
Systems Reference Library

VersiDn 8.1

IBM System/3S0 Time Sharing System
PL/I Programmer's Guide

File No. 5360-29
GC28-20Q9-1

This publication is a companion volume to IBM
System/360 Time Sharing System: PL/I Language
Reference Manual, GC28-20Q5. Together, the two books
form a guide to the writing and e~ecution of PL/I ~ro­
grams under the control of an IBM System/360 Time Shar­
ing System that includes a PL/I compiler. This putli­
cation is concerned with the relationship between a
PL/I program and the Time Sharing System. It explains
how to compile and execute a PL/I program, and intro­
duces the command system. data management, and other
essentiai features of TSS/360.

Thi.s publication is a guide to the faci­
lities of the IBM SysteuV360 Time Sharing
System (TSS/360) for the PUI user. It
explains how to compile and execute a FL/I
program. and introduces the command system,
data management, and other essential fea­
tures of TSS/360.

Pclrt I explains how to use PL/I on TSSI
360 without previous knowledge of TSS/360i
Parts II and III q.escribe the more advanced
facilities of the TSS/360 PL/I compiler and
provide a brief survey of TSS/360 features
available to the PL/I user.

.PRER1&..l!ISITE KNOWLEDGE

Readers should be familiar with the PLII
language, since this book does not describe
the language, but rather the use of the
system.

The PL/I user will find the language
specified in these publications:

IBM system/360 Time Sharing System:
pLlr Language Reference ~anual,
GC2fl-2045.

IBM liY.ste-ID/36 0 Ttme Sharing System:
PYI I.ibrary cOIDFutational Subrou­
!:iJles. GC2B-2046.

Thi!> l~~ .fI._ MdijOL"" rt"Vi!;;lOn of. dnd re!;laces, t.he [,revious
t:'-dit-10n~ CCla--.NI,I9-0. and T.achnical H~'fl.letteI:
GNlf!:-1160.

Thi s .;.J it). on tlOt;'t.Hoenl::.5 changes to the FLI command and
th(~ TS.';;'J\,Q cOf'l'/,llk1.nd sy~1t_em. Use of the linKage editor
and tht;: ~.'roqrr.rIl cont rol systlf'.lD are explained in greater
i1€tdil. Shat '_~,g of PL/I lIiooules is explained. Two new
tiect.ion,3. "T('rt"llinal I/O," and "'Interface between FL/l
imd Ab~;(~mLle,~- progy.-al1ls*"" bL~ve been add.ed to Part II.

Ttlls editl:.l!~ i::> (;u.tt€!)t with Version e. Modification 1,
ot lbM" :'y:.:;t.:m.I360 'T.im~."! Sha.ting SY9b;;!Jl (TSS/)60). and
l'elJ'l.ains ;..c eff("ct. fot: all s'.1b5-equent versions or mcdi­
flcat:Hm!~ (if T5S/360 unless <:n .. herwise not.ed. Signifi­
cant Cb'i"Yi2'~ (1':- additions 0::.0 tnis publ.1catlon 'Wil.l he
f.',tovided in new edit.Lons Dr. T~chfi.ical Newsletters.
fjefore u:;:;iuq t.his pl.lblicat.ion~ ref€:t t.o t .. he latest: edi­
tlon of AL~_ .. 2..'L~_1.;..t~jf>.Q~~.!. .. !!!~....?E.!.~~2~f
l;C29-2;)lkL wf\ich mQ',' contain inf0.l:'1M.t.ion pe~tinent to
'lh-e topi,~s cQvet:'i-?d in t.his j::ditlot'l.~ The Addenduct also
ilsts tf,(' f'·:h1:.ions of <!11 1'55/J60 publications that a.t·e
applici1bt~ clnd cut'Ien't.

This publ .. ic~t.lon lofdl'; {;lepared for production using an IBM cOliputer: to
l.lt.,d~te t hi~ tt-·xt. dn'" to -f:()l\trol the pal'!e dnd line torDlat.~ paqe impre­
s.sjun~; fpii' l-r.;:7t;(.i'"of[Stst t,:rint.lnq were obtained troll an IBM 1"03 Printer
Ij~.:l.nq ~ :"t,pt'Ud ~'I:int. cha,if'l.

tb:~que~ts tOT copit:(j uf IBM (.Jubllc:at.ion8 should be IOAde t.o your IBM
lepro€'tii.~nt.ati.ve Ot to the IBN branch office serving your locality.

A tOrtr\ 1'1:, p:t'_'dded dt. 'the hdek of this publication for. reader's com­
went: h. 1 f t hf' tour: ha:) been u!.movlt:d~ coaaaents. .."y ~ addresBed t.o IBM
coCr,)'{,H ~on. 'Tlmtt ~hdrinq s:yatell.l360 proqri'lJlJllinq Publications. Dellart-
11M-TIl 1141, N~llqh.I:.":rhood IhHltl, J(inqt"lt.oo. N.Y. 12'101

'" Copyri'Jht J.nt pcnat iooal [\ufllnelHi H.'I{'·hinPH cOIyoration 1910, 1911

If additional k~owledge of the time­
sharing system is needed, the following
publicatibns should be refe.rred to:

IBM Systeml360 Time Sharing System:
Concepts and Facilities, GC28-2003.
provides a broader system survey than
does Part I of tbis manual.

IB~ System/360 TimeSharing System:
Command System User's Guide, GC2B-
2001, describes the entire command
language.

IBM System/360 Time Sharing System:
Data Management Facilities. GC28-
2056, describes, in detail, the sys­
tem's facilities for data management.

IBM Systero/3~O Time Sqarinq System:
System Messages. GC28-2037. lists all
of the messages prclduced by the
system.

IBM System/360 Time Sharing System:
Terminal User's Guide, Ge28-20i?,
gives details of the facilities and
operations of the various terminals
supported by TSS/360.

If you have access to a remote job entry
(RJE) device and you want to use the RJE
feature, see IBM System/]60 Time Sbaring
System: Re~ote Job Entry, GC2S-205?

PART I: BASIC PROGRAMMING WITH THE PL/I COMPILER

SECTION 1: INTRODUCTION TO TSS/360
The System

Virtual Storage • • • • • • • •
Sharing Time
Terminal Session Activity

Entering Commands •
Data Management Facilities

SECTION 2: COMPILING AND RUNNING A SIHPLE
Commands and PL/I Statements
correcting Errors when Compiling •• _ •
Data Associated with comfilation
Executing a Previously compiled program •
Further Information • •

SECTION 3: BASIC DATA MANIPULATION
Terminal I/O • • • • •
Data Sets on System Storage •

Data Set Names
The DDEF Command • • • •

PL/I PROGRAM

Reserved Names • • • • • • • • • • • • • • • •
Stream-Oriented Transmission • • • •

CONTENTS

1

3
3
3
3
4
4
4

5
5
6
7
7
7

B
8
9
9

• 10
• 10
• 10

Record-Oriented Transmission • • • • • • • • • • • • • • • • •• 11
•• 11 Creating a Simple Consecutive Data Set •••• • • • •

Retrieving A CONSECUTIVE Data Set • • •

PART II: USING ALL THE FACILITIES OF THE PL/I COMPILER

SECTION 4: COMMUNICATING WITH THE SYSTEM
Conversational Use of the System

Conversational Task Initiation
IBM 1050 Data Communications System •
IBM 2741 Communications Terminal
Teletype Model 33/35 KSR
SYSIN and SYSOUT

Conversational Task Execution •
Conversational Task Output
Conversational Task Termination

• 12

• 15

• 17
· 17

17
• 18
• 19

• ••• 19
• 20
• 20

• • • • 21
• 21
• 21
• 21
• 23

Nonconversational use of the System •
Nonconversational Task Initiation •

Nonconversational SYSIN Data Set
Nonconversational Task Execution
Nonconversational Task Termination

Mixed Mode Use of the System

• • • • • • • • • 23

SECTION 5: COMPILING A PL/I PROGRAM.
Relationship With TSS/360 • •
Compiler Phases .
How to Invoke the Compiler
How to Stop the compiler
Data Sets Accessed by the compiler

Contents of the Source Data Set and
Format of Source Lines
Character Sets -- Keyboard Format •
Entry of Keyboard Source Statements
Recompilation .

Listing • • • • •
Options Used for the Compilation
Preprocessor Input
Source Program • • • •

• 23
• • • • • 23

• 24
• 24

• • • • • 25
26

• 30
• • • • • • 30

the Object Module •

for Later Punching and

32
• • 32

• 32

• 32
• 32

• • • • 32
• 33
• 33

iii

Sta~ement Nest,ing Level. .••
Attrioute and Cross-Reference Table

Attribute Table • . . .
Cross-Reference Table •
Aggregate Length Table

Storage Requirements
Table of Offsets ••• •
External Symcol Dictionary

Standard ESD Entries
Other ESD Entries • • •

Object Module • • • • • •
Static Internal Storage Map
Object Program Listing

Diagnostic Messages
Multiple CompilaLions •.•

CaNT Option • . • • • • •
The *PROCESS Statement • • • • •

Format of the .PROCESS Statement
Compile-Time Processing •••

Invoking the Preprocessor •
ThtO %INCLUDE Staten;ent

SECTION 6: STORING AND INVOKING THE MODULE
Program Library List Control • • • •

System Library .••••
User Library .•.•••
JOD Libraries (JOBLIBs) • •

Private-Volume Job Library
Public-Volume Job Library •

Other User-Defined Program Libraries
Multiple Versions of Object Modules

llser- Assigned Names •
Rpserved Names

PL/I Control Sections •
TYt"es of PL/I Control Sections
Link'· Editing

Why Link-Edit? ••••
External Names .•••
Rules for Link-Editing PL/I Modules •

Sharing. .••••.•••
Linkage Involving Shared CSECTs •
Attributes of Shared CSECTs

Packing • . . . • • . • • • • • • •
Invoking the Module . • • • • • . •
Recovering from Errors when Dynamically Loading

S£CTION 7: TERMINAL I/O
DISPLAY • • • . • • •
STREAM I/O ••••

Input Using 'GET' •
Prompting Action
SKIP Option
COPY Option
Delimiters
Eno-·of-1"ile •

Output Using 'PUT'
Buffering ••.•
Operation of the PUT Statement
Print Control Options • • . • • •
Format, Items • < • • •

L~yout of Data- and List-Directed

SECTION 8: DATA SETS ••••
Storing and Manipulating Data Sets

Volumes • . • • . •

j v

Volume Allocation . • •
System cataLog ••••••

Generation Data Groups

Output

• 33
33
34
34
34

• • 34
35

• 3<'>
• 35
• 36

36
31

• 31
38

• • 39
39
39

• 40
• 40
• 40

40

42
• • 42
• • 42

42
• • 42
• • 43

• 43
43
43
44
44

• • 44
• 44

45
45

• • 45
• 45

46
• 46

46
46
47
41

49
49
49
49

• 50
• 50

50
50
50
51
51
51
51

• 52
• 52

• 53
• 53
• 53
• 53

53
55

Catalog Maintenance •
Planning I/O
Copying. Modifying, and Erasing Data Sets

Protecting and Sharing oata Sets
Data Set organizations

VAM Data Sets
Virtual sequential (VS)
Virtual Index sequential (VI)
Virtual Partitioned (VP)

PS Data Sets
Record Formats

Format F
Format V
Format U

Types of PL/I Data Transmission
Access Methods

Basic DDEF Command
Command Format

The COD Command •
Files and Data Sets •

Opening a File
Closing a File

Summary

SECTION 9: STREAM-ORIENTED TRANSMISSION.
System Files

System Input File -- SYSIN
Conversational Mode •
Nonconversational Mode
Data Contained Within Command procedures
ENDFILE Condition for SYSIN

System Output File -- SYSOUT
Conversational Mode •
Noncol1versational Mode
SYSPRINT Attributes

User-Specified Data Sets
Virtual Sequential Data Sets
Physical Sequential Data Sets

Print Files
Record Forma t
Tab Control Table •

(DSORG=VS)
(DSORG=PS)

Summary of Stream-Oriented Transmission •

SECTION 10: RECORD-ORIENTED TRANSMISSION
Consecutive Files

Virtual Sequential Data Sets
Creating a Virtual Sequential Data Set
Accessing a Virtual Sequential Data Set

Physical Sequential Data Sets
Creation of Physical Sequential Data Sets
Accessing a Physical Sequential Data Set (QSAM)
Track Overflow
Accessing a Physical Sequential Data Set (BSAM)

Indexed Files
Initial and Embedded Keys
creating an Indexed Data Set
Accessing an Indexed Data Set
Example of Indexed Data Set

SECTION 11: DEBUGGING A PL/I PROGRAM
Program Control System

Accessing static Internal Control Sections
PL/I Debugging Facilities

Control of Interruption and Error Handling
ON-Codes
Trace of Active Procedures
Communication with the Program

Symbolic output Using GET and PUT Statements

55
56
51
51
59
60
60
60
60
61
61
61
61
61
61
62
62
63
64
64
65
66
66

61
61
61
61
68
68
68
68
68
68
68
69
69
69
69
11
11

• 72

73
13
13
74
75
75
75
75
16
16

• 17
78
78
78

• 78

19
79
80
80
80
81
84
84
84

v

The DISPLAY St.dtement.
User-Request.ed Dump

Return Codes

• 85
85

• • • • 85

SECTION 12: IN'I'E:RFACE BETWEEN PL/I AND ASSEMBLER-LANGUAGE PROGRAMS • 136
86 Assembler Subrouti.nes Called from PL/I Programs • • ••

Absence of PSECTs • • • • • • • • •
Entry t.o the Subroutine • •

Format of Parameter List
Data Representation •
Environment • • • • •

24-Bit Addressing •
Storage Management • • • •
Interruption Handling •
Part 1 . . • .
Part 2 • • . . . • • •

• 86
• • 86

• • • 86
87
87

• 87
• • 87

88
• 88

• • 88
PL/I Subroutines Called from Assembler programs • • • • • • • 90

Initialization Routine • • • • 90
Notes on passing Parameters • 93

PAR'f III: f:XAMPLES •• • < • • • 95
Example 1: Initiating and Terminating a Conversational Task •• 97

Explanat.ion of LOGON Operands • • • • • • • • • • • • • • • 97
Example 2: creat.ing Multiple Versions of the Same Program • •• 98
Example J: Conversational Initiation of Nonconversational Tasy.s •• 100

Part 1: 'The. BACK Command • • • • • • • • • • • • • • • .100
Part 2: The EXECUTE Command • • • • • • • • • • • • • • • ..101

Exampl", It: P:reparing a Job for Nonconversational processing •• 102
Example 5: Storing DDEI" Commands for Later Use •• 104

Part L Storin9 DDE? Commands • • • • • • • • • • • • .104
Part 2. Retrieving Stored DDEF ComlTands ••••••••••••• 104

Example 6: Manipulat.ion of Several Forms of a Program • • .105
Example 1: Survey of System :t'acilities and 80me Housekeeping
Methods .••••••••••••• _ • • • • • • • • .107
Example B: 'l'J:ansferring Virtual Storage Data Sets Between Disk
and Tape • • • • • • • • • • • • •• 109
Example 'J; The Text Editor Facility. • • • • • • ••• 110
Example 10 ~ The 'l'ext Editor F'acility • • • • • • • .112
Example 11: USE W;' COMMAND PROCEDURE (PROCDEF) •• 11'~
Example 12: Creating a CONSECUTIVE Data set
Example 13: Using a PRINT File •••••
Example 14: Cxeating an IND.EXED Data Set
Example 15: Updating an INDEXED Data Set
ExampJ.e 16: Batch Processing
Example 17: The OBEY Facility.
Example 18: Dynamic Calls •

• • .115
• •••• 116

• .117
.118

• .119
• .120

• •••• 121

PART IV: APPENDIXES • .125

APPENDIX A: OS/360 - '1'58/360 COMPARISON •
'1'55/360 Command Syst.em • • • • • • • • • • • •
Interchange of Data Between 05/360 and '1'88/360
Data Set Positioning and DISP=NEW • • • • • • •
Raising of UNDEFINEDFILE Condition for Stream Files •
Compiler Options Not slJ~ported by T83/360 •
,[SS/]60 Languag~' Restrictions •••

APPENDIX B: ATTENTION INTERRUPTIONS •
Levels of Interruption

APPENDIX C; PRINTER AND PUNCH CONTROL CHARACTERS

APPENDIX 0: FULL DDEP COMMAND • •
DDNAME

• •. 127
.121

• .127
• • • • • .127

.127
• .127
• .121

.129
• .129

• .132

• •••• 133
• • • • • .134

OSORG • • • • • • • .134
DSNAME .134
UNIT •••• 134
SPACE . • .134

vi

VOLUlI;E
LABEL •
DISP
OPTION
RET
PROTECT •
DCB
Notes on Record Format

APPENDIX E: EXTERNAL STORAGE DEVICES
Magnetic Tape

ASCII Tapes
Direct Access Devices

APPENDIX F: COMMAND FORMATS •

APPENDIX G: PL/I COMPILER OPTIONS •
Control Options

OPT.
STMT or NOSTMT
OBJNM
SYNCHKE, SYNCHKS, or SYNCHRT

Preprocessor Options
NACRO or NOMACRO
COMP or NOCOMP
MACDCR or NOll;ACDCK

Input Options
CHAR60 or CHAR48
BCD or EBCDIC
SORMGIN •

Output Options
DECK or NODECK
LOAD or NOLOAD

Listing Options •
LINECNT •
OPLIST or NOOPLIST
SOURCE2 or NOSOURCE2
SOURCE or NOSOURCE
NEST or NONEST
ATR or NOATR
XREF or NOXREF
EXTREF or NOEXTREF
LIST or NOLIST
FLAGW, FLAGE, or FLAGS

Dummy Options
SIZE
M91 or NOM91
EXTDIC or NOEXTDIC

APPENDIX H: PL/I DIAGNOSTIC MESSAGES
severity of Source-Program and compile-Time Diagnostic Messages
Source-Program Diagnostic Messages
Compile-Time Diagnostic Messages
Otject-Time Diagnostic Message Forrrs
Object-Time Diagnostic Messages •
Conversion Errors, Non-ON-Type

INDEX .

.135
.135
.136
.136
.136
.136
.136
.139

.144
.144
.144
.144

.145

.150

.151

.151

.151

.151

.151
.151
.151
.151
.151
.152
.152
.152
.152
.152
.152
.152
.152
.152
.152
.152
.153
.153
.153
.153
.153
.153
.153
.153
.153
.153
.153

.154

.154

.155

.220

.230

.231

.238

.240

vii

ILLUSTRATIONS

1. Qualified and Unqualified Names ••••••••.•••• Figure
Figure
Fiqure
System
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
F'igure
Figure
Keys
Figure 18.
Keys
Figure 19.

9
22

Table
Table
Table
Table

2. Nonconversational Task Init:iation ••••••••
3. Relationship of a '1'88/360 PLII Object Module with the

Programs • . • • . . • • • • • . • .• • • • • • • 24
4. PLC Interfaces . • • . • . • •• • • . • • • 25
5. TSS/360 PL/I Compiler: Simplified Flow Diagram • 25
6. System Catalog •• • • • • . • • • 54
7. Catalog Organization • • • • 54
8. Locating a Data Set . • 55
9. Sharing of Cataloged Dat,i'i Sets • 58

10. Associatinq a File with a Data Set • 65
11. Tabular Control Table (Module IHEWTAB) • 71
12. Relationship Between a S'fREAM File and TSS/360 Data. 72
13. Access of RECORD Files to '1'55/360 Data Set,s. • • 73
14. Full DDEF COlTh"1land for the PL/I User • • • • .133
15. Record Formats VS Dat_a sets • • • • .137
16. Record Formats _.' VI Data sets •. 138
17. Record Formats -- Physical Sequential Data Set Without

1.
2.
3.
4.

Record Formats -- Physical Sequential Data Sets With

Output Record Formats for AseII 'rOlFe:;;

1052 switch Set:tings •
PLI Command
PLC Options
Dynamic Calls -- Padding and Entering of Entry Names by

• .140

.141
• .142

• • 18
• 27
• 21

the System • • . • . • 31
Table 5. Standard Data Sets for compilation • • • •
Table 6. Optional Component~3 of ccmpileL Listing
Table 7. Typical Standard ESD Entries •••
Table 8. Restrictions on Assigning External Names
Table 9. Shared Data Set commands ...•••••
Table 10. Relationship Bet,.,een PL.I.l 1"11es and TSS/360 Access
Methods • . . • • • • • • . • • • • • • •
Table 11. Basic DDEF Command for the PLi I User • • • . • . •
Table 12. Types of Access Methods and Data Set organizations •
Table 13. Relationship of LINESIZE Option with RECFM, LRECL, and
BLKSIZE Parameters for STREAM OU'IPUT Fi.les • • . • •
Table 14. Characteristics of CONSECUTIVE Files .••.•.
Table
Table
Table
Table
Table

15.
16.
17 .
18.
19.

Specification of VS Data Set Characteristics • • • •
Specif ieat_ion of PS (QShNi Data Set Characteristics
Characteristics of Indexed Files • • • • • •
Specification of VI Data Set Characteristics •

• 31
• 33

35
• 44
• 59

• 62
63
66

10
74
14
76
11
18

• 79
Table 20.

Program Control Commands and Their Functions •
Rules for Using Program Control Commands •
Main ON-Code Groupings • • • • •

• • • • 80
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.

viii

Detailed ON-Code Groupings . • •
Abbreviations for ON-Conditions

82
· 82

84
At.tention Inter-ruptiollS • • • • .130
COlOt:ilex Options, Abbreviat.ions, and Standard Defaults •• 150

PART I: BASIC PROGRAMMING WITH THE PLI'I COMPILER

Part I: Basic Programming with the PLI'I Compiler 1

Time Sharing System/360 is a comprehen­
sive programming system used in conjunction
with IBM System/360 computers that have
time-sharing features. The primary purpose
of TSS/360 is to provide many users with
simultaneous conversational (online) access
to a computing system that may have a
single processor, or multiple processors.
The combination of machine and program fea­
tures gives you the impression that you
have sale possession of the system. You
use the system as if it had a main-storage
capacity equal to the largest address that
can be written, rather than its actual
main-storage capacity.

In TSS/360 you can run a program conver­
sationally: you and the system exchange
information during the execution of your
program. You can also run a program non­
conversationally, without access to the
system during program execution.

You can run in mixed mode -- that is.
start a program conversationally and switch
to nonconversational processing. Once a
program is running nonconversationally you
cannot switch back to conversational pro­
cessing. however.

THE SYSTEM

TSS/360 is a set of programs that makes
use of a computer easier:

• A supervisor program controls the over­
all operation of the system, and pro­
vides the time sharing environment that
lets a number of users employ the sys­
tem concurrently.

• A group of service routines perform
program control and data management
functions for each user, as well as for
the system.

• A third set of programs is provided to
allow you to compile and develop your
problem programs.

This publication explains how to use
these programs, without involving you in
their structure or their internal
operations.

VIRTUAL STORAGE

Virtual storage is the name given to the
address space referenced directly by the
processing unit of a System/360 that is

§ECTION 1: IN'rRODUCTION TO TSS/360

equipped with time--sharing machine fea­
tures. This address space is as large as
the addressing capability of the system;
that is, if you can write an address, the
location addressed can be included in your
virtual storage. 'I'he number of addressable
fositions is not limited by the size of
main storage; in TSS/360. you are not
directly concerned with the installation's
physical limitations on main storage.

Although the addressing range of virtual
st.orage is equal to t.he addressing capabil­
ity of the system, you are constrained to a
virtual storage capacity that is somewhat
less than that limit. The constraints are
determined b-.i the installation, on the
basis of such considerations as main
storage capacity, secondary storage capaci­
ty, and number of permissible users.

Your virtual storage capacity is
extremely large; however, efficient pro­
gramming is still important. Performance
can be degraded by excessive demands on the
available storage at an installation.

When you initiate communication with the
system (conversationally or nonconversa­
tionally), the system routines essential to
your tasJc:1 are l.oaded into your virtual
storage. These routines are a permanent
fart of your virtual storage, that is, they
remain there through your task.

You obtain other system routines by
issuing commands and executing programs.
These routines are loaded into, and
unloaded from. your virtual storage on a
demand basis.

An imrortal1t aspect of '1'88/360 virtual
storage management. is the protection it
provides. Another user cannot interfere
with your executing programs.

SHARING TIME

Others may be using the system at the
same time you are: your terminal is one of
roany that are connected to the same comput­
er center. The system appears to be serv­
ing each of you exclusively because it is
repetitively giving each of you an interval
during which all the facilities required by

1A task is the work done between the time
you begin conversational or nonconversa­
tional communication with the system and
the time you end that communication.

Part I: Basic Programming wi~~ the PL/I Compiler 3

your task, including the central processing
unit and the supervisor program, are ~n
fact exclusively yours. Unless the system
is overloaded, its speed allows it to do
your work, as well as that of other users,
without apparent intervals.

TERMINAL SESSION ACTIVITY

If you have access to a terminal, you
can use TSS/360 conversationally. You con­
trol the system step-by-step as you type
commands, data, and the source statements
for your programs. The system, in turn,
responds to your requests, delivering its
output at the terminal in the form of typed
responses.

Co~~ands are your prinCipal means of
communication with the system: they tell
the system what you want it to do. They
initiate and terminate tasks, compile pro­
grams, create, modify, and copy data sets.
and obtain bulk output.

Entering Commands

To enter a command, yOU simply type the
characters required and press RETURN. Each

4 Section 1: Introduction to TSS/360

command has an operation part specifying
what is to be done (as PRINT), and each may
have one or more operands that qualifies
the operation (as DSNAME=LIST: this quali­
fies the operation to mean ·print my data
set named LIST-).

If you enter an incorrect command, the
system issues a message that informs you of
the error. The system also issues messages
helpful in assessing the system"s activity
relative to your task. System messages are
issued automatically 3S the conditions
causing them arise.

DATA MANAGEMENT FACILITIES

You can use your terminal as an I/O
device, typing data for your programs and
having your programs type their results.
You can also have data (including programs)
stored by the system on its direct access
devices. for use at a 1ater time. A third
alternative is to use your own private
storage devices.

;S~E~C~T~I~O~N~2~:~_C~O~M~P~I=L=I~NG~ AND R~NN~NG A SIMPLE PL/I PROGRAM

A PL/I program that uses only terminal
input and output can be compiled and
executed using only the commands, PL/I
statements, and data below. (The program
name SIMPLE is used for this example.)

The procedure for readying your terminal
for use is described in ·Section 4: Com­
municating with the System.- If you do not
know how to operate the terminal, read that
section or ask someone.

Note: The system translates the lowercase
letters into capital letters.

logon sn.ith,- r-asswd, 24

0000100 sirnp~oc: procedure options(mainl;

0000200 get datal

0000300 d=a •• 2+~c; PLII

00001100 e=sqrtld); source

0000500 put data (d,e); statements

0000600 end;

0000700 end

,,!imple

:a=2,b=3,c=1l input data

D= 1.60000£+01 E= q. OOOOOE+OO; output data

!ogcff

:Ofo!MANDS AND PL/I STATEMENTS

logon smith, passwd, 24
The LOGON command identifies you to
the system. You must supply all LOGON
parameters assigned by the system
manager or administrator when you were
joined to the system. (As a PL/I pro­
grammer, you want to make sure that a
24 appears after the second comma.
unless your installation defaults that
parameter to 24. See Part III,
Example 1 for an explanation.) After
entering the LOGON command, you can
proceed with your work.

~li name=simple
The system types an underscore and a
backspace, to indicate that it expects
a command. You type a PLI command, to
invoke the PL/I compiler, specifying
that the name of your executable pro­
gram is to be SIMPLE. (This name must
be different from the procedure name.)

The -name:- could be omitted, and the
command could be typed as:

pli Simple

Since you do not specify a name for
your collection of source statements,
the system looks for a prestored
collection of source st.atements named
SOURCE. SIMPLE. Not finding SOURCE.
SIMPLE. ~~e system then assumes that
you are going to enter your source
statements from the terminal. The
system prompts you to enter your
source statements by typing line num­
bers at the terminal.

PL/I source stat~~ents

end

simproc: procedure options(main); -­
The label of your main procedure must
not be the sanle as the name aSSigned
to your executable program - SIMPLE.

get data; -- Since you have not told
the system anything about the data to
be used by your program, it assumes
that you will enter the data from the
terminal while your program is running
conversationally.

d = a ** 2 + b * c;
e = sqrt(d);

These statements perform
calculations.

put data Cd. e); -- Since you have not
told the system where the output
data is to be placed, it assumes
that you want the data printed at
your terminal while your program is
running conversationally.

end; -- This statement is the last of
your PL/I source st.atements; it marks
the end of SIMPROC.

The END conilland. which is different
frow the pL/r END statement, indicates
to the system that you have finished
entering PL/I statements. The system
now compiles your program (that is,
converts your PL/I statements to
machine-executable instructions) and
stores the compiled program in your
user library so that it is available
for use.

You type an underscore before the END
command, to inform the system that a
command. not a PL/I statement. is
being entered.

Part I: Basic Programming with the PL/I compiler 5

~imple
This command invokl~s procedtu:<:' SIM­
PROC. Since SIMPROC is invoked from
the command mode, it must be invoke:d
by .1.ts proqram (-that. is, object.-­
moduV,) name. SIMPJ~E. 'rake care that
you do not :uwoke a PL/I program by a
name other I:han its object-module
name. unless you involte it fraIl! anoth­
er FI'/I procedure. A PL/I prog}~am
invoked from anot.her PL/I procedure is
jn'loked by its procedure name <.!!ot by
i 1:5 module name). When your program
:i.s ready to accept "OlIT input data. a
colon is issued to your teL-minal; you
t:hen entE'I your input da.t.a as follows:

a '" 2 b 3 c = 4

Your program then performs the calcu­
lation and prints the values of the
program variables at the 1:erroinal as
follows :

IF 1. 60000E+Ol E= It. OOOOOE+OO;

logoff
- The LOGOFF command indicates the end

of your communication with the system.
The next time you want to cmr.municate
witb the system, you must log on
<l'jain.

Note: If you want to compile another
pl:ogralll or do any other work. you need
;:lot. log off unt_i.l you are finished.

If yoo see an error in a lIne ~,;.hat is
still being typed, it can be corrected by
backspacing to the erro:r and retyping from
that point on. If you don't not.ice the
error until after pressing RETURN, you can
make t:he correction by issuing an UPDATE
corrunand and then. after the system unlocks
the keybodrd, typing the line number and
the correct statement. 'l'he line number and
the statement must be separated by a blank.

Example 1:

logon (your LOGON parameters)

Eli simple
As you are typing ttle first PL/I
sl:atement. you notice an error.
backspace to t_he errOL', move the
up one line to avoid overtyping,
retype from that roint on:

0000100 simpIoc!

0000200
0000300

pr
procedure;
d""'a"'*2+b*c;
".c's(Jrt (d) ;

You
paper
and

'lou notic-", the omission of OPTIONS
{MAIN} i.n lin", 100, so you type an
Ul>DAT1<; command. preceding the command
by (} t,.t>eak chd.cact_et.~ because the· sys­
tem .1-8 exr'ec--t.inq data ..

After t~he
you make

unloek."i the keyboard,

100 simp::oc; opt.tons (main);

The syst€'.m again unlocks the keyboard.
You type an INSERT command, preceding
it wit:h a break character because the
systea; is Cxp?jcting data, giving the
numter of the last-ent:ered line as an
operand; this causes the system to
.resume prompt~ng you for the unentered
!}ouree st;at.ements,

inse:tt ::)00
0000400
0000500

put dat., (d. E');

end;
0000600 ~md

'lou notice that a "ource statement, is
m:i:i3sing and that another st.atement is
without a seJl.icolon. '1'0 halt compila­
tio.1:l and unlock ~he keyboard. you
press t!le att.entJ.on key; the system
prompts you 1.li.th an exclamation mark
(!). Since you already typed an END
co:r.m..'l.nd. 'Iou must type an EDIT corrunand
to regain iO.cce,,'s t:o the source state­
l\lfJnt.s. y,)U t;hen i.:ype an UPDATE com­
tnand and E:'nte:c cO.t"'l:ec'Ll.Ons ..

(you- px:ess ztt·tentio_!l
!
edi t '-::;;OU:CCe", sirr_p:t.(-!
!!pdate
200 d=a •• 2+b*c;
150 g(~t: dat:,,;
_end

Now all t:he 50urc~, statellients are
correct. (The line numbers differ
f x-GIn the 1i ne n1.lm.ters in the preceding
example. hut: this has no bearing on
the operat . .ion of the program.) Since
you changed tsome ()f the source state­
mcmt:::, you must_ :st~art Gompilation over
fI:Olll the .b"-,ginnin9 by typing "pli
simf.lt::~ ..

Example 2::

This (;xGlIllplfe :;.;s j~h~, Sdme as example 1.
except: t.ha t you discover i~he errors later.

logon (yom: LOGON pa.rall1eters)
Eli simrle
0000100 simproc!
0000200
0000300
0000400

procedUre;
d""a**2+b*c
e"'sq.ct (d);

ptH: data!d.e};

6 Sect_ion 2: Compilin9 and .Running a Simple PL/I PLoqrcHI'

0000500 end;
0000600 end

At this point the PL/I compiler infor­
ms you of the syntactical errorS. You
correct the errors:

~dit source. simple
Epdate
100 simproc:
150
200

end

procedure options(main);
get data;
d=a**2+b*c:

Now you can recompile SIMPLE, and it
will be ready for execution.

Note: There may be times when you want to
stop entering source statements and not
compile them: for example, you may decide
to start over from the beginning or you may
have misspelled the name in the PLI com­
mand. Simply press the attention key. Do
not type _END; this causes compilation.
Even if you typed _END immediately after
the prompt for line 100. the compiler would
attempt to compile the empty data set.

DATA ASSOCIATED WITH COMPILATION

The system stores the collection of
source statements under the name SOURCE.
name, where -name- is the ohject-module
name you gave in the PLI command. You can
specify a different name than SOURCE.name,
by using the PLI command's SOURCEDS operand
as explained under -Invoking the compiler,­
in section 5. The object module itself.
which consists of the executable machine
instructions, is stored as USERLIB(name),
unless you specify otherwise. (See Section
6.> The compiler also produces a listing

of information about the source statements
and object module; this listing is named
LIST.name. You can erase any of this data
at any time by t:yping ERASE SOURCE. name,
ERASE USERLIB(name). or ERASE LIST.name.

EXECUTING A PREVIOUSLY COMPILED PROGRAM

To execute a program that you have
already compiled, you do not have to reent­
er your source statements; you can call for
execution of the program from the library
in which it is stored. The following ter­
minal session shows execution of program
SIMPLE.

logon (your LOGON parameters)
.§imple
:a = 1. b = 5, c = 4 input data to your

program

IF 2.10000E+Ol

logoff

FURTHER INFORMATION

E= 4.58257E+OO;
output data from
your program

Section 3 describes data manipulation
techniques. Part II describes more sophis­
ticated methods of using the PLiI compiler
and available data processing facilities.
Examples of bow to use PLiI in TSS/360 are
in Part III.

Note: You can enter commands. PL/I key­
words, and names in either lowercase or
capital letters; they will hereinafter be
shown in capital letters. in order to dis­
tinguish them from the explanatory text.

Part I: Easic Programming with the PLiI Compiler 7

'This >ieetion explains how t.O create and
access sl1l1ple data set.s at your ter-
minal lusin9 S"l'R&,\M LU dnd d<'.lt~'" sets
st:ored on magnetic tap',," or on a di:tect
access devi ce (us.inq STREltM or RECORD
files). It is intended to introduce the
subject of data managelIlent, and to meet the
needs of users !ol'ho do not require the full
I/O facili.t.ies of 1'1./1 and TSS/360. Sec­
tions 1, 8, 9, and 10 give a full explana­
tion of toe rElat.ionship between the data
management facilities provided by PI/I and
those provi eled by the syste:m.

A dd~~a set is any coLI ectiofl of data
that: 'can be created or: accessed by a pro­
(jram. The data carl be cnt.ered frOID, or
print,ed ate your t.ermin<l.L It can also be
Ijuncned onto cards. 01: r'ccorded on magnetic
tape or on a direct aeees}] device,

A 1:'1/ I proq:ralll can access data sets
using elther stre~m-oriented transmission
or record-oriented tranSI!1ission" When
accessed by stream-'oriented transmission, a
data set can be thought of as a continuous
str.eam of cnar3cters that are conve:rted
from character fO£Ta to internal form on
input, and from internal form to character
form on out.pUT.. It enD t-e processed
witho'V.t. regard to its actual oI'igin.

record --or iented
transmission is t"o be a collec­
tion 01' disc:n:\te <i.at,,, it;8IDS (t:hat is. rec­
ords). No data conversion occurs during
I:ecord t.rdnsmission; on input the data is
transmitted exactly as it is recorded in
the dat.a set, and on CHJ.tput it is trans­
mitted exactly as it J.S record.E,d internal­
ly. 'To be access,"d by !:<:cord-oriented
transmiSS],.ofl, a dat·...::l set. wust have either
CONSECUTIVE or n;DkJ~.ED OX·:J<'Hli.:;:ation. The
recon::ls U1 INDEXED dat" .seb; are a.rranged
act.'Ording to' • 1:. hat. you supply when
you creat.e t.he set:s. CONSECUTIVE data
sets do not use keys; ':"hen you create such
a data E(~t,r:ecord;; are .recorded consecu­
tively in the ox-,jer in which you present
them. Yo'.} ,:::an.1:'ead the records from a CON­
SECUTIVE ,;'lata sel: cnly in the orde:!' in
which they were pr(~sf::n~:€d, E~xcept t.bat in
the case of d d~~ta set on magnet.ic t~ape,
you Cd:.rl read toefn eith\:~r in t . .he order in
which they were presented or in the reverse
order' .

Two t.ypes of infonnation a:r:'e reqnired to
create or ret riev'~ a dz;ta set.

"ppropriat,,, input: and output:. (I/O)
f;t;YLement~s in yO'lr: PL/I px:ogram.

2. Informaticm red by 'ISS/' 360 de-
scribing the clijl:a set and DOl<!! it is to
be handled.. You don' 1: haVe to specify
this informaticn ~,xplicitly if you are
using the terminal as your I/O device

The I/O statements that. you may need in
your PL/I program are described by ~LI~
Language Referenc~_~~~ual. Essentially.
you must declare a file_I:} (explicitly or con­
textually) and open it (explicitly or im­
plicitly) before yc>u -ca.n begin t.o t.ransmit
data. A file is the means provided in PLiI
for accessing a data set., and is related to
a particular dat.a set only while the file
is open: when you closi~ the file. the data
set is no longer available to your program.
This arrangement~ a110!ol'5 you to use the same
file to access different data sets at dif­
ferent times, and t.O use diffe.r::ent files to
access the same dato. set.

TERMINAL J:/O

TSS/360 allows 'Iou to ent.€:!C data for
your PL/I program and receive output while
the program is executing. PL/I files for
terminal I/O must be STREAM fLies. You do
not, have to specify r.hat. t.he files are
S'fREAM; this is implied by the GET and PUT
statements used to read and writ.e data.

If your pro~jl:am includes a GET statement
without the FILE option, the compiler
assumes • SYSIN' • If your p.rogram includes
a PUT statement without: the FILE option,
the compiler assumes 'SYSPRINT'. In con­
versational mode, SYSIN and SllSPRIN'l: are
directed t.o you.'!: ·terminaL You do not have
to sUPfly a DD.EF cOlllmand when doing termi­
nal I/O; when you owi t~ a nDEF command for a
STREAM file. the syBt.em aSSUIl'H~S that you
are using the terminal and supplies all
required data managE'ment: parameters.

'rhe simplest way to ent.er data for a
PLiT program is with t.he statement,!

The simplest. way teO txansmit data to an
external medium 1.8 wit.!1 the st.dCE!lllent:

PU'l' DATA (data·list),

This is all that is required to perform
terminal I/O.

When your program is ready t.O accept
input dat.a, a colon (:) is typed at the
terminal and t.he kf.'ytoard is unlocked.

EXAMPLE OF TERMINAL I/O: This example is a
modification of the program in Sect.ion 2;
it allows you to read and write more than
one line during execution. The statement
following the PUT DATA statement returns
control to the GET DATA statement.

LOGON (your LOGON parameters)

.ELI NAME=S IMPLE

The system types a line numcer (not
shown) before each line you enter.

TERMIO:

READIN:

STOP:

§IMPLE

PROCEDURE OPTIONS (MAIN);

ON ENDFILE (SYSIN) GO TO
STOP;

GET DATA;

E SQRT (0);

PUT DATA (O,E):

GO TO READIN;

END;

When the system prompts you with a
colon, enter values for A, B, and C, ending
the list with a semicolon.

A 2,B = 3,C = 4

The values of the variables in your pro­
gram are then printed at the terminal.

D= 1. 60000E+Ol E= 4.00000E+OOi

You can now enter new values for A. B,
and c to find the new value of D.

A = l,B = 17,C = 0

The system then prints:

D= 1.00000E+OO E= 1. OOOOOE+OO:

You do not want to calculate further
values of D, so when the system prompts you
to enter data, press RETURN. The null line
entered indicates the end of your input
data. Your program then terminates, and'
you can log off.

LOGOFF

DATA SETS ON SYSTEM STORAGE

It is not always convenient to have data
records entered from and printed at a ter-

minal. If a data set is very large. the
time required to print it at a terminal
lI"ight be quit:e long. If a data set is
modified frequently, it is more convenient
to keep a copy of the data set stored
within the syste& and enter changes as
necessary. Thus, only changes to the data
set need be entered, and unchanged portions
of the data set do not have to be reentered
each time the data set is processed •

DATA SET NAMES

To retain a data set in system storage,
you must assign a name to it. When you
subsequently go to retrieve the data set,
you can inform the system of the name
assigned, and the system wi·11 locate the
data set for you.

The name of a data set can be qualified
to distinguish it fram other data sets or
to relate it to other data sets. For
example, if payroll records for two depart­
ments, D561 and D58, were maintained and
each had the simple name PAYROLL, the
department name could be prefixed to each
simple name to produce two qualified data
set names -- D561.PAYROLL and DS8.PAYROLL.
Note that a period must separate the com­
ponents of a name.

Figure 1 shows the names of data sets
belonging to an imaginary user. The only
unqualified name is RESEARCH; all other
names, such as RECORDS.INVENTRY and
RECORDS.PERSONEL.DEPT561. are qualified.

9
I

I

_. ____ l:iQ
,,,,:=l

!

I--i---I
~ ~.D~PT ~~
~ ~ ~~

I I I

I ! I
@j i 1

DATA ~ Io~
SET ~J L::r--1

INVENTRY

I
~ U£J

Figure 1. Qualified and Unqualified Names

Part 1: Basic programming with the PL/I Compiler 9

A fully qualified d~ta....2et n~ identi­
fies an individual data set and includes
all components of that data set's name.
RECORDS.INVENTRY in F'igur.-e 1 is a fully
qualified name. Fully qualified names are
used in the DDEF command to identify the
input and output. data sets of. a problem
program. They are also used in connection
with a variety of commands, such as those
that manipula't_€ dat_d set_s as an entity (for
example. CDS and PRINT). and those that
affect system functions relative to the
data set (for example, CATALOG. DELETE.
ERASE) •

A £9rtially qualified data set name
identifies a group of data sets. and omits
one or more of the rightmost components of
a data set name. The group of data sets
referred to includes all that have quali­
fiers identical to those present in the
partially qualified name. In Figure 1, all
records can be referred to by the partially
qualified name RECORDS; records for all
departments can be referred to as RECORDS.
PERSONEL (no period after PERSONEL). Par­
tially qualified names are used in several
commands when it is COB\Tenient to refer to
the specifiecl data sets as a grouPi for
example, in erasing the g.roup, in removing
it from the data set name structux·e. or in
specifying that. it can be shared by other
users.

These rules must be observed in naming
data sets:

1. Each component, or simple name, can
consist of fx·om one to eight alphamer­
ic ch;;1racters a.his is wby "personel-,
in Figure 1. has only ODe NJ; the
first character must always be
alphabetic.

2. A period roust be used to separate
components.

3. l'he maxilllllffi number of characters
(includin9 periods) in the data set
name is 44. .For data sets used exclu­
sively within TSS/360. you are limited
to 35 characters. because the system
automatically prefixes each name with
your eight-character user identifica­
tion 1 followed by a per-ied. For data
sets to be interchanged with the IBM
3ystem/360 Operating System, you can
employ I.!I.I-character data set names.
These data S€_~ts. however. cannot be
referred to by name alone unless they
are r(?.named; for data sets with 44-

1The user identification, that is. userid,
is the first operand of the LOGON command.
See Example 1. in ·Part III: Examples."
If less t:han E;ight characters, it is
padded ",ith blanks

10 Section 3: Basic Data Manipulation

character names, the expanded DDEF
command must be used (see Appendix D).

4. The maximum number of single-character
qualification levels to a single­
character basic name is 18, for data
sets used in TSS/360. Normally, fewer
qualification levels will be used.

5. The fully qualified names in your data
set name structure must be unique; no
fully qualified data set name can be
used as a partial qualifier in another
data set name.

THE DDEF COMMAND

The DDEF command is used to define the
data sets used during execution of a pro­
gram. You can also use it to define the
data sets used by certain commands, and to
define job libra:des.

The DDEF command names a data set and
supplies the system with information with
whiGh to retrieve it. The DDEF command has
four basic operands:

• Data definition name (DDNAME) is the
name of the DDEF command describing the
data set. This information is required
ty the system to relate the data set to
the file named in your I/O statements
or to the TITLE option of an OPEN
statement.

• Data set organization (DSORG) specifies
the organi-z.at.ion of the data set so
that the appropriate system data man­
agement routines are made available to
your program.

• Data set name (DSNAME) is the name of
the data set being described. This
information is required to locate the
data set among those stored in the
system.

• Disposition (DISP) specifies whether
t.he data set is being created (NEW) or
already exists (OLD).

Reserved Names

DDNAM~~PCSOUT and all DDNAMEs beginning
with the characters SYS are reserved for
use by the system. DSNAME=USERLIB is
reserved by the system; in addition, you
should avoid specifying any DSNAME that
begins with the characters SYS. since sev­
eral data sets that the system uses for you
have names beginning with SYS.

STREAM-ORIENTED TRANSMISSION

A data set that you process using
stream-orient:ed transmission could have

been created using either stream- or
record-oriented transmission. (See example
under "creat.ing a simple consecutive Data
Set-, in this section.) If it was created
using record-oriented transmission, it must
have CONSECUTIVE organization, and all the
data in it must be in character form. You
can open the associated file for input and
read the records that the data set con­
tains, or you can open. the file for output
and extend the data set by adding records
at the end.

EXAMPLE: To gain access to the data set in
this example. you must supply a DDEF com­
mand so that the system can locate the data
set. You must specify:

• The name of this DDEF command - WORK.
(This name is the file name used within
the PL/I program in such statements as
OPEN, CLOSE and DECLARE.)

• The organization of the data set - VS.
(VS stands for virtual sequential, a
TSS/360 organization for sequential
data sets on direct access devices.)

• The name under which the data set was
previously stored-PEOPLE.

• The disposition of the data set - OLD
(since the data set already exists).

The PL/I program that you write to up­
date data set PEOPLE is called UPDAT.
After you compile UPDAT. you enter update
records for data set PEOPLE from your
terminal.

LOGON (your LOGON parameters)

DDEF DSNAME=PEOPLE, DSQRG=VS, DDNAME=WORK, DISP=OLD

PLI NAME=UPDAT

The text editor types a line number (not
shown) before each line that you enter.

EIID

.;!PDAT

UPDAT: PROCEDURE OPTIONS (MIN) I

DeL WOR!{ FILE STR~ OUTPUT PRIN'!'.

1 REC,
2 FREe,

3 NAME CHAR (201,
3 NUM CBAR (1),

3 PAD CIlAR (24),
2 VREC CIlAR (35),

IN CHAR (nO) DEP REC;

ON ENDFlLE {SYSINI GO TO FINISH;
OPEN FILE (WO~1 LINE5IZE (130);

!lORE, GET FILE (S1!SINI EDI'f lIN) (A (80) I

PUT FILE {WORK)SKIP EDIT (IN) (A(Q5+7·NUM);

GO TO !lORE:

FINISH: CLOSE PII£ (WOR~);
END UPDATr.;

You now call for execution ot UPDAT.

As t.he syst<:m prOfilpts you to enter yo!....
input data. you enter it: MUM must always
te ent.ered as the twenty-·first character.
A null line ind:i.ca tea the end of data.

~ R ~ C • ANDERSON Q lOl64. ooeruN

IF.. it. BENNETT 2 77113.!Ji :H.-I:Hifll!:1(VlCTOR SAH.L

fR.LCOLE 4 ~9M3" tWX ELLEN VICTO~ JOAN MOl

~ L. ~ ~ c(';OPBR II in'e"H~ l.AH!lER ROGF.R 'rl:HffiZSA LAURA KATHY

:A.J • CORNELL 3 231831 BARBER DONALD N~NC~ .J(}SEPB

~B.P"f'ERRls • 15863. CARPENTElt G.ER.hLD ANNA 1IlU!1(FRED

: (null l.1_np.)

Th~! data set is now updated in storage.
The next time that .it0u use the data set,
the records that you have just entered will
be a part of it.

RECORD-ORIEN'l'ED TRANSMISSION

In. record~oriented transmission. data is
transmitted to and from auxiliary storage
exactly as it appears in the program
variables: no data. conversion takes (:lace.
A reco.rd in a data set corresponds to a
variable in the program.

You can use record-oriented transmission
to process data sets wi~~ CONSECUTIVE or
INDEXED organization. This section
describes processing of a CONSECUTIVE data
set; for a description of processing INDE­
XED data sets and further description of
processing CONSECUTIVE data sets. see Sec­
tion 10.

CREATING A SIMPLE CONSECUTIVE DATA SET

The progq::dlJl in the next example creates
a data set:. naIlied ROOTS. 'l'he PUI 1/0
statements (DECLlillE. OPEN. and CLOSE) refer
to t.he fil.e DISK; therefore. the name of
the DDEF command t.hat defines the data set
must. be DISK (DDNAME operand).. 'lou specify
that the organization of the da.ta set is to
be virtual sequential (the same as the
STREAM fi1.e in the previous example). The
name of the da t.'l set: is ROOTS (DSNAHE
operand), and its disposition is NEW (you
are creating the data set).

Since this data set is created, you must
give the system some infox~ation about the
format of the records in the data set. You
can give record·-forroat information in ei­
ther your PL/I program (ENVIRONMENT attri­
bute or LINESIZE option) or a DDEF command.
This discussion refers only to the DDEF
command and does not apply if you decide to
give the information in your program.
Refer to ElL!. Ldng~e Reference Manual for
a description of the ENVIRONMENT attribute
and the LINESIZE opt-.ion •

Part I: Basic Programming with the PL/I Compiler 11

The records in a data set must have one
of three formats: F (fixed length), V
(variable length), or U (undefined length).
If you do not specify a record format, for­
mat V is assumed. Since you specified that
the organization of the data set is virtual
sequential, you do not have to consider
record blocking; the system handles this
for you. If you had specified phySical
sequential organization, you could control
the blocking of records. Record blocking
is disc1]ssed in Section 10, under "CONSECU­
TIVE Files.·

If you are using a PRINT file to produce
printed output, you do not have to specify
record size in the DDEF command or PL/I
program; in the absence of other informa­
tion, the compiler supflies default line
size of 120 characters.

To give record-format information in a
DDEF command, use the DeB (data control
block) operand. The DCB operand passes
information to the system for inclusion in
the data control block, a collection of
information maintained by TSS/360 data man­
agement routines for each data set in a
task. The data control block contains a
description of the data set and how it will
be used. Suboperands of the DCB operand
allow you to specify such information as
record format (RECFM suboperand) and logic­
al record length (LRECL suboperand). If
the DeB operand includes more than one sub­
operand, enclose the list in parentheses.
For example:

DeB = (RECFM = F, LRECL = 40)

EXAMPLE: Record-oriented transmission is
used to create the data set ROOTS. Before
each record is written in ROOTS. that rec­
ord is entered from SYSIN (your terminal)
and processed using stream-oriented t.rans­
mission. Note how stream- and record­
oriented transmission can be easily com­
bined for a single data processing
application.

DDEF DDNAME=DISK, DSORG=VS, DSNAME=ROOTS,
DISP=NEW, DCB=(RECFM=F,LRECL=qO)

PLI NAME = CREATE

The text editor types a line number (not
shown) before each line that you enter.

CREAT: PROCEDURE OPTIONS (MAIN);

DeL DISK FILE RECORD OUTPUT
SEQUENTIAL,
1 RECORD, 2(A, B, C, X1,X2)
FLOAT DEC(6) COMPLEX;

The length of RECORD is qO tytes; RECORD
contains five items, each declared as
FLOAT DECIMAL (6) COMPLEX; since the

12 Section 3: Basic Data Manipulation

declared precision ~ 6, short floating­
point (fullword length) is used; the
COMPLEX attribute doubles this to a
length of one double word per iten..

Note: If you specify the ATR or the
XREF listing option of the PL/I compiler
options, the lengths of all structures
are shown on the listing, in a table
called the aggregate length table. See
Appendix G.

ON ENDFILE (SYSIN) GO TO
FINISH;

OPEN FILE (DISK);

NEXT: GET FILE (SYSIN) LIST (A, B, C);
X1=(-B+SQRT(B**2-4*A*C»/(2*A);
X2=(-B-SQRT(B**2-4*A*C»/(2*A);
WRITE FILE (DISK) FROM (RECORD);
GO TO NEXT;

FINISH: CLOSE FILE (DISK);
END CREAT;

END

£REATE

:5 12 4

:4 -10 4

:5 16 2

: q -12 10

:5 12 9

:29 -20 q

(null line)

Data set ROOTS now exists on system
storage. The records in ROOTS consist of
the values for A, B, C, Xl, and X2.

RETRIEVING A CONSECUTIVE DATA SET

EXAMPLE: At a later time, you want to read
data set ROOTS. The data set name is still
ROOTS (DSNAME operand), and its organiza­
tion is still virtual sequential (DSORG
operand). The PL/I I/O statements in the
program that reads ROOTS refer to file
RESULTS, so you must specify DDNAME=
RESULTS. Since ROOTS already exists, you
specify its disposition as OLD and omit the
DCB operand; the system can fill ifl the DCB
from information in control blocks asso­
ciated with the data set.

DDEF DDNAME=RESULTS. DSORG=VS, DSNAME=ROOTS, DISP=OLD

PLI NAME=ACCESS

ACCES:

NEXT:

PROCEDURE OPTIONS (MAIN);

DeL RESULTS FILE RErORD INPUT SEQUENTIAL .•

I RECORD, 2(A, B. C, Xl. Xl)
FLOAT DEC(o) COMPLEX;

ON ENDFILE (RESUlTS) GO TO FINISH;

PUT FILE (SYSOUT) EDIT
(tA', *S'. "C' f' 'Xl'. ·X2")

(X(1), 3(A,X(23». A, X(22), A);

OPEN FILE (RESULTS);

READ FILE (RESULTS) INTO (RECORD) I

PUT FILE (SYSOUT) SKIP EDIT (RECORD)
(C(F(12, 2»);

GO TO NEXT;

FINISH, CLOSE FILE (RESULTS);

END ACCES;

END

~CCESS

The data set ROOTS is now printed at your
terminal.

Part Iz Basic Programming with tbe PL/I Compiler 13

14 Section 3: Basic Data Manipulation

PART XII USXNG ALL THE FACILITIES OF THE PLII COMPILER

Part II: Using All the Facilities of the PLII Compiler 15

16

In TSS/360 you can run a program conver­
sationally; you and the system exchange
information during the entering and execu­
tion of your program.

You can also run a program nonconversa­
tionally; for instance, when a program is
checked out and you know it will run satis­
factorily, or when you do not want to stay
at the terminal.

You can run in mixed mode: that is,
start a program conversationally and switch
to nonconversational processing. Once a
program is running nonconversationally. you
cannot switch back to conversational
processing.

CONVERSATIONAL USE OF THE SYSTEM

In conversational processing. you com­
municate with the system by means of a ter­
minal. The terminal is a typewriter-like
device. One type of terminal. the IBM 2741
communications Terminal, is an IBM SELECT­
RIC® typewriter specially equipped for ter­
minal use; another type, the IBM 1050 Data
Communications system, can include both a
typewriter and a card reader. With the
1050 you can enter input into the system
via the keyboard or the card reader. All
types of terminals can be located either at
the computer installation or at a remote
location. In any event, all terminal
operation is much the same: you enter a
command directing the system to do certain
work; the system responds; you enter anoth­
er command, etc. You don't have to be an
expert typist; correcting typing errors is
simple, as shown in Part III, Example 1.

You will find that you do not require
extensive computer training to use TSS/360.
You must know three things:

• How to set up your terminal for opera­
tion. This is a matter of setting a
few switches. The use of each terminal
is discussed in this section; see the
description for your terminal, or ask
someone to show you how to set it up.

• The PL/I language, the language in
which you express your problem-solving
procedure. This language is used for
illustration throughout this publica­
tion: it is explained in detail in PL/I
Language Reference Manual.

• The TSS/360 commands you will use to
converse with the system. Typical uses
of many co~~ands are shown in the

examples section. of this manual. The
format of every (.."Ommand is shown in
Appendix F. Tbis section inclUdes sum­
maries of how to type commands and how
to use commands to control nonconversa­
tional tasks. Part III, Example 17
shows how to execute a command from
within a PL/I program. Should you need
more information than is in this book,
consult ~ommand System User"s Guide,
which describes the commands in detail.

In conversatiOl)al mode, you engage in
dialog with the system. The system
responds to your requests, confirms
actions. and informs you of any errors.
Complete de'tails on command-response mes­
sages are presented in the System Messages
publication. Messages produced by the PL/I
compiler are explained in Appendix H of
this publication. Some messages are issued
during compilation by system routines other
than the PL/I compiler; these messages are
documented in System Messages.

The work done between logging on and
logging off is called a task. You may run
one or many programs as part of a single
task. The work you do on a task at a ter­
minal is called a session. Since a task
may begin conversationally but end noncon­
versationally. task is not necessarily
synonymous with session.

CONVERSATIONAL TASK INITIATION

The way in which you initiate a conver­
sational tasK!le'u:ies sliqhtly with the type
of terminal you are using. The available
types are:

• IBM 1050 Data Communications System

• IBM 2741 Communications Terminal

• Teletype~ Model 33 or 35 KSR

The terminal operation procedures are
explained below.

After you initiate the LOGON procedure
and the system is ready to receive input,
enter the values assigned to you when you
were joined to t.he system. (Note: To com­
pile or run PL/I programs, yoU-WUst log on
with 24-bit addressing. This must be spec­
ified in the third operand of the LOGON
command, unless your installation's default
value for that operand is 24. See Example

1A trademark of the Teletype Corporation

Part II: Using All the Facilities of the PIjI Compiler 17

1 in "'Part III: Examples.") The system
then completes initiation of your conversa­
tional task. If you cannot log on, notify
your- system manage.!: or administrator.

The IBM 1050 Data Communications System
as used with TSS/360 includes an IBM 1051
Control Unit, a 1052 Printer-Keyboard, and,
optionally, a telephone-like modulator­
demodulator, or MODEM. The MODEM is used
to dial up TSS/360.

INITIATION PROCEDURE: To ready the IBM
1050 for use with TSS/360, proceed as
follows:

1. Set the panel switches on the IBM 1052
printer-Keyboard as directed in Table
1. If the 1052 has additional
switches, set them to the OFF or BOME
position. Do not change the switch
pOSitions while using the terminal.

2. 'rurn on the main-line switch. The
POWER light should come on. If the
DATA CHECK light is on, turn it off by
pressing the DATA CHECK key.

3d. If the terminal is directly connected
to the computer. initiate the LOGON
procedure by pressing the ATTENTION/
RESET LINE key.

3b. If the tenninal has a telephone-like
MODEM, press the MODEM's TALK button,
dial the TSS/360 number, and when a
continuous high-pitched tone is heard,
press DATA. The terminal is now con­
nected to the time-sharing system.
The receiver of the MODEM can be
replaced in its cradle.

KEYBOARD OPERATION: 'l'he numeric and
special--character keys, the space bar and
the SHIFT, LOCK, and TAB keys operate like
thei r counterparts on standa.rd typewriters.

Table 1. 1052 Switch Settings
f-----------------.-------------------------,
I Switch setting Toggle Position I
~----------------------------------.----------_f
I SYSTEM AT'fEND up I
I PRINTER 1 SEND REC middle I
I KEYBOARD SEND up I
I READER 1 ON up I
I STOP CODE OFF down I
I SYSTEM PROGRAM up I
I SYSTEM up I
I TEST OFF down I
I SINGLE CY OFF middle l
I RDR STOP OFF middle !
~------------.------.---.------------- .•. ---------~
I Note: Set all other panel switches to I
I OFF or HOME position. I l ___ J

18 Section II: Communicating with the Syste.In

PROCEED LIGH~: When the green PROCEED
light is on, the keyboard is unlocked and
data or commands can be entered. As soon
as a line has been entered, the keyboard is
locked; the PROCEED light turns off shortly
afterwards. All keys except the ATTENTION/
RESET LINE key are locked out while the
PROCEED light is out.

ATTENTION KEY: The ATTENTION/RESET LINE
key in the lower left-hand corner of the
keyboard, hereinafter referred to as the
ATTENTION key, cannot be locked out. It
generates an attention interruption. (The
ATTENTION key can also be used, as
explained above. in initiating the LOGON
procedure from a directly connected
terminal.)

RETURN KEY: Pressing RETURN causes a line
feed and print-head return at the terminal
printer and transmits an end-of-block
character to system. After RETURN is
pressed, the keyboard is locked out (except
for the A'rTENTION key> and control passes
to the system.

CONTINUATION LINES: When the hyphen is
entered as the last character in a line,
the system recognizes the next line as a
continuation. The hyphen is not entered as
part of the line.

CANCELING LINES: When a pound sign (n> is
entered as the last character before the
RETURN key is pressed, the entire line is
canceled. The system will then expect the
corrected line to be entered without addi­
tional prompting. The pound sign is
defined as the line-kill character.

A line can also be canceled with the
ALTN CODING key, at the upper left-hand
side of the keyboard. To do this, hold
down ALTN CODING and press the zero key.

CORRECTING LINES: A line that you have
started to enter incorrectly can be
corrected by backspacing to the first in­
correct character with the BACKSPACE key
and reentering the line from that point on.

DATA CHECK AND RESEND: The DATA CHECK
light may corne on after the terminal is
first turned on; this light can be turned
off with t.he DATA CHECK key. The RESEND
light will come on briefly after the RETURN
key is pressed; it should turn off when the
line has been accepted by the system. If
the DATA CHECK and RESENO lights are on
together, an error is indicated. While the
RES END light is on, the system does not
accept input from the terminal keyboard.
Press the DATA CHECK and RESEND keys to
turn off the ligbts and reenter the line.

IBM 2141 Communications Terminal

The IBM 2141 consists of an IBM SELEC­
TRIC® typewriter mounted on a stand that
includes the electJ:onic controls needed for
communication with TSS/360. If the termi­
nal is directly connected to the system,
merely turning on the terminal results in
connection with the system. If not, it can
be connected to the system through a
modulator-demodulator, or MODEM, that
resembles a telephone.

INITIATION PROCEDURE: To ready the 2141
for use with TSS/360, proceed as follows:

1. Check that the terminal mode switch on
the left side of the stand is set to
COM.

2. Press on the ON side of the power
switch.

3a. If the terminal is directly connected
to the computer. initiate the LOGON
procedure by pressing the ATTN key at
the upper right-hand corner of the
keyboard.

3b. If the terminal has a telephone-like
MODEM, press the TALK button, lift the
receiver, dial the TSS/360 number,
and, when you hear a continuous high­
pitched tone. press the DATA button.
The terminal is now connected to the
system. The receiver of the MODEM can
r.ow be placed in its cradle.

KEYBOARD OPERATION: The terminal keyboard
works like an IBM·SELECTRIC@ typewriter
except for the ATTN key. which is used to
generate attention interruptions. CIt can
also be used in initiating the LOGON proce­
dure from directly connected terminals, as
explained above,} The system unlocks the
keyboard when it is expecting input; at
other times, the keyboard is locked. The
ATTN key is the only key that cannot be
locked out.

Note that unless you issue a KA command
or an equivalent K command, the system
recognizes no distinction between capital
and lowercase letters; they are all inter­
preted as capital letters. 'fhis saves you
from having to use the SHIFT key in enter­
ing commands, which consist only of capital
letters.

RETURN KEY: Pressing the RETURN key causes
a line feed and carrier return at the ter­
minal and transmits an end-of-transmission
character to the system. RETURN must be
pressed to end every line of input from the
keyboard. After RETURN has been pressed,
the keyboard is locked out (except for the
ATTN key) and control passes to the system.

£.QNTINUA'll..Q!:L;t;,.;m!.§: Wl1en t.he hyphen is
ent-Jred as t.he last .:..':haractel:· in a line,
the system recognizes the next line as a
continuation. The hyphen is not entered as
part of the line.

CANCELING LINES: When a pound sign (#) is
entered as the last character before RETURN
is pressed, t.he entire line is canceled.
The system then expects the corrected line
to be entered without additional prompting.
The pound sign is defined as the line-kill
character.

CORRECTING LINEE~ A line that you have
started to enter incorrectly can be
corrected before RE.'TORN is pressed by back­
spacing to the first incorrect character
with the BACKSPACE key and reentering the
line from that point on.

The Teletype1 Model 33 or 35 KSR (Key­
board Send-Receive) consists of a printer,
a four-row keyboard, and a control unit,
all mounted in a special cabinet.

INITIATION PROCEDURE: To ready the tele­
typewriter for use with TSS/360. proceed as
follows:

1. Press the ORIG button. The lamp
should light under the button, and the
teletypewriter will be on.

2. Dial the TSS/360 number with the tele­
phone dial. 11 continuous tone is
hea:nJ. mom~ntarily as the connection is
made. The LOWJN procedure then begins.

KEYBOARD OPER~:l'ION: The alphalDeric and
special-character keys, -the space bar, and
the SHIF'!' key ali work like thei.r counter­
parts on conventional typewriters (except
that the SHIFT key does not lock in the
down position}. On:ly capital letters are
provided; lowercase letters are not. The
BREAR key is used to generate an attention
interruption. After using the BREAK key,
you must press the BRK-RLS key above the
telephone dial to unlock the keyboard.

Do not use the keyboard when the system
is not expecting input. The keyboard is
not locked when the systf'.ln is not expecting
input, and pressing a key at such a time
will cause the eguivalent of an attention
interruption.

Since the teletypewrit_er l.acks keys for
the tackspace. underscore, and logical-NOT
sign, you .ITlllst use substit.utes. The usual
'ISS/360 prompt of underscore and backspace,
for instance, is represented on the tele-

1A trademark of ti'1€ Teletype Co.r:poration

Part II; using All the Facilities of the PL/I COlllpiler 19

typewriter as a right bracket and a left
arrow: J<==

Since the right bracket is the equiva­
lent of the underscore. it is used as the
command-prefix character for the text edi­
tor. The right bracket is obtained by
holding down SHIFT and pressing the ·M" key.

In addition. the backwards slash (') is
the teletypewriter equivalent for the
logical-NOT sign (~). The backwards slash
is obtained by holding down SHIFT and pres­
sing the "L" key. The left bracket is
obt_ained by holding down SHIFT and pressing
the wK" key.

END-OF-LINE SEQUENCE: To Signal the end of
an input line. press the RETURN key, the
LINE FEED key, and then hold down the CTRL
(control) key while pressing the key marked
C OFF. This end-of-line sequence must be
executed to signal the end of each input
line. After the end-of-line signal, con­
trol passes to the system. Do not use the
keyboard again until prompted for further
input, except to generate an attention
interruption.

CONTINUATION LINES: When the hyphen is
entered as the last character before the
end-of-line sequence, the system reco9Ilizes
the next line as a continuation. The
hyphen is not entered as part of the line.

CANCELING LINES: When a pound sign (#) is
entered as the last character before the
end-of-line sequence, the entire line is
canceled. The system then expects the
corrected line to be entered without fur­
ther prompting. The pound sign is defined
as the line-kill character.

CORRECTING LINES: To correct a line that
you have started to enter incorrectly,
enter the left arrow (which is obtained by
holding down SHIFT and pressing the ·0·
key) ~ for each character entered since
the first erroneous character, and then
reenter the line from that point on. In
other words, use the left arrow as if it
were the BACKSPACE key on a typewriter.
For instance, if you have typed ERESE and
want to change it to ERASE, your correction
would look like this:

ERESE<=<=<=ASE

The left arrows are not entered as part
of the line, TSS/360 treats the teletype­
writer left arrow as the equivalent of the
backspace, as mentioned above.

SYSIN and SYSOUT

Now that you have initiated a task, you
can converse with the system as if you
alone were using it. You have unique com-

20 Section 4: CommUnicating with the System

Jr·unication paths in the system permitting
it to read from and write to your terminal,
independently of all other tasks. You can
thus define work for the system by issuing
commands. and the required programs and
data will be loaded into main storage and
processed, as you specify, regardless of
the work other users may be simultaneously
specifying.

Your task's input to the system contains
the sequence of commands you issue; this
sequence is called SYSIN. Your system
input stream can also include data to be
prestored in the system, or actual input
records to an executing program. When you
are in the conversational mode. your termi­
nal is your task's SYSIN device. Your
task's system output stream, called SYSOUT,
is directed to the terminal. It consists
basically of system messages; it may also
contain output from your object programs if
you so choose. Because the terminal is
thus a combined SYSIN/SYSOUT device, it
writes a mixture of the two system streams.

You and every other user have your own
unique SYSIN/SYSOUT. You also have the
following:

• Your own virtual storage space.

• A scheduled time interval in which your
task is executed.

• Your own catalog.

CONVERSATIONAL TASK EXECUTION

After the initialization process is com­
plete, the system asks you to enter your
next command statement; that is, a command
or series of commands and engages in a con­
versation with you. Your part of this dia­
log consists of any command and source lan­
guage statements that you enter during
execution of your task. and your replies to
the messages issued by the system. The
system"s part of this dialog consists of
responses to command statements, requests
for next command statements, and messages.
The system issues general information mes­
sages and messages informing you of error
conditions.

INFORMATION MESSAGES: These messages
prompt you to supply certain inforn,ation
when a mandatory operand has been omitted,
or inform you of the actions the system has
taken in executing a command statement.

DIAGNOSTIC MESSAGES: These messages warn
you of errors made in entering a cou.mand
name or operands; some messages request you
to correct errors.

REQUEST FOR NEXT COMMAND STATEMENt: The
system inform,-, you t.hat it if; ready t.o
accept the next COll'.mand r3tatelTient by print'·
ing an underscore character(_) iothe first
character position of a ne",,' line and then
backspacing one space. (The same i ndied­
tion is given ""hen you are entering command
statements through the t.erminal card
Leader.)

ENTERING COMMAND STATEMENTS: Command
statements call be ent.eLed int.o the syste.m
from the terminal keyboard, the terminal
card reader (if any), the system card read­
er, or a magnet.ic input~ device in which the
information is stored in card-image format.
Command statements can be entered in either
upper- or lower'case form, unless you speci­
fy otherwise by issuing a KA or CA command.

If a command st.atement contains more
than one command, all the coxmnands in it
must be separat.ed by semicolons.

The end of a command statement entered
from the terminal keyboard is indicated by
pressing RETURN. If a command statement
requires more than one line, one hyphen
Eust be typed at the end of the line before
RETURN is pressed; the hyphen signals that
the statement is not complete, and will be
continued on t.he next line.

Note: The LOGON command must begin and end
on the same line.

Command statements t.hat are entered
through the terminal card reader can uti­
lize free-form format (that is. input is
not restricted t.o particular card fields).
The hyphen, following the command operands,
is used to signify that the following line
is a continuation line. For statements
longer than 80 charact.ers, with the termi­
nal EOB swit.ch on. the continuation
cbaracter may ap2ear in any available
column. If the EOB switch is off, t.he con­
tinuation character is not needed unless
the statement exceeds 260 characters.

Note: Nonco!lversational input through a
computer center's high-speed card reader
does not. require the 11-5-9 punch to signi­
fy new line; its inclusion has no effect.
An EOB is automatically inserted by the
card reader at the end of every ca.rd. A
continuation character must appear (in any
column) for command statements that require
more than one card.

Caution: In most cases, tab characters are
treated as spaces and are valid characters
in the command system. However, because of
physical limitations in terminal deVices,
displaying tabs of more than 65 consecutive
spaces at the terminal might cause the next
character to be printed in the wrong place.

CONVfRSATIONAI, 'l'ASK OU'!'PU'l'

'I'he me'-'lsages produced by the system dur­
ing execution of conversational tasks and
the responses to;;omm.'!nd statement execu­
lion are p.rint:ed at: your terminal. The
.:cesul ts of processing during t(l.sk execution
can be held in dilt:.a sets within the system.
When you want to examine these data sets,
you can have t.hem printed at your terminal
or have th(~m printed or punched in noncon­
versational mode. You can also use the
dynamic I/O facilities of PL/I to obtain
these results directly from execution of
your pro9ram.

CONVERSATIONAL 'TASK ~'.ERMINATION

t'ineu you want to 'terminate your conver­
sational t:ask. issue a l~OGOFI" command. The
system then upd"d:e;s its internal accounting
tables to reflect: your use of the system
dm.ing the task. After issuing LOGOFF,
turn the power switch to "off'" if your ter­
minal is an IBM 1050 Data Communications
System or an IBM 2741 Communications Termi­
nal, or press the CLEAR button on the con­
trol unit if your terminal is a Teletype1

Model 33 or 35 KSR.

If you later want to communicate with
the system again conversationally. you must
again log on as described \mder ·Conversa­
tional Task Initiation. v

NONCONVERSATI0NAL OSE OF 'fI!E SYSTEM

While the system is operat.ing conversa­
tionally, for many simultaneous users, it
can also operate nO!lconvers3tionally, with
hatch-type p%ocessing jobs, in the back­
ground. With !ilium. exceptions, the com­
mands avail;..!bl., in conversational tasks.
including C(lllllllands lox data manipulation,
program compilation. and pr~lram execution,
are also available in non conversational
tasks. However, in a nonconversational
task, the1:'(, is no communication between you
and the sy~:t.e,ll1. ';'ou miqht want. to execute
a task nonconv€J:sat:ionally if it is checked
out and you know it: will run satisfactori­
ly. OJ: if you c<>nnot st.ay at the terminal
to converse wi.th the system.

NONCONVERSATIONAL TASK INI'l'IATION

Figure :2 illust:ratesthe various ways in
which you can use the system for nonconver­
sational processing.

The .BACK command is used to continue a
conversational task nonconversationally.

1A tradeuark of the Telet:ype Corporation

Part II: Using All the Facilities of the PL/I Compiler 21

Nonconyerrotiona! Processing

I-~

'.'" t0u.'.c~1°! t':~_Li~~"f'
• BACK command Have the operator: Use RJE Feature- to:

;-·Initiot;-~~ reading
• Issue PRINT command

• ::XECUTE comm(1nd • Is~ue RT commond

• PR f!'"T commond • 'nitiot!!' cord reoding

• PUNCH cornrno'ld
• '.,;IT com'TIond

I

Figure 2. Nonconversational Task Initiation

See -Mixed Mode Use of the System,· later
in this section.

You can issue the EXECUTE command in a
conversational or nonconversational task to
initiate a nonconversational task. The
EXECUTE command names a cataloged command
procedure that is to be executed. The com­
mand procedure functions as the SYSIN data
set for the nonconversational task. It
must begin with a LOGON command; end with a
LOGOFF command; and, you must prestore it
in the system so that it can be retrieved
merely by its name. If private devices are
required in the task, a SECURE command must
immediately follow the LOGON command.

You can issue PRINT, PUNCH, and WT com­
mands in either a conversational or noncon­
versational task. These commands are, in
effect, one-command-procedures. They
initiate nonconversational tasks that
transfer data from a direct access device
to a printer, card punch, or tape unit.

You can also have the operator initiate
nonconversational tasks for you. You sup­
ply hiro with a card deck or magnetic tape;
the contents of the deck or tape depend on
what you want done:

• If you want to enter data into the sys­
tem for later use, that is, prestore
it, you prepare a card deck (or magnet­
ic tape) with a command procedure of
the following form:

[data descriptor Card]}
Data cards
(%ENDDS card] ,

card images

If you do this, the task set up by the
operator transfers data from the input
medium to a direct access device and cata­
logs it so that it is laT_er available to
you by its name. For the format of the
ddta descriptor card, see Command System
~J:ier' '~3uid~.

'22 ~;ection 4: Communicating with the System

• If you want to enter a command proce­
dure, you prepnre d card deck as
follows:

(LOGON card]
Other commands & data cards
[LOGOFF card]

If you do this, the task that is set up
by the operator executes the commands in
the command procedure you have defined.

You can use the remote job entry (RJE)
feature, if you have access to an RJE
device. (See IBM System/360 Time Sharing
System: Remote Job Entry.)

In all of the ways of initiating a non­
conversational task, the system action is
basically the same:

1. The request to set up the nonconversa­
tional task is enqueued and assigned a
batch sequence number.

2. The individual requesting the task
(you or the operator) is sent the
batch sequence number (to later permit
that individual to CANCEL that task if
he wants).

3. The requested task is then executed
when the required resources become
available in the system.

When you use EXECUTE to initiate a non­
conversational task, the commands are
taken, one at a time beginning with LOGON,
from the cataloged command procedure (SYSIN
data set) you specified. The system speci­
fies the task's SYSOUT. You can read SYSIN
input in your programs, in a manner similar
to conversational mode, if the data is
properly positioned in the SYSIN data set.
Similarly, you can write to SYSOUT from
your program. Because there is no prompt­
ing in nonconversational processing. you
must specify every command completely, take
care to have the commands in proper
sequence, dnd include d SECURE command to

obtain any devices needed for private
volumes.

Nonconversational SYSIN Data Set

A nonconversational SYSIN data set is a
series of command statements and associated
data that are to be acted upon in the
sequence in which they aLe presented to the
system; they inform the system of the
actions you want performed during execution
of your nonconversational task. You create
a nonconversational SYSIN data set in the
same way you create any other type of data
set. You can construct it at your terminal
by using the text editing commands (or DATA
or MODIFY), or you submit it on punched
cards to the system operator for entry into
the system via the installation's high­
",peed car'd reader. The data set must be
VSAM or VISAM line.

Each nonconversational SYSIN data set
begins with a LOGON command and ends with a
LOGOFF command, unless the mode of the task
is originally conversational. (See "Mixed
Mode Use of the System,- below). If any
private I/O devices are to be used by the
task, the SECURE command must immediately
follow the LOGON command, preceding all
requests for those devices.

Data that is to be read by your program
during execution can be included in the
SYSIN data set; this data must immediately
follow the invocation of your program. The
end-of-data record (0-6-9 punch in column
I), if required, must follow the last data
record.

NONCONVERSATIONAL TASK EXECUTION

The system analyzes. in the order pre­
,_'ented, each command of the nonconversa­
tional SYSIN data set and executes every
valid command. If a command is invalid,
t.llp :c;ystem ignores it and continues reading
;;Y:·;lN un1.il eit.her d valid command is read
or the task is abnormally terminated.
After reading and executing a valid com­
mand, the system proceeds to process the
next command, continuing until it processes
LOGOFF, which completes the task.

While executing a nonconversational
task, you can also execute a conversational
task, but you cannot communicate with the
nonconversational task or affect its opera-

tion except to cancel it by issuing a CAN­
CEL command. To inquire about the status
of each of your uncomplet.ed nonconversa­
tional tasks 4 you can issue an EXHIBIT
command.

NONCONVERSATIONAL TASK TERMINATION

The execution of a non conversational
task (except PRINT or PUNCH) is terminated
when its LOGOFF command is executed. When
this occurs, the system automatically
prints the task's SYSOUT data set. This
data set contains the output from commands
that were executed, any data that your pro­
gram writes to SYSOUT, and the compiler­
issued diagnostic messages (if no listings
were requested).

Tasks created by the PRINT and PUNCH
commands terminate when the data transfer
is complete.

You can also terminate a nonconversa­
tional task by issuing a CANCEL command
identifying the task by its batch sequence
number.

~IXED MODE USE OF THE SYSTEM

You can begin a task at your terminal
and then issue a BACK command to have the
task's execution completed nonconversation­
ally. Before issuing the BACK command, you
must store a SYSIN data set that is to
function as the command procedure and, if
desired, input data for the nonconversa­
tional portion of your task. in addition,
you must issue DDEF commands for any pri­
vate volumes you may need. The SYSIN data
set must not cont.ain a LOGON command,
because you have already logged on, but it
should end with a LOGOFF command.

When you issue a BACK command, the sys­
tem checks that it can provide sufficient
resources to continue your task nonconver­
sationally. If it cannot. the system
rejects your request (and you can try
later> •

Once your BACK request is accepted, the
terminal is inactive. If you want to con­
tinue using the terminal, you must log on
again to initiate a new conversational
task.

Part II: Using All the Facilities of the PL/I Compiler 23

SECTION 5: COMPILING A PLiI PROGRAM

Each external procedure, including any
procedUL"es nested within it, must be corn­
piled separately. If appropriate control
statements are inserted among the PL/I
source statements, the compiler can process
two or more external procedures in a single
run by means of batch compilation.

The PLiI compiler translates the proce­
dure'S source statements into machine
instructions: the set of machine instruc­
tions produced in one compilation (that is,
for one external procedure) is an object
module. The compiler does not generate ~ll
the machine instructions required to repre­
sent the source program: for frequently
needed services -- computation, error­
handling, data transmission, and storage
management -- it inserts calls to standard
subroutines that are stored in the PL/I
library. These calls will be performed
during execution of the object module, when
the services are actually needed.

While it is processing a PL/I source
program, the compiler produces a listing
that contains information about the source
program and the object module derived from
it, together with diagnostic messages
relating to errors or other conditions
detected during compilation. Much of this
information is optional, and is supplied
only in response to the inclusion of appro­
priate ·options· in the PLIOPT and PLCOPT
operands of the PLI command that invokes
the compiler.

The compiler also includes a facility,
the ~eprocessor or compile-time processor.
which can modify the source statements or
insert additional source statements before
compilation begins.

After a module (that is. object module)
is compiled. it is processed by a routine
called the Object Data Set Converter (ODC).
ODC resolves certain constants and changes
tbe module from Operating System format to
Time Sharing System format. Input to ODC
consists of compiled modules in card-image
format; output consists of executable
modules.

RELATIONSHIP WITH TSS/360

Figure) shows how your TSS/360 PL/I
object module interfaces with the system
programs.

