File No. S360-29 o=
GC28-2049-1 TSS

Systems Reference Library

Version B.1

IBM System/360 Time Sharing System
PL/l Programmer’s Guide

This publication is a companion volume to IBM
System/360 Time Sharing System: PL/I Language
Reference Manual, GC28-2045. Together, the twc books
form a quide to the writing and execution of PL/I pro-
grams under the control of an IBM System/360 Time Shar-
ing System that includes a PL/I compiler. This pukli-
cation is concerned with the relationship between a
PL/I program and the Time Sharing System. It explains
how to compile and execute a PL/I program, and intro-
duces the command system, data management, and other
essential features of TSS/360.

This publication is a guide to the faci-
lities of the IBM System/360 Time Sharing
System (T85/360) for the PL/I user. It
explains how to compile and execute a PL/I
program, and introduces the command system,
data management, and other essential fea-
tures of TSS/360.

Part I explains how to use PL/I on TSS/
360 without previous knowledge of TSS/360;
Parts II and III describe the more advanced
facilities of the TSS/360 PL/I compiler and
provide a brief survey of TSS/360 features
available to the PL/I user.

PREREQUISITE KNOWLEDGE

Readers should be familiar with the PI/I
language, since this book does not describe
the lanqguage, but rather the use of the
system.

The PL/I user will find the language
specified in these publications:

IBM System/360 Time Sharing System:
PL/I Language Reference Manual,
GC28-2045.,

IBM System/360 Time Sharing System:
PL/I Likrary Computational Subrou-
tines, GC28-2046.

Lecond Edition {September, 1971)

This 15 & major xevision of, and replaces, the previous
edition, GC28-2049-0, and Technical Hewsletter
GN2B- 1160,

This edition documents changes o the PLI command and
the TS5/360 command system. Use of the linkage editor
apd the proggas control system are explained in greater
detail. Sharing of PL/I modules is explained. Two new
sections, ®Terminal 1/0Q,% and “Interface between PL/I
and Assembler Programs,® have been added to Part II.

This edition is current with Version 8, Modification I,
tewm/360 Time Sharing System (TSS/360), and
effect for all subseguent versions or modi-
fications af TS5/260 unless cotherwise noted. Signifi-
cant changes or additions to this publication will be
provided in new editicns or Technical Hewsletters.
Before uvsing this publicatrion, refer to the latest edi-
tion of IpM Systems 360 Time Shazing System: Addendum,
LC28-2043, wiich may contain information pertinent to
the topics cov d in this edition. The Addendum also
tists the edations of all TS5S/360 publications that are
applicabie and curxent.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page impre-

ssiouns for photo-offset printing were obtained from an 1BM 1803 Printer

using a special print chain.

Requests for copivs of IBM publicacions should be made to your IBM
tepresentative o to the IBM branch c¢ffice serving your locality.

A forwm iw provided ac the back of this publication for readerx's com-
mentes. 1f the fo1m has been removed, comments may be addressed to IBM
Corporation, Time Yharing Systems/360 Programming Publications, Depart-
ment 443, Nelghborhood Road, Kingrnton, N.Y. 12401

wCopyright international Gusinesu Machines Corporation 1970, 1971

If additional knowledge of the time-
sharing system is needed, the following
publications should be referred to:

IBM System/360 Time Sharing System:
Concepts and Facilities, GC28-2003,
provides a broader system survey than
does Part 1 of this manuval.

IBM System/360 Time Sharing System:
Command System User's Guide, GC28-
2001, describes the entire command
language.)

IBM System/360 Time Sharing System:
Data Management Facilities, GC28-
2056, describes, in detail, the sys-
tem's facilities for data management.

IBM System/360 Time Sharing System:
System Messages, GC28-2037, lists all
of the messages produced by the
system.

IBM Systewm/360 Time Sharing System:
Terminal Usex's Guide, GC28-2017,
gives details of the facilities and
operations of the various terminals
supported by TSS/360.

If you have access to a remcte job entry
(RJE) device and you want to use the RJE
feature, see IBM System/360 Time Sharing
System: Remote Job Entryry, GC28-2057.

CONTENTS

PART I: BASIC PROGRAMMING WITH THE PL/I COMPILER .« « « ¢« o o o &

SECTION 1: INTRODUCTION TO TSS/360 . & o ¢ o o ¢ ¢ « & «
The SYStem .« « 2 o 2 2 o o = ¢ s o 2 o s o s o o « s o«
Virtual StOrage ¢ o o o o o « o 2 2 o o o o s s « = o o
Sharing TiME . « & 4 & a o o o s & o o o o s + = o « &«
Terminal Session ACtivity ¢ o ¢ o ¢ o« ¢« o o o o ¢ o o o o o @
Entering Commands « « « « « o o s s o o s o « « o o =
Data Management Facilities .« « ¢ ¢ ¢ o ¢ o o o o o o o o o =

.
.
.
.
.
.
EFEWWWW Lad

SECTICN 2: COMPILING AND RUNNING A SIMPLE PL/I PROGRAM
Commands and PL/I Statements . . < ¢ « ¢ ¢« o o ¢ o « o o o
Correcting Errors when Compiling .« .« « ¢« ¢ o o« o« o o & o+ .
Data Associated with Compilation . . . « ¢ &« o & ¢ o o o o »
Executing a Previously Compiled Program . . . « « o o« o o «
Further Information « . « <« <« ¢ « ¢ o o« o o o o o » o o« =

Iy .
L I]

.
.
.

SECTION 3: BASIC DATA MANIPULATION . . ¢« ¢ o e « o o o o « o =
Terminal I/0 .« ¢ « o o o« 4 o = o & s« « s o = s = o o =
Data Sets on System Storage . « « « « « .
Data Set NAMES <« . & o o o o = o 2 o =
The DDEF Command .« « « « « o o o o o« @
Reserved NAMES .« « « « o o « « o o =
Stream-Oriented Transmission . . « « « «
Record-Oriented Transmission
Creating a Simple Consecutive Data Set
Retrieving A CONSECUTIVE Data Set

(Ve V-3 N, o] NN 0

3
.
.
*
]
.
.
.
.
.
.
« ¢ 5 8
3

.
.
3
[}
.
.
.
.

¢ s & s

.
"ok o0 s
.

.

.

.

.

s & a s 8 s 3
.

.

.

.

.

[y
o

“ + 6 2 8 @

PART II: USING ALL THE FACILITIES OF THE PL/I COMPILER . « « « « . . 15

SECTION 4: COMMUNICATING WITH THE SYSTEM . ¢ ¢ « ¢ « o « « « o « « « 17
Conversational Use of the System . . < « ¢« « ¢ ¢ & &« o ¢ o & &«
Conversational Task Initiation .« ¢ o ¢ ¢ o o o o o o o o o o « =« « 17
IBM 1050 Data Communications System« . « « . ¢« o « « . o . 18

IBM 2741 Communications Terminal . « o ¢ o o = « o « « o« » « « « 19
Teletype Model 33/35 KSR . &+ ¢ v o ¢« « o« o o o« « e« s = « « « =« o« 19
S¥SIN and SYSOUT e e o s e o e 8 ® s s o o a = e s s s s s+ s « « 20
Conversational Task EXecution . « .« . « o « o « o « = o s s « «
Conversational Task Cutput . .« & & & ¢ o ¢ ¢ o« s o o o o « &«
Conversational Task Termination . « « « « ¢ ¢ ¢ ¢« ¢ ¢ ¢ o 2 ¢ o« « - 21
Nonconversational use of the System . . ¢« + ¢ ¢ ¢« ¢« ¢ o o o« o »
Nonconversational Task Initiation . . « & ¢ ¢ ¢ 2 o o o o «
Nonconversational SYSIN Data Set . ¢ o 2 & ¢ 2 o « « « s o o« « « 23
Nonconversational Task EXE@CULiON .« o o « « o o o o o o« =« o o
Nonconversational Task Termination .+ « ¢ ¢ o « o o « o o « &«
Mixed Mode Use of the System . + . « ¢ o ¢ o o o o =« o o« a s s « « « 23

SECTION 5: COMPILING A PL/I PROGRAM . . .
Relationship With TSS/360
Ccompiler Phases . . « « o o« o ¢ o o« o o =«
How to Invoke the Compiler
How to Stop the Compiler ¢ « &
Data Sets Accessed by the Compiler . . ¢« « « ¢« « o« + &
Contents of the Source Data Set and the Object Module 32
Format of Source LiN€S . . . & ¢ o o« o a 2 o o o o« » o o« o o o « » 32
Character Sets -- Keyboard Format . . « « « « o « o o s« « «
Entry of Keyboard Source Statements for Latex Punching and
Recompillation . « . 4 ¢ o o o o o« o o s o o« » o o

“ s s e
®
.
.
.
.
.
« & 8
.
.
.
.
.
%]
wn

s s »
3
.
[
.
.
.

.
.
.
.
.
.
.
W
o

LiStiNg « « o o« « o o o o o o« o =« o s s e o a = s » « o o« o s « 2 o « 32
Options Used for the Compilation . . « ¢ « ¢« ¢ 4 ¢ = ¢ o« « « o o« « 32
Preprocessor Input .« .« « ¢ ¢ < ¢ o o « o « « o s o a « o s « o« « » 33

Source Program .« « « o s o s o s o o o o & » = =

B
.
.
.
.
.
.
.
[
w

iil

Starement Nesting Level
Attripute and Cross-Reference Takle .
Attribute Takie . . < « + « ¢« o . .
Ccross-Reference Table
Aggregate Length Table
Storage RequirementsS . « - o« + o +
Table of Offsets .+ « o o o & &« « « .
External Sympol Dictionary .+ « « .+ .
Standard ESD Entries . . . < . o .
Other ESD EnRtri€s . . o o « o o « «
Object Module+ & & o ¢ o 4 . .
Static Internal Storage Map
Object Program Listing
Diagnostic Messages . . . « o + &+ o &
Multiple Compilations . . « « « &« » « =
CONT Option . . o o o o o « o o o« «
The #¥PROCESS Statement .« o « o o o
Format of the *PROCESS Statement .
Compile-Time ProcesSSing . « « « « « «
Invoking the PreproCessor . . « « « .
The %INCLUDE Statement

e a e e
« * e w
« e < @
. s = e
« s @ =
« s e =
« © & »
« & & ®
. v o« e
» e @ @
« e e e
« o s e
« « » e
e e« e »
» e e @
« 2 e =
e e e e
« . % o«
a e o
s e & s
s & &

SECTION 6: STORING AND INVOKING THE MODULE . .

Program Library List Control
System Library . « « o 2 o« o o o o« o
User Library . « « « o« o o o o o =
Jou Libraries (JOBLIBS) . . . + « o .

Private-Volume Job Library
public-Volume Job Iibrary
Other User-Defined Program Libraries
Multiple Versions of Object Modules .
User-Assigned NaAMES « « « + o « o o «
Reserved Names . . + & « « + 2 « o

PL/I Control Sections . . « . . & « « .
Typres of PL/L Control Sections . . .
Link-Editing . ¢ & o o o o o = o o«

Why Link-Edit? . . « ¢ « ¢« o o o« .

External Names . . - e e e e =
Rules for Link- Edl*lng PL/I Modules
Sharing « « « « « « & - .« .

Linkage Involving ahared CSECTS . .
Attributes of Shared CSECTs
Packing . . & ¢ ¢ ¢ « o <« o « o o o &
Inveking the Module . . o o ¢ & <« + .
Reccvering from Errors when Dynamically

SECTICN 7: TERMINAL I/0 . .« « « + «
DISPLAY 4 2 « « o o « o a o s « « s o =
STREAM L/70 . ¢ o o o o o o « o o o« o =
Input Using °*GET* . . &« . « « o« + «
Prompting AcCtion . « ¢ « « o « « .
SKIP OPtion « « « & o & « o o o o &
COPY Option . « <« + « ¢ o « o o « =«
Delimiters . . & « & a o o s + o =
End-of-File . . .« « ¢« « + 4+ « « 4+ .
Output Using *PUT* . . .« . « o « « .
suffering s e e s s
Ogexation of *he PUT Statement . .
Print Control Options
Format Items . <« . « « « « <« o =

- e e e
c e .
- o e e
e e e
“ e e
. e e .
e e e
“ e e .
w e o+ e
e e . e
« e e
« o e .
e e e
e o e »
« e e oA
. e e s
e e e .
. e e .
e e e e
“ e e
.« .
Loading
« e ..
- e . e
« o ..
e e e .
e e e s
e e e o
« e e e
e s e
s e e e
e e e e
P
.« .+ e 0
e e e

Layout of Data- and List-Directed Output .

SECTLON 8: DATA SETS . . « . . PO
Steoring and Manipulating Data Set” . .
VOlumesS o « o o« o o o o o o o o o = =
Volume Allocation .« o« « « « o o o @
System Catalog .+ . « s 6 4 a4 e o . .
Generation Data Groups . . « « « .

a e« s
« & e e
e e « a
* & s e
e« o e =
.« s s =

53
53
53
53

55

Catalog Maintenance + .
Planning I/0 « « .
Copying, Modifying, and Erasing

Protecting and Sharing Data Sets .
Data Set Organizations
VAM Data Sets « . « « ¢« o o o o »

Virtual Sequential {vs)

Virtual Index Sequential (VI) .

Virtual Partitioned (VP) . . .
PS Data SetS .« ¢ o 4 o « o o o

Record FOrmats . « « « & o o« o o =
FOrmat F .« v ¢ 2 « o o o o « « =
Format V. . . . 4 4 ¢ o o o o o
Format U « « &« e o o e

Types of PL/I Data Transm1551on . .
Access Methods . . ¢ & ¢ o o« «

Basic DDEF Command . . « « « « «
Command FOormat . « « « o o « o+ «

The CDD Command ~ . « « « « » =

Files and Data Sets . « « « « « « =«
Opening a File « « .« .
Closing a File + ¢« « . .

SUNMAYXY « o = s « « o« « « =« s« o «

« = o«

SECTION §:
System Files . . « . . “ e e
System Input File ~-- SYSIN o o
Conversaticnal Mode . . . « . .
Nonconversational Mode
Data Contained Within Command
ENDFILE Condition for SYSIN . .
System Output File -- SYSOUT . .
Conversational Mcde
Nonconversational Mecde
SYSPRINT Attributes . « « « « «
User-Specified Data Sets . . .

Virtual Sequential Data Sets (DSORG‘VS)

e 8 = e e

a 2 e e e

Data Sets .

.
.
.
.
.

L T '}
.
.
.
»

.
s
-

o & o .
.

STREAM-ORIENTED TRANSMISSION . . .

“ e e @ =®

e e & e e

s e e e »

s e o

Procedures

Physical Sequential Data Sets (DSORG=PS) .

Print Files . . . ¢ v & ¢ a o o o «
Record Format . « « « o o a s = =
Tab Control Table . . . « « « - .

« s e e =

2 s e e a

Summary of Stream-Oriented Transmission . . .

SECTION 10: RECORD-ORIENTED TRANSMiSSION .« .

Consecutive Files o o« « .
Virtual Sequential Data Sets . .

« s e e a

Creating a Virtual Sequential Data Set .
Accessing a Virtual Sequential Data Set .

Physical Seguential Data Sets . .
Creation of Physical Sequential
Accessing a Physical Sequential
Track Overflow . . . « o s
Accessing a Physical Sequent1al

Indexed Files ¢ « & « @
Initial and Empedded Keys . . .
Creating an Indexed Data Set .
Accessing an Indexed Data Set .
Example of Indexed Data Set . .

SECTION 11:
Program Control System

Accessing Static Internal Control

PL/1 Debugging Facilities

DEBUGGING A PL/I PROGRAM

Data Sets

« & & s & 0

.

" s e a s

.

2 & & 2 & & B 0 0 3

L A A

Data Set (QSAM)

- -

Data Set (BSAM)

Sections

e & e+ e =

control of Interruption and Error Handling

ON-CodesS . « « v o « o « o o« o =
Trace of Active Procedures . . .
Communication with the Program .

Symbolic Output Using GET and PpUT Statements

.- s = = e

* e e o

« e« e & »

-

.

PR R T T)

€« & & & 9+ & @

s ¢ s o s 0

-

o & & ¥ &

« & 8 & e .

-

5 s 8 & & a4

.

.

" & 5 & 3 0 g

L) a8 ¢ & & & @

*

¢ & s o @

& & a e

s ¢ 2 5 & & &

»

I Y

s s =

e« ¢ o & 9

.

.

¢« 8 & @

.

L I I A

The DISPLAY Statement . o +« o o = o« o » s % « = o o = s o o »
User—Requested DUMD .+ « « o « » + s o o « o 4+ « o o s x o »
Return CodeS v & v s 4 « = x o s o s v 8 a a4 % s 5 a a & w = o

SECTION 12: INTERFACE BETWEEN PL/I AND ASSEMBLER~LANGUAGE PROGRAMS
Assembler Subroutines Called from PL/I Programs « « « « o o« o o« &

Absence Of PSECTS « o ¢ v ¢ o ¢ o « o o o 2 =« = 2 o« « « o 5 o @
Entry to the Subroutine « ¢ &+ & = « < o o 2 & « = s o
Format of Parameter LisSt . . . ¢ ¢ v o « o o o« a = a o o « =
Data Representabion . « v ¢ « o o + o « o o a s & o v s o « o o
Environment . . « 4 o ¢ 4 < o s 5 2 e s e e o o » s &« 8 v o a o
20-8it AJAresSsing . o « .+« ¢ o . s s 2 5w s = e s & = s o a =
Storage Management 2 e e o » 4 e 8w e = @ o o s 2 a2 @
Interruption Handling . « < +« 2 ¢ ¢ o o o o = o e s s o o o =
Part 1 . o & & ¢ 4 e « 4 s 4 s a o a a e @ s o s e o o a o

Part 2 o e = o a4 e s s s e @

PL/Y Subroutines Called from Assembler Programs « e e o o o 2 a =

Initialization ROULINE .« o & 2 4 o « 2 « « o o a & s =« « = + =«
Notes on Passing PArameters . ¢ - « v o « « o o 2 s « o o o

PART II1: EXAMPLES . . o ¢ o 4 o ¢ « o o o « o s o s s« » =« o s &«

Example 1: Initiating and Terminating a Conversational Task . .
Explanation of LOGON Operands = e s e e e e s & o
Example 2: Creating Multiple Versions of the Same Program . .
Example 3: Conversational Initiation of Nonconversational Tas?s
Part 1: The BACK Command . . « « = o o s o « o » o a = a o o
Part 2: The EXECUTE Command . . o <« o « « o « o « a s a o o @
Example U: Preparing a Job for Nonconversational Processing . .
Example 5: Storing DDEF Commands for Later Use « . . .
Part 1. Storing DDEF CommandsS « « « o « = o o o o « o o o » =«
Part 2. Retrieving Stored DDEF Commands . « o o o ¢ = o « o o
Exanmple 6: Manipulation of Several Forms of a Program . « « « -«
Example 7: Survey cof System Facilities and Some Housekeeping
Methods . & .+ 2 « = « o a o s o s « « 2 « s 2 2 a o s & 2 s o« =
Example 8: Transferring Virtual Storage Data Sets Between Disk
and TAPE .+ . 4 2 2 s 2 4 2 4w s 2 e = 4 s w a s w o a = s s e e

Example 9: The Taxt Editor Facility « « ¢ ¢ ¢ ¢ o o o o« « o o &
Example 10: 1ﬁc Text Editor Facility . . . T,
Example 11: USE OF COMMAND PROCEDURE (PROCDEF} s e+ s a 2 & e
Example 12: c*eatlng a CONSECUOTIVE Data set . « o ¢ « « = « a =
Example 13: Using a PRINT File . . . “ & & e e e w e s 5 o a
Example 14: Creating an INDEXED Data Set « e ¢ e o 2 e s e o =
Example 15: Updating an INDEXED PData Set . . « ¢ o « o o o o «
Exanple 16: Batch Processing .« « ¢ « o o 2 o s o s o = o » o @
Example 17: The OBEY Facility .« « o o & « « o « = o s o o o o @
Example 18: Dynamic Calls . « ¢ o o o 4 o « o o o o« v « a = o «

PART IV: APPENDIXES . 4 o « e a s « s o o a ©« s o a s o o s s o =

APPENDIX &: OSs/360 - TSS/360 COMPARISON . . o« a4 v o & & 2 « = » =

TS5/360 Command System e e a4 s e & e s
Interchange of Data Between 0b/360 and TSS/360 « s e o s s s e
Data Set Positioning and DISP=NEW . . « « ¢« o « o« s s s a s a =
Raising of UNDEFINEDFILE Condition for Stream Files
Compiler Options Hot Supported by TSS/360 . . . ¢ « « o & « 2 =

TSS/360 Lapguage ReStYiICtions . o « v o « s« o = = v o a o = » o

APPENDIX B: ATTENTION INTERRUPTIONS o . o &+ « o o o o o o » « o =

Levels Oof InterruptiOn .« - a2 2 ¢ o o 4 s &« o o o » s s s =

APPENDIX C: PRINTER AND PUNCH CONTROL CHARACTERS . . . « « « o =«

APPENDIX D: FULL DDEF COMMAND . . . + o ¢ 4 5 o o o = o o a o o

DDNAME . . 2 + ¢ & o & « & & o a 3 s ¢ « a a s o o = a « o =
DSORG ¢« & 4 » s » 2 s « o s o « s« o @ « s 2 & s a = o = s o =
DSNAME . . « & © + & « o « « = & s 2 = =« s o« a o 2 &« ¢ s« o =
ONIT & o « 2 4 o« 2 o o o a2 o 2 o a & o « = » 3 s 5 o » = + =

SPACE ¢ & « ¢« & 2 4 o o s o o 2 2 s &« s » a s s s o o 3 s o s

.117

.120
.121

.125

-127
. 127
127
.127
. 127
127
.127

-.129
.129

-132

.133
.134
-13%
134
~134
.134

VOLUME
LABEL o « « «
DISP . . « « =«
OPTION . . .
RET . « ¢« ¢« + =
PROTECT
DCB . . « « « «
Notes on Record

APPENDIX E:
Magnetic Tape . . .
ASCII Tapes . .

Direct Access Devices

Format

.

-

-

-

-

-

APPENDIX F: COMMAND FORMATS

APPENDIX G:

Control Options . .
OPT « .
STMT orxr NOSTMT
OBJNM
SYNCHKE, SYNCHK

Preprocessor Ogptions
MACRO or NOMACRO
COMP or NOCOMP

-
-
-

-

or

MACDCKX or NOMACDCK

Input Options . . .
CHAR60 or CHAR4SB
BCD or EBCDIC .
SORMGIN

Output Options . .
DECK or NODECK
LOAD or NOLOAD

Listing Options . .
LINECNT

OPLIST or NOOPLIS
SOURCE2 or NOSOURCE2
SOURCE or NOSOURCE

NEST or NONEST
ATR or NOATR .
XREF or NOXREF

EXTREF or NOEXTREF

LIST or NOLIST
FLAGW, FLAGE,
Dummy Options . . .
SIZE
M91 or NOMI1 .

EXTDIC or NOEXTDI

-

-

-

-

-

-

-

-

.

.

or FLAGS

-

.

SYN

-

-

APPENDIX H: PL/I DIAGNOSTIC

Severity of Source-Program and Compile-Time
Source-Program Diagnostic Messages
Compile-Time Diagnostic Messages

Okject-Time Diagnostic Message Forms

-

-
o o e e
« e e e
« o e e
e e o
ICHK -
e e e e
« o e 0.
c e e .
e e e
« e s
e e
« e e
. e o .
« s e s
« e e
« e e
« e e e
« e e .
“ e e e
e e o o
« e o =
« e e e
e e
« e e
« e e
« e e .
« e . e
. e e
« e e
e e e e
« e e .
MESSAGES

PL/I COMPILER OPTIONS

EXTERNAL STORAGE DEVICES

Object-Time Diagnostic Messages .

Conversion Exrors,

INDEX « . .+ . « .«

-

Naon-ON-Type

-

-

-

.

-

* & e & a2 e e » v =

» o * & v e e =
¢« & e & @ o e o o o
@ o a + e e« = % s o
e e+ s e e e & ° = o
« * & e e e ® s e o
® o e e o e & ® = =
e & * + e e s o e =
e ¢ a 4 e e+ e e e+ =
4 s e 4 e« o+ & * e e
s 4 @ o o e ® e * =
e e s & e e e ® s e
e« o & e ® e e °o s =
« o & & s e s s =
a & @« e » & s »2 e =
« &+ % @ e o e = e e
e ¢ o e o e« e e s =
e & e & o s s = e o
e + e & & s s e e
s & s o o e a e e
s ¢ a2 & e s e w * e
e = &« ® & a & o =
s & & 8 e 6 e = a2 =
e & » s @ e @ @ a
e« o o e & e @ o ® =
e ° e @ « e e » e e
« * & & e * e & e
e« ¢ & @ e & *» o s o
« o s @ e e & w e

e e o o a s & 3 s e
e« * 2 e 8 e & e & o
« e 5 e ° & e « & =
e ¢ s o a4 e e = e =
o ¢ & & ° 2 e e & =
e« * & e a e o ® = =
a s e e ® e e s e e
e & e * e e e s e »
« o o e & e a2 e = =
e + & e e » & ° w e

- « = & a2 e s e =

e s s s o e s e e =
e s » e ©° e e o = o
* ® s ° ®» e e & = e
e & ¢ s & e e & - o
e + ® & * 2w = e =
e & & s = ¢ a » e

Diagnostic Messages

-

-

-

-

.135
.135
«136
.136
.136
.136
.136
<139

144
~la4
144
<144

-145

.150
.151
.151
.151
.151
<151
.151
.151
.151
.151
.152
.152
.152
.152
.152
.152
.152
.152
.152
.152
.152
.153
.153
.153
.153
.153
.153
.153
.153
.153
.153
.153

.154
.154
-155
.220
.230
.231
.238

. 240

vili

ILLUSTRATIONS

Figure 1. oQualified and Ungualified NamesS . « « o o « o « v o o =
Figure 2. Nonconversational Task Initiation . . « . . ¢ . .
Figure 3. Relationship of a TS5/360 PL/I Object Module w1th the

System Programs « « s o 2 « o« s 4 2 o s « & = = » = = o « o o o s o
Figure 4. PLC Interfaces & ¢ ¢ ¢ v & o & o o o s o o o« =
Figure 5. 17TSS/360 PL/I Compiler: Simplified Flow Diagram
Figure 6. System Catalog . . .+ 4 & o« o o « « = o « « o » o s o
Figure 7. Catalog Organization .« o+ « o « « o« « « s s o o o« « o «
Figure 8. Locating a Data Set e 8 4 e s s s w e a4 e s e
Figure 9. Sharing of Cataloged Data oets « e s 2 e e s e e e e e
Figure 10. Associating a File with a Data Set . . « ¢« ¢ 4 o « « «

Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.

Keys . .
Figure 18.
Keys . .
Figure 19.
Table 1.
Table 2.
Table 3.
Takble 4.

the System

5.
6.
7.
8.

Table
Table
Table
Table
Table 9.
Table 10.
Methods .
Table 11.
Table 12.
Table 13.

-

Tabular Control Table (Module IHEWTAB)
Relationship Between a STREAM File and TSS/360 Dafa . .
Access of RECORD Files to TS5/360 Data Sets . . .« . . .

Full DDEF Command for the PL/I USEY . o ¢« o ¢ « « o o o«
Record Formats —— VS Data SetsS .+ o o 5 « o « « o o« o
Record Formats —-- VI Data SEtS .« 2 « =« « o« « « s o o =

Record Formats Physical Sequential Data Set Without

Record Formats -- Physical Sequential Data Sets With

e &« a & & ®w e e @ w & ® ®» @ & ®m @ a4 85 e« ® a w® & © & =

Output Record Formats £or BSCII TALES v « « « o o » o »

1052 Switch Settings « . « + o o & o o « o o o o o o o @
PLI Command . . . & + & + « « = s = » s o o w s« s« o =«
PLC Options . . - s 8 s e w4 & e s & o e e s e e
Dynamic Calls -- Paddlnq and Entering of
Standard Data Sets for Compilation . . .« « « « o s « o @
Optional Components of Compiler Listing . + « & o « o« o
Typical Standard ESD ENtYi€S ¢ o« o o o o o s o o « o = =
Restrictions on Assigning External Names
Shared Data Set Commands . . « « « « . . e .
Relationship Between PL/I Files and T 5/360 Acress

Basic DDEF Command fcr the PL/I User s s s e e a4 s e e e
Types of Access Methods and Data Set Organizations . . .
Relationship of LINESIZE Option with RECFM, LRECL,

BLKSIZE Parameters for STREAM CUTPUT Files . . &« o o « o « o o « =

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
4.
25.

viii

Characteristics of CONSECUTIVE Files . . ¢ ¢ ¢ o o « o =
Specification of VS Data Set Characteristics . « « . . =«
Specification of PS {(Q3a4) Data Set Characteristics . .
Characteristics of Indexed Files . . . & o & 4 « o« o« =
Specification of VI Data Set Characteristics
Program Control Commands and Their Functions
Rules for Using Program Control Commands . « « « » o« «
Main ON-Code Groupings . « « « o o o 5 s o s o a a o o
Detailed ON-Code Groupings « « o o « = o o o a s s a o @
Abbreviations for ON-Conditions <« « + & o « o« « o =« o =
Attention InCerrUptionS o o 4 s o o s o « s + & = o o =
Compiler Options, Abbreviations, and Standard Defaults .

PART I: BASIC PROGRAMMING WITH THE PL/I COMPILER

Part I: Basic Programming with the PL/I Compiler 1

Time Sharing System/360 is a comprehen-
sive programming system used in conjunction
with IBM System/360 computers that have
time-sharing features. The primary purpose
of TSS/360 is to provide many users with
simultaneous conversational (online) access
to a computing system that may have a
single processor, or multiple processors.
The combination of machine and program fea-
tures gives you the impression that you
have sole possession of the system. You
use the system as if it had a main—-storage
capacity equal to the largest address that
can be written, rather than its actual
main-storage capacity.

In TSS/360 you can run a program conver-
sationally: you and the system exchange
information during the execution of your
program. You can also run a program non-
conversationally, without access to the
system during program execution.

You can run in mixed mode -- that is,
start a program conversationally and switch
to nonconversational processing. Once a
program is running nonconversationally you
cannot switch back to conversational pro-
cessing, however.

THE SYSTEM

TSS/360 is a set of programs that makes
use of a computer easier:

e A supexrvisor program controls the over-
all operation of the system, and pro-
vides the time sharing environment that
lets a number of users employ the sys-
tem concurrently.

* A group of service routines perform
program control and data management
functions for each user, as well as for
the system.

* A third set of programs is provided to
allow you to compile and develop your
problem programs.

This publication explains how to use
these programs, without involving you in
their structure or their internal
operations.

VIRTUAL STORAGE
Virtual storage is the name given to the

address space referenced directly by the
processing unit of a System/360 that is

Part I:

SECTION 1: INTRODUCTION TO TSS/360

equipped with time-sharing machine fea-
tures. This address space is as large as
the addressing capability of the system;
that is, if you can write an address, the
location addressed can be included in your
virtual storage. The number of addressable
positions is not limited by the size of
main storage; in TSS/360, you are not
directly concerned with the installation's
physical limitations on main storage.

Although the addressing range of virtual
storage is equal to the addressing capabil-
ity of the system, you are constrained to a
virtual storage capacity that is somewhat
less than that limit. The constraints are
determined by the installation, on the
basis of such considerations as main
storage capacity, secondary storage capaci-
ty, and number of permissible usexs.

Your virtual storage capacity is
extremely large; however, efficient pro-
gramming is still important. Performance
can be degraded by excessive demands on the
available storage at an installation.

When you initiate communication with the
system (conversationally or nonconversa-
tionally), the system routines essential to
your task® are loaded into your virtual
storage. These routines are a permanent
part of your wvirtual storage, that is, they
remain there through your task.

You obtain other system routines by
issuing commands and executing programs.
These routines are loaded into, and
unloaded from, your virtual storage on a
demand basis.

An important aspect of TSS,/360 virtual
storage management is the protection it
provides. Another user cannot interfere
with your executing programs.

SHARING TIME

Others may be using the system at the
same time you are; your terminal is one of
many that are connected to the same comput-
er center. The system appears to be serv-
ing each of you exclusively because it is
repetitively giving each of you an interval
during which all the facilities required by

1n task is the work done between the time

you begin conversational or nonconversa-
tional communication with the system and
the time you end that communication.

Basic Programming with the PL/I Compiler 3

your task, including the central processing
unit and the supervisor program, are in
fact exclusively yours. Unless the system
is overloaded, its speed allows it to do
your work, as well as that of other users,
without apparent intervals.

TERMINAL SESSION ACTIVITY

If you have access to a terminal, you
can use TSS/360 conversationally. You con-
trol the system step-by-step as you type
commands, data, and the source statements
for your programs. The system, in turn,
responds to your requests, delivering its
output at the terminal in the form of typed
responses.

Commands are your principal means of
communication with the system; they tell
the system what you want it to do. They
initiate and terminate tasks, compile pro-
grams, create, modify, and copy data sets,
and obtain bulk output.

Entering Commands

To enter a command, you simply type the
characters required and press RETURN. Each

4 Section 1: Introduction to TSS/360

command has an operation part specifying
what is to be done (as PRINT), and each may
have one or more operands that qualifies
the operation (as DSNAME=LIST: this gquali-
fies the operation to mean "print my data
set named LIST").

1f you enter an incorrect command, the
system issues a message that informs you of
the error. The system alsc issues messages
helpful in assessing the system's activity
relative to your task. System messages are
issued automatically as the conditions
causing them arise.

DATA MANAGEMENT FACILITIES

You can use your terminal as an 1/0
device, typing data for your programs and
having your programs type their results.
You can also have data (including programs)
stored by the system on its direct access
devices, for use at a later time. A third
alternative is to use your own private
storage devices.

SECTION 2:

COMPILING AND RUNRING A SIMPLE PL/I PROGRAM

A PL/I Program that uses only terminal
input and output can be compiled and
executed using only the commands, PL/I
statements, and data below. (The program
name SIMPLE is used for this example.)

The procedure for readying your terminal
for use is described in "Section #: Com-
municating with the System.™ If you do not
know how to operate the terminal, read that
section or ask someone.

Note: The system translates the lowercase
letters into capital letters.

logon suwith,passwd, 24
pli namessimple

0000100 simproc: procedure options(main);

0000200 get data;

0000300 d=as¢2+bec; PL/I
0000400 e=sqrt(d); souxce
0000500 put data (4,e); statements
0000600 end;

0000700_end

simple

:a=2,b=3,c=4 } input data

D= 1.60000E+C1 E= 4.00000E+00; 1} output data

logoff

COMMANDS AND PL/I STATEMENTS

logon smith, passwd, 24

The LOGON command identifies you to
the system. You must supply all LOGON
parameters assigned by the system
manager or administrator when you were
joined to the system. (As a PL/I pro-
grammer, you want to make sure that a
24 appears after the second comma,
unless your installation defaunlts that
parameter to 24. See Part I11I,
Example 1 for an explanation.) After
entering the LOGON command, you can
proceed with your work.

name=simple

The system types an underscore and a
backspace, to indicate that it expects
a command. You type a PLI command, to
invoke the PL/I compiler, specifying
that the name of your executable pro-
gram is to be SIMPLE. (This name must
be different from the procedure name.)

21i

Part I:

The "name=¥ could be omitted, and the
command cculd be typed as:

pli simple

Since you do not specify a name for
your collection of source statements,
the system looks for a prestored
collection of source statements named
SOURCE.SIMPLE. Not finding SOURCE.
SIMPLE, the system then assumes that
vou are going to enter your source
statements from the terminal. The
system prompts you tO enter your
source statements by typing line num-
bers at the terminal.

PIL/I source statements

simproc: procedure options(main)}; --

The label of your main procedure must

not be the same as the name assigned

to your executable program - SIMPLE.

get data; -- Since you have not told
the system anything about the data to
be used by your program, it assumes
that you will enter the data from the
terminal while your program is running

conversationally.

d =a **x 2 + b * c;

e = sqrt(d);

-- These statements perform
calculations.

put data {d,e}; -- Since you have not
told the system where the output
data is to be placed, it assumes
that you want the data printed at
your terminal while your program is
running conversationally.

end; -- This statement is the last of

your PL/I source statements; it marks

the end of SIMPROC.

end
The END command, which is different
from the PL/I END statement, indicates
to the system that you have finished
entering PL/I statements. The system
now compiles your program {that is,
converts your PL/I statements to
machine-executable instructions) and
stores the compiled program in your
user library so that it is available

for use.

You type an underscore before the END
command, to inform the system that a
command, not a PL/I statement, is

being entered.

Basic Programming with the PLi/I Compiler S

simple
This comwmand invokes procedure SIM-
PROC. Since SIMPROC is invoked from
the ccmmand mode, it must be invoked
by its program {(that is, object~
modulel name, SIMPLE. Take care that
you do not invoke a PL/I program by a
name other than its object-module
nams, unless you invoke it from anoth-
er PL/I procedure. A PL/IL program
invoked from ancther PL/I procedure is
invoked by its procedure name {(not by
its module name). When your program
is ready to accept your input data, a
cclon is issued to youxr terminal; you
then enter your input data as follows:

a=2b=3c¢=4

Your proyram then performs the calcu-
lation and prints the values of the
program variables at the terminal as
follows:

D= 1.60000E+01 E= 4.000C0E+00;

Jogoff
The LOGOFF commend indicates the end
of your communication with the system.
The next time you want to communicate
with the system, you must log on '
again.

Rote: If you want to compile another
program or do any other work, you need
not log off until you are finished.

CORRECTING ERRORS WHEN COMPILING

If you see an erroy in a line that is
still being typed, it can be corrected by
backspacing to the error and retyping from
that point on. If you don't notice the
error until after pressing RETURN, you can
make the correction by issuing an UPDATE
command and then, after the system unlocks
the keyboard, typing the line number and
the correct statement. The line number and
the statement must be separxated by a blank.
Example 1:
logon (your LOGON parameters)
pli simple
As you are typing the first PLAI
statement, you notice an exror. You
backspace to the erxrxoxr, move the paper

up one line to avoid overtyping, and
retype from that gpoint on:

0000100 simproct! pr
: procedure;

0000200 d=ase2+hsc;

0000300 £ 5

6 Section 2:

Compiling and Rumning & Simple

Y¥ou notice the omission of OPTIONS
{(MAIN)} in lipe 100, so you type an
UPDATE command, preceding the command
by 2 break racter because the sys—
tem is expecting data.

C000400 _update

After the system unlocks the keyboard,
you make the oorrection.
100 simproc: procedure options{main);
The system again unlocks the keyboard.
You type an INSERT command, preceding
it with a break character because the
systex is expecting data, giving the
numker of the last-entered line as an
cperand; this causes the system to
resume prompting you for the unentered
source statements.

_imsext 300
0000400
0000500
0080600 _end

vut data {(d,ed;
and;

You notice that a source statement is
missing and that ancther statement is
without a semicolon. To halt compila-
tion and unilock the kevbhoard, you
press the attention key; the system
prompts you with an exclawation mark
{1). Since you already typed an END
command, you must type an EDIT command
o regain access to the source state-
wents. You then type an UPDATE com-
mand and enter corrections.

{you press attentlion key)
L]

edit
update
200 d=a¥¥2+bhec;
150 get data;
_end

source. sinple

Now all the source statements are
correct. {The line numbers differ
from the line numbers in the preceding
example, but this has no bearing on
the operation of the program.) Since
vou changed some of the source state-
ments, you must start compilation over
from the beginning by typing "pli
simple®.

Example 2:

This example i1z the same as example 1,
except that you discover the errors later.

logon {your LOGON parameters)
rli simple

0000100 sinmproc! procedure;

0000200 d=a¥**2¢tb*C
0000300 e=sgrt(d);
0000400 put dataid,e);

PL/L Program

0000500
0000600

end;
_end

At this point the PL/I comwpiler infor-
ms you of the syntactical errors. You
correct the errors:

edit source.simple

update

100 simproc: procedure options{main);

150 get data;

200 d=a**2+b*c;

_end
Now you can recomgile SIMPLE, and it
will be ready for execution.

Note: There may be times when you want to

stop entering source statements and not
compile them; for example, you may decide
to start over from the beginning or you may
have misspelled the name in the PLI com-
mand. Simply press the attention key. Do
not type _END; this causes compilation.
Even if you typed _END immediately after
the prompt for line 100, the compiler would
attempt to compile the empty data set.

DATA ASSOCIATED WITH COMPILATION

The system stores the collection of
source statements under the name SOURCE.
name, where “"name" is the object-module
name you gave in the PLI command. You can
specify a different name than SOURCE.name,
by using the PLI command's SOURCEDS operand
as explained under "Invoking the Compiler,”
in Section 5. The object module itself,
which consists of the executable machine
instructions, is stored as USERLIB(name),
unless you specify otherwise. (See Section
6.) The compiler also produces a listing

Part I:

of information about the source statements
and object module; this listing is named
LIST.name. You can erase any of this data
at any time by typing ERASE SOURCE.name,
ERASE USERLIB(name), or ERASE LIST.name.

EXECUTING A PREVIOUSLY COMPILED PROGRAM

To execute a program that you have
already compiled, you do not have to reent-
er your source statements; you can call for
execution of the program from the library
in which it is stored. The following ter-
minal session shows execution of program
SIMPLE.

logon (your LOGON parameters)
simple
ta = 1,

E=5, ¢c=14 input data to your

program

D= 2.10000E+01 E= 4.58257E+00;
output data from
your program
iogoff

FURTHER INFORMATION

Section 3 describes data manipulation
techniques. Part II describes more sophis-
ticated methods of using the PL/I compiler
and available data processing facilities.
Examples of how to use PL/I in TSS/360 are
in Part III.

Note: You can enter commands, PL/I key-
words, and names in either lowercase or
capital letters; they will hereinafter be
shown in capital letters, in order to dis-
tinguish them from the explanatory text.

Basic Programming with the PL/I Compiler 7

SECTION 2: BASIC DATA MANIPULATION

This section explains how to create and
access simple data sets typed at your ter-
minal {using STREAM files) and dats sets
stored on magnetic tape or on a direct
access device (using STREAM or RECORD
files). It is intended to introduce the
subject of data management, and to meet the
needs of users who do not require the full
170 facilities of PL/I and TSS/360. Sec-—
tions 7, 8, %, and 10 give a full explana-
tion of the relationship between the data
management facilities provided by PL/I and
those provided by the system.

A data set is any collection of data
that can be created or accessed by a pro-
gram. The data can be entered from, or
printed at, your terminal. It can also be
punched onto cards, ovr recorded on magnetic
tape or on a direct accesu device.

A PIL/I program can access data sets
using either stream-oriented transmission
or record-oriented transmission. When
accessed by stream-oriented transmission, a
data set can be thought of as a continuous
stream of characters that are converted
from character form to internal form on
input and from internal form to character
form on output. It can be processed
without regard to its actual origin.

A data vet accessed by record-oriented
transmissicn is considered to be a collec-
tion of dis e data itess {that is, rec-
ords). HNo data conversion occurs during
record transmission; ¢n input the data is
transmitted exactly as it is recorded in
the data set, and on ouatput it 1s trans-—
mitted exactly as it is vecorded internal-
ly. To be accessed by record-oriented
transmission, a data set must have either
CONSECUTIVE or INDEXED crganization. The
records in INDEXED data sets are arxrxanged
according to *keys® that you supply when
you create the data sets. CONSECUTIVE data
sets do not use keys; when you create such
a data set, records are vecorded consecu-
tively irn the order in which you present
them. You ¢anp read the records from a CON-
SECUTIVE data set only in the order in
which they weve presented, except that in
the case of a data set on magnetic tape,
you can read them either in the oxder in
which they were presented or in the reverse
order.

Two types of information are reguired to
create oy retrieve a data set.

1. Appropriate input and output {I/0)}

statements in your PL/L program.

8 Section 3y Basic Dats Mapipulation

2. Information regquired by TSS/360 de-
scribing the data set and how it is to
be handled. You don’t have to specify
this information explicitly if you arxe
using the terminal as your I/0 device

The I/0 statements that you may need in
your PL/I program are described by PL/I
Lanquage Reference Manual. Essentially,

you must declare a file (explicitly oxr con-
textually) and open it (explicitly or im-
plicitly) before yvou can begin to transmit
data. A file is the means provided in PL/I
for accessing a data set, and is related to
a particular data set only while the file
is open; when you close the file, the data
set is no longer available to your program.
This arrangement allows you to use the same
file to access different data sets at dif-
ferent times, and to use diffexent files to
access the same dats set.

TERMINAL I1/0

TS5/360 allows you to entexr data for
your PL/I program and receive output while
the program is executing. PL/I files for
terminal I1/0 must pe STREAM files. You do
not have to specify that the files are
STREAM; this is impiied by the GET and PUT
statements used to read and write data.

If your program includes a GET statement
without the FILZ opticn, the compiler
assumes "SYSIN®. If your program includes
a PUT statement without the FILE option,
the compilexr assuwes °®SYSPRINT'. In con-
versational mode, SYSIN and SYSPRINT are
directed to your terminal. You 4o not have
to supply a DDEF command whern doing termi-
nal I/0; when you omit a DDEF command for a
STREAM file, the system assumes that you
aye using the tevmipal and supplies all
required data management parameters.

The simplest way to entexr data for a
PL/L program is with the statement:

GET DAETA;

The simplest way Lo transmit data to an
external medium is with the statement:

PUT DATA (data-list);

This is all that is reguired to perform
terminal 1/0.

When your program is ready to accept
input data, a colon (:) is typed at the
terminal and the keyboard is unlocked.

EXAMPLE OF TERMINAL I/0: This example is a
modification of the program in Section 2;
it allows you to read and write more than
one line during execution. The statement
following the PUT DATA statement returns
control to the GET DATA statement.

LOGON (your LOGON parameters)

PLI NAME=SIMPLE

The system types a line numker (not

shown) before each line you enter.
TERMIO: PROCEDURE OPTIONS (MAIN);
ON ENDFILE (SYSIN) GO TO
STOP;
READIN: GET DATA;
D = A%%2 + B*C;
E = SQRT(D);
PUT DATA (D,E);
GO TO READIN;
STOP: END;
_END
SIMPLE

When the system prompts you with a
colon, enter values for A, B, and C, ending
the list with a semicolon.

A=2,B=3,C=4

The values cf the variables in your pro-
gram are then printed at the terminal.
D= 1.60000E+01 E= 4.00000E+00;
You can now enter new values for A, B,
and C to find the new value of D.
A=

i1, =17, =0

The system then prints:

D= 1.00000E+00 E= 1.00000E+0Q0;

You do not want to calculate further
values of D, so when the system prompts you
to enter data, press RETURN. The null line
entered indicates the end of your input
data. Your program then terminates, and"
you can log off.

LOGOFF

DATA SETS ON SYSTEM STORAGE

It is not always convenient to have data
records entered from and printed at a ter-

Part I:

minal. If a data set is very large, the
time required to print it at a terminal
wight be guite long. If a data set is
modified frequently, it is more convenient
to keer a copy of the data set stored
within the system and enter changes as
necessary. Thus, only changes to the data
set need be entered, and unchanged portions
of the data set 4o not have to be reentered
each time the data set is processed.

DATA SET NAMES

To retain a data set in system storage,
you must assign 3 name tc it. When you
subsequently go to retrieve the data set,
you can inform the system of the name
assigned, and the system will locate the
data set for you.

The name of a data set can be gqualified
to distinguish it from other data sets or
to relate it to other data sets. For
example, if payroll recoxds for two depart-
ments, D561 and D58, were maintained and
each had the simple name PAYROLL, the
department name could be prefixed to each
simple name to produce two qualified data
set names -- D561.PAYROLL and D58.PAYROLL.
Note that a period must separate the com-
ponents of a name.

