File No.

Program

IBM System/360 Time Sharing System
PL/I Compiler

This publication describes the internal logic of the
IBM Systemv360 Time Sharing System PL/I Compiler.

Program Logic Manuals are intended for use by IBM
customer engineers involved in altering program design.
It can be used to locate specific areas of the program,
and it enables the reader to relate these areas to the
corresponcding program listings. Program logic informa-
tion is not necessary for program operation and use.

5360-29

GY28-2051-0

Logic

PREFACE

This publication provides customer
engineers and other technical personnel
with information describing the internal
organization and logic of the TSS/360 PL/I
compiler. The material is divided into
four sections and nine appendixes.

Section 1 describes the overall organi-
zation of the compiler and the relationship
between the compiler and the time sharing
system.

Section 2 contains a general description
of each logical phase of the compiler, fol-
lowed by descriptions of the physical
phases contained within each logical phase.
Descriptions of the control modules and of
the interfaces between the compiler and the
time sharing system are also included.

Section 3 consists of flowcharts, tables
and routine directories. The flowcharts
show the relationship between the routines
of each phase, while the tables and direc-
tories list the routines and their
functions.

Section 4 contains the layouts of tables
used by the compiler, as well as formats of
text and dictionary entries.

The appendixes contain supplementary
material for references purposes.

First Edition (June, 1970)

This edition is current with Version 7, Modification 0,
and remains in effect for all subsequent versions or
modifications of IBM System/360 Time Sharing System
unless otherwise indicated. Significant changes or
additions to this publication will be provided in new
editions or in Technical Newsletters.

PREREQUISITE PUBLICATIONS

Effective use of this manual requires know-
ledge of the information contained in the
following manuals:

IBM System/360 Time Sharing System:

Concepts and Facilities, Order No.
GC28-2003

PL/1I lLanquage Reference Manual, Order
No. GC28-2045

System Logic Summary PLM, Order No.
GY28-2009

In addition, the following publications are
recommended as supplemental reading:

IBM System/360 Time Sharing System:

PL/1I Programmer's Guide, Order No.
GC28-2049

PL/I Subroutine Library PLM, Order
No. GY28-2052

Dynamic Loader PLM, Order No.
GY28-2031

Before using this publication in connection with the operation of IBM
systems, refer to the latest edition of IBM System/360 Time Sharing Sys-

tem: Addendum, Order No.
that are applicable and current.

GC28-2043, for the editions of publications

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's com-

ments.

If the form has been removed, comments may be addressed to IBM

Corporation, Time Sharing System/360 Programming Publications, Depart-

ment 643, Neighborhood Road, Kingston, New York. 12401

© Copyright International Business Machines Corporation 1970

Page of GY28-2051-0, Issued September 30, 1971 by TNL GN28-3191

SECTION 1: INTRODUCTION . . . ¢ ¢ o o o o o o o « o = =
Purpose of the Compiler e
The Compiler in the TSS/360 System Environment
Organization of the Compiler « ¢ « & ¢ & - &

SECTION 2: METHOD OF OPERATION . . <« ¢ ¢ o o o « s « =
Logic of the Compiler “ e a4 e s e e o
Compiler Interfaces With the System « e = 6 s o e = o o

Compiler Control . . . « « « « « o « &

Program Language Controller (PILC) - CFBAA
Object Data Set Converter (ODC) - CFBAB
Name Processor - CFBAK . . « . .« . .

48-Character Set Preprocessor . . .

Preprocessing Phases . « « ¢ « « o = o 5 « s o o o = «

Compile-Time Processor Logical Phase

Compiler Logical Phases . . « « &« o o o ¢ o o o o o =

Read-In Logical Phase e e e e e s s .
Structure of the Read-In Logical Phase e o o e o o
Dictionary Logical Phase « o ¢ « & o « o »
Pretranslator Iogical PhaSe .« « « ¢ o« « o o « o o o o«
Translator Logical Phase . . .« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o = =+ «
Aggregates Logical Phase . . ¢ ¢ o 4 ¢ ¢« o« o o o o =
Optimizaticn Logical Phase . . « &« ¢ v &+ 24 o o o &« &«
Pseudo-Code Logical Phase . . e e s 4 s e s e e e e
Storage Allocation Logical Phase e e ¢ o o o e o s =
Register Allocation Logical Phase . . . « . « o « «
Final Assembly Logical Phase . . . « ¢« ¢« ¢ ¢ « « o &
Error Editor Logical Phase . . « ¢ « ¢ « & o « o o «

SECTION 3: PROGRAM ORGANIZATION . . . & ¢ o « & « » « &
Control Phase Tables . . ¢ ¢ ¢ « o« « o o o o o o o o =
Compile-Time Processor Tables e e e s 2 e o s o s e
48-character Set Preprocessor Table

Read-In Phase Tables
Dictionary Phase Tables

Translator Phase Tables

Pretranslator Phase Tables . . « & ¢ 4 ¢ o « o o« o « «

Aggregates Phase Tables

Optimizer Phase Tables . . . « . ¢ &« + ¢ ¢ v @ ¢« o« o &
Pseudo-Code Phase Tables ¢ ¢ ¢ & ¢ ¢ o o o « «
Storage Allocation Phase Tables . . . ¢ « « + =« & « &

Final Assembly Phase Tables . . ¢ « ¢ 4« ¢ o« 2 o « o« @

Register Allocation Phase Tables . . ¢ « ¢ & &

Error Editor Phase Tables . . « + +« « o« 2« 2 ¢ o « o @
Flowchart Conventions . . . « 4 o ¢ o o 2 « o « 2 o « =

SECTION 4: DATA AREA LAYOUTS . .
Resident Tables« .
Organization of Keyword Tables .

« o 8

. -
. -

e o @ 8 4 ® e e a o
- -

Phase DirectOry . - « « o o = « = «

Internal Formats of Dictionary Entries

1.
2.
3.
4.
5.

Dictionary Entry Code Bytes . . . « ¢ &4 o ¢ o« &« & «
Dictionary Entries for Entry Points
Code Bytes for Entry Dictionary Entries . . o e

.
. .
« ¢ & s 0
. .

.
.
.
.

.
.
.
.

.

[3
I R)

.

Dictionary Entries for Data, Label, and Structure Items . o

Code Bytes for DATA, LABEL, and STRUCTURE Dictionary

6. Format of Variable Information .
7. Other Dictionary Entries
8. Dimension Table . . . v .

9. Dictionary Entries for Inltlal Values

Internal Formats of Text . . . -

-

-

-

-

1. Text Code Byte after the Read-In Phase

-
-
-
.
-

s & 5 & o

e & & & o

-
-
-
-
-

« s 8 8

Entries

« * & 8

Contents

iii

Page of GY28-2051-0,

2.
3.
4.
5.
6.
7.
8.
Pseudo-Variables « o

Text Formats After The Read-In Phase

Format of Trlples « o o o = « < .
Text Code Bytes in Pseudo-Code « v e
Text Formats in Pseudo-Code
Text Formats in Absoclute Code . . .

Issued September 30,

. e o e = e e = =

Text Code Bytes on Entry to the Translator Phases “ e

e @ o2 = e ® e o o =

® e o e & & e &« e o

a @ 4 & e e e & a2 e

- o * = e e e

e e & e o e o - e

9. Pseudo-Code Phase Temporary Result Descriptors (TMPD) .

10. Library Ccalling Sequences

APPENDIX A: TERMS AND ABBREVIATIONS . .
Descriptions of Terms and Abbreviations
Compilation « . . . ¢ 4 4 o « « & + o« =

APPENDIX B: COMMUNICATIONS REGION . . .

APPENDIX C: COMPILER OPTIONS TABLE . .
APPENDIX D: CODE PRODUCED FOR PROLOGUES

Prologues and Epilogues
DSA Optimization « « + « .
APPENDIX E: DIAGNOSTIC MESSAGES
Appendix F: Compile-time processor . .
1. Internal Formats of Text
2. Communications Region Use
3. Compile-time Processor, Time Sharing
Control Interfaces . . . ¢« « « « + o« =«

Appendix G: Table Handling Routines for

used in Text During

= & » e s e ® e s =

System,

K Phases

Description and Format of Macro Imstructions

APPENDIX H:
Transfer Vector Table «
Compiler Control Routines
APPENDIX I: PLC COMMUNICATIONS REGION .

APPENDIX J: ODC -- INPUT RECORD FORMAT
Tables and DSECTS Used by ODC

APPENDIX K: COMPILER OUTPUT MODULES . .

INdeX v o « o 2 « o o o s = o o o o o =

CONTROL ROUTINES AND TRANSFER

VECTORS

e @ & 8 = * e e e =

e @ s e e s ® @ s =

- * s = e @ e o e =

Compiler

a

1971 by TNL GN28-3191

-390
.396
.398
401
-401
-404

Second File Statements, and the Formats of Compiler Functlons and -

405
407
.409
411
<411
. 420
-426
429
- 429
433
- 435
443
443
<447
. 449

.451
.451

. 455
-455
. 456
464

466
. 1469

-470

476

Tables

Table 1. Data Sets Used by PL/I Compiler « « « 5
Table AA. Module Compiler Resident Control Phase (Part 1 of 2) . 59
Table AAl. Module Routine/Subroutine Directory . « « « « « « « « . 60
Table AB. Module Compiler Control Initialization . . . « 61
Table ABl1. Module Routine/Subroutine Directory « .« . 61
Table AC. Module Compiler Control Intermediate File Control e « - 62
Table AD. NModule Compiler Control Imterphase Dumping 62
Table AD1. Module Routines/Subroutine Directory . . . « « « 62
Table AE. Module Compiler Control Clean-Up Phase 62
Table AF. Module Compiler Control Options . « « « ¢ o « o o« « &
Table AG. Module Compiler Control Intermediate File Switching .

Table AK. Module Compiler Control Closing Phase . . . « « « . . . 63
Table AL. Module Dictionary Phase (Part 1 of 4)

Table ALl. Module Routine/Subroutine Directory . . . « « « 66
Table AM. Module Compiler Control Phase Marking 67
Table AS. Phase Resident Phase for Compile-time Processing
Table AS1. Phase Routine/Subroutine Directory . . .« . « 68
Table AV. Phase AV Macro Processing Initialization « . . . 69
Table AV1. Phase AV Routines/Subroutine Directory .
Table BC. Phase BC Initial Scan and Translation .
Table BCl. Phase BC Routine/Subroutine Directory .
Table BG. Phase BG Final Scan and Replacement . o o . « e o« o 71
Table BG1l. Phase BG Routine/Subroutine Directory (Part 1 of 2) Y & §
Table BM. Phase BM Diagnostic Message Determination and Printing . . 73

B REEEEREERE

" oA s s
.
.
P
.
.
.
.
~
o

Table BM1. Phase BM Routine/Subroutine Directory . . « . « « « « « . 73
Table BW. Phase BW Clean-up Phase . . « &« o o « o o« « o = o « o« « » 13
Table BX. Phase BX #48-Character Set PreproCessor « « « « - .« 14
Table CA. Module CA Read-In Common Block 1 . . ¢« o &« ¢ ¢« « &« o = « « 75
Table CAl. Module CA Routine/Subroutine Directory . « « « « « « « « . 15
Table CC. Module CC Read-In Common Block 2 « & ¢« ¢« ¢« « « « « 16

Table CCl. Module CC Routine/Subroutine Directory . . « .« « « « « « . 76
Table CE. Modules CE, CK, CN, and CR Read-In Keyword Block 76
Table CI. Phase CI Read-In First Pass . ¢ ¢ o o ¢ o o o « o « « o« o« 17
Table CI1l. Phase CI Routine/Subroutine Directory 77
Table CL. Phase CL Read-In Second PaSS . « « « « « « o « o = « o « - 18
Table CL1. Phase CL Routines/Subroutine Directory <« « 78
Table CO. Phase CO Read-In Third PassS . . « o« « « o « « = s « » « « 19
Table COl. Phase CO Routines/Subroutine Directory « « « « « . 79
Table CS. Phase CS Read-In Fourth Pass . . .« ¢ « ¢« ¢ « ¢« « « « « « » 80
Table CS1. Phase CS Routine/Subroutine Directory 80
Table CV. Phase CV Read-In Fifth Pass ¢« ¢ &« ¢« ¢ « « « - . 81
Table CVl. Phase CV Routine/Subroutine Directory . . . « « « o « » « 81
Table ED. Phase ED, Initialization « « . .

.
.
.
.
.
.
.
.
.
[«+]
N

Table ED1. Phase ED Routines/Subroutine Directory « 82
Table EG. Phase EG Dictionary Initialization . . . ¢« « ¢« o « « « « . 82
Table EGl. Phase EG Routine/Subroutine Directory . . « « « « « « « . 83
Table EI. Phase EI Dictionary Declare Pass One e <« « <« . 84
Table EI1l. Phase EI Routines/Subroutine Directory (Part 1 of 2) . . . 84
Table EL. Phase EL Dictionary Declare Pass TWO e« « « o« .- 86

Table EL1. Phase EL Routine/Subroutine Directory (Part 1 of 2) . . . 87
Table EP. Phase EP Dictionary Entry III and Call « « « . . 89
Table EP1l. Phase EP Routine/Subroutine Directory
Table EW. Phase EW Dictionary LIKE . + « « o « « « o o = =
Table EWl. Phase EW Routine/Subroutine Directory .
Table EY. Phase EY Dictionary ALLOCATE
Table EYl. Phase EY Routine/Subroutine Directory .
Table FA. Phase FA Dictionary Context
Table FAl. Phase FA Routine/Subroutine Directory (Part 1 of
Table FE. Phase FE Dictionary BCD to Dictionary Reference

Table FEl. Phase FE Routine/Subroutine Directory
Table FI. Phase FI Dictionary Checking . . «
Table FI1l. Phase FI Routine/Subroutine Directory

& o 8

*» & & =

“ s e 0

. & &
I..Nl.l‘..l

~

L[] ¢ & & & &
o« 8 & e & 8 .« .
R TR P T Y
. LI
V-] D O
(%] o

.
.

.
.

{V-]
=)}

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

vi

IG1.

IT.
IT1.
IX.
IX1.
JD.
JD1.
JI.
JIl.
JK.
JK1.
JP.
JPl1.
KA.
KAl.
KC.
KC1.
KE.
KEl.
KG.
KG1l.
KJ.
KJl.
KN.
KN1.
KO.
Ko1l.
KT.
KT1.
Ku.
KU1.

Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase

FK
FK
FO
FO
FQ
FQ
FT
FT
Fv
FV
FX
FX
GA
GA
GB
GA
GK
GK
GO
GO
GP
GP
GU
GU
HF
HF

Dictionary Attribute
Routines/Subroutine Directory
Dictionary ON . . ¢ ¢ o ¢ o o & & « + =
Routine/Subroutine Directory
Dictionary Picture Processor
Routines/Subroutine Directory
Dictionary Scan . « « « « « « = « o o« «
Routine/Subroutine Directory
Dictionary Second File Merge
Routine/Subroutine Directory

» » e =

Dictionary Attributes and Cross Reference . . .

Routine/Subroutine Directory
DCLCB Generation .« . « « « « & « & « «
Routine/Subroutine Directory
Pretranslator I/0 Modification
Routines/Subroutine Directory
Pretranslator Parameter Matching 1 . .
RoutinesSubroutine Directory
Preprocessor Parameter Matching 2 . . .
Routine/Subroutine Directory
Pretranslator Parameter Matching 2 . .
Routine/Subroutine Directory
Pretranslator Check List
Routine/Subroutine Directory
Pretranslator Structure Assignment . .
Routines/Subroutine Directory

Pretranslator Array Assignment

Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase

HK
HP
HP
IA
Ia
IG
I1G
IK
IL
IM
IM
IT
IT
IX
IX
JD
JD
JI

Routine/Subroutine Directory
Pretranslator iSub Defining
Routine/Subroutine Directory
Translator Stacker
Routine/Subroutine Directory
Translator Pre-Generic
Routine/Subroutine Directory
Translator Pre-Generic « « « =«
Translator Pre-Generic . . . <« . « . .
Translator Generic . .« « « « ¢ o « « &«
Routine/Subroutine Directory
Post-Generic Processor . « « « « « o «
Routine/Subroutine Directory . . .
Pointer and Area Checking

Routine/Subroutine Directory
Constant Expression Evaluator . . .

Routines/Subroutine Directory
Aggregates Structure Processor

Routine/Subroutine Directory

Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase

JK
JK
JP
Jp
KA
KA
KC
KC
KE
KE
KG
KG

Aggregates Structure Processor
Routine/Subroutine Directory
Translator Defined Check
Routine/Subroutine Directory
Resident Control Module
Routine/Subroutine Directory
DO-Loop Specification Scan
Routines/Subroutine Directory . .
Dictionary Scan and DO-Map Build . . .
Routines/Subroutine Directory .
DO-Examine Phase
Routine/Subroutine Directory .
Subscript Table Build
Routine/Subroutine Directory . .
Subscript Optimization -
Routine/Subroutine Directory - -
Subscript Optimization (Part 1 of 5) .
Routine/Subroutine Directory (Part 1 of
Pseudo-Code Scan .« « « « = = = « « « «
Routines/sSubroutine Directory

DO-loop Control and Merge Patches (Part
Routine/Subroutine Directory

¢ s 8 & s
¢ ¢ & & & @
. .
L

Bs & & & 8 o ¢
-’
.
.

o P s e
Qs
P
N
A

Table LB. Phase LB Pseudo-Code Initial ¢« « &« & « « « + « .« 143

Table LB1. Phase LB Routine/Subroutine Directory . . . « . « « « . 143

Table LD. Phase LD Pseudo-Code Initial . .« . + ¢ ¢ « o« o« « « o = .14y
1D

Table LD1. Phase Routines/Subroutine Directory « « .« « . .1l44
Table LG. PhLase LG Pseudo-Cocde DO Expansion . « . « ¢« . « « » « . 2185
Table LG1l. Phase LG Routines/Subroutine Directory1U46
Table LS. Phase LS Pseudo-Code Expression Evaluation . . « «147
Table LS1. Phase LS Routines/Subroutine Directory « « + « .148
Table LV. Phase LV Pseudo-Code String Utilities149

Table LVl. Phase 1LV Routine/Subroutine Directory« . .149
Table LX. Phase LX Pseudo-Code String Handling . . « . . . « +. . . .150
Table LX1. Phase LX Routine/Subroutine Directory151
Table MA. Phase MA Pseudo-Code Translate and Verify Functions . . .152
Table MAl. Phase MA Routine/Subroutine Directory153
Table MB. Phase MB Pseudo-Code Pseudo-Variables « . . . 154
Table MBl1. Phase MB Routine/Subroutine Directory155
Table MD. Phase MD Pseudo-Code In-Line Functions156
Table MD1. Phase MD Routine/Subroutine Directory« « « « « « .156
Table ME. Phase ME Pseudo-Code In-Line Functions . . . e+ « » <156
Table ME1. Phase ME Routine/Subroutine Directory (Part 1 of 2y . . .157
Table MG. Phase MG Pseudo-Code In-Line Functions 1 « « « 4158
Table MGl. Phnase MG Routine/Subroutine Directory (Part 1 of 2) . . .159
Table MI. Phase MI Pseudo-Code In-Line Functions 21l61
Table MIl. Phase MI Routine/Subroutine Directory « . .161

Table MS1. Phase
Table NA. Phase
Table NAl. Phase

Routines/Subroutine Directory . . « « « « + « . .166
Pseudo—-Code Branches, ON, Returns e« o« « 2167
Routine/Subroutine Dlrectory (Part 1 of 2) . . .167
Table NG. Phase Pseudo-Code Operating System Services169
Table NG1. Phase Routine/Subroutine Directory . . « o « o « » <169
Table NJ. Fhase NJ Pseudo-Code RECORD I/O (Part 1 of 3) « e « « - <170
Table NJ1. Fhase NJ Routine/Subroutine Directory (Part 1 of 2) . . .173
Table NM. FPhase NM Pseudo-Code Executable I/0 « . .175
Table NMl1. Phase NM Routine/Subroutine Directory . . .175
Table NT. Phase NT Pseudo-Code Data and Format « « . . « . .176
Table NT1l. Phase NT Routine/Subroutine Directory « . « « « 176
Table NU. Phase NU Pseudo-Code Data and Format Lists177
Table NUl. Phase NU Routine/Subroutine Directory177
Table OB. Phase OB Pseudo-Code Compiler Functions . . « « « « « « .178

Table MK. Phase MK Pseudo-Code In-Line Functions 3162
Table MKl. Phase MK Routine/Subroutine Directory « . . .162
Table ML. Phase ML Pseudo-Code Calls and Functions163
Table ML1. Phase ML Routine/Subroutine Directory « « « . . .163
Table MM. Phase MM Pseudo-Code Calls and Functions . . . « «163
Table MM1. Phase MM Routine/Subroutine Directory16l
Table MP. Phase MP Pseudo-Code BUY Reorder . . « « « « « + o o« = « 165
Table MP1. Phase MP Routine/Subroutine Directory165
Table MS. Phase MS Pseudo-Code Subscripts « « « . « -« .166

MS

NA

NA

NG

NG

»
.
.
.
.
3
.

Table OB1l. Phase OB Routines/Subroutine Directory « .179
Table OD. Phase OD Pseudo-Code Assignment « ¢ « o« & « « « 179
Table OD1. Phase OD Routine/Subroutine Directory « . « « « .179
Table OE. Phase OE Pseudo~Code Assignment . . « . . « « « « . . . 180
Table OEl. Phase OE Routine/Subroutine Directory . . . « . « « « . .180
Table 0OG. Phase OG Library Calling Sequences . . . « « « « = « - « 2181
Table 0Gl. Phase OG Routines/Subroutine Directory« . « . . .182
Table OM. Phase OM In-line Data Conversions . . . « « . « « « « . .183
Table OM1. Phase OM Routine/Subroutine Directory « «. « « .183
Table OP1l. Phase OP Routine/Subroutine Directory « . . .183
Table 0S. Phase 0OS Constant Conversions « « o « J184
Table 0S1. Phase OS Routine/Subroutine Directory (Part 1 of 2) . . .184
Table PA. Phase PA DSAs in STATIC StOrage . . « o« « « « = « « « « +186
Table PAl. Phase PA Routine/Subroutine Directory186
Table PD. Phase PD Storage Allocation Static 1 . . . +. « . . <« . . .187
Table PD1. Phase PD Routine/Subroutine Directory . . « « « « « + . .187
Table PH. Phase PH Storage Allocation Static 2 . . « « « . .188
Table PHl. Phase PH Routine/Subroutine Directory e e « o o« s « = <188
Table PL. Phase PL Storage Allocation Symbol Table and DEDs189
Table PL1. Phase PL Routines/Subroutine Directory . . . « « . 189 [

Table PP. Phase PP Storage Allocation Sort of AUTOMATIC Chaln « « <190

vii

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

PP1.

PT1.
QF.
QF1.
oJ.
QJ1.
QuU.
QUl.
oX.
QX1.
RA.
RAl.
RD.
RD1.
RF.
RF1.
TF.
TF1.
TJ.
TJ1l.
TO.
TO1l.
TT.
TT1.
UA.
UAl.
UD.
UD1.
UE.
UEl.
UF.
UF1l.
XA.
Xal.
2.
3.
4.
5.

Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.

Triple

Figure 15.

Figure

Figure 17.

Figure

viii

16 -

18.

Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase

TJ
TJ
TO
TO
TT
TT
Ua
UA
D
UD
UE
UE
UF
UF
XA
XA

Routines/Subroutine Directory
Storage Allocation AUTOMATIC Storage
Routine/Subroutine Directory
Storage Allocation Prologues . « « « o o .+ =«
Routines/Subroutine Directory . . « . . « . «
Storage Allocation Dynamic Storage
Routines/Subroutine Directory
Alignment Processor . . « . ¢ « ¢ « « « o = =«
Routine/Subroutine Directory
Print Aggregate Length Table « . .
Routine/Subroutine Directory
Register Allocation Addressablllty Analy31s .
RoutinesSubroutine Directory . . « . « . . -
Use Determination of all EQUs
Routine/Subroutine Directory
Register Allocation Physical Registers . . .
Routines/sSubroutine Directory (Part 1 of 2) .
Final Assembly Pass 1 . « .« « « o « « o o « =
Routines/Subroutine Directory . . . « « .« .+ .
Final Assembly Optimization
Routine/Subroutine Directory . e o s o s
Final Assembly External Symbol chtlonary .« -
Routine/Subroutine Directory
Final Assembly Pass 2 . « « + « o o o o « « =«
RoutinesSubroutine Directory
Final Assembly Initial Values, Pass 1
Routines/Subroutine Directory . . « . « .+ « .
Final Assembly Pseudo-Code Static DSA's . . .
Routine/Subroutine Directory . . « . « . . .
Final Assembly Initial Values, Pass 2
Routine/Subroutine Directory « . . .
Final Assembly Object Listing
Routines/Subroutine Directory . . « . « « «
Error Message Editor « . <« ¢ « « + o
Routines/Subroutine Directory « « . =«

Communications Region (Part 1 of 2} « . . .
Communications Region (Part 1 of 2) . . e e e e e e
Communications Region. Bit Usage in ZFLAGS « e e o e
Communications Region. Bit Usage in CCCODE. (Part 1 of

PLC - Interface with TSS/360 . . « « « o « o o « o &
Compiler Organization and Control -
Compiler Data Flow and Data Sets Used . . « . « . . =
Compiler Logical Phases (Part 1 of 2) e e e e e e e
Input and Output Data Sets . . . « .« « « ¢ « « « + =
Overall Flow of Compiler . . . o « « &« « ¢ « « -« « =
Input/Output Usage Table . . . e e s e e e e s e
Storage Map for the Read-In Phase . . e e e e .
Dictionary Entries for an Internal Entry P01nt « e .
Organization of Read-In Phase e e e e e e e e e e .
Organization of Keyword Table « . .+ « « « « .
Decision to Include a Second Offset Slot
Dimension Table . . . « ¢ ¢ ¢ « o o s o o o o o « = =
Temporary Descriptions in Pseudo-Code -- Use of TMPD

Fields F5 and Fé6 e e e e e e o o o s e = @ @ a o + o o

The IEMAF Control Section . « « « + « o o o « o =« o« =
Bit Identification Table . < . « ¢« ¢« o o o « o o < =«
PL/I DefaultsS o« +v o o o« o o o o o o 2 o o s @« o « o« =
PLC Communications Region . « « « « « « ¢ o « o « « =«

.191
.192
. .193
< 2194
. .195
< 196
- 197
. .198
. -198
. .199
.« 199
. 200
. .201
- 202
. .203
. .204
. 204
. 206
. 206
- 207
< .207
. .208
. .208
. 209
. .210
. 211
« 2212
. <213
. .213
. . 214
. .215
. .216
. «217
. 219
. «219
. 420
. U422

2) 425

L

Chart
Chart
Chart
Chart

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

Page of GY28-2051-0,

PLC. Program Language Controller (CFBAA)

ODC. Object Data Set Converter (CFBAB)

NP.
AA.
01.
AS.
AV.
BC.
BG.
BM.
BW.
02.
BX.
CI.
CL.
CO.
Cs.
Cv.
03.
EG.
EI.
EL.
EP.
EW.
EY.
FA.
FE.
FI.
FK.
FO.
FQ.
FT.
Fv.
FX.
o4,
GA.
GB.
GK.
GP.
GU.
HF.
HK.
HP.
05.
IA.
IG.
IK.
1L.
IM.
IT.
IX.
JD.
06.
JI.
JK.
JP.
07.
KA.
KC.
KE.
RG.

Name Processor (CFBAK)

Control Phase Overall Logic Dlagram (Modules AA through

e o e e o

. s e

Compile-Time Processor

Phase AS
Phase AV
Phase BC
Phase BG
Phase BM
Phase BW

Overall
Overall
Overall
Overall
Overall
Overall

Logic
Logic
Logic
Logic
Logic
Logic

Logical
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram

Read-In Logical Phase Flowchart

Phase BX
Phase CI
Phase CL
Pnhase CO
Phase CS
Phase CV

Dictionary Logical Phase Flowchart

Phase EG
Phase EI
Phase EL
Phase EP
Phase EW
Phase EY
Phase FA
Phase FE
Phase FI
Phase FK
Phase FO
Phase FQ
Phase FT
Phase FV
Phase FX

Pretranslator Logical Phase Flowcha

Phase GA
Phase GB
Phase GK
Phase GP
Phase GU
Phase HF
Fhase HK
Fhase HP

Translator Logical Phase Flowchart

Fhase IA
FPhase IG
Fhase IK
Phase IL
Phase IM
Phase IT
Phase IX
Phase JD

hggregates Logical Phase Flowchart

Overall
Overall
Overall
Overall
Overall
Overall

Overall
Overall
Overall
Overall
Overall
Overall
Overall
Overall
Overall
Overall
Overall
Overall
Overall
Overall
Overall

Overall
Overall
Overall
Overall
Overall
Overall
Overall
Overall

Overall
Overall
Overall
Overall
Overall
Overall
Overall
Overall

Logic
Logic
Logic
Logic
Logic
Logic

Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Iogic
ILogic
Logic
Logic
Logic

Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic

Logic
Iogic
Logic
Logic
Legic
Logic
Iogic
logic

Diagram
Diagram
Diagram
Diagram
Diagram
Diagram

Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram

Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram

Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram

o & & & & 5 B 8 ¥ s ¥ 4 & B

¢ & & 2

Phase JI Overall lLogic Diagram .
Phase JK Overall Logic Diagram .
Phase JP Overall Logic Diagram .

Optimization Logical Phase Flowchar

Phase KA Overall lLogic
Phase KC Overall Logic
Phase KE Overall Logic
Phase KG Overall Logic

Diagram
Diagram
Diagram
Diagram

-

-
-
-

-

-

a & & &+ & & 3 & & 0 3
8 8 s & s ¢ M s s s & & s & & 8 8 3 3 a2 s s & s s s 8 s s s 0 s

« ¢ & 4 & ¥ s

LR Y S}

-

-

L I« S T S S R

L)

Issued September 30,

.

.

1971 by TNL GN28-3191

-

.

Flowchart

¢ o & o & & & & 8 8 8 & ¢ 8 8

L N L)

t

¢« & & s 5 3

o & s & & & & ¥ & » &

-

C R Y

A€ & & & 3 8 8 5 B3 % 4 8 &8 & 3 3 B st & 5 o2 s & s

LY

L T S S T T B S S I R Y N N A A e

¢ 8 & & 8 8

R S T T

¢ 8 % ¥ % s s ¢ & 4 & 8 & & w8

s & & 4 & s % 3+ 5 & 3

e & & 8 s & 8 & & 0 s

O R S R O N I S

2 s & & & & 8 8 8 & 8 8 & 3 5 B & v s & & & s 9

4 % 8 3 & & 8 8§ % 8 & & a3 & & 8 &+ s » s

« ¢ s

DR T T S S L S I}

LI T R S

PR T R |

® 5 2 8 s & 8 & B e W & s s & s s ¥ ¥

.

« & v & s 8

" s . s

¢ & & & 8 @ S 6 & & & & & 8 & & & & & v s .

¢ & & 8 8 & 6 & & 8 & & 8 & 8 8 &8 & s s @

.

.

.

" 8 & & & & & % s 8 & & & &

LI S R

s & s & 8 5 & & & & & B & &5 B % &

¥ & & & & 8 8 8 85 & & 5 & 8 & s & s 0

.
.

-

-
-
-
-
-
-
-
-

S & 5 8 w s & 5 & & ® & s 8 & B & B & & 5 3 8 & & 3

L Y S T A]

L O S R R T Y R

-

.

.

C O R R R Y

¢ & 8 8 & 8 & & & & 8 3 & & K & & 85 % B & 8 3 2 & &8 B K v & ¥

[T T S S I S S O L T N B |

Charts

-

.
-
-
-
-
-

4 & % 9o & & a & & & s & 5 8 & @

s & & 8 3 5 3

o & & 8 & 8 & o & 2 5 @

.221
.226
.233

. 241
. 242
.243
. 244
- 245
. 246
. 247
. 248
. 249
. 250
. 251
252
- 253
. 254
. 255
- 256
. 257
. 258
. 259
. 260
. 261
.262
.263
.264
. 265
. 266
. 267
.268
.269
. 270
.271
«272
.273
. 274
. 275
.276
. 277
.278
.279
. 280
.281
.282
.283
. 284
. 285
. 286
.287
. 288
.289
«290
.291
.292
.293
.294
. 295
. 296
.297
.298

Page of GY28-2051-0, Issued

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

KN.
KO.
KT.
KU.
08.
LB.
LD.
LG.
LS.
Lv.
LX.
MA.
MB.
MD.

MG.
MI.
MK.
ML.
MM.

MS.
NA.
NG.
NJ.
NM.
NT.
NU.
OB.
OoD.
OE.
0G.
OM.
OP.
0Ss.
09.
PA.
PD.
PH.
PL.
PP.
PT.
QF.
QJ.
Qu.
QX.
10.

RD.
RF.
11.
TF.
TJ.
TO.
TT.
UA.
UD.
UE.
ur.
XA.

Phase KJ Overall
Phase KN Overall
Phase KO Overall
Phase KT Overall
Phase KU Overall

Pseudo-Code Logical Phase Flowcha

Phase LB Overall
Phase LD Overall
Phase LG Overall
Phase LS Overall
Phase LV Overall
Phase LX Overall
Phase MA Overall
Phase MB Overall
Phase MD Overall
Phase ME Overall
Phase MG Overall
Phase MI Overall
Phase MK Overall
Phase ML Overall
Phase MM Overall
Phase MP Overall
Phase MS Overall
Phase NA Overall
Phase NG Overall
Phase NJ Overall
Phase NM Overall
Phase NT Qverall
Phase NU Overall
Phase OB Overall
Phase OD Overall
Phase OE Overall
Phase OG Overall
Phase OM Overall
Phase OP Overall
Phase 0S Overall

September 30,

Logic
Logic
Logic
Logic
Logic

Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic

Diagram
Diagram
Diagram
Diagram
biagram

Diagram
Diagram
Diagram
Diagram
Diagram
biagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram

1971 by

¢ 4 & 2 s & s 0

S 5 8 8 8 & 8 &8 ¥ B 8 S & e & & 8 & s ¥ s 0

Storage Allocation Logical Phase

Phase PA Overall
Phase PD Overall
Phase PH Overall
Phase PL Overall
Phase PP Overall
Phase PT Overall
Phase QF Overall
Phase QJ Overall
Phase QU Overall
Phase QX Overall

Logic
Logic
Logic
Logic
Iogic
Logic
Logic
Logic
Logic
Logic

Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram

e & 2 & % s 0 2 »

Register Allocation Logical Phas

Phase RA Overall
Phase RD Overall
Phase RF Overall

Logic
Logic
Logic

Final Assembly Logical

Phase TF Overall
Phase TJ Overall
Phase TO Overall
Phase TT Overall
Phase UA Overall
Phase UD Overall
Phase UE Overall
Phase UF Overall
Phase XA Overall

Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic
Logic

Diagram
Diagram
Diagram

-

-

L . R I B B]

L s N I T T S R S S O I I B

t

LR B T T Y

L T T T}

L T T TR SR T Y B

s o 8 0 s (s s & e & 5

L S S}

« s & 4 8 & & 2 & o & & 2 &

¢ s s 8 s s

TNL GN28-3191

s 8 & 8 B 8 8 8 & &5 3 " & ® ® B & & & & & & 2

5 & & 5 5 8 3 8 8 % s e

L I . L e e O I I Y D T |

.

Flowchar

-

Phase Flowchart

Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram

Diagram .

LI S T T S A)

L T R S S Y T)

L S T Y

LI T T SR TR S)

.

s & ¢ & s 8 & s & s

@ s & a2 & s s 0 e

LI O T R e e e S O S T e R N O L D Y TR S T SR SR SR S)

¢ & & 3 8 & & 8 s+ s o+

S 8 & & 8 * & 8 4 & & 8 " B & & b & 8 s 4

¢ 3 ¢ ¥ & 8 8 & s 8 % 5 8 5 8 B & 2 8 s @

L I S B]

s 8 & & 5 & 0 s+ e

$ & & & & & " 8 & & 8 & & s ¥ B 8 2 & 8 s @

« s 8 @ 8 B e & ¥ s 8 3 & B 2 & % s & 3

s & s s

S 4 8 & & & & o & s s 8 v g

& & 8 & 8 ¥ 6§ & & % & ® 8 & & 8 B 3 & & 3 4 ¢ & & 2 s ¥ 3 B B B _4_»

¢ ¢ 2 s & & & 0w

L S T S R R Y N T T T T

¢ s % o 8 8 0

a5 8 e & s

& & & 8 8 & 5 8 2 & e a2 & 9 & &

L S T T S)

& 8 & ® 5 & & & 0 8 & & F B 2 & & & 5 3 5 8 B B 8 & s & & 8 8 & & s e & 8 s 0 s g

¢« ¢ & 8 2 & & a0

L N T TR TR ST}

a6 & & & * & ¢ 8 8 0 & o &

& & & & & & 3 8 8 & & 0 e & s s

s 8 & & & 8 8 8 & 0+ 4 8 &

“ s s

LN T I N B B

.299
.300
.301
.302
.303
.304
.305
.306
.307
.308
-309
.310
.311
.312
.313
<314
<315
.316
.317
.318
.319
.320
.321
.322
.323
<324
326
. 327
.328
.329
330
.331
.332
-333
-334
.335
. 336
.337
.338
.339
.340
. 341
.342
.343
. 344
.345
.346
. 347
.348
.349
. 350
.351
.352
.353
. 354
.355
.356
.357
.358
.359
.360

Page of GY28-2051-0, Issued September 30, 1971 by TNL GN28-3191

PURPOSE OF THE COMPILER

The TSS/360 PL/I compiler analyzes and pro-
cesses source programs that are written in
PL/I and translates them into object data
sets. These object data sets contain code
that is not suitable for execution by TSS/
360. Therefore an additional processor,
the object data set converter (ODC), con-
verts these object data sets to TSS/360-
executable code.

Usual output from the compiler consists
of a load data set and a list data set,
when these options have been specified by
the user. A macro data set will also be
produced when preprocessing is indicated
(see "Preprocessing"” in Secticn 2).

THE COMPILER IN THE TSS/360 SYSTEM
ENVIRONMENT

The compiler consists of a series of logic-
al phases that are under the supervision of
compiler control routines; subroutines
within these control routines provide what-
ever services the compiler requires during
compilation. Communication between the
compiler and TSS/360 is achieved through
the program language controller (PLC),
which is the interface with the system.

PLC performs a series of functions for the
compiler at various stages of compilation
and, finally, calls the object data set
converter (ODC) after compilation, to con-
vert the object data set to TSS/360 code.

PLC -— Interface With the System

When the PL/I compiler is invoked, control
is transferred to PLC. This module acts as
a communications area for user-specified
options, and controls the sequence of
events during invocation of the PL/I
compiler.

The PL/I compiler, unlike the TSS/360
Assembler and FORTRAN compiler, cannot
function until the source data set has been
fully entered. Therefore, when compilation
is called for, PLC searches for an input
data set. If the named data set does not
exist, PIC invokes the text editor to cre-
ate the PL/I source data set. When a
source data set exists, control passes back
to PLC, which then calls the PL/I compiler.

