G DD M

Base Programming

Reference
Volume 2

SC33-0332-1

Front Cover Pattern: Electronic Sunflower

The pattern on the front and back cover
was produced using this GDDM program.

INTEGER TYPE, VAL, COUNT, N, M
REAL Al, A2, K1, K2, R1l, R2, X, Y
REAL XCEN, YCEN, XS, YS
K1=5.3333

K2=1.1

R1=2

XCEN=50

YCEN=50

CALL FSINIT

CALL GSPS(1.0,1.0)
K2=1.1*SQRT(2.4/K1)

A2=0
DO 40 M=1, 600
A2=A2+K1l

R2=K2* (A2**.5)
XS=R2*COS(A2)+XCEN
YS=R2*SIN(A2)+YCEN
DO 30 N=0, 5
Al=2.%*3,142*(FLOAT(N) /5.)+A2
X=R1*COS(Al)+XS
Y=R1*SIN(Al)+YS
IF (N) 20,10,20

10 CALL GSMOVE(X,Y)
20 CALL GSLINE(X,Y)
30 CONTINUE

40 CONTINUE
CALL ASREAD (TYPE,VAL,COUNT)
CALL FSTERM
END

SC33-0332-1
File No. S370/4300-40

G D D

Base Programming
Reference

GDDM/MVS 5665-356
GDDM/VM 5664-200
GDDM/VSE 5666-328
GDDM/VMXA 5684-007
Version 2 Release 2
Licensed Programs

Volume 2 of 2

Second Edition (September 1988)

This edition (Volume 2) applies to Version 2 Release 2 of the IBM GDDM™ (Graphical Data Display Manager) Series
of licensed programs. The programs and their numbers are:

GDDM/VM 5664-200
GDDM/MVS 5665-356
GDDM/VSE 5666-328
GDDM/VMXA 5684-007.

Changes are periodically made to the information herein; before using this publication in connection with the opera-
tion of IBM systems or equipment, refer to the latest /BM System/370, 30xx, and 4300 Processors Bibliography,
GC20-0001, for the editions that are applicable and current. If you need to order additional copies of this edition of
this book after any further revision has been published by IBM, use the temporary order number SQ33-0332.

Changes and additions to the text and illustrations are indicated by revision bars (vertical lines) to the left of the
change.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these
available in all countries in which IBM operates.

Any reference to an IBM licensed program in this publication is not intended to state or imply that only IBM's
licensed program can be used; any functionally equivalent program can be used instead.

Publications are not stocked at the addresses given below. Requests for IBM publications should be made to your
representative or to the IBM branch office serving your locality.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, comments
may be addressed either to:

International Business Machines Corporation, Department 6R1H, 180 Kost Road,
Mechanicsburg, Pennsylvania 17055, U.S.A.

or to:

IBM United Kingdom Laboratories Limited, Information Development,
Mail Point 95, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

No part of this GDDM Base Programming Reference manual may be reproduced in any form or by any means,
including storing in a data processing system, without permission in writing from IBM. Permission is hereby granted
to licensees of GDDM/MVS, GDDM/VM, GDDM/VMXA, or GDDM/VSE Version 2 Release 2 Modification 0, but to no
other person, to copy and store the sample programs included in this manual into a data processing system and to
modify and use the stored programs in accordance with their Agreement for Licensed Program. No permission is
granted to use the sample programs in any other circumstances.

THE PUBLICATION OF THE INFORMATION CONTAINED HEREIN 1S NOT INTENDED TO AND DOES NOT CONVEY ANY
RIGHTS OR LICENSES, EXPRESS OR IMPLIED, UNDER ANY IBM PATENTS, COPYRIGHTS, TRADEMARKS, MASK
WORKS OR ANY OTHER INTELLECTUAL PROPERTY RIGHTS OTHER THAN THE LIMITED PERMISSION GIVEN
ABOVE.

© Copyright International Business Machines Corporation 1980, 1981, 1983, 1984, 1985, 1986, 1987, 1988.
All rights reserved.

™ Trademark of IBM Corporation.

Preface (Volume 2)

This volume of the GDDM Base Programming
Reference provides detailed support information for the
IBM licensed program GDDM (Graphical Data Display
Manager), Version 2.

This Volume is complementary to the introductory
information and descriptions of the GDDM Base calls
given in the GDDM Base Programming Reference,
Volume 1.

For more information, see the Preface to Volume 1.

Preface (Volume 2)

Book structure (Volume 2)

Volume 2 (this volume) of the GDDM Base Program-
ming Reference contains:

Chapters 1 through 14

These chapters describe the GDDM environment from a
programming viewpoint. They give detailed informa-
tion that may be needed for some programming tasks
over and above the descriptions of the GDDM calls that
are contained in GDDM Base Programming Reference,
Volume 1.

Chapter 1, “Customizing your program and its
environment” ... pages 1 through 5.

Chapter 2, “Using GDDM under CICS/VS" ... pages
7 through 22.
Chapter 3, “Using GDDM under IMS/VS” ... pages
23 through 30.
Chapter 4, “Using GDDM under MVS/XA" ... pages
31 through 32.
Chapter 5, “Using GDDM under TSO” pages
33 through 40.
Chapter 6, “Using GDDM under VM/CMS" ... pages
41 through 46.
Chapter 7, “The GDDM print utilities” pages

47 through 63.

Chapter 8, “Symbol sets” ... pages 65 through 70.
Chapter 9, “Picture interchange format files"”
pages 71 through 77.

Chapter 10, “Setting up color-master tables”
pages 79 through 84.

Chapter 11, “Application data structure for mapping”
... pages 85 through 102.

Chapter 12, “Special-purpose
GDDM” ... pages 103 through 108.
Chapter 13, “GDDM high-performance
alphanumerics” ... pages 109 through 119.

Chapter 14, “Country-extended code pages” ... pages
121 through 126.

Appendixes A through L

These appendixes are reference sources for various
aspects of the GDDM programming interface that are
not described elsewhere.

Appendix A, “GDDM'’s default values”
127 through 148.

Appendix B, “Processing option groups and name-
lists” ... pages 149 through 162.

programming in

pages

iv Base Programming Reference

Appendix C, “GDDM object file formats” ... pages
163 through 164.

Appendix D, “GDF order descriptions” pages
165 through 193.

Appendix E, “Image object definitions” pages
195 through 198.

Appendix F, “Symbol-set formats” pages
199 through 202.

Appendix G, “Device characteristics tokens”

pages 203 through 207.

Appendix H, “Call format descriptor module”
pages 209 through 212.

Appendix |, "APL request codes module”
213 through 229.

Appendix J, “Request control parameter codes” ...
pages 231 through 247.
Appendix K, “Sample
249 through 253.
Appendix L, “Format of a Composite Document Pres-
entation Data Stream” ... pages 255 through 261.

index

... pages

programs” pages

Book structure (Volume 1)

Volume 1 of the GDDM Base Programming Reference
contains:

Chapter 1. Introduction to GDDM
This chapter is an introduction to GDDM, which briefly
describes its main features.

Chapter 2. Concepts of GDDM and use of functions
This chapter describes the main concepts of GDDM and
their uses.

Chapter 3. GDDM programming interface
This chapter describes conventions for writing GDDM
programs.

Chapter 4. GDDM calls

This chapter is a complete list of all GDDM Base calls,
with their syntax and function. The calls are listed in
alphabetic order.

Glossary

This defines the abbreviations and terminology used in
both Volumes of the GDDM Base Programming
Reference manual.

Index

Table of contents (Volume 2)

Chapter 1. Customizing your program and its
environment
User default specifications
Passing a source-format UDS to GDDM 1

External defaults file 2
Converting a source-format UDS into an encoded
UDS e 2
Passing an encoded UDSto GDDM 2
External defaults module 2
Using nicknames to define device characteristics . 3
Source format of a nickname UDS 3
Nickname scanning and matching 4
Encoded format of a nickname UDS 5
Chapter 2. Using GDDM under CICS/VS 7
Programming languages and restrictions 7
Compiling and link-editing GDDM application
programso 7
Compiling a PL/I program 7
Link-editing a GDDM application program 7
Using the nonreentrant interface of GDDM 8
Using the system programmer interface with
dynamicload 8
CICS/VS pseudoconversational applications 8
Data sets and file processing 10
File control facilities 10
Transient data facilities 11
Temporary storage facilities 11
Display terminal conventions 13
Using GDDM with Basic Mapping Support 13
Using GDDM and Basic Mapping Support
consecutively 13
Using GDDM and BMS concurrently without
coordinationmode 13
Using GDDM and BMS concurrently with
coordinationmode 13
CICS/VS GDDM default errorexit 14
Requesting transaction-independent services ... 14
Using the resource audittrails 14

GDDM application programs in VSE batch mode . 15
Sample JCL for GDDM under CICS/OS/VS using

PL/IL 17
Sample JCL for GDDM under CICS/OS/VS using

COBOL 18
Sample JCL for GDDM under CICS/OS/VS using
Assembler 19

Sample JCL for GDDM under CICS/DOS/VS using
PLIL . 20
Sample JCL for GDDM under CiCS/DOS/VS using

COBOL 21
Sample JCL for GDDM under CICS/DOS/VS using
Assembler 22
Chapter 3. Using GDDM under IMS/VS 23
Restrictions on the use of GDDM under IMS/VS .. 23
Application program structure 24
Link-editing a GDDM application program 24
Using the system programmer interface with
dynamicload 25
Program specification blocks for GDDM applications 25
Data sets and file processing 26
The IMS/VS defaulterrorexit 26
GDDM and the Message Format Service 26
GDDM DL/l interface 26
Use of messagequeues 27
Useofdatabases 27

IMS/VS considerations for GDDM utilities 28
GDDM object import/export utility 28
Sample JCL for GDDM under IMS/VS using PL/l . 29
Sample JCL for GDDM under IMS/VS using COBOL 30
Chapter 4. Using GDDM under MVS/XA 31
GDDM code above 16 megabytes 31
Application code above 16 megabytes 31
AMODE(31) applications and application
parameters above 16 megabytes 31
GDDM object compatibility between System/370
and System 370/XA 31
MVS/XA terminology 31
Subsystem-independent routines 31
CICS/VS-dependent routines 31
IMS/VS-dependent routines and TSO-dependent
routines 0o, 32
Application programming considerations 32
The SPINITcall 32
The FSEXITcall 32
Userexits 32
Chapter 5. Using GDDM under TSO 33
Link-editing a GDDM application program 33
Using the system programmer interface by
means ofdynamicload 33
Data sets and file processing 33
BPAM file processing 33
QSAM fileprocessing 34
BDAM file processing 34
File-nameusage 34
Display terminal processing 36
Using the CLEAR key in full-screenmode ... 36
Entering attention interrupts in full-screen mode 36
Reshow key processing in full-screen mode .. 36
Device errors in full-screenmode 37
Line-by-line input in full-screen mode 37
NOEDIT mode under TSO 37
Using APLterminals 37
Using GDDM under TSO batch 38
Using GDDM under MVSbatch 38
Sample JCL for GDDM under TSO 40
Chapter 6. Using GDDM under VM/CMS 41
Compiling a GDDM PL/I application program ... 41
Loading a GDDM application program 41
Running a GDDM application program or utility . . 41
Considerations for running multiple instances of
GDDM . .. e 42

Data sets and file processing 42

Native CMS file processing 42
Native CMS spool file processing 43
Display terminal conventions 44
Asynchronous interrupts on VM/CMS 44
Using APL terminals 45

Using nonqueriable displays with the APL feature 45
Using nonqueriable printers with the APL feature 45

Batchprocessing 46
GDDM application programs under VM/XA 46
Chapter 7. The GDDM print utilities 47
Processing for a printerdevice 47
Processing for a plotter device 47
CICS/VS printutility 48

Invocation 48

Printer and plotter operating instructions 48

Table of contents (Volume 2) V

Messages 48
The VSE printjobutility 48
IMS/VS printutitity 49

Invocation 49

Messages 49
TSO background printutitity 49

The ADMPRINT print utility 50

Printing alphanumeric files 50

Deleting a printrequest 50

Printer and plotter operating instructions 51

Invocation, 51

Messages 52

JES/B28X 53

Usage 63

Examples 563

Printing alphanumeric files 54

Commonerrors 54

Interfaces 54
VM/CMS printutility 55

Invocation 55

Printing GDDM files through RSCS 55

Automatically initiating the VM/CMS print utility 56

Printer and plotter operating instructions 56
Messages 56
Nonqueriable printers with the APL feature .. 56
Image PrintUtility 56
Composite Document Print Utility 57
Running the CDPU application program 58
ADMACDUX i 58
Printers for composite documents 62
Color masters from CDPDS documents 62
Inline resources for AFPDS printers 62
GDDM errorreporting 62

The GDDM font emulation and conversion tables 62
AFPDS structured fields supported by the COPU 63

Chapter 8. Symbolsets 65
How GDDM handles symbolsets 65
Loading programmed symbol stores 65
PSstorenumbers 65
Symbol-set identification 65
Using preloadedPSsets 66
Selecting symbol sets by devicetype 67
Using PS with graphics 67
Loading graphics symbolsets 67

PS overflow caused by picture complexity ... 68
Using symbol sets in printing
Using DBCS symbolsets 68
Naming conventions for sample image symbol sets 68

Sample imagesymbolsets 69
Sample vector symbolsets 70
Chapter 9. Picture interchange formatfiles 71
Processing PIF filesunder TSO 71
The conversion operation 71
The transfer operation 71
CommandstouseunderTSO 72
The formatofaPIFfile 73
Processing PIF files under VM/CMS 73
The conversion operation 73
The transfer operation 73
Commands to use under VM/CMS 74
The formatofaPIFfile 75
Creating PIF data under GDDM 75
Creating PIF data using GDDM-PCLK 75
Creating PIF data at a work station 75
How PIF data relates to GDFdata 75
BasePIF 76
Restrictions and considerations 76
The structureof aPIFfile 77

vi Base Programming Reference

Chapter 10. Setting up color-mastertables 79
The ADMMCOLT macro 79
The ADMDJCOL modute 80

Chapter 11. Application data structure for mapping 85

Adjunctfields, 85
COBOLexample 86
Assembler language example 86
PL/lexample 86
Adjunctfieldnames 86
Adjunctvalues 86

Character attributes 91

Setting character attributes from the terminal . 92
Designator characters for light-pen or cursor

selection 92
Map-defined input editing 92
AID translation 93
Folding 93
Justificationand padding 93
Copying the application data structure into the
Program 93
Overlaying application dataareas 94
Double-byte character string fields 94
Mixed double-byte and single-byte character fields
inmaps 94
GDDM-supplied mapping constants 95
Assembler mapping constants table —
ADMUAIMC 96

COBOL mapping constants table — ADMUCIMC 98

PL/I mapping constants table — ADMUPIMC 101
Chapter 12. Special-purpose programming in
GDDM 103
Using the system programmer interface 103
Initialization, 103
Format of the system programmer interface
block 104
Specifyinguserexits 104
Exitvalues 105
GDDM user-exitconventions 105
The task switchexit 106
The call interceptexit 107
The coordinationexit 107

Storage exit routines — interface specifications 108

Chapter 13. GDDM high-performance

alphanumerics 109
HPA data structure 109
Thefieldlist 109
Thedatabuffer 12
Thebundlelist 112
How to use high-performance alphanumerics . 115
Chapter 14. Country-extended code pages o121
GDDM code page concepts and facilities 121
What you should consider doing 122
Code pages supported by GDDM 123
Specifyingcodepages 124
Compatibility with releases of GDDM before
Version2 Release2 124
Code page conversion in GDDM objects 125
ConvertingICUcharts 125
Editingsymbolsets 125
Utility program for tagging GDDM object files
(ADMUOT) i 125
Code page conversion by GDDM Print Utility 125
APLcharacters 125
4250 printer code page function 125
Symbolsets 126
Appendix A. GDDM’s defaultvalues 127

GDDM'’s default values, listed by subsystem
Changing GDDM's default values
GDDM external defaults — CICS/VS
GDDM external defaults — IMS/VS
GDDM external defaults — TSO
GDDM external defaults — VM/CMS
GDDM external defaults — VSE/Batch

Alphabetic list of GDDM default values

Appendix B. Processing option groups and
name-lists
Processing option groups: summary
Processing option groups: full descriptions
Name-lists
Reserved names “x” and blanks
Family-1 name-list
CICS/VS name-list
IMS/VS name-list
TSO name-list
VM/CMS name-list

Appendix C. GDDM object file formats

Record structure
The header record
The data record

Appendix D. GDF order descriptions
Compatibility
Saving GDF orders
Format of GDF objects
Coordinates and aspect ratio

GDF orders: summary
Alphabetic list
Code value list
Process specific orders (PSC)

General structure
Order formats
Padding
Primitives
Coordinate lengths
Attributes

GDF orders: full descriptions
Arc . . e
Arc parameters
Area
Background color mix order
Call segment order
Character angle
Characterbox
Character-box spacing
Character direction
Character precision
Character set
Character shear
Character string
Color
Comment
Current position
End area
Fillet
Foreground color mix
Fractional line width
Full arc
Image — begin
Image — data
Image — end
Line
Line type
Line width
Marker

Marker scale
Marker type
Model transform
Pattern
Pick (tag) identifier
Pop
Process specific control
Symbol-set names
Begin Symbol-set mapping
Map Symbol-set identifier
End Symbol-set mapping
Picture prolog
Begin picture prolog
Set picture boundary
Set Picture Origin
Default process specific orders
Set default arc parameters
Set default background mix
Set default character angle
Set default character box
Set default character-box spacing
Set default character direction
Set default character precision
Set default character set
Set default character shear
Set Default Coordinate Type
Set default extended color
Set default foreground mix
Set default fractional line width
Set default line type
Set default marker box
Set default marker type
Set default pattern symbol
Set Default Pick Identifier
Set Default Picture Scale
Set Default Text Alignment
Set default viewing window
End Picture Prolog
Relative line
Segment attribute
Segment attribute modify
Segment characteristics
Uses of the segment characteristics order
Segment end
Segment end prolog
Segment position
Segment start
Segment viewing window
Text alignment

Appendix E. Image object definitions
Formats and compression types
3193 data stream and composed-page printer
formats

Appendix F. Symbol-set formats
Image symbol set component format
Vector symbol set component format

Format of symbol definitions

Appendix G. Device characteristics tokens
GDDM-supplied device tokens
Creating your own device tokens

Appendix H. Call format descriptor module
The address table
The call descriptor table
The parameter descriptor table

Table of contents (Volume 2)

Appendix i. APL request codes module
The addresstable
The requestcodetable
GDDM Base calls and associated APL codes
GDDM Base APL codes, in alphabetic order
GDDM Base APL codes, in numeric order
GDDM-PGF calls and associated APL codes
GDDM-PGF APL codes, in alphabetic order
GDDM-PGF APL codes, in numeric order

Appendix J. Request control parameter codes

GDDM RCP codes
GDDM Base RCP codes, listed alphabetically
GDDM Base RCP codes, listed numerically

GDDM-PGF RCP codes
GDDM-PGF RCP codes, listed alphabetically
GDDM-PGF RCP codes, listed numerically

Appendix K. Sample programs
The ADMUSC1, ADMUSF1, and ADMUSP1 sample
programs
IMS/VS version
The ADMUSC2, ADMUSF2, and ADMUSP2 sample
programs

Base Programming Reference

IMS/VS version
The ADMUSP3 sample program
The ADMUSP4 sample program
The ADMUSP7 sample program
The ADMUTMT and ADMUTMYV sample program

Compiling and link-editing under TSO

Running under TSO

Compiling and link-editing under VM/CMS

Running under VM/CMS

Using the sample task manager
Compiling, link-editing, and running the sample

programs

Compiling the programs

Link-editing the programs

Running the programs

Appendix L. Format of a Composite Document

Presentation Data Stream
Structured fields
Document structure
Structured field formats

customizing your program

Chapter 1. Customizing your program and its environment

You can customize various aspects of the GDDM and
subsystem environment if you find that the defaults
supplied with the product do not suit the needs of your
application program exactly. You can modify GDDM to
suit the needs of your instailation, both hardware and
software, the application programs that run in it, and
the end users of your GDDM programs.

Before Version 1 Release 4, a GDDM installer or user
had to change GDDM defaults by modifying and assem-
bling an Environmental Defaults Module, the specific
structure of which changed on each release. Since
Version 1 Release 4, GDDM lets you create an External
Defaults Module, the structure of which is such that a
GDDM installer or user does not have to remodify or
reassemble the module on subsequent releases. Also,
in some operating environments, you can keep source-
format defaults specifications on a locally-accessed
file.

By using the information in this chapter and the sup-
porting Chapters 2 through 6, you will be able to
modify:

* Defaults that apply to the GDDM environment.

You can change the defaults provided in GDDM.
The term default covers a wide range of parame-
ters that you might want to change to support the
particular considerations for your installation, or
for your program.

They include, for example, naming conventions for
files and data sets, buffer sizes and other
performance-related factors, time, date, and
number punctuation conventions, the language
used in panels and error messages, and so on.

Iif you have upgraded from a previous release of
GDDM, you can continue to use the GDDM Environ-
mental Defaults Module for your particular sub-
system; they are as follows:

CICS/VS ADMADFC
IMS/VS ADMADFI
TSO ADMADFT
VM/CMS ADMADFV.

Note that you can use the old method only for
defaults that you specified in your earlier release
of GDDM; newly supported defaults are available
only through the new methods described in this
manual.

For details of the GDDM-supplied defaults that you
can change, see Appendix A, “GDDM’s default
values"” on page 127.

* Exits, either for individual users or for the whole
installation.

This allows a system program to trap specific
events whenever an application program uses a
GDDM or system resource. Such events include
task-switching in TSO, intercepting some or all
GDDM calls, and so on.

For details of the GDDM user exits that you can
specify, see “Specifying user exits” on page 104.

¢ Synonyms (called nicknames) that remove the
need for specifying complex DSOPEN parameter
structures.)

Nicknames help you to write application programs
that are more device-independent than they might
otherwise be. For example, you can write a
program that sends a picture to a display screen,
and, without having to change the source program
or recompile it, you can use the program to send
the picture to a file for later printing on a
composed-page printer.

For details of how to specify nicknames, see
“Using nicknames to define device characteristics”
on page 3.

GDDM provides an integrated method for changing
these items. A user default specification (UDS) is the
means by which you define a specific value, or set of
values, for changing GDDM defaults, exits, and nick-
names.

User default specifications

GDDM has two formats of user default specifications
(UDSs):

* A source-format UDS
* An encoded (or assembled) UDS.

Both formats perform the same range of functions.
However, the source-format UDS has to be interpreted
by GDDM at run time; this involves an additional proc-
essing overhead in comparison with an encoded UDS.
Because of this overhead, it is recommended that you
use the source-format UDS only for changing defaults
that apply to individual end users.

There are three types of UDS:

¢ ADMMDFT or DEFAULT (see “Changing GDDM's
default values” on page 127)

* ADMMEXIT (see “Specifying user exits" on
page 104)

e ADMMNICK or NICKNAME (see “Using nicknames
to define device characteristics” on page 3).

Passing a source-format UDS to GDDM

Depending on the subsystem under which GDDM runs,
you pass your source-format UDS to GDDM in the fol-
lowing ways:

¢ Under all subsystems, by means of the ESSUDS
call, in which you specify the length and data area
containing the UDS. The ESSUDS call is described
in the GDDM Base Programming Reference,
Volume 1.

* Except under IMS/VS, by means of an External
Defaults File.

The value specified for a particular default in an
ESSUDS call overrides any value specified for that
default in an External Defaults File.

Chapter 1. Customizing your program and its environment 1

customizing your program

External defaults file

This section describes the format of an External
Defaults File, which can contain many source-format
UDSs. A GDDM External Defaults File must be F-format
or V-format, with an LRECL of no greater than 256. The
recommended format is F(80).

An External Defaults File cannot be used under IMS/VS.
Under CICS/VS, it is intended to be used for problem
determination purposes only; for details, see the GDDM
Diagnosis and Problem Determination Guide.

Under TSO, you must allocate (using the ALLOC
command) a corresponding file name, the GDDM
default of which is ADMDEFS, to the sequential data set
that represents the External Defaults File. This must be
done before you call GDDM.

In the associated OS/VTAM Print Utility environment,
you must allocate a corresponding ddname (the default
is ADMDEFS) in the Print Utility JCL to the sequential
data set that represents the External Defaults File.

Under VM/CMS, you must ensure that the External
Defaults File exists with a suitable filename and filetype
(the default is PROFILE ADMDEFS) on a currently
accessed disk.

The records in a GDDM External Defaults File must be
in one of the following forms:

[1abel] type value [optional comments])

(1abel] type value-partl,
value-part2,

[optional comments]
[optional comments)

value-partn [optional comments]

* comment text

The records must conform to Assembler-like coding
conventions. The conventions are:

* The labels are optional. If specified, they must
start in column 1 and must not be longer than 8
characters; they are ignored.

* The type must be preceded by at least one blank.

* The type and value parameters must be separated
by at least one blank.

* The value parameter(s) must not contain
embedded blanks.

* In a value parameter, a comma (,) followed by a
blank or an end-of-record marker indicates that the
value is continued on the next noncomment record.
The continuation must be preceded by at least one
blank. Any text that starts in column 1 is assumed
to be part of a label.

2 Base Programming Reference

* There is no limit on the number of continuation
records allowed.

* In a value parameter, a blank or an end-of-record
marker that is not preceded by a comma indicates
the end of that source-UDS.

* Any text that follows a blank after a value param-
eter is assumed to be comment text, and is
ignored.

¢ Comment records are optional; they require an
asterisk (%) in column 1. Comment records are
ignored in all circumstances.

* The source-format UDS can be entered in mixed
case. Any lowercase characters are converted to
uppercase before processing.

Converting a source-format UDS into an
encoded UDS

It is possible (using the GDDM-supplied ADMMDFT,
ADMMEXIT, and ADMMNICK macro instructions) to
assemble a source-format UDS so that it is converted
into the encoded version. You must use the ADMMDFT
(not DEFAULT) or ADMMNICK (not NICKNAME) form if
you are going to assemble the source-format UDS.

When assembling source-format UDSs to produce
encoded UDSs, ADMMDFT START and ADMMDFT END
macro invocations can be used to generate the associ-
ated length field required in the construction of an
External Defaults Module.

Passing an encoded UDS to GDDM

There are three ways of passing an encoded UDS to
GDDM for processing:

1. In an External Defaults Module
2. In the SPINIT call
3. In the ESEUDS call.

The value specified for a particular default in an
External Defaults File overrides any value specified for
that default in an External Defaults Module. Similarly,
the value specified for a particular default in a SPINIT
call overrides any value specified for that defauit in an
External Defaults File. Finally, a value specified for a
particular default in an ESEUDS or ESSUDS call over-
rides any value specified for that default in a SPINIT
call.

The SPINIT call is described in “Using the system pro-
grammer interface” on page 103; the ESEUDS call is
described in the GDDM Base Programming Reference,
Volume 1.

External defaults module

In all subsystems, a GDDM installer (and, possibly, an
end user) can create a GDDM External Defaults Module
by assembling a set of source UDSs, using
GDDM-supplied ADMMDFT, ADMMEXIT, or ADMMNICK
macros. The resultant module contains a 4-byte length
field, followed by a list of encoded-UDSs.

The source of a GDDM External Defaults Module must
contain a set of source-UDSs in the same format as the
External Defaults File (as described under “External
defaults file” on page 2). The set of source-format
UDSs must be delimited by ADMMDFT START and
ADMMODFT END macro invocations. Also, the source
must conform to Assembler-language macro-coding
conventions. For example, assuming that no ICTL
instruction is used:

* Continuations must begin in column 16.

s Continuations must be flagged by using a nonblank
character in column 72.

* The source-format UDSs must be entered in upper-
case.

The source of an External Defaults Module must be in
the following form:

ADMADFx CSECT (See the note below)
ADMMDFT START
[1abel] type value [optional comments]

.

[1abel] type value [optional comments]

{1abel] type value [optional comments]
ADMMDFT END

END

Note: ADMADFx is the name of the External Defaulis
Module appropriate to the user’s subsystem; that is,

ADMADFC under CICS/VS,
ADMADFD under VSE/Batch,
ADMADFI under IMS/VS,
ADMADFT under TSO, and
ADMADFV under VM/CMS.

Using nicknames to define device
characteristics

Another type of user default specification (UDS) is a
nickname. Nicknames provide a way of defining all the
characteristics of a device in a table, and then refer-
encing that device on a DSOPEN call just by using the
nickname.

Nicknames can be used in this way to extend the range
of devices supported by current applications, often
without requiring any modification to the applications.

Nicknames also extend the range of devices supported
by the GDDM Print Utilities, by providing a mechanism
for passing complex device definitions to the
asynchronously-called utilities.

Nicknames also enable complex devices to be prede-
fined by the installation programmer, thus simplifying
the tasks of the application programmer and the end
user. The application programmer and end user retain
the ability to override such predefinitions.

customizing your program

For examples of how to use nicknames, see the GDOM
Application Programming Guide, Volume 1.

The same mechanisms are available for specifying
nicknames as can be used for defaults; that is, they can
be derived from:

The External Defaults Module
The External Defaults File

A SPINIT call

An ESEUDS or ESSUDS call.

A nickname can either be in source or encoded format.
A source nickname UDS can be defined:

¢ |n an external defaults file
¢ As an argument to the ESSUDS call.
An encoded nickname UDS can be defined:

* |n an external defaults module
* As an argument to the SPINIT call
* As an argument to the ESEUDS call.

The ESEUDS and ESSUDS calls are described in the
GDDM Base Programming Reference, Volume 1.

The SPINIT call is described in “Using the system pro-
grammer interface” on page 103.

Source format of a nickname UDS

The source-format syntax of a nickname UDS is as
follows:

[1abel] ADMMNICK [APPEND|REPLACE,]

or [FAM=family,]

NICKNAME [NAME=name-list,]
[TOFAM=to-family,]
[TONAME=to-name-1ist,]
[DEVTOK=device-token,]
[PROCOPT=procopt-1ist]

Any number of nickname UDSs can be defined. More
than one nickname UDS can be defined for the same
family, device name, or both of these.

The nickname parameters are described below. The
terms “family”, “device token”, “name-list", and
“procopt” are explained in the description of the
DSOPEN call in the GDDM Base Programming Refer-
ence, VYolume 1.

label
Optional (ignored — it is not part of the UDS).
APPEND|REPLACE
Specifies whether this specification is to be added to
or replaces an existing specification. The default is
APPEND.
FAM = family
A nonnegative integer. The default is FAM=0.

The value for “family” does not have to be a valid
DSOPEN family number. Only the final “target-
family” must be valid.
NAME = name-list

A name-list in the form of a list of “name-parts,”
each being a string of from 0 through 8 nonblank
characters. A blank “name-part” is represented by
a string of 0 characters.

Chapter 1. Customizing your program and its environment 3

customizing your program

These are valid name-lists:

NAME=namel, one nonblank name-
part

NAME=(namel), one nonblank name-
part

NAME=(), one blank name-part
NAME=(namel,name2,name3), three nonblank name-
parts

two nonblank name-
parts and one blank
name-part.

The name-list can be null, that is, it is entered as
NAME=,. This is the default. In this case, if any more
nickname parameters are entered, they must be

NAME=(namel, ,name3),

entered without any intervening blanks; all text after '

a blank is taken as comment text and is ignored.

A name-part in the NAME parameter can also
contain a leading or trailing “?” generic character,
or both of these. Such a character is considered to
match any combination of characters in the same
position as the “?."” Thus:

'?abc’ matches any name-part ending with
‘abc’

‘abe?’ matches any name-part starting with
labcl

‘?abc?’ matches any name-part containing ‘abc’.

Embedded “?" characters are not allowed, and are
diagnosed as being in error.

It is not necessary for “name-list" to be a valid
DSOPEN device name-list. Only the final “target-
name-list” must be valid.

TOFAM =to-family
An integer (0 or greater). 0 is the default.

TONAME =to-name-list
A name-list in the same form as the NAME param-
eter (except that “?" generic characters are not
allowed). The default is a null to-name-list.

DEVTOK = device-token
A string of 0 through 8 nonblank characters. The
default is a null string.

The DEVTOK parameter enables an explicit
(non-“%", nonblank) device token to be used, when
the application program has specified a DSOPEN
device token of “%x" (or blank). An explicit (that is,
non-“x", nonblank) device token specified in the
DSOPEN call cannot be overridden.
PROCOPT = procopt-list

A procopt-list in the form of a list of “procopt-
specifications” (procopt-specs), thus:

PROCOPT=((procopt-spec), (procopt-spec),....)

Each procopt-spec is a keyword identifying a spe-
cific DSOPEN processing option followed by a
number of arguments valid for that processing
option, thus:

PROCOPT=((keyword,argument ,argument),
(keyword,argument),)

The default is a null procopt-list.

Note that the following processing options accept a var-
iable number of arguments:

4 PRINTCTL.
18 STAGE2ID
20 ORIGINID
23 SPECDEV
1002 CPSPOOL
1003 CPTAG

4 Base Programming Reference

Also, the following variable-length processing options
are “mergeable”, as described below:

4 PRINTCTL
20 ORIGINID

Full details of all DSOPEN processing options currently
available are given in Appendix B, “Processing option
groups and name-lists” on page 149.

Nickname scanning and matching

GDDM maintains a “nickname-list” containing all the
nickname UDSs that have been defined, in the following
order:

1. Those defined in an External Defaults Module

2. Those defined in an External Defaults File

3. Those defined by means of the SPINIT cali

4. Those defined by means of ESEUDS or ESSUDS
calls (in the order in which the calls are made).

When an application program issues a DSOPEN call,
GDDM constructs a “source DSOPEN parameter list"
that contains

"source-family"
"source-name-1ist"
"source-device-token"
“source-procopt-list”

and a “target DSOPEN parameter list” that contains

“target-family®
“target-name-list"
“target-device-token"
“target-procopt-list”.

GDDM initializes both these parameter lists to the
DSOPEN call parameters specified by the application
program. (The DSOPEN “device-id” parameter is not
affected by nickname processing.)

Nickname scanning

GDDM then scans the “nickname-list” for any nickname
UDSs whose FAM and NAME parameters match the
“source-family” and “source-name-list” (in the “source
DSOPEN parameter list"). GDDM updates the “target
DSOPEN parameter list” using the TOFAM, TONAME,
DEVTOK, and PROCOPT parameters of the matching
nickname UDSs in the manner described in “Nickname
matching” on page 5.

The resulting “target DSOPEN parameter list” is itself
subject to more nickname processing. After each scan,
GDDM reinitializes the “source DSOPEN parameter
list” from the resulting “target DSOPEN parameter list”.
GDDM then rescans the “nickname-list” for any nick-
name UDSs that match the modified “source DSOPEN
parameter list” and updates the “target DSOPEN
parameter list” accordingly.

Any nickname UDSs that are found to match on a scan
or a rescan for a DSOPEN are excluded from subse-
quent rescans for that DSOPEN. This applies even if
the nickname UDSs were ignored because the
REPLACE parameter was specified in a later nickname.

GDDM repeats the rescanning process until no more
matching UDSs are found. The final “target DSOPEN
parameter list” Is then processed, as described in the

‘description of the DSOPEN call in the GDDM Base Pro-

gramming Reference, Volume 1.

Nickname matching

The DSOPEN parameter list specified by an application
program might not match any nickname UDSs in the

“nickname-list”.

In this case, the DSOPEN parameter

list is processed directly.

The rules for matching are as follows:

The FAM value must be 0 or the same as the
current “source-family” value for the nickname to
match the current “source DSOPEN parameter
list".

For the nickname to match the current “source
DSOPEN parameter list", the name-list in the

NAME parameter must either be null or must ’

match the current “source-name-list”.

The two name-lists match when the corresponding
name-parts are the same (after left-justification,
translation to uppercase, and padding with blanks).
In this respect, if the name-lists do not contain the
same number of name-parts, the shorter name-list
is extended with “*" name-parts for the purpose of
comparison. For example:

'FRED' and °*(FRED)'’)
'FRED* and ' (FRED,*)')
'FRED' and '(FRED,*,*)'

but ‘FRED' and '(FRED,ADMPRINT)' - do not match

If APPEND is specified in a matching nickname, the
effect of the nickname is merged with that of any
preceding nickname in the current scan or rescan,
according to the processing rules defined below.

If REPLACE is specified in a matching nickname, it
causes any preceding matching nickname in the
current scan or rescan to be ignored. It does not
cancel the effect of preceding scans or rescans.

match

If the nickname is found to match the current “source
DSOPEN parameter list”, GDDM updates the “target
DSOPEN parameter list” as follows:

1.

2.

The TOFAM is examined.

TOFAM =0
The “target-family” is not changed.

TOFAM = nonzero
The “target-family” is changed to the value
to-family.

The TONAME is examined.

TONAME = nuil!
The “target-name-list” is not changed.

TONAME = not-null
The “target-name-list” is changed to be the
value of the “to-name-list”.

3.

customizing your program

The DEVTOK is examined.

DEVTOK =null, (thatis, a null device-token)
The “target-device-token” is not changed.

DEVTOK = not-null
If the current “source-device-token” is “x" or
null, the “target-device-token” is changed to
be the value of the “device-token”. Otherwise,
the “target-device-token” is not changed.

The PROCOPT is examined.

PROCOPT =, (that is, a null procopt-list)
The “target-procopt-list” is not changed.

PROCOPT = ((procopt-spec),....)
The procopt-list is inserted into the “target-
procopt-list” such that it follows any procopt-
lists added so far during the current scan or
rescan, but precedes any procopt-lists that
were present at the start of the current scan or
rescan.

Note that, in a DSOPEN procopt-list, the latest
procopt-specifications take priority; that is to say,
where a procopt-list contains two or more procopt-
specs for the same processing option, the latest
will apply. (Exceptions to this rule are the
“mergeable” PRINTCTL and ORIGINID processing
options; see below.) This means that the
PROCOPT parameter enables an explicit procopt-
specification to be applied, if the application
program did not specify the corresponding proc-
essing option group in the DSOPEN call. A proc-
essing option group specified in the DSOPEN call
cannot be overridden.

Note: In a DSOPEN procopt-list, any procopt-
specifications that are not applicable to the
DSOPEN device family and device name-list are
ignored.

Encoded format of a nickname UDS

The encoded format of a nickname UDS is shown here.

The operation of an encoded nickname UDS is identical
to that of a source-format nickname UDS. However, the
following points should be noted:

A null source-name-list is expressed by specifying
0 as the number of source-name-parts (N) and by
omitting the source-name-parts entirely.

A null device token is expressed by specifying it as
all blanks or all X'00".

A null procopt-list is expressed by specifying 0 as
the number of procopt-words (P) and by omitting
the procopt-words entirely.

A null target-name-list is expressed by specifying 0
as the number of target-name-parts (T) and by
omitting the target-name-parts entirely.

Chapter 1. Customizing your program and its environment 5

customizing your program

Word 1

2N+4
2N+5
2N+6
2N+7
2N+8
2N+9
2N+10
2N+11

2N+P+9

2N+P+10
2N+P+11
2N+P+12
2N+P+13
2N+P+14

2N+P+2T+9
2N+P+2T+10

Length (in full-words): 2N+P+2T+10

UDS-code: 2001

Replace (0) or Append (1)

Source family

Number of source name-parts (N)

Source-name-part 1 (8 bytes)
(padded with blanks, as necessary)

Source-name-part 2 (8 bytes)
(padded with blanks, as necessary)

Source-name-part N (8 bytes)
A(padded with blanks, as necessary)

Target family

Device token (8 bytes)
(padded with blanks, as necessary)

Number of procopt words (P)

Procopt-word 1

Procopt-word 2

Procopt-word P

Number of target names (T)

Target-name-part 1 (8 bytes)
(padded with blanks, as necessary)

Target-name-part 2 (8 bytes)
(padded with blanks, as necessary)

Target-name-part T (8 bytes)
(padded with blanks, as necessary)

6 Base Programming Reference

CICS/VS

Chapter 2. Using GDDM under CICS/VS

This chapter describes the use of GDDM under the
CICS/0S/VS and CICS/DOS/VS subsystems. It contains
these sections:

¢ Overview
¢ Programming languages and restrictions

¢ Compiling and link-editing GDDM application pro-
grams

° Using the nonreentrant interface

* Using the system programmer interface by means
of dynamic load

* CICS pseudoconversational applications

* Data sets and file processing

* Display terminal conventions

* Using GDDM with Basic Mapping Support

¢ CICS/VS GDDM default error exit

* Requesting transaction-independent services

* Using the resource audit trails

* Running application programs in VSE batch mode.

The print utility is described in Chapter 7, “The GDDM
print utilities” on page 47.

Application programs, which must be written in the
command-level (EXEC) interface, are treated as normal
CICS/VS applications except that they must be link-
edited with GDDM interface modules.

A working knowledge of CICS/VS is assumed
throughout.

Programming languages and
restrictions

GDDM can be used by CICS/VS command-level (EXEC)
application programs written in PL/l, COBOL, or
Assembler language.

COBOL restriction: COBOL programs run under
CICS/VS must not use the STOP RUN statement.

Compiling and link-editing GDDM
application programs

Examples of the JCL that can be used to compile and
link-edit application programs written in COBOL, PL/I,
and Assembler language are listed on pages 17
through 22 at the end of this chapter. ‘

Compiling a PL/l program

If you use the GDDM-supplied declarations in your
program, you must access the libraries containing
them before compiling.

Link-editing a GDDM application program

An application program using GDDM under CICS/VS
must be link-edited with CICS/VS command-level
(EXEC) stubs in the usual way, as described in the
CICS/VS Installation and Operations Guide. Unless the
application program uses dynamic load facilities to
access GDDM using the System Programmer Interface
(see “Using the system programmer interface with
dynamic load” on page 8), the program must also be
link-edited with an appropriate GDDM interface module
or modules.

Link-editing under CICS/OS/VS

Under CICS/OS/VS, the required interface module can
be explicitly included in the link-edit process. Or, if the
application program uses one of the other FSINIT entry
points described in the GDDM Base Programming Ref-
erence, Volume 1, the interface module can be included
by linkage editor automatic library call facilities. The
following is a list of GDDM interface modules for
CICS/0S/VS:

Interface Interface FSINIT

module alternative entry
Nonreentrant ADMASNC FSINNC
Reentrant ADMASRC FSINRC
System ADMASPC -
programmer or ADMASPKC

(see note)

Note: ADMASPKC is an alias entry point for
ADMASPC, and is provided for compatibility with
GDDM-PGF Version 1 Release 1.

Link-editing under CICS/DOS/VS

Under CICS/DOS/VS, two GDDM interface modules are
required, and they should be explicitly included in the
link-edit process. The first interface module should be
selected according to the form of interface used by the
application program and the functions required, as
follows:

Interface Interface Functions
module included
Nonreentrant ADMASNB GDDM
Reentrant ADMASRB GDDM
Nonreentrant ADMASNO GDDM and
GDDM-PGF
Reentrant ADMASRO GDDM and
GDDM-PGF
System ADMASP GDDM and
GDDM-PGF
programmer ADMASP GDDM and
GDDM-PGF

The second GDDM interface module required is
ADMASLC. It is used for all programs. This has an
alias entry point of ADMASKC, which is provided for
compatibility with GDDM-PGF Release 1.

Chapter 2. Using GDDM under CICS/VS 7

CICS/VS

In the absence of an explicit ENTRY statement, it is
important to include the application program module
before the relevant GDDM interface modules, to ensure
that the application program entry point is correctly
identified.

Thus, a CICS/DOS/VS PL/I application program using
the reentrant interface to GDDM can be link-edited as
follows:

// JOB jobname
// OPTION CATAL
PHASE phase-name, *
INCLUDE DFHPL1I
INCLUDE pl1/i-relocatable-module
INCLUDE ADMASRB
INCLUDE ADMASLC
// EXEC LNKEDT
/&

and a CICS/DOS/VS COBOL application program using
the nonreentrant interface to GDDM can be compiled
and link-edited as follows:

// JOB jobname

ooooo

.....

Standard
Translate Step

.....

// OPTION CATAL
PHASE phase-name, *
INCLUDE DFHECI

// EXEC COBOL
INCLUDE ADMASNB
INCLUDE ADMASLC

// EXEC LNKEDT

/&

Using the nonreentrant interface of
GDDM

GDDM provides a mechanism for using the
nonreentrant interface form under CICS/VS while still
allowing GDDM and its invoking application program to
be quasi-reentrant. To do so, the application pro-
grammer should reserve an area of 8 bytes in the asso-
ciated Transaction Work Area (TWA). This may require
changes in the corresponding transaction definition in
the CICS/VS Program Control Table (PCT). The pro-
grammer should then define an external control section
(CSECT) named ADMUOFF, to be link-edited with the
application program and the GDDM nonreentrant inter-
face module. This should contain a full-word defining
the offset in the TWA of the area reserved for GDDM's
use.

Thus, for application programs that would not other-
wise require a TWA, the following would be sufficient:

1. Define a TWA of length 8 bytes by specifying the
corresponding option in the transaction definition
in the CICS/VS Program Control Table.

2. Define an ADMUOFF CSECT containing a full-word
of value zero, to be link-edited with the application
program.

8 Base Programming Reference

The ADMUOFF CSECT can be defined using standard
Assembler language facilities. Thus:

ADMUOFF CSECT
INIT ©0C F'O'
END

Or, high-level language constructs can be used, where
such are available. In PL/I, the CSECT could be gener-
ated by a declaration of the form:

DECLARE ADMUOFF STATIC EXTERNAL FIXED BINARY (31)
INITIAL(n);

GDDM uses the area reserved in the TWA to store an
Application Anchor Block (AAB), in the format
described for the reentrant interface in the GDDM Base
Programming Reference, Volume 1. When the
nonreentrant interface is invoked, GDDM verifies that
the value contained in ADMUOFF is consistent with the
length of the TWA defined for the invoking transaction.

Through this mechanism, GDDM operates in a quasi-
reentrant way. Although the GDDM nonreentrant inter-
face module is not read-only, it does not prevent an
invoking transaction from servicing more than one
CICS/VS terminal at the same time.

Using the system programmer
interface with dynamic load

If an application uses only the system programmer
interface, all invocations of GDDM are through the
entry point ADMASP. This entry point can be resolved
by link-editing the application with the GDDM interface
module ADMASPC, as described under “Link-editing
under CICS/OS/VS” on page 7.

Or, the application can avoid these linkage-edit consid-
erations by using CICS/VS facilities (EXEC CICS LOAD)
to load dynamically a GDDM interface module
ADMASPLC containing the ADMASP entry point as
follows:

EXEC CICS LOAD PROGRAM(ADMASPLC) ENTRY(admasp-addr)
SET (dummy-var)

CICS/VS pseudoconversational
applications

A CICS pseudoconversational application is one which
appears to the terminal user as a normal conversa-
tional transaction, but is, in fact, a series of separate
transactions where the CONVERSE is implemented as
SEND and RECEIVE. One transaction ends with a
SEND, and the next starts with a RECEIVE.

In this way, system resources can be released for the
duration of “operator think time” thus making more effi-
cient use of CICS.

GDDM provides pseudoconversational support for pro-
cedural, mapped, or high-performance alphanumeric
data and output-only graphics and image by means of a
strictly defined protocol for GDDM application call
sequences.

Essentially, while operating in pseudoconversational
mode, GDDM storage and resources (except for device
query data) are released at the termination of a partic-
ular transaction, and are reinitialized when the next
transaction is reinvoked by CICS to process the next
device input.

As no information is retained by GDDM across trans-
actions (other than device query data), it is the respon-
sibility of the application to ensure correct continuity of
the application; see below for details of the call
sequences to be used.

The following GDDM calls have a changed function
when pseudoconversational mode is being used:

DSOPEN

The PSCNVCTL processing option indicates to GDDM
whether pseudoconversational mode is in use, and
whether this is the Start of it, or a Continuation.

* The processing option group code is 25
The length is 2 full-words

* The values are 0, 1, and 2 corresponding to NO,
START, and CONTINUE respectively

* The default is NO.

The nickname syntax for this processing option is:
(PSCNVCTL, {NO|START|CONTINUE})

ASREAD

When the application is in “Continue
pseudoconversational” mode (PSCNVCTL,CONTINUE), the
first ASREAD call issued by the application causes the
output transmission to be suppressed, and only the
input part of the ASREAD call functions.

Subsequent ASREAD calls work in the usual way, that
is, they result in output plus a “wait” for input. In this
way. transactions can drop into Conversational Mode if
they need to; see the description of the CLEAR key han-
dling and line-output errors below.

DSCLS

If pseudoconversational mode is in use, a DSCLS call
always causes the device keyboard to be unlocked.
Also, two options are provided that can be used by
pseudoconversational applications to end the pseudo-
conversational mode, and are available to conversa-
tional applications to cause explicit keyboard Unlock.

The complete DSCLS options and their meanings are:

0 Erase the screen; if in pseudoconversational
mode, unlock the keyboard, and save any
changed device data.

1 Do not erase the screen; if in pseudo-
conversational mode, unlock the keyboard, and
save any changed device data.

2 Erase the screen and unlock the keyboard; if in
pseudoconversational mode, release the saved
device data.

3 Do not erase the screen but uniock the keyboard;
if in pseudoconversational mode, release the
saved device data .

The following application scenario illustrates the call
protocol for pseudoconversational mode:
* On the initial invocation of the transaction:
— FSINIT
— DSOPEN (Start pseudoconversational mode)

CICS/VS

— Create alphanumeric data for the first screen
— Create any graphics output

— FSFRCE

— DSCLS (Option 1 — do not erase the screen)

— FSTERM

— EXEC CICS RETURN TRANSID(Tname)
COMMAREA(Carea)

The array “Carea” should contain any infor-
mation required to continue the transaction
processing, for example, Application Data
Structures used for output of mapped data.

* On subsequent invocations of the transaction:
— FSINIT.

— DSOPEN
mode).

— Create alphanumeric data for the “previous”
screen using the identical set of calls used the
last time, and also, if mapping is used, with the
same Application Data Structures (as saved in
“Carea").

— Do not issue any graphics calls.

— ASREAD.

— Process input in the usual way.

— Create alphanumeric data for the next screen.

(Continue pseudoconversational

— Create any graphics output.

— FSFRCE.

— DSCLS (Option 1 — do not erase the screen).
— FSTERM.

— EXEC CICS RETURN TRANSID(Tname)

COMMAREA(Carea) LENGTH(Clen).

The array “Carea” should contain any infor-
mation required to continue the transaction
processing; in particular, it should contain the
ADSs used for the output of any mapped data.

* Use DSCLS with Option 2 or 3 to terminate the
pseudoconversation.

As stated above, the first ASREAD call in a transaction
specifying “Continue pseudoconversational” mode,
only performs the input function; all output is sup-
pressed.

There are, however, two exceptions to this rule.

The first exception, when using mapped alphanu-
merics, is where the map group requests automatic
handling of the CLEAR key.

In this case, the ASREAD call performs as usual; that
is, it bypasses output and processes the input data
(only a cursor address and the CLEAR aid), whereupon
mapping signals a screen refresh.

The result of this is as if a second ASREAD call has
occurred; that is, the screen is output again and the
transaction waits for input.

Thus the ASREAD call effectively works in the usual

way, and the transaction becomes a conversation for
this invocation.

Chapter 2. Using GDDM under CICS/VS 9

CiICs/vs

The other exception is where a GDDM line-output error
message occurs before the ASREAD call.

In this case, the screen contents have been destroyed,
and for GDDM to continue to process correctly, the
screen has to be created again.

Thus once more, the ASREAD call works in the usual
way; that is, output plus a “wait for input” and the
transaction becomes “conversational” for this invoca-
tion.

Always-unlock-keyboard mode

Use of the always-unlock-keyboard processing option
improves the performance of CICS pseudo-
conversational applications by unlocking the keyboard
at FSFRCE instead of DSCLS.

Data sets and file processing

When running under CICS/VS, GDDM Base and
GDDM-PGF use three types of file processing:

¢ CICS/VS command-level (EXEC) File Control facili-
ties, to read and write data on a VSAM key-
sequenced data set.

* CICS/VS command-level (EXEC) Transient Data
facilities, to write data for subsequent internal or
external processing.

e CICS/VS command-level (EXEC) Temporary
Storage facilities, to read and write data required
for queued printer and external defaults support.

GDDM-IMD uses additional types of file processing; for
details, see the GDDM Interactive Map Definition
manual.

File control facilities

GDDM uses the File Control facilities to:

* Store and retrieve Image Symbol Sets (ISS) and
Vector Symbol Sets (VSS), as required by calls to
GSLSS, PSLSS, PSLSSC, SSREAD, and SSWRT,
and through the Image Symbol Editor.

¢ Store and retrieve device-dependent pictures, as
required by calls to FSSAVE, FSSHOR, and
FSSHOW.

* Retrieve GDDM-IMD-generated mapgroups, as
required by calls to MSPCRT, MSQADS, MSQGRP,
MSQMAP, and MSREAD.

e Store and retrieve Graphics Data Format
(ADMGDF) files, as required by calls to GSSAVE
and GSLOAD.

* Store and retrieve image files, as required by calls
to IMAPT and IMAGT.

GDDM maintains these symbol sets, pictures, gener-
ated mapgroups, and ADMGDF files as keyed records
in VSAM key-sequenced data sets shared by trans-
actions running in the CICS/VS subsystem. The VSAM
data sets are referred to within GDDM using CICS/VS
File Control statements, and the data sets specified in
the DATASET option of these statements must be
defined in the CICS/VS File Control Table (FCT). The

10 Base Programming Reference

VSAM data sets must be opened, either when CICS/VS
is initialized, or dynamically, before GDDM requires
access to them. The underlying OS/VS or DOS/VS data
sets must have characteristics as shown in Table 1 on
page 12. Procedures for creating and initializing suit-
able VSAM data sets are described in GDDM Installa-
tion and System Management for MVS or GDDM
Installation and System Management for VSE.

The default VSAM data set names are as defined in
Table 1 on page 12. These names can be changed, if
required, after installation, as described in
Chapter 1, “Customizing your program and its
environment” on page 1.

The use of the VSAM data sets can be controlied by the
ESLIB routine whose syntax is described in the GDDM
Base Programming Reference, Volume 1. This routine
establishes the set of VSAM data sets that are to be
used to store or retrieve a given type of object. The
VSAM data sets used are identified to this routine by a
list of file names.

The VSAM data sets identified are searched in the
order given in an attempt to find an object. An object is
stored only by means of the first data set name of the
list, even though it may have been retrieved from
another one. If no data set name list is provided, only
the default data set name is used for retrieving and
storing GDDM objects.

GDDM uses CICS/VS Task Control ENQ/DEQ facilities
to ensure the integrity of data as it is written or read on
the VSAM data sets. Specifically, GDDM ensures that
the particular records defining the content of a symbol
set, picture, or generated mapgroup cannot be updated
by one transaction while being read by another. If
additional control of the use of the VSAM data sets is
required (such as restricted write access), this should
be implemented by security mechanisms external to
GDDM, such as described in the CICS/VS Facilities and
Planning Guide.

GDDM symbol sets, pictures, generated mapgroups,
and ADMGDF files are stored on the VSAM data sets as
400-byte records, with an embedded key in the first 20
bytes, as follows:

Byte

0..... 718....15 | 16....19 | 20....
Record

Name Type sequence | Data
number

Name is that specified in the GDDM call as “symbol-
set-name”, “picture-name”, “group-name”, or
“name”, subject to the character-substitution rules
described in “Selecting symbol sets by device type”
on page 67.

Type is an 8-byte character string identifying the type of
the record, for example, “symbol set” or “picture”,
and is defined in Table 1 on page 12.

Record sequence number is a 4-byte binary full-word
that sequences and uniquely identifies each record
within a symbol set or picture.

This key format is such that, if required, all of the
records defining a specific symbol set or picture can be
deleted without calling GDDM. This can be done by
using the CICS/VS File Control GENERIC DELETE func-
tion:

EXEC CICS DELETE DATASET (VSAM-data-set-name)
RIDFLD (first-16-bytes-of-key)
KEYLENGTH(16)

GENERIC

The Interactive Chart Utility (part of GDDM-PGF)
includes a directory function that supports list, delete,
and copy operations on GDDM objects such as symbol
sets, pictures, generated mapgroups, and ADMGDF
files.

Transient data facilities

GDDM uses CICS/VS Transient Data facilities to:

* Write object modules resulting from requests from
the Image Symbol Editor.

* Write output destined for a system printer device
as the result of calls to DSOPEN and DSCLS.

* Write trace records resulting from the FSTRCE
function.

* Write error log records resulting from invocation of
the GDDM CICS/VS Default Error Exit.

Object modules are written consecutively to a single
transient data destination. This must be defined in the
CICS/VS Destination Control Table (DCT), typically in a
manner that would route the object modules to a prede-
fined extrapartition data set. Each object module gen-
erated contains a control section (CSECT) with the
name as specified by the appropriate utility, and has a
form suitable for link-editing with an application
program for subsequent reference, typically using the
GSDSS or PSDSS calls.

System printer device output is written to the transient
data destination identified using the DSOPEN call. This
must be defined in the CICS/VS Destination Control
Table (DCT), typically in a manner that would route the
output to a predefined extrapartition spool data set. |f
so routed, the definition should indicate the presence of
ASA control characters in the data generated by
GDDM.

GDDM uses CICS/VS Task Control ENQ/DEQ facilities
to ensure that system printer output resulting from a
single DSOPEN...DSCLS sequence remains contiguous,
and is not interleaved with the output from another
CICS/VS transaction. The application programmer
should ensure that the use of these facilities in multiple
transactions does not introduce excessive transaction
delays or interlocks.

Trace records are written to a single transient data
destination. This must be defined in the CICS/VS Desti-
nation Control Table (DCT), typically in a manner that
would route the output to a predefined extrapartition
spool data set. If so routed, the definition should indi-
cate the presence of ASA control characters in the
records generated by GDDM.

Trace records from different transactions may be inter-
leaved. For this reason, each record contains the cor-

CICS/VS

responding transaction name and terminal identifier.
For a description of the use of the FSTRCE function,
and of the format of the trace records, see the GDDM
Diagnosis and Problem Determination Guide.

For information on the trace facilities obtainable with
the new GDDM external default TRCESTR, see the
GDDM Diagnosis and Problem Determination Guide.

The above Transient Data destination names are as
defined in Table 1 on page 12. These names can be
changed, if required, after installation (by specifying a
value for the CICTRCE option, as described under
“GDDM external defaults — CICS/VS"” on page 128).

Error log records are written as they occur, to a single
transient data destination, which must be defined in the
CICS/VS Destination Control Table (DCT), in a manner
to suit the installation’s requirements. Typically, the
destination would be defined as an extrapartition desti-
nation, which would route the error log records to an
external data set for subsequent printing.

Error log records from different transactions may be
interleaved. For this reason, each record contains the
corresponding transaction name, number, and terminal
identifier. The format of these error log records is
described under “CICS/VS GDDM default error exit" on
page 14.

The Transient Data destination name for error log
records is ADML, and cannot be changed.

The programmer should ensure that the Transient Data
destination names required are all defined in the
appropriate CICS/VS tables. The underlying OS/VS or
DOS/VS data sets must have characteristics as shown
in Table 1o0n page 12.

Temporary storage facilities

GDDM uses CICS/VS Temporary Storage facilities to
write data to intermediate data sets used in the proc-
essing of calls to DSOPEN, DSCLS, FSOPEN, and
FSCLS for queued printer output. The temporary data
sets created are read by the GDDM CICS/VS Print
Utility, and after output to the printer is completed, the
data sets are purged.

By default, for queued printer output, GDDM selects
temporary storage queue names beginning with the
prefix “ADMT". This prefix can be changed, if required,
by specifying a value for the CICTSPX option, as
described under “GDDM external defaults — CICS/VS”
on page 128.

GDDM also uses CICS/VS Temporary Storage facilities
to read temporary External Defaults files. Such files
are intended to be used for problem determination pur-
poses only. For details, see the GDDM Diagnosis and
Problem Determination Guide.

By default, for External Defaults files, GDDM assumes
temporary storage queue names beginning with the
prefix “ADMD”. This prefix can be changed, if
required, by specifying a value for the CICDFPX option,
as described under “GDDM external defaults -
CICS/VS” on page 128.

Chapter 2. Using GDDM under CiICS/VS 11

CICS/VS

Also, GDDM uses temporary storage to hold Device
Query data when running in pseudoconversational
The queue name is formed from a prefix

mode.

under

“ADMQ", which can be changed, if required, by speci-

defaults — CICS/VS”

fying a value for the CICTQRY option as described
“GDDM external
page 128, and the terminal identifier.

on

Table 1. GDDM data-set characteristics for CICS/VS

set

Type of data GDDM default name or record Data-set type Data characteristics
type
Symbol sets Data set name = ADMDF Records in RECORDSIZE (400 400)
Record type = ADMSYMBL VSAM data set | KEYS(20 0)
Pictures Data set name = ADMF Records in RECORDSIZE (400 400)
Record type = ADMSAVE VSAM data set KEYS(20 0)
Generated Data set name = ADMF Records in RECORDSIZE (400 400)
mapgroup Record type = ADMGGMAP VSAM data set | KEYS(20 0)
GDF files Data set name = ADMF Records in RECORDSIZE (400 400)
[Record type = ADMGDF VSAM data set | KEYS(20 0)
Obje/ct Queue name = ADMD Transient data Fixed-length records, length 80 bytes
modules queue
System Queue name = ADMS Transient data Variable-length records, length 142
printer output queue bytes or greater (see note 4)
Queued (assigned by GDDM) Temporary (assigned by GDDM)
printer files storage data

Trace records

Queue name = ADMT

Transient data
queue

Variable-length records, maximum
length 137 bytes (including 4-byte RDW)

defaults files

(xxxx is the CICS/VS terminal
identifier)

storage data
set

Error log Queue name = ADML Transient data Variable-length records, maximum
records (cannot be modified) queue length 120 bytes
External Queue name = ADMDxxxx Temporary Variable-length records, maximum

length 256 bytes

1. Record types for data stored in VSAM data sets cannot be changed.

2. For Transient Data DOS/VS disk output data sets, another 8 bytes, required by LIOCS for creation of the
count field, should be added to the block size.

3. The definition of Transient Data queues for System Printer Output should indicate the use of ASA control

characters,
for OS/VS
for DOS/VSE

RECFORM = VARUNBA or VARBLKA
CTLCHR = YES

Pseudo- Queue name = ADMQxxxx Temporary Assigned by GDDM
conversa- {xxxx is the CICS/VS terminal storage data

tional saved identifier) set

device infor-

mation

Notes:

4. The record length specified for System Printer Output queues should be enough to contain the 4-byte Record
Descriptor Word (RDW), the ASA control character, any Translation Reference Character (TRC) for 3800
devices, and the maximum number of columns for the type of System Printer selected by the application.
The value of 142 is enough for any of the System Printer device characteristic tokens distributed with GDDM.

5. The output for all 3800 devices should contain table reference characters (TRCs) and so, for OS/VS, the
parameter DCB=O0PTCD=J must be included in the output JCL. Under OS/VS or DOS/VS, additional DCB
or SETPRT parameters, such as CHARS, FLASH, FORMS, and so on, may be required.

6. For more information, see the OS/VS2 MVS JCL manual or the DOS/VSE System Control Statements manual.

12 Base Programming Reference

Display terminal conventions

In generai, the CLEAR key and all PA and PF keys are
available to be returned as terminal input by means of
the GDDM ASREAD function. However, specific PA
keys that were defined in the CICS/VS System Initializa-
tion Table for other purposes, such as printing, are not
available for GDDM purposes.

Using GDDM with Basic Mapping
Support

It is possible to write a CICS/VS transaction that uses
both Basic Mapping Support (BMS) and GDDM func-
tions to manage the screen. Three methods for doing
this are described below. Note that GDDM uses
CICS/VS Terminal Control facilities to manage the
screen directly. For this reason, GDDM pictures dis-
played on the terminal cannot be paged using BMS
paging mechanisms.

An application program that uses both CICS/VS Ter-
minal Control and GDDM functions for input/output
operations is subject to the same considerations.
However, once GDDM is initialized, no transmissions
should be sent by CICS/VS Terminal Control that would
alter the state of the device, other than the screen
buffer. In particular, no structured fields to aiter the
state of PS sets (other than those reserved by the
GDDM PSRSYV call) should be transmitted.

Using GDDM and Basic Mapping Support
consecutively

When GDDM has formatted the screen and displayed
data by means of calls to ASREAD, or FSFRCE, or both
of these, the displayed panel can be replaced with one
generated by BMS using a command such as:

EXEC CICS SEND MAP('map-name')...ERASE

The ERASE option should be specified, because BMS is
not aware of the GDDM screen interactions that
occurred since the last BMS interaction. '

The BMS map can use any of the field description func-
tions supported by CICS/VS, including references to PS
sets loaded by GDDM calls. The application program
can then read data entered by the terminal user using
BMS.

When the BMS interactions are completed, GDDM can
be called again to present the original or updated data.
A call to FSREST(0) should be issued before calling
FSFRCE or ASREAD, because GDDM would not be
aware of the BMS screen interactions. GDDM inter-
actions can then continue until the application program
calls BMS again.

Using GDDM and BMS concurrently
without coordination mode

It is possible to use GDDM and BMS to display data at
the same time on the same screen. In this type of oper-
ation, it is recommended that GDDM be used only to
output graphics data, and that BMS be used for all
alphanumeric input/output processing. Specifically, the
GDDM ASMODE function should not be used to set the
character reply mode.

CICS/IVS

The GDDM picture should be presented first, using
FSREST(0) if necessary to clear any preceding BMS
data. The BMS map(s) should then be transmitted,
omitting the ERASE option. The map(s) should be
defined so that all screen areas used by GDDM for
graphics are in protected fields with normal attributes
(nonhighlighted, nonselectable, neutral color, normal
intensity, and standard character set). The application
program can then read data entered by the terminal
user using BMS.

On completion of terminal data entry, the GDDM
FSREST(0) call should again be used on resuming
GDDM operations.

If the FSCOPY call is used to copy a panel containing
both GDDM and BMS data, only the GDDM data is
printed, because GDDM is unaware of the BMS data.

Using GDDM and BMS concurrently with
coordination mode

Note: BMS is not supported with CICS pseudo-
conversational mode. '

The difficulty with the above method of using both BMS
and GDDM is that whenever GDDM rewrites the screen
it may choose to totally erase the screen and start
afresh. This, of course, also removes any existing BMS
output.

This problem is avoided if the device used for output is
explicitly opened with the DSOPEN statement and the
“coordination” mode of operation selected.

When GDDM generates the data streams for such a
device it never totally erases the screen when an
FSFRCE or ASREAD is issued. Instead it just rewrites
the contents of the area covered by the graphics field.
Any screen erasure required then becomes the respon-
sibility of the application using either Terminal Control
or BMS requests.

The following points should be noted:

* GDDM protects the graphics field by a column of
attribute bytes to its left, or at the end of the pre-
ceding row if the graphics field is positioned in the
first column.

The BMS maps should not use the area used by
these attribute bytes. If they do, the resuilts are
unpredictable.

e GDDM locks the keyboard when the device is
opened, to interrogate the device properties.
Therefore, any BMS request to release the key-
board should be issued after calling GDDM to open
the device.

e GDDM writes only to the area of the screen
covered by the graphics field. Further, no alphanu-
meric fields, even if they are within the graphics
field, are written to the screen.

* ASREAD does not wait for input — it behaves as
FSFRCE.

* Programmed symbol (PS) sets may still be loaded
within coordination mode.

Chapter 2. Using GDDM under CICS/VS 13

CICS/VS

* The application program must erase the screen
before issuing the first GDDM output request, to
establish either the default or alternate screen
size.

* After receipt of a CLEAR key the application should
rewrite the BMS portions of the screen before
issuing FSREST and FSFRCE calls to reestablish
the GDDM picture.

* The action of the default error exit is to erase the
screen and display a prompting message. This
causes disruption of the BMS-managed screen
layout. Therefore, the application should use the
FSEXIT function to redefine the handling of errors.

CICS/VS GDDM default error exit

The function of the GDDM Default Error Exit is gener-
ally described in the GDDM Base Programming Refer-
ence, Volume 1. When GDDM is running under
CICS/VS, the Default Error Exit operates as follows:

* The screen is cleared, and diagnostic messages
describing the error are displayed.

* Another message, describing the other actions
available to the terminal user, is displayed.