When the TSS/360 command system encoun­
ters the PLI command, control is trans-

24 Section 5: Compiling a PL/I Program

T55/360

PROGRAM
LANGUAGE
CONTROL

PUI LIBRARY

PL/I COMPILER

CARD-IMAGE

OBJECT
MODULE ~

I
I r l I
t

OBJECT DATA f-+ T55/360
SET CONVERTER OBJECT MODULE , • OUTPUT

..- ---. INPUT

~ DATA SET) .. PROGRAM
INVOCATION

Figure 3. Relationship of a TSS/360 PL/I
Object Module with the System
Programs

£erred to Program Language Control (PLC>,
the main interface of the PLiI COmpiler
with TSS/360. See Figure 4. PLC supervises:

• Creation of the source data set. which
consists of the PL/I source statements.

• Invocation of the PL/I compiler.

• Printing. or not printing, of compiler­
generated listings.

• Invocation of ODC to convert the com­
piled object module to TSS/360 code.

In addition, PLC serves as a communication
area that the compiler references to con-

COMMAND
SYST£M
(PI.! COMMAND}

r-----.
I DATA SETS I
r----l
I SOURCE. nomel

PROGRAM
LANGUAGE
CONTROL
(PlCl

TEXT EDITOR -
BUILD SOURCE
DATA SET

PI/I COMPILER

MAC~ name
(optional}
LIST. name
LOAD. name

I
I
I
I
I
I
I
!
I
I OBJECT DATA SET

CONVERTER (ODC)
CONSTRUCT
TS5/360 MODULE

JOSUS (nome) I

(OPTIONAL)

TS5/360 DATA
MANAGEMENT
PRINT UST
DATA SET

Figure 4. PLC Interfaces

L ___ J

.... OUTPUT

-..._ INPUT

__ PROGRAM

INVOCATION

trol its optional features. such as list­
ings and diagnostics. that can be specified
in suboperands of the PLI command.

COMPILER PHASES

The compiler comprises a control module
and a series of subroutines (termed phases)
that are executed under the supervision of
the control module. Each phase performs a
single function or a set of functions. The
control module invokes the phases in accor­
dance with the content of the source pro­
gram and the optional compiler facilities
that you select. Figure 5 is a simplified
flow diagram of the compiler.

The PL/I compiler, unlike the TSS/360
Assembler and FORTRAN compiler, cannot
function until the source data set, con­
sisting of PL/I statements, has been fully
entered. Therefore, when compilation is
called for. the system searches your cata­
log for a source data set.

The system invokes the text editor if it
does not find a data set with one of these
names:

48-CHARACH:--l
SET PROC ESSOR I

60-CHARACT€R-SET TEXT
VIA MACRO fllf

,OURCE TEXT
IFROM SOURCE FilE)

~-'Mrllf­
ftME

"ROCESSING
?

NOMACRO

CHAR 60

OBJECT MODULE
(TO LOAD FILE)

MAcaO

PltOCESSED SOURCE lEXT
VIA MACRO FIlE

Figure 5. TSS/360 PL/I Compiler: Simpli­
fied Flow Diagram

• SOURCE.n~~e, where 'name' is specified
in the NA.ME operand of the PLI command.

• ·source data set name·, specified in
the SOURCEDS operand of the PLI
cOllU11and.

The text editor prompts you with line num­
bers, and you enter your PL/I statements,
typing an END command when done. (For a
fuller discussion of text editor facili­
ties, see Part Ill. Any of the techniques
shown there can be used to correct errors
when compiling.) At this point. a source
data set exists; control passes to the PL/I
compiler.

The data that is translated by the com­
piler is known throughout all stages of the
translation as text. Initially, the text
comprises the PL/I source statements that
you submit. At the end of compilation, it
comprises the machine instructions that the
compiler has substituted for the source
statements, plus some information for
reference by ODC.

Part II: USing All the Facilities of the PL/I Compiler 25

The source statements can be either pre­
stored in the system or entered via a ter­
minal or a high-speed card reade.r. The
source statements are passed to the read-in
f'hase either directly or by means of one or
two preprocessor phases:

1. If the source statements are in the
PL/I 48-character set, the 48-
character set processor translates
them into the 60-character set. You
must indicate the need for tr-anslation
by specifying the CHAR48 option.1-

2. If the source statements contain pre­
processor statements, the compile-time
processor executes the preprocessor
statements in order to modify other
source statements or introduce addi­
tional statements. The compile-time
processor includes a facility for
tr-anslating statements written in the
48-character set into the 60-character
set-_ •

To request the services of the compile­
time processor. specify the MACRO option.

Both preprocessors place the translated
source statements in the data set named
MAC. name (0) •

The .read-in phase takes its input either
from MAC.name(O), from SOURCE.name. or from
a user-specified data set. This phase
checks the syntax of the source statements
and removes comments and nonsignificant
blank characters.

After read-in, the dictionary phase of
the compiler creates a dictionary that con­
tains entries for all the identifiers in
the source statements. The compiler uses
the dict-ionary to communicate descriptions
of the elements of the source program and
the object program between phases. The
dictionary phase of the compiler replaces
all identifiers and attribute declarations
in the source statements with references to
dictionary entries.

Translation of the source statements
into machine instructions involves several
compiler ~hases. The sequence of events
is:

1. Rearrangement of the source statements
to facilitate translation (for
example, by replacing array or struc­
t_ure assignments with DO loops that
contain element assignments).

2. Conversion of the statement_s from the
PUI syntactic form to an internal
syntactic form termed text.

1The compiler options are discussed in
Appendix G.

26 Section 5: Compiling a PL/I Program

3. Mapping of arrays and structures to
ensure correct boundary alignment.

4. Translation of text into a form simi­
lar to machine instructions; this form
is termed pseudo-code.

5. Storage allocation: the compiler pro­
vides storage for STATIC variables and
generat.es code to allow AUTOMATIC
storage to be allocated during execu­
tion of the object module. {The PLiI
library subroutines handle the alloca­
tion of storage during execution of
the object module.}

The final-assembly phase translates the
pseudo-code into machine instructions, and
then creates the external symbol dictionary
(ESD) and relocation dictionary (RLD). The
external symbol dictionary is a list that
includes the names of all subroutines that
are referred to in the object module but
are not part of the module; these names,
termed external references, include the
names of all the PL/I library subroutines
that will be required when the object
module is executed. The relocation dic­
tionary contains information that enables
absolute storage addresses to be assigned
to locations within the object module when
it is loaded for execution.

HOW TO INVOKE THE COMPILER

You invoke the PL/I compiler by issuing
a PLI command. This command allows you to:

1. Compile a prestored source data set.

2. Create a PL/I source data set and have
it compiled.

3. Convert a PLII object module into TSS/
360 code.

4. Perform multiple compilations with a
single command.

5. Have compiler-generated listings
printed.

The format of the PLI command is shown
in Table 2.

NAME
The name by which the program will be
known. It consists of one to eight
alphameric characters, the first reing
alphabetic. If the name is omitted,
PLC assumes that it is identical to
the name of the source data set if
that is in the correct form. If
neither NAME nor the name of a source
data set is provided, no compilation
takes place and PLC processes the
merge list or goes on to the next set
of PLI parameters.

Ta ble 2. PLI Command r------------T-------------"--------------------------___________ c __ • _____________________ ,

I Operation I Orerand I
~-----------+-----------------------.. ---.. ---------------------------------·--------------i
I I [NAME=module naJlle] L,PLIOPT=compiler option listJ I
I I I
I PLI I [.PLCOPT=language contr·oller options] [.SOURCEDS=source data set name] I
I I I
I I [,MERGELST=converte.r input list] [,MERGEDS=conve.rter input data set] I
I I I
I I [,MACRODS=intermediate data set name) I
I I I

I I [,EXPLICIT::: {~~::e, .•. } t J £,XFERDS=data set namel I
I I *ALL[(name[. •.• J)]j I
L ___________ J. ___ -----------------------_______ -l

PLIOPT --
The list of options to be used by the
compiler. It is considered to be one
parameter, and the list of compiler
options following the equal sign in
the PLIOPT parameter must therefore be
enclosed in parentheses unless only
one value is given; the separate
options are separated by commas. The
compiler options are described in
Appendix G.

PLCOPT --
The list of options external to the
PL/I compiler that affects the compi­
lation's progression through TSS/360.
These options must be enclosed in
parentheses unless only one value is
given. The options and the standard
default for each are shown in Table 3.

• NOPRINT or PRINT or PRERASE: specifies
whether the listing data set produced
by the compiler is to be printed on a
high-speed printer. NOPRINT indicates
that the data set is not to be printed
as a part of the compilation. You can
at some later time issue a PRINT com­
mand as follows:

PRINT LIST.name(O),.,EDIT

where 'name' is the module name given
in the NAME operand. PRINT indicates
that PLC should issue the print request
automatically. PRERASE indicates that
PLC should cause the data set to be
printed and erased after printing; this
is equivalent to:

PRINT LIST.name(O),.,EDIT,ERASE

If LISTOUT is specified, the data nor­
mally written into the list data set is
directed to SYSOUT and no print request
is appropriate. In this case, the
NOPRINT option is assumed, whether or
not it was specified.

~able 3. PLC Options
r---------------------T-----------------,
IPLC Option I Standard Default I
~----.-----.------------+-----------------~
INOPRINTIPRINTIPRERASE lNOPRINT I
IDIAGINODIAG IDIAG I
I NOCONT I CONT I NOCONT I
ILISTDS!LISTOUT ILISTDS I
I NOCONV Icompile/convert I
I LIMEN"" } I I
I Isystem defaults I
I BREVITY: I I l-----__________________ i-_________________ J

• DIAG or NODIAG: specifies whether dia­
gnostics are to be directed to SYSOUT.
(This option has meaning only if LISTDS
is specified. If LISTOUT is specified,
then all compiler diagnostics appear on
SYSOUT as a part of the listing data.)
If DIAG is specified. then the diagnos­
tics that appear on SYSOUT are con­
trolled by two command-system operands,
LIMEN and BREVITY. which control the
severity and length of the PL/I diagno­
stics selected for printing on SYSOUT.
LIMEN and BREVITY are explained later
in this section.

The format of the diagnostic message
i.s:

x IEMonnnI statement no. line no.
text

where x is the severity of the diag­
nostic and nnnn is the diagnostic
number. For example:

S IEM01821 15 1600 TEXT BEGINNING
tKEYFROM CK' SKIPPED IN OR FOLLOWING
STATEMENT NUMBER 15

• NOCONT or CONT: specifies whether
additional programs are to be compiled
before return to the command system.
NOCONT indicates that there is no con­
tinuation of compilation. If CONT is
specified, then PLC prompts for a new
module name by typing PLI when the

Part II: Using All the Facilities of the PL/I Compiler 21

first compilation is complete; compila­
tions can continue in this manner in­
definitely. To end the prompting.
enter an underscore with a command, or
default by pressing the RETURN Key.

• NOCONV: Specifies that you want EXPLI­
CIT name transformation only. There is
to be no compilation or conversion; PLC
will not call the compiler or ODC.

• LISTDS or LISTOUT: specifies whether
the compiler is to construct a data set
to contain the listing(s} it produces.
LISTOUT indicates that a separate list­
ing is unnecessary and that the list­
ings can be placed in SYSOUT. In non­
conversational mode. use of the LISTOUT
option reduces the load on the system.
In conversational mode, placing the
listing on SYSaUT means that the system
wi 11 type it at t.he terminal. Only in
most urgent circumstances should you
consider this alternative.

• LIMEN=: LIMEN is the operand name in
the user profile for message-severity
codes; it controls the severity of
diagnostic messages printed on SYSOUT.
If specified in the PLI command, it ap­
plies only t.o PI/I diagnostics. <See
DIAG, above.) If not specified, the
current value in the system profile is
used.

LIMEN Value
I (information)

Lowest Level
Diagnostic Issued
Warning messages

w (warning) Error messages

N (normal error) Severe error
messages

X (extreme error) Termination error
message

T (termination None will be shown
error)

Note: The LIMEN PL-C option cannot sup­
press messages issued by the compiler
prior to the read-in phase (i.e., dur­
ing the initialization phase).

• BREVITY=: BREVITY is the operand name
in the user profile for message-length
codes; it controls the length of diag­
nostic messages printed on SYSOUT. If
specified in the PLI command, it ap­
plies only to PI/I diagnostics. (See
DIAG, above.) If not specified. the
current value in the syst.em profile is
used.

28 Section 5: Compiling a PL/I Program

BREVITY Value
M (nessage ID)

S (standard)

Action
Message ID only is
printed

Full text of ~essage
given

E (extended text) Full text of message
given

Note: Both LIMEN: and BREVITY= must be
followed by only one character. If the
equal sign is not the next-to-last
character, the option is ignored. Thus:

SOURCEDS

LIMEN=I
LIMEN=INFO
LIMEN= I

is valid
is invalid
is invalid

The fully qualified name of the data
set from which the PL/I source state­
ments are to be obtained. Any valid
line data set is allowable. Examples:

1. ABLE
2. A.B.C.D
3. A.B(C)
4. A.B.GOOOOVOO
5. A.B(Q)
6. A.B(Q) (0

If the NAME operand is omitted, the
SOURCEDS name is used as the name of
the object module. Therefore, if the
NAME operand is omitted and a TSS/360-
executable object module is to be
generated, the source data set must
not be in the last-defined job
library, since the object module will
be stored in that library; TSS/360
does not allow a library to contain
duplicate entry names.

If SOURCEDS is omitted, the name
assumed for the source data set is
SOURCE. name, where 'name' is the value
you gave for the NAME operand.

If neither NAME nor SOURCEDS is
given, it is assumed that no compila­
tion is to take place for this itera­
tion of PLC. Other functions involv­
ing ODe may be indicated.

~ERGELST
The names, separated by commas, of
previously compiled modules to be con­
verted by ODC for execution with the
module being compiled. Each of these
modules should still exist as uncon­
verted modules, that is, as data sets
named LOAD.name(O), where 'name' is
the name given by you, or by default,
in the NAME operand. (Initially, the
compiler creates all modules as LOAD.
name(O) data set.s; you should not
erase these data sets until you are
sure that you have all needed copies

of the converted object moduLe.)
Modules that have been stored in job
libraries after processing by ODC can­
not be used in a MERGELST (merge
list).

If the MERGELST operand is omitted
but the LOAD option is indicated in
the PLIOPT list, the PL/I compiler
still generates a merge list contain­
ing the name of the compiled program.

MERGELST is similar to the NAME
cards generated by OBJNM=aaaaaaaa in
IBM Systeml360 Operating System PL/I.
The merge list can be a single program
name:

BAKER

or a list of program names enclosed in
parentheses:

(FOX, GEORGE, HOW)

The list must not exceed 253 charac­
ters, including blanks and commas.

Duplicate program names in the list
cause reprocessing of those programs.
The only penalty is added processing
time.

If no value is supplied for MERGELST,
then a null string is assumed.

MERGEDS --
Allows you to name a data set as the
source of the merge list. This can be
in lieu of MERGELST or as a supplement
to it. If this data set's organiza­
tion is VS or VI, it is assumed that
each record contains from Oto 15 pro­
gram names separated by commas.
Spaces are immaterial. PLC and ODC
assume that all programs named in the
MERGEDS for which a LOAD.na~e(O) data
set exists ar·e to be combined into a
single JOBLIB. Duplicate names cause
duplicate processing but otherwise do
not hurt.

If the data set organization is VP.
then it is assumed that all the member
names for which a LOAD.name(O) data
set exists are to be combined into a
JOBLIB. If the current active JOBLIB
has the same name as MERGEDS, then all
modules in the POD for which a PLiI
LOAD. name CO) data set exists are to be
reprocessed.

If no value is supplied, no data set
is assumed for MERGEDS.

MACRODS
The data set name to be associated
with the intermediate text. If no
name is given and either CHAR4a or

MACRO optio~s are specified, the com­
piler c.t:eat,es a data set named

MAC.name(u)

where • name' i<; the usec··supplied
module name. This data set is nor­
mally erased when tbe compilation is
completed. (See MACDeR, in Appendix
G.) If you specify a value for
MACRODS. that. name is used instead of
MAC.name(O) for the data set, and it
is retained permanently if MACDeR is
specified, with a compiler-generated
source margin of 2 to 72. If a value
is given for MAC~ODS but neither
CHAR48 no~ MACRO is specified. the
value is ignored and does not affect
compilation.

Not~: When using ·this data set for
recornpilation, a source margin of 2 to
12 must be specified in the SORMGIN
option of the PLI commandos PLIOPT
parameter.

EXPLICIT --
Specifies t.he entry names of proce­
dures to be loaded on an as needed
basis.

The implementation maximum for the
cU!l1ulative length of all the PR
entries in the ESD (see DExternal Sym­
bol Dictionary.'" later in this sec­
tion) is 4096 bytes. This normally
results in a maximum of approximately
974 object modules per program.
However. a larger program can be
executed if one or more of its proce­
dures are called dynamically, that is,
only when actually needed during
execution.

Dynamic calls can also be used to
avoid unnecessary overhead in the
invoking of a program. When normal
calls are used. subroutines (that is,
all routines for 10ihich there are CALL
statements) are loaded and linked to
the calling routines whether or not
they will be needed during execution.
On the ot.her hand. loading and Ii nking
of dynamically called procedures is
deferred until execution of the CALL
statements.

Names specified in the EXPLICIT
operand are padded on the left with iI.
(You can specify a different pad
character hi" issuing ·t.he command
DEf'AULT PADCHAR=pad-character.) The
pad charactex:-; <:iKe .inserted into the
object module, not into the source
data set. Calls to the padded nallles
function as calls 1:0 d transfer module
that calls t.he original names dynamic­
ally. You must create the transfer

Part II: Using All the Facilities of the PL/I Compiler 29

module yourself; Example 18. in ·Part
III: Examples· shows how.

name

(name ••••)
specifies one or more entry names to
be padded. These names must appear in
CALL statements in the module being
processed.

*ALL[(namel, ••• J)]
Specifies that all called names except
those within parentheses and except
names beginning with IHE (that is,
names of PL/I library modules, for
which dynamic calls are automatically
generated) will be padded.

Names unacceptable to basic assembler
language or to the PL/I compiler will
not be padded.

Using the default value of iii for
PADCHAR:

original
Name
PROC

~PROC

NO GOOD

NOT2BIG

ONE2MANY

Padded Name
iilPROC

iiliilPROC

unacceptable to basic
assembler language; not
padded

OlNOT2BIG

unacceptable to PL/I com­
piler; not padded.

You should avoid starting a procedure
name with the pad character that you
use. If procedures PROC and iilPROC
were in the same program and their
names were padded to form iilPROC and
iiliilPROC, as in the above example. pro­
cedure iilPROC could not execute.

If you issue the command DEFAULT
MAP=Y, the system reports on the
results of EXPLICIT processing. A
sample report:

MAP FOLLOWS FOR MODULE XXX
ABC GENERATED AS iilABC
XYZ GENERATED AS iilXYZ
DOlT RESOLVED TO #DOIT
ABC RESOLVED TO G)ABC
DOlT RESOLVED TO #DOlT

In this example, you have used the
XF'ERDS operand to specify a transfer
data set (the main fart of the transf­
er module), and you are updating the
transfer data set with new entries.
·GENERATED AS· means that the name was
padded and entered in the transfer
data set. -RESOLVED TO· ffieans that

30 section 5: Compiling a PL/I Program

the name 'was padded and was already in
the transfer data set.

The EXPLICIT operand is used in con­
junction with the UPDTXFER default
value. Refer to the following
descript,ion of the XFERDS operand for
an explanation of UPDTXFER.

XFERDS --
The name of the transfer data set, the
core of the transfer module. The
transfer data set is generated as a
line data set of the form:

0-7
8
9-16
17
18-211
25-27
28-35

line-number
X'OO'
generated name
blank
PLICALL
blank
entry-name

If you include the XFERDS operand, the
system creates/maintains the transfer
data set for you. If you omit this
operand, you must create/maintain your
own transfer data set.

A default value. UPDTXFER, can be used
with the EXPLICIT and XFERDS operands
to tell the system exactly how to gen­
erate explicit calls. See Table 4.
The IBM-supplied value for UPDTXFER is
N.

HOW TO STOP THE COMPILER

In most cases, the simplest way to stop
a blundered-into compilation is to press
the attention key. If you have been enter­
ing source statements and have not yet
typed _END, instead of pressing the atten­
tion key you can type _lEND. (The vertical
bar signals that compilation is not
wanted.) Like the attention interruption,
the _IENe command returns your task to the
command mode instead of passing control to
the PL/I compiler; in addition. it closes
the source data set and makes a clean exit
from the text editor. Use this cowrnand if
you want to save the source data set for a
processor other than the text editor.

Source data sets should be erased when
they are no longer neEoded.

DATA SETS ACCESSED BY THE COMPILER

The compiler accesses several standard
data sets, the number depending on the
optional facilities that you request.
These are shown in Table 5. You do not
have to issue DDEF commands for these
files, unless you specify an INCLUDE
library. See "Invoking the Preprocessor,"
in this section.

Table 4. Dynamic Calls -- Padding and Entering of Entry Names by the System
r--T------------------------T-------·-------------,
I I lJPDTXFER=Y I UPDTXFER=N I
I r--------------------·--+--------------------~
I I name is... I name is... I
~--t----------------.------+---------------------~
I EXPLICIT=narr,e I ! I
I I padded in module I padded in module I
I name in transfer data set I I I
r--+--------------------+--------------------~ I EXPLICIT=name I padded in module I padded in module I
I I I I
I name not in transfer data set I entered in txansfer I not entered in I
I I data set I transfer data set I
r--t----------------------+---------------------i
I EXPLICIT omitted or I I I
I EXPLICIT=(name~, ••• } I padded in module I ignored I
I where name not in list I I I
I I I I
I name in transfer data set I I I
~--t-----------------------+---------------------i
I EXPLICIT omitted or ! I I
I EXPLICIT=(name 1 •• ··) I ignored I ignored I
I where name not in list I I I
I ! I I
I name not in transfer data set I I I
r--t----------------------t---------------------i
I EXPLICIT=*ALL(name) I I I
I I ignoLed I ignored I
I name in transfer data set I I I
r--t----------------------t---------------------i
I EXPLICIT=*ALL(name) I I I
I I ignored I ignored I
I name not in transfer data set! I I l __ ~ ____________ -------___ L-____________________ J

Table 5. Standard Data Sets for Compilation
r---------------------------------------T--------------r--------------T---------------,
I I I I Associated I
I Purpose I DSNAME I DDNAME I Option I
~---t--------------t--------------+---------------~
IPrimary input (PL/I source statements) ISOURCE.name or!PLIINPUT or I I
I I user-specified I user-specified I I
~---+--------------+--------------+---------------~
IObject code data set output (will be con-ILOAD.name(O) !PLlLOAD !PLIOPT=LOAD. orl
Iverted by ODC for TSS/360 use) I I IPLIOPT=DECK I
~---t--------------t--------------t---------------i
IStorage for: jMAC.name(O) orIPLIMAC! I
I I user-specified I I I
I 1. Translated source statements when I I IPLIOPT=CHARqa I
I 48-character set used I I I I
I I I I PLIOPT= I
I 2. Source statements generated by I I i MACRO , COMP I
I preprocessor I I I I
~---+--------------t--------------+---------------~
IListing !LIST.name(O) \PLILIST IPLCOPT=LISTDS I
t---f--------------t--------------+---------------~
ILibrary containing source statements IUSERLIB or ISYSULIB or IPLIOPT=MACRO I
Ifor insertion by preprocessor I user-specified I user-specified I I
t---4--------------~--------------~----------_____ ~
I Note: 'name' is the module name. ! L __ ---------______________________ J

Part II: Using All the Facilities of the PL/I Compiler 31

CONTENTS OF THE SOURCE DATA SET AND THE
OBJECT MODULE

A PL/I object module contains one, and
only one. external procedure. Consequent­
ly, a source data set must not be struc­
tured like this:

A: PROCEDURE;

END;

B: PROCEDURE;

END;

There are two alternatives:

• Create two separate source data sets.
one for procedure A and one for proce­
dure B. for compilation into two separ­
ate object modules, or

• Nest one of the procedures within the
other.

FORMAT OF SOURCE LINES

Lines of the source data set can be up
to 100 characters long. Margins can be set
within this range, using the SORMGIN option
of the PLI command. If you set margins.
you can put information such as comments,
card numbers. etc., outside the margins.

CHARACTER SETS -- KEYBOARD FORMAT

KA and KB commands are used to specify
the character set to be used during key­
board input. KA specifies the full EBCDIC
character set during input. KB specifies
that the lowercase characters (a-z and !-)
are translated into their uppercase equiva­
lents (A-Z and $#a respectively).

ENTRY OF KEYBOARD SOURCE STATEMENTS FOR
LATER PUNCHING AND RECOMPlLATION

Entry of source statements so that they
can be later punched out and reent.ered in
card format is governed by the following
considerat.ions:

1. Source lines reside in a line data set
in which the initial input source line
is preceded by eight characters -- a
7-byte zoned-decimal key and a
character specifying to TSS/360 that
the source line was entered in card
form or at the terminal keyboard.

32 Section 5: compiling a PL/I Program

2. A continued line (hyphen preceding the
carriage return> when punched and
reent~ered in card format retains the
hyphen unless precautions are taken to
remove it.

3. Keyl::oara input positioning require­
ments are much more flexible than for
card input.

During compilation, the compiler
generates a listing that contains informa­
tion about the compilation and about the
source and load modules. It places this
listing in the list data set (defined as
DSNAME=LIST.module name), if the PLCOPT
operand of tlIe Pl.I command contains tbe
suboperand LISTDS, or if that suboperand is
defaulted. If the listing suboperand is
specified as LISTOUT, the listing is writ­
ten to SYSOUT and the PRINT suboperand is
ignored. SYSOUT is the terminal in conver­
sational mode, and a printer in nonconver­
saticnal mode.

The follo~ing description of the listing
refers to its appearance on a printed page.

The listing comprises a small amount of
standard information that always appears,
together with those items of optional
information requested or applied by default
in the PLIOPT operand of the PLI command.
Table 6 lis·ts the optional components of
the listing and the corresponding compiler
options.

The first page of the compiler listing
is identified by a heading giving the date
and time, the title -TSS/360 PL/I Compil­
er-, and the version number. starting with
this page, all the pages of the listing are
numbered sequentially in the top right-hand
corner. Page 1 also includes a list of the
options specified for the compilation.
exactly as they are written in the PLIOPT
operand of the PLI command.

The listing always ends with a statement
that no errors or warning conditions were
detected during the compilation, or with
one or more diagnostic messages. A~Fendix
B lists all compiler messages.

The following paragraphs describe the
optional parts of the listing in the order
of appearance on the listing.

OPTIONS USED FOR THE COMPILATION

If the option OPLIST applies, a complete
list of the options for the compilation,
including the default options, follows the
statement of the options specified in the
PLIOPT Parameter of the PLI command.

Table 6. Optional Components of Compiler
Listing

r-----------------------T-----------------,
I Listings I Option Required I
t-----------------------+-----------------~
I Options for the com- I I
j pilation I OPLIST I
I I I
I Preprocessor input I SOURCE2 I
I I I
I Source program I SOURCE I
I I I
I Statement nesting I I
I level I NEST I
I I I
I Attribute table I ATR I
I I !
I Cross-reference table I XREF I
I I I
I Aggregate-length I I
I table I ATR or XREF I
I I I
I External symbol I I
I dictionary I EXTREF I
I I I
I Object module , LIST I
I I I
I Diagnostic messages I I
I for severe errors, I FLAGS, FLAGE, I
I errors, and warnings I FLAGW I l _______________________ L _________________ J

PREPROCESSOR INPUT

If both the options MACRO and SOURCE2
apply, the compiler lists the input state­
ments to the preprocessor, one record per
line. The records are numbered sequential­
ly at the left.

If the compiler detects an error or the
possibility of an error during the prepro­
cessor phase, it prints a message on the
page or pages following the listing of pre­
processor input. The format and classifi­
cation of the error messages are exactly as
described for the compilation error mes­
sages. under -Diagnostic Messages·, below.

SOURCE PROGRAM

If the option SOURCE applies, the com­
piler lists the source program input, one
record per line; if the input statements
include carriage control characters, the
lines are spaced accordingly. The state­
ments in the source program are numbered
sequentially by the compiler, and the numb­
er of the first statement in the line
appears to the left of each line in which a
statement begins.

Between the statement number and the
source line, appears a seven-character VI
line number. This is incremented by 100
for each line.

If the source statements were generated
by the preprocessor, columns 13-80 contain
the following information:

Column
13-11

18,79

80

Input record number from which the
source statement was generated.
This number corresponds to the
record number in the preprocessor
input listing.

Two-digit number g1v1ng the maxi­
mum depth of replacement for this
line. If no replacement occurred.
the columns are blank.

tE' signifies that an error
occurred while replacement was
being attempted. If no error
occurred. the column is blank.

STATEMENT NESTING LEVEL

If the options SOURCE and NEST apply,
the block level and the DO level are
~rinted to the right of the statement numb­
er under appropriate headings:

STMT LEVEL NEST

1

2 1

3 2

4 2 1

5 2 2

6 2 1

7 2 1

8 2 1

9 1

000100 A: PROC OPTIONS
(MAIN) ;

000200 B: PROC (L)

000300 00 1=1 to 10.

000400 00 J=l to 10.

000500 END;

000600 BEGIN;

000100 END;

000800 END B:

000900 END A.

ATTRIBUTE AND CROSS-REFERENCE TABLE

If the option ATR applies, the compiler
prints an attribute table containing an
alphameric list of the identifiers in the
~rogram together with their declared and
default attributes. If the option XREF ap­
plies, the compiler prints a cross­
reference table containing an alphameric
list of the identifiers in the program
together with the numbers of the statements
in which they appear. If both ATR and XREF
apply, the two tables are combined.

Except for file attributes, the attri­
butes printed are those assigned after con­
flicts have been resolved and defaults ap-

Part II: Using All the Facilities of the PLII Compiler 33

plied. Since the file attributes are not
analyzed until the attribute list has been
frepared, the attributes listed for a file
are those supplied by you, regardless of
conflicts.

If either the ATR or the XREF option ap­
plies, the compiler also prints an
aggregate-length table that gives, where
possible, the lengths in bytes of all major
structures and all non-structured arrays in
the program.

Attribute Table

If an identifier was declared explicit­
ly, the number of the DECIJffiE statement is
listed under the heading DCL NO. The
~>tatement numbers of statement labels and
entry labels are also given under this
heading.

The attributes INTERNAL and REAL are
never included; they can be assumed unless
the conflicting attributes EXTERNAL and
COMPLEX appear.

For a file identifier, the attribute
EXTERNAL appears if it applies. otherwise,
only explicitly declared attributes are
listed.

For an array, the dimension attribute is
printed first; the bounds are ~rinted as in
the array declaration, but expressions are
replaced by asterisks.

For a character string or a bit string.
the length preceded by the word STRING is
printed as in the declaration, but an
expression is replaced by an asterisk.

cross-Reference Table

If the cross-reference table is combined
with the attribute table, the numbers of
the statements in which an identifier
appears follow the list of attributes for
that identifier. The number of a statement
1.n which a based-variable identifier
appears is included, not only in the list
uf statement numbers for that variable, but
also in the list of statement nurr~ers for
the pointer associated with it.

Aggregate Length Table

Each entry in the aggregate length table
consists of an aggregate identifier pre­
ceded by a statement number and followed by
the length of the aggregate in bytes.

The statement number is the number eith­
er of the DECLARE statement for the aggre­
gate or, for a CONTROLLED aggregate. of an
ALLOCATE statement for the aggregate. An
entry appears for every ALLOCATE statement
involving a CONTROLLED aggregate, since

34 Section 5: Compiling a PL/I Program

such statements have the effect of changing
the length of the aggregate during execu­
tion. Allocation of a BASED aggregate does
not have this effect, and only the entry
for the DECLARE statement appears.

The length of an aggregate may be
unknown at compilation, either because the
aggregate contains elements having adjust­
able lengths or di~ensions, or because the
aggregate is dynamically defined. In these
cases, the word 'ADJUSTABLE' or 'DEFINED'
afpears in the LENGTH IN BYTES column.

An entry for a COBOL mapped structure,
that is, for a structure into which a COBOL
record is read or from which a COBOL record
is written, has the word '{COBOL)'
appended, but such an entcy appears only if
the structure does not consist entirely of:

1. doubleword data, or

2. fullword data, or

3. halfword binary data, or

4. character string data, or

5. aligned bit string data, or

6. a mixture of character string and
aligned bit string data.

If a COBOL entry does a~pear. it is addi­
tional to the entry for the PL/I-mapped
version of the structure.

STORAGE REQUIREMENTS

If the option SOURCE applies, the com­
~iler lists the following information under
the heading STORAGE REQUIREMENTS on the
page following the end of the aggregate­
length table:

1. The storage area in bytes for each
procedure.

2. The storage area in bytes for each
BEGIN block.

3. The storage area in bytes for each ON­
unit.

4. The length of the text control section.
(The machine instructions in the
object module are grouped in blocks
called control sections, or CSECTs.)
The text control section contains the
executable instructions.

5. The length of the static internal con­
trol section. 'I'his control section
contains all storage for variables
declared STATIC INTERNAL.

TABLE OF OFFSETS

If the options SOURCE, NOSTMT, and
NOLIST apply, the compiler lists, for each
primary entry point, the offsets at which
the various statements occur. This infor­
mation is found, under the heading TABLE OF
OFFSETS AND STATEMENT NUMBERS WITHIN PROCE­
DURE, following the end of the storage
requirements table.

EXTERNAL SYMBOL DICTIONARY

If the option EXTREF applies, the com­
piler lists the contents of the external
symbol dictionary (ESD) for the object
module. The ESD is a ta~le containing all
the external symbols that appear in the
module. (An external symbol is a name that
can be referred to in a control section
other than the one in which it is defined.)
The information appears under the following
headings:

SYMBOL

TYPE

ID

An a-character field that identifies
the external symbol.

Two characters from the following list
to identify the type of ESD entry:

SD - Section definition: the name of
a control section within this
module.

CM - Common area: a type of control
section that contains no execut­
able instructions. The compiler
creates a common area for each
non-string element variable
declared STATIC EXTERNAL without
the INITIAL attribute.

ER - External reference: an external
symbol that is not defined in
this module.

PR - Pseudo-register: a field in a
communications area, the pseudo­
register vector (PRV), used by
the compiler and the library
subroutines.

LD - Label definition: the name of an
entry point to the external pro­
cedure other than that used as
the name of the program control
section.

Four-digit hexadecimal number: the
entries in the ESD are numbered
sequentially. commencing from 0001.

ADDR
Hexadecimal representation of the
address of the symbol: this field is
not used by the compiler, since the
address is not known at compile time.

LENGTH
The hexadecimal length in bytes of the
control section lSD, CM, and PR
entries only>.

Standard ESD Entries

The external symbol dictionary always
starts with seven standard entries (Table
7).

1. Name of the text control section (the
control sect:i.on that contains the
executable instructions). This name
is the first label of the external
procedure statement .•

2. Name of the static internal control
section (which contains storage for
all variables declared STATIC INTERN­
AL). This name is the first label of
the external procedure statement,
padded on the left with asterisks to
seven characters if necessary. and
extended on the right with the
character A.

3. IHEQINV: pseudo-register for the
invocation count (a count of the numb­
er of times a block is invoked
recursively).

q. IHESADA: entry point of the library
routine that obtains automatic storage
for a block.

5. IHESADB: entry point of the library
routine that obtains automatic storage
for variables whose extents are not
known at compile time.

Table 7. Typica.l Standard ESD Entries
r----------------------···-------------------,
I SYMBOL TYPE 10 ADDR LENGTH I
I I
IFIGS SD 0001 000000 00033AI
I I
1 ••• FIG5A SD 0002 000000 00005Fl
I I
IIHEQINV PR 0003 000000 0000041
I 1
IIHESADA ER 0004 000000 I
I I
IIHESADB ER 0005 000000 I
I I
IIHEQERR PR 0006 000000 OOOOOql
I I
IIHEQTIC PH 0007 000000 OOOOOql l _________________ . ___________ . __________ J

Part II: Using All the Facilities of the PL/I compiler 35

6.

7.

IHEQERR: pseudo-register used by the
library error-handling routines.

lEEQ'fIC: pseudo-registe.r used by the
library multitasking routines.

Other ESD Entries

The remaining entries in the external
symbol dictionary vary, but. generally
incl ude t.he following:

1. Section definition for the ii-byte con­
trol section IEEMAIN, which contains
the address of the principal entry
point to the external procedure. This
control section is present only if the
procedure statement includes the
option MAIN.

2. Section definition for the control
section IEENTRY (always present).
Execution of a PL/I progrmD always
starts with this control section,
which passes control to the appropri­
ate initialization subroutine of the
PUI library; when initialization is
complete, control passes to the
address stored in the cont.rol section
IHEMAIN. (Initialization is required
only once during the execution of a
PL/I program, even if it calls another
external procedure, in such a case,
control passes directly to the entry
point naIDed in the CALL statement, and
not to IHENTRY. P

3. LD-type entries for all names of entry
points to the ext.ernal procedure
except the first.

4. A PR-type entry for each block in the
compilation. The name of each of the
pseudo-registers comprises the first
label of the external procedure state­
ment, padded on the left ~ith
asterisks t.O seven characters if
necessary, and extended on the right
with an eight.h character selected from
one of two tables used by the compil­
er. If the number of blocks exceeds
the nurober of characters in the first
table, the first character of the
pseudo-register name is repJaced by a
character taken from ·the second table,
and the last character recycles. If
the first character thus overwritten
is the start of the external procedure
name rather than an asterisk. the com­
piler issues a warning message (since
identical pseudo-register names G~uld

SoAlthough IHEMAIN and IHENTRY are produced
by the compiler as described, they are
combined into a single section during ODC
conversion.

36 Section 5: compiling a PL/I Program

be generated from different procedure
names) •

These pseudo-registers are termed dis­
play ps~udo-~~9isters.

Example:

X: PROe;
'i: PROC:

Z: BEGIN;
END X;

The display pseudo-registers for X. Y,
and Z would have the names:

******XB
******xc
******XD

5. ER-type entries for all the library
routines and external routines called
by the program. The list includes the
names of library routines called
directly by compiled code (first-level
routines). and the names of routines
that are called by the first-level
routines.

6. CM-type entries for non-string element
variables declared STATIC EXTERNAL
without the INITIAL attribute.

7. SD-ty~e entries for all other STATIC
EXTERNAL variables and for EXTERNAL
file names.

8. PR-type entries for all file names.
For EXTERNAL file names, the name of
the pseudo-register is the same as the
file name; for INTERNAL file na~es,
the camFiler generates names as for
the display pseudo-registers.

9. PR-type entries for all controlled
variables. For external variables,
the name of the variable is used for
the pseudo-register name; for internal
variables. the compiler generates
names as for the display
pseudo-registers.

OBJECT MODUI,E

If the option LIST applies, the compiler
generates a map of the static internal con­
trol section and lists the machine instruc­
tions af the object program in a forK< simi­
lar to System/360 assembler language. The
lllachine instructions are described in IBM
System/360: Principles of Operation. The
following descriptions of the object module
listings include many terms that can be
properly defined only in the context of an
explanation of the mechanism of compilation
and the structure of the object program;
such an explanation is beyond the scope of
this manual.

Both the static internal storage map and
the object program listings start on a new
page. If the LINECNT option specifies 72
or fewer lines per page and the number of
lines to be printed (including skips)
exceeds the specified line count, double­
column format is used. If the LINECNT
option specifies more than 72 lines per
page or the number of lines to be printed
(including skips) is less than the speci­
fied line count, Single-column format is
used.

Static Internal Storage Map

The first 52 bytes of the static intern­
al control section are of a standard form
and are not listed. They contain the fol­
lowing information:

DC F'4096'
DC AL4 (SI. +X'1000')
DC AL4 (SI.+X' 2000')
DC AL4(SI.+X"3000")
DC AL4(SI.+X'4000')
DC AL4(SI.+X·5000')
DC AL4(SI.+X'6000")
DC AL4(SI.+X'7000')
DC VL4(IHESADA)
DC VL4 (IHESADB)
DC A (DSASUB)
DC A (EP1SUB)
DC A (IHESAFA)

S1. is the address of the static intern­
al control section, and 1HESADA. lHESADB.
and 1HESAFA are library subroutines. DSA­
SUB and EPISUB are compiler routines for
getting and freeing dynamic storage areas
(DSAs) •

The remainder of the static control sec­
tion is listed, each line comprising the
following elements:

1. Six-digit hexadecimal offset.

2. Up to eight bytes of hexadecimal text.

3. Comment indicating the type of item to
which the text refers; a comment
appears against the first line only of
the text for an item.

The following abbreviations are used for
the comments (xxx indicates the presence of
an identifier):

DED FOR TEMP
or OED

FED

DV •• xxx

Data element descriptor
for a temporary or for a
programmer"s variable.

Format element descriptor.

Dope vector for a static
variable.

DVD.. Dope vector descriptor.

D.V. SKELETON DOl~ vector skeleton for
an automatic or controlled
variable.

RDV.. Record dope vector.

A •• xxx Address of external con­
trol section or entry
paint, or of an internal
label.

ARGOMENT Argument list skeleton.
LIST

CONSTANTS Constants.

SYMTAB Symbol table entry.

SYM •• xxx

FILE •• xxx

ON •• xxx

ATTRIB

xxx

Symbolic name of label
constant or label
variable.

File name.

Programmer-declared
ON-condition.

File attributes.

Static variable. If the
variable is not initia­
lized, no text appears
against the comment, and
there is also no static
offset if the variable is
an array. (This can be
calculated from the dope
vector if required.)

Object Program Listing

The object program listing includes com­
ments of the following form as an aid to
identification of the functions of tbe com­
ponents of the program:

• STATEMENT NUMBER n - identifies the
start of the code generated for source
listing statement number n.

• PROCEDURE xxx - identifies the start of
the procedure labeled xxx.

• REAL ENTRY xxx - heads the initializa­
tion code for an entry point to a pro­
cedure labeled xxx.

• PROLOGUE BASE - identifies the start of
the initialization code common to all
entry points to that procedure.

• PROCEDURE BASE - identifies the address
loaded into the base register for the
);:rocedure.

Part II: OSing All the Facilities of the PL/I Compiler 31

• APPARENT ENTRY xxx - identifies the
point of entry into the procedure for
the entry point labeled xxx.

• END PROCEDURE xxx - identifies the end
of the procedure labeled xxx.

• BEGIN BLOCK xxx - indicates the start
of the begin block 'With label xxx.

• END BLOCK xxx - indicates the end of
the begin block 'With label xxx.

• INITIALIZA'l'ION CODE FOR xxx - indicates
that the code following performs ini­
tial value assignment or dope vector
initializat.ion for the variable xxx.

Wherever possible, a mnemonic prefix is
used to identify the type of operand in an
instruction, and where applicable this is
followed by a source program identifier.
The following prefixes are used:

A ••

AE ••

BLOCK.

C ••

CL.

DED ••

DV ••

DVD ••

Address constant.

Apparent entry point (point in
the procedure to which control
passed from the prologue).

Label created for an otherwise
unlabeled block (followed by the
number of the block).

Constant (followed cy a hexade­
cimal dictionary reference).

A label generated by the compil­
er (followed by a decimal number
identifying the label).

Data element descriptor.

Dope vector.

Dope vector descriptor.

FVDED.. Data element descriptor of func­
tion value.

FVR ••

IC.

ON •.

PRo •

RDV ••

RSW .•

51.

SKDV ••

F'unction value.

Invocation count pseudo-register.

ON-condition name.

Pseudo-register.

Record dope vector.

Return switch.

Address of static internal con­
trol section.

Skeleton do~e vector, followed
by hexadecimal dictionary
reference.

38 section 5: Compiling a PL/I Program

SKPL.. Skeleton parameter list, fol­
lowed by hexadecimal dictionary
reference.

ST.. Symbol table entry.

SYM.. Symbolic representation of a
label.

TCA.. Temporary control area: a word
containing the address of the
dope vector of the specified
temporary.

TMP.. Temforary. followed by hexade­
cimal dictionary reference.

TMPDV.. Temporary dope vector, followed
by hexadecimal dictionary
reference.

VO.. Virtual origin.

WP1.
WP2.
WS1.
WS2.
VlS3.

Workspace, followed by decimal
number of block which allocates
workspace.

A listing of the various storage areas
is not produced, but the addresses of
variables can be deduced from the object
program listing.

Example: A=B+I0El; in the source program
produces:

0002CA 18 00 B 058 LE O.B

0002CE 7A 00 B 064 AE 0,C •• OBF4

0002D2 70 00 B 060 STE a,A

A and B are STATIC INTERNAL variables at an
offset of X'60' and X'S8', respectively,
from the start of the control section.

BIAGNOSTIC MESSAGES

The compiler generates messages that
describe any errors or conditions that may
lead to error that it detects during compi­
lation. Messages generated by the prepro­
cessor appear in the compiler listing imme­
diately after the listing of the statements
processed by the preprocessor; all other
messages are grouped together at the end of
the listing. The rressages are graded
according to their severity:

A warning message calls attention to a
possible error, although the stateltent to
which it refers is syntactically valid.

An error message describes an attem~t
made by the compiler to correct an

erroneous statement (although it may not
specify the corrective action).

A severe error message specifies an error
that cannot be corrected by the compiler.
The incorrect statement or part of a
statement is deleted, but compilation
continues. However, if a severe error is
detected during the preprocessor stage,
compilation is terminated after the com­
piler has listed the source program.

A termination erro~ message describes an
error that forces the termination of the
compilation.

The compiler lists only those messages
with a severity equal to or greater than
that specified by the FLAG compiler option:

Type of Message
warning
error
severe error
termination error

Option
FLAGW
FLAGE
FLAGS
Always listed

~ach error message is identified by an 8-
character code:

1. The first three characters are IEM,
which identify the message as emanat­
ing from the PL/I compiler.

2. The next four characters are a 4-digit
message number.

3. The last character is the letter I,
which is the code for an informative
messa.ge.

Appendix H lists all the compiler mes­
sages in numeric sequence.

Messages issued by PLC and ODC are iden­
tified by the prefixes CFBAA and CFBAB.
These messages are explained in the System
Messages publication.

MULTIPLE COMPILATIONS

The multiple compilation facilities of
the TSS/360 PL/I compiler allow you to com­
pile more than one object module in a
Single execution of the compiler. Multiple
compilation can increase compiler through­
put by reducing system overhead.

Two forms of multiple compilations are
possible: the CONT option of the PLCOPT
operand of the PLI command, and the
*PROCESS statement. Both forms can be used
in a single execution of the compiler.

CO NT OPTION

By specHY1>nq the CONT option in the
PLCOPT parameter'. you notify Program Lan­
guage Control (PLC) that. a new compilation
or series of lations is to be
initiated after: current compilation or
series of compila!:..ions is completed. I'LC
will prompt you for the new module name by
typing PLI. The I'LCOP'l' and PLIOPT parame­
ters are unchanged from t.he first
compilation.

PLC treats the new compilat.ion(s) as an
entirely separat.e unit; in effect.. PLC act.s
as if a new I'Ll command has b{~en issued
with a new modu.i ... E: name, the only difference
being ·tnat no exit. I.s taken from PLC to t.he
Command System and the user, when the com­
pilation is comple·te. Each compilation or
series of compilations ini t.iated by either
the PLI command itself or by the CONT
option is called an iteration of the I'Ll
comman(L Each iteration of ELI invokes the
PL/I compil.er (and t.he text editor. if
required) anothen passes the programs that
were compiled in that iteration. together
wi.th all compiled 1I'odules listed in the
m.ergE list. or merge data set for that
iteration, to the Object Data Set Converter
WnC) for processing~ ODC is invoked only
once in each iteration; when ODC has
finished its processing. PLC starts on the
next iteration, if CONT was specified.

There is no lirnitat.ion on the number of
iterations of the PLI command that can be
initiated through CONT options.

THE *PROCESS STAT~~ENT

A number of source programs can be com­
piled consecutively within one iteration of
PLI. 'I'hi3 is accomplished by following the
first prog.ram in that iter·ation with a
*PROCESS statement c The .PROCESS st.atement
infOl::ms the compiler that a new program is
to be compiled. The statement is followed
by a PU1 opt. ion list, identical in every
respect. with the PLIOPT parameter of the
PLI cOIlUnand except: that the name you give
to the new progra.m must be specified in the
opt:ion OBJN.M=aaaaaaaa where aaaaaaaa stands
for t.he program name of one to eight
alphameric characters, the first of which
is alphatetic.

Since only PI,TOP'l' options can be speci­
fied in this option list. all the PLC
options specified in t.he parameters of that
iteration apply unchanged. A1.I batched
compilations to be initiated with *PROCESS
must therefore reside in the same source
data set, and all those specified with the
LOAD option are placed in the same merge
list.

Part II: USing All the .l"acilities of the PL/I compiler 39

Output listings from one iteration of
PLI will be directed to one listing data
set where they will be formatted consecu­
tively. The name associated with this
listing data set is the name of the first
program in the iteration. Compiled modules
in the form LOAD.name(O) are. however,
separate, and each such module has asso­
ciated with it the program name specified
by the NAME parametez for the first compi­
lation and by the OBJNM option for subse­
quent compilations. If the name given for
OBJNM repeats a name already used once as a
program name in that itera.tion. the module
compiled earlier is erased and replaced by
the new module.

Format of the *PROCESS Statement

The format of the *PROCESS statement is:

*PROCESS ('options');

where • options' indicates a list of compil­
er options exactly as specified in the
PLIOPT operand of the PLI command~ the list
of options must be enclosed within apos­
trophes. The asterisk must be in the first
byte of the record, and the keyword PROCESS
may follow in the next byte (column) or
after any number of blanks. Blanks are
also permitted between:

1. The keyword PROCESS and the option­
list delimiter (left parenthesis).

2. The option-list delimiters and the
start or finish of the option list.

3. The option-list delimiter and the
semicolon.

The options in the option list can
include any of those described in Appendix
G. The options must be separated by com­
mas, and there must be no embedded blanks.
The options apply to the compilation of the
source statements between that .PROCESS
statement and the next *PROCESS statement.
If you omit any of the options. the default
values apply; there is no carryover from
the preceding *PROCESS statement. The
number of characters is limited only by the
length of the record. If you do not want
to specify any options, code

* PROCESS;

THE OBJNM OPTIO~: The OBJNM option is used
in the option string of a *PROCESS state­
ment to give a module name to the new
module. It. is specified as OBJNM=a, where
'a' is a one-to-eight character alphameric
name.

40 Section 5: compiling a PL/I Program

COMPILE-TIME PROCESSING

The MACRO option or the CHAR48 option in
the PLIOFT options cause compile-time pro­
cessing to be ini.tiated. You can save the
output from compile-time processing by spe­
cifying MACDeR in the PLIOPT operand. If
you would like your own DSNAME for this
lIacrofile. you can specify it in the
MAC RODS operand. You can then use the
intermediate data set, which will have the
name given by MACRODS. as input in future
compilations. saving time by bypassing
compile-t.ime processing.

The compile-time facilities of the TSs/
360 PL/I compiler are described in PL/I
Language Reference Manual. These facIli­
ties allow you to include in a PL/I program
statements that, when they are executed by
the preprocessor stage of t.he compiler,
rrodify your source statements or cause
source statements to be included in your
~rogram from a library.

INVOKING THE PREPROCESSOR

The preprocessor stage of the compiler
is executed only if you specify the option
~ACRO. If nc value is specified for the
~ACRODS parameter, the compiler creates the
data set MAC.name(O) to hold the prepro­
cessed source statements until compilation
i::eqins.

The term MACRO owes its origin to the
similarity of some applications of the
compile-time facilities to the macro lan­
guage available with such processors as the
System/360 assembler. Such a macro lan­
guage allows you to write a single instruc­
tion in your program to represent a
sequence of instructions that have pre­
viously been defined.

Three other compiler options. MACDCK,
SOURCE2. and COMP, are meaningful only when
you also specify the MACRO option. All are
described earlier in this section.

The ~INCLUDE Statement

PL/~~~ Reference Manual describes
how to use the 'INCLUDE statement to incor­
porate source statements fzom a partitioned
data set into a PL/I source program. (A
fartitioned data s~~ is used for the
storage of other data sets, termed members.
Thus, a set of SOUl.-ce statements that you
may want to insert into a source program by
means of a ~INCLUDE statement Ir,ust exist as
a data set (member> within a partitioned
data set.)

The ~INCLUDE statement includes one or
more pairs of identifiers. Each pair of
identifiErs specifies the DDNAME operand of

a DDEF command that defines a library and,
in parentheses. the name of a member of the
library. For example, the statement:

~INCLUDE DD1 (INVERT),DD2(LOQPX)

specifies that the source statements in
member INVERT of the library defined
DDNAME=DD1, and those in member LOOPX of
the library defined DDNAME=DD2. should be
inserted into the source program. The task
must include appropriate DDEF commands.

If you omit the DDNAME from any pair of
identifiers in a IINCLUDE statement, the
preprocessor assumes USERLIB; no DDBF com­
mand is then required.

Source statements in a library must be
in the form of a virtual index sequential
(VI) line data set. The source margin for
input records specified by the SORMGIN
option applies equally to source statements
inserted by a IINCLUDE statement.

Part II: USing All the Facilities of the PL/I Compiler 41

SECTION 6: STORING AND INVOKING THE MODULE

At the beginning of Section 5, an object
module was defined as the output of a
single compilation, eXClusive of the list­
ing; an object module corresponds to a
single external procedure and any proce­
dures nested within it. A PL/I program is
one or more object modules consisting of a
main procedure and any subroutines that it
reqUires.

A program library is a set of object
modules that is treated as a single data
set in relation to the system catalog and
access devices. All programs are stored in
object module form in program libraries.
(Exception: Your installation may provide
for storing of object modules in initial
virtual storage. See ·Sharing,- later in
this section.) The system provides you
with two program libraries: a user library
and a copy of the system library. Using
the DDEF command. you can define additional
program libraries.

Using the linkage editor,1 the merging
facilities of the PLI command. or the CDS
(copy data set) command, you can move
object modules from one library to another.

PROGRAM LIBRARY LIST CONTROL

Each program library is a partitioned
data set. There are four types of program
libraries:

1. System library (SYSLIB)

2. User library (USERLIB)

J. User-defined job libraries (JOBLIBs)

4. Other user-defined program libraries.

SYSTEM LIBRARY

The system library contains some service
routines, provided by the installation. and
the PL/I library subroutines. It is
accessible to all users on a read-only

1The TSS/360 linkage editor is an optional
service program for connecting and editing
object modules that have been assembled or
compiled separately, and for Roving object
modules from one library to another.
Refer to IBM System/360 Time Sharing Sys­
tem: Linkage Editor, Ge28-200S, and to
-Notes on Link-Editing PL/I Control Sec­
tions,· later in this section.

casis. You need not define or catalog this
library.

USER LIBRARY

The user library is the private library
assigned to you the first time you log on.
It is kept in public storage, and, hence,
located on a direct access device. This
library is automatically defined and made a
part of your catalog by the system; it is
thus available each time you log on. If
you do not specify a job library, the
object modules resulting from use of the
PL/I compiler are placed in your user
library.

Note: TSS/360 does not allow a library to
contain more than one noncontextual
declaration of an entry name. For PL/I,
this applies to module names and entry
names of external procedures; entry names
of internal procedures are excepted.

Since a library must not contain ~ore
than one declaration of any entry name, you
may want to restrict your user library to
programs that you rely on for getting work
done. Test versions of these programs can
be placed elsewhere. The program library
list makes it possible for you to control
the contents of your user library. This
list is a defined hierarchy of program
libraries; it is initialized at log-on time
and consists of your user library and a
copy of the system library. The library at
the top of the lIst (initially the user
library) automatically receives all object
modules resulting from language processing.
In addition to using the program library
list to store object modules, the system
uses this list to control its order of
search when looking for programs that ~ust
be loaded at execution time. The library
at the top of the list is searched first,
then the next-to-the-top library. etc. The
user library and the system library are
searched after any other libraries on the
list. If no job libraries are defined. the
library at the top of the list is always
the user library.

JOB LIBRARIES (JOBLIBS)

You can specify that a job library be
added to the program library list to
receive the output of the language proces­
sors by issuing a DDEF command defining
that job library and containing the operand
OPTION=-JOBLIB. "hen this con~mand is

42 Section 6: storing and Invoking the Module

executed, the name of that job library is
added to the top of the program library
list. That library then receives all sub­
sequent module output of the language pro­
cessors until another job library is
defined (and is thus at the top of the
list). until a RELEASE command is issued
for that job library, until a JOBLIBS com­
mand moves another library to the top of
the program library list, or until you log
off. To be used in subsequent tasks, t,he
job library must be redefined. A job
library must always have a VP data set
organization; it can be defined on a public
or private volume.

Note: A job library can contain a mixture
of PL/I-compiled members and members
created in any other way, but unless a
number of requirements are met, only PL/I
modules can be executed together. See
"Section 11: Interface between PL/I and
Assembler-Language Programs.-

The following types of job libraries are
available:

• Private-volume job library

• Public-volume job library

Private-Volume Job Library

You can create a library for infrequent­
ly used modules by issuing a DDEF command
for a cataloged job library that resides on
a private removable disk pack. When using
a private job library in a nonconversation­
al task, you must request (with the SECURE
command) a device for that job library.
Modules can he entered in such a library:

• Automatically, if the library is the
last one defined in the session.

• By link editing it from the user
library, a session job library, or a
public-volume job library, and specify­
ing to the linkage editor the desired
private-volume job library as the out­
put destination.

Public-Volume Job Library

This type of library is useful for fre­
quently used programs whose flames and
external symbols conflict with other pro­
grams in the user library_ By defining it
at the beginning of a task, as the only job
library in the task, you can also use it to
contain all modules compiled during the
task. All job libraries residing on public
volumes are automatically cataloged and can
be shared among users.

To obtain a list of the job libraries
for which you have issued DDEF commands in
the current session, issue the command

The system responds by typing each job
library's DDNA.i"lE and DSNAME, in the order
t.bat the job libraries appear on the pro­
gram lihrary list .•

1'0 facilitate the maintenance of pro­
grams within job libra:r:ies and the user
library. the POD? command is available.
POD? enables you to obtain on SYSOUT a
list of the member names (and optionally
the alias names and other data) of modules
in USERLIB or a :iob library.

eTHER USER-DEFINED PROGRAM LIBRARIES

You can define a program library without
Il'.aking it a job library; simply issue a
DDEF command for a VP data set. omitting
OPTION~10BLIB. and use that VP data set to
store object modules. To get object
modules into that program library from
USERLIB or from a job library, use:

• A CDS command, or

• An LNK command with a linkage editor
INCLUDE statement.

Such a library can be referred to by subse­
quent CDS commands or linkage editor
INCLUDE statements. However. it is not in
the program library list, and hence is not
included in the linkage editor's automatic
search and is not available to the dynamic
loader. (The dynamic loader is a required
service program for allocating virtual
storage to tlser-selected Object modules
that reside in external storage.)

MULTIPLE VERSIONS OF OBJECT MODULES

If you have only one version of an
object module and you want to replace it
with a new version. simply modify the
source data set with the desired changes
and recompile the module, causing it to be
placed in the same library. The old ver­
sion disappears. and the new version takes
its place.

But if you want to create another ver­
sion of the same module and keep both ver­
sions, using the same module name or an
identical entry name in each module, you
must place each vezsion in a different
IH::rary.

This restriction occurs because a
library cannot contain more than one
declaration of any external-procedure entry
name, nor can it contain t.wo modules with
the same name.

Part II: Using All the Facilities of the PL/I Compiler 43

For examples of how to store two or more
versions of the same module, see Example 2
of ·Part III: Examples.-

USER-ASSIGNED NAMES

Table 8 shows the restrictions on dupli­
cation of user-assigned external names.
For a description of how these names are
stored internally, see -External Names,­
later in this section.

The POD? command can be used to list
external names in a library, thus aSSisting
you to avoid duplication. You can always
have the same name in different libraries.

Reserved Names

You can never assign an external name
beginning with the characters SYS; names
beginning with these letters are reserved
for certain system programs. Any module
starting with these symbols can never be
retrieved from a user library or job
library for execution, since resolution of
SYS symbols for loading and running is
always attempted from the system library.
In addition, a diagnostic is issued if a
module loaded by another name contains an
external symbol beginning with SYS.

To avoid accidentally duplicating tbe
names of IBM-supplied subprograms, do not
use external symbols starting with the
characters IHE or any PL/I library subrou­
tine entry point name (that is, SIN, COS,
etc.). unless you want to substitute for
such a program one of your own.

PI~I CONTROL SECTIONS

A control section (CSECT) is the small­
est relocatable part of an object module;
the PL/I compiler subdivides each object
lI,odule into a standard set of CSECTs. Cer­
tain CSECTs, especially those frequently
used, will require less storage space,
execution time, or compilation time if you
help the system manage them.

TYPES OF PL/I CONTROL SECTIONS

INITIALIZATION CSECT: This CSECT is
entered when the ext.ernal procedure is
called by module name. Initialization is
required for all PL/I programs. See ·PL/I
Subroutines called from Assembler Pro­
grams,· in Section 12.

For subroutine procedures, the initiali­
zation CSECT issues an error message; only
the main procedure should be called cy
module name.

STATIC INTERNAL CSECT: This CSECT contains
parameter lists, save areas, and any
variables declared static internal.

TEXT CSECT: This CSECT contains executable
code that is never modified by the program.

FILE CSE(~: This CSECT contains the file
declare block, which is never modified by
executacle code. A file CSECT is generated
for each file.

STATIC EXTERNAL CSECT: A static external
CSECT is generated for· each variable
declared static external. This CSECT has
the COMMON attribute (see Linkage Editor)
if it is declared without the INITIAL
att.ribute. and if it contains no string
items.

Table 8. Restrictions on Assigning External Names
r---------------------T--~---------------------,
I Type of Name I Program. I Program Library I
t---------------------+---+---------------------~
I module name I Must be specified L~ PLI command; must I No duplicates I
I I not be declared; must not du~licate other ! allowed. I
I I ext.ernal names. I I
r---------------------f-----------------------------·-------------~ I
I name of external I Must be declared; must not duplicate I I
I procedure i other external names. I I
~---------------------t------------·---------------------.----------~ I
I ENTRY name of exter-I If declared, must not duplicate other I I
I nal procedure I external names. I I
t---------------------t---+---------------------i
I file name or name I If declared, other procedures can have I Duplicates I
I of static external I duplicate declarations. Attributes iT. I allowed. I
I variable I duplicate declarations must be identical. I I r---------------------L------------------------------------_______ L-____________________ ~

I.Restrictions for the object module are the same as for the program. I l __ -J

44 Section 6: Storing and Invoking the Module

LINK-EDITING

Why Link-Edit?

In TSS/360, use of the linkage editor is
optional. If the linkage editor has not
linked a calling object module to a called
object module, the dynamic loader links
them automatically. when it loads t,he cal­
ling object module for execution. However.
you may want to use the linkage editor for
any of these purposes:

• Link the output of separate compila­
tions into one object module. If one
of the included modules references
another imFlicitly (that is. not expli­
citly>. this pre-execution linkage
reduces the time it will take to load
and execute the program.

• Combine the CSECTs of an oeject module
into a single CSECT, thus reducing the
amount of virtual and external storage
required. Normally, the CSECTs are
combined when they are created. since
the IBM-supplied value for PLIPACK is
P. See ·pa,:;king,· later in this
section.

• Delete, substitute, or rename CSECTs
and delete or rename ENTRY names
without recompiling.

• Change the attributes of CSECTs. See
·sharing,W later in this section.

• Move object modules from one program
library to another.

• Prepare a list of unresolved external
references, distinguishing those that
will be resolved out of SYSLIB from
those that will be resolved out of the
JOBLIBs and USERLIB in use at execution
time.

• Prepare a listing of an object module's
program module dictionary.

IBM Systeml360 Time Sharing Syst~~: Lin­
kage Edito,r:, GC28-2005, describes the pro­
gram module dictionary and explains how to
use the linkage editol:.

External Names

For some uses of the linkage editor, you
must know what the external names of a
module are, and what CSECTs they are in.
External names that you assign are the
names of the module, the external proce­
dure, ENTRY statements in the external pro­
cedure, files, and static external
variables. External names that the system
assigns are the names of the initialization
CSECT and the static internal CSECT. The
module name and external ENTRY-statement

names are the only external names that are
not also CSECT names.

MODULE NAME: The module name is specified
by the NAME. MERGELST, or MERGEDS operand
of the PLI command. This name always qua­
lified the name of a load data set -- that
is, LOAD.nameCO).

Note: Load dat4 sets cannot be link­
edited.

INITIALIZATION CSECT: ODC generates the
name of the initialization CSECT by padding
the procedure name on the right with per­
cent signs (~) to eight characters.

STATIC INTERNAl. CS~~T: The PL/I compiler
generat,es the name of the stat,ic internal
CSECT by adding an A to the right of the
frocedure name and padding on the left with
asterisks (*) to eight characters.

TEXT CSECT: The name of the text, CSECT is
the procedure name.

FILE CSECT: The name of the file CSECT is
the file name.

S'l'NrIC EXTERNAL CSECT: The name of the
static external CSECT is the name specified
in the declaration of the static external
variable.

NAMES OF ENTRY STATEMENTS: Names of ENTRY
statements are kept in the text CSECT.

Names of the text CSECT. file CSECT,
static external CSECT, and ENTRY statements
are truncated to seven characters ey the
PUI compiler. The truncation consists of
using the first four an': last three letters
of the name. Names of seven characters or
less are not truncated.

Rules for Link-Editing PL/I Modules

The following rules have special impor­
tance in relation to PL/I modules. Some of
these rules, and other required information
for linkage-editor users, are given in IBM
System/360 Time Sharing System: Linkage-­
Editor, GC28-200S.

• If you link a module containing a main
frocedure with modules containing sub­
routine procedUres, you should link the
module containing the main procedure
first Un a linkage-editor INCLUDE
statement) so that the main entry point
of the output module will be to the
main procedure.

• Within an object module, external names
must be unique. After a PL/I module is
link-edited, its external names are
known to the linkage editor; any
attempt to include external names that

Part II: Using All the Facilities of the pur compiler 45

duplicat~ external names already in the
output module is rejected. Therefore,
all references to a specific file name
or static-external-variable name are
resolved to the first file CSECT or
static external CSECT that is link­
edited for that name.

• Some CSECTs should not be given a PUBL­
IC or READONLY attribute. See -Attri­
butes of Shared CSECTs," later in this
section.

• Dynamic calls are not known to the lin­
kage editor, and all dynamic linkage is
completed by the dynamic loader, during
execution.

• Load data sets cannot be link-edited.

• If a PLiI module is linked to a non-PL/
I module, the non-PL/I module must be
adjusted to the PLiI environment. See
"Sect.ion 12: Interface between PLiI
and Assembler-Language Programs."

• Packed CSECTs appear as a single CSECT
to the linkage editor. See ·Packing,W
later in this section.

SHARING

It is possible for PL/I CSECTs to be
shared among two or more TSS/360 users.
The installation must provide for the load­
ing of preselected PL/I CSECTs into initial
virtual storage <initial virtual memory. or
IVM} when the system is generated. The
CSECTs to be loaded must be specified by
means of an LLIST macro instruction or DC
instructions at systeIll-generation time.
IBM System/360 Time Sharing System: System
Programmer's Guide. GC28-200B, tells how to
specify the CSECTs to be loaded, and JaM
Syst~/360 Time Sharing System: System
Generation and Maintenance, GC2B-2010,
describes the overall process of loading
CSECTs into IVM.

Note: The SHARE and PERMIT commands have
no-3pplication to PL/I oeject modules.

Linkage Involving Shared CSECTs

• If a CSECT in IVM calls a CSECT not in
IVM, the call must be dynamic. Refer
to the description of the PLI command's
EXPLICIT and XFERDS operands, in Sec­
tion 5.

• If a CSECT in IVM calls a CSECT in IVM,
the call must not be dynamic. Since
the compiler generates explicit calls
to PL/I library modules, PL/I library
modules must be placed in IVM.

• If a control section not in IVM calls a
control section in IVM. the call can be
dynamic or static.

• A Frogra~ contained wholly or partially
in IVM is still limited to a maximum of
4096 bytes for PR-type ESD entries and
may require dynamic calls if it has
many hundreds of subroutines. See the
description of the EXPLICIT and XFERI::S
operands, in Section 5.

Attributes of Shared CSECTs

• public CSECTs -- that is, PLiI CSECTs
that are link-edited to give them the
PUBLIC attribute -- must be executed
(and loaded) in IVM.

• All sharers of a public CSECT in IVM
reference the same copy of that CSECT.

• If a CSECT in IVM is not public. all
sharers reference separate copies.

• Link-editing a CSECT to give it the
READONLY attribute ensures that the
shared code will not modify itself dur­
ing execution. If a public CSECT is
not read-only. it is the responsibility
of each user to ensure the integrity of
the CSECT at any stage of execution,
preventing mutual interference.

• You can conserve external paging
storage by giving the PUBLIC and
READONLY attributes to CSECTs that are
to ee shared.

• Text CSECTs can always be given the
READONLY attribute. Initialization,
static external, and file CSECTs can be
made read-only if the external Froce­
dure was coded with the REENTRANT
option. A static internal CSECT can be
made read-only if (1) the procedure
does not contain an assignment state­
Kent that assigns a value to a static
internal variable, and (2) the external
rrocedure was coded with the REENTRANT
option.

• If a PL/I CSECT to be stored in IVM can
be made read-only, it can be made
r;:ublic.

PACKING

Without CSECT packing, at least one page
(4096 bytes) is assigned to each CSECT. A
CSECT may require more than one page;
however, many PL/I CSECTs require rouch less
than one page. A file CSECT, for example,
is 56 bytes long. If an entire page is
assigned to a 56-byte CSECT. this results
in less than 21 storage utilization.

46 section 6: storing and Invoking the Module

When you compile, ODC checks the value
of PLIPACK, in your user profile. If
PLIPACK=N. one or more pages are assigned
to each CSECT. If PLIPACK=Y, CSECTs are
packed. Packing consists of combining
CSECTs into contiguous storage. retaining
doubleword boundaries for CSECT origins.
The name of the initialization CSECT is
retained as a CSECT name, and other CSECT
names are transformed into entry-point
names. In effect, the CSECTs are combined
into a single CSECT. If PLIPACK=P. ODe
~acks all CSECTs except static external
CSECTs that have the TSS/360 COMMON attri­
bute or are more than 4096 bytes long.
This is generally more efficient than
PLIPACK=Y, since COMMON CSECTs are null
CSECTs and they are mapped onto external
storage only if they are packed. The IBM­
supplied default for PLIPACK is P.

Notes:

• The fifth operand of the LOGON command
specifies whether all CSECTs are to be
packed at execution time. PLIPACK spe­
cifies whether PL/I CSECTs are to be
always packed -- on external storage,
as well as at execution time. Although
PLIPACK requires additional compilation
time, it saves external storage and
avoids the overhead of packing during
the loading process.

• CSECTs that are not already packed are
automatically packed wben they are
loaded into IVM.

• REJMSG, another value in your user pro­
file, controls the dynamic loader's
output of duplicate-name messages. The
command DEFAULT REJ~SG=Y causes the
dynamic loader to .!lot issue such a mes­
sage whenever it encounters a duplicate
CSEC1' or entry-point name, and rejects
a CSECT or entry point, during the
loading process. If REJMSG=N,
duplicate-name messages are issued.
(There may be many of these messages if
your CSECTs are packed.) The IBM­
supplied default for REJMSG is N.

INVOKING THE MODULE

A PL/I module invoked from the corr~nd
mode must be invoked by its module name
(that is, the name in the NAME operand of
the PLI command). A PL/I module called
from a PL/I procedure must be invoked by
its procedure name (that is, the name in
the PROCEDURE statement).

If the invoked procedure expects to
receive parameters, these parameters can be
passed following the name of invocation.

:For informat.ion on how to pass parame­
ters in a PL/I CALL statement, see PL/I
Language Reference Manual. For information
on how to pass parameters from the command
stream, see Command~tem User's Guide.

If the invoked module has close to a
thousand SUbroutines, the dynamic loader
uay not be able to load all the program at
one time. In this case, some or all of the
subroutine calls must be via a transfer
rrodule. which calls the subroutines dynam­
ically; in addition. the transfer module
should selectively unload subroutines
whenever necessary to make room for the
dynarr,ically called subroutines. See the
discussions of the EXPLICIT and XFERDS
operands. in Section 5. and Example 18 in
Part Ill.

RECOVERING FROM ERRORS WHEN DYNAMICALLY
LOADING

The dynamic loader notes all of the
external calls in a module that is expli­
citly loaded or invoked and resolves them
by searching the program library list.
While the loader is linking the object
modules into virtual storage, diagnostic
roessages may be issued indicating error
conditions that can affect the eventual
execution of the program.

• Name to be loaded or run not found in
library - While in command mode, you
either specified the wrong module name
or forgot. to define the job library
containing the object module. In the
latter case, if you are operating con­
versationally, you can enter the DDEF
command defining the job library and
reissue the LOAD corr~and or module
name.

• Unresolved references - You executed an
object module that refers to a subrou­
tine that cannot be located in any of
the libraries in the program library
list. A diagnostic message is issued
specifying tche name that was used in
the reference. Further linking of
other object modules is not suspended.
however, so that the main program and
pOssibly other subprograms are rlaced
in virtual storage.

• Duplicate names - Tbe dynamic loader
does not load control sections with
duplicate names; only the first one
encountered is loaded. If a call by
module name, a call by procedure name,
or an attempt by the dynamic loader to
satisfy an external call results in an
attempt to load a module containing the
second occurrence of an external name,
the dynamic loader rejects the CSECT
with the duplicate na~e and issues a

Part II: USing All the Facilities of the PL/I compiler 47

diagnostic message. (Exception: If
there is only a duplicate ENTRY name.
the control section is loaded but the
duplicate ENTRY name is removed.>
Therefore, (1) static external
variables should not have conflicting
initial values; only the first initial
value encountered is loaded. (2) Only
one file control section is loaded for
each file; conflicting attributes will
arise when a file is opened for INPUT
but the file control section is for an
OUTPUT file, etc.

Note: Ordinarily, a program that is called
by simply issuing the name of the main
module (rather than issuing a CALL command
or LOAD and GO> is not automatically
unloaded after execution. The UNLOAD com­
mand can be used to unload it from virtual
storage.

If you want to execute the program
regardless of the error, retype the module
name. You must, however, repeat the name
originally specified. This is necessary to

define the point at which execution is to
te initiated.

If you anticipate that an object aodule
will have unresolved references, first
issue a LOAD command naming the module:
then issue the module name itself. This
method is recommended for a nonconversa­
tional task, since execution is initiated
regardless of unresolved references.

If you do not want to execute the ver­
sion of the pro~ram that has been Fut into
storage. issue an UNLOAD command. (This
answers that you will not attempt to load
modules with duplicate names.) You can
then issue a DDEF command defining the job
library that was missed in the first LOAD
attempt; if the job library is already
defined, but not at the top of the Frogram
library list, you can put it there by issu­
ing the appropriate RELEASE or JOBLIBS com­
~and. A LOAD command or module name issued
at this Feint causes the entire linking
process to be redone.

48 Section 6: Storing and Invoking the Module

TSS/360 PLI'I cOlltains facilities for
writing programs that interact with the
terminal user. There are two classes of
interactive statements: the DISPLAY state­
ment and STREAM I/O statements.

DISPLAY

The DISPLAY statement is the simplest
type of terminal I/O, and is ideally suited
to character-string transmission, although
it can do some data conversion on output.
A disadvantage is that it lacks formatting
facilities.

A message can be displayed in either of
two forms:

1. Without the REPLY option:

DISPLAY(element-expression):

2. With the REPLY option:

DISPLAY (element-expression)
REPLY (character-variable)
[EVENT(event-variable)};

General rules:

• Execution of the DISPLAY statement
causes the element expression to be
evaluated and. where necessary, con­
verted to a varying character string of
maximum length 126 characters. This
character string is printed at the ter­
minal, starting at the beginning of a
new line.

• There is also a return to the next line
after the message has been printed,
unless the last character of the mes­
sage is a colon. In that case. the
colon is not printed, but causes the
print head to stay where it is, posi­
tioned ready to print immediately after
the displayed message.

• Thus successive DISPLAY messages are
double-spaced unless they end with
colons, in which case they are
single-spaced.

• The character variable. specified in
the REPLY option. receives a message
that you enter; that is, a strinq of up
to 126 characters.

• Without the REPLY option. execution
continues uninterrupted. If REPLY is

9ECTION 1: TERMINAL I/O

specified" execution is suspended until
the REPLY character string is received.

• If the EVENT (event-variabl.e) option is
given, the compl.etion part of the event
variable is not set to 'l"B until. a
WAIT statement naming the event is
executed.

• You start typing the REPLY character
string wherever the last terminal
operation has left the print head.
Tf:!rminate the reply by pressing RETURN;
the RETURN is not part of the reply.
If you want to continue the reply on
the next line. type a hyphen and press
RETURN; neither character is part of
the reply. To cancel the reply and
start again. press # followed by
RETURN.

Examples:

DISPLAYC"THIS MESSAGE AND RETURN');

DISPLAy(tDON"T RETURN:');

DISPLAY(CBARVAR)~

DISPLAY('N BAS VALUE • liN).

DISPLAy(OENTER NAME:')REPLY(CHARVAR);

DISPLAY(MSGVAR)REPLY(~~SVAR)EVENT
(EVTVAR) ;

STREAM I/O

All three forms of STREAM I/O (that is,
data-directed, list-directed. and edit­
directed) have the same PL/I language faci­
lities for both terminal and non-terminal
I/O; even ru.les regarding delimiters are
the same. Although the same terminal can
be used for both input and output, there
are at least two separate, unconnected
files involved.

INPUT USING 'GET"

Input is requested from your terminal on
execution of a conversational mode GET
statement that refers to SYSIN. The
reference to SYSIN can happen in three
ways:

1. The file name, omitted from the GET
statement. becomes SYSIN by default
(this causes a warning message during
compilation) :

Part II; Using All the Facilities of the PL/I Compiler 49

GET LIST(A,B,C);

2. The file name SYSI.N is used
explicitly:

GET FILE(SYSIN) LISTO\~H.C}.

3. A file name other than SYSIN is used.
but no DDEF command is issued for that
file prior to execution.

Prompting Action

When a GET statement is executed. the
buffer is examined to see whether the requ­
est can be satisfied from data already read
in. If it can, the buffer painter is simp­
ly advanced, and execution continues
without external data input.

If t:here is no data in the buffer, or
not enough to satisfy the GET. then a pro­
mpting signal (a carriage return followed
by a colon) is sent to the terminal and the
keyboard is unlocked. At this point, you
should enter the data required for the GET.
If you press RETURN without having entered
enough to satisfy the GET, then the system
prompts again. (This allows you to enter
each item on a new line. if you want.)

You need not stop after providing enough
input for the GET. If you know what data
will be required next, you can enter it
ahead of time. and thus ·primeM the buffer.
As with DISPLAY REPLY. if you want to con­
tinue on another line, you must enter a
hyphen and press RETURN; to cancel a line
and restart. enter # and press RETURN. By
using successive continuations, you can
ente.r up to 32,760 characters for one
r;rompt.

Note: There is no connection bet:ween
STREAM 1/0 and DISPLAY. For example. it is
impossible to use excessive STREAM input
for a GET to satisfy a subsequent DISPLAY
REPLY.

SKIP option

As implied above, there is no direct
correspondence between execution of GET
statements and prompting for input. You
can obtain synchronization by using the
SKIP option alone; e.g.:

GET SKIP;

or in an input request; e.g.:

GE'l' LIST(A.B,C)SI<IP;

The SKIP option is executed first. The
system ignores anything already in the
input buffer and points to the beginning of
a new buffer. It then executes the GET
statement by prompting for input. any data

SO Section 7: Terminal I/O

entered at this point will be used by the
next GET to be executed. If there is no
data in the current buffer, the system pro­
ropts for t.he data tha·t is to be ignored and
prompts again when it h.3.S gotten a new
.tuffer.

It does not make sense to use successive
SKIP options in conversational mode,
because the first SKIP causes prompting for
data that will be discarded by the second.

COpy OEtion

The COPY option causes any assigned
input data to be written on SYSOUT exactly
as it was entered.

• Only aSSigned data is copied, not input
that is skipped.

" Delimib:~rs are included.

• Each item is written on a new line.

LATA-DIRECTED INPUT: Each item but the
last must be followed by a blank, a comma.
or a carriage return. If one or more of
the items in the data list is omitted from
the inp.lt list, t.ile last item in the input
list must be followed by a semicolon.
Example:

A = 32.8 = 'MESSAGE', C=O.OOl;

LIST-DIRECTED INPUT: Each item including
the last must be followed by a hlank. a
comma, or a carriage return. Example:

32. 'MESSAGE' 0.001

EDIT-DIR~£TEr INPUT: In general, there are
no input delimiters, because the layout of
the data is defined by a format list.
However. a carriage return delimits an
incompletely entered item:

• If the target item is a varying string,
the input is transmitted as is; no
ex-tra blanks are inserted.

• If the target item is not a varying
string, the input is padded on the
right with blanks t.O give it the neces­
sary field \oJidth.

End-of-File

When you are prompted at the beginning
of a GET operation. you can indicate end­
of-file by preSSing RETURN, thus entering a
null. line. This causes the ENDFILE condi-

tion to be raised; if your program contains
an ON ENDFILE(SYSIN) statement, that state­
ment is executed.

End-of-file can take effect when a SKIP
is being executed. Once end-of-file is
recognized, it remains effective until the
file is closed.

OUTPUT USING 'PUT"

When a PUT statement that refers to the
file SYSOUT is executed in conversational
mode, output is sent to the terminal. The
reference to SYSOUT can happen in these
ways:

1. The file name, omitted from the PUT
statement, becomes SYSOUT by default.
EXCUf,ple:

PUT LIST(A,B,C>;

2. The file name SYSOUT is used
explicitly:

PUT FILE(SYSOUT) LIST(A,B,C);

3. The file name SYSPRINT is used
explicitly:

PUT FILE(SYSPRINT) LIST(A.B.C);

4. A file name other than SYSOUT or SYS­
PRINT is used, but no DDEF command is
issued for the file prior to execu­
tion. To be compatible with SYSOUT,
the named file should have the PRINT
attribute.

Use of a data list with a PUT DATA
statement is optional. Execution of a PUT
DATA statement with a data list causes the
system to write each specified variable and
its value on SYSOUT, in assignment­
statement form. Execution without a data
list causes the system to write the con­
tents of each variable in your program. In
conversational mode. such a storage dump
may be impractical, since the terminal does
not function as a high-speed printer.
However, you can interrupt the printout and
return to the command mode by pressing the
attention key.

Buffering

The PUT operation uses buffers in the
form of output lines. The default line
size is 120 characters, but you can change
this up to a maximum of 130 characters by
using an OPEN statement with the LINESIZE
option. Example:

OPEN FILE(SYSOUT)LINESIZE(130)OUTPUT;

operation....Qf t:he PUT Statement

Execution of a. PUT statement causes
associat.ed data t.o appeal: at the terminal.
The rrint head does not .return to start a
new line. but remains positioned immediate­
ly after the data just presented. In the
absence of control items, successive PUTs
fill up the cun:ent line buffer. and then
begin a new line. This allows you to see
the results of each PUT without having to
wait for the whole buffer to fill.