Depending upon user options specified,
invocation of the PL/I compiler may cause
PLC to act as interface for these
functions:

SECTION1: INTRODUCTION

e Creating a PL/I source data set (via
the text editor).

e Converting separately created PL/I
object data sets to TSS/360 code via
ODC.

s Combining a list of PL/I object data
sets for conversion to TSS/360-
executable code.

*+ Performing multiple compilations within
a single invocation of the PL/I
compiler.

¢ Changing implicit calls to explicit
calls via the name processor.

* Printing compiler-generated listings.

The program language controller (Figure
1) is a serially reentrant and sharable
module containing recovery facilities used
in case of interruptions. It can check, at
any stage, the status of compilation; its
recovery facilities permit compilation to
proceed from the point of interruption or
from the beginning.

PLC may be entered at five main entry
points. Initial entry to PLC occurs when
the PL/I compiler is invoked. Depending
upon the options specified by the user, the
text editor, compiler, ODC, and/or the name
processor, may be called. PLC's additional
entry points provide for entry to subrou-
tines used to perform the specific func-
tions for which PLC is responsible at
various stages of compilation: entry from
the text editor after creation of the
source data set, entry after compilation is
completed to build the MERGELST, an entry
point for handling data management func-
tions, and entry to the language processor
early-end routine.

ODC -- Conversion of Object Code

The TSS/360 PL/I compiler produces code
that is similar to 0S/360 code. To trans-
form the lcad data set, which is output
from the compiler, into TS5/360 code, the
object data set converter {ODC) resolves
constants and reformats the module.

PLC invokes ODC after completion of the
compilations specified with a given invoca-
tion of the PL/I compiler. ODC is called
only once within an invocation, and then
only if a merge list (MERGELST) or a merge
data set (MERGEDS) has been specified in
the options, or if the PL/I compiler has

Section 1: Introduction 1

Page of GY28-2051-0, Issued September 30, 1971 by TNL GN28-3191

——— e - L__ _ DATASETS 4
1PL/1 invocationt ! i
L2 mvecation | i
I ! '
—————]
3 Serial —: : |
— Reentrant 1 |
Lo Reovey 1 :
| 1
TEXT EDITOR ! |
(Boild source) |1 source.xxx !
! |
o] I |
PL/1 |—] MAC.XXX(0} (Opfional) |
COMPILER > LIST.XXX(0)
PROGRAM (1
LANGUAGE — : LOAD . XXX({0} "
CONTROLLER / |
> |
OBJECT DATA |
SET CONVERTER | I
1 JOBLIB{XXX) i
! I
L |
NAME PROCESSOR [| (SANSFER DATA SET :
. {Optional) | priona I
|]
oo 1o '
| Print Lisiting i l |
| Data Set i i !
| A -
Figure 1. PLC - interface with TSS5/360

created a merge list to accommodate a
series of compilations. Input to ODC con-
sists of the PL/I-compiled object data sets
in card-image format (see Appendix J).
Output consists of the executable program.
ODC stores all of the TSS/360-executable
programs from one invocation of the PL/I
compiler as separate members in one job
library, resolving standard QCONs (pseudo
registers) and passing others to the dynam-
ic loader. 1In addition, ODC packs CSECTs
as specified by the default value PLIPACK.

Name Processor =-- Conversion of Implicit
Calls to Explicit Calls

The name processor is an optionally invoked
routine that helps the user transform
implicit calls to explicit calls. To do
this, the name processor transforms exter-
nal name references in the PMD of a module
to new, unique names. In addition, for the
new names to be connected with the subrou-
tines that have the old names, the name
processor optionally constructs or updates
a line data set that is called a transfer
data set and that has this format:

0-7 line number
8 X'00"

9-16 new name

17 blank

18-24 PLICALL
25-27 blank

28-35 old name

The user must supply his own PLICALL
macro to perform the explicit calling or
loading of the subroutines.

The name processor constructs or updates
the transfer data set only if:

the user has read/write access to the
transfer data set, and

the default value of UPDTXFER is set to
Y, and

the EXPLICIT operand of the PLI command
specifies names to be padded.

The new name is derived from the old name
by adding a pad character ('3', or a dif-
ferent character that the user specifies
with the default value PADCHAR) to the left
of the o0ld name.

PLC invokes the name processor after
return of control by 0ODC, if the PLI com-
mand included an EXPLICIT or XFERDS
operand. Input to the name processor
includes the PL/I communications bucket
(CHBPLI) and a table of converted modules
to be checked for name transformation
(CHBMGL) .

ORGANIZATION OF THE COMPILER

The PL/I compiler comprises 12 logical
phases, each of which consists of several
physical phases, all under the control of,
and serviced by, the compiler control rou-
tines. A compilation is initiated by load-
ing the compiler control routines from SYS-
LIB. The control routines then carry out
their own initialization and perform these
functions:

Act as the interface between the com-
piler phases and TSS/360, controlling
operations such as all input/output,
storage allocation, program interrup-
tions, and storage dumping.

Supervise the loading and linking of
compiler phases in accordance with
source program options.

Supervise all work space used by the
compiler for information concerning the
source program.

Provide a number of routines to assist
in compiler debugging.

The entire PL/I compiler, including the
control modules, is contained in six link-
edited output modules (for contents of out-
put modules, see Appendix K). When the
user-specified compiler options are inter-
preted, it is determined which of these
output modules is to be loaded. The
addresses of the individual modules, in
each of the loaded output modules, are then
moved into a phase directory, and a request
for the phases required is inserted in the
status byte.

Data Sets Used by the PL/I Compiler

The source data set, which is input to the

compiler, is given the name the user speci-

fies, or SOURCE.XXX. The data sets that
constitute possible output from the compi-
ler are: a list data set, named
LIST.XXX(0); a load data set, named LOAD.
XXX(0); and a macro data set, named MAC.
XXX(0).
ddnames for each of the data sets used by
the compiler. (Generally, ddnames will be
used throughout this publication to refer
to data sets used by the compiler).

The source program that is to be com-
piled appears as input to the compiler on
the PLIINPUT data set. If one of the pre-
processors is called prior to compilation,
a macro data set is created with the ddname
of PLIMAC. When preprocessing is com-
pleted, PLIMAC replaces PLIINPUT as input
to the compiler. The PLILIST data set is
opened by PLC unless the user specifies
that a separate listing is unnecessary, in
which case the listing is placed on SYSOUT
and no record of it is retained in the sys-
tem after printout. The PLILOAD data set,
containing compiler output, and the PLIMAC
data set, containing intermediate text, are
optional and are opened by ccntrol routines
in the compiler. The PLIINPUT data set is
always used by the compiler, and is opened
by PLC.

The data sets used in the compilation,
and the overall data flow associated with a
compilation, are illustrated in Figures 2
and 3.

Overview of Logical Phases

Control is passed between the phases of the
compiler via the control routines. After
each phase has been executed, a branch is
executed to the control module, which
selects (from its phase directory) the next
phase to be executed. The compiler phases
and their corresponding functions are shown
in Figure 4.

Communication between the phases is
implemented by the following:

1. The text string. At the start of the
compilation, the text string is input
text that is converted by the compile-
time processor, if necessary, into a
string that is PL/I source text. The
characters in this string are trans-
lated into a code that is internal to
the compiler. The phas=s of the com-
piler gradually process the text until
it is in the final form of the object

Table 1 contains the corresponding

| PL/ Compiler |
| |
[Program l
! Language t
Controller
i |
i |
3 |
‘ l
l Compiler
i |
Control |
% Routines | '
| ‘ l
| |
| |
| |
I |
I Compiler |
Processing ;
‘ Phases
| |
| l
| |
Source i I
l |
'
% Y 1 Y l
i Text Dictionary !
Blocks Blocks |
| |
|
e T S
Data Set
Object "
Data Set Object
c Module
onverter
Key

———eeee CPU Control

e » Read/Write Communication

~————» Input/Output under the Program
Languoge Controller (PLC) and
Compiler Control Supervision

Figure 2. Compiler Organization and

Control

data set, which consist of machine
instructions. The text-code bytes
used for the compiler and the formats
of statements at different stages of
the compilation are in Section 4,
under "Internal Formats of Text."

The text is broken down into
blocks; each block has a symbolic name
that is independent of the physical
location of the block in storage.
Thus, the text blocks may be moved
around in virtual storage under the
supervision of the compiler control
routines.

Section 1: Introduction 3

MACRO/CHAR48 - -
Source option Compile-Time Processor
Program -~ or 48-Character Set
(PLHNPUT} Preprocessor {PLIMAC)
A
SOURCE XREF LIST LOAD/DECK MACDCK
option option option options option
Y
List of ESD,TXT,RLD, PL/
S:’:rf:m identifiers List of END and NAME sou/rce
prog and statement object code (if OBJNM
listing T text
numbers specified}
PLILIST or PLILIST or PLILIST or PLILOAD PLIMAC
SYSOUT SYSOUT SYSOUT
EXTREF ATR for all SOURCE 2
option option compilations option
Y
External !_ISY o‘F. Lxst‘of compiler .Lls!’mg of
bol identifiers options and input to
symoo and their diagnostic compile-time
dictionary .
attributes messages processor
PLILIST PLILIST PLILIST PLILIST
Figure 3. Compiler Data Flow and Data Sets Used

The dictionary.

sists of blocks,

symbolic name.

tions region between phases {see
The communications

Appendix B).
region contains such information as
the addresses of the heads of chains

The dictionary con-
each of which has a

Part of the first dic-
tionary block is used as a communica-

and the symbolic start of text. The
remainder of the dictionary contains
all information relating to identi-
fiers appearing in the program, such
as temporary storage areas required.
The format of all dictionary entries
for the compiler are in Section 4,
under "Internal Formats of Dictionary
Entries."

Page of GY28-2051-0, Issued September 30, 1971 by TNL GN28-3191

Table 1. Data Sets Used by PL/I Compiler
Ll

1]
Access|

DDNAME DSNAME Method| Comment

PLIINPUT or
user-supplied
$$S$nnnn*

SOURCE . XXX
or
user-supplied

Source input to compiler -- user-supplied or
created by text editor before compilation is
initiated

VISAM

]

List data set -- built unless user options
indicate none is necessary

PLILIST LIST.XXX (0) VSAM

VSAM Load data set -- output from compiler and

input to ODC
Intermediate source text -- created whenever
preprocessing is specified

PLIMAC MAC. XXX (0)
or

user-supplied

VISAM

S U S SR - S —

VPAM/ | Member of library used by macro-phase
VISAM | RINCLUDE verb

|

i

SYSULIB
or
user-supplied

USERLIB
or
user-supplied

v
|
|]

t +

I |

| |

| |

+ t

| |

| |

+ t

PLILOAD | LOAD.XXX(0)]
| i

+ +

| |

| |

| |

+ +

| 1

| |

| |

L L

*Name is generated by the system to be unique. The first three characters are "3§s"
followed by a unique five-digit number.

[S - = . SR . G B . S M st S GO amns. S Y i, S s S o e
SR TSI SSUNINII ISR PR SIPESPEE SR

Logical Phase Function

Compile-time Processor Reads input text, executes any compile-time statements in
it, modifies text as directed, and produces modified text

for further processing.

P R p— Sp——

Read-In Checks source-program syntax and removes from the test
string all superfluous characters, such as comments and non-

significant blanks

-]h-——-——-‘b-m—-—.———lb-—-d

Dictionary Removes all BCD identifiers and attribute declarations from
the source string and replaces them with symbolic references
to dictionary entries; entries contain all consistent
declared attributes and all the attributes specified in lan-
guage in default of source-program specifications; error
messages are generated for all inconsistent attributes

Pretranslator Processes features of language that are more easily pro-
cessed in original PL/I form than when original syntactic
form has been lost in later phases; carries out modifica-
tions that include rearranging of order of certain I/0
statements, creation of temporary wvariables for procedure
arguments that are expressions, conversion of array and
structure assignments to a series of DC-loops surrounding
scalar assignments, and removal of iSUB expressions

i o e e sem i e S o e o i S e e S . . i, S s e e G SO et e s S e e o

Translator Converts original PL/I syntactic form to internal syntactic
form ("triples™); triples consist of original source-procgram
operators and operands, rearranged so that operations speci-

fied in source string may be carried out in proper order

Aggregates Carries out all structure and array mapping, so that ele-
ments are aligned on correct virtual storage boundaries;
when it is not possible to map at compilation time (such as
wnen aggregates contain string lengths or array bounds that
are specified by expressions) object code is produced to map
at object time; also checks that items defined on arrays and
structures can be mapped consistently

e . . i . i S S b, S St G S S, e s A e S s, M O s ST i, SR e S B i, S A s W e, . G oy

i oo o s s s e G S . s s . b s s e s s St o e, bR s e . st e,

r

Figure 4. Compiler Logical Phases (Part 1 of 2)

Section 1: Introduction 5

Page of GY28-2051-0, Issued September 30, 1971 by TNL GN28-3191

Logical Phase Function
Optimization If requested, these phases attempt to reorder triples for
subscript address calculations and generate efficient
pseudo-code for DO-loop control; this enables some PL/I pro-
grams to compile into faster object code at cost of extra
compile time
Pseudo-Code Converts triples to form closely resembling machine instruc-

tions, in which registers are represented symbolically, and
storage locations are represented by dictionary references
with offsets; final version of text also contains special
pseudo-code items for guidance of later phases

Storage Allocation

Searches dictionary for entries requiring storage, and allo-
cates offsets to each, within its AUTOMATIC block or within
STATIC storage area; code is compiled to set up dope vectors
and pointers at object time for allocations of controlled
variables and temporaries, storage for which must be
obtained during execution of object program; prologue code
is generated for each block of object program

Register Allocation

Allocates physical registers to symbolic registers that have
been requested by earlier phases and ensures that all
storage-location offsets allocated in previous phases can be
addressed by insertion of necessary additional instructions

Final Assembly

Completes translation to machine-code instructions, by cal-
culating branch-destination addresses inserted symbolically
by earlier phases; loader text is produced for machine
instructions, constants, INITIAL values in STATIC storage,
and all constant data required for block initialization;
external symbol dictionary (ESD) and relocation dictionary
(RLD) are produced to enable object program to be converted
by object data set converter (ODC); also produces listing of
object code

Error Editor

[P S S s S M S B B S G, S s W S Y (i T St S v S, . o, . s . St S S . U it W i, S U= g A" s S S e Y

o et i o oy S s, i S s S i W . Sy S e e T i, S et e S e S s S e S (. s, PO, O . s S e PO e, . e,

Entered at end of every compilation; dictionary is examined
to determine if diagnostic messages are to be printed out;
if no, compilation is terminated by compiler control; if
yes, error dictionary entries are processed and messages are
printed; texts of all diagnostic messages are held in
modules XG-YY.

S S L oy ————— R S SR S S O S P Epes S SO S

Figure 4. Compiler Logical Phases (Part 2 of 2)

LOGIC OF THE COMPILER

The compiler modules are link edited into
six output modules, which are broken down
by function:

Control Output Module (CFBAC) - contains
all the control modules, except those
responsible for initialization. The
code in this output module is reusable;
it remains resident during multiple
compilations.

Main Output Module (CFBAD) - contains the
modules responsible for initialization,
together with all the logical phases,
except those responsible for preproces-
sing, optimization (option OPT=2), and
interphase dumping and tracing.

First Preprocessing Output Module (CFBAE) -
contains the modules required for macro
and/or 48-character set preprocessing,
with the exclusion of modules that are
reused in the processing cf the macro
option.

Second Preprocessing Qutput Module (CFBAF)
- contains those modules ¢f the macro
preprocessor that may be reused in the
processing of the macro option.

Optimization Qutput Module (CFBAG) - con-
tains those modules which are required
when OPT=2 is specified by the user.

Interphase Dumping and Tracing Output
Module (CFBAH) - contains all the
modules required for interphase dumping
and tracing.

Each of these output modu.es, with the
exception of the control output module,
contains a control CSECT made up of VCONs
for each of the link-edited modules within
it. The initialization and loading of the
output modules is explained below. (For a
list of the modules contained within each
output module, see Appendix K.)

Compiler Control

The control-phase modules, wanich are resi-
dent in virtual memory throughout compila-
tion, control these functions:

e Initialization and loading

e Character translation

SECTION 2: METHOD OF OPERATION

¢ Communication between phases

s Scratch-storage control

s Text and dictionary block control
¢ Phase linkage

e Diagnostic-message control

* Input/output control

» Program-check handling

s Job termination

Initialization and Loading: The PL/I com-

piler is invoked by PLC via a CALL macro
instruction issued to control module AA.
This has the effect of loading the control
output module (CFBAC). At the top of AA, a
test is made to determine if this is a
clean entry. If it is not, but is a rein-
vocation of the compiler, a cleanup routine
is entered to ensure that all other output
modules are deleted, that all open data
sets are closed, and that any modified code
in the control output module is
initialized.

The main output module (CFBAD) is then
loaded via the issuance of a LOAD macro
instruction. Module AB of CFBAD is
responsible for the detailed initialization
of the compiler. A CSECT, AU, within
module CFBAD contains a VCON for each of
the modules within the main output module.
AB is responsible for transferring these
VCONS from AU to a list, called the phase
directory, in module AA of the control out-
put module {CFBAC). This list consists of
8-byte entries containing the addresses of
modules in the compiler. Thus the phase
directory, after initialization, will ind-
icate the location in virtual memory of the
individual compiler modules. If the user
requires the interphase dumping and/or
tracing routines, AB will load the output
module containing these routines as part of
its initialization responsibility.

When the detailed initialization of the
compiler is complete, AB returns control to
Ap, where the linkage routines, using the
phase directory, initiate execution of AM,
the marking phase. Before marking the
modules in the phase directory as wanted or
not wanted, AM examines user-specified
options and:

Section 2: Method of Operation 7

1. If MACRO ands/or CHAR48 is specified,
it loads the first preprocessor output
module (CFBAE). ILocated in this out-
put module is a CSECT, AW, which con-
tains a VCON for each of the modules
in that output module. These VCONS
are then transferred to the relevant
slot in the phase directory.

2. If MACRO has been specified, the
second preprocessor output module
(CFBAF) is loaded, whose VCON CSECT,
AX, is used to fill the relevant slots
in the phase directory.

3. If the user has specified OPT=2 as the
level of optimization, then the opti-
mization output module (CFBAG) is
brought in and the phase directory
filled from its VCON CSECT, AY.

Having completed initialization, AM
passes control to the first logical phase.
During compilation, additional modules may
be marked as wanted or not wanted depending
upon the nature of the source statements.

Character Translation Tables: The charac-
ter translation tables (see "Internal For-
mats of Text"™ in Section 4) provide the
facility for converting external code to
compiler intermal code and for converting
the internal code back to the external
form. These tables prevent the compiler
from becoming character code dependent and
enable the scanning routines to process the
input source statements more efficiently.
Note that the contents of these tables are
different during compile-time processing
from the contents during compilation.

Communication Between Phases: The communi-
cations region is an area, specified by the
control routines, and used to communicate
necessary information between two phases of
the compiler. The communications region is
resident in the first dictionary block
throughout the compilation.

Entry to the various compiler control
routines is via a transfer vector. Details
of the transfer vector and the organization
of the communications region are in Appen-
dix B. (Note: The use of the communica-
tions region during compile-time processing
is described in Appendix F.)

Scratch-Storage Control: Scratch storage
of 4096 bytes is guaranteed to all phases.
The control routines split the 4096-byte
block into discrete sections, and allocate
them as required. The sections are in mul-

tiples of 512 bytes. Additional scratch
storage is obtained as required.

Text and Dictionary Block Control: During
compilation, at least four text blocks and
four dictionary blocks are available. The
dictionary- and text-block size is four
pages. Block control is achieved by a sys-
tem of text and dictionary references.

Phase Linkage: The phase directory, in
module AA, is constructed so that it may
contain the location in virtual memory of
each module required for compilation.

These modules are then marked during
initialization, by AM, or during compila-
tion, as "wanted"” or "not wanted"™ for that
compilation. The phase-linkage routines,
also in RA, are then used to access the
phase directory, where they pick up the
address of the next required module. This
may be specified explicitly, or it may be
the next phase after the current one that
is marked "wanted". Having picked up the
address from the directory, the linkage
routines may either return the address to
the caller in a communications area or they
may branch directly to the address, to com-
mence execution of a new module. Which of
the above operations takes place is depen-
dent upon the entry point used to enter the
linkage routine.

Where preprocessing is requested, the
modules in the second preprocessor output
module (CFBAF) may be required for reuse.
Since these modules are not serially reus-
able, the output module must be deleted and
reloaded each time it is required. This
service is performed by the linkage
routines.

Diagnostic-Message Control: Diagnostic
message-control routines cause diagnostic
messages to be placed in a chain in the
dictionary. When conversational diagnos-
tics are specified, these will also be pro-
duced by these routines.

Input/Output Control: The I/0 control rou-
tines involved act as interfaces between
the compiler phases and the PLIINPUT, PLI-
MAC, PLILIST, and PLILOAD data sets (see
Figure 5).

Program-Check Handling: The compiler
handles all program checks; control can be
passed to a phase to enable it to deal with
the check.

Job Termination: The compiler completion
code is picked up and control is returned
to PIC.

MACRO/
CHAR48

User Supplied
or $$%nnnnn
ar PLHINPUT

Intermediate Text

{
| /. ————— —— = = —— ——— A
| |
| |
| PL/I Compiler i‘
} i

|
! z
| Recd-In i
| Phase |
|
|
|
| - PLIMAC
i Preprocessors __‘_J
b e - CHAR48 or %INCLUDE

or User
Supplied
{ 4
Objec:
PLILIST or PLILOAD Data Set
SYSCUT Converter

Figure 5. Input and Output Data Sets

The compiler completion codes are:

No diagnostic messages issued; com-
pilation completed with no errors;
successful execution expected.

Warning messages only issued; pro-
gram compiled, successful execution

Error messages issued; compilation
completed, but with errors; execu-
tion may fail.

Code Meaning
0
4
is probable.
8
12

Severe error messages issued; compi-
lation may be completed but with
errors; successful execution improb-
able. If a severe error occurs dur-
ing compile-time processing, the
compilation will be terminated and,
if the SOURCE option has been speci-
fied, a listing of the PL/I program
text produced by the compile-time
processor will be printed.

16 Terminal error messages issued; com-
pilation terminated abnormally; suc-
cessful execution impossible.

Preprocessing

The PL/1 compiler has two preprocessors,
the UW8-character set preprocessor and the
compile-time processor. One of these pre-
processors may be used prior to compila-
tion, depending upon user-specified
options. However, both of them would never
be used for a single compilation.

1. The 48-character set preprocessor is
called when input to the compiler is
in the 48-character set, requiring
translation to é0-character symbols
before compilation. The user indi-
cates this by specifying the CHARU4S
option.

2. The compile-time processor is called
when the source text contains prepro-
cessor statements; this is indicated
by specifying the MACRO option. The
compile-time processor includes a
facility for translating statements
written in the 48-character set into
the 60-character set. Thus, if both
MACRO and CHARU8 are specified, only
the compile-time processor will be
called.

If neither of these options is speci-
fied, both preprocessors are bypassed and
compilation is begun, using the PLIINPUT
data set as input to the compiler. When
either preprocessor is executed, it places
the translated source text into the PLIMAC
data set, which then serves as source input
toc the read-in phase. Figure 5 illustrates
interaction between the compiler and input/
output data sets.

Compilation

The compiler comprises a series of phases
that are called and executed in turn under
the supervision of the control modules.
Each phase performs a single function or
set of functions, and is entered only if
the services it provides are required for a
particular compilation. Control module AM
marks the appropriate phases, placing the
names in a phase directory in accordance
with the content of the source program and
the optional compiler facilities selected.
Figure 6 illustrates the overall flow of
the compiler.

The data that is processed by the compi-
Jer is known as text throughout all stages
of the translation process. Initially, the
text comprises the PL/I source statements
submitted by the programmer; at the end of
compilation, it comprises the machine

Section 2: Method of Operation 9

Compiler
»{ Control
Initialization

Entry
from PLC

Compile-Time
Processor

Compilation
?

Return

48-Character
Set Preprocessor

Read~In
Phase

\

Dictionary
Phase

Print Out
Attribute
and Cross-
Ref Table

ATR/

_Yes ¢”XREF Option
2

No

Pre-Translator
Phase

A

Tronslator
Phase

Y

Aggregates

Phase

Figure 6. Overall Flow of Compiler

10

Optimizationsy O

Optimization Pseudo-
Phase Code Phase

Y

Storage
Allocation
Phase

Y

Register
Allocation
Phase

Final
Assembly
Phase

Print
Object
Listing

LIST
Option
?

Print
Diagnostic
Messages

Diagnostics
?

More
Compilations

in Batch
?

Return

to PLC

Page of GY28-2051-0,

instructions that the compiler has substi-
tuted for the source statements, to which
is added some reference information for use
by oODC.

The read-in phase takes its input either
from the PLIINPUT data set orx, if prepro-
cessing has preceded it, from the PLIMAC
data set. This phase checks the syntax of
the source statements and removes any com-
ments and nonsignificant blank characters.

After read-in, the dictionary phase of
the compiler creates a dictionary that con-
tains entries for all the identifiers in
the source text. The compiler uses the
dictionary to communicate descriptions of
the elements of the source program from one
phase to ancther. The dictionary phase of
the compiler replaces all identifiers and
attribute declarations in the source text
with references to dictionary entries.

Translation of the source text into
machine instructions involves several com—
piler phases with this sequence of events:

1. Rearrangement of the source text to
facilitate translation {(for example,
by replacing array of structure
assignments with DO loops that contain
element assignments).

2. Conversion of the text from the PL/I
syntactic form to an internal syntac-
tic form.

3. Mapping of arrays and structures to
ensure correct boundary alignment.

4. Translation of text intc a form simi-
lar to machine instructions; this text
form is termed pseudo-ccde.

5. The compiler makes provision for
storage allocation for STATIC
variables and generates code to allow
AUTOMATIC storage to be allocated dur-
ing execution of the object program.
(The PL/I library subroutines handle
the allocation of storage during
execution of the object program.)

The final-assembly phase translates the
pseudo-code into machine instructions, and
then creates the external symbol dictionary
(ESD) and relocation dictionary (RLD)
required by the conversion program. The
external symbol dictionary is a list that
includes the names of all subroutines that
are referred to in the object module but
are not part of the module; these names,
which are external references, include the
names of all the PL/I library subroutines
that will be required when the object pro-
gram is executed. The relocation dic-
tionary contains information that enables
virtual storage addresses to be assigned to

Issued September 30, 1971 by TNL GN28-3191

locations within the object module when it
is loaded for execution.

Throughout compilation, subroutines in
control modules are referenced to provide
whatever services are required by the com-
piler phases. When compilation is com—
pleted, control passes back to PLC, which
determines, on the basis of user options,

lwhether ODC or the name processor must be

called.

COMPILER INTERFACES WITH THE SYSTEM

PROGRAM LANGUAGE CONTROLLER (PLC) ~ CFBAA

This routine is the interface for accom-
plishing any or all of these functions:

1. Compile a prestored data set
2. Create a line data set and compile it

3. Process the compiled data set to make
it executable in TSS/360

4. Process references to external subrou-
tines so that the subroutines can be
called explicitly rather than
duplicitly.

5. Print the compiler-created listing
data set.

Entry Points:

CFBAA contains five entry points -
CFBAA1l - Entry from Command System
Analyzer
GRI points to first word in BPKD list
PARAM dsect
CFBAAZ - End entry point from text
editor
No parameter
CFBAA3 - Entry to MERGELST block build
routine
GRI points to module name padded to
right with blanks
CFBAAL4 -~ Entry to compiler data manage-
ment routine
GRI contains pointer to request code
byte
PARAM dsect
CFBAAS - Entry to language processor
early end routine
No parameters

Input: PL/I command parameters pointed to
by CFBAA8 BPKD
CHBTDT - Task data definition table
CHBTCM - Task common

Output: CHBPLI - PL/I communication area
CHBMGL - merge list of module names
Messages: All CFBAA messages listed in
System Messages.

Section 2: Method of Operation 11

Page of GY28-2051-0, Issued September 30, 1971 by TNL GN28-3191

Routines Called: External

CZABD (PRINT) CZASW4 (LPCEDIT)

CZAEA3 (DDEF) CZATJ1 (PRMPT)

CZAEC1 (FINDDS) CFBAB1 (0ODC)

CZAEl12 (CATALOG) CFBAK (NAME PROCESSOR)

CZAEJ7 (ERASE) CZCLA (COMMON OPEN)

CZAFJ2 (RELEASE) CZCLB (COMMON CLOSE)

CZASC7 (SYSIN) CZCOJ (FIND)

CZASDX (GDV) CZCOK (STOW)

CZASW1 (LPCINIT) IEMTAA (PL/I COMPILER)
Exits: All exits are made by means of the
RETURN macro. There are no SYSERR or ABEND
exits.

OPERATION: CFBAA is divided into four
sub-modules:
1. Mainline processing (CFBAA1l)
2. MERGELST block build routine (CFBAA3)
3. Compiler data management routine
(CFBARAL)
4. ILanguage processor early end routine
(CFBAAS)

Mainline Processing: In order to be re-
entrant if interrupted during a previous
compilation, PIC checks its footprint flag
found in the communication bucket (CHAPLI)
for the last operation completed before the
interruption took place. From the value,
it determines what end processing must take
place before a new compilation may be
begun.

After cleanup, the communication area is
initialized to zeros and default values.
BPKD pointers are then inserted in their
designated slots in the communication area.
The merge list is built, including each
name specified in the MERGELST parameter,
using the subroutine CFBAA3. PLC options
are scanned and appropriate values are
filled into the bucket.

If the user request explicit-call pro-
cessing only (PLCOPT=NOCONV) and gave valid
EXPLICIT and XFERDS operands, PLC skips
compilation and conversion and calls the
name processor (CFBAK) to change implicit
calls to explicit calls.

If NONCONV was specified, and if a
module name was given as input, the module
name is validated, with prompting for a new
name if it is invalid. 1In a non-
conversational task the compilation is
bypassed if the module name is invalid.

a module name was not input, SOURCEDS (if
valid) may be used for the name. If neith-
er NAME nor SOURCEDS were input, PLC will
skip compilation and call ODC (CFBAB) to
convert input from MERGELST or MERGEDS
parameters.

If

12

When a source data set name was given as
input, FINDDS is called to validate the
name and locate a JFCB for it. If there is
no JFCB, FINDDS is called again to create
one. If it is unable to DDEF the data set,
the CKNAM subroutine is used to determine
data set attributes from the name. DDEF is
called with the appropriate DSORG; then the
data set is opened for the update option.
The text editor is then invoked to create
the data set.

If the data set exists, a check is made
to see if it is shared with read-only
access. For that case the data set is
opened for input; all other data sets are
opened for update. After the SOURCEDS is
fully open, the data set is checked in the
DCB to ensure that it is a VISAM line data
set (or member). If it is not, compilation
is bypassed.

When the source data set has been vali-
dated or created, the compiler is called
with the address of a two-word parameter
list in register 1. The first word con-
tains the address of the PLIOPT string,
whose length is in the byte preceding the
string, and the second word contains the
address of the communication bucket
(CHAPLI).

When the count of modules in the
MERGELST is greater than one, or a single
module was compiled without terminal
errors, or there is a pointer to a MERGEDS
parameter, ODC is called with no parameters
needed. Following conversion, if there has
been a compilation with a separate listing
data set, and a print request was an input
parameter, the PRINT macro is issued with
appropriate parameters.

The source data set is closed (stowed if
necessary) and the JFCB released if PIC
defined the data set. The continuation bit
is checked for further compilation and, if
off, a normal return is made to the user.

When the continuation bit is on, a SYSIN
macro is issued to obtain the next input,
with prompting "PLI:". The parameter is
moved to PLI BPKD, all unwanted BPKD param—
eters from the previous compilation are
zeroed out, and processing continues at
initialization.

MERGELST Block Build Routine: The address
of the name to be added to MERGELST is con-
tained in register 1 on entry. The routine
checks for the last block available by fol-
lowing forward chain pointers, then checks
to see if this block is full (MGLCNT=15).
If it is full, a GETMAIN is issued for
another block of 128 bytes, and a pointer
to this block is inserted in MGLPTR in the
last block obtained. The name pointed at
by register 1 is inserted in the first

T

Page of GY¥28-2051-0, Issued September 30, 1971 by TNL GN28-3191

available slot and the MGLCNT is updated by
a count of 1. A normal return is made to
the calling routine with no return codes.

Compiler Data Management Routine: Register
1 contains a pointer to a code specifying
what type of data set and what data manage-
ment function are required.

Code values for functions are:

DDEF ERASE RELEASE

LIST DS 14 18 1c
LOAD DS 24 28 2C
MACROC Ds 4y 48 4c

For a DDEF request, a CATALOG macro
establishing a GDG index is issued for all
cases except that where the user has speci-
fied his own macro data set name. Then the
appropriate DDEF is issued fcr the
requested data set. An immediate return is
made to the calling routine.

For an ERASE request, either the system
name or the user supplied macro data set
name is used with the ERASE macro, followed
by a return to the calling routine.

A RELEASE request will use the system
supplied ddname for the data set in ques-
tion followed by a return to the calling
routine.

Language Processor Earlyv End Routine: This
is a stand-alone routine invoked only by
the user control routine (LPCINIT) function
under certain conditions:

1. PIC has been interrupted while creat-
ing a new source data set.

2. A new language processing request has
been made for text—-editor services.

The routine enables PLC to close out the
data set being created, refresh the source
DCB, and reset the footprint o zero. In
order to prevent the routine from taking
effect when PLC is the language processor,
and thus reinvoking the text editor, PLC
sets a switch so that all processing is
bypassed. PLC does its cleanup at initial-
ization time.

OBJECT DATA SET CONVERTER (ODC) - CFBAB

ODC converts compiler-formatted object
modules into TSS-formatted object modules
and resolves the library-known pseudo regi-
sters (PRVs), other pseudo registers are
passed on to the dynamic loader.

Entry Points:
CFBAB1 - Entry from PLC to mainline

processing
CFBAB2 - Entry from PLC to task cleanup

Input: The ODC routine will be passed the
following input data by PLC and the compi-
ler modules:

Via the communications bucket (CHBPLI) -
Merge list pointer, if any.
Pointer to the merge data set name, if
any.

Via the task library chain -
The job library into which the output is
to be stored and from which the data set
names are determined, if the reprocess
option is selected, as indicated by the
fact that the merge data set name eguals
the job library.

Via the merge 1list (CHBMGL) -
A list of modules to be converted.

Via the merge data set -
Additional names of data sets to be
processed.

This input can take three forms:

¢ The name of the most recently defined
job library - reprocessing indicated.

*» The name of a VPAM data set which is
not the current job library. A copy of
every member in this library is to be
processed and placed in the current job
library.

* The name of an independent data set
made up of records, each containing up
to 15 names of modules to be processed
and stored in the current job library.

Output: This routine produces TSS/360-
formatted object modules, which it stores
in the appropriate job library. It option-
ally produces a data set that contains the
offsets into the PRV.
Messages: All CFBAB messages are listed
in System Messages.

Routines Called: External

CZCLA (COMMON OPEN)
CZCGA2 (GETMAIN)
CZAEC (FINDDS)
CZATJ (PRMPT)

CZCOK (STOW)

CZAF3 (RELEASE)
CZCOJ (FIND)

CZCGA3 (FREEMAIN)
CZCLB (COMMON CILOSE)
CZAEA (DDEF)

Exits: All exits are made by means of the
RETURN macro. There are no SYSERR or ABEND
exits.

CPERATION: CFBAB is divided into two
submodules:

1. Mainline processing (CFBAB1)

2. Task cleanup (CFBAB2)

Section 2: Method of Operation 13

Page of GY28-2051-0, Issued September 30,

Mainline Processing: After standard
initialization, ODC searches out the most
recently defined job library and opens it
for update. It then obtains virtual memory
space in which to process changes for the
pseudo register vector table. If the name
of the merge data set and of the job
library are the same, a merge list member
is added for each member of the library.

When the merge data set name is the name
of a VPAM data set which is not the job
library, an entry is added to the merge
list for each member of that data set.
Subsequent processing proceeds as for a
stand-alone merge list.

If the data set provided as the merge
data set does not have VSAM, VISAM, or VPAM
organization, a warning message is issued
and the merge data set ignored. Processing
otherwise proceeds as normal.

Data set names are processed from the
merge list in the following order: first,
the name has appended the prefix 'LOAD',
and an attempt is made to find the input
data set. If not extant, a message is
issued and the next module is processed.
If extant, a JFCB is created, if not pre-
viously defined.

A DCB is built for the input data set
and the data set is opened. Storage is
obtained in which to build a PMD and the
text for the TSS/360-formatted module.

Records in card-image form from the
input data set are processed according to
type until either an END card or version ID
card is encountered, or the data set is
exhausted. If the version ID card shows
that terminal errors were detected during
compilation, conversion is terminated and
the proper message is written. If no END
card is found, a message is issued and con-
version continues.

A default value, PLIPACK, is checked to
determine whether the user wants his CSECTs
packed on external storage. If PLIPACK=Y,
all CSECTs are packed. If PLIPACK=P, non-
common static external CSECTs smaller than
4096 bytes, text CSECTs, and static intern-
al CSECTs are packed. If PLIPACK is any
other value or no value, no CSECTs are
packed. BAll packed CSECTs within a module
are combined into a singel CSECT. Packed
CSECT names are transformed into entry
point names.

The compiler generates a single record
following the end record. This record con-
tains a time-date stamp for version ID and
the maximum error level detected during
compilation. These values are inserted in
the PMD for use by the program control sys-
tem and the dynamic loader.

14

1971 by TNL GN28-3191

The PMD header is then created. If any
ESDID numbers are missing, a warning mes-
sage is issued and processing resumed. A
blank CSECT name likewise produces an error
message, and the CSECT will be skipped.

A control section dictionary (CSD) is
created for each valid CSECT. RLD entries
are built for all external and internal
references in the CSD. The CSD and PMD are
then completed in preparation for stowing
the module generated into the job library.

ODC then determines whether this module
replaces another with the same name. If it
does, the old version is deleted from the
job library. A DELETE macro is issued to
unload any old copy in virtual memory.

The new module is then stored in the job
library. The working storage is released
and the input data set closed. If the JFCB
for the input data set was created by the
processing of this routine, that JFCB is
released. An appropriate message is issued
to inform the user into which job library
the module was placed, and whether it was a
replacement. If the module is too large to
convert within the virtual memory work
space allocated for this purpose, an error
message issued and the module is skipped.

The remaining modules, if any, are pro-
cessed until the merge list has been
exhausted. The pseudo register vector data
set (if specified) is written after all
modules have been processed.

Errors may be detected while storing
away the newly processed module. They are
handled as follows:

e If an error is detected while trying to
determine the existence of a prior
alias version in the job library, an
error message is issued and the module
is skipped.

e If an error is detected while trying to
stow the new module, an appropriate
error message is issued.

e If the error detected was that of dup-
licate entry point names, the user is
offered the opportunity to have the
duplicate names listed and to terminate
or continue processing after skipping
the present module.

Task Cleanup: This submodule closes data
sets that ODC has left open and frees all
working storage that ODC aquired.