* |f the terminal user presses the CLEAR key at this
point, the screen is cleared and GDDM returns
control to the point in the application program
where the error exit was invoked. GDDM also
retransmits the screen buffer contents on the next
terminal input/output-related call.

e |f the terminal user uses any key other than
CLEAR, GDDM calls the CICS/VS Command Level
ABEND facility with an ABCODE of “G000", indi-
cating that the ABEND is in response to an error
message displayed on the terminal.

In either of the above cases, GDDM tries to write one or
more error log records to the CICS/VS Transient Data
destination ADML, if it was specified in the CICS/VS
Destination Control Table. The error log records
contain the diagnostic messages displayed on the ter-
minal, prefixed by transaction identification informa-
tion, as follows:

Byte

0...3 415...8 91 10...13 |14 15 |16...

Trans- Task Terminal Diag-

action | / / nostic
10 Number 10 Text

Note that in the special case of initialization errors a
choice of action is not available to the terminal user
after the diagnostic message is displayed. For these
errors, GDDM unconditionally ABENDS, with an
ABCODE of “G000", after displaying the corresponding
diagnostic message on the terminal.

14 Base Programming Reference

Requesting transaction-independent
services

When running under CICS, GDDM usually uses
transaction-dependent services to acquire storage and
load programs. That is, GDDM uses CICS/VS services
that ensure that storage and program resources are
released should the task terminate normally or abnor-
mally.

Application programs using SPINIT to initialize GDDM
can request that transaction-independent services be
used, by setting the CICTIF=YES option in an encoded
UDSL in the SPINIT call; see “Format of the system pro-
grammer interface block” on page 104. This causes
GDDM to use CICS/VS storage and program services in
such a way that storage and program resources are not
released at task or transaction termination.

Care must be taken when using this option, to ensure
that resources are eventually released in all situations
including abnormal termination of the task or trans-
action. The audit trail functions described in the fol-
lowing section can be used to monitor and control the
status of the resources.

Using the resource audit trails

Care must be taken when requesting transaction-
independent services as described above to ensure
that resources are released in all situations including
abnormal termination of the task or transaction.

Application programs requesting such services can
also request resource audit trails, by specifying the
CICAUD option in an encoded UDSL in the SPINIT call;
see “Format of the system programmer interface
block” on page 104. The application program can use
this option to provide the addresses of 4-byte audit trail
anchors for storage and program resources.

The storage audit trail is maintained as follows:

* All blocks of storage acquired but not yet released
by GDDM are chained together by 4-byte pointers
at offset +0 in each storage block.

* The storage audit trail anchor, addressed by the
CICAUD option, is set by GDDM to locate this chain
of storage blocks.

* The 4-byte pointer in the last storage block in the
chain is set to the initial value of the storage audit
trail anchor, as defined by the application program.

* |If all storage blocks were released (as at termi-
nation), the storage audit trail anchor is reset by
GDDM to its initlal value.

Thus, if abnormal termination occurs, the storage audit
trail anchor can be used to locate those blocks of
storage that are not yet released by GDDM. To be
effective, the audit trail anchor should be initialized to
an identifiable value, such as 0.

-

—_——

The program audit trail is maintained as follows,

* At initialization, GDDM allocates a “program hoid”
table of 41 entries, each eight bytes in length. All
but the last entry are initialized to blanks. The last
entry is an “end-of-table” marker and is initialized
to a value of X'FFFFFFFF’.

* The program audit trail anchor located by the field
SPIBPRAP is set by GDDM to address this program
hold table.

* Whenever GDDM loads a program, it replaces a
blank entry in the program hold table with the
program name.

* Whenever GDDM deletes a program, it resets the
corresponding entry in the program hold table to
blanks.

Thus, if abnormal termination occurs, the program hoid
table can be used to determine the names of those pro-
grams that are not yet deleted by GDDM.

Note that the program hold table itself is in a storage
block in the storage audit chain. Therefore, any proc-
essing of this table should be performed before proc-
essing the storage audit chain.

GDDM application programs in VSE
batch mode

GDDM application programs can be run in batch mode
under VSE, provided the only devices that they open
are page printers — in GDDM terms, family-4 devices.
GDDM page printer output takes the form of a file con-
taining either a primary or a secondary data stream.

A primary data stream is a complete document suitable
for processing by a printer driver program — the Print
Services Facility (PSF) for 38xx output or the Composed
Document Print Facility (CDPF) for 4250 output, or
equivalent programs. Conversely, a page segment
must be imbedded into a document by a formatting
program such as SCRIPT/VS, which in turn produces a
complete document for processing by the printer driver
program.

More information about printing on VSE systems is
given in GDDM Installation and System Management
for VSE.

In addition to user-written application programs, three
new GDDM utilities can run in VSE batch mode:

¢ the Image Print Utility, see page 56,

¢ the VSE Print Job Utility, see page 48,

¢ and the Composite Document Print Utility, see
page 57.

Instructions for running these are given in
Chapter 7, “The GDDM print utilities” on page 47.

CICS/VS

Link-editing

Before an application program can be run in VSE batch
modse, it must be link-edited with two GDDM interface
modules. One of these, ADMASLD, supports VSE batch
mode. Here is some model job control language (JCL)
for a link-edit job:

AREKRKAKRKRERARRARRARKRRKRAhhARkA Rk Rhhhkhkhhhhkkhk

* This JCL assumes that DLBL, EXTENT, and LIBDEF*
* statements have already been used to define *

* the GDDM relocatable libraries *
E R 2222222222222 222222222222 222222232232 22223 22

*

// J0B jobname
// OPTION CATAL
PHASE phase-name,*
INCLUDE phase-name
*
* In the following INCLUDE statement,
* leave ADMASNB unchanged for GDDM Base using
* nonreentrant interface
* replace ADMASNB by ADMASRB for GDDM Base using
reentrant interface
or by ADMASNO for GDDM Base + GDDM-PGF using
nonreentrant interface
or by ADMASRO for GDDM Base + GDDM-PGF using
reentrant interface
if using the system programmer
interface
INCLUDE ADMASNB
INCLUDE ADMASLD
// EXEC LINKEDT
/*
/&

or by ABMASP

* * F * * F *

Chapter 2. Using GDDM under CICS/VS 15

CICS/VS

Large 4250 page segments

A formatting program such as SCRIPT/VS can imbed a
page segment in two ways: it can either include the
complete segment inline, which means physically
putting it into its output file; or include the name of the
segment, leaving the printer driver program to phys-
ically Imbed it in the final output.

The CDPF program limits the size of inline page seg-
ments to 40K bytes. If you have larger page segments,
they cannot be passed to CDPF infine. Instead, they
must be stored in a VSAM ESDS file, from where CDPF
will read them when required. However, GDDM stores
any page segments that it creates in a phase library,
not in a VSAM file. To overcome this problem, there is
a GDDM utility called ADMUP2VD that copies page seg-
ments from the phase library to a VSAM ESDS file.

ADMUP2VD should not be used in the shared virtual
area (SVA).

Here is some sample JCL to copy a page segment from
a phase library to a VSAM ESDS file:

* $$ JOB JNM=CPYPHASE,CLASS=0,DISP=D
* $$ LST CLASS=A,DISP=D,DEST=(node,userid),JSEP=1
// J0B CPYPHASE
// DLBL gddm,'gddm.1ibrary.name’
// EXTENT ,volid
// DLBL libname, 'phase.library.name’
// EXTENT ,volid
// LIBDEF *,SEARCH=(1ibname.sublib,gddm.sublib)
// DLBL 1JSYSUC,'user.catalog.name',,VSAM
// DLBL fname,'vsam.file.name',,VSAM
// EXEC IDCAMS,SIZE=AUTO
DELETE (vsam.file.name) -
CLUSTER
/*

// EXEC IDCAMS,SIZE=AUTO
DEFINE CLUSTER
(NAME (vsam. file.name)

NONINDEXED -
RECORDFORMAT (V) -
RECORDSIZE (4600 8202) -
TRACKS(5 5) -
VOL(volid)) -
DATA -
(NAME(data.file.name))

/'lr

IF $RC>4 THEN

GOTO $E0J

// EXEC ADMUP2VD,SIZE=ADMUP2VD,PARM='fname'

/1*

//&

* $% E0J

Only the name of the phase to be copied must be speci-
fied on the PARM='fname' parameter (up to eight charac-
ters long). The type PHASE must not be included.

16 Base Programming Reference

Spill files

GDDM uses spill files when creating output for page
printers, uniess told otherwise in a processing option.
This is true whether the processing is done by a user-
written application or a GDDM utility. The spill files
need to be defined. Some sample JCL for doing this is
shown below.

* $$ JOB JINM=DEFSPILL,CLASS=0,DISP=D

* $% LST CLASS=A,DISP=D,DEST=(node,userid), *
JSEP=1

* $$ LST CLASS=A,DISP=D,LST=1A0, *
DEST=(node,userid) ,JSEP=1

// J0B DEFSPILL

// DLBL IJSYSUC,'user.catalog.name',,VSAM

// DLBL ADMOGO1,'ADMGGGOL.SPILL.FILE',,VSAM

// DLBL ADMOG02, 'ADMGOGO2.SPILL.FILE',,VSAM

// EXEC IDCAMS,SIZE=AUTO

DELETE (ADMOGBO1.SPILL.FILE)
CLUSTER

DEFINE CLUSTER
(NAME (ADMEOGO1 . SPILL.FILE)
NONINDEXED
REUSE
RECORDSIZE (1060 2600)
RECORDS (10 10)
VOL(PAC371))
DATA
(NAME (ADMG0GO1.SPILL.DATA))

DELETE (ADMBBOO2.SPILL.FILE)
CLUSTER

DEFINE CLUSTER
(NAME (ADMO0B0O2.SPILL.FILE)
NONINDEXED
REUSE
RECORDSIZE (1660 2600)
RECORDS(10 10)

VOL(PAC371))

DATA

(NAME (ADMBBOO2. SPILL.DATA))
/*
/4
* $$ EOJ

You must decide how you want to use spill files. Either
one spill file can be deleted and defined in each print
job (as shown above) or several can be defined before
a print job is run.

If you define several spill files before the print job is
run, use the NOALLOC option in the define statement to
save space. Spill files that have not been emptied cor-
rectly (as a result of a previous job ending uncleanly)
should be erased periodically.

CICS/VS

Sample JCL for GDDM under CICS/OS/VS using PL/I

//********************* CICS/OS/VS PL/I **************************;*****
/1*
//* Sample JCL to translate, compile, and link-edit a GDDM/CICS/VS
//* sample program or user-written application.
/*
//* This JCL assumes the use of the CICS-supplied
//* cataloged procedure “DFHEITPL.
*

//*************************************i********************************

/*
//jobname J0B accounting info,..........
// EXEC PROC=DFHEITPL

*

//* Translation step
*

//TRN.SYSIN DD *

Sourcé &eék.here.
Remember to define ADMUOFF if the program uses the nonreentrant
interface. (See “Using the Nonreentrant Interface of GDDM", on page 8.)

/1*
/*
//* Compilation step
/1*
//* Override SYSLIB to reference library containing GDDM sample
//* PL/I declarations, as shown.
//* Add SYSLIB DD override statements to reference any additional user
//* libraries required, for example libraries containing GDDM-IMD ADSs,
//* as shown.
*

//PLI.SYSLIB 0D

/! 0D DSN=GDDM. INST.GDDMSAM,DISP=SHR
// DD DSN=user.gddm.ads-1ib,DISP=SHR
/1*

//* Link-edit step

11*

//* Insert INCLIB to reference 1ibrary containing GDDM interface
//* modules, as shown.

/7*

//* In the specified INCLUDE statement,

//* Teave ADMASNC unchanged if using the nonreentrant interface
//* replace ADMASNC by ADMASRC if using the reentrant interface
/1* or by ADMASPC if using the system programmer interface
/r*
//LKED.INCLIB DD DSN=GODM.INST.GDDMLOAD,DISP=SHR

//LKED.SYSIN DD *

INCLUDE INCLIB(ADMASNC)

NAME xxxxxxxx{R) Sample Program or Application Name

/7*

Chapter 2. Using GDDM under CICS/VS 17

CICS/VS

Sample JCL for GDDM under CICS/OS/VS using COBOL

//********************* CICS/OS/VS COBOL AAAKKAKKEAARRKRAAAAR KA A AR A R Ak k&
*

//* Sample JCL to translate, compile, and link-edit a GDDM/CICS
//* sample program or user-written application.
*

//* This JCL assumes the use of the CICS-supplied
//* cataloged procedure "DFHEITCL".
%*

//**

/*

//jobname JOB accounting info,..........

/! EXEC PROC=DFHEITCL,PARM.COB='as-required-by-CICS®
*

//* Translation step
*

//TRN.SYSIN OD *

Sourcé &eék.here.
Remember to define ADMUOFF if the program uses the nonreentrant
interface. (See "Using the Nonreentrant Interface of GDDM", on page 8.)

/*
//* Compilation step
//* Add SYSLIB DD override statements to reference any additional user

//* libraries required, for example libraries containing GDDM-IMD ADSs,
//* as shown.

/*

//C0B.SYSLIB DD

// DD DSN=user.gddm.ads-1ib,DISP=SHR
/1*

//* Link-edit step

1

//* Insert INCLIB to reference library containing GODM interface
//* modules, as shown.

//* In the specified INCLUDE statement,

//* leave ADMASNC unchanged if using the nonreentrant interface

//* replace ADMASNC by ADMASRC if using the reentrant interface

/1* or by ADMASPC if using the system programmer interface

/
//LKED.INCLIB DD DSN=GDDM.INST.GDDMLOAD,DISP=SHR
//LKED.SYSIN DD *

INCLUDE INCLIB(ADMASNC)

NAME xxxxxxxx(R) Sample Program or Application Name
/7*

18 Base Programming Reference

CICS/VS

Sample JCL for GDDM under CICS/OS/VS using Assembler

//********************* CICS/OS/VS ASSEMBLER %o ek e 2 ok ok e e Yo ok % ok e e A ok ok e e e ok ek ok
/1*
//* Sample JCL to translate, compile, and link-edit a GDDM/CICS
//* sample program or user-written application.
*

//* This JCL assumes the use of the CICS-supplied
//* cataloged procedure "DFHEITAL®.
*

//**t*
//*
//jobname JOB accounting info,....... e
1/ EXEC PROC=DFHEITAL
*

//* Translation step
1*

//TRN.SYSIN DD *

Sourcé Aeék.here.
Remember to define ADMUOFF if the program uses the nonreentrant
interface. (See "Using the Nonreentrant Interface of GDDM", on page 8.)

/7*

/1*

//* Compilation step

/1*

//*% Add SYSLIB DD override statements to reference any additional user
//* libraries required, for example libraries containing GDDM-IMD ADSs,
//* as shown.

/1*

//ASM.SYSLIB 0D

// oD

// DD DSN=user.gddm.ads-1ib,DISP=SHR
/7*

//* Link-edit step

/1*

//* Insert INCLIB to reference 1ibrary containing GDDM interface

//* modules, as shown.

/*

//* In the specified INCLUDE statement,

//* leave ADMASNC unchanged if using the nonreentrant interface

//* replace ADMASNC by ADMASRC if using the reentrant interface

//* or by ADMASPC if using the system programmer interface
*

//
//LKED.INCLIB DD DSN=GDDM.INST.GDDMLOAD,DISP=SHR
//LKED.SYSIN DD *

INCLUDE INCLIB(ADMASNC)

NAME xxxxxxxx(R) Sample Program or Application Name
/1*

Chapter 2. Using GDDM under CICS/VS 19

CICS/VS

Sample JCL for GDDM under CICS/DOS/VS using PL/I

Fo e e e de e ok o e e e e e ek ke ek CICS/DOS/VS PL/I Khkkkkkkkkkkhhhhkhhrkhkkkkkhhkkhkk

Sample JCL to translate, compile, and link-edit a GDDM/CICS
sample program or user-written application.

This JCL assumes that DLBL, EXTENT, and LIBDEF statements have
already been used to:

- Define the GDOM sample source statement libraries

- Define the GDDM relocatable libraries

Add additional statements to define any additional user source
statement libraries required (for example, libraries containing
GDDM-IMD ADSs).

* % % % o ¥ F F X * F * ¥

ThKKEKAKKEKAARKEAKREARKKAAAAKRKKRIAAKKKAKRRRIAKAAKAI IR A I AR ARk Ahkkhdhhk
*

// J0B jobname

// DLBL 1JSYSPH, ' PL/1.TRANSLATION' ,yy/ddd

// EXTENT SYSPCH,balance of extent information
ASSGN SYSPCH,DISK,VOL=volid,SHR

]/ EXEC DFHEPP1$

*PROCESS INCLUDE;

Sourcé &eék'here.
Remember to define ADMUOFF if the program uses the nonreentrant
interface. (See "Using the Nonreentrant Interface of GDDM", on page 8.)

/*
CLOSE SYSPCH,PUNCH
// DLBL TJSYSIN, 'PL/I.TRANSLATION' ,yy/ddd
// EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=volid,SHR
// OPTION CATAL
PHASE phase-name,*
INCLUDE DFHPL1I

In the following INCLUDE statement,

leave ADMASNB unchanged for GDDM using nonreentrant interface

replace ADMASNB by ADMASRB for GDDM using reentrant interface
or by ADMASNO for GDDM + PGF using nonreentrant interface
or by ADMASRO for GDDM + PGF using reentrant interface
or by ADMASPC if using the system programmer interface

* % * ¥ % B H *

INCLUDE ADMASNB
INCLUDE ADMASLC
// EXEC PLIOPT
// EXEC LNKEDT

/&

// J0B RESET

CLOSE SYSIPT,SYSRDR
/&

20 Base Programming Reference

CICS/IVS

Sample JCL for GDDM under CICS/DOS/VS using COBOL

Kkdkkhkkhkhhkkkhhkihkdkhk CICS/DOS/VS COBOL dkhkhkkhkhkhkdhkhkkkhkkkkhhkkhhkhkkhk
*

* Sample JCL to translate, compile, and link-edit a GDDM/CICS
* sample program or user-written application.
*

* This JCL assumes that DLBL, EXTENT, and LIBDEF statements have
* already been used to:

* - Define the GDOM sample source statement libraries

* - Define the GDDM relocatable libraries

*

*

Add additional statements to define any additional user source
* statement libraries required (for example, libraries containing
* GDDM-IMD ADSs).

*

KEKKKAIKKKKKRKKKKKRRAAKRK KKK AAAR KA AR R ARAR KR ARKRA KT R ARk Rk hhhkAkhhkhhhkk
*

// J0B jobname
// DLBL IJSYSPH, 'COBOL . TRANSLATION' ,yy/ddd
// EXTENT SYSPCH,balance of extent information
ASSGN SYSPCH,DISK,VOL=volid,SHR

// EXEC DFHECP1$

CBL LIB

Sourcé &eék.here.
Remember to define ADMUOFF if the program uses the nonreentrant
interface. (See "Using the Nonreentrant Interface of GDDM", on page 8.)

/*
CLOSE SYSPCH, PUNCH
// OLBL TJSYSIN, 'COBOL.TRANSLATION',yy/ddd
// EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=volid,SHR
// OPTION SYM,ERRS,NODECK,CATAL
PHASE phase-name,*
INCLUDE DFHECI
*
* In the following INCLUDE statement,
* leave ADMASNB unchanged for GDDM using nonreentrant interface
* replace ADMASNB by ADMASRB for GDDM using reentrant interface
* or by ADMASNO for GDDM + PGF using nonreentrant interface
or by ABMASRO for GDDM + PGF using reentrant interface
or by ADMASPC if using the system programmer interface

* o *

INCLUDE ADMASNB

INCLUDE ADMASLC
/! EXEC FCOBOL
// EXEC LNKEDT

/&

// 0B RESET

CLOSE SYSIPT,SYSRDR
/&

Chapter 2. Using GDDM under CICS/VS 21

CICS/VS

Sample JCL for GDDM under CICS/DOS/VS using Assembler

Khkkkkhhkhkhkhkhkkkkikkk CICS/DOS/VS ASSEMBLER dhkhkhkhkhkhkhkhkkhkhkhkkrkrhkhhk

Sample JCL to translate, compile, and link-edit a GODM/CICS
sample program or user-written application.

This JCL assumes that DLBL, EXTENT, and LIBDEF statements have
already been used to:

- Define the GDDM sample source statement libraries

- Define the GDDM relocatable libraries

¥ % % % ¥ % X X ¥ *

Add additional statements to define any additional user source
* statement libraries required (for example, libraries containing
* GDDM-IMD ADSs).

*

Khkkhkkhkdkhhkhkkkkkhkhhkhkhhkhhkhhkhhkkhhkhkhkhhkhkkkkhhkkkhkhhkhhkhhhhhhkhkhhhhhkhrhikk
*

// JOB jobname

// DLBL IJSYSPH, *ASM. TRANSLATION' ,,yy/ddd

// EXTENT SYSPCH,balance of extent information
ASSGN SYSPCH,DISK,VOL=volid,SHR

]/ EXEC DFHEAP1$

Sourcé &e&k.here.
Remember to define ADMUOFF if the program uses the nonreentrant
interface. (See "Using the Nonreentrant Interface of GDDM", on page 8.)

/*
CLOSE SYSPCH, PUNCH
// DLBL TJSYSIN, 'ASM.TRANSLATION',yy/ddd
// EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=volid,SHR
// OPTION SYM,ERRS,NODECK,CATAL
PHASE phase-name,*
INCLUDE DFHEAI

In the following INCLUDE statement,

leave ADMASNB unchanged for GDDM using nonreentrant interface

replace ADMASNB by ADMASRB for GDDM using reentrant interface
or by ADMASNO for GDDM + PGF using nonreentrant interface
or by ADMASRO for GDOM + PGF using reentrant interface
or by ADMASPC if using the system programmer interface

%* % ¥ % % % * *

INCLUDE ADMASNB
INCLUDE ADMASLC

// EXEC ASSEMBLY

// EXEC LNKEDT

/&

// J0B RESET

CLOSE SYSIPT,SYSRDR

/&

22 Base Programming Reference

IMS/VS

Chapter 3. Using GDDM under IMS/VS

This chapter describes the use of GDDM under the
IMS/VS operating system. It covers the following
topics:

* Restrictions on the use of GDDM under IMS/VS
* Application program structure
¢ Link-editing a GDDM application

* Using the system programmer interface with
dynamic load

* PSBs for GDDM applications

* Data sets and file processing

* The IMS/VS default error exit

e GDDM and MFS

¢ GDDM DL/l interface

* IMS/VS considerations for GDDM utilities
* GDDM object import/export utility

e Sample JCL.

The use of the IMS version of the GDDM print utility is
described in Chapter 7, “The GDDM print utilities” on
page 47.

Application programs for IMS should carefully follow
the instruction given under “Application program
structure” on page 24. Careful note of the restrictions
should also be taken. The IMS/VS samples in
Appendix K, “Sample programs” on page 249 can be
used as a model for application programs.

Two utilities are provided to assist in the use of GDDM
under IMS/VS:

* The data-base utility used when installing GDDM
and when the network is updated.

¢ The Import/Export utility that allows symbol sets,
saved pictures, and other GDDM objects to be
moved out of, and into, an IMS/GDDM system.

The description in this chapter assumes a working
knowledge of IMS/VS.

Restrictions on the use of GDDM
under IMS/VS

The main restrictions on the use of GDDM in an IMS/VS
environment are:

¢ The IPDS printers are not supported.

¢ Picture interchange format (PIF) files are not sup-
ported.

* GDDM-IMD is not supported.
* GDDM-PCLK 1.1 is not supported.
* The 5080 Graphics System is not supported.

* GDDM only supports system network architecture
(SNA) connection for 3179-G and 3192-G display
stations, 3270-PC/G and 3270-PC/GX work stations,
and 5550-family work stations.

For 327x displays the amount of data that can be
created by GDDM and successfully transmitted by
IMS/VS depends on the line protocol and access
method used to send this data to the terminal.

For terminals defined as SLUTYPE2, or remote
3270 devices specified with data transparency,
OPTIONS = XPAR, there are no restrictions.

For all other 3270 displays the amount of data that
may be created and sent by GDDM in one message
is controlled by the OUTBUF parameter specified
during system definition.

For very complex pictures the length of the data
streams generated by GDDM may exceed this
maximum value. In such cases, the output
message is rejected by IMS/VS and an IMS/VS
error message is displayed at the terminal. If this
occurs and the device token being used specifies
COMPRES =NO, one way of reducing the length of
the data stream is to use a different device token
(one that has COMPRES=YES) that allows data-
stream compression (assuming that the 3274
control unit is configured for PS compression). For
more details, see Appendix G, “Device character-
istics tokens” on page 203.

For 3270-family terminals and printers output may
only be sent to logical terminals that are defined in
the GDDM System Definition data base. This con-
tains information that describes the physical char-
acteristics of the device.

The information in the data base is located using
the LTERM name of a message queue as a key
rather than the physical terminal name, because
only that piece of information is available to the
application and thus GDDM. To prevent trans-
mission errors the device to which the LTERM is
assigned must have the characteristics identified
in the data base. Reassignment of LTERMS must
be reflected by changes to the data base.

GDDM cannot be used to process input from the
terminals. The use of message queues and the
scheduling algorithms of an IMS/VS system are
unsuited to the direct interaction allowed in other
subsystems.

Information on the interaction of GDDM and the
message format service (MFS) and a description of
how input from a display formatted by GDDM
should be processed, is given on page 26.

FSSAVE files generated under IMS/VS cannot be
used under another subsystem, such as TSO, nor
may such files created under other subsystems be
sent to a device attached to IMS/VS using the
FSSHOW functions.

For the interactive utilities only, the use of PF key
12 allocated by IMS/VS to the COPY function
should be avoided. If the keyboard has only 12 PF
keys, the IMS/VS system definition for the terminal
should specify NOCOPY.

Plotters attached to 3179-G or 3192-G display
stations or to 3270-PC/G or 3270-PC/GX work
stations are not supported under IMS/VS.

Chapter 3. Using GDDM under IMS/VS 23

IMS/VS

* The WINDOW processing option and operator
window functions are not supported under IMS/VS.

* ICU flat-file data import is not supported under
IMS/VS.

Application program structure

The following list contains the steps that an IMS/VS
transaction program might make when using GDDM.

1. Issue a GU call to the I/O program communication
block (PCB) to acquire the first segment of the
input message.

2. lssue FSINIT, or any of its aliases, to enable GDDM
processing.

3. Optionally issue an FSEXIT call to nominate a user-
provided error exit to replace the default exit pro-
vided with GDDM, or to raise the threshold of
errors below which errors are not reported.

4. Issue one or more ESPCB calls to identify to GDDM
the PCBs that it may use.

5. Issue one or more ESLIB calls to show which data
bases are to be searched when retrieving and
storing GDDM data.

6. if the I/0 PCB has not been identified by an ESPCB
call above, or if output is to go to a destination
other than that of the I/0 PCB, issue DSOPEN calls
to define to GDDM the possible output destinations.

If the PCB to be used by GDDM is modifiable, the
destination of the PCB must be set using the CHNG
call before the DSOPEN call is issued.

This step is not needed if output is to go to the
source of the input message and the I/0 PCB has
been identified to GDDM because this Is the default
destination and PCB used by GDDM.

7. Process the input message using GN calls to
acquire subsequent message input. Generate
output messages using the GDDM subroutines to
describe any field-formatted or graphics output.
Use the DSUSE statement to select the output des-
tination if devices have been explicitly defined by
DSOPEN.

8. Issue DSCLS statements for each device opened
using DSOPEN.

9. Issue the FSTERM call to end GDDM processing.

10. Repeat from step 1 to process any more input mes-
sages.

This arrangement of an application program ensures
that GDDM is inactive across a GU call that may reset
certain information used by GDDM. Its drawback is the
repeated initialization and termination of GDDM. An
alternative structure that avoids this overhead is shown
below. Care should be taken to ensure that all devices
are closed across the GU call.

1. Issue FSINIT, or any of its aliases, to enable GDDM
processing.

2. Optionally issue an FSEXIT call to nominate a user-
provided error exit to replace the default exit pro-
vided with GDDM, or to raise the threshold of
errors below which errors -are not reported.

24 Base Programming Reference

3. Issue one or more ESPCB calls to identify to GDDM
the PCBs that it may use.

4. Issue one or more ESLIB calls to show which data
bases are to be searched when retrieving and
storing GDDM data.

5. Issue a GU call to the IO PCB to acquire the first
segment of the input message.

6. If the I/0 PCB has not been identified by an ESPCB
call above, or if output is to go to a destination
other than that of the /O PCB, issue DSOPEN calls
to define to GDDM the possible output destinations.

If the PCB to be used by GDDM is modifiable, the
destination of the PCB must be set using the CHNG
call before the DSOPEN call is issued.

This step is not needed if output is to go to the
source of the input message and the I/0 PCB has
been identified to GDDM because this is the default
destination and PCB used by GDDM.

7. Process the input message using GN calls to
acquire subsequent message input. Generate
output messages using the GDDM subroutines to
describe any field-formatted or graphics output.
Use the DSUSE statement to select the output des-
tination if devices have been explicitly defined by
DSOPEN.

8. Issue DSCLS statements for each device opened
using DSOPEN.

If the default destination was used, GDDM automat-
ically opens a device with an identifier of 0. This
should be closed using a statement of the form

CALL DSCLS(0,1)

8. Repeat from step 5 to process any more input mes-
sages.

10. Issue the FSTERM call to end GDDM processing
when all input messages have been processed.

Link-editing a GDDM application
program

Examples of the JCL that can be used to compile and
link-edit application programs written in PL/I or COBOL
are listed on pages 29 and 30.

Unless an application program uses dynamic load facil-
ities to access GDDM through the system programmer
interface (see below), a GDDM application program
must be link-edited with the appropriate GDDM inter-
face module as well as the DL/l interface module. The
interface module used depends on the type of GDDM
interface used and the language of the application
program, or, to be precise, of the program specification
block (PSB) for the transaction.

The module to be used may be explicitly controlled by
linkage editor control statements, or one of the alterna-
tive versions of the initialization entry point can be
used. The latter causes the correct GDDM interface
modules to be loaded by the automatic library call
capability of the linkage editor.

IMS/VS

Table 2. GDDM data-set characteristics for IMS/VS

Type of Data GDDM default Data set type DCB characteristics
tilename Record format Record length Block size
(RECFM) (LRECL) (BLKSIZE)
Symbol sets ADMTRACE Sequential data VA =125 LRECL
sets or SYSOUT [y ga >125 >LRECL + 4
classes

There are four alternative initialization calls for GDDM
in an IMS/VS environment. They allow for a choice of
nonreentrant and reentrant interface and non-PL/I and
PL/I PSBs. The names of the initialization calls are as
follows:

Interface Non-PL/I PSB PL/I PSB
Nonreentrant FSINNI FSINNPI
Reentrant FSINRI FSINRPI

If direct control of the link-edit process is chosen, the
initialization call should be coded using the FSINIT (or
SPINIT) entry point, and the following modules explic-
itly included by the link-edit process:

Interface Non-PL/l PSB PL/I PSB

Nonreentrant ADMASNI ADMASNJ
Reentrant ADMASRI ADMASRJ
System Programmer ADMASPI ADMASPJ

Using the system programmer
interface with dynamic load

If an application program uses only the system pro-
grammer interface (SP!), all invocations of GDDM are
through the entry point ADMASP. This entry point can
be resolved by link-editing the application program
with one of the GDDM interface modules, ADMASPI or
ADMASPJ, as described above.

However, the application program can avoid these
linkage-edit considerations by using system facilities
(the OS LOAD function) to dynamically load a GDDM
interface module (ADMASPLI for non-PL/I PSBs or
ADMASPLJ for PL/I PSBs). The main entry points for
these modules are defined both with their load module
names and with the name ADMASP.

Program specification blocks for
GDDM applications

The PSB for a GDDM application must include the PCBs
required by GDDM. These are:

* One TP PCB for each concurrently active device
(for example, for which a DSOPEN call was
issued).

For family-1 and family-3 (3270-family and system
printer) devices, the LTERM quoted in the PCB
statement must be that of the terminal to which the
output is to be sent. For family-2 devices, the
NAME parameter should specify the transaction
code assigned to the GDDM print utility.

If the NAME or LTERM parameter is not supplied
on the PCB statement, the PCB should be defined
as modifiable and the application program should
issue a CHNG call to set the destination before
defining the PCB to GDDM.

* A DB PCB for the system definition data base if
GDDM output is to be generated. A PROCOPT of G
should be specified because no normal GDDM
operation can alter information in this data base.

A sample PCB statement for such a data base is:

PCB TYPE=DB, NAME=ADMSYSDF , PROCOPT=G, KEYLEN=8
SENSEG NAME=ADMSDSGM, PARENT=0

Ensure that the names used in the above sample
were not altered during the initialization process.
If they were, corresponding changes must be made
in the IMSSDBD and IMSSEGS options in GDDM's
external defaults, as described under “GDDM
external defaults — IMS/VS" on page 131.

* A DB PCB for each object data base required.
A sampie PCB statement for such a data base is:

pPCB TYPE=DB, NAME=ADMOBJ1,PROCOPT=G,KEYLEN=20
SENSEG NAME=ADMOBROO, PARENT=0
SENSEG NAME=ADMOBDEP, PARENT=ADMOBROO

A PROCOPT of A should be specified if the
program is to alter information in the data base
using GDDM calls. Note the restriction that infor-
mation is written only to the first of the data bases
quoted in the ESLIB parameter list for any given
type of object.

It is possible to vary the DBD and segment names
from those quoted above during IMS system gener-
ation. If they are changed, corresponding changes
must be made in the OBJFILE and IMSSEGS
options in GDDM’s external defaults, as described
under “GDDM external defaults — IMS/VS” on
page 131.

However, if only the data-base name is to be
altered, the ESLIB statement can be used to notify
GDDM of the data-base name rather than altering
the external defaults. The name in the external
defaults is only used to find the data base to
search for objects if no ESLIB statement is coded.

An ESPCB call should be coded in the application for
each PCB to be used by GDDM.

Chapter 3. Using GDDM under IMS/VS 25

IMS/VS

Data sets and file processing

When running under IMS/VS, GDDM uses two types of
file processing:

* QSAM (Queued Sequential Access Method) is used
to write data to sequential output destinations
when certain trace functions are requested using
the FSTRCE call. For more details, see the GDDM
Diagnosis and Problem Determination Guide.

* DL/l is used to read and write information into the
two types of DL/ data base used by GDDM.

In the first type, GDDM refers to the file using a
ddname. The default value of this name is taken from
the IMSTRCE option in GDDM's external defaults. (For
details, see “GDDM external defaults — IMS/VS" on
page 131). If output is to be created from this file, the
dependent region JCL must be modified to include a DD
statement for it. The data set type and DCB character-
istics should be as shown in Table 2 on page 25.

The structure and requirements of the DL/I data bases
used by GDDM are described in the GDDM Installation
and System Management for VSE manual.

The Interactive Chart Utility (part of GDDM-PGF)
includes a directory function that supports list, delete,
and copy operations on GDDM DL/l objects such as
symbol sets and pictures.

The IMS/VS default error exit

GDDM provides a default error exit, which is given
control when GDDM detects an error in its processing.
The user can control the severity level of an error that
causes the exit to be taken and may also identify a
user-written error exit, as described for FSEXIT in the
GDDM Base Programming Reference, VYolume 1.

The default error exit provided in the IMS/VS environ-
ment reports the error using a /BROADCAST command
directed to the LTERM named in the 1/0 PCB. The
transaction must, therefore, be authorized to issue this
command. If the I/0 PCB was not identified to GDDM
by the ESPCB call, or the CMD call fails, the error
message Is issued using a “write to operator” (WTO)
function. The route code and message descriptor for
this WTO function are contained in GDDM's external
defauits. The IMSWTOR and IMSWTOD options can be
changed to suit the installation. For details of how to
do this, see Chapter 1, “Customizing your program
and its environment” on page 1.

GDDM and the Message Format
Service

GDDM uses the Message Format Service (MFS)
BYPASS function to send output to 3270 displays and to
non-SCS printers. Output to SCS printers is sent using
Basic Edit.

For displays, each message created by GDDM contains
the information needed to format the screen. By
default, it Is sent using a Message Output Descriptor
(MOD) with the name DFS.EDT (for a user application)
or DFS.EDTN (for a GDDM or GDDM-PGF Interactive

26 Base Programming Reference

utility). When a message using one of these MODs is
detected by MFS, it does not format the information in
the message but instead assumes that it contains a
data stream that may be sent to the device without
more processing.

Any input subsequently received from the device for a
user application is not processed against a Message
Input Descriptor (MID) but is instead passed to the
Basic Edit process. This removes the device-
dependent control information from the data stream
and replaces it with blanks.

Using GDDM it is possible to create a message con-
taining a picture and one or more input fields. When
this has been displayed, the end user can enter the
next transaction request from the terminal by typing
into the input field and pressing the ENTER key.

The segment returned from the GU DL/l function call in
the application program contains the contents of the
fields modified by the end user in a single segment.
There is no indication of the key (PF, ENTER, or PA)
that caused the data to be sent to IMS/VS. The fields
are of variable length, separated from each other by
one or more blanks.

For more information on the detailed formatting of the
input data stream, see the description of the Message
Format Service in the IMS/VS reference manuals; see
the Bibliography in Volume 1.

An installation can provide its own MOD to be used by
GDDM for transmitting nonconversational messages
from a user application to 3270-family devices. In this
way, an installation can make special provision for
processing subsequent input messages. To cause
GDDM to use a MOD name other than DFS.EDT, the
alternative MOD name must be specified in the
IMSMODN option in GDDM's external defaults, as
described under “GDDM external defaults — IMS/VS”
on page 131.

GDDM DL/l interface

The GDDM routines use the same DL/| interface as a
standard application program. To do so, GDDM needs
to know which of the PCBs, passed to the application
when it is scheduled, are to be used by GDDM. This
information is passed to GDDM by the ESPCB subrou-
tine call. The syntax of this function is described in
detail in the GDDM Base Programming Reference,
Volume 1.

Using this function, the application program can identify
the 1/0 PCB, other TP PCBs, and DB PCBs. The use
GDDM makes of each of these types of PCB is
described in the next sections. The following general
rules apply to the sharing of PCBs between an applica-
tion and GDDM:

1. GDDM uses the TP PCBs to insert the data streams
that it generates to the message queues. Such a
PCB is considered to be in use between the times
that the GDDM device services calls DSOPEN and
DSCLS are issued. These calls are described in
more detail in the GDDM Base Programming Ref-
erence, Volume 1. While a PCB is in use, the
application program must not also insert data on
the queue through the same PCB nor must it cause

the data on the PCB to be enqueued by issuing a
GU to the I/0 PCB or any other action that causes a
checkpoint.

2. If an application program tries to send output when
no primary device was explicitly defined, GDDM
tries to open a device to use the /O PCB.

3. If the application needs to insert another message
to the message queue, using a PCB that was used
by GDDM, the first segment of the message must
be inserted using the DL/I PURG function to
enqueue any message created by GDDM. GDDM
itself inserts the first message segment, using this
function to enqueue any application output already
placed on the message queue before a device is
opened.

Use of message queues

GDDM uses the I/0 and TP PCBs to insert output to
message queues for the primary and alternate devices.
These devices can be 3270-family devices, queued
printer devices, or system printer devices.

The PCB used by any device depends on the way in
which the device was identified using the DSOPEN
function and on the type of device. The method used by
GDDM to select the PCB to be used is given below.

Each message is created by inserting one or more seg-
ments. The number of segments is dependent on the
complexity of the output. For system printer devices,
each output segment is a print record. For the other
types of device, the message is segmented at arbitrary
points in the generated output. In this latter case, the
maximum size of the output segment is 84 bytes for a
gqueued printer device, and is taken from the value of
the I0BFSZ option in the current GDDM external
defaults for a 3270-family device.

3270-family devices

The NAME parameter on DSOPEN supplies the name of
the LTERM to which output is to be sent. GDDM selects
the PCB to be used by checking first the 1/0 PCB and
then each of the TP PCBs, in the order in which they
were identified by ESPCB calls, for a destination of the
given LTERM. It uses the first one of these PCBs that is
not already in use for another device.

If the NAME parameter is omitted, or coded as “%",
GDDM tries to use only the I1/O PCB.

If no PCB with a matching name is found, or if all PCBs
checked are already in use, the DSOPEN function fails.

The number of messages generated by GDDM for this
family of device is dependent on the type of the target
terminal. If it is a display, the output created from each
FSFRCE or ASREAD call is sent as an individual
message. If the terminal is a printer, ail output created
by the application program using the GDDM device is
sent in a single message.

If the application is conversational and the 1/O, or
another PCB, is selected by GDDM for use with a
display device, the application may only issue the
FSFRCE or ASREAD call once because, in this situ-
atlon, GDDM cannot issue the DL/I PURG request
required to cause the message created by the first call
to be enqueued.

IMS/VS

Queued printer devices

These devices generate output that is sent to the
GDDM-provided Print Utility for subsequent trans-
mission to a real 3270-family terminal. The NAME
parameter specified on DSOPEN identifies the LTERM
name of the latter terminal and cannot be omitted. The
output generated by GDDM directly from the application
program is inserted to the first PCB in which the
LTERM name is the transaction code of the GDDM print
utility. The default value for this transaction name is
ADMPRINT, but the installation may change this by
altering the IMSPRNT option in the current GDDM
external defaults, as described under “GDDM external
defaults — IMS/VS” on page 131. If no such PCB can
be found, or if all such PCBs are already being used by
other GDDM devices, the DSOPEN function fails.

All the output created by GDDM between DSOPEN and
DSCLS for a device of this type is sent as a single
IMS/VS message.

System printer devices

The NAME parameter specified on DSOPEN should
identify an LTERM to which print records, including car-
riage control characters, can be sent. If omitted, a
default destination is assumed by GDDM. This is
ADMLIST, but the instaliation may change the value by
altering the IMSSYSP option in the current GDDM
external defaults, as described under “GDDM external
defaults — IMS/VS” on page 131.

The PCB to be used is again chosen by checking first
the 1/0 PCB, and then all TP PCBs, in the order identi-
fied by the application, for an LTERM name matching
that given or assumed on the DSOPEN call. If no match
is found, or if all matching PCBs are already in use, the
DSOPEN function fails.

All the output created by GDDM for any one device of
this type forms a single IMS/VS message.

Use of data bases

GDDM uses two types of data base: one to contain the
terminal characteristics information, and another to
contain the “objects”, such as symbol sets, saved pic-
tures, generated mapgroups, and ADMGDF files. The
DB PCBs that are to be used must be identified to
GDDM by the ESPCB call before executing any routine
that might require access to the data bases.

The use of the data bases containing objects is further
controlled by the ESLIB routine whose syntax is
described in the GDDM Base Programming Reference,
Volume 1. This routine establishes the set of data
bases that are to be used to store or retrieve a given
type of object. The data bases to be used are identified
to this routine as a list of DBD names. Before issuing
this call the user must have issued ESPCB calls that
referred to DB PCBs for all the data bases mentioned
on the ESLIB call.

The data bases are searched in the order given in an
attempt to find an object. An object is stored only in the
first data base of the list, even though it may have been
retrieved from another one.

Chapter 3. Using GDDM under IMS/VS 27

IMS/VS

The DBD name of the system definition data base is
taken from the value in the IMSSDBD option in the
current GDDM external defaults; see “GDDM external
defaults — IMS/VS" on page 131. The external
defaults also contain defauit DBD names for the data
bases to be used for each of the object types.

IMS/VS considerations for GDDM
utilities

Under IMS/VS, the GDDM and GDDM-PGF interactive
utilities are run under the control of a single transaction
that emulates the environment that they expect. The
transaction is a “wait for input” conversational trans-
action. In these notes, the transaction code for the
utility is assumed to be “ADM,” but this may have been
changed by the installation.

* The transaction can support only a predefined
number of concurrent transactions. Any attempt to
start a new session with a utility that would cause
the limit to be exceeded is rejected with message
ADMO0772.

The number of concurrent transactions allowed
may be altered by modifying the vaiue in the
IMSUMAX option in the current GDDM external
defaults. For details, see “GDDM external defaults
- IMS/VS” on page 131.

* The transaction cannot continue conversations if,
for any reason, it is rescheduled during the lifetime
of a conversation. Such conversations are termi-
nated with message ADM0774.

* A particular scheduling of the transaction usually
ends when it has no record of any existing conver-
sations. Because it is possible for a conversation
to be terminated without the transaction’s being
aware of the fact (for example, because of partic-
ular error conditions), the transaction may not be
completed even though the end user has termi-
nated the conversation. In such a case, the end
user should enter the request:

ADM EXIT

which causes the utility to note that all conversa-
tions against the LTERM, from which the request
originates, were terminated.

28 Base Programming Reference

¢ To force a return to the region controller by the
transaction irrespective of the current state of any
active conversations, the request:

ADM SHUTDOWN

can be entered from an authorized terminal. By
default this authorized terminal has an LTERM
name of MASTER.

The keywords EXIT and SHUTDOWN, and the LTERM
name of the terminal authorized to issue the latter
request, are as defined in the IMSEXIT, IMSSHUT, and
IMSMAST options in the current GDDM external
defaults. For details, see “GDDM external defaults —
IMS/VS” on page 131.

* If, during a session with a utility, the current screen
format is destroyed (for example, by a high priority
or error message), it can be restored by entering
two blank characters as the next input message.

* On some terminals, IMS/VS reserves Program
Function key 12 for use as a print request key and
does not pass this as a valid interrupt to the utility
transaction. If the terminal has 24 rather than 12
PF keys, the use of PF key 12 can be avoided
because PF 24 usually has the same function.

If only 12 PF keys are available, the IMS/VS system
definition for a terminal should specify NOCOPY if
the GDDM utilities are to be accessed from that
terminal.

GDDM object import/export utility

The GDDM object import/export utility is used to
transfer GDDM objects (generated mapgroups from
GDDM-IMD, ADMGDF objects, symbol sets, chart
formats or data, or FSSAVE objects) between parti-
tioned data set(s), and the data base in which they are
kept for IMS/VS use, or to delete them from the data
base.

Its purpose is to enable objects to be transferred
between GDDM applications running on one IMS/VS
system, and those running on either another IMS/VS
system, or in a totally different environment (for
example a TSO development system).

The operation and use of the utility are described in the
GDDM Installation and System Management for MVS
manual.

IMS/VS

Sample JCL for GDDM under IMS/VS using PL/I

//********************* IMS/VS PL/I KEFEAKIRKKKA KA KKK ARRRK A kAR R Ak k Rk Kk
/1*

//* Sample JCL to compile, and link-edit a GDDM/IMS

//* sample program or user-written application.

/1*

//* This JCL assumes the use of the IMS/VS-supplied

//* cataloged procedure "IMSPLI".

/7*

//* The IMS/GDDM sample program or user-written application is
//* placed in IMSVS.PGMLIB.

/1*

/1* xxxxxxxx is the name under which the program load module is
//* generated.

/7*

//**

/1*

//jobname JOB accounting info,..........

// EXEC PROC=IMSPLI,MBR=xxxxxxxx,REGION.C=512K,
7/ PARM.C="'XREF,A,0BJ,NODECK, INC,OPT(TIME) '
/7*

//* Compilation step

/1*

//* Insert SYSLIB to reference library containing GDOM sample
//* PL/I declarations, as shown.

/1*

//C.SYSLIB DD DSN=GDDM.INST.GDDMSAM,DISP=SHR

//C.SYSIN Db *

Sourcé &eék‘here.

/*
/1*
//* Link-edit step
/1*
//* Insert INCLIB to reference library containing GDDM interface
//* modules, as shown.
/7*
//* In the specified INCLUDE statement,
//* leave ADMASNJ unchanged if using the nonreentrant interface
//* replace ADMASNJ by ADMASRJ if using the reentrant interface
//* or by ADMASPJ if using the system programmer interface
/1*
//L.INCLIB DD DSN=GDDM.INST.GDDMLOAD,DISP=SHR
//L.SYSIN Db *
INCLUDE INCLIB(ADMASNJ)
/*

Chapter 3. Using GDDM under IMS/VS 29

IMS/VS

Sample JCL for GDDM under IMS/VS using COBOL

//********************* IMS/VS COBOL hhkkhkhkREhAERRARTTA LRk kkdhkkdhkhhdhkk
/1*
//* Sample JCL to compile, and link-edit a GDDM/IMS
//* sample program or user-written application.
*

//* This JCL assumes the use of the IMS/VS-supplied
//* cataloged procedure "IMSCOBOL".
%

//* The IMS/GDDM sample program or user-written application

//* is placed in IMSVS.PGMLIB.

/7*

//* xxxxxxxx is the name under which the program load module is
//* generated.

/1*

//**

//*
//Jjobname J0B accounting info,..........
/1*
l/ EXEC PROC=IMSCOBOL ,MBR=xXxxxXXXX
//*

//* Compilation step
/1*
//C.SYSIN DD *

Source deck here.

/*

*
//* Link-edit step

%*
//* Insert INCLIB to reference Vibrary containing GDDM interface
//* modules, as shown.
™
//* In the specified INCLUDE statement,
//* leave ADMASNI unchanged if using the nonreentrant interface
//* replace ADMASNI by ADMASRI if using the reentrant interface
17* or by ADMASPI if using the system programmer interface
/™
//L.INCLIB DD DSN=GDDM. INST.GDDMLOAD,DISP=SHR
//L.SYSIN Db *

INCLUDE INCLIB(ADMASNI)
/*

30 Base Programming Reference

MVS/XA

Chapter 4. Using GDDM under MVS/XA

This chapter describes some special programming con-
siderations for 31-bit mode GDDM applications, and
provides general information on GDDM code and appli-
cation programs (for CICS/OS/VS, IMS/VS, and TSO)
that can run under the MVS/XA operating system. It
also discusses object compatibility between
System/370 and System 370/XA environments.

GDDM code above 16 megabytes

Under suitable subsystems and operating systems, the
main body of GDDM code can reside above 16 mega-
bytes. This is the default state.

Application code above 16 megabytes

Under suitable releases of TSO and CICS/OS/VS,
GDDM applications can reside above 16 megabytes.

IMS/VS applications cannot be run above 16 megabytes
because the DL/l stub (ASMTDLI) is link-edited with the
application. GDDM presumes that the DL/l stub always
runs in 24-bit mode.

AMODE(31) applications and application
parameters above 16 megabytes

Under TSO, CICS/VS, and IMS/VS, applications can run
in 31-bit mode and, if so, can pass to GDDM parame-
ters that are located above 16 megabytes.

If GDDM is called in 31-bit mode, it assumes that any
parameter addresses that are passed represent 31-bit
addresses.

GDDM object compatibility between
System/370 and System 370/XA

GDDM is object-compatible between System/370 and
System 370/XA, although it may contain instructions
that are unique to System 370/XA, which are run only if
the operating system is MVS/XA.

MVS/XA terminology

For a full definition of MVS/XA terminology, refer to the
associated MVS/XA documentation; see the Bibli-
ography in Volume 1. The following section gives a
short explanation of some of the relevant keywords.

AMODE(24), AMODE(31), AMODE(ANY)

This indicates that a module may be called in 24-bit
addressing mode only, in 31-bit addressing mode only,
or in either mode, respectively.

RMODE(24), RMODE(ANY)

This indicates that a module may be loaded only in
24-bit addressable storage (below 16 megabytes), or
anywhere in storage, respectively.

TRUE

Interfaces categorized as TRUE allow a program
running in 31-bit mode to use the interface and to pass
31-bit parameter addresses with values greater than 16
megabytes.

RESTRICTED
Interfaces categorized as RESTRICTED can only be
called by programs running in 24-bit mode.

HOLLOW

Interfaces categorized as HOLLOW can be called by
programs running in 24-bit mode or 31-bit mode, but
the value of all address parameters must be less than
16 megabytes.

EITHER

Interfaces categorized as EITHER can be called by pro-
grams running in 24-bit mode or 31-bit mode, but
restrictions exist with respect to parameters.

The GDDM Application iInterface is TRUE under TSO
and CICS/VS.

Subsystem-independent routines

All GDDM subsystem-independent routines (including
subsystem-independent adapter routines) are compiled
with:

AMODE (ANY) / RMODE (ANY)

Under MVS/XA, the Linkage Editor changes the attri-
butes of these routines to:

AMODE(31) / RMODE(ANY)

Provided all routines within a load module have
RMODE(ANY), the linkage editor assigns RMODE(ANY)
to the load module, thus allowing it to be located above
16 megabytes. Note, however, that if any routine within
a load module has RMODE(24), the linkage editor
assigns RMODE(24) to the load module, which is there-
fore constrained to reside below 16 megabytes.

When linked and called under an MVS/XA system,
AMODE(31) / RMODE(ANY) routines are called in 31-bit
mode, run entirely in 31-bit mode, and can reside any-
where in storage.

When called under a 370 system, these routines run in
24-bit mode and use no 370/XA-unique facilities.

CICS/VS-dependent routines

All CICS/VS services used by GDDM are TRUE ser-
vices. Therefore, all GDDM CICS/VS-dependent rou-
tines are compiled with:

AMODE (ANY) / RMODE (ANY)

Link-edit and execution considerations are as for
GDDM subsystem-independent routines (above).

Because the GDDM Application Interface routines have
RMODE(ANY), CICS/VS applications with RMODE(ANY)
may be link-edited to GDDM, and may be located above
16 megabytes.

Chapter 4. Using GDDM under MVS/XA 31

MVS/XA

Under CICS/VS, nearly all of GDDM can reside above
16 megabytes. The only exceptions are the Call Format
Descriptor Module and the APL Request Codes Module.
These modules have RMODE(24) to ensure address-
ability from 24-bit mode applications. The whole of an
application program can reside above 16 megabytes.

IMS/VS-dependent routines and
TSO-dependent routines

The system services and interfaces in the IMS/VS and
TSO environments are of all types: TRUE, HOLLOW,
EITHER, and RESTRICTED. For simplicity, GDDM
treats most services that are not TRUE as RESTRICTED
(requiring invocation in 24-bit mode from below 16
megabytes). The one exception to this rule is R-format
GETMAIN and FREEMAIN used in the Application Inter-
face routines. This form of GETMAIN and FREEMAIN is
EITHER, and can therefore be invoked above 16 mega-
bytes to acquire or release storage located below 16
megabytes. Using this, and not treating the macro as
RESTRICTED allows GDDM application programs under
TSO to be run above 16 megabytes.

GDDM IMS/VS-dependent routines and TSO-dependent
routines that call only TRUE services are compiled with
AMODE(ANY) / RMODE(ANY) and are treated in the
same way as subsystem-independent routines.

GDDM IMS/VS-dependent routines and TSO-dependent
routines that call services that are not TRUE are com-
piled with AMODE(ANY) / RMODE(24), and are there-
fore located below 16 megabytes.

The non-TRUE services that these routines contain are,
in general, treated as RESTRICTED (although there are
exceptions). For these services;

s Before invoking the service, the routines enter
24-bit mode (if not already in 24-bit mode).

* On return from the service, the routines restore
31-bit mode (if entered in 31-bit mode).

Therefore, in most cases, the setting of 24-bit mode is
highly localized.

Application programming
considerations

Under all MVS/XA systems, a GDDM application
program may have any valid AMODE attribute, and
may call GDDM in any mode (24-bit or 31-bit) consistent
with its location. In fact, it is possible (though not
recommended) for an application program to call
GDDM in both 24-bit and 31-bit modes in the same
session.

32 Base Programming Reference

Under MVS/XA, the “normal” AMODE for a GDDM
instance is AMODE(31). The vast majority of GDDM
processing is performed in its “normal” AMODE, with
AMODE(24) being forced only for the duration of system
service calls that are not known to be able to tolerate
being called in AMODE(31).

The Application Interface routines (that is, those parts
of the Application Interface that are link-edited with the
application program) always run in the AMODE of the
application. However, they mode-switch to the GDOM
“normal” AMODE when control is passed to the
dynamic part of GDDM.

If the application program runs in AMODE(24), GDDM
clears the top byte of each parameter address word, in
a copy of the parameter list that it usually generates, to
prevent wrong addresses being formed in the main
code running in 31-bit mode.

The SPINIT call

The SPINIT cali is a form of initialization that allows
parameters to be passed by a SPIB (SPI Initialization
Block). The SPIB contains a number of address words
that can be set by an application program.

If the SPINIT call is actually issued in 24-bit mode,
GDDM clears the top byte (minus the top bit) of each
address word that it processes.

The FSEXIT call

A user error exit, whose address is passed on an
FSEXIT call, is assumed to be executable in 31-bit
mode if either:

1. The application call is in 31-bit mode, or

2. The top bit of the address passed on the FSEXIT
call is on. (For example, the address uses the
MVS/XA convention that the top bit of the address
identifies its AMODE.)

The first condition enables a high-level language
program to pass the address of an exit that is link-
edited with itself. (It is difficult (or not possible) to set
the top bit of an address in, for example, FORTRAN.)

If a 24-bit application uses a 31-bit user error exit (by
setting the top bit of the address), it is the user exit's
responsibility to return control to the application in the
correct AMODE (because GDDM issues the equivalent
of an XCTL command to the exit).

User exits

A number of other user exits can be defined as
described under “Specifying user exits” on page 104.
That information describes MVS/XA considerations for
such exits.

Chapter 5. Using GDDM under TSO

This chapter describes the use of GDDM under the TSO
operating system. It covers these topics:

¢ Link-editing a GDDM application program
¢ Data sets and file processing

* Display terminal processing

* Using APL terminals

* Using GDDM under TSO or MVS batch

¢ Sample JCL.

An application program using GDDM has no particular
restrictions or requirements. However, if a PL/I
program uses the GDDM-supplied declarations it must
have access to the library on which they are held.
Also, it must be link-edited with one of the interface
modules as described below.

Terminal users should be aware of the GDDM usage of
PA1, PA2, and the CLEAR keys. Also, there is a possi-
bility of unexpected terminal responses after a GDDM
application program has ended abnormaily. These
matters are described under “Display terminal
processing” on page 36.

Link-editing a GDDM application
program

An example of the JCL that can be used to link-edit
GDDM application programs is listed on page 40.

Unless the application program uses dynamic load
facilities to access GDDM by means of the system pro-
grammer interface (see below), an application program
using GDDM under TSO must be link-edited with an
appropriate GDDM interface module. This interface
module can be specifically included in the link-edit
process. Or, if the application program uses one of the
other FSINIT entry points described in the GDDM Base
Programming Reference, Volume 1, the required GDDM
interface module can be included by linkage editor
automatic library call facilities.

This is a list of the GDDM interface modules for TSO:

interface Interface FSINIT
module alternative
entry
Nonreentrant ADMASNT FSINN
Reentrant ADMASRT FSINR

System programmer ADMASPT -

Using the system programmer interface
by means of dynamic load

It an application program uses only the System Pro-
grammer Interface, all invocations of GDDM are
through the entry point ADMASP. This entry point can
be resolved by link-editing the application with the
GDDM interface module ADMASPT, as described
above.

7SO

Or, the application can avoid these linkage-edit consid-
erations by using system facilities (the OS LOAD func-
tion) to load dynamically a GDDM interface module
ADMASPLT. The main entry point for this module is
defined with both names: ADMASP and ADMASPLT.

Data sets and file processing

When running under TSO, GDDM-Base and GDDM-PGF
use three types of file processing:

* BPAM (Basic Partitioned Access Method) is used
to read and write members on partitioned data
sets.

e QSAM (Queued Sequential Access Method) is used
to read and write data to and from sequential desti-
nations, such as sequential data sets or suitable
SYSOUT classes.

e BDAM (Basic Direct Access Method) is used to
write data to direct access data sets, such as the
Master Print Queue data set used to control
queued printer devices.

GDDM-IMD uses additional types of file processing.
For details, see the GDDM Interactive Map Definition
manual.

BPAM file processing

BPAM is used by GDDM to:

e Store and retrieve Image Symbol Sets (ISS) and
Vector Symbol Sets (VSS) by calls to GSLSS,
PSLSS, PSLSSC, SSREAD, and SSWRT, and also
by using the Image Symbol Editor.

e Store and retrieve device-dependent pictures by
calls to FSSAVE, and FSSHOW.

* Retrieve GDDM-IMD-generated mapgroups, as
required by calls to MSPCRT, MSQADS, MSQGRP,
MSQMAP, and MSREAD. Retrieve and store
graphics data format (ADMGDF) files, as required
by calls to GSLOAD and GSSAVE.

* Read 4250 printer typographical font and code
page data, as required by calis to GSCPG and
GSLSS.

GDDM maintains these symbol sets, pictures, gener-
ated mapgroups, and ADMGDF files as members of
partitioned data sets. The member-names that GDDM
uses are those specified in the corresponding GDDM
calls as “symbol-set names”, “picture-names”, “group-
names”, and “names” subject to modifications of these

names by any character-substitution rules that apply.

The use of partitioned data sets containing symbol sets,
pictures, generated mapgroups, and ADMGDF files can
be controlled by the ESLIB routine whose syntax is
described in the GDDM Base Programming Reference,
Volume 1. This routine establishes the set of parti-
tioned data sets that are to be used to store or retrieve
a given type of object. The partitioned data sets used
are identified to this routine by a list of file names.

Chapter 5. Using GDDM under TSO 33

TSO

The partitioned data sets allocated to the specified file
names are searched in the order given to try to find an
object. An object is stored only using the first file name
of the list, even though it may have been retrieved from
another one. If no file name list is provided, only the
default file name is used for retrieving and storing
GDDM objects.

GDDM uses OS/VS ENQ/DEQ services to ensure the
integrity of partitioned data sets as they are written to.
That is, GDDM ensures that at any one time, no more
than one instance of GDDM has a particular partitioned
data set opened for output processing. Partitioned data
sets are kept open for output only while servicing the
corresponding GDDM call.

The Interactive Chart Utility (part of GDDM-PGF)
includes a directory function that supports list, delete,
and copy operations on GDDM objects such as symbol
sets, pictures, generated mapgroups, and ADMGDF
files.

QSAM file processing

QSAM is used by GDDM to:

* Read an External Defaults File as part of initializa-
tion processing; see “External defaults file" on
page 2.

* Write object modules as the result of requests from
the Image Symbol Editor.

Within a single invocation of the Image Symbol
Editor, object modules are written consecutively to
the selected sequential output destination. Each
object module generated in this manner contains a
control section (CSECT) with the name as specified
by the editor, and is in a form suitable for link-
editing with an application program for subsequent
reference (typically, by the GSDSS or PSDSS
calls). The TSO LINK command can be used to call
the OS Linkage Editor for this purpose.

e Write data to intermediate sequential data sets
used in the processing of calls to DSOPEN, DSCLS,
FSOPEN, and FSCLS for queued printer output.
The temporary data sets created are read by the
TSO Print Utility, and after output to the printer is

' completed, the data sets are purged.

¢ Write output destined for a System Printer device
as the result of calls to DSOPEN and DSCLS.

* Write data to high-resolution image files as the
result of calls to DSOPEN and DSCLS for family-4
devices.

* Write trace records resulting from the FSTRCE
function in GDDM. For a full description of the use
of the GDDM trace function, see the GDDM Diag-
nosis and Problem Determination Guide.

BDAM file processing

BDAM processing is used by GDDM to read and write
data to the Master Print Queue data set, used by GDDM
to control requests for queued printer output made by
calls to DSOPEN, FSOPEN, DSCLS, and FSCLS. GDDM
uses OS ENQ/DEQ services to ensure the integrity of
the Master Print Queue, because it is written to by mul-
tiple TSO users and by the GDDM TSO Print Utility.
GDDM ensures that at any one time, no more than one

34 Base Programming Reference

instance of GDDM has the Master Print Queue avail-
able for input/output processing.

File-name usage

GDDM uses file names to refer to all the partitioned
data sets and sequential destinations, with the excep-
tion of:

* The Master Print Queue and intermediate sequen-
tial data sets that are used in the processing of
queued printer output.

* (Optionally, in the absence of appropriate file
names): High-resolution image files used in the
processing of family-4 devices.

The file names used are as defined in Table 3 on
page 35. They can be changed, if required, after instal-
lation, by specifying new values in GDDM'’s external
defaults, as described in Chapter 1, “Customizing your
program and its environment” on page 1.

The user should ensure that the required file names
are allocated to suitable data sets or destinations
before GDDM is called. The data sets or destinations
should have Data Control Block (DCB) characteristics
as shown in Table 3 on page 35. The DCB character-
istics for the data sets that contain GDDM-IMD's gener-
ated application data structures (file name
ADMGNADS) and export files (file name ADMIFMT) are
given in the GDDM Interactive Map Definition manual.

If necessary, GDDM supplies default DCB character-
istics when output data sets are first opened.

Required file names can be allocated to the selected
data sets or destinations using the TSO ALLOCATE
command. Or, the file names can be allocated by DD
statements in the user's TSO logon procedure, or by
dynamic allocation routines in the application program.

GDDM uses OS/VS dynamic allocation services to refer
to the Master Print Queue and associated intermediate
sequential data sets. The data-set names used include
a qualifier that is defined in the current GDDM external
defaults. This can be changed, if required, after instal-
lation, as described in Chapter 1, “Customizing your
program and its environment” on page 1. Or, the file
name ADMPRNTQ can be used to identify a Master
Print Queue data set other than that defined by the
current GDDM external defaults.

The intermediate sequential data sets are allocated
with a space allocation that is defined in the TSOS99S
option in the current GDDM external defaults. The
default allocation is equivalent to
SPACE = (13030,(57,57)). If required, this can be
changed after installation, as described under “GDDM
external defaults — TSO" on page 134.

Dynamic allocation services will ailso be used if a print
request has been specified to go directly to JES — by
means of the PRINTDST processing option; see “TSO
background print utility” on page 49.

GDDM also uses OS/VS dynamic allocation services to
refer to high-resolution image files (for family-4 proc-
essing), unless suitable file names were previously
allocated.

TSO

Table 3. GDDM data-set characteristics for TSO

Type of Data GDDM defauit Data set type DCB characteristics
tile name Record format Record length Block size
(RECFM) (LRECL) (BLKSIZE)
Symbol sets ADMSYMBL Partitioned F 400 400
FB 400 400%n
Pictures ADMSAVE Partitioned F 400 400
FB 400 400%n
Generated ADMSAVE Partitioned F 400 400
mapgroups FB 400 400%n
GDF files ADMGDF Partitioned F 400 400
FB 400 400%n
4250 fonts FONT4250 Partitioned \ 2052 (includes > LRECL+4
(Note 3) VB RDW)
4250 code FONT4250 Partitioned v 2052 (includes > LRECL+4
pages (Note 3) VB RDW)
Object ADMDECK Sequential data F 80 80
modules sets or SYSOUT FB 80 80%n
classes
System ADMDECK Sequential data VA >142 (Notes 1 LRECL +4
Printer Output sets or SYSOUT VBA and 2) > LRECL+ 4
classes =
Family-4 ADMCOLN or Sequential data \ 2004 (for 4250) LRECL+4
Output ADMIMAGE sets 8202 (for 38xx)
(optional) VBM 2004 (for 4250) | > LRECL+4
8202 (for 38xx)
(excludes RDW)
Master print ADMPRNTQ BDAM data set (Data set attributes provided when data set)
queue (optional) »
Queued (Assigned by Sequential data FBM 80 3200
printer files GDDM) sets
Trace records ADMTRACE Sequential data VA =125 LRECL + 4
sets or SYSOUT -
classes VBA E D1 V2v? (includes > LRECL+4
External ADMDEFS Sequential data F = 256 LRECL
default files sets FB LRECL*n
Vv LRECL+4
vB LRECL+4
Image files ADMIMG Partitioned F 400 400
FB 400 400%n
Image ADMPROJ Partitioned F 400 400
projection
files FB 400 400%n
Notes:

1. The logical record length specified for files allocated for System Printer Output should be sufficient to
contain the 4-byte Record Descriptor Word (RDW), the ASA control character, any Translation Reference
Character (TRC) for 3800 devices, and the maximum number of columns for the type of System Printer
selected by the application. The value 142 is adequate for any of the System Printer device characteristic
tokens distributed with GDDM.

2. The output for all 3800 devices should contain table reference characters (TRCs). Consequently, the param-
eter DCB=0PTCD=J must be included in the output JCL. Additional parameters such as CHARS, FLASH,

or FORMS may be required. For more information, see the OS/VS2 MVS JCL manual.

