytes.

The method of including the declarations in your
program varies according to the subsystem and pro­
gramming language that are being used.

Chapter 11. Application data structure for mappll1g 95

application data structures

Assembler mapping constants table - ADMUAIMC
**
* TABLE NAME: ADMUAIMC
*

*
*

* ADMUAIMC: GDDM ASSEMBLER DECLARATIONS FOR MAPPING CONSTANTS *
*
*
*
*
*
* FUNCTION:
*

5668-891
(C) COPYRIGHT IBM CORP. 1979, 1986.
LICENSED MATERIALS - PROPERTY OF IBM

* THIS TABLE DECLARES ASSEMBLER EQUATES FOR THE
* SPECIAL VALUES USED BY GDDM MAPPING.
*

*
*
*
*
*
*
*
*
*
*

**
* MSPUT AND MSGET OPTIONS. *
**
WRITE EQU a
REWRITE EQU 1
REJECT EQU 2
HIGHLITE EQU 3
COLOR EQU 4
PS EQU 5
*
**
* DATA AND ATTRIBUTE SELECTOR VALUES *
**
IGNORE EQU C"
EXPLICIT EQU C'l'
SELECTED EQU C'l'
MAPDEFND EQU C'2'
OLDVALUE EQU C'3'
*
**
* CURSOR SELECTOR VALUES *
**
CURSED EQU C'l'
*
**
* BASE (327e) ATTRIBUTE VALUES *
**
*
* UNPROTECTED,NO MOT BIT.
DEFAULT EQU C"
DETECTBL EQU C'D'
BRIGHT EQU C'H'
DARK EQU C'<'
NUMERIC EQU C'&&'
NUMDTCT EQU C'M'
NUMBRT EQU C'Q'
NUMDARK EQU C'*'
*
* PROTECTED,NO MDT BIT.
PROTECT EQU C'-'
PRTDTCT EQU C'U'
PRTBRT EQU Cly'
PRTDARK EQU C'%'
AUTOSKIP EQU c'a'
SKPDTCT EQU C'4'
SKPBRT EQU C'8'
SKPDARK EQU C'@'
*
* UNPROTECTED,MDT BIT.
MDT EQU C'A'
DTCTMDT EQU C'E'
BRTMDT EQU C'I'
DARKMDT EQU C'('
NUMMDT EQU C'J'
NUMDTMDT EQU CIN'

96 Base Programming Reference

NUMBRMDT EQU C'R'
NUMDKMDT EQU C')'
*
* PROTECTED,MDT BIT.
PRTMDT EQU C'/'
PRTDTMDT EQU C'V'
PRTBRMDT EQU C'Z'
PRTDKMDT EQU C"
SKPMDT EQU c'I'
SKPDTMDT EQU C'S'
SKPBRMDT EQU C'9'
SKPDKMDT EQU C""
*
**
* HIGHLIGHTING ATTRIBUTE VALUES *
**
NOHIGH
BLINK
RVIDEO
USCORE
*

EQU x'ee'
EQU C' l'
EQU C'2'
EQU C'4'

**
* COLOR ATTRIBUTE VALUES *
**
MONO
BLUE
RED
PINK
MAGENTA
GREEN
TURQ
CYAN
YELLOW
WHITE
*

EQU x'eG'
EQU X' F1'
EQU X'F2'
EQU X'F3'
EQU PINK
EQU X' F4'
EQU X'FS'
EQU TURQ
EQU X'F6'
EQU X'Fl'

TURQUOISE

**
* VALIDATION ATTRIBUTE VALUES *
**
NOVALIDN EQU
TRIGGER EQU
ENTER EQU
TR@EN EQU
FILL EQU
TR@FL EQU
EN@FL EQU
TR@EN@FL EQU

x'ee'
x'el'
x'e2'
X'G3'
X'G4'
X'GS'
X'G6'
x'el'

TRIGGER AND ENTER

TRIGGER AND FILL
ENTER AND FILL
TRIGGER AND ENTER AND FILL

application data structures

Chapter 11. Application data structure for mapping 97

application data structures

COBOL mapping constants table - ADMUCIMC
**
* TABLE NAME: ADMUCIMC
* * ADMUCIMC: GDDM COBOL DECLARATIONS FOR MAPPING CONSTANTS
*
*
*
*
*
* FUNCTION:
*

566B-BeI
(C) COPYRIGHT IBM CORP. 1979, 1986
LICENSED MATERIALS - PROPERTY OF IBM

* THIS TABLE DECLARES COBOL VARIABLES INITIALIZED TO THE
* SPECIAL VALUES USED BY GDDM MAPPING.
*

*
*
*
*
*
*
*
*
*
*
*
*
*

**
(;)1 ADMMAP.

**
* MSPUT AND MSGET OPTIONS. *
**

Ie WRITE-OPERATION
Ie REWRITE-OPERATION
Ie REJECT-OPERATION
Ie HILIGHT
Ie COLOR
Ie PS

PIC 9(8) COMP VALUE IS e.
PIC 9(8) COMP VALUE IS 1.
PIC 9(8) COMP VALUE IS 2.
PIC 9(8) COMP VALUE IS 3.
PIC 9(8) COMP VALUE IS 4.
PIC 9(8) COMP VALUE IS 5.

**
* DATA AND ATTRIBUTE SELECTOR VALUES *
**

Ie IGNORE
le EXPLICIT
Ie SELECTED
Ie MAP-DEFINED
Ie OLD-VALUE

PIC X VALUE IS SPACE.
PIC X VALUE IS "1".
PIC X VALUE IS "1".
PIC X VALUE IS "2".
PIC X VALUE IS "3".

**
* CURSOR SELECTOR VALUES *
**

Ie CURSED PIC X VALUE IS "1".
**
* BASE (327e) ATTRIBUTE VALUES *
**
* UNPROTECTED. NO MDT BIT.

Ie DEFAULT PIC X VALUE IS
Ie DETECTABLE PIC X VALUE IS
Ie BRIGHT PIC X VALUE IS
Ie DARK PIC X VALUE IS
Ie NUMERIC-UNPROT PIC X VALUE IS
Ie NUMERIC-DETECTABLE PIC X VALUE IS
Ie NUMERIC-BRIGHT PIC X VALUE IS
Ie NUMERIC-DARK PIC X VALUE IS

* PROTECTED,NO MDT BIT.

n II

"0".
"H".
"<11.
"&".
"M".
"Q".
11*11

Ie PROTECT PIC X VALUE IS " U

Ie PROTECT-DETECTABLE PIC X VALUE IS "U".
Ie PROTECT-BRIGHT PIC X VALUE IS "Y".
Ie PROTECT-DARK PIC X VALUE IS "%".
Ie AUTOSKIP PIC X VALUE IS "e".
Ie AUTOSKIP-DETECTABLE PIC X VALUE IS "4".
Ie AUTOSKIP-BRIGHT PIC X VALUE IS "8".
Ie AUTOSKIP-DARK PIC X VALUE IS "@".

* UNPROTECTED,MDT BIT.
Ie MDT PIC X VALUE IS "A".
Ie DETECTABLE-MDT PIC X VALUE IS "E".
Ie BRIGHT -MDT PIC X VALUE IS "I".
Ie DARK-MDT PIC X VALUE IS "(".
Ie NUMERIC-MDT PIC X VALUE IS "J".
Ie NUMERIC-DETECTABLE-MDT PIC X VALUE IS "N".
le NUMERIC-BRIGHT-MDT PIC X VALUE IS "R".
Ie NUMERIC-DARK-MDT PIC X VALUE IS ")".

98 Base Programming' Reference

* PROTECTED,MDT BIT.
U) PROTECT-MDT PIC X VALUE IS "/".
H) PROTECT-DETECTABLE-MDT PIC X VALUE IS "V".
H) PROTECT-BRIGHT-MDT PIC X VALUE IS "Z".
H) PROTECT-DARK-MDT PIC X VALUE IS II ".
10 AUTOSKIP-MDT PIC X VALUE IS "I".
10 AUTOSKIP-DETECTABLE-MDT PIC X VALUE IS "5".
H) AUTOSKIP-BRIGHT-MDT PIC X VALUE IS "9".
10 AUTOSKIP-DARK-MDT PIC X VALUE IS "'II.

**
* HIGHLIGHTING ATTRIBUTE VALUES *
**

10 NO-HIGHLIGHT
10 BLINK
10 REVERSE-VIDEO
10 UNDERSCORE

PIC X VALUE IS LOW-VALUE.
PIC X VALUE IS "1".
PIC X VALUE IS "2".
PIC X VALUE IS "4".

**
* COLOR ATTRIBUTE VALUES *
**

10 MONOCHROME
10 BLUE
10 REO
H) MAGENTA
10 PINK
10 GREEN
10 TURQUOISE
10 CYAN
10 YELLOW
10 WHITE

PIC X VALUE IS LOW-VALUE.
PIC X VALUE IS "1".
PIC X VALUE IS "2".
PIC X VALUE IS "3".
PIC X VALUE IS "3".
PIC X VALUE IS "4".
PIC X VALUE IS "5".
PIC X VALUE IS liS".
PIC X VALUE IS "6".
PIC X VALUE IS "7".

**
* VALIDATION ATTRIBUTE VALUES
* (THESE ARE UNPRINTABLE CHARACTERS AND MUST BE INITIALIZED
* BY REDEFINING STORAGE).

*
*
*

**
* NO VALIDATION:

* TRIGGER

10 NOVALIDATN-BIN
10 FILLER

12 FILLER
12 NO-VALIDATION

10 TRIGGER-BIN
10 FILLER

12 FILLER
12 TRIGGER

* MANDATORY ENTER:
10 ENTER-BIN
10 FILLER

12 FILLER
12 MANDATORY-ENTER

* TRIGGER AND MANDATORY ENTER:

PIC 9999 COMP VALUE IS O.
REDEFINES NOVALIDATN-BIN.
PIC X.
PIC X.

PIC 9999 COMP VALUE IS 1.
REDEFINES TRIGGER-BIN.
PIC X.
PIC X.

PIC 9999 COMP VALUE IS 2.
REDEFINES ENTER-BIN.
PIC X.
PIC X.

10 TRIGGER-ENTER-BIN PIC 9999 COMP VALUE IS 3.
10 FILLER REDEFINES TRIGGER-ENTER-BIN.

12 FILLER PIC X.
12 TRIGGER-ENTER PIC X.

* MANDATORY FILL:
16 FILL-BIN
10 FILLER

12 FILLER
12 FILL

* TRIGGER AND MANDATORY FILL:
10 TRIGGER-FILL-BIN
10 FILLER

12 FILLER
12 TRIGGER-FILL

PIC 9999 COMP VALUE IS 4.
REDEFINES FILL-BIN.
PIC X.
PIC X.

PIC 9999 COMP VALUE IS 5.
REDEFINES TRIGGER-FILL-BIN.
PIC X.
prc X.

application data structures

Chapter 11. Application data structure for mapping 99

application data structures

* TRIGGER, ENTER AND FILL:
Ie TRIGGER-ENTER-FILL-BIN PIC 9999 COMP VALUE IS 7.
Ie FILLER REDEFINES TRIGGER-ENTER-FILL-BIN.

12 FILLER PIC X.
12 TRIGGER-ENTER-FILL PIC X.

100 Base Programming Reference

PL/I mapping constants table - ADMUPIMC
/**/
/* TABLE NAME: ADMUPIMC */
/* */
/* DESCRIPTIVE NAME: GDDM PLII DECLARATIONS OF MAPPING CONSTANTS */
/* *1
1* 5668-801 * I
/* (C) COPYRIGHT IBM CORP. 1979, 1986. *1
/* LICENSED MATERIALS - PROPERTY OF IBM * /
/* *1
1* FUNCTION: *1
/* */
/* THIS TABLE PROVIDES PL/I DECLARATION STATEMENTS FOR */
/* CONSTANTS USED FOR SETTING/TESTING ADJUNCT FIELDS IN A *1
1* MAP APPLICATION DATA STRUCTURE. IT ALSO CONTAINS DECLARATIONS *1
/* OF CONSTANTS USED FOR MSPUT/MSGET OPTIONS. *1
/* *1
/* THE DATA TYPE USED FOR HARDWARE AND SOFTWARE ADJUNCTS IN THE *1
/* GDDM-IMD-GENERATED APPLICATION DATA STRUCTURE FOR PLI IS */
1* CHARACTER. SOME OF THE CODE-POINTS At.;' UNPRINTABLE CHARACTERS *1
1* THAT IS, IN THE RANGE HEX'OO' TO HEX'3F'. FOR THESE CASES THE */
/* CODE-POINTS DECLARED HERE ARE BIT(8), AND THE INTENTION IS *1
/* THAT THE PROGRAM SHOULD USE THESE WITH UNSPEC. *1
/* FOR EXAMPLE, TO SET THE VALIDATION CODE TO TRIGGER FOR A *1
/* FIELD IN THE ADS CALLED FIELDNAME, USE */
/* */
/* FIELDNAME VAL SEL = SELECTED */
/* UNSPEC(FIELDNAME_VAL) = TRIGGER *1
/* */
/**1

DECLARE
1 ADMMAP STATIC,

1**1
/* MSPUT AND MSGET OPTIONS. */
/**/
2 WRITE FIXED BIN(31) INIT(a),
2 REWRITE FIXED BIN(3l) INIT(l),
2 REJECT FIXED BIN(3l) INIT(2),
2 HILIGHT FIXED BIN(3l) INIT(3),
2 COLOR FIXED BIN(3l) INIT(4),
2 PS FIXED BIN(3l) INIT(5),
1**/
1* DATA AND ATTRIBUTE SELECTOR VALUES. */
/**/
2 IGNORE CHAR(!) INIT(' '),
2 EXPLICIT CHAR(l) INIT('l'),
2 SELECTED CHAR(l) INIT('1'),
2 MAP DEFINED CHAR(l) INIT('2'),
2 OLD-VALUE CHAR(l) INIT('3'),
/**1
/* CURSOR SELECTOR VALUES. *1
1**1
2 CURSED CHAR(l) INIT('1'),
/**/
/* BASE (3270) FIELD ATTRIBUTE VALUES. *1
/* *1
/* UNPROTECTED, NOT MODIFIED. */
/**/
2 DEFAULT CHAR(!) INIT(' '),
2 DETECT CHAR(!) INIT('D'),
2 BRIGHT CHAR(!) INIT('H'),
2 DARK CHAR(l) INIT('<'),
2 NUMERIC CHAR(l) INIT(' &') ,
2 NUMERIC DETECT CHAR(l) INIT('M'),
2 NUMERIC-BRIGHT CHAR(l) INIT('Q'),
2 NUMERIC-DARK CHAR(l) INIT('*'),
/**/
/* PROTECTED, NOT MODIFIED. *1
/**/
2 PROTECT CHAR(l) INIT('-'),

application data structures

Chapter 11. Application data structure for mapping 101

application data structures

2 PROTECT DETECT CHAR(l) INIT('U').
2 PROTECT-BRIGHT CHAR(l) INIT('Y').
2 PROTECT-DARK CHAR(l) INIT('%').
2 AUTOSKIP CHAR(l) INIT('S'),
2 AUTOSKIP DETECT CHAR(l) INIT('4'),
2 AUTOSKIP=BRIGHT CHAR(l) INIT('8').
2 AUTOSKIP DARK CHAR(l) INIT('@'),
/**/
/* UNPROTECTED. MODIFIED. */
/**/
2 MDT CHAR(l) INIT(' A'),
2 DETECT MDT CHAR(l) INIT(' E'),
2 BRIGHT=MDT CHAR(l) INIT('I'),
2 DARK MDT CHAR(l) INIT('('),
2 NUMERIC_MDT CHAR(l) INIT('J').
2 NUMERIC DETECT MDT CHAR(l) INIT('N'),
2 NUMERIC-BRIGHT-MDT CHAR(l) INIT('R'),
2 NUMERIC-DARK MDT CHAR(l) INIT(')'),
/**/
/* PROTECTED, MODIFIED. */
/**/
2 PROTECT_MDT CHAR(l) INIT('/'),
2 PROTECT DETECT MDT CHAR(l) INIT('V'),
2 PROTECT=BRIGHT=MDT CHAR(l) INIT('Z'),
2 PROTECT DARK MDT CHAR(l) INIT(' '),
2 AUTOS KIP MDT- CHAR(l) INIT('l'),
2 AUTOSKIP=DETECT_MDT CHAR(l) INIT('5'),
2 AUTOSKIP_BRIGHT_MDT CHAR(l) INIT('9'),
2 AUTOSKIP_DARK_MDT CHAR(l) INIT('" '),
/**/
/* VALIDATION FIELD ATTRIBUTE VALUES. */
/**/
2 NO_VALIDATION BIT(8) ALIGNED INIT('Seeeeeee'B),
2 TRIGGER BIT(8) ALIGNED INIT('SSeeaSal'B),
2 ENTER BIT(8) ALIGNED INIT('eeeeaele'B),
2 TRIGGER_ENTER BIT(8) ALIGNED INIT('SeaeSSll'B),
2 FILL BIT(8) ALIGNED INIT('aeeeSlee'B).
2 TRIGGER_FILL BIT(8) ALIGNED INIT('eeSeSlel'B),
2 ENTER_FILL BIT(8) ALIGNED INIT('eeeeSllS'B),
2 TRIGGER_ENTER_FILL BIT(8) ALIGNED INIT('Saeeelll'B),
/**/
/* HIGHLIGHT FIELD AND CHARACTER ATTRIBUTE VALUES. */
/**/
2 NO_HIGHLIGHT CHAR(l) INIT(' '),
2 BLINK CHAR(l) INIT('l'),
2 REVERSE_VIDEO CHAR(l) INIT('2'),
2 UNDERSCORE CHAR(l) INIT('4'),
/**/
/* COLOR FIELD AND CHARACTER ATTRIBUTE VALUES. . */
/**/
2 MONOCHROME CHAR(l) INIT(' '),
2 BLUE CHAR(l) INIT('1').
2 RED CHAR(l) INIT('2'),
2 PINK CHAR(l) INIT('3').
2 MAGENTA CHAR(!) INIT('3').
2 GREEN CHAR(1) INIT('4').
2 TURQUOISE CHAR(l) INIT('5'),
2 CYAN CHAR(l) INIT('5').
2 YELLOW CHAR(l) INIT(,6').

.2 WHITE CHAR(!) INIT('7');

102 Base Programming Reference

special-purpose programming

Chapter 12. Special-purpose programming in GDDM

The System Programmer Interface (SPI) is provided for
programmers who want to use GDDM as the basis for a
graphics system of their own. It enables GDDM func­
tions to be written in a coded form. it gives greater
control over the subsystem environment. and It allows
greater programming flexibility within the sUbsystem
environment.

This chapter describes:

• "Using the system programmer Interface." below.

and

• "Specifying user exits" on page 104.

Using the system programmer
interface

The system programmer interface is a special Interface
available to "system programming" types of applica­
tions. It is available only In reentrant form. and shares
many features with the application-programmer reen­
trant interface. The reentrant interfaces are described
in the GDDM Base Programming Reference. Volume 1.

In the simplest case. the system programmer Interface
merely provides a means of accessing a GDDM func­
tion by a function code (the Request Control Parameter.
RCP) rather than by selecting an entry point.
Assembler-language macros defining mnemonics for
these function codes are provided.

Each call takes the form:

I CALL ADMASP (aab.rcp.component parameters •...)

where ADMASP is the defined system programmer inter­
face entry point. ADMASP is a single entry point
resolved by the GDDM Interface modules that are link­
edited with the application.

Note: The sample PLII declarations do not include this
entry pOint. because· it can only be called using the
system programmer interface. The PLII application
programmer using this call must. therefore. supply an
entry-point declaration for the system programmer
interface. as described in the GDDM Base Program­
ming Reference. Volume 1. For example:

DECLARE ADMASP EXTERNAL ENTRY OPTIONS (ASM.INTER);

Parameters

aab (specified by user) (8-byte control block)
An Application Anchor Block. as described in the
GDDM Base Programming Reference. Volume 1.

rep (specified by user) (full-word integer)
The Request Control Parameter. a 4-byte. full­
word-aligned function code defining the GDDM
function to be called. The GDDM RCP code is
given. for each GDDM call listed and described In
the GDDM Base Programming Reference, Volume
1. and for each GDDM-PGF call In the GDDM-PGF
Programming Reference manual. in both
hexadecimal and decimal for~at. Also.

Appendix J, "Request control parameter codes"
on page 231 contains a table defining the RCP
codes for all GDDM and GDDM-PGF functions.

component parameters
The parameters for the function specified in the
RCP. These are as described for the specific func­
tion being called.

Calls to the system programmer and reentrant inter­
faces can be mixed. provided that the same application
anchor block is passed on each call.

Initialization

This interface provides an alternative initialization
function (known as SPINIT) that allows control of envi­
ronmental aspects. SPIN IT is an alternative to FSINIT
and, if used, must be the first GDDM statement to be
run.

Note that your program would not use an explicit call to
an entry point called SPINIT. Instead, like all other
system programmer interface calls, you would code a
call to ADMASP. The function is described for consist­
ency as a SPINIT call. as it behaves like the other
GDDM calls. but it can only be specified through the
system programmer interface. The GDDM Assembler
language tables ADMURCPB and ADMURCPO (see
Appendix J. "Request control parameter codes" on
page 231) include the mnemonic QQSPINIT.

SPINIT (spib-block)

APL Code 115
GDDM RCP code X I 00050000 I (327680)

Initializes GDDM processing. with the special proc­
essing requirements specified in the spib-block param­
eter.

Parameters

splb-block (specified by user) (32-byte character string)
A table giving control information. The contents of
this table are processed by GDDM during initializa­
tion. Subsequent changes to the contents do not
affect GDDM processing. The storage containing
the table can be released after initialization has
been completed.

Note: Since Version 1 Release 4. GDDM supports
an abbreviated format of the SPIB. This is
described below. A number of the functions that
were previously available in the SPIB are now
available through other GDDM calls, which can be
issued immediately after the SPINIT call. For
example. the functions of the SPIBOPNF.
SPIBPA2F. SPIBXFBF. SPIBXFBL. and SPIBXFBP
fields can now be specified as DSOPEN processing
options; the functions of many other fields can be
specified as input to the SPIB by means of items in
a user default specification list (see
Chapter 1. "Customizing your program and its
environment" on page 1 for details).

Chapter 12. Special-purpose programming in GDDM 103

special-purpose programming

The previous format of the SPIB is retained for
reasons of compatibility; it does not contain or
provide access to new function provided since
GDDM Version 1 Release 4. It is described In the
edition of the GDDM Base Programming Reference
manual for the Release of GDDM for which your
program was written.

Principal Errors

None

Format of the system programmer
interface block

The labels are defined here In more detail:

SPIBLENG
Specifies the length of the SPIB. Must be In the
range 16 through 32, which Identifies this as a
GDDM Version 1 Release 4 SPIB. The fields after
offset X'10' can be omitted (and thus allowed to
default) by specifying the minimum value of 16.

SPIBUDSL
Specifies the length (in bytes) of an encoded user
default specification list (UDSl). Must be set to 0
If no UDSl is to be passed.

SPIBUDSP
Specifies the address of an encoded user default
specification list (UDSl). Must be set to 0 if no
UDSL is to be passed.

SPIBGSXP (TSO and VM/CMS only)
Specifies (If present and if not zero) the address
of an application-defined storage exit to be called
for GET STORAGE requests.

SPIBGSXK (TSO and VM/CMS only)
Specifies (if present) a user-defined parameter
that GDDM is to pass when calling a GET
STORAGE exit.

SPIBFSXP (TSO and VM/CMS only)
Specifies (if present and if not zero) the address
of an application-defined storage exit to be called
for FREE STORAGE requests.

Table 14. SPIB format

Offset Length Label Usage
(hex) (byles)

SPIBFSXK (TSO and VM/CMS only)
Specifies (if present) a user-defined parameter
that GDDM is to pass when calling a FREE
STORAGE exit.

The interface specifications for GDDM storage exits are
described under "Storage exit routines - interface
specifications" on page 108.

Specifying user exits

User exits allow a system program to trap specific
events whenever an application program uses a GDDM
or system resource. Such events include task
switching in TSO, intercepting some or all GDDM calls,
and so on.

A limited number of user exits can be specified using
User Default Specifications (UDSs). UDSs are
described in Chapter 1, "Customizing your program
and its environment" on page 1. The user exits are:

• A Task Switch exit
• A Call Intercept exit
• A Coordination exit.

This section describes how you specify user exits, the
conventions that your exits must follow, and the func­
tion of each type of exit.

It also describes the storage exit routines that can be
defined by using the System Programmer Interface
Block (SPIB) In the SPINIT call. For details of the SPIB,
see "Initialization" on page 103.

Table 15 on page 105 shows the defaults that you can
specify for GDDM exits using the SPIN IT cali. The
figure also describes the corresponding user default
speCifications (in source and encoded format). These
UDSs must be passed to GDDM using the SPIN IT call in
the form of an encoded-UDS list. The last column
shows where the UDS can be specified, as follows:

M In the External Defaults Module,
F In the External Defaults File,
S in the SPINIT call,
C in the ESEUDS and ESSUDS cails.

0 4 SPIBHEAD Spare. Reserved for the application program to use as an eye-
catcher.

4 4 SPIBLENG length of SPIB.

8 4 SPIBUDSl Length of user default specification list.

C 4 SPIBUDSP Address of user default specification list.

10 4 SPIBGSXP Address of application-defined GET STORAGE exit.

14 4 SPIBGSXK User-defined parameter to be passed to the application program's
GET STORAGE exit.

18 4 SPIBFSXP Address of application-defined FREE STORAGE exit.

1C 4 SPIBFSXK User-defined parameter to be passed to the application program's
FREE STORAGE exit.

104 Base Programming Reference

special-purpose programming

Table 15. GDDM exits - options

Source syntax of the
ADMMEXIT macro Encoded values - list of Valid In:

Meaning of default opllons full-words MFSC

Call intercept user exit address CALLlNT= (addr) 3,3005,A(CI-UX) NNYN
Call intercept user exit token value CALLlNT= (,token) 3,3006,CI-token NNYN
Default user exit address DEFAULT = (addr) 3,3001,A(DFT -UX) NNYN
Default user exit token value DEFAULT = (,token) 3,3002,DFT-token NNYN
Task switch user exit address (TSO only) TASKSWI = (addr) 3,3003,A(TSW-UX) NNYN
Task switch user exit token value (TSO only) TASKSWI = (,token) 3,3004, TSW-token NNYN

Note: In the source-format forms, corresponding pairs can be combined in this way:
DEFAULT= (address,token).

Exit values

The descriptions of these options are:

CALLI NT = (address,token)
address gives the full-word address of the Call
Intercept exit.

token provides four bytes of data that are passed
from the application program to the exit.

DEFAULT <= (address,token)
address gives a full-word address for all user
exits. Specifying an address in this option is
equivalent to specifying it for each user exit
explicitly.

token provides four bytes of data that are passed
from the application program to any exit. Speci­
fying a token in this option is equivalent to speci­
fying it for each user exit explicitly.

TASKSWI = (address,token)
address gives the full-word address of the Task
Switch exit.

token provides four bytes of data that are passed
from the application program to the exit.

GDDM user-exit conventions

Unless otherwise noted, user exits defined by means of
UDSs must conform to these rules:

• The contents of the registers on entry to the exit
are:

R13 -> A 72-byte save area
R14 -> The return address
R15 -> The entry point of the exit
Rl -> The parameter address list, in standard

variable-list format:
ADDRI -> AAB (Char(8»
ADDR2 -> UXBLOCK «3) Fixed(31»

additional parameters as defined for the
specific exit

AAB
The application's AAB (application anchor
block) (or in the case of the coordination exit,
the GDDM-provided dummy AAB if the appli­
cation is using the nonreentrant interface).

The exit must not use the AAB to issue a
GDDM call. That is to say, the GDDM instance
that caused the exit must not be entered
recursively.

UXBLOCK
A user-exit control block of this format:

UXBLOCK
+0

UXCODE
+4 1-----1

UXTOKEN
+8 1-----1

UXADDR

The contents of UXBLOCK are:

UXCODE The full-word user-exit code. This
code is the same as the UDS-code used
to define the user exit address. The exit
must not change this parameter.

UXTOKEN The full-word user-exit token. This
field is initialized to O. An explicit value
for this token can be specified when the
exit is specified. The exit or application
program can change this parameter; in
which case, subsequent calls to the exit
are passed in the changed parameter.

UXADDR The full-word user-exit address. On
entry to an exit, this parameter has the
same value as R15 (the address of the
exit entry pOint). The exit can change
this parameter; in which case, subse­
quent calls to the exit are to the new
address. If the address is set to 0,
GDDM stops using the exit for as long as
the address remains O. If the address is
subsequently reset to nonzero (by the
application program or by another exit),
GDDM resumes invocation of the exit.

• The parameter address list is in variable parm-list
format (that is, with the high-order bit of the last
address word set to "1"), and GDDM may pass
parameters in addition to those defined below.
Therefore, the exit must not rely on the high-order
bit of a specific parameter address word always
being set to "1."

• Unless otherwise noted, the exit must not modify
any parameter passed to it. (The only exception is
the UXBLOCK parameter.)

Chapter 12. Special-purpose programming in GDDM 105

special-purpose programming

• On return. the exit must set R15 to one of the speci­
fied completion codes.

If any other value Is returned. the results are unde­
fined (nonzero values may be diagnosed. Ignored.
or abended).

• It is recommended that you make the exit reentrant
and read.only. Otherwise. careful thought must be
given as to how the operation of GDDM and Its
calling application(s) is affected.

• The exit must conform to standard System/370
calling conventions (including the use of save
areas and restoring registers).

• Under MVS/XA. the exit must be AMODE(ANY);
that is. it must be prepared to accept control In
24-blt or 31-blt mode. and must return control in
the same mode. If called In 31-blt mode. all
addresses (Including R13) must be treated as
31-bit addresses and may be greater than 16
megabytes.

Under MVS/XA. a 24-bit mode application program
must ensure that the top byte of an initial value for
a user-exit token is cleared to zero if it Intends that
this token is to be interpreted as an address.
GDDM considers this token to be a FIXED(31) vari­
able. and does not clear the top byte of the token
before invoking the exit.

The task switch exit

A Task Switch exit can be defined in an ADMMEXIT
UDS. This exit is valid under TSO only. If it is specified
in other environments. the results are undefined.

Function: By providing a Task Switch exit. an TSO
tasking application program can call GDDM both from
its main task and from any of a number of subtasks.
The Task Switch exit should be coded to switch to a
standard task (typically. the main task) under which
specific subsystem-dependent task-sensitive functions
can be performed.

If enabled. the Task Switch exit is invoked before
GDDM performs selected taSk-sensitive functions. The
Task Switch exit has passed to it the address of a
GDDM subroutine to be called after switching tasks.
plus the parameters to be passed to the routine.

The Task Switch exit is returned to when the GDDM
subroutine has performed the task-sensitive functions.
The Task Switch exit should then switch tasks back
before returning to GDDM.

The system-dependent functions that are "task pro­
tected" in this manner are:

• Explicit GETMAIN and FREEMAIN requests. (Indi­
rect requests by means of storage exits or other
system-dependent functions are not "task pro­
tected.")

• DASD OPEN and CLOSE requests. (READ. WRITE.
PUT. and GET requests are not "task protected.")

• Explicit LOAD and DELETE requests.

Exceptionally. some of the GETMAIN. FREEMAIN.
LOAD. and DELETE requests that are issued by GDDM
routines at initialization and termination are not "task
protected." These requests should be separately "task

106 Base Programming Reference

protected" by the application program, by ensuring that
the GDDM FSINIT (or SPINIT) and FSTERM calls are
always issued from the standard task.

A Task Switch exit should be prepared to be invoked in
a recursive manner in some circumstances. For
example:

GDDM invokes the Task Switch exit before OPEN.
--> The Task Switch exit calls a GDDM subroutine.
------> The OPEN macro is called, resulting in an

OPEN error.
----------> The DCB ABEND exit receives control.
----------> Diagnostic processing is initiated.
----------> GDOM invokes the Task Switch exit

before a LOAD for diagnostic routines.
--------------> The Task Switch exit calls a GOOM

subroutine.
-----------------> The LOAD macro is called for

diagnostic routines.
-----------------> The subroutine returns to the

Task Switch exit.
--------------> The Task Switch exit returns to

GDDM after the LOAD.
----------> Diagnostic processing completes.
----------> The DCB ABEND exit returns to NSI

after the OPEN.
------> The OPEN macro completes.
------> The subroutine returns to the Task Switch

exit.
--> The Task Switch exit returns to GDDM after

the OPEN.

However. a Task Switch exit can prevent such
recursion by disabling itself on entry. by setting the
UXADDR field In the UXBLOCK parameter to O. GDDM
still ensures a return through the Task Switch exit.
which should then reset the UXADDR field to the
address of its entry pOint. before returning to GDDM.

How to specify a task switch ex": A Task Switch exit is
specified as follows:

ADMMEXIT TASKSWI~([address][.token])

Parameters: The parameters for Task Switch exits are
as follows:

RI3 -> A 72-byte save area
RI4 -> The return address
RI5 -> The entry point of the exit
RI -> The parameter address list. in standard

variable parm-list format:
AODRI -> AAB (Char(S»
ADDR2 -> UXBLOCK «3) Fixed(31»
ADOR3 -> SUBAODR (Ptr(31»
ADDR4 -> SUBPARM (Format reserved to

GDDM)

Parameters AAB and UXBLOCK are described under
"GDDM user-exit conventions" on page 105. Addi­
tional parameters are as follows:

SUBADDR The address of the GDDM subroutine to be
called after switching tasks.

The GDDM subroutine must be called according
to full System/370 calling conventions. Specif­
ically. Register 13 on entry to the subroutine must
locate a register save area. which must not be
the same as that passed to the exit by GDDM.
Also. Register 1 on entry to the subroutine must
be the same as was passed to the exit by GDDM.

The GOOM subroutine saves and restores the
exit's registers as normal, but does not neces­
sarily conform to other System/370 calling con­
ventions.

On return from the subroutine, the exit must
return to GOOM according to full System/370
calling conventions. Specifically, the exit must
reload Register 14 from GOOM's save area in
order to return. The exit must not rely on the
contents of GOOM's save area being the same as
on entry (specifically, all saved registers,
including Register 14, and the RSA forward chain,
may have been modified by the GOOM subrou­
tine).

SUBPARM Additional parameter(s) that may be sup­
plied by GOOM, for the use of the GOOM subrou­
tine.

The exit should not assume the existence of, nor
try to examine, these parameters. The exit
should call the GDOM subroutine with Register 1
locating the same parameter address-list as that
passed to the exit by GOOM.

The exit must be AMOOE(ANY); that is, it must be pre­
pared to accept control in 24-bit or 31-bit mode, and
must return control in the same mode. Also, it must
call the GO OM subroutine in the same mode.

Feedback values: On return, the exit must set R15 as
follows:

o Successful completion.

The call intercept exit

A Call Intercept exit may be defined by using an
AOMMEXIT UOS. This exit is valid in all environments.

Function: The Call Intercept exit provides a mech­
anism whereby a controlling process can monitor the
calls issued by an application program. Other than for
its specification by means of the SPIB, this exit is trans­
parent to an application program at the API.

The Call Intercept exit is invoked from within GODM,
before each application-program call is processed
(though after some housekeeping has been performed).
Application-program calls that are grossly in error may
be rejected without giving control to the exit.

The exit has passed to it the parameters provided by
the application program. It cannot change the request
or the parameters, but it can have some control over
the subsequent execution, as described below.

The exit could operate in a pass-through mode,
whereby it passes the specified requests through to a
secondary instance of GOOM that had been separately
initialized. In this mode, the exit could change or add
more calls to the secondary instance of GOOM in
response to a single call from the application program.
However, in this mode the exit may have difficulty
passing-back error diagnostics from the GOOM sec­
ondary instance.

How to specify a call Intercept exit: The Call Intercept
exit is specified as follows:

ADMMEXIT CALLINT=([address] [,token])

special-purpose programming

Parameters: The parameters for the Call Intercept exit
are as follows:

R13 -> A 72-byte save area
RI4 -> The return address
RIS -> The entry point of the exit
Rl -> The parameter address list. in standard

variable parm-list format:
ADDRI -> AAB (Char{S))
ADDR2 -> UXBlOCK ((3) Fixed(31)
ADDR3 -> RCP (Fixed(31)
ADDR4 -> NPARMS (Fixed{31)
ADDRS -> PLIST(NPARMS) (Array of Ptr(31»

Parameters AAB and UXBLOCK are described under
"GOOM user-exit conventions" on page 105. Addi­
tional parameters are as follows:

RCP The RCP code defining the call issued by
the application program.

NPARMS The number of functional parameters pro­
vided by the application program
(excluding the AAB for RACI, and the AAB
and RCP for SPI).

PLlST(NPARMS) The addresses of the functional
parameters provided by the application
program. These addresses are not in vari­
able parameter-list format. These
addresses should be treated as read-only.
AOOR5 is undefined (and hence PLiST is
not addressable) if NPARMS = O.

Feedback values: On return, the exit must set R15 as
follows:

o GOOM is to continue processing the call
8 GOOM is to ignore the call, with no message
12 GOOM is to reject the call, issuing the message:

ADMGGS6 E REQUEST REJECTED BY USER EXIT.
REASON n

If R15 = 12, the exit should set RO as follows:

n The reason-code to be inserted into message
AOM0056.

Otherwise, RO should be restored to its value on entry.

The coordination exit

A coordination exit can be defined by specifying the
coordination exit address in the array parameter of the
WSCRT call; tor a description of this, see the GDDM
Base Programming Reference, Volume 1.

Function: By providing a coordination exit when cre­
ating an operator window, a task manager allows the
use of that window by Independent applications running
their own instances of GOOM.

How to specify a coordination exll: A coordination exit
is specified as part of the WSCRT call. For details, see
the description of the WSCRT call in the GDDM Base
Programming Reference, Volume 1.

Chapter 12. Special-purpose programming in GOOM 107

special-purpose programming

Parameters: The parameters for coordination exits are
as follows:

R13 -> A 72-byte save area
R14 -> The return address
R15 -> The entry point of the exit
Rl -> The parameter address list, in standard

variable parm-list format:
ADDRl -> AAB (Char(S)
ADDR2 -> UXBLOCK «3) Fixed(31»
ADDR3 -> DIRECTN (Fixed(31»

Parameters MB and UXBLOCK are described under
"GDDM user-exit conventions" on page 105. Addi­
tional parameters are as follows:

DIRECTN The direction in which the exit is to pass
control. Possible values are:

o Pass control from the sub-task to the main
task

1 Pass control from the main task to the sub­
task.

The exit may not change this parameter.

Feedback values: On return, the exit must set R15 as
follows:

o Successful completion
8 Sub-task terminated abnormally.

Storage exit routines - interface
specifications

Storage exit routines can be defined using explicit
fields in the System Programmer Interface Block (SPIB)
passed as a parameter to GDDM in the SPINIT call.

The following section references fields defined in the
Version 1 Release 4 format of the SPIB, but equivalent
fields exist in the pre-Version 1 Release 4 format. For
details, see "Initialization" on page 103.

Under VM/CMS and TSO, GDDM calls application exit
routines, identified by fields SPIBGSXP and SPIBFSXP
(if defined and nonzero), to GET and FREE storage.
The interface to these storage exits is as follows:

Register 0 contains the number of bytes of storage
requested (GET) or to be released (FREE). The
high-order bit of this register is set to indicate a
conditional request. This value is passed to the
storage exits for both GET and FREE.

108 Base Programming Reference

Register 1 contains the address of the blOCk. of ~torag~.
This address is returned by the application eXit
on GET and passed to the application exit on
FREE.

Register 14 contains the GDDM return address.

Register 15 contains the user-defined parameter speci­
fied in either field SPIBGSXK (GET) or field
SPIBFSXK (FREE). This is passed by GDDM to
the appropriate application exit on each call.
Before returning to GDDM, the application exit
should set a return code in register 15: 0 indi­
cating that the request was successful, and, for
conditional requests only, 4 indicating that the
request was unsuccessful.

All other registers must be preserved across the call.

Application storage exits must operate without cor­
rupting any of the registers on entry other than as
described above. On entry to the exit routines, register
13 does not locate a register save area. If necessary,
the exits should provide for their own save area, pos­
sibly by "anchoring" a user area by means of the
SPIBGSXK or SPIBFSXK, or both, fields passed in reg­
ister 15.

Application storage exits must not assume that their
entry point is located by register 15 on entry. Register
15 is set as described above.

The application GET storage exit must return storage
that is double-word aligned.

GDDM abnormally ends on receiving a return code
other than as described above.

GDDM requests for blocks of local, last-in-first-out, or
instance storage are restricted to a maximum length of
32K bytes. When storage and exit routines are defined
(that is, "active"), this restriction also applies to
extended storage requests. GDDM never releases
"merged" or "split" blocks; storage is always released
in blocks as acquired from the application GET exit
routine.

Under MVS/XA, the top bit of the specified storage exit
address is taken to identify the AMODE of the exit and
causes the exit to be called accordingly (that is, a top
bit of '1' B causes the corresponding exit to be calied
in 31-bit addreSSing mode).

high-performance alphanumerics

Chapter 13. GDDM high-performance alphanumerics

High-performance alphanumerics (HPA) is another way
of doing alphanumerics in GDDM, and is intended for
complex applications which require minimum instruc­
tion path length within GDDM.

The application program may not mix mapped and pro­
cedural alphanumeric field definitions with HPA field
definitions on the same GDDM page.

The style of application programming interface used by
HPA differs from that used by other parts of GDDM,
such as procedural alphanumerics. When using proce­
dural alphanumerics, application programs use many
API calls to describe the data to GDDM for output, and
also to determine the data input by the device operator.
In contrast, the HPA application builds a data structure
to describe all the data, and passes that to GDDM for
output. Also, the data input by the device operator is
returned to the HPA application in the same data struc­
ture. Changes to the data are indicated through status
indicators which are part of the structure.

HPA data structure

The data structure consists of three distinct objects.
These are:

The field list
The data buffer
The bundle list.

The field list

The field list groups together all information about the
layout of alphanumeric data on one GDDM page. New
fields can be added to an existing GDDM page, or old
ones deleted, by modifying the field list. To give addi­
tional flexibility, there may be more than one field list
in any GDDM page, so that if an existing field list is
used up, further field definitions can be added by cre­
ating a new one.

A field list consists of a header followed by field defi­
nitions.

The header contains:

The status of the field list
The number of field definitions in the list
The size of the field definitions
The cursor position on the page.

Each field definition contains:

The status of the field definition
The size and position of the field on the GDDM page
A reference to the field attribute bundle definition in
the bundle list
A reference to the character data
Optional length of character data
Optional references to character attributes.

The field list is represented as a rectangular array of
half-word integers, in which the first row is the header
and the following rows contain field definitions.

It can be declared as a structure, or as a two­
dimensional array stored in row-major order. Pro­
gramming languages which use column-major ordering
of two dimensional arrays will have to exchange rows
and columns in the description which follows. Below is
a sample PLII declaration for a field list, where "depth"
and "width" are the array dimensions used in the API
call APDEF:

Del FIELD_LIST(depth,width) FIXED BIN(15)i

The numbers beside each component description
below are the indices of each item in the row. See
Figure 5 on page 110.

The field list header row

1 - List Status
The status of the field list.

Values that can be assigned to list status are the
same as field status; in fact, list status must always be
equal to the value obtained by ORing together the
values of all the field statuses in the field list. For
example, if any field has the indicator set to indicate
that the field is to be "output" because the character
data has been changed by the application, the corre­
sponding indicator in list status must also be set. This
means that whenever the application changes a field
status indicator, it must ensure that the list status indi­
cator is correct. Whenever GDDM changes a field
status indicator it will also do this.

2 - Used depth
The number of rows in the field list used by GDDM.

This value must be in the range 1 through list depth. It
may be changed by the application in order to add
new fields or to remove deleted fields from the list.

Note: If this number is increased to add new fields to
the list, the create indicator must be set in the new
field-definition status elements. Also, if deleted fields
are removed from the list, the deletions must first
have been processed by GDDM, which sets the status
element in the field definitions to zero.

3 - Used width
The number of elements in the header and each field
definition used by GDDM.

This value must be less than or equal to the list width,
and must be in the range 6 through 10. If the value is
less than the list width, then any extra elements in the
header and each field definition are ignored by
GDDM, and may be used by the application to record
its own data. It may be changed by the application in
order to extend or reduce the field definitions. An
example of this might be increasing the used width to
9 in order to specify character color. If the used width
is changed, the output indicator must be set in the
field definition status elements of all the field defi­
nitions altered by this change.

If this value is less than 10, then the omitted parts of
the field definition are described as being "not
present," and assume default values.

Chapter 13. GDDM high-performance alphanumerics 109

high-performance alphanumerics

Note: Even though GDDM may not use as many ele­
ments in the header as in the field definitions, only
those eiements beyond the used width may be used
for application data. The rest must be zero.

4 - Cursor row
This is the row position of the aiphanumeric cursor on
the GDDM page.

When used, it must be in the range 1 through page
depth, otherwise it must be zero. If the field list is
designated as the one used for cursor positioning,
then the cursor row and cursor column are used to
position the aiphanumeric cursor on output, and also
to return its position on input. This designation is
made by setting the mode parameter of the APDEFor
APMOD call.

This cursor position overrides any cursor pOSition
specified by calling ASFCUR. During 110, if the cursor
position specified lies outside the page window, then
the cursor is placed at the closest position within the
page window.

S - Cursor column
This is the column position of the aiphanumerlc cursor
on the GDDM page.

When used it must be in the range 1 through page
width, otherwise it must be zero.

The field definition row

1 - Field Status
The status of the field definition. The list of vaiues
below shows both numerical value and corresponding
bit position of the indicator. If your use of HPA
requires complex testing and setting of these status
indicators then you may wish to declare the status
element as a bit string.

Values that can be assigned to the field status are:

1 - Bit 15 - Process
If this indicator is not set, none of the other indica­
tors in the field status element may be set.

Oniy those field definitions that have this indicator
set are processed. This allows space for future
fleid definitions to be reserved In the field list, in

Row (depth) 1

2

3

4

Column (width)
123

list Used- Used-
status depth width

Field Field Field
status row column

Field Field Field
status row column

Field Field Field
status row column

4 5 6

Cursor Cursor
row column

Field Bundle Char
width row index

Field Bundle Char
width row index

Field Bundle Char
width row index

which case the application program must set both
this indicator and the create Indicator before the
first use of the field. if a field has been Indicated to
be deleted, GDDM sets the field status element to
zero on the next 110 to the primary device involving
the GDDM page.

Note: An 110 involving the page is any 110 opera­
tion, ASREAD, FSFRCE, and so on, for the primary
device to which the page belongs during which the
page is the current one for its partition, "and the par­
tition set is the current one for the device.

2 - Bit 14 - Create
Indicates a new field to be created.

If it is set, GDDM resets it on the next 110 to the
primary device involving the GDDM page. When a
field list is first defined to GDDM all its fields are
assumed to be new, so this indicator need not be
set.

4 - Bit 13 - Delete
indicates a field to be deleted.

When the application sets this indicator, it informs
GDDM that the fieid is to be deleted. GDDM resets
the entire status element, including the Process
indicator, on the next 110 to the primary device
involving the GDDM page. The fieid definition may
not be reused to define another field until after
GDDM has reset this indicator.

8 - Bit 12 - Output

7

Indicates a field to be output.

it must be set by the application whenever it
changes one of the following:

Character data
Character attributes
Character index
Coior index
Highlight index
Symbol-set index
Actual-length
Bundle-row.

This indicator is reset by GDDM on the next 110 to
the primary device involving the GDDM page.

8 9 Hl ...

Actual Color Highlt 55
1 ength index index index

Actual Color Highlt 55
length index index index

Actual Color Highlt 55
length index index index

·i~ __ ~ ____ ~ ____ ~ __ ~ ____ ~ ____ ~ __ ~ ____ -L ____ ~ __ ~

Figure 5. Field list array

110 Base Programming Reference

Notes:

1. This indicator is set by GDDM if the device
operator updated the field. This causes the
field to be output on the next I/O to ensure that
any input data editing is reflected back on the
device.

2. This indicator should not be set to indicate
changes in the bundle definition, it only indi­
cates changes in the field definition.

16 - Bit 11 - Input
Indicates a field has been input.

This indicator is set by GDDM, during input
involving the GDDM page, to indicate changes to
character data and possibly character attributes,
made by the device operator. It should be reset by
the application once the changes have been proc­
essed.

If more than one status indicator is required, the
element must be set to the sum of the numbers corre­
sponding to the indicators required.

2 - Row
This is the row for the top left-hand corner of the field
within the GDDM page.

Rows are numbered from top to bottom of the page,
starting with 1. This Is the position of the field con­
tents, not the field attribute. Once the field has been
defined the application may not change the field row
until the field has been deleted. For best performance
it is recommended that fields are defined in order of
their positions on the page.

3 - Column
This is the column for the top left-hand corner of the
field within the GDDM page. Columns are numbered
from left to right across the page, starting with 1. This
is the position of the field contents, not the field attri­
bute. Once the field has been defined, the application
may not change the field column until the field has
been deleted.

4 - Width
This Is the number of columns that the field occupies.

The width may cause the field to extend beyond the
right-hand side of the page, in which case it wraps to
the left-hand side of the page on the next row. A field
may not extend below the bottom of the page, neither
may fields overlap. Once the field has been defined,
the application may not change the field width until
the field has been deleted.

Width also defines the data-area length. For mixed­
without-position fields the data-area length is twice
Width bytes, and for other fields the data-area length
is Width bytes. The data-area length is the length of
the data areas in the data buffer, where the data for
the field is held. There may, optionally, be data areas
for:

Character data
Character color attributes
Character highlight attributes
Character symbol-set attributes.

The data areas as defined by the character index and
width, the color index and width, the highlight Index
and width, and the symbol-set index and width, must
be contained totally within the data buffer.

high-performance alphanumerics

5 - Bundle row
This is the row number in the bundle list of the field
attribute bundle definition. It must be in the range 2
through the number of rows in the bundle list.

6 - Character Index
This is the index in the data buffer of the data area
containing the characters that occupy the field. An
index of 0 indicates that there are no character codes
for the field. The character data area must be present
if color, highlight, or symbol-set data areas are
present. The character data area must also be present
if the field is unprotected or has the MDT attribute.

Note: It is possible for more than one field to be
associated with the same data area or overlapping
data areas, within the data buffer. This does not
cause any difficulty if all the fields are protected.

In the instance where one or more of the fields is
unprotected, the application must set the output indi­
cators of all the fields involved if the data area has
been changed as a result of device operator input. If
this is not done, the corresponding fields on the
screen may not be updated on the next I/O.

In the instance where two or more unprotected fields
share the same data area, and the device operator
enters updates Into two or more such fields in the
same I/O operation, the resulting contents of the data
area are undefined.

7 - Actual Length
This is the length of the data in the data area(s).

When the application changes the data, It must set this
to the length of data in the character, color, highlight,
and symbol-set data areas in the data buffer. If not
present an actual length of data-area length is
assumed. If a value greater than data-area length is
specified, then only data area length bytes are output.
If the number of bytes output does not fill the field,
then the rest of the field is filled with the pad char­
acter. (The pad character is null for character data
and blank, meaning inherit the field attributes, for
character attributes.)

If the device operator enters data into the field, GDDM
sets actual length to the length of data, in bytes, now
in the field, up to and including the last nonpad char­
acter.

GDDM only sets actual length if the field status indi­
cates that changes to field contents have been input.

8 - Color Index
This is the index in the data buffer of the data area
containing the color codes for individual characters
that occupy the field. If not present, an index of 0 is
assumed. An index of 0 indicates that there are no
character color codes for the field.

9 - Highlight Index
This is the index in the data buffer of the data area
that contains the highlight codes for individual charac­
ters that occupy the field. If not present an index of 0
is assumed. An index of 0 indicates that there are no
character highlight codes for the field.

10 - Symbol-set Index
This is the Index in the data buffer of the data area
that contains the symbol-set codes for individual char­
acters that occupy the field. If not present, an index of
o is assumed. An index of 0 indicates that there are
no character symbol-set codes for the field.

Chapter 13. GDDM high-performance alphanumerics 111

high-performance alphanumerics

Fields that do not have character attributes should
specify Indices of O. Omitting character attribute data
areas, when not required, significantly Improves the
performance characteristics of an application.

Example

This is an example of a field list declaration In PUI
(compare with Figure 5 on page 110).

DCl FL(5,la) FIXED BIN (15) STATIC INIT

I
I
I
I

I*STA DEP WID CSR CSC */ I
5, la, 2, 5, a, a, a, a, a, I (I,

I*STA ROW COL WID BlR CHI ACT COl HII SSI* / I
I, 2, 5, 4, 2, I, 4, a, a, a,
I, 4, la, 11, 3, 5, 11, a, 0, 0 ,
I, 6, IS, 13, 4, 16, 13, 0, 0, e,
I, 8, 20, 3, 5, 29, 3, 32, 35, 38);

The data buffer

The data buffer consists of data areas containing the
data and character attributes for each field defined in
the field list. The position and size of each data area
within the data buffer Is defined in the field list. Each
field-list entry contains the length and index into the
data buffer of its character-data area. Optionally, it
may also contain Indexes to a character color data
area, a character highlight data area, and a character
symbol set data area.

Mixed double-byte and single-byte character fields

The internal representation of mixed character strings
makes use of shift-out (SO) and shift-in (51) control
characters, X'OE' and X'OF', to indicate the start and
end of a OBC5 substring.

There are two ways of displaying mixed character
strings, called mlxed-wlth-posltlon and mixed-without­
position. The display method to be used is specified in
the bundle definition for each field.

• Mixed-with-position

The SOISI codes occupy one character position
each, and are displayed as either a blank or a
special character - the terminal user can select
which.

• Mixed-without-position.

The SOlS I codes do not occupy a character posi­
tion on the screen.

Character attributes
Character attributes are represented by these codes:

Color

blank X '40' Inherit the field color (the default)
1 X'F1' Blue
2 X'F2' Red
3 X'F3' Magenta (pink)
4 X'F4' Green
5 X'F5' Turquoise (cyan)
6 X'F6' Yellow
7 X'F7' Neutral (white on displays, black on

printers).

112 Base Programming Reference

I
I

Highlight

blank
1
2
4

X'40'
X'F1'
X'F2'
X'F4'

Symbol-set

X'OO' or X'40'

Inherit the field highlight (the default)
Blink
Reverse video
Underscore.

Inherit the field symbol set
(the default)

X'01' through X'03' Loadable symbol set (3BOO
system printer)

X'41' through X'OF'

X'F1'

Notes:

Loadable symbol set (3270
family devices)
Alternative nonloadable
symbol set (3270-family
devices).

1. The two character attributes, corresponding to the
two bytes of a OBCS cbaracter, must both be the
same.

2. Symbol-set character attributes, corresponding to
OBCS characters, must be blank.

Example

The data buffer to go with the field lists in the earlier
example might be:

DCl DB CHAR(40) STATIC INIT
('HighPerformanceAlphanumericsAPI356124 &&');
I*t t t t t t t */

The field list has four fields defined, corresponding to
the words High, Performance, Alphanumerics, and API.
No color, highlight. or symbol set Indexes have been
specified for the first three fields. The field definition
for the fourth defines a color Index that selects the
'356', a highlight index that selects the '124', and a
symbol-set index that selects the ' &&' in the data
buffer. (The blank specifies inheritance of the field
symbol set, and the two '&' characters (X' 50' , decimal
BO) request the use of a symbol set with identifier BO.)

The bundle list

The field attributes that are used with the alphanumeric
fields defined in the field list, are themselves defined in
the bundle list. Each field definition In the field list con­
tains a bundle row, which is the row number of the
bundle definition In the bundle list.

The first row of the bundle list is a header, and fol­
lowing rows contain field attribute bundle definitions.
Each bundle definition consists of a status element, and
the number of type-and-value pairs in the definition, fol­
lowed by pairs of attribute types and attribute values
describing the attributes of the bundle. It may also
contain application data.

Figure 6 on page 114 illustrates the layout of a bundle
list.

The bundle list can be declared as a structure, or as a
two-dimenSional array stored in row-major order. Pro­
gramming languages which use column-major ordering

of two dimensional arrays will have to exchange rows
and columns in the description which follows. Below is
a sample PUI declaration for a bundle list, where
"depth" and "width" are the array dimensions used in
the API call APDEF:

Del BUNDlE_lIST(depth,width) FIXED BIN(15);

The components of the bundle list are:

Bundle list header row

1 - List Status
The status of the bundle list.

Values that can be assigned to list status are the
same as bundle status; In fact list status must always
be equal to the value obtained by ORing together the
values of all the bundle statuses in the bundle list.
For example, whenever the application changes a
bundle status indicator it must also change the list
status.

2 - Used depth
The number of rows that GDDM uses in the bundle
list.

Its value must be in the range 1 through list depth. It
may be changed by the application in order to add
new definitions or to remove unused definitions from
the list. If this value is Increased, the new bundle defi­
nitions must have the bundle changed indicator set in
the bundle definition status element.

3 - Used width
The maximum number of elements in the header and
each bundle definition used by GDDM.

This value must be less than or equal to the list width,
and the minimum value is 4. If the value is less than
the list width, then extra elements In the header and
each bundle definition will be ignored by GDDM, and
may be used by the application to record its own data.
It may be changed by the application in order to
extend or reduce the maximum number of type-and­
value pairs in the bundle definitions.

Note: Although GDDM may not use as many elements
in the header as in the bundle definitions, only those
elements beyond the used width may be used for appli­
cation data, the rest must be zero.

Bundle definition row

1 - Bundle status
The status of the bundle defintlon. The list of values
below shows both numerical value and corresponding
bit position of the indicator.

1 - Bit 15 - Bundle changed
This must be set by the application to tell GDDM of
changes made to the bundle definition, and, if set
by the application, is reset by GDDM on the next I/O
to the primary device involving the GDDM page.
Set it if the number of pairs, the attribute types, or
the attribute values, have been changed.

Note: All the other status indicators in the halfword
must be zero.

2 - Pairs
The number of type-and-value pairs in the bundle defi­
nition.

The minimum value is 0 and the maximum value is
(Used_width-2)/2. Elements in the bundle definition
beyond this specified number are ignored by GDDM.

high-performance alphanumerics

3 - Type-and-value pairs
Type is a code for the attribute type, such as "color"
and value is a code for the corresponding value such
as "blue".

The permitted type codes and their associated value
codes are:

o Dummy

This is a special type code that causes the type­
and-value pair is to be ignored by GDDM. It effec­
tively reserves space within the bundle definition
for future use by the application. The associated
value is ignored.

8 Field type

The permitted values are:

o Unprotected alphanumeric (the default)
1 Alphanumeric output, numeric input
2 Protected alphanumeric.

16 Intensity

The permitted values are:

o Invisible
1 Normal (the default)
2 Bright.

24 Color

The permitted values are:

o Default
1 Blue
2 Red
3 Magenta (Pink)
4 Green
5 Turquoise (cyan)
6 Yellow
7 Neutral (white on color displays, black on

printers).

32 SBCS Primary symbol set alias

The permitted values are:

o Default. For a 3270-famlly device, the base
nonloadable symbol set; for a 3800-system
printer, the first loadable symbol set (use the
CHARS parameter to specify the loaded symbol
sets when printing).

1 through 3. For a 3800-system printer, the second,
third, and fourth loadable symbol sets respec­
tively (use the CHARS parameter to specify the
loaded symbol sets when printing).

65 through 223. For a 3270 family device, loadable
symbol sets corresponding to X'41' through
X' OF'. The alias must be made known to GDDM
with a call to PSDSS, PSLSS, or PSLSSC to load
the symbol set.

40 Highlight

The permitted values are:

o Normal (the default)
1 Blink
2 Reverse video
4 Underscore.

48 End

The permitted values are:

o Autoskip (the default)
1 Notautoskip.

Chapter 13. GDDM high-performance alphanumerics 113

high-performance alphanumerics

56 Transparency

The permitted values are:

o Opaque (the default)
1 Transparent.

64 SBCS/DBCS

The permitted values are:

o SBCS (the default)
1 Mixed-with-position
2 Mlxed-without-positlon
3 DBCS.

Note: On 5550-family displays all unprotected
fields on the device that are not DBCS, or mixed­
with-position are enabled for mixed-without­
position input If any bundle list on the device
specifies mixed-without-positlon. If the device
operator enters mixed-without-position data into a
field, GDDM only places the correct shift-In,
shift-out, and DBCS characters into the data buffer if
mixed-without-position is specified for the field.

72 Outlining

The permitted values are:

o None (the default)
1 Underline
2 Vertical line on right
4 Overline
8 Vertical line on left.

For an outlining attribute that is composed of more
than one of these lines, specify the sum of the
numbers corresponding to the lines required.

80 Modified data tag (MDT)

This defines the field MDT setting. It causes the
physical MDT bit to be set so that the fields can be
returned as input to a subsequent application
program after GDDM terminates. This function is
intended primarily for use under CICSNS and
IMSNS.

The permitted values are:

o Reset the MDT (the default)
1 Set the MDT.

R Column
o 1 2
w

Header 1 List Used-
status depth

Definition 1 2 Bundle Pairs
status

Definition 2 3 Bundle Pairs
status

Definition 3 4 Bundle Pairs
status

Figure 6. The bundle list array

114 Base Programming Reference

3 4 5

Used-
width

Type Value Type

Type Value

Type Value Type

88 Reply

This defines the character reply attribute. It speci­
fies whether the device operator is able to enter
color, highlight, or symbol-set character attributes
into the field. If the field definition also specifies
data areas for character attributes, GDDM will
update the data areas with the attributes input.

The permitted values are:

o Character reply mode off (the default)
1 Enable color character reply mode
2 Enable highlight character reply mode
4 Enable symbol-set character reply mode.

To enable combinations of color, highlight, and
symbol-set character reply modes, specify the sum
of the numbers corresponding to the enablements
required.

Note: On 3270-family displays all unprotected
fields in the real partition (or on the real screen if
emulated partitions are being used) are enabled for
character-attribute input if any bundle list on the
page sets this attribute. If the device operator
enters character attributes into a field, GDDM only
places the character attributes input into the data
buffer if the appropriate reply mode is enabled for
the field.

98 Pen detectable

6

This attribute permits selection of fields by a light
pen or cursor select key.

The permitted values are:

o Not pen detectable (the default)
1 Pen detectable.

The type of selection that occurs is determined by
the first data character in the field; this character is
called a designator character. A field having a
"pen detectable" attribute but not starting with a
valid designator character is not selectable.

Value

Value

The types of selection that can be set are:

Delayed detection. When selected by the device
operator, the field is marked as "modified" but
nothing is transmitted until the device operator
performs another action associated with field
modification (such as selecting an "immediate
detection" field or pressing ENTER). The desig­
nator character for this type of field is "1"
(X '6F'). If the field is selected the designator
character changes to ">" (X '6E'); another
selection restores it to "1" and cancels the mod­
ification indication.

Immediate detection without data. The designator
character is a blank (X' 40'). Selection of this
type of field causes immediate input trans­
mission. No data from any of the fields is trans­
mitted, however. The effect is thus:

1. The ASREAD returns an Attention Type of 2
indicating light pen selection. All changes
typed in by the device operator are lost.

2. GDDM restores all fields on the display to
their original value at the next ASREAD (or
other 1/0 call).

Immediate detection with data. The designator
character is "&" (X'50'). The effect is the same
as pressing ENTER. (Not possible with the IBM
3277 display terminaL)

Apart from dummy, the same type may not appear
more than once in the same bundle definition.

Example

Below is an example of a declaration for a bundle list in
PLlI:

DCl Bl(5,la) FIXED BIN(15) STATIC INIT

/*STA DEP WID */
(a, 5, la, o. a. a. 0, o. a, 0,

/*STA PRS TYP VAL COL VAL BDY VAL PSS VAL*/
a, 3, 8, a, 24, 3. 72, I, 0, 0,
a, 3, 8, 0, 24, 5, 72, 3, 0, 0,
0, 4. 8, 0, 24, 6, 72. 15. 32, 8a,
0, 4. ~, 0, 24, 3. 72, 7, 88, 7);

How to use high-performance
alphanumerics
Move mode and locate mode

There are two modes in which data can be transferred
between GDDM and the application program, which are
the move and locate modes. The mode is specified
through the "mode" parameter of the APDEF call.

If move mode is specified, the field list, data buffer, and
bundle list are copied by GDDM when APDEF is called.
Subsequent output and input processing, done by
GDDM, use the GDDM copies. When the application
needs to retrieve updates made by the device operator,
or modify the fields, it must query the field list, data
buffer, and bundle list by calling APQRY. This returns
copies of the field list, data buffer, and bundle list held

high-performance alphanumerics

by GDDM. When the application has modified the field
list, data buffer, and bundle list, it must pass the mOdi­
fied versions back to GDDM by calling APMOD.

If locate mode is specified, GDDM does not copy the
field list, data buffer, or bundle list. Subsequent output
and input processing, by GDDM, use the copies in
application storage. The application must not release
the storage that these objects occupy until the field list
has been deleted. The contents of the field list, data
buffer, and bundle list must be valid whenever GDDM is
called. When using locate mode, it is not necessary to
call APQRY to determine device operator updates, nor
to call APMOD in order to Inform GDDM of changes
made by the application.

The choice of move mode or locate mode will affect any
application data embedded in the field list, data buffer,
or bundle list. If move mode Is used, this application
data is copied by GDDM on APDEF and subsequent
calls to APMOD. The value copied on the most recent
APDEF or APMOD call is returned by GDDM on APQRY.
This means that any changes made after APDEF or
APMOD will be lost on the next call to APQRY. If locate
mode is used this application data is not altered by
GDDM.

Output

To display a page of alphanumeric fields proceed as
follows:

• Construct the field list and associated data buffer
and bundle list to describe the page of alphanu­
merics. The field definition statuses for all the
fields to be shown should be set to 1. The field list
status should be set to 1. The bundle list status,
and all bundle definition statuses should be set
to O.

• Call APDEF to define the field list and associated
data buffer and bundle list to GDDM.

• Call ASREAD, or another GDDM 1/0 call as
required.

Input

To retrieve device operator updates to the page of
alphanumeric fields following an 1/0 operation, proceed
as foliows:

• If using move mode, retrieve the field list, data
buffer, and bundle list from GDDM by calling
APQRY.

• Test the field list status Input indicator to deter­
mine If any fields have been updated by the device
operator. If they have, then test the field definition
input indicators to determine which fields have
been changed, and process the Input found In the
data buffer.

• If the alphanumerics are not to be reshown they
should be cleared by calling APDEL.

Reshow

The application may need to reshow the page of alpha­
numeric fields just input, which should be done as
follows:

• Reset the field list status Input indicator and the
field definition input indicators.

• Change the data or character attributes in the data
buffer as required, and set the corresponding

Chapter 13. GDDM high-performance alphanumerics 115

high-performance alphanumerics

output Indicators In the field definition and header
status.

• Change the bundle definitions In the bundle list as
required, and set the corresponding Dundle defi­
nition and header status indicators.

• Change the field definitions In the field list as
required, and set the corresponding status indica­
tors to specify what has changed.

• If using move mode, return the modified field list,
data buffer, and bundle list to GDDM by calling
APMOD.

• Call ASREAD, or another GDDM I/O call as
required.

Field list update rules

The rules for altering a field list are:

• The Input Indicators, which Indicate device oper­
ator updates, should be reset by the application
after each I/O. If this Is not done, the application
will not be able to detect further updates on a sub­
sequent I/O.

• Field row, field column, and field width may not be
changed, except when using a previously-unused
field definition entry to define a new field. Fields
may be defined in any order, but must not overlap.
They may wrap from row to row, but must not
extend beyond the end of the page.

• Bundle row may be changed by the application, in
which case the application must also set the output
indicator to Indicate to GDDM that this Is changed.
It is not necessary to set this Indicator if only the
bundle definition has changed and the field defi­
nition has not changed.

• If the character index, color Index, highlight index,
symbol-set Index or actual length are changed,
then the application must set the Output indicator
to indicate to GDDM that the field has changed and
is therefore to be output on the next I/O.

• When a previously unused field definition is acti­
vated, the process indicator and the create indi­
cator must be set by the application. These
indicators should never be reset by the application,
only by GDDM.

• If an existing field is to be deleted, the field delete
indicator should be set by the application. This
indicator should never be reset by the application,
only by GDDM, and the field definition entry may
only be reused to define a new field after GDDM
has reset the entire field status element.

• Changes to any field definition status Indicator may
also require changes to the corresponding header
status Indicator. The header status must always be
set to the value obtained by ORing together all the
field status elements.

Data buffer update rule

The rule for altering a data buffer is:

• If a character data area, or a character attribute
data area is modified, then the output indicators In
the corresponding field definition status and field
list status must be set.

116 Base Programming Reference

Bundle list update rule

The rule for altering a bundle list is:

• If a bundle definition Is modified, the bundle
changed indicator in the bundle definition status
and bundle list status must be set.

Dynamic fields

Dynamic alphanumeric fields, using HPA, may be
obtained by reserving space in the field list, data buffer,
and bundle list for the fields to be added later.
Reserved field definitions in the field list may be made
by leaving the process Indicator off. Reserved space
may be left in the data buffer by not referring to It in
existing field definitions. Reserved bundle definitions
In the bundle list may be made by setting the number of
type-and-value pairs to zero, or by using the dummy
attribute type.

It may become necessary at some stage to enlarge the
structures. When this happens, the APMOD call may
be used to change the size of the field list, data buffer,
or bundle list and also their location if using locate
mode. The application must allocate neW-larger data
structures to replace the old ones, Initialize them from
the old ones (or by calling APQRY), call APMOD to
define the enlarged versions to GDDM, and throw the
old ones away.

Nole: If APMOD is used in this way, any differences
between the contents of the old and new structures
must be Indicated by change indicators as defined In
the rules above.

Interpreted languages

In general, locate mode cannot be used by applications
written In Interpreted languages such as APL, BASIC,
and REXX. When using these languages move mode
must be used. See also the restrictions on shared
storage below.

Read-only storage

In certain circumstances It may be desirable to use
HPA with the field list, data buffer, or bundle list in
read-only storage. An example might be an application
that Is used by many users at the same time. In this
Instance, It would be more efficient If fixed panel
layouts were placed in shared storage. To use HPA
from read-only storage, ensure that GDDM does not
write to It by adhering to the rules below:

• Neither APDEF nor APMOD alters the storage of
the field list, data buffer, or bundle list.

• In move mode, ASREAD does not alter the objects
in user storage.

• In locate mode, ASREAD only alters:

The field list If any of the create, delete, or
output indicators are set, or If any
field is unprotected or has the
MDT attribute

The data buffer If any field is unprotected or has
the MDT attribute

The bundle list If any status indicators are set.

Shared storage

When using locate mode, it is possible for an applica­
tion to define more than one field list using the same
storage. Field lists, data buffers, and bundle lists could
all share storage. The rules for sharing storage are:

• Field lists may not share storage unless they are
read only. See the section on Read-only storage
on page 116.

• Bundle lists may be shared between more than
one field list on the same device. They may not be
shared between field lists on different devices
unless they are read only.

• Data buffers may be shared between more than
one field list only if unprotected data areas (that is,
data areas corresponding to fields that are unpro­
tected or have the MDT attribute) are not shared.

Note: Violations of these rules are not detected, and
the results of such a violation are undefined.

Validation

To enable GDDM to be used as the device driver for
fully tested program products, it is necessary to be able
to run HPA without validation. (Validation is not neces­
sary for tested applications and the performance
advantages are significant.)

Validation checks the API parameters such as identi­
fiers and lengths, as well as the field list, data buffer,
and bundle list. The field list, data buffer, and bundle
list are not validated during the API call processing as
other parameters are, instead they are validated during
processing for each 1/0 call involving the GDDM page.

high-performance alphanumerics

If the writers of an application choose to use HPA
without validation, they do so at their own risk. Incor­
rect use may result in device checks.

Validation is controlled by an external default as
follows:

FRCEVAL - Force validation.
The default is NO. When FRCEVAl = YES is speci­
fied, the validation indicator in the mode parameter
is overridden so that validation is always per­
formed. The other indicators in the mode param-
eter are not affected. .

For example, when a tested application (for
instance, a shipped program product that does not
use validation), is suspected of a bug, validation
can be turned on to determine whether the applica­
tion or GDDM is at fault by specifying:

ADMMDFT FRCEVAl=YES
in the external defaults file. This default may not be
specified in the external defaults module, on SPINIT
calls, or by API call.

Alternatively validation may be controlled by the mode
parameter on the APDEF and APMOD API calls. It may
be used during application development, but once an
application is fully tested validation should be turned
off.

Example program

The following sample program illustrates the use of
HPA in locate mode. It displays a page with four fields,
one of which uses character attributes. When the
ENTER key is pressed the color of the first field is
changed. When PF3 is pressed the program terminates.

Chapter 13. GDDM high-performance alphanumerics 117

high-performance ~Iphanumerlcs

/* EXAMPl - SAMPLE CHARACTER ATTRIBUTES */
EXAMPl: PROC;

DCl TYP
DCl VAL
DCl CNT
DCl END KEY

FIXED BIN(31) STATIC INIT(I);
FIXED BIN(31) STATIC INIT(3);
FIXED BIN(31) STATIC INIT(e);
BIT(I) INIT('a'B);

DCl Fl(5,le)FIXED BIN(15) STATIC INIT
/*STA DEP WID CSR CSC
(1, 5, Ie, 2, 5, e,

/*STA ROW COL WID BlR DAI
1, 2, 5, 4, 2, 1,
1, 4, Ie, 11, 3, 5,
1, 6, 15, 13, 4, 16,
1, 8, 2a, 3, 5, 29,

DCl Bl(5,la) FIXED BIN(15) STATIC IN IT

e,
ACT
4,

11,
13,
3,

e, e,
COl HII
e, a,
e, a,
a, a,

32, 35,

I*STA DEP WID */
(a, 5, la, a, a, a, e, a, a, a,

/*STA PRS TYP VAL COL VAL BOY VAL PSS VAl*/
a, 3, 8, a, 24, 3, 72, 1, a, a,
a, 3, 8, a, 24, 5, 72, 3, a, a.
a, 4, 8, a, 24, 6, 72, 15, 32, 8a,
a, 4, 8, a, 24, 3, 72, 7, 88, 7);

DCl DB CHAR(4e) STATIC INIT
('HighPerfonnanceAlphanumericsAPl356124 &&');

CAll FSINIT;

CAll PSlSS(a,'ADMITAlC'.8a); /* load a symbol set

/* Define a field list for the panel
CAll APDEF(1,DIM(Fl,1),DIM(Fl,2}.Fl,lENGTH(DB) ,DB.

DIM(Bl,I),DIM(Bl,2),Bl,6);
/* This uses the built in DIM feature of Pl/I. */
/* where DIM is the dimension of the array. */
/* It could have been coded as: */
/* CAll APDEF(1,5,le,Fl.4a,DB.5,le,Bl,6); */

*/
a,

SSI*/
a,
a,
a,

38);

*/

*/

/* Display panel and process selection until END key pressed */
DO UNTIl(ENDKEY);

CAll ASREAD(TYP,VAl.CNT); /* Display panel */
SELECT; /* Process selection */

END;

WHEN(TYP=I & (VAl=3 I VAl=I5» /* END key */
END KEY = 'I'B;

WHEN(Typ=a) DO; /* ENTER key alone - change field colour */
Bl(I,I) = 1; /* Set bundle list status */
Bl(2,1) = 1; /* Set bundle definition status */
Bl(2,6) = MOD(Bl(2.6)+1,8); /* change color value */
END;

OTHERWISE CAll FSAlRM; /* Error condition
END;

*/

118 Base Programming Reference

CALL PSRSS(a9);

CALL FSTERM;

%INCLUDE ADMUPINA;
%INCLUDE ADMUPINF;
%INCLUDE ADMUPINP;

END EXAMPL;

high-performance alphanumerics

/* Release a symbol set */

Chapter 13. GDDM high-performance alphanumerics 119

code pages

Chapter 14. Country-extended code pages

Alphanumeric and graphics text characters are repres­
ented In main storage, disk flies, and data streams as
hexadecimal codes. Each code generally occupies one
byte, although GDDM does support double-byte char­
acter sets also.

IBM devices attached to host computers use the
Extended Binary Coded Decimal Interchange Code
(EBCDIC) as the standard way of representing single­
byte characters. However, problems arise because
EBCDIC allows the characters represented by some of
the codes to vary from one device to another.

The codes for the Latin letters (A through Z) In upper
and lower case, and for Arabic numerals (0 through 9),
are consistent across devices. But other codes, desig­
nated as being for national use, vary in the characters
assigned to them, especially between devices made for
different countries. Other codes are entirely device­
dependent. Older EBCDIC devices generally supported
80 standard characters, 14 national-use assignments,
and up to 96 devlce-dependent character codes.

For example, X' 5B' is a national-use code, and on ter­
minals made for the USA, It normally represents the
dollar sign, $. But UK terminals normally use this code
to represent the pound sign, £. And In the USA, X'4A'
normally represents the cent sign, ¢, whereas in the UK
it normally represents the dollar sign. So If you enter
this data on a USA terminal:

Price: $1 large or se¢ small
then store It in a file and redisplay It on a UK terminal,
you would probably see:

Price: £1 large or Se$ small

Another type of problem Is that a code generated by
one device may have no corresponding character
defined for It on another device. In other words, data
may contain characters that are nondisplayable (or
nonprlntable) on some devices.

To overcome such problems, extensions to EBCDIC,
called Country Extended Code Pages (CECPs), are sup­
ported. A code page Is a mapping between
hexadecimal codes and characters. The codes are
often called, in this context, code pOints.