S,

Page of GY28-2051-0, Issued September 30, 1971 by TNL GN28-3191

NAME PROCESSOR - CFBAK

The name processor helps the user transform
implicit calls to explicit calls

Entry Points:

CFBAK1 - Entry from PLC to mainline
processing

CFBAKZ2 - Entry from PLC to task cleanup

Input: The name processor receives the
following input:

Via the communications bucket (CHBPLI) -

Pointer to merge list, if any.

Pointer to EXPLICIT operand, if any.

Pointer to XFERDS operand, if any.

Via the task job library chain -

The last job library in the chain, in
which ODC stowed the object module that
contains the names to be processed.

Via the merge list (CHBMGL) -

A list of converted modules tc be
checked for name transformetion.

Output: If the EXPLICIT or XFERDS operand
was used, the name processor adds pad
characters to the beginnings of selected
external references. In addition, this
routine optionally adds lines of the form

0-7 line number
8 X'00°*

9-16 new name

17 blank

18-24 PLICALL
25-27 blank

28-35 0ld name

to a line data set named in the XFERDS
operand; if the named data set does not
exist, this routine creates it.

Messages: All CFBAK messages are listed
in System Messages.

Routines Called: External

CZAEA4 (DDEF) CZCLAO (COMMON OPEN)
CZAEC1 (FINDDS) CZCLBC (COMMON CLOSE)
CZAFJ3 (RELEASE) CZCOJ1 (FIND)

CZASDX (GDV) CZCOK1 (STOW)

CZATJ1 (PRMPT) CZCOR1 (VS5 GET)
CZCGA2 (GETMAIN) CzCcoul (V3 PUTX)
CZCGA3 (FREEMAIN) CZCPAl (VI PUT)

CZCPB1 (VI GET)

Exits: All exits are made by a branch, on
register 15, to PLC. There are no SYSERR
or ABEND exits.

OPERATION: CFBAK is divided into two
submodules:

1. Mainline processing (CFBAK1)
2. Task cleanup (CFBRK2)

Mainline Processing: After standard
initialization, CFBAK obtains and validates
default values for PADCHAR and UPDTXFER.

If system default values are used, PADCHAR=
@ and UPDTXFER=N.

CFBAK constructs three symbol tables to
facilitate the search for symbols specified
in the EXPLICIT and/or XFERDS operand.

Each table entry contains sixteen bytes;
the new name is in the first eight bytes,
and the old name is in the second eight

kytes.

Symbol table 3 is constructed first,
from entries in the EXPLICIT operand. If
EXPLICIT=*%*ALL, no table is built; a switch
is merely set. If EXPLICIT=(MODA,MODB),
MODA and MODB are entered. If EXPLICIT=#*
ALL (MODA,MODB) , MODA and MODB are entered
but a flag is set to indicate omissions.

Symbol table 1 is buiit next, from reco-
rds in the transfer data set, if the
transfer data set has been supplied. CFBAK
dissects the records intc label (new name)
and operand (old name), ignoring records if
they do not fit into the standard pattern,
and inserts the names into the table.

The last job library is opened, and a
FIND is issued for the first name in the
merge list. If it is found, a GET is
issued against the module to pick up the
PMD. For each CSECT, the REF chain is
checked REF by REF through tables 3 and 1
for a match. A match in table 3 plus
appropriate flags tell whether the REF is
to be changed or ignored. If it is to be
changed, a check is made in table 1 to see
if the name was changed in the transfer
data set, and if it was, the label in the
transfer data set is substituted for the
REF in the PMD. If it is not in table 1
and is to be added to the transfer data
set, the name is checked for valid charac-
ters, prefixed by the pad character,
checked against both tables for possible
conflict, and added to symbol table 2.

When all CSECTs and REFs have been
checked, the contents of symbol table 2 are
formed into PLICALL records for the transf-
er data set. Then the processed PMD is
placed in the module by means of a PUTX
macro instruction; the module is stored
into the job library. The next module in

Section 2: Method of Operation 15

Page of GY28-2051-0, Issued September 30, 1971 by TNL GN28-3191

the merge list is treated in the same way
until no more remain. CFBAK then reports
all names from the EXPLICIT operand that
were not found.

Task Cleanup: This submodule frees working

storage and closes data sets that were left
open.

COMPILER CONTROL

The compiler control modules perform spe-
cific functions for the compiler; these
modules and the subroutines they contain
are referenced constantly throughout compi-
lation. Two of the control modules,
modules AA and AL, contain the service sub-
routines, and are responsible for perform-
ing most of the services required by the
compiler. Tables of these subroutines and
their functions are in Section 3.

When compilation is called for, PLC
calls module AA, AA links to AB, and AB
performs the initialization of the compil-
er. The addresses of the service routines
contained in AL are placed by AB in a table
in AA. From that point, modules AA and AL
are referenced constantly throughout the
compilation process.

Module AA — First-Half Service Routines

Module AA is the base module for the com-
piler. The transfer-vector table, contain-
ing the addresses of the entry points of
service subroutines in both AA and AL,
resides in AA. The transfer vector table
consists of a series of ADCONS. The ADCONS
for service routines in AA are resolved
when AA is loaded. The addresses of ser-
vice routines in AL are inserted into dummy
ADCONS by AB. The offset of each ADCON in
the table is fixed and is known by all com-
piler phases. If a compiler phase wants to
call a compiler service routine, its link
register is loaded with the ADCON from this
offset and the branch executed. A second
table in AA points to frequently referenced
information in storage.

AR is responsible for phase linking.
Facilities are provided for marking phases
(as specified by the phase-marking module,
AM), calling physical phases and then
returning control to the caller, and pass-
ing control to a new phase.

Translate tables for converting external
codes (EBCDIC, BCD) to internal code, and
the reverse, are contained in AA. The spe-
cific table supplied for an operation will
depend upon the option specified by the
user. AA also contains the DCB for the
load file.

16

Module AL - Second-Half Service Routines

Module AL contains a series of ADCONS for
the service subroutines located in it.
These ADCONS are resolved at load time and,
by means of the initialization process per-
formed by AB, inserted in the transfer-
vector table in AA. There are a few infre-
quently used service routines in AL, whose
addresses are maintained only in AL and are
not transferred to AA. The remainder of
module AL consists of service subroutines.
These subroutines are described in Appendix
H.

Module AB - Initialization

AB, the initialization routine of the com-
piler control phase, performs these
functions:

e Opens the LOAD file (PLILOAD) if
necessary,

e constructs the phase directory (for
details see "Resident Tables" in Sec-
tion &),

» Obtains space for text blocks and dic-
tionary blocks,

s Sets up a communications region in the
first dictionary block,

s Scans the user-supplied options list
and picks up default values from the
options table in module AF when
necessary,

® Tests for CHAR48 and/or MACRO and then
opens the macro data set (PLIMAC) and
calls module AC, if necessary,

¢ Prints a list of options used in the
current compilation,

e Tests for the BCD/EBCDIC option and
moves the correct translate table from
AA into the dictionary,

e Inserts error messages, which may have
been generated when the LOAD file was
opened, into the dictionary,

* Places the addresses of the compiler
sexrvice routines in AL into the
transfer-vector table in AA,

» Causes the first card to be read and
stores it for use as a heading for the
listing.

On completion, AB returns to AA with a
completion code. If this code is satisfac-
tory, the first logical phase (read-in) is
invoked. If the code is unsatisfactory,
the compilation is terminated.

e

Page of GY28-2051-0, Issued September 30, 1971 by TNL GN28-3191

Module AC - Intermediate File Control

This module controls writing operations of
text, complete with VISAM line numbers, on
PLIMAC, the intermediate text file. It is
entered only if the CHARU48 or MACRO option
is specified.

AC is also responsible for entering
module AG at the end of the compile-time
phase to close PLIMAC for output and open
it for input. In other words, where MACRO
and/or CHAR48 are specified by the user,
PLIMAC rather than PLIINPUT acts as source
input to the compiler.

Module AD - Interphase Dumping

Module AD is responsible for performing
interphase dumping. All specified active
storage is dumped at the end of the phases
stated or implied in the DUMP opticon. If
the DUMP option includes either I, for the
annotated dictionary dump, or E, for the
annotated text dump, or both, then module
AD will load either module AH or modules AI
and AJ, or all three, to produce the
required output.

The DUMP option, which indicates where
main storage is to be dumped, may be speci-
fied in one of these ways:

1. DUMP, means a dynamic dunp is required
(the dump routine will be called by a
running phase),

2. DUMP=(area,Xy Xa2,X3,+-..Xn) mMeans a
dump of the storage after the named
phase, where x is the name of a phase.

Area is any combination of TDSCIE:

text blocks

dictionary blocks

scratch storage

control phase

annotated dictionary blocks
annotated text blocks

He-OQWOA

The general syntax is:

DUMP{=(lareal ,{x|(y,2)},....)] where x,
y. and z are phase numbers.

A single phase name indicates dumping of
storage after this single phase. A pair of
phase names indicates a continuous group of
phases, after each of which dumping of
storage is to occur. The dump will appear
on PLILIST or SYSOUT, depending upon user
option, inserted into the normal compiler
output.

If area is omitted, the default taken is
DTS. If a program check occurs, and DUMP
has been specified, then area will be given
the default DTSC.

Note: The operations of module AD are very
closely linked to those of module AT (TRACE
Option) in the performance of interphase
dunping; module AT is, therefore, docu-
mented immediately following.

Module AT - TRACE Option

Module AT provides the debugging facility
known as TRACE, which makes it possible to
obtain a printed list of all instructions
executed (TRACE) or of all branches taken
(FLOW) during execution of a specified seg-
ment of a compilation. Use of the TRACE
facility requires the inclusion of the fol-
lowing input:

» "DDEF TRACEOUT, VS, dsname®™, which
defines the PRINT file that will carry
the TRACE output. It should be printed
after compilation with the EDIT option
off.

* The option "T" in the PLIOPT parameter
of the PLI command.

* *TRACE or *FLOW records immediately
kefore the first PL/I source record. A
maximum of 10 *TRACE and/or *FLOW rec-
ords are permitted.

The format for a *TRACE or *FLOW record is
as follows:

» * in column 1
¢ The keyword TRACE or FLOW

e The two—-character name of the PL/I
module in which the trace is to start

s A four-digit offset (with leading
zeros, if necessary) within the module
in which the trace is to start

s The two-character name of the PL/I
module in which the trace is to end

¢ A four-digit offset (with leading
zeros, if necessary) within the module
in which the trace is to end

e A five-digit statement number (with
leading zeros, if necessary) designat-
ing the statement for which the option
is to be applied. If no statement
number is specified, the trace will
occur for every executable statement in
the program.

Blanks between the * and the keyword are
optional. One or more blanks are required
between other fields.

An example of a valid *TRACE record is:

*TRACE CI 002E CO 0f3c 00024

Section 2: Method of Operation 16.1

Modules AI and AJ - Text Dump

Modules AI and AJ are called, if E is spe-
cified in the area field of the dump
option, to provide an ‘easy-to-read' text
printing, in which the triples and pseudo-
code items are printed separately. This
option is available between phases IA and
OE inclusive.

Module AKX - Compiler Closing

Module AK, the closing routine of the com-
piler, releases main storage and scratch
storage used for dictionary and text blocks
and unloads all output modules except the
control output module.

The only data set AK is responsible for
closing is PLILOAD (PLIMAC, if used, was
closed by AE; PLIINPUT and PLILIST will be
closed by PLC). AK closes PLILOAD after
each compilation, whether or not batch com-
pilation was specified. A new load data
set is opened by AB for each compilation in
a batch. Figure 7 shows what action is
taken on each of the data sets by the
various modules.

For each load data set produced, the
error level and dates/time must be preserved

together with the data set. This
DATA SETS
MODULES PLIINPUT'| PLILIST | PLILOAD PLIMAC {TB%:?(E
bLC OPEN/ OPEN/ ‘
CLOSE CLOSE
AA WRITE
AB WRITE OPEN OPEN
AC . WRITE
AE | CLOSE
E
AK CLOSE CLOSE
AL READ WRITE
AS | READ
BG OPEN

* Either SYSULIB or user supplied name.
NOTE: The module name refers to the module containing the /O subroutine
and does not indicate the module requesting the 1/C cperation.

Figure 7. Input/Output Usage Table

information is obtained by AK from an 80-
byte record added to the load data set file
immediately prior to closing the file; then
an entry is made to control subroutine
ZULF.

If a batch compilation is specified, a
check is made to determine whether any
source programs are still to be compiled.
When one or more programs remain to be com-
piled, the batch delimiter card is scanned
for syntax errors, and control is returned
to module AA.

Module AM - Phase Marking

Module AM marks phases as either wanted or
not wanted, depending upon the compiler
invocation options. Phases that are always
called are marked wanted. AM is entered
after completion of AB. It tests the rele-
vant bits in the Control Code Word
(CCCODE), loads the required output
modules, and updates the phase directory.
It then marks modules as wanted or not
wanted in the phase directory.

Module X2 - Conversational Diagnostic
Messages

This module is responsible for building
conversational diagnostic messages. 1In
addition to the conventional method of
printing diagnostic messages with the list-
ing, the user has the option of having them
printed out at the terminal as errors are
detected. XZ is called by the ZUERR sub-
routine in module AL whenever this option
is specified.

On entry, XZ prepares a buffer area for
constructing the message text. The severi-
ty code is examined and inserted in the
buffer area. The statement number is used
to examine the statement-line table to
obtain the corresponding line number. Both
of these are then inserted in the buffer
area.

The BREVITY option is examined to deter-
mine if the message text must be located
and a full message constructed in the out-
put buffer. The buffer is then directed to
SYSOUT by GATWR macro and XZ returns con-
trol to ZUERR.

PREPROCESSING PHASES

48-CHARACTER SET PREPROCESSOR

Phase BX is the 48-character set preproces-
sor. It is called on programmer option and
receives, as input, source text in the 48-
character syntax.

The preprccessor scans the input text

for occurrences of characters peculiar to

Section 2: Method of Operation 17

the 48-character set, and converts these to
the corresponding 60-character symbols. It
then puts out the adjusted text onto auxi-
liary storage ready for Phase CI, the first
pass of the Read-In Phase.

The text is read in record by record.
It is then scanned for alphabetic charac-
ters which may be the initial letters of
operator keywords, for periods, and for
commas. Items within comments or character
strings are ignored.

When a possible initial letter is dis-
covered, tests are made to determine wheth-
er or not one of the reserved operator key-
words has been found. If one has been
found, it is replaced by its 60-character
set equivalent. Similarly, appearances of
two periods are replaced by a colon, and a
comma-period pair is replaced by a semi-
colon if the comma-period pair is not imme-
diately followed by a numeric character.

Allowance is made for the possibility
that a concatenation of characters which is
meaningful in the 48-character set may be
split between two records.

The output from the preprocessor is the
transformed 60-character set text only; the
48-character set text is not preserved.

The read-in phase processes the transformed
text, and only the 60-character set text is
printed.

The 48-character set preprocessor uses
Compiler Control routine ZURD to obtain
input, and routine ZUBW to place its output
onto auxiliary storage.

Note: If the MACRO option is specified,
all the processing described above is done
by the compile-time processor, and phase BX
is bypassed.

COMPILE-TIME PROCESSOR LOGICAL PHASE

The compile-time processor consists of six
physical phases. Each of these phases is
executed once, unless an INCLUDE data set
is encountered. In this case certain
phases will be re-executed.

The compile-time processor moves source
text that does not contain compile-time
statements directly into text blocks.
ing this process invalid characters are
replaced by blanks, and line numbers are
encoded and inserted into the text.
Compile-time statements are decoded and
translated into an internal form and then
placed directly into text blocks. An entry
is made into the dictionary for each
compile-time variable, procedure, label, or
INCLUDE identifier.

Dur-

i8

A second pass is then taken over these
text blocks, during which compile-time
statements are executed and the PL/I source
rrogram text is scanned and replacements
are made. The output from this pass is a
PL/I source program contained on PLIMAC.

If during the second pass, an INCLUDE
data set is processed, the entire procedure
indicated above is executed recursively to
process this text.

Text and dictionary formats used by the
compile-time processor are contained in
Appendix F.

Line Numbering

As the input is being processed a unique
line number is assigned to every logical
record processed. If a listing of the
input is requested, these line numbers are
written out beside the appropriate line.
The line numbers are also encoded and
inserted into the text so that diagnostics
can be keyed to them. These line numbers
are also output on PLIMAC, to aid the user
in determining from which input line a par-
ticular line of output came.

Phase AS

This phase, consisting of one physical
module, is loaded if the MACRO option is
specified. It is resident throughout
compile-time processing until the cleanup
rhase (BW) is invoked.

This phase controls the loading of the
subsequent compile-time processor phases.
The initialization phase (AV) is loaded
only once. The two processing phases (BC
and BG) are loaded and executed once unless
an INCLUDE data set is processed. In this
case phase AS reloads the processing phases
to process this data set.

In addition, phase AS contains a set of
service routines used by both processing
phases. Access to these routines is via a
transfer vector located at the beginning of
phase AS.

Phase AV

This phase consists of one physical module.
Its purpose is to initialize certain cells
in the communications region for the
compile-time processor phases.

Phase BC (BE, BF)

Phase BC consists of three physical
modules, BC, BE, and BF. Module BE con-
tains the control routine.

Phase BC accepts input text, moving it
into text blocks until a compile-time

statement is found. (For a description of
the use and layout of text and dictionary
blocks, see Appendix F.) When a compile-
time statement is encountered, it is
encoded into a set of interpretive instruc-
tions and, except for compile-time proce-
dures, added to the current text block.
Compile-time procedures are similarly
encoded, but are placed in separate text
blocks.

As compile-time statements are encoded,
all non—keyword identifiers encountered are
entered into the dictionary, together with
any attributes that are known. Entries are
also made in the dictionary for constants
and iterative DO-loops.

During phase BC, invalid characters
occurring outside of strings and comments
cause a diagnostic to be printed. They are
converted to blanks. Invalid characters
can thus be used for markers of various
sorts in text blocks. Diagnostics are
given for syntax errors in compile-time
statements. Line numbers are encoded and
inserted into the text for the use of the
phase BG scan. All input characters are
converted to their EBCDIC representation
before they are processed.

Phase BG (BI, BJ)

Phase BG consists of three physical
modules: BG, BI, and BJ, which contain the
control routine, the macro-code interpret-
er, and the built-in function handler,
respectively.

In general, the input to phase BG is the
set of chained text blocks and dictionary
blocks created by phase BC. The phase BG
execution is essentially that of the
compile-time processor described in the
external specifications. That is, its basic
action is to move through text blocks look-
ing for instances of compile-time variables
or compile-time statements, which it uses
to produce the output text. As line num-
bers are encountered in the text, they are
placed into a location containing the cur-
rent line number. This is used both for
phase BG diagnostics and by the output
editor.

If a compile-time variable or procedure
reference is found, the scan cursor is
positioned to scan its value. When the
scan of the value is completed, the cursor
is properly positioned back into the text.
If a compile-time variable or procedure
reference is found in this value scan, the
process repeats itself. Such nesting can
occur to a depth of 100.

If the scan encounters an encoded
compile-time statement (built by phase BC),
control is passed to an interpreter. This

interpreter executes the statement -- pos-
sibly repositioning the scan cursor -- and
returns to the scan.

The ocutput of this phase is a PL/I
source program contained on PLIMAC.

Phase BM (BO)

Phase BM examines the heads of the error
chains in the first dictionary block, and
programmer options which specify the
severity level of messages required. If
there are no messages, it passes control to
the clean-up phase (BW). If diagnostic
messages are required, the phase loads BN
to process them after scanning the chains
and indicating where the text is to be
found, from the message directory block,
module BO.

Module BN (BP, BV)

The text of all compile-time processor
error messages is kept in modules BP
through BV. The messages are ordered by
severity, within these modules. BM will
have listed those modules which contain
messages reguired for a particular pass.
Module BN loads and releases these modules,
one at a time and extracts the required
messages. When all compile-time error mes-
sages have been processed, module BN
returns control to BM.

Phase BW

The purpose of this phase to set all tables
and communication region cells to the
values required by the compiler proper. 1In
addition it will release all text and dic-
tionary blocks used by the compile-time
processor phases and then pass contrcl to
the next required phase of the compiler.

If a severe or terminal diagnostic has
been produced by the Compile-time processor
a listing of the contents of PLIMAC will be
printed (provided that the SOURCE option
applies), and compilation will be bypassed.

COMPILER LOGICAL PHASES

READ-IN IOGICAL PHASE

The read-in logical phase consists of five
discrete physical phases, each of which
processes a particular group of statement
types. The phase obtains the input text in
the externally coded form by a call to the
compiler read routine, and converts it to
internal code by means of a translation
table provided by compiler control.

The source text is scanned for syntact-
ical errors. During this time an output
string is built up, which consists essen-

Section 2: Method of Operation 19

tially of the input text with comments and
insignificant blanks removed. The source
text is scanned and statements are num-—
bered, identified, and diagnosed. Any
required substitutions are made, statement
labels are inserted in the dictionary, and
chains are formed (for example, BEGIN, PRO-
CEDURE chains). If the SOURCE option app-
lies, source statements, with their line
number, and optionally, their block levels
and DO-nest levels, are printed out immedi-
ately after they have been read.

When the input text provides an end-of-
file indication, processing is terminated.
In ERROR situations this may not occur when
a valid external procedure has been com-
pletely processed. By keeping a count of
PROCEDURE, BEGIN, DO, END, ON, and IF
statements, the phase can detect when the
logical end-of-program indication is found.
If there are more records after the end of
the external procedure, they are ignored.

If an end-of-file indication is encoun-
tered before the logical end of the pro-
gram, diagnostic messages are issued and
suitable END statements are inserted to
allow compilation to continue.

The output of the Read-In Phase provides
a syntactically correct output string; a
table of entry and statement labels; chains
of coded diagnostic messages; a set of
switches specifying compilation content
details; a set of chains linking statements
of a particular type, to facilitate subse-
quent scanning; and optionally, a listing
of the source text.

Statement Numbering

All statements are given a sequential num-
ber. A table is then built that associates
each statement number with the VISAM line
number of the statement. This includes
each compound statement, each statement
contained in a compound statement, block
and group delimiting statements, and null
statements. The statement and line numbers
are indicated on source listing and diag-
nostic message printouts.

Statement and Entry Labels

Statement and entry labels appearing in the
source text are removed and added to a
label table, which is built up in the
region intended for the dictionary. This
region may be extended by further blocks as
required. The label table entry is an
embryo dictionary entry, with blank regions
to be filled later by the Dictionary Phase
EG.

When a label declaration is found, an
entry is made in the label table with a

20

statement label code, the current (updated)
sequential number, and the current block
level and block count.

Statements having multiple labels give
rise to multiple label table entries.
These entries are identical except for the
BCD name.

If the statement following a label is
subsequently identified as a PROCEDURE or
ENTRY statement, the label table is re-
accessed, and the entries associated with
the statement are modified (see "Dictionary
Entries for Entry Points" in Section 4).

Chains Constructed by Read-In

To provide rapid scanning in the dictionary
phases, the following chains are con-
structed by the Read-In Phase:

The CALL chain

The PROCEDURE-ENTRY-BEGIN chain

The DECLARE chain

The ALLOCATE chain

Exrrors and Diagnostic Messages

As the source text is scanned it is syn-
tactically analyzed. Keywords are identi-
fied and passed as valid only if they may
legally appear within the type of statement
being diagnosed. However, consistency of
attributes and options within a statement
are not normally analyzed. This is left
for Phase EK.

When a syntactical error is detected, an
attempt is made to correct it and an appro-
priate diagnostic message is generated.

The main aim of the Read-In Phase is to
present syntactically correct text to sub-
sequent compiler phases. Certain correc-
tions are performed without prejudicing the
complete compilation.

Detected errors cause a diagnostic mes-
sage to be added to a diagnostic message
chain in the dictionary area. Each message
is in a coded form with parameters (textual
matter, statement and line numbers, and so
on). The message is decoded and printed
out by the error editor.

Where an error makes it impossible for
the scan of a statement to continue, the
statement is terminated correctly at such a
point as to leave the statement syntactic-
ally correct. The text between that point
and the next semi-colon (not in a comment
or character string) is skipped. The diag-
nostic messages produced in these circums-
tances will include at most the first ten
characters of the text that is skipped.

The Output String

The output string is so arranged that a
complete statement never spans storage
blocks. ©One of the conditions of a succes-
sful compilation is that the output result-
ing from any statement must not exceed the
block. This restriction, however, does not
apply to DECLARE statements. Formats of
the statements appearing in the output
string are given in Section 4 under "Text
Formats After the Read-In Phase.”™

All constants and operators, and all
identifiers which are not recognized as
keywords in the source text, appear in the
output string.

Initial Labels

Subscripted label variables which are
initialized by attachment to statements are
placed in pseudo-assignment statements in
text, and then handled as if they were
normal labels.

STRUCTURE OF THE READ-IN LOGICAL PHASE
The read-in phase can occupy 16K bytes of

storage for any one pass. A storage map
for this phase is shown in Figure 8.

Bytes
0 r = 1
| cA |
UKk :
| cc |
7K t L T T T i
| C&B | CK | CN | CR | CR |
8K | 1 + t f———=-—i
| c6 | c. | co | ¢cs | cv |
12K} + 4 + |
} ¢@ | cM | ¢cp | cT | cCcwWw |
16K L 4 i 1 1 3

PASS 1 PASS 2 PASS 3 PASS U4 PASS 5
Figure 8. Storage Map for the Read-In
Phase

The read-in phase consists of five
phases or passes, each containing at most
five modules. Modules CA and CC consist of
common routines which are invoked through-
out the phase by each of the passes, in
turn. Modules CE, CK, CN, and CR contain
separate keyword tables. Details of the
organization of these tables are given in
Section 4 under "Resident Tables.®™ Control
for each pass resides in modules CI, CL,
CO, Cs, and CV respectively. The following
description refers to the phases by these
names.

Phase CI

During phase CI (the first physical phase
of the Read-In Phase) the source text is

read into storage, and character codes are
converted to an internal form. Statement
types are identified, labels are inserted
into the dictionary, and statement identi-
fiers are replaced by single-byte codes
{(see "Text Code Byte after Read-In Phase"
in Section 4).

A record is kept of block nesting levels
and counts to enable a check to be made for
the logical end-of-program indication. 1In
order to do this, certain statements have
to be either partially or completely ana-
lyzed in this pass.

These statements are:

PROCEDURE-END
BEGIN-END
DO-END
IF-THEN-ELSE
ON

CI calls a subroutine in AL to issue a
GETMAIN for 16K bytes of storage in which a
statement-line number table is created.
Each statement number is associated with
its corresponding VISAM line number.

If the SOURCE option has been requested,
a listing of the source program, with the
statement and line numbers, is printed out
onto the specified output medium.

Phase CL

The output from phase CI is processed and
the statement types listed below are ana-
lyzed in greater detail:

ENTRY FREE
PROCEDURE WAIT
DO READ
Iterative DO WRITE
RETURN DELETE
GO TO UNLOCK
DELAY LOCATE
DISPLAY REWRITE

If any errors are detected during this
pass, diagnostic messages are inserted into
chains in the dictionary as required.

Phase CO

The output from phase CL is processed. In
particular, the DECLARE, ALLOCATE, and CALL
statements are analyzed in greater detail.
The syntax of attributes is checked, but
their consistency is analyzed during phase
EK. If the source program does not contain
any of these three statements, this pass is
not invoked.

If any errors are detected during this
pass, diagnostic messages are inserted into
chains in the dictionary.

Section 2: Method of Operation 21

Phase CS

The output from phase CL or CO is pro-
cessed. In particular, the syntax of
input/output statements is analyzed,
together with the FORMAT statement. If the
source program contains no input/output
statements, this pass is not invoked.

Phase CV

This phase processes the output from earli-
er phases. In order to assist subsequent
processing, chains are constructed for PRO-
CEDURE, ENTRY, BEGIN, CALL, ALLOCATE, and
DECLARE statements.

DICTIONARY LOGICAL PHASE

The dictionary phase forms a dictionary of
identifiers, by first analyzing PROCEDURE,
BEGIN, DECLARE, and ENTRY statements. The
text is then scanned for contextual use of
identifiers, constants, and pictures. Fin-
ally, every identifier and constant in the
source text is replaced by a reference to
its respective dictionary entry. Dic-
tionary entries are made during this phase
for all implicitly defined identifiers.

The formats of dictionary entries appear in
Section 4.

Constructing and Accessing the Dictionary

The dictionary, during the construction
stage, comprises two parts, the hash table
and the dictionary proper.

To facilitate a search through the dic-
tionary for an entry with a particular BCD,
a method is used of dividing the dictionary
into areas. Each area is characterized by
a property of the BCD of each entry in it.
In practice, these areas are not contiguous
but are chained lists, each item in the
list being one dictionary entry 1long.

The start of each list is in a table,
known as the hash table. The association
of a particular identifier with a list,
i.e., the characterization of an area, is
achieved by deriving from a given BCD an
address in the hash table.

"Hashing”™ is a process of reducing the
length of the internal representation of
the BCD to one word. This is done by
adding successive four-byte lengths of the
BCD into one four-byte register. This is
then divided by 211, and the remainder is
doubled to give the hash table address
associated with the particular BCD. All
identifiers which hash to the same address
are placed in a chain; in particular, all
dictionary entries with the same BCD will
be in the same hash chain.

22

If TOM, DICK, and HARRY occur in the
same DECLARE statement in that order, and
they all hash to the same address in the
hash table, the address in the hash table
will point to HARRY's entry, which contains
the address of DICK, which, in turn, con-
tains the address of TOM.

When no further BCD entries are to be
made in the dictionary, and all BCD identi-
fiers in the source text have been replaced
by dictionary references, the hash table is
deleted.

Testing for Consistent Attributes

A test is made at the start of each list of
attributes, to ensure that any list of
attributes at one level of factoring in a
DECLARE statement is consistent.

Compiler Pseudo-Variables and Functions

Expressions specified for array bounds,
string lengths, and initial value iteration
factors must be evaluated at object time,
or at allocation time if the variable is
controlled. The expressions are placed
temporarily at the end of the text, and are
later moved by Phase FV and placed immedi-
ately following the BEGIN, PROCEDURE or
ALLOCATE statement to which the declared
variable belongs. The expression results
are assigned to pseudo-variables generated
by the compiler. These serve two purposes:
first, the assignment statement appears as
a normal PL/I statement and need not be
treated as a special case; secondly, the
pseudo-variable contains the dictionary
reference of the variable and information
concerning the destination of the expres-
sion. Compiler functions with a format
similar to the pseudo-variables are also
created. The function result is the speci-
fied array bound, or string length. Com-
riler functions are created for two pur-
poses: first, to set bounds for base ele-
ments of structures when the structure
bound is an expression, or to set the
bounds of temporary arrays; and secondly,
to set the storage address of a dynamically
defined item immediately before its use.
The formats of all the compiler pseudo-
variables and functions appear in Section #
under "Second File Statements."

Dictionary Entries for Entry Points

A PROCEDURE or ENTRY statement may have
more than one label. Each label must have
a data description to indicate the type of
data returned when the label is invoked as
a function, and also the type of data to
which the expression in a RETURN (expres-
sion) must be converted. These need not be
the same: there must therefore be provi-
sion for two data descriptions for each
label. A PROCEDURE or ENTRY statement may

specify parameters. The descriptions of
these identifiers, obtained from DECLARE
statements or default rules, are used for
prologue construction, but not for parame-
ter matching. Any data description given
on these statements is to be used for conv-
ersion at a RETURN (expression), but not
for determining the result returned by a
function reference.

Parameter descriptions for use in param-
eter matching, and data descriptions used
for determining the type of data returned
by a function reference, may be specified
by the source programmer in an ENTRY
declaration. If these are not given,
default and implicit rules must be used to
build a data description, but no parameter
description can be given.

Given the foregoing requirements, the
dictionary entries describing an internal
entry point are as given in Figure 9.

The set of dictionary entries A, B, C,
D, E is repeated for each label associated
with the PROCEDURE or ENTRY statement. The
entry F will point to entry A for the first
label only. D will point at the label with
which it is associated. It should be noted
that B and C may coincide.

The entries type 1 for PROCEDURE, ENTRY,
and BEGIN statements are chained amongst
themselves in the following way. Each
entry type 1 belonging to a PROCEDURE or
BEGIN statement contains the dictionary
reference of the entry type 1, of the next
PROCEDURE or BEGIN statement in the source
program, and also of the entry type 1 of
the immediately containing block.

The entries type 1 of PROCEDURE and
ENTRY statements belonging to a single pro-
cedure are chained together in a circular
manner. If there are no ENTRY statements
the entry type 1 of the PROCEDURE statement
points at itself.

r 1
r———>| |

| r——>| Dictionary entry for entry label {A
e |
it 4
1

e 1

|{t=>| Entry type 2. Used to provide |

W | data description of target in |B
|l — | RETURN (expression). |
it 4
N
1 r - 1

P | v
N L . e ;
|| &~>| Entry type 3. This entry is used | | Second entry type 2. |
|1 | to point at the data description C | | Used to provide data description }
| t-——4 and parameter descriptions for para-|{D | of value returned when label A |IC
| r——| meter matching. | | is invoked as a function. This |
| |t T -— T 4 | entry may, and usually will, coin- |
(] | | | | cide with B. |
1 | | | t 1
I | i | t- - =)
(| |] |
1 1 v v v
I 1 r 1 r - 1 r -—=
| | | Description of | | Description of | | Description of |
(| | £irst parameter |E | second parameter |E1 | each parameter |E2
l ' L J t i L 4
I
I bor 1 v = 1 r H
| | | Entry type 1 for | | Formal parameter | | Description of para- |
| “->{ PROCEDURE or |IF | type 1 entry |G | meter used in prologue{H
L_———J ENTRY statement | | | | construction |

L J L 1 L —d

i
]

\
!

Note: There is an entry E for each parameter d

Figure 9. Dictionary Entries for an Internal

A

- —]

escribed in D.

Entry Point

Section 2: Method of Operation 23

External entry points are described by
dictionary entries termed entry type 4.
They contain data descriptions of the value
returned when referenced as a function, and
may contain descriptions of parameters.

Formal parameters which are entry points
are termed entry type 5, and parameter
descriptions which are entry points and are
pointed at by types 3, 4, or 5 are termed
entry type 6.

Phase ED

Phase ED contains a set of subroutines, for
processing certain of the tasking and list
processing attributes, and tables of gener-
ic and non-generic built-in functions. The
phase obtains 1K of scratch storage, into
which it moves the routines and tables,
setting a slot in the communications region
to point at them. This address is later
picked up and used by phase EL.

Phase EG(EF)

Phase EG has two main functions. The first
is to set up a hash table, and to insert
the label entries left in the dictionary by
the Read-In Phase into hash chains. The
second function of the phase is to create
dictionary entries for PROCEDURE, BEGIN,
and ENTRY statements, and to construct
chains linking entries of particular types.

For PROCEDURE-BEGIN statements, entry
type 1 dictionary entries are created (see
"Dictionary Entries for Entry Points" in
Section 4), and block header chains are set
up to link these entries sequentially. A
containing block chain is alsoc set up to
link each entry with that of its containing
block.

BEGIN statements are scanned for the
ORDER/REORDER option, and the optimization
byte is created in the entry type 1 (see
"Dictionary Entries for Entry Points®™ in
Section 4).

On the appearance of PROCEDURE state-
ments, circular PROCEDURE-ENTRY chains are
initialized to link the entry type 1 dic-
tionary entries of the PROCEDURE and ENTRY
statements of the same block. The formal
parameter list is scanned, and formal pa-
rameter type 1 entries are created and
inserted into the hash chain. Details of
the PROCEDURE-ENTRY chains appear in Sec-
tion 4.

The attribute list and the options are
scanned and an options code byte and opti-
mization byte are created in the entry type
1 (see Section 4). A check is then made
for invalid and inconsistent attributes.
CHARACTER and BIT attributes are processed,
and second file statements (see Section 4)

24

are created if necessary. Precision data
are converted to binary, and dictionary
entries are created for pictures (see Sec-
tion 4).

Statement labels are scanned and their
entry type 2 dictionary entries are
created. The relevant data bytes in the
dictionary are completed by default rules
(see Section 4).

For ENTRY statements, entry type 1 dic-
tionary entries are created (see Section
4), and the circular PROCEDURE-ENTRY chain
is extended. Formal parameters, attri-
butes, and labels are processed in a simi-
lar manner to those for PROCEDURE state-
ments, except that the options code byte is
not created.

Phase EI (EH, EJ)

Phase EI scans the chain of DECLARE state-
ments set up by the Read-In Phase, and
modifies the statements to assist Phase EK
as follows:

Structure Level Numbers: these are con-

verted to binary.

Factored Attributes: parentheses enclosing

DIMENSION:

factored attributes are replaced by special
code bytes, so that Phase EK can distin-
guish them easily. A factored attribute
table is set up. It consists of slots
corresponding to each factored level. Each
slot contains the address of the attribute
list associated with that level, and the
address of the slot for the containing
level.

The following attributes are processed:

dimension table entries (see
Section 4) are created in the dictionary
and the source text is replaced by a point-
er to the entry. Fixed bounds are con-
verted to binary and inserted in the table.
A second file statement (see Section #)} is
created at the end of the text, for adjust-
able bounds, and a pointer to the statement
is inserted in the dimension table. Iden-
tifiers with identical array bounds share
the same dimension table.

PRECISION: precision and scale constants
are converted to binary.

INITIAL: dictionary entries are created
for INITIAL attributes.

INITIAL CALL: second file statements are
created for INITIAL CALL attributes.

CHARACTER and BIT: fixed length constants
are converted to binary; a code byte marker
is left for * lengths (see Section 4).

Second file statements (see Section 4) are

created for adjustable length constants,
and the source text is replaced by pointers
to the statements.

DEFINED: second file statements (see Sec—
tion 4) are created and the source text is
replaced by pointers to the statements.

POSITION: the position constant is con-
verted to binary.

PICTURE: a picture table entry (see Sec-
tion U4) is created and inserted into the
picture chain; similar pictures share the
same picture table. The source text is
replaced by a pointer to each entry.

USES and SETS: USES and SETS attributes
are moved into dictionary entries, and
pointers to the entries replace the source
text.

LIKE: BCD entries are created for identi-
fiers with the LIKE attribute.

LABEL: if the LABEL attribute has a list
of statement label constants attached, a
single dictionary entry is created. The
dictionary entry contains the dictionary
references of the statement label constants
in the list.

OFFSET and BASED: Second file statements
are made and text references are inserted
in the DECLARE statements for these
attributes.

AREA: Fixed-length specifications are con-
verted to binary; second file statements
are made for expressions; a code byte, fol-
lowed by the length of text reference, is
inserted in the DECLARE statement text.

All other attributes,
constants are skipped.

identifiers, or

Phase EL (EK, EM)

Phase EL, consisting of modules EK, EL, and
EM, scans the chain of DECLARE statements
constructed by the Read-In Phase.

An area of storage known as the attri-
bute collection area is reserved. This is
used to store information about the identi-
fiers, and has entries of a similar format
to that for dictionary entries.