3. 4250 printer fonts and code pages are referenced by GDDM and are supplied as part of the 4250
typographical fonts licensed programs (program numbers 5771-AAA through 5771-AAW, and 5771-ACx,

where x varies).

Chapter 5. Using GDDM under TSO 35

TSO

In TSO foreground operation, GDDM allows the unit
specification for dynamically allocated data sets to be
defauited from the TSO user attribute data set (UADS).

In TSO Batch or MVS Batch, GDDM uses a unit specifi-
cation taken from the TSOS99U option in the current
GDDM external defaults. The default specification is
“SYSDA". If required, this can be changed after instal-
lation, as described under “GDDM external defaults —
TSO”" on page 134.

Display terminal processing

By default, the PA1, PA2, and CLEAR keys are proc-
essed separately from other terminal input. The effects
of these keys are:

CLEAR clears the screen (no other action)
PA1 raises an TSO attention interrupt
PA2 raise a GDDM “reshow™ condition.

The TSO CLEAR/PA1 protocol option of the DSOPEN
function can be used to suppress this separate proc-
essing of the PA1 and CLEAR keys. The TSO Reshow
protecol option of the DSOPEN function can be used to
specify that a key other than PA2 should act as a
“reshow” key. The use of these DSOPEN options is
described in the GDDM Base Programming Reference,
Volume 1.

The processing of these key functions is described in
more detail below. Note that, because of this special
processing, these key functions cannot be returned as
terminal input by the ASREAD, FSSHOR, or MSREAD
call, uniess the key processing was modified by use of
the DSOPEN protocol options.

Using the CLEAR key in full-screen mode

By default, terminal input using the CLEAR key is pre-
vented by full-screen-mode protocols from being
returned to GDDM and the application program. If the
terminal user presses the CLEAR key, the screen is
cleared, but no other operations occur. Specifically,
GDDM may still wait to read input from the terminal, as
a result of a call to ASREAD, FSSHOR, or MSREAD.
Subsequently, terminal input by the user may conflict in
format with that expected by GDDM; in this case, on
return to the application program, an ASREAD or
MSREAD operation issues this error message:

ADMO270 E SCREEN FORMAT ERROR

If this error message is issued, GDDM ensures that the
screen buffer contents are subsequently restored.

The TSO PA1/CLEAR protocol option of the DSOPEN
function can be used to suppress this special proc-
essing of the CLEAR key.

Entering attention interrupts in full-screen
mode

By default, PA1 may be used, while GDDM is operating
the terminal in full-screen mode, to cause an TSO
attention interrupt. Unless the application program has
established a special attention-processing function by
means of the TSO STAX macro, using PA1 suspends
the operation of both the application program and

36 Base Programming Reference

GDDM, and causes control to be passed to the terminal
user, with the terminal in READY mode.

At this point, normal TSO protocols allow the terminal
user to take the following alternative actions con-
cerning the application program and GDDM:

e Abandon, by entering a new command to be exe-
cuted

* Resume at the point of interruption, by using the
ENTER key.

In the latter case, if GDDM had been interrupted while
waiting for terminal input (as the result of a call to
ASREAD, FSSHOR, or MSREAD), the ASREAD,
FSSHOR, or MSREAD operation is completed without
reading any input. On return to the application
program, this error message is displayed:

ADMO405 E ATTENTION INTERRUPT

GDDM ensures that the screen buffer contents are sub-
sequently restored.

If the application program has established a special
attention-processing function by means of the TSO
STAX macro, using PA1 clears the screen and displays
an attention indicator, but does not force a paging con-
dition or otherwise indicate to GDDM that the screen
buffer contents were cleared. In these circumstances,
the application program should subsequently issue an
FSREST(1) call to cause the display buffer contents to
be restored.

The TSO PA1/CLEAR protocol option of the DSOPEN
function can be used to suppress this special proc-
essing of the PA1 key.

Reshow key processing in full-screen
mode

Under TSO, GDDM operates an IBM 3270 series display
in what is known as “full-screen mode"”. In this mode,
if the terminal is to receive a non-full-screen message,
such as an error message, or a message from another
TSO user, the display screen is cleared, the alarm is
sounded (if applicable), and the message is displayed.

If several such messages occur consecutively, the
screen is cleared once, the alarm is sounded, and the
messages are displayed in sequence. When the next
GDDM full-screen transmission is received, a paging
condition (indicated by three asterisks, %%, at the
current line) is forced.

Pressing the ENTER key at this point queues a request
to GDDM to completely retransmit the display buffer
contents to the terminal (this is equivalent to the call
FSREST(1)). Note that GDDM receives this reshow
request only if it is (or when it is next) testing for input
as a result of a call to ASREAD, FSSHOR, FSSHOW,
GSREAD, MSREAD, or FSFRCE. TSO protocols are
such that more partial GDDM transmissions may occur
before GDDM starts retransmission of the contents of
the buffers.

Using the reshow key (by default, PA2) during normal
full-screen processing simulates the above conditions
and causes GDDM to retransmit the contents of the
buffers.

The TSO Reshow protocol option of the DSOPEN func-
tion can be used to define a key other than PA2 to act
as the reshow key.

Device errors in full-screen mode

Under TSO in full-screen mode, non-full-screen output
to the terminal can cause some full-screen trans-
missions to be “discarded” or wrongly interpreted. In
some circumstances, this can cause device errors (dis-
played in the Operator Information Area of the terminal
as “X PROGnnn").

After non-full-screen output has been received at the
terminal, it is possible for more partial GDDM trans-
missions to occur before GDDM is able to begin
retransmission of the screen contents; see “Reshow
key processing in full-screen mode” on page 36.

In some circumstances, such partial GDDM trans-
missions may no longer be valid, and may cause
device errors; for example:

* A partial transmission may contain a reference to a
PS set. The PS set may not have been initialized
because:

— The particular PS set has not been used since
the device was powered on, and

~ The GDDM transmission initializing the PS set
was discarded by TSO in favor of a non-full-
screen message.

* A partial transmission may assume the existence
of a specific partition state on a 3280. The partition
state may not exist because the GDDM trans-
mission creating the partition state was followed
by non-full-screen output that cleared the screen
and thus destroyed the partition state.

If such device errors occur (“X PROGnnn" displayed in
the terminal Operator Information Area), the terminal
user should press the ENTER key to acknowledge the
transmission. More partial transmissions (and more
device errors) may occur untii GDDM receives the
reshow request, at which time GDDM automatically
reconstructs the entire screen contents.

Line-by-line input in full-screen mode

In full-screen mode, TSO does not update line counts
for any non-full-screen input entered at the terminal.
This may result in such input being obliterated by sub-
sequent non-full-screen output to the terminal.

Usually, this does not concern an application program
using GDDM, because the program expects to use
GDDM to read input from the terminal in full-screen
mode. Also, GDDM sets full-screen mode off when
invoked for termination by means of the FSTERM call.

However, if an application program ends without a call
to FSTERM (as the result of an ABEND or other error),
it is possible for the terminal user subsequently to be
prompted to enter line-by-line input with full-screen
mode still enabled for that terminal. In this situation,
the terminal user may be able to prevent obliteration of
the line-by-line input by using PA1. This raises an TSO
attention interrupt, and also turns off full-screen mode.

TSO

NOEDIT mode under TSO

Under TSO, GDDM uses NOEDIT mode to operate a
“queriable” IBM 3270 series terminal (that is, a ter-
minal that supports the Read Partition (Query) Struc-
tured Field).

Usually, this would not concern an application program
using GDDM, because GDDM maintains this mode only
when reading from a terminal. However, if GDDM or
the application program is abnormally terminated, it is
possible for the terminal user subsequently to be
prompted to enter line-by-line input with the NOEDIT
mode still enabled for that terminal.

In this situation, the user may find that line-by-line input
cannot be correctly interpreted, and may receive one of
these messages:

IKJ566011 COMMAND SYSTEM RESTARTING DUE TO CRITICAL
ERROR
IKJ5660601 UNRECOVERABLE COMMAND SYSTEM ERRGCR

To recover from this situation, and to prevent the TSO
logon session from being terminated, the terminal user
must press PA1; this causes an TSO attention interrupt
and turns off the NOEDIT mode.

Using APL terminals

Under TSO, device information provided by the sub-
system does not distinguish between an IBM 3277
Mode! 2 display terminal and an IBM 3278 or 3279
Model 2 display terminal, unless the latter is defined to
be “queriable”; that is, is defined to support the Read
Partition (Query) Structured Field by the 3274 Con-
troller Configuration Support C and the Extended Char-
acter Set Adapter (feature number 3610).

By default, GDDM resolves this ambiguity by assuming
that the device is an IBM 3277 Model 2. If the device is
actually a nonqueriable IBM 3278 or 3279 Model 2 with
an APL Feature, and if the APL character set is to be
referred to by an application, the GDDM default
assumption must be overridden to ensure correct oper-
ation of the device. The GDDM default can be over-
ridden in any of these ways:

1. The application can specify an explicit device
token (for example, ADMK782A) on a DSOPEN call
to initialize the device; see the GDDM Base Pro-
gramming Reference, Yolume 1.

2. The TSOAPLF option in GDDM'’s current external
defaults can be modified to cause GDDM to
assume by default that a nonqueriable Model 2
display terminal is an IBM 3278 or 3279. This
option can be specified:

* In an External Defaults Module

* |n an External Defaults File that was allocated
to ddname ADMDEFS, or

° In a SPINIT, ESSUDS, or ESEUDS call in an
application program.

See Chapter 1, “Customizing your program and
its environment” on page 1.

Chapter 5. Using GDDM under TSO 37

TSO

Also, under TSO, device information provided by the
subsystem does not indicate whether a 3277 Model 2
display or a nonqueriable 3278 or 3279 display actually
has the appropriate APL feature.

By default, GDDM assumes that such a device has the
APL feature, and it selects an appropriate set of trans-
lation tables. (For more details, see the description of
ASTYPE in the GDDM Base Programming Reference,
Volume 1 and the GDDM Installation and System Man-
agement for MVS manual.) If the device does not have
the APL feature, the use of character code points that
correspond to APL characters may result in incorrect
output at the device.

The GDDM default can be overridden in either of the
following ways. The application program can:

* Specify an explicit device token (for example,
ADMK7720) in a DSOPEN call to initialize the
device (see the GDDM Base Programming Refer-
ence, Volume 1) or by means of nickname facilities
(see “Using nicknames to define device
characteristics” on page 3).

* Use the ASTYPE call to specify the appropriate set
of translation tables, as follows:

Device type Translation type number
3277 3277

3277-APL 32771

3278, 3279 3279

3278-APL, 3279-APL 32791

For a full description of the operation of alphanu-
meric translation tables, see the GDDM Installation
and System Management for MVS manual.

Using GDDM under TSO batch

TSO Extensions (TSO/E) is a licensed program
(program number 5665-285) that provides a TSO Batch
environment in which TSO commands and command
procedures can be run in the background. GDDM can
be used in this environment, in normal MVS Batch,
subject to the following considerations.

¢ TSO Batch applications must be link-edited using
the information under “Link-editing a GDDM appli-
cation program” on page 33.

e GDDM processes any External Defaults File allo-
cated by means of a DD statement; the default
ddname is ADMDEFS.

* The GDDM default error exit reports errors using
WTP (Write-To-Programmer). These messages
usually appear on the JOB LOG output.

e GDDM dynamically allocates queued printer files
or high-resolution image files for family-4 devices
using a unit specification that is defined in the
TSOS99U option in the current GDDM external
defaults. The default unit specification is SYSDA.
If required, this can be changed, as described
under “GDDM’s default values, listed by
subsystem” on page 127.

e The GDDM-supplied interactive utilities neces-
sarily use the default primary device (the “TSO
terminal”), unless called for noninteractive proc-
essing. Therefore, these utilities cannot be run
interactively in TSO batch.

38 Base Programming Reference

¢ The default primary device (the simulated TSO ter-
minal) is not suitable for GDDM full-screen oper-
ations. GDDM diagnoses any attempt to use this
device.

Therefore, an application must include an explicit
DSOPEN to identify a nondefault primary device
(for example, a dummy device or non-family-1
device).

* The GDDM default error exit reports errors using
WTP (Write-To-Programmer). User PROFILE
options can be used to cause the messages to
appear as part of the session output file
(SYSTSPRT). The TSO command to request that
WTP messages appear on the session output file
is:

PROFILE WTPMSG

and this should be included in the session input file
(SYSTSIN) before GDDM is used.

* Unless the application is running as part of a RACF
job with USERID, no default data-set-name prefix
or userid is defined. A default data-set-name
prefix may be required by GDDM for dynamic allo-
cation of queued printer files or high-resolution
image files (for family-4 devices). The TSO
command to establish a default data-set-name
prefix is:

PROFILE PREFIX({dsname-prefix)

and this should be included in the session input file
(SYSTSIN) before GDDM is used.

* GDDM uses the userid only for annotation pur-
poses (in print files and trace files). In the absence
of a userid, GDDM uses the JOB name.

Using GDDM under MVS batch

These items are specific to processing under MVS
Batch:

e MVS Batch applications must be link-edited using
the information under “Link-editing a GDDM appli-
cation program” on page 33.

* GDDM processes any External Defaults File allo-
cated by means of a DD statement; the default
ddname is ADMDEFS.

¢ The GDDM default error exit reports errors using
WTP (Write-To-Programmer). These messages
usually appear on the JOB LOG output.

* GDDM dynamically allocates queued printer files
or high-resolution image files for family-4 devices
using a unit specification that is defined in the
TSOS99U option in the current GDDM external
defaults. The defauit unit specification is SYSDA.
If required, this can be changed, as described
under “GDDM’s default values, listed by
subsystem” on page 127.

* The GDDM-supplied interactive utilities neces-
sarily use the default primary device (the “TSO
terminal”), unless called for noninteractive proc-
essing. Therefore, these utilities cannot be run
interactively MVS Batch.

The default primary device (the simulated TSO ter-
minal) is not available for GDDM full-screen oper-
ations. GDDM diagnoses any attempt to use this
device.

Therefore, an application should include an explicit
DSOPEN to identify a nondefauit primary device
(for example, a dummy device or non-family-1
device).

The default data-set-name prefixes or userids that
are given under TSO are not applied. GDDM does
not apply such a prefix for dynamic allocation of
queued printer files or high-resolution image files
for family-4 devices. Queued printer files are allo-
cated with names of the form:

ADMPRINT.REQUEST. #nnnnn

TSO

where the string ADMPRINT is as provided in
GDDM'’s defaults. The name ADMPRINT can be
changed by specifying a new value in the
TSOPRNT option in GDDM's external defaults. For
full details, see “GDDM external defaults — TSO"
on page 134.

GDDM uses the JOB name for annotation purposes
in print and trace files.

Chapter 5. Using GDDM under TSO 39

TSO

Sample JCL for GDDM under TSO

//************************ TSO Fede g o de o do & Fodo Kk o 2ot e e Ko o de e e e de Ko o de K de de de de de e ke e de ek ek
/"*
//* Sample JCL to link-edit a GDDM/TSO
//* sample program or user-written application.
1*
//* xxxxxxxx is the name under which the program load module is
//* generated.
*

,/**t***************

/1*

//jobname JOB accounting info,..........
/1*

//* Link-edit step

/*

//* Include INCLIB to reference library containing GDOM interface
//* modules, as shown.

//* In the specified INCLUDE statement,
//* leave ADMASNT unchanged if using the nonreentrant interface
//* replace ADMASNT by ADMASRT if using the reentrant interface

11* or by ADMASPT if using the system programmer interface
/*
//LKED EXEC PGM=IEWL,PARM='XREF,LIST' ,REGION=768K

J//SYSPRINT DD SYSOUT=A

//SYSLIB DD DSN=as-required-by-application,DISP=SHR
//INCLIB DD DSN=GDDM.OSPID.GDDMLOAD,DISP=SHR
//SYSLMOD DD DSN=user-1oad-module-dataset,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(260,20))
//SYSLIN Db *

Progrém.oﬁjéct deck here.

INCLUDE INCLIB(ADMASNT)
NAME xxxxxxxx{R)
/*

40 Base Programming Reference

VM/CMS

Chapter 6. Using GDDM under VM/CMS

This chapter describes the use of GDDM under the
VM/CMS operating system. It contains the following
topics:

* Compiling a GDDM PL/I application program

* Loading a GDDM application program

* Running a GDDM application program or utility
¢ Data sets and file processing

¢ Display terminal conventions

* Using APL terminals

* Batch processing

* Running programs under VM/XA.

How to use the GDDM print utility is described in
Chapter 7, “The GDDM print utilities” on page 47.

Note: GDDM cannot be run in the VM CMS/DOS envi-
ronment. Therefore, it cannot be successfully invoked
under VM/CMS by application programs compiled
using DOS compilers such as the PL/I DOS Optimizing
Compiler.

When writing an application program, you must access
MACLIBs to compile your programs, if you are to
include the GDDM standard declarations. You must
also access TXTLIBs to load your program, and pos-
sibly to run your program, as described on page 41.

If you are a terminal user you must know the PA key
usage and other terminal conventions.

You must also be aware of the file usage of GDDM to
help you manage the storage of your virtual machine.

You should also be aware that under VM/CMS the print
utility may have to be invoked separately after invoking
printing functions from the ICU or from an application
program. The print utility is described under
Chapter 7, "The GDDM print utilities” on page 47.

Compiling a GDDM PL/I application
program

If you use the GDDM-supplied declarations in your
program, you must access the library that contains
them before compiling, by issuing a command of the
form:

GLOBAL MACLIB ADMLIB

Loading a GDDM application
program

Before loading a VM/CMS application, the CMS
GLOBAL command must be executed to identity the
appropriate GDDM TXTLIB to be searched for GDDM
function references.

The GDDM TXTLIB to be specified in the CMS GLOBAL
command depends on the type of GDDM interface being
used, as follows:

Interface GDDM TXTLIB
Nonreentrant ADMNLIB
Reentrant ADMRLIB
System programmer ADMPLIB

The command takes the form:

GLOBAL TXTLIB ADMxLIB

where ADMxLIB is one of the TXTLIBs above.

The application can then be loaded, typically with a
command of the form:

LOAD appl-name

Running a GDDM application
program or utility

All the required run-time GDDM facilities may have
been made available in a VM/CMS Discontiguous
Shared Segment (DCSS) as described in GDDM Instal-
lation and System Management for VM manual. If not,
before running a GDDM application program or utility,
the CMS GLOBAL command must be executed to iden-
tify appropriate GDDM TXTLIBs to be searched for rou-
tines required dynamically during execution.

If GDDM/VM or GDDM/VMXA (“GDDM Base”) only has
been installed, the installation procedure will have
placed the required routines in ADMGLIB TXTLIB.

If GDDM-PGF has also been installed, the installation
procedure will have placed additional GDDM-PGF rou-
tines in ADMPLIB TXTLIB.

If the GDDM National Language (GDDM NL) special
feature has also been installed, the installation proce-
dure will have placed additional GDDM NL routines in
ADMPLLIB TXTLIB (this contains language-dependent
routines for languages other than American English).

;I’herefore. the CMS GLOBAL command to be executed
S:

GDDM Base only:

GLOBAL TXTLIB ADMGLIB

GDDM Base and GDDM-PGF:

GLOBAL TXTLIB ADMPLIB ADMGLIB

GDDM Base and GDDM Base NL:

GLOBAL TXTLIB ADMHLIB ADMGLIB

GDDM Base, GDDM-PGF NL, and both NL:

GLOBAL TXTLIB ADMHLIB ADMPLIB ADMQLIB ADMGLIB

Chapter 6. Using GDDM under VM/OMS 41

VM/CMS

If any other GDDM product besides GDDM Base has
been installed, issue ADMGLIB as the last parameter in
the GLOBAL command parameters list. Failure to do
sSo may cause GDDM abend code 1064.

Having issued the GLOBAL command, if required, the
application can then be started, typically with a
command of the form:

START appl-entry-point

If the application requires no special parameters on the
START command, the steps described above of loading
and starting an application can be combined. For
example:

GLOBAL TXTLIB ADM....
LOAD appl-name (START

Note: It is mandatory that ADMGLIB is specified after
ADMPLIB on the GLOBAL command.

Considerations for running multiple
instances of GDDM

An application using the reentrant or system pro-
grammer interface to GDDM may invoke more than one
instance of GDDM concurrently. Such an application
should ensure that the first instance of GDDM to be ini-
tialized (using FSINIT or SPINIT) is also the last to be
terminated (using FSTERM). This prevents any GDDM
Shared Segment (DCSS) being unloaded prematurely.

Data sets and file processing

When running under VM/CMS, GDDM/Base and
GDDM-PGF use two types of file processing:

* “Native” CMS file processing to read and write
conventional CMS disk files direct.

* “Native” CMS spool file processing to write output
to the punch device, 00D, and the printer device,
00E.

GDDM-IMD uses additional types of file processing.
For details, see the GDDM Interactive Map Definition
manual.

Native CMS file processing

Native CMS file processing is used by GDDM:

* To store and retrieve Image Symbol Sets (ISS) and
Vector Symbol Sets (VSS), as a result of calls to
GSLSS, PSLSS, PSLSSC, SSREAD, and SSWRT,
and through the Image Symbol Editor.

* To store and retrieve device-dependent pictures,
as a result of calls to FSSHOW, FSSHOR, and
FSSAVE.

* To retrieve GDDM-IMD-generated mapgroups, as
required by calls to MSPCRT, MSQADS, MSQGRP,
MSQMAP, and MSREAD.

e To retrieve and store Graphics Data Format
(ADMGDF) files, as required by calls to GSLOAD
and GSSAVE.

* To write text files, as a result of requests through
the Image Symbol Editor.

42 Base Programming Reference

* To write queued print files, as a result of calls to
DSOPEN, DSCLS, FSOPEN, and FSCLS, subse-
quently to be processed by the GDDM VM/CMS
Print Utility.

* To write system printer disk files, as the resuit of
calis to DSOPEN and DSCLS.

* To write data to high-resolution image files as the
result of calls to DSOPEN and DSCLS for family-4
devices.

* To read 4250 printer typographical font and code
page data, as required by calls to GSCPG and
GSLSS.

¢ To write trace output resulting from execution of
GDDM with the trace facility enabled. For a
description of the enablement and use of GDDM
trace facilities, see the GDDM Diagnosis and
Problem Determination Guide.

* To read an External Defaults File as part of initial-
ization processing; see page 2.

All the above types of data are stored and retrieved
using CMS file identifiers where, by defauit:

fitename is determined according to the type of data, as
follows:

* For symbol-sets, pictures, generated
mapgroups, ADMGDF files, print files, high-
resolution image files (for family-4 devices),
and 4250 printer fonts and code pages, the
filenames used are those specified in the
corresponding GDDM calls as symbol-set

names, picture names, group names,
ADMGDF file names, print-destination
names, device names, and code-page

names, subject to modification of these
names by character-substitution rules.

* For text-files, the filenames used are those
specified through the symbol editor. Each
text file generated contains a
correspondingly-named control section
(CSECT), and is in a form suitable for link-
editing with an application program for sub-
sequent reference, typically by the GSDSS or
PSDSS call.

e For trace output, the filename used is as
defined in Table 4 on page 43 or as modified
by the user in the CMSTRCE option in the
current GDDM external defaults; see “GDDM
external defaults — VM/CMS" on page 137.

* For External Defaults File input, the filename
used is as defined in Table 4 on page 43 or
as modified by the user in the CMSDFTS
option in the current GDDM external defaults;
see “GDDM external defaults — VM/CMS"
on page 137.

filetype is determined by the GDDM default name (see
Table 4 on page 43) or as modified by the user in
the current GDDM external defaults (see “GDDM
external defaults — VM/CMS"” on page 137).

tilemode is:

“A1" for output, causing data to be stored on the
A-disk (which should be accessed as read/write
for such operations).

“%" for input, causing accessed data to be
searched in the standard order.

VM/CMS

Table 4. GDDM data-set characteristics for VM/CMS

varies).

Type of data GDDM default filetype Record format (RECFM) Record length (LRECL)

Symbol sets ADMSYMBL F 400

Pictures ADMSAVE F 400

Generated mapgroups ADMGGMAP F 400

GDF files ADMGDF F 400

Text files ADMDECK F 80

System printer output ADMLIST (but directed to \' according to device
virtual printer by default) characteristics

Family-4 output ADMCOLn or v < 2000 (for 4250)
ADMIMAGE < 8202 (for 38xx)

4250 printer fonts (see FONT4250 \' <2048

Note)

4250 printer code pages FONT4250 \ < 2048

(see Note)

Queued printer files ADMPRINT F 80

Trace records ADMTRACE (default \ <121
filename is ADM00001)

External ADMDEFS F < 256

Files filename is PROFILE) v < 256

Image files ADMIMG F 400

Image Projection Files ADMPROJ F 400

Note: 4250 printer fonts and code pages are referenced by GDDM and are supplied as part of the 4250

typographical fonts licensed programs (program numbers 5771-AAA through 5771-AAW, and 5771-ACx, where x

The DSOPEN call allows the filenames, filetypes, and
filemodes of queued printer, system printer, and high-
resolution image (family-4) disk file devices to be
explicitly specified by means of the name-list param-
eter.

The Interactive Chart Utility (part of GDDM-PGF)
includes a directory function that supports list, delete,
and copy operations on GDDM objects such as symbol
sets, pictures, generated mapgroups, and ADMGDF
files.

Native CMS spool file processing

Native CMS spool file processing is used by GDDM:

* To write output to the virtual punch, as the resulit of
calls to DSOPEN and DSCLS.

* To write output to the virtual printer, as the resuit
of calls to DSOPEN and DSCLS.

* To write trace output resulting from the execution
of GDDM with the trace facility enabled. For a
description of enabling and using GDDM trace
facilities, see the GDDM Diagnosis and Problem
Determination Guide.

GDDM writes 3270 device (family-1) output either
directly to a 3270-type terminal or to the virtual punch,
according to the name specified in the DSOPEN call.
3270 device output written to a virtual punch is in the
form of 80-byte records in the following format:

Record 1 Virtual CCW (8 bytes) including SIO
count. The CCW opcode is one of the
following:

X'01' Write

X'05' Erase/Write

X'0D' Erase/Write Alternate
X'11' Write Structured Field.

Data stream — as many 80-byte
records as are necessary to contain
“SlO count” bytes of data.

Virtual CCW (8 bytes) including SIO
count.

Data stream — as many 80-byte
records as are necessary to contain
“8l0 count” bytes of data.

Record 2

Record n

Record n+1

CP SPOOL and CP TAG commands should be used to
direct the virtual punch output to a destination that is
capable of processing data in the above format (such
as RSCS Networking Version 2). The CPSPOOL and
CPTAG processing options in DSOPEN can be used to
issue such commands automatically.

Chapter 6. Using GDDM under VM/CMS 43

VM/CMS

GDDM writes System Printer output either to a disk file
or to the virtual printer, according to the name speci-
fied by the DSOPEN call. Data written to a System
Printer device contains ASA control characters and, for
3800 devices, Translation Reference Characters
(TRCs). The CP SPOOL and CP TAG commands shouid
be used to specify additional special parameters such
as CHARS, FLASH, or FCB that may be required for
3800 devices.

GDDM writes trace output either to a disk file or to the
virtual printer, according to the filename defined in the
current GDDM external defaults (or modified in the
CMSTRCE option; see “GDDM external defaults —
VM/CMS" on page 137). If the filename is defined as
all blanks, GDDM directs the trace output to the virtual
printer.

Display terminal conventions

The following comments apply only when the display
terminal being used is the CMS user virtual console.

Under VM/CMS, by default, the PA1 and PA2 keys are
processed separately from other terminal input. The
effect of using these keys is as follows:

PA1 Pressing this key causes CP mode to be entered
and a CP READ status to be displayed. In this
environment, any CP commands may be issued.
To return from the CP environment, issue the CP
command BEGIN.

PA2 Pressing this key causes the CMS SUBSET envi-
ronment to be entered and a RUNNING status to
be displayed. In the CMS SUBSET environment,
any CMS commands that run in the transient area
may be issued. For example:

ACCESS LISTFILE RENAME
ce PRINT RETURN
DISK PUNCH SET
ERASE QUERY STATE
EXEC READCARD TYPE

To return from the CMS SUBSET environment,
issue the CMS SUBSET command RETURN.

On return from the CP or CMS SUBSET environment,
GDDM retransmits the screen buffer contents, and then
waits for more input.

As a result of the above special processing, PA1 and
PA2 cannot, by default, be returned as terminal input by
the ASREAD, FSSHOR, or MSREAD call. However, the
CMS PA1/PA2 protocol option of the DSOPEN function
can be used to suppress this special processing selec-
tively. The use of this option to the DSOPEN function is
described in the GDDM Base Programming Reference,
Volume 1.

44 Base Programming Reference

Asynchronous interrupts on VM/CMS

The following comments apply only when the display
terminal being used is the CMS user virtual console.

Using the ENTER key

Uniess the application program has established any
special attention-processing functions, the ENTER key
(and no other attention key) may be used while GDDM
is operating to cause an asynchronous CMS attention
interrupt. This suspends the operation of both the
application program and GDDM, and causes control to
be passed to the terminal user, with the terminal in
line-by-line VM READ mode.

In this mode, normal CMS protocols usually aliow the
terminal user to take one or more of the following
actions:

* Resume at the point of interruption, by pressing the
ENTER key.

* Enter an ‘“immediate” CMS command (for
example, HO, HT, HX, RO, RT, or SO).

* Enter other commands — such commands are
stacked for execution at the next entry into normal
CMS or CMS SUBSET modes.

After any of the above actions (except HX), GDDM
ensures that the screen buffer contents are restored.

Using other attention keys

Application programs can request extended processing
of asynchronous interrupts by specifying the CMS
attention handling option (processing option group
1001) of the DSOPEN call.

Requesting “extended attention handling” indicates
that an application program attention feedback block
may have been located by means of the DSOPEN CMS
attention option.

If this is done, an attention key may be used while
GDDM is operating to cause an asynchronous CMS
attention interrupt (unless a line-by-line message has
already placed the terminal into line-by-line mode, in
which case, only ENTER causes an attention interrupt).
An exception is the PA1 key, which causes CP mode to
be entered, uniess the PA1 special processing was
suppressed as described above.

Also, if the attention feedback block is of nonzero
length, GDDM stores up to two words of information in
this block (according to the length specified), indicating
the nature of the interrupt. The information stored is as
follows:

* Attype — attention type (full-word integer)
e Attval — attention type value (full-word integer).

where these are as defined for the ASREAD call (see
the GDDM Base Programming Reference, Volume 1).

An application program may intercept such attention
interrupts by establishing a special attention-
processing exit using the VM/CMS simulation of the
TSO STAX macro. A STAX exit of this form should be
established before the device representing the virtual
console is initialized (that is, before SPINIT/DSOPEN),
and should not be cleared until after the device has
been terminated (that is, after FSTERM/DSCLS). A
STAX exit may examine the contents of the attention
feedback block to determine the cause of the interrupt.
GDDM must not be invoked from a STAX exit if GDDM
was already running at the time of the interrupt.

GDDM disables all STAX exits and attention-processing
functions before initiating the CMS SUBSET environ-
ment, and restores them on return.

VM-initiated asynchronous interrupts

VM/CMS may generate "virtual” asynchronous inter-
rupts before the display of a priority message.

If such an interrupt occurs while the terminal user is
entering data in response to an ASREAD, FSSHOR, or
MSREAD call, GDDM allows the priority message to be
displayed immediately, but saves and restores any
data entered by the terminal user. An interrupt occur-
ring at this time may also cause any application
program attention-processing exit to be entered, with
an attention feedback biock indicating an interrupt of
type 6 (“Undefined").

VM-initiated asynchronous interrupts are not otherwise
apparent to the GDDM terminal user or application
program.

Interactions with non-GDDM device interrupt
handling

An application program that uses GDDM to communi-
cate with the CMS virtual console and uses the CMS
HNDINT macro as part of its own interrupt handling for
devices not controlled by GDDM must be written in
such a way as to avoid recursion of the CMS HNDINT
macro.

If the virtual console operator causes an asynchronous
attention interrupt, GDDM's STAX exit gains control.
This exit attempts to read from the terminal to deter-
mine the nature of the interrupt. During this proc-
essing, GDDM issues a CMS HNDINT WAIT macro.

If the application program already has a CMS HNDINT
WAIT macro active at the time, interference between
the macros occurs, and the application program’s
HNDINT WAIT macro is likely to complete immediately,
with random results.

To prevent this type of interaction, the application
program should suppress GDDM's STAX exit (and the
attention-processing functions that go with it) over the
duration of its own HNDINT WAIT macro. The applica-
tion program can do this by ciearing (and saving) the
value in the TAXEADDR field in the CMS Nucleus Con-
stant Area (NUCON) before invoking HNDINT WAIT and
by restoring the value in TAXEADDR after the HNDINT
WAIT macro has completed.

VM/CMS

Using APL terminals

This section describes how GDDM interacts with
nonqueriable displays and printers that have the APL
feature. -

Using nonqueriable displays with the APL
feature

Under VM/CMS, device information provided by the
subsystem does not indicate whether a nonqueriable
3278 or 3279 display has the appropriate APL feature.
(A “queriable” terminal is one that supports the Read
Partition (Query) structured field.)

If the CP TERM APL ON command was issued, GDDM
assumes by default that such a device has the APL
feature, and selects an appropriate set of translation
tables. (For more details, see the description of
ASTYPE in the GDDM Base Programming Reference,
Volume 1 and the GDDM Installation and System Man-
agement for VM manual.) If the device does not have
the APL feature, the use of character code points corre-
sponding to APL characters may result in wrong output
at the device.

If the CP TERM APL OFF command was issued, GDDM
assumes that such a device does not have the APL
feature.

The GDDM default can be overridden in either of the
following ways. The application program can:

e Specify an explicit device token (for example,
ADMK7720) in a DSOPEN call to initialize the
device (see the GDDM Base Programming Refer-
ence, Volume 1) or by means of nickname facilities
(see “Using nicknames to define device
characteristics” on page 3).

* Use the ASTYPE call to specify the appropriate set
of translation tables, as follows:

Device type Transiation type number
3278, 3279 3279
3278-APL, 3279-APL 32791

For a full description of alphanumeric translation
tables, see the GDDM Installation and System Man-
agement for VM manual.

Using nonqueriable printers with the APL
feature

Under VM/CMS, device information provided by the
subsystem does not distinguish between IBM 3270
printers, uniess they are “queriable” (that is, unless
they support the Read Partition (Query) Structured
Field).

By default, GDDM assumes that any APL feature on a
nonqueriable printer is the APL/Text Feature, rather
than the Data Analysis — APL Feature. If a printer
(such as an IBM 3284 or 3286) has the Data Analysis —
APL Feature, and if the APL character set is to be refer-
enced, the GDDM default assumption must be over-
ridden to ensure correct operation of the device.

Chapter 6. Using GDDM under VM/CMS 45

VM/CMS

The CMSAPLF option in GDDM's external defaults can
be modified (by specifying the value DATAANAL) to
cause GDDM to assume by default that an APL feature
installed on a nonqueriable IBM 3270 printer terminal is
the Data Analysis — APL Feature. This option can be
specified: .

* In an External Defaults Module, or
¢ In an External Defaults File.

See Chapter 1, “Customizing your program and its
environment” on page 1.

Batch processing

A disconnected Virtual Machine, such as a machine
using the CMS batch facility, can simulate batch proc-
essing. In such an application, you cannot communi-
cate with the default primary device because there is
no such device. The application must use DSOPEN to
indicate the device that is to be used; for example:

* A dummy device

* A queued printer

* A high-resolution image file
* A dialed-in display station

* An attached printer.

In batch processing, an application might:

e Create queued printer output for subsequent
printing by the GDDM print utility. The queued
printer output would, perhaps, be created by using
the chart utility noninteractively.

¢ (Create a high-resolution image file for a family-4
device.

* (Create FSSAVE files for subsequent interactive use
with FSSHOW. The files would be created by using
a dummy device.

46 Base Programming Reference

GDDM application programs under
VM/XA

The Base product, GDDM/VMXA, enables GDDM and
application programs to exploit VM/XA SP, in particular
31-bit addresses and virtual machines bigger than 16
megabytes. Generally, programming for GDDM/VMXA
is no different from programming for GDDM/VM,
although there are a few special considerations.

Migration: To run under VM/XA SP, modules must be
generated with GDDM/VMXA. To run under VM/SP,
they must be generated with GDDM/VM. Programs
transferred from one system to the other must there-
fore be re-generated.

User exits: Programmers should take care when spec-
ifying the addresses of user exits to GDDM. GDDM
uses the convention that the top bit of such addresses
identifies its addressing mode (AMODE). Also, if
GDDM is initialized with the SPINIT call, and this call
was issued in 24-bit mode, GDDM clears bits 1 through
7 of each address word that it processes.

Interception of PA1: Programs that request (with the
GDDM CMSINTRP processing option) that PA1 key
interrupts be passed to them will cause the CP TER-
MINAL BRKKEY value to be set to NONE, regardless of
its original setting. This action is consistent with that of
CMS when its full-screen mode is entered.

Dialed devices: |f GDDM is used to drive a dialed
display device, then when that device is closed it will
also be dropped from the virtual machine. This is due
to a feature of the CMS Console Services support that
causes a dialed device to be dropped when the last
console path to it is closed.

Chapter 7. The GDDM print utilities

There are several utility programs provided as a part of
GDDM: the queued printer support facility, the image
print utility, and the composite document print utility.
They are described in that order in this chapter.

The main GDDM print utility is a queued printer support
facility that consists of two parts operating asynchro-
nously:

e The GDDM printing subroutines

These are invoked by call statements in the appli-
cation program. When a queued printer is closed
by a call to FSCLS or DSCLS, a request is queued
to the output print utility, and all output to be
printed is copied to a print file.

* The output print utility

This is supplied in a version appropriate for the
subsystem in use. Invocation and operating
instructions for each version are given below.
Messages issued by the utility are listed in the
GDDM Messages manual. The output print utility
can write a print file both to a 3270-family printer
and (except under IMS/VS) to a plotter that is
attached to a 3179-G or 3192-G color display

station, or a 3270-PC/G or 3270-PC/GX work
station.
Note: In general, print files produced under one

GDDM release cannot be printed using the print
utility of another release.

On printers (but not on plotters), a header page is
printed at the start of each file (unless it was explicitly
suppressed when the FSOPEN or DSOPEN call was
issued). The header page identifies the origin of the
print file and the date and time that it was created. The
origin of the file depends upon the subsystem as
follows:

CICS/VS the transaction identifier

IMS/VS the userid, if available, or the logical ter-
minal name
(or asterisks, *, if neither Is available)

TSO the userid

VM/CMS the userid.

The formats of the date and time are defined in the
current GDDM defaults. For details of how to change
these values, see “Changing GDDM's default values”
on page 127.

For plotters, the ORIGINID processing option Iin
DSOPEN (see the GDDM Base Programming Refer-
ence, Volume 1) can be used to superimpose an alpha-
numeric field containing similar information on each
plotted page.

Processing for a printer device

By default, GDDM performs a page eject at the end, but
not at the start, of a print file. This action is controlled
by setting the appropriate value in the current GDDM
defaults. For details, see “Changing GDDM's default
values” on page 127.

printing

If any errors are detected during the printing process,
an error page is printed that summarizes a maximum
of 19 errors. Each error message is prefixed by the
number of the page that was being generated when the
error was detected, and, if possible, by the function that
GDDM was running at the time the error was detected.
(The count starts with the header page, if there was
one.)

If multiple copies are being printed, an error page is
printed after each copy during the printing of which
errors were detected. if only a single page is being
printed for each copy, the processing is optimized so
that some errors are only detected during the printing
of the first copy. in other circumstances, errors may be
repeated for each copy.

Serious errors where the messages cannot be printed
(for example, errors occurring at initialization of the
print utility), are written to a system-dependent destina-
tion as follows:

CICS/VS the error log

IMS/VS broadcast to the Master Terminal Operator
TSO the system operator

VM/CMS the terminal operator.

Processing for a plotter device

To cause the GDDM print utility to write a print file to a
plotter, it is usually necessary to specify the DSOPEN
processing option, STAGE2ID, when the print file is
created. For full details, see Appendix B, “Processing
option groups and name-lists” on page 149.

To ensure that control information for the plotter is
honored by GDDM, nickname statements are required
in the defaults file. For example, to change the pen
velocity:

ADMMNICK NAME=QPLOT,TOFAM=2,
TONAME=LUNAME ,DEVTOK=L7372,
PROCOPT=((STAGE2ID,PLOTTER))

ADMMNICK NAME=PLOTTER, FAM=1,
TONAME=(*,ADMPLOT) ,
PROCOPT=((PLTPENV,10))

In the above example, the user would direct the output
to “QPLOT".

The GDDM print utility begins to plot on a device as
soon as it receives a print file for that device. At the
same time, it sends a status message to the associated
3179-G or 3192-G color display station, 3270-PC/G or
3270-PC/GX work station, or device supported by
GDDM-PCLK.

The GDDM print utility pauses at the end of each page
that is plotted to give the operator an opportunity to
reload the plotter device. GDDM sends another status
message at that time and prompts the operator to press
any attention key to cause plotting to continue, or to
complete the processing of the print file.

At any time, the plotting of the current page may be
canceled by pressing the CLEAR key on the associated
work station.

Chapter 7. The GDDM print utilities 47

printing

If any errors are detected during the plotting process,
the error messages are added to the status messages
on the associated 3179-G or 3192-G color display
station, 3270-PC/G or 3270-PC/GX work station, or
device supported by GDDM-PCLK. These messages
are accumulated; each error message is prefixed by
the number of the page that was being plotted when the
error was detected and, if possible, by the function that
GDDM was running at the time the error was detected.

if multiple copies are plotted, the process is repeated
for each copy.

Serious errors, where the messages cannot be dis-
played (for example, errors that occur when the print
utility is initialized), are written to the error log (under
CICS/VS), the system operator (under TSO), or the ter-
minal operator (under VM/CMS).

Note: Any nickname processing for the associated
3179-G color display station, or 3270-PC/G or
3270-PC/GX work station, is suppressed during the time
that plotting takes place.

CICS/VS print utility

The CICS/VS version is ADMOPUC, and runs as a
transaction that automatically processes print requests.

Invocation

No explicit invocation is required. Print requests auto-
matically schedule the transaction, using the Interval
Control facilities of CICS/VS. Note that CICS/VS
Interval Control uses CICS/VS Temporary Storage facil-
ities. If this is defined as recoverable, the transaction
is not initiated until a synchronization point is reached.
Printing may therefore be delayed until the display task
terminates or until a user synchronization point is
reached. The GDDM-PGF Interactive Chart Utility (ICU)
does not contain any explicit synchronization points.

Printer and plotter operating instructions

The printer or plotter must be prepared for use
according to the operating instructions for the model,
and the paper must be aligned to the top of the page.

SCS mode PA switches

For a printer operating in SCS mode, the PA1 and PA2
switches can be used. These switches allow limited
communication with the utility, and are used with the
Hold Print/Enable Print switch, as described in the
Component Description and Operator's Guide for the
appropriate printer. The effect of each switch is as
follows:

PA1 Sending a PA1 switch code to the utility
causes it to restart printing of the current
request at the page after the header page. For
a multiple-copy request, printing is resumed at
the start of the copy being processed at the

time of the interrupt.

Sending a PA2 switch code to the utility
causes it to restart printing of the current
page.

PA2

48 Base Programming Reference

Most messages are issued as part of the output from
the utility. If it is not possible to send the error mes-
sages to the terminal, they are sent to the GDDM error
log by Transient Data Facilities as described in
Chapter 2, “Using GDDM under CICS/VS” on page 7.

The VSE print job utility

The VSE Print Job Utility creates print files for 38xx and
4250 printers, from ICU chart format and data
(ADMCFORM and ADMCDATA) files, GDDM graphics
data format (GDF) files, and GDDM images (ADMIMG
files). Further details, including its end-user interface,
are given in the GDDM Release Guide.

The user interface program ADMUPRTC merges values
entered into a menu with skeletal JCL supplied by a
system programmer, to form a job-stream that it
submits to VSE for batch processing. The skeletal JCL
is defined when GDDM/VSE is installed: instructions
are given in GDDM Installation and System Manage-
ment for VSE manual.

The VSE Print Job Utility creates a primary data
stream, unless a page segment (secondary data
stream) is specified in a GDDM processing option when
the utility is invoked. The print program stores any
page segments it creates in a sublibrary. You will
need:

LIBDEF *,CATALOG=....

in the job stream that invokes the print program to
create a page segment, otherwise you will get a GDDM
abend with the code SVC6E. If ADMUPRTC is used, the
LIBDEF statement must be added to the skeletal JCL.

Running the VSE print program without using
ADMUPRTC

You do not have to use the ADMUPRTC utility to gen-
erate and submit the batch jobs that invoke the print
program ADMUCDSD. You can create and submit the
job yourself. Some sample JCL for creating a primary
data stream for a 38xx printer is shown below.

1) * $$ JOB JNM=jobname,CLASS=x,DISP=y
2) * $% LST CLASS=x,DISP=y,DEST=(node,userid), *
JSEP=1
3) * $$ LST CLASS=x,DISP=y,DEST=(,psfid), *
LST=cuu,JSEP=1
4) // J0B jobname
5) // DLBL libname,'name.of.a.library'
5) // EXTENT ,volid
6) // LIBDEF *,SEARCH=(11.s1,12.s2,...,1i.si)
7) // DLBL 1JSYSUC,'user.catalocg.name',,VSAM
8) // DLBL ADMF,'gddm.objects.file.name',,VSAM
9) // ASSGN SYSyyy,cuu
// EXEC ADMUCDSD,SIZE=ADMUCDSD, *
PARM='filename filename 99 4 token *
(procopts) (SYSyyy)'
/*
/&
* $8 E0J

1. This is the POWER JOB statement for the GDDM
batch job.

2. This is the POWER LST statement for the SYSLST
output.

3. This is the POWER LST statement for the primary

data stream to go to the 3800 printer at address

cuu.

Job name card.

DLBL and EXTENT statements for every library

named in the LIBDEF statement. EXTENT only, if

the library is not VSAM controlled.

Search chain for all the libraries you want to read

from, that is the library containing GDDM.

DLBL for the user catalog (contains ADMF).

DLBL for GDDM objects file.

This assignment statement links the programmer

logical unit SYSyyy to the device cuu, the spooled

3800 printer.

10. EXEC card for ADMUCDSD.

os

PeN o

To write secondary data stream to the VSE phase
library, a few changes are necessary in the above job
stream. The differences are in the way that PSF is
invoked.

A LIBDEF *,CATALOG=1ib.sulib statement must be
included for the library to which you write the page
segment. The name of phase written to replace SYSyyy
on the EXEC card, and the processing options, must be
altered to specify a secondary data stream (replace 0
with 1 in the processing options). Some example JCL
for printing a primary data stream on the 4250 is shown
below.

1) * $$ JOB JNM=jobname,CLASS=x,DISP=y

2) * $$ LST CLASS=x,DISP=y,DEST=(node,userid), *
JSEP=1

3) // J0B jobname

4) // DLBL 1ibl,'cdpf.library.name'

4) // EXTENT ,volidl

4) // DLBL 1ib2,'font.library.name’

4) // EXTENT ,volid2

5) // LIBDEF *,SEARCH=(1ibl.sublibl,1ib2.sublib2)

6) // DLBL usercat,'user.catalog.name',,VSAM

'7) // DLBL INPUT,'print.file.name',,VSAM, *
CAT=usercat,DISP=(0LD,DELETE)
8) // EXEC BFUCDPF,SIZE=AUTO, *
PARM="PRINT (BRACKET vtam_printer_name)'
/*
/&
* $$ E0J

1. This is the POWER JOB statement for the GDDM
batch job.

2. This is the POWER LST statement for the SYSLST
output.

3. Job name card.

4. DLBL and EXTENT statements to define the
libraries containing CDPF and the FONTLIB.

5. Search chain for the libraries containing CDPF and
the fonts.

6. DLBL statement for the user catalog.

7. DLBL statement for the print file.

8. EXEC card for CDPF.

printing

Note that the DELETE option on the DLBL statement for
the print file means that the input file is deleted after it
is printed. Use the option KEEP if you want to keep the
print file.

IMS/VS print utility

The IMS/VS version is ADMOPUI, and runs as either a
message-processing program or batch message
program (BMP).

Note: The IMS/VS print utility does not support piot-
ters.

Invocation

No explicit invocation is required if the transaction is
defined as a message-processing program. Standard
JCL is required to initiate the transaction as a BMP.

Messages

Most error messages are issued as part of the output
from the utility. If it is not possible to send the error
message to the LTERM for which the output is destined,
the utility issues a /BROADCAST MASTER command
containing the error message.

TSO background print utility

Under TSO, there are two methods of printing GDDM
files available to the user:

¢ By means of a queue of requests. (the ADMPRINT
queue), which is serviced by the ADMOPUT print
utility

* By means of the JES/328X Print Facility Version 2
Release 2 Modification 0, and the ADMOPUJ print
utility.

Note: Throughout both volumes of the GDDM Base
Programming Reference, references to JES/328X indi-
cate the JES/328X Print Facility Version 2 Release 2
Modification 0, unless stated otherwise.

The user has complete control over which of these
methods to use, and can use both.

Using the ADMPRINT queue means using a master
print queue, which consists of pointers to print data-
sets. These print datasets are created by GDDM when
the user requests a print.

In turn, the GDDM ADMOPUT print utility runs as a
Batch Job servicing this queue, and performing the
print.

With GDDM/MVS Version 2, another method is avail-
able that has no need for the ADMPRINT queue.

This method entails the installation of the JES/328X
Program Offering — Version 2 Release 2 — which
interfaces directly to JES2 or JES3.

With this method, when the user requests a print, the

print dataset created is written directly to the JES
Spool. ’

. Chapter 7. The GDDM print utilities . 49.

printing

JES passes these requests to the JES/328X print utility,
which runs as a Batch Job, and JES/328X passes each
GDDM Print request to a GDDM program, ADMOPUJ,
that performs the actual printing.

While these print datasets are within the JES Spool,
they can be manipulated like any other JES Spool file,
thus giving the installation greater control over the
print requests.

The PRINTDST processing option is used to determine
the destination of the print request and thus which
method of printing is to be used.

The three possible destinations are:
* The existing ADMPRINT queue destination

This sends the print request to the ADMPRINT
queue for processing by ADMOPUT (as described
below).

This can be done by using the PRINTDST proc-
essing option in a nickname statement containing:
PROCOPT=((PRINTDST,*,*))
which is the default.

¢ Directly to JES

This sends the print request directly to the JES
Spool for processing by JES/328X and ADMOPUJ
(as described below).

This can be done by using the PRINTDST proc-
essing option in a nickname statement containing:

PROCOPT=((PRINTDST,class,destname))

where class is the system-defined class for punch
output, and destname is the JES Remote Work
Station destination name.

* To an intermediate user dataset for subsequent
processing

This sends the print request to a dataset for later
processing, either by means of Batch JCL, or the
JES/328X DSPRINT command.

This can be done by using the PRINTDST proc-
essing option in a nickname statement containing:

PROCOPT=((PRINTDST,*,ddname))
where ddname is a previously allocated ddname.

The ADMPRINT utility is described in detail in the next
section, and JES/328X is described on page 53.

The ADMPRINT print utility

The ADMPRINT print utility has the name ADMOPUT. it
manages one or more printers, and uses the VTAM
interface to communicate with them.

Print requests for each device are processed in the
order in which they are received, and the queue of print
requests is maintained on a direct-access device to
avoid the loss of output should a system failure occur.

A printer can be left unattended, with only an occa-
sional check on the paper supply. Output from each
print request is usually preceded by a descriptive
header (printed on a separate page) for identification.

50 Base Programming Reference

Thus, one printer can be shared efficiently by a number
of terminal operators, and interactive application pro-
grams need not wait until printing is completed.

Printing alphanumeric files
The GDDM Sequential File Print Program (ADMOPRT)

. allows files to be printed that contain alphanumeric

data. ADMOPRT converts a sequential file into a
graphics print file. The GDOM print utility then prints it.

The syntax of the command that calls the GDDM
Sequential File Print Program is:

CALL 'data-set-name(ADMOPRT)' 'file-name ON
printer-name [(NOCC]°

where:

data-set-name
is the name of the data set into which ADMOPRT was
installed.

file-name

is either a ddname allocated to the data set to be
printed or (if such a ddname is not present) the name
itself of the data set to be printed.

If file-name represents a data set name, it must be
entered using normal TSO naming conventions; in this
case, ADMOPRT does not support a data set name that
represents a member of a partitioned data set.

Note: From Version 2 Release 2 of GDDM, ADMOPRT
uses the values given by the PRINTCTL processing
option for the number of characters per line and the
number of lines per page. Previously it used values of
132 and 66 respectively. To obtain the same results as
under previous releases, use a nickname statement
that specifies

PROCOPT=((PRINTCTL,1,1,66,0,0,0,132)).

ON
is a required keyword that must be specified before the
name of the printer.

printer-name
is the name of the queued printer on which the file is to
be printed.

NOCC

indicates that any existing carriage-control characters
are to be ignored. If NOCC is not specified, the pres-
ence or absence of carriage-control characters is
determined by ADMOPRT according to the record
format of the input file.

Carriage-control characters are processed as
described for FSLOGC in the GDDM Base Programming
Reference, Voiume 1.

Deleting a print request

A print request can be purged, if it is not in the process
of printing, by deleting the OS data set representing the
request. [f this happens, the utility prints a diagnostic
noting that the request was deleted, and it then pro-
ceeds with any other requests. All TSO request data
sets are cataloged with the user-nominated data set
name prefix (by default, the userid) as a first qualifier,
and the request sequence number as a last qualifier.
The TSO LISTC command can, therefore, be used to
identify the names and order of pending print requests
for a specific userid.

When a request has started to print, it may not be pos-
sible to delete the corresponding OS data set, because
this would require exclusive (DISP=O0LD) access. In
this case, the output can be canceled at the printer, as
described under "Canceling printer output” below.

Some types of errors prevent a request from pro-
ceeding to the point where it can be canceled in this
manner, but they can still let the Print Utility retry the
request at regular intervals. In this case, exclusive
access to the request data set (for the purpose of
deletion) can be acquired by first stopping the utility as
described under “Invocation.” It should then be pos-
sible to delete the request data set, before restarting
the utility.

Printer and plotter operating instructions

The printer or plotter must be prepared for use
according to the appropriate operating instructions for
the model, and the paper must be aligned to the top of
the page.

Canceling printer output

Printer output can be canceled after it has started, by
switching the printer off and on at least three times
during the printing of a single page. After each
power-on, the utility tries to reprint the interrupted
page. The printer must be powered off during the
reprinting of this page to maintain the cancelation
sequence.

For a printer operating in SCS mode, the CANCEL
PRINT switch can be used, as described below.

Canceling plotter output

Plotter output can be canceled by pressing the CLEAR
key on the associated 3179-G or 3192-G color display
station, 3270-PC/G or 3270-PC/GX work station, or
device supported by GDDM-PCLK.

SCS mode PA and CANCEL PRINT switches

For a printer operating in SCS mode, the PA1/PA2 and
CANCEL PRINT switches can be used. These switches
allow limited communication with the utility, and are
used with the Hold Print/Enable Print switch, as
described in the Component Description and Operator’s
Guide for the appropriate printer. The effect of each
switch is as follows:

PA1 Sending a PA1 switch code to the
utility causes it to restart printing of
the current request at the page after
the header page. For a multiple-copy
request, printing is resumed at the
start of the copy being processed at
the time of the interrupt.

PA2 Sending a PA2 switch code to the
utility causes it to restart printing of
the current page.

CANCEL PRINT Sending a CANCEL PRINT switch
code to the utility causes it to cancel
printing of the current request.

printing

Invocation

Before the utility is run, the print queue data set must
be initialized to the format described in the GDDM
Installation and System Management for MVS manual.

The devices to be used can be activated before the
utility is started. Under VTAM, this is achieved by com-
mands:

VARY NET,ACT,ID=printername

It a device is activated after the utility is started, the
utility may have to be notified that the device is avail-
able. This can be done explicitly by using the LOGON
operand when the device is activated, as follows:

VARY NET,ACT,ID=printername,L0GON=applname

where “applname” is the Print Utility’s VTAM applica-
tion name (usually ADMPRINT). This command can be
entered to notify the print utility, even if the device is
already active.

Or, the VTAM network can be defined such that the
print utility is automatically notified when a device is
activated. This is done by nominating ADMPRINT (or
appiname) as the controlling application by the
LOGAPPL parameter on network terminal definition
macros.

The utility is started by submitting the job-control state-
ments listed below, modified as necessary (for
example, to respecify the library on which the utility is
kept).

The utility can be started either as a submitted batch
job or as a started task. The example below gives the
alternative statements for doing this.

The job control statements are usually held in
SYS1.PROCLIB. They take the form:

FOR STARTING AS A BATCH J0B

//appiname EXEC PGM=ADMOPUT,DYNAMNBR=n,REGION=mK,
// PARM="'NAME=xxxx,AUTO,MAXPRTRS=nnn"
//STEPLIB DD DSN=
//ADMSYMBL DD DSN=
//ADMGGMAP DD DSN=
//ADMPRNTQ DD DSN=
//ADMDEFS DD DSN=
//SYSABEND 0D SYSOUT=A

FOR STARTING AS A STARTED TASK

[optional]
{ optional]
[optional]

/! PROC PGM=ADMOPUT ,DYNAMNBR=n,REGION=mK,
1/ PARM= ' NAME=xxxx ,AUTO ,MAXPRTRS=nnn"
//STEPLIB DD DSN=

//ADMSYMBL DD DSN=
//ADMGGMAP DD DSN=
//ADMPRNTQ DD DSN=
//ADMDEFS DD DSN=
//SYSABEND DD SYSQUT=A

[optional]
[optional]
{ optional]

Chapter 7. The GDDM print utilities 51

printing

The VTAM application name (“applname”) used by the
print utility must be defined by the APPL macro in the
VTAM network definition. @ The name is usually
ADMPRINT but this can be changed if required.
“applname” is derived as follows:

* For a batch job that does not use a cataloged pro-
cedure, “applname” is taken from the job step
name.

* For a batch job that uses a cataloged procedure,
“applname” is taken from the procedure step
name.

* For a started task with no task identifier specified
in the START command, “applname” is taken from
the member name in the procedure library of the
started-task JCL.

* For a started task with a task identifier specified in
the START command, “applname” is taken from
the task identifier.

The DYNAMNBR parameter should specify at least one
more than the number of printers to be operated at the
same time. Note that this does not impose a limit on
the number of printers that can be run at the same
time; that is done by the MAXPRTRS parameter. The
region size should be calculated as described in the
GDDM Installation and System Management for MVS
manual.

If you have a large number of printers defined to the
print utility, you do not have to specify a region size
sufficient for that number. Instead, you can limit the
number of printers that ADMOPUT services at the same
time using the MAXPRTRS parameter, described
below. ADMOPUT processes work for printers that
would otherwise be beyond the MAXPRTRS limit after
work for other printers has completed.

After the PARM parameter, any combination of these
optional parameters can be specified (in any order):

NAME =name

indicates that the name specified is to be used in any
messages to the operator to identify which instance of
ADMOPUT issued the message. If the NAME param-
eter is not specified, the VTAM application name is
used.

AUTO

indicates that no outstanding reply to the operator is
generated. ADMOPUT is terminated automatically
when there are no more active print subtasks running.

MAXPRTRS = nnn
indicates the maximum number of printers that the
print utility tries to operate at any one time.

The STEPLIB DD statement specifies the data set on
which the GDDM load library resides.

The ADMSYMBL DD statement specifies the data set on
which symbol sets reside.

If at the time the print request was made, named
symbol sets had been identified for use through one or
more of the GDDM statements GSDSS, GSLSS, PSDSS,
PSLSS, or PSLSSC (see the GDDM Base Programming

52 Base Programming Reference

Reference, Volume 1) the TSO user requesting the
printer must ensure that the symbol sets required
reside in the data set identified by the ADMSYMBL DD
statement.

The ADMGGMAP DD statement specifies the data set
on which IMD-generated mapgroups reside. This state-
ment is required if the user's application programs
issue FSCOPY against mapped pages.

The ADMPRNTQ DD statement is optional, and, if sup-
plied, is taken to identify the Master Print Queue data
set. If this DD statement is omitted, GDDM dynamically
allocates to the data set:

' xxxxxxxx.REQUEST.QUEUE'

where xxxxxxxx (usually ADMPRINT) is defined in the
current GDDM external defaults (for the details, see
“Changing GDDM's default values” on page 127). This
may be modified by the installation, if desired.

The ADMDEFS DD statement is optional; if supplied, it
identifies an External Defaults File. This is described
under “External defaults file" on page 2. For the print
utility, you are recommended to use a data set as an
External Defaults File, and not inline data (that is, not
/IADMDEFS DD %). In some operating environments,
the implementation of inline data is such that it may be
read and acted upon only by the first of the many sub-
tasks that ADMOPUT uses.

If AUTO is not specified, this message is received at
the system console:

ADM260O I ADMOPUT (instance-name). TO TERMINATE,
REPLY 'STOP', 'STOPQ', OR 'STOPS'

The system operator can cause ADMOPUT to terminate
printing by replying STOP, STOPQ, or STOPS; the effect
of each of these replies is:

STOP ADMOPUT terminates when all requests in
process have been completed.

STOPQ ADMOPUT terminates immediately. (The
current requests are restarted when
ADMOPUT is next initialized.)

STOPS If this is entered, GDDM issues the message
ADMZ2019, which gives the operator the choice
of either

* Entering STOPQ, causing ADMOPUT to
stop immediately, or

¢ |Ignoring this message, in which case
ADMOPUT continues to run until all
requests in process have been completed.

Thus, the utility terminates when VTAM is halted, when
a request is made to terminate by a reply to message
ADM2000, or if AUTO is specified and there are no
more active print subtasks running.

Messages

Messages issued by the TSO version of the print utility
are numbered from ADM2000. These messages are
described in the GDDM Messages manual.

JES/328X

The JES/328X Print Facility Program Offering Version 2
Release 2 Modification Level 0 extends the support of
Remote Job Entry (RJE) devices provided by MVS JES2
and JES3 to include the wide range of 3270 printers, or
printers that are compatible with them, and the family
of IPDS (Intelligent Printer Data Stream) printers. JES
stands for Job Entry Subsystem.

Output can be routed to these printers by :

JCL

The TSO ALLOCATE command
The JES/328X SYSOUT command
The JES/328X DSPRINT command.

e o ¢ o

Because’ all output can be spooled by JES, the JES
operator commands can be used to provide such func-
tions as rerouting, queue reordering, and output
cancelation.

JES/328X does not require any changes to JES code. It
operates as a VTAM secondary application when com-
municating with JES, and appears to JES as a Remote
Work Station. Having received the data from JES,
JES/328X then operates as a primary VTAM application
when communicating with the printer.

When processing GDDM print requests (or files des-
tined for IPDS printers) JES/328X invokes the GDDM
print utility ADMOPUJ, to process the print request.

The installation and operation of JES/328X is fully
described in the JES/328X Print Facility Program
Description and Operators Manual.

An overview of this process is contained in the GODM
Installation and System Management for MVS manual.

Usage

As mentioned above, GDDM (by means of the
PRINTDST processing option) now provides the ability
to send a print request either into the JES Spool for
processing by JES/328X, or to a file. Using the second
method, the user can process the print request in a
number of ways:

* Transfer the file to VM for processing there.

* Send the file to JES for JES/328X processing, by
means of either the JES/328X DSPRINT command,
or JCL.

¢ Send the file directly to the printer, by means of the
JES/328X DSPRINT command.

While the request is in the JES Spool, it can be manipu-
lated by the usual JES operator commands. For
example, the request can be rerouted to another desti-
nation, it can be canceled, or its place in the queue can
be reordered. Also, JES/328X provides ISPF panels to
enable the user to issue some JES2, JES3, or JES/328X
commands.

Full details are given in the JES/328X Print Facility
Program Description and Operators Manual.

printing

Examples

The following examples illustrate the various methods
of printing available.

They assume that:
e JES/328X has been installed.

¢ The JES/328X DSPRINT command has superseded
the TSO DSPRINT command.

* Remote destinations RMT1 and RMT2 have been
defined to JES with the printers serving Class P
and the punches serving Class G.

* Remote destinations RMT1 and RMT2 have been
defined to VTAM.

¢ Remote destinations RMT1 and RMT2 have been
defined to JES/328X, as follows:

— RMT1 is a 3287 device with an LUNAME of
L870, and GDDM is called to process alil
requests for CLASS G
(PASSTHRU =JSXGDDM and CLASS =G spec-
ified)

— RMT2 is an IPDS device with an LUNAME of
L8380 (data destined for IPDS devices automat-
ically causes GDDM to be invoked provided
PASSTHRU = INTERNAL is specified).

* The TSO user's ADMDEFS file has these entries:

NICKNAME NAME=R187,FAM=2,

PROCOPT=((PRINTDST,G,RMT1))
NICKNAME NAME=R2IP,FAM=2,DEVTOK=X4224SE,
PROCOPT=((PRINTDST,G,RMT2))

NICKNAME NAME=DA87,FAM=2,
PROCOPT=((PRINTDST,*,0D87))
NICKNAME NAME=DAIP,FAM=2,DEVTOK=X4224SE,
PROCOPT=((PRINTDST,*,DDIP))

¢ Invocations of the Interactive Chart Utility use the
above ADMDEFS file, and have DDNAMES DD87
and DDIP allocated to datasets
USER.GDDMPRT.DATA and USER.IPDSPRT.DATA
respectively.

¢ The user has a dataset USER.PRINT.DATA con-
taining alphanumeric data (specifically the dataset
does not have carriage-control set).

s The JES/328X Print Facility Job is running.

The order of events is:

1. The Chart Utility is invoked and a print is created
for R187:

This sends the print request (formatted for a 3287)
directly into the JES Spool, where it is passed to
JES/328X. JES/328X, in turn, passes the request to
GDDM for printing.

2. The Chart Utility is invoked and a print is created
for R2IP:

The same as above, but the print request is for-
matted for an IPDS printer.

3. The Chart Utility is invoked and a print is created
for DA87:

This outputs the print request (formatted for a
3287) to the dataset USER.GDDMPRT.DATA.

Chapter 7. The GDDM print utilities 53

printing

4. The Chart Utility is invoked and a print is created
for DAIP:

This outputs the print request (formatted for an
IPDS printer) to the dataset USER.IPDSPRT.DATA.

In the first two examples, the print requests are sent
automatically through the system to GDDM for printing.
However, in the last two examples, the user now has a
choice of methods available to process the requests.
The user can:

* Transfer the files to VM for processing.

Because the format of the print request is
subsystem-independent, the print request can be
processed on either VM or TSO.

* Send the files through JES for printing using
JES/328X and GDDM.

The following commands will do this:

DSPRINT 'USER.GDDMPRT.DATA' RMT1 CLASS(G) NONUM
DSPRINT 'USER.IPDSPRT.DATA' RMT2 CLASS(G) NONUM

These commands result in message DSP012, indi-
cating that the print requests have been sent to
JES for subsequent processing.

* Print the files directly using JES/328X and GDDM,
thereby bypassing the JES Spool.

This facility is particularly useful where data of a
confidential nature is being printed and the user
does not want the print request to be sent by way
of the “public” spool facility. Typically, the user is
not far from the printer and can thus ensure that
the print is collected as soon as it is finished.

The following commands will do this:

DSPRINT 'USER.GDDMPRT.DATA' L870 GDDM
DSPRINT 'USER.IPDSPRT.DATA' L890 GDOM

These commands result in a foreground print oper-
ation, the end of which is signaled by message
DSP040, indicating that the print has been com-
pleted.

Because this is a foreground process, the user's
terminal is “locked out” for the duration of the print
request. Also, any symbol sets required for
printing have to be allocated by the user before
the JES/328X DSPRINT command.

Printing alphanumeric files

As with printing GDDM files, the user has two methods
of printing files containing alphanumeric data:

1.. By sending the files through JES for printing using
JES/328X (and GDDM if the printer is an IPDS
device).

The following commands will do this:

DSPRINT 'USER.PRINT.DATA' RMT1 CLASS(P) NONUM
DSPRINT 'USER.PRINT.DATA' RMT2 CLASS(P) NONUM

These commands result in message DSP012, indi-
cating that the print requests have been sent to
JES for subsequent processing.