Figure 1 shows the names of data sets
belonging to an imaginary user. The only
unqualified name is RESEARCH; all other
names, such as RECORDS.INVENTRY and
RECORDS.PERSONEL.DEPT561, arxre gualified.

RESEARCH RECORDS
]
{
PERSONEL INVENTRY
”r
]
DEPT DEPT DEPY
561 562 563
DATA DATA DATA DATA DATA

SET SET SET SET SET

Figure 1. Qualified and Unqualified Names

Basic Programming with the PL/I Compiler 9

A fully gualified data set name identi-
fies an individual data set and includes
all components of that data set's name.
RECORDE. INVENTRY in Figure 1 is a fully
qualified name. Fully gqualified names arxe
used in the DDEF command to identify the
input and output data sets of a problem
program. They are alsc used in comnection
with a variety of commands, such as those
that manipulate data sets as an entity (for
example, CDS and PRINTY, and those that
affect system functions relative to the
data set (for example, CATALOG, DELETE,
ERASE) .

A partially qualified data set name
identifies a group of data sets, and omits
one or more of the rightmost components of
a data set name. The group of data sets
referred to includes all that have quali-
fiers identical to those present in the
partially qualified name. In Figure 1, all
records can be referred to by the partially
qualified name RECORDS; reccoxds for all
departments can be referred to as RECORDS.
PERSONEL {no period after PERSONEL). Par-
tially qualified names arxe used in several
commands when it is convenient to refer to
the specified data sets as a group; for
example, in erasing the group, in removing
it from the data set name structure, or in
specifying that it can be shared by other
users.

These rules must be observed in naming
data sets:

1. Each component, or siwmple name, can
consist of from one to eight alphamer-
ic characters {(this is why "pexsonel®,
in Figure 1, has only one N}; the
first character must always be
alphabetic.

2. A period must be used to separate
components.

3. The wmaximum number of characters
{inciuding periocds) in the data set
name is 44. For data sets used exclu-
sively within TSS/360, you are limited
to 3% characters, because the system
autowatically prefixes each name with
your eight-charactexr user identifica-
tion?* followed by a period. For data
sets to pe interchanged with the IBM
System/360 Operating System, you can
employ 4U-character data set names.
These data sets, however, cannot be
referred to by name alone unless they
are renamed; for data sets with #4-

i2The user identification, that is, userid,
is the first operand of the LOGON command.
See Example 1 in "Part III: Examples.”
If less than eight characters, it is
padded with blanks

10 Section 3: Basic Data Manipulation

character names, the expanded DDEF
command must be used {(see Appendix D).

4. The maximum number of single-character
qualification levels to a single-
charactexr basic name is 18, for data
sets used in TSS/360. Normally, fewer
gualification levels will be used.

5. The fully gualified names in your data
set name structure must be unigue; no
fully qualified data set name can be
used as a partial qualifier in another
data set name.

THE DDEF COMMAND

The DDEF command is used to define the
data sets used during execution of a pro-
gram. You can alsc use it to define the
data sets used by certain commands, and to
define job libraries.

The DDEF command names a data set and
supplies the system with information with
which to retrieve it. The DDEF command has
four basic operands:

e Data definition name (DDNAME) is the
name of the DDEF command describing the
data set. This information is required
ky the system to relate the data set to
the file named in youxr I/C statements
or to the TITLE option of an OPEN
statement.

e Data set organization (DSORG) specifies
the organization of the data set so
that the appropriate system data man-
agement routines are made available to
YOUur program.

e Data set name (DSNAME) is the name of
the data set being described. This
information is required to locate the
data set among those stored in the
system.

e Disposition (DISP) specifies whethex
the data set is being created (NEW) or
already exists (OLD).

Reserved Names

DONAME=PCSOUT and all DDNAMEs beginning
with the characters SYS are reserved for
use by the system. DSHAME=USERLIB is
reserved by the system; in addition, you
should avoid specifying any DSNAME that
begins with the characters S¥S, since sev-
eral data sets that the system uses for you
have names beginning with SYS.

STREAM-ORIENTED TRANSMISSION

A data set that you process using
stream-oriented transmission could have

been created using either stream- oF
record-oriented transmission. {(See example
under "Creating a Simple Consecutive Data
Set®, in this section.} If it was created
using record-oriented transmission, it must
have CONSECUTIVE crganization, and all the
data in it must be in character form. You
can open the associated file for input and
read the records that the data set con-
tains, or you can open the file for output
and extend the data set by adding records
at the end.

EXAMPLE: To gain access to the data set in
this example, you must supply a DDEF com-
mand so that the system can locate the data
set. You must specify:

¢ The name of this DDEF command - WORK.
(This name is the file name used within
the PL/I program in such statements as
OPEN, CLOSE and DECLARE.)

e The organization of the data set - V5.
(Vs stands for wvirtual segquential, a
TSS/360 organization for sequential
data sets on direct access devices.)

e The name under which the data set was
previously stored-PEOPLE.

* The dispositiocn of the data set - OLD
{since the data set already exists).

The PL/I program that you write to up-
date data set PEOPLE is called UPDAT.
After you compile UPDAT, you enter update
records for data set PEOPLE from your
terminal.

LOGON (your LOGON parameters)
DDEF DSRAME=PEOPLE, DSORG=VS, DDNAME=WORE, DISP=OLD
PLI NAME=UPDAT

The text editor types a line number (not
shown) before each line that you enter.

UPDAT: PROCEDURE OPTIONS (MAXR);
DCL WORK FILE STREAM QUTPUT PRINT,
1 REC,
2 FREC,
3 NAME CHAR (20),
3 HUM CHAR (1),
3 PAD CHAR (24),
2 VREC CEAR (35),
IN CHAR (80) DEF REC;

ON ENDFILE (SYSIN) GO TO FINISH;
OPEN FILE (WORK) LINESIZE {130);

MORE: GET FILE {SYSIN) EDIT (IN} (A (B0));
PUT FILE (WORK)SKIP EDIT (IN) {(A(45+7*NUM));
GO TO MORE;

FINISH: CLOSE FILE (WORK);

END UPDATE:
_END
You now call for execution of UPDAT.

UPDAT

Part I:

As the system prowmplts you to enter you
input data,. you enter it; NUM must always
ke entered ag the twenty-first character.
A null line indicates the end of data.

kel

-C.ANDERSON © 202848 DOCTOR

:R.R.BENNETT 2 T71IIN PIUMBER VICTOR HAZEL

¢R.E.COLE ¥ &3863% COOK BLLEN VICTOR JORN ANN

:+ L. R.COCPER B LRB3IS LAWYER RUGER THERESA LAURAR KATHY

:A.J.CORNELL 3 227837 BARBER DORALD HANCY JOSEPE

:B.P.FERRIS % 158636 CARPENTER GERALD ANNA MARY FRED

:{null line}

The data set is now updated in storage.
The next time that you use the data set,
the records that you have just entered will
be a part of it.

RECORD-ORIENTED TRANSMISSION

In record-oriented transmission, data is
transmitted to and from auxiliary storage
exactly as it appears in the program
variables; no data conversion takes glace.
A record in a data set corresponds to a
variable in the program.

You can use record-oriented transmission
to process data sets with CONSECUTIVE or
INDEXED organization. This section
descrikes processing of a CONSECUTIVE data
set; for a description of processing INDE-
XED data sets and further description of
processing CONSECUTIVE data sets, see Sec-
tion 10.

CREATING & SIMPLE CONSECUTIVE DATA SET

The program in the next example creates
a data set named ROOTS. The PL/I I/0
statements (DECLARE, OPEN, and CLOSE) refer
to the file DISK; therefore, the name of
the DDEF command that defines the data set
must be DISKE (DDNAME operand). You specify
that the organization of the data set is to
be virtual sequential {(the same as the
STREAM file in the previous example).
name of the data set is ROOTS (DSNAME
operand), and its disposition is NEW {(you
are creating the data setl.

The

Since this data set is created, you must
give the system some information about the
format of the records in the data set. You
can give record-format information in ei-
ther your PL/I program {ENVIRONMENT attri-
bute or LINESIZE option) oxr a DDEF command.
This discussion refers only to the DDEF
command and does not apply if you decide to
give the information in your program.

Refer to PL/I Xanguage Reference Manual for
a description of the ENVIRONMENT attribute
and the LINESIZE option.

Basic Programming with the PL/I Compiler 11

The records in a data set must have one
of three formats: F (fixed length), V¥
(variable length), or U {(undefined length).
If you do not specify a record format, for-
mat V is assumed. Since you specified that
the organization of the data set is virtual
sequential, you do not have to consider
record blocking; the system handles this
for you. If you had specified physical
sequential organization, you could control
the blocking of records. Record blocking
1s discussed in Section 10, under "CONSECU-
TIVE Files."

If you are using a PRINT file to produce
printed output, you do not have to specify
record size in the DDEF command or PL/I
program; in the absence of other informa-
tion, the compiler supplies default line
size of 120 characters.

To give record-format information in a
DDEF command, use the DCB (data control
block) operand. The DCB operand passes
information to the system for inclusion in
the data control block, a collection of
information maintained by TSS/360 data man-
agement routines for each data set in a
task. The data contrcl block contains a
description of the data set and how it will
be used. Suboperands of the DCB operand
allow you to specify such information as
record format (RECFM suboperand) and logic-
al record length (LRECL suboperand). If
the DCB operand includes more than one sub-
operand, enclose the list in parentheses.
For example:

DCB = (RECFM = F, LRECL = 40)

EXAMPLE: Record-oriented transmission is
used to create the data set ROOTS. Before
each record is written in ROOTS, that rec-
ord is entered from SYSIN (your terminal)
and processed using stream—-oriented trans-
mission. Note how stream- and record-
oriented transmission can be easily com-
bined for a single data processing
application.

DDEF DDNAME=DISK, DSORG=VS, DSNAME=ROOTS,
DISP=NEW, DCB=(RECFM=F,LRECL=40)
PLI NAME = CREATE
The text editor types a line number {not
shown) before each line that you enter.
CREAT: PROCEDURE OPTIONS (MAIN);
DCL DISK FILE RECORD OUTPUT
SEQUENTIAL,
1 RECORD, 2(A, B, C, X1,X2)
FLOAT DEC{6) COMPLEX;

The length of RECORD is 40 Lkytes; RECORD
contains five items, each declared as
FLOAT DECIMAL (6) COMPLEX; since the

12 Section 3: Basic Data Manipulation

declared precision < 6, short floating-
point (fullword length) is used; the
COMPLEX attribute doubles this to a
length of one double word per item.

Note: If you specify the ATR or the
XREF listing option of the PL/I compiler
options, the lengths of all structures
are shown on the listing, in a table
called the aggregate length table. See
Arpendix G.

ON ENDFILE (SYSIN) GO TO
FINISH;

OPEN FILE (DISK);

NEXT: GET FILE (SYSIN) LIST (A, B, C);
X1=(-B+SQRT (B*$2-4*A%C))/ (2%A) ;
X2=(-B-SQRT (B#+2-4*A%C)) / (2*A) ;
WRITE FILE (DISK) FROM (RECORD);
GO TO NEXT;

FINISH: CLOSE FILE (DISK);

END CREAT;

_END

CREATE
25 12 4

4 -10 4

:5 16 2
4 =12 10
25 12 9

229 -~20 4

: (null line)

Data set ROOTS now exists on system
storage. The records in ROOTS consist of
the values for A, B, C, X1, and X2.

RETRIEVING A CONSECUTIVE DATA SET

EXAMPLE: At a later time, you want to read
data set ROOTS. The data set name is still
ROOTS (DSNAME operand), and its organiza-
tion is still virtual sequential (DSORG
operand). The PL/I I/0 statements in the
program that reads ROOTS refer to file
RESULTS, so you must specify DDNAME=
RESULTS. Since ROOTS already exists, you
specify its disposition as OLD and omit the
DCB operand; the system can fill in the DCB
from information in control blocks asso-
ciated with the data set.

DDEF DDNAME=RESULTS, DSORG=VS, DSNAME=ROOTS, DISP=0LD

PLI NAME=ACCESS

ACCES:

NEXT:

FINISH:

END

ACCESS

PROCEDURE OPTIONS (MAIN);
DCL RESULTS FILE RETORD INPUT SEQUENTIAL,

1 RECORD, 2(A, B, C, X1, X2)
FLOAT DEC(§) COMPLEX;

ON ENDFILE (RESUITS) GO TO FINISH;

PUT FILE (SYSOUT) EDIT
('A*, *B', *C*, 'X1°, *'X2%)

(X(7), 3¢(aA,x(23)), A, X(22), A);
OPEN FILE (RESULTS);
READ FILE {RESULTS) INTO {(RECORD);

PUT FILE (SYSOUT) SKIP EDIT (RECORD)
{C(F(12,2)));

GO TO NEXT;
CLOSE FILE (RESULTS);

END ACCES;

The data set ROOTS is now printed at your

terminal.

Part 1I:

Basic Programming with the PL/I Compiler 13

14 Section 3: Basic Data Manipulation

PART IIs USING ALL THE FACILITIES OF THE PL/I COMPILER

Part I1: Using All the Facilities of the PL/I Compiler 15

16

In TSS/360 you can run a program conver-
sationally; you and the system exchange
information during the entering and execu-
tion of your program.

You can also run a program nonconversa-
tionally; for instance, when a program is
checked out and you know it will run satis-
factorily, or when you do not want to stay
at the terminal.

You can run in mixed mode: that is,
start a program conversationally and switch
to nonconversational processing. Once a
program is running nonconversationally, you
cannot switch back to conversational
processing.

CONVERSATIONAL USE OF THE SYSTEM

In conversational processing, you com-
municate with the system by means of a ter-
minal. The terminal is a typewriter-like
device. One type of terminal, the IBM 2741
Communications Terminal, is an IBM SELECT-
RIC® typewriter specially equipped for ter-
minal use; another type, the IBM 1050 Data
Communications System, can include both a
typewriter and a card reader. With the
1050 you can enter input into the system
via the keyboard or the card reader. All
types of terminals can be located either at
the computer installation or at a remote
location. In any event, all terminal
operation is much the same: you enter a
command directing the system to do certain
work; the system responds; you enter anoth-
er command, etc. You don't have to be an
expert typist; correcting typing errors is
simple, as shown in Part III, Example 1.

You will find that you do not require
extensive computer training to use TSS/360.
You must know three things:

e How to set up your terminal for opera-
tion. This is a matter of setting a
few switches. The use of each terminal
is discussed in this section; see the
description for your terminal, or ask
someone to show you how to set it up.

s The PL/I language, the language in
which you express your problem-solving
procedure. This language is used for
illustration throughout this publica-
tion; it is explained in detail in PL/I
Lanquaqe Reference Manual.

e The TSS/360 commands you will use to
converse with the system. Typical uses
of many commands are shown in the

Part II:

SECTION 4: COMMUNICATING WITH THE SYSTEM

examples section of this manual. The
format of every command is shown in
Appendix F. This section includes sum-
maries of how to type commands and how
to use commands to control nonconversa-
tional tasks. Part III, Example 17
shows how to execute a command from
within a PL/I program. Should you need
more information than is in this book,
consult Command System User's Guide,
which describes the commands in detail.

In conversational mode, you engage in
dialcg with the system. The system
responds tc your requests, confirms
actions, and informs you of any errors.
Complete details on command-response mes-
sages are presented in the System Messages
publication. Messages produced by the PL/I
compiler are explained in Appendix H of
this publication. Some messages are issued
during compilation by system routines other
than the PL/I compiler; these messages are
documented in System Messages.

The work done between logging on and
logging off is called a task. You may run
one or many programs as part of a single
task. The work you do on a task at a ter-
minal is called a session. Since a task
may begin conversationally but end noncon-
versationally, task is not necessarily
synonymous with session.

CONVERSATIONAL TASK INITIATIOR

The way in which you initiate a conver-
sational task varies slightly with the type
of terminal you are using. The available
types are:

* IBM 1050 Data Communications System
¢« IBM 2741 Communications Terminal
o Teletype® Model 33 or 35 KSR

The terminal operation procedures are
explained below.

After you initiate the LOGON procedure
and the system is ready to receive input,
enter the values assigned to you when you
were joined to the system. (Note: To com-
pile or run PL/I programs, you must log on
with 24-bit addressing. This must be spec-
ified in the third operand of the LOGON
command, unless your installation's default
value for that operand is 24. See Example

1A trademark of the Teletype Corporation

Using All the Facilities of the PL/I Compiler 17

1 in “"Part III: Examples.®)} The system
then completes initiation of your conversa-
tional task., If you cannot log on, notify
your system manager or administrator.

IBM 1050 Data Communications System

The IBM 1050 Data Communications System
as used with TSS/360 includes an IBM 1051
Control Unit, a 1052 Printer-Keyboard, and,
optionally, a telephone-like modulator-
demodulator, or MODEM. The MODEM is used
to dial up TSS/360.

INITIATION PROCEDURE: To ready the IBM
1050 for use with TSS/36C, proceed as
follows:

i. Set the panel switches on the IBM 1052
Printer—-Keyboard as directed in Table
1. If the 1052 has additional
switches, set them to the OFF or HOME
position. Do not change the switch
positions while using the terminal.

2. Turn on the main-line switch. The

POWER light should come on. If the

DATA CHECK light is on, turn it off by

pressing the DATA CHECK key.

3a. If the terminal is directly connected
to the computer, initiate the LOGON
procedure by pressing the ATTENTION/
RESET LINE key.

3b. If the terminal has a telephone-like
MODEM, press the MODEM's TALK button,
dial the TSS/360 number, and when a
continuous high-pitched tone is heard,
press DATA. The terminal is now con-
nected to the time-sharing system.
The receiver of the MODEM can be
replaced in its cradle.

KEYBOARD OPERATION: The numeric and
special-character keys, the space bar and
the SHIFT, LOCK, and TAB keys operate like
their counterparts opn standard typewriters.

Table 1. 1052 Switch Settings

[T T 1
| Switch Setting Toggle Position |}
H- e e i
| SYSTEM ATTEND up |
| PRINTER 1 SEND REC middle [
| KEYBOARD SEND up H
| READER 1 ON up i
| STOP CODE OFF down |
| SYSTEM PROGRAM up i
| SYSTEM up {
{ TEST OFF down i
| SINGLE CY OFF middle i
| RDR STOP OFF middle i
R - i
| Note: Set all other panel switches to |
| OFF oxr HOME position. i
L e e e e e e e e e e e e e e e e e o e 4

18 Section 4:

PRCCEED LIGHT: When the green PROCEED
light is on, the keyboard is unlocked and
data or commands can be entered. As soon
as a line has been entered, the keyboard is
locked; the PROCEED light turns off shortly
afterwards. BAll keys except the ATTENTION/
RESET LINE key are locked out while the
PROCEED light is out.

ATTENTION REY: The ATTENTION/RESET LINE
key in the lower left-hand corner of the
keyboard, hereinafter referred to as the
ATTENTION key, cannot be locked out. It
generates an attention interruption. (The
ATTENTION key can also be used, as
explained above, in injtiating the LOGON
grocedure from a directly connected
terminal.)

RETURN KEY: Pressing RETURN causes a line
feed and print-head return at the terminal
printer and transmits an end-of-block
character to system. After RETURN is
pressed, the keyboard is locked out (except
for the ATTENTION key) and control passes
to the system.

CONTINUATION LINES: When the hyphen is

entered as the last character in a line,
the system recognizes the next line as a
continuation. The hyphen is not entered as
part of the line.

CANCELING LINES: When a pound sign (#) is
entered as the last character kefore the
RETURN key is pressed, the entire line is
canceled. The system will then expect the
corrected line to be entered without addi-
tional prompting. The pound sign is
defined as the line-kill character.

A line can also be canceled with the
ALTN CODING key, at the upper left-hand
side of the keyboard. To do this, hold
down ALTN CODING and press the zero key.

CORRECTING LINES: A line that you have
started to enter incorrectly can be
corrected by backspacing to the first in-
correct character with the BACKSPACE key
and reentering the line from that point on.

DATA CHECK AND RESEND: The DATA CHECK

Communicating with the System

light may come on after the terminal is
first turned on; this light can be turned
off with the DATA CHECK key. The RESEND
light will come on briefly after the RETURN
key is pressed; it should turn off when the
line has been accepted by the system. If
the DATA CHECK and RESEND lights are on
together, an erxor is indicated. While the
RESEND light is on, the system does not
accert input from the terminal keyboard.
Press the DATA CHECK and RESEND keys to
turn off the lights and reenter the line.

IBM 2741 Communications Texminal

The IBM 2741 consists of an IBM SELEC-
TRIC® typewriter mounted on a stand that
includes the electronic controls needed for
communication with TSS/360. If the termi-
nal is directly connected to the system,
merely turning on the terminal results in
connection with the system. If nct, it can
be connected to the system through a
modulator-demodulator, or MODEM, that
resembles a telephone.

INITIATION PROCEDURE: To ready the 2741
for use with TSS/360, proceed as follows:

1. Check that the terminal mode switch on
the left side of the stand is set to
COM.

2. Press on the ON side of the power
switch.

3a. If the terminal is directly connected
to the computer, initiate the LOGON
procedure by pressing the ATTN key at
the upper right-hand corner of the
keyboard.

3b. If the terminal has a telephone-like
MODEM, press the TALK button, lift the
receiver, dial the TSS/360 number,
and, when you hear a continuous high-
pitched tone, press the DATA button.
The terminal is now connected to the
system. The receiver of the MODEM can
now be placed in its cradle.

KEYBOARD OPERATION: The terminal keyboard
works like an IBM SELECTRIC® typewriter
except for the ATTN key, which is used to
generate attention interruptions. (It can
also be used in initiating the LOGON proce-
dure from directly connected terminals, as
explained above.} The system unlocks the
keyboard when it is expecting input; at
other times, the keyboard is locked. The
ATTN key is the only key that cannot be
locked out.

Note that unless you issue a KA command
or an equivalent K command, the system
recognizes no distinction between capital
and lowercase letters; they are all inter-
preted as capital letters. This saves you
from having to use the SHIFT key in enter-
ing commands, which consist only of capital
letters.

RETURN KEY: Pressing the RETURN key causes
a line feed and carrier return at the ter-
minal and transmits an end-of-transmission
character to the system. RETURN must be
pressed to end every line of input from the
keyboard. After RETURN has been pressed,
the keyboard is locked out (except for the
ATTN key) and control passes to the system.

Part II:

CONTINUATION LIMES: When the hyphen is

entered as the last character in a line,
the system recognizes the next line as a
continuation. The hyphen is not entered as
part of the line.

CANCELING LIRES: When a pound sign (#) is
entered as the last character before RETURN
is pressed, the entire line is canceled.
The system then expects the corrected line
to be entered without additional prompting.
The pound sign is defined as the line-kill

CORRECTING LINES: A line that you have

started t¢ entexr incorrectly can be
corrected before RETURHN is pressed by back-
spacing to the first incorrect character
with the BACKSPACE key and reentering the
line from that point on.

Teletype Model 33/35 KSK

The Teletype? Model 33 or 35 KSR (Key-
board Send~Receive) consists of a printer,
a four~row keyboard, and a control unit,
all mounted in a special cabinet.

INITIATION PROCEDURE: To ready the tele-
typewriter for use with TSS/360, proceed as
follows:

1. Press the ORIG button. The lamp
should light under the button, and the
teletypewriter will be on.

2. Dial the TSS5/360 number with the tele-
phone dial. A continuocus tone is
heard momentarily as the connection is
made. The LOGOW procedure then begins.

KEYBOARD OFERATIOM: The alphameric and
special-character keys, the space bar, and
the SHIFT key all work like their counter-
parts on conventional typewriters (except
that the ESHIFT key does not lock in the
down position). Only capital letters are
provided; lowercase letters are not. The
BREAK key is used to generate an attention
interruption. After using the BREAK key,
you must press the BRK-RLS key above the
telephone dial to unlock the keyboard.

Do not use the keyboard when the system
is not expecting input. The keyboaxd is
not locked when the system is not expecting
input, and pressing a key at such a time
will cause the equivalent of an attention
interruption.

Since the teletypewriter lacks keys for
the kackspace, underscore, and logical-NOT
sign, you must use substitutes. The usual
TSS/360 prompt of underscore and backspace,
foxr instance, 1s represented on the tele-

ia trademark of the Teletype Corporation

Using All the Facilities of the PL/I Compiler 19

typewritexr as a right bracket and a left
arrow: l<=

Since the right bracket is the eguiva-
lent of the underscore, it is used as the
command~prefix character for the text edi-
tor. The right bracket is obtained by
holding down SHIFT and pressing the "M" key,

In addition, the backwards slash (\) is
the teletypewriter eguivalent for the
logical-NOT sign (-~} . The backwards slash
is obtained by holding down SHIFT and pres-
sing the "L® key. The left bracket is
obtained by holding down SHIFT and pressing
the "K" key.

END-OF-LINE SEQUENCE: To signal the end of
an input line, press the RETURN key, the
LINE FEED key, and then hold down the CTRL
(control) key while pressing the key marked
C OFF. This end-of-line sequence must be
executed tc signal the end of each input
line. After the end-of-line signal, con-
trol passes to the system. Do not use the
keyboard again until prompted for further
input, except to generate an attention
interruption.

CONTINUATION LINES: When the hyphen is
entered as the last character before the
end-of-1line sequence, the system recognizes
the next line as a continuation. The
hyphen is not entered as part of the line.

CANCELING LINES: When a pound sign (#) is
entered as the last character before the
end-of-line sequence, the entire line is
canceled. The system then expects the
corrected line to be entered without fur-
ther prompting. The pound sign is defined
as the line-kill character.

CORRECTING LINES: To correct a line that
you have started to enter incorrectly,
enter the left arrow (which is obtained by
holding down SHIFT and pressing the "OF
key) once for each character entered since
the first erroneous character, and then
reenter the line from that point on. 1In
cther words, use the left arrow as if it
were the BACKSPACE key on a typewriter.
For instance, if you have typed ERESE and
want to change it to ERASE, your correction
would look like this:

ERESE<=<<ASE

The left arrows are not entered as part
of the line; TSS/360 treats the teletype-
writer left arrow as the equivalent of the
backspace, as mentioned above.

SYSIN and SYSQUT

Now that you have initiated a task, you
can converse with the system as if you
alone were using it. You have unique com-

20 Section U4:

communicating with the System

nmunication paths in the system permitting
it to read from and write to your terminal,
inderendently of all other tasks. You can
thus define work for the system by issuing
commands, and the required programs and
data will be loaded into main storage and
processed, as you specify, regardless of
the work other users may be simultaneously
specifying.

Your task®s input to the system contains
the sequence of commands yocu issue; this
sequence is called SYSIN. Your system
input stream can also include data to be
prestored in the system, or actual input
recoxds to an executing program. When you
are in the conversational mode, your termi-
nal is your task®'s SYSIN device. Your
task's system output stream, called SYSOUT,
is directed to the terminal. It consists
basically of system messages; it may also
contain output from your object programs if
you so choose. Because the terminal is
thus a combined SYSIN/SYSOUT device, it
writes a mixture of the two system streams.

You and every other user have your own
unique SYSIN/SYSOUT. You also have the
following:

e Your own virtual storage space.

e A scheduled time interval in which your
task is executed. :

¢ Your own catalog.

CONVERSATIONAL TASK EXECUTION

After the initialization process is com-
plete, the system asks you to enter your
next command statement; that is, a command
or series of commands and engages in a con-
versation with you. Your part of this dia-
log consists of any command and source lan-
guage statements that you enter during
execution of your task, and your replies to
the messages issued by the system. The
system's part of this dialog consists of
responses to command statements, requests
for next command statements, and messages.
The system issues general information mes-
sages and messages informing you of error
conditions.

INFORMATION MESSAGES: These messages
prompt you tc supply certain information
when a mandatory operand has been omitted,
or inform you of the actions the system has
taken in executing a command statement.

CIAGNOSTIC MESSAGES: These messages warn
you of errors made in entering a command
name or operands; some messages reqguest you
to correct errors.

REQUEST FOR NEXT COMMAND STATEMENT: The
system informs you that it is ready to
accept the next command statement by print-
ing an underscore character(_) in the first
character position of a new line and then
backspacing one space. (The same indica-
tion is given when you are entering command
statements through the terminal card
reader.)

ENTERING COMMAND STATEMENTS: Command
statements can be entered intc the System
from the terminal keyboard, the terminal
card reader (if any), the system card read-
er, or a magnetic input device in which the
information is stored in card-image format.
Command statements can be entered in either
upper- or lowercase form, unless you speci-
fy otherwise by issuing a KA or CA command.

If a command statement contains more
than one command, 21l the commands in it
must be separated by semicolons.

The end of a command statement entered
trom the terminal keyboard is indicated by
pressing RETURN. If a command statement
requires more than one line, one hyphen
must be typed at the end of the line before
RETURN is pressed; the hyphen signals that
the statement is not complete, and will be
continued on the next line.

Note: The LOGON command must begin and end
on the same line.

Command statements that are entered
through the terminal card reader can uti-
lize free-form format {(that is, input is
not restricted teo particular card fields).
The hyphen, following the command operands,
is used to signify that the following line
is a continuation line. For statements
longer than 80 characters, with the termi-
nal EOB switch on, the continuation
character may apvear in any available
column. If the EOB switch is off, the con-
tinuation character is not needed unless
the statement excesds 260 characters.

Note: Nonconversational input through a
computer center's high-speed card reader
does not require the 11-5-9 punch to signi-
fy new line; its inclusion has no effect.
An EOB is automatically inserted by the
card reader at the end of every card. A
continuation character must appear {(in any
column) for command statements that require
more than one card.

Caution: In most cases, tab characters are
treated as spaces and are valid characters
in the command system. However, because of
physical limitations in terminal devices,
displaying tabs of more than 65 consecutive
spaces at the terminal might cause the next
character to be printed in the wrong place.

Part II:

Using

CONVERSATIONAL TASK OUTPUT

The messages produced by the system dur-
ing execution of conversational tasks and
the responses to command statement execu-
tion are printed at your terminal. The
results of processing during task execution
can Le held in data sets within the system.
When you want to examine these data sets,
you can have them printed at your terminal
or have them printed or punched in ncncon-
versational mode. You can also use the
dynamic I/0 facilities of PL/I to obtain
these results directly from execution of
YyOUXr program.

CONVERSATIONAL TASK TERMINATION

When you want to terminate your conver-
sational task, issue a LOGOFF command. The
system then updates its internal accounting
takles to reflect your use of the system
during the task. After issuing LOGOFF,
turn the power switch to "off” if your ter-
minal is an IBM 1050 Data Communications
System or an IBM 2741 Communications Termi-
nal, ox press the CLEAR button on the con-
trol unit if your terminal is a Teletype?
Model 33 or 35 KSR.

If you later want to communicate with
the gsystem again conversationally, you must
again log on as described under "Conversa-
tional Task Imitiation.”®

NONCONVERSATIONAL USE OF THE SYSTEM

While the system is operating conversa-
tionally, for many simultazneous users, it
can also operate nonconversationally, with
batch-type processing jobs, in the back-~
ground. With minor exceptions, the com-
mands availalkle in conversational tasks,
including commands for data manipulation,
program compilation, and program execution,
are alsoc available in nonconversational
tasks. However, in a nopnconversational
task, there is no communication between you
and the system. You might want to execute
a task nonconvexsationally if it is checked
out and you know it will run satisfactori-
ly, or if you cannot stay at the terminal
to converse with the system.

NONCONVERSATIONAL TASK INITIATION

Figure 2 illustrates the various ways in
which you can use the system for nonconver-
sational processing.

The BRCK command is used to continue a
conversational task nonconversationally.

*A trademark of the Teletype Corporation

All the Facilities of the PLF/I Compiler 21

Nonconversational Processing

in your conversational
o T
e BACK commond

o EXECUTE command

o PRINT command

o PUNCH command

® WT command

task, issue:

o PRINT command

» PUNCH commaond
© WT command

e EXECUTE command

Have the operator:
e Issue RT command
® Initiate card reoding

Use RJE Feature to:

e Initiate card reading
@ Issue PRINT command

Figure 2.

See "Mixed Mode Use of the System,™ later
in this section.

You can issue the EXECUTE command in a
conversational or nonccnversational task to
initiate a nonconversational task. The
EXECUTE command names a cataloged command
procedure that is to be executed. The com-
mand procedure functions as the SYSIN data
set for the nonconversational task. It
must begin with a LOGON command; end with a
LOGOFF command; and, you must prestore it
in the system so that it can be retrieved
merely by its name. If private devices are
required in the task, a SECURE command must
immediately follow the LOGON command.

You can issue PRINT, PUNCH, and WT com-
mands in either a conversational or noncon-
versational task. These commands are, in
effect, one-command-procedures. They
initiate nonconversational tasks that
transfer data from a direct access device
to a printer, card punch, or tape unit.

You can also have the coperator initiate
nonconversational tasks for you. You sup-
ply him with a card deck ox magnetic tape;
the contents of the deck or tape depend on
what you want done:

s If you want to enter data into the sys-
tem for later use, that is, prestore
it, you prepare a card deck (or magnet-
ic tape) with a command procedure of
the following form:

[data descriptor cardl
Data cards card images
[%ENDDS cardl }

If you do this, the task set up by the
operator transfers data from the input
medium to a direct access device and cata-
logs it so that it is later availakle to
you by its name. For the format of the
data descriptor card, see Command System
User's Guide.

22 Section 4:

Nonconversational Task Initiation

s If you want to enter a command proce-
dure, you prepare a card deck as
follows:

[LOGON card}
Other commands & data cards
[LOGOFF card]

If you do this, the task that is set up
by the operator executes the commands in
the command procedure you have defined.

You can use the remote job entry (RJE)
feature, if you have access to an RJE
device. (See IBM System/360 Time Sharing
System: Remote Job Entry.)

Communicating with the System

In all of the ways of initiating a non-
conversational task, the system action is
basically the same:

1. The request to set up the nonconversa-
tional task is enqueued and assigned a
batch sequence number.

2. The individual requesting the task
(you or the operator) is sent the
batch sequence number (to later permit
that individual to CANCEL that task if
he wants).

3. The requested task is then executed
when the required resources become
available in the system.

When you use EXECUTE to initiate a non-
conversational task, the commands are
taken, one at a time beginning with LOGON,
from the cataleged command procedure (SYSIN
data set) you specified. The system speci-
fies the task's SYSOUT. You can read SYSIN
input in your programs, in a manner similar
to conversational mode, if the data is
properly positioned in the SYSIN data set.
Similarly, you can write to SYSOUT from
your program. Because there is no prompt-
ing in nonconversational processing, you
must specify every command completely, take
care to have the commands in proper
sequence, and include a SECURE command to

obtain any devices needed for private
volumes.

Nonconversational SYSIN Data Set

A nonconversational SYSIN data set is a
series of command statements and associated
data that are to be acted upon in the
sequence in which they are presented to the
system; they inform the system of the
actions you want performed during execution
of your nonconversational task. You create
a noncconversational SYSIN data set in the
same way you create any other type of data
set. You can construct it at your terminal
by using the text editing commands (or DATA
or MODIFY), or you submit it on punched
cards to the system operator for entry into
the system via the installation's high-
speed card reader. The data set must be
VSAM or VISAM line.

Each nonconversational SYSIN data set
begins with a LOGON command and ends with a
LOGOFF command, unless the mode of the task
is originally conversational. (See "Mixed
Mode Use of the System,”™ below). If any
private I/0 devices are to be used by the
task, the SECURE command must immediately
follow the LOGON command, preceding all
requests for those devices.

Data that is to be read by your program
during execution can be included in the
SYSIN data set; this data must immediately
follow the invocation of your program. The
end-of-data record (0-6-9 punch in column
1), if required, must follow the last data
record. :

NONCONVERSATIONAL TASK EXECUTION

The system analyzes, in the order pre-
sented, each command of the nonconversa-
tional SYSIN data set and executes every
valid command. If a command is invalid,
the system ignores it and continues reading
GYSIN until either a valid command is read
or the task is abnormally terminated.

After reading and executing a valid com-
mand, the system proceeds to process the
next command, continuing until it processes
LOGOFF, which completes the task.

While executing a nonconversational
task, you can also execute a conversational
task, but you cannot communicate with the
nonconversational task or affect its opera-

Part II:

tion except to cancel it by issuing a CAN-
CEL command. To inquire about the status
of each of your uncompleted nonconversa-
tional tasks, you can issue an EXHIBIT
command .

NONCONVERSATIONAL TASK TERMINATION

The execution of a nonconversational
task (except PRINT or PUNCH) is terminated
when its LOGOFF command is executed. When
this occurs, the system automatically
prints the task's SYSOUT data set. This
data set contains the output from commands
that were executed, any data that your pro-
gram writes to SYSOUT, and the compiler-
issued diagnostic messages (if no listings
were requested).

Tasks created by the PRINT and PUNCH
commands terminate when the data transfer
is complete.

You can also terminate a nonconversa-
tional task by issuing a CANCEL command
identifying the task by its batch sequence
number.

MIXED MODE USE OF THE SYSTEM

You can begin a task at your terminal
and then issue a BACK command to have the
task's execution completed nonconversation-
ally. Before issuing the BACK command, you
must store a SYSIN data set that is to
function as the command procedure and, if
desired, input data for the nonconversa-
tional portion of your task; in addition,
you must issue DDEF commands for any pri-
vate volumes you may need. The SYSIN data
set must not contain a LOGON command,
because you have already logged on, but it
should end with a LOGOFF command.

When you issue a BACK command, the sys-—
tem checks that it can provide sufficient
resources to continue your task nonconver-
sationally. If it cannot, the system
rejects your request (and you can try
later).

Once your BACK request is accepted, the
terminal is inactive. If you want to con-
tinue using the terminal, you must log on
again to initiate a new conversational
task.

Using All the Facilities of the PL/I Compiler 23

SECTION 5: COMPILING A PL/I PROGRAM

Each external procedure, including any
procedures nested within it, must be com
piled separately. If appropriate control
statements are inserted among the PL/I
source statements, the compiler can process
two or more external procedures in a single
run by means of batch compilation.

The PL/I compiler translates the proce-
dure's source statements into machine
instructions; the set of machine instruc-
tions produced in one compilation (that is,
for one external procedure) is an object
module. The compiler does not generate all
the machine instructions required to repre-
sent the source program; for frequently
needed services -- computation, error-
handling, data transmission, and storage
management -- it inserts calls to standard
subroutines that are stored in the PL/I
library. These calls will be perxformed
during execution of the object module, when
the services are actually needed.

While it is processing a PL/I source
program, the compiler produces a listing
that contains information about the source
program and the object module derived from
it, together with diagnostic messages
relating to errors or other conditions
detected during compilation. Much of this
information is optional, and is supplied
only in response to the inclusion of appro-
priate "options"™ in the PLIOPT and PLCOPT
operands of the PLI command that invokes
the compiler.

The compiler also includes a facility,
the preprocessor or compile-time processor,
which can modify the source statements or
insert additional source statements before
compilation begins.

After a module {(that is, object module)
is compiled, it is processed by a routine
called the Object Data Set Converter (ODC).
ODC resolves certain constants and changes
the module from Operating System format to
Time Sharing System format. Input to ODC
consists of compiled modules in card-image
format; ocutput consists of executable
modules.

RELATIONSHIP WITH TSS/360

Figure 3 shows how your TSS/360 PL/I -
object module interfaces with the system
Programs .

When the TSS/360 command system encoun-
ters the PLI command, control is trans-

24 Section 5: Compiling a PL/I Program

155/360

PROGRAM
LANGUAGE
CONTROL

PL/1 LIBRARY

PL/1 COMPILER

v
CARD-IMAGE

OBJECT
MODULE

T
{

"

OBJECT DATA
SET CONVERTER

T55/360

hd OBJECT MODULE

sl OUTPUT

o T O INPUT

eLISTINGS (LIST
DATA SET)

—————» PROGRAM
INVOCATION

Relationshigp of a TSS/360 PL/I
Cbject Module with the System
Programs

Figure 3.

ferred to Program Language Control (PLC),
the main interface of the PL/I Compiler
with TSS/360. See Figure 4. PLC supervises:

e Creation of the source data set, which
consists of the PL/I source statements.

s Invocation of the PL/I compiler.

e Printing, or not printing, of compiler-
generated listings.

s Invocation of ODC to convert the com-
piled object module tc TSS/360 code.

In addition, PLC serves as a communication
area that the compiler references to con-

COMMAND
SYSTEM
(PLI COMMAND)
Fr——/7
i DATA SETS |
‘ ———]
EXT EDITOR r
TEXT EDITOR -
BUILD SOURCE ﬂ? SOURCE. nomel
DATA SET | |
! |
|
PROGRAM ™ | MAC. name l
LANGUAGE PL/I COMPILER | i ﬁg;'mﬂ” !
NTROL . name
(PLC) - mmep! LOAD. name :
|
A |
. /] i
OBJECT DATA SET |
CONVERTER (ODC) _l JOBLIB (nome)
CONSTRUCT]
155/3460 MODULE L _J
(OPTIONAL)
T55/360 DATA
MANAGEMENT — OUTPUT
— PRINT LIST
DATA SET — — INPUT
— = PROGRAM
' INVOCATION
COMMAND
SYSTEM

Figure 4. PIC Interfaces

trol its optional features, such as list-
ings and diagnostics, that can be specified
in suboperands of the PLI command.

COMPILER PHASES

The compiler comprises a control module
and a series of subroutines (termed phases)
that are executed under the supervision of
the control module. Each phase performs a
single function or a set of functions. The
control module invokes the phases in accor-
dance with the content of the source pro-
gram and the optional compiler facilities
that you select. Figure 5 is a simplified
flow diagram of the compiler.

The PL/1 compiler, unlike the TSS/360
Assembler and FORTRAN compiler, cannot
function until the source data set, con-
sisting of PL/I statements, has been fully
entered. Therefore, when compilation is
called for, the system searches your cata-
log for a source data set.

The system invokes the text editor if it

does not find a data set with one of these
names:

Part II:

SOURCE TEXT
{FROM SOURCE FILE)

CHAR 48

—

CHAR 60
48-CHARACTER- COMPILE-TIME
SEY PROCESSCR PROCESSOR
60-CHARACTER-SET TEXT j i PROCESSED SOURCE TEXT
VIA MACRO FILE VIA MACRO FiLE
READ-IN
PHASE
DICTIONARY
PHASE
TRANSLATION
PHASES
FINAL-
ASSEMBLY PHASE
OBJECT MODULE
{TO LOAD FILE)

Figure 5. TS5/360 PL/I Compiler:

fied Flow Diagram

Simpli-

® SOURCE.name, where ‘name' is specified
in the NAME operand of the PLI command.

s °‘source data set name', specified in
the SOURCEDS operand of the PLI
commang.

The text editor prompts you with line num-
bers, and you enter your PL/I statements,
typing an _END command when done. (For a
fuller discussion of text editor facili-
ties, see Part III. Any of the techniques
shown there can be used to correct errors
when compiling.) At this point, a source
data set exists; control passes to the PL/I
compiler.

The data that is translated by the com-
piler is known throughout all stages of the
translation as text. Initially, the text
comprises the PL/I source statements that
you submit. At the end of compilation, it
comprises the machine instructions that the
compiler has substituted for the source
statements, plus some information for
reference by ODC.

Using All the Facilities of the PL/I Compiler 25

The source statements can be either pre-
stored in the system or entered via a ter-
minal or a high-speed card reader. The
source statements are passed to the read-in
rhase either directly or by means of one or
two preprocessor phases:

1. If the source statements are in the
PL/XI u48-character set, the 48-
character set processor translates
them into the 60-character set. You
must indicate the need for tramslation
by specifying the CHAR48 option.?t

2. If the source statements contain pre-
processor statements, the compile-time
processor executes the preprocessor
statements in order to modify other
source statements or introduce addi-
tional statements. The compile-time
processor includes a facility for
translating statements written in the
48-character set into the é0-character
set.

To request the services of the compile-
time processor, specify the MACRC option.

Both preprocessors place the translated
source statements in the data set named
MAC.name(0).

The read-in phase takes its input either
from MAC.name(0), from SOURCE.name, or from
a user-specified data set. This phase
checks the syntax of the scurce statements
and removes comments and nonsignificant
blank characters.

After read-in, the dictionary phase of
the compiler creates a dictionary that con-
tains entries for all the identifiers in
the source statements. The compiler uses
the dictionary to communicate descriptions
of the elements of the source program and
the object program between phases. The
dictionary phase of the compiler replaces
all identifiers and attribute declarations
in the source statements with references to
dictionary eptries.)

Translation of the scource statements
into machine instructions involves several
compiler phases. The sequence of events
is:

1. Rearrangement of the source statements
to facilitate translation (for
example, by replacing array or struc-
ture assignments with DO loops that
contain element assignments).

2. Conversion of the statements from the
PL/I syntactic form to an internal
syntactic form termed text.

iThe compiler options are discussed in
Appendix G.

26 Section 5: Compiling a PL/I Program

3. Mapping of arrays and structures to
ensure correct boundary alignment.

4. Translation of text into a form simi-~
lar to machine instructions; this form

is termed pseudo-code.

5. Storage allocation: the compilexr pro-
vides storage for STATIC variables and
generates code to allow AUTOMATIC
storage to ke allocated during execu-
tion of the object module. (The PL/I
likrary subroutines handle the alloca-
tion of storage during execution of
the object module.)

The final-assembly phase translates the
pseudo-code into machine instructions, and
then creates the external symbol dictionary
(ESD) and relocation dictionary (RLD). The
external symbocl dictionary is a list that
includes the names of all subroutines that
are refexred to in the object module but
are not part of the module; these names,
termed external references, include the
names of all the PL/I library subroutines
that will be required when the object
module is executed. The relocation dic-
tionary contains information that enables
absolute storage addresses to be assigned
to locations within the object module when
it is loaded for execution.

HOW TO INVOKE THE COMPILER

You invoke the PL/I compiler by issuing
a PLI command. This command allows you to:

1. Compile a prestored source data set.

2. Create a PL/I source data set and have
it compiled.

3. Convert a PL/I object module into TSS/
360 code.

4. Perform multiple compilations with a
single command.

5. Have compiler-generated listings
printed.

The format of the PLI command is shown
in Table 2.

NAME ~--

: The name by which the program will ke
known. It consists of one to eight
alphameric characters, the first keing
alphatetic. If the name is omitted,
PLC assumes that it is identical to
the name of the source data set ‘if
that is in the correct form. If
neither NAME nor the name of a source
data set is provided, no compilation
takes place and PLC processes the
merge list or goes on to the next set
of PLI parameters.

Table 2. PLI Command
- T ——— e s o o 1
| Operation | Opexand 1
L e e i e e e e i o e NS s i s - o '
L[4 T
| | [NAME=module name] {(,PLIOPT=compiler option listl }
| | |
| PLI | (,PLCOPT=language controller optionsl [, SOURCEDS=source data set namel |
| ! |
| | (,MERGELST=converter input list](,MERGEDS=converter input data set] |
| | |
| | [,MACRODS=intermediate data set namel |
| | |
{ | name ‘
| | [LEXPLICIT= {(name,...) } [,XFERDS=data set name] i
|] *ALL[(name[,...])] |
L i J
PLIOPT -- Table 3. PILC Options
The list of options to be used by the r o e e o e e o 1
compiler. It is considered to be one [PLC Option | Standard Default |
parameter, and the list of compiler — + 4
options following the equal sign in | NOPRINT | PRINT | PRERASE |NOPRINT i
the PLIOPT parameter must therefore be | DIAG|NODIAG | DIAG |
enclosed in parentheses unless only j NOCONT | CONT | NOCONT i
one value is given; the separate | LISTDS | LISTOUT | LISTDS {
options are separated by commas. The | NOCONV |compile/convert |
compiler options are described in { LIMEN= i |
Appendix G. |system defaults |
| BREVITY=] i
t 4]

PLCOPT --

The 1list of options external to the
PL/I compiler that affects the compi-
lation's progression through TSS/360.
These options must be enclosed in
parentheses unless only one value is
given. The options and the standard
default for each are shown in Table 3.

e NOPRINT or PRINT or PRERASE: specifies
whether the listing data set produced
by the compiler is to be printed on a
high-speed printer. NOPRINT indicates
that the data set is not to be printed
as a part of the compilation. You can
at some later time issue a PRINT com-
mand as follows:

PRINT LIST.name(0),,,EDIT

where ‘'name®' is the module name given
in the NAME operand. PRINT indicates
that PLC should issue the print request
automatically. PRERASE indicates that
PLC should cause the data set toc be
printed and erased after printing; this
is equivalent to:

PRINT LIST.name{0)},,,EDIT,ERASE

If LISTOUT is specified, the data nor-
mally written into the list data set is
directed to SYSOUT and no print request
is appropriate. In this case, the
NOPRINT option is assumed, whether or
not it was specified.