All CECPs contain the same set of characters and the
same set of code points; there are 190 characters, and
190 code points ranging from X'41' through X'FE'
(X'40' Is not defined in the CECPs, but always repres­
ents a blank). The difference between one CECP and
another is in the assignment of characters to code
points, that Is, the order In which the 190 characters
are mapped onto the 190 code points.

The 190 characters are Illustrated in Figure 7. Their
mapping onto code points In all the CECPs supported
by GDDM are shown in GDDM Typefaces and Shading
Patterns. The supported CECPs are listed In Figure 9
on page 124.

CECP devices, such as the 3179,3192, and 3193, can be
queried from the host computer to discover the code

pages they Implement. GDDM takes advantage of this
to make programs code-page Independent.

xO x1 x2 x3 x4 x6 x8 x7 x8 x9 xA xB xC xD xE xF

41 I I i a i i CliO. < (+ I
6x & 6 i I .. fiT 1 B! $ *) ; ..
8x - I A 1 A A lAC A I , x _ > ?
7x IEilel' T 1': #@' ="
8x 0abedef ghi «»6y~:!:
9x • J kim n 0 p q rig •• .ED
Ax ,,"'stuVWXYZi l,Dy.,f)
Bx .. £ ¥. @ § 11 ~ ~ ~[] - t. , X

Cx {ABCDEFGHI - 6Gb66
'Dx) J K L M N 0 P Q R 1 Q U fa 11 Y
b \+STUVWXYZ 2 00066
h 012345e789300~O

Figure 7. CECP character set

The CECP character set and code points have been
chosen to make migration as easy as possible. All
standard EBCDIC characters and country-speclflc
national-use characters are Included In the CECP char­
acter set. Also the 80 standard EBCDIC characters
have the same code pOints In all CECPs, and each
country's CECP uses the same code pOints for Its 14
EBCDIC national-use characters as before.

So, for example, the capital letter A is represented by
X I C1 ' and the numeral 1 by X I F1' In the older scheme
and In CECPs. The dollar sign Is represented by X '5B'
and cent sign by X I 4A ' In both the USA CECP and the
older EBCDIC national-use assignments for the USA. In
both the UK CECP and the older UK EBCDIC
national-use assignments, the pound sign Is repres­
ented by X '5B' and the dollar sign by X '4A I •

Because CECPs are generally supersets of each
country's older EBCDIC codes, existing EBCDIC data
usually appears on CECP devices with the correct char­
acters. This Is why CECPs were often transparent to
users and programmers under releases of GDDM
before VerSion 2 Release 2. GDDM now more fully
exploits the capabilities of CECP devices.

GDDM code page concepts and facilities

A typical GDDM application program reads output data
from flies and sends It to terminals, printers, or plot­
ters, and reads Input data from terminals and stores It
In flies. The presentation of the output data on the
screen or paper will contain the correct characters If
the data In the flies has the same code page as the
output device. Otherwise, to be sure of obtaining the
correct characters, the code page of the data must be
converted before being transmitted. Similarly, Input

Chapter 14. Country-extended code pages 121

code pages

data may need to be converted after receipt from the
terminal to be sure that all the data in the flies uses the
same code page.

GDDM performs these conversions on behalf of appli­
cation programs. A programmer or end user can
specify an application code page in which applications
require to pass data to, and receive data from, GDDM.
GDDM itself can determine the device code page
(although this too can be specified). Output data
passed by API calls is converted by GDDM from the
application code page to the device code page before
being sent to the device; and input data is converted
from the device code page to the application code page
before being returned by API calls to the application.

Code pages can be specified iil nickname statements.
No additional programming Is usually required, and
eXisting programs can benefit from the new function
without being recompiled or re-lInk-edited. The default
action for Version 2 Release 2 Is to perform no code
page conversion. Unless at least one GDDM default
statement or API call explicitly specifying code page
conversion Is supplied, programs will run exactly as
they did under releases of GDDM before Version 2
Release 2.

Conversion Is carried out on all types of character data
handled by the GDDM Base products, whether alphanu­
meric or graphics text, and whether generated by the
application program, the end user, or GDDM itself.
8esldes Input and output data, this Includes, for
example, window names and GDDM messages.

Besides devices and application programs, there are
two other sources and targets for character data
handled by GDDM: the operating system and GDDM
object flies. Each can employ Its own particular code
page. Altogether, GDDM can process four different
types of code page on behalf of an application program,
as shown In Figure 8 on page 123. The four types are:

• The device code page: the one used by a terminal,
printer, or plotter for Input or output.

• The application code page: the one used by the
data passing between application programs and
GDDM. It applies to aI/ data flowing between a
program and GDDM, whether passed to, or
returned by, GDDM, and whether passed as a
parameter on a call or In a data structure. It there­
fore applies to any character data that an applica­
tion program reads from user files and passes to
GDDM, In addition to characters coded literally in
the program source.

• The GDDM object code page: the one used by data
stored In a GDDM object file - such as a gener­
ated mapgroup, or a graphics data format (GDF)
file - including any description that may be stored
with the object. The object code page also applies
to ADMPRINT flies.

• The Installation code page: the one used by data
passed between GDDM and the operating system.
Principally, this means the nam~s of files.

As an example of code page conversion, consider an
application program running with the USA CECP as the
application code page, and the UK CECP as the device
code page. If the application passes GDDM a code

122 Base Programming Reference

point of X'C1' in some output data, this Is transmitted
unchanged to the terminal: It represents the character
A In both code pages. But if the application passes a
code point of X' 5B', this Is converted to X' 4A' before
being transmitted to the terminal, because X '58'
represents the dollar sign In the USA CECP, and X '4A '
represents the dollar sign In the UK CECP.

In addition to implicit conversion, GDDM applications
can explicitly convert data from one specified code
page to another using a GDDM Base call, FSTRAN.
Calls providing code page functions are:

• ESQCPG - Query Code Page Of a GDDM Object
• ESQEUD - Query Encoded User Default Specifica­

tion
• ESSCPG - Set Code Page Of a GDDM Object
• FSTRAN - Translate Character String.

They are described In GDDM Base Programming Refer­
ence, Volume 1.

A PlIl sample program, called ADMUSP7, Is supplied
that uses a selection of these calls.

The standard code pages supported by GDDM are
listed in Figure 9 on page 124. The figure shows the
global Identifiers that uniquely identify the code pages.

What you should consider doing

These possible actions should be carefully considered
by all installations:

1. Do nothing about CECP.

This enables applications to run exactly as they did
under releases of GDDM before Version 2
Release 2. However, it may mean that end-users
are missing benefits from the CECP facilities and
so this action Is not recommended.

2. Specify the local national CECP as the default
installation and application code pages for GDDM
programs.

These are the recommended minimum actions.
They have the effect of switching on support for
code-page conversion. Data from GDDM applica­
tions and GDDM objects is displayed, printed, and
plotted as far as possible in the correct characters
on any device.

"Installation code page" and "Application code
page" on page 124 explain how to specify these
defaults.

3. In future, specify a single application code page
within each new application.

This ensures that the application always uses the
specified code page, whatever the installation in
which it is run, and whatever the code pages of the
devices it uses. The code page could be a national
CECP, or the multilingual code page (global code
page identifier 00500).

If such an application was exported to other coun­
tries, it would stili use the same code page. Any
flies It created containing data passed to it from
terminals would use the same code pOints, irre­
spective of the country In which It was executed.

"Application code page" on page 124 explains
how an application program can set Its code page.

code pages

Device CP
G A

! D L p
D P
M 1

; A P P L I CAT ION
0 G D D M c ...
b a

- 1-+ j • I t
e ;
c r 0
t n

C C
P Install at; on CP P

i
OPE RAT I N G

Name [.--

GDDM
object
fi le Key: r

Figure 8. Code page conversion

4. In appropriate future applications, convert code
pages explicitly.

Programs that do this can handle data in a multi­
plicity of code pages. For example, a multinational
enterprise might want to produce an international
telephone directory by merging files created in
several different countries. Using the FSTRAN call,
a program can convert data from the various
national code pages to a single standard one.

Code pages supported by GDDM

The code pages supported by GDDM are defined in
translation tables contained in the alphanumeric
defaults module, ADMDATRN. Those defined in the
standard module are listed in Figure 9 on page 124.
The module can be modified - see the GDDM Installa­
tion and System Management manual.

PRO G RAM

S Y S T E M

Data Code
transfer r page

conversio n

The two GDDM code pages, default EBCDIC (00351)
and Katakana (00290), are special. If either the source
or the target for any of the possible conversions shown
in Figure 8 is a GDDM code page, no conversion takes
place. The uses of these code pages are given In
"Compatibility with releases of GDDM before Version 2
Release 2" on page 124.

Code pages 00351 and 00290 are illustrated in the
description of the ASTYPE call in GDDM Base Program­
ming Reference, Volume 1; CECPs are illustrated in the
GDDM Typefaces and Shading Patterns booklet.

Chapter 14. Country-extended code pages 123

code pages

Name

CECP USA/Canada/Portugal 1/
Netherlands

CECP Austria/Germany
CECP Brazi 1
CECP Denmark/Norway
CECP Finland/Sweden
CECP Italy
CECP Japan(Latin)
CECP Spain/Latin America
CECP United Kingdom/Ireland
GDDM Katakana
CECP France
GDDM default EBCDIC
CECP multi-lingual page

Switzerland/Belgium2

CECP Iceland

(MLP)/

Global code page
identifier

1313937
139273
99275
99277
139278
139289
139281
99284
139285
aa29a
ea297
ea351

aa5ea
a9871

1 9131337 has superseded 139282 for Portugal
2 9135913 has superseded 1313274 for Belgium

00282 and 00274 are supported for compatibility.
They can be specified when an application needs to
run with CECP devices or data that employ these
early CECPs. Otherwise, neither should be speci­
fied.

Figure 9. Code pages supported as standard by GDDM

Specifying code pages
Application code page

This is specified in the GDDM default APPCPG. The
application code page used if no APPCPG default is
coded explicitly on an ADMMDFT macro, namely 00351,
is the GDDM default EBCDIC code page, which has the
effect of preventing code page conversion of all data
passed to and from the application program.

Device code page

GDDM queries the code page support of devices when
they are opened, that is, when an explicit or implicit
DSOPEN call is executed. For devices that do not
return this information, the device code page proc­
essing option (DEVCPG) may be used. A CECP identi­
fier returned by the device is used as the device code
page, unless a DEVCPG processing option has been
specified for the device, in which case the processing
option overrides the query reply. If no processing
option has been specified, and the device does not
return the information, the installation code page is
used as the device code page.

Installation code page

This is specified in the GDDM default, INSCPG. The
installation code page used if no INSCPG default is
coded explicitly on an ADMMDFT macro, is 00037. This
is the CECP for USA, Canada, Portugal, and the
Netherlands.

More information about GDDM default statements is
given in Appendix A, "GDDM's default values" on
page 127.

124 Base Programming Reference

Object code page

All GDDM object files saved after Version 2 Release 2
of a GDDM Base product has been installed are tagged
with the application code page that is current at the
time of saving. When an object is loaded, GDDM
inspects its tag and uses the code page it contains as
the object code page for that object.

If an object being loaded does not have a valid tag -
usually this is because it was created under a release
of GDDM before Version 2 Release 2 - GDDM uses the
current application code page as the object code page.

The GDDM objects and their file-types are:

Graphics data format (GDF) files (ADMGDF)
Chart format files (ADMCFORM)
Chart data files (ADMCDATA)
Chart definition files (ADMCDEF)
Image data files (ADMIMG)
Projection definition files (ADMPROJ)
Saved pictures (FSSAVE) flies (ADMSAVE)
GKS metafiles (ADMGKSM)
Symbol sets (ADMSYMBL)
Generated mapgroups (ADMGGMAP).

ADMGDF object files converted from PIF by the
ADMUPCx utilities are tagged with an object code page
equal to the current application code page when they
are created. However, the objects' contents are not
converted.

ADM PRINT files are also tagged with an object code
page when they are created, for use by the GDDM Print
Utility.

There is a GDDM Base call and an end-user util ity for
explicitly tagging GDDM objects. The call, ESSCPG, is
described in GDDM Base Programming Reference,
Volume 1, and the utility, ADMUOT, is described below.

Compatibility with releases of GDDM
before Version 2 Release 2
GDDM code pages

In some circumstances, an installation may want pro­
grams to continue to operate without code page con­
version. For this purpose, GDDM provides a special
code page called GDDM default EBCDIC (00351). If it is
specified as the application code page, it has the effect
of preventing all CECP code page conversion, apart
from explicit conversions using the FSTRAN call.

For Version 2 Release 2, if no installation or application
code page is specified, and no tagged GDDM objects
are used, GDDM default EBCDIC is used by GDDM as
the application and object code pages, which prevents
implicit conversion. Thus, if no action is taken to
specify code pages, programs will run as they did
under releases of GDDM before Version 2 Release 2.

For Katakana applications, there is a GDDM Katakana
code page, 00290. When this is specified as the appli­
cation code page, it prevents CECP-type code page
conversion. However, data transmitted to and from
devices is converted as if an ASTYPE call with a
parameter value of 3 had been executed.

Inhibiting Input of extended code points

Some terminals, such as the 3179-G, allow the host
computer to specify whether keyboard input of all 190
CECP code points is to be allowed. If disallowed, only
a base set (of, typically, 94 code points) can be entered.
Attempting to enter one of the new CECP code points
puts the terminal into the input-inhibit state.

An external default, CECPINP, controls this function. It
enables existing applications to be protected from new
code pOints. It does not affect the use of the new code
pOints in output data, nor the display and printing of the
full range of CECP characters.

Code page conversion in GDDM objects
Graphics data format flies: The code page of graphics
text in ADMGDF-type files is converted.

Symbol sets: These are converted only if they contain
a character in every CECP code point - or, more pre­
cisely, in X '41' through X' FE' for image symbol sets,
and X '42' through X' FE' for vector symbol sets.

Generated mapgroups: The code page of alphanu­
meric data in ADMGGMAP-type files is converted.

ADMIMG, and ADMPROJ flies: These contain char­
acter data in the description only; this data is con­
verted.

Interacl!ve Chart Utility (ICU): This is part of
GDDM-PGF, which has not been changed for GDDM
Version 2 Release 2. It therefore does not have any
extended code page functions, so no conversion of data
in ADMCFORM, ADMCDATA, and ADMCDEF files is
carried out by the ICU. However, when the ICU saves
these files, they are tagged with the current application
code page, because the ICU uses GDDM Base facilities
to do the saving.

Converting ICU charts

The character data in chart format and data files can be
converted explicitly using the FSTRAN call. A sample
application program, called ADMUSP7, is supplied that
does this. It is written in PLlI, and the source code is
supplied. It converts the data from the object code
page to the current application code page.

Editing symbol sets

Before using the Vector or Image Symbol Editor, the
user should ensure that the application code page is
the same as that of the symbol set being edited.

If a new symbol set is created, or if an existing symbol
set with a code page equal to the installation code page
is edited, the application code page can be allowed to
default. However, if a foreign symbol set - one that
has a code page different from the installation - is to
be edited, the application code page must be set explic­
itly before the editor is invoked. Here is an example
default statement for dOing this:

DEFAULT APPCPG=nnnnn

where nnnnn is the global code page identifier of the
symbol set to be edited.

code pages

If a foreign symbol set is edited without doing this, the
wrong symbols may be displayed during editing, and
the symbol set, when saved, will be tagged with the
wrong code page.

Symbol set code pages can be queried by a program
executing the ESQCPG call (refer to the GDDM Base
Programming Reference, Volume 1.)

All the GDDM symbol sets containing the CECP set of
characters are supplied in the order of code page
00037.

Utility program for tagging GDDM object
files (ADMUOT)

This utility uses the ESSCPG call to tag a specified
GDDM object file with a specified code page. It runs
under TSO or CMS only. CMS end users invoke it from
their terminals by entering the following (assuming the
utility module has not been renamed):

ADMUOT objname objtype cpgid

TSO end users enter the following (assuming the
module has not been renamed and is stored in
SYS1.PROCLlB):

CALL 'SYS1.PROCLIB(ADMUOT) objname objtype cpgid'

where

objname is the name of the object
objtype is an integer identifying the type of object.
The valid values and their meanings are the same as
for the ESSCPG call (refer to the GDDM Base Pro­
gramming Reference, Volume 1).
cpgid is the code page identifier. The standard
GDDM identifiers are listed on page 124.

The name of the object is converted by the utility from
the application code page to the installation code page.
Normally these are the same.

Code page conversion by GDDM Print
Utility

The object code page tag in GDDM print files (type
ADMPRINT) is used by the GDDM Print Utility.

The utility converts any CECP data in the file from the
object code page to the device code page.

APL characters

The CECP character set does not include APL charac­
ters. Applications requiring APL characters can either
use GDDM default EBCDIC (00351) as the application
code page, or they can use the ASCSS or GSCS call to
specify the alternative nonloadable symbol set.

4250 printer code page function

This function, in which a code page is specified using a
GSCPG call or CPN4250 external default parameter,
applies only when the current device is a 4250 printer.
If a 4250 (type 5) symbol set is specified in a GSLSS
call, the specified symbol set will be loaded using the
code page defined in the GSCPG call or in the external
default. It will not be affected by the current GDDM
device or application code page. This function there­
fore remains independent of the code page functions.

Chapter 14. Country-extended code pages 125

code pages

Symbol sets

Most of the GDDM sample symbol sets, which contain
single-byte Latin characters, contain the full set of 190
CECP characters. All the CECP symbol sets are listed
in Chapter 8, uSymbol sets" on page 65.

126 Base Programming Reference

ADMDVECP will be used as the default vector symbol
set provided a CECP has been specified as the applica­
tion code page. If the GDDM default EBCDIC code
page, 00351, is the application code page, the vector
symbol set ADMDVSS will be used instead.

default values

Appendix A. GDDM's default values

This Appendix contains information on the following:

• Changing GDDM's default values

• GDDM external defaults, listed by subsystem:

CICSIVS on pages 128 through 131

IMSNS on pages 131 through 133

TSO on pages 134 through 136

VM/CMS on pages 137 through 139

VSE/Batch on pages 140 through 141.

• Alphabetic list of default descriptions on pages 142
through 148.

GDDM's default values, listed by
subsystem

This section describes the options you can specify to
change defaults for your GDDM and subsystem envi­
ronment. The information is presented in tabular form
and is organized in alphabetic order of subsystem,
thus; CICSIVS, IMSIVS, TSO, VM/CMS, and VSE/Batch.

Full descriptions of the defaults are given under
"Alphabetic list of GDDM default values" on page 142,
where they are listed in alphabetic order of the user
default specification parameter.

The first four columns of each table give a brief
meaning of the option, the source format of the user
default specification (UDS) to change that option, the
GDDM default for that option, and the encoded format
of the UDS. The final column shows the methods of
impiementing the UDS you have specified; it shows
where the UDS can be specified, as follows:

M In the External Defaults Module,
F in the External Defaults File,
S In the SPINIT call,
e in the ESEUDS and ESSUDS cails.

Note that not all defaults can be specified by ali of the
methods; some defaults can be specified by only one of
the methods.

Changing GDDM's default values

The default values supplied by GDDM can be changed
to allow for variations in such things as specific oper­
ating environments, equipment availability, or user
requirements. For full details, see Chapter 1, "Cus­
tomizing your program and its environment" on
page 1.

If a default keyword is specified without a value, the
current default value is not changed. For example, in:

DEFAULT ERRTHRS=.NATLANG=F

the ERRTHRS keyword has no effect.

A default value of blanks can be defined by specifying it
as a nuil string enclosed in parentheses. For example:

DEFAULT TSOS99U=()

The tables that follow list, In alphabetic order of default
function, the GDDM defaults you can change for each
subsystem environment, together with their source­
format and equivalent encoded-format user default
specifications.

Note that in defaults files, the "ADMMDFT" keyword
can be replaced by "DEFAULT".

Appendix A. GDDM's default values 127

default values

GDDM external defaults' - CICS/VS

Table 16 (Page 1 of 3). GDDM defaults - options for CICSNS

Source synlax of the GDDM Encoded values - list of Valid In:
Meaning of default ADMMDFT options default full-words MFSC

Alphanumeric defaults DATRN=addr ADMDATRN 3,118,addr YNYY
module control

Always-unlock- AUNLOCK= NO 3,10,{011} YYVV
keyboard {NOIYES}

Application code page APPCPG=n 00351 3,125,n VYYV

Audit trail anchor block CICAUD:::: (stg-addr, 0,0 4,1201, NNVN
addresses: storage: pgm-addr) (none) A(STGANCH),
program: A(PGMANCH)

Call Information feed- CALLlNF= 0,0 4,1101, NNYN
back block: length: (Ien,addr) (none) L(CIB),
address: A(CIB)

CECP keyboard Input CECPINP = {YESINO} YES 3,126,{110} YVNN

CICS device query CICTQRY = aaaa ADMQ 3,211,aaaa YYYY
temporary storage
prefix

Comments for module COMMENT= N/A 1-8000,0,cccc, YYYV
identification (ccccccc, cccc, ••• ,

cccccccc
")

Compressed PS loads 10COMPR= YES 3,9,{011} YYYY
{NOIYES}

Date convention DATEFRM= 4 3,5,{1121314} YYVY
{1121314}

DBCS default selection DBCSDFT= GDDM 3,18,{01112} YYYY
{GDDMINOIYES}

DBCS SO/SI emulation SOSIEMC=c " 3,110,X'xxOOOOOO' YYVY
character

DBCS strings with MIXSOSI= NO 3,17,{011} YYYV
shift-out/shift-In {NOIYES}

DBCS symbol set com- DBCSLlM=n 4 3,113,n VYYV
ponent in-core
threshold

DBCS symbol set lan- DBCSLNG=c K 3,111 ,X' xxOOOOOO' YYYY
guage

Deck output transient CICDECK = aaaa ADMD 3,202,aaaa VYVN
data name

Defaults file temporary CICDFPX = aaaa ADMD 3,210,aaaa YNYN
storage prefix

Device attachment AM3270= YYYY
({LOCREMI LOCREM 4,12,{01,
REMOTEI 1/
LOCAL} 2}
,{SNANOSNAI SNANOSNA {Ol
NONSNAI 1/
SNA}) 2}

128 Base Programming Reference

default values

Table 16 (Page 2 of 3). GDDM defaults - options for CICSIVS

Source syntax of the GDDM Encoded values - IIsl of Valid In:
Meaning of defaull ADMMDFT options default full-words MFSC
Error exit: use ERRFDBK= GDDMDFLT 3,1102,0 YNYY
GDDM-supplied feed- (GDDMDFLT)
back block
Error exit: use user- ERRFDBK= - 5,1102,2,addr,len YNYY
supplied feedback (USERAREA,
block addr,len

Error threshold value ERRTHRS=n 4 3,101,n YYYY

Force validation of FRCEVAL={NOIYES} NO 3,127,{011} NYNN
HPA

Form feed FF3270P={NOI AFTER 3,11,0 YYYY
AFTERI 3,11,1
BEFOREI 3,11,2
BOTH} 3,11,3

FSSAVE buffer size SAVBFSZ=n 1024 3,105,n YYYY

ICU Isolate value ICUISOL = {01112} 0 3,112,{01112} YYYY

ICU panel color ICUPANC= TURQ 3,120,{511} YYYY
{TURQUOISE
IBLUE}

ICU symbol sets ICUFMSS={01112} 0 3,122,{01112} YYYY

ICU format ICUFMDF = {01112} 0 3,121,{01112} YYYY

GDDM-IMD ADMGIMP CICGIMP = aaaaaaaa ADMGIMP 4,203,aaaa,aaaa YYNN
file-control name

GDDM-IMD ADS output CICIADS = aaaa ADMG 3,207,aaaa YYNN
transient data name

GDDM-IMD staged data CICIFMT = aaaaaaaa ADMIFMT 4,208,aaaa,aaaa YYNN
file-type

GDDM-IMD staging file CICSTGF= aaaaaaaa ADMX 4,209,aaaa,aaaa YYNN
file-control name

Installation code page INSCPG=n 00037 3,124,n YNNN

Mapgroup storage MAPGSTG=n 8192 3,106,n YYYY
threshold

National language NATLANG=c A 3,4,X I xxOOOOOO I YYYN

No operation - - {011} YNYY

Number convention NUMBFRM = {11213} 1 3,7,{11213} YYYY

Parameter verification PARMVER = {NOIYES} NO 3,1,{011} NNYN
(SPI)

Print Utility Temporary CICTSPX = aaaa ADMT 3,204,aaaa YYYN
Storage prefix

Print Utility transaction CICPRNT = aaaa ADMP 3,205,aaaa YYYN
name

Short-on-storage proc- STGRET = {NOIYES} NO 3,2,{011} NNYN
esslng

Synchronized 1/0 10SYNCH'" {NOIYES} NO 3,8,{011} YYYY

Appendix A. GDDM's default values 129

default values

Table 16 (Page 3 of 3). GDDM defaults - options for CICSNS

Source syntax of the GDDM Encoded values - list of Valid In:
Meaning of default ADMMDFT options default full-words MFSC

System printer output CICSYSP == aaaa ADMS 3.206.aaaa YYYN
transient data name
Time convention TIMEFRM "" {1121314} 1 3.6.{1121314} YYYY

Trace table size, TRTABLE:;;:n 100 3.103.n YYYN
in-core

Trace output transient CICTRCE = aaaa ADMT 3,201.aaaa YYYN
data name

Trace control TRCESTR:;;: I aaaaaaa I (none) 3.114.aaaa.bbbb •.. YYYY

Trace output width TRCEWID=- {SINGLE I SINGLE 3,115,{011} YYYY
DOUBLE}

Trace word value TRACE=-{Oln} 0 3.102,n YYYY

Transaction independ- CICTIF=- {NOIYES} NO 3.14.{011} NNYN
ence

Transmission buffer IOBFSZ=-n 1536 3.104.n YYYY
size

User Control SAVE CTLSAVE=- {YESINO} NO 3.119,{011} YYYY
function control

VSAM data-set names OBJFILE"" (aaaaaaaa, 4-16.107, YYYY
for: bbbbbbbb ••••)

Symbol sets ADMF aaaa,aaaa,
Generated mapgroups ADMF bbbb,bbbb,
Saved pictures ADMF cccC,cccc,
Chart formats ADMF dddd,dddd,
Chart data ADMF eeee,eeee,
GDDM-IMD tutorial ADMGIMP ffff,ffff,
pages
GDF flies ADMF gggg,gggg
(reserved) - hhhh,hhhh
(reserved) - Ii Ii ,iii i
ProJection definitions ADMF jill .Ijjj
Image data ADMF kkkk,kkkk

130 Base Programming Reference

default values

GDDM external defaults - IMS/VS
Table 17 (Page 1 of 3). GDDM defaults - options for IMSIVS

Source syntax of the GDDM Encoded values - IIsl of Valid In:
Meaning of default ADMMDFT oplfons default full-words MFSC

Alphanumeric defaults DATRN=addr ADMDATRN 3,118,addr YNYY
module control

Always-unlock- AUNLOCK = {NOIYES} YES 3,10,{011} YNYY
keyboard

Application code page APPCPG=n 00351 3,125,n YYYY

Call information CALLlNF= (Ien,addr) 0,0 (none) 4,1101, NNYN
feedback block:
length: L(CIB),
address: A(CIB)

CECP keyboard input CECPINP = {YESINO} YES 3,126,{110} YYNN

Comments for module COMMENT= (cccccccc, N/A 1-8000,0,cccc,cccc YNYY
identification cccccccc, ,

.)
Compressed PS loads IOCOMPR = {NOIYES} YES 3,9,{oI1} YNYY

Data base DBD OBJFILE = (aaaaaaaa, 4-16,107, YNYN
names for: bbbbbbbb , •••)
Symbol sets ADMOBJ1 aaaa,aaaa,
Generated mapgroups ADMOBJ1 bbbb,bbbb,
Saved pictures ADMOBJ1 cccc,cecc,
Chart formats ADMOBJ1 dddd,dddd,
Chart data ADMOBJ1 eeee,eeee,
(reserved) - ftff ,ffff,
GDF files ADMOBJ1 gggg,gggg
(reserved) - hhhh,hhhh
(reserved) - iiii,iiii
Projection definition ADMOBJl jjjj,jjjJ
Image data ADMOBJl kkkk,kkkk

Date convention DATEFRM = {1121314} 4 3,5,{1121314} YNYY

DBCS default selection DBCSDFT= GDDM 3,18,{OI112} YYYY
{GDDMI NOIYES}

DBCSSO/SI SOSIEMC=c .. 3,11 O,X I xxOOOOOO I YNYY
emulation character

DBCS strings with MIXSOSI = {NOIYES} NO 3,17,{011} YNYY
shift-out/shift-in
DBCS symbol set com- DBCSLlM=n 4 3,113,n YYYY
ponent in-core
threshold

DBCS symbol set lan- DBCSLNG=c K 3,111,X I xxOOOOOO I YNYY
guage

Deck output L TERM IMSDECK = aaaaaaaa ADM DECK 4,302,aaaa,aaaa YNYN
name

Device attachment AM3270= 4,12, YNYY
({LOCREMI LOCREM {Ol,

REMOTEI 11
LOCAL} , 2}

{SNANOSNAI SNANOSNA {Ol
NONSNAI 11

SNA}) 2}

Appendix A. GDDM's default values 131

default values

Table 17 (Page 2 of 3). GDDM defaults - options for IMSIVS

Source syntax of the GDDM Encoded values - list of Valid In:
Meaning of default ADMMDFT options default full-words MFSC

Error exit: ERRFDBK= GDDMDFLT 3,1102,0 YNYY
use GDDM-supplied (GDDMDFLT)
feedback block

Error exit: ERRFDBK= - 5,l102,2,addr,Ien YNYY
use user-supplied (USERAREA,
feedback block addr,len)

Error threshold value ERRTHRS=n 8 3,101,n YNYY

Force validation of FRCEVAl = {NOIYES} NO 3,127,{011} NYNN
HPA

Form feed FF3270P= AFTER 3,11,0 YNVV
{NO I 3,11,1

AFTERI 3,11,2
BEFOREI 3,11,3

BOTH}

FSSAVE buffer size SAVBFSZ=n 1024 3,105,n YNVY

GDDM message output IMSMODN = aaaaaaaa DFS.EDT 4,317 ,aaaa,aaaa YNYY
descriptor (MOD) name

GDDM system defi- IMSSDBD = aaaaaaaa ADMSVSDF 4,307,aaaa,aaaa YNYN
nition data base DBD
name

ICU isolate value ICUISOL={01112} 0 3,l12,{01112} YNNN

ICU panel color ICUPANC= TURQ 3,120,{511} YYYY
{TURQUOISE I BLUE}

ICU symbol sets ICUFMSS={01112} 0 3,122,{01112} YYYY

ICU format ICUFMDF= 0 3,121, YYYY
{01112} {01112}

Input area size IMSUISZ=n 3000 3,310,n YNNN

Installation code page INSCPG=n 00037 3,124,n YNNN

Interactive Utility exit IMSEXIT = aaaaaaaa EXIT 4,311,aaaa,aaaa YNNN
character string
Interactive Utility shut- IMSMAST = aaaaaaaa MASTER 4,313,aaaa,aaaa YNNN
down L TERM name

Interactive Utility shut- IMSSHUT = aaaaaaaa SHUTDOWN 4,312,aaaa,aaaa YNNN
down string

Mapgroup storage MAPGSTG=n 8192 3,106,n YYYY
threshold

Maximum number of IMSUMAX=n 5 3,309,n YNNN
users

National language NATlANG=c A 3,4,X' xxOOOOOO' YNYN

No operation - - {Oil} YNYV

Number convention NUMBFRM = {11213} 1 3,7,{11213} YNYY

Parameter verification PARMVER = {NOIYES} NO 3,l,{011} NNYN
(SPI)

132 Base Programming Reference

default values

Table 17 (Page 3 of 3). GDDM defaults - options for IMSNS

Source syntax of the GDDM Encoded values - list of Valid In:
Meaning of default ADMMDFT options default full-words MFSC
Print Utility transaction IMSPRNT= aaaaaaaa ADMPRINT 4,303,aaaa,aaaa YNYN
name

Segment/Key field IMSSEGS= 14,308, YNYN
names: (aaaaaaaa,

bbbbbbbb
....)

Object data base ADMOBROO aaaa,aaaa
root segment
Object data base ADMOBDEP bbbb,bbbb
dependent segment
Object data base ADMOBRKY cccc,cccc
root key field
Object data base ADMOBDKY dddd,dddd
dependent key field
System definition ADMSDSGM eeee,eeee
data base segment
System definition ADMSDKEY ffff,ffff
data base key field

Short-on-storage proc- STGRET= {NOIYES} NO 3,2,{OI1} NNYN
essing

System printer output IMSSYSP = aaaaaaaa ADM LIST 4,314,aaaa,aaaa YNYN
destination name

Time convention TIMEFRM = {1121314} 1 3,6,{1121314} YNYY

Trace output ddname IMSTRCE = aaaaaaaa ADM TRACE 4,301,aaaa,aaaa YNYN

Trace table size, TRTABLE=n 100 3,103,n YNYN
in-core

Trace control TRCESTR = I aaaaaaa I (none) 3,114,aaaa,bbbb YYYY

Trace output width TRCEWIO= {SINGLE I SINGLE 3,115,{OI1} YYYY
DOUBLE}

Trace word value TRACE = {Oln} 0 3,102,n YNYY

Transaction name for IMSISE = aaaaaaaa ISSE 4,304,aaaa,aaaa YNNN
Image Symbol Editor

Transaction name for IMSICU = aaaaaaaa CHART 4,306,aaaa,aaaa YNNN
Interactive Chart Utility

Transaction name for IMSVSE = aaaaaaaa VSSE 4,305,aaaa,aaaa YNNN
Vector Symbol Editor

Transmission buffer IOBFSZ=n 1536 3,104,n YNYY
size

User Control SAVE CTlSAVE={YESINO} NO 3,119,{OI1} YYYY
function control

Write-to-operator IMSWTOD = (n,n,n, ..) (7) 3,316,X'xxxxOOOO' YNYN
descriptor codes

Write-to-operator IMSWTOR = (n,n,n, ..) (2) 3,315,X' xxxxOOOO' YNYN
routing codes

Appendix A. GDDM's default values 133

default values

GDDM external defaults - TSO
Table 18 (Page 1 of 3). GDDM defaults - options for TSO

Source syntax of Ihe GDDM Encoded values - IIsl of Valid In:
Meaning of default ADMMDFT options defaull full-words MFSC

Alphanumeric defaults DATRN=addr ADMDATRN 3,l18,addr YNYY
module control

Always-unlock- AUNLOCK = {NOIYES} NO 3,10,{011} YYYY
keyboard

APLdefault TSOAPLF= DATAANAL 3,16,{011} YYYY
specification {DATAANALI APLTEXT)

Application code page APPCPG=n 00351 3,125,n YYYY

Call Information CALLINF= (Ien,addr) 0,0 (none) 4,1101, NNYN
feedback block:
length: L(CIB),
address: A(CIB)

CECP keyboard input CECPINP= {YESINO} YES 3,126,{110} YYNN

Comments for module COMMENT= N/A 1-8000,O,cccc,cccc " ••• YYYY
Identification (cccccccc,cccccccc,)
Compressed PS loads IOCOMPR = {NOIYES} YES 3,9,{011} YYYY

Date convention DATEFRM = {1121314} 4 3,5,{1121314} YYYY

DBCS default selection DBCSDFT=
{GDDMI NOIYES}

GDDM 3,18,{01112} YYYY

DBCSSO/SI SOSIEMC=c II 3,l10,X I xxOOOOOO I YYYY
emulation character

DBCS strings with MIXSOSI = {NOIYES}
shlft-out/shlft-In

NO 3,17,{011} YYYY

DBCS symbol set com- DBCSLlM=n 4 3,l13,n YYYY
ponent In-core
threshold

DBCS symbol set lan- DBCSLNG=c K 3,111,X I xxOOOOOO I YYYY
guage

ddnames for: OBJFILE= 4-16,107, YYYY
(aaaaaaaa,bbbbbbbb,)

Symbol sets ADMSYMBL aaaa,aaaa,
Generated mapgroups ADMGGMAP bbbb,bbbb,
Saved pictures ADMSAVE cccc,cccc,
Chart formats ADMCFORM dddd,dddd,
Chart data ADMCDATA eeee.eeee.
GDDM-IMD tutorial ADMGIMP ffff,ffff.
pages
GDF files ADMGDF gggg,gggg
(reserved) - hhhh,hhhh
Chart data definition ADMCDEF I iii ,I III
Projection definition ADMPROJ jjjj.jjjj
Image data ADMIMG kkkk,kkkk
Deck output ddname TSODECK = aaaaaaaa ADM DECK 4,402,aaaa,aaaa YYYN

Defaults file ddname TSODFTS = aaaaaaaa ADMDEFS 4,411,aaaa,aaaa YNYN

134 Base Programming Reference

default values

Table 18 (Page 2 of 3). GDDM defaults - options for TSO

Source syntax of the GDDM Encoded values - list of Valid In:
Meaning of default ADMMDFT options default full-words MFSC

Device attachment AM3270=(4,12, YYYY
{LOCREMI LOCREM {Ol,
REMOTEI 11
LOCAL} 2}

,{SNANOSNAI SNANOSNA {Ol
NONSNAI 11
SNA}) 2}

Error exit:
use GDDM-supplied ERRFDBK = (GDDMDFL T) GDDMDFLT 3,1102,0 YNYY
feedback block
use user-supplied
feedback block ERRFDBK = (USERAREA) - 5,1102,2,addr,len YNYY

addr,len)

Error threshold value ERRTHRS=n 4 3,101,n YYYY

Force validation of FRCEVAL={NOIYES} NO 3,127,{011} NYNN
HPA

Form feed FF3270P= AFTER YYYY
{NOI 3,11,0

AFTERI 3,11,1
BEFOREI 3,11,2

BOTH} 3,11,3

FSSAVE buffer size SAVBFSZ=n 1024 3,105,n YYYY

High-resolution image
generation;
color ddname or TSOCOLM = aaaaaaaa ADMCOL+ 4,409,aaaa,aaaa YYYN
high-level qualifier
monochrome ddname TSOMONO = aaaaaaaa ADMIMAGE 4,408,aaaa,aaaa YYYN
or high-level qualifier

ICU isolate value ICUISOL={OI112} 0 3,112,{01112} YYYY

ICU panel color ICUPANC= TURQ 3,120,{511} YYYY
{TURQUOISE IBLUE}

ICU symbol sets ICUFMSS={01112} 0 3,122,{01112} YYYY

ICU format ICUFMDF={01112} 0 3,121,{01112} YYYY

GDDM-IMD ADMGIMP TSOGIMP = aaaaaaaa ADMGIMP 4,403,aaaa,aaaa YYNN
ddname

GDDM-IMD ADS output TSOIADS = aaaaaaaa ADMGNADS 4,406,aaaa,aaaa YYNN
ddname

GDDM-IMD Export data TSOIFMT= aaaaaaaa ADMIFMT 4,407,aaaa,aaaa YYNN
ddname

Installation code page INSCPG=n 00037 3,124,n YNNN

Map group storage MAPGSTG=n 8192 3,106,n YYYY
threshold

National language NATLANG=c A 3,4,X I xxOOOOOO I YYYN

No operation - - {011} YNYY

Number convention NUMBFRM = {11213} 1 3,7,{11213} YYYY

Appendix A. GDDM's default values 135

default values

Table 18 (Page 3 of 3). GDDM defaults - options for TSO

Source syntax of the GDDM Encoded values - list of Valid In:
Meaning of default ADMMDFT options default full-words MFSC

Parameter verification PARMVER = {NOIYES} NO 3.1.{011} NNYN
(SPI)

Print data-set qualifier TSOPRNT = aaaaaaaa ADMPRINT 3,404.aaaa.aaaa YYYN

Short-on-storage proc- STGRET = {NOIYES} NO 3.2.{011} NNYN
essing

SVC99 allocation size TSOS99S=n 742710 3.410,n YYYY

SVC99 unit specifica- TSOS99U = aaaaaaaa SYSDA 4,412,aaaa,aaaa YYYY
tion

Synchronized I/O 10SYNCH = {NOIYES} NO 3,8.{011} YYYY

System printer output TSOSYSP = aaaaaaaa ADMLIST 4,405.aaaa.aaaa YYYN
ddname

Time convention TIMEFRM = {1121314} 1 3,6,{1121314} YYYY

Trace output ddname TSOTRCE = aaaaaaaa ADMTRACE 4,401.aaaa,aaaa YYYN

Trace table size, TRTABLE=n 100 3,103,n YYYN
in-core

Trace control TRCESTR = I aaaaaaa I (none) 3.114,aaaa,bbbb, .. YYYY

Trace output width TRCEWID = {SINGLE I SINGLE 3,115,{011} YYYY
DOUBLE}

Trace share TRCESHR = {NOIYES} NO 3,117,{011} YYYY

Trace word value TRACE={Oln} 0 3,102.n YYYY

Transmission buffer IOBFSZ=n 1536 3.104,n YYYY
size

User Control SAVE CTLSAVE = {YESINO} YES 3,119,{011} YYYY
function control

4250 code-page name CPN4250 = aaaaaaaa AFTC0395 4,109,aaaa.aaaa YYYY

TSO Emulation TSOEMUL = {NOIYES} NO 3,413 YYYY

136 Base Programming Reference

default values

GDDM external defaults - VM/CMS
Table 19 (Page 1 of 3). GDDM defaults - options for VM/CMS

Source synlax of the GDDM Encoded values - IIsI of Valid In:
Meaning of default ADMMDFT options default full-words MFSC

Abend-return proc- ABNDRET = {NOIYES} NO 3.3.{011} NNYN
essing

Alphanumeric defaults DATRN=addr ADMDATRN 3.118.addr YNYY
module control

Always-unlock- AUNLOCK = {NOIYES} NO 3.10.{011} YYYY
keyboard

APL default CMSAPLF= APLTEXT 3.15.{011} YYYY
specification {DATAANALI

APLTEXT}

Application code page APPCPG=n 00351 3.125.n YYYY

Call information CALLlNF= (Ien.addr) 0.0 (none) 4.1101. NNYN
feedback block:

length: L(CIB).
address: A(CIB)

CECP keyboard input CECPINP={YESINO} YES 3.126.{110} YYNN

Comments for module COMMENT= N/A 1-8000.0.cccc.cccc YYYY
identification (cccccccc.

cccccccc •
........)

Compressed PS loads 10COMPR = {NOIYES} YES 3.9.{011} YYYY

Date convention DATEFRM = {1121314} 4 3.5.{1121314} YYYY

DBCS default selection DBCSDFT= GDDM 3.18.{01112} YYYY
{GDDMI NOIYES}

DBCS SOlS I emulation SOSIEMC=c .. 3,11 O,X I xxOOOOOO I YYYY
character

DBCS strings with MIXSOSI = {NOIYES} NO 3,17.{OI1} YYYY
sh ift-outlsh ift-i n

DBCS symbol set com- DBCSLlM=n 4 3,113,n YYYY
ponent in-core
threshold

DBCS symbol set lan- DBCSLNG=c K 3,111 ,X I xxOOOOOO I YYYY
guage

Deck output filetype CMSDECK = aaaaaaaa ADM DECK 4,503.aaaa,aaaa YYYN

Defaults file: CMSDFTS= PROFILE 6.511, YNYN
- filename (aaaaaaaa, ADMDEFS aaaa,aaaa,
- filetype bbbbbbbb) bbbb,bbbb

Device attachment AM3270=(4.12, YYYY
{LOCREMI LOCREM {Ol,
REMOTEI 11
LOCAL} 2}

.{SNANOSNAI SNANOSNA {Ol
NONSNAI 11
SNA}) 2}

Appendix A. GDDM's default values 137

default values

Table 19 (Page 2 of 3), GDDM defaults - options for VM/CMS

Source syntax 01 the GDDM Encoded values - IIsl of Valid In:
Meaning of defaull ADMMDFT options default full-words MFSC

Error exit:
use GDDM-supplied ERRFDBK= GDDMDFLT 3,1102,0 YNYY
feedback block (GDDMDFLT) - 5,1102,2,addr,len YNYY
use user-supplied ERRFDBK=
feedback block (USERAREA,addr,len)

Error threshold value ERRTHRS=n 4 3,101,n YYYY

Filetypes for: OBJFILE= 4-16,107, YYYY
(aaaaaaaa,
bbbbbbbb . ' ..)

Symbol sets ADMSYMBl aaaa,aaaa,
Generated mapgroups ADMGGMAP bbbb,bbbb,
Saved pictures ADMSAVE cccc,cccc,
Chart formats ADMCFORM dddd,dddd,
Chart data ADMCDATA eeee,eeee,
GDDM-IMD tutorial ADMTUTPG ffff ,ffff,
pages
GDF files ADMGDF gggg,gggg
(reserved) - hhhh,hhhh
Chart data definition ADMCDEF iiii,iiii
Projection definition ADMPROJ jjjj,jjjj
Image data ADMIMG kkkk,kkkk

Force validation of FRCEVAl = {NOIYES} NO 3,127,{011} NYNN
HPA

Form feed FF3270P= AFTER YYYY
{NOI 3,11,0

AFTER I 3,11,1
BEFORE I 3,11,2

BOTH} 3,11,3

FSSAVE buffer Size SAVBFSZ=n 1024 3,105,n YYYY

High-resolution image
generation;
color filetype CMSCOlM = aaaaaaaa ADMCOL+ 4,510,aaaa,aaaa YYYN
monochrome filetype CMSMONO = aaaaaaaa ADMIMAGE 4,509,aaaa,aaaa YYYN

ICU Isolate value ICUISOL = {01112} 0 3,112,{01112} YYYY

ICU panel color ICUPANC= TURQ 3,120,{511} YYYY
{TURQUOISE I BLUE}

ICU symbol sets ICUFMSS={01112} 0 3,122,{01112} YYYY

ICU format ICUFMDF={01112} 0 3,121,{01112} YYYY

GDDM-IMD ADS output CMSIADS = aaaaaaaa COpy 4,506,aaaa,aaaa YYNN
filetype

GDDM-IMD Export data CMSIFMT = aaaaaaaa ADMIFMT 4,507,aaaa,aaaa YYNN
filetype

GDDM-IMD MSl CMSMSl T = aaaaaaaa ADMMSL 4,508,aaaa,aaaa YYNN
filetype

Installation code page INSCPG=n 00037 3,124,n YNNN

Mapgroup storage MAPGSTG=n 8192 3,106,n YYYY
threshold

National language NATLANG=c A 3,4,X I xxOOOOOO I YYYN

138 Base Programming Reference

default values

Table 19 (Page 3 of 3). GDDM defaults - options for VM/CMS

Source syntax of the GDDM Encoded values - list of Valid In:
Meaning of default ADMMDFT options default full·words MFSC

No operation - - {0113} VNVV

Number convention NUMBFRM = {11213} 1 3,7,{11213} VVVV

Parameter verification PARMVER = {NOIVES} NO 3,1,{011} NNVN
(SPI)

Queued printer output CMSPRNT = aaaaaaaa ADM PRINT 4,504,aaaa,aaaa VVVN
filetype

Short-an-storage proc- STGRET={NOIVES} NO 3,2,{OI1} NNVN
essing

System printer output CMSSVSP = aaaaaaaa ADM LIST 4,505,aaaa,aaaa VVVN
fIIetype

Time convention TIMEFRM = {1121314} 1 3,6,{1121314} VVVY

Trace output: CMSTRCE= 6,502, VVVN
filename (aaaaaaaa, ADMOOOO1 aaaa,aaaa,
filetype bbbbbbbb) ADMTRACE bbbb,bbbb

Trace table size, TRTABLE=n 100 3,103,n VVVN
in-core

Trace control TRCESTR = 'aaaaaaa I (none) 3,114,aaaa,bbbb, •••• VVVV

Trace output width TRCEWID = {SINGLE I SINGLE 3,115,{011} VVYV
DOUBLE}

Trace share TRCESHR = {NOIVES} NO 3,117,{011} VVVV

Trace word value TRACE={Oln} 0 3,102,n VVVV

Transmission buffer IOBFSZ=n 1536 3,104,n VVVV
size

User Control SAVE CTLSAVE={YESINO} YES 3,119,{011} VVVV
function control

Work-file filetype CMSTEMP = aaaaaaaa ADMUT1 4,501,aaaa,aaaa VVVN

4250 code-page name CPN4250 = aaaaaaaa AFTC0395 4,109,aaaa,aaaa VYVV

Appendix A. GDDM's default values 139

default values

I GDDM external defaults - YSE/Batch

Table 20 (Page 1 of 2). GDDM defaults - options for VSE/Batch

Source syntax of the GDDM Encoded values - list of full- Valid In:
Meaning of default ADMMDFT options default words MFSC

Alphanumeric DATRN=addr ADMDATRN 3.11S.addr YNYY
defaults module
control

Application code APPCPG=n 00351 3.125.n YYYY
page

Call information CAlllNF= 0.0 4.1101. NNYN
feedback block: (Ien.addr) (none) l{CIB).
length: address: A{CIB)

Comments for COMMENT= N/A 1-S000.0.cccc. YYYY
module identifica- (ccccccc. ecce •••.•
tion cccccccc

........)
Composed-page VSEMONO= aaaaaaaa ADMIMGE 3.602.aaaa.aaaa YYYY
printer flies for
image generation;
monochrome file
name

Composed-page VSECOlM = aaaaaaaa ADMCOl+ 3.603.aaaa.aaaa YYYY
printer files for
image generation;
color file name

Date convention DATEFRM= 4 3.5.{1121314} YYYY
{1121314}

DBCS default DBCSDFT= GDDM 3.1S.{01112} YYYY
selection {GDDMINOIYES}

DBCS strings with MIXSOSI= NO 3.17.{011} YYYY
shlft-out/shlft-In {NOIYES}

DBCS symbol set DBCSlIM=n 4 3,113.n YYYY
component In-core
threshold

DBCS symbol set DBCSlNG=c K 3, 111.X' xxOOOOOO' YYYY
language

Defaults file name VSEDFTS = aaaaaaaa SYSIPT 3.604,aaaa,aaaa YNYN

Error exit: use ERRFDBK= GDDMDFlT 3,1102,0 YNYY
GDDM-supplied (GDDMDFlT)
feedback block
Error exit: use ERRFDBK= - 5,11 02.2,addr ,len YNYY
user-supplied feed- (USERAREA.
back block addr,len

Error threshold ERRTHRS=n 4 3,101,n YYYY
value

Force validation of FRCEVAl = {NOIYES} NO 3.127,{011} NYNN
HPA

FSSAVE buffer size SAVBFSZ=n 1024 3,105,n YYYY

ICU format ICUFMDF = {01112} 0 3.121.{01112} YYYY

140 Base Programming Reference

default values

Table 20 (Page 2 of 2). GDDM defaults - options for VSE/Batch

Source syntax 01 the GDDM Encoded values - list of full- Valid In:
Meaning of default ADMMDFT options default words MFSC

Installation code INSCPG=n 00037 3,124,n YNNN
page

Mapgroup storage MAPGSTG=n 8192 3,106,n YYYY
threshold

National language NATLANG=c A 3,4,X I xxOOOOOO I YYYN

No operation - - {Oil} YNYY

Number convention NUMBFAM = {11213} 1 3,7,{11213} YYYY

Parameter verifica- PAAMVEA = {NOIYES} NO 3,1,{011} NNYN
tion (SPI)

Short-on-storage STGAET = {NOIYES} NO 3.2,{011} NNYN
processing

Time convention TIMEFAM <:: {1121314} 1 3.6,{1121314} YYYY

Trace table size, TATABlE=n 100 3,103,n YYYN
in-core

Trace file name VSETACE = aaaaaaaa ADMTACE 3,601,aaaa,aaaa YYYN

Trace control TACESTA = 'aaaaaaa I (none) 3,114,aaaa,bbbb, .. YYYY

Trace output width TACEWID = {SINGLE I SINGLE 3,115,{011} YYYY
DOUBLE}

Trace word value TAACE={Oln} 0 3,102,n YYYY

VSAM data-set OBJFllE = (aaaaaaaa, 4-16,107. YYYY
names for: bbbbbbbb " ••)

Symbol sets ADMF aaaa,aaaa,
Generated ADMF bbbb,bbbb,
mapgroups
Saved pictures ADMF cccC,cccc,
Chart formats ADMF dddd,dddd,
Chart data ADMF eeee,eeee,
GDDM-IMD tutorial ADMGIMP ffff ,ffff,
pages
GDF files ADMF gggg,gggg
(reserved) - hhhh,hhhh
(reserved) - iiii ,lIii
Projection deti- ADMF jjjj ,jjjj
nitions
Image data ADMF kkkk,kkkk

Appendix A. GDDM's default values 141

default values

Alphabetic list of GDDM default
values

This section lists the GDDM default values in alphabetic
order of the user default description parameter. For
example, for the "always-unlock-keyboard" default you
would look up AUNLOCK in this list.

Note: Where an operand is defined as a 4- or
a-character string, it may be specified as a shorter
value, In which case the string Is left-Justified and
padded with blanks to 4 or a characters.

ABNDRET= {NOIYES}
Shows whether, in a controlled abnormal-end (abend)
condition, GDDM should Immediately return control to
the application program with a corresponding error
code and message. The message includes an indi­
cation of the abend code that GDDM would otherwise
have Issued.

This default applies to VM/CMS only.

Note: Requesting this function causes GDDM to
return only in controlled abend situations. Uncon­
trolled abends, such as program checks and abends
issued by underlying subsystem services, cannot be
returned in this manner. Also, an abend situation
may be indicative of a major Internal error; hence,
successful return to the application cannot be
ensured.

GDDM does not try to correct the abend situation or to
release resources before returning to the application.
Successful continuation of the GDDM session after
return cannot be ensured.

AM3270'" ({LOCALIREMOTEILOCREM},{SNAINONSNAI
SNANOSNA})
Shows the attachment mode of 3270-family devices.
All devices can be local, all remote, or a mixture of
both. All can be SNA devices, all non-SNA, or a
mixture of both.

This default identifies known device characteristics
that GDDM may not otherwise be able to deduce, and
allows GDDM to optimize Its device processing.

If GDDM can deduce that all devices are locally
attached, it does not usually generate "compressed
PS load" data streams, even if the device shows that
it supports compreSSion and even if the
IOCOMPR = YES default has been specified.

If GDDM can deduce that all devices are either
locally-attached or SNA, it does not constrain "PS
load" data streams to conform to the 3K transmission
limit required for remote non-SNA devices.

APPCPG=n
The code-page to be used by GDDM applications.
(See Figure 9 on page 124.)

AUNLOCK'" {NOIYES}
Shows whether GDDM Is, by default, to operate in
always-unlock-keyboard mode. This is defined in the
explanation of the AUNLOCK processing option In
Appendix B, "Processing option groups and name­
lists" on page 149.

CALLlNF = (Iength,address)
Specifies two 4-byte fields containing the length and
address of a call Information feedback block provided
by the application program.

142 Base Programming Reference

The area passed by the application must be at least
eight bytes long. The first four bytes receive the
address of the call formats descriptor module. See
Appendix H, "Call format descriptor module" on
page 209. The second four bytes receive the address
of the APL request code module. See
Appendix I, "APL request codes module" on
page 213.

If either call information module cannot be located,
the a-byte call Information feedback block is set to
binary zeros.

CECPINP = {YESINO}
Specifies whether the full range of CECP code points
is to be allowed in alphanumeric input data from the
keyboard of a family 1 device. (See "Inhibiting input
of extended code points" on page 125.)

CICAUD = (stg-addr,pgm-addr)
Specifies two 4-byte fields, each containing the
address of a 4-byte anchor by which GDDM locates a
record of currently acquired storage resources and
currently acquired program resources, respectively.
For a full explanation of this processing, see "Using
the resource audit trails" on page 14.

CICDECK = aaaa
A 4-character string that is the transient data destina­
tion used by GDDM for object module output resulting
from requests through the Image Symbol Editor or the
GDDM-PGF Vector Symbol Editor.

CICDFPX '" aaaa
A 4-character string containing the 4-byte prefix used
by GDDM to determine the CICSIVS Temporary
Storage names used for external defaults files. This
option is intended for use in problem determination
only. For the details of how to use it in that context,
see the GDDM Diagnosis and Problem Determination
Guide.

CICGIMP = aaaaaaaa
An a-character string that is the CICSIVS File Control
data-set name used by GDDM for retrieving the gen­
erated mapgroups required for the operation of
GDDM-IMD.

CICIADS = aaaa
A 4-character string that is the default Transient Data
destination used by GDDM for the output of ADSs
(application data structures) resulting from the use of
GDDM-IMD.

CICIFMT'" aaaaaaaa
An 8-character string that is a default "file-type"
assigned to data exported to a VSAM "staging" data
set, as a result of using GDDM-IMD's Export Utility.

CICPRNT '" aaaa
A 4-character string that is the transaction name
assigned to the GDDM CICSIVS Print Utility; see
"CICSIVS print utility" on page 48.

CICSTGF'" aaaaaaaa
An 8-character string that Is the default CICSIVS File
Control data-set name of the VSAM "staging" data set
to be used with GDDM-IMD.

CICSYSP '" aaaa
A 4-character string that is the default transient data
destination used by GDDM for output resulting from
system printers. Such devices are defined as
described in Chapter 2, "Using GDDM under
CICSIVS" on page 7.

CICTIF'" {NOIYES}
Shows whether GDDM is to use transaction­
independent services. For a full description of this
processing, see Chapter 2, "USing GDDM under
CICSIVS" on page 7.

CICTQRY"" aaaa
A 4-character string that is the prefix for the CICSNS
temporary storage queue names used for saving
device query information.

CICTRCE "" aaaa
A 4-character string that is the transient data destina­
tion used by GOoM for diagnostic trace output.

CICTSPX = aaaa
A 4-character string that is the 4-byte prefix used by
GoOM to construct CICSNS Temporary Storage
names for passing data to the GoOM CICSNS Print
Utility; see "CICSNS print utility" on page 48.

CMSAPLF= {DATAANALlAPLTEXT}
Shows the APL feature that is installed on
nonquerlable IBM 3270 printer devices.

DATAANAL
GoOM is to assume that any APL feature installed on
any printer of the above type is the Data Analysis -
APL feature, unless specific application program
device-definition information shows otherwise. The
Data Analysis - APL feature applies to such printers
as the IBM 3284, 3286, and 3288.

APLTEXT
GOoM is to assume that any APL feature installed on
any printer of the above type is the APLlText feature,
unless specific application program device-definition
information shows otherwise. The APLlText feature
applies to such printers as the IBM 3287 and 3289.

The default for a specific device is established at the
time of the oSOPEN call for that device. Subsequent
specifications of this default in ESSUDS or ESEUDS
calls do not Influence the operation of a device unless
it is closed (by a DSCLS call) and reopened (by a
oSOPEN call).

CMSCOLM co aaaaaaaa
An 8-character string defining the default filetypes
used by GoDM under VM/CMS for multicolored output
resulting from high-resolution image devices. For
details of how to define these devices, see
Appendix B, "Processing option groups and name­
lists" on page 149.

The character string must contain a "+" substitution
character.

CMSDECK = aaaaaaaa
An 8-character string that is the filetype used by
GDDM under VM/CMS for object module output
resulting from requests through the Image Symbol
Editor or the GDoM-PGF Vector Symbol Editor.

CMSDFTS = (aaaaaaaa.bbbbbbbb)
Two 8-character strings that are the filename and
filetype of the External Defaults File under VM/CMS.

CMSIADS = aaaaaaaa
An a-character string that is the default filetype used
by GODM under VM/CMS for the output of AOSs
(application data structures) resulting from the use of
GDDM-IMD.

CMSIFMT"" aaaaaaaa
An 8-character string that is the default filetype used
by GDDM under VM/CMS for exporting data as a
result of using GDDM-IMO's Export Utility.

CMSMONO => aaaaaaaa
An 8-character string that is the default filetype used
by GDDM under VM/CMS for monochrome output
resulting from high-resolution image devices. For
details of how to define these devices, see
Appendix B, "Processing option groups and name­
lists" on page 149.

default values

CMSMSL T "" aaaaaaaa
An 8-character string that is the filetype used by
GoOM under VM/CMS for GDDM-IMD map specifica­
tion libraries (MSLs).

CMSPRNT'" aaaaaaaa
An 8-character string that is the filetype used by
GoDM under VM/CMS for generating files to be
printed by the GDoM VM/CMS Print Utility; see
"VM/CMS print utility" on page 55.

CMSSYSP"" aaaaaaaa
An 8-character string that is the default filetype used
by GoDM under VM/CMS for disk file output resulting
from system printer devices. For details of how to
define these devices, see Appendix B, "Processing
option groups and name-lists" on page 149.

CMSTEMP = aaaaaaaa
An 8-character string that is the filetype used by
GDDM under VM/CMS for Intermediate file oper­
ations.

CMSTRCE = (aaaaaaaa.bbbbbbbb)
Two 8-character strings that are the filename and
filetype used by GOoM under VM/CMS for trace
output.

COMMENT ... (cccccccc,cccccccc)
Specifies a comment as a list of strings of 8 or less
nonblank characters, which are ignored by GDoM
default processing. The list must not contain more
than 8000 such strings. This UOS can be used to
imbed a comment into an encoded UDSL for doc­
umentation purposes.

CPN4250 "" aaaaaaaa
An 8-character string that is the default code page
name used for a 4250 printer. For a list of possible
values, see Appendix B, "Processing option groups
and name-lists" on page 149.

CTLSAVE = {YESINO}
Shows whether GDDM is, by default, to allow the
application to control the picture-saving facilities
offered in the User Control environment.

The default value varies according to the subsystem:
On CICSNS it is NO
On VM/CMS and TSO it is YES
On IMS It is not available.

DATEFRM "" {1121314}
The date convention to be used by GDDM and
GODM-PGF:
1 MM/DOIYYYY (US convention)
2 OO.MM.YYYY (European convention)
3 YYYY-MM-oO (ISO and Japanese convention)
4 00 MMM YYYY (MMM are the first 3 characters

of the month name).

Note that GOoM-IMD always displays the date in an
abbreviated form, that is, the first two digits of the
year (YVYY) are omitted.

DATRN=addr
Provides a means by which a program can pass to
GODM the address of an alphanumeric defaults
module to be used instead of AOMoATRN.

DBCSDFT= {GDDMINOIYES}
This default, which only has meaning when the
NATLANG default specifies a double-byte character
set (DBCS) language, introduces the concept of the
default error message destination, and gives the user
control over OBCS support for it. OBCSDFT allows
the user to specify, or to ask GO OM to specify,
whether the default error message destination can
support oBCS languages. The default is that GDDM
should determine this.

Appendix A. GoOM's default values 143

default values

The values are:
GDDM GDDM must determine whether the device

can support DBCS
NO The device cannot support DBCS
YES The device can support DBCS.

Some examples of default error message destinations
are:

• The user screen (for TSO)
• Transaction-initiating terminals (for CICS and

IMS)
• FSQERR destination
• FSEXIT destination.

DBCSLlM=n
An integer, in the range 1 through 16, that is the DBCS
symbol set component in-core threshoid. GDDM
usually optimizes DBCS symbol set functions by
retaining loaded DBCS symboi set components in
main storage up to the specified number of compo­
nents.

The default for a specific device is established at the
time of the DSOPEN call for that device. Subsequent
specifications of this default in ESSUDS or ESEUDS
calls do not influence the operation of a device unless
it is closed (by a DSClS call) and reopened (by a
DSOPEN call).

DBCSLNG=c
The language used for DBCS symbol sets ..

The DBCSlNG character informs GDDM which symbol
set to load to retrieve the symbol definitions. The
naming convention for DBCS symbol sets is
ADMxcp1 p2, where:
x lor V for mode-2 or mode-3 text respectively,
e language (for example, K for Kanji),
plp2 Page (that is, the first two digits of the DBCS

character).

These symbol sets are loaded as required by GDDM
while processing GSCHAP, GSCHAR, or GSQTB calls.
The default DBCSLlM = n specifies the limit on the
number of pages that can be loaded concurrently.

In the encoded UDS format, the default value must be
coded as X'xxOOOOOO', where "xx" is the
hexadecimal equivalent of the character "c".

The default for a specific device is esiablished at the
time of the DSOPEN call for that device. Subsequent
specifications of this default In ESSUDS or ESEUDS
calls do not Influence the operation of a device unless
it is closed (by a DSClS call) and reopened (by a
DSOPEN call).

DFTXTNA = aaaaaaaa
The label on the first ADMMDFTX macro that defines
the Job Control language (JCl) to be used for batch
printing. See the GDDM Instal/ation and System Man­
agement for VSE manual for further information.

ERRFDBK"" (GDDMDFL T)
Shows that the GDDM-supplied default error feed­
back block is used. This default can only be specified
in encoded format and cannot, therefore, be specified
In an ESSUDS call or in an External Defaults File.

ERRFDBK = (USERAREA,addr ,len)
Shows that a user or application program-supplied
error feed-back block is used. The arguments are the
address and length of an error feed-back block pro­
vided by the application program. This default can
only be specified in encoded format and cannot,
therefore, be specified in an ESSUDS call or in an
External Defaults File.

144 Base Programming Reference

If an application program error feedback block is
located in this manner, GDDM's default error exits do
not send error messages to the user's terminal
device. Rather, these default error exits return error
details in the application program error feedback
block. The format of the information returned in the
feedback block is defined in the GDDM Base Pro­
gramming Reference, Volume 1. GDDM never clears
this error feedback block; it is set only as a result of a
GDDM default error exit being invoked.

Note that the ERRFDBK option establishes the default
error action. The FSEXIT(O,n) call shows that the
default error action is to be taken. FSEXIT(addr,n)
shows that the FSEXIT-deflned user error exit is to be
used. A subsequent FSEXIT(O,n) restores the default
error action.

ERRTHRS=n
A nonnegative integer that is the default error
threshold value. This value has the same meaning as
the error severity value specified in the FSEXIT call.
However, the specified threshold can have effect from
the start of initialization.

The error threshold value can also be changed in the
FSEXIT call.

FRCEVAL= {NOIYES}
Allows the user to control the validation of high­
performance alphanumerics data.

For example, when a tested application (for example,
a shipped program product that does not use vali­
dation), is suspected of a bug, validation can be
turned back on to determine whether the application
or GDDM is at fault by specifying:

ADMMDFT FRCEVAL=YES
in the external defaults file. This default may not be
specified In the external defaults module, on SPIN IT
calls, or by API call.

FF3270P = {NOIAFTERIBEFOREIBOTH}
Shows whether GDDM, including the GDDM Print
Utility, by default, performs a form feed (page eject) at
the start, end, or start and end of processing on a
3270-famlly printer.

ICUFMDF= {OI112}
Allows the user to control the use of chart format
defaults in the Interactive Chart Utility of GDDM-PGF.
All applications on the system (new, old, or stand­
alone ICU) have their chart format defaults controlled
by this one parameter. The values that can be speci­
fied are:

o Release-dependent ICU choice.

Allows the ICU to choose the chart format
defaults - the actual defaults may change from
one release of GDDM to the next. This value is
usually the same as choosing "2" except when
the ICU is invoked by CHART with
FORMNAME=* and DISPLAY;61 or ;62; in this
case ICUFMDF is set as if "1" had been chosen.

1 Use the chart format defaults as specified in
GDDM Version 1 Release 4.

2 Use the chart format defaults as specified in
GDDM Version 2 Release 1.

ICUFMSS'" {OI112}
Specifies the default use of symbol sets in formats
value in the Interactive Chart Utility of GDDM-PGF.

The values that can be specified in the defaults option
are:
o Release-dependent ICU choice (same as 2).
1 Use an asterisk (*) for all symbol sets named in

format defaults.
2 Use Vector Symbol Sets as named in the format

defaults.
ICUISOL"" {OI112}

Specifies the defauit isoiate value for the Interactive
Chart Utility of GDDM-PGF. This value is inspected
only if the chart-controi parameter of the GDDM-PGF
CHART call has the isolate value set to zero.

The values that can be specified in the defauits option
are:
o The Save, Restore, and Directory panels of the

ICU are made available to the operator.
1 The Save, Restore, and Directory panels are not

made available to the operator.
2 The Save and Restore panels are made avaiiable

to the operator, but the Directory panel is not.
ICUPANC = {TURQUOISEIBLUE}

Specifies the default use of the basic panel color for
the Interactive Chart Utility of GDDM-PGF.

The values that can be specified in the defaults option
are:
TURQUOISE The default.
BLUE

IMSDECK = aaaaaaaa
An 8-character string that is the logical terminal name
(L TERM) used by GDDM for object module output
resulting from requests through the Image Symbol
Editor or the GDDM-PGF Vector Symbol Editor.

IMSEXIT'" aaaaaaaa
An 8-character string used as a parameter to the
GDDM interactive utility transaction to cause exit
processing for all conversations from a particuiar
LTERM.

IMSICU = aaaaaaaa
An 8-character string that is the transaction name for
requesting the Interactive Chart Utility of GDDM-PGF.

IMSISE'" aaaaaaaa
An 8-character string that is the transaction name for
requesting the Image Symbol Editor.

IMSMAST'" aaaaaaaa
An 8-character string that is the L TERM name of the
only L TERM allowed to issue the shutdown request to
the GDDM interactive utility transaction.

IMSMODN ... aaaaaaaa
An 8-character string that is the message output
descriptor (MOD) name used by GDDM for sending
non-conversational messages to 3270-family displays.

The default for a specific device Is established at the
time of the DSOPEN call for that device. Subsequent
specifications of this default in ESSUDS or ESEUDS
calls do not influence the operation of a device unless
it is closed (by a DSCLS call) and reopened (by a
DSOPEN call).

IMSPRNT"" aaaaaaaa
An 8-character string that is the transaction name
assigned to the GDDM IMSIVS Print Utility; see
"IMSIVS print utility" on page 49.

IMSSDBD'" aaaaaaaa
An 8-character string that is the DBD name by which
the GDDM system definition data base is accessed.

default values

IMSSEGS = (aaaaaaaa,bbbbbbbb,cccccccc,dddddddd,
eeeeeeee.HfffHf)
Six 8-character strings, which are the names of the
IMSIVS segments and key fields:
aaaaaaaa object data base root-segment name
bbbbbbbb object data base dependent segment

name
cccccccc object data base root-segment key field

name
dddddddd object data base dependent segment

key field name
eeeeeeee system definition data base segment

name
ffffffff name of the key field in the above

segment.
IMSSHUT'" aaaaaaaa

An 8-character string used as a parameter to the
GDDM interactive utility transaction to cause imme­
diate termination of the transaction.

IMSSYSP = aaaaaaaa
An 8-character string that is the defauit destination for
output from a system printer device. For details of
how to define system printer devices, see
Appendix B, "Processing option groups and name­
lists" on page 149.

IMSTRCE'" aaaaaaaa
An 8-character string that is the ddname used by
GDDM for trace output.

IMSUISZ=n
An integer, In the range 1 through 32000, which is the
size of the data area reserved to contain the MFS
Bypass input to the GDDM interactive utility trans­
action.

IMSUMAX co n
An integer, in the range 1 through 32765, which is the
maximum number of concurrent conversations to be
supported by the GDDM interactive utility transaction.

IMSVSE = aaaaaaaa
An 8-character string that is the transaction name for
requesting the GDDM-PGF Vector Symbol Editor.

IMSWTOD = (n.n,n,n ••.••)
The descriptor codes for a write-to-operator (WTO)
macro. This is used by GDDM to issue error mes­
sages if all other methods fail. For a description of
valid descriptor codes, see the OSIVS2 MVS Super­
visor Services and Macro Instructions manual.

In the encoded-UDS format, the default value should
be coded as X I xxxxOOOO I, in which bit n = 1 (n = 1
through 32) corresponds to descriptor code "n" being
requested.

IMSWTOR = (n,n,n,n ••••)
The routing codes for a write-to-operator (WTO)
macro. This is used by GDDM to Issue error mes­
sages if all other methods fail. For a description of
valid routing codes, see the OSIVS2 MVS Supervisor
Services and Macro Instructions manual.

In the encoded-UDS format, the default value should
be coded as X I xxxxOOOO I, in which bit n = 1 (n = 1
through 32) corresponds to routing code "n" being
requested.

INSCPG=n
The code-page to be used by GDDM as the default for
the Installation. (See Figure 9 on page 124.)

IOBFSZ=n
An integer, in the range 1024 through 32000, which is
the transmission buffer size used by GDDM for
3270-family devices. GDDM splits outbound terminal
transmissions to fit within this buffer size. Under
I MSIVS, this Is the size of segments, excluding the

Appendix A. GDDM's default values 145

default values

LLZZ prefix, that are inserted Into the Message
Queue.

On a non-SNA connection, for a 3179-G or 3192-G
color display station, a 3270-PC/G or 3270-PC/GX
work station, or a device supported by GDDM-PCLK,
the outbound transmission size is restricted to
approximately 3500 bytes to avoid possible controller
timeouts.

Inbound transmission sizes are regulated according
to the system you are using:
CICS/VS Maximum Inbound transmission size Is

regulated by CICSNS system generation
(specifically, the Terminal 110 Area
lengths defined in the Terminal Control
Table (TCT)) , and is not affected by the
value of 10BFSZ.

IMS/VS User transactions cannot receive Inpul;
therefore, this field does not apply to Input
processing. The size of the input area
allocated in the GDDM Interactive utility
transaction is defined in the IMSUISZ
option.

TSO The maximum Inbound transmission size
is regulated by TSO and VT AM system
and network definition. Within this bound,
10BFSZ determines the size of an Indi­
vidual work buffer but does not otherwise
affect or limit inbound transmission proc­
essing.

VM/CMS 10BFSZ determines the defaull Inbound
transmission buffer size used by GDDM.
GDDM acquires temporary buffers of
32000 bytes for larger Inbound terminal
data streams (resulting from 3270 READ
MODIFIED commands).

The default for a specific device is established at the
time of the DSOPEN call for that device. Subsequent
specifications of this default In ESSUDS or ESEUDS
calls do not influence the operation of a device unless
it is closed (by a DSCLS call) and reopened (by a
DSOPEN call).

10COMPR = {NOIYES}
Shows whether GDDM is to create compressed PS
load data streams. See also the description of the
AM3270 default option on page 142.

Some IB~ 3270 series terminals optionally support
compression of programmed symbol (PS) data
streams. If such compression is to be inhibited, it is
g~~erall~ recommended that this be done on a spe­
CifiC basIs through device configuration parameters.
However, the 10COMPR option can be used to Inhibit
compreSSion, on a global basis, of all PS load data
streams generated by GDDM.

The default for a specific device is established at the
time of the DSOPEN call for that device. Subsequent
specifications of this default in ESSUDS or ESEUDS
calls do not influence the operation of a device unless
it is closed (by a DSCLS call) and reopened (by a
DSOPEN call).

10SYNCH 0= {NOIYES}
S~ows whether GDDM is to perform synchronized ter­
mmal "0. Usually, the use of synchronized terminal
110 implies longer transmission times and Increased
processing overhead. It may be useful to prevent
jamming a network with large data streams used for
graphics. In this context, this control might be used
with a smaller value of 10BFSZ and SAVBFSZ.

146 Base Programming Reference

The default for a specific device is established at the
time of the DSOPEN call for that device. Subsequent
specifications of this default in ESSUDS or ESEUDS
calls do not influence the operation of a device unless
it Is closed (by a DSCLS call) and reopened (by a
DSOPEN call).

The meaning of synchronized terminal 110 differs
according to the subsystem in use:
CICSNS Each GDDM outbound terminal trans­

mission which expects input to be
received, specifies "definite," requiring
that the terminal returns a definite
response, where applicable, before GDDM
continues with the next transmission.
Each GDDM outbound terminal trans­
mission which does not expect input to be
received, specifies "wait", requiring that
the application program waits until the
transmission has been completed.

T80 Each GDDM outbound terminal trans­
mission (using TPUT) specifies "hold,"
requiring that the transmission physically
arrives at the terminal, where applicable,
before GDDM continues with the next
transmission.

MAPGSTG=n
An Integer defining the mapgroup storage threshold.
GD~M usually optimizes mapping functions by
retaining loaded mapgroups In main storage up to the
speCified threshold value.

The default for a specific device is established at the
time of the DSOPEN call for that device. Subsequent
speCifications of this default in ESSUDS or ESEUDS
calls do not influence the operation of a device unless
it Is closed (by a DSCLS call) and reopened (by a
DSOPEN call).

MIXSOSI= {NOIYES}
Shows whether alphanumeric and graphic character
strings may be "mixed" that is, may contain shift-out
(SO) (X I OE ') and shift-In (SI) (X I OF ') characters to
mix one-byte characters with twO-byte DBCS charac­
ters.

Except on devices that support mixed alphanumeric
f!elds (such as the IBM 5550 and 5553), alphanumeric
fields that are to contain mixed strings must also be
defined as "mixed" by the ASFSEN call. On devices
that support mixed alphanumeric fields, it is not nec­
essary to specify MIXSOSI = YES, unless mixed
graphic character string support is also required.
(See also the SOSIEMC external default on page 147.)

The default for a specific device is established at the
time of the DSOPEN call for that device. Subsequent
specifications of this default In ESSUDS or ESEUDS
calls do not influence the operation of a device unless
it is closed (by a DSCLS call) and reopened (by a
DSOPEN call).

NATLANG=c
The language used by GDDM, the GDDM-PGF Interac­
tive Chart Utility, and Presentation Graphics routines
in generating messages, control-mode panels, Menu
Panels, Help Panels, and generated charts. The
meanings of "c" are defined as:
A American-English
B Brazilian
C Simplified Chinese (People's Republic of China)
D Danish
F French
G German
H Korean (Hangeul)

I Italian
K Japanese (Kanji)
N Norwegian
Q Canadian French
S Spanish
T Traditional Chinese (Taiwan - Republic of

China)
V Swedish.