There is sometiIl'es an extra line of
spacing when a Pill' operation synchronizes
",ith the beginning of a new line (for
example, '",h~m you use the SKIP option.
explained below). A RETURN is sent to the
terminal preceding the data for the current
PUT; however, if the la:st operation was a
DISPLAY or input for a GET or REPLY. the
print head is alxeady on a new line. and
the effect is two RETURNs.

Note: If you use GET and PUT statements
interchangeably. positioning of the print
head will also be affected by execution of
GET statements. in addition, the terminal
sheet will show a mixture of SYSIN and SYS­
OUT. SYSOUT doesn·t know what SYSIN is
doing.

Print Control Options

Three options of the PUT statement con­
trol the spacing of lines on a printed
page:

PAGE
LINE(expression)
SKIP (expression)

They all take eftect before any data is
sent to the terminal.

General rules:

~ PAGE and LINE are intended primarily
for printer output and are not recom­
mended for terminal output, since a
terminal has no lNay of identifying
Fhysical page boundaries. If they are
used on the terminal. for example in
conversationally checking out a program
intended to be run nonconversationally,
their effects are restricted. Both
PAGE and LINE cause three RETURNs.
Even if both PAGE and LINE are used in
the same PUT statement. the effect is
still three lines of spacing. If an
expression is associated with the LINE
option, it is ignored.

• SKIP is used to cause line spacing.
The expression is evaluated to an
integer; if t.here is no expression, the
integer 1 is assumed. If the integer
is 1. single spacing occurs; that is.

Part II: Using All the Facilities of the PL/I Compiler 51

the print head returns to the beginning
of the next line. If the integer is 2,
double spacing results. If it is 3 or
more. triple spacing results. If the
integer is negative or zero,

1. For nonconversational output, the
print head is returned to the
beginning of the current line.
This allows overprinting of that
line -- useful for underscoring,
obliterating confidential data,
slashing zeros. drawing pictures,
etc.

2. For conversational output, the SKIP
option is ignored.

Format Items

For data- and list-directed output,
there are no format items; the SKIP option
affords the only easy print control. In
edit-directed output, however, you can
exercise minute control over the appearance
of data at the terminal by using format
items in format lists.

General rules:

• PAGE, LINE, and SKIP operate the same
way in format lists and as options,
except that as options they operate
before the system types any data. All
format items are processed sequential­
ly, so that line spacing can occur
between items. However, it is not
possible to have line spacing after the
last data item, because once the data
list is exhausted any other items in
the format list are ignored. Thus,

PUT
EDIT(A,B,C)(A(6).F(S.2),A(2),SKIP);

will not return to a new line after
typing A, B, and C. To achieve that
result, you might:

1. Follow the above statement with a
PUT SKIP; statement.

S2 Section 71 Terminal 1/0

2. Include a SKIP option in the next
PUT statement that transmits data.

3. Include a SKIP as the first format
item if the next PUT is
edit-directed.

• The X(expression) format item inserts
blanks between data items. The expres­
sion is evaluated as an integer. If
the integer is negative or zero, the
item has no effect; otherwise, the spe­
cified number of blanks is typed by the
system. If there are enough blanks to
cause overflow of the line buffer, a
SKIP to the next line results.

• COLUMN(expression) makes it unnecessary
to calculate the number of blanks
required. The expression is evaluated
as an integer, and the system tYfes
enough blanks to bring the print head
to the specified character position in
the current line. If the current print
position is ahead of the specified one,
a SKIP is made to the next line, and
blanks are typed to bring the print
head to the required displacement from
the beginning of the line. If the
integer is negative, zero, or greater
than the line size, position 1 (the
beginning of the line} is assumed; this
causes a SKIP to a new line, unless a
SKIP was just done.

• The format items A, B. C. E, F. and P,
which relate to the external represen­
tation of internal data, and R, which
specifies a remote format list, are not
lireited to conversational I/O. See the
PL/I Language Reference Manual for
detailed descriptions.

Layout of Data- and List-Directed Output

Data items are automati.cally aligned on
preset tab positions. PL/I has the fosi­
tions 1, 25, 49, 13, 97. and 121; if you
want, you can change these tab settings by
following the instructions given under -Tab
Control Table," in Section 8.

This section explains how data sets vary
in:

• Location (see ·st.oring and Manipulating
Data Sets")

• Availability to nonowners (see ·Pro­
tecting and Sharing Data sets·)

• Record format (see -Record Formats·)

• Overall organization (see -Data Set
Organizations·)

• The way they are handled by the PL/I
library subroutines (see -Types of PL/I
Data Transmission W).

This section also discusses the DDEF com­
mand. which identifies data sets and
describes them to the system.

STORING AND MANIPULATING DATA SETS

VOLUMES

A data set resides on one or more
volumes. A volume is a standard unit of
external storage that can be written on or
read by an I/O device (for example, a reel
of tape or a disk pack), a unique serial
number identifies each volume.

A magnetic-tape or direct access volume
can contain more than one data set; con­
versely, a single data set can span two or
more such volumes.

Some direct access volumes are public,
meaning that they are permanently mounted
while the system is running, and they can
be accessed by all users. Some direct
access volumes, and all magnetic-tape
volumes, are private. This means that they
are not mounted on the system until needed,
they are dismounted when no longer needed,
and they can be used by only one user at a
time.

Volume Allocation

The system assumes that you want storage
on a public volume unless you specifically
ask for storage on a private volume by spe­
cifying VOLUME=PRIVATE in the DDEF command.
(See Appendix D.) When it is necessary to
retain the data set in the system, it is
more convenient to store it on a public
volume. Public volumes are automatically
available for allocaticn to your task,

S}i,C'.t1.0N 8: DATA SETS

within the limits of public allocation
established by your installation.

If you use private volumes, you may need
to wait for device availability; in any
case, you must wait for the operator to
mount the volullle on the device. Each time
a request is made for a device on which to
mount a private volume, the system must
determine whethe.r or not it can honor the
request, based on current requirements
throughout the syst.em for that type of
device. If the system cannot allocate a
~rivate device to your task, one of two
actions occurs, depending upon the opera­
tional mode:

• In a conversational task, if a device
is not available. you are asked to
either wait for an available device or
cancel the DDEF command. If your
device ration is exceeded or a speci­
fied device cannot be found, the system
cancels the DDEF command, returns con­
trol to the terminal, and awaits anoth­
er command.

• A nonconversationaltaSk is either ter­
minated by the operator or queued until
the required private devices are
mounted. You must include a SECURE
command to reserve all devices required
for private volumes during the execu­
tion of a 11(mCODversational. <task. Only
one SECURE COIDmalro is allowed for each
task. .It is recommended that the
SECURE command <lFpear immediately after
the LOGON command. The devices speci­
fied for private volumes ar·e reserved
so that the task can be executed
without waiting for I/O devices; any
waitiny that may be necessary to
reserve the devices occurs at. SECURE
time rather t<han during execution time.
The SECURE command is never used in a
conversat.ional t.aslc, it is mandatory
only in nonconvers"rtional tasks that
include references to private volumes.

SYSTEM CATALOG

The cataloging facilit.y of TSS/360 aids
you in referring tc data set.s by their
names alone, without specifying their phys­
ical locations., Since it contains your
data-set-naming structure. t<he system cata­
log is an index, like the catalogs used in
libraries, that points t;o items residing
elsewhere: see Figure 6 for a simplified
view. Altogether. the system catalog
records:

Part II: Using All the Facilities of the PLt'I compiler 53

• Where the data set is physically
located -- the catalog associates its
name with the serial numbers of its
volumes.

• Who can use the data set.

• How the data set can be used -- read
only, read and write, or unlimited
access.

The structure of the catalog protects your
data from being read or written into by
other users, except those that you specif­
ically permit to share the data.

Figures 7 and 8 show more details of the
system catalog:

(joto '5ld

ABLE BAKER

CATALOG

Figure 6. System Catalog

M.o<..ter hdex

Other Cotalog
Ent: ie<,

[TSS"'"

Cotolog
of System

Programs

Catalog

for Userl

Figure 7. Catalog organization

54 Section 8: Data Sets

• The system catalog consists of a master
index and sets of subordinate catalog
entries. It is, in effect, a collec­
tion of ~el?arat~ catalogs. The system
has its own catalog and each user has
his own catalog.

• Each catalog is an index of the data
sets associated with it.

When the system was generated at your
installation, catalog entries were created
for all system data set.s, including SYSLIB.
which contains the system routines that are
loaded on demand -- for example, the PUI
compiler.

When the system manager or administrator
joins you to the system. your user identi­
fication is placed in the master index and
you are given your own user catalog_ When
you log on for the first time, special
entry is created in your catalog for a data
set called USERLIB. USERLIB is your own
private library for object programs.

Except for USER LIB, you control all
entries in your catalog by the way you name
data sets and by the way you use the cata­
loging and uncataloging facilities of the
system. Some of these facilities are for
entering, removing, and renaming catalog
entries. Others are for indicating which
data sets can be shared by others and to
what extent. The key points are:

I
I
i

J

* - -- -~- --- Doto Sef Nome ------...
I ~_ SYlotelYl ~ _ ~ ~-~ . U~(Supplied ------~- !

I \upp I a-u I J MO~ler Ind.",

,!, JHN[)(ll., [NG.PHYSICS.COMAR.l£SI2 f .//1 }OHNDO[i ! I fRANKlEG i
/ I

/,:-.- ----

/.>" .. /~ - t- - -- . User Catoiog-- - - ---,
I t I
I JOHNDOE I ENG l! PAYRl-=rJ ~
I , I
I r---'--~ I
I f I

I ENG I PHYSICS l I CHEM 1 I :
I I I
I r--------' I

.1 t I ~ \ I ~ PHYSICS COMAR J 1
I ,- -----.-.---- I
I • I
: COMAR I TESTl : I TESTS i I
I I
I ,-.-.-------- I
I t I
I lEST2 DATA SET DESCRIPTOR I
I ! L ________________ J

Dola Set Control Slock

---_._----

I .1---------1 DATA PAGE t __ ~1 ! I
DATA PAGE I I

·-----------{iATA PAGE I --'
DATA PAGE

Figure 8. Locating a Data Set

• Your catalog exists in the system from
the time you are joined until the time
your access privilege is withdrawn.

• Data sets on public volumes are auto­
matically cataloged for you; thus, they
are available from session to session.

• You can share your programs and data
with others, if you want.

Generation Data Groups

The cataloging facilities of TSS/360
provide an option that assigns numbers to
individual data sets in a sequentially
ordered collection, thereby allowing you to
catalog the entire collection under a
single name. You can use the numbers to
distinguish among successive data sets in
the collection without assigning a new name
to each data set. Because each data set is

normally an update of the data set created
on the previous run, the new data set is
called a generation, and the number asso­
ciated with it is called a generation numb­
er. The entire structure of data sets of
the same name is called a generation data
grouF (GDG).

Each data set in a generation data group
has the same name qualified by a unique
parenthesized generation number (for
exam~le. STOCK(O), STOCK(-l.) STOCK(-2).
The most recently cataloged data set is
generation O. and the preceding generations
are -1, -2. and so on. You specify the
number of generations to be saved when you
establish the generation data group.

For example, consider a generation data
grouF that contains a series of data sets
used for weatheL reporting and forecasting;
the name of the group is WEATHER. The
generations for the group (assuming that
three generations are to be saved> are:

WEATHER (0)

WEATHER (-1)

WEATHER (-2)

(The numbers in parentheses are relative
generation numbers. You could also use
absolute generation numbers:

WEATHER. G0002VOO

WEATHER.G0001VOO

WEATHER.GOOOOVOO

where WEATHER GOOOOVOO is the first version
recorded.)

When WEATHER is updated. the new data
set is specified as WEATHER (+1). When the
new data set is cataloged, the system
changes the name WEATHER (+1) to WEATHER
(0). WEATHER (0) to WEATHER (-i), the form­
er WEATHER (-1) to WEATHER (-2), and
deletes the former WEATHER (-2).

To establish a data set as a generation
data group, you must catalog it using the
GDG form of the CATALOG command, before any
DDEF command is issued for it. For an
example of how to catalog a generation data
group, refer to the description of the
CATALOG command in Command System User's
Guide.

Catalog Maintenance

If you want to refer to a data set
without keeping track of its physical loca­
tion, or if you want to share the data set
with others, you must catalog it. In addi­
tion, many TSS/360 commands that relate to

Part II: Using All the Facilities of the PL/I Compiler 55

data sets require that the data sets be
cataloged.

Data sets that are to be cataloged must
reside on one or more direct access or mag­
netic tape volumes. Data sets on either
public or private volumes can l::e cataloged.

Most TSS/360 data sets are cataloged
automatically when they are created. The
CATALOG command need only be used to:

• Catalog a data set formatted for mag­
netic tape (known as a physical sequen­
tial data set).

• Alter the entry of a previously cata­
loged data set; for example, change the
catalog index structure for a renamed
data set or change the version number
of a generation data group member.

• structure the catalog for an entire
generat.ion data group. You can indic­
ate the number of generations to be
retained, as well as the disposition of
old generations when the specified
number of retentions is exceeded.

• Cat.aIog a data set as a new generation
of an existing generation data group.

Note: catalog control of the generations
of a generation data group can be exercised
only by the owner of the generation data
group. (Refer to ·protecting and Sharing
Data Sets,· in this section).

The EVV (enter VAM volumes) command is
used to catalog existing data sets that (l)
reside on private volumes, and (2) are not
physical sequential.

You can use the DELETE con~and to remove
a catalog e.ntry for a data set if:

1. You want to remove the catalog entry
of a data set from the catalog but not
erase it, and the data set resides on
a private volume.

2. You want to remove the catalog entry
of someone else's data set that you
are sharing (because you no longer
have a need to share that data set).

The ERASE command can also be used for
uncataloging. ERASE removes the catalog
entry, and erases the dat.a set if it
resides on a direct access volume. (Eras­
ing means making the storage space of the
data set available for other use.)

So that you can specify whether you want
to be given one data set. name at a time
when you enter a partially qualified name.
or no name at all. as the operand of either
the EHASE or DELETE command, provision is

S6 Section 8: Data Sets

«ade to set the value of DEPROMPT (a value
contained in your usex· profi.le)1 to either
Y (yes) or N (no). If ·the value is set to
Y. you are given one data set name at a
time for disposit.ion. H' the value is set
to N. all data sets grouped under this par­
tially qualified data set. name are erased
or deleted withoilt. individual presentation.
If you specify a fully qualified name, the
data set is erased or deleted no matter
what was specified for DEPROMPT.

Note: When deleting a shared data set, you
must specify the fully qualified data set
name; you will not be prompted for indivi­
dual data sets under a partially qualified
name.

You have the option in certain commands,
as PRINT and PUNCH, if a cataloged data set
is involved, of specifying whether it is to
be erased or not after the output
operation.

PLANNING I/O

The simplest way to handle TSS/360 I/O
is to read input data from the terminal and
write output. data to the terminal. Howev­
er. for data sets that are not small. it is
more efficient to use external storage as
follows:

1. Prior to program execution, store
inFut. data in the system on a direct
access volume. If the data is the
output of a previously executed pro­
gram. you can simply write it on a
direct access volume during that pro­
gram; the system automatically cata­
logs it to ret.ain it for subsequent
use. The dat.a could also be created
using a conversational or nonconversa­
tional EDIT or DATA command. In addi­
tion, you can prestoI·e the data using
oFerator procedures, involving your
card input deck or magnetic tape
volume.

2. During Erogram execution, read input
data from t.he direct access volun,e on
which you stored it; write output data
to a direct access volume (for offline
outFut, following execution). You
also have facilit.ies for I/O from and
to tape devices. However. in most

~The system maintains a special data set
called a user profile, which contains
information a~out the user. When you log
on, the prototy~e user profile in the sys­
tem libraIY (SYSLIB) is copied into your
virtual storage where it resides during
the task. The values in this copy of the
user profile can be altered by the
DEFAUL'l', SET, and SYNONYM commands.

TSS/360 installations, no problem pl:'O­

gram communicat.ion wit,h unit record
devices (card reader/punches and prin­
ters) is possible during execution.

3. Following execution. you can print out
or punch on cards the program output
you stored on a direct access device,
using the PRINT and PUNCH co~~ands.
You could also produce a magnetic tape
for subsequent printing by issuing a
WT (write tape) command.

Since you can communicate with your pro­
grams during their execution. you can
design programs that mix external-storage
1/0 with terminal I/O. For example, a pro­
gram can read input from the terminal and
write output to a direct access volwne. Or
a program can be designed so that when pre­
determined events occur, intermediate
results are printed at your terminal. You
can then decide how you want to proceed:
supply additional or different data at that
time; change the sequence of program execu­
tion; stop the progxarn; or examine key
final results prior to initiating their
final printout.

COPYING, MODIFYING. AND ERASING DATA SETS

The CDS command copies any existing data
set to which you have access. You can also
use it to renumber the lines of a line data
set as it is copied. The original data set
must be defined in your task or cataloged.
The vv, VT, and Tv commands cOfY data sets
formatted for interface with the TSS/360
virtual access method (VAM) data management
routines. The VV command copies a VAM data
set (or program library) in direct access
storage. The VT command copies a VAM data
set to nine-track magnetic tape as a phys­
ical sequential data set; used with the TV
command, VT allows you to store VAM data
sets on magnetic tapp. and retrieve them at
J later time. The TV command retrieves and
writes onto a direct access volume a data
set previously written on magnetic tape by
the VT command.

The MODIFY command inserts. deletes,
replaces, or inspects records of a \lAM data
set that is indexed by keys (for example,
line numbers>. You must identify the reco­
rd to be modified. by its key_ You can
review corrected lines for confirmation of
your changes.

You can use the ERASE command to erase
data sets that you own. See ·Catalog Main­
tenance,- earlier in this section.

If you are sharing someone else's data
set, you can remove its entry from your
catalog by issuing the DELETE command. See
·Catalog Maintenance,· earlier in this
section.

See £2IIJl1an<:! S~§.t(",1ll Oser" S Guide for a
complete list of rules concerning the above
commands.

You cannot access a data set you don't
own unless you have system authorization to
do so. or unless the owner of the data set
has r-eI:mitt.ed you t.O share it .•

A shared data set is cataloged and the
owner has iSSUE'd a PERMIT command for it.
It belcHl(Js to onE; user, but, ca.n be shared
wit:h other use:rs in any of the following
ways:

1. Re~d-on~~; The sharer can read
t.he data set. but. cannot change it in
any way.

2. Read-and-wr.it.e acc€ss~ The sharer can
both read and write to 'the data set.
kmt he cannot erase it.

3., lJn!.i!!lJted a~ss: The sharer can
treat the data set as his own. he can
even erase it.

A PERMIT command designat.es which data
sets are to be sha:r:ed. the users who can
share them, and the level of access those
users have. You can also use the PERMIT
command to withdraw from previously
authorized sharers the right to continue
sharing your data. Each time you issue a
PERMIT command. infoxmat.ion on who can
share which of '1°,11: dat:.a sets is updated in
your catalog.

If you 11,:;'Ve been named in another user's
PERMIT cO!:ll.\T,and, you must issue a SHARE com­
if,and before you can actually access the
data sets he has authorized you to use. To
see how this command is lJsed, asswne that a
sharer's user identification is JONES and
that he has been pennit.ted to share one
data set. The data set is Gw-ned by user
SMITH. and is cataloged under the fully
qua1ified flame ENG.PHYSICS.COMAR.TEST.
Assume also that t.he sharer wants to name
the data set ENG.CHEM.NOTAR.TEST1. He
would then issne the SHARE conunand shown at
the top of Figure 9. In response to that
cOllUlland. t.he system would search the
owner's catalog to see if the prospective
sharer is authorized. If he is not. the
system issues a diagnos·t.ici if he is
authorized, the system rlaces the owner's
Ccomr1ete) name for the data set in the
sharer's catalog wit~ a pointer back to the
«aster index. Whenever the sharer subse­
quently refers to the data set by the name
he gave, the system locates the data set by
the search procedure shown in Figure 9.

Part II: Using All the FacilitieB of UH:' PL/I compiler 57

I~~ued by
U~el JONES

ENG.CHEM. NOTAR. iESll

Sherer's Reference to Dota Set

ENG.CHEM. NOTAR. TESTI

JONES' U,er Ca.olog

Data Set '$ Owner

SMITH

I -------------- l
I JONES I I_=~ I
I r-
I + : ';0 _1i_'"~M __ JJ I
I CHEM II _____ ~~_TA_R _;G I
I r----
I •
I NOTAR I I __ T£=_1 __ ; I
! ~--
: TfSTl SMITH. ENG. PHYSICS.COMAR. TESTl I :

L _________________ ~

ENG. PHYSlCS.COMAR. TEST2

SMITH'S U,er Ca.olog
----------------~

I I

i 'M;~_'_ __ E~G_d I i
1 ENG LL PHYSICS : I I
I I I
I r----------- ___________ J I

I PHYSICS I I COMAR ! I :
I I I
I r-------·---·_--- ----.-------------' I

I COMAR I I TESTl I_~ ___ :S~ __ ; I I
I I

I TEST? I DATA SET DESCRIPTOR I
! ~------------------~,J I L______________ ~

Doto Set Control Block

SMITH. ENG. PHYSICS. COMAR.
TEST2

DATA PAGE I
------------§.A:i§}----.J

-------~PA0} I 1

- --F-=------------1 DATA PAGE ~ __ J
Figure 9. Sharing of Cataloged Data Sets

58 Section 8: Data Sets

To be concurrently accessible by mox:-e
than one task, a data set must .be a VAM
data set.

Table 9 explains the commands applicable
to shared data sets.

DATA SET ORGANIZA'I'IONS

Two basic types of data sets can be used
in TSS/360:

• Virtual access method (VAM) data sets

Table 9. Shared Data Set commands

.. Sequential access method (SAM) data
sets, also known as physical sequential
(PS) data sets,

VAM data set~; are formatted for use with
direct access devices and for interface
WiTh the VA.\\1 data management routines. PS
data sets are formatted for use with mag­
netic tape (although they can also be
stored on direct access devices formatted
for use by the s(!quential access methods
discussed in Section 10. under "Physical
sequential Data Sets") or for communication
between TSS/360 programs and programs on

r--------~---------------------------------T---·---·---.----.--.--.-------------------,

I Command I By Owner I By Sharer I
l-----------t------------------------·---------f-··----.----.------.--------------------------~
I PERMIT I Allowed. I NOT. allowed. A useL cannot permit I
I I I access to a data se-t that. he does not I
I I I own. I
l-----------+-----------------------------------f-----·-.--------.--------'----.. -.----------~
I SHARE I Not allowed. I Must be issued prior to any other I
I I I references to t_he data sets. Once I
I I I h,sued, the sha.cer can access the data I
I I I set. unt_il he issues an ERASE or I
I I I DELETE. The SHARE command places an I
I I entry in the sharer' s cata10g. so that I
I I I a CA'l'ALOG command is not necessary. I
t----------t----------------------------------t--------... --------------------.----------.---~
1 ERASE I The owner can only erase a member I A sharer can erase only if he has I
I I (object module) from his job I been granted unlimited access. If he I
I I library or erase the entire 1i- I then erases an object-module neither I
I I brary when no sharer is accessing ! sharer's or owner's catalog is I
I I that member at the time the ERASE I affected. If he erases the entire I
I I command is issued. If he erases I job library, bot .. '1 his cat:alog entry I
I I the job library. the entry in the I and the owner's are renoved. I
I I sharer's catalog is not removed. I I
I I The sharer must issue a DELETE I i
I I command to remove the entry from I I
I I his own catalog. I I
r---------f-----------------------------------+--------.-<"-.--<-.------------'--------~
I DELETE I The owner can delete a library or I A sha:r:(':l.- can delet_e his catalog entry I
I I group of libraries from his cat- I for a Job library without affecting I
I I alog. An object module alone can- I the owner's catalog. The sharer must I
I I not be deleted. When the owner I reissue a SIDLRE comm~ld if he again I
I I deletes a shared job library. the I wants to l:efer to the data set that I
I I sharer's catalog entry is not I has been deleted. I
I I removed. I I
i-----------f------------------------------------+-------·------<--·'~-·-----------,------------i
I CATAL<X> I The owner can catalog a fully ! A sharer who .has been granted unlim- I
I I qualified dat.a set name. If that i ited access can change or add entries I
I I name is a component of a partially I to the owner's catalog. If he is I
I I qualified name that the owner has ! permitted to shere a group of data I
I I permitted to be shared. all i sets. he can cat_alog a new data set I
I I sharers have immediate access to I into the group. but he must include I

I the newly cataloged data set. I as part of the name the paritally I
I If an owner changes the name of a I qualified name L~at he used in the I
I Single data set to which he per- ! SHARE cO~IDand. If he changes the I
I mitted access using a fully i name of one of t'..he data sets in the I
I qualified name. each sharer must I group, the new na~me must still con- I
I delete his catalog entry and re- I tain the partially qualified name. I
I issue the SHARE command with the I A sharer who has been granted unlimit-I
I owner's new name. I ed access to a.n individual data set I

I I I can never change the data set name. I l ________ J ____________________________________ J. _______ ---____ .••. __ ••.. ___ . ________ . __________ J

Part II: Using All the Facili~ties of the PL/I Compiler 59

the IBM System/360 Operating System or on
the Model 44 Programming System.

The system organizes all VAM data sets
int.o pages; i.e •• blocks of 4096 bytes. and
stores them on direct. access volUllles; for
ps data sets, you must specify your own
block size and your own direct access or
magnetic tape volume. For more information
on blocking, refer to Appendix D and to the
subject ·Consecutive Files,- in Section 10.

Sinr.e VAM data sets are specifically
formatted for TSS/360, they can use an
installation's supply of public volumes.
In order to access a PS data set, you must
be qualified to receive a private volume
from the installation, and the installation
rray require you to supply the tape reel or
di~:;k .

VAM data sets can be copied onto magnet­
ic tape, but they must reside on direct.
access volumes if they are to be accessible
to the VAM data management routines.

VAM DATA SETS

The types of VAM data sets are:

• Virtual sequential (VS)

• Virtual index sequential (VI)

• V i.rtua 1 partitioned (VP)

Virtual sequential (VS)

If described in the pur ENVIRONMENT
attribute. a VS data set would be referred
to as CONSECUTIVE. In a VS data set, the
order of the logical records is determined
solely by the order in which the records
were created, and not by the content of the
records. You can read back records in the
order of their creation ty merely request­
ing one record after the other. Since this
is generally a simpler method of access.
the virtual sequential organization is
intrinsically more efficient for most app­
licaticns where you don't need to access
records at random.

A special type of VS data set, for PL/I
users, is a lis-:. data set. I.ist dat.a sets.
produced during eaC~:l PL/I compilation, con­
tain the listings; each r::rint line is a
record.

.Example 12 in "Part III: Examples·
shows the creation of a VS data set.

Virtual Index Sequentia! (VI>

If described in the PL/l ENVIRONMENT
attribute, a VI data set would be referred
to as INDEXED. VI records are similar to

60 Section 8: Data sets

vs records, with the addition of an extra
field called the key. The key can be any­
where in the .record; however, if the key is
embedded in the record it is transmitted as
part of the record. (Refer to -Initial and
Embedded Keys~ in ·Section 10: Record­
oriented Transmission."') ,/\11 keys within
the same data set must be placed similarly.
The records in the d,,:d:a set are ordered by
ascending sequence of the key field, and
the records are accessed by key.

There are two special types of VI data
sets -- line data sets and region data
sets.

A line data set is indexed by line numb­
er, where each line is a record and is pre­
fixed with the line nlmWer as its key.
Source programs are line data sets. You
can display all or part of a line data set
using the LINE? COD1mfuld. Other commands
enable you to effect replacements, inser­
tions, and deletions on line data sets.

A !:£3ion di!ta set is indexed by both
line number and region name; region names,
arranged alphabetically. divide the data
set into regions; line numbers index the
elements of each region. See Part III,
Examf:le 10.

PI/I programs can process a VI data set
either sequentially (by key) or nonsequen­
tially (ty ignoring the keys).

Examples 14 and 15 in ·part III:
Examples· show the creation and updating of
a VI data set:.

Virtual partitioned .(VP)

A VP data set combines ot.her data sets
into a single dat.a set. Each data set in
the VP data se~: is called a member. and
each membe:r~ is identified by a unique name.
l;. progralrl module Ii brary is an example of a
VP data set. Your lJSEI{LIB is organized in
this way, and the compiled program modules
you st.ore in USERLI.B are its members.

The partitioned organization allows you
to refer to either the entl.re data set (by
the VP data set's name) or to any member of
that data set (by a name consisting of the
name of the data set:. qualified by the memb­
er name in parentheses).

The VP data set can be composed of VS or
VI members or a mixture of both. Individu­
al members, however. cannot be of mixed
organiza1:ion.

PL/I I/O statements cannot be used
directly on any VP data set. However, a
CDS comrr,and can copy a vs or VI data set
out of a VP data set, thus making a copy
that is accessible to iJ PL/I program, or

insert a new, PL/I-processed member int.o
the VP data set.

You will also use VP da.t:a sets if you
define job libraries for storing object
modules (see ftProgram Library List Con­
trol,- in Section 6>, or if you prestore
source statements that are to be included
in source programs by means of the ~INCLUDE
statement (see -Invoking the preprocessor,­
in Section 5).

PS DATA SETS

The records in a PS data set are
arranged strictly in the order of their
creation. When these records are processed
in TSS/360, the block is used as the unit
of transfer to and from the I/O device; a
block can consist of one or more logical
records. You will use PS data sets each
time you process magnetic tape in your pro­
grams. PS data sets are discussed further
in sections 9 and 10 and in Appendix D.

RECORD FORMATS

A record is the unit of information
transmitted to or from a program; it is a
set of contiguous bytes. TSS/360 reco­
gnizes three basic record formats:

• Format F, for J::'ecords of a fixed
length.

• Format V. for records of varying
length.

• Format U. for records of undefined
length.

FORMAT .F

If a data set is made up of records that
are all of the same length, it is format F,
for fixed length. There are no special
restrictions on the contents of a format-F
record; however. record length is limited
to 32,760 bytes in VS data sets and 4,000
bytes in VI data sets. Format-F records
are not allowed in line or region data
sets.

An example of a format-F data set is a
data set where each record represents the
contents of a punched card; each of these
records would be 80 bytes long.

FORMAT V

If a data set is made up of records that
are of varying length, it is format V, for
variable length. The first four bytes of
each record must contain a length indica-

t.or.. 'The ,lI'ctximurr .l:(~cord l .. :mgth permitted.
including thE lengt.h indicator. is 32.760
kytes in VS data sets and 4,000 bytes in VI
data set.s. FCullat-Vrecords a.re best
suited for datd sets whose records are
intrinsically v"r:ring in length, as is
likely in the Cdse of a data set conSisting
of lines typed at_ the terminal. Either
format-V or forlllat-F records can occur in
any TSS/360 dat.a set except. data sets on
ASCII tape (see Appendixes D and El.
although they cannot be mixed together in
the same data set unless they are in separ­
ate me.lI1hers of <1 VI' data set .•

FORMAT U

A third class of record is fox-ma t-u. for
\mdefined len<;rLh. F'orma1::.-U records are not
allowed in VI data sets; i:L VS data sets,
their length is a1.ways com:ddered to be a
multiple of a Fag~ (4096 bytes). The !llaxi­
IlUm record length permit·ted is 1.048.516
bytes.

'I'he syst_elll st'.ores object code as format­
a records.

:rYPES OF IlL/! o.A'1'1I TRANSMISSION

I/O statem€ntsthat cause data transmis­
sion, that is, a transfer of data, are
either STREAM I/O state.ments or RECORD I/O
statements. STREA~ I/O statelllent.s are GET
and PUT; RECORD I/O staternents are READ.
WRITE. REWRITE, LOCATE. and DELETE.

'I'here are t,JO important differences
between STREAM transmission and RECORD
transmission. In s'rREAt~ transmission. each
data it-elY' is treated individually, whereas
RECORD t:ransmission is concerned with
collecticns of data items (records) as a
whole. In STREl'.M translilission, each item
Ray be edited and converted as it is trans­
mitted; in RECOR.Dtransmission. t:he record
on the <,;xternal medium is an exact copy of
the record dS it exists in internal
storage, with no edit.ing or conversion
performed.

As a resul t of t.hese di fferences ,
record-oriented transmission is particular­
ly applicable for processing large files
that are writ.ten in an int.ernal representa­
tion. such as in binal:Y or packed decimal.
Stream-oriented transmission can be used
for processing typed {or keypunched) data
and for Froducing readable output. INhere
editing is required. Since files fer which
stream-oJ:iented tran~"lnissien is used tend
to be smaller. t.he larger p:oocessing over­
head can be ignored.

Part II: USing All the Facilities of the PL/I Compiler 61

Table 10. Relationship Between PL/I Files and TSS/360 Access Methods
r----------T--------------~-------------T----------T------------~---------T----------,
I I I I I I RECORD I ACCESS I
I TYPE I ORGANIZATION I ACCESS I MODE I BUFFERING I FORMATS I METHODS I
~-----------+---------------t-------------t----------t-------------+----------t----------~
I I I I ! I - I system. I
I I I I INPUT I t----------+----------~
I STREAM I CONSECUTIVE I SEQUENTIAL I I BUFFERED I F,V.U I VSAM I
, I I I OUTPUT I ~---------t----------~
I I I I I I All I QSAM I
~----------t---------------t-------------+----------+-------------+----------+---------~
I I I I I I F,V,U I VSAM I
I I , I I BUFFERED r----------t----------~
I I I I INPUT I I All ! QSAM I
I I CONSECUTIVE I SEQUENTIAL I OUTPUT r------~-·----+------+--------- ..
i I I I UPDATE I ! I I
I I I I I UNBUFFERED I F,V,U I BSAM I
I t---------------+-------------+----------t-------------f----------t----------~
I RECORD I I I INPUT i I I I
I I I SEQUENTIAL I OUTPUT I BUFFERED I F.V I VISAM I
I I I I UPDATE I I I I
I ! INDEXED ~-------------t----------t-------------+----------+----------~
I ! I I INPUT I I I I
I I I DIRECT I OUTPUT I UNBUFFERED IF, V i VISlIM I
! I I I UPDATE I I I I
f----------~---------------~-------------~----------~-____________ k-_________ ~ _________ ~

i ~·system" means input from SYSIN and output to SYSOUT. I L ___ -----___________________________ -J

ACCESS METHODS

The system routines that process data
sets with VAM or PS organizations are
termed access methods. The access methods
used by the PL/I library are:

VSAM:

VISAM:

BSAM:

QSAM:

Virtual sequential
Access Method 1 for

, VAM data
Virtual Index sequen-\ sets
tial Access Method J

Basic Sequential

(
Access Method for physical

sequential
Queued Sequential data sets
Access Method

The Virtual Partitioned AcceSS Method
(VPAM), available in TSS/360, is not used
by the PL/I library. However. the PL/I
library can use VSAM or VISAM on a data set
that has been copied out of a VP data set
by the CDS command.

The PL/I library subroutines use VSAM or
QSAM for all stream-oriented transmission.
They implement PL/I GET and PUT statements
by transferring the ap~ropriate number of
characters from or to the data management
buffers, and use GET and PUT macro instruc­
tions in the locate mode to fill or empty
the buffer~. Table 10 shows the relation­
ship bet~een PL/I files and TSS/360 access
methods.

62 Section 8: Data Sets

BASIC DDEF COMMAND

A DDEF command describes a data set to
the system, and is a request to the system
for the allocation of I/O resources. The
DDEF co~~and gives the data set's name; it
can also describe the data set's organiza­
tion. the attributes of the data itself
(record format, etc.), and the data set's
location (for example. the volume serial
number and identification of tbe unit on
which the volume will be mounted).

In a conversational task, the system
analyzes tbe data set's requirements at the
time the DDEF command is issued. It then
attempts to allocate the required
resources, and issues any mounting messages
that are required, at that time. If there
is no device available. you are asked to
either wait for an available device or can­
cel the DDEF comnand.

Each TSS/360 task must include a DDEF
command for each data set that is processed
by the task. unless the data is read from
SYSIN, written to SYSOUT, or defined in
another command; (for example, the PLI com­
mand can define the source, object, and
list data sets).

A DDI;F cOlll.!Iland can be issued at any time
during the task prior t.o execution of the
Frogram in which the data set is to be
used. Each DDEF command 1s valid only dur­
ing the task in which it is issued; pre­
viously defined data sets must be redefined
in every task that refeI-sto them. A DDEF

Table 11. Basic DDEI" COIlUll.and for the PL.lI User
.----------T-----------.---.-.-------------·-·--------, ... ---.---------------------------.---------,
I Operation I Operand I
~----·-------t--··------·--·-----,----~-·--------·--------------- .. ----.-- ... --------------------------1
I DDEF I DDNAME=data definition name[,DSORG={VIIVSiVP}],DSNAME=data set name I
i I £ < DISP= {OLD I NEW}] [. DCB=([RECFM={F I V I U}J. lLRECL=integerl I
I I (,KEYLEN~.integerH.RKP=int.eger])l I
L __________ -'-_____ , ____________________ , _______________ ----------,-----------------________ J

command that has been entered can be can­
celed by a RELEASE command.

The DDEF command enables you to write
PL/I source programs that are independent
of the data sets and I/O devices they will
use. You can modify the parameters of a
data set or process different dat.a sets
without recompiling your program; for
example, you can modify a program that ori­
ginally read from a direct access device so
that it will accept input from magnetic
tape merely by changing the DDEF command.

Normally. PL/I users require only basic
DDEF commands, defaulting most of the
operand fields. In some cases, DDEF com­
mands themselves can be defaulted. this
causes the system to choose SYSIN for
input. or SYSOUT for output.

COMMAND FORMAT

Table 11 shows the format of the PL/I
user"s basic DDEF command. For information
on the full DDEF command. see Appendix D.

Note: This section and Appendix D present
shortened forms of the DDEF command that
eliminate operands not useful to you. As a
result, the description of the portion of
the DDEF command t.hat follows DSNAME is
positionally inaccurate. If you specify
DDEF operands that follow DSNAME. you
should give them in the keyword form shown
in this manual. not in positional form.

DDNAME: Specifies the data definition
name.

Specified as one to eight alphameric
char'acters; the first character must be
alphabetic. DDNAME must not begin with
SYS. because these characters are reserved
to prefix system-generated dat.a definition
names.

Since DDNAME is a required parameter, it
cannot be defaulted.

DSORG: Specifies the data set organiza­
tion. The default value differs from
installation to installation.

DSNAME: The DSNAME parameter specifies the
name of the data set. This is the name
under which the data set is to be cataloged

or referred to by other commands during the
session. It contains one or more simple
names, each simple name having one to eight
alphameric characters, the first of which
trust be alphabet.ic. A period is used as
separator between simple names. The maxi­
illum number of characters. including
periods, is 35. The maximum number of
simple names is 18.

In most cases, t.he DSNAME need only be
one simple name such as:

DDEF DDNAME=NAME,DSORG-=VS,DSNAME=OUTPUT

A DSNAME may be of value in describing
the contents of the data set. Thus. a pro­
gram that generates a table of random num­
bers and a tabla of square roots might em­
ploy the DDEF commands:

DDEF DDNAME~NAME1.DSORG=VS.­
DSNAME=TABLE.RANNUM

DDEF DDNAME=NAME2,DSORG=VS,­
DSNAME=TABLE.SQRROOTS

The DSNAME can contain a generation num­
ber in either absolute or relative form.

Examples;

PAYROLL(O)

PAYROLL(-l)

PAYROI.I, (+1)

PAY.ROLL.G0005VOO

Means the most recent
generation of PAYROLL

The last generation.

The next generation.

Fifth absolute
generation.

If a DSNAME is to contain a generation
name, the DSNAME proper is limited to 26
characters. including periods. Prior to
use of the generation name, you must set up
a generation data group with the CATALOG
command. {See Command System User's
Guide.}

Since DSNAME is a required parameter, it
cannot be defaulted.

DISP: Specified as OLD or NEW. OLD means
that the dat.d set is being redefined and is
supposed to exist; NEW means that the data
set is ~eing defined for the first time and

Part II: USing All the Facilities of the PLII COltpiler 63

that no data set should already exist under
the specified DSNAM.E.

DISP=OLD and DISP=NEW do not affect the
data set being defined. DISP=OLD guards
against accidental creation and use of a
nt!w data set; DISP=NEW guards against use
ot an existing, forgotten data set. It is
recommended that you use the DISP parameter
habitually. If the DISP specification dis­
agrees with the actual state of the named
data set, then:

• In conversational rr~de. the user
receives a diagnostic message so that
he can correct this error.

• In nonconversational mode, the task is
abnormally terminated.

~hen unspecified, DISP defaults to NEW
i1 the system does not find the DSNAME in
the C:l Ldlog, to OLD if the DSNAME is found.

DeB: A data control block (DCB) is one of
the major control tables for communication
between TSS/360 data management and any
Frogram requiring control of a data set.
The PL/I library I/O routines build a DeB
whenever a DSNAl"'.E is encountered for the
first time in executing the object program.
Sources of information for the DCB are the
DDEF command, file attributes declared
explicitly or implicitly in the PL/I pro­
gram, and, if the data set already exists,
the data set label.

In case of conflict, information that
you specify in the DDEF command is given
first priority.

In the DDEF command, the DCB parameters
of critical interest to the PL/I programmer
are RECFM, LRECL. KEYLEN, and RKP. KEYLEN
and RKP apply only to VI data sets.

RECFM:
RECFM specifies the format or charac­
ter of the records in the data set.
This format is:

F

v

u

fixed-length records
maximum record length is 32,756
bytes for VS, and 4,000 bytes for
VI

variable-length records
each record contains in the first
four bytes a binary count of the
number of bytes in the record
maximum record length is 32,756
bytes for VS, and 4,000 bytes for
VI

undefined-length records
record length always a multiple
of a page (4096 bytes)

611 Section 8: Data Sets

maximum record length is 1,048.
576 bytes

The default value is V.

LRECL:
LRECL specifi.es the length in bytes of
a logical record. For format-F reco­
rds, this operand specifies the length
of each record in -the data set. For
format-V and -u records, it specifies
the maximum expected length. The
maximum acceptable record lengths are
given in Appendix D •

If record length information is given
in the ENVIRONMENT attrihute, the
LRECL operand of the DDEF command is
ignored.

KEYLEN and RKP:
If DSORG=VI and DISP=NEW. you must
specify key length (KEYLEN) and rela­
tive key position (RKP).

KEYLEN is the length in bytes of the
key associated with a record. The
maximum value is 255.

RKP specifies the displacement of the
key field from the first byte of the
logical record. (See "Indexed Files,­
in Sect ion 10.)

The COD Command

The DDEF commands used in the task need
not be issued directly. One, or more, or
all. of the DDFF commands needed can be
made available by using the COD (call data
definition) command. The CDD command is
used to retrieve one or more DDEF commands
from a line data set;1 you must supply the
name of the data set. If this is all you
specify. the system assumes that you want
to use all the DDFF commands in the data
set. If you want to use only selected DDEF
commands, you identify each by its DDNAME
(data definition name). You should pre­
store frequently used DDEF commands in a
data set and call them in this fashion
wherever possible.

FILES AND DATA SETS

When you write a PL/I program, you do
not need to know which data sets you will
use or where the volumes tbat contain them
will be mounted. PL/I uses a conceptual
'file' as a means of accessing a data set.
When an OPEN statement is executed. the
file is associated with a data set through
the TITLE option, which refers to the name

1Such a data set can be created using a
DATA or EDIT command.

of the DDEF command (data definition name,
or DDNAME) that describes the data set; if
the OPEN statement does not include the
TITLE option, the compiler takes the data
definition name from the first eight char­
acters of the file name, padding it with
blanks if necessary.

The OPEN statement indicates the DDNAME
of the DDEF command that describes the data
set to be associated with the file that is
being opened; the DDEF command specifies
the type of device that will access the
data set, the serial number of the volume
that contains the data set, and the name of
the data set (DSNAME). See Figure 10. If
the DDEF command refers to a cataloged data
set. it need supply only the DDNAME and the
DSNAME; the system can use the DSNAME to
obtain unit and volume information from the
system catalog_

GET, PUT, READ, WRITE,
LOCATE, REWRITE, or

DELETE

FilE (file-ncmte)
OPEN } FI LE (flt.-no,,:",.) l

l TITLE (..-ion) ~
CLOSE FI LE (file--.....)

DDNAME= cfdnome

DDEF command

DSNAME= d$Mme
dsnc:.tme in DS CB

DATA SET

Figure 10. Associating a File with a Data
Set

Sl.ilCe the liTlk tetween the PYI file and
the data set exu;1:s only while the file is
open, the ~a!i1(~ fU~e can be associated with
different da·ta S(~t.s during the execution of
a single and the same data set can
te access~d dlfferent files. Fur-
thermore. t:he Uf;!" of a DDEF command to
define t.h.? data set. the volume that con­
tains it, and t.he device on which they will
l::e placed, ena~;les you to defer your choice
until execution t~Ltr.e; and you can llse the
same program ·t.o process different~ data sets
on different devices without recompiling
the J;:xogrilm.

OPENING); l'ILE

')'he execution of: a PL/.I OPEN statenlent
associates a file wit .. h a data set. This
requires the mergin9 of the information
describing the file and t:.he data set. If
any conflj .. ct exists between tile attx'ibutes
and data l";t:t ·;::haract.eri.sticsthe ONDEFINED­
FILE conditlCrl will .be raised.

It shOUld be noted that the omission of
a DDEF con;mand for a RECORD file causes the
UNDEFINEDFILE condi tioD t~o be .raised. A
STRE.l\.M fi.l€, on tbe other hand, defaults to
SYSIN or SYSOUT. so tho. t. PL/ I does not
raise the DNDEFINEDFILE condition merely
because the S'rRElli'! file has no correspond­
ing DDEF command. (However. it is still
possible to have it raised because of
att.ribute coriflict~s.)

The dat.a management sl1broutines of the
PL/I library create d skeleton data cont.rol
block (DCB)" for the data set:. and use the
file attributes trm<. t:.he DEClJU{E and OPEN
statement~s. and any attributes impli ed by
the decla:;:<,:c at.tr:ibutes, to complete the
DCB as fiXl:' as p':;H3ible. They t,hen issue a
data rnanaqement OPEN macro instruction,
"Which call.s the ~ystelIi data managen:,€nt rou­
tines to check a.nd compl.'2te t>hE' DCB. Sys­
tem routines examine the DCB to see what
information is still needed and then look
fot: this intormcttion, fi:rst: in the DDEF
command" and finally. if t.K1f; data set
already Exists. in a control block called
the dat.d set ccmt.I:ol block (OSCS)., 'I'he
DSCB is on the volume containing the data
set and describe;:; thE:' Jatu set. PS data
sets on magnetic tape don' t ha~/e DSCE' s.
however. if they are lal:J.el €:d, similar
informatiorr is c':'mtained :i.nthe tape
labels..

Neit.her the ODEF command nor the da.ta
set latel can GVE.·rride information provided
by the FIJI progra,m; nor can the data set
label override informat,:ion provided by the
DDEF command.

When the DCB fields have been filled in
from t.hese SO,UTE">, canT,10} ::::e·r~.ur.ns to the

Part II: Using All the Facilities of the PYI Compiler 65

PL/I library subroutines. If any fields
have still not been filled in, the PL/I
OPEN subroutine provides default informa­
tion for some of them; for example, if
LRECL has not been specified, it is now
frovided from the value given for BLKSIZE.

CLOSING A FILE

The execution of a PL/I CLOSE statement
dissociates a file from the data set with
which it was associated. The PL/I library
subroutines first issue a data management
CLOSE macro instruction and then, when con­
trol returns from the system data manage­
ment routines, release the DCB that was
created when the file was opened. The data
management routines complete the writing of
labels for new data sets and update the
labels of existing data sets.

SUMMARY -----

To specify problem program I/O activity,
you must consider:

1. Use of I/O statements in the source
program to indicate data transfer or
I/O control functions.

2. Use of (or omission of) file declara­
tions in the source program to indic­
ate the usage, function, access, buff­
ering, scope, etc., of the data sets
associated with the I/O statements.

3. Use of (or omission of) DDEF (define
data) commands to identify the name.
location, organization, etc., of the
data sets associated with the I/O
statements.

To be processed by a PL/I program, a data
set other than SYSIN or SYSOUT must be
identified by a DDEF command; the basic
purpose of the DDEF command is to specify
the data set"s name and organization.

Table 12 summarizes the TSS/360 data set
organizations. Related access methods are
also shown. Normally, the access method is
of no concern to you; the system automatic­
ally uses the other information that you
give to choose the correct access method.

Table 12. Types of Access Methods and Data Set Organizations
r-----------------------T----------------------------~---------------------------------,
(This fundamental type I I (
lof access method and lincludes these land these data set I
Idata set organization, I access methods: I organizations: I
t-----------------------t-----------------------------t---------------------------------~
I Ivirtual sequentia1 access Ivirtual sequential: VS I
Ivirtual access method: I method: VSAM I I
IVAM ~-----------------------------t---------------------------------~
I Ivirtual indexed sequential Ivirtual indexed sequential: VI I
1 laccess method: VISAM I special VI types: I
(I I line data sets I
I I I region data sets I
I I I list data sets I
I ~-----------------------------t---------------------------------i
I Ivirtual partitioned access ivirtual parti"tioned: VP I
I I method: VPAM I <combines VS and VI data sets) I
t-----------------------t-----------------------------t---------------------.------------~
I I basic sequential access I !
Isequential access I method: BSAM Iphysical sequential: PS I
I method: SAM r-----------------------------i I
I I queued sequential access I I
I I method: QSAM I I l-______________________ ~ _____________________________ i _____________ . ___________________ ~

66 Section 8: Data Sets

Stream-oriented transmission allows a
PI/I program to ignore block and record
boundaries and. treat a data set as a con­
tinuous stream of data items in character
form. For output, the data management sub­
routines of the PL/I library convert the
data items from the program variables into
character form if necessary. and build the
stream of characters into records for tran­
smission to the data set. For input, the
library subroutines take records from the
data set and separate them into the data
items requested by the program, converting
them into the appropriate form for assign-·
ment to the program variables. Because
stream-oriented transmission always treats
data as a continuous stream, it. can be used
only to process data sets with CONSECUTIVE
organization.

Under TSS/360. stream I/O files can
operate in either of two ways:

1. By use of the syst.em VO files SYSIN/
SYSOUT. This mode is used a.utomatic­
ally by all stream files for which no
corresponding DDEF command has been
issued prior to execut.ion.

2. By accessing a datA set that has been
defined previously by a DDEF command.
The data set can have either virtual
sequential {Vs} or physical sequential
(PS) organization.

SYSTEM FILES

There are two system files for any TSS
task -- SYSIN for input and SYSOUT for
output.

Note: At execution time, the standard PYI
file SYSIN becomes the system file SYSIN,
and the standard PYI file SYSPRINT becomes
the system file SYSOUT.

Any stream file for which no correspond­
ing DDEF command has been issued automatic­
ally defaults to SYSIN or SYSOUT, depending
on whether it is opened for input or out­
put; it need not have the file name SYSIN,
SYSOUT. or SYSPRINT. System files differ
in one respect from other files that may be
accessed by a PL/I program: No record can
be accessed more than one time by the task.
Thus, closing the SYSIN file and reopening
it does not affect the sequence of records
read from the file. Similarly. once a
record is written to SYSOUT. it is inac­
cessible to the program.

§Ec'nON ~.L........§!JtEM'l··ORIENTED TRANSMISSION

SYS'l'EM INFU'X' .FILE -- SYSIN

The records from the SYSIN file can come
from several. alt.exnative sources.

conversation~~ode

In conversational mode, records can be
entered:

• At the t.erlllinal keyboard.

.. from a terminal card reader.

If the records are typed at the termin­
al. a prompting character (:) appears at
the terminal as each record is required.
For example, on execution of the PL/I
stabement. :

GET DA,!'A (A, B, C) ;

the system prompts with a colon and you
enter the data; if you don't enter data for
all the items in the data list~ indicate
the end of the data with a semicolon:

A=5.3. B=6.0 ;

Al.ternatively, t.he above data could be
entered like this:

A=5.3
B=6.0

In this case, since the terminating semico­
lon did not appear in the fl..rst line,
another prompting character is sent to the
terminal.

If your termi.nal is connected to an IBM
1056 card reader. you can designate the
card reader as t.he SYSIN device by ty.t:ing a
C command at: any time during t.he task when
the system expects to receive a command.
You can return con·trol to the keyboard by
including a K command in the card-input
stream, whereve:r. the command mode is in
effect. When the system reads the K com­
mand, the keyboard becomes the SYSIN device
again; and the task continues uninter­
rupted. (For IT,ore information on the C and
K coromands and related commands. see Ter­
ocinal User's Guide publication.) The-cards
to be read can contain commands. as well as
SYSIN data for PUT programs.

Note: To transfer. control to the card
reader during program execution, you must
press the attention key: after the system
~rom~ts you with an exclamation mark (!).
type a C command. After this, a card that

Part II: Using All the Facilities of the PL/I Compiler 67

contains a GO command ~ill cause the pro­
gram to resume execution.

Nonconversational Mode

Data for a program executed as part of a
nonconversational task can be entered in
one of four ways:

1. As a card deck supplied for input
through the system card reader.

2. As a card deck entered through the
card reader at a remote station (IBM
2780 Data Transmission Terminal) that
is connected to a TSS/360 installa­
tion. (See IBM System/360 Time Shar­
ing System: Remote Job Entry.)

3. As part of a data set that is the sub­
ject of an EXECUTE command.

4. As part of a data set that is the sub­
ject of a BACK command.

In cases 3 and 4, the data must be in a VS
data set or a VI line data set.

Data contained Within Command Procedures

By use of the SYSINX parameter to the
DEFAULT command, it is possible to read
nata from within a command procedure (PRO­
CDEF). Given this command procedure,

PROCDEF ABC

PLIPROG

1.0
4.0
etc.

END

2.0
5.0

3.0,
6.0,

PL/I program

PL/l data

End of procedure

the following commands cause the program
PLIPROG to be executed with data taken from
~ithin the PROCDEF;

~EFAULT SYSINX=E

~C

~EFAULT SYSINX=G

Set SYSINX

Invoke procedure

Reset SYSINX

ENDFlLE Condition for SYSIN

A null record. that is, a record of zero
length, is interpreted by the stream I/O
routines as an ENDFILE condition. In con­
versational mode, a zero-length record is
formed by pressing RETURN after the system
types the prompting character. In none on­
versational mode. a zero-length record is
formed by an EOB character in the first
position of the record. This program would
continue processing until it read a zero­
length record:

68 Section 9: Stream-Oriented Transmission

EXAMPLE: PROe OPTIONS(MAIN1;

LOOP:

END:

ON ENDFILE (SYSIN) GO TO END:

GET DATA;

GO TO LOOP;
END;

SYSTEM OUTPUT FILE -- SYSOUT

At execution time, the standard PL/I
file SYSPRINT automatically becomes the
TSS/360 output file SYSOUT: therefore, you
do not have to supply a DDEF command for
SYSPRINT.

conversational Mode

In conversational mode, all data sent to
SYSOUT appears at the terminal device. The
output is formatted in the normal ~ay, with
the exception that page skips do not occur;
instead, a maximum of three line feeds is
used.

Nonconversational Mode

In non conversational mode, all records
sent to SYSOUT during a task are placed in
a data set in strict sequential order. This
data set is printed and erased automatical­
ly. All formatting of data is accepted in
the normal way. including page Skips.

SYSPRINT Attributes

If you do not declare the file SYSPRINT,
the compiler gives it the attribute PRINT
in addition to the normal default attri­
butes; thus, tr.e complete implicit declara­
tion is SYSPRINT FILE STREAM OUTPUT PRINT
EXTERNAL. Since SYSPRINT is a PRINT file,
the compiler also supplies a default line
size of 120 characters and a format-V
record.

You can override the attributes given to
SYSPRINT by the compiler by explicitly
opening the file. If you do so, bear in
mind that this file is also used by the
error-handling routines of the compiler,
and that any change you make in the format
of the output from SYSPRINT also apply to
the format of execution-time error mes­
sages. When an error message is printed,
eight blanks are inserted at the start of
each line except the first; consequently.
if you specify a line size of less than
nine characters (or a block size of less
than ten bytes for format-F or format-U
records. or less than 18 bytes for format-V
records), the second and successive lines
~ill not be printed. and the error-message
routine will be locked in a permanent loop.

USER-SPECIFIED DATA SETS

As an alternative to using the system
files SYSIN and SYSOUT. any STREAM I/O file
can be made to access a VS or PS data set
that you name in a DDEF command. To do
this. you must issue the DDEF command
before the file is opened; the DDNAME pa­
rameter must be the same as either the file
name or the name specified in the TITLE
option of an OPEN statement issued against
the file. Examples:

DECLARE XYZ FILE STREAM
~

QDEF XyZ.VS.DATASET ••••
Or

PL/I
DECLARE ABC FILE STREAM (

OPEN FILE(ABC) TITLE('XYZ') statements
.v 1"-

DDEF XYZ.VS,DATASET ••••

In the second example, the use of the TITLE
option overrides the filename ABC.

Note: DDNAMES beginning with SYS are
reserved for use by system programs. Thus;
it is not possible to issue a DDEF command
with a DDNAME of SYSIN, SYSOUT. or SYS­
PRINT. If a file name begins with SYS. the
TITLE option is the only way you can make
the file access a data set other than SYSIN
or SYSOUT. For example, the statement:

GET DATA(A,B,C);

becomes by implication:

GET FILE(SYSIN) DATA(A,B.C);

If you include the statement:

OPEN FILE(SYSIN) TITLE('NOTSYS');

before the first input statement, then a
DDEF command:

DDEF NOTSYS.PS ••••• etc.

can be issued against the file.

VIRTUAL SEQUENTIAL DATA SETS (DSORG=VS)

Under the TSS/360 virtual access method,
all blocking of logical records is con­
trolled by the system routines; hence. a VS
data set is easier to use than a PS data
set. Required DCB parameters for a VS data
set are record format (RECFM) and logical
record length (LRECL). These parameters
can be supplied in any of four ways:

1. From the DSCB for old (DISP=OLD) data
sets.

2. In the DDEF command.

3. In the ENVIRONMENT attribute of the
file declaration. See IBM System/360
Time Sharing System: PL/I Language
Reference Manual.

4. By default if 1, 2, and 3 do not
apply. The default values are RECFM=
V, LRECL=132.

ExamFle 12 in ·Part III: Examples·
illustrates the use of a VS data set.
Table 13 shows the relat10nship between the
RECFM and LRECL parameters and the LINESIZE
option of the OPEN statement, for VS PRINT
and non-PRINT files.

PHYSICAL SEQUEN'rIAL DATA SETS (DSORG=PS)

PhYSical sequent1al data sets are always
private and unsharable. They can reside on
disk or tape devices. The DCB subparame­
ters RECFM (record format) and LRECL (log­
ical record length), required for VS data
sets, are also required for PS data sets.
You control the blocking of records for a
PS data set; hence, an additional DCB sub­
parameter, BLKSIZE (physical block size) is
required. The records may be unblocked
(that is, one logical record per physical
record) or blocked (that is, more than one
logical record per phys1cal record). Refer
to Appendix D for ways of specifying the
DCB subparameters relating to data set
residence (UNIT, VOLUME, and LABEL) and
data set protection (PROTECT).

The required DCB parameters. RECFM,
LRECL, and BLKSIZE. can be specified in any
of three ways:

1. In the data set control block (DSeB)
or datA set label for old (DISP=OLD)
data sets.

2. In the DDEF command.

3. In the ENVIRONMENT attribute of the
file declaration.

Example 12 in ·Part III: Examples·
illustrates the use of a PS data set.
Table 13 shows the relationship between the
RECFM, LRECL. and BLKSIZE parameters and
the LINESIZE option of the OPEN statement.
for PS PRINT and non-PRINT OUTPUT files.

PRINT FILES

Both '1'55/360 and PL/I include features
that facilitate the formatting of printed
output. TSS/360 allows you to use the
first byte of each record for a printer
control character; the control characters,
which are not printed. cause the printer to
skip tc a new line or page. In PL/I, the
use of a PRINT file provides a convenient

Part II: Using All the Facilities of the PL/I Compiler 69

Table 13. Relationshif of LINESIZE Option with RECFM. LRECL, and BLKSIZE Parameters for
STREAM OUTPUT Files

r-----------------------~----------------~--,
I Type of Data Set I OPEN Option I DCB Subparameter I
r------------------------t----------------t---------T-----------------~---------------~
I I LINESIZE I RECFM I LRECL I BLKSIZE I
r------------------------t----------------t---------t------------------t----------------~
I SYSOUT (non-PRINT) I L I N/A I N/A I N/A I
r------------------------f----------------+---------f------------------+---------------~
I SYSOUT (PRINT) I L I N/A I N/A I N/A I
t------------------------+----------------+---------f------------------+----------------~
I VS (non-PRINT) I L I F I L I N/A I
1 I L I V I L+4 I N/A I
I I 4096*N I U I 4096· Nax N I N/A I
r-------------------------+----------------+---------+------------------+----------------1
I VS (PRINT) I L I F I L+1 I N/A I
I I L I V I L+5 I N/A I
I I (4096*N}-1 I U I 4096· Max N I N/A I
r------------------------+----------------f---------+------------------+----------------~
I PS (non-PRINT, I L I F I L I L I
I Unblocked) I L I V or D I L+/4 I L+8 I
I I L I U I L I Max L I
t------------------------+----------------+---------+------------------+--------------~
I PS (non-PRINT, I L I FB j L I B*L I
I Blocked) I L I VB or DBI L+4 I B*(L+4)+4 I
r------------------------+----------------+---------+------------------+--------------~
I PS (PRUIT, I L I F I L+l I L+l I
I Unblocked) I L I V or D I L+5 I L+9 I
I I L I U I L+l I (Max L) +1 I
r------------------------+----------------f---------+------------------t----------------i
I PS (PRINT, I L I FB I L+l I B*CL+1) I
I pl.r' I L I VB or DBI L+5 I B. (L+5>+4 I
t--------~~~---------------.1.---------------.1.---------.!.-________________ .1. ________________ ~
INotes: B = blocking factor I
I D and DB are RECFM values for tapes in ASCII format (see Appendix E) I
I L = specified linesize I
I Max N = number of pages occupied by largest record I
I N = positive integer I
I N/A = not applicable I l __ J

means of inserting printer control charac­
ters; the compiler automatically inserts
them in response to the PAGE, SKIP, and
LINE options and format items.

You can apfly the PRINT attribute to any
STREAM OUTPUT file, even if you do not
int~~d to print the associated data set
directly. When a PRINT file is associated
with a magnetic tape or direct access data
set, the control characters have no effect
on the layout of the data set, but appear
as part of the data in the records.

The first byte of each record trans-
mi tted by a PRINT file is reserved for an
American National Standard FORTRAN control
character (hereinafter referred to as FOR­
TRAN control character), and the appropri­
ate character is inserted automatically_
Appendix C discusses the FORTRAN control
characters; a PRINT file uses only the fol­
lowing five characters:

New Page 1

Single line space E (blank)

70 Section 9: Stream-Oriented Transmission

Doucle line space o

Trifle line space

sUFfress space +

The PL/I library handles the PAGE, SKIP,
and LINE options or format items by Fadding
the remainder of the current record with
blanks and inserting the appropriate con­
trol character in the next record. If SKIP
or LINE requests more than a triple line
space, ~he library inserts sufficient blank
records with appropriate control characters
to accomplish the required positioning. In
the absence of a printer control option or
format item, where a record is full the
library inserts a blank code (single line
space) in the first byte of the next rec­
ord. For a PRINT file directed to the ter­
minal, the PAGE option results in a three-

, line SKU', and a SKIP option specifying a
spacing greater than three lines results in
a three-line skip.

RECORD FORMA'!'

You can limit the length of the printed
line produced by a PRINT file either by
specifying a record size in the ENVIRONMENT
attribute or in a DDEF' command. or by giv­
ing a line size in an OPEN statement. The
record size must include the extra byte for
the printer control character. that is, it
must be one byte larger t.han the length of
the printed line (five bytes larger for
format-V records). The value you specify
in the LINESIZE option refers to the number
of characters in the printed line. the PL/I
library adds the cont:rol bytes.

The blocking of records has no effect on
the appearance of the output produced by a
PRINT file, but it does result in more
efficient use of storage space when the
file is associated with a data set on mag­
netic tape or a direct access device. If
you use the LINESIZE option, ensure that
your line size is compatible with your
block size: for format-I" records. block­
size must be an exact multiple of (line
size + 1); for format-V records, blocksize
must be at least nine bytes greater than
line size.

Although you can vary the line size for
a PRINT file during execution by cloSing
the file and opening it again with a new
line size, you must do so with caution if
you are using the PRINT file to create a
data set or magnetic tape or a direct
access device; you cannot change the record
format established for the data set when
the file is first opened. If the line size
specified in an OPEN statement conflicts
with the record format already established,
the UNDEFINEDFILE condition will be raised;
to prevent this, either specify format-V
records with a block size at least nine
bytes greater than the maximum line size
you intend to use, or ensure that the first
OPEN statement specifies the maximum line
size. (Output destined for the printer is
temporarily stored on a direct access
device. even if you intend it to be fed
directly to the printer.)

Since PRINT files have a default line
size of 120 characters, you need not give
any record format information for them. In
the absence of other information, the com­
Filer assumes format-V records; the com­
plete default information is:

BLKSIZE=129
LRECL=125
RECFM=V

Example 13 in ·Part III: Examples· illus­
trates the use of PRINT files and stream­
oriented transmission. Table 13 shows the
relationship between the RECFM. LRECL. and
BLKSIZE parameters and the LINESIZE option

of the OPEN statement, for PRINT and non­
PRINT files.

TAB CONTROL TABLE

Data-directed and list-directed output
to a PRINT file is automatically aligned on
preset tabulator positions; the tab set­
tings are stored in a table in the PL/I
library module IHEWTAB (Figure 11). (IHEW­
TAB is contained in module CFBAJ, in SYS­
LIB.) The functions of the fields in the
table -- Figure 11(a) -- are:

PAGESIZE
halfword binary integer that defines
the default page size.

LINESIZE
halfword binary integer that defines
the default line size.

Reserved Bytes
reserved for left and right margin
facilities.

Byte o 1 2 3
,-------------------T--------------------,

Word 1 I PAGESIZE I LINESIZE I
~----------T----------t----------T----------~

2 I (Reserved) I CReserved} ITab count ITab1 I
.----------t----------t----------t----------i

3 ITab2 I Tab3 ITab... ITab... I
~----------t-·---------t----------t----------_i
~ ~ ~ ~ ~

I I I I I
t-------t----------t----------t------------i

n ITabn I I I I L _______ . __ l. ______ . ____ l. __________ l. __________ J

(a) Tab control table

r----------------------T---------------------,
I I I
t---------------------t---------------------i
I 60 I 120 I
~----------T-----------t----------T-----------i
! 0 I 0 I 5 I 25 I
~---------+---------t----------+------·----i
I 49 I 73 I 97 I 121 I L-________ 1. __________ 1. __________ L-________ -l

(b) Standard form of table

IHETAB CSECT
ENTRY

IHETABS DC
DC
DS
OS
DC
DC
DC
DC
OC
DC
END

IBETABS
AL2(60}
AL2(120)
X
X
ALI (5)
AL1(25)
ALH49)
I'Ll (73)

ALU97)
ALlC121J

(c) Control section IHETAB

DEFAULT PAGE SIZE
DEFAULT LINE SIZE
RESERVED
RESERVED
NO. OF TAB POSITIONS
TAB POSITIONS

Figure 11. Tabular Control Table (Module
IHEWTAB)

Part II: USing All the Facilities of the PL/I compiler 71

Tab count
number of tab position entries in
table (maximum 255). If tab count =
0, the tab positions are not used:
each data item is put out as if a
PRINT file were not being used.

Tab1 - Tabn
tab positions within the print line.
The first position is numbered 1, and
the highest position is numbered 255.
The value of each tab should be great­
er than that of the tab preceding it
in the table; otherwise, it will be
ignored. The first data field in the
printed output begins at the left mar­
gin (position 1), and thereafter each
field begins at the next available tab
position.

You can alter the tab control table by
changing the values in the assembler lan­
guage control section -- Figure 11(c).
There are three ways to do this:

1. The installation can assemble a new
version into SYSLIB.

2. You can assemble your own version into
a private job library.

3. During a task, you can change items by
using PCS. For example, to change tab
settings to 1, 41, 81, and 121:

!,!isplay ihetab
IHETAB VERSION ID 09/14/70 01:17:10
00000000 003C0078 00000519 31496179
2et ihetab.(6,6)=x'032951790000·

Note that position 1 does not count as a
tal:: setting.

SUMMARY OF STREAM-ORIENTED TRANSMISSION

Figure 12 shows the types of TSS/360
data that can be accessed by a STREAM file.

STREAM FilE

typed by you
ot terminel
(converso~i ono I
only)

I
I

SYSTEM FILE (NO DDEF)

INPUT OUTPUT

..---_lsvTUT! I

typed by system
01 terminal
(conversotional
only)

printed by printer
(n"nconversotiono I
only)

punched on cards in ° PROCDEF
(conversotione lor (conversationa I or
nonconversotiona I) nonconveMiotiona I)

I
USER-DEFINED DATA SET

~
VIRTUA l SEQUENTIA L

UNBLOCKED

Figure 12. Relationship Between a STREAM File and TSS/360 Data

72 Section 9: Stream-Oriented Transmission

on di rect-access devi ce
or magneti c tope

BLOCKED

• For tope, in ASCII format
(See Appendix E,)

In record-oriented transmission, data is
transmitted to and from auxiliary storage
exactly as it appears in the program
variables; no data covers ion takes place.
In most cases, the data contained in a log­
ical record of a data set corresponds to a
variable in the program. Usually data
management control information (for
example, block and record lengths for
format-V records) is removed before assign­
ing the data to a variable, or inserted on
output.

Normally. format-V records are read into
and written from strings or aggregates of
varying length. Format-F records can be
used for fixed-length variables.

Record-oriented transmission cannot be
used for accessing the system files SYSIN
and SYSOUT. A corresponding DDEF command
must be issued for any record file that is
to be opened during execution. Failure to
do this causes an UNDEFINEDFILE condition
to be raised against the file.

Figure 13 shows the relationship between
the attributes of a RECORD file and the
types of TSS/360 data sets that it can
access. From the table, these points can
be seen:

1. RECORD files can have only CONSECUTIVE
or INDEXED organization. REGIONAL and
TRANSIENT organizations are not sup­
ported by TSS/360.

2. CONSECUTIVE files can only te accessed
in SEQUENTIAL mode.

3. INDEXED files can be accessed in eith­
er SEQUENTIAL or DIRECT mode. The
default mode is SEQUENTIAL.

I
eNVIRONMENT (CONSECUTIVE)

I
SEQUENTIAL

I
~D UNSUrERED

VS PS(OSAM) PS(SSAM)

RECORD

I
ENVIRONMENT (INDEXED)

I
SEQUENTIAL

I
8UFrRED

VI

I
I

DIRrT

UN BUr ERE 0

VI

Figure 13. Access of RECORD Files to TSS/
360 Data Sets

SECTION 10: RECORD-ORIENTED TRANSMISSION

4. CONSECUTIVE files can have the BUF­
FERED or UNBUFFERED attribute.

5. CONSECUTIVE BUFFERED files can be used
for data sets having either virtual
sequential (VS) or physical sequential
(PS) organization. The organization
must be specified in the DSORG parame­
ter of the DDEF command.

6. CONSECUTIVE UNBUFFERED files can only
be used for PS data sets.

7. INDEXED files can only be used for
data sets having virtual indexed
sequential (VI) organization.

8. INDEXED files that are given the
SEQUENTIAL attribute are automatically
given the BUFFERED attribute: hence.
both move- and locate-mode I/O state­
ments can be used.

9. INDEXED files that are given the
DIRECT attribute are automatically
given the UNBUFFERED attribute; hence.
they can use only the move mode of
access.

CONSECUTIVE FILES

. Table 14 shows the types of CONSECUTIVE
files that you can specify and the I/O
statements that you can use with them.
CONSECUTIVE files can be given the BUFFERED
or UNBUFFERED attributes. (Note: The
default attribute is BUFFERE~ The BUF­
FERED attribute allows the file to access
either VS or PS data sets without any pro­
gram changes. The type of data set is
determined by the DSORG parameter, which
must be included in the DDEF command issued
for the file. If the file is given the
UNBUFFERED attribute, it can only be used
to access PS data sets using the Basic
Sequential Access ~ethod (BSAM). (For
further information on BSAM. see IBM Time
Sharing System: Data Management Facili­
ties. GC28-2056.) The following pages dis­
cuss the use of CONSECUTIVE files to
access:

• Virtual Sequential Data Sets

• Physical sequential Data Sets

VIRTUAL SEQUENTIAL DATA SETS

Virtual sequential data sets are the
simplest and most efficient way of storing

Part II: Using All the Facilities of the PL/I Compiler 73

Table 14. Characteristics of CONSECUTIVE Files
r-------------T----------T---------~--------T------------T---------T--------~---------,
I I I I I I I Access I Record I
(Organization I Access IBuffering I Mode I Statement I Options I Method I Formats I
~-------------+----------+----------+--------t------------+---------+--------t--------~
I I I I I I INTO i I I
I I I I INPUT I READ I IGNORE I I I
(I I I I I SET I I I
I I I t--------t------------t---------~ I I
! I I I ! WRITE I FROM I I I
I I I I OUTPUT t---------t------~ VSAM IF, V or I
j I I BUFFERED I I LOCATE I SET I or I D, U I
I I I t--------t------------+---------~ QSAM I F, V, U I
I I I I I I INTO I I FB, VB I
I I I I I READ I IGNORE I I or DB I
! I I I I I SET! I I
I I I I UPDATE t------------+---------~ I I
I ENVIRONMENT I SEQUENTIAL I I I REWRITE I FROM I I I
I (CONSECUTIVE) I t----------+--------t---·---------t---------f--------t----------i
I I ! I I IINTO I I I
I I I I INPUT I READ I IGNORE t I I
I I I I I I EVENT I I I
I I I t-------+-----------t--------·~ I I
I I I I OUTPUT I WRITE I FROM I I I
I I I I I I EVENT I BSAM I I
I I I UNBUFFEREDt-------t-----------t-----i IF, V or I
I I I I i I INTO I only I D, U I
I I I I I READ I IGNORE I I I
I I I I I I EVENT I I I
. , I I UPDATE ~------------t---------i I I

, I I I REWRITE I FROM I I I
I I I I ! I EVENT I I I
t------------~----------~----------~--------~------------~---------~--------~----------~
INote: The D and DB record formats are for tapes in ASCII format (see Appendix D). I L ___ .. ___ J

data in TSS/360. Records are automatically
blocked into page-size physical records and
there is no need for the user to provide
blocking information. They are stored on
public volumes and cataloged automatically
at creation time. When you have them read
or updated, you supply the data set name
(DSNAME) and data definition name (DDNAME).

Example 12 in ·Part III: Examples·
0hows the creation of a VS data set.

creating a Virtual Sequential Data Set

To create a VS data set using record­
oriented transmission, certain essential
information must be supplied to the sys­
tem's data management routines. This
information is taken from the following
sources:

• The PL/I program (the ENVIRONMENT
option of the file declaration).

• The DDEF command.

• By default, if not specified in the
program or in the DDEF command.

Default values may not always be adequate
for correct execution of the PL/I program.

74 Section 10: Record-Oriented Transmission

Table 15 details the parameters which are
always required for a new VS data set a.nd
lists alternative ways they may be
supplied.

Table 15. Specification of VS Data Set
Characteristics

r---------T----------T-----------T--------,
IRequired IDDEF !PL/I IDefault I
I Parameter I Command IProgram IValue I
~---------+-----·-----+--------t-------~
IDDNAME Ifile-name tfile-name I I
I Ititle-nameltitle-name Inone I
I I I I I
i DSORG= I VS I I none I
! i I I ,
I DSNAME= IDATA SET I I I
I I NAME I I none I
I I I I I
I DISP= I NEW I I See Note I
I I I I I
I DCB= I I I I
i RECFM==\F, V. or UIENVIRONMENTIV I
i LRECL= j length I option 1132 I
t---------~----------~-----------~--------i
I~: DISP= defaults to OLD if DSNAME I
I is in catalog. to NEW if DSNAME is not I
I in catalog. I I. ________________ •• _________________________ J

Accessing a Virtual Sequential Data Set

Since VS data sets are cataloged auto­
mat.ically 'When they are created. a ro.inimwn
of information is required 'When they are
accessed at a late~ time. The essential
information required in the DDEF command is

DDNAME file or title-name

DSNAME da ta set name

DISP :: OLD

The remaining information that is required
by the data management routines is obtained
from the catalog entry.

Note: It is not possible for the programm­
er to alter tbe existing data management
parameters (for example. RECFM, LREeL). If
they are supplied, they must be tbe same as
the existing values.

The existing data set can be accessed in
three 'Ways; the associat.ed file can be
opened for INPUT. OUTPUT or UPDATE.

INPUT: The file is positioned at the first
record in the data set. The records are
presented in sequence; after tbe last
existing record is read, a further read
statement causes an ENDFILE condition to
occur for tbe file.

OUTPUT: The file is positioned after the
last existing record; ne'W records are added
to the end of the data set.

UPDATE: The file is positioned at the
beginning of the data set. Records that
are replaced cannot have their length
altered.

PHYSICAL SEQUENTIAL DATA SETS

Physical sequential data sets can reside
on tape or disk devices and are always
private and non-sharable. They can be
accessed using either the Queued Sequential
Access Method (QSAM) or the Basic Sequen­
tial Access Method (BSAM), depending upon
'Whether the associated files are given tbe
BUFFERED or UNBUFFERED attribute. When
QSAM is used, the records are blocked and
deblocked automatically cy the data manage­
ment routines; hence, the PL/I program is
simpler to 'Write and has better safeguards
against errors. Although the use of BSAN
involves you in working 'With blocked reco­
rds. it bas the advantage that input and
output can be overlapped with other proces­
sing by the use of EVENT variables. The
follo'Wing paragraphs discuss the creation
and accessing of PS data sets using QSAM.
Most of the information given also applies
when using BSAM; for a discussion of the

special considerations concerning BSAH. see
·Physical Sequential Data Sets (BSAM
Access) •• in this twction. For fUrther
discussion of QSAM and BSAM, see IBM
Systern/360 ·rim~. Sharing System: Data Mana­
gement Faciliti~~. GC28-2056.

cxeation of PhY3ical Sequential Data Sets

Tbe information required for the crea­
tion of a PS data set is more extensive
than for a VS data set. The user must
supply information concerning

II Device Type

II VolUllle Serial Number

II I,abeling (tape only>

co Record Format

.. Record Length

.. Block Sizes

Additional information is required if the
user 'Wishes to override standard system
values (for example, space allocation, tape
density, etc.).

Some of the information can be supplied
by the PL/I program (EWJIRONHENT attribute
of the file declaration>, implied from
other values (for example, for unblocked
records, the record length can be implied
by the format and block-size), or supplied
by the PL/I library routines by default.

Table 16 specifies possible sources of
essential information required for the
creation of a liE''W PS data set using QSAM.
For a complete discussion of the DDEF com­
mand, see Appendix D.

Accessin~:L.Q--,Physical Sequential Data Set
(QSAM)

The data management information required
for accessing a PS data set is considerably
simplified if the data set is cataloged
after creation. Cataloging a data set pre­
serves information concerning:

• Device Type

• Volume Serial Number

• Labeling and Density (tape only)

• Record Format

• Record Length

II Block Size

If the data set :is uncataloged, information
concerning the location of the data set is

Part II: USing All the Facilities of the PL/I Compiler 75

Table 16. Specification of PS (QSAM) Data
Set Characteristics

r---------------T----~~----------T-------------T---·-------,

I ! DOEI' I PL/I I Default. I
ICharacteristicl Command I Program Ivalue I
r-------·-------+----------------t---------t----------~
IIlDNAME'= I 1'i le-NaJlle I File-N e I Name I
I I Title-Name ITitle-Name I I
I I I I I
1 DSORG= I PS I I None I
I I I I I
I I Data set! I I
IDSNAME~ I Name I I None I
I I I I I
! DlSP~ I OLD ! I None I
I I I I I
IDCB" I I I I
1--- I \' F. V or D. U I I I U I
I RECFM I t'B, VB or DE! I ENVIRONMEN'I'1 I
I LRECL ! value I option INane I
I BLK0lZE I value I INone I
I I I I I
I ~q-'-.JlJsk. I ! I I
I I (OA.f23111 ') I I I
I lJNI'l'·c I \ 123141 I I I
I I {PRIVATE ')' 1 ! I
I VOLUME I \. ser~al no I I System I
! I I or User- I
1!~().£5~J'_c I I Defined I
I ITA,191\ I I Defaults I
I UNIT" \ 11 ! / I I I
I 'Private 'J! I I
I VOLUME= (. serial no. I I I
I ([NL l \ I I I
I LIillE.L= file-no, 81. I! I I I
I I ". SUL. I! I I L _______ .• _____ .J.. __________ . ______ ..l ________ • ____ .1. __________ .1

always required (that is, UNIT. VOWME).
Further information is then required only
in the case of unlabeled tapes. Data sets
on direct access devices or labeled tapes
have format information contained in con­
trol blocks (DSCBs or header labels) kept
with the data.

The existing data set can be accessed in
several ways, depending upon the way the
associated file is opened.

INPUT: When opened for INPUT. the file is
positioned at the first record and the
records are presented in sequence. After
the ~a~_ record is read, a further read
causes an ENDFILE condition to be Signaled
for the file.

For tape devices only. it is possible to
read the records in reverse order. The
file must be opened and processed before­
hand, and the LEAVE option must be speCi­
fied in its ENVIRONMENT attribute. When
reopened for input, the BACKWARDS att,ribute
must be specified. This method of tape
operat.ion is applicable for all. record
formats.

OUTPUT: When opening an existing PS data
set for OUTPUT. the disposition DISP=MOD
should be specified if you want to add
records at the end of the data set. Fail­
ure to do this causes the data set to be
overwritten.

76 Section 10: Record-Oriented Transmission

~: For tape data sets. only the last
fil.e on the 'tape can be extended in this
manner. Otherwise any following file
becomes unreadable.

UPDATE: Only data sets on direct access
devices can be opened for update. The
records must be read and rewritten without
changing their length.

Track Overflow

If the volume is on a direct access
device, the blocksize can be greater than
the size of a track. In such a case, it is
necessary to specify track overflow for the
data set. (Note: Track overflow requires
a hardware feature that may not be avail­
able on the access devices at your instal­
lation.) Track overflow can be specified
in the ~~IRONMENT attribute (TRKOFL) or in
the record format (RECFM) DeB subparameter.
Examples:

RECF'M=UT format-U with track overflow

RECFM=FBT format-FB with track overflow

lfthe blocksize is smaller than the
track size. the use of track overflow is
optional.