84 Base Programming Reference

2. By printing the files directly using JES/328X and
GDDM.

The following commands will do this:

DSPRINT 'USER.PRINT.DATA' L870 GDDM NONUM
DSPRINT 'USER.PRINT.DATA' L890 GODM NONUM

These commands result in a foreground print oper-
ation, the end of which is signaled by message
DSP040 indicating that the print has been com-
pleted.

Common errors

ADMO0244 E INVALID PRINT RECORD SEQUENCE

This message appears on the print request if GDDM
has been called to process invalid data. A common
way for this to occur is to send alphanumeric data
through JES to JES/328X using the class defined for
GDDM files.

DSPRINT ‘*USER.PRINT.DATA' RMT1 CLASS(G) NONUM

The above command sends the alphanumeric data
through JES to JES/328X as CLASS G output. JES/328X
insists that GDDM data has carriage-control set on, and
ignores all records without carriage-control. [f this
should happen this message is sent to the operator
console:

JSX209 - NON-GRAPHICS RECORDS IGNORED

and an empty file is sent to GDDM. GDDM then sends
message ADMO0244 to the printer; for more information,
refer to the GDDM Messages manual.

Interfaces
GDDM-to-JES

GDDM uses SVC99 Dynamic Allocation services to
output a print request directly into the JES Spool with
the CLASS and DEST parameters set from the
PRINTDST Class and Destname values respectively.

This is the one case where GDDM creates an Output
Print request without carriage-control; this is so the
data can be correctly passed through to GDDM.

However, when sending the Output Print request to a
dataset, GDDM sets the carriage-control indicator on in
the dataset — even if it is a pre-allocated dataset.

DSPRINT caters for this automatically, but if the user
wants to route the data through JES by some other
means, for example by an IEBGENER process, the
RECFM will need to be overridden:

/1*

//* ** SEND GODM DATA THROUGH JES TO JES/328X
/1*

//GENER1 EXEC PGM=I1EBGENER

//SYSPRINT DD SYSOUT=A
//SYSUT2 DD SYSOUT=G,DEST=RMT1,

DCB=(RECFM=FB, LRECL=80,BLKSIZE=1600)
//SYSUT1 DD DSN=USER.GDDMPRT.DATA,DISP=SHR
//SYSIN DD DuMMY

JES/328X-to-GDDM

The GDDM — JES/328X utility ADMOPUJ is called from
the JES/328X special exit JSSXGDDM, to either process
a print request or, at initialization and termination time,
to OPEN and CLOSE the VTAM ACB.

JSXGDDM passes this parameter list, the address of
which is in Register 1:

JXEACBN address of an 8-byte area containing the
VTAM ACB name

JXEDEST address of an 8-byte area containing the

VTAM LUname of the printer destination

address of a 44-byte area containing the

ddname of the GDDM input print file

JXECOMM address of a 4096 common area

JXESHUT address of the full-word JES Shutdown ECB

JXEMSG address of 160-byte Return Message area.

JXEDSN

The JXEDSN ddname has two special values, namely
OPEN and CLOSE; these indicate initialization and ter-
mination requests respectively.

The Common area is used as a work area by GDDM.

The JES shutdown ECB enables GDDM to detect a shut-
down request.

The Message area enables GDDM to inform JES/328X
of any errors detected in printing.

VM/CMS print utility

Under VM/CMS, the print utility is named ADMOPUV; it
controls a printer or plotter attached to the invoking
virtual machine or it can send the printer data stream
as a punch file to another destination for processing
(such as RSCS Networking Version 2). The printer may
have been explicitly attached by the system operator or
authorized user using the CP ATTACH command, or
may be automatically attached at logon by its inclusion
in the directory of the invoking virtual machine.

A print request by a GDDM subroutine is created as a
file on the user’'s A-disk. The file is subsequently
printed by running ADMOPUV, specifying the file and
the virtual address of the printer or plotter as parame-
ters.

If the DSOPEN processing option (INVKOPUV,YES) was
specified, function equivalent to that performed by
ADMOPUV is called automatically, after which the print
file is erased. Otherwise, if the installation has pro-
vided an ADMQPOST EXEC, GDDM calls this after cre-
ating the print file. An ADMQPOST EXEC can be used,
typically, to send the print file to a separate, possibly
automatic, virtual machine for processing. For details
of this facility, see the GDDM Installation and System
Management for VM manual.

printing

Invocation

The utility is started by this command:

ADMOPUV filename [filetype [filemode]] [ON cuu]
[([cC | NOCC] / [DEV dev-token])]

where optional parameters are indicated by [...]. The
meanings of the parameters are:

filename
is the name of the file to be printed. It must be speci-
fied.

filetype
is the type of the file to be printed. If this parameter is

not specified, ADMPRINT is used as the default (unless
a different filetype was specified in the current GDDM
external defaults).

filemode
is the mode of the file to be printed. If this is not speci-
fied, “x" is the default.

cuu
can be used to specify the printer device name or
address. If cuu is omitted, the device is identified by
the STAGE2ID processing option group (18 in DSOPEN)
specified when the print file was created. If this proc-
essing option group was not specified, the default is
061.

cC
(the default) interprets the first character of each
record as a carriage-control character.

NOCC

interprets the first character as part of the data.
Carriage-control characters are processed as
described for FSLOGC; see the GDDM Base Program-
ming Reference, Volume 1.

DEV
indicates that a device token is to be specified.

dev-token

can be used to override the device characteristics that
GDDM usually infers. It identifies a device character-
istics token, as defined in Appendix G, “Device char-
acteristics tokens” on page 203.

Printing alphanumeric fites

As well as printing files that were created under GDDM,
ADMOPUV lets you print files that contain alphanu-
meric data.

Printing GDDM files through RSCS

If the Remote Spooling Communication Subsystem
(RSCS) Networking Version 2 (under VM/SP Release 4)
is avalilable at your location, output can be directed to a
printer connected to RSCS.

The way to do this is to specify the special device name
“PUNCH" in the ADMOPUV command, as a result of
which GDDM writes 3270 device output to the virtual
punch. If the virtual punch is spooled to RSCS, and is
suitably tagged, RSCS prints the device output on the
required printer.

Chapter 7. The GDDM print utilites 55

printing

A nickname of the following form can be used to
encapsulate the necessary device, spool, and tag infor-
mation:

AOMMNICK FAM=1,NAME=prt-name,
TONAME=PUNCH,DEVTOK=L87,
PROCOPT=((CPSPOOL,TO,RSCS),
(CPTAG,node,prt-name, 50, PRT=GRAF))

and enables the ADMOPUV command to be entered
simply as:

ABMOPUV filename ON prt-name

Notes:

1. For a full discussion on nicknames, see “Using
nicknames to define device characteristics” on
page 3.

2. For a full explanation of the CPTAG string, see VM
RSCS Networking Version 2: Operation and Use
manual.

3. Specify a device token corresponding to the printer
to be used.

4. Printing on IPDS printers requires RSCS Version 2
Release 2.

Automatically initiating the VM/CMS print
utility

The DSOPEN processing option, INVKOPUV, can be
used to cause function equivalent to that performed by
ADMOPUV to be cailed automatically, whenever a print
file is created. For full details, see the GDDM Base
Programming Reference, Volume 1.

A nickname can be used to get the same effect, but
without the need for changing the application program.
For example,

ADMMNICK FAM=2,NAME=prt-name,
PROCOPT=((INVKOPUV,YES))

This nickname could effectively be used together with a
nickname set up to direct printer output to RSCS, as
described above.

An ICU user could use these nicknames to cause the
ICU print panel to initiate asynchronous printing on a
printer attached to RSCS.

Printer and plotter operating instructions

The printer or plotter must be prepared for use
according to the appropriate operating instructions for
the model, and the paper must be aligned to the top of
the page. This should be done before the ADMOPUV
command is issued.

Messages
Messages generated by the VM/CMS version of the

printer utility are numbered from ADM2101, and are
described in the GDDM Messages manual.

56 Base Programming Reference

Nonqueriable printers with the APL
feature

By default, under VM/CMS, the GDDM Print Utility
assumes that any APL feature installed on an IBM 3270
printer is the APL/Text Feature. This defauit must be
overridden if printer output containing APL characters
is to be directed to a printer, such as an IBM 3284 or
3286, with the Data Analysis — APL Feature.

The CMSAPLF option in GDDM's external defaults can
be modified (by specifying the value DATAANAL) to
cause GDDM to assume by default that an APL feature
installed on a nonqueriable IBM 3270 printer is the Data
Analysis — APL Feature. This option can be specified:

In an External Defaults Module, or
* In an External Defaults File.

See Chapter 1, “Customizing your program and its
environment” on page 1.

Image Print Utility

The Image Print Utility creates page printer files from
GDDM image (ADMIMG) files. It can be run under
CMS, MVS (including TSO), and VSE (in batch mode).
The entry name and parameter format depend on the
environment:

CMS
ADMUIMPV
('name') ('scale')('prtname’)('procopts')
(‘token')('field')
MVS
ADMUIMPT
'name(scale)prtname(procopts)token(field)'
VSE
ADMUIMPD
'name(scale)prtname(procopts)token(field)’

The meanings of the six parameter groups are shown
below. All parameters except groups 1 (name) and 3
(prtname) are optional. The utility will assign default
values to empty groups.

name
Name of image file to be printed:

Under CMS: filename filetype filemode

Under TSO: ddname
Under VSE: dlbl
scale

Scaling control:

0 Field to fit image: dimensions in field
ignored Forced if fieldh or fieldv = 0.

1 Original image size: image may be clipped
or spaced (default).

2 Scale to fit field: image may be distorted.

3 Re-scale with same aspect ratio: image may
contain blank space.

priname
Name to be assigned to print file:

Under CMS: filename filetype filemode
Under TSO: ddname
Under VSE: dibl

procopts
Processing options (procopts) to be used in
DSOPEN for printer.

token
Printer device token. Default is IMG240.

fietd
Image field size, in this format:

Under CMS: fieldh fieldv fields
Under TSO: fieldh,fieldv,fields
Under VSE: fieldh,fieldv,fields
where:

fieldh = Horizontal dimension (default 0)
fieldv = Vertical dimension (default 0)
fields = Units for above:
0 = tenths of inches (default)
1 = millimeters.

Sample code invoking these modules is supplied with
the GDDM Base programs, as follows:

¢ ADMUIMP, a REXX-language CMS procedure that
invokes ADMUIMPV. It will produce a file that can
be printed on a 3800 Model 3 printer as a page
segment to fit an area 6 inches wide and 4 inches
deep. The procedure can be amended to suit your
installation and users. Normally, you should
choose the device token and type (document or
page segment), and select the most appropriate
output file type (by assigning the required value to
outft).

¢ ADMUJT10, sample MVS JCL that invokes
ADMUIMPT.

e ADMUJD10, sample VSE JCL that invokes
ADMUIMPD.

Composite Document Print Utility

The utility is invoked by a call to CDPU. This function is
part of the GDDM Base programming interface, and the
CDPU call must be part of a GDDM application
program. You can either write such a program your-
self, or use a ready-made program called ADM4CDUx
(where x is subsystem-dependent) supplied with
GDDM. This is described in “ADM4CDUx” on page 58.

Two sets of PL/| DECLARE statements for GDDM func-
tions are provided. These will be useful if you write a
CDPU-calling program in PL/l. They are:

ADMUPINK — calls starting CD...for nonreentrant use.
ADMUPIRK - calls starting CD...for reentrant use.

For more details about GDDM-supplied PL/I DECLARE
statements, refer to the GDDOM Base Programming Ref-
erence, Volume 1.

See Appendix L, “Format of a Composite Document
Presentation Data Stream” on page 255 and “AFPDS
structured fields supported by the CDPU" on page 63
for more information about the format of CDPU input
files.

Example program

The program shown creates an AFPDS file from a
CDPDS file. By omitting the DSOPEN and DSUSE calls,
the program can be used to view a document on CICS,
MVS/TSO, or CMS.

printing

SAMPLE: PROCEDURE OPTIONS(MAIN);

/* DECLARE GDDM ENTRY POINTS */
%INCLUDE ADMUPIND; /* NAMES BEGINNING D... */
%INCLUDE ADMUPINF; /* NAMES BEGINNING F... */
%INCLUDE ADMUPINK; /* NAMES BEGINNING CD.. */

/* OTHER DECLARES */
DCL DEVID FIXED BIN(31) INIT(11);
DCL FAMILY FIXED BIN(31) INIT(4);
DCL DEVTOK CHAR(8) INIT('A4');
DCL IN(1) CHAR(8) INIT('CDPIN');
DCL OUT(1) CHAR(8) INIT('CDPOUT');
DCL NONE(1) FIXED BIN(31); /* DUMMY ARRAY */

/* INITIALIZE GDDM */
CALL FSINIT;

/* OPEN THE DEVICE */

CALL DSOPEN(DEVID, FAMILY, DEVTOK, ©, NONE,
1, OUT);

CALL DSUSE(1, DEVID);

/* PRINT THE DOCUMENT */
CALL CDPU(1, IN, ©, NONE);

/* TERMINATE GDDM */
CALL FSTERM;
END SAMPLE;

Application control

If an application calls the CDPU with the view control
parameter set to a nonzero value, the application can
control how the document is browsed. The CDPU
creates a GDDM page containing the specified docu-
ment page, but does no input or output. The application
must issue its own ASREAD (or other input/output call)
and interpret the returned values. Additionally, the
application can:

* Define a graphics field for the document page to be
shown in. The default is a field covering the whole
screen.

* Display instructions to the user.

¢ Test for requests for document pages beyond the
document end.

Specifying the device

The output from the CDPU goes to the primary device
specified by the DSOPEN and DSUSE calls. The
DSOPEN specification can be modified without
changing the application by using GDDM nickname
statements.

The device can be a directly connected (in GDDM
terms, family-1) graphics or IPDS printer, a queued
(family-2) graphics or IPDS printer, a page (family-4)
printer, or the user’s terminal (a family-1 device).

When the CDPU call is executed, the CDPU checks the
type of primary device that the application program has
opened, and generates the appropriate data stream.

The default primary device is the terminal, which is

why the CDPU displays the document at the terminal if
the DSOPEN and DSUSE calis are omitted.

Chapter 7. The GDDM print utilities 57

printing

If the device is family-2 or -4 printer, an intermediate
print file is created. Its name is taken from the name-
list parameter of the DSOPEN call. If a file with the
same name already exists, it is deleted without
warning.

Running the CDPU application program

The application program that calls the CDPU, whether it
is ADM4CDUx or a user-written program, can be exe-
cuted under CMS, TSO, or CICS, or in MVS or VSE
batch mode. You will need to supply any necessary
commands or JCL to invoke it.

A sample CMS REXX-language procedure,
ADMUBCDV, and TSO command list (CLIST),
ADMUBCDT, are supplied with GDDM/VM,

GDDM/VMXA, and GDDM/MVS as appropriate. These
call ADM4CDUx to browse a file at the terminal.

Other CMS example procedures are shown on pages
59 and 60. The first sends the document to a 4224
printer, and the second sends it to a 38xx AFPDS
printer. The first is similar to ADMUBCDV, except that
the devtok and namelist variables are set to printer
values.

In all cases — the ADMUBCDx samples in addition to
the procedures shown here — the document must be in
the form of a CDPDS or AFPDS file, the filename and,
optionally, filetype and filemode, of which, are passed
as parameters to the procedure.

ADM4CDUx

The entry name of the ADM4CDUx program varies
depending on the environment:

ciCcs ADM4CDUC
VSE Batch ADMA4CDUD
MVS Batch ADM4CDUT
TSO ADM4CDUT
VM/CMS ADM4CDUV
CMS/XA ADM4CDUX.

ADMA4CDUx can be invoked by the user to process and
print the CDPDS or AFPDS. Under CICS, MVS/TSO, and
CMS, it can also be used to view CDPDS or AFPDS
files. The parameter list, described below, is read as
up to six groups, each group being separated by a
blank or comma. All groups are optional, with default
values. Groups are positional, and may be empty.

58 Base Programming Reference

In the CICS environment, the standard transaction iden-
tifier is ADM4. This name may have been changed at
your installation. The parameter list is specified in the
from option of the CICS START.

The parameter groups are:

1. Composite document presentation data stream
identifier

The requirements and defaults for this parameter
are the same as for the cd-name parameter of the
CDPU call (see GDDM Base Programming Refer-
ence, Volume 1).

2. Printing options corresponding to those described
for the CDPU call:

a. Number of uncollated copies of document
b. Duplex control
c. View control.

The default values are the same as for the CDPU
call.

The remaining groups correspond to parameters on a
call to DSOPEN:

3. Device name list

There is no default value ~ the parameter must be
specified explicitly — except when the program is
being run under CMS and family-4 is specified (or
defaulted) in parameter 6. In that case, the default
name is the same as the input file name.

4. Device processing options, as a sequence of
decimal numbers

The default is none.
5. Device token

The default is S4224QE (SNA-attached 4224) under
CICS, or A4 (38xx AFPDS printer) under other
systems.

6. Device family

The default is family-1 under CICS, or family-4
under the other subsystems.

A simple parameter list to print a CDPDS file called
DOC, on a 38xx page printer defined by the device
token IMG240, using 20 swathes, would be:

(00C) () () (7 20) (IMG240)

printing

/* Name : CD42SAMP - sample exec (4224 printer) */

/* This is a sample user exec that takes a Composite Document */

/* Presentation Data Stream (COPDS) file and prints the document on */

/* a 4224 printer. */
Arg fn ft fm .

/* Check invocation parameters */

If fn='2"| fn=""" /* If parameters are incorrect */

then signal prompt /* prompt user */

/* Substitute default value for filetype & filemode if non-specified */

Parse Value ft "LISTCOP" With ft . /* I/P file type */

Parse Value fm “** With fm . /* I/P file mode */

/* Set default parameters for ADM4CDUV */

copies = "1" /* number of copies */

duplex = "1" . /* 1 = simplex */

/* 2 = normal duplex */

/* 3 = tumble duplex */

procopts = "*" /* Processing options */

devtok = "X4224QE" /* Device token */

family = "1" /* GDDM Family */

namelist = "061" /* Namelist entry (print address) */

/* Check that the specified CDPDS file exists */

address command 'STATE' fn ft fm /* Look for specified file */

If rc == 0 then /* If not, issue error message */

do; /* and exit with CMS return code */

say * */

say fn ft fm 'NOT FOUND' /* */

say /* */

exit rc /* */

end; /* */

/* Start the GDDM Composite Document Print Utility */

address command 'ADM4CDUV ' fn ft fm '(' copies duplex ')',
‘(' namelist ')(' procopts ')(' devtok ')(' family ')*
exit rc

/* Provide a description of the invocation parameters for this exec */
prompt : parse source . . execname .

say 'This exec reads a Composite Document Presentation Data Stream (CDPDS)’
say 'file and prints the composite document on a 4224 printer. !
say '

say
say
say
say

' Format :-
]
1
1
say ' where filename is the input filename
1
)
1

‘execname' filename filetype filemode

say filetype is the input filetype
say filemode is the input filemode
say

exit 0

Figure 1. REXX procedure for printing composite document on 4224 under CMS

Chapter 7. The GDDM print utilities 59

printing

| /* Name : CD38SAMP - sample exec (38xx AFPDS printer) */
| /* This is a sample user exec that takes a Composite Document */
| /* Presentation Data Stream (CDPDS) file and creates a LIST38PP */
| /* file for printing by a 38xx AFPDS printer. */

| Arg fn ft fm .

/* Check invocation parameters */

If fn="'?2"| fn = "' /* If parameters are incorrect */

then signal prompt /* prompt user */

/* Substitute default value for filetype & filemode if non-specified */

Parse Value ft "LISTCDP" With ft . /* I/P file type */

Parse Value fm "*" With fm . /* I/P file mode */

/* Set default parameters for ADMACDUV */

copies = "1* /* number of copies */

duplex = "1* /* 1 = simplex */

/* 2 = normal duplex */

/* 3 = tumble duplex */

procopts = "9 1 7 20" /* GDBM processing options */

/* 9 =1 Formatted output */

/* 7 = 20 Swathes */

/* 32 = 0 no inline resources */

devtok = "IMG240" /* Device token */

family = "4* /* GDDM Family */

postproc = “PRT3812" /* Post processing */

/* PRT3812 - print on 3812 */

/* PSF - print on 3800-3 */

outfn = fn /* 0/P file name */

outft = “LIST38PP" /* 0/P file type */

namelist = outfn outft /* output file name */

/* Check that the specified COPDS file exists */

address command 'STATE' fn ft fm /* Look for specified file */

If rc == 0 then /* If not, issue error message */

do; /* and exit with CMS return code */

say /* */

say fn ft fm 'NOT FOUND' /* */

say /* */

exit rc /* */

| end; /* */

/* Erase the output file if it already exists */
address command 'STATE' outfn outft 'A'

| If rc = 0 then

i address command 'ERASE' outfn outft 'A’

| Figure 2 (Part 1 of 2). REXX procedure for printing composite document on 38xx AFPDS printer under CMS

60 Base Programming Reference

printing

/* Start the GDOM Composite Document Print Utility */
address command ‘ADM4CDUV ' fn ft fm '(' copies duplex ')',
'(' namelist ')(* procopts ')(' devtok ')(' family ')’

/* Post processing *x/
Select
/*Invoke PRT3812 to print the file*/
When postproc = 'PRT3812' then
'PRT3812 * namelist ' (COPIES ' copies

/* Invoke PSF to print the file */
When postproc = 'PSF' then
Do
'SPCOL PRINTER CLASS B FORM PAGEQUAR NOHOLD'
'PSF' namelist ' (COPY ' copies

/* If procopt 32 = 1 use the following line instead */
/* 'PSF' namelist ' (COPY ' copies 'FORMDEF (F1ADMGO1))' */
End
Otherwise;
End
exit rc

/* Provide a description of the invocation parameters for this exec */
prompt : parse source . . exechame .

say 'This exec reads a Composite Document Presentation Data Stream (CDPDS)'
say 'file and creates a LIST38PP file for printing on a 38xx printer. !
say [[
say ' Format :- !
say []
say ' ‘execname' filename filetype filemode !
say 1 '
say ' where filename is the input filename !
say ' filetype is the input filetype !
say ' filemode is the input filemode !
say ' |

exit 0

Figure 2 (Part 2 of 2). REXX procedure for printing composite document on 38xx AFPDS printer under CMS

Chapter 7. The GDDM print utilities 61

printing

Printers for composite documents

The IBM printers that support composite documents
are:

3800 model 3 and model 8

3812

3812 Model 2 with 3270 Attachment Feature
3820

4224,

GDDM uses two data streams to support them. The
Advanced Function Presentation Data Stream (AFPDS)
supports all except the 3812 Model 2 with a 3270
Attachment Feature and the 4224; these are supported
through the Intelligent Printer Data Stream (IPDS).

IPDS enables you to use text, image, and graphics to
produce composite documents that can be printed in
color on the 4224 printer. However, rotation of com-
posite document pages, rotation of lines of text, and
rotated fonts are not supported.

Use of 4224 memory

GDDM Version 2.2 stores text and graphics in the
memory of the 4224 printer before the page is printed.
Because the text is stored first, there is less memory
available to store graphic drawing orders. So, a
graphics object that printed correctly on the 4224
printer using GDDM Version 2.1 may not print correctly
as part of a composite document using GDDM
Version 2.2.

Fonts, page sizes, and characters

GDDM does not check the suitability of the code pages
or the fonts for the target printer. The application
program that generates the CDPDS or AFPDS must
ensure that the correct ones are selected. The applica-
tion program must also ensure that the text is formatted
to fit within the page.

GDDM does not issue messages for undefined charac-
ters. Checks for such characters are handled by the
printer for IPDS output and by the print server for
AFPDS.

Color masters from CDPDS documents

Only one color master is allowed from a CDPDS docu-
ment. In other words, the only valid value for the
MASTERS parameter of the ADMMCOLT macro is 1.
The IBM-supplied color table ADMO00006 uses this
value, and is suitable for translating colors in CDPDS
documents into a gray scale.

Inline resources for AFPDS printers

To print a COPDS document correctly on an AFPDS
printer, you may need to use a new processing option
when the printer is opened by GDDM. This is because
the CDPDS document may have information at the front
to control how the rest should be printed. The informa-
tion is called inline resources. Inline resources contain
information such as page offsets, overlay names,
simplex/duplex control, and paper source. Processing

62 Base Programming Reference

option 32 indicates whether or not the CDPU is to
transfer inline resources frorn the CDPDS input to the
AFPDS output.

Not all AFPDS printer drivers support inline resources
but if the version installed in your environment does
support them, they can be generated using processing
option 32.

A suitable nickname is:
NICKNAME FAM=4,PROCOPT={ (INRESRCE,YES))

The CDPU supports inline resources in CDPDS input
and AFPDS output only. Inline resources contained in
AFPDS input files are ignored.

GDDM error reporting

It is possible that users of programs that create and
print composite documents will see GDDM messages.
These messages are prefaced by the letters ADM.
GDDM messages are explained in the GDDM Messages
manual.

Generally, errors that do not cause the printer to stop
are collected into an error report. The error report is
printed on a separate page at the end of the document.
Message ADM2779 is displayed on the screen if there
is such an error report. .

Errors in data streams

The following message can be generated with a reason
code of 4 if the printer cannot process the color sepa-
ration required, or a reason code of § if the printer
cannot process image and graphics on the same page:

ADM3179 W IMAGE CANNOT BE SHOWN, REASON CODE n

When you are using IPDS, if the printer detects an
error, printing stops and GDDM issues an error
message.

Errors in user environment or invocation of COPU

Errors can be generated by invalid data. Messages
returned by application programming interface calls
are also reported.

Errors in the programming interfaces

One overall message, ADM2779, is returned to the
caller of the SPI or API if an error report has been
produced.

The GDDM font emulation and conversion
tables

These two tables contain information about fonts and
code pages that the CDPU uses to emulate CDPDS and
AFPDS documents on screens (the font emulation table)
and to print them on IPDS printers (the AFPDS to IPDS
font and code page conversion table). One table of
each type is supplied with GDDM. They are suitable for
most applications. You do not need to change them
unless you have special requirements.

Each entry in the font emulation specifies:

* Name of CDPDS or AFPDS font, coded font, or code
page to be emulated

¢ Name of GDDM symbol set to be used for the emu-

lation

Symbol set character width

Symbol set character height

Symbol set character shear

Symbol set color

Symbol set code page

Code page identifier for coded font or code page.

¢ o o & & o

The AFPDS to IPDS conversion table allows the code
page, or the font, or both to be converted. Each entry
specifies:

* What is to be converted: name of AFPDS font, code
page, or coded font (font/code page combination)

* Type of IPDS printer to which the entry applies

¢ |dentifier of IPDS font or code page, or both, to be
used

* |PDS font width: normal or wide

* IPDS font weight: normal or bold

* |IPDS font descriptor: normal or italic, or double-
struck, or both.

Each table is In a module. The one for the font emu-
lation table is called ADM4FONT, and that for the
AFPDS to IPDS conversion table is called ADMDKFNT.
They are link-edited with GDDM. A copy of each
module is supplied with GDDM for installations that
want to add new fonts, or change the fonts or code
pages used by GDDM. Entries in ADM4FONT are gen-
erated using the ADMMFONT macro, and In
ADMDKFNT using the ADMMKFNT macro. Instructions
are given in the GDDM Installation and System
Management manuals.

The comments in the IBM-supplied ADMDKFNT table
contain some guidance on how to obtain a best approx-
imation to AFPDS output on an IPDS printer. In prin-
ciple, it is necessary to use only AFPDS fonts, code
pages, and coded fonts that can be converted into exact
IPDS equivalents. Where this is not possible, some
characters may sometimes print incorrectly.

Users who installed GDDM Version 2 Release 1 Modifi-
cation 1 and modified the font emulation table should
inspect the ADM4FONT macros shipped with Version 2
Release 2. They contain definitions for the emulation of
4250 fonts, which these users may want to add to their
own versions of the table.

printing

AFPDS structured fields supported by the
CDPU

The Composite Document Print Utility (CDPU) permits
printing and viewing of a doscument, a page segment or
an overlay in Advanced Function Presentation Data
Stream (AFPDS) format. The AFPDS file can be for-
matted for a 38xx or 4250 device (in, for example,
LIST38PP, LIST4250, LISTAPA, PSEG38PP, PSEG4250,
OVLY38PP, or OVLY4250 format).

The AFPDS cannot contain multiple documents or page
segments. The structured field length must not exceed
8202 bytes. Input formatted for the 4250 can only be
viewed. A document may contain page segments
inline. Secondary input is not supported. Page seg-
ments that contain text cannot be printed uniess they
are imbedded in a document.

The formats of individual structured fields, such as
“begin-document”, are defined in the PSF Data Stream
Reference for MVS and VSE and CDPF Data Stream
Interface Typographic Fonts Interface.

Summary of AFPDS structured flelds supported by
the CDPU

Hex code Meaning

D3A67B Image input descriptor (1ID)
D3A69B Composed text descriptor (CTD)
D3A6AF Page descriptor (PGD)

D3A77B Image output control (I0C)
D3A79B Composed text control (CTC)
D3A85F Begin page segment (BPS)
D3A87B Begin image block (BIM)

D3A89B Begin composed text block (BCT)
D3A8A8 Begin document (BDT)

D3ABAF Begin page (BPG)

D3A8C9 Begin active environment group (BAG)
D3ABDF Begin medium overlay (BMO)
D3A9SF End page segment (EPS)

D3A97B End image block (EIM)

D3A99B End composed text block (ECT)
D3A9A8 End document (EDT)

D3A9AF End page (EPG)

D3ASCY9 End active environment group (EAG)
D3A9DF End medium overlay (EMO)
D3AC7B Image cell position (ICP)

D3B18A Map coded font (MCF)

D3EE7B Image raster data (IRD)

D3EE9B Composed text data (CTX)

The include page segment structured field is not sup-
ported. If found, it will be treated as an error.

Structured field introducer extensions (bit 0, flag byte 5
of SFl) are not supported. If found, they will be treated
as errors. Padding bytes (bit 4, flag byte 5 of SFIl) are
not supported.

Chapter 7. The GDDM print utilities 63

Chapter 8. Symbol sets

This chapter describes the ways in which GDDM proc-
esses its various symbol set operations for the different
device types.

The chapter aiso contains descriptions of the GDDM
sample Image and Vector symbol sets that are supplied
with GDDM. The sample symbol sets can be used by
application programs instead of the defaults provided
with GDDM.

How GDDM handies symbol sets

GDDM provides facilities for loading and using symbol
sets other than the default characters, markers, and
shading patterns. These may be image symbol sets
(ISS), or vector symbol sets (VSS). Two methods of
loading symbol sets are available:

* Loading image symbol sets directly into pro-
grammed symbol (PS) stores in the device

* Loading image symbol sets or vector symbol sets
into GDDM storage.

PS stores are used for alphanumerics and mode-1
graphics text, GDDM storage for mode-2 and mode-3
graphics text.

For these operations, the symbol sets can be loaded
from auxiliary storage, or passed as data from the
application program.

In addition to being loaded by these operations, symbol
sets can be passed as data between the application
program and auxiliary storage.

Symbol sets can be tagged with country-extended code
page (CECP) identifiers. CECP sets are automatically
converted when they are used. So a set tagged with
code page identifier 60037 (for the United States) is
converted to represent code page 00297 when it is
loaded into a French device.

Where possible, GDDM loads symbol sets into device
storage. For example, for 3270-PC/G and 3270-PC/GX
work stations, both image symbol sets and vector
symbol sets can be loaded into the device, whereas for
3179-G and 3192-G, only image sets can be loaded.

Note: No symbol sets can be into the
5550-family work stations.

Loading programmed symbol stores

loaded

Display devices and printers equipped with the pro-
grammed symbol (PS) feature contain PS stores that
can be loaded with symbol definitions. These PS stores
are used for:

¢ Storing additional or special symbol sets

¢ Storing symbols or cell definitions used in con-
structing a picture.

symbols

Symbol sets that are to be loaded into PS stores must
have the same matrix dimensions as the device char-
acter cell. These are:

PS store numbers

The PS store number may optionally be specified as a
parameter of the loading call (PSLSS or PSDSS). it
specified, it must exist on the device in use at the time,
and it must be a triple-plane store if a muiticolor
symbol set is to be loaded. Call statements are avail-
able to determine the number and types of PS stores in
the device.

The specified store number controls the function key
that can be used by the terminal operator to select the
symbol set for data entry. The correspondence
between store numbers and keys is:

Table 5. PS store number and PS key relationship
PS store number PS key and indicator

2 A

3 B

4 C

5 D

6 E

7 F

A store number should always be specified if data entry
using the symbol set is expected. The number need
not be specified if data entry is not allowed by the
application program.

When no store number is specified, the symbol set is
loaded into an appropriate PS store, if one is available.
Monochrome symbol sets may be loaded into either
single-plane or triple-plane stores (for example:
numbers 2, 3, 4, 5, 6, and 7 on a 3279 display), but
multicolor symbol sets require triple-plane stores (for
example: numbers 4, 5, and 7 on a 3279 display).

Symbol-set identification

Displays and printers identify loaded symbol sets by a
one-byte symbol-set identifier. Usually, symbol sets
are held on auxiliary storage. When a set is loaded
Into the PS store, a symbol-set identifier specified as a
parameter in the loading call is associated with the
data. It is then used to identify the symbol set during
execution of the application program.

Reference to the symbol-set identifier takes one of two
forms:

* Asingle character

This form must have a character code greater than
X'40', and it is used when identifying the symbol
set associated with individual characters, as in the
ASCSS call. If this function or the related query
function ASQSS is used, it is likely that the
symbol-set identifier chosen will be an alphanu-
meric character.

Chapter 8. Symbot sets 65

symbols

Table 6. Device cell-size dimensions
Device Models Character cell
Width Height

3179-G and 3192-G color display All 9 12 (see note below)
3268 printer 2C 10 8
PCLK adapter with CGA card All 8 8
PCLK adapter with EGA card (64 K) All 8 8
PCLK adapter with EGA card (128+ K) 24-row screen 8 14
PCLK adapter with EGA card (128 + K) 32-row screen 8 1"
PCLK adapter with MCGA card 24-row screen 8 19
PCLK adapter with MCGA card 32-row screen 8 14
PCLK adapter with VGA card 24-row screen 8 19
PCLK adapter with VGA 32-row screen 8 14
8514/A + 8503, 8512 or 8513 24-row screen 8 19
8514/A + 8503, 8512 or 8513 32-row screen 8 14
8514/A + 8514 24-row screen 12 30
8514/A + 8514 32-row screen 12 23
8514/A + 8514 43-row screen 12 17
8514/A + 8514 27-row by 132 col screen 7 24
3270-PC display All 9 14
3270-PC/G work station All 9 10 or 16 (selectable)
3270-PC/GX work station All 12 20
3278 display 2,3 9 16

4 9 12
3279 display 2B, 3B 9 12
3287 printer All 10 8
3290 information panel display All 9 16
4224 printer 1E2, 1C2 20 18
8775 display 1,1 9 16

1,12 9 12 or 16 (selectable)
Note: The alphanumeric cell-size on a 3179-G or 3192-G can be either 9 by 12, or 9 by 16. The actual cell-size is
governed by the depth of the GDDM page and subsystem-related factors. Usually, any page with 24 rows or less
causes a cell-size of 9 by 16, with other page sizes receiving a cell-size of 9 by 12. The substitution character for
a 3179-G or 3192-G is independent of the page size, and always corresponds to the 9 by 12 cell.

* A full-word integer

This form is used when specifying the symboi-set
identifier to be associated with given data, an
alphanumeric field, or a graphics character string.

The correspondence between the integer and the char-
acter specifications is:

* Characters “0” and “1” correspond to the integers
0 and 1. These refer to “read-only” character sets.

¢ Other characters correspond to their character
codes. For example, “A” corresponds to 193.

Integer symbol-set identifiers in the range 224 through
239 are reserved for graphics use and cannot be
assigned to loaded symbol sets.

66 Base Programming Reference

Using preloaded PS sets

When GDDM is initialized, the current state of the PS
stores is determined by a device query, which returns
the identifier of any loaded sets. These preloaded sets
are noted by the GDDM PS management routines,
which maintain knowledge of the contents of the PS
stores.

GDDM's PSLSSC call conditionally loads a symbol set
into a PS store only if the PS store does not already
contain a symbol set with the specified identifier. Con-
ditional loading can be used to optimize PS loading, but
it must be used with care, because incorrect resuits
occur if different symbol sets have the same identifier.
For example, an application program may load a
symbol set with a given identifier, and another program
running subsequently on the same device may attempt
a conditional load of a different set having the same
identifier. This situation can be avoided if a convention

is adopted that assigns unique identifiers to specific
symbol sets.

Selecting symbol sets by device type

If an application program is designed to be used with
different devices, it may be necessary to control
symbol set loading on the basis of cell size. This can
be done by using a GDDM symbol-set nhaming conven-
tion. The symbol-set name is specified as a parameter
of the loading call. If the last character of the name is
the period character “*”, GDDM replaces it by another
character, depending on the current device.

In this way, a symbol set that matches the device in use
can be retrieved from auxiliary storage and loaded. As
a particular application, if a display containing PS is to
be printed, this function allows the selection of a
symbol set specific to the printer when printing begins.

For the details of which symbol sets are loaded for a
particular device cell size, see Table 7 on page 69.

Using PS with graphics

This section does not apply to 3179-G or 3192-G color
display stations, 3270-PC/G and 3270-PC/GX work
stations, 4224 printers, 5550-family work stations, the
5080 graphics system, and devices supported by
GDDM-PCLK, because PS is not used to construct the
graphics for these devices.

When GDDM is constructing a picture, the assumption
is made that all PS stores in the device are available
for use except those that have either been loaded with
symbol sets, or explicitly reserved by the application
program. Because the number of PS stores is limited,
if an application program uses both additional PS char-
acter sets and graphics construction, special attention
to PS allocations may be required. This is especially
true for printers, because only one PS store can hold a
multicolor symbol set.

In general, PS stores should be loaded with any addi-
tional symbol sets before graphics picture construction
is started, because the PS stores are also used for
picture display. An attempt to load a symbol! set when
graphics are displayed is usually rejected by GDDM.
Only when all graphics items are deleted from all
pages do the PS stores become released for loading
symbol sets.

If the programmer anticipates the need to load a PS
store while graphics data is present, the PSRSV call is
available to reserve a PS store. This must be done
before any graphics calls are issued. The specified PS
store is not used for graphics data, and is explicitly
referred to in the call statement to load the symbol set.
When the symbol set is no longer needed, the symbol
set can be released from the reserved PS store, and
another symbol set can be loaded, or, the PS store
itself can be released.

in a windowing environment, the PS stores are allo-
cated in the following order:

1. For symbol sets in the active window

2. For graphics in the active window

symbols

3. For graphics for window borders (all windows)

4. Any remaining PS slots are allocated for symbol
sets and graphics in non-active windows.

Loading graphics symbol sets

Symbol sets that are not suitable for loading into PS
stores can be loaded into GDDM storage. (For
3270-PC/G and 3270-PC/GX work stations, these
symbol sets can also be loaded into the device; for the
3179-G and 3192-G, image symbol sets can be loaded
into the device.)

Four types of symbol sets can be loaded in this way:

* |mage symbol sets used as graphics text

* Image symbol sets or vector symbol sets used as
marker symbols

* Image symbol sets used for shading graphics
areas

* Vector symbol sets used for graphics text.

Unlike when loading into PS stores, there is no
restriction on symbol size when loading image symbol
sets into GDDM storage. Any size that can be created
with the Image Symbol Editor can be used. However,
when shading patterns are used, the symbol is trun-
cated or padded to the cell size and repeated at cell
intervals. Therefore, in most circumstances shading
patterns should be the same size as the cell.

Devices other than work stations, 3179-Gs,
3192-Gs, 4224s, and GDDM-PCLK devices

For these devices, in graphics there is occasionally a
choice between loading a symbol set into a PS store for
use in mode 1, and loading it into GDDM storage and
using mode 2. Mode 2 is required if the character set
does not match the device, or if exact positioning is
required. If neither of these conditions exists, it should
be remembered that the PS load transmits all charac-
ters in the symbol set to the device once only. Using
the characters in mode 2 requires the transmission of
only those characters actually used, but more than one
cell definition may be transmitted for each.

For details of how to set the mode, see the GDDM Base
Programming Reference, Volume 1.

Also, for guidance information on mode-1 and mode-2
usage for graphics, see the GDDM Application Pro-
gramming Guide, Volume 1.

3270-PC/Gs, 3270-PC/GXs, 3179-Gs, and 3192-Gs

Note: This section also applies to 3179-G and 3192-G
color display stations, except that they cannot be
loaded with vector symbol sets.

Image and vector character sets can be stored in the
work stations themselves. Also, these displays support
a maximum of two monoplane PS stores; the precise
number depends on how the display has been config-
ured. Programmed symbol sets are not used to con-
struct graphics because the displays have their own
graphics capability. Up to 8 character sets can exist in
the display at any one time. For reasons of perform-
ance, the device-provided default character sets should
be used whenever possible. Only PS sets can be used
for alphanumeric characters.

Chapter 8. Symbol sets 67

symbols

Note: The 3179-G or 3192-G display stations, and
3270-PC/G or 3270-PC/GX work stations have a dif-
ferent pixel aspect ratio and default graphics
character-box size from displays such as the 3279.
Thus, character mode 1 graphics character strings and
character mode 2 text and images appear differently on
the two types of device.

To prevent storage problems in the display, any symbol
sets that have been loaded (by using GSDSS or GSLSS
calls) should be released when they are no longer
needed. The storage occupied by these symbol sets is
common to that used for storing segments, so loading
unnecessary symbol sets can cause segment storage
to be exhausted (thereby causing GDDM to enter unre-
tained mode with a subsequent effect on performance).

Note also that unless the work station has enough
symbol-set storage to hold the current user-defined
pattern sets, the default shading patterns are used
(GDDM issues a warning message when this happens).

For details of how to set the mode, see the GDDM Base
Programming Reference, Volume 1.

Also, for guidance information on mode-1 and mode-2
usage for graphics, see the GDDM Application Pro-
gramming Guide, Volume 1.

PS overflow caused by picture complexity

PS overflow cannot occur on 3179-G and 3192-G display
stations, 3270-PC/G and 3270-PC/GX work stations,
5550-family work stations, the 5080 Graphics System,
or on devices supported by GDDM-PCLK; therefore,
ignore this section for these devices.

When a picture is extremely complex, it may require
more PS stores than GDDM and the device can handle.
This is known as PS overflow. When PS overflow
occurs, message ADMO0273 is issued to inform the user
that the picture cannot be accurately completed.

In a windowing environment, this message is only
issued if the overflow occurs in the active window.

The 4224 printer performs its own vector-to-raster con-
version for graphics data. The graphics data stream
that is sent to these printers contains GDF orders. The
amount of storage available in these printers may not
be enough to hold all of the graphics data that defines
the picture. When this occurs, message ADM3282 is
issued to inform the user that the picture cannot be
accurately completed.

The FSCHEK function can be used to discover if PS
overflow will occur when a picture is displayed. If PS
overflow would occur, the error can be intercepted and
action taken to simplify the picture or delete segments
until it can be shown.

Using symbol sets in printing

When a call is issued to copy screen data to the printer,
the names of symbol sets in use, both on the screen
and in GDDM storage, are noted. These names include
the final character “¢" if it was originally specified, not
the character that was substituted for it.

68 Base Programming Reference

When the print operation begins, an attempt is made to
reload the symbol sets. The appropriate substitution
character replaces the “*”, so that a printer symbol set
is retrieved, if one exists on auxiliary storage. If not,
the default symbol set is used and an error message is
issued.

Note that if the symbol set was loaded into the display
by a conditional PS load, a conditional load is also per-
formed before printing. Therefore, the convention
associating symbol sets with unique identifiers must
apply for both displays and printers.

Because there may be more PS stores available on a
display than on a printer, if an application program
explicitly uses PS stores, a picture that can be dis-
played may not print. Also, because only one triple-
plane store is available in the 3287 Printer (Models 1C
and 2C), if the application reserves this store for a non-
graphics symbol set when the print request is proc-
essed, multicolor graphics printing is not performed
correctly.

Using DBCS symbol sets

For Kanji/Hangeul applications that have double-byte
character string (DBCS) symbol sets installed, this type
of symbol set can be used directly (by the application
program loading the required symbol set and using the
definition in the normal manner) or indirectly (by the
application program indicating that it requires to use
DBCS symbol sets). In the second case, if the GSCS
call specifies character set 8 (DBCS) or if mixed
(single-byte and double-byte) character strings are
enabled (by specifying MIXSOSI=YES in GDDM’s
external defaults), GDDM recognizes DBCS characters
and uses the first byte of the character to identify the
symbol set to be loaded and the second byte to retrieve
the symbol definition.

GDDM'’s external defaults define whether mixed strings
are enabled and indicate the maximum number of
DBCS symbol sets of each type that are to be ioaded
concurrently. When this maximum number is reached,
the least recently used symbol set is unloaded to allow
the currently required symbol set to be loaded. For
details on how to change the settings of these GDDM
external defaults, see the information on the MIXSOSI
and DBCSLIM processing options in Chapter 1, “Cus-
tomizing your program and its environment” on
page 1.

For graphics, DBCS symbol sets are available for mode
2 and mode 3 only.

Naming conventions for sample
image symbol sets

Except for shading patterns with a final character of N
or R (and ADMDHIPK), the final character of the name
of each image symbol set conforms to the convention
for generic retrieval by GDDM, showing the cell size of
the symbol set.

The shading patterns with N and R as the final char-
acter differ in that the patterns are defined on an 8 by
12 cell size. This allows complete shading, as defined
in the GSLSS call; see the GDDM Base Programming
Reference, Volume 1.

The following table shows the character that GDDM
uses to replace the “¢” substitution character that is

symbols

Table 8. Sample image symbol sets

used in a GSLSS call (for a graphics symbol-set name), Set name Contents
in a PSLSS or PSLSSC call (for an alphanumerics HIMA Ten standard markers, which cor-
symbol-set name),. or in an SSREAD or SSQF call (for :gmgHIMC respond to the defaults provided
either alphanumerics or graphics). ADMDHIMG with GDDM. See the description of
ADMDHIMK the GSMS call in the GDDM Base
Table 7. Cell sizes for sample image symbol sets ADMDHIMN Programming Reference, Volume
Substituted Cell size in display points (width by ' :gmg::mg
final char- depth)
acter ADMDHIPA Seventeen standard patterns,
ADMDHIPC which correspond to the defaults
A by 16 ADMDHIPG | provided with GDDM. See the
C 9 by 12 (monochrome) ADMDHIPJ | description of the GSPAT call in
D 9 by 12 (multicolor) ADMDHIPM | the GDDM Base Programming Ref-
E 9 by 10 (alphanumerics only) ADMDHIPN | erence, Volume 1. ADMDHIPJ is
G 10 by 8 (monochrome) ADMDHIPR | for use on an IBM 4250 high-
H 10 by 8 (multicolor) resolution printer, and ADMDHIPM
J Family-4 high-resolution symbol is for use on IBM 3800-3 and
sets (400 pixels per inch or greater) 3800-8 medium-resolution printers.
K 20 by 18 (alphanumerics only)
L Family-4 medium-resolution (less ADMDHIPK Eight patterns, which can be used
than 400 pixels per inch) when producing color masters on
M See Note 4 high-resolution and medium-
N 8 by 16 (graphics only) resolution printers. For more
Q 24 by 30 (monochrome) information, see “The ADMMCOLT
R 12 by 20 macro” on page 79.
12 by 24 ADMDHIPL Sample shading patterns, which
u Plotter symbol sets can be used for converting colors
into shades of gray on high and
medium-resolution printers.
Notes:
. . ADMIPATA Seventeen standard patterns,

1. If the device has a cell size that is not one listed ADMIPATC which correspond to the defaults
above, GDDM selects the character that corre- ADMIPATG provided with GDDM. Used with
sponds to the smallest containing cell size. For ADMIPATN the Image symbol Editor INFILL
example, for a device cell size of 9 by 14, GDDM ADMIPATR | function. See the description of
selects an image symbol set with a cell size of 9 by the GSPAT call in the GDDM Base
16 (character A). Programming Reference, Volume

2. If the device cell size does not fit into any of the 1.
cell sizes given in the table, GDDM selects an | | ADMITALA Sample italic CECP characters.
image symbol set with a cell size of 9 by 16 (char- ADMITALC
acter A). ADMITALG

3. For a family-3 printer, the character A is always ADMITALK
used as the final character. ADMITALN

4. GDDM provides a sample image symbol set with M ADMPATTA | Sixty-four sample geometric
as the last character. However, M is not one of the ADMPATTC | shading patterns. Seethe

ADMPATTN the GDDM Base Programming Ref-

Sample image symbol sets ADMPATTR erence, Volume 1.
ADMIKxx Sample double-byte character set
image characters, where “xx” is in
Table 8. Sample image symbol sets the range X'41' through X'68°.
Set name Contents ADMDISKA Contain image symbols for use
. ADMDISKC with Katakana displays and
ADMCOLSD Sample shading patterns, which
ADMCOLSN create the appearance of 64 color ADMDISKG printers.
ADMCOLSR shades. ADMDISKN Contain 8x16 and 12x24 image
_ ADMDISKP symbols for use with 5550-family

ﬁgmg:::é ;Iz::.standard CECP set of charac ADMDISKR work stations.
ADMDHIIE Note: The symbol sets are only provided as
ADMDHIIG samples. GDDM does not ensure that all styles of
ADMDBHIIK characters and patterns are provided for all pos-
ADMDHIIN sible suffix characters.
ADMDHIIQ
ADMDHIIR

Chapter 8. Symbol sets 69

symbols

Sample vector symbol sets

GDDM's sample vector symbol sets are as shown

below:

Table 9. Sample vector symbol sets

Set name Contents

ADMDHIMJ Contains the GDDM vector marker
symbols for use by the Interactive
Chart Utility.

ADMDHIMV Contains ten standard vector
markers that correspond to the
defaults provided with GDDM.

ADMDHIVJ Contains the default vector symbol
set for the 4250 page printer.

ADMDHIVK Contains the default vector symbol
set for a 4224 page printer.

ADMDHIVM Contains the default vector symbol
set for a 3800 Model 3 or a 3800
Model 8 page printer.

ADMDHIVQ Contains the default vector symbol
set for a 3812 Model 2 page
printer.

ADMDVIH Contains the default vector symbol
set for 3270-PC/G or 3270-PC/GX
work stations.

ADMDVECP CECP default vector symbol set

ADMDVSS The default vector symbol set for
code page 00351 (USA version).
The default character codes are
shown in the description of the
ASTYPE call in the GDDM Base
Programming Reference, Volume
1.

ADMDVSSB National Language versions of the

ADMDVSSD vector symbol sets for code page

ADMDVSSE 00351, see note 5.

ADMDVSSF

ADMDVSSG

ADMDVSSI

ADMDVSSN

ADMDVSSS

ADMDVSSV

ADMDVSSK The default vector symbol set for
code page 00290. See the
description of the ASTYPE call in
the GDDM Base Programming Ref-
erence, Volume 1.

70 Base Programming Reference

Table 9. Sample vector symbol sets
Set name Contents
Sample CECP vector symbol sets:
ADMUXARP Area Filled Roman Principal
ADMUXCIP Complex ltalic Principal
ADMUXCRP Compiex Roman Principal
ADMUXCSP Complex Script Principal
ADMUXDRP Duplex Roman Principal
ADMUXFSS Filled Sans Serif
ADMUXGEP Gothic English Principal
ADMUXGGP Gothic German Principal
ADMUXGIP Gothic Italian Principal
ADMUXKRF Thick Round Filled
ADMUXKRO | Thick Round Outlined
ADMUXKSF Thick Square Filled
ADMUXKSO | Thick Square Outlined
ADMUXMOD | Modern
ADMUXNSF Thin Filled
ADMUANSO | Thin Outline
,ADMUXORP Outline Roman Principal
ADMU*SHD Shadow
ADMU%SRP Simplex Roman Principal
ADMUXTIP Triplex italic Principal
ADMUXTRP Triplex Roman Principal
ADMUATSS Triplex Sans Serif
*is U — proportionally spaced
*isV — nonproportionally spaced
*isW - proportionally spaced —
wider space for compatibility
with GDDM Version 1.
See GDDM Typefaces and Shading
Patterns manual.
ADMVKxx Sample double-byte character set
vector characters, where “xx” is in
the range X'41' through X'68".
Notes:

1.

It is not possible to use the Iimage Symbol Editor on
the sample vector symbol sets. The Vector Symbol
Editor is part of GDDM-PGF.

As supplied, CECP symbol sets are ordered
according to the USA CECP, 00037, and are so
tagged. GDDM converts them to the device code
page when they are loaded by an application
program.

All the IBM-supplied sample vector symbol sets
have names starting with “ADM"; this aids identifi-
cation and serviceability. However, installations
may find it more convenient to generate copies of
these symbol sets, using other names. If neces-
sary, the Image or Vector Symbol Editor can be
used to save the symbol sets under different
names. The symbol sets are shown in GDDM
Typefaces and Shading Patterns manual.

It should not normally be necessary to alter a
CECP set. However, if an editor is used to change
a CECP symbol set, the application code page
should first be set to be the same as that of the
symbol set being edited. GDDM supplies the CECP
sets ordered according to code page 00037.

. The “E" suffix character refers to UK-English, not

US-English.

PIF files

Chapter 9. Picture interchange format files

Application programs can transfer picture information
between GDDM running in a host system and the
3270-PC/G or 3270-PC/GX work station as plcture inter-
change format (PIF) files by using the GDDM-supplied
GDF conversion utility (ADMUPCT/V) and the 3270-PC
Graphics Control Program file transfer function.

A PIF file can also be generated on a work station that
uses GDDM-PCLK, through “user control mode" (for
details, refer to the GDDM-PCLK Guide).

As the PIF files on the host have different internal
formats to those on a work station, when files are trans-
ferred from one system to the other, they must also be
converted to the relevant format before they can be
used.

This conversion can be done at the same time as the
transfer operation or as a separate operation.

The methods used to process PIF files vary according
to the subsystem that the GDDM host session is
running under. This chapter explains:

* Processing PiF files under TSO

* Processing PIF files under VM/CMS.
Note: GDDM does not support PIF files under CICS/VS
or IMS/VS.
These topics are discussed for each subsystem:

* How PIF data relates to GDF data

* How to create PIF information under GDDM

* How to create PIF information at a work station

* What a PIF file must contain if it is to be used under
GDDM

* The structure of a PIF file
* Base PIF files.
The commands needed to convert and transfer PIF files

are defined in the sections that follow; for more infor-
mation, refer to the GDDM Guide for Users.

Processing PIF files under TSO

The conversion operation
The GDF file-conversion utility

The conversion utility is distributed as a module called
ADMUPCT. This utility converts GDDM ADMGDF
objects into PIF files, or converts PIF files from the
work station into a format that is suitable for use under
GDDM Release 4 {(ADMGDF objects).

The conversion utility also converts files (created by
applications from GSGET calls and often named GDDM
Release 2 and 3 GDF files) into ADMGDF files; see
“Saving GDF orders” on page 165.

Figure 3 on page 72 shows the flow of events.

When the INDS$FILE CLIST executes, the ADMUPCT
command is invoked to run the conversion utility if the
ADMGDF option has been specified in a SEND or
RECEIVE command.

The transfer operation

If the commands described in “Commands to use under
TSO" on page 72 did not work, check that the INDSFILE
CLIST is available at your installation, and that the
library search order searches CLISTs before searching
commands. Refer to the preamble to CLIST
ADMUPCFT (listed under ADMUPCFT in the index) in
the GDDM Installation and System Management for
MVS manual.

GDF data files must be converted into PIF files before
they can be sent from GDDM to the work station. There
are four components in the procedure for transferring
and converting the files:

* The SEND and RECEIVE commands that are issued
at the work station.

These commands generate the IND$FILE command
on the current host session, with the first param-
eter set to either PUT or GET.

¢ The INDSFILE CLIST that is issued at the host
(GDDM). .

This CLIST controls the file transfer program and
the conversion utility (see below).

¢ The INDSFILE file transfer command.

* The GDF conversion utility, which converts GDDM
ADMGDF object files to PIF files, and conversely.

Of these four components, the SEND and RECEIVE
commands have already been described above. The
other components are described in greater detail
below.

The INDSFILE CLIST

These examples of the commands work with the
INDSFILE CLIST that is supplied with GDDM.

Note: The CLIST is distributed with the name
ADMUPCFT CLIST; it is recommended that it is
renamed to INDSFILE CLIST by the systems pro-
grammer, after GDDM has been installed.

The INDSFILE CLIST invokes the IND$FILE file transfer
program at the work station.

Notes:

1. On heavily-loaded systems, it may be advisable to
perform the file transfer separately from the con-
version; for details, see “Commands to use under
TSO” on page 72; for further information, refer to
the GDDM Guide for Users.

2. For GDDM Version 2 Release 1, there is a new
version of the CLIST called ADMUPGT, which
maintains the structure of the PIF (including default
tags and segment orders), but produces ADMGDF
files that may not be compatible with some GDDM
Version 1 Release 4 applications.

Chapter 9. Picture interchange format files 71

PIF files

GDDM in the host processor ¢ 3270-PC
ADMUPCT
command INDSFILE
GDDM R4 Picture command Picture
ADMGDF <+——| interchange interchange
object format file <—l—> format file
on 3270-PC
diskette or
fixed disk
ABMUPCT Application-
command written GDF
containing :
data
obtained from :
GSGETS calls)
INDSFILE EXEC SEND/RECEIVE
(supplied as command

ADMUPCFT CLIST, but :
renamed to IND$FILE
when GDDM is installed)

Figure 3. GDF file conversion procedure under TSO

3.

If the ADMUPCFT CLIST has been renamed to a
name other than INDSFILE CLIST, the work station
SET command can be used to invoke the appro-
priate CLIST when a SEND or RECEIVE command
is issued. For details of the SET command, refer to
the IBM Personal Computer Disk Operating System
manual.

The INDSFILE file transfer command

This is the command that transfers files between a
work station and the host processor.

Note: The file transfer command requires the 3270-PC
Graphics Control Program (feature number 1507) and
the File Transfer Program (licensed program number
5665-311), which runs on MVS/TSO.

Commands to use under TSO
To transfer a PIF file from the work station to host

1.

2.

Ensure that the host session is ready to receive an
operator command (that is, it is in a READY state).

From the PC session of the work station enter:
SEND picture.pif 'pif-dataset-name'

The “pif-dataset-name” data set is automatically
allocated if it does not already exist, and is created
as a sequential data-set with fixed-length 80-byte
records (unblocked). The “pif-dataset-name” if it
already exists may be sequential or partitioned. If
partitioned, the member-name must be included in
“pif-dataset-name.”

72 Base Programming Reference

To transfer a GDDM GDF picture from the host to
the work station

1. Enter the RECEIVE command from the work station
(in a PC session) as follows:

RECEIVE picture.pif 'pif-dataset-name’

This sends the file “pif.dataset-name” from the
host (GDDM) system to the current work-station
directory, converting it from the ADMGDF format to
a PIF format.

If the SEND or RECEIVE command was not suc-
cessful, there may be some options not set up on
your system, and you should consider this:

To convert a PIF file into a GDDM ADMGDF object
1. Use the commands:

ALLOC F(ADMPIF) DA('pif-dataset-name')SHR

ALLOC F(ADMGDF) DA(‘'admgdf-dataset-name')SHR

CALL 'GDDM.OSPID.GDDMLOAD(ADMUPCT)'
'pif-member (PUT admgdf-member options'

Where “admgdf-dataset-name” must exist, and
must be partitioned. The data set usually has the
attributes LRECL(400) and RECFM(F) but these
may be altered.

If “pif-dataset-name” is sequential, pifmember
should be omitted.

| To convert a GDDM ADMGDF object into a PIF file
| 1. Use the commands:

| ALLOC F(ADMPIF) DA('pif-dataset-name')SHR

ALLOC F(ADMGDF) DA('admgdf-dataset-name')SHR

CALL 'GDDM.OSPID,GDDMLOAD(ADMUPCT)'
‘pif-member(GET admgdf-member,options'

Where “admgdf-dataset-name” must exist, and
must be partitioned. The data set usually has the
attributes LRECL(400) and RECFM(F) but these
may be altered.

| If “pif-dataset-name” is sequential, pifmember
| should be omitted.

Notes:

1. The admpif-member-name is either a member
name of the PIF data set or biank if a sequential
data set is being used.

2. The ADMPIF data set defaults are LRECL =400 and
RECFM=F, but these may be changed.

3. A user’s CLIST must allocate two DDnames:

|

|

|

I

|

|

I

| e ADMPIF — for the PIF sequential or parti-
| tioned data set.

| e ADMGDF - for the partitioned data set with
[member “admgdf-name.”

I

I

I

|

|

|

4. The GDDM-supplied IND$FILE CLIST accepts the
SEND and RECEIVE commands from the work
station, or it can run independently when invoked
from GDDM in the host. See the GDDM Installation
and System Management for MVS manual for a
source listing of this CLIST.

The format of a PIF file

The format of a PIF file under GDDM in the host
processor depends on the subsystem being used;
under TSO, it can be a sequential data set or a member
of a partitioned data set.

| In a 3270-PC/G or 3270-PC/GX work station, and
| devices supported by GDDM-PCLK, the PIF file is a
standard PC-DOS 2.1 file.

In both the host and the work station, the orders in a
PIF file can span records.

Processing PIF files under VM/CMS

The conversion operation
The GDF file-conversion utility

The conversion utility is distributed as a module called
ADMUPCV. This utility converts ADMGDF objects into
PIF files, or converts PIF files from the work station into
a format that is suitable for use under GDDM Release 4
(ADMGDF objects).

The conversion utility also converts files (created by
applications from GSGET calls and often named GDDM
Release 2 and 3 GDF files) into ADMGDF files; see
“Saving GDF orders” on page 165.

Figure 4 on page 74 shows the flow of events.

PIF files

When the IND$FILE EXEC executes, the ADMUPCV
command is invoked to run the conversion utility if the
ADMGDF option has been specified in a SEND or
RECEIVE command.

The transfer operation

If the commands described in “Commands to use under
VM/CMS" on page 74 did not work, check that the
INDSFILE EXEC is available at your installation.

GDF data files must be converted into PIF files before
they can be sent from GDDM to the work station. There
are four components in the procedure for transferring
and converting the files:

* The SEND and RECEIVE commands that are issued
at the work station.

These commands generate the IND$FILE command
on the current host session, with the first param-
eter set to either PUT or GET.

* The INDSFILE EXEC that is issued at the host
(GDDM).

This EXEC controls the file transfer program and
the conversion utility (see below).

* The INDSFILE file transfer command.

* The GDF conversion utility, which converts GDDM
ADMGDF object files to PIF files, and conversely.

Of these four components, the SEND and RECEIVE
commands have already been described above. The
other components are described in greater detail
below.

The INDSFILE EXEC

These examples of the commands work with the
INDSFILE EXEC that is supplied with GDDM.

Note: The EXEC is distributed with the name
ADMUPCFV EXEC; it is recommended that it is
renamed to INDS$FILE EXEC by the systems pro-
grammer, after GDDM has been installed.

The INDS$FILE EXEC invokes the INDSFILE file transfer
program at the work station.

1. On heavily-loaded systems, it may be advisable to
perform the file transfer separately from the con-
version; for details, see “Commands to use under
VM/CMS"” on page 74; for more information, refer
to the GDDM Guide for Users.

2. For GDDM Version 2 Release 1, there is a new
version of the CLIST called ADMUPGT, which
maintains the structure of the PIF (including default
tags and segment orders), but produces ADMGDF
files that may not be compatible with some GDDM
Version 1 Release 4 applications.

3. If the ADMUPCFV EXEC has been renamed to a
name other than IND$FILE EXEC, the work station
SET command can be used to invoke the appro-
priate EXEC when a SEND or RECEIVE command is
issued. For details of the SET command, refer to
the /BM Personal Computer Disk Operating System
manual.

Chapter 9. Picture interchange format files 73

|
I
I
|
I
I
I
I
I
|
i
I
|
I
[
I
I
I
I
I

PIF files

GDDOM in the host processor

ADMUPCY
command

GDDM R4
ADMGDF
object

—

ADMUPCV
command

3270-PC
INDSFILE
Picture command Picture
interchange interchange
format file ‘_I_, format file
on 3270-PC
diskette or
fixed disk
Application-
written GDF
containing
data
obtained frem
GSGETS calls)
IND$FILE EXEC SEND/RECEIVE
(supplied as command

ADMUPCFV EXEC, but

renamed to IND$FILE
when GDDM is installed)

Figure 4. GDF file conversion procedure under VM/CMS

The INDSFILE file transfer command

| To transfer a GDDM GDF picture from the host to
| the work station

This is the command that transfers files between a

work station and the host processor.

Note: The file transfer command requires the 3270-PC
Graphics Control Program (feature number 1507) and |
the File Transfer Program (licensed program number
5664-281 for VM/SP) which runs on VM/SP Release 3.

Commands to use under VM/CMS

To transfer a PIF file from the work station to host

1. Ensure that the host session is ready to receive an |
operator command (for example, ensure that the |
host session is not running the Interactive Chart

Utility).

2. Ensure that the CMS default SET IMPEX ON is in |

operation.

3. Enter the SEND command from the work station (in

a PC session) as follows:
SEND picture.PIF picture (ADMGOF

This sends the file picture.PIF from the current
work-station directory, converts it to GDDM format
(because of the ADMGDF keyword), and stores the
file as a GDDM ADMGDF picture in the host.

If you want to transmit the file again unchanged
(for back-up or transmission to another work
station), do not use the keyword option ADMGDF
as this option may result in some details of the
picture being lost.

74 Base Programming Reference

1. Ensure that the host session is ready to receive an

operator command (for example, ensure that the
host session is not running the Interactive Chart
Utility).

Ensure that the CMS default SET IMPEX ON is in
operation.

Enter the RECEIVE command from the work station
(in a PC session) as follows:

RECEIVE picture.PIF picture (ADMGDF

This sends the GDDM ADMGDF picture file from
the host ADMGDF object library to the current
work-station directory.

If you want to transmit the file again unchanged
(for back-up or transmission to another work
station), do not use the keyword option ADMGDF,
as this option may result in some details of the
picture being lost.

To convert a PIF file into a GDDM ADMGDF object
1. Use the command:

ADMUPCV admpif-file-id (PUT admgdf-name options
The options are:

e {NEWFile|REPlace} — creates a new GDF
object or replaces an existing object of the
same name.

* {FIXed|FLOAT} — creates the GDF object in
fixed- or floating-point format.

!
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
|
I
I

To convert a GDDM ADMGDF object into a PIF file
1. Use the command:
ADMUPCV admpif-file-id (GET admgdf-name options
The options are:

e {NEWFile|REPlace} — creates a new PIF file
or replaces an existing file of the same name.

o {FIXed|FLOAT} — creates the PIF file in fixed-
or floating-point format. If the PIF file is to be
sent to a work station, this parameter must be
specified as FIXed.

* LRECL {400|n} — specifies the length of each
record for fixed-length files, or the maximum
record length for variable-length files. The
value of n must be in the range 16 through
2000.

e RECFM {F|V} — specifies the record format as
fixed length or variable length.

Note: The admpif-file-id is a standard CMS file identi-

fier.

The format of a PIF file

The format of a PIF file under GDDM in the host
processor depends on the subsystem being used;
under VM/CMS, it is a normal VM/CMS file, conven-
tionally of filetype PIF.

In a 3270-PC/G or 3270-PC/GX work station, and
devices supported by GDDM-PCLK, the PIF file is a
standard PC-DOS 2.1 file.

In both the host and the work station, the orders in a
PIF file can span records.

Creating PIF data under GDDM

The graphics data in PIF files is essentially the same as
that in fixed-point GDF files. Using GDDM’'s GSGETS
call (see the GDDM Base Programming Reference,
Volume 1), with the options for returning fixed-point
coordinate data with a picture prolog, produces PIF
orders.

Creating PIF data using
GDDM-PCLK

PIF data can also be generated using GDDM-PCLK. For
details, refer to the GDDM-PCLK Guide.

Creating PIF data at a work station

There are two ways of creating PIF data at a work
station:

1. By capturing alphanumerics or alphanumerics and
graphics data that is displayed on a monitor. This
is done by:

a. Pressing the Ws Ctrl key
b. Pressing the Print or Print and Shift keys.