Languages other than American-English are sup­
ported only if the corresponding National Language
Support special feature is available and installed.
American-English language support is provided as
part of GDDM-PGF.

In the encoded-UDS format, the default value must be
coded as X ' xxOOOOOO ' , where .. xx" Is the
hexadecimal equivalent of the character MC".

NUMBFRM = {11213}
The number representation convention to be used by
GDDM and GDDM-PGF is:

1 N,NNN,NNN.MMM (Period decimal convention)
2 N.NNN.NNN,MMM (Comma decimal convention)
3 N NNN NNN,MMM (French decimal convention).

OBJFILE = ([aaaaaaaa].[bbbbbbbb] ••••)
Up to eleven 8-character strings that show the default
file-types (VM/CMS), default ddnames (TSO) , default
File Control data-set names (CICSIVS), or default DBD
names (IMSIVS):
aaaaaaaa symbol sets
bbbbbbbb generated mapgroups
eeeeeeee saved pictures
dddddddd chart formats
eeeeeeee chart data
ffffffff GDDM-IMD tutorial pages
99999999 GDF files
hhhhhhhh Reserved
iii iii i i Chart data definition (under TSO and

VM/CMS)
Reserved (under CICSIVS and IMS)

jjjjjjjj Projection definition
kkkkkkkk Image data.

PARMVER = {NOIVES}
Shows whether all calls through the system pro­
grammer interface should be verified for correctness
of function code and number of parameters.
Requesting this function incurs additional processing
overheads.

SAVBFSZ=n
An integer, in the range 1024 through 32000, which is
the FSSAVE transmission buffer size used by GDDM.
The FSSAVE function stores preformatted data
streams ready for subsequent recall and display by
FSSHOW. SAVBFSZ determines the transmission
buffer size used by such a saved data stream. The
value of SAVBFSZ at the time of the FSSAVE call must
not exceed the value of 10BFSZ at the time of the
FSSHOW call.

For maximum efficiency, the FSSAVE buffer size
should be chosen so that the value 4088/(FSSAVE
buffer size + 5) is greater than 2 and close to an
integer.

The default for a specific device is established at the
time of the DSOPEN call for that device. Subsequent
specifications of this default in ESSUDS or ESEUDS
calls do not influence the operation of a device unless
it is closed (by a DSCLS call) and reopened (by a
DSOPEN call).

default values

For 3179-G or 3192-G color display stations,
3270-PC/G or 3270-PC/GX work stations, and devices
supported by GDDM-PCLK, the size saved Is
restricted to approximately 3500 bytes to avoid pos­
sible controller tlmeouts when subsequently showing
the saved file.

SOSIEMC=c
Shows the character that is used as the
shift-out/shlft-in emulation character in mixed char­
acter strings. The character can be any keyable char­
acter that is consistent with the syntax of GDDM
defaults; however, the character specified must not
then be used for any other purpose (for example, as
Its own keyable value) in a mixed-string field.

The emulation character Is Ignored unless the
MIXSOSI = YES default is specified and the device Is a
family-1 display other than an IBM 5550.

In the encoded-UDS format, the default value must be
coded as X'xxOOOOOO', where "xx" is the
hexadecimal equivalent of the character "c".

The default for a specific device is established at the
time of the DSOPEN call for that device. Subsequent
specifications of this default In ESSUDS or ESEUDS
calls do not influence the operation of a device unless
it is closed (by a DSCLS call) and reopened (by a
DSOPEN call).

STGRET= {NOIVES}
Shows whether not-enough-storage or short-on­
storage conditions should be processed by GDDM,
and whether control should be returned Immediately
to the application program with a corresponding error
code. Otherwise, storage requests are unconditional,
with subsequent action determined by the subsystem.

Note: Requesting this function causes GDDM to Issue
conditional storage requests only where these are
available in the subsystem. Some subsystem
requests are implicitly unconditional; in these cases,
subsequent action Is determined by the subsystem.

nMEFRM'" {1121314}
The time convention to be used by GDDM and
GDDM-PGF Is:

1 HH:MM xM
2 HH.MM
3 -HH.MM.SS
4 ,HH,MM,SS

(U.S. convention; XM=AM or PM)
(International convention)
(ISO convention)
(Japanese convention).

Note that GDDM-IMD always displays the time using
the International convention (format 2).

TRACE = {Oln}
An integer that is the default value of the trace control
word at initialization. The value may be specified
either as a decimal integer or as an Assembler­
language hexadecimal constant. The use of trace Is
described in the GDDM Diagnosis and Problem Deter­
mination Guide.

TRCESHR'"' {NOIVES}
Shows whether the trace output file is to be shared
between more than one Instance of GDDM. This
default is only available on TSO and VM/CMS. The
use of trace is described In the GDDM Diagnosis and
Problem Determination Guide.

TRCESTR'" I aaaaaaaaaaaaa I
Shows the default value of the trace control word at
Initialization, which Is no trace. The alphanumeric
string aaaaaaaaaaaaa, which can be from 1 through
256 characters long, Indicates the type of trace; the
use of trace is described In the GDDM Diagnosis and
Problem Determination Guide.

Appendix A. GDDM's default vailles 147

default values

TRCEWID'" {SINGLEIDOUBLE}
Shows the default value of the trace output width
control word at initialization.
SINGLE
GDDM is to produce the trace output as 4-word
hexadecimal.
DOUBLE
GDDM is to produce the trace output as 8-word
hexadecimal, thus saving space.
The use of trace is described in the GDDM Diagnosis
and Problem Determination Guide.

TRTABLE=n
An integer, in the range 5 through 1000, defining the
number of trace entries to be held in the cyclic in-core
trace table.

TSOAPLF co·{DATAANALIAPL TEXT}
Shows the APl feature that is installed on
nonquerlable IBM 3278, and 3279 Model 2 displays.

DATAANAL
GO OM is to assume that any APl feature installed on
any display of the above type is the Data Analysis -
APl feature, unless specific application program
device-definition information shows otherwise. The
Data Analysis - APL feature applies to such termi­
nals as the IBM 3279.

APLTEXT
GDDM is to assume that any APL feature installed on
any display of the above type Is the APlIText feature,
unless specific application program device-definition
information shows otherwise. The APllText feature
applies to such terminals as the IBM 3278 and 3279.

The default for a specific device Is established at the
time of the DSOPEN call for that device. Subsequent
specifications of this default in ESSUDS or ESEUDS
calls do not influence the operation of a device unless
it is closed (by a DSClS call) and reopened (by a
DSOPEN call).

TSOCOLM ... aaaaaaaa
An 8-character string defining the default ddnames or
high-level qualifiers used by GDDM for multicolored
output resulting from high-resolution image devices.
For details of how to define these devices, see the
GDDM Base Programming Reference, Volume 1.

The character string must contain a "+" substitution
character.

TSODECK'" aaaaaaaa
An 8-character string that is the ddname used by
GDDM for object moduie output resulting from
requests through the Image Symbol Editor or the
GDDM-PGF Vector Symbol Editor.

TSODFTS = aaaaaaaa
An 8-character string that is the ddname used by
GDDM to access an External Defaults File.

TSOEMUL ... {NOIYES}
This specifies whether, when operating in the MVS
batch environment, TSO terminal 110 supervisor calls
are emulated through the MVS screening faCility. The
emulation routines are compatible with the current
version of TSO. For details of MVS SVC screening
see the OSIVS2 System Programming Library: Super­
visor Manual, and for TSO details see the OSIVS2
TSO Guide to Writing a Terminal Monitor Program or
a Command Processor.

TSOIADS <=I aaaaaaaa
An 8-character string that is the default ddname used
by GDDM for the output of ADSs (application data
structures) resulting from the use of GDDM-IMD.

148 Base Programming Reference

TSOIFMT -= aaaaaaaa
An 8-character string that is the default ddname used
by GDDM for exporting data as a result of using
GDDM-IMD's Export Utility.

TSOGIMP = aaaaaaaa
An 8-character string that is the ddname used by
GO OM for retrieving the generated mapgroups
required for the operation of GDDM-IMD.

TSOMONO'" aaaaaaaa
An 8-character strIng that is the default ddname or
high-level qualifier used by GDDM for monochrome
output resulting from high-resolution image devices.
For details of how to define these devices, see the
GDDM Base Programming Reference, Volume 1.

TSOPRNT = aaaaaaaa
An 8-character string used to generate a name of the
form "aaaaaaaa.REQUEST.QUEUE" to identify the
Print Utility Master Print Queue data set, where this
has not otherwise been identified by DO statement.
This string is also used to generate names of the form

[dsn-prefix.] [userid.]aaaaaaaa.REQUEST.#nnnnn,
which are assigned to intermediate data sets required
for queued printer support.

TSOSYSP.,. aaaaaaaa
An 8-character string that is the default ddname used
by GDDM for output resulting from system printer
devices. For details of how to define system printer
devices, see the GDDM Base Programming Refer­
ence, Volume 1.

TSOS99S=n
An integer defining the size (in bytes) of the interme­
diate data sets that are dynamically allocated for
queued printer support. The IBM-supplied default of
742710 is approximately equivalent to three 3330 cyl­
Inders.

TSOS99U ." aaaaaaaa
An 8-character string defining the UNIT specification
used for intermediate data sets that are dynamically
allocated by GDDM in TSO Batch or MVS Batch. In
foreground TSO or if the option is set to blanks (by
specifying it as TSOS99U = ()), GDDM allows the UNIT
specification to be defaulted from the TSO user attri­
bute data set (UADS), where available.

TSOTRCE'" aaaaaaaa
An 8-character string that Is the ddname used by
GDDM for trace output.

VSECOLM = aaaaaaaa
An 8-character string defining the default file name
used by GO OM for multicolored output resulting from
files containing graphics or images suitable for use by
composed-page printers. Such printers are defined
by means of the DSOPEN GDDM function described in
the GDDM Base Programming Reference, Volume 1.

The character string must contain a "+" substitution
character.

VSEDFTS = aaaaaaaa
An 8-character string, which is the file name of the
external defaults file.

VSEMONO = aaaaaaaa
An 8-character string defining the default file name
used by GDDM for monochrome output resulting from
flies containing graphics or Images suitable for use by
composed-page printers.

VSETRCE = aaaaaaaa
An 8-character string, which Is the file name used by
GO OM for trace output.

procopts

Appendix B. Processing option groups and name-lists

Processing options (procopts) allow the user to specify
precisely how the input or output of a device is to be
processed, with regard to the devices available, the
devices' capabilities, and the subsystem under which
they run.

Name-lists are a means of grouping devices according
to the device family, and the subsystem under which
the application is running. For information on these,
see "Name-lists" on page 160.

Processing option groups: summary

Processing option groups can be specified In DSOPEN
calls, see the GDDM Base Programming Reference,
Volume 1, and in nicknames, see "Using nicknames to
define device characteristics" on page 3.

The processing option groups are summarized In
numeric order of option group code In Table 21.

Detailed descriptions, in numeric order of option group
code, are given on pages 150 through 159.

Table 21 (Page 1 of 2). Summary of processing options and nickname keywords

Procopt
group Nickname
code keyword Arguments Examples

1 BMSCOORD {NOIYES} (BMSCOORD,NO)
2 OUTONLY {NOIYES} (OUTONLY,NO)
3 AUNLOCK {NOIYES} (AUNLOCK,NO)
4 PRINTCTL n,n,n,n, ••.•• (PRINTCTL,0,1,66,O,O,O,80,O)
5 CDPFTYPE {PRIMISEC} (CDPFTYPE,PRIM)

6 HRISPILL {YESINO} (HRISPILL,YES)
7 HRISWATH n (HRISWATH,10)
8 HRIPSIZE w,d,{TENTHSIMILLS} (HRIPSIZE,50,30,TENTHS)
9 HRIFORMT {BITMAPICDPF} (HRIFORMT,BITMAP)
10 PLTFORMF {NOIYES} (PL TFORMF,NO)

11 PLTPENV n (PL TPENV ,30)
12 PLTPENW n (PLTPENW,10)
13 PLTPENP n (PL TPENP ,10)
14 PLTAREA xmin,xmax,ymin,ymax (PLTAREA,O,70,O,70)
15 PLTPAPSZ {*IA4IA31 .• ·IAIBI···} (PL TPAPSZ,A4)

16 PLTROTAT {NOIYES} (PLTROTAT,NO)
17 SEGSTORE {YESINO} (SEGSTORE,NO)
18 STAGE21D xxxxxxxx,xxxxxxxx, •.• (STAGE2ID,*,AUX2)
19 LOADDSYM {NOIYES} (LOADDSYM, YES)
20 ORIGINID {NOIYES} (ORIGINID,YES)

21 LCLMODE {NOIYES} (LCLMODE,NO)
22 HRIDOCNM xxxxxxxx (HRIDOCNM,FIGURE9)
23 SPECDEV {aaaaaaal*},ddname (SPECDEV,IBM5080)
24 WINDOW {NOIYES} (WINDOW,YES)
25 PSCNVCTL {NOISTARTICONTINUE} (PSCNVCTL,ST ART)

26 FASTUPD {N} (FASTUPD,O)
27 CTLFAST {NOIYES} (CTLFAST,YES)
28 CTLMODE {*IYESINO} (CTLMODE,NO)
29 CTLKEY {TYPE, VALUE} (CTLKEY,1,1)
30 CTLPRINT {YESINO} (CTLPRINT,NO)

31 CTLSAVE {YESINO} (CTLSAVE, YES)
32 INRESRCE {YESINO} (INRESRCE,YES)
33 PCLK {YESINO} (PCLK,YES)
34 DEVCPG n (DEVCPG,00273)
35 IPDSQUAL {*IDPIDPQIDPTIDPTQINLQ} (IPDSQUAL,NLQ)

36 PCLKEVIS {YESINO} (PCLKEVIS, YES)
1000 CMSINTRP {PA1PA2IPA2IPA1INONE} (CMSINTRP,PA 1 PA2)
1001 CMSATTN {ASICIEXTENDED},n,addr (CMSATTN,BASIC,O,O)
1002 CPS POOL xxxxxxxx,xxxxxxxx, ••. (CPSPOOL,TO,RSCS)
1003 CPTAG xxxxxxxx,xxxxxxxx, ... (CPTAG,OUR3287,PRT, = ,GRAPH)

Appendix B. Processing option groups and name-lists 149

procopts

Table 21 (Page 2 of 2). Summary of processing options and nickname keywords

Procopt
group Nickname
code keyword Arguments Examples

1004 INVKOPUV {NOIYES} (INVKOPUV,YES)
2000 TSOINTRP {PA1INONE} (TSOINTRP ,NONE)
2001 TSORESHW n (TSORESHW,12)
2002 PRINTDST {CLASSI*}, {DESTNAMEI*IDDNAME} (PRINTDST,*,*)
3000 COLORMAS n

Processing option groups: full
descriptions

The processing option groups are listed here in
numeric order of option group code. A full description
is given of each processing option group, in this format:

• The processing option group code and nickname
keyword

• A definition of the nickname syntax
• A brief description of the function of the processing

option group
• The applicable subsystems
• The applicable device families
• The length of the processing option group,

expressed in fullwords
• A breakdown of the function of each full-word.

The processing option groups are summarized in
Table 21 on page 149.

o Dummy
Nickname syntax: not applicable

A dummy processing option group, which is Ignored. It
can be used to pad processing option-lists to any
desired length.

Subsystems: All
Devices: All
Length: 1 full-word.

1 The option group code: 0

1 Coordination mode
Nickname syntax: (BMSCOORD,{NOIYES})

Coordination mode allows a GDDM CICSIVS applica­
tion program to use Basic Mapping Support (BMS) for
the alphanumeric portion of the screen, and lets GDDM
build and display the graphics portion. The GDDM
output functions are modified so that they alter only that
part of the screen covered by the graphics field and do
not corrupt any data established by BMS. Coordination
mode Is more fully described in "USing GDDM with
Basic Mapping Support" on page 13.

Subsystems: CICSIVS
Devices: Family 1
Length: 2 full-words.

1 The option group code: 1
2 The type of coordination:

o Not in coordination mode (default)
1 In coordination mode.

150 Base Programming Reference

(COLORMAS,1)

2 Output-only mode
Nickname syntax: (OUTONLY,{NOIYES})

Output-only mode means that functions such as
ASREAD and FSSHOW, which normally imply a wait for
the operator to enter data, should instead return imme­
diately to the application without unlocking the key­
board (unless this has been imposed by the
always-unlock-keyboard mode, see option group 3).
One use of this option is to allow a device to be opened
so that it can display a continuous series of pictures
using FSSHOW, without any operator intervention.

Subsystems: All
Devices: Family 1
Length: 2 full-words.

1 The option group code: 2
2 Normal or output-only mode:

o Not output-only mode (default)
1 Output-only mode.

3 Always-unlock-keyboard mode
Nickname syntax: (AUNLOCK,{NOIYES})

Always-unlock-keyboard mode means that functions
such as FSFRCE, which normally cause output without
unlocking the keyboard, should Instead unlock the key­
board, while still returning Immediately to the applica­
tion. This could be useful in the IMSIVS environment,
to avoid the need for the operator to press RESET
before being able to enter the next transaction.

It is also useful in CICS pseudoconversational applica­
.tlons to cause keyboards to be unlocked on FSFRCE
instead of DSCLS, which improves performance.

The default value is defined in the AUNLOCK param­
eter in GDDM's external defaults (see
Appendix A, "GDDM's default values" on page 127),
and Is subsystem-dependent.

This procopt is set to the value current at DSOPEN
time. It is valid from the issue of DSOPEN to the issue
of DSCLS. The value cannot be altered dynamically, if
a change is required, the device must be relnltlalized.

Nole: For a GDDM program running under the control
of a task manager, if this processing option is specified
for a virtual device, it is ignored, and the processing
option for the real device is used instead.

Subsystems: All
Devices: Family 1
Length: 2 full-words.

1 The option group code: 3
2 The type of keyboard mode:

o Normal mode (default for CICSIVS, TSO,
VM/CMS)

1 Always-unlock-keyboard mode (default for
IMSIVS).

4 Print control options
Nickname syntax: (PRINTCTL.n,n.n,n)

(where n,n.n.n •... represents the values of Fullword 3
onwards, as defined below).

This option group controls printing and copy functions.
The group has this format:

Fullword 1

2

3

4

5

6

7

8

9

HI

Option code" 4

No. of full-words following

Heading indicator

Number of copies

Page depth

Top margin

Left margin

Bottom margin

Max FSLOG characters/line

Alphanumeric device type

Note: This option group is of variable length and is
regarded as being "mergeable" (that Is. If some of the
options are omitted. the current values of these options
are not changed).

Subsystems: All
Devices: Families 1. 2, and 3
Length: 2 + N full-words.

1 The option group code: 4.
2 Number (N) of full-word values that follow (can be

o through 8).
3 The heading indicator:

o Do not print a heading page
1 Print a heading page (default).

4 The number of copies (applicable to family 2
only): The ~efault is 1. If 0 is specified, 1 is
assumed.

5 The page depth in rows (FSLOG and FSLOGC
oniy):

6

The default is 66 or the maximum page depth for
the device.

The page depth specifies the vertical size of a
page of paper, fold-to-fold, in rows. If zero is
specified for this parameter, a value of 66 (or the
device maximum) is assumed.
The depth of the top margin: The default is O.

The top and left margins (full-words 6 and 7)
specify the top left-hand corner, within each page
of the paper. of the printed data. Also. for FSLOG
and FSLOGC purposes, a bottom margin may be
specified. The total number of printed lines for
each page for FSLOG and FSLOGC data is:

(page depth)-(top margin)-(bottom margin)

procopts

Note: The maximum page size for the device is
taken from the device definition, as defined by the
device-token parameter.

7 The width of the left margin: The default is O.

See the description for the top margin. under
Fullword 6.

8 The depth of the bottom margin (FSLOG and
FSLOGC only): The default is O.

9 Maximum number of characters per line (FSLOG
and FSLOGC only): The default is 80.

Left margin + maximum number of characters
per line must not exceed the maximum page
width for the device.

10 Alphanumeric device type for translation: The
default Is O.

For details of the values that can be specified.
see the description of ASTYPE in .the GDDM Base
Programming Reference, Volume 1.

5 Output file dala-stream type
Nickname syntax: (CDPFTYPE,{PRIMISEC})

Determines whether the formatted output file is to be
constructed as a primary or a secondary data stream.

Subsystems: TSO. VM/CMS
Devices: Family 4
Length: 2 full-words.

1 The option group code: 5.
2 Data-stream type:

o Produce a primary data stream. or document
(the default)

1 Produce a secondary data stream, or page
segment.

A primary data stream is a complete document
that can be printed as it stands. A secondary
data stream is one that must be imbedded in
another document before it can be printed.
Primary data streams can be processed by:

• IBM Print Services Facility (PSF) for printing
on the 3800-3, and 3820 printers

• IBM Composed Document Print Facility
(CDPF) for printing on the 4250 printer.

Note: If a 4250 output file is to contain text that
refers to the 4250-printer fonts In addition to
graphics picture data, it is recommended that the
file be formatted as a page segment and included
as part of another document.

6 Spill file usage
Nickname syntax: (HRISPILL.{YESINO})

Determines whether a spill file is to be used while proc­
essing a high-resolution image file.

The use of a spill file reduces storage requirements at
the cost of processing time. If a spill file is not used
and segments are used, primitives outside segments
(temporary data) do not form part of the final Image,
except where they occur between the last GSSCLS and
ASREAD or FSFRCE calls.

Subsystems: TSO, VM/CMS
Devices: Family 4
Length: 2 full-words.

Appendix B. Processing option groups and name-lists 151

procopts

1 The option group code: 6.
2 Spill file usage:

o Store internal picture description on disk in a
spill file (the default)

1 Store internal picture description in main
storage.

7 Number of swathes
Nickname syntax: (HRISWATH,n)

Determines whether a high-resolution image is to be
processed as one horizontal "swath" or many.
("Swathes" are also called slices.)

The use of swathing reduces storage requirements but
at the cost of processing time.

Subsystems: TSO, VM/CMS
Devices: Family 4
Length: 2 full-words.

1 The option group code: 7
2 The number of swathes to be used: The default is

1, which means generate the output Image with
just one pass through the internal picture
description.

8 Output paper size
Nickname syntax: (HRIPSIZE,w,d,{TENTHSIMILLS})

Determines the size of the paper, as width by depth.
The default size of the paper is given by the device
characteristics, which are defined by the device token
being used.

Note: The term "paper size" is used, although the
output medium need not be paper.

Subsystems: TSO, VM/CMS
Devices: Family 4
Length: 4 full-words.

1 The option group code: 8.
2 The paper width: The width, in the units defined

in Fullword 4.
3 The paper depth: The depth, in the units defined

in Fullword 4.
4 Units: The units used in Fullword 2 and

Fuilword 3.
o Units are tenths of an inch
1 Units are millimeters.

9 Output file format
Nickname syntax: (HRIFORMT,{BITMAPICDPF})

Unformatted output is a representation of the picture as
one bit for each pixel. Formatted output is in a form
suitable for processing either by the Print Services
Facility (PSF) for 3800-3 and 3820 printers, or by the
Composed Document Printing Facility (CDPF) for the
4250.

Subsystems: TSO, VM/CMS
Devices: Family 4
Length: 2 full-words.

1 The option group code: 9.
2 Formatted or unformatted output:

o Produce unformatted output
1 Produce formatted output (the default).

152 Base Programming Reference

10 PloUer page feed
Nickname syntax: (PLTFORMF,{YESINO})

Specifies whether a page feed is required after each
GDDM page transmitted to the plotter by an output call
such as FSFRCE. A warning message (ADM0094) Is
issued when the device is opened if it does not support
page feed. The GDDM default action is to cause a page
feed for those devices that support it.

Subsystems: CICSIVS, TSO, VM/CMS
Devices: 6182, 6186 plotters
Length: 2 full-words.

1 The option group code: 10.
2 The plotter form feed option:

o Page feed (default for those devices that
support page feed).

1 (NO) No page feed.
2 (YES) Page feed.

11 PloUer pen velocity
Nickname syntax: (PL TPENV,n)

Specifies the pen velocity to be used by a plotter. The
value applies to all the pens in the plotter. The default
(0) uses the velocity set up on the plotter. It may be
necessary to specify a lower value for pens used on
material such as transparencies.

The recommended values are:

• On paper:

50 centimeters/second:
60 centimeters/second:
15 centimeters/second:

• On transparencies:

Fiber-tipped pens
Roller
Drafting.

10 centimeters/second: Fiber-tipped pens.

Subsystems: CICSIVS, TSO, VM/CMS
Devices: Famiiy-1 7371, 7372, 7374, and 7375 plot-

ters
Length: 2 full-words.

1 The option group code: 11.
2 The pen velocity:

o The velocity set up by the
plotter operator (the default).

1 through 255 The velocity in centimeters per
second, related to the actual
velocity values available for
each plotter.

If a value greater than the maximum for the
plotter is specified, the maximum velocity is set.
This is:
38 centimeters/second: For a 7371 and 7372
60 centimeters/second: For a 7374 and 7375.

Note: Refer to the details on the velocity select
(VS) instruction in the appropriate color plotter
programming manual.

12 PloUer pen width
Nickname syntax: (PL TPENW,n)

Specifies the width of the pens to be used in a plotter.
Applies to all the pens in the plotter.

GDDM uses the pen width to determine how far apart to
space lines when the plotter fills areas. If the plotter
uses pens of different widths in the same picture, the

pen-width value must be set to the size of the pens
used for filling areas.

The pen width is used for:

• Image pixel size
• Shading line separation
• Double-width line separation
• Background line width where clipped from under­

lying areas.

Subsystems: CICSIVS, TSO, VM/CMS
Devices Family-1 7371, 7372, 7374, 7375, and

6180 plotters
Length: 2 full-words.

1 The option group code: 12.
2 The pen width, in tenths of a millimeter:

o Pen width of 0.3 millimeters (the
default)

1 through 10 Pen width of 0.1 through 1.0
millimeters.

13 PloHer pen pressure
Nickname syntax: (PLTPENP,n)

Specifies how hard the plotter pen is to be pressed onto
the plot bed.

The recommended values are:

• On paper:

10 grams:
18 grams:
50 grams:

Fiber-tipped pens
Roller
Drafting.

• On transparencies:

18 grams: Fiber-tipped pens.

Subsystems: CICSIVS, TSO, VM/CMS
Devices: Family-1 7374 and 7375 plotters
Length: 2 full-words.

1 The option group code: 13.
2 The pen pressure:

o The pressure, as set by the user
on the plotter control buttons
(see below).

1 through 255 The pressure, In grams, related
to the actual pressure that can
be set on the plotter with the
control buttons.

If a value greater than the maximum for the
plotter is specified, the maximum pressure Is set.

If a value less than the minimum for the ploHer Is
specified, the minimum pressure Is set.

The range of values that can be set on the 7374
and 7375 plotters using the plotter control buttons
is:
Button
1
2
3
4
5
6
7
8

Pressure
10 grams
18 grams
26 grams
34 grams
42 grams
50 grams
58 grams
66 grams.

Note: Refer to the details on the pressure select
instruction in the appropriate color plotter pro­
gramming manual.

procopts

14 PloHlng area
Nickname syntax: (PL TAREA,xmin,xmax,ymln,ymax)

Specifies the area of the paper Into which GDDM Is to
draw the picture on a plotter. If all values are specified
as zero, the user defines the plotting area (before the
DSOPEN call Is Issued) by pressing the appropriate
buttons (P1, P2, and ROTATE) on the ploHer, when
these buttons are supported; otherwise, the maximum
plotting area Is used.

Subsystems: CICSIVS, TSO, VM/CMS
Devices: Family-1 7371, 7372, 7374, 7375, and

6180 plotters
Length: 5 full-words.

1 The option group code: 14.
2 The minimum x value as a percentage of the

maximum paper width. The default Is O.
3 The maximum x value as a percentage of the

maximum paper width. The default Is 100.
4 The minimum y value as a percentage of the

maximum paper height. The default Is O.
5 The maximum y value as a percentage of the

maximum paper height. The default Is 100.

15 PloHer paper size
Nickname syntax: (PLTPAPSZ,{*IA4IA31 ... IAIBI ... })

Specifies the size of the paper that is loaded In a
plotter. Plotters that have paper-size switches must be
set correctly to Indicate the size of the paper loaded;
otherwise, the aspect ratio might be distorted, the
picture might not be placed centrally, or only part of the
picture might be drawn.

If this option group Is not specified, GDDM uses what­
ever paper size Is already loaded in the plotter.

Subsystems: CICSIVS, TSO, VM/CMS
Devices: Family-1 7371, 7372, 7374, 7375, and

6180 plotters
Length: 3 full-words.

1 The option group code: 15.
2 The paper-size code:

o or * The default (whatever paper size Is
loaded)

1 A or A4 size
2 B or A3slze
3 Cor A2 size
4 D or A1 size
5 E or AO size.

3 The dimension-type code:
o or * ISO dimensions (the default)
1 ISO dimensions (A4, A3, A2, A1, or AO)
2 ANSI dimensions (A, B, C, 0, or E).

16 PloHer picture orientation
Nickname syntax: (PLTROTAT,{NOIYES})

By default, GDDM draws the plotted picture with the x
(horizontal) axis along the longest side of the paper
("landscape" format). This option group allows the
picture to be drawn to be rotated by 90 degrees, so that
the x axis Is along the shorter side of the paper
("portrait" format). This does not affect the way In
which the paper is placed In the plotter; instead, It
specifies the orientation of the picture relative to the
paper on the plotter bed.

GDDM ignores option group 16 when the drawing area
Is set by pressing buttons on the plotter (see option

Appendix B. Processing option groups and name-lists 153

procopts

group 14) because this action controls the orientation of
the picture.

Subsystems: CICSNS, TSO, VM/CMS
Devices: Family-l 7371, 7372, 7374, 7375, 6180

plotters
Length: 2 full-words.

1 The option group code: 16.
2 The orientation value:

o No rotation (the default)
1 No rotation
2 Rotate the picture by 90 degrees.

17 Retained or unrelalned mode
Nickname syntax: (SEGSTORE,{YESINO})

Indicates whether a 3270-PC/G or 3270-PC/GX work
station is to operate in retained or unretained mode.

Retained mode means that graphics segments are held
in the display's segment buffers and are not re-sent
from the host when a picture is redisplayed.

Unretained mode means that graphics segments are
not held in the display's segment buffers. Segments
have to be retransmitted from the host to the display
whenever a picture is updated.

Even if retained mode is specified, the device may be
run in unretained mode if it is customized as being in
output-oniy mode, or if there is not enough storage
availabie in the device, or multiple graphics fields are
being displayed.

Retained mode should be the preferred mode of opera­
tion because retained segments are required to
perform functions locally.

However, if an application needs more segment
storage than is available In the device, this can lead to
continual switching between retained and unretalned
modes (with undesirable performance overhead). In
such cases, It may be preferable to request unretalned
mode, and avoid the switching between modes.

Subsystems: All
Devices: Family-l 3270-PC/G and IGX work

stations
Length: 2 full-words.

1 The option group code: 17.
2 Retained or unretained mode:

o Retained mode (the default)
1 Unretained mode.

18 Deferred device name-list for print utility
Nickname syntax: (STAGE2ID,xxxxxxxx,xxxxxxxx,,,.)

Specifies the name-list for the device on which the print
utility is to produce the output from a print file. The list
of 8-byte name-parts defined in this group Is passed (in
the print file) to the print utility for use as its DSOPEN
name-list parameter value.

For exampie, if a name-list of (*,aux-id) Is specified,
the print utility uses this in its DSOPEN call to access
the auxiliary device attached to the session device.

The default is a zero vaiue in full-word 2. If this proc­
essing option group is not specified or if full-word 2 is
zero, the file is printed on the device specified in the
original DSOPEN name-list parameter.

Under VM/CMS, this list is ignored if the ON parameter
in the ADMOPUV command is specified (ON overrides
the values specified in the list).

154 Base Programming Reference

Subsystems: CICSNS, TSO, VM/CMS
Devices: Family 2
Length: 2 + 2xN full-words.

1 The option group code: 18.
2 The number (N, in the range 0 through 2) of pairs

of full-words that follow.
3 through 2 + 2xN: "Nil pairs of full-words. Each pair

forms an 8-byte name-part.

19 Load default symbol sets
Nickname syntax: (LOADDSYM,{NOIYES})

Indicates whether the 3270-PC/G or 3270-PC/GX work
station is to use the device's default symbol sets or the
GDDM default symbol sets. If the application program
requires any alternative characters in the symbol set
(for example, national use Characters), GDDM's default
symbol sets must be used. For details on changing
GDDM's default symbol sets, see the information in the
GDDM Installation and System Management manual
that applies to the subsystem In use.

Note: Using GDDM's symbol sets reduces the amount
of storage in the work station that is available for
segment storage and for symbol sets loaded by the
application program.

Subsystems: All
Devices: Family-l 3270-PC/G and 3270-PC/GX

work stations, and 3179-G and 3192-G
color display stations

Length: 2 full-words.

1 The option group code: 19.
2 The defauit symbol sets option:

o Use the work station's default mode-2 and
mode-3 symbol sets (the defauit)

1 Load GDDM's mode-2 and mode-3 symbol
sets, replaCing the device's default symbol
sets.

20 Origin identHlcalion
Nickname syntax: (ORIGINID,{NOIYES})

Indicates whether GDDM is to draw an origin identifica­
tion string (consisting of a userid, the date, and the
time) in the bottom left-hand corner of the graphics
field.

For plotters, the identification appears inside a
background-shaded box, so that no part of the picture
can obscure it. However, if the plotting area Is small,
the origin identification string might be clipped and the
right-hand side might be lost.

For family-1 printers, the identification is similar to an
alphanumeric field. The identification is truncated, if
necessary, by the page width.

When specified for a famlly-2 device, the processing
option is passed (in the print file) to the print utility,
which specifies the processing option when opening
the output device.

Note: This option group is of variable length and is
regarded as being "mergeable" (that is, if Fullword 3 is
omitted, the current value of the option is not changed).

Subsystems: All
Devices: All, but used by famlly-1 plotters and

printers and family-2 printers only
Length: 2 + N full-words.

1 The option group code: 20.
2 The number (N, in the range 0 through 1) of full­

word values that follow.
3 The identification value:

o No origin identification (the default)
1 Origin identification required.

21 Local Interactive graphics mode
Nickname syntax: (LCLMODE,{NOIYES})

Indicates whether panning and zooming or scaling of
graphics on 3270-PC/G or 3270-PC/GX work stations is
to be performed using local data streams or by
rebuilding the picture in the host.

Full details of how to use local interactive graphics
mod~ are given in the GDDM Guide for Users manual.

Subsystems: All
Devices: Family-1 3270-PC/G and IGX work

stations
Length: 2 full-words.

1 The option group code: 21.
2 The local interactive graphics mode option:

o Local interactive graphics mode not allowed
(the default)

1 Local interactive graphics mode allowed.

22 Document name
Nickname syntax: (HRIDOCNM,xxxxxxxx)

Provides a name for the document or primary data
stream that is passed to CDPF. This name is printed in
the picture separator-line, above each picture. This
can be used to help identify the owner of the printed
output.

Subsystems: TSO, VM/CMS
Devices:
Length:

1
2and3

Family-4, 4250 printers only
3 full-words.

The option group code: 22.
One pair of full-words, forming an 8-byte name
part.

23 Special device
Nickname syntax: (SPECDEV,{special device
namel*,{{ddname},} })

Provides a token defining the type of special device and
a namelist providing information specific to a specific
type of special device.

Subsystems: TSO, VM/CMS
Devices: Family-1
Length: 2 + 2xN full-words.

1 The option group code: 23.
2 The number (N, in the range 0 through 2) of

pairs of words that follow.
3 and 4 Special device name.

IBM5080 To use the 5080 Graphics
System for graphics

* To turn off the use of the 5080.
5 and 6 Information specific to this device.

For this SPECDEV name, there are only two
full-words of device-specific information,
which are ddname or blank when full-words 3
and 4 contain" IBM5080" .

Note: The use of a blank indicates DUM5080;
that is, no actual 5080 need be attached.

procopts

24 Window mode
Nickname syntax: (WINDOW,{NOIYES})

Indicates whether the device is to be used for win­
dowing. It allows the use of the WSCRT call to define a
window on the device. Subsequent calls of DSOPEN for
the same device (same device name-list) open virtual
devices, which appear in the window.

The use of the WINDOW processing option inhibits the
use of real partitions.

Note: For a GDDM program running under the control
of a task manager, if this processing option is specified
for a virtual device, it is ignored, and the processing
option for the real device is used instead.

Subsystems: CICSIVS, TSO, VM/CMS
Devices: Family-1 displays, except 5080 Graphics

System
Length: 2 full-words.

1 The option group code: 24.
2 The type of window mode:

o Not in window mode (the default)
1 In window mode.

25 CICS pseudoconversatlonal control
Nickname syntax:
(PSCNVCTL, {NOISTARTICONTINUE})

Specifies whether GDDM is to run in conversational
mode or pseudoconversational mode.

Note: For a GDDM program running under the control
of a task manager, if this processing option is specified
for a virtual device, it is ignored, and the processing
option for the real device is used instead.

Subsystems: CICS (both MVS and VSE)
Devices: Default family-1 display device only
Length: 2 full-words.

1 The option group code: 25.
2 The use of pseudoconversational mode.

o Do not use pseudo- conversational mode (the
default)

1 Start use of pseudo- conversational mode
2 Continue use of pseudo- conversational

mode.

26 Fast update mode
Nickname syntax: (FASTUPD,n)

Selects the level of picture degradation that is accept­
able to enable a fast update of the graphic data on the
device. The option selected can subsequently be
queried and changed by the application using the
FSUPDM call; see the GDDM Base Programming Refer­
ence, Volume 1.

The main use of this processing option is to control fast
update mode by means of a nickname.

It only has an effect on 3270-PC/G and 3270-PC/GX
work stations, 3179-G and 3192-G color display
stations, 5550-family work stations, and devices sup­
ported by GDDM-PCLK. On these devices, the color
mixing can be degraded to use exclusive-OR mode to
enable segments to be changed or deleted without
causing a redraw of the picture.

Appendix B. Processing option groups and name-lists 155

procopts

Subsystems: All
Devices Famlly-1 327D-PC/G and 3270-PC/GX

work stations, 3179-G and 3192-G dis­
plays, 5550-family work stations, and
devices supported by GDDM-PCLK

Length: 2 full-words.

1 The option group code: 26.
2 The type of window mode:

o No degradation of picture fidelity (default)
1 Picture degradation acceptable using

GDDM's chosen method for the picture.

27 User Control fast path mode
Nickname syntax: (CTLFAST,{NOIYES})

Allows the application to select fast path mode for User
Control functions that require pointings. When
(CTLFAST.YES) is specified and a User Control function
that requires pointing (MOVE, SIZE. POINT, CENTER.
ZOOM-IN. ZOOM-OUT) is selected by a PF key. it is
assumed that the user has already positioned the
cursor at the first pointing.

The GDDM default is (CTLFAST.NO).

Subsystems: Not IMSIVS
Devices: All family-1 displays
Length: 2 full-words.

1 The option-group code: 27.
2 The availability of fast-path mode for User Control

functions that require pointings:
o Fast path mode is not selected (the default)
1 Fast path mode Is selected.

28 User Control
Nickname syntax: (CTLMODE.{*IYESINO})

Allows the application the overall control of the User
Control environment. The GDDM default is
(CTLMODE.*).

Note: For a GDDM program running under the control
of a task manager. If this processing option Is specified
for a virtual device, It Is Ignored. and the processing
option for the real device Is used Instead.

Subsystems: Not IMSIVS
Devices: Ali famlly-1 displays
Length: 2 full-words.

1 The option-group code: 28.
2 The availability of control mode:

o User Control Is available for devices not
capable of supporting real partitions (the
default).

1 User Control is always available, forcing
emulated partitions.

2 User Control Is not allowed.

29 User Control key
Nickname syntax: (CTLKEY.type,value)

Allows the application to select a User Control key that
is suitable to its environment. The default Is
(CTLKEY.4.3). which Is PA3.

Note: For a GDDM program running under the control
of a task manager, if this processing option is specified
for a virtual device. it is Ignored. and the processing
option for the real device Is used instead.

156 Base Programming Reference

Subsystems: Not IMSIVS
Devices: All family-1 displays
Length: 3 full-words.

1 The option-group code: 29.
2 The type of key selected for entering User

Control:
o None. User Control cannot be entered by

key action.
1 A PF key (see value below) is used to enter

User Control.
4 A PA key (see value below) is used to enter

User Control.
3 Value. The number of the PA or PF key used:

o None. User Control cannot be entered by
key action.

n The number of the PA or PF key defined for
User Control.

30 User Control print
Nickname syntax: (CTLPRINT.(YESINO))

Allows the application to control the print or plot facili­
ties offered in User Control. The default is
(CTLPRINT. YES).

Subsystems: Not IMSIVS
Devices: All famlly-1 displays
Length: 2 full-words.

1 The option-group code: 30.
2 The ability to print from the screen:

o (YES) Printing is allowed in User Control
1 (NO) Printing is not allowed In User Control.

31 User Control save
Nickname syntax: (CTLSAVE.(NOIYES))

Allows the application to control the picture-saving
facilities offered in the User Control environment.

The default value is defined in the CTLSAVE parameter
in GDDM's external defaults (see
Appendix A, MGDDM's default values" on page 127),
and Is subsystem-dependent.

Subsystems: Not IMSIVS
Devices: All famlly-1 displays
Length: 2 full-words.

1 The option-group code: 31.
2 the ability to save the picture:

o (NO) Saving is not allowed from User
Control

1 (YES) Saving is allowed from User Control.

32 InUne resources
Nickname syntax: (INRESRCE,(NOIYES))

Indicates whether the output file contains Inllne
resources. (See "Inllne resources for AFPDS printers"
on page 62.)

Subsystems: All
Devices: All AFPDS printers
Length: 2 full-words.

1 The option-group code: 32.
2 Inllne resources supported:

o (NO) Inllne resources are not supported (the
default)

1 (YES) Inline resources supported.

33 PCLK
Nickname syntax: (PCLK,(NOIYES))

Indicates whether GDDM-PCLK is to be made available.
If set to YES, users of GDDM applications on non­
graphics displays, such as 3278s, will be prompted to
indicate whether they want to use GDDM-PCLK.

Subsystems: Not IMSIVS
Devices: PCLK
Length: 2 full-words.

1 The option-group code: 33.
2 GDDM-PCLK availability:

o (NO) GDDM-PCLK not available (the default)
1 (YES) GDDM-PCLK available.

34 Device code-page
Nickname syntax: (DEVCPG,n)

Specifies the code page that GDDM is to use for a
device. This code-page overrides that returned by a
CECP device when GDDM opens it.

Subsystems: All
Devices: All
Length: 2 full-words.

1 The option-group code: 34.
2 Device code-page:

n The global code-page identifier (see
Figure 9 on page 124).

35 IPDS printer quality
Nickname syntax:
(IPDSOUAL,{*IDPIDPOIDPTIDPTOINLO})

Indicates the print quality.

Subsystems: Not IMSIVS
Devices: IPDS printers
Length: 2 full-words.

1 The option-group code: 35.
2 Print quality:

0(*)

1 (DP or DPO)
2 (DPT or DPTO)
3 (NLQ)

Printer hardware setting (the
default)
Data processing quality
Data processing text quality
Near letter quality.

36 Encoded data fields on personal computers
Nickname syntax: (PCLKEVIS,{NOIYES})

Indicates whether the fields are to be displayed or are
to be made nondisplayable.

Subsystems: Not IMSIVS
Devices: PCLK
Length: 2 full-words.

1 The option-group code: 36.
2 Encoded data fields to be displayed:

o (NO) Encoded data fields to be
nondisplayable (the default)

1 (YES) Encoded data fields to be displayed.

(PCLKEVIS,YES) must be used with GDDM-PCLK if your
terminal emulator normally discards nondisplayable
characters.

1000 CMS PA1/PA2 protocol
Nickname syntax:
(CMSINTRP, {PA lPA21PA21PA lINONE})

procopts

Under VM/CMS, a user can usually interrupt an exe­
cuting program to contact the underlying supervisors.
A GDDM application can choose, by this option,
whether it requires this capability. The default is to
retain the capability.

Notes:

1. PA2 can only cause entry to CMS subset mode
when GDDM has a read outstanding at the ter­
minal, but not if a partition other than partition zero
is active.

2. For a GDDM program running under the control of
a task manager, If this processing option is speci­
fied for a virtual device, it is Ignored, and the proc­
eSSing option for the real device is used Instead.

Subsystems: VM/CMS
Devices: Family-l device from which the program

is being run, or auxiliary device attached
to that device

Length: 2 full-words.

1 The option group code: 1000.
2 The type of PA lIPA2 protocol:

o PA 1 causes entry to CP mode; PA2 causes
entry to CMS subset mode (default)

1 PA 1 is returned to the application; PA2
causes entry to CMS subset mode

2 PAl causes entry to CP mode; PA2 is
returned to the application

3 PA 1 and PA2 are returned to the application.

1001 eMS aHentlon handling
Nickname syntax:
(CMSA TIN, {BASIC! EXTENDED} ,n,addr)

Determines how asynchronous interrupts (attentions)
are handled in a GDDM application.

For a more detailed discussion of VM/CMS attention
handling, together with a full description of the contents
of the attention feedback block (see Fullword 2), see
Chapter 6, "Using GDDM under VM/CMS" on page 41.

Note: For a GDDM program running under the control
of a task manager, if this proceSSing option is specified
for a virtual device, it Is ignored, and the processing
option for the real device is used instead.

Subsystems: VM/CMS
Devices: Family-l device from which the program

Is being run, or auxiliary device attached
to that device

Length: 4 full-words.

This option group always contains four
full-words. (If basic attention handling Is
requested, the third and fourth full-words
must still be present even though they
are not inspected.)

1 The option group code: 1001.
2 The type of attention handling:

o Basic attention handling (the default); only an
unsolicited ENTER causes an attention to be
raised.

Appendix B. Processing option groups and name-lists 157

procopts

GDDM passes the attention to the next higher
layer in the stack of attention handlers. lind
takes no action on its own behalf. All other
interrupts received by GDDM are ignored.

1 Extended attention handling; all unsolicited
interrupts received by GDDM cause an atten­
tion to be raised.

GDDM partially decodes the inbound data
stream causing the attention. and builds an
aUentlon feedback block. This contains the
identifier of the attention in a similar format
to that returned on ASREAD. After this infor­
mation is filled in. control is passed to the
next higher attention handler in the stack.
The feedback block is not owned by GDDM.
but is supplied by the user by this option
group. If. however. either the length or the
address of the block is zero. the feedback
block is not filled in.

3 The length of the attention feedback block. See
the description of extended attention handling.
above (Fullword 2).

4 The address of the attention feedback block. See
the description of extended attention handling.
above (Fullword 2).

1002 C,MS CP SPOOL parameters
Nickname syntax: (CPSPOOL.xxxxxxxx.xxxxxxxx)

Causes a CP SPOOL command to be issued for punch
files that result from opening a family-1 device with a
name-list of "PUNCH" under VM/CMS. If specified. this
option group causes a CP SPOOL command of this
form:

CP SPOOL PUNCH xxxxxxxx xxxxxxxx .••••••.••••.•.•

to be issued at the time of the DSOPEN call.

A specification of the form (CPSPOOL.TO.RSCS) can be
used to direct such punch files to a product capable of
processing them (suc~ as RSCS Networking Version 2).

GDDM does not restore any previous spooling control
options when the device is closed. The default is a
zero value in full-word 2. If this processing option
group is not specified or if full-word 2 is zero. no CP
SPOOL command is issued.

Subsystems: VM/CMS
Devices: Family-1 device 'PUNCH'
Length: 2 + 2xN full-words.

1 The option group code: 1002.
2 The number (N. in the range 0 through 16) of

pairs of full-words that follow.
3 through 2 + 2xN: "N" pairs of full-words. giving the

appropriate spooling information as 8-character
tokens.

1003 CMS CP TAG parameters
Nickname syntax: (CPTAG.xxxxxxxx.xxxxxxxx)

Causes a CP TAG command to be issued for punch files
that result from opening a family-1 device with a name­
list of "PUNCH" under VM/CMS. If specified. this
option group causes a CP TAG command of this form:

CP TAG DEV PUNCH xxxxxxxx xxxxxxxx •••••.••

to be issued at the time of the DSOPEN call.

158 Base Programming Reference

GDDM inserts one blank character between each speci­
fied token. except that GDDM removes any excessive
blank characters and any blank characters surrounding
the character" = ". Thus, a specification of the form:

(CPTAG.PRINTER1.PRT,=,GRAPH)
causes the following CP TAG command to be issued:

CP TAG DEV PUNCH PRINTERl PRT=GRAPH
A specification like the one above can be used to notify
products capable of processing punch files (such as
RSCS Networking Version 2) about the graphic nature
of the punch file.

GDDM does not restore any previous tag information
when the device is closed. The default is a zero value
in full-word 2. If this processing option group is not
specified or if full-word 2 is zero. no CP TAG command
is issued.

Subsystems: VM/CMS
Devices: Family-1 device 'PUNCH'
Length: 2 + 2xN full-words.

1 The option group code: 1003.
2 The number (N. in the range 0 through 16) of

pairs of full-words that follow.
3 through 2+2xN: "N" pairs of full-words. giving the

appropriate routing (tag) information as
8-character tokens.

1004 Automatic Invocation of VM/CMS print utility
Nickname syntax: (INVKOPUV.{NOIYES})

Indicates whether GDDM is to invoke the GDDM print
utility automatically after a print file has been created.

If this function is requested. a temporary print file is
created. and the print utility is requested to print this
file on the device specified by the name-list parameter.
After printing. the temporary file is erased.

Subsystems: VM/CMS
Devices: Famiiy 2
Length: 2 full-words.

1 The option group code: 1004.
2 Print utility control:

o Do not invoke print utility
1 Invoke print utility automatically.

2000 TSO CLEAR/PA1 protocol
Nickname syntax: (TSOINTRP.{PA1INONE})

Usually. in TSO. an end user can interrupt an executing
program to contact the underlying supervisor. A GDDM
application can choose. by this option. whether it
requires this capability.

For a more detailed discussion of the use of the PA1
and CLEAR keys in an TSO environment. see
Chapter 5. "Using GDDM under TSO" on page 33.

Subsystems: TSO
Devices: Family 1
Length: 2 full-words.

1 The option group code: 2000.
2 The type of attention handling:

o PA 1 causes attention. CLEAR is ignored (TSO
default action)

1 PA 1 and CLEAR are returned to the GDDM
application (PA1 does not cause an atten­
tion),

2001 TSO reshow protocol
Nickname syntax: (TSORESHW,n)

This option controls which PF and PA key functions are
passed to the GDDM application program on input. The
key functions specified in this option are not to be
passed. They are treated as messages from TSO,
informing GDDM that the display was corrupted.

Any key functions specified in this option are not avail­
able to the application program. When pressed by the
terminal user, the specified keys cause the current
picture to be rebuilt and reshown.

This option group aliows an application, executing in a
TSO/VTAM environment, to alter the Attention Identifier
(AID) that signals that the display was corrupted (typi­
caliy, by IIne-by-line output). It can be set to be either
the default PA key or a PF key. Changing It to a PF key
releases the default PA key for other use.

Note: For a GDDM program running under the control
of a task manager, if this processing option is specified
for a virtual device, it is ignored, and the processing
option for the real device is used instead.

Subsystems: TSO
Devices: Family 1
Length: 2 full-words.

1 The option group code: 2001.
2 The keys treated as "reshow" AIDs:

o PA2 is treated as the "reshow"
AID (the default)

1 through 24 The number of the PF key to be
treated as the "reshow" AID.

2002 TSO famlly-2 print-file destination
Nickname syntax:
(PRINTDST,{classl*H,destnamel*lddname})

This option controls the destination of the family-2 print
output.

The default destination is the ADMPRNT queue.

Subsystems: TSO (including TSO/BATCH and

Devices:
Length:

1
2

3and4

Sand6

MVS/BATCH)
Family 2
2 + 2xN full-words.

The option group code: 2002.
The number (N, in the range 1 through 2) of
pairs of full-words that follow.
An 8-character token containing one of:
class Appropriate output class for the

*
JES spooi system.
Output is to go to ADMPRINT
queue or a ddname.

An 8-character token containing one of:
destname The JES Remote Work Station

name, associated through
JES/328X, with the required

*
ddname

target printer.
Output is to go to the
ADMPRINT queue.
The ddname of a DO statement
describing the output data set to
be used.

3000 Color-master table Identifier
Nickname syntax: (COLORMAS,n)

Identifies the color-master table to be used.

procopts

A color-master table defines how each input color is to
be analyzed into one or more color masters. If this
option group is not specified, a single monochrome
master Is generated.

Subsystems: TSO, VM/CMS
Devices: Family 4
length: 2 full-words.

1 The option group code: 3000.
2 The Identifier of the color master table: A

number that Is placed after the letters "ADM" to
create a color table name. For example, the
number 1 results in color table ADM00001 being
used. Specifying 0 (the default) means that a
monochrome master is generated.

For more information on color separations, see
the GDDM Application Programming Guide,
Volume 1.

For information on the ADMMCOL T macro, see
also Chapter 10, "Setting up color-master
tabies" on page 79.

Appendix B. Processing option groups and name-lists 159

name-lists

Name-lists

The following section describes the name-list values
that can be specified for each subsystem and for each
GDDM device family.

A name-list Is a means of Identifying which physical
device Is to be opened for use by a GDDM application
program. It can be a parameter of the DSOPEN call
(see the GDDM Base Programming Reference. Volume
1). or It can be specified as a nickname. The naming
convention of the name-list varies according to the sub­
system and device family in use.

Reserved names "*" and blanks

In all environments. for all families. there is a conven­
tion for two reserved values of the name-lIst(1) field.

• When this field is speCified but is n*". the terminal
used Is as described under the options below for a
name-count of O. where this is valid. In other
words. this Is an explicit way to specify the default
device name.

• When the field contains blanks. the device is a
dummy one. that Is. no real device Is associated
with this GDDM device. GDDM generates the data
streams required but does not send them to any
real device. nor does It try to receive data from a
device.

This option can be used to check a GDDM applica­
tion when a real device with the necessary fea­
tures is unavailable. or it can be used with the
FSSAVE mechanism to generate SAVE files for a
device that Is unavailable when the application is
to be run.

When this option is selected. the application
program must provide a device token parameter to
supply the device characteristics that are to be
used by GDDM.

Family-1 name-list

In all subsystems. the device name can specify the
user console:

• By omitting the name list (by giving a length of 0 in
DSOPEN)

• By setting ali name-parts to "*".
Also. (under CICSNS. TSO. or VM/CMS). the name-list
parameter can identify an auxiliary device. such as a
plotter that is attached to a 3270-PC/G or 3270-PC/GX
work station. or a printer or plotter that is attached to a
GDDM-PCLK work station. In such a case, name-lIst(1)
identifies the 3270-PC/G or 3270-PC/GX. or
GDDM-PCLK work station. and name-lIst(2) (other than
n*,,) identifies the auxiliary device (the plotter or
printer). GDDM uses this name to Identify the appro­
priate port on the attaching work station.

160 Base Programming Reference

Notes:

1. The name given in name-list(2) must be the same
as the name given in the IEEE customization panel
when the 3270-PC/G or 3270-PC/GX work station
was set up. (This is not the same as the device
type which must be of the form "IBMnnnn".)

2. A name-llst(2) value of "ADMPLOT" has a special
meaning. In this case, GDDM uses the first plotter
defined in the IEEE customizatlon panel when the
3270-PC/G or 3270-PC/GX work station was set up,
regardless of the configured name.

3. In the case of GDDM-PCLK 1.1 only one plotter can
be configured, so ADM PLOT should always be
used. The special value ADMPCPRT should be
used to open a PCLK-attached printer, see
GDDM-PCLK Guide.

CICS/VS name-list
Family 1 - 3270 terminals
The name-count value must be 0, 1, or 2:

o The device used is that identified by the Terminal
Control Table (TCT) for the transaction.

1 Name-list(1) must contain either "*" or blanks. If it
contains "*", the terminal is used as described for
a name-count of O.

2 Name-list(1) must contain either "*" or blanks.

If name-list(2) contains n*", the terminal is used as
described for a name-count of 1. Otherwise, the
name-list(2) value is the name of an auxiliary device (a
plotter).

Family 2 - queued printer
The name-count value must be 1.

The name-list(1) value is the terminal identifier of the
printer in the TCT.

Family 3 - system printer
The name-count value must be either 0 or 1:

o A name is taken from the GDDM defaults. The sup-
plied default is ADMS.

1 A name is taken from name-list(1).

The name is assumed to be the name of a transient
data destination that can route the output to a sub­
system printer. The transient data destination should
be one defined in the CICSNS Destination Control
Table.

When name-list(1) contains "*", the printer is used as
described for a name-count of O.

Family 4 - composed-page printer flies
Not applicable under CICSNS.

IMS/VS name-list
Family 1 - 3270 terminals
The name-count value must be either 0 or 1:

o An L TERM name is taken from the L TERM field of
the 110 PCB.

1 An L TERM name is taken from name-lIst(1).

There must be at least one TP PCB whose destination
is set to the L TERM name.

If name-list(1) contains "*", the terminal is used as
described for a name-count of O.

Family 2 - queued printers
The name-count value must be 1.

The name-list(1) value is an L TERM name. This L TERM
must be for a 3270-family printer. There must be at
least one TP PCB whose destination is set to the name
of the GDDM-supplied print utility transaction.

Family 3 - system printers
The name-count value must be either 0 or 1:

o An L TERM name is taken from the GDDM defaults.
The supplied default is ADM LIST.

1 An L TERM name is taken from name-list(1).

There must be at least one TP PCB whose destination
is set to the L TERM name. This L TERM must be for a
SPOOL printer.

If name-list contains 00*", the printer is used as
described for a name-count of O.

Family 4 - high-resolution Image flies
Not applicable under IMSNS.

TSO name-list
Family 1 - 3270 terminals
The name-count value must be 0, 1, or 2:

o The device is the terminal from which the applica­
tion is being run.

1 Name-list(1) must contain either 00 *" or blanks. If it
contains "*", the terminal is used as described for
a name-count of O.

2 Name-list(1) must contain either "*" or blanks.

If name-list(2) contains 00*00, the terminal is used as
described for a name-count of 1. Otherwise, the
name-list(2) value is the name of an auxiliary device (a
plotter).

Family 2 - queued printers
The name-count value must be 1.

The name-list(1) value is the device identifier of the
printer. This device identifier must be one of the
names in the Master Print Queue data set of the GDDM
print utility. Under VTAM, the device identifier must be
included in SYS1.VTAMLIST.

Family 3 - system printers
The name-count value must be either 0 or 1:

o A ddname for a SYSOUT file is taken from the
GDDM defaults. The supplied default is ADM LIST.

1 A ddname. for a SYSOUT file is taken from
name-list(1).

If name-list(1) contains 00*", the printer is used as
described for a name-count of o.
Family 4 - high-resolution Image flies
The name-count value must be 1 through 6.

The name-list value defines the DDNAME(s) or
DSNAME(s) of the data set(s) that will be generated.
More than one data set is generated if a color master
table is being used (as specified by processing option
group 3000).

Monochrome master

The name-list value must be of one of these:

* A name is taken from the GDDM defaults. The sup­
plied default is ADMIMAGE.

The inferred name is searched for as a DDNAME.
If it cannot be found as a DDNAME, it is formed into
a DSNAME of the form "qualifier(s).name" (where
qualifier(s) is the active dsn-prefix, or userid, or
both of these).

name-lists

name1.name2[.name3 ••••] or 'name1 [.name2.name3 ••
..]'

The specified name is taken as a DSNAME,
according to TSO naming conventions. Unless
contained in quotes, the specified name must
contain one (and only one) component of "*".
Whether contained in quotes or not, if anyone
component of the name is 00*", that component is
replaced with a value taken from the GDDM
defaults. The supplied default is ADM IMAGE.

If contained in quotes, the name is taken as a com­
plete DSNAME. If not contained in quotes, it is
formed into a complete DSNAME of the form:

'qualifier(s).namel.name2 ..• '
where qualifier(s) is the active dsn-prefix, or
userid, or both of these.

If the specified name exceeds a characters in
length, it must be placed in consecutive members
of the array, and, if necessary, padded with blanks.

For example, if the DSNAME is contained in quotes
and is

aaaa.bbbb.ccc
then it would look like this:

In PL/I, a string can be overlaid on the array to
simplify this (but the name-count must still specify
the number of a-byte tokens).

Color masters

The name-list value must be of one of these:

* A value is taken from the GDDM defaults. The sup­
plied default is ADMCOL+. The "+00 is replaced by
1, 2, 3, and so on (up to a maximum of 9) for each
color master data set.

The first derived name (for example, ADM COL 1), is
searched for as a ddname. If it is found as a
ddname, ali the other derived names must also
exist as ddnames. If it cannot be found as a
ddname, all the derived names ·are formed into
DSNAMEs of the form:

'qualifier(s).name'
where qualifier(s) is the active dsn-prefix, or
userid, or both of these.

name1.name2[.name3 ••••] or 'name1[.name2.name3 ••
..]'

The specified name is taken to identify DSNAMEs,
according to TSO naming conventions. The speci­
fied name must contain one (and only one) compo­
nent of 00 *". That component is replaced with a
value taken from the GDDM defaults. The supplied
default is ADMCOL+. The 00+" is replaced by 1,2,
3, and so on, (up to a maximum of 9) for each color
master data set.

Appendix B. Processing option groups and name-lists 161

name-lists

If contained in quotes, the derived names are taken
as complete DSNAMEs. If not contained in quotes,
they are formed into complete DSNAMEs of the
form "qualifier(s).name1.name2 ... " (where
quallfier(s) is the active dsn-prefix, or userid, or
both of these).

If the specified name exceeds 8 characters in
length, it must be placed in consecutive members
of the array, and, if necessary, padded with blanks.

For example, if the DSNAME is contained in quotes
and is

aaaa.*.ccc
where "*" is replaced by ADMCOl1, ADMCOl2,
and so on, then it would look like this:

namelist(2) = I c I c I c I . I I I I I
In PUI, a string can be overlaid on the array to
simplify this (but the name-count must still specify
the number of 8-byte tokens).

In this example, the derived DSNAMEs when using
a color table specifying four-color masters would
be:

'aaaa.ADMCOlI.ccc'
'aaaa.ADMCOl2.ccc'
'aaaa.AOMCOl3.ccc'
'aaaa.AOMCOl4.ccc'

VM/CMS name-list
Family 1 - 3270 terminals
The name-count value must be 0, 1. or 2:

o The device is the terminal from which the applica­
tion is being run.

1 Name-lIst(1) must contain one of these:
• "*u
• Blanks
• "PUNCH" A character form of device address

(for example "061").

If name-lIst(1) contains "*". the terminal is used as
described for a name-count of O.

If name-list(1) = "PUNCH", GDDM writes the 3270
device output to the CMS virtual punch, in the form
described in "Native CMS file processing" on
page 42. In this case, the application must provide
a device token parameter to supply the device
characteristics that are to be used by GDDM.

2 Name-list(1) must contain one of these: • U* ..
• Blanks
• "PUNCH"
• A character form of device address (for

example "061").

If name-list(2) contains "*", the terminal is used as
described for a name-count of 1. Otherwise. the
name-lIst(2) value is the name of an auxiliary device (a
plotter).

162 Base Programming Reference

Family 2 - queued printers
The name-count value must be 1 through 3.

Unless processing option group 1004 (INVKOPUV) is
specified, the name-list(1), name-lIst(2), and
name-list(3) values define the filename, filetype, and
fllemode (respectively) of the print file that is to be gen­
erated. The supplied default for filetype is ADMPRINT.
Filemode defaults to A 1.

If automatic invocation of the VM/CMS Print Utility is
requested (as specified by I NVKOPUV) , name-count
and name-list identify a famlly-1 device. and must
therefore be as defined for family-1 (above).

Family 3 - system printers
The name-count value must be 0, 1, 2, or 3:

o The device is the currently-defined
printer; that is, device OOE.

1 through 3 Name-list(1). name-list(2). and
name-list(3) define the filename.
flletype, and fllemode (respectively)
of the print file that is to be gener­
ated. The supplied default for fiietype
is ADMlIST. Fllemode defauits to A 1.

When name-list(1) contains "*", the printer is used as
described for a name-count of O.

Family 4 - hlgh.resolutlon image flies
The name-count value must be 1 through 3.

The name-list(1). name-list(2), name-lIst(3) values
define the filename, filetype, and filemode, respec­
tively, of the CMS flle(s) that is generated. More than
one file is generated if a color master table is being
used (as specified by processing option group 3000).

For both monochrome and multicolor masters. "A 1" is
assumed if the filemode is omitted.

Monochrome master
When the filetype Is omitted or Is specified as "*", the
filetype is taken from the GDDM defaults. The supplied
default is ADM IMAGE.

Color masters
When the flletype is specified, it must be "*". The
flletype is taken from the GDDM defaults. The supplied
default is ADMCOl+. The M+" is replaced by 1. 2,3,
and so on (up to a maximum of 9) for each color master
file.

For example, if:

namelist(I) I a I a I a I a I I I I I

namelist(2) I * I I I I I I I
the derived file identifiers when using a color table
specifying four-color masters would be:

aaaa ADMCOll Al
aaaa AOMCOL2 Al
aaaa AOMCOL3 Al
aaaa ADMCOl4 Al

file formats

Appendix C. GDDM object file formats

Version 2 Release 2 of GDDM supports the following
object names and types:

Table 22. GDDM object names and types

Object name Object type

ADMSYMBL Symbol set
ADMGGMAP Generated GDDM mapgroup
ADMSAVE FSSAVE file
ADMCFORM Chart format file

ADMCDATA Chart data file
ADMGDF GDF file
ADMCDEF Chart definition file
ADMPROJ Projection definition file
ADMIMG Image data file

Record structure

Every record in a stored GDDM object is 400 bytes
long. The first 20 bytes of each record comprise a
record identification field. which is used as a source
key when the object is stored on a keyed database (as
in CICSIVS or IMSIVS). The remaining 380 bytes of the
first record provides more information on the object.
and the remaining 380 bytes of subsequent records
comprise the object data.

Table 23. GDDM stored object file format

Length Content Record
(bytes) type

20 Identification field Header

380 Information field record

20 Identification field Data

380 Data field record 1

20 Identification field Data

380 Data field record n

The header record

The first record in a GDDM stored object is a header
record containing miscellaneous control and comment
Information. It consists of two fields; the record identifi­
cation field. and the record information field.

The record Identification field

The first eight bytes of this field contain the name of the
object. This name is the same in all the records of the
object.

The second eight bytes of this field contain the object
type (see Table 22). and is also the same for all the
records in the object.

The last four bytes of the record identification field
contain the record sequence number. starting at 1. in
fixed binary form.

Table 24. GDDM stored object - record identifica-
tion field format

Onset Length Type Content

0 8 CHAR(8) Object name

8 8 CHAR(8) Object type

16 4 FIXED(31) Record
sequence
number

The Information field

The remaining 380 bytes of the header record provide
extra information about the record. such as the GDDM
version and release number. and the date and time the
record was encoded. The format is:

Table 25 (Page 1 of 2). GDDM stored object -
record information field format

Onset Length Type Content

20 4 FIXED(31) GDDM object
V1R1 -
length of
object V1 R2 -
X '00000010 ,
V1 R3 and later
-
X '00000000 ,

24 4 CHAR(4) Reserved
28 4 CHAR(4) GDDM

Version and
release (for
example:
'1030' for
Version 1.
Release 3.0)

32 4 FIXED(31) Object major
type (same as
type in record
identification
field)

36 4 FIXED(31) Object minor
type (for
Image symbol
sets - 1 for
Vector symbol
sets - 2 oth-
erwise - 0)

40 4 FIXED(31) Length of sup-
plied user
comments

44 8 CHAR(8) Date and time
stored
(encoded) -
date
(OOYYDDD+
format) -
time
(OHHMMSS+
format)

Appendix C. GDDM object file formats 163

file formats

Table 25 (Page 2 of 2). GDDM stored object -
record Information field format

Offset Length Type Content

52 20 CHAR(20) Date and time
stored
(EBCDIC)

72 8 CHAR(8) Reserved
(must be all
X'OO')

80 255 CHAR(255) Up to 255
bytes of user
comments

335 63 CHAR(63) Reserved
398 2 FIXED(16) Code page

identifier

164 Base Programming Reference

The data record

The second and subsequent records in a GDDM stored
object contain the object data. The first 20 bytes of
these records constitute record identification fields, as
defined in Table 22 on page 163, leaving 380 bytes for
the data proper.

For objects generated by GDDM Version 1 Release 2 or
later, the remaining 380 bytes of each record contain
one or more data blocks.

Each data block contains a two-byte length field fol­
lowed by up to 32000 data bytes as defined for the par­
ticular type of object.

For example, a symbol-set object contains just one
data block starting with a two-byte length field, followed
by data bytes as defined in Appendix F, "Symbol-set
formats" on page 199. These data bytes themselves
start with two-byte length fields.

Each record may contain one or more data blocks con­
catenated together, and if necessary, data blocks are
spanned across records - although the two-byte
length field at the start of a data block is never spilt
across records. Unused space at the end of any record
consists of X' 00' .

GDForders

Appendix D. GDF order descriptions

Graphics data format (GDF) is a means of storing pic­
tures. GDDM uses it internally, and also makes It avail­
able to application programs. It consists of a set of
orders with similar meanings to the GDDM graphics
call statements. In many cases there Is a one-for-one
mapping between GDF orders and GDDM call state­
ments.

GDDM supports a picture prolog that contains Informa­
tion about the size of the picture and the symbol sets
used in the picture. A detailed description of the orders
that relate to the picture prolog Is given under n Picture
prolog" on page 183. The information the picture
prolog provides Is:

• The coordinate type
• The picture boundary
• The picture scale and aspect ratio
• The symbol sets that are referenced
• The drawing defaults information.

The initial Comment order in the generated GDF Is
retained for compatibility with previous releases of
GDDM.

Compatibility

GDDM ensures upward compatibility of GDF orders
from previous releases to the current release. The
orders are nol downward-compatlble from the current
release to previous releases.

Saving GDF orders

Applications can save GDF orders for later use as
follows:

• As application-written GDF files (GDDM Version 1
Release 2 onwards)

Use GSGET to move GDF orders from GDDM into
application-program storage. The application
program can then write these to auxiliary storage.

• As GDDM-wrltten ADMGDF objects produced from
Version 1 Release 4 onwards.

Use GSSAVE to save GDF orders as a specially
formatted ADMGDF object on auxiliary storage.
This object contains the name of the file
n ADMGDF" in columns 9 through 14 of each
record. The ADMGDF objects can be processed by
a GDDM application using GSLOAD.

GDF can be retrieved In two formats, fixed or floating
point. Floating-point GDF corresponds as closely as
possible to the GDDM calls used to generate the
picture. The data primitives will have been clipped,
only if the application requested clipping using a
GSCLP call statement. Fixed-point GDF does not nec­
essarily match the original commands (the data is
always clipped).

The GDF data that results may not necessarily
resemble the original commands used to generate the
picture because these have been processed to suit the
primary device In use. For example, coordinates will

have been converted to an Internal coordinate system
with some loss of precision. Complex primitives (such
as curved fillets) may have been simplified and approx­
imated. Clipping may have resulted In alterations to
the primitives supplied. The data Is thus not a substi­
tute for the original. It can, however, be useful in
producing an approximate copy of the stored data on
another device.

The GDF file conversion utility can also be used to
convert the file from the first format to the second.

Figure 10 shows the flow of events:

Application­
written GDF
file

GDDM
ADMGDF
Object

ADMUPCT/V command
called by IND$FILE EXEC or CLIST

Figure 10. GDF file conversion - format 1 to format 2

To convert an application-written GDF file Into an
ADMGDF object the command Is:

Under TSO:

ALLOC F(ADMPIF} DA{'pif-dataset-name'}SHR
ALLOC F{ADMGDF} DA('admgdf-dataset-name'}SHR
CALL 'GDDM.OSPID.GDDMLOAD(ADMUPCT}, 'pif-member /

(PUT admgdf-member options'

Where admgdf-dataset-name must exist, and must be
partitioned. The data set usually haS the attributes
LRECL(400) and RECFM(F) but these can be altered.

If pif-dataset-name Is sequential, pifmember should
be omitted.

Noles:

1. The user must allocate two ddnames:

• ADMPIF for the data set containing the
application-written GDF file (partitioned or
sequential)

• ADMGDF for the partitioned data set to
contain the ADMGDF object.

2. The program expects GDDM Version 1 Release
3 or Version 1 Release 2 data sets by default to
be LRECL=4QO and RECFM=F, but these
defaults can be changed.

Appendix D. GDF order descriptions 165

GDForders

UnderCMS:

ADMUPCV gdf-file-id (PUT admgdf-name options

Note: The gdf-file-id Is a standard CMS file Identi­
fier.

The options are:

• {NEWFlleIREPlace} - creates a new ADMGDF
object or replaces an existing object of the same
name

• {FIXedIFLOAT} - creates the ADMGDF file In
fixed-point or floating-point format.

Format of GDF objects

The format of the data returned by GSGET is:

Comment order, with coordinate Information
Begin Symbol-Set Mapping PSC

Map Symbol-Set Identifier PSC

End Symbol-Set Mapping PSC
Begin Picture Prolog PSC

Set Drawing Default PSC

End Picture Prolog PSC
Picture GDF (contains GDF orders)

166 Base Programming Reference

The Information in this appendix will help to interpret
GDDM-created GDF orders that are to be used outside
GDDM, or to create new GDF orders that can subse­
quently be used within GDDM.

For an example program that shows how to handle GDF
data, see the GDDM Application Programming Guide.
Volume 1.

Coordinates and aspect ratio

The coordinate values In the Picture Boundary PSC
order and the Initial Comment order are the upper and
lower bounds of the picture space. In fixed-point GDF,
these values are the values suitable for the device. In
floating-point GDF, they are the continuation of the
current window bounds to the picture space boundary.
Note that unclipped floating-point GDF can contain
orders with coordinates that are outside these limits.

To reshow a GDF picture, the window coordinates
should be reset to the picture boundary values. The
GDF picture can be reshown at any size. To preserve
the aspect ratio of the picture, a GSPS call is required
that Is based on the coordinate values in the Picture
Scale PSC order. This order defines the aspect ratio of
the coordinates; the default aspect ratio is 1.

GDF orders: summary

Alphabetic list

GDF orders

Table 26 shows the GDF orders in alphabetic order as they are described in this appendix. It provides useful Infor­
mation for those who need to write the orders.

Table 27 on page 168 shows the GDF orders in the order of their code values and it provides useful Information for
those who need to interpret the orders.