Accessing a Physis:al~uential Data Set
(BSA.~)

Wben a CONSECUTIVE file is given the
UNBUFFERED attribute. it can only be used
to access PS data sets using the BSAM
access method. The use of BSAM causes com­
plete physical records to be assigned to
the Frogram variables on input, and inserted
on output. Any blocking or deblocking of
the records must be done by the PL/I pro­
gram. The use of BSAM allows the fossibi­
lity of overlapping the I/O operations with
other processing. See ·Synchronous I/O
USing BSAM," iII this section. Except for
these considerations, there are no major
differences between QSAM and BSM .•

SYNCHRONOUS I/O USING ,BSAM: When using
BSAM to access a PS data set, it is poss­
ible to overlap I/O with other processing.
This ove!:lapped pr0cessing occurs 'When an
EVENT variable is specified in the I/O
statement of the PL.lI program. (For a com­
plete discussion of the use of EVENT
variables in I/O processing, see PL/I Lan­
guage Reference Manual.) The maximum num­
ter of I/O events that can be outstanding
for a filE: at any instant must be supplied
as an additional data management parameter.
This value is called NCP (number of channel
programs). It can be specified in the
ENVIRONMEN'I' att,ribute of the PL/l Program
(NCP (oj) or in the DeB parameter of the
DDEF cororoand (NCP=n). A similar rule ap­
plies fol' the BUrnO dat.a management parame-

ter. This specifies the number of buffers
allocated to the file. like NCP, this
value must not be less than the maximum
number of outstanding I/O events that can
occur. BUFNO can be specified in the
ENVIRONMENT attribute, in the form BUFFERS
(n), or in the DDEF command, in the form
BUFNQ=n.

INDEXED FILES

Table 17 shows the types of INDEXED
files that you can specify and the I/O
statements that can you can use with them.
A RECORD file declared to have INDEXED
organization can only be used to access VI
(virtual indexed sequential) data sets.
Each record in the data_ set is identified
by a key that is recorded with it. A key
is a string of not more than 255 charac­
ters; all the keys in a data set must have
the same length and the same relative posi­
tion in the record. The records are
arranged according to the collating
sequence of their keys, which facilitate

Table 17. Characteristics of Indexed Files

the direct (nonsequential) retrieval, addi­
tion. and delet~on of the records.

INDEXED files can be accessed by the
PL/I program in two alternative modes,
SEQUENTIAL or CIRECT. SEQUENTIAL proces­
sing of INDEXED fi.les is similar to the
~rocessing for CONSECUTIVE files. Records
can be read in ascending key sequence from
the first record onwards without specifying
any key information; or the data set can be
Fositioned to a Farticular record (using
tbe KEY option) and then further records
read in sequence. To update an INCEXEC
file sequentially, eacb record must first
be read and then rewritten. There is no
restriction for format-V records that the
new record must be the same size as the old
record. For DIRECT processing of an IN­
DEXED file, there are no restrictions on
the use of I/O statements; records can be
added using the WRITE statement or replaced
using the REWRITE statement~ without pre­
vious issuance of a READ statement. To
simplify programming for INDEXED files, the
PL/I library routines treat indexed files

r------------T-----------T-----------~-------T-----------T-----------T--------T--------,
I I I I i I I Access I Record I
IOrganization\ Access I Buffering I Mode I Statement I Options I Method I Format I
t------------+-----------+------------+-------+-----------+-----------+--------+~-------~
I I I I I I INTO I SET I I I
I I I I INPUT ! READ I IGNORE I I I
I I I I I I KEY I KETIO I I I
I I I ~-------+----------+----------~ I I
! I I I I ! FROM I I
I I I I I WRITE I KEYFROM I I
I I I I OUTPUT t-----------+-----------~ I
I I I I I I SET I I
I I I I I LOCATE I KEYFROM I I
I I SEQUENTIAL I BUFFERED ~-------+-----------+----------~ I
I I I I t I INTO I SET I I
I I I I I READ I IGNORE I I
I I I I I , KEY I REYTO I I
I I I I UPDATE t-----------+-----------~ I
I I I I I REWRITE I FROM I I
I I I I ~-----------+-----------~ I
I ENV IRONMENT I I I I DELETE I I VISAM F. V I
I (INDEXED) t-----------+------------+-------+-----------+-----------.~ only I
I I I I I I INTO I I
I I I I INPUT I READ I KEY I I
I I I ~-------+-----------t·--·---·------~ I
! I I I I I FROM I I
! I I 10UTPUT I WRITE I KEYFROM I !
! I I t-------+-----------+-----------~ I
! I I I I I INTO I I
I I I I I READ I KEY I I
I I DIRECT I UNBUFFERED I t-----------+-----------~ I
I I I I I I FROM I I
I I I I I WRITE I KEYFROM I I
I I I IUPDATE t-----------t-----------·i I
I I I I I I FROM I I
I I I I I REWRITEI:KEY I I
I I I I t-----------+-----------~ I
I I I I I DELETE I KEY I I I l ____________ J. ___________ J. ____________ J. _______ J. ___________ .L __________ L-________ J. ________ J

Part II: Usin9 All the Facilities of the PL/I compiler 17

having initial keys (see Appendix D. record
format diagrams) as different from files
having embedded keys.

Initial and Embedded Keys

When the keys are positioned at the
beginning of the record (i.e., RKP=O for
format-F records or RKP==4 for format-V
records), they are initial keys. In all
other cases, they are embedded keys.

INITIAL KEYS: On output the PLiI library
routines automatically concatenate the key
variable (KEYFORM option) and the data
variable (FROM option) before the record is
~ritten out to the data set. Thus. you can
consider the key and data as completely
independent variables. Conversely, on
input, t.he data section of the record is
assigned to the data variable (INTO or SET
option) and the key is assigned to the key
variable (KEYTO option).

EMBEDDED KEYS: For this form of proces­
sing, you are responsible for inserting the
key at the appropriate position in the rec­
ord before issuing a ~rite statement. The
PL/I library routines then compare the in­
sertion ~ith the specified key (KEYFROM
option). InequaJi+v results in a KEY

d.or. 0~'· KEYTO option can be
used to €}. _ .. ~L d copy of the key.

Creating an Indexed Data Set

The associated file can be opened for
SEQUENTIAL OUTPUT or DIRECT OUTPUT.
sequential proceSSing is more efficient
than DIRECT, but the records must be pre­
sented in ascending key sequence. Failure
to do this raises the KEY condition. For
DIRECT OUTPUT proceSSing, the records can
be presented in any order; the only error
that can occur, besides a key-specification
error, is supplying of a duplicate key.

The data ITlanagement parameters required
~hen creating a new VI data set are shown
in T-,hl p 18.

78 st:!ct.ion 10: Record-Oriented Trdnsmission

Table 18. Specification of VI Data Set
Characteristics

r-·---------~-----------_,~-----------T--------------..
I I DOEF I PL/I I Default I
I Characteristic I Command I Program I Value I
t--------------+------------+------------t----------------~
i DDNAME= I file-name I file-name I None I
! ! title-name I title-name I I
I I I I I
I DSORG= i VI I I See Note I
I I I I
I DSNAME= I Data Set I None I
I ! name I I
! I I I
I DCB= I I I
I I I I
I RECFM= I F,V ENVIRONMENT! V I
t LRECL= I value option I 132(V) 128(F) I
I RIll'=' I value I q (V) 0 (F) I
I KEYLEN= I value I 7 tv or F) !
I I I I
I DISP= I NEW I I See Note I
~--------------L------------L-----------~----------------~ I Note: DSORG defaults to OLD if the DSNAME is in the I
I system catalog, and to NEW if the DSNAME is not I
I in the system catalog. I
L ___ J

Accessing an Indexed Data Set

The data management information required
for accessing an existing indexed data set
is

DDNAME = file or title-name

DSNAME = data set name

DISP = OLD (optional)

No further information need be supplied.
If other data management parameters are
supplied, they must be the same as the
existing values; no change can be made to
the values set at creation time.

Example of Indexed DataSet

Examples 14 and 15 in ·Part III:
Examples· illustrate the creation and
updating of an INDEXED data set.

Programs can be checked out using the
program control system or the debugging
facilities provided by PL/I.

PROGRAM CONTROL SYSTEM

The program control system (PCS) is a
subset of the TSS/360 command system.
Table 19 summarizes the PCS facilities
available to the PL/I user.

Table 20 lists the restrictions on using
PCS that apply only to you as a PL/I user
or are of special interest to you. For
further information, see command System
User's Guide.

Example:

LOAD SIMPLE

SECTION 11: DEBUGGING A PL/I PROGRAM

The system loads module SIMPLE and modules
invoked by SIMPLE. but does not initiate
execution.

PROC5:STOP

The system types the statement number
assigned to the AT command.

,§IMPLE

The system initiates execution of SIMPLE.
and notifies you when control arrives at
external procedure PROC5.

]2ISPLAY O:15R

The system displays the contents of your
general-purpose registers at your terminal.

Table 19. Program control Commands and Their Functions
r---------T---,
t Command I Function I
r---------t---~
I LOAD I Places a program in your virtual storage without initiating execution. I
I I I
'UNLOAD I Removes specified program from your virtual storage. I
I I I
I CALL I Loads and passes parameters to a program and execute. I
I I I
I GO I Resumes execution of previously interrupted program. See Appendix B. I
I I I
I REPEAT I After attention interruption, repeats last nonprompting message. See I
I I Appendix B. I
I I I
I BRANCH I Dynamically changes control path of program or resumes execution at a dif- I
I I ferent location. (Resembles the PL/I GOTO statement.) I
I I I
I AT I Informs you when execution of program has reached deSignated instruction I
, I location, or designates instruction location at which rest of command !
, I statement is to be executed. I
I I I
I REMOVE I Selectively deletes preViously entered command statements that include AT. I
I I I
I IF I Makes following command statement conditional. I
t I I
I SET I Changes contents of machine registers, values of program variables, virtual I
I i storage locations, or command symbols. (Command symbols are explained in !
I I command System user's Guide.) I
I I i
I DISPLAY I Presents values of variables, contents of ~achine registers, and specified I
I I virtual storage locations to your SYSOUT. I
I I I
I DUMP I Presents values of variables, contents of machine registers, and specified I
I I virtual storage locations to task's PCSOUT data set. I
I I I
I STOP I Interrupts execution of your program and displays instruction location I
I I where interruption was handled. (Used only in a command statement that I
I I includes an AT command.) I L-________ ~ __ -----------____________________ J

Part II: Using All the Facilities of the PL/I ComFiler 79

Table 20. Rules for Using Program Control Commands

r--------------------T--,
I Commands I Rules I
~-------------------+--i
! LOAD I Specify a module name. external-procedure name, or external- I
I I procedure ENTRY name. The module and those of its subroutines I
I I that are not called explicitly will be loaded. I
I I I
i CALL I Specify the module name for the main procedure. I
I I I
I LOAD, CALL I A CSECT in the program is rejected if it has the name of a CSECT I
I I that is already loaded; an attempt by the program to execute the I
I I rejected CSECT executes the CSECT that is actually loaded. I
I I Modules in IVM. however, are -forgotten" if you logged on with I
1 I an IVM code (the 8th LOGON ~arameter) of Y, and other modules I
I I that duplicate their CSECT names can be loaded or executed. I
I I I
I BRANCH, AT, IF, I A location in the program must be specified as an external I
I SET, DISPLAY, DUMP I name, external name with offset, or an actual address. If the ,
I I CSECT is in IVM, and you logged on with an IVM code of Y, you I
I I must specify an actual address. I
I I . I
I UNLOAD I Specify a module name or the name of any loaded CSECT; the I
I I entire module, as well as subroutines not shared by another I
I I loaded module, will be unloaded. UNLOAD cannot unload modules I
I I from IVM. I
I I I
I AT, SET I AT or SET cannot reference a public CSECT. I
I I I
I SET I SET cannot reference a read-only CSECT. I
I I I
I LOAD, GO I See Appendix B. I

------- ----------------------------------_______________________ ~ _______ J

DDEF PCSQUT,VI,DSNAME=DUMPDS

DUMP PROCS

RELEASE PCSOUT

PRINT DUMPDS." EDIT

The system dumps the contents of PROC5 in1"'"
DUMPDS and prints DUMPDS at the instaLla­
tion's printer.

Accessing Static Internal control Sections

You can obtain the address of a static
internal control section with the command:

DISPLAY procedure-name.(X'10',4)

Then you can examine and change the static
internal control section·s contents. using
the DISPLAY, DUMP, and SET commands.

PL/I DEBUGGING FACILITIES

Certain language features are provided
in PL/I to assist you in debugging your
program. The facilities inclUde:

• Control over interruptions and error
handling

80 Section 11: Debugging A PL/I Program

• The ability to obtain a trace of active
procedures

• Symbolic output

• Communication with the program during
execution

The use of specific language features
provides the debugging facilities; in addi­
tion, you can use your own techniques, such
as inserting PUT statements at selected
points.

When you are satisfied that your program
is working correctly, you should remove
debugging statements from your source pro­
gram and then recompile to produce an opti­
«um object program ready for execution.

CONTROL OF INTERRUPTION AND ERROR HANDLING

Some conditions can be enabled or dis­
abled by meanS of the condition prefix,
full details of which can be found in IBM
System/360 Time Sharing System: PL/I lan­
guage Reference Manual.

In addition. you can specify your own
exit (to be taken when a particular condi­
tion occurs). or you can cause an interrup­
tion by weans of the SIGNAL statement. In
particular, attention should be paid to the

CHECK condition. as this enables you to
maintain a close watch on any variables you
want to nominate.

If you want t,o exercise control of a
more general nature. you can make use of
the ERROR condition and, in an ·ON-unit­
further analyze the program by means of the
ONCODE and ONLOC functions.

Standard system action for an ERROR con­
dition causes tbe FINISH condition to be
raised.

ON-CODES

The ONCODE built-in function can be used
in any ON-unit to determine the nature of
the error or condition that caused entry
into that ON-unit.

An ON-unit, which has been established
by the execution of an ON statement, is
entered wben tbe associated ON-condition is
raised during execution of PL/I-compiled
code or of a PL/I library module. Thus,
for example, a FIXEDOVERFLOW ON-unit would
be entered whenever any of the conditions
occur for which the language demands the
raising of the FIXEDOVERFLOW condition.

Two ON-conditions, ERROR and FINISH,
require special explanation. Tbe ERROR
condition is raised:

1. Upon execution of a SIGNAL ERROR
statement.

2. As a result of system action for those
ON-conditions for which the language
specifies system action to be ·comment
and raise the ERROR condition.-

3. As a result of an error (for wbich
there is no ON-condition) occurring
during program execution.

The FINISH condition is raised:

1. Upon execution of a SIGNAL FINISH,
STOP, or EXIT statement.

2. Upon normal completion of the MAIN
procedure of a PL/I program.

3. Upon completion of the action asso­
ciated with the raiSing of tbe ERROR
condition, except when a GO TO state­
ment in the ON ERROR unit bas resulted
in transfer of control out of that
unit.

As a general rule, the value of the ON­
code returned by the ONCODE function is
that of the specific condition tbat caused
entry into the ON-unit. ThUS, in an ON
CONVERSION unit, you can expect an ON code

corres[:onding 't.o Ohl;! o.f the conversion con­
ditions that cause the CONVERSION condition
to be raised ill PL/I. However. this is not
necessarily true when executing an ON ERROR
or an ON FINISH unit; the values are as
follows:

1. When entered as a result of a SIGNAL
ERROR or a SIGNAL FINISH. STOP or EXIT
statement, or as a result of normal
termination, the ON code values are
those of ERROR or FINISH respectively.

2. When entered for any other reason, the
ON code value is that associated witb
the error or condition that ori9inally
caused the ERROR condition to be
raised.

Several separate but related occurrences
can cause a particular PUT ON-condition to
be raised. For example. the TRANSMIT con­
dition can be raised:

1. By execution of a SIGNAL TRANSMIT
statement

2. By occurrence of an input TRANSMIT
error

3. By occurrence of an output TRANSMIT
error

Although it is often usefUl to know pre­
cisely wbat caused an ON-condition to be
raised. at times it is SUfficient simply 1:0
know wbich ON-condition was raised. This
applies particularly if the ONCODE function
is used in an ERROR ON-unit after syst.em
action bas occurred for an ON-condition.
The ON codes have therefore been grouped o
each group containing codes associaJced with
a particular ON-condition.

From time to time it may become neces-­
sary or desirable to add new ON-codes into
a group. Perhaps a group containing only
one ON-code may be expanded. This fact
lrust be remembered when the ONCODE function
is used to det'=rmine if a particular PL/I
ON-condition has been raised. It is impor­
tant to test to see whether the ON-code is
within the range specified, even if there
is only one ON-code in the range, other­
wise, wben a new set of library lllodules is
used, it mal' become necessary to recompile
tbe program.

When a group contains only one ON-code
value, it is impossible to test specifical­
ly for the signaled condition. With more
than one ON-code in the group, the first in
the group represents the signaled condition.

The ON-code groups and their ranges are
shown in Tables 21 and 22. (Language ON­
conditions are shown in capit_als. others in
lowercase letters.)

Part II: Using All the Facilities of the PL/I Compiler 81

Table 21. Main ON-Code Groupings
r-----------T-----------------------------,
I Rang e I Group I
~-----------+-----------------------------~
I 3- 5 I As for 1000-9999 I
I 10-199 I I/O ON-conditions I
I 300-399 I computationa1 ON-conditions I
I 500-549 I Program checkout conditions I
I 600-899 I Conversion conditions I
I 1000-9')99 I Error conditions (also 3-5) I L ____________ J. __________________________ J

Table 22. Detailed ON-Code Groupings

r-----------T-------------------------,
I Range I Group I
~-----------+----------------------------~
I 0 I ONCODE I
I 3 I Source program error I
I 4 I FINISH I
I 9 I ERROR I
I 10-19 I NAME I
i 20-39 I RECORD I
I 40-49 I TRANSMIT I
I 50-69 I KEY I
I 70-79 ! ENDFILE I
I 80-89 I UNDEFINEDFILE I
I 90-99 I ENDPAGE I
I 100-299 I (Unallocated) I
I 300-309 i OVERFLOW I

310-319 I FIXEDOVERFLOW I
320-329 I ZEROnTUTrlE I
J30-3~o I
340-349 vi£E I
350-359 STRINGRANGE ,
360-369 AREA I
370-499 [Unallocated) I
500-509 CONDITION I
510-519 CHECK I
520-529 SUBSCRIPTRANGE I
530-599 (Unallocated) !
600-899 CONVERSION I
900-999 (Unallocated) I
1000-1199 I/O errors I
1200-1499 (Unallocated) I
1500-1699 Data processing errors I
1700-1999 (Unallocated) I
2000-2099 Unacceptable statement I

errors I
2100-2999 (Unallocated) I
3000-34QQ Conversion errors I
3500-3199 (Unallocated) I
3800-3899 Structure and array errors I
3900-3999 Tasking errors I
4000-8090 (Unallocated) I
8091-8199 Program interrupt errors I
8200-8999 (Unallocated) I

I 9000-9999 I System errors I L-__________ J. _____________________________ J

20
21

22

23

24
40
41
42
50
51
52
53
54
55
56

57

70
80
81
82

83

84

85

90
300
310
320
330
340
3U
350
360
361
362
500
510
511
520
600
601
602
603
604

605

606
607

608

The ON-codes and their associated condi- 609
tions and errors are shown below. 610

code
--0

3
4
9

10

Condition/Error
ONCODE function used out of context
Source program error
FINISI:1
ERROR
NAME

82 Section 11: Debugging A PLiI Program

611

612

613

RECORD (signaled)
RECORD (record variable smaller than
record size)
RECORD (record variable larger than
record size)
RECORD (attempt to write zero length
record)
RECORD (zero length record read)
TRANSMIT (signaled)
TRANSMIT (output)
TRANSMIT (input)
KEY (signaled)
KEY (keyed record not found)
KEY (attempt to add duplicate key)
KEY (key sequence error)
KEY (key conversion error)
KEY (key specification error)
KEY (keyed relative record/track
outside data set limit)
KEY (no space available to add keyed
record)
ENDFILE
UNDEFINEDFILE (signaled)
UNDEFINEDFILE <attribute conflict)
UNDEFINEDFILE (access method not
supported)
UNDEFINEDFILE (blocksize not
specified)
UNDEFINEDFILE (file cannot be
opened, no DDEF command)
UNDEFINEDFIL.E (error initializing
REGIONAL data set)
ENDPAGE
OVERF'LOW
FIXEOOVERFLOW
ZERODIVIDE
UNDERFLOW
SIZE (normal)
SIZE (I/O)
STRINGRANGE
AREA raised in ALLOCATE statement
AREA .raised in assignment statement
AREA signaled
CONDITION
CHECK (label)

CHECK (variable)
SUBSCRIPTRANGE
CONVERSION (internal) (signaled)
CONVERSION (I/O)
CONVERSION (transmit)
CONVERSION (error in format-F input)
CONVERSION (error in format-F input)
(I/O)
CONVERSION (error in format-F input)
(transmit}
COt-6VERSION (error in format-E input)
CONVERSION (error in format-E input)
(I/O)
CONVERSION (error in format-E input)
(transmit)
CONVERSION (error in format-B input)
CONVERSION (error in format-B input)
(I/O)
CONVERSION (error in format-B input)
(transmit)
CONVERSION (character string to
arithmetic)
CONVERSION (character string to ari-
thmetic) (I/O)

614

615

616

617

618
619

620

621

622

623

624

625

626

627

628

629

1000
1001
1002
1003

1004
1005

1006

1007

100B

1009
1010
1011
1012
1013

1014
1015
1016

1017
1018

1019

1500
1501
1504
1505
1506

CONVERSION (character string to ari-
thmetic) (transmit)
CONVERSION (character string to bit
string)
CONVERSION (character string to bit
string) (I/O)
CONVERSION (character string to bit
string) (transmit)
CONVERSION (character to picture)
CONVERSION (CHARACTER TO PICTURE)
(I/O)
CONVERSION (character to picture)
(transmit)
CONVERSION (format-p input -
decimal>
CONVERSION (format-p input - decim-
al> (I/O)
CONVERSION (format-P input - decim-
al) (transmit)
CONVERSION (format-P input -
character)
CONVERSION (format-p input charac­
ter) (I/O)
CONVERSION (format-P input - charac­
ter) {transmit>
CONVERSION (format-p input -
sterling)
CONVERSION (format-P input - sterl­
ing) (I/O)
CONVERSION (format-P input sterl­
ing) (transmit)
Attempt to read output file
Attempt to write input file
GET/PUT string length error
Unacceptable output transmission
error
Print option on non-print file
Message length for DISPLAY state­
ments zero
Illegal array item for data-directed
input
REWRITE not immediately preceded by
READ
GET STRING -- unrecognizable data
name
Unsupported file operation
File type not supported
Inexplicable I/O error
outstanding READ for update exists
No completed READ exists - incorrect
NCP value
Too many incomplete I/O operations
EVENT variable already in use
Implicit-OPEN failure - cannot
proceed
Attempt to REWRITE out of sequence
ERROR condition raised if end-of­
file is encountered before the deli­
miter while scanning list-directed
or data-directed input. or if the
field width in the format list of
edit-directed input would take the
scan beyond the end-ot-file.
Attempt to close file not opened in
current task
Short SQRT error
Long SQRT error
Short LOG error
Long LOG error
Short SIN error

1507
1508
1509
1510
1511.
1514
1515
1550

1551

1552

1553

1551.1

1555

1556

1557

1558

1559

2000
2001

3000
3001
3002
3003
3004
3005
3006
3798
3799

3800
3801

3900

3901
3902
3903

3904

3905

3906

3907
3908

8091
8092
8093
8094
8095
8096
8097
9000

9002

Long SIN er!:()r
Short TAN eLrO!:
Long TAN error
Short ARC'rAN. errOl:
Long ARCTAN error
Short ARCTANH err'or
Long ARCTANH <error
Invalid exponent, in c:;hox:t float
integer exponen'tiation
Invalid exponent in long float
integer exponentiation
Invalid exponent in short float gen-'
eral exponentiation
Invalid exponent in long float gen­
eral exponentiation
Invalid exponent in complex short
float integer exponentiation
Invalid exponent. in complex long
float integer exponentiation
Invalid exponent in complex short
float general exponen'tiation
Invalid exponent in complex long
float general exponentiation
Invalid argument in short float com­
plex ARCTAN o:r:ARC'l'ANH
Invalid a:r:gUEKlent in long float com­
plex ARCTAN or ARCTANH
Unacceptable DELAY statement
Unacceptable use of the TIME built­
in function
Format-E conversion error
Format-F conversion error
Format-A converBion error
F'orma!:-B conversion error
Format-A input error
Format~B input erx:or
PicturE~ character string error
ONSOURCE 01: ONCHAR out of context
Improper return from CONVERSION
ON-unit
Structure length ~ 16**6 bytes
Virtual origin of array .2: 16**6 or :::
-16**6
At,ter!lptto wait 0);1 :i.it!ilctive and
incomplete event
Task variable already active
Event already being waited on
Wait on more than 255 incomplete
events
Active event variable as argument to
COMPLETION pseudo-variable
Invalid task variable as argument to
PRIORITY pseudo--variable
Event varial::le active in assignment
statement
.Event variable already active
Attempt to wait on an I/O event in
wrong task
Invalid operation
Privileged operation
EXECUTE statement executed
Protection violation
Addressing interruption
Specification interruption
Data interruption
Too many active ON·-units and entry
parameter procedures
Invalid free storage (main
procedure)

Part II: Using All the Facilities of the PL/I Compiler 83

TRACE OF .ACI'IVE PROCEDURES

A trace of active procedures can be
obtained by use of the SNAP option in an ON
statement. However, this technique has the
limitation that it records only rrocedures
dctive at the time when the condition
occurs, because of the use of dynamic
storage; when the storage is released it is
immediately available for some other use,
a nd ~;o cannot be used to maintain a full
~race. If a full flow trace is required,
then this should be programmed, either by
means of the SIGNAL statement in associa­
tion with an ON statemenT. and ON-unit, or
uy specifying all procedure names in a
CHECK liST with the apf:ropriate action in
an ON-unit.

The format of the SNAP output is either
of the following:

1. CONDITION xxxx OCCURRED AT OFFSET ±
hhhhh FROM ENTRY POINT E1

2. CONDITION xxxx OCCURRED AT OFF'SET ±
hhhhh FROM ENTRY POINT OF xxxx ON-UNIT

CALLED FROM PROCEDURE WITH ENTRY POINT
E2
CALLED FROM PROCEDURE WITH ENTRY POINT
E3
etc., etc.

It the statement number compiler option
is specified. the SNAP output message also
contains TN STATEMENT nnnnn immediately
tollowing the word OCCURRED in the first
line, or after the word CALLED in subse­
quent lines. The notation nnnnn gives the
number of the statement in which the condi­
tion occurred.

The characters that replace xxxx are an
abbrevi~rpn form of the name of the ON~
condition tnat has occurred (the abbrevia­
tions are given in Table 23). hhbhh is a
hexadecimal offset; El, E2, etc., are entry
point names indicating the actual entry
pOints used to enter the procedure in which
the condition occurred, or frorr. which the
next named entry point was called.

If a condition occurs in an ON-unit,
then the entry point name in the second
line will be that of the precedure from
which the ON-unit was entered, not neces­
sarily the procedure in which the ON-unit
is situated.

If SNAP SYSTEM has been specified in an
ON statement, the system action message is
printed, followed by the trace of active
procedures:

84 Section 11: Debugging A PL/I Program

Table 23. Abbreviations for ON-Conditions
r-------------------~--------------------,
I Condition I Abbreviation I
t--------------------+--------------------~
I OVERFLOW I OFL I
I SIZE ! SIZE I
I FIXEDOVERFLOW I FOFL I
I SUBSCRIPTRANGE I SUBRG t
I CHECK I CHCK I
I CONDITION I COND I
I FINISH I FIN I
I ERROR I ERR I
I ZERODIVIDE I ZDIV I
I UNDERFLOW I UFL I
I STRINGRANGE I STRG I
I NAME I NAME I
I RECORD I REC I
I TRANSMIT I TMIT I
t KEY I KEY I
I ENDFILE ! ENDF I
I UNDEFINEDFILE I UNDF I
I CONVERSION I CONV I
I ENDPAGE I ENDP I L----------__________ ~ ____________________ J

CALLED FROM PROCEDURE WITH ENTRY POINT
E2
etc.

The one exeception is the case of SNAP
SYSTEM for a CHECK condition. In this case
a standard SNAP message is written, fol­
lowed by the standard system action print­
out for the CHECK condition.

COMMUNICATION WITH THE PROGRAM

Symbolic Output Using GET and PUT
Statements

Section 7 explains how the GET and PUT
statements can be used to direct I/O to
SYSIN/SYSOUT.

Execution of a GET DATA statement causes
the system to read from SYSIN. SYSIN
should provide a series of assignment
statements that assign values to variables
declared within the block containing the
GET statement. Methods of entering a SYSIN
data set in nODconversational mode are
described under ·system Input File -­
SYSINw in Section 8, and in Part III.
Examples 3 and 4.

Execution of a PUT DATA[data list]
statement causes the system to write on
SYSOUT. Use of a data list with a PUT DATA
statement is o~tional. Execution of a PUT
DATA statement with a data list causes the
system to write each specified variable and
its value on SYSOUT, in assignment­
statement form. Execution without a data
list causes the syst:em to write the con­
tents of each static variable in your
program.

For examples of terminal I/O using the
simple GET and PUT statements, see ·Section
3: Basic Data Manipulation.- For an
example of nonconversational input using
the simple GET statement, see Examr1e 4 in
·Part III: Examples.-

You can also use the data-directed I/O
feature with files other than SYSIN and
SYSOUT. This feature can ~e used instead
of, or in addition to, the CHECK condition
handling. Refer to PL/I Language Reference
Manual for a full description of this
feature.

The DISPLAY statement

The DISPLAY statement provides an addi­
tional means of communicating with the pro­
gram while it is being executed.

A message can be displayed in either of
two forms:

1. Without the REPLY option, which gives
the specified character string
unaltered.

2. With the REPLY option. which gives the
specified character string preceded by
a two-digit code generated by the sys­
tem. Use this code as a prefix to the
reply message. The reply message can
be given in either a conversational or
nonconversational task; it must come
from the SYSIN data set.

In TSS/360, the EVENT option of the DIS­
PLAY statement can be used only to suppress
flagging of the event variable as complete.

User-Requested Dump

An additional debugging feature is the
ability to obtain a storage dump at any
point in the program. A dump is obtained
by one of the statements:

CALL IHEDUMC[Cargument)];
dump and continue execution

CALL IHEDUMP{(argument)]i
dump and terminate execution

The argument is optional; if used. it must
~e declared as ENTRY(FIXED BIN(31,O».
This int.eger appears in the heading of the
dump as 10 == n. It must be in the range 0
through 21.

The operation of the dump routines
depends upon whether the invoking task is
in conversational or nonconversational
mode.

CONVERSATIONAL DUMPS: The following infor­
mation is printed at the terminal:

• Dump header.

• Addresses of the DCB (data control
block) and certain other PL/I library
control blocks, for all opened files
and for the current file.

• Addresses of all save areas currently
in use, starting with the last used.
For each save area. the calling and
return addresses of the routines are
given.

At this ~oint. the message

PAUSE

is printed at the terminal and the task is
put into command mode. You can now use PCS
commands to obtain any further information
you require.

To continue execution, issue the GO com­
mand; the dump routine will cause the ~ro­
gram to either continue or terminate,
depending on whether IHEDUMC or IHEDUMP was
called.

NONCONVERSATIONAL DUMP; '!'he system prints
the same information that it prints for a
conversational dump; in addition. it gives
dumps of all pages containing the su~plied
addresses.

RETURN CODES

Return codes are set by use of the
statement CAIL IHESARC.

Part II: USing All the Facilities of the PL/I Compiler 85

SEdrON 12: INTERFACE BETWEEN PL/I AND ASSEMBLER-LANGUAGE PROGRAMS

You may want to write subroutines in
assembler language and then call them from
a PUI pX'ogram -- for example, to provide a
new fUnction. You may want to write your
own versions of PL/I library subroutines.
More rarely. you may want to call a PL/I
subroutine from an assembler program.

For any but Simple subroutines, it is
recommended that you become familiar with
IBM System/360 Time Sharing System: PL/I
Subroutine Library Program Logic Manual.
GY28-2052, hereinafter referred to as the
library PLM. The general notes given here
may help you decide whether your subroutine
is simple.

ASSEMBLER SUBROUTINES CALLED FROM PL/I
PROGRAMS

ABSENCE OF PSECTS

Ther in PL/I. and no R-
type addre " ustants. You cannot write a
subroutine with a PSECT, because the PL/I
calling program will not supply the PSECT
address in word 19 of its save area. All
PIJI control sections are CSECTs.

£NTRY TO THE SUBROUTINE

At entry to a subroutine called from
PUI • these facts are known:

• Register 15 contains the address of the
subroutine entry point, and can there­
fore be used as a base register.

• Register l4 contains the addre:.>s of the
r~<-nrn point in the PL/I calling
program.

• Register 13 contains the address of the
(PL/I) calling program's save area, in
which the subroutine should save the
general purpose registers on entry.

• Register 12 contains the
PRV communication area.
must have the same value
it had on entry.

address of the
This register
on return as

• Register 1 contains the address of the
parameter list. if any.

Format of Parameter List

The parameter list built by the PL/I
calling program consists of one word for

each parameter specified in the CALL state­
ment. Each word contains a three-byte
address. (Remember that PL/I works only in
a 24-bit addressing mode.) The last word
in a parameter list contains an X'SO' flag
in the first byte. so that varying numbers
of parameters can be used.

Depending on the attributes of each pa­
rameter, the corresponding address can be
that of the parameter itself, or that of a
control block containing information that
describes the parameter's characteristics;
for examFle. consider the PL/I statements:

DeL PARI CHAR(S) ,PAR2 FIXED DECIMAL,
PAR3 BlNARY.PAR4(S);

CALL SUBR (PAR1,PAR2.PAR3,PAR4);

The CALL statement is expanded to the equi­
valent of this assembler code:

LA 8.DV •• PARI

ST 8,WSl.1

LA 8,PAR2

ST 8,WS1.1+4

LA 8.PAR3

ST 8,WS1.1+8

LA 8.DV •• PAR4

ST 8,W51.1+12

OI WS1.1+12,X· 80'

LA I,W51.1

L 15,A •• SUBR

BALR 14,15

(The parameter list is built in a location
WS1.1 in the calling program's dynamic
storage area.)

PARi is defined as a character string.
In PL/I a string item is described by a
control block called a string dope vector.
The address loaded into the parameter list
for this call is that of the dope vector
for this string, DV •• PAR1. PAR2 is a

86 Section 12: Interface Between PL/I and Assembler-Language Programs

simple arithmetic item and is addressed
directly. So is PAR). PAR4 is an array,
and this too is addressed through a control
block. in this case an array dope vector.

Other types of data may have control
blocks, and reference should be made to the
library PLM for a complete description.
When in doubt, it is useful to write a
dummy PL/I calling program with the parame­
ters declared fully, and examine the list­
ing to see how the parameter list is built.

Note that a hex 'SO' is OR'd into the
last item in the parameter list to indicate
that it is the last parameter.

DATA REPRESENTATION

PL/I has its own way of representing
arithmetic scalars, strings, arrays, and
structures. Representation of an arithmet­
ic data item depends upon its scale and
base. A string is addressed through its
string dope vector (SDV>, an array or stru­
cture is addressed through its array dope
vector (ADV>. and a structure is addressed
t.hrough its structure dope vector. See
Section III of the library PLM for the for­
mat of each of these dope vectors.

ENVIRONMENT

24-Bit Addressing

A PL/I program cannot work with an
address that is more than three bytes long.
An assembler subroutine called from a PL/I
program must take this into account.

Storage Managemen~

If you want the subroutine to be share­
able. all working must. be done in registers
or in dynamic virtual memory; that is,
without a PSECT. Rather than do your own
GETMAIN, you should use a piece of virtual
memory that has already been oetained by
PL/I and is being controlled by a library
routine. The way to do this is to code:

IHEPRV VDA.BR

BALR LR,BR

IHEPRV is a PL/I macro, defined in TSS/
360's assembler macro library CASMMAC),
that puts the contents of a particular
pseudo-register into the specified real
register. In the instruction above. it
puts the contents of IHEQVDA into register
15. IHEQVDA is defined in part of the
expansion of the PLiI macro IHELIB. which
contains a lot of useful definitions (for
example. the PL/I standard names for regis-

t.ers "inei control blocks) < It is recom­
lllended that: you inClude IHEI,IB. preferably
as t.be first instruction. in the assembler
5ubroutirle. IHEQVDA is a slot or pseudo­
register in a dynalilic communication area
called the pseudo-register vector (PRV).
It cont.ains the address of the entry point
to a xoutine that: obtains a block of virtu-·
al memory ..

At entry, register 0 must contain the
number of bytes of virtual Iilemory required.
On return, register 1 contains the address
of the beginning of the assigned variable
data a.rea (VDA). To return s'uch storage a
different pseudo-register, IHEQFVD. is used
to free the VOA. '.rhus:

BALl'< LR,BR

frees the lat'est VDA. The library PLM
describes the fm::roat 'Of a '\lOA, the first
eight t:ytes of which are reserved for
flags •. length. and chaining.

SAVE AREAS: Should the assembler subrou­
ti.ne require a sa.ve area of .i 1:5 o'\lffi.
library workspace can be used. There are
different levels of library workspace
called LWO. LW1 through LW4. If the sub­
routine is call€d only di.rectly from com­
piled code. level zero should be used. If
you are replacing an existing library rou­
tine. the level used should be one higher
than the highest. used in any ca11ing
library routine. (The library PLM shows
the calling relationships of the library
routines.) The address of the workspace
can be obta.ined by using the library macro
rBESDR; for example:

IHE;SDR L~'() • WR

puts the addrE,ss of the level zero works-
);:ace in WHo

PSEUDO-REGISTERS: The macro IHELIB defines
the standard pseudo-registers used by the
PLiI library. and you can examine or change
these by using the macro IHEPRV; for
example:

IHEPRV CFL.RA

loads the address of the current file's
pseudo-register into register RA. To ind­
icate an error condition"

IHEPRV ERR.RA,OP:::::ST

stores the contents of regist.er RA .into the
pseudo-register Il:IEQERR.

Nonstandard pseudcr-regist.ers defined by
compiled code can be addressed from

Part II: using All the Facilities of the PUI Compiler 87

assembler language subroutines through the
use of DXD instructions and Q-type address
constants.

The standard pseudo-registers and
library macro instructions are described in
appendixes of the library PLM.

InterruEtion Handling

Initialization of interruption handling
is automatic for PL/I main programs and
their subprograms. An interruption of the
assembler language subroutine will be
fielded by the PL/I library.

EXAMPLE: This is a su~ll example to show how assembler language subrou­
tines can be accessed from a PL/I main program. The module shown is
designed to accept a character string argument of any size and write it in
the SYSPRINT data set. The actual output 0feration is done by the PL/I
library module IBEPRTB, which is invoked by the assembler language subrou­
tine (PRINTER).

Part 1

PRINTER is invoked by a standard CALL statement in PL/I. using the
entry name to which control is to be passed.

TEST: PROCEDURE OPTIONSlMAIN);

Part 2

DECLARE A1 CHAR(3S):

Al is the variable to be written on SYSPRINT.

r ~ - 2;

o 4;

Al = (B*(C**2»)/D;

The last assignment statement calculates a value in floating
point and converts it to a character string.

CALL PRINTER(Al);

To use facilities provided by the library routine to put out
error messages, it is necessary to call the assembler subrou­
tine PRINTER, shown later in this section.

END TEST;

This subroutine illustrates some of the functions necessary in order to
communicate between a PL/I main program and an assembler subprogram. The
comments included explain fully what has been done, and indicate what
might have been done.

While this is a trivial example, it demonstrates most of the linkage
probleus. Note that the standard SAVE macro could have been used in this
subroutine.

This subroutine is limited to extracting the address and current length
of a character string from its dope vector, and presenting these items as
arguments to a library print routine.

PRINTER CSECT

USING *,15

BC IS,PRINT!

DC AL1(7)

88 Section 12: Interface Between PLiI and Assembler-Language Programs

PRINTi

Length of the character string that follows. Its purpose
is to enable the PUI SNAP option t.o print a trace if
required.

DC C'PRINTER'

STH 14.11,12(3)

Saves registers in the caller·s save area. Note that this
subroutine is prepared to preserve register 12. In the
event of an interruption, the PL/I execution error package
would be invoked.

DROP 15

BALR 10,0

USING *,10

The last two instructions establish addressability for the
rest of the control section. The same system is used by
the compiler-produced object code.

Use is now made of the PL/I library in order to obtain a
save area. This is done dynamically. since the same is
done by PL/I object code. If there is no requirement for
this code to be reentrant or recursive, then storage could
be reserved for it by means of DC's or DS·s.

LA 0,100 LENGTH OF D1NAMIC SAVE AREA

L 1S.ADDRl GET ADDRESS OF LIBRARY GETDSA

BALR 15,14 ROUTINE, AND BRANCH TO IT.

It is now necessary to initialize the save area. Not much
work is done in this example, but PL/I object code usually
performs many more functions. It is not absolutely neces­
sary to do more than is indicated here, but if you wish to
observe all the PL/I conventions then considerably more
code would be required.

MVI 0(13),X'SO'

This instruction moves in the flag byte as required by the
library FREEDSA routine.

At this stage, the saving conventions have been dealt with
and attention can be given to parameters.

L 14,0(0,1)

Gets the address of the argument -- note that this is not
the string itself but its dope vector.

L 1,0(0,14)

Gets the address of the string from the dope vector.

Gets the address of the current length of the string from
the dope vector.

L 15,ADDR2 GET ADDRESS OF LIBRARY PRINT

BALR 14,15 MODULE AND BRANCH TO IT.

Part II: Using All the Facilities of the PL/I Compiler 89

ADDRl

ADDR2

ADDR3

Upon return. this subroutine has completed its task and
now makes use of the library FREEDSA routine in order to
release its dynamic storage (used as a save area), and to
return to its caller.

L 15,ADDR3 GET ADDRESS OF LIBRARY FREEDSA

BeR 15,15 MODULE AND BRANCH TO IT

DC V (IHESADA) ADDRESS OF LIBRARY GETDSA RTN

DC V(IHEPRTB) ADDRESS OF LIBRARY PRINT RTN

DC V(IHESAFA) ADDRESS OF LIBRARY FREEDSA RTN

END

PL/I SUBROUTINES CALLED FROM ASSEMBLER PROGRAMS

Generally speaking, a PL/I program (even a subroutine) expects to oper­
ate in a PL/I environment. This implies that initialization has been
done, that data is in PL/I format, etc. This is particularly vital if the
subroutine should call PL/I library routines.

If the assembler calling program has itself been called by a PL/I main
program, or if you have called the PL/I initialization routine as shown
below, then initialization will have been done. Where initialization is
not done, you should not attempt to call any but the most straightforward
PL/T _"h. '"ithout a thorough knowledge of the library PLM.

INITIALIZATION ROUTINE

If you have not initialized PL/I but want to call a PL/I subroutine
from assembler, you can call the initialization procedure yourself. The
following routine is that actually used by PL/I compiled code to initia­
lize execution. It is written as a separate CSECT.

INIT

REG 1

USING •• 15

ST l,REG1 SAVE PARAMETER LIST ADDRESS

LA 1,REGl SET UP SAPC PARAMETERS

L

BR

DC

DC

The PL/I initialization routine is in the PL/I library, in
module IHEWSAP at entry point IHESAPC. It expects register 1
to contain the address of a five-word parameter list, of
which the first word (REGl) is a pOinter to the parameter
list for the program being initialized. At entry to the INIT
routine, register 1 should contain this address.

1.5, VSIIPC GET ADDRESS OF IHESAPC

15 ENTER INITIALIZATION ROUTINE

F'O'

A (return.) or DC V (RETURN POINT)

This is the address the ini tiali zatiol'1 routine should go to
when it is done. The address can be internal or external to
your current CSECT; if external, a V-type address constant
must be used.

DC V (IHEWCVC)

90 Section 12: Interface BetweenPL/I and Assembler-Language Programs

VSAPC

This is the address of the nonsharable portion of the PL/I
library, which must be given to the initialization routine in
order for it to function properly.

CXD

DC V (IHESAPC> ENTRY POINT OF INITIALIZATION ROUTINE

EXAMPLE: This program consists of two nodules. The first, ASMMOD, is an
assembler language routine that calls the initialization routine, then
calls a PL/I procedure and passes parameters. ASMMOD could do more work
than this: its fUnction here is only to show how the linkages to the
initialization and PL/I routines are performed. The second module, PLI­
MOD, comprises the PL/I procedure.

INITIAL

REGl

CSECT

USING *,15

ST 1,REG1

LA 1, REG 1

L 15,=V{IHESAPC>

BR 15

SPACE

DC F'O'

DC A(LINK)

DC V (IHEWCVC)

CXD

LTORG

EJECT

MODULE IS 'ASMMOn'

SAVE PARAMETER POINTER

ADDRESS PARAMETER LIST

ADDRESS INITIALIZATION ROUTINE

SET UP PL/I ENVIRONMENT

REGISTER 1 SAVE AREA

ENTRY POINT FOR RETURN FROM INITIALIZA­
TION ROUTINE

PL/I LIBRARY ADCON MODULE

The assembler language routine that links to the PL/! procedure does not
have to be in the same CSFCT as the call to the initialization routine, or
even in the same module. However. it is probably more convenient to put
it in tl.e same mo('ule.

First, the assembler language linking routinE Estatlishes addressatili­
ty and deals with saving conventions as in Part 2 of the example under
wAssembler Subroutines Called from PL/I Programs,· in this section. There
is no r~quirement to save register 12, since it is not modified by PL/I
~rograms.

LINK STM 14,11,12(13) SAVE REGISTERS

BASR 10,0 ESTABLISH BASE REGISTER

USING *,10 *

LA 0,100 LENGTH OF DYNAMIC SAVE AREA (100 IS
MINIMUM SIZE)

L 15=V(IHESADA) DSA ALLOCATION PROGRAM

BASR 14,15 ALLOCATE DSA

MVI 0(13) ,X'SO' SET FLAGS

Part II: using All the Facilities of the PL/I Compi1er 91

SPACE 5

LA 1, PLILIST ADDRESS PARAMETER LIST

L 15.=V(PROG) ADDRESS PL/I EXTERNAL PROCEDURE

BASR 14,15 ENTER PL/I PROCEDURE

SPACE

If the PL/I procedure executes a RETURN or END statement, control will be
returned to the next instruction;

GATWR MESG,LEN VERIFY RE'I'URN TO THIS ROUTINE

SPACE 5

L 15.=V(IHESAFA) PI/I END PROCESSOR

BR 15 END OF JOB

LTORG

LEN DC A(L'MESG) MESSAGE LENGTH

PLIST DC A (FIRST)

A (SECOND)

DC C' *LINK* RETURN FROM PL/I PROGRAM *PROG*'

FIRST DC 8'49' FIRST PARAMETER

SECOND DC 8'150' SECOND PARAMETER

END INITIAL

PROG: PROCCI,K) ; /*MODULE IS ·PLIMOD'./

DCI(J,L)BINARY FIXED(15,3};

J=SQRT(I) ;

L=SQRT (K);

PUT DATA(J,L);

IF 1=0 THEN STOP;

RETURN;

END;

Program execution:

~MMOD

J= 7.0 L= 12.1;*LINK* RETURN FROM PL/I PROGRAM
PROG

QUALIFY ASMMOD;SET FIRST=150.SECOND=32768

The value assigned to SECOND is too large for the
rameter, K, which has a default precision of 15.
bit is set; K will look like a negative number to
will issue an error message.

corresponding PL/I pa­
In this case, the sign
the PL/I library, which

92 Section 12: Interface Between PL/I and Asserntler-Language programs

ASMMOD
IHE2001 IHESQS X LT 0 IN SQRT (X) IN STATEMENT 00003 AT OFFSET +OOOES

FROM ENTRY POINT PROG

~ET SECOND =32767

~MMOD

J= 12.1

.QISPLAY 181*181

32161

~ET FIRST=O

181.0;*LINl<* RETURN FROM PL/I PROGR..AM
*PROG·

On the next invocation of the program. the PL/I STOP statement is executed
and there is no return to entry pOint LINK.

~MMOD

J= 0.0 181.0

The system prompts you for another command.

Notes on Passing Parameters

• Each parameter passed by the assembler language reu~ine must have the
internal ferm of the corresponding PL/I parameter. For example, if
the PL/I parameter is BINARY FIXED(3), the PL/I program expects it to
be a fixed-point halfword; if the PL/I parameter is DECIMAL FLOAT(6),
it must be passed as a normalized short floating-peint parameter. The
internal forms of PL/I data are described in section 3 of PL/I Lan­
guage Reference Manual •

• When a character string is passed, the address in the parameter list
points to a string do~e vector. See Section III of the library PLM,
or part two of the previous example in this section, for the content
of this dope vector. The corresponding PL/I parameter should be
declared as a varying-length string.

Part II: Using All the Facilities of the PL/I Com~iler 93

94 S~ction 12: Interface Between PL/I and Assembler-Language Programs

PART III: EXAMPLES

Part II: Using All the Facilities of the PL/I compiler 95

Part III is devoted to examples in ~hich the dialog between you and
the system appears (along ~ith explanatory comments) as it would at the
terminal. They are ty~ical. but not exact. examples of system use.
Unlike the examples throughout Part II, the examples in this part have
not been system-tested. You may. therefore, observe certain minor dif­
ferences between an example"s description in Part III and the printout
you obtain if you run the example itself. Use the examples, therefore,
only as a learning device. and as models fer designing your own work.

Commands and concepts are presented in an ordered sequence: the most
necessary and basic ones a~pear first, and are reviewed in subsequent
examples. The examples are designed so that the beginner should read
them in sequence. Those familiar with the co~~nds and concepts can use
the examples for reference.

In these examples. lines typed by the system are headed SYS. lines
you enter are headed YOU. Lines in whicb both the system and you enter
something are headed S.Y.

EXAMPLE 1: INITIATING AND TERMINATING A CONVERSATIONAL TASK

In this example, you initiate a simple conversational task and then
terminate i~. The description of the example explains the keyboard
entries required to converse with the system.

To begin a conversational task, make sure that the terminal is prop­
erly prepared (refer to instructions provided by your installation or to
Section 4 of this publication). When you dial up the system or press
the attention key for the first time in your taSk, the system assumes a
log-on operation and responds with the current date and time. You then
complete your log-on procedure by entering the operands of the LOGON
command. During your dialog with the system, commands are not actually
entered into the system until you press the return key at the end of the
line containing the command.

YOU: (press attention key or dial up system)

Note: Frore this point on, pressing the attention key halts cur­
rent activity in most situations. Consult Appendix B for the spe­
cific action taken in each situation.

YOU: LOGON ADUSERID,MYPASS*,24,ADACCT24.A
9,A"P

While typing the LOGON operands, you realize that you have entered
your charge number incorrectly. Therefore, you backspace thre'e
characters, move the paper up one line by hand to avoid overtyp­
ing. and reenter the corrected portion of the charge number. You
then complete the LOGON operands. If you wanted, you could have
cancelled the entire line by typing a pound sign (#) and immedi­
ately pressing RETURN; then you would reenter the correct line.

SYS: TSS/360 LEVEL 8.1
LOGON OF TASKID=0020 IS AT 10:26 ON 3/31/71

After the system responds with the taskid assigned to this task
and the current date and time, you can communicate with the system
by entering commands.

Explanation of LOGON operands

ADUSERID
First Operand -- User Identification
This operand is your full identification. :It was aSSigned to you
when you were joined to the system. Its first two characters iden­
tify the administrator who authorized your access to the system.

Part III: Examples 97

98

MYPASS*

24

Second operand -- Password
This operand is a user-assigned code that provides protection
against unauthorized use of your user identification. In conversa­
tional mode, you rr,ust supply a password i.f one has been assigned to
you.

Third Operand -- Addressing
Specifies whether 24-bit or 32-bit addressing is to be used for
this task. Note: To compile or run PL/I programs, you must log on
with 24-bit addressing.

ADACCT29

A

P

Fourth Operand -- Charge Number
This operand is your charge or account number that was assigned to
you by your administrator. The first two characters of your charge
number also identify your administrator.

Fifth Operand -- control Section Packing
This operand specifies whether control sections are to be packed
(that is, not placed on separate pages), and the manner of packing
to be used. The codes and their rreanings are:

p

o

x

N

Meaning
Pack all control sections.

Pack all prototype control sections (PSECTs).

Pack all control sections having neither
public nor prototype attributes.

Pack all control sections except
prototype control sections.

No packing; if the operand is defaulted, this code is
assumed.

Sixth Operand -- Maximum External Storage
This operand specifies the maximum amount of external storage to be
allocated to your task; you default this operand and use the
installation default value.

Seventh Operand -- Pristine Mode
This operand allows you to log on with only the system-supplied
defaults, synonyms, procdefs, and Character and Switch Tahle.
Since you specified this operand as P, your user library is
defined; if you had specified it as x. your user library would not
be defined.

After logging you on. the system prints a single underscore and
then backspaces; this is the standard signal that it is ready to
receive your next command on the same line.

You decide to conclude your session, so you log off.

S, Y: JPGOFF

SYS (confirms your log-off request)

EXAMPLE 2: CREATING MULTIPLE VERSIONS OF THE SAME PROGRAM

Sometimes, you may want to keep more than one version of the same
program, without attempting to give a unique n,odule name for the second

version and unique names to all of its entry Foints. For example. you
may create a new version of a program that you think is an improvement
over the old version. yet you want to keep the old version until you are
sure that the new one works. If the second version contains any names
in common with the first version. you a-ust place each version in a dif­
ferent library.

In this example, you compile a stand-alone module (a module that does
not call another module and is not called cy another module): then you
create a slightly different version of this module, without erasing the
first version.

Note the difference between the terlt.s module and procedure. A module
is the routine identified by the NAME operand of the PLI command: it
contains one external procedure with up to 254 procedures. To change
the operation of any of the procedures in the module, you must recompile
the entire module. In this example, each of the modules contains only
one procedure.

Having logged on, you create two versions of a stand-alone module
named MOD, which contains a procedure named PROG.

PLI MOD
You invoke the PL/I compiler, indicating that the module name is to
be MOD. The compiler, in turn, invokes the text editor. which pro­
mpts you with line numbers. Following the line numbers. you enter
your PL/I statements.

0000100 PROG; PROCEDURE;

0000200 DCL A FIXED INIT (0):

0001400 IF A=B THEN IF A=C THEN D=E;

0001500 ELSE F=G;

0001600 ELSE F=A;

0002500 END PROG;

0002600 .END

The module compiles without errors, and the compiler creates the
following for you:

• A load data set named LOAD. MOD. whiCh consists of the MOD object
module in card-image format •

• An object module named MOD, which is executable with other TSS/
360 PL/I programs. Since you have not yet defined any library in
this session, MOD is automatically placed in your user library.

In addition. the text editor has created a line data set named
SOURCE. MOD, which contains your PL/I statements for MOD. 53

Now you decide to change the statement ELSE F=G to a dummy
statement and recompile MOD, while keeping the first version.

Part III: Examples 99

100

DDEF DDNAME=SCRATDD.DSORG=VP.DSNAME=SCRA'I'CH.OPTION=JOBLIB
The DDEF command defines a job library, to receive the second ver­
sion. You now modify line number 1500 of the source data set.

MODIFY SOURCE. MOD

In500, ELSE;

UE

You now recompile MOD.

RLI MOD,SOURCEDS=SOURCE.MOD
The compiler completes the compilation and places the object module
in the job library named SCRATCH. until you log off and log on
again, release SCRATCH with a RELEASE command, or use the JOBLIBS
command to move USERLIB (DDNAME=SYSULIB) to the top of the program
library list, any invocation of the procedure PROG will invoke the
version that was compiled last.

EXAMPLE 3: CONVERSATIONAL INITIATION OF NONCONVERSATIONAL TASKS

It is often more convenient to have your Frograms run after you have
left the terminal. that is, to have them run in nonconversational mode.
Two ways of doing this are shown in this example.

In Part 1. you begin your.task conversationally and then use the BACK
command to switch its execution to nonconversational mode. The BACK
command names a prestored command sequence that becomes the SYSIN data
set for the nonconversational portion of the task. When BACK is issued,
centrol of the task is passed to the new SYSIN data set, effectively
logging you off at the terminal. The nonconversational portion of the
task takes its commands from the SYSIN data set named in the BACK com­
mand. This data set should conclude with a LOGOFF command; if not, the
system performs the LOGOFF operation and issues a diagnostic message.

In Part 2, you construct a nonconversational task and then use the
EXECUTE command to have it executed at a later time. The data set named
in the EXECUTE command becomes the SYSIN data set for the nonconversa­
tional task; this task is completely independent of the task that issues
EXECUTE. The EXECUTE command differs from the BACK command as follows:

1. EXf.CUTE requests an independent nonconversational task; BACK
changes the user"s conversational task to nonconversational mode.

2. The data set named in the F~ECUTE command must contain LOGON and
LOGOfF commands; the data. set specified in the BACK command need
only conclude with the LOGOFF comnand.

3. EXECUTE is accepted by the syst~.lll even if no task space is current­
ly available; the task will be created later. If task space is not
available when the BACK command is issued. the command is ignored,
and the user continues processing as though he had not issued the
command.

Note: The output resulting from either a BACK- or EXECUTE- invoked task
will appear on your installation's high-speed Frinter with the batch
sequence number that is printed at your terminal.

Part 1: The BACK Command

After loqging on, you build the SYSIN data set (named PROC12A) that
will provide input to your task after you have switched to nonconversa­
tional mode. You issue a DATA command to build this data set; you do
not issue a DDEF command for the data set, so default data set organiza­
tion VS is assumed. The DATA command accepts eacb line as a string of

characters. Any mistakes you make while creating the data set will not
be detected until the BACK command is executed.

S.Y:

S,Y:

S,Y:

S,Y:

S,Y:

S,Y:

DATA DSNAME=PROC12A
The system prompts (with a #) for con~ands to ~e put into the data
set named PROC12A. You want to execute prograu; MAIN12, which is
stored in your user library. MAIN12 reads data from the input
stream (which you enter as part of this SYSIN data set), and
creates an outfut data set (which you name SPRING).

#DDEF DDNAME=OUTDD,DSORG=VS.DSNA~E=SPRING

#MAIN12

#(oata to be read ty MAIN12)

By merely pressing the RETURN key, you indicate end-of-file for
MAIN12.

#LOGOFF
You have entered all the commands and data for the SYSIN data set­
inow enter a %E record to indicate that there are no more input
records for the DATA command.

Sf Y: #~E
Now that the SYSIN data set is complete. you can have it executed
by issuing a BACK command that names the data set created by the
DATA command. The system prompts you by printing an underscore.

S,Y: ~ACK DSNAME~PROC12A

SYS: (informs you that your BACK command has been accepted and what
hatch sequence number has been assigned)

Your BACK command has been accepted, and the task will be continued
immediately as a nonconversational task beginning with the DDEF command.
(Note that DDEF commands for private volumes must te given prior to
issuing the BACK command.) If you want to cancel the task, issue a CAN­
CEL command that specifies the batch sequence number.

Now you can depart and let the task run, since PROC12A is now its
SYSIN and includes a LOGOFF command for task termination. If you want
to initiate another task, you must log on again.

Part 2: The EXECUTE Command

After logging on, you build a SYSIN data
functions as the SYSIN data set in Part 1.
only difference tetween this SYSIN data set
Part 1.

S,Y: QATA DSNAME=PROC12
The system prompts you with a #

S,Y: ILOGON PLIDSER.MYPASS.24,PLIACT10

set to perform the same
The LOGON command is the
and the SYSIN data set in

S,Y: #DDEF DDNA~E=OUTDD.DSORG=VS,DSNA~E=SPRING

StY: #MAIN12

S,Y: # (data to be read by MAIN12)

Part III: Examples 101

102

s, 'I: It
By merely rressing the RETURN Key, you indicate end-of-file for
MAIN12.

S,Y: # LOGOFF
You have entered all the commands and data for the SYSIN data set;
now enter a %E record to indicate that there are no more input
records for the DATA command.

S. 'I: It%E
Now that the SYSIN data set is complete, you can have it executed
by issuing an EXECUTE command that names the data set created by
the DATA command. The system prompts you by printing an
underscore.

S,Y~ EXECUTE DSNAME=PROC12

SYS: (accepts nonconversational task and assigns batch sequence number)

Your request for a nonconversational task has been accepted by the
system, and will be executed when system resources are available. The
SYSOUT of this task will consist. of system messages and any output to
SYSOUT generated by your executing programs.

Because the terminal is active (you are still logged on) after an
EXECUTE is issued, another command sequence can be entered. In fact.
another sequence similar to the one illustrated could be issued to cre­
ate other tasks.

EXAMPLE 4: PREPARING A JOB FOR NONCONVERSATIONAL PROCESSING

In this example, you put a series of commands, PL/I source state­
ments, and input data on cards. You will then send the cards directly
to the system operator who will store the information from the cards
into a data set that can be executed by the system. The data set becom­
es the SYSIN for a non conversational task (described in the cards) and
will be queued for execution.

After logging on, a job library named SCRATCH is defined. This
library will contain the object module named ROOTS that you create with
the PLI command. After the PLI command. you enter the PL/I source
statements for ROOTS; the procedure uses the quadratic formula to find
the roots. Data for the procedure is contained in the input stream fol­
lowing the command that calls for execution of ROOTS, since you have not
included a DDEF command for the input data. Since you have also omitted
a DDEF co~mand for the output of ROOTS, output data will appear on your
SYSOUT listing.

CARDS
When entered on a card. the LOGON cOIDrr,and must start in the third
card column, and the first two columns must be blank. All required
LOGON operands must be included in the same card; these operands
are the same as those required for a conversational log-on.

LOGON PLIUSER •• 24,PLIACT70
You now specify a job library named SCRATCH that is to contain the
object module created by the compiler. SCRATCH is automatically
cataloged and available for use in any task that contains a DDEF
command defining it.

DDEF DDNAME=SCRATDD,DSORG=VP.DSNAME=SCRATCH,OPTION=JOBLIB

PLI NAME=ROOTS
The PLI command invokes the Pl/ 1 conipiler. 'lou specify the name of
the object module to be produced: ROOTS; this name IfIUSt not be the
name of the main procedure in the program. Since you t!o not speci­
fy the name of the source data Bet (SOURCE-OS operand), the name
SOURCE. ROOTS is assigned to the source data set, and this data set
is cataloged under this name.

Your PL/I source statements follow. Since the GET DATA and PUT
DATA statements do not specify a file name, SYSIN and SYSOUT are
assumed; no DDEF commands are required. Data to be used by the
object program must be in the input stream immediately following
the command that calls for execution of the object program.

ROOT: PROCEDURE OPTIONS (MAIN);

END

ON ENDFILE GO TO EXIT;

LOOP: GET DATA;

RooTl=(-B+SQRT(B**2-Q*A*C»/2*A;

RooT2=(-B-SQRT(B*·2-Q*A*C»/2*A;

PUT DATACA,B.C,ROOT1,RooT2);

GO TO LOOP;

EXIT: END.

After entering your PL/I source statements, you must enter an END
command to indicate the end of the source statements. compilation
then begins.

After compilation and conversion, the object module resides in the
library at the top of your program library list -- the job library
SCRATCH in this example. You do not issue a PRINT command in this task:
however, the listing data set is retained as the latest generation of
LIST. ROOTS, and you can later print it by issuing: PRINT LIST.RooTS(O>,
PRTSP=EDIT.

You now want to execute the object ~odule; type the name of the
modUle.

ROOTS

You now sup~ly the cards containing data for your object program.

A=l B=5 C=l;

A=2 B=4 C=O;

A=l B=2 C=l;

A=2 B=7 C=5;

¢

The ¢ acts as an end-of-block character.

The last card in the deck is a LOGOFF co~mand. which terminates tbe
task. When punched on a card, the LOGOFF command must begin in the
third column.

LOGOFF
When preparing a task for nonconversational execution. remember

Part III: Examples 103

104

that any errors in preparing the deck will probably terminate the
task prematurely, since the systen cannot prompt you for
corrections.

EXAMPLE 5: STORING DDEF COMMANDS FOR LATER USE

In Part 1 of this example you create a data set containing DDEF com­
mnnds for frequently used data sets. In Part 2, you cause them to be
issued with a CDD command.

Part 1. Storing DDEF COlflmands

After logging on, you issue the EDIT command to invoke the Text Edi­
tor and enter DDEF commands. The DDEF commands are to be stored in a
data set named DDPACK.PROG14. The commands are stored as character str­
ings but. are interpreted as commands when they are later retrieved by
the ccc command.

S,Y: EDIT DSNAME=DDPACK.PROG14
The system will prompt you for each line by issuing a line number.
You want to enter DDEF commands for these data sets: a job
library (PI,IPROGS) t.hat contains compiled PL/I programs, two input
data sets (DATAl and DATA2>. and an output data set (OUTPUT). The
DDEFs do not have to be stored in any special order in the data
set, but their ddnames must be unique.

StY: 0000100 DDEF DDNAME=YOURLIB,DSORG=VP,DSNAME=PLIPROGS,OPTION=JOBLIB

S,Y: 0000200 DDEF DDNAME=INPUT1,OSORG=VI,DSNAME=DATAl

S,Y: 0000300 DDEF DDNAME=INPUT2.DSORG=VS,DSN~E=DATA2

S,Y: 0000400 DDEF DDNAME=CUTPUT1.DSORG=VS,DSNAME=OUTPUT
You have entered all of the DDEF commands; when the system prompts
with the next line number, enter a command system break character
(underscore) followed by the END command. This terminates Text
Editor proceSSing of data set DDPACK.PROG1Q.

S,Y: 0000500 END
The job lihrary containing PROG14 and the DDEF commands associated
with PROG14 are ready for use. You now check them out, to be sure
there are no errors.

Part 2. Retrieving Stored DDEF commands

In this part you retrieve the DDEF commands stored in Part 1. You
want to first retrieve the job library definition and then the defini­
tions for PROG14's data sets.

S, Y:

SYS:

S,Y:

SYS:

CDD DSNAME=DDPACK.PROG14,YOURLIB
The system executes the specified DDEF command and prints it at
your terminal, prefixing four zeros to distinguish it on your SYS­
OUT listing from those DDEl" commands entered directly through
SYSIN.

0000 DDEF DDNAME=YOURLIB,DSORG=VP,DSNAME=PLIPROGS,OPTION=JOBLIB
Any diagnostic would be printed at this ~oint. as the system is
now analyzing the character string as a DDEF command. You now
want to retrieve the remaining data definitions.

COD DSNAMt~DDPACK.PROG14.(INPUT1,INPUT2,OUTPUT1)
The system retrieves the three Sfecified DDEF commands and prints
them at your terminal, prefixing each with four zeros.

0000 DDEP DDNA..~E=INPUT1. DSORG=VI, DSNAME=DATAl

SYS: 0000 DDEF DDNAME=lNPUT2,DSORG=VS,DSNAME=CATA2

SYS: 0000 DDEF CDNAME=OUTPUT1,DSORG=VS.DSNAME=QUTPUT
No~ that all data definitions have been executed, you call for
execution of PROG14.

S, Y: RROG14

SYS: (indicates that execution is com~lete)
The output of PROG 14 is the data set output: you request printing
of OUTPUT

S,Y: RRINT DSNAME=OUTPUT.PRTSP=EDIT

SYS: (acknowledges your request and intorns you of tatch sequence n~
ber assigned to PRINT,task)

EXAMPLE 6: MANIPULATION OF SEVERAL FOEUoiS OF A PROGRAM

In this example you examine a previously cataloged program named
MAIN19 to determine whether you want tc retain it in the system. If you
do not want to retain it, you will punch the source data set onto cards
and then eliminate all forms of the program (source program, listing
data set, and object program) from the system.

You first review some lines from the source program to determine
whether it is to be eliminated. You issue a print request for the
source data set and then a punch request in whiCh you specify that the
data set is to be erased after punching_ You then decide that a listing
of the source data set is not needed, since the deck will be punched, so
you cancel the print request. You then erase the two versions of the
listing data set from the system and erase the object module from your
user library.

After logging on, you want to eliminate from the system any forms of
a program named MAIN19 that you no longer need. You want to punch the
source data set onto cards. but first you nust determine whether such
cards can be used as compiler input. To examine the source data set,
you issue the following command.

S,Y:

SYS:

YOU:

LINE? SQURCE.MAIN19,(1,5000)
In this command you specify the name of the data set and the lines
to be displayed (lines 1 through 5000).

(informs you that the first line number in the data set is 000100
and then proceeds with the actual listing)

OOOOlOOCOUTPUT:
0000200C
0000300C
0000400C
0000500C
0000600C
0000700C
0000800C

PROCEDURE OPTIONS(MAIN};
DCL A FIXED,

B FLOAT,
COMPl FLO~T.COMPLEX,
STRING BI'I(S);

A,B=6101;
COMP1=A+6701I;
STRING='110

(press attention button)

Satisfied that the program is the one that you want to eliminate.
you [ress the attention button to terminate the LINE? command.
The C following the line numbers of the source data set indicates
that the statements were originally entered via a card reader.
This means that. if you punch the source data set, the cards can
later' be used for compiler input. (See Section 5 for a more
detailed description of compiler input format requirements.)

Part III: Examples 105

106

In order to determine the size of the data set. you request the
maximum possible line number in the LINE? command; this causes the
last line of the line data set to be printed.

S,Y: 1INE? SQURCE.MAIN19,9999999

SYS: (issues the last line in the data set: 0013700C END)
You want to obtain a printout of the source data set for program
MAIN19.

S,Y: PRINT DSNAME=SQURCE.MAIN19

SYS: (informs you that batch sequence number 0315 is assigned to the
print task.)

The system establishes a separate nonconversational task to print
the data set.

You now want to punch the data set SOURCE.MAIN19. Since the
first eight characters of each record are a line number and input
key, you want punching to start with the ninth character. Since
the original records (without line number and key) were 80 charac­
ters long, you want to punch through byte 88 of the record that
includes the key. You must use the ERASE operand of the PUNCH
command rather than a separate ERASE corr~and. since the system
rejects an ERASE command if the data set referred to has an asso­
ciated print or punch task pending. You should not insert the
ERASE operand until the last print or punch request in any
sequence that refers to the same data set is completed. It is
~ossible for the first request, for example, PRINT above, to be
executed in less time than it takes to type in the next command;
therefore, if the ERASE operand had been specified in the PRINT
command, it could take effect before the PUNCH command could be
executed.

S,Y: EUNCH DSNAME=SOURCE.MAIN19,STARTNO=9,ENDNO=88,ERASE=Y

SYS: (informs you that £atch sequence number 0376 is assigned to the
task)

S,Y:

S,Y:

S,Y:

S,Y:

SYS:

The system establishes a separate nonconversational task to punch
the data set.

After issuing the PUNCH command. you decide that a listing of
the source data set is superfluous (since you will have a source
deck), so you cancel the print task. refer.ring to it by the batch
sequence number assigned by the system.

CANCEL BSN=0375
Two versions of the listing data set are maintained for each cata­
loged program in the system; these Versions are stored in a
generation data group. You now eraSe both versions of the listing
data set.

ERASE LIST.MAIN19(O); ERASE LIST.MAIN19(O)
You now want to erase the object module from your user library.

ERASE USERLIB(~AIN19)
All forms of MAIN19 are now removed from the system, so you decide
to log off.

10GOFF

(acknowledges your request)

EXAMPLE 7: SURVEY OF SYSTEM FACILITIES AND SOME HOUSEKEEPING METHODS

In this example, you examine your data sets stored in the system and
eliminate those that you no longer need. Three commands are available
to allow you to examine your data sets -- PC? (present catalog). DSS?
(present data set status). and POD? (present partitioned organization
directory). The USAGE command enables you to find out the amount of
system facilities allocated to you, and the EXHIBIT command enables you
to inquire about your nonconversational tasks that are running or about
to run. The KEYWORD command causes the system to tell you what PROCDEFs
you have. (See Example 11 for a description of the PROCDEF facility.)

After logging on, you issue a PC? command to present the name,
access, and, for shared data sets, the owner's identification of one or
more cataloged data sets. You want information about all your cataloged
data sets, so you issue the PC? command with no operands. If the name
of one or more data sets is specified as the oferand of a PC? command,
only information about the specified data sets is presented.

5, Y: PC?

SYS: DATA SETS IN CATALOG WITH QUALIFIER PLIUSER

PLlUSER.USERLIB ACCESS:RW

PLIUSER.JOBLIBA, ACCESS:RW

PLIUSER.M220UT. ACCESS:RW

PLIUSER. PROJECT. A. ACCESS:RW

PLIUSER. PROJECT. B. ACCESS:RW

PLIUSER.PROJECT.Z. ACCESS:RW

PLIUSER. PROJECT. Z2. ACCESS: RW

PLIUSER.SOURCE.MATRIX7, ACCESS:RW

PLIUSER.SOURCE.TRIALX, ACCESS:RW

PLIUSER.VERSIONS. ACCESS: RO,OWNER:OTHERGUY

You want more information about data set SOURCE.~ATRIX7# so you
issue a DSS? command specifying SOURCE.MATRIX7 as an operand. The
DSS? command presents more detailed information than does the
PC? command. If DSS? is specified without an operand, detailed
status information for all your cataloged data sets is presented.

S,Y: QSS? SOURCE.MATRIX1

SYS: PLIUSER.SOURCE.MATRIX1

ACCESS: RW

VOLUME: 232323(2311)

DS ORGANIZATION: VI

REFERENCE DATE: 103/70

RECORD FORMAT: V

KEY LENGTH: 00001

PAGES: 002

CHANGE DATE: 103/70

RECORD LENGTH: 00132

RELATIVE KEY POSITION: 00004

You no longer need this data set. so you erase it.

Part III: Examples 107

108

S,Y: ~RASE SOORCE.MATRIX7
You now want to examine the data set SOURCE.TRIALX to determine
whether you want to erase it. The LINE? command can be used to
list an entire data set or selected lines. Since you want your
listing t.O start from the beginning of the data set. you do not
specify line numbers.

S,Y: b1NE? SOURCE.TRIALX

SYS: 0000100 TRIALX: PROCEDURE OPTIONS(MAIN)

0000200 /*ROUTINE ANALYZES TEST DATA.!

The first two lines printed out is sufficient for you to recognize
this as an old program that you no longer need. You halt further
printing by pressing the attention key_

YOU: (press attention key)
Pressing the attention key returns you to command mode so that you
can enter commands. You decide to erase SOURCE.TRIALX and the
data sets of numeric data associated with it. The data sets of
numeric data all have the partially qualified name PROJECT. You
can specify this partially qualified name; the system prints the
individual names one by one for a decision regarding their dispos­
al. You have the opt.ion of erasing (E) or retaining (R) the indi­
vidual data sets cataloged under the generic name PROJECT, or
erasing all of them (A). You decide to erase all but PROJECT.B.

S,Y: §P~SE SOURCE.TRIALX

S,Y: ERASE PROJECT

SYS: PROJECT. A

YOU: E

SYS: PROJECT.B

YOU: R

SYS: PROJECT.Z

YOU: A

S,Y:

SYS:

S,Y:

S,Y:

By typing A. you cause the systen. to erase PROJECT. C and those
data sets whose names would follcw if frompting continued (in this
case, just PROJECT.Z2).

After the system has presented the names of all data sets cata­
loged under the partially qualified name PROJECT. it prints an
underscore; you can then enter another command. You decide to
erase data set VERSION5. which you no longer need.

ERASE VERSIONS

(informs you that VERSION5 is not YOlrrs to erase and ignores the
command)
VERSIONS is a shared data set for which you do not have unlimited
access; therefore, you cannot erase it. You can issue a DELETE
command to remove only your catalog entry for VERSIONS without
affecting the data set or the owner's catalog.

DELETE DSNA~E=VERSION5
You now iSSUE a POD? command to request a list of each object
module in your user library.

fOD?

SYS: MAIN7

S,Y:

S,Y:

SYS:

S,Y:

MAIN10

SUBMATRX

After listing the modules in your library, the system prints an
underscore so you can enter a command. You can erase modules from
the library without erasing the entire library. You decide to
erase modules MAIN7 and SUBMATRX.

ERASE USERLIB(MAIN7); ERASE USERLIB(SUBMATRX)
You now want to examine library JOBLISA to see if it is still
needed •

.EOD? JOBLIBA

PROG14

MAIN12

After listing the modules in JOBLIBA,the system prints an unde­
rscore so that you can enter a command. You no longer need JOBLI­
SA, so you erase it.

ERASE .JOBLIBA
You enter the USAGE command to inquire about the amount of system
resources you have used. Two totals are presented: 1) the amount
of resources allocated, and 2) the total amount of resources used
since you were joined and since your present LOGON.

The following resources are accounted for: permanent storage,
temporary storage, direct access devices, magnetic tapes, prin­
ters, card reader-punches, bulk input, bulk output, TSS/360 tasks,
total time that your terminal was connected to the system, and CPU
time used.

S, Y: QSAGE

SYS: <prints tabulation of system resources charged to you)

You issue an EXHIBIT command to inquire about the status of your
uncompleted nonconversational tasks. For a complete explanation
of the EXHIBIT command, see Command System User's Guide.

S,Y: ~XHISIT OPTION=BWQ

SYS: (describes each of your uncompleted nonconversational tasks,
including each task's batch sequence number and status in the
system)

S, Y: ,!SEYWORD

SYS: (types the names of all your PROCDEFs)

EXAMPLE 8: TRANSFERRING VIRTUAL STORAGE DATA SETS BETWEEN DISK AND TAPE

In this example, you copy VAM data sets from disk to tape, tape to
disk, and from disk to disk. The following commands are ·used to transf­
er the data sets: VT (VAM to Tape), TV (Tape to VAM). and VV (VAM to
VAH). The VAM data sets to be copied are ORIGIN1. ORIGIN2, ORIGIN3, and
ORIGIN4.

Part III: Examples 109

110

After logging on, you copy data set ORIGIN1 onto tape; the data set
on tape is to ~e named COPYl. Before the first VT command in a task. a
DDEF command must be issued for the tafe data set. with the DDNAME of
DDVTOUT and the DSNAME of the first data set to be copied onto that
tape.

S,Y: QDEF DDVTOUT,PS,COPY1,UNIT=(TA.9),LABEL=(.SL.RETPD=12),­
VOLUME=(PRIVATE),DISP=NEW
The data set organization must be PS, and the tape must be a nine­
track tape.

S,Y: ~T DSNAME1=ORIGINl
Since you omit the DSNAME2 operand, the system will assign to the
copy data set the DSNAME given in the DDFF command (that is,
COPYl> •

Note: If you do not want the cOFY data set to be the first data
set on the tape, you must specify the file sequence number in the
LABEL operand of the DDEF command. This prevents overlaying of
data sets.

SYS: (performs the copy operation, indicates the names of the original
and copy data sets. and indicates the file sequence numbers and
volume serial numbers used for the copy data set)

Now you write ORIGIN2 onto the same tafe volume.

S,Y: ~T DSNAME1=ORIGIN2,DSNAME2=COPY2

SYS: (copies ORIGIN2 onto the tape with the data set name COPY2; if you
had omitted the DSNAME2 operand, the system would have assigned
the name TA000001.ORIGIN2)

To copy the tape copy of the data set back onto disk so that it
can be used, issue a TV command. In this command, the name of the
tape data set (COPY2) and the name of the disk copy (COPYBACX) are
specified.

S,Y: 1V COPY2,COPYBACX

SYS: (copies the data set just written on a nine-track tape back onto
disk and informs you that the operation has been performed)
You now want to copy data set ORIGIN3, which is on a disk. to pro­
duce a copy named COPY3, which also resides on disk.

S,Y: ~ ORIGIN3,COP¥3

SYS: <informs you that the copy operation has been performed)
You now want to copy a VAM data set onto a private disk whose
serial number is 333333.

S,Y: ~DEF PRIVDD,VI,COPY4.UNIT={DA.2311),VOLUME=(,333333)

S,Y: ~ ORIGIN4,COPY4

SYS: (informs you that the copy operation has been performed)

EXAMPLE 9: THE TEXT EDITOR FACILITY

In this example, you use the text editor to c:r:eate and edit data
sets. The example illustrates only the more basic facilities of the
text editor.

To invoke the text editor, issue the EDIT con.mand. The operand of
this command is the name of the data set to be created or edited.

S,Y: EDIT DSNAME=EX9
Since no DDEF command was issued for EX9. the following data set
attributes are assumed: virtual index sequential organization,
format-V records. maximum logical record length of 132 bytes, a
key length of 7 bytes, and a relative key position of 4.

The system responds with the first line number.

S,Y: 0000100 THISE ARE LINES
0000200 OF A LINE DATA SET

S.Y:

S,Y:

S,Y:

S,Y:

S,Y:

0000300 SIMPLE DATA IS USED HERE. I TYPED THIS
You enter the first three lines of EX9. Each time you press
RETURN. the text editor responds with a new line number.

To tell the system that you want to enter a co!!'.mand now instead of
a line of data, you enter a break character (_) after the line
number, followed by a command.

0000400 INSERT 200,50
You begin the line with an underscore to inform the system that a
command, not text-editor data, is being entered. The INSERT com­
mand tells the system that you want to insert one or more lines
after line 200, and that the first inserted line should have the
line number 250. The system res fonds by prompting you with the
line number 250, and you enter the line to be inserted.

0000250 FOR ILLUSTRATIVE PURPOSES,
The system will not prompt you with line number 300, since there
is already a line numbered 300 in the data set. The system will
now promFt you for another command. Perhaps you'd like to remove
line 300 and replace it with two lines:

SEVISE 300

0000300 SIMPLE DATA IS USED HERE.
0000400 i typed this in lower case letters

You can avoid constant use of the shift key by typing data in
lowercase letters. The system normally translates the lowercase
letters into capital letters. (However, if you issue a KA com­
mand. you can store data in mixed lowercase-uppercase form.)

You decide to stop editing this data set.. When the system prompts
with a line number, enter a break character followed by the END
command.

0000500 END
This terminates text editing. You could also have issued another
EDIT command, with a different data set name; this would have ter­
minated editing of the first data set and allowed you to start
editing the next one.

The system types an underscore to resume prompting for commands.
You review the data set EX9 and see that there are no mistakes.

S, Y: bINE? EX9

SYS: 0000100 THESE ARE LINES
0000200 OF A LINE DATA SET
0000250 FOR ILLUSTRATIVE PURPOSES.
0000300 SIMPLE DATA IS USED HERE.
0000400 I TYPED THIS IN LOWERCASE LETTERS.

Later you return to the data set EX9. You issue the EDIT command:

S,Y: EDIT EX9

Part III: Examples 111

112

S.Y: UPDATE
The UPDATE command tells the syst~ that you want to change or add
lines.

SYS: (unlocks keyboard).