This spools a file called INDPRTnn.PIF to the user’s
INDPRT directory for printing at the work station.

PIF files

2. By writing an application program to create and
save alphanumerics or graphics data, or both of
these.

If they are to be transferred to GDDM, the PIF files
created at a work station must contain only those
drawing orders that are recognized as GDF orders; the
GDF orders are |listed and described in
Appendix D, "GDF order descriptions” on page 165.
The GDF utility converts orders where possible and
diagnoses any changes made.

Note: Spooling a GDDM picture locally causes struc-
tural information to be lost because GDDM optimizes
the data stream for display. Therefore, if possible you
should create your PIF files at the host rather than
spooling them locally into PC disk storage and
retrieving them from the work station.

How PIF data relates to GDF data

The formats of data in PIF files and in files created by
applications from the results of GSGET calls differ, in
some respects, from those of Version 1 Release 4 GDF
(ADMGDF) files created from GSSAVE calls. The con-
version utility converts from one form to the other. The
differences are:

¢ PIF files contain special control information as
detailed below.

¢ Fixed-point GDF is, usually, a subset of PIF func-
tion. However, some GDF orders before Version 1
Release 4 are ignored by the work stations. The
GDF utility makes the appropriate conversions.
The orders are:

X'11' Fractional Line Width

X'41' Marker Scale

X'583' Segment Position

X'71' Segment End

X'72' Segment Attribute

X'73' Segment Attribute Modify.

The work station treats all these orders as no oper-
ations.

* Fixed-point GDF End Area (X'6800') is treated as a
Begin Area order by work stations. End Area
should be shown using X'6000"'.

For a full list of the drawing orders supported by the
work station, see the /IBM 3270 Personal Computer/G or
IGX: Reference Information for Picture Interchange
Format manual. See also the IBM 3270 Personal
ComputeriG or /IGX: Supplementary Reference Infor-
mation for Picture Interchange Format manual.

Pictures created at the work station for use under
GDDM should contain only those GDF orders listed in
Appendix D, “GDF order descriptions” on page 165
and should adhere to the restrictions that GDDM places
on their use.

Chapter 9. Picture interchange formatfiles 75

PIF files

The conversion utility removes or changes orders in.

the PIF file that are not accepted by GDDM. In partic-
ular, note that symbol-set definitions are removed by
the GDF conversion utility. For example, if a chart that
uses symbol sets is created under GDDM’s Interactive
Chart Utility (ICU), and is stored using the Print Spool
function, GDDM may use different symbol sets when
the chart is sent to GDDM and displayed at the host.
This is because PIF files created in this way do not ref-
erence the original symbol sets and because the
symbol-set definitions in the PIF file are discarded.

Base PIF

For GDDM Version 2, there is a subset of GDF orders
known as Base PIF. All Base PIF files can be imported
into GDDM.

Restrictions and considerations

To ensure that ADMGDF files convert to Base PIF so
that they can be exported, the following must be borne
in mind:

Creating files

Avoid any GDDM calls involved with:

Multiple-connected areas; for example a ring
Image data

Image symbols

,Loaded marker and pattern sets

Foreground color mixing other than overpaint.

The spool print function

The same restrictions listed above must be observed
when the Spool Print function is used to produce a PIF
file from a picture originally created by a GDDM appli-
cation.

76 Base Programming Reference

The GDDM sample program ADMUSP4

PIF files imported into GDDM cannot be edited directly
by the GDDM sample program ADMUSP4; see
Appendix K, “Sample programs” on page 249.

Composed-page printing

There is no function provided, either in GDDM Base or
GDDM-PGF, for sending ADMGDF files to a composed-
page printer.

ADMUPCYV and ADMUPCT utilities

When using these utilities to create PIF files, avoid gen-
erating files that have a floating-point format.

LCLMODE processing option

Ensure that the LCLMODE processing option is
enabled. This ensures that the maximum amount of
picture detail is present in a PIF file resulting from
Spool Print. In the absence of local mode, GDDM opti-
mizes the data stream (for example, an arc is
expanded into a series of line segments), such that, at
the original scale, a picture is displayed correctly.
However, exporting the resulting PIF file to another
product such as DisplayGraphics, would not give the
intended result.

GGXA file conversion

PIF files created by GGXA that contain pictures drawn
with black lines will not be visible when imported into
GDDM and viewed using a GDDM application, such as
the ICU. They will, however, be plotted and printed
successfully by GDDM.

DisplayGraphics

PIF files created by DisplayGraphics should be drawn
white with black background. They, when imported into
GDDM and viewed using a GDDM application, such as
the ICU, display correctly as a white image on a black
background, and print as black on white background.

PIF files

The structure of a PIF file

A PIF file consists of the GDF orders that are listed and described in Appendix D, “GDF order descriptions” on
page 165. Also, it can contain specific orders from the work station.

The structure of a PIF file created at a work station is as follows:

Table 10. The structure of a PIF file

File Descriptor order

Begin Symbol Set Mapping order

Map Symbol Set Identifier order

One for each identifier

End Symbol Set Mapping order

Begin Line Type Mapping order

Map Line Type Identifier order

End Line Type Mapping order

Begin Picture Prolog order

Set Picture Coordinates order

Set Picture Boundary order

Set Page Color order

“picture default” orders

End Picture Prolog order

Begin Segment order

“segment attribute” orders

End Segment Prolog order

Repeated for each segment of the picture

“drawing” orders

End Segment order

Begin Symbol Set Definition order

See Note 2 below

Load Symbol Set structured field

Continue Symbol Set Definition order

Repeated as needed for multiplane image symbol

Load Symbol Set structured field

sets

End Symbol Set Definition order

Begin Line Type Definition order

Load Line Type structured field

End Line Type Definition order

Notes:

1. Where present, the File Descriptor, Symbol Set
Mapping, Line Type Mapping, Picture Prolog,
Picture Segments, Symbo! Set Definition, and Line
Type Definition orders must be in the sequence
shown.

2. The symbol-set definition orders are repeated for
each internal symbol-set definition.

3. COMMENT and NOOP orders can be placed any-
where in the file except between the Begin Symbol
Set Definition and End Symbol Set Definition
orders, and between the Begin Line Type Definition
and End Line Type Definition orders.

4. The GDDM-supplied conversion utility
(ADMUPCT/V) removes these orders when the PIF
file is converted to GDDM format:

* The Line Type Mapping and Line Type Defi-
nition orders

e The Symbol-Set Definition orders

* The Set Page Color order.

The File Descriptor and Line Type Mapping orders, and
the Set Page Color order, have no corresponding
GDDM GDF orders. The format of these orders is
described in the IBM 3270 Personal Computer/G or
I/GX: Reference Information for Picture Interchange
Format manual.

Chapter 9. Picture interchange format files 77

color-master tables

Chapter 10. Setting up color-master tables

The GDDM page printer support provides the facility for
creating a set of output files that represent the compo-
nents in a subtractive (or additive) color-separation
process.

In this mode, several output files are created for every
picture. Each file represents one of the component
colors and can be used to create the relevant printing
plate.

To allow maximum flexibility, the separation process is
determined by a table, ADMDJCOL, which can be con-
structed using a supplied macro, ADMMCOLT, and an
image pattern set, which can be constructed using the
Image Symbol Editor, ADMISSE.

ADMDJCOL contains multiple instances of the
ADMMCOLT macro, each of which describes the spe-
cific patterns to be used for each GDDM color.

For guidance on composed-page printing and the use of

color-separation masters, see the GDDM Application
Programming Guide, Volume 1.

The ADMMCOLT macro

The syntax of the macro invocation is:

&NAME ADMMCOLT codes, START | END | Pattern codes
SETID=, Set ID
PATTERN=, Pattern set
SETS=, Number of sets defined
COLORS=, Number of colors
MASTERS= Number of masters per color

codes START For initial invocation.

END For final invocation.

(x1,x2,x3,xi,...,xn) For all intermediate

invocations.

Where xi is a 2-digit hex code that iden-
tifies the pattern in the pattern symbol
set to be used by color master i, andn is
the total number of masters.

Name of set (up to 8 characters of the
form ADMnnnnn, where nnnnn is in the
range 00001 through 99999). GDDM sup-
plies seven sets (ADM00001, ADM00002,
ADMO000C03, ADMO(G0004, ADMOO005,
ADMO0006, ADMQ00O07).

Name of pattern symbo! set.

This must be a monochrome image char-
acter set having a cell size of 32 by 32
pixels. GDDM supplies a sample called
ADMDHIPK.

The number of sets defined.

The number of colors defined for this
set.

The number of masters to be created for
this set.

SETID

PATTERN

SETS
COLORS

MASTERS

You may have to contact your systems programmer to
help you install the modified color-master table;
however, first see the GDDM Installation and System
Management manual that applies to the subsystem in
use.

Chapter 10. Setting up color-master tables 79

color-master tables

The ADMDJCOL module

The ADMDJCOL module supplied by iBM provides seven color master tables, as shown below:

ADMDJCOL CSECT

KEKARKAKKKIRRKKEKIAARKIKKKRARK KT KAAKARAARARARARRARAR KRNI AR AR KRR R KR A A dkh Kk

* *
* DESCRIPTIVE NAME: GDDM HIGH-RESOLUTION IMAGE GENERATOR *
* DEFAULT COLOR TABLES :
*

* 5664-200, 5665-356 , 5666-328 *
* (C) COPYRIGHT IBM CORP. 1979, 1986. *
* LICENSED MATERIALS - PROPERTY OF IBM *
* *
* FUNCTION: *
* *
* THIS MODULE GENERATES THE SAMPLE COLOR TABLES FOR THE COLOR *
* SEPARATION PROCESS IN FAMILY-4 DEVICE SUPPORT. *
* *
* ADMDHIPK PATTERN CODES HAVE THE FOLLOWING MEANING: *
K e eemmacccccceemeccecam e e m e e em e e e a— . ne—e - oo *
* CODE X'41' = © % (NO COLOR) *
* CODE X'42' = 160 % (SOLID COLOR) *
* CODE X'43' = 50 % (1ST HALF COLOR) *
* CODE X'44' = 50 % (2ND HALF COLOR) *
* CODE X'45' = 25 % (1ST QUARTER COLOR) *
* CODE X'46' = 25 % (2ND QUARTER COLOR) *
* CODE X'47' = 25 % (3RD QUARTER COLOR) *
* CODE X'48' = 25 % (4TH QUARTER COLOR) *
* *
* ADMDHIPL PATTERN CODES HAVE THE FOLLOWING MEANING: *
K e e ccccctrccecmeec e cccceccccecccccccccceam—— *
* *
* THERE ARE 33 SHADES OF GRAY. THE PATTERN CODES START AT X'41' *
* (NO COLOR) AND FINISH AT X'61' (ALL BLACK). EACH SHADE HAS *
* APPROXIMATELY 3% MORE PIXELS SET ON THAN ITS PREDECESSOR. *
* %*

R R T T T T T L Lt st R Ty e

ADMDJCOL AMODE ANY
ADMDJCOL RMODE ANY
ADMMCOLT START,SETS=7

*
FRRIRRFK KA AR A KKK A R e de s e e e ek ko et e e e e e e
* TABLE 1. SUBTRACTIVE COLORS FOR PRINTERS *
HRRKRIKIRIIIIIIATREIR KA KKK KRR KA AR AR AR R KRRk
*

ADMOOGO1 ADMMCOLT PATTERN=ADMDHIPK,COLORS=10,MASTERS=4,SETID=ADMOGOO1

*
* P

* COLOR MASTER: *1 2 3 4 *
* COLOR SEPS: * YY MM CC BB * (YELLOW, MAGENTA, CYAN, BLACK)
* *

*

DEFAULT ADMMCOLT (41,41,41,42)
BLUE ADMMCOLT (41,43,44,41)
RED ADMMCOLT (43,44,41,41)
PINK ADMMCOLT (41,42,41,41)
GREEN ADMMCOLT (43,41,44,41)
TURQSE ~ ADMMCOLT (41,41,42,41)
YELLOW ADMMCOLT (42,41,41,41)
NEUTRAL ADMMCOLT (41,41,41,42)
BACKGRD ADMMCOLT (41,41,41,41)
ALLBLK ADMMCOLT (42,42,42,42)

80 Base Programming Reference

color-master tables

*
FRKKIIRIRRIAKARRKIRKKKEKRIIAEEREARAARIIA ARSI AR HRERRRRRRARTA RIS IRRRA K
* TABLE 2. ADDITIVE COLORS FOR DISPLAYS *
B R LR S L D T e T e T T T T T e T 2
*

ADMGGOO2 ADMMCOLT PATTERN=ADMDHIPK,COLORS=9,MASTERS=3,SETID=AOMOB002

*
* * *

* COLOR MASTER: *1 2 3 *
* COLOR SEPS: * RR BB GG * (RED, BLUE, GREEN)
* *

*

DEFAULT ADMMCOLT (42,42,42)
BLUE ADMMCOLT (41,42,41)
RED ADMMCOLT (42,41,41)
PINK ADMMCOLT (42,42,41)
GREEN ADMMCOLT (41,41,42)
TURQSE ADMMCOLT (41,42,42)
YELLOW ADMMCOLT (42,41,42)
NEUTRAL ADMMCOLT (42,42,42)
BACKGRD ADMMCOLT (41,41,41)

Chapter 10. Setting up color-master tables 81

color-master tables

*
FREKIKKKAREKKKAIARERERKRKRKARRANKIKARKAAKRRTAKRARRARRRRARARRRARRR KRR A AR AR AR kK

*
* TABLE 3. GENERAL COLOR MASTER TABLE
KEKKKKRKRKRIAKEKRKARRRKKRAR R AR A AAAXRARRRRRRRARARRRRRRARKRAAR RN AR AN hhhhd
*

ADMOGOO3 ADMMCOLT PATTERN=ADMDHIPK,COLORS=256,MASTERS=8,SETID=ADMGECO3

*

* K e ccrccm e e e ———————————— *
* COLOR MASTER: *1 2 3 4 5 6 7 8 *
* COLOR SEPS: * Kk Kk kk Kk Kk Kk AKX Kk *
* * *

*

COLGG ADMMCOLT (41,41,41,41,41,41,41,41)
COLO1 ADMMCOLT (42,41,41,41,41,41,41,41)
COLO2 ADMMCOLT (41,42,41,41,41,41,41,41)
C0LO3 ADMMCOLT (42,42,41,41,41,41,41,41)
COLO4 ADMMCOLT (41,41,42,41,41,41,41,41)
COLO5 ADMMCOLT (42,41,42,41,41,41,41,41)
COLO6 ADMMCOLT (41,42,42,41,41,41,41,41)
COLO7 ADMMCOLT (42,42,42,41,41,41,41,41)
COLG8 ADMMCOLT (41,41,41,42,41,41,41,41)
CoLo9 ADMMCOLT (42,41,41,42,41,41,41,41)
COLOA ADMMCOLT (41,42,41,42,41,41,41,41)
COLOB ADMMCOLT (42,42,41,42,41,41,41,41)
COLBC ADMMCOLT (41,41,42,42,41,41,41,41)
COLGD ADMMCOLT (42,41,42,42,41,41,41,41)
COLOE ADMMCOLT (41,42,42,42,41,41,41,41)
COLOF ADMMCOLT (42,42,42,42,41,41,41,41)
*

The first and last 16 values of a binary progression are shown

.

COLFO ADMMCOLT (41,41,41,41,42,42,42,42)
COLF1 ADMMCOLT (42,41,41,41,42,42,42,42)
COLF2 ADMMCOLT (41,42,41,41,42,42,42,42)
COLF3 ADMMCOLT (42,42,41,41,42,42,42,42)
COLF4 ADMMCOLT (41,41,42,41,42,42,42,42)
COLF5 ADMMCOLT (42,41,42,41,42,42,42,42)
COLF6 ADMMCOLT (41,42,42,41,42,42,42,42)
COLF7 ADMMCOLT (42,42,42,41,42,42,42,42)
COLF8 ADMMCOLT (41,41,41,42,42,42,42,42)
COLF9 ADMMCOLT (42,41,41,42,42,42,42,42)
COLFA ADMMCOLT (41,42,41,42,42,42,42,42)
COLFB ADMMCOLT (42,42,41,42,42,42,42,42)
COLFC ADMMCOLT (41,41,42,42,42,42,42,42)
COLFD ADMMCOLT (42,41,42,42,42,42,42,42)
COLFE ADMMCOLT (41,42,42,42,42,42,42,42)
COLFF ADMMCOLT (42,42,42,42,42,42,42,42)

82 Base Programming Reference

color-master tables

*
KKK KKKRKKKK KRR KKK IRRKIRKRIRARERKAIRARKARERRTRRTRARKA KRR K IKR R Rde Rk e de ok

* TABLE 4. SUBTRACTIVE COLORS FOR PRINTERS WITH CLUSTER PATTERNS *

KAKKKIEKIAKKIIR KK KRR I KKK KA IR AITHARKRARI AR RARRRRRRAARAARRAIRKARRRA KRR
*

ADMOGOO4 ADMMCOLT PATTERN=ADMDHIPL,COLORS=17,MASTERS=1,SETID=ADMB0004

* L *
* * GDDM *
* * COLOR *
* L *
DEFAULT ADMMCOLT (43) 0
BLUE ADMMCOLT (59) 1

RED ADMMCOLT (51) 2
PINK _ADMMCOLT (4A) 3
GREEN ADMMCOLT (55) 4
TURQ ADMMCOLT (4E) 5
YELLOW ADMMCOLT (45) 6
NEUTRAL ADMMCOLT (41) 7
BACKGRD ADMMCOLT (61) 8
DKBLUE ~ ADMMCOLT (59) 9
ORANGE ~ ADMMCOLT (55) 10
PURPLE ADMMCOLT (51) 11
DKGREEN ADMMCOLT (59) 12
TURQSE ~ ADMMCOLT (45) 13
MUSTARD ADMMCOLT (4E) 14
GRAY ADMMCOLT (44) 15
BROWN ADMMCOLT (57) 16

*

KKK IKKKAKXIKRKKA KKK KRIIKRAA KK ERRKRA KK KRR KRR R hRhkkhhrhdhhhhrkdkhhrihhdhhrkr

* TABLE 5. SUBTRACTIVE COLORS FOR PRINTERS WITH CLUSTER PATTERNS *
* (THIS IS THE BVBTSO DEFINITION WITH APPROX 6% BETWEEN SHADES) *

KEKIKKKKIRAKRKRR KA KA AKIRAKKRKKIAKA IR RIERE KRR ARARIRA AR ARRRR R Tk d ok khhdk
*

ADMBOOO5 ADMMCOLT PATTERN=ADMDHIPL,COLORS=17,MASTERS=1,SETID=ABMGOO05

* Koo K K mmnmen *
* * GODM * * PIXELS *
* *COLOR * * &% *
* [S * K mmeeea *
*

DEFAULT ADMMCOLT (42) 0 3.1
BLUE ADMMCOLT (5C) 1 84.3
RED ADMMCOLT (58) 2 71.8
PINK ADMMCOLT (54) 3 59.3
GREEN ADMMCOLT (51) 4 50.0
TURQ ADMMCOLT (47) 5 18.7
YELLOW ADMMCOLT (4C) 6 34.3
NEUTRAL ADMMCOLT (41) 7 00.9
BACKGRD ADMMCOLT (61) 8 160.0
DKBLUE ADMMCOLT (56) 9 65.6
ORANGE ~ ADMMCOLT (4F) 10 43.7
PURPLE ADMMCOLT (4A) 11 28.1
DKGREEN ADMMCOLT (53) 12 56.2
TURQSE ADMMCOLT (45) 13 12.5
MUSTARD ~ADMMCOLT (49) 14 25.0
GRAY ADMMCOLT (43) 15 6.2
BROWN ADMMCOLT (5A) 16 78.1

Chapter 10. Setting up color-master tables 83

color-master tables

*
T L L L T T
* TABLE 6. COLOR TONING SET FOR 38060/3820 PRINTERS *
FRRRKIAKIRRAEEEIRRARERRRRAE AR IRARERRKIAIARERRIRARERRRRERARRRREXRA RN
*

ADMOOOO6 ADMMCOLT PATTERN=ADMDHIPL,COLORS=17,MASTERS=1,SETID=ADMB00G6

* ¥ e *
* * GDDM *
* * COLOR *
* Heecman *
*

DEFAULT ADMMCOLT (61) 0
BLUE ADMMCOLT (5A) 1
RED ADMMCOLT (54) 2
MAGENTA ADMMCOLT (4A) 3
GREEN ADMMCOLT (4F) 4
CYAN ADMMCOLT (46) 5
YELLOW ADMMCOLT (42) 6
NEUTRAL ADMMCOLT (61) 7
BACKGRD ADMMCOLT (41) 8
DKBLUE ADMMCOLT (5D) 9
ORANGE ~ ADMMCOLT (4C) 10
PURPLE ADMMCOLT (51) 11
DKGREEN ADMMCOLT (56) 12
TURQSE ADMMCOLT (47) 13
MUSTARD ~ADMMCOLT (49) 14
GRAY ~ ADMMCOLT (44) 15
BROWN ADMMCOLT (58) 16

*

KRKAKAK KKK ERR AR KK RAAAKR KRR IR AR AR IR TR AN AR R KRR RA TR TR A kR kdkhrkkdkdhkkhd
* TABLE 7. COLOR TONING SET FOR 4250 PRINTER *

TRAREKREARKKREATAAKRKKARRKRK KR IR RAIRAREAARRER KK RRAAR AR RA LR R A AT R hdk
*

ADMOOBO7 ADMMCOLT PATTERN=ADMDHIPL,COLORS=17,MASTERS=1,SETID=ADMOOGO7

* % * *
»
[x]
S
=
*

*

DEFAULT ADMMCOLT (61)
BLUE ADMMCOLT (55)
RED ADMMCOLT (4D)
MAGENTA ADMMCOLT (47)
GREEN ADMMCOLT (49)
CYAN ADMMCOLT (44)
YELLOW ADMMCOLT (42)
NEUTRAL ADMMCOLT (61)
BACKGRD ADMMCOLT (41)
DKBLUE ~ ADMMCOLT (59)
ORANGE ~ ADMMCOLT (48)
PURPLE ADMMCOLT (4B)
DKGREEN ADMMCOLT (4F)
TURQSE ~ ADMMCOLT (45)
MUSTARD ADMMCOLT (46)
GRAY ADMMCOLT (43)
BROWN ADMMCOLT (51)
*

el el el
AUVEHBEWNFHFOWRNOTONPEBWN-=O

ADMMCOLT END
END

84 Base Programming Reference

application data structures

Chapter 11. Application data structure for mapping

The basic purpose of the application data structure is to
define an input/output area for use in transferring data
between your application program and GDDM. You
include the application data structure declaration
created by GDDM-Interactive Map Definition
(GDDM-IMD) in your application to define the layout of
one or more areas of storage. GDDM also keeps a
copy in its own storage of the data area associated with
each mapped field that you define, and it uses its copy
to create the display that the operator sees, and to
record the changes made by the operator.

Your program modifies the GDDM data area by filling in
values in its own area, then passing the area to GDDM
using an MSPUT call. It finds out the values in the
GDDM data area by using an MSGET call, which copies
the GDDM area into the program’s data area. Usually,
MSGET is used so that the program gets access to the
operator’s input, though it can be used at other times;
for example, after MSDFLD, to initialize the program’s
data area to the default values.

When you have finished the GDDM-IMD map-definition
and generation processes, you will not only have one
or more generated mapgroups, but you will also have
an application data structure for each map. The data
structure and the fields that it defines depends on the
selections made during the map-definition process.
Full details of this process are given in the GDDM Inter-
active Map Definition manual.

The application data area can be used for these pur-
poses:

* Most of an application data structure is data fields,
each data field corresponding to a map-defined
display field. You place into the data fields the
character data that you want to be displayed.

* You can position the cursor in a display field by
setting the field's cursor adjunct. By default, the
cursor is placed under the first character of the
field, but you can change this by using the
MSCPOS call before you use MSPUT.

* Selector adjuncts provide additional control over,
and information about, a field's data value. You
can selectively update a field, reset a field to its
map-defined default value, and determine whether
a field has been modified by the operator.

* Length Adjuncts show the length of the data in the
field. If the data in a field is shorter than the map-
defined display field length, GDDM pads the data
with nulls when it displays the field. After operator
input the length adjunct is set to the number of
characters provided by the operator.

* Usually, field attributes are specified for the
various fields on a map during map definition.
However, at run time the application program can
change these attributes by placing attribute values
in attribute adjunct fields in the application data
structure. One or more adjunct fields can be asso-

ciated with a given data field in the application
data structure during map definition. Each attri-
bute adjunct controls a different type of attribute.

* Some devices allow different attributes to be
applied to individual characters in the same field.
Character attributes are controlled using a sepa-
rate copy of the application data area. The data
fields in this copy contain the character attribute
data instead of the normal character data. Each
character in the character attribute data area
determines the attributes of the corresponding
character in the normal application data area.

¢ The application program can be designed to allow
detection (or selection) of fields in a displayed
panel by a light pen or, on some devices, the
Cursor Select (CURSR SEL) key. The type of
detection that occurs is determined by the first
data character in the field; this character is called
a designator character.

* If specified in the map during map definition,
GDDM edits input data entered by the terminal
operator. To process this edited input, you need to
know how GDDM presents it in the application data
structure.

This chapter gives valid settings and explanations of
adjunct fields, character attributes, and designator
characters, and describes the format of edited input. 1t
also describes how to copy the application data struc-
ture into the application program.

Adjunct fields

Each data field in the application data structure may
have associated adjunct fields, depending on the
options selected during the Field Naming step of map
definition. The possible adjunct fields for a data field
are shown below. They appear in the data structure in
the order given, immediately before the data field.

Adjunct Length (bytes)

Selector
Cursor
Base attribute .
Extended highlighting
Color

Programmed symbols (PS)
Validation

Outlining -

Length

NONNONNNON =

The} base attribute, extended highlighting, color, PS,
validation, and outlining adjunct fields shown above are
each subdivided into two one-byte fields. In each case,
the first byte acts as a selector to let GDDM know
whether or not the value held in the second byte is to
be used during program execution.

Chapter 11. Application data structure for mapping 85

application data structures

COBOL example

Suppose that in the Map Characteristics frame (2.1) of
GDDM-IMD, you entered:

PROGRAM LANGUAGE ==> COBOL

Next, suppose that in the Application Structure Review
frame (2.5), you are defining the characteristics of a
data field that you have named SPECNAME. You want
to be able to:

1. Set the cursor in the field under application
program control

2. Have dynamic control of extended highlighting
3. Specify the length of data in the field.

You therefore enter “#HL" in the ADJUNCT column
against the field name.

As a result of this entry, the application data structure
contains, for the field SPECNAME, a cursor adjunct (1
byte), a highlighting adjunct (2 bytes), a length adjunct
(2 bytes), plus the data field itself, whose length is as
defined in the map (say 25 bytes).

GDDM-IMD names the adjunct fields by suffixing the
data field name supplied by the user. So, for example,
the cursor adjunct field is named SPECNAME-CURSOR.

The portion of the application data structure that is gen-
erated for SPECNAME is:

10 SPECNAME-CURSOR PIC X.
10 SPECNAME-HI-SEL PIC X.

10 SPECNAME-HI PIC X.
10 SPECNAME-LENGTH PIC 999 COMP.
10 SPECNAME PIC X(25).

Assembler language example

Assume that instead of entering COBOL as the program
language in the above example, you enter ASM, and, to
comply with Assembler-language length restrictions,
you name the data field SPEC. The generated code
(assuming the other selections were the same as those
given above) is:

SPECCR DS X
SPECHS DS X
SPECH DS X
SPECL DS AL2
SPEC DS XL25

PL/l example

Similarly, if you use PL/l as the program language and
call the data field SPECNAME, the generated code is:

10 SPECNAME_CURSOR CHAR(1),

10 SPECNAME_HI_SEL CHAR(1),

10 SPECNAME_HI CHAR(1),

10 SPECNAME_LENGTH FIXED BIN(15),
10 SPECNAME CHAR(25),

Adjunct field names

The above examples show that GDDM-IMD suffixes the
name you have given to a data field to create unique
names for each adjunct field in the application data
structure. The full set of suffixes that GDDM-IMD uses
for COBOL, Assembier, and PL/I data structures is
shown in Table 11.

Adjunct values

Table 12 on page 87 summarizes valid settings for
adjunct fields. Details are given for each type of
adjunct on the following pages.

The application program sets the values required for a
send request. GDDM sets the values associated with
input data returned for a receive request. On a send
request, each field must contain one of the settings
given for it in Table 12.

Table 11. Adjunct field naming conventions
Adjunct Length COBOL name Assembler name PL/l name
Selector 1 XXX-SEL XXXS XXX_SEL
Cursor 1 XXX-CURSOR XXXCR XXX_CURSOR
Base 1 XXX-ATTR-SEL XXXAS XXXA XXX_ATTR_SEL
attribute 1 XXX-ATTR XXX_ATTR
Extended 1 XXX-HI-SEL XXXHS XXX_HI_SEL
highlighting 1 XXX-HI XXXH XXX_HI
Color 1 XXX-COL-SEL XXXCS XXX_COL_SEL
1 XXX-COL XXXC XXX_COL
PS 1 XXX-PS-SEL XXXPS XXX_PS_SEL
1 XXX-PS XXXP XXX_PS
Validation 1 XXX-VAL-SEL XXXVS XXX_VAL_SEL
1 XXX-VAL XXXV XXX_VAL
Outlining 1 XXX-OUT-SEL XXXO0S XXX_OUT_SEL
1 XXX-OUT XXXO XXX_OuUT
Length 2 XXX-LENGTH XXXL XXX_LENGTH

86 Base Programming Reference

application data structures

Table 12 (Page 1 of 2). Values used in adjunct fields

Adjunct

Value (See Note 1)

Selector

Cnr

MSPUT: Any data value is ignored. The field is unchanged (see
Note 2).

MSGET: Neither the application nor the operator has put a value
in it.

cr

MSPUT: The field contains a value.

MSGET: The field contains a value that the operator has just mod-
ified.

c2

MSPUT: The field is to be reset to its map-defined default value.
The data value is ignored. On a subsequent MSGET, the field
contains its default value and the selector is C‘3".

MSGET: not used.

c¥

MSPUT: The field contains a value. (that is, the same as C‘1').

MSGET: The field contains a value that has not just been modified
by the operator.

Cursor

Cnv

MSPUT: The cursor is not in this field.

MSGET: The cursor is not in this field.

cu1v

MSPUT: The cursor is in this field.

MSGET: The cursor is in this field (set only if map is a cursor
receiver).

The position within the field can be controlled by using the MSCPOS call, and verified by

using the MSQPOS cali.

Attribute Selector
(first byte of
adjunct)

c’ The attribute is unchanged (see Note 2). The attribute byte (the
second byte) is ignored.

c1 Change the attribute to the value in the second byte.

c2 Reset the attribute to the map-defined default value.

c'3 Change the attribute to the value in the second byte (same as

C‘1'). After an MSGET, the attribute selector is set to C'3’ and the
aftribute byte set to the current attribute value.

Attribute Value
(second byte of
attribute adjunct)

Ignored unless the attribute selector is C'1’ or C'3’. Otherwise, the valid value depends
on the attribute type, as follows:

c’ Default for all attributes.
X'00'

Base attribute A valid 3270 attri- These values are defined mnemonically in ADMUAIMC (Assem-
bute if used bler), ADMUCIMC (COBOL), and ADMUPIMC (PL/1).

For example:

c’ Unprotected

CH' Unprotected, intensified
c’ Protected

cy’ Protected, Intensified
c'o Autoskip

B'XX....0. ' Ignored (set by GDDM)
B..1..... ' Protected

B'..0..... ' Unprotected
B‘...0...." Alphanumeric
B'..0l...." Unprotected numeric
B'..11...." Autoskip

B‘....00.." Normal

B'....01.. Selectable

B‘....10.." Intensified selectabie
B‘....11.." Nondisplay

B'...... x." Ignored (set by GDDM)
B'.evvv... 1' Modified data tag set
B'....... 0' Modified data tag not set

Chapter 11. Application data structure for mapping 87

application data structures

Table 12 (Page 2 of 2). Values used in adjunct fields

Adjunct Value (See Note 1) Meaning
Extended high- c’ No extended highlighting.
lighting attribute c' Blinking.
c2 Reverse video.
c'4 Underscore.
Color attribute c’ Default.
c1 Blue.
c'2 Red.
c'3 Magenta (pink).
c'4 Green.
c's’ Turquoise (cyan).
c'e’ Yellow.
c'7 White/Neutral.
PS attribute c’ Default character set.
X'41’-X‘DF’ PS code of any symbol set specified in PS Set Management in
GDDM-IMD, or loaded using PSDSS, PSLSS, or PSLSSC.
Validation attribute c’ No validation.
X'00’ No validation.
x‘'o1’ Trigger.
X'02' Mandatory enter.
X‘04’ Mandatory fill.

These values can be ORed together to give two or more validation attributes to the same
field. For example, specify X'03’ to give a field the mandatory enter and trigger attributes

(X‘02’ OR X‘'01’=X'03").

Outlining attribute

c'’ No outlining.

X‘00’ No outlining.

X'01’ Underline.

X'02' Vertical line on right.
X'04’ Overline.

X'08’ Vertical line on left.

These values can be ORed together to give two or more outlining attributes to the same
field. For example, specify X'03’ to give a field with underlining and a vertical line on the
right (X'02’ OR X'01’=X'03’).

Length

Binary value

I Length, in characters, of the data.

Notes:

1. In Table 12 on page 87, “C" indicates character data type, “X" indicates hexadecimal, and “B" indicates bit.

2. On an MSPUT call with option 0 (“WRITE"), all fields and attributes are reset to their map-defined default
value, before the application data area is processed. Therefore, an attribute selector or field selector of C* '
has the net effect of resetting the value to default, when used on an MSPUT call with option 0, or of leaving
the value unchanged, when used on an MSPUT call with option other than zero.

88 Base Programming Reference

Selector adjunct

The selector adjunct provides additional control over
an individual field in the application data structure, and
shows, after an MSGET, whether the data field has just
been modified by the operator.

The control function is most useful when using MSPUT
with option 1 (REWRITE) or 2 (REJECT), particularly if
the application program does not maintain a complete
copy of the application data area. A partially com-
pleted application structure can be used. Fields whose
selector is blank are ignored and so need not be set by
the application. Their value is unchanged. Fields
whose selector is C'1’ or C'3’ are processed by placing
the current data value in GDDM'’s copy of the data area
with the value from the program’s data area.

Note: Fields that do not have a selector are always
processed.

The control function can also be used to set a field to its
map-defined default value. This is the constant text
placed into the field during GDDM-IMD’s Field Defi-
nition or Field Initialization steps. This is the value of
the field immediately after a mapped field is defined by
MSDFLD. Note that if the field has no selector, any
MSPUT call replaces this default value with the value
from the application data area (even if the field is all
btanks). If the field has a selector adjunct, its value can
be reset to the map-defined default value by specifying
a selector of C'2' on any MSPUT call.

Notes:

1. The map-defined default character attributes are
always “default.” GDDM-IMD does not support
character attributes.

2. An MSPUT with option 0 (WRITE) sets all fields
(attributes and so on) back to their default value
before processing the application data area.

When a selector value of C'2’ is specified, GDDM con-
verts it into C'3’, and places the default field value into
the data field in GDDM's copy of the data area so that
the program can access it using MSGET. (The
program's data area is not modified during an MSPUT.)

After an MSGET, a selector adjunct shows whether the
field has just been modified by the operator. A value of
C'1’ shows that the field has been modified by one of
these events:

¢ The operator has typed into the field

¢ The operator has selected the field with a light-pen
(if the field is selectable)

¢ The field has been set by AID translation.

Note: “Modified” includes the degenerate case of the
operator modifying the field back to its original value.

Usually, modification indicators are reset when the
operator is next given an opportunity to enter data (for
example, an ASREAD). Your program can avoid this
resetting by issuing an MSPUT call with option 2
(REJECT) on any map within the page, before the
ASREAD call.

application data structures

Cursor adjunct

The cursor adjunct is used to set the cursor in a field
dynamically (thus overriding any static cursor setting
specified in the map), and to show whether the cursor
was left in a field on input.

Static setting of the cursor is specified in the Field Attri-
bute Definition step of GDDM-IMD; for detalils, see the
GDDM Interactive Map Definition manual.

To set the cursor in a field dynamically, the application
program sets the associated cursor adjunct to 1. This
causes the cursor to be placed in the field when the
field is displayed. By default, the cursor is placed
under the first character of the field. To position the
cursor elsewhere, use the MSCPOS call to specify the
position, just before issuing the MSPUT call. The posi-
tion is a number between 0 and the length of the field,
thus:

0 Means “under the attribute byte”
1 Means “under the first character”
2 Means “under the second character” and so on.

When the position specified is greater than the length of
the field, GDDM places the cursor under the last char-
acter in the field.

GDDM places the cursor at the last dynamic setting it
meets for a page. In the absence of any dynamic set-
tings, GDDM places the cursor at the first static setting.

To determine the position of the cursor on input, the
map must have been defined as a cursor-receiver map
in the Map Characteristics step of map definition. If the
map has been so defined, GDDM sets the cursor
adjunct of the field in which the cursor lies to C'1’ when
the field has a cursor adjunct. The position of the
cursor within the field can be found using the MSQPOS
call after the MSGET call.

Note: The “cursor-receiver” map characteristic is pro-
vided so that applications that use cursor adjuncts only
for output cursor control do not have to search for, and
turn off, cursor adjuncts after an MSGET call. If the
cursor adjuncts were left on, GDDM might misinterpret
the application’s intention when the application data
area is next used in an MSPUT call.

Attribute adjuncts

An Attribute adjunct is used to change the attribute of a
field from its map-defined default vaiue. There are
several types of attribute adjuncts; one “base” attribute
that controls a compound set of basic field properties,
and one attribute type for each of a set of “extended”
properties.

Each attribute adjunct field consists of two subfields; an
attribute selector byte, and an attribute value byte. The
valid values for the attribute selector are the same for
all attribute adjuncts (and the same as those for a Field
Selector):

C* ' Ignore the value provided. Leave the attribute at
its current value. If the mapped field has just
been defined, or if the operator is an MSPUT with
option 0 (WRITE), the current value is the map-
defined value. Otherwise, the value is that set by
previous MSPUT operations.

Chapter 11. Application data structure for mapping 89

application data structures

C'1’ Change the attribute to that specified in the attri-
bute adjunct.

C'2’ Reset the attribute to the map-defined value.

C'3’ Change the attribute to that specified in the attri-
bute adjunct (that is, the same as C‘1'). After an
MSGET, all attribute adjunct selectors are set to
C'3’, and the attribute value byte is set to the
current attribute value.

The second byte of an attribute adjunct is the value to
be used (for selector value C‘1’ and C'3'). The range of
valid values is dependent on the attribute type.

GDDM provides, as part of GDDM-IMD, a set of declara-
tions in Assembler, COBOL, and PL/I, for the values
that can be used in attribute adjuncts. These are in the
files ADMUAIMC (Assembler), ADMUCIMC (COBOL)
and ADMUPIMC (PL/I) in the GDDM Sample Library.

Note that ali attribute adjunct types can be used on all
devices supported by GDDM for mapping, but they have
no effect on the presentation if the device does not
support the corresponding function.

Base attribute adjunct

Base attributes are the basic (as opposed to extended)
field attributes that are supported by all display devices
supported by GDDM. They can be specified for indi-
vidual fields on a map during map definition and reset
during program execution by base-attribute adjuncts.
They include:

Protected/unprotected/autoskip
intensified-display/normal-display/nondisplay
Detectable/nondetectable

MDT bit on/off

Alphanumeric/numeric.

The attribute adjunct value byte can contain any valid
IBM 3270 basic attribute code. GDDM sets the
reserved and meaningless bits of the attribute cor-
rectly, so all one-byte values are accepted.

The base attribute adjunct value byte completely speci-
fies the combination of base attributes to be used for
the field on the device. It is not merged in any way with
previous base-attribute specifications for the field, or
with the value specified in the associated map.

Extended highlighting adjunct

The extended highlighting adjunct can be used by the
application program to override any extended high-
lighting attribute defined for a field in the map.
Extended highlighting is available only on specific
devices, and can be used in addition to the
intensification control of the base attribute. It lets you
specify whether a field should blink, be underscored, or
be displayed in reverse video.

Possible settings in the attribute adjunct value byte are
as shown in Table 12 on page 87.

90 Base Programming Reference

Color adjunct

Possible settings in the attribute adjunct value byte are
again as shown in Table 12.

Note that this adjunct cannot be used to control color
on devices whose color is determined by means other
than the color extended attribute. For example, it can
be used to control color on seven-color display
devices, but not on four-color display devices.

Programmed symbols adjunct

The programmed symbols (PS) adjunct lets you specify
that the special characters and symbols defined in a
given symbol set apply for the field associated with the
PS adjunct in the application data structure. You can
define your own symbol sets using the Image Symbol
Editor, as described in the GDDM Image Symbol Editor
manual. You can aiso use the predefined symbol sets
supplied by IBM.

Your application program can use characters from a
particular symbol set only if that symbol set is loaded
into a PS store in the device. A symbol set can be
loaded when defining a mapgroup containing maps that
use symbol sets. You can specify that the symbol sets
are to be loaded automatically by GDDM when a
MSPCRT request naming the mapgroup is issued; for
more details, see the GDDM Interactive Map Definition
manual. Symbol sets loaded in this way are available
to the application program for the life of the page.

The required symbol set is identified by the PS code (or
PSID), which is a single-character identifier in the
range X'41' through X'DF', designated by you or your
installation. The PS code is designated when the
mapgroup is defined, if GDDM is to handle symbol-set
loading, or during the loading operation, if your appli-
cation program or your installation is handling
symbol-set loading directly.

Validation adjunct

The validation attribute is supported only by the
IBM 8775 Display Terminal (with the appropriate
feature). On all other devices it is ignored.

Possible settings in the attribute adjunct value byte are
as shown in Table 12. The IBM 8775 handles operator
input according to the validation attribute, as foliows:

1 Mandatory Enter Attribute

If the operator tries to transmit data (for example,
by pressing the ENTER key) while there is a man-
datory enter field that has not had data entered into
it, the transmission fails and input is inhibited. The
cursor is repositioned to the start of the first empty
mandatory enter field. The operator can proceed
by pressing the RESET key. Then, the operator
can either enter data in the mandatory enter field,
or use the ERASE EOF or Error Override key to set
the MDT. For the Error Override key, an error
value (X'3F') is returned to the application
program in the mandatory enter field.

2 Mandatory Fill Attribute

If data is entered into a mandatory fill field, the
field must be completely filled before the cursor
can be moved out of it. If an attempt is made to
move the cursor out of the field before it has been
filled, further input is inhibited.

The operator can proceed by pressing the RESET
key, and completing the entry of data into the man-
datory fill field. Or, the Error Override key can be
used to fill the field with error values (X'3F')
before continuing.

3 Trigger Fill Attribute

The trigger field attribute enables the application
program to receive data entered into a particular
field as soon as the data entry for that field is com-
plete and the cursor leaves the field. The operator
can continue keying data while the trigger field is
being checked, but the data entered is placed on a
queue in the device (and is not displayed).

Cursor exit from a modified trigger field causes the
inbound transmission of this single field with a
“trigger” AID. The application can access the
trigger field data in the usual way using MSGET.

The application program must then decide whether
to accept the trigger field (and hence the
operator's queued keystrokes) by issuing a posi-
tive acknowledgment, or to reject the field (and
lose the operator’'s queued keystrokes) by issuing
a negative acknowledgment.

A positive acknowledgment is generated by issuing
an MSPUT call specifying that the keyboard is to be
unlocked. By default, this is true of options 0
(WRITE) and 1 (REWRITE).

A negative acknowledgment is generated by
issuing an MSPUT call specifying that the keyboard
is to remain locked. By default, this is true of
option 2 (REJECT).

Note: The relationship between the MSPUT option
and locking the keyboard is defined in
GDDM-IMD's Map Characteristics step.

Field outlining

Outlining is only available on specific devices; if the
device does not support outlining the adjunct is
ignored. Possible settings in the attribute adjunct byte
are shown in Table 12 on page 87.

Length adjunct

The length adjunct is a two-byte field that can contain
values in the range-0 through the length of the field. It
indicates the length of the data in the data field. GDDM
treats a value greater than the field length as if it were
equal to the field length.

When a field is displayed, GDDM pads the data with
nulls, from the length specified in the length adjunct, to
the length of the display field.

After the operator modifies a field, the length adjunct
specifies the number of bytes of data placed in this field
by the input operation.

If right-hand justification has been specified for the field
during map definition, the length adjunct is set on input
to the length of the field in the application data struc-
ture. If left-hand justification has been specified, the
length adjunct is set to the number of characters in the
field up to the first padding character.

application data structures

Character attributes

Highlighting, color, and PS attributes can be specified
for individual characters within a field. Usually, char-
acter attributes are used to emphasize a particular
character string in a field.

Note: GDDM supports character attributes in mapped
variable fields, but not in constant or initial values held
in the map.

To control any type of character attribute, the program
needs an additional application data area. This area
has the same structure as the usual application data
area (including adjunct fields), but the data fields are
interpreted as character attributes rather than char-
acter data.

To declare several data areas using the same struc-
ture, you can use an array of structures or (in PL/I) the
LIKE attribute.

coBOL

01 ALLAREAS.
02 DATA-AREA OCCURS 3 TIMES.
COPY MAP.

PL/

Declare
1 DATA_AREA,
%INCLUDE MAP;
Declare
1 COLOR_AREA LIKE DATA_AREA;

In the former case, the individual application areas
(and fields and adjuncts within them) can be referred to
using an array index. In the second case, they can be
referenced using name qualification
(DATA_AREA.FIELD1, COLOR_AREA.FIELD1, and so
on).

The character attribute data areas are filled in the
same way as are the usual application data areas,
except that the data fields contain characters repres-
enting attributes. For example:

DATA_AREA.FIELD1 ='data value';
COLOR_AREA.FIELD1='1111111121";

Adjunct fields in the character attribute application data
area have the same meaning as in the normal data
area. Selector and Length adjuncts apply to the char-
acter attribute data field.

Each application data area is passed to GDDM with a
separate MSPUT call. The character attribute type is
specified as an option on MSPUT. The character attri-
butes should be MSPUT after the data values, because
changing the data value of any field automatically
resets the character attributes of the field to the default
value (C' ’). Also, an MSPUT with option 0 (WRITE)
resets all the character attributes of all fields in the
map to default.

The allowable attribute types and attribute values are
listed in Table 3 92. GDDM checks attribute types and
does not transmit those that the device does not
support. Invalid attribute values are rejected.

Chapter 11. Application data structure for mapping 91

application data structures

Table 13. Character attribute types and values

Type Value Meaning
All X'00’ Default. Take the attri-
c’ bute value from field’s
attribute.
Extended c'1’ Blinking
highlighting c2 Reverse video
c4 Underscore
Color cr Blue
c2 Red
cy Magenta (pink)
c'4 Green
c's’ Turquoise (cyan)
c'e’ Yellow
cr White/Neutral
Programmed X'41° PS code. Note that a
symbols through | symbol-set must be
X'DF' loaded before any ref-
erence to it is made.
See “Programmed
symbols adjunct”.

Note: In the above table, “C" indicates character

data type, and “X" indicates hexadecimal.

Setting character attributes from the
terminal

If the application program uses the ASMODE call and
an appropriate keyboard is in use, the terminal oper-
ator can set the attributes of data characters entered
from the terminal. The program can read these attri-
butes using MSGET with the correct option.

The procedure for setting character attributes from the
terminal can be found in the appropriate terminal
operator's guide.

Designator characters for light-pen
or cursor selection

You specify that a field can be selected by a light pen,
or, on some terminals, the CURSR SEL key, by giving it
a “detectable” attribute at map-definition time. The
“detectable” attribute can be defined for a field using
GDDM-IMD’s Field Attribute Definition step, and can be
controlled dynamically using the base attribute adjunct.

However, the type of selection that occurs on using the
light pen is determined by the first character (the desig-
nator character) in the data field. You must set the
required designator character in the first byte of the
data field. If the field contains constant data, the desig-
nator character is set in the map; otherwise, it is set in
the application data structure. When the field is dis-
played, the designator character appears on the screen
along with the rest of the data in the field.

A field having a “detectable” attribute but not starting
with a valid designator character is not selectable.

The types of selection that can be set are:

1. Delayed detection. When selected by the operator,
the field is marked as “modified” but nothing is

92 Base Programming Reference

transmitted until the operator performs another
action associated with field modification (such as
selecting an “immediate detection” field or
pressing ENTER). The designator character for
this type of field is “?" (X'6F'). If the field is
detected, the designator character changes to “>"
(X'6E'); another detection restores it to “?" and
cancels the modification indication.

2. Immediate detection without data. The designator
character is a blank (X'40'). Selection of this type
of field causes immediate input transmission. No
data from any of the fields is transmitted, however.
The effect is thus:

a. The ASREAD (or MSREAD) returns an Atten-
tion Type of 2 indicating light-pen selection.

b. If the application issues an MSGET, any field
that was modified or delay-detected has its
selector set to C*1’; its data value, however, is
unchanged even if the operator typed into the
field.

c. GDDM restores all display fields to their ori-
ginal value at the next FSFRCE, ASREAD, or
GSREAD.

3. Immediate detection with data. (Not possible with
the IBM 3277 Display Terminal). The designator
character is “&”" (X'50'). The effect is the same as
pressing ENTER.

For more details of the mechanics of light-pen detection
and the use of designator characters, refer to the
appropriate component description manual.

Map-defined input editing

Using GDDM-IMD’s Field Naming or Application Data
Structure Review steps, you can specify that the fol-
lowing transformations are to be performed automat-
ically by GDDM on input data passed to the application
program. The transformations are specified for indi-
vidual fields.

* Folding: translation to uppercase of all alphabetic
input entered into the field.

¢ Justification and padding: right- or left-alignment
and padding of data entered into the field.

¢ Attention identifier translation: translation of the
AlID associated with the input transmission into a
predetermined character string.

For details of how to specify these transformations on a
map, see the Application Data Structure Review step of
GDDM-IMD in the GDDM Interactive Map Definition
manual. The information given in the remainder of this
section relates to the application program's view of the
transformed fields returned in response to a receive
request.

Notes:

1. The transformations take place on input from the
operator, for receipt by the application on an
MSGET. Data that is placed into the application
data area by the application’s MSPUT and map-
defined default data is not transformed, even
though it may be read back using MSGET.

The effect of the transformations is not imme-
diately visible to the operator. However, if the
application does not modify the field, delete the
mapped field, or delete the page, the transformed
data is displayed to the operator on the next
ASREAD, FSFRCE, or GSREAD call.

2. If more than one of these transformations have
been specified for a given field, processing is done
in this order:

a. AID translation
b. Folding
c. Justification and padding.

AID translation

At map definition time, you can associate an AID trans-
lation table with an input field on a map. This field is
called an “AlD receiver” field.

The translation table is set up during map definition. It
defines character strings for the various terminal func-
tion keys (and the light pen, trigger fields, operator ID
card reader, and magnetic slot reader, if required).

When the operator uses the corresponding key, GDDM
places the corresponding character string into the des-
ignated field.

AID translation is not restricted to a single field on the
map. You can associate several fields with the same
or different translation tables and thus receive different
character strings in the fields on input.

AlIDs can be specified as “do not translate,” in which
case, the existing field value remains unchanged. For
AlDs not explicitly named in the table, a default trans-
lation value can be specified; on the other hand, these
AlDs can be specified as “do not translate.”

An AID receiver field can have a corresponding display
field, although this is not mandatory. If the receiver
field has a corresponding unprotected display field,
operator input into that field is overwritten by the trans-
lated AID value unless the operator uses an interrupt
key that is designated (explicitly or implicitly) “do not
translate.”

Folding

When specified, folding always occurs irrespective of
what other attributes have been specified for the field.

The folding transformation uses the Lowercase-to-
Uppercase Translation Table in the GDDM Alphanu-
merics Defaults Table (ADMDATRN).

Justification and padding

During map definition, you can specify that a field
should be right-justified, left-justified or not justified,
and, if you want, that it should be padded with a partic-
ular character. If you do not specify a padding char-
acter, defaults are used; that is, character zero for
right-justified fields, blank for left-justified fields.

application data structures

For right-justified fields:

1. The rightmost significant (that is, nonblank,
nonnull) character is aligned with the rightmost
boundary of the field in the application data struc-
ture. Leading blanks or nulls are then changed to
the padding character.

2. The length adjunct (if one was specified for the
field) is set to the application data structure field
length.

For left-justified fields:

1. The leftmost significant (that is, nonblank, nonnull)
character is aligned with the leftmost boundary of
the field in the application data structure. Trailing
padding characters are then added to fill the field.

2. The length adjunct (if one was specified) is set to
the number of characters in the field up to the first
padding character.

For fields for which no justification is specified, the
input data is left unchanged (that is, leading and trailing
blanks are not removed), and the rest of the field is
filled with blanks. The length adjunct, if specified, is
set to the number of characters (including leading and
trailing blanks) entered by the terminal operator.

If the input data is longer than the field in the applica-
tion data structure, it is truncated on the right, irrespec-
tive of any justification specification, before leading and
trailing blanks are suppressed, and a warning message
is issued when MSGET is used on the map.

Copying the application data
structure into the program

When you have finished the map definition and gener-
ation processes, you will have an application data
structure for each map, each having the same name as
the associated map. You can copy these application
data structures into your application program, if it is a
COBOL or PL/1 program.

For an Assembler program, you must include macro
instructions in your program having the same names
as the maps. These expand into DSECTs at assembly
time.

An example showing the code that might be used for a
COBOL program is given below. For illustration,
assume that there is a page that is constructed from
three separate maps named HEADER, DATAREC, and
TRAILER. The maps belong to a mapgroup called
MAPGRP.

01 HEADER.

COPY HEADER.
01 DATAREC.

COPY DATAREC.
01 TRAILER.

COPY TRAILER.

Chapter 11. Application data structure for mapping 93

application data structures

Note: As part of the application structure declaration,
GDDM-IMD generates a declaration of a variable with
name “mapname-ASLENGTH" (COBOL)
“mapname_ASLENGTH" (PL/I) that is initialized with
the length, in bytes, of the application structure. This
variable can be used as the length parameter in
MSPUT and MSGET callis.

Overlaying application data areas

Sometimes, for programming reasons such as con-
serving storage, it is convenient to overlay the storage
used by one of several application data structures.
Generally, the structures are not the same length. In
this situation, COBOL requires that the longest record
description occurs first. To avoid needing to know in
advance which record is the longest, you can specify

LARGE STRUCTURE ===> YES

in frame 3.0 of the generation step of GDDM-IMD. This
causes GDDM-IMD to generate an additional structure
in a file with the same name as the mapgroup con-
taining a single data item of length equal to that of the
largest record.

The following code in the relevant section of the
COBOL program then creates the necessary overlaid
record descriptions:

01 MAPGRP.
COPY MAPGRP.

01 HEADER REDEFINES MAPGRP.
COPY HEADER.

01 DATAREC REDEFINES MAPGRP.
COPY DATAREC.

01 TRAILER REDEFINES MAPGRP.
COPY TRAILER.

COBOL also has the restriction on the placement of
declarations using REDEFINES. To satisfy this
restriction GDDM-IMD does not generate variables ini-
tialized to the application structure length, if you
request

LARGE STRUCTURE=YES

Note: If one of the maps has a name that is the same
as the mapgroup name, the application data structure
for that map is expanded by a dummy data item (if nec-
essary) to make it as long as the longest application
data structure.

Double-byte character string fields

Double-byte character strings (DBCS) fields are spe-
cially treated in some cases. (Double-byte character
string fields are used for Kanji and Hangeul applica-
tions).

A field can be designated as DBCS by using
GDDM-IMD's Field Definition steps, or Field Attribute
Definition steps, or both of these.

A field can also be changed to or from DBCS by using a
PS attribute adjunct and specifying a value of X'F8'
(C'8’) for DBCS, or C* ’ (or any other valid value) for
EBCDIC.

94 Base Programming Reference

However, the special treatment of length adjuncts and
cursor positioning provided for DBCS fields depends
only on how the fields were defined to GDDM-IMD.
Dynamically changing a field to or from DBCS does not
change this treatment.

The special treatment is:

Length adjuncts

If a field is designated at map definition time as a DBCS
field, the field's length adjunct is always interpreted as
several two-byte characters. Hence, the length of the
data in bytes is twice the value of the length adjunct.

Cursor position

If a field is designated at map definition time as a DBCS
field, the cursor position specified by MSCPOS and
returned by MSQPOS is interpreted as several two-byte
characters. Hence, the position within the field in bytes
is twice the value specified (minus 1).

Mixed double-byte and single-byte
character fields in maps

Some Asian languages, including Chinese, Kanji, and
Hangeul are displayed and printed using double-byte
character sets (DBCS), which means that each char-
acter is represented by two bytes. European lan-
guages use Latin single-byte character sets (SBCS).
The IBM 5550 Multistation and Personal System/55
work stations will display and print both SBCS and
DBCS characters.

Sometimes, the two types need to be mixed in a single
alphanumeric field. The 5550 and Personal System/55
allow this.

The internal representation of mixed character strings
makes use of shift-out (SO) and shift-in (Sl) control
characters, X'OE' and X'OF', to indicate the start and
end of a DBCS substring.

There are two ways of displaying mixed character
strings, called mixed-with-position and mixed-without-
position. The display method to be used is specified in
the map definition for each field.

* “Mixed-with-position

The SO/SI codes occupy one character position
each, and are displayed as either a blank or a
special character — the terminal user can select
which.

* Mixed-without-position.

The SO/SI codes do not occupy a character posi-
tion on the screen.

The initial input mode of the work stations is SBCS. To
enter DBCS characters, the operator presses a special
shift key to change the mode. After entering the DBCS
string, pressing another shift key returns the terminal
to SBCS mode, so further single-byte characters can be
entered.

GDDM-supplied mapping constants

This section lists the contents of the GDDM-supplied
declarations that contain mapping constants. By
including these declarations in your program, you can
simplify the setting of the second byte of attribute
adjuncts by using a mnemonic name rather than a bit
value.

application data structures

The declarations contain mnemonically-named vari-
ables for every attribute, and for combinations of attri-
butes. The variables are initialized to the bit patterns
required in the 3270 attribute bytes.

The method of including the declarations in your

program varies according to the subsystem and pro-
gramming {anguage that are being used.

Chapter 11. Application data structure for mapping 95

application data structures

Assembler mapping constants table — ADMUAIMC

HdeRkdekdede etk RA KK KKK IAKIRKIdhK ke hdhdhdhkidhdkhhihhhdhdhidkhikiiri

* TABLE NAME: ADMUAIMC

*

* ADMUAIMC: GDDM ASSEMBLER DECLARATIONS FOR MAPPING CONSTANTS
*

5668-801

(C) COPYRIGHT IBM CORP. 1979, 1986.
LICENSED MATERIALS - PROPERTY OF IBM

FUNCTION:

THIS TABLE DECLARES ASSEMBLER EQUATES FOR THE
SPECIAL VALUES USED BY GDDM MAPPING.

* % ok F ¥ ¥ % X ¥ * ¥ ¥ ¥

* % * % * ¥ % * *

e e 3¢ e e e e ¢ o e e ke e e e e dde e e d ok ek e o o e e e o e de e gk e de e e e e de e ke ek de e de ek de e e e e ek ek e

* MSPUT AND MSGET OPTIONS. *
RRFAAA AR AR AR KA AR AR RIS A de ek A e ke ok e ok
WRITE EQU
REWRITE EQU
REJECT EQU
HIGHLITE EQU
COLOR EQU
PS EQU
*

CPWwN—=O

dedededededededkdededededed e de sk ek dedkdedede e dedke e dede ke ok de ek ke ke de ok de ek kkkkdkkdkkkkkdkkkk

* DATA AND ATTRIBUTE SELECTOR VALUES *
F KA ok ok ok ek A e ek ok ok ok o de e ek ko ek
IGNORE EQU C''

EXPLICIT EQU C'1®

SELECTED EQU C'1'

MAPDEFND EQU C'2'

OLDVALUE EQU C'3'

*

Fehkkhkdhh Rk hhhhkhhhhRRARRkhhkrkhhhhkhkhkhdkhhkkkkhhhkkhrrrhhidhhhkhiiik

* CURSOR SELECTOR VALUES *

Kkdkhkdkhhkhhkhhkkhhkhkhhkhhhhhhhkhhhkhhkhkhhhkkhkhhkhhkhhkdhkrkdhhdkdhhkdhiiiiik

CURSED EQU C'l'
*

L S S L st
* BASE (3270) ATTRIBUTE VALUES *
Fedede e e dede o de Ao de e et A Aok A A e ks ok ek A
*

* UNPROTECTED,NO MDT BIT.
DEFAULT EQU C''
DETECTBL EQU C'D'
BRIGHT EQU C'H'
DARK EQU C'<
NUMERIC EQU C'&&’
NUMDTCT EQU C'M!
NUMBRT EQU C'Q'
NUMDARK EQU C'*'

*

* PROTECTED,NO MDT BIT.
PROTECT EQU C'-'
PRTDTCT EQU C'U’
PRTBRT EQU C'Y'
PRTDARK EQU C'%'
AUTOSKIP EQU C'0'
SKPDTCT EQU C'4’
SKPBRT EQU C'8'
SKPDARK EQU C'e’

*

* UNPROTECTED,MDT BIT.
MDT EQU C'A'
DTCTMDT EQU C'E’
BRTMDT EQU C'I'
DARKMDT EQU C'('
NUMMDT EQU C'J°
NUMDTMDT EQU C'N'

96 Base Programming Reference

NUMBRMDT EQU C'R'
NUMDKMDT EQU C')'
*

* PROTECTED,MDT BIT.
PRTMDT EQU C'/'
PRTDTMDT EQU C'V'
PRTBRMDT EQU C'Z'
PRTDKMDT EQU C' '
SKPMDT EQU C'T
SKPDTMDT EQU C'S
SKPBRMDT EQU C'9'
SKPDKMDT EQU C'''"
*

KEKKKKKKRKRKIRAR KK IIRTTIKKKKKKK KKK R h At R KRk gk d kg i g sk fododedod & deode ok ok dede

* HIGHLIGHTING ATTRIBUTE VALUES *
dekdedekddkhkdhkhkhhhkhkhkkhkkkhkhhkhkhkhkkhkhkrkdhhhddkhhkhiridiihhihikikkkkkk
NOHIGH EQU X'09'

BLINK EQU C'l'

RVIDEO EQU C'2'

USCORE EQU C'4'

*

KhRIKIARKREATIAKRKKAKKKIIKKRKKIAKKAK AT IRKRRAKAKXARKKKARR KRR RR IR A Ak Rk

* COLOR ATTRIBUTE VALUES *
KREKKKRRIEREREKEKRAKAKRERAAKR KT LA AT AR RRR TR AT Rk hTh R b kR Tk hdhhdkhd
MONO EQU X'60'
BLUE EQU X'F1'
RED EQU X'F2'
PINK EQU X'F3'

MAGENTA EQU PINK

GREEN EQU X'F4'

TURQ EQU X'F5' TURQUOISE
CYAN EQU TURQ

YELLOW EQU X'F6'

WHITE EQU X'F7'

*

e de de e e e de K e e Kk A d e e e o e ok ko ok e e ok e e e e o e e ok ke ok e e ok o e e e de o e ok ok ke e e e e e e

* VALIDATION ATTRIBUTE VALUES *
KKAKKKKATKREKAKRRKKKARKRAKKERRKAKKKKAKRKERRAAKRRK ARk AR R Ak khhkkkkhik
NOVALIDN EQU X'60'

TRIGGER EQU X'O1'

ENTER EQU X'02'

TREEN EQU X'03' TRIGGER AND ENTER

FILL EQU X'04'

TRGFL EQU X'@5' TRIGGER AND FILL

ENGFL EQU X'86' ENTER AND FILL

TRGENGFL EQU X'07' TRIGGER AND ENTER AND FILL

B

application data structures

Chapter 11. Application data structure for mapping 97

application data structures

COBOL mapping constants table — ADMUCIMC

Khkdkkhkhhkhdhhkhkhkhkhhkhkkhhihhhihkhkhhhikhkhdkkrhikhkhikiihdkddhikik

* TABLE NAME: ADMUCIMC
*
* ADMUCIMC: GDDM COBOL DECLARATIONS FOR MAPPING CONSTANTS

*

5668-801

(C) COPYRIGHT IBM CORP. 1979, 1986
LICENSED MATERIALS - PROPERTY OF IBM

FUNCTION:

THIS TABLE DECLARES COBOL VARIABLES INITIALIZED TO THE
SPECIAL VALUES USED BY GDOM MAPPING.

¥ % % % % % % % * * F * *

* F F ¥ ¥ * % % *

AR ARFhhhhhhhkhdhkdkhkhhkhhkdhkhhhhdhdddkhhhihhhkhkkrikhhkkhhkikdkkhkddkdkhhkkd

01 ADMMAP.

dhhkhkhkhhrhhhhhhkkkhhkhkhhkhkhhdhdhhhhhhhkhkkkrkhkrkhhkhkdkdkkhhkkkkdhhrhr

* MSPUT AND MSGET OPTIONS. *
B L e e
10 WRITE-OPERATION PIC 9(8) COMP VALUE IS 0.

10 REWRITE-OPERATION PIC 9(8) COMP VALUE IS 1.

10 REJECT-OPERATION PIC 9(8) COMP VALUE IS 2.

10 HILIGHT PIC 9(8) COMP VALUE IS 3.

16 COLOR PIC 9(8) COMP VALUE IS 4.

10 PS PIC 9(8) COMP VALUE IS 5.

hhhRRKAKRAKK KA KKK I hIhhhkhhkkhkkkrkkkkkkhkhhkhhkrkbkkhhhhbrrhikhdkhk

* DATA AND ATTRIBUTE SELECTOR VALUES *
kkkkkkhkhhhhhkhhkhkhkkhkdkkhhkikhhhhhhhkhhrkkhhhhkhhkkdkkhhhhhhhhkhkkikkhd
10 IGNORE PIC X VALUE IS SPACE.
10 EXPLICIT PIC X VALUE IS “1".
10 SELECTED PIC X VALUE IS "1".
10 MAP-DEFINED PIC X VALUE IS "2".
10 OLD-VALUE PIC X VALUE IS "3".

ddkkkhkkhkkhhhkhhhhhkhhhhkhkhkhhhhhhkkhhhkhkkkkhkhkkkhhkhhikdhhhhdhhhhrdkdr

* CURSOR SELECTOR VALUES *

dhkkhhkhhkkkkhkhhhdhhhhhkhkhkhihhhhhhhhhkkkrkhkkhhkkhkhhhhhkdkhbhkkkkdhhdd

10 CURSED PIC X VALUE IS “1°,

Je S e e e e e o e de Je o de e e e de g e o o A e e e ke e e e e Sk e e o e e e ok ok ok o e Sk ok ok ok e ok o ok e ok v ok o e vk e v ok ok ke e

* BASE (3270) ATTRIBUTE VALUES *

khkhhkhkhkhhkhkhkhkhhhhhkhhkhkhkkkhkhkhkhkkhkkkkkkdkkkhkhhkrkrhkhkkhkdhkhhhkkkkhrkdkikh

* UNPROTECTED,NO MDT BIT.

10 DEFAULT PIC X VALUE IS " ",
10 DETECTABLE PIC X VALUE IS “D".
10 BRIGHT PIC X VALUE IS "H".
10 DARK PIC X VALUE IS "<",

10 NUMERIC-UNPROT PIC X VALUE IS "&".
10 NUMERIC-DETECTABLE PIC X VALUE IS "M".
10 NUMERIC-BRIGHT PIC X VALUE IS "Q".
10 NUMERIC-DARK PIC X VALUE IS "*",

* PROTECTED,NO MDT BIT.
10 PROTECT PIC X VALUE IS "-*.
10 PROTECT-DETECTABLE PIC X VALUE IS "U".
10 PROTECT-BRIGHT PIC X VALUE IS "Y".
10 PROTECT-DARK PIC X VALUE IS "%".
10 AUTOSKIP PIC X VALUE IS "0".
10 AUTOSKIP-DETECTABLE PIC X VALUE IS "4".
10 AUTOSKIP-BRIGHT PIC X VALUE IS "8".