Complete dictionary entries are con-
structed for every identifier found in a
DECLARE statement. These identifiers can
be one of the following types:

1. Data Items (see Section 4)
2. Structures (in this case, the 'true'

level number is calculated) (see Sec-
tion 4)

3. Label Variables (see Section 4)

4. Files (see Section 4)

5. Entry Points (see Section #4)
6. Parameters (see Section 4)
7. Event Variables

8. Task Variables.

Identifiers appearing as multiple
declarations are rejected and a diagnostic
message is given.

The attributes to be associated with
each identifier are picked up in three
ways.

First, the attributes immediately fol-
lowing the identifier are stored in the
attribute collection area.

Secondly, any factored attributes and
structure level numbers are examined.
These are found by using the list of
addresses placed in scratch storage by
Phase EI. Each applicable attribute is
marked in the attribute collection area,
and any other information, e.g., dimension
table address, or picture table address, is
moved into a standard location in the
attribute collection area. All conflicting
attributes are rejected and diagnostic mes-
sages are given.

Finally, any attributes which are
required by the identifier, and which have
not been declared, are obtained.- from the
default rules.

After the dictionary entry has been
made, further processing (e.g., linking of
chains, etc.) must be done in the follow-
ing cases:

1. DEFINED data

2. Data with the LIKE attribute

3. Files

4. Strings with adjustable lengths

5. Arrays having adjustable bounds

6. GENERIC identifiers

7. Structure members

8. Identifiers with INITIAL CALL

9. Identifiers with the INITIAL attribute
After the declaration list has been

fully scanned and processed, it is erased.

Section 2: Method of Operation 25

Phase EP

Phase EP first conditionally marks later
phases as 'wanted' or 'not wanted,' accord-
ing to how certain flags in the dictionary
are set on or off. This assists in the
load-ahead technique.

The entry type 1 chain in the dictionary
is then scanned. For each PROCEDURE entry
in the chain, each entry label is examined
for a completed declaration of the type of
data the entry point will return when
invoked as a function. If this has pre-
viously been given in a DECLARE statement
nothing further is done, otherwise entry
type 2 and 3 dictionary entries are con-
structed from default rules (see Section
4). If this default data description does
not agree with the description derived from
the PROCEDURE or ENTRY statement, a warning
message is generated.

At each PROCEDURE entry, the chain to
the ENTRY statement entry type 1 is fol-
lowed. Each statement is treated in a
similar manner to that for a PROCEDURE
entry type 1.

The CALL chain is tnen scanned and, at
each point in the chain, the dictionary is
searched for the identifier being called.
If the correct one is not found, a dic-
tionary entry for an EXTERNAL procedure is
made (see Section 4), using default rules
for data description. Before making the
entry, the identifiex is checked for agree-
ment with any of the built-in function
names. If there is agreement, a diagnostic
message is generated, and a dummy dic-
tionary reference is inserted.

If an identifier is found, it is
examined to see if it is an undefined form-
al parameter. If it is, the formal parame-
ter is made into an entry point, again
using default rules for data description.
If it is not, or if the declaration of the
formal parameter is complete, the type of
entry is checked for the legality of the
call. A diagnostic message is generated if
the item may not be called. 1In all cases,
the item called is marked IRREDUCIBLE if it
has not previously been declared REDUCIBLE.

Phase EW (EV)

Phase EW is an optional phase, loaded only
if any LIKE attributes appear in the source
program.

This phase scans the LIKE chain which
has been constructed by Phase EK, and com-
pletes the dictionary entry for any struc-
ture containing a LIKE reference. When a
structure in the LIKE chain is found, its
validity is checked, and dimension data and
inherited information are saved. The dic-

26

tionary is scanned for the reference of the
"likened" structure and the entry is
checked for wvalidity.

This dictionary entry (see Section 4) is
copied into the dictionary, with altera-
tions if there is a difference between the
original structure and this structure with
regard to dimensioned data. If both struc-
tures have dimensions a straight copy is
made; if the structure with the LIKE attri-
bute has dimensions and the likened struc-
ture has not, the dimension information is
added to the copy; if the structure with
the LIKE attribute is not dimensioned and
the likened structure is, then the dimen-
sion data is deleted from the copy.
Inherited data is added to the copy. If an
error is found, the structure with the LIKE
attribute is deleted and a base element
copy of the master structure is inserted
instead. Where copies of entries occur
which refer to dimension tables with vari-
able dimensions, the dimension table entry
is copied, and new second file dictionary
entries and statements are created. Simi-
lar entries must be made if the structure
item has been declared to be an adjustable
length string, or has been declared with
the INITIAL attribute.

Finally, the newly completed structure
is scanned by the ALIGN routine in phase
EV, to provide correct explicit/inherited/
default alignment attributes for its base
elements.

Phase EY

Phase EY is an optional phase which pro-
cesses all ALLOCATE statements.

The second file is scanned first and all
pointers to the dictionary are reversed.
All ALLOCATE statements using the DECLARE
chain are then scanned, and the dictionary
references of allocated items are obtained
by hashing the respective BCD of each item.
The attributes given on the ALLOCATE state-
ment for an item are collected together.

A copy of the dictionary entry of the
allocated item is then made (see Section
4), and the ALLOCATE statement is set to
point to it. The dictionary entry is com-
pleted by including any attributes given on
the ALLOCATE statement, and copying any
second file statements from the DECLARE
chain which are not overriden by the ALLOC-
ATE statement.

In the case of an ALLOCATE statement in
which a based variable is declared, no copy
of the original dictionary entry is
required. The BCD is replaced by the ori-
ginal dictionary reference.

All pointer qualified references in the
text are checked to determine that the qua-
lified variable is based. For every occur-
rence of a variable with a different point-
er a new dictionary entry is made. If the
variable is a structure the entire struc-
ture is copied. A PEXP second file state-
ment is made for the pointer and the
*defined' slot in the new dictionary entry
is set to point to it instead of to the
declared pointer.

The BCD of the pointer and the based
variable in the text are replaced by the
new dictionary reference followed by pad-
ding of blanks which will be removed by
phase FA.

The based variable can be the qualified
name of a structure member. If this is so,
the name is checked for validity. Only the
first part or lowest level of the qualified
name in the text is replaced by the dic-
tionary reference of the member. It is
preceded by a special marker to tell phase
FA that a partially replaced name follows.

Phase FA

Phase FA scans the text sequentially. If,
during the scan, qualified names are found
with subscripts attached, they are reor-
dered so that a single subscript list
appears after the base element name.
dictionary is scanned and references
obtained for any identifiers which are con-
textually, file, event, pointer variables,
or programmer—-named ON conditions. If no
reference is available, a new dictionary
entry is made. The identifier is then
replaced in the text by the dictiocnary
reference.

The

If a constant marker is found, the dic-
tionary is scanned to check if the constant
is present. If it is not, a new dictionary
entry is made (see Section 4) and the
resulting reference replaces the constant
in the text.

If a P FORMAT marker is found, the dic-
tionary is scanned for a picture entry in
agreement. If there is no agreeing entry,
a new dictionary entry is made {(see Section
4) and the picture chain is updated. The
dictionary reference replaces the format
marker in the text.

The CALL chain is removed from CALL
statements. The appearance of PROCEDURE,
BEGIN, END, and DO statements results in
adjustments to the level and count stacks.
If statement introduction code bytes appear
{such as SN, SL, CL, and SN2), the current
statement number is updated. All data
items associated with the PROCEDURE, BEGIN,
ENTRY, and DECLARE statements are removed,

leaving only the statement identification
and the keyword.

Phase FE

When an identifier is found, the hash chain
is used to scan the dictionary for a valid
entry. If one is found, its dictionary
reference replaces the identifier in the
ocutput text. If no valid entry is found,
and the BCD does not agree with any entry
in the tables of BCDs of PL/I built-in
functions, then a dictionary entry is made
as if the identifier was declared in the
outermost procedure. However, if the BCD
agrees with a function name, and it is not
in a SETS position, a function entry is
made in the dictionary, and its reference
is used to replace the identifier.

If a left parenthesis is found, the pre-
vious dictionary entry is checked for an
array, function, or pseudo-variable. If it
is one of these, the relevant marker is
inserted in the text before the parenthesis
{see Section 4).

Checks are also made for the positions
of function references in assignment state-
ments. Any dictionary references encoun-
tered in the input file are moved directly
to the output file.

PROCEDURE, BEGIN, DO, and END statements
cause the current level count to be
updated.

Phase FI

Phase FI scans the text and checks, where
possible, the validity of dictionary
references found. References in a GOTO
statement are checked that they refer to
labels or label variables and that the sub-
sequent branch is valid. The code byte for
GOTO is changed to GOOB (see Section 4) if
the branch is to a label constant outside
the current PROC or BEGIN block. If the
branch is to a label variable, GOOB is set
up unless a label value list was given at
the declaration, and all members of the
list lie within the current block.

List processing based variables in
ALLOCATE, FREE, READ, WRITE, and LOCATE
statements are marked as requiring a Record
Dope Vector (RDV). Variables in TASK and
EVENT options on CALL statements are
checked for validity.

References are checked if they appear
where a file is expected. Items in data
lists are checked for validity, and Data
Element Descriptors (DEDs) and symbol bits
are set on for all variables found in the
lists.

Section 2: Method of Operation 27

Any errors which are found cause diag-
nostic messages to be generated and dummy
references to be placed in the text in
place of erroneous references.

Phase FK

Phase FK scans the attribute collection
area for entries with the SETS attribute.
The SETS lists in the dictionary entries
are scanned, and their syntax checked.
Identifiers are counted and replaced by
their dictionary references. Constants are
counted, converted to binary, and arranged
in ascending order in the dictionary entry.

Phase FO

Phase FO makes a dictionary entry for each
ON condition mentioned inside a block. For
ON CHECK conditions multiple dictionary
entries are made (see Section 4), one for
each BCD. If a similar condition is men-
tioned more than once in a block, only one
dictionary entry is made for that condi-
tion, except for file conditions, ON CONDI-
TION, and ON CHECK, when separate dic-
tionary entries are made for each different
BCD name.

SIGNAL and REVERT statements are treated
in a similar manner to ON statements.

The dictionary entries for each BCD name
associated with file or CONDITION condi-
tions are checked and, if in error, the ON,
SIGNAL, or REVERT statement is replaced by
an error statement. A diagnostic message
is generated.

The BCD name of each file entry referred
to in ON, SIGNAL, and REVERT statements is
examined. If the BCD is PLIINPUT or PLI-
LOAD, the dictionary reference of the file
entry is placed in a slot in the communica-
tions region.

A check is made to ensure that formal
parameters do not appear in CHECK and
NOCHECK lists. A single dictionary entry
is created for each CHECK and NOCHECK list
and a pointer to the entry is placed in the
relevant entry type 1.

When dictionary entries are made for
CHECK lists, one of three different check
codes is used depending on whether the BCD
is an ENTRY LABEL, a LABEL CONSTANT, or a
variable.

List Processing POINTER and OFFSET
variables in CHECK lists are treated as
data variables. BASED variables may not
appear in CHECK 1lists.

A dictionary entry is made for the list
processing AREA condition. This condition

28

is always enabled and may not appear in a
condition prefix.

Dictionary entries are also created for
each ON condition which is disabled for a
particular PROCEDURE or BEGIN block, and
for each ON condition whose status is
changed within the block. Pointers to
these dictionary entries are placed in the
relevant entry type 1.

All dictionary entries for ON conditions
are placed in the AUTOMATIC chain for the
relevant PROCEDURE or BEGIN block.

A further, quite distinct, function of
this phase is to substitute error state-
ments for all statements containing dummy
dictionary references (which have been
inserted by previous phases on detecting a
severe error). If a dummy reference is
found in the second file, the compilation
is aborted.

Wherever an element of a label array is
initialized by appearing as a statement
label, an assignment to a compiler label
has been inserted by the Read-In phase.
Phase FO checks the validity of each such
assignment; for each array with this type
of initialization, a second file dictionary
entry is made, and all assignments to the
array are chained.

Phase FQ

Phase FQ checks the validity of each item
in the PICTURE chain in the dictionary (see
Section 4).

The precision for each correct picture
is calculated, together with its apparent
length, and stored in its dictionary entry.
A data byte is created in the entry for use
by Phase FT.

Invalid pictures cause appropriate diag-
nostic messages to be generated.

Phase FT

Phase FT performs certain housekeeping
tasks. These are as follows:

1. The second file entries are scanned
and pointers to each entry are
inserted in the associated dictionary
entry (see Section 4).

2. Each item which has a storage class is
inserted into the appropriate chain
for that class (see Section 4).

3. Constants are placed in the constants
chain and their apparent precision is
calculated. Sterling constants are
converted to pence.

Page of GY28-2051-0, Issued September 15, 1970 by TNL GN28-3161

4. Dimension tables are separated for
items which are not in structures,
which are arrays having similar
bounds, but with different element
lengths.

but

5. Items which are members of structures
and which have "inherited" dimensions,
i.e. are contained in a structure
which itself is dimensioned, are made
to inherit their dimensions. If a
base element of a structure inherits
dimensions which are not constant,
second file statements (see Section 4)
are set up to initialize the bounds in
the object time dope vector.

6. Items which have expressions to be
evaluated at prologue time, e.g., pa-
rameter descriptions for entry points
and defined items, are placed in the
AUTOMATIC chain for the appropriate
block.

7. The dictionary entry for any item
described by a picture is expanded by
the precision and scale or string
length, extracted from the picture
table entry. Identifiers of different
modes sharing the same picture table
are now placed in separate tables.

8. The ‘dope vector required' bit (see
Section 4) is set on where necessary.

9. When a label array is found which has
initial label statements for any of
its elements, the chained statements
are moved into the second file. The
original statement is left in the
text, to be removed by Phase FV.

10. Dictionary entries similar to label
BCD entries are made for all TASK
variables.

Phase FV

Phase FV scans the second file and reverses
the pointers to the dictionary.

Dictionary entries for DEFINED data are
completed (see Section 4). Overlay and
correspondence defining are differentiated
between, as are static and dynamic defin-
ing. A preliminary check of the validity
of defining is also carried out.

When PROCEDURE and BEGIN statements are
encountered, any second file statements
associated with data in the AUTOMATIC chain
for that block are inserted in the text
following such statements.

When ALLIOCATE statements are found, any
second file statements associated with the
item being allocated are inserted in the
text following the statement.

When a reference to dynamically defined
data is found, the base reference is
inserted into the text following the
defined reference.

When an initial label statement is
encountered in the main text, it is not
copied into the output string.

The dictionary reference of a POINTER in
a PEXP (pointer expression) second file
statement is inserted into the defined slot
of the associated based variable. If the
based variable is a structure this
reference is propagated throughout the
structure. The PEXP statement is then
deleted.

A similar procedure is performed for
BVEXP (based variable expression} second
file statements whereby the dictionary
reference of the AREA is inserted into the
dictionary entry of the associated OFFSET
variable.

ADV second file statements referring to
a BASED variable are checked for compliance
with the compiler implementation rules. If
the rules are obeyed, the dictionary entry
of the 'bound' variable is inserted in the
appropriate slot in the multiple table
entry.

If an MIF statement refers to a based
variable the appropriate bound slot is
copied from one multiple table entry to the
other.

Phase FX

Phase FX is an optional phase entered only
if the ATR (attribute list) or XREF (cross-
reference list) option is specified. It
scans the STATIC, AUTOMATIC, and CONTROLLED
chains, and the formal parameter lists.

For each identifier it creates an entry
in text scratch storage of the form:
2 bytes

3 bytes 3 bytes

T L
Dictionary |Text reference| Text chain
reference |to this item |

L i

o e S ey
R

This entry is inserted into a chain of
similar entries in the alphabetical order
of the BCD of the identifier.

If the XREF option is specified, the
text is scanned for dictionary references.
When the dictionary reference of an identi-
fier is found in the text, an entry is
created in a chain of entries from the dic-
tionary entry of the identifier. If the
identifier is that of a BASED item, an
entry is also created in a chain of entries

Section 2: Method of Operation 29

Page of GY28-2051-0,

from the dictionary entry of the associated
pointer.

Each chain member thus represents a text
reference to an identifier and has the
form:

2 bytes

3 T
| Statement number |
L 4

3 bytes

|
Text chain |

Each reference chain for an identifier
is in text scratch storage.

The sorted chain of identifiers is then
scanned, and for each entry in the chain
the following actions take place:

1. The statement number of the DECLARE
statement, if any, in which the iden-
tifier was declared is printed

2. The BCD of the identifier is printed.

3. If the ATR option is specified, the
dictionary entry of the identifier is
analyzed and its attributes are
printed. For variables having con-
stant dimensions and/or constant
string lengths, these dimensions and
lengths are printed.

Except for file attributes, the
attributes printed will be those
obtaining after conflicts have been
resolved and defaults applied. Since
the file attribute analysis does not
take place until after the attribute
list has been prepared (see Phase GA),
file attributes in the list are those
supplied by the programmer, regardless
of conflicts.

4. If the XREF option is specified, the
reference chain for the identifier is
scanned, and the statement number con-
tained in each entry is printed

Finally, all scratch storage is released
and control is passed to the syntax check
option phase.

Phase F1

Phase F1 is entered at the end of the dic-
tionary phase. It tests the syntax check
option flag which was set by module AB. If
the flag indicates that the option is in
effect at the "TERMINAL"™ error level, con-
trol is passed immediately to the next
phase. If the option is in effect at the
"SEVERE" or "ERROR" level, Fl1 checks to see
if any such errors were found during the
read-in and/or dictionary phases. If they
were, F1 either terminates the compilation
(nonconversational tasks) or issues a mes-
sage to the terminal (conversational tasks)

30

Issued September 15, 1970 by TNL GN28-3161

asking the user if he wishes to terminate
or continue compilation. If no errors of
the specified or greater level were found,
control is passed to the next phase. F1
issues diagnostic messages describing the
action taken.

PRETRANSLATOR LOGICAL PHASE

The purpose of the Pretranslator Phase is
to expand those statements in the language
that can be broken down into simpler state-
ments, and to insert explicitly generated
statements in place of implied ones.

Second level markers (see Section 4) are
removed from internal compiler codes, and
some of the I/0 statements are changed into
a form more suitable for the pseudo-code
phase.

Argument lists are examined and the
matching of arguments with parameter
descriptions takes place, with temporary
variables being created where necessary,
e.g., where data conversions are required.

If the compilation contains ON CHECK
conditions the appropriate calls to the
library routine are provided.

Any structure assignments containing the
BY NAME option are processed.

If any structure assignment statements
or structures in I/0 lists are detected in
the program, they are expanded into scalar
assignments and DO groups.

If the program contains any array assig-
nments, or array expressions in I/O lists,
these are expanded into DO loops and scalar
assignments or expressions.

If the program contains iSUB references,
the subscripts are computed for the base
array corresponding to the subscripts given
for the defined array.

Additions to the Text

In addition to changing the content of the
text, the Pretranslator introduces some new
symbels and grammatical forms into the
source text. These are as follows:

The Umbrella Symbol: this is designated by
the symbol code X'SE', which is used to
introduce a literal as an operand. It is
used only as a bound of a DO loop, or in a
call of the dope vector pseudo-variable.

Statements within statements: a list of
statements may be introduced within another
statement. In this case the inserted list
is enclosed in parentheses. Statements in
the list are given no statement number

Page of GY28-2051-0, Issued September 15, 1970 by TNL GN28-3161

field, but they have semi-colons at the
end.

I1/0 statements: the form of I/0 statements
is changed considerably during the pretran-
slator phases, as explained in the descrip-
tion of Phase GB.

BUY and SELL statements: special state-
ments are introduced for manipulating tem-
porary storage at object time; they have a

form similar to ALLOCATE and FREE
statements.

Temporary Storage: Pretranslator phases
create temporary variables for function and
procedure calls where the arguments do not
match the final parameters, where expre-
ssions appear as arguments, for control
variables for DO loops in array and struc-
ture assignments, and for iSUB defined sub-
script lists. The Pretranslator has no

Section 2: Method of Operation 30.1

mechanism for evaluating expressions.
Therefore, temporaries which have no data
type are created for expression arguments
with no parameter description. Such tem-
poraries are known as ‘'chameleon' tem-
poraries. The data type of these chameleon
temporaries is completed by the Translator
generic phase when the resultant data type
of the expression has been determined.

When the Pretranslator creates a tem-
porary from an argument which contains any
array with adjustable bounds or adjustable
string length, compiler functions (see Sec-
tion 4) are generated in-line, to set up
the adjustable quantities at object time,
to enable storage of the correct size to be
acquired by means of the BUY statement.

The temporary variables created by the
Pretranslator have dictionary entries simi-
lar to variables declared in the source
program, except that the temporaries do not
have BCD names.

Phase GA

Phase GA is an optional phase which scans
the STATIC chain for file constants and
OPEN control block entries.

For file constants a DECLARE control
block is constructed from the file name and
attributes, while checking the attributes
for consistency. For file constants with
the ENVIRONMENT option a dictionary entry
is constructed, chained from the file con-
stant, containing the storage image of the
56-byte DECLARE control block.

For OPEN control block entries an OPEN
control block is constructed from the
attributes in the entry, a check is made
for consistency, and another dictionary
entry, chained from the OPEN control block
entry, is constructed. This new entry con-
tains the 8-byte storage image of the OPEN
control block.

Wnen the COBOL option is encountered in
the ENVIRONMENT string of a FILE statement,
phase GA sets the low-order bit in the fif-
teenth byte of the FILE dictionary entry.
Although this action overwrites the dic-
tionary reference of the ENVIRONMENT
string, it is permissible since GA is the
only phase which processes this string.

The EXCLUSIVE second level marker is
recognised in the file attribute dictionary
entry during the diagnostic check and con-
struction of the DCLCB or the OCB.

Phase GB (GC)

Phase GB, containing Modules GB and GC,
processes I1/0 statements. GB removes all
second level markers from internal charact-

er codes (see Section #). It then reorders
the options so that either EDIT, DATA, or
LIST options appear last.

In data lists the DO specification is
moved so that it precedes the relevant
list, and the END statement is added.

In format lists iteration factors are
expanded.

RECORD I/0 statements for which the
COBOL file option is recognized are
examined for validity by GC. Diagnostics
are put out for LOCATE and READ SET state-
ments for which COBOL files are used. A
temporary variable is created to assist
such data transfers as occur when a COBOL
record is read into or written from a
structure which does not consist entirely
of one of the following:

e doubleword data

e fullword data

s halfword binary data

e character string data

e aligned bit string data

¢ a mixture of character string and
aligned bit string data

I70 activity found within a PROCEDURE or
BEGIN block causes the bit X'10' to be set
to one in the optimization byte of its
entry type 1.

Phase GK

Phase GK scans the source text for function
references. 1If it finds one, it inserts a
special marker byte before the argument
list, followed by:

1. Twoc code bytes giving information
about the type of function, and wheth-
er it was called with the TASK option

2. The current statement number
3. The current block level and count

This phase also inserts a special argu-
ment marker before each argument in the
list, followed by the reference of the
corresponding parameter and a code byte to
show whether or not the argument is speci-
fied in a SETS list. The number of argu-
ments present is checked against the number
given as required by the corresponding dic-
tionary entry.

NULL, NULLO, and EMPTY built-in func-
tions are recognized and converted to
constants.

Section 2: Method of Operation 31

Phase GO

This phase acts as a pre-processor for
phase GP.

Phase GP

Phase GP scans the text for procedure and
function calls with arguments. These are
detected by the special markers inserted by
Phase GK.

Temporaries (see Section 4) are created
for any arguments which are expressions.
(An expression is defined as being any
sequence of variables and operators, other
than single variables followed only by a
subscript list, or only by a defined sub-
script list and then a subscript list). If
a parameter description has been declared
in an entry declaration, the temporary
which is created is of the same type as the
parameter description. Otherwise, a 'cha-
meleon' temporary of unspecified data type
is created, its type being subsequently
completed when the expression type has been
determined by the translator generic phase.

Expressions are scanned for arrays
(including partially subscripted arrays),
structures, or the end of the expression,
in order to determine the highest form of
aggregate in the expression, so that the
correct type of temporary may be created.

Where the expression contains a partial-
ly subscripted array, a temporary is
created with a dimensionality equal to the
number of cross sections specified in the
subscript list.

When single arguments are specified
together with parameter descriptions, the
arguments are compared with the parameter
description. If there is a lack of match,
action may be taken in one of two ways.

1. If the data types are compatible, a
warning message is printed, and a tem-
porary is created

2. If the data types arxe incompatible, an
error message is printed, and the pa-
rameter description is ignored

When the argument is a single partially
subscripted array which matches the parame-
ter, a special temporary is created which
has the same dimensionality as the number
of cross sections in the subscript list,
and it appears to be defined upon the ori-
ginal argument. Code is then generated to
initialize the temporaries, multipliers,
and virtual origin from the dope vector of
the original argument and the subscript
list.

32

Whenever a temporary is created, a BUY
statement contained in nested statement
brackets is inserted in the output text,
followed by the assignment of the expres-
sion or non-matching argument to the tem-
porary. After the end of the PROCEDURE or
function call, all the temporaries
generated in the call are released by means
of a SELL statement in nested statement
brackets.

In all argument temporaries created by
phase GP, other than those created for con-
stants, a special flag bit is set on (see
Section 4), but in the case of temporaries
created for arguments to built-in func-
tions, this bit is turned off by phase IM.
This bit is used in phase QU when halfword
instructions replace fullword instructions
in the manipulation of halfword binary
operands which are temporary arguments.

Temporaries are created for constants
which are specified as arguments to func-
tions defined by the programmer.

If a TASK, EVENT, or PRIORITY option is
present in a CALL statement, then any tem-
poraries which are created are of the '"not
sold' type.

If GENERIC entry labels are specified as
arguments to procedures, a special dic-
tionary entry is made which contains the
argument and parameter description dic-
tionary references, to enable the Transla-
tor generic phase to select the correct
generic member.

A warning message is printed whenever a
temporary is created for an item declared
in a SETS list.

When subscript lists for the number of
cross sections are being checked, a severe
error message is printed if a subscript
list contains too many subscripts, and the
statement is deleted.

Phase GU

Phase GU scans the source text for PROCE-
DURE, BEGIN, and END statements, and for
statements that may raise a possible CHECK
condition.

A list of all items currently checked is
extracted from the CHECK and NOCHECK 1lists
present in PROCEDURE and BEGIN statements.

Items contained in statements that may
raise a CHECK condition are examined and
compared with the list of currently checked
items. If the item appears in the list, a
SIGNAL CHECK statement is created for it,
either before the statement concerned (for
labels and entry names) or after it (for
variables).

Phase HF

The purpose of phase HF is to detect struc-
ture assignment statements, possible struc-
ture expressions in data lists in GET and
PUT statements, and nested statements, in
particular nested structure assignments.

The leftmost structure in an expression
or assignment is used as a basis for com-
parison, and if similar structuring is not
found throughout the expression or assign-
ment, diagnostic messages are issued. Any
expression containing no structures is left
unchanged.

The base elements of the structures are
found, and if the referenced structures are
dimensioned, a temporary is created for
each dimension. It is then added to the
AUTOMATIC chain for the appropriate block.
Iterative DO loops are constructed, with
the temporaries iterating between the upper
and lower bounds of that particular dimen-
sion. Base elements are assigned, with the
temporaries as subscripts, and with scalars
remaining unchanged. END statements are
created for the DO loops, and SELL state-
ments for the temporaries. The statements
which have been created are nested within
the original statement.

Phase HK

The purpose of Phase HK is to detect array
or scalar assignments, possible array
expressions in I/0 lists in GET and PUT
statements, and nested statements, in par-
ticular nested assignment statements.

The leftmost array in an expression, or
the leftmost array or scalar in an assign-
ment is used as a basis for comparison, and
if similar dimensions or bounds are not
found in the array references, diagnostic
messages are issued. Any expression con-
taining only scalars is left unchanged.

For unsubscripted arrays which are
equally spaced in storage only one tem-
porary is bought. For all other arrays a
temporary is bought for each dimension,
except in the case of certain partially
subscripted arrays where the number may be
minimized. Each temporary will be added to
the AUTOMATIC chain for the appropriate
block. If the ON-condition name SUBSCRIPT-
RANGE is enabled for any statement, a tem-
porary will be bought for each dimension in
all cases. Iterative DO loops are con-
structed: for an unsubscripted array
expression of dimensionality N, the tem-
porary will iterate between the lower bound
of the Nth dimension and an evaluated pro-
duct so that all elements of the array are
processed; while for other arrays the tem-
poraries will iterate between the lower and
upper bound of the particular dimension of

the array. The assignment statement is
added to the output string with additional
subscripts where necessary. End statements
are created for the DO loops, and SELL
statements for the temporaries. The state-
ments which have been created are nested
within the original statement.

The syntax of pseudo-variables is also
checked.

Phase HP

Phase HP scans the source text for
references to items defined using iSUBs.
For each reference found, the subscripts
are computed for the base array correspond-
ing to the subscripts given for the defined
array.

The subscripts of the defined array are
assigned to temporaries specially created
for this purpose, which are then used to
replace the iSUBs in the defining subscript
list. The base array, with the subscript
list so formed, replaces the defined array
in the text.

TRANSLATOR LOGICAL PHASE

The Translator phase consists of two phys-
ical phases, the stacker phase and the gen-
eric phase. The purpose of the translator
is to convert the output from the Pretrans-
lator into a series of "triples" (see Sec-
tion 4). A "triple™ is in the form of an
operator followed normally by two operands.

The translation is achieved by using a
double stack, with one part for operators,
and the other part for operands, and
assigning two weights to each operator.
One weight (the stack weight) applies to
the operator while it is in the stack, and
the other weight (the compare weight) ap-
plies when the operator is obtained from
the input string.

When an operator is obtained from the
input string it is compared with the top
stack operator. Depending on the result of
the comparison, one or other of the two
operators is switched on to determine what
action is next to be performed. Apart from
some special cases, this action is usually
either toc continue to £ill the stack, or to
generate a triple. The special cases lead
to various manipulations of the stack
items, after which the translation process
continues.

For the purposes of translation, the
input text to the translator is considered
to. consist of operators and operands only.
This means that I/O options, etc., are
regarded as operators.

Section 2: Method of Operation 33

After translation, the text string con-
sists of operands and operators. All
statements start with an operator to indic-
ate a statement number or label, followed
by the statement type, which may be a
single operator, as in the case of RETURN
or STOP, or which may be an operator such
as a function or subscript marker, followed
by a list of arguments. This list may also
include compiler generated statements,
e.g., DO loops for I/0 lists. All I/0
options are regarded as operators and
require no markers before them. The end of
the source text will be marked by a special
operator, and compiler generated code,
which may follow this end-of-program mark-
er, will appear between the marker and the
special second-end-of-program marker. The
end of a block of text will be marked by an
ECB operator. The program is now assumed
to be syntactically correct.

Phase IA

Phase IA rearranges the source text into a
prefix form, in which parentheses and
statement delimiters have been removed, and
the operations within a statement have been
so arranged that those with the highest
priority appear first.

As operators and operands are encoun-—
tered, they are stored in stacks. Tables
give the priority of each operator as it
appears in the input text and in its stack.

When an operator is found during the
scan of the source text, its compare weight
(see Section 4) is tested against the stack
weight of the top operator in the stack.

If the compare weight is the lesser of the
two, then action is taken according to the
compare operator. This is referred to as
the compare action. Similarly, if the com-
pare weight for the current operator found
in the scan is greater than or equal to the
stack weight of the top stack operator,
action is taken according to the top stack
operator. This is referred to as the stack
action. Normally, the compare action is to
place the compare operator in the stack,
and to continue the scan, placing any sub-
sequent operand in the stack until another
operator is found. The normal stack action
is to generate a triple, consisting of the
top operator in the stack and the top two
operands, eliminating the items from the
stack, and inserting a special flag as the
operand of the triple which is now at the
top of the stack. The source (compare)
item is then compared with the new top
stack item.

The output text of the stacking phase is
in the form of a series of triples, i.e.,
statement types with no operands, and
operators with one or twc operands. If the
result of a triple operation is to be used

34

in a later triple, the appropriate result
is flagged accordingly.

Certain phases are marked wanted or not
wanted at this stage. If the source text
contains an invocation by CALL or function
reference, Phases IL and IM are marked
wanted. If it does not, Phases IL, IM, IN,
10, IP, IQ, MG, MH, MI, MJ, MK, MM, MN, and
MO are marked not wanted. Phases MB and MC
are marked wanted when the source text con-
tains pseudo-variables or multiple assign-
ments; otherwise, they are marked not
wanted. The DO loop processing phases (LG
and LH) are marked in co-operation with the
dynamic initialization phases (LB and LC).
If LB and LC are requested, the marking of
16 and LH is left until that stage of com-
pilation; otherwise, LG and LH are marked
by Phase IA independently.

When ALLOCATE and FREE statements occur,
phase NG is marked wanted. When LOCATE
statements occur, phase NJ is marked
wanted.

Phase IG

Phase IG is an optional phase which is
loaded to process array and structure argu-
ments to built-in functions. When aggreg-
ate arguments are given for built-in func-
tions they are expanded by the structure
and array assignment phases so that the
built-in functions appear as base elements,
subscripted where necessary.

Phase GP examines these arguments, and
ascertains whether it is necessary to cre-
ate a dummy. If it is necessary, a scalar
dummy is created, but the assignment of the
argument expression is not inserted in the
text, as this would be an invalid aggregate
assignment.

Phase IG examines the text for a BUY
statement for a dummy for an aggregate
argument to a built-in function, and then
inserts an assignment triple in the correct
place in the text.

Phase IK

This phase immediately precedes the phase
IL and shares with it the initialization
processes required by the main generic
phase IM. It obtains text block storage
and moves into it routines and a table that
will be used later by the main generic
phase. Part of the storage is reserved for
use by the main generic phase as a nested
function stack area. Control is passed to
phase IL.

Phase IL

This phase immediately precedes the main
generic phase IM and completes the initial-

ization process begun by phase IK. It
obtains 4K bytes of scratch storage and
places in it the entire built-in function
table and a list of constants used by the
main generic phase. Registers are set to
point to the built~-in function table, to
the list of constants, and to the nested
function stack area reserved by phase IK.
Further text block storage is obtained for
use by the main generic phase and a regis-
ter is set to point to it. Control is
passed to phase IM.

Phase IM

This phase is the main generic processor.
It scans the source text for procedure
invocations by a CALL statement, procedure
or library invocations by a function
reference, and assignments to "chameleon"
dummy arguments (see Phase GP).

Any procedure which is generic and is
invoked by a CALL statement or function
reference is replaced by the appropriate
family member. If the invoked procedure is
non-generic, it is ignored. A generic
library routine invoked by a function
reference is also replaced by the appropri-
ate family member.

The arguments passed to library routines
are checked for number and type, and a con-
version inserted where necessary and
possible.

The type and location of the result of
all function invocations is placed in the
text which follows the end of the text
which invoked the function. The resulting
type of an expression assigned to a "chame-
leon" dummy is determined and set in the
dictionary entry which relates to the
dummy .

The argument bit, set on for all argu-
ment temporaries created by phase GP, is
turned off for arguments of built-in
functions.

Phase IT

Phase IT scans the socurce text for function
triples and, in particular, the built-in
functions for which code will be generated
in-line. Further tests are made to detect
the functions which, according to the
method used to generate in-line code, are
optimizable. This applies only to the SUB-
STR, UNSPEC, and INDEX functions. Aall
references to 'chameleon' temporary assign-
ments within the scope of these functions
are removed subject to certain restrictions
imposed by the function nesting situation.

Phase IX

Phase IX checks that POINTER and AREA
references are used as specified by the
language. This phase is loaded only if
POINTER or AREA references are found,
declared either explicitly or contextually.
Error messages are produced if errors are
found and the statement in error is erased.

Data type triples in the text are
scanned and a stack of temporary results is
created containing the values:

X'40' for POINTER
X'02' for AREA
X'00' for any other data type

The maximum permitted number of tem-
poraries at any one point in a program is
200. The compilation is terminated if this
figure is exceeded.

Phase JD

Phase JD scans the text for concatenation
and unary prefixed triples with constant
cperands. These are evaluated and the
results are placed in new dictionary
entries. The references are passed through
a stack into the corresponding result slots
in the text.

AGGREGATES LOGICAL PHASE

The aggregates phase consists of three
physical phases, the preprocessor (phase
JI), the structure processor (phase JK) and
the DEFINED chain check (phase JP).

The structure processor phase carries
out the mapping of structures and arrays in
order to align elements on their correct
storage boundaries.

The DEFINED chain check ensures that
items DEFINED on arrays and structures can
be mapped consistently.

Phase JI

The first function of phase JI is to obtain
scratch storage in which the text skeletons
contained in phase JJ are to be held.

Phase JJ is then loaded, and its contents
are moved to the scratch storage for subse-
quent use by phases JI and JK. Phase JJ is
then released and control is returned to
phase JI.

The main function of phase JI is to
expedite data interchange activities. A
scan of static, automatic, and controlled
chains is performed. The chains are reor-
dered so that all data variables appear
before non-data items. Adjustable PL/I
structures and arrays are detected. Each

Section 2: Method of Operation 35

entry in the COBOL chain is mapped as far
as possible at compile-time, removed from
the chain, and placed in the appropriate
AUTOMATIC chain.

Phase JK

This phase scans the AUTOMATIC, STATIC, and
CONTROLLED chains for arrays, structures
(including COBOL structures), adjustable
length strings, DEFINED items, AREA, and
POINTER arrays and structures, TASK and
EVENT arrays, and TASK and EVENT arrays in
structures.

For the base elements of structures
without adjustable bounds or string
lengths, the following calculations are
made:

¢ The offset from the start of the major
structure

e The padding required to align the ele-
ments on the correct boundary

e Al]l multipliers of arrays of
structures.

For all minor structures and major
structures the following calculations are
made:

s Size

e The offset from the preceding alignment
boundary with the same value as the
maximum appearing in the structure

Where a structure contains adjustable
bounds or string lengths, code is generated
to call the Library at object time.

For arrays, the multipliers are calcu-
lated, unless the array contains adjustable
items, in which case the Library performs
the calculations.

For adjustable structures, arrays, or
strings, code is generated to add a symbol-
ic accurmulator register into the virtual
origin slot of the dope vector, and the
accumulator register is incremented by the
size of the item.

- Calculations are made in a similar fash-
ion for arrays of strings (in structures or
otherwise) with the VARYING attribute. 1In
addition, code is generated to set up an
array of string dope vectors which refer to
the individual strings in the array using
the dope vector. Code is also generated to
convert the original dope vector to refer
to the array of string dope vectors,
instead of to the storage for the array.

The routine which generates code for
arrays of VARYING strings is also used to

36

generate code for the initialization of
arrays of TASK, EVENT, and AREA variables.

DEFINED items are processed in the fol-
lowing way:

® Code is generated to set the multi-
pliers and virtual origin address of
correspondence defined arrays without
iSUBs in the dope vector of the DEFINED
items from the defining base dope
vector.

s Code is generated for overlay DEFINED
items if they do not fall into the
class which is to be addressed direct-
ly. The code first maps the DEFINED
item, if necessary, calculates the
address of the start of the storage to
be used by the DEFINED item, and final-
ly, relocates the DEFINED item using
this address.

Dope vector descriptor dictionary
entries and record dope vector dictionary
entries are made for items which need to be
mapped at object time, or which appear in
RECORD-oriented input/output statements.