You now add lines 230 and 90 to your data set. After typing each
line nUIrlber, you skip a space and type the data.

YOU: 230 CREA'IED THROUGH THE TEXT EDITOR.

SYS: (unlocks keyboard)

YOU: 90 THE TEXT EDITOR:

SYS: (unlocks keyboard)

YOU: EXCISE Nl=400
Line 400 is deleted.

EXAMPLE 10: THE TEXT EDITOR FACILITY

In this example, you make more extended use of the updating capabili­
ties of the text editor. The example is probably more complex than you
might expect for a Single terminal session, but it shows the flexibility
of the commands available.

S.Y:

S,Y:

S,Y:

SYS:

S,Y:

EDIT EX10.RNAME=REGION1,REGSIZE=8
The data set attributes are the same as for EX9, in the previous
example. except that the key length is increased to 15 bytes to
allow 8 bytes for the region name, and the record length is
increased accordingly.

You enter the data lines for the region named REGION1.

0000100
0000200
0000300
0000400
0000500
0000600
0000100
0000800
0000900
0001000

LINEAE
LINES
LINEC
LINED
LINEE
LINEF
LINEG
LINEH
LINEI

NUMBER N1=300.N2=500,BASE=300,INCR=50

You renumber lines 400 and 500 as lines 350 and 400. The system
prompts you for another command, and you issue a LIST command to
see how the data set EXIO looks.

b iST

REGIONl 0000100 LINEAE
REGION1 0000200 LINES
REGION! 0000300 LINEC
REGION1 0000350 LINED
.REGION1 0000400 LINEE
REGION1 0000600 LINEF
REGIONl 0000700 LINEG
REGIONl 0000800 LINEH
REGIONl 0000900 LINEI

~EGION RNAME=REGION2
You start a new region.

S,Y:

S,Y:

S,Y:

0000100 DEE'AULT TRANTAlFY
This opt.Tonal command makes the following data set changes provi­
sional. TheBe changes can be made permanent by issuing an ENABLE
command after yeu are satisfied all changes were entered properly.

DEPAUL'!' is not a text-editing command. but activation of the text
editor does not limit you to text-editing commands.

EXCERPT DSNAME=EX9,Nl=100,N2=300
You excerpt lines 100 to 300 from EX9. created in the previous
example, and insert these lines into the current data set, at the
beginning of REGION2.

CONTEXT Nl=100,N2=300.STRING1=DATA,STRING2=XXXX
The current region is searched for all occurrences of the charac­
ter string DATA in lines 100 to 300. Wherever it is found. DATA
is replaced by XXXX.

Note: This facility is useful fer symbol reFlacement in source
language data sets.

S,Y: J,.IST

SYS: REGION! 0000100 LINEAE
REGIONl 0000200 LINEB
REGIONl 0000.300 LINEC
REGIONl 0000350 LINED
REGION1 0000400 LINEE
REGION1 0000600 LINEF
REGIONl 0000100 LINEG
REGIONl 0000800 LINES
REGION1 0000900 LINE I

S,Y:

S,Y:

S,Y:

SYS:

YOU:

S,Y:

REGION2 0000100 THESE ARE LINES
REGION2 0000200 OF A LINE XXXX S~~
REGION2 0000230 CREATED THROUGH THE TEXT EDITOR.
REGION2 0000250 FOR ILLUSTRATIVE PURPOSES,
REGION2 0000300 SIMPLE XXXX IS USED HERE.

ENABLE
Up to this point, the reV~S10ns made since DEFAULT TRANTAB=Y was
issued have been temr.;orary. With the issuance of the ENABLE com­
mand, these revisions will be permanent as soon as the next line­
modifying command is executed. A STET command, on the other hand,
would have deleted all changes made since TRANTAB was set to Y.

The ENABLE: command has a continuing effect; until a DISABLE com­
mand is executed# only the latest line modification can be revoked
by a STET command.

REGION REGION1
You return to the region named REGION1.

CORRECT Nl==lOO
You want to remove a single character from a line.
correction characters are assumed, by default.

LINEAE . "

Standard

The result is LINEA. The ENABLE cOJr.Jtand now takes effect, but the
correction to line 100 is still revocable.

POST
With this command. you make permanent the correction to line 100.
(Since the ENABLE command is in effect, POST and STET affect only
the latest text-editing change.) If this were a STET command. the
correction to l.ine 100 would be revoked.

Part III: Examples 113

114

S,Y:

SYS:

S,Y:

SYS:

S,Y:

LOCA'rE S'l'RING=LINEF
The entire data set EXIO is searched for the character string
LINEF.

(tn;es the line in which I.INEF is fir~! discovered)

1IST Nl=100,N2=400

(dis flays lines 100 to 400 of the current region, REGION!)

END
You terminate text editor processing.

EXAMPLE 11: USE OF COMMAND PROCEDURE (PROCDEF)

In this example, you create a command procedure (PROCDEF) to be
called at a later time just as if it were a system-supplied command.
This PROCDEF defines the input and output data sets for a PL/I program:
it then executes the program, providing SOffie of the input data, and
prints the output data set.

The P~"/I program has the module name TEST and inCludes the following
statements:

PROG: PROC OPTIONS(MAIN)i

ON ENDFILEUN) GO TO FINISH.
GET DATIHB.C,D>;
DC J=l TO 1000,

DO 1=1 TO 6;
GET :FILE(IN) I,IST(A<I.J»;
y,,, A (I ... :n ,. B)'
G"'I,(I,J)*C;
ll=A{I,J)*Di
PUT FILE(OUT) LIST(F.G,H);
Wt:

END;
FINISH: ENDPROG.

You issue aPROCDEF command. to create a PROCDEF named PLIPROG.

S,Y:

S, Y:
S,Y:
S,Y:

PROCDEF PLIPROG
The text editor prompts YOIl with line numbers, and you type the
commands to be contained in the command procedure PLIPROG.

0000100 DDEF IN,VS.INDATA.DISP==OLD
0000200 DDH' OUT,VS,OUTDATA,DISP=OLD
0000300 DEFAULT SYSINX=E
The SYSINX operand of the DEFAULT command determines from which
source the system expects SYSIN data when PROCDEF is invoked.
Normally, SYSINX is defaulted to G, and the system expects conver­
sational SYSIN data to come from the terminal. When SYSINX is set
to E. the system reads SYSIN data from the PROCDEF itself.

S,Y: 0000400 TEST
S,Y: 0000500 B~245.6.C=.4329.D=98q;

When PLIPROG invokes TEST, it will feed TEST (that is, PROG) the
SYSIN data in line 500.

S,Y: 0000600 DEFAULT SYSINX=G
You must remember to return the value of SYSINX to G.

S,Y: 0000700 PRINT OUTDATA,ERASE=Y
S,Y: 0000800 END

If you log off and log on again, PLIPROG is still effective. When
you want to invoke PLIPROG, you type PLIPROO as a command:

S,Y: PLIPROG
PROG is executed; it reads the data in PLIPROG, and creates the
output data set. The output data set is printed on a high-speed
printer and erased from its direct access device.

EXAMPLE 12: CREATING A CONSECUTIVE DATA SET

The program in this example merges the contents of two existing phys­
ical sequential data sets on tape, DS1 and DS2, and writes them onto a
new virtual storage data set. DS3. Each of the original data sets con­
tains 1S-byte, fixed-length records arranged in EBCDIC collating
sequence. The two input files, IN1 and IN2, have the default attribute
BUFFERED, and locate mode is used to read records from the associated
data sets into the respective buffers. The output file, OUT, is not
buffered, allowing move mode to be used to write the output records
directly from the input buffers.

After logging on you invoke the com~iler and enter source statements
for program MERGE. (The line numbers that the text editor types befo~e
each line of the source statements are not shown in this or in following
examples.)

S,Y:

NEXT2:

NEXT!:

PLI NJlME=MERGE
MERG: PROC OPTIONS (MAIN);

DeL (INl.IN2.0UT) FILE RECORD SEQUENTIAL,
(ITEM! BASEDCA).ITEM2 BASED(B» CBAR(lS);
ON ENDFILE(IN1} BEGIN;

ON ENDFILECIN2) GO TO FINISH;
WRITE FILE(OUT) FROM(ITEM2);
READ FILE(IN2) SET(B);

GO TO NEXT2.

This begin block will be
activated when the ENDFlLE
condition is raised for
IN1.

END:
ON ENDFILE(IN2) BEGIN;)
ON ENDFILE(IN1) GO TO FINISH; 1\

WRITE FILE(OUT) FROM{ITEM1);
READ FILE(IN1) SET(A);
GO TO NEXTl;

END;
OPEN FILE(INl) INPUT,

FlLE(IN2) INPUT.
FILE(OUT) OUTPUT;

READ FILE(INl) SET(A);
READ FILE(IN2) SET(B);

NEXT: IF ITEMl>ITEM2 THEN DO;

This begin block will
activated when the
endfile condition is
raised for IN2.

WRITE FILE(OUT) FROM(ITEM2);
READ FILE{IN2) SET(B);
GO TO NEXT;
END;

ELSE DO;
WRITE FILE(OUT) FROM(ITEMl}:
READ FILE(INl} SETCA);
GO TO NEXT;
END:

FINISH: CLOSE FILE(IN1),FILE(IN2),FILECOUT);
END MERG;

be

After entering your source stateaents, type a command-prefix char­
acter (underscore) and enter an END command. The underscore desi­
gnates the line as a command rather than PL/I source statements.

YOU: END
SYS: (informs you that compilation is completed)

Before calling for execution of MERGE, you must define the two

Part III: Examples 115

116

input data sets and the output data set. The input data sets have
physical sequential organization and reside on tape volumes 33731
and 987655.

S,Y: QDEF DDNAME=INl.DSORG=PS.DSNAME=~Sl.DISP=OLD.­
UNIT=(TA.9>,VOLUME=(,033731)

S,Y: ~DEF DDNAME=IN2,DSORG=PS,DSNAME=DS2,DISP=OLD.­
UNIT=(TA,9),VOLUME=(,987655)

The output data set DS3 will reside on public storage and have
virtual sequential organization.

S.Y: ~DEF DDNAME=OUT,DSORG=VS,DSNAME=DS3,DISP=NEW,­
DCB=(RECFM=F,LRECL=15)

You can now execute your program.

S, Y: !!ERGE

EXAMPLE 13: USING A PRINT FILE

This example illustrates the use of a PRINT file and the options of
the stream-oriented transmission statements to format a table and write
it onto public storage for subsequent Frinting. The table comprises the
natural sines of the angles from 0 0 to 359 0 54' in steps of 6'.

The statements in the ENDPAGE ON-unit insert a page number at the
bottom of each page and set up the headings for the following page.
After the last line of the table has been written, the statement POT
FILE (TABLE) LINE(S4) causes the ENDPAGE condition to be raised to ensure
that a number appears at the foot of the last page: the pre~eding state­
ment sets the flag FINISH to prevent a further set of headings from
being written.

The DDEF command that defines the data set that this program creates
includes no record-format information; the compiler infers the following
from the file declaration and the line size specified in the statement
that opens the file TABLE:

Record format =- V (the default for a PRINT file)

Record size = 98 (line size + one byte for printer control character
+ four bytes for record control field)

Block size = 102 (record size + four bytes for block control field)

You invoke the PL/I compiler to enter and compile your source state­
ments; you name the program SINE.

S,Y: PLI NAME=SINE
'YOU now enter source statements for SINE.
by the text editor are not shown.}

(The line numbers typed

SINPROC: PROC OPTIONS(MAIN);
DCL TABLE FILE STREAM OUTPUT PRINT,
TITLE CHAR (13) INIT('NATURAL SINES'>.
HEADINGS CHAR(90) INIT(' 0 6 12 1
8 24 30 36 42 48 54'),
PGNO FIXED DEC(2) INIT(l),
FINISH BIT(1) INIT('O'B},
VALUES(O:359,OL9)FLOAT DEC(6);
ON ENDPAGE(TABLE)BEGIN;
PUT FILE(TABIE) EDIT('PAGE'.PGNO) (LINE(55).COL(87).A,F(3».,
IF FINISH='O'B THEN DO;
PGNO=PGNO+l ;
PUT FILE{TABLE) EDIT(TITLE • (CONT"D)',HEADINGS)

(PAGE,A.SKIP(3),A);
PUT FILE(TABLE) SKIP(2);

S,Y:

S,Y:
SYS:

S,Y:
SYS:

END;
END;
DO 1=:0 TO 3~9;
DO J=Q TO 9;
VALUES(1,J)=I=J/10;
END;
END;
VALUES=SIND(VALUES);
OPEN FlLE(TABLE) PAGESIZE(52) LINESIZE(93);
PUT FILE(TABLE) EDIT(TITLE,HEADINGS) (PAGE,A,SKIP(3),A);
DO 1=0 TO 11;
PUT FILE(TABLE) SKIP(2);
DO J=O TO 4;

K=S*I+J;
POT FILE(TABLE) EDITCK,VALUES(K.*»(F(3),10 F(9,4»;
END;

END;
FINISH::'1' B;

END

PUT FILE(TABLE) LINE(54);
CLOSE FILE(TABLE);
END SINPROC;

After your program is compiled, you issue a DDEF command to define
the data set associated with the PL/I file TABLE.

QDEF DDNAME=TABLE,DSORG=VS,DSNAME=SINES
You can now execute program SINE.

SINE
(executes SINE and creates data set SINES)
You now want to print data set SINES, which you just created on
public storage. Since each record contains a printer control
character, you specify printer sfacing as EDIT. Each page of your
PRINT file contains 54 lines, the default value in the PRINT com­
mand; therefore, you do not have to specify the number of lines
per page in the command.

PRINT DSNAME=SINES,PRTSP=EDIT
<sets up a separate nonconversational task to print the data set
and informs you of the batch sequence number aSSigned)

EXAMPLE 14: CREATING AN INDEXED DATA SET

This example illustrates the creation of a simple INDEXED data set.
The data set contains a telephone directory, using the subscribers'
names as keys to the telephone numbers. Since the file is being created
the file attribute SEQUENTIAL is declared. You are going to enter the
data records from your terminal during program execution. The DDEF com­
mand for the data set specifies the PLiI file name as the data defini­
tion name (DIREe), the data set organization as virtual index sequential
tVI}, and the name of the data set (TELNO).

S.Y:

S,Y:

DDEF DDNAME=DIREC,DSORG=VI,DSNAME=TELNO
You now invoke the PL/I compiler to enter and compile source
statements for program TELNOS.

ELI NAME=TELNOS
The text editor prompts with line numbers (not shown).

TELNOM: PRoe OPTIONS(MAIN);
DCL DIREC FILE RECORD SEQUENTIAL KEYED ENV(INDEXED),

CARD CHAR(aO).
NAME CHAR(20) DEF CARD,
NUMBER CHAR(3) DEF CARD POS(21),
IOFIELD CHAR(3):

ON ENDFILE(SYSIN) GO TO FINISH:

Part III: Examples 117

118

OPEN FILECDIREC} OUTPUT;
NEXTIN: GET FILE(SYSIN) EDI'I(CARD) (A(23)},

IOFIELD=NUMBER;
WRITE FILE (DIREC> FROM (IOFIELD) KEYFROIHNAME);
GO TO NEXTIN;

FINISH: CLOSE FILEWIREC);
END TELNUM;

S, Y: END
SYS: (compiles your program and informs you when compilation is

complete)
S,Y: !ELNOS

During execution of TELNOS. you are prompted to enter input data.
:BAKER,R. 152
:BRAMLEY,O.H. 248
:CBEESEMAN.I. 141
:CORY,G. 336
:ELIOTT,D. 875
:FIGGINS,S. 413
:HARVEY,C.D.W. 205
:HASTINGS,G.M. 391
:KENDALL,J.G. 294
:LANCASTER,W.R. 624
:MILES,R. 233
:NEWMAN.M.W. 450
:PITT,W.B. 515
:ROLF,D.E. 114
:SHEERS,C.D. 241
: SUTCLIFFE. M. 472
:TAYLOR.G.C. 401
:WILTON,L.W. 404
:WINSTONE,E.M. 307

(NULL LINE)

EXAMPLE 15: UPDATING AN INDEXED DA'fA SET

This example updates the data set created in Example 14 and prints
out the new contents of the data set. The in~ut data includes codes to
indicate the operation required:

A: Add a new record
C: Change an existing record
D: Delete an existing record

You must define the data set created in Example 14.

S,Y:

S,Y:

DDEF DDNAME=DIREC.DSORG=VI,DSNAME=TELNO,DISP=OLD
You now invoke the PL/I compiler.

PLI NAME=DIRUPDT
The text
DIRUPD:

NEXT:

editor prompts with line numbers (not shown).
PROC OPTIONS(MAIN};
DCL DIREC FILE RECORD KEYED ENV(INDEXED),

NUMBER CHAR (3) ,

NAME CHAR (20) •
CODE CHAR n) ;

ON ENDFILE(SYSIN) GO TO PRINT;
ON KEY(DIREC) BEGIN;

IF ONCODE=51 THEN POT FILE(SYSPRINT) SKIP EDIT
('NOT FOUND:',NAME)(A(lS),A):

U' ONCODE=52 THEN PUT FILE(SYSJ>RINT) SKIP EDIT
('DUPLICATE:'.NAME) (A(lS),A);

END;
OPEN FILlS(DlREC) DIRECT UPDATE;
GET F'ILE (SYSIN) EDIT (NAfo!E, NUMBER, CODE) (A(20) ,AO) ,X (3),A (1) h
IF CODE""A' THEN WRITE FILECDIREC) FROM (NUMBER) KEYFROH(NAHE),

ELSE IF CODE='C' THEN REWRITE FILE(DIREC) FROM (NUMBER)
KEY (NAME);

ELSE IF CODE='D' THEN DELETE FILE(DIREC) KEY(NAME);
ELSE PUT FILE(SYSPRINT) SKIP EDITC'INVALID CODE:',

NAME) CAUS) ,A);
GO TO NEXT;

PRINT: CLOSE FILE(DIREC);
PUT FILE(SYSPRINT) PAGE;
OPEN FILE(D1REC> SEQUENTIAL INPUT;
ON ENDFILE(DIREC) GO TO FINISH;

NEXTIN: READ FILE(DIREC) INTO (NUMBER) KEYTO(NAME);
PUT FILE(SYSPRINT) SKIP EDIT (NAME, NUMBER) (A);
GO TO NEXTIN:

FINISH: CLOSE FILE(DIREC);
END DIRUPD;

S, Y: END
SYS: (compiles your program and inforns you when compilation is ready)

You now call for execution of DIRUPDT

S, Y: QIRDUPDT
During execution of the program, you enter your input data.

:NEWMAN,M.W.
: GOO Dfo'ELLOW • D. T.
:MILES,R.
:HARVEY,C.D.W.
:BARTLETT,S.G.
:CORY,G.
:READ,K.~.

:PITT,W.H.
:ROLF,D.F.
: ELLIOTT, D.
:HASTINGS,G.M.
: BRAMLEY, O. H.

(NULL

516450
889

233
209
183

336
001

515
114

291875
391

439248
LINE)

EXAMPLE 16: BATCH PROCESSING

C
A
D
A
A
D
A

D
C
D
C

This example illustrates the use of a single invocation of the PL/I
compiler to compile four procedures with three external names and then
execute them.

S,Y: PLI NAME=PGM1
The text editor prompts with line numbers (not shown).

FIRST: PROC OPTIONS(MAIN);
DO 1=1250 TO 1500 BY 50:

DO J=10. 15, 20:
K=SQRT (l/J) ;
PUT SK1P(2) DATA;

END FIRST;
*PROCESS ('EXTREF.N=PGM2 t);

SECOND: PROC OPTIONS(MAIN);
DCL PRINT ENTRY EXT,

A(5) 1NIT(l,2,4,8,16),
B(S) 1NIT(3,S,7,9,ll),
C(5,5);

00 1=1 TO 5;
DO J=l TO 5;

C(l,J)=12*A(I)/B(J):
END;

END;
CALL PRINT (A,B,C);
END SECOND;

*PROCESS ('N=PGM3");

Part III: Examples 119

120

PRINT: PROC(THOR.TVERT.ARRAY);
DCL THORt*l.TVERT(*>,ARRAY{*,*l;
I=DIM(THOR,l),
PU'!' EDIT {THOR} (X{7). (1) 11'(1,2»;
IX) .1=1 '10 DIM (WERT ,1) ;

PUT SKU' EDIT (TVERT (,n • URRAYCJ,K) 00 K=l TO I) HPC7, 2»;
END PRINT,

*PROCESS (. N=PG.MII •. FE·) ;
THIRD: PRoe OPTIONS(MAIN}:

ON ENDFILE(SYSIN) GO TO FINISH;
NEXT: GET DATA(A,B);

C=A*a*B**2/3;
PUT SKIP DATA;
GO TO Nl':XT;

FINISH: END THIRD;

S,Y: _END
You now want to call for execut.ion of the programs. You can call
for their execution separately or with a Single command statement
of the fonn:

S,Y: PGMli PGM2; PGM3;
SYS: <executes the pr·()grams and prompts you to enter the input data

required in PGM3)
S,Y: :A=27, B=q2; A=39, B=17; A=15, 3=19; A==12, B=7;
SYS: (prints output data from SYSOUT)

EXAMPLE 17: THE OBEY FACILITY

TSS/360 provides the £ac.ility for high-level language users to
execute the assembler language OBEY macro. This macro enahles you to
specify a characte."C string conSisting of one or more TSS/360 commands,
and have these commands obeyed during execution of a PL/I progra~. The
syntax is:

(
'! • command character string,})

CALL SYSOBP)1 charact:I:" string variaJ:le
expressl.on

The argument within parentheses must be a character string consisting of
the command to be obeyed. It can be literal (in quotes), the na~e of a
character string variable that contains the cOIrllland. or an expression
that produces the character string.

The following frog:tam sho'#s some uses of this facility_

OBEYTST: PROC OPTIONS(MAIN);
DCL DDEF CHARtS) INIT('DDEF"),

RELS CHAR(S) INIT("RELEASE t >.
ER,'\S CHAR (6) INI'r (• ERA.S E') •
DSS CHAR(S} INIT(ODSS?').
STOP CHARtS) INIT('STOP'}, ;

DCL {PARAM.RECORD,TSTREC> CHAR(120} VARYINGi
DCL (IN,OUT) FILE RECORD;

*/ PARAM = ·OUT,VS,TESTDATA.DCB=(RECFM=V.LRECL=124).DISP=NEW';
CALL SYSOBP(DDEF PARAM).

DDEF II PARA~ is an expression that produces a DDEF command.

RECORD = 'ABCDE',
00 1==1 TO 10,
RECORD = RECORD II • ABCDE' ;
WRITE FILE(OUT) FROM (RECORD);
END;
CLOSE FILE (OUT) ;

CALL SYSOBP(RELSII'OUT');
CALL SYSOBP(DDEFII "IN"TESTDATA"}:
TSTREC = 'ABCDE';
DO 1=1 TO 10.
TSTREC = TSTRECII"ABCDE';
READ FILE(IN) INTO (RECORD):
IF RECORD 1 == TSTREC THEN GO TO ERROR;
END;
CLOSE FILE (IN) ;
CALL SYSOBP(RELSII'IN°);
CALL SYSOBP(DSSII'TESTDATA'):
CALL SYSOBPC'PRINT TESTDATA,ERASE=Y'};
CALL SYSOBP('DISPLAY t'OBEYTS~ SUCCESSFUL"');
GO TO FINISH;

ERROR: DISPLAY('OBEYTST FAILED');
FINISH: END OBEYTSTi

EXAMPLE 18: DYNAMIC CALLS

This example shows how to prepare a very large PL/I program (that is,
a PL/I program containing more than 4096 bytes of PR entries, or appro­
ximately 970 subroutines) for execution.

If a PLiI main module has close to a thousand subroutines, it may be
necessary to load and unload some of the subroutines dynamically to
avoid an overflow of the PRV. (See -External Symbol Dictionary,· in
Section 5.> You can code an assembler-language module that will provide
this dynamic interface between your PL/I program and the system.

S,Y: ELI MAIN,EXPLICIT=*ALL,XFERDS=CALLDS

S,Y: 0000100 PROCESS: PROC OPTIONS (~AIN);

0000900 CALL SUBA. /*SUBA HAS 500 SUBROUTINES./

0001500 CALL SOBBi /.SUBB HAS 500 SUBROUTINES*/

0002000 CALL SUBC; /*SUBC HAS 500 SUBROUTINES*/

0003000 END PROCESS:
0003100_END

MAIN is compiled. and a transfer data set named CALLDS is created.
(Assume that no data set named CALLDS existed previously.) CALLOS is
shown later in this example as the second component of the transfer
module.

The calls to SUBA, SUBB, and SURC become, in the object module, calls
to aSUBA, aSUBB, and aSUBC. aSUBA, aSUBB, and aSUBC are the intermedi­
ate entry points; they are in the transfer module. You could have
omitted the EXPLICIT operand and entered the as yourself, While typing
the source data set, but then the XFERDS operand would have had no
effect and you would have had to create the transfer data set yourself.

Note: EXPLICIT is also useful when the PLI command relates to an alreu­
dy existing source data set that contains calls with unpadded names.

Part III: Exa.ples 121

122

The components of the transfer module are:

1. A PLICALL macro and a CSECT instruction

2. A transfer data SEt

3. Finishing touches, including an END instruction.

Before assembly of the transfer module, a source data set for each com­
ronent exists as a line data set (to aid readability, line numbers are
not shown):

tPO

.*

. *

.*

MACRO
PLICALL tPl,&TYPE,&CLEANUP
AIF ('&TYPE' EQ 'N').MEXIT
ENTRY &PO
USING &PO,15
AlF ('&TYFE' EQ ·O').ETYFE
AIF ('&TYPE' EQ 'E').ETYPE

IMPLICIT LINKAGE REQUIRED

tPO L 15, EXA&SYSNDX
15 BR

EXA&SYSNDX DC
.MEXIT MEXIT

V (&Pl)

.*
* EXPLICIT LINKAGE REQUEST

.*
ANOP • ETYPE

£Po CLI ACG&SYSNDX,X'OA'
BNE PRV&SYSNDX

LDR&SYSNDX STM 14.3,12 (13)
BAS 3,SKP&SYSNDX
USING *.3

ERV&SYSNDX DC A(ABEND}
ACG&SYSNDX ADCON LOAD.EP=&Pl,LDERR=CODE
SKP&SYSNDX EX O,ACG&SYSNDX

CLI ACG&SYSN~X.X·OA·

BE ERR&SYSNLX
LM 14,3,12(13)
B LNK&SYSNDX
DROP 3

PRV&SYSNDX LOAD 1,=V{SYSTCM)
USING CHATCM,l
LOAD 3,TCMCXD
DROP 1
CLI O(),X'1000'
BNH LNK&SYSNDX
LR 1,3
CALL &CLEANUP

NAMING ENTRY ONLY

SVC STILL ON?
NO, LOAD NOT REQUIRED
SAVE REGS AROUND CALL
BRANCH AROUND ADCON GROUP

DYNAMIC LOAD
SUCCESSFUL LOAD?
NO, ABEND
RESTORE REGISTERS
GO PERFORM LINK

GET CURRENT CXD VALUE

PRV OVERFLOW?
NO, GO PERFORM LINK

CALI CLEANUP ROUTINE

The cleanup routine is a routine that you provide for
selectively unloading subroutines.

LNK&SYSNDX L
BR

ERR&SYSNDX LM
L
BR
MEND

TRANSFER CSECT

Note:

15,ACG&SYSNDX+12
15
14,3,12(13)
15,ERV&SYSNDX
15

V-CON
ENTER ROUTINE
RESTORE REGISTERS
ERROR ADDRESS J

component 1
(data set
name is
PREFIX)

1. All registers except register 15 are Fassed to the called PL/I
module exactly as they are received by the transfer module.

2. The called module will not return to the transfer module. The
return will be to the module containing the CALL statement.

iilSUBA PLICALL

OlSUBB PLICALL

lilSUBC PLICALL

SUBA \ component 2
SUBB --created by system in this

(data set name is CALLDS)
SUBC

example

X'OO' follows each line number in component 2.

EJECT

USING ABEND.iS

ABEND DS OR

ABEND 1,' *ABEND* TRANSFER LOAD ERROR.'

COPY CHATCM

END

component 3
(data set name
is SUFFIX)

The above transfer module is only an example; .you should vary it to fit
your needs.

Now you gather the components into a single source data set. The
name of the transfer module will be DYNAMO.

s, Y: ~DIT SOURCE. DYNAMO

S,Y: 0000100 EXCERPT PREFIX

S , Y: ~CERPT CALLDS

S,Y: ~CERPT SUFFIX

S,Y: ~D

(Now you assemble the transfer module.)

S,Y: ~SM DYNAMO,Y

If you update the transfer module in the future, you must reas­
semble it.

You are now ready to execute the PL/I program. Calls to the dummy
names will cause module DYNAMO to be loaded when module MAIN is loaded.
Whenever MAIN branches to DYNAMO. DYNAMO will dynamically load the
invoked subroutine. and all subroutines which that subroutine calls non­
dynamically, and perform error checking.

Part III: Examples 123

124

PART IV: APPENDIXES

Part III: Examples 125

126

A I'Ll I U!;E:t who is swi t.ching from IBM
:Jy!;tt'flI/J60 0peratin(J :Jysten, (OS/360) to IBM
:;YJtem/360 Time Sharing System (TSS/360)
should know the differences in the ways
that the two systems implement PL/I. In
~articular, he should understand:

• The TSS/360 command system

• Interchange of data between OS/360 and
TSS/360

• Data set positioning and DISP=NEW

• Raising of UNDEFINEDFILE condition for
STREAM files

• Campi ler opt ions not supported by
TSS/360

• TSS/360 language restrictions.

TSS/360 COMMAND SYSTEM

All functions performed by job control
language (JCL) in OS/360 are performed by
the command system in TSS/360. TSS/360
commands perform all the functions neces­
sary to compile and execute PL/I programs.

This manual serves as an introduction to
the command system for the PL/I user. The
definitive manual on the command system is
Command System User's Guide.

INTERCHANGE OF DATA BETWEEN OS/360 AND
TSS/360

Interchange of data between OS/360 and
TSS/360 must be by cards or by CONSECUTIVE
PS data sets on tape or disk. TSS/360 can­
not read INDEXED data sets produced by 05/
360; they must be rewritten on tape or disk
as CONSECUTIVE PS data sets.

DATA SET POSITIONING AND DISP=NEW

In TSS/360 if the DDEF command specifies
DISP=NEW and the file is opened for output,
closed, and then reopened, the read-write
mechanism is positioned after the last rec­
ord in the data set. In OS/360, in similar
circumstances, the read-write mechanism is
positioned before the first record in the
data set.

APPENDIX A: 08/360 - TSS/360 COMPARISON

RAISING OF UNDEFINEDFILE CONDITION FOR
STHEAM FILES

Omission of tb~ DDEF command for a REC­
ORD file causes the UNDEFINEDFILE condition
to be raised. A STREAM file, On the other
hand. defaults to SYSIN or SYSOUT so that
PL/I does not raise the UNDEFINEDFILE COn­
dition merely because the STREAM file has
no corresponding DDEF command. (It is
still ~ossible to have the UNDEFINEDFILE
condition raised because of attribute con­
flicts.) Note that omission of the DD
statement for a STREAM file in OS/360 does
cause the UNDEFINEDFI.LE condition to be­
raised.

COMPILER OPTIONS NOT SUPPORTED BY TSS/360

The oFtions SIZE, M91 or NOM91. and
EXTDIC or NOEXTDIC can be specified in the
PLIOPT o~erand of the PLI command. but they
are ignored during execution. These
options are discussed further under -Dummy
Options,· in Appendix G.

TSS/360 LANGUAGE RESTRICTIONS

The following PL/I language features are
not supported by TSS/360. Statements con­
taining these features can be issued and
compiled correctly, but at execution time
these features are Jcejected as described
telow.

1.. Multitasking features -- Already
inherent in TSS/360. must be handled
at the cOlI'.rnand systenl level. If a
request for multitasking is inco­
r.r:;orated in a PL/I program. it will
cause the execution of that program to
be terminated when the request is
encountered during TSS/360 execution.
A CALL statement that contains a mul­
titasking option (TASK. EVENT, or
PRIORITY) will prevent the entire
oeject module containing the CALL
statement from executing on TSS/360.

2. SORT -- An attempt to execute a call
to the SORT routine results in an
error message; execution is then ter­
minated. and the user's task reverts
to the command mode.

3. CHECKPOINT/RESTART -- An attempt to
execute a call to the CHECKPOINT rou­
tine results in an error message;
execution then continues as though the
call had not been made. An attempt to

Part IV: Appendixes 127

execute a call to the RESTART routine
results in an error message. followed
by termination of execution.

4. REGIONAL I/O -- Raises UNDEFINEDFILE
condition.

5. TRANSIENT files. PENDING condition.
ENVIRONMENT options G and R -- Raise
UNDEFINEDFILE condition.

6. UNLOCK statement, NOLOCK option of
READ statement. ENVIRONMENT options
GENKEY. INDEXAREA, and NOWRITE -­
Ignored.

7. Block-size specifications in ENVIRON­
MENT options F. V, and U. for VAM data

128 Appendix A: 05/360 - TSS/360 Comparison

sets -- The system ignores any attempt
to specify a block size, and grouFs
all VAM records into page-size blocks
(4096 bytes). If both block size and
record size are given. the block-size
operand is ignored. If only one size
is specified, it is interpreted as the
record size.

8. EXCLUSIVE attribute -- need not be
declared, since record locking is
automatic and cannot be suppressed by
a NOLOCK option.

The REDUCIBLE and IRREDUCIBLE attributes
cause no action in the TSS/360 PL/I compil­
er other than to imply the ENTRY attribute.

An attention interruption is generated
by pressing the ATTN key on a 2741 Communi­
cations Terminal, or the ATTENTION key on a
1050 Data Communications system. This key
can be pressed at any time -- it cannot be
locked out. The system, if running, always
responds. though perhaps not immediately;
the response depends on what was happening
when the interruption occurred.

Table 24 shows the system's responses to
attention interruptions and to subsequent
actions of the user.

Note: If a LOAD command is issued while a
modUle is interrupted, it is not possible
to resume execution at the point of inter­
ruption with any assurance that all condi­
tions have been properly restored.

It a data set is opened prior to the
interruption, a DDEF or RELEASE command
cannot be issued against it until the
interrupted module is unloaded and
reloaded. The module must be unloaded
before it is reloaded, since the system
never loads a module that is already
loaded.

If the interrupted module was inadver­
tently loaded from the wrong library, the
user must:

1. Unload the interrupted module.

2. Put the correct library on top of the
program library list by issuing
RELEASE commands for the libraries
above it or by issuing a JOBLIBS com­
mand for the correct library.

APPENDIX B: ATTENTION INTERRUPTIONS

3. Load or execute the correct wodule.

If the user does not resume the inter­
rupted module's execution with the GO com­
nand, and if the module may have left a
data set open, he should issue a CLOSE com­
mand to ensure that the data set is closed.

Levels of Interruption

The status (registers and PSW) of each
interrupted nonprivileged program is saved
in a table called the stack table. whenever
another nonprivileged program is invoked
without resuming the interrupted program.
(The interruption can be caused by an AT
command, a call to IHEDOMC, a PL/I call to
SYSOBP. or a program interruption, as well
as by pressing the attention key.) When a
program's status is saved in the stack
table, it is said to remain activated,
although it is not executing. The status
is removed when the interrupted program
again receives control. The RTRN. PUSH.
and EXIT commands can be used to manipulate
the stack table as described in Table 24.

The current level of interruption is an
indicator of how much of the stack table is
in use. One level is taken every time a
program's status is saved; the level is
freed when the interrupted program regains
control. Ten levels are available. The
STACK command displays the names of all
activated programs, from the current level
on down.

Part IV: Appendixes 129

Table 24. Attention Interruptions (Part 1 of 2)
,-------------,-------_._-------------------------------._-------------_ .. _-_._-----------------,
I I System Status when Attention Key is Pressed I
I ~----------------------T----------------·--------_,_--------.--.---.-- .. ----------~
I IA nonprivileged pro- IA privileged ft'ogralll'" IA privileged program.2 I

Igram1 is in operation. lis in operation and lis in operation and I
I Ithe current corr-mand is ithen" are additional I
I I the only one or the I GOlun,ands in the CO[(l- I
I Ilast one in its com- i mana sti~tement. I
I Imand statement. I I
~---_-_-__ - __ -_---------J..--------_------.--------J.--.. --.- ... ---.--------.----.-----1
I Systelr Response I
~-----------------------T-----------------------'T~---·----.-----------------1
I !(If program was for a 1_(If current command. 1*(1f current com~and, I
I command that termina- I other than DISPLAY, ! other than DISPLAY. I
I ted without complet- I terminates without I terminates without com-I
ling, issue appropriate I completing, issue I plet.ing. issue apFro- I

I I message.) I appropriate message.) I priate message.) I r--------------t----------------------.L---------------_______ ..L ___ . __ ... _._. ________________ ~

(Subsequent I System Responses (
I User Actions ~-----------------------T----------------------_._--·--·------.---------------1
I I type 1 I type 2 I type 3 I
r--------------t-----------------------t-----------------------·t-~"-·--e-"--.----------------~
Ipress atten- I ! I i * I
! tion key again I I I I
~-------------t-----------------------t------------------------+.---"--------, .. --.-------------~
I press RETURN I Resume interrupted I I Resume command state- I
I I program: after comple- I I ment; after coreple- I
I Ition, response type =2. I Response type still =2.\tion, response type =2. I
t--------------+-----------------------t-----------------------+-... ---.--------------------~
IGO command IResume interrupted IResume nonprivileged !Resume nonprivileged I
I I program; after comple- I prograll'. that is at I program that is at I
I Ition, response type =2. I current level of in- Icurrent level of in- I
I I I terruption. forgetting I T.erruption. forgetting I
I I I command statements I CQrmr.and statements I
I I I subsequent to i t.S in- ! subsequent to its in- I
I I I terruption. After I ten.:uption. After com- I
I I I complet.ion of nonpriv- I p.let:ion of nonprivi·· I
I I lileged program, re- Ileged program, re- I
1 I Isponse type ==2. I sponse type =2. I
1---------------+-----------------------+---------------.-----.----+---.. ------.---.------------~
I REPEAT lRepeat interru~ted IRepeat interrupted I Repeat. interrupted I
I function Imessage, if any. Imessage. if any. !IIlessage, if any. I
I (Response type =1. IResponse type =2. !Hesponse t:ype ==3. I
r--------------t-----------------------+-----------------------t------------------------~
I STRING IDisplay unprocessed I I Display unprocessed I
Ifunction 3 Iportion of interrupted IError message. iportion of int.errufted I
I Icommand statement. I icommand statement. !
I IResponse type =1. IResponse type =2. !Response type =3. I
t--------------t-----------------------+-----------------.. --.. --.--+-.. --"---.---- .. --.--.--.-.-----------~
IEXIT command lEnd" and deactivate lEnd" and deactivate !End" and deactivate I
I I interrupted program; I nonprivileged program i m:mprivileged program I
I I resume command state- lat current level of I at cU.n:ent level of I
I Iment, if unfinished. I interruption; resume linte!.cupt~ion; resume I
I tAfter completion of lits cOlulland statement, lits command statement, I
I Icommand statement, lif unfinished. After lif nnfinished. After I
I I response type =2. I completion of command i c:omp1et.ion of cOmIT,and I
I I I statement. response ! st.at.ernen!:. response I
I I {type =2. I t·yP? "'2. I
I---------------+------------------------t------------·-----------+----.... --<-.. ~.-.. --.----------.--~
IRTRN command I Deactivate nonprivi- IDeactivate nonprivi- !Deactivate nonprivi- I
I Ileged programs at all Ileged programs at all lleged programs at all I
I Ilevels of interrup- Ilevels of int~er.r:up- i levels of 1..oterrup- I
I Ition; cancel any un- Ition; cancel an:r un-· It. ion , cancel any un- I
I I processed portions I processed portions I processed port.ions I
I lof associated lof associated lof associated I
I I command statements. I command statements. I,-;ommand statements. !
I IGO to response IResponse type =2. IGO to response I
I Itype 2. I Ityp,~ 2, I L ______________ J.. _______________________ ~ _______________________ ~ ________________________ J

130 Appendix B: Attention Interruptions

Table 24. Attention Interruptions (Part 2 of 2)

r-------------~--, I Subsequent I SysteJ[, Response I
IUser Actions ~-----------------------T----------------------~------------------------~
I I type 1 I type 2 I type 3 I
~-------------+-----------------------+-----------------------+------------------------~
IPUSH command Isave status of inter- Isave status of cur- Isave status of cur- I
I lrupted program. 5 Irently interrupted \rently interrupted I
I IGO to response type 2. Inonprivileged program. 5 lnonprivileged program. s I
I I IResponse type =2. IGO to response type 2. I
~-------------+-----------------------+-----------------------+------------------------~
IAny command IExecute command; after IExecute command; after IExecute command, can- I
lexcept those I execution, response lexecution, response Iceling unprocessed I
I above Itype =2. Itype =2. Iportion of interrupted I
I I I I command statement. After \
t I I I execution, response I
I I I I type =2. I
t--------------~-----------------------L-----------------------~-------.-----------------~
11A user-written program, the text editor, the PL/I compiler, PLC, ODC, or the PL/I I
I library. Note: A nonprivileged program can call a privileged program, thus causing al
I privileged program to be in operation when the attention interruption occurs. I
laA command-system program for other than a text editor or language processing command, I
I or some other privileged system program called by one of the nonprivileged programs. I
13 STRING is valid only if it is the first user action after the attention. I
14 As if control were transferred to an END statement within the program. I
15 Normally, the status of the interrupted program is not saved until another nonpr1v1- \
I leged program is invoked withou~ resumption of the interrupted program. However, if I
I the user wants to use pes to change the contents of his registers, the PUSH command I
I allows him to save the status immediately. I l __ --------________________________ -J

Part IV: Appendixes 131

APPENDIX C: PRINTER AND PUNCH CONTROL CHARACTERS

All record formats can optionally
include a control character in each logical
record. This control character is reco­
gnized and processed if a data set is being
written to a printer or punch. For format­
F and -U records, this character is the
first byte of the logical record. For
format-V records, it must be the fifth byte
of the logical record, immediately follow­
ing the logical record length field.

Two alternatives are available: that is,
FORTRAN control characters or machine-code
control characters. If either option is
specified, the character must appear in
every record. Use of FORTRAN control char­
acters is specified by the A option of the
RECFM DCB subparameter to the DDEP command,
or by the CTLASA option of the ENVIRONMENT
attribute. Use of machine code is speci­
fied by the M option of the RECFM subpara­
meter or by the CTL360 option of the
ENVIRONMENT attribute.

FORTRAN control characters are usually
preferred, since the PL/I library automat­
ically inserts them in each record of a
STREAM PRINT file. FORTRAN control charac­
ters are given in IBM System/360 Time Shar­
ing System: Command System User's Guide.
FORTRAN control characters for PRINT files
are listed under ·PRINT files,- in Section
9.

The machine-code options can be ignored
by most users: they should never be speci­
fied unless the user has coded hexadecimal
data into the first byte of every record.
The user-supplied byte must contain the bit
configuration speCifying a write and the
desired carriage or stacker-select opera­
tion. Only those control characters that
include a write-specification are per­
mitted; the independent carriage and
stacker-select operations are excluded. A
list of the machine codes appears in Com­
mand System User's Guide.

132 Appendix C: printer and Punch Control Characters

Those portions of a DDEF command that
are applicable to determine or specify the
characteristics of a data set operated on
by PLiI programs are presented in Figure
14. Other parameters and options of the
general DDEF command, as described in the
publication command System User's Guide,
are not given because they are ignored or
overridden by the PLiI I/O routines.

Specification of DDEF commands for
peripheral devices of the CPU is also
described in the publication command System
User's Guide.

The DDEF command that defines a cata­
loged data set is brief and simple. The
only required operand fields are DDNAME and

APPENDIX D: FULL DDEP COMMAND

CSNAME. Other operand fields are unneces­
sary since other information about the data
set is described in its catalog entry. For
a cataloged data set if SPACE, UNIT, LABEL,
or VOLUME operands are entered, diagnostics
will be displayed as appropriate. However,
the associated fields will be taken
correctly from the existing catalog entry.

DDEF commands that define uncataloged
data sets can be divided into two groups:
(1) those defining new data sets (data sets
that are to be generated during the run but
do not yet exist) and (2) those defining
old (already existing. but uncataloged)
data sets. These old, uncataloged data
sets can exist only on private volumes.

r-----------T---, I Operation I Operand I
t-----------t---~ I DDEF I DDNAME=data definition name I
I I I
I I [,DSORG={PSIVIIVPIVS}] I
I I I
I t .DSNAME=fi{data set name n I
I I U*data set nameU I

\ I [({ DAl, direct access device type] })] I
I I UNIT= TA£,tape type] I
I I AFF=data definition name I
I I I
I I r. SPACE= ({CYLI TRKI record length} ,primary] I
I I L [,secondary1 [,HOLD]) I

I I [I I I , VOLUME= ([:~~~!;E J . [volume serial number, •••])~ I
I I volume sequence number I
I I I
, I r. LABEL= { [fi Ie sequence number] [. {NL I SL I AL} 1] I
I I L (,RETPD=retention period]) I
I I I
I I (,DISP={OLDINEW!MOD1) I
I I I
I I [.OPTION={CONClJOBLIBll I
I I I
I I (. RET=retention code) I
I I I
I I (PROTECT={YINH I
I I I
I I [, DCB= «(, D50RG=code] (, RECFM=code J i
I I (,LRECL=integerl l,BLKSIZE=integer] [,BUFOFF=integer) I
I I [.KEYLEN=integerl (.RKP=integerJ i
I I [, PAD=integer] [, DEVD=codel I
I I (, DEN=integer] [,TRTCH=codeJ I
I I [,BUFNO=integer] [,OPTCD={WIA}] I
I I (,IMSK=codel (,NCP=integer)] I
I I I l ___________ 4 __ -------------__________ ~---------J

Figure 14. Full DDEF command for the PL/I User

Part IV: Appendixes 133

To define a new data set that is to be
written on a public volume, the user can
use the DDNAME, DSNAME, SPACE, DSORG, and
LABEL operand fields. Exactly Which fields
he uses other than DDNAME and DSNAME, which
are required, depends on the character of
his particular data set. To define a new
data set that is to be written on a private
volume, the user must give DDNAME, DSNAME,
UNIT. and VOLUME operands. If he wishes.
he can also furnish DSORG, SPACE, LABEL,
and DISP fields.

The user defines an old, uncataloged
data set by specifying the DDNAME, DSNAME,
VOLUME, and UNIT fields. The remaining
fields can be defaulted for all data sets
except unlabeled tapes.

The description of the basic DDEF com­
mand given in Section 8 also applies to the
full DDEF command. If the data set is old.
the full DDEF command can be used to over­
ride data set specifications already given
in the standard label; however, the user is
cautioned that to do this may cause errors
in processing the data.

New data sets can differ radically from
the standard data set resulting from the
basic DDEF command. In particular, the
user can define output data sets that are
compatible with other systems.

Specifies the data definition name.

Specified as one to eight alphameric
characters; the first character must be
alphabetic. DDNAME must not begin with
SYS, because these characters are reserved
to prefix system-generated data definition
names.

Since DDNAME is a required parameter, it
cannot be defaulted.

DSORG

In the basic DDEF cmrmand this is virtu­
al sequential (VS), virtual index sequen­
tial (VI), or virtual partitioned (VP).1
The other option is physical sequential
(PS) •

The PS option must be used for tapes or
disks that originate outside the TSS/360

1The DSORG parameter is also present within
the DCB sublist of the full DDEF command.
This dist inguishes hetween the different
forms of VP, namely virtual index sequen­
tial partit:ioned (VIP) and virtual sequen­
tial partitioned (VSP). and identifies the
organizat.ion of the partitioned data set
member to be processed.

134 Appendix D: Full DDEF command

environment and for tafes or disks that are
to be written under TSS/360 and then trans­
ferred to othel: systems for processing_

DSNAME

See the discussion under -Basic DDEF
Command,- in Section 8.

No more than one member of a partitioned
data set can be processed at one time.

The data set name can optionally be
specified within apostrophes. In this
case, the name need not consist of alpham­
eric characters.

The $data set name option of the full
£DEF command is needed only when processing
tape or disk data sets written by OS/360
with 44-character data set names. There­
fore, this option is used only with a dsorg
of PS. Subsequent references to the name
do not include the asterisk prefix.

This is required only for uncataloged
data sets.

UNIT=(DA, {~~i!})
Specifies direct access (either a 2311

Disk Storage Drive or a 2314 Multi-disk
Storage Drive).

UNIT=(TA.l111DCI9})

Specifies that a tape unit (1-track,
1-track with data conversion, or 9-track)
is required for the data set. If given, it
should agree with the DEVD parameter in the
CCB field.

UNI'r=(AFF=data definition name)

s~ecifies unit affinity. The data set
being defined is to be assigned the same
device reserved for the data set identified
by symbol, which is the data definition
name of a previously issued DDEF command.
This subfield cannot be used if the data
set is new and is to be on a direct access
device. This subf~-=ld can be specified
only for PS data sets.

The SPACE parameter is never required
for existing data sets. It can be used for
new virtual data sets (DSORG is VI, VS, or
VP) to request an initial allocation of
t:ul:;lic storage t.hat is different from that
specified at system generation time. Its
function in this respect is of interest
only if the expected size of the data set
is either much larger or much smaller than

the standard system allocation. In these
cases, it permits somewhat greater effi­
ciency in storage allocation. Even if the
storage required is greater than the stan­
dard allocation, additional storage is
automatically issued so that the SPACE pa­
rameter is never critical for virtual data
sets.

Form 1

SPACE=(,primary[,secondaryl{.HOLD])

This form is used to request allocation
parameters for virtual data sets that diff­
er from the system standard. primary and
secondary allocation are in space unit.s of
4096 bytes (pages). Primary sFecifies the
number of initial space units to be allo­
cated to the data set. It is one to three
digits. secondary is the number of space
units to be allocated each time the space
allocated to the data set has been
exhausted and more data is to be written.
This allocation consists of a one- to
three-digit decimal number.

The HOLD option within the SPACE parame­
ter specifies that unused storage assigned
to the data set is not to be released when
the data set is closed.

Form 2

SPACE=({TH.K!CYLlrecord length},primary
[,secondary] (,HOLD])

This form is used for direct access
devices where dsorg is PS. It allocates
space in units defined by the first sub­
parameter, namely tracks, cylinders, or
record lengths.

VOLUME

Form 1

VOLUME= (I. !~i~:!E serial number (, ••• 1})
The volwne parameter is required for

old. uncataloged data sets that reside on
priVate volumes. It can also be supplied
for new data sets that are to reside on
private volumes. Volume serial numbers can
be one to six characters and should unique­
ly identify a particular disk pack or tape
reel that is to be mounted. If any non­
alphameric characters are used in the
volume serial number, it must be enclosed
in apostrophes. If PRIVATE is specified
and the data set is new, the system obtains
an available volume and informs the user of
the volume selected.

In general, therefore, this form of the
VOLUME field is needed only for data sets

that are not cataloged. It applies mainly
when dsorg is PS and an OS/360-generated
disk pack or tape is to be read.

Form 2

VOLU~E==(vol~e sequence number)

Where a data set extends over IItore than
one voluRe, this form specifies the
sequence number of the volume to be read or
written. The number consists of one to
four digits. This form is meaningful only
if the data set has PS organization. is
cataloged, and its earlier volumes are not
to be frccessed.

Form 3

VOLUME=PUBLIC

This form is used fo.r a new public data
set if the user specifies a device type in
the UNIT parameter. If PUBLIC is speci­
fied, the volume serial number is not reco­
gnized. PUBLIC i.s also assumed if the
VOLUME parameter is not specified.

This parameter applies only when the
data set organization is PS. It is gener­
ally used only when magnetic tapes are to
be processed, since all data sets on direct
access volumes have labels known as Data
Set Control Blo~ks (DSCBs). The RETPD sub­
Farameter. however. is applicable to all PS
data sets.

If the entire label field is defaulted,
the labeling conventions specified by the
installation are assigned. However, if the
data set is cataloged, label information is
retrieved from the catalog.

Form 1

LABEL={file sequence number)

SF€cifies the file sequence number of a
data set on tape when multiple data sets
are on one tape volume. This facility.
therefore, permits the user to skip one or
more data sets in order to fi.nd the one of
interest and implies that the program
should not issue a REWIND for that data
set. The file sequence number is one or
two decimal digits.

Form 2

LABEL=(,lNLISLIAL1.RETPD=days)

The options shown are NL for no labels,
SL for standard lal::els, and AL for standard
ASCII labels (see Appendix E). The exact
neaning of standard lacels is installation
dependent. The NL option should not. be

Part IV: Appendixes 135

used for PL/I output data sets unless a
definite reason exists. since a tape data
set without labels requires a more compli­
cated DDEF command when read back by a PL/I
program than one with labels.

RETPD specifies the number of retention
days and applies to output tapes with stan­
dard labels and to direct access output.

If defaulted, RETPD is set to zero to
permit immediate rewriting of any tape or
direct access data set.

{
OLD I

orsp= NEW}
. MOD I

Uses of DISP~OLD and DISP=NEW are described
under -Basic DDEF command,- in "Section 7:
Data Sets and PL/I Files.-

DISP''''MOO applies only when the data set
organizat.ion is PS and a private volume is
being p:tocessed. This option causes logic­
al positioning after the last record of t.he
data set_. Additional WRITE statements are
then possible to expand the data set. This
option applies mainl.y to magnetic tapes.

OPTION ----
OPTION=CONC

Specifies that a data set is being added
to the concatenated data set named as
ddname. The order of concatenated data
sets is the same as the order in which they
are defined. Only existing PS data sets
can be _~;oncat<'!!1a!:.ed.

OPTION=,JOBLIB

Specifies that the data set is to be
used as a job library. The data set name
specified in the DSNAME field is entered
into the program library list. The data
set organization must be VP.

The HET parameter allows the owner of a
virtual storage data set to specify the
storage type, and deletion and access
attributes of a data set_:

RET= ((P I T] [C I LJ [u IRJ)

storage type~3 (PIT):

P permanent storage

T temporary storage
if neither is specified, permanent
storage (P) is assumed.

136 Appendix D! Full DDEf Command

Celation 0l-">t ions [C I L] :

C delete at CLOSE

L delete at .LOGOfF
if not specified. deletion at LOGOFF
(L) is assumed for a temporary (T)
datd set.
a permarHmt oc.ta set (P) is not
deleted automatically_

Access attributes [UIR]:

U read/write

R read-only
if neither is specified, read/write
{U} is assumed.

PRO'rECT'"" (Y IN}

AFplicable t.o data sets on tape, this
operand specifies whether file protection,
1. e •• no file rrotect ring, is required.

Y -- the tape will be mounted without a
file protect rin9. unless DISP is NEW
Ole 1>lOD, in which case the DDEF command
is canc~"led. Ata.pe already mounted
with a file p:rot<~ct ring lNill be
:r-emollnted in order to have the ring
removed.

N .• - th~::! tape will be mounted with a file­
pr-otection ring, regardless of the
DISP value. If the tape is already
fllQunt.ed without a ring, it will be
remounted in order to have the ring
pu_t in~

if neither Y nor N is specified, N is
assumed if DISP is NEW or MOD. There
is no I BM-' def au1 t for DISP=
OLD; this will be whatever is
called £o.c by t.he installation.

If thE de-';lic:e i.s not magnetic tape, the
PROTECT opexand is ignored.

A data control hlock (DCB) is one of the
major control tables used for communication
betw€(m TSS/360 data management and any
~rograiYI requiring control of a data set.
For every data set. the PL/I I/O routines
t;uild a DCB as it is encountered in execut­
ing the object prograJll. The DCB is ini­
tially void. but can be filled from infor­
mation in the DDEF commands, the file
declaratie<n, the OPEN options, or. the input
data set labels. Therefore, any requLted
informati.on not in the DDEF command is
entered 1:ro.ll1 oue of t.hese sources.

The Dce suboperands of critical
intere"t t.o the PL/I usex are REeFM, LRECL.

I<EYLEH, and RI<P; KEYLEN and UP apply only
to VI data sets. Of the remaining DCB
parameters, PAD applies only to VI data
sets; BLKSI.ZE, BUFOFF. DEVD, DENE TRTCB,
BUFNO, NCP, OPTeD, and I.1f,sI< apply only to
PS data sets.

DCB Suboperands - RECFM. LRECL, and
BLI<SIZE:

RECFM:
RECFM indicates the format of the
records in the data set. Specified as:

For VAN data sets:

{
FrAIM)}

RECFM= V(AIM]
U[AIMl

Where the record format is:

F fixed-length records
maximum record length is 32,156

V

u

bytes for VS, and 46000 bytes for
VI.

variable-length records
each record contains in the first
four bytes a binary count of the
number of bytes in the record
maximum record length is 32,156
bytes for VS, and 4,000 bytes for
VI

undefined-length records
applicable to VS and VP data sets
only
record length always a multiple of
a page (4096 bytes)
maximum record length is l,OQ8.516
bytes

The default value is V.

Figure 15 ahows the F, V, and U record
formats for VS data sets. Figure 16 shows
the F and V record formats for VI data sets

Fixed-length
(Format F)

RECORD RECORD RECORD RECORD RECORD RECORD

Variable-length
(Format V)

Undefined
(Format U)

General VS
Rules:

Figure 15.

I 2 3 4 5 6

1 Page 1 Page ----. ... -41 1---- 1 Page ---. ... "'il

.. Maximum record length: 32,756 bytes .

.. System automatically keeps hock of overlap across poge boundaries .

j.-. Record 1 .. ,. Record 2 .. ,-- Record 3 .. t .. Record 4 ...j

[b.lU 1 DATA bUR DATA btU DATA I: bUl DATA 11
l-+--- 1 Page .. I· 1 Page· IP'!" - I Pagej

.. Maximum record length: 32,756 bytes .

.. SY$tem automatically keeps ~rack of overlap across poge boundaries.

.. User must ,inciude length of each variable-length record as first 4 bytes of record; length is specified as btU"
where b contains binary zeros, and ti' contains a binary number specifying length of the record, in bytC$.
This length must include the 4-byte length field .

I-- Record 1 .. I- Record 2 -[- Record 3 - --..l

Data Data Data]
\--01 1 Page -I· 1 Page .. I .. 1 Page .. ,- I Poge .., ... 1 Page---/

• Maximum record length: 28,632 bytes (7 pages),

• Each record length must be a multiple of 4096 bytes (1 page) in length. If more than one page is required, on
integral number of poges is allocoted.

• Suffer poges required are supplied by system based on maximum logical record length.

.. VS data sets cannot be written on volumes containing physical sequential data sets.

Record Formats -- VS Data sets

Part IV: Appendixes 137

Fixed-length
(Format F)

Variable-length
(format V)

Figure 16.

Initial Key

~RECORD 1 RECORD 4 -----l

Key DATA Key DATA Key DATA Key DATA I t
Embedded Key

I';---R~~;;;:-d 1 ----+---- Record 2 ---4 I~ .. ---- Record 3 ---l .. IIo+! I-- Record 4 ------IIOoj

First Port
K

End Part First Port
K

End Port Fint Port
K

End Port First Port
K

End Port E E E E of Data y of Data of Data y of Data 01 Data y of Data of Data y of Dolo

i-ooIf----- Record Record 2 ---.... 41 0----- Record 3 -----......... 1

Embedded Key

f-"'---=--- Record 1 ----'40 .. -lI· .. I1----- Record 2 --....... 1 0----- Record 3 ----.. -;1

F;rst Port
K

End Port F if~r Port
K

End Port First Port bHf
of Doto

E
of Data

biH
of Data

E
of Doto

bUt
of Data y y

• Moximum logical record length: 4000 bytes.
• 1./10)(iO'>um number of reco(d~ per data page: 1300.
• Maximum key length: 255 Lytes.
• r-AQ)(J,-r,um number of data pages: 65 /000.
• Maximum number of overfio'h pages.: 240.
• Maximum number of records per overflow page: 255.
• Maximum number of directory pogeo: 255.
• User musl include length of each variable-length record o. first 4 byte. of recOt"d;

length is specified a. b,- ~ 97 where b contains binary zeros, and '- £ (contains "
binary number specifying length of the recOt"d, in bytes. This length must include
the 4-byle length field.

line Dato Set Record

i
RECORD ---------,

K
E
y

~ecor~inc I Lengt~umber flag DATA I
1--- 4 ~ 7 --.l-by'te4 I ... ----- (data length - 120 byte.) ----I bytes byte,

• Maximum record length: 132 bytes.
Maximum doto length; 120 bytes.
Flag byte indicates whether record or;g;nolly
come from terminal keyboard (01) or cord reade,COO}.

Region Dolo Set Record

1--------.. ---- RECORD

Record Region line
Flag DATA Length Name Number

4 0-244 7

End Port
of Data

f-+-- byte. ---1--- byle. ----r-- byte. -r. byte """"'---(dato length - 244 bytes} "I

Maximum record length: 256 bytes
Maximum doto length: 244 bytes
Flog byle indicates whether record originally
came from lerminol keyboard (Ol} or card reoder (00).

Record Formats -- VI Data sets

138 Appendix D: Full DDEF Command

~

j

where the record contains:

A FORTRAN control character
M machine code control character

If A or M is not specified, no control
character is assumed. Refer to Appendix C
for a discussion of control characters.

For PS data sets:

~ F[BtSITIBSIBTIBSTIST)[AiM]l RECFM= V[BIT][AIMl
U[T][A!MJ

lDIB.}

Where the record format is:

F fixed-length records
maximum record length is 32,760 bytes

v variable-length records
maximum record length is 32,756 bytes

D variable-length records used with
tapes in ASCII format (see Figure 19,
in this appendix, and -ASCII Tapes,·
in Appendix E)

U undefined--length records
records have physical attributes (on a
tape) and can vary in length (that is,
in blocksize>

Figures 17, 18. and 19 show the possible
record formats for PS data sets, where the
physical attributes are:

B blocked records

S standard data set; no truncated blocks
or unfilled tracks

T --' track overflow employed

Where the record contains:

A
M

FORTRAN control character
machine code control character

Refer to Appendix C for a discussion of
control characters.

Notes on Record Format

1. Absence of any of the phySical attri­
bute mnemonics implies the opposite of
that attribute. For instance, writing
RECFM=V implies: variable-length,
unblocked records, no control charac­
ter, and no track overflow feature.

2. If the RECFM suboperand is omitted,
record-format information can be supp­
lied by the user"s program or the data
set label.

3. Figures 15-19 of this appendix
i1lustrate external record fo.rmats
the formats seen by the user. Intern­
al formats may differ. F'or descrip­
tions of internal record formats. see
IBM System/}60 Time Sharing S"'ystem:
Access . Methods }?LM. GY28-2016.

LRECL:

LRECL specifies record length. It must
te four bytes greater than the largest log­
ical record that is to be read or written.

E'or for'mat-F records, LRECL must be
specified. If defaulted for format-V reco­
rds, it is assumed to be 4096 for VS, 4000
for VI, or' 4096 for PSi if VS format-V
records longer than 4096 bytes are to be
accessed, LRECL must be specified. For
format-U records, LRECL is ignored.

BLKSIZE:

BLKSIZE is required only if RECFM is FB
(fixed-length blocked records) and this
option, in turn, is meaningful only if
DSORG is PS. In this case, it must be a
multiple of LRECL. Otherwise, any value
given is ignored and replaced by LRECL.

Examples of how to use the RECF~. LRECL,
and BLKSIZE parameters are shown below
(they are not complete DDEF commands; only
the DSORG and DCB portion is shown).

VS,DCB=(RECFM=F,LRECL=80)
VS SO-character fixed-·length records

VS,DCB=(RECF~=V)
VS variable length records
(standard)

VS, DCB'" (RECFM'''FA. LRECL=133)
VS data set for listing

VI,DCB=(RECFM=V.RKP:.:4,KEYLEN:=4}
VI variable-length records with
4-byte key in initial position
(after 4--byte control word)

PS,DCB~(RECFM~FB,LRECL=100.BLKSIZE=1000)

PS fixed-length blocked with 10
records per block

DCB Parameters -_. VI Associated: If
DISP=NEW and dsorg is VI, the user must
specify record key position (RKP) •. key
length (KEYLEN), and optionally padding
percent (PAD). RI<P specifies tbe displace­
«ent of the key field from the first byte
of the logical record. Fox a full discus­
sion of RKP refer to the subject ~Initial
and Embedded Keys," in Section 10. KEYLEN
specifies the length of the k.ey. in bytes.
PAD specifies the percent of space (to a
limit of 50 percent.) to be left available

Part IV: Appendixes 139

Fixed-length
(Format F)

Fixed-length
Blocked
(Format FB)

Fixed-length,
Blocked
Standard Blocking
(Format FBS)

Variable-length
(Format V)

Variable-length,
Blocked
(Format VB)

Figure 17.

) I RECORD I I I RECORD 2 I] RECORD 3 11
• Maximum record length - 32,760 byt

• Each block treated a. " logical record.

• Maximum block length - 32,760 byt

• Blocking factor is usually constont; however, doto set ",oy conloin truncoted or short block •.

~-- BLOCK I ---BLOCK 2 --___1o-i ~--BWCK 3 --.-

• Maximum block length - 32,760 byt

• loot block may be truncated; truncated block invoices end-of-volume routines.

• Maximum logica' record length - 32,756 byt

---U 3

• Maximum logical record length - 32,76.1 bytes.

• Each logical record must describe its own length; this information must be included by user as fint
4 bytes of I!>O<:h record:

a 0 - Binary number specifying record lenglh in byt

bb - Sinory 0..

• System performs I gth checking of blocks containing format-V r.cords, based on -.upplied length
info""ation; when data sels with FDfmot-V records (eith'" blo<;ked or blocked) ar .. created,
a 4-byte control block i. requited in the form lLbb, ",he,e:

LL - Binary mwnber specifying block length in bytes.

bb - Two bytes reserved for syslem

Value of Ll i. determined by adding ,h.Ll. of th .. records within block and adding 4 bytedor the control rield.

• Formal-V and Bioeked formct-V records co ol be proc_ed on 7-lrack tape ... nlts wltho ... , dota
convers Ion fflCllure.

Record Formats -- Physical sequential Data Set Without Keys (Part 1 of 2)

140 Appendix D: Pull DDEF command

Undefined
(Format U) ~ I RECORD' LJ RECORD 2 RECORD 3

• Max imum reco<d length - 31,767 bytes.

• Each block i. treated as logical record.

• No length checking i. performed.

• \Joe, m t make length of each format-U record available to ')IItem in data let's data control block,
prior to alking system to write that ,e<:ord.

• When system reach a Formal-U re<:o<d, it makes ,ecord'. length available to user in data set', data
control block.

Also. there is a device-dependent rul .. for phy>lcal ''''lvential data sell:

T rock overflow ~ (Option T)

I No track
overflow

Trock-overflow option for direct-acc ... devices; when this option i. used, a record that d~ nat fit
on a trock is partially written an that track and continued on next track; jf this aptian i. nat used,
records are not ,pi it between tracks.

I REC I I REC I I REC I I REC REC

1 2 3 " " cont'd

I--- TRACK 1 ... 1 !...--- TRACK 2 ... 1

I II f)1
!..,

~ r·i REC REC REC RECORD RECORD
1 2 3 " 5

I--- TRACK I ... 1 I~ TRACK 2 • I

Figure 17. Record Formats -- Physical Sequential Data Set Without Reys (Part 2 of 2)

Fixed
length
(Format F)

Fixed
length
Blocked
(Format FBl

Variable
length
(Format V)

Variable
Length
Blocked
(Format VB)

Undefined
(Format U)

I Key! Dato I I I Key 2 1 Oata2 I I KeY31 Oata3 I
I.- Recordl --I ~ Record2 -J l..-- Record3 -..l

~ BLOCK 'I
I KeY3 KeY1 Datal Data2 KeY3 I

Record Record ---+--- Record

Record Record --------. ------ Record

I Key Data I I Key Data I I Key Data

~ Record -...l ~ Record -..l ~ Record -----I
The same rules apply to physical sequential data sets with keys as for those without keys; olso:

• A II keys in data set must be the same length.

• Number of bytes transmitted in a READ or WRITE operation equals the key plus the data portion of record.

Note: Non-zero KEYLEN operand in DCB identifies data set with keys.

Figure 18. Record Formats -- Physical Sequential Data Sets With Reys

Part ZV: Appendixes 141

Fi xed-length,
Blocked and
unbloc~ed

(Format F)

Variable-length,
Unblocked
(Format D)

Variable-length

Blocked
(Format DB)

Undefined
(Format U)

• Maximum record length - 32,760 bytes
• Buffer offset not supported
• Data in EBCDIC form is translated 10 ASCII

• Maximum logical record length - 32,756 bytes
• Block descriptor in example has been stepped over
• Each logical record must describe its own length; this

information must be included as first four bytes of each record:
dddd - unpacked decimal number specifying length in bytes

• dddd and DATA are translated to ASCI!
• Buffer offset of 0 and 4 are supported

• Maximum logical record length - 32,763 bytes
• System performs length checking of blocks containing

format-D records, based on user supplied length information;
when data sels with formal-D records (either blocked or
unblocked) are crealed, a 4-byte control block in the form
DDDD is required, where:

DODD - unpacked decimal number specifying block length
in bytes

Value of DODD ;5 determined by adding the dddd's of the
records within the blocks and adding 4 bytes for the control
field.

• DODD, dddd, and DATA are translated to ASCII

• Maximum record length - 32,767 bytes
• Each block is treated as a logical record
• No length checking is performed
• User must make length of each formot-U record avo; lab Ie to

system in dolo set's data control block
• Buffer offset not supported
• Format U is supported when 128 character set is used
• Data trans!ated to ASCI!

Note: This represents the output after the system has processed the

infernal EBCDIC data format descrihed in Figure '27.

Figure 19. Output Record Formats for ASCII Ta~es

142 Appendix 0: Full DDEF Command

within the pages of a VI data set, thus
~roviding for insertions within pages.

DCB Parameters -- PS Associated: If
DSORG is PS, a large number of DCB parame­
t.ers can be used that. otherwise have no
meaning. As previously discussed, the
BLKSIZE parameter is required if RECFM=FB.
In addition, the parameters listed below
apply_ Note: If the DDEF command is for
an ASCII tape (see Appendix E), all reI e­
vant DCB parameters must be specified;
there is no other source of information.

1. BUFOFF=integer: Length of buffer off­
set field (th~ is, block descriptor);
used only with tapes in ASCII format.
Acceptable buffer offset values are:

r-------T----------------------,
I I RECFM I
I t------T--------T------~
I I F i DIU I
t-------+------+--------+------~
I input I 0-99 I 0-99 I 0-99 I
t-------+------t--------t------~
loutput! 0 I 0 or 4 I 0 I L _______ ~ _____ ~ ________ ~ ______ J

If BUFOFF is specified, BLKSIZE must
include the buffer offset field.

2. OEVD=Code: Specifies the device on
which the data set resides. It is not
required Ior cataloged data sets: it
can be one of the following:

d. DA specifies direct access (disk
formatted in accordance with
Operating System/360 conventions).
In this case KEYLEN has a special
meaning since it specifies how
many of the initial bytes of each
record are to be written on the
disk (or read from it) as a key.
This condition has no connection
wit-h VI and the key cannot be used
for random access by the PL/I pro­
grammer. If all processing is to
be done on TSS/360, it is not
necessary to use it. However, if
a data set is to be written on a
disk pack for the purpose of being
processed on another IBM system
(for example. OS/360), the use of
KEYLEN may be required.

b. TA specifies magnetic tape. If
7-track tape is specified in the
UNIT parameter, DEN is given a
value of 0, 1, or 2 for recording
density of 200, 556. or 800 bytes,
respectively. If 7-track tape is
to be read, TRTCH can be given as
C for data conversion, E for even
parity. and T for BCOlC to EBCDIC

conversion. The defaults are odd
parity and nO translation.

3. BUFNO""l: Physical !3equential 1/0 nor­
mally takes place with two buffers.
The user can reduce space allocation
reqUirements by specifying the number
of cuffers as only one. Any other
value given to BUFNO is disregarded.

4. OPTCD=i>2IA: Specifies an optional ser­
vice to be provided. OPTCD=W a~plies
only for direct access output. It
causes additional checking of all
write operations; this increases
execution time. OPTCD=.A must be spec­
ified if an ASCII tape is being used.

5. IMSK=Code~ Specifies a 4-byte hexade­
cimal number whose bit pattern indi­
cates the system's error-handling pro­
cedures to be invoked. If FFFFF.FFF is
written, the system is to apply all
optional error recovery procedures.
This is the default condition. If
00000000 is written. the system is to
aFply none of its optional error reco­
very procedures. If any other 4-byte
hexadecimal number is written, the
systew applies its error-recovery pro­
cedures wherever a bit is set to one
in IMSK which corresponds to an error
condition. The first two bytes corre­
spond to the first two bytes of the
channel status word, and the other two
correspond to the first two sense
bytes. Bit positions in each byte for
specification of system error recovery
procedure are in the following format:

XXXXXXXB XCXXXXXD YEFGBIYY YYYYYYYY

wbere a one bit in a given position
indicates that the system is to handle
the associated error condition.

X System never tests this bit to
determine entry to retry routines

Y = Device-dependent conditions
B Unit exception
C Incorrect length
D Channel chaining check
E Intervention required
F = Bus-out parity
G Equipment check
H Data check
I = Overrun

6. NCP=integer: Specifies the maximum
number of 1/0 events that can be out­
standing for a file at any instant.
This number must not exceed 99. Use
of the NCP subparameter is valid only
with PS data sets accessed by BSAM
(that is, CONSECUTIVE SEQUENTIAL
UNBUFFERED files).

Part IV: Appendixes 143

APPENDIX E: EXTERNAL_STORAGE DEVICES

This appendix states t.he record formats
that art~ acc~)ptable for magnetic tapes and
di.r:ect access devices, and sUliIXIlarizes the
salient. operdtional fea.tures of these
devices.

MAGNE'TIC TAPE

Nine-track magnetic tape is standard in
IBM System/360. but some 2400 series
magnetic-tapes drives incorporate features
that facilitate reading and writing 7-track
tape. The t.ranslation feat.ure changes
character data from EBCDIC (the a'-bit code

. used in System/360) to BCD (the 6-·bit code
used on 7-track tape) or vice-versa. The
dat.a conversion feature treats all data as
if it. were in the tOL·m of a bit string.
breaki ng the string into groups of eight.
bits for reading into storage, or int.o
groups of six bits for writ.ing on 1-tracK
tape; the use of t.his feature precludes
reading the tape backwards. If the user
wants to employ translation or dat.a conver­
sion. he must include the TRTCH (tape reco­
rding technique) subpararneter in the DDEF
command.

The user can specify format--F, format:-V.
or format-\] records for 9-track n:agnetic
tape, but format-V records are acceptable
on 1-track tape only if the data conversion
feature is available. (The data in the
control byh!S of forrnat-V records is in
binary form; in the absence of the data
conversion feature. only six of the eight
bits in <each byt.e iOlre transmitted to 1-
t.rack tape.

The maximum recording density available
depends on the model number of "the tape
drive us€-d; Single-density tape drive units
have a maxirrnllll recording density of 800
bytes per inch, and dual··density tape d.rive
units have a maximum of 1600 bytes per
inch. For 9-track tape, a single-density
drive offers only the 800 bytes per inch
density; the standard density for a dual­
density drive is 1600 bytes per inch, but
the DEN (density) subparameter of the DDEF
command can be usedt.o specify 800 bytes
per inch. F'or 1-track tape, the standard
recording density for both types of drive
unit is 200 bytes per inch; the user can
employ the DEN subparameter of the DDEF
command to select. alternatives of 556 or
800 bytes per i.nch.

1411 AppendixE: External StoragE Devices

ASCII Tal?~

The user can process and create magnetic
tapes formatted in American National Stan­
dard Code for Information Interchange, ANSI
X3.4-1961. hereinafter referred to as
ASCII. The following restrictions a~ply to
use of ASCII tapes:

• The ~DEF oommand for an ASCII data se~
differs from that for an EBCDIC data
set. See the discussions of DSNAME.
lABEl., REeF'H, BUFOFF. and OPTeD in
Apf€ndix D .

... The data management routines do not
translate EBCDIC data to ASCII data if
the EBCDIC data is in packed format; it
must be expanded to character format.

• When using a CDS command with an ASCII
tape as input. the block descriptor may
be destroyed.

• ASCII tapes cannot be cataloged.

Figure 19 illustrates output record for­
mats for data sets recorded on ASCII tapes;
the Data_~~nagement Facilities publication
illustrates ASCII tape labels.

DIRECT ACCESS DFJICES

Direct access devices accept format-F,
format-V and format-U records. The storage
space on these devices is divided into con­
ceptual cylinders and tracks. A cylinder
is usually the amount of space that can be
accessed without movement of the access
wechanism. and a track is that part of a
cylinder that is accessed by a single read/
write head. For example, a 2311 disk pack
has ten recording surfaces. each of which
has 200 concentric tracks; thus K it con­
tains 200 cylinders, each of which includes
ten tracks.