Table 26 (Page 1 of 2). Alphabetic summary of GDF orders

Order code and usage

Primitives
at current Push and

Order name Primitives position Set set Others

Arc X'C6' X'S6'
Arc Parameters X'22' X'62'
Area X'68'
Background Color Mix X'OD' X'4D'
Call Segment X'07'

Character Angle X'34' X'74'
Character Box X'33' X'03'
Character-Box Spacing X'36' X'76'
Character Direction X'3A' X'7A'
Character Precision X'39' X'79'

Character Set X'38' X'7S'
Character Shear X'35' X'75'
Character String X'C3' X'S3'
Color X'OA' X'4A'
Comment X'01'

Current Position X'21' X'61'
End Area X'60'
Extended Color X'26' X'66'
Fillet X'C5' X'S5'
Foreground Color Mix X'OC' X'4C'

Fractional Line Width X'1' , X'51'
Full Arc X'C7' X'S7'
Image Begin X'D1' X'9"
Image Data X'92'
Image End X'93'

Line X'C1' X'S, •
Line Type X"S' X'5S'
Line Width X',g' X'59'
Marker X'C2' X'S2'
Marker Box X'37' X'77'

Marker Scale X'41'
Marker Type X'29' X'69'
Model Transform X'24' X'64'
Pattern X'28' X'09'
Pick (Tag) Identifier X'43' X'23'

Pop X'3F'
Process Specific Control X'02'
Relative Line X'E1' X'A1'
Segment Attribute X'72'
Segment Attribute Modify X'73'

Segment Characteristics X'04'
Segment End X'71'
Segment End Prolog X'3E'

Appendix D. GDF order descriptions 167

GDF orders

Table 26 (Page 2 of 2). Alphabetic summary of GDF orders

Order name

Segment Position
Segment Start
Set Viewing Window
Text Alignment

Order code and usage

Primitives

Primitives
at current
position Set

X'27'
X'10'

Push and
set

X'50'

Others

X'53'
X'70'

Code value list Table 27 (Page 1 of 2). Summary of GDF orders
in order of code values

Table 27 shows the GDF orders in the order of their
code values and it provides useful information for those Mne-

who need to Interpret the orders. Code Name of GDF order monic

X'4A' Push And Set Color GPSCOL
Table 26 on page 167 shows the GDF orders in alpha- X'4C' Push And Set Foreground GPSMX
betic order as they are described in this appendix. It Color Mix
provides useful information for those who need to write
the orders. X'4D' Push And Set Background GPSBMX

Color Mix

Table 27 (Page 1 of 2). Summary of GDF orders X'50' Push And Set Text Align- GPSTA

in order of code values ment
X'51' Push And Set Fractional GPSFLW

Mne- Line Width
Code Name of GDF order monic X'53' Segment Position GSSPOS
X'01' Comment GCOMT X'58' Push And Set Line Type GPSLT
X'02' Process Specific Control GPSC
X'03' Push And Set Character Box GPSCC X'59' Push And Set Line Width GPSLW
X'04' Segment Characteristics GSGCH X'60' End Area GEAR
X'07' Call Segment GSCALL X'61' Push And Set Current Posl- GPSCP

tion
X'09' Push And Set Pattern GPSPT X'62' Push And Set Arc Parame- GPSAP
X'OA' Set Color GSCOL ters
X'OC' Set Foreground Color Mix GSMX X'64' Push And Set Model Trans- GPSTM
X'OD' Set Background Color Mix GSBMX form
X'10' Set Text Alignment GSTA

X'66' Push And Set Extended GPSECOL
X'11' Fractional Line Width GSFLW Color
X'18' Set Line Type GSLT X'67' Push And Set Viewing GPVIEW
X'19' Set Line Width GSLW Window
X'21' Set Current Position GSCP X'68' Area GBAR
X'22' Set Arc Parameters GSAP X'69' Push And Set Marker Type GPSMT

X'70' Segment Start GBSEG
X'23' Push And Set Pick (Tag) GPSPiK

identifier X'71' Segment End GESEG
X'24' Set Model Transform GSTM X'72' Segment Attribute GISAT
X'26' Set Extended Coior GSECOL X'73' Segment Attribute Modify GMSAT
X'27' Set Viewing Window GSVIEW X'74' Push And Set Character GPSCA
X'28' Set Pattern GSPT Angle

X'75' Push And Set Character GPSCH
X'29' Set Marker Type GSMT Shear
X'33' Set Character Box GSCC
X'34' Set Character Angle GSCA X'76' Push And Set Character-Box GPSCBS
X'35' Set Character Shear GSCH Spacing
X'36' Set Character-Box SpaCing GSCBS X'77' Push And Set Marker Box GPSMC

X'78' Push And Set Character Set GPSCS
X'37' Set Marker Box GSMC X'79' Push And Set Character Pre- GPSCR
X'38' Set Character Set GSCS cis ion
X'39' Set Character Precision GSCR X'7A' Push And Set Character GPSCD
X'3A' Set Character Direction GSCD Direction
X'3E' Segment End Prolog GEPROL

X'81' Line (at current position) GCLINE
X'3F' Pop Attribute GPOP X'82' Marker (at current position) GCMRK
X'41' Marker Scale GSMSC X'83' Character String (at current GCCHST
X'43' Set Pick (Tag) Identifier GSPIK position)

X'85' Fillet (at current position) GCFLT

168 Base Programming Reference

Table 27 (Page 2 of 2). Summary of GDF orders
in order of code values

Mne-
Code Name of GDF order monic

X'86' Arc (at current position) GCARC

X'87' Full Arc (at current position) GCFARC
X'91' Image Begin (at current GCBIMG

position)
X'92' Image Data GIMD
X'93' Image End GEIMG
X'A1' Relative Line (at current GCRLlNE

position)

X'C1' Line GLiNE
X'C2' Marker GMRK
X'C3' Character String GCHST
X'C5' Fillet GFLT
X'C6' Arc GARC

X'C7' Full Arc GFARC
X'D1' Image Begin GBIMG
X'E1' Relative Line GRLlNE

Process specific orders (PSC)
Default process specific orders - numeric IIsl

These orders are only valid within the picture prolog.
They are listed in alphabetic order of order name on
pages 184 through 189.

Table 28. Numeric list of default process specific
orders

Order
Order name code

Set Default Foreground Color Mix X'OC'
Set Default Background Color Mix X'OD'
Set Default Coordinate Type X'OE'
Set Default Text Alignment X'10'
Set Default Fractional Line Width X'11'

Set Default Line Type X'18'
Set Default Picture Scale X'20'
Set Default Arc Parameters X'22'
Set Default Extended Color X'26'
Set Default Pattern Symbol X'28'

Set Default Marker Symbol X'29'
Set Default Character Box X'33'
Set Default Character Angle X'34'
Set Default Character Shear X'35'
Set Default Character-Box Spacing X'36'

Set Default Marker Box X'37'
Set Default Character Set X'38'
Set Default Character Precision X'39'
Set Default Character Direction X'3A'
Set Default Pick Identifier X'43'

GDF orders

General structure

A GDF stream consists of a sequence of orders.

Each order is identified by a one-byte order code and
contains one or more bytes of operand data.

Order formats

The order is represented in one of two formats
depending on the length of the operand data.

The first format applies to orders with up to 255 bytes of
operand data. The second applies only to orders that
have a single byte of operand data.

Normal formal

In the normal format, there is a one-byte order code
and a one-byte length field, followed by "length" bytes
of operand data:

order code
(1 byte)

operand data

length (can be zero)
(1 byte)

(up to 255 bytes)

Therefore, the maximum possible length of a GDF
order Is:

1
order code +

byte

Short formal

1
data length

byte

257
total
bytes

+
up to 255

data
bytes

If the first hexadecimal digit of an order code Is less
than 8, and the second hexadecimal digit Is 8 or
greater, the GDF is a short-format order. This consists
of two bytes; the first one is the order code (as just
defined), and the second one contains the operand
data.

order code
(1 byte)

operand datal
(1 byte) I

Appendix D. GDF order descriptions 169

GDF orders

Padding

Orders can be followed by padding bytes X'OO' so that
the next order aligns on a convenient boundary.

Coordinate data

Many of the orders contain coordinate data or
coordinate-related data. Coordinates may use different
representations, either fixed or floating point.

When Integer coordinates are used, the Integers can
be:

• Halfword length
• One-byte length.

These coordinate values are normal 7-blt or 15-blt
numbers with sign. When negative, they are In twos­
complement notation.

When floating-point coordinates are used, they are In
standard short floating-point format.

The type and length of coordinates must be specified
on the GSPUT call. This is constant for the string.

Primitives

The following graphics primitives can be represented:

• Line (relative or absolute)
• Marker
• Character string
• Curved "fillet"
• Arc (circular, elliptical, or full)
• Image.

The orders have a close correspondence with many of
the GOOM functions.

Current position

The GOF order formats given below contain all relevant
coordinates. However, for brevity the start position of
the graphics primitive can be omitted. When omitted,
current position is used In its place.

Current pOSition is set by each of the orders. It is set to
the end pOint of a line or arc and, except for character
strings, the rule is the same as for the corresponding
GO OM function.

The presence or absence of the initial coordinate is
shown by bit 1 of the order code. When it is 0, the first
coordinate in the order is omitted and current position
is to be assumed in its place.

Coordinate lengths

In the following primitives, coordinates are assumed to
be pairs of twO-byte signed integers, assuming that this
is the coordinate length in use. When one-byte or four­
byte coordinates are used, the length of the order
changes accordingly. Coordinate and coordinate­
related fields are marked by "*"

170 Base Programming Reference

AHributes

GOOM provides two forms of attribute order; these are:

• Push And Set
• Set.

GOOM maintains a stack of attributes, which can be
removed from the stack by using the Pop order.

A Push And Set attribute order puts the current value of
the attribute being set onto the attribute stack and sets
the vaiue of the attribute to the value in the order. The
Pop order unstacks the most recently pushed attribute
on the stack and sets the popped attribute to the value
restored from the stack.

The difference between a Set attribute and a Push And
Set attribute order Is generally shown by the state of bit
1 of the order code, thus:

o The order is a Set attribute
1 The order is a Push And Set attribute.

There are three exceptions to this rule; they are:

Pattern

• The Set form is X' 28'
• The Push And Set form is X' 09' .

Character Box

• The Set form is X'33'
• The Push And Set form is X' 03' .

Pick (Tag) IdentUler

• The Set form is X'43'
• The Push And Set form is X '23'

Both the Set and the Push And Set orders correspond
to GO OM attribute setting functions, according to the
current attribute mode; see the description of the
GSAM call in the GDDM Base Programming Reference,
Volume 1. For example, the GPSL T order corresponds
to the GSL T function when the attribute mode is 0 (pre­
serve attributes).

As with the equivalent call statements, attribute setting
orders change the current values of the attributes. An
attribute setting applies to all subsequent primitives (to
which it is relevant) until a new setting is made.

Attribute-setting orders appearing in a GOF string argu­
ment to GSPUT affect the current attribute settings atter
the call. The effects are not purely local to primitives
within the string, but may affect subsequent primitives.

The details of the effects of the orders are not given in
full. For more explanation, see the corresponding call
statement descriptions in the GDDM Base Program­
ming Reference, Volume 1.

GDF orders: full descriptions

This section describes the content and format of the
GDF orders, which are presented in alphabetic order.

Format of tables

Where applicable, the Set form of the order is
described In an abbreviated way to reduce duplication.
Only the hexadecimal order-code value details are
repeated; the contents of the remaining fields are the
same as for the described Push And Set form.

In these definitions, the Set form of the order is sepa­
rated from the Push And Set form by a horizontal
double line; the information under the Push And Set
form thep applies to both forms.

Where the Content of an order is given as "LEN", it
means that the field length is variable; this is indicated
by a "2*" In the Field length column.

Some orders are available as "order", or "order at
current position"; only some of the following data
applies to each one, and it is annotated accordingly.

Format of examples

The examples are given in hexadecimal, usually
assuming halfword coordinates. Blanks in the
hexadecimal strings are to aid readability; they have no
other significance.

For detailed Information about the GDDM calls men­
tioned, see the GDDM Base Programming Reference,
Volume 1.

Arc

This order constructs an arc starting at (xO,yO), passing
through (xl,yl), and ending at point (x2,y2).

The Intermediate point (xl ,yl) should, for greatest
accuracy, lie midway along the arc. (If it coincides with
either end point the arc becomes undefined.) The
initial point and the final point must not coincide.

The arc may be part of a circle or part of the ellipse
defined by the previous "arc parameters" order. a
length proportiona:! to "a"; the axis parallel to the y axis
has a length proportional to "b".

The initial coordinate pair (xO,yO) may be omitted.
Current position is then used as the starting pOint of the
arc and the order code becomes X' 86' .

GDF orders

The current position is set to point (x2,y2).

Fld
len Content Meaning

1 X'C6' or X'86' Arc order code
(GARC) or Arc (at
current position)
(GCARC)

1 LEN Length of following
data

2* xO (omitted for x coordinate of start
order X'86') of arc

2* yO (omitted for y coordinate of start
order X'86') of arc

2* xl x coordinate of inter-
mediate point

2* yl Y coordinate of Inter-
mediate point

2* x2 x coordinate of end of
arc

2* y2 Y coordinate of end of
arc

Arc parameters

This order determines the shape of subsequent arcs.
The full parameters give a transformation that maps the
unit circle to an ellipse of the required shape:

x' = Px + Ry
y' = Sx + Qy

A circle results if P=Q and R=S=O.

If P = a, Q:::: b, an ellipse results. The axis parallel to
the x axis has a length proportional to "a"; the axis par­
allel to the y axis has a length proportional to "b."

If Rand S are nonzero, the ellipse is tilted. Usually, for
an ellipse with major and minor axes proportional to
"a" and "b", tilted at angle "theta" to the x axis:

P = a.cos(theta)
Q =b.cos(theta)
R = -b.sin(theta)
S = a.sin(theta)

Fld
len Content

Set X'22' 1
1)1111111 R. iliA')(, R? '

1 LEN

2* P

2* Q

2* R

2* S

Meaning

Arc Parameters order
r.nrlA

Length of following
data

x coordinate of major
axis end

Y coordinate of minor
axis end

x coordinate of minor
axis end

y coordinate of major
axis end

Appendix D. GDF order descriptions 171

GDForders

Area

The Area order approximates to the GSAREA and
GSENDA functions.

Fld
len Content Meaning

1 X'68' Area order code

1 FLAGS BitO = on if this marks the
start of an area
= off if this order
marks the end of an ar

Bit 1 = on If the boundary
lines are to be drawn

Examples:

68 89
C1 aA 99 aa as aa 9S as aa as aa aa
68 aa

Draws a rectangular area 5 units square.
Boundary lines are not drawn.

68 ca
C1 aA aa aa as aa as 9S a9 as a9 aa
68 9a

Draws the same area, but includes boundary lines.

Background color mix order

The Background Color Mix order corresponds to the
GSBMX function.

Fld
len Content Meaning

1 Set X'OD' Background Color
Pmdl a .Af X, 4D' _Mix o-rdar ~oda

1 MODE X'OO' Default
X'01 ' OR
X'02' Overpaint
X'03' Underpalnt
X'04' Exclusive-OR

(Implemented
as overpalnt)

X'05' leave alone

Can segment order

The Call Segment order corresponds to the GSCALL
function.

Fld
len Content Meaning

1 X'07' Call Segment order code

1 X'06' Length of data

2 X'OOOO' Reserved

4 SEGID Identifier of segment to be
called

172 Base Programming Reference

a.

Character angle

The Character Angle order corresponds to the GSCA
function. It controls the angle of subsequent character
strings.

Fld
len Contenl Meaning

1 Set X'34' Character Angle
Pugh" gat X'74' nrdAr~oda

1 LEN Length of following
data

2* Ax x coordinate of a
point that defines the
angle of the text

2* Ay Y coordinate of the
point

Note: Ax and Ay specify a relative vector that
defines the angle of the baseline of the string.
When the coordinate (x,Y) is on the baseline, (x +
Ax, Y + Ay) Is also on the baseline.

When both Ax and Ay are zero, the current char-
acter angie attribute Is set to the drawing default
value.

Character box

The Character Box order corresponds to the GSCB
function. The order specifies the size of characters In
following character strings.

For 1-byte or 2-byte integer coordinates, the order can
optionally be extended to provide a fractional portion of
the character box; see the FRACTWIDTH and
FRACTDEPTH fields.

Fld
len Content Meaning

1 Set X'33' Character Box order
Push_& sat X' 03' ~oda

1 LEN Length of following
data

2* CHARWIDTH Width of character
box

2* CHARHEIGHT Height of character
box

2* FRACTWIDTH Fractional portion of
character box width,
specified as multiples
of 1/65536 for 2-byte
format or 1/256 for
1-byte format

2* FRACTDEPTH Fractional portion of
character box depth,
specified as multiples
of 1/65536 for 2-byte
format or 1/256 for
1-byte format

Note: When either the fractional width or depth Is
to be specified, both must be included. The integer
and fractional character widths (depths) together
form a character width (depth) that defines the
character box required.

Character-box spacing

The Character-Box Spacing order corresponds to the
GSCBS function.

The order specifies the spacing of characters in fol­
lowing character strings.

Fld
len Content Meaning

1 Set X'36' Character-Box
Pm:h II. itA' X '7A' !=:n",r.inn-'lrder coda

1 LEN Length of following
data

1 FLAGS Bit 0 value 0
Set character box
spacing

Bit 0 value 1
Set default char-
acter box spacing

Bits 1 through 7
Reserved - must
be set to
X '0000000 ,

1 X'OO' Reserved

2* HSPACE Horizontal
character-box
spacing

2* VSPACE Vertical
character-box
spacing

Character direction

The Character Direction order corresponds to the
GSCD function.

Fld
len Content Meaning

1 Set X'3A' Character Direction
Pm:h & get X' 7 A ' orrlAr r.OrlA

1 DIRECTION Value for character
direction
This is interpreted as
follows:

X'OO' Default
X'01' Left to right
X'02' Top to bottom
X'03' Right to left
X'04' Bottom to top

Note: The character direction gives the placement
of each character relative to the previous one,
either along or perpendicular to the baseline.

GDF orders

Character precision

The Character Precision order corresponds to the
GSCM function.

Fld
len Content Meaning

1 Set X'39' Character Precision
Pulth & ItAt X'7Q' orrlAr COriA

1 DIRECTION Value for character
mode attribute
These are interpreted
as follows:

X'OO' Default
X'01' String preci-

sion
X'02' Character pre-

Cision
X'03' Stroke preci-

sion
Other Not defined

Character set

The Character Set order corresponds to the GSCS func­
tion.

Fld
len Content Meaning

1 Set X'3B' Character Set order
Pulth & RAt X' 7R ' r.OrlA

1 LCID Local identifier for the
character set:

X'OO' Default
X'01' APL
X'41' through X'DF'

User-deflned
set

Other Not defined

Appendix D. GDF order descriptions 173

GDF orders

Character shear

The Character Shear order corresponds to the GSCH
function. It controls the shear of subsequent charac­
ters.

Fld
len Content Meaning

1 Set X'35' Character Shear
"",tI. & set Jt'75' order code

1 LEN Length of following
data

2* Hx Hx and Hy specify a
relative vector that
defines the angle at
which characters are
to be sheared.

2* Hy Y increment: see
above

Noles:

1. Hx and Hy specify a vector that defines the
angle of the upright strokes of a character rela-
tive to the baseline. If the lower left-hand
corner of a character is placed at (0,0) and the
character baseline lies along the x axis, the
line from (0,0) to (Hx,Hy) gives the direction of
upright strokes.

2. If both Ax and Ay are zero, the current shear
attribute Is set to the drawing default value.

174 Base Programming Reference

Character string

The Character String order corresponds to the
GSCHAR and GSCHAP functions.

Fld
len Content Meaning

1 X'C3' or Character String order code
X'83' or Character String (at

current position) order code

1 LEN Length of following data

2* xO (omitted x coordinate at which char-
for order acter string is to be placed
X'83')

2* yO (omitted y coordinate of character
for order string
X'83')

V STRING EBCDIC character code of
each character in the
string. All characters
above and Including X '40'
are valid.

Note: The character string is placed at the indi-
cated coordinate. The attributes of the string (for
example, mode, size, angle) are taken from the
current values.

If the character string has a length that is odd, the
length field in the order contains an odd number.
The order must be padded with padding characters
to an even number of bytes.

The position (xO,yO) may be omitted, in which case
the order code becomes X' 83' and the string is
placed at the current position.

Current position is not changed. (This is different
from GSCHAR.)

Examples:

C3 68 eee2 eea3 CIC2C3C4
Draws the character string "ABCD" at coordinate
(2,3).

83 e3 C5C6C7
Draws the character string "EFG" at the current
position.

Color

The Color orders approximate to the GSCOL function.

Fld
len

1

1

Content

Set X'OA'
PUIt"'& Itll' X'4A'

COLOR

Meaning

Color order code

Value for color attri­
bute. The value Is an
Index to a notional
color table as follows:

X'OO' Default
X'01' Blue
X'02' Red
X' 03' Magenta

(pink)
X'04' Green
X'OS' Turquoise

(cyan)
X'06' Yellow
X' 07' Neutral: white

on displays
black on hard­
copy

X'08' Background:
black on dis­
plays white on
hardcopy

Other Not defined

Note: The GSCOL call and the X' OA' Set Color
order may be mapped to the X' 2S' Set Extended
Color order as follows:

• Colors 0 through 8 are mapped to X' FFOO'
through X' FF08' In the Extended Color order
on page 175.

• All other values map directly to a two-byte
hexadecimal value.

FId
len Conlent

1 Set X'2S'
IIultll .& Itll' X 'RR '

1 LEN

2 COLOR

GDF orders

Meaning

Extended Color order
~nriA

Length of following
data

Value for color attri­
bute
The value Is an Index
Into a notional color
table, as follows:

X'OOOO' Default
X' FFOO' Default
X' 0001' or X' FF01'

Blue
X'0002' or X'FF02'

Red
X'OO03' or X'FF03'

Magenta
(pink)

X'0004' or X'FF04'
Green

X'0005' or X'FF05'
Turquoise
(cyan)

X'OOOS' or X'FFOS'
Yellow

X' 0007' White
X' 0008' Black
X' FF07' Neutral!

multicolor
(white on dis­
plays, black
on hardcopy)

Other values are not
defined.

If a color value Is
outside the range of
color values sup­
ported by a device,
the color displayed Is
devlce-dependent
(see GSCOL).

For color separation
on famlly-4 devices,
the color values
depend on the loaded
color table.

Note: All subsequent primitives have the color
given until this Is reset.

Appendix D. GDF order descriptions 175

GDF orders

Comment

The Comment order holds GDDM or application­
program data within a GDF stream. Comments are
stored in floating-point GDF.

The first GDF order returned by GSGET (and, by con­
vention, in GDF files) contains the coordinate range and
coordinate type. This convention is maintained in
GO OM Version 2 Release 1 but has been superseded
by Process Specific Control (PSC) orders.

Fld
len Content Meaning

1 X'01' Comment order code

1 LEN Length of following
data

2 COORD-TYPE 2 2-byte integer
4 4-byte integer

2* xL x lower boundary of
picture space

2* xU x upper boundary of
picture space

2* yL Y lower boundary of
picture space

2* yU Y upper boundary of
picture space

Note: It is recommended that Comment orders,
created by an application program to contain
application-specific information, should take the
following form. (GDDM suggests the following con-
vention but does not enforce it.)

Fld
len Content Meaning

1 X'01' Comment order code

1 LEN Length of following
data

2 COORD-TYPE Reserved as X' 0000'

8 IDENT Application Identifier

n DATA User data

Current position

The Current Position orders approximate to the GSCP
call.

Fld
len Content Meaning

1 Set X'21' Current Position
Push & s9f X'61' ordercndA

1 LEN Length of following
data

2* x x coordinate of new
current position

2* y y coordinate of new
current position

176 Base Programming Reference

End area

The End Area order has the same meaning as the Area
order (see page 172), with the "end area" bit set.
GDDM accepts both forms of order, but only generates
the X'60' End Area order.

Fld
len Content Meaning

1 X'60' End Area order code

1 LEN Length of following data

N X'OO' Reserved (must be all
nulls)

Fillet

The Fillet order approximates to the GSPFL T function.

Fld
len Content Meaning

1 X'e5' or X'85' Fillet order code or
Fillet (at current posi-
tion) order code

1 LEN Length of following
data

2* xO (omitted for x coordinate of line
order X '85') start

2* yO (omitted for y coordinate of line
order X'85') start

2* x1 x coordinate of first
line end

2* y1 Y coordinate of first
line end

2* x2 x coordinate of
second line end

2* y2 Y coordinate of
second line end

..

Note: The order shown generates a single fillet. More
coordinate pairs may be added to form a polyfillet. The
points are joined in order by imaginary straight lines.
A curve is then fitted to the lines as follows. The curve
is tangential to the first line at its starting point and to
the last line at its end point. If there are intermediate
lines, the curve is tangential to these lines at their
center pOints. In the special case when only two points
are supplied, a straight line results.

The initial coordinate pair (xO,yO) may be omitted. The
current position is then used as the starting point of the
arc, and the order code becomes X' 85'. The current
position is set to the last point specified.

Examples:

C5 08 ee02 ee03 eee4 eee6
Draws a line from coordinate (2,3) to coordinate (4,6).

C5 ec eeee eeee eee4 eeee eee4 eee4

Draws a curve, beginning at coordinate (0,0) and
tangential to the line from (0,0) to (4,0). Initially the
curve is horizontal. The curve then takes an approxi­
mately circular path to meet the line from (4,0) to (4,4)
at (4.4).

C5 as aa aa a4 ee e4 as ee as
assuming byte coordinates, draws two curves. The
first is that in the previous example and the second
completes an approximation to a semicircular arc.

Foreground color mix

The Foreground Color Mix order corresponds to the
GSMIX function.

Fld
len Conlent Meaning

1 Set X'OC' Foreground Color Mix
gll .. 1t R. , X ' .4r. ' nrrlA~ code

1 MODE Value for mix-mode
attribute. Mix mode
controls how an
inserted primitive
affects the existing
picture. In all modes,
generated 0 bits leave
the underlying fea-
tures untouched; new
1 bits become what-
ever the current color
is if that bit was previ-
ously of background
color. The effect of a
new 1 bit over an
existing 1 bit depends
on the particular
mode: the old color
(underpaint), the new
color (over-paint), or
a mixture (mix) may
result.

X'OO' Default
X'01' Mix
X'02' Overpaint
X'03' Underpaint
X'04' Exclusive-OR
X'05' Leave alone
Other Not defined

GDF orders

Fractional line width

The Fractional Line Width order corresponds to the
GSFLW function.

Fld
len Content Meaning

1 Set X'11' Fractional Line Width
Push & , X'51' order I'nrl ..

1 LEN Length of following
data

1 INTEGRAL LINE The integer portion of
WIDTH the line-width multi-

plier

1 FRACTIONAL The fractional portion
LINE WIDTH of the line-width mul-

tiplier, specified as
multiples of 1/256

Nole: The integral and fractional line widths
together form a line-width multiplier that defines
the line width required. For an explanation of the
interpretation of the multiplier, see the GDDM Base
Programming Reference, Volume 1.

Appendix D. GDF order descriptions 177

GDForders

Full arc

The Full Arc order allows a complete circle or ellipse to
be specified In one order. The size and shape of the
circle or ellipse are determined by the Set Arc Parame­
ters order; see page 171. Note that the Set Arc Param­
eters order sets the relative lengths of the major and
minor axes for three-point arcs, but for the Fun Arc
order it sets the absolute size, In world coordinates, of
a full circle or ellipse.

The coordinate pair may be omitted. The order code
then becomes X '87', and the arc is drawn with Its
center at the current position. The current position is
unchanged. (The X '87' version of the order draws the
arc at the current position.)

The major and minor axes of the arc are defined as

M.a M.b
where

M is the two-byte unsigned fractional fixed-point multi­
plier; the first eight bits are the integral part and the
second eight bits are the fractional part.

a and b are the lengths of the major and minor axes
obtained from the Arc Parameters order; see page
171.

A Full Arc order is allowed in an area definition and
causes the area to be closed.

FId
len Content Meaning

1 X'C7' or X'87' Full Arc (at given
position) order code
or Full Arc (at current
position) order code

1 LEN Length of following
data

2* x (omitted for x Coordinate value
order X'87')

2* Y (omitted for y Coordinate value
order X'87')

2 M Multiplier

Note: The arc is drawn with its center at point
(x,y), which becomes the current position.

178 Base Programming Reference

Image - begin

The Begin Image order, together with the Image Data
and End Image orders approximate to the GSIMG and
GSIMGS functions.

An Image consists of a rectangular array of display
pOints.

It is represented by a sequence of orders. The first is a
Begin Image order and the last Is an End Image order
(see below). Between these delimiters, several Image
Data orders may occur, giving the array of display
pOints in the image.

The initial coordinate pair (xO,yO) can be omitted. The
current position is then used to place the image data,
and the order code becomes X '91'. The current posi­
tion Is not changed by a series of Image orders.

The size of the display point array and its represen­
tation are given by the Begin Image order. The fields
IMAGEWIDTH and IMAGEDEPTH are optional and may
be either both specified, or both omitted. When speci­
fied, the image is scaled to fill the area identified by the
fields, using the rules defined in the GSIMGS call.
When omitted, each display point is represented by one
bit in the display point array.

Fld
len Content Meaning

1 X'D1' or X'91' Begin Image (at given
position) order code
or
Begin Image (at
current position)
order code

1 LEN Length of following
data

2* xO (omitted for The x position at
order X'91') which the image is to

be placed

2* yO (omitted for The y position at
order X'91') which the image is to

be placed

2 FORMAT The format of the
image data. This field
must have the value
O.

2 WIDTH The width of the
image in display
pOints

2 DEPTH The depth of the
image in display
points

2* IMAGEWIDTH The desired width of
the image in coordi-
nate units

2* IMAGEDEPTH The desired depth of
the image in coordi-
nate units

Image - data

For image FORMAT 0, each Image Data order contains
the display pOints for one row of the display point
array. Thus for an image with a DEPTH of N, there are
N Image Data orders between the Begin and End Image
orders. Each Image Data order contains data for
WIDTH display points. Each display point is repres­
ented by a single bit. When the bit is one, the display
point is "on"; when the bit is zero, the display point is
"off" .

Fld
len Content Meaning

1 X'92' Image Data order code

1 LEN Length of following data

V PIXELDATA The display points of the
image

Example:

91 a6 aeee eeG9 aea4
92 G2 FFse
92 G2 SGSG
92 G2 SGsa
92 G2 FFSG
93 G2 eeeG
Draws an image, whose size is nine display points
wide by four deep, at the current position. The
image consists of a small square of "on" display
pOints (which appear in the current coior) sur-
rounding an "off" center.

Image - end

This order ends the construction of an image.

Fld
len Content Meaning

1 X'93' End Image order code

1 LEN Length of following data

2 X'OOOO' Reserved

GDF orders

Line

The Line order approximates to the GSPlNE function.

Fld
len Content Meaning

1 X'C1' or X'81' Line order code or
Line (at current posi-

tion) order code

1 LEN Length of following
data

2* xO (omitted for x coordinate of line
order X'81') start order code

2* yO (omitted for y coordinate of line
order X'81') start order code

2* x1 x coordinate of first
line end

2* y1 Y coordinate of first
line end

... . ..

Note:

A line is drawn from the first coordinate given (xO,yO) to
the second (x1,y1).

The order shown is for a single line, but usually any
number of coordinates can be present. Consecutive
coordinates in the order are Joined by straight lines.
The data length must be an even multiple of the coordi­
nate length.

The initial coordinate pair (xO,yO) may be omitted.
Current position is then used as the starting pOint of the
first line and the order code becomes X '81' .

Current pOSition is set to the last point specified.

Note that a line order with only an initial position is per­
mitted. This serves only to move current position.

Examples

C1 08 eG02 eee3 eee4 ea96

Draws a line from coordinate (2,3) to coordinate (4,6).

C1 ac aa92 aea3 aea4 aae6 aea9 aee9

Draws a line from coordinate (2,3) to coordinate (4,6)
and a line from (4,6) to (9,9).

C1 a6 92 a3 a4 a6 e9 a9

Draws the same lines, but 1-byte coordinates are used.

C1 94 aaa2 aa93

Draws no lines. However, current position is changed
to the last coordinate (2,3).

81 94 aaa4 eaa6

Appendix D. GDF order descriptions 179

GDF orders

Draws a line from current position to point (4.6). Thus.
the pair of orders:

Cl a4 aeG2 GGG3
SI a4 GGG4 GGG6

has the same effect as the first:

Cl GS GeG2 GGG3 GGe4 eee6.

Line type

The Line Type order corresponds to the GSL T function.

Fld
len Content Meaning

1 Set X'1S' Set Line Type order
DII",h R. t Y , !;oR. ' ,..,.,rl ..

1 LlNETYPE Value for line type
attribute. The value
Is an Index into a
notional line type
table as follows:

X'OO' Default
X'01' Dotted line
X'02' Short dashed

line
X'03' Dash-dot line
X'04' Double-dotted

line
X'05' Long-dashed

line
X'06' Dash-double-dot

line
X'07' Solid line
X'OS' Invisible line
Other Not defined

Line width

The Line Width order corresponds to the GSLW func­
tion.

Fld
len Content Meaning

1 Set X'19' Set Line Width order
Pm.h R. t X' fiQ ' r.nrlA

1 LlNEWIDTH Value for line-width
attribute

180 Base Programming Reference

Marker

The Marker order approximates to the GSMRKS func­
tion.

Fld
len Content Meaning

1 X'C2' or X'S2' Marker order code or
Marker (at current
position) order code

1 LEN Length of following
data

2* xO (omitted for x coordinate of
order X'S2') marker

2* yO (omitted for y coordinate of
order X'S2') marker

..
Note:

The order Is shown for a single marker. More coor-
dinate pairs may be added. The current marker is
placed at each point specified.

The first (or only) coordinate pair may be omitted.
The order code then becomes X '82' • and a marker
is placed at the current position In addition to any
pOints specified.

The current position is set to the last coordinate
specified. or. if none. is unchanged.

Examples:

C2 e4 eae2 eee3

Draws the current marker at coordinate (2.3).

C2 ac eGG2 eee3 eee4 eee6 eeeg eeeg

Draws markers at (2.3) (4.6) and (9.9).

S2 ee

Draws the current marker at current position.

Marker box

The Marker Box order specifies the size of the cell
used for scaling vector markers.

Fld
len Content Meaning

1 Set X'37' Marker Box order
PII1iIh R. t Y' 77 ' t'nti ..

1 LEN Length of following
data

2* MARKER-WIDTH Width of marker cell

2* MARKER-HEIGHT Height of marker cell

Marker scale

The Marker Scale order approximates to the GSMSC
function. It sets the scale of the marker box with
respect to the default marker box.

Fld
len Content Meaning

1 X'41' Marker Scale order code

1 LEN Length of following data

4 SCALE Scale of marker box with
respect to the default
marker box In floating-point
format

Marker type

The Marker Type order corresponds to the GSMS func­
tion.

Fld
len Content Meaning

1 Set X'29' Marker Type order
"mt" & fill' X '6Q ' "ntf'"

1 N Marker number. The
attribute determines
which symbol Is dis-
played by the marker
primitive.
The Interpretation of
the values Is:

X'OQ' Default
X'01' Cross
X'02' Plus
X'03' Diamond
X'04' Square
X'OS' 6-polnt star
X'06' 8-polnt star
X'07' Filled diamond
X'08' Filled square
X'09' Dot
X' OA' Small Circle
X'OB' through X'40'

Not defined
X'41' through X'EF'

User-deflned

GDForders

Model transform

The Model Transform order Is a transformation matrix.

Fld
len Content Meaning

1 Set X'24' Model Transform
"& .A' X'R4,' nrri",r "ntf",

1 LEN Length of following
data

1 X'OQ' Reserved

1 FLAGS Bits 0-5:
Reserved (all 0)

Bits 6-7:
B' 00' Replace
B' 01' Postmultiply
B'10' Premultlply
(equivalent to
GSSTFM
preemptive).

Other values are not
supported

2 MASK Load Mask Values

N MATRIX Transformation
Matrix

Note:

A segment transformation is defined by a matrix

M =

Mll M12 M13 M14
M21 M22 M23 M24

M31 M32 M33 M34
M41 M42 M43 M44

which Is applied to primitives p to give pi as follows:

(x'.y'.z'.l) = (x.y.z.l).M

The GDF order defines the matrix elements In the order

Ml1.M12 •••• ,MI4.M21 ••••• M44

This differs from the GSSTFM call. which specifies the
matrix elements In the order

Mll.M21.M31.M12 ••••• M33

The MASK field Identifies those elements of the trans­
formation defined by the MATRIX field. The bits within
MASK correspond to. in order. elements

Ml1.MI2 ••••• M14.M21 •••• M44

of the transformation. The values provided In MATRIX
correspond. In order, to those elements of the transfor­
mation Identified by bits set to 1 within MASK. All unln­
Itlallzed values within the transformation matrix are set
from the Identity transformation.

Only elements M11. M12. M21, M22. M41, and M42 are
processed by GDDM. All other elements must be zero
or one (as In the Identity matrix).

Appendix D. GDF order descriptions 181

GDF orders

The transformation elements may be specified in one­
byte, two-byte, or four-byte form, corresponding to the
data type GDF coordinates.

The fixed-point representation of the matrix elements
is: M41, M42 are twos complement numbers (8-bit or
16-bit). Elements M11, M12, M21, and M22 are twos
complement numbers In the following form:

SB.bb bbbb (bbbb bbbb)
where S is the sign bit (1 = negative), B is the integer
bit, and b the fractional bits (6 or 14 of them).

Pattern

The Pattern order corresponds to the GSPAT function.

Fld
len Content Meaning

1 Set X'28' Pattern order code Pm:h & Bol X'OQ'

1 PATTERN Value for pattern attri-
bute. This attribute
determines which
pattern (either built-In
or defined through the
GSLSS call) Is to be
used to shade the
interior of subsequent
areas.
The interpretation of
the values is:

X'OO' Default
X'01' through X '08'

Density 1 to
density 8
(decreasing)

X'OS' Vertical lines
X' OA' Horizontal

lines
X'OB' Diagonal lines

1 (bottom left
to top right)

X'OC' Diagonal lines
2 (bottom left
to top right)

X'OD' Diagonal lines
1 (top left to
bottom right)

X'OE' Diagonal lines
2 (top left to
bottom right)

X'OF' No shading
X'10' Solid shading
X'11' through X'40'

Not defined
X'41' through X'EF'

User-defined

(See the description
of the GSPAT call In
the GDDM Base Pro-
gramming Reference,
Volume 1)

182 Base Programming Reference

Pick (tag) identifier

The Pick order corresponds to the GSTAG function.

A value of X'OOOOOOOO'is considered a "null" value.
Any output primitive that Is given a null tag does not
take part in correlation.

Fld
len Content Meaning

1 Set X'43' Pick (Tag) Identifier
PII1:h & BAt X ' ?3 ' order r.nrlA

1 4 Length of following
data

4 TAG Tag value

Pop

The Pop order pops the top attribute of the current attri­
bute stack and sets the popped attribute to the restored
value.

The order is valid outside segments but the results can
be unpredictable because GDDM limits the size of the
stack that can be created by temporary primitive attri­
butes.

Fld
len Content Meaning

1 X'3F' Pop order code

1 X'OO' Reserved

Process specific control

GDDM uses the Process Specific Control (PSC) order to
store picture prolog and symbol-set Information in a
GDF object. Because it does not add any graphics data
to the picture, the order is ignored by the GSPUT call.

Fld
len Content Meaning

1 X'02' Process Specific Control
order code

1 LENGTH Length of following data

1 X'xx' Process Identifier

1 X'xx' Function Identifier

N DATA Process-specific Controls

Note: GSGET returns two types of PSCs:

• X' 01' - for symbol-set names
• X' 02' - for the picture prolog .

Symbol-set names

The symbol-set PSCs contain the names and types of
the symbol sets that are currently loaded. When an
IBM 4250 printer is the primary device, the code page
is returned, as well as the symbol-set name and type.

There are three PSCs for defining symbol-set names.
These are:

Begin Symbol-Set Mapping - X'017E'
Map Symbol-Set Identifier - X'0140'
End Symbol-Set Mapping - X'017F'

The symbol-set types and names are recorded in the
Map Symbol-Set Identifier PSC. There is one control
for each symbol set. All the controls are bracketed
between a Begin Symbol-Set Mapping and End
Symbol-Set Mapping PSC, as defined below.

GSGET returns one group of symbol-set mapping infor­
mation.

Begin Symbol-set mapping

The Begin Symbol-Set Mapping PSC precedes the
picture·prolog and the segments.

Fld
len Content Meaning

1 X'02' Process Specific Control
order code

1 X'02' Length of following data

1 X'01' GOOM Symbol-Set Process
Identifier

1 X'7E' Begin Symbol-Set Mapping

Map Symbol-set identifier

Several Map Symbol-Set Identifier PSC orders follOW
the Begin Symbol-Set Mapping PSC order.

Fld
len Content Meaning

1 X'02' Process Specific Control
order code

1 LEN Length of following data

1 X'01' GOOM Symbol-Set Process
Identifier

1 X'40' Map symbol-set 10 to name
and type

1 TYPE Type of symbol set (see
below)

1 NUMBER Number of symbol-set defi-
nition (see below)

1 10 Symbol-set identifier (LCIO)

8 55-NAME Symbol-Set Name

8 CP-NAME Code Page Name (optional)

Note: The TYPE parameter can have the following
values:

X'01' Image symbol set
X'02' Vector symbol set
X'03' Shading pattern
X'04' Marker (image) symbol set
X'05' 4250 printer image symbol set
X'06' Marker (vector) symbol set.

The NUMBER parameter is always returned as
zero by GSGET.

GDF orders

End Symbol-set mapping

The End Symbol-5et Mapping PSC order appears at the
end of the Map Symbol-Set Identifier PSC orders.
Within the symbol--set mapping structure, any orders
other than PSCs, comments, and no operations cause
an implicit end to symbol-set mapping. A warning
message is issued.

Fld
len Content Meaning

1 X'02' Process Specific Control
order code

1 X'02' Length of following data

1 X'01' GDDM Symbol-Set Process
Identifier

1 X'7F' End Symbol-Set Mapping

Picture prolog

GODM uses PSCs to define the coordinate type, the
extent of GDF, and the default attribute values. The
PSCs are known as drawing defaults. They are
returned in the GOF after the map symbol-set PSC
orders (if these are present).

All the Picture Prolog PSC orders are bracketed
between a Begin Picture Prolog PSC order and an End
Picture Prolog PSC order.

Begin picture prolog

The Begin Picture Prolog PSC order precedes the
Picture Prolog PSC order. Only one picture prolog is
returned by the GSGET call.

Fld
len Content Meaning

1 X'02' Process Specific Control
order code

1 X'02' Length of following data

1 X'02' GDDM Picture Prolog Iden-
tifier

1 X'7E' Begin Picture Prolog

Appendix o. GOF order descriptions 183

GDF orders

Set picture boundary

The Set Picture Boundary PSC defines the picture
space. For fixed-point GDF, this is in device coordi­
nates. For floating-point GDF, it is in world coordi­
nates. This PSC contains the same data as the Set
Default Viewing Window PSC and should be used for
setting window coordinates when redisplaying a GDF
picture.

Fld
len Content Meaning

1 X'02' Process SpecifiC Control
order code

1 LEN Length of following data

1 X'02' Common Picture Prolog

1 X'32' Set Picture Boundary

1 LEN-3 Length of following data

1 X'OO' Reserved

1 MASK Each bit has a value shown
below

Bit
o Reserved
1 Reserved
2 xL x left limit

B'O' Not included in list of WW values
B'l' Included in list of WW values

3 xR x right limit
B'O' Not included in list of WW values
B'l' Included in list of WW values

4 yB Y bottom limit
B'O' Not included in list of WW values
B'l' Included in list of WW values

5 yT Y top limit
B'O' Not included in list of WW values
B'l' Included in list of WW values

6 zN z near limit
B'O' Not included in list of WW values
B'l' Included in list of WW values

7 zF z far limit
B'O' Not included in list of WW values
R'1' in lied nf WW vqhlA!':

0-16 WW Window values

Note: The coordinates can be 2-byte fixed-point
data or 4-byte floating-point data.

184 Base Programming Reference

Set Picture Origin

The Set Picture Origin PSC defines the lower left-hand
corner of the graphics field.

Fld
len Content Meaning

1 X'02' Process Specific Control
order code

1 LEN Length of following data

1 X'02' GDDM Picture Prolog Iden-
tifier

1 X'Ol' Set Picture Origin order
code

1 LEN-3 Length of following data

2* xO x coordinate of picture
origin

2* yO Y coordinate of picture
origin

Note: The values returned in xO,yO are the coordi-
nates of the lower left-hand corner of the graphics
field.

Default process specific orders

All of these orders are only valid within the picture
prolog. They are listed in numeric order of order code
in Table 28 on page 169.

Set default arc parameters

This order is only valid within the picture prolog.

Fld
len Content Meaning

1 X'02' Process Specific Control
order code

1 LEN Length of following data

1 X'02' Picture Prolog Identifier

1 X'22' Set Default Arc Parameters

1 LEN Length of following data

2* P P parameter of the trans-
form

2* Q Q parameter of the trans-
form

2* R R parameter of the trans-
form

2* S S parameter of the trans-
form

GDF orders

Set default background mix Set default character-box spacing

This order is only valid within the picture prolog. This order is only valid within the picture prolog.

Fld Fld
len Content Meaning len Content Meaning
1 X'02' Process Specific Control 1 X'02' Process Specific Control

order code order code
1 X'03' Length of following data 1 X'03' Length offollowlng data

1 X'02' Picture Prolog Identifier 1 X'02' Picture Prolog Identifier

1 X'OD' Set Default Background Mix 1 X'36' Set Default Character-Box

1 MODE Background Mix Value. This Spacing

value is interpreted as 1 X'06' Length of following data
follows: 1 FLAGS Bit 0 0- set
X'OO' Standard default character-box
X'02' Opaque spacing
X'05' Transparent 1 - set default

character-box

Set default character angle
spacing

Bits 1 through 7
Reserved - must

This order is only valid within the picture prolog. be set to
X '0000000'

Fld 1 X'OO' Reserved
len Content Meaning

2 HSPACE Horizontal character-box
1 X'02' Process Specific Control

order code
spacing

2 VSPACE Vertical character-box
1 LEN Length of following data spacing
1 X'02' Picture Prolog Identifier

1 X'34' Set Default Character Angle Set default character direction
1 LEN Length of following data This order is only valid within the picture prolog.

2* AX x coordinate of a point that
defines the angle of the
string Fld

len Content Meaning
2* AY Y coordinate of a point that

defines the angle of the
string

1 X'02' Process Specific Control
order code

Note: AX and A Y specify a relative vector that 1 X'03' Length of following data

defines the angle of the baseline of the string. 1 X'02' Picture Prolog Identifier

1 X'3A' Set Default Character
Set default character box Direction

1 DIRECTN Direction interpreted as
This order Is only valid within the picture prolog. follows:

X'OO' Standard default
Fld
len Content Meaning

X'01' Left to right
X'02' Top to bottom

1 X'02' Process Specific Control
order code

X'03' Right to left
X'04' Bottom to top
Other Reserved

1 LEN Length of following data

1 X'02' Picture Prolog Identifier

1 X'33' Set Default Character Box

1 LEN Length of following data

2* CHARWIDTH Width of character box

2* CHAR HEIGHT Height of character box

Appendix D. GDF order descriptions 185

GDF orders

Set default character precision

This order is only valid within the picture prolog.

Fld
len Conlent Meaning

1 X'02' Process Specific Control
order code

1 X'03' Length of following data

1 X'02' Picture Prolog Identifier

1 X'39' Set Default Character Preci-
sion

1 MODE Precision interpreted as
follows:

X'OO' Standard default
X'Ol' String precision
X'02' Character precision
X'03' Stroke precision
Other Reserved

Set default character set

This order Is only valid within the picture prolog.

Fld
len Conlenl Meaning

1 X'02' Process Specific Control
order code

1 X'03' Length of following data

1 X'02' Picture Prolog Identifier

1 X'38' Set Default Character Set

1 LCID Local identifier for the char-
acter set

X' 00' Standard default
X' 01' through X' FF' Speci-

fied symbol set

Set default character shear

This order is only valid within the picture prolog.

Fld
len Content Meaning

1 X'02' Process Specific Control
order code

1 LEN Length of following data

1 X'07' Picture Prolog Identifier

1 X'35' Set Default Character Shear

1 LEN Length of following data

2* HX HX and HY specify a rela-
tive vector that defines the
angle at which characters
are to sheared

2* HY Y increment see above

186 Base Programming Reference

Set Default Coordinate Type

The Set Default Coordinate Type PSC defines the coor­
dinate type of the primitive coordinates in the segments
that follow. The default coordinate type is 2-byte fixed
point.

Fld
len Content Meaning

1 X'02' Process Specific Control
order code

1 X'03' Length of following data

1 X'02' GDDM Picture Prolog Iden-
tifier

1 X'OE' Set Default Coordinate Type

1 bit 0 0= 2-byte fixed-point
bit 1 - 7 number

1 = 4-byte floating-point
number

Reserved as 0

Set default extended color

This order is only valid within the picture prolog.

Fid
len Content Meaning

1 X'02' Process Specific Controi
order code

1 X'05' Length of following data

1 X'02' Picture Prolog Identifier

1 X'26' Set Default Extended Color

1 X'02' Length of following data

2 COLOR Color interpreted as
follows:

X' 0000' Standard default
X'0001' through X'OO06'

As for X'FF01'
through X' FF06'

X' FFOO' Standard default
X' FF01' Blue
X'FF02' Red
X'FF03' Magenta (pink)
X' FF04' Green
X' FF05' Turquoise (cyan)
X'FF06' Yellow
X, FF07' Neutral
X' FF08' Background
X' 0007' White
X' 0008' Black
X'0009' Dark blue
X'OOOA' Orange
X'OOOB' Purple
X' OOOC' Dark green
X' 0000' Dark turquoise

(cyan)
X'OOOE' Mustard
X'OOOF' Gray
X'0010' Brown
Other Reserved

GDF orders

Set default foreground mix Set default line type

This order is only valid within the picture prolog. This order is only valid within the picture prolog.

Fld Fld
len Contenl Meaning len Conlenl Meaning

1 X'02' Process Specific Control 1 X'02' Process Specific Control
order code order code

1 X'03' Length of following data 1 X'03' Length of following data

1 X'02' Picture Prolog Identifier 1 X'02' Picture Prolog Identifier

1 X'OC' Set Default Foreground Mix 1 X'18' Set Default Line Type

1 MODE Foreground Mix Value. 1 TYPE Line Type interpreted as
This value is interpreted as follows:
follows: X'OO' Standard default
X'OO' Standard default X'01' Dotted
X'01 ' OR (Mix) X'02' Short dashed
X'02' Opaque X'03' Dash-dot
X'03' Underpaint X'04' Double dotted
X'04' Exclusive-OR X'05' Long dashed
X'05' Transparent X'OS' Dash-double-dot

X'07' Solid

Set default fractional line width
X'08' Invisible
Other Reserved

This order is only valid within the picture prolog.
Set default marker box

Fld
len Conlenl Meaning

This order is only valid within the picture prolog.

1 X'02' Process Specific
Control order code Fld

len Contenl Meaning
1 X'04' Length of following

data 1 X'02' Process Specific
Control order code

1 X'02' Picture Prolog Identi-
fier 1 LEN Length of following

data
1 X'11 ' Set Default Fractional

Line Width 1 X'02' Picture Prolog Identi-
fier

1 INTEGRAL LINE The integer portion of
WIDTH the line-width multi-

plier

1 FRACTIONAL The fractional portion
LINE WIDTH of the line-width mUl-

1 X'37' Set Default Marker
Box

1 LEN Length of following
data

tiplier, specified as 2* MARKER-WIDTH Width of marker box
multiples of 1/256

2* MARKER-HEIGHT Height of marker box

Appendix D. GDF order descriptions 187

GDF orders

Set default marker type

This order is only valid within the picture prolog.

Fld
len Content Meaning

1 X'02' Process Specific Control
order code

1 X'03' Length of following data

1 X'02' Picture Prolog Identifier

1 X'29' Set Default Marker Symbol

1 SYMBOL Marker symbol interpreted
as follows

X'OO' Standard default
X'01' Cross
X'02' Plus sign
X'03' Diamond
X'04' Square
X'05' 6-point star
X'06' 8-point star
X'07' Filled diamond
X'08' Filled square
X'09' Dot
X' OA' Small circle
X'41 'through X'EF' User-

defined

Set default pattern symbol

This order is only valid within the picture prolog.

lid
len Content Meaning

1 X'02' Process Specific Control
order code

1 X'03' Length of following data

1 X'02' Picture Prolog Identifier

1 X'28' Set Default Pattern Symbol

1 SYMBOL Symbol interpreted as
follows:

X'OO' Standard default
X'01' through X'08'

Decreasing density
X'09' Vertical lines
X'OA' Horizontal lines
X'OB' Diagonal lines 1

(bottom-left to top-
right)

X'OC' Diagonal lines 2
(bottom-left to top-
right)

X'OD' Diagonal lines 1
(top-left to bottom-
right)

X'OE' Diagonal lines 2
(top-left to bottom-
right)

X'OF' No shading
X'10' Solid shading
X'41 'through X'EF'

User-defined

188 Base Programming Reference

Set Default Pick Identifier

This order Is only valid within the picture prolog.

lid
len Content Meaning

1 X'02' Process Specific Control
order code

1 X'07' Length of following data

1 X'02' Picture Prolog Identifier

1 X'43' Set Default Pick Identifier

1 X'04' Length of following data

4 PICKID Pick Identifier

Set Default Picture Scale

The format of the Set Default Picture Scale PSC is as
follows:

lid
len Content Meaning

1 X'02' Process Specific Control
order code

1 LEN Length of following data

1 X'02' Common Picture Prolog

1 X'20' Set Default Picture Scale
order code

1 LEN-3 Length of following data

4 x x scaling factor (see text)

4 y Y scaling factor

Notes:

1. When the coordinate type is two-byte fixed, the
first halfword encodes the integer part of the
scaling factor and the second halfword
encodes the fractional part.

2. The scaling factors specify the number of coor-
dinate units per millimeter. The default
scaling factor Is 20 per millimeter. Zero and
negative scaling factors are not valid.

Set Default Text Alignment

The format of the Set Default Text Alignment PSC is as
follows:

tid
len Content Meaning

1 X'02' Process Specific Control
order code

1 X'04' Length of following data

1 X'02' Picture Prolog Identifier

1 X'10' Set Default Text Alignment

1 HorTA Horizontal Text Alignment.
Interpreted as follows:

X'OO' Default
X'01' Normal
X'02' Left
X'03' Center
X'04' Right
X'FF' Standard

1 VerTA Vertical Text Alignment.
Interpreted as foliows:

X'OO' Default
X'01' Normal
X'02' Top
X'03' Cap
X'04' Half
X'05' Base
X'06' Bottom
X'FF' Standard

GDF orders

Set default viewing window

The Set Default Viewing Window PSC defines the
picture space. For fixed-point GDF, this is in device
coordinates. For floating-point GDF, it is in world coor­
dinates. This PSC contains the same data as the Set
Picture Boundary PSC and should be considered as
defining a view of a picture.

tid
len Content Meaning

1 X'02' Process Specific Control
order code

1 LEN Length of following data

1 X'02' Common Picture Prolog

1 X'32' Set Picture Boundary

1 LEN-3 Length of following data

1 X'OO' Reserved

1 MASK Each bit has a value shown
below

Bit
0 Reserved
1 Reserved
2 xL x left iimlt

B'O' Not included in list of WW values
B'1' Inciuded In list of WW values

3 xR x right limit
B'O' Not included In list of WW values
B'1' Included in list of WW values

4 yB Y bottom limit
B'O' Not Included in list of WW values
B',' Included In list of WW values

5 yT Y top limit
B'O' Not included in list of WW values
B'1' Included in list of WW values

6 zN z near limit
B'O' Not included in list of WW values
B'1' Included in list of WW values

7 zF z far limit
B'O' Not included In list of WW values
R'1' In~llltiAti In Ii~t nf WW VAhIA~

0-16 WW Window values

Note: The coordinates can be 2-byte fixed-point
data or 4-byte floating-point data.

Appendix D. GDF order descriptions 189

GDF orders

End Picture Prolog

The End Picture Prolog PSC follows the Picture Prolog
PSC orders.

tid
len Content Meaning

1 X'02' Process Specific Control
order code

1 X'02' Length of following data

1 X'02' GDDM Picture Prolog Iden-
tifier

1 X'7F' End Picture Prolog

Relative line

The Relative Line order defines one or more straight
lines. The end point of each line is given as a one-byte
signed offset from the start of the line. Note that the
offsets are always one-byte fixed, even in the floating­
point form.

Order code X' A l' omits the current position, and
draws lines from the current position.

tid
len Content Meaning

1 X' E1' or X' A l' Relative Line order
code or
Relative Line (at
current position)
order code

1 LEN Length of following
data

2* xO (omitted for x coordinate of line
order X'A1') start

2* yO (omitted for y coordinate of line
order X'A1') start

1 x1 x1 coordinate of first
line end point

1 y1 y1 coordinate of first
line end point

...

Notes:

1. The current position is updated to the last point
specified.

2. The data length must be an even multiple of
the coordinate length.

190 Base Programming Reference

Segment aHribute

The Segment Attribute order approximates to the
GSSATI function. It sets the attributes to be assigned to
subsequently generated segments.

fld
len Content Meaning

1 XI72' Segment Attribute order
code

1 LEN Length of following data

1 ATTRIBUTE The attribute to be set for
subsequent segments. The
attributes that can be set
are:

X'01' Detectability
X'02' Visibility
X'03' Highlighting
X'04' Transformability
X'05' Reserved
X'06' Chained

1 VALUE The value to be assigned to
the specified attribute. The
values that can be set are:

X'OO' Not detectable,
invisible, not high-
lighted, or
unchained

X'01' Detectable, visible,
highlighted,
nontransformable,
or chained

X'02' Transformable

Segment aHribute modify

The Segment Attribute Modify order approximates to
the GSSATS function. It modifies the attributes that are
currently assigned to a segment.

tid
len Content Meaning

1 X'73' Segment Attribute Modify
order code

1 LEN Length of following data

1 ATTRIBUTE The attribute to be modi-
fied. The attributes that can
be modified are:

X'Ol' Detectability
X'02' Visibility
X'03' Highlighting
X'04' Transformabllity
X'05' Reserved
X'06' Chained

1 VALUE The value to be assigned to
the specified attribute. The
values that can be set are:

X'OO' Not detectable,
invisible, not high-
lighted, or
unchained

X'Ol' Detectable, visible,
highlighted,
nontransformable,
or chained

X'02' Transformable

4 IDENTIFIER The Identifier of the
segment for which the attri-
butes are to be modified.

Segment characteristics

The Segment Characteristics order adds more attri­
butes to a segment. It is valid only within the prolog of
a segment.

General formal:

fld
len Conlenl Meaning

1 X'04' Segment Characteristics
order code

1 LEN Length of following data

1 CHID Identifier code for charac-
teristics

1 DATA Data

Notes:

1. GDDM sets X '80' in the CHID field. All other
values are reserved. Values above X '80' are
allocated to applications other than GDDM.

2. GDDM preserves all Segment Characteristics
orders with values of other than X '80' in the
CHID field. The use of the Segment Character-
istics order with a CHID value of X'80' is
defined below.

GDF orders

Uses of the segment characteristics order

The order can be used to provide information that cor­
responds to the GSSORG function.

tid
len Content Meaning

1 X'04' Segment Characteristics
order code

1 LEN Length

1 X'80' Identifier for GDDM

1 X'OO' Reserved

1 X'04' Segment origin

1 LEN Length of coordinates

2* xO x coordinate origin

2* yO Y coordinate origin

Segment end

This order corresponds to the GSSCLS function.

tid
len Content Meaning

1 X'71' End Segment order code

1 LEN 0, no data

Segment end prolog

The Segment End Prolog order shows the end of the
prolog section of each segment. See also page 192.

tid
len Content Meaning

1 X'3E' Segment End Prolog order
code

1 X'OO' Reserved

Segment position

The Segment Position order approximates to the
GSSPOS function. It sets the position of a
transformable segment.

tid
len Content Meaning

1 X'53' Segment Position order
code

1 LEN Length of following data

2* XO x coordinate of the segment
position

2* YO Y coordinate of the segment
position

4 IDENTIFIER The identifier of the
transformable segment that
is to be positioned.

Appendix D. GDF order descriptions 191

GDF orders

Segment start

This order corresponds to the GSSEG function. The
order may be truncated Immediately after the
SEGMENT-IO field. In this case, all segment attributes
are taken from the current Initial segment attributes as
set by the Segment Attribute order (see page 190), or
by the GSSAn call.

Segment attribute Information can be extended by
using a segment prolog. The presence of a segment
prolog Is shown by a bit In the Segment Start order.

fld
len Content Meaning

1 X'70' Segment Start order code

1 X'OC' or Length of following data
X'04'

4 SEGMENT-IO The Identifier to be given to
the following segment, or 0
If unnamed. A full-word
positive or 0 Integer (as In
GSSEG).

2 FLAGS Bit 0 0= visible
1 = Invisible

Bit 1 Reserved - must
be 1.

Blt2 o = nondetectable
1 = detectable

BitS Reserved - must
be 1.

BIt4 o = no highlighting
1 = highlighting

Blt5 Reserved - must
be 1

Blt6 Reserved - must
beO

Blt7 Reserved - must
beO

Blt8 0= chained
1 = nonchalned

Blt9 Reserved - must
beO

Bit 10 Reserved - must
beO

Bit 11 0= no prolog
1 = prolog

Bit 12 0= nontransform-
able
1 = transformable

Bit 1S Reserved - must
beO

Bit 14 Reserved - must
beO

,Bit 15 Reserved - must
beO

2 L2 Length of segment (see
Note)

4 X' 00000000' Reserved - must be 0

192 Base Programming Referenc£'

Notes:

1. GOOM returns the length of a fixed-point GDF
segment In the Segment Start order retrieved
using GSGET. The length of segment is Ignored on
GSPUT; segments must be closed by an explicit
Segment End order. When the length of a segment
cannot be represented as a 2-byte unsigned
number, a length of zero Is set.

2. The segment attributes In the Segment Start order
override the initial segment attributes that are In
effect at the time the segment Is created. The
segment attributes can be altered by GSSATS in
the usual way.

S. Within the prolog of a segment, only the following
orders are valid:

• A no-operation (X' 00 ')
• Comment (X' 01')
• Process Specific Control (X' 02 ')
• Segment Characteristics (X' 04 ')
• Pop (X'SF')
• Marker Scale (X'41')
• The attribute orders shown below:

Arc Parameters (X' 22' or X' 62 ')
Character Angle (X' 34' or X' 74')
Character Box (X' 03' or X' 33 ')
Character-Box Spacing (X'36' or X'76')
Character 01 rection (X' 3A' or X' 7 A')
Character Precision (X' 39' or X' 79 ')
Character Set (X' 38' or X '78 ')
Character Shear (X '35' or X' 75 ')
Color and Extended Color (X' OA '. X '4A '. X' 26'. or

X'66')
Fractional Line Width (X '11 ' or X' 51')
Line Type (X'18' orX'58')
Line Width (X'19' orX'59')
Marker Box (X'37' or X'77')
Marker Type (X '29' or X' 69')
Foreground Color Mix (X'OC' or X'4C')
Model Transform (X '24' or X' 64')
Pattern (X'28' or X'09')
Pick (Tag) Identifier (X '43' or X' 23').
Segment Viewing Window (X' 27')
Text Alignment (X'10' or X'50').

Primitive attributes In the segment prolog are treated
as being ordinary primitive attributes. GDDM does not
create any primitive attributes apart from the transform
in the segment prolog. For upward compatibility of
GOF, It is advisable not to place primitive attribute
orders (other than the Model Transform order) within
the segment prolog.

GDF orders

Segment viewing window Text alignment

This order corresponds to the GSSVL function. This order corresponds to the GSTA function.

tid tid
len Content Meaning len Content Meaning

1 Set X'27' Set Segment Viewing
PUfllt II. fiAt X ' fi.7 ' Winrtnw 1 Set X'10' Set Text Alignment PUfllt II. RA' X '!'in'

1 LEN Length of following 1 X'02' Length of following
data data

1 X'OO' Reserved 1 HorTA Horizontal Text Align-

1 MASK Each bit has a value
shown below

ment. Interpreted as
follows:

Bit
o Reserved
1 Reserved
2 xL x left limit

B'O' Not included in list of WW values
B'1' Included in list of WW values

X'OO' Default
X'01' Normal
X'02' Left
X'03' Center
X'04' Right
X'FF' Standard

3 xR x right limit 1 VerTA Vertical Text Align-
B'O' Not included in list of WW values ment. Interpreted as
B'1' Included in list of WW values follows:

4 yB Y bottom limit
B'O' Not included in list of WW values
B'1' Included in list of WW values

5 yT Y top limit
B'O' Not included in list of WW values
B'1' Included in list of WW values

6 zN z near limit
B'O' Not included in list of WW values
B'1' Included in list of WW values

X'OO' Default
X'01' Normal
X'02' Top
X'03' Cap
X'04' Half
X'05' Base
X'06' Bottom
X'FF' Standard

7 zF z far limit
B'O' Not included in list of WW values
R't' Included in list of WW values

0-16 WW Window values

Appendix D. GDF order descriptions 193

image objects

Appendix E. Image object definitions

Image data is entered (or "put") into images using the
IMAPTS, IMAPT, and IMAPTE calls. The reverse
process of retrieving image data from an image (or
"get") is done by using the IMAGTS, IMAGT, and
IMAGTE calls. If the image is self-defining, the "put"
process is a transfer operation and so a projection can
be used.

The "get" process is always a transfer operation.

Images can also be entered into and retrieved from the
application program using the IMASAV and IMARST
calls. These store complete images into, and retrieve
complete images from, a database or GDDM object
library.

For detailed information on ali image calis, see the
GDDM Base Programming Reference, Volume 1.

Formats and compression types

Image data must have a valid combination of format
and compression type. The following image data
formats are allowed:

1
2
3

Unformatted
3193 data stream format
Composed-page printer format.

The following image data compression types are
allowed:

1 Uncompressed
2 MMR (IBM 8815)
3 IBM 4250
4 IBM 3800.

Only specific combinations of format and compression
are allowed; these are indicated by an "X" in the fol­
lowing table:

Table 29. Valid combinations of format and com­
pression

Uncompressed

MMR (IBM 8815)

IBM 4250

IBM 3800

Notes:

Unform- 3193
aHed DSF
X X

X X

CPPF

X

X

X

1. MMR = modified-modified read format (8815
compatible)

2. 3193DSF = 3193 data stream format
3. CPPF = composed-page printer format.

3193 data stream and composed-page
printer formats

Self-defining data comprises a data stream containing
a list of image objects. These are Indicated in
Figure 11 on page 196 by suitable mnemonics.

For entry of formatted data (IMAPT) into either of these
formats, GDDM processes only the first image object in
the data stream (from BIC to EIC for 3193 data stream,
and from BIM to ElM for composed-page printer format)
and ignores all others as shown in Figure 11 on
page 196.

For retrieval of formatted data (IMAGT), GDDM con­
structs an image object either in 31930SF or in CPPF.

For 3193DSF data, GDDM constructs BIC, ISP, IEP, 10,
and EIC structured fields, but It does not return ILP.

For CPPF data, GO OM constructs BIM, 110, IRD, and
ElM structured fields, but it does not return IOC -
except for 120 ppi 3800 Image data, which is returned
as 240 ppi with a scale factor of 2 in the IOC.

For more information on the 3193 data stream format,
see the IBM 3193 Display Station Description manual.

For more information on the composed-page printer
format, see the

• Print Management Facility: User Guide and Refer­
ence manual

• Composed Document printing Facility: General
Information manual.

Appendix E. Image object definitions 195

Image objects

3193DSF data stream

IBS 1···IBICIISpIIEPIIIPIILPIID 1···IEICIBICI···IEICIES I

Skip to ~I I
Image object to be accepted Ignored

BS Begin Segment
BIC Begin Image Content
ISP Image Size Parameter
IEP Image Encoding Parameter
liP Image IDE Size Parameter
ILP Image LUT-ID Parameter
10 Image Data
EIe End Image Content
ES End Segment

CPPF document

Skip to ~L..I ______________ -,--______ -+~
Image object to be accepted

BOT: Begin Document
BPG Begin Page
AEG: Active Environment Group (optional)
BIM: Begin Image
IOC: Image Output Control (optional)
110: Image Input Descriptor
ICP: Image Cell Position
IRD: Image Raster Data
ElM: End Image
EPG: End Page
EDT: End Document

CPPF page segment

Ignored

Skip to ~L-I ____________L _______ -+.
Image object to be accepted Ignored

BPS Begin Page Segment
EPS End Page Segment

Figure 11. Accepted data streams (3193DSF and CPPF)

196 Base Programming Reference

Image objects

3193DSF output data stream

BIC (Begin Image Content)

ISP (Image Size Parameter)

IEP (Image Encoding Parameter)

10 1IIIIIIIImage Datallllllllll! (Image Data)

!IIImage Datall! (Image Data)

(End Image Content)

CPPF output data stream

BIM (Begin Image)

IOC (32 bytes long) (Image Output Control)

110 (44 bytes long) (Image Input Descriptor)

ICP (Image Cell Portion)

IRD 1IIIIIImage Datalllllll! (Image Raster Data)

ICP (Image Cell Portion)

IRD IIImage Datall! (Image Raster Data)

(End Image)

Figure 12. IMAGT data streams from GDDM

Appendix E. Image object definitions 197

Image objects

Unformatted data

Unformatted binary Image data Is defined as follows:

Compression Uncompressed data; 1 bit per pixel, 8
bits per byte.

Padding

Structure

Compressed data; as defined by the
compression algorithm.

Uncompressed data; the end of each
row Is padded to the byte boundary, If
It does not fall on one.

Compressed data; padding Is defined
by the compression algorithm.

No headers, trailers, or Imbedded
control fields, other than those
defined by the compression algorithm
The pixels (and trailing pad values)
occupy contiguous storage.

Row 0 (that is, the top of the picture)
comes first, followed by the other
rows In order.

Within a row, the pixels with the lower
Index (that is, the left of the picture)
come first.

198 Base Programming Reference

Objects in the GDDM object library

GDDM Image introduces some new objects types to the
GDDM object library. The default names for these, and
the relevant GDDM calls are:

Table 30. Default names for Image object types

Objecltype Name GDDM calls

Projection ADMPROJ IMPSAV,
IMPRST

Image ADMIMG IMASAV,
IMARST

The relationship of these names to the file descriptors
of the various operating systems that GDDM suppo~
is the same as for existing GDDM objects and IS
defined In these chapters:

Chapter 2, UUslng GDDM under CICSNS" on page 7
Chapter 3 "Using GDDM under IMSNS" on page 23
Chapter 4: "Using GDDM under MVS/XA" on page 31
Chapter 5 "Using GDDM under TSO" on page 33
Chapter 6: "Using GDDM under VM/CMS" on
page 41.

Appendix F. Symbol-set formats

This appendix describes the formats for image symbol
sets (ISS) and vector symbol sets (VSS) held on flies (or
passed as parameters in symbol-set manipulation
calls).

In either case, definitions start with a two-byte field that
gives the total length of the definitions (including the
length field). Then follows one or more definition com­
ponents, each of which is In one of the formats
described below (depending upon whether the defi­
nitions relate to a dot-Image symbol set (ISS) or to a
vector symbol set (VSS)).

The following rules must be observed. For the purpose
of these rules, pattern and marker definitions are
treated as MODE == 2.

1. ISS and VSS components must not be mixed within
a definition. ISS definitions cannot be loaded as
MODE == 3; VSS definitions can be loaded only as
MODE == 3.

2. For ISS definitions, the following considerations
apply to the width (P) and depth (0) of the cell
'matrix In display points:

When either is specified as zero or Is not specified,
it Is assumed to be equal to the cell width or depth
of the actual device (except for format type
'00001' B, where P is assumed to be 9).

When the format type is '00001' B, P (specified or
assumed) must be 9 ..

When P is not a multiple of eight for row-loading
format (type '00011' B), the storage occupied by
each row must be padded on the right with zero
bits to the next byte boundary.

symbol-set formats

Similarly, when a is not a multiple of eight for
column-loading format (type '00101' B), the
storage occupied by each column must be padded
at the bottom with zero bits to the next byte
boundary.

3. For MODE = 1 definitions, the data format must be
one that Is supported by the actual device to which
the definitions are to be loaded. One or more com­
ponents may be specified, either to define different
color planes for a multicolored definition, or to
reduce the total length in cases where only widely­
scattered character codes are to be loaded.
Although checks are made, It Is possible for a
symbol set definition to pass these checks and still
be rejected by the device or controller when the
definitions are actually transmitted.

4. For MODE:: 2 definitions, only one component may
be specified for a monochrome definition, or
exactly three components (one for each color) for a
multicolored definition. In the latter case, the
starting character code and the number of codes
defined must be the same for all three color
planes.

5. For MODE:: 3 definitions (VSS) , only one compo­
nent may be specified.

6. The CLEAR bit is not supported by GDDM, although
its setting is not altered by GDDM before transmit­
ting MODE == 1 definitions.

Appendix F. Symbol-set formats 199

symbol-set formats

Image symbol set component format

Table 31. Image symbol set component format

Byte Field Content Meaning
length

0 2 LENGTH Total length of structure (including LENGTH field).

2 1 TYPE Type of symbol set X'OS' = Image Symbol Set.

3 1 FLAGS Bit 0 (EXTENDED) is on if extended format of definition.
Bit 1 (CLEAR) is on If all definitions In the specified symbol set (plane)

are to be cleared before processing the definitions.
Bit 2 (SKIPSUPP) is on if skip is to be suppressed after printing a row

that contains any symbol from this ISS.
Bits 3 through 7 (TYPE) define the data format for the definitions (see

Note 1):

'00001'B 18-byte form: the first two bytes contain a 1S-blt vertical slice;
the following 16 bytes contain 8-bit horizontal slices; for a 9
by 12 cell, the last 4 bytes contain binary zero.

'00011'B Row loading: bits within each row go from left to right,
padded to a byte boundary; successive rows are from top to
bottom.

'00101'B Column loading: bits within each column go from top to
bottom, padded to a byte boundary; successive columns are
from left to right.

4 1 Reserved.

5 1 CPO Starting character code within this symbol set (In range X'41' through
X'FE').

6 1 Reserved.

7 1 LEXT Length of extended parameters; gives the length of fields from and
(see Note 2) including LEXT to the end, but excluding CDEF. Must be specified as S, if

present.

8 1 EXTFLAGS Bit 0 (APA) is on if all pOints in the cell are not addressable.
(see Note 2) Bit 1 (CB) is on for no LCID compare.

Bit 2 (OB) is on for no operator selectability.
Bits 3 through 7 'OOOOO'B - Reserved.

9 1 P (see Note 2) Number of x units in dot matrix.

10 1 Q (see Note 2) Number of y units in dot matrix.

11 1 SUBSN Subsection identifiers, as follows:
(see Note 2) X ' 00' one-byte codes

X'42' - X'7F' subsection identifiers for two-byte coded data
Other reserved.

12 1 COLOR Bits 0 through 4: reserved Bits 5 through 7: color planes to be loaded as
(see Note 2) follows:

'OOO'B all planes
'001'B blue plane
'010'B red plane
'100'B green plane
Other reserved.

7 or V CDEF Symbol definitions, starting at character code CPO, in ascending order,
13 (CPO-CPn) and in the format defined by Byte 3.

Notes:

1. Data format definitions:
TYPE '00001'B Is equivalent to cell format 1 for displays,
TYPE '00011'B is equivalent to cell format 3 for graphics,
TYPE '00101'B Is equivalent to cell format 2 for printers.

"Cell formats" are specified in the Image Symbol Editor. For more Information, see the GDDM Image
Symbol Editor manual.

2. Present only if Bit 0 (EXTENDED) of FLAGS is on.

200 Base Programming Reference

symbol-set formats

Vector symbol set component format

Table 32. Vector symbol set component format

Byte Field Content Meaning
length

0 2 LENGTH Total length of structure (Including LENGTH field).

2 1 TYPE type of symbol set X' 01' = Vector Symbol Set.

3 1 FLAGS Bit 0 (EXTENDED) Is on If definition Is In extended format.
Bit 1 Is Ignored.
Blt2 (SHADED) is on If all symbols defined are to be shaded using the

default shading pattern. This has the effect of surrounding each
symbol definition Implicitly by GSAREA and GSENDA.

Bits 3 through 7 (TYPE) define the data format for the definitions.

For VSS, each symbol is formed by lines and (for type 3) curves. Three
types are defined:

'OO001'B type 1
'00010'B type 2
'00011'B type 3.

4 1 Reserved (must be zero).

5 1 CPO Starting character code within this symbol set (in range X'OO' through
X'FF').

6 1 FLAGS Bit 0 (PROPORTIONAL SPACING) is on if each Index entry is extended by
a halfword value specifying the width of each symbol. If this flag Is
off, each symbol has the width P. Valid only for type-3 definitions.

Bit 1 (LINES ONLY) Is on If only the following GDF orders are contained
within the symbol definitions: {extended order} line; {extended
order} line at current position; end of data.
Valid only for type-3 definitions.

Bits 2 through 7 reserved (must be zero).

7 1 LEXT (see Length of extended parameters; gives the length of fields from and
Note) including LEXT to the end, but excluding CDEF. Minimum value Is 1.

Maximum value Is 9.

8 1 (see Note) Reserved (must be zero).

9 2 P (see Note) Range of x (0 through P). If this operand is not present, or it is specified
as 0, then the value 15 is assumed.

11 2 Q (see Note) Range of y (0 through Q). If this operand is not present, or It Is specified
as 0, then the value 15 is assumed.

13 2 (see Note) Reserved (must be zero).

15 1 CPn * Last character code within this symbol set. If this operand is not present,
X' FE' Is assumed. CPn must not be less than cpo.

7 to V CDEF(CPO-CPn) Symbol definitions. starting a character code point CPO, ascending order.
16 See below for format types 1. 2. and 3.

Note: Present only If bit 0 (EXTENDED) of FLAGS is on.

Format of symbol definitions

P and a together define the character box within which
a normal symbol fits. The bottom left-hand corner of
the box is (0.0) and the top right-hand corner Is (P.a).

Undefined character codes are generally displayed as
a blank. but see the description of the GSCHAR call in
the GDDM Base Programming Reference, Volume 1.

Characters are always drawn using the default line
type and line width. and with the default area pattern.

Type 1
The definitions start with an index of (CPn + 1 - Cpa)
two-byte values. Each Index value is the offset from the
start of CDEF (that is, from the start of the index) of the
start of the definition of the corresponding character
code (CPO through CPn). This index must always be
present In its entirety, even If not all the characters in
the code range are defined. The maximum length of
the Index, If CPO is specified as X' 00', and CPn as
X' FF'. Is therefore 256 by 2 bytes. Undefined values
should be represented by a zero In the index.

Appendix F. Symbol-set formats 201

symbol-set formats

Each character is defined as a series of points that
define the shape of the character. Each point defines
either a line from the preceding pOint, or a move to be
performed to that pOint. The endpoints of each line (or
move) are given by an (x,y) coordinate pair of signed
relative values (relative to the previous coordinate, or
to the bottom left-hand of the character box for the first
coordinate pair). Each coordinate pair occupies two
bytes (one byte for the x coordinate, and one for the y).
If the first stroke is a line rather than a move, the line is
drawn from the bottom left-hand corner of the box. The
top bit of the y-coordinate byte is on if the stroke to that
point is visible (that Is, line rather than move); after the
last coordinate pair, two bytes of all 1 bits Indicates the
end of the definition for that symbol. This format of an
individual code pOint symbol Is:

OXl

OX2

OXN IVISI
X'FFFF •• '

Type 2

OYl

OY2

OYN

2 bytes

2 bytes

2 bytes

2 bytes

For type-2 format, the endpoints of each line (or move)
are given by a (dx,dy) coordinate pair of signed relative
values. Each coordinate pair occupies four bytes (two
bytes for the x coordinate, and two for the y), and Is
preceded by two bytes of flag bits, so that each point
requires a total of six bytes. Each symbol consists of a
series of these point definitions, defining the lines and
moves needed to draw It. The start Is from the bottom
left-hand of the character box (0,0). The last point for a
particular symbol is recognized by means of a flag, In
the flag halfword.