Phase JP

Phase JP scans the DEFINED chain, and dif-
ferentiates between the following:

1. Correspondence defining
2. Scalar overlay defining

3. Undimensioned structure overlay
defining

4. Mixed scalar-array-structure-string
class overlay defining

In correspondence defining, this phase
differentiates between arrays of scalars
and arrays of structures. It also checks
that the elements of the defined item which
may validly overlay the elements of the
base belong to the same defining class, and
that the base is contiguous.

In scalar overlay defining, this phase
checks that the defined item may validly
overlay the base.

For undimensioned structure overlay
defining, this phase checks that the ele-
ments of the defined item may validly over-
lay the elements of the base.

For mixed scalar-array-structure-string
class overlay defining, this phase checks
that all elements of the defined item and
all elements of the base belong to the same
defining class (bit or character), and that
the base is contiguous.

Phase J2

Phase JZ examines the CCCode to determine
if the compiler is attempting to abort: if
it is, control is passed to XA, in order
that error messages may be processed by the
diagnostic editor; if not, control is
passed to the next logical phase.

OPTIMIZATION LOGICAL PHASE

The optimization logical phase consists of
several physical phases and is loaded if
OPT=2 is specified in the PLIOPT field of
the PLI command.

The work done during the optimization
phase can be split into two parts. The
first consists of testing the text and dic-
tionary to see if optimization is permiss-
ible. BAs a result of these tests, tables
are built pointing to optimizable text.

The second part consists of code generation
and modification requiring scanning of the

tables built in the first part, and direct

references to the text and dictionary.

All code generation resulting in text
expansion is placed in a patch file, and
the point of insertion in the text is over-
written with a PTCH triple pointing to the
patch. The last physical phase merges the
patch text into the main program text.

Optimized code is produced for subscript
address calculations and iterative DO-loop
control. In the case of subscripts most of
the optimized code consists of reoxrdered
triples, but optimized loop control code is
generated as pseudo~code using BXLE, and
BXH instructions.

Only simple loops and subscript lists
are optimized, and the variables involved
must be real, fixed binary, scalar integers
and the constants must be decimal integers.

The two main problems in deciding wheth-
er it is permissible to optimize code are:

1. Aliasing of variables

2. The action of the program for excep-
tional conditions

Optimization is inhibited where it is dif-
ficult, or impossible, to decide that opti-
mization will produce an object program
which will execute according to the rules
of PL/I. The keyword REORDER, indicates to
the Optimization Phase, that ON-units for
exceptional computational conditions may be
ignored. This enables more cases to be
optimized than for the default setting of
ORDER.

Three types of subscript optimization
are performed:

1. Transformation - Where possible, a
control variable used as a subscript
is transformed such that, instead of a
'subscript * multiplier + virtual ori-
gin' address calculation, each itera-
tion produces a simple increment of a
register to access the next element.

2. Invariance - Where possible, an
invariant subscript calculation inside
a DO-loop is moved outside.

3. Commoning - Where possible, a common
subscript expression is only calcu-
lated once and this value is placed in
a register to be used at later
occurrences.

For array expressions an attempt is made
to combine the incrementing of a trans-
formed control variable with the BXLE or
BXH of the optimized loop control code.

The text is optimized starting from the
innermost of a nest of iterative DO-loops
and working outwards. This enables patch
code, which moves out of a DO-loop, to be
included in the processing of the enclosing
DO-loop, hence moving out code as far as
possible in a nest of loops.

Phase KA (KB)

Contains utility routines and common data
space used by the later optimization
phases. Details of the utilities are given
in Appendix G.

The utilities enable the optimization
phases to build and process tables in text
blocks without concern for physical block
boundaries, status of text blocks, or main-
taining pointers to first, last, and cur-
rent table entries.

The facilities provided:

1. Define a table using a table control
block area.

2. Add new entries to the end of a table.
Table entries may be of fixed or vary-
ing length and a table can contain
more than one type.

3. Scan a table forwards or backwards.

4. Make direct reference to table
elements.

5. Delete a table.
6. Specify locking of entries.

7. Remove all locks on table entries.

Section 2: Method of Operation 37

Phase KC

Phase KC scans the text for DO-loop speci-
fications. If the loop is potentially
optimizable, then any expressions in the
initial, the TO, or the BY specifications
are assigned to temporary variables. The
expression and the assignment are moved
outside the loop and are replaced in the
specification by a simple reference to the
temporary variable.

Text is also scanned for ON-units. The
occurrence of each type of ON-unit is re-
corded by the appropriate bit in the mask
used by Phase KG.

Phase KE

Phase KE performs a scan of the dictionary
and a scan of the text. The purpose of
these scans is to mark variables 'unsafe'
if they can possibly be affected by changes
to other variables (i.e., aliases).
Variabies are marked unsafe if they are
EXTERNAL, DEFINED, defined upon, BASED, or
PARAMETERS, or if they are (or might be
through being arguments of procedure calls)
arguments of the ADDR built-in function.

In addition, during the text scan, the
DO MAP table is created. This table con-
tains an entry for each DO-loop and proce-
dure in the source text. Each entry con-
tains information describing the loop or
procedure and giving its location in the
text. A chain is constructed through these
entries giving the order in which they are
to be processed by subsequent K phases.

Phase KG

Phase KG scans the text corresponding to
each DO MAP entry in turn and builds up two
lists which are chained off the DO MAP
entry. The USE list is a list of all the
real, fixed binary, scalar integer
variables which are used within the loop.

A flag byte indicates whether the variable
is assigned to or is invariant in the loop.

The SUBS/REGION list consists of two
types of entry:

1. A SUBS entry which contains the text
reference of a SUBSCRIPT triple refer-
ring to an array for which SUBSCRIPT-
RANGE is not enabled.

2. A REGION entry which contains the text
reference of a triple which results in
an assignment to one Or more
variables. There are four types of
REGION boundaries:

a. A GLOBAL region boundary which
contains the text reference of a

38

point where the value of any vari-
able could be changed.

b. A PARTIAL SAFE boundary which con-
tains the text reference of a
point where an assignment is made
to a variable which is a SAFE real
fixed binary scalar integer, fol-
lowed by the dictionary reference
of this variable.

c. A PARTIAL UNSAFE region boundary
which contains the text reference
of a point where an assignment is
made to an UNSAFE variable (not
just a scalar). The dictionary
reference is not inserted in this
case.

d. An ITDO region boundary which con-
tains the text reference of an
ITDO triple corresponding to an
enclosed loop.

Phase KJ

Phase KJ creates the SUBS TABLE from the
SUBS/REGION 1list produced by phase KG. The
DO MAP created by KE provides the order of
processing and further information.

The Region entries from the SUBS/REGION
list are copied directly into SUBS TABLE
whenever they occur. The SUBS entries from
the list are expanded to contain informa-
tion on the type of expression involved at
this point. The USE list created by KG
provides information during this analysis.
The SUBS/REGION list is deleted by this
phase.

The iterative specification triples of
each DO-loop are inspected, and the spare
operands used to set flags to indicate
whether this loop is optimizable for BXLE
or BXH loop control code.

Phase KN

Phase KN provides initialization of the
scratch storage area used by phase KO.

An initial text scan is made in DO MAP
sequence, to remove offsets from optimiz-
able subscript 1ists and produce hash
totals for optimizable subscript expres-
sions. The hash totals are placed in the
SUBS/REGION table and are used in phase KO
to speed up the matching process.

Phase KO (KP,KQ)

Phase KO processes text in the order speci-
fied in the DO MAP, i.e., working through a
nest of iterative DO-loops and procedures
from innermost outwards.

The three types of subscript optimiza-
tion: transformation of the control vari-
able; invariance; and commoning; are per-
formed and optimized code is generated and
inserted in a patch file. The cocde to be
replaced in the original text is overwrit-
ten with NOP's and a PTCH triple points to
the patch text.

All three types of subscript optimiza-
tion require searches for multiple occur-
rences of the same expression in the text.
This is done by scanning the SUBS TABLE for
matching triple expressions in optimizable
subscript lists. When a match is found a
chain is constructed in the SUBS TABLE
between the matched elements. The code is
generated for one chain at a time.

Code generated for optimized subscripts
may be inserted:

1. Before the ITDO triple, i.e., where an
invariant subscript calculation is
moved out of a loop or where the ini-
tial setting of a transformed control
variable is required.

2. Before the ITD' triple, i.e., for the
incrementing code of a transformed
control variable.

3. After the ITD' triple, i.e., the
DROP's for symbolic registers used in
the optimized code.

4., At the point of use in the subscript
list.

For array expressions the incrementing code
for a transformed control variable will be
deleted if a BXLE or BXH can be generated
which will increment the transformed con-
trol variable and control the number of
iterations of the loop.

USSL declarations may be inserted in the
optimized code to indicate that registers
have priority and need not be saved and
restored at branch points. The register
allocator phase gives these registers
priority over normal symbolic registers.

Phase KT

Phase KT is a renamed replacement of phase
LA which is now obsolete. It is always
loaded. This phase is a utility phase
which remains in storage throughout the
remainder of the Optimization Phase and the
whole of the Pseudo-Code Phase. It pro-
vides the main scanning routines to handle
input and output of text containing triples
and pseudo-code.

The routine/subroutine directories in
Section 3 give a complete list of the rou-

tines provided, together with brief
descriptions of their functions.

Phase KU(KV)

Phase KU has three main functions performed
during a single text scan.

The first function is DO-loop control
optimization. Each ITDO triple encountered
during the text scan is checked to deter-
mine whether or not it has been flagged as
being optimizable by a previous phase. If
not flagged the scan is continued. All
DO-loop control specifications headed by an
ITDO triple flagged as optimizable are
replaced in text by an optimized pseudo-
code group using the BXH and BXLE instruc-
tions. There are three basic forms to this
optimized pseudo-code control specifica-
tion, the particular one used for any loop
depending on the type of step.

The second function is to detect each of
the PTCH triples inserted into text by a
previous phase. The corresponding patches
are obtained from patch file text blocks
and are processed as necessary before being
inserted into text in place of the PTCH
triple.

The last function is that of the sub-
script list processing. Each innermost
subscript 1ist encountered, as indicated by
the presence of a SUBS triple in the main
text, is checked for the occurrence of COMA
or COMR triples within it. The SUBS triple
is then altered as may be necessary.

PSEUDO-CODE LOGICAL PHASE

The pseudo-code phase accepts the output of
the translator phase , and converts the
triples into a series of machine-like
instructions. The transformation into
pseudo-code is achieved by a series of
passes through the text; each pass removes
certain triples and replaces them by
pseudo-code, until the entire text is in
pseudo-code form. On completion of this
phase, control is handed to the storage
allocation phase.

Pseudo-Code Design

Pseudo-code is essentially a one-for-one
symbolic representation of machine code,
designed so that it can be transformed
directly into executable machine code by an
assembly process.

Pseudo-code is constructed in basic
units, the majority of which have a stan-
dard size of three or five bytes. A vari-
able sized unit, however, is also available
to allow flexibility, its length being
specified by a length code within the unit.

Section 2: Method of Operation 39

The formats of pseudo-code instructions are
shown in Section 4.

A unit consists of a one~byte operation
code followed by normally, a two- or four-
byte field, or on the other occasions by a
variable length field. The bit pattern of
the operation code indicates the type of
unit which it heads.

Pseudo-Code Items

In addition to there being one pseudo-code
item for each machine instruction which
could be generated, there are also pseudo-
code items which are produced to convey
information from one phase of the compiler
to another.

These items of information have the same
format as a pseudo-code item, so that the
handling and scanning of the source text is
standardized. They do not, however, appear
in the final object code.

Register Description

In all cases where a general purpose regis-
ter appears in pseudo-code, it will be
described symbolically. When conventional
registers are required in, for example,
calling sequences, the registers will be
referred to physically, as they will be in
all cases of floating-point register usage.

The Use of Symbolic Unassigned Registers

Whenever a new register is required while
pseudo-code is being generated, a symbolic
register counter is incremented by one and,
subject to this new value not being greater
than 16,383, it is used as the symbolic
name of the required register. When this
register is no longer required a DROP
pseudo-code item is inserted into the text
to indicate to the Register Allocation
Phase that the physical register allocated
to this symbolic register may be
reassigned.

The Use of Physical Registers

Physical general purpose registers will be
used either as arithmetic registers or as
parameter registers.

With arithmwetic registers, it is the
responsibility of the pseudo-code genera-
tion phases to save and restore the regis-
ters as necessary. This will apply both to
the general purpose arithmetic registers
(namely 14 and 15) and to the four
floating-point registers. Although this is
of primary interest to the expression eval-
uation phases, it should be realised that
all phases which generate calling sequences
must be aware of the current status of

40

arithmetic registers, and generate code to
save and restore them as necessary.

In the case of parameter registers,
however, the Register Allocation Phase will
be able to save and restore them as
required.

Temporary Descriptors

As expressions are evaluated, a series of
intermediate temporary results are
obtained. These results, or their
addresses, may be contained in symbolic or
assigned registers, in a dictionary
reference, with or without an index regis-
ter, or in workspace. Temporary descriptor
triples (TMPD) are inserted in the text to
enable the correct pseudo-code instructions
to be generated from the triples. The for-
mat of TMPD triples is described in Section
4.

Temporary Workspace

A block of temporary workspace is used to
store intermediate results obtained in
evaluating expressions at object time.
Pseudo-code phases allocate the next avail-
able workspace location within the block,
and then update the location pointer,
whenever the necessity to save an interme-
diate result arises. The location of the
intermediate result is then described for
later phases by a TMPD in the text. Inter-
mediate results are only required during
the execution of single PL/I statements;
they are never preserved from one statement
to another.

At the end of the pseudo-code phases the
maximum size of the temporary storage
required in each PL/I program block is
placed in a dictionary entry. The required
amount of workspace is then allocated in
each Dynamic Storage Area (DSA) by Phase
PT.

Phase LB

Phase LB scans through the text for PROCE-
DURE, BEGIN, and ALLOCATE statement
triples.

Whenever one of these is found, a scan
is made through the immediately succeeding
second file statements; this is for any IDV
(initial dope vector) statement referring
to a variable replication factor in the
array initial string. Processing of these
statements and of the corresponding array
initial strings is then carried out.

on completion of this secondary scan,
the action taken depends on which triple
was originally found:

1. For PROCEDURE or BEGIN triples, a scan
is then made of the AUTOMATIC chain in
the dictionary. For any scalar
variables that have been declared INI-
TIAL, a set of triples is created and
inserted into the text. For any array
declared INITIAL, the initial string
is scanned, and a mixture of triples
and pseudo-code is generated.

2. For ALLOCATE triples, if the item has
been declared INITIAL, the initial
string is scanned, and a mixture of
triples and pseudo-code is generated.

Phase LB also marks Phase LG (DO-groups)
as wanted or not wanted; this is done in
cooperation with Phase IA.

Phase LD

Phase LD scans the STATIC chain for any
variables which have been declared INITIAL.

When a scalar variable is found, the
phase constructs two dictionary entries:
one for the constant, and one for the con-
verted constant.

For arrays, the phase scans the initial
value string, creating an initialization
table in the dictionary. Replication fac-
tors are converted and inserted into the
table; treatment of the constants is then
as described for scalar variables.

Phase OS converts the constants to their
specified internal form.

Phase LG

Phase 1G scans the text for DO loops. A
stack is maintained with each entry con-
taining a description of a DO group. The
stacking reflects the nesting of the DO
groups. For each DO or iterative DO triple
a new entry is made at the top of the
stack.

DO specification triples are analyzed
and expressions are assigned to tem—
poraries; subscripts in the control vari-
able are assigned to binary integer tem-
poraries if they are themselves variable.
At the end of each specification, pseudo-
code and triples are generated to control
the loop.

Triple operators (see Section 4) pecu-
liar to the specification of DO loops are
removed from the text.

For control variables, other than simple
scalars, text is placed in the DO stack and
used at every appearance of the control
variable in the generated text. During
this time, a scan is also made for pseudo-

variables, subscripts,
ment markers.

functions, and argu-

Phase LR

The purpose of Phase LR is to save space
during the expression evaluation phase, LS.
It provides the initialization for Phase LS
by obtaining 4,096 bytes of scratch storage
and setting stack pointers. The scan phase
is initialized and Phase MP is marked.

The translate table for scanning tri-
ples, and the constants for expression
evaluation are included in this phase and
are moved to the first 1K area of scratch
storage. Subroutines required by phase LS
are also moved into scratch storage at this

time. Finally, control is passed to Phase
LS.
Phase LS

Phase LS scans the source text to convert
expression triples to pseudo-code. If a
triple produces a result, it is added to
the temporary work stack.

For the arithmetic triples +,-,%,/,*%*,
prefix +, and prefix -, the operands are
combined to give the base, scale, mode, and
precision of the result. If conversion is
necessary, an assignment trxiple, with the
target and source types as operands, is
inserted in the text. In-line pseudo-code
is generated for all operators except **
and some complex type * and / operators.
In these cases, library calling sequences
are generated. An intermediate result is
always produced and the triple is removed
from the text.

The operands of comparison triples GT,
GE, equals, NE, LE, and LT are combined and
converted as for the arithmetic triples.
In-line pseudo-code is generated and the
triple is removed from the text, unless
both operands are string type, in which
case a temporary is created. If the next
triple is a conditional branch, a mask for
branch-on-false is inserted. Otherwise,
the result is a length 1 bit string.

For the string triples CAT, AND, OR,
NOT, and string comparisons, if an operand
is zero, TMPD triples, containing the
intermediate result from the top of the
stack, are inserted in the text after the
triple. The result is a CHARACTER or BIT
string or a compare operator.

When subscript triples appear, a symbol-
ic register number is inserted in the tri-
ple. The result contains the dictionary
reference of the array and the symbolic
register.

Section 2: Method of Operation 41

For function triples, a description of
the workspace for the function result is
inserted in the TMPD triples which follow
the function triples. The function result
is added to the intermediate stack.

For add, multiply, and divide functions,
the function and argument triples are
removed from the text. Arithmetic type
in-line pseudo-code is generated, with
modifications for the precision and scale
factor, and the result is added to the
intermediate stack.

With pseudo-variable triples, a special
marker is added to the intermediate result
stack.

Other triples which may use an interme-
diate result, are examined. If an operand
is zero, two or three TMPD triplies, con-
taining the intermediate result from the
top of the stack, are inserted in the text
after the triple. If both operands are
zero, the TMPDs for the second operand pre-
cede those for the first operand.

Phase LV

Phase LV provides string handling facili-
ties for the pseudo-code phases.

It converts any type of data item to a
CHARACTER or BIT string, and an assignment
triple, with the target and source types
used as the operands, is inserted in the
text.

A string dope vector description is pro-
duced from a standard string description.

Phase LX (LW, LY)

Phase ILX consists of three modules, LW, LX,
and LY. Module LW acts as a pre-processor
for LX and LY, moving constants into
scratch storage prior to loading the
string-handling modules.

Phase IX scans the source text to con-
vert string triples to pseudo-code. If a
result is produced it is added to a stack
of intermediate string results.

For the comparison triples GT, GE,
equals, NE, LE, AND LT, both operands are
already string type. If one operand is
zero, the operand is obtained from the
associated TMPD triples. In-line pseudo-
code is generated if the operands are
aligned and are of known lengths less than
or equal to 255 bytes; otherwise, library
calling sequences are generated. The tri-
ple and any TMPD triples are removed from
the text.

In the case of the string triples CAT,
AND, OR, and NOT, the operands are con-

42

verted to string type by phase LV. Zero
operands are obtained from associated TMPD
triples. In-line pseudo-code is generated
when operands are aligned and are of known
lengths less than or egual to 255 bytes.
For the CAT operator, the first operand
must be a multiple of 8 bits unless the
strings involved are less than or equal to
32 bits in length. 1In-line code is also
generated for the following cases involving
non-ad justable varying strings:

1. Character string concatenation of
varying strings with lengths less than
256 bytes.

2. Bit string operations for AND, OR,
NOT, concatenation, and comparison
where the strings are aligned and are
less than 33 bits in length.

Otherwise, library calling sequences are
generated. The triple and any TMPD triples
are removed from the text, and the string
result is added to the intermediate result
stack.

For TMPD triples, if the intermediate
result described by the TMPD triples is a
string, a complete string description is
moved from the top of the intermediate
stack to the TMPD triples. 1If the TMPD
triples do not describe a string, they are
ignored.

In-line code is generated for the BOOL
functions AND, OR, and EXCLUSIVE OR, when
the third argument is a character or bit
string constant and the first and second
arguments are aligned and of known lengths
less than or equal to 255 bytes. Otherwise
library calling sequences are generated.
Subscript and function triples may produce
intermediate string results.

Phase MA

Phase MA generates pseudo-code for both the
in-line invocations of TRANSLATE and VERIFY
and for the invocations which call a
library routine. It is optional depending
on the presence of the TRANSLATE or VERIFY
function in the source program.

Three kinds of tables are handled:
1. Compile~-time created (up to three)
2. Floating, initialized by in-line code

3. Floating, initialized by library
subroutine

When three constant tables have been
created at compile-time, any further occur-
rence of this case, will cause the con-
stants of both the second and third argu-
ments to be handled via the library.

Blocks which have RECURSIVE, TASK, or
REENTRANT attributes will have their own
table, otherwise one table will be used for
many blocks.

Phase MB

Phase MB scans the text for pseudo-variable
markers and multiple assignment markers. A
stack of pseudo-variable descriptions is
maintained, together with the left hand
side descriptions of multiple assignments
when they occur. Pseudo-code and triples
are generated for pseudo-variables and the
left hand side descriptions of multiple
assignments are put out in the correct
seqguence.

Phase MD

Phase MD uses the SCAN routine to scan the
text for ADDR and STRING built-in functions
for which it generates in-line code. It
appears before the normal function proces-
sor phase and removes all trace of the in-
line function. The general SCAN routine
passes control when these functions are
found.

For all cases of ADDR the generated code
establishes the start address of the argu-
ment. If structure name arguments are pre-
sent the structure chain is hashed for the
first base~element. For array names the
address of the first element is calculated.

If the argument to the STRING function
is contiguous in main storage, and its
length is known at compile-time, an adjust-
able string assignment is generated.
Otherwise the library routines IHESTGA and
IHESTGB are called to produce the conca-
tenated length and to concatenate the ele-
ments of the array or structure argument.

Phase ME

Phase ME identifies all invocations of the
SUBSTR function and pseudo-variable, all
UNSPEC, STATUS, and COMPLETION functions,
and those invocations of the INDEX function
which can be implemented in-line; and
generates pseudo-code to perform these
functions at object time. The scan of the
text is conducted by the general SCAN rou-
tine, and all trace of the invocations of
these functions is removed before the nor-
mal function processor phase is loaded.
When the end-of-program marker is encoun-
tered the terminating routine is entered.

Phase MG

Phase MG identifies functions which are to
be coded in-line, and generates, in their
place, the pseudo-code to perform the rele-
vant function. This phase appears before

the normal function processor phase and
removes all trace of the in-line function.

The scan of the text is conducted by the
general SCAN routine, and control is handed
to the present phase when one of the fol-
lowing functions is found:

ALLOCATION FLOOR BINARY
BIT IMAG DECIMAL
CEIL REAL FIXED
CHAR TRUNC FLOAT
COMPLEX PRECISION
CONJG

Control is also passed to this phase if
ABS is found with real arguments. The
arguments are collected, and the appropri-
ate routine is entered to generate the
pseudo-code. When the end-of-program mark-
er is encountered the terminating routines
are entered.

Phase MI

Phase MI identifies functions which are to
be coded in-line, and generates, in their
place, pseudo-code to perform the relevant
function. This phase appears before the
normal function processor phase and removes
all trace of the in-line function.

The scan of the text is conducted by the
general SCAN routine and control is handed
to the present phase when one of the fol-
lowing functions is found:

MAX MOD
MIN ROUND

If the number of arguments to the MAX or
MIN functions is greater than three, a
library call is generated.

Phase MK

Phase MK identifies functions which are to
be coded in-line, and generates, in their
place, pseudo-code to perform the relevant
function. This phase appears before the
normal function processor phase and removes
all trace of the in-line function.

The scan of the text is conducted by the
general SCAN routine, and control is passed
to the present phase when one of the fol-
lowing functions is found:

DIM HBOUND

LBOUND SIGN

LENGTH FREE
Phase ML

Phase ML scans the source text for generic
entry name arguments to procedure
invocations.

Section 2: Method of Operation 43

Such entry names may be floating arith-
metic built-in functions or programmer-
supplied procedures with the GENERIC attri-
bute. When one is found, the correct gen-
eric family member to be passed is selected
by this phase, depending on the entry
description of the invoked procedure.

Phase MM

Phase MM scans through the source text for

procedure invocations by a CALL statement,

or for procedure or library routine invoca-
tions by a function reference.

Procedure invocations are replaced by an
external standard calling sequence, and
library routine invocations are replaced by
an external or internal standard calling
sequence as appropriate (see Section 4).

If a CALL is accompanied by a TASK,
EVENT, or PRIORITY option, library module
IHETSA is loaded rather than IHESA, and the
parameter list is modified to include the
addresses of the TASK and EVENT variables
and the relative PRIORITY.

Phase MP

Phase MP reorders the BUY and SELL state-~
ments involved in obtaining Variable Data
Areas (VDAs) for adjustable length strings
or temporaries, which were created by Phase
GK. On entering this phase, the BUY tri-
ples precede the code compiled to evaluate
the length of storage required for the VDA.
This evaluation code is included between
further BUY¥S and BUY triples, which them-
selves are between the BUY triple being
considered and its associated SELL triple.
Phase MP extracts these sections of code
and places them before the BUY triple of
the adjustable string temporary. Since
such BUY triples may be nested, the phase
maintains a count to record the nesting
status.

Phase MS

Phase MS scans the source text for
references to subscripted array elements.

If references are found, pseudo-code is
generated to calculate the offset of the
subscripted element in relation to the ori-
gin of the array. If necessary, further
pseudo-code is generated to check the sub-
script range.

Optimization of constant subscript eval-
uation is carried out on arrays having sub-
scripts which are integer constants, and
for which the corresponding dope vector
multipliers are constant. This applies to
arrays with fixed-length elements.

4y

Phase NA

Phase NA generates pseudo~code for the fol-
lowing triples:

For PROCEDURE' and BEGIN' triples a
Library call is generated to the FREEDSA
routine.

For RETURN triples a library call is
generated, unless a value is to be returned
as the result of a function invocation, in
which case code is first generated to
assign the result to the target field, and
then the library call is made. If the
function may return the result as more than
one data type, a switch would have been set
at the entry point to the function, and the
RETURN statement would test the switch
value, so that the data type appropriate to
the entry point is returned.

GOTO triples either will be invalid
branches detected by Phase FI, in which
case they will be deleted, or they will be
branches to statement label constants in
the same PROCEDURE or BEGIN block. 1In this
case, they will be compiled as one-
instruction branches.

GOLN triples are compiled into one-~
instruction branches to the compiler label
number in operand 2 of the triple.

A GOOB (Go out Of Block) triple is a
branch to a label variable, possibly sub-
scripted, or to a label in a higher block
than the current one (a branch to a lower
block is invalid). A call is generated to
a library epilogue routine, pointing at a
double-word slot containing the address of
the label and the Pseudo-Register Vector
(PRV) offset (for a label constant), or the
invocation count (for a label variable).

STOP and EXIT statements are implemented
simply by invocation of the appropriate
library routine.

For IF triples, if the second operand is
an identifier, or the result of an expres-
sion which is not a comparison, code is
generated to convert it to a BIT string, if
necessary. This BIT string is compared to
zero, either in-line, or by a call to the
library.

The second operand may be a mask which
will have been inserted by the expression
evaluation phase as a result of the com-
parison specified in the IF statement.
This mask is put into a generated instruc-
tion to branch if the condition is not
satisfied, i.e., either to the ELSE clause
or to the next statement.

For ON triples, code is generated to set
flag bits and update the ON-unit address in
the double-word ON slot in the DSA.

For SIGNAL arithmetic condition triples,
in-line code is generated to simulate the
condition. For all other conditions, a
library error routine is called.

REVERT triples generate code to set flag
bits in the double-word ON slot in the DSA.

Phase NG

Phase NG generates the calling sequences to
the library for DELAY and DISPLAY and WAIT
statements.

It generates code to call the library
routines which handle ALLOCATE and FREE
statements whose arguments are BASED
variables.

For DELAY statements, the argument has
to be a fixed binary integer, and, if
necessary, code is generated for
conversion.

For DISPLAY statements, the message must
be a CHARACTER string, or, if necessary,
converted to one. A parameter list is
built up to pass to the library.

For WAIT statements, the parameter list
is built up in workspace. It consists of
the address of the scalar expression (con-
verted to a fixed binary integer), followed
by the addresses of the event-names that
appear in each WAIT statement. If the sca-
lar expression option does not appear, the
address of the total number of event-names
is used.

For the tasking option WAIT, whose argu-
ment is an EVENT array, the phase makes a
4-byte entry in the parameter 1list, con-
taining the number of dimensions involved,
and the address of the EVENT array dope
vector. If the WAIT statement contains an
EVENT array and no scalar expression, the
first byte of the parameter list is set to
X'FF'.

For ALLOCATE and FREE statements, with
based variables as arguments, a parameter
list is built in workspace before a call is
made to one of the entry points to IHEWLSP.
The parameter list is an 8-byte RDV fol-
lowed by the address of the AREA variable
from the IN option if present.

For ALLOCATE, the pointer-variable in
the SET option is given the value returned
by IHEWLSP.

Phase NJ

Phase NJ and its supporting block, NK, gen-
erate the calling sequences to the library

module for the RECORD-oriented input/output
statements: DELETE, LOCATE, READ, REWRITE,
UNLOCK, and WRITE.

For each of these calls, the information
contained in the options of the source
statement is passed by a parameter list,
constructed as follows:

DC A(DCLCB)

DC A(RDV|COUNT2| PNTR3|SDV3) |0

DC A(EVENT|LABEL%) |0

DC A(SDV.KEYTO|SDV.KEYFROM|SDV.KEY) |0
DC A(REQUEST_CODES)

1 expr in IGNORE (expr)

pntr in READ SET (pntr)

3 SDV of varying string in READ INTO
(varying string)

4 Compiler label as result of LOCATE

[\

REQUEST CODES is a full-word containing
four control bytes with the following
meanings:

Byte 0 Operation code
00 READ
04 WRITE
08 REWRITE
0C DELETE
10 LOCATE
14 UNLOCK
Byte 1 Group 1 options code
00 SET
04 IGNORE
08 INTO|FROM
Byte 2 Group 2 options code
04 KEYTO
08 NOLOCK
Byte 3 Group 3 options ccde

04 VARY INTO
08 VARY KEYTO
0C BOTH

Note that null arguments in the parame-
ter list or REQUEST_CODES are indicated by
zeros.

Both the parameter list and the REQUEST-
_CODES word are constructed in STATIC
storage. However, if the argument of any
of the options refers to AUTOMATIC, CON-
TROLLED, or BASED storage, the parameter
list is moved to the workspace storage for
the statement; the argument is then pro-
vided just before the library call is made.

In the case of the LOCATE statement, the
phase is responsible for generating code to
set the pointer variable with the pointer

Section 2: Method of Operation U5

value returned in the first word of the RDV
by the library. If the BASED variable was
a structure with a REFER option in an
extent definition, it is also responsible
for generating code to initialize the
extent variable named in the REFER option.

The DCLCB parameter is taken from the
FILE option of the statement; the FILE
option must be either a file constant or
file parameter.

The record dope vector (RDV) is assumed
to have been constructed by earlier phases,
except in the case of CONTROLLED or BASED
variables or CONTROLLED or BASED aggre-
gates, when the procedure is as follows:

1. For CONTROLLED or BASED aggregates,
Phase NJ creates a library call to
IHESTRA, passing the following argu-
ments through registers:

Register 1 A(D.V)
Register 2 A(DVD)
Register 3 A(RESULT.RDV.SLOT)

2. For CONTROLLED or BASED strings, the
phase generates code to construct the
RDV in the workspace storage of the
statement, using the dope vector of
the string.

The IGNORE expression is taken from the
IGNORE option of the statement and if
necessary, converted to an integer.

The EVENT scalar is taken from the EVENT
option of the statement.

The KEYTO SDV is derived from the KEYTO
option of a READ statement.

The KEY SDV and KEYFROM SDV are derived
from their respective options. If neces-
sary, they are converted to character
strings.

The PNTR is taken from the SET triple of
the statement or from the BASED variable of
the LOCATE triple if no SET triple appears.

Phase NM

Phase NM generates the calling sequences to
the library modules for OPEN, CLOSE, GET,
and PUT statements.

For OPEN and CLOSE statements, a parame-
ter list is constructed from the options
given. The options are first checked for
validity with respect to multiple specifi-
cations. The arguments on the options are
checked and converted, if necessary, to the
correct data type. If no file is specified
in an OPEN or CLOSE statement, it is
ignored. The parameter lists are as
follows:

46

OPEN DC A{(DCLCB)
DC A(OCB)
DC A(TITLE.SDV)
DC A(IDENT.SDV)
DC A(IDENT.DED)
DC A(KEYLENGTH)
DC A(LINESIZE)
DC A(PAGESIZE)
CLOSE DC A(DCLCB)
DC A{IDENT.SDV)
DC A(IDENT.DED)

Null arguments are indicated by zero
address constants.

For GET and PUT statements, the library
call is in three parts. The initializa-
tion, data transmission (Phase NU), and the
termination. The initialization call
requires a parameter list to be constructed
from the given options. The options are
checked for legal combinations and the
arguments examined.

The parameter list when a file is speci-
fied is :

DC A(DCLCB)
DC A(next statement)

DC A(binary integer) if SKIP or
LINE is given.

For GET and PUT STRING, the argument to
STRING is checked, and the parameter 1list
formed is:

DC A(SDV of string argument)

DC A(DED of string argument)

The termination library call has no
rarameters. As for the initialization, the

routine used depends on the options given
in the statement.

Phase NT

This phase, which is a preprocessor for
Phase NU, has two functions:

1. 1Initialization of a block of scratch
storage for use by Phase NU

2. Setting up of INCLUDE matrix and
library routine entries for edit-

directed, STREAM-oriented I/0
statements

The phase contains all pseudo-code skel-
etons used by Phase NU. 4096 bytes of
scratch storage are obtained and the
pseudo-code skeletons are copied into it.
The address of the scratch area is then
passed to Phase NU.

If a flag has been passed from Phase NM,
indicating the presence of edit-directed
I/0, a scan of the text is performed. Data
and format list items encountered during
the scan are associated as far as possible,
and a sufficient set of library modules are
identified for the edit-directed transmis-
sion specified in the program. The INCLUDE
matrix is updated and dictionary entries
are made for the required library format-
director routines.

Phase NU

Datasformat lists in I/0 statements produce
an internal library calling sequence (see
Section 4) for each data item and format
item pair, using registers to point at the
data item, the data item DED, and the FED
for the format item.

Iterations of data items, as in array
input or output, and of format items, are
achieved by making DO loops out of the
iterations.

The data items are transmitted serially,
with program flow going from an item in the
data 1list, to the corresponding format item
and then to the relevant library I/0
module. On return from the library module,
control goes to the code for the next data
item or, in the case of repeated data
items, to another iteratiom of the DO loop.

Remote format statements are executed in
a similar way. After the R format item is
met, control is passed directly from the
data 1list to the format statement until the
end of the format statement. Control then
returns to the item in the in-line format
code of the EDIT statement following the
appropriate remote format item. However,
if no format elements remain but some data
list elements are still present, control is
passed back to the beginning of the format
statement.

An R format item referring to a label
which is not attached to a format statement
will cause an object time error condition
to be raised, and the execution to
terminate.

Phase OB

Phase OB scans through the text for compil-
er functions and compiler pseudo-variables

(see Section 4). When a compiler function
is found, pseudo-code is generated to
access the operands of the compiler func-
tions (e.g., string length, array bound),
and to place the operand in the location
specified by the TMPD following the func-
tion. Assignments to compiler pseudo-
variables are treated in reverse; the
result from the TMPD following the assign-
ment is stored in the array bound or string
dope vector slot specified in the compiler
pseudo-variable.

Phase OB also scans the text for BUY,
SELL, and BUY ASSIGN statements. The tem-
porary operands of these statements are
examined, and if they are CAD or short
fixed-length strings, they are allocated
the next available workspace offset, and
the BUY and corresponding SELL statements
are removed from the text.

Phase OD

This phase contains the translate and test
table used by SCAN, and other tables and
constants for phase OE. A block of scratch
storage is obtained into which the tables,
routines, and constants are moved. A
pointer to the beginning of this area is
passed to OE in a register.

Phase OE

Phase OE translates the following triples
into pseudo-code:

e Assignment

e Multiple source assignment
e Multiple target assignment
* ALLOCATE, FREE, BUY, and SELL

¢ Special assignment

In-line code is generated for the fol-
lowing types of ASSIGNMENT triples:

1. Floating-point to floating-point

2. Fixed binary to fixed binary

3. Fixed decimal to fixed decimal

4. Numeric field to numeric field, if the
pictures given for the operands are
identical

5. CHARACTER string to CHARACTER string,
if the operands are fixed length and
not more than 256 characters

6. BIT string to BIT string, if the

operands are aligned and not more than
2040 bits

Section 2: Method of Operation 47

7. Label to label
8. File constant to file parameter
9. POINTER/OFFSET to POINTER/OFFSET

10. FIXED CHARACTER string to VARYING
CHARACTER string and VARYING CHARACTER
string to VARYING CHARACTER string
provided that:

® The length of the source operand is
not greater than 256 bytes

e The length of the target string is
not greater than 256 bytes, if the
maximum length of the source string
is not known.

e For FIXED CHARACTER string to VARY-
ING CHARACTER string the length of
the FIXED string is not greater than
256 bytes.

Library calling sequences are compiled
for those cases of CHARACTER string to
CHARACTER string and BIT string to BIT
string codes not compiled in-line.

After checking both AREA operands, AREA
assignments are performed by the library.

All other assignment triples are trans-
lated into the CONV pseudo-code macro.

If the source operand is a constant, the
type of the target operand is inserted in
the constant dictionary entry, for proces-
sing by the constant conversion phase, and
the assignment is translated assuming the
target type.

MULTIPLE ASSIGNMENT triples produce the
same code as for single assignment, except
that the registers used by the operand con-
cerned must not be changed or dropped.

Library calling sequences are generated
for ALLOCATE, FREE, BUY, and SELL triples,
and pseudo-code markers are left in the
text for insertion of code by Phase QF.

With SPECIAL ASSIGNMENT triples, if the
target is a varying or adjustable string,
storage is obtained if the target is AUTO-
‘MATIC, or allocated if the target is CON-
TROLLED. The assignment is then
translated.

Phase 0G (OL)

Phase OG converts to pseudo-code all state-
ment numbers, statement labels, PROCEDURE,
BEGIN, PROCEDURE', BEGIN', and end-of-
program triples.

The CONVERT pseudo-code macro is
examined in conjunction with the OPTIMIZA-

48

TION parameter and pseudo-code is generated
in one of three forms:

1. Code to call the library conversion
package

2. Code to perform the conversion
"in-line®"

3. A modified CONV macro which is passed
to phase OM or OP for processing.
In-line conversion phases which are
not required (OM and/or OP) are marked
unwanted.