The following reference cards contain
tables that will enable the user to deter­
Idne the areount of space he will require:

2311 Dis).; Storage Drive, Form X20-1105

2314 Storage Facility. Form X20-1110

APPENDIX F: COMMAND FORMATS

operands not explained in this manual are ex~lained in Command System
User' s Guide.

r---------T---,
I Operation I Operand I
~---------+---~
I ABEND I I
~--------+---~

! ASM I NAME=module name ~ SIDRED= {: }] !
I I I
I I [,MACROLIB=({data definition name of symbolic portion, I
I Idata definition name of index portion}[••••])] I
I Il.VERID=version identification] [,ISD={YIN}]l.SYMLIST={YIN}] I
I I [,ASMLIST={YIN}) [,CRLIST=lYIN1] I
I I [.STEDIT={YIN}] [.ISDLIST={YIN}) (,PMDLIST={YIN}] I
I I [.LISTDS=(YIN}] [.LINCR=(first line number,increment)] I
~---------t---~
IAT linstruction locationl •••• J I
~---------t--~
I BACK IDSNAME=data set name I
t---------t---~
I BEGIN lapplication namel,application parameters-if required} I
~---------l.---_________________ ~
INote: For MT/T use only I
t---------T---~
I BRANCH lINSTLOC=instruction location I
~--------+---i
I BUILTIN INAME=command namel,EXTNAME=bpkd macro name] I
I I [,DSNAME=data set name] I
r---------+-- i
I CANCEL IBSN=tatch sequence number I
~--------t--~
IForm 1 I I
ICATALOG IDSNAME=data set name[,STATE={NIUl}l,ACC={RIU}] I
I I [, NEWNAME=data set name] I
~--------+---i
\Form 2 I I
ICATALOG IGDG=generation data group naue,GNO=number of generations I
I I l,ACTION={AIO}1l,ERASE={YIN}1 I
r---------t---~
I t [!data definition name I] I
ICDD IDSNAME=data set name, I
I t (data definition namel, ••• J) I
r---------+---i
I CDS ! DSNAME1=input data set name ({member name [••••])] , I
I !DSNAME2=copy data set name[(aember name)] I
I I {BASE=first line numberl.INcR=incrementll I
I I I, ERASE= {'{ I N}] [. .] I
I I REPLACE={RII} I
~--------+---~
ICHGPASS I [PASSWORD] I
r---------+--·---------------------~
I CLOSE I lDSAME=data set name) l.TYFE=Tl I
! I l,DDNAME=data definition name] I
.---------+---~
!CONTEXT IINl=starting position]I,N2=ending position], I
! iSTRING1=search stringl,STRING2=replacement string) I
~---------+--~
ICORRECT IN1=starting line] [,N2=ending linell,SCOL=first column] I
I I lCORMARK=replacement correction characters)l.CHAR={CIMIH}} I l ________ l. ___ ----____________ J

Part IV: Appendixes 145

r---------T--1
jOperationlOperand I
1---------+--~
1 DATA I DSNAME=dat,<l s'?t name I

I If (jI I 1 I I I , RTYPF'" l' t LINE! [• BASE=f irst line number. INCR==incrementl I
I I f'TN I
I 'I CARD I
I 1,_ - S I
t---------t---~
I DDEF I DDNAME="dat-__ d definition name [. DSORG={VI I VS I VP}] • I
I (basic) iDSNAME=data set name[,DISP={OLD!NEW} {,DCB=([RECFM={FIVIU}] I
I I [. LHECL=integerl (, RKP=integer])] I
~---------+---i
I DDNAME? I JOBLIB::{Y I N} I
}---------t--~
I DEFAULT I (operand=={valueJH •••• l I
~---------+---f
I DELETE ![DSNAME==data set name] I
t---------+--1
!DlSABLE I I
r----------+--i
I DISPLAY I fdar_d field name[••••] I I
I IIID?data field namel •••• l I
~--------t--i
I I [{data set name lJ I
I DSS? I NAMES"" I I
I I (data set name[, •••]») I
t---------+--~
I DUMP I data field namel ••••] I
I I ID?data field name [, ••• J I
1----------+--~
IEDIT iDSNAME=data set name[(mexnber name)] I
I I [. RNlIME=region name) [. REGSIZE=region length] I
j-----------t---~
tENABLE I I
r----------+-------- .. --~
lEND I I
1-------------+--~
IERASE I £ DSNAME=data set name; I
r-------------f--,,----------.. --~
!EVV IDEVICE=device type,VOLUME={volume serial numcerl, •••]) I
t---------- -- +---- ---~
I EXCERPT I DSNAME""data set name[(rnember name)](,RNAME=region name] I
I ![,Nl=starting line[.N2=ending line]] I
t-----------t-------- --~
IEXCISE I lNl=start_ing line] [.N2=ending line] I
\-----------+------_.---1
I EXECUTE IDSNAl-'E=data set name I

:---------r------T::~r.::::~~~~~::::::lr----------------------1

I EXHIBIT ! OPTION= {l [~~~V 'I] !
1 i UID • TYPl:."=' BACK I
I I \ UID. userid I
\----------t-----------~'---:::--~
!EXIT I[SIRTEST~i!lJ I
I I {Nj I
~---------+---i

i I ORIGIN I I EXPLAIN I(MSGIDD I I

I I RESPONSE} f ,message identification] I \ ll·) ~~~~ ; \
I I MSGE \ I
j I MSGS) I l _________ ..1. _______________ • ___ J

146 Appendix F: Command Formats

r---------T---,
I operation \ Operand I
.--------+---~
IFTN INAME=module namel,STORED={Y}] [,VERID:version identification] \
I I N I
I Il,ISD=IYIN}1[,SLIST=lYIN}]I,OBLIST={Y1N}]l,CRLIST={YIN}] I
I I [. S'I'EDIT={Y I N}} (.MMAP--= {y IN}] [. BCl):::: {Y IN}} [. PUBLIC={Y IN} J I
I I [,LISTDS={YIN}]{,LINCR=(first line number,increment)] I
~---------t---~-------~
IGO I \
.--------t---~
I IF I condition \
~---------t---.------------------~
I INSERT I (N1=preceding line] [,INCR=incrementl \
~---------+---~
\JOBLIBS \DDNAME=data definition name I
r---------t---~
IKEYWORD !lCOMNAME=procdef namel I
t---------+---~

iLINE? I[D~f~~:d~~b::t name l (, ... J] i
I I I (first line number,last line numcer>f I
t---------+---~
\LIST IlNl=(starting positionICLP}}l,N2=ending position) \
I I {, CHAR= {C I HIM} 1 I
t---------+---~
ILNK INAME=module namel,STORED= Y 1 I
I \ N I
\ I l.LIB=data definition name of library] I
I I [,VERID=version identification)l,ISD={Y\N}] [,PMDLIST={YIN}] \
I I [,LISTDS=lYIN})(,LINCR{first line number,increment)] I
~---------+---~
\ LOAD ,lNAME=entry point name] I
t---------+---~
I LOCATE IN1=starting positionll,N2=ending position] I
I I l,STRING=character string] t
/----------t---~
\ LOGOFF I I
~---------+---~
'LOGON luser identification, (passwordl, [addressingl, (charge numberl I
, ',[control section packingJ,(maximum auxiliary storage] \
Isee note I,lpristinel,(user IVM code] \
t---------~---~
INotes: 1. Trailing commas can be omitted I
I 2. Use positional format only (no keywords). \
/----------T---~ I MCAST I rEOB = {Character i] ~CONT I character l] I
I I Lx' characters' J L ~ X' characters' \
I I I
I I [CLP - {Character 1] G TRP {Character lJ I
I I - X' characters' J X· characters' f I
I I I
I I [RCC = {Character I] ["SSM = I character I] I
I I X'characters' lX'characters' \
I I I I I [USM = I character l] [, KC {Character ~] :
I I lX'characters' x·characters·f 1
I I I I I [.RS = {Character tJ [,CP = 11 to 8 characters l] :
I I X'characters' f !X'2-16 characters' , l _________ ~ ___ J

Part IV: Appendixes 141

r--------T--------------.----.. --,
IOperationlOperand I
~---------+----------------.---.-.--.----------.-------------------------------~

ll'leASTAB I l- J N lJ r. {Y I] I I I INTRAN =, l ,OUTRAN = } I
I I . ty L NJ I
~--------t-----·------,.:.--,------------·------------------------------~
I MODIFY jSETNAME==data set namel,CONF=R) [.LRECL=record length, I
I IKEYLEN=key length.RKP=key displacement,RECFM={V1F}] I
I I l.FTN={YIN}] I
t---------t--~
I NUMBER I (Nl=starting line] [.N2=ending line] l,BASE=base number) I
I I [. INCR=incrementl I
t---------t---~
I I [I(data set name I] I
I PC? I NAMES= I
I I ,{data set name (••••]) I
r--------t------,--i
I PERMIT IDSNAME~{data set name*ALL} I
I I [,USERID={(user identification(,···])I*ALL}] I
I I [,ACCESS=lRIROIRWIU}] I
r---------t------------------"----------------·-----------------------~
I I [NAME=rr.odule name} [,PLIOPT=compiler option list) I
I I [, PLcOPT::::1anguage controller options] I
iPLI Il,SOURCEDS=source data set name) I
I !(.MERGELST=converter input list] I
I I (,MERGEDS~converter input data set) I
I IL,MACRODS=intermediate data set name] I
I I {name} I I Il.EXPLICIT: (name ••••) 1 I
I I *ALL[{name[••••])] I
I Il,XFERDS=dataset name) I
t---------t---------------,--~
I POD? I PODNAME=data set name [, DATA=Y] {. ALIAS=Y] I
I I [.MODULE=lALLlmodule name}] I
t---------t,----------------o--1
I POST I I
t---------t---i
I PRINT IDSNAME=data set namel.STARTNO=starting position) I
I i l. ENDNO=euding posit.ion] I
I I I
I I r IEDIT] I
I I j I \1 I
I I ,. PRTSP= l) 2 1f [, HEADER=Bl { , LINES= lines per page] (. PAGE=P] I
I I L U 3 I
I I I
I ![.ERASE;{YIN}][.ERROROPT=(ACCEFTISKIP\ENDl] I
I I [. F'OIU~=paper form] [,STATION=station idJ I
1---------+---------.------.---~
IPHMPT jMSGID=rnessage identification[,INSERTn=inserted characters I
I It •.•.]] I
~---------+----------. .,-------------------,-----------------------------~
IPROCDEF INAME=procedure namel,DSNAME=data set name] I
t----------t------~- ----·-~---f
IPROFILE i [CSW={NIY}] I
~-__ -___ +-_._-----_____ , ______ o_-... -.-----------------________________ ~
I PUNCH I DSNAME=data set name [• CBIN=BINARY] I
I I (.STARTNO=starting position)£,ENDNo=ending position] I
I I [.STACK=fl!2j3jEDIT}] (,ERASE:{YIN}) [,FORM=card forml I
t---------t------~--t I PUSH I [SIRTES'r= fX}] I
I I l N I
~---------+--------------------------"-----------------------------------~
!QUALIF'Y iMNAME==Uink-edit.ed module nall'.e.lobject modul.e name I
t-----"-----t--~
I REGION I lRNAME=region name] I l _________ .J.. ________________ . ___ --'

148 Appendix F: command Formats

r---------T---, I Operation I Operand I
~---------+---i I RELEASE IDDN.AME=data definition name[,DSNAME=data set name] I
I I [. {SCRATCHI HOLD}] I
~---------+---i
I REMOVE I {statement numberl ••••] I I
I I ALL I
1-----+---i
I RET IDSNAME=data set name.RET=!Pt!Ll!U! I
I I TL cf R J I
~---------+--i I REVISE I [Nl=starting linel[.N2=ending line] [,INCR=increment1 I
~--------+--i
IRTRN I I
~---------+---~
I I! (TA=number of devices(,type of device]) I I
I SECURE I [•... J I
I I (DA=number of devices£,type of device) I
1---------+---i
\ SET Idata location=valuel •••• l I
~---------+---~
I SHARE IDSNAME=data set name.USERID=owner·s user i.dentification I
I I [.OWNERDS={owner's data set namel*ALL}] I
~--------+--~
I STACK I I
1---------+---~
lSTET I I
t---------+---i
I STOP I I
1--------+---i I SYNONYM I lterm={value]} [•••• 1 I
t--------+---~
ITIME I lMINS=minutesl I
t---------+---i lTV IDSNAME1=tape data set name(,DSNAME2~VAM data set name) I
~--------+--~ I UNLOAD I [NAME=entry point name] I
t---------+---i I UPDATE I I
,---------+---i I USAGE I I
~---------+---~
IVT !DSNAME1=VAM data set name[.DSNAME2=tape data set name] I
~--------+---i Ivv IDSNAME1=current data set namel.DSNAME2=new data set name] I
t---------+---i I WT I DSNAME=current data set name. DSNAME2=tape data set name I
I 1£,VOLUME=tape volume number] [,FACTOR=blockinq factor) I
I I l,STARTN0=starting position] [.ENDN0=ending position] I

I I [fDIT!] I
t ! .PRTSP= ~I [,HEADBR=Hl[,LINES=lines per page] (.PAGE=P] !
I I (.ERASE={Y IN)] I
~---------+---i
IZLOGON I I L-________ ~ ___ J

Part IV: Appendixes 149

APPENDIX G: PL/I COMP1J,:?R ,S>PTlqNS

The PLIOPT operand of the PLI command
specifies a list of PL/I options to be used
by the compile.r. It is considered to be
one pa rameter. and -the 1 ist of compiler
options following the equal sign in the
PLIOPT operand must therefore be enclosed
in parentheses unless only one value is
given; the separate options must be
separated by commas. For an option that
includes a numeric specification (for
example, SIZE or LINECNT). only significant
digits need be specified. Futhermore, for
an option that includes more than one num­
eric specification (for example, SORMGIN)
the numbers must be enclosed in parentheses
and separated by commas.

The compiler accepts the abl:reviated
option names given in Table 25 as alterna­
tives to the longer mnemonics.

There is no required order for specify­
ing the compiler options, but if conflict­
ing options are specified, the last speci­
fication in the list is used. The standard
defaults sbo~n in Table 25 are used unless
you specify an alternative.

To simplify understanding the options,
they may be grouped under six headings.

1. Control options, ~hich establish the
conditions for compilation.

2. Preprocessor options, which request
the services of the preprocessor and
specify how its output is to be
handled.

3. Input options, which specify the for­
mat of the input to the compiler.

Table 25. compiler Options. Abbreviations, and Standard Defaults
r----------------T----------<----------------------y--------------~----------------------,

I I I Abbreviated I Standard I
I Compiler I Options i Names I Defaults I
t----------------t-------------------------------t---------~-----t----------------------i
I Control I OPT=n I 0 I 01 I
I options I STt4T/NOSTMT I ST/NST I NOSTMT I
I I ODJNM=aaaaaaaa I N I None I
I I SYNCHKE/8YNCHK8/SYNCHKT I SKE/SKS/SKT I conversational: I
I I I I SYNCHKS I
" I I nonconversational: I
I I I I SYNCHKT I
~-------.--------+----------------.---------------+---------,-----+-----------------~
I Preprocessor I MACRO/NO~CRO I M/NM ! NO MACRO I
I options I COMP/NOCOMP I C/NC l COMP I
I ! MACDCKlNOlwlACDCK I MD/NMD I NOMACDCK I
r----------------+-------------------------------f------~-------+-.---------------------~
I Input ! CHAR60/CHAR48 i C60/C48 I CHAR60 I
I options I BCD/EBCDIC i B/ED I EBCDIC I
I I SORMGIN= (1I11I1ll1, nnn. [eccH I 8M I (1,100) I
.-----------------·t-------------------------------t---------------t----------------------i
I Output I LOAD/NO LOAD i LD/NLD I LOAD I
! options I DECK/NO DECK I D/ND I NODECK !
r---------------+-------------------------------t---------------+-.-------------------~
I Listing 1 LINECNT'=xxx I LC I 50 I
I options OPLIST/NOOPLIST ! OL/NOL ! OPLIST I
I SOURCE2/NOSOURCE2 I S2/NS2 SOURCE2 I
I SOlJRC.E/NOSOUHCE ! SlNS SOURC.E I
I NES'UNCNEST I NT/NNT NONEST I
I ATR/NOATH I A/NA NOATR I
I XREF/NOXREF I X/NS NOXREF I
I EXTRF.F/NOEXTREF I E/NE NOEXTREF I
I i .LIS'VNOLIST I L/NL I NCLIST I
I I FLAGW/FLAGE/FLAGS ! FW/FE/FS I FLAGW I
.----------------+--------------------.------------+---------------t---------------------~
I Dummy I SIZE=yyyyyy/yyyK/999999/MAX I SIZE I MAX I
I options I M91/NOM91 I H91/NOM91 I NOM91 i
I i EX'l'DIC/NOEXTDIC I ED/NED I ED I l ___ < _____________ J. _________________ ~ ____________ J. ________________ J. ___________________ J

150 Appendix G: PL/I ccmpiler Opt_ions

4. output options, which specify the type
of data set that will contain the
object module.

5. Listing options, which specify the
information to be included in the com­
piler listing.

6. Dummy options, which are included
solely to give compatibility with the
OS/360 PL/I (F) compiler.

CONTROL OPTIONS

OPT

The OPT option specifies the type of
optimization required:

OPT=O instructs the compiler to keep
object-program storage requirements
to a minimum at the expense of
object-program execution time.

OPT=l causes object-program execution
time to be reduced at the expense
of storage.

OPT=2 has the same effect as OPT=l, and
in addition requests the compiler
to optimize the machine instruc­
tions generated for certain types
of DO-loops and expressions in sub­
script lists. PL/I Language
Reference Manual includes a discus­
sion of DO-loop and subscript­
expression optimization.

There is little difference in compila­
tion time for optimization levels 0 and 1,
but specifying OPT=2 could result in a sub­
st.antial increase in compile timE.

STMT or NOSTMT

The STMT option requests the compiler to
produce additional instructions that will
dllow statement numbers from the source
program to be included in diagnostic mes­
sages pIoduced during execution of the com­
l,iled proyram.

The use of this option causes degrada­
tion of execution time. However, you can
get information about statement numbers and
t.heir associated offsets by :r-eferring to
the table of offsets. (See -Listing- in
Part II. Section 5).

OBJNM

This option has meaning only in a
*PRocESS statement. At PLI command time.
this option is ignored and the value is
taken froll' the NAME parameter. See descrip­
tion of *PROCESS handling in Section 5.

The OBJNM option allows you to specify a
name for· successive compilations in a
batched compilation. The format of the
cpticn is:

OBJNM '" a

where ta' represents a name comprising not
more than eight alphameric characters.

SYNCHKE, SYNCHKS. or SYNCHKT

After execution of the compiler's dic­
tionary phase, only about 25'; of the COlT'­

~ile time has elapsed, but almost all of
the source-program syntax checking is com­
plete. The syntax-check options govern
termination or continuation of com~ilation
at this stage, if errors of a specified
severity have been detected. (For descrip­
tions of error severities, see the discus­
sions, below, of the FLAGW, FLAGE, and
FLAGS options.)

The syntax-check options and their
corresponding error severities are:

SYNCHKE
SYNCHKS
SYNCHKT

error
severe error
terminal error

If you specify SYNCHKE or SYNCHKS for
conversational mode, and errors of the
specified severity are detected. the com­
piler prompts you to indicate (Y or N)
whether compilat.ion is to continue beyond
the dictionary phase. In nonconversational
reode, compilation is terminated. If you
specify SYNCHKT for either mode, compila­
tion is terminated only if a terminal error
is detected, and there is no prompting in
conversational mode.

PREPROCESSOR OPTIONS

MACRO or NOMACRO

SF-ecify .MACRO when you want to employ
the compiler preprocessor. The use of the
rreprocessor is described under ·Coropile­
Tirre Processing. w in Section 5.

COMP or NOCOMP

Specify this option if you want the PL/I
source module produced by the preprocessor
to be compiled immediately. The source
nodule is then read by the compiler from
the data set identified by the DDNAME
PLIMAC.

MACDCR or NOMACDCK

Specify this option if you want to save
the intermediate macro file that has the
~DNAME of PLlMAC. NOMACDCK causes the file
to be erased after compilation is complete.

Part IV: Appendixes 151

CHAR60 or CHAR48

If the PL/I sou:cce statements are writ­
ten in t:he PL/l 60-character set, specify
CHAR60; if they are written in the 48-
character character set, specify CHAR48.
PL/I L~quage Reference Manual lists both
character sets. (Note that the compiler
will accept source programs written in
Ecither character set if you specify CHAR48.
However, CHAR48 is inefficient and should
only be used when necessary.)

BCD or E.BCDIC

The compiler will accept source state­
ment in which the characters are repre­
sented by either of two codes; binary coded
decimal (BCD) and extended binary-coded­
decimal interchange code (EBCDIC). For
lJinary coded decimal, specify the option
BCD; for extended binary-coded-decimal
interchange code, specify the option
E.BCDIC. Whenever possible, use EBCDIC
since BCD requires translation and is
t.herefore less efficient. PL/I Language
Reference Manual lists the EBCDIC represen­
tat.ianaf-both the 148-character set and the
60-character set.

SORMGIN

The SORMGIN (source margin) option spe­
cifies t.he extent of the part of each input
record that contains the PL/I source state­
ments. The compiler will not process data
that is outside these limits. The option
can also specify the position of a FORTRAN
control charac·ter to format the listing of
source statements produced by the compiler
if you include the SOURCE option. However,
if the MACRO option i.s in effect, the for­
mat of t~he SOUP.CE listing produced after
preprocessi ng cannot be controlled and will
always b8 single spaced. The format of the
SORMGIN option is:

SORMGIN= (mIllm, nnn [. ccc])

where
rnrnm represent.s the number of the first

byte of the field that contains the
,;ource statements,

nnn represents the number of the last
byte of the source statement field,
and

ccc represents the number of the byte
that will contain the control
character.

The value mmm must be less than or equal
to nnn, and neither must exceed 100. The
value eee must be outside the limits set by

152 Appendix G: PL/I compiler Options

mmm and nnn. The valid control characters
are:

b Skip one line before printing

o Ski~ two lines before printing

- Skip three lines before printing

• Suppress space before printing

1 Start new page

The carriage control character can be
ignored by specifying zero. Zero is the
standard default.

OUTPUT OPTIONS

DECK or NODECK

Specifying DECK causes the compiler to
put the object code, in card image form,
into a data set CoIled LOAD.name(O). where
'name' is the object module name. This
option should be considered in conjunction
with the LOAD or NOLOAD option.

LOAD or NOLOAD

Srecifying the LOAD option invokes the
same action as the DECK option except that
in addition. the load data set is presented
to the Object Dataset Converter (ODe> to
produce an executable module.

Note that the load data set is created
as a data generation set of depth one.
Each time the program is recompiled the
last data set is erased and replaced with
the one currently being generated.

LISTING OPTION§

:tINECNT

The LINECNT option specifies the number
of lines to be included in each page of a
printed listing. including heading lines
and clank lines. Its format is:

LINECNT=xxx

OPLIST or NOOPLIST

The OPLIST option requests a list show­
ing the status of all the compiler oFtions
at the start of compilation.

SOURCE2 or NOSOURCE2

The SOURCE2 option requests a listing of
the PL/I source statements input to the
preprocessor.

SOURCE or NOSOURCE

The SOURCE option requests a listing of
the PL/I source statements processed by the
compiler. The source statements listed are
either those of the original source program
of the output from the preprocessor.

NEST or NONEST

The NEST option specifies that the
source program listing should indicate for
each statement, the block level and the
lr>vel of nesting of a DO-group.

ATR or NOATR

The ATR option requests the inclusion in
the listing of a table of source program
identifiers and their attributes. Attri­
butes with a precision of fixed binary
(15.0) or less are flagged t.* ••••• *.". An
Aggregate Length Table, giving the length
in bytes of all major structures and non­
structured arrays in the source program,
will also be produced when the ATR option
is specified.

XREF or NOXREF

The XREF option requests the inclusion
in the listing of a cross-reference table
that lists all the identifiers in the
source program with the numbers of the
source statements in which they appear. If
you specify both ATR and XREF, the two
tables are combined. An Aggregate Length
Table will also be produced when the XREF
option is specified.

EXTREF or NOEXTREF

The EXTREF option requests the inclusion
of a listing of the external symbol dic­
tionary (ESD).

LIST or NOLIST

The LIST option requests a listing of
Uw machine instructions generated by the
compiler (in a form similar to Systero/360
assembler language instructions>.

t!A<;W. FLAGE, or FLAGS

A high level of diagnostic capability is
available in the compiler. Messages are
listed in order of their occurrence on the
user console and in order of their severity
in t_he output listing. There are four
classes of diagnostic messages, which are
graded in order of severity:

A warning is a message that calls atten­
tion to a possible error, although the
statement to which it refers is syntactic­
ally valid. In addition to alerting you,
it may assist in writing more efficient
programs in the future.

An ~£fQ! message describes an attempt to
correct an erronious statement; you are
informed of the correction. Errors do not
no.rmally terminate p.rocessing of the text.

A ~vere error message indicates an
error that cannot be corrected by the co~­
filer. The incorrect section of the pro­
gram is deleted, but compilation is con­
tinued. Where reasonable, the ERROR condi­
tion will be raised at object time, if
execution of an incorrect source statement
is attempted. If a severe error occurs
during compile-time processing. compilation
will be terminated after the SOURCE listing
has teen produced.

A terminal error message describes an
error that, when discovered, forces the
termination of the compilation.

You can select the severity at and above
which diagnostic messages appear on the
output list ing.

FLAGW List all diagnostic messages

FLAGE List all diagnostic messages
except • warning , messages

FLAGS List only • severe' errors and
'termination' errors

For control of conversational diagnos­
tics (see DIAG/NODIAG option in the PLCOPT
parameter of the PLI command, Part II, Sec­
tion 5 of this manual). the diagnostic mes­
sages are filtered through both the FLAG
setting of the compiler options and the
LIMEN setting of the PLCOPT.

DUMMY OPTIONS

This option is used in the OS/360 com­
piler to specify the amount of main storage
availat:le. The option has no effect i.n
TSS/360 PL/I and is inoluded to give compa­
tability with OS/360 PL/I. Since there is
a standard default built into the compiler,
you need never take account of this option.

M91 or NOM91

This option is used to indicate in 08/
360 if the machi.ne is a System/360 Model
91. It is included for the same reasons as
given above for SIZE.

EXTDIC or NOEXTDIC

This option is ignored, si.nce the TSS/
360 PL/I compiler always takes the EXTDIC
option.

Part IV: Appendixes 153

Ttlis appendix contain~ all of the diag­
Ilosti C Inessag0s issued by the PI,/ I compiler
~nd library under TSS/360. Messages issued
by P LC and ODC. recognizable by their pre­
fix0~ CF~AA dnd CFBAB, ar~ expl~ined in the
~'L:2!:!.'II1 l",,:ss?3~c:; publication.

'fliree classes of diagnostic messages are
issued: source program, compile time. and
object tirre.

Sourc~-program diagnostic messages are
identif~ed by an eight-character code of
t_he forrr. IEMnnnnI. where" IEM"' indicates
that th'~ messaqe emanates from t~h"" PL/I
cowpiler, "nnnn" is a four·-digit decimal
nUlilDer in the range 0000-3999 that. uniquely
id~ntifies each message, dnd "r- is a
sy~>tJ:[F-,;Cdnddni act.ion code indicating an
i nf 01 !I,d tl ve message for: the programmer. All
,;ouIce-proqram diagl1ost.ic messages produced
dH wri tt.En in a group following the source
program listing and any other listings
';pu.:i f ied i.n the PLI comIrand. If conversa­
tionctl diagnostics are elected in the PLI
command, the"e messages will also appear at
the user's terminal.

compile-time diagnostic messages are
identified by an eight-character code of
the torm IEMnnnnI, where -IEM- indicates
t.!Jdt. the messdge emanates from the PL/I
compi ler, "nnnn" is a tOlly-digit. decimal
IIUlTIber in the ranCJe 4000-4999 that uniquely
ident.ifies cdch messaqe, and" I" is d
system-standard dctio~ cod~ indicating an
~nfOr!l\dt.1VC message fer t.be programmer. All
compile-t.illie c messages are listed
in the group tollo·wing the SOURCE2 input
l.if,t i ng i4 nd precE>rlinq the source program
listblY. If conversational diagnostics are
elected in th~ PLI command, these messages
will also appear at the user's terminal.

Ohject-time diagnostic messages are
ider.tifj.ed by a seven-character code of the
lorm IHEnnnI, where "IHE" indicates that
t_hc n,es~iage emanat.es f r·om a PIJI 1 ibrar·y
ruut.lne, "nnn" is d threfc:-digit decimal
number t.hat uniquely identifies each mes­
Ha~e. and "IG indicates the Loformative
nature of the message. The object-time
di_aqnost_lc messag(:-~s are rrint-t~d on SYSOOT
or on th~ output aata set specified as SYS­
~RINT as the result of an exceptional or
error conditi()D occurrin9 durinq t;he execu­
tion of a PL/l proqr.-:un.

I n the following sect ions, messages are
tollowed where necessary by an explanation,
a description of the action taken ty the
sy::;tt-.ID. and the response required from the
U5.'I:. .. Explanation" and "System Action"
dre (liven only when t:hi:3 lnformat_ion is not

154 Appendix H: PL/I Diagnostic Messages

contained in the text of the message. When
no "Usex Response" is st.ated. the user
should assume thc.d: hI:' must cor.rectthe
error: in hi~, ,3uurce program and recompile
unless the action t~dken by the system makes
it unnecessary for: him to do so. However.
E'ven when system act_ion successfully
corrects an error, the user should remember
that if he subsequently recompiles the same
prograul he will get the same diagnostic
rressage again unless he has correct. cd the
source error.

Severity of Source-Pro~~ and Compile-Time
fiagnostic M~~¥::.~

There are four types of source-prograxr
diagnostic messages: warning (WI, error
(EJ, severe error (S), and termination
error (T) 0

A warnAQ9 message calls attention to a
possible eXl:·or, although the statement to
which it refers is syntactically valid. In
addition to alert.ing the programmer, it may
assist him in writing IDore efficient Fro­
grams in the future.

An err.2!: messaqe informs the programmer
of a correction to an erroneous statement.
Such erron; do not r;ormally terminate pro­
cessinq of the tex~.

A severe error message indicates an
error-that cannot. be co:rrected by the com­
piler. The inco.lrr.,ct sect ion of the pro­
gram is deleted. but compilation continues.
Where reasonable, the er.ror condition will
be .raised at ob·ject time if execution of an
incorrect~ SOl1rCf~ st_;"teI)1ent is attempted.
If a setH:-:l>E:' errOE occur:s du.r:ing compile­
time processing. compilation is terminated
after the source listing is produced.

A tenl1ination er:ror messaqe describes an
error whlch-: when CfiSCOV€I:ed; forces the
termination of the coo'pi lat.ion.

'The choice of severity level at and
above which messages afpear on
the output is ;J.n option specified by the
programmer in the PL/I command s·tatement.
Vi is the systel:ll,·supplied default vdlue.

In the source-program and compile-time
diagnostic messdges which follow, the
a~treviations w. E, S. and T are used to
indicate the severity of the message and
afpear irrI~ediately before the number of the
message. 'fhe abbzeviations do not appear
in this way in Lhe compiler output list­
ings; lDstead, the me9saqes are printed in
separat~ groups accordinq to severity.

Source-Program Diagnostic Message~

E IEM00021 INVALID PREFIX OPERATOR IN
STATEMENT NU~BER xxx. REPLACED
BY PLUS.

E IEM00031 RIGHT PARENTHESIS INSERTED IN
STATEMENT NUMBER xxx

E IEM00041 OPERATOR .NOT. IN STATEMENT
NUMBER xxx USED AS AN INFIX
OPERATOR. IT HAS BEEN REPLACED
BY .NE.

E IEMOOOSI RIGHT PARENTHESIS INSERTED
AFTER SINGLE PARENTHESIZED
EXPRESSION IN STATEMENT NUMBER
xxx

E IEM0006I RIGHT PARENTHESIS INSERTED AT
END OF SUBSCRIPT, ARGUMENT OR
CHECK LIST IN STATEMENT NUMBER
xxx

S IEM0007I IDENTIFIER MISSING IN STATEMENT
NUMBER xxx A DUMMY
IDENTIFIER HAS BEEN INSERTED.

E IEM0008I RIGHT PARENTHESIS INSERTED AT
END OF CALL ARGUMENT LIST OR
OTHER EXPRESSION LIST IN
STATEMENT NU~BER xxx

W IEM0009I A LETTER IMMEDIATELY FOLLOWS
CONSTANT IN STATEMENT NUMBER
xxx. AN INTERVENING BLANK IS
ASSUMED.

E IEMOOIOI IMPLEMENTATION RESTRICTION.
IDENTIFIER yyyy IN OR NEAR
STATEMENT NUMBER xxx IS TOO
LONG AND HAS BEEN SHORTENED.

Explanat.ion:
restriction.
not exceed 31
length.

Implementation
Identifiers may
characters in

~tem Action: Identifier has
been shortened by concatenating
first 16 characters with last
15.

W IEM0011I CONSTANT I~MEDIATEIY FOLLOWS
IDENTIFIER IN STATEMENT NUMBER
xxx. AN INTERVENING BLANK IS
ASSUMED.

E IEM0012I EXPONENT MISSING IN
FLOATING-POINT CONSTANT
BEGINNING yyyy IN STATEMENT
NUMBER xxx ZERO HAS BEEN
INSERTED.

E IEM0013I INTEGER yyyy TOO LONG IN
STATEMENT NUMBER xxx. IT HAS
HEEN TRUNCATED ON THE RIGHT.

E IE~0014I EXPONENT TOO LONG IN
FLOATING-POINT CONSTANT
BEGINNING yyyy IN STATEMENT
NU~BER xxx. IT HAS BEEN
TRUNCATED.

E IEM001SI SOLITARY DECIMAL POINT FOUND IN
OPERAND POSITION IN STATEMENT
NUMBER xxx. A FIXED-POINT
ZERO HAS BEEN INSERTED.

E IEM00161 FLOATING-POINT CONSTANT
BEGINNING yyyy IN STATEMENT
NUMBER xxx IS TOO LONG AND HAS
BEEN TRUNCATED ON THE RIGHT.

E IEM001?I ZERO INSERTED IN FLOATING-POINT
CONSTANT BEGINNING .E IN
STATEMENT NUMBER xxx

E IEM00181 ZERO INSERTED IN PENCE FIELD OF
STF~LING CONSTANT BEGINNING
yyy¥ IN STATEMENT NUMBER xxx

E IEM00191 pom.os FIELD IN STERLING
CONSTANT BEGINNING yyyy IN
STATEMENT NUMBER xxx IS TOO
LONG AND HAS BEEN TRUNCATED.

E IEM00201 ZERO INSERTED IN POUNDS FIELD
OF STERLING CONSTANT BEGINNING
yyyy IN STATEMENT NUMBER xxx

E IEM00211 DECIM..AL POINT IN EXPONENT FIELD
OF CONSTANT BEGINNING yyyy IN
STATEMENT NUMBER xxx. FIELD
TRUNCATED AT DECIMAL POINT.

E IEM00221 DECIMAL PENCE TRUNCATED IN
STERLING CONSTANT BEGINNING
yyyy STA,!'EMENT NUMBER xxx

E IEM0023I LETTER 1, MISSING FROM STERLING
CONSTANT BEGINNING yyyy IN
STATEMENT NUMBER xxx

System Action: None

E IEM0024I SHILLINGS FIELD TRUNCATED IN
STERLING CONSTANT BEGINNING
yyyy IN STATEMENT NUMBER xxx

E IEM0025I ZERO INSERTED IN SHILLINGS
FIELD OF STERLING CONSTANT
BEGINNING yyyy IN STATEMENT
NUMBER xxx

E IEM00261 ILLEGAL CHARACTER IN APPARENT
BIT STRING yyyy IN STATEMENT
NUMBER xxx. STRING TREATED AS
A CHARACTER STRING.

E IEM0027I FIXED-POINT CONSTANT BEGINNING
yyyy IN STATEMENT NUMBER xxx
HM; BEEN TRUNCATED ON THE
RIGHT.

Part IV: Appendixes 155

S IEM0028I LABEL REFERENCED ON END
STATEMENT NUMBER xxx CANNOT BE
FOUND. END TREATED AS HAVING
NO OPERAND.

~; IEM0029I INVALID CHARACTER IN BINARY
CONSTANT IN STATEMENT NUMBER
xxx. CONSTANT TREATED AS
DECIMAL CONSTANf.

o IEM00301 POINTER QUALIFIER FOLLOWS
EITHER A SUBSCRIPT OF ANOTHER
POINTER QUALIFIER IN STATEMENT
NUMBER xxx.

System Action: As stated in a
further message referring to
the same statement.

S IEM0031I OPERAND MISSING IN OR FOLLOWING
STATEMENT NUMBER xxx. DUMMY
OPERAND INSERTED.

Explanation: Something invalid
has been found in an
expression, or where an
expression was expected but not
found. In order that further
diagnosis can be made, the
compiler has inserted a dummy
operand. This may cause
further error messages to
appear for this statement.

T IEM00321 IMPLEMENTATION RESTRICTION.
STATEMENT NUMBER xxx IS TOO
LONG. COMPILATION TERMINATED
AT THIS POINT.

User Response: subdivide
statement and recompile.

f. IEM00331 AN INVALID PICTURE CHARACTER
IMMEDLlI,TELY FOLLOWS TEXT yyyy
IN STATEMENT NUMBER xxx. THE
PI~rURE HAS BEEN TRUNCATED AT
THIS POINT.

W IEM0034I A LETTER IMMEDIATELY FOLLOWS A
CONSTANT AT nnnn SEPARATE
POSITION(S) IN STATEMENT NUMBER
xxx. AN INTERVENING BLANK HAS
BEEN .ASSUMED IN EACH CASE.

User Response: Check that the
system action will have the
required effect.

E IEM00351 LE'I'TER F IS NOT FOLLOWED BY
LEFT PARENTHESIS IN PICTURE IN
STATEMENT NUMBER xxx. ONE HAS
BEEN INSERTED.

E IEM0037I ZERO INSERTED IN SCALING FACTOR
IN PICTURE yyyy IN STATEMENT
NUMl:1ER xxx

156 Appendix H: PL/I Diagnostic Messages

E IEM0038I RIGHT PARENTHESIS INSERTED
AFTER SCA.LING OR REPLICATION
FACTOR IN PICTURE yyyy IN
STATEMENT NUMBER xxx

E IEM0039I NO CHARACl'ER FOLLOWS
REPLICATION FACTOR IN PICTURE
yyyy IN STATEMENT NUMBER xxx.
THE PICTURE HAS BEEN TRUNCATED
AT THE LEFT PARENTHESIS OF THE
REPLICATION FACTOR.

E IEM00401 A REPLICATION FACTOR OF 1 HAS
BEEN INSERTED IN PICTURE yyyy
IN S,!'ATEMENT NUMBER xxx

E IEM0044I IN STATEMENT NUMBER xxx
PRECISION NOT AN INTEGER.

Explanation: Precision should
be an unsigned integer.

System Action: The action
taken depends on whether the
precision is found in a DECLARE
statement or a PROCEDURE
statement. A further message
will be produced.

E IEM0045I ZERO INSERTED IN FIXED
PRECISION SPECIFICATION IN
STATEMENT NUMBER xxx

E IEM0046I RIGHT PARENTHESIS INSERTED
AFTER PRECISION SPECIFICATION
IN STATEMENT NUMBER xxx

E IEMOOQ8I RIGHT PIIRENTEESIS INSERTED IN
F·ILE NAME LIST IN STATEMENT
NUMBER xxx

E IEM0049I THE COMMENT FOLLOWING THE
LOGICAl, END OF PROGRAM BAS NOT
BEEN TERMINATED.

Explanation: A /* was found
following the logical end of
the program and was interpreted
as the start of a comment, but
end-af-file was reached before
the comment was terminated.

System Action: All text
following the /* is read as a
comment.

Us~r Response: Check if this
is a delimiter in the wrong
column of the record.

S IEM0050I INVALID STATEMENT LABEL
CONSTANr IN LABEL ATTRIBUTE IN
STATEMENT NUMBER xxx. THE
STlITEMEt-.'T I,ABEL CONSTANT LIST
HAS BEEN DELETED.

W IEM0051I MISSING RIGHT PARENTHESIS
INSERTED FOLLOWING STATEMENT

LABEL CONSTANT IN LABEL
ATTRIBUTE IN STATEMENT NUMBER
xxx

S IEM00521 INVALID ATTRIBUTE IN RETURNS
ATTRIBUTE LIST IN STATEMENT
NUMBER xxx. THE INVALID
ATTRIBUTE HAS BEEN DELETED FROM
THE LIST.

W IEM0053I SURPLUS COMMA HAS BEEN FOUND IN
DECLARE OR ALLOCATE STATEMENT
NUMBER xxx. THIS COMMA HAS
BEEN DELETED.

S IEM0054I ILLEGAL FORM OF CALL STATEMENT.
STATEMENT NUMBER xxx DELETED.

W IEM0055I LABEL OR LABELS ON DECLARE
STATEMENT NUMBER xxx HAVE BEEN
IGNORED.

E IEM0056I NULL PICTURE FORMAT ITEM IN
STATEMENT NU~BER xxx. THE
CHARAC'l'ER 9 HAS BEEN INSERTED
IN THE PIC'fURE.

Explanation: The null picture
may be the result of the
compiler truncating an invalid
picture.

E IEM0057I INVALID CHARACTER FOLLOWING
ITERATION FACTOR IN PICTURE
BEGINNING yyyy IN STATEMENT
NUMBER xxx. THE PICTURE HAS
BEEN TRUNCATED AT THE LEFT
PARENTHESIS OF THE ITERATION
FACTOR.

E IEM00581 ITERATION FACTOR IN PICTURE
BEGINNING yyyy NOr AN UNSIGNED
INTEGER IN S'I'ATEMENT NUMBER
xxx. THE PICTURE HAS BEEN
TRUNCATED AT THE LEFT
PARENTHESIS OF THE ITERATION
FACTOR.

E IEM0059I MISSING RIGHT PARENTHESIS
INSERTED IN POSITION ATTRIBUTE
IN STATEMENT NUMBER xxx.

j" IEM0060I POSI'I'ION MISSING IN POSITION
ATTRIBUTE IN STATEMENT NUMBER
xxx. POSITION OF 1 INSERTED.

E IEM0061I MISSING LE?f PARENTHESIS
INSERTED IN POSITION ATTRIBUTE
IN STATEMENT NUMBER xxx.

W IEM0062I THE ATTRIBu'rE 'PACKED' IN
DECLARATION STATEMENT NUMBER
xxx IS NOW OBSOLETE, AND HAS
BEEN IGNORED.

Explanation: PACKED has been
removed from the language: the
complementary attribute to
ALIGNED is now UNALIGNED.

system Action: Since PACKED
applied only to arrays and
major structures, the ne1N
alignment defaults will ce
compatible 1Nith those of
earlier versions of the
compiler, except for bit string
arrays that are not merrbers of
structures.

User Response: Correct source,
and recompile if necessary.

E IEM0063I MISSING LEFT PARENTHESIS
INSERTED IN RETURNS STATEMENT
NUMBER xxx.

S IEM0064I ILLEGAL STATEMENT FOLLOWS THE
THEN IN STATEMENT NUMBER xxx.
SE~ICOLON HAS BEEN INSERTED
AFTER THE THEN.

S IEM0066I TEXT BEGINNING yyyy IN
STATEMENT NUMBER xxx HAS BEEN
DELETED.

Exrlanation: The source error
is detailed in another message
referring to the same
statement.

E IEM0067I EQUAL SYMBOL HAS BEEN INSERTED
IN DO STATEMENT NUMBER xxx

T IEM0069I IMPLEMENTATION RESTRICTION.
SOURCE PROGRAM CONTAINS TOO
MANY BLOCKS.

System Action: Compilation is
terminated.

User Response: Rewrite program
1Nith fewer blocks, or divide
into more than one separate
compilation.

T IEM00701 BEGIN STATEMENT NUMBER xxx IS
NESTED BEYOND THE PERMITTED
LEVEL. COMPILATION TERMINATED.

User Response: Reduce level of
nesting of blocks to 50 or
less.

T IEM0071I TOO MANY PROCEDURE. BEGIN.
ITERATIVE DO, ON STATEMENTS IN
THIS PROGRAM. COMPILATION
TERMINATED.

EXflanation: There is an
implementation restriction on
the number of blocks in a
compilation.

User Response: Subdivide
frograro into two or more
compilations.

Part IV: Appendixes 157

S IEM0072I DO STATEMENT NUMBER xxx
REPLACED BY BEGIN STATEMENT.

E IEM0074I THEN INSE"R'!'ED IN IF STATEMENT
NUMBER xxx

c; IE1·,0075I NO STATEMENT FOLLOWS THEN IN IF
STATEMENT NUMBER xxx

S IEM00761 tJO STATEMENT FOLLOWS ELSE IN OR
FOLLOWING STATEMENT NUMBER xxx

S IEM0077I ELSE DELETED IN OR FOLLOWING
STATEMENT NUMBER xxx

~ IEM0078I IMPLEMENTATION RESTRICTION.
']'00 MANY CtfARA(''TERS IN INITIAL
LABEL ON STATEMENT NUMBER xxx.
LABEL IGNORED.

EXFlanation: There is an
irople~entation restriction on
the number of characters in the
subsc~ipt of a subscripted
identifier. The maximum
permissible number is 225.

E IEM0080I EQUAL SYMBOL HAS BEEN INSERTED
IN ASSIGNMENT STATEMENT NUMBER
xxx

S IEM008lI LABELS OR PREFIX OPTIONS BEFORE
EI,sE TRANSFERRED TO STATEMENT
NUMBE~ xxx

ExpJ:~nation: Labels or prefix
options illegal before ELSE and
therefore transferred to
following s·tatement.

S IEM0082I OPERAND MISSING IN CHECK LIST
IN OR FOLLOWING STATEMENT
NUMBER xxx. DUMMY INSERTED.

S IEM0083I ON-CONDITION INVALID OR MISSING
IN STATEMENT NUMBER xxx. ON
ERROR HAS BEEN ASSUMED.

System Actio.!}: ON ERROR
inserted in place of invalid
condition.

f. IEM0084 I 1'HE I/O ON-CONDITION IN
STATEMENT NUMBER xxx HAS NO
FILENAME FOLLOWING IT. SYSIN
IS ASSUMED.

E IEM0085I COLON MISSING AFTER PREFIX
OPTION IN OR FOT.LOWING
STATEMENT NUMBE.R xxx. ONE HAS
BEEN ASSUMED.

S IEM0086I COMPILER LIMIT EXCEEDED IN
PHASE cr. NO MORE ERROR
MESSAGES CAN BE ISSUED FOR
STATEMENT NUl",BER xxx.

158 Appendix H: PLII Diagnostic Messages

User -Be~-±!s(~: Correct the
stat.ement as far as possible
and recompile.

S IEM00891 A RECORD IN S'fA'rEMENT NUMBER
xxx OR THE FOLLOWING STATEMENT
EXCEEOS 100 CHARAC'l'ERS. THE
EXCESSIVE CHARACTERS HAVE BEEN
H&JEC'.fED ";,

T I£M0090r THERE ARE NO COMPLETE
STATEMENTS IN THIS PROGRAM.
CO~PILATJ.oN TERMINATED.

W IEM00941 RECORD IN OR FOLLOWING
STATEMENT NUMBER xxx IS SHORTER
THAN THE SPECIFIED SOURCE
START. THE OUTPUT RECORD HAS
BEEN MARKED WITH AN ASTERISK
AND IGNORED.

E IEM0095I LABEL ON STATEMENT NUMBER xxx
HAS NO COLON. ONE IS ASSUMED.

~~anation: The compiler has
encountered an identifier which
appears to be a statement
label. but without a colon.

System A~~iQ~: A colon is
inse.rted.

E IEM0096I SEMI--COLON NOT FOUND WHEN
EXPECTED IN STATEMENT NUMBER
xxx. ONE HAS BEEN INSERTED.

E IEM00971 IN\IAI.ID CHARACTER HAS BEEN
REPI.ACED BY BLANK IN OR
.F'OI.I,m,·nNG STATEMENT NUMBER xxx.
THE CONTAINING OUTPUT RECORD IS
MARKED BY AN ASTERISK.

S IEM00991 LOGICAL END OF PROGRAM OCCURS
AT STATEMENT NUMBER xxx. THIS
STATEMEN~ HAS BEEN IGNORED SO
THAT SUBSEQUENT S'fATEMENTS MAY
BE PkOCESSED.

E!pl2.!l~.!ion: Al though the
compi.ler has detected the end
of. t:he program. there is more
text following it. The
programl!1p.r appears to have made
an er~or in matching END
statements with PROCEDURE,
.BEGIN, DO, or ON statements.

§y"~em ~_ct-ioA: The END
stat_ement. is ignored.

S IEM01001 END OF FILE FOUND IN OR AFTER
STATEMENT NUMBER xxx, BEFORE
THE lOGICAL END OF PROGRAM.

§~t~ Action: If statement is
incotr.plete. it is deleted.
Whet.her or not the statement is
incomplete, the required number

of END statements are added to
the program so that compilation
can continue.

User Response: Correct the
source code. Possible causes
of this error include:

1- Unmatched quotation marks.

2. Insufficient END
statements.

3. Omission of final
semicolon.

S IEMOlOlI PARAMETER MISSING IN STATEMENT
NUMBER xxx. A DUMMY HAS BEEN
INSERTED.

S IEMOl02I LABEL MISSING FROM PROCEDURE
STATEMENT NUMBER xxx. A DUMMY
LABEL HAS BEEN INSERTED.

S IEMOl03I LABEL MISSING FROM ENTRY
STATEMENT NUMBER xxx

S IEMOl04I ILLEGAL STATEMENT FOLLOWS ELSE
IN STATEMENT NUMBER xxx

System Action: Null statement
inserted.

S IEMOlOSI ILLEGAL STATEMENT FOLLOWS ON IN
STATEMENT NUMBER xxx

System Action: Null statement
inserted.

T IEMOl06I IMPLEMENTATION RESTRICTION.
SOURCE PROGRAM CONTAINS TOO
MANY BLOCKS.

§Lstem Action: compilation is
terminated.

User Response: Re~rite program
with fewer blocks, or divide
into more than one separate
compilation.

T IEMOlO?I IMPLEMENTATION RESTRICTION.
STATEMENT NUMBER xxx IS TOO
LONG. THIS STATEMENT MAY
CONTAIN UN~ATCHED QUOTE MARKS.

User Response: Subdivide
statement and recompile.

S IEMOl08I ENTRY STATEMENT NU~BER xxx IN
AN ITERATIVE DO GROUP HAS BEEN
DELETED.

S IEMOl091 TEXT BEGINNING yyyy IN OR
FOLLOWING STATEMENT NUMBER xxx
HAS BEEN DELETED.

Explanation: Error detailed in
another message referring to
same statement.

S IEMOl10I TEXT BEGINNING yyyy IN OR
FOlLOWING STATEMENT NU~BER xxx
HAS EEEN DELETED.

Explanatiqn;: Error detailed in
another message referring to
same statement.

S lEM0111! FIRST STATEMENT NOT A PROCEDURE I
STATEMENT. A DUMMY PROCEDURE
STATEMENT HAS BEEN INSERTED.

S IEM01121 ENTRY STATEfJillNT NUMBER xxx IN
BEGIN BLOCK BAS BEEN DELETED.

S IEM01l31 RIGHT PARENTHESIS INSERTED IN
STATEMENT NUMBER xxx

EXFlanation: Parenthesized
list in ON statement is either
not closed or contains an error
and has been truncated.

E lEM0114I RIGHT PARENTHESIS INSERTED IN
PREFIX OPI'ION IN OR FOLLOWING
STATEMENT NUMBER xxx

E IEMOl1SI LEFT PARENTHESIS INSERTED AFTER
WHILE IN STATEMENT NUMBER xxx

E lEM0116I PREFIX OPTION FOLLOWS LABEL IN
STATEMENT NUMBER xxx. PREFIX
OPTION IS IGNORED.

W lEM0117l DATA ATTRIBUTE LIST IN
PROCEDURE OR ENTRY STATEMENT
NUMBER xxx IS NOT PRECEDED BY
RETURNS AT'I'RIBUTE AND IS NOT
PARENTHESIZED. RE~URNS AND
PARENTHESES HAVE BEEN ASSUMED.

S IEM01l8! OFFSE'r ATTRIBU'TE NOT FOLLOWEB
BY PARENTHESIZED BASED VARll,BLE
IN STATEMENT NUMBER xxx. TilE
ATTRIBUTE IS IGNORED.

E IEl'!0119I THE RETURNS ATTRIBUTE IN
PROCEDURE OR ENTRY STATEMENT
NUMBER xxx IS NOT FOLLOWED BY A
PARENTHESIZED DATA ATTRIEUTE
LIST. RETURNS HAS BEEN
IGNORED.

E IEM0120l DATA ATTRIBUTE LIST FOLLOWING
RETURNS IN PROCEDURE OR ENTRY
STATEMENT NUMBER xxx IS NOT
PARENTHESIZED. PARENTHESES
HAVE BEEN ASSUMED.

E IEM01211 THE ATTRIBUTE USES OR SE'rS IN
STATEMENT NUMBER xxx IS
OBSOLETE AND .HAS BEEN IGNORED
TOGETHER WITH ITS PARENTHESIZED
ITEM LIST.

Part IV: Appendixes 159

E IEM01221 THE ATTRIBUTE NORMAL OR
ABNORMAL IN STATEMENT NUMBER
xxx IS OBSOLETE AND HAS BEEN
IGNORED.

E IEM0123I 'I'HE DATA A'I'I'R[BUTE LIST IN
PROCEDURE OR ENTRY STATr:MEN'1'
NUMBER xxx HAS NO CLOSING
PARENTHESIS. ONE HAS REEN
ASSUMED.

S IEM0124I INVALID ATTRIBUTE IN DECLARE OR
ALLOCATE STATEMENT NUMBER xxx.
ATTRIBUTE TEXT DELETED.

E IEM01251 INVALID USE OF lABEL Y'iY ON
ON-UNI'r BEGINNING AT STATEMENT
xxx. LABEL HAS BEEN DELETED.

Explanatiol!: An on-unit cannot
be refex:enced by a label.

System.Aqion: The label is
ignored.

!3 IEM0126I IMPLE~tENTATION RESTRICTION.
STATEMENT NUMBER xxx HAS TOO
MANY ERRORS TO BE INTERPRETED.
THE STATEMENT HAS BEEN DELETED.

S IEM0127I INVALID TEXT IN PREFIX OPTIONS
LIST. THE TEXT BEGINNING yyy
TO THE END OF THE OYfIONS LIST
HAS BEEN IGNORED.

S IEM01281 LENGTH OF EIT OR Cruuu~CTFA
STRING MISSING IN S'fATEMENT
NUMBER xxx. LENGTB:1 INSERTED.

S IEM0129I INVALID WAIT S'IATE.MENT NUMBER
xxx DEL.ETED.

E IEM0130I OPERAND MISSING. CO~MA DELETED
IN WAIT STATEMENT NIH,mER xxx

S IEM0131I RIGHT PARENTHESIS INSERTED IN
STATEMENT NU~BER xxx

S IEM0132I DUMMY OPERAND INSERTED IN
STATEMEN'T NUMBER xxx

S IEM0134I IMPLEMENTATION RESTRICTION.
TOO MANY LEVELS OF REPLICATION
IN INITIAL ATTRIBUTE IN
STATEMENT NUMBER xxx. THE
A1~RIBUTE HAS BEEN DELETED.

EXI:;l§.!1at.ig.Q= There is an
irrplernentation restxiction on
levels of nesting_

.!,lser. Responsf~: Rewrite INITIAL
attribut.e with lower level of
replication.

Eo IEM0136I • IN' CLAUSE IN STATEMI::NT NUMBER
xxx HAS NO ASSOCIATED 'SET"
CLAUSE.

160 Appendix H: PL/I Di.agnostic Messages

Explanation: An IN clause must
be accompanied by a SET clause
in the same statement.

SY~~;f:l\l Action: The IN clause
is ignored.

E IEM01381 SO:UTARY I FOUND WHERE A
CONSTANT IS EXPECTED IN INITIAL
ATTRIBUTE IN STATEMENT NUMBER
xxx. FIXED DECIMAL IMAGINARY
11 HAS BEEN ASSUMED.

)!;xplap_ation; The programmer
has initialized an element
using t.. .. e variable I where the
constant. 11 was expected.

S IEM0139I TEXT IMMEDIATELY FOLLOWING yyyy
IN INITIAl. ATTRIBUTE IS
H,LEGAL. INITIAL ATTRIBUTE
DELETED IN STATEMENT NUMBER xxx

~ElanatiQl!: A language
feature has been used that is
not suppcrt.ed. AI though the
message states that the error
follows the quoted text, the
quoted text may itself be
invalid. and the compiler may
have at.tempted to correct the
sOUJ::ce ~~rror. In this case,
there will usually be another
di.agnostic message associated
wit.h the statement.

W IEM01401 NO IDEN'I'IF'IER FOLTND IN DECLARE
STATEMEU'I' NUMBER xxx
S'fATl':MEWl' REPLACED BY NULL
STATEMEN'I' .

Ex121al}~ti<?B: Ei ther no
ident.i fiers appear in the
DECLARE statement or. as a
result of previous compiler
act~on. all 1dentifiers have
been deleted from the
sta teme:n:t.

§y§'!"£'l!U~.<;j:io!!: Null statement
assuroed,~

S IEM01441 RETURNS A'l'TRIBlJTE IS NOT
FOLLOWED BY A DATA DESCRIPTION
IN STATEMENT NUMBER xxx. THE
HI':TURN:~ }'l.TTRIBUTE HAS BEEN
DELETED.

S IEM0145I DUMMY IDENTIFIER INS.ERTED IN
GENERIC A'I"rRIBlJTE I,IST IN
STATF ENT NUMBER xxx

S IEM01471 'rIfE USE OF HEF.ER IN STATEMENT
NUMBER X:1O: IS EITHER INVAI.ID OR
IS NOT IMPJ..,EMENTED IN THIS
RELEASE.

Explanation: The
implementation of the REFER
option is restricted.

Syste~ Act:j..on: Ignores the
REFER clause. A further
message identifying the invalid
text will usually accompany
this message.

E IEM0148I LEFT PARENTHESIS MISSING IN
STATEMENT NUMBER xxx

System Action: See further
messages relating to this
statement.

E IEM01491 COMMA HAS BEEN DELETED FROM
LIST IN STATEMENT NUMBER xxx

E IEM0150I STATEMENT NUMBER xxx IS AN
INVALID FREE STATEMENT. THE
STATEMENT HAS BEEN DELETED.

E IEH01591 SIGN DELETED PRECEDING
STRUCTURE LEVEL NUMBER IN
DECLARE STATEMENT NUMBER xxx

Explanation: The level number
must be an unsigned integer.

S IEM01631 FORMAT LIS'r MISSING, (A)

INSERTED IN STATEMENT NUMBER
xxx

S IEM0166I OPERAND MISSING IN GO TO
STATEMENT NUMBER xxx. DUMMY IS
INSERTED.

E IEM0172I LEFT PARENTHESIS INSERTED IN
DELAY STATEMENT NUMBER xxx

Explanation: The expression in
a DELAY statement should be
contained in parentheses.

E IEM01801 EQUAL SYMBOL HAS BEEN INSERTED
IN DO SPECIFICATIONS IN
STATEMENT NUMBER xxx

E IEM01a1I SEMICOLON INSERTED IN STATEMENT
Explanation: The format of the NUMBER xxx
statement is invalid.

S IEM0151I SEMI-COLON INSERTED IN
STATEMENT NUMBER xxx

S IEM0152I TEXT BEGINNING yyyy IN
STATEMENT NUMBER xxx HAS BEEN
DELETED.

~~nation: The source error
may be detailed in another
message referring to the same
statement.

E IEM0153I THE ATTRIBUTED BASED BAS BEEN
ASSUMED IN STATEMENT NUMBER xxx
WHERE CONTROLLED WAS SPECIFIED.

Explanation: The PL/I feature
CONTROLLED <pointer) has been
changed to BASED (~ointer).

S IEM015~I IMPLEMENTATION RESTRICTION IN
STATEMENT NUMBER xxx. BASED
MUST BE FOLLOWED BY AN
IDENTIFIER IN PARENTHESIS.

System Action: Text is
deleted. See further error
message for this statement.

User Response: Correct source
statement.

E IEM0158I ZERO STRUCTURE LEVEL NUMBER
DELETED IN DECLARE STATEMENT
NUMBER xxx

Explanation: Zero level number
not allowed.

Explanation: An error has been
discovered. A semicolon is
therefore inserted and the rest
of the statement is ski~ped.

S IEM0182I TEXT BEGINNING yyyy SKIPPED IN
OR FOLLOWING STATEMENT NUMBER
xxx

Explanation: The source error
is detailed in another message
referring to the same
stat.ement.

S IEM0185I OPTION IN GET/PUT STATEMENT
NUMBER xxx IS INVALID AND HAS
BEEN DELETED.

S IEM018?! DATA LIST MISSING IN STATEMENT
NUMBER xxx. OPTION DELETED.

S IEM0191I DUMMY OPERAND INSERTED IN DATA
LIST IN STATEMENT NUMBER xxx

E IEM0193I RIGHT PARENTHESIS INSERTED IN
DATA LIST IN STATEMENT NUMBER
xxx

E IEM0194I MISSING RIGHT PARENTHESIS
INSERTED IN FORMA'r LIST IN
STATEMENT NUMBER xxx

S IEM0195I INVALID FORMAT LIST DELETED IN
STATEMENT NUMBER xxx. (A)
INSERTED.

S IE~0198I COMPLEX FORMAT ITEM yyyy IN
STATEMENT NUMBER xxx IS INVALID
AND HAS BEEN DELETED.

Part. IV: ApFendixes 161

d IEM0202I DEFERRED FEATURE. STATEMENT
NUMBF:R xxx NOT IMPLEMENTED IN
THIS VERSION.

Explan~~io~: The statement
referred to is of d type not
su[ported.

Syst~,~_ActiQ~1 ~ compilation
continue~j .

User Response: Rewrite source
program dvciding use of
unsupported feature.

t IEM0201I COMMA REPLACED BY EQUAL SYMBOL
I~ ASSIGNMENT STATEMENT NUMBER
xxx

E IEM02081 LEFT PARENTHESIS INSEHTED IN
CHECK LIST IN STA'l'EMEN'!' NUMBER
xxx

T IEM02091 I~iPLEMENTATION RESTRICTION.
STATEMENT NUMBER xxx IS TOO
COMPLEX.

K.~.EJanation: The level of
nesting exceeds the
implementation restriction.

System Action: Compilation is
terminated.

!:lseI...J<esp~:>nse: Divide
stat.ement int.o two or more
statements ..

E IEM02111 LEFT PARENTHESIS INSEHTED IN
STATEMENT NUMBER xxx

E IEM0212I MULTIPLE TASK OPTIONS SPECIFIED
IN STA'TEMENT NUMBER xxx. THE
FIRST ONE IS USED.

!o~tpm Action: Ignores opt.ions
other than the first.

1'. IEM0213I MULTIPLE EVENT OPTIONS
SPECIFIED IN STATEMENT NUMBER
xxx. THE FIRST ONE IS USED.

System Actiol}: Ignores options
other than the first.

E IEM021LlI MULTIPLE PRIORITY OPTIONS
SPECIFIED IN STATEMENT NUMBER
xxx. THE FIRST ONE IS USED.

~tem Actio~: Ignores options
other than the first.

1'. IEM02161 INVALID EVENT OPTION IGNORED IN
STATEMENT NUMBER xxx

E IEM0217I INVALID PRIORITY OPTION IGNORED
IN STATEMENT NUMBER xxx

162 ApfJendix H: PL/I Diagnostic Messages

W IEM02181 REPE'fITION FACTOR MISSING AFTER
ITERATION FAC'l'OR IN STATEMENT
Nor·mER xxx" REPETITION FACTOR
OF 1 INSER'l'ED.

S 1EM02191 KE'lWOHD 'CONDITION' NOT
SPECIFIED IN SIGNAL STATEMENT
NUMBER xxx

S IE1"'02201 IDEN'!'IFIER MISSING OR INCORRECT
AFTER OPTION IN STATEMENT
NUMBEm xxx. OP'l'ION DELETED.

S IEM02211 NUMBER OF LINES NOT GIVEN AFTER
LINE OP'I'ION IN STATEMENT NUMBER
xxx. 0) INSERTED.

S IEM0222I DEFERRED FEATURE. THE IDENT
OPTION ON OPEN/CLOSE STATEMENT
NUMBER xxx IS NOT IMPLEMENTED
BY THIS VERSION.

~lana~ion: A language
feature has been used that is
not supported.

Sy[;tem Action: Option ignored.

S IEM0223I EXPRESSION MISSING AFTER
IDENT/TITLE/LINESIZE/PAGESIZE
OPTION IN STATEMENT NUMBER xxx.
OPTION DELETED.

Expla!Lat: io~: No 1 eft
paren~hesis found following
keyword.

S IEM0224I INVALID OPTION DELETED IN I/O
STATEMENT NUMBER xxx

S IEM02251 OP'l'ION AFTER OPEN/CLOSE IN
STATEMENT NUMBER xxx IS INVALID
OR fl'ISSING.

S IEM0226I EXPRESSION MISSING AFTER FORMAT
l'I'F1I1 IN STA'IEMENT NUMBER xxx.
ITEM DELETED.

W IEM02271 NO f'ILE/STR1NG OPTION SPECIFIED
IN ONE OR MORE GET/PUT
STATEMENTS. SYSIN/SYSPRINT HAS
BEEN ASSUMED IN EACH CASE.

Ex ['1 a<!l..§.!:.i a./] : One or more GET
or PUT stdt.ements have afpeared
in the proqranl with no
speci fied l"ILE option or STRING
option.

2Y£0~~m Action: The compiler
ha:c; assumed the appropI:iate
default. file (SYSIN tor GET,
SYSPRINT, or SYSOUT, for PUT).

S IEM0228I EXPHEs~;rON .MISSING AFTER OPTION
IN STATEMEN'l' NUMBER xxx.
OPTION DELETED.

S IEM0229I FORMAT ITEM IN STATEMENT NUMBER
xxx IS INVALID AND HAS BEEN
DELETED.

S IEM0230I INVALID DATA LIST IN STATEMENT
NUMBER xxx. STATEMENT DELETED.

E IEM0231I MISSING COMMA INSERTED IN DATA
LIST IN STATEMENT NUMBER xxx

Explanation: Comma missing
between elements of a data
list.

E IEM0232I KEYWORD DO MISSING IN DATA LIST
IN STATEMENT NUMBER xxx. DO IS
INSERTED.

S IEM0233I RETURN STATEMENT NUMBER xxx IS
WITHIN AN ON-UNIT. IT IS
REPLACED BY A NULL STATEMENT.

S IEM0235I ARGUMENT OMITTED FOLLOWING yyyy
OPTION IN STATEMENT NUMBER xxx.
OPTION DELETED.

S IEM02361 THE OPTION yyyy IN STATEMENT
NUMBER xxx IS UNSUPPORTED OR
INVALID.

S IEM02371 INSUFFICIENT OPTIONS SPECIFIED
IN STATEMENT NUMBER xxx. THE
STATEMENT HAS BEEN REPLACED BY
A NULL STATEMENT.

S IEM02381 THE LOCATE-VARIABLE IN LOCATE
STATEMENT NUMBER xxx IS OMITTED
OR SUBSCRIPTEU. THE STATEMENT
HAS BEEN DELETED.

~xplanation: The omission of
the locate variable renders the
statement meaningless.
Subscripted locate variables
are invalid. .

SYstem Action: Replaces
Invalid statement with a null
statement.

'1' IEMO 240 I COMPILER ERROR IN PHASE CV.
SCAN CANNOT IDENTIFY DICTIONARY
ENTRY.

Explanation: The main scan of
fifth pass of read-in has found
something in the dictionary
which it cannot recognize.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

E IEM0241I MULTIPLE USE OF A PREFIX OPTION
HAS OCCURRED IN STATEMENT
NUMBER xxx. THE LAST NAMED
OPTION IS USED.

E IEM0242I PREFIX OPTION INVALID OR
MISSING IN OR FOLLOWING
STATEMENT NUMBER xxx. INVALID
OPTION DELETED.

T IEM0243I COMPILER ERROR. PHASE CS HAS
FOUND AN UNMATCHED END.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

E IEM02441 CHECK PREFIX OPTION IN
STATEMENT NUMBER xxx IS NOT
FOLLOWED BY A PARENTHESIZED
LIST. THE OPTION HAS BEEN
IGNORED.

E IEM0245I A CHECK PREFIX OPTION IS GIVEN
FOR STATEMENT NUMBER xxx WHICH
IS NOT A PROCEDURE OR BEGIN.
THE OPTION HAS BEEN IGNORED.

S IEM0247I ALl. SUBSCRIPTED LABELS
PREFIXING PROCEDURE OR ENTRY
STATEMENT NUMBER xxx HAVE BEEN
IGNORED.

Explanation: Subscripted
labels may not be used as
prefixes on PROCEDURE or ENTRY
statements.

T IEM0254I COMPILER UNABLE TO RECOVER FROM
I/O ERROR - PLEASE RETRY JOB.

System Action: Compilation is
terminated.

User Response: Reatterr.pt
compilation.

T IEM0255I THERE ARE NO COMPLETE
STATEMENTS IN THIS PROGRAM.

Explanation: Compiler cannot
reconcile END statements with
stack entries. Usually caused
by a program containing only
comments.

System Action: Compilation is
terminated.

User Response: Check source
for completed statements. If
these are present, save
relevant data and inform the

Part IV: Appendixes 163

System manager or ad1ninif;trat~or
of the errOl:.

~ IEM0251I DATA DIRECTED I/O LIST IN
S'fATEMEN'l' NtH-mEl< xxx (:ONTAINS
BM;ED .ITD'! zzzz

~.Y_~!:.t;~l!!._t:.<::!:io.El: stat:E'.llJent wi n
be deleted by later phases.

~; IElV;025BJ NUMBER. OF ~mB:::3CRIP'l'S SPECH'IED
fUR ZZ22 IN STATEMENT NUMBER
xxx CO~FLICTS WITH
DIMENS 10NALIT'i(. DO~MY

RU'EHENCE INSEWI'ED.

Sys~:!!! Action: Statement will
he deleted ty later ~hases.

W IEMO,)lOI THE TASK OPTION HAt; BEEH
MiSUMED TO APPLY TO 'nm
t,XTERNAL PROCEDORE STA'1'EMENT
NUMBER xxx

f:~land:t:i:on: TAD!{,. EVENT, or
PRIORITY options have been
detected in a CALL statement.
but the TASK or1:.ion has llot
been specified in the external
procE:dure.

. §yst,?~AGti0!.l: 'I'he TA::~K option
is corr~ctly applied.

W lEM0511I OPTION~; l"'lAIN AND/OR 'JAS:K I,RE
NOT }\LLOWED ON 'faE INTERNAL
PHOCEDURE r;~~ATE~.iJEN'I' N(WlBEl<. xxx

~:Y."~~e!l.LAs:J:JoD: The invalid
o{:tions are ignored.

S 1EM0512I IDENTIFn:R 'l'iYY IN STld:EI-IENT
NUMBER xxx n·J INTTI.Al. ATTRIBU'I'E
LIST IS NOT A KNO\4NLAB~;~
CONSTAN'l' jlcJ'ID HAS BEEN IGNORED.

.~ste!TI_Actio!l: Identi.! i '21"

changed to $ in the list.

S IEM05131 REPEATED LABEL IN SA~E BLOCK ON
STATEMENT NUMBlill xxx.
DELETED.

f:.?fl2!anat'i.m)~ A label may no't
be used more than once in the
same blOCK.

5 IEMOS141 l:'IJiN1E'fEH YVyy IN S'rNrE~lf:N'1'
NUMBER xxx IS SAME AS IJ\IJEI,.
P lIRA.M,'t!:TER REPLACED BY DUMMY.

S IElY,05151 IMPLEMENTATION RESTRIC'l'lON.
CHARACTER STR ING LENGTH IN
STATEMEN'l' NUr.'BER xxx I: lmUC.EO '1'0
32.767.

164 Appendix H: PL/1 Diagnn~tic Messages

S IEM05161 ILl.EGA!. OPTIONS LIST ON
S1'A'l'!~MENT NtJ!<lBER xxx. LIST
TGNO[(r2D"

Compiler scans
bracket,. If

this 1,S £10t the bracket closing
the j 1 opt.ions list, a
cowpiler ~LrQr will probably
fz;11 0,.,.

S H~~05171 CQN.FI.IC'l'ING NM'RIBOTE DELETED
IN ::i''!:'ATE~~EN'I' NmmER xxx

S IEM051HI 11"I'U':;"'\.1'Eti'l'ATION RESTRICTION.
PRECI,SION TOO LARGE IN
ST1;TEHf~NT NUMBER xxx. DEFAULT
:Pl(r~CIS lO'N GIVEN ~

default"

H later a valid
given, this will

in place of the

Attribute
;;,t.Lribute test mask

.r<~stOt'~"d so t,bat~ later
attribute ~ill not be found to
Dln[]ict with deleted one.

S IF.M05191 lLLEGJ>.L i'''TTr<IBU'l'.!!~ ON STATEMENT
NUK3ER XJ':X IGNORED •

Only data
allowed on l'I'ocedure

or.: entry s't,c.t.ements. (No
djmens1.ons 611owed.)

l~ compiler error

is

Save relevant
the system

r!licil1a(j(,r o.r ad:minstratoT of the

S IEMOS211 INV}IJ:,ID S'rR.ING IE~GTH IN
s"r,,~{r'f~,~'rEN"1' NUMBER xxx ~ .LENGTH

Either no length
OJ: st.!: ing length

¥ haG be·rm \H,ed in source code.

Assumes length
to next

S :I:EM05221 IMPl,.l':>H':tHATION RES'rRIC'rION.
NUi"t\,,~H OlF PAHAM~'TEFS IN
PROCEu1.W(; GR EN'l'HY STATEME:NT
N,;MB1:::H ;nu(TRUNCATED '1'0 64.

S IEM0523I PARAMETER zzzz IN STATEMENT
NUMBER xxx APPEARS TWICE.
SECOND ONE REPLACED BY DUMMY.

S IEM0524I IDENTIFIER yyyy IN LABEL LIST
IN STATEMENT NUMBER xxx IS NOT
A LABEL OR IS NOT KNOWN.

System Action: Ignores
identifier.

T IEM0525I IMPLEMENTATION RESTRICTION.
TOO MANY PAIRS OF FACTORED
ATTRIBUTE BRACKETS FOR THIS
SIZE OPTION.

Explanation: Factor bracket
table has overflowed.

System Action: Compilation is
terminated.

User Response: Recompile using
a SIZE sufficient to provide a
larger block size or reduce
factoring by expanding
declarations.

W IEM0526I OPTION MAIN HAS NOT BEEN
SPECIFIED FOR THE EXTERNAL
PROCEDURE STATEMENT NUMBER xxx

S IEM0527I IMPLEMENTATION RESTRICTION.
ARRAY BOUND IN STATEMENT NUMBER
xxx I S TOO LARGE AND HAS BEEN
REPLACED BY THE MAXI~UM
PERMITTED VALUE (32767 OR
-32768).

T IEM0528I COMPILER ERROR CODE nnnn IN
STATEMENT NUMBER xxx

Explanation: compiler error
found in processing a DECLARE
statement.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or adminstrator of the
error.

S IEM0529I IMPLEMENTATION RESTRICTION.
STRUCTURE LEVEL NUMBER IN
STATEMENT NUMBER xxx REDUCED TO
255.

S IEM0530I IMPLEMENTATION RESTRICTION.
TOO MANY LABELS IN LABEL LIST
IN STATEMENT NUMBER xxx. THE
LABEL zzzz AND ANY FOLLOWING IT
HAVE BEEN IGNORED.

Explanation: There is an
implementation restriction
limiting the number of label

S IEM0532I

S 'lEM0533I

constants following the LABEL
attribute to 125.

ILLEGAL ASTERISK AS SUBSCRIPT
IN DEFINING LIST IN STATEMENT
NUMBER xxx. LIST TRUNCATED.

System Action:
continues with
list, possibly
errors.

compilation
truncated iSUB
causing cascade

IMPLEMENTATION RESTRICTION.
I-SUB VALUE IN STATEMENT NUMBER
xxx TOO LARGE. REDUCED TO 32.

Explanation: There is an
implementation restriction
limiting the number of
dimensions to 32.

S IEM0534I IMPLEMENTATION RESTRICTION.
STRING LENGTH IN STATEMENT
NUMBER xxx REDUCED TO 32, 767.

S IEM0536I IDENTIFIER yyyy IN STATEMENT
NUMBER xxx IS NOT A LABEL
CONSTANT OR IS NOT KNOWN. IT
IS IGNORED.

Explanation: Identifiers
following the LABEL attribute
must be LABEL constants and
must be known.

S IEM0537I IMPLEMENTATION RESTRICTION.
POSITION CONSTANT IN STATEMENT
NUMBER xxx REDUCED TO 32,767.

E IEM0538I IMPLEMENTATION RESTRICTION.
PRECISION SPECIFICATION IN
STATEMENT NUMBER xxx TOO LARGE.
DEFAULT PRECISION GIVEN.

E IEM0539I ILLEGAL NEGATIVE PRECISION IN
STATEMENT NUMBER xxx. DEFAULT
PRECISION GIVEN.

S IEM0540I * BOUNDS ARE MIXED WITH
NON-*BOUNDS IN DECLARE
STATEMENT NUMBER xxx. ALL THE
BOUNDS ARE MADE *.

E IEM0541I LOWER BOUND GREATER THAN UPPER
BOUND IN DECLARE OR ALLOCATE
STATEMENT NUMBER xxx. THE
BOUNDS ARE INTERCHANGED.

S IEM05421 IMPLEMENTATION RESTRICTION.
NUMBER OF DIMENSIONS DECLARED
TRUNCATED TO 32 IN STATEMENT
NUMBER xxx

T IEM054JI COMPILER ERROR. ILLEGAL
STATEMENT FOUND IN THE DECLARE
CHAIN.

Part IV: Appendixes 165

EXElanation: Compiler error
found in scanning chain of
DECLARE statements.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or adminstrator of the
error.

T IEM054 LII COMPILER ERROR. INITIAL CODE
BYTE OF DECLARE STATEMENT IS
NEITHER STATEMENT NUMBER NOR
STATEMENT LABEL.

EXEJlanation: Compiler error
found in first byte of DECLARE
stat.ements.

System Action: Compilation is
terminated.

~se~ Response: Save relevant
data and inform the system
manager or adminstrator of the
error.

T 1EM0545I COMPILER ERROR. ILLEGAL
INITIAL CHARACTER TO DECLARED
ITEM IN STATEMENT NUMBER xxx

EXflanation: compiler error
found in scanning start of
declared itero.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or adminstrator of the
error.

T IEt-i0546I COMPILER ERROR. ILLEGAL
CHARACTER FOUND AFTER LEVEL
NUMBER IN DECLARE STATEMENT
NUMBER xxx

~xplanation: compiler error
found after structure level
number in DECLARE statement.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or adminstrator of the
error.

W IEM0547I THE IDENTIFIER yyyy DECLARED IN
S'rATEMENT NUMBER xxx IS A
NON-MAJOR STRUCTURE MEMBER AND
HAS THE SA~E NAME AS A FORMAL
PARAMETER OR INTERNAL ENTRY
POINT. ALL REFERENCES TO THE

166 Appendix H: PL/I Diagnostic Messages

STRUCTURE MEMBER SHOULD BE
QUALIFIED.

System Action: Same BCD
treated as different
identifiers.

T IEM0548I COMPILER ERROR. ILLEGAL
CHARACTER FOUND IN DECLARATION
LIST.

Explanation: compiler error
found in list of declarations
in DECLARE statement.

System Action: compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or adminstrator of the
error.

E IEM05~9I THE DECLARED LEVEL OF
IDENTIFIER yyyy IN STATEMENT
NUMBER xxx SHOULD BE ONE. THIS
HAS BEEN FORCED.

System Action: Illegal level
nun,ber trea ted as 1.

S IEM0550I THE IDENTIFIER yyyy HAS BEEN
DECLARED IN STATEMENT NUMBER
xxx WITH A TRUE LEVEL NUMBER
GREATER THAN THE IMPLEMENTATION
RESTRICTION OF 63. THE
DECLARATION OF THE IDENTIFIER
IS IGNORED.

E IEM05511 THE IDENTIFIER yyyy HAS BEEN
DECLARED IN STATEMENT NUMBER
xxx WITH ZERO PRECISION. THE
DEFAULT VALUE HAS BEEN ASSUMED.

T IEM0552I COMPILE~ ERROR. ILLEGAL
CHARACTER FOUND IN FACTORED
ATTRIBUTE LIST IN DECLARE
STATEMENT NUMBER xxx

Explanation: Compiler error
found in factored attribute
list.

System Action: Compilation is
terminated.

User Respons~: Save relevant
data and inform the system
manager ox: administratfJr of the
error.

E IEM0553I THE IDENTIFIER yyyy HAS HAD A
CONFLICTING ATTRIBUTE IGNORED
IN DECLARE STATEMENT NUMBER xxx

Explanation: The two
attributes may conflict as a

result of a feature that is not
supported.

T IEM0554I COMPILER ERROR. ILLEGAL
CHARACTER FOUND IN PARAMETER
LIST FOLLOWING 'GENERIC'
ATTRIBUTE.

System Action: Compilation is
terminated.

User RBsponse: Save relevant
data and inform the system
manager or administrator of the
error.

E IEM0555I STORAGE CLASS ATTRIBUTES MAY
NOT BE SPECIFIED FOR STRUCTURE
MEMBER yyyy. ATTRIBUTE
IGNORED.

User Response: Delete illegal
storage class attribute for the
structure member.

T IEM0556I COMPILER ERROR. ILLEGAL
CHARACTER FOUND IN PARAMETER
LIST FOLLOWING AN 'ENTRY'
ATTRIBUTE IN DECLARE STATEMENT
NUMBER xxx

System Action: Co~pilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

E IEM0557I THE MULTIPLE DECLARATION OF
IDENTIFIER yyyy IN STATEMENT
NUMBER xxx HAS BEEN IGNORED.

S IEM0558I IMPLEMENTATION RESTRICTION.
NUMBER OF PARAMETER
DESCRIPTIONS DECLARED FOR
PROCEDURE OR ENTRY NAME yyyy IN
STATEMENT NUMBER xxx TRUNCATED
TO 64.

E IEM05591 THE IDENTIFIER yyyy HAS BEEN
DECLARED IN STATEMENT NUMBER
xxx WITH CONFLICTING FACTORED
LEVEL NUMBERS. THE ONE AT
DEEPEST FACTORING LEVEL HAS
BEEN CHOSEN.

E IEM0560I IN STATEMENT NUMBER xxx A
CONFLICTING ATTRIBUTE HAS BEEN
IGNORED IN THE DECLARATION OF
THE RETURNED VALUE OF ENTRY
POINT yyyy

S IEM0561I IN STATEMENT NUMBER xxx THE
IDENTIFIER yyyy IS A MULTIPLE
DECLARATION OF AN INTERNAL
ENTRY LABEL. THIS DECLARATION
IS IGNORED.

S IEM05621 THE IDENTIFIER yyyy IS DECLARED
IN STATEMENT NUMBER xxx AS AN
INTERNAL ENTRY POINT. THE
NUMBER OF PARAMETERS DECLARED
IS DIFFERENT FROM THE NUMBER
GIVEN AT THE ENTRY POINT.

S IEM0563I THE IDENTIFIER yyyy DECLARED
'BUILTIN' IN STATEMENT NUMBER
xxx IS NOT A BUILT-IN FUNCTION.
DECLARATION IGNORED.

E IME0564I THE IDENTIFIER yyyy HAS BEEN
DECLARED IN STATEMENT NUMBER
xxx WITH PRECISION GREATER THAN
THE IMPLEMENTATION LIMITS. THE
MAXIMUM VALUE HAS BEEN TAKEN.

E IEM0565I THE IDENTIFIER yyyy IS DECLARED
IN STATMENT NUMBER xxx AS A
MEMBER OF A GENERIC LIST, BUT
ITS ATTRIBUTES DO NOT MAKE IT
AN ENTRY POINT. THE
DECLARATION OF THE IDENTIFIER
HAS BEEN IGNORED.

E IEM0566I ONE OF THE PARAMETERS DECLARED
FOR ENTRY POINT yyyy IN
STATEMENT NUMBER xxx SHOULD BE
AT LEVEL ONE. THIS HAS BEEN
FORCED.

W IEM05671 IF FUNCTION yyyy IN STATEMENT
NUMBER xxx IS INVOKED, THE
DEFAULT ATTRIBUTES ASSUMED FOR
THE VALUE RETURNED WILL
CONFLICT WITH THE ATTRIBUTES IN
THE PROCEDURE OR ENTRY
STATEMENT FOR THAT VALUE.

I

Explanation: The data type to
which a result will be
converted at a RETURN
(expression) will not be the
same as that expected at an
invocation of the entry label
as a function.

System Action: None

User Response: Write an
entry-point declaration (using
the ENTRY or RETURNS attribute)
in the containing block, giving
the same data attributes as
those on the PROCEDURE or ENTRY
statement.

S IEM0568I THE IDENTIFIER zzzz IS CALLED
BUT IS EITHER A BUILTIN
FUNCTION OR IS NOT AN ENTRY
POINT.

System Action: The erroneous
statement is deleted.

T IEM0569I COMPILER ERROR NUMBER nnnn IN
MODULE EP.

Part IV: Appendixes 167

Explanation: Compiler error
found in scan of chain of CALL
stat.ements.

~Qt:em_ Actj,2!!= compilat:ion is
terminated.

US.!?I_ Response: Save relevant
data and inform the system
manager ox' administrator of the
error.

w 1EM05701 THE Et."TRY POINT yyyy HAS BEEN
DECLARED IN STATEMENT NUMBER
xxx TO HAVE A RETURNED VALUE
DIEFERENT FROt'l THAT GIVEN ON
THE PHOCEDURE OR ENTRY
S'I'A'I'EMJ:;NT.

~tem Action: None

User Respons!'~: change the
declaration, or the PHOCEDURE
or ENTRY statement.

S IEMOS71I IMPLEMENTATION RESTRICTION.
rCENTIFIER yyyy IN STATEMENT
NUMBER xxx UI\S MORE THAN 32
DIMENSIONS. DIMENSION
A'rTRIBUTE IGNORED.

S IEM0572I TIlE IDENTIFIER 'lYYY HAS BEEN
DECLt~~ED IN STATEMENT NUMBER
xx..x WITH THE ATTRIBUTE "NORMAL­
OR "ABNORMAl,". THE APPLICATION
OF THIS AT'fRIBUTE IS AN
UNSUPPOR'rEC FEATURE OF THE
FOURTH VERSION, AND I'1' HAS BEEN
IGNCf.:EI:).

~){...2:1.0E~.I:l:.9-",!: An unsupported
language feature has been used.

S IEM05731 THE SKLECrION OF GENERIC FAMILY
MEMm:RS WHOSE PARAMETEHS HAVE A
STHUCTUHE DESCRIPTION IS
DEFERRED. ENTRY NAME yyyy.
DECLARED IN S'rATEMEN'I NUMBER
xxx, IS SUCH A MEMBER AND HAS
BEEN DELE'TED.

~xplanation: The usage
referred t.o is not supported.

T IEM057!H THE MULTIPLE DECLARATION OF
ICENTIFIl:R 'iY'iY IN STA'I'E.MENT
NUMBER xxx BAS BEEN TGNORED.

W IEM05151 TUE REPEATED ATTRIBUTE IN THE
DECLi~R.~TION OF FILE yyyy IN
STA'fEMENT NUMBER xxx HAS BEEN
IGNORED ...

E IEM05761 THE EXTERNAL FILE yyy DEClARED
IN STATEMENT NUMBER xxx HAS THE
SAME NAME AS 'fflE EXTERNAl.
PROCf:DURE. DECLARATION
IGNORED.

168 Appendix 8: PL/I Diagnostic Messages

E IEM05771 INCORRECT SPECIFICATION OF THE
ARRAY PNUNDS. STRING LENGTH OR
AREA SIZE OF' THE NON-CONTROLLED
PARAMETF.:fI. yyyy IN DECLARE
STATEMENT NUMBER xxx; THOSE OF
THE CQRRE..SPONDING ARGUMENT WILL
BE F,S:':>CHED.

In the
of a non-controlled

array. string or area
parametE,:;r. the bounds. length
or size mUST. be given by a
constant. ()r by an asterisk.

~te!fl Act~.2l!: Takes the
bounds, length or size of the
array. strinq or area passed as
an argument.