One of the flags designates "branch." This means that,
Instead of the dx halfword, a point number is specified,
to which to branch for the remaining definitions for that
symbol. The actual offset within CDEF is given by:

offset=point-number*6
In the case of a branch, the dy value is ignored.

As with type 1, CDEF starts with an index, with
(CPn+l-Cpe) entries corresponding to symbol codes
CPO through CPn. Each entry is a branch, as defined
above, which In effect defines the starting position of a
symbol.

This format of an individual point is illustrated below.

OX or point-number 2 bytes

OY 2 bytes

202 Base Programming Reference

where:

E bit (bit 12) is on if this is the last point for the
current symbol

B bit (bit 13) Is on if this is a branch
M bit (bit 14) is on if this is a move, not a line
R bit (bit 15) is ignored.

Type 3
The definitions start with an index, just the same as the
index for type 1. However, if the "PROPORTIONAL
SPACING" flag in the header Is set, each two-byte
index offset entry is followed by a two-byte signed
symbol width. This makes the entire index twice its
normal size. Each symbol width value must be in the
range

(-p < w < e) or (e < w <= p)

where the values e and -P are reserved. If the width is
positive, the boundaries of the symbol (for spacing pur­
poses only) are the left-hand side of the box, and a line
"w" to the right of the left-hand side. If the width is
negative, the boundaries are the right-hand side, and a
line "_w" to the left of the right-hand side. Thus a
width of "+P" Is the default (full) width.

A type-3 symbol definition consists of a series of GDF
(graphics data format) orders. These typically specify
lines and curves that make up the symbol. The orders
for a given symbol are terminated by an end-of-data
marker, which is a single byte with the value X'FF'.
All orders should be a complete number of half words,
and, for performance reasons, should be aligned on a
half word boundary.

See Appendix D, "GDF order descriptions" on
page 165 for a description of GDF orders. A symbol
generated by the Vector Symbol Editor typically uses
the following orders:

• Line (X'C1')
• Line at Current Position (X I 81')
• Fillet (X'C5')
• Fillet at Current Position (X' 85 ')
• Area (X'68 ').

Whenever a type-3 symbol is processed, a particular
type of coordinate data is assumed. This depends on
the values of P and Q. If both P and Q are less than
128, the default is one-byte signed absolute coordi­
nates. If.either P or Q are greater than 127, the default
Is two-byte signed absolute coordinates.

If the SHADED flag in the header Is set, each symbol is
drawn, using the default shading pattern, .as though that
symbol were enclosed in "Begin Area" and "End Area"
orders. These orders are ImplicH. If the SHADED flag
In the header is not set, individual shaded symbols
should include an explicH "Begin Area" order and an
explicit "End Area" order (just before the X'FF'
marker).

device tokens

Appendix G. Device characteristics tokens

This appendix describes the device characteristic
tokens (usually called device tokens) supplied by
GDDM. Many Input/Output tasks in GDDM can be done
without using device tokens at all; however, there are
some instances where they should be used. For
example:

• Under IMSIVS, to define the data base that links
the characteristics of terminals with logical ter­
minal names, and so determine the type of data
stream that GDDM sends.

• To specify some speCial types of device, such as
the IBM 4250 page printer, in a DSOPEN call.

• To override the information obtained by GDDM
about a particular device so that device Informa­
tion Is taken from the token rather than from the
device itself, which is the usual source.

GDDM-supplied device tokens

The GDDM-supplled device tokens are shown In the
tables In this appendix.

Nole: Your installation may have changed the
GDDM-supplled device tokens or created tokens of
their own.

The meanings of the tokens are shown as the macro
definitions used to create them. You may need to study
the meanings of the macro operands to understand the
tokens. The operands are explained In the GDDM
Installation and System Management manual that
applies to the subsystem in use.

Creating your own device tokens

The GDDM-supplled device tokens are designed to
cater for most requirements. For Information, see the
GDDM Installation and System Management manual
that applies to the subsystem in use.

Table 33 (Page 1 of 2). GDDM-supplled device tokens for querlable terminals and printers

This set of token definitions is part of ADMLSYS1. The "buffer code" corresponds to the code in the dey param­
eter of the ADMM3270 macro. A device token of * is sufficient for printers If they are directly-attached.
Locally.attached 3179 Models G1 and G2 displays and 3192·G displays

L3179G 3179-G, 32 rows by 80 columns
l3179GM 3179-G, 32 rows by 80 columns with mouse

Locally-attached 3270·PC displays
L3270PC 327o-PC displays

Locally-attached 3270·PC/G work stations
l5279A1 327o-PC/G, 32 rows by 80 columns
l5279A1M 327o-PC/G,32 rows by 80 columns, with mouse
l5279A 1T 3270-PC/G, 32 rows by SO columns, with tablet
l5279A2 327o-PC/G, 49 rows by 80 columns
l5279A2M 3270-PC/G, 49 rows by 80 columns, with mouse
l5279A2T 3270-PC/G, 49 rows by 80 columns, with tablet
ADMKPCA1 copy of L5279A1, generated for use by the ADMUPC utility for dummy devices

Locally-attached 3270·PC/GX work stations (32 rows, 80 columns)
l5379CS 3270-PC/GX, color
L5379CSM 3270-PC/GX, color, with mouse
l5379CST 3270-PC/GX, color, with tablet
l5379MS 3270-PC/GX, monochrome
l5379MSM 3270-PC/GX, monochrome, with mouse
l5379MST 3270-PC/GX, monochrome, with tablet
l5379CD 3270-PC/GX, color, dual screen
l5379CDM 327o-PC/GX, color, dual screen, with mouse
15379CDT 327o-PC/GX, color, dual screen, with tablet
L5379MD 327o-PC/GX, monochrome, dual screen
l5379MDM 327o-PC/GX, monochrome, dual screen, with mouse
l5379MDT 3270-PC/GX, monochrome, dual screen, with tablet

Locally.attached 3278 and 3279 displays
No PS compression is specified on the assumption that this is most efficient for a channel-attached controller
l7SA2 3278, buffer code 2
l7SA3 3278, buffer code 3
l7SM 3278, buffer code 4
L7SA5 327S, buffer code 5
l79A2 3279, buffer code 2
L79A3 3279, buffer code 3

Plotters attached to 3179 Models G1 and G2 or 3192-G displays
l3179GSO 61S0 plotter
L3179GS2 61S2 plotter

Appendix G. Device characteristics tokens 203

device tokens

Table 33 (Page 2 of 2). GOOM-supplied device tokens for queriable terminals and printers

L3179G84 6184 plotter
l3179G86 6186 plotter
L3179G71 7371 plotter
L3179G72 7372 plotter

Plotters attached to 3270·PC/G and IGX work stations
L6180 6180 plotter
L6182 6182 plotter
L6184 6184 plotter
L6186 6186 plotter
L7371 7371 plotter
L7372 ,7372 plotter
L7374 7374 plotter
L7375 7375 plotter

Plotters attached to 5550.'amlly work stations
L5550G71 7371 plotter
L5550G72 7372 plotter

Locally·attached 3268, 3287, and 3262 printers, with no compression
L68 3268, LU type 3 protocols
L87 3287, (four color only) LU type 3 protocols
L87S 3287, (four color only) LU type 1 (SCS) protocols
L3262 3262 belt printer

Remotely-attached 3278 and 3279 displays
PS compression is specified on the assumption that this is most efficient for a link-attached controller

R78A2 Remote 3278, buffer code 2
R78A3 Remote 3278, buffer code. 3
R78A4 Remote 3278, buffer code 4
R79A2 Remote 3279, buffer code 2
R79A3 Remote 3279, buffer code 3

Remotely-attached 3287 printers, with compression
R87 Remote 3287, (four color only) LU type 3 protocols
R87S Remote 3287, (four color only) LU type 1 (SCS) protocols

3812 Model 2 with 3270 aftachment feature
This is an IPOS (Intelligent printer data stream) printer connected as a family 1 or a family 2 device

X3812A4 LU type 0 protocols A4 paper 93 rows by 82 columns
X3812Q LU type 0 protocols Quarto paper 88 rows by 85 columns
S3812A4 LU type 1 (SCS) protocols A4 paper 93 rows by 82 columns
83812Q LU type 1 (SCS) protocols Quarto paper 88 rows by 85 columns

4224 printers, LU type 0 protocols
X4224SS 64K byte RAM, no loadable alphanumeric symbol sets, 68 rows by 132 columns
X4224SE 512K byte RAM, up to 6 loadable alphanumeric symbol sets, 68 rows by 132 columns
X4224QS 64K byte RAM, no loadable alphanumeric symbol sets, 88 rows by 85 columns
X4224QE 512K byte RAM, up to 610adable alphanumeric symbol sets, 88 rows by 85 columns

4224 printers, LU type 1 (SCS) protocols
S42245S 64K byte RAM, no loadable alphanumeric symbol sets, 68 rows by 132 columns
542245E 512K byte RAM, up to 610adable alphanumeric symbol· sets, 68 rows by 132 columns
54224Q5 64K byte RAM, no loadable alphanumeric symbol sets, 88 rows by 85 columns
54224QE 512K byte RAM, up to 6 loadable alphanumeric symbol sets, 88 rows by 85 columns

Note: These tokens require the 4224 printer to be set to 10 characters per Inch and 8 lines per inch

204 Base Programming Reference

Table 34. GDDM-supplied device tokens for Kanji devices, and 8775 and 3290 displays.

This set of token definitions Is generated as part of ADMLSYS1
KANJI displays and printers
KANJI Kanji 3278 Model 2 display
KANJIP Kanji 3283 printer, LU type 1 (SCS) protocols
K78A2 Kanji 3278 Model 2 display
K83S Kanji 3283 printer, LU type 1 (SCS) protocols
K83 Kanji 3283 Model 2 printer, LU type 3 protocols
L5550A Kanji 5550 display, non-graphics
L5553A Kanji 5553 printer

5550-famlly work stations (non-graphics)
L5550A Japanese 3270 emulation display, monochrome
L5553A Japanese 3270 emulation printer, LU type 3 protocols
L5553AI Japanese 3270 emulation display, LU type I (SCS) protocols
L5550G4 Japanese 3270-PC Version 4.0 display, monochrome
L5550H4 Japanese 327D-PC Version 4.0 display, color
L5553B34 Japanese 3270-PC Version 4.0 printer, type 3 protocols
L5553BI4 Japanese 3270-PC Version 4.0 printer, type 1 protocols

5550-famlly work stations (graphics)
L5550GC2 Japanese 3270-PC/G Version 2.0 display, 16-dot font
L5550GH2 Japanese 3270-PC/G Version 2.0 display, 24-dot font
L5550GC3 Japanese 3270-PC/G Version 3.0 display, 1S-dot font
L5550GH3 Japanese 327D-PC/G Version 3.0 display, 24-dot font
L5550GC5 Japanese 3270-PC/G Version 5.0 display, 1S-dot font
L5550GHS Japanese 3270-PC/G Version 5.0 display, 24-dot font

The following tokens are produced automatlcall, by the ADMM3270 macro and cannot be altered
8775 displays with PS and partitions

ADMK7510 8775, 12 rows by 80 columns
ADMK7520 8775, 24 rows by 80 columns
ADMK7530 8775, 32 rows by 80 columns
ADMK7540 877S, 43 rows by 80 columns

8775 displays with partitions and scrolling
ADMK751S 8775,12 rows by 80 columns
ADMK752S 8775, 24 rows by 80 columns
ADMK753S 8775, 32 rows by 80 columns
ADMK754S 8775, 43 rows by 80 columns

3290 displays
ADMK9020
ADMK9030
ADMK9040
ADMK90S0
ADMK90S0

3290, 24 rows by 80 columns
3290, 32 rows by 80 columns
3290,43 rows by 80 columns
3290,27 rows by 132 columns
3290, 62 rows by 160 columns

Table 3S. GDDM-supplied device tokens for nonqueriable terminals and printers (family 1)

Nonquerlable display terminals
ADMK7810 3278 Model 1
ADMK781A 3278 Model 1 with APL
ADMK7820 3278 Model 2
ADMK782A 3278 Model 2 with APL
ADMK7830 3278 Model 3
ADMK783A 3278 Model 3 with APL
ADMK7840 3278 Model 4
ADMK784A 3278 Model 4 with APL
ADMK7850 3278 Model 5
ADMK78SA 3278 Model S with APL

Nonquerlable printers
ADMKQUEP default token for family-2 (queued) printers
ADMK8710 3287 Model 1
ADMK871A 3287 Model 1 with APL

device tokens

Appendix G. Device characteristics tokens 205

device tokens

Table 36. GDDM-supplied device tokens for GDDM-PCLK displays, printers, and plotters

GDDM-PCLK work station configurations
LPCM PCLK display with CGA, monochrome, 24 rows by 80 columns, (640 by 200 pixels)
LPCC1 PCLK display with EGA, 16-color, 24 rows by 80 columns, (640 by 200 pixels)
LPCC2 PCLK display with EGA, 16-color, 24 rows by 80 columns, (640 by 350 pixels)
LPCC3 PCLK display with Personal System/2 display adapter, 16-color, 24 rows by 80 columns,

(640 by 480 pixels)
LPCC4 PCLK display with Personal System/2 display adapter 8514/A, 16-color, 24 rows by 80 columns,

(1024 by 768 pixels)
LPCC5 PCLK display with Personal System/2 display adapter MCGA, 2-color, 24 rows by 80 columns,

(640 by 480 pixels)
GDDM-PCLK work-station configurations with a locally attached printer
LPC3852 PCLK display with 3852 color ink-jet printer
LPC4201 PCLK display with 4201 proprinter
LPC42012 PCLK display with 4201 Model 2 proprinter
LPC4202 PCLK display with 4202 proprinter XL
LPC4207 PCLK display with 4207 proprinter X-24
LPC4208 PCLK display with 4208 proprinter XL-24
LPC5152 PCLK display with 5152 monochrome graphics printer
LPC5182 PCLK display with 5182 color impact printer
LPC5201 PCLK display with 5201 Ouietwriter
LPC5202 PCLK display with 5202 Ouietwriter-1I1

GDDM-PCLK work-station configurations with a locally attached plotter
LPC7371 PCLK display with 7371 2-pen plotter
LPC7372 PCLK display with 7372 6-pen plotter
LPC7374 PCLK display with 7374 8-pen plotter
LPC7375 PCLK display with 7375 8-pen plotter
LPC6180 PCLK display with 6180 8-pen plotter
LPC6182 PCLK display with 6182 8-pen plotter
LPC6184 PCLK display with 6184 8-pen plotter
LPC6186 PCLK display with 6186 8-pen plotter

Table 37. GDDM-supplied device tokens for system printers (family 3)

System printers
ADM KSYSP default for non-38oo printers

Various non-3800 printers
S1403N6 1403, 66 rows by 85 columns, 6 lines per inch
S1403N8 1403, 88 rows by 85 columns, 8 lines per inch
S1403W6 1403, 66 rows by 132 columns, 6 lines per inch
S1403W8 1403, 88 rows by 132 columns, 8 lines per inch

Various 3800 printers
S3800N6 3800, 60 rows by 85 columns, 6 lines per inch
S3800N8 3800, 80 rows by 85 columns, 8 lines per inch
S3800N12 3800, 120 rows by 85 columns, 12 lines per inch
S3800W6 3800, 60 rows by 136 columns, 6 lines per inch
S3800W8 3800, 80 rows by 136 columns, 8 lines per inch
S3800W12 3800,117 rows by 136 columns, 12 lines per inch
S3800N6S 3800, 45 rows by 110 columns, 6 lines per inch
S3800N8S 3800, 60 rows by 110 columns, 8 lines per inch
S3800W6S 3800, 45 rows by 136 columns, 6 lines per inch
S3800W8S 3800, 60 rows by 136 columns, 8 lines per inch

Note: Device tokens for 3800 printers can also be used for 3820 printers and 3812 printers except for the 136
columns width

206 Base Programming Reference

device tokens

Table 38. GDDM-supplled device tokens for page printers (family 4)

ADMKHRIG - Default token for famlly-4 (page) printers

this token is used when the DSOPEN device token Is given as "*," and no nicknames are in force to alter it. It
describes a 4250 printer at 600 pixels per inch, B pixels per unit line width, with an output Image width of 8.5
Inches, and a depth of 11.0 Inches.

3800,3812, or 3820 printer at 120 pixels per Inch, 3 pixels per unit line width
IMG120 3800, width 8.5, depth 11.0 Inches

3800 printer at 240 pixels per Inch, 3 pixels per unit line width
IMG240X 3800, width 13.9, depth 12.5 inches

3800,3812, or 3820 printer at 240 pixels per Inch, 3 pixels per unit line width
IMG240 3800, width 8.5, depth 11.0 Inches
LETTER 3800, width 8.5, depth 11.0 Inches
LEGAL 3800, width 8.5, depth 14.0 inches
A4 3800, width 8.3, depth 11.7 Inches
EXECUTIV 3800, width 7.5, depth 10.5 inches

3800 printer at 240 pixels per Inch, 1 pixel per unit line width
FINE240 3800, width 13.9, depth 12.5 inches

3800 AFPDS printer at 240 pixels per Inch
P38PPN1 3800, width 8.5, depth 10.0 inches, 1 pixel per unit line width
P38PPN3 3800, width 8.5, depth 10.0 Inches, 3 pixels per unit line width
IMG2401 3800, width 8.5, depth 11 inches, 1 pixel per unit line width

4250 printer at 600 pixels per Inch, 6 pixels per unit line width
IMG85 4250, width 8.5, depth 11.0 inches
IMG117 4250, width 11.7, depth 10.0 Inches
IMG600X 4250, width 11.7, depth 14.0 inches
IMG600Y 4250, width 17.0, depth 11.0 inches
IMGA3X 4250, width 297.0, depth 420.0 millimeters

4250 printer at 600 pixels per Inch, 1 pixel per unit line width
FINE600 4250, width 11.7, depth 14.0 inches

Note that the values given in DSOPEN's processing option groups 5, 8, and 9 are overridden when the following
tokens are used:
Canonical (unformatted) bit Image output

CAN512 Unformatted bit image output, 512 by 512 pixels
CAN1024 Unformatted bit Image output, 1024 by 1024 pixels

Table 39. GDDM-supplled device tokens for Image display and scanners

Image display
L3193

Image display with attached scanner
L319317 3117 flat-bed scanner
L319318 3118 sheet-feed scanner

Appendix G. Device characteristics tokens 207

call format descriptor module

Appendix H. Call format descriptor module

A GDDM call format descriptor module, which is inde­
pendent of the subsystem under which GDDM is
running, is provided with GDDM. The module contains
information for each GDDM Call statement, describing
the number of parameters required on the call, and the
type of each parameter.

The address of the call format descriptor module can
be acquired by an application program by using the
CALLINF external defaults option in a SPINIT call; see
Chapter 1, "Customizing your program and its
environment" on page 1, and "Initialization" on
page 103.

The call format descriptor module is in three sections.
The first section provides an address table locating the
descriptors for call statements with a given first two
characters. The second section provides descriptors
for all GDDM calls that have the same first two letters
in their name, and the third section provides descrip­
tors for the parameters for a specific call statement.

The address table

The address table is located at offset 0 from the entry
point of the module. The format of the address table is:

Table 40. Call format descriptor module -
address table

Field name Field offset Field length

RCPPIDEN 0 8
RCPPVERS 8 4
RCPPTABP(1) C 8
• • RCPPFTWO(1) C 2

- E 2 (reserved)
· .RCPPSPTR(1) 10 4
RCPPT ABP(2) 14 8
• • RCPPFTWO(2) 14 2

- 16 2 (reserved)
• . RCPPSPTR(2) 18 4

1C+

RCPPTABP(n) 4+ (8"n) 8
• • RCPPFTWO(n) 4+(8"n) 2

- 4+ (8"n+2) 2 (reserved)
• • RCPPSPTR(n) 4+ (8'n+4) 4

RCPPIDEN
Table identifier containing the character string
.. ADMADCP ". Note the mandatory terminating
blank.

RCPPVERS
A fUll-word integer identifying the version number
of the Call Format Descriptor Module. If this field
is set to '1', the extended Call Descriptor Table is
present. Applications that use the calls in the
extended table should test the version code, and if
this is set to '1', they should scan the table until
they reach X' FFFE I. Applications that do not use
the extension scan the Cali Format Descriptor
Table only until they reach X'FFFF'.

RCPPFTWO(n)
A two-byte character string containing the first two
characters of the GDDM call statements described
by the Call Descriptor Table addressed by
RCPPSPTR(n).

A value of X'FFFF' indicates the end of the
address table.

RCPPSPTR(n)
The address of the Call Descriptor Table, which
defines all GDDM call statements that start with the
two characters identified by field RCPPFTWO(n).

The call descriptor table

The Call Descriptor Table is addressed from the
address table shown in Table 40. There is one entry in
the Call Descriptor Table for each GDDM call statement
for which the first two letters are the same as in the
address table entry used to locate the descriptor table.
The format of the Call Descriptor Table is shown in
Table 41 on page 210.

RCPPLENG(n)
The length of this entry in the Call Descriptor
Table. The next entry in the table is at offset
RCPPLENG from this field.

A value of X I FFFF' indicates the end of the version
o call descriptor table. If RCPPVERS is set to 1, the
call descriptor table extension is present; a value
of X' FFFE I indicates the end of the call descriptor
table extension.

RCPPFLAG(n)
A set of flags to indicate features of the CALL state­
ment.

RCPPIO

o The call cannot cause a terminal I/O.

The call may cause 1/0 to the terminal.
This flag is set if any of the flags
RCPPGIO, RCPPDIO, or RCPPIIO are set
to 1.

RCPPOGP

o The call is available in the base function
ofGDDM.

RCPPGIO

The call is available only through
another licensed program in the GDDM
family of licensed programs.

o No 110 is performed to the device (unless
either flag RCPPDIO or flag RCPPIIO is
set to 1).

The cali causes 110 to the terminal. For
example, FSFRCE outputs data to the
device, ASREAD outputs data and awaits
terminal operator input.

Appendix H. Call format descriptor mOQule 209

call format descriptor module

Table 41. Call format descriptor module - call descriptor table

Field name Field offset

RCPPSTAB(l) 0
• RCPPLENG(l) 0
• RCPPFLAG(l) 2
•• RCPPIO (1) 1xxx xxxx
• • RCPPOGP(l) x1xx xxxx
• • RCPPGIO(l) xxlx xxxx
• • RCPPDIO(l) xxx1 xxxx
• • RCPPIIO(l) xxxx 1xxx
• • RCPPCPAG(l) xxxx x1xx
• • RCPPHCNG(l) xxxx xx1x
• • RCPPAPLS(l) xxxx xxxl
• RCPPNAME(l) 4
• RCPPRCP(l) 8
• RCPPDESC(l) C
RCPPSTAB(2) 0+ RCPPLENG(l)
• RCPPLENG(2) 0+ RCPPLENG(l)
)
) as above,
) with ••• (2) .
) .
RCPPSTAB(n) -

RCPPDIO

o

1

RCPPIIO

o

No data-set I/O that causes terminal
activity can result from this call.

The call may cause I/O activity to a data
set. It may result in a terminal 1/0 oper­
ation on some subsystems; for example,
a password prompt in opening a data
set.

Data is never sent to the terminal for the
call (unless either flag RCPPGIO or flag
RCPPDIO is set to one).

1 The call may cause data to be output to
the terminal by GDDM if specific condi­
tions are met. Currently, this can only
occur if the device is a 3270-PC/G or
3270-PC/GX work station, and the appli­
cation is drawing graphics primitives
outside segments. Implicit I/O occurs
whenever too much data stream Is accu­
mulated, or a change Is made to primi­
tives within segments when primitives
outside segments have been drawn.

RCPPCPAG

o The cali applies to GDDM pages other
than the current one.

1 The call applies to the current GDDM
page only.

210 Base Programming Reference

Field length

see RCPPLENG(l)
2
2
bit within RCPPFLAG
bit within RCPPFLAG
bit within RCPPFLAG
bit within RCPPFLAG
bit within RCPPFLAG
bit within RCPPFLAG
bit within RCPPFLAG
bit within RCPPFLAG
4
4
see RCPPNARG
see RCPPLENG(2)
4

· · .
· -

RCPPHCNG

o The call does not cause any change to
the hierarchical structure.

1 The call may cause a change to the
hierarchical structure of GDDM. One or
more of a page, a partition, a partition
set, or a device are affected. The flag is
set If any of the current elements In the
hierarchy may be changed, or an entry
may be added to or deieted from the set
of hierarchical entities.

RCPPAPLS

o The call does not require any special
processing by APL.

1 The call may require special processing
by APL.

RCPPNAME(n)
The last four characters of the GDDM cali state­
mentname.

RCPPRCP(n)
Fullword Integer specifying the GDDM request
control parameter (RCP) code associated with the
call statement.

RCPPDESC(n)
This field contains the descriptors for the argu­
ments that may be passed on to GDDM. The
Parameter Descriptor Table shown below
describes the contents of this field.

call format descriptor module

Table 42. Call format descriptor module - parameter descriptor table

Field name Field offset

RCPPPDES(l) 0
• RCPPNARG(1) 0
· RCPPDFLG(l) 1
•. RCPPMATC 1xxx xxxx
(reserved) xlxx xxx x
(reserved) xxlx xxxx
(reserved) xxxl xxxx
(reserved) xxx x lxxx
(reserved) xxxx xlxx
(reserved) xxx x xxlx
(reserved) xxxx xxxl
.RCPPMVAL(l) 2
.RCPPDARG(l,l) 4
· • RCPPAFLG 4
RCPPCHAR lxxx xxxx
RCPPFIX xlxx xxxx
RCPPFLO xxlx xxx x
RCPPUNDF xxxl xxxx
RCPPLEN xxxx lxxx
RCPPNLEN xxxx xlxx
RCPPINP xxx x xxlx
RCPPOUT xxxx xxxl
• . RCPPLACC(l,l) 5
· • RCPPLVAL(l,l) 6
· RCPPDARG(l,2) 8
)
) as above,
) with ... (1,2)
)
· RCPPDARG(l,n) 4·RCPPNARG
)
) as above,
) with ••• (l,n)
)
RCPPPDES(2)
)
) as above,
) with ••• (2)
)
RCPPPDES(n)

The parameter descriptor table

The Parameter Descriptor Table (see Table 42) is
imbedded within the Cali descriptor table as described
above. For each GDDM Cali statement there is one or
more sets of parameter descriptors. Multiple descrip­
tors are provided when the contents of a parameter list
may vary depending upon the contents of the first argu­
ment in the parameter list.

RCPPNARG(n)
A one-byte field containing the number of elements
in the array RCPPDARG described below. This
field contains a value of zero if no parameters are
passed to or received from GDDM.

The value of this field may be greater than the
number of parameters passed to or received from

Field length

1
1
bit within RCPPDFLG
bit within RCPPDFLG
bit within RCPPDFLG
bit within RCPPDFLG
bit within RCPPDFLG
bit within RCPPDFLG
bit within RCPPDFLG
bit within RCPPDFLG
2
4
1
bit within RCPPAFLG
bit within RCPPAFLG
bit within RCPPAFLG
bit within RCPPAFLG
bit within RCPPAFLG
bit within RCPPAFLG
bit within RCPPAFLG
bit within RCPPAFLG
1
2
4

4

GDDM. In this case, the argument descriptors
contain dummy entries used to copy length infor­
mation between the accumulators used to deter­
mine the length of passed or returned data.

With the exception of the dummy entries, each suc­
cessive element in the array RCPPDARG(n)
describes successive arguments passed to or
received from GDDM on the call statement.

RCPPDFLG(n)
A set of flags, one of which is currently used, to
indicate features of the parameters passed to or
received from GDDM.

RCPPMAT~(n)

o The parameter descriptors provided In
the array RCPPDARG(n) are valid
regardless of the contents of the first
argument passed to GDDM.

Appendix H. Cali format descriptor module 211

call format descriptor module

1 The parameter descriptors provided in
the array RCPPDARG described below
are only valid if the contents of the first
parameter, which are always a fixed­
point number, are the same as the value
specified in the field RCPPMVAL(n). If
the contents of the passed parameter do
not match those in RCPPMVAL, the next
set of parameter descriptors,
RCPPPDES(n+1), must be used to test
for a matching argument value, or to
describe the argument list, depending
upon the value of flag RCPPMATC(n+ 1).

RCPPMVAL(n)
If flag RCPPMATC(n) == 1, this two-byte field con­
tains the value that the first parameter passed to
GDDM must match if the parameter descriptors in
array RCPPDARG(n) are the correct descriptors for
the instance of the call statement.

RCPPDARG(n,m)
This is an array of dimension RCPPNARG(n). Each
element of the array is four bytes long, and is
either a descriptor for an argument passed to or
received from GDDM, or is a dummy entry used to
prime the length accumulators.

'RCPPAFLG(n,m)
A set of flags to Indicate the type of the data
passed to or received from GDDM.

The parameter data-type flags (in RCPPAFLG,
bits O •• 5) are set as combinations of these
bits, with the meaning shown below

All unlisted combinations are reserved for
future use.

000100 The parameter contains undefined
format data. The structure of the
argument is too complex to describe
with a control block structure, prob­
ably because the length of the data
Item cannot be determined without
knowledge of the values of the con­
tents of one or more fields imbedded
within a prior argument passed to
GDDM.

001000 The parameter contains floating point
data.

010000 The parameter contains full-word
fixed point data.

010100 The parameter contains half-word
fixed point data.

100000 The parameter contains character
data.

000010 The data passed in this parameter is
a full-word fixed-point number that is
used as either a length or an array
dimension. Field RCPPLACC(n,m)
contains the number of an accu­
mulator into which the length should
be multiplied.

212 Base Programming Reference

000001 The parameter being described con­
tains a full-word length or dimension.
Field RCPPLACC(n,m) contains an
accumulator number into which the
length should be multiplied. Param­
eter descriptor RCPPDARG(n,m + 1)
also describes the same passed
parameter. This parameter
descriptor is therefore used to prime
two or more length accumulators from
the same argument passed to GDDM.

RCPPINP

o The data passed in the parameter is
not Input to GDDM.

RCPPOUT

The data passed in this parameter is
input to GDDM.

o The data passed In the parameter is
not output from GDDM.

The data passed in this parameter is
output from GDDM.

RCPPLACC(n,m)
This one-byte field contains an accumulator
number. Accumulators are used to define the
length of character strings or the number of
elements In an array of numbers. Nine accu­
mulators are provided, and ali accumulators
are assumed to start with an initial value of
one.

If either of the fiags RCPPLEN or RCPPNLEN is
set to 1, this field contains the accumulator
number that the argument passed to GDDM
should be multiplied into.

If flags RCPPLEN and RCPPNLEN are both set
to 0, the accumulator contains the number of
characters in a character argument, or the
number of full-words In a numeric ar.:ay. If an
accumulator number of zero is speCified, the
length or dimension is assumed to be 1. This
length or dimension Is subject to modification
by the contents of field RCPPLVAL(n,m).

RCPPLVAL(n,m)
This two-byte field contains a modifier to be
applied to the length of character strings or
the dimension of numeric arrays. The total
length of the character string, or dimension of
a numeric array Is obtained by multiplying the
contents of the accumulator specified in field
RCPPLACC(n,m) with the value of the field
RCPPLVAL(n,m).

APL request codes

Appendix I. APL request codes module

An APL request codes module, which is independent of
the subsystem under which GDDM Is running, Is pro­
vided with GDDM. The module defines for each GDDM
call statement, the associated APL request code to be
used by an APL function when requesting services of
GDDM through the APL Auxiliary Processor AP126.

Although all GDDM call statements have an equivalent
APL code assigned, not all codes are supported
through AP126. The APL manuals listed below identify
the supported codes for each of the subsystems for
which APL is available.

• VS APL for CICSIVS Terminal User's Guide,
• VS APL for CMS: Terminal User's Guide,
• VS APL for OSITSO: Terminal User's Guide,
• APL2 Programming: System Services Reference

manual.

The address of the APL Request Codes Module can be
acquired by an application program by using the
CALLlNF external default option in the SPIN IT call; see
"Initialization" on page 103, and Chapter 1, "Custom­
izing your program and its environment" on page 1.

The APL Request Codes Module is in two sections. The
first provides an address table locating the descriptors
for a specific range of APL codes. The second section
defines the equivalence between APL request codes
and GDDM calls for all codes within a specific range.

The address table

The address table is located at offset 0 from the entry
point of the module. The format of the address table is
as follows:

Table 43. APL request codes module - address
table

Field name Field offset Field
length

RCPAIDEN 0 8
RCPAVERS 8 4
RCPATNUM C 4
RCPAENUM 10 4
RCPATABP(1) 14 8
... RCPALOW(1) ... +0 2
... RCPAHIGH(1) ... +2 2
... RCPAPTR(1) ... +4 4
RCPATABP(2) 1C 8
.........
.........

RCPATABP(n) 14+ (n-1)*8 8

RCPAIDEN
Module identifier containing the character string
"ADMADAP."

RCPAVERS
A full-word integer Identifying the version number
of the APL Request Codes Module. The field is
currently set to zero.

RCPATNUM
A full-word integer containing the number of
assigned APL codes defined in the following
tables.

RCPAENUM
A full-word integer containing the number of table
indexes to follow. One table Index exists for each
block of APL codes in the range:

lee*n : lee*(n+l)-l
where n is greater than or equal to O. Thus, the
maximum APL code is:

RCPAENUM*We-l
RCPALOW(n)

A two-byte integer identifying the lowest value in
the APL index table pointed to by RCPAPTR(n).
The value is currently always set to 100*(n-1).

RCPAHIGH(n)
A two-byte integer identifying the highest value in
the APL index table pointed to by RCPAPTR(n).
The value is always less than 100*n.

RCPAPTR(n)
The address of the request code table for those
APL codes in the range RCPALOW(n) through
RCPAHIGH(n). If the value of the pointer is zero,
there are no codes assigned within the range.

The request code table

The Request Code Table is addressed from the address
table described in "The address table." There is one
entry in the table for each potential APL code in the
range RCPALOW(n) through RCPAHIGH(n). The format
of the request code table is:

Table 44. APL request codes module - request
code table

Field name Field offset Field
length

RCPAAPLC(1) 0 8
RCPAAPLN(1) 0 2
RCPAAPLG(1) 2 6

RCPAAPLC(2) 8 8
RCPAAPLN(2) 8 2
RCPAAPLG(2) A 6

.........

.........
RCPAAPLC(m) 8*(m-1) 8

RCPAPLN(I)
A two-byte integer containing the APL request
code. A code of zero indicates that there is no
GDDM function assigned to that code.

RCPAAPLG(I)
A six-byte character string containing the name of
the GDDM call (for example "ASREAD") corre­
sponding to the APL function code in RCPAPLN(i).

Appendix I. APL requestpodes'module 213

GDDM Base APL codes

GDDM Base calls and associated APL codes

GDDM Base APL codes, in alphabetic order

This table lists the APL codes for the GDDM Base calls in alphabetic order of call name.

The table on page 219 lists the APL codes for the GDDM Base calls In numeric order.

Call APL
name code

APDEF
APDEL
APMOD
APQIDS
APQNUM
APQRY
APQSIZ
APQUID
ASCCOL
ASCGET
ASCHLT
ASCPUT
ASCSS
ASOFLD
ASDFLT
'ASDFMT
ASDTRN
ASFBDY
ASFCLR
ASFCOL
ASFCUR
ASFEND
ASFHLT
ASFIN
ASFINT
ASFMOD
AS FOUT
ASFPSS
ASFSEN
ASFTRA
ASFTRN
ASFTYP
ASGGET
ASGPUT
ASMOOE
ASQCOL
ASQCUR
ASQFLD
ASQHLT
ASQLEN
ASQMAX
ASQMOD
ASQNMF
ASQSS
ASRATT
ASREAD
ASRFMT
ASTYPE
CDPU
OSCLS
DSCMF
OSOROP
DSOPEN
OSQCMF
DSQOEV
DSQUIO
OSQUSE

280
281
282
283
284
285
286
287
421
422
423
424
425
401
466
402
463
436
404
407
430
498
409
410
411
412
413
414
437
434
415
416
433
432
426
427
431
418
428
443
419
420
435
429
417
101
405
111

1196
992
439
904
901
449
997
995
996

Description

Define a field list
Delete a field list
Modify a field list
Query field list identifiers
Query field list numbers
Query a field list
Query a field list size
Query unique field list identifier
Specify character colors within a field
Get field contents
Specify character highlights within a field
Specify field contents
Specify character symbol sets within a field
Define or delete a single field
Set default field attributes
Define alphanumeric fields, deleting all existing fields
Define I/O translation tables
Define field outline
Clear fields
Define field color
Position the cursor
Define field end attribute
Define field highlighting
Define input null-ta-blank conversion
Define field intensity
Change field status
Define output blank-to-null conversion
Define primary symbol set for a field
Define field mixed-string attribute
Define field transparency attribute
Assign translation table set to a field
Define field type
Gel double-character field contents
Specify double-character field contents
Define the operator reply mode
Query character colors for a field
Query cursor position
Query field attributes
Query character highlights for a field
Query length of field contents
Query the number of fields
Query modified fields
Query the number of modified fields
Query character symbol sets for a field
Define field attributes
Device outpuUinput
Define multiple fields without deleting existing fields
Override alphanumeric character-code assignments
Control the printing of Composite Documents
Close a device
User Control function
Discontinue device usage
Open a device
Query user control function
Query device characteristics
Query unique device identifier
Query device usage

214 Base Prograll)ming Reference

Call
name

DSRNIT
DSUSE
ESACRT
ESADEL
ESAQRY
ESASEL
ESEUDS
ESLIB
ESPCB
ESQCPG
ESQEUD
ESSCPG
ESSUDS
FSALRM
FSCHEK
FSCLS
FSCOPY
FSENAB
FSEXIT
FSFRCE
FSINIT
FSLOG
FSLOGC
FSOPEN
FSPCLR
FSPCRT
FSPDEL
FSPQRY
FSPSEL
FSPWIN
FSQCPG
FSQDEV
FSQERR
FSQSYS
FSQUPD
FSQUPG
FSQURY
FSQWIN
FSREST
FSRNIT
FSSAVE
FSSHOR
FSSHOW
FSTERM
FSTRAN
FSTRCE
FSUPDM
GSAM
GSARC
GSARCC
GSAREA
GSBMIX
GSBND
GSCA
GSCALL
GSCB
GSCBS
GSCD
GSCH
GSCHAP
GSCHAR
GSCLP
GSCLR
GSCM
GSCOL
GSCOPY

APL
code

90B
903
127
12B
129
130
124
112
113
133
135
134
123
189
186
601
682
313
114
182
117
683
686
684
381
382
303
384
305
389
306
118
187
122
663
387
121
318
183
11B
184
119
185
116
132
lEIB
662
647
521
59B
522
664
657
518
653
511
646
512
55B
523
524
581
586
513
514
605

Description

Reinitialize a device
Specify device usage
Create application group
Delete application group
Query the current application group
Select an application group
Specify encoded user default specification
Library management
Identify program communication block
Query code page of a GDDM object
Query encoded user default specification
Set code page of a GDDM object
Specify source-format user default specification
Sound the terminal alarm
Check picture complexity before output
Close alternate device
Send page to alternate device
Enable/disable device input
Specify an error exit, or error threshold, or both
Update the display
Initialize GDDM processing
Send character string to alternate device

GDDM Base APL codes

Send character string with carriage-control character to alternate device
Open alternate device
Clear the current page
Create a page
Delete a page
Query specified page
Select a page
Set page window
Query current page identifier
Query device characteristics
Query last error
Query systems environment
Query update mode
Query unique page identifier
Query device characteristics
Query page window
Retransmit data
Reinitialize GDDM
Save current page contents
Extended FSSHOW
Display a saved picture
Terminate GDDM processing
Translate character string
Control Internal trace
Set update mode
Set attribute mode
Draw a circular arc
Specify aspect-ratio control (for copy)
Start a shaded area
Set current background color-mixing mode
Define a data boundary
Set current character angle
Call a segment
Set character-box size
Set character-box spacing
Set current character direction
Set current character shear
Draw a character string at current position
Draw a character string at a specified point
Enable and disable clipping
Clear the graphics field
Set current character mode
Set current color
Send graphics to alternate device

Appendix I. APL request codes module 215

GDDM Base APL codes

Call APL
name code

GSCORR 638
GSCORS 655
GSCP 668
GSCPG 215
GSCS 515
GSDEFE 661
GSDEFS 669
GSDSS 291
GSElPS 551
GSENAB 572
GSENDA 525
GSFlD 592
GSFlSH 573
GSFlW 561
GSGET 555
GSGETE 556
GSGETS 554
GSIDVF 571
GSIDVI 579
GSIlOC 568
GSIMG 552
GSIMGS 565
GSIPIK 569
GSISTK 595
GSISTR 594
GSLINE 526
GSlOAD 593
GSlSS 292
GSLT 516
GSlW 517
GSMARK 527
GSMB 636
GSMIX 518
GSMOVE 528
GSMRKS 529
GSMS 519
GSMSC 563
GSPAT 529
GSPFlT 557
GSPlNE 539
GSPOP 649
GSPS 593
GSPUT 553
GSQAGA 589
GSQAM 648
GSQATI 579
GSQATS 581
6SQBMX 665
GSQBND 656
GSQCA 532
GSQCB 533
GSQCBS 659
GSQCD 534
GSQCEl 535
GSQCH 559
GSQCHO 575
GSQClP 536
GSQCM 537
GSQCOl 538
GSQCP 539
GSQCPG 216
6SQCS 549
GSQCUR 541
GSQFlD 585
GSQFlW 562
GSQUD 643

Description

Explicit correlation of tag to primitive
Explicit correlation of structure
Set current position
Set current code page
Set current symbol set
End drawing defaults definition
Start the drawing defaults definition
Load a graphics symbol set from the application program
Draw an elliptic arc
Enable or disable a logical input device
End a shaded area
Define the graphics field
Clear the graphics Input queue
Set current fractional line width
Retrieve graphics data
End retrieval of graphics data
Start retrieval of graphics data
Initial data value, float
Initial data value, Integer
Initialize locator
Draw a graphics Image
Draw a scaled graphics image
Initialize pick device
Initialize stroke device
Initialize string device
Draw a straight line
Load segments
Load a graphics symbol set from auxiliary storage
Set current line type
Set current line width
Draw a marker symbol
Set marker-box size
Set current foreground color-mixing mode
Move without drawing
Draw a series of marker symbols
Set the current type of marker symbol
Set marker scale
Set current shading pattern
Draw a curved fillet
Draw a series of lines
Restore attributes
Define the picture space
Restore graphics data
Query all geometric attributes
Query the current attribute mode
Query initial segment attributes
Query segment attributes
Query the current background color-mixing mode
Query the current data boundary definition
Query character angle
Query character-box size
Query character-box spacing
Query character direction
Query default graphics ceil size
Query character shear
Query choice device data
Query the clipping state
Query the current character mode
Query the current color
Query the current position
Query code page
Query the current symbol-set identifier
Query the cursor position
Query the graphics field
Query the current fractional line width
Query logical input device

216 Base Programming Reference

Call
name

GSQlOC
GSQlT
GSQlW
GSQMAX
GSQMB
GSQMIX
GSQMS
GSQMSC
GSQNSS
GSQORG
GSQPAT
GSQPIK
GSQPKS
GSQPOS
GSQPRI
GSQPS
GSQSEN
GSQSIM
GSQSS
GSQSSD
GSQSTK
GSQSTR
GSQSVl
GSQTA
GSQTAG
GSQTB
GSQTFM
GSQVIE
GSQWIN
GSREAD
GSRSS
GSSAGA
GSSATI
GSSATS
GSSAVE
GSSClS
GSSCPY
GSSCT
GSSDEl
GSSEG
GSSEN
GSSINC
GSSORG
GSSPOS
GSSPRI
GSSTFM
GSSVl
GSTA
GSTAG
GSUWIN
GSVECM
GSVIEW
GSWIN
IMAClR
lMACRT
lMADEl
lMAGID
lMAGT
lMAGTE
lMAGTS
lMAPT
lMAPTE
lMAPTS
lMAQRY
lMARES
lMARF

APL
code

576
542
543
544
637
545
546
564
209
639
547
577
654
583
635
548
667
574
210
586
597
596
659
645
567
560
591
549
550
120
207
588
578
580
592
507
633
651
508
509
666
632
587
582
634
590
658
644
566
584
531
504
505

1604
1601
1603
1600
1613
1614
1612
1610
1611
1609
1619
1602
1629

Description

Query graphics locator data
Query the current line type
Query the current line width
Query the number of segments
Query marker box
Query the current color mixing mode
Query the current marker symbol
Query marker scale
Query the number of loaded symbol sets
Query segment origin
Query the current shading pattern
Query pick data
Query pick structure
Query segment position
Query segment priority
Query the picture-space definition
Query mixed string attribute of graphics text
Query existence of simultaneous queue entry
Query loaded symbol sets
Query symbol set data
Query stroke data
Query string data
Query the current segment viewing limits
Query the current text alignment
Query current tag
Query the text box
Query segment transform
Query the current viewport definition
Query the current window definition
Await graphics input
Release a graphics symbol set
Set all geometric attributes
Set initial segment attributes
Modify segment attributes
Save a segment
Close the current segment
Copy a segment
Set current transform
Delete a segment
Create a segment
Set mixed string attribute of graphics text
Include a segment
Set segment origin
Set segment position
Set segment priority
Set segment transform
Define segment viewing limits
Set text alignment
Set current primitive tag
Define a uniform graphics window
Vectors
Define a viewport
Define a graphics window
Clear a rectangle in an image
Create an image
Delete the image associated with the identifier
Get and reserve a unique image identifier
Retrieve image data from an image
End retrieval of data from an image
Start retrieval of data from an image
Enter data into an image
End data entry into an image
Start data entry into an image
Query attributes of an image
Convert the resolution attributes of an Image
Change resolution flag of an Image

GDDM Base APL codes

Appendix I. APL request codes module 217

GDDM aase APL codes

Can
name

IMARST
IMASAV
IMATRM
IMPCRT
IMPDEL
IMPGID
IMPRST
IMPSAV
IMRBRI
IMRCON
IMRCVB
IMREX
IMREXR
IMRNEG
IMRORN
IMRPL
IMRPLR
IMRRAL
IMRREF
IMRSCL
IMXFER
ISCTL
ISENAB
ISESCA
ISFLD
ISIBOX
ISILOC
ISLDE
ISQBOX
ISQCOM
ISQFLD
ISQFOR
ISQLOC
ISQRES
ISQSCA
ISSE
ISXCTL
MSCPOS
MSDFLD
MSGET
MSPCRT
MSPQRY
MSPUT
MSQADS
MSQFIT
MSQFLD
MSQGRP
MSQMAP
MSQMOD
MSQPOS
MSREAD
PSDSS
PSLSS
PSLSSC
PSQSS
PSRSS
PSRSV
PTNCRT
PTNDEL
PTNMOD
PTNQRY
PTNQUN
PTNSEL
PTSCRT
PTSDEL
PTSQPI

APL
code

1698
1697
1695
1659
1652
1651
1654
1653
1665
1666
1664
1655
1656
1663
1661
1657
1658
1669
1662
1659
1615
182
189
185
189
193
191
186
192
194
181
184
199
188
187

1291
183

1112
1198
1119
1192
398

1199
1195
1196
1111
1193
1194
1197
1113
11tU

293
294
295
211
298
296

1921
1925
1923
1922
1926
1924
1891
1894
1898

DescrlpHon

Restore Image from auxiliary storage
Save image on auxiliary storage
Trim an Image down to the specified rectangle
Create an empty projection
Delete projection
Get and reserve a unique projection Identifier
Restore projection from auxiliary storage
Save projection on auxiliary storage
Define brightness conversion algorithm
Define contrast conversion algorithm
Define bl-Ievel conversion algorithm
Define rectangular sub-image In pixel coordinates
Define rectangular sub-Image In real coordinates
Negate the pixels of an extracted Image
Turn an extracted Image clockwise through a number of right angles
Define place position In pixel coordinates
Define place position In real coordinates
Set current resolution/scaling algorithm
Reflect extracted image
Scale extracted Image
Transfer data between two images, applying a projection
Set Image quallty-control parameters
Enable or disable image cursor
Control echoing of scanner Image
Define Image field
Initialize image box cursor
Initialize Image locator cursor
Load external read-only Image
Query Image box cursor
Query Image compressions supported by the device
Query Image field
Query image formats supported by the device
Query Image locator cursor position
Query supported Image resolutions
Query image scanner device
Run the Image Symbol Editor
Extended set Image quality control parameters
Set cursor position
Create or delete a mapped field
Retrieve data from a map
Create a page for mapping
Query current page
Place data Into a mapped field
Query application data structure definition
Query map fit
Query mapped field characteristics
Query mapgroup characteristics
Query map characteristics
Query modified fields
Query cursor position
Present mapped data
Load a symbol set Into a PS store from the application program
Load a symbol set Into a PS store from auxiliary storage
Conditionally load a symbol set Into a PS store from auxiliary storage
Query status of device stores
Release a symbol set from a PS store
Reserving or releasing a PS store
Create a partition
Delete a partition
Modify the current partition
Query the current partition
Query unique partition Identifier
Select a partition
Create a partition set
Delete a partition set
Query partition Identifiers

218 Base Programming Reference

Can
name

PTSQPN
PTSQPP
PTSQRY
PTSQUN
PTSSEL
PTSSPP
SPINIT
SPMXMP
SSQF
SSREAD
SSWRT
WSCRT
WSDEL
WSIO
WSMOD
WSQRY
WSQUN
WSQWI
WSQWN
WSQWP
WSSEL
WSSWP

APL
code

1999
1997
1992
1995
1993
1996

115
438
212
213
214

1949
1941
151

1943
1944
1945
1946
1959
1949
1951
1952

Description

Query partition numbers
Query partition viewing priorities
Query partition set attributes
Query unique partition set Identifier
Select a partition set
Set partition viewing priorities
Initialize GDDM with SPIB
Control the use of mixed fields by mapping
Query a symbol set on auxiliary storage
Read a symbol set from auxiliary storage
Write a symbol set to auxiliary storage
Create an operator window
Delete operator window
Windowed device Input/output
Modify the current operator window
Query the current operator window
Query unique operator window Identifier
Query operator window Identifiers
Query operator window numbers
Query operator window viewing priorities
Select an operator window
Set operator window viewing priorities

GDDM Base APL codes, In numeric order

This table lists the APL codes for the GDDM Base calls In numeric order.

GDDM Base APL codes

The table on page 214 lists the APL codes for the GDDM Base calls In alphabetic order of call name.

APL Can
code name

191
192
193
194
195
196
197
198
199
119
111
112
113
114
115
116
117
118
119
129
121
122
123
124
127
128
129
139
132
133
134
135
151

ASREAD
FSFRCE
FSREST
FSSAVE
FSSHOW
FSCHEK
FSQERR
FSTRCE
FSALRM
FSQDEV
ASTYPE
ESLIB
ESPCB
FSEXIT
SPINIT
FSTERM
FSINIT
FSRNIT
FSSHOR
GSREAD
FSQURY
FSQSYS
ESSUDS
ESEUDS
ESACRT
ESADEL
ESAQRY
ESASEL
FSTRAN
ESQCPG
ESSCPG
ESQEUD
WSIO

Descrlpllon

Device output/Input
Update the display
Retransmit data
Save current page contents
Display a saved picture
Check picture complexity before output
Query last error
Control Internal trace
Sound the terminal alarm
Query device characteristics
Override alphanumeric character-code assignments
Library management
Identify program communication block
Specify an error exit, or error threshold, or both
Initialize GDDM with SPIB
Terminate GDDM processing
Initialize GDDM processing
Reinitialize GDDM
Extended FSSHOW
Awalt graphics input
Query device characteristics
Query systems environment
Specify source-format user default specification
Specify encoded user default specification
Create application group
Delete application group
Query the current application group
Select an application group
Translate character string
Query code page of a GDDM object
Set code page of a GDDM object
Query encoded user default specification
Windowed device input/output

Appendix I. APL request codes module 219

GDDM Base APL codes

APL
code

189
181
182
183
184
185
186
187
188
189
199
191
192
193
194
291
202
293
204
295
206
207
208
209
2It)
211
212
213
214
215
216
280
281
282
283
284
285
286
287
301
302
303
394
395
306
307
308
399
319
313
491
492
493
494
4G5
466
497
498
499
419
411
412
413
414
415
416

Call
name

ISFLD
ISQFLD
ISCTL
ISXCTL
ISQFOR
ISESCA
ISLDE
ISQSCA
ISQRES
ISENAB
ISQLOC
ISILOC
ISQBOX
lSI BOX
ISQCOM
GSDSS
GSLSS
PSDSS
PSLSS
PSLSSC
PSRSV
GSRSS
PSRSS
GSQNSS
GSQSS
PSQSS
SSQF
SSREAD
SSWRT
GSCPG
GSQCPG
APDEF
APDEL
APMOD
APQIDS
APQNUM
APQRY
APQSIZ
APQUID
FSPCLR
FSPCRT
FSPDEL
FSPQRY
FSPSEL
FSQCPG
FSQUPG
MSPQRY
FSPWIN
FSQWIN
FSENAB
ASDFLD
ASDFMT
ASDTRN
ASFCLR
ASRFMT
ASDFLT
ASFCOL
AS FEND
ASFHLT
ASFIN
ASFINT
ASFMOO
ASFOUT
ASFPSS
ASFTRN
ASFTYP

Description

Define Image field
Query Image field
Set image quality-control parameters
Extended set image quality control parameters
Query image formats supported by the device
Control echoing of scanner image
Load external read-only image
Query image scanner device
Query supported image resolutions
Enable or disable Image cursor
Query Image locator cursor position
Initialize Image locator cursor
Query image box cursor
Initialize image box cursor
Query image compressions supported by the device
Load a graphics symbol set from the application program
Load a graphics symbol set from auxiliary storage
Load a symbol set into a PS store from the application program
Load a symbol set into a PS store from auxiliary storage
Conditionally load a symbol set into a PS store from auxiliary storage
Reserving or releasing a PS store
Release a graphics symbol set
Release a symbol set from a PS store
Query the number of loaded symbol sets
Query loaded symbol sets
Query status of device stores
Query a symbol set on auxiliary storage
Read a symbol set from auxiliary storage
Write a symbol set to auxiliary storage
Set current code page
Query code page
Define a field list
Delete a field list
Modify a field list
Query field list identifiers
Query field list numbers
Query a field list
Query a field list size
Query unique field list identifier
Clear the current page
Create a page
Delete a page
Query specified page
Select a page
Query current page Identifier
Query unique page identifier
Query current page
Set page window
Query page window
Enable/disable device Input
Define or delete a single field
Define alphanumeric fields, deleting all existing fields
Define 110 translation tables
Clear fields
Define multiple fields without deleting existing fields
Set default field attributes
Define field color
Define field end attribute
Define field highlighting
Define input null-ta-blank conversion
Define field Intensity
Change field status
Define output blank-ta-null conversion
Define primary symbol set for a field
Assign translation table set to a field
Define field type

220 Base Programming Reference

APL
code

417
418
419
420
421
422
423
424
425
426
427
428
429
430.
431
432
433
434
435
436
437
438
439
440
443
501
502
5a3
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541

Call
name

ASRATI
ASQFlD
ASQMAX
ASQMOD
ASCCOl
ASCGET
ASCHlT
ASCPUT
ASCSS
ASMODE
ASQCDl
ASQHlT
ASQSS
ASFCUR
ASQCUR
ASGPUT
ASGGET
ASFTRA
ASQNMF
ASFBDY
ASFSEN
SPMXMP
DSCMF
DSQCMF
ASQlEN
GSClP
GSFlD
GSPS
GSVIEW
GSWIN
GSClR
GSSClS
GSSDEl
GSSEG
GSCA
GSCB
GSCD
GSCM
GSCOl
GSCS
GSLT
GSlW
GSMIX
GSMS
GSPAT
GSARC
GSAREA
GSCHAP
GSCHAR
GSENDA
GSUNE
GSMARK
GSMOVE
GSMRKS
GSPlNE
GSVECM
GSQCA
GSQCB
GSQCD
GSQCEl
GSQClP
GSQCM
GSQCOl
GSQCP
GSQCS
GSQCUR

Description

Define field attributes
Query field attributes
Query the number of fields
Query modified fields
Specify character colors within a field
Get field contents
Specify character highlights within a field
Specify field contents
Specify character symbol sets within a field
Define the operator reply mode
Query character colors for a field
Query character highlights for a field
Query character symbol sets for a field
Position the cursor
Query cursor position
Specify double-character field contents
Get double-character field contents
Define field transparency attribute
Query the number of modified fields
Define field outline
Define field mixed-string attribute
Control the use of mixed fields by mapping
User Control function
Query user control function
Query length of field contents
Enable and disable Clipping
Define the graphics field
Define the picture space
Define a viewport
Define a graphics window
Clear the graphics field
Close the current segment
Delete a segment
Create a segment
Set current character angle
Set character-box size
Set current character direction
Set current character mode
Set current color
Set current symbol set
Set current line type
Set current line width
Set current foreground color-mixing mode
Set the current type of marker symbol
Set current shading pattern
Draw a circular arc
Start a shaded area
Draw a character string at current position
Draw a character string at a specified pOint
End a shaded area
Draw a straight line
Draw a marker symbol
Move without drawing
Draw a series of marker symbols
Draw a series of lines
Vectors
Query character angle
Query character-box size
Query character direction
Query default graphics cell size
Query the clipping state
Query the current character mode
Query the current color
Query the current position
Query the current symbol-set identifier
Query the cursor position

GDDM Base APL codes

Appendix I. APL request codes module 221

GDDM Base APL codes

APL
code

542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
6al
602
603
604
605
606
632
633
634

Call
name

GSQLT
GSQLW
GSQMAX
GSQMIX
GSQMS
GSQPAT
GSQPS
GSQVIE
GSQWIN
GSELPS
GSIMG
GSPUT
GSGETS
GSGET
GSGETE
GSPFLT
GSCH
GSQCH
GSQTB
GSFLW
GSQFLW
GSMSC
GSQMSC
GSIMGS
GSTAG
GSQTAG
GSILOC
GSIPIK
GSIDVI
GSIOVF
GSENAB
GSFLSH
GSQSIM
GSQCHO
GSQLOC
GSQPIK
GSSATI
GSQATI
GSSATS
GSQATS
GSSPOS
GSQPOS
GSUWIN
GSQFLD
GSQSSD
GSSORG
GSSAGA
GSQAGA
GSSTFM
GSQTFM
GSSAVE
GSLOAD
GSISTR
GSISTK
GSQSTR
GSQSTK
GSARCC
FSCLS
FSCOPY
FSLOG
FSOPEN
GSCOPY
FSLOGC
GSSINC
GSSCPY
GSSPRI

Description

Query the current line type
Query the current line width
Query the number of segments
Query the current color mixing mode
Query the current marker symbol
Query the current shading pattern
Query the picture-space definition
Query the current viewport definition
Query the current window definition
Draw an elliptic arc
Draw a graphics image
Restore graphics data
Start retrieval of graphics data
Retrieve graphics data
End retrieval of graphics data
Draw a curved fillet
Set current character shear
Query character shear
Query the text box
Set current fractional line width
Query the current fractional line width
Set marker scale
Query marker scale
Draw a scaled graphics image
Set current primitive tag
Query current tag
Initialize locator
Initialize pick device
Initial data value, Integer
Initial data value, float
Enable or disable a logical input device
Clear the graphics input queue
Query existence of Simultaneous queue entry
Query choice device data
Query graphics locator data
Query pick data
Set initial segment attributes
Query initial segment attributes
Modify segment attributes
Query segment attributes
Set segment position
Query segment position
Define a uniform graphics window
Query the graphics field
Query symbol set data
Set segment origin
Set all geometric attributes
Query all geometric attributes
Set segment transform
Query segment transform
Save a segment
Load segments
Initialize string device
Initialize stroke device
Query string data
Query stroke data
Specify aspect-ratio control (for copy)
Close alternate device
Send page to alternate device
Send character string to alternate device
Open alternate device
Send graphics to alternate device
Send character string with carrlage-control character to alternate device
Include a segment
Copy a segment
Set segment priority

222 Base Programming Reference

APL
code

635
636
637
638
639
643
644
645
646
647
648
649
656
651
653
654
655
656
657
658
659
666
661
662
663
664
665
666
667
668
961
992
993
9El4
gElS
906
9El7
908

leEll
leEl2
10El3
lEle4
lEle5
lee6
lEl97
lEl08
leEl9
1021
1922
1923
1924
le25
1El26
le4e
1641
lEl43
le44
le45
1646
1949
1El50
1e51
1El52
1101
1192
1193

Call
name

GSQPRI
GSMB
GSQMB
GSCORR
GSQORG
GSQLID
GSTA
GSQTA
GSCBS
GSAM
GSQAM
GSPOP
GSQCBS
GSSCT
GSCALL
GSQPKS
GSCORS
GSQBND
GSBND
GSSVL
GSQSVL
GSDEFS
GSOEFE
FSUPDM
FSQUPO
GSBMIX
GSQBMX
GSSEN
GSQSEN
GSCP
DSOPEN
OSCLS
OSUSE
OSOROP
DSQUID
DSQUSE
DSQOEV
OSRNIT
PTSCRT
PTSQRY
PTSSEL
PTSDEL
PTSQUN
PTSSPP
PTSQPP
PTSQPI
PTSQPN
PTNCRT
PTNQRY
PTNMOD
PTNSEL
PTNDEL
PTNQUN
WSCRT
WSOEL
WSMOD
WSQRY
WSQUN
WSQWI
WSQWP
WSQWN
WSSEL
WSSWP
MSREAD
MSPCRT
MSQGRP

Description

Query segment priority
Set marker-box size
Query marker box
Explicit correlation of tag to primitive
Query segment origin
Query logical Input device
Set text alignment
Query the current text alignment
Set character-box spacing
Set attribute mode
Query the current attribute mode
Restore attributes
Query character-box spacing
Set current transform
Call a segment
Query pick structure
Explicit correlation of structure
Query the current data boundary definition
Define a data boundary
Define segment viewing limits
Query the current segment viewing limits
Start the drawing defaults definition
End drawing defaults definition
Set update mode
Query update mode
Set current background color-mixing mode
Query the current background color-mixing mode
Set mixed string attribute of graphics text
Query mixed string attribute of graphics text
Set current position
Open a device
Close a device
Specify device usage
Discontinue device usage
Query unique device Identifier
Query device usage
Query device characteristics
Relnltlallze a device
Create a partition set
Query partition set attributes
Select a partition set
Delete a partition set
Query unique partition set identifier
Set partition viewing priorities
Query partition viewing priorities
Query partition Identifiers
Query partition numbers
Create a partition
Query the current partition
Modify the current partition
Select a partition
Delete a partition
Query unique partition Identifier
Create an operator window
Delete operator window
Modify the current operator window
Query the current operator window
Query unique operator window Identifier
Query operator window identifiers
Query operator window viewing priorities
Query operator window numbers
Select an operator window
Set operator window viewing priorities
Present mapped data
Create a page for mapping
Query mapgroup characteristics

GDDM Base APL codes

Appendix I. APL request codes module 223

GDDM Base APL codes

APL
code

1194
1195
1196
1197
1198
1199
1119
1111
1112
1113
1196
12(H
16S9
16S1
16S2
1693
1694
1695
1697
1698
1699
1619
1611
1612
1613
1614'
1615
1619
1629
165fl
1651
1652
1653
1654
1655
1656
1657
1658
1659
1669
1661
1662
1663
1664
1665
1666

call
name
MSQMAP
MSQADS
MSQFIT
MSQMOD
MSOFLD
MSPUT
MSGET
MSQFLD
MSCPOS
MSQPOS
COPU
ISSE
IMAGID
IMACRT
IMARES
IMADEL
IMACLR
IMATRM
IMASAV
IMARST
IMAPTS
IMAPT
IMAPTE
lMAGTS
lMAGT
lMAGTE
IMXFER
lMAQRY
lMARF
IMP CRT
IMPGID
IMPDEL
IMPSAV
IMPRST
IMREX
IMREXR
IMRPL
IMRPLR
IMRSCL
IMRRAL
IMRORN
IMRREF
IMRNEG
IMRCVB
IMRBRI
IMRCON

Description

Query map characteristics
Query application data structure definition
Query map fit
Query modified fields
Create or delete a mapped field
Place data Into a mapped field
Retrieve data from a map
Query mapped field characteristics
Set cursor position
Query cursor position
Control the printing of Composite Documents
Run the Image Symbol Editor
Get and reserve a unique Image Identifier
Create an image
Convert the resolution attributes of an image
Delete the image associated with the identifier
Clear a rectangle In an image
Trim an image down to the specified rectangle
Save Image on auxiliary storage
Restore image from auxiliary storage
Start data entry Into an image
Enter data into an Image
End data entry Into an image
Start retrieval of data from an Image
Retrieve image data from an image
End retrieval of data from an Image
Transfer data between two images, applying a projection
Query attributes of an Image
Change resolution flag of an Image
Create an empty projection
Get and reserve a unique projection identifier
Delete projection
Save projection on auxiliary storage
Restore projection from auxiliary storage
Define rectangular sub-image in pixel coordinates
Define rectangular sub-Image in real coordinates
Define place position in pixel coordinates
Define place position in real coordinates
Scale extracted Image
Set current resolution/scaling algorithm
Turn an extracted image clockwise through a number of right angles
Reflect extracted image
Negate the pixels of an extracted Image
Define bl-Ievel conversion algorithm
Define brightness conversion algorithm
Define contrast conversion algorithm

224 Base Programming Reference

GDDM-PGF calls and associated APL codes

GDDM·PGF APL codes, in alphabetic order

This table lists the APL codes for the GDDM-PGF calls in alphabetic order of call name.

The table on page 227 lists the APL codes for the GDDM-PGF calls In numeric order.

Call APL
name code

CHAATT 735
CHAREA 721
CHART 1200
CHBAR 795
CHaARX 782
CHBATT 722
CHCGRO 723
CHCOl 761
CHCONV 719
CHOATT 757
CHOCTl 805
CHORAX 790
CHOTAB S06
CHFINE 799
CHGAP 765
CHGATT 754
CHGGAP 766
CHHATT 729
CHHEAO 730
CHHIST 793
CHHMAR 724
CHKATT 727
CHKEY 726
CHKEYP 728
CHKMAX 770
CHKOFF 771
CHLATT 747
CHlC S00
CHlT 762
CHlW 772
CHMARK 763
CHMISS 804
CHMKSC 781
CHNATT 760
CHNOFF 759
CHNOTE 758
CHNUM 794
CHPAT 764
CHPCTl 710
CHPEXP 775
CHPIE 796
CHPIER 768
CHPlOT 791
CHPOlR 7S3
CHQARE S02
CHQPOS 718
CHQRNG S01
CHRNIT 704
CHSET 798
CHSSEG 717
CHSTRT 703
CHSURF 792
CHTATT 736
CHTERM 705
CHTHRS 776
CHTOWR 785
CHTPRJ 720

Description

Axis line attributes
Chart area
Invoke Interactive Chart Utility
Plot a bar chart
Plot a bar chart with numeric x-axis values
Set framing box attributes
Basic character spacing/size
Component basic color table
Convert coordinate values
Datum line attributes
Control the format of values, and the overall size of table charts
Specific control of axis drawing
Construct a table chart
Curve fitting smoothness
Spacing between bars
Grid line attributes
Spacing between bar groups
Heading text attributes
Heading text
Histograms
Horizontal margins
Legend text attributes
Legend key labels
Legend base position
Maximum legend width/height
Legend offsets
Axis label text attributes
Component line color table
Component line type table
Component line width table
Component marker table
Missing values on a table chart
Set marker scale values
Specify attributes for notes
Specify offsets for CHNOTE
Construct a character string at a designated position
Set number of components
Component shading pattern table
Control pie chart slices
Exploded slices in pie charts
Pie charts
Reduce pie chart size
Line graphs and scatter plots
Plot a polar chart
Query chart area
Query positional information
Query axis ranges
Reinitlalize PG routines
Specify chart options
Set segment number
Reset the processing state to state-1
Surface charts
Axis title text attributes
Terminate the PG routines
Bar value threshold limit
Plot a tower chart
Tower chart projection

GDDM·PGF APL codes

Appendix I. APL request codes module 225

GDDM-PGF APL codes

call
name

CHVATT
CHVCHR
CHVDIG
CHVENN
CHVMAR
CHXDAY
CHXDLB
CHXDTM
CHXINT
CHXLAB
CHXLAT
CHXMTH
CHXRNG
CHXSCL
CHXSEL
CHXSET
CHXTAT
CHxnc
CHXTIL
CHYDAY
CHYDTM
CHYINT
CHYLAB
CHYLAT
CHYMTH
CHYRNG
CHYSCL
CHYSEL
CHYSET
CHYTAT
CHYTIC
CHYTIL
CHZDLB
CHZGAP
CHZLAT
CHZRNG
CHZSET
CHZnC
CSCCRT
CSCDEL
CSCHA
CSDEL
CSDIR
CSFLT
CSINT
CSLOAD
CSNUM
CSQCHA
CSQCHL
CSQCS
CSQDIR
CSQFLT
CSQINT
CSQNUM
CSQUID
CSQXDT
CSQXSL
CSQYDT
CSQZDT
CSQZSL
CSSAVE
CSSICU
CSXDT
CSXSL
CSYDT
CSZDT

APL
code

769
767
774
797
725
752
773
755
741
748
711
759
739
745
731
733
713
743
737
753
756
742
749
712
751
749
746
732
734
714
744
738
779
799
715
787
777
786

1283
1218
1219
1227
1224
1287
1285
1222
1211
1228
1221
1226
1225
1298
1286
1212
1299
1216
1229
1217
1218
1231
1223
1294
1213
1228
1214
1215

Description

Attributes of values text In bar and pie charts
Number of characters In bar values
Set decimal digits for bars and tables
Venn diagram
Vertical margins
X-axis day labels
X-axis data labels
X-axis datum line
X-axis interception point
X-axis label text
X-axis label attributes
X-axis month labels
X-axis explicit range
X-axis scale factor
X-axis selection
X-axis options
X-axis title attributes
X-axis scale mark interval
X-axis title specification
V-axis day labels
V-axis datum line
V-axis interception pOint
V-axis label text
V-axis label attributes
V-axis month labels
V-axis explicit range
V-axis scale factor
V-axis selection
V-axis options
V-axis title attributes
V-axis scale mark Interval
V-axis title specification
Z-axis data labels
Spacing between towers
Z-axis label attributes
Z-axis explicit range
Z-axis options
Z-axis scale mark interval
Create a chart
Delete a chart
Set character values for a chart
Delete item for a chart
Build object directory list
Set floating-point values for a chart
Set Integer values for a chart
Restore saved chart information
Set control value for a chart
Query character values for a chart
Query character lengths for a chart
Query CSxxxx call information
Query object directory list
Query floating-paint values for a chart
Query integer values for a chart
Query control value for chart
Query unique chart identifier
Query independent (x) data values for a chart
Query Independent (x) data selection for a chart
Query dependent (y) data values for a chart
Query data group (z) values for a chart
Query data group (z) selection for a chart
Save chart Information
Start an ICU session for a chart
Set Independent (x) data values for a chart
Set Independent (x) data selection for a chart
Set dependent (y) data values for a chart
Set data group (z) data values for a chart

226 Base Programming Reference

Call APL
name code

CSZSL
VSSE

1230
1202

Description

Set data group (z) selection for a chart
Run the Vector Symbol Editor

GDDM·PGF APL codes, in numeric order

GDDM·PGF APL codes

This table lists the APL codes for the GDDM-PGF calls in numeric order.

The table on page 225 lists the APL codes for the GDDM-PGF calls in alphabetic order of call name.

APL Call Description
code name

703 CHSTRT Reset the processing state to state-1
704 CHRNIT Reinitialize PG routines
705 CHTERM Terminate the PG routines
706 CHZTIC Z-axis scale mark interval
707 CHZRNG Z-axis explicit range
709 CHZGAP Spacing between towers
710 CHPCTL Control pie chart slices
711 CHXLAT X-axis label attributes
712 CHYLAT V-axis label attributes
713 CHXTAT X-axis title attributes
714 CHYTAT V-axis title attributes
715 CHZLAT Z-axis label attributes
717 CHSSEG Set segment number
718 CHQPOS Query positional information
719 CHCONV Convert coordinate values
720 CHTPRJ Tower chart projection
721 CHAREA Chart area
722 CHBATT Set framing box attributes
723 CHCGRD Basic character spacing/size
724 CHHMAR Horizontal margins
725 CHVMAR Vertical margins
726 CHKEY Legend key labels
727 CHKATT Legend text attributes
728 CHKEYP Legend base position
729 CHHATT Heading text attributes
730 CHHEAD Heading text
731 CHXSEL X-axis selection
732 CHYSEL V-axis selection
733 CHXSET X-axis options
734 CHYSET V-axis options
735 CHAATT Axis line attributes
736 CHTATT Axis title text attributes
737 CHXTTL X-axis title specification
738 CHYTTL V-axis title specification
739 CHXRNG X-axis explicit range
740 CHYRNG V-axis explicit range
741 CHXINT X-axis interception point
742 CHYINT V-axis interception point
743 CHXTIC X-axis scale mark interval
744 CHYTIC V-axis scale mark interval
745 CHXSCL X-axis scale factor
746 CHYSCL V-axis scale factor
747 CHLATT Axis label text attributes
748 CHXLAB X-axis label text
749 CHYLAB V-axis label text
750 CHXMTH X-axis month labels
751 CHYMTH V-axis month labels
752 CHXDAY X-axis day labels
753 CHYDAY V-axis day labels
754 CHGATT Grid line attributes
755 CHXDTM X-axis datum line
756 CHYDTM V-axis datum line
757 CHDATT Datum line attributes

Appendix I. APL request codes module 227

GDDM-PGF APL codes

APL
code

758
759
769
761
762
763
764
765
766
767
768
769
779
771
772
773
774
775
776
777
779
781
782
783
7S5
799
791
792
793
794
795
796
797
798
799
S99
891
892
894
895
896

1299
1292
1293
1294
1295
1296
1297
1298
1299
1219
1211
1212
1213
1214
1215
1216
1217
1218
1219
1229
1221
1222
1223
1224
1225

Call
name

CHNOTE
CHNOFF
CHNATT
CHCOL
CHLT
CHMARK
CHPAT
CHGAP
CHGGAP
CHVCHR
CHPIER
CHVATT
CHKMAX
CHKOFF
CHLW
CHXOLB
CHVOIG
CHPEXP
CHTHRS
CHZSET
CHZOLB
CHMKSC
CHBARX
CHPOLR
CHTOWR
CHORAX
CHPLOT
CHSURF
CHHIST
CHNUM
CHBAR
CHPIE
CHVENN
CHSET
CHFINE
CHLC
CHQRNG
CHQARE
CHMISS
CHOCTL
CHOTAB
CHART
VSSE
CSCCRT
CSSICU
CSINT
CSQINT
CSFLT
CSQFLT
CSQUID
CSCOEL
CSNUM
CSQNUM
CSXOT
CSYOT
CSZOT
CSQXOT
CSQYOT
CSQZOT
CSCHA
CSQCHA
CSQCHL
CSLOAO
CSSAVE
CSOIR
CSQOIR

Description

Construct a character string at a designated position
Specify offsets for CHNOTE
Specify attributes for notes
Component basic color table
Component line type table
Component marker table
Component shading pattern table
Spacing between bars
SpaCing between bar groups
Number of characters in bar values
Reduce pie chart size
Attributes of values text in bar and pie charts
Maximum legend width/height
Legend offsets
Component line width table
X-axis data labels
Set decimal digits for bars and tables
Exploded slices In pie charts
Bar value threshold limit
Z-axis options
Z-axis data labels
Set marker scale values
Plot a bar chart with numeric x-axis values
Plot a polar chart
Plot a tower chart
SpecifiC control of axis drawing
Line graphs and scatter plots
Surface charts
Histograms
Set number of components
Plot a bar chart
Pie charts
Venn diagram
Specify chart options
Curve fitting smoothness
Component line color table
Query axis ranges
Query chart area
Missing values on a table chart
Control the format of values, and the overall size of table charts
Construct a table chart
Invoke Interactive Chart Utility
Run the Vector Symbol Editor
Create a chart
Start an ICU session for a chart
Set integer values for a chart
Query integer values for a chart
Set floating-point values for a chart
Query floating-point values for a chart
Query unique chart identifier
Delete a chart
Set control value for a chart
Query control value for chart
Set independent (x) data values for a chart
Set dependent (y) data values for a chart
Set data group (z) data values for a chart
Query independent (x) data values for a chart
Query dependent (y) data values for a chart
Query data group (z) values for a chart
Set character values for a chart
Query character values for a chart
Query character lengths for a chart
Restore saved chart information
Save chart information
Build object directory list
Query object directory list

228 Base Programming Reference

APL
code

1226
1227
1228
1229
1236
1231

Call
name

CSQCS
CSOEl
CSXSl
CSQXSL
CSZSl
CSQZSL

Description

Query CSxxxx call information
Delete item for a chart
Set independent (x) data selection for a chart
Query independent (x) data selection for a chart
Set data group (z) selection for a chart
Query data group (z) selection for a chart

GDDM-PGF APL codes

Appendix I. APL request codes module 229

GDDM Base Rep codes

Appendix J. Request control parameter codes

This appendix lists the request control parameter (RCP)
codes corresponding to the function calls that can be
invoked by an application program using GDDM or
GDDM-PGF. The RCP codes are the function codes to
be specified when invoking GDDM and GDDM-PGF by
means of the system programmer interface (SPI)
described in the GDDM Base Programming Reference,
Volume 1. The codes are also set by GO OM in error
records passed to user error exits, or produced in
response to FSQERR calls; again, see the GDDM Base
Programming Reference, Volume 1.