Part II:

¢ DIAG or NODIAG:

specifies whether dia-
gnostics are to be directed to SYSOUT.
(This option has meaning only if LISTDS
is specified. If LISTOUT is specified,
then all compiler diagnostics appear on
SYSOUT as a part of the listing data.)
If DIAG is specified, then the diagnos-
tics that appear on SYSOUT are con-
trolled by two command-system operands,
LIMEN and BREVITY, which control the
severity and length of the PL/I diagno-
stics selected for printing on SYSOUT.
LIMEN and BREVITY are explained later
in this section.

The format of the diagnostic message
is:

X IEMnnnni statement no.
text

line no.

where x is the severity of the diag-
nostic and nnnn is the diagnostic
number. For example:

S IEM0182I 15 1600 TEXT BEGINNING
" KEYFROM CK' SKIPPED IN OR FOLLOWING
STATEMENT NUMBER 15

NOCONT or CONT: specifies whether
additional programs are to be compiled
before return to the command system.
NOCONT indicates that there is no con-
tinuation of compilation. If CONT is
specified, then PLC prompts for a new
module name by typing PLI when the

Using All the Facilities of the PL/I Compiler 27

28

first compilation is complete; compila-
tions can continue in this manner in-
definitely. To end the prompting,
enter an underscore with a command, ox
default by pressing the RETURN Key.

NOCONV: Specifies that you want EXPLI-
CIT name transformation only. There is
to be no compilation or conversion; PLC
will not call the compiler or ODC.

LISTDS or LISTOUT: specifies whether
the compiler is to construct a data set
to contain the listing(s) it produces.
LISTOUT indicates that a separate list-
ing is unnecessary and that the list-
ings can be placed in SYSOUT. 1In non-
conversaticnal mode, use of the LISTOUT
option reduces the load on the system.
In conversational mode, placing the
listing on SYSOUT means that the system
will type it at the terminal. Only in
most urgent circumstances should you
consider this alternative.

LIMEN=: LIMEN is the operand name in
the user profile for message-severity
codes; it controls the severity of
diagnostic messages printed on SYSOUT.
If specified in the PLI command, it ap-
plies only to PL/I diagnostics. (See
DIAG, above.) If not specified, the
current value in the system profile is
used.

Lowest Level

LIMEN Value Diagnostic Issued

I (information) Warning messages

W (warning) Error messages

N (normal error) Severe error
messages

X (extreme error) Termination error
rmessage

T {(termination None will be shown
error)

Note: The LIMEN PIC option cannot sup-
press messages issued by the compiler
prior to the read-in phase (i.e., dur-
ing the initialization phase).

BREVITY=: BREVITY is the operand name
in the user profile for message-length
codes; it controls the length of diag-
nostic messages printed on SYSOUT. If
specified in the PLI command, it ap-
plies only to PL/I diagnostics. (See
DIAG, above.) If not specified, the
current value in the system profile is
used.

Section 5: Compiling a PL/1 Program

BREVITY Value Action

¥ (wessage ID) Message ID only is
printed

5 (standard) Full text of message
given

E (extended text) Full text of message
given

Note: Both LIMEN= and BREVITY= must be
followed by only one character. If the
equal sign is not the next-to-last

character, the option is ignored. Thus:

LIMEN=I is wvalid
LIMEN=INFO 1is invalid
LIMEN= I is invalid

SOURCEDS --

The fully gqualified name of the data
set from which the PL/I source state-
ments are to be obtained. Any valid
line data set is allowable. Examples:

1. ABLE

2. A.B.C.D

3. A.B(O)

4. A.B.GO00OOVOO
5. A.B(O)

6. A.B(O)(C)

If the NAME operand is omitted, the
SOQOURCEDS name is used as the name of
the object module. Therefore, if the
NAME operand is omitted and a TSS/360-
executable cobject module is to be
generated, the source data set must
not be in the last-defined job
library, since the object module will
be stored in that library; TSS/360
does not allow a library to contain
duplicate entry names.

If SOURCEDS is omitted, the name
assumed for the source data set is
SOURCE.name, where 'name' is the value
you gave for the NAME operand.

If neither NAME nor SOURCEDS is
given, it is assumed that no compila-
tion is to take place for this itera-
tion of PLC. Other functions involv-
ing ODC may be indicated.

MERGELST --

The names, separated by commas, of
previously compiled modules to ke con-
verted by ODC for execution with the
module being compiled. Each of these
modules should still exist as uncon-
verted modules, that is, as data sets
named LOAD.name(0), where *name' is
the name given by you, or by default,
in the NAME operand. (Initially, the
compiler creates all modules as LOAD.
nane{0) data sets; you should not
erase these data sets until you are
sure that you have all needed copies

of the converted object module.)
Modules that have been stored in job
libraries after processing by ODC can-
not be used in a MERGELST (merge
list).

If the MERGELST operand is omitted
but the LOAD option is indicated in
the PLIOPT list, the PL/I compiler
still generates a merge list contain-
ing the name of the compiled program.

MERGELST is similar to the NAME
cards generated by OBJNM=aaaaaaaa in
IBM Systenv 360 Operating System PL/I.
The merge list can be a single program
name:

BAKER

or a list of program names enclosed in
parentheses:

(FOX, GEORGE, HOW)

The list must not exceed 253 charac-
ters, including blanks and commas.

Duplicate program names in the list
cause reprocessing of those programs.
The only penalty is added processing
time.

If no value is supplied for MERGELST,
then a null string is assumed.

MERGEDS --

Allows you to name a data set as the
source of the merge list. This can be
in lieu of MERGELST or as a supplement
to it. If this data set's organiza-
tion is VS or VI, it is assumed that
each record contains from 0 to 15 pro-
gram names separated by commas.

Spaces are immaterial. PIC and ODC
assume that all programs named in the
MERGEDS for which a LOAD.name{0) data
set exists are to be combined into a
single JOBLIB. Duplicate names cause
duplicate processing but otherwise do
not hurt.

If the data set organization is VP,
then it is assumed that all the member
names for which a LOAD.name(0) data
set exists are to be combined into a
JOBLIB. If the current active JOBLIB
has the same name as MERGEDS, then all
modules in the POD for which a PL/I
LOAD.name{0) data set exists are to be
reprocessed.

If no value is supplied, no data set
1s assumed for MERGEDS.

MACRODS ~-

The data set name to be associated
with the intermediate text. If no
name is given and either CHAR48 or

MACRO optricns are specified, the com—
piler craates a data set named

MAC.name (0}

where ‘name’® is the user-supplied
module name. This data set is nox-
mally erased when the compilation is
completed. (See MACDCK, in Appendix
G.) If you specify a value for
MACRODS, that name is used instead of
MAC.namei{0) for the data set, and it
is retained permanently if MACDCK is
specified, with a compiler-generated
source maxgin of 2 to 72. If a value
is given for MACRODS but neither
CHAR4E8 nor MACRO is specified, the
value is ignored and does not affect
compilation.

Note: When using this data set for
recompilation, a source margin of 2 to
72 must be specified in the SORMGIN
option of the PLI command®s PLICPT
parameter.

EXPLICIT -~

Specifies the entry names of proce-
dures to be loaded on an as needed
basis.

The implementation maximum for the
curulative length of all the PR
entries in the ESD ({(see “External Sym-
bol Dictionary,® later in this sec-
tion) is 4096 bytes. This normally
results in a maximum of approximately
974 object modules per program.
However, a larger program can ke
executed if one or wore of its proce-~
dures are called dynamically, that is,
only when actually needed during
execution.

Dynamic calls can alsc be used to
avoid unnecessary overhead in the
invoking »of a program. When normal
calls arxe used, subroutines {that is,
all routines for which there are CALL
statements?) are loaded and linked to
the calling routines whether or not
they will be needed during execution.
On the other hand, loading and linking
of dynamically called procedures is
deferred until execution of the CALL
statements.

Names specified in the EXPLICIT
operand are padded on the left with a.
(You can specify a different pad
character by issuing the command
DEFAULT PADCHAR=pad-character.) The
pad characters are inserted into the
object module, not inte the source
data set. <Calls to the padded names
function as calls tc a transfer module
that calls the original names dynamic—-
ally. You must create the transfer

Part II: Using All the Facilities of the PL/1 Compiler 29

30

module yourself; Example 18, in "Part
IT11: Examples™ shows how.

name

(name,...}

Specifies one or more entry names to
be padded. These names must appear in
CALL statements in the module bheing
processed.

*ALLI (namef{,...1)1

Specifies that all called names except
those within parentheses and except
names beginning with IHE (that is,
names of PL/I library modules, for
which dynamic calls are automatically
generated) will be padded.

Names unacceptable to basic assembler
language or to the PL/I compiler will
not be padded.

Using the default value of & for
PADCHAR:

Section 5:

Original

Name Padded Name

PROC aPROC

aPROC aaPROC

NO_GOOD unacceptable to basic
assembler language; not
padded

NOT2BIG aNOT2BIG

ONEZMANY unacceptable to PL/I com-

piler; not padded.

You should avoid starting a procedure
name with the pad character that you
use. If procedures PROC and aPROC
were in the same program and their
names were padded to form aPROC and
3aPROC, as in the akove example, pro-
cedure APROC could not execute,

If you issue the command DEFAULT
MAP=Y, the system reports on the
results of EXPLICIT processing. A
sample report:

MAP FOLLOWS FOR MODULE XXX
ABC GENERATED AS aABC
XYZ GENERATED AS 2XYZ
DOIT RESOLVED TO #DOIT
ABC RESOLVED TO a3ABC
DOIT RESOLVED TO #DOIT

In this example, you have used the
XFERDS operand to specify a transfer
data set (the main part of the transf-
er module), and you are updating the
transfer data set with new entries.
"GENERATED AS™ means that the name was
padded and entered in the transfer
data set. “RESOLVED TO" means that

Compiling a PL/I Program

the name 'was padded and was already in
the transfer data set.

The EXPLICIT operand is used in con-
junction with the UPDTXFER default
value. Refer to the following
description of the XFERDS operand for
an explanation of UPDTXFER.

XFERDS --
The name of the transfer data set, the
core of the transfer module. The
transfer data set is generated as a
line data set of the form:

0-7 line-number

8 X'o0

9-16 generated name
17 blank

18-24 PLICALL

25-27 blank

28-35 entry-name

If you include the XFERDS operand, the
system creates/maintains the transfer
data set for you. If you omit this
operand, you must createsmaintain your
own transfer data set.

A default value, UPDTXFER, can be used
with the EXPLICIT and XFERDS operands
to tell the system exactly how to gen-
erate explicit calls. See Table 4.
The IBM-supplied value for UPDTXFER is
N.

HOW TO STOP THE COMPILER

In most cases, the simplest way to stop
a blundered-into compilation is to press
the attention key. If you have been enter-
ing source statements and have not yet
typed _END, instead of pressing the atten-
tion key you can type _|END. (The vertical
kar signals that compilation is not
wanted.) Like the attention interruption,
the _|ENLC command returns your task to the
command mode instead of passing control to
the PL/I compiler; in addition, it closes
the source data set and makes a clean exit
from the text editor. Use this command if
you want to save the source data set for a
processor other than the text editor.

Source data sets should be erased when
they are no longer needed.

DATA SETS ACCESSED BY THE COMPILER

The compiler accesses several standard
data sets, the number depending on the
optional facilities that you request.
These are shown in Table 5. You do not
have to issue DDEF commands for these

files, unless you specify an INCLUDE

library. See "Invcking the Preprocessor,®
in this section.

Table 4. pDynamic Calls -- Padding and

Entering of Entry Nawes by the System

| S e - k] T h]
|] UPDTXFER=Y] UPDTXFER=N |
1 — ¢ 4
{ | name is... | name is... |
e o + 1
| EXPLICIT=name | | |
l { padded in module | padded in module |
| name in transfer data set | | |
1 — - + + 4
| EXPLICIT=name | padded in module | padded in module |
|] | I
| name not in transfer data set | entered in transfer | not entered in |
| | data set | transfer data set i
- 3 4 4
| EXPLICIT omitted or | | |
| EXPLICIT=(name;, ...} | padded in module { ignored |
| where name not in list i | 1
! i | i
| name in transfer data set {] |
k- t + — {
| EXPLICIT omitted or | | |
| EXPLICIT=(namej, ...} | ignored | ignored {
| where name not in list | | |
| i | |
| name not in transfer data set | | i
[— + + i
| EXPLICIT=*ALL(name) | { |
| | ignored | ignored {
| name in transfer data set { | {
p--—= + } 4
| EXPLICIT=*ALL(name) | | |
| | ignoxed | ignoxed |
| name not in transfer data set } { |
L 4 i |
Table 5. Standard Data Sets for Compilation

- - R v T h]
| | i | Associated i
| Purpose | DSNAME | DDNAME i Option |
—— - + frmee + :
|Primary input (PL/I source statements) | SOURCE.name or|{PLIINPUT or | - |
| |user-specified|user-specified| {
p-mm - $--——- + + {
|Object code data set output (will be con-|LOAD.name(0) |PLILOAD | PLIOPT=LOAD, or|
jverted by ODC for TSS/360 use) | i | PLIOPT=DECK {
b-—- + + % :
| Storage for: |MAC.name(0) or|PLIMAC | |
| |user-specified| {]
| 1. Translated source statements when | | | PLIOPT=CHAR48 |
| 48-character set used | i i |
| | | | PLIOPT= |
| 2. Source statements generated by | | { MACRO, COMP i
| preprocessor | | | |
pmm $ t + i
|Listing {LIST.name(0) |PLILIST {PLCOPT=LISTDS |
p-—- ! —4— + -1
|Library containing source statements |USERLIB or | SYSULIB or | PLIOPT=MACRO |
|for insertion by preprocessor |user-specifieduser-specifiedj| |
*_____ - L L i __{
| Note: ‘name' is the module name. |
[8 F]

Part IXI: Using All the Facilities of

the PL/I Compilexr 31

CONTENTS OF THE SOURCE DATA SET AND THE
OBJECT MODULE

A PL/I object module contains one, and
only one, external procedure. Consequent-
ly, a source data set must not be struc-
tured like this:

A: PROCEDURE;

END;

B: PROCEDURE;

END;
There are two alternatives:

e Create two separate source data sets,
one for procedure A and one for proce-
dure B, for compilation into two separ-
ate object modules, or

s Nest one of the procedures within the
other.

FORMAT OF SOURCE LINES

Lines of the source data set can be up
to 100 characters long. Margins can be set
within this range, using the SORMGIN option
of the PLI command. If you set margins,
you can put information such as comments,
card numbers, etc., cutside the margins.

CHARACTER SETS -- KEYBOARD FORMAT

KA and KB commands are used to specify
the character set to be used during key-
board input. KA specifies the full EBCDIC
character set during input. KB specifies
that the lowercase characters f(a-z and !%)
are translated intoc their uppercase equiva-
lents (A-Z and $#2 respectively).

ENTRY OF KEYBOARD SQURCE STATEMENTS FOR
LATER PUNCHING AND RECOMPILATICN

Entry of source statements so that they
can be later punched out and reentered in
card format is governed by the following
considerations:

1. Source lines reside in a line data set
in which the initial input source line
is preceded by eight characters -- a
7-byte zoned-decimal key and a
character specifying to TS5/360 that
the source line was entered in card
form or at the terminal keyboard.

32 Section 5: Compiling a PL/I Program

2. A continued line (hyphen preceding the
carriage return) when punched and
reentered in card format retains the
hyphen unless precautions are taken to
remove it.

3. Keylkoard input positioning require-
ments are much more flexible than for
card input.

LISTING

During compilation, the compiler
generates a listing that contains informa-
tion about the compilation and about the
source and load modules. It places this
listing in the list data set (defined as
DSNAME=LIST.module name), if the PLCOPT
cperand of the PLI command contains the
suboperand LISTDS, or if that suboperand is
defaulted. If the listing suboperand is
specified as LISTOUT, the listing is writ-
ten to SYSOUT and the PRINT suboperand is
ignored. SYSOUT is the terminal in conver-
sational mode, and a printer in nonconver-
saticnal mode.

The following description of the listing
refers to its appearance on a printed page.

The listing comprises a small amount of
standard information that always appears,
together with those items of optional
information requested or applied by default
in the PLIOPT operand of the PLI command.
Table 6 lists the optional components of
the listing and the corresponding compiler
options.

The first page of the compiler listing
is identified by a heading giving the date
and time, the title ®"TS5/360 PL/I Compil-
exr®, and the version number. Starting with
this page, all the pages of the listing are
numbered sequentially in the top right-hand
corner. Page 1 also includes a list of the
options specified for the compilation,
exactly as they are written in the PLIOPT
opexrand of the PLI command.

The listing always ends with a statement
that no errors or warning conditions were
detected during the compilation, or with
one or more diagnostic messages. Agprpendix
B lists all compiler messages.

The following paragraphs describe the
optional parts of the listing in the oxder
of appearance on the listing.

OPTIONS USED FOR THE COMPILATION

If the option OPLIST applies, a complete
list of the options for the compilation,
including the default options, follows the
statement of the options specified in the
PLIOPT Parameter of the PLI command.

Table 6. Optional Components of Compiler
Listing

r T . 1 4
| Listings | Option Required |
i i e |
r Ll

| Cptions for the com- |]
{ pilation | OPLIST |
| | |
| Preprocessor input | SOURCE2 i
Source program	SOURCE
Statement nesting	
1level	NEST
1 i	
{ Attrxibute table	ATR
	!
i Cross-reference table	XREF {
Aggregate-length	i
table	ATR or XREF
i	
External symbol }	
{ dictionary	EXTREF
Object mcdule	LIST
Diagnostic messages	
for severe errors,	FLAGS, FLAGE,
errors, and warnings	FLAGW {
L | & J

PREPROCESSOR INPUT

If both the options MACRO and SOURCE2
apply, the compiler lists the input state-
nents to the preprocessor, one record per
line. The records are numbered sequential-
ly at the left.

1f the compiler detects an error or the
possibility of an error during the prepro-
cessor phase, it prints a message on the
page or pages following the listing of pre-
processor input. The format and classifi-
cation of the error messages are exactly as
described for the compilation exror mes-
sages, under “"Diagnostic Messages®, below.

SOURCE PROGRAM

If the option SOURCE applies, the com-
piler lists the source program input, one
record per line; if the input statements
include carriage control characters, the
lines are spaced accordingly. The state-
ments in the source program are numbered
sequentially by the compiler, and the numb-
er of the first statement in the line
appears to the left of each line in which a
statement begins.

Between the statement number and the
source line, appears a seven-character VI
line number. This is incremented by 100
for each line.

Part II:

If the source statements were generated
by the preprocessor, columns 73-80 contain
the following information:

Column

73-717 Input record number from which the
source statement was generated.
This number corresponds to the
record number in the preprocessor
input listing.

78,79 Two-digit number giving the maxi-
mum depth of replacement for this
line. If no replacement occurred,
the columns are blank.

80 *E* signifies that an error

cccurred while replacement was
being attempted. If no error
occurred, the column is blank.

STATEMENT NESTING LEVEL

If the options SOURCE and NEST apply,
the block level and the DO level are
rrinted to the right of the statement numb-
er under appropriate headings:

STMT LEVEL NEST

1 000100 A: PROC OPTIONS
(MAIN) ;

2 1 000200 B: PROC (L)

3 2 000300 DO I=1 to 10;

4 2 1 000400 DO J=1 to 10;

5 2 2 000500 END;

6 2 1 000600 BEGIN;

7 2 1 000700 END;

8 2 1 000800 END B;

9 1 000900 END A;

ATTRIBUTE AND CROSS-REFERENCE TABLE

If the option ATR applies, the cowmpiler
prints an attribute table containing an
alphameric list of the identifiers in the
rrogram together with their declared and
default attributes. If the option XREF ap-
plies, the compiler prints a cross-
reference table containing an alphameric
list of the identifiers in the program
together with the numbers of the statements
in which they appear. 1If both ATR and XREF
apply, the two tables are combined.

Except for file attributes, the attri-
butes printed are those assigned after con-
flicts have been resolved and defaults ap-

Using All the Facilities of the PL/I Compiler 33

plied. Since the file attributes are not
analyzed until the attribute list has been
prepared, the attributes listed for a file
are those supplied by you, regardless of
conflicts.

If either the ATR or the XREF option ap-
plies, the compiler also prints an
aggregate—length table that gives, where
possible, the lengths in bytes of all major
structures and all non-structured arrays in
the program.

Attribute Table

If an identifier was declared explicit-
ly, the number of the DECLARE statement is
listed under the heading DCL NO. The
statement numbers of statement labels and
entry labels are also given under this
heading.

The attributes INTERNAL and REAL are
never included; they can be assumed unless
the conflicting attributes EXTERNAL and
COMPLEX appear.

For a file identifier, the attribute
EXTERNAL appears if it applies; otherwise,
only explicitly declared attributes are
listed.

For an array, the dimension attribute is
printed first; the bounds are printed as in
the array declaration, but expressions are
replaced by asterisks.

For a character string or a bit string,
the length preceded by the word STRING is
printed as in the declaration, but an
expression i1s replaced by an asterisk.

Cross—Reference Table

If the cross—-reference table is combined
with the attribute table, the numbers of
the statements in which an identifier
appears follow the list of attributes for
that identifier. The number of a statement
in which a based-variable identifier
appears is included, not only in the list
of statement numbers for that variable, but
also in the list of statement numbers for
the pointer associated with it.

Agqgreqate Length Table

Each entry in the aggregate length table
consists of an aggregate identifier pre-
ceded by a statement number and followed by
the length of the aggregate in bytes.

The statement number is the number eith-
er of the DECLARE statement for the aggre-
gate or, for a CONTROLLED aggregate, of an
ALLOCATE statement for the aggregate. An
entry appears for every ALLOCATE statement
involving a CONTROLLED aggregate, since

34 Section 5: Compiling a PL/I Program

such statements have the effect of changing
the length of the aggregate during execu-
tion. Allocation of a BASED aggregate does
not have this effect, and only the entry
for the DECLARE statement appears.

The length of an aggregate may be
unknown at compilation, either because the
aggregate contains elements having adjust-
able lengths or dimensions, or because the
aggregate is dynamically defined. 1In these
cases, the word *'ADJUSTABLE®' or 'DEFINED®
arpears in the LENGTH IN BYTES column.

An entry for a COBOL mapped structure,
that is, for a structure into which a COBOL
record is read or from which a COBOL record
is written, has the word *'{COBOL)?
appended, but such an entcy appears only if
the structure does not consist entirely of:

1. doubleword data, or

2. fullword data, or

3. halfword binary data, ox

4. character string data, or
S. aligned bit string data, or

6. a mixture of character string and
aligned bit string data.

If a COBOL entry does appear, it is addi-
tional to the entry for the PL/I-mapped
version of the structure.

STORAGE REQUIREMENTS

1f the option SOURCE applies, the com-
Filer lists the following information under
the heading STORAGE REQUIREMENTS on the
page following the end of the aggregate-
length table:

1. The storage area in bytes for each
procedure.

2. The storage area in bytes for each
BEGIN block.

3. The storage area in bytes for each ON-
unit.

4. The length of the text control section,
(The machine instructions in the
object module are grouped in blocks
called control sections, or CSECTs.)
The text control section contains the
executakle instructions.

5. The length of the static internal con-
trol section. This control section
contains all storage for variables
declared STATIC INTERNAL.

TABLE OF OFFSETS

If the options SOURCE, NOSTMT, and
NOLIST apply, the compiler lists, for each
primary entry point, the offsets at which
the various statements occur. This infor-
mation is found, under the heading TABLE OF
OFFSETS AND STATEMENT NUMBERS WITHIN PROCE-
DURE, following the end of the storage
requirements table.

EXTERNAL SYMBOL DICTIONARY

If the option EXTREF applies, the com-
piler lists the contents of the external
symbol dictionary (ESD) for the object
module. The ESD is a takle containing all
the external symbols that appear in the
module. (An external symbol is a name that
can be referred to in a control section
other than the one in which it is defined.)
The information appears under the following
headings:

SYMBOL
An 8-character field that identifies
the external symbol.

TYPE
Two characters from the following list
to identify the type of ESD entry:

SD - Section definition: the name of
a control section within this
module.

CM - Common area: a type of control
section that contains no execut-
able instructions. The compiler
creates a common area for each
non-string element variable
declared STATIC EXTERNAL without
the INITIAL attribute.

ER - External reference: an external
symbol that is not defined in
this module.

PR - Pseudo-register: a field in a
communications area, the pseudo-
register vector (PRV), used by
the compiler and the library
subroutines.

LD - Label definition: the name of an
entry point to the external pro-
cedure other than that used as
the name of the program control
section.

iD
Four-digit hexadecimal number: the
entries in the ESD are numbered

sequentially, commencing from 0001.

Part II:

ADDR
Hexadecimal representation of the
address of the symbol: this field is
not used by the compiler, since the
address is not known at compile time.

LENGTH
The hexadecimal length in bytes of the
control section (SD, CM, and PR
entries only).

Standard ESD Entries

The external symbol dictionary always
starts with seven standard entries (Table
7).

1. Name of the text control section (the
control section that contains the
executable instructions). This name
is the first label of the external
procedure statement.

2. Name of the static internal control
section f{which contains storage for
all variables declared STATIC INTERN-
AL). This name is the first lakel of
the external procedure statement,
padded on the left with asterisks to
seven characters if necessary, and
extended on the right with the
character A.

3. IHEQINV: pseudo-register for the
invocation count (a count of the numb-
er of times a block is invoked
recursively).

4. TIHESADA: entry point of the library
routine that obtains automatic storage
for a block.

5. IHESADB: entry point of the library
routine that obtains automatic storage
for variables whose extents are not
known at compile time.

Table 7. Typical Standard ESD Entries
{SYMEOL TYPE ID ADDR -—LENG;E}
{FIGS SD 00601 000000 00033A{
:***FIGSA SD 0002 000000 OOOOSF§
{IHEQINV PR 0003 000000 ooooou;
gxnssann ER 0004 000000 i
%IHESADB ER 0005 000000 }
%IBEQERR PR 0006 000000 000000:
iIHEQTIC PR 0007 000000 00000&{
4

Using All the Facilities of the PL/I Compiler 35

6. IHEQERR: pseudo~-register used by the
library error-handling rcutines.

7. IHEQTIC: pseudo-register used by the
library multitasking routines.

Other ESD Entries

The remaining entries in the external
symbol dictionary vary, but generally
include the following:

1. Section definition for the #-byte con-
trol section IHEMAIN, which contains
the address of the principal entry
point to the external procedure. This
control section is present only if the
proceduxe statement includes the
option MAIN.

2. Section definition for the control
section IHENTRY (always present}.
Execution of a PL/I program always
starts with this control section,
which passes control to the appropri-
ate initialization subroutine of the
PL/1 library; when initialization is
complete, control passes to the
address stored in the control section
IHEMAIN. ({Initialization is required
only once during the execution of a
PL/I program, even if it calls another
external procedure; in such a case,
control passes directly to the entrxy
point named in the CALL statement, and
not to IHENTRY.)?*

3. LD-type entries for all names of entry
points to the external procedure
except the first.

4. A PR-type entry for each block in the
compilation. The name of each of the
pseudo-registers conprises the first
label of the external procedure state-
ment, padded on the left with
asterisks to seven characters if
necessary, and extended on the right
with an eighth character selected from
one of two tables used by the compil-
er. If the number of blocks exceeds
the number of characters in the first
table, the first character of the
pseudc-register name is replaced by a
character taken from the second table,
and the last character recycles. If
the first character thus overwritten
is the start of the external procedure
name rather than an asterisk, the com-
piler issues a warning message {(since
identical pseudo-register names could

ipalthough IHEMAIN and IHENTRY are produced
by the compiler as described, they are
combined into a single section during ODC
conversion.

36 Section S: Compiling a PL/L Program

be generated from different procedure
names).

These pseudo-registers are termed dis-
play pseudo-reqgisters.

Example:
X: PROC;
¥Y: PROC;
Z: BEGIN;
END X;

The display pseudo-registers for X, Y,
and Z would have the names:

ETTTTT N e:!
T REYO
**E+ % XD

5. ER-type entries for all the library
routines and external routines called
by the program. The list includes the
names of library routines called
directly by compiled code (first-level
routines), and the names of routines
that are called by the first-level
routines.

6. CM-type entries for non-string element
variables declared STATIC EXTERNAL
without the INITIAL attribute.

7. SD-type entries for all other STATIC
EXTERNAL variables and for EXTERNAL
file names.

8. PR-type entries for all file names.
For EXTERNAL file names, the name of
the pseudo-register is the same as the
file name; for INTERNAL file nanmes,
the compilex generates names as for
the display pseudo-registers.

9. PR-type entries for all controlled
variables. For external variables,
the name of the variable is used for
the pseuvdo-register name; for internal
variables, the compiler generates
names as for the display
pseudo-registers.

OBJECT MODULE

If the option LIST applies, the compiler
generates a map of the static internal con-
trol section and lists the machine instruc-
tions of the object program in a form simi-
lar to System/360 assembler language. The
machine instructions are described in 1BM
System/360: Principles of Operation. The

following descriptions of the object module
listings include many terms that can be
properiy defined only in the context of an
explapation of the mechanism of compilation
and the structure of the object program;
such an explanation is beyond the scope of
this manual.

Both the static internal storage map and
the object program listings start on a new
page. If the LINECNT option specifies 72
or fewer lines per page and the number of
lines to be printed (including skips)
exceeds the specified line count, double-
column format is used. If the LINECNT
option specifies more than 72 lines per
page or the number of lines to be printed
(including skips) is less than the speci-
fied line count, single-columnn format is
used.

Static Internal Storage Map

The first 52 bytes of the static intern-
al control section arxe of a standard form
and are not listed. They contain the fol-
lowing information:

F*4096"
AL4(SI.+X'1000")
AL4(SI.+X'2000%)
AL4(SI.+X"3000")
ALY (SI.+X*4000")
AL4(SI.+X*5000")
ALU(SI.+X'6000%)
AL4(SI.+X*7000%)
VL4 (IHESADA)

VL4 (IHESADB?
A{DSASUB)
A(EPISUB)
A(IHESAFA)

RREBREBRRERREA

SI. is the address of the static intern-
al control section, and IHESADA, IHESADB,
and IHESAFA are library subroutines. DSA-
SUB and EPISUB are compiler routines for
getting and freeing dynamic storage areas
(DSAs) .

The remainder of the static control sec-
tion is listed, each line comprising the
following elements:

1. Six-digit hexadecimal offset.
2. Up to eight bytes of hexadecimal text.

3. Comment indicating the type of item to
which the text refers; a comment
appears against the first line only of
the text for an item.

The following abbreviations are used for
the comments (xxx indicates the presence of
an identifier):

DED FOR TEMP Data element descriptor

or DED for a temporary or for a
programmer's variable.

FED Format element descriptor.

DV..XxXx Dope vector for a static

variable.

Part II:

DVD.. Dope vector descriptor.

D.V. SRELETON Dope vector skeleton for

an automatic or controlled

variable.

RDV.. Record dope vector.

A. XXX Address of extermal con-
trol section or entry
point, or of an internal
label.

ARGUMENT Argument list skeleton.

LIST

CONSTANTS Constants.

SYMTAB Symbol table entry.

SYM. . Xxx Symbolic name of label
constant or label
variable.

FILE. .xxx File name.

ON. .xxx Programmer-declared
ON-condition.

ATTRIB File attributes.

XXX Static wvariable. If the

variakle is not initia-
lized, no text appears
against the comment, and
there is also no static
offset if the variable is
an array. (This can be
calculated from the dope
vector if required.)

Object Program Listing

The object program listing includes com-
ments of the following form as an aid to
identification of the functions of the com-
ponents of the program:

s STATEMENT NUMBER n - identifies the
start of the code generated for source
listing statement number n.

e PROCEDURE xxx - identifies the start of
the procedure labeled xxx.

¢ REAL ENTRY xxx - heads the initializa-
tion code for an entry point to a pro-
cedure labeled xxx.

¢ PROLOGUE BASE - identifies the start of
the initialization code common to all
entry points to that procedure.

¢ PROCEDURE BASE - identifies the address
loaded into the base register for the
procedure.

Using All the Facilities of the PL/I Compiler 37

o APPARENT ENTRY xxx - identifies the
point of entry into the procedure for
the entry point labeled xxx.

e END PROCEDURE xxx - identifies the end
of the procedure labeled xxx.

e BEGIN BLOCK xxx - indicates the start
of the begin block with label xxx.

¢ END BLOCK xxx - indicates the end of
the begin block with label xxx.

e INITIALIZATION CODE FOR xxx - indicates
that the code following performs ini-
tial value assignment or dope vector
initialization for the variable xxx.

Wherever possible, a mnemonic prefix is
used to identify the type of operand in an
instruction, and where applicable this is
followed by a source program identifier.
The following prefixes are used:

A.. Address constant.

AE.. Apparent entry point {(point in
the procedure to which control
passed from the prologue).

BLOCK. Label created for an otherwise
unlabeled block (followed by the
number of the block).

C.. Constant (followed Ly a hexade-
cimal dictionary reference).

CL. A label generated by the compil-
er (followed by a decimal number
identifying the labell).

DED.. Data element descriptor.

DV.. Dope vector.

DVD.. Dope vector descriptor.

FVDED.. Data element descriptor of func-
tion value.

FVR.. Function value.

IC. Invocation count pseudo-register,

ON.. ON-condition name.

PR.. Pseudo-register.

RDV.. Record dope vector.

RSHW. . Return switch.

SI. Address of static internal con-
trol section.

SKDV.. Skeleton dope vector, followed

by hexadecimal dictionary
reference.

38 Section 5: Compiling a PL/I Program

SKPL.. Skeleton parameter list, fol-
lowed by hexadecimal dictionary
reference.

ST.. Symbol table entry.

SYM.. Symbolic representation of a
label.

TCA.. Temporary control area: a word
containing the address of the
dope vector of the specified
temporary.

TMP. . Temporary, followed by hexade-
cimal dictionary reference.

TMPDV.. Temporary dope vector, followed
by hexadecimal dictionary
reference.

vVo.. Virtual origin.

WP1.

WP2. Workspace, followed by decimal

WSi. number of block which allocates

Wsz2. workspace.

WS3.

A listing of the various storage areas
is not produced, but the addresses of
variables can be deduced from the okject
rrogram listing.

Example: A=B+10Fl; in the source program
produces:
0002cA 78 00 B 058 LE 0,B
0002CE 7A 00 B 064 AE 0,C..08F4
00602D2 70 00 B 060 STE 0,A

A and B are STATIC INTERNAL variables at an
offset of X'60° and X*'58', respectively,
from the start of the control section.

ECIAGNOSTIC MESSAGES

The compiler generates messages that
descrike any errors or conditions that may
lead to error that it detects during compi-
lation. Messages generated by the prepro-
cessor appear in the compiler listing imme-
diately after the listing of the statements
processed by the preprocessor; all other
messages are grouped together at the end of
the listing. The messages are graded
accoxrding to their severity:

A warning message calls attention to a
possible error, although the statement to
which it refers is syntactically valid.

An error message describes an attempt
made by the compiler to correct an

erroneous statement {(although it may not
specify the corrective action).

A severe error message specifies an error
that cannot be corrected by the compiler.
The incorrect statement or part of a
statement is deleted, but compilation
continues., However, if a severe error is
detected during the preprocessor stage,
compilation is terminated after the com-
piler has listed the source program.

A termination error message describes an
error that forces the termination of the
compilation.

The compiler lists only those messages
with a severity equal to or greater than
that specified by the FLAG compiler option:

Type of Message Option
warning FLAGW
error FLAGE
severe error FLAGS

termination error Always listed
kach error message is identified by an 8-
character code:

1. The first three characters are 1EM,
which identify the message as emanat-
ing from the PL/I compiler.

2. The next four characters are a 4-digit
message number.

3. The last character is the letter I,
which is the code for an informative
message.

Appendix H lists all the compiler mes-
sages in numeric Seguence.

Messages issued by PLC and ODC are iden-
tified by the prefixes CFBAA and CFBAB.
These messages are explained in the System
Messages publication.

MULTIPLE COMPILATIORS

The multiple compilation facilities of
the TSS/360 PL/I compiler allow you to com-
pile more than one object module in a
single execution of the compiler. Multiple
compilation can increase compiler through-
put by reducing system overhead.

Two forms of multiple compilations are
possible: the CONT option of the PILCOPT
operand of the PLI command, and the
*PROCESS statement. Both forms can be used
in a single execution of the compiler.

Part II:

CONT CPTLION

By specifying the COWT option in the
PLCOPT parameter, you notify Program Lan-
guage Control (PIC) that a new compilation
or series of compilations is to be
initiated after the current compilation ox
series of compiiations is completed; PLC
will prompt you for the new module name by
typing PLI. The PLCOPT and PLIOPT parame-
ters are unchanged frow the first
compilation.

PIC tr=ats the new compilation(s) as an
entirely separate unit; in effect, PIC acts
as if a new PLI command has been issued
with a new mocdu aame, the only difference
being that no exit is taken from PLC to the
Command System and the user, when the com-
pilation is complete. fach compilation or
series of compilations initiated by either
the PLI command itself or by the CONT
option is called an iteration of the PLI
command. Each iteration of PLI invokes the
PL/Y compiler {and the text editor, if
requixed) and then passes the programs that
were compiled in that iteration together
with all compiled modules listed in the
rerge list or merge data set for that
iteration, to the Object Data Set Converter
(ODC) for processing. ODC is invoked only
once in each iteration; when ODC has
finished its processing, PLC starts on the
next iteration, if CONT was specified.

There is no limitation on the number of
iterations of the PLI command that can be
initiated through CONT options.

THE #*PROCESS STATEMENT

A number of source programs can be com-
piled consecutively within one iteration of
PLI. This is accomplished by following the
first program in that iteration with a
*PROCESS statement. The #PROCESS statement
informs the ccapiler that a new program is
to be compiled. The statement is followed
by a PL/I aption list, identical in every
respect with the PLIOPT parameter of the
PLYI command except that the name you give
to the new program must be specified in the
option OBJNk=aaaaaaaa where aaaaaaaa stands
for the program name of one to eight
alphameric characters, the first of which
is alphaketic.

Since only PLIOPT options can be speci-
fied in this option list, all the PIC
options specified in the parameters of that
iteration apply unchanged. All batched
compilations to be initiated with #PROCESS
must therefore reside in the same source
data set, and all those specified with the
LOAD option are placed in the same merge
list.

Using All the Facilities of the PL/I Compiler 39

Output listings from one iteration of
PLI will be directed to one listing data
set where they will be formatted consecu-
tively. The name associated with this
listing data set is the name of the first
program in the iteration. Compiled modules
in the form LOAD.name(0) are, however,
separate, and each such module has asso-
ciated with it the program name specified
by the NAME parameter for the first compi-
lation and by the OBJNM option for subse-
quent compilations. If the name given for
OBJNM repeats a name already used once as a
program name in that iteration, the module
compiled earlier is erased and replaced by
the new module.

Format of the *PROCESS Statement

The format ¢f the *PROCESS statement is:

#*PROCESS ('options®);

where 'options' indicates a list of compil-
er options exactly as specified in the
PLIOPT operand of the PLI command; the list
of options must be enclosed within apos-
trophes. The asterisk must be in the first
byte of the record, and the keyword PROCESS
may follow in the next byte (column) or
after any number of blanks. Blanks are
also permitted between:

‘1. The keyword PROCESS and the option-
list delimiter (left parenthesis).

2. The option-list delimiters and the
start or finish of the option list.

3. The option-list delimiter and the
semicolon.

The options in the option list can
include any of those described in Appendix
G. The options must be separated by com-
mas, and there must be no embedded blanks.
The options apply to the compilation of the
source statements between that #PROCESS
statement and the next *PROCESS statement.
If you omit any of the options, the default
values apply; there is no carryocver from
the preceding *PROCESS statement. The
number of characters is limited only by the
length of the record. If you do not want
to specify any options, code

*PROCESS;

THE OBJNM OPTION: The OBJNM option is used
in the option string of a *PROCESS state-
ment to give a module nawme to the new
module. It is specified as OBJNM=a, where
*a' is a one-to-eight character alphameric
name.

40 Section 5: Compiling a PL/I Program

COMPILE-TIME PROCESSING

The MACRO option or the CHARUS8 option in
the PLIOPT options cause compile~time pro-
cessing to be initiated. You can save the
output from compile-time processing by spe-
cifying MACDCK in the PLIOPT operand. If
you would like your own DSNAME for this
wacro file, you can specify it in the
MACRODS operand. You can then use the
intermediate data set, which will have the
name given by MACRODS, as input in future
compilations, saving time by bypassing
compile-time processing.

The compile~time facilities of the TSS/
360 PL/I compiier are described in PL/I
Lanqguage Reference Manual. These facili-

ties allow you to include in a PL/I program
statements that, when they are executed by
the preprocessor stage of the compiler,
rodify your source statements or cause
source statements to be included in yourx
rrogram from a library.

INVOKING THE PREPROCESSOR

The preprocessor stage of the compiler
is executed only if you specify the option
MACRO. If no value is specified for the
MACRODS parametexr, the compiler creates the
data set MAC.name(0) to hold the prepro-
cessed source statements until compilation
kegins.

The term MACRO owes its origin to the
similarity of some applications of the
compile-time facilities to the macro lan-
quage available with such processors as the
Systens 360 assembler. Such a macro lan-
guage allows you to write a single instruc-
tion in your program to represent a
sequence of instructions that have pre-
viously been defined.

Three other compiler options, MACDCK,
SOURCE2, and CONP, are meaningful only when
yvou also specify the MACRO option. All are
described earlier in this section.

The ZINCLUDE Statement

Pi/1 Lanquage Reference Manual describes
how to use the %INCLUDE statement to incor-
porate source statements from a partitioned
data set into a PL/I source program. (3
partitioned data set is used for the
storage of other data sets, termed memkers.
Thus, a set of source statements that youm
mray want to insert into a source program by
means of a RINCLUDE statement must exist as
a data set {(member) within a partitioned
data set.)

The %INCLUDE statement includes one or
more pairs of identifiers. Each pair of
identifiers specifies the DDNAME operand of

a DDEF command that defines a library and,
in parentheses, the name of a member of the
library. For example, the statement:

%INCLUDE DD1 (INVERT),DD2{(LOOPX)

specifies that the source statements in
member INVERT of the library defined
DDNAME=DD1, and those in member LOOPX of
the library defined DDNAME=DD2, should be
inserted into the source program. The task
must include appropriate DDEF commands.

Part II:

If you omit the DDNAME from any pair of
identifiers in a WINCLUDE statement, the
preprocessor assumes USERLIB; no DDEF com-
mand is then required.

Source statements in a library must be
in the form of a virtual index sequential
(VI) line data set. The souxrce margin for
input records specified by the SORMGIN
option applies equally to source statements
inserted by a %INCLUDE statement.

Using All the Facilities of the PL/I Compiler 41

SECTION 6: STORING AND INVOKING THE MODULE

At the beginning of Section 5, an object
module was defined as the output of a
single compilation, exclusive of the list-
ing; an object module corresponds to a
single external procedure and any proce-
dures nested within it. A PL/I program is
one or more object modules consisting of a
main procedure and any subroutines that it
requires.

A program library is a set of object
modules that is treated as a single data
set in relation to the system catalog and
access devices. All programs are stored in
object module form in program libraries.
(Exception: Your installation may provide
for storing of object modules in initial
virtual storage. See "Sharing,™ later in
this section.)} The system provides you
with twc program libraries: a user library
and a copy of the system library. Using
the DDEF command, you can define additional
program libraries.

Using the linkage editor,* the merging
facilities of the PLI command, or the CDS
(copy data set) command, you can move
object modules from one library to another.

PROGRAM LIBRARY LIST CONTROL

Each program library is a partitioned
data set. There are four types of program
libraries:

1. System library (SYSLIB)
2. User library (USERLIB)
3. User-~defined job libraries (JOBLIBs)

4. Other user-defined program libraries.

SYSTEM LIBRARY

The system library contains some service
routines, provided by the installation, and
the PL/I library subroutines. It is
accessible to all users on a read-only

iThe TSS/360 linkage editor is an optional
service program for connecting and editing
cbject modules that have keen assembled or
compiled separately, and for moving object
modules from one library to another.

Refer to IBM System/360 Time Sharing Sys-
tem: Linkage Editor, GC28-2005, and to
"Notes on Link-Editing PL/I Control Sec-
tions,® later in this section.

42 Section 6:

tasis.
library.

You need not define or catalog this

USER LIBRARY

The user library is the private library
assigned to you the first time you log on.
It is kert in public storage, and, hence,
located on a direct access device. This
library is automatically defined and made a
part of your catalog by the system; it is
thus available each time you log on. If
you do not specify a job library, the
object modules resulting from use of the
PL/I compiler are placed in your user
library.

Hote: TSS/360 does not allow a library to
contain more than one noncontextual
declaration of an entry name. For PL/I,
this applies to module names and entry
names of external procedures; entry names
of internal procedures are excepted.

Since a library must not contain rore
than one declaration of any entry name, you
may want to restrict your user library to
rrograms that you rely on for getting work
done. Test versions of these programs can
ke placed elsewhere. The program library
list makes it possible for you to control
the contents of your user library. This
list is a defined hierarchy of program
libraries; it is initialized at log-on time
and consists of your user library and a
copy of the system library. The library at
the topr of the list (initially the user
library) automatically receives all object
modules resulting from language processing.
In addition tc using the program library
list to store object modules, the system
uses this list to control its order of
search when looking for programs that must
be lcaded at execution time. The library
at the top of the list is searched first,
then the next-to-the-top library, etc. The
user library and the system library are
searched after any other libraries on the
list. If no job libraries are defined, the
library at the top of the list is always
the user library.

JOB LIBRARIES (JOBLIBS)

¥You can specify that a job library ke
added to the program library list to
receive the output of the language proces-
sors by issuing a DDEF command defining
that job library and containing the operand
CPTION=JOBLIB. When this command is

Storing and Invoking the Module

executed, the name of that job library is
added to the top of the program librarxy
list. That library then receives ail sub-
sequent module output of the language pro-
cessors until another job library is
defined (and is thus at the top of the
list), until a RELEASE command is issued
for that job library, until a JOBLIBS com-
mand moves ancothexr library to the top of
the program library list, or until you log
off. To be used in subksequent tasks, the
job library must be redefined. A job
library must always have a VP data set
organization; it can be defined on a public
or private volume.

Note: A job library can contain a mixture
of PL/I-compiled members and members
created in any other way, but unless a
number of requirements are met, only PL/I
modules can be executed together. See
"Section 11: Interface between PL/I and
Assembler-Lanquage Programs.®

The following types of job libraries are
available:

s Private-volume job library
e Public-volume +job library

Private-Volume Job Library

You can create a library for infrequent-
1y used modules by issuing a DDEF command
for a cataloged job library that resides on
a private removable disk pack. When using
a private job library in a nonconversation-
al task, you must request (with the SECURE
command) a device for that job library.
Modules can be entexed in such a library:

« Avntomatically, if the library is the
last one defined in the session.