10 AUTOSKIP-DARK PIC X VALUE IS "e".
* UNPROTECTED,MDT BIT.

10 MDT PIC X VALUE IS "A".

10 DETECTABLE-MDT PIC X VALUE IS “E".

10 BRIGHT-MDT PIC X VALUE IS "I".

10 DARK-MDT PIC X VALUE IS *(".

10 NUMERIC-MDT PIC X VALUE IS "J".

10 NUMERIC-DETECTABLE-MDT PIC X VALUE IS “N".
10 NUMERIC-BRIGHT-MDT PIC X VALUE IS "R".
10 NUMERIC-DARK-MDT ~ PIC X VALUE IS ")“.

98 Base Programming Reference

* PROTECTED,MDT BIT.
10 PROTECT-MDT

PIC X VALUE IS */®.

10 PROTECT-DETECTABLE-MDT PIC X VALUE IS "v".
10 PROTECT-BRIGHT-MDT PIC X VALUE IS “Z".

10 PROTECT-DARK-MDT
10 AUTOSKIP-MDT

PIC X VALUE IS "_".
PIC X VALUE IS "1°.

10 AUTOSKIP-DETECTABLE-MDT PIC X VALUE IS “5".
10 AUTOSKIP-BRIGHT-MDT PIC X VALUE IS "9°.
10 AUTOSKIP-DARK-MDT PIC X VALUE IS “'".

LR R e s s e R e e T Y e T T T Y

* HIGHLIGHTING ATTRIBUTE VALUES

LR R Rt e e R R R R T T L L T

10 NO-HIGHLIGHT
10 BLINK

10 REVERSE-VIDEO
10 UNDERSCORE

FHRKKEIKRKRKAK KKK EKARIKKI KKK KAARRKKKARARRRRRRK Kk kKRR Ehhkkhhkddkhk

* COLOR ATTRIBUTE VALUES

PIC X VALUE IS LOW-VALUE.
PIC X VALUE IS ®1*".
PIC X VALUE IS “2°.
PIC X VALUE IS "4".

hhkkkkkhkkhkkhhhkhkhhhkhkhhhhhkhkhhhhkhkhkkhkhhkkkkkhkhkkkkkhhkkhkhhhkhkhhkkhkkhkk

10 MONOCHROME PIC X VALUE IS LOW-VALUE.

10 BLUE PIC X VALUE IS “1".

10 RED PIC X VALUE IS “2".

10 MAGENTA PIC X VALUE IS “3°.

10 PINK PIC X VALUE IS "3".

10 GREEN PIC X VALUE IS "4",

10 TURQUOISE PIC X VALUE IS "5°%.

10 CYAN PIC X VALUE IS 5",

10 YELLOW PIC X VALUE IS "6".

10 WHITE PIC X VALUE IS "7".
KhhRKKKIRKKKKARKRKKARKKKRAKKIRKIKKAKAKKRKANKKKKKRRKRRRK KRR RR AR ARRARK
* VALIDATION ATTRIBUTE VALUES *
* (THESE ARE UNPRINTABLE CHARACTERS AND MUST BE INITIALIZED *
* BY REDEFINING STORAGE). *

KRRKKKKARKKhF ke hhk AR hAAkhkkhkhhhhhhkRkRhAR kA kR hhdhkhhkrrkkkhhhhhd

* NO VALIDATION:
10 NOVALIDATN-BIN PIC 9999 COMP VALUE IS 0.

10 FILLER REDEFINES NOVALIDATN-BIN.
12 FILLER PIC X.
12 NO-VALIDATION PIC X.
* TRIGGER
10 TRIGGER-BIN PIC 9999 COMP VALUE IS 1.
10 FILLER REDEFINES TRIGGER-BIN.
12 FILLER PIC X.
12 TRIGGER PIC X.
* MANDATORY ENTER:
10 ENTER-BIN PIC 9999 COMP VALUE IS 2.
10 FILLER REDEFINES ENTER-BIN.
12 FILLER PIC X.

12 MANDATORY-ENTER PIC X.

* TRIGGER AND MANDATORY ENTER:
10 TRIGGER-ENTER-BIN PIC 9999 COMP VALUE IS 3.
10 FILLER REDEFINES TRIGGER-ENTER-BIN.
12 FILLER PIC X.
12 TRIGGER-ENTER PIC X.

* MANDATORY FILL:

10 FILL-BIN PIC 9999 COMP VALUE IS 4.
10 FILLER REDEFINES FILL-BIN.

12 FILLER PIC X.

12 FILL PIC X.

* TRIGGER AND MANDATORY FILL:
10 TRIGGER-FILL-BIN PIC 9999 COMP VALUE IS 5.
10 FILLER REDEFINES TRIGGER-FILL-BIN.
12 FILLER PIC X.
12 TRIGGER-FILL PIC X.

application data structures

Chapter 11. Application data structure for mapping 99

application data structures

* TRIGGER, ENTER AND FILL:
10 TRIGGER-ENTER-FILL-BIN PIC 9999 COMP VALUE IS 7.
10 FILLER REDEFINES TRIGGER-ENTER-FILL-BIN.
12 FILLER PIC X.
12 TRIGGER-ENTER-FILL PIC X.

100 Base Programming Reference

application data structures

PL/l mapping constants table — ADMUPIMC

/**/

/* TABLE NAME: ADMUPIMC */
/* */
;: DESCRIPTIVE NAME: GDDM PL/I DECLARATIONS OF MAPPING CONSTANTS */

*/
/* 5668-801 */
/* (C) COPYRIGHT IBM CORP. 1979, 1986. */
/: LICENSED MATERIALS - PROPERTY OF IBM */
/ x/
/* FUNCTION: */
/* */
/* THIS TABLE PROVIDES PL/I DECLARATION STATEMENTS FOR */
/* CONSTANTS USED FOR SETTING/TESTING ADJUNCT FIELDS IN A */
/* MAP APPLICATION DATA STRUCTURE. IT ALSO CONTAINS DECLARATIONS */
/* OF CONSTANTS USED FOR MSPUT/MSGET OPTIONS. */
/* */
/* THE DATA TYPE USED FOR HARDWARE AND SOFTWARE ADJUNCTS IN THE */
/* GDDM-IMD-GENERATED APPLICATION DATA STRUCTURE FOR PLI IS */

/* CHARACTER. SOME OF THE CODE-POINTS Ar.> UNPRINTABLE CHARACTERS */
/* THAT IS, IN THE RANGE HEX'60' TO HEX'3F'. FOR THESE CASES THE */
/* CODE-POINTS DECLARED HERE ARE BIT(8), AND THE INTENTION IS */

/* THAT THE PROGRAM SHOULD USE THESE WITH UNSPEC. */
/* FOR EXAMPLE, TO SET THE VALIDATION CODE TO TRIGGER FOR A */
/* FIELD IN THE ADS CALLED FIELDNAME, USE */
/* */
/* FIELDNAME_VAL_SEL = SELECTED */
/* UNSPEC(FIELDNAME_VAL) = TRIGGER */
* *
/**/
DECLARE

1 ADMMAP STATIC,

**/

/* MSPUT AND MSGET OPTIONS. */
**/

2 WRITE FIXED BIN(31) INIT(8),

2 REWRITE FIXED BIN(31) INIT(1),

2 REJECT FIXED BIN(31) INIT(2),

2 HILIGHT FIXED BIN(31) INIT(3),

2 COLOR FIXED BIN(31) INIT(4),

2 pS FIXED BIN(31) INIT(5),
**’

/* DATA AND ATTRIBUTE SELECTOR VALUES. */
/**/

2 IGNORE CHAR(1) INIT(' '),

2 EXPLICIT CHAR(1) INIT('1'),

2 SELECTED CHAR(1) INIT('1'),

2 MAP_DEFINED CHAR(1) INIT('2'),

2 OLD_VALUE CHAR(1) INIT('3'),
/**[
/* CURSOR SELECTOR VALUES. */
/**/

2 CURSED CHAR(1) INIT('1'),
**,
/* BASE (3270) FIELD ATTRIBUTE VALUES. */
* */
/* UNPROTECTED, NOT MODIFIED. */

/**l

2 DEFAULT CHAR(1) INIT(' '),
2 DETECT CHAR(1) INIT('D'),
2 BRIGHT CHAR(1) INIT('H'),
2 DARK CHAR(1) INIT('<'),
2 NUMERIC CHAR(1) INIT('&'),

2 NUMERIC_DETECT CHAR(1) INIT('M'),
2 NUMERIC_BRIGHT CHAR(1) INIT('Q'),
2 NUMERIC_DARK CHAR(1) INIT('*'),

/********;***,

/* PROTECTED, NOT MODIFIED. */

/**I

2 PROTECT CHAR(1) INIT('-'),

Chapter 11. Application data structure for mapping 101

application data structures

2 PROTECT_DETECT CHAR(1) INIT('U')

2 PROTECT_BRIGHT CHAR(1) INIT('Y')

2 PROTECT_DARK CHAR(1) INIT('%')

2 AUTOSKIP CHAR(1) INIT('0'),

2 AUTOSKIP_DETECT ~ CHAR(1) INIT('4')

2 AUTOSKIP_BRIGHT ~ CHAR(1) INIT('8'),

2 AUTOSKIP_DARK CHAR(1) INIT('@'),
/**/
/* UNPROTECTED, MODIFIED. */
/**/
2 MDT CHAR(1) INIT('A'),

2 DETECT_MDT CHAR(1) INIT('E'),

2 BRIGHT_MDT CHAR(1) INIT('I')

2 DARK_MDT CHAR(1) INIT(*('),

2 NUMERIC_MDT CHAR(1) INIT('3'),

2 NUMERIC_DETECT MDT CHAR(1) INIT('N')

2 NUMERIC_BRIGHT_MDT CHAR(1) INIT('R'):
2 NUMERIC_DARK_MDT CHAR(1) INIT(')'),

**/

/* PROTECTED, MODIFIED. */
e Y
2 PROTECT_MDT CHAR(1) INIT('/'),

2 PROTECT_DETECT_MDT CHAR(1) INIT('V'),
2 PROTECT BRIGHT_MDT CHAR(1) INIT('Z'),
2 PROTECT_DARK_MDT CHAR(1) INIT(' '),
2 AUTOSKIP_MDT CHAR(1) INIT('T'),
2 AUTOSKIP_DETECT_MDT CHAR(1) INIT('5'),
2 AUTOSKIP_BRIGHT MDT CHAR(1) INIT('9'),
2 AUTOSKIP_DARK_MDT CHAR(1) INIT(*'''),

/*******i**/

/* VALIDATION FIELD ATTRIBUTE VALUES. */
/*********************************k****************************l
2 NO_VALIDATION BIT(8) ALIGNED INIT('66086969'B),
2 TRIGGER BIT(8) ALIGNED INIT('68606091'B),
2 ENTER BIT(8) ALIGNED INIT('60606010'B),
2 TRIGGER_ENTER BIT(8) ALIGNED INIT('60860011'B),
2 FILL BIT(8) ALIGNED INIT('60660108'B),
2 TRIGGER_FILL BIT(8) ALIGNED INIT('@660101'B),
2 ENTER_FILL BIT(8) ALIGNED INIT('€6000110‘B),

2 TRIGGER_ENTER_FILL BIT(8) ALIGNED INIT('08080111'B),

/**/

/* HIGHLIGHT FIELD AND CHARACTER ATTRIBUTE VALUES. */
/**/
2 NO_HIGHLIGHT CHAR(1) INIT(* '),

2 BLINK CHAR(1) INIT('1'),
2 REVERSE_VIDEQ CHAR(1) INIT('2'),
2 UNDERSCORE CHAR(1) INIT('4'),
/**/
/* COLOR FIELD AND CHARACTER ATTRIBUTE VALUES. ' */
/**/
2 MONOCHROME CHAR(1) INIT(' '),
2 BLUE CHAR(1) INIT('1'),
2 RED CHAR(1) INIT('2'),
2 PINK CHAR(1) INIT('3'),
2 MAGENTA CHAR(1) INIT('3'),
2 GREEN CHAR(1) INIT('a'),
2 TURQUOTSE CHAR(1) INIT('S5'),
2 CYAN CHAR(1) INIT('5'),
2 YELLOW CHAR(1) INIT('6'),
. 2 WHITE CHAR(1) INIT('7');

102 Base Programming Reference

special-purpose programming

“
Chapter 12. Special-purpose programming in GDDM

The System Programmer Interface (SPi) is provided for
programmers who want to use GDDM as the basis for a
graphics system of their own. It enables GDDM func-
tions to be written in a coded form, it gives greater
control over the subsystem environment, and it allows
greater programming flexibility within the subsystem
environment.

This chapter describes:

* “Using the system programmer interface,” below,
and

* “Specifying user exits” on page 104.

Using the system programmer
interface

The system programmer interface is a special interface
available to “system programming” types of applica-
tions. It is available only in reentrant form, and shares
many features with the application-programmer reen-
trant interface. The reentrant interfaces are described
in the GDDM Base Programming Reference, Volume 1.

In the simplest case, the system programmer interface
merely provides a means of accessing a GDDM func-
tion by a function code (the Request Control Parameter,
RCP) rather than by selecting an entry point.
Assembler-language macros defining mnemonics for
these function codes are provided.

Each call takes the form:

CALL ADMASP (aab,rcp,component parameters....)J

where ADMASP is the defined system programmer inter-
face entry point. ADMASP is a single entry point
resolved by the GDDM interface modules that are link-
edited with the application.

Note: The sample PL/I declarations do not include this
entry point, because: it can only be called using the
system programmer interface. The PL/l application
programmer using this call must, therefore, supply an
entry-point declaration for the system programmer
interface, as described in the GDDM Base Program-
ming Reference, Volume 1. For example:

DECLARE ADMASP EXTERNAL ENTRY OPTIONS (ASM,INTER);

Parameters

aab (specified by user) (8-byte control block)
An Application Anchor Block, as described in the
GDDM Base Programming Reference, Volume 1.

rep (specified by user) (full-word integer)
The Request Control Parameter, a 4-byte, full-
word-aligned function code defining the GDDM
function to be called. The GDDM RCP code is
given, for each GDDM call listed and described in
the GDDM Base Programming Reference, Volume
1, and for each GDDM-PGF call in the GDDM-PGF
Programming Reference manual, in both
hexadecimal and decimal format. Also,

Appendix J, “Request control parameter codes"”
on page 231 contains a table defining the RCP
codes for all GDDM and GDDM-PGF functions.

component parameters
The parameters for the function specified in the
RCP. These are as described for the specific func-
tion being called.

Calls to the system programmer and reentrant inter-
faces can be mixed, provided that the same application
anchor block is passed on each call.

Initialization

This interface provides an aiternative initialization
function (known as SPINIT) that allows control of envi-
ronmental aspects. SPINIT is an alternative to FSINIT
and, if used, must be the first GDDM statement to be
run.

Note that your program would not use an explicit call to
an entry point called SPINIT. Instead, like all other
system programmer interface calls, you would code a
call to ADMASP. The function is described for consist-
ency as a SPINIT call, as it behaves like the other
GDDM calls, but it can only be specified through the
system programmer interface. The GDDM Assembler
language tables ADMURCPB and ADMURCPO (see
Appendix J, “Request control parameter codes” on
page 231) include the mnemonic QQSPINIT.

SPINIT (spib-block)

APL Code 116
GDDM RCP code X'00050000' (327680)

Initializes GDDM processing, with the special proc-
essing requirements specified in the spib-block param-
eter.

Parameters

spib-block (specified by user) (32-byte character string)
A table giving control information. The contents of
this table are processed by GDDM during initializa-
tion. Subsequent changes to the contents do not
affect GDDM processing. The storage containing
the table can be released after initialization has
been completed.

Note: Since Version 1 Release 4, GDDM supports
an abbreviated format of the SPIB. This is
described below. A number of the functions that
were previously available in the SPIB are now
available through other GDDM calls, which can be
issued immediately after the SPINIT call. For
example, the functions of the SPIBOPNF,
SPIBPA2F, SPIBXFBF, SPIBXFBL, and SPIBXFBP
fields can now be specified as DSOPEN processing
options; the functions of many other fields can be
specified as input to the SPIB by means of items in
a user default specification list (see
Chapter 1, “Customizing your program and its
environment” on page 1 for details).

Chapter 12. Special-purpose programming in GDDM 103

special-purpose programming

The previous format of the SPIB is retained for
reasons of compatibility; it does not contain or
provide access to new function provided since
GDDM Version 1 Release 4. It is described in the
edition of the GDDM Base Programming Reference
manual for the Release of GDDM for which your
program was written.

Principal Errors

None

Format of the system programmer
interface block

The labels are defined here in more detail:

SPIBLENG
Specifies the length of the SPIB. Must be in the
range 16 through 32, which identifies this as a
GDDM Version 1 Release 4 SPIB. The fields after
offset X'10' can be omitted (and thus allowed to
default) by specifying the minimum value of 16.

SPIBUDSL
Specifies the length (in bytes) of an encoded user
default specification list (UDSL). Must be set to 0
if no UDSL is to be passed.

SPIBUDSP
Specifies the address of an encoded user default
specification list (UDSL). Must be set to 0 if no
UDSL is to be passed.

SPIBGSXP (TSO and VM/CMS only)
Specifies (if present and if not zero) the address
of an application-defined storage exit to be called
for GET STORAGE requests.

SPIBGSXK (TSO and VM/CMS only)
Specifies (if present) a user-defined parameter
that GDDM is to pass when calling a GET
STORAGE exit.

SPIBFSXP (TSO and VM/CMS only)
Specifies (if present and if not zero) the address
of an application-defined storage exit to be called
for FREE STORAGE requests.

SPIBFSXK (TSO and VM/CMS only)
Specifies (if present) a user-defined parameter
that GDDM is to pass when calling a FREE
STORAGE exit.

The interface specifications for GDDM storage exits are
described under “Storage exit routines — interface
specifications” on page 108.

Specifying user exits

User exits allow a system program to trap specific
events whenever an application program uses a GDDM
or system resource. Such events include task
switching in TSO, intercepting some or ail GDDM calls,
and so on.

A limited number of user exits can be specified using
User Default Specifications (UDSs). UDSs are
described in Chapter 1, “Customizing your program
and its environment” on page 1. The user exits are:

* A Task Switch exit
* A Call Intercept exit
* A Coordination exit.

This section describes how you specify user exits, the
conventions that your exits must follow, and the func-
tion of each type of exit.

It also describes the storage exit routines that can be
defined by using the System Programmer Interface
Block (SPIB) in the SPINIT call. For details of the SPIB,
see "Initialization” on page 103.

Table 15 on page 105 shows the defaults that you can
specify for GDDM exits using the SPINIT call. The
figure also describes the corresponding user default
specifications (in source and encoded format). These
UDSs must be passed to GDDM using the SPINIT call in
the form of an encoded-UDS list. The last column
shows where the UDS can be specified, as follows:

M in the External Defaults Module,
F in the External Defaults File,

S in the SPINIT call,

(o in the ESEUDS and ESSUDS calis.

Table 14. SPIB format

Offset Length Label Usage

{hex) (bytes)

0 4 SPIBHEAD Spare. Reserved for the application program to use as an eye-
catcher.

4 4 SPIBLENG Length of SPIB.

8 4 SPIBUDSL Length of user default specification list.

C 4 SPIBUDSP Address of user default specification list.

10 4 SPIBGSXP Address of application-defined GET STORAGE exit.

14 4 SPIBGSXK User-defined parameter to be passed to the application program’s
GET STORAGE exit.

18 4 SPIBFSXP Address of application-defined FREE STORAGE exit.

1C 4 SPIBFSXK User-defined parameter to be passed to the application program’s
FREE STORAGE exit.

104 Base Programming Reference

special-purpose programming

Table 15. GDDM exits — options

Source syntax of the

ADMMEXIT macro Encoded values - list of Valid in:
Meaning of default options full-words MFSC
Call intercept user exit address CALLINT = (addr) 3,3005,A(CI-UX) NNYN
Call intercept user exit token value CALLINT = (,token) 3,3006,Cl-token NNYN
Default user exit address DEFAULT = (addr) 3,3001,A(DFT-UX) NNYN
Default user exit token value DEFAULT = (,token) 3,3002,DFT-token NNYN
Task switch user exit address (TSO only) TASKSWI = (addr) 3,3003,A(TSW-UX) NNYN
Task switch user exit token value (TSO only) TASKSWI= (,token) 3,3004, TSW-token NNYN

Note:

In the source-format forms, corresponding pairs can be combined in this way:
DEFAULT = (address,token).

Exit values

The descriptions of these options are:

CALLINT = (address,token)
address gives the full-word address of the Call
Intercept exit.

token provides four bytes of data that are passed
from the application program to the exit.

DEFAULT = (address,token)

address gives a full-word address for all user
exits. Specifying an address in this option is
equivalent to specifying it for each user exit
explicitly.

token provides four bytes of data that are passed
from the application program to any exit. Speci-
fying a token in this option is equivalent to speci-
fying it for each user exit explicitly.

TASKSWI = (address,token)
address gives the full-word address of the Task
Switch exit.

token provides four bytes of data that are passed
from the application program to the exit.

GDDM user-exit conventions

Unless otherwise noted, user exits defined by means of
UDSs must conform to these rules:

The
are:

R13
R14
R15
R1

contents of the registers on entry to the exit

-> A 72-byte save area

-> The return address

-> The entry point of the exit

-> The parameter address list, in standard
variable-1ist format:
ADDR1 -> AAB (Char(8))
ADDR2 -> UXBLOCK ((3) Fixed(31))

édditional parameters as defined for the
specific exit

AAB

The application’s AAB (application anchor
block) (or in the case of the coordination exit,
the GDDM-provided dummy AAB if the appli-
cation is using the nonreentrant interface).

The exit must not use the AAB to issue a
GDDM call. Thatis to say, the GDDM instance
that caused the exit must not be entered
recursively.

UXBLOCK
A user-exit control block of this format:

UXBLOCK

+0
UXCGDE

+4
UXTOKEN

+8
UXADDR

The contents of UXBLOCK are:

UXCODE The full-word user-exit code. This
code is the same as the UDS-code used
to define the user exit address. The exit
must not change this parameter.

UXTOKEN The full-word user-exit token. This
field is initialized to 0. An explicit value
for this token can be specified when the
exit is specified. The exit or application
program can change this parameter; in
which case, subsequent calls to the exit
are passed in the changed parameter.

UXADDR The full-word user-exit address. On
entry to an exit, this parameter has the
same value as R15 (the address of the
exit entry point). The exit can change
this parameter; in which case, subse-
quent calis to the exit are to the new
address. If the address is set to O,
GDDM stops using the exit for as long as
the address remains 0. If the address is
subsequently reset to nonzero (by the
application program or by another exit),
GDDM resumes invocation of the exit.

¢ The parameter address list is in variable parm-list
format (that is, with the high-order bit of the last
address word set to “1"), and GDDM may pass
parameters in addition to those defined below.
Therefore, the exit must not rely on the high-order
bit of a specific parameter address word always
being set to “1."”

* Unless otherwise noted, the exit must not modify
any parameter passed to it. (The only exception is
the UXBLOCK parameter.)

Chapter 12. Special-purpose programming in GDDM 105

special-purpose programming

¢ On return, the exit must set R15 to one of the speci-
fied completion codes.

If any other value is returned, the results are unde-
fined (nonzero values may be diagnosed, ignored,
or abended).

¢ |tis recommended that you make the exit reentrant
and read-only. Otherwise, careful thought must be
given as to how the operation of GDDM and its
calling application(s) is affected.

e The exit must conform to standard System/370
calling conventions (including the use of save
areas and restoring registers).

e Under MVS/XA, the exit must be AMODE(ANY);
that is, it must be prepared to accept control in
24-bit or 31-bit mode, and must return control in
the same mode. If called in 31-bit mode, all
addresses (including R13) must be treated as
31-bit addresses and may be greater than 16
megabytes. :

Under MVS/XA, a 24-bit mode application program
must ensure that the top byte of an initial value for
a user-exit token is cleared to zero if it intends that
this token is to be interpreted as an address.
GDDM considers this token to be a FIXED(31) vari-
able, and does not clear the top byte of the token
before invoking the exit.

The task switch exit

A Task Switch exit can be defined in an ADMMEXIT
UDS. This exit is valid under TSO only. If it is specified
in other environments, the results are undefined.

Function: By providing a Task Switch exit, an TSO
tasking application program can call GDDM both from
its main task and from any of a number of subtasks.
The Task Switch exit should be coded to switch to a
standard task (typically, the main task) under which
specific subsystem-dependent task-sensitive functions
can be performed.

If enabled, the Task Switch exit is invoked before
GDDM performs selected task-sensitive functions. The
Task Switch exit has passed to it the address of a
GDDM subroutine to be called after switching tasks,
plus the parameters to be passed to the routine.

The Task Switch exit is returned to when the GDDM
subroutine has performed the task-sensitive functions.
The Task Switch exit should then switch tasks back
before returning to GDDM.

The system-dependent functions that are “task pro-
tected” in this manner are:

¢ Explicit GETMAIN and FREEMAIN requests. (Indi-
rect requests by means of storage exits or other
system-dependent functions are not “task pro-
tected.”)

* DASD OPEN and CLOSE requests. (READ, WRITE,
PUT, and GET requests are not “task protected.”)

* Explicit LOAD and DELETE requests.
Exceptionally, some of the GETMAIN, FREEMAIN,
LOAD, and DELETE requests that are issued by GDDM

routines at initialization and termination are not “task
protected.” These requests should be separately “task

106 Base Programming Reference

protected” by the application program, by ensuring that
the GDDM FSINIT (or SPINIT) and FSTERM calls are
always issued from the standard task.

A Task Switch exit should be prepared to be invoked in
a recursive manner in some circumstances. For
example:

GDDM invokes the Task Switch exit before OPEN.

--> The Task Switch exit calls a GDDM subroutine.

------ > The OPEN macro is called, resulting in an

OPEN error.

---------- > The DCB ABEND exit receives control.

---------- > Diagnostic processing is initiated.

---------- > GDDM invokes the Task Switch exit
before a LOAD for diagnostic routines.

.............. > The Task Switch exit calls a GDDM

subroutine.
................. > The LOAD macro is called for
diagnostic routines.
................. > The subroutine returns to the
Task Switch exit.
.............. > The Task Switch exit returns to
GDDM after the LOAD.

---------- > Diagnostic processing completes.

---------- > The DCB ABEND exit returns to NSI
after the OPEN.

------ > The OPEN macro completes.

------ > The subroutine returns to the Task Switch

exit.
--> The Task Switch exit returns to GDDM after
the OPEN.

However, a Task Switch exit can prevent such
recursion by disabling itself on entry, by setting the
UXADDR field in the UXBLOCK parameter to 0. GDDM
still ensures a return through the Task Switch exit,
which should then reset the UXADDR field to the
address of its entry point, before returning to GDDM.

How to specify a task switch exit: A Task Switch exit is
specified as follows:

ADMMEXIT TASKSWI=([address][,token])

Parameters: The parameters for Task Switch exits are
as follows:

R13 -> A 72-byte save area
R14 -> The return address
R15 -> The entry point of the exit
R1 -> The parameter address list, in standard
variable parm-1ist format:
ADDR1 -> AAB (Char(8))
ADDR2 -> UXBLOCK ((3) Fixed(31))
ADDR3 -> SUBADDR (Ptr(31))
ADDR4 -> SUBPARM (Format reserved to
GDDM)

Parameters AAB and UXBLOCK are described under
“GDDM user-exit conventions” on page 105. Addi-
tional parameters are as follows:

SUBADDR The address of the GDDM subroutine to be
called after switching tasks.

The GDDM subroutine must be called according
to full System/370 calling conventions. Specif-
ically, Register 13 on entry to the subroutine must
locate a register save area, which must not be
the same as that passed to the exit by GDDM.
Also, Register 1 on entry to the subroutine must
be the same as was passed to the exit by GDDM.

The GDDM subroutine saves and restores the
exit's registers as normal, but does not neces-
sarily conform to other System/370 calling con-
ventions.

On return from the subroutine, the exit must
return to GDDM according to full System/370
calling conventions. Specifically, the exit must
reload Register 14 from GDDM's save area in
order to return. The exit must not rely on the
contents of GDDM's save area being the same as
on entry (specifically, all saved registers,
including Register 14, and the RSA forward chain,
may have been modified by the GDDM subrou-
tine).

SUBPARM Additional parameter(s) that may be sup-
plied by GDDM, for the use of the GDDM subrou-
tine.

The exit should not assume the existence of, nor
try to examine, these parameters. The exit
should call the GDDM subroutine with Register 1
locating the same parameter address-list as that
passed to the exit by GDDM.

The exit must be AMODE(ANY); that is, it must be pre-
pared to accept control in 24-bit or 31-bit mode, and
must return control in the same mode. Also, it must
call the GDDM subroutine in the same mode.

Feedback values: On return, the exit must set R15 as
follows:

0 Successful completion.

The call intercept exit

A Call Intercept exit may be defined by using an
ADMMEXIT UDS. This exit is valid in all environments.

Function: The Call Intercept exit provides a mech-
anism whereby a controlling process can monitor the
calls issued by an application program. Other than for
its specification by means of the SPIB, this exit is trans-
parent to an application program at the API.

The Call Intercept exit is invoked from within GDDM,
before each application-program call is processed
(though after some housekeeping has been performed).
Application-program calls that are grossly in error may
be rejected without giving control to the exit.

The exit has passed to it the parameters provided by
the application program. it cannot change the request
or the parameters, but it can have some control over
the subsequent execution, as described below.

The exit could operate in a pass-through mode,
whereby it passes the specified requests through to a
secondary instance of GDDM that had been separately
initialized. In this mode, the exit could change or add
more calls to the secondary instance of GDDM in
response to a single call from the application program.
However, in this mode the exit may have difficulty
passing-back error diagnostics from the GDDM sec-
ondary instance.

How to specify a call intercept exit: The Call Intercept
exit is specified as follows:

ADMMEXIT CALLINT=([address][,token])

special-purpose programming

Parameters: The parameters for the Call Intercept exit
are as follows:

R13 -> A 72-byte save area

R14 -> The return address

R15 -> The entry point of the exit

Rl -> The parameter address list, in standard
variable parm-list format:

ADDR1 -> AAB (Char(8))
ADDRZ -> UXBLOCK ((3) Fixed(31))
ADDR3 -> RCP (Fixed(31))

ADDR4 -> NPARMS (Fixed(31))
ADDR5 -> PLIST(NPARMS) (Array of Ptr(31))

Parameters AAB and UXBLOCK are described under
“GDDM user-exit conventions” on page 105. Addi-
tional parameters are as follows:

RCP The RCP code defining the call issued by
the application program.

The number of functional parameters pro-
vided by the application program
(excluding the AAB for RACI, and the AAB
and RCP for SPI).

PLIST(NPARMS) The addresses of the functional
parameters provided by the application
program. These addresses are not in vari-
able parameter-list format. These
addresses should be treated as read-only.
ADDRS is undefined (and hence PLIST is
not addressable) if NPARMS = 0.

Feedback values: On return, the exit must set R15 as
follows:

0 GDDM is to continue processing the call
8 GDDM is to ignore the call, with no message
12 GDDM is to reject the call, issuing the message:

ADMBOS6 E REQUEST REJECTED BY USER EXIT.
REASON n

NPARMS

If R15 = 12, the exit should set RO as follows:

n The reason-code to be inserted into message
ADMO00S6.

Otherwise, RO should be restored to its value on entry.

The coordination exit

A coordination exit can be defined by specifying the
coordination exit address in the array parameter of the
WSCRT call; for a description of this, see the GDDM
Base Programming Reference, Yolume 1.

Function: By providing a coordination exit when cre-
ating an operator window, a task manager allows the
use of that window by independent applications running
their own instances of GDDM.

How to specify a coordination exit: A coordination exit
is specified as part of the WSCRT call. For details, see
the description of the WSCRT call in the GDDM Base
Programming Reference, Volume 1.

Chapter 12. Special-purpose programming in GODM 107

special-purpose programming

Parameters: The parameters for coordination exits are
as follows:

R13 -> A 72-byte save area

R14 -> The return address

R15 -> The entry point of the exit

Rl -> The parameter address list, in standard

variable parm-list format:

ADDR1 -> AAB (Char(8))
ADDR2 -> UXBLOCK ((3) Fixed(31))
ADDR3 -> DIRECTN (Fixed(31))

Parameters AAB and UXBLOCK are described under
“GDDM user-exit conventions” on page 105. Addi-
tional parameters are as follows:

DIRECTN The direction in which the exit is to pass
control. Possible values are:

[} Pass control from the sub-task to the main
task

1 Pass control from the main task to the sub-
task.

The exit may not change this parameter.

Feedback values: On return, the exit must set R15 as
follows:

0 Successful completion
8 Sub-task terminated abnormally.

Storage exit routines — interface
specifications

Storage exit routines can be defined using explicit
fields in the System Programmer Interface Block (SPIB)
passed as a parameter to GDDM in the SPINIT call.

The following section references fields defined in the
Version 1 Release 4 format of the SPIB, but equivalent
fields exist in the pre-Version 1 Release 4 format. For
details, see “Initialization” on page 103.

Under VM/CMS and TSO, GDDM calls application exit
routines, identified by fields SPIBGSXP and SPIBFSXP
(if defined and nonzero), to GET and FREE storage.
The interface to these storage exits is as follows:

Register 0 contains the number of bytes of storage
requested (GET) or to be released (FREE). The
high-order bit of this register is set to indicate a
conditional request. This value is passed to the
storage exits for both GET and FREE.

108 Base Programming Reference

Register 1 contains the address of the block of storage.
This address is returned by the application exit
on GET and passed to the application exit on
FREE.

Register 14 contains the GDDM return address.

Register 15 contains the user-defined parameter speci-
fied in either field SPIBGSXK (GET) or field
SPIBFSXK (FREE). This is passed by GDDM to
the appropriate application exit on each call.
Before returning to GDDM, the application exit
should set a return code in register 15: 0 indi-
cating that the request was successful, and, for
conditional requests only, 4 indicating that the
request was unsuccessful.

All other registers must be preserved across the call.

Application storage exits must operate without cor-
rupting any of the registers on entry other than as
described above. On entry to the exit routines, register
13 does not locate a register save area. If necessary,
the exits should provide for their own save area, pos-
sibly by “anchoring” a user area by means of the
SPIBGSXK or SPIBFSXK, or both, fields passed in reg-
ister 15.

Application storage exits must not assume that their
entry point is located by register 15 on entry. Register
15 is set as described above.

The application GET storage exit must return storage
that is double-word aligned.

GDDM abnormally ends on receiving a return code
other than as described above.

GDDM requests for blocks of local, last-in-first-out, or
instance storage are restricted to a maximum length of
32K bytes. When storage and exit routines are defined
(that is, “active”), this restriction also applies to
extended storage requests. GDDM never releases
“merged” or “split” blocks; storage is always released
in blocks as acquired from the application GET exit
routine.

Under MVS/XA, the top bit of the specified storage exit
address is taken to identify the AMODE of the exit and
causes the exit to be called accordingly (that is, a top
bit of '1'B causes the corresponding exit to be called
in 31-bit addressing mode).

high-performance alphanumerics

Chapter 13. GDDM high-performance alphanumerics

High-performance alphanumerics (HPA) is another way
of doing alphanumerics in GDDM, and is intended for
complex applications which require minimum instruc-
tion path length within GDDM.

The application program may not mix mapped and pro-
cedural alphanumeric field definitions with HPA field
definitions on the same GDDM page.

The style of application programming interface used by
HPA differs from that used by other parts of GDDM,
such as procedural alphanumerics. When using proce-
dural alphanumerics, application programs use many
API calls to describe the data to GDDM for output, and
also to determine the data input by the device operator.
In contrast, the HPA application builds a data structure
to describe all the data, and passes that to GDDM for
output. Also, the data input by the device operator is
returned to the HPA application in the same data struc-
ture. Changes to the data are indicated through status
indicators which are part of the structure.

HPA data structure

The data structure consists of three distinct objects.
These are:

The field list
The data buffer
The bundle list.

The field list

The field list groups together all information about the
layout of alphanumeric data on one GDDM page. New
fields can be added to an existing GDDM page, or old
ones deleted, by modifying the field list. To give addi-
tional flexibility, there may be more than one field list
in any GDDM page, so that if an existing field list is
used up, further field definitions can be added by cre-
ating a new one.

A field list consists of a header followed by field defi-
nitions.

The header contains:

The status of the field list

The number of field definitions in the list
The size of the field definitions

The cursor position on the page.

Each field definition contains:

The status of the field definition

The size and position of the field on the GDDM page

A reference to the field attribute bundle definition in
the bundle list

A reference to the character data

Optional length of character data

Optional references to character attributes.

The field list is represented as a rectangular array of
half-word integers, in which the first row is the header
and the following rows contain field definitions.

Chapter 13. GDDM high-performance alphanumerics

It can be declared as a structure, or as a two-
dimensional array stored in row-major order. Pro-
gramming languages which use column-major ordering
of two dimensional arrays will have to exchange rows
and columns in the description which follows. Below is
a sample PL/1 declaration for a field list, where “depth”
and “width" are the array dimensions used in the API
call APDEF:

OCL FIELD_LIST(depth,width) FIXED BIN(15);

The numbers beside each component description
below are the indices of each item in the row. See
Figure 5 on page 110.

The field list header row

1 — List Status
The status of the field list.

Values that can be assigned to list status are the
same as field status; in fact, list status must always be
equal to the value obtained by ORing together the
values of all the field statuses in the field list. For
example, if any field has the indicator set to indicate
that the field is to be “output” because the character
data has been changed by the application, the corre-
sponding indicator in list status must also be set. This
means that whenever the application changes a field
status indicator, it must ensure that the list status indi-
cator is correct. Whenever GDDM changes a field
status indicator it will also do this.

2 — Used depth
The number of rows in the field list used by GDDM.

This value must be in the range 1 through list depth. It
may be changed by the application in order to add
new fields or to remove deleted fields from the list.

Note: If this number is increased to add new fields to
the list, the create indicator must be set in the new
field-definition status elements. Also, if deleted fields
are removed from the list, the deletions must first
have been processed by GDDM, which sets the status
element in the field definitions to zero.

3 — Used width
The number of elements in the header and each field
definition used by GDDM.

This value must be less than or equal to the list width,
and must be in the range 6 through 10. If the value is
less than the list width, then any extra elements in the
header and each field definition are ignored by
GDDM, and may be used by the application to record
its own data. It may be changed by the application in
order to extend or reduce the field definitions. An
example of this might be increasing the used width to
9 in order to specify character color. If the used width
is changed, the output indicator must be set in the
field definition status elements of all the field defi-
nitions altered by this change.

If this value is less than 10, then the omitted parts of
the field definition are described as being “not
present,” and assume default values.

109

I
I

high-performance alphanumerics

Note: Even though GDDM may not use as many ele-
ments in the header as in the field definitions, only
those elements beyond the used width may be used
for application data. The rest must be zero.

4 — Cursor row
This is the row position of the alphanumeric cursor on
the GDDM page.

When used, it must be in the range 1 through page
depth, otherwise it must be zero. If the field list is
designated as the one used for cursor positioning,
then the cursor row and cursor column are used to
position the alphanumeric cursor on output, and also
to return its position on input. This designation is
made by setting the mode parameter of the APDEF or
APMOD call.

This cursor position overrides any cursor position
specified by calling ASFCUR. During /O, if the cursor
position specified lies outside the page window, then
the cursor is placed at the closest position within the
page window.

5 — Cursor column
This is the column position of the alphanumeric cursor
on the GDDM page.

When used it must be in the range 1 through page
width, otherwise it must be zero.

The field definition row

1 — Field Status
The status of the field definition. The list of values
below shows both numerical value and corresponding
bit position of the indicator. If your use of HPA
requires complex testing and setting of these status
indicators then you may wish to declare the status
element as a bit string.

Values that can be assigned to the field status are:

1 — Bit 15 — Process
If this indicator is not set, none of the other indica-
tors in the field status element may be set.

Only those field definitions that have this indicator
set are processed. This allows space for future
field definitions to be reserved in the field list, in

which case the application program must set both
this indicator and the create indicator before the
first use of the field. If a field has been indicated to
be deleted, GDDM sets the field status element to
zero on the next 1/0 to the primary device involving
the GDDM page.

Note: An I/0 involving the page is any /O opera-
tion, ASREAD, FSFRCE, and so on, for the primary
device to which the page belongs during which the
page is the current one for its partition, and the par-
tition set is the current one for the device.

2 — Bit 14 — Create
Indicates a new field to be created.

If it is set, GDDM resets it on the next 1/0 to the
primary device involving the GDDM page. When a
field list is first defined to GDDM all its fields are
assumed to be new, so this indicator need not be
set.

4 — Bit 13 — Delete
Indicates a field to be deleted.

When the application sets this indicator, it informs
GDDM that the field is to be deleted. GDDM resets
the entire status element, including the Process
indicator, on the next I/O to the primary device
involving the GDDM page. The field definition may
not be reused to define another field until after
GDDM has reset this indicator.

8 — Bit 12 — Output
Indicates a field to be output.

It must be set by the application whenever it
changes one of the following:

Character data
Character attributes
Character index
Color index
Highlight index
Symbol-set index
Actual-length
Bundie-row.

This indicator is reset by GDDM on the next I/0 to
the primary device involving the GDDM page.

Column (width)
1 2 3 4 5 6 7 8 9 10
Row (depth) 1|List |Used- |Used- |Cursor|Cursor
status|depth |width |row column
2|Field |Field |Field [Field |Bundle|Char [Actual|Color |Highltt|SS
status{row columniwidth frow index |length|index |index |index
3|Field |Field |Field |Field |Bundle|Char {Actual|Color [Highlt{SS
status|row column{width |row index |length|index |index |index
4|Field |Field |Field |Field [Bundle|Char {Actual{Color {Highlt|SS
status [row column|width |row index [lengthjindex [index |index
. i i i i i j

Figure 5. Field list array

110 Base Programming Reference

Notes:

1. This indicator is set by GDDM if the device
operator updated the field. This causes the
field to be output on the next I/0 to ensure that
any input data editing is reflected back on the
device.

2. This indicator should not be set to indicate
changes in the bundle definition, it only indi-
cates changes in the field definition.

16 — Bit 11 — Input
Indicates a field has been input.

This indicator is set by GDDM, during input
involving the GDDM page, to indicate changes to
character data and possibly character attributes,
made by the device operator. It should be reset by
the application once the changes have been proc-
essed.

If more than one status indicator is required, the
element must be set to the sum of the numbers corre-
sponding to the indicators required.

2 - Row
This is the row for the top left-hand corner of the field
within the GDDM page.

Rows are numbered from top to bottom of the page,
starting with 1. This is the position of the field con-
tents, not the field attribute. Once the field has been
defined the application may not change the field row
unti! the field has been deleted. For best performance
it is recommended that fields are defined in order of
their positions on the page.

3 — Column

This is the column for the top left-hand corner of the
field within the GDDM page. Columns are numbered
from left to right across the page, starting with 1. This
is the position of the field contents, not the field attri-
bute. Once the field has been defined, the application
may not change the field column until the field has
been deleted.

4 — Width
This is the number of columns that the field occupies.

The width may cause the field to extend beyond the
right-hand side of the page, in which case it wraps to
the left-hand side of the page on the next row. A field
may not extend below the bottom of the page, neither
may fields overiap. Once the field has been defined,
the application may not change the field width until
the field has been deleted.

Width aiso defines the data-area length. For mixed-
without-position fields the data-area length is twice
Width bytes, and for other fields the data-area length
is Width bytes. The data-area length is the length of
the data areas in the data buffer, where the data for
the field is held. There may, optionaily, be data areas
for:

Character data

Character color attributes
Character highlight attributes
Character symbol-set attributes.

The data areas as defined by the character index and
width, the color index and width, the highlight index
and width, and the symbol-set index and width, must
be contained totally within the data buffer.

Chapter 13. GDDM high-performance alphanumerics

high-performance alphanumerics

5 — Bundle row
This is the row number in the bundle list of the field
attribute bundle definition. It must be in the range 2
through the number of rows in the bundle list.

6 — Character Index

This is the index in the data buffer of the data area
containing the characters that occupy the field. An
index of 0 indicates that there are no character codes
for the field. The character data area must be present
if color, hightight, or symbol-set data areas are
present. The character data area must also be present
if the field is unprotected or has the MDT attribute.

Note: It is possible for more than one field to be
associated with the same data area or overlapping
data areas, within the data buffer. This does not
cause any difficulty if all the fields are protected.

In the instance where one or more of the fields is
unprotected, the application must set the output indi-
cators of all the fields involved if the data area has
been changed as a result of device operator input. If
this is not done, the corresponding fields on the
screen may not be updated on the next I/0.

In the instance where two or more unprotected fields
share the same data area, and the device operator
enters updates Into two or more such fields in the
same |/O operation, the resulting contents of the data
area are undefined.

7 — Actual Length
This is the length of the data in the data area(s).

When the application changes the data, it must set this
to the length of data in the character, color, highlight,
and symbol-set data areas in the data buffer. If not
present an actual length of data-area length is
assumed. If a value greater than data-area length is
specified, then only data area length bytes are output.
If the number of bytes output does not fill the field,
then the rest of the field is filled with the pad char-
acter. (The pad character is null for character data -
and blank, meaning inherit the field attributes, for
character attributes.)

if the device operator enters data into the field, GDDM
sets actual length to the length of data, in bytes, now
in the field, up to and including the last nonpad char-
acter.

GDDM only sets actual length if the field status indi-
cates that changes to field contents have been input.

8 — Color Index
This is the index in the data buffer of the data area
containing the color codes for individual characters
that occupy the field. If not present, an index of 0 is
assumed. An index of 0 indicates that there are no
character color codes for the field.

9 — Highlight index
This is the index in the data buffer of the data area
that contains the highlight codes for individual charac-
ters that occupy the field. If not present an index of 0
is assumed. An index of 0 indicates that there are no
character highlight codes for the field.

10 — Symbol-set index
This is the index in the data buffer of the data area
that contains the symbol-set codes for individual char-
acters that occupy the field. If not present, an index of
0 is assumed. An index of 0 indicates that there are
no character symbol-set codes for the field.

1

high-performance alphanumerics

Fields that do not have character attributes should
specify indices of 0. Omitting character attribute data
areas, when not required, significantly improves the
performance characteristics of an application.

Example

This is an example of a field list declaration in PL/I
(compare with Figure 5 on page 110).

DCL FL(5,10) FIXED BIN(15) STATIC INIT

J*STA DEP WID CSR CSC */
(1, 5, 1, 2, 5 o0, o6, 6 o, o,
J*STA ROW COL WID BLR CHI ACT COI HII SSI*/
1, 2, 5, 4, 2, 1, 4, 0, 0, O,
1, 4, 10, 11, 3, 5,611, o, 0, o,
1, 6, 15, 13, 4, 16, 13, 0, 0O, O,
1, 8, 20, 3, 5, 29, 3, 32, 35, 38);
The data buffer

The data buffer consists of data areas containing the
data and character attributes for each field defined in
the field list. The position and size of each data area
within the data buffer is defined in the field list. Each
field-list entry contains the length and index into the
data buffer of its character-data area. Optionally, it
may also contain indexes to a character color data
area, a character highlight data area, and a character
symbol set data area.

Mixed double-byte and single-byte character fields

The internal representation of mixed character strings
makes use of shift-out (SO) and shift-in (Sl) control
characters, X'0E' and X'OF', to indicate the start and
end of a DBCS substring.

There are two ways of displaying mixed character
strings, called mixed-with-position and mixed-without-
position. The display method to be used is specified in
the bundie definition for each field.

* Mixed-with-position

The SO/SI codes occupy one character position
each, and are displayed as either a blank or a
special character - the terminal user can select
which.

* Mixed-without-position.

The SO/Si codes do not occupy a character posi-
tion on the screen.

Character attributes
Character attributes are represented by these codes:

Color

blank X'40' Inherit the field color (the default)

1 X'F1' Blue

2 X'F2' Red

3 X'F3' Magenta (pink)

4 X'F4' Green

5 X'F5' Turquoise (cyan)

6 X'F6' Yellow

7 X'F7' Neutral (white on displays, black on
printers).

112 Base Programming Reference

Highlight

blank X'40' Inherit the fieid highlight (the default)
1 X'F1' Blink

2 X'F2' Reverse video

4 X'F4' Underscore.

Symbol-set

X'00' or X'40* Inherit the field symbol set

(the default)

Loadable symbol set (3800
system printer)

Loadable symbol set (3270
family devices)

X'01' through X' 03"

X'41' through X'DF'

X'F1! Alternative nonloadable
symbol set (3270-family
devices).

Notes:

1. The two character attributes, corresponding to the
two bytes of a DBCS character, must both be the
same.

2. Symbol-set character attributes, corresponding to
DBCS characters, must be blank.

Example

The data buffer to go with the field lists in the earlier
example might be:

DCL DB CHAR(40) STATIC INIT
('HighPerformanceAlphanumericsAPI356124 &&');
44 t ttt

The field list has four fields defined, corresponding to
the words High, Performance, Alphanumerics, and API.
No color, highlight, or symbol set indexes have been
specified for the first three fields. The field definition
for the fourth defines a color index that selects the
'356', a highlight index that selects the '124', and a
symbol-set index that selects the ' &&' in the data
buffer. (The blank specifies inheritance of the field
symbol set, and the two '&' characters (X'50', decimal
80) request the use of a symbol set with identifier 80.)

The bundle list

The field attributes that are used with the alphanumeric
fields defined in the field list, are themselves defined in
the bundle list. Each field definition in the field list con-
tains a bundle row, which is the row number of the
bundle definition in the bundle list.

The first row of the bundie list is a header, and fol-
lowing rows contain field attribute bundle definitions.
Each bundie definition consists of a status element, and
the number of type-and-value pairs in the definition, fol-
lowed by pairs of attribute types and attribute values
describing the attributes of the bundle. It may also
contain application data. :

Figure 6 on page 114 illustrates the layout of a bundle
list.

The bundle list can be declared as a structure, or as a
two-dimensional array stored in row-major order. Pro-
gramming languages which use column-major ordering

of two dimensional arrays will have to exchange rows
and columns in the description which follows. Below is
a sample PL/l declaration for a bundle list, where
“depth” and “width" are the array dimensions used in
the API call APDEF:

DCL BUNDLE_LIST(depth,width) FIXED BIN(15);

The components of the bundie list are:
Bundle list header row

1 — List Status
The status of the bundle list.

Values that can be assigned to list status are the
same as bundle status; in fact list status must always
be equal to the value obtained by ORing together the
values of all the bundle statuses in the bundle list.
For example, whenever the application changes a
bundle status indicator it must also change the list
status.

2 — Used depth
The number of rows that GDDM uses in the bundie
list.

Its value must be in the range 1 through list depth. It
may be changed by the application in order to add
new definitions or to remove unused definitions from
the list. If this value is increased, the new bundie defi-
nitions must have the bundle changed indicator set in
the bundle definition status element.

3 — Used width
The maximum number of elements in the header and
each bundie definition used by GDDM.

This value must be less than or equal to the list width,
and the minimum value is 4. |f the value is less than
the list width, then extra elements in the header and
each bundle definition will be ignored by GDDM, and
may be used by the application to record its own data.
It may be changed by the application in order to
extend or reduce the maximum number of type-and-
value pairs in the bundle definitions.

Note: Although GDDM may not use as many elements
in the header as in the bundle definitions, only those
elements beyond the used width may be used for appli-
cation data, the rest must be zero.

Bundile definition row

1 — Bundle status
The status of the bundle defintion. The list of values
below shows both numerical value and corresponding
bit position of the indicator.

1 — Bit 15 — Bundle changed
This must be set by the application to tell GDDM of
changes made to the bundle definition, and, if set
by the application, is reset by GDDM on the next I/O
to the primary device involving the GDDM page.
Set it if the number of pairs, the attribute types, or
the attribute values, have been changed.

Note: All the other status indicators in the halfword
must be zero.

2 — Pairs
The number of type-and-value pairs in the bundle defi-
nition.

The minimum value is 0 and the maximum value is
(Used_width—2)/2. Elements in the bundle definition
beyond this specified number are ignored by GDDM.

Chapter 13. GDDM high-performance alphanumerics

high-performance alphanumerics

3 — Type-and-value pairs
Type is a code for the attribute type, such as “color”
and value is a code for the corresponding value such
as "“blue”.

The permitted type codes and their associated value
codes are:

0 Dummy

This is a special type code that causes the type-
and-value pair is to be ignored by GDDM. It effec-
tively reserves space within the bundle definition
for future use by the application. The associated
value is ignored.

8 Field type
The permitted values are:

0 Unprotected alphanumeric (the default)
1 Alphanumeric output, numeric input
2 Protected alphanumeric.

16 Intensity
The permitted values are:

0 Invisible
1 Normal (the default)
2 Bright.

24 Color
The permitted values are:

Default

Blue

Red

Magenta (Pink)
Green
Turquoise (cyan)
Yellow
Neutral
printers).

32 SBCS Primary symbol set alias
The permitted values are:

0 Default. For a 3270-family device, the base
nonloadable symbol set; for a 3800-system
printer, the first loadable symbol set (use the
CHARS parameter to specify the loaded symbol
sets when printing).

1 through 3. For a 3800-system printer, the second,
third, and fourth loadable symbol sets respec-
tively (use the CHARS parameter to specify the
loaded symbol sets when printing).

65 through 223. For a 3270 family device, loadable
symbol sets corresponding to X'41' through
X'DF'. The alias must be made known to GDDM
with a call to PSDSS, PSLSS, or PSLSSC to load
the symbol set.

40 Highlight
The permitted values are:

0 Normal (the default)
1 Blink

2 Reverse video

4 Underscore.

48 End
The permitted values are:

0 Autoskip (the default)
1 Notautoskip.

NOOMLWON=O

(white on color displays, black on

113

high-performance alphanumerics

56

72

Transparency
The permitted values are:

0 Opaque (the default)
1 Transparent.

SBCS/DBCS
The permitted values are:

0 SBCS (the default)

1 Mixed-with-position

2 Mixed-without-position
3 DBCS.

Note: On 5550-family displays all unprotected
fields on the device that are not DBCS, or mixed-
with-position are enabled for mixed-without-
position input if any bundle list on the device
specifies mixed-without-position. If the device
operator enters mixed-without-position data into a
field, GDDM only places the correct shift-in,
shift-out, and DBCS characters into the data buffer if
mixed-without-position is specified for the field.

Outlining
The permitted values are:

0 None (the default)

1 Underline

2 Vertical line on right
4 Overline

8 Vertical line on left.

For an outlining attribute that is composed of more
than one of these lines, specify the sum of the
numbers corresponding to the lines required.

Modified data tag (MDT)

This defines the field MDT setting. It causes the
physical MDT bit to be set so that the fields can be
returned as input to a subsequent application
program after GDDM terminates. This function is
intended primarily for use under CICS/VS and
IMS/VS.

The permitted values are:

0 Reset the MDT (the default)
1 Set the MDT.

Reply

This defines the character reply attribute. It speci-
fies whether the device operator is able to enter
color, highlight, or symbol-set character attributes
into the field. If the field definition also specifies
data areas for character attributes, GDDM will
update the data areas with the attributes input.

The permitted values are:

0 Character reply mode off (the default)

1 Enable color character reply mode

2 Enable highlight character reply mode

4 Enable symbol-set character reply mode.

To enable combinations of color, highlight, and
symbol-set character reply modes, specify the sum
of the numbers corresponding to the enablements
required.

Note: On 3270-family displays all unprotected
fields in the real partition (or on the real screen If
emulated partitions are being used) are enabled for
character-attribute input if any bundie list on the
page sets this attribute. If the device operator
enters character attributes into a field, GDDM only
places the character attributes input into the data
buffer if the appropriate reply mode is enabled for
the field.

Pen detectable

This attribute permits selection of fields by a light
pen or cursor select key.

The permitted values are:

0 Not pen detectable (the default)
1 Pen detectable.

The type of selection that occurs is determined by
the first data character in the field; this character is
called a designator character. A field having a
“pen detectable” attribute but not starting with a
valid designator character is not selectable.

R Column
o1 2 3 4 5 6
W - —
Header 1{List |[Used- |Used-
status|depth |width
Definition 1 2(Bundle|Pairs [Type [Value |Type |[Value
status
Definition 2 3|Bundle|Pairs |[Type |Value
status
Definition 3 4|Bundle|Pairs |Type |Value |Type |Value
status

|

Figure 6. The bundle list array

114 Base Programming Reference

The types of selection that can be set are:

Delayed detection. When selected by the device
operator, the field is marked as “modified” but
nothing is transmitted until the device operator
performs another action associated with field
modification (such as selecting an “immediate
detection” field or pressing ENTER). The desig-
nator character for this type of field is “?"
(X'6F'). If the field is selected the designator
character changes to “>" (X'6E'); another
selection restores it to “?" and cancels the mod-
ification indication. '

Immediate detection without data. The designator
character is a blank (X'40'). Selection of this
type of field causes immediate input trans-
mission. No data from any of the fields is trans-
mitted, however. The effect is thus:

1. The ASREAD returns an Attention Type of 2
indicating light pen selection. All changes
typed in by the device operator are lost.

2. GDDM restores all fields on the display to
their original value at the next ASREAD (or
other 1/0 call).

Immediate detection with data. The designator
character is “&” (X'50'). The effect is the same
as pressing ENTER. (Not possible with the IBM
3277 display terminal.)

Apart from dummy, the same type may not appear
more than once in the same bundle definition.

Example

Below is an exampie of a declaration for a bundle list in
PL/I:

DCL BL(5,10) FIXED BIN(15) STATIC INIT

/*STA DEP WID */
(0’ 5’ 10, 0' 0' 0» 0’ 0: 0» 0:
/*STA PRS TYP VAL COL VAL BDY VAL PSS VAL*/
o, 3, 8, 0,24, 3,72, 1, 0, O,
e, 3, 8, 0,24, 5,72, 3, 0, 0,
o, 4, 8, 0, 24, 6, 72, 15, 32, 80,

o, 4, 8, 0,24, 3,72, 7,88, 7);

How to use high-performance
alphanumerics

Move mode and locate mode

There are two modes in which data can be transferred
between GDDM and the application program, which are
the move and locate modes. The mode is specified
through the “mode” parameter of the APDEF call.

If move mode is specified, the field list, data buffer, and
bundle list are copied by GDDM when APDEF is called.
Subsequent output and input processing, done by
GDDM, use the GDDM copies. When the application
needs to retrieve updates made by the device operator,
or modify the fields, it must query the field list, data
buffer, and bundle list by calling APQRY. This returns
copies of the field list, data buffer, and bundle list held

high-performance alphanumerics

by GDDM. When the application has moditied the field
list, data buffer, and bundle list, it must pass the modi-
fied versions back to GDDM by calling APMOD.

if locate mode is specified, GDDM does not copy the
field list, data buffer, or bundle list. Subsequent output
and input processing, by GDDM, use the copies in
application storage. The application must not release
the storage that these objects occupy until the field list
has been deleted. The contents of the field list, data
buffer, and bundle list must be valid whenever GDDM is
called. When using locate mode, it is not necessary to
call APQRY to determine device operator updates, nor
to call APMOD in order to inform GDDM of changes
made by the application.

The choice of move mode or locate mode will affect any
application data embedded in the field list, data buffer,
or bundle list. If move mode is used, this application
data is copied by GDDM on APDEF and subsequent
calls to APMOD. The value copied on the most recent
APDEF or APMOD call is returned by GDDM on APQRY.
This means that any changes made after APDEF or
APMOD will be lost on the next call to APQRY. I[f locate
mode is used this application data is not altered by
GDDM. .

Output

To display a page of alphanumeric fields proceed as
follows:

¢ Construct the field list and associated data buffer
and bundle list to describe the page of alphanu-
merics. The field definition statuses for all the
fields to be shown should be set to 1. The field list
status should be set to 1. The bundle list status,
and all bundle definition statuses should be set
to 0.

e Call APDEF to define the field list and associated
data buffer and bundle list to GDDM.

e Call ASREAD, or another GDDM /O call as
required.
Input

To retrieve device operator updates to the page of
alphanumeric fields following an /O operation, proceed
as follows:

* |If using move mode, retrieve the field list, data
buffer, and bundle list from GDDM by calling
APQRY.

¢ Test the field list status input indicator to deter-
mine if any fields have been updated by the device
operator. If they have, then test the field definition
input indicators to determine which fields have
been changed, and process the input found in the
data buffer.

¢ If the alphanumerics are not to be reshown they
should be cleared by calling APDEL.

Reshow

The application may need to reshow the page of alpha-
numeric fields just input, which should be done as
follows:

* Reset the field list status input indicator and the
field definition input indicators.

¢ Change the data or character attributes in the data
buffer as required, and set the corresponding

Chapter 13. GDDM high-performance alphanumerics 115

high-performance alphanumerics

output indicators in the field definition and header
status.

¢ Change the bundle definitions in the bundle list as
required, and set the corresponding bundle defi-
nition and header status indicators.

¢ Change the field definitions in the field list as
required, and set the corresponding status indica-
tors to specify what has changed.

¢ If using move mode, return the modified field list,
data buffer, and bundle list to GDDM by calling
APMOD.

¢ Call ASREAD, or another GDDM
required.

I/0 call as

Field list update rules

The rules for altering a field list are:

¢ The input indicators, which indicate device oper-
ator updates, should be reset by the application
after each I1/0. If this is not done, the application
will not be able to detect further updates on a sub-
sequent I/0.

* Field row, field column, and field width may not be
changed, except when using a previously-unused
field definition entry to define a new field. Fields
may be defined in any order, but must not overlap.
They may wrap from row to row, but must not
extend beyond the end of the page.

* Bundle row may be changed by the application, in
which case the application must also set the output
indicator to indicate to GDDM that this is changed.
It Is not necessary to set this indicator if only the
bundle definition has changed and the field defi-
nition has not changed.

* |If the character index, color index, highlight index,
symbol-set index or actual length are changed,
then the application must set the Output indicator
to indicate to GDDM that the field has changed and
is therefore to be output on the next I/0.

¢ When a previously unused field definition is acti-
vated, the process indicator and the create indi-
cator must be set by the application. These
indicators should never be reset by the application,
only by GDDM.

¢ If an existing field is to be deleted, the field delete
indicator should be set by the application. This
indicator should never be reset by the application,
only by GDDM, and the field definition entry may
only be reused to define a new field after GDDM
has reset the entire field status element.

* Changes to any field definition status indicator may
also require changes to the corresponding header
status indicator. The header status must always be
set to the value obtained by ORing together all the
field status elements.

Data buffer update rule

The rule for altering a data buffer is:

* If a character data area, or a character attribute
data area is modified, then the output indicators in
the corresponding field definition status and field
list status must be set.

116 Base Programming Reference

Bundle list update rule

The rule for altering a bundle list is:

e |f a bundle definition is modified, the bundle
changed indicator in the bundle definition status
and bundle list status must be set.

Dynamic fields

Dynamic alphanumeric fields, using HPA, may be
obtained by reserving space in the field list, data buffer,
and bundie list for the fields to be added later.
Reserved field definitions in the field list may be made
by leaving the process indicator off. Reserved space
may be left in the data buffer by not referring to it in
existing field definitions. Reserved bundle definitions
in the bundle list may be made by setting the number of
type-and-value pairs to zero, or by using the dummy
attribute type.

It may become necessary at some stage to enlarge the
structures. When this happens, the APMOD call may
be used to change the size of the field list, data buffer,
or bundle list and also their location if using locate
mode. The application must allocate new-larger data
structures to replace the old ones, initialize them from
the old ones (or by calling APQRY), call APMOD to
define the enlarged versions to GDDM, and throw the
old ones away.

Note: If APMOD is used in this way, any differences
between the contents of the old and new structures
must be indicated by change indicators as defined in
the rules above.

Interpreted languages

In general, locate mode cannot be used by applications
written in interpreted languages such as APL, BASIC,
and REXX. When using these languages move mode
must be used. See also the restrictions on shared
storage below.

Read-only storage

In certain circumstances it may be desirable to use
HPA with the field list, data buffer, or bundie list in
read-only storage. An example might be an application
that is used by many users at the same time. In this
instance, it would be more efficient if fixed panel
layouts were placed in shared storage. To use HPA
from read-only storage, ensure that GDDM does not
write to it by adhering to the rules below:

* Neither APDEF nor APMOD alters the storage of
the field list, data buffer, or bundle list.

* In move mode, ASREAD does not alter the objects
in user storage.

* In locate mode, ASREAD only alters:

The field list If any of the create, delete, or
output indicators are set, or if any
field is unprotected or has the
MDT attribute

If any field is unprotected or has
the MDT attribute

If any status indicators are set.

The data buffer

The bundle list

Shared storage

When using locate mode, it is possible for an applica-
tion to define more than one field list using the same
storage. Field lists, data buffers, and bundle lists could
all share storage. The rules for sharing storage are:

¢ Field lists may not share storage unless they are
read only. See the section on Read-only storage
on page 116.

¢ Bundle lists may be shared between more than
one field list on the same device. They may not be
shared between field lists on different devices
unless they are read only.

* Data buffers may be shared between more than
one field list only if unprotected data areas (that is,
data areas corresponding to fields that are unpro-
tected or have the MDT attribute) are not shared.

Note: Violations of these rules are not detected, and
the results of such a violation are undefined.

Validation

To enable GDDM to be used as the device driver for
fully tested program products, it is necessary to be able
to run HPA without validation. (Validation is not neces-
sary for tested applications and the performance
advantages are significant.)

Validation checks the AP! parameters such as identi-
fiers and lengths, as well as the field list, data buffer,
and bundle list. The field list, data buffer, and bundle
list are not validated during the API call processing as
other parameters are, instead they are validated during
processing for each 1/0 call involving the GDDM page.

Chapter 13. GDDM high-performance alphanumerics

high-performance alphanumerics

If the writers of an application choose to use HPA
without validation, they do so at their own risk. Incor-
rect use may result in device checks.

Validation is controlied by an external default as
follows:

FRCEVAL -~ Force validation.
The default is NO. When FRCEVAL =YES is speci-
fied, the validation indicator in the mode parameter
is overridden so that validation is always per-
formed. The other indicators in the mode param-
eter are not affected.

For example, when a tested application (for
instance, a shipped program product that does not
use validation), is suspected of a bug, validation
can be turned on to determine whether the applica-
tion or GDDM is at fault by specifying:

ADMMDFT FRCEVAL=YES

in the external defaults file. This default may not be
specified in the external defaults module, on SPINIT
calls, or by API call. '

Alternatively validation may be controlled by the mode
parameter on the APDEF and APMOD API calls. It may
be used during application development, but once an
application is fully tested validation should be turned
off.

Example program

The following sample program illustrates the use of
HPA in locate mode. It displays a page with four fields,
one of which uses character attributes. When the
ENTER key is pressed the color of the first field is
changed. When PF3 is pressed the program terminates.