Assembler-language tables ADMURCPB and
ADMURCPO, provided on the GDDM and GDDM-PGF
installation tapes, define RCP codes. Table
ADMURCPB, on the GDDM installation tape, defines the
RCP codes for GDDM only. ADMURCPO, on the
GDDM-PGF installation tape, defines the RCP codes for
both GDDM and GDDM-PGF.

The RCP codes are defined as symbolic Assembler­
language EQUATE statements of mnemonics
(QQxxxxxx) to numeric values. The "xxxxxx" of the
mnemonic is the name of the GDDM or GDDM-PGF
function; for example,

QQFSINIT EQU X'aC6aaaa1'
Note: These mnemonics cannot be used under DOS
assemblers.

Call
name

RCPcode
(Hex.)

RCPcode
(Decimal)

Function

Define a field list
Delete a field list
Modify a field list

To preserve the internal structure of GDDM, and to
make it easy to package subsets of GDDM functions,
the processing code of these API calls have been reor­
ganized:

FSALRM
FSREST
ASTYPE.

This reorganization changes the RCP codes for these
calls, but for compatibility the existing RCP codes are
still supported.

GDDM Rep codes

GDDM Base Rep codes, listed
alphabetically

The RCP codes for GDDM are listed below in alphabetic
order of call name.

The table on page 237 lists the GDDM Base RCP codes
in numeric order of RCP code.

Notes:

1. Two functions (SPINIT and SPMXMP) are of type
"S," which means that they can be invoked only
using the SPI; all other functions can be accessed
by either the SPI or the API.

2. Each call has the prefix "QQ"; this has been
omitted here for clarity.

APDEF
APDEL
APMOD
APQIDS
APQNUM
APQRY
APQSIZ
APQUID
ASCCOL
ASCGET
ASCHLT
ASCPUT
ASCSS
ASDFLD
ASDFLT
ASDFMT
ASDTRN
ASFBDY
ASFCLR
ASFCOL
ASFCUR
ASFEND
ASFHLT
ASFIN
ASFINT
ASFMOD
ASFOUT
ASFPSS
ASFSEN

GC3SaaGO
GC3Sa1G6
GC3Sa2Ga
GC3Sa3Ga
aC38G4ae
eC38G5ea
GC3SG6aG
aC38G7GG
GCGS06G1
GCe8G9a3
aCGS06aG
aCG8e6e3
aCG8G6e2
aCG8e7ae
aCG8G2ae
aCaS08e1
eCGSG3aG
eC9Sa5GB
GC9Sa4Ge
GC9S9592
eC989lGO
eC08a565
eC68e594
eCG89507
eCG895a1
eCG811GG
OCG865a6
OCG8G503
OCe8e5eA

2G49966e8
2e4996864
2a499712a
2G4997376
2e4997632
2G4997888
204998144
2G49984ea
261852417
291853187
291852416
2G1852419
2a1852418
2G1852672
2al851392
2al852929
2a1851648
2al852171
2018519a4
2e1852162
2a1851136
2a1852165
2G1852164
2e1852167
2al852161
201855232
2e1852166
261852163
29185217a

Query field list identifiers
Query field list numbers
Query a field list
Query a field list size
Query unique field list Identifier
Specify character colors within a field
Get field contents
Specify character highlights within a field
Specify field contents
Specify character symbol sets within a field
Define or delete a single field
Set default field attributes
Define alphanumeric fields, deleting all existing fields
Define I/O translation tables
Define field outline
Clear fields
Define field color
Position the cursor
Define field end attribute
Define field highlighting
Define input null-to-blank conversion
Define field Intensity
Change field status
Define output biank-to-null conversion
Define primary symbol set for a field
Define field mixed-string attribute

Appendix J. Request control parameter codes 231

GDDM Base Rep codes

Call RCPcode RCPcode Function
name (Hex.) (Decimal)

ASFTRA 0C080509 201852169 Define field transparency attribute
ASFTRN 0C080508 201852168 Assign translation table set to a field
ASFTYP 0C080500 201852160 Define field type
ASGGET 0C081603 201856515 Get double-character field contents
ASGPUT 0C0815e3 201856259 Specify double-character field contents
ASMOOE eCe800ee 201854208 Define the operator reply mode
ASQCOL eCe80901 201853185 Query character colors for a field
ASQCUR eCe80F0e 201854720 Query cursor position
ASQFLO 0Ce80Aee 201853440 Query field attributes
ASQHLT eCe80900 201853184 Query character highlights for a field
ASQLEN eCe81800 201857024 Query length of fieid contents
ASQMAX eC080Eee 201854464 Query the number of fields
ASQMOO 0C080B00 201853696 Query modified fields
ASQNMF eC080E01 201854465 Query the number of modified fieids
ASQSS 0C080902 201853186 Query character symbol sets for a field
ASRATT 0C0808e2 201852930 Define fieid attributes
ASREAO eC100ee0 2e2375168 Device outpUt/input
ASRFMT 0C0808e0 201852928 Define multiple fields without deleting existing fields
ASTYPE eC081300 201855744 Override alphanumeric character-code assignments
COPU 4eeeeee0 1073741824 Control the printing of Composite Documents
OSCLS 0C0e0201 201327105 Close a device
OSCMF eC080C01 201853953 User Control function
OSOROP 0C0e0203 201327107 Discontinue device usage
OSOPEN eCee02e0 2e1327104 Open a device
OSQCMF 0C080C02 201853954 Query user control function
OSQOEV 0Ceee206 201327110 Query device characteristics
OSQUID 0Cee0204 2e1327108 Query unique device identifier
OSQUSE eCeee205 201327109 Query device usage
OSRNIT 0C0e0207 201327111 Relnitialize a device
OSUSE 0Ceee202 201327106 Specify device usage
ESACRT 0S0A00S0 655360 Create application group
ESAOEL oe0Bee00 720896 Delete application group
ESAQRY eeeC0000 786432 Query the current application group
ESASEL eeOOe0ee 851968 Select an application group
ESEUOS 0ee8000e 524288 Specify encoded user default specification
ESLIB 0814200e 135536640 Library management
ESPCB 081C10e0 136056832 Identify program communication block
ESQCPG Oelee000 1048576 Query code page of a GDDM object
ESQEUO Oe12ee00 1179648 Query encoded user default specification
ESSCPG 0en00e0 1114112 Set code page of a GDDM object
ESSUOS eee7eeee 458752 Specify source-format user default specification
FSALRM 0C080000 201850880 Sound the terminal alarm
FSCHEK 0C100e02 202375170 Check picture complexity before output
FSCLS eC1800e4 202899460 Close alternate device
FSCOPY 0C1800el 202899457 Send page to alternate device
FSENAB eC040Ee0 201592320 Enable/disable device input
FSEXIT 0S030000 196608 Specify an error exit, or error threshold, or both
FSFRCE 0C100001 202375169 Update the display
FSINIT 0C0e0001 201326593 Initialize GDDM proceSSing
FSLOG eC180ee3 202899459 Send character string to alternate device
FSLOGC eC180005 202899461 Send character string with carriage-control character to alternate device
FSOPEN 0C1800e0 202899456 Open alternate device
FSPCLR 0C0400e3 201588739 Clear the current page
FSPCRT 0C040ee0 201588736 Create a page
FSPOEL 0C040ee2 201588738 Delete a page
FSPQRY eC040ee4 2e1588740 Query specified page
FSPSEL eC040001 201588737 Select a page
FSPWIN eC040C00 201591808 Set page window
FSQCPG eC040ee5 2e1588741 Query current page identifier
FSQOEV 0C040500 201590016 Query device characteristics
FSQERR 0e040000 262144 Query last error
FSQSYS eS060ee0 393216 Query systems environment
FSQUPO eC0C1AeI 2e2119681 Query update mode
FSQUPG 0C04090e 2e1591040 Query unique page identifier
FSQURY 0Ce405el 201590e17 Query device characteristics
FSQWIN 0Ce40Cei 2e1591809 Query page window

232 Base Programming Reference

GDDM Base Rep codes

Call RCPcode RCPcode Function
name (Hex.) (Decimal)

FSREST aCI:>8eCel:> 2el853952 Retransmit data
FSRNIT BCeeeae2 2e1326594 Relnitlallze GDDM
FSSAVE aCleeee4 2e2375172 Save current page contents
FSSHOR aCleeee7 2e2375175 Extended FSSHOW
FSSHOW aCleeee5 2e2375173 Display a saved picture
FSTERM eceeeeee 2el326592 Terminate GDDM processing
FSTRAN aaeFeaaa 983a41:> Translate character string
FSTRCE aaa2aeaa 13W72 Control internal trace
FSUPDM aCaCIAl:>1:> 21:>211968e Set update mode
GSAM I:>C8C1311 2e2117ge5 Set attribute mode
GSARC I:>CaC868a 21:>2114561:> Draw a circular arc
GSARCC aCaCaa8B 2e2113e35 Specify aspect-ratio control (for copy)
GSAREA eCaCfl4e8 21:>21141:>56 Start a shaded area
GSBMIX aCeC1317 292117911 Set current background color-mixing mode
GSBND eCeCeeeD 2e2113937 Define a data boundary
GSCA eCeCfl798 292114824 Set current character angle
GSCALL eCeC1492 2e2118146 Call a segment
GSCB eCeC9797 292114823 Set character-box size
GSCBS aCeC13eF 292117ge3 Set character-box spacing
GSCD eCeC9799 2e2114825 Set current character direction
GSCH I:>CeC97eC 292114828 Set current character shear
GSCHAP eCeC95el 292114395 Draw a character string at current position
GSCHAR eCeC95ee 292114394 Draw a character string at a specified point
GSCLP eCeC92e3 292113539 Enable and disable clipping
GSCLR eCeCe3e3 292113795 Clear the graphics field
GSCM eCeCe7e5 292114821 Set current character mode
GSCOL eCeC97el 2e2114817 Set current color
GSCOPY eC18gee2 292899458 Send graphics to alternate device
GSCORR eCeC15e9 2921184ee Explicit correlation of tag to primitive
GSCORS eCeC15e1 2921184el Explicit correlation of structure
GSCP eCeC1319 292117913 Set current position
GSCPG eC949De9 291592964 Set current code page
GSCS eC9Ce7e6 292114822 Set current symboi set
GSDEFE eCeC19el 292119425 End drawing defaults definition
GSDEFS eCeC1ge8 292119424 Start the drawing defaults definition
GSDSS eCe483el 291589585 Load a graphics symbol set from the application program
GSELPS 8CeC86el 292114561 Draw an elliptic arc
GSENAB eCeCeDee 292116352 Enable or disable a logical input device
GSENDA eCeCe4e9 292114957 End a shaded area
GSFLD aCaCaaa8 292113924 Define the graphics field
GSFLSH acecama 2921166a8 Clear the graphics input queue
GSFLW aCeC87eE 2921148313 Set current fractional line width
GSGET eCeCeBe2 292115842 Retrieve graphics data
GSGETE eCeCeBe1 292115841 End retrieval of graphics data
GSGETS eCeCeBe0 29211584e Start retrieval of graphics data
GSIDVF eCeCeCe5 292116le1 Initial data value, float
GSIDVI eC0C0Ce4 2921161ee Initial data value, integer
GSILOC ecececee 292116896 Initialize locator
GSIMG eC0CeAee 282115584 Draw a graphics image
GSIMGS eCeCeAe4 292115588 Draw a scaled graphics image
GSIPIK aC0CeCa1 292116997 Initialize pick device
GSISTK aCaCeCa7 20211611:)3 Initialize stroke device
GSISTR aCaCaC86 2021161a2 Initialize string device
GSLINE aCeCe4el 2e2114e49 Draw a straight line
GSLOAD 0C0C12el 202117633 Load segments
GSLSS eCe4e3ee 2015895e4 Load a graphics symbol set from auxiliary storage
GSLT eCeCe7e3 292114819 Set current line type
GSLW eCeC0704 2a2114820 Set current line width
GSMARK aCeC04e6 202114e54 Draw a marker symbol
GSMB eCeC13e7 202117895 Set marker-box size
GSMIX eCeC0702 202114818 Set current foreground color-mixing mode
GSMOVE aCeC04ee 2e2114e48 Move without drawing
GSMRKS eCeCe4e7 2e2114e55 Draw a series of marker symbols
GSMS eCeC97eB 2e2114827 Set the current type of marker symbol
GSMSC eC0C971D 202114845 Set marker scale
GSPAT 0C0C970A 202114826 Set current shading pattern

Appendix J. Request control parameter codes 233

GDDM Base Rep codes

Call RCPcode RCPcode Function
name (Hex.) (Decimal)

GSPFLT 0C0C0602 202114562 Draw a curved fillet
GSPLNE 0C0C0402 202114050 Draw a series of lines
GSPOP 0C0C1313 202117907 Restore attributes
GSPS 0C0C0001 202113925 Define the picture space
GSPUT 9C9C9999 292115328 Restore graphics data
GSQAGA 9C9C1194 292117389 Query all geometric attributes
GSQAM 9C0C1312 292117996 Query the current attribute mode
GSQATI 9C0C939A 292113892 Query initial segment attributes
GSQATS 9C9C930C 292113004 Query segment attributes
GSQBMX 9C9C1316 292117919 Query the current background color-mixing mode
GSQBNO 9C0C999E 292113938 Query the current data boundary definition
GSQCA 0C9C0718 292114849 Query character angle
GSQCB 0C0C9717 202114839 Query character-box size
GSQCBS 9C0C1319 292117994 Query character-box spacing
GSQCO 9C9C9719 202114841 Query character direction
GSQCEL 9C0C0292 202113538 Query default graphics cell size
GSQCH 9C9C971C 202114844 Query character shear
GSQCHO 9C9C9F09 292116864 Query choice device data
GSQCLP 9C9C9204 292113549 Query the clipping state
GSQCM 9C9C9715 202114837 Query the current character mode
GSQCOL 9C9C9711 202114833 Query the current color
GSQCP 0C9C9799 292114816 Query the current position
GSQCPG 9C940001 201592965 Query code page
GSQCS 9C9C9716 292114838 Query the current symbol-set Identifier
GSQCUR 9C9C9191 292113281 Query the cursor position
GSQFLO 9C9C999A 292113934 Query the graphics field
GSQFLW 9C9C979F 292114831 Query the current fractional line width
GSQLIO 9C9C9C09 292116195 Query logical Input device
GSQLOC 0C9C9F91 202116865 Query graphics locator data
GSQLT 9C9C9713 202114835 Query the current lirie type
GSQLW 9COC0714 292114836 Query the current line width
GSQMAX 9C9C91e0 202113289 Query the number of segments
GSQMB eC9C1398 292117896 Query marker box
GSQMIX 9C0C0712 292114834 Query the current color mixing mode
GSQMS eC9C971B 292114843 Query the current marker symbol
GSQMSC eC9C971E 292114846 Query marker scale
GSQNSS eC949192 291588994 Query the number of loaded symbol sets
GSQORG eC9C9316 292113814 Query segment origin
GSQPAT eC9C971A 292114842 Query the current shading pattern
GSQPIK 9C9CElF92 292116866 Query pick data
GSQPKS 9C9CElF95 292116869 Query pick structure
GSQPOS eC9C939E 292113896 Query segment position
GSQPRI eCeC9313 292113811 Query segment priority
GSQPS eC9C9994 292113928 Query the picture-space definition
GSQSEN 9C9C1BEll 292119937 Query mixed string attribute of graphics text
GSQSIM 9C9C9E91 292116699 Query existence of simultaneous queue entry
GSQSS eC949193 291588995 Query loaded symbol sets
GSQSSO 9C9C91E12 292113282 Query symbol set data
GSQSTK 9C9C9F94 292116868 Query stroke data
GSQSTR 9C9C9F93 292116867 Query string data
GSQSVL 9C9C1315 292117999 Query the current segment viewing limits
GSQTA 9C9C139E 292117992 Query the current text alignment
GSQTAG 9C9C1e91 292117121 Query current tag
GSQTB OC9C9592 292114396 Query the text box
GSQTFM 9C9C1195 292117381 Query segment transform
GSQVIE 9C9C9995 292113929 Query the current viewport definition
GSQWIN 9C9C9996 292113939 Query the current window definition
GSREAO 9C100093 292375171 Awalt graphics input
GSRSS 9C9404Ell 291589761 Release a graphics symbol set
GSSAGA 9C0C1192 292117378 Set all geometric attributes
GSSATI 0C0C9399 292113891 Set Initial segment attributes
GSSATS 9C0C939B 292113893 Modify segment attributes
GSSAVE 0C0C1299 202117632 Save a segment
GSSCLS 0C9C0301 202113793 Close the current segment
GSSCPY 9C0C1400 292118144 Copy a segment
GSSCT OC0C1197 202117383 Set current transform

234 Base Programming Reference

Call
name

GSSOEL
GSSEG
GSSEN
GSSINC
GSSORG
GSSPOS
GSSPRI
GSSTFM
GSSVL
GSTA
GSTAG
GSUWIN
GSVECM
GSVIEW
GSWIN
IMACLR
IMACRT
IMAOEL
IMAGID
IMAGT
IMAGTE
lMAGTS
IMAPT
IMAPTE
IMAPTS
IMAQRY
IMARES
IMARF
IMARST
IMASAV
lMATRM
IMPCRT
IMPOEL
IMPGID
IMPRST
IMPSAV
IMRBRI
IMRCON
IMRCVB
IMREX
IMREXR
IMRNEG
IMRORN
IMRPL
IMRPLR
IMRRAL
IMRREF
IMRSCL
IMXFER
ISCTL
ISENAB
ISESCA
ISFLO
ISIBOX
ISILOC
ISLOE
ISQBOX
ISQCOM
ISQFLO
ISQFOR
ISQLOC
ISQRES
ISQSCA
ISXCTL
MSCPOS
MSOFLD

RCPcode
(Hex.)

0C0C0302
0C0C0300
0C0C1Be0
0C6C14I:11
8CeC0311
8C0Ce3eO
OC6C6312
6C6C1163
6C6C1314
OC6C1360
0C8C1660
6C8C6067
eC8C640A
6C6C6ee3
eCeC6662
3C616ee8
3C61eOel
3C610ee7
3C616002
3C616615
3C610616
3C61Oel4
3C610612
3C610013
3C610ell
3C6100e4
3C61eee6
3C61OeeC
3C61OeeB
3C6100eA
3C61eGG9
3C63e663
3C63e664
3C630G01
3C630886
3C630605
3C630202
3C030203
3C030261
3C030101
3C036162
3C036169
3C836107
3C836103
3C830204
3C830106
3C036108
3C636105
3C610617
OC300002
0C301266
6C300B06
6C300606
0C361600
6C361400
6C366C06
0C30156e
6C3el866
0C360661
0C36170e
6C361366
6C366Ee6
0C3860e6
6C300603
6C280606
OC286568

RCP code
(Decimal)

262113794
202113792
262119936
262118145
2021138e9
262113865
262113810
202117379
202117908
202117901
262117120
262113631
262114658
202113027
202113626

1006698504
1006698497
1006698503
1006698498
1006698517
1006698518
1006698516
1006698514
1006698515
1006698513
1006698506
1006698562
le06698508
le66698567
1066698566
1006698505
1066829571
1066829572
1066829569
1606829574
1e66829573
1006830682
1666836083
10e6830081
1066829825
1086829826
1066829833
1006829831
10e6829827
1006830084
1606829830
1806829832
1806829829
1666698519
264472322
264476928
284475136
264472326
264477952
264477446
264475392
264477696
264478464
264472321
264478268
2e4477184
264475964
264475648
204472323
263949568
263949312

Function

Delete a segment
Create a segment
Set mixed string attribute of graphics text
Include a segment
Set segment origin
Set segment position
Set segment priority
Set segment transform
Define segment viewing limits
Set text alignment
Set current primitive tag
Define a uniform graphics window
Vectors
Define a viewport
Define a graphics window
Clear a rectangle in an image
Create an image
Delete the image associated with the identifier
Get and reserve a unique image identifier
Retrieve image data from an image
End retrieval of data from an image
Start retrieval of data from an image
Enter data into an image
End data entry into an image
Start data entry into an image
Query attributes of an image
Convert the resolution attributes of an image
Change resolution flag of an image
Restore image from auxiliary storage
Save image on auxiliary storage
Trim an image down to the specified rectangle
Create an empty projection
Delete projection
Get and reserve a unique projection identifier
Restore projection from auxiliary storage
Save projection on auxiliary storage
Define brightness conversion algorithm
Define contrast conversion algorithm
Define bi-Ievel conversion algorithm

GDDM Base Rep codes

Define rectangular sub-image in pixel coordinates
Define rectangular sub-image in real coordinates
Negate the pixels of an extracted image
Turn an extracted image clockwise through a number of right angles
Define place position in pixel coordinates
Define place pOSition in real coordinates
Set current resolution/scaling algorithm
Reflect extracted image
Scale extracted image
Transfer data between two images, applying a projection
Set image quality-control parameters
Enable or disable image cursor
Control echoing of scanner image
Define image field
Initialize image box cursor
Initialize image locator cursor
Load external read-only image
Query image box cursor
Query image compressions supported by the device
Query image field
Query image formats supported by the device
Query image locator cursor position
Query supported image resolutions
Query image scanner device
Extended set image quality control parameters
Set cursor position
Create or delete a mapped field

Appendix J. Request control parameter codes 235

GDDM Base Rep codes

Call
name

MSGET
MSPCRT
MSPQRY
MSPUT
MSQADS
MSQFIT
MSQFLD
MSQGRP
MSQMAP
MSQMOD
MSQPOS
MSREAD
PSDSS
PSLSS
PSLSSC
PSQSS
PSRSS
PSRSV
PTNCRT
PTNDEL
PTNMOD
PTNQRY
PTNQUN
PTNSEL
PTSCRT
PTSDEL
PTSQPI
PTSQPN
PTSQPP
PTSQRY
PTSQUN
PTSSEL
PTSSPP
SPINIT
SPMXMP
SSQF
SSREAD
SSWRT
WSCRT
WSDEL
WSIO
WSMOD
WSQRY
WSQUN
WSQWI
WSQWN
WSQWP
WSSEL
WSSWP

RCPcode
(Hex.)

9C289592
9C28al99
eC94ge96
9C289591
9C289392
9C289393
9C2895e3
9C289399
eC289391
9C2894e9
9C2896al
9C289999
9C94e2e2
9C949299
9C94e291
eC949191
9C949499
GC949293
GC24eeee
GC24elai
GC24eea2
GC2499al
eC249Hl2
9C249199
9C29geee
9C29ala1
aC29a4ee
9C2e9491
eC29a3ElI
9C2eee91
9C299la2
9C2eEl19El
9C2993ea
99El5Elee9
ElCa814el
9CEl49UlEl
eC949S99
9CEl4eS91
eC2C9ge9
9C2Ce1e9
eCleeee8
9C2C92e9
eC2C93e9
9C2C94eEl
9C2C95e9
9C2C96e9
9C2Ce7ee
eC2C9899
9C2Cege0

RCPcode
(Decimal)

2e3949314
2e3948288
291588742
293949313
2e3948892
293948893
293949315
2939488e9
2039488al
293949956
293949569
293948932
29158925El
291589248
291589249
291588993
291589769
2al589251
293685888
293686145
2e36858ge
2e3685889
293686146
293686144
2e3423744
293424eal
2e3424768
293424769
293424513
293423745
2El3424e92
293424Gr:lr:l
293424512

32768El
291856r:lr:ll
2r:l1588992
291591552
291591553
294219176
29421El432
292375176
29421r:l688
294219944
29421129r:l
2r:l4211456
294211712
294211968
294212224
29421248e

236 Base Programming Reference

Function

Retrieve data from a map
Create a page for mapping
Query current page
Place data Into a mapped field
Query application data structure definition
Query map fit
Query mapped field characteristics
Query mapgroup characteristics
Query map characteristics
Query modified fields
Query cursor position
Present mapped data
Load a symbol set into a PS store from the application program
Load a symbol set into a PS store from auxiliary storage
Conditionally load a symbol set into a PS store from auxiliary storage
Query status of device stores
Release a symbol set from a PS store
Reserving or releasing a PS store
Create a partition
Delete a partition
Modify the current partition
Query the current partition
Query unique partition identifier
Select a partition
Create a partition set
Delete a partition set
Query partition Identifiers
Query partition numbers
Query partition viewing priorities
Query partition set attributes
Query unique partition set identifier
Select a partition set
Set partition viewing priorities
Initialize GDDM with SPIB
Control the use of mixed fields by mapping
Query a symbol set on auxiliary storage
Read a symbol set from auxiliary storage
Write a symbol set to auxiliary storage
Create an operator window
Delete operator window
Windowed device input/output
Modify the current operator window
Query the current operator window
Query unique operator window identifier
Query operator window Identifiers
Query operator window numbers
Query operator window viewing priorities
Select an operator window
Set operator window viewing priorities

GDDM Base Rep codes

GDDM Base Rep codes, listed numerically

this table lists the GDDM Base RCP codes In numeric order of RCP code.

The table on page 231 lists the GDDM Base RCP codes in alphabetic order of call name.

RCPcode RCPcode Call Function
(Hex.) (Decimal) name

9992ege9 131972 FSTRCE Control internal trace
9093E1ge9 196698 FSEXIT Specify an error exit, or error threshold, or both
eEl94E19ge 262144 FSQERR Query last error
Oe9590El9 327689 SPINIT Initialize GDDM with SPIB
e9960ge9 393216 FSQSYS Query systems environment
E1e979909 458752 ESSUDS Specify source-format user default specification
999899ge 524288 ESEUDS Specify encoded user default specification
e99A9ee9 655369 ESACRT Create application group
999B9ge9 729896 ESADEL Delete application group
999C9999 786432 ESAQRY Query the current application group
e09Dge99 851968 ESASEL Select an application group
999F0999 983940 FSTRAN Translate character string
ge199999 1948576 ESQCPG Query code page of a GDDM object
99119999 1114112 ESSCPG Set code page of a GDDM object
09129gee 1179648 ESQEUD Query encoded user default specification
E18142ge9 13553664a ESLI8 Library management
981C1999 136956832 ESPCB Identify program communication block
9C9geege 291326592 FSTERM Terminate GDDM processing
9C990991 291326593 FSINIT Initialize GDDM processing
9C9ge992 291326594 FSRNIT Reinitialize GDDM
OCge9299 291327194 DSOPEN Open a device
eCge9291 291327195 DSCLS Close a device
OC999292 2e1327196 DSUSE Specify device usage
9Cee9293 2E11327197 DSDROP Discontinue device usage
9Ce99294 291327198 DSQUID Query unique device Identifier
9Ce99295 291327199 DSQUSE Query device usage
9C999206 291327119 DSQDEV Query device characteristics
9Cge92e7 291327111 DSRNIT Reinltialize a device
OC949099 291588736 FSPCRT Create a page
OC940ee1 291588737 FSPSEL Select a page
eC94gee2 291588738 FSPDEL Delete a page
9Ce4ge93 2E11588739 FSPCLR Clear the current page
9C940994 291588749 FSPQRY Query specified page
9C949995 291588741 FSQCPG Query current page Identifier
9C949906 291588742 MSPQRY Query current page
9C949109 291588992 SSQF Query a symbol set on auxiliary storage
9C949191 291588993 PSQSS Query status of device stores
E1C949192 291588994 GSQNSS Query the number of loaded symbol sets
9C949U13 291588995 GSQSS Query loaded symbol sets
9C949299 291589248 PSLSS Load a symbol set Into a PS store from auxiliary storage
9CEl4E1291 291589249 PSLSSC Conditionally load a symbol set Into a PS store from auxiliary storage
9C949292 291589259 PSDSS Load a symbol set into a PS store from the application program
9C949293 291589251 PSRSV Reserving or releasing a PS store
9C949399 261589594 GSLSS Load a graphics symbol set from auxiliary storage
9C949391 291589595 GSDSS Load a graphics symbol set from the application program
9C9494e9 291589769 PSRSS Release a symbol set from a PS store
OC949491 291589761 GSRSS Release a graphics symbol set
9C949599 201596616 FSQDEV Query device characteristics
9C949S91 291599917 FSQURY Query device characteristics
9C949999 291591949 FSQUPG Query unique page Identifier
9C940Bea 291591552 SSREAD Read a symbol set from auxiliary storage
9C949B91 291591553 SSWRT Write a symbol set to auxiliary storage
9C94aC09 291591898 FSPWIN Set page window
9C949C91 291591899 FSQWIN Query page window
9C949Da9 291592964 GSCPG Set current code page
9C049Dtn 291592965 GSQCPG Query code page
9C949E99 291592329 FSENAB Enable/disable device input
9C989999 291859889 FSALRM Sound the terminal alarm
9C9891e9 291851136 ASFCUR Position the cursor
eCeae2ge 291851392 ASDFLT Set default field attributes

Appendix J. Request control parameter codes 237

GDDM Base Rep codes

RCP code
(Hex.)

9C989399
9C9894e9
9C989599
9C989591
9C989592
9C989593
9C989594
9C989595
9C989596
9C989597
9C989598
9C989599
9C98959A
9C98959S
OC9896e9
9C989691
9C989692
9C989693
9C089799
9C089899
eC989891
9C989892
OC989999
OC989901
OC980992
OC080903

.9C989A99
OC980S99
9C989CeO
9C989C01
9C989C92
OC080099
9C989E99
9C980E91
OC989FOO
9C981199
BC9813e9
9C981491
9C981593
9C981693
9C981890
9C9C9999
9CeC9991
9C9C9992
9C9C9993
eC9Cee94
eCeCe995
eCeCe996
eCeCe997
eCeCee9A
9C9Ce99S
9CeCge90
9C9Ce99E
9C9C9199
9C9C9191
9C9C9192
9C9C9292
eC9C9293
9C9C9294
eCeC9399
9CeC9301
9CeC9392
9C9C9393
9C9C9399
9C9C939A
9C9C939S

RCP code
(Decimal)

291851648
291851994
291852169
291852161
291852162
291852163
291852164
291852165
291852166
291852167
291852168
291852169
291852179
291852171
201852416
2e1852417
291852418
291852419
291852672
291852928
291852929
291852939
291853184
291853185
291853186
291853187
291853449
291853696
291853952
291853953
291853954
291854298
291854464
291854465
291854729
291855232
291855744
2918569tU
291856259
291856515
291857924
292113924
292113025
292113926
292113927
292113928
292113929
292113939
292113931
292113934
292113935
292113037
292113938
292113289
292113281
292113282
292113538
292113539
292113549
292113792
292113793
292113794
292113795
292113891
292113892
292113893

Call
name

ASOTRN
ASFCLR
ASFTYP
ASFINT
ASFCOL
ASFPSS
ASFHLT
ASFENO
ASFOUT
ASFIN
ASFTRN
ASFTRA
ASFSEN
ASFSDY
ASCHLT
ASCCOL
ASCSS
ASCPUT
ASOFLO
ASRFMT
ASOFMT
ASRATT
ASQHLT
ASQCOL
ASQSS
ASCGET
ASQFLD
ASQMOD
FSREST
DSCMF
OSQCMF
ASMOOE
ASQMAX
ASQNMF
ASQCUR
ASFMOD
ASTYPE
SPMXMP
ASGPUT
ASGGET
ASQLEN
GSFLD
GSPS
GSWIN
GSVIEW
GSQPS
GSQVIE
GSQWIN
GSUWIN
GSQFLO
GSARCC
GS8NO
GSQSND
GSQMAX
GSQCUR
GSQSSD
GSQCEL
GSCLP
GSQCLP
GSSEG
GSSCLS
GSSDEL
GSCLR
GSSATI
GSQATI
GSSATS

238 Base Programming Reference

Function

Define 1/0 translation tables
Clear fields
Define field type
Define field intenSity
Define field color
Define primary symbol set for a field
Define field highlighting
Define field end attribute
Define output biank-ta-null conversion
Define input nUIl-to-blank conversion
Assign translation table set to a field
Define field transparency attribute
Define field mixed-string attribute
Define field outline
Specify character highlights within a field
Specify character colors within a field
Specify character symbol sets within a field
Specify field contents
Define or delete a single field
Define multiple fields without deleting existing fields
Define alphanumeric fields, deleting all existing fields
Define field attributes
Query character highlights for a field
Query character colors for a field
Query character symbol sets for a field
Get field contents
Query field attributes
Query modified fields
Retransmit data
User Control function
Query user control function
Define the operator reply mode
Query the number of fields
Query the number of modified fields
Query cursor position
Change field status
Override alphanumeric character-code assignments
Control the use of mixed fields by mapping
Specify double-character field contents
Get double-character field contents
Query length of field contents
Define the graphics field
Define the picture space
Define a graphics window
Define a viewport
Query the picture-space definition
Query the current viewport definition
Query the current window definition
Define a uniform graphics window
Query the graphics field
Specify aspect-ratio control (for copy)
Define a data boundary
Query the current data boundary definition
Query the number of segments
Query the cursor position
Query symbol set data
Query default graphics cell size
Enable and disable clipping
Query the clipping state
Create a segment
Close the current segment
Delete a segment
Clear the graphics field
Set initial segment attributes
Query initial segment attributes
Modify segment attributes

GDDM Base Rep codes

RCPcode RCPcode Can Function
(Hex.) (Decimal) name

9C8C839C 292113894 GSQATS Query segment attributes
9C9C939D 292113895 GSSPOS Set segment position
eC9C938E 292113896 GSQPOS Query segment position
8C9C9311 282113899 GSSORG Set segment origin
9C8~8312 282113819 GSSPRI Set segment priority
9C8C8313 282113811 GSQPRI Query segment priority
9C9C9316 292113814 GSQORG Query segment origin
8C9C9489 292114948 GSMOVE Move without drawing
8C9C9481 292114949 GSLINE Draw a straight line
9C8C9492 282114858 GSPLNE Draw a series of lines
9C9C9496 282114854 GSMARK Draw a marker symbol
9C8C8497 292114855 GSMRKS Draw a series of marker symbols
9C8C8498 292114956 GSAREA Start a shaded area
9C9C8489 292114957 GSENDA End a shaded area
9C9C948A 292114958 GSVECM Vectors
8C9C9589 292114394 GSCHAR Draw a character string at a specified point
8C9C8591 292114395 GSCHAP Draw a character string at current position
8C9C9592 292114396 GSQTB Query the text box
8C9C9699 282114569 GSARC Draw a circular arc
9C8C9691 282114561 GSELPS Draw an elliptic arc
9C8C9692 292114562 GSPFLT Draw a curved fillet
9C8C8798 292114816 GSQCP Query the current position
9C9C8781 292114817 GSCOL Set current color
9C9C9782 292114818 GSMIX Set current foreground color-mixing mode
9C9C8783 292114819 GSLT Set current line type
8C9C9784 292114829 GSLW Set current line width
8CElC9795 292114821 GSCM Set current character mode
8C9C9796 292114822 GSCS Set current symbol set
eCeC9797 282114823 GSCB Set character-box size
8C8C9798 282114824 GSCA Set current character angle
9C8C97E19 292114825 GSCD Set current character direction
9CeC979A 292114826 GSPAT Set current shading pattern
9C9C879B 292114827 GSMS Set the current type of marker symbol
9C8C879C 292114828 GSCH Set current character shear
9C9C878E 2a2114839 GSFLW Set current fractional line width
9C9C978F 292114831 GSQFLW Query the current fractional line width
8C9C9711 292114833 GSQCOL Query the current color
8CaC97l2 292114834 GSQMIX Query the current color mixing mode
9C9C97l3 292114835 GSQLT Query the current line type
9C9C97l4 292114836 GSQLW Query the current line width
9C9C97l5 282114837 GSQCM Query the current character mode
8C9C97l6 282114838 GSQCS Query the current symbol-set identifier
8C9C97l7 282114839 GSQCB Query character-box size
9C8CEl7l8 29211484El GSQCA Query character angle
ElC9C87l9 292114841 GSQCD Query character direction
9C8CEl7lA 282114842 GSQPAT Query the current shading pattern
9C9C87lB 292114843 GSQMS Query the current marker symbol
9C9C97lC 292114844 GSQCH Query character shear
9C9C97lD 282114845 GSMSC Set marker scale
9C9C97lE 292114846 GSQMSC Query marker scale
8C9C999a 292115328 GSPUT Restore graphics data
8C9C9A9a 292115584 GSIMG Draw a graphics image
8C9CElA94 282115588 GSIMGS Draw a scaled graphics Image
8C9C9B98 282115849 GSGETS Start retrieval of graphics data
9C9C9B91 282115841 GSGETE End retrieval of graphics data
9C8C9B92 292115842 GSGET Retrieve graphics data
9C8CeCee 292116896 GSILOC Initialize locator
9C8C8C91 292116897 GSIPIK Initialize pick device
aC9C8C94 292116199 GSlDVI Initial data value, Integer
aC9C9C85 292116191 GSlDVF Initial data value, float
ElCElCElC86 2921161El2 GSISTR Initialize string device
ElCElC8C87 2921161El3 GSISTK Initialize stroke device
ElCaCElC89 2921161El5 GSQLID Query logical Input device
9C9C9008 282116352 GSENAB Enable or disable a logical input device
9C9CElEEla 282116688 GSFLSH Clear the graphics Input queue
eC8C9E81 282116689 GSQSIM Query existence of simultaneous queue entry

Appendix J. Request control parameter codes 239

GDDM Base Rep codes

RCPcode RCPcode Call Function
(Hex.) (Decimal) name

OCOCOFOO 202116864 GSQCHO Query choice device data
OCOCOFOI 202116865 GSQLOC Query graphics locator data
OCOCOF02 202116866 GSQPIK Query pick data
OCOCOF03 202116867 GSQSTR Query string data
OCOCOF04 202116868 GSQSTK Query stroke data
GCOCOF05 292116869 GSQPKS Query pick structure
9C9Cle09 292117120 GSTAG Set current primitive tag
OC9CI001 292117121 GSQTAG Query current tag
9C9C1192 202117378 GSSAGA Set all geometric aHributes
OCGC1193 202117379 GSSTFM Set segment transform
9C9C1104 202117389 GSQAGA Query all geometric aHributes
9C9C1105 292117381 GSQTFM Query segment transform
9COC1197 202117383 GSSCT Set current transform
OCOC12GO 292117632 GSSAVE Save a segment
OCOC1201 292117633 GSLOAD Load segments
OC9C1307 202117895 GSMB Set marker-box size
OC9C1308 292117896 GSQMB Query marker box
GC9C130D 2132117901 GSTA Set text alignment
GC9C139E 292117992 GSQTA Query the current text alignment
9C9C139F 202117903 GSCBS Set character-box spacing
OC9C1319 202117994 GSQCBS Query character-box spacing
9C9C1311 292117995 GSAM Set aHribute mode
9C9C1312 292117906 GSQAM Query the current aHribute mode
9C9C1313 292117997 GSPOP Restore aHributes
9CGC1314 202117998 GSSVL Define segment viewing limits
9C9C1315 292117999 GSQSVL Query the current segment viewing limits
GC9C1316 202117910 GSQBMX Query the current background color-mixing mode
9C9C1317 292117911 GSBMIX Set current background color-mixing mode
9C9C1319 202117913 GSCP Set current position
9C9C1499 292118144 GSSCPY Copy a segment
9COC1491 292118145 GSSINC Include a segment
9C9C1492 292118146 GSCALL Call a segment
GC9C15G9 292118400 GSCORR Explicit correlation of tag to primitive
9C9C1501 292118401 GSCORS Explicit correlation of structure
9CGC1999 292119424 GSDEFS Start the drawing defaults definition
OC9C1991 292119425 GSDEFE End drawing defaults definition
aC9C1A99 292119680 FSUPDM Set update mode
aCOCIA01 292119681 FSQUPD Query update mode
9C9C1B09 202119936 GSSEN Set mixed string aHribute of graphics text
OCOCIB01 202119937 GSQSEN Query mixed string attribute of graphics text
OC199090 292375168 ASREAD Device outpuVinput
OCI09901 292375169 FSFRCE Update the display
OCle9002 292375170 FSCHEK Check picture complexity before output
9Cle9903 292375171 GSREAD Await graphics input
aCle9004 292375172 FSSAVE Save current page contents
aCleOG95 202375173 FSSHOW Display a saved picture
OC199G07 292375175 FSSHOR Extended FSSHOW
OC1GOO08 202375176 WSIO Windowed device inpuUoutput
OC180009 2132899456 FSOPEN Open alternate device
OC180901 202899457 FSCOPY Send page to alternate device
OC180002 2132899458 GSCOPY Send graphics to alternate device
aC18ee93 292899459 FSLOG Send character string to alternate device
OCl8a094 292899469 FSCLS Close alternate device
OC18aa05 2a2899461 FSLOGC Send character string with carriage-control character to alternate device
OC20aa9a 203423744 PTSCRT Create a partition set
OC200001 203423745 PTSQRY Query partition set aHributes
OC29ale9 293424000 PTSSEL Select a partition set
eC20elel 203424091 PTSOEL Delete a partition set
OC20e192 203424002 PTSQUN Query unique partition set identifier
eC29a390 2133424512 PTSSPP Set partition viewing priorities
aC209301 203424513 PTSQPP Query partition viewing priorities
OC20940a 203424768 PTSQPI Query partition identifiers
aC20a4al 293424769 PTSQPN Query partition numbers
aC24aeaO 203685888 PTNCRT Create a partition
aC24a001 203685889 PTNQRY Query the current partition
OC240002 203685890 PTNMOD Modify the current partition

240 Base Programming Reference

RCPcode
(Hex.)

6C246169
6C249Hll
6C246162
6C28e666
6C286166
6C286366
9C286361
eC288382
8C288383
8C288488
8C288588
8C288591
8C286582
6C288583
8C288688
eC288681
8C2Cee88
eC2C9188
eC2C9288
8C2C83e8
6C2C64e6
6C2C85e6
6C2C6666
6C2C6766
6C2Cea69
eC2C9966
eC36e666
6C36S661
6C36e692
8C366e63
6C36eS66
eC36eCee
6C366D66
6C366E69
6C361266
6C36136e
6C361466
6C39156e
6C361666
6C361766
6C361866
6C386666
6C386166
6C386269
6C386366
6C38E1466
eC38656e
6C38e66e
6C38e766
3Ce16e61
3Cme662
3C6186e4
3C616e66
3C916ee7
3C616ee8
3Celee89
3C81ee8A
3C81886B
3C81886C
3C818811
3C816812
3C818813
3C816814
3C818815
3C616616
3C618a17

RCPcode
(Decimal)

293686144
283686145
263686146
283948832
283948288
293948868
283948881
263948862
283948893
293949656
263949312
263949313
293949314
293949315
293949568
293949569
284218176
264218432
284218688
284218944
284211288
264211456
294211712
294211968
264212224
264212486
264472329
284472321
264472322
284472323
264475136
294475392
294475648
264475984
264476928
264477184
264477446
264477696
284477952
264478268
294478464
2949966e8
264996864
294997126
294997376
2e4997632
284997888
284998144
2649984e9

18e6698497
1866698498
18e6698568
18666985B2
18e6698503
lee6698564
1886698585
16866985E16
18666985E17
18e66985e8
18e6698513
1866698514
1896698515
1e86698516
1886698517
lee6698518
18e6698519

Call
name

PTNSEL
PTNDEL
PTNQUN
MSREAO
MSPCRT
MSQGRP
MSQMAP
MSQADS
MSQFIT
MSQMOO
MSOFLD
MSPUT
MSGET
MSQFLD
MSCPOS
MSQPOS
WSCRT
WSDEL
WSMOO
WSQRY
WSQUN
WSQWI
WSQWN
WSQWP
WSSEL
WSSWP
ISFLD
ISQFLO
ISCTL
ISXCTL
ISESCA
ISLDE
ISQSCA
ISQRES
ISENAB
ISQLOC
ISILOC
ISQSOX
ISIBOX
ISQFOR
ISQCOM
APDEF
APDEL
APMOD
APQIDS
APQNUM
APQRY
APQSIZ
APQUID
IMACRT
IMAGID
IMAQRY
IMARES
IMADEL
lMACLR
lMATRM
lMASAV
IMARST
IMARF
IMAPTS
IMAPT
IMAPTE
IMAGTS
lMAGT
IMAGTE
IMXFER

Function

Select a partition
Delete a partition
Query unique partition identifier
Present mapped data
Create a page for mapping
Query mapgroup characteristics
Query map characteristics
Query application data structure definition
Query map fit
Query modified fields
Create or delete a mapped field
Place data into a mapped field
Retrieve data from a map
Query mapped field characteristics
Set cursor position
Query cursor position
Create an operator window
Delete operator window
Modify the current operator window
Query the current operator window
Query unique operator window identifier
Query operator window identifiers
Query operator window numbers
Query operator window viewing priorities
Select an operator window
Set operator window viewing priorities
Define image field
Query image field
Set image quality-control parameters
Extended set image quality control parameters
Control echoing of scanner image
Load external read-only image
Query image scanner device
Query supported image resolutions
Enable or disable image cursor
Query image locator cursor position
Initialize image locator cursor
Query image box cursor
Initialize image box cursor

GDDM Base Rep codes

Query image formats supported by the device
Query image compressions supported by the device
Define a field list
Delete a field list
Modify a field list
Query field list identifiers
Query field list numbers
Query a field list
Query a field list size
Query unique field list identifier
Create an image
Get and reserve a unique image identifier
Query attributes of an image
Convert the resolution attributes of an image
Delete the image associated with the identifier
Clear a rectangle in an image
Trim an image down to the specified rectangle
Save image on auxiliary storage
Restore image from auxiliary storage
Change resolution flag of an image
Start data entry into an image
Enter data into an image
End data entry into an image
Start retrieval of data from an image
Retrieve image data from an image
End retrieval of data from an image
Transfer data between two images, applying a projection

Appendix J. Request control parameter codes 241

GDDM Base Rep codes

RCPcode
(Hex.)

3C939991
3C939993
3C939994
3C939995
3C939996
3C939191
3C939192
3C939193
3C939195
3C939196
3C939197
3C939198
3C939199
3C939291
3C939292
3C939293
3C939294
49999999

RCPcode
(Decimal)

1996829569
1696829571
1996829572
1996829573
1996829574
1996829825
1996829826
1996829827
1996829829
1996829839
1996829831
1996829832
1996829833
1996839981
1996839982
1996839983
1996839984
1973741824

Call
name

IMPGID
IMPCRT
IMPDEL
IMPSAV
IMPRST
IMREX
IMREXR
IMRPL
IMRSCL
IMRRAL
IMRORN
IMRREF
IMRNEG
IMRCVB
IMRBRI
IMRCON
IMRPLR
CDPU

242 Base Programming Reference

Function

Get and reserve a unique projection identifier
Create an empty projection
Delete projection
Save projection on auxiliary storage
Restore projection from auxiliary storage
D<9fine rectangular sub-image in pixel coordinates
Define rectangular sub-image in real coordinates
Define place position in pixel coordinates
Scale extracted image
Set current resolution/scaling algorithm
Turn an extracted image clockwise through a number of right angles
Reflect extracted image
Negate the pixels of an extracted image
Define bl-Ievel conversion algorithm
Define brightness conversion algorithm
Define contrast conversion algorithm
Define place position In real coordinates
Control the printing of Composite Documents

GDDM-PGF Rep codes

GDDM-PGF Rep codes, listed alphabetically

The RCP codes for GDDM-PGF are listed below in alphabetic order of call name.

The table on page 245 lists the GDDM-PGF RCP codes In numeric order of RCP code.

Notes:

GDDM-PGF Rep codes

1. All GDDM-PGF RCP codes are of type E, meaning that the functions can be called using all the normal call Inter­
faces.

2. Each call has the prefix "QQ"; this has been omitted here for clarity.

Call RCP code RCP code Function
name (hex.) (decimal)

CHAATT 19929791 268568321 Axis line attributes
CHAREA 19929A92 268569999 Chart area
CHART 14999999 335544329 Invoke Interactive Chart Utility
CHBAR 19909AGl 269289985 Plot a bar chart
CHBARX 19909A97 269289991 Plot a bar chart with numeric x-axis values
CHBATT 199BOA93 269158915 Set framing box attributes
CHCGRO 19920615 268568985 Basic character spacing/size
CHCOl 19929393 268567299 Component basic color table
CHCONV 10179199 269943940 Convert coordinate values
CHOATT 100BOAGl 269158913 Datum line attributes
CHOCTL 19159201 269812225 Control the format of values, and the overall size of table charts
CHORAX 19149100 269746432 Specific control of axis drawing
CHOTAB 19000AOB 269289995 Construct a table chart
CHFINE 1902061A 268568090 Curve fitting smoothness
CHGAP 19020610 268568980 Spacing between bars
CHGATT 19920702 268568322 Grid line attributes
CHGGAP 19920611 268568981 Spacing between bar groups
CHHATT 19929991 268568833 Heading text attributes
CHHEAO 10029202 268567942 Heading text
CHHIST 10909A02 269289986 Histograms
CHHMAR 10020612 268568082 Horizontal margins
CHKATT 10920905 268568837 Legend text attributes
CHKEY 10920201 268567041 Legend key labels
CHKEYP 10920801 268568577 Legend base position
CHKMAX 100A0619 269992371 Maximum legend width/height
CHKOFF 190A9618 269992376 Legend offsets
CHLATT 19029903 268568835 Axis label text attributes
CHlC 10020397 268567393 Component line color table
CHlT 19029392 268567298 Component line type table
CHlW 19929395 268567301 Component line width table
CHMARK 19929391 268567297 Component marker table
CHMISS 10159391 269812481 Missing values on a table chart
CHMKSC 19939C91 268635137 Set marker scale values
CHNATT 199B0994 269158669 Specify attributes for notes
CHNOFF 199B9617 269157911 Specify offsets for CHNOTE
CHNOTE 1Gl39199 269689896 Construct a character string at a designated position
CHNUM 1992969F 268568979 Set number of components
CHPAT 19929394 268567399 Component shading pattern table
CHPCTl 1Gl59191 269811969 Control pie chart slices
CHPEXP 19929396 268567392 Exploded slices In pie charts
CHPIE 19909A96 269289999 Pie charts
CHPIER 19929614 268568984 Reduce pie chart size
CHPlOT Ul900A93 269289987 Line graphs and scatter plots
CHPOlR 19900A98 269289992 Plot a polar chart
CHQARE 19180199 279998576 Query chart area
CHQPOS 19179299 269943296 Query positional information
CHQRNG U1l70399 269943552 Query axis ranges
CHRNIT 19910199 268591248 Relnitlallze PG routines
CHSET 19929191 268566785 Specify chart options
CHSSEG 199B9793 269158147 Set segment number
CHSTRT 19119199 269549824 Reset the processing state to state-1

Appendix J. Request control parameter codes 243

GDDM-PGF Rep codes

Can RCPcode RCPcode Function
name (hex.) (decimal)

CHSURF 1990l:)A94 269289988 Surface charts
CHTATI 19929992 268568834 Axis title text attributes
CHTERM 19999199 268435712 Terminate the PG routines
CHTHRS 11:)9S9A95 269158917 Bar value threshold limit
CHTOWR 11:)909A99 269289993 Plot a tower chart
CHTPRJ 19169199 269877594 Tower chart projection
CHVATT 19929996 268568838 Attributes of values text In bar and pie charts
CHVCHR 19929616 268568986 Number of characters In bar values
CHVDIG 199BOA04 269158916 Set decimal digits for bars and tables
CHVENN 190D9AI:)5 269289989 Venn diagram
CHYMAR 19029613 2685681:)83 Vertical margins
CHXOAY 11:)92969B 268568975 X-axis day labels
CHXDLB 19929595 268567813 X-axis data labels
CHXOTM Hll:)EI:)690 269354599 X-axis datum line
CHXINT I1:)OAI:)693 269992355 X-axis Interception point
CHXLAB 11:)929593 268567811 X-axis label text
CHXLAT 11:)929997 268568839 X-axis label attributes
CHXMTH 11:)92961:)9 268568973 X-axis month labels
CHXRNG 11:)9A9691 269992353 X-axis explicit range
CHXSCL 11:)929697 268568971 X-axis scale factor
CHXSEL 199F981:)1 269429545 X-axis selection
CHXSET 181:)29401 268567553 X-axis options
CHXTAT 18929999 268568841 X-axis title attributes
CHXTIC 11:)9A0695 2691:)92357 X-axis scale mark Interval
CHXTIL 19029591 268567899 X-axis title specification
CHYDAY 191:)2969C 2685681:)76 V-axis day labels
CHYDTM 190EI:)61:)E 269354511:) V-axis datum line
CHYINT 191:)AI:)61:)4 2691:)92356 V-axis interception pOint
CHYLAB 11:)1:)2951:)4 268567812 V-axis label text
CHYLAT 1992991:)8 268568849 V-axis label attributes
CHYMTH 191:)2960A 268568974 V-axis month labels
CHYRNG 191:)A9692 269992354 V-axis explicit range
CHYSCL 191:)29698 268568972 V-axis scale factor
CHYSEL 199F9892 269429546 V-axis selection
CHYSET 11:)1:)29492 268567554 V-axis options
CHYTAT 19921:)91:)A 268568842 V-axis title attributes
CHYTIC 191:)A961:)6 269992358 V-axis scale mark Interval
CHYTIL 19929592 268567819 V-axis title specification
CHZDLB 19929597 268567815 Z-axis data labels
CHZGAP 1992961B 268568991 Spacing between towers
CHZLAT 1992099B 268568843 Z-axis label attributes
CHZRNG 11:)9A9610 269992381 Z-axis explicit range
CHZSET 11:)1:)29493 268567555 Z-axis options
CHZTIC I1:)I:)AI:)61C 269992389 Z-axis scale mark Interval
CSCCRT 14941:)991:) 335896464 Create a chart
CSCOEL 14941:)994 335896468 Delete a chart
CSCHA 14989998 336968616 Set character values for a chart
CSDEL 14999824 335546494 Delete Item for a chart
CSDIR 149991:)29 335544352 Build object directory list
CSFLT 149891:)94 336968612 Set floating-point values for a chart
CSINT 149891:)01:) 3361:)6861:)8 Set Integer values for a chart
CSLOAD 149991:)19 335544336 Restore saved chart Information
CSNUM 149891:)29 336968649 Set control value for a chart
CSQCHA 149COl:)98 336339769 Query character values for a.chart
CSQCHL 149C91:)9C 336339764 Query character lengths for a chart
CSQCS 14949914 335896484 Query CSxxxx call information
CSQDIR 141:)99924 335544356 Query object directory list
CSQFLT 141:)C91:)94 336339756 Query floating-point values for a chart
CSQINT 141:)COl:)91:) 336331:)752 Query Integer values for a chart
CSQNUM 141:)C91:)29 336331:)784 Query control value for chart
CSQUID 149491:)19 335896489 Query unique chart Identifier
CSQXDT 149C9919 336339768 Query Independent (x) data values for a chart
CSQXSL 149C9939 336339899 Query Independent (x) data selection for a chart
CSQYDT 149C9914 336339772 Query dependent (y) data values for a chart
CSQZDT 149C0918 336339776 Query data group (z) values for a chart
CSQZSL 149C91:)38 336339898 Query data group (z) selection for a chart

244 Base Programming Reference

GDDM·PGF Rep codes

Call RCPcode RCPcode Function
name (hex.) (decimal)

CSSAVE 14El60014 335544346 Save chart information
CSSICU 1460El0El4 335544324 Start an ICU session for a chart
CSXDT 1408El610 336El68624 Set independent (x) data values for a chart
CSXSl 1468003El 336El68656 Set independent (x) data selection for a chart
CSYDT 14080014 336668628 Set dependent (y) data values for a chart
CSZDT 1468ElEl18 336068632 Set data group (z) data values for a chart
CSZSL 1408ElEl38 336El68664 Set data group (z) selection for a chart

GDDM·PGF Rep codes, listed numerically

This table lists the GDDM-PGF RCP codes in numeric order of RCP code.

The table on page 243 lists the GDDM-PGF RCP codes in alphabetic order of call name.

Noles:

1. All GDDM-PGF RCP codes are of type E, meaning that the functions can be called using all the normal call inter­
faces.

2. Each call has the prefix "00"; this has been omitted here for clarity.

RCPcode RCP code Call Function
(Hex.) (Decimal) name

10El6El106 268435712 CHTERM Terminate the PG routines
1ElfllEl1El6 2685fll248 CHRNIT Reinitiallze PG routines
1El62EllElI 268566785 CHSET Specify chart options
W02El2Ell 268567041 CHKEY Legend key labels
106202El2 268567642 CHHEAD Heading text
10El20301 268567297 CHMARK Component marker table
10629302 268567298 CHLT Component line type table
10029393 268567299 CHCOl Component basic color table
1El0293El4 268567300 CHPAT Component shading pattern table
10El29395 2685673El1 CHLW Component line width table
10El203El6 2685673El2 CHPEXP Exploded slices in pie charts
10El29307 2685673El3 CHLC Component line color table
1002El401 268567553 CHXSET X-axis options
190294El2 268567554 CHYSET Y-axis options
lEl020493 268567555 CHZSET Z-axis options
100205Ell 2685678El9 CHXTTL X-axis title specification
10El2El592 268567810 CHYTTL Y-axis title specification
1092El5El3 268567811 CHXLAB X-axis label text
10El295El4 268567812 CHYLAB Y-axis label text
1002El5El5 268567813 CHXDLB X-axis data labels
10020597 268567815 CHZDLB Z-axis data labels
1002El607 268568El71 CHXSCL X-axis scale factor
W92El608 268568El72 CHYSCL Y-axis scale factor
1092El609 268568El73 CHXMTH X-axis month labels
10El206ElA 268568El74 CHYMTH Y-axis month labels
1992El69B 268568075 CHXDAY X-axis day labels
lEl9206ElC 268568076 CHYDAY Y-axis day labels
169296ElF 268568079 CHNUM Set number of components
W920610 268568089 CHGAP Spacing between bars
19E120611 268568981 CHGGAP Spacing between bar groups
lEl92El612 268568El82 CHHMAR Horizontal margins
10029613 268568El83 CHVMAR Vertical margins
lEl626614 268568084 CHPIER Reduce pie chart size
1G020615 268568G85 CHCGRD Basic character spacing/size
W926616 268568986 CHVCHR Number of characters in bar values
1062961A 268568990 CHFINE Curve fitting smoothness
1002El61B 268568691 CHZGAP Spacing between towers
19929791 268568321 CHAATT Axis line attributes
1062El702 268568322 CHGATT Grid line attributes
IS62G891 268568577 CHKEYP Legend base position
196269Ell 268568833 CHHATT Heading text attributes
W920962 268568834 CHTATT Axis title text attributes

Appendix J. Request control parameter codes 245

GDDM-PGF Rep codes

RCPcode RCPcode Call Function
(Hex.) (Decimal) name

10020903 268568835 CHLATT Axis label text attributes
10020905 268568837 CHKATT Legend text attributes
10020906 268568838 CHVATT Attributes of values text in bar and pie charts
10020997 268568839 CHXLAT X-axis label attributes
10029998 268568849 CHYLAT V-axis label attributes
10929909 268568841 CHXTAT X-axis title attributes
1992999A 268568842 CHYTAT V-axis title attributes
le92999B 268568843 CHZLAT Z-axis label attributes
10029A92 268569090 CHAREA Chart area
10030C01 268635137 CHMKSC Set marker scale values
100A0601 269092353 CHXRNG X-axis explicit range
100A0602 269092354 CHYRNG V-axis explicit range
100A0603 269092355 CHXINT X-axis interception point
109A0604 269092356 CHYINT V-axis interception point
190A0605 269092357 CHXTIC X-axis scale mark interval
le0A9606 269092358 CHYTIC V-axis scale mark interval
100A0618 269992376 CHKOFF Legend offsets
100A0619 269092377 CHKMAX Maximum legend width/height
190Afl61C 269fl92380 CHZTIC Z-axis scale mark interval
le0A0610 269992381 CHZRNG Z-axis explicit range
100B9617 269157911 CHNOFF Specify offsets for CHNOTE
le0B9703 269158147 CHSSEG Set segment number
199B09fl4 269158669 CHNATT Specify attributes for notes
100B9A01 269158913 CHOATT Datum line attributes
le0B0A93 269158915 CHBATT Set framing box attributes
100B0A94 269158916 CHVOIG Set decimal digits for bars and tables
100B9A95 269158917 CHTHRS Bar value threshold limit
19009A01 269289985 CHBAR Plot a bar chart
19909A02 269289986 CHHIST Histograms
HlflO9A93 269289987 CHPLOT Line graphs and scatter plots
le909A04 269289988 CHSURF Surface charts
Ifl000A05 269289989 CHVENN Venn diagram
1090flA06 269289999 CHPIE Pie charts
10900A97 269289991 CHBARX Plot a bar chart with numeric x-axis values
IG909AG8 269289992 CHPOLR Plot a polar chart
19009A09 269289993 CHTOWR Plot a tower chart
10909A0B 269289995 CHOTAB Construct a table chart
199EG600 269354599 CHXOTM X-axis datum line
le9E960E 269354519 CHYOTM V-axis datum line
100F98Gl 269429545 CHXSEL X-axis selection
100F0892 269429546 CHYSEL V-axis selection
191101G9 269549824 CHSTRT Reset the processing state to state-1
1913etG9 269689896 CHNOTE Construct a character string at a deSignated position
let401G9 269746432 CHORAX Specific control of axis drawing
IG150191 269811969 CHPCTL Control pie chart slices
191502et 269812225 CHOCTL Control the format of values, and the overall size of table charts
19159301 269812481 CHMISS Missing values on a table chart
1et69100 269877594 CHTPRJ Tower chart projection
1et79le9 269943G40 CHCONV Convert coordinate values
19170200 269943296 CHQPOS Query positional information
le17G399 269943552 CHQRNG Query axis ranges
le18etG9 27G9fl8576 CHQARE Query chart area
14099099 335544320 CHART Invoke Interactive Chart Utility
149990fl4 335544324 CSSICU Start an ICU session for a chart
14009919 335544336 CSLOAO Restore saved chart information
14009014 335544340 CSSAVE Save chart information
14009020 335544352 CSOIR Build object directory list
14000924 335544356 CSQOIR Query object directory list
14000824 335546494 CSOEL Delete item for a chart
14040090 335806464 CSCCRT Create a chart
14040004 335806468 CSCOEL Delete a chart
14040019 335806480 CSQUID Query unique chart identifier
14040014 335806484 CSQCS Query CSxxxx call information
1408G000 336fl68608 CSINT Set integer values for a chart
14089004 33:5668612 CSFLT Set floating-point vaiues for a chart
14089908 336668616 CSCHA Set character values for a chart

246 Base Programming Reference

GDDM-PGF Rep codes

RCPcode RCPcode Call Function
(Hex.) (Decimal) name

14080010 336068624 CSXOT Set Independent (x) data values for a chart
14080914 336068628 CSYOT Set dependent (y) data values for a chart
14089018 336968632 CSZOT Set data group (z) data values for a chart
14089029 336968640 CSNUM Set control value for a chart
14089030 336068656 CSXSL Set independent (x) data selection for a chart
1408e038 336068664 CSZSL Set data group (z) selection for a chart
140C9090 336330752 CSQINT Query integer values for a chart
140C0904 336330756 CSQFLT Query floating-point values for a chart
149Cgeea 336330760 CSQCHA Query character values for a chart
14eCge9C 336330764 CSQCHL Query character lengths for a chart
140Ce010 336339768 CSQXOT Query independent (x) data values for a chart
140Ce014 336339772 CSQYOT Query dependent (y) data values for a chart
140Ce018 336339776 CSQZOT Query data group (z) values for a chart
140C0920 336330784 CSQNUM Query control value for chart
140C0030 3363308e0 CSQXSL Query Independent (x) data selection for a chart
149C9038 3363308e8 CSQZSL Query data group (z) selection for a chart

Appendix J. Request control parameter codes 247

Appendix K. Sample programs

This appendix contains descriptions of the GDDM
sample programs that are supplied with this release of
GDDM. These programs may be listed by licensees of
GDDM as stated in the edition notice to this volume.

These sample GDDM programs are described:

• A program that draws a simple line graph. This
program is provided in three languages, with these
names:

In COBOL: ADMUSC1

In FORTRAN: ADMUSF1

In PLlI: ADMUSP1.

• A program to display an alphanumeric panel. This
program is provided in three languages, with these
names:

In COBOL: ADMUSC2

In FORTRAN: ADMUSF2

In PLlI: ADMUSP2.

Four other sample programs are written in PLII. They
are:

• ADMUSP3, which shows line types, colors, and pat­
terns.

• ADMUSP4, which Is a graphics editor program that
allows pictures to be created. This sample
program is designed to run on a 3270-PC/G or
3270-PC/GX work station; the pictures created by
this program can be drawn on a plotter attached to
one of these work stations.

For more details of this sample program, see the
GDDM Application Programming Guide.

• ADMUSP7, which is a program that performs the
translation of chart objects between different
country extended code pages. If the translation Is
successful, the chart objects are saved under the
original chart name, replacing any previous ver­
sions.

• ADMUTMT (for MVSITSO), and ADMUTMV (for
VM/CMS), which is a sample task manager that
demonstrates the use of GDDM's windowing func­
tions.

The ADMUSC1, ADMUSF1, and
ADMUSP1 sample programs

This program constructs a Simple graph on a multicol­
ored grid. The picture Is displayed with an alphanu­
meric input field that requests the name of a printer
(print file under VM/CMS). If a printer name is speci­
fied, the program generates a print data set comprising
two copies of the graph, preceded by a header page.
The program also saves the data stream on file.

Sample programs

IMS/VS version

The IMSIVS version of this sample program , has a
slightly different Interface. The printer lTERM name
can be supplied on the transaction Invocation. The
program displays the picture and, If requested, copies
It to a printer. The displayed picture contains an Input
alphanumeric field into which the next transaction code
can be entered.

The source for the IMSNS version Is named ADMUSP11
on the GDDM distribution library. The main procedure
name is still ADMUSP1.

The ADMUSC2, ADMUSF2, and
ADMUSP2 sample programs

This program displays an alphanumeric panel
requesting the name of a saved data-stream file. The
file generated by the program ADMUSx1, where "x· Is
C, F, or P, (called "samplel") can be used; the original
picture is then displayed again. After an Interrupt, the
original panel Is redlsplayed, awaiting new Input.
Pressing key PF3 or PF15 terminates the program.

IMS/VS version

The IMSIVS version of this sample program , has a
slightly different Interface. The name of the saved
picture is supplied as a parameter to the transaction. A
second, optional, parameter names the l TERM to
which the picture Is to be sent. If this name Is omitted,
the picture is sent to the terminal that entered the
transaction. As well as the picture, the program gener­
ates a simple alphanumeric menu, which Is sent to the
originating terminal. This contains a field Into which
the next transaction can be entered.

The source for the IMSIVS version Is named ADMUSP21
on the GDDM distribution library. The main procedure
name Is still ADMUSP2.

The ADMUSP3 sample program

This program uses GDDM to show:

• The 8 or 16 standard colors provided (depending
on the display device)

• The 64 user colors In the supplied symbol set
ADMCOlSD

• The 16 standard geometric shading patterns pro­
vided

• The 64 user geometric shading patterns In the sup-
plied symbol set ADMPATTC

• The 8 standard line types provided
• The 2 standard line widths provided
• The 10 standard marker symbols provided
• A color-mixing table In mix mode.

Each of these Is shown on a separate GDDM display
page. Displays can be viewed sequentially In the order
given above, or Individually by selection from a menu
panel listing the various options. At any stage, a
printed copy can be obtained by following the
Instructions generated at the bottom of each display.

Appendix K. Sample programs 249

Sample programs

Source for this sample program Is provided only In
PUI. This sample program cannot be run under
IMSIVS.

The ADMUSP4 sample program

Information on compiling, IInk-edltlng, and running this
sample program Is given below. More Information on It
Is given In the GDDM Application Programming Guide.

The ADMUSP7 sample program

This program displays a panel where the user gives the
names and types of chart objects that are to be trans­
lated. The types of objects are:

Chart Data; enter 1
Chart Format; enter 2
Both; enter S.

When the user presses the enter key, the translation
starts. The program translates all character strings In
the chart objects from the object code page to the appli­
cation code page. If the translation Is successful the
program replaces the chart objects, overwriting pre­
vious versions saved under the same name. If any of
the chart objects are not found, or If the chart type Is
Invalld,.the program Issues an error message. If any
other errors occur, the program does not save the
translated chart, but It Issues the appropriate GDDM
message instead.

The ADMUTMT and ADMUTMV
sample program
This program prompts the operator to select a program
to run In a window. The sample program uses GDDM
windowing calls and some sample Assembler routines,
which are also supplied with GDDM, to perform the
tasking functions. It supplies a running task manager
under which you may run ADM USPS and ADMUSP4.

This program requires the following special procedures
for compiling, link-editing, and running.

Compiling and link-editing under 1S0
1. Assemble the assembler programs ADMUTMIT,

ADMUTMTT, ADMUTMPT, ADMUTMAT,
ADMUTMDT, ADMUTMST, and ADMUTMCT Into an
OBJ library.

2. Compile the PUI program ADMUTMT Into the same
OBJ library.

S. Llnk-edlt ADMUTMT Into a LOAD library by using
the following linkage editor control statements
(which must start In column 2):

INCLUDE SYSLIB(ADMUTMT)
INCLUDE SYSLIB(ADMUTMIT)
INCLUDE SYSLIB(ADMUTMTT)
INCLUDE SYSLIB(ADMUTMPT)
INCLUDE SYSLIB(ADMUTMAT)
INCLUDE SYSLIB(ADMUTMDT)
INCLUDE SYSLIB(ADMUTMST)
INCLUDE SYSLIB(ADMUTMCT)
NAME ADMUTMT(R)

250 Base Programming Reference

4. Compile and link-edit the sample PLII programs,
ADMUSP3 and ADMUSP4 Into the same LOAD
library as ADMUTMT.

Running under 1S0

If the terminal does not have a PAS key, create a GDDM
defaults file, containing the CTLKEY procopt to assign a
PF or PA key to Invoke User Control. The following
profile statement (which starts In column 2) assigns
PF2 for this purpose:

ADMMNICK FAM~1.PROCOPT=«CTLKEY.l.2»

To run the sample task manager use the commands:

ALLOC F(ADMDEFS) DA(GDDM-defaults-file-name) REUS SHR
ALLOC F(ADMSYMBL) DA(GDDM-symol-sets-file-name) REUS SHR
CALL load-library-name(ADMUTMT)

Compiling and link-editing under VM/CMS

Because the task manager program Is written In PUI,
any other PUI programs to be run under it must be link
edited with PUI on CMS before being loaded by the
task manager, or else the load falls with duplicate PUI
main sections. Therefore this program requires special
procedures for compiling, link-editing, and running.
See below.

1. Build ADMUTMV TXTLiB by assembling the assem-
bler programs ADMUTMIV, ADMUTMTV,
ADMUTMPV, ADMUTMAV, ADMUTMDV,
ADMUTMSV, and ADMUTMCV.

2. Compile the PUI program ADMUTMV, but do not
put It into the TXTLIB.

3. The sample programs ADMUSP3 and ADMUSP4
can be run from the sample task manager, but, as
the task manager uses the GDDM reentrant Inter­
face, and ADMUSP3 and ADMUSP4 use the GDDM
non-reentrant interface, these programs must be
run from a LOADLIB. First compile these PUI pro­
grams and then build the LOADLIB as follows:

FILEDEF SYSLIB DISK ADMNLIB TXTLIB *
LKED ADMUSP3 (LIBE ADMUTMV
FILEDEF SYSLIB DISK PLILIB TXTLIB *
FILEDEF INCLIB DISK ADMUTMV LOADLIB A

(DSORG PO RECFM U
LKED INCUSP3 (LIBE ADMUTMV

Where INCUSP3 TEXT contains these linkage editor
control statements (which must start in column 2):

INCLUDE SYSLIB(DMSIBM)
INCLUDE INCLIB(ADMUSP3)
ENTRY DMSIBM
NAME ADMUSP3(R)

this procedure link-edits ADMUSP3 and places the
load module In ADMUTMV LOADLIB. The same
procedure must be repeated for ADMUSP4.

Running under VM/CMS

If the terminal does not have a PAS key, create a GDDM
defaults file, PROFILE ADMDEFS, containing the
CTLKEY proceSSing option to assign a PF or PA key to
Invoke User Control. The following prOfile statement
(which starts in column 2) assigns PF2 for this purpose:

ADMMNICK FAM=1.PROCOPT=«CTLKEY.l.2»

To run the sample task manager use the commands:

GLOBAL LOAD LIB ADMUTMV
GLOBAL TXTLIB ADMUTMV ADMRLIB ADMGLIB ADMPLIB

PLILIB CMSLIB
LOAD ADMUTMV (START

Using the sample task manager

The sample task manager displays a panel asking you
to select which program to run from a menu of pro­
grams. Select one.

At any time when the selected program is waiting for
input from you, you can instead call up User Control by
pressin9 PA3 - or the alternative key as defined by the
CTLKEY processing option. Make the task manager
window active by using the NEXT function and ENDing
the User Control session. You can now start to run
another program from the menu. You can even run the
same program again so that it appears in more than
one window.

At any time a program is waiting for input from you,
you can instead call up User Control to move or size
the operator windows, or make a different operator
window active.

To end the sample task manager, first end each
program, then end the task manager.

You can change the sample task manager menu so that
it runs your own programs. For details, see the prolog
of ADMUTMT or ADMUTMV.

Compiling, link-editing, and running
the sample programs

The programs should be compiled, link-edited, and run
as follows.

Note: See also these chapters for more detail:

• Chapter 2, "Using GDDM under CICSIVS" on
page 7

• Chapter 3, "Using GDDM under IMSIVS" on
page 23

• Chapter 4, '''Using GDDM under MVS/XA" on
page 31

• Chapter 5, "Using GDDM under TSO" on page 33
• Chapter 6, "Using GDDM under VM/CMS" on

page 41.

Compiling the programs

The source programs do not need to be modified
except for:

1. Optional changes to the FSINIT call, as noted under
"Link-editing the programs."

2. Replacing the STOP RUN statements in the COBOL
programs if they are to run under CICS. The state­
ments should be replaced with GO BACK or EXEC
CICS RETURN.

3. Modifying ADMUSP3 if it is to be run on a device
with less than 32 rows.

Th.e programs must be compiled by a compiler appro­
pnate to the source language an~ target subsystem

Sample programs

(DOSIVS or OS/VS COBOL, FORTRAN G or H, or PLII
Optimizing Compiler). Note that CICS does not support
programs wl'itten in FORTRAN.

Release 2 of the OSIVS COBOL compiler has a default
option on the PARM parameter called QUOTE that
causes a double quote (") to be used as the string
delimiter. This is a change from OSIVS COBOL
Release 1, and to compile the sample COBOL pro­
grams, the APOST option must be explicitly specified.

Also, the PARM options RESIDENT and DYNAMIC must
be explicitly set to NORESIDENT and NODYNAMIC.

ADMUSP1, ADMUSP3, and ADMUSP4 use the supplied
files of GDDM PLII entry declarations. The members
(containing PLII declarations for non reentrant base
functions) must be available to the compiler in a source
statement library under DOSIVSE, by means of SYSUB
specification under OSIVS, or by means of a GLOBAL
MACUB command under VM/CMS. The compilation of
ADMUSP1, ADMUSP3, and ADMUSP4 must be per­
formed with the MACRO option. No errors should
result from the compilation steps.

ADMUSP3 is written to run on a device with at least 32
rows. However, because it is only the initial menu
panel that requires more than the 24 rows available on
an IBM 3278/3279 Model 2, the program can be run on
this and other devices if the following change is made:

• Amend the initial value in the second column of
"FIELD_DEF" to:

(2.3.4.6.8.10.12.14.16.18.20.24.1.22.5)
• Amend the initial value in the second column of

"PRINT_DEF" to:

(2.5.7.7.24)

For information on the ADMUTMTIV ,sample programs,
see "Compiling and link-editing under TSO" on
page 250, and "Compiling and link-editing under
VM/CMS" on page 250.

Link-editing the programs

Except under VM/CMS, the object code from the compi­
lation must be link-edited with a GDDM interface
routine appropriate to the subsystem and to the inter­
face used (reentrant or nonreentrant).

Under OSIVS, the link-edit SYSUBs must include the
GDDM load library. The correct interface module is
selected by an INCLUDE control statement specifying
the appropriate member, as shown in Table 45 on
page 252.

Or, the automatic-lIbrary-call facility can be used. For
this, the source programs must be changed to replace
the references to FSINIT with the appropriate alterna­
tive, as shown in Table 46 on page 252. (However,
this is not necessary for ADMUTMTIV as they can only
run on VM and TSO and they are coded with FSINR
already.)