* By link editing it from the user
library, a session job library, or a
public-volume job library, and specify-
ing to the linkage editor the desired
private-volume job library as the out-
put destination.

Public-Volume Job Library

This type of library is useful for fre-
gquently used programs whose names and
external symbols conflict with other pro-
grams in the user library. By defining it
at the beginning of a task, as the only job
library in the task, you can also use it to
contain all modules compiled during the
task. all job libraries residing on public
volumes are automatically cataloged and can
be shared among users.

To obtain a list of the job libraries

for which you have issued DDEF commands in
the current session, issue the command

Part II:

DDNAME? JOBLIB=Y

The system responds by typing each job
library*s DDNAME and DSNAME, in the order
that the jok libraries appear on the pro-
gram library list.

To facilitate the maintenance of pro-
grams within job libraries and the user
library, the POD? command is available.
POD? enables you to ocbtain on SYSQUT a
list of the member names (and optionally
the alias names and other data) of modules
in USERLIB or a job library.

CTHER USER-DEFINED PROGRAM LIBRARIES

You can define a program library without
raking it a job library; simply issue a
DDEF command for a VP data set, omitting
OPTION=JOBLIB, and use that VP data set to
stoxe object modules. 7o get object
modules into that program libraxy from
USERLIB or from a job library, use:

® A CDS command, ox

e An LNR command with a linkage editor
INCLUDE statement.

Such a library can be referred to by subse-
gquent CDS commands or linkage editor
INCLUDE statements. However, it is not in
the program library list, and hence is not
included in the linkage editor's automatic
search and is not available to the dynamic
loader. {(The dynamic loadexr is a required
service program for allocating virtual
storage to user-selected object modules
that reside in external storage.}

MULTIPLE VERSIONS OF OBJECT MODULES

If you have only one version of an
object module and you want to replace it
with a new version, simply modify the
source data set with the desired changes
and recompile the module, causing it to be
placed in the same library. The 0ld ver-
sion disappears, and the new version takes
its place.

But if you want to create another ver-
sion of the same module and keep both ver-
sions, using the same module name or an
identical entry name in each module, you
must place each version in a different
likrary.

This restriction occurs because a
library cannot contain more than one
declaration of any external-procedure entry
name, nor can it contain two modules with
the same name.

Using All the Facilities of the PL/I Compiler 43

For examples of how to store two Or more
versions of the same module, see Example 2
of “"Part III: Examples.”

USER-ASSIGNED NAMES

Table 8 shows the restrictions on dupli-
cation of user-assigned external names.
For a description of how these names are
stored internally, see "External Names,*
later in this section.

The POD? command can be used to list
external names in a library, thus assisting
you to avoid duplication. You can always
have the same name in different libraries.

Reserved Names

You can never assign an external name
Leginning with the characters SYS; names
beginning with these letters are reserved
for certain system programs. Any module
starting with these symbols can never be
retrieved from a user library or job
library for execution, since resoclution of
SYS symbols for loading and running is
always attempted from the system library.
In addition, a diagnostic is issued if a
module loaded by another name contains an
external symbol beginning with SY¥S.

To avoid accidentally duplicating the
names of IBM-supplied subprograms, do not
use external symbols starting with the
characters IHE or any PL/1 library subrou-
tine entry point name (that is, SIN, COS,
etc.), unless you want to substitute for
such a program one of your own.

PL/I CONTROL SECTIONS

A control section (CSECT) is the small-
est relocatakle part of an object module;
the PL/I compiler subdivides each cbject
module into a standard set of CSECTs. Cer-
tain CSECTs, especially those frequently
used, will require less storage space,
execution time, or compilation time if you
help the system manage them.

TYPES OF PL/1 CONTROL SECTIONS

INITIALIZATION CSECT: This CSECT is
entered when the external procedure is
called by module name. Initialization is
required for all PL/I programs. See "PL/I
Subroutines Called from Assemblexr Pro-
grams,® in Section 12.

For subroutine procedures, the initiali-
zation CSECT issues an error message; only
the main procedure should be called Ly
module name.

STATIC INTERNAL CSECT: This CSECT contains
parameter lists, save areas, and any
variables declared static internal.

TEXT CSECT: This CSECT contains executable
code that is never modified by the program.

FILE CSECT: This CSECT contains the file
declare block, which is never modified by
executakle code. A file CSECT is generated
for each file.

STATIC EXTERNAL CSECT: A static external
CSECT is genexated for each variable
declared static external. This CSECT has
the COMMON attribute (see Linkage Editor)
if it is declared without the INITIAL
attribute, and if it contains no string
items.

Table 8. Restrictions on Assigning External Names
¥ T - T 1
| Type of Name | Program# | Program Library |
| - < 4 ¥
L T L] 1
| module name | Must be specified in PLI command; must | No duplicates
} | not be declared; must not duplicate other | allowed. |
] { external names. { |
b-—- - + —oe e 4 1
| name of external | Must be declared; must not duplicate | i
| procedure { other external names. | |
b i -~ . —- [
3 T
| ENTRY name of exter-| If declared, must not duplicate othex | |
{ nal procedure { external names. | |
4 L 4
} file name or name | If declared, other procedures can have | Duplicates |
| of static external | duplicate declarations. Attributes in | allowed. |
{ variable { duplicate declarations must be identical. | |
|8 e e e e e e e e e e i o e . e e . o e L ”
¥ 1
| *Restrictions for the object module are the same as for the program. |
[e e e e e e e i e e e e -

44 Section 6:

Storing and Invoking the Module

LINK-EDITING

Why Link-Edit?

In TSS/360, use of the linkage editor is
optional. If the linkage editor has not
linked a calling object module to a called
object module, the dynamic loader links
them automatically, when it loads the cal-
ling object module for execution. However,
you may want to use the linkage editor for
any of these purposes:

e Link the output of separate compila-
tions into one object module. If one
of the included modules references
another implicitly {(that is, not expli-
citly), this pre-execution linkage
reduces the time it will take to load
and execute the program.

e Combine the CSECTs of an okject module
into a single CSECT, thus reducing the
amount of virtuwal and external storage
reqgquired. Normally, the CSECTs are
combined when they are created, since
the IBM-supplied value for PLIPACK is
P. See "packing,” later in this
section.

s Delete, substitute, or rename CSECTs
and delete or rename ENTRY names
without recompiling.

e Change the attributes of CSECTs.
"Sharing,” later in this section.

See

e Move object modules from one program
library to another.

e Prepare a list of unresolved external
references, distinguishing those that
will be resolved cut of SYSLIB from
those that will be resolved ocut of the
JOBLIBs and USERLIB in use at execution
time.

s Prepare a listing of an object module's
program module dictionary.

IBM System/360 Time Sharing System: Lin-
kage Editor, GC28-2005, describes the pro-
gram module dictionary and explains how to
use the linkage editor.

External Names

For some uses of the linkage editor, you
must know what the external names of a
module are, and what CSECTs they are in.
External names that you assign are the
names of the module, the external proce-
dure, ENTRY statements in the external pro-
cedure, files, and static external
variables. External names that the system
assigns are the names of the initialization
CSECT and the static internal CSECT. The
module name and external ENTRY-statement

Part II:

names are the only extermal names that are
not also CSECT names.

MODULE NAME: The module name is specified
by the NAME, MERGELST, or MERGEDS operand
of the PLI command. This name always gqua-
lified the name of a load data set -- that
is, LOAD.name(0).

Note:
edited.

Load data sets cannot be link-

INITIALIZATION CSECT: ODC generates the

name of the initialization CSECT by padding
the procedure name on the right with per-
cent signs (%) to eight characters.

STATIC INTERNAL CSECT: The PL/I compiler
genexates the name of the static internal
CSECT by adding an A to the right of the
procedure name and padding on the left with
asterisks (#) to eight characters.

TEXT CSECT: The name of the text CSECT is
the procedure name.

FILE CSECT: The name of the file CSECT is
the file name.

STATIC EXTERNAL CSECT: The name of the

static external CSECT is the name specified
in the declaration of the static external
variable.

NAMES OF ENTRY STATEMENTS: Names of ENTRY
statements are kept in the text CSECT.

Names of the text CSECT, file CSECT,
static external CSECT, and ENTRY statements
are truncated to seven characters by the
PL/1 compiler. The truncation consists of
using the first four anl last three letters
of the name. HNames of seven characters or
less are not truncated.

Rules for Link-Editing PL/I Modules

The fcllowing rules have special impox-
tance in relation to PL/I modules. Some of
these rules, and other required information
for linkage-editor users, are given in IBM
System/360 Time Sharing System: Linkage
Editor, GC28-2005.

o If you link a module containing a main
procedure with modules containing sub-
routine procedures, you should link the
module containing the main procedure
first (in a linkage-editor INCLUDE
statement) so that the main entry point
of the output module will be to the
main procedure.

e Within an object module, external names
must be unigue. After a PL/I module is
link-edited, its external names are
known to the linkage editor; any
attempt to include external names that

Using All the Facilities of the PL/I Compilexr 45

duplicate external names already in the
output module is rejected. Therefore,
all references to a specific file name
or static-external-variakble name are
resolved to the first file CSECT or
static external CSECT that is link-
edited for that name.

* Some CSECTs should not be given a PUBL-
IC or READONLY attribute. See ®"Attri-
butes of Shared CSECTs,®* later in this
section.

e Dynamic calls are not known to the lin-
kage editor, and all dynamic linkage is
completed by the dynamic loader, during
execution.

s Load data sets cannot be link-edited.

e If a PL/I module is linked to a non-PL/
I module, the non-PL/I module must be
ad justed to the PL/I environment. See
®"Section 12: Interface between PL/I
and Assembler-Language Programs.™

s Packed CSECTs appear as a single CSECT
to the linkage editor. See ®"Packing,™
later in this section.

SHARING

It is possible for PL/I CSECTs to be
shared among two or more TSS/360 users.
The installation must provide for the load-
ing of preselected PL/I CSECTs into initial
virtual storage (initial virtual memory, or
IVM) when the system is generated. The
CSECTs to be loaded must be specified by
means of an LLIST macro instruction or DC
instructions at system-generation time.
IBM System/360 Time Sharing System: System
Programmer's Guide, GC28-2008, tells how to
specify the CSECTs to be loaded, and IBM
Systom/360 Time Sharing System: System
Generation and Maintenance, GC28-2010,
describes the overall process of loading
CSECTs into IVM. .

Note: The SHARE and PERMIT commands have
no application to PL/I okject modules.

Linkage Involwing Shared CSECTs

e If a CSECT in IVM calls a CSECT not in
IVM, the call must be dynamic. Refer
to the description of the PLI command's
EXPLICIT and XFERDS operands, in Sec-
tion 5.

e If a CSECT in IVM calls a CSECT in IVM,
the call must not be dynamic. Since
the compiler generates explicit calls
to PL/I1 library modules, PL/I library
modules must be placed in IVM.

46 Section 6:

+ If a contrxol section not in IVM calls a
control section in IVM, the call can ke
dynamic or static.

e A prograr contained wholly or partially
in IVM is still limited to a maximum of
4096 bytes for PR-type ESD entries and
may require dynamic calls if it has
many hundreds of subroutines. See the
description of the EXPLICIT and XFERLS
operands, in Section 5.

Attributes of Shared CSECTs

e Public CSECTs -- that is, PL/I CSECTs
that are link-edited to give them the
PUBLIC attribute -- must be executed
(and loaded) in IVM.

e All sharers of a public CSECT in IVM
reference the same copy of that CSECT.

e If a CSECT in IVM is not public, all
sharers reference separate copies.

¢ Link-editing a CSECT to give it the
READONLY attribute ensures that the
shared code will not modify itself dur-
ing execution. If a public CSECT is
not read-only, it is the responsibility
of each user to ensure the integrity of
the CSECT at any stage of execution,
preventing mutual interference.

e You can conserve external paging
storage by giving the PUBLIC and
READONLY attributes to CSECTs that are
to ke shared.

® Text CSECTs can always be given the
READONLY attribute. Initialization,
static external, and file CSECTs can be
made read-only if the external proce-
dure was coded with the REENTRANT
option. A static internal CSECT can be
made read-omnly if (1) the procedure
does not contain an assignment state-
pent that assigns a value to a static
internal variable, and (2) the external
rrocedure was coded with the REENTRANT
option.

s Jf a PL/I CSECT to be stored in IVM can
be made read-only, it can be made
rublic.

PACKING

Without CSECT packing, at least one page
(4096 bytes) is assigned to each CSECT. A
CSECT may require mcre tham one page;
however, many PL/I CSECTs require much less
than one page. A file CSECT, for example,
is 56 bytes long. If an entire page is
assigned to a S6-byte CSECT, this results
in less than 2% storage utilization.

Storing and Invoking the Module

When you compile, ODC checks the value
of PLIPACK, in your user profile. If
PLIPACK=N, one or more pages are assigned
to each CSECT. 1If PLIPACK=Y, CSECTs are
packed. Packing consists of combining
CSECTs into contigqguous storage, retaining
doubleword boundaries for CSECT origins.
The name of the initialization CSECT is
retained as a CSECT name, and other CSECT
names are transformed into entry-point
names. In effect, the CSECTs are combined
into a single CSECT. If PLIPACK=F, ODC
packs all CSECTs except static external
CSECTs that have the TSS/360 COMMON attri-
bute or are more than 4096 bytes long.
This is generally more efficient than
PLIPACK=Y, since COMMON CSECTs are null
CSECTs and they are mapped onto external
storage only if they are packed. The IBM-
supplied default for PLIPACK is P.

Notes:

* The fifth operand of the LOGON command
specifies whether all CSECTs are to be
packed at execution time. PLIPACK spe-
cifies whether PL/I CSECTs are to be
always packed -- on external storage,
as well as at execution time. Although
PLIPACK requires additional compilation
time, it saves external storage and
avoids the overhead of packing during
the loading process.

e CSECTs that are not already packed are
automatically packed when they are
loaded into IVM.

s REJMSG, another value in your user pro-
file, controls the dynamic loader's
output of duplicate-name messages.
command DEFAULT REJMSG=Y causes the
dynamic loader to not issue such a mes-
sage whenever it encounters a duplicate
CSECT or entry-point name, and rejects
a CSECT or entry point, during the
loading process. If REJMSG=N,
duplicate-name messages are issued.
(There may be many of these messages if
your CSECTs are packed.) The IBM-
supplied default for REJMSG is N.

The

INVOKING THE MODULE

A PL/I module invcked from the command
mode must be invoked by its module name
(that is, the name in the NAME operand of
the PLI command). A PL/I module called
from a PL/I procedure must be invcked by
its procedure name {(that is, the name in
the PROCEDURE statement).

If the invoked procedure expects to

receive parameters, these parameters can be
passed following the name of invocation.

Part II:

Using

For information on how to pass parame-
ters in a PL/I CALL statement, see PL/I
Ianguage Reference Manual. For information
on how to pass parameters from the command
stream, see Command System User's Guide.

If the invoked module has close to a
thousand subroutines, the dynamic loader
ray not ke able to load all the program at
one time. In this case, some or all of the
subroutine calls must be wvia a transfer
rodule, which calls the subroutines dynam-
ically; in addition, the transfer module
should seiectively unlcad subroutines
whenever necessary to make room for the
dynamically called subroutines. See the
discussions of the EXPLICIT and XFERDS
operands, in Section 5, and Example 18 in
Part IIX.

RECOVERING FROM ERRORS WHEN DYNAMICALLY
LOADING

The dynamic loader notes all of the
external calls in a module that is expli-
citly loaded or invoked and resolves them
by searching the program library list.
While the loader is linking the object
modules into virtual storage, diagnostic
messages may be issued indicating exrxor
conditions that can affect the eventual
execution of the program.

¢ Name to ke loaded or run not found in
library - While in command mode, you
either specified the wrong module name
or forgot to define the -job library
containing the object module. In the
latter case, if you are operating con~
versationally, ycu can enter the DDEF
command defining the job library and
reissue the LOAD command or module
name.

e Unresolved references - You executed an
cbject module that refers to a subrou-
tine that cannot be located in any of
the libraries in the program library
list. A diagnostic message is issued
specifying the name that was used in
the reference. Further linking of
other object modules is not suspended,
however, s0 that the main program and
rossibly other subprograms are placed
in virtual storage.

e Duplicate names - The dynamic loader
does not load control sections with
duplicate names; only the first one
encountered is locaded. If a call by
module name, a call by procedure name,
or an attempt by the dynamic loader to
satisfy an external call results in an
attempt to load a wodule containing the
second occurrence of an external name,
the dynamic loader rejects the CSECT
with the duplicate name and issues a

All the Facilities of the PL/I Compiler 47

diagnostic message. (Exception: If
there is only a duplicate ENTRY nane,
the control section is loaded but the
duplicate ENTRY name is removed.)}
Therefore, (1) Static external
variables should not have conflicting
initial values; only the first initial
value encountered is loaded. (2) Only
one file control section is loaded for
each file; conflicting attributes will
arise when a file is opened for INPUT
but the file control section is for an
OUTPUT file, etc.

Note: Ordinarily, a program that is called
by simply issuing the name of the main
module (rather than issuing a CALL command
or LOAD and GO) is not automatically
unloaded after execution. The UNLOAD com-
mand can be used to unload it from virtual
storage.

If you want to execute the program
regardless of the error, retype the module
name. You must, however, repeat the name
originally specified. This is necessary to

48 Section 6:

define the point at which execution is to
ke initiated.

If you anticipate that an object module
will have unresolved references, first
issue a LOAD command naming the module;
then issue the module name itself. This
method is recommended for a nonconversa-
tional task, since execution is initiated
regardless of unresolved references.

If you do not want to execute the ver-
sion of the program that has been put into
storage, issue an UNLOAD command. (This
answers that you will not attempt to load
modules with duplicate names.) You can
then issue a DDEF command defining the job
library that was missed in the first LOAD
attempt; if the job library is already
defined, but not at the top of the program
library 1list, you can put it there by issu-
ing the appropriate RELEASE or JOBLIBS com-
rand. A LOAD command or module name issued
at this point causes the entire linking
rxocess to be redone.

Storing and Invoking the Module

TSS/360 PL/1 contains facilities for
writing programs that interact with the
terminal user. There are two classes of
interactive statements: the DISPLAY state-
ment and STREAM I/0 statements.

DISPLAY

The DISPLAY statement is the simplest
type of terminal I/0, and is ideally suited
to character-string transmission, although
it can do some data conversion on output.

A disadvantage is that it lacks formatting
facilities.

A message can be displayed in either of
two forms:

1. Without the REPLY option:
DISPLAY (element-expression);
2. With the REPLY option:

DISPLAY (element~expression)
REPLY (character-variable)
{EVENT (event-variablel)};

General rules:

» Execution of the DISPLAY statement
causes the element expression to be
evaluated and, where necessary, con-
verted to a vaxying character string of
maximum length 126 characters. This
character string is printed at the ter-
minal, starting at the beginning of a
new line.

e There is also a return to the next line
after the message has been printed,
unless the last character of the mes-
sage is a colon. In that case, the
colon is not printed, but causes the
print head to stay where it is, posi-
tioned ready to print immediately after
the displayed nmessage.

s Thus successive DISPLAY messages are
double-spaced unless they end with
colons, in which case they are
single-spaced.

e The character variable, specified in
the REPLY option, receives a message
that you entex; that is, a string of up
to 126 characters.

e Without the REPLY option, execution
continues uninterrupted. If REPLY is

Part 1I1:

SECTION 7: TERMINAL I/0

specified, execution is suspended until
the REPLY character string is received.

e If the IVENT (event—-variable) option is
given, the completion part of the event
variablie is not set to "1°B until a
WAIT statement naming the event is
executed.

® You start typing the REPLY character
string wherever the last terminal
operation has left the print head.
Terminate the reply by pressing RETURN;
the RETURN is not parxt of the reply.
If you want to continue the reply on
the next line, type a hyphen and press
RETURN; neither character is part of

the rxeply. To cancel the reply and
start again, press # followed by
RETURN.

Examples:

DISPLAY(*THIS MESSAGE AND RETURN");
DISPLAY ("DON'T RETURN:");

DISPLAY (CHARVAR) ;

DISPLAY('N HAS VALUE ‘'}| WN);

DISPLAY (*ENTER NAME: ') REPLY (CHARVAR) ;

DISPLAY (MSGVAR) REPLY {ANSVAR) EVENT
(EVTVAR) ;

STREAM 1/0

All three forms of STREAM I/0 (that is,
data-directed, list-directed, and edit-
directed) have the same PL/I language faci-
lities for both terminal and non-terminal
1/0; even rules regarding delimiters are
the same. Although the same texrminal can
be used for both input and output, there
are at least two separate, unconnected
files involved.

INPUT USING °‘GET*

Input is requested from your terminal on
execution of a conversational mode GET
statement that refers to SYSIN. The
reference to SYSIN can happen in three
ways:

1. The file name, omitted from the GET
statement, becomes SYSIN by default
(this causes a warning message during
compilation):

Using All the Facilities of the PLsI Compiler 49

GET LIST(A,B,C);

2. The file name SYSIN is used
explicitly:

GET FILE(SYSIN} LIST(A,B,C};
3. A file name other than SYSIN is used,
but no DDEF command is issued for that
file prior to execution.

Prompting Action

When a GET statement is executed, the
buffer is examined to see whether the requ-
est can be satisfied from data already read
in. If it can, the buffer pointer is simp-
ly advanced, and execution continues
without extermal data input.

If there is no data in the buffer, or
not encugh to satisfy the GET, then a pro-
mpting signal (a carriage return followed
by a colon) is sent to the terminal and the
keyboard is unlocked. At this point, you
should enter the data required for the GET.
If you press RETURN without having entered
enough to satisfy the GET, then the system
prompts again. (This allows you tc enter
each item on a new line, if you want.)

You need not stop after providing enough
input for the GET. If you know what data
will be reguired next, you can enter it
ahead of time, and thus "prime* the buffer.
As with DISPLAY REPLY, if you want to con-
tinue on another line, you must enter a
hyphen and press RETURN; to cancel a line
and restart, enter # and press RETURN. By
using successive continuvations, you can
enter up to 32,760 characters for ome
prompt .

Note: There is no connection between
STREAM XI/0 and DISPLAY. For example, it is
impossible to use excessive STREAM input
for a GET to satisfy a subsequent DISPLAY
REPLY.

SKIP Option

As implied above, there is no direct
correspondence between execution of GET
statements and prompting for input. You
can obtain synchronization by using the
SKIP option alone; e.g.:?

GET SK1g;
or in an input request; e.g.:
GET LIST(A,B,C)SKIP;

The SKIP option is executed first. The
system ignores anything alxeady in the
input buffer and points to the beginning of
a new buffer. It then executes the GET

statement by prompting for input; any data

50 Section 7: Terminal I/0

entered at this point will be used by the
next GET to be executed. If there is no
data in the current buffer, the system pro-
wpts for the data that is to be ignored and
prompts again when it has gotten a new
ruffer.

It does not make sense to use successive
SKIF options in conversational mode,
because the first SKIP causes prompting for
data that will be discarded by the second.

COPY Option

The COPY option causes any assigned
input data to be written on SYSOUT exactly
as it was entered.

* Only assigned data is copied, not input
that is skipped.

e Delimiters are included.

e Each item is written on a new line.

CATA-DIRECTED INPUT: Each item but the
last must be followed by a blank, a comma,
or a carriage return. If one or more of
the items in the data list is omitted from
the input lisi, the last item in the input
list must be followed by a semicolon.
Example:

GET DATA{(A,B,C,D);

-

A = 32,B = "MESSAGE', C=0.001;

LIST-DIRECTEL INPUT: Each item including
the last must be followed by a blank, a
comma, Or a caxriage return. Example:

32, "MESSAGE® 0.001

EDIT-DIRECTEL INPUT: In general, there are
o input delimiters, because the layout of
the data is defined by a format list.
Howevex, a carriage return delimits an
incompletely entered item:

e If the target item is a varying string,
the input is transmitted as is; no
extra blanks are inserted.

s If the taxrget item is not a varying
string, the input is padded on the
right with blanks to give it the neces-
sary field width.

End-of-File

When you are prompted at the beginning
of a GET operation, you can indicate end-
of-file by pressing RETURN, thus entering a
nuill line. This causes the ENDFILE condi-

tion to be raised; if your program contains
an ON ENDFILE(SYSIN) statement, that state-
ment is executed.

End-of-file can take effect when a SKIP
is being executed. Once end-of-file is
recognized, it remains effective until the
file is closed.

OUTPUT USING ‘PUT®

When a PUT statement that refers to the
file SYSQUT is executed in conversational
mode, output is sent to the terminal. The
reference to SYSOUT can happen in these
ways:

1. The file name, omitted from the PUT
statement, becomes SYSOUT by default.
Example:

PUT LIST(A,B,C);

2. The file name SYSOUT is used
explicitly:

PUT FILE(SYSOUT) LIST(A,B,C);

3. The file name SYSPRINT is used
explicitly:

PUT FILE(SYSPRINT) LIST(A,B,C);

4. A file name other than SYSOUT or SYS-
PRINT is used, but no DDEF command is
issued for the file prior to execu-
tion. Tc be compatible with SYSOUT,
the named file shcould have the PRINT
attribute.

Use of a data list with a PUT DATA
statement is optional. Execution of a PUT
DATA statement with a data list causes the
system to write each specified variable and
its value on SYSOUT, in assignment-
statement form. Execution without a data
list causes the system to write the con-
tents of each variable in your program. In
conversational mode, such a storage dump
may be impractical, since the terminal does
not function as a high-speed printer.
However, you can interrupt the printout and
return to the command mode by pressing the
attention key.

Buffering

The PUT operation uses buffers in the
form of cutput lines. The default line
size is 120 characters, but you can change
this up to a maximum of 130 characters by
using an OPEN statement with the LINESIZE
option. Example:

OPEN FILE(SYSOUT)LINESIZE(130)OUTPUT;

Part IXII:

Operation of the PUT Statement

Execution of a PUT statement causes
associated data to appeaxr at the terminal.
The print head does not return to start a
new line, but remains positioned immediate-
ly after the data just presented. In the
absence of control items, successive PUTs
fill up the current line buffer, and then
begin a new line. This allows you to see
the results of each PUT without having to
wait for the whole buffer to fill.

There is sometimes an extra line of
spacing when a PUT operation synchronizes
with the beginning of a new line (for
example, when you use the SKIP option,
explained below)., A RETURN is sent to the
terminal preceding the data for the current
PUT; however, if the last operation was a
DISPLAY or input for a GET oxr REPLY, the
print head is already on a new line, and
the effect is two RETURNs.

Note: If you use GET and PUT statements
interchangeably, positioning of the print
head will also be affected by execution of
GET statements; in addition, the terminal
sheet will show a mixture of SYSIN and SYS-
OUT. SYSOUT doesn®t know what SYSIN is
doing.

Print Control Options

Three options of the PUT statement con-
trol the spacing of lines on a printed
page:

PAGE
LINE(expression)
SKIP(expression)

They all take effect before any data is
sent to the terminal.

General rules:

e PAGE and LINE are intended primarily
for printer output and are not recom—
mended for terminal cutput, since a
terminal has no way of identifying
rhysical page boundaries. If they are
used on the terminal, for example in
conversationally checking out a program
intended to be run nonconversationally,
their effects are restricted. Both
PAGE and LINE cause three RETURNs.

Even if both PAGE and LINE are used in
the same PUT statement, the effect is
still three lines of spacing. If an
expression is associated with the LINE
option, it is ignored.

e SKIP is used to cause line spacing.
The expression is evaluated to an
integer; if there is no expression, the
integex 1 is assumed. If the integer
is 1, single spacing occurs; that is,

Using All the Facilities of the PL/I Compiler 51

the print head returns to the beginning
of the next line. If the integer is 2,
double spacing results. If it is 3 or
more, triple spacing results. If the
integer is negative or zero,

1. For nonconversational output, the
print head is returned to the
beginning of the current line.
This allows overprinting of that
line -- useful for underscoring,
obliterating confidential data,
slashing zeros, drawing rictures,
etc.

2. For conversational output, the SKIP
option is ignored.

Format Items

For data- and list-directed output,
there are no format items; the SKIP option
affords the only easy print control. 1In
edit-directed output, however, you can
exercise minute control over the appearance
of data at the terminal by using format
items in format lists.

General rules:

e PAGE, LINE, and SKIP operate the same
way in format lists and as options,
except that as options they operate
before the system types any data. All
format items are processed sequential-
ly, so that line spacing can occur
between items. However, it is not
possible to have line spacing after the
last data item, because once the data
list is exhausted any other items in
the format list are ignored. Thus,

PUT
EDIT(A,B,C) (A(6) ,F{8.2),A(2),SKIP);

will not return to a new line after
typing A, B, and C. To achieve that
result, you might:

1. Follow the above statement with a
PUT SKIP; statement.

52 Section 7: Terminal 1/0

2. Include a SKIP option in the next
PUT statement that transmits data.

3. Include a SKXIP as the first format
item if the next PUT is
edit~directed.

o The X(expression) format item inserts
klanks between data items. The expres-
sion is evaluated as an integer. If
the integer is negative or zero, the
item has no effect; otherwise, the sge-
cified number of blanks is typed by the
system. If there are enocugh blanks to
cause overflow of the line buffer, a
SKIP to the next line results.

* COLUMN({expressiocn) makes it unnecessary
to calculate the number of blanks
required. The expression is evaluated
as an integer, and the system tyges
enough blanks to bring the print head
to the specified character position in
the current line. If the current print
position is ahead of the specified one,
a SKIP is made to the next line, and
blanks are typed to bring the print
head to the required displacement from
the beginning of the line. If the
integer is negative, zero, or greater
than the line size, position 1 (the
keginning of the line) is assumed; this
causes a SKIP to a new line, unless a
SKIP was just done.

¢ The format items a, B, C, E, F, and P,
which relate to the external represen-
tation of internal data, and R, which
specifies a remote format list, are not
limited to conversational 1/0. See the
PL/I Lanquage Reference Manual for
detailed descriptions.

Layout of Data- and List-Directed Output

Data items are automatically aligned on
preset tab positions. PL/I has the posi-
tions 1, 25, 49, 73, 97, and 121; if you
want, you can change these tab settings by
following the instructions given under “Tab
Control Table,®™ in Section 8.

This section explains how data sets vary
in:

» Location (see "Storing and Manipulating
Data Sets®)

e Availability to nonowners (see "Pro-
tecting and Sharing Data Sets")

* Record format (see "Record Formats®™)

s Overall organization (see "Data Set
Organizations®)

¢ The way they are handled by the PL/I
library subroutines ({see "Types of PL/I
Data Transmission®).

This section also discusses the DDEF com-

mand, which identifies data sets and
describes them to the system.

STORING AND MANIPULATING DATA SETS

VOLUMES

A data set resides on one or more
volumes. A volume is a standard unit of
external storage that can be written on or
read by an I/0 device (for example, a reel
of tape or a disk pack); a unigque serial
number identifies each volume.

A magnetic-tape oxr direct access volume
can contain more than one data set; con-
versely, a single data set can span two or
more such volumes.

Some direct access volumes are public,
meaning that they are permanently mounted
while the system is running, and they can
be accessed by all users. Some direct
access volumes, and all magnetic-tape
volumes, are private. This means that they
are not mounted on the system until needed,
they are dismounted when no longer needed,
and they can be used by only one user at a
time.

Volume Allocation

The system assumes that you want storage
on a public volume unless you specifically
ask for storage on a private volume by spe-
cifying VOLUME=PRIVATE in the DDEF command.
(See Appendix D.) When it is necessary to
retain the data set in the system, it is
more convenient to store it on a public
volume. Public volumes are automatically
available for allocaticn to your task,

Part I1I1:

SECTION 8: DATA SETS

within the iimits of public allocation
established by your installation.

If you use private volumes, you may need
to wait for device availability; in any
case, you must wait for the operator to
mount the wvolume on the device. Each time
a request is made for a device on which to
mount a private volume, the system must
determine whether or not it can honoxr the
reguest, based on current reguirements
throughout the system for that type of
device. If the system cannot allocate a
private device to your task, one of two
actions cccurs, depending upon the ogera-
tional mode:

s In a conversational task, if a device
is not available, you are asked to
either wait for an available device or
cancel the DDEF command. If your
device ration is exceeded or a speci-
fied device cannot be found, the system
cancels the DDEF command, returns con-
trol to the terminal, and awaits anoth-
er command.

¢ A nonconversational task is either ter-
minated by the operator or queued until
the required private devices are
mounted. You must include a SECURE
command to reserve all devices required
for private volumes during the execu-
tion of a monconversational task. Only
one SECURE command is allowed for each
task. It is recommended that the
SECURE command appear immediately after
the LOGON command. The devices speci-
fied for private volumes are reserved
so that the task can be executed
without waiting for I/C devices; any
waiting that may be necessary to
reserve the devices occurs at SECURE
time rather than during execution time.
The SECURE command is never used in a
conversational task; it is wandatory
only in nonconversational tasks that
include references to private volumes.

SYSTEM CATALOG

The cataloging facility of TSS/360 aids
you in referring tc data sets by their
names alone, without specifying their phys-
ical locations. Since it contains your
data-set-naming structure, the system cata-
log is an index, like the catalogs used in
likraries, that points to items residing
elsewhere; see Figure 6 for a simplified
view. Altogether, the system catalog
records:

Using All the Facilities of the PL/I Compilier 53

e Where the data set is physically

located -- the catalog associates its
name with the serial nuwbers of its
volumes.

* Who can use the data set.

e How the data set can be used -- read
only, read and write, ox unlimited
access.

The structure of the catalog protects your
data from being read or written into by
other users, except those that you specif-
ically permit to share the data.

Figures 7 and 8 show more details of the
system catalog:

dota set
ABLg CHARLEY

datg set
ABLE BAKER

6.

Figure

System Catalog

¢ The system catalog consists of a master
index and sets of subordinate catalog
entries. It is, in effect, a collec-
tion of separate catalogs. The system
has its own catalog and each user has
his own catalog.

Fach catalog is an index of the data
sets assoclated with it.

When the system was generated at your
installation, catalog entries were created
for all system data sets, including SYSLIB,
which contains the system routines that are
loaded on demand -- for example, the PL/I
compiler.

When the system manager or administrator
joins you to the system, your user identi-
fication is placed in the master index and
you are given your own user catalog. When
you log on for the first time, special
entry is created in your catalog for a data
set called USERLIBE. USERLIB is your own
private library for cbject programs.

Excert for USERLIB, you control all
entries in your catalog by the way you name
data sets and Ly the way you use the cata-
loging and uncataloging facilities of the

system. Some of these facilities are for
entering, removing, and renaming catalog
entries. Others are for indicating which

data sets can be shared by others and to
what extent. The key points are:

Moster Index TOGHH Userid) Useridy Useridy % Z Userid,
T r ; }
! [e !
: ! i ¢
1 H
! | :
] k4 1
Other Caotolog
Entries
Catalog Catalog Cotalog Catalog s ss Catolog
of System for User for User, for Usar 5 for User
Programs
! /i3 AR AN
\ &R FRR FA
a/ \ ,-/ \ /) ‘\) N I
/A AR /| \ FANERY [\
/[; \ t \ /A \‘ /l i \\
[/ i \ A FE / Loy
' VN P by
Dato Sets SYSLIB User‘ Usm? Usery . o Usevn
Data Sets Dota Sets Data Sets Daoto Sets
Figure 7. Catalog Organization
54 Section 8:

Data Sets

}-——— ——— Data Set Nome ———————{

l
__.1

i Maostar Index

I
‘;. EY,:":}':“L’ sfe - - - User Supplied
I % o

T r
l_u JHNDOE I ENG. PHYSICS.COMAR, TEST2]’ /,’{ JOHNDOE ; ijANKLEC } J
e T

e

;
e e
— — = —— — — . User Catalog — — — — — ==
1)

JOHNDOE [ENG | l PAYRL T]

e e

ENG | PHYSICS T coem IAJ
I

I
|
{
1
|
f
[
N PHYSICS |
|
|
|
i
]
¥
|
]
]
1

COMAR E J

comMAR [vesn v [resrz []

]

]
L e m e o o o e e

l Data Set Control Block

JOHNDOE. ENG. PHYSICS, COMAR.; | |
T SO W |

—

- -
)

1‘ DATA PAGE }——-—J

DATA PAGE
DATA PAGE
DATA PAGE

Locating a Data Set

Figure 8.

e Your catalog exists in the system from
the time you are joined until the time
your access privilege is withdrawn.

s Data sets on public volumes are auto-
matically cataloged for you; thus, they
are available from session to session.

e You can share your programs and data
with others, if you want.

Generation Data Groups

The cataloging facilities of TSS/360
provide an option that assigns numbers to
individual data sets in a sequentially
ordered collection, thereby allowing you to
catalog the entire collection under a
single name. You can use the numbers to
distinguish among successive data sets in
the collection without assigning a new name
to each data set. Because each data set is

Part II:

normally an update of the data set created
on the previous run, the new data set is
called a generation, and the number asso-
ciated with it is called a generation numb-
er. The entire structure of data sets of
the same name is called a generation data
grour (GDG).

Each data set in a generation data group
has the same name qualified by a unigque
parenthesized generation number (for
example, STOCR{0), STOCK({-1l,) STOCK(-2).
The most recently cataloged data set is
generation 0, and the preceding generations
are -1, -2, and so on. You specify the
number of generations to be saved when you
establish the generation data group.

For example, consider a generation data
group that contains a series of data sets
used for weather reporting and forecasting;
the name of the group is WEATHER. The
generations for the group (assuming that
three generations are to be saved) are:

WEATHER {0)
WEATHER (-1)
WEATHER (-~-2)
(The numbers in parentheses are relative

generation numbers. You could also use
absolute generation numbers:

WEATHER.G0002V00
WEATHER.G0001VO00
WEATHER.G0000VO00

where WEATHER GOO000VO00 is the first version
recorded.)

When WEATHER is updated, the new data
set is specified as WEATHER (+1). When the
new data set is cataloged, the system
changes the name WEATHER (+1) to WEATHER
(0), WEATHER (0) to WEATHER (-1), the form-
er WEATHER (-1) to WEATHER (-2), and
deletes the former WEATHER {(-2).

To establish a data set as a generation
data group, you must catalog it using the
GDG form of the CATALOG command, before any
DDEF command is issued for it. For an
example of how to catalog a generation data
groug, refer to the description of the
CATALOG command in Command System User's
Guide.

Catalog Maintenance

If you want to refer to a data set
without keeping track of its physical loca-
tion, or if you want to share the data set
with others, you must catalog it. In addi-
tion, many TSS/360 commands that relate to

Using All the Facilities of the PL/I Compiler 55

data sets require that the data sets be
cataloged.

Data sets that are to be cataloged must
reside on one or more direct access Or mag-
netic tape volumes. Data sets on either
public or private volumes can ke cataloged.

Most TSS/360 data sets are cataloged
automatically when they are created. The
CATALOG command need cnly be used to:

e Catalog a data set formatted for mag-
netic tape (known as a physical sequen-
tial data set).

* Alter the entry of a previously cata-
loged data set; for example, change the
catalog index structure for a renamed
data set or change the version number
of a generation data group member.

* Structure the catalog for an entire
generation data group. You can indic-
ate the number of generations to be
retained, as well as the disposition of
old generations when the specified
number of retentions is exceeded.

e Catalog a data set as a new generation
of an existing generation data group.

Note: Catalog control of the generations
of a generation data group can be exercised
only by the owner of the generation data
group. (Refer to "Protecting and Sharing
Data Sets,”™ in this section).

The EVV (enter VAM volumes) command is
used to catalog existing data sets that (1)
reside on private volumes, and (2) are not
physical sequential.

You can use the DELETE command to remove
a catalog entry for a data set if:

1. You want to remove the catalog entry
of a data set from the catalog but not
erase it, and the data set resides on
a private volume.

2. You want to remove the catalog entry
of someone else®s data set that you
are sharing (because you no longer
have a need to share that data set).

The ERASE command can also be used for
uncataloging. ERASE removes the catalog
entry, and erases the data set if it
resides on a direct access volume. {Exras—-
ing means making the storage space of the
data set available for other use.)}

So that you can specify whether you want
to be given one data set nawe at a time
when you enter a partially qualified name,
or no name at all, as the operand of either
the ERASE or DELETE command, provision is

56 Section 8: Data sSets

rade to set the value of DEPROMPT (a value
contained in your user profile)* to either
¥ (yes) or N {(no). If the value is set to
Y, you are given one data set name at a
time for disposition. If the value is set
to N, all data sets grouped under this par-
tially qualified data set name are erased
or deleted without individual presentation.
If you specify a fully qualified name, the
data set is erased or deleted no matter
what was specified for DEPROMPT.

Note: When deleting a shared data set, you
must specify the fully qualified data set
name; you will not be prompted for indivi-
dual data sets under a partially qualified
name .

You have the option in certain commands,
as PRINT and PUNCH, if a cataloged data set
is involved, of specifying whether it is to
be erased or not after the output
operation.

PLANNING I/0

The simplest way to handle TSS/360 I/O
is to read input data from the terminal and
write output data to the terminal. Howev-
er, for data sets that are not small, it is
more efficient to use external storage as
follows:

1. Prior to program execution, store
input data in the system on a direct
access volume. If the data is the
output of a previously executed pro-
gram, you can simply write it on a
direct access volume during that pro-
gram; the system automatically cata-
logs it to rxetain it for subsequent
use. The data could also be created
using a conversational or nonconversa-
tional EDIT or DATA command. In addi-
tion, you can prestore the data using
operator procedures, involving your
card input deck or magnetic tape
volume.

2. During rrogram execution, read input
data from the direct access volume on
which you stored it; write output data
to a direct access volume (for offline
output, following execution). You
also have facilities for I/0 from and
to tape devices. Bowever, in most

iThe system maintains a special data set
called a user profile, which contains
information akout the user. When you log
on, the prototype user profile in the sys-
tem library (S¥SLIB)} is copied into your
virtual storage where it resides during
the task. The values in this copy of the
user profile can be altered by the
DEFAULT, SET, and SYNCNYM commands.

TSS/360 installiations, no problem pro-
gram communication with unit record
devices (card reader/punches and prin-
ters) is possible during execution.

3. Following execution, you cam print out
or punch on cards the program output
you stored on a direct access device,
using the PRINT and PUNCH commands.
You could also produce a magnetic tape
for subsequent printing by issuing a
WT {(write tape) command.

Since ycu can communicate with your pro-
grams during their execution, you can
design programs that mix external-storage
1/0 with terminal I/0. For example, a pro-
gram can read input from the terminal and
write output to a direct access volume. Or
a program can be designed so that when pre-
determined events occux, intermediate
results are printed at your terminal. You
can then decide how you want to proceed:
supply additional ox different data at that
time; change the seguence of program execu-
tion; stop the program; or examine key
final results prior to initiating their
final printout.

COPYING, MODIFYING, AND ERASING DATA SETS

The CCS command copies any existing data
set to which you have access. You can also
use it to renumber the lines of a line data
set as it is copied. ‘The original data set
must be defined in your task or cataloged.
The vV, VT, and TV commands copy data sets
formatted for intexface with the TSS/360
virtual access method (VAM) data management
routines. The VV command copies a VAM data
set (or program library) in direct access
storage. The VT command copies a VAM data
set to nine-track magnetic tape as a phys-
ical sequential data set; used with the TV
command, VT allows you to store VAM data
sets on magnetic tape and retrieve them at
a later time. The TV command retrieves and
writes onto a direct access volume a data
set previously written on magnetic tape by
the VT command.

The MODIFY command inserxrts, deletes,
replaces, or inspects records of a VAM data
set that is indexed by keys (for example,
line numbers). You must identify the reco-
rd to be modified, by its key. You can
review corrected lines for confirmation of
your changes.

You can use the ERASE command to erase
data sets that you own. See "Catalog Main-
tenance,®™ earlier in this section.

If you are sharing someone else’s data
set, you can remove its entry from your
catalog by issuing the DELETE command. See
"Catalog Maintenance,® earlier in this
section.

Part II1:

See Command Systen User's Guide forxr a
cowplete list of rules concerning the above
compands .

PROTECTING AND SBARING UATA SETS

You cannot access a data set you don't
own unless you have system authorization to
dc so, or unless the ownexr of the data set
has permitted vou to share it.

A shaxed data set is cataloged and the
owner has issued a PERMIT command for it.
It belorngs to one user, but can be shared
with other users in any of the following
WAYS:

1. Read-only access: The sharer can read
the data set, but cannot change it in
any way.

2. Read-and-write aceess: The sharer can
both read and write to the data set,
ut he cannoct erase it.

3. Unlimited access: The sharer can
treat the data set as his own: he can
even erase it.

A PERMIT command designates which data
sets are to be shared, the users who can
share them, and the level of access those
users have. You can also use the PERMIT
command to withdraw from previously
authorized sharers the right to continue
sharing your data. Each time you issue a
PERMIT comwmand, information on who can
share which of youx data sets is updated in
your catalog.

If you have been named in another user's
PERMIT command, you must issue a SHARE com-
mand before you can actually access the
data sets he has authcrized you to use. To
see how this command is used, assume that a
sharer's user identification is JONES and
that he has been permitted to share one
data set. The data set is gwned by user
SMITH, and is cataloged under the fully
qualified name ENG.PHYSICS.COMAR.TEST.
Assume alsc that the sharer wants to name
the data set ENG.CHEM.NOTAR.TEST1. He
would then issue the SHARE command shown at
the top of Figure 9. In response to that
compand, the system would search the
owner*s catalog to see if the prospective
sharer is authorized. If he is not, the
system issues a diagnostic; if he is
authorized, the system places the cwner's
{complete) name for the data set in the
sharer's catalog with a pointer back to the
nmastexr index. Whenever the sharer subse-
quently refers to the data set by the name
he gave, the system locates the data set by
the searxrch procedure shown in Figurxe 9.

Using All the Facilities of the PL/Y Compiler 57

lssued by

SHARE | ENG.CHEM . NOTAR, TESTI SMITH ENG. PHYSICS. COMAR . TEST2
tser JONES
T ¥
| ‘
Sharer's Reference to Dota Set l Owner's identification ¢f Dota Set
Data Set's Owner
Y
{ JOMNES i l ENG.CHEM. NOTAR TESTI l
Master index

-
l
!
I
i
5
§
!
|
I
1
|
I
|

Fig

58

JONES' User Catalog

JONES { I

v 1T]

A ——

v [[e 11]

CHEM l l

T
NOTAR : { vl

[

e ———

1

NOTAR [l TEST1 :r I]
-]

TEST

1
[r SMITH . ENG.PHYSICS. COMAR. TEST2 }]

SMITH'S User Catalog

T
ENG ; l

!

|

{

1
ri.
|
H
|
!
]
i ENG | [PHYSICS :TI
|
|
{
!
|
!
|
i
|
!
2
;

T

PHYSICS l’ l COMAR { i l
i
[T
COMAR l TESTH 1 I TEST2 | { 1
H AIT
[e
‘ T
Testy | DATA SET DESCRIPTOR ! }
R W

Data Set Contral Block

SMITH, ENG,
TEST2

PHYSICS. COMAR. |
L

b e o]

- -

DATA PAGE

DATA PAGE

ure 9. Sharing of Cataloged Data Sets

Section 8:

Data Sets

DATA PAGE

DATA PAGE
T ————— DATA PAGE
~~—~-——~«—«‘ DATA PAGE }———-————-

To be concurrently accessible by more

than one task, a data set aust be a VAM
data set. ’

Table 9 explains the commands applicable

to shared data sets.