117

high-performance alphanumerics

/* EXAMPL - SAMPLE CHARACTER ATTRIBUTES */
EXAMPL: PROC;

ocL TYP FIXED BIN(31) STATIC INIT(1);
DCL VAL FIXED BIN(31) STATIC INIT(3);
OCL CNT FIXED BIN(31) STATIC INIT(0);
DCL ENDKEY BIT(1) INIT('©'B);

DCL FL(5,10)FIXED BIN(15) STATIC INIT
/*STA DEP WID CSR- CSC */
(1, 5, 1, 2, 5, 0, 0, 0, 0, 0,
/*STA ROW COL WID BLR DAI ACT COI HII SSI*/
1, 2, 5 4 2, 1, 4, o, 0, O,
1, 4, 1, 11, 3, 5, 1, o0, 0, @6,
1, 6, 15, 13, 4, 16, 13, o, 0, o,
1, 8, 20, 3, 5, 29, 3, 32, 35, 38);
DCL BL(5,10) FIXED BIN(IS) STATIC INIT
/*STA DEP WID */
(o, 5,1, 0, 0, 0, 0, @, 0, O,
/*STA PRS TYP VAL COL VAL BDY VAL PSS VAL*/
0, 3, 8, 0, 24, 72, 1, 0, 0,
o, 3, 8, 0,24 5,72, 3, 0, 0O,
e, 4, 8, 0, 24, 6, 72, 15, 32, 80,
o, 4, 8, 0,24, 3,72, 7,88, 7);
DCL DB CHAR(40) STATIC INIT
('HighPerformanceAlphanumericsAPI356124 &&');

w
-

CALL FSINIT;
CALL PSLSS(O, 'ADMITALC',80); /* load a symbol set

/* Define a field list for the panel
CALL APDEF(1,DIM(FL,1),DIM(FL,2),FL,LENGTH(DB),DB,
DIM(BL,1),DIM(BL,2),BL,6);
/* This uses the built in DIM feature of PL/I. */
/* where DIM is the dimension of the array. */
/* It could have been coded as: */ '
/* CALL APDEF(1,5,10,FL,40,08,5,10,BL,6); */

/* Display panel and process selection until END key pressed
DO UNTIL(ENDKEY);
CALL ASREAD(TYP,VAL,CNT); /* Display panel
SELECT; /* Process selection
WHEN(TYP=1 & (VAL=3 | VAL=15)) /* END key
ENDKEY = '1'B;

WHEN(TYP=0) BO; /* ENTER key alone - change field colour

BL(1,1) = 1; /* Set bundle 1ist status */
BL(2,1) = 1; /* Set bundle definition status */
8L(2,6) = MOD(BL(2,6)+1,8); /* change color value */
END;
OTHERWISE CALL FSALRM; /* Error condition
END;
END;

*/
*/

*/

118 Base Programming Reference

high-performance alphanumerics

CALL PSRSS(80);
CALL FSTERM;
%INCLUDE ADMUPINA;
%INCLUDE ADMUPINF;
%INCLUDE ADMUPINP;

END EXAMPL;

/* Release a symbol set */

Chapter 13. GDDM high-performance alphanumerics

19

code pages

Chapter 14. Country-extended code pages

Alphanumeric and graphics text characters are repres-
ented in main storage, disk files, and data streams as
hexadecimal codes. Each code generally occupies one
byte, although GDDM does support double-byte char-
acter sets also.

IBM devices attached to host computers use the
Extended Binary Coded Decimal Interchange Code
(EBCDIC) as the standard way of representing single-
byte characters. However, problems arise because
EBCDIC allows the characters represented by some of
the codes to vary from one device to another.

The codes for the Latin letters (A through Z) in upper
and lower case, and for Arabic numerals (0 through 9),
are consistent across devices. But other codes, desig-
nated as being for national use, vary in the characters
assigned to them, especially between devices made for
different countries. Other codes are entirely device-
dependent. Older EBCDIC devices generally supported
80 standard characters, 14 national-use assignments,
and up to 96 device-dependent character codes.

For example, X'5B' is a national-use code, and on ter-
minals made for the USA, it normally represents the
dollar sign, $. But UK terminals normally use this code
to represent the pound sign, £. And in the USA, X'4A"
normally represents the cent sign, ¢, whereas in the UK
it normally represents the dollar sign. So if you enter
this data on a USA terminal:

Price: $1 large or 50¢ small

then store it in a file and redisplay it on a UK terminal,
you would probably see:

Price: £1 large or 50% small

Another type of problem is that a code generated by
one device may have no corresponding character
defined for it on another device. In other words, data
may contain characters that are nondisplayable (or
nonprintable) on some devices.

To overcome such problems, extensions to EBCDIC,
called Country Extended Code Pages (CECPs), are sup-
ported. A code page is a mapping between
hexadecimal codes and characters. The codes are
often called, in this context, code points.

All CECPs contain the same set of characters and the
same set of code points; there are 190 characters, and
190 code points ranging from X'41' through X'FE'
(X'40' is not defined in the CECPs, but always repres-
ents a blank). The difference between one CECP and
another is in the assignment of characters to code
points, that is, the order in which the 190 characters
are mapped onto the 180 code points.

The 190 characters are illustrated in Figure 7. Their
mapping onto code points in all the CECPs supported
by GDDM are shown in GDDM Typefaces and Shading
Patterns. The supported CECPs are listed in Figure 9
on page 124.

CECP devices, such as the 3179, 3192, and 3193, can be
queried from the host computer to discover the code

pages they implement. GDDM takes advantage of this
to make programs code-page independent.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF
4x dadaddachic. <(+|

6x [&68680iITTIB! $x); =
6x [~/ ARAARACN] , Z_>72
" |PEEEEITT] " : 8@ ="
ox |Qabcdefghi «»8ybt

x| jkl mnopaqrd? g AEO
M (p"stuvwxyzj ¢bybe
Bx |"E¥- O§NURU[] """ x
¢x |{ ABCDEFGHI -080686
px (}JKLMNOPQR'QUUUGY
Ex ((\+STUVWXYZ206H6060
Fix |01234567892 0000

Figure 7. CECP character set

The CECP character set and code points have been
chosen to make migration as easy as possible. All
standard EBCDIC characters and country-specific
national-use characters are included in the CECP char-
acter set. Also the 80 standard EBCDIC characters
have the same code points in all CECPs, and each
country’s CECP uses the same code points for its 14
EBCDIC national-use characters as before.

So, for example, the capital letter A is represented by
X'C1' and the numeral 1 by X'F1' in the older scheme
and in CECPs. The dollar sign is represented by X'6B*
and cent sign by X'4A' in both the USA CECP and the
older EBCDIC national-use assignments for the USA. In
both the UK CECP and the older UK EBCDIC
national-use assignments, the pound sign is repres-
ented by X'5B' and the dollar sign by X'4A".

Because CECPs are generally supersets of each
country’s older EBCDIC codes, existing EBCDIC data
usually appears on CECP devices with the correct char-
acters. This is why CECPs were often transparent to
users and programmers under releases of GDDM
before Version 2 Release 2. GDDM now more fully
exploits the capabilities of CECP devices.

GDDM code page concepts and facilities

A typical GDDM application program reads output data
from files and sends it to terminals, printers, or plot-
ters, and reads input data from terminals and stores it
in files. The presentation of the output data on the
screen or paper will contain the correct characters If
the data in the files has the same code page as the
output device. Otherwise, to be sure of obtaining the
correct characters, the code page of the data must be
converted before being transmitted. Similarly, input

Chapter 14. Country-extended code pages 121

code pages

data may need to be converted after receipt from the
terminal to be sure that all the data in the files uses the
same code page.

GDDM performs these conversions on behalf of appli-
cation programs. A programmer or end user can
specify an application code page in which applications
require to pass data to, and receive data from, GDDM.
GDDM itself can determine the device code page
(although this too can be specified). Output data
passed by API calls is converted by GDDM from the
application code page to the device code page before
being sent to the device; and input data is converted
from the device code page to the application code page
before being returned by API calls to the application.

Code pages can be specified in nickname statements.
No additional programming is usually required, and
existing programs can benefit from the new function
without being recompiled or re-link-edited. The default
action for Version 2 Release 2 is to perform no code
page conversion. Unless at least one GDDM default
statement or API call explicitly specifying code page
conversion is supplied, programs will run exactly as
they did under releases of GDDM before Version 2
Release 2.

Conversion is carried out on all types of character data
handled by the GDDM Base products, whether alphanu-
meric or graphics text, and whether generated by the
application program, the end user, or GDDM itself.
Besides input and output data, this includes, for
example, window names and GDDM messages.

Besides devices and application programs, there are
two other sources and targets for character data
handled by GDDM: the operating system and GDDM
object files. Each can employ its own particular code
page. Altogether, GDDM can process four different
types of code page on behalf of an application program,
as shown in Figure 8 on page 123. The four types are:

¢ The device code page: the one used by a terminal,
printer, or plotter for input or output.

¢ The application code page: the one used by the
data passing between application programs and
GDDM. It applies to all data flowing between a
program and GDDM, whether passed to, or
returned by, GDDM, and whether passed as a
parameter on a call or in a data structure. it there-
fore applies to any character data that an applica-
tion program reads from user files and passes to
GDDM, In addition to characters coded literally in
the program source.

¢ The GDDM object code page: the one used by data
stored in a GDDM object file — such as a gener-
ated mapgroup, or a graphics data format (GDF)
file — including any description that may be stored
with the object. The object code page also applies
to ADMPRINT files.

¢ The installation code page: the one used by data
passed between GDDM and the operating system.
Principally, this means the names of files.

As an example of code page conversion, consider an
application program running with the USA CECP as the
application code page, and the UK CECP as the device
code page. If the application passes GDDM a code

122 Base Programming Reference

point of X'C1' in some output data, this is transmitted
unchanged to the terminal: it represents the character
A in both code pages. But if the application passes a
code point of X'5B', this is converted to X'4A' before
being transmitted to the terminal, because X'5B'
represents the dollar sign in the USA CECP, and X'4A'
represents the dollar sign in the UK CECP.

In addition to implicit conversion, GDDM applications
can explicitly convert data from one specified code
page to another using a GDDM Base call, FSTRAN.
Calls providing code page functions are:

* ESQCPG - Query Code Page Of a GDDM Object

* ESQEUD - Query Encoded User Default Specifica-
tion

e ESSCPG - Set Code Page Of a GDDM Object

* FSTRAN - Translate Character String.

They are described in GDDM Base Programming Refer-
ence, Volume 1.

A PL/l sample program, called ADMUSP7, is supplied
that uses a selection of these callis.

The standard code pages supported by GDDM are
listed in Figure 9 on page 124. The figure shows the
global identifiers that uniquely identify the code pages.

What you should consider doing

These possible actions should be carefully considered
by all installations:

1. Do nothing about CECP.

This enables applications to run exactly as they did
under releases of GDDM before Version 2
Release 2. However, it may mean that end-users
are missing benefits from the CECP facilities and
so this action is not recommended.

2. Specify the local national CECP as the default
installation and application code pages for GDDM
programs.

These are the recommended minimum actions.
They have the effect of switching on support for
code-page conversion. Data from GDDM applica-
tions and GDDM objects is displayed, printed, and
plotted as far as possible in the correct characters
on any device.

“Installation code page” and “Application code
page” on page 124 explain how to specify these
defaults.

3. In future, specify a single application code page
within each new application.

This ensures that the application always uses the
specified code page, whatever the installation in
which it is run, and whatever the code pages of the
devices it uses. The code page could be a national
CECP, or the multilingual code page (global code
page identifier 00500).

If such an application was exported to other coun-
tries, it would still use the same code page. Any
files it created containing data passed to it from
terminals would use the same code points, irre-
spective of the country in which it was executed.

“Application code page” on page 124 explains
how an application program can set its code page.

Device

code pages

Figure 8. Code page conversion
4. In appropriate future applications, convert code
pages explicitly.

Programs that do this can handle data in a multi-
plicity of code pages. For example, a multinational
enterprise might want to produce an international
telephone directory by merging files created in
several different countries. Using the FSTRAN call,
a program can convert data from the various
national code pages to a single standard one.

Code pages supported by GDDM

The code pages supported by GDDM are defined in
translation tables contained in the alphanumeric
defaults module, ADMDATRN. Those defined in the
standard module are listed in Figure 9 on page 124.
The module can be modified — see the GDDM Installa-
tion and System Management manual.

Device CP
G A
D P
D P
M| 1
i APPLICATION
0 GDDM c |&>»
b a PROGRAM
I t
e i
c 0
t u n
¢ C
P | Installation CP P
OPERATING SYSTEM
Name [¢—
GODM
——»| cbject
file Key: Data Code
I transfer !I page
conversion

The two GDDM code pages, default EBCDIC (00351)
and Katakana (00290), are special. If either the source
or the target for any of the possible conversions shown
in Figure 8 is a GDDM code page, no conversion takes
place. The uses of these code pages are given in
“Compatibility with releases of GDDM before Version 2
Release 2" on page 124.

Code pages 00351 and 00290 are illustrated in the
description of the ASTYPE call in GDDM Base Program-
ming Reference, Volume 1, CECPs are illustrated in the
GDDM Typefaces and Shading Patterns booklet.

Chapter 14. Country-extended code pages 123

code pages

Name Global code page
identifier
CECP USA/Canada/Portugall/
Netherlands 00037
CECP Austria/Germany 00273
CECP Brazil 00275
CECP Denmark/Norway 00277
CECP Finland/Sweden 00278
CECP Italy 00280
CECP Japan(Latin) 00281
CECP Spain/Latin America 00284
CECP United Kingdom/Ireland 00285
GDDM Katakana 00290
CECP France 00297
GDDM default EBCDIC 60351
CECP multi-lingual page (MLP)/
Switzerland/Belgium? 00560
CECP Iceland 00871

1 96037 has superseded 00282 for Portugal
2 00500 has superseded 00274 for Belgium

00282 and 00274 are supported for compatibility.
They can be specified when an application needs to
run with CECP devices or data that employ these
early CECPs. Otherwise, neither should be speci-
fied.

Figure 9. Code pages supported as standard by GDDM

Specifying code pages
Application code page

This is specified in the GDDM default APPCPG. The
application code page used if no APPCPG default is
coded explicitly on an ADMMDFT macro, namely 00351,
is the GDDM default EBCDIC code page, which has the
effect of preventing code page conversion of all data
passed to and from the application program.

Device code page

GDDM queries the code page support of devices when
they are opened, that is, when an explicit or implicit
DSOPEN call is executed. For devices that do not
return this information, the device code page proc-
essing option (DEVCPG) may be used. A CECP identi-
fier returned by the device is used as the device code
page, unless a DEVCPG processing option has been
specified for the device, in which case the processing
option overrides the query reply. If no processing
option has been specified, and the device does not
return the information, the installation code page is
used as the device code page.

Installation code page

This is specified in the GDDM default, INSCPG. The
installation code page used if no INSCPG default is
coded explicitly on an ADMMDFT macro, is 60037. This
is the CECP for USA, Canada, Portugal, and the
Netherlands.

More information about GDDM default statements is

given in Appendix A, “GDDM'’'s default values” on
page 127.

124 Base Programming Reference

Object code page

All GDDM object files saved after Version 2 Release 2
of a GDDM Base product has been installed are tagged
with the application code page that is current at the
time of saving. When an object is ioaded, GDDM
inspects its tag and uses the code page it contains as
the object code page for that object.

If an object being loaded does not have a valid tag —
usually this is because it was created under a release
of GDDM before Version 2 Release 2 — GDDM uses the
current application code page as the object code page.

The GDDM objects and their file-types are:

Graphics data format (GDF) files (ADMGDF)
Chart format files (ADMCFORM)

Chart data files (ADMCDATA)

Chart definition files (ADMCDEF)

Image data files (ADMIMG)

Projection definition files (ADMPROJ)
Saved pictures (FSSAVE) files (ADMSAVE)
GKS metafiles (ADMGKSM)

Symbol sets (ADMSYMBL)

Generated mapgroups (ADMGGMAP).

ADMGDF object files converted from PIF by the
ADMUPCx utilities are tagged with an object code page
equal to the current application code page when they
are created. However, the objects’ contents are not
converted.

ADMPRINT files are also tagged with an object code
page when they are created, for use by the GDDM Print
Utility.

There is a GDDM Base call and an end-user utility for
explicitly tagging GDDM objects. The call, ESSCPG, is
described in GDDM Base Programming Reference,
Volume 1, and the utility, ADMUOT, is described below.

Compatibility with releases of GDDM
before Version 2 Release 2

GDDM code pages

In some circumstances, an installation may want pro-
grams to continue to operate without code page con-
version. For this purpose, GDDM provides a special
code page called GDDM default EBCDIC (00351). Ifitis
specified as the application code page, it has the effect
of preventing all CECP code page conversion, apart
from explicit conversions using the FSTRAN call.

For Version 2 Release 2, if no installation or application
code page is specified, and no tagged GDDM objects
are used, GDDM default EBCDIC is used by GDDM as
the application and object code pages, which prevents
implicit conversion. Thus, if no action is taken to
specify code pages, programs will run as they did
under releases of GDDM before Version 2 Release 2.

For Katakana applications, there is a GDDM Katakana
code page, 00290. When this is specified as the appli-
cation code page, it prevents CECP-type code page
conversion. However, data transmitted to and from
devices is converted as if an ASTYPE call with a
parameter value of 3 had been executed.

Inhibiting input of extended code points

Some terminals, such as the 3179-G, allow the host
computer to specify whether keyboard input of all 180
CECP code points is to be allowed. If disallowed, only
a base set (of, typically, 94 code points) can be entered.
Attempting to enter one of the new CECP code points
puts the terminal into the input-inhibit state.

An external default, CECPINP, controls this function. It
enables existing applications to be protected from new
code points. It does not affect the use of the new code
points in output data, nor the display and printing of the
full range of CECP characters.

Code page conversion in GDDM objects

Graphics data format files: The code page of graphics
text in ADMGDF-type files is converted.

Symbol sets: These are converted only if they contain
a character in every CECP code point — or, more pre-
cisely, in X'41' through X'FE' for image symbol sets,
and X'42' through X'FE' for vector symbol sets.

Generated mapgroups: The code page of alphanu-
meric data in ADMGGMAP-type files is converted.

ADMIMG, and ADMPROJ files: These contain char-
acter data in the description only; this data is con-
verted.

Interactive Chart Utility (ICU): This is part of
GDDM-PGF, which has not been changed for GDDM
Version 2 Release 2. It therefore does not have any
extended code page functions, so no conversion of data
in ADMCFORM, ADMCDATA, and ADMCDEF files is
carried out by the ICU. However, when the ICU saves
these files, they are tagged with the current application
code page, because the ICU uses GDDM Base facilities
to do the saving.

Converting ICU charts

The character data in chart format and data files can be
converted explicitly using the FSTRAN call. A sample
application program, called ADMUSP7, is supplied that
does this. It is written in PL/l, and the source code is
supplied. It converts the data from the object code
page to the current application code page.

Editing symbol sets

Before using the Vector or Image Symbol Editor, the
user should ensure that the application code page is
the same as that of the symbol set being edited.

If a new symbol set is created, or if an existing symbol
set with a code page equal to the installation code page
is edited, the application code page can be allowed to
default. However, if a foreign symbol set — one that
has a code page different from the installation — is to
be edited, the application code page must be set explic-
itly before the editor is invoked. Here is an example
default statement for doing this:

DEFAULT APPCPG=nnnnn

where nnnnn is the global code page identifier of the
symbol set to be edited.

code pages

It a foreign symbol set is edited without doing this, the
wrong symbols may be displayed during editing, and
the symbol set, when saved, will be tagged with the
wrong code page.

Symbol set code pages can be queried by a program
executing the ESQCPG call (refer to the GDDM Base
Programming Reference, Volume 1.)

All the GDDM symbol sets containing the CECP set of
characters are supplied in the order of code page
00037.

Utility program for tagging GDDM object
files (ADMUOT)

This utility uses the ESSCPG call to tag a specified
GDDM object file with a specified code page. It runs
under TSO or CMS only. CMS end users invoke it from
their terminals by entering the following (assuming the
utility module has not been renamed):

ADMUOT objname objtype cpgid

TSO end users enter the following (assuming the
module has not been renamed and is stored in
SYS1.PROCLIB):

CALL 'SYS1.PROCLIB(ADMUOT) objname objtype cpgid'
where

objname is the name of the object

objtype is an integer identifying the type of object.
The valid values and their meanings are the same as
for the ESSCPG call (refer to the GDDM Base Pro-
gramming Reference, Volume 1).

cpgid is the code page identifier.
GDDM identifiers are listed on page 124.

The standard

The name of the object is converted by the utility from
the application code page to the installation code page.
Normally these are the same.

Code page conversion by GDDM Print
Utility

The object code page tag in GDDM print files (type
ADMPRINT) is used by the GDDM Print Utility.

The utility converts any CECP data in the file from the
object code page to the device code page.

APL characters

The CECP character set does not include APL charac-
ters. Applications requiring APL characters can either
use GDDM default EBCDIC (00351) as the application
code page, or they can use the ASCSS or GSCS call to
specify the alternative nonloadable symbol set.

4250 printer code page function

This function, in which a code page is specified using a
GSCPG call or CPN4250 external default parameter,
applies only when the current device is a 4250 printer.
If a 4250 (type 5) symbol set is specified in a GSLSS
call, the specified symbo! set will be loaded using the
code page defined in the GSCPG call or in the external
default. It will not be affected by the current GDDM
device or application code page. This function there-
fore remains independent of the code page functions.

Chapter 14. Country-extended code pages 125

code pages

Symbol sets

Most of the GDDM sample symbol sets, which contain
single-byte Latin characters, contain the full set of 180
CECP characters. All the CECP symbol sets are listed
in Chapter 8, “Symbol sets” on page 65.

126 Base Programming Reference

ADMDVECP will be used as the default vector symbol
set provided a CECP has been specified as the applica-
tion code page. |f the GDDM default EBCDIC code
page, 00351, is the application code page, the vector
symbol set ADMDVSS will be used instead.

default values

Appendix A. GDDM'’s default values

This Appendix contains information on the foliowing:
* Changing GDDM'’s default values
¢ GDDM external defaults, listed by subsystem:
= CICS/VS on pages 128 through 131
— IMS/VS on pages 131 through 133
— TSO on pages 134 through 136
- VM/CMS on pages 137 through 139
— VSE/Batch on pages 140 through 141,

* Alphabetic list of default descriptions on pages 142
through 148.

GDDM’s default values, listed by
subsystem

This section describes the options you can specify to
change defaults for your GDDM and subsystem envi-
ronment. The information is presented in tabular form
and is organized in alphabetic order of subsystem,
thus; CICS/VS, IMS/VS, TSO, VM/CMS, and VSE/Batch.

Full descriptions of the defaults are given under
“Alphabetic list of GDDM default values” on page 142,
where they are listed in alphabetic order of the user
defauit specification parameter.

The first four columns of each table give a brief
meaning of the option, the source format of the user
default specification (UDS) to change that option, the
GDDM default for that option, and the encoded format
of the UDS. The final column shows the methods of
implementing the UDS you have specified; it shows
where the UDS can be specified, as follows:

in the External Defaults Module,
in the External Defaults File,

in the SPINIT call,

in the ESEUDS and ESSUDS calis.

onngz

Note that not all defaults can be specified by all of the
methods; some defaults can be specified by only one of
the methods.

Changing GDDM’s default values

The default values supplied by GDDM can be changed
to allow for variations in such things as specific oper-
ating environments, equipment availability, or user
requirements. For full details, see Chapter 1, “Cus-
tomizing your program and Its environment” on
page 1.

If a default keyword is specified without a value, the
current default value is not changed. For example, in:
DEFAULT ERRTHRS=,NATLANG=F

the ERRTHRS keyword has no effect.

A default value of blanks can be defined by specifying it
as a null string enclosed in parentheses. For example:
DEFAULT TS0S99U=()

The tables that follow list, in alphabetic order of default
function, the GDDM defaults you can change for each
subsystem environment, together with their source-

format and equivalent encoded-format user defauit
specifications.

Note that in defaults files, the “ADMMDFT" keyword
can be replaced by “DEFAULT".

Appendix A. GDDM's defauit values 127

default values

GDDM external defaults — CICS/VS

Table 16 (Page 1 of 3). GDDM defaults — options for CICS/VS

Source syntax of the GDDM Encoded values — list of Valid In:
Meaning of default ADMMDFT options default full-words MFSC
Alphanumeric defaults DATRN=addr ADMDATRN | 3,118,addr YNYY
module control
Always-uniock- AUNLOCK= NO 3,10,{0|1} YYYY
keyboard {NO|YES}
Application code page APPCPG=n 00351 3,125,n YYYY
Audit trail anchor block CICAUD = (stg-addr, 0,0 4,1201, NNYN
addresses: storage: pgm-addr) (none) A(STGANCH),
program: A(PGMANCH)
Call information feed- CALLINF= 0,0 4,1101, NNYN
back block: length: (len,addr) (none) L(CIB),
address: A(CIB)
CECP keyboard input CECPINP = {YES|NO} YES 3,126,{1|0} YYNN
CICS device query CICTQRY =aaaa ADMQ 3,211,aaaa YYYY
temporary storage
prefix
Comments for module COMMENT= N/A 1-8000,0,cccc, YYYY
identification {cccecece, ccCC,.. ..
cccecece
Compressed PS loads IOCOMPR = YES 3,9,{0|1} YYYY
{NO|YES}
Date convention DATEFRM = 4 3,5,{112|3)4} YYYY
{1121314}
DBCS default selection DBCSDFT= GDDM 3,18,{0|1|2} YYYY
{GDDM|NO|YES}
DBCS SO/SI emulation SOSIEMC=¢c " 3,110,X'xx000000" YYYY
character
DBCS strings with MIXSOSi= NO 3,17,{0|1} YYYY
shift-out/shift-in {NO|YES}
DBCS symbol set com- DBCSLIM=n 4 3,113,n YYYY
ponent in-core
threshold
DBCS symbol set lan- DBCSLNG=c K 3,111,X'xx000000" YYYY
guage
Deck output transient CICDECK =aaaa ADMD 3,202,aaaa YYYN
data name
Defaults file temporary CICDFPX=aaaa ADMD 3,210,aaaa YNYN
storage prefix
Device attachment AM3270= YYYY
({LOCREM| LOCREM 4,12,{0|,
REMOTE| 1|
LOCAL} 2}
,{SNANOSNA| SNANOSNA {0|
NONSNA| 1|
SNA}) 2}

128 Base Programming Reference

defaulit values

Table 16 {Page 2 of 3). GDDM defaults — options for CICS/VS

Source syntax of the GDDM Encoded values — list of Valld in:
Meaning of default ADMMDFT options default tull-words MFSC
Error exit: use ERRFDBK = GDDMDFLT | 3,1102,0 YNYY
GDDM-supplied feed- (GDDMDFLT)
back block
Error exit: use user- ERRFDBK= - 5,1102,2,addr,len YNYY
supplied feedback (USERAREA,
block addr,len
Error threshold value ERRTHRS=n 4 3,101,n YYYY
Force validation of FRCEVAL ={NO|YES} NO 3,127,{0|1} NYNN
HPA
Form feed FF3270P = {NO| AFTER 3,11,0 YYYY
AFTER] 3,111
BEFORE]| 3,11,2
BOTH} 3,11,3
FSSAVE buffer size SAVBFSZ=n 1024 3,105,n YYYY
ICU isolate value ICUISOL = {0} 1|2} 0 3,112,{0]1]2} YYYY
ICU panel color ICUPANC = TURQ 3,120,{5|1} YYYY
{TURQUOISE
|BLUE}
ICU symbol sets ICUFMSS ={0|1]2} 0 3,122,{0|1}2} YYYY
ICU format ICUFMDF = {0|1]2} 0 3,121,{0]1|2} YYYY
GDDM-IMD ADMGIMP CICGIMP = aaaaaaaa ADMGIMP 4,203,aaaa,aaaa YYNN
file-control name
GDDM-IMD ADS output CICIADS = aaaa ADMG 3,207,aaaa YYNN
transient data name :
GDDM-IMD staged data | CICIFMT=aaaaaaaa ADMIFMT 4,208,aaaa,aaaa YYNN
file-type
GDDM-IMD staging file CICSTGF = aaaaaaaa ADMX 4,209,aaaa,aaaa YYNN
file-control name
Installation code page INSCPG=n 00037 3,124,n YNNN
Mapgroup storage MAPGSTG=n 8192 3,106,n YYYY
threshold
National language NATLANG=c¢ A 3,4,X'xx000000" YYYN
No operation - - {o|1} YNYY
Number convention NUMBFRM = {1|2|3} 1 3,7,{1)2|3} YYYY
Parameter verification PARMVER = {NO|YES} NO 3,1,{0|1} NNYN
(SP1)
Print Utility Temporary CICTSPX=aaaa ADMT 3,204,aaaa YYYN
Storage prefix
Print Utility transaction CICPRNT = aaaa ADMP 3,205,aaaa YYYN
name
Short-on-storage proc- STGRET={NO|YES} NO 3,2,{0|1} NNYN
essing
Synchronized 110 IOSYNCH={NO|YES} NO 3,8,{0|1} YYYY

Appendix A. GDDM's default values 129

default values

Table 16 (Page 3 of 3). GDDM defaults — options for CICS/VS

Source syntax of the GDDM Encoded values — iist of Valid in:
Meaning of default ADMMDFT options default full-words MFSC
System printer output CICSYSP=aaaa ADMS 3,206,aaaa YYYN
transient data name
Time convention TIMEFRM = {1(2]3]4} 1 3,6,{1|2|3)4} YYYY
Trace table size, TRTABLE=n 100 3,103,n YYYN
in-core
Trace output transient CICTRCE =aaaa ADMT 3,201,aaaa YYYN
data name
Trace control TRCESTR= 'aaaaaaa' {none) 3,114,aaaa,bbbb,.. YYYY
Trace output width TRCEWID= {SINGLE| SINGLE 3,115,{0|1} YYYY

DOUBLE}

Trace word value TRACE={0|n} 0 3,102,n YYYY
Transaction independ- CICTIF={NO|YES} NO 3,14,{0|1} NNYN
ence
Transmission buffer IOBFSZ=n 1536 3,104,n YYYY
size
User Control SAVE CTLSAVE={YES|NO} NO 3,119,{0|1} YYYY
function control
VSAM data-set names OBJFILE = (aaaaaaaa, 4-16,107, YYYY
for: bbbbbbbb ,...)
Symbol sets ADMF aaaa,aaaa,
Generated mapgroups ADMF bbbb,bbbb,
Saved pictures ADMF €CCe,ceee,
Chart formats ADMF dddd,dddd,
Chart data ADMF eeee,e0880,
GDDM-IMD tutorial ADMGIMP ffff, it
pages
GDF files ADMF 6999.9999
(reserved) - hhhh,hhhh
(reserved) - iidi, il
Projection definitions ADMF Sl il
Image data ADMF kkkk,kkkk

130 Base Programming Reference

GDDM external defaults — IMS/VS

default values

Table 17 (Page 1 of 3). GDDM defaults — options for IMS/VS

Source syntax of the GDDM Encoded values — list of Valid in:
Meaning of default ADMMBDFT options defauit full-words MFSC
Alphanumeric defaults DATRN=addr ADMDATRN | 3,118,addr YNYY
module control .
Always-unlock- AUNLOCK = {NO|YES} YES 3,10,{0|1} YNYY
keyboard
Application code page APPCPG=n 00351 3,125,n YYYY
Call information CALLINF = (len,addr) 0,0 (none) 4,1101, NNYN
feedback block: .
length: L(CiB),
address: A(CIB)
CECP keyboard input CECPINP = {YES|NO} YES 3,126,{1]0} YYNN
Comments for module COMMENT = (cceeccce, N/A 1-8000,0,cccc,cecec YNYY
identification ccececce, PR
........)
Compressed PS loads IOCOMPR ={NO|YES} YES 3,9,{0|1} YNYY
Data base DBD OBJFILE=(aaaaaaaa, 4-16,107, YNYN
names for: bbbbbbbb ,...)
Symbol sets ADMOBJ1 aaaa,aaaa,
Generated mapgroups ADMOBJ1 bbbb,bbbb,
Saved pictures ADMOBJ1 ccce,cecc,
Chart formats ADMOBJ1 dddd,dddd,
Chart data ADMOBJ1 eeee,eeee,
(reserved) — 51181118
GDF files ADMOBJ1 9999,9999
(reserved) - hhhh,hhhh
(reserved) - iiii,iiii
Projection definition ADMOBJ1 i
Image data ADMOBUJ1 kkkk,kkkk
Date convention DATEFRM = {1|2|3]4} 4 3,5,{1]2|3|4} YNYY
DBCS default selection DBCSDFT= GDDM 3,18,{0|1}|2} YYYY
{GDDM| NO|YES}
DBCS SO/SI SOSIEMC=c¢c " 3,110,X'xx000000" YNYY
emulation character
DBCS strings with MIXSOSI={NO|YES} NO 3,17,{0|1} YNYY
shift-out/shift-in
DBCS symbol set com- DBCSLIM=n 4 3,113,n YYYY
ponent in-core
threshold
DBCS symbol set lan- DBCSLNG=c K 3,111,X'xx000000°* YNYY
guage
Deck output LTERM IMSDECK = aaaaaaaa ADMDECK 4,302,aaaa,aaaa YNYN
name
Device attachment AM3270= 4,12, YNYY
({LOCREM| LOCREM {0},
REMOTE]| 1
LOCAL}, 2}
{SNANOSNA| SNANOSNA {0}
NONSNA| 1]
SNA}) 2}

Appendix A. GDDM's default values 131

default values

Table 17 (Page 2 of 3). GDDM defaults — options for IMS/VS

(SPI)

Source syntax of the GDDM Encoded values — list of Valid in:
Meaning of default ADMMDFT options default full-words MFSC
Error exit: ERRFDBK = GDDMDFLT | 3,1102,0 YNYY
use GDDM-supplied (GDDMDFLT)
feedback block
Error exit: ERRFDBK = - 5,1102,2,addr,len YNYY
use user-supplied (USERAREA,
feedback block addr,len)
Error threshold value ERRTHRS=n 8 3,101,n YNYY
Force validation of FRCEVAL = {NO|YES} NO 3,127, {0]1} NYNN
HPA
Form feed FF3270P = AFTER 3,110 YNYY
{NO| 3,111
AFTER]| 3,11,2
BEFORE| 3,11,3
BOTH)}
FSSAVE buffer size SAVBFSZ=n 1024 3,105,n YNYY
GDDM message output IMSMODN = aaaaaaaa DFS.EDT 4,317 ,aaaa,aaaa YNYY
descriptor (MOD) name
GDDM system defi- IMSSDBD = aaaaaaaa ADMSYSDF | 4,307,aaaa,aaaa YNYN
nition data base DBD
name
ICU isolate value ICUISOL ={0|1|2} 0 3,112,{0]1|2} YNNN
ICU panel color ICUPANC = TURQ 3,120,{5]1} YYYY
{TURQUOISE |BLUE}
ICU symbol sets ICUFMSS={0[1]2} 0 3,122,{0|1|2} YYYY
ICU format ICUFMDF = 0 3,121, YYYY
{01112} {01112}
Input area size IMSUISZ=n 3000 3,310,n YNNN
Installation code page INSCPG=n 00037 3,124,n YNNN
Interactive Utility exit IMSEXIT=aaaaaaaa EXIT 4,311,aaaa,aaaa YNNN
character string
Interactive Utility shut- IMSMAST = aaaaaaaa MASTER 4,313,aaaa,aaaa YNNN
down LTERM name
Interactive Utility shut- IMSSHUT = aaaaaaaa SHUTDOWN | 4,312,aaaa,aaaa YNNN
down string
Mapgroup storage MAPGSTG=n 8192 3,106,n YYYY
threshold
Maximum number of IMSUMAX=n 5 3,309,n YNNN
users
National language NATLANG=c A 3,4,X'xx000000' YNYN
No operation — - {o|1} YNYY
Number convention NUMBFRM = {1|2]3} 1 3,7,{1]2|3} YNYY
Parameter verification PARMVER = {NO|YES} NO 3,1,{0|1} NNYN

132 Base Programming Reference

default values

Table 17 (Page 3 of 3). GDDM defaults — options for IMS/VS

Source syntax of the GDDM Encoded values — list of Valid in:
Meaning of defauit ADMMDFT options default full-words MFSC
Print Utility transaction IMSPRNT = aaaaaaaa ADMPRINT 4,303,aaaa,aaaa YNYN
name
Segment/Key field IMSSEGS = 14,308, YNYN
names: (aaaaaaaa,

bbbbbbbb
seos)
Object data base ADMOBROO| aaaa,aaaa
root segment
Object data base ADMOBDEP | bbbb,bbbb
dependent segment
Object data base ADMOBRKY | ccce,ccce
root key field
Object data base ADMOBDKY | dddd,dddd
dependent key field
System definition ADMSDSGM | eeee,eeee
data base segment
System definition ADMSDKEY | ffff,ftff
data base key field
Short-on-storage proc- STGRET={NO|YES} NO 3.2,{0|1} NNYN
essing
System printer output IMSSYSP = aaaaaaaa ADMLIST 4,314,aaaa,aaaa YNYN
destination name
Time convention TIMEFRM={1|2|3|4} 1 3.6.{1]2|3]4} YNYY
Trace output ddname IMSTRCE = aaaaaaaa ADMTRACE | 4,301,aaaa,aaaa YNYN
Trace table size, TRTABLE=n 100 3,103,n YNYN
in-core
Trace control TRCESTR='aaaaaaa' (none) 3,114,aaaa,bbbb YYYY
Trace output width TRCEWID = {SINGLE| SINGLE 3,115,{0|1} YYYY
DOUBLE}

Trace word value TRACE={0|n} 0 3,102,n YNYY
Transaction name for IMSISE =aaaaaaaa ISSE 4,304,aaaa,aaaa YNNN
Image Symbol Editor
Transaction name for IMSICU = aaaaaaaa CHART 4,306,aaaa,aaaa YNNN
Interactive Chart Utility | -
Transaction name for IMSVSE =aaaaaaaa VSSE 4,305,aaaa,aaaa YNNN
Vector Symbol Editor
Transmission buffer IOBFSZ=n 1536 3,104,n YNYY
size
User Control SAVE CTLSAVE={YES|NO} NO 3,119,{0|1} YYYY
function control
Write-to-operator IMSWTOD={(n,n,n,..) @ 3,316,X ' xxxx0000"' YNYN
descriptor codes
Write-to-operator IMSWTOR = (n,n,n,..) (2) 3,315,X ' xxxx0000"' YNYN

routing codes

Appendix A. GDDM's default vatues 133

default values

GDDM external defaults — TSO

Table 18 (Page 1 of 3). GDDM defaults — options for TSO

Source syntax of the GDDM Encoded values — list of Valid in:

Meaning of default ADMMDFT options default full-words MFSC
Alphanumeric defaults DATRN=addr ADMDATRN | 3,118,addr YNYY
module control
Always-unlock- AUNLOCK = {NO|YES} NO 3,10,{0|1} YYYY
keyboard
APL default TSOAPLF= DATAANAL | 3,16,{0|1} YYYY
specification {DATAANAL| APLTEXT)
Application code page APPCPG=n 00351 3,125,n YYYY
Call information CALLINF = (len,addr) 0,0 (none) 4,1101, NNYN

feedback block:

length: L(CIB),

address: A(CIB)
CECP keyboard input CECPINP = {YES|NO} YES 3,126,{1|0} YYNN
Comments for module COMMENT= N/A 1-8000,0,cccc,ceccc,. ... YYYY
identification (cceeccecece, ceeceeee,

........)
Compressed PS loads IOCOMPR = {NO|YES} YES 3,9,{0|1} YYYY
Date convention DATEFRM = {1|2|3|4} 4 3,5,{1]2|3]4} YYYY
DBCS default selection DBCSDFT= GDDM 3,18,{0|1|2} YYYY
{GDDM| NO|YES}
DBCS SO/sI SOSIEMC=c " 3,110,X'xx000000' YYYY
emulation character
DBCS strings with MIXSOSI={NO|YES} NO 3,17,{0|1} YYYY
shift-out/shift-in
DBCS symbol set com- DBCSLIM=n 4 3,113,n YYYY
ponent in-core
threshold
DBCS symbol set lan- DBCSLNG=¢c K 3,111,X'xx0000G0"' YYYY
guage
ddnames for: OBJFILE= 4-16,107, YYYY
(aaaaaaaa, bbbbbbbb,
ceed)

Symbol sets ADMSYMBL | aaaa,aaaa,
Generated mapgroups ADMGGMAP| bbbb,bbbb,
Saved pictures ADMSAVE ccce,cecec,
Chart formats ADMCFORM | dddd,dddd,
Chart data ADMCDATA | eeee,eeee,
GDDM-IMD tutorial ADMGIMP ffef, ffff,
pages
GDF files ADMGDF 9969.9999
(reserved) - hhhh,hhhh
Chart data definition ADMCDEF iiii, iiii
Projection definition ADMPROJ iiiibiiii
image data ADMIMG kkkk,kkkk
Deck output ddname TSODECK = aaaaaaaa ADMDECK 4,402,aaaa,aaaa YYYN
Defaults file ddname TSODFTS = aaaaaaaa ADMDEFS 4,411,aaaa,aaaa YNYN

134 Base Programming Reference

default values

Table 18 (Page 2 of 3). GDDM defaults — options for TSO

Source syntax of the GDDM Encoded values — list of Valid in:
Meaning of defauit ADMMDFT options default tull-words MFSC
Device attachment AM3270=(4,12, YYYY
{LOCREM| LOCREM {0|,
REMOTE]| 1)
LOCAL} 2}
{SNANOSNA| SNANOSNA {0|
NONSNA| 1
SNA}) 2}
Error exit:
use GDDM-supplied ERRFDBK = (GDDMDFLT) GDDMDFLT | 3,1102,0 YNYY
feedback block
use user-supplied
feedback block ERRFDBK = (USERAREA) - 5,1102,2,addr,len YNYY
addr,len)
Error threshold value ERRTHRS=n 4 3,101,n YYYY
Force validation of FRCEVAL={NO|YES} NO 3,127,{0|1} NYNN
HPA
Form feed FF3270P = AFTER YYYY
{NO| 3,11,0
AFTER| 3,111
BEFORE]| 3,11,2
BOTH} 3,113
FSSAVE buffer size SAVBFSZ=n 1024 3,105,n YYYY
High-resolution image
generation; .
color ddname or TSOCOLM = aaaaaaaa ADMCOL+ 4,409,aaaa,aaaa YYYN
high-level qualifier
monochrome ddname TSOMONO =aaaaaaaa ADMIMAGE | 4,408,aaaa,aaaa YYYN
or high-level qualifier
ICU isolate value ICUISOL ={0|1]2} 0 3,112,{0]1|2} YYYY
ICU panel color ICUPANC = TURQ 3,120,{5|1} YYYY
{TURQUOISE |BLUE}
ICU symbol sets ICUFMSS={0|1]2} 0 3,122,{0|1|2} YYYY
ICU format ICUFMDF={0[1]2} 0 3,121,{0]|1)2} YYYY
GDDM-IMD ADMGIMP TSOGIMP = aaaaaaaa ADMGIMP 4,403,aaaa,aaaa YYNN
ddname
GDDM-IMD ADS output TSOIADS = aaaaaaaa ADMGNADS | 4,406,aaaa,aaaa YYNN
ddname
GDDM-IMD Export data TSOIFMT=aaaaaaaa ADMIFMT 4,407 ,aaaa,aaaa YYNN
ddname
Instaliation code page INSCPG=n 00037 3,124,n YNNN
Map group storage MAPGSTG=n 8192 3,106,n YYYY
threshold
National language NATLANG=c A 3,4,X'xx000000"* YYYN
No operation — — {o{1} YNYY
Number convention NUMBFRM={1|2|3} 1 3,7,{112|3} YYYY

Appendix A. GDDM'’s default values

135

detault values

Table 18 (Page 3 of 3). GDDM defaults — options for TSO

Source syntax of the GDDM Encoded values — list of Valid in:
Meaning of default ADMMDFT options defauit full-words MFSC
Parameter verification PARMVER = {NO|YES} NO 3,1,{0|1} NNYN
(SPt)
Print data-set qualifier TSOPRNT = aaaaaaaa ADMPRINT 3,404,aaaa,aaaa YYYN
Short-on-storage proc- STGRET={NO|YES} NO 3,2,{0|1} NNYN
essing
SVC99 allocation size TS0S99S=n 742710 3,410,n YYYY
SVC99 unit specifica- TSOS99U = aaaaaaaa SYSDA 4,412,aaaa,aaaa YYYY
tion
Synchronized 110 IOSYNCH= {NO|YES} NO 3,8,{0]1} YYYY
System printer output TSOSYSP = aaaaaaaa ADMLIST 4,405,aaaa,aaaa YYYN
ddname
Time convention TIMEFRM = {1|2]3|4} 1 3,6,{1]2|3]4} YYYY
Trace output ddname TSOTRCE = aaaaaaaa ADMTRACE | 4,401,aaaa,aaaa YYYN
Trace table size, TRTABLE=n 100 3,103,n YYYN
in-core
Trace control TRCESTR= 'aaaaaaa’' (none) 3,114,aaaa,bbbb,.. YYYY
Trace output width TRCEWID = {SINGLE| SINGLE 3,115,{0|1} YYYY

DOUBLE}

Trace share TRCESHR={NO|YES} NO 3,117,{0|1} YYYY
Trace word value TRACE={0|n} 0 3,102,n YYYY
Transmission buffer IOBFSZ=n 1636 3,104,n YYYY
size
User Control SAVE CTLSAVE = {YES|NO} YES 3,119,{0|1} YYYY
function control
4250 code-page name CPN4250=aaaaaaaa AFTC0395 4,109,aaaa,aaaa YYYY
TSO Emulation TSOEMUL ={NO|YES} NO 3,413 YYYY

136 Base Programming Reference

GDDM external defaults — YM/CMS

default values

Table 19 (Page 1 of 3). GDDM defaults — options for VM/CMS
Source syntax of the GDDM Encoded values — list of Valid In:
Meaning of defauit ADMMDFT options default full-words MFSC
Abend-return proc- ABNDRET ={NO|YES} NO 3,3,{0|1} NNYN
essing
Alphanumeric defaults DATRN=addr ADMDATRN | 3,118,addr YNYY
module control
Always-unlock- AUNLOCK={NO|YES} NO 3,10,{0|1} YYYY
keyboard
APL default CMSAPLF= APLTEXT 3,15,{0|1} YYYY
specification {DATAANAL]|
APLTEXT}
Application code page APPCPG=n 00351 3,125,n YYYY
Call information CALLINF=(len,addr) 0,0 (none) 4,1101, NNYN
feedback block:
length: L(ciB),
address: A(CIB)
CECP keyboard input CECPINP = {YES|NO} YES 3,126,{1]0} YYNN
Comments for module COMMENT = N/A 1-8000,0,cccc,cecce ... YYYY
identification (ccceccecece,
cccceecc,
Compressed PS loads IOCOMPR = {NO|YES} YES 3,9,{0|1} YYYY
Date convention DATEFRM={1|2|3|4} 4 3,5,{1]2|3|4} YYYY
DBCS default selection DBCSDFT= GDDM 3,18,{0|1|2} YYYY
{GDDM| NO|YES}
DBCS SO/SI emulation SOSIEMC=c " 3,110,X"' xx000000" YYYY
character
DBCS strings with MIXSOSI = {NO|YES} NO 3,17,{0|1} YYYY
shift-out/shift-in
DBCS symbol set com- DBCSLIM=n 4 3,113,n YYYY
ponent in-core
threshold
DBCS symbol set lan- DBCSLNG=c K 3,111,X'xx000000" YYYY
guage
Deck output filetype CMSDECK = aaaaaaaa ADMDECK 4,503,aaaa,aaaa YYYN
Defaults file: CMSDFTS= PROFILE 6,511, YNYN
- filename (aaaaaaaa, ADMDEFS aaaa,aaaa,
- filetype bbbbbbbb) bbbb,bbbb
Device attachment AM3270=(4,12, YYYY
{LOCREM| LOCREM {0|,
REMOTE]| 1]
LOCAL} 2}
{SNANOSNA| SNANOSNA {0}
NONSNA| 1
SNA}) 2}

Appendix A. GDDM's default values

137

default values

Table 19 (Page 2 of 3). GDDM defaults — options for VM/CMS

Source syntax of the GDDM Encoded values — list of Valid in:
Meaning of default ADMMDFT options default full-words MFSC
Error exit:
use GDDM-supplied ERRFDBK= GDDMDFLT | 3,1102,0 YNYY
feedback block (GDDMDFLT) - 5,1102,2,addr,len YNYY
use user-supplied ERRFDBK=
feedback block (USERAREA,addr,len)
Error threshold value ERRTHRS=n 4 3,101,n YYYY
Filetypes for: OBJFILE= 4-16,107, YYYY
(aaaaaaaa,
bbbbbbbb
sees)
Symbol sets ADMSYMBL aaaa,aaaa,
Generated mapgroups ADMGGMAP| bbbb,bbbb,
Saved pictures ADMSAVE ccce,cece,
Chart formats ADMCFORM| dddd,dddd,
Chart data ADMCDATA eeee,eeee,
GDDM-IMD tutorial ADMTUTPG ffff tff,
pages
GDF files ADMGDF §999,9999
(reserved) - hhhh,hhhh
Chart data definition ADMCDEF liii, iiii
Projection definition ADMPROJ iiii.jiii
Image data ADMIMG kkkk,kkkk
Force validation of FRCEVAL = {NO|YES} NO 3,127 ,{0|1} NYNN
HPA
Form feed FF3270P = AFTER YYYY
{NO| 3,11,0
AFTER]| 3,111
BEFORE| 3.11,2
BOTH} 3,11,3
FSSAVE buffer size SAVBFSZ=n 1024 3,105,n YYYY
High-resolution image
generation,;
color filetype CMSCOLM = aaaaaaaa ADMCOL+ 4,510,aaaa,aaaa YYYN
monochrome filetype CMSMONO = aaaaaaaa ADMIMAGE | 4,509,aaaa,aaaa YYYN
ICU isolate value IcUIsoL={0]1}2} 0 3,112,{0|1]2} YYYY
ICU panel color ICUPANC= TURQ 3,120,{5|1} YYYY
{TURQUOISE |BLUE}
ICU symbol sets ICUFMSS={0|1{2} 0 3,122,{0|1]2} YYYY
ICU format ICUFMDF={0|1]2} 0 3,121,{0|1|2} YYYY
GDDM-IMD ADS output CMSIADS = aaaaaaaa COPY 4,506,aaaa,aaaa YYNN
filetype
GDDM-IMD Export data CMSIFMT = aaaaaaaa ADMIFMT 4,507,aaaa,aaaa YYNN
filetype
GDDM-IMD MSL CMSMSLT = aaaaaaaa ADMMSL 4,508,aaaa,aaaa YYNN
filetype
Installation code page INSCPG=n 00037 3,124,n YNNN
Mapgroup storage MAPGSTG=n 8192 3,106,n YYYY
threshold
National language NATLANG=c A 3,4,X'xx000000"' YYYN

138 Base Programming Reference

defauit values

Table 19 (Page 3 of 3). GDDM defaults — options for VM/CMS

) Source syntax of the GDDM Encoded values — list of Valid in:
Meaning of default ADMMDFT options default full-words MFSC
No operation - - {0113} YNYY
Number convention NUMBFRM = {1|2|3} 1 3,7,{1)2|3} YYYY
Parameter verification PARMVER = {NO|YES} NO 3,1,{0|1} NNYN
(SP1)
Queued printer output CMSPRNT =aaaaaaaa ADMPRINT 4,504,aaaa,aaaa YYYN
filetype
Short-on-storage proc- STGRET ={NO|YES} NO 3,2,{0|1} NNYN
essing
System printer output CMSSYSP = aaaaaaaa ADMLIST 4,505,aaaa,aaaa YYYN
filetype
Time convention TIMEFRM = {1|2|3]4} 1 3,6,{1]2|3|4} YYYY
Trace output: CMSTRCE = 6,502, YYYN

filename (aaaaaaaa, ADMO0CC01 aaaa,aaaa,
filetype bbbbbbbb) ADMTRACE bbbb,bbbb
Trace table size, TRTABLE=n 100 3,103,n YYYN
in-core
Trace control TRCESTR="'aaaaaaa' (none) 3,114,aaaa,bbbb,.... YYYY
Trace output width TRCEWID = {SINGLE]| SINGLE 3,115,{0|1} YYYY
DOUBLE}

Trace share TRCESHR ={NO|YES} NO 3,117,{0|1} YYYY
Trace word value TRACE ={0|n} 0 3,102,n YYYY
Transmission buffer IOBFSZ=n 1636 3,104,n YYYY
size
User Control SAVE CTLSAVE ={YES|NO} YES 3,119,{0|1} YYYY
function control
Work-file filetype CMSTEMP = aaaaaaaa ADMUTA1 4,501,aaaa,aaaa YYYN
4250 code-page name CPN4250 = aaaaaaaa AFTC0395 4,109,aaaa,aaaa YYYY

Appendix A. GDDM’s default values 139

default values

GDDM external defaults — VSE/Batch

Table 20 (Page 1 of 2). GDDM defaults — options for VSE/Batch

Source syntax of the GDDM Encoded values - list of full- Valid in:
Meaning of default ADMMDFT options default words MFSC
Alphanumeric DATRN= addr ADMDATRN | 3,118,addr YNYY
defaults module
control
Application code APPCPG=n 00351 3.125,n YYYY
page
Call information CALLINF= 0,0 4,1101, NNYN
feedback block: (len,addr) (none) L(CiB),
length: address: A(CIB)
Comments for COMMENT= N/A 1-8000,0,cccc, YYYY
module identifica- (cceeccee, cccc,. ...
tion cccecece
yesssans)
Composed-page VSEMONO = aaaaaaaa ADMIMGE 3,602,aaaa,aaaa YYYY
printer files for
image generation;
monochrome file
name
Composed-page VSECOLM=aaaaaaaa ADMCOL+ 3,603,aaaa,aaaa YYYY
printer files for
image generation;
color file name
Date convention DATEFRM = 4 3.5,{1/2|3]4} YYYY
{112(314}
DBCS default DBCSDFT= GDDM 3,18,{0]1]|2} YYYY
selection {GDDM|NO|YES}
DBCS strings with MIXSOSI= NO 3,17,{0j1} YYYY
shift-out/shift-in {NO|YES}
DBCS symbol set DBCSLIM=n 4 3,113,n YYYY
component in-core
threshold
DBCS symbol set DBCSLNG=c K 3,111,X"'xx000000"' YYYY
language
Defaults file name VSEDFTS = aaaaaaaa SYSIPT 3,604,aaaa,aaaa YNYN
Error exit: use ERRFDBK = GDDMDFLT 3,1102,0 YNYY
GDDM-supplied (GDDMDFLT)
feedback block
Error exit: use ERRFDBK = - 5,1102,2,addr,len YNYY
user-supplied feed- (USERAREA,
back block addr,len
Error threshold ERRTHRS=n 4 3,101,n YYYY
value
Force validation of FRCEVAL = {NO|YES} NO 3,127,{0|1} NYNN
HPA
FSSAVE buffer size SAVBFSZ=n 1024 3,105,n YYYY
ICU format ICUFMDF={0|1|2} 0 3,121,{0|1]2} YYYY

140 Base Programming Reference

default values

Table 20 (Page 2 of 2). GDDM defaults — options for VSE/Batch

Source syntax of the GDDM Encoded values - list of full- | Valld In:
Meaning of defauit ADMMDFT options default words MFSC
Installation code INSCPG=n 00037 3,124,n YNNN
page
Mapgroup storage MAPGSTG=n 8192 3,106,n YYYY
threshold
National language NATLANG=c A 3,4,X'xx000000" YYYN
No operation - - {0|1} YNYY
Number convention NUMBFRM = {1|2|3} 1 3,7,{1|2|3} YYYY
Parameter verifica- PARMVER = {NO|YES} NO 3,1,{0j1} NNYN
tion (SPI)
Short-on-storage STGRET={NO|YES} NO 3,2,{0|1} NNYN
processing
Time convention TIMEFRM ={1]2|3]4} 1 3,6,{1]2|3|4} YYYY
Trace table size, TRTABLE=n 100 3,103,n YYYN
in-core
Trace file name VSETRCE = aaaaaaaa ADMTRCE 3,601,aaaa,aaaa YYYN
Trace control TRCESTR='aaaaaaa' (none) 3,114,aaaa,bbbb,.. YYYY
Trace output width TRCEWID = {SINGLE| SINGLE 3,115,{0|1} YYYY

DOUBLE}

Trace word value TRACE = {0|n} 0 3,102,n YYYY
VSAM data-set OBJFILE = (aaaaaaaa, 4-16,107, YYYY
names for: bbbbbbbb ,...)
Symbol sets ADMF aaaa,aaaa,
Generated ADMF bbbb,bbbb,
mapgroups
Saved pictures ADMF ccce,ceece,
Chart formats ADMF dddd,dddd,
Chart data ADMF eeee,eeee,
GDDM-IMD tutorial ADMGIMP i, ftf,
pages
GDF files ADMF 999g,9999
(reserved) - hhhh,hhhh
(reserved) - iiid, i
Projection defi- ADMF i
nitions
Image data ADMF kkkk,kkkk

Appendix A. GDDM'’s default values 141

default values

Alphabetic list of GDDM default
values

This section lists the GDDM default values in alphabetic
order of the user default description parameter. For
example, for the “always-unlock-keyboard" default you
would look up AUNLOCK in this list.

Note: Where an operand is defined as a 4- or
8-character string, it may be specified as a shorter
value, in which case the string is left-justified and
padded with blanks to 4 or 8 characters.

ABNDRET = {NO|YES}
Shows whether, in a controlled abnormal-end (abend)
condition, GDDM should immediately return control to
the application program with a corresponding error
code and message. The message includes an indi-
cation of the abend code that GDDM would otherwise
have issued.

This default applies to VM/CMS only.

Note: Requesting this function causes GDDM to
return only in controlled abend situations. Uncon-
trolled abends, such as program checks and abends
issued by underlying subsystem services, cannot be
returned in this manner. Also, an abend situation
may be indicative of a major internal error; hence,
successful return to the application cannot be
ensured.

GDDM does not try to correct the abend situation or to
release resources before returning to the application.
Successful continuation of the GDDM session after
return cannot be ensured.

AM3270 = ({LOCAL|REMOTE|LOCREM},{SNA|NONSNA|
SNANOSNA})
Shows the attachment mode of 3270-family devices.
All devices can be local, all remote, or a mixture of
both. All can be SNA devices, all non-SNA, or a
mixture of both.

This default identifies known device characteristics
that GDDM may not otherwise be able to deduce, and
allows GDDM to optimize its device processing.

If GDDM can deduce that all devices are locally
attached, it does not usually generate “compressed
PS load” data streams, even if the device shows that
it supports compression and even if the
IOCOMPR = YES default has been specified.

If GDDM can deduce that all devices are either
locally-attached or SNA, it does not constrain “PS
load” data streams to conform to the 3K transmission
limit required for remote non-SNA devices.

APPCPG=n
The code-page to be used by GDDM applications.
(See Figure 9 on page 124.)

AUNLOCK = {NO|YES}
Shows whether GDDM is, by default, to operate in
always-unlock-keyboard mode. This is defined in the
explanation of the AUNLOCK processing option in
Appendix B, “Processing option groups and name-
lists” on page 149.

CALLINF = (length,address)
Specifies two 4-byte fields containing the length and
address of a call information feedback block provided
by the application program.

142 Base Programming Reference

The area passed by the application must be at least
eight bytes long. The first four bytes receive the
address of the call formats descriptor module. See
Appendix H, “Call format descriptor module” on
page 209. The second four bytes receive the address
of the APL request code module. See
Appendix |, “APL request codes module” on
page 213.

If either call information module cannot be located,
the 8-byte call information feedback block is set to
binary zeros.

CECPINP = {YES|NO}
Specifies whether the full range of CECP code points
is to be allowed in alphanumeric input data from the
keyboard of a family 1 device. (See “Inhibiting input
of extended code points” on page 125.)

CICAUD = (stg-addr,pgm-addr)
Specifies two 4-byte fields, each containing the
address of a 4-byte anchor by which GDDM locates a
record of currently acquired storage resources and
currently acquired program resources, respectively.
For a full explanation of this processing, see “Using
the resource audit trails” on page 14.

CICDECK = aaaa
A 4-character string that is the transient data destina-
tion used by GDDM for object module output resulting
from requests through the image Symbol Editor or the
GDDM-PGF Vector Symbol Editor.

CICDFPX = aaaa
A 4-character string containing the 4-byte prefix used
by GDDM to determine the CICS/VS Temporary
Storage names used for external defaults files. This
option is intended for use in problem determination
only. For the details of how to use it in that context,
see the GDDM Diagnosis and Problem Determination
Guide.

CICGIMP = aaaaaaaa
An 8-character string that is the CICS/VS File Control
data-set name used by GDDM for retrieving the gen-
erated mapgroups required for the operation of
GDDM-IMD.

CICIADS = aaaa
A 4-character string that is the default Transient Data
destination used by GDDM for the output of ADSs
(application data structures) resulting from the use of
GDDM-IMD.

CICIFMT = aaaaaaaa
An 8-character string that is a default “file-type”
assigned to data exported to a VSAM “staging” data
set, as a result of using GDDM-IMD’s Export Utility.

CICPRNT = aaaa ‘
A 4-character string that is the transaction name
assigned to the GDDM CICS/VS Print Utility; see
"CICS/VS print utility” on page 48.

CICSTGF = aaaaaaaa
An 8-character string that is the default CICS/VS File
Control data-set name of the VSAM “staging” data set
to be used with GDDM-IMD.

CICSYSP = aaaa
A 4-character string that is the defauit transient data
destination used by GDDM for output resulting from
system printers. Such devices are defined as

described in Chapter 2, “Using GDDM under
CICS/VS” on page 7.

CICTIiF = {NO|YES}

Shows whether GDDM is to use trapsaction-

independent services. For a full description of this
processing, see Chapter 2, “Using GDDM under
CICS/VS” on page 7.

CICTQRY = aaaa
A 4-character string that is the prefix for the CICS/VS
temporary storage queue names used for saving
device query information.
CICTRCE = aaaa
A 4-character string that is the transient data destina-
tion used by GDDM for diagnostic trace output.
CICTSPX = aaaa
A 4-character string that is the 4-byte prefix used by
GDDM to construct CICS/VS Temporary Storage
names for passing data to the GDDM CICS/VS Print
Utility; see “CICS/VS print utility” on page 48.
CMSAPLF = {DATAANAL|APLTEXT}
Shows the APL feature that is installed on
nonqueriable IBM 3270 printer devices.

DATAANAL

GDDM is to assume that any APL feature installed on
any printer of the above type is the Data Analysis —
APL feature, unless specific application program
device-definition information shows otherwise. The
Data Analysis — APL feature applies to such printers
as the IBM 3284, 3286, and 3288.

APLTEXT

GDDM is to assume that any APL feature installed on
any printer of the above type is the APL/Text feature,
unless specific application program device-definition
information shows otherwise. The APL/Text feature
applies to such printers as the IBM 3287 and 3289.

The default for a specific device is established at the
time of the DSOPEN call for that device. Subsequent
specifications of this default in ESSUDS or ESEUDS
calls do not influence the operation of a device unless
it is closed (by a DSCLS call) and reopened (by a
DSOPEN call).

CMSCOLM = aaaaaaaa
An 8-character string defining the default filetypes
used by GDDM under VM/CMS for multicolored output
resulting from high-resolution image devices. For
details of how to define these devices, see
Appendix B, “Processing option groups and name-
lists” on page 149.

The character string must contain a “+" substitution
character.

CMSDECK = aaaaaaaa
An 8-character string that is the filetype used by
GDDM under VM/CMS for object module output
resulting from requests through the Image Symbol
Editor or the GDDM-PGF Vector Symbol Editor.

CMSDFTS = (aaaaaaaa,bbbbbbbb)
Two 8-character strings that are the filename and
filetype of the External Defaults File under VM/CMS.

CMSIADS = aaaaaaaa
An 8-character string that is the default filetype used
by GDDM under VM/CMS for the output of ADSs
(application data structures) resulting from the use of
GDDM-IMD.

CMSIFMT = aaaaaaaa
An 8-character string that is the default filetype used
by GDDM under VM/CMS for exporting data as a
result of using GDDM-IMD's Export Utility.

CMSMONO = aaaaaaaa
An 8-character string that is the default filetype used
by GDDM under VM/CMS for monochrome output
resulting from high-resolution image devices. For
details of how to define these devices, see
Appendix B, “Processing option groups and name-
lists” on page 149.

default values

CMSMSLT = aaaaaaaa
An 8-character string that is the filetype used by
GDDM under VM/CMS for GDDM-IMD map specifica-
tion libraries (MSLs).

CMSPRNT = aaaaaaaa
An 8-character string that is the filetype used by
GDDM under VM/CMS for generating files to be
printed by the GDDM VM/CMS Print Utility; see
“VM/CMS print utility” on page 55.

CMSSYSP = aaaaaaaa
An 8-character string that is the default filetype used
by GDDM under VM/CMS for disk file output resulting
from system printer devices. For details of how to
define these devices, see Appendix B, "Processing
option groups and name-lists” on page 149.

CMSTEMP = aaaaaaaa
An 8-character string that is the filetype used by
GDDM under VM/CMS for intermediate file oper-
ations.

CMSTRCE = (aaaaaaaa,bbbbbbbb)
Two 8-character strings that are the filename and
filetype used by GDDM under VM/CMS for trace
output.

COMMENT = (cc 3CC, ccce,)
Specifies a comment as a list of strings of 8 or less
nonblank characters, which are ignored by GDDM
default processing. The list must not contain more
than 8000 such strings. This UDS can be used to
imbed a comment into an encoded UDSL for doc-
umentation purposes.

CPNA4250 = anaaaaaa
An 8-character string that is the default code page
name used for a 4250 printer. For a list of possible
values, see Appendix B, “Processing option groups
and name-lists” on page 149.

CTLSAVE = {YES|NO}
Shows whether GDDM is, by default, to allow the
application to control the picture-saving facilities
offered in the User Control environment.

The default value varies according to the subsystem:
On CICS/VS itis NO
On VM/CMS and TSO it is YES
On IMS it is not available.
DATEFRM = {1]2|3|4}
The date convention to be used by GDDM and
GDDM-PGF:
1 MM/DD/YYYY
2 DD.MM.YYYY (European convention)
3 YYYY-MM-DD (ISO and Japanese convention)
4 DD MMM YYYY (MMM are the first 3 characters
of the month name).

Note that GDDM-IMD always displays the date in an
abbreviated form, that is, the first two digits of the
year (YYYY) are omitted.
DATRN = addr
Provides a means by which a program can pass to
GDDM the address of an alphanumeric defaults
module to be used instead of ADMDATRN.
DBCSDFT = {GDDM|NO|YES}
This default, which only has meaning when the
NATLANG default specifies a double-byte character
set (DBCS) language, introduces the concept of the
default error message destination, and gives the user
control over DBCS support for it. DBCSDFT allows
the user to specify, or to ask GDDM to specify,
whether the default error message destination can
support DBCS languages. The default is that GDDM
should determine this.

(US convention)

Appendix A. GDDM'’s default values 143

default values

The values are:

GDDM GDDM must determine whether the device
can support DBCS

NO The device cannot support DBCS

YES The device can support DBCS.

Some examples of default error message destinations
are:
* The user screen (for TSO)
¢ Transaction-initiating terminals (for CICS and
IMS)

* FSQERR destination
* FSEXIT destination.

DBCSLIM =n
An integer, in the range 1 through 16, that is the DBCS
symbol set component in-core threshold. GDDM
usually optimizes DBCS symbol set functions by
retaining loaded DBCS symbol set components in
main storage up to the specified number of compo-
nents.

The default for a specific device is established at the
time of the DSOPEN call for that device. Subsequent
specifications of this default in ESSUDS or ESEUDS
calls do not influence the operation of a device unless
it is closed (by a DSCLS call) and reopened (by a
DSOPEN call).
DBCSLNG =¢c
The language used for DBCS symbol sets.

The DBCSLNG character informs GDDM which symbol

set to load to retrieve the symbol definitions. The
naming convention for DBCS symbol sets is
ADMxcp1p2, where:

x | or V for mode-2 or mode-3 text respectively,
c Language (for example, K for Kanji),

pip2 Page (that is, the first two digits of the DBCS

character).

These symbol sets are loaded as required by GDDM
while processing GSCHAP, GSCHAR, or GSQTB calls.
The defauit DBCSLIM=n specifies the limit on the
number of pages that can be loaded concurrently.

In the encoded UDS format, the default value must be
coded as X'xx000000', where “xx" is the
hexadecimal equivalent of the character “c”.

The default for a specific device is established at the
time of the DSOPEN call for that device. Subsequent
specifications of this default in ESSUDS or ESEUDS
calls do not influence the operation of a device unless
it is closed (by a DSCLS call) and reopened (by a
DSOPEN call).

DFTXTNA = aaaaaaaa
The label on the first ADMMDFTX macro that defines
the Job Control Language (JCL) to be used for batch
printing. See the GDDM Installation and System Man-
agement for VSE manual for further information.

ERRFDBK = (GDDMDFLT)
Shows that the GDDM-supplied default error feed-
back block is used. This default can only be specified
in encoded format and cannot, therefore, be specified
in an ESSUDS call or in an External Defaults File.

ERRFDBK = (USERAREA,addr,len)
Shows that a user or application program-supplied
error feed-back block is used. The arguments are the
address and length of an error feed-back block pro-
vided by the application program. This default can
only be specified in encoded format and cannot,
therefore, be specified in an ESSUDS call or in an
External Defaults File.