IGN pseudo-code items and JMP triples
are removed. The amount of temporary work-
ing space required by each block of program
is calculated and placed in the workspace
dictionary entry (see Section 4).

The format of the text is converted so
that a pseudo-code item does not span
blocks.

The INCLUDE card matrix is formed for
all the conversion modules required.

Phase OM

Phase OM is called when either optimization
levels 00 or 01 are specified. This phase
scans the pseudo-code for the CNVC macros,
which phase 0G has placed into the text as
28-byte entries containing a transfer vec-
tor to select the appropriate conversion
routine within OM, and replaces any such
macros with in-line code.

The conversions inserted by phase OM are
controlled by phase 0OG. When OPT=0, cer-
tain of the simpler FIXED DEC to PICTURE,
PICTURE to FIXED DEC, and FIXED DEC to
FIXED BIN conversions are passed to OM.
When OPT=1, the remainder of the feasible
FIXED DEC to or from PICTURE and FIXED DEC
to FIXED BIN conversions are passed to OM
together with FIXED DEC to CHAR
conversions.

Certain FIXED DEC to PICTURE conver-
sions, which phase OG cannot itself effi-
ciently detect to be uneconomic when per-
formed in-line, are recognized by phase OM,
which inserts the calls to the appropriate
library routines.

Phase OP

Phase OP generates in-line code to perform
BINARY to BIT string, BIT string to BINARY,
and FLOAT to FIXED BINARY conversions.
Phase 0OS

Phase 0S scans through the constant chain

in the dictionary and converts the con-
stants to the required internal form.

These are then stored in a constants pool,
and the offset of each constant from the
start of the pool is saved in the dic-
tionary entry for that constant.

To permit the correct alignment of the
constant pool, three scans are made of the
constant chain; first to convert all double
word constants, secondly to convert all
single word constants, and thirdly to con-
vert all unaligned constants.

In the first two scans only one pool
entry is made for constants having the same
internal form and value.

A fourth scan is made of the constant
chain and all constants required to ini-
tialize static are converted, but instead
of inserting these constants in the con-
stant pool, they are moved into special
dictionary entries constructed by Phase LB.

STORAGE ALLOCATION LOGICAL PHASE

The storage allocation phase ensures that
every item requiring storage in a PL/I
object program obtains a unique location of
the correct size, located on the correct
boundary. Items requiring storage include
PL/I source program variables, dope vec-
tors, dope vector skeletons, temporary
variables, work areas, data descriptors,
symbol tables, addressing slots, register
save areas, flag areas, etc. Storage loca-
tions are allocated to items in order of
descending alignment requirement to avoid
wasting storage by padding to the required
alignment.

The storage allocation phase is also
responsible for generating prologues. 1In
generating the prologues, expressions which
determine size of variables, code generated
by the aggregates phase to initialize dope
vectors, and code generated by the initial
values phase, must be extracted and placed
in the correct sequence in the text. Also,
when a variable depends for its size or
initjial value upon another variable, the
requests for dynamic storage must be
arranged so that the dependant variable
obtains its storage after the variables
upon which it depends.

Since all AUTOMATIC and CONTROLLED
storage is obtained dynamically at object
time, the Storage Allocation Phase
generates code to relocate dope vectors
when the allocated storage address is
known.

Phase PA
The purpose of phase PA is to determine the

eligibility of the automatic chains of any
block for STATIC DSAs. Any chain not so

far found to be ineligible for a STATIC DSA
is scanned to determine the DSA size.
STATIC DSAs are generated for any chains of
less than 512 bytes.

Dictionary entries are generated for
STATIC DSAs. This phase also acts as a
spill area for routines used in phases PD
and PH.

Phase PD

Phase PD is the first STATIC storage allo-
cation phase. It scans the text, and for
every second file statement encountered
sets up a pointer in the associated dic-
tionary which points to the second file
statement. It then sorts the STATIC chain
so that the dictionary entries occur in the
order in which the storage for their items
will be allocated.

Storage is allocated for simple non-
structured, non-external variables, RDVs,
DEDs, SAVE/RESTORE entries, and the BCD of
entry labels and label constants. Storage
is also allocated for dope vectors for all
items in the STATIC chain requiring them,
with the exception of EXTERNAL items. A
full word address slot is allocated in
STATIC for each STATIC DSA.

The external section of the sorted
STATIC chain is scanned and a 4-byte
addressing slot is allocated for each entry
label, label constant, external (entry type
4) entry, built-in function, or EXTERNAL
item. For each EXTERNAL item the size of
the external control section is calculated
and stored in the dictionary entry.

The constants chain is scanned and the
offsets of the storage and dope vectors for
constants in the constants pool are
relocated.

The current size of the STATIC INTERNAL
control section is computed and the result
is passed via the communications region to
the next phase.

Phase PH

Phase PH is the second STATIC storage allo-
cation phase. It scans the AUTOMATIC chain
and CONTROLLED chain for all items requir-
ing a dope vector.

For each such item a skeleton dope vec-
tor dictionary entry is generated in the
STATIC chain (see Section #). This dic-
tionary entry contains a bit pattern equal
in length to that of the dope vector and
containing all those values which are known
at compilation time. In particular, it
contains as much of the relative virtual
origin as is known at compilation time, the

Section 2: Method of Operation 49

constant bounds and string lengths, and the
constant multipliers.

Skeleton dope vectors are not put into
the STATIC chain for AUTOMATIC variables in
any block whose DSA is in STATIC, except
when the variable dimensions bit is set to
one.

If the item is dynamically DEFINED, then
the dope vector is preceded by one extra
four-byte slot. (In the case of structures
there is one extra slot for each element of
the structure.) If the item is a dynamic
temporary (temporary type 2) or a CON-
TROLLED scalar string, the virtual origin
slot is relocated by the length of the dope
vector.

In all cases the skeleton dope vector
dictionary entry is pointed at by the dic-
tionary entry of the associated item.

The sorted STATIC chain is scanned from
the first skeleton argument list entry.
For each such entry, space is allocated in
the STATIC INTERNAL control section accord-
ing to the assembled length of the argument
list. The offset of each skeleton argument
list is stored in the COFFSET1 slot of the
dictionary entry.

RDV and DVD entries are found on this
same scan of the STATIC chain. RDV entries
are allocated eight bytes; DVD entries are
allocated the specified length.

A scan is made of the section of the
STATIC chain containing STATIC INTERNAL
arrays. Storage is allocated for each
array according to its size (computed by
Phase JK) and the offset of the relative
virtual origin is relocated to the start of
the STATIC INTERNAL control section. If
the array is of the VARYING type and it
needs a dope vector, then storage is allo-
cated for the secondary dope vector. The
number of elements is calculated for INI-
TIAL arrays and stored in the associated
INITIAL dictionary entry.

The section of the STATIC chain contain-
ing STATIC INTERNAL structures is scanned.
Storage is allocated for each structure
according to the size of the structure
(computed by Phase JK), and this storage is
placed on the correct boundary on informa-
tion supplied by Phase JK. The structure
member chain for each structure is scanned
and the relative offset of each member is
relocated to the start of the STATIC
INTERNAL control section. Further, on the
structure member scan, secondary dope vec-
tors are allocated when required, and the
number of elements is calculated for INI-
TIAL arrays.

50

Phase PL

Phase PL scans the STATIC, AUTOMATIC, CON-
TROLLED, structure, and PROCEDURE block
chains for variables which require storage
for their symbol tables and/or data element
descriptors.

When a variable is found which requires
a symbol table, the variable is joined onto
the chain of symbol variables for the par-
ticular block. A symbol table dictionary
entry 1is created for the variable (see Sec-
tion 4), and a chain is set up to and from
the dictionary entry for the variable. The
new dictionary entry is joined onto the
STATIC chain.

The size of the symbol table is calcu-
lated, and its offset from the start of the
STATIC control section is stored in the
symbol table dictionary entry. Throughout
the allocation of STATIC storage a location
counter is maintained to contain the next
free location in STATIC; this counter is
increased appropriately.

All symbol variables require a DED and a
branch is taken to the routine which allo-
cates them.

When a variable is found which requires
a DED, it is determined whether or not the
CED describes a standard type; there are
eight standard types, which consist of the
different kinds of real coded arithmetic
data that can be obtained by the combina-
tion of the attributes FIXED/FLOAT, BINARY/
DECIMAL, LONG/SHORT {(default precisions
only).

If the DED is of a standard type, a
check is made for an identical DED that may
have already been encountered, so that
there will be only one allocation of
storage for any one type of standard DED.
If the DED is not of a standard type, it is
allocated storage of its own.

If the variable does not already have a
symbol table dictionary entry (which con-
tains space for DED information), a DED
dictionary entry is constructed, and the
offset of the DED in the STATIC control
section is stored in it. A pointer in the
new entry in the dictionary entry for the
variable is also set up.

When all data element descriptors and
symbol tables in the compilation have been
processed, all STATIC storage has been
allocated and the total size of the STATIC
control section is placed in a slot in the
communications region.

Page of GY28-2051-0, Issued September 15, 1970 by TNL GN28-3161

' Phase PP (PO)

Phase PP extracts all ON condition entries
and places them at the head of the AUTOMAT-
IC chain. It then extracts all temporary
variable dictionary entries from the AUTO-
MATIC chain and places them in the zone
following the ON conditions in the chain.

All dictionary entries which are totally
independent of any other variable are
extracted, and also placed in the zone fol-
lowing the ON conditions.

The phase then extracts all dictionary
entries which depend upon some other vari-
able in containing blocks or in the zones
already extracted, and places them in the
next following zone. Dependency includes
expressions for string lengths, expressions
for array bounds, expressions for INITIAL
iteration factors, and defined dependen-
cies. This is repeated recursively until
the end of the chain. If some variable
depends upon itself, a warning message is
issued.

A special zone delimiter dictionary
entry is inserted between each zone in the
AUTOMATIC chain (see Section 4). A code-
byte is initialized in the delimiter to
indicate to Phases PT and QF whether its
following zone contains any variables which
require storage (i.e., it does not consist
entirely of DEFINED items, which do not
require storage), and whether or not the
following zone contains any arrays of VARY-
ING strings.

Phase PT

Phase PT allocates AUTOMATIC storage, scans
the CONTROLLED chain, and determines the
size of the largest dope vector. It scans
the entry type 1 chain, and for each PROCE-
DURE block or BEGIN block it allocates
storage for a DSA and compiles code to ini-
tialize the DSA.

A two-word slot in the DSA is allocated
for each ON condition in the block, and
code is compiled to initialize the slot.
Space for the addressing vector and work-
space in the DSA is also allocated.

Two words are allowed for tasking infor-
mation in the DSA if the TASK option is on
the external PROCEDURE of the compilation.

The AUTOMATIC chain is scanned and dope
vectors are allocated for the items requir-
ing them. Code is compiled to copy the
skeleton dope vector, and to relocate the
address in the dope vector.

Where there is a block with its DSA in
STATIC, dope vector initialization is not
performed for the variables in the first

region of the AUTOMATIC chain. Address
slots in dope vectors for variables in the
remainder of the chain are relocated.

Storage is allocated for addressing tem-
poraries type 2 and for addressing con-
trolled variables, and for the parameters
chained to the entry type 1.

The first region of the AUTOMATIC chain
is scanned and storage allocated for double
precision variables, single precision
variables, halfword binary variables,
CHARACTER strings, and BIT strings, in that
order.

The first region of the AUTOMATIC chain
is scanned and storage allocated for
arrays, relocating the wvirtual origin. For
arrays of strings with the VARYING attri-
bute, the secondary dope vector is also
allocated and code is compiled to initial-
ize the secondary dope vector. Correctly
aligned storage is allocated for struc-
tures. If a structure contains any arrays
of strings with the VARYING attribute, the
storage for the secondary dope vector is
allocated at the end of the structure.

A pointer is set up in the AUTOMATIC
chain delimiter to the second file state-
ment which has been created.

The remaining regions of the AUTOMATIC
chain are scanned and code is compiled to
obtain a Variable Data Area (VDA) for each
region. Code is compiled to copy the skel-
etons into the dope vectors and to relocate
the addresses in the dope vectors. During
this pass, any DEFINED items which are to
be addressed directly have the storage off-
set and the storage class copied from the
data item specified as the base identifier.

Phase QF

Phase QF, which constructs prologues, scans
that text which is in pseudo-code form at
this time with end-of-text block markers
inserted.

When a statement label pseudo-code item
is found, it is analyzed and one of three
things happens:

1. The item is saved if it relates to a
PROCEDURE statement

2. The item is omitted if it relates to a
BEGIN or ON block

3. The item is passed if it relates to
neither of the first two conditions.

When a BEGIN statement is found, a stan-
dard prologue of simple form is generated,
and code is inserted from second file sta-
tements (if there are any) to get the DSA,

Section 2: Method of Operation 51

Page of GY28-2051-0, Issued September 15, 1970 by TNL GN28-3161

either dynamically, or in the case of elig-
ible bottom—level blocks, by using the sup-
plementary IWS made available at initiali-
zation time. Code is also inserted to ini-
tialize the DSA and to allocate and ini-
tialize any VDas.

When a PROCEDURE statement is found, it
is first determined whether it heads an ON
block or a PROCEDURE block. If it is an ON
block, a standard prologue (similar to that
for a BEGIN block) is generated. If it is
a PROCEDURE block, a specialized prologue
is generated. This takes account of the
manner of getting the DSA, the number of
entry points, the number of entry labels on
a given entry point, the number of parame-
ters on each entry point, and whether the
PROCEDURE is a function.

Prologue code is generated for AUTOMATIC
scalar TASK, EVENT or AREA variables, in
order to perform the initialization
required when these variables are
allocated.

The code generated by the prologue con-
struction phase is partly in pseudo-code
and partly in machine code. The machine
code (which is delimited by special pseudo-
code items) has the same form as the code
produced by the Register Allocation Phase
(see Section 4).

DSA optimization is performed under cer-
tain conditions (see Appendix D).

At the end of the prologue, the state-
ment label item saved earlier is inserted
to mark the apparent entry point. Code is
produced to effect linkage to BEGIN blocks
in such a way that general register 15 con-
tains the address of the entry point, and
general register 14 contains the address of
the byte beyond the BEGIN epilogue.

At the end of the text, any text blocks
that are not needed are freed, and control
is passed to the next phase.

Phase QJ

Phase QJ scans the text for ALLOCATE, FREE,
and BUY statements.

On finding an ALLOCATE statement, a rou-
tine is called which does a 'look ahead’
for initialization statements associated
with the allocated variable, e.g., adjust-
able array bounds or adjustable string
lengths, and places the text references of
each statement in the dictionary entry
associated with each statement.

If the allocated item has a dope vector,

code is generated to move the skeleton dope
vector generated by Phase PH into a block

52

of workspace in the DSA of the current
block.

Any adjustable bound expressions or
string length expressions are then
extracted from the text references, and the
expressions are placed in-line in the text.

Any information required from previous
allocations (specified by * in the ALLOCATE
statement) is extracted from the previous
allocation, and copied into the workspace.

Code generated by Phase JK to initialize
maltipliers, etc., is extracted and placed
in-line, after first loading the variable
storage accumulator with the dope vector
size. Phase JK generates code to increment
the accumulator register by the size of the
item.

If the item has no adjustable parame-
ters, code is generated to increment the
accumulator by the size calculated at com-
pilation time. If this size is greater
than 4,096, Phase JK generates a constant
dictionary entry, which is used in this
code.

If the item has any arrays of varying
strings, the size of the array string dope
vector is added to a second accumulator
register. Code is generated to add the two
accumulators into the second one, which is
a parameter to a library routine. A rou-
tine is then called which extracts the
library call inserted by pseudo-code and
places it in-line in the text.

Code is inserted after the library call
to initialize the dope vector in workspace
to point to the allocated storage. Code is
generated to transfer the dope vector from
the workspace to the allocated storage.

The code generated by phase JK to ini-
tialize arrays of varying strings, tasks,
events, and areas is then inserted in the
output stream.

Any initial value statements associated
with the ALLOCATE statement are extracted
and placed in-line. The initialization
statements are then skipped, and the scan
continues. The last two steps are also
performed for LOCATE (based variable) and
ALLOCATE (based variable) statements.
Action for a BUY statement is similar to an
ALLOCATE statement, with the following
exceptions:

1. Bound and string length code is in-
line, bracketed between BUYS and BUY
statements - there is therefore no
look ahead

2. There is no initial value code asso-
ciated with temporaries

3. A slot in the DSA is updated with the
pointer to the allocated storage for a
temporary.

The action on encountering a FREE state-
ment is to generate code to load a parame-
ter register with the pointer to the allo-
cated storage for the FREE VDA Library call
inserted by the pseudo-code.

Phase QU

Phase QU scans the pseudo-code text in
search of instructions which have misa-
ligned operands. (A misaligned operand has
the UNALIGNED attribute and is not aligned
on the boundary appropriate to its data
type). When such an instruction is found,
QU inserts a move character (MVC) instruc-
tion in the pseudo-code text to move the
operand to or from an aligned workspace
area, and substitutes the address of this
workspace for the operand address in the
original instruction. If the address of a
misaligned operand is lcaded into a regis-
ter, a note is made of that register. QU
thereafter treats the instructions which
refer to it as if they referred to the
operand itself, by inserting a move
character instruction, and substituting the
workspace address for the reference in the
instruction.

In handling misaligned operands, phase
QU uses storage beginning at offset 32 from
register 9 for its workspace.

Whenever a load address (LA) instruction
is found which lies within the calling
sequence of a library routine and which
loads the address of a misaligned argument
of that routine, an aligned workspace
address is substituted in the instruction,
and the requisite move character instruc-
tion is stacked. It is not inserted in the
output text until the instruction is
encountered that loads register 15 prior to
the exit to the library routine, or in the
case of EDIT-directed I/0 routines, until
the appropriate branch-and-link (BALR)
instruction is encountered. The stacked
move character instruction is inserted into
the output before the exit to the routine
if the argument in question is an input
argument to the routine, and after the
return from the routine if it is an output
argument.

Whenever a fixed binary temporary of
precision < 16 is encountered in the text,
the dictionary is checked to see if this is
a member of an argument list (phase GP will
have set bit). If it is, the instructions
referring to it are altered to halfword.
The displacement in any Load Address refer-
ring to the temporary is incremented by 2.

References to halfword binary items are
replaced by halfword instructions where
PL/I permits. Where possible and desir-
able, fullword instructions are used to
perform calculations, and only LH/STH
instructions used to access storage.

Fullword conversion is inserted into the
library calls marked by phases LS and NG.

In handling halfword binary items, phase
QU uses 4 bytes, beginning at offset 0 from
register 9, for workspace.

Phase QX

Phase QX is the 'AGGREGATE LENGTH TABLE'
printing phase. It is entered only if the
ATR (attribute list) or XREF (cross
reference list) options are specified. It
scans the STATIC, AUTOMATIC, CONTROLLED and
COBOL chains, and, for each major structure
or non-structured array that is found, an
entry is printed in the AGGREGATE length
table.

An AGGREGATE LENGTH TABLE entry consists
of the source program DECLARE statement
number, the identifier and the length (in
bytes) of the aggregate. 1In the case of a
CONTROLLED non-BASED aggregate no entry is
printed for the DECLARE statement, but an
entry is printed for each ALLOCATE for the
aggregate, the source program ALLOCATE
statement number being printed in the
'statement number' column.

Where the length of an aggregate is not
known at compilation the word “ADJUSTABLE"
is printed in the 'length in bytes®' column
of the entry for that aggregate. If an
aggregate is dynamically defined, the word
"DEFINED" appears in that column. An entry
for a COBOL mapped structure (i.e., a
structure which a COBOL record is read into
or written from), has the word " (COBOL)"™
appended, but such an entry will appear
only if the structure does not consist
entirely of one of the following:

e doubleword data

e fullword data

e halfword binary data

e character string data

e aligned bit string data

e a mixture of character string and
aligned bit string data

‘If a COBOL entry does appear, it is
additional to the entry for the PL/I mapped
version of the structure.

Section 2: Method of Operation 53

Before printing begins the aggregate
length table entries are sorted so that the
identifiers appear in collating sequence
order.

REGISTER ALLOCATION LOGICAL PHASE

The register allocation phase inserts into
the text the appropriate addressing
mechanisms for all types of storage, and to
allocate physical general registers where
symbolic registers are specified or
required as base registers.

This phase comprises two physical
phases, each with a specific function. The
first, Phase RA, processes the addressing
mechanisms, while the second phase, Phase
RF, allocates the physical registers.

An additional phase RD is called in
between RA and RF when the optimization
option is 2 or greater. This phase
attempts to optimize the storing and load-
ing of registers in use over compiler
generated branches.

Phase RA (RB,RC)

Phase RA scans the text for dictionary
references, the beginnings and ends of PRO-
CEDURE and BEGIN blocks, and the starting
points of the original PL/I statements.

A dictionary reference, when found, is
decoded into a word-aligned dictionary
address and a code. These are used to
determine what is being referenced. The
corresponding object time address as an
offset and base is then calculated.

If the address required has an offset
less than 4,096 and a base which is either
an AUTOMATIC or STATIC data pointer, no
extra instructions are generated. If this
is not so, extra instructions are inserted
in the text stream to calculate the
required address. The calculation of this
address is broken down into logical steps
in a ‘step table.' On completion, the
table is scanned backwards to determine
whether an intermediate result has been
previously calculated. The steps which
have not been previously calculated are
then assembled into the pseudo-code.

The compiled code is added either to the
output stream or to a separate file. The
code in the separate file is terminated by
a store instruction to save the calculated
address. The extra "insertion file" is
placed in the prologue of the relevant
block by the next phase. Instructions are
stored in-line if the referenced item is
CONTROLLED, if it is a parameter, if fewer
instructions are required to recalculate
the base rather than load the stored

54

address, or if the reference itself is in
the prologue.

If no addressing code is generated, a
special item is put in text to tell phase
RF what base to use.

All relevant information for PROCEDURE
and BEGIN blocks is stacked and unstacked
at the start and end of the blocks
respectively.

At the start of PL/I statements, code is
compiled to keep the required PREFIX ON
slots in the Dynamic Storage Area updated.
On meeting the pseudo-code error marker,
the calling sequence to the library error
package is generated, and the error marker
removed.

If the STMT option has been specified,
code is generated at the start of each PL/I
statement to keep the statement number slot
in the current DSA up to date.

Phase RD

Phase RD examines all EQUs and determines
their uses. A table is set up in scratch
text blocks containing a four-byte slot for
each EQU. The number of text blocks
required is calculated from the wvalue in
the ZMAXEQ field in the communications
region. The first text block, containing
the slots for the first N-4 EQU values
(where N = text block size), is locked into
main storage so that these slots can be
accessed by direct addressing.

The other slots are accessed via their
text references, and their text blocks are
brought into storage as needed, by the com-
piler control routines. A dictionary of
text block numkers for each range of EQU
values is kept in the phase. This allows
for a maximum of 64 text blocks, i.e., un-
der the smallest SIZE parameter a maximum
of 16K EQU wvalues are allowed.

The table is built up during a pass of
the program text. At the end of the text
pass the table is scanned. Any EQU which
is not used is deleted. Any EQU which is
either before the first use or used more
than once is flagged by setting the first
bit of the EQU value on. During this scan
of the table, the current table text block
is locked into storage and released when
the scan is completed for the block.

Phase RF (RG,RH)

Phase RF scans the text for register occur-
rences, implicit and explicit, and the
start and end of PROCEDURE and BEGIN
blocks. At the beginning of PROCEDURE and
BEGIN blocks all relevant information is

stacked, and is later unstacked at the
corresponding end.

Registers are classified as assigned,
symbolic, or base.

Assigned registers require the explicit-
ly mentioned register to be used. If that
register is not free it is stored. Symbol-
ic registers may occupy any register in the
range 1 through 8. An even-odd pair may be
requested. Base registers may occupy any
of registers 1 through 8.

When a register is requested, a table of
the contents of registers is scanned, to
determine whether the register already has
the required value. If it does, that is
used. If it does not, and it is not an
assigned register, a search is made for a
free register and this is allocated if one
is found. Should no register be free, a
look-ahead is performed to determine which
register it is most profitable to free.

If a register contains a base it need
not be stored on freeing. If a register
contains a symbolic or assigned register,
it may require to be stored when freed,
depending upon whether it has had its value
altered since any storage associated with
it was last referenced.

At a BALR (Branch and Link) instruction
it is ensured that all the necessary param-
eter registers are in physical registers,
and not in storage.

No flow trace is carried out by the com-
pilex. Therefore, the register status is
made zero at branch-in and branch-out
points. An exception is at a conditional
branch. Here the registers are not freed
after having been saved.

Any coded addressing instructions are
expanded when found in-line. At a specific
"insertion point™ in a prologue, any
addressing instructions in the "insertion
file" are brought in and expanded.

FINAL ASSEMBLY LOGICAL PHASE

The final assembly phase converts the
pseudo-code output of the register alloca-
tion phase into machine code, the principal
functions being the substitution of machine
operation codes for pseudo-code operations,
and the replacement of PL/I and compiler
inserted symbolic labels by offset values.

Loader text is generated for program
instructions, DECLARE control blocks, and
OPEN file control blocks, initial values
defined in the source program, parameter
lists, skeleton dope vectors, symbol
tables, etc. ESD and RLD cards are

generated for external names and pseudo-
registers. An object listing of the code
generated by the compiler is produced if
the option has been specified by the source
programmer .

Phase TF

Phase TF scans the text, assigns offsets to
compiler and statement labels, and deter-
mines the code required for instructions
which reference labels.

The size of each procedure is determined
and stored in the PROCEDURE entry type 1.
A location counter of machine instructions
is also maintained.

Phase TJ

Phase TJ scans the text until no further
optimization can be achieved in the final
assembly.

A location counter is maintained for
assembled code, and offsets are assigned to
labels.

The size of each procedure is determined
and stored in the PROCEDURE entry type 1.
The amount of code required for instruc-
tions to reference labels is also deter-
mined, while attempting to reduce this from
the amount estimated by the first assembly
pass.

This phase also attempts to reduce the
number of Move (MVC) instructions by
searching for consecutive MVC instructions
which refer to contiguous locations.

Phase TO (TQ)

Phase TO sets the four byte slot ZPRNAM, in
the communication region, to contain the
first four characters of the first entry
label of the external procedure, for the
purpose of object deck serialization.

Phase TO also produces ESD cards for the
compiled program. It first makes up six
standard entries for:

1. Program Control Section (CSECT) (SD
type) allowing room for the compiler
subroutines if these are present

2. STATIC internal CSECT (SD type)

3. Invocation count (PR type)

4. Entry points to library routines, IHE-
SADA and IHESADB (ER type)

5. IHEQERR (PR)

6. IHEQTIC (PR).

Section 2: Method of Operation 55

If the external procedure has the MAIN
option, an entry for a one-word CSECT (SD
type) is made up. An entry is made for the
CSECT 1H entry and entries are made up for
all entry labels in the external procedure
(LD type).

The entry type 1 chain is scanned and an
entry (PR type) is made up for each block
and procedure.

The external section of the STATIC chain
is scanned and entries are made up for:

1. Built-in functions and library func-
tions (ER type)

2. Files (ER type)
3. STATIC external variables (SD type)
4. External entry names (ER type)

5. Programmer ON condition names (SD
type).

The CONTROLLED chain is scanned and an
entry is made up for each CONTROLLED vari-
able and task name (PR type).

The size of the program control section
is incremented to include the compiler
subroutines.

All STATIC DSAs are put into the STATIC
INTERNAL control section, their combined
sizes being allowed for when the size of
the CSECT is calculated.

Module T¢Q is used to produce a list of
library conversion routines required for
execution of the program. ER type entries
are made up for each name in the list.

Phase TT

Phase TT scans the text and maintains a
location counter for assembled code.

Loader text (TXT) and relocation direc-
tory (RLD) cards for requested combinations
of load and punch files are generated.

Nested procedures are unnested at object
time by suitable manipulation of the loca-
tion counter. The offset of each procedure
from the start of text is left in the PRO-
CEDURE entry type 1.

Compiler labels are numbered for use by
the object listing phase, and trace infor-
mation is set up at entry points. Phase TT
also generates the text for the compiler
subroutines. These subroutines are put out
in one of the following combinations:

56

1. EPILOGUE subroutine
DYNAMIC PROILOGUE subroutine
STATIC PROLOGUE subroutine

2. EPILOGUE subroutine
DYNAMIC PROLOGUE subroutine

3. EPILOGUE subroutine
STATIC PROLOGUE subroutine

Phase UA

Phase UA generates text for the static
internal CSECT; initializes a CSECT for
each static external variable; and, option-
ally (if the LIST option is present), lists
all the text produced for the static
internal CSECT and provides suitable
comments.

The phase first scans to the start of
the external section of the STATIC chain,
generating text for entry labels, label
constants, compiler labels, file attri-
butes, label variable BCDs, and DEDs for
temporaries. Simple variables found on
this scan are used, together with the
labels, to mark the start of the character
string section of the chain.

The phase then scans to the end of the
external section of the chain, initializing
address constants for external variables,
external entry names, built-in and library
functions, programmer-defined ON-condition
names, external files, and label constants.
Text is made up for the constants pool.

The third scan of the STATIC chain
starts at the point left by the previous
scan, and generates text for dope vector
skeletons, argument lists, RDVs and DVDs,
and symbol tables. The scan is terminated
at the end of the chain.

Phase UA makes up RLD cards for the
address slots for STATIC DSA's and for the
address slot of the start of the epilogue
subroutine, if generated.

Text cards are output to initialize all
AREA's, EVENT's, and TASK's. Arrays of
AREA's, will have a text card for each
element.

Phase UD

Phase UD generates RLD and TXT cards to set
up dope vectors at link-edit and load time.

TXT cards are generated for each STATIC
DSA, containing its length, which is found
in the STATIC DSA entry.

TXT and RLD cards are generated to set
up the dope wvectors for structured items
and any non-structured items appearing in
the AUTOMATIC chains. The TXT cards are

derived from the skeleton dope vector
entries. The RLD cards are generated for
each virtual origin slot.

When the last STATIC DSA has been pro-
cessed control is released from phase UD.

Phase UE

Phase UE initializes those items on the
STATIC chain not processed by Phase UA.

The phase first scans to the start of
the external section of the chain, making
up text for simple data, and listing label
variables.

The second scan starts at the head of
the character string section of the chain,
and initializes dope vectors for all static
internal variables which need them.

The third scan corresponds in extent to
the third scan in Phase UA, but generates
text for arrays, and simple and interleaved
structures. At the end of this scan, a test
is made to determine whether the external
procedure of the program has the MAIN
option. If so, a one-word CSECT (IHEMAIN)
is made up, to contain the address of the
principal entry point to the compilation.

The phase then executes its final scan,
which extends over the external section of
the chain, to initialize a CSECT for each
external variable or external file.

Finally, any incomplete text and RLD
cards are punched out, and an END card is
produced for the compiled program. If the
OBJNM parameter is present for batch compi-
lation, phase UD punches a NAME card to
follow the END card.

Phase UF (UH)

Phase UF scans the text, and lists, in
assembly language format, machine instruc-
tions compiled for the source program. It
inserts comments in the listing for state-
ment numbers, statement labels, entry
points, prologues, and procedure bases.

Phase UF contains module UH which
generates NAME from a dictionary reference.
UF also lists the text for the compiler
subroutine. This is done by releasing UH
and loading module UI which performs this
function. Upon termination of this phase
module UI passes control to phase XA.

ERROR EDITOR LOGICAL PHASE

The error editor phase is entered at the
end of all compilations. The first phase,
phase XA, examines the dictionary and
determines whether there are any messages

to be printed out. If there are none, this
rhase terminates the compilation. If there
are diagnostic messages to be printed out,
phase XB is entered. Phase XC is then
entered and this, together with phase XA,
causes additional modules (XF, and blocks
XG to YY) to be entered. These modules
process the error dictionary entries and
print out the appropriate messages.

Phase XA

Phase XA examines the heads of the error
chains in the first dictionary block, and
the programmer options which specify the
severity level of messages required. If
there are no diagnostic messages to be
printed, this phase prints out a completion
message and completes the compilation. If
diagnostic messages are required, phase XC
and the message address block XF are
called.

The error editor then scans down the
error message chains and marks each error
dictionary entry with an indication of
where the associated message is to be
found. This information is obtained from a
table in module XF.

The text of all error messages is kept
in modules XG through YY. The messages are
ordered, by severity, within these modules.
Module XA will have listed those modules
which contain messages required for a par-
ticular compilation. Module XC loads and
releases these modules, one at a time, and
extracts the required messages. Having
loaded a particular module, the phase scans
down the associated error message chain in
the dictionary for error entries associated
with the module. It accesses the error
message text and scans it.

The message to be printed is built up in
a print buffer in internal compiler code.
This involves a translation from EBCDIC
mode, which is used for the message text
skeleton. The message is completed by the
insertion of a statement number, an identi-
fier, or a numeric value as specified by
the message dictionary entry. The message
is segmented, where necessary, to avoid
spilling over a print line, translated to
external code, and finally printed out.

When all error message dictionary
entries have been processed, module XB
returns control to phase XA, which passes
control to module AR for termination of the
compilation.

Note: This routine for the handling of
diagnostic messages is completely separate
from, and should not be confused with,
module XZ, which is responsible for produc-
ing conversational diagnostic messages at
the user's terminal.

Section 2: Method of Operation 57

SECTION 3: PROGRAM ORGANIZATION

This section provides a complete guide to
the compiler logic, in the form of flow-

charts and associated tables and routine

directories, arranged in phase order.

Flowcharts

The compiler flowcharts are presented at
three levels of detail -- overall, logical
phase, and physical phase. The overall
compiler flowchart (Chart 00) points to the
logical phase flowcharts {(Charts 01 through
12), each of which appears at the head of
the set of physical phase flowcharts to
which it points. The physical phase flow-
charts point (by means of identifiers
placed next to the blocks) to the various
routines used. Entry points to physical
phases are labeled.

The compiler control modules are
referenced frequently throughout compila-
tion. The control module flowchart (AR)
indicates, to the right of each block, the
control module being referenced to perform
the function described.

Flowchart conventions and USASI symbols
are described immediately preceding the
flowcharts.

Tables and Routine Directories

For each physical phase, a table is pro-
vided which lists the operations performed,
identifies the routines and subroutines

58

contained in the phase, and states their
function.

In some cases, a physical phase com-~
prises more than one module; this means
that routines contained in different
modules may be listed together in one rou-
tine directory. To provide a cross-
reference to the compiler listings, the
following convention has been adopted: If
a routine is contained in a module whose
label is not identical to that of the phase
under discussion, the label of the contain-
ing module is inserted in parentheses after
the routine name in the directory.

In the case of a phase sharing a routine
contained in another phase, the label of
the containing module is indicated in
parentheses after the routine name in the
"Subroutines Used" column. The routine
will not then appear in the routine direc-
tory for the phase under discussion, but
will be found in the routine directory for
the containing phase.

Chart and Table Identification

Identification of tables and physical phase
flowcharts is based on the phase label.
Individual modules within the compiler are
named IEMTXX, where XX stands for two
alphabetic characters. All references to
these modules, in the flowcharts and
throughout this manual, have been limited
to the last two characters.