DATA SET ORGANIZATIONS

Two basic types of data sets can be used

in TSS/360:

e Virtual access method (VAM) data sets

e Seguential access method (SAM) data
sets, also known as physical sequential
{PS) data sets.

VAM data sets arxe formatted for use with
direct access devices and for interface
with the VA# data management routines. PS
data sets are formatted for use with mag-
netic tape ({although they can also be
stored on direct access devices formatted
for use by the sequential access methods
discussed in Section 10, under ®Physical
Sequential Data Sets™) or for communication
between TSS/360 programs and programs on

Table 9. Shared Data Set Commands
T T o S 3
| Command | By Owner | By Sharex |
1 i — . S— —
{ PERMIT ? Allowed. { Not allowed. A user cannot permit ?
| | | access to a data set that he does not |
| { { own. |
b= t - ¥ '
| SHARE | Not allowed. | Must ke issued prior to any other |
| | | references to the data sets. Once |
\ } | issued, the sharer can access the datal
| | { set until he issues an ERASE or |
| | { DELETE. The SHARE command places an |
| | { entry in the sharer's catalog, so that]
| | i a CATALOG command is not necessary. |
e + I 4
ERASE T The owner can only erase a member	A sharer can erase only if he has	
{ (object module) from his job	been granted unlimited access. If he	
	library or erase the entire 1li- ! then erases an object-module neither	
	brary when no sharer is accessing	sharer's or owner's catalog is
	that member at the time the ERASE	affected. If he erases the entire
	command is issued. If he erases	job library, both his catalog entry {
	the job library, the entry in the	and the owner's are removed.
	sharer's catalog is not removed. i	
	The shaxrer must issue a DELETE § i	
	command tc remove the entry from i	
	his own catalog. {]	
F + -4 {		
DELETE	The owner can delete a library or	A sharer can delete his catalog entry
	group of libraries from his cat-	for a job library without affecting
	alog. BAn object module alone can~	the ownexr's catalog. The sharer must
	not be deleted. When the owner { reissue a SHARE command if he again	
	deletes a shared job library, the	wants to refer to the data set that
	sharer's catalog entry is not	has keen deleted. {
	removed. }	
F + - o e e e]		
CATALOG	The owner can catalog a fully	A sharer who has been granted unlim-
	qualified data set name. If that	ited access can change or add entries
]	name is a component of a partially	to the ownexr's catalog. If he is
	qualified name that the owner has	permitted to share a group of data
i { permitted to be shared, all	sets, he can catalog a new data set {	
	sharers have immediate access to	into the grxoup, but he mast include
i	the newly cataloged data set.	as part of the name the paritally
	If an owner changes the name of a	qualified name that he used in the
	single data set to which he per-	SHARE command. If he changes the
	mitted access using a fully	name of one of the data sets in the
	qualified name, each sharer must	group, the new name must still con-~
	delete his catalog entry and re- i tain the partially gualified name. i	
	issue the SHARE command with the	A sharer who has been granted unlimit-
	owner®'s new name.	ed access to an individual data set {
i i | can never change the data set name. i
L L A - 4
Part I1: Using All the Facilities of the ¥L/I Compiler 59

the IBM Systems/360 Operating System oOr omn
the Model 44 Programming System.

The system organizes all VAM data sets
into pages; i.e., blocks of 4096 bytes, and
stores them on direct access volumes; for
PS data sets, you must specify your own
block size and your own direct access or
magnetic tape volume. For more information
on blocking, refer to Appendix D and to the
subject "Consecutive Files,®™ in Section 10.

Since VAM data sets are specifically
formatted for TSS/360, they can use an
installation's supply of public volumes.

In order to access a PS data set, you must
be gualified to receive a private volume
from the installation, and the installation
ray require you to supply the tape reel or
disk.

VAM data sets can be copied onto magnet-
ic tape, but they must reside on direct
access volumes if they are to be accessible
to the VAM data management routines.

VAM DATA SETS
The types of VAM data sets are:
¢ Virtual sequential (VS)
e Virtual index sequential (VI}

e Virtual partitioned (VP)

Virtual Sequential (VS)

I1f described in the PL/I ENVIRONMENT
attribute, a V5 data set would be referred
to as CONSECUTIVE. In a VS data set, the
order of the logical records is determined
solely by the order in which the records
were created, and not by the content of the
records. You can read back records in the
order of their creation Ly merely regquest-
ing one record after the other. Since this
is generally a simpler method of access,
the virtual sequential organization is
intrinsically more efficient for most app-
licaticns where you don't need to access
records at random.

A special type of VS data set, for PL/I
users, is a list data set. List data sets,
produced during each PL/1 compilation, con-
tain the listings; each print line is a
record.

Example 12 in "Part III: Examples™
shows the creation of a VS data set.

Virtual Index Sequential (VI)

If described in the PL/I ENVIRONMENT
attribute, a VI data set would be referred
to as INDEXED. VI records are similar to

60 Section 8: Data Sets

VS records, with the addition of an extra
field called the key. The key can be any-
where in the record; however, if the key is
embedded in the record it is transmitted as
cart of the record. (Refer to *Initial and
Embedded Keys® in "Section 10: Record-
Oriented Transmission.®) All keys within
the same data set must be placed similarly.
The recoxds in the data set are ordered by
ascending sequence of the key field, and
the records are accessed by key.

There are two special types of VI data
sets -- line data sets and region data
sets.

A line data set is indexed by line numb-
er, where each line is a record and is pre-
fixed with the line number as its key.
Source programs are line data sets. You
can display all or part of a line data set
using the LINE? command. Other commands
enable you to effect replacements, inser-
tions, and deletions on line data sets.

A reqion data set is indexed by both
line number and region name; region names,
arranged alphaketically, divide the data
set into regions; line numbers index the
elements of each region. See Part I1III,
Example 10.

PL/Y progrxams can process a VI data set
either sequentially (by key) or nonsequen-
tially (bky ignoxring the kevs).

Examples 18 and 15 in ®Part IXI:
Examples® show the creation and updating of
a VI data set.

Virtval Partitiomed (VP)

A VP data set combines other data sets
into a single data set. Each data set in
the VP data set is called a member, and
each member is identified by a unique nawme.
A program module library i1s an example of a
VP data set. Your USERLIB is organized in
this way, and the compiled program modules
you stoxe in USERLIB are its members.

The partitioned organization allows you
to refer to either the entire data set (by
the VP data set’s name) or to any membexr of
that data set (by 2 name consisting of the
name of the data set gualified by the memb-
exr name in parentheses).

The VP data set can be composed of VS or
VI members oxr a mixture of both. Individu-
al members, however, cannoct be of mixed
organization.

PL/I 170 statements cannot be used
directly on any VP data set. Howevexr, a
CDS command can copy a ¥5 or VI data set
out of a VP data set, thus making a copy
that is accessible to a8 PL/I program, or

insert a new, PL/I-processed member imnto
the VP data set.

You will also use VP data sets if you
define job libraries for storing okject
modules (see “Program Library List Con-
trol,® in Section 63, or if you prestore
source statements that are to be included
in source programs by means of the RINCLUDE
statement (see ®“Invoking the Preprocessor,®”
in Section 5).

PS DATA SETS

The recoxrds in a PS data set are
arranged strictly in the orxder of their
creation. When these records are processed
in TS57360, the block is used as the unit
of transfer to and from the I/0 device; a
block can consist of one or more logical
records. You will use PS data sets each
time you process magnetic tape in your pro-
grams. PS data sets are discussed further
in Sections 9 and 10 and in Appendix D.

RECORD FORMATS

A record is the unit of information
transmitted to ox from a program; it is a
set of contiguous bytes. TSS/360 reco-
gnizes three basic record formats:

e Format F, for records of a fixed
length.

e Format V, for records of varying
length.

¢ Format U, for rxecoxds of undefined
length.

FORMAT F

If a data set is made up of records that
are all of the same length, it is format F,
for fixed length. Thexe are no special
restrictions on the contents of a format-F
record; however, record length is limited
to 32,760 bytes in VS data sets and 4,000
bytes in VI data sets. Format-F records
are not allowed in line or region data
sets.

An example of a format-F data set is a
data set where each record represents the
contents of a punched card; each of these
records would be 80 kytes long.

FORMAT V

If a data set is made up of records that
are of varying length, it is format V, for
variable length. The first four bytes of
each record must contain a length indica-

tor. The maximuw record length permitted,
inciuding the length indicator, is 32,760
bytes in VS data sets and 4,000 bytes in VI
data sets. Format-V records are best
suited for data sets whose records are
intrinsically varying in length, as is
likely ir the case of a data set consisting
of lines typed at the terminal. Either
format-V ox format-F recoxds can occuar in
any TSS5/360 data set except data sets on
ASCII tape (see Appendixes D and E),
although they cannot be mixed together in
the same data set unless they are in separ-
ate membexs of a VP data set.

FORMAT U

A third class of record is tormat-U, for
undefined length. Format~-U records are not
allowed in VI data sets; in VS data sets,
their length is always considered to be a
multiple of a page (4095 bytes). The maxi-
mum recoxrd length permitted is 1,048,576
bytes.

The systewm
U records.

stores object code as format-

TYPES OF PL/I DATA TRANSMISSION

I/0 statements that cause data transmis-—
sion, that is, a transfer of data, are
either STREAM I/0 statements or RECORD I/0
statements. STREAM I/0C statements are GET
and PUT: RECORD I/0 statements are READ,
WRITE, REWRITE, LOCATE, and DELETE.

There are two Lwportant differences
between STREABM transmission and RECORD
transmission. In STREAM transmission, each
data item is treated individually, whereas
RECCRD transmission is concerned with
collecticns of data items (records) as a
whole. In STREAM transmission, each item
may be edited and converted as it is trans-
mitted; in RECORD tramsmission, the record
on the externzal medium is an exact copy of
the record as it exists in internal
storage, with no editing or conversion
performed.

As a result of these differences,
record-criented transmission is particular-
ly applicable for processing large files
that are written in an internal representa-
tion, such as in binary or packed decimal.
Stream-oriented transmission can be used
for processing typed {or keypunched) data
and for producing readable output, where
editing is required. Since files for which
stream-oriented transmission is used tend
to be smaller, the larger processing over-
head can be ignored.

Part II: Using All the Facilities of the PL/I Compiler 61

{ t"system”™ means input from SYSIN and output to SYSOUT.

Table 10. Relationship Between PL/I Files and TSS/360 Access Methods
Lo - T ¥ - T T - L] T 1
| | | ! | RECORD | ACCESs |
| TYPE | ORGANIZATION | ACCESS | MODE | BUFFERING | FORMATS | METHODS |
P + + + -—————t e + + 1
| | | | | | - | systems+ |
| | | | INPUT | [+ i
| STREAM | CONSECUTIVE | SEQUENTIAL | | BUFFERED | F,v,U | VsSaM i
! | | | ouUTPUT | b + i
I | | | | | A1l | QSAM |
— ¥ + 4 + -4~ + {
| | | | | | F.V,U | VSaM |
I | | | | BUFFERED b + -4
| i | | INPUT | | All | QsAM |
| | CONSECUTIVE | SEQUENTIAL | OUTPUT b t + r
| | | | UPDATE | { |]
i { | | | UNBUFFERED | F,V,U | BSAM |
1 F- - t t + + ! 1
T ¥ LS L} T]
| RECORD | | | INPUT | | i |
| | | SEQUENTIAL | OUTPUT | BUFFERED | F,V | VISAM |
| | | | UPDATE | | | {
| | INDEXED b + + - + $-—- -—4
| I | | INPUT | | |]
| i | DIRECT | OUTPUT | UNBUFFERED | F,V | VISaM |
! { | | UPDATE i | i !
e i 1 -4 ——— 4 L i w4
|
]

ACCESS METHODS

The system routines that process data
sets with VAM or PS organizations are
termed access methods. The access methods
used by the PL/I library are:

VSAM: Virtual Sequential
Access Method for
VAM data
VISAM: Virtual Index Seguen-| sets
tial Access Method
BSAM: Basic Sequential
Access Method for physical
seguential
QSAM: Queued Sequential data sets

Access Method

The Virtual Partitioned Access Method
(VPAM), available in TSS/360, is not used
by the PL/I library. However, the PL/I
library can use VSAM or VISAM on a data set
that has been copied cut of a VP data set
by the CDS command.

The PL/1 library subroutines use VSAM or
QSAM for all stream-oriented transmission.
They implement PL/I GET and PUT statements
by transferring the apgropriate number of
characters from or to the data management
buffers, and use GET and PUT macxo instruc-
tions in the locate mode to fill or empty
the buffers. Table 10 shows the relation-
ship between PL/I files and TSS/360 access
methods.

62 Section 8: Data Sets

BASIC DDEF COMMARND

A DDEF command describes a data set to
the system, and is a request to the system
for the allocation of I/C resources. The
DDEF command gives the data set's name; it
can also describe the data set's organiza-
tion, the attributes of the data itself
(record format, etc.), and the data set's
location (for example, the volume serxial
number and identification of the unit on
which the volume will be mounted).

In a conversational task, the system
analyzes the data set's requirements at the
time the DDEF command is issued. It then
attempts to allocate the required
resources, and issues any mounting messages
that are required, at that time. If there
is no device available, you are asked to
either wait for an available device or can-
cel the DDEF command.

Each TSS/360 task must include a DDEF
command for each data set that is processed
by the task, unless the data is read from
SYSIN, written to SYSOUT, or defined in
another command; {(for example, the PLI com-
mand can define the source, object, and
list data sets).

A DDEF command can be issued at any time
during the task prior to execution of the
frogram in which the data set is to be
used. Each DDEF command is valid only dux-
ing the task in which it is issued; pre-
viously defined data sets must be redefined
in every task that refers to them. 2 DDEF

Table 11.

Basic DDEF Command for the PL/I Userx

L 3 T
| Operation | Operand

o e o e s

DDNAME=data definition namel,DSORG={VI|VS|{VP}],DSNAME=data set name i
{,DISP={OLD|NEW}1{,DCB={ [RECFM=(F|V|U}], [LRECL=integer] |
{,REYLEN=integerl { ,RKP=integerl}} i

command that has been entered can be can-
celed by a RELEASE command.

The DDEF command enables you to write
PL/I source programs that are independent
of the data sets and I/0 devices they will
use. You can modify the parameters of a
data set or process different data sets
without recompiling your program; for
example, you can modify a program that ori-
ginally read from a direct access device so
that it will accept input from magnetic
tape merely by changing the DDEF command.

Normally, PL/I users require only basic
DDEF commands, defaulting most of the
operand fields. In some cases, DDEF com-
mands themselves can be defaulted; this
causes the system to choose SYSIN for
input, or SYSOUT for output.

COMMAND FORMAT

Table 11 shows the format of the PL/X
user's basic DDEF command. For information
on the full DDEF command, see Appendix D.

Note: This section and Appendix D present
shortened forms of the DDEF command that
eliminate operands not useful toc you. As a
result, the descriptiom of the portion of
the DDEF command that follows DSNAME is
positionally inaccurate. If you specify
DDEF operands that follow DSNAME, you
should give them in the keyword form shown
in this manual, not in positional form.

DDNAME :
name.

Specifies the data definition

Specified as one to eight alphameric
characters; the first character must be
alphabetic. DDNAME must not begin with
SYS, because these characters are reserved
to prefix system-generated data definition
names.

Since DDNAME is a required parameter, it
cannot be defaulted.

DSORG: Specifies the data set organiza-
tion. The default value differs from
installation to installation.

DSNAME: The DSNAME parameter specifies the

name of the data set. This is the name
under which the data set is to be cataloged

Part I1:

or referred to by other commands during the
session. It contains one or more simple
nawes, each simple name having one to eight
alphameric characters, the first of which
must be alphabetic. A period is used as
separator between simple names. The maxi-
gum number of characters, including
periods, is 35. The maximum number of
simple names is i8.

In most cases, the USNAME need only be
one simple name such as:

DDEF DDNAME=NAME, DSORG=VS,DSNAME=0UTPUT

A DSNAME may be of value in describing
the contents of the data set. Thus, a pro-
gram that gemerates a table of random num-
bers and a table of square roots might em-
ploy the DDEF commands:

DDEF DDNAME=NAME1l, DSORG=VS ,—
DSNAME=TABLE.RANNUM

DDEF DDNAME=NAMEZ, DSORG=VS,~-
DSNAME=TABLE.SQRROOTS

The DSNAME can contain a generation num-
ber in either absolute or relative form.

Examples:
PAYROLL(0) Means the most recent
generation of PAYROLL

PAYROLL (-1} The last generation.

PAYROLL{+1} The next generation.

PAYROLL.GOGO5VOOD Fifth absolute
generation.

If a DSNAME is to contain a generation
name, the DSNAME proper is limited to 26
characters, including periods. Prior to
use of the generation name, you must set up
a generation data group with the CATALOG
command. {See Command System User's
Guide.)

Since DSNAME is a required parameter, it
cannot be defaulted.

DISP: Specified as OLD cor NEW. OLD means
that the data set is being redefined and is
supposed to exist; NEW means that the data
set is keing defined for the first time and

Using All the Facilities of the PL/I Comgpilexr 63

that no data set should already exist under
the specified DSNAME.

DISP=0LD and DISP=NEW do not affect the
data set being defined. DISP=OLD guards
against accidental creation and use of a
new data set; DISP=NEW guards against use
of an existing, forgotten data set. It is
recommended that you use the DISP parameter
habitually. If the DISP specification dis-
agrees with the actual state of the named
data set, then:

e In conversational mode, the user
receives a diagnostic message so that
he can correct this error.

« In nonconversational mode, the task is
abnormally terminated.

When unspecified, DISP defaults to NEW
i1t the system does not find the DSHAME in
the catalog, to OLD if the DSNAME is found.

DCB: A data control block (DCB) is one of
the major control tables for communication
between TSS/360 data management and any
Frogram requiring control of a data set.
The PL/I library I/0 routines kuild a DCB
whenever a DSNAME is encountered for the
first time in executing the object program.
Sources of information for the DCB are the
DDEF command, file attributes declared
explicitly or implicitly in the PL/I pro-
gram, and, if the data set already exists,
the data set label.

In case of conflict, information that
you specify in the DDEF command is given
first priority.

In the DDEF command, the DCB parameters
of critical interest to the PL/I1 programmer
are RECFM, LRECL, KEYLEN, and RKP. KEYLEN
and RKP aprly only to VI data sets.

RECFM:
RECFM specifies the format or charac-
ter of the records in the data set.
This format is:

F -- fixed-length records
-- maximum record length is 32,756
bytes for VS, and 4,000 bytes for
vI

V -- variable-length records
-- each record contains in the first
four bytes a binary count of the
number of bytes in the record
-- maximum record length is 32,756
bytes for Vs, and 4,000 bytes for
VI

U -- undefined-length records
-- record length always a multiple
of a page (4096 bytes)

64 Section 8: Data Sets

-- maximom record length is 1,048,
576 tytes

The default value is V.

LRECL:
LRECL specifies the length in bytes of
a logical record. For format-F reco-
rds, this operand specifies the length
of each record in the data set. For
format-V and -U records, it specifies
the maximum expected length. The
maximum acceptable record lengths are
given in Appendix D.

If record length information is given
in the ENVIRONMENT attribute, the
LRECL operand of the DDEF command is
ignored.

KEYLEN and RKP:
If DSORG=VI and DISP=NEW, you must
specify key length (KEYLEN) and rela-
tive key position (RKP).

KEYLEN is the length in bytes of the
key associated with a record. The
maximum value is 255.

RKP specifies the displacement of the
key field from the first byte of the
logical recoxd. (See "Indexed Files,®
in Section 10.)

The CDD Command

The DDEF commands used in the task need
not be issued directly. One, or more, oxr
all, of the DDEF commands needed can be
made available by using the CDD (call data
definition) command. The CDD command is
used to retrieve one or more DDEF commands
from a line data set;* you must supply the
name of the data set. If this is all you
specify, the system assumes that you want
to use all the DDEF commands in the data
set. If you want to use only selected DLEF
commands, you identify each by its DDNAME
(data definition name). You should pre-
store frequently used DDEF commands in a
data set and call them in this fashion
wherever possikle.

FILES AND DATHE SETS

When you write a PL/I program, you do
not need to know which data sets you will
use or where the volumes that contain them
will be mounted. PL/I uses a conceptual
*file' as a means of accessing a data set.
When an OPEN statement is executed, the
file is associated with a data set through
the TITLE option, which refers to the name

isuch a data set can be created using a
DATA or EDIT command.

of the DDEF command {data definition name,
or DDNAME) that describes the data set; if
the OPEN statement does not include the
TITLE option, the compiler takes the data
definition name from the first eight char-
acters of the file name, padding it with
blanks if necessary.

The OPEN statement indicates the DDNAME
of the DDEF command that describes the data
set to be associated with the file that is
being opened; the DDEF command specifies
the type of device that will access the
data set, the serial number of the volume
that contains the data set, and the name of
the data set (DSNAME). See Fiqure 10. If
the DDEF command refers to a cataloged data
set, it need supply only the DDNAME and the
DSNAME; the system can use the DSNAME to
obtain unit and volume information from the
system catalog.

GET, PUT, READ, WRITE,
LOCATE, REWRITE, or
DELETE

FILE (file~name)
FILE { fila=noms)
OPEN TITLE (expression)

CLOSE FILE (file~nome)

DDNAME= ddname

DDEF command

DSNAME= dsname
dsname in DSCB

DATA SET

Figure 10. Associating a File with a Data

Set

Part II:

Since the link between the PL/I file and
the data set exists only while the file is
open, the same f{ile can be associated with
different data sets during the execution of
a single program; and the same data set can
ke accessead through different files. Fur-
thermore, the use of a DDEF cowmmand to
define the data set, the volume that con-
tains it, and the device on which they will
ke placed, enables vou to defer your choice
until execution time; and you can use the
same program to process different data sets
on different devices without recompiling
the program.

34

OPENING & PFILE

The exescution of a PL/I CPEN statement
agssociates a file with a data set. This
requires the merging of the information
descriking the file and the data set. If
any conflict exists betwsen file attributes
and data set characteristics the UNDEFINED~-
FILE conditicn will be raised.

It should be noted that the omission of
a DDEF command for a RECORD file causes the
UNDEFINEDFILE condition to be raised. B3
STREAM file, on the other hand, defaults to
SYSIN ox SYS0UT, so that PLsI does not
raise the UNDEFINEDFILE condition merely
because the STREAM file has no correspond-
ing DDEF command. {(However, it is still
possible to have it raised because of
attribute conflicts.}

The data management subrxoutines of the
PL/I library create a skeleton data control
block (DCBY for the deta set, and use the
file attributes from the DECLARE and OPEN
statements, and any attributes implied by
the declarx attributes, to complete the
DCB as fax as possible. They then issue a
data management OPEN macro instruction,
which callis the system data management rou-
tinez to check and complete the DCB. Sys-
tem routines examine the DUB to see what
information is still needed and then look
for this information, first in the DDEP
compmand, and finally, if the data set
already exists, in a control block caslled
the data set control block {(DSCB}). The
DSCB is on the wolume containing the data
set and gescribes the data set. PSS datca
sets on magnetic tape don't have DSCR®s;
however, if they are labseled, similar
information is contained in the tape
labels.

Weither the DDEF command nor the data
set lakel can override imformation prowided
by the PL/Y program; nor can the data set
label override information provided by the
DDEF command.

When the DCB fields have been filled in
from these souxces, control returns to the

Using All the Facilities of the PL/Y Compiler 65

PL/I
have

library subroutines. If any fields
still not been filled in, the PL/I
OPEN subroutine provides default informa-
tion for some of them; for example, if
LRECL has not been specified, it is now
provided from the value given for BLKSIZE.

CLOSING A FILE

The execution of a PL/I CLOSE statement
dissociates a file from the data set with
which it was associated. The PL/I library
subroutines first issue a data management
CLOSE macro instruction and then, when con-
trol returns from the system data manage-
ment routines, release the DCB that was
created when the file was opened. The data
management routines complete the writing of
labels for new data sets and update the
labels of existing data sets.

SUMMARY
To specify problem program I/0 activity,

you must consider:

Table 12. Types of Access Methods and Data

Use of I/0 statements in the source
program to indicate data transfer or
I/0 control functioms.

Use of {(or omission of) file declara-
tions in the source program to indic-
ate the usage, function, access, buff-
ering, scope, etc., of the data sets
associated with the I/C statements.

Use of (or omission of) DDEF (define
data) commands to identify the name,
location, organization, etc., of the
data sets associated with the I/0
statements.

To be processed by a PL/I program, a data
set other than SYSIN or SYSOUT must be
jdentified by a DDEF command; the basic
purpose of the DDEF command is to specify
the data set's name and organization.

Table 12 summarizes the TSS/360 data set
organizations. Related access methods are
also shown. Normally, the access methed is
of no concern to you; the system automatic-
ally uses the other information that you
give to choose the correct access method.

Set Organizations

T T T
|This fundamental type |
|of access method and]includes these and these data set
|data set organization, | access methods: organizations:
_____ + ——
t |virtual sequential access virtual sequential: VS
{virtual access method: |method: VSAM
|VAM }
jvirtual indexed sequential virtval indexed sequential: VI

jaccess method:

VIisaM

special VI types:
line data sets
region data sets
list data sets

e o e e

|method: VPAM
4

{virtual partitioned access

virtual partitioned: VP
{combines VS and VI data sets)

. S e, . s i T e " et

¥
|basic sequential access

|
|
4
Al
|
|
4
L)
|
]
|
|
|
1
T
|
|
4
v
|
|
4
4
|
|
A4

|
jsequential access {method: BSAM physical sequential: PS |
|method: SAM b |
I |queued sequential access |
i |method: (QSAM |
[— i _— 3
66 Section 8: Data Sets

Stream-oriented transmission allows a
PL/I program to ignore block and recoxrd
boundaries and treat a data set as a con-
tinuous stream of data items in character
form. For output, the data management sub-
routines of the PL/I library convert the
data items from the program variables into
character form if necessary, and build the
stream of characters into records for tran-
smission to the data set. For input, the
library subroutines take records from the
data set and separate them into the data
items requested by the program, converting
them into the appropriate form for assign-
ment to the program variables. Because
stream-oriented transmission always treats
data as a continuous stream, it can be used
only to process data sets with CONSECUTIVE
organization.

Under TS5/360, stream I/0 files can
operate in either of two ways:

1. By use of the system I/0 files SYSIN/
SYSOUT. This mode is used automatic-
ally by all stream files for which no
corresponding DDEF command has been
issued prior to execution.

2. By accessing a data set that has been
defined previousiy by a DDEF command.
The data set can have eitherxr virtual
sequential (VS) or physical sequential
(PS) organization.

SYSTEM FILES

Thexre are two system files for any TSS

task -- SYSIN for input and SYSOUT for
output,
Note: At execution time, the standard PL/I

file SYSIN becomes the system file SYSIN,
and the standard PL/I file SYSPRINT becomes
the system file SYSCUT.

Any stream file for which no correspond-
ing DDEF command has been issued automatic-—
ally defaults to SYSIN or SYSOUT, depending
on whether it is opened for input or out-
put; it need not have the file name SYSIN,
SYSOUT, or SYSPRINT. System files differ
in one respect from other files that may be
accessed by a PL/I program: No record can
be accessed more than one time by the task.
Thus, closing the SYSIN file and reopening
it does not affect the sequence of records
read from the file. Similarly, once a
record is writtem to SYSOUT, it is inac-
cessible to the program.

Part IX:

SECTION 9: STREAM-ORIENTED TRANSMISSION

SYSTEM INPUT FILE -~ SYSIN

The records from the SYSIN file can come
from several alternative sources.

conversational Mode

In conversational mode, records can be
entered:

s At the terminal keyboard.
» ¥rom a terminal card reader.

If the records are typed at the termin-
al, a prompting character {:)} appears at
the terminal as each record is required.
For example; on execution of the PL/I
statement:

GET DATA(A,B,C);

the system prompts with a colon and you
enter the data; if you don't enter data for
all the items in the data list, indicate
the end of the data with a semicclon:

: A=5.3, B=6.0 ;

Alternatively, the above data could be
entered like this:

A=5.3
B=6,0

o
» 5

s se

In this c¢ase, since the terminating semico-
lon did not appearxr in the first line,
another prompting character is sent to the
terminal.

If your terminal is connected to an IBM
1056 card reader, you can designate the
card reader as the SYSIN device by tyring a
¢ command at any time during the task when
the system expects to receive a command.
¥ou can return control to the keyboard by
including a K command in the card-input
stream, wherever the command mode is in
effect. When the system reads the K com-
mand, the keyboard becomes the SYSIN device
again; and the task continues uninter~
rupted. {(For more inforwation on the C and
K commands and related commands, see Ter-—
minal User's Guide publication.) The cards
to be read can contain commands, as well as
SYSIN data for PL/I programs.

Note: To transfer contyol to the card
reader during program execution, you must
press the attention key:; after the system
prompts you with an exclamation mark (1),
type a C command. After this, a card that

Using All the Facilities of the PL/I Compiler 67

contains a GO command will cause the pro-
gram to resume execution.

Nonconversational Mode

Data for a program executed as part of a
nonconversational task can be entered in
one of four ways:

1. As a card deck supplied for input
through the system card reader.

2. BAs a card deck entered through the
card reader at a remote station (IBM
2780 Data Transmission Terminal) that
is connected to a TSS/360 installa-
tion. (See 1IBM System/360 Time Shar-
ing System: Remote Job Entry.)

3. As part of a data set that is the sub-
ject of an EXECUTE command.

4. As part of a data set that is the sub-
ject of a BACK command.

In cases 3 and 4, the data must be in a VS
data set or a VI line data set.

Data Contained Within Command Procedures

By use of the SYSINX parameter to the
DEFAULT command, it is possible to read
data from within a command procedure (PRO-
CDEF). Given this command procedure,

PROCDEF ABC

PLIPROG PL/1I program

1.0 2.0 3.0,

4.0 5.0 6.0, PL/1 data

etc.

_END End of proéedure

the following commands cause the program
PLIPROG to be executed with data taken from
within the PROCDEF;
DEFAULT SYSINX=E Set SYSINX
ABC Invoke procedure
DEFAULT SYSINX=G Reset SYSINX

ENDFILE Condition for SYSIN

A null record, that is, a record of zero
length, is interpreted by the stream 1/0
routines as an ENDFILE condition. In con-
versational mode, a zero-length record is
formed by pressing RETURN after the system
types the prompting character. In noncon-
versational mode, a zero-length record is
formed by an EOB character in the first
position of the record. This program would
continue processing until it read a zero-
length record:

68 Section 9: Stream-Oriented Transmission

EXAMPLE: PROC OPTIONS(MAIN);

ON ENDFILE (SYSIN) GO TO END;
LOCP: GET DATA;

GO TC LOOP;
END: END;

SYSTEM OUTPUT FILE -- SYSOUT

At execution time, the standard PL/I
file SYSPRINT automatically becomes the
TSS/7360 output file SYSOUT; therefore, you
do not have to supply a DDEF command for
SYSPRINT.

conversational Mode

In conversational mode, all data sent to
SYSOUT appears at the terminal device. The
output is formatted in the normal way, with
the exception that page skips do not occur;
instead, a maximum of three line feeds is
used.

Nonconversational Mode

In nonconversational mode, all records
sent to SYSOUT during a task are placed in
a data set in strict sequential ordex. This
data set is printed and erased automatical-
ly. All formatting of data is accepted in
the normal way, including page skips.

SYSPRINT Attributes

If you do not declare the file SYSPRINT,
the compiler gives it the attribute PRINT
in addition to the normal default attri-
butes; thus, the complete implicit declara-
tion is SYSPRINT FILE STREAM OUTPUT PRINT
EXTERNAL. Since SYSPRINT is a PRINT file,
the compiler also supplies a default line
size of 120 characters and a format-v
record.

You can override the attributes given to
SYSPRINT by the compiler by explicitly
opening the file. If you do so, bear in
mind that this file is also used by the
error-handling routines of the comgpiler,
and that any change you make in the format
of the output from SYSPRINT also apply to
the format of execution-time error mes-—
sages. When an error message is printed,
eight blanks are inserted at the start of
each line except the first; consequently,
if you specify a line size of less than
nine characters {(or a block size of less
than ten bytes for format-F or format-U
records, or less than 18 bytes for format-V
records), the second and successive lines
will not be printed, and the error-message
routine will be locked in a permanent loop.

USER-SPECIFIED DATA SETS

As an alternative to using the system
files SYSIN and SYSOUT, any STRERM I/0 file
can be made to access a VS or PS data set
that you name in a DDEF command. To do
this, you must issue the DDEF command
before the file is opened; the DDNAME pa-
rameter must be the same as either the file
name or the name specified in the TITLE
option of an OPEN statement issued against
the file. Examples:

DECLARE XYZ FILE STREAM ...

DDEF XYZ,VS,DATASET, ...
Or
DECLARE ABC FILE STREAM
PL/I
OPEN FILE(ABC) TITLE('X}Z') statements

v
DDEF XYZ,VS,DATASET, ...

In the second example, the use of the TITLE
option overrides the filename ABC.

Note: DDNAMES beginning with SYS are
reserved for use by system programs. Thus,
it is not possible to issue a DDEF command
with a DDNAME of SYSIN, SYSOUT, or SYS-
PRINT. If a file name begins with SYS, the
TITLE option is the only way you can make
the file access a data set other than SYSIN
or SYSOUT. For example, the statement:

GET DATA(A,B,C);
becomes by implication:
GET FILE(SYSIN) DATA(A,B,C);
1f you include the statement:
OPEN FILE(SYSIN) TITLE(®NOTSYS');

before the first input statement, then a
DDEF command:

DDEF NOTSYS,PS,....etc.

can be issued against the file.

VIRTUAL SEQUENTIAL DATA SETS (DSORG=VS)

Under the TSSr/360 virtual access method,
all blocking of logical records is con-
trolled by the system routines; hence, a VS
data set is easier to use than a PS data
set. Required DCB parameters for a VS data
set are record format (RECFM) and logical
record length (LRECL). These parameters
can be supplied in any of four ways:

1. From the DSCB for old (DISP=0LD) data
sets.

2. In the DDEF command.

Part II:

3. In the ENVIRONMENT attribute of the
file declaration. See IBM System/360
Time Sharing System: PL/1 Lanquaqe
Reference Manual.

4. By default if 1, 2, and 3 do not
apply. The default values are RECFM=
V, LRECL=132.

Exampie 12 in "Part III: Examples®
illustrates the use of a VS data set.
Table 13 shows the relationship between the
RECFM and LRECL parameters and the LINESIZE
option of the OPEN statement, for VS PRINT
and non-PRINT files.

PHYSICAL SEQUENTIAL DATA SETS (DSORG=PS)

Physical sequential data sets are always
private and unsharable. They can reside on
disk or tape devices. The DCB subparame-
ters RECFM (record format) and LRECL (log-
ical record length), required for VS data
sets, are also required for PS data sets.
You control the blocking of records for a

- PS data set; hence, an additional DCRB sub-

parameter, BLKSIZE (physical block size) is
required. The records may be unblocked
{that is, one logical record per physical
record) or blocked (that is, more than one
logical record per physical record). Refer
to Appendix D for ways of specifying the
DCB subparameters relating to data set
residence {(UNIT, VOLUME, and LABEL) and
data set protection (PROTECT).

The required DCB parameters, RECFM,
LRECL, and BLKSIZE, can be specified in any
of three ways:

1. In the data set control block (DSCB)
or data set label for old (DISP=0OLD)
data sets.

2. In the DDEF command.

3. In the ENVIRONMENT attribute of the
file declaration.

Example 12 in "Part III: Examples®
illustrates the use of a PS data set.
Table 13 shows the relationship between the
RECFM, LRECL, and BLKSIZE parameters and
the LINESIZE option of the OPEN statement,
for PS PRINT and non-PRINT OUTPUT files.

PRINT FILES

Both TSS/360 and PL/I include features
that facilitate the formatting of printed
output. TS5S5/360 allows you to use the
first byte of each record for a printer
control character; the control characters,
which are not printed, cause the printer to
skip tc a new line or page. In PL/I, the
use of a PRINT file provides a convenient

Using All the Facilities of the PL/I Compiler 69

Table 13.
STREAM OUTPUT Files

Relationship of LINESIZE Option with RECFM, LRECL, and BLKSIZE Parameters for

Al Ll h |
| Type of Data Set | OPEN Option | DCB Subparameter |
fomm e Y + T : ~
| { LINESIZE | RECFM | LRECL | BLKSIZE |
. t + + } i
| SYSOUT (non-PRINT) | L | N/B i N/A | N/B {
prmmmm -4 % + 4 —
| SYSOUT (PRINT)] L | N/A | N/a | N/A]
N 4 4 }- 'y J
| 4 T 1 1 v 1
| VS (non-PRINT) | L | F | L i N/A |
| | L | v | L+u i N/A i
| | 4096*N | U } 4096 * Nax N | N/A [
b —eemmt + + £ .
| VS (PRINT) | L | F i L+1 { N/A i
| | L { v { L+5 | N/A |
] | (4096%N)-1 | o { 4096 * Max N l N/A]
L 3 i IR £ _____,_i
r T 1) v 3
| PS (non-PRINT, | L | F | L i L i
| Unblocked) i L | Vor b | L+l | L+8 }
| | L | U | L i Max L i
L. i 4 4 4 g
r T Ll T R} 1
{ PS (non-PRINT, i L | FB | L | B*L |
| Blocked) i L | VB oxr DB| L+4 | Be#(L+u4)+4 |
- 4.) 1 [N yl X
¥ ¥ T 1 kS B
| PS (PRINT, | L | F | L+1 | L+1]
| Unblocked) i L | Voer D | 1L#5 i L+9 |
| i L | O | L+l | (Max L)+1 i
i_ ______ L 1 4 4 —)

r T T + 4
| PS (PRINT, | L | FB | L+l | B*(L+1) |
| PleY 7 { L | VB or DB| L+5 | B*(L+5)+4 |
} _____________ 1 i] i %
{Notes: B = blocking factor |
| D and DB are RECFM values for tapes in ASCII format (see Appendix E) |
| L = specified linesize i
{ Max N = number of pages occupied by largest record |
| N = positive integer |
| N/A = not applicable {
[8 J

means of inserting printer control charac-
ters; the compiler automatically inserts
them in response to the PAGE, SKIP, and
LINE ortions and format items.

You can apply the PRINT attribute to any
STREAM OUTPUT file, even if you dc not
int~nd to print the associated data set
directly. When a PRINT file is associated
with a magnetic tape or direct access data
set, the control characters have no effect
on the layout of the data set, but appear
as part of the data in the records.

The first byte of each record trans-
mitted by a PRINT file is reserved for an
American National Standard FORTRAN control
character (hereinafter referred to as FOR-
TRAN contrecl character), and the appropri-
ate character is inserted automatically.
Appendix C discusses the FORTRAN control
characters; a PRINT file uses only the fol-
lowing five characters:

New Page 1

Single line space b (blank)

70 Section 9: Stream-Oriented Transmission

Doukle line space
Triple line space

Sugrress space +

The PL/I library handles the PAGE, SKI1P,
and LINE options or format items by padding
the remaindexr of the current record with
blanks and inserting the appropriate con-
trol character in the next record. If SKIP
or LINE requests more than a triple line
space, *he library inserts sufficient blank
records with appropriate control characters
to accomplish the required positioning. In
the absence of a printer contxol option or
format item, where a record is full the
likrary inserts a blank code (single line
space} in the first byte of the next rec-
ord. For a PRINT file directed to the ter-
minal, the PAGE option results in a three-
"line SKIF, and a SKIP option specifying a
spacing greater than three lines results in
a three-line skip.

RECORD FORMAT

You can limit the length of the printed
line produced by a PRINT file either by
specifying a record size in the ENVIRONMENT
attribute or in a DDEF command, or by giv-
ing a line size in an OPEN statement. The
record size must include the extra byte for
the printer control character, that is, it
must be one byte larger than the length of
the printed line (five bytes larger for
format-V records). The value you specify
in the LINESIZE opticn refers to the numbex
of characters in the printed line; the PL/I
library adds the contrcol bytes.

The blocking of records has nc effect on
the appearance of the output produced by a
PRINT file, but it does result in more
efficient use of storage space when the
file i1s associated with a data set on mag-
netic tape or a direct access device. If
you use the LINESIZE option, ensure that
your line size is compatible with your
block size: for format-F records, block-
size must be an exact multiple of {line
size + 1); for format-V records, blocksize
must be at least nine bytes greater than
line size.

Although you can vary the line size for
a PRINT file during execution by closing
the file and opening it again with a new
line size, you must do so with caution if
you are using the PRINT file tc create a
data set or magnetic tape or a direct
access device; you cannot change the record
format established for the data set when
the file is first opened. If the line size
specified in an OPEN statement conflicts
with the record format already established,
the UNDEFINEDFILE condition will be raisegd;
to prevent this, either specify format-v
records with a block size at least nine
bytes greater than the maximum line size
you intend to use, or ensure that the first
OPEN statement specifies the maximum line
size. (Output destined for the printer is
temporarily stored on a direct access
device, even if you intend it to be fed
directly to the printer.)

Since PRINT files have a default line
size of 120 characters, you need not give
any record format information for them. In
the absence of other information, the com-
piler assumes format-V records; the com-
plete default information is:

BLKSIZE=129
LRECL=125
RECFM=V

Example 13 in "Part IIi: Examples®™ illus-
trates the use of PRINT files and stream-—

oriented transmission. Table 13 shows the
relationship between the RECFM, LRECL, and
BLKSIZE parameters and the LINESIZE option

Part IX:

of the OPEN statement,
PRINT files.

for PRINT and non-

TAB CONTROL TABLE

Data-directed and list-directed output
to a PRINT file is automatically aligned on
preset tabulator positions; the tab set-
tings are stored in a table in the PL/I
library module IHEWTAB {Figure 11). {(IHEW-
TAB is contained in module CFBAJ, in SYS-
LIB.) The functions of the fields in the
table -- Figure 11(a) -- are:

PAGESIZE
halfword binary integer that defines
the default page size.

LINESIZE
halfword binary integer that defines
the default line size.

Reserved Bytes
reserved for left and right margin
facilities.

Byte 0 1 2 3
r T -
Word 1 | PAGESIZE i LINESIZE |
i i 4
L Y T
2 | (Reserved) | (Reserved) |Tab count 1Tab1 i
t + -—t + -
3 {Tab; |Taba {Tab... {Tab... i
[N 'y 4 4 1
3 T T L] Rl
4 L L L L
T T T T T
L 4 i 4
r T T T === ‘4
n |Tabn i | | |
L. j —— i i 3
(a) Tab control table
r T 1
| | |
t —mmmemom—t - -
| 60 { 120 i
b ™ ¢ . -
| 0 | Y | 5 | 25 |
b ¥ + o i
{ u9 i 73 i 97 | 121 |
L —t i n '

(b) Standard form of table

IHETAB CSECT
ENTRY IHETABS
IHETABS DC AL2(60) DEFAULT PAGE SIZE
ool AL2(120) DEFAULT LINE SIZE
DS X RESERVED
DS X RESERVED
DC AL1(5) NO. OF TAB POSITIONS
DC AL1(25) TAB POSITIONS
pC ALL(49)
ool AL1(73)
DC AL1(97)
BC AL1(121)
END

(c) Control section IHETAB

Figure 11. Tabular Control Table (Module

IHEWTAB)

Using All the Facilities of the PL/I Compiler 71

Tab

Tab,

count
number of tab position entries in
table (maximum 255). If tak count =
0, the tab positions are not used:
each data item is put out as if a
PRINT file were not being used.
- Tabp

tab positions within the print line.
The first position is numbered 1, and
the highest position is numbered 255.
The wvalue of each tab should be great-
er than that of the tab preceding it
in the table; otherwise, it will be
ignored. The first data field in the
printed output begins at the left mar-
gin (position 1), and thereafter each
field begins at the next available tab
position.

You can alter the tab control table by
changing the values in the assembler lan-
guage control section -- Figure 11(c}.
There are three ways to do this:

1. The installation can assemble a new
version into SYSLIB.

2. You can assemble your own version into
a private job library.

3. During a task, you can change items by
using PCS. For example, to change tab
settings to 1, 41, 81, and 121:

display ihetab

IHETABE VERSION ID 09/14,70 01:17:10
€0000000 003C0078 00000519 31496179
set ihetab.(6,6)=x'032951790000"

Note that position 1 does not count as a
tak setting.

SUMMARY OF STREAM-ORIENTED TRANSMISSION

Figure 12 shows the types of TSS/360
data that can be accessed by a STREAM file.

STREAM FILE
SYSTEM FILE (NO DDEFR) USER-DEFINED DATA SET
DDEF
[| | |
INPUT OUTPUT VIRTUAL SEQUENTIAL PHYSICAL SEQUENTIAL
‘SYSINI ‘SYSOUT' iDSORG = VSI IDSORG = PSI
on direct=- on direct-access device
access device or magnetic tape
typed by system printed by printer [RECFM =F] [RECEM =v] [RECFM =]
ot terminal {nonconversational
{conversational only)
only}]

| | |

typed by you punched on cards in o PROCDEF

at terminal (conversational or (conversational or
(conversational nonconversational) nonconversational)
only)

Figure 12.

72

BLOCKED

UNBLOCKED |RECFM = FBl RECFM = VBI
*RECFM = D

I I
‘RECFM = Fl RECFM = V IRECFM = U!

*RECFM =D

* For topes in ASCII format
(See Appendix E.)

Relationship Between a STREAM File and TSS/360 Data

Section 9: Stream-Oriented Tramnsmission

In record-oriented transmission, data is
transmitted to and from auxiliary storage
exactly as it appears in the program
variables; no data coversion takes place.
In most cases, the data contained in a log-
ical record of a data set corresponds to a
variable in the program. Usually data
management contrcl information (for
example, block and record lengths for
format-V records) is removed before assign-
ing the data to a variable, or inserted on
output.

Normally, format-V records are read into
and written from strings or aggregates of
varying length. Format-F records can be
used for fixed-length variables.

Record-oriented transmission cannot be
used for accessing the system files SYSIN
and SYSOUT. A corresponding DDEF command
must be issued for any record file that is
to be opened during execution. Failure to
do this causes an UNDEFINEDFILE condition
to be raised against the file.

Figure 13 shows the relationship between
the attributes of a RECORD file and the
types of TSS/360 data sets that it can
access. From the table, these points can
be seen:

1. RECORD files can have only CONSECUTIVE
or INDEXED organization. REGIONAL and
TRANSIENT organizations are not sup-
ported by TSS/360.

2. CONSECUTIVE files can only ke accessed
in SEQUENTIAL mode.

3. INDEXED files can be accessed in eith-

er SEQUENTIAL or DIRECT mode. The
default mode is SEQUENTIAL.

RECORD

g
ENVIRONMENT (CONSECUTIVE) ENVIRONMENT {INDEXED)

SEQUENTIAL SEQUENTIAL DIRECT
BUFFERED UNBUFFERED BUFFERED UNBUFFERED
VS PS(QSAM) PS{BSAM) Vi Vi

Access of RECORD Files to TSS/
360 Data Sets

Figure 13.

Part II:

SECTION 10: RECORD-ORIENTED TRANSMISSION

4. CONSECUTIVE files can have the BUF-
FERED or UNBUFFERED attribute.

5. CONSECUTIVE BUFFERED files can be used
for data sets having either virtual
sequential (VS) or physical sequential
(PS) organization. The organization
must be specified in the DSORG parame-
ter of the DDEF command.

6. CONSECUTIVE UNBUFFERED files can only
be used for PS data sets.

7. INDEXED files can only be used for
data sets having virtual indexed
sequential (VI) organization.

8. INDEXED files that arxre given the
SEQUENTIAL attribute are automatically
given the BUFFERED attribute; hence,
both move- and locate-mode I/0 state-
ments can be used.