E IEM0518I UND:nlENSIONED VARIABLE yyy
DECLARED IN STATEMENT NUMBER
xxx HAS INITIAL ATTRIBUTE WITH
CONFLICTING SPECIFICATION !o'OR A
DIMENSIONED VARIABLE. INITIAL
ATTRIBB'fE IGNORED.

W IEM0579I THE PAJ1A.METER OF THE MAIN
PROCEDURE SHOULD BE A FIXED
LENG'fH CHARACTER STRING OR HAVE
THE A'fTRU:HJ'rES CHARACTER (100)
VARYING.

S IEM05801 INVAL1..D USE OF FILEy'iY IN
STATEMENf mlMBER xxx. IT HAS
Bl'~.EN REPLACED BY A DUMMY
REFERENCE.

S IEM0589I COMPILEr< ERHOH.. ITEM zzzz IN
LIKE CH/',f.N IS NOT A STRUCTURE.
ITEM IS IGNORED.

US~,J~!Asp<mse; Save relevant
data ane! inform system manager
or administ,r-ator of the error.

S IEM05901 STRTJC1'URE ELEMENT zzzz WHICH
HAS [IKE ATTIUBUTE ATTACHED TO
IT. I:C, fOLL~JWED BY AN ELEMENT
fNI'l'J:i 1\ NlH;ERICAILY GREATER
S'l'R{)CTUR.E: J~EVE.L NUMBER. LIKE
ATTRlBUTE IS IGNORED.

§y.~t,;~.l11.Action: Self
explanat:ory: may result in
cascade errors.

S IEM0591I STRUel'URE EJ.EMENT zz'Zz IS
LIKENED TO AN ITEM WHICH IS NOT
1\ STRUl~TURE VARIABLE. LIKE
A'l''l'RIBUTE IS IGNORED.

§ysteul l1f:!j,on: Self
explanatol~: may result in
cascade errors.

S 1EM0592I S'l'RtlC'I'UR£ ELEMENT zZZ'Z IS
U . .KENED 'I'O A STRUCTURE WHICH

CONTAINS ELEMENTS WHICH HAVE
ALSO BEEN DECLARED WITH THE
LIKE ATTRIBUTE. LIKE ATTRIBUTE
ON ORIGINAL STRUCTURE IS
IGNORED.

System Action: Self
explanatory: may result in
cascade errors.

S IEM05931 STRUCTURE NAME TO WHICH zzzz IS
LIKENED IS NOT KNOWN. LIKE
ATTRIBUTE IGNORED.

System Action: Self
explanatory: may result in
cas cade errors.

E IEH05941 AMBIGUOUS QUALIFIED NAME yyyy
USED AS A BASE IDENTIFIER.
MOST RECENT DECLARATION USED.

E IEM05951 QUALIFIED NAME yyyy USED AS A
BASE IDENTIFIER CONTAINS MORE
THAN ONE IDENTIFIER AT THE SAME
STRUCTURE LEVEL.

System Action: The erroneous
statement is deleted.

S IEM0596I MAJOR STRUCTURE yyyy HAS BEEN
LIKENED TO AN ITEM WalCH IS NOT
A VALID STRUCTURE. DECLARATION
OF STRUCTURE IGNORED.

System Action: Self
explanatory: may result in
cascade errors.

S IEM0597I IDENTIFIER zzzz WHICH IS NOT A
FORMAL PARAMETER OR OF STORAGE
CLASS CONTROLLED HAS BEEN
LIKENED TO A STRUCTURE
CONTAINING * DIMENSIONS OR
LENGTH. * DIMENSIONS OR LENGTH
HAVE BEEN IGNORED IN THE
CONSTRUCTED STRUCTURE.

system Action: Self explana­
tory: may result in cascade
errors from later phases.

S IEM0598I QUALIFIED NAME TO WHICH zzzz
HAS BEEN LIKENED IS AN
AMBIGUOUS REFERENCE. LIKE
ATTRIBUTE HAS BEEN IGNORED.

S IEM0599I zzzz WHICH IS A PARAMETER OR A
BASED VARIABLE, HAS BEEN
DECLARED (USING THE LIKE
ATTRIBUTE) AS A STRUCTURE WITH
THE INITIAL ATTRIBUTE. THE
INITIAL ATTRIBUTE IS INVALID
AND HAS BEEN IGNORED.

User Response: Declare the
parameter or based variable
with the LIKE attribute

specifying a structure without
the INITIAL attribute.

S IEM0600I STATIC STRUCTURE zzzz HAS BEEN
DECLARED BY MEANS OF THE LIKE
ATTRIBUTE TO HAVE ADJUSTABLE
EXTENTS. THE EXTENTS HAVE BEEN
IGNORED.

Explanation: A STATIC variable
cannot have adjustable extents.

SysT.em Action: All bounds on
the offending variable are set
to zero.

S IEM06011 OFFSET ATTRIBUTE ON PROCEDURE
STATEMENT NUMBER xxx IS NOT
BASED ON A BASED AREA. IT HAS
BEEN CHANGED TO POINTER.

T IE~0602I IDENTIFIER IN BASED ATTRIBUTE
ON zzzz DECLARED IN STATEMENT
NUMBER xxx IS NOT A NON-BASED
POINTER.

System Action: Compilation is
terminated.

T IEM0603I INVALID POINTER EXPRESSION IN
BASED ATTRIBUTE ON zzzz IN
STATEMENT NUMBER xxx

Explanation: The pointer
associated with the based
variable does not obey the
implementation rules (e.g., it
may be subscripted).

System Action: compilation is
terminated.

T IEM060QI LENGTH OR SIZE DECLARED FOR
BASED STRING OR BASED AREA zzzz
IN STATEMENT NUMBER xxx IS
INVALID.

Explanation: The declaration
violates the compiler
implementation rules.

System Action: Compilation is
terminated.

T IEM06051 BOUNDS DECLARED FOR BASED ARRAY
zzzz IN STATEMENT NUMBER xxx
ARE INVALID.

Explanation: The adjustable
bounds declared are outside
those permitted by this
implementation.

System Action: Compilation is
terminated.

S IEM06061 OFFSET VARIABLE zzzz BAS BEEN
DECLARED IN STATEMENT NUMBER

Part IV: Appendixes 169

xxx RE1J\TIVE 'XO l~NH)E"t1'IFIER
WHICH IS NOT A .LEV1~I, t BASED
AREA. rr liAr) EEEN CHANGED '1'0 A
POINTER VARIABLE.

§.YQtew ActjJJ.~~ 'f'h~ of:fse't is
changed t.O a point.ex: to prevent
the compi!>-!: ;.' K~)l1\ ~:roducing
further error messages.

User:.. R'-12.£':!B!i~: C:>nsider
assigning the PlDDR of the
requi red area to t.he pointer
named in the declaration of a
level 1 based ct.l:ea; this area
can be validly named in the
OFFSET attribute. and offset
values for it will be correct
for t:he other area.

W IEM0607I IF 'l'BE BASE OF zzzz
CORRESPONDENCE DEl"INED IN
STATEMENT NUMBER .lOCK IS
AI,L()CA'fED wI'I'H THE DECLARED
BOUNDS THE DEFINING WILL BE IN
EHROR.

Explanatiol}: For
correspondence defining not
involving iSOB' 5, !:::.'ounds of the
defined array must be a subset
of the bounds of tbe base. In
t,his case bounds declared for
the base do not satisfy this
requirement.. However. the base
is of CONTROLI,ED storage class
and if it is allocated wit"h
different bounds t:he defining
IfidY Of" l·eqal.

T IEM0608I ILI,EGAl, DE:FINING IN S'I'ATEMEN'l'
NUMBER xxx. BJ\SE IDENTIFIER
zzzz IS A ,'iEMBBR OF A
DIMEt~SIONED STRUCTURE.

Expli,~ti!~!!: In the caB€: of
st.ring class ovel:lay defining
where the .ba.se is an array. it
is an error if it is a member
of an array 01 str:uctu:t'€S.

System.....l!ctiQ!!~ COfllpilation is
terminat:ed.

User Response: Refer to the
PL/I Reference Manual - "The
DEFINED At:tribtlte"- and
correct er yar ..

T IEM0609I DEFERRED PiA'fORE. DEFINING OF
zzzz DECLARED IN S'fATEMENT
NUMBER xxx WrfH A SUBSCRIP'I'ED
BASE.

170 Appendix H: PL/I DiilAf.inoBtic Messages

Explan~~ion: Overlay defining
on a subscripted base is not
supported.

Systeul,JI.ct.!(}f!: Compilation is
terminated.

User Response: Replace all
references to the defined item
by appropriate subscripted
references to the base.

T IEH06101 DEFERRED .I"EATURE. DEFINING OF
zzzz DECLARED IN STATEMENT
NUMBER xxx ON A BASE OF
CONTROLLED S'rORAGE CLASS.

Explanation: If the base is
declared CONTROLLED. neither
overlay defining nor
correspondence defining is
supported.

£yste~ Action: Compilation is
terminated.

User Response: Replace all
references to the defined item
by appropriate references to
the base.

T IEM06111 SCALAR ~~zz DECLARED IN
STATEMENT NUMBER xxx IS
ILLEGALLY DEFINED WITH ISUBS.

Explanation: Only arrays may
be correspondence defined using
iSUB notation.

§yst~,.Action! compilation is
te:n'llina ted •

.!!ser_ResEonse: Refer to the
PL/I Reference Manual - -The
DEFINEr: Attribute" - and
correct error.

E IEM06121 INI'rIAL AT'TRIBUTE DECLARED FOR
DEFINED ITEM zzzz IN STATEMENT
NUMBER XXK WILL BE IGNORED.

Explanation: DEFINED items may
not have the INITIAL attribute.

System Action: INITIAL
attribute ignored.

S IEM0613I ELEMENT VARIABLE SPECIFIED IN
REFER OPTION IN STATEMENT
NUMBER xxx IS NOT AN INTEGER.

Explanatlo:r;: Both rand N in
(1 REFER(N» must be fixed
binary integers; they must also
be of the same precision.

System Action: Compilation
continues. Any reference to
the element variable may result
in an execution error.

S IEM0614I ELEMENT VARIABLES SPECIFIED IN
REFER OPTION IN STATEMENT
NUMBER xxx DO NOT HAVE THE SAME
PRECISION.

Explanation: Both 1 and N in
(1 REFER(N» must be fixed
binary integers of the same
precision.

System Action: Compilation
continues. Any reference to
either element variable may
result in an execution error.

T lEM0623I THE BASE SUBSCRIPT LIST USED
WITH THE DEFINED VARIABLE zzzz
IN STATEMENT NUMBER xxx
ILLEGALLY REFERS TO OR IS
DEPENDENT ON THE DEFINED
VARIABLE.

Explanation: It is illegal for
a base subscript list in the
DEFINED attribute to refer
directly, or via any further
level of defining. to the
defined item.

System Action: compilation is
terminated.

User Response: Refer to the
PLII Reference Manual - -The
DEFINED AttributeW - and
correct error.

T IEM0624I THE BASE IDENTIFIER FOR zzzz
DECLARED IN STATEMENT NUMBER
xxx IS DEFINED OR BASED.

Explanation: The base of
DEFINED data may not itself be
DEFINED.

System Action: Compilation is
terminated.

User Response: Replace the
specified base by an
appropriate reference to its
base.

T IEM06251 THE DEFINING BASE FOR zzzz
DECLARED IN STATEMENT NUMBER
xxx HAS THE WRONG NUMBER OF
SUBSCRIPTS.

Explanation: If the base
reference in a DEFINED
attribute is subscripted. it
must have the same number of
subscript expressions as the

dimensionality of the base
array.

System Action: Compilation is
terminated.

User Response: Correct the
subscript list, or declaration
of the base, whichever is
appropriate.

T IEM0626I THE DEFINING BASE FOR zzzz
DECLARED IN STATEMENT NUMBER
xxx IS NOT DATA.

Explanation: The only legal
data types that may be used for I

defining bases are String,
Arithmetic, Task, Event, and
Label.

system Action: compilation is
terminated.

User Response: Check that the
defining base is correctly
written and declared.

T IEM0628I IMPLEMENTATION RESTRICTION.
THE NESTING OF REFERENCES TO
DATA DEFINED WITH A SUBSCRIPTED
BASE IS TOO DEEP.

Explanation: The complexity of
defining has resulted in a
level of nesting which is too
great for the compiler.

System Action: Compilation is
terminated.

User Response: Reduce
complexity of defining.

T IEH0629I ARRAY zzzz DECLARED IN
STATEMENT NUMBER xxx ILLEGALLY
HAS THE POS ATTRIBUTE WITH ISUB
DEFINING.

Explanation: The POS attribute
may not be specified for
correspondence defining.

System Action: Compilation is
terminated.

User Response: Delete POS
attribute.

'I' IE~0630I THE DESCRIPTION OF zzzz
CORRESPONDENCE DEFINED IN
STATEMENT NUMBER xxx DOES NOT
MATCH THAT OF THE DEFINING
BASE.

Explanation: For
correspondence defining, if
either the base or the defined

Part IV: Appendixes 171

item are arrays of structures,
then opo!:.!! wust; be arrays of
struct uxe::i"

System AC.:!:";"'91~: Compilation is
terminated.

User Respons~: Correct the
program. Note that PoS (1) may
be used to force overlay
defining.

T IEM0631I IMPLEMENTATION RES1~ICTION.
THE CORRESPONDENCE DEFINING OF
yyyy AN ARRAY OF STRUCTURES
DECLARED IN STATEME~r NUMBER
xxx

Expla!}a ti or!:
defining with
structures is
the compiler.

System Action:
terminated.

Corces pondence
Gll:I:ays of
not supported by

Corepilation is

User Response: Declare the
base arrays of 1:he defined
structure as correspondence
defined on the matching base
arrays of the base structure.
Note that for this to be valid,
the base arrays of the defined
structure must have unique
names and be declared at level
1. This alternative method
precludes structure operations
with the defined item. but
achieves the desired mapping.

T IEM0632I THE BOUNDS OF zzzz
CORRESPONDENCE DEFINED IN
STATEMENT NUMBER ~xx ARE NOT A
SUBSET OF THE BASE.

Explanation: For
correspondence defining not
inVOlving iSllB·s. the bounds of
the defined array must be a
subset of the corresponding
bounds of t_he base array.

System Actiot!: Compilation is
terminated.

User Respon$~: Refer to the
PLII Reference Manual - wThe
DEFINED Attribute- - and
correct program. Note that POS
(1) may be used to force
overlay defining.

S IEM0633I ITEM TO BE ALLOCATED IN
STATEMENT NUMBER xxx IS NOT AT
LEVEL 1. THE STATEMENT HAS
BEEN IGNORED.

172 Appendix H: PL/I Diagnostic Messages

Explanation: An identifier
specified in an ALLOCATE
statement must refer to a major
struct1.lre or data no-I: contained
in a structure. A major
stru<."i:u:ce identifi.er may
optionally he followed by a
full structure description.

Syste~_A(~ion: The ALLOCATE
statement is deleted.

User ResPQ~: Repl.ace
erroneous identifier by that of
the containing major structure.

S IEM0634I ITEM TO BE ALLOCATED IN
STATEMENT NUMBER xxx HAS NOT
BEEN DECLARED. THE STATEMENT
HAS BEEN IGNORED.

Explanat_ion: Only CONTROLLED
data may be allocated. Data
may only obtain the attribute
CONTROLLED from an explicit
declaration.

System Action: The ALLOCATE
statement is deleted.

User Response: construct a
DECLARE statement for the
identifier.

S IEM0636I ITEM TO BE ALLOCATED IN
STATEMENT NUMBER xxx WAS NOT
DECLARED CONTROLLED. THE
STATEMEN'I' HAS BEEN IGNORED.

Explanation: Only CONTROLLED
data may be specified in
ALWCATE statements.

System A<.~ion: The ALLOCATE
statemenot is deleted.

User Res2QDse: Declare the
identifier CONTROLLED.

E IEM06371 A CONFLIC'rING AT'I'RIBUTE WAS
GIVEN FOR zzzz IN STATEMENT
NUMBER xxx. THE ATTRIBUTE HAS
BEEN IGNORED.

Expla.§tion: Attributes given
for an identifier in an
ALLOCATE statement may not
conflict with those given
explicitly or assumed by
default from the declaration.

System Action: Ignores the
attribute from the ALLOCATE.

S IEJoil0638I THE STRUC'l'URE DESCRIPTION GIVEN
ON STATEMENT NUMBER xxx DIFFERS
FROM THAT DECLARED. THE
STATEMENT HAS BEEN IGNORED.

Explanation: If a description
of a major structure is given
on an ALLOCATE statement, the
description must match that
declared.

System Action: The ALLOCATE
statement is deleted.

S IEM0640I AN INVALID ATTRIBUTE WAS GIVEN
IN STATEMENT NUMBER xxx. THE
STATEMENT HAS BEEN IGNORED.

Explanation: Only String (CHAR
or BIT), INITIAL, and Dimension
attributes are permitted in
ALLOCATE statements.

System Action: The ALLOCATE
statement is deleted.

E IEM0641I CONFLICTING ATTRIBUTES HAVE
BEEN GIVEN FOR zzzz IN
STATEMENT NUMBER xxx. THE
FIRST LEGAL ONE HAS BEEN USED.

Explanation: At most, one
attribute in the following
classes may be given for an
identifier in an ALLOCATE
statement: Dimension, String
(CHAR or BIT>, INITIAL.

System Action: All attributes
after the first in a particular
class are ignored.

S IEM0642I DIMENSIONALITY GIVEN IN
STATEMEN~ NUMBER xxx DIFFERS
FROM THAT DECLARED. THE
STATEMENT HAS BEEN IGNORED.

Explanation: If a dimension
attribute is given for an
identifier in an ALLOCATE
statement, the identifier must
have been declared with the
same dimensionality.

system Action: The ALLOCATE
statement is deleted.

User Response: Correct
declaration or ALLOCATE
statement, whichever is
appropriate.

W IEM0643I THE LEVEL NU~BER DECLARED FOR
zzzz IS NOT THE SAME AS THAT
GIVEN IN STATEMENT NUMBER xxx.
THE FORMER HAS BEEN USED.

Explanation: If a structure
description is given in an
ALLOCATE statement, it must
match the declaration. The
indicated level number
discrepancy may be an error.

System Action: Nothing
further.

User Response: Check that
ALLOCATE statement is as
intended.

S IEM0644I STATEMENT NUMBER xxx CONTAINS
AN ILLEGAL PARENTHESIZED LIST.
THE STATEMENT BAS BEEN IGNORED.

Explanation: Factored
attributes are not allowed on
ALLDCATE statements.

system Action: Statement
ignored.

User Response: Remove
parentheses and any factored
attributes.

S IEM0645I ATTRIBUTE GIVEN WITH BASED
VARIABLE zzzz IN ALLOCATE
STATEMENT NUMBER xxx HAS BEEN
IGNORED.

Explanations: Based variacle
may not be specified with
attributes.

User Response: Correct
ALLOCATE statement.

S IEM0646I IDENTIFIER yyyy PRECEDING
POINTER QUALIFIER IN STATEMENT
NUMBER xxx IS NOT A NON-BASED
POINTER VARIABLE

system Action: The identifier
is replaced by a dummy
dictionary reference; a later
phase will delete the
statement.

User Response: Correct the
invalid statement

S IEM0647I POINTER-QUALIFIED IDENTIFIER
zzzz IN STATEMENT NUMBER xxx IS
NOT A BASED VARIABLE

System Action: Identifier is
replaced by a dummy dictionary
reference; a later phase will
delete the statement.

User Response: Correct the
invalid statement.

T IE~06S3I COMPILER ERROR. ILLEGAL ENTRY
IN STATEMENT NUMBER xxx

Explanation: Compiler error
found in scan of statement.

System Action: Compilation is
terminated.

Part IV: Appendixes 173

Ose!:..J1.~l?ons~: ;Save relevant
data and infon" the system
manager or admi,tJ strat.or of the
error.

S IEM0655I QUALIFIED NAiH flEGINNING yyyy
USED IN STATEMENT r.:lJMBER xxx
BUT NO PREVIOUS STRUCTURE
DECLARATION GIVEN. DUMMY
REFERENCE INSru{TED.

System Ac:t:!-.2..f!: Heiel'ence to
the illegal va.riable or the
whole stat.ementwill be deleted
by later phases.

User HesDons,:,-: Correct. program
by inserting DECLARE statement.

E IEM0656I MOST RECENT DECLARATION USED OF
AMBIGUOUS QUALIFIED NAME OR
STRUCTURE MEMB.ER BEGINNING yyyy
IN STATEMEN'r NUMBER xxx

E 1EM06571 QUALIFIED NAME BEGINNING yyyy
IN STATEMENT NUMBER xxx
CONTAINS MORE THAN ONE
IDENTIFIER A'J: 'rHF~ SAME
STRUCTURE LEVEL.

System Action: The statement
is deleted.

S IEM0658I QUAI.IFIED NAME B.EGINNING yyyy
IN STATEMENT llliMBER xxx IS AN
AMBIGUOUS REl".ERENCE. DUMMY
REFERENCE INSERTED.

System Act~on: Statement will
be deleted by later phase.

,S IEM0659I UNSUPPORTED FEATURE. STRING
PSEUDO-VARIABLE APPEARS IN
REPLY, KEY'fO OR STRING OPTION
IN STATEMENT NUMBER xxx.
S'l'ATEMENT WILI, BE DELETED BY A
LATER PHASE.

S IEM0660I PSEUDO-VARIABLE yyyy IN
STATEMENT NUMBER xxx IS INVALID
BECAUSE IT IS NESTED IN ANOTHER
PSEUDO-VARIABLE.

Explanation: Language
restriction. Pseudo-variables
cannot be nested.

System Action: Statement will
he deleted by a later phase.

S IEM06611 USE OF • PRIOIUTY'
PSEUDO-VARIABLE IN STATEMENT
NUMBER xxx IMPLIES
MULTITASKING, WHICH IS NOT
SUPPORTED IN TSS.

System ActiOl}: The statement
is deleted.

174 Appendix~: PL/I Diagnostic Messages

!'rogri.Ulllller Response~ Correct
statement and recompile.

E IEM0662I IN S'fATEMENT NUMBER xxx CHECK
LIST CONTAINS DEFINED ITEM yyy.
IT HAS BEEN REPLACED BY ITS
BASE IDENTIF.IER.

Explanation: Defined items are
not permitted in CHECK lists.

§ystem Action: The base item
is assumed to replace the
reference to the defined item
in the CHECK list. References
in the text to the defined item
will not be checked.

S IEM06731 INVALID USE OF FUNCTION NAME ON
LEFT HAND SIDE OF EQUAL SYMBOL.
OR IN REPLY KEYTO OR STRING
OPTION, IN STA'fEMENT NUMBER xxx

System Action: statement will
be deleted by later phases.

S IEM06741 STATEMENT NUMBER xxx CONTAINS
ILLEGAL USE OF FUNCTION yyyy

System Action: Reference to
fUnction or whole statement
will be deleted by later
phases.

S IEM06751 IN STATEMENT NUMBER xxx
IDENTIFIER yyyy AFTER GO TO IS
NOT A LABEL OR ~BEL VARIABLE
KNOWN IN THE BLOCK CONTAINING
THE GO TO.

System ~ction: Statement will
be deleted by later phases.

S IEM0676I DEFERRED FEATURE. IDENTIFIER
yyyy NOT ALLOWED AS A BUILV-IN
FUNCTION OR PSEUDO-VARIABLE.
DU~~Y REFERENCE INSERTED IN
STATEMENT NUMBER xxx

Explanatio~: A language
feature has been used that is
not supported.

System Action: statement will
ce deleted by later phases.

User Response: Correct
statement by removing reference
to function in error.

S IEM0677I ILLEGAL PARENTHESIZED LIST IN
STATEMENT NUMBER xxx FOLLOWS AN
IDENTIFIER WHICH IS NOT A
FUNCTION OR ARRAY. LIST
DELETED.

S IEM0682I IN STATEMENT NUMBER xxx GO TO
TRANSFERS CONTROL ILLEGALLY TO
A FORMAT STATEMENT.

S IEM0683I zzzz WAS FOUND WHERE A FILE
NAME IS REQUIRED IN STATEMENT
NUMBER xxx. DUMMY DICTIONARY
REFERENCE REPLACES ILLEGAL
ITEM.

System Action: Statement will
be deleted by later phases.

W IEM0684I USE OF LABEL VARIABLE zzzz MAY
RESULT IN AN ILLEGAL BRANCH IN
STATEMENT NUMBER xxx

Explanation: It is possible
that the label variable may
contain a value which would
cause control to branch
illegally into a block.

System Action: None

User Response: Check validity
of possible branches.

S IEM068SI zzzz IS NOT A STATEMENT LABEL
ON AN EXECUTABLE STATEMENT.
DUMMY REFERENCE INSERTED AFTER
GO TO IN STATEMENT NUMBER xxx

System Action: Statement will
be deleted by later phases.

S IEM0686I zzz APPEARS IN A FREE OR
ALLOCATE STATEMENT BUT BAS NOT
BEEN DECLARED CONTROLLED.
DUMMY REFERENCE INSERTED IN
STATEMENT NU~BER xxx

System Action: A dummy
reference is inserted. The
statement will be deleted by a
later phase.

C IEM0687I IN STATEMENT NUMBER xxx GO TO
zzzz TRANSFERS CONTROL
ILLEGALLY TO ANOTHER BLOCK OR
GROUP. EXECUTION ERRORS MAY
OCCUR.

S IEM06881 COMPILER ERROR. TOO FEW LEFT
PARENTHESES IN STATEMENT NUMBER
xxx

Explanation: This is a
compiler error.

System Action: None taken:
cascade errors may result.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM06891 zzzz WAS FOUND WHERE A TASK
IDENTIFIER IS REQUIRED IN
STATEMENT NUMBER xxx. DUMMY
REFERENCE INSERTED.

System Action: Statement will
be deleted by later phases.

S IEM06901 zzzz WAS FOUND WHERE EVENT
VARIABLE IS REQUIRED IN
STATEMENT mJMBER xxx. DUMMY
REFERENCE INSERTED.

system Action: statement will
be deleted by later phases.

S IEM0691I INVALID ITEM zzzz IN DATA LIST,
OR 'FROM' OR 'INTO' OPTION, IN
STA'l'EMEN'l' NUMBER xxx

System Action: Statement will
be deleted by later phases.

S IEM0692I DATA DIRECTED I/O LIST OR FROM
OR INTO OPTION IN STATEMENT
NUMBER xxx CONTAINS A
PARAMETER. DEFINED OR BASEC
ITEM zzzz.

System Action: Statement will
be deleted by later phases.

S IEM0693I ILLEGAL USE OF FUNCTION zzzz IN
INPUT LIST IN STATEMENT NUMBER
xxx. DUMMY REFERENCE INSERTED.

System Action: Statement will
be deleted by later phases.

S IEM06941 IN THE FOP~AT LIST IN STATEMENT
NUMBER xxx A REMOTE FORMAT ITEM
REFERENCES zzzz. WHICH IS NOT A
STATEMENT LABEL IN THE CURRENT
BLOCK. DUMMY REFERENCE
INSERTED.

System Ac~io!!: Format. item
deleted by later phase.

S IEM069SI LABEL ARRAY zzzz IS NOT
FOLLOWED BY A SUBSCRIPT LIST
AFTER GO TO IN STATEMENT NUMBER
xxx. DUMMY REFERENCE REPLACES
REFERENCE TO ARRAY.

System Action: Statement will
be deleted by later phases.

W IEM06961 IN STATEMENT NUMBER xxx IT IS
AN ERROR IF THE PARAMEI'ER zzzz
IN A REMOTE FORMAT ITEM REFERS
TO A FORMAT STATEMENT WHICH IS
NOT INTERNAL TO THE SAME BLOCK
AS THE REMOTE FORMAT ITEM.

Explanation: Remote formats
becoroe executable code, but not
internal procedures.

Part IV: Appendixes 175

Therefore, they must appear in
the sawe block .in 'Which they
are used.

System A<;:::!:iQD: Ohject-time
error message is

User Response: Correct program
and recompile.

S IEM0697 I STATEMENT' LABEL zzzz ATTACHED
TO S,!'A'fEMENT NUMBE.J:I. xxx IS USED
AS A REMOTE FORl-tA'l' ITEM IN THAT
STATEMENT. A DUf<O.MY REPLACES
THE REMOTE FOR~.AT ITEM.

System Action: St.atement will
be deleted by a later phase.

S IEM0698I THE BASED VARIABLE zzzz IN
LOCA'fE STATEMENT NUMBER xxx IS
NOT AT LEVEL 1. DUMMY
REFERENCE INSERT ED.

System Act.ion: Statement will
be deleted by a later phase.

S IEM0699I STRUCTURE ARGUMENT zzzz OF FROM
OR INTO OPTION IN STATEMENT
NUMBER xxx IS NOT A MAJOR
STRUCTURE. DUMMY REFERENCE
INSERTED.

System Action: Statement will
be deleted by a later phase.

S IEM07001 ILLEGAL USE OF FUNCTION. LABEL
OR VARYING STRING zzzz AS
ARGUMENT OF FROM OR INTO OPTION
IN ST.ATEMENT NUMBER xxx. DUMMY
REFERENCE INSERTED.

System Action: Statement will
be deleted by a later phase.

S IEM07011 ARGUMID~T zzzz OF SET OPTION IS
NOT A POINTER VARIABLE. DUMMY
REFERENCE INSERTED.

System A.ction: Statf.'Jnent will
be deleted by a later phase.

W IEM0702I LABEL, TASK OR EVENT VARIABLE
zzzz USED IN FROM OR INTO
OPTION IN STATEMENT NUMBER xxx
MAY LOSE ITS VALIDITY IN
TRANSMISSION

S IEM0703I INVALID IDENTIFIER zzzz FREED
IN STATEMENT NUMBER xxx

Explanation: The identifier in
the FREE statement is not:

1 • A BASED 0.1: a CONTROLLED
variable, or

176 Appendix H: PL/I Diagnostic Messages

2. A major structure with the
BASED or CONTROLLED
attribute.

§ystem Action: Invalid
identifier replaced by dummy.

S IEM010QI STATEMENT NUMBER xxx CONTAINS
INVALID USE OF FUNCTION zzzz

System Action: Statement will
be deleted by a later phase.

W IEM0705I IF THE LABEL VARIABLE IN GO TO
STATEMENT NUMBER xxx ASSUMES
THE VALUE OF ITS VALUE-LIST
MEMBER zzzz, THE STATEMENT WILL
CONSTITUTE AN INVALID BRANCH
INTO AN ITERATIVE DO GROUP.

System Act:i(~: None

User Response: Check that
branch will be valid at
execution time.

S IEM0706I VARIABLE zzzz IN LOCATE
STATEMENT IS NOT A BASED
VARIABLE. DUMMY REFERENCE
INSERTED.

System Action: Stat_ement will
be deleted by a later phase.

User Response: Correct the
invalid statement.

S IEM0701I ARGUMENT zzzz OF IN OPTION IS
NOT AN AREA VARIABLE. DUMMY
REFERENCE INSERTED.

System Action: Statement will
be deleted hy a later phase.

pser Response: Correct the
invalid statement.

S IEM01151 TEXT yyyy ASSOCIATED WITH THE
INITIAL ATTRIBUTE IN STATEMENT
NUMBER xxx IS ILLEGAL AND HAS
BEEN IGNORED.

Explanation: The INITIAL
attribute has been used
incorrectly.

System Action: The INITIAL
attribute is deleted.

S IEM0718I INVALID CHECK LIST IN STATEMENT
NUMBER xxx. STATEMENT HAS BEEN
CHANGED TO • ON ERROR'.

S IEM0719I ELEMENT OF' LABEL ARRAY zzzz
WHICH IS DECLARED WITH INITIAL
ATTRIBUTE USED AS STATEMENT
LABEL ON STATEMENT NUMBER xxx

System Action: Label is
deleted.

5 IEM0720I SUBSCRIP'I'ED IDENTIF'IER zzzz
USED AS LABEL ON STATEMENT
NUMBER xxx IS NOT A LABEL ARRAY

System Action: Label is
deleted.

S IEM0721I ELEMENT OF STATIC LABEL ARRAY
zzzz USED AS LABEL ON STATEMENT
NUMBER xxx

system Action: Lacel is
deleted.

S IEM0722I ELEMENT OF LABEL ARRAY zzzz
USED AS LABEL ON STATEMENT
NUMBER xxx IN BLOCK OTHER THAN
THE ONE IN WHICH IT IS
DECLARED.

System Action: An error
statement is inserted in the
text in place of the offending
labeL

T IEM07231 COMPILER ERROR IN STATEMENT
NUMBER xxx

Explanatio~: Compiler error
found in scan of text.

System Action: Compilation is
terminated

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM0724I FORMAL PARAMETER zzzz IN CHECK
LIST. PARAMETER IS IGNORED.

Explanation: The identifier
list of a CHECK prefix must not
contain formal parameters.

S IEM0725I STATEMENT NUMBER xxx HAS BEEN
DELETED DUE TO A SEVERE ERROR
NOTED ELSEWHERE.

System Action: The whole
statement is replaced by an
error statement.

S IEM0726I IDENTIFIER zzzz IN STATEMENT
NUMBER xxx IS NOT A FILE NAME.
THE STATEMENT IS DELETED.

Explanation: The identifier
has been used previously in a
different context and is
therefore not recognized as a
file name.

S IEM07211 IDENTIFIER zzzz IN STATEMENT
NUMBER xxx IS NOT A CONDITION
NAME. THE STATEMENT IS
DELE'I'ED.

Explanation: The identifier
has been used previously in a
different context and is
tllerefore not recognized as a
condition name.

T IEM072BI COMPILATION TERMINATED DUE TO A
PREVIOUSLY DETECTED SEVERE
ERROR IN STATEMENT NUMBER xxx

Explanation: A previous module
has inserted a dummy dictionary
reference into the second file.
The compiler cannot recover.

S IEM0729I COMPILER ERROR IN SCALE FACTOR
IN PICTURE BEGINNING yyyy.
THIS PICTURE OCCURS IN
STATEMENT NUMBER xxx, AND
POSSIBLY IN OTHER STATEMENTS.

§Y.stem Action: Scan of picture
terminated; all references to
picture deleted.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM0130I MORE THAN ONE SIGN CHARACTER
PRESENT IN A SUBFIELD OF
PICTURE yyyy. THIS PICTURE
OCCURS IN STATEMENT NUMBER xxx,
AND POSSIBLY IN OTHER
STATEMENTS.

System Action: Scan of picture
terminated; picture ignored by
later phases.

S IEM07311 PICTURE CHARACTER M APPEARS IN
NON-STERLING PICTURE yyyy.
THIS PICTURE OCCURS IN
STATEMENT NUMBER xxx, AND
POSSIBLY IN OTHER STATEMENTS.

System Action: Scan of Ficture
terminated; picture ignored by
later phases.

S IEM0732I FIELD MISSING IN STERLING
PICTURE yyyy. THIS PICTURE
OCCURS IN STATEMENT. NUMBER xxx,
AND POSSIBLY IN OTHER
STATEMENTS.

System Action: Scan of ficture
terminated; picture ignored by
later phases.

S IEM07331 ILLEGAL EDIT CHARACTERS AT
START OF STERLING PICTURE yyyy.

Part IV: Appendixes 177

THIS PICTURE occons IN
STATEMENT NUMBER xxx, AND
POSSIBLY IN O'fdt:R STATEMEN'fS.

System A5J:_ioIl:
terminated;
later i~hases.

Scan of picture
ignored by

S IEM0734I ILLEGAL CHA.l{l\C'Tl'::R OR I:LLEGAL
NUMBER OF' CHARACTERS IN POUNDS
FIELD OF S'rERJ.ING PICTURE
yyyy. 'l'HIS PI CTURE OCCURS IN
STATEMENT NUMBER xxx, AND
POSSIBLY IN OTHER STATEMENTS.

System Action: Scan of picture
terminated; picture ignored by
later phases.

S IEM07351 ILLEGAL CHARAC~ER OR ILLEGAL
NUMBER OF CHAR."l',C'fERS IN
SHILLINGS FIELD OF STERLING
PICTURE yyyy. THIS PICTURE
OCCURS IN S'l'A1'EMENT NUMBER xxx,
AND POSSIBLY IN OTHER
STATEMENTS.

System Action: Scan of picture
terminated; picture ignored by
later phases.

S IEM0736I WRONG NUMBER OF DEUMITER
CHARACTERS M IN STERLING
PICTURE yyyy. THIS PICTURE
OCCURS IN ST.ATEMEN~r NUMBER xxx,
AND POSSIBI,Y IN OTHER
STA'fEMENTS.

System Action: Scan of picture
terminated; picture ignored by
later phases.

S IEM0137I ILLEGAL CHARACTER OR ILLEGAL
NUMBER OF CHARACTERS IN PENCE
FIELD OF STERLING PICTURE yyyy.
THIS PICTURE OCCURS IN
STATEMENT NUMBER xxx, AND
POSSIBLY IN OTHF~ STATEMENTS.

System Action: Scan of picture
terminated; picture ignored by
later phases.

S IEM0139I STATIC PICTURE CHARAC'I'ER $ S +
- NOT AT EXTREMITY OF SUBFI.ELD.
PICTURE IN ERROR IS yyyy. THIS
PICTURE OCCURS IN S'I-ATEMENT
NUMBER xxx, AND POSSIBLY IN
OTHER STATEMENTS.

system Action: Scan of picture
continued with item ignored;
picture ignored by later
phases.

E IEM0740I MULTIPLE USE OF E K OR V IN
PICTURE. PICTURE TRUNCATED AT
ILLEGAL CHARACTER. PICTURE IN

178 Appendix H: PUI Diagnostic Messages

ERROR IS 'iYYY. THIS PICTURE
OCCURS IN STATEMENT NUMBER xxx,
AND POSSIBI.Y IN OTHER
STATEMENTS.

System Action: Picture
trunctated at point indicated
indicated.

E IEM01~lI CR OR DB INCORRECTLY POSITIONED
IN SUBFIELD. PICTURE TRUNCATED
liT THIS POINT. PICTURE IN
ERROR IS yyyy. THIS PICTURE
OCCURS n~ STATEMENT NUMBER xxx,
AND POSSIBLY IN OTHER
STATEMENTS.

System Action: Picture
truncated at point indicated.

E IEM07~2I CR OR DB GIVEN FOR A NON-REAL,
NON-NUMERIC OR FLOATING FIELD.
PICTURE TRUNCATED BEFORE CR OR
DB IN PICTURE yyyy. THIS
PICTURE OCCURS IN STATEMENT
NUMBER xxx, AND POSSIBLY IN
OTHER STATEMENTS.

Sys·tem Action: Picture
truncated at point. indicated.

S IEM0145I ILLEGAL USE OF PICTURE
CHARACTER Z OR * IN PICTURE
yyyy. THIS PICTURE OCCURS IN
STATEMENT NUMBER xxx, AND
POSSIBLY IN OTHER STATEMENTS.

System Action: Scan of picture
continued with ite~ ignored;
picture ignored by later
~hase5.

S IEM07461 STERLIRG MARKER FOUND IN OTHER
THAN FIRST POSITION IN PICTURE
yyyy. THIS PICTURE OCCURS IN
STATEMENT NUMBER xxx, AND
POSSIBLY IN OTHER STATEMENTS.

System .a.ction: Scan of picture
continued with item ignored;
picture ignored by later
phases.

S IEM0147I STERLING PICTURE CHARACTERS
FOUND IN NON-STERLING PICTURE.
SCANNING OF PICTURE STOPPED.
PICTURE IN ERROR IS yyyy. THIS
PICTURE OCCURS IN STATEMENT
NUMBER xxx, AND POSSIBLY IN
OTHER STATEMENTS.

System Action: Scan of picture
terminated: picture ignored by
later phases.

E IEM0748I ILLEGAL USE OF SCALING FACTOR
IN PICTURE. SCALING FACTOR
ONWARDS DELETED. PICTURE IN

ERROR IS yyyy. THIS PICTURE
OCCURS IN STATEMENT NUMBER xxx,
AND POSSIBLY IN OTHER
STATEMENTS.

System ActioD: Picture
truncated at point indicated.

S IEM0149I ILLEGAL USE OF SCALING FACTOR
IN PICTURE. SCAN OF PICTURE
TERMINATED. PICTURE IN ERROR
IS yyyy. THIS PICTURE OCCURS
IN STATEMENT NUMBER xxx. AND
POSSIBLY IN OTHER STATEMENTS.

System Action: Scan of picture
terminated; pict.ure ignored by
later phases.

S IEM0750I ILLEGAL CHARACTER PRESENT IN
CHARACTER STRING PICTURE yyyy.
THIS PICTURE OCCURS IN
STATEMENT NUMBER xxx, AND
POSSIBLY IN OTHER STATEMENTS.

System Action: Scan of picture
continued with item ignoredi
picture ignored by later
phases.

S IEM01511 NO MEANINGFUL CHARACTERS IN
PICTURE yyyy. THIS PICTURE
OCCURS IN STATEMENT NUMBER xxx,
AND POSSIBLY IN OTHER
STATEMENTS.

System Action: Scan of picture
continued with item ignored;
picture ignored by later
Fhases.

S IEM0752I ILLEGAL USE OF, OR ILLEGAL
CHARACTERS IN, STERLING PICTURE
yyyy. THIS PICTURE OCCURS IN
STATEMbNT NUMBER xxx, AND
POSSIBLY IN OTHER STATEMENTS.

System Action: Scan of picture
continued with item ignored;
Ficture ignored cy later
phases.

S IEM0154I ILLEGAL CHARACTER IN PICTURE
yyyy. THIS PICTURE OCCURS IN
STATEMENT NUMBER xxx, AND
POSSIBLY IN OTHER STATEMENTS.

System Action: Scan of picture
continued with item ignored;
picture ignored by later
phases.

S IEM07551 ILLEGAL USE OF DRIFTING EDITING
SYMBOLS S $ + - IN PICTURE
yyyy. THIS PICTURE OCCURS IN
STATEMENT NUMBER xxx, AND
POSSIBLY IN OTHER STATEMENTS.

system Action: Scan of picture
continued with item ignored;
picture ignored by later
fhases.

S IEM0756I IMPLEMEN'fATION RESTRICTION.
PRECISION TOO LARGE OR PICTURE
TOO LONG IN PICTURE BEGINNING
yyyy. THIS PICTURE OCCURS IN
STATEMENT NUMBER xxx, AND
POSSIBLY IN OTHER STATE~ENTS.

System Action: Scan of picture
continued with item ignored;
picture ignored by later
phases.

'1' IEM07581 COMPILER ERROR IN PHASE FT.

Explanation: Compiler error
found in scan of dictionary.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM0759I IMPLEMENTATION RESTRICTION.
STERLING CONSTANT EXCEEDS
4166666666666.13.3L. HIGH
ORDER DIGITS LOST DURING
CONVERSION TO DECIMAL.

System Action: High order
digits lost somewhere in the
following conversion process:
shift pounds field left cne
digit, double ty addition. Add
shillings field. Add result,
doubled by addition. to result
shifted left one digit. Add
pence field.

S IEM07601 IMPLEMENTATION RESTRICTION.
EXPONENT FIELD TOO LARGE IN
PICTURE yyyy. THIS PICTURE
OCCURS IN STATEMENT NUMBER xxx,
AND POSSIBLY IN OTHER
STATEMENTS.

System Action: Reference to
picture deleted.

S IEM0161I PICTURE CHARACTER E OR K
APPEARS WITHOUT AN EXPONENT
FIELD FOLLOWING IT. PICTURE IN
ERROR IS yyyy. THIS PICTURE
OCCURS IN STATEMENT NUMBER xxx,
AND POSSIBLY IN OTHER
STATEMENTS.

_~tem Action: Reference to
picture deleted.

User ReSponse: Correct picture

Part IV: Appendixes 179

S IEM07621 PICTURE CHAILll,Cl'EH OR K IS NOT
PRECEDED BY A DIGIT POSITION
CHARACTER. PICTfJHE IN ERROR IS
yyyy. THIS PICTURE OCCURS IN
STATEMENT NUMBER xxx. AND
POSSIBLY IN OTHER STATEMENTS.

System Action: Reference to
picture deleted.

S IEM0763I INVALID CHARACTER nmm IN
EXPONEN'l' FIELD OF PIC'I'URE yyyy
IN STATEMENT NUMBER xxx.

system Actior.!: Scan of picture
continued with item ignored;
picture ignored by la·tel: phase.

W IEM0764I ONE OR MORE FIXED BINARY ITEMS
OF PRECISION 15 OR LESS HAVE
BEEN GIVEN HALFWORD STORAGE.
THEY ARE FLAGGED ••••••••••• IN
THE XREF/ATR LIST.

S IEM07691 IMPLEMENTATION RESTRICTION.
STATEMENT NUMBER xxx AS
EXPANDED IS TOO LONG AND HAS
BEEN DELETED.

User Response: Silliplif y by
splitting into two or more
statements and recompile.

T IEM07701 COMPILERERHOR IN INPUT TO
PHASE GA IN STATEMENT NUMBER
xxx

Expla~ation: The compiler has
encountered meaningless input
to pbase GA.

System Action~ compilation is
terminated.

User Re~ns~: Save relevant
data and inform the system
manage:r:- or administrator of the
error.

~; IEM0771I IMPLEMENTA'fION RESTRICTION.
NESTING OF FORMAT LISTS IN
STATEMENT NUMBER xxx EXCEEDS
20. STATEMENT DELETED.

S IEM07781 AN INTERMEDIATE VARIABLE HAS
BEEN CREATED IN READ INl'O
STATEMENT NUMBER xxx. THIS
STATEMENT SPECIFIES FILE zzzz,
WHICH HAS BEEN DECLARED WITH
THE EVN(COBOL) ATTRIBUTE AND
THE EVENT OPTION. THE EVENT
OPTION HAS BEEN DELETED.

Explanation: The intermediate
variable has been created
because there is a difference
between the PL/I mappinq and
the COBOL warping of the READ

180 Appendix H: PIJI Diagnostic Messages

INTO variable. The READ INTO
statement haS been expanded
into:

READ INTO (Intermediate
variable);

Variable ::: Intermediate
variable;

The READ statement must have
been completed before the
assignment takes place. The
EVENT option has been deleted
to ensure that the READ
statement is complete before
processing continues.

Syste~ Action~ Delete the
EVENT opt.ion and continue.

User Respon~~: Check the use
of the EVENT option or of the
COBOL file.

S IEM07791 AN INTERMEDIATE VARIABLE HAS
BEEN CREATED IN WRITE/REWRITE
FROM STA'rEMENT NUMBER xxx.
THIS STATEMENT SPECIFIES FILE
zzzz, ~HICB HAS BEEN DECLARED
~ITH THE ENV(COBOL) ATTRIBUTE
AND THE ~VENT OPTION. THE
EVENT OPTION HAS BEEN DELETED.

Explanation: The intermediate
variable has been created
because there is a difference
cetween the PL/I mapping and
the COBOL mapping of the
~RITE/REWRITE FROM variable.
The WRITE/REWRITE FROM
statement. has been expanded to:

Intermediate
variable = variable;
WRITE/REWRITE FROM
(Intermediate variable);

The WRITE/REWRITE statement
must have been completed before
the intermediate variable can
be deleted. The EVENT o~tion
bas been deleted to ensure that
the WRITE/REWRITE statement is
complete before processing
continues.

System Action: Delete the
EVENT option and continue.

User Response: Check the use
of the EVENT option or of the
COBOL file.

S IEM0180I THE USE OF COBOL FILE zzzz IN
LOCATE S~ATEMENT NUMBER xxx MAY
LEAD TO ERRORS WHEN THE RECORD
IS PROCESSED.

Explanation: The COBOL
structure-mapping is not
necessarily the same as the
PL/I structure-mapping.

System Action: The statement
is deleted.

User Response: Either the
LOCATE statement must be
replaced by a WRITE FROM
statement, or a non-COBOL file
must be used.

S IEM0781I 'fHE USE OF COBOL FILE 7.ZZZ IN
READ SET STATEMENT NUMBER xxx
HAY LEAD TO ERRORS WHEN THE
RECORD IS PROCESSED.

Explanation: The COBOL
structure-mapping is not
necessarily the same as the
PL/I structure-mapping.

System Action: The statement
is deleted.

User Response: Either the READ
SET statement must be replaced
hy a READ INTO statement, or a
non-COBOL file must be used.

S IEM0782I '1'HE ATTRIBUTES OF zzzz USED IN
H.ECORD I/O STATEMENT NUMBER xxx
ARE NOT PERMITTED WHEN A COBOL
FILE IS USED.

Explanation: The attrihutes
referred to do not exist in
COBOL.

System Action: The statement
is deleted.

S IEM0784I INVALID ARGUMENT LIST FOR
ALLOCATION FUNCTION IN
~;TATEMENT NUMBER xxx HAS BEEN
TRUNCATED OR DELETED.

Explanation: Only a single
argument can be given in the
ALLOCATION function. and it
must be one of the following:

1. A major structure.

2. An unsubscripted array or
scalar variable, not in a
structure.

It must also be of nonbased
CONTROLLED storage class.

System Action: If the argument
list begins with a valid
operand, that operand is used
as the argument; otherwise, the
argument list is deleted.

W IEM0786I NAME, NOT VALUE. OF FUNCTION
zzzz PASSED AS ARGUMENT IN
STATEMENT NUMBER xxx

E IEM0787I INCORRECT NUMBER OF ARGUMENTS
FOR FUNCTION OR ROUTINE zzzz IN
STATEMENTS yyyy.

EXE,.lanation: Number of
arguments differs from the
ENTRY declaration.

System Action: Arguments are
matched as far as possible;
zzzz is invoked using all the
arguwents.

User Response: Ignore this
message if zzzz is a non-PL/I
routine that can accept a
variable number of argureents.
Otherwise, correct the program.

W IEM0791I NU~BER OF ARGUMENTS FOR
FUNCTION OR SUBROUTINE zzzz IN
STATEMENTS yyyy IS INCONSISTENT
WITH NUMBER USED ELSEWHERE.

Explanation: The number of
arguments for zzzz has not been
explicitly declared.
'ELSEWHERE' refers either to
the PROCEDURE or ENTRY
statement for zzzz. or to a
previous invocation of the
function.

System Action: zzzz is invoked
using all the arguments.

User Response: Ignore this
message if zzzz is a non-PL/I
routine that can accept a
variable number of arguments.
OtheL~ise. correct the program.

E IEM0792I IN STATEMENT NUMBER xxx IT IS
IMPOSSIBLE TO CONVERT FROM THE
ATTRIBUTES OF ARGUMENT NUMBER
nnnn TO THOSE OF THE
CORRESPONDING PARAMETER IN
ENTRY zzzz. THE PARAMETER
DESCRIPTION IS IGNORED.

Explanation: Self explanatory.
Examples of circumstances under
which the error message is
generated are label arguments
to data item parameters, array
arguments to scalar parameters.

System Action: The parameter
description is ignored. If the
parameter description is
correct, this loIil1 qive rise to
totally incorrect execution.

Part IV: Appendixes 181

User_~~~~,:,~! (>:n:,.-eetthe
parameter des~r~ption or the
argument so t· hat. 0:t least
con Ilers ion i ".

W lEM07931 IN STATEMEN1- NUi'lH.ER XlI;X

ARGUMENT NLJf>1m~R nmm OF ENTRY
zzzz IS A ~>CALAA AND THE
CORRESPONDING PARA~lF.TER IS A
STRUCTURE.

System Act.J-0I!~ A teJIlporary
structure of the same type as
the paramet€x' descripti.on is
created and the c':l1:gwlient is
assigned to each .base element,
converting where necessary.

S IEM07941 IN STATEMEN'r NUi'·tB.ER xxx
ARGUMENT NUMBER nnrm 01" ENTRY
zzzz CONTAINS A SUBSCRIPX'ED
VARIABLE WITH THE WRONG NUMBER
OF SUBSCRIPT~:;. THE r,'l'NfEMENT
rlAS BEEN DELETED.

S IEM079SI DEFERRED FEA'rUHE. IN S'fATEMENT
NUMBER xxx .AHGUMNh'T NUMBER nnnn
OF ENTRY zzzz CONTAINS A
CROSS-Sr.~CTION OF AN ARRAY OF
STRUCTURES. S'I'ATEMEN'T DELETED.

Explanation~ 'l'he usage
referred to is not supported.

S IEM07961 IN STATEMENT NUMBER xxx
ARGUMENT NUMBER nnnn OF ENTRY
zzzz IS A GENERIC ENTRY NAME
AND THERE IS NO CORRESPONDING
ENTRY DESCRIPTION. STATEMENT
DELETED.

S IEM0797I IN STATEMENT NmmER xxx
ARGUMENT NUHBER mmn OF ENTRY
zzzz IS A BUII/f'-TN }'UNC'TION
WHICH MAY NO'I' BE PASSED AS AN
ARGUMENT. STl-,TEl-lEN'l' DELETED.

S IEM07981 IN STA'l'EMEN'J NUMBER xxx
ARGUMENT NUMBER nnnn 0.1" ENTRY
zzzz IS NOT PERMISSIBLE, THE
STATEMENT HAS BEEN DELETED.

Explanatiof!: ~rhe .message is
generated, for example, when
scalar arguments are given for
array build-in functions. For
the ADDR function, the message
could indicate that the
function cannot return a valid
result because the argument
does not satisfy the
requirements of contiguous
storage. This could occur, for
example, if the argument was a
cross-section of an array.

E IEM07991 IN STATEMEN'r NUMBER xxx A DUMMY
ARGUMENT HAS BEEN CREATED FOR

182 Appendix B: PL/I Diagnostic Messages

ARGUMENT NUMBER IIDnn OF ENTRY
zzzz. 'I'HIS ARGUMENT APPEARS IN
A SETS LIS'!'.

Sys~em Action: The value
assigned to the ·temporary
argument dux:ing the execution
of the procedure is lost on
return from the procedure.

W IEM0800I IN STATEMENT NUMBER xxx
ARGUMENT NUMBER nnnn IN ENTRY
zzzz IS A SCALAR AND THE
CORRESPONDING PARAMETER IS AN
ARRAY.

system Action: A temporary
array wit~ the attributes of
the entry description is
created and the scalar is
aSSigned to each element of the
array. converting the tYFe if
necessary.

S IEM0801I IN STAT&~NT NUMBER xxx
ARGUMENT NUMBER rmnn IN ENTRY
zzzz IS SCALAR CORRESPONDING TO
AN ARRAY PARAME~ER WITH •
BOUNDS. THE STATEMENT HAS BEEN
DELETED.

W IEM0802I IN STATF..MENT NUMBER xxx
ARGUMENT NUMBER nnnn OF ENTRY
zzzz DOES NJf MATCH THE
PARAMETER. A DUMMY ARGUMENT
HAS BEEN CREATED.

T IEMOS03I IMPLEMENTATION RESTRICTION.
STATEMENT NUMBER xxx CONTAINS
TOO MANY NESTED FUNCTION
REFERENCES. LIMIT EXCEEDED AT
ARGUMENT /),'UMBER rmnn OF ENTRY
zzzz

System hct~~: Compilation is
terminated.

User Respons~: Reduce depth of
function call nesting.

T IEM08041 IMPLEMENTATION R&STRICTION.
STATEMENT NUMBER xxx IS TOO
LONG AND HAS BEEN DELETED.

System Action: compilation is
terminated.

User Response: Reduce
statement size.

S IEH08051 DEFERRED FEATURE. IN STATEMENT
NUMBER xxx ARGUMENT NUMBER nnnn
OF ENTRY zzzz IS AN EVENT.
STATEMENT DELETED.

Explanation: A language
feature has been used that is
not supported.

S IEM0806I IN STATEMENT NUMBER xxx
ARGUMENT NUMBER nnnn OF ENTRY
zzzz IS NOT CONTROLLED BUT THE
CORRESPONDING PARAMETER IS.

System Action: An execution
error will occur on entry to
the called procedure.

S IEM08071 IN STATEMENT NUMBER xxx
ARGUMENT NUMBER nnnn OF
BUILD-IN FUNCTION zzzz IS AN
ENTRY NAME. THE STATEMENT HAS
BEEN DELETED.

E IEMOSOSI IN STATEMENT NUMBER xxx
ARGUMENT NUMBER yyy WILL CAUSE
A DUMMY ARGUMENT TO BE PASSED
TO ENTRY yyy IN ANOTHER TASK.

T IEM0816I COMPILER ERROR. INVALID END OF
STATEMENT NUMBER xxx

Explanation: Compiler error in
scan of input text.

system Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

T IEMOS17I COMPILER ERROR IN LABEL CHAIN
FOR STATEMENT NUMBER xxx

Explanation: Compiler error in
scanning labels of a statement.

system Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error. Note that this error
can be avoided by using only
one label on the statement.

T IEMOS1SI COMPILER ERROR IN DICTIONARY
ENTRY FOR STATEMENT NUMBER xxx

Explanation: Compiler error in
scanning source text.

system Action: compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

T IEM0819I COMPILER ERROR IN CHECK/NOCHECK
LIST ENTRY FOR STATEMENT NUMBER
xxx

~xplanation: Compiler error in
CHECK 01: NOCHECK list
dict.ionary entry.

§ystem Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrato:r- of the
error.

T IEM0820I IMPLEMENTATION RESTRICTION.
STATEMENT NUMBER xxx TOO LONG.

Explanation: Statement length
exceeds text-block size.

System Action: Compilation is
terminated.

User Response: Subdiv1de
statement and recompile.

E IEMOS211 INVALID ITEM zzzz IGNORED IN
CHECK LIST IN STATEMENT NUMBER
xxx

Explanation: Valid items in
CHECK lists are: statement
labels, entry labels, and
scalar, array, structure. or
label variables. Subscripted
variable names and data having
the DEFINED attribute are not
allowed.

W IEM08231 IMPLEMENTATION RESTRICTION. NO
ROOM FOR zzzz IN CHECK TABLE
STATEMENT NUMBER xxx

Explanation: The CHECK list
table has overflowed.

System Action: The item
mentioned is ignored.

User Response: Do not CHECK so
many items.

T IEM0824I IMPLEMENTATION RESTRICTION.
TOO MANY CHECKED ITEMS WITHIN
STATEMENT NUMBER xxx

Explanation: A stack used to
trace nested IF statements has
overflowed.

System Action: Compilation is
terminated.

User Response: Rephrase IF
statements or do not CHECK so
many items.

T IEM0825I COMPILER h~ROR IN READ DATA
STATEMENT NUMBER xxx

Part IV: Appendixes 183

];;xrclanat_i,on: Compiler error in
processing GET O.X: HEAD DATA
statement.

~tem IH::tj,gn: Compilation is
t.erminatecL

User Res ponse: sU:Fpl.Y an
explicit DATA list ..

W lEM0826I IMPLEMENTATION RES'fRICTION.
CHECK WILL N()'l' BE RAISED FOR
zzzz IN STATEMENT NUMBER xxx
BECAUSE OF EVENT OPTION

Explana ti on: The CO!!lFi lex' does
not raise the CHECK condition
for variables when they are
changed in statements
containing an EVENT option.

S IEM0832I IN 'I'HE EXPANSION OF BY NAME
ASSIGNMENT STATEMENT NUMBER xxx
A SET OF MATCHING ELEMENTS HAS
BEEN FOUND BUT THEY ARE NOT ALL
BASE ELEMENTS. THE STATEMENT
HAS BEEN DELETED.

Explanation: For a valid
component scalar assignment to
result from a BY NAME structure
assignment, it is necessary
that all the scalar names
derived from original structure
name operands have identical
qualification relative to the
structure name originally
specified--e.g: DCL 1S, 2T,
2U. 3V, DCL lW, 2T. 2Ui W=S;
gives rise to the con::ponent
assignments w.T=S.T; W.U=S.U.
the second of which is invalid.

System Action: The BY NAME
assignment statement is
deleted.

User .Respons~~ Refer t.o the
PL/I Reference Manual - rules
for expansion of structure
assignment. BY NJ\lI!IE - and
correct the error.

S IEM08331 THE EXPANSION OF BY NAME
ASSIGNMENT STATEMENT NUMBER xxx
HAS RESULTED IN NO COMPONENT
ASSIGNMENTS.

System Action: The statement
is treated as a null statement.

S IEM08341 THE ASSIGNED OPERAND IN BY NAME
ASSIGNMENT STATEMENT NUMBER xxx
IS NOT A STRUCTURE: OR AN ARRAY
OF STRUCTUHES. STATEMENT
DELJ:,'TED.

184 Appendix H: PL/I Diagnostic Messages

EXElanat;J..2B: In BY NAME
assignment.. the operand to the
left of the equals sign must be
a structure or an array of
structures.

S IEM08351 ALI OPERANDS LEFT OF EQUAL
SYMBOL IN MULTIPLE STRUCTURE
ASSIGNMENT STATEMENT NUMBER xxx
ARE NOT STRUCTURES. STATEMENT
I:ELETED

EXElanation: In multiple
structure assignment, all the
operands being assigned to must
be structures.

System Action: Replaces
statement by a null statement
and continues.

User Response: Break statement
up into a series of separate
statements.

S IEM0836I ILLEGAL ARRAY REFERENCE IN
STRUCTURE ASSIGNMENT OR
EXPRESSION. STATEMENT NUMBER
xxx DELETED.

Explanation: In PL/I, arrays
of scalars are invalid operands
in structure, or array of
structure, expressions.

T IEM08371 COMPILER ERROR IN INPUT TO
PHASE IEMHF.

Explanation: Meaningless
input. This foessage is also
produced if an error is found
in a DECLAEE statement. In
that case. a second message, of
severity levels is issued
givill9 details of the er.ror.

System Action: Compilation is
terminated.

User Resoonse: Save relevant
data and inform the system
manager or administrator of the
error.

E IEM08381 EXPRESSION RIGHT OF EQUAL
SYMBOL IN BY NAME ASSIGNMENT
STATEMENT NUMBER xxx CONTAINS
NO STRUCTURES. BY NAME OPTION
DELETED.

Explanation: In an assignment
statement having the BY NAME
option, the expression to the
right of the equal symbol =
should contain at least one
structure or array of
structures.

S IEM0848I IMPLEMENTATION RESTRICTION.
THE EXPANSION OF STRUCTURRE
EXPRESSIONS IN STATEMENT NUMBER
xxx HAS CAUSED A TABLE INTERNAL
TO THE COMPILER TO OVERFLOW.
STATEMENT DELE'TED.

Explanation: The nesting of
structure expressions in
argument lists is too deep_

User Response: Decrease the
nesting_

S IEM0849I AN EXPRESSION OR ASSIGNMENT IN
STATEMENT NUMBER xxx EITHER
CONTAINS SEPARATE STRUCTURES
WITH DIFFERENT STRUCTURING. OR
CON'fAINS BOTH A STRUCTURE AND
AN ARRAY' OF STRUCTURES. THE
STATEMENT HAS BEEN DELETED.

Explanation: PL/I does not
allo~ separate structures with
different structuring within
the same expression or
aSSignment. This compiler does
not support reference to both a
structure and an array of
structures within the same
expression or aSSignment.

S IEM0850I ~HE BOUNDS OF THE BASE ARRAYS
OF THE STRUCTURE OPERANDS OF
THE STRUCTURE EXPRESSION OR
ASSIGNMENT IN STATEMENT NUMBER
xxx ARE NOT THE SAME. THE
STATEMENT HAS BEEN DELETED.

Explanation: In a structure
assignment or expression. all
structure operands must have
the same number of contained
elements at the next level.
Corres~onding sets of contained
elements must all be arrays of
structures, structures. arrays.
or scalars. The arrays must
have the same dimensionality
and bounds.

User Response: Refer to the
PL/I Reference Manual - the
expansion of array and
ctructure expressions and
assignments - and correct the
program.

S IEM0851I IMPLEMENTATION RESTRICTION.
STATEMENT NUMBER xxx IS TOO
LONG AND HAS BEEN DELETED.

Explanation: The ex~ansion of
structure expressions or
assignments has given rise to a
statement which exceeds one
text block in length.

User ~~SI~ns~: Decrease
statement size.

S IE~08S2I A SUBSCRIPTED REFERENCE TO AN
ARRAY OF STRUCTURES IN
STATEMENT NUMBER xxx HAS THE
WRONG NUMBER OF SUBSCRIPTS.
THE STATEMENT HAS EEEN DELETED.

Explanation: Subscripted
references to arrays must have
subscript expressions equal in
Dumber to the dimensionality of
the array.

User Response: Correct
subscripted reference.

S IEMOBS3I DEFERRED FEATURE. A STRUCTURE
ASSIGNMENT OR EXPRESSION IN
STATEMENT NUMBER xxx INVOLVES
CROSS SECTIONS OF ARRAYS.
STATEMENT DELETED.

EXFlanation: This compiler
does not su~port reference to
cross sections of arrays of
stru<..-tures.

User Response: Expand the
statement in DO loops re~lacing
'.'s in subscripts by the
appropriate DO control
varidble.

S IEM0864I IMPLEMENTATION RESTRICTION.
NESTING OF ARRAY ASSIGNMENTS OR
I/O LISTS TOO DEEP. STATEMENT
NUMBER xxx DELETED.

Explanation: Nesting of
functions, combined with size
of arrays involved, is too
great.

User Response: Simplify by
splitting into two or more
statements.

S IEM08651 IMPLEMENTATION RESTRICTION.
STATEMENT NUMBER xxx IS TOO
LONG AND HAS BEEN DELETED.

Explanation: Nesting of
functions with array arguments
involves a large expansicn of
text.

User Response: Simplify by
splitting into two or more
statements.

S IEM0866I NEITHER MULTIPLE ASSIGNMENT
COMMA NOR ASSIGNMENT MARKER
FOUND IN CORRECT POSITION.
STATEMENT NUMBER xxx DELETED.

Part IV: Appendixes 185

EXFlanat1on: An expression
occurring on th~ left-hand side
of an assignmen~. must be
contained within parentheses.

S IEMOB67I NUMBER OF' ,. SUBSCRIPTS
SPECIFIED FOR 1:Z:.r.z IS NO'f 'raE
DIMENSIONALITY OF THE LEFTMOST
ARRAY. STATEl\IENT NUMBER xxx
DELETED

Explanation! Array references
in expressions !llUst have the
same dimensionalit_y.

S IEM0868I BOUNDS OF ARRAY zzzz ARE NOT
SAME AS FOR I.EFTMOST ARRAY IN
ASSIGNMENT OR EXPRESSION.
STATEMENT NUMBER xxx DELETED.

Explanation: Array references
in expressions must have the
same bounds.

S IEM08691 DIMENSIONS OF ARRAY zzzz ARE
NOT THE SAME AS FOR LEFTMOST
ARRAY IN ASSIGNMENT OR I/O
EXPRESSION. STATEMENT NUMBER
xxx DELE'I'ED.

Explanati~~: Array references
in expressions must have the
same dimensionality.

S IEMOB701 ARGUMENT OF PSEUDO-VARIABLE
INVAI,ID. STATEMENT NUlo!BER xxx
IS DELETED.

Explanation: Arguments of
pseudo-variacles must be
variables which are not
expressions.

S IEM0811I SCALAR zzzz ON LEFT OF EQUAL
SYMBOL IN ARRAY ASSIGNMENT.
STATEMENT NUMBER xxx DELETED.

S IEMOB121 NUMBER OF SUBSCRIPTS SPECIFIED
FOR LEF'TMOST OPERAND zzzz IS
NOT SAME AS DIMENSIONALITY.
STATEMENT NUMBER xxx DELETED.

Explanation: The number of
subscripts specified must be
the same as the numbEr of
dimensions of the array.

S IEM0873I ARGUMENTS OF PSEUDO-VARIABLE
COMPLEX INCORRECT. STATEMENT
NUMBER xxx DELETED.

Explanation: Only one argument
given for COMPLEX, or
expression illegally used as
argument for pseudo-variable.

~ IEMOB74I SECOND ARGUMENT OF
PSEUDO-VARIABLE COMPLEX OR

186 Appendix H: PL/I Diagnostic Messages

FIRST ARGUMENT OF REAL, IMAG,
OR UNSPEC EITHER IS NOT
FOLLOWED BY A RIGHT PARENTHESIS
OR IS AN EXPRESSION. STATEMENT
NUMBER xxx DELETED.

Explanation: Too many
arguments given for this
pseudo-variable, or expression
used as argument.

S IEM0815I ONSOURCE OR ONCHAR APPEARS IN A
DIMENSIONED ARRAY ASSIGNMENT.
STATEMENT NUMBER xxx DELETED.

Expl an2,t ion : ONSOORCE and
ONCHAR mdY only appear in
scalar assignments.

S IEM0876I ARGUMENt'S OF PSEUDO-VARIABLE
SUBSTR INCORRECT. STATEMENT
NUMBER xxx DELETED.

Explanation: Only one argument
given for SUBSTR, or expression
illegally used as argument for
pseudo-variable.

S IElo!0871I UNSUBSCRIPTED ARRAY zzzz IN
SCALAR ASSIGNMENT. STATEMENT
NUMBER xxx DELETED.

Explanation: Only scalars can
be assigned to scalars.

S IEM0818I STRUCTURE zzzz FOUND IN ARRAY
OR SCALl~ EXPRESSION.
STATEMENT NUMBER xxx DELETED.

Explanatio~: Structures may
only be nssigned to structures.

S IEM0819I PSEUDO-VARIABLE COMPLEX, REAL,
IMAG. UNSPEC. COMPLETION, OR
SUBSTR LACKS ARGUMENTS.
STATEMENT NUMBER xxx DELETED.

Explanation: PseUdo-variables
COMPLEX. REAL, IMAG. UNSPEC.
COMPLETION, and SUBSTR require
arguments.

User Response: Check whether
the variable was intended as a
pseudo-variable or whether it
should have been declared
otherwise.

S IEM0880I NUMBER OF SUBSCRIPTS SPECIFIED
FOR zzzz IS NOT SAME AS
DIMENSIONALITY. STATEMENT
NUMBER xxx DELETED.

Explanation: The number of
subscripts specified must be
the same as the number of
dimensions of the array.

S IME0881I NUMBER OF DIMENSIONS IN
REFERENCE TO zzzz IS NOT SAME
AS THAT OF EXPRESSION OR
ASSIGNMENT. STATEMENT NUMBER
xxx DELETED.

T IEM0882I COMPILER ERROR. INVALID INPUT
TO PHASE HK AT STATEMENT NUMBER
xxx

ExPlanation: Illegal text has
been encountered.

System Action: compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEMOBS3I DEFERRED FEATURE. STRUCTURE
zzzz PASSED AS ARGUMENT TO THE
TRANSLATE OR VERIFY FUNCTION.
STATEMENT NUMBER xxx DELETED.

User Response: Remove
structure from statement.

T IEM0896I IMPLEMENTATION RESTRICTION.
TOO MANY LEVELS OF ISUB NESTING
IN STATEMENT NUMBER xxx

Explanation: Stack has
overflowed scratch core. The
maximum number of levels of
nesting possible depends on the
dimensionality of the arrays
involved.

System Action: compilation is
terminated.

User Response: Reduce the
number of levels of nesting in
the statement.

S IEM0897I ISUB DEFINED OPERAND zzzz HAS
NOT BEEN DECLARED AS AN ARRAY.
ISUBS IN STATEMENT NUMBER xxx
DELETED.

User Response: Declare defined
item with dimension attribute.

T IEM0898I NO SUBSCRIPTS AFTER
ISUB-DEFINED ITEM zzzz IN
STATEMENT NUMBER xxx

Explanation: This is a
compiler error.

system Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system

manager or administrator of the
error.

E IEM08991 MULTIPLIER IN ISUB DEFINING
LIST FOR zzzz IN STATEMENT
NUMBER xxx IS NOT A SCALAR
EXPRESSION.

Explanation: A comma has been
found within the ISUB
multiplier expression.

System Action: Remainder of
expression, after comma,
ignored.

User Response: Rewrite
expression.

E IEM0900I * USED AS SUBSCRIPT FOR ISUB
DEFINED ITEM zzzz IN S'I'ATEMENT
NUMBER xxx. ZERO SUBSTITUTED.

User Response: Rewrite without
*.

E IEM0901I ISUB NUMBER IN DEFINING LIST
FOR zzzz IN STATEMENT NU~BER
xxx IS TOO GREAT. MAXIMUM
NUMBER USED.

System Action: The ISUB number
is replaced by the number of
dimensions of the defined
array.

User Response: Rewrite
defining DECLARE statement.

E IEM0902I 'RONG NUMBER OF SUBSCRIPTS FOR
ISUB DEFINED ITEM zzzz IN
STATEMENT NUMBER xxx.
SUBSCRIPTS IGNORED OR ZERO
SUPPLIED.

User Response: Rewrite with
correct number of subscrifts.
The error may be in the
reference to the defined item
or in the defining DECLARE
statement.

T IEM09031 COMPILER ERROR. ERROR DETECTED
IN DEFINING ISUB LIST FOR zzzz
IN STATEMENT NUMBER xxx

Explanation: Compiler error.
Either (a) SUB not found where
expected, or (b) SUBO found
without a multiplier
expression.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform system manager
or administrator of the error.

Part IV: Appendixes 187

S IEM0906I STATEMENT DELIMITER FOUND
WITHIN SUBSCRIP"i' I,IST FOR zzzz
IN STATEMENT NUMBER xxx

EXFlanation: The sutscript
scan rout.ine has found a
statement marker.

System Action: The present
statement is dropped and the
new one precessed. Compilation
will not be completed.

User Response: Check text, but
this is probably a compiler
error. in which case save
relevant data and inform the
system manager or adminstrator
of the error.

S IEM09071 IMPLEMENTATION RESTRIt.'TION.
STATEMENT NUMBER xxx IS TOO
LONG AND HAS BEEN TRUNCATED.

Explanation: Statement length
exceeds text block size.

System Action: Statement is
truncated. Compilation will
not be com~leted.

User Response: Simplify
statement.

S IEMI0241 ILLEGAL USE OF zzzz IN
STATEMENT NUMBER xxx. A FIXED
BINARY ZERO CONSTANT IS
SUBSTITUTED.

Explanation: A non-scalar
identifier has been specified
in a context that. requires a
scalar identifier.

System Action: Replaces
illegal identifier with
arithmetic constant zero.

S IEM1025I IDENTIFIER zzzz ILI,EGALLY USED
AS SUBSCRIPT IN STATEMENT
NUMBER xxx

Explanation: A subscript has
been used which is not a
scalar, a scalar expression, or
a constant.

System Action: Replaces
illegal sutscript with
arithmetic constant zero.

W IEM1026I STATEMENT NUMBER xxx IS AN
UNLABELED FORMAT STATEMENT

Explanation: A FORMAT
statement should have a label.

188 Appendix H: PL/I Diagnostic Messages

T IEM10211 THE SUBSCRIPTED STRUCTURE ITEM
zzzz IS ILLEGALLY USED IN
STATEMENT NUMBER xxx

Explanation: The indicated
structure item is used in a
statement other than an
aSSignment. statement or an I/O
data list.

System A~~ion: Compilation is
terminated.

T IEM1028I COMPILER ERROR IN STATEMENT
NUMBER xxx. ILLEGAL INPUT TEXT
FOR PHASE IA.

£~em Action: compilation is
terminated.

User Response: Save relevant
data and inform system manager
or administrator of the errOr.

T IEM1029I THE APPEARANCE OF THE ARRAY
CROSS-SECTION IN STATEMENT
NUMBER xxx IS NOT SUPPORTED BY
THIS VERSION OF THE COMPILER.

Explanation: A feature has
been used that is not
supported.

System Action: compilation is
terminated.

T IEM10301 IMPLEMENTATION RESTRICTION.
TOO MANY DUMMY ARGUMENTS ARE
BEING PASSED IN STATEMENT
NUMBER xxx. A MAXIMUM OF 64
DUMMY ARGUMENTS MAY BE PASSED
IN EACH INVOCATION.

T IEM1040I DEFERRED FEATURE. STRUCTURE
ARGUMENT IS BEING PASSED TO
FUNCTION zzzz IN STATEMENT
NUMBER xxx

Explanation: This compiler
does not permit structures to
be passed as arguments to
built-in functions.

Syste~_Actio~: compilation is
terminated.

User Response: Rewrite
program, avoiding unsupported
feature.

T IEM10511 DEFERRED FEATURE. STRUCTURE
ARGUMENT IS BEING PASSED TO
PSEUDO-VARIABLE zzzz IN
STATEMENT NUMBER xxx

Explanation: This compiler
does not permit structures to

be passed as arguments to
pseudo-variables.

System Action: compilation is
terminated.

User Response: Rewrite
program, avoiding unsupported
feature.

T IEM1056I INVALID ARGUMENT IS BEING
PASSED TO ENTRY NAME zzzz IN
STATEMENT NUMBER xxx

System Actio~: compilation is
terminated.

T IEM1057I DECIMAL INTEGER CONSTANT IS NOT
BEING PASSED, AS REQUIRED, TO
FUNCTION zzzz IN STATEMENT
NUMBER xxx

Explanation: Argument to
build-in fUnction is not a
decimal integer as expected.

System Action: Compilation is
terminated.

T IEM1058I ARRAY OR STRUCTURE ARGUMENT IS
NOT BEING PASSED, AS REQUIRED,
TO FUNCTION zzzz IN STATEMENT
NUMBER xxx

Explanation: Argument to
built-in function is not an
array or a structure, as
expected.

System Action: Compilation is
terminated.

T IEM1059I FIRST ARGUMENT BEING PASSED TO
FUNCTION zzzz IN STATEMENT
NUMBER xxx SHOULD BE AN ARRAY.

Explanation: Argument to
built-in function is not an
array as expected.

System Action: Compilation is
terminated.

T IEM1060I TOO MANY ARGUMENTS ARE BEING
PASSED TO FUNCTION zzzz IN
STATEMENT NUMBER xxx

Explanation: Too rrany
arguments are being passed to a
built-in function.

system Action: Compilation is
terminated.

T IEM1061I TOO FEW ARGUMENTS ARE BEING
PASSED TO FUNCTION zzzz IN
STATEMENT NUMBER xxx.

Explanation: Too few arguments
are being passed to a built-in
function.

§y§tem Action: compilation is
terminated.

T IEM10621 COMPILER ERROR. CORRECT
GENERIC SELECTION FOR FUNCTION
zzzz IN STATEMENT NUMBER xxx
HAS NOT BEEN ACHIEVED.

Explanation: Compiler,
although being given a legal
argument to a generic tuilt-in
funct.ion, is unable to make the
selection.

System Action: Function result
is set to zero and compilation
is terminated.

User Response: Save relevant
data and inform the system
nanager or administrator of the
error.

T IEM10631 COMPILER ERROR. UNEXPECTED
SITUATION HAS ARISEN IN THE
SCANNING OF THE ARGUMENTS
PASSED TO FUNCTION zzzz IN
STATEMENT NUMBER xxx

Explanation: Compiler is
unable to correctly scan an
argument list.

System Action: Function result
is set to zero.

User Response: Save relevant
data and infor·m the system
manager or administrator of the
error.

'I' IEM1064I COMPILER ERROR. THE GENERIC
FAMILIES ASSOCIATED WITH ENTRY
NAME zzzz HAVE BEEN INCORRECTLY
FORMED IN THE DICTIONARY

Explanation: The dictionary
entry for one or more of the
generic families is not a
recognizable entry type.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or adminstrator of the
error.

T IEM1065I NO GENERIC SELECTION POSSIBLE
FOR THE ENTRY NAME zzzz IN
STATEMENT NUMBER xxx

Part IV: Appendixes 189

Explanati0f!.: Incorrect use of
the GENERIC attribute resulting
in no selection being possible.

System ActiQ!2: Corr.pilation is
terminated.

T lEI-110661 MORE THAN ONE GENERIC SELECTION
IS POSSIBLE FOR THE ENTRY NAME
zzzz IN STATEMENT NUMBER xxx

Explanation: Incorrect use of
the GENERIC attribute resulting
in more than one selection
being possible.

S~stem Action: Compilation is
terminated.

T IEM1067I PSEUnO-VARIABLE zzzz APPEARS IN
STATEMENT NUMBER xxx WITH AN
ILLEGAL ARGUMENT.

Explanation: Argument to
pseudo-variable cannot be
converted to a legal type; or,
structure argument being used
with pseudo-variable.

System Action: compilation is
terminated.

T IEM1068I AN ARRAY IS BEING PASSED TO
FUNCTION zzzz IN STATEMENT
NUMBER xxx. THIS PRODUCES AN
ARRAY EXPRESSION WHICH IS
INVALID IN THIS CONTEXT.

System Action: Compilation is
terminated.

S IEMi010I IMPLEMENTATION RESTRICTION. AN
ARGUMENT OF A BUILT-IN FUNCTION
USED IN STATEMENT NUMBER xxx
HAS BEEN TRUNCATED TO 32,767.

T IEMi071I PSEUDO-VARIABLE zzzz APPEARS IN
STATEMENT NUMBER xxx WITH TOO
MANY ARGUMENTS.

System Action: Corr-pilation is
terminated.

T IEMI072I PSEUDO-VARIABLE zzzz APPEARS IN
STATEMENT NUMBER xxx WITH TOO
FEW ARGUMENTS.

System Action: Compilation is
terminated.

T IEMI013I COMPILER ERROR. CORRECT
GENERIC SELECTION FOR
PSEUDO-VARIABLE zzzz IN
STATEMENT NUMBER xxxx rlAS NOT
BEEN ACHIEVED.

190 Appendix H: PL/I Diagnostic Messages

Explanation: compiler error.
Although being given a legal
argument. to a generic
pseudo-variable, compiler is
unable to make the selection.

System Action: compilation is
terminated.

User ReSponse: Save relevant
data and inform the system
manager or administrator of the
error.

T IEMI0741 COMPILER ERROR. UNEXPECTED
SITUATION HAS ARISEN IN THE
SCANNING OF THE ARGUMENTS
PASSED TO PSEUDO-VARIABLE zzzz
IN STATEMENT NUMBER xxx

Explanation: Unable to
correctly scan an argument list
of a pseudo-variable.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

W IEMI075I THE ARGUMENT zzzz OF THE STRING
PSEUDO-VARIABLE IN STATEMENT
NUMBER xxx CONTAINS A PICTURED
ELEMENT. THIS IS NOT CHECKED
FOR VALIDITY ON ASSIGNMENT.

Explanation: Invalid data in
pictured element may cause
subsequent errors.

T IEMI076I COMPILER ERROR IN PHASE JD

System Action: Compilation is
terminated.

User ReSponse: Save relevant
data and inform the system
manager or administrator of the
error.

T IEMI078I IMPLEMENTATION RESTRICTION.
THE NUMBER OF FAMILY MEMBERS
AND ARGUMENTS ASSOCIATED WITH
THE GENERIC ENTRY NAME yyyy
EXCEEDS THE LIMITATION IMPOSED.

Explanation: There is an
implementation restriction on
the number of family members
and arguments associated with
GENERIC entry names.

System Action: compilation is
terminated.

User Response: Divide the
generic family into two or more
generic families.