144 Base Programming Reference

Iif an application program error feedback block is
located in this manner, GDDM's default error exits do
not send error messages to the user's terminal
device. Rather, these default error exits return error
details in the application program error feedback
block. The format of the information returned in the
feedback block is defined in the GDDM Base Pro-
gramming Reference, Volume 1. GDDM never clears
this error feedback block; it is set only as a resuit of a
GDDM default error exit being invoked.

Note that the ERRFDBK option establishes the default
error action. The FSEXIT(0,n) call shows that the
default error action is to be taken. FSEXIT(addr,n)
shows that the FSEXIT-defined user error exit is to be
used. A subsequent FSEXIT(0,n) restores the default
error action.

ERRTHRS =n
A nonnegative integer that is the default error
threshold value. This value has the same meaning as
the error severity value specified in the FSEXIT call.
However, the specified threshold can have effect from
the start of initialization.

The error threshold value can also be changed in the
FSEXIT call.

FRCEVAL = {NO|YES}
Allows the user to control the validation of high-
performance alphanumerics data.

For example, when a tested application (for example,
a shipped program product that does not use vali-
dation), is suspected of a bug, validation can be
turned back on to determine whether the application
or GDDM is at fault by specifying:

ADMMDFT FRCEVAL=YES

in the external defaults file. This default may not be
specified in the external defaults module, on SPINIT
calls, or by API call.

FF3270P = {NO|AFTER|BEFORE|BOTH}
Shows whether GDDM, including the GDDM Print
Utility, by default, performs a form feed (page eject) at
the start, end, or start and end of processing on a
3270-family printer.

ICUFMDF = {0]1|2}
Allows the user to control the use of chart format
defaults in the Interactive Chart Utility of GDDM-PGF.
All applications on the system (new, old, or stand-
alone ICU) have their chart format defaults controlled
by this one parameter. The values that can be speci-
fied are:

0 Release-dependent ICU choice.

Allows the ICU to choose the chart format
defaults — the actual defaults may change from
one release of GDDM to the next. This value is
usually the same as choosing “2” except when
the ICU is invoked by CHART with
FORMNAME = and DISPLAY#1 or #2; in this
case ICUFMDF is set as if “1” had been chosen.

1 Use the chart format defaults as specified in
GDDM Version 1 Release 4.

2 Use the chart format defaults as specified in
GDDM Version 2 Release 1.

ICUFMSS = {0]1]2}
Specifies the default use of symbo! sets in formats
value in the Interactive Chart Utility of GDDM-PGF.

The values that can be specified in the defaults option

are:

0 Release-dependent ICU choice (same as 2).

1 Use an asterisk () for all symbol sets named in
format defaults.

2 Use Vector Symbol Sets as named in the format
defaults.

ICUISOL = {0[1]2}

Specifies the default isolate value for the Interactive

Chart Utility of GDDM-PGF. This value is inspected

only if the chart-control parameter of the GDDM-PGF

CHART call has the isolate value set to zero.

The values that can be specified in the defaults option

are:

0 The Save, Restore, and Directory panels of the
ICU are made available to the operator.

1 The Save, Restore, and Directory panels are not
made available to the operator.

2 The Save and Restore panels are made available
to the operator, but the Directory panel is not.

ICUPANC = {TURQUOISE|BLUE}
Specifies the default use of the basic panel color for
the Interactive Chart Utility of GDDM-PGF.

The values that can be specified in the defaults option
are:
TURQUOISE The default.
BLUE
IMSDECK = aaaaaaaa
An 8-character string that is the logical terminal name
(LTERM) used by GDDM for object module output
resulting from requests through the Image Symbol
Editor or the GDDM-PGF Vector Symbol Editor.
IMSEXIT = aaaaaaaa
An 8-character string used as a parameter to the
GDDM interactive utility transaction to cause exit
processing for all conversations from a particular
LTERM. -
{MSICU = aaaaaaaa
An 8-character string that is the transaction name for
requesting the Interactive Chart Utility of GDDM-PGF.
IMSISE = aaaaaaaa
An 8-character string that is the transaction name for
requesting the image Symbol Editor.
IMSMAST = aaaaaaaa
An 8-character string that is the LTERM name of the
only LTERM allowed to issue the shutdown request to
the GDDM interactive utility transaction.
IMSMODN = aaaaaaaa
An 8-character string that is the message output
descriptor (MOD) name used by GDDM for sending
non-conversational messages to 3270-family displays.

The default for a specific device is established at the
time of the DSOPEN call for that device. Subsequent
specifications of this default in ESSUDS or ESEUDS
calls do not influence the operation of a device unless
it is closed (by a DSCLS call) and reopened (by a
DSOPEN call).

IMSPRNT = aaaaaaaa
An 8-character string that is the transaction name
assigned to the GDDM IMS/VS Print Utility; see
“IMS/VS print utility” on page 49.

IMSSDBD = aaaaaaaa
An 8-character string that is the DBD name by which
the GDDM system definition data base is accessed.

default values

IMSSEGS = (aaaaaaaa,bbbbbbbb,cccceccce,dddddddd,
eeeeeeee,fffifftf)
Six 8-character strings, which are the names of the
IMS/VS segments and key fields:

aaaaaaaa object data base root-segment name

bbbbbbbb object data base dependent segment
name

cceecece object data base root-segment key field
name

dddddddd object data base dependent segment
key field name

eeeeeeee system definition data base segment
name

ffffffff name of the key field in the above
segment.

IMSSHUT = aaaaaaaa

An 8-character string used as a parameter to the
GDDM interactive utility transaction to cause imme-
diate termination of the transaction.

IMSSYSP = aaaaaaaa
An 8-character string that is the default destination for
output from a system printer device. For details of
how to define system printer devices, see
Appendix B, “Processing option groups and name-
lists” on page 149.

IMSTRCE = aaaaaaaa
An 8-character string that is the ddname used by
GDDM for trace output.

IMSUISZ=n
An integer, in the range 1 through 32000, which is the
size of the data area reserved to contain the MFS
Bypass input to the GDDM interactive utility trans-
action.

IMSUMAX =n
An integer, in the range 1 through 32765, which is the
maximum number of concurrent conversations to be
supported by the GDDM interactive utility transaction.

IMSVSE = aaaaaaaa
An 8-character string that is the transaction name for
requesting the GDDM-PGF Vector Symbol Editor.

IMSWTOD = (n,n,n,n,....)
The descriptor codes for a write-to-operator (WTO)
macro. This is used by GDDM to issue error mes-
sages if all other methods fail. For a description of
valid descriptor codes, see the OS/VS2 MVS Super-
visor Services and Macro Instructions manual.

In the encoded-UDS format, the default value should
be coded as X'xxxx0000', in which bit n=1 (n=1
through 32) corresponds to descriptor code “n" being
requested.
IMSWTOR = (n,n,n,n,...)

The routing codes for a write-to-operator (WTO)
macro. This is used by GDDM to issue error mes-
sages if all other methods fail. For a description of
valid routing codes, see the OS/VS2 MVS Supervisor
Services and Macro Instructions manual.

In the encoded-UDS format, the defauit value should
be coded as X'xxxx0000', in which bit n=1 (n=1
through 32) corresponds to routing code “n” being
requested.
INSCPG=n
The code-page to be used by GDDM as the default for
the installation. (See Figure 9 on page 124.)
IOBFSZ=n
An integer, in the range 1024 through 32000, which is
the transmission buffer size used by GDDM for
3270-family devices. GDDM splits outbound terminal
transmissions to fit within this buffer size. Under
IMS/VS, this Is the size of segments, excluding the

Appendix A. GDDM's default values 1495

default values

LLZZ prefix, that are inserted into the Message
Queue.

On a non-SNA connection, for a 3179-G or 3192-G
color display station, a 3270-PC/G or 3270-PC/GX
work station, or a device supported by GDDM-PCLK,
the outbound transmission size is restricted to
approximately 3500 bytes to avoid possible controller
timeouts.

Inbound transmission sizes are regulated according
to the system you are using:

CICS/VS Maximum inbound transmission size is
regulated by CICS/VS system generation
(specifically, the Terminal 1/O Area
lengths defined in the Terminal Control
Table (TCT)), and is not affected by the
value of IOBFSZ.

User transactions cannot receive input;
therefore, this field does not apply to input
processing. The size of the input area
allocated in the GDDM interactive utility
transaction is defined in the IMSUISZ
option.

TSO The maximum Iinbound transmission size
is regulated by TSO and VTAM system
and network definition. Within this bound,
IOBFSZ determines the size of an indi-
vidual work buffer but does not otherwise
affect or limit inbound transmission proc-
essing.

IOBFSZ determines the default inbound
transmission buffer size used by GDDM.
GDDM acquires temporary buffers of
32000 bytes for larger inbound terminal
data streams (resulting from 3270 READ
MODIFIED commands).

The default for a specific device is established at the
time of the DSOPEN call for that device. Subsequent
specifications of this default in ESSUDS or ESEUDS
calls do not influence the operation of a device unless
it is closed (by a DSCLS call) and reopened (by a
DSOPEN call).
IOCOMPR = {NO|YES}

Shows whether GDDM is to create compressed PS
load data streams. See also the description of the
AM3270 default option on page 142.

Some IBM 3270 series terminals optionally support
compression of programmed symbol (PS) data
streams. If such compression is to be inhibited, it is
generally recommended that this be done on a spe-
cific basis through device configuration parameters.
However, the IOCOMPR option can be used to inhibit
compression, on a global basis, of all PS load data
streams generated by GDDM.

The default for a specific device is established at the
time of the DSOPEN call for that device. Subsequent
specifications of this default in ESSUDS or ESEUDS
calls do not influence the operation of a device unless
it is closed (by a DSCLS call) and reopened (by a
DSOPEN call).
1OSYNCH = {NO|YES}

Shows whether GDDM is to perform synchronized ter-
minal /0. Usually, the use of synchronized terminal
110 implies longer transmission times and increased
processing overhead. It may be useful to prevent
jamming a network with large data streams used for
graphics. In this context, this control might be used
with a smaller value of lOBFSZ and SAVBFSZ.

IMS/VS

VM/CMS

146 Base Programming Reference

The default for a specific device is established at the
time of the DSOPEN call for that device. Subsequent
specifications of this default in ESSUDS or ESEUDS
calls do not influence the operation of a device unless
it is closed (by a DSCLS call) and reopened (by a
DSOPEN call).

The meaning of synchronized terminal 1/0O differs

according to the subsystem in use:

CICS/IVS Each GDDM outbound terminal trans-

mission which expects input to be
received, specifies “definite,” requiring
that the terminal returns a definite
response, where applicable, before GDDM
continues with the next transmission.
Each GDDM outbound terminal trans-
mission which does not expect input to be
received, specifies “wait", requiring that
the application program waits until the
transmission has been completed.

7SO Each GDDM outbound terminal trans-
mission (using TPUT) specifies "hold,”
requiring that the transmission physically
arrives at the terminal, where applicable,
before GDDM continues with the next
transmission.

MAPGSTG=n

An integer defining the mapgroup storage threshold.

GDDM usually optimizes mapping functions by

retaining loaded mapgroups in main storage up to the

specified threshold value.

The default for a specific device Is established at the
time of the DSOPEN call for that device. Subsequent
specifications of this default in ESSUDS or ESEUDS
calls do not influence the operation of a device unless
it is closed (by a DSCLS call) and reopened (by a
DSOPEN call).
MIXSOSI = {NO|YES}

Shows whether alphanumeric and graphic character
strings may be “mixed"” that is, may contain shift-out
(SO) (X'OE') and shift-in (SI) (X'OF') characters to
mix one-byte characters with two-byte DBCS charac-
ters.

Except on devices that support mixed alphanumeric
fields (such as the IBM 5550 and 5§553), alphanumeric
fields that are to contain mixed strings must also be
defined as “mixed” by the ASFSEN call. On devices
that support mixed alphanumeric fields, it is not nec-
essary to specify MIXSOSI=YES, unless mixed
graphic character string support is also required.
(See also the SOSIEMC external default on page 147.)

The default for a specific device Is established at the
time of the DSOPEN call for that device. Subsequent
specifications of this defauit in ESSUDS or ESEUDS
calls do not influence the operation of a device unless
it is closed (by a DSCLS call) and reopened (by a
DSOPEN call).

NATLANG=c
The language used by GDDM, the GDDM-PGF Interac-
tive Chart Utility, and Presentation Graphics routines
in generating messages, control-mode panels, Menu
Panels, Help Panels, and generated charts. The
meanings of “c” are defined as:

American-English

Brazilian

Simplified Chinese (People’'s Republic of China)

Danish

French

German

Korean (Hangeul)

ITOHOTOOW>

ltalian

Japanese (Kanji)

Norwegian

Canadian French

Spanish

Traditional Chinese (Taiwan — Republic of
China)

Swedish.

Languages other than American-English are sup-
ported only if the corresponding National Language
Support special feature is available and installed.
American-English language support is provided as
part of GDDM-PGF.

In the encoded-UDS format, the default value must be

coded as X'xx000000', where “xx" is the

hexadecimal equivalent of the character “c”.
NUNMBFRM = {1]2|3}

The number representation convention to be used by

GDDM and GDDM-PGF is:

1 N,NNN,NNN.MMM (Period decimal convention)
2 N.NNN.NNN,MMM (Comma decimal convention)
3 N NNNNNNMMM (French decimal convention).

OBJFILE = ([aaaaaaaa],[bbbbbbbb],...)
Up to eleven 8-character strings that show the default
file-types (VM/CMS), default ddnames (TSO), default
File Control data-set names (CICS/VS), or default DBD
names (IMS/VS):

< HwvpzxX~-

aaaaaaaa symbol sets

bbbbbbbb generated mapgroups

ccceeece saved pictures

dddddddd chart formats

eeeeeeee chart data

fEffffff GDDM-IMD tutorial pages

99999999 GDF files

hhhhhhhh Reserved

iiiiiidi Chart data definition (under TSO and
VM/CMS)
Reserved (under CICS/VS and IMS)

33333343 Projection definition

kkkkkkkk Image data.

PARMVER = {NO|YES}
Shows whether all calls through the system pro-
grammer interface should be verified for correctness
of function code and number of parameters.
Requesting this function incurs additional processing
overheads.

SAVBFSZ=n
An integer, in the range 1024 through 32000, which is
the FSSAVE transmission buffer size used by GDDM.
The FSSAVE function stores preformatted data
streams ready for subsequent recall and display by
FSSHOW. SAVBFSZ determines the transmission
buffer size used by such a saved data stream. The
value of SAVBFSZ at the time of the FSSAVE call must
not exceed the value of IOBFSZ at the time of the
FSSHOW call.

For maximum efficiency, the FSSAVE buffer size
should be chosen so that the value 4088/(FSSAVE
buffer size + 5) is greater than 2 and close to an
integer.

The default for a specific device is established at the
time of the DSOPEN call for that device. Subsequent
specifications of this default in ESSUDS or ESEUDS
calls do not influence the operation of a device unless
it is closed (by a DSCLS call) and reopened (by a
DSOPEN call).

default values

For 3179-G or 3192-G color display stations,
3270-PC/G or 3270-PC/GX work stations, and devices
supported by GDDM-PCLK, the size saved is
restricted to approximately 3500 bytes to avoid pos-
sible controller timeouts when subsequently showing
the saved file.
SOSIEMC=c¢

Shows the character that is wused as the
shift-out/shift-in emulation character in mixed char-
acter strings. The character can be any keyable char-
acter that is consistent with the syntax of GDDM
defauits; however, the character specified must not
then be used for any other purpose (for example, as
its own keyable value) in a mixed-string field.

The emulation character is ignored unless the
MIXSOSI| = YES default is specified and the device is a
family-1 display other than an IBM 5550.

In the encoded-UDS format, the defauit value must be
coded as X'xx000000', where “xx" is the
hexadecimal equivalent of the character “c".

The default for a specific device is established at the
time of the DSOPEN call for that device. Subsequent
specifications of this default in ESSUDS or ESEUDS
calls do not influence the operation of a device uniess
it is closed (by a DSCLS call) and reopened (by a
DSOPEN call).
STGRET = {NO|YES}

Shows whether not-enough-storage or short-on-
storage conditions should be processed by GDDM,
and whether controi should be returned immediately
to the application program with a corresponding error
code. Otherwise, storage requests are unconditional,
with subsequent action determined by the subsystem.

Note: Requesting this function causes GDDM to issue
conditional storage requests only where these are
available in the subsystem. Some subsystem
requests are implicitly unconditional; in these cases,
subsequent action is determined by the subsystem.
TIMEFRM = {1|2|3|4}

The time convention to be used by GDDM and
GDDM-PGF is:

1 HH:MM xM (U.S. convention; XM= AM or PM)
2 HH.MM (International convention)

3 -HH.MM.SS (ISO convention)

4 ,HH,MM,SS (Japanese convention).

Note that GDDM-IMD always displays the time using
the International convention (format 2).

TRACE = {0|n}
An integer that is the default value of the trace control
word at initialization. The value may be specified
either as a decimal integer or as an Assembler-
language hexadecimal constant. The use of trace is
described in the GDDM Diagnosis and Problem Deter-
mination Guide.

TRCESHR = {NO|YES}
Shows whether the trace output file is to be shared
between more than one instance of GDDM. This
default is only available on TSO and VM/CMS. The
use of trace is described in the GDDM Diagnosis and
Problem Determination Guide.

TRCESTR = 'aaaaaaaaaaaaa’
Shows the default value of the trace control word at
initialization, which is no trace. The alphanumeric
string aaaaaaaaaaaaa, which can be from 1 through
256 characters long, indicates the type of trace; the
use of trace is described in the GDDM Diagnosis and
Problem Determination Guide.

Appendix A. GDDM's default values 147

default values

TRCEWID = {SINGLE|DOUBLE}
Shows the default value of the trace output width
control word at initialization.
SINGLE
GDDM is to produce the trace output as 4-word
hexadecimal.
DOUBLE
GDDM is to produce the trace output as 8-word
hexadecimal, thus saving space.
The use of trace is described in the GDDM Diagnosis
and Problem Determination Guide.

TRTABLE=n
An integer, in the range 5 through 1000, defining the
number of trace entries to be held in the cyclic in-core
trace table.

TSOAPLF = {DATAANAL|APLTEXT}
Shows the APL feature that is installed on
nonqgueriable IBM 3278, and 3279 Model 2 displays.

DATAANAL

GDDM is to assume that any APL feature installed on
any display of the above type is the Data Analysis —
APL feature, unless specific application program
device-definition information shows otherwise. The
Data Analysis — APL feature applies to such termi-
nals as the IBM 3279.

APLTEXT

GDDM is to assume that any APL feature installed on
any display of the above type is the APL/Text feature,
unless specific application program device-definition
information shows otherwise. The APL/Text feature
applies to such terminals as the IBM 3278 and 3279.

The default for a specific device is established at the
time of the DSOPEN call for that device. Subsequent
specifications of this default in ESSUDS or ESEUDS
calis do not influence the operation of a device unless
it is closed (by a DSCLS call) and reopened (by a
DSOPEN call).

TSOCOLM = aaaaaaaa
An 8-character string defining the default ddnames or
high-level qualifiers used by GDDM for multicolored
output resulting from high-resolution image devices.
For details of how to define these devices, see the
GDDM Base Programming Reference, Volume 1.

The character string must contain a “+" substitution
character.

TSODECK = aaaaaaaa
An 8-character string that is the ddname used by
GDDM for object module output resulting from
requests through the Image Symbol Editor or the
GDDM-PGF Vector Symbol Editor.

TSODFTS = aaaaaaaa
An 8-character string that is the ddname used by
GDDM to access an External Defaults File.

TSOEMUL = {NO|YES}
This specifies whether, when operating in the MVS
batch environment, TSO terminal I/O supervisor calls
are emulated through the MVS screening facility. The
emulation routines are compatible with the current
version of TSO. For details of MVS SVC screening
see the OS/VS2 System Programming Library: Super-
visor Manual, and for TSO details see the OS/VS2
TSO Guide to Writing a Terminal Monitor Program or
a Command Processor.

TSOIADS = aaaaaaaa
An 8-character string that is the default ddname used
by GDDM for the output of ADSs (application data
structures) resulting from the use of GDDM-IMD.

148 Base Programming Reference

I

TSOIFMT = aaaaaaaa
An 8-character string that is the default ddname used
by GDDM for exporting data as a result of using
GDDM-IMD's Export Utility.

TSOGIMP = aaaaaaaa
An 8-character string that is the ddname used by
GDDM for retrieving the generated mapgroups
required for the operation of GDDM-IMD.

TSOMONO = aaaaaaaa
An 8-character string that is the default ddname or
high-level qualifier used by GDDM for monochrome
output resulting from high-resolution image devices.
For details of how to define these devices, see the
GDDM Base Programming Reference, Volume 1.

TSOPRNT = aaaaaaaa
An 8-character string used to generate a name of the
form “aaaaaaaa.REQUEST.QUEUE" to identify the
Print Utility Master Print Queue data set, where this
has not otherwise been identified by DD statement.
This string is also used to generate names of the form

[dsn-prefix.] [userid.]aaaaaaaa.REQUEST. #nnnnn,

which are assigned to intermediate data sets:required
for queued printer support.

TSOSYSP = aaaaaaaa
An 8-character string that is the default ddname used
by GDDM for output resulting from system printer
devices. For details of how to define system printer
devices, see the GDDM Base Programming Refer-
ence, Volume 1.

TS0S99S=n
An integer defining the size (in bytes) of the interme-
diate data sets that are dynamically allocated for
queued printer support. The IBM-supplied default of
742710 is approximately equivalent to three 3330 cyl-
inders.

TSO0S99U = aaaaaaaa
An 8-character string defining the UNIT specification
used for intermediate data sets that are dynamically
allocated by GDDM in TSO Batch or MVS Batch. In
foreground TSO or if the option is set to blanks (by
specifying it as TSOS99U=()), GDDM allows the UNIT
specification to be defaulted from the TSO user attri-
bute data set (UADS), where available.

TSOTRCE = aaaaaaaa
An 8-character string that is the ddname used by
GDDM for trace output.

VSECOLM = aaaaaaaa
An B-character string defining the default file name
used by GDDM for muiticolored output resulting from
files containing graphics or images suitable for use by
composed-page printers. Such printers are defined
by means of the DSOPEN GDDM function described in
the GDDM Base Programming Reference, Volume 1.

The character string must contain a “+" substitution
character.

VSEDFTS = aaaaaaaa
An 8-character string, which is the file name of the
external defaults file.

VSEMONO = aaaaaaaa
An 8-character string defining the default file name
used by GDDM for monochrome output resulting from
files containing graphics or images suitable for use by
composed-page printers.

VSETRCE = aaaaaaaa
An 8-character string, which is the file name used by
GDDM for trace output.

procopts

Appendix B. Processing option groups and name-lists

Processing options (procopts) allow the user to specify
precisely how the input or output of a device is to be
processed, with regard to the devices available, the
devices' capabilities, and the subsystem under which

they run.

Name-lists are a means of grouping devices according
to the device family, and the subsystem under which
the application is running. For information on these,
see “Name-lists” on page 160.

Processing option groups: summary

Processing option groups can be specified in DSOPEN
calls, see the GDDM Base Programming Reference,
Volume 1, and in nicknames, see “Using nicknames to
define device characteristics” on page 3.

The processing option groups are summarized In
numeric order of option group code in Table 21.

Detailed descriptions, in numeric order of option group
code, are given on pages 150 through 159.

Table 21 (Page 1 of 2). Summary of processing options and nickname keywords
Procopt
group Nickname
code keyword Arguments Examples
1 BMSCOORD| {NOJ|YES} (BMSCOORD,NO)
2 OUTONLY {NO|YES} (OUTONLY,NO)
3 AUNLOCK {NO|YES} (AUNLOCK,NO)
4 PRINTCTL nnnNn,..... (PRINTCTL,0,1,66,0,0,0,80,0)
5 CDPFTYPE {PRIM|SEC} (CDPFTYPE,PRIM)
6 HRISPILL {YES|NO} (HRISPILL,YES)
7 HRISWATH n (HRISWATH,10)
8 HRIPSIZE w,d,{TENTHS|MILLS} (HRIPSIZE,50,30,TENTHS)
9 HRIFORMT | {BITMAP|CDPF} (HRIFORMT,BITMAP)
10 PLTFORMF | {NO|YES} (PLTFORMF,NO)
1 PLTPENV n (PLTPENV,30)
12 PLTPENW n (PLTPENW,10)
13 PLTPENP n (PLTPENP,10)
14 PLTAREA xmin,xmax,ymin,ymax (PLTAREA,0,70,0,70)
15 PLTPAPSZ {*|A4|A3|...|AIB]...} (PLTPAPSZ,A4)
16 PLTROTAT {NO|YES} (PLTROTAT,NO)
17 SEGSTORE | {YES|NO} (SEGSTORE,NO)
18 STAGE2ID XXXXXXXX XXXXXXXX, o o (STAGE2ID,*,AUX2)
19 LOADDSYM | {NOJ|YES} (LOADDSYM,YES)
20 ORIGINID {NO|YES} (ORIGINID,YES)
21 LCLMODE {NO|YES} (LCLMODE,NO)
22 HRIDOCNM | xxxxxxxx (HRIDOCNM,FIGURE9)
23 SPECDEV {aaaaaaa|w},ddname (SPECDEV,1BM5080)
24 WINDOW {NO|YES} (WINDOW,YES)
25 PSCNVCTL | {NO|START|CONTINUE} (PSCNVCTL,START)
26 FASTUPD {N} (FASTUPD,0)
27 CTLFAST {NO|YES} (CTLFAST,YES)
28 CTLMODE {*|YES|NO} (CTLMODE,NO)
29 CTLKEY {TYPE,VALUE} (CTLKEY,1,1)
30 CTLPRINT {YES|NO} (CTLPRINT,NO)
31 CTLSAVE {YES|NO} (CTLSAVE,YES)
32 INRESRCE {YES|NO} (INRESRCE,YES)
33 PCLK {YES|NO} (PCLK,YES)
34 DEVCPG n (DEVCPG,00273)
35 IPDSQUAL {*|DP|DPQ|DPT|DPTQ|NLQ} (IPDSQUAL,NLQ)
36 PCLKEVIS {YES|NO} (PCLKEVIS,YES)
1000 CMSINTRP {PA1PA2|PA2|PA1|NONE} (CMSINTRP,PA1PA2)
1001 CMSATTN {ASIC|EXTENDED},n,addr (CMSATTN,BASIC,0,0)
1002 CPSPOOL XXXXXXXX,XXXXXXXX, o o o (CPSPOOL,TO,RSCS)
1003 CPTAG XXXXXXXX,XXXXXXXX, . « (CPTAG,0UR3287,PRT, = ,GRAPH)

Appendix B. Processing option groups and name-lists

149

procopts

Table 21 (Page 2 of 2). Summary of processing options and nickname keywords

2001 TSORESHW
2002 PRINTDST
3000 COLORMAS| n

Procopt

group Nickname

code keyword Arguments Examples
1004 INVKOPUV {NO|YES} (INVKOPUV,YES)
2000 TSOINTRP {PA1|NONE} (TSOINTRP,NONE)

n
{CLASS|*}, {DESTNAME|*|DDONAME}

(TSORESHW, 12)
(PRINTDST, %, %)
(COLORMAS,1)

Processing option groups: full
descriptions

The processing option groups are listed here in
numeric order of option group code. A full description
is given of each processing option group, in this format:

* The processing option group code and nickname
keyword

* A definition of the nickname syntax

¢ A brief description of the function of the processing
option group
The applicable subsystems
The applicable device families
The length of the processing option group,
expressed in fullwords

¢ A breakdown of the function of each full-word.

The processing option groups are summarized in
Table 21 on page 149.

0 Dummy
Nickname syntax: not applicable

A dummy processing option group, which is ignored. it
can be used to pad processing option-lists to any
desired length.

Subsystems: All
Devices: All
Length: 1 full-word.

1 The option group code: 0

1 Coordination mode
Nickname syntax: (BMSCOORD,{NO|YES})

Coordination mode allows a GDDM CICS/VS applica-
tion program to use Basic Mapping Support (BMS) for
the alphanumeric portion of the screen, and lets GDDM
build and display the graphics portion. The GDDM
output functions are modified so that they alter only that
part of the screen covered by the graphics field and do
not corrupt any data established by BMS. Coordination
mode is more fully described in “Using GDDM with
Basic Mapping Support” on page 13.

Subsystems: CICS/VS
Devices: Family 1
Length: 2 full-words.

1 The option group code: 1

2 The type of coordination:
0 Not in coordination mode (defauit)
1 In coordination mode.

150 Base Programming Reference

2 Output-only mode
Nickname syntax: (OUTONLY,{NO|YES})

Output-only mode means that functions such as
ASREAD and FSSHOW, which normally imply a wait for
the operator to enter data, should instead return imme-
diately to the application without unlocking the key-
board (unless this has been imposed by the
always-unlock-keyboard mode, see option group 3).
One use of this option is to allow a device to be opened
so that it can display a continuous series of pictures
using FSSHOW, without any operator intervention.

Subsystems: All
Devices: Family 1
Length: 2 full-words.

1 The option group code: 2

2 Normal or output-only mode:
0 Not output-only mode (default)
1 Output-only mode.

3 Always-unlock-keyboard mode
Nickname syntax: (AUNLOCK,{NO|YES})

Always-unlock-keyboard mode means that functions
such as FSFRCE, which normally cause output without
unlocking the keyboard, should instead unlock the key-
board, while still returning immediately to the applica-
tion. This could be useful in the IMS/VS environment,
to avoid the need for the operator to press RESET
before being able to enter the next transaction.

It is also useful in CICS pseudoconversational applica-

.tions to cause keyboards to be unlocked on FSFRCE

instead of DSCLS, which improves performance.

The default value is defined in the AUNLOCK param-
eter in GDDM'’s external defaults (see
Appendix A, “GDDM's default values” on page 127),
and is subsystem-dependent.

This procopt is set to the value current at DSOPEN
time. It is valid from the issue of DSOPEN to the issue
of DSCLS. The value cannot be altered dynamically, if
a change is required, the device must be reinitialized.

Note: For a GDDM program running under the control
of a task manager, if this processing option is specified
for a virtual device, it is ignored, and the processing
option for the real device is used instead.

Subsystems: All
Devices: Family 1
Length: 2 full-words.

1 The option group code: 3
2 The type of keyboard mode:
0 Normal mode (default for CICS/VS, TSO,
VM/CMS)
1 Always-unlock-keyboard mode (default for
IMS/VS).

4 Print control options
Nickname syntax: (PRINTCTL,n,n,n,n,....)

(where n,n,n,n,... represents the values of Fullword 3
onwards, as defined below).

This option group controls printing and copy functions.
The group has this format:

Fullword 1 Option code = 4

2 No. of full-words following

Heading indicator

Sw

Number of copies

5 Page depth

6 Top margin

7 Left margin

8 Bottom margin

9 Max FSLOG characters/line

10 Alphanumeric device type

Note: This option group is of variable length and is
regarded as being “mergeable” (that is, if some of the
options are omitted, the current values of these options
are not changed).

Subsystems: All
Devices: Families 1,2, and 3
Length: 2+ N full-words.

1 The option group code: 4.

2 Number (N) of full-word values that follow (can be
0 through 8).

3 The heading indicator:
0 Do not print a heading page
1 Print a heading page (default).

4 The number of copies (applicable to family 2
only): The default is 1. If 0 is specified, 1 is

assumed.

5 The page depth in rows (FSLOG and FSLOGC
only):
The default is 66 or the maximum page depth for
the device.

The page depth specifies the vertical size of a
page of paper, fold-to-fold, in rows. If zero is
specified for this parameter, a value of 66 (or the
device maximum) is assumed.

6 The depth of the top margin: The defauit is 0.

The top and left margins (full-words 6 and 7)
specify the top left-hand corner, within each page
of the paper, of the printed data. Also, for FSLOG
and FSLOGC purposes, a bottom margin may be
specified. The total number of printed lines for
each page for FSLOG and FSLOGC data is:

(page depth)-(top margin)-(bottom margin)

procopts

Note: The maximum page size for the device is
taken from the device definition, as defined by the
device-token parameter.

7 The width of the left margin: The default is 0.

See the description for the top margin, under
Fullword 6.

8 The depth of the bottom margin (FSLOG and
FSLOGC only): The default is 0.

9 Maximum number of characters per line (FSLOG
and FSLOGC only): The default is 80.

Left margin + maximum number of characters
per line must not exceed the maximum page
width for the device.

10 Alphanumeric device type for translation: The
default is 0.

For details of the values that can be specified,
see the description of ASTYPE in the GDDM Base
Programming Reference, Volume 1.

§ Output file data-stream type
Nickname syntax: (COPFTYPE,{PRIM|SEC})

Determines whether the formatted output file is to be
constructed as a primary or a secondary data stream.

Subsystems: TSO, VM/CMS
Devices: Family 4
Length: 2 full-words.

1 The option group code: 5.
2 Data-stream type:
0 Produce a primary data stream, or document
(the default)
1 Produce a secondary data stream, or page
segment.

A primary data stream is a complete document
that can be printed as it stands. A secondary
data stream is one that must be imbedded in
another document before it can be printed.
Primary data streams can be processed by:

* |BM Print Services Facility (PSF) for printing
on the 3800-3, and 3820 printers

e IBM Composed Document Print Facility
(CDPF) for printing on the 4250 printer.

Note: If a 4250 output file is to contain text that
refers to the 4250-printer fonts in addition to
graphics picture data, it is recommended that the
file be formatted as a page segment and included
as part of another document.

6 Spill fite usage
Nickname syntax: (HRISPILL,{YES|NO})

Determines whether a spill file is to be used while proc-
essing a high-resolution image file.

The use of a spill file reduces storage requirements at
the cost of processing time. If a spill file is not used
and segments are used, primitives outside segments
(temporary data) do not form part of the final image,
except where they occur between the last GSSCLS and
ASREAD or FSFRCE calls.

Subsystems: TSO, VM/CMS
Devices: Family 4
Length: 2 full-words.

Appendix B. Processing option groups and name-lists 151

procopts

1 The option group code: 6.
2 Spill file usage:
0 Store internal picture description on disk in a
spill file (the default)
1 Store internal picture description in main
storage.

7 Number of swathes
Nickname syntax: (HRISWATH,n)

Determines whether a high-resolution image is to be
processed as one horizontal “swath” or many.
(“Swathes"” are also called slices.)

The use of swathing reduces storage requirements but
at the cost of processing time.

Subsystems: TSO, VM/CMS
Devices: Family 4
Length: 2 full-words.

1 The option group code: 7

2 The number of swathes to be used: The default is
1, which means generate the output image with
just one pass through the internal picture
description.

8 Output paper size
Nickname syntax: (HRIPSIZE,w,d,{TENTHS|MILLS})

Determines the size of the paper, as width by depth.
The default size of the paper is given by the device
characteristics, which are defined by the device token
being used.

Note: The term “paper size” is used, although the
output medium need not be paper.

Subsystems: TSO, VM/CMS
Devices: Family 4
Length: 4 full-words.

1 The option group code: 8.
2 The paper width: The width, in the units defined

in Fullword 4.

3 The paper depth: The depth, in the units defined
in Fullword 4.

4 Units: The units used in Fuliword 2 and

Fullword 3.
0 Units are tenths of an inch
1 Units are millimeters.

9 Output file format
Nickname syntax: (HRIFORMT,{BITMAP|CDPF})

Unformatted output is a representation of the picture as
one bit for each pixel. Formatted output is in a form
suitable for processing either by the Print Services
Facility (PSF) for 3800-3 and 3820 printers, or by the
Composed Document Printing Facility (CDPF) for the
4250.

Subsystems: TSO, VM/CMS
Devices: Family 4
Length: 2 full-words.

1 The option group code: 9.
2 Formatted or unformatted output:
0 Produce unformatted output
1 Produce formatted output (the default).

152 Base Programming Reference

10 Plotter page feed
Nickname syntax: (PLTFORMF,{YES|NO})

Specifies whether a page feed is required after each
GDDM page transmitted to the plotter by an output call
such as FSFRCE. A warning message (ADM0094) is
issued when the device is opened if it does not support
page feed. The GDDM default action is to cause a page
feed for those devices that support it.

Subsystems: CICS/VS, TSO, VM/CMS
Devices: 6182, 6186 plotters
Length: 2 full-words.

1 The option group code: 10.
2 The plotter form feed option:
0 Page feed (default for those devices that
support page feed).
1(NO) No page feed.
2 (YES) Page feed.

11 Plotter pen velocity
Nickname syntax: (PLTPENV,n)

Specifies the pen velocity to be used by a plotter. The
value applies to all the pens in the plotter. The default
(0) uses the velocity set up on the plotter. It may be
necessary to specify a lower value for pens used on
material such as transparencies.

The recommended values are:
* On paper:

50 centimeters/second:
60 centimeters/second:
15 centimeters/second:

Fiber-tipped pens
Roller
Drafting.

* On transparencies:
10 centimeters/second: Fiber-tipped pens.
Subsystems: CICS/VS, TSO, VM/CMS

Devices: Family-1 7371, 7372, 7374, and 7375 plot-
ters
Length: 2 full-words.

1 The option group code: 11.
2 The pen velocity:

0 The velocity set up by the
plotter operator (the default).
The velocity in centimeters per
second, related to the actual
velocity values available for
each plotter.

1 through 255

If a value greater than the maximum for the
plotter is specified, the maximum velocity is set.
This is:

38 centimeters/second: For a 7371 and 7372
60 centimeters/second: For a 7374 and 7375.

Note: Refer to the details on the velocity select
(VS) instruction in the appropriate color plotter
programming manual.

12 Piotter pen width
Nickname syntax: (PLTPENW,n)

Specifies the width of the pens to be used in a plotter.
Applies to all the pens in the plotter.

GDDM uses the pen width to determine how far apart to
space lines when the plotter fills areas. |If the plotter
uses pens of different widths in the same picture, the

pen-width value must be set to the size of the pens
used for filling areas.

The pen width is used for:

Image pixel size

Shading line separation

Double-width line separation

Background line width where clipped from under-
lying areas.

Subsystems: CICS/VS, TSO, VM/CMS

Devices Family-1 7371, 7372, 7374, 7375, and
6180 plotters
Length: 2 full-words.

1 The option group code: 12.
2 The pen width, in tenths of a millimeter:

0 Pen width of 0.3 millimeters (the
’ default)
1 through 10 Pen width of 0.1 through 1.0
millimeters.

13 Plotter pen pressure
Nickname syntax: (PLTPENP,n)

Specifies how hard the plotter pen is to be pressed onto
the plot bed.

The recommended values are:

¢ On paper:
10 grams: Fiber-tipped pens
18 grams: Roller
50 grams: Drafting.

* On transparencies:
18 grams: Fiber-tipped pens.

Subsystems: CICS/VS, TSO, VM/CMS
Devices: Family-1 7374 and 7375 plotters
Length: 2 full-words.

1 The option group code: 13.
2 The pen pressure:
0 The pressure, as set by the user
on the plotter control buttons
(see below).
The pressure, in grams, related
to the actual pressure that can
be set on the plotter with the
control buttons.

if a value greater than the maximum for the
plotter is specified, the maximum pressure is set.

1 through 255

If a value less than the minimum for the plotter is
specified, the minimum pressure is set.

The range of values that can be set on the 7374
and 7375 plotters using the plotter control buttons
is:

Button Pressure
10 grams
18 grams
26 grams
34 grams
42 grams
50 grams
58 grams
66 grams.

Note: Refer to the details on the pressure select
instruction in the appropriate color plotter pro-
gramming manual.

ONOINLWON =

procopts

14 Plotting area
Nickname syntax: (PLTAREA,xmin,xmax,ymin,ymax)

Specifies the area of the paper into which GDDM is to
draw the picture on a plotter. If all values are specified
as zero, the user defines the plotting area (before the
DSOPEN call is issued) by pressing the appropriate
buttons (P1, P2, and ROTATE) on the plotter, when
these buttons are supported; otherwise, the maximum
plotting area is used.

Subsystems: CICS/VS, TSO, VM/CMS

Devices: Family-1 7371, 7372, 7374, 7375, and
6180 plotters
Length: 5 full-words.

1 The option group code: 14.

2 The minimum x value as a percentage of the
maximum paper width. The default is 0.

3 The maximum x value as a percentage of the
maximum paper width. The default is 100.

4 The minimum y value as a percentage of the
maximum paper height. The default is 0.

5 The maximum y value as a percentage of the
maximum paper height. The default is 100.

15 Plotter paper size
Nickname syntax: (PLTPAPSZ,{%x|A4|A8|...|A|B|...})

Specifies the size of the paper that is loaded in a
plotter. Plotters that have paper-size switches must be
set correctly to indicate the size of the paper loaded;
otherwise, the aspect ratio might be distorted, the
picture might not be placed centrally, or only part of the
picture might be drawn.

If this option group is not specified, GDDM uses what-
ever paper size is already loaded in the plotter.

Subsystems: CICS/VS, TSO, VM/CMS

Devices: Family-1 7371, 7372, 7374, 7375, and
6180 plotters
Length: 3 full-words.

1 The option group code: 15.
2 The paper-size code:
Oorx The default (whatever paper size is

loaded)

A or Ad size

B or A3 size

C or A2 size

D or A1 size

E or A0 size.

3 The dimension-type code:

dDWN =

0 or x ISO dimensions (the default)
1 ISO dimensions (A4, A3, A2, A1, or A0)
2 ANSI dimensions (A, B, C, D, or E).

16 Plotter picture orlentation
Nickname syntax: (PLTROTAT,{NO|YES})

By default, GDDM draws the piotted picture with the x
(horizontal) axis along the longest side of the paper
(“landscape” format). This option group allows the
picture to be drawn to be rotated by 90 degrees, so that
the x axis is along the shorter side of the paper
(“portrait” format). This does not affect the way in
which the paper is placed in the plotter; instead, it
specifies the orientation of the picture relative to the
paper on the plotter bed.

GDDM ignores option group 16 when the drawing area
is set by pressing buttons on the plotter (see option

Appendix B. Processing option groups and name-lists 153

procopts

group 14) because this action controls the orientation of
the picture.

Subsystems: CICS/VS, TSO, VM/CMS

Devices: Family-1 7371, 7372, 7374, 7375, 6180
plotters
Length: 2 full-words.

1 The option group code: 16.
2 The orientation value:
0 No rotation (the default)
1 No rotation
2 Rotate the picture by 90 degrees.

17 Retained or unretained mode
Nickname syntax: (SEGSTORE,{YES|NO})

Indicates whether a 3270-PC/G or 3270-PC/GX work
station is to operate in retained or unretained mode.

Retained mode means that graphics segments are held
in the display’s segment buffers and are not re-sent
from the host when a picture is redisplayed.

Unretained mode means that graphics segments are
not held in the display's segment buffers. Segments
have to be retransmitted from the host to the display
whenever a picture is updated.

Even if retained mode is specified, the device may be
run in unretained mode if it is customized as being in
output-only mode, or if there is not enough storage
available in the device, or multiple graphics fields are
being displayed.

Retained mode should be the preferred mode of opera-
tion because retained segments are required to
perform functions locally.

However, if an application needs more segment
storage than is available in the device, this can lead to
continual switching between retained and unretained
‘modes (with undesirable performance overhead). In
such cases, it may be preferable to request unretained
mode, and avoid the switching between modes.

Subsystems: All

Devices: Family-1 3270-PC/G and /GX work
stations
Length: 2 full-words.

1 The option group code: 17.

2 Retained or unretained mode:
0 Retained mode (the default)
1 Unretained mode.

18 Deferred device name-list for print utility
Nickname syntax: (STAGE2ID,xXXXXXXX,XXXXXXXX,...)

Specifies the name-list for the device on which the print
utility is to produce the output from a print file. The list
of 8-byte name-parts defined in this group is passed (in
the print file) to the print utility for use as its DSOPEN
name-list parameter value.

For example, if a name-list of (*x,aux-id) is specified,
the print utility uses this in its DSOPEN call to access
the auxiliary device attached to the session device.

The default is a zero value in full-word 2. If this proc-
essing option group is not specified or if full-word 2 is
zero, the file is printed on the device specified in the
original DSOPEN name-list parameter.

Under VM/CMS, this list is ignored if the ON parameter
in the ADMOPUV command is specified (ON overrides
the values specified in the list).

154 Base Programming Reference

Subsystems: CICS/VS, TSO, VM/CMS
Devices: Family 2
Length: 2+ 2xN full-words.

1 The option group code: 18.

2 The number (N, in the range 0 through 2) of pairs
of full-words that follow.

3 through 2+ 2xN: “N" pairs of full-words. Each pair
forms an 8-byte name-part.

19 Load default symbol sels
Nickname syntax: (LOADDSYM,{NO|YES})

Indicates whether the 3270-PC/G or 3270-PC/GX work
station is to use the device's default symbol sets or the
GDDM default symbol sets. If the application program
requires any alternative characters in the symbol set
(for example, national use characters), GDDM's defauit
symbol sets must be used. For details on changing
GDDM's default symbol sets, see the information in the
GDDM Installation and System Management manual
that applies to the subsystem in use.

Note: Using GDDM's symbol sets reduces the amount
of storage in the work station that is available for
segment storage and for symbol sets loaded by the
application program.

Subsystems: All

Devices: Family-1 3270-PC/G and 3270-PC/GX
work stations, and 3179-G and 3192-G
color display stations

Length: 2 full-words.

1 The option group code: 19.
2 The default symbol sets option:
0 Use the work station’s default mode-2 and
mode-3 symbol sets (the default)
1 Load GDDM’s mode-2 and mode-3 symbol
sets, replacing the device's default symbol
sets.

20 Origin identification
Nickname syntax: (ORIGINID,{NO|YES})

Indicates whether GDDM is to draw an origin identifica-
tion string (consisting of a userid, the date, and the
time) in the bottom left-hand corner of the graphics
field.

For plotters, the identification appears inside a
background-shaded box, so that no part of the picture
can obscure it. However, if the plotting area is small,
the origin identification string might be clipped and the
right-hand side might be lost.

For family-1 printers, the identification is similar to an
alphanumeric field. The identification is truncated, if
necessary, by the page width.

When specified for a family-2 device, the processing
option is passed (in the print file) to the print utility,
which specifies the processing option when opening
the output device.

Note: This option group is of variable length and is
regarded as being “mergeable” (that is, if Fullword 3 is
omitted, the current value of the option is not changed).

Subsystems: All

Devices: All, but used by family-1 plotters and
printers and family-2 printers only
Length: 2 + N full-words.

1 The option group code: 20.

2 The number (N, in the range 0 through 1) of full-
word values that follow.

3 The identification value:
0 No origin identification (the default)
1 Origin identification required.

21 Local interactive graphics mode
Nickname syntax: (LCLMODE,{NO|YES})

Indicates whether panning and zooming or scaling of
graphics on 3270-PC/G or 3270-PC/GX work stations is
to be performed using local data streams or by
rebuilding the picture in the host.

Full details of how to use local interactive graphics
mode are given in the GDDM Guide for Users manual.

Subsystems: All

Devices: Family-1 3270-PC/G and /GX work
stations
Length: 2 full-words.

1 The option group code: 21.
2 The local interactive graphics mode option:
0 Local interactive graphics mode not allowed
(the default)
1 Local interactive graphics mode atlowed.

22 Document name
Nickname syntax: (HRIDOCNM,xxxxxxxx)

Provides a name for the document or primary data
stream that is passed to CDPF. This name is printed in
the picture separator-line, above each picture. This
can be used to help identify the owner of the printed
output.

Subsystems: TSO, VM/CMS
Devices: Family-4, 4250 printers only
Length: 3 full-words.

1 The option group code: 22.
2 and 3 One pair of full-words, forming an 8-byte name
part.

23 Special device
Nickname syntax:
namej,{{ddname},}})

Provides a token defining the type of special device and
a namelist providing information specific to a specific
type of special device.

Subsystems: TSO, VM/CMS
Devices: Family-1
Length: 2+ 2xN full-words.

1 The option group code: 23.

2 The number (N, in the range 0 through 2) of
pairs of words that follow.

3 and 4 Special device name.
IBM5080 To use the 5080 Graphics

System for graphics

* To turn off the use of the 5080.

5 and 6 Information specific to this device.

For this SPECDEV name, there are only two
full-words of device-specific information,
which are ddname or blank when full-words 3
and 4 contain “IBM5080".

Note: The use of a blank indicates DUM5080;
that is, no actual 5080 need be attached.

(SPECDEV,{special device

procopts

24 Window mode
Nickname syntax: (WINDOW,{NO|YES})

Indicates whether the device is to be used for win-
dowing. It allows the use of the WSCRT call to define a
window on the device. Subsequent calls of DSOPEN for
the same device (same device name-list) open virtual
devices, which appear in the window.

The use of the WINDOW processing option inhibits the
use of real partitions.

Note: For a GDDM program running under the control
of a task manager, if this processing option is specified
for a virtual device, it is ignored, and the processing
option for the real device is used instead.

Subsystems: CICS/VS, TSO, VM/CMS

Devices: Family-1 displays, except 5080 Graphics
System
Length: 2 full-words.

1 The option group code: 24.

2 The type of window mode:
0 Notin window mode (the default)
1 In window mode.

25 CICS pseudoconversational control
Nickname syntax:
(PSCNVCTL,{NO|START|CONTINUE})

Specifies whether GDDM is to run in conversational
mode or pseudoconversational mode.

Note: For a GDDM program running under the control
of a task manager, if this processing option is specified
for a virtual device, it is ignored, and the processing
option for the real device is used instead.

Subsystems: CICS (both MVS and VSE)
Devices: Default family-1 display device only
Length: 2 full-words.

1 The option group code: 25.
2 The use of pseudoconversational mode.
0 Do not use pseudo- conversational mode (the
default)
1 Start use of pseudo- conversational mode
2 Continue use of pseudo- conversational
mode.

26 Fast update mode
Nickname syntax: (FASTUPD,n)

Selects the level of picture degradation that is accept-
able to enable a fast update of the graphic data on the
device. The option selected can subsequently be
queried and changed by the application using the
FSUPDM call; see the GDDM Base Programming Refer-
ence, Volume 1.

The main use of this processing option is to control fast
update mode by means of a nickname.

It only has an effect on 3270-PC/G and 3270-PC/GX
work stations, 3179-G and 3192-G color display
stations, 5550-family work stations, and devices sup-
ported by GDDM-PCLK. On these devices, the color
mixing can be degraded to use exclusive-OR mode to
enable segments to be changed or deleted without
causing a redraw of the picture.

Appendix B. Processing option groups and name-lists 155

procopts

Subsystems: All

Devices Family-1 3270-PC/G and 3270-PC/GX
work stations, 3179-G and 3192-G dis-
plays, 5550-family work stations, and
devices supported by GDDM-PCLK

Length: 2 full-words.

1 The option group code: 26.
2 The type of window mode:
0 No degradation of picture fidelity (default)
1 Picture degradation acceptable using
GDDM's chosen method for the picture.

27 User Control fast path mode
Nickname syntax: (CTLFAST,{NO|YES})

Allows the application to select fast path mode for User
Control functions that require pointings. When
(CTLFAST,YES) Is specified and a User Control function
that requires pointing (MOVE, SIZE, POINT, CENTER,
ZOOM-IN, ZOOM-OUT) is selected by a PF key, it is
assumed that the user has already positioned the
cursor at the first pointing.

The GDDM default is (CTLFAST,NO).

Subsystems: Not IMS/VS
Devices: All family-1 displays
Length: 2 full-words.

1 The option-group code: 27.

2 The availability of fast-path mode for User Control
functions that require pointings:
0 Fast path mode is not selected (the default)
1 Fast path mode is selected.

28 User Control
Nickname syntax: (CTLMODE, {*|YES|NO})

Allows the application the overall control of the User
Control environment. The GDDM default is
(CTLMODE, *).

Note: For a GDDM program running under the control
of a task manager, if this processing option is specified
for a virtual device, it is ignored, and the processing
option for the real device is used instead.

Subsystems: Not IMS/VS
Devices: All family-1 displays
Length: 2 full-words.

1 The option-group code: 28.
2 The availability of control mode:

0 User Control is available for devices not
capable of supporting real partitions (the
default).

1 User Control is always available, forcing
emulated partitions.

2 User Control is not allowed.

29 User Control key
Nickname syntax: (CTLKEY,type,value)

Allows the application to select a User Control key that
is suitable to its environment. The default is
(CTLKEY,4,3), which is PA3.

Note: For a GDDM program running under the control
of a task manager, if this processing option is specified
for a virtual device, it is ignored, and the processing
option for the real device is used instead.

156 Base Programming Reference

Subsystems: Not IMS/VS
Devices: All family-1 displays
Length: 3 full-words.

1 The option-group code: 29.
2 The type of key selected for entering User

Control:
0 None. User Control cannot be entered by
key action.

1 A PF key (see value below) is used to enter
User Control.

4 A PA key (see value below) is used to enter
User Control.

3 Value. The number of the PA or PF key used:

0 None. User Control cannot be entered by
key action.

n The number of the PA or PF key defined for
User Control.

30 User Control print
Nickname syntax: (CTLPRINT,(YES|NO))

Allows the application to control the print or plot facili-
ties offered in User Control. The default is
(CTLPRINT,YES).

Subsystems: Not IMS/VS
Devices: All family-1 displays
Length: 2 full-words.

1 The option-group code: 30.
2 The ability to print from the screen:
0 (YES) Printing is allowed in User Control
1 (NO) Printing is not allowed in User Control.

31 User Control save
Nickname syntax: (CTLSAVE,(NO|YES))

Allows the application to control the picture-saving
facilities offered in the User Control environment.

The default value is defined in the CTLSAVE parameter
in GDDM's external defaults (see
Appendix A, “GDDM'’s default values" on page 127),
and is subsystem-dependent.

Subsystems: Not IMS/VS
Devices: All family-1 displays
Length: 2 full-words.

1 The option-group code: 31.
2 the ability to save the picture:

0(NO) Saving is not allowed from User
Control
1(YES) Saving is allowed from User Control.

32 Inline resources
Nickname syntax: (INRESRCE,(NO|YES))

Indicates whether the output file contains inline
resources. (See “Inline resources for AFPDS printers”
on page 62.)

Subsystems: All

Devices: All AFPDS printers
Length: 2 full-words.
1 The option-group code: 32.
2 Inline resources supported:
0 (NO) Inline resources are not supported (the
default)
1 (YES) Inline resources supported.

procopts

33 PCLK
Nickname syntax: (PCLK,(NO|YES))

Indicates whether GDDM-PCLK is to be made available.
If set to YES, users of GDDM applications on non-
graphics displays, such as 3278s, will be prompted to
indicate whether they want to use GDDM-PCLK.

Subsystems: Not IMS/VS
Devices: PCLK
Length: 2 full-words.

1 The option-group code: 33.

2 GDDM-PCLK availability:
0(NO) GDDM-PCLK not available (the default)
1(YES) GDDM-PCLK available.

34 Device code-page
Nickname syntax: (DEVCPG,n)

Specifies the code page that GDDM is to use for a
device. This code-page overrides that returned by a
CECP device when GDDM opens it.

Subsystems: All
Devices: All
Length: 2 full-words.

1 The option-group code: 34.
2 Device code-page:
n The global code-page identifier (see
Figure 9 on page 124).

35 IPDS printer quality
Nickname syntax:
(IPDSQUAL,{*|DP|DPQ|DPT|DPTQ|NLQ})

Indicates the print quality.

Subsystems: Not IMS/VS
Devices: IPDS printers
Length: 2 full-words.

1 The option-group code: 35.
2 Print quality:

0(" Printer hardware setting (the
default)
Data processing quality
Data processing text quality
Near letter quality.

1 (DP or DPQ)
2 (DPT or DPTQ)
3 (NLQ)

36 Encoded data fields on personal computers
Nickname syntax: (PCLKEVIS,{NO|YES})

Indicates whether the fields are to be displayed or are
to be made nondisplayable.

Subsystems: Not IMS/VS
Devices: PCLK
Length: 2 full-words.

1 The option-group code: 36.
2 Encoded data fields to be displayed:

0(NO) Encoded data fields to be
nondisplayable (the default)
1(YES) Encoded data fields to be displayed.

(PCLKEVIS,YES) must be used with GDDM-PCLK if your
terminal emulator normally discards nondisplayable
characters.

1000 CMS PA1/PA2 protocol
Nickname syntax:
(CMSINTRP,{PA1PA2|PA2|PA1|NONE})

Under VM/CMS, a user can usually interrupt an exe-
cuting program to contact the underlying supervisors.
A GDDM application can choose, by this option,
whether it requires this capability. The default is to
retain the capability.

1. PA2 can only cause entry to CMS subset mode
when GDDM has a read outstanding at the ter-
minal, but not if a partition other than partition zero
is active.

2. For a GDDM program running under the control of
a task manager, if this processing option is speci-
fied for a virtual device, it is ignored, and the proc-
essing option for the real device is used instead.

Subsystems: VM/CMS

Devices: Family-1 device from which the program
is being run, or auxiliary device attached
to that device

Length: 2 full-words.

1 The option group code: 1000.
2 The type of PA1/PA2 protocol:
0 PA1 causes entry to CP mode; PA2 causes
entry to CMS subset mode (default)
1 PA1 is returned to the application; PA2
causes entry to CMS subset mode
2 PA1 causes entry to CP mode; PA2 is
returned to the application
3 PA1 and PA2 are returned to the application.

1001 CMS attention handling
Nickname syntax:
(CMSATTN,{BASIC|EXTENDED},n,addr)

Determines how asynchronous interrupts (attentions)
are handled in a GDDM application.

For a more detailed discussion of VM/CMS attention
handling, together with a full description of the contents
of the attention feedback block (see Fullword 2), see
Chapter 6, “Using GDDM under VM/CMS"” on page 41.

Note: For a GDDM program running under the control
of a task manager, if this processing option is specified
for a virtual device, it is ignored, and the processing
option for the real device is used instead.

Subsystems: VM/CMS

Devices: Family-1 device from which the program
is being run, or auxiliary device attached
to that device

Length: 4 full-words.

This option group always contains four
full-words. (If basic attention handling is
requested, the third and fourth full-words
must still be present even though they
are not inspected.)

The option group code: 1001.

The type of attention handling:

0 Basic attention handling (the default); only an
unsolicited ENTER causes an attention to be
raised.

N =

Appendix B. Processing option groups and name-lists 157

procopts

GDDM passes the attention to the next higher
layer in the stack of attention handlers, and
takes no action on its own behalf. All other
interrupts received by GDDM are ignored.

1 Extended attention handling; all unsolicited
interrupts received by GDDM cause an atten-
tion to be raised.

GDDM npartially decodes the inbound data
stream causing the attention, and builds an
attention feedback block. This contains the
identifier of the attention in a similar format
to that returned on ASREAD. After this infor-
mation is filled in, control is passed to the
next higher attention handier in the stack.
The feedback block is not owned by GDDM,
but is supplied by the user by this option
group. If, however, either the length or the
address of the block is zero, the feedback
block is not filled in.

3 The length of the attention feedback block. See
the description of extended attention handling,
above (Fullword 2).

4 The address of the attention feedback block. See
the description of extended attention handling,
above (Fullword 2).

1002 CMS CP SPOOL parameters
Nickname syntax: (CPSPOOL,XXXXXXXX,XXXXXXXX,....)

Causes a CP SPOOL command to be issued for punch
files that result from opening a family-1 device with a
name-list of “PUNCH”" under VM/CMS. If specified, this
option group causes a CP SPOOL command of this
form:

CP SPOOL PUNCH XXXXXXXX XXXXXXXX «eeevoee soeecans
to be issued at the time of the DSOPEN call.

A specification of the form (CPSPOOL,TO,RSCS) can be
used to direct such punch files to a product capable of
processing them (such as RSCS Networking Version 2).

GDDM does not restore any previous spooling control
options when the device is closed. The default is a
zero value in full-word 2. |If this processing option
group is not specified or if full-word 2 is zero, no CP
SPOOL command is issued.

Subsystems: VM/CMS
Devices: Family-1 device 'PUNCH'
Length: 2+ 2xN full-words.

1 The option group code: 1002.

2 The number (N, in the range 0 through 16) of
pairs of full-words that follow.

3 through 2+ 2xN: “N" pairs of full-words, giving the
appropriate spooling information as 8-character
tokens.

10603 CMS CP TAG parameters
Nickname syntax: (CPTAG,XXXXXXXX,XXXXXXXX,....)

Causes a CP TAG command to be issued for punch files
that result from opening a family-1 device with a name-
list of "PUNCH" under VM/CMS. If specified, this
option group causes a CP TAG command of this form:

CP TAG DEV PUNCH XXXXXXXX XXXXXXXX ¢ecocees evevense
to be issued at the time of the DSOPEN call.

158 Base Programming Reference

GDDM inserts one blank character between each speci-
fied token, except that GDDM removes any excessive
blank characters and any blank characters surrounding
the character “=". Thus, a specification of the form:

(CPTAG,PRINTERL,PRT,=,GRAPH)
causes the following CP TAG command to be issued:
CP TAG DEV PUNCH PRINTER1 PRT=GRAPH

A specification like the one above can be used to notify
products capable of processing punch files (such as
RSCS Networking Version 2) about the graphic nature
of the punch file.

GDDM does not restore any previous tag information
when the device is closed. The default is a zero value
in full-word 2. If this processing option group is not
specified or if full-word 2 is zero, no CP TAG command
is issued.

Subsystems: VM/CMS
Devices: Family-1 device 'PUNCH'
Length: 2+ 2xN full-words.

1 The option group code: 1003.

2 The number (N, in the range 0 through 16) of
pairs of full-words that follow.

3 through 2+ 2xN: “N” pairs of full-words, giving the
appropriate routing (tag) information as
8-character tokens.

1004 Automatic invocation of VM/CMS print utility
Nickname syntax: (INVKOPUV,{NOJ|YES})

Indicates whether GDDM is to invoke the GDDM print
utility automaticaily after a print file has been created.

If this function is requested, a temporary print file is
created, and the print utility is requested to print this
file on the device specified by the name-list parameter.
After printing, the temporary file is erased.

Subsystems: VM/CMS
Devices: Family 2
Length: 2 full-words.

1 The option group code: 1004.
2 Print utility control:
0 Do not invoke print utility
1 Invoke print utility automatically.

2000 TSO CLEAR/PA1 protocol
Nickname syntax: (TSOINTRP,{PA1|NONE})

Usually, in TSO, an end user can interrupt an executing
program to contact the underlying supervisor. A GDDM
application can choose, by this option, whether it
requires this capability.

For a more detailed discussion of the use of the PA1
and CLEAR keys in an TSO environment, see
Chapter 5, “Using GDDM under TSO" on page 33.

Subsystems: TSO
Devices: Family 1
Length: 2 full-words.

1 The option group code: 2000.
2 The type of attention handling:
0 PA1 causes attention, CLEAR is ignored (TSO
default action)
1 PA1 and CLEAR are returned to the GDDM
application (PA1 does not cause an atten-
tion).

procopts

2001 TSO reshow protocol
Nickname syntax: (TSORESHW,n)

This option controls which PF and PA key functions are
passed to the GDDM application program on input. The
key functions specified in this option are not to be
passed. They are treated as messages from TSO,
informing GDDM that the display was corrupted.

Any key functions specified in this option are not avail-
able to the application program. When pressed by the
terminal user, the specified keys cause the current
picture to be rebuilt and reshown.

This option group allows an application, executing in a
TSO/VTAM environment, to alter the Attention Identifier
(AID) that signals that the display was corrupted (typi-
cally, by line-by-line output). It can be set to be either
the default PA key or a PF key. Changing it to a PF key
releases the default PA key for other use.

Note: For a GDDM program running under the control
of a task manager, if this processing option is specified
for a virtual device, it is ignored, and the processing
option for the real device is used instead.

Subsystems: TSO
Devices: Family 1
Length: 2 full-words.

1 The option group code: 2001.
2 The keys treated as “reshow” AlDs:

0 PA2 is treated as the “reshow”
AID (the default)
The number of the PF key to be
treated as the “reshow"” AID.

1 through 24

2002 TSO family-2 print-file destination
Nickname syntax:
(PRINTDST,{class|*}{,destname|*|ddname})

This option controls the destination of the family-2 print
output.

The default destination is the ADMPRNT queue.

Subsystems: TSO (including TSO/BATCH and
MVS/BATCH)

Devices: Family 2

Length: 2+ 2xN full-words.

1 The option group code: 2002.

2 The number (N, in the range 1 through 2) of

pairs of full-words that follow.
3 and 4 An 8-character token containing one of:

class Appropriate output class for the
JES spool system.
* Output is to go to ADMPRINT

queue or a ddname.
5 and 6 An 8-character token containing one of:
destname The JES Remote Work Station
name, associated through
JES/328X, with the required
target printer.
* Output is to go to the
ADMPRINT queue.
The ddname of a DD statement
describing the output data set to
be used.

ddname

3000 Color-master table identifier
Nickname syntax: (COLORMAS,n)

Identifies the color-master table to be used.

A color-master table defines how each input color is to
be analyzed into one or more color masters. If this
option group is not specified, a single monochrome
master is generated.

Subsystems: TSO, VM/CMS
Devices: Family 4
Length: 2 full-words.

1 The option group code: 3000.

2 The identifier of the color master table: A
number that is placed after the letters “ADM" to
create a color table name. For example, the
number 1 results in color table ADMG0C01 being
used. Specifying 0 (the default) means that a
monochrome master is generated.

For more information on color separations, see
the GDDM Application Programming Guide,
Volume 1.

For information on the ADMMCOLT macro, see
also Chapter 10, “Setting up color-master
tables” on page 79.

Appendix B. Processing option groups and name-lists 159

name-lists

Name-lists

The following section describes the name-list values
that can be specified for each subsystem and for each
GDDM device family.

A name-list is a means of identifying which physical
device is to be opened for use by a GDDM application
program. It can be a parameter of the DSOPEN call
(see the GDDM Base Programming Reference, Volume
1), or it can be specified as a nickname. The naming
convention of the name-list varies according to the sub-
system and device family in use.

Reserved names “X” and blanks

In all environments, for all families, there is a conven-
tion for two reserved values of the name-list(1) field.

* When this field is specified but is “x", the terminal
used is as described under the options below for a
name-count of 0, where this is valid. In other
words, this is an explicit way to specify the default
device name.

* When the field contains blanks, the device is a
dummy one, that is, no real device is associated
with this GDDM device. GDDM generates the data
streams required but does not send them to any
real device, nor does it try to receive data from a
device.

This option can be used to check a GDDM applica-
tion when a real device with the necessary fea-
tures is unavailable, or it can be used with the
FSSAVE mechanism to generate SAVE files for a
device that is unavailable when the application is
to be run.

When this option is selected, the application
program must provide a device token parameter to
supply the device characteristics that are to be
used by GDDM.

Family-1 name-list

In all subsystems, the device name can specify the
user console:

* By omitting the name list (by giving a length of 0 in
DSOPEN)

* By setting all name-parts to “%x".

Also, (under CICS/VS, TSO, or VM/CMS), the name-list
parameter can identify an auxiliary device, such as a
plotter that is attached to a 3270-PC/G or 3270-PC/GX
work station, or a printer or plotter that is attached to a
GDDM-PCLK work station. in such a case, name-list(1)
identifies the 3270-PC/G or 3270-PC/GX, or
GDDM-PCLK work station, and name-list(2) (other than
“%") identifies the auxiliary device (the plotter or
printer). GDDM uses this name to identify the appro-
priate port on the attaching work station.

160 Base Programming Reference

Notes:

1. The name given in name-list(2) must be the same
as the name given in the IEEE customization panel
when the 3270-PC/G or 3270-PC/GX work station
was set up. (This is not the same as the device
type which must be of the form "“IBMnnnn".)

2. A name-list(2) value of "ADMPLOT" has a special
meaning. In this case, GDDM uses the first plotter
defined in the IEEE customization panel when the
3270-PC/G or 3270-PC/GX work station was set up,
regardless of the configured name.

3. In the case of GDDM-PCLK 1.1 only one plotter can
be configured, so ADMPLOT should always be
used. The special value ADMPCPRT should be
used to open a PCLK-attached printer, see
GDDM-PCLK Guide.

CICS/VS name-list

Family 1 — 3270 terminals
The name-co<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>