9. INDEXED files that are given the
DIRECT attribute are automatically
given the UNBUFFERED attribute; hence,
they can use only the move mode of
access.

CONSECUTIVE FILES

Table 14 shows the types of CONSECUTIVE
files that you can specify and the 1/0
statements that you can use with themn.
CONSECUTIVE files can be given the BUFFERED
or UNBUFFERED attributes. (Note: The
default attribute is BUFFERED.) The BUF-
FERED attribute allows the file to access
either VS or PS data sets without any pro-
gram changes. The type of data set is
determined by the DSORG parameter, which
must be included in the DDEF command issued
for the file. 1If the file is given the
UNBUFFERED attribute, it can only be used
to access PS data sets using the Basic
Sequential Access Method (BSAM). (For
further information on BSAM, see IBM Time
Sharing System: Data Management Facili-
ties, GC28-2056.) The following pages dis-
cuss the use of CONSECUTIVE files to
access:

e Virtual Sequential Data Sets

s Physical Sequential Data Sets

VIRTUAL SEQUENTIAL DATA SETS

Virtual sequential data sets are the
simplest and most efficient way of storing

Using All the Facilities of the PL/I Compiler 73

Table 14. Characteristics of CONSECUTIVE Files
r T T T T T T 1
{ i | H i | Access | Record |
{Organization | Access |Buffering | Mode Statement | Options | Method | Formats |
b= + + + + + + 4
! i i	INTO					
		{ INPUT READ	IGHORE			
				SET		
{] ! b i i]						
H	{ i WRITE	FROM]	{			
i { { OUTPUT 4 { Vsam	P, Vor					
i { BUFFERED	LOCATE	SET	orx	D, U {		
i	3 + i QSaM	F, V, U				
I				INTO	{ FB, VB	
i		{ READ	IGNORE		or DB i	
				SET		
			UPDATE + i			
ENVIRONMENT	SEQUENTIAL}	REWRITE [FROM] { }				
(CONSECUTIVE)	b + + 4+ +]					
i i			INTO			
			INPUT READ	IGNORE	i {	
1				EVENT		
		t + 1				
	i	OUTPUT	WRITE { FROM	i		
		[EVENT	BSAM	{	
1] [UNBUFFERED	+ 4	F, Vor				
		[INTO	only	D, U	
	i [READ	IGNORE				
				EVENT		
: '		UPDATE + 1				
.	i REWRITE { FROM					
	i {	EVENT				
% i A i i i 4 {						
Note: The D and DB record formats are for tapes in ASCII format (see Appendix D). }						
— — 1						
data in TSS/360. Records are automatically Table 15 details the parameters which are						
blocked into page-size physical records and always required for a new VS data set and						
there is no need for the user to provide lists alternative ways they may be						
blocking information. They are stored on supplied.						
public volumes and cataloged automatically						
at creation time. When you have them read						
or updated, you supply the data set name						
(DSNAME) and data definition name (DDNAME). Table 15. Specification of VS Data Set						
Characteristics						
Example 12 in "Part III: Examples® s T ¥ T v						
shows the creation of a VS data set. jRequired	DDEF	PL/I	Default			
Parameter	Command	Program	Value i			
Creating a Virtual Sequential Data_ Set b 4 + + 4						
DDNAME	file-name {file-name	{				
To create a VS data set using record-]	title-name	title~-name	none			
oriented transmission, certain essential		i				
information must be supplied to the sys-	DSORG=	vs	- jnone !			
tem's data management routines. This i		{				
information is taken from the following {DSNAME=	DATA SET		i			
sources: i	NAME i -	none				
e The PL/I program (the ENVIRONMENT {DIsp=	NEW i -—	See Note				
option of the file declaration).]		
DCB= !]				
e The DDEF command. § RECFM=:|F, V, or U|ENVIRONMENT{V 1
§ LRECL=|1length | option {132 I
s By default, if not specified in the ¥ b L L —
program or in the DDEF command.] Note: DISP= defaults to OLD if DSNAME
{
{

pefault values may not always be adequate
for correct execution of the PL/I program.

74 Section 10: Record-Oriented Transmission

is in catalog, to NEW if DSNAME is not

in catalog.

,-
i
|
|
]
i
{
|
|
|
I
|
]
{
f
1
{
i
|
|
|
|
1
{

M e s s

Accessing a Virtual Sequential Data Set

Since VS data sets are cataloged auto-
matically when they are created, a minimum
of information is required when they are
accessed at a later time. The essential
information required in the DDEF command is

DDNAME = file or title-name

]

DSNAME data set name

DISP = OLD

The remaining information that is required
by the data management routines is obtained
from the catalog entry.

Note: It is not possible for the programm—
er to alter the existing data management
parameters (for example, RECFM, LRECL). If
they are supplied, they must be the same as
the existing values.

The existing data set can be accessed in
three ways; the associated file can be
opened for INPUT, OGUTPUT or UPDATE.

INPUT: The file is positioned at the first
record in the data set. The records are
presented in sequence; after the last
existing record is read, a further read
statement causes an ENDFILE condition to
occur for the file.

OUTPUT: The file is positioned after the
last existing record; new records are added
to the end of the data set.

UPDATE: The file is positioned at the
beginning of the data set. Records that
are replaced cannct have their length
altered.

PHYSICAL SEQUENTIAL DATA SETS

Physical sequential data sets can reside
on tape or disk devices and are always
private and non-sharable. They can be
accessed using either the Queued Sequential
Access Method (QSAM) or the Basic Sequen-
tial Access Method (BSAM), depending upon
whether the associated files arxre given the
BUFFERED or UNBUFFERED attribute. When
QOSAM is used, the records are blocked and
deblocked automatically ky the data manage-
ment routines; hence, the PL/I program is
simpler to write and has better safequards
against errors. Although the use of BSAM
involves you in working with blocked reco-
rds, it has the advantage that input and
output can be overlapped with other proces-
sing by the use of EVENT variables. The
following paragraphs discuss the creation
and accessing of PS data sets using QSAM.
Most of the information given also applies
when using BSAM; for a discussion of the

Part II:

special considerations concerning BSAM, see
"Physical Sequential Data Sets (BSAM
Access) ,® in this section. For further
discussion of (5AM and BSAM, see IBM
System/360 Time Sharing System: Data Mana-

gement Facilities, GC28-2056.

Creation of Physical Sequential Data Sets

The information required for the crea-
tion of a PS data set is more extensive
than for a V5 data set. The user must
supply information concerning

e Device Type

e Volume Serial Numbex
» Yabeling f(tape only)
¢ Record Format

o Record Length

® Block Sizes

Additional information is required if the
user wishes to override standard system
values (for example, space allocation, tape
density, etc.).

Some of the information can be supplied
by the PL/I program {ENVIRONMENT attribute
of the file declaration), implied from
other values {(for example, for unblocked
records, the record length can be implied
by the format and block-size), or supplied
ky the PL/I library routines by default.

Table 16 specifies possible sources of
essential information reguired foxr the
creation of a new PS data set using QSAM.
For a complete discussion of the DDEF com-~
mand, see Appendix D.

Accessing a Physical Sequential Data Set

(QSAM)

The data managenment information required
for accessing 2 PS data set is considerably
simplified if the data set is cataloged
after creation. Cataloging a data set pre-
serves information concexrning:

e Device Type

¢ Volume Serial Number

» Labeling and Density {(tape only)
e Record Format

s Record Length

e Block Size

If the data set is uncataloged, information
concerning the location of the data set is

Using All the Facilities of the PL/I Compiler 75

Table 16. Specification of PS (QSAM) Data

Set Characteristics

o T T 14 ¥
{ | DDEF | PL/T {Default]
{Characteristic|{ Command [Pxogram SValue !
o + H H |
| DONAME= | File-Name j File-Name | Name {
i { Title-Name {Title-Name | i
1 i | | i
| DSORG= | PS t - jNone]
| | H I i
{ | Data Set { { |
{ DSNAME= { Name i - | Kon i
| | ! | |
|DiSp= { oLp ! - | Nene !
| i | | |
jpeB= ! i 1 |
| |{F, Vv or D, u} i [

i RECFM }{FB, VB or DB { ENVIRONMENT| {
| LRECL i leue } option {None i
| BLKSIZE | value] iNon i
| ! i | |
{For Disk i i | |
| | (oA, {2311}) [i [
| UNIT= [N 2314 i - i |
i i (PRTVATE) { i |
] VOLUME | serial no i - | System i
{ i i } or Usexr- |
tEor Tape b, i | pDefined |
i i (Ta, 19 5\ i - | Defaults |
{ UNITS | (171) j {]
{ i fPrivate { } |
i VOLUME= t serial no { - { |
| by NL 3| ! 1
| LABEL= | (f11e~no { ;); - } [
I i suL)/| | !
L -4 4 A 4

always required (that is, UNIT, VOLUME).
Further information is then required only
in the case of unlabeled tapes. Data sets
on direct access devices or labeled tapes
have format information contained in con-
trol blocks (DSCBs or header labels) kept
with the data.

The existing data set can be accessed in
several ways, depending upon the way the
associated file is opened.

file is
the

INPUT: When opened for INPUT, the
positioned at the first record and
records are presented in sequence. After
the .au. record is read, a further read
causes an ENDFILE condition to be signaled
for the file.

For tape devices
read the recoxrds in
file must be opened

only, it is possible to
reverse order. The

and processed before-
hand, and the LEAVE option must be speci-
fied in its ENVIRONMENT attribute. When
reopened for input, the BACKWARDS attribute
must be specified. This method of tape
operation is applicable for all xecord
formats.

OQUTPUT: When opening an existing PS data
set for OUTPUT, the disposition DISP=MOD
should be specified if you want to add
records at the end of the data set. Fail-
ure to do this causes the data set to be
overwritten.

76 Section 10: Record-Oriented Tyansmission

Note:

ftile on
WANNEX »
becomes

For tape data sets, only the last
the tape can be extended in this
Otherwise any following file
unreadable.

UPDATE: Only data sets on direct access

devices can be opened for update. The

records must be read and rewritten without

changing their length.

Track Overflow

If the volume is on a direct access
device, the blocksize can be greater than
the size of & track. In such a case, it is
necessary to specify trxack ovexrflow for the
data set. (Note: Track overflow requires
a hardware feature that may not be avail-
able on the access devices at your instal-
lation.) Track overflow can be specified
in the ENVIRONMENT attribute (TRKOFL) or in
the record format (RECFM) DCB subparameter.
Examples:

RECFM=UT format-U with track overflow

RECFM=FBT format-FB with track overflow

If the blocksize is smaller than the
track size, the use of track overflow is
optional.

Accessing a Physical Sequential Data Set

(BSAM)

When a CONSECUTIVE file is given the
UNBUFFERED attribute, it can only be used
to access PS data sets using the BSAM
access method. The use of BSAM causes com-
plete physical records to ke assigned to
the program variables on input and inserted
on output. Any blocking or deblocking of
the records must be done by the PL/I pro-
gram. The use of BSAM allows the possibi-
lity of overlapping the I/0 operations with
other processing. See "Synchronous I1I/0
Using BSAM,” in this section. Except for
these considerations, there are no major
differences between QSAM and BSAM.

SYNCHRONOQUS I/0 USING BSAM: When using
BSAM to access a PS data set, it is poss-
ible to overlap 170 with other processing.
This overlapped processing occurs when an
EVENT variable is specified in the I/0
statement of the PL/J program. (For a com-
plete discussion of the use of EVENT
variables in I/0 processing, see PL/I Lan-
quage Reference Marnual.}) The maximum num-

ter of I/0 events that can be outstanding
for & file at any instant must be supplied
as an additional data management parameter.
This value is called NCP {number of channel
programs). It can be specified in the
ENVIRONMENT attribute of the PL/I Program
(NCP{n)) ox im the DCB parametexr of the
DDEF command {(HCP=n)}. A similar rule ap~-
plies for the BUFNC data management parxame-

ter. This specifies the number of buffers
allocated to the file. Like NCP, this
value must not be less than the maximum
number of outstanding I/0 events that can
occur. BUFNO can be specified in the
ENVIRONMENT attribute, in the form BUFFERS
(n), or in the DDEF command, in the form
BUFNQ=n.

INDEXED FILES

Table 17 shows the types of INDEXED
files that you can specify and the I/O
statements that can you can use with thenm.
A RECORD file declared to have INDEXED
organization can only be used to access VI
(virtual indexed sequential) data sets.
Each record in the data set is identified
by a key that is recorded with it. BA key
is a string of not more than 255 charac-
ters; all the keys in a data set must have
the same length and the same relative posi-
tion in the record. The records are
arranged according to the collating
sequence of their keys, which facilitate

the direct (nonsequential) retrieval, addi-
tion, and deletion of the records.

INDEXED files can be accessed by the
PL/I program in two alternative modes,
SEQUENTIAL or CIRECT. SEQUENTIAL proces-
sing of INDEXED files is similar to the
processing for CONSECUTIVE files. Records
can be read in ascending key sequence from
the first record onwards without specifying
any key information; or the data set can ke
positioned to a particular record (using
the KEY option) and then further records
read in sequence. To update an INCEXED
file sequentially, each record must first
be read and then rewritten. There is no
restriction for format-V records that the
new record wmust be the same size as the old
record. For DIRECT processing of an IN-
DEXED file, there are no restrictions on
the use of I1/0 statements; records can be
added using the WRITE statement or replaced
using the REWRITE statement, without pre-
vious issuance of a READ statement. To
simplify programming for INDEXED files, the
PL/I library routines treat indexed files

Table 17. Characteristics of Indexed Files
(= —————— T T T T T T T 3
| | | | | | |} Access | Record |
|Organization| Access | Buffering | Mode | Statement | Options | Method | Format |
fmmmmmm o pomm - + + + 1 + $- 1
| | | | | | INTO{SET | | |
| | i |INPUT | READ | IGNORE i | |
I | | | | | REY|KEYTO | | |
l n I — + 1 l a
! | | | | | FROM | | |
| | | | | WRITE | KEYFROM | | |
! | | | OUTPUT |- t —————i | |
| | | | | | SET] | |
[| | | | LOCATE | KEYFROM |] |
] | SEQUENTIAL| BUFFERED - -1 4 - § | l
					INTO	SET		
i i		READ	IGNORE i					
					KEY	KEYTO		
			UPDATE {-—-——————mm e 4					
]	REWRITE	FROM i]			
		[e — oo i	1					
ENVIRONMENT			{ DELETE { { VISAM	F, V				
(INDEXED) pm—————————— e $ e o ——— { only i								
					INTO			
		{ INPUT	READ	KEY				
		e R Movta s						
f					FROM		{	
	i	OUTPUT	WRITE	KEYFROM i i]				
		— oo oo ee i	1					
				{ INTO }				
l				READ	KEY i			
	DIRECT	UNBUFFERED	- S —— 4 N					
					FROM			
I				WRITE	KEYFROM i]]			
{		UPDATE }j-m—w———mm - d						
!		{ { FROM		i				
]	{ REWRITE	KEY]	i				
		z e — o 4						
i | | | | DELETE | KEY | | |
b ————4 —— e e e i i ——— i — I — 4 — I, 2
Part II: Using All the Facilities of the PL/I Compiler 77

having initial keys {(see Appendix D, record
format diagrams) as different from files
having embedded keys.

Initial and Embedded Keys

When the keys are positioned at the
beginning of the record (i.e., RKP=0 for
format-F records or RKP=4 for format-V
records), they are initial keys. In all
other cases, they are embedded keys.

INITIAL KEYS: On output the PL/I library
routines automatically concatenate the key
variable (KEYFORM option) and the data
variable (FROM option) before the record is
written out to the data set. Thus, you can
consider the key and data as completely
independent variables. Conversely, on
input, the data section of the recoxd is
assigned to the data variable (INTO or SET
option) and the key is assigned to the key
variable (KEYTO option).

EMBEDDED KEYS: For this form of proces-
sing, you are responsible for inserting the
key at the appropriate position in the rec-
ord before issuing a write statement. The
PL/I library routines then compare the in-
sertion with the specified key (KEYFROM
option). Inequalit+v results in a KEY
.+10r. O~ °- KEYTO option can be
used to e .~w. a copy of the key.

Creating an Indexed Data Set

The associated file can be opened for
SEQUENTIAL OUTPUT or DIRECT OUTPUT.
Sequential processing is more efficient
than DIRECT, but the records must be pre-
sented in ascending key sequence. Failure
to do this raises the KEY condition. For
DIRECT OQUTPUT processing, the records can
be presented in any order; the only error
that can occur, besides a key-specification
error, is supplying of a duplicate key.

The data management parameters required
when creating a new VI data set are shown
in T~hle 18,

78 Section 10: Record-Oriented Transmission

Takle 18. Specification of VI Data Set

system catalog, and to NEW if the DSNAME is not
in the system catalog.

Characteristics
g L T T 1
i | DDEF | PL/I | Default |
{Characteristic| Command { Program | value i
IS 4 - i 4 4
T T T ¥
| DDNRME= { file-name | file-name | None i
| { title-name | title-name | {
| 1 1 | i
| DSORG= | VI i - | See Note i
| | I | |
| DSNAME= | Data Set i - { None i
1 { name | i |
| i t | i
; DCB= : g } |
1
i RECFM= { F,v | ENVIRONMENT| v |
| LRECL= | value | option | 132(V) 128(F)
i RKP= | value i - | 4(V) O(F) |
i KEYLEN= | value { - | 7 (V ox F)
| | | | |
| DIsp= | NEW] - | See Note |
I8 i i 1
r i
| Note: DSORG defaults to OLD if the DSNAME is in the i
| |
| |
i 3

Accessing an Indexed Data Set

The data management information required
for accessing an existing indexed data set
is

DDNAME = file or title-name
DSNAME = data set name
DISP = OLD (optional)

No further information need be supplied.
If other data management parameters are
supplied, they must be the same as the
existing values; no change can be made to
the values set at creation time.

Example of IndexeG Data Set

Examples 14 and 15 in "Part III:
Examples®™ illustrate the creation and
updating of an INDEXED data set.

SECTION 11: DEBUGGIRG A PL/I PROGRAM

Programs can be checked out using the The system loads module SIMPLE and modules
program control system or the debugging invoked bty SIMPLE, but does not initiate
facilities provided by PL/I. execution.

PROGRAM CONTROL SYSTEM AT PROCS5; STOP

The program control system (PCS) is a

subset of the TSS/360 command system. The system types the statement number
Table 19 summarizes the PCS facilities assigned to the AT command.
available to the PL/I user.
SIMPLE

Table 20 lists the restrictiors on using
PCS that apply only to you as a PL/I user The system initiates execution of SIMPLE,
or are of special interest to you. For and notifies yocu when control arrives at
further information, see Command System external procedure PROCS.

User's Guide.

DISPLAY 0:15R

Example:
The system displays the contents of your

LOAD SIMPLE general-purpose registers at your terminal.
Table 19. Program Control Commands and Their Functions
L § R 1
| Command | Function |
t + 1
| LOAD | Places a program in your virtual storage without initiating execution. |
| | |
| UNLOARD | Removes specified program from your virtual storage. {
| | : i
| CALL | Loads and rasses parameters toc a program and execute. |
| i |
| Go | Resumes execution of previously interrupted program. See Appendix B. i
| | |
| REPEAT | After attention interruption, repeats last nonprompting message. See {
	Appendix B.
BRANCH	Dynamically changes control path of program or resumes execution at a dif-
	ferent location. (Resembles the PL/I GOTC statement.)
AT	Informs you when execution of program has reached designated instruction §
	location, or designates instruction location at which rest of command {
	statement is to be executed.
REMOVE	Selectively deletes previously entered command statements that include AT.
IF	Makes following command statement conditional.]
SET	Changes contents of machine registers, values of program variables, virtual
	storage locations, or command symbols. (Command symbols are explained in
	Command System User's Guide.)
DISPLAY	Presents values of variables, contents of machine registers, and specified
	virtual storage locations to your SYSOUT.
I	
DUMP	Presents values of variables, contents of machine registers, and specified
	virtual storage locations to task®s PCSOUT data set. {
	!
sTOP	Interrupts execution of your program and displays instruction location
	where interruption was handled. (Used only in a command statement that
i { includes an AT command.) {
(- i S, i

Part II: Using All the Facilities of the PL/I Compiler 79

Table 20. Rules for Using Program Control Commands
‘ — -
| Commands Rules
|,__ _______

LOAD Specify a module name, external-procedure name, or external-

: procedure ENTRY name. The module and those of its subroutines
that are not called explicitly will be loaded.
CALL Specify the module name for the main procedure.
LOAD, CALL A CSECT in the program is rejected if it has the name of a CSECT

BRANCH, AT, IF,
SET, DISPLAY, DUMP

—— . (e e e WS . s O o I . e e o s S WO — —-— a—

T
|

+

|

|

|

|

|

i

| that is already loaded; an attempt by the program to execute the
| rejected CSECT executes the CSECT that is actually loaded.

| Modules in IVM, however, are “forgotten® if you logged on with
| an IVE code (the 8th LOGON parameter) of Y, and other modules
| that duplicate their CSECT names can be loaded cor executed.

i

|

|

i

i

|

|

|

|

|

|

|

|

|

|

!

A location in the program must be specified as an external
nampe, external name with offset, or an actual address.
CSECT is in IVM, and you logged on with an IVM code of ¥, you
must specify an actual address.

Specify a module name or the name of any loaded CSECT; the
entire module, as well as subroutines not shared by another

If the

URLOAD cannot unload modules

o s et cn M s g o o s, SO s St A, i e A B T S A D oo e, e s, apusem. ‘e, sl amircs

UNLOAD
loaded module, will be unloaded.
from. IVM.
AT, SET AT or SET cannot reference a public CSECT.
SET SET cannot reference a read-only CSECT.
LOAD, GO See Appendix B.
DDEF PCSQUT,VI,DSNAME=DUMPDS
DUMP PROCS
RELEASE PCSOUT
PRINT DUMPDS, , EDIT

The system dumps the contents of PROCS5 int~
DUMPDS and prints DUMPDS at the instaila-
tion's printer.

Bccessing Static Internal Contrel Sections

You can obtain the address of a static
internal control section with the command:

DISPLAY procedure-name.(X*10°,4)
Then you can examine and change the static

internal control section’s contents, using
the DISPLAY, DUMP, and SET commands.

PL/1I DEBUGGING FACILITIES

Certain language features are provided
in PL/I to assist you in debugging your
program. The facilities include:

e Control over interruptions and error
handling

80 Section 1i: Debugging A PL/I Program

e The ability to obtain a trace of active
procedures

e Symbolic output

o Communication with the program during
execution

The use of specific language features
provides the debuggqging facilities; in addi-
tion, you can use your own techniques, such
as inserting PUT statements at selected
points.

When you are satisfied that your program
is working correctly, you should remove
debugging statements from your source pro-
gram and then recompile to produce an opti-
mrum object program ready for execution.

CONTROL OF INTERRUPTION AND ERROR HANDLING

Some conditions can be enabled or dis-
abled by means of the condition prefix,
full details of which can be found in IBM
System/360 Time Sharing System: PL/I Lan-
guage Reference Manual.

In addition, you can specify your own
exit (to be taken when a particular condi-
tion occurs), or you can cause an interrxup-
tion by means of the SIGNAL statement. In
particular, attention should be paid to the

CHECK condition, as this enables you to
maintain a close watch on any variables you
want to nominate.

If you want to exercise control of a
more general nature, you can make use of
the ERROR condition and, in an “ON-unit*®
further analyze the program by means of the
ONCODE and ONLOC functions.

Standard system action for an ERROR con-
dition causes the FINISH condition to be
raised.

ON-CODES

The ONCODE built-in function can be used
in any ON-unit to determine the nature of
the error or condition that caused entry
into that ON-unit.

An ON-unit, which has been established
by the execution of an ON statement, is
entered when the associated ON-condition is
raised during execution of PL/I-compiled
code or of a PL/I library module. Thus,
for example, a FIXEDOVERFLOW ON-unit would
be entered whenever any of the conditions
occur for which the language demands the
raising of the FIXEDOVERFLOW condition.

Two ON-conditions, ERROR and FINISH,
require special explanation. The ERROR
condition is raised:

1. Upon execution of a SIGNAL ERROR
statement.

2. As a result of system action for those
ON-conditions for which the language
specifies system action to be ®comment
and raise the ERROR condition.”

3. BAs a result of an error (for which
there is no ON-condition) occurring
during program execution.

The FINISH condition is raised:

1. Upon execution of a SIGNAL FINISH,
STOP, or EXIT statement.

2. Upon normal completion of the MAIN
procedure of a PL/I program.

3. Upon completion of the action asso-
ciated with the raising of the ERROR
condition, except when a GO TO state-
ment in the ON ERROR unit has resulted
in transfer of control out of that
unit.

As a general rule, the value of the ON-
code returned by the ONCODE function is
that of the specific condition that caused
entry into the ON-unit. Thus, in an ON
CONVERSION unit, you can expect an ON code

Part II:

coxresponding to one of the conversion con-
diticons that cause the CONVERSION condition
to be raised in PL/I. However, this is not
necessarily true when executing an ON ERROR
or an ON FINISH unit; the values are as
follows:

1. When entered as a result of a SIGNAL
ERROR or a SIGNAL FINISH, STOP or EXIT
statement, or as a result of normal
termination, the ON code values are
those of ERROR or FINISH respectively.

2. When entered for any other reason, the
ON code value is that associated with
the erroxr or condition that originally
caused the ERROR condition to be
raised.

Several separate but related occurrences
can cause a particular PL/I ON-condition to
ke raised. For example, the TRANSMIT con-
dition can be raised:

1. By execution of a SIGNAL TRANSMIT
statement

2. By occurrence of an input TRANSMIT
error

3. By occurrence of an output TRANSMIT
erxox

Although it is often useful to know pre-
cisely what caused an ON-condition to be
raised, at times it is sufficient simply to
know which ON-condition was raised. This
applies particularly if the ONCODE function
is used in an ERROR ON~unit after systen
action has occurred for an ON-condition.
The ON codes have therefore been grouped,
each group containing codes associated with
a particular ON-condition.

From time to time it may become neces-
sary or desirable to add new ON-codes into
a group. Perhaps a group containing only
ane ON-code may be expanded. This fact
nust be remembered when the ONCODE function
is used to determine if a particulax PL/I
ON-condition has been raised. It is impor-
tant to test to see whether the Ol-code is
within the range specified, even if there
is only one ON-code in the range; other-
wise, when a new set of library modules is
used, it may become necessarxry to recompile
the rrogram.

When a group contains only one CON-code
value, it is impossible to test specifical-
ly for the signaled condition. With more
than one ON-code in the gxoup, the first in
the grougp represents the signaled condition.

The ON-code groups and their ranges are
shown in Tables 21 and 22. (Language ON-
conditions arxe shown in capitals, others in
lowercase letters.)

Using All the Facilities of the PL/I Compiler 81

Table 21.

Main ON-Code Groupings

| S ¥ 1
} Range | Group i
pmm e e y
| 3-5 | As for 1000-9999 i
| 10-199 } I/0 ON-conditions }
300-39¢	Computational ON-conditions
500-549	Program checkout conditions
600-899	Conversion conditions
1000-9999	Error conditions (alsoc 3-5)
L —_— p— N Jd
Table 22. Detailed ON-Code Groupings

| B T 1
| Range | Group |
p-=- pommm i
| 0 | ONCODE {
| 3 | Source program error |
{ 4 { FINISH i
| 9 { ERROR |
| 10-19 | NAME |
{ 20-39 | RECORD |
[40-49 | TRANSMIT i
| 50-69 | KEY |
| 70-79 | ENDFILE |
| 80-89 { UNDEFINEDFILE |
[90-99 | ENDPAGE |
| 100-299 | (Unallocated) {
| 300-309 | OVERFLOW |
{ 310-319 | FIXEDOVERFLOW |
I 320-329 | ZEROMNTYTNE |
, »30-370 ' : |
| 340-349 . wiLE |
| 350-359 | STRINGRANGE i
| 360-369 | BREA |
| 370-499 { {(Unallocated) {
| 500-509 | CONDITION i
510-519	CHECK
520-529	SUBSCRIPTRANGE
530-599	{Unallocated)
600-899 { CONVERSION {	
900-999 { (Unallocated) i	
1000-1199	I/0 errors
1200-1499 ((Unallocated) :
1500-1699	Data processing errors
1700-1999	(Unallocated)
{ 2000-2099	Unacceptable statement
	erxrors i
{ 2100-2999	(Unallocated)
{ 3000-3u99	Conversion exrors
3500-3799	(Unallocated)
3800-3899	Structure and array errors
3900-3999	Tasking errors
4000-8090	(Unallocated}
8091-8199	Program interrupt errors
{ 8200-8999	(Unallocated)
9000-9999	System exrxroxs i
i — ——— i - —]

The ON-codes and their associated condi-
tions and errors are shown below.

Conditions/Exrror

0 ONCODE function used out of context

3 Source program errox

Code
4 FINISH
9 ERROR
10 NAME

82 Section 11:

Debugging A PL/I Program

70
80
81
82

83
84
85

90
300
310
320

340
341
350
360
361
362
500
510
511
520
600

602
603
604
605

606
607

608

609
610

611
612

613

RECORD ({(signaled)

RECORD (record variable smaller than
record size)

RECORD (record variable larger than
record size)

RECORD {attempt to write zero length
record)

RECORD {zexro length record read)
TRANSMIT (signaled)

TRANSMIT ({output)

TRANSMIT (input)

KEY (signaled)

KEY (keyed record not found)

KEY (attempt to add duplicate key)
KEY (key sequence error)

KEY (key conversion error)

KEY (key specification error)

KEY (keyed relative records/track
outside data set limit)

KEY (no space available to add keyed
record)

ENDFILE

UNDEFINEDFILE (signaled)
UNDEFINEDFILE (attribute conflict)
UNDEFINEDFILE (access method not
supported)

UNDEFINEDFILE (blocksize not
specified?

UNDEFINEDFILE (file cannot be
opened, no DDEF command)
UNDEFINEDFILE (error initializing
REGIONAL data set)

ENDPAGE

OVERFLOW

FIXEDOVERFLOW

ZERODIVIDE

UNDERFLOW

SIZE (noxrmal)

SIZE (1I/0)

STRINGRANGE

AREA raised in ALLOCATE statement
AREA raised in assignment statement
AREA signaled

CONDITION

CHECK (label)

CHECK (variable)

SUBSCRIPTRANGE

CONVERSION {(internal) (signaled)
CONVERSION (I1I/0)

CONVERSICON (transmit)

CONVERSION {error in format-F input)
CONVERSION f{error in format-F input)
(1/0)

CONVERSION (erxror in format-F input)
{transmit}

CONVERSION (error in format-E input)
CONVERSION (error in format-E input)
(Ls0)

CONVERSION {error in format-E input)
{transmit)

CONVERSION (error in format-B input)
CONVERSION (error in format-B input)
(1/0)

CONVERSION (error in format-B input)
{transmit}

CONVERSION {(character string to
arithmetic}

CONVERSION {character string to ari-
thimetic) (I/0)

614
615
616
617

618
619

620
621
622
623
624
625
626
627
628
629
1000
1001
1002
1003

1004
1005

1006
1007
1008

1009
1010
1011
1012
1013

1014
1015
1016

1017
1018

1019

1500
1501
1504
1505
1506

CONVERSION {(character string to ari-
thmetic) (transmit)

CONVERSION {character string to bit
string)

CONVERSION {character string to bit
string) (1/0)

CONVERSION (character string to bit
string) (transmit)

CONVERSION (character to picture)
CONVERSION (CBARACTER TO PICTURE)
(1/0)

CONVERSION {character to picture)
{transmit)

CONVERSION (format-P input -
decimal)

CONVERSION {format-P input - decim-
al) (I/0)

CONVERSION (format-P input - decim-
al) (transmit)

CONVERSION {(format-P input -
character)

CONVERSION (format-P input - charac-
ter) (I/0)

CONVERSION (format-P input - charac-
ter) (transmit)

CONVERSION (format-P input -

sterling}

CONVERSION (format-P input - sterl-
ing) (I/0)

CONVERSION (format-P input - sterl-
ing) (transmit)}

Attempt to read output file
Attempt to write input file
GET/PUT string length error
Unacceptable output transmission
error

Print option on non-print file
Message length for DISPLAY state-
ments zero

Illegal array item for data-directed
input

REWRITE not immediately preceded by
READ

GET STRING -- unrecognizakle data
name

Unsupported file operation

File type not supported
Inexplicable I/C error

Outstanding READ for update exists
No completed READ exists - incorrect
NCP value

Too many incomplete I/C operations
EVENT variable already in use
Implicit-OPEN failure - cannot
proceed

Attempt to REWRITE out of sequence
ERROR condition raised if end-of-
file is encountered before the deli-
miter while scanning list-directed
or data-directed input, or if the
field width in the format list of
edit-directed input would take the
scan beyond the end-of-file.
Attempt to close file not opened in
current task

Short SQRT erxocr

Long SQRT error

Short LOG error

Long LOG error

Short SIN error

Part II:

1507
1508
1509
1510
1511
1514
1515
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559

2000

2001

3000
3001
3002
3003
3004
3005
3006
3798
3799

3800
3801

3900

3901
3902
3903

3904
3905
3906

3907
3908

8091
8092
8093
8094
8095
8096
8097
9000

9002

Long SIN error

Short TAN error

Long TAN eriox

Short ARCTAN errox

Long ARCTAN exrox

Short ARCTANH erxor

Long ARCTANH erxor

Invaliid exponent in shoxrt float
integer exponentiation

Invalid exponent in long float
integer exponentiation

Invalid exponent in short float gen-
eral exponentiation

Invalid exponent in long flocat gen-
eral exponentiation

Invalid exponent in complex short
float integer exponentiation
Invalid exponent in complex long
float integer exponentiation
Invalid exponent in complex short
float general exponentiation
Invalid exponent in complex long
float general exponentiation
Invalid argqument in short float com-
plex ARCTAN or ARCTANH

Invalid argument in long float com-
EFlex ARCTAN or ARCTANH

Unacceptable DELAY statement
Unacceptable use of the TIME built-
in function

Format—E conversion exrox

Format-F conversion error

Format—-A conversion error

Forwat-B conversion error

Format—-A input errox

Format-B input error

Picture character string errorxr
ONSOURCE or ONCHAR out of context
Improper return from CONVERSION
ON-unit

Structure length 2 16**%6 bhytes
Virtual origin of array = 16%%6 or <
~16%%5

Attenpt to wait on inactive and
incomplete event

Task variable already active

Event already being waited on

Wait on more than 255 incomplete
events

Active event variable as argument to
COMPLETION pseudo-varxiable

Invalid task wariable as argument to
PRIORITY pseudo-variable

Event variatle active in assignment
statement

Event variable already active
Attempt to wait on an I/0 event in
wrong task

Invalid operation

Privileged opexation

EXECUTE statement executed
Protection violation

Addressing interruption
Specification interruption

Data interruption

Too many active ON-units and entry
parameter procedures

Invalid free storage (main
procegure)

Using All the Facilities of the PL/I Compiler 83

TRACE OF ACTIVE PROCEDURES

A trace of active procedures can ke
obtained by use of the SNAP option in an ON
statement. However, this technique has the
limitation that it records only procedures
active at the time when the condition
occurs, because of the use of dynamic
storage; when the storage is released it is
immediately available for some othex use,
and so cannct be used to maintain a full
trace. 1If a full flow trace is required,
then this should be programmed, either by
means of the SIGNAL statement in associa-
tion with an ON statement and ON-unit, or
by specifying all procedure names in a
CHECK list with the appropriate action in
an ON-unit.

The format of the SNAP output is either
of the fcllowing:

1. CONDITION xxxx OCCURRED AT OFFSET &
hhhhh FROM ENTRY POINT E1

2. CONDITION xxxx OCCURRED AT OFFSET ¢
hhhhh FROM ENTRY POINT OF xxxx ON-UNIT

_suwed hv

CALLED FROM PROCEDURE WITH ENTRY POINT

E2

CALLED FROM PROCEDURE WITH ENTRY POINT
E3

etc., etc.

If the statement number compiler option
is specified, the SNAP output message also
contains IN STATEMENT nnnnn immediately
following the word OCCURRED in the first
line, or after the word CALLED in subse-
quent lines. The notation nnnnn gives the
number of the statement in which the condi-
tion occurred.

The characters that replace xxxx are an
abbreviated form of the name of the ON-
condition tnat has occurred (the abbrevia-
tions are given in Table 23). hhhhh is a
hexadecimal offset; E1, E2, etc., are entry
point names indicating the actual entry
points used to enter the procedure in which
the condition occurred, or from which the
next named entry point was called.

If a condition occurs in an ON-unit,
then the entry point name in the second
line will be that of the precedure from
which the ON-unit was entered, not neces-
sarily the proceduare in which the ON-unit
is situated.

If SNAP SYSTEM has been specified in an
ON statement, the system action message is
printed, followed by the trace of active
procedures:

84 Section 11: Debugging A PL/I Program

Takle 23. Abbreviations for ON-Conditions

f <+ 1
| Condition i Abbreviation i
— + :
| OVERFLOW | OFL]
| SIZE i SIZE |
| FIXEDOVERFLOW i FOFL |
i SUBSCRIPTRANGE | SUBRG |
| CHECK | CHCK |
| CONDITION | COND i
| FINISH i FIN I
| ERROR] ERR |
| ZERODIVIDE] ZDIV |
| UNDERFLOW | UFL |
| STRINGRANGE] STRG |
{ NAME { NAME {
| RECORD i REC i
| TRANSMIT i TMIT 1
i KEY ! KEY |
| ENDFILE | ENDF |
| UNDEFINEDFILE] UNDF |
| CONVERSION | CONV 1
| ENDPAGE | ENDP]
[1 3

CALLED FROM PROCEDURE WITH ENTRY POINT
E2
etc.

The one exeception is the case of SNAP
SYSTEM for a CHECK condition. In this case
a standard SNAP message is written, fol-
lowed by the standard system action print-
out for the CHECK condition.

COMMUNICATION WITH THE PROGRAM

Symbolic Output Using GET and PUT
Statements

Section 7 explains how the GET and PUT
statements can be used to direct I/0 to
SYSIN/SYSOUT.

Execution of a GET DATA statement causes
the system to read from SYSIN. SYSIN
should provide a series of assignment
statements that assign values to variables
declared within the block containing the
GET statement. Methods of entering a SYSIN
data set in nonconversational mode are
described under "System Input File -~
SYSIN® in Section 8, and in Part III,
Examples 3 and 4. :

Execution of a PUT DATAldata list]
statement causes the system to write on
SYSOUT. Use of a data list with a PUT DATA
statement is optional. Execution of a PUT
DATA statement with a data list causes the
system to write each specified variable and
its value on SYSCUT, in assignment-
statement form. Execution without a data
list causes the system to write the con-
tents of each static variable in your
program.

For examples of terminal I/C using the
simple GET and PUT statements, see "Section
3: Basic Data Manipulation.” For an
example of nonconversational input using
the simple GET statement, see Example 4 in
“Part III: Examples.®

You can also use the data-directed I/0
feature with files other than SYSIN and
SYSQUT. This feature can ke used instead
of, or in addition to, the CHECK condition
handling. Refer to PL/I Lanquage Reference
Manual for a full description of this
feature.

The DISPLAY Statement

The DISPLAY statement provides an addi-
tional means of communicating with the pro-
gram while it is being executed.

A message can be displayed in either of
two forms:

1. Without the REPLY option, which gives
the specified character string
unaltered.

2. With the REPLY option, which gives the
specified character string preceded by
a two-digit code generated by the sys-
tem. Use this code as a prefix to the
reply message. The reply message can
be given in either a conversational or
nonconversational task; it must come
from the SYSIN data set.

In TSS/360, the EVENT option of the DIS-
PLAY statement can be used conly to suppress
flagging of the event variable as complete.

User—-Requested Dump

An additional debugging feature is the
ability to obtain a storage dump at any
point in the program. A dump is obtained
by one ©f the statements:

CALL IHEDUMCI((argument)];
dump and continue execution

CALL IHEDUMPI[(argument)];
dump and terminate execution

Part II:

The argument is optional; if used, it must
ke declared as ENTRY(FIXED BIN(31,0)).
This integer agpears in the heading of the
dump as ID = n, It must be in the range 0
through 27.

The operation of the dump routines
depends upon whether the invoking task is
in conversational or nonconversational
mode.

CONVERSATIONAL DUMPS: The following infor-
mation is printed at the terminal:

* Dump header.

e Addresses of the DCB (data control
block) and certain other PL/I library
control blocks, for all opened files
and for the current file.

e Addresses of all save areas currently
in use, starting with the last used.
For each save area, the calling and
return addresses of the routines are
given.

At this point, the message
PAUSE

is printed at the terminal and the task is

Fut into command mode. You can now use PCS
commands to obtain any further information

you require.

To continue execution, issue the GO com-
mand; the dump rcutine will cause the gpro-
gram to either continue or terminate,
depending on whether IHEDUMC or IHEDUMP was
called.

NONCONVERSATIONAL DUMP: The system prints

the same information that it prints for a
conversaticnal dump; in addition, it gives
dumps of ail pages containing the supplied
addresses.

RETURN CODES

Return codes are set by use of the
statement CAILL IHESARC.

Using All the Facilities of the PL/I Compiler 85

SECTION 12:

INTERFACE BETWEEN PL/I AND ASSEMBLER-LANGUAGE PROGRAMS

You may want to write subroutines in
assembler language and then call them from
a PL/1I program -- for example, to provide a
new function. You may want to write your
own versions of PL/1 library subroutines.
More rarely, you may want to call a PL/I1
subroutine from an assemkler program.

For any but simple subroutines, it is
recommended that you become familiar with
I1BM System/360 Time Sharing System: PL/I
Subroutine Library Program Logic Manual,
GY28-2052, hereinafter referred to as the
library PLM. The general notes given here
may help you decide whether your subroutine
is simple.

ASSEMBLER SUBROCUTINES CALLED FROM PL/I
PROGRAMS

ABSENCE OF PSECTS
Ther in PL/I, and no R-
type addre . .unstants. You cannot write a
subroutine with a PSECT, because the PL/I
calling program will not supply the PSECT
address in word 19 of its save area. All

PL/1 control sections are CSECTs.

ENTRY TO THE SUBROUTINE

At entxry to a subroutine called from
PL/I, these facts are known:

s Register 15 contains the address of the
subroutine entry point, and can there-
fore be used as a base xegister.

* Register 14 contains the address of the
r~*nvryn peoint in the PL/I calling
progranm.

e Register 13 contains the address of the
(PL/I) calling program®s save area, in
which the subroutine should save the
general purpose registers on entry.

¢ Register 12 contains the address of the
PRV communication area. This register
must have the same value on return as
it bhad on entry.

e Register 1 contains the address of the
parameter list, if any.

Format of Parameter List

The parameter list built by the PL/I
calling program consists of one word for

86 Section 12: Interface Between PL/I and

each parameter specified in the CALL state-
ment. Each worxd contains a three-byte
address. (Remember that PL/X works only in
a 24-bit addressing mode.}) The last word
in a parameter list contains an X'80°' flag
in the first byte, so that varying numbers
of parameters can be used.

Depending on the attributes of each pa-
rameter, the corresponding address can be
that of the parameter itself, or that of a
contrcl block containing information that
describes the parameter‘'s characteristics;
for example, consider the PL/I statements:

DCL PAR1 CBAR(8),PAR2 FIXED DECIMAL,
PAR3 BINARY,PARU(5);

-

CALL SUBR (PAR1,PAR2,PAR3,PARM);

The CALL statement is expanded to the egqui-
valent of this assembler code:

LA 8,DV..PAR1
ST 8,WS1.1

LA 8,PAR2

ST 8,WS1.1+4
LA 8, PAR3

ST 8,WS1.1+8
LA 8,DV..PARY
ST 8,WS1.1+12
o1 WS1.1+12,X'80°
LA 1,WS1.1

L 15,A..SUBR
BALR 14,15

(The parameter list is built in a location
WS1.1 in the calling program®s dynamic
storage area.}

PAR1 is defined as a character string.
In PL/1 a string item is described by a
control klock called a string dope vector.
The address loaded into the parameter list
for this call is that of the dope vector
for this string, DV..PARl1l. PAR2 is a

Assembler-Language Programs

simple arithmetic item and is addressed
directly. So is PAR3. PARY is an array,
and this too is addressed through a control
block, in this case an array dope wvector.

Other types of data may have control
blocks, and reference should be made to the
library PLM for a complete description.
When in doubt, it is useful to write a
dummy PL/I calling program with the parame-
ters declared fully, and examine the list-
ing to see how the parameter list is built.

Note that a hex °*80° is OR'd into the
last item in the parameter list to indicate
that it is the last parameter.

DATA REPRESENTATION

PL/I has its own way of representing
arithmetic scalars, strings, arrays, and
structures. Representation of an arithmet-
ic data item depends upon its scale and
base. A string is addressed through its
string dope vector {(SDV), an array or stru-
cture is addressed through its array dope
vector {aDV}), and a structure is addressed
through its structure dope vector. See
Section III of the library PLM for the for-
mat of each of these dope vectors.

ENVIRONMENT

24-Bit Addressing

A PL/I program cannot work with an
address that is more than three bytes long.
An assembler subroutine called from a PL/I
program must take this into account.

Storage Management

If you want the subroutine to be share-
able, all working must be done in registers
or in dynamic virtual memory; that is,
without a PSECT. Rather than do your own
GETMAIN, you should use a piece of wirtual
memory that has already been oktained by
PL/I and is being controlled by a library
routine. The way tc do this is to code:

IBEPRV VDA,BR

BALR LR,BR

IHEPRV is a PIL/I macro, defined in TSS/
360's assembler macro library (ASMMAC),
that puts the contents of a particular
pseudo-register into the specified real
register. In the instruction above, it
puts the contents of IHEQVDA into register
15. IHEQVDA is defined in part of the
expansion of the PL/I macro IHELIB, which
contains a lot of useful definitions (for
example, the PL/I standard names for regis-

Part II:

ters and control blocks). It is recom-
mended that you include IHELIB, preferably
as the first instruction, in the assemblerxr
subroutine. JHEQVDA is a slot or pseudo-
register in a dynamic communication area
called the pseudo-register vector {(PRV).

It contains the address of the entxy point
to & routine that obtains a block of virtu-
al memory.

At entry, register 0 must contain the
number of bytes of wvirtual memory reguired.
On return, register 1 contains the address
of the beginning of the assigned variable
data area (VDA). To return such storage a
different pseudo-register, IHEQFVD, is used
to free the VDA. Thus:

IHEPRY FVD,BR

BALR LR, BR

frees the latest VDA. The library PLM
describes the format of a VDA, the first
eight Lkytes of which are reserved for
flags, length, and chaining.

SAVE AREAS: Should the assembler subrou-
tine require a save area of its own,
library workspace can be used. There are
different levels of library workspace
ralled LWO, LWl through IW4. If the sub-
routine is called only directly from com—
piled code, level zerxo should be used. If
you are replacing an existing library rou-
tine, the level used should be one higher
than the highest used in any calling
library routine. (The library PLM shows
the calling relationships of the litrary
routines.) The address of the workspace
can be cobtainsd by using the library macro
IHESDR; for example:

IHESDR LWU,WR
puts the address of the level zero works-
pace in register WR.

PSEUDO-REGISTERS: The macro IBELIB defines
the standard pseudo-registers used by the
PL/I library, and you can examine oxr change
these by using the macro IHEPRV; for
example:

IHEPRV CFL,RA

loads the address of the current file's
pseudo-register into register RA. To ind-
icate an errxor condition,

IHEPRV ERE, RA,OP=ST

stores the contents of registex RA into the
rseudo-register IHEQERR.