S IEMI082I STATEMENT NUMBER xxx CONTAINS
AN INVALID USE OF AREA OR
POINTER DATA. PART OR ALL OF
THE STATEMENT HAS BEEN DELETED.

Explanation: The statement
contains an operation that:

1. Is not permitted for AREA
or POINTER data, or

2. Can only be used with AREA
or POINTER data but such
data is not the data
specified for the
operation.

system Action: Deletes the
statement or clause responsible
for the er"ror.

T IEMI088I THE SIZE OF AGGREGATE zzzz IS
GREATER THAN 8,388,607 BYTES.
STORAGE ALLOCATION WILL BE
UNSUCCESSFUL.

Explanation: The message is
generated when an array or
structure size exceeds 2~3-1.

System Action: Array or
structure mapping for the item
is terminated, but the
compilation continues.
Execution of object decks
containing references to the
item will give incorrect
results.

User Response: Check source
code.

S IEMI0891 THE RELATIVE VIRTUAL ORIGIN OF
AGGREGATE zzzz IS LESS THAN
-8,388,608 BYTES. STORAGE HAS
NOT BEEN ALLOCATED.

Explanation: The low bounds of
the arrays in the aggregate are
too high.

system Action: Compilation
terminates.

User Response: Reduce the size
of the aggregate, or reduce the
value of the low bounds in the
aggregate.

S IEMI090I THE STRUCTURE zzzz DECLARED IN
STATEMENT NUMBER xxx CONTAINS
VARYING STRINGS AND ~AY APPEAR
IN A RECORD I/O STATEMENT

Explanation: VARYING strings
in structures are not permitted
in RECORD I/O statements.

System Action: The RECORD I/O
statement is processed but the
record will contain erroneous
informat ion.

User Response: Correct the
source code.

W IEMI0921 THE TASKS. EVENTS OR LABELS
CONTAINED IN STRUCTURE zzzz
Dr~CLARED IN STATEMENT NUMBER
xxx MAY LOSE THEIR VALIDITY IF
USED IN A RECORD I/O STATEMENT.

Explanation: The 'rASK. EVENT.
or LABEL variable may lose its
validity in transmission.

User Response: Correct the
source code if necessary.

E IEMII04I THE DEFINING OF zzzz DECLARED
IN STATEMENT NUMBER xxx
INVOLVES DATA NOT ALLOWED FOR
STRING CLASS OVERLAY DEFINING.

Explanation: The programn1er's
use of the DEFINED attribute
contravenes the language rules
concerned with the permitted
data types with dimensionality
of base and defined item.

System Action: Defined item
mapped onto same storage as
item defined on. Data and
specification interrUpts may
occur at execution.

User Response: Refer to the
PL/I Reference Manual - "The
DEFINED Attribute- - and
correct the error.

E IEMII051 'fHE DATA CHARACTERISTICS OF
zzzz DECLARED IN STATEMENT
NUMBER xxx DO NOT MATCH THOSE
OF THE DEFINING BASE.

Explanation: For valid use of
the DEFINED attribute. both the
defined item and the base must
be of the same defining class.

System Action: Defined item
mapped onto same storage as
item defined on. Data and
specification interrupts may
occur at execution.

User Response: Refer to the
PL/I Reference Manual - "The
DEFINED Attribute- - and
correct the error.

Part IV: Appendixes 191

'1' IEMl1061 THE DIMENSIONALITY OF zzzz
DECLARED Itl STi~TEMEN'r NUMBER
xxx IS NOT THE SAME AS THAT OF
THE DEFINING BASE.

Explanation: Wit.h the
except:ion of the case of string
class defining, if either the
base or the defined item are
arrays, then both the base and
the defined item must be arrays
with the same dimensionality.

System Action: Compilation is
aborted after examining other
uses of the DEFINED attribute.

User Response: Refer to the
PLiI Reference Manual - -The
DEFINED Attribute" - and
correct the error.

T IEMl107I THE DEFINING OF zzzz DECLARED
IN STATEMENT NUMBER xxx
ILLEGALLY INVOLVES VARYING
STRINGS.

Explanation: In use of the
DEFINED attribute, neither the
base nor the defined item may
involve strings declared
VARYING.

System Action: compilation is
aborted after examining other
uses of the DEFINED attribute.

User Response: Refer to the
PL/I Reference Manual - -The
DEFINED Attribute- - and
correct the error.

E IEMII0SI THE DEFINING OF zzzz DECLARED
IN STATEMENT NUMBER xxx
ILLEGAI.LY INVOLVES DATA
AGGREGATES THAT ARE NOT
UNALIGNED.

Explanation: In the case of
string class overlay defining
where either or both the base
and the defined item are
aggregates, then the aggregates
must have the PACKED attribute.

System Action: Defined item
mapped onto same storage as
item defined on. Data and
specification interrupts may
occur at execution.

User Response: Refer to the
PLiI Reference Manual - -The
DEFINED Attribute- - and
correct the error.

T IEM11101 THE DEFINING BASE OF zzzz
DECLARED IN STATEMENT NUMBER

192 Appendix H: PL/I Diagnostic Messages

xxx IS SHORTER THAN THE DEFINED
ITEM.

~lanation: In the case of
string class overlay defining,
the defined item must occupy a
subset of the base storage.

In the case of correspondence
defining. the length of each
defined element must not be
greater than the length of each
base element.

System Action: Compilation is
aborted after examining other
uses of the DEFINED attribute.

User Response: Refer to the
PL/I Reference Manual - wThe
DEFINED AttributeD - and
correct the error.

E IEM1111I THE DEFINING OF zzzz DECLARED
IN STATID4ENT NUMBER xxx
INVOLVES A STRUCTURE HAVING
ELEMENTS NOT ALL OF THE SAME
DEFINING CLASS.

Explanation: In the case of
string class overlay defining
where the defined item or the
base is a structure, then all
the elements of the structure
must be data of the same string
defining class.

System Action: Defined item
mapped onto same storage as
item defined on. Data and
specification interrupts may
occur at execution.

User Response: Refer to the
PL/I Reference Manual - "The
DEFINED Attribute" - and
correct the error.

T IEM1112I THE DEFINING OF zzzz DECLARED
IN STATEMENT NUMBER xxx
ILLEGALLY INVOLVES THE POS
ATTRIBUTE.

Explanation: The POSITION
attribute may only be declared
for data of the string class
which is overlay defined.

System Action: Compilation is
terminated.

User Response: Refer to the
PLII Reference Manual - "The
DEFINED Attribute- - and
correct the error.

E IEM1113! THE STRUCTURE DESCRIPTION OF
zzzz DECLARED IN STATEMENT

NUMBER xxx DOES NOT MATCH THAT
OF THE DEFINING BASE,

Explanation: Where a structure
or an array of structures is
defined on a structure or an
array of structures, and it is
not string class overlay
defining. then the t~o
structure descriptions must be
identical.

System Action: Defined item
mapped onto same storage as
item defined on. Data and
specification interrupts may
occur at execution.

User Response: Refer to the
PL/I Reference Manual - -The
DEFINED Attribute- - and
correct the error.

W IEMl114I IF THE BASE OF zzzz DECLARED IN
STATEMENT NUMBER xxx IS
ALLOCATED WITH THE DECLARED
~XTENTS, THE DEFINING WILL BE
IN ERROR.

Explanation: In the case of
string class overlay defining,
the defined item must occupy a
subset of the base storage. If
the base is of CONTROLLED
storage class, its extents are
not finally resolved until
execution time.

System Action: No further
action.

User Response: Check that when
the base is allocated it is of
adequate size to accommodate
the defined item.

E IEM1115I THE DEFINING BASE OF zzzz
DECLARED IN STATEMENT NUMBER
xxx IS AN ARRAY FORMAL
PARAMETER. IF THE MATCHING
ARGUMENT IS AN ELEMENT OF AN
ARRAY OF STRUCTURES OR A CROSS
SECTION OF AN ARRAY, THE
DEFINING WILL BE IN ERROR.

Explanation: The base for
string class o~erlay defining
must occupy contiguous storage.

System Action: Comments and
continues.

User Response: Check validity
of arguments.

S IEMl120I COMPILER ERROR. INVALID SIGN
FOUND IN INITIAL VALUE LIST FOR

zzzz IN STATEMENT NUMBER xxx.
TREATED AS PLUS.

User Respons~: Save relevant
data and inform the system
manager or administrator of the
error.

S IEMl121I COMPILER ERROR. INVALID MARKER
FOUND IN INITIAL VALUE LIST FOR
zzzz IN STATEMENT NUMBER xxx.
INITIAL VALUE LIST TRUNCATED.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEMl122I UNSUPPORTED FEATURE. AN
EXPRESSION HAS BEEN USED TO
INITIALIZE STATIC STRING zzzz
IN STATEMENT NUMBER xxx.
STRING INITIALIZED TO NULL.

EXFlanation: A complex
expression has been used to
initialize a STATIC string.
This feature is not supported.

System Action: The string is
initialized to null.

User Response: Amend source
code. The restriction can be
overcome by using an aSSignment
statement instead of the
INITLAL attribute.

S IEM1123I INITIAL VALUE FOR STATIC DATA
ITEM zzzz IN nnnn IS NOT A
CONSTANT. INITIALIZATION
TEnMINATED.

User Respons~: Use a constant
in the INITIAL string.

S IEM1125I ITERATION FA.CTOR USED IN
INITIALIZATION OF STATIC ARRAY
zzzz IN STATEMENT NUMBER xxx IS
TOO LARGE. REPLACED BY ZERO.

Explanation: Iteration factors
are converted by the compiler
to REAL FIXED BINARY with a
default precision of 15,0. The
iteration factor referred to in
the message has a value greater
than 215 • and therefore exceeds
the default precision.

System Action: The iteration
factor is replaced by zero.

User Response: Amend source
code so that iteration factor
does not exceed 215.

Part IV: Appendixes 193

T IEM1200I COMPILER ERROR. ILLEGAL TRIPLE
IN TEXT. CURREN'r STATEMENT
NUMBER xxx

Explanation: Phase LA is out
of step in scanning text.

System Action: Co~pilation is
terminated.

User Response: Save relevant
data and inform system manager
or administrator of the error.

T IEM1210I COMPILER ERROR NUMEER nnnn IN
PHASE KE.

Explanation: compiler error in
dictionary or text scan.

System Action: Compilation is
t. ermina ted.

User Response: Save relevant
data and inform the system
manager or administrator of the
error. Meanwhile, recompile
with OPT=1 to bypass DO-loop
optimization phases.

T IEM1211I COMPILER ERROR IN PHASE KE.

Explanation: Compiler error
found in scan of dictionary.

System Action: compilation
terminated.

User Response: Save relevent
data and inform your system
manager or administrator.

T IEM1220I COMPILER ERROR NUMBER nnnn IN
FHASE KU IN STATEMENT NUMBER
xxx.

EXFlanation: A compiler error
has occurred in the DO loop
control optimization phase.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error. Meanwhile, recompile
with OPT=1 to bypass DO-loop
optimization phases.

T IEM1223I COMPILER ERROR. INVALID INPUT
TYPE nnnn TO OPTIMIZING PHASE
KO.

~stem Action: compilation is
terminated.

194 Appendix H: PLiI Diagnostic Messages

User Response: save relevant
data and inform system manager
or administrator of the error.
Meanwhile, recompile with OPT=l
to bypass DO-loop and subscript
optimization phases.

T IEM12241 COMPILER ERROR NUMBER nnnn IN
PHASE KA.

Explanation: Invalid request
encountered by table-handling
routines in Phase KA.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform system manager
or administrator of the error.

T IEM12261 COMPILER ERROR IN PHASE KG IN
OR NEAR STATEMENl' NUMBER xxx

Explanation: Error occurred
while scanning text or tables.

system Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error. Meanwhile, recompile
with OPT=O or 1.

T IEM15691 IMPLEMENTATION RESTRICTION.
SOURCE PROGRAM TOO LARGE.

Explanation: The number of
symbolic register names
generated by the code
generation section of the
compiler has exceeded the
maximum allowed.

System Action: Compilation is
terminated.

User Response: Break down the
compilation into smaller
modules.

T IEM1570I COMPILER ERROR. INVALID TRIPLE
FOLLOWING WHILE PRIME TRIPLE.

Explanation: Input to phase LG
of compiler is erroneous. .A
WHILE' triple is not followed
by CV' or compiler label.

System Action: Compilation is
terminated.

User Respons~: Save relevant
data and inform system manager
or administrator of the error.

T IEM15711 IMPLEMENTATION RESTRICTION.
SOURCE PROGRAM TOO I,ARGE.

Explanation: No more main
storage is available for the
stack of nested DO statements
(both in source language and
those generated internally for
array assignments).

System Action: Compilation is
terminated.

User Response: Simplify
nesting so as to reduce number
of levels.

S IEM1572I ILLEGAL USE OF ARRAY OR
STRUCTURE VARIABLE IN 00
STATEMENT NUMBER xxx

Explanation: A non-scalar
variable has been used as (1)
the control variable, (2) a
control variable subscript. or
(3) a loop limit or increment
value.

System Action: Generates an
error stop at execution time.

S IEM1574I INVALID LOOP CONTROL EXPRESSION
OR CONTROL VARIABLE SUBSCRIPT
IN STATEMENT NUMBER xxx
REPLACED BY FIXED BINARY
TEMPORARY.

Explanation: Either something
other than an arithmetic or
string datum has been used as a
subscript in the control
variable, or something other
than an arithmetic or string
datum, label variable, or label
constant has been used in an
initial value. TO, or BY
clause.

System Action: Ignores the
erroneous expression and uses a
fixed binary temporary.

S IEM1575I DO LOOP CONTROL PSEUDO-VARIABLE
IN STATEMENT NUMBER xxx HAS AN
INVALID ARGUMENT. BINARY
INTEGER TEMPORARY ASSUMED.

Explanation: An invalid
argument, such as an expression
or function, has been used in a
pseudo-variable.

system Action: Assigns invalid
argument to binary temporary,
and uses latter as argument.

W IEM1S88I VARYING STRING HAS BEEN USED AS
AN ARGUMENT TO ADDR FUNCTION IN
STATEMENT NUMBER xxx

~lanation: The result of the
ADDR fUnction can only be
assigned to a pointer
qualifying a based variable.
If the argument to the ACDR
function is a VARYING string.
the length of the data in the
based variable may not be the
length required in the program.

System Action: None.

User Response: Check this use
of the ADDR function.

E IEM1599I A STATEMENT LABEL CONSTANT IS
BEING PASSED AS AN ARGUMENT TO
THE AD DR BUILT-IN FUNCTION IN
STATEMENT NUMBER xxx

Explanation: The argument to
the AD DR built-in function must
be a variable.

T IEM16001 COMPILER ERROR. ILLEGAL
ABSOLUTE REGISTER NUMBER.
STATEMENT NUMBER xxx

Explanation: Compiler error.
Fixed binary arithmetic uses an
unassigned general register
number greater than 15. or
floating point arithmetic uses
a floating point register
greater than 6.

System Action: Compilat.ion is
terminated.

User Response: Save relevant
data and inform system manager
or administrator of the error.

T IEM1601I IMPLEMENTATION RESTRICTION.
STATEMENT NUMBER xxx REQUIRES
MORE THAN 200 INTERMEDIATE
RESULT DESCRIPTIONS.

Explanation: Compiler
limitation. The temporary
result stack, which holds 200
items, is full.

System Action: compilation is
terminated.

User Response: This error
should only occur in very large
statements. Divide the
statement into two or more
smaller statements.

T IEM16021 COMPILER ERROR. INSUFFICIENT
NUMBER OF TEMPORARY RESULT

Part IV: Appendixes 195

DESCRIPTIONS. STATEMENT NUMBER
xxx

Explanation: Compiler error.
A temporary result .is required
but the tempol.ary result stack
is empty. This can happen if
triples are out of order or if
extra triples were inserted.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

T IEM16031 COMPILER ERROR. COUNT OF FREE
FLOATING REGISTERS IS WRONG.
STATEMENT NUMBER xxx

Explanation: Compiler error in
expression evaluation phase.
Error in control blocks for
floating point registers.

~tem Action: compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

T IEM1604I COMPILER ERROR. SECOND OPERAND
FOR RS OR 5S INSTRUCTION IS IN
A REGISTER. STATEMENT NUMBER
xxx

Explanation: compiler error in
expression evaluation phase.
Attempt to generate an RS or S8
type pseudo-code instruction
using a register as the second
operand.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM1605I IN STATEMENT NUMBER xxx FIXED
DECIMAL VARIABLE CANNOT BE
CORRECTLY CONVERTED TO BINARY
DUE TO SIZE OF SCALE FACTOR.

Explanation: Error in source
program. When a fixed decimal
variable is corrected to fixed
binary, the magnitude of its
scale factor is multiplied by
3.31. If the original scale
factor is >38 or <-38, then the
fixed binary scale factor would

196 Appendix H: PL/I Diagnostic Messages

be outside the range +127 to
-128.

System Action: The fixed
binary scale factor is set to
+127 or -128. Processing
continues.

User Response: The data in the
expression must be redeclared
with more suitable scale
factors.

T IE.M1606I COMPILER ERROR. FUNCTION NOT
FOLLOWED BY RESULT DESCRIPTION.
STATEMENT NUMBER xxx

Explanation: Compiler error.
A function is not followed by
TMPD or LEFT triples giving the
result type.

System Action: compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or system administrator
of the error.

S IEM16011 LABEL. EVENT, FILE, OR TASK
ITEM zzzz IN STATEMENT NUMBER
xxx IS USED IN AN EXPRESSION
WHICH IS ILLEGAL.

Explanation: Error in source
program. A label, event, file.
or task datum cannot be used in
an expression. Alternatively,
this can be a compiler error
when an unrecognizable
dictionary entry is used in an
expression.

System Action: Substitutes a
fixed binary (31,O) data item
(if the illegal item occurs in
an arithmetic expression) or a
null bit string (if it occurs
in a string expression).
Processing is continued.

User Response: If error in
source program. correct it.

E IEM16081 LT. LE. GE, OR GT COMPARISON
OPERATOR ILLEGALLY USED IN
STATEMENT NUMBER xxx WITH
CO~PLEX OPERANDS. REPLACED
WITH EQUALS OPERATOR.

Explanation: Error in source
program. 'rhe only legal
comparison between complex
operands is ';'.

System Action: The operator is
replaced with ':' and
processing continues.

User Response: Correct source
program using either the ASS
function or possibly the REAL
and lMAG functions.

T IEM1609I COMPILER ERROR. ILLEGAL
DICTIONARY REFERENCE X·OO •• ••
STATEMENT NUMBER xxx

Explanation: Compiler error.
The symbolic dictionary
reference is less than 256.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or system administrator
of the error.

T IEM1610I COMPILER ERROR IN PHASE LW AT
STATEMENT NUMBER xxx.
INSUFFICIENT NUMBER OF
TEMPORARY RESULT DESCRIPTIONS.

Explanation: Compiler error.
A temporary result is required
but the temporary result stack
is empty. This can happen if
the triples are out of order or
if extra triples have been
inserted.

System Action: Compilation is
terminated.

User Resp~ns~: Save relevant
data and inform the system
manager or system administrator
of the error.

E IEM1611I IMPLEMENTATION RESTRICTION. A
STRING RESULT LONGER THAN 32767
IS PRODUCED BY CONCATENATE IN
STATEMENT NUMBER xxx. STRING
TRUNCATED TO LENGTH 32767.

Explanation: Maximum string
length for this implementation
is 32767. This may be exceeded
during concatenation, because
the length of the intermediate
result is the sum of the
operand lengths.

system Action: Compilation
continues with string result
length truncated to 32767.

User Response: Shorter strings
must be used.

W IEM1612I IMPLEMENTATION RESTRICTION IN
STATEMENT NUMBER xxx.
INTERMEDIATE WORK SPACE IS
OBTAINED MORE THAN 50 TIMES IN
A STRING EXPRESSION. SOME WORK
SPACE WILL NOT BE RELEASED
UNTIL THE END OF THE BLOCK.

Explanatio~: The intermediate
work space is required each
time a function returns a
string result or each time a
library module is called.

System Ac.!:ion: The first 50
areas of work space are
released. The remainder may
not be released until the end
of the block. Compilation
continues and execution is
valid.

User Response: Divide the
string exprE·ssion into several
sub--expressions.

S IEM1613I ILLEGAL OSE OF ARRAY OR
STRUCTURE VARIABLE IN STATEMENT
NUMBER xxx

Explanation: Illegal source
program.

System Action: Severe error
message and object program
branch. Compilation continues,
assuming scalar of same tYfe if
array, or fixed binary (31,0)
type if structure.

User Response: Insert DO
blocks for array, or break down
structure into its components.

W IEM1614I IMPLEMENTATION RESTRICTION. A
VARYING STRING RESULT LONGER
THAN 32767 MAY BE PRODUCED BY
CONCATENATE IN STATEMENT NUMBER
xxx. STRING TRUNCATED TO
LENGTH 32767.

Explanation: The sum of the
maximum lengths of two strings
in a concatenation operation
exceeds the implementation
restriction of 32767. Since
one or both of the operands is
a VARYING string, it is not
known at compile-time whether
the restriction will be
exceeded at execution time.

System Actiof): Compilation
continues with string result
maximum length truncated to
32767.

Part IV: Appendixes 197

User Response: Shorter strings
must be used if the sum of the
execution-time current lengths
will ever exceed 32767.

1: IEM1615I SECOND ARGUMENT IN THE SUBSTR
FUNCTION IN S'I'A'rEM EN'l' NUMBER
xxx IS ZERO, WHICH IS INVALID.
ZERO HAS BEEN REPLACED BY ONE.

E IEM16161 SECOND ARGUMENT IN THE SUBSTR
PSEUDO-VARIABLE IN STATEMENT
NUMBER xxx IS ZERO, WHICH IS
INVALID. ZERO HAS BEEN
REPLACED BY ONE.

'I IEM16171 COMPILER ERROR. ILLEGAL RETURN
FROM SCAN ROUTINE. STATEMENT
NUMBER xxx

Explanation: An illegal return
of control has been made by the
SCAN routine which supports the
code generation phases.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

~ IEM16181 PSEUDO-VARIABLE IN STATEMENT
NUMBER xxx INCORRECTLY
SPECIFIED. REPLACED BY FIXED
BINARY TEMPORARY.

Explanation: A pseudo-variable
in the given source statement
has been incorrectly specified,
for example, has an incorrect
number of arguments.

System Action: Ignores the
pseudo-variable and uses a
fixed binary temporary instead.

S IEM1619I RIGHT HAND SIDE OF STATEMENT
NUMBER xxx CANNOT BE ASSIGNED
TO A PSEUDO-VARIABLE.
ASSIGNMENT IGNORED.

Explanation: The expression on
the right-hand side of the
specified statement cannot be
assigned to a pseudo-variable,
that is, it is not an
arithmetic or string datum.

System Action: The assignment
is deleted from the text.

:; IEM1620I • IMAG' IN STATEMENT NUMBER xxx
HAS REAL ARGUMENT. REPLACED BY

198 Appendix H: PLII Diagnostic Messages

ASSIGNMENT TO TEMPORARY FIXED
BINARY INTEGER.

f,:xplanation: The pseudo­
variable 'IMAG' is meaningful
only if its argument is of type
complex.

System Action: A fixed binary
temporary target is provided
for the assignment or input
data list item and the
pseudo-variable is ignored.

S IEM16211 ILLEGAL PSEUDO-VARIABLE
ARGUMENT IN STATEMENT NUMBER
xxx REPLACED BY BINARY
TEMPORARY.

Explanation: A pseudo-variable
in the specified statement has
an illegal argument, that is,
one whose data type is not
permissible in that context.

System Action: A temporary
whose type is legal in the
context is used to replace the
erroneous argument and the
latter is removed from the
text.

S IEM1622I FIRST ARGUMENT OF
PSEUDO-VARIABLE SOBSTR IN
STATEMENT NUMBER xxx IS NOT A
STRING VARIABLE. ARGUMENT HAS
BEEN CONVERTED TO STRING
TEMPORARY AND THE ASSIGNMENT
MADE THE~ETO.

Explanation: SUBSTR
pseudo-variable cannot have a
first argument which is not a
string variable.

System Action: Code is
compiled to assign to a string
temporary. The original
argument remains unchanged.

W IEM1625I PSEUDO-VARIABLE REAL IN
STATEMENT NUMBER xxx DOES NOT
HAVE COMPLEX ARGUMENT.
ARGUMENT HAS BEEN TREATED AS
HAVING ZERO IMAGINARY PART.

System Action: Code is
generated to perform assignment
to the specified REAL argument.

S IEM1626I ILLEGAL NEGATIVE SECOND
ARGUMENT IS BEING PASSED TO THE
FUNCTION SUBSTR IN STATEMENT
NUMBER xxx. AN EXECUTION ERROR
WILL RESULT.

S IEM1621I ILLEGAL NEGATIVE THIRD ARGUMENT
IS BEING PASSED TO THE FUNCTION

SUBSTR IN STATEMENT NUMBER xxx.
AN EXECUTION ERROR WILL RESULT.

S IEM1628I THE SUBSTRING SPECIFIED BY THE
SECOND AND THIRD ARGUMENTS TO
THE FUNCTION SUBSTR IN
STATEMENT NU~BER xxx DOES NOT
LIE WITHIN THE FIRST ARGUMENT.
AN EXECU'I I ON ERROR WILL RESULT.

S IEM1629I THE SECOND ARGUMENT TO THE
FUNCTION SUBSTR IN STATEMENT
NUMBER xxx IS GREATER THAN THE
LENGTH OF THE FIRST ARGUMENT.
AN EXECUTION ERROR WILL RESULT.

T IEM1630I COMPILER ERROR IN
CEIL/FLooR/TRUNC IN-LINE
FUNCTION IN STATEMENT NUMBER
xxx

System Action: compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

T IEM16311 COMPILER ERROR IN MOD IN-LINE
FUNCTION IN STATEMENT NUMBER
xxx

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

W IEM1632I THE INVOCATION OF THE ROUND
FUNCTION IN STATEMENT NUMBER
xxx WILL ALWAYS GIVE A ZERO
RESUL'l' .

Explanation: (p - q + r) is
zero or negative. where p =
precision, g = scale factor,
and r = rounding position.

System Action: Result is set
to zero.

User Response: Check scale and
precision of the first argument
in ROUND function.

S IEM16331 ILLEGAL NEGATIVE SECOND
ARGUMENT IS EEING PASSED TO THE
PSEUDO-VARIABLE SUBSTR IN
STATEMENT NUMBER xxx. AN
EXECUTION ERROR WILL RESULT.

S IEM1634I ILLEGAL NEGATIVE THIRD ARGUMENT
IS BEING PASSED TO THE
PSEUDO-VARIABLE SUBSTR IN

STATEMENT NUMBER xxx. AN
EXECUTION ERROR WILL RESULT.

S IEM1635I THE SUBSTRING SPECIFIED BY THE
SECOND AND THIRD ARGUMENTS TO
'I'HE PSEUDO-VARIABLE SUBSTR IN
STATEMENT NUMBER xxx DOES NOT
LIE WITHIN THE STRING zzzz. AN
EXECUTION ERROR WILL RESULT.

S IEM1636I THE SECOND ARGUMENT TO THE
PSEUDO-VARIABLE SUBSTR IN
STATEMENT NUMBER xxx IS GREATER
THAN THE LENGTH OF THE STRING
Z2ZZ. AN EXECUTION ERROR WILL
RESULT.

S IEM1637I THE THIRD ARGUMENT TO THE
FUNCTION SUBSTR IN STATEMENT
NUMBER xxx IS GREATER TEAN THE
LENGTH OF THE FIRST ARGUMENT.
AN EXECUTION ERROR WILL RESULT.

S IEM1638I 'lHE THIRD ARGUMENT TO THE
PSEUDO-VARIABLE SUBSTR IN
STATEMENT NUMBER xxx IS GREATER
THAN THE LENGTH OF THE STRING
zzzz. AN EXECUTION ERROR WILL
RESULT.

T IEM1639I COMPILER ERROR. INCORRECT
INPUT TO SUBROUTINE 6 IN MODULE
IEMMF IN STATEMENT NUMBER xxx.

system Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or aClroinistrator of the
error.

T IEM1640I THE PARAMETER DESCRIPTION
RELATING TO THE PASSING OF THE
GENERIC ENTRY NAME zzzz DOES
NOT MATCH ANY OF THE FAMILY
MEMBERS.

System Action: Compilation is
terminated.

User Response: Provide correct
parameter description.

W IEM1641I THE PARAMETER DESCRIPTION
RELATING TO THE PASSING OF THE
GENERIC ENTRY NAME zzzz
DESCRIBES THE ENTRY NAME'S
RESULT TYPE RATHER THAN
ARGUMENT TYPE. IF POSSIBLE,
GENERIC SELECTION WILL BE MADE
ON THE BASIS OF THIS RESULT
TYPE.

User Response: Provide fuller
parameter description.

Part IV: Appendixes 199

T IEM1642I THE PARAMETER DESCRIPTION
RELATING TO THE PASSING OF THE
GENERIC ENTRY NA.~E zzzz IS NOT
SUFFICIENT FOR 'fHE PURPOSES OF
GENERIC SELECTION.

System Action: co~pilation is
terminated.

User Response: Provide fuller
parameter description.

T IEM16431 COMPILER ERROR. THE PARAMETER
DESCRIPTION RELATING TO THE
PASSING OF THE GENERIC ENTRY
NAME zzzz IS INCORRECTLY FORMED
IN THE DICTIONARY.

System Action: Compilation is
terminated.

User Response: Save relevant
data and intornl syst,em manager
or administrator of the error.

T IEM1644I COMPILER ERROR. THE GENERIC
FAMILIES ASSOCIATED WITH ENTRY
NAME zzzz HAVE BEEN INCORRECTLY
FORMED IN THE DICTIONARY.

Explanation: The dictionary
entry for one or more of the
generic families is not a
recognizable entry type.

System Action: compilation is
terminated.

User Response: Save relevant
data and infoml system manager
or administrator of the error.

'1' IEM1645I THE PARAMETER DESCRIPTION
RELATING TO THE PASSING OF THE
GENERIC ENTRY NAME zzzz RESOLTS
IN MORE THAN ONE POSSIBLE
FAMILY MEMBER SELECTION.

System Action: Compilation is
terminated.

User Response: Provide fuller
paramet,er description.

T IEM1648I COMPILER ERROR. FUNCTION
REFERENCE MISSING FROM TEXT IN
STATEMENT NU~BER xxx

Explanation: Incorrect
handling of text by previous
phase.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform system manager
or administrator of the error.

200 Appendix H: PL/I Diagnostic Messages

T IEM1649I COMPILER ERROR. INCORRECT
FORMATION OF ARGUMENT LIST
ASSOCIATED WITH ENTRY NAME zzzz
IN STATEMENT NUMBER xxx

Explanation: Incorrect
handling of text by previous
phase.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform system manager
or administrator of the error.

T IEM1650I COMPILER ERROR. INCORRECT
HANDLING OF ARGUMENT LIST
ASSOCIATED WITH ENTRY NAME zzzz
IN STATEMENT NUMBER xxx

Explanation: Incorrect
handling of text by previous
phase.

system Action: Compilation is
terminated.

User Response: Save relevant
data and inform system manager
or administrator of the error.

T IEM1651I COMPILER ERROR. ARGUMENT
REFERENCE MISSING FROM ARGUMENT
LIST ASSOCIATED WITH ENTRY NAME
zzzz IN STATEMENT NUMBER xxx

Explanation: Incorrect
handling of text by previous
phase.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform system manager
or administrator of the error.

T IEM1652I IMPLEMENTATION RESTRICTION.
INVOCATIONS ARE NESTED BEYOND
THE MAXIMUM PERMITTED LEVEL IN
STATEMENT NUMBER xxx

Explanation: Nesting level
exceeds implementation limit.

system Action: Compilation is
terminated.

User Response: Reduce nesting
level.

T IEM1653I IMPLEMENTATION RESTRICTION.
SOURCE PROGRAM TOO LARGE.
NUMBER OF SYMBOLIC REGISTERS
EXCEEDS LIMIT.

Explanation: Too many symbolic
registers required.

System Action: compilation is
terminated.

User Response: sutdivide the
program.

T IEM16541 THE GENERIC PROCEDURE zzzz IS
BEING INVOKED WITHOUT AN
ARGUMENT LIST IN STATEMENT
NUMBER xxx

system Action: cmrpilation is
terminated.

User Response: supply argument
list.

T IEM1655I IMPLEMENTATION RESTRICTION.
TOO MUCH WORKSPACE REQUIRED FOR
TEMPORARY RESULTS IN STATEMENT
NUMBER xxx

System Action: compilation is
terminated.

User Response: Sutdivide the
statement in question into two
or more seFarate statements.

T IEM1656I COMPILER ERROR. INCORRECT
INPUT TO PHASE MF FOR
COMPLETION BUILT-IN FUNCTION IN
STATEMENT NUMBER xxx.

Explanation: The compiler has
encountered incorrect input to
phase ME.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform system manager
or administrator of the error.

E IEM1657I THE FILE zzzz, WHICH HAS BEEN
DECLARED WITH THE COBOL OPTION,
IS BEING PASSED AS AN ARGUMENT
IN STATEMENT NUMBER xxx.

Explanation: In this compiler,
files with the COBOL option may
not be passed as arguments.

System Action: Comments and
continues.

User Response: Correct source
program if necessary.

S IEM1658I IN STATEMENT NUMBER xxx, zzzz
IS NOT A PERMISSIBLE ARGUMENT.
AN EXECUTION ERROR WILL RESULT
IF THE CORRESPONDING PARAMETER
IS REFERENCED.

Explanation: A condition name
appears as an argument in a
CALL statement or function
reference. This is illegal.

System Action: Atterr.pts to
pass the argument.

T IE~1610I STATEMENT NUMBER xxx BAS CAUSED
A TABLE INTERNAL TO THE
COMP ILER TO OVERFLOW.

Explanation: Either the
nesting of procedure arguments
requiring dummies is too deep,
or too many tempoxary results
are xequired between the
assignment of an argument
expression to a dummy and the
procedure call.

System Action: compilation is
terminated.

User Response: Reduce
complexity of argument
expressions.

T IEM1671I COMPILER ERROR NUMBER MP nnnn
IN STATEMENT NUMBER xxx

Explanatio~: This is a
cOJI'piler error.

Systeul Action: Compilation is
terminated.

User ResE9nse~ Save relevant
data and inform syst.em managex
ox administrator of the error.

T IEM16801 COMPILER ERROR. TRIPLE
OPERATOR NOT RECOGNIZED IN
STATEMENT NUMBER xxx

Explanation: Illegal input
from a previous phase.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform system manager
or administrator of the error.

T IEM16871 COMPILER ERROR. OPTIMIZED
SUBSCRIPT INCORRECTLY FORMEC IN
STATEMENT NUMBER xxx

Explanation: Illegal input
from a previous phase.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system

Part IV: Appendixes 201

manager or adminil',itrator of the
error.

T IEM1688I COMPILER ERROR. ARRAY NAME
zzzz INCORRECTLY DESCRIBED AS
DEFINED IN STATEMENT NUMBER xxx

Explanation: Array incorrectly
described by a previous phase
as having the DEFINED
attribute.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

T IEM16891 COMPILER ERROR. ARRAY zzzz IS
INCORRECTLY SUBSCRIPTED IN
STATEMENT NUMBER xxx

Explanation: Illegal inFut
from a previous phase.

System Action: Compilation is
terminated.

User Resfonse: Save relevant
data and inform the system
manager or administrator of the
error.

T IEM16921 IMPLEMENTATION RESTRICTION.
SUBSCRIPT NESTED TO DEPTH
GREATER THAN 50 LEVELS IN
STATEMENT NUMBER xxx

Explanation: Subscript nesting
exceeds fifty levels.

System Action: Compilation is
terminated.

User Response: Reduce amount
of nesting and recom~ile.

T IEM1693I NUMBER OF SUBSCRIPTS ASSOCIATED
WITH ARRAY zzzz IN STATEMENT
NUMBER xxx IS INCORRECT.

Explanation: The number of
subscripts given does not agree
with the declared
dimensionality of the array.

System Action: Compilation is
terminated.

User Response: Add or delete
subscripts as appropriate.

W IEM1695I TRANSLATE FUNCTION IN STATEMENT
NUMBER xxx HAS A CHARACTER OR
BIT DUPLICATED IN ITS THIRD
ARGUMENT.

202 Appendix H: PL/l Diagnostic Messages

Explanation: This may be a
source program error.

User Response: Check that the
character or bit was
intentionally duplicated.

W IEM1696I VERIFY FUNCTION IN STATEMENT
NUMBER xxx HAS A CHARACTER OR
BIT DUPLICATED IN ITS SECOND
ARGUMENT.

Explanation: This may be a
source program error.

User Response: Check that the
character or bit was
intentionally duplicated.

S IEM11501 zzzz IS AN ILLEGAL OPERAND IN
AN IF STATEMENT OR WHILE CLAUSE
IN STATEMENT NUMBER xxx. IT
HAS BEEN REPLACED BY A ZERO BIT
STRING.

S IEM1151I THE IDENTIFIER zzzz IS AN
ILLEGAL ARGUMENT OF THE RETURN
STATEMENT NUMBER xxx AND HAS
BEEN DELETED.

Explanation: Illegal arguments
include arrays and structures.

W IEM1152I THE ATTRIBUTES OF THE
EXPRESSION USED IN THE RETURN
STATEMENT IN STATEMENT NUMBER
xxx CONFLICT WITH THE
ATTRIBUTES OF SOME OR ALL OF
THE ENTRY POINTS OF THE
CONTAINING PROCEDURE. AN
EXECUTION FAILURE MAY OCCUR AT
'IHIS STATEMENT.

Explanation: After a call to a
procedure through an entry
point with POINTER, AREA, or
data attributes, any RETURN
statement encountered must
return a value of type POINTER
or AREA or of a data type
compatible with the data
attributes of the entry point.

System Action: The ERROR
condition is raised.

E IEM1753I THE EXPRESSION USED IN THE
RETURN STATEMENT IN STATEMENT
NUMBER xxx AND THE ATTRIBUTES
OF THE CONTAINING PROCEDURE ARE
IMCOMPATIBLE. EXECUTION OF
THIS STATEMENT WILL RESULT IN A
FAILURE.

Explanation: After a call to a
procedure through an entry
point with POINTER, AREA, or
data attributes, any RETURN

statement encountered must
return a value of type POINTER
or AREA or of a data type
compatible with the data
attributes of the entry point.

system Action: The ERROR
condition is raised.

E IEM1754I THE EXPRESSION USED IN THE
RETURN STATEMENT IN STATEMENT
NUMBER xxx IS INVALID

Explanation: The only
permitted arguments are data
types STRING. POINTER, and
AREA.

System Action: Raise ERROR
condition on execution of the
statement.

E IEM17551 OPTION SPECIFICATION CONTAINS
INVALID ARGUMENT, DEFAULT USED
FOR SORMGIN.

Explanation: This message is
written directly on SYSPRINT.
or SYSOUT. The compiler found
that an argument to the SORMGIN
option was either zero or
greater than 100.

System Action: The default
interpretation for SORMGIN, as
set at system generation, is
used.

W IEM1790I DATA CONVERSIONS WILL BE DONE
BY SUBROUTINE CALL IN THE
FOLLOWING STATEMENTS yyyy

User Response: Check to see if
the conversion can be avoided
or performed in line.

S IEM1793I ILLEGAL ASSIGNMENT OR
CONVERSION IN STATEMENT NUMBER
xxx. EXECUTION WILL RAISE THE
ERROR CONDITION.

Explanation: Illegal
assignment or conversion in
source statement, e.g., label
to arithmetic.

System Action: An instruction
is compiled which will cause
termination if the statement is
executed.

T IEM1794I COMPILER ERROR IN STATEMENT
NUMBER xxx PHASE OE.

Explanation: compiler error
caused by input text in bad
format.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM17951 INVALID ITEM IN FREE STATEMENT
NUMBER xxx

Explanation: variable in FREE
statement is either not
CONTROLLED or not at level 1.

System Action: Error condition
and message given at object
time.

E IEM1796I ASSIGNMENT OF AN ILLEGAL LABEL
CONSTANT IN STATEMENT NUMBER
xxx.

Explanation: The label
constant does not appear in the
value list in the DECLARE
statement for the label
variable.

System Actio~: Accepts label
constant as if in value list
and continues compilation.

W IEM1797I CONVERSION OF NULL VALUES IN
POINTER/OFFSET ASSIGNMENTS IS
INVALID. NULLO HAS BEEN
REPLACED BY NULL, OR NULL BY
NULLO, IN STATEMENT NUMBER xxx

Explanation: A NULLO offset
type constant has been assigned
to a pointer, or a NULL pointer
type constant to an offset.
Conversion of null values is
not allowed. The constant type
has been corrected.

System Action: The assignment
is unaffected.

S IEM1800I AN ERROR HAS OCCURRED WHEN
CONVERTING THE CONSTANT yyyy TO
FLOATING-POINT. THE ERROR WAS
DETECTED IN STATEMENT NUMfER
xxx BUT CHECK ALL SIMILAR USES
OF THIS CONSTANT.

§ystem Action: Truncates
result.

User Response: Change the
constant and check its use in
the given statement and
elsewhere.

S IEM1801I AN ERROR HAS OCCURRED IN THE
CONVERSION TO FLOATING-POINT OF
THE STERLING CONSTANT WHICH HAS

Part IV: Appendixes 203

DECIMAL PENCE FORM 3YYY. THE
ERROR WAS DETECTED IN STATEMENT
NUMBER xxx BUT CHECK ALL
SIMILAR USES OF THIS CONSTANT.

User Response: Change the
constant and check its use in
the given stat~ement and
elsewhere.

S IEM1802I AN ERROR HAS OCCURRED WHEN
CONVERTING THE CONSTANT yyyy TO
FIXED BINARY. THE ERROR WAS
DETECTED IN S'l'ATEMENT NUMBER
xxx BUT CHECK ALL SIMILAR USES
OF THIS CONSTANT.

User Response: Change the
constant and check its use in
the given statement and
elsewhere.

S IEMIS03I AN ERROR HAS OCCURRED IN THE
CONVERSION TO FIXED BINARY OF
THE STERLING CONSTANT WHICH HAS
DECIMAL PENCE FORM yyyy. THE
ERROR WAS DETECTED IN STATEMENT
NUMBER xxx BUT CHECR ALL
SIMILAR USES OF THIS CONSTANT.

User Response: Change the
constant and check its use in
the given statement and
elsewhere.

S IEM1804I AN ERROR HAS OCCURRED WHEN
CONVERTING THE CONSTANT yyyy TO
FIXED DECIMAL. THE ERROR WAS
DETECTED IN STATEMENT NUMBER
xxx BUT CHECR ALL SIMILAR USES
OF THIS CONSTANT.

System Action: Truncates
result.

User Response: Change the
constant and check its use in
the given statement and
elsewhere.

S IEMIS0SI AN ERROR HAS OCCURRED IN THE
CONVERSION TO FIXED DECIMAL OF
THE STERLING CONSTANT WHICH HAS
DECI~AL PENCE FORM yyyy. THE
ERROR WAS DETECTED IN STATEMENT
NUMBER xxx BUT CHECR ALL
SIMILAR USE OF THIS CONSTANT.

User Response: Change the
constant and check its use in
the given statement and
elsewhere.

S IEMI806I AN ERROR HAS OCCURRED WHEN
CONVERTING THE CONSTANT yyyy TO
DECIMAL NUMERIC FIELD. THE
ERROR WAS DETECTED IN STATEMENT

204 Appendix H: PL/I Diagnostic Messages

NUMBER xxx BUT CHECR ALL
SIMILAR USES OF THIS CONSTANT.

User Response: Change the
constant and check its use in
the given statement and
elsewhere.

S IEMIS07I AN ERROR HAS OCCURRED IN THE
CONVERSION TO DECIMAL NUMERIC
FIELD OF THE STERLING CONSTANT
WHICH HAS DECIMAL PENCE FORM
yyyy. THE ERROR WAS DETECTED
IN STATEMENT NUMBER xxx BUT
CHECR ALL SIMILAR USES OF THIS
CONSTANT.

User Response: Change the
constant and check its use in
the given statement and
elsewhere.

S IEMI8081 AN ERROR HAS OCCURRED WHEN
CONVERTING THE CONSTANT yyyy TO
STERLING NUMERIC FIELD. THE
ERROR WAS DETECTED IN STATEMENT
NUMBER xxx BUT CHECK ALL
SIMILAR USES OF THIS CONSTANT.

User Response: Change the
constant and check its use in
the given statement and
elsewhere.

S IEM1809I AN ERROR HAS OCCURRED IN THE
CONVERSION TO STERLING NUMERIC
FIELD OF THE STERLING CONSTANT
WHICH HAS DECIMAL PENCE FORM
yyyy. THE ERROR WAS DETECTED
IN STATEMENT NUMBER xxx BUT
CHECK ALI. SIMILAR USES OF THIS
CONSTANT.

User Response: Change the
constant and check its use in
the given statement and
elsewhere.

S IEM18101 AN ERROR HAS OCCURRED WHEN
CONVERTING THE CONSTANT yyyy TO
BIT STRING. THE ERROR WAS
DETECTED IN STATEMENT NUMBER
xxx BUT CHECR ALL SIMILAR USES
OF THIS CONSTANT.

User Response: Change the
constant and check its use in
the given statement and
elsewhere.

S IEMl811I AN ERROR HAS OCCURRED IN THE
CONVERSION TO BIT STRING OF THE
STERLING CONSTANT WHICH HAS
DECIMAL PENCE FORM yyyy. THE
ERROR WAS DETECTED IN STATEMENT
NUMBER xxx BUT CHECK ALL
SIMILAR USES OF THIS CONSTANT.

~

User Response: Change the con­
stant and check its use in the
given statement and elsewhere.

S IEM18121 AN ERROR HAS OCCURRED WHEN
CONVERTING THE CONSTANT yyyy TO
CHARACTER STRING. THE. ERROR
WAS DETECTED IN STATEMENT
NUMBER xxx BUT CHECK ALL
SIMILAR USES OF THIS CONSTANT.

User Response: Change the con­
stant and check its use in the
given statement and elsewhere.

S IEMl813I AN ERROR HAS OCCURRED IN THE
CONVERSION TO CHARACTER STRING
OF THE STERLING CONSTANT WHICH
HAS DECIMAL PENCE FORM yyyy.
THE ERROR WAS DETECTED IN
STATEMENT NUMBER xxx BUT CHECK
ALL SIMILAR USES OF THIS
CONSTANT.

User Response: Change the
constant and check its use in
the given statement and
elsewhere.

S IEM181~I AN ERROR HAS OCCURRED IN THE
CONVERSION OF THE CONSTANT yyyy
TO PICTURED CHARACTER STRING.
THE ERROR WAS DETECTED IN
STATEMENT NUMBER xxx BUT CHECK
ALL SIMILAR USES OF THIS
CONSTANT.

User Response: Change the
constant and check its use in
the given statement and
elsewhere.

S IEMl815I AN ERROR HAS OCCURRED IN THE
CONVERSION TO PICTURED
CHARACTER STRING OF THE
STERLING CONSTANT WHICH HAS
DECIMAL PENCE FORM yyyy. THE
ERROR WAS DETECTED IN STATEMENT
NUMBER xxx BUT CHECK ALL
SIMILAR USE.S OF' THIS CONSTANT.

User Response: Change the
constant and check its use in
the given statement and
elsewhere.

S IEM1816I zzzz USED IN FILE OPTION IN
STATEMENT NUMBER xxx IS NOT A
FILE. OPTION HAS BEEN IGNORED.
EXECUTION ERROR WILL RESULT

Explanation: Dictionary
reference of file triple was
not file constant or file
parameter code.

system Action: Ignores option,
but continues to scan
statement.

E IEMl817I INVALID KEYTO OPTION zzzz
IGNORED IN STATEMENT NUMBER xxx

Explanation: KEYTO option must
be scalar character string
variable.

S IEM1818I zzzz USED IN KEY/KEYFROM OPTION
IN STATE~~NT NUMBER xxx IS NOT
A SCALAR. OPTION IGNORED.

System Action: Ignores option
but continues scan of
statement.

S IEM1819I zzzz USED IN THE IGNORE OPTION
IN STATEMENT NUMBER xxx IS NOT
A SCALAR. OPTION IGNORED.

System Action: Ignores option
but continues scan of
statement.

User Response: correct IGNORE
variable.

T IE~1823I COMPILER ERROR DETEC'I'ED IN
PHASE NJ/NK.

Explanation: NJ/NK found some
unexpected input. Register 9
in dump will indicate cause of
error.

System Action; Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM1824I OPTIONS IN OPEN STATEMENT
NU~EER xxx ARE IN CONFLICT WITH
PAGESIZE AND/OR LINESIZE.

E IEM1825I INVALID REPLY OPTION IGNORED IN
STATEMENT NUMBER xxx

S IEM18261 INVALID MESSAGE IN DISPLAY
STATEMENT NUMBER xxx.
STATEMENT IGNORED.

S IEM1827I INVALID ARGUMENT TO DELAY
STATEMENT NUMBER xxx.
STATEMENT IGNORED.

T IEM18281 COMPILER ERROR. INCORRECT
NUMBER OF TMPDS FOLLOWING ZERO
OPERAND IN STATEMENT NUMBER xxx

System Action: Compilation is
terminated.

Part IV: Appendixes 205

User Response: Sav~ relevant
data and inforn. system manager
or administrator of the error.

S IEM1829I INVALID SCALAR EXPRESSION
OPTION IN WAIT STATEMENT NUMBER
xxx. MAXIMU~ EVENT COUNT
GIVEN.

Explanation: The optional
scalar expression in the WAIT
st.atement cannot be converted
to an integer.

System Action: The number of
event names in the list is
assumed as the event count.

T IEM1830I COMPILER ERROR. INCORRECT
INPUT TO PHASE NG IN WAIT
STATEMENT NUMBER xxx.

Explanation: The compiler has
encountered incorrect input to
phase NG and cannot continue.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform system manager
or administrator of the error.

E IEM1831I INVALID KEYTO OPTION IN
STATEMENT NUMBER xxx.

Explanation: KEYTO option must
be scalar character-string
variable.

E IEM1832I INVALID PAGE OPTION IGNORED IN
STATEMENT NUMBER xxx

E IEM1833I INVALID LINE OPTION IGNORED IN
STATEMENT NUMBER xxx

E IEM1834I MULTIPLE COPY OPTIONS SPECIFIED
IN STATEMENT NUMBER xxx. THE
FIRST ONE IS USED.

System Action: Only the first
option is used.

E IEM1835I INVALID FILE OPTION IGNORED IN
STATEMENT NUMBER xxx

E IEM1836I INVALID STRING OPTION IGNORED
IN STATEMENT NUMBER xxx

S IEM183?I NO FILE OR STRING SPECIFIED IN
STATEMENT NUMBER xxx.
STATEMENT IGNORED.

Explanation: No FILE or STRING
given in GET/PUT statement.

E IEM1838I INVALID TITLE OPTION IGNORED IN
STATEMENT NUMBER xxx

206 Appendix H: PL/I Diagnostic Messages

E IEM1839I INVALID IDENT OPTION IGNORED IN
STATEMENT NUMBER xxx

E IEM18401 INVALID LINESIZE OPTION IGNORED
IN STATEMENT NUMBER xxx

E IEM1841I INVALID PAGESIZE OPTION IGNORED
IN STATEMENT NUMBER xxx

S IEM1843I NO FILE SPECIFIED IN OPEN/CLOSE
STATEMENT NUMBER xxx. ANY
OPTIONS ARE IGNORED.

T IEM1844I COlfillLER ERROR. INCORRECT
NUMBER OF TMPDS FOLLOWING Z~RO
OPERAND IN STATEMENT NUMBER xxx

System Action: compilation is
terminated.

User Response: Save relevant
data and inform system manager
or administrator of the error.

E IEM1845I MULTIPLE DATA SPECIFICATIONS
IGNORED IN STATEMENT NUMBER xxx

E IEM1846I INVALID SKIP OPTION IGNORED IN
STATEMENT NUMBER xxx

S IEM1841I NO DATA SPECIFICATIONS GIVEN
FOR GET STATEMENT NUMBER xxx.
STATEMENT DELETED.

S IEM1848I NO DATA SPECIFICATIONS OR PRINT
OPTIONS GIVEN FOR PUT STATEMENT
NUMBER xxx. STATEMENT DELETED.

W IEM1849I THE USE OF THE BUILT-IN
FUNCTION NULL IN STATEMENT
NUMBER xxx IS INVALID; NULLO
HAS BEEN SUBSTITUTED. CHECK
ALL SIMILAR USES OF NULL.

System Action: Substitutes
NULLO.

W IEM1850I THE USE OF THE BUILT-IN
FUNCTION NULLO IN STATEMENT
NUMBER xxx IS INVALID; NULL HAS
BEEN SUBSTITUTED. CHECK ALL
SHULAR USES OF NULLO.

system Action: substitutes
NULL.

S IEM1860I THE ILLEGAL ITEM zzzz HAS BEEN
DELETED FROM THE I/O DATA LIST
IN STATEMENT NUMBER xxx

S IEM1861I AN ILLEGAL TEMPORARY RESULT'OR
SUBSCRIPTED ELEMENT HAS BEEN
DELETED FROM THE I/O DATA LIST
IN STATEMENT NUMBER xxx

S IEM1862I AN EXPRESSION OR FUNCTION
INVOCATION IS AN ILLEGAL DATA
ITEM AND HAS BEEN DELETED FROM

TH~ DATA-DIRECTED I/O STATEMENT
NUMBER xxx.

E IEM1870I THE FORMAT LIST IN STATEMENT
NUMBER xxx CONTAINS NO DATA
FORMAT ITEMS AND WILL BE
EXECUTED ONCE IF THE STATEMENT
IS INVOKED.

System Action: At execution
time, on finding no data format
items. control passes out of
the statement at the end of the
format list.

S IEM1871I IN STATEMENT NUMBER xxx THE
FORMAT LIST CONTAINS AN E OR F
FORMAT ITEM WITH AN ILLEGAL
SPECIFICATION. THE FORMAT ITEM
HAS BEEN DELETED.

W IEM1872I IN STATEMENT NUMBER xxx AN E
FORMAT ITEM HAS A FIELD WIDTH
WalCH WOULD NOT PERMIT PRINTING
OF A MINUS SIGN.

S IEM1873I IMPLEM~NTATION RESTRICTION. IN
STATEMENT NUMBER xxx AN A, B OR
CONTROL FORMAT ITEM SPECIFIES
AN EXCESSIVE LENGTH WHICH HAS
BEEN REPLACED BY THE MAXIMUM OF
32,767.

S IEM18741 IN STATEMENT NUMBER xxx AN
INPUT STATEMENT CONTAINS A
FORMAT ITEM WHICH MAY BE USED
ONLY IN OUTPUT STATEMENTS.

Explanation: PAGE, SKIP, LINE,
COLUMN, and format items A and
B with no width specification
may be used only for output.

System Action: Invalid format
item deleted.

W IEM1875I IN STATEMENT NUMBER xxx AN E
FORMAT ITEM HAS AN ILLEGAL
SPECIFICATION IF USED FOR AN
OUTPUT DATA ITEM.

Explanation: The specification
violates the restriction that
the field width w must be
greater than s+n+2.

System Action: There will be
an error at execution time.

User Response: Correct
specification.

T IEM2304I COMPILER ERROR. DICTIONARY
ENTRY zzzz UNRECOGNIZED IN
STATIC CHAIN.

Explanatio~: Due to a com~iler
error, a dictionary entry with
an unrecognized code byte has
been found in t.he static chain.

System Action: compilation is
terminated.

User Response: Save relevant
data and inform system manager
or administrator of the error.

T IEM2305I COMPILER ERROR. DOPE VECTOR
REQUESTED BY NON-STRING,
NON-STRUCTURE MEMBER zzzz

Explanation: Due to a compiler
error. the allocation of a dope
vector has been reguested for
3n item which shOUld never
require one.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform system manager
or administrator of the error.

T IEM2352I THE AUTOMATIC VARIABLES IN THE
BLOCK HEADED BY STATEMENT
NUMBER xxx ARE MUTUALLY
DEPENDENT. STORAGE CANNOT BE
ALLOCATED.

EXFlanation: A number of
automatic variables are
mutually dependent, which makes
it impossible to allocate
storage in order of dependency.

System Action: Compilation is
terminated.

User Response: Rewrite
statement, eliminating mutual
dependency.

T IEM26501 IMPLEMENTATION RESTRICTION.
OPTIMIZATION TABLE OVERFLOWED
WHILE PROCESSING STATEMENT
NUMBER xxx.

System Act~ion: compilation is
teminated.

User Response: Recompile with
one of the following changes:

1. Use a larger partition or
region.

2. Specify OPT=O or OPT=l.

3. Reduce the number of
subscripts in the DO loop
that contains the statement
indicated.

Part IV: Appendixes 207

T IEM2660I COMPILER ERROR IN INPUT TO
PHASE RD. IN S'I'ATEMENT NUMBER
xxx A PREVIOUS PHASE HAS
GENERATE8 A LABEL NUMBER
GREATER THAN THE MAXIMUM SHOWN.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

T IEM2661I COMPILER ERROR. INTERNAL TABLE
ENTRY IN PhASE RD IS INCORRECT.

EXflanation: An entry in the
internal table of
comfiler-generated labels does
not point to a label in text.

Systen, Action: compilation is
term~nated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error. The program may be
recompiled successfully by
oITiitt_ing OPT=2 option.

T IEM2700I COMPILER ERROR IN INPUT TO
PHASE IEMRF. STATEMENT NUMBER
xxx. SPECIAL ASSIGNED REGISTER
IN FORMAT/DATA LIST CODE CANNOT
BE FOUND.

System Action: compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

T IEM2701I COMPILER ERROR. PHASE IEMRF,
STATEMENT NUMBER xx.x. PSTOR
GREATER THAN 32K.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

T IEM2702I COMPILER ERROR IN INPUT TO
PHASE IEMRF, STATEMENT NUMBER
xxx. BCT WITHOUT DICTIONARY
REFERENCE AS DESTINATION.

System Action: co~pilation is
terminated.

208 Appendix H: PL/I Diagnostic Messages

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

T IEM2103I COMPILER ERROR IN INPUT TO
PHASE IEMRF, STATEMENT NUMBER
xxx. LINK REGISTER IN BALR IS
NOT ASSIGNED.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

T IEM2704I CO~PILER ERROR IN INPUT TO
PHASE IEMRF, STATEMENT NUMBER
xxx. 'USNG' ITEM DOES NOT HAVE
ASSIGNED REGISTER.

system Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM2105I COMPILER ERROR IN INPUT TO
PHASE IEMRF, STATEMENT NUMBER
xxx. DROPPED REGISTER NOT
ACTIVE.

Explanation: Register number
in field in DROP item is not in
register table nor in storage.

System Action: Continues
compilation, ignoring DROP.
Execution is inhibited.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM2106I COMPILER ERROR IN INPUT TO
PHASE IEMRF, STATEMENT NUMBER
xxx. NOT ALL REGISTERS IN
'DRPL' ITEM CAN BE FOUND.

System Action: Ignores DRPL
item and continues.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM2107I COMPILER ERROR IN INPUT TO
PHASE IEMRF, STATEMENT NUMBER
xxx. NOT ALL SYMBOLIC
REGISTERS DROPPED AT END OF
PROCEDURE OR BEGIN BLOCK.

Explanation: One or more
symbolic registers have been
used in the PROCEDURE or BEGIN
block, but no corresfonding
DROP has occurred.

System Action: Inserts in
listing at end of clock: the
register number, the offset
from register 9 at which the
register is stored. and the
words 'ERROR STOP',

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM2708I COMPILER ERROR IN INPUT TO
PHASE IEMRF, STATEMENT NUMBER
xxx. ASSIGNED REGISTER USED IN
SOURCE FIELD IS NOT
INITIALIZED.

Explanation: The assigned
register should have a previous
value (e.g., X in AR X,Y, or L
Y,10(X», but none can be
found.

System Action: Register 13 is
used instead of the correct
number. and compilation is
continued.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM27091 COMPILER ERROR IN INPUT TO
PHASE IEMRF, STATEMENT NUMBER
xxx. SYMBOLIC REGISTER SHOULD
HAVE PREVIOUS VALUE, BUT HAS
NOT.

Explanation: Register X in an
instruction, such as AR X,Y, or
L Y,10(X), has not been set up
previously.

System Action: Inserts
register 12 and continues
compilation.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

T IEM2710I COMPILER ERROR IN INPUT TO
PHASE IEMRF. STATEMENT NUMBER
xxx. MORE THAN ONE REGISTER
PAIR REQUIRED IN AN
INSTROCTION.

System Action: Compilation is
terminated.

User Response: Save relevant
dat.a and inform the system
manager or administrator of the
erro.r.

S IEM27111 CO~PILER ERROR IN INPUT TO
PHASE IEMRF. STATEMENT NUMBER
xxx. ASSIGNED REGISTER IS
STILL IN USE AT THE START OF A
PROCEDUR.E.

Explanation: Assigned register
status should be zero at the
start of each procedure.

System Action: Drops the
assigned register and continues
compilation.

User ~espo~: Save relevant
data and infonn the system
manager or administrator of the
error.

S IEM27121 COMPILER ERROR IN INPUT TO
PHASE IEMRF, STATEMENT NUMBER
xxx. IPRM/IPRM' OR EPRM/EPRM'
PAIRS ARE NOT MATCHED IN
PREVIOUS STATEMENT.

System Action: Compilation is
continued.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM2816I ILLEGAL ENVIRONMENT OPTION IN
STATEMENT NUMBER xxx.

System Action: Remainder of
environment attributes ignored.

S IEM2811I COMPILER ERROR. INVALID
ATTRIBUTE CODE IN STATEMENT
NUMBER xxx.

Explanatio~: An invalid
attribute marker has been found
in the dictionary entry
corresponding to the file
attributes in the statement
specified.

System Action: Ignores the
rest of the entry.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM28181 CONFLICTING ATTRIBUTE IN
STATEMENT NUMBER xxx IGNORED.

Part IV: Appendixes 209

Explanation: An a~tribute
other than 'ENVlhONMENT"
clashes with previously
declared attributes in the
s~ecified statement.

System Action: Ignores this
at.tribute.

S IEM2819I ERRONEOUS USE OF PARENTHESIS IN
ENVIRONMENT OPTION IN STATEMENT
NUMBER xxx.

Explanation: Misplaced
parenthesis in ENVIRONMENT
attribute.

System Action: Remainder of
ENVIRONMENT attribute ignored.

S IEM2820I ERRONEOUS USE OF COMMA IN
E",VIRONMENT OPTION IN STATEMENT
NUMBER xxx.

Explanation: Misplaced comma
in ENVIRONMENT attribute.

System Action: Remainder of
ENVIRONMENT attribute ignored.

S IEM2821I ILLEGAL CHARACTER IN KEYWORD IN
ENVIRONMENT OPTION IN STATEMENT
NUMBER xxx.

Explanation: Invalid keyword
in ENVIRONMENT attribute.

System Action: Remainder of
ENVIRONMENT attribute ignored.

S IEM2822I FIELD TOO LARGE IN ENVIRONMENT
OPTION IN STATEMENT NUMBER xxx.

Explanation: Field in item in
ENVIRONMENT attribute too
large.

System Action: Remainder of
ENVIRONMENT attribute ignored.

S IEM2823I ERROR IN R)RMAT OF ENVIRONMENT
ATTRIBUTE IN STA'fEMENT NUMBER
xxx.

Explanation: Format of item in
ENVIRONMENT attribute
incorrect.

System Action: Remainder of
ENVIRONMENT attribute ignored.

S IEM2824I CONFLICT BETWEEN ENVIRONMENT
ATTRIBUTE AND OTHER ATTRIBUTES
IN STATEMENT NUMBER xxx.

Explanation: An option in the
ENVIRONMENT attribute clashes
with either another ENVIRONMENT

210 Appendix H: PL/I Diagnostic Messages

option or with a declared
attribute.

System Action: Remainder of
ENVIRONMENT attribute ignored.

S IEM2825I CONFLICTING OPTIONS IN
ENVIRONMENT ATTRIBUTE IN
STATEMEN'f NUMBER xxx. REST OF
ENVIRONMENT IGNORED.

System Action: DECLARE control
block is constructed from
attributes which have already
been processed. The rest are
ignored.

User Response: Correct
ENVIRONMENT option.

S IEM2826I IMPLEMENTATION RESTRICTION.
DIRECT FILE zzzz DECLARED IN
STATEMENT NUMBER xxx MUST HAVE
AN ORGANIZATION SUBFIELD IN THE
ENVIRONMENT ATTRIBUTE.

Svstelfl Action: No compile-time
action, but execution will
fail.

User Response: Provide
ENVIRONMENT attribute.

W IEM2827I A D COMPILER OPTION BAS BEEN
DECLARED IN THE ENVIRONMENT
LIST IN STATEMENT NUMBER xxx.
IT HAS BEEN IGNORED.

W IEM2828I ENVIRONMENT OPTIONS CLTASA AND
CLT360 HAVE BOTH BEEN DECLARED
IN STATEMENT NUMBER xxx. THE
SECOND ONE LISTED WILL BE
IGNORED.

W IEM2829I IN STATEMENT NUMBER xxx THE
PARAMETER SPECIFIED IN THE
INDEXAREA OPTION IS GREATER
THAN 32767 AND HAS BEEN
IGNORED.

Explanation: If the parameter
is not specified or is outside
the permitted range, data
management uses as much main
storage as is required for the
master index.

T IEM2830I FILE DECLARED TRANSIENT IN
STATEMENT NUMBER xxx DOES NOT
HAVE MANDATORY ENVIRONMENT
OPTION G OR R.

System Action: Compilation is
terminated.

User Response: Correct file
declaration.

E IEM2831I THE NCP VALUE IN STATEMENT
NUMBER xxx EITHER IS NOT AN
INTEGER CONSTANT OR LIES
OUTSIDE THE PERMITTED RANGE OF
1 TO 99. A VALUE OF 1 HAS BEEN
ASSUMED.

User Response: Correct the NCP
value and recompile.

S IEM2833I COMPILER ERROR. OPERAND OF CL
OR SL NOT LABEL.

Explanation: The dictionary
entry referenced after a
compiler label or statement
label marker in the text is not
in fact a label.

System Action: The label
definition is ignored.

User Respons~: Save relevant
data and inform the system
manager or administrator of the
error.

T IEM283qI COMPILER ERROR. INVALID
PSEUDO-CODE OPERATION.

Explanation: The input text
contains a marker which is not
valid.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM2835I COMPILER ERROR. SUBSCRIPTED
LABEL CHAIN ERROR.

Explanation: Subscl:ipted
labels in the source program
result in the creation of
chains of dictionary entries.
An error in the chaining has
occurred.

System Action: The label
definition is ignored.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

T IEM2836I IMPLEMENTATION RESTRICTION.
SOURCE PROGRAM TOO LARGE.

EXFlanation: Not enough
storage is available for the
generated label number table
created by this phase. The
condition arises when a large

number of such labels have been
used, and this in turn is
related to the size of the
program.

System Action: Compilation is
terminated.

User Response: Break the
program into smaller modules.

T IEM2837I COMPILER ERROR. MULTIPLY
DEFINED LABEL OR INVALID LABEL
NUMBER.

§ystem Action: compilation is
terminated.

User Respons~: Save relevant
data and inform the system
manager or administrator of the
errOl:.

S IE~2838I THE TELEPROCESSING FORMAT
OPTION IN STATEMENT NUMBER xxx
CONTAINS NO CONSTANT. A VALUE
OF ZERO HAS BEEN ASSUMED.

S IEM28QOI NUMERIC FIELD IN ENVIRONMENT
OPTION FOR FILE zzzz DECLARED
IN STATEMENT NUMBER xxx IS NOT
IN PARENTHESES AND HAS BEEN
DELETED.

Explanation: If an environment
option requires a numeric
field, then that field must be
enclosed in parentheses.

S IEM2852I COMPILER ERROR. NON-ZERO
OFFSET IN PSEUDO-REGISTER
REFERENCE.

Explanation: Use of a
pseudo-register accompanied by
literal offset has been called
for by compiled code. This
cannot be assembled owing to
the manner in which
pseudo-register relocation is
performed.

System Ac~ion: The literal
offset is ignored.

Us~r Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM2853I COMPILER ERROR. REFERENCE TO
INVALID DICTIONARY ENTRY.

Explanation: A dictionary
reference in t.he input text
does not correspond to a legal
dictionary entry.

Part IV: Appendixes 211

System Action: An offset of
zero is asserrJ:;1.ed i"hto the
output text.

User Reseonse: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM2854I COMPILER ERROR. INVALID
DICTIONARY REFERENCE OFFSET.

Explanation: A dictionary
reference in the input text
corresponds to a valid
dictionary entry. but the
dictionary reference offset is
not valid.

System Action: An offset of
zero is asserr.bled into the
output text.

User Response: Save relevant
data and inform the system
manager or administrator of the'
error.

S IEM28551 COMPILER ERROR. REQUESTED
OFFSET NOT ASSIGNED.

Explanation: Although implied
by a dictionary reference in
the text, storage has not been
allocated.

System Action: An offset of
zero is assembled into the
output text.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM2865I IMPLEMENTATION RESTRICTION.
SOURCE PROGRAM CONTAINS TOO
MANY BLOCKS AND/OR CONTROLLED
VARIABLES.

Explanation: The corr,piler
allocates a pseudo-register
entry for each block and
CONTROLLED variatle in the
source program. The maximum
number of such entries is
1,024.

System Action: No
pseudo-registers are allocated
for items after the limit has
been reached.

User Response: Reduce number
of blocks, or CONTROLLED
variables, in program to less
than 1025.

212 Appendix H: PL/I Diagnostic Messages

W IEM2866I THIS PL/I COMPILATION HAS
GENERATED EXTERNAL NAMES IN
WHICH THE FIRST LEADING
CHARACTER OF THE EXTERNAL
PROCEDURE NAME HAS BEEN
REPLACED BY A SPECIAL
CHARACTER.

Explanation: The external
procedure name, with its first
character changed, is being
used as a base for generating
names for External Symbol
Dictionary entries. If the
sallJe thing happens in another
compilation, and the two are
then joined by the Linkage
Editor, two External Symbol
Dictionary entries may have the
same name.

System Action: None

E IEM2867I IMPLEMENTATION RESTRICTION.
EXTERNAL NAME zzzz HAS BEEN
TRUNCATED TO 7 CHARACTERS.

Explanation: External
identifiers are restricted to
seven characters.

System Action: Name of
External Symbol Dictionary
entry truncated by taking first
four and last three characters;
phase then carries on normally.

User Response: Shorten the
name.

W IEM2868I THIS PL/I COMPILATION BAS
GENERATED EXTERNAL NAMES IN
WHICH THE SECOND LEADING
CHARACTER OF THE EXTERNAL
PROCEDURE NAME HAS BEEN
REPLACED BY A SPECIAL
CHARACTER.

Explanation: The external
procedure, with its second
character changed, is being
used as a base for generating
names for External Symbol
Dictionary entries. If the
same thing happens in another
compilation, and the two are
then joined by the Linkage
Editor, two External Symbol
Dictionary entries may have the
same name.

System Action: None

T IEM28811 CO~PILER ERROR IN STATEMENT
NUMBER xxx. INVALID
PSEUDO-CODE OPERATION.

Explanatiog: The input text
contains a marker which is not,
valid.

System Action: compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM2882I COMPILER ERROR IN STATEMENT
NUMBER xxx. OPERAND OF DC CODE
INVALID.

Explanation: The operand of a
DCA4 pseudo-code iten. is not
valid--the operand should
always be relocatable.

System Action: An offset of
zero is assembled into the
text.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM2883I COMPILER ERROR IN STATEMENT
NUMBER xxx. INVALID REQUEST
FOR RELOCATABLE TEXT.

Explanation: The operand of a
branch instruction has been
found to require relocation.

System Action: An offset of
zero is assembled into the
text.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM2884I COMPILER ERROR IN STATEMENT
NUMBER xxx. NON-ZERO OFFSET IN
PSEUDO-REGISTER REFERENCE.

Explanation: Use of a
pseudo-register accompanied by
a literal offset has been
called for by compiled code.
This cannot be assembled owing
to the manner in which
pseudo-register relocation is
performed.

system Action: The literal
offset is ignored.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM28851 COMPILER ERROR IN STATEMENT
NUMBER xxx. REFERENCE TO
INVALID DICTIONARY ENTRY.

Explanation: A dictionary
reference in the input text
does not correspond to a legal
dictionary entry.

System Action: An offset of
zero is assembled into the
output text.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM2886I COMPILER ERROR IN STATEMENT
NUMBER xxx. INVALID DICTIONARY
REFERENCE OFFSET.

Explanation: A dictionary
reference in the text
corresponds to a valid
dictionary entry, but the
dictionary reference offset is
not valid.

System Action: An offset of
zero is assembled into the
output text.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM2887I COMPILER ERROR IN STATEMENT
NUMBER xxx. REQUESTED OFFSET
NOT ASSIGNED.

Explanation: Although implied
by a dictionary reference in
the input text, storage has not
been allocated.

System Action: An offset of
zero is assembled into the
output text.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

T IEM2888I CO~PILER ERROR IN STATEMENT
NUMBER xxx. UNDEFINED LABEL.

Explanation: No offset has
been assigned to a label
generated by the compiler.

System Action: compilation is
terminated.

Part IV: Appendixes 213

User Response: Save relevant
data and inform tHe system
manager or adffiinistrator of the
error.

S IEM2891I IMPLEMENTATION RESTRICTION.
QUALIFIED NAME zzzz LONGER THAN
256 CHARACTERS.

Explanation: The fully
qualified narr,e of the variable
indicated ~ill not fit into its
Symbol Table entry.

System Action: Leaves Symbol
Table entry incomplete and
carries on ~ith the
initialization of the Static
Internal control section.

User Response: Shorten the
qualified name.

S IEM2898I DATA-DIRECTED 'GET/PUT'
STATEMENT WITH NO LIST IN A
PROCEDURE OR BEGIN BLOCK WHICH
HAS NO DATA VARIABLES.

System Action: Zeros are
inserted in the argument list
for the call to the library
routine to 'GET/PUT DATA', and
compilation continues.

User Response: Correct GET/PUT
statement.

W IEM2899I INITIALIZATION SPECIFIED FOR
TOO FEW ELEMENTS IN STATIC
ARRAY zzzz

System Action: Initialization
terminated ~hen end of initial
string is found.

W IEM2900I INITIALIZATION SPECIFIED FOR
TOO MANY ELEMENTS IN STATIC
ARRAY zzzz

System Action: Initialization
is terminated ~hen every
element has been initialized.

T IEM2913I COMPILER ERROR. INVALID
PSEUDO-CODE OPERATION.

Explanation: The input text
contains a marker which is not
valid.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

214 Appendix H: PL/I Diagnostic Messages

E IEM3088I THE CONFLI~rING ATTRIBUTE aaaa
-32131 HAS BEEN IGNORED IN TBE

DECLARATION OF IDENTIFIER yyyy
IN STATEMENT NUMBER xxx

Explanation: The attribute
given in the message confl.icts
with another attribute decl.ared
for the same identifier. or is
invalid for that identifier.

System Action: The attribute
given in the message is
ignored.

T IEM3216I COMPILER ERROR. UNABLE TO
INITIA'l'E ENTRY FOR PHASE zzz IN
PHASE DIRECTORY.
INITIALIZATION TERMINATED.

W IEM3218I CRITICAL ERROR FOUND DURING
SYNTAX CHECK. CONTINUE? Y OR
N.

W IEM3219I CRITICAL ERROR FOUND DURING
SYNTAX CHECK IN CONVERSATIONAL
TASK. USER REQUESTED
COMPILATION TO CONTINUE.

Explanation: This message will
appear only in the LISTDS or
LISTOUT diagnostics. It will
not appear at the terminal.

T IEM32201 CRITICAL ERROR FOUND DURING
SYNTAX CHECK IN CONVERSATIONAL
TASK. USER REQUESTED
COMPILATION TO BE TERMINATED.

Explanation: This message will
appear only in the LISTDS or
LISTOUT diagnostics. It will
not appear at the terminal.

T IEM3221I CRITICAL ERROR FOUND DURING
SYNTAX CHECK. COMPILATION
TERMINATED.

W IEM32221 CONFLICTING COMPILER OPTIONS
NOLOAD AND DECK HAVE BEEN
SPECIFIED. THE DECK OPTION HAS
BEEN DELETED.

E IEM35841 AN UNBALANCED NUMBER OF
PARENTHESES HAS BEEN DETECTED
WITHIN A STATEMENT AT OR NEAR
STATEMENT NUMBER xxx

Explanation: An occurrence of
a comma immediately fOllowed by
a period at or near the given
statement has been taken as a
statement delimiter. The
statement contains an
unbalanced number of
parentheses.

T IE.M38391 CO~PiLEH EH.!WH. INVAX,ID ERROR
MESSAGE CHAr NS •

ftxp.l,Jmii!:!.Q!:!
unable to

compile~r is
er.cox

Increa.se the
, 0:': reprogram to
the excessively long

const;.ant" 'fiicture. structure.
or i\rray cf '\!arying strings.

diagnostics < T IEM38451 COMP:n,b~!?; ERR(JR AT STA'!'EMEN'l'
NUMB.ER .lac"., TEXT BLOCK
RU'.ERENCED BY PHASE 'DIY IS NOT

.§ystem~: Compilation is IN CORE"
terminat,ed.

Use£..B.e"'J::tJl~se: Save relevant
data and i.uform t,he syst.em
.manageror adxllinistrator of the
error.

T IEM38421 CO:f.'.PILER ERROR AT STATEMENT
NUMBER xxx. ALL TEXT ELOCRS IN
CORE ARE BUSY« BLOCK
REFERENCED BY PHASE yyy CANNOT
HE BROUGHT INTO CORE.

EXE1~'!!5l~tiqg: All blocks in
main storage have become busy.
COUlpiler cannot continue since
an exte:rnal block cannot be
read ir;.

Systc~!!l}\ct,;Lon: Compilati.on i.s
terminated.

US~E....g12~,§E0l1S~! Save relevant
data. and inform the system
manaqex:' or administrator of the
error.

T lEM38431 COMPILER ERROR AT STATEMENT
NUMBER xxx. ATTEMPTED USE BY
PHASE Y:lY OF' ZDABRF WITH A
BI.OCK 'WHI(:H IS NO'l' IN CORE.

E~anatioli: Referenced block
is not in .!lli'lin storage.

System .. ~ctL9.ll: Compilation is
terminated.

yseE __ ItesE911:se: Save relevant
data and inform the system
managE,!:, or administrator of the
f"rror.

T IEM38441 IMPLEMENTATION RESTRICTION
DICTIONARY ENTRY FOR AN ITEM IN
STATEMENT NlJMBER xxx IS TOO
LONG FOR THIS ENVIRONMENT.

Explani!tion: 'the dictionary
block size is too small to
cont.ain a required entry. The
entry is probably a string
constant, picture. or dope
vector skeleton.

System Act,ion: Compilation is
terminated.

.§~te!!,.!~..ftic.m compilation is
terminated.

UseI.J.::~"s.l20nse: Save relevant
dat.i:l and inform the system
n1ana9l~:;: or administrator of the
errOl:.

T 1EM38461 IMPLEMEN'I'ATION R:£STRIC'rION.
SOURCE PROGRAM TOO LARGE BY
STATEMimT NUMBER xxx. ALL TEXT
BLOCI{S FU.LL WHEN PHASE 'l'1'i IS
BEING EXECUTED.

Explanat:ion: There is no more
space for text in this
en'tTironment.

System Action: compilation is
terminated.

1. subhvide the program and
recompile.

2. If O¥C''''2 has been specified
fOl:thin compilation.
recompile specifying OPT--=l
or OPT=O.

Both pos5ih.i1it.ies may be tried
tcgf.>ther;· •

T IEM3847I COMPILER ERROR AT flTA'I'EMENT
NUMBER xxx. PHASE yyy BAS
REQUESTED MORE THAN 41< OF
SCRATCH CORE.

EXE1~llati2.l}: Request for main
stora.ge exceeds 4096 bytes.

Syst~~icn: Compilation is
terminat:ed.

User Resp'onse: Save relevant
data and inform the system
manager or administrator of the
error ..

T IEM38481 CO~PILER ERROR AT STATEMENT
NUMBER xxx. PHASE yyy HAS
REQUESTED A RELEASE OF
UNALI0CATED CORE.

JJd.n XV: Appendixes 215

Explanation: AtteIl,pt to
release unallQcated main
storage.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

T IEM3849I COMPILER ERROR. PHASE yy IN
RELEASE LIST IS NOT IN PHASE
DIRECTORY.

System Action: co[[,pilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

T IEM3850I COMPILER ERROR. PHASE yy IN
LOAD LIST IS NOT IN PHASE
DIRECTORY.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

T IEM3851I COMPILER ERROR. PHASE yy NOT
MARKED. IT IS LOADED.

Explanation: An unmarked phase
is loaded.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

T IEM3852I COMPILER ERROR AT STATEMENT
NUMBER xxx. BLOCK REFERENCED
BY PHASE yyy IS NOT IN USE.
COMPILER CANNOT CONTINUE.

System Action: Compilation is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

T IEM3853I IMPLEMENTATION RESTRICTION.
SOURCE PROGRAM TOO LARGE.
DICTIONARY IS FULL.

216 Appendix H: PL/I Diagnostic Messages

Explanation: This message is
written directly on SYSPRINT,
or SYSOUT.

System Action: Compilation is
terminated.

User Response: Subdivide into
more than one program and
recompile.

T IE~3855I ERROR IN PHASE yy.

Explanation: This message is
written directly on SYSPRINT,
or SYSOUT. A compiler error
has been discovered during the
printing of compile-time
diagnostic messages lif phase
quoted in message is BM} or of
source-program diagnostic
messages (if phase is XA).

System Action: compilation is
terminated. Note that only the
diagnostic message output is
incomplete. All other output
files have been generated
satisfactorily.

User Response: Save relevant
data arad inform the system
manager or administrator of the
error.

T IEM38561 COf.'.PILER ERROR. PROGRAM CHECK
TYPE nnnn HAS OCCURRED IN PHASE
yy AT OR NEAR STATEMENT NUMBER
xxx.

Explanation: A program check
has occurred during compilation
This is due to a compiler
failure which may have been
exposed by an error in the
source code. The check type is
given as the code for a program
interrupt as follows:

Code
1
2
3
4
5
6
7

Cause of ProqralL
Interrupt

Operation
Privileged operation
Execute
Protection
Addressing
Specification
Data

System Action: Compilation is
terminated.

User Response: Check source
code carefully. If an error is
found. correcting it may enable
compilation to be completed
successfully. Whether or not
an error is found. save

relevant dat:a and informtbe
system manager or administrator
of the error.

T IEM3851I COMPILER ERROR. A'l'TEMPT TO
PASS CON'l'ROL TO AN UNNAMED
PHASE. AN UNMARKED PHASE HAS
BEEN ENCOUNTERED.

Explanation: An unmarked phase
has been encountered. Compiler
cannot continue