CONTROL PHASE TABLES

Table AA. Module AA Compiler Resident Control Phase (Part 1 of 2)

r T T 1
{ {Main Processing | |
| Statement or Operation Type | Routine | Routine Called |
L ____+____ 1 i
4 T 1
Initializes the compiler	ZINIT	LOADW, ABORT
Parameters passed: General register 1 points		
at the passed parameters		
Entry to TSS/360: XTRTM, REDTIM, CALL, SIR		
L 1 4 4		
1 3 T 1 1		
Deletes a list of locaded phases	RELESE	ZUERR, ABORT
Parameters passed: PAR1 -- address of list of		
phases to be deleted		
Entry to TSS: DELETE	i	
L L i ——— J		
8 A T v 1		
Deletes a list of loaded phases and passes	RLSCTL	Module AD if inter-
control to either the next requested phase or		phase dumping is re-
the next named phase		quired; Module AE if

| it is end of read-in |
Parameters passed: PAR1 -- address of list of		phase; ZUERR, ABORT
phases to be deleted; PAR2 -- address of name		
of phase to which control is to be given, orx		
zero		i
Parameters returned: PAR1 -- load point of new		
phase		
Entry to TSS/360: DELETE, LOAD(EPLOC), CALL		
L 4 1 3		
[3 T T n		
Loads the required phase and returns control to	LOADX	ZUERR, ABORT
the caller. The phase may be loaded again		
Parameters passed: PAR1 -- address of name of		
phase to be loaded		
Parameters returned: PAR1 -- locad point of		
phase		
Entry to TSS/360: LOAD(EPLOC)		i
1 i 4 A]		
¥ T T a1		
Marks phases as 'wanted' and 'not wanted'	REQEST	ZUERR, ABORT
Parameters passed: PAR1 -- address of list of		
phase names to be marked *wanted;' PAR2 --		
address of list of phase names to be marked		
‘not wanted®		
Entry to TSS/360: None		
F + + .		
Puts a record out to SYSLIN { ZULF	LFERRX	
Parameters passed: PAR1 -- address of output		
record		
Entxry to TSS/360: PUT LOCATE(VSAM)		
L 1 4 d		
T T L		
Deletes currently called phases and passes	ZABORT, ABORT	Module AD if dump op-
control to the error editor		tion specified; RLSCTL

| | |
|Entry to TSS/360: LOAD(EPLOC) if dump option | | |
|specified | | i
2 +-— + 4
calls module AK to perform finalization		Module AK
Entry to TSS/360: DELETE, CALL		
L L L J

Section 3: Program Organization 59

Table AA. Module AA Compiler Resident Control Phase (Part 2 of 2)

] -T) L
| |Main Processing |]
| Statement or Operation Type | Routine |Routine Called |
1 —_— - 1 4 4
i + } 4
|Handles all program checks | PIH | ZUERR |
[] I I
|Parameters passed: ARINT holds address of rou-| | |
|tine wanting to handle interrupt. ARMASK holds| | |
{mask indicating which interrupts it is desired | i |
|to handle | | |
|Entry to TSS/360: None | | |
L [l 1 ———— J
Table AAl. Module AA Routine/Subroutine Directory
¥ L] - - 1
|Routine/Subroutine| Function |
4 4
k] b)
| ABORT |Deletes currently loaded phases, passes control to error editor. |
| | I
| BLKERR |Enters message "REFERENCED BLOCK NOT IN USE", then terminates |
| | compilation. |
I | I
| CONSLD | Takes dictionary reference and points at relevant slot in dictionary]|
| Jcontrol block area (DSLOTS). |
! | |
| CONSLT | Takes text reference and points at relevant slot in text block con- |
i |trol area (TSLOTS). |
| | |
| LFERRX |Marks error on SYSLIN data set. |
|] I
| LOADX |Loads required phase and returns contreol to caller. The phase may |
| |be loaded again. |
| |
LOADW	Loads required phase and returns control to caller.
PIH	Handles all program checks.
PLERRX	Prints record on PLILIST data set. Pagination (paging action) is
	performed automatically.
I l	
RELESE	Releases all loaded phases.
REQEST	Marks phases as 'wanted' or 'not wanted.'
I	
RLSCTL	Releases all loaded phases and passes control to next required or
	named phase.
ZABORT	Deletes currently loaded phases and passes control to error editor.
]	
{ ZEND	Picks up the completion code for the compilation and returns control
	to ZINT to continue the batch, or to the operating system at the end
	of a single or batch compilation.
]	
ZINIT {Initializes the compiler.	
1	
ZULF	Puts record out to PLILOAD data set.
L 1 - - J

60

Table AB. Module AB Compiler Control Initialization

" - - k] - - T 1
| | Main Processing]| |
| Statement or Operation Type i Rout ine | Routine Called |
o o mmmm oo S $:
|Prints initial heading and performs scan of | OPTPROC | None |
J]option list. Default optiors are taken where | | |
|necessary] | |
I | | |
| Parameters passed: General register 1 points | | |
|to option list passed at invocation time | | |
|Entry to TSS/360: EBCDTIME PUT LOCATE (VSAM) | | i
i ———— I e e e 4 - 3
r } 4
Makes the initial space allocation for text	OPENR	None
and dictionary blocks. Sets up communication		
region		
Entry to TSS/360: GETMAIN i		
4 4 4		
T T T T L)		
Loads intermediate file writer (Module AC).	NODUMP	ZUPL (AR}
Sets buffer sizes for PLIMAC and opens the		
data set I		
Entry to TSs/360: LOAD (EPLOC), OPEN		
————— ———m s e N + 4		
Prints out list of options for this	NDMP	ZUPL (AR)
compilation		
		[
Entry to TSS/360: None		
- — 4 1
|Reads first card and stores. Uses as heading |[RDCD | ZURD, ZUERR, ZUPL |
|if required | | tall in ARA) |
L 4 4 3
r - - - . L) B}
|Return to pre-initializer in IEMTAA | ABOUT |None |
IS 4
b - PO et L £ 1
|Loads dictionary handling control routines in |LODCNTL | None |
lQIEMTA;{..]I { l
|Entry to TSS/360: LOAD | | |
L S - — S SO i _—]
Table AB1. Module AB Routine/Subroutine Directory
r B i - o m - 1
|Routines/Subroutinej Function |
+ —— - — o e o o 4
T 1
| ABOUT |Returns control to pre-initializer in Module AA. |
| { |
| NDMP |Prints lists of options for current compilation. |
! ! |
| NODUMP | Loads intermediate file writer module AC. Opens PLIMAC data set. |
|
| OPENR {Makes initial space allocation for text and dictionary blocks. Sets|
| |up communications region. |
| |
| OPTPROC |Prints initial heading and performs scan of option list. {
| ! |
| RDCD |Reads first card. |
— B R - J

Section 3: Program Organization 61

Table AC. Module AC Compiler Control Intermediate File Control

| - - T . I -1
| {Main Processing| |
| Statement or Operation Type | Routine | Routine Called |
I — | 1 4
] L} R 1
|Writes a record ontoc PLIMAC | TEMAC | None |
| | |]
Parameters passed: PAR1 -- address of output		
record; PAR2 -- length of record]		
Entry to TSS/360: PUT LOCATE(VISAM)		
L 4 }		
T - T Bl - _—_"		
{Link to file switching routine (Module AG) { ENDED	None	
!	[
{Entry to TSS/360: CALL i | |
L —— — e e e L L d
Table AD. Module AD Compiler Control Interphase Dumping
- - E— I T T 1
| {Main Processing| |
| Statement or Operation Type | Routine | Routine Used |
e e e o e e e e e e . o e . e e 2 e e . o e . e e et —_ 1 4 1
T T]
|Debugging aids. This routine contains a dump- |IEMAD | ZDRFAB, ZTXTAB, |
|ing program which is invoked by use of the DUMP| | (all in ARA),]
joption i | DUMP |
L —— i i - J
Table ADl1. Module AD Routine/Subroutine Directory
T - L b
|Routines/Subroutine| Function |
4 i |
T - A
| DUMP | Converts contents of specified area of main storage to hexadecimal, |
| |prints the result. |
L L 3
Table AE. Module AE Compiler Control Clean-Up Phase
13 - T A T 1
i | Main Processing}| |
| Statement or Operation Type | Routine | Routine Called |
b T 1 ! {
|Input and intermediate file control. Current |Module AC | None |
linput file is closed and AC is deleted if { | |
| present | | |
| | |
|Entry to TSS/360: CLOSE(current input file), | | |
| DELETE | | |
L — 1 J
Table AF. Module AF Compiler Control Options
r T T - T 1
| Function | Subroutines |
% R — 4 —_— 4
3 ¥ 1
| This module contains no executable instructions; it con- |None |
{tains a table with the default options for the compiler. | |
L e e e e . . P o e e e e o . o i . . P . " e e . . e e | —— 3
Table AG. Module AG Compiler Control Intermediate File Switching
T - - T 1
| Function | Subroutines |
L ']
- - == - T 3
|Switches PLIMAC from an output file to an input file | None |
| | I
|Entries to TSS/360: OPEN and CLOSE | |
L P — ————e —]

62

Table AK. Module AK Compiler Control Closing Phase

Function

-y o oy

Subroutines

{Closes files, frees scratch core and deletes unwanted
| phases

|If batch compiling, scans batch delimiter card for corxrect

|syntax and updates completicn code.

|

|Entries to TSS/360: XTRM, CLOSE, REDTIM, DELETE, and
| FREEMAIN
L

I e e s s st e e . o]

ZURC (AR}, PIC

b s s s i, e . e, s st s 0l

Table AL. Module AL Dictionary Phase (Part 1 of 4)

r P— ——— s o e e

| |Main Processing
Routine

| Statement or Operation Type |
3
_______________ +

Routine Called

|Releases scratch storage allocated by ZUGC ZURC

|
|Parameters passed: PAR1 -- a count of the
|number of entries to ZUGC to be released
|Entry to TSS/360: FREEMAIN if storage being
|replaced is outside the guaranteed 4K block
i

ZUERR, ABORT

}
|Inserts diagnostic message in the dictionary ZUERR
{and, if required, calls the conversational
|diagnostic outputter (XZ)

|
|Parameters passed: PAR5 -- numeric parameter
| (if any); PAR6 -- message number; PAR7 --
|address of text (if any) or dictionary

| any)
jEntry to TSS/360: CALL
L

ZDRFAB, ZDICRF, ZDICAB,
Module XZ

r

|Takes a dictionary reference and points at the|CONSLD
|relevant slot in the dictionary block control

|area (DSLOTS)

|
|Parameters passed: PAR1 -- dictionary
|reference

|Parameters returned: Address of slot in GRA
|Entry to TSS/360: None

i

|
]
|
|
|
|
|
|
{
|
|
|
|reference (if any); PARSB —-- length of text (if}
|
i
|
|
|
|
|
|
i
|
+

2
S
®

} -
|Takes a text reference and points at the rele-|CONSLT
|vant slot in the text block control area

| (TSLOTS)

|Parameters passed: PAR1 —-- text reference

| Parameters returned: Address of slot in GRA
|Entry to TSS/360: None

8

r
|Allocates space for a text block

| Parameters passed: None
|Parameters returned: Address of block in GRO

javailable.
L

ZUPL, ABORT

v
|Allocates space for a dictionary block

| Parameters passed: None

| Parameters returned: Address of block in GRO
|Entry to TSS/360: GETMAIN (VC) if storage
|available.

L

|
|
{
|
|
I
$
|
|
E
|Entry to TSS/360: GETMAIN (VC) if storage |
|
4
|
|
|
]
|
|
L

b e e e s . e e e s et . e s e s e e s, e s . e S . e, . e e, e e . e e e, S, e, . st . s . e s e st s s e e

ZUPL, ABORT

b e e s s e e it e st oo, et s s skt st e, s, s s, S s, s o, . e e, . s, e S, D s, s o G i W wns i el s, e S, e et st sl st s)

Section 3:

Program Organization 63

Table AL. Module AL Dictionary Phase (Part 2 of 4)

T
|Main Processing

r
|

| Statement or Operation Type | Routine Routine Called
R

3

|Reads a record from PLIINPUT | ZURD

|Pparameters passed: PARl1 -- address of input
|area

| Parameters returned: PAR2 -- record length
| Entry to TSS/360: GET MOVE (VISAM)

| (paging action) is performed automatically

|Parameters passed: PAR1 -- address of output
|buffer. PAR3 -- address of output buffer con-
|taining page heading (if any)

|Entry to TSS/360: PUT LOCATE (VISAM)

|
|
|
|
+
|Puts a record out to PLILIST. Pagination | ZUPL
|
|
|
|
|
|

i

T
I
I
+
!
|
I
|
I
|
+
|
|
|
|
|
|

} |

T - i)

|Finds a new text block. Optionaly chains the {ZUTXTC | CONSLT, TRYMRT, ZUERR,

|new block to the current block and changes thej |ABORT, BLKERR

|status of the current block

|

|Parameters passed: PAR1 -- optionally, a

|reference to the current block. PAR2 -- a

| status and chain indicator

|Parameters returned: PAR1 -- reference to new

jblock; PAR2 —-- absolute address of the begin-

|ning of block

|Entxry to TSS/360: None

L

! |
I |
I |
| |
| |
| |
] |
| !
f I
+ +
|Finds the next text block in the chain. | ZCHAIN | CONSLT, TRYMRT, BLKERR
|Optionally, changes the status of the current | |
|block] |
I | |
| Parameters passed: PAR1 -- a reference to the| |
jcurrent block; PAR2 -- a status indicator | |
|Parameters returned: PAR1 -- reference of the] |
{next block in the chain. PAR2 -- absolute | |
| address of next block in chain i |
|Entry to TSS/360: None | |
15 - + 1 -
[Changes the status of the referenced text | ZALTER | CONSLT, BLKERR
| block | |
| I I
| Parameters passed: PAR1 -- a reference to the| |
|block. PAR2 + 3 -- required 'status' byte | |
|Entry to TSS/360: None] |
b 1 R -
{Converts a text reference to an absolute | ZTXTAB | CONSLT, TRYMRT, BLKERR
|address and optionally, does not change status] |
of the block	
Parameters passed: PAR1 -- reference to be	
converted and option indicator bit	
Parameters returned: PAR1 -- the absolute i	
address	
Entry to TS5/360: None	
= S +	
Converts an absolute address to a text	ZTXTRF
reference	
Parameters passed: PAR1 -- a text reference	
to the block containing the absolute address;	
PAR2 ~- the address to be converted	
Parameters returned: PAR1 -- the required	
text reference]
Entry to TSS/360: None	
L J—— L

b s s s 4ttt e s st st . 4 . S . s i s s, e s ek, s, . s, s s b, el . e, S, s s e, Wt . s s, oM e oo S P . . S, e, s s, S s, s e s, s . . s, s . s . e, s, s s s et el

64

Table AL.

Module AL Dictionary Phase (Part 3 of 4)

I S T 1
{ {Main Processing}| |
| Statement or Operation Type { Routine | Routine Called |
¢ - O e t -
|Enters message 'REFERENCED BLOCK NOT IN USE* | BLKERR | ZUERR, ABORT |
|into dictionary and then terminates | | |
|compi lation | | {
| | |
|Entry to TSS/360: None |] |
- -= -t - —+- 4
| Supplies storage space for scratch purposes. {ZUGC | TRYMRT, ZUERR, ABORT | |
|Allocation is made in 512 bytes at a time | | |
| | | |
|Parameters passed: PAR1 -- a count of the | | |
|number of 512 byte blocks required | | |
|Parameters returned: PARl1 -- address of the | | |
jallocated storage | | |
|Entry to TSS/360: None i |]
TP 1 e 1
|Converts an absolute address to a dictionary |ZDABRF | CONSLD, ZUERR, ABORT, |
| reference | | BLKERR |
| | | |
| Parameters passed: PAR1 -- any reference to | | |
|the block containing the absolute address; 1 | |
|PAR2 -- the absolute address to be converted | | |
| Parameters returned: PAR1 --- the required { | |
| dictionary reference | | |
|Entry to TSS/360: None | | |
k ———= ———te—— + 4
|Converts a dictionary reference to an absolute|ZDRFAB | CONSLD, TRYMRD, BLKERR |
|address | | |
| | | |
|Parameters passed: PAR1 -- the dictionary] i |
| reference { | |
| Parameters returned: PAR1 -- the absolute { |]
| address i | |
|Entxry to TSS/360: None | | |
3 S ——m————t- + 1
|Makes an unaligned dictionary entry and | ZNALAB | ZDRFAB, ZDABRF, TRYMRD, |
| returns an absolute address | | 2UPL, ZUERR, ABORT, |
| | | CONSLD |
|Parameters passed: PAR1 -- address of entry | | i
Jto be made; PAR2 -- length of entry | | |
| Parameters returned: PAR1 -- address of entryj | | |
|in dictionary. PARU4 -- some reference to the | | |
|block | | |
|Entry to TSS/360: None | | |
b - -- --—4 } 1
|Makes an aligned dictionary entry and returns |ZDICAB | ZDRFAB, ZDABRF, TRYMRD, |
|an absolute address { | ZUPL, ZUERR, ABORT, |
| | | CORSLD |
|Parameters passed: PAR1 -- address of entry | | |
| to be made; PAR2 -- length of entry | | |
|Parameters returned: PAR1 -- address of entry] | |
}in dictionary. PARY4 -- some reference to the | |]
| block { | |
|Entry to TSS/360: None | i |
fm——— + 4 4
|Makes an unaligned dictionary entry and | ZNALRF | ZDRFAB, ZDABRF, TRYMRD, |
| returns dictionary reference | | ZUPL, ZUERR, ABORT, |
i | CONSLD |
|Parameters passed: PAR1 -- address of entry | | |
|to be made; PAR2 -- length of entry | | |
| Parameters returned: PAR1 -- reference of | | |
|entry in dictionary. PARH4 -- absolute address| { |
|{of the entry | i |
|Entry to TSS/360: None | | |
L L -t 4

Section 3:

Program Organization 65

Table AL. Module AL Dictionary Phase (Part 4 of 4)

T T T 1
| |Main Processing |
| Statement or Operation Type J Routine | Routine Called {
e e st e e e e e e e e S e e e . e e P ———— —— 4 4
1] 1
jMakes an aligned dictionary entry and returns |ZDICRF | ZDRFAB, ZDABRF, TRYMRD, |
la dictionary reference i | ZUPL, ZUERR, ABORT, |
		CONSLD
Parameters passed: PAR1 -- address of entry		
jto be made; PARZ2 — LENGTH OF ENTRY		
Parameters returned: PAR1 -- reference of] {	
entry in dictionary. PAR4 -- absolute address]		
jof the entry		
Entry to TSS/360: None i		
F — - 1 :		
{Builds statement/line number table for use by	STLNBLD	None
conversational diagnostic routines. {		
Parametexrs passed: VISAM line number		
Entry to TSS/360: GETMAIN i		
e e e e e e e e e e e e e e e e e o e e s o 3 S L J		
Table ALl. Module AL Routine/Subroutine Directory		
r .25 L)		
{Routine/Subroutine	Function	
L R 4		
1 3 T - 1		
TRYMRD	Allocates space for a dictionary block.	
TRYMRT	Allocates space for a text block.	
ZALTER jCchanges status of referenced text block.]		
{ ZCHAIN	Finds next text block in chain.	
ZDABRF	Converts an absolute address to a dictionary reference.	
I		
ZDRFAB	Converts a dictionary reference to an absolute address.	
ZDICAB	Makes an aligned dictionary entry and returns absolute address.	
ZDICRF	Makes an aligned dictionary entry and returns dictionary reference.	
ZNALRF	Makes unaligned dictionary entry and returns dictionary reference.	
ZNALAB {Makes unaligned dictionary entry and returns absolute address.		
I		
ZTXTAB jconverts text reference to an absolute address.		
ZTXTRF	Converts absolute address to a text reference.	
ZUERR	Inserts diagnostic message in dictionary.	
ZURD	Reads a record from PLIINPUT.	
2UGC	Supplies storage space for scratch purposes.	
I		
ZURC	Releases scratch storage.	
	[
ZUPL	Puts record out to PLILIST data set.	
ZUTXTC jobtains a new text block.		
L 1 - J

66

Table AM. Module AM Compiler Control Phase Marking

F T ————— \
| |Main Processing]| |
} Function I Routine | Routines Used |
L — [SRV SO —— ——— g
1) B
|Marks all non-optional phases and |Module AM | REQEST, RLSCTL {(both in AA) |
|all phases influenced by compiler | | |
|invocation-time options | | |
- e S - - 1

|Obtains 4K of scratch storage | | |
| | |

|Entry to TSS/360: GETMAIN i | i
T B A i
Section 3: Program Organization 67

COMPILE-TIME PROCESSOR TABLES

Table AS. Phase AS Resident Phase for Compile-time Processing

r

Al T
|Main Processing]|

1

|
| Statement or Operation Type | Routine | Subroutines Used
|Initializes switches for compile- |ADRP |None |
jtime processor | | |
¢ ¢ ¥ - !
| Loads phases for compile-time | ADRP |LOADX (aA) |
|processor | | |
t t t i
|Determines whether Phase BC should |ADRP | None |
|be reloaded | | |
L L 4 J

Table AS1. Phase AS

RoutinesSubroutine Directory (Part 1 of 2)

-

|RoutinesSubroutine

T
| Function

-

| ADRP

|

| BCKUP2
|

| CHBLK

|
| CLSBUF

4
+
| Initializes switches for compile-time processor.

| Backs up token pointer two places.

|Changes currently busy IVB block status and gets a new block

| Handles calls to close and write out the buffer. Loads and bases
|phase BJ if necessary.

|Scans the limits of a comment, transfers each character into the
|output buffer.
|

|Closes an IVB chain.

I

|Releases a chain of IVBs containing a no longer needed value and
|returns chain to free 1list.

|Removes an IVB from the free chain for use by the calling routine.

|

|Updates TOKPTR to point to the next character in a particular input
| stream.

|

|Accepts an EBCDIC identifier as input and outputs an index. The
|index indicates the beginning of the HASH chain with which the iden-
|tifier is associated.

|

| Determines whether Phase BC needs to be reloaded on return from
|Phase BG.

|

|Reads in an input record from the source data set or from included
|text.

|

|Reads records from the included data set.

| Gets a new text block and sets up address slots.

|Outputs a single character into one of the three output media:
|IVB's, text blocks, or external records.

| Searches the dictionary for the presence of a named item.

o
o

|Scans the limits of a string constant, transfers each character
| output.
4

b e e o i indne . i e AMALL " i AP e W S WSS Mt A S S S— W) S— O S B —. o {— W {— T WA o S W Sl i, Si. . st S, . et)

68

Table AS1l. Phase AS Routine/Subroutine Directory (Part 2 of 2)

|GOTO Subroutine |[GOTO Statement Processor.

|

{ACT Package) Actives/Deactivate Processor.

| !
| ELSE | ELSE Clause Processor.
L L

r T H
| Routine/Subroutine| Function |
i i 4
[4 - T T)
| TOKSCN jExamines text, character by character recognizing and returning eachj
| {logical unit of text (called a token). Tokens include identifiers, |
i |constants, operators, delimiters, etc. Handles CHAR48 for macro |
| | processing. |
| |
|UPNEWL }Updates temporary linecount slot. |
| I |
|YAG2 |Loads processor phases for the compile-time processor. |
L OO J
Table AV. Phase AV Macro Processing Initialization
f T _ . T 1
| |Main Processing| [
| Statement or Operation Type | Routine | Subroutines Used |
{ e } - —— +,___ 4
r T 1
|Initializes communication area for {INIT |None |
|compile-time processing | | |
b - t + 1
{Allocates push down stack from JINIT | None |
|scratch storage | | |
! ——- e f 1
|Allocates translation tables JINIT |None |
L 1 4
T - -7 - +_-" a1
| Enters SUBSTR into dictionary | INIT | None |
t 4 i d
¥ T T 1
|Creates dictionary entries and | INIT |None |
|values for constants pool | | |
L —_— i e 4 J
Table AV1. Phase AV Routine/Subroutine Directory
r T 1
| Routine/subroutine] Function |
- 3 1
T B
| INIT jEntry point to the initialization phase. This initializes the com- |
| jmunication region for compile-time processing. |
| |
| WWNOL8 |Allocates the push down stack (to be used by Phases BC and BG) from |
| |scratch storage. |
| I]
|WWOVLP |Sets up tables to translate external code to EBCDIC; tests the BCD, |
| {EBCDIC option. |
! | |
| WWOBCD |Enters built-in function SUBSTR into dictionary. |
|
| WWCHNBEG |Creates dictionary entries and values for compile-time constant |
i =pool. %
| WWMOVEIT |Moves Subroutine package into core for use by BC. |
| | |
| INCLUDE | INCLUDE Processor |
|
| LABELS (BC | LABEL List Processor. |
|
|
|
|
|
|
J

Section 3: Program Organization 69

Table BC. Phase BC Initial Scan and Translation

Ly - TTTT R '"': T 1
] |Main Processing]| |
| Statement or Operation Type | Routine | Subroutines Used |
L — — ——— 4
F 1
|Recognizes statement type | PH1SCN | TOKEN, DELETE |
b-—- —— et - e
| Scans until next % character | PH1 SCN | FINDPC |
i i

. R e e ———ES M 4
| Processes PROCEDURE statement | PH1SCN | TOKEN, DELETE, IDSRCH, |
i { | ADDSP (FREVAL, OUTPTC) i
t O 4 :
| Processes labels attached to | PH1SCN | IDSRCH |
{statement | | |
- O R + — 4
|Encodes statement into internal | PH1ISCN | PARSE, TOKEN, IDSRCH, ADDSP |
| text | | DELETE, CHECK I
L e e e e e e e e e e o o e e o oo F — I+ —_—— 4
f T T 3
|Cleans up after INCLUDE in initial |[PH1SCN | None |
| scan | |
r— PP S —— t :
|Begins statement identification | PH1SCN | None |
| process i | |
L e e i —_— e)
Table BCl. Phase BC Routines/Subroutine Directory

r T - - - - k)
| Routines/Subroutine| Function |
| ——— i —— e ——— 4
L 4 T)|
| ADCONS |Obtains the dictionary reference of a constant, entering it into the|
| J]dictionary if necessary. |
| | |
ADDSP Adds a processor-created item to the dictionary.

| Y !
ADICT	Adds a normal item to the end of the appropriate hash chain and
	returns the dictionary reference.
ADPROC (BF)	Processes PROCEDURE statement.
]	
ASSIGN	Processes assignment statements.
CHECK	Checks back for undefined labels and identifiers not declared within
{	the block.
I	
{DECLAR (BF)	Declare statement processor.
	I
DELETE	Skips over bad text up to the end of a statement, field or
	procedure.
{DO (BE)	PO statement processor.
]	
DONE (BE)	Checks stack for possible THEN's or ELSE's after statement is
	completed.
FINDPC	Scans source text, character by character, searching for macro per-
	cent character.
IDSRCH	Obtains the dictionary reference of an identifier, entering it in
}	the dictionary if necessary.)
l	
IF (BE)	IF statement processor.
I	
KYWDSR	Checks for single or multiple keywords.
!	
PARSE (BE)	Parses and generates interpretive macro code for compile-time
i lexpressions. |
[I IO J

~
=)

Table BCl. Phase BC Routine/Subroutine Directory (Part 2 of 2)

r T T T T T T T T T T T T T T T e e e T T e T T e e e e e]
|Routines/Subroutine| Function |
} e _— o e — e __.__.{
T
| PIF4L [Provides special handling for end of included text. |
| |
PHISCN (BE)	Main controlling routine for phase.
RETURN	Processes RETURN statement for PROC.
STB3 {Ccollects labels into label list and identifier statement type on	
jfirst two tokens of statement.	
STMT (BE)	Diagnoses statement type and builds label list.
TOKEN	Returns significant tokens to PH1SCN and writes out diagnostics for
	tokens in error.
I	
UPDLIN	Generates an update linecount instruction. i
L —) — —— e e e o e —— e o 1	
1) 1	
Note: See also BC Subroutine Package in Table AVi.	
[— —— e e e e e e e e e e e e e e e e —— J	
Table BG. Phase BG Final Scan and Replacement	
S —== S L =T -]	
	Main Processing
Statement or Operation Type	Routine
L —— o R et e e e e e e —— i	
r 1	
Final scan for replacements	PH2SCN
k - S -—= -1 i	
Recognition of end of text	PH2SCN
] —_——— e 4 '	
T 1	
Recognition of an identifier	PH2SCN
{ —— e e e e e e e i e e e e e e ——— e e —— 4	
T 1	
Recognition of macro action	PH2SCN
} — B S +_ 1	
t T 1	
Recognition of % character	PH2SCN
b ot S pen e 3	
Recognition of other characters	PH2SCN
L e e e et e ot e e e e e 2 2 i e i <t 2 et ol s e o - e i e i ——— 1	
L} T hl	
Terminates and cleans up INCLUDE	PH2SCN
handling	
+ -————1t 4
|Re-establishes scan at next higher |PH2SCN | OUTPUT, TOKSCN, SRHDIC |
|level text | | |
——————————————————————————————————— e i
|Performs replacement on activated |PH2SCN | OUTPUT, TOKSCN, SRHDIC |
jidentifiers | | |
L ——— [L J
Table BGl. Phase BG Routine/Subroutine Directory (Part 1 of 2)
r - T - TETTmTTm T T T T 1
| RoutinesSubroutine} Function |
L 4
¢ e Do -~ . 4
|CLOUT (BJ) |{Closes output buffer, and writes out record on PLIMAC. |
|]
| CONVRT |Handles conversions between the three data types used in the |
i | compile-time processor. |
| | |
| DAEOB |Re-~establishes scan at next higher level text. |
| |
| BAECOBF |Recognizes and processes end of text condition. |
L i e . e e e 2 o i e e e e e i i e e . oo i o 8 e s e e e e e A ot e e e o o e e S A o S . S o S i B S o S o e i i -
Section 3: Program Organization 71

Table BGl. Phase BG Routines/Subroutine Directory (Part 2 of 2)

r T
|Routines/Subroutine|

Function

{DAIDEN
%DAMAC
:DAOTHR
=DAPENT
iDAPRTC
%FUNCTN(BJ)

|
| GETDIC

INCONT

INTPRT (BI)

OUTPT

POP

PROINV (BI)

I

|

I

|

|

|

|

|

I

|

| PH2SCN
|

I

|

|

|

|

| PUSH

|

| SYNCH
[

| TPEEK

ITRAI (BI)
]

|
| ZAASIGN (BI)

|
| ZACOMP (BI)

|
| ZACONCAT (BI)

:ZACVT (BI)
:ZALGCL (BD)
:ZAPUSH (BI)
{ZARITH (BI)
| ZATRAI (BI)
:ZATRAN (BI)

|
[ZIJSUBS (BJ)
L

|Built-in function SUBSTR.
L

| Recognizes and processes identifier in text.

4
T

|Recognizes and processes macro action character.

| Recognizes character and outputs it.

|Handles replacement operation for text identifiers.

|Recognizes % character and recalls Phase BC if appropriate.

| Handles built-in functions.

|Picks up a two-byte dictionary reference from scrubbed text, per-
| forms error checking, resolves indirect references, and returns both
|relative and absolute address.

| INCLUDE control routine. Opens DCB, finds member and sets up
|buffer.

l

|Interprets the macro code generated by the Phase I scan.

|
{Handles the output of tokens.

|Scans text blocks.

I
|Pops the top temporary off the Phase II stack.

|Special entry point to interpreter for invocation of procedures
| found in source program text.

jPushes next available temporary onto the Phase II stack.

| Synchronizes linecount, closing buffer if necessary.

| Scans for procedure reference argument list left-parenthesis.

|

|Terminates INCLUDE text handling and frees text blocks containing
|included text.

|Performs identifier assignments for INTPRT.
| performs all logical comparison operations for INTRPT.

{Performs string concatenations for INTPRT.

|
|Converts stack items to required type by 'RETURNS' attribute.

|Pperforms all logical operations for INTPRT.

| Performs stack maintenance for INTPRT.

|

|Performs all arithmetic operations for INTPRT.

|Handles transfers from included text to including text.

|Performs all transfer operations for INTPRT.

i o s oo . N e i " S S S— T S " . — S ST ", toin, " i S WU . A" o, W " ——" W _— ———" V— " S—— o S— — o o, S e S S " . Wit S o W— S o e o s opaane. sl

72

Table BM. Phase BM Diagnostic Message Determination and Printing

T T T 1
| |Main Processing| |
| Statement or Operation Type | Routine | Subroutines Used |
i R B 4 |
1 T T 4
| Determines whether error messages [XA | None |
|are to be printed | | |
frmm e —emmmtt -~ - 4
|Scans error message text skeletons |XAS8 |XA50, XA70, XA90, XA110, ZUPL |
|and prints them out | | |
L —_— —————— 4 U U 4
Table BM1l. Phase BM Routine/Sukroutine Directory
T T - - 1
|RoutinesSubroutine| Function |
L i —-— 1
¥ T 1
|XA | Determines whether error messages are to be printed. |
| | I
| XA0 | Sets severity code. |
| |
XA01	Establishes which message types to suppress.
XAl	Counts number of error chains to be processed.
XA2	Puts out messages if there are no diagnostics.
XA4	Prints out "COMPILER DIAGNOSTIC MESSAGES". I
Xa7	First scan of message chains.
XA8	Scans error message text skeletons and prints them.
!	
XA9 (BN)	Scans to head of next non-empty chain.
[
JXA12A	Selects &and prints header for messages of given severity.
‘	
XA30 (BN)	Gets next entry in message chain.
XA32 (BN)	Builds up first part of message in buffer.
I	
1XA35 (BN)	Accesses message skeleton.
XA40 (BN)	Puts out completed message. i
XA50 (BN)	Moves messsage text to print buffer.
I	
XA70 (BN)	Converts binary statement number to character representation, and
	moves it to print buffer.
XA90 (BN)	Converts binary numeric value to character representation and moves
	it to print buffer.
XA110 (BN)	Moves identifier from dictionary entry to the print area.
ZUPL	Prints a line on PLILIST data set.
L i e e e e o e e]	
Table BW. Phase BW Clean-up Phase	
r	DU T 1
	Main Processing]
Statement or Operation Type	Routine
L 4 e e e e e e e e e e e e e e e e e o e)	
r T T hl	
Resets all tables and communica-	IEMTBW
tions region cells to the value	
required by the compiler proper i	
L 1 o s e L -]

Section 3: Program Organization 73

48-CHARACTER SET PREPROCESSOR TABLE

Table BX. Phase BX 48-Character Set Preprocessor

e — .
| |Main Processing]|
| Statement or Operation Type | Routine |

S

ubroutines Used

e o $-—-
| Translates keyword table to intern-|BA0O | None

|al code and initializes | |

R}

|

|

4

1

|

|

1

|Reads a record | BAl | ZURD (AR) |

———————————————————————— -+ B § ——= 1

|Scans text | BA1A | None |

4+ 4

- - L B 1

|Handles operators and keywords | BAS | None |

- e Fommmm + i

|Replaces operator keywords |BAL1l | None |
i

—————————————————————————————————————— -1 -1

|Replaces comma-dot by semi-colon | BA2O | None |
|where applicable | |

pmmm e + S 1

|Deals with quote marks | BA25 |None |

B o e e e e e e e een e e e e e e o e e e e . e S e e e e e e . 2 e et < e e . e . e e o e 2 e . 2 o 4]

1 8 T 1

|Maintains parenthesis level count |[BA30 | None |

—————————— e —t- e

|Replaces period-period by colon | BALO |None |

frmm e — -1 .

|Processes a slash | BA50 | None {

o e e —_— 4 ____+ 4

L] 1

|Reads one record ahead in case of |BA70 | None |

| need | | |

% -—- -t -~ 1

|Restores the situation when a read |BA80 | None |

|ahead has taken place | | |

F et 1

|Puts out converted text |BA9O | ZUBW |

L N —_— 4 4

74

READ-IN PHASE TABLES

Table CA. Module CA Read-In Common Block 1

T T T T T T e B - -]
| Function i Subroutines |
L e e e e e ovem s et = e . e s o e . s e e 00 e e et e e e e 2 . e e o e e 27 s e < 2o e
1]

jProvides subroutines common to all five | ACONST, DECINT, EXP, EXPAND, EXPLST, IDENT, |
|passes of the read-in phase | MVCHAR, OPTOR, SCONST, SINGLE, SQUID |
L . S 1

Table CAl. Module CA Routine/Subroutine Directory

T DR R I T e T s T e 1
|Routine/Subroutine| Function |
L _— e _— e —————]
T T
| ACONST |Checks for a valid arithmetic constant. |
| |
DECINT	Checks decimal integer.
EXP	Diagnoses expressions.
EXPAND	Expands iterations of string constants and picture characters.
EXPLST	Checks for a list of expressions separated by commas but enclosed inj
	parentheses.
IDENT {Checks for a valid identifier. {	
MVCHAR	Moves text from one address to another.
OPTOR	Checks for an operator and replaces the two-byte operators by one-
i	byte codes.
SCONST	Checks for a valid string constant.
SINGLE	Diagnoses a single expression in parentheses.
I	
SQUID	Checks for a valid subscripted and gualified identifier.]
L - 'S e e e e e o e e s s . 2 . i e o e e o — —

Section 3: Program Organization 75

Table CC.

Module CC Read-In Common Block 2

—_—— - ———-

i Function | Subroutines |
{Provides subroutines common—to all five IEQRR, CHECK, KEYWD, MESAGE, NONEX, __—}
{pa5fff_of the read-in phase _ }NULI?fi OPTfST, PICT, PREC, SOFLOW !
Table CCl. Module CC Routine/Subroutine Directory
{Routine/Subroutinei —_-~~—;;nction }
- U p— 4
{CHAR TDiagnoses the CHARACTER and BIT data attributes. }
&CHECK lTeSts the top entry in the stack. {
| KEYWD JIdentifies keywords and hands back the replacement character to the ;
| |caller. I
gMESAGE }Provides a diagnostic message. {
:NONEX %Checks stack for non-executable statements. i
:NULINS }Inserts null statement in ocutput text. !
:OPTEST | Tests the output string and moves text to the output. ;
fPICT }Diagnoses a picture. It uses a TRT table set up for the purpose. }
}PREC {Diagnoses the precision, and the attributes and format items which :
] |use it. |
I ! I
{SOFLOW !Bumps stack pointer and checks for stack overflow. !
Table CE. Modules CE, CK, CN, and CR Read-In Keyword Block
[——_ Function HE Subroutines
{Provides tables of ke;;ords—lg-;;;ernal None T

| code, together with replacement code.
|No functional code exists in these modules.
|Refer to Section 4 for details of keyword

|tables.
L -

e e

Y PR SNpR——

76

Table CI.

Phase CI Read-In First Pass

r - - T = T 1
| |Main Processing]| |
] Statement or Operation Type | Routine | Subroutines Used |
4 ' . "]
) - N B S 9
Controls main scan, identifies	RSTART	ASSIGN, BADST1, BEGIN, DO,
statements and analyzes some in		ELSE, BUMP, END, EOP, ERROR, IF,
detail, and calls a subroutine in		ON, POPLST, PROC, READ, SIGRVT,
AL to build statement/line number		STAT2, STRING, STLNBLD plus those
table.]	subroutines contained in modules CA	
i	and CC	
L ———m e e e L e e 1 e e e J		
Table CI1. Phase CI Routine/Subroutine Directory		
r - - 1		
Routine/Subroutine	Function	
4		
———- T 4		
ASSIGN (CG)	Diagnoses an assignment statement.	
]	
BADST1	Recovers from failure to recognize a statement type; skips to next	
	semi-colon.	
BEGIN (CG) Checks the BEGIN statement and makes an entry in the first pass		
	stack.	
BUMP	Advances the input Data Pointer (DP), skips blanks, if any, forcing	
	source text to be read into storage as necessary.	
DO (CG)	Checks tne DO statements and makes an entry in the first pass stack.	
ELSE (CG)	Unstacks an IF compound statement.	
{END (CG)	Processes three different types of END statements; PROCEDURE-BEGIN;	
iDO; iterative DO.		
	I	
ENTRY	Processes ENTRY statement.	
EOP	Processes end-of-program marker, and returns to compiler control in	
jorder to load next pass.		
ERROR {CG)	Handles false starts on possible statements.	
IF (CG) {Scans the IF statement and makes entry in first pass stack.		
JON (CG)	Diagnoses the ON statement and makes entry in first pass stack.	
POPLST	Removes prefix options from the text and places them in the	
{dictionary.		
PROC jScans the PROCEDURE and ENTRY statement and makes an entry in the {		
	first pass stack.	
I [
READ	Reads source text into storage, translating it into internal code,	
	except for character strings; removes comments; prints source list-	
{ing and prefix options. i		
]		
RSTART	Controls the first pass scan. Enters statement labels into the	
	dictionary. i	
SIGRVT (CG)	Scans SIGNAL and REVERT statements.	
STAT2 (CG) JHandles all other statements.		
]		
STID	Statement identifier routine. I	
STRING (CG)	Scans character strings.	
S, i_ S - 1
Section 3: Program Organization 77

Table CL.

Phase CL Read-In Second Pass

| 4 T T 1
i {Main Processing| |
{ Statement or Operation Type | Routine] Subroutines Used |
b e e e e ——— i 1 ——— — 4
T T T 1
| Scans for statements handled in | SCNA | BUMP, DEILAY, DSPLAY, DO, FREE, |
jthis pass, analyzing them in | |coTo, ITDO, LABEL, PROC, RETURN, |
|detail. Skips over other statements| | TRTSC, plus those subroutines con- |
|) jtained in modules CA and CC |
L L 4 (]
Table CLl1. Phase CL Routine/Subroutine Directory
r T -
|RoutinesSubroutine| Function |
L R - 1
[} T 4
| BUMP | Increments the input Data Pointer (DP), skipping over blanks, |
| jobtaining a new text block if necessary. |
| | [
| DELAY | Processes DELAY statements. |
| |]
DSPLAY	Processes DISPLAY statements.
DO	Processes DO statements.
i i	
EOP	Processes end-of -program marker, and releases control to phase CC or
	CcsS, or CV (CO and CS are optional phases).
]	
FREE	Processes FREE statements.
[
GOTO	Processes GOTO statements.
{ ITDO	Processes iterative DO statements.
I	
LABEL	Diagnoses LABEL attributes.
OPTION	Handles OPTIONS attribute on PROCEDURE or ENTRY statements.
I [
PROC (CM)	Analyzes PROCEDURE attributes and options, and completes the diagno-
	sis of PROCEDURE and ENTRY statements.
i	i
RETURN	Processes RETURN statements.
SCNA	Main controlling routine of this pass.
TRTSC	Skips over all other statements.]
L X - 4

78

Table CO.