Nonstandard pseudc-registers defined by
compiled code can be addressed from

Using All the Facilities of the PL/I Compiler 87

assembler language subroutines through the Interruption Handling

use of DXD instructions and Q-type address

constants. Initialization of interruption handling
is automatic for PL/I main programs and
their subprograms. An interruption of the

The standard pseudo-registers and assembler language subroutine will be
library macro instructions are described in fielded by the PL/I library.
appendixes of the library PLM.

EXAMPLE: This is a small example to show how assembler language subrou-
tines can be accessed from a PL/I main program. The module shown is
designed to accept a character string argument of any size and write it in
the SYSPRINT data set. The actual output operation is done by the PL/I
library module IHEPRTB, which is invoked by the assembler language subrou-
tine (PRINTER).

Part 1

PRINTER is invoked by a standard CALL statement in PL/I, using the
entry name to which control is to be passed.

TEST: PROCEDURE OPTIONS (MAIN);
DECLARE Al CHAR(35);
Al is the variable to be written on SYSPRINT.
~ - 2;
D = 4;
Al = (B¥*(C#*2*2))}/D;

The last assignment statement calculates a value in floating
point and converts it to a character string.

CALL PRINTER(A1l);

To use facilities provided by the library routine to put out
error messages, it is necessary to call the assembler subrou-
tine PRINTER, shown later in this section.
END TEST;
Part 2
This subroutine illustrates some of the functions necessary in order to
communicate between a PL/I main program and an assembler subprogram. The

comments included explain fully what has been done, and indicate what
might have been done.

While this is a trivial example, it demonstrates most of the linkage
problems. Note that the standard SAVE macro could have been used in this
subroutine.

This subroutine is limited to extracting the address and current length
of a character string from its dope vector, and presenting these items as
arguments to a library print routine.

PRINTER CSECT

USING *,15
BC 15,PRINT1

DC AL1(7)

88 Section 12: Interface Between PL/I and Assembler-Language Programs

Length of the character string that follows. Its purpose
is to enable the PL/I SNAP option to print a trace if
required. ’

DC C*PRINTER®
PRINT1 STM 14,11,12¢13)
Saves registers in the callexr®s save area. Note that this
subroutine is prepared to preserve register 12. 1In the

event of an interruption, the PL/I execution error package
would be invoked.

DROP 15
BALR 10,0
USING *,10

The last two instructions establish addressability for the
rest of the control section. The same system is used by
the compiler-produced object code.
Use is now made of the PL/I library in order to obtain a
save area. This is done dynamically, since the same is
done by PL/I object code. If there is no requirement for
this code to be reentrant or recursive, then storage could
be reserved for it by means of DC's or DS's.

LA 0,100 LENGTH OF DYNAMIC SAVE AREA

L 15,ADDR1 GET ADDRESS OF LIBRARY GETDSA

BALR 15,14 ROUTINE, AND BRANCH TO IT.
It is now necessary to initialize the save area. Not much
work is done in this example, but PL/I object code usually
performs many more functions. It is not absolutely neces-
sary to do more than is indicated here, but if you wish to
observe all the PL/I comventions then considerably more
code would be required.

MVI 0(13),X°*80"

This instruction moves in the flag byte as required by the
library FREEDSA routine.

At this stage, the saving conventions have been dealt with
and attention can be given to parameters.

L 14,000,1)

Gets the address of the argument -- note that this is not
the string itself but its dope vector.

L 1,000,1%>
Gets the address of the string from the dope vector.
LA 2,6(0,14)

Gets the address of the current length of the string from
the dope vector.

L 15,ADDRZ GET ADDRESS OF LIBRARY PRINT

BALR 14,15 MODULE AND BRANCH TO IT.

Part 11: Using All the Facilities of the PL/I Compiler

Upon return, this subroutine has completed its task and
now makes use of the library FREEDSA routine in order to
release its dynamic storage (used as a save area), and to
return toc its caller.

L 15,ADDR3 GET ADDRESS OF LIBRARY FREEDSA

BCR 15,15 MODULE AND BRANCH TO IT

ADDR1 DC V(IHESADA) ADDRESS OF LIBRARY GETDSA RTN

ADDR2 DC V(IHEPRTB) ADDRESS OF LIBRARY PRINT RTN

ALDDR3 DC V(IHESAFA) ADDRESS OF LIBRARY FREEDSA RTN
END

PL/1 SUBROUTINES CALLED FROM ASSEMBLER PROGRAMS

Generally speaking, a PL/I program (even a subroutine) expects to oper-
ate in a PL/I environment. This implies that initialization has been
done, that data is in PL/I format, etc. This is particularly vital if the
subroutine should call PL/I library routines.

If the assembler calling program has itself been called by a PL/I main
program, or if you have called the PL/I initialization routine as shown
below, then initialization will have been done. Where initialization is
not done, you should not attempt to call any but the most straightforward
PL/T ~»%- without a thorough knowledge of the library PLM.

INITIALIZATION ROUTINE

If you have not initialized PL/I but want to call a PL/I subroutine
from assembler, you can call the initialization procedure yourself. The
following routine is that actually used by PL/I compiled code to initia-
lize execution. It is written as a separate CSECT.

USING #*,15
INIT ST 1,REG1 SAVE PARAMETER LIST ADDRESS
LA 1,REG1 SET UP SAPC PARAMETERS
The PL/I initialization routine is in the PL/I library, in
module IHEWSAP at entry point IHESAPC. It expects register 1
to contain the address of a five-word parameter list, of
which the first word (REG1l) is a pointer to the parameter
list for the program being initialized. At entry to the INIT
routine, register 1 should contain this address.
L 15, VSAPC GET ADDRESS OF IHESAPC
BR 15 ENTER INITIALIZATION ROUTINE
REG1 DC F'0*
DC A (return.) or DC V (RETURN POINT)
This is the address the initialization routine should go to
when it is done. The address can be internal or external to
your current CSECT; if external, a V-type address constant

must ke used.

DC V(IHEWCVC)

90 Section 12: Interface Between PL/I and Assembler-Language Programs

This is the address of the nonsharable portion of the PL/I
library, which must be given to the initialization routine in
order for it to function progperly.
CXD
VSAPC DC V(IHESAPC) ENTRY POINT OF INITIALIZATION ROUTINE
EXAMPLE: This program consists of two wodules. The f£irst, ASMMOD, is an
assembler language routine that calls the initialization routine, then
calls a PL/I procedure and passes parameters. ASMMOD could do more work
than this; its function here is only to show how the linkages to the
initialization and PL/I routines are performed. The second module, PLI-
MOD, comprises the PL/I procedure.
INITIAL CSECT MODULE IS "ASMMOD®
USING *,15
ST 1,REG1 SAVE PARAMETER POINTER
LA 1,REG1 ADDRESS PARAMETER LIST

L 15,=V(IHESAPC) ADDRESS INITIALIZATION ROUTINE

BR 15 SET UP PL/I ENVIRONMENT
SPACE
REG1 DC F'0O' REGISTER 1 SAVE AREA
DC A(LINK) ENTRY POINT FOR RETURN FROM INITIALIZA-
TION ROUTINE
DC V(IHEWCVC) PL/1I LIBRARY ADCON MODULE
CXD
LTORG
EJECT

The assembler language routine that links to the PL/I procedure does not
have to be in the same CSECT as the call to the initialization routine, or
even in the same module. However, it is probably more convenient to put
it in the same mclule.

First, the assembler language linking routine estaklishes addressakili-
ty and deals with saving conventions as in Part 2 of the example under
"Assembler Subroutines Called from PL/I Programs,”™ ir this section. There
is no requirement to save register 12, since it is not modified by PL/I
programs.

LINK STM 14,11,12(13) SAVE REGISTERS

BASK 10,0 ESTABLISH BASE REGISTER

USING *,10 *

LA 0,100 ~ LENGTH OF DYNAMIC SAVE AREA (100 IS
MINIMUM SIZE)

L 15=V(IHESADA) DSA ALLOCATION PROGRAM

BASR 14,15 ALLOCATE DSA

MVI 0(13),x°80" SET FLAGS

Part II: Using All the Facilities of the PL/I Compiler

91

SPACE 5

LA 1, PLILIST ADDRESS PARAMETER LIST

L 15,=V(PROG) ADDRESS PL/I EXTERNAL PROCEDURE
BASR 14,15 ENTER PL/I PROCEDURE

SPACE

If the PL/I procedure executes a RETURN or END statement, control will be
returned to the next instruction:

GATWR MESG,LEN VERIFY RETURN TC THIS ROUTINE
SPACE 5
L 15,=V(IHESAFA) PL/I END PROCESSOR
BR 15 END OF JOB
LTORG
LEN DC A(L"MESG) MESSAGE LENGTH
PLIST DC A(FIRST)
T A (SECOND)
JOTRCTE) DC C* *LINK* RETURN FROM PL/I PROGRAM *PROG*'
FIRST DC B'49" FIRST PARAMETER
SECOND DC H'150°* SECOND PARAMETER
END INITIAL
PROG: PROC(I,K); /*MODULE IS °‘PLIMOD®#*/

DCIL{J,L) BINARY FIXED(15,3);
J=SQRT(I1);
L=SQRT{XK);
PUT DATA{I,L);
IF I=0 THEN STQP;
RETURN;
END;

Program execution:

ASMMOD

J= 7.0 L= 12.1;*LINK*# RETURN FROM PL/1I PROGRAM
PROG

QUALIFY ASMMOD;SET FIRST=150,SECOND=32768
The value assigned to SECOND is too large for the corresponding PL/I pa-
rameter, K, which has a default precision of 15. In this case, the sign

bit is set; K will look like a negative numkber to the PL/I library, which
will issue an error message.

92 Section 12: Interface Between PL/I and Assembler-lLanguage Programs

ASMMOD

IHE200I IHESQS X LT O IN SQRT (X) IN STATEMENT 00003 AT OFFSET +000E8
FROM ENTRY POINT PROG

SET SECOND =32767

ASMMOD

J= 12.1 L= 181.0;*LINK# RETURN FROM PL/I PROGRAM
PROG#

DISPLAY 181#181
32761
SET FIRST=0

On the next invocation of the program, the PL/I STOP statement is executed
and there is no return to entry point LINK.

ASMMOD
J= 0.0 L= 181.0
The system prompts you for another command.

Notes on Passing Parameters

e Each parameter passed by the assembler language rcutine must have the
internal form of the corresponding PL/I parameter. For example, if
the PL/I parameter is BINARY FIXED(3), the PL/I program expects it to
be a fixed-point halfword; if the PL/I parameter is DECIMAL FLOAT(é6),
it must be passed as a normalized short floating-point parameter. The
internal forms of PL/I1 data are described in Section 3 of PL/I lan-—-
quage Reference Manual.

e When a character string is passed, the address in the parameter list
points to a string dope vector. See Section IIX of the library PLM,
or part two of the previous example in this section, for the content
of this dope vector. The corresponding PL/I parameter should be
declared as a varying-length string.

Part II: Using BAll the Facilities of the PL/I Compiler 93

94 Section 12: 1Interface Between PL/I and Assembler-Language Programs

PART IIXI: EXAMPLES

Part II: Using All the Facilities of the PL/I Compiler 95

Part III is devoted to examples in which the dialog between you and
the system appears (along with explanatory comments) as it would at the
terminal. They are typical, but not exact, examples of system use.
Unlike the examples throughout Part II, the examples in this part have
not been system-tested. You may, therefore, observe certain minor dif-
ferences between an example®'s description in Part III and the printout
you obtain if you run the example itself. Use the examples, therefore,
only as a learning device, and as models fcr designing your own worxrk.

commands and concepts are presented in an ordered sequence: the most
necessary and hasic ones appear first, and are reviewed in subsequent
examples. The examples are designed so that the beginner should read
them in sequence. Those familiar with the commands and concepts can use
the examples for reference.

In these examples, lines typed by the system arxe headed SYS, lines
you enter are headed YOU. Lines in which both the system and you enter
something are headed S,Y.

EXAMPLE 1: INITIATING AND TERMINATING A CONVERSATIONAL TASK

In this example, you initiate a simple conversational task and then
terminate it. The description of the example explains the keyboard
entries required to converse with the system.

To begin a conversational task, make sure that the terminal is prop-
erly prepared {refer to instructions provided by your installation or to
Section 4 of this publication). When you dial up the system or press
the attention key for the first time in your task, the system assumes a
log-on operation and responds with the current date and time. You then
complete your log-on procedure by entering the operands of the LOGON
command. During your dialog with the system, commands are not actually
entered into the system until you press the return key at the end of the
line containing the command.

YOU: (press attention key or dial up system)

Note: From this point on, pressing the attention key halts cur-
rent activity in most situations. Consult Appendix B for the spe-
cific action taken in each situation.

YOU: LOGON ADUSERID, MYPASS#*,24 ,ADACCT24,A
9,A,,P

While typing the LOGON operands, you realize that you have entered
your charge number incorrectly. Therefore, you backspace three
characters, move the paper up one line by hand to avoid overtyp-
ing, and reenter the corrected portion of the charge number. You
then complete the LOGON operands. If you wanted, you could have
cancelled the entire line by typing a pound sign (#) and immedi-
ately pressing RETURN; then you would reenter the correct line.

SYS: TSS/360 LEVEL 8.1
LOGON OF TASKID=0020 IS AT 10:26 ON 3/31/71

After the system responds with the taskid assigned to this task

and the current date and time, you can communicate with the system
by entering commands.

Explanation of LOGON Operands

ADUSERID
First Operand -- User Identification
This operand is your full identification. It was assigned to you
when you were joined to the system. Its first two characters iden-
tify the administrator who authorized your access to the system.

Part XI1I: Examples

97

98

MYPASS#*

Second Operand -- Password

This operand is a user-assigned code that provides protection
against unauthorized use of your user identification. 1In conversa-
tional mode, you must supply a password if one has been assigned to
you.

24
Third Operand -- Addressing
Specifies whether 24-bit or 32-bit addressing is to be used for
this task. Note: To compile or run PL/I programs, you must log on
with 24-bit addressing.
ADACCT29
Fourth Operand -- Charge Number ’
This operand is your charge or account number that was assigned to
you by your administrator. The first two characters of your charge
number also identify your administrator.
a
Fifth Operand -- Control Section Packing
This operand specifies whether control sections are to be packed
(that is, not placed on separate pages), and the manner of packing
to be used. The codes and their meanings are:
Code Meaning
A Pack all control sections.
P Pack all prototype control sections (PSECTs).
(o] Pack all control sections having neither
public nor prototype attributes.
X Pack all control sections except
prototype control sections.
N No packing; if the operand is defaulted, this code is
assumed.
Sixth Operand -- Maximum External Storage
This operand specifies the maximum amount of external storage to be
allocated to your task; you default this operand and use the
installation default value.
P
Seventh Operand -- Pristine Mode
This operand allows you to log on with only the system-supplied
defaults, synonyms, procdefs, and Character and Switch Table.
Since you specified this operand as P, your user likrary is
defined; if you had specified it as X, your user library would not
be defined.
After logging you on, the system prints a single underscore and
then backspaces; this is the standard signal that it is ready to
receive your next command on the same line.
You decide to conclude your session, so you log off.
S,Y: LOGOFF

SYS (confirms your log-off request)

EXAMPLE 2: CREATING MULTIPLE VERSIONS OF THE SAME PROGRAM

Sometimes, you may want to keep more than one version of the same
program, without attempting to give a unigue wodule name for the second

version and unique names to all of its entry points. For example, you
may create a new version of a program that you think is an improvement
over the old version, yet you want to keep the old version until you are
sure that the new one works. If the second version contains any names
in common with the first version, you must place each version in a dif-
ferent library.

In this example, you compile a stand-alone module {(a module that does
not call another module and is not called ky another module); then you
create a slightly different version of this module, without erasing the
first version.

Note the difference between the terns module and procedure. A module
is the routine identified by the NAME operand of the PLI command; it
contains one external procedure with up to 254 procedures. To change
the operation of any of the procedures in the module, you must recompile
the entire module. In this example, each cf the modules contains only
one procedure.

Having logged on, you create two versions of a stand-alone module
named MOD, which contains a procedure named PROG.

PLI MOD
You invoke the PL/I compiler, indicating that the module name is to
be MOD. The compiler, in turn, invokes the text editor, which pro-
mpts you with line numbers. Following the line numbers, you enter
your PL/I statements.

0000100 PROG: PROCEDURE;

0000200 DCL A FIXED INIT (0);
0001400 IF A=B THEN IF A=C THEN D=E;
06001500 EISE F=G;

0001600 ELSE F=A;

0002500 END PROG;

0002600 _END

The module compiles without errors, and the compiler creates the
following for you:

¢ A load data set named LOAD.MOD, which consists of the MOD object
module in card-image format.

s An object module named MOD, which is executable with other TSs/
360 PL/I programs. Since you have not yet defined any library in
this session, MOD is automatically placed in your user library.

In addition, the text editor has created a line data set named
SOURCE.MOD, which contains your PL/I statements foxr MOD. S3

Now you decide to change the statement ELSE F=G toc a dummy
statement and recompile MOD, while keeping the first version.

Part IIiI: Examples

99

100

DDEF DDNAME=SCRATDD,DSORG=VP,DSNAME=SCRATCH, CPTION=JOBLIB
The DDEF command defines a job library, to receive the second ver-
sion. You now modify line number 1500 of the source data set.

MODIFY SOURCE.MOD
#1500, ELSE;
#XE
You now reccompile MOD.

PLI MOD, SOURCEDS=SOURCE.MOD
The compiler completes the compilation and places the object module
in the job library named SCRATCH. Until you log off and log on
again, release SCRATCHEH with a RELEASE command, or use the JOBLIBS
command to move USERLIB {(DDNAME=SYSULIB) to the top of the program
library list, any invocation of the procedure PROG will invoke the
version that was compiled last.

EXAMPLE 3: CONVERSATIONAL INITIATION OF NONCONVERSATIONAL TASKS

It is often more convenient to have your grograms run after you have
left the terminal, that is, to have them xrun in nonconversational mode.
Two ways of deing this are shown in this example.

In Part 1, you begin your task conversationally and then use the BACK
command to switch its execution to nonconversational mode. The BACK
command names a prestored command sequence that becomes the SYSIN data
set for the nonconversational portion of the task. When BACK is issued,
control of the task is passed to the new SYSIN data set, effectively
logging you off at the terminal. The nonconversational portion of the
task takes its commands from the SYSIN data set named in the BACK com~
mand. This data set should conclude with a LOGOFF command; if not, the
system performs the LOGOFF operation and issues a diagnostic message.

In Part 2, you construct a nonconversational task and then use the
EXECUTE command to have it executed at a later time. The data set named
in the EXECUTE command becomes the SYSIN data set foxr the nonconversa-
tional task; this task is completely independent of the task that issues
EXECUTE. The EXECUTE command differs from the BACK command as follows:

1. EXECUTE requests an independent nonconversational task; BACK
changes the user's conversational task to nonconversational mode.

2. The data set named in the EXECUTE command must contain LOGON and
LOGOFF commands; the data set specified in the BACK command need
only conclude with the LOGOFF command.

3. EXECUTE is accepted by the system even if no task space is current-
ly available; the task will be created later. If task space is not
available when the BACK command is issued, the command is ignored,
and the user continues processing as though he had not issued the
command.

Note: The output resulting from either a BACK- or EXECUTE- invoked task
will appear on your installation®s high-speed printer with the batch
sequence number that is printed at your terminal.

Part 1: The BACK Command

After logging on, you build the SYSIR data set (named PROC12A) that
will provide input to your task after you have switched to nonconversa-
tional mode. You issue a DATA command to build this data set; you do
not issue a DDEF command for the data set, so default data set organiza-
tion VS is assumed. The DATA command accepts each line as a string of

characters. Any mistakes you make while creating the data set will not
be detected until the BACK command is executed.

S,¥: DATA DSNAME=PROC12A
The system prompts (with a #) for commands to ke put into the data
set named PROC12A. You want to execute prograw MAIN12, which is
stored in your user library. MAIN12 reads data from the input
stream (which you enter as part of this SYSIN data set), and
creates an output data set (which you name SPRING).

S,Y: #DDEF DDNAME=OUTDD,DSORG=VS,DSNAME=SPRING
S,Y¥: HMAIN12

S,Y¥: #{data to be read by MAIN12)

-
-

.

S, Y: #
By merely pressing the RETURN key, ycu indicate end-of-file for
MAIN1Z.

5,¥: #LOGOFF
You have entered all the commands and data for the SYSIN data set-
;now enter a %E record to indicate that there are no more input
records for the DATA command.

S,Y: #XE
Now that the SYSIN data set is complete, you can have it executed
by issuing a BACK command that names the data set created by the
DATA command. The system prompts you by printing an underscore.

S,Y¥: BACK DSNAME=PROC1ZA

SYS: (informs you that your BACK command has been accepted and what
batch sequence number has been assigned)

Your BACK command has been accepted, and the task will be continued
immediately as a nonconversational task keginning with the DDEF command.
(Note that DDEF commands for private volumes must ke given prior to
issuing the BACK command.) If you want to cancel the task, issue a CAN-
CEL command that specifies the batch sequence number.

Now you can depart and let the task run, since PROC12A is now its

SYSIN and includes a LOGOFF command for task termination. If you want
to initiate another task, you must log on again.

Part 2: The EXECUTE Command

After logging on, you build a SYSIN data set to perform the same
functions as the SYSIN data set in Part 1. The LOGON command is the
only difference ketween this SYSIN data set and the SYSIN data set in
Part 1.

S,¥Y: DATA DSNAME=PROC12
The system prompts you with a #

S,Y: #LOGON PLIUSER,MYPASS, 24,PLIACT70
S,Y: #DDEF DDNAME=OUTDD,DSORG=VS, DSNAME=SPRING
S,Y: #MAIN12

S,Y: # (data to be read by MAIN12)

Part IX1I: Examgles

101

102

S,Y: #
By merely rressing the RETURN Key, you indicate end-of-file for
MAIN12.

S,¥: #LOGOFF
You have entered all the commands and data for the SYSIN data set;
now enter a %E record to indicate that thexe are no more input
records for the DATA command.

S,Y: #XE
Now that the SYSIN data set is complete, you can have it executed
by issuing an EXECUTE command that names the data set created hy
the DATA command. The system prompts you by printing an
underscore.

S,Y: EXECUTE DSNAME=PROC12
SYS: (accepts nonconversational task and assigns batch sequence number)

Your request for a nonconversational task has been accepted by the
system, and will be executed when system resources are available. The
SYSOUT of this task will consist of system messages and any output to
SYSOUT generated by your executing programs.

Because the terminal is active (you are still logged on) after an
EXECUTE is issued, another command sequence can be entered. In fact,
another sequence similar to the one illustrated could ke issued to cre-
ate other tasks.

EXAMPLE 4: PREPARING A JOB FOR NONCONVERSATIONAL PROCESSING

In this example, you put a series of commands, PL/I source state-
ments, and input data on cards. You will then send the cards directly
to the system operatecr who will store the information from the cards
into a data set that can be executed by the system. The data set becom-
es the SYSIN for a nonconversaticnal task (described in the cards) and
will be queued for execution.

After logging on, a job library named SCRATCH is defined. This
library will contain the obiject module named ROOTS that you create with
the PLI command. After the PLI command, you enter the PL/I souxce
statements for ROOTS; the procedure uses the guadratic formula to find
the roots. Data for the procedure is contained in the input stream fol-
lowing the command that calls for execution of ROOTS, since you have not
included a DDEF command for the input data. Since you have also omitted
a DDEF command for the output of ROOTS, output data will appear on your
SYSOUT listing.

CARDS
When entered on a card, the LOGON command must start in the third
card column, and the first two columns must be blank. 2All required
LOGON operands must be included in the same card; these operands
are the same as those required for a conversational log-on.

LOGON PLIUSER,,24,PLIACT70
You now specify a job library named SCRATCH that is to contain the
object module created by the compiler. SCRATCH is automatically
cataloged and available for use in any task that contains a DDEF
command defining it.

DDEF DDNAME=SCRATDD, DSORG=VP, DSNAME=SCRATCH,OPTION=JOBLIB

PLI NAME=ROOTS
The PLI command invokes the PL/I compiler. You specify the name of
the object module to be produced: ROOTS; this name must not be the
name of the main procedure in the program. Since you do not speci-
fy the nawe of the source data set (SOURCEDS cperand), the name
SOURCE.RQOUTS is assigned to the source data set, and this data set
is cataloged under this name.

Your PL/I source statements follow. Since the GET DATA and PUT
DATA statements do not specify a file name, SYSIN and SYSOUT are
assumed; no DDEF commands are required. Data to be used by the
object program must be in the input stream immediately following
the command that calls for execution of the ckject program.
ROOT: PROCEDURE OPTIONS (MAIN);
ON ENDFILE GO TO EXIT;
LOOP: GET DATA;
ROOT1=(-B+SQRT(B*#2-4*A*C)) /2%A;
ROOT2= (-B-SQRT (B**2-U4*A%C)) /2#*A;
PUT DATA(A,B,C,RO0T1,RO0T2};
GO TO LOCP;
EXIT: END;
After entering your PL/I source statements, you must enter an _END
command to indicate the end of the source statements. Compilation
then begins.
_END
After compilation and conversion, the object module resides in the
library at the top of your program library list -- the job library
SCRATCH in this example. You do not issue a PRINT command in this task;
however, the listing data set is retained as the latest generation of
LIST.ROOTS, and you can later print it by issuing: PRINT LIST.ROOTS(0),
PRTSP=EDIT.

You now want to execute the object module; type the name of the
module.

ROOTS

You now supply the cards containing data for your object program.

A=1 B=5 Cc=1;
A=2 B=4 c=0;
A=1 B=2 c=1;
=2 =7 c=5;
¢

The ¢ acts as an end-of-block character.

The last card in the deck is a LOGOFF command, which terminates the
task. When punched on a card, the LOGOFF command must begin in the
third column.

LOGOFF
When preparing a task for nonconversational execution, remember

Part IIl: Examples

103

104

that any errors in preparing the deck will probably terminate the
task prematurely, since the system cannot prompt you for
corrections.

EXAMPLE 5: STORING DDEF COMMANDS FOR LATER USE

In Part 1 of this example you create a data set containing DDEF com-
mands for frequently used data sets. In Part 2, you cause them to be
issued with a CDD command.

Part 1. Storing DDEF Commands

After logging on, you issue the EDIT command to invoke the Text Edi-
tor and enter DDEF commands. The DDEF commands are to be stored in a
data set named DDPACK.PROG1l4. The commands are stored as character str-
ings but are interpreted as commands when they are later retrieved by
the CLLC command.

S,Y: EDIT DSNAME=DDPACK.PROG1#4
The system will prompt you for each line by issuing a line number.
You want to enter DDEF commands for these data sets: a job
library (PLIPROGS) that contains compiled PL/I programs, two input
data sets (DATAl and DATAZ), and an output data set (OUTPUT). The
DDEFs do not have to be stored in any special order in the data
set, but their ddnames must be unique.

S,Y: 0000100 DDEF DDNAME=YOURLIB,DSORG=VP, DSNAME=PLIPROGS,OPTION=JOBLIB
S,¥: 0000200 DDEF DDNAME=INPUT1,DSORG=VI,DSNAME=DATAl
S,Y: 0000300 DDEF DDNAME=INPUTZ2,DSORG=VS,DSNAME=DATA2

S,Y¥: 0000400 DDEF DDNAME=CUTPUT1, DSORG=VS, DSNAME=0UTPUT
You have entered all of the DDEF commands; when the system prompts
with the next line numbex, enter a command system break character
(underscore) followed by the END command. This terminates Text
Editor processing of data set DDPACK.PROGIL4.

S,Y: 0000500 _END
The job library containing PROG14 and the DDEF commands associated
with PROG14 are ready for use. You now check them cut, to be sure
there are no errors.

Part 2. Retrieving Stored DDEF Commands

In this part you retrieve the DDEF commands stored in Part 1. You
want to first retrieve the job library definition and then the defini-
tions for PROG1l4°*s data sets.

S,¥: CDD DSNAME=DDPACK.PROG14,YOQURLIB
The system executes the specified DDFF command and prints it at
your terminal, prefixing four zeros to distinguish it on your SYS-
OUT listing from those DDEF commands entered directly through
SYSIN.

SYS: 0000 DDEF DDNAME=YOURLIB,DSORG=VP,DSNAME=PLIPROGS,OPTION=JOBLIB
Any diagnostic would be printed at this point, as the system is
now analyzing the character string as a DDEF command. You now
want to retrieve the remaining data definitions.

S,Y: CDD DSNAME=DDPACK.PROG14, {INPUT1,INPUTZ,CUTPUTL)
The system retrieves the three specified DDEF commands and prints
them at your terminal, prefixing each with four zeros.

SYS: (000 DDEF DDNAME=INPUT1,DSORG=VI,DSNAME=DATAL

SYS: 0000 DDEF DDNAME=INPUT 2, DSORG=VS,DSNAME=LCATA2

SYS: 0000 DDEF CDNAME=CUTPUT1, DSORG=VS, DSNAME=OUTPUT
Now that all data definitions have been executed, you call for
execution of PROG14.

S,Y¥: PROG14

S¥S: (indicates that execution is cowmglete)
The output of PROG 14 is the data set output; you request printing
of OUTPUT

S,¥Y: PRINT DSNAME=OUTPUT,PRTSP=EDIT

SYS: (acknowledges your request and informs you of katch sequence num-
ber assigned to PRINT: task)

EXAMPLE 6: MANIPULATION OF SEVERAL FORMS OF A PROGRAM

In this example you examine a previously cataloged program named
MAIN19 to determine whether you want tc retain it in the system. If you
do not want to retain it, you will punch the source data set onto carxds
and then eliminate all forms of the program (source program, listing
data set, and object program) from the system.

You first review some lines from the source program to determine
whether it is to be eliminated. You issue a print request for the
source data set and then a punch request in which you specify that the
data set is to be erased after punching. You then decide that a listing
of the source data set is not needed, since the deck will be punched, so
you cancel the print request. You then erase the two versions of the
listing data set from the system and erase the object module from your
user library.

After logging on, you want to eliminate from the system any forms of
a program named MAIN19 that you no longer need. You want to punch the
source data set onto carxds, but first you must determine whether such
cards can be used as compiler input. To examine the source data set,
you issue the following command.

S,Y: LINE? SOURCE.MAIN19,(1,5000)
In this command you specify the name of the data set and the lines
to be displayed (lines 1 through 5000).

SY¥YS: (informs you that the first line number in the data set is 000100
and then proceeds with the actual listing)

0000100COUTPUT: PROCEDURE OPTIONS (MAIN} ;

0000c200C DCL A FIXED,

0000300cC B FLOAT,

0000400C COMP1 FLOAT,COMPLEX,
0000500C STRING BIT(8);
0000600C A,B=6701;

0000700C COMP1=R+67011;

0000800C STRING="110

YOU: (press attention button)

Satisfied that the program is the one that you want to eliminate,
you press the attention button to terminate the LINE? command.
The C following the line numbers of the source data set indicates
that the statements were originally entered via a card reader.
This means that, if you punch the source data set, the carxds can
later be used for compiler input. (See Section 5 for a more
detailed description of compiler input format requirements.)

Part III: Examples

105

106

S,¥:

SYS:

S,Y:

SYS:

In order to determine the size of the data set, you request the
maximum possible line number in the LINE? command; this causes the
last line of the line data set to be printed.

LINE? SOURCE.MAIN19,9%99999

{issues the last line in the data set: 0013700C END)
You want to obtain a printout of the source data set for program
MAIN19.

PRINT DSNAME=SOURCE.MAIN19

(informs you that batch seguence numker 0375 is assigned to the
print task.?

The system establishes a separate nonconversatiocnal task to print
the data set.

You now want to punch the data set SOURCE.MAIN19. Since the
first eight characters of each reccrd are a line number and input
key, you want punching to start with the ninth character. Since
the original records (without line number and key) were 80 charac-
ters long, you want to punch through byte 88 of the record that
includes the key. You must use the ERASE operand of the PUNCH
command rather than a separate ERASE command, since the system
rejects an ERASE command if the data set referred to has an asso-
ciated print or punch task pending. You should not insert the
ERASE operand until the last print or punch reguest in any
sequence that refers tc the same data set is completed. It is
possible for the first reguest, for example, PRINT above, to be
executed in less time than it takes to type in the next command;
thexrefore, if the ERASE operand had been specified in the PRINT
command, it could take effect before the PUNCH command could be
executed.

PUNCH DSNAME=SOURCE.MAIN13,STARTNC=9,ENDNO=88, ERASE=Y

(informs you that katch sequence number 0376 is assigned to the
task)

The system establishes a separate nonconversational task to punch
the data set.

After issuing the PUNCH command, you decide that a listing of
the source data set is superfluous (since you will have a source
deck), so you cancel the print task, referring to it by the batch
sequence number assigned by the system.

CANCEL BSN=0375

Two versions of the listing data set are maintained for each cata-
loged program in the system; these versions are stored in a
generation data group. You now erase both versions of the listing
data set.

ERASE LIST.MAIN19(0); ERASE LIST.MAIN19(0)
You now want to erase the object module from your user library.

ERASE USERLIB{MAIN19)

All forms of MAIN19 are now removed from the system, so you decide
to log off.

LOGOFF

tacknowledges your request)

EXAMPLE 7: SURVEY OF SYSTEM FACILITIES AND SOME HOUSEKEEPING METHODS

In this example, you examine your data sets stored in the system and
eliminate those that you no longer need. Three commands are available
to allow you to examine your data sets -~ PC? (present catalog), DSS?
(present data set status), and POD? (present partitioned organization
directory). The USAGE command enables yocu to find out the amount of
system facilities allocated to you, and the EXHIBIT command enables you
to inquire about your nonconversational tasks that are running or about
to run. The KEYWORD command causes the system to tell you what PROCDEFS
you have. (See Example 11 for a description of the PROCDEF facility.)

After logging on, you issue a PC? command to present the name,
access, and, for shared data sets, the owner's identification of one or
more cataloged data sets. You want information about all your cataloged
data sets, so you issue the PC? command with no operands. If the name
of one or more data sets is specified as the operand of a PC? command,
only information about the specified data sets is presented.

S,Y: PC?

SYS: DATA SETS IN CATALOG WITH QUALIFIER FLIUSER

PLIUSER.USERLIB ACCESS5:RW
PLIUSER.JOBLIBA, ACCESS:RW
PLIUSER.M220UT, ACCESS: RW
PLIUSER.PROJECT.A, ACCESS:RW
PLIUSER.PROJECT. B, ACCESS:RW
PLIUSER.PROJECT.Z, ACCESS:RW
PLIUSER.PROJECT.Z2, ACCESS:RW

PLIUSER.SOURCE.MATRIX7, ACCESS:RW
PLIUSER.SOURCE.TRIALX, ACCESS:RW
PLIUSER.VERSIONS, ACCESS: RO, OWNER: OTHERGUY
You want more information about data set SOURCE.MATRIX7, so you
issue a DSS? command specifying SOURCE.MATRIX7 as an operand. The
DSS? command presents more detailed information than dces the
PC? command. If DSS? is specified without an operand, detailed
status information for all your cataloged data sets is presented.
S,Y: DSS? SOURCE.MATRIX7
SYS: PLIUSER.SOURCE.MATRIX7
ACCESS: RW

VOLUME: 232323(2311)

DS ORGANIZATION: VI PAGES: 002

REFERENCE DATE: 103/70 CHANGE DATE: 103/70

RECORD FORMAT: V RECORD LENGTH: (00132

KEY LENGTH: 00007 RELATIVE KEY POSITION: 00004

You no longer need this data set, so you erase it.

Part III: Examples

107

108

YOU:

S,Y:

SYS:

ERASE SOURCE.MATRIX7 .

You now want to examine the data set SOURCE.TRIALX to determine
whether you want to erase it. The LINE? command can be used to
list an entire data set or selected lines. Since you want your
listing to start from the beginning of the data set, you do not
specify line numbers.

LINE? SOURCE.TRIALX

0000100 TRIALX: PROCEDURE OPTIONS (MAIN)
0000200 /+ROUTINE ANALYZES TEST DATA#%*/

The first two lines printed out is sufficient for you to recognize
this as an old program that you nc longer need. ¥ou halt further
printing by pressing the attention key.

(press attention key)

Pressing the attention key returns you to command mode so that you
can enter commands. You decide to erase SOURCE.TRIALX and the
data sets of numeric data associated with it. The data sets of
nuneric data all have the partially qualified name PROJECT. You
can specify this partially gualified name; the system prints the
individual names one by one for a decision regarding their dispos-
al. You have the option of erasing {(E) or retaining (R) the indi-
vidual data sets cataloged under the generic name PROJECT, or
erasing all of them (A). You decide to erase all but PROJECT.B.

ERASE SOURCE.TRIALX

ERASE PROJECT

PROJECT.A

E

PROJECT.B

R

PROJECT.Z

A

By typing A, you cause the systen to erase PROJECT.C and those
data sets whose names would follcew if prompting continued (in this
case, just PROJECT.Z2).

After the system has presented the names of all data sets cata-
loged under the partially gqgualified name PROJECT, it prints an
underscore; you can then enter another command. You decide to
erase data set VERSIONS, which you no longer need.

ERASE VERSIONS

(informs you that VERSIONS is not yours to erase and ignores the
command}

VERSIONS is a shared data set for which you do not have unlimited
access; therefore, you cannot erase it. You can issue a DELETE
command to remove only your catalog entry for VERSION5 without
affecting the data set or the owner*s catalog.

DELETE DSNAME=VERSIONS

You now issue a POD? command to request a list of each object
module in your user library.

POD?

SYS: MAIN7
MAIN1O
SUBMATRX

After listing the modules in your library, the system prints an
underscore so you can enter a command. You can erase modules from
the library without erasing the entire library. You decide to
erase modules MAIN7 and SUBMATRX.

S,Y¥: ERASE USERLIB{MAIN7}); ERASE USERLIB(SUBMATRX)
You now want to examine library JOBLIBA to see if it is still
needed.

S,Y: POD? JOBLIBA
SYS: PROG1l4

MAIN12

-
-

e

After listing the modules in JOBLIBA, the system prints an unde-
rscoxre so that you can enter a command. You no longer need JOBLI-
BA, so you erase it.

S,Y: ERASE JOBLIBA
You enter the USAGE command to inquire about the amount of system
resources you have used. Two totals are presented: 1) the amount
of resources allocated, and 2) the total amount of resources used
since you were joined and since your present LOGON.

The following resources are accounted for: permanent storage,
temporary storage, direct access devices, magnetic tapes, prin-
ters, card reader-punches, bulk input, bulk output, TSS/360 tasks,
total time that your terminal was connected to the system, and CPU
time used.

S,Y: USAGE
SYS: (prints tabulation of system resources charged to you)
You issue an EXBIBIT command to inquire about the status of your

uncompleted nonconversational tasks. For a complete explanation
of the EXHIBIT command, see Command System User's Guide.

-

S,Y¥: EXHIBIT OPTION=BWQ

SYS: (describes each of your uncompleted nonconversational tasks,
including each task's batch sequence number and status in the
system)

S,¥: KEYWORD

SYS: (types the names of all your PROCDEFs)

EXAMPLE 8: TRANSFERRING VIRTUAL STORAGE DATA SETS BETWEEN DISK AND TAPE

In this example, you copy VAM data sets from disk to tape, tape to
disk, and from disk to disk. The following commands are used to transf-
er the data sets: VT (VAM to Tape), TV {(Tape to VAM), and VV (VAM to
VaM). The VAM data sets to be copied are ORIGIN1, ORIGIN2, ORIGIN3, and
ORIGIN4.

Part III: Examples

109

110

After logging on, you copy data set ORIGIN1 onto tape; the data set
on tape is to ke named COPY1l. Before the first VT command in a task, a
DDEF command must be issued for the tare data set, with the DDNAME of
DDVTCUT and the DSNAME of the first data set to be copied onto that
tape.

S,Y: DDEF DDVTOUT,PS,COPYi,UNIT=(TA,9),LABREL=(,SL,RETPD=12),~
VOLUME=(PRIVATE) , DISP=NEW
The data set organization must be PS, and the tape must be a nine-
track tape.

S,Y¥: VT DSNAMEL=CRIGIN1
Since you omit the DSNAMEZ operand, the system will assign toc the
copy data set the DSNAME given in the DDEF command (that is,
COPY1).

Note: If you do not want the copy data set to be the first data
set on the tape, you must specify the file sequence number in the
LABEL operand of the DDEF command. This prevents overlaying of
data sets.

sYS: (performs the copy operation, indicates the names of the original
and copy data sets, and indicates the file sequence numbers and
volume serial numbers used for the copy data set)
Now you write ORIGINZ onto the same tape volume.

S,¥: VT DSNAME1=CRIGIN2,DSNAME2=COPY2

SYS: (copies ORIGIN2 onto the tape with the data set name COPY2; if you
had omitted the DSNAME2 operand, the system would have assigned
the name TAQ00001.0RIGINZ)
To copy the tape copy of the data set back onto disk so that it
can be used, issue a TV command. In this command, the name of the

tape data set (COPY2) and the name of the disk copy (COPYBACK) are
specified. i

S,Y: TV COPYZ,COPYBACK
S¥S: (copies the data set just written on a nine-track tape back onto
disk and informs you that the operation has been performed)

You now want tc copy data set ORIGIN3, which is on a disk, to pro-
duce a copy named COPY3, which also resides on disk.

S,Y: VV ORIGIN3,COPY3

SYS: ({informs you that the copy operation has been performed)
You now want to copy a VAM data set onto a private disk whose
serial number is 333333.

S,Y: DDEF PRIVDD,VI,COPY4,UNIT=(DA,2311),VOLUME=(,333333)

S,Y¥: VV ORIGIN4,COPYH

5YS: (informs you that the copy operation has been perfocrmed)

EXAMPLE 9: THE TEXT EDITOR FACILITY

In this example, you use the text editor to create and edit Qdata
sets. The example illustrates only the more kasic facilities of the
text editor.

To invoke the text editor, issue the EDIT ccrmand. The operand of
this command is the name of the data set to be created or edited.

S,Y:

S,Y:

SYS:

EDIT DSNAME=EX9

Since no DDEF command was issued for EX9, the following data set
attributes are assumed: virtual index sequential organization,
format-v records, maximum logical record length of 132 bytes, a
key length of 7 bytes, and a relative key position of 4.

The system responds with the first line number.

0000100 THBESE ARE LINES

00002060 CF A LINE DATA SET

0000300 SIMPLE DATA IS USED HERE. I TYPED THIS

You enter the first three lines of EX9. Each time you press
RETURN, the text editor responds with a new line number.

To tell the system that you want to enter a command now instead of
a line of data, you enter a break character {(_} after the line
number, followed by a command.

0000400 _INSERT 200,50

You begin the line with an underscore to inform the system that a
command, not text-editor data, is being entered. The INSERT com-
mand tells the system that you want to insert one or more lines
after line 200, and that the first inserted line should have the
line number 250. The system resgponds by prompting you with the
line number 250, and you enter the line to be inserted.

0000250 FOR ILLUSTRATIVE PURPOSES,

The system will not prompt you with line number 300, since there
is already a line numbered 300 in the data set. The system will
now prompt you for another command. Perhaps you'd like to remove
line 300 and replace it with two lines:

REVISE 300

0000300 SIMPLE DATA IS USED HERE.
0000400 i typed this in lower case letters

You can avoid constant use of the shift key by typing data in
lowercase letters. The system normally translates the lowercase
letters into capital letters. (However, if you issue a KA com-
mand, you can store data in mixed lowercase-uppercase form.)

You decide to stop editing this data set. When the system prompts
with a line number, enter a break character followed by the END
command.

0000500 _END

This termwinates text editing. You could also have issued another
EDIT command, with a different data set name; this would have ter-
minated editing of the first data set and allowed you to start
editing the next cne.

The system types an underscore to resume prompting for commands.
You review the data set EX9 and see that there are no mistakes.

LINE? EX9

0000100 THESE ARE LINES

0000200 OF A LINE DATA SET

0000250 FOR ILLUSTRATIVE PURPOSES,

0000300 SIMPLE DATA IS USED HERE.

0000400 I TYPED THIS IN LOWERCASE LETTERS.

Later you return to the data set EX9. You issue the EDIT command:

EDIT EX9

Part III: Examples

111

112

S,Y:

SYS:

YOU:
SYS:
YQU:
SYS:

YOU:

UPDATE

The UPDATE command tells the system that you want to change or add
lines.

{unlocks keyboard).

You now add lines 230 and 90 to your data set. After typing each
line number, you skip a space and type the data.

230 CREATED TBROUGH THE TEXT EDITOR.
{unlocks keyhoard)

90 THE TEXT EDITOR:

{unlocks keyboard)

_EXCISE N1=400
Line #00 is deleted.

EXAMPLE 10: THE TEXT EDITOR FACILITY

In this example, you make more extended use of the updating capabili-
ties of the text editor. The example is probably more complex than you
might expect for a single terminal session, but it shows the flexibility
of the commands available.

S,Y:

S,Y:

S¥S:

S,Y:

EDIT EX10,RNAME=REGION1,REGSIZE=8

The data set attributes are the same as for EX9, in the previous
example, except that the key length is increased to 15 bytes to
allow 8 bytes for the region name, and the record length is
increased accordingly.

You enter the data lines for the region named REGION1.

0000100 LINEAE

0000200 LINEB

0000300 LINEC

0000400 LINED

0000500 LINEE

0000600 LINEF

0000700 LINEG

0000800 LINEH

0000900 LINEX

0001000 _NUMBER N1=300,N2=500,BASE=300, INCR=50

You renumber lines #00 and 500 as lines 350 and 400. The system
prompts you for another command, and you issue a LIST command to
see how the data set EX10 looks.

LIST

REGION1 0000100 LINEAE
REGION1 0000200 LINEB
REGION1 0000300 LINEC
REGION1 0000350 LINED
REGION1 0000400 LINEE
REGION1 0000600 LINEF
REGION1 (0000700 LINEG
REGION1 0000800 LINEH
REGION1 000090C¢ LINEIX

REGION RNAME=REGIONZ2
You start a new region.

S,Y:

8Y¥S:

SYS:

YOU:

0000100 DEFAULT TRANTAB=Y

This optional command makes the foliowing data set changes provi-
sional. These changes can be made permanent by issuing an ENABLE
command after you are satisfied all changes were entered properly.

DEFAULT is not a text-editing command, but activation of the text
editor does not limit you to text-editing commands.

EXCERPT DSNAME=EX9,N1=100,N2=300

You excerpt lines 100 to 300 from EX9, created in the previous
example, and insert these lines into the current data set, at the
beginning of REGION2.

CONTEXT N1=100,N2=300,STRING1=DATA, STRING2=XXXX

The current region is searched for all occurrences of the charac-
ter string DATA in lines 100 to 3060. Wherever it is found, DATA
is replaced by XXXX.

Note: This facility is useful fcr symbol rerlacement in source
language data sets.

LIST

REGION1I 0000100 LINEAE

REGION1 4000200 LINEB

REGION1 0000300 LIKEC

REGION1 0000350 LINED

REGION1 0000400 LINEE

REGION1 0000600 LINEF

REGION1 G000700 LINEG

REGIONI 0000800 LINEH

REGION1 0000900 LINEIL

REGIONZ2 0000100 THESE ARE LINES

REGIONZ2 0000200 OF A LINE XXXX SET
REGION2 0000230 CREATED THROUGH THE TEXT EDITOR.
REGICN2 0000250 FOR ILLUSTRATIVE PURPOSES,
REGION2 0000300 SIMPLE XXXX IS USED HERE.

ENABLE

Up to this point, the revisions made since DEFAULT TRANTAB=Y was
issued have been temporary. With the issuance of the ENABLE com-
mand, these revisions will be permanent as scon as the next line-
modifying command is executed. A STET command, on the other hand,
would have deleted all changes made since TRANTAB was set to Y.