Note that for PLII, the standard declarations do not
include the alternative forms of FSINIT. They must,
therefore, always be explicitly declared thus:

DCL FSINNC ENTRY EXTERNAL OPTIONS (ASM INTER);

Appendix K. Sample programs 251

Sample programs

Table 45. GDDM load library for link-edit SYSLIBs

Interface
Sample Required member for subsystem
Programs CICS/OSNS IMSNS TSO

ADMUSC1
ADMUSF1

Nonreentrant ADMUSF2 ADMASNC ADMASNJ ADMASNT ADMUSP1
ADMUSP3
ADMUSP4

Reentrant
ADMUSC1 ADMASRC ADMASRJ ADMASRT
ADMUSP2

Table 46. GDDM automatic library calls

Replace FSINIT references by Ihe

Sample following for each subsystem

Interface Programs CICS/OS/YS IMSNS TSO

ADMUSC1
ADMUSF1

Nonreentrant ADMUSF2 FSINNC FSINNPI FSINN ADMUSP1
ADMUSP3
ADMUSP4

Reentrant ADMUSC1 FSINRC FSINRPI FSINR
ADMUSP2

Table 47. GDDM Interface modules

Interface Sample CICS/DOS/YS
Programs modules

ADMUSC1
ADMUSF1

Nonreentrant ADMUSF2 ADMASNB and ADMASLC
ADMUSP1
ADMUSP3
ADMUSP4

Reentrant ADMUSC1 ADMASRB and ADMASLC
ADMUSP2

Table 48. GDDM global TXTLIBs

Sample Required
programs YM/CMS

Interface library

ADMUSC1
ADMUSF1

Nonreentrant ADMUSF2 ADMNLIB ADMUSP1
ADMUSP3
ADMUSP4

Reentrant ADMUSC1 ADMRlIB ADMUSP2

Note: Plus,

• If DCSS Is available ••••• no extra TXTLIBs
• If no DCSS is available ••••• ADMGlIB

252 Base Programming Reference

Under DOSIVS, GDDM must be included from the relo­
catable libraries during link-editing.

The correct interface modules should be selected as
shown in Table 47 on page 252 and should be included
as described In Chapter 2, UUslng GDOM under
CICSIVS" on page 7. The automatic Inclusion of the
interface modules by source-program modification is
not available under OOSNS.

Under VM/CMS, there is no link-editing. However, the
CMS GLOBAL TXTLIB command must be executed as
described In Chapter 6, "Using GODM under
VM/CMS" on page 41 to Identify TXTLIBs from which
GDOM routines can be loaded. The TXTLIBs required
depend on the sample program attributes and the pres­
ence of GODM in a Olscontiguous Shared Segment
(DCSS). See Table 48 on page 252.

For information on the ADMUTMTN sample programs,
see "Compiling and link-editing under TSO" on
page 250, and "Compiling and link-editing under
VM/CMS" on page 250.

Running the programs

Note that the COBOL programs must not be run under
CICS unless the STOP RUN statements have been
replaced by a GO BACK statement or an EXEC CICS
RETURN.

When the programs are run, the GDDM load (or core­
Image) library must be available. The same library is
used for non reentrant and reentrant programs. The
first two sample programs make use of a file containing
saved data streams. Except under VM/CMS, this file
must be created before running the programs. The first
program (ADMUSC1, AOMUSF1, AOMUSP1) also
optionally generates a print file.

Under CICS, the programs must be added to the
Program Control Table (PCT) and Processing Program

Sample programs

Table (PPT). The GDDM load library (or core-Image
library) must be specified when CICS Is started. For
the saved data stream, the GOOM VSAM file (by
default, ADMF) must have been created and entered In
the File Control Table (FCT); this is part of the installa­
tion procedure.

Under I MSIVS, the programs must be added to the
IMSNS program library, and the transaction codes and
ACB set up during IMSNS system definition. Also, a
data base must be assigned and initialized to tontain
the saved data stream. These actions are part of the
installation procedure.

Under TSO, the GDDM load library should be available
(for example, in a STEPLlB). It is also necessary to
have created a partitioned data set to contain the saved
data stream. As specified in Chapter 5, "Using GDDM
under TSO" on page 33, this has a record length of
400. A suitable space allocation for the program is one
directory block and 100 400-byte data blocks. The file
ADMSAVE should be allocated to the data set before
execution. If a print is requested, the print queue data
set (ADMPRINT.REQUEST.QUEUE) must have been
created and initialized.

Under VM/CMS, the GDDM TXTLIBs must be included
in the GLOBAL libraries during execution, as described
above, together with the language libraries. Program
loading may be prolonged if a module is not generated.
Files to contain saved data streams and print data are
generated dynamically by GODM, and must not be
created or defined by FILEDEF.

To allow enough storage for GDDM, PUI execution
must specify ISASIZE; a value of 10K bytes is usually
sufficient.

For information on the ADMUTMTIV sample programs,
see "Running under TSO" on page 250, and "Running
under VM/CMS" on page 250.

Appendix K. Sample programs 253

CDPDS data stream

Appendix L. Format of a Composite Document Presentation Data
Stream

This appendix describes the form of Input accepted
within GDDM by the Composite Document Print Utility;
this utility controls the printing of a document con­
taining graphics, Image, and text. The physical organ­
Ization of the file varies depending on the environment:

CICS Temporary data file

VSE Batch ESDS data set

MVS Batch V-format sequential data set

TSO V-format sequential data set

eMS V-format sequential file.

In each case each record contains a complete struc­
tured field. The structured fields must be in the order
shown, except where it is stated that the order Is
optional.

Structured fields are described in detail below.

Structured fields

A document consists of a sequence of structured fields,
each of which has the following format:

o - 1 Length of the structured field In bytes. This is
the length of the parameters specific to the
type of structured field, plus the 8-byte
introducer. In no case may the length of a
structured field be more than 8200. (This
differs from AFPDS documents, for which the
maximum is 8202.)

2 - 4 String identifying the type of structured field.
The hexadecimal value for each type Is
shown in the heading for each structured
field; see "Structured field formats" on
page 256.

5 - 7 X'OOOOOO',

8 - n Parameter information as described for each
structured field under "Structured field
formats" on page 256.

Offsets, for example in error messages, are shown In
hexadecimal and are calculated from the start of the
structured field, including the two length bytes.

Document structure

In the syntax structure below, the following conventions
apply:

:: "'" Precedes the definition of an item

[] Square brackets indicate optional items

The item may be repeated,

document:: .,.
begin-document
[invokable-master-envi ronment-group] ...
[page] ...
end-document

The file cannot contain multiple documents. Anything
after the end-document structured field is ignored.

The formats of individual structured fields, such as
"begln-document" and "end-document", are defined in
the next section, under the heading "Structured field
formats" on page 256.

Invokable-master-envlronmenl-group:: =
begln-master-envlronment-group
[medium-descrlptor]
[medlum-modlflcatlon-control] ... (up to two)
[medlum-copy-count]
[map-medium-overlay]
[page-desc rl ptor]
[page-position]
end-master-envlronment-group

page:: =
[master-environment-group-invocatlon] ...
begin-page
[active-environ me nt-group]
[presentatlon-text-object]
[Image-object] , ..
[graphics-object] ...
end-page

Nole: The presentation-text-object, image-object, and
graphics-object may occur In any order.

master-envlronment-group·lnvocatlon:: ""
begl n-master-envl ronment-g rou p
Invoke-master-envlronment-group
end-master-envl ronment-group

aCIlve-envlronment-group:: =
begi n-actlve-envl ronment-group
[map-coded-font]
[page-descrlptor]
(page-position]
(object-area-descriptor]
[object-area-posltlon]
[presentation-text-descrlptor]
[object-area-posltlon]
end-actlve-envi ronment-g roup

presentatlon.text.obJect:: .,.
begin-presentation-text
[presentation-text-data] . , .
end-presentation-text

graphlcs-obJect: .,.
begln-graphics-object
begi n-object-envl ronment-group
object-area-descrlptor
object-area-posltlon
[map-coded-font]
[graphics-data-descrlptor]
end-object-environment-group
[graphlcs-data] ...
end-graphics-object

Image-obJect:: =
begln-image-object
begln-object-environment-group
object-area-descriptor
object-area-positlon
[i mag e-data-desc ri ptor]

Appendix L. Format of a Composite Document Presentation Data Stream 255

I
I
I

·1
I
I
I
I
I
I
I
I
I

CDPDS data stream

end-object-envi ronment-group
[Image-picture-data] ...
end-Image-object

In addition, no-operation structured fields may appear
anywhere in the document and are ignored.

Structured field formats

Table 49. Structured field format cross reference

Hex Meaning
code

03A66B Object area descriptor (aBO)
03A688 Medium descriptor (MOD)
03A69B Presentation text descriptor (PTO)
03A6AF Page descriptor (PGO)
03A6BB Graphics data descriptor (GO~)
03A6FB Image data descriptor (100)
03A788 Medium modification control (MMC)
03A89B Begin presentation text (BPT)
03A8A8 Begin document (BOT)
03A8AF Begin page (BPG)
03A8BB Begin graphics object (BGR)
03A8C7 Begin object environment group (BOG)
03A8C8 Begin master environment group (BMG)
03A8C9 Begin active environment group (BAG)
03A8FB Begin image object (BIM)
03A99B End presentation text (EPT)
03A9A8 End document (EDT)
03A9AF End page (EPG)
03A9BB End graphics object (EGR)
03A9C7 End object environment group (EOG)
03A9C8 End master environment group (EMG)
03A9C9 End active environment group (EAG)
03A9FB End image object (ElM)
03AB8A Map coded font (MCF)
03ABOF Map medium overlay (MMO)
D3AC6B Object area position (OBP)
03AFC8 Invoke master environment group (IMG)
03B188 Medium copy count (MCC)
03B1AF Page position (PGP)
03EE9B Presentation text data (PTX)
03EEBB Graphics data (GAD)
D3EEEE No operation (NOP)
03EEFB Image picture data (IPO)

Begin active environment group (D3A8C9) BAG

Indicates the beginning of an active environment group.

o - 7 Active environment group name (0 - 8 char­
acters).

Begin document (D3A8A8) BDT

Indicates the beginning of the document. It contains the
following fields:

o - 7 Document name.

8 - 9 X'OOOO'.

10 - n Groups of optional, additional information, in
any order. These groups are reserved to
describe the level of function In the docu­
ment.

256 Base Programming Reference

Begin graphics object (D3A8BB) BGR

Indicates the beginning of a graphics object.

o - 7 Data Object name (0 - 8 characters).

Begin Image object (D3A8FB) BIM

Indicates the beginning of an image object.

o - 7 Image name (0 - 8 characters).

Begin master environment group (D3A8C8) BMG

Indicates the beginning of a master environment group
(MEG). This may be either an invokable MEG, or an
invocation of such a MEG.

o - 7 Master environment group name (0 - 8 char­
acters).

Begin object environment group (D3A8C7) BOG

Indicates the beginning of an object environment group.

o - 7 Object environment group name (0 - 8 char­
acters).

Begin page (D3A8AF) BPG

Indicates the beginning of a page.

o - 7 Page name (0 - 8 characters).

Begin presentation text (D3A89B) BPT

Indicates the beginning of a presentation text object.

o - 7 Data object name (0 - 8 characters).

End active environment group (D3A9C9) EAG

Indicates the end of an active environment group.

o - 7 Active environment group name (0 - 8 char­
acters).

End document (D3A9A8) EDT

Indicates the end of the document.

o - 7 Document name (0 - 8 characters).

End graphics object (D3A9BB) EGR

Indicates the end of a graphics object.

o - 7 Data object name (0 - 8 characters).

End Image object (D3A9FB) ElM

Indicates the end of an image object.

o - 7 Image name (0 - 8 characters).

End master environment group (D3A9C8) EMG

Indicates the end of a master environment group.

o - 7 Master environment group name (0 - 8 char­
acters).

End object environment group (D3A9C7) EOG

indicates the end of an object environment group.

o - 7 Object environment group name (0 - 8 char­
acters).

End page (D3A9AF) EPG

Indicates the end of a page.

o - 7 Page name (0 - 8 characters).

End presentation text (D3A99B) EPT

Indicates the end of a presentation text object.

o - 7 Data object name (0 - 8 characters).

Graphics data (D3EEBB) GAD

Contains the graphics orders to be drawn.

o - n Up to 8192 bytes of graphics data. This, com­
bined with successive graphics data struc­
tured fields If required, contains one or more
complete graphics segments. It must not
have drawing orders outside segments.

The format is a sequence of orders suitable for proc­
essing by GSPUT, with the following exceptions:

• Segment start is one of two formats.

The longer of the two forms defined in
Appendix 0, "GDF order descriptions" on
page 165.

An extended form of the above. The second
byte contains X' OE' as the length of following
data. The length of segment field contains the
low-order 2 bytes of the length of segment.
Two extra bytes at the end contain the high­
order bytes.

In each case the length of segment must be speci­
fied exactly, and is not assumed to end when a
X' FF' order code is met.

• Segment end is not accepted as indicating the end
of a segment, and is ignored. Instead, the length
given in the segment start order is used to show
the position of the end.

Coordinates must match the format specified in the
graphics data descriptor.

A graphic order may span successive graphics data
structured fields that make up an object.

Graphics data descriptor (D3A6BB) GDD

Specifies the limits of coordinates in the graphics data.
It contains one or two groups of data as follows:

• Drawing order subset, optional.

o X'F7'.
1 Length of following data.
2 - n Reserved.

• Window specification, required.

o
1
2-3
4

X'F6'.
Length of following data.
X'OOOO'.
Format of coordinates:
X' 00' 2 byte integers.
X'01' 4 byte floating-point.

CDPDS data stream

5 X' 00' Reserved.
6 - 11 (or 6 - 17 if floating-point coordinates)

Reserved.
12 - 13 (or 18 - 21 if floating-point coordinates)

x-coordinate of left edge in graphics
data.

14 - 15 (or 22 - 25 if floating-point coordinates)
x-coordinate of right edge in graphics
data.

16 - 17 (or 26 - 29 if floating-point coordinates)
y-coordinate of bottom edge in graphics
data.

18 - 19 (or 30 - 33 if floating-point coordinates)
y-coordinate of top edge in graphics
data.

20 - 23 (or 34 - 41 if floating-point coordinates)
Reserved.

The graphics data is drawn scaled to fit the object area
specified in the object area descriptor and object area
position fields. If the object area is partly off the page,
the object is clipped at the page boundary.

Preservation of aspect ratio or size can be achieved by
appropriate selection of parameters when creating this
file.

Image data descriptor (D3A6FB) IDD

Specifies the size of the image to be included.

0 X'OO'.
1 - 2 Number of pixels in 10 inches in the

x-direction.
3-4 Number of pixels in 10 inches in the

y-direction.
5-6 Image size in the x-direction.
7-8 Image size in the y-direction.

The image is drawn without scaling, and is trimmed to
fit the object area specified in the object area
descriptor and object area position fields. If the object
area is partly off the page, the image is trimmed at the
page boundary.

Invoke master environment group (D3AFC8) IMG

This indicates a change for the current state master
environment group (MEG) parameters. It contains the
following field:

o - 7 The name of the invokable MEG whose
parameters are to become the current state
MEG values.

Image picture data (D3EEFB) IPD

Contains the image orders to be drawn.

o - n Up to 8192 bytes of image data. It must be in
a format suitable for processing by IMAPT.
The contents of a sequence of image picture
data structured fields must be a valid
sequence that would follow a call to IMAPTS
specifying default compression and a format
value of - 2. This implies that the image data
must follow the convention that 1 "" black.

Appendix L Format of a Composite Document Presentation Data Stream 257

CDPDS data stream

Map coded font (D3AB8A) MCF

Identifies the correspondence between external font
names and a resource local identifier. It consists of a
repeating group for each font. Each has the following
fields:

0-1
2 - n

length of this repeating group.
Groups of additional information, in any
order, as follows:

• Fully qualified name, required.

o - 1 X' OC02 '. Identifies the group.
2 Type of name as follows:

X' 84' Coded font name.
X' 85' Code page name.
X '86' Font name.

3 X' 00' Reserved.
4 - 11 External name of the font.

For a text map-coded font, either of the
following is required:

a coded font name
both a code page name and a font
name.

A graphics map-coded font must have
only a font name, which is used as a
symbol set name.

Fully qualified name for IPOS printers

GOOM uses the following interpretation
of the fully qualified name when driving
IPOS printers:

• Type of name X' 84' Coded font name

• External name

0-1

2 - 3

4-5
6 - 7

A graphic character set global
identifier (GCSGIO).
A code page global Identifier
(CPGIO).
A font global identifier (FGID).
A 2-byte character width field.
This is the width of the space.
character in 1/1440 inch units.

• Resource local identifier, required.

o - 2 X' 042405' . Identifies the
group.

3 Resource local identifier. It
must be in the range 1 - 127
for a text font. When used in a
graphics object the value is as
follows:
o - pattern or marker symbol
set
65 through 223 - other
symbol sets.

• Font descriptor, optional

0-1
2

3

4-5

6 - 7

X 'DOl F'. Identifies the group.
Font weight class. It must be in
the range 1 - 9.
Font width class. It must be in
the range 1 - 9.
Font vertical point size. It must
be in the range 0 - 360.
Average character width. It
must be in the range 0 - 360.

258 Base Programming Reference

8 Font descriptor flags, assigned
as follows:
X ' 80 ' Italic
X'40' Underscored
X'10' Outline characters
X' 08 ' Overstruck
X' 04' Proportional spaced.

9 Font usage. This is defined in
a graphics object only, and is a
reserved byte for a text font.
The values 1 - 5 correspond
to the type parameter on a call
to GSlSS. Other values are
reserved.

10 Font family. Reserved.
11 Font class. Reserved.
12 Font quality.

Map coded font for IPOS printers

GODM uses the following interpretation of the map
coded font structured field when driving IPOS printers:

1. Font weight class

X'07' Bold characters (when supported by
printer)

other values Normal characters.

2. Font width class

X'07' Double wide characters (when sup­
ported by printer)

other values Normal characters.

3. Font descriptor flags

X'80'

X'08'

Italic characters (when supported by
printer)
Overstruck characters (when sup­
ported by printer).

4. Font quality

X'01 ' Low quality, high speed (when sup­
ported by printer)

X'02'

X'03'

Medium quality, medium speed
(when supported by printer)
High quality, low speed (when sup­
ported by printer).

GOOM changes font quality only when it changes
pages. For consistent results, all fonts used on
anyone page should all have the same font
quality.

Map medium overlay (D3ABDF) MMO

Identifies the correspondence between an external
overlay name and a resource local identifier. It con­
tains one or two groups, each specifying such a pair. If
a second group is Included, it applies to the reverse of
the paper In duplex printing. The format of each group
Is:

0-1 X'0012'.
2 - 17 Two groups of additional Information, in any

order, as follows:

• Fully qualified name, required.

o - 3 X I OC028400 I • Identifies the
group.

4 - 11 External name of the overlay.

• Resource local identifier, required.

o - 2 X'042401'. Identifies the
group.

3 Resource local Identifier. It
must be in the range 1 - 127.

Medium copy count (D3B188) MCC

Specifies medium modification group references.

0-4 X'0001000100'.
5 Medium modification group reference for the

front of the paper. It must match the group
Identifier In a medium modification control
structured field.

6 Medium modification group reference for the
reverse of the paper. applicable to duplex
printing. It must match the group identifier in
a medium modification control structured
field, or is zero for simplex printing.

Medium descriptor (D3A688) MDD

Specifies the size of the medium. The default is the
size of the target device known to GDDM. It contains
the following fields:

o - 1 X'OOOO'.
2 - 3 Number of medium measurement units in 10

Inches In the x-dlrection. It must be In the
range 2400 - 14400.

4 - 5 Number of medium measurement units In 10
inches In the y-directlon. It must be in the
range 2400 - 14400.

6 - 8 Medium size in the x-dlrectlon (In the range 1
- 8388607).

9 - 11 Medium size In the y-dlrectlon (In the range 1
- 8388607).

Medium modification control (D3A788) MMC

Specifies the modifications of a medium copy group.

o Medium modification group identifier, in the
range 1 - 127.

1 X'FF'.
2 - n Modifications, in any order, from the list

below. Each type of modification may be
specified at most once.

• First source location selector.

OX' E1'. Keyword identifier.
1 Source selection for the first form in

the group. It must be in the range 1
- 3. The default Is 1.

• Subsequent source location selector.

o X'E2'. Keyword identifier.
1 Source selection for subsequent

forms In the group. It must be in the
range 1 - 3. The default is 1.

• Medium overlay local Identifier.

OX' F2' . Keyword identifier.
1 Local identifier for the overlay

required. It must match the local
identifier in a map medium overlay
structured field. The default is no
overlay.

CDPDS data stream

No operation (D3EEEE) NOP

This may be used to add comments to the data stream.
It can appear in any position.

o - n Up to 8192 bytes of comment data, not exam­
ined.

Object area descriptor (D3A66B) OBD

Specifies the size of an object. It contains the following
fields:

o - n Three groups of additional information, in any
order, as follows:

• Descriptor position identifier, required.

o - 1 X' 0343'. Identifies the group.
2 Descriptor position Identifier in

range 1 - 127.

• Object area measurement units,
required.

o - 3 X' 08480000' . Identifies the

4-5

6 - 7

group.
Number of object area units in
10 Inches in the x-direction. It
must be in the range 2400 -
14400.
Number of object area units in
10 Inches in the y-dlrectlon. It
must be in the range 2400
14400.

• Object area size, required.

o - 2 X' 094C02 ' . Identifies the
group.

3 - 5 Object area size in the
x-direction (in the range 1 -
8388607).

6 - 8 Object area size in the
y-direction (in the range 1 -
8388607).

The information for the text object area descriptor must
match that of the page descriptor, which is the default if
this field is missing.

Object area position (D3AC6B) OBP

Specifies the position of an object on the page.

o Object area position identifier in range 1
127.

1 X'17'.
2-4 Object area origin, x (in the range 0

8388607).
5-7 Object area origin, y (in the range 0

8388607).
8 - 12 X' 00002DOOOO' .
13 - 15 Object content origin, x (In the range 0

8388607).
16 - 18 Object content origin, y (in the range 0

8388607).
19 - 23 X' 00002D0001' .

The text object area position, if present, must have both
origins zero (the default).

Parts of a graphics or image object that lie outside the
page size are not printed.

Appendix L. Format of a Composite Document Presentation Data Stream 259

CDPDS data stream

Page descriptor (D3A6AF) PGD

Specifies the size of the page, which must not be zero
and must fit on the GO OM device size at the position
given by the page-position structured field. The default
is found from the size In the medium descriptor.

o - 1 X'OOOO'.
2 - 3 Number of page measurement units in 10

inches in the x-direction. It must be in the
range 2400 - 14400.

4 - 5 Number of page measurement units in 10
inches in the y-dlrection. It must be in the
range 2400 - 14400.

6 - 8 Page size in the x-direction (in the range 1
8388607).

9 - 11 Page size in the y-direction (in the range 1
8388607).

Page position (D3B1 AF) PGP

Specifies the position of the page on the form. The
defaults are zero. It contains the following fields:

o - 1 X'0109'.
2 - 4 Page origin in the x-direction (in the range 0

- 8388607).
5 - 7 Page origin in the y-direction (in the range 0

- 8388607).
8 - 9 Page orientation. The permitted values and

the corresponding orientations are as
follows:
X'OOOO' North
X '2000' East
X 'SAOO' South
X '8700' West.

Note: The page origin is ignored for family-4 devices if
it is found within an active environment group.

Presentation text data (D3EE9B) PTX

This contains a chain of text controls. It contains the
following fields:

o - 1 X'2BD3'.
2 - n A sequence of text controls as described

below. Byte 1 of the last text control contains
the value shown minus 1, to mark the end of
the chain.

• Absolute move baseline.

Sets the distance from the top margin of the paper.

o - 1 X'04D3'.
2 - 3 Baseline print position.

• Absolute move in line.

Sets the distance from the left margin of the paper.

0-1 X'04C7'.
2 - 3 Inline print position.

• Begin line.

Sets the print position for a new line. See also set
baseline Increment and sel In line margin.

o - 1 X'02D9'.

260 Base Programming Reference

• Draw baseline rule.

Draws a rule perpendicular to the top of the page.

o - 1 X' 07E7' .
2 - 3 Length. If the length is positive, the line

Is drawn in the sequential baseline direc­
tion. If the length is negative, the line is
drawn away from the sequential baseline
direction.

4 - S Width. If the width is positive, pixels are
added in the positive inline direction. If
the width is negative, pixels are added in
the negative inline direction.

6 X'OO'.

• Draw inline rule.

Draws a rule parallel to the top of the page.

o - 1 X'07ES'.
2 - 3 Length. If the length is positive, the line

is drawn in the sequential inline direc­
tion. If the length is negative, the line is
drawn away from the sequential inline
direction.

4 - S Width. If the width is positive, pixels are
added in the positive baseline direction.
If the width is negative, pixels are added
in the negative baseline direction.

6 X'OO'.

• No operation.

Used to include variable length comments, or to
terminate chaining (by changing byte 1 to X' FB').

o - 1 X' xxF9'. xx denotes the length of the
comment.

2 - (xx + 1) Variable length comment.

• Relative move baseline.

Used to change the current baseline position.

o - 1 X'04DS'.
2 - 3 Baseline print position move. It can be

positive or negative.

• Relative move inline.

Used to change the current inline position.

o - 1 X'04C9'.
2 - 3 In line print position move. It can be posi­

tive or negative.

• Repeat string.

Specifies the repetition of a character string.

o - 1 X' xxEF' . xx denotes the length of the
string to be repeated.

2 - 3 Number of characters to be repeated.
For example, if the resulting length is 7
and the string is ABC, then ABCABCA is
printed.

4 - (xx + 3) Variable length string to be repeated.

For example, to generate the string ABCABCA the
field would be:

e3EFOee7ABC
• Set baseline increment.

Sets the baseline movement to be used by the
begin line control.

o - 1 X' 0401' .
2 - 3 Baseline increment amount.

• Set coded font local.

Identifies the coded font to be used for printing
subsequent text.

o - 1 X' 03F1' .
2 Local Identifier of the coded font to be

used. It must match one of those In a
map coded font structured field.

• Set inline margin.

Sets the inline margin to be used by the begin line
control.

o - 1 X'04C1'
2 - 3 In line margin.

• Set intercharacter Increment.

Used to set Intercharacter spacing.

o - 1 X'04C3'
2 - 3 Increment.

• Set text color.

Specifies the color of text that follows.

o Length of set text color control, either 4
or 5.

1 X'75'.
2 - 3 Foreground color.
4 If present, Indicates the color precision.

• Set text orientation.

Only one text orientation may be specified,
although the whole page may be rotated.

o - 5 X' 06F700002DOO' .

• Set variable space character increment.

Establish the width of blank characters that appear
in transparent data controls.

0-1 X'04C5'.
2 - 3 Width of variable space character.

CDPDS data stream

• Transparent data.

Identifies text to be printed that does not contain
any text controls.

o - 1 X' xxDB '. xx denotes the length of the
text.

2 - (xx + 1) Variable length text to be printed.

Presentation text descriptor (D3A69B) PTD

Gives the size of the text block on the page, and may
specify defaults to be used for text controls. The fields
are as follows:

0-1 X'OOOO'.
2 - 3 Number of text measurement units in 10

inches In the X-direction. It must be in the
range 2400 - 14400.

4 - 5 Number of text measurement units in 10
inches in the y-direction. It must be in the
range 2400 - 14400.

6 - 8 Text block size in the x-direction, the same as
the size in the Page Descriptor.

9 - 11 Text block size In the v-direction, the same as
the size in the Page Descriptor.

12 - 13 Presentation text flags.
14 - n Optional groups of additional information, in

any order, specifying initial defaults in place
of printer defaults. The format Is the same as
bytes 2 - n of the presentation text data
structured field. The subset that may be
included in the presentation text descriptor
structured field is as follows:

• Set baseline increment
• Set coded font local
• Set intercharacter increment
• Set Inline margin
• Initial addressable position (absolute

move baseline and absolute move inline)
• Set text color.

Appendix L. Format of a CompOSite Document Presentation Data Stream 261

Index

A
AAB (application anchor block) 105, BPRl
abend/return processing, ABNDRET option 142
absolute move baseline structured field 260
acknowledging a trigger field attribute 91
actions

define field end (ASFEND) BPRl
addresses of user exits 105
adjunct fields

base attribute 90
color 90
cursor 89
example of specification of 86
extended highlighting 90
introduction 85
length 91
names 86
programmed symbols 90
selector 89
summary 85
validation 90
values 86-91

adjuncts (see adjunct fields)
ADMASLD 15
ADMASNB 15
ADMASNO 15
ADMASP 15
ADMASRB 15
ADMASRO 15
ADMCDATA files

code page conversion 125
format 163
printing in VSE batch 48

ADMCDEF files
format 163

ADMCDEFM files
code page conversion 125

ADMCFORM files
code page conversion 125
format 163
printing in VSE batch 48

ADMC ..•
ADMCOLM, changing default file name 148

ADMDATRN 123, BPRl
ADMDEFS, TSO external defaults file 2
ADMDHIMJ, GDDM marker symbols for composed-page

printer 70
ADMDHIVJ, GDDM vector symbol set for composed-page

printer 70
ADMDVECP 126
ADMDVSSB, Brazilian default vector symbol set 70
ADMDVSSD, Danish default vector symbol set 70
ADMDVSSE, English default vector symbol set 70
ADMDVSSF, French default vector symbol set 70
ADMDVSSG, German default vector symbol set 70
ADMDVSSI, Italian default vector symbol set 70
ADMDVSSK, Japanese default vector symbol set 70
ADMDVSSN, Norwegian default vector symbol set 70
ADMDVSSS, Spanish default vector symbol set 70
ADMDVSSV, Swedish default vector symbol set 70
ADMDVSSx 126
ADMDVSS, default vector symbol set 70
ADMGDFfiles

format 163
printing in VSE batch 48

ADMGGMAP files
format 163

ADMIMG files
format 163
printing 48, 56

ADMMDFT
A•

ABNDRET, abend/return processing 142
AM3270, device attachment 142
APPCPG, application code-page 142
AUNLOCK, always-unlock-keyboard 142

CIC ••••
CICAUD, CICSNS audit trail anchor 142
CICDECK, CICSNS deck name 142

Index

CICDFPX, CICSNS defaults file temporary storage 142
CICGIMP, CICSNS ADMGIMP name 142
CICIADS, CICSNS ADS name 142
CICIFMT, CICSNS GDDM-IMD staged data file-type 142
CICPRNT, CICSNS print utility name 142
CICSTGF, CICSNS GDDM-IMD staging file name 142
CICSYSP, CICSNS system printer name 142
CICTIF, CIC5NS transaction Independence 142
CICTQRY, CICSNS device query temporary storage

prefix 143
CICTRCE, CICSNS trace transient data name 143
CICTSPX, CICSNS temporary storage prefix 143

CMS
CMSAPLF, VM APL default specification 143
CMSCOLM, VM ADMCOLM filetype 143
CMSDECK, VM deck filetype 143
CMSDFTS, VM defaults filename and filetype 143
CMSIADS, VM ADS filetype 143
CMSIFMT, VM export utility filetype 143
CMSMONO, VM monochrome filetype 143
CMSMSLT, VM MSL filetype 143
CMSPRNT, VM print filetype 143
CMSSYSP, VM system printer filetype 143
CMSTEMP, VM work-file fIIetype 143
CMSTRCE, VM trace filename/filetype 143

COMMENT 143
C

CALLINF, call information block 142
CECPINP, CECP keyboard input 142
CPN4250, 4250 code page name 143
CTLSAVE, User Control SAVE function control 143

DFTXTNA, VSE batch printing 144
D

DATEFRM, date convention 143
DATRN, alphanumeric defaults module control 143
DBCSDFT, DBCS default selection 143
DBCSLlM, symbol set component threshold 144
DBCSLNG, symbol set language 144

E
ERRFDBK default option 144
ERRTHRS, error threshold 144

F
FF3270P, form feed 144
FRCEVAL, force evaluation of HPA 144

ICUFMDF, ICU format defaults 144
IMS

IMSDECK, deck output L TERM 145
IMSEXIT, exit character string 145
IMSICU, ICU transaction name 145
IMSISE, ISE transaction name 145
IMSMAST, IMSNS shutdown L TERM name 145
IMSMODN, message output descriptor name 145
IMSPRNT, print utility name 145
IMSSDBD, system-definition DBD name 145
IMSSEGS, segment names 145
IMSSHUT, shutdown string 145
IMSSYSP, system printer name 145
IMSTRCE, trace ddname 145
IMSUISZ, Input area size 145
IMSUMAX, maximum number of users 145
IMSVSE, Vector Symbol Editor transaction name 145
IMSWTOD, write-to-operator descriptor codes 145
IMSWTOR. write-to-operator routing codes 145

Index 263

Index

ADMMDFT (continued)
10 •••••

10BFSZ. transmission buffer size 145
10COMPR. compressed PS loads 146
10SYNCH. synchronized 110 146

I
ICUFMSS. ICU default use of symbol sets In format 145
ICUISOL. ICU default Isolate value 145
ICUPANC. ICU default use of panel color 145
INSCPG. application code-page 145

M
MAPGSTG. mapgroup storage threshold 146
MIXSOSI. default specification 146

N
NATLANG. national language support specification 146
NUMBFRM. number convention 147

OBJFILE. naming conventions 147
PARMVER. parameter verification 147
SAVBFSZ. FSSAVE buffer size 147
SOSIEMC. SOSI emulation character 147
STGRET, short-on-storage processing 147
T80 ••••

TSOAPLF. T80 APL default specification 146
TSOCOLM. TSO ADMCOLM ddname or high-level qual-

ifier 146
TSODECK. TSO deck ddname 148
TSODFTS. TSO defaults file ddname 148
TSOEMUL. TSO 110 Emulation 148
TSOGIMP. TSO ADMGIMP ddname 148
TSOIADS. TSO ADS ddname 148
TSOIFMT. TSO export utility ddname 148
TSOMONO. TSO monochrome ddname or high-level
• qualifier 148

TSOPRNT. TSO print data-set qualifier 148
TSOSYSP. TSO system printer ddname 148
TSOS99S. SVC99 allocation size 148
TSOS99U. TSO unit specification 148
TSOTRCE. TSO trace ddname 148

T
TIMEFRM. time convention 147
TRACE. trace word value 147
TRCESHR. trace share 147
TRCESTR. trace control 147
TRCEWID. trace output width control 148
TRTABLE. In-core trace table size 148

VSE
VSECOLM. color master file name 148
VSEDFTS. defaults file name 148
VSEMONO. monochrome file name 148
VSETRCE. trace file name 148

ADMMEXIT 105
ADMMFONT macro 62
ADMOPRT

file print program 50
printer page depth with BPRl

ADMOPUV. automatic invocation of VM/CMS print utility 158
ADMOPUx BPRl
ADM PRINT 125

flies 124
inter-release compatibility BPRl
print utility 50

ADMPROJ files
format 163

ADMSAVE flies
format 163

ADMSYMBL files
format 163

ADMUAIMC. Assembler mapping constants table 96
ADMUCDSD 48
ADMUCIMC. COBOL mapping constants table 98
ADMUIMP exec procedure 57
ADMUIMPD 56
ADMUIMPT 56
ADMUIMPV 56
ADMUIMPx 56. BPRl
ADMUJD10 57

264 Base Programming Reference

ADMUJT10 57
ADMUOT 125
ADMUPIMC. PUI mapping constants table 101
ADMUPINK 57
ADMUPIRK 57
ADMUPRTC 48
ADMUP2VD 16
ADMUSCl sample program 249
ADMUSC2 sample program 249
ADMUSFl sample program 249
ADMUSF2 sample program 249
ADMUSP1 sample program 249
ADMUSP2 sample program 249
ADMUSP3 sample program 249
ADMU8P4 sample program 249. 250
ADMUSP7 sample program 125. 249. 250
ADMUTMAT 250
ADMUTMAV 250
ADMUTMCT 250
ADMUTMCV 250
ADMUTMDT 250
ADMUTMDV 250
ADMUTMIT 250
ADMUTMIV 250
ADMUTMPT 250
ADMUTMPV 250
ADMUTMST 250
ADMUTMSV 250
ADMUTMT sample program 249. 250
ADMUTMTT 250
ADMUTMTV 250
ADMUTMV sample program 250
ADMUUARP. typeface vector symbol set for composed-page

printer 70
ADMUUxxx. proportionally spaced typefaces 70
ADM4CDUx 57. 58. BPRl

AFPDS support 63
file format 255

ADM4FONT 62
ADM •..

ASP (SPllnterface entry point) 103. BPR1
ASX. (user error-exlt names) BPRl
COLM

TSO 148
VM/CMS 143

COLn
T80 34
VM/CMS 42

DECK
TSO 34
VM/CMS 42

DEFS
TSO 34
VM/CMS 42

DJCOL module 80
Dxxxx (CICSNS termld) 12
GDF

CICSNS 12
T80 34
VM/CMS 42

GGMAP
CICSNS 12
TSO 34
VM/CMS 42

GIMP
CICSNS 142
TSO 148

IMAGE
TSO 34
VM/CMS 42

LIST
TSO 34
VM/CM8 42

MCOL T macro 79
OPRT

sequential file print program 50

ADM... (continued)
OPUx, output print utility

CICSNS 48
IMSNS 49
T50 49
VM/CMS 55

PRINT
TSO 51
VM/CMS 42, 55

PRINTO 34
OPOST (VM print EXEC) 47
SAVE

CICSNS 12
TSO 34
VM/CMS 42

SYMBL
CICSIVS 12
TSO 34
VM/CMS 42

TRACE
IMSNS 26
TSO 34
VM/CMS 42

UAIMC: assembler mapping constants table 96
UCIMC: COBOL mapping constants table 98
UOFF (CSECT for non reentrant CICSNS) 8
UPC

GDF-ADMGDF conversion utility 165
GDF-PIF conversion utility 71,73

UPCT
GDF-ADMGDF conversion utility under TSO 165
GDF-PIF conversion utility for T50 71

UPCV
GDF-ADMGDF conversion utility under VM/CMS 165
GDF-PIF conversion utility for VM/CMS 73

UPIMC: PL/I mapping constants table 101
UP ••• (PLII declare statements) BPR1

ADS (GDDM-IMD application data structure)
CICS/vS name 142
TSO ddname 148
VM/CMS fIIetype 143

AFPDS (Advanced Function Presentation Data Stream) BPR1
IPDS font conversion table 62
processing option for inllne resources 62
subset supported by CDPU 63

AIC (application Interface component) BPR1
AID translation 93
AID-receiver field 93
alarm (FSALRM) BPR1
alignment

text (GSTA) BPR1
ALLOCATE command (TSO) 53
alphanumeric attribute 90
alphanumeric character-code assignments, ASTYPE

override BPR1
alphanumeric defaults module

control with DATRN 143
translation tables 123, BPR1

alphanumeric flies, printing
ADMOPRT (TSO) 50
ADMOPUV (VM/CMS) 55

alphanumeric functions BPR1
Alphanumerics

high-performance 109
alternate device BPR1

close (FSCLS) BPR1
open (FSOPEN) BPR1
send character string to (FSLOG) BPR1
send character string with carrlage-controi character

(FSLOGC) SPR1
send graphics to (GSCOPY) BPR1
send page to (FSCOPY) BPR1

always-unlock-keyboard mode 150
AUNLOCK defaults option 142

amendments, summary of, Version 2 Release 1 BPR1
AMODE keyword. MVS/XA 31

AMODE(xxx), MVSlXA 31
AM3270, device attachment 142
anchor painter BPR1
angle

character angle, GDF order 172
query character shear (GSOCH) BPR1
query character (GSOCA) BPR1
set current character angle (GSCA) BPR1

APDEF (define field list) BPR1
APDEL (delete field list) BPR1
apertures

size of pick aperture for GSIPIK SPR1
size of scaled pick aperture BPR1
types BPR1

APL 125
CMSAPLF, VM APL default specification 143
GDDM-PGF RCP codes 225
list of codes and GDDM-PGF calls 214
request codes module 213
TSOAPLF, T50 APL default specification 148
using with GDDM BPR1
using with KanjllHangeul BPR1

APL feature
TSO, nonqueriable displays 37

Index

VM/CMS, nonquerlable APL displays and printers 45
APL request codes modules BPR1
APL2 BPR1

GDMX function BPR1
APMOD (modify field list) BPR1
APPCPG

defaults option 142
APPEND nickname parameter 3
application anchor block (AAB) BPR1
application code-page 122, 124

APPCPG defaults option 142
application data structure (ADS) 85

adjunct field names 86
adjunct fields 85
adjunct values 86
assembler-language example 86
attribute adjuncts 89
base attribute adjuncts 90
character attributes 91
COBOL example 86
copying Into program 93
cursor adjunct 89
description 85
designator characters 92
generating large structure 94
PLII example 86
query definition (MSOADS) SPR1
selector adjunct 89

application interface component (AIC) BPR1
application programming languages supported BPR1
APOIDS (query field list identifiers) BPR1
APONUM (query field list numbers) BPR1
APORY (query field list) BPR1
APOSIZ (query field list size) SPR1
APOUID (query unique field list Identifier) BPR1
Arabic text BPR1
arc

draw circular (GSARC) BPR1
draw elliptic (GSELPS) BPR1
GDF order 171

area
end shaded (GSENDA) BPR1
GDF order 172
start shaded (GSAREA) BPR1

ASCCOL (specify character colors within a field) BPR1
ASCGET (get field contents) BPR1
ASCHLT (specify character highlights within a field) BPR1
ASCPUT (specify field contents) BPR1
ASCSS (specify character symbol sets within a field) BPR1
ASDFLD (define or delete a Single field) BPR1
ASDFL T (set default field attributes) BPR1
ASDFMT (define multiple fields) BPR1

Index 265

Index

ASDTRN (define 1/0 translation tables) BPR1
ASFBDY (define field outline) BPR1
ASFCLR (clear fields) BPR1
ASFCOL (define field color) BPR1
ASFCUR (posHion the cursor) BPR1
ASFEND (define field-end action) BPR1
ASFHL T (define field highlighting) BPR1
ASFIN (define input null-to-blank conversion) BPR1
ASFINT (define field intensity) BPR1
ASFMOD (change field status) BPR1
ASFOUT (define output blank-to-null conversion) BPR1
ASFPSS (define primary symbol set for a field) BPR1
ASFSEN (define field mixed-string attribute) BPR1
ASFTRA (define field transparency attribute) BPR1
ASFTRN (assign translation table set to field) BPR1
ASFTYP (define field type) BPR1
ASGGET (get contents of double-character field) BPR1
ASGPUT (specify double-character field contents) BPR1
ASMODE (define the operator reply mode) BPR1
aspect-ratio control (for copy). specify (GSARCC) BPR1
ASQCOL (query character colors for a field) BPR1
ASQCUR (query cursor position) BPR1
ASQFLD (query field attributes) BPR1
ASQHL T (query character highlights for field) BPR1
ASQLEN (query length of field contents) BPR1
ASQMAX (query number of fields) BPR1
ASQMOD (query modified fields) BPR1
ASQNMF (query number of modified fields) BPR1
ASQSS (query character symbol sets for a field) BPR1
ASRATT (define field attributes) BPR1
ASREAD (device outputllnput) BPR1
ASRFMT (redefine fields) BPR1
assembler language

example application data structure 86
linkage conventions BPR1
mapping constants table. ADMUAIMC 96

ASTYPE 124
override alphanumeric character-code aSSignments BPR1

asynchronous interrupt on VM/CMS 44
attention feedback block for VM/CMS 157
attention handling for VM/CMS 157
attention Interrupts under TSO 36
attribute adjuncts

introduction 85
usage 89

attributes
define (ASRATT) BPR1
field Intensity (ASFINT) BPR1
GDF treatment of 170
Initial setting for segments (GSSATI) BPR1
modify for segments (GSSATS) BPR1
outside segments BPR1
primitive (GSAM) BPR1
query mode (GSQAM) BPR1
query partition set (PTSQRY) BPR1
query (ASQFLD) BPR1
restore (GSPOP) BPR1
set all geometric (GSSAGA) BPR1
set defaults for a field (ASDFL T) BPR1
set mode (GSAM) BPR1
(see also field attributes)

audit trail anchor block for CICSNS 142
AUNLOCK

defaults option 142
processing option 149. BPR1

automatically initiating the VM/CMS print utility 56
autoskip attribute 90
auxiliary storage

loading symbol set from. into PS store (PSLSS) BPR1
query symbol set on (SSQF) BPR1
reading symbol sets from (SSREAD) BPR1
writing symbol sets to (SSWRT) BPR1

await graphics Input (GSREAD) BPR1

266 Base Programming Reference

B
background color mix

GDF order 172
background color-mixing mode

query (GSQBMX) BPR1
set (GSBMIX) BPR1

background print utility. TSO 49
badge reader BPR1
base attribute adjunct 90
baseline angle

query (GSQCA) BPR1
set (GSCA) BPR1

baSic direct access method (BDAM) 34
basic edit process for IMSNS 26
BasiC Mapping Support 13
basic partitioned access method (BPAM) 33
BASIC (IBM). Interface to GDDM-PGF BPR1
batch mode. VSE 15
batch printing default 144
batch processing

MVS 38
TSO 38
VM/CMS 46

BDAM (basic direct access method) 34
begin active environment group structured field 256
begin document structured field 256
begin graphics object structured field 256
begin image GDF order 178
begin image object structured field 256
begin master environment group structured field 256
begin object environment group structured field 256
begin page structured field 256
begin picture prolog PSC 183
begin presentation text structured field 256
begin symbol-set mapping PSC 183
bibliography BPR1
blinking attribute 90
BMS and GDDM 13
BMSCOORD processing option 149. 150. BPR1
books, list of BPR1
boundary. defining data (GSBND) BPR1
box size

character (GSCB) BPR1
markers (GSMB) BPR1

box spacing
character (GSCBS) BPR1

BPAM (baSic partitioned access method) 33
Brazilian BPR1
Brazilian default vector symbol set 70
bundle-list contents 112

C
call a segment (GSCALL) BPR1
call format descriptor modules 209. BPR1
call intercept exit 107
call segment

GDF orders 172
call statements, syntax conventions BPR1
CALLlNF external default BPR1
CALLINF. call Information block 142
CALLINT. call Intercept user exit option 105
calls

detailed descriptions BPR1
Canadian French BPR1
canceling plotter output

with Clear key BPR1
(ASREAD) BPR1

capital letters for messages and panels BPR1
capture graphics data (GSGET) BPR1
CDPDS (Composite Document Presentation Data Stream)

and CDPU (CompOSite Document Print utility) 57
font emulation table 62
format 255

CDPF (Composed Document Printing Facility) 16
CDPFTYPE processing option 149, 151, BPRl
CDPSD BPR1
CDPU (Composite Document Print Utility) 57, BPRl

AFPDS support 63
call 57
file format 255
using ADM4CDUx 58

CECP (Country Extended Code Page) 121, BPRl
CECPINP

CECP keyboard input 142
external default 125

centralized plotting BPR1
chained attribute for segments

modify the attribute (GSSATS) BPRl
set initial attribute (GSSATI) BPRl

change field status (ASFMOD) BPRl
change resolution flag of an Image (IMARF) BPRl
changes for Version 1 Release 4 BPRl
changes for Version 2 Release 1 BPRl
changes for Version 2 Release 2 BPRl
changes to GDDM

compatibility of GDDM Version 1 Release 4 with earlier
releases BPRl

compatibility of Version 2 Release 1 with earlier
releases BPRl

changing GDDM's defaults 1,127
encoded UDSs 2
external defaults file 2
external defaults module 2
user exits 104

call Intercept exit 107
task switch exit 106

character angle
GDF order 172
query (GSaCA) BPRl
set (GSCA) BPRl

character attributes
introduction 85
setting from the terminal 92
setting within a program 91

character box
GDF order 172
query size (GSaCB) BPRl
set size (GSCB) BPRl
set spacing (GSCBS) BPRl

character code conversion 121
character colors for field, query (ASaCOL) BPRl
character direction

Arabic teld (GSCD) BPRl
Chinese teld (GSCD) BPRl
GDF order 173
query (GSaCD) BPRl
Roman text (GSCD) BPRl
set currenl (GSCD) BPR1

character highlights for field
query (ASaHLT) BPRl
specify (ASCHL T) BPRl

character mode
character precision GDF order 173
query (GSaCM) BPRl
set (GSCM) BPR1

character order (GDF) 174
character set GDF order 173
character shear

GDF order 174
query (GSaCH) BPRl
set (GSCH) BPRl

character strings
draw at current position (GSCHAP) BPRl
draw at specified point (GSCHAR) BPRl
send with carriage-control character (FSLOGC) BPRl
send (FSLOG) BPRl
VS FORTRAN BPRl

character symbol sets

character symbol sets (continued)
for field, query (ASaSS) BPR1
within field, specify (ASCSS) BPRl

character-box spacing
GDF order 173
query (GSaCBS) BPR1
set (GSCBS) BPRl

character-code assignments, override (ASTYPE) BPR1
characters

default mode-2, for non-CECP applications BPR1
chart data files

format 163
chart definition files

format 163
chart files, ICU, code page conversion 125
chart format files

format 163
charts

printing in VSE batch 48

Index

check picture complexity before output (FSCHEK) BPRl
Chinese BPRl
Chinese text BPRl
choice device

enable or disable (GSENAB) BPRl
query data (GSQCHO) BPRl

CICAUD, CICS/vS audit trail anchor 142
CICDECK, CICSNS deck name 142
CICDFPX, CICSNS defaults file temporary storage 142
CICGIMP, CICSNS ADMGIMP name 142
CICIADS, CICSNS ADS name 142
CICIFMT, CICSIVS GDDM-IMD staged data file-type 142
CICPRNT, CICSNS print utility name 142
CICS pseudoconversational control 155
CICSTGF, CICSIVS GDDM-IMD staging file name 142
CICSYSP, CICSNS system printer name 142
CICSNS

ADMASXC (user error-exit name) BPRl
ADMUOFF control section 8
audit trail anchor block 142
BMS and GDDM 13
compiling GDDM application programs 7
coordination mode 150
eldernal defaults 128
GDDM code above 16M In OSNS 31
GDDM default error exit 14
MVS/XA support 31
name-list and name-count values In DSOPEN 160
print utility 48
release required for MVS/XA 31
using GDDM 7

CICTIF option, CICSNS transaction independence 142
CICTQRY option, CICSNS device query temporary storage

prefix 143
CICTRCE, CICSNS trace transient data name 143
CICTSPX, CICSNS temporary storage prefix 143
circular arc, drawing (GSARC) BPRl
clear

alphanumeric fields (ASFCLR) BPRl
current page (FSPCLR) BPRl
graphics field (GSCLR) BPRl
graphics Input queue (GSFLSH) BPR1

clear a rectangle In an Image (IMACLR) BPRl
clear key BPRl
clear the current page (FSPCLR) BPRl
CLEARIPA 1 protocol In TSO 158
clipping

disable (GSCLP) BPRl
enable (GSCLP) BPRl
query state (GSQCLP) BPRl

close a device (DSCLS) BPR1
close alternate device (FSCLS) BPRl
close the current segment (GSSCLS) BPRl
CMS System Product Interpreter BPRl
CMSAPLF, VM APL default specification 143
CMSATTN processing option 149,157, BPRl
CMSCOLM, color master filetype for VM/CMS 143

Index 267

Index

CMSDECK, VM deck flletype 143
CMSDFTS, VM defaults filename and filetype 143
CMSIADS, VM ADS filetype 143
CMSIFMT, VM export utility filetype 143
CMSINTRP processing option 46, 149, 157, BPR1
CMSMONO, VM monochrome filetype 143
CMSMSLT, VM MSL filetype 143
CMSPRNT, VM print flletype 143
CMSSYSP, VM system printer filetype 143
CMSTEMP, VM work-file filetype 143
CMSTRCE, VM trace fllenamelfiletype 143
COBOL

error exits BPR1
example application data structure 86
format of calls BPR1
mapping constants table, ADMUCIMC 98

code page
conversion 121, BPR1
definition 121
query (GSQCPG) BPR1
specify (GSCPG) BPR1

code point 121
color

adjunct and attribute 90
define field color (ASFCOL) BPR1
foreground color mix, GDF order 177
master table identifier 159
master tables 79
of character In field

querying (ASQCOL) BPR1
specifying (ASCCOL) BPR1

query current mix mode (GSQMIX) BPR1
query current (GSQCOL) BPR1
set current foreground mixing mode (GSMIX) BPR1
set current (GSCOL) BPR1
specify color GDF order 175
table, ADMMCOL T 79

color-separation masters 79, BPR1
COLORMAS processing option 149, 159, BPR1
COMMENT default option 143
compatibility of GDDM Version 1 Release 4 with earlier

releases BPR1
compatibility of Version 2 Release 1 with earlier

releases BPR1
compiling

CICSN8-dependent routines for MVS/XA 31
GDDM application programs

CICSNS 7
VM/CMS 41

IMSNS-dependent routines for MVS/XA 32
sample programs 251
subsystem-Independent routines for MVSlXA 31
Tao-dependent routines for MVS/XA 32

complex pictures 86
Composed Document Printing Facility (CDPF) 16
composed-page printers

color-separation masters 79
CompOSite Document Presentation Data Stream (CDPDS)

and CDPU (Composite Document Print Utility) 57
font emulation table 62
format 255

Composite Document Print Utility (CDPU) BPR1
composite documents

file format 255
printing 57, BPR1
summary BPR1

compressed PS loads, IOCOMPR 146
conditional loading of symbol sets

general description 86
PSLSSC BPR1

confidential printing, with JESl328X 54
contents of data buffer 112
control echOing of scanner image (lSESCA) BPR1
control functions BPR1
control internal trace (FSTRCE) BPR1
control the use of mixed fields by mapping (SPMXMP) BPR1

268 Base Programming Reference

conventions
GDDM user exits 105
syntax for calls BPR1

conversion
blanks to nulls on output (ASFOUT). BPR1
nulls to blanks on Input (ASFIN) BPR1

convert the resolution attributes of an-Image (IMARES) BPR1
converting source-format UDSs 2
coordinate lengths In GDF 170
coordination exit routine 107
coordination mode for CICSNS BMS 150
copy

application data structure Into program 93
functions BPR1
segment (GSSCPY) BPR1
specify aspect-ratio control (GSARCC) BPR1

correlation of structure (GSCORS) BPR1
correlation of tag to primitive (GSCORR) BPR1
Country Extended Code Page

SeeCECP
CP SPOOL parameters in DSOPEN 156
CP TAG parameters in DSOPEN 156
CPN425O, 4250 code page name 143
CPS POOL processing option 149, 158, BPR1
CPTAG processing option 149. 156, BPR1
create a page for mapping (MSPCRT) BPR1
create a page (FSPCRT) BPR1
create a partition set (PTSCRT) BPR1
create a partition (PTNCRT) BPR1
create a segment (GSSEG) BPR1
create an image (IMACRT) BPR1
create an operator window (WSCRT) BPR1
create or delete a mapped field (MSDFLD) BPR1
cross reference for structured field formats 256
CSPF BPR1
CTLFAST processing option 149,158. BPR1
CTLKEY processing option 149. 156, BPR1
CTLMODE processing option 149.156. BPR1
CTLPRINT processing option 149, 156. BPR1
CTLSAVE processing option 149. 156, BPR1
CTLSAVE. User Control SAVE function control 143
current character mode. query (GSQCM) BPR1
current code page, set (GSCPG) BPR1
current page. query (MSPQRY) BPR1
current poSition

move without drawing (GSMOVE) BPR1
query (GSQCP) BPR1
set (GSCP) BPR1
specify current position GDF order 176
usage with GDF orders 170

cursor
adjuncts

introduction 85
usage 89

control with mapping requests 89
query image box (ISQBOX) BPR1
query position in a map (MSQPOS) BPR1
query position of alphanumeric (ASQCUR) BPR1
query position (GSQCUR) BPR1
selection 92
set position (MSCPOS) BPR1
specify position (ASFCUR) BPR1

cursor-receiver map. locating the cursor 89

D
Danish BPR1
Danish default vector symbol set 70
data area (see application data structure) 85
data boundary

define (GSBND) BPR1
query (GSQBND) BPR1

data characteristics
CICSNS data sets 12
IMSNS data sets 26

data characteristics (continued)
VM/CMS files 42

data set search for GDDM objects (ESLlB) BPR1
data sets and file processing

CICSNS 10
IMSNS 26
TSO 33

data structure (see application data structure) 85
data types for call parameters BPR1
DATEFRM. date convention 143
dates. conventions for punctuation 143
DATRN. alphanumeric defaults module control 143
DBCS fields BPR1

control use of mixed fields by mapping (SPMXMP) BPR1
DBCSDFT default selection 143
DBCSLlM default option 144
DBCSLNG default option 144
default selection 143
define mixed-string attribute (ASFSEN) BPRl
define primary symbol set for (ASFPSS) BPRl
draw character string at specified point (GSCHAR) BPR1
get contents (ASCGET) BPR1
get double-character contents (ASGGET) BPR1
in GDDM-IMD 94
in mapped fields (MSDFLD) BPR1
in mapping 94
MIXSOSI default option 146
override alphanumeric character-code assignments

(ASTYPE) BPR1
query length of contents (ASOLEN) BPR1
set mixed string attribute of graphics text (GSSEN) BPR1
5051 emulation character 147
specify contents (ASCPUT) BPR1
specify current symbol set (GSCS) BPRl
specify cursor position within (ASFCUR) BPRl
specify double-character contents (ASGPUT) BPR1
symbol set component threshold 144
symbol set language option 144
symbol sets 68
(see also "field")

DBCS in mapped data 94. BPRl
DBCSDFT. DBCS default selection 143
DBCSLlM. symbol set component threshold 144
DBCSLNG. symbol set language 144
DCB characteristics for TSO data sets 34
DCSS (Discontiguous Shared Segment) 41.42
debugging GDDM programs BPRl
deck

ddname. TSO 148
filetype. VM 143
name. CICSNS 142
output L TERM. IMSNS 145

default
field attributes, set (ASDFL T) BPRl
graphics cell size. query (GSOCEL) BPRl

default error exit
CICSNS 14
IMSNS 26
threshold limit values BPRl

default feed-back block
ERRFDBK default options 144

default GDDM page. definition BPR1
default mode-2 characters for non-CECP applications BPR1
default process specific orders 184
default user exit. ADMMEXIT option 105
default value

ABNDRET 142
AM3270 142
APPCPG 142
AUNLOCK 142
CALLlNF 142
CECPINP 142
CICAUD 142
CICDECK 142
CICDFPX 142

default value (continued)
INSCPG 145

defaults
CECPINP 125
changing GDDM-supplied values 127
ddname in T50 148
encoded UDSs (ESEUDS) BPRl
encoded UDSs (ESOEUD) BPRl
end definition of drawing defaults (GSDEFE) BPR1
file name 148
filename and filetype in VM/CMS 143
GDDM-supplied values. listed by subsystem 127
source-format UDSs (ESSUDS) BPRl
start definition of drawing defaults (GSDEFS) BPR1
user exits 104

DEFAULT. default user exit option 105
deferred device name-list for print utility 154
define a data boundary (GSBND) BPR1
define a graphics window (GSWIN) BPRl
define a uniform graphics window (GSUWIN) BPR1
define a viewport (GSVIEW) BPR1
define bi-Ievel conversion algorithm (IMRCVB) BPR1
define brightness conversion algorithm (IMRBRI) BPRl
define contrast conversion algorithm (IMRCON) BPR1
define field attributes (ASRATT) BPRl
define field color (ASFCOL) BPRl
define field intensity (ASFINT) BPRl
define field list (APDEF) BPRl
define field mixed-string attribute (ASFSEN) BPR1
define field outline (ASFBDY) BPR1
define field transparency attribute (ASFTRA) BPR1
define field type (ASFTYP) BPRl
define field-end action (ASFEND) BPRl
define 110 translation tables (ASDTRN) BPR1
define multiple fields without deleting eXisting fields

(ASRFMT) BPRl
define or delete a single field (ASDFLD) BPRl

Index

define output blank-to-null conversion (ASFOUT) BPR1
define place position in real coordinates (IMRPLR) BPRl
define primary symbol set lor a field (ASFPSS) BPRl
define rectangular sub-image in pixel coordinates

(IMREX) BPRl
define rectangular sub-image in real coordinates

(IMREXR) BPR1
define the graphics field (GSFLD) BPR1
define the operator reply mode (ASMODE) BPR1
define the picture space (GSPS) BPR1
defining

devices BPRl
DSOPEN BPR1
introduction BPR1

tokens for devices 203
delayed detection of selectable mapped fields 92
delete

operator window (WSDEL) BPR1
page (FSPDEL) BPR1
segment (GSSDEL) BPR1

delete a partition set (PTSDEL) BPR1
delete a partition (PTNDEL) BPR1
delete a segment (GSSDEL) BPRl
delete application group (ESADEL) BPR1
delete field list (APDEL) BPR1
delete operator window (WSDEL) BPRl
delete projection (IMPDEL) BPR1
delete the image associated with the identifier (IMADEL) BPR1
descriptor modules for call formats 209
designator characters

introduction 85
values 92

detectability attribute 90. 92
modify the attribute (GSSATS) BPR1
set initial attribute (GSSATI) BPR1

device
close (DSCLS) BPR1
discontinue usage (DSDROP) BPRl

Index 269

Index

device (continued)
errors in full-screen mode (TSO) 37
functions BPRl
open (OSOPEN) BPRl
output/Input (ASREAO) BPRl
query characteristics BPRl

OSQOEV BPRl
FSOOEV BPRl

query functions BPRl
query unique Identifier (OSQUIO) BPRl
query usage (DSOUSE) BPRl
relnltlallzlng BPRl
relnltializlng (OSRNIT) BPRl
terminating BPRl
tokens 203
usage

alternate device BPRl
primary device BPRl

usage (OSUSE) BPRl
device attachment, AM3270 142
device characteristic tokens (see device tokens)
device characteristics

query (FSOURY) BPRl
device code page 122, 124
device code-page processing option 157
device output/Input (ASREAO) BPRl
device tokens

displays 203
for GOOM-PClK devices 206
plotters 203
printers 203
scanners 203

devices, new, In Version 2 Release 1 BPRl
DEVTOK nickname parameter 4
OFTXTNA, VSE batch printing 144
dialed devices with GOOMNMXA 46
direction, character

GOF order 173
query current (GSOCO) BPRl
set current (GSCO) BPRl

OIRECTN, coordination exit control direction parameter lOB
disable/enable device input (FSENAB) BPR1
Olscontlguous Shared Segment (OCSS) 41,42
discontinue device usage (OSOROP) BPRl
displacing, scaling, shearing, and rotating primitives

(GSSCT) BPRl
displacing, scaling, shearing, and rotating segments

GSSAGA BPRl
GSSTFM BPRl

display
check picture complexity (FSCHEK) BPRl
Input/output (WSIO) BPRl
saved picture

FSSHOR BPRl
FSSHOW BPRl

update (FSFRCE) BPRl
display-device conventions

CICSNS 13
TSO 36
VM/CMS 44

displays, new support In GOOM VerSion 2 Release 2 BPRl
Ol/I

data bases 27
GOOM interface 26

document name 155
document structure '255
double-byte character set

See OBCS
See OBCS fields

double-byte character strings (see OBCS fields)
draw

character string
at current pOSition (GSCHAP) BPRl
at speCified point (GSCHAR) BPRl

circular arc (GSARC) BPRl

270 Base Programming Reference

draw (continued)
curved fillet (GSPFl T) BPRl
elliptic arc (GSElPS) BPRl
graphics image (GSIMG) BPR1
marker symbol (GSMARK) BPRl
scaled graphics image (GSIMGS) BPRl
series of lines (GSPlNE) BPRl
series of marker symbols (GSMRKS) BPRl
straight line (GSLlNE) BPRl

drawing defaults
end definition (GSOEFE) BPRl
start definition (GSOEFS) BPR1

drawing order 257
drop (discontinue) device (DSDROP) BPR1
DSClS (close a device) BPRl
DSCMF (User Control function) BPRl
DSDROP (discontinue device usage) BPRl
DSOPEN

open a device BPRl
using processing option groups 149
using with nicknames 3

DSPRINT command (JES/328X) 53
DSaCMF (query User Control function) BPRl
DSODEV (query device characteristics) BPR1
DSaUIO (query unique device identifier) BPR1
DSaUSE (query device usage) BPR1
OSRNIT (reinitialize a device) BPRl
DSUSE (specify device usage) BPRl
dual-screen 3270-PC/GX, define graphics field BPRl
dummy processing option 150
dummy procopt group 150
dynamic cursor setting 89
dynamic load of system programmer interface

IMSNS 25
TSO 33

dynamic segment attributes BPR1

E
EBCDIC 121,124
EBCDIC character codes BPRl
EITHER keyword, MVS/XA 31
elliptic arc, draw (GSElPS) BPRl
enable and disable clipping (GSClP) BPRl
enable or disable a logical input device (GSENAB) BPRl
enuble or disable image cursor (ISENAB) BPRl
enable/disable device input (FSENAB) BPRl
encoded UDS

converting from source format 2
ESEUOS call BPR1
ESOEUD call BPRl
list BPRl

end a shaded area (GSENOA) BPRl
end active environment group structured field 256
end area GDF order 176
end data entry into an image (IMAPTE) BPRl
end document structured field 256
end drawing defaults definition (GSDEFE) BPRl
end graphics object structured field 256
end image GDF order 179
end Image object structured field 256
end master environment group structured field 256
end object environment group structured field 256
end page structured field 257
end picture prolog PSC 190
end presentation text structured field 257
end retrieval of data from an image (IMAGTE) BPRl
end retrieval of graphics data (GSGETE) BPRl
end symbol-set mapping PSC 183
end-of-field action (ASFEND) BPRl
English default vector symbol set 70
enter data into an image (IMAPT) BPRl
environment, query (FSOSYS) BPRl
ERRFDBK default option 144
error exits BPRl

error exits (continued)
CICSNS default error exit 14
COBOL BPR1
error record structure BPRI
FORTRAN BPRI
IMSNS 28
PUI BPRI
REXX BPRI
specify (FSEXIT) BPR1

error processing
ADMASX. (user error-exit names) BPR1
error exits BPRI

In PUI. FORTRAN. and COBOL BPRI
error record structure BPRI
FSEXIT call BPRI
return error record using FSQERR BPR1
threshold limit values BPR1
user-deflned COBOL exit rou1ines BPRI
IBROADCAST command (IMSNS) BPRI

error records BPR1
error thresholds

default option 144
specify (FSEXIT) BPRI

errors In full-screen mode (TSO) 37
errors using CDPU 82
ERRTHRS. error threshold 144
ESACRT (create application group) BPR1
ESADEL (delete application group) BPR1
ESAQRY (query current application group) BPR1
ESASEL (select an application group) BPRI
ESEUOS (specify encoded user default specification) BPR1
ESLIB (library management) BPR1
ESPCB (Identify program communication block) BPR1
ESQCPG (Query the code page of a GDDM object) BPRI
ESQEUD (query encoded user default specification) BPRI
ESSCPG (Set code page of auxiliary storage object) BPRI
ESSUDS (specify source-format user default

specification) BPRI
exampleJCL

copy page segments from phase library to VSAM file 16
defining spill files 16
printing Images 57
VSE print program 48

example program to print composite document 57
exceptional devices BPRI
exclusive-OR mode. color mixing BPR1
EXECs under CMS using GDDM-REXX BPR1
exit character string. IMSNS 145
exit rou1lnes

call Intercept 107
coordination 107
task switch 106

explicit correlation of structure (GSCORS) BPR1
explicit correlation of tag to primitive (GSCORR) BPR1
export u1i1ity for GDDM-IMD

TSO ddname 148
VM/CMS flletype 143

Extended Binary Coded Decimal Interchange Code
See EBCDIC

extended highlighting adjunct (GDDM-IMD) 90
external defaults

CECPINP 125
CICSNS 128
file. format and default names 2
IMSNS 131
module 2
options 142
TSO 134
VM/CMS 137
VSE/Batch 140

external Interfaces BPR1
non reentrant Interface BPR1
reentrant Interface BPR1
system programmer Interface 103. BPR1

F
FAM nickname parameter 3
famlly-2 print-file destination In TSO 159
fast update mode 155
FASTUPD processing option 149. 155. BPR1
features of GDDM BPR1
feed-back block

application program-supplied 144
default options 144
GDDM-supplled 144
user-supplied 144

feedback values
call Intercept exit 107
task switch exit 107

FF3270P. form feed 144
field

assign translation table set to (ASFTRN) BPRI
change status of (ASFMOD) BPR1
clear graphics field (GSCLR) BPR1
clear (ASFCLR) BPRI
define color of (ASFCOL) BPRI
define end action (ASFEND) BPR1
define field type (ASFTYP) BPR1
define graphics field (GSFLD) BPR1
define highlighting for (ASFHL T) BPRI
define Inpu1 null-to-blank conversion (ASFIN) BPR1
define intensity attrlbu1e (ASFINT) BPRI
define mixed-string attribute (ASFSEN) BPRI
define multiple fields (ASDFMT) BPRI
define outline (ASFBDY) BPRI
define primary symbol set for (ASFPSS) BPRI
define single (ASDFLD) BPRI
deflne(ASRATT) BPR1
field ou1l1ne (ASFBDY) BPRI
get contents (ASCGET) BPRI
get double-character contents (ASGGET) BPR1
ou1line (ASFBDY) BPRI
ou1linlng In maps 91
ou1pu1 blank-to-null conversion (ASFOUT) BPR1
query attributes (ASQFLD) BPRI
query character colors for (ASQCOL) BPRI
query character highlights for (ASQHL T) BPRI
query character symbol sets (ASQSS) BPR1
query maximum number (ASQMAX) BPRI
query modified (ASQMOD) BPRI
query number modified (ASQNMF) BPRI
query number of (ASQMAX) BPR1
redefine (ASRFMT) BPRI
set default attributes (ASDFL T) BPR1
specify character colors within (ASCCOL) BPRI
specify character highlights within (ASCHL T) BPRI
specify character symbol sets within (ASCSS) BPR1
specify contents (ASCPUT) BPR1
specify cursor position within (ASFCUR) BPR1
specify double-character contents (ASGPUT) BPR1
transparency attribute (ASFTRA) BPR1
555O-family work station BPR1

field attributes for mapping
alphanumeric 90
autosklp 90
base 90
blinking 90
color 90
detectable 90
extended highlighting 90
Intenslfled-dlsplay 90
Introduction 65
mandatory enter 90
mandatory fill 90
MDT 90
nondetectable 90
nondlsplay 90
normal-dlsplay 90
numeric 90

Index

Index 271

Index

field attributes for mapping (continued)
programmed symbols 90
protected 90
reverse video 90
trigger 91
underscore 90
unprotected 90
validation 90

field formats. structured 256
field list 109

define (APDEF) BPRl
delete (APDEL) BPRl
modify (APMOD) BPRl
query Identifiers (APQIDS) BPRl
query numbers (APQNUM) BPRl
query size (APQSIZ) BPRl
query unique Identifier (APQUID) BPRl
query (APQRY) BPRl

file control facilities (CICS) 10
file proceSSing

IMSNS 26
TSO 33
VM/CMS 42

flies. GDDM. code page converSion 124
fillet

draw a curved (GSPFLT) BPR1
GDF order 176

folding input data 93
font emulation 62
fonts

supplied with GDDM 70
FONT4250 default file name/flletype

TSO 34
VM/CMS 42

force evaluation default specification 144
foreground color mix GDF order 177
foreground color-mixing mode

set (GSMIX) BPR1
form feed default specification 144
format

Composite Document Presentation Data Stream 255
GDF objects 166
required data sets/files

CICSNS 12
IMs/vS 26
TSO 34
VM/CMS 42

structured field 256
symbol definitions 201

FORmAN
error exHs BPRl
syntax conventions BPR1

fractional line width
GDForder 177
query (GSQFLW) BPR1
set (GSFLW) BPR1

FRCEVAL. force evaluation of HPA 144
French BPR1
French Canadian BPRl
French default vector symbol set 70
FSALRM (sound the terminal alarm) BPR1
FSCHEK (check picture complexity before output) BPR1
FSCLS (close alternate device) BPR1
FSCOPV (send page to alternate device) BPR1
FSENAB (enable/disable device input) BPR1
FSEXIT (specify an error exit. or error threshold. or

both) BPR1
usage under MVSlXA 32

FSFRCE (update the display) BPR1
FSINIT (initialize GDDM processing) BPR1
FSLOG (send character string to alternate device) BPR1

maximum characters for each line 151
page Sizes for 151

FSLOGC (send character string with carriage-control character
to alternate device) BPR1

272 Base Programming Reference

FSLOGC (send character string with carriage-control character
to alternate device) (continued)

maximum characters for each line 151
page sizes for 151

FSOPEN (open alternate device) BPR1
FSPCLR (clear the current page) BPR1
FSPCRT (create a page) BPR1
FSPDEL (delete a page) BPR1
FSPQRY (query specified page) BPR1
FSPSEL (select page) BPR1
FSPWIN (set page window) BPR1
FSQCPG (query current page identifier) BPRl
FSQDEV (query device characteristics) BPR1
FSQERR (query last error) BPR1
FSQSYS (query systems environment) BPR1
FSQUPD (query update mode) BPR1
FSQUPG (query unique page Identifier) BPR1
FSQURY (query device characteristics) BPR1
FSQWIN (query page window) BPR1
FSREST (retransmit data) BPR1
FSRNIT (reinitialize GDDM) BPRl
FSSAVE

format 163
FSSAVE (save current page contents) 147. BPRl
FSSHOR (extended FSSHOW) BPR1
FSSHOW (display a saved picture) BPRl
FSTERM (terminate GDDM processing) BPRl
FSTRAN (perform code conversion on a character

string) BPRl
FSTRCE (control internal trace) BPRl
FSUPDM (set update mode) BPR1
full arc GDF order 178
full-screen mode errors under TSO 37
functions

G

alphanumeric BPRl
control BPRl
copy BPRl
detailed descriptions BPRl
graphics BPR1
graphics segments BPR1
high-performance alphanumeric BPRl
image BPRl
interactive graphics BPRl
mapping BPRl
new. In Version 2 Release 1 BPR1
operator windows BPRl
page BPRl
partition BPRl
partition set BPRl
symbol set BPR1

GDDM
APL RCP codes 214
application interface under MVSlXA 31
CICSNS 7
code resident above 16M 31
IMSNS 23
licensed programs BPRl
MVS Batch 38
MVSlXA 31
programs BPRl
RCP codes 231
starting to use GDDM BPRl
supplied declarations for mapping constants tables 95
supplied device tokens 203
TSO batch 38
use with other software processors BPRl
user-exit conventions 105
using under MVS

batch 38
using under TSO

batch 38
VM/CMS 41

GDDM objects
code page conversion 124
format 163

GDDM-CSPF BPR1
GDDM-GKS BPR1
GDDM-IMD (see Interactive Map Definition)
GDDM-IVU BPR1
GDDM-PCLK BPR1

define field color (ASFCOL) BPR1
device open (DSOPEN) BPR1
enable/disable logical input devices (GSENAB) BPR1
initial data value. float (GSIDVF) BPR1
initial data value. integer (GSIDVI) BPR1
initialize locator (GSILOC) BPR1
initialize pick device (GSIPIK) BPR1
loading graphics symbol sets BPR1
mix mode (GSMIX) BPR1
query device characteristics (FSQURY) BPR1
set update mode (FSUPDM) BPR1

GDDM-PGF (Presentation Graphics Facility)
APL RCP codes 225
RCP codes 231

GDDM-REXX BPR1
GDDM/MVS. functions available BPR1
GDDMNirtual Memory Extended Architecture BPR1
GDDMNMXA 46. BPR1
GDDMNM. functions available BPR1
GDDMNSE. functions available BPR1
GDF

arc order 171
arc parameters order 171
area order 172
attributes in orders 170
background color mix order 172
begin image order 178
call segment order 172
character angle order 172
character box order 172
character direction order 173
character order 174
character precision order 173
character set order 173
character shear order 174
character-box spacing order 173
color order 175
comment order 176
description of orders 165
end area order 176
fillet order 176
foreground color mix order 177
format of objects 166
format of orders 169
fractional line width order 177
full arc order 178
image order (data) 179
line order 179
line type order 180
line width order 180
list of orders 167
marker box order 180
marker order 180
marker scale order 181
marker type order 181
model transform order 181
padding order descriptions 170
pattern order 182
pick (tag) identifier order 182
pop order 182
process specific control order 182

begin picture prolog PSC 183
begin symbol-set mapping PSC 183
end picture prolog PSC 190
end symbol-set mapping PSC 183
map symbol-set identifier PSC 183
picture prolog PSC 183
set default arc parameters PSC 184
set default background mix PSC 185

GDF (continued)
process specific control order (continued)

set default character angle PSC 185
set default character box PSC 185
set default character direction PSC 185
set default character precision PSC 186
set default character set PSC 186
set default character shear PSC 186
set default character-box spacing PSC 185
set default coordinate type PSC 186
set default extended color PSC 186
set default foreground mix PSC 187
set default fractional line width PSC 187
set default line type PSC 187
set default marker box PSC 187
set default marker symbol PSC 188
set default pattern symbol PSC 188
set default pick identifier PSC 188
set default picture scale PSC 188
set default text alignment PSC 189
set default viewing window PSC 189
set picture boundary PSC 184
set picture origin PSC 184

relative line order 190
segment attribute modify order 191
segment attribute order 190
segment characteristics order 191
segment end order 191
segment end prolog order 191
segment position order 191
segment start order 192
segment viewing window order 193
specify current position order 176
tag (pick) identifier order 182
text alignment order 193
use of current position 170

GDF files
format 163
printing in VSE batch 48

GDF (graphics data format)
end retrieval of (GSGETE) BPRl
loading objects from library (GSLOAD) BPRl
restore (GSPUT) BPRl
retrieve graphics data as GDF (GSGET) BPRl
start retrieval of (GSGETS) BPRl
using the orders BPRl