Phase CO Read-In Third Pass

. — e sy

Statement or Operation Type

T
| Main Processing

Routine

S S——

|Scans for DECLARE,
|ALLOCATE statements.
|syntax of attributes by calling
| appropriate subroutines

Subroutines Used

CALL, and SCAN2
Analyzes

|modules CA and CC
— I S —_

o e e st o s o

| DIMS, ENTRY, ENVMNT, EOP,
| GENRIC, LABEL, LIKE, USES, IVLIST,

1
|
|
1
|ATTLST, BUMP, CALIOP, DECL, DEFIND, |
|
|and those subroutines contained in |

|

J

Table COl. Phase CO Routine/Subroutine Directory

{Routine/SubroutineE __--—--—_;;nctio;—_ o o E
{ATTLST {P;;;esse;—an attribu;;—izggj—-?;ecursive) }
1BDCL {Processes DECLARE or ALLOCATE statement. i
%BUMP {Advances Data Pointer (DP), obtaining new input block if necessary. }
| CALLOP (CP) gchecks CALL statements and options. {
%DECL }Processes the DECLARE and ALLOCATE statements. {
%DEFIND }Checks the DEFINED attribute. t
1DIMS {Examines the dimension specifications. =
;ENTRY %Checks the ENTRY attribute. !
}ENVMNT (cp) gRemoves environment information from the text and inserts it into {
I | the dictionary. |
EEOP }Processes the end-of-program marker, and releases control. ;
{GENRIC |Processes the GENERIC attribute. {
:IVLIST cp) }Processes the INITIAL attribute. }
iLABEL (cp) 1Analyzes LABEL attribute. }
:LIKE EProcesses the LIKE attribute. :
:PSQUID (CP) |Checks for a gualified subscripted identifier in parenthesis. {
;REFER (CP) }Checks the REFER attribute. :
| SCAN2 |Scans for DECLARE, CALL, or ALLOCATE statements, moves others to the}
| |output string unaltered. |
gSCANT }Moves text to semicolon without alteration. }
125ES iDeletes the now obsolete USES and SETS attributes from text. {

e J

Section 3:

o R

Program Organization 79

Table CS. Phase CS Read-In Fourth Pass

r T I ¥ 1
|Main Processing| |
i Statement or Operation Type | Routine | Subroutines Used |
i 4 J
_______________ T -7 - !
|Controls main scan and identifies {SCNA | EOP, FORMAT, GET, LIST, OPEN, |
{I/0 statements for further analysisj| |READ, TRTSC, plus those subroutines|
| | |contained in modules CA and CC |
L —_— B L —_——— d
Table CS1. Phase CS Routines/Subroutine Directory
m~ R . B . - 1
|RoutinesSubroutine] Function |
i i
3 T - - T T T Tt T T T T T I T T T T T "
| EOP | Processes end-of-program marker and releases control. |
| |
| FORMAT (CT) | Processes the FORMAT statement and format lists. |
I | |
|GET (CT) |Processes GET and PUT statements. |
I I
| LIST | Processes data lists. |
|] |
|OPEN (CT) |Diagnoses COPEN and CLOSE statements. |
| | |
| READ |Checks the syntax of RECORD I/0 statements READ, WRITE, REWRITE, and]
| | DELETE. This routine also checks for permissible combinations of |
| | these statements. |
| | [
| SCNA |Main scan of this pass. |
| I
| TRTSC |Skips over all statements other than I/0, moving them to the output |
| text. |
L L —_ - 4

80

Table CV. Phase CV Read-In Fifth Pass

- —_—

T T]
| |Main Processing| |
{ Statement or Operation Type | Routine | Subroutines Used |
[+ 4
r - T -7 - a
|Identifies statements for which it |SCNA | CALLIN, CHAIN, DECL3, DO3, END3, |
|must build chains | | ENTRY3, EOP, POAl, PROC3, TRTSC, |
i | |and those subroutines contained in |
| | |modules CA and CC. |
L _— i ————r L — 1
Table CV1l. Phase CV RoutinesSubroutine Directory
r T - - 1
| Routine/Subroutine]| Function |

1 4

- T - - - 1
|]CALLIN {(CW) | Makes up the CALL chain. |
| | |
|CHAIN |Forms chains. |
| | |
| CHECKON |Checks the fifth pass stack for ON entry, in order to insert |
| | PROC-END statements round the ON unit. |
| | |
| DECL3 {Chains the DECLARE statement to the appropriate PROC or BEGIN |
} | statement. |
| I |
| D03 |Makes a stack entry for DO block. |
| | |
| END3 {Checks the fifth pass stack. |
| ! !
| ENTRY3 |Makes an entry in the ENTRY chain. |
| | |
| EOP (CW) | Processes end-of-program marker, and releases control. |
I |

ILABSN (CW)	Creates pseudo-assignment statements for initial labels.
POAL	Analyzes prefix options in greater detail.
]	
{pPOC1	Processes check lists.
{	
PROC3	Makes an entry in the PROCEDURE-BEGIN chain.
]	
scNa	Main controlling routine of the pass.
SCNZ	Extracts statement number for label entry.
TRTSC {skips over statements not required for analysis in this phase.	
L e e i
Section 3: Program Organization 81

DICTIONARY PHASE TABLES

Table ED. Phase ED, Initialization
r - B B T 1
| | Main Processing] |
| Statement or Operation Type | Routine | Subroutines Used |
[— 4 - + ¥ |
T T T]
|Sets up routines in scratch storage|SETUP | None |
| for phase EL | | |
L —_ o e o e e L o e i 4
Table ED1. Phase ED Routine/Subroutine Directory
r T - - 1
JRoutine/Subroutine] Function]
e :
| EVENT { |
|TASK |
| CELL |Routines for processing declared attributes. These set up |
| BASED | information in the attribute collection area of scratch core,]
| POINTER | for reference by CDICEN, etc., in rhase EL. |
| OFFSET | |
i _ —— _— 1
Table EG. Phase EG Dictionary Initialization
- T T 1
| |Main Processing| |
| Statement or Operation Type | Routine l Subroutines Used |
4 4 4
- . T T 1
{Hashes labels |CAAL | CHASH, CBCDL2 |
1 4
e + + —
| PROCEDURE-BEGIN chain | CA7 | None
- e +
| BEGIN {casa | None |
e - - t 4
| PROCEDURE | CAPROC | CANATP, CFORP |
4 i]
- - ¥ T 1
| ENTRY |cAl0 | CANATP, CFORP |
4 FR J
- T T - |
{Formal parameters | CFORP | CHASH, CBCDL2 |
F e ¥ 1
|Attribute list | CANATP | CAPRE1, CATCHA, CATBIT, CATPIC |
i — 4 + H
L} T 4
|Creates entry type 2 entries for |CTYPBL | ENT2F, CDEFAT |
|labels | | |
L ————— - —_— - L 41 3

82

Table EGl. Phase EG Routine/Subroutine Directory

r T
|RoutinesSubroutine|
i

T

| caal

% CANATP
I| CAPROC
lg CAPRE1
’| CATBIT
i1 CATCHA

|
|CcATPIC

g
[

B
©
>

0O 0 0
B
o

BCDL2

DEFAT

2] g Q
@}
=

:

CTYPBL

2
=
N
o

N
=

PTN1 (EF)
PTN2 (EF)

PTN3 (EF)

» O O O ©1

TTRBT (EF)

[S s S " S qrpar. S e, St —— s i, T . " s B s e s, e . S e, W

| Scans label table and hashes labels.

|Processes

|

|Processes

|

|Processes

!

|Processes

|Processes

|

| Processes

| Scans the
{sets bits

attribute list.
PROCEDURE statements.
precision data.

BIT attribute.
CHARACTER attribute.

PICTURE attribute.

PROCEDURE-BEGIN chain for the relevant statements,

| DURE and BEGIN statements.

[

|Processes

|

| Pxocesses

{

| Traverses
jthat just

|
|Completes

|Processes

BEGIN statements.

ENTRY statements.

found.

formal parameter lists.

|Obtains an address in the hash table for an identifier.

|Creates entry type 2 entries for labels.

|Creates or copies second file statements.

|

| Scans ENTRY chain.

|Checks containing block options,

| Processes

procedure options.

|Performs post processing, makes STATIC DSA decisions.

|Processess POINTER, OFFSET, and AREA attributes.

-t

e et e e e _ - 1
Function |
- - - {

|

|

|

|

|

|

|

|

|

|

|

|

|

|

and i

in Dictionary entries for optimization options on PROCE- |
[

|

|

|

%

the hash chain looking for entries with the same BCD as |
|

data byte for entry type 2 entries by default rules. |
|

|

|

|

|

|

|

|

|

|

, . |

for inheritance. i

|

|

|

{

|

|

—_— J
Section 3: Program Organization 83

Table EI. Phase EI Dictionary

Declare Pass One

r - T - T-———-" 1
| |Main Processing]| |
| Statement or Operation | Routine | Subroutines Used
— —_— 4 4 3
T T 1
| Scans DECLARE statement jCCGS0 {Ncne |
b=-- e —1 4
}|Scans text |CCGS 2 | None |
iR }

- - L T __—{
| Processes structure level | CCGSCM |None |
T e == 3
| Factored attribute, left | CCFLP | CFPMCR |
|parenthesis | | |
L —_——— +___,.____.__) g |
1] R . T 1
| Factored attribute, right | CCFRP | None |
|parenthesis | | |
t - — + R 4
|Data following DEFINED attrikute | CCDEF | NEWBLK, CTXTRM |

4 4
- I - T 1
| POSITION | POSIT {None |
— —— - frmmmmmm e mm et — :
| CHARACTER, BIT | CHABIT | CTXTRM |
F — ¥ e 1
| PICTURE |CATPIC {None |
e t —+ 4
| LIKE | LIKE | None |
b -—- $-- + ——— -4
| KEY |KEYED | None |
e e oo — :
| Dimension {CDDIMS | CTXTRM, AST, TOMENE, ERRORB |
b t + —
|Precision | CDPREC | ERRNEG, SCLBIG |
t 4 !
T - T - == T _—'1
JINITIAL | EJINIT | CECON, EHINIT |
S R s !
| INITIAL CALL | INCALL | CTXTRM {
1 i 4
___________________ - L{ T L]
j OFFSET | OFFSET | CTXTRM i
4 } 4
- T e ¥ T 1
| BASED | BASED | PTVEXP |
t e ———t——- t -
| AREA | AREA | CTXTRM |
[l 1 —_— ——— L ——— J

Table EIl. Phase EI Routine/Subroutine Directory (Part 1 of 2)

r - T
|RoutinesSubroutine|
—— 4

Function

- 13
| AREA

| |
|AST

| |
| BASED (EH)

| made.

I |

*d

Scans text.

o s s o e . a g o i e e e i

|Processes AREA attributes.

|Processes PICTURE attributes.

Processes structure level.
Attribute routine selector.

Scans DECLARE chain.

rocesses data following DEFINED attribute.
Processes factored attributes (left parenthesis).

Processes factored attributes (right parenthesis).

|Deals with the case of* dimension bounds mixed with non -* bounds.

|Entry point in OFFSET routine, at which second file statement is

bt e s s B G . i s W S i, S et St . Wy e g et st b s e sk

84

Table EIl. Phase EI Routine/Subroutine Directory (Part 2 of 2)

iRoutine/SubroutineE Function i
lcéggg T }Scans sourgg-text. —————————————————— i
|CDDIMS (EJ) |Processes dimension attributes.

| CDPREC (EJ) gProcesses precision attributes.

| CECON (EH) jMakes a dictionary entry for a constant unless one has already been

| |made. Returns the dictionary reference of the constant entry.

| CFPMCR }Obtains more storage for the factored attribute table.

| CHABIT {Processes CHARACTER and BIT attributes.

%CSGSOO %Detects end of DECLARE chain.

%CTXTRM | Tests for space in current text block and obtains new block if

| | necessary.

{EHINIT (EH) %Processes the INITIAL attribute except for the initialization of

| |label variables and INITIAL CALL.

iEJINIT (ED) %Processes INITIAL attribute and LABEL with a label-constant 1list.
%ERRNEG %Deals with the case of a negative precision specification.

%ERRORB }Deals with the case of lower dimension bound declared greater than

| |the upper bound.
|

|Gentry | Keeps a count of parentheses in GENERIC and ENTRY processing.

| |

| INCALL (EJ) | Processes INITIAL CALL attributes.

IVROOM (EH) |Checks if there is space in scratch storage for another entry. If

jnot, it makes a dictionary entry and chains it to the previous one
jor to the C8 in text as required.

IVPUTL (EB) |Places a dictionary reference in the 'initial list' for a label con-
|stant. If the constant is not known, a dummy reference is inserted.
|

IVPUTC (EW) |Places a dictionary reference in the 'initial list’ for a constant.
|

IVPUTO (EH) |Places the dictionary reference of zeroc in the 'initial list' for a

|negative or imaginary replication factor.

|

e e s S A oA o S — O S SPO" [S i, S S s S S (o oo, s o S S S S, B S, W . . S . W . . St S B 7 o W {———— it W S7OO7 S . S— o — o, S—— {—— " o — . S— {— {——— _—b——— —

|

i

|

|

|

|

|

|

|

|

|

;

| KEYED | Processe:s KEY attributes.

| |

| LIRKE |Processe:s LIKE attributes.

| |

| NEWBLK {Obtains new text block.

i |

|OFFSET (EH) jProcesses OFFSET attributes.

1 |

| POSIT | Processes POSITION attributes.

| |

| PTVEXP (EH) |Entry point in OFFSET routine, at which secondfile statement is
| | made.

| |

|SCLBIG |Deals with the case when a precision specification for fixed-point
| {data is declared too large.

| |

| SECON |Creates a dictionary entry for a constant provided the appropriate
| |entry has not been already made.

| |

{SETS {Processes USES and SETS attributes.

| |

| TOMENE | Deals with the case when the number of dimensions declared is great-
| |er than 32.

L i__

Section 3: Program Organization 85

Table EL. Phase EL Dictionary Declare Pass Two

T - T T - 3
| {Main Processing| |
{ Statement or Operation Type | Routine | Subroutines Used |
L + i 4
2 1 T 1
|Scans chain of DECLARE statements |CGENSC | CDCLSC |
t 4 —— 4]
r ¥ 1) A
|Scans each item of DECLARE jcbeLsc |ATLSCN, BCDPR, CDFLT, CDICEN, |
|statement i | CDIMAT, DCIDPR, INTLZE, POSTPR, |
i { | SELMSK, STRPR |
t — t ¢ - {
{Initializes each identifier | INTLZE | DCIDPR |
jdeclared | | |

e i
|Processes factor brackets and level|DCIDPR | TEMSCN, BCDPR |
| numbers |] |

1 + {
| Scans for next level number | TEMSCN | CDATPR {
i } - + 4
T T T]
| Processes BCD of identifier | BCDPR | BCDISB, CHASH, SELMSK |
F - ¥ —+ -1
|Hashes BCD of identifier | CHASH | None |
i 4 4 J
r T T 1
{Scans list of attributes following |ATLSCN | CDATPR |
}identifier | |]
- $ t 4
{Applies factored attributes | CDFATT | CDBATPR |
i 4 } - J
T 1 T 1
|Applies implicit attribute | IMPATT | None |
i i 1 ¥ |
[1 - - 1 T 1
|Attributes controlling routine | CDATPR | CDAT40, CDAT41, CDAT42, CDATAL3, |
| I | CDAT44, CDAT45, CDATU8, CDAT49, i
| { |CDAT4A, CDAT4B, CDATUC, CDAT4D, |
| | | CDAT4F, CDATS4, CDATS55, CDATS6, i
| | |CDAT57, CDATS8, CDATS59, CDATé60, |
| | |CDAT61, CDAT62, CDAT63, CDAT6H4, |
| | | CBAT69, CDAT6A, CDATB4, CDATBS i
L 1 1 J

86

Table EL1. Phase EL Routine/Subroutine Directory (Part 1 of 2)

{Routine/SubroutineT Function i
{ATLSCN —-—_“Tg;ans th; list of attrib;;es fgzlowi;;—;he id;ntifier. }
{BCDISB |Checks for multiple declarations, etc. {
:BCDPR }Processes BCD of identifier. z
:CDATPR (EK) gAttribute controlling routine. %
:CDATQO (EK) 1Processes DECIMAL attribute. l
:CDATul (EK) }Processes BINARY attribute. ;
:CDAT42 (EK) gProcesses FLOAT attribute. %
}CDATQB (EK) %Processes FIXED attribute. }
;CDATQU (EX) }Processes REAL attribute. g
:CDATRS (EK) :Processes COMPLEX attribute. {
gCDAT46 (ER) !Processes precision attributes. ;
:CDATQB (EK) gProcesses VARYING attribute. :
fCDATu9 (EK) {Processes PICTURE attribute. {
{CDATHA (EK) {Processes BIT attribute. }
}CDATQB (EK) 1Processes CHARACTER attribute. :
|!CDAT'4C (EK) %Processes FIXED DIMENSIONS attribute. }
}CDATBD (EK) =Processes LABEL attribute. {
%CDATHF (EK) ‘Processes ADJUSTABLE DIMENSIONS attribute. }
:CDATSB (EK) |Processes ENTRY attribute. %
:CDATSQ (EK) iProcesses GENERIC attribute. {
:CDATSA (EK) %Processes BUILT-IN attribute. {
:CDAT60 (EK) !Processes EXTERNAL attribute. I
:CDAT61 {ER) |Processe:s INTERNAL attribute. %
:CDATGZ (EK) }Processes AUTOMATIC attribute. g
§CDAT63 (EK) {Processes STATIC attribute. {
}CDAT6u (EK) gProcesses CONTROLLED attribute. }
ECDAT69 (EK) |Processes INITIAL attribute. }
iCDATGA (EK) iProcesses LIKE attribute. }

______ J

Section 3:

Program Organization 87

Table EL1l. Phase EL Routines/Subroutine Directory (Part 2 of 2)

{Routine/Subroutinel Function i

——— 3
[rCDATéB {EK) TProcesseS DEFINED ATTRIBUTE. -i
:CDATGC (EK) %Processes ALIGNED attributes. %
?CDATGD (EK) gProcesses UNALIGNED attribute. :
:CDAT70 (EK) {Processes AREA attribute. }
:CDATBB (EK) 1Processes POS attribute. :
fCDCLSC {Scans each item of DECLARE statement. i
| CDFATT (EM) %Applies factored attributes. :
:CDFLT (EM) ;Applies default attributes. }
%CDICEN (EM) :Constructs dictionary entry. !
;CGENSC (EM) {Performs phase initialization and scans chain of DECLARE statements.}
:CHASH (EM) 1Hashes BCD of identifier. E
:DCIDl 1Main scan routine. g
gDCIDPR %Processes factor brackets and level numbers. }
:ECHSKP (EK) iInitializes and passes control to Module EM. {
:IMPATT (EM) 1Applies implicit attributes. E
:INTLZE %Performs initialization for each identifier declared. :
=POSTPR {Postprocessor. }
:SCANM (EM) {Scans chain of DECLARE statements. :
=SELMSK gSelects correct test mask to be initialized. i
?STRPR =Processes inheriting of dimensions in structures. ;
iTEMSCN iScans ahead for next level number. J

88

Table EP. Phase EP Dictionary Entry III and Call

¥ T T 1
| |Main Processing]| |
| Statement or Operation Tygpe | Routine | Subroutines Used |
[1 e e e 1 - 4
L] T T 1
| Scans for PROCEDURE entries type 1 |ENTRY3 | None |
L e i —-— ______+___ 4
L T A
Follows chain of ENTRY statement	EPL40	None
entry type 1 entries from a PROCE-		
DURE entry type 1		
b oot 4		
Examines all labels belonging to an	LBPROC {None	
entry type 1, constructing an entryl		
type 2 or 3, if necessary		
F 4 — 1		
Follows CALL chain in text making	EPL290	None
dictionary entries for entry points		
i —— 4 4 - 1		
r T T 1		
Examines the first character of an	CDIMAT	None
identifier and sets a flag indicat-		
l]ing the range in which it 1lies		
L - 4 +,____ 4		
r T 1		
Applies default rules	CDFLT	None
1 4 i i		
I T T 4		
Given an identifier calculates its	CHASH	None
offset in the hash table {		
F - } S - 4		
Constructs a dictionary entry	CDICEN	None
L 4 4		
b t e T 1		
Sets address slot to zero or the	FNDEND	None
end of the dictionary		
[—— 4 4 4		
L 3 L] 1 1		
Constructs list of numbers of known	BLDSTZ2	None
{blocks		
F ¥ ¥ 4		
Built in function name	SCANBF	None
L L i 4

Section 3:

Program Organization 89

Table EP1. Phase EP Routine/Subroutine Directory

{Routine/SubroutineI Function 2
{BLDST2 o Tconstructs list of numbers of known blocks. }
gCDICEN !Constructs dictionary entry. {
:CDIMAT }Sets flag for default routine. }
#CDFLT :Applies default rules. %
?CHASH !Calculates offset in hash table for given BCD. f
}ENTRY3 }Scans ENTRY chain for PROCEDURE statements. %
fEPL2O {First entry in entry type 1 chain.

?EPLuO %Scans ENTRY chain for ENTRY statements type 1. |
;EPLYS %Return point from LBPROC routine. E
gEPLloo iProcesses new entry label.

;EPL290 EScans CALL chain. I
{EPLBHO {Searches built-in function table for BCD of identifier. g
{EPLBGO %Blanks out BCD in text. }
;EPLGOO }Scans the CALL chain. }
;FNDEND }Sets address slot for label. {
iLBPROC !Processes labels of PROCEDURE or ENTRY statements. :
:PHSINT %Initialization of phase. {
:PHSMRK iMarks later modules as *wanted' or 'not wanted'. }
{SCANBF ichecks for built-in function name. i

90

Table EW. Phase EW Dictionary LIKE

i iMain ProcessingT i
{ Statement or Operation Type _!____ﬁoutine { Subroutines Used !
{Scans LIKE chain ‘LEWBEGN ;EWCOPY, EWELDM, EWINCH, EWONDM 1|
{G;Eates hash chain for new éntry EEWQSCN ------ ng;g ——————————————————————————————— }
{Calculates start of structur; data TEWVART o ?ﬁ;g;_'— B 1
!from start of variable information E L i B }
{Changes error entry to base elementiEWCHEN iNone }
fCopies dimension table entry ;;d iEWZFNT }EWNWBK B]
|second file statement | | |
L . i i 1
Table EWl. Phase EW Routine/3ubroutine Directory

{Routine/SubroutineI o ——;;nction T 1
{ALIGN (EV) TProvides correct alignmegg of ;;se ele;;nts in 1iken;d stru;ture.]
}BASED (EV) Elnserts or deletes defined slot, where only one structure is based. %
}CESCN |Scans dictionary to find entry corresponding to BCD in text. }
}EWBEGN }Scans LIKE chain. {
:EWCHEN %Changes error entry to base element. ;
fEWCOPY }Copies dictionary entry into scratch storage. i
?EWDCCY (EV) |Copies initial dictionary entries and associated second file state- {
| |ments, etc. i
iEWELDM }Copies entry into scratch storage with dimension data removed. {
%EWELTS iTests whether the likened structure is dimensioned. {
}EWEND | Handles transfer of control to next phase. }
‘EWERNC :Processes erroneously "likened"” major structure. {
}EWHSCN |Updates hash chain for new entry. {
{EWINCH {Completes entry copy and places it in dictionary. :
lEWNOLK |Tests whether original structure is dimensioned. {
%EWNWBK (EV) |Obtains new dictionary block and terminates current one in use. g
%EWONDM %Copies entry into scratch storage, inserting dimension information. %
}EWORDM {Processes dimension information in original structure. }
}EWSTRT | Tests validity of likened structure. }
iEWZFNT (EV) lCopies second file statement and associated dictionary reference. i

Section 3:

Program Organization 91

Table EY. Phase EY Dictionary ALLOCATE

f T T -
| |Main Processing| |
{ Statement or Operation Type | Routine | Subroutines Used |
- } } —— - 4
T T A
| Scans text for explicitly pointer- |IEMEX | EY1H |
|]qualified based variables | |]
— 4 —_ +___ 4
T 1
|Copies dictionary entries for |EY14 | HASH, ATPROC, DICBLD, STRCPY |
jexplicitly qualified based |] |
| variables | | |
F --- + t - 1
|Second file pointers. Scans ALLOC~|IEMEY | ATPROC, DICBLD, HASH, STRCPY |
|ATE statements | |
F ¥ -t 1
|Completes copied dictionary entry |ATPROC with | MOVEST]
| for an allocated item |second entry | |
| | point ATPROD | |
b 4 + - {
|Controls ATPROC and ATPROD routines|STRCPY | ATPROC, ATPROD |
jfor each member of a structure | | |
L ——— —_— L -_ 4 J
Table EY1l. Phase EY Routine/Subroutine Directory
f e T 1
|Routine/Subroutine]| Function |
L ———— ———f e e PR i
r -1
| ATPROC/ATPROD (EZ) |Complete copied dictionary entry for allocated item by including |
| J]attributes from ALLOCATE and second file statements. |
| |
| DICBLD jCollects attribute given for an identifier and copies its dictionary|
| jentry. |
| | |
| EY16 | Processes ALLOCATE statements. i
| | |
| EX17 |Processes identifier in ALLOCATE statement. |
| | |
|EY21 |Processes major structures. |
| | |
| HASH | Hashes BCD of identifier to obtain its dictionary reference. |
| I |
| IEMEX | Scans text for explicitly pointer-qualified variables. |
| | |
| EY14 |Copies dictionary entries for explicitly qualified based variables. |
| | |
| ITEMEY | Scans second file, reverses pointers. Scans ALLOCATE statements. |
1 | |
| MOVEST (EZ) |Copies second file statement and associated dictionary entry. |
| | !
| STRCPY |Controls ATPROC and ATPROD for each member of structure. |
| . 1]

92

Table FA. Phase FA Dictionary Context

- T~ A - 1
{ |Main Processing]| |
| Statement or Operation Type | Routine | Subroutines Used |
e ¥ -1 -- 1
| Scans text |CE30 | CENDTS, CETRAN |
| S PR <_______._+______._____,_,____L 4
r t 4
|Reorders subscripts; makes dic- | CEID | CESCN |
|tionary entry for file and event | | |
|variables | | |
F -- e $-— - 1
| Identifies keywords | CEKYWD | CEKEND, CEKEOB, CEKEOP, CEKON, |
i | | CEKPRC, CEKSND |
+ 1

- - T - - 1
| Scans dictionary | CESCN | CESTUC, CEYES, CFPDER, CFPDR2Z, |
| | |CHASH, CE3XX |
- ——— 11, —— e {
| Makes dictionary entry for | CFPDR2 | CDFLT, CDICEN, CDIMAT, CEONCK |
|variables | | |
————————————— - + == i
| Scans dictionary entry for con- | CECON | CHASH |
|stants and makes new entry, if | | |
|necessary. | | |
¢ ———mom e - :
|Scans PICTURE chain entry and makes|CEPICT | None |
|new entry, if necessary. | | |
L ———— e e e e o s e i -4 J
Table FAl. Phase FA RoutinesSubroutine Directory (Part 1 of 2)
r T - 1
| Routines/Subroutine| Function |
1 .
LI 25 - - _—-{
|CDFLT |Determines default attributes for identifier. |

| |
| CDICEN |Constructs default dictionary entry for identifier. |

| |
| CDIMAT |Determines default scale for identifier.

|
| CEBNK |Transfer point for zero or blank.

]]
| CECON (FB) jscans dictionary entry for constants. |

| |
| CEDWAX {Subscript prime text marker.
| |
| CEID |Reorders subscripts and makes dictionary entries for files and event|
| jvariables. |
| | |
| CEINT |Transfer point for constant routine. {
| | |
| CEISUB {Transfer point for iSUB. |
[| I
CEKCEN	Transfer point for CALL to get over chain.
CEKDCL	Removes SN from DECLARE statements.
CEKEND {Processes END keyword.	
! I	
CEKEOB	Processes end-of-block marker.
CEKEGP	Handles end-of-program marker, or start of second file.
CEKEY	Transfer point for keyword.]
CEKIDO	Transfer point for iterative DO.
i	
CEKON	Processies ON keyword.
L — L PO - J

Section 3: Program Organization 93

Table FAl. Phase FA Routines/Subroutine Directory (Part 2 of 2)

{Routine/SubroutineI Function j
{CEKPFR {Transfer point for picture format item. i
:CEKPRC }Processes PROCEDURE keyword. %
:CEKSN | Moves SN, etc., to output stream. {
}CEKSND gProcesses start of second file statement. }
;CEKYWD |Identifies keywords. }
:CELP | Transfer point for left parenthesis. %
:CENDTS |End of text block in output file routine. :
#CEONCK |Makes entry for programmer-named ON condition. %
:CEPFDR |Makes dictionary entry for variables. }
:CEPICT (FB) |Scans picture chain entry. g
:CERP }Transfer point for right parenthesis. i
£CESCN |Scans dictionary. }
=CESMCL ;Handles semicolon. %
:CESTUC %Points at next entry in structure chain. }
:CETRAN |Translates keyword into transfer instruction. :
:CEYES }Compares structure levels. {
:CEZL iTransfer point for second level marker. l
;CE30 {Controlling scan of text. i
}CE31 %Tests for end of block. {
:CE32 %Moves one byte to output stream. }
fCEBOO |Switches to appropriate routine. {
:CE3XX }Compares identifier in text with entry in dictionary. }
;CFPDER (FB) |Makes dictionary entry for ordinary identifier. g
:CFPDR2 (FB) | Makes dictionary for formal parameter. }
ECHASH iHashes identifier. }
fCHASHC }Hashes constant. {
iIEMFA iInitializes phase. i

94

Table FE.

Phase FE Dictionary BCD to Dictionary Reference

? TMain Process;;;T }
{ Statement or Operation Tygf)_‘_ Routine__-_i B Subrogtines Used J
{Scans text 1CE30 ;CENDTS, CETRAN 1!
g-Scans dic;;onar; ----- o o T[CESCN _—_—)E_EE;‘UC, CEYES, EFPDEI_R,——CFPDRL 1|
| | |CHASH, CE3XX |
t o t {
Checks for array, function, or	CELP	CEFNCT
pseudo-variable if left parenthesisj		
is found		
b A Demmeea LR - i		
E£_3ft:f for end of text b_'_Lock iCEI;IDTS L lSilIfI_iND, CEKIDO, CEKPRC J		
!Identifies keywords 1lCEK?(WD TLCEKEOB, CEKEQP 1}
[vakes aioeionary entry {vone [ehrir, coicen, comar ‘,
Table FEl1l. Phase FE Routine/Subroutine Directory

iRoutine/Subroutinel‘——‘ Function—-]
{CDFLT B TApplies default rule;t—- o]
:CDICEN ;constructs dictionary entry. t
{CDIMAT !Stts 1rlay ror aerault routaine. §
}CEFNCT }Tests validity of function reference in text. ;
:CEKEND }Processes END keyword. {
ECEKEOB {Processes end-of-block marker. ;
| CEKEOP {Processes end-of -program marker, or start of second file. {
:CEKIDO }Processes iterative DO keywoxd. {
:CEKPRC %Processes PROCEDURE keyword. }
| CEKYWD {Identifies keyword. %
{CELP {Checks for array, function, or pseudo-variable if left parenthesis {
| |is found. |
%CENDTS ETests for end of text block in output file. g
%CESCN :Scans dictionary. %
anSTUL }foints at next entry in structure chain. }
%CETRAN | Translates keyword into transfer instruction :
}CEYES :Compares structure levels. :
iCE30 |Controlling scan of text. {
%CE3XX :Compares identifier in text with dictionary entry. }
}CFDICN (FF) |Makes dictionary entry. E
%CFPDER |Makes dictionary entry for statement with ordinary identifiers. {
§CFPDR2 }Makes dictionary entry for formal parameters. }
ECHASH 1Calculates offset in hash table for given BCD. _j

Section 3: Program Organization 95

Table FI. Phase FI Dictionary Checking

f {Main Processing{]
f Statement or Operation Type } Routine l SubroEEines Used 2
ES cans text J|T_C3ES’I‘RT iCEKEYW _j
llrIdentifies keywords ECEKEYW ICEKEOE, CEKEOP, CEKIDO, CEKSN :I
Echecks GOTO statement references ECEGOTO— TNone }
§Converts GOTO to GOOB, if necessaryECEGOB o Igone - _—-1
{Checks file references LEE;;;E_ iNone __}
iChecks data list items for validityECEDTCK iNone }
4
Table FIl. Phase FI Routines/Sutkroutine Directory
{Routine/SubroutineE Function —_i
iCECMBK ITests value of previous secona-zevel marker. }
}CEDDOL }Processes function names used as control variables for DO groups. {
{CEDOND lProcesseS end of iterative DO groups. }
%CEDREF | Tests whether dictionary reference needs to be checked. %
%CEDTCK }Checks data list items for validity. =
iCEFILE |Checks file references. i
iCEFNMK %Processes function markers. }
|CEGOB §Converts GOTO to GOOB, if necessary. }
%CEGOTO %Checks GOTO statement references. {
| CEISUB %Processes 1SUBs. :
}CEJUMP %Bumps scan pointer over dictionary reference. {
| CEKEND :Processes END statements. g
| CEKEOB =Processes end-of-block marker. l
%CEKEOP 1Processes end-of-program marker. %
%CEKEYW | Identifies keywords. :
iCEKIDO %Processes iterative DO keyword. i
}CEKON iProcesses ON statements. }
iCEKSN {Processes statement number. %
‘CELRCT/CERPCT |Process left and right parentheses. %
| CEOOPS %Checks validity of keywords in the text. }
ECEPRBG %Processes PROCEDURE and BEGIN statements. }
%CERFMT {Processes remote format references. }
iCESMCL }Processes semicolons. {
iCESTRT 1Controlling scan of text. i

96

Table FK. Phase FK Dictionary Attribute

r T - -7 1
| | Main Processing}| |
| Statement or Operation Type | Routine | Subroutines Used |
L 4 I i]
T | T il
|Scans attributes area for SETS | FO1a | None |
|lists i i |
i —— P i 3
L} T T 1
|Scans SETS 1list | FO2 | None |
F - } - + 4
|Processes constants | CONPRO |Ncne |
L 4 1 F 1
T T e T]
|Processes identifiers | CESCN |CESTUC, CE3XX, CHASH |
L —_—Ad e e e e e e e s ol e e 3
Table FK1l. Phase FK Routine/Subroutine Directory
1 25 3
|Routine/Subroutine Function |
L IR —— —_— 4
T 1] b
| CEIDLP | Scans qualified name. |
|] |
| CENQUL {Processes unqualified name. |
| |
| CESCN {Processes identifier. |
|]
| CESTUC |Finds address of next structure in chain. |
| |
| CE3XX |Compares current BCD with BCD in hash chain. {
| |
| CHASH |Calculates offset in hash table for given BCD.]
] |
| CMPERR {Provides termination error action. |
| |
| CONPA | Inserts constant in ordered stack. |
]]
| CONPRO |Processes constants. |
[| |
| ENDFO |Releases control. i
| |
| FOERR 2 |Diagnoses constant greater than 255. |
| |
|FOl1A | Scans attribute tidy-up area. |
|] |
{FO2 {Scans SETS list. |
| |
| FOu |Completes SETS dictionary entry. |
| |
| GETSCR |Obtains scratch storage. |
L 4 3

Section 3: Program Organization 97

Table FO. Phase FO

Dictionary ON

) T T 1
| |Main Processing| |
{ Statement or Operation Type } Routine | Subroutines Used]
L i1 1 4
T T T 1
|Scans input text for ON, SIGNAL, | FKMVIT | BEFTRN, CENDTS, QP |
|and REVERT statements | | |
F } —f-— i
|Moves second file from input text |F2 | CENDTS, BEFTRN |
|block to output text block | | |
- - ‘ 1 + .
|Makes dictionary entries for ON- | FKDCEN | LABCD |
| conditions found in ON, SIGNAL, and| | |
| REVERT statements | | |
b : : t =t {
| Examines BCD of file entries | MVSIG | CENDTS |
jreferenced in ON, SIGNAL, and | | |
| REVERT statements; scans previous | | |
lentries for ON conditions | i i
b -- ——- L — 1 :
| Processes CHECK and NOCHECK list. |BEFCHL | CENDTS, LABCD |
| S, i — . |
¥ T T 1
|Creates dictionary entries for con-|NOMOVE | oP |
|dition prefixes | | |
L P N L J
Table FOl. Phase FO Routine/Sukroutine Directory

| T H
| RoutinesSubroutine| Function |
L R 4
T T 1
BEFCHL	Processes CHECK and NOCHECK list.
BEFTRN	Replaces statements containing dummy dictionary references by error
{	statements, and generates error message.
CENDTS	Requests a new text block for output.
FKDCEN	Makes dictionary entries for ON conditions found in ON, SIGNAL, and
	REVERT statements.
FKMVIT	Scans input text for ON, SIGNAL, and REVERT statements.
FKNOCK	Processes CHECK and NOCHECK lists.
FKPROC	Scans input text for ON, SIGNAL, and REVERT statements.
FPO10 (FP)	Chains initial label statements and makes second file dictionary
	entries for each label array initialized in this way.
]	
F2 {Moves second file from input text block to output text block.]	
{	
LABCD	Creates a dictionary entry for each label constant and each entry
	label mentioned in a CHECK list.
l	
MVSIG	Examines BCD of file entries referenced in ON, SIGNAL, and REVERT
{statements; scans previous entries for ON conditions.	
{	
NOMOVE (FP)	Creates dictionary entry for condition prefix.
jo3	Processes condition prefixes changed in current block.
{QP	Determines which condition prefixes require dictionary entries. i
R8	Moves statement to output buffer.
L i —_— J

98

Table FQ.

Phase FQ Dictionary Picture Processor

r T |}
| | Main Processing| |
| Statement or Operation Type | Routine | Subroutines Used |
L I I, i |
T T L) 1
|Controls scan of PICTURE chainj; | CYBR3 |CYEK, CYFIND, CYTABL |
|initializes | | |
i — — i —— _____+____ 4
1] T L
|Picture character 9 | CYNINE | None |
L 4 ________,____.l,,_ 4
r T 1
|Picture characters S, §, +, -. |CYSDPM | None |
i - B U 4 - i |
1 3 T T t
|Picture character V jcyv | None |
1 1 — 4
T T b
|Picture character E |CYE jcYcai |
L 4 4 ._‘__4!
T T T
|Picture character K | CYK |cYc21 |
ES e e o e 4 4
| 4 T 1
|Picture characters CR, DB | CYCRDB |None |
i ———— _,_,___+_.___ 1
L) T 1
|Picture characters 1,2,3 | CYOTT | None |
S 4 3
T T 4
|Picture character P |CYP | None i
} ¥ = —
|Picture character 2 jcyz | None |
b - + o e 1
|Picture character ¥ |CYAST | None |
b 4 et -
|Picture character ¥ jCcYY | None |
L 4 4
r L +——°' -)
|Picture character G |cYG | None |
L 4 ____________+___ — X |
r T 1
|Picture characters 6, 7, 8, H | CYSSEH | None |
L - i 4 d
r T T 1
{Picture character M JCYSTM |None |
b= — D + s
|Picture character F | CYF | None]
[N N - 4 4
r T T 1
|Converts integer constants to scale|CYC97 | CYconv |
|factor | | |
L —— 4 — e e _ —_—— 4
[) T ¥ 1
|Calculates scale factor |CYFNT |None |
L e L —— i - i |
Section 3: Program Organization 99

Table FQl. Phase FQ Routines/Subroutine Directory

iRoutine/Subroutinei Function j
{CYAST {Processes picture charac;;;_:. ;
| CYBR2 |Identifies picture character. }
| CYBR3 |Controlling scan of PICTU