The ENABLE command has a continuing effect; until a DISABLE com-
mand is executed, only the latest line mcdification can be revoked
by a STET command.

REGION REGION1
You return to the region named REGION1.

CORRECT N1=100
You want to remove a single character from a line. Standard
correction characters are assumed, by default.

LINEAE

* %
The result is LINEA. The ENABLE cormxand now takes effect, but the
correction to line 100 is still revocable.

POST

With this command, you make permanent the correction to line 100.
(Since the ENABLE command is in effect, POST and STET affect only
the latest text-editing change.) 1If this were a STET command, the
correction to line 100 would be revoked.

Part III: Examples

113

114

LOCATE STRING=LINEF

The entire data set EX10 is searched for the charxacter string
LINEF.

(types the line in which LINEF is first discovered)

LIST N1=100,N2=400

(disrlays lines 100 to 400 of the current xregion, REGION1)

END
You terminate text editor processing.

EXAMPLE 11: USE OF COMMAND PROCEDURE (PROCDEF)

In this exawple, you create a command procedure (PROCDEF) to be
called at a later time just as if it were a system-supplied command.
This PROCDEF defines the input and output data sets for a PL/I program;
it then executes the program, providing sone of the input data, and
prints the output data set. -

The PL/1 prcoaram has the module name TEST and includes the following
statements:

PROG: PROC OPTIONS(MAIN);

ON ENDFILE(IN) GO TO FINISH;
GET DATA(B,C,D):
DC J=1 TO 1000;
DG I=1 TC 6;
GET FILE{IN) LIST{A(I,J)):
F=A{(I,J)*B;
G=R(I,J)*C;
B=8{1,J)*D;
PUT FILE(QUT) LISTI(F,G,H);
END;
END;
FINISH: END PROG;

You issue a PROCDEF command, to create a PROCDEF named PLIPROG.

S,Y:

b-<l-<:<

nhinh
- - -

PROCDEF PLIPROG .
The text editor prompts you with line numbers, and you type the
commands to be contained in the command grocedure PLIPROG.

000010C DDEF IN,VS,INDATA,DISP=OLD

0000200 DDEF OUT,VS,QUTDATA,DISP=0LD

0000300 DEFAULT SYSINX=E

The SYSINX operand of the DEFAULT command deterxrmines from which
source the system expects SYSIN data when PROCDEF is invoked.
Normally, SYSINX is defaulted to G, and the system expects conver-
sational SYSIN data to comwe from the terminal. When SYSINX is set
to E, the system reads SYSIN data from the PROCDEF itself.

0000400 TEST

0000500 B=245.6,C=.4329,D=984;

wWhen PLIPROG invokes TEST, it will feed TEST (that is, PROG) the
SYSIN data in line 500.

0000600 DEFAULT SYSINX=G
You must remember to return the value of SYSINX to G.

0000700 PRINT OUTDATA,ERASE=Y
0000800 _END

If you log coff and log on again, PLIPROG is still effective. When
you want to invoke PLIPROG, you type PLIPROG as a command:

S,¥: PLIPROG
PROG is executed; it reads the data in PLIPROG, and creates the
output data set. The output data set is printed on a high-speed
printer and erased from its direct access device.

EXAMPLE 12: CREATING A CONSECUTIVE DATA SET

The program in this example merges the contents of two existing phys-
ical sequential data sets on tape, DS1 and DS2, and writes them onto a
new virtual storage data set, DS3. Each of the original data sets con-
tains 15-byte, fixed-length records arranged in EBCDIC collating
sequence. The two input files, IN1 and IN2, have the default attribute
BUFFERED, and locate mode is used to rxead records from the associated
data sets into the respective buffers. The output file, OUT, is not
buffered, allowing move mode to be used to write the output records
directly from the input buffers.

After logging on you invoke the compiler and enter source statements
for program MERGE. (The line numbers that the text editor types before
each line of the source statements are not shown in this or in following
examples.)

S,¥: PLI NAME=MERGE
MERG: PROC OPTIONS (MAIN);
DCL (IN1,IN2,0UT) FILE RECORD SEQUENTIAL,
(ITEM1 BASED{A}),ITEM2 BASED(B)) CHAR(15);
ON ENDFILE{(IN1} BEGIN;

ON ENDFILE(IN2) GO TO FINISH; This begin block will be
NEXT2: WRITE FILE(OUT) FROM(ITEM2); activated when the ENDFILE
READ FILE(IN2) SET(B); condition is raised for
GO TO NEXT2; IN1.
END;
ON ENDFILE(IN2) BEGIN;
ON ENDFILE(IN1) GO TO FINISH; This begin block will be
NEXT1: WRITE FILE(OUT) FROM(ITEM1); activated when the
READ FILE{IN1) SET(A); endfile condition is
GO TO NEXT1; . raised for IN2.
END;

OPEN FILE(IN1) INPUT,
FILE(IN2Z) INPUT,
FILE(OUT) OUTPUT;
READ FILE(INl1) SET(A);
READ FILE{(IN2) SET(B);
NEXT: XF ITEM1>ITEM2 THEN DO;
WRITE FILE(CUT) FROM(ITEM2);
READ FILE(IN2) SET(B);
GO TO NEXT;
END;
ELSE DO;
WRITE FILE(CUT) FROM(ITEM1);
READ FILE(IN1) SET(A);
GO TO NEXT;
END;
FINISH: CLOSE FILE(IN1),FILE(IN2),FILE(QUT);
END MERG;

After entering your source statements, type a command-prefix char-
acter {underscore) and enter an END command. The underscore desi-
gnates the line as a command rather than PL/I source statements.

YOU: END

SYS: (informs you that compilation is completed)
Before calling for execution of MERGE, you must define the two

Part III: Exanmples 115

116

input data sets and the output data set. The input data sets have
physical seguential organization and reside on tape volumes 33731
and 987655.

S,Y: DDEF DDNAME=IN1, DSORG=PS, DSNAME=LCS1,DISP=0OLD,~-
UNIT=(TA,9),VOLUME=(,033731)
S,Y: DDEF DDNAME=IN2,DSORG=PS, DSNAME=DS2,DISP=0OLD,-
UNIT=(TA&,9) ,VOLUME=(,987655)
The output data set DS3 will reside on public storage and have
virtual sequential organization.

S,¥Y: DDEF DDNAME=(QUT,DSORG=VS,DSNAME=DS3,DISP=NEW,-
DCB= (RECFM=F, LRECL=15)
You can now execute your program.

S,Y: MERGE

EXAMPLE 13: USING A PRINT FILE

This example illustrates the use of a PRINT file and the options of
the stream-oriented transmission statements to format a table and write
it onto public storage for subsequent printing. The table comprises the
natural sines of the angles from 09 to 3599 54' in steps of 6'.

The statements in the ENDPAGE ON-unit insert a page numbper at the
bottom of each page and set up the headings for the following page.
After the last line of the table has been written, the statement PUT
FILE(TABLE) LINE(54) causes the ENDPAGE condition to be raised to ensure
that a number appears at the foot of the last page; the preceding state-
ment sets the flag FINISH to prevent a further set of headings from
being written.

The DDEF command that defines the data set that this program creates
includes no record-format information; the compiler infers the following
from the file declaration and the line size specified in the statement
that opens the file TABLE:

Record format = V (the default for a PRINT file)

Record size = 98 (line size ¢+ one byte for printer control character
+ four bytes for record control field)

Block size = 102 (record size + four bytes for block control field)

You invoke the PL/I compiler to enter amnd@ compile your source state-
ments; you name the program SINE.

S,Y: PLI NAME=SINE
You now enter source statements for SINE. (The line numbers typed
by the text editor are not shown.)

SINPROC: PROC OPTIONS(MAIN);
DCL TABLE FIL1E STREAM OUTPUT PRINT,
TITLE CHAR (13) IRIT('NATURAL SINES®),
HEADINGS CHAK(S0) INIT(® 0 6 12 1
8 24 30 36 42 48 54%),
PGNO FIXED DEC(2) INIT(1),
FINISH BIT{(1) INIT(°0°B),
VALUES(0:359,0L9) FLOAT DEC(6);
ON ENDPAGE(TABLE) BEGIN;
PUT FILE(TABLE) EDIT{®PAGE',PGNO) (LINE(55),COL(87),A,F(3));.
IF FINISH=*0'B THEN DO;
PGNO=PGNO+1;
PUT FILE(TABLE) EDIT(TITLE * (CONT''D)°',HEADINGS)
(PAGE,A,SKIP(3),R);
PUT FILE{TABLE) SKIP(2);

END;
END;
DO I=0 TO 359;
DO J=0 TC 9;
VALUES{1,J)=I=J/10;
END;
END;
VALUES=SIND{(VALUES) ;
OPEN FILE(TABLE) PAGESIZE(52) LINESIZE(93);
PUT FILE(TABLE) EDIT(TITLE,BEADINGS) (PAGE,A,SKIP(3),A);
DO I=0 T0O 71;
PUT FILE{TABLE) SKIP(2);
DO J=0 TOC 4;
K=5%1+J;
PUT FILE(TABLE) EDIT(K,VALUES(K,*))(F(3),10 F(9,4));
END;
END;
FINISH="1'B;
POT FILE(TABLE) LINE(54);
CLOSE FILE(TABLE);
END SINPROC;
_END
After your program is compiled, you issue a DDEF command to define
the data set associated with the PL/I file TABLE.

S,¥Y: DDEF DDNAME=TABLE,DSORG=VS,DSNAME=SINES
You can now execute program SINE.

S,¥: SINE

SYS: (executes SINE and creates data set SINES)
You now want to print data set SINES, which you just created on
public storage. Since each record contains a printer control
character, you specify printer spacing as EDIT. Each page of your
PRINT file contains 54 lines, the default value in the PRINT com-
mand; therefore, you do not have to specify the number of lines
per page in the command.

S,Y: PRINT DSNAME=SINES,PRTSP=EDIT
SYS: (sets up a separate nonconversational task to print the data set
and informs you of the batch seguence number assigned)

EXAMPLE 14: CREATING AN INDEXED DATA SET

This example illustrates the creation of a simple INDEXED data set.
The data set contains a telephone directory, using the subscribers’
names as keys to the telephone numbers. Since the file is being created
the file attribute SEQUENTIAL is declared. You are going to enter the
data records from your terminal during program execution. The DDEF com-
mand for the data set specifies the PL/I file name as the data defini-
tion name (DIREC), the data set organization as virtual index sequential
(VI), and the name of the data set (TELNO).

S,Y: DDEF DDNAME=DIREC, DSORG=VI, DSNAME=TELNO
You now invoke the PL/I compiler to enter and compile source
statements for program TELNOS.

S,Y: PLI NAME=TELNOS
The text editor prompts with line numbers (not shown).

TELNUM: PROC OPTIONS(MAIN); '
DCL DIREC FILE RECORD SEQUENTIAL KEYED ENV(INDEXED),
CARD CHAR{80),
NAME CHAR{20) DEF CARL,
NUMBER CHAR(3) DEF CARD POS(21),
IOFIELD CHAR(3);
ON ENDFILE(SYSIN) GO TO FINISH;

Part III: Examples

117

118

S,Y:

OPEN FILE(DIREC) OUTPUT;

NEXTIN: GET FILE(SYSIN)} EDIT(CARD) (A(23));
IOFIELD=NUMBER;
WRITE FILE(DIREC) FROM{IOFIELD) KEYFROM{(NAME):
GO TO NEXTIN;

FINISH: CLOSE FILE(DIREC);

END TELNUM;

_END

{compiles your program and informs you when compilation is

complete}

TELNOS

During execution of TELNOS, you are prompted to enter input data.

:BAKER,R. 152

:BRAMLEY,C.H. 2us8

:CHEESEMAN, I. 141

:CORY,G. 336

: ELIOTT, D. 875

:FIGGINS,S. 413

:HARVEY,C.D.H. 205

:HASTINGS ,G. M. 391

:KENDALL,J.G. 294

: LANCASTER,W.R. 624

+tMILES,R. 233

:NEWMAN, M.W. 450

sPITT,W.H. 515

:ROLF,D.E. 114

:SHEERS, C.D. 241

:SUTCLIFFE, M. 472

:TAYLOR, G.C. 407

:WILTON,L.W. 40y

:WINSTONE, E. M. 307

H {NULL LINE}

EXAMPLE 15:

UPDATING AN INDEXED DATA SET

This example updates the data set created in Example 14 and prints
out the new contents of the data set. The input data includes codes to
indicate the operation required:

A:
C:

Add a new record
Change an existing record
Delete an existing record

You must define the data set created in Example 14.

DDEF DDNAME=DIREC, DSORG=VI, DSNAME=TELNOQO, CISP=0LD
You now invoke the PL/I compiler.

PLI NAME=DIRUPDT
The text editor prompts with line numbers (not shown).

DIRUPD:

NEXT:

PROC OPTIONS (MAIN);
DCL DIREC FILE RECORD KEYED ENV (INDEXED),
NUMBER CHARI3),
NAME CHAR{20},
CODE CHAR({1);
ON ENDFILE{SYSIN) GO TO PRINT;
ON KEY (DIREC) BEGIN;
IF ONCODE=51 THEN PUT FILE(SYSPRINT) SKIP EDIT
(*NOT FOUND:',NAME) (A(15),A);
IF ONCODE=52 THEN PUT FILE(SYSPRINT) SKIP EDIT
(* DUPLICATE:',NAME) (A(15),RA);
END;
OPEN FILE(DIREC) DIRECT UPDATE;
GET FILE(SYSIN} EDIT(NAME,NUMBER,CODE) (A(20),A(3),X(3),A(1));
IF CODE='A* THEN WRITE FILE(DIREC) FROM(NUMBER) KEYFROM(NAME);

EXAMPLE 16:

PRINT:

NEXTIN:

FINISH:

END

ELSE IF CODE='C' THEN REWRITE FILE(DIREC) FROM(NUMBER)
KEY (NAME) ;
ELSE IF CODE='D' THEN CELETE FILE(DIREC) KEY(NAME);

ELSE PUT FILE(SYSPRINT) SKIP EDIT('INVALID CODE:',

NAME) (A(15) ,R);
GO TO NEXT;
CLOSE FILE(DIREC);
PUT FILE(SYSPRINT) PAGE;
OPEN FILE(DIREC) SEQUENTIAL INPUT;
ON ENDFILE(DIREC) GO TO FINISH;
READ FILE(DIREC) INTO (NUMBER) KEYTO(NAME);
PUT FILE(SYSPRINT) SKIP EDIT(NAME,NUMBER) (A);
GO TO NEXTIN;
CLOSE FILE(DIREC) ;
END DIRUPD;

{compiles your program and informs you when compilation is ready)
You now call for execution of DIRUPDT

DIRDUPDT

During execution of the program, you enter your input data.

:NEWMAN, M. W. 516450
:GOODFELLOW,D.T. 889

sMILES,R.

:HARVEY, C.D.W. 209
:BARTLETT, S.G. 183

:CORY, G.

:READ,K.M. 001
:PITT,W.H. 515
:ROLF,D.F. 114

:ELLIOTT,

:BASTINGS,G. M. 391

.BRAMLEY

233

336

D. 291875

nonog »ORPOPO

C.H. 439248
(NULL LINE)

BATCH PROCESSING

This example illustrates the use of a single invocation of the PL/IX
compiler to compile four procedures with three external names and then
execute them.

S,Y:

PLI NAME=PGM1

The text

FIRST:

*PROCESS
SECOND:

*PROCESS

editor prompts with line numbers (not shown).

PROC OPTIONS{MAIN):;

DO I=1250 TO 1500 BY 50;
Do J=10, 15, 20;
K=SGRT(1/J);

PUT SKIP(2) DATA;

END FIRST;

(* EXTREF ,N=PGM2"') ;

PROC OPTIONS{MAIN);

DCL PRINT ENTRY EXT,
A(5) INIT(1,2,4,8,16),
B{5) INIT(3,5,7,9,11),
c(5,5);

DO I=1 TO 5;

DO J=1 TO S;
C(1,3)=12*A(I)/B(J);
END;

END;

CALL PRINT (A,B,C);
END SECOND;
(*N=PGM3"');

Part III: Examrles

119

PRINT: PROC(THOR,TVERT,ARRAY) ;
DBCL THOR(#} ,TVERT{*} ,ARRAY (¥ ,%);
I=DIM(THOR,1};
PUT EDIT (THOR} (X(7}, (I} F{7,2));
DG J=1 TC DIM{TVERT,1);
PUT SKIP EDIT{TVERT(J), {(ARRAY(J,K) DO K=1 TO I))(F(7,2));
END PRINT;
«PROCESS (*N=PGM4,FE*};
THIRD: PROC OPTIONS{MAIN);
OM ENDFILE(SYSIN) GO TO FINISH;
NEXT: GET DATA(A,B);
C=R+8*B*%2/3;
PUT SKIP DATA;
GO TO NEXT;
FINISH: END TRIRD;

S,¥: _END
You now want to cali for execution of the programs. You can call
for their execution separately or with a single command statement
of the form:

S,Y: PGM1; PGM2; PGM3;

S5YS: (executes the programs and prompts you to enter the input data
required in PGM3)

S,Y: :A=27, B=42; A=39, B=1i7; A=15, B=19; A=12, B=7:

SYS: {prints output data from SYSOQUT)

EXAMPLE 17: THE OBEY FACILITY

TSS/360 provides the facility for high-level language users to
execute the assembler language OBEY macro. This macro enables you to
specify a character string consisting of one or more TS85/360 commands,
and have these commands obeyed during execution of a PL/I program. The
syntax is:

charactex string variakle

*command character string'})
expression

CALL SYSOBP (

The arqument within parentheses must be a character string consisting of
the command to be cobeyed. It can be literal (in quotes), the name of a
character string variable that contains the command, or an expression
that produces the character string.

The following program shows some uses of this facility.

OBEYTST: PROC OPTIONS(MAIN};
DCL DDEF CHARR(5) INIT{*DDEF*},
RELS CHAR(8) INIT{°'RELEASE®"),
ERAS CHAR(6) INIT('ERASE'),
DS3 CHAR(5) INIT('DSs?'),
STOP CHAR(5)} INIT{’STOP'}, ;
DCL (PARAM, RECORD, TSTREC) CBAR(120} VARYING;
DCL (IN,QUT} FILE RECORD;
Ve
*/ PARAM = *QUT,VS,TESTDATA, DCB= (RECFM=V,LRECL=124),DISP=NEW®;
CALL SYSOBFP{(DDEF PARBM);

DDEF| | PARAM is an expression that produces a DDEF command.

RECORD = *ABCDE’;

DO I=1 TO 10;

RECCRD = RECORD|{'ABCDE®;
WRITE FILE{(OUT) FROM (RECORD) ;
END;

CLOSE FILE{(QUT);

120

CALL SYSOBP(RELS]||'0OUT');
CALL SYSOBP(DDEF|| "IN, ,TESTDATA®);
TSTREC = "ABCDE';
PO 1I=1 TO 10;
TSTREC = TSTREC| | *ABCDE';
READ FILE(IN) INTO (RECORD);
IF RECORD ¢ = TSTREC THEN GO TO ERROR;
END;
CLOSE FILE{IN);
CALL SYSOBP(RELS||"IN®);
CALL SYSOBP(DSS|| *TESTDATA'});
CALL SYSOBP(®'PRINT TESTDATA,ERASE=Y');
CALL SYSOBP('DISPLAY *'‘*OBEYTST SUCCESSFUL'?%);
GO TC FINISH;
ERROR: DISPLAY (*OBEYTST FAILED®) ;
FINISH: END OBEYTST;

EXAMPLE 18: DYNAMIC CALLS

This example shows how to prepare a very large PL/I program (that is,
a PL/1 program containing more than 4096 bytes of PR entries, or appro-
ximately 970 subroutines) for execution.

iIf a PL/I main module has close to a thousand subroutines, it may be
necessary to load and unload some of the subroutines dynamically to
avoid an overflow of the PRV. (See "External Symbol Dictionary," in
Section 5.) You can ccde an assembler-language module that will provide
this dynamic interface between your PL/I program and the system.

S,Y: PLI MAIN,EXPLICIT=*ALL,XFERDS=CALLDS

S,Y: 0000100 PROCESS: PROC OPTIONS (MAIN);

0000900 CALL SUBA; /#SUBA HAS 500 SUBROUTINES*/

-

0001500 CALL SUBB; /*SUBB HAS 500 SUBROUTINES®/
0002000 CALL SUBC; /#%SUBC HAS 500 SUBROUTINES#*/
0003000 END PROCESS;

0003100_END

MAIN is compiled, and a transfer data set named CALLDS is created.
(Assume that no data set named CALLDS existed previously.) CALLDS is
shown later in this example as the seccnd component of the transfer
module.

The calls to SUBA, SUBB, and SUBC beccwe, in the okject module, calls
to aSUBA, asSUBB, and aSUBC. @aSUBA, a8SUBB, and aSUBC are the intermedi-
ate entry points; they are in the transfer module. You could have
omitted the EXPLICIT operand and entered the as yourself, while typing
the source data set, but then the XFERDS operand would have had no
effect and you would have had to create the transfer data set yourself.

Note: EXPLICIT is also useful when the PLI command relates to an alrea-
dy existing socurce data set that contains calls with unpadded names.

Part I1I: Examgles

121

122

The components of the transfer module are:

1.

2.

3.

Before assembly of the transfer module,

A PLICALL macro and a CSECT
A transfer data set

Finishing touches,

instruction

including an END instruction.

a source data set for each

com-

ponent exists as a line data set (to aid readability, line numbers are
not shown):

&EPO

MACRGC
PLICALL &P1,&TYPE, §CLEANUP
AIF {'ETYPE'
ENTRY &PO
USING £PO,15
AIF {'ETYPE®' EQ
AIF (*STYPE' EQ

IMPLICIT LINKAGE REQUIRED

L 15, EXA§SYSNDX
BR 15

EXAESYSNDX DC VI(EP1)

«.MEXIT

- ¥
*

-

.ETYPE

&£PC

MEXIT
EXPLICIT LINKAGE REQUEST
ANOP

CLIX
BNE

ACG&ESYSNDX,X*0A°
PRVESYSNDX

LDRESYSNDX STM 14,3,12(13)

BAS 3,SKP&ESYSNDX
USING #,3

ERVESYSNDX DC A (ABEND)

ACGESYSNDX ADCON LOAD,EP=§&P1,LDERR=CODE
SKP&SYSNDX EX

0,ACGESYSNDX
CLI ACGESYSNDX,X"0CA"
BE ERRESYSNLEX
LM 14,3,12(13)
B LNRESYSNDX
DROP 3

PRVESYSNDX LOAD 1,=V(SYSTCM)

LNKESYSNDX L

ERRESYSNDX LM

USING CHATCM,1

LOAD 3,TCMCXD
DROP 1

CLI 0(3),X"1000°
BNH LNK&SYSNDX
LR 1,3

CALL &CLEANUP

The cleanup routine is a routine that you provide for
selectively unloading subroutines.

15, ACGESYSNDX+12
BR i5

14,3,12(13)
L 15, ERVESYSNDX
BR 15

MEND

TRANSFER CSECT

EC "N').MEXIT

'0') .ETYPE
*E').ETYPE

‘\‘

NAMING ENTRY ONLY

SVC STILL ON? .
NO, LOAL NOT REQUIRED
SAVE REGS ARCQUND CALL
BRANCH AROUND ADCON GROUP

DYNAMIC LOAD &’
SUCCESSFUL LOAD?
NO, AREND
RESTCRE REGISTERS
GO PERFORM LINK

GET CURRENT CXD VALUE

PRV OVERFLOW?
NO, GO PERFCRM LINK

CALL CLEANUFP ROUTINE

V-CON

ENTER ROUTINE
RESTORE REGISTERS
ERROR ALDRESS

component 1
(data set
name is
PREFIX)

All registers except register 15 are passed tc the called PL/I
module exactly as they are received by the transfer module.

2. The called module will not return to the transfer module. The
return will be to the module containing the CALL statement.

aSUBA PLICALL SUBA
component 2
aSUBB PLICALL SUEB --created by system in this example
(data set name is CALLDS)
aSUBC PLICALL SUBC
X'00' follows each line number in component 2.
EJECT
USING ABEND,15 :
component 3
ABEND DS OH (data set name
is SUFFIX)
ABEND 1, '#*ABEND* TRANSFER LOAD ERROR.'
COPY CHATCM
END

The above transfer module is only an example; you should vary it to fit
your needs.

Now you gather the components into a single source data set. The
name of the transfer module will be DYNAMO.

S,Y: EDIT SOURCE.DYNAMO
S,Y: 0000100 _EXCERPT PREFIX
S,Y: EXCERPT CALLDS
S5,Y: EXCERPT SUFFIX
S,Y: END
{Now you assemble the transfer module.)
S,Y: ASM DYNAMO,Y

If you update the transfer module in the future, you must reas-
semble it.

You are now ready to execute the PL/I program. Calls to the dummy
names will cause module DYNAMO to be lcaded when module MAIN is loaded.
Whenever MAIN branches to DYNAMO, DYNAMO will dynamically load the
invoked subroutine, and all subroutines which that subroutine calls non-
dynamically, and perform error checking.

Part III: Examples

123

124

PART IV: APPENDIXES

Part III: Examples 125

126

A PL/1 user who is switching from IBM
System/360 operating System (05/360) to 1IBM
System/360 Time Sharing System (TSS/360)
should know the differences in the ways
that the two systems implement PL/I. 1In
particular, he should understand:

The TSS/360 command system

e Interchange of data between 0S/360 and
TSS/360

e Data set positioning and DISP=NEW

s Raising of UNDEFINEDFILE condition for
STREAM files

e Compiler options not supported by
TSS/360

¢ TSS/360 language restrictions.

TS5S/7360 COMMAND SYSTEM

All functions performed by job control
language (JCL) 1in 0S/360 are performed by
the command system in TSS/360. TSS/360
commands perform all the functions neces-
sary to compile and execute PL/I programs.

This manual serves as an introduction to
the command system for the PL/I user. The
definitive manual on the command system is
Command System User's Guide.

INTERCHANGE OF DATA BETWEEN 0S/360 AND
TSS/7360

Interchange of data between 0S/360 and
TSS/360 must be by cards or by CONSECUTIVE
PS data sets on tape or disk. TS55/360 can-
not read INDEXED data sets produced by 0S/
360; they must be rewritten on tape or disk
as CONSECUTIVE PS data sets.

DATA SET POSITIONING AND DISP=NEW

In TSS/360 if the DDEF command specifies
DISP=NEW and the file is opened for ocutput,
closed, and then reopened, the read-write
mechanism is positioned after the last rec-
ord in the data set. In 0Sr/360, in similar
circumstances, the read-write mechanism is
positioned before the first recoxrd in the
data set.

APPENDIX A: O0S/360 - T55/360 COMPARISON

RAISING OF UNDEFINEDFILE CONDITION FOR
STREAM FILES

Omission of the DDEF command for a REC-
ORD file causes the UNDEFINEDFILE condition
to be raised. A STREAM file, on the other
hand, defaults to SYSIN or SY¥SOUT so that
PL/I does not raise the UNDEFINEDFILE con-
dition merely because the STREAM file has
no corresponding DDEF command. (It is
still possible to have the UNDEFINEDFILE
condition raised because of attribute con-
flicts.) Note that omission of the DD
statement for a STREAM file in 05/360 does
cause the UNDEFINEDFILE condition to be
raised.

COMPILER OPTIONS NOT SUPPORTED BY TSS/360

The options SIZE, M91 or NOM91, and
EXTDIC or NOEXTDIC can be specified in the
PLIOPT operand of the PLI command, but they
are ignored during execution. These
options are discussed further under “Dummy
Options,™ in Appendix G.

TSS/360 LANGUAGE RESTRICTIONS

The following PL/I language features are
not surported by TSS/360. Statements con-
taining these features can be issued and
compiled correctly, but at execution time
these features are rejected as described
kelow.

1. Multitasking features -- Already
inherent in TSS/360; must be handled
at the command system level. If a
request for multitasking is inco-
rporated in a PL/1 program, it will
cause the execution of that program to
be terminated when the request is
encountered during TS5/360 execution.
A CALL statement that contains a mul-
titasking option (TASK, EVENT, or
PRIORITY) will prevent the entire
okject module containing the CALL
statement from executing on TSS/360.

2. SORT -— An attempt to execute a call
to the SORT routine results in an
errcr message; execution is then ter-
minated, and the user®s task reverts
to the command mode.

3. CHECKPOINT/RESTART -~ An attewpt to
execute a call to the CHECKPOINT rou-
tine results in an error message;
execution then continues as though the
call had not been made. An attempt to

Part IV: Appendixes 127

128

execute a call to the RESTART routine
results in an error nessage, followed
by termination of execution.

REGIORAL I/0 -~ Raises UNDEFINEDFILE
condition.

TRANSIENT files, PENDING condition,
ENVIRONMENT options G and R -- Raise
UNDEFINEDFILE condition.

UNLOCK statement, NOLOCK option of
READ statement, ENVIRONMENT options
GENKEY, INDEXAREA, and NOWRITE --
Ignored.

Block-size specifications in ENVIRON-

MENT options F, V, and U, for VAM data

Appendix A:

0S8/360 - TSS/360 Comparison

sets -- The system ignores any attempt
to specify a block size, and grougs
all VAM records into page-size blocks
(4096 bytes). If both block size and
record size are given, the block-size
operand is ignored. 1If only one size
is specified, it is interpreted as the
record size.

EXCLUSIVE attribute -- need not be
declared, since record locking is
automatic and cannot be suppressed by
a NOLOCK option.

The REDUCIBLE and IRREDUCIBLE attrilbutes
cause no action in the TSS/360 PL/I compil-
er other than to imply the ENTRY attribute.

An attention interruption is generated
by pressing the ATTN key on a 2741 Communi-
cations Terminal, or the ATTENTICN key on a
1050 Data Communications system. This key
can be pressed at any time -- it cannot be
locked out. The system, if running, always
responds, though perhaps not immediately;
the response depends on what was happening
when the interruption occurred.

Table 24 shows the system's responses to
attention interruptions and to subsequent
actions of the user.

Note: 1If a LOAD command is issued while a
module is interrupted, it is not possible
to resume execution at the point of inter-
ruption with any assurance that all condi-
tions have been properly restored.

I+t a data set is opened prior to the
interruption, a DDEF or RELEASE command
cannot be issued against it until the
interrupted module is unloaded and
reloaded. The module must be unloaded
before it is reloaded, since the system
never loads a module that is already
loaded.

If the interrupted module was inadver-
tently loaded from the wrong library, the
user must: .

1. Unload the interrupted module.

2. Put the correct library on top of the
program library list by issuing
RELEASE commands for the libraries
above it or by issuing a JOBLIBS com-
mand for the correct library.

APPENDIX B: ATTENTION INTERRUPTIONS

3. Load or execute the coxrect module.

If the user does not resume the inter-
rupted module’s execution with the GO com-
mand, and if the module may have left a
data set open, he should issue a CLOSE com-
mand to ensure that the data set is closed.

Levels of Interrxuption

The status (registers and PSW) of each
interrupted nonprivileged program is saved
in a table called the stack table, whenever
another nonprivileged program is invoked
without resuming the interrupted program.
(The interruption can be caused by an AT
command, a call to IHEDUMC, a PLs/I call to
SYSOBP, or a program interruption, as well
as by pressing the attention key.} When a
program's status is saved in the stack
table, it is said to remain activated,
although it is not executing. The status
is removed when the interrupted program
again receives control. The RTRN, PUSH,
and EXIT commands can be used to manipulate
the stack table as described in Table 2&.

The curxent level of interruption is an
indicator of how much of the stack table is
in use. One level is taken every time a
program's status is saved; the level is
freed when the interrupted program regains
control. Ten levels are available. The
STACK command displays the names of all
activated programs, from the current level
on down.

Part IV: BAppendixes 129

Table 24. Attention Interruptions (Part 1 of 2)

——=—= T e — e ———=
: | System Status when Attention Key is Pressed 1
’, ___
i |A nonprivileged pro- lA pr1v1leged programs “?B privileged program?2 !
i jgram?® is in operation. |is in operation and jis in operation and |
| | {the current command is |[there are additional {
| | | the only one or the |commands in the com-
| | |last one in its com- jmand statement. i
i | |mand statement. ! |
] | SR —_— § o e et o e e o e e {
| | Syster Response i
1 — - T e ey o |
| | 1 (If program was for a |_(If curremt command, |*{If current command, |
| | command that termina- | other than DISPLAY, | other than DISPLAY, i
{ | ted without complet- | terminates without | terminates without com-|
| | ing, issue appropriate| completing, issue { pleting, issue appro- |
| | message.) | appropriate message.) | priate message.) |
[+ 1 e e e e N
| Subsequent | System Responses ?
|User Actions |- T o - — i
| | type 1 | type 2] type 3 |
p-—-- 4 —4- - N {
|press atten- | ! | _ i * {
|tion key again| | t |
b pomm e + e -
|press RETURN |Resume interrupted | . |Resume command state— }
i |program; after comple- | jment; after comple- |
{ {tion, response type =2.]|Response type still =2.{tion, response type =2. |
b + % -+ 4
GO command JResume interrupted	Resume nonprivileged	Resume nonprivileged	
	program; after comple-	program that is at	program that is at
jtion, response type =2.	current level of in-	current level of in-	
		terruption, forgetting	terruption, forgetting
		command statements jcommand statements	
{		subsequent to its in~ {subsequent to its in- i	
		terruption. After jterruption. After com-	
{ {	completion of nonpriv- {pletion of nonprivi-		
		ileged program, re-	leged program, re- i
	1sponse type =2.	sponse type =2. {	
p———o S (S NS			
REPEAT	Repeat interrupted lRepeat interrupted	Repeat interrupted i	
function jmessage, if any.	message, if any. message, 1if any.		
}	Response type =1. ;Response type =2. jResponse type =3. i		
" = e e o e 4			
STRING tDlsplay unprocessed		Display unprocessed {	
{function?3	portion of interrupted	Error message. jportion of interrurted	
jcommand statement.	{command statement. i		
] lResponse type =1. lResponse type =2. !Response type =3. i			
___________ s e sk o 3 e s o R,‘,..,,.A.w‘..‘.,,_-,_“,._m._._......_.,.__.!			
EXIT command iEnd“ and deactivate	End“ and deactivate {End* and deactivate {		
i jinterrupted program; inonprivileged program [nonprivileged program i			
	resume command state-	at current level of {at current ievel of	
	ment, if unfinished.	interruption; resume	interrugtion; resume
	After completion of	its command statement, }its command statement,	
i	command statement,	if unfinished. After {if unfinished. After	
	xresponse type =2.	completion of command	c omp}ci*an of command
	j statement, response Hie t response		
i Itype =Z. it]			
pomm e fomm e T i - -			
RTRN command	Deactivate nonprivi- IDeactlvate nonprivi- {Deactivate nonprivi- !		
	leged programs at all	leged programs at all ;leqpa programs at all {	
	levels of interrup-	1levels of interrup-	levels of interrug-
{tion; cancel any un- jtion; cancel any un-— jvion; cancel any un-			
}	processed portions	processed portions iprocessed portions]	
	of associated jof associated jof asscciated		
K	command statements.	command statements. {command statements.	
{ jGo to response	Response type =2. {Go to response		
ttype 2.	ity@u 2.		
Y SO A e R e e e e e e e 3

130 Appendix B: Attention Interxrruptions

Table 24. Attention Interruptions (Part 2 of 2)

| D T
| Subsequent | System Response
|User Actions }p-——e———-
| | type 1

type 2 type 3

e o o

PUSH command |Save status of inter- |[Save status of cur- | save status of cur-

| rupted program.S | rently interrupted |rently interrupted

|Go to response type 2. |nonprivileged rprogram.3®|nonprivileged program.S
| Response type =2. lGo to response type 2.
1

e o o
B

|
|
|
|
b f H
|Any command |Execute command; after |Execute command; after |Execute command, can-
jexcept those |execution, response | execution, response |celing unprocessed
|above | type =2. |type =2. {portion of interrupted
P | jcommand statement. After
| i | execution, response

| | |type =2.

‘,__..._ i L - n

|*A user-written program, the text editor, the PL/I compiler, PLC, ODC, or the PL/I

| library. Note: A nonprivileged program can call a privileged program, thus causing a
{ privileged program to be in operation when the attention interruption occurs.

|2A command-system program for other than a text editor or lanquage processing command,
| or some other privileged system program called by one of the nonprivileged programs.
|2STRING is valid only if it is the first user action after the attentiocn.

|“As if control were transferred to an END statement within the program.

| SNormally, the status of the interrupted program is not saved until another nonprivi-

| leged program is invoked withoui resumption of the interrupted program. However, if

| the user wants to use PCS to change the contents of his registers, the PUSH command

| allows him to save the status immediately.
L

4 —

b s e s S G S —— ——-— ovin worsn wdun s o— a— . o ki -~ — ——

Part IV: Appendixes 131

APPENDIX C:

PRINTER AND PUNCH CONTROL CHARACTERS

All record formats can optionally
include a control character in each logical
record. This control character is reco-
gnized and processed if a data set is being
written to a printer or punch. For format-
F and -U records, this character is the
first byte of the logical record. For
format-V records, it must be the fifth byte
of the logical record, immediately follow-
ing the logical record length field.

Two alternatives are availakle; that is,
FORTRAN control characters or machine-code
control characters. If either option is
specified, the character must appear in
every record. Use of FORTRAN control char-
acters is specified by the A option of the
RECFM DCB subparameter to the DDEF command,
or by the CTLASA option of the ENVIRONMENT
attribute. Use of machine code is speci-
fied by the M option of the RECFM subpara-
meter or by the CTL360 option of the
ENVIRONMENT attribute.

132 Appendix C:

FORTRAN control characters are usually
preferred, since the PL/I library automat-
ically inserts them in each record of a
STREAM PRINT file. FORTRAN control charac-
ters are given in IBM System/360 Time Shar-
ing System: Command System User's Guide.

FORTRAN control characters for PRINT files
are listed under "PRINT files,”"™ in Section
9.

The machine-code options can be ignored
by most users; they should never be speci-
fied unless the user has coded hexadecimal
data into the first byte of every record.
The user-supplied byte must contain the Prit
configuration specifying a write and the
desired carriage or stacker-select opera-
tion. Only those control characters that
include a write-specification are per-
mitted; the independent carriage and
stacker-select operations are excluded. A
list of the machine codes appears in Com-
mand System_ User's Guide.

Printer and Punch Control Characters

Those portions of a DDEF command that
are applicable to determine or specify the
characteristics of a data set operated on
by PL/I programs axe presented in Figure
14. Other parameters and options of the
general DDEF command, as described in the
publication Command System User's Guide,
are not given because they are ignored or
overridden by the PL/I I/0 routines.

Specification of DDEF commands for
peripheral devices of the CPU is also
described in the publication Comwmand System
User's Guide.

The DDEF command that defines a cata-
loged data set is brief and simple. The
only required operand fields are DDNAME and

APPENDIX D: FULL DDEF COMMAND

LSNAME. Other operand fields are unneces-
sary since other information about the data
set is described in its catalog entry. For
a cataloged data set if SPACE, UNIT, LABEL,
or VOLUME coperands are entered, diagnostics
will be displayed as appropriate. However,
the associated fields will be taken
correctly from the existing catalog entry.

DDEF commands that define uncataloged
data sets can be divided into two groups:
(1} those defining new data sets (data sets
that are to be generated during the run but
do not yet exist) and (2) those defining
old (already existing, but uncataloged)
data sets. These old, uncataloged data
sets can exist only on private volumes.

Operation Operand

DDEF DDNAME=data definition name

[,DSORG={PS|VI|VP|VS}]
,DSNAME={{data set name
*data set name

UNIT= (TA[,tape typel

{ .secondaryl {,HOLD])

PUBLIC
+ VOLUME= PRIVATE

. LABEL=

{,DISP={OLD|NEW|MOD}]
{,OPTION={CONC{JOBLIB}]
[,RET=retention codel
(PROTECT={Y|N}}

[,DCB= ([,DSORG=code])
{, LRECL=integerl
{,KEYLEN=integer]
{,PAD=integer]
{,DEN=integer]
{,BUFNC=integer]
{, IMSK=cadel

o W . S . S e o s = . e S s, S e e e . s T e WS it S . S e S G S g S . S B e 0
P e v e s S s . G S o, s . S . D . S i . S S o i o S U o o S . S S, G . s e e i O

DAl,direct access device type)l)
AFF=data definition name

[, SPACE= ({CYL| TRK| record length}.primary}

volume sequence numbe

({file sequence number](, {NL{SL|AL}]
[,RETPD=retention periodl)

{,RECFM=code]l

[,BLKSIZE=integer] [, BUFOFF=integer]
[,RKP=integer]}

[,DEVD=code]

{,TRTCH=codel

{,OPTCD={W|A}]

[,NCP=integerl}}}

] . [volume serial number,...]
r]

i v S SRS . SRS s o SR A s e S SN (200, S e OO SIS S WD . . S S S QSIS (B oo G G W—— o S Wy vt s e i v

Figure 14.

Full DDEF Command for the PL/I User

Part IV: Appendixes 133

To define a new data set that is to be
written on a public volume, the user can
use the DDNAME, DSNAME, SPACE, DSORG, and
LABEL operand fields. Exactly which fields
he uses other than DDNBME and DSNAME, which
are required, depends on the character of
his particular data set. To define a new
data set that is to be written on a private
volume, the user must give DDNAME, DSNAME,
UNIT, and VOLUME operands. If he wishes,
he can also furnish DSORG, SPACE, LABEL,
and DISP fields.

The user defines an old, uncataloged
data set by specifying the DDNAME, DSNAME,
VOLUME, and UNIT fields. The remaining
fields can be defaulted for all data sets
except unlabeled tapes.

The description of the basic DDEF com-
mand given in Section 8 also applies to the
full DDEF command. If the data set is old,
the full DDEF command can be used to over-
ride data set specifications already given
in the standard label; however, the user is
cautioned that to do this may cause errors
in processing the data.

New data sets can differ radically from
the standard data set resulting from the
basic DDEF command. In particular, the
usexr can define output data sets that are
compatible with other systems.

DDNAME
Specifies the data definition name.

Specified as one to eight alphameric
characters; the first character must be
alphabetic. DDNAME must not begin with
5YS, because these characters are reserved
to prefix system-generated data definition
names.

Since DDNAME is a required parameter, it
cannot be defaulted.

DSORG

In the basic DDEF command this is virtu-
al sequential (VS), virtual index sequen-
tial (VI), cor virtual partitioned (VP).2
The other option is physical sequential
(Ps).

The PS option must be used for tapes or
disks that originate ocutside the TSS/360

1The DSORG parameter is also present within
the DCB sublist of the full DDEF command.
This distinguishes between the different
forms of VP, namely virtual index sequen-
tial partitioned (VIP) and virtual seguen-
tial partitioned (VSP}, and identifies the
organization of the partitioned data set
member to be processed.

134 Appendix D: Full DDEF Command

environment and for tapes or disks that are
to be written under TSS/360 and then trans-
ferred to other systems for processing.

DSNAME

See the discussion under "Basic DDEF
command,® in Section 8.

No more than one member of a partitioned
data set can be processed at one time.

The data set name can optionally be
specified within apostrophes. 1In this
case, the name need not consist of alpham-
eric characters.

The #*data set name option of the full
LCDEF command is needed only when processing
tape or disk data sets written by 0S/360
with 44-character data set names. There-
fore, this option is used only with a dsorg
of PS. Subsequent references to the name
do not include the asterisk prefix.

UNIT

This is regquired only for uncataloged
data sets. :

2311
UNIT=\DA, |2314

Specifies direct access (either a 2311
Disk Storage Drive or a 2314 Multi-disk
Storage Dxive).

UNIT=(TA,{7]7DC|9}H)

Specifies that a tape unit (7-track,
7-track with data conversion, or 9-track)
is required for the data set. If given, it
should agree with the DEVD parameter in the
£CB field.

UNIT=(AFF=data definition name)

Srecifies unit affinity. The data set
being defined is to be assigned the same
device reserved for the data set identified
by symbol, which is the data definition
name of a previously issued DDEF command.
This subfield cannot be used if the data
set is new and is to be on a direct access
device. This subfield can be specified
only for PS data sets.

SPACE

The SPACE parameter is never required
for existing data sets. It can be used for
new virtual data sets (DSORG is VI, VS, or
VP) to request an initial allocation of
puklic storage that is different from that
specified at system generation time. Its
function in this respect is of interest
only if the expected size of the data set
is either much larger or much smaller than

the standard system allocation. In these
cases, it permits somewhat greater effi-
ciency in storage allocation. Even if the
storage required is greater than the stan-
dard allocation, additional storage is
automatically issued so that the SPACE pa-
rameter is never critical for virtual data
Sets.

Form 1
SPACE={,primaryl,secondary) [,HOLD])

This form is used to reguest allocation
parameters for virtual data sets that diff-
er from the system standard. Primary and
secondary allocation are in space units of
4096 bytes (pages). Primary specifies the
number of initial space units to be allo-
cated to the data set. It is one to three
digits. Secondary is the number of space
units to be allocated each time the space
allocated to the data set has Leen
exhausted and more data is to be written.
This allocation comnsists of a one- to
three~digit decimal number.

The HOLD option within the SPACE parame-
ter specifies that unused storage assigned
to the data set is not to be released when
the data set is closed.

Form 2

SPACE={{TRK|CYL|record length},primary
[,secondarxryl [, HOLDI?

This form is used for direct access
devices where dsorg is PS. It allocates
space in units defined by the first sub-
parameter, namely tracks, cylinders, or
record lengths.

VOLUME
Form 1

PRIVATE
VOLUME= \ |, volume serial number{,...]

The volume parameter is required for
old, uncataloged data sets that reside on
private volumes. It can also ke supplied
for new data sets that are to reside on
private volumes. Vglume serial numbers can
be one to six characters and should unique-
ly identify a particular disk pack or tape
reel that is to be mounted. If any non-
alphameric characters are used in the
volume serial number, it must be enclosed
in apostrophes. If PRIVATE is specified
and the data set is new, the system obtains
an available volume and informs the user of
the volume selected.

In general, therefore, this form of the
VOLUME field is needed only for data sets

that are not cataloged. It applies mainly
when dsoxg is PS and an 0S/360-generated
disk pack or tape is to be read.

Form 2
VOLUME=(volure sequence number)

Where a data set extends over more than
cne volume, this form specifies the
sequence number of the volume to be read or
written. The number consists of one to
four digits. This form is meaningful only
if the data set has PS orxrganization, is
cataloged, and its earlier volumes are not
to be processed.

Form 3
YOLUME=PUBLIC

This form is used for a new public data
set if the user specifies a device type in
the UNIT parameter. If PUBLIC is speci-
fied, the volume sexrial number is not reco-
gnized. PUBLIC is also assumed if the
VOLUME parameter is not specified.

LABEL

This parameter applies only when the
data set organization is PS. It is gener-
ally used only when magnetic tapes are to
be processed, since all data sets on direct
access volumes have labels known as Data
Set Control Blocks (DSCBs). The RETPD sub-
rarametexr, however, is applicakle to all PS
data sets.

If the entire label field is defaulted,
the labeling conventions specified by the
installation are assigned. However, if the
data set is cataloged, label information is
retrieved from the catalog.

Form 1
LABEL=(file sequence number)

Srecifies the file sequence number of a
data set on tape when maltiple data sets
are on one tape volume. This facility,
therefcre, permits the user to skip one or
more data sets in order to find the one of
interest and implies that the program
should not issue a REWIND for that data
set. The file sequence number is one orx
two decimal digits.

Form 2
LABEL=(, [NL{SL|AL],RETPD=days)

The options shown are NL for noc labels,
SL for standard lakels, and AL for standard
ASCII labels (see Appendix E}. The exact
neaning of standard lakels is in<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>