GDF-ADMGDF conversion utility 165
generated GDDM mapgroup files

format 163
generated mapgroups 85
generating large application data structures 94
geometric attributes. query (GSQAGA) BPRl
German BPRl
German default vector symbol set 70
get

contents of a field (ASCGET) BPRl
double-character field contents (ASGGET) BPRt
graphics data (GSGET) BPRl

GKS BPRl
GLOBAL commands needed under VM/CMS 41
Graphical Kernel System BPRl
graphics

attributes. list of BPRl
clear input queue (GSFLSH) BPRl
data format

(see GDF) 165
default cell size. query (GSaCEL) BPRt
field

clear (GSCLR) BPRl
define (GSFLD) BPRt
query (GSQFLD) BPRt

functions BPRl
GDDM-GKS BPRl
loading symbol sets 67
primitives

attributes outside segments BPRl
through GDF 170

Index

Index 273

index

graphics (continued)
query device characteristics (FSQURY) BPR1
query graphics locator data (GSQlOC) BPR1
segments

functions BPR1
send to alternate device (GSCOPY) BPR1
symbol sets

loading from application program (GSDSS) BPR1
loading from auxiliary storage (GSlSS) BPR1

using PS with 67
waitfor input (GSREAD) BPR1

graphics data descriptor structured field 257
graphics data structured field 257
graphics image

draw scaied graphics image (GSIMGS) BPR1
draw (GSIMG) BPR1

graphics window
define (GSWIN) BPR1
uniform graphics window, define (GSUWIN) BPR1

GSAM (set attribute mode) BPR1
GSARC (draw a circular arc) BPR1
GSARCC (specify aspect-ratio control (for copy)) BPR1
GSAREA (start a shaded area) BPR1
GSBMIX (set current background color-mixing mode) BPR1
GSBND (define a data boundary) BPR1
GSCA (set current character angle) BPR1
GSCAll (call a segment) BPR1
GSCB (set character-box size) BPR1
GSCBS (set character-box spacing) BPR1
GSCD (set current character direction) BPR1
GSCH (set current character shear) BPR1
GSCHAP (draw a character string at current position) BPR1
GSCHAR (draw a character string at a specified point) BPR1
GSClP (enable and disable clipping) BPR1
GSClR (clear graphics field) BPR1
GSCM (set current character mode) BPR1
GSCOl (set current color) BPR1
GSCOPY (send graphics to alternate device) BPR1
GSCORR (explicit correlation of tag to primitive) BPR1
GSCORS (explicit correlation of structure) BPR1
GSCP (set current position) BPR1
GSCPG (set current code page) BPR1
GSCS (set current symbol set) BPR1
GSDEFE (end drawing defaults definition) BPR1
GSDEFS (start the drawing defaults definition) BPR1
GSDSS (load a graphics symbol set from the application

program) BPR1
GSElPS (draw an elliptic arc) BPR1
GSENAB (enable or disable a logical input device) BPR1
GSENDA (end a shaded area) BPR1
GSFLD (define the graphics field) BPR1
GSFlSH (clear the graphics input queue) BPR1
GSFlW (set current fractional line width) BPR1
GSGET (retrieve graphics data) BPR1
GSGETE (end retrieval of graphics data) BPR1
GSGETS (start retrieval of graphics data) BPR1
GSIDVF (initial data value, float) BPR1
GSIDVI (initial data value, integer) BPR1
GSllOC (initialize locator) BPR1
GSIMG (draw a graphics image) BPR1
GSIMGS (draw a scaled graphics image) BPR1
GSIPIK (initialile pick device) BPR1
GSISTK (initialize stroke device) BPR1
GSISTR (initialize string device) BPR1
GSLINE (draw a straight line) BPR1
GSlOAD (load segments) BPR1
GSlSS (load a graphics symbol set from auxiliary

storage) BPR1
GSlT (set current line type) BPR1
GSlW (set current line width) BPR1
GSMARK (draw a marker symbol) BPR1
GSMB (set marker-box size) BPR1
GSMIX (set current foreground color-mixing mode) BPR1
GSMOVE (move without drawing) BPR1
GSMRKS (draw series of marker symbols) BPR1
GSMS (set the current type of marker symbol) BPR1

274 Base Programming Reference

GSMSC (set marker scale) BPR1
GSPAT (set current shading pattern) BPR1
GSPFl T (draw a curved fillet) BPR1
GSPlNE (draw series of lines) BPR1
GSPOP (restore altributes) BPR1
GSPS (define the picture space) BPR1
GSPUT (restore graphics data) BPR1
GSQAGA (query all geometric atlributes) BPR1
GSQAM (query the current altribute mode) BPR1
GSQATI (query initial segment altributes) BPR1
GSQATS (query segment altributes) BPR1
GSQBMX (query the current background color-mixing

mode) BPR1
GSQBND (query the current data boundary definition) BPR1
GSQCA (query character angle) BPR1
GSQCB (query character-box size) BPR1
GSQCBS (query character-box spacing) BPR1
GSQCD (query character direction) BPR1
GSQCEl (query default graphics cell size) BPR1
GSQCH (query character shear) BPR1
GSQCHO (query choice device data) BPR1
GSQClP (query the clipping state) BPR1
GSQCM (query current character mode) BPR1
GSQCOl (query current color) BPR1
GSQCP (query current position) BPR1
GSQCPG (query code page) BPR1
GSQCS (query current symbol-set identifier) BPR1
GSQCUR (query the cursor posilion) BPR1
GSQFlD (query the graphics field) BPR1
GSQFlW (query the current fractional line width) BPR1
GSQllD (query logical input device) BPR1
GSQlOC (query graphics locator data) BPR1
GSQlT (query current line type) BPR1
GSQlW (query current line width) BPR1
GSQMAX (query the number of segments) BPR1
GSQMB (query marker box) BPR1
GSQMIX (query the current color mixing mode) BPR1
GSQMS (query current marker symbol) BPR1
GSQMSC (query marker scale) BPR1
GSQNSS (query number of loaded symbol sets) BPR1
GSQORG (query segment origin) BPR1
GSQPAT (query the current shading paltern) BPR1
GSQPIK (query pick data) BPR1
GSQPKS (query pick structure) BPR1
GSQPOS (query segment position) BPR1
GSQPRI (query segment priority) BPR1
GSQPS (query picture-space definilion) BPR1
GSQSEN (query mixed string altribute of graphics text) BPR1
GSQSIM (query existence of simultaneous queue entry) BPR1
GSQSS (query loaded symbol sets) BPR1
GSQSSD (query symbol set data) BPR1
GSQSTK (query stroke data) BPR1
GSQSTR (query string data) BPR1
GSQSVl (query current segment viewing limits) BPR1
GSQTA (query text alignment) BPR1
GSQTAG (query current tag) BPR1
GSQTB (query the text box) BPR1
GSQTFM (query segment transform) BPR1
GSQVIE, query current viewport definition BPR1
GSQWIN (query the current window definition) BPR1
GSREAD (await graphics input) BPR1
GSRSS (release a graphics symbol set) BPR1
GSSAGA (set all geometric attributes) BPR1
GSSATI (set initial segment altributes) BPR1
GSSATS (modify segment attributes) BPR1
GSSAVE (save a segment) BPR1
GSSClS (close the current segment) BPR1
GSSCPY (copy a segment) BPR1
GSSCT (set current transform) BPR1
GSSDEl (delete a segment) BPR1
GSSEG (create a segment) BPR1
GSSEN (set mixed string attribute of graphics text) BPR1
GSSINC (include a segment) BPR1
GSSORG (set segment origin) BPR1
GSSPOS (set segment position) BPR1
GSSPRI (set segment priority) BPR1

GSSTFM (set segment transform) BPR1
GSSVL (define segment viewing limits) BPR1
GSTA (set text alignment) BPR1
GSTAG (set current primitive tag) BPR1
GSUWIN (define a uniform graphics window) BPR1
GSVECM (vector operations) BPR1
GSVIEW (define a viewport) BPR1
GSWIN (define a graphics window) BPR1

H
Hangeul BPR1
Hangeul character codes BPR1
Hangeul fields (see DBCS fields)
hardware line types for plotters (GSL T) BPR1
heading page 151
high-performance alphanumerics 109. BPRl

bundle definition
bundle-list contents 112
bundle-list header 113
contents of field-list header 109
data buffer 112
data structure 109
data-buffer attributes

color 112
highlight 112
symbol set 112

data-buffer contents 112
dynamic fields 116
enlarging structures 116
example of bundle list 115
example of data buffer 112
example of field list 112
field list 109
field-definition contents 109
how to use 115
Input 115
locate mode 115
move mode 115
output 115
reshow 115
restrictions

FRCEVAL call 117
on running with validation on 117
on use of shared storage 116
on use with Interpreted languages 116
on use with read-only storage 116

updating a bundle list 116
updating a data buffer 116
updating a field list 116

highlight
characters within a mapped field 91
field (ASFHLT) BPR1
modify segment attribute (GSSATS) BPRl
query character (ASQHL T) BPRl
specify character (ASCHL T) BPR1

HOLLOW keyword. MVS/XA 31
HRIDOCNM processing option 149. 155. BPRl
HRIFORMT processing option 149. 152. BPRl
HRIPSIZE processing option 149. 152. BPRl
HRISPILL processing option 149.151. BPRl
HRISWATH processing option 149. 152. BPRl

ICU (Interactive Chart Utility)
changing transaction name under IMSNS 145
default isolate value 145
default use of panel color 145
default use of symbol set In formats 145
format defaults 144
national languages BPRl

ICUFMDF. format defaults 144
ICUFMSS. default use of symbol sets in formats value for

ICU 145

ICUISOL. default Isolate value for ICU 145
ICUPANC. default use of panel color value for ICU 145
IMACLR (clear a rectangle In an Image) BPR1
IMACRT (create an image) BPR1

Index

IMADEL (delete the image associated with the Identifier) BPR1
image

begin. GDF order 178
control echoing of scanner Image (ISESCA) BPR1
create an empty projection (lMPCRT) BPR1
define bi-Ievel conversion algorithm (IMRCVB) BPR1
define brightness conversion algorithm (IMRBRI) BPR1
define contrast conversion algorithm (IMRCON) BPR1
delete projection (IMPDEL) BPR1
delete (I MADEL) BPR1
end. GDF order 179
initialize image locator cursor (ISILOC) BPR1
query image box cursor (ISQBOX) BPR1
save projection on auxiliary storage (IMPSAV) BPR1
write data. GDF order 179

image cursors
query device characteristics (FSQURY) BPR1

Image data descriptor structured field 257
image data files

format 163
image devices

supported by GDDM BPR1
image displays

query device characteristics (FSQURY) BPR1
image functions BPR1
image picture data structured field 257
Image Print Utility (ADMUIMPx) 56. BPR1
image scanners

query device characteristics (FSQURY) BPR1
Image Symbol Editor

format of symbol definitions 201
introduction BPRl
run (ISSE) BPR1
setting code page 125
starting from application program BPR1

image symbol sets 65
format 200

Image symbols BPR1
Image View Utility

GDDM-IVU BPR1
Images

GDDM-IVU BPR1
printing 48. 56. 57

IMAGID (get and reserve a unique image identifier) BPRl
IMAGT (retrieve image data from an image) BPR1
IMAGTE (end retrieval of data from an image) BPR1
IMAGTS (start retrieval of data from an Image) BPR1
IMAPT (enter data Into an image) BPR1
IMAPTE (end data entry into an Image) BPR1
IMAPTS (start data entry into an image) BPR1
IMAQRY (query attributes of an image) BPR1
IMARES (convert the resolution attributes of an Image) BPR1
IMARF (change resolution flag of an image) BPR1
IMARST (restore image from auxiliary storage) BPR1
IMASAV (save image on auxiliary storage) BPR·1
IMATRM (trim an image down to the specified

rectangle) BPR1
Immediate detection of selectable mapped fields 92
IMPCRT (create an empty projection) BPR1
IMPDEL (delete projection) BPR1
IMPGlD (get and reserve a unique projection identifier) BPR1
IMPRST (restore projection from auxiliary storage) BPR1
IMPSAV (save projection on auxiliary storage) BPR1
IMRBRI (define brightness conversion algorithm) BPR1
IMRCON (define contrast conversion algorithm) BPR1
IMRCVB (define bl-level conversion algorithm) BPR1
IMREX (define rectangular sub-image in pixel

coordinates) BPR1
IMREXR (define rectangular sub-image in real

coordinates) BPR1
IMRNEG (negate the pixels of an extracted image) BPR1
IMRORN (orientate extracted image) BPRl

Index 275

Index

IMRPL (define place position in pixel coordinates) BPR1
IMRPLR (define place position in real coordinates) BPR1
IMRRAL (set current resolution/scaling algorithm) BPR1
IMRREF (reflect extracted image) BPRl
IMRSCL (scale extracted image) BPRl
IMSDECK, deck output LTERM 145
IMSEXIT, exit character string 145
IMSICU, ICU transaction name 145
IMSISE, ISE transaction name 145
IMSMAST,lMSNSshutdown LTERM name 145
IMSMODN, message output descriptor name 145
IMSPRNT, print utility name 145
IMSSDBD, system-definition DBD name 145
IMSSEGS, segment names 145
IMSSHUT, shutdown string 145
IMSSYSP, system printer name 145
IMSTRCE, trace ddname 145
IMSUISZ, input area size 145
IMSUMAX, maximum number of users 145
IMSVSE, Vector Symbol EdHor transaction name 145
IMSWTOD, write-to-operator descriptor codes 145
IMSWTOR, write-to-operator routing codes 145
IMSNS

ADMASXI (user error-exit name) BPR1
application program structure 24
basic edit, use of 26
changing shutdown L TERM name 145
data bases, use of 27
default error exit 26
DLII interface 26
dynamic load and SPI 25
ESPCB (identify PCB) call BPRl
external defaults 131
GDDM code above 16M 31
identify PCB in ESPCB BPRl
message format service (MFS), use of 26
message queues 27
message size of segments 27
MVS/XA support 31
name-list and name-count values in DSOPEN 160
object import/export utility 28
PCB (program communication block) 24, BPR1
print utility 49
PSB (program specification block) 24
restrictions 23
SCS printers 26
USing GDDM 23
with GDDM-PGF utilities 28
/BROADCAST command BPR1

IMXFER (transfer data between two images, applying a
prOjection) BPR1

include a segment (GSSINC) BPRl
incompatibilHies with previous release BPR1
IND$FILE CLIST 71
IND$FILE EXEC 73
initial data value, float (GSIDVF) BPR1
initial data value, integer (GSIDVI) BPR1
initialize GDDM processing (FSINIT) BPRl
initialize GDDM with SPIB (SPINIT) 103, BPRl
initialize image box cursor (ISIBOX) BPR1
initialize image locator cursor (lSILOC) BPR1
initialize locator (GSILOC) BPRl
initialize pick device (GSIPIK) BPRl
initialize string device (GSISTR) BPRl
initialize stroke device (GSISTK) BPRl
initializing GDDM

string device (GSISTR) BPR1
stroke device (GSISTK) BPR1
with FSINIT BPRl
with SPIB (SPINIT) BPR1

inline resources for printers 62
input

editing, mapped data 92
null-to-blank conversion (ASFIN) BPR1
processing (IMSNS and MFS) 26

276 Base Programming Reference

Input (continued)
wait for graphics input (GSREAD) BPR1

input area size, IMSNS 145
input/output area (see application data structure) 85
INRESRCE processing option 156
INSCPG

defaults option 145
Installation code page 122, 124

INSCPG defaults option 145
intenslfled-display attribute 90
intensity attribute for a field (ASFINT) BPR1
interactive graphics BPRl
Interactive Map Definition (GDDM-IMD)

default options
CICGIMP 142
CICIADS 142
CICIFMT 142
CICSTGF 142
CMSIADS 143
CMSIFMT 143
CMSMSLT 143
TSOGIMP 148
TSOIADS 148
TSOIFMT 148

mapping 85
MSL (map specification library (MSL) name) 143
relationship with GDDM BPR1
staged data file-type for CICSNS 142
staging file name for CICSNS 142

interfaces
external BPRl
nonreentrant BPR1

CICSNS 8
reentrant BPR1
system programmer 103, BPR1

Internal trace, control (FSTRCE) BPRl
Interrupt on VM/CMS 44
introduction to GDDM BPRl
INVKOPUV processing option 149, 158, BPR1
invoke master environment group structured field 257
invoking VM/CMS print utility automatically 158
10BFSZ, transmission buffer size 145
10COMPR, compressed PS loads 146
10SYNCH, synchronized I/O 146
IPDS printers 53, BPRl

fully qualified name for 258
map coded font structured field 258
print quality control on BPRl
quality processing option 157

ISCTL (set Image quality-control parameters) BPR1
ISE (Image Symbol Editor), changing transaction name in

IMSNS 145
ISENAB (enable or disable image cursor) BPRl
ISESCA (control echOing of scanner Image) BPR1
ISFLD (define image field) BPR1
ISIBOX (Initialize image box cursor) BPRl
ISILOC (initialize Image locator cursor) BPRl
ISLDE (load external read-only image) BPRl
ISOBOX (query image box cursor) BPRl
ISO COM (query image compressions supported by the

device) BPR1
ISOFLD (query Image field) BPRl
ISOFOR (query image formats supported by the device) BPRl
ISOLOC (query Image locator cursor position) BPRl
ISORES (query supported image resolutions) BPRl
ISOSCA (query image scanner device) BPR1
ISS (Image symbol set) and VSS (vector symbol set)

formats 199
ISSE

calling from PLiI BPRl
run the Image Symbol Editor BPR1
start the Image Symbol Editor BPRl

ISXCTL (extended set image quality control parameters) BPRl
Italian BPRl
Italian default vector symbol set 70
I/O errors because of picture complexity BPRl

I/O translation tables, define (ASDTRN) BPR1

J
Japanese BPR1
Japanese default vector symbol set 70
JCL examples

copy page segments from phase library to VSAM file 16
defining spill files 16
printing images 57
VSE print program 48

JES/328X 49, 53
common errors 54
confidential printing 54
interfaces 54

Job Entry Subsystem 53
justifying input data 93

K
Kanji BPR1
Kanji character codes BPR1
Kanji fields (see DBCS fields)
Katakana 124
Katakana character codes BPR1
keyboard input of CECP characters 142
keyboard, unlocking in DSOPEN 150
keywords for MVS/XA implementation 31
Korean BPR1

L
language considerations for calls BPR1
language defauH vector symbol sets 70
languages

facilities for national BPR1
large application data structure 94
last error, query (FSQERR) BPR1
LCLMODE processing option 149, 155, BPR1
leave-alone mode, color mixing BPR1
left-justify mapped fields 93
length adjunct

Introduction 85
usage 91

length of data In mapped field 91
library management (ESLlB) BPR1
library of GDDM publications BPR1
light pen detection 92
line

draw a series of lines (GSPLNE) BPR1
draw a straight line (GSLlNE) BPR1
GDF order 179
hardware line type (GSL T) BPR1
set current width (GSLW) BPR1
type

GDF order 180
query (GSQL T) BPR1
set(GSL T) BPR1

width
fractional (GSFLW) SPR1
GDF order 180
query fractional (GSQFLW) SPR1
query (GSOLW) SPR1
set current (GSLW) SPR1

link-editing GDDM application programs
CICSNS 7
IMSNS 24
TSO 33

Iink-edHlng sample programs 251
link-edHing with GDDMNSE 15
linkage, assembler language SPR1
list of GDF orders 167
load a graphics symbol set from auxiliary storage

(GSLSS) BPR1
load a graphics symbol set from the application program

(GSDSS) SPR1

load a symbol set Into a PS store from auxiliary storage
(PSLSS) SPRt

Index

load a symbol set Into a PS store from the application program
(PSDSS) SPRt

load external read-only Image (ISLDE) SPR1
load segments (GSLOAD) . SPRt
LOADDSYM processing option t49, 154, SPRt
loading

graphics symbol sets 67
from application program (GSDSS) SPR1
from auxiliary storage (GSLSS) SPR1

PS sets, using mapping 90
PSstores 65
segments and copies of GDF objects (GSLOAD) SPRt
symbol set into PS store from auxiliary storage

(PSLSS) SPR1
symbol sets condHlonally (PSLSSC) SPR1
symbol sets from application (GSDSS) SPR1
symbol sets Into PS Store (PSDSS) SPR1
work station or GDDM default symbol sets 154

local interactive graphics mode
DSOPEN procopt group 155

locating cursor with mapping requests 89
locator

echo-type 6 (GSIDVI) SPR1
enable or disable (GSENAS) SPR1
initial data value, Integer (GSIDVI) SPR1
InHlalize (GSILOC) SPR1
query graphics data (GSOLOC) SPR1

locator cursor
image, Initialize (ISILOC) SPR1

lock keyboard mode 150
logical Input devices

enable or disable (GSENAS) SPR1
querying (GSOLlD) BPR1

M
magnetiC stripe (badge reader) SPR1
mandatory enter attribute 90
mandatory fill attribute 90
manuals

GDDM library of BPR1
list of SPR1

map
query characteristics (MSOMAP) BPR1
query fit (MSOFIT) SPR1
retrieve data from (MSGET) BPRt

map coded font structured field 258
for IPDS printers 258

map medium overlay structured field 258
map specification library (MSL), fIIetype for VM/CMS

VM flletype 143
map symbol-set Identifier PSC 183
map-deflned Input editing 92
mapgroup

query characteristics (MSQGRP) BPR1
storage threshold, MAPGSTG option 148

MAPGSTG, mapgroup storage threshold 148
mapped data on 5550 and Personal System/55 SPR1
mapped data, display (MSREAD) BPR1
mapped field

create (MSDFLD) SPR1
place data Into (MSPUT) SPR1
query (MSQFLD) SPRt
query (MSQMOD) SPR1

mapping 85
adjunct field names 86
adjunct fields 85
adjunct values 86
application data structures 85
assembler constants table 96
attribute adjuncts 89
base attribute adjuncts 90
character attributes 91

Index 277

Index

mapping (continued)
COBOL constants table 98
color adjunct 90
concepts 85
constants tables 101
control use of mixed fields (SPMXMP) BPR1
copy application data structure into program 93
cursor adjunct 89
detectable fields 92
extended highlighting 90
field attributes 90
functions BPR1
generated mapgroups 85
generating large application data structures 94
Hangeul (DBCS) fields 94
Kanji (DBCS) fields 94
length adjunct 91
mandatory enter attribute 90
mandatory fill attribute 90
map-defined input editing 92

AID translation 93
folding input data 93
justify/pad fields 93

MSCPOS cali 89
MSDFLD call 89
MSGET and MSPUT calls 86
MSOPOS cali 89
new functions 94
overlaying application data areas 94
PLII constants table 101
PS adjunct 90
receive requests 86
REWRITE and REJECT requests 89
selector adjunct 89
send requests 86
setting character attributes from terminal 92
SPMXMP (control use of mixed fields) BPR1
supplied declarations 95
transforms 92
trigger field attribute 91
validation adjunct 90
WRITE requests 89

margin sizes 151
marker

GDF order 180
query scale (GSOMSC) BPRl
scale (GSMSC) BPRl

marker box
GDF order 180
query (GSOMB) BPR1
size (GSMB) BPRl

marker scale GDF order 181
marker symbol

draw a series of (GSMRKS) BPRl
draw single (GSMARK) BPRl
query (GSOMS) BPRl
set (GSMS) BPRl

marker type GDF order 181
maximum characters for each line In FSLOG/FSLOGC 151
maximum number of users, IMSNS 145
MDT (modified data tag) attribute 90
medium copy count structured field 259
medium descriptor structured field 259
medium modification control structured field 259
message output descriptor, IMSNS 145
message segments, size of (IMSNS) 27
messages

composite document printing 62
from WTP (write-to-programmer) 38
national languages BPRl

MFS (message format service) 26
mixed double-byte and single-byte character 94,112
mixed fields

control use by mapping (SPMXMP) BPRl
define mixed-string attribute (ASFSEN) BPRl

278 Base Programming Reference

mixed fields (continued)
define primary symbol set for (ASFPSS) BPRl
draw character string at specified point (GSCHAR) BPRl
get contents (ASCGET) BPR1
introduction BPR1
MIXSOSI default specification 146
specify contents (ASCPUT) BPR1
specify cursor position within (ASFCUR) BPR1
(see also "field")

mixed string of graphics text
enable and disable position of SO/SI (GSSEN) BPR1
query current value of mixed string attribute

(GSOSEN) BPR1
mixed-with-position fields 94,112
mixed-without-position fields 94, 112
mixing graphics and image on printers BPR1
mixing mode for color

query (GSOMIX) BPR1
set foreground (GSMIX) BPR1

MIXSOSI default option 146
mode

define for operator reply (ASMODE) BPR1
of MVS/XA support 31
query current background color-mixing (GSOBMX) BPRl
query current color mix (GSOMIX) BPR1
set current background color-mix (GSBMIX) BPRl
set current character (GSCM) BPRl
set current foreground color-mixing (GSMIX) BPR1

model transform order 181
mode, attribute

set (GSAM) BPR1
. mode, character

set (GSCM) BPR1
mode, current background color-mix

set (GSBMIX) BPR1
mode, foreground color-mix

set (GSMIX) BPR1
mode, update

set (FSUPDM) BPR1
modified data tag (MDT) attribute 90
modified field lists

query identifiers (APOIDS) BPR1
query numbers (APONUM) BPR1

modified fields
query lengths (ASOMOD) SPR1
query mapped (MSOMOD) SPR1
query number of (ASONMF) BPR1

modify field list (APMOD) SPRl
modify segment attributes (GSSATS) BPR1
modify the current operator window (WSMOD) BPRl
modify the current partition (PTNMOD) BPR1
monochrome color master

ddname or high-level qualifier, TSO 148
filetype, VM 143

monochrome file name 148
move current position without drawing (GSCP) SPR1
move without drawing (GSMOVE) SPR1
MSCPOS (set cursor position) 89, SPR1
MSDFLD (create or delete a mapped field) 89, SPRl
MSGET (retrieve data from a map) 86, BPR1
MSPCRT (create a page for mapping) BPR1
MSPORY (query current page) BPR1
MSPUT (place data into a mapped field) 86, BPR1
MSOADS (query application data structure definition) BPR1
MSOFIT (query map fit) BPR1
MSOFLD (query mapped field) BPR1
MSOGRP (query mapgroup characteristics) BPR1
MSOMAP (query map characteristics) BPR1
MSOMOD (query modified fields) SPR1
MSOPOS (query cursor position) 89, BPR1
MSREAD (present mapped data) BPRl
multiple fields

define (deleting existing fields) (ASoFMT) BPRl
redefine, without deleting existing fields (ASRFMT) SPRl

multiple instances of GDDM, running 42
MVS Batch 38

MV5JE52 53
MV5JE53 53
MV5/XA 31

application interface
user exits 32

application programming considerations 32
compiling

CIC5N5-dependent routines 31
IM5N5-dependent routines 32
subsystem-independent routines 31
T50-dependent routines 32

F5EXIT call usage 32
GDDM application Interface 31
keywords for implementation 31
5PINIT call usage 32

MV5, functions available BPRl

N
NAME nickname parameter 3
name-list and name-count values In DSOPEN 160
name-lists 160

CICSNS 160
famlly-1 160
IM5NS 160
reserved names "*" and blanks 160
TSO 161
VM/CMS 162

naming conventions for GDDM objects 147
National Language support

default specification 146
facilities and restrictions BPR1

national languages BPRl
national use characters 121
native CMS file processing 42
NATLANG, national language support specification 146
negate the pixels of an extracted image (IMRNEG) BPRl
new devices in Version 2 Release 1 BPRl
new devices in Version 2 Release 2 BPRl
nicknames 3

APPEND parameter 3
DEVTOK parameter 4
DSOPEN BPR1
encoded-UDS format 5
FAM parameter 3
for printer in line resources 62
NAME parameter 3
PROCOPT parameter 4
procopt specifications BPRl
REPLACE parameter 3
source-format UDS parameters 3
TOFAM parameter 4
TONAME parameter 4
using processing option groups 3

NL features BPR1
NLS (see National Language support)
no operation structured field 259
NOEDIT mode under TSO 37
non-GDDM device interrupt handling 45
nonchained attribute for segments

set initial attribute (GSSATI) BPR1
nondisplay attribute 90
nondlsplayable characters 121
nonprintable characters 121
nonquerlable APL displays and printers

T50 37
VM/CMS 45

non reentrant interface BPR1
CICSNS 8

nonstore attribute for segments
modify the attribute (GSSATS) BPR1

normal-display attribute 90
Norwegian BPR1
Norwegian default vector symbol set 70
NPARMS, parameters for call Intercept exit 107

number of copies printed 151
number of segments, query (GSQMAX) BPRl
numbering conventions 147
NUMBFRM. number convention 147
numeric attribute 90

o
object area descriptor structured field 259
object area position structured field 259
object code page 122, 124
object Import/export utility (IMSNS) 28
objects

format 163
GDDM, code page conversion 124

OBJFILE defauH option for naming conventions 147
opaque mode, background color-mixing BPRl
open

segment (GSSEG) BPRl
open a device

auxiliary devices (DSOPEN)
6180 BPRl
6182 BPRl
6184 BPRl
6186 BPRl
7371 BPRl
7372 BPRl
7374 BPR1
7375 BPRl

display devices (DSOPEN)
3178 BPR1
3179 BPRl
3179-G BPRl
3192-G BPRl
3277 BPRl
3278 BPRl
3279 BPRl
3290 BPRl
5080 BPRl
8775 BPRl

plotters (DSOPEN)
6180 BPRl
6182 BPR1
6184 BPRl
6186 BPRl
7371 BPRl
7372 BPRl
7374 BPR1
7375 BPRl

printers (DSOPEN)
3268 BPRl
3287 BPRl
3800-1 BPRl
3800-3 BPRl
3800-8 BPRl
3812 BPRl
3820 BPRl
4224 BPRl
4234 BPRl
4250 BPR1

scanners (DSOPEN)
3117 BPRl
3118 BPRl

open alternate device (FSOPEN) BPRl
opening

device (DSOPEN) BPRl
operator reply mode (ASMODE) BPRl
operator windows BPRl

create (WSCRT) BPRl
delete (WSDEL) BPRl
modify (W5MOD) BPRl
query Identifiers (WSaWI) BPRl
query numbers (WSaWN) BPRl
query unique (WSaUN) BPRl
query viewing priorities (WSaWp) BPRl

Index

Index 279

Index

operator windows (continued)
query (WSQRY) BPRl
select (WSSEL) BPRl
set viewing priorities (WSSWP) BPRl

origin identification option in DSOPEN 154
origin of a segment

query (GSQORG) BPRl
set (GSSORG) BPRl

ORIGINID processing option 149, 154, BPRl
outlining a field (ASFBDY) BPRl
outlining fields in maps 91
OUTONL Y processing option 149, 150, BPRl
output

blank-to-null conversion (ASFOUT) BPRl
data-stream type for a file 151
file format for printers 152
paper size 152
to device (ASREAD) BPRl

output print utility, GDDM
background TSO 49
CICSIVS 48
IMSIVS 49
VM/CMS 55

overflow, PS
caused by picture complexity 68
checking for (FSCHEK) BPRl

overlaying application data areas 94
overpalnt mode, color mixing BPRl
overpainting segments (GSSPRI) BPRl
override alphanumeric character-code aSSignments

(ASTYPE) BPRl

P
PA keys under TSO 36
padding fields 93
page

clear current (FSPCLR) BPRl
create for mapping (MSPCRT) BPRl
create (FSPCRT) BPRl
default BPRl
delete BPRl
functions BPRl
query current Identifier BPR1
query unique identifier (FSQUPG) BPRl
Query window (FSQWIN) BPRl
query (FSPQRY) BPRl
save current contents (FSSAVE) BPRl
select (FSPSEL) BPRl
set window (FSPWIN) BPRl

page descriptor structured field 260
page feed for plotters

processing option 152
page position structured field 260
page printers

4250 BPRl
page printing 62
page segments

creating 48
large, for 4250, under VSE 16

page sizes 151
panning and zooming pictures 155
paper size option, plotters 153
parameter definitions

characters BPR1
fullword integers BPR1
in arrays BPRl
in structures BPRl
integers BPRl
numerical BPRl
Single-precision floating-point BPRl

PARMVER, parameter verification 147
partition sets

create (PTSCRT) BPRl
delete (PTSDEL) BPRl

280 Base Programming Reference

partition sets (continued)
functions BPRl
query attributes (PTSQRY) BPRl
query unique identifier (PTSQUN) BPRl
select (PTSSEL) BPR1

partitions
create (PTNCRT) BPR1
delete (PTNDEL) BPRl
functions BPRl
modify the current (PTNMOD) BPR1
query device characteristics (FSQURY) BPRl
query identifiers (PTSQPI) BPRl
query numbers (PTSQPN) BPRl
query the current (PTNQRY) BPRl
query unique identifier (PTNQUN) BPRl
query viewing priorities (PTSQPP) BPRl
select (PTNSEL) BPRl
set viewing priorities (PTSSPP) BPRl

pattern
GDF order 182
GSPAT, set current shading pattern BPRl
GSQPAT, query current shading pattern BPRl

PAl usage
GDDMIVMXA 46
TSO 36,158
VM/CMS 157

PA2 usage under CMS 157
PCB (program communication block) 24

identify in ESPCB BPRl
PCLK processing option 157, BPRl
PCLKEVIS processing option BPRl
PCLKF feature BPRl
pens for plotters

pressure option 153
velocity option 152
width option 152

People's Republic of China BPRl
perform code conversion on a character string

(FSTRAN) BPRl
performance

high-performance alphanumerics 109
personal computers BPRl

processing option 157
Personal System/55 94
pick data, Query (GSQPIK) BPRl
pick device

enable or disable (GSENAB) BPRl
initialize (GSIPIK) BPRl

pick structure. query (GSQPKS) BPRl
pick window aperture size BPRl
pick (tag) identifier GDF order 182
picture complexity, check for PS overflow BPRl
picture interchange format (PIF) files 71
picture orientation option, plotters 153
picture overflow

4224 printer 68
picture prolog PSC 183
picture space

define (GSPS) BPRl
query (GSQPS) BPRl

PIF (picture interchange format) files 71, 124
place data into a mapped field (MSPUT) BPR1
PLlST, addresses for call intercept exit 107
plot and slide facility BPRl
plotters

canceling output with Clear key
ASREAD BPRl
FSFRCE BPRl

character mode (GSCM) BPRl
define graphics field (GSFLD) BPRl
hardware line type (GSL T) BPRl
loading graphics symbol sets (GSDSS) BPRl
new support In GDDM Version 2 Release 1 BPRl
new support in GDDM Version 2 Release 2 BPRl
operating Instructions for print utility 47

plotters (continued)
page feed 152
paper size 153
pen pressure 153
pen velocity 152
pen width 152
picture orientation 153
plotting-area size 153
print utility (VM/CMS) 56
query characteristics (OSQOEV) SPR1
query device characteristics (FSQURY) SPR1
supported by GOOM SPR1

plotting area option 153
plotting, centralized SPR1
PLTAREA processing option 149, 153, SPR1
PL TFORMF processing option 152
PL TP"PSZ processing option 149, 153, SPR1
PL TPENP processing option 149, 153, SPR1
PL TPENV processing option 149, 152, SPR1
PLTPENW processing option 149,152, SPR1
PLTROTAT processing option 149,153, SPR1
PLII

declarations of SPR1
error exits SPR1
example application data structure 66
mapping constants table, AOMUPIMC 101

pop GOF order 182
position of alphanumeric cursor

query (GSQCUR) BPR1
position of cursor

query alphanumeric (ASQCUR)
position the cursor (ASFCUR) BPR1
pre loaded PS sets 66
present mapped data (MSREAO) BPR1
Presentation Graphics Facility (see GOOM-PGF)

relationship with GOOM BPR1
presentation text data structured field 260
presentation text descriptor structured field 261
primary symbol set for fields (ASFPSS) BPR1
primitive tag, set (GSTAG) BPR1
primitive-to-tag correlation (GSCORR) BPR1
primitives SPR1
primitives outside segments BPR1
print

control options, OSOPEN 151
data-set qualifier, TSO 148
filetype, VM/CMS 143

Print Job Utility, VSE 48
print quality control on IPOS printers SPR1
print utilities (AOMOPUx) SPR1
print utility 47

AOMOPRT 50
AOMOPUC 48
AOMOPUI 49
AOMOPUT 49
AOMOPUV 55
automatic invocation (VM/CMS) 56
CICSNS 48
GOOM files through RSCS (VM/CMS) 55
IMSNS 49
name

CICSNS 142
IMSIVS 145

plotters 47
printers 47
TSO 49
TSO background 49
VM/CMS 55

print (AOMPAINT) files 125
inter-release compatibility SPA1

PAINTCTL processing option 149, 151, SPA1
PAINTOST processing option 149, 159, SPA1
printer

AFPOS, processing option 62
close queued printer (FSCLS) SPA1

printer (continued)
for composite documents 62
new support In GO OM Version 2 Release 1 SPR1
new support In GDOM Version 2 Release 2 BPR1
open queued printer (FSOPEN) SPR1
print utility 47
print utility (VM/CMS) 56
processing under VM/CMS 45
SCS under IMSNS 26

Index

send character string to queued printer (FSLOG) SPR1
send character string with carrlage-control character

(FSLOGC) SPR1
send graphics to queued printer (GSCOPY) SPR1
send page to queued printer (FSCOPY) SPR1
supported by GDDM SPR1
system ddname, TSO 148
system fIIetype, VM 143

printer page depth with ADMOPRT SPR1
printing

alphanumeric files 55
ADMOPRT 50

GDDM files through RSCS (VM/CMS) 55
images 56
Version 2 Release 1 print files SPR1
width SPR1

printing Images 57
process specific control GDF order 182
processing option groups

always-unlock-keyboard mode 150
automatic Invocation of VM/CMS print utility 158
CICS pseudoconversatlonal control 155
CMS attention handling 157
CMS CP SPOOL parameters 158
CMS CP TAG parameters 158
CMS PA1/PA2 protocol 157
color-master table identifier 159
coordination mode for CICSIVS SMS 150
deferred device name-list for print utility 154
device code-page 157
document name 155
dummy 150
encoded data fields on PCs 157
fast update mode 155
for printer inline resources 62
full descriptions 150
inline resources 156
IPDS printer quality 157
load default symbol sets 154
local interactive graphics mode 155
number of swathes 152
origin identification 154
output file data-stream type 151
output file format 152
output paper size 152
output-only mode 150
PCLK 157
personal computers 157
plotter page feed 152
plotter paper size 153
plotter pen pressure 153
plotter pen velocity 152
plotter pen width 152
plotter picture orientation 153
plotting area 153
print control options 151
printer quality 157
retained or unretalned mode 154
special device 155
spill file usage 151
summary 149
TSO CLEAR/PA1 protocol 158
TSO family-2 print-file destination 159
TSO reshow protocol 159
User Control 156
User Control fast path mode 156

Index 281

Index

processing option groups (continued)
User Control key 156
User Control print 156
User Control save 156
using with DSOPEN 149
using with nicknames 3. 149
window mode 155

PROCOPT nickname parameter 4
procopt specifications for nicknames BPRl
PROFILE ADMDEFS. external defaults file (VM/CMS) 2
PROFILE WTPMSG 38
program communication block (PCB) 24

Identify in ESPCB BPRl
program specification block (PSB) 24
programmed symbols (PS)

adjunct 90
attribute 90
code 90
loading 90
overflow

check (FSCHEK) BPRl
overflow of complex pictures 66
sets 67.90
store 90

programming languages supported BPRl
programs and features of GDDM BPRl
programs usable with GDDM. book reference BPRl
projection

create an empty (IMPCRT) BPRl
definition files format 163
image. delete (IMPDEL) BPRl
image. save on auxiliary storage (IMPSAV) BPRl

proportionally spaced typefaces 70
protected attribute 90
PS stores

loading 65
numbers 65
query status (PSQSS) BPRl
release (PSRSV) BPRl
releasing symbol sets from (PSRSS) BPRl
reserve (PSRSV) BPRl

PS (see programmed symbols)
PSB (program specification block) 24
PSCNVCTL processing option 149. 155. BPRl
PSDSS (load a symbol set Into a PS store from the application

program) BPRl
PSID (PS set identifier) 90
PSLSS (load a symbol set into a PS store from auxiliary

storage) BPRl
PSLSSC (conditionally load a symbol set Into a PS store from

auxiliary storage) BPRl
PSQSS (query status of device stores) BPRl
PSRSS (release a symbol set from a PS store) BPRl
PSRSV (reserving or releaSing a PS store) BPRl
PTNCRT (create a partition) BPRl
PTNDEL (delete a partition) BPRl
PTNMOD (modify the current partition) BPRl
PTNQRY (query the current partition) BPRl
PTNQUN (query unique partition Identifier) BPRl
PTNSEL (select a partition) BPRl
PTSCRT (create a partition set) BPRl
PTSDEL (delete a partition set) BPRl
PTSQPI (query partition identifiers) BPRl
PTSQPN (query partition numbers) BPRl
PTSQPP (query partition viewing priorities) BPRl
PTSQRY (query partition set attributes) BPRl
PTSQUN (query unique partition-set Identifier) BPRl
PTSSEL (select a partition set) BPRl
PTSSPP (set partition viewing priorities) BPRl
publications

put

GDDM library of BPRl
list of BPRl

character string into field (ASCPUT) BPRl
double-character string into DBCS field (ASGPUT) BPRl

282 Base Programming Reference

Q
QSAM (queued sequential access method)

IMSNS 26
TSO 34

quasl-reentrancy
non reentrant Interface for CICSNS BPRl
reentrant Interface BPRl

query
all geometric attributes (GSQAGA) BPRl
alphanumeric cursor position (ASQCUR) BPRl
alphanumeric cursor position (GSQCUR) BPR1
application data structure definition (MSQADS) BPRl
attribute mode (GSQAM) BPRl
attributes of an Image (IMAQRY) BPRl
auxiliary device characteristics (FSQURY)

6180 BPRl
6182 BPRl
6184 BPRl
6186 BPR1
7371 BPRl
7372 BPRl
7374 BPRl
7375 BPRl

background color-mixing mode (GSQBMX) BPRl
character angle (GSQCA) BPRl
character box spacing (GSQCBS) BPRl
character colors for a field (ASQCOL) BPRl
character direction (GSQCD) BPRl
character highlights for field (ASQHL T) BPR1
character shear (GSQCH) BPRl
character symbol sets for a field (ASQSS) BPRl
character-box size (GSQCB) BPRl
choice device data (GSQCHO) BPR1
clipping state (GSQCLP) BPRl
code page of a GDDM object (ESQCPG) BPRl
code page (GSQCPG) BPRl
color (GSQCOL) BPRl
color-mixing mode (GSQMIX) BPRl
current attribute mode (GSQAM) BPR1
current background color-mixing mode (GSQBMX) BPR1
current character mode (GSQCM) BPR1
current color mixing mode (GSQMIX) BPR1
current color (GSQCOL) BPR1
current data boundary definition (GSQBND) BPR1
current fractional line width (GSQFLW) BPR1
current line width (GSQLW) BPR1
current operator window (WSQRY) BPR1
current page identifier BPR1
current page (MSPQRY) BPR1
current partition (PTNQRY) BPR1
current shading pattern (GSQPAT) BPR1
current tag (GSQTAG) BPR1
current window definition (GSQWIN) BPR1
cursor position In a map (MSQPOS) BPR1
cursor position (ASQCUR) BPR1
cursor position (GSQCUR) BPR1
cursor position (MSQPOS) BPR1
default graphics cell size (GSQCEL) BPR1
device characteristics

DSQDEV BPRl
FSQDEV BPRl
FSQURY BPR1

device usage (DSQUSE) BPRl
devices BPR1
display device characteristics (FSQURY)

3178 BPRl
3179 BPRl
3179-G BPRl
3192-G BPR1
3277 BPRl
3278 BPRl
3279 BPRl
3290 BPRl
5080 Graphics System BPRl
8775 BPRl

query (continued)
encoded user default specification (ESQEUD) BPRl
environment (FSQSYS) BPRl
existence of simultaneous queue entry (GSQSIM) BPRl
field attributes (ASQFLD) BPRl
field list Identifiers (APQIDS) BPRl
field list numbers (APQNUM) BPRl
field list size (APQSIZ) BPRl
field list (APQRY) BPRl
fractional line width (GSQFLW) BPRl
graphics field (GSQFLD) BPRl
graphics locator data (GSQLOC) BPRl
image box cursor (ISQBOX) BPR1
image compressions supported by the device

(lSQCOM) BPRl
image field (ISQFLD) BPRl
image formats supported by the device (ISQFOR) BPRl
image locator cursor position (ISQlOC) BPRl
image scanner device (ISQSCA) BPRl
initial segment attributes (GSQATI) BPRl
last error (FSQERR) BPRl
length of field contents (ASQlEN) BPRl
line type (GSQL T) BPRl
loaded symbol sets (GSQSS) BPRl
logical input device (GSQLlD) BPRl
mapped fields (MSQMOD) BPRl
marker box (GSQMB) BPRl
marker scale (GSQMSC) BPRl
marker symbol (GSQMS) BPRl
maximum field number (ASQMAX) BPRl
mixed string attribute of graphics text (GSQSEN) BPRl
modified fields (ASQMOD) BPRl
modified fields (MSQMOD) BPRl
number of fields (ASQMAX) BPRl
number of loaded symbol sets (GSQNSS) BPRl
number of modified fields (ASQNMF) BPRl
number of segments (GSQMAX) BPRl
operator window identifiers (WSQWI) BPRl
operator window numbers (WSQWN) BPRl
operator window viewing priorities (WSQWP) BPRl
page window (FSQWiN) BPRl
partition identifiers (PTSQPI) BPRl
partition numbers (PTSQPN) BPRl
partition set attributes (PTSQRY) BPRl
partition viewing priorities (PTSQPP) BPRl
pick data (GSQPiK) BPRl
pick structure (GSQPKS) BPRl
picture space (GSQPS) BPRl
plotter device characteristics (FSQURY)

6180 BPRl
6182 BPRl
6184 BPRl
6186 BPRl
7371 BPRl
7372 BPRl
7374 BPRl
7375 BPRl

printer device characteristics (FSQURY)
3268 BPRl
3287 BPRl
3800-1 BPRl
3800-3 BPRl
3800-8 BPRl
3812 BPRl
3820 BPRl
4224 BPRl
4234 BPRl
4250 BPR1

scanner device characteristics (FSQURY)
3117 BPRl
3118 BPRl

segment attributes (GSQATS) BPRl
segment origin (GSQORG) BPRl
segment position (GSQPOS) BPRl
segment priority (GSQPRI) BPRl

query (continued)
segment transform (GSQTFM) BPRl
simultaneous queue entry (GSQSIM) BPRl
specified page (FSPQRY) BPRl
status of device stores (PSQSS) BPRl
string data BPRl .
stroke data BPRl
supported image resolutions (ISQRES) BPRl
symbol set data (GSQSSD) BPRl
symbol set on auxiliary storage (SSQF) BPRl
systems environment (FSQSYS) BPRl
text alignment (GSQTA) BPRl
text box (GSQTB) BPRl
unique device identifier (DSQUID) BPRl
unique field list identifier (APQUID) BPRl
unique operator window identifier (WSQUN) BPRl
unique page identifier (FSQUPG) BPRl
unique partition Identifier (PTNQUN) BPRl
unique partition-set identifier (PTSQUN) BPRl
update mode (FSQUPD) BPRl
User Control function (DSQCMF) BPRl

queue
entry, query existence (GSQSIM) BPR1

queued printer
close (FSClS) BPRl
open (FSOPEN) BPRl
send graphics to (GSCOPY) BPR1
send page to (FSCOPY) BPRl

queued sequential access method (QSAM)
IMSNS 26
TSO 34

R
RCP parameter for call intercept exit 107
RCP (request control parameter)

codes 231
GDDM list 231
GDDM-PGF 243
in ADMASP call 103, BPR1
introduction 103, BPRl

RCPPFLAG flag BPR1
RCPPOGP flag BPR1
RCPPPGF flag BPRl

Index

read symbol set from auxiliary storage (SSREAD) BPRl
receive requests for mapping 86
redefine fields (ASRFMT) BPR1
reentrant interface BPRl
reflect extracted image (IMRREF) BPRl
regeneration of screen BPRl
reinitialize

device
DSRNIT BPRl
introduction BPRl

GDDM (FSRNIT) BPRl
relative line GDF order 190
release a graphics symbol set (GSRSS) BPRl
release a PS store (PSRSV) BPRl
releases 1, 2, and 3: compatibility with release 4 BPR1
releases, previous, incompatibilities with BPRl
releasing or reserving a PS store (PSRSV) BPR1
releasing symbol sets

from a PS store (PSRSS) BPRl
graphics (GSRSS) BPRl

Remote Job Entry 53
REPLACE nickname parameter 3
reply mode for operator (ASMODE) BPRl
request codes module for APL 213
request control parameter (RCP)

GDDM-PGF list 243
introduction 103, BPR1

reserve a PS store (PSRSV) BPR1
reserving or releasing a PS store (PSRSV) BPRl
reshow protocol In TSO 159
restore attributes (GSPOP) BPRl

Index 283

Index

restore graphics data (GSPUT) BPR1
restore Image from auxiliary storage (IMARST) BPR1
RESTRICTED keyword, MVS/XA 31
restrictions on use of segment zero BPR1
retalned/unretalned mode, 3270-PC/G and IGX work stations

DSOPEN procopt group 154
retransmit data. or symbol sets. or both (FSREST) BPR1
retrieve graphics data

end (GSGETE) BPR1
GSGET BPR1
start (GSGETS) BPR1

retrieve image data from an Image (IMAGT) BPR1
reverse-video attribute 90
REXX BPR1

declarations of BPR1
error exits BPR1

right-justify mapped fields 93
RJE (Remote Job Entry) 53
RMODE keyword. MVSIXA 31
Roman text BPR1
rotating. scaling. shearing. and displacing primitives

(GSSCT) BPR1
rotating. scaling. shearing. and displacing segments

GSSAGA BPR1
GSSTFM BPR1

RSCS (Remote Spooling Communication Subsystem)
printing GDDM files under VM/CMS 55

run the Image Symbol Editor (ISSE) BPR1
running a program under CMS 41
running multiple Instances of GDDM 42
running the sample programs 253

S
sample JCL

CICS/DOSNS
Assembler 22
COBOL 21
PLII 20

CICS/OSNS
Assembler 19
COBOL 18
PLII 17

I MSNS
COBOL 30
PLII 29

TSO 40
sample programs 249

ADMUSC1 249
ADMUSC2 249
ADMUSF1 249
ADMUSF2 249
ADMUSP1 249
ADMUSP2 249
ADMUSP3 249
ADMUSP4 249. 250
ADMUSP7 249. 250
ADMUTMAT 250
ADMUTMAV 250
ADMUTMCT 250
ADMUTMCV 250
ADMUTMDT 250
ADMUTMDV 250
ADMUTMIT 250
ADMUTMIV 250
ADMUTMPT 250
ADMUTMPV 250
ADMUTMST 250
ADMUTMSV 250
ADMUTMT 249
ADMUTMTT 250
ADMUTMTV 250
ADMUTMT/ADMUTMV 250

compiling under VM/CMS 250
compiling under TSO 250
ending 251

284 Base Programming Reference

sample programs (continued)
ADMUTMT/ADMUTMV (continued)

Interaction with User Control 251
link-editing under TSO 250
link-editing under VM/CMS 250
running under TSO 250
running under VM/CMS 250
running your own programs 251
using 251

compiling 251
link-editing 251
running 253

sample symbol sets 69
SAVBFSZ, FSSAVE buffer size 147
save a segment (GSSAVE) BPR1
save current page contents (FSSAVE) BPA1
save image on auxiliary storage (IMASAV) BPA1
save projection on auxiliary storage (IMPSAV) BPR1
saved picture, displaying

FSSHOR BPA1
FSSHOW BPR1

SBCS (single-byte character set) 94. 112
scale extracted image (lMRSCL) BPA1
scaled pick aperture size BPA1
scaling. shearing. rotating. and displacing primitives

(GSSCT) BPR1
scaling, shearing, rotating, and displacing segments

GSSAGA BPR1
GSSTFM BPA1

scanner
control echoing (ISESCA) BPA1

screen regeneration BPA1
SCAIPTNS 16
SCS printers in IMSIVS 26
search for GDDM objects on libraries (ESLIB) BPA1
segment

attributes (GSSATI) BPA1
call (GSCALL) BPR1
close current (GSSCLS) BPA1
copy (GSSCPY) BPR1
correlating structure (GSCORS) BPR1
correlating tag to primitive (GSCOAR) BPR1
create (GSSEG) BPR1
delete (GSSDEL) BPA1
geometric attributes. set (GSSAGA) BPR1
include (GSSINC) BPR1
load from library (GSLOAD) BPA1
modify attributes (GSSATS) BPR1
names for IMSIVS

IMSSEGS default option 145
open (GSSEG) BPR1
priority (GSSPRI) BPR1
query all geometric attributes (GSQAGA) BPR1
query attributes (GSQATS) BPR1
query initial attributes (GSQATI) BPR1
query number of segments (GSQMAX) BPR1
query origin (GSQORG) BPR1
query position (GSQPOS) BPR1
query priority (GSQPRI) BPR1
query transform (GSQTFM) BPR1
saving (GSSAVE) BPR1
set all geometric attributes (GSSAGA) BPR1
set initial attributes (GSSATI) BPR1
set origin (GSSORG) BPR1
set position (GSSPOS) BPR1
set transform (GSSTFM) BPR1
viewing limits query (GSQSVL) BPR1
zero. restrictions on use BPR1

segment attribute GDF order 190
segment attribute modify GDF order 191
segment characteristics GDF order 191
segment end GDF order 191
segment end prolog GDF order 191
segment pOSition GDF order 191
segment start GDF order 192
segment viewing window GDF order 193

segments
page. large. for 4250. under VSE 16

SEGSTORE processing option 149.154. BPR1
select a page (FSPSEl) BPR1
select a partition set (PTSSEl) BPR1
select a partition (PTNSEl) BPR1
select an application group (ESASEl) BPR1
select an operator window (WSSEl) BPR1
selecting symbol sets by device type 67
selector adjuncts

introduction 85
usage 89

send character string to alternate device (FSlOG) BPR1
send character string with carriage-control character to alter-

nate device (FSlOGC) BPR1
send graphics to aiternate device (GSCOPV) BPR1
send page to alternate device (FSCOPY) BPR1
send requests for mapping 86
sequential file print program. ADMOPRT 50
set all geometric attrlbu1es (GSSAGA) BPR1
set attribute mode (GSAM) BPR1
set character-box size (GSCB) BPR1
set character-box spacing (GSCBS) BPR1
set code page of auxiliary storage object (ESSCPG) BPR1
set current background color-mixing mode (GSBMIX) BPR1
set current character angle (GSCA) BPR1
set current character direction (GSCD) BPR1
set current character mode (GSCM) BPR1
set current character shear (GSCH) BPR1
set current code page (GSCPG) BPR1
set current color (GSCOl) BPR1
set current foreground color-mixing mode (GSMIX) BPR1
set current fractionalUne width (GSFlW) BPR1
set current line type (GSl T) BPR1
set current line width (GSlW) BPR1
set current primitive tag (GSTAG) BPR1
set current shading pattern (GSPAT) BPR1
set current symbol set (GSCS) BPR1
set current transform (GSSCT) BPR1
set cursor position (MSCPOS) BPR1
set default arc parameters PSC 184
set default background mix PSC 185
set default character angle PSC 185
set default character box PSC 185
set default character direction PSC 185
set default character precision PSC 186
set default character set PSC 186
set default character shear PSC 186
set default Character-box spacing PSC 185
set default coordinate type PSC 186
set default extended color PSC 186
set default field attributes (ASDFl T) BPR1
set default foreground mix PSC 187
set default fractional line width PSC 187
set default line type PSC 187
set default marker box PSC 187
set default marker symbol PSC 188
set default pattern symbol PSC 188
set default pick identifier PSC 188
set default picture scale PSC 188
set default text alignment PSC 189
set default viewing window PSC 189
set image quality-control parameters (ISCTl) BPR1
set initial segment attributes (GSSATI) BPR1
set marker scale (GSMSC) BPR1
set marker-box size (GSMB) BPR1
set mixed string attribute of graphics text (GSSEN) BPR1
set operator window viewing priorities (WSSWP) BPR1
set page window (FSPWIN) BPR1
set partition viewing priorities (PTSSPP) BPR1
set picture boundary PSC 184
set picture origin PSC 184
set segment origin (GSSORG) BPR1
set segment position (GSSPOS) BPR1
set segment priority (GSSPRI) BPR1
set segment transform (GSSTFM) BPR1

set text alignment (GST A) BPR1
set the current type of marker symbol (GSMS) BPR1
set update mode (FSUPDM) BPR1
setting

character attributes from terminal 92
cursor with mapping request 89

severity codes
non reentrant interface BPR1
reentrant interface BPR1

shaded area
end (GSENDA) BPR1
start (GSAREA) BPR1

shading patterns
query current (GSQPAT) BPR1
set current (GSPAT) BPR1

shear
GDF order 174
query (GSQCH) BPR1
set current character (GSCH) BPR1

shearing. scaling. rotating. and displacing primitives
(GSSCT) BPR1

shearing. scaling. rotating. and displacing segments
GSSAGA BPR1
GSSTFM BPR1

short-on-storage. STGRET option 147
shutdown string. IMSNS 145
simultaneous queue entry. query (GSQSIM) BPR1
size

marker box (GSMB) BPR1
query character box (GSQCB) BPR1
query default graphics cell size (GSQCEl) BPR1
set character-box size (GSCB) BPR1

slide and plot facility BPR1
SOSIEMC. SOSI emulation character 147
sound the terminal alarm (FSAlRM) BPR1
source-format UDSs

ESSUDS call BPR1
spacing

character-box spacing (GSCBS) BPR1
Spanish BPR1
Spanish default vector symbol set 70
SPECDEV processing option 149. 155. BPR1
special device 155
specify an error exit. or error threshold. or both

(FSEXIT) BPR1

Index

specify aspect-ratio control (for copy) (GSARCC) BPR1
specify character colors within a field (ASCCOl) BPR1
specify character highlights within a field (ASCHl T) BPR1
specify character symbol sets within a field (ASCSS) BPR1
specify double-character field contents (ASGPUT) BPR1
specify encoded user default specification (ESEUDS) BPR1
specify field contents (ASCPUT) BPR1
specify source format user default specification

(ESSUDS) BPR1
SPI (system programmer Interface) 103. BPR1
SPIB (system-programmer Interface block) 103. BPR1
spill file usage (4250 printers) 151
spill files under VSE 16
SPINIT (initialize GDDM with SPIB) 103. BPR1

call intercept exit 105
storage exit routines 108
task switch exit 105
usage under MVs/XA 32
user exit definition 105

SPMXMP (control the use of mixed fields by mapping) BPR1
SSQF (query a symbol set on auxiliary storage) BPR1
SSREAD (read a symbol set from auxiliary storage) BPR1
SSWRT (write a symbol set to auxiliary storage) BPR1
STAGE21D processing option 149.154. BPR1
start a shaded area (GSAREA) BPR1
start data entry into an image (IMAPTS) BPR1
start retrieval of data from an image (IMAGTS) BPR1
start retrieval of graphics data (GSGETS) BPR1
start the drawing defaults definition (GSDEFS) BPR1
start the Image Symbol Editor (ISSE) BPR1
starting to use GDDM BPR1

Index 285

Index

static cursor setting 89
status of a field. change (ASFMOD) BPR1
status of device stores (query) BPR1
STGRET. short-on-storage processing 147
storage exit routines 108
store attribute for segments

modify the attribute (GSSATS) BPR1
stored objects

format 163
straight line. draw (GSLlNE) BPRl
string data. query (GSQSTR) BPRl
string device

enable or disable (GSENAB) BPRl
Initialize (GSISTR) BPR1

stroke data. query (GSQSTK) BPR1
stroke device

enable or disable (GSENAB) BPR1
Initialize (GSISTK) BPR1

structure correlation (GSCORS) BPRl
structure of error record BPRl
structured field formats 255

cross reference 256
SUBADDR. task switch address 106
SUBPARM. task switch parameter(s) 107
substitution character In symbol-set name 67
subsystems supported BPRl
summary of amendments for Version 2 Release 1 BPRl
support material supplied with GDDM BPRl
supported devices

composed-page printers BPRl
image devices BPRl
plotters BPR1
system printers BPR1
3270 displays and attachments BPRl
5080 Graphics System BPR1
5550-family work stations BPRl

supported programming languages BPRl
supported subsystems BPRl
SVC99 allocation size (TSO) 148
SVC99 Dynamic Allocation 54
swathes. number of 152
Swedish BPR1
Swedish default vector symbol set 70
symbol editors
symbol set 65. BPR1

component threshold for DBCS 144
DBCS 68
default selection for DBCS 143
definitions. format of 201
description of functions BPR1
file format 163
format of ISS 200
format of VSS 201
handling by GDDM 65
Identification 65
identifying symbol sets 65
language for DBCS 144
load from work station or GDDM defaults 154
load into PS store from application program (PSDSS) BPR1
loading graphics symbol sets 67
loading PS stores 65
primary symbol set for fields (ASFPSS) BPR1
PS overflow 68
PS store numbers 65
query current identifier (GSQCS) BPRl
query data (GSQSSD) BPR1
query for field (ASQSS) BPR1
query Ilumber loaded (GSQNSS) BPR1
query on auxiliary storage (SSQF) BPRl
query those loaded (GSQSS) BPR1
read from auxiliary storage (SSREAD) BPRl
releasing from a PS store (PSRSS) BPRl
samples 69
selecting by device type 67
selecting symbol sets by device type 67

286 Base Programming Reference

symbol set (continued)
set current (GSCS) BPRl
specify for field (ASCSS) BPRl
using pre loaded PS sets 66
using PS with graphics 67
using symbol sets in printing 68
write to auxiliary storage (SSWRT) BPRl

symbol sets 125
loading conditionally into a PS store from auxiliary

storage BPR1
loading Into PS store from auxiliary storage (PSLSS) BPR1

synchronized 1/0. 10SYNCH default option 146
syntax conventions

assembler-language linkage BPRl
COBOL format BPR1
PLII declarations BPRl
REXX declarations BPRl

SYSOUT command (JES/328X) 53
system printer

device tokens 206
name

CICSNS 142
IMSNS 145
TSO 148
VM/CMS 143

System Product Interpreter BPR1
system programmer Interface

dynamic load
TSO 33

storage exit routines 108
system programmer Interface block (SPIB) 103. BPRl

dynamic load
IMSNS 25

SPINIT call 103. BPRl
user exit definition 105

system-definition DBD name. IMSSDBD default option 145
systems environment. query (FSQSYS) BPRl
systems that can use GDDM BPRl

T
tables for I/O translation (ASDTRN) BPRl
tag

query current (GSQTAG) BPRl
set for current primitive (GSTAG) BPRl

tag-to-primitive correlation (GSCORR) BPRl
tagging GDDM object flies with code page 124. 125
Taiwan - Republic of China BPRl
task switch exit 106
TASKSWI. task switch user exit option 105
temporary storage facilities 11
temporary storage prefix. CICSIVS 143
terminal alarm (FSALRM) BPRl
terminal processing. under TSO 38
terminals

supported BPRl
terminate GDDM processing (FSTERM) BPRl
terminating devices BPRl
text

set alignment (GSTA) BPRl
text alignment

query (GSQTA) BPR1
text alignment GDF order 193
text box. query (GSQTB) BPRl
TIMEFRM. time convention 147
time. punctuation conventions 147
TOFAM nickname parameter 4
token values for user exits 105
TONAME nickname parameter 4
trace

changing in-core trace table size. TRTABLE 148
changing trace output width. TRCEWiD 148
changing trace share value. TRCESHR 147
changing trace word value. TRACE 147
changing trace word value. TRCESTR 147

trace (continued)
ddname,IM8NS 145
ddname, TSO 148
file name 148
fIIenamelfiletype, VM 143
transient data name, CICSNS 143

TRACE, trace word value 147
transaction work area (TWA) BPR1
transfer data between two images, applying a projection

(IMXFER) BPR1
transformability attribute for segments

modify the attribute (GSSATS) BPR1
set initial attribute (GSSATI) BPR1

transforming primitives
(GSSCT) BPR1

transforming segments
GSCAll BPR1
GS8AGA BPR1
GSSTFM BPR1

transforms for mapped data 92
transient data facilities 11
translate character string (FSTRAN) BPR1
translating AID values 93
translation tables BPA1
translations, national language BPR1
transmission buffer size 145
transparency, define field attribute BPA1
transparent mode, background color-mixing BPR1
TRCESHR, trace share 147
TRCESTA, trace control 147
TRCEWID, trace output width control 148
trigger field attribute 91
trim an image down to the specified rectangle

(IMATRM) BPA1
TRTABlE, in-core trace table size 148
TRUE keyword, MVS/XA 31
T80

ADMASXT (user error-exit name) BPR1
background print utility 49
Batch 38
BDAM 34
BPAM 33
CLEAR/PA1 protocol 158
DCB characteristics 34
external defaults 134
external defaults file 2
family-2 print-file destination 159
GDDM code above 16M 31
MVS/XA support 31
name-list and name-count values in D80PEN 161
NOEDIT mode 37
PA keys under 36
printing alphanumeric flies 50
PROFilE WTPMSG 38
QSAM 34
reshow protocol 159
sequential file print program, ADMOPRT 50
storage exit routines 108
task switch exit 106
using APL feature on nonqueriable displays 37
using GDDM 33
WTP (write-to-programmer) messages 38

TSOAPLF, T80 APL default specification 148
TSOCOLM, color master ddname/high-Ievel qualifier for

T80 148
TSODECK, TSO deck ddname 148
TSODFTS, TSO defaults file ddname 148
TSOEMUL, TSO I/O Emulation 148
TSOGIMP, TSO ADMGIMP ddname 148
TSOIADS, TSO ADS ddname 148
TSOIFMT, TSO export utility ddname 148
TSOINTRP processing option 149, 158, BPR1/
TSOMONO, TSO monochrome ddname or high-level

qualifier 148
TSOPANT, TSO print data-set qualifier 148
TSORESHW processing option 149,159, BPR1

TS05Y5P, T50 system printer ddname 148
T505995, 5VC99 allocation size 148
T50599U, T50 unit specification 148
TSOTRCE, TSO trace ddname 148
TWA (transaction work area) BPR1
type of field, define (ASFTYP) BPR1
type 5 code-page name (G5CPG) BPR1
typefaces

U

national language 70
proportionally spaced 70

UDS (user default specification)
ESEUDS call BPR1
ESQEUD call BPR1
ESSUDS call BPR1
Introduction 1
source format

converting to encoded version 2
user exits 105

UDSL, encoded UDS list BPR1
underpalnt mode, color mixing BPR1
underpainting segments (GSSPRI) BPR1
underscore attribute 90
uniform graphics window, define (G5UWIN) BPR1
unprotected attribute 90
update mode, query (FSQUPD) BPR1
update the display (FSFRCE) BPR1
update the display (WSIO) BPR1
upper-case-only messages and panels BPR1
User Control 156

fast path mode 158
function (DSCMF) BPR1
query status (DSQCMF) BPR1
SAVE function control 143

user default specification (see UDS)
user exits 104

call intercept exit 107
changing GDDM's defaults 105
control block, UXBLOCK 105
GDDM conventions 105
storage exit routines 108
task switch exit 106

using GDDM under TSO 33
UXBLOCK, user-exit control block 105

V
validation adjunct and attributes 90
vector operations (GSVECM) BPR1
Vector Symbol Editor

setting code page 125
transaction name In IMSNS 145

vector symbol sets 65, BPA1
default 126
format 201
supplied with GDDM 70

index

Version 1 Releases 1,2,3, and 4: compatibility with Version 2
Release 1 BPR1

viewing composite documents 57
viewing limits

define (GSSVL) BPR1
viewport

define (GSVIEW) BPR1
query current definition (GSQVIE) BPR1

visibility attribute for segments
modify the attribute (GSSATS) BPR1
set Initial attribute (GSSATI) BPR1

VM System Product Interpreter BPA1
VMXA, functions available BPR1
VM/CMS

ADMASXV (user error-exit name) BPR1
ADMQP05T print EXEC 47
attention handling 157

Index 287

Index

VM/CMS (continued)
automatic invocation of print utility 56, 158
compiling GDDM application programs 41
CP SPOOL parameters 158
CP TAG parameters 158
external defaults

file 2
filename and filetype 2
module 2
options 137

GLOBAL commands needed for GDDM 41
name-list and name-count values in DSOPEN 162
native file processing 42
non-GDDM device interrupt handling 45
PA 1 and PA2 protocol 157
print utility 55

plotters and printers 56
printing alphanumeric files 55
printing GDDM files through RSCS 55
PROFILE ADMDEFS, external defaults file 2
storage exit routines 100
using APL feature on nonqueriable printers 45
using GDDM under VM/CMS 41

VM/XA 46
VM, functions available BPR1
VS FORTRAN character strings BPR1
VSAM ESDS flies 16
VSE

Batch
ADMASXD (user error-exit name) BPR1
external defaults 140

batch mode 15. BPR1
creating page segments in batch mode 48
functions available BPR1
Print Job Utility (ADMUPRTC) 48. BPR1

VSE Batch
VSECOLM. color master file name 148
VSEDFTS. defaults file name 148
VSEMONO. monochrome file name 148
VSETRCE. trace file name 148
VSS (vector symbol set) and ISS (Image symbol set)

formats 199
VTAM 53

W
width

query current fractional line width (GSOFLW) BPR1
query current line width (GSOLW) BPR1
set current fractional line width (GSFLW) BPR1

window mode 155
WINDOW processing option 149.155. BPR1
window specification 257
windowed device input/output (WSIO) BPR1
windows

define graphics (GSWIN) BPR1
query the current definition (GSQWIN) BPR1

work-file filetype. VM 143
write symbol set to auxiliary storage (SSWRT) BPR1
wrlte-to-operator descriptor codes. IMSNS 145
wrlte-to-operator routing codes. IMSNS 145
WSCRT (create an operator window) BPR1
WSDEL (delete operator window) BPR1
WSIO (windowed device Input/output) BPR1
WSMOD (modify the current operator window) BPR1
WSQRY (query the current operator window) BPR1
WSOUN (query unique operator window Identifier) BPR1
WSQWI (query operator window identifiers) BPR1
WSOWN (query operator window numbers) BPR1
WSQWP (query operator window viewing priorities) BPR1
WSSEL (select an operator window) BPR1
WSSWP (set operator window viewing priorities) BPR1
WTP (wrlte-to-programmer) messages 38

288 Base Programming Reference

X
XOR mode BPR1

Z
zooming and panning pictures 155

Numerics
16M. GDDM code above this location 31
24-blt addressing mode (MVSIXA) 31
31-blt addressing support (MVS/XA) 31
3117 scanner

device open (DSOPEN) BPR1
query device characteristics (FSQURY) BPR1

3118 scanner
device open (DSOPEN) BPR1
query device characteristics (FSaURY) BPR1

3178 display
device open (DSOPEN) BPR1
query device characteristics (FSaURY) BPR1

3179 display
device open (DSOPEN) BPR1
query device characteristics (FSaURY) BPR1

3179-G color display stations
character mode (GSCM) BPR1
enable/disable logical input devices (GSENAB) BPR1
graphics primitives BPR1
initialize locator (GSILOC) BPR1
initialize pick device (GSIPIK) BPR1
query device characteristics (FSaURY) BPR1

3179-G display
device open (DSOPEN) BPR1
query device characteristics (FSQURY) BPR1

3180 display
device open (DSOPEN) BPR1
query device characteristics (FSaURY) BPR1

3192-G color display stations
enable/disable logical input devices (GSENAB) BPR1
graphics primitives BPR1
initialize locator (GSILOC) BPR1
initialize pick device (GSIPIK) BPR1
query device characteristics (FSOURY) BPR1

3192-G display
device open (DSOPEN) BPR1
query device characteristics (FSaURY) BPR1

3193 display
device open (DSOPEN) SPR1
query device characteristics (FSaURY) BPR1

3268 printer
device open (DSOPEN) BPR1
query device characteristics (FSaURY) BPR1

3270-PC
device open (DSOPEN) BPR1
query device characteristics (FSaURY) BPR1

3270-PC/G
device open (DSOPEN) SPR1
query device characteristics (FSaURY) BPR1

327o-PC/G and /GX work stations
character mode (GSCM) BPR1
character set usage 67
current symbol set (GSCS) BPR1
enable/disable logical input devices (GSENAB) BPR1
GDFflies 71
graphics primitives BPR1
Initialize locator (GSILOC) BPR1
initialize pick device (GSIPIK) BPR1
Initialize stroke device (GSISTK) BPR1
LCLMODE

DSOPEN procopt group 155
load device or GDDM default symbol sets

DSOPEN procopt group 154
LOADDSYM

DSOPEN procopt group 154

3270-PC/G-and /GX work stations (continued)
loading graphics symbol sets BPRt
loading graphics symbol sets (GSDSS) BPRt
local interactive graphics mode

DSOPEN procopt group t55
panning and zooming pictures t55
PIF files 71
query device characteristics (FSaURY) BPRt
retained/unretained mode t54
symbol set usage 67

transferring PIF and GDF files 7t
zooming and panning pictures t55

3270-PC/G and /GX work stations and 5080 Graphics System
initialize string device (GSISTR) BPRt

3270-PC/GX
device open (DSOPEN) BPRt
query device characteristics (FSaURY) BPR1

3277 display
device open (DSOPEN) BPRt
query device characteristics (FSaURY) BPRt

3278 display
device open (DSOPEN) BPRt
query device characteristics (FSaURY) BPRt

3279 display
device open (DSOPEN) BPRt
query device characteristics (FSaURY) BPRt

3287 printer
device open (DSOPEN) BPRt
query device characteristics (FSaURY) SPRt

38xx printers 48. BPRt
3800 model 3 62
3800 model 8 62
3800 printer

character mode (GSCM) SPRt
3800-t printer

device open (DSOPEN) BPRt
query device characteristics (FSaURY) BPRt

3800-3 printer
device open (DSOPEN) BPRt
query device characteristics (FSaURY) BPRt

3800-8 printer
device open (DSOPEN) BPRt
query device characteristics (FSaURY) BPRt

38t2 printer 62
device open (DSOPEN) BPRt
query device characteristics (FSaURY) BPRt

3820 printer 62
character mode (GSCM) BPRt
device open (DSOPEN) SPRt
query device characteristics (FSaURY) BPRt

4224 printer 62
device open (DSOPEN) BPRt
picture overflow 68
query device characteristics (FSaURY) BPRt

4234 printer
device open (DSOPEN) BPRt
query device characteristics (FSaURY) BPRt

4250 printer BPRt
character mode (GSCM) BPRt
color-separation masters 79
current code page (GSCPG) BPRt
current symbol set (GSCS) BPRt
default code page name t43
device open (DSOPEN) BPRt
page segments. large. under VSE t6
query device characteristics (FSaURY) BPR1
spill file usage t5t

5080 Graphics System
device open (DSOPEN) BPA 1
enable/disable logical input devices (GSENAB) BPRt
initialize stroke device (GSISTK) SPRt
query device characteristics (FSaURY) BPRt

5550 94
5550-family work stations

device open (DSOPEN) BPRt

Index

5550-family work stations (continued)
enable/disable logical input devices (GSENAB) BPRt
query device characteristics (FSaURy) BPRl

6180 plotter
device open (DSOPEN) BPRl
query device characteristics (FSaURY) BPRl

6182 plotter
device open (DSOPEN) BPRl
query device characteristics (FSaURY) BPRl

6184 plotter
device open (DSOPEN) BPRl
query device characteristics (FSaURY) BPRl

6186 plotter
device open (DSOPEN) BPRt
query device characteristics (FSaURY) SPRl

7371 plotter
device open (DSOPEN) BPRl
query device characteristics (FSaURY) BPRl

7372 plotter
device open (DSOPEN) BPAl
query device characteristics (FSaURY) BPRl

7374 plotter
device open (DSOPEN) BPRl
query device characteristics (FSaURY) BPRl

7375 plotter
device open (DSOPEN) BPRl
query device characteristics (FSaURY) BPRl

SDecial Characters
/B"IOADCAST command (IMSIVS) BPRl

Index 289

GDDM
Version 2 Release 2
Base Programming Reference (Volume 2)

Order No. SC33-0332-1

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, program­
mers, and operators of IBM systems. You may use this form to communicate your comments about
this publication, its organization, or subject matter, with the understanding that IBM may use or
distribute whatever information you supply in any way it believes appropriate without incurring
any obligation to you. Your comments will be sent to the author's department for whatever review
and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative, or the IBM branch office serving your locality.

Number of latest Technical Newsletter for this publication ...

If you want an acknowledgement, give your name and address below.

Name .. .

Job Title. .. Company

Address

. Zip

For clarity, please type your comments or write them clearly, so that their meaning is fully under­
stood.
Thank you for your cooperation. No postage stamp is necessary if mailed in the U.S.A. (Else­
where, an IBM office or representative will be happy to forward your comments or you may mail
directly to the address in the front of this book.)

SC33-Q332-1

Reader's Comment Form

Fold and lope Please do nol stapla

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 6R 1 H
180 Kost Road
Mechanicsburg, PA 17055, USA

Fold and tape Please do not staple

--..- -® ----- --~-- ~--- -.. -~-- -- -~------
-~-,-

Fold and tape

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

Fold and tape

C33-0332-1
Ver ion 2 Releas \ 2

SC33-0332-01

-=- -::-:. -=. =-® ---- - ---- - - ---
=~=~=

	000001
	000002
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	249
	250
	251
	252
	253
	255
	256
	257
	258
	259
	260
	261
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	replyA
	replyB
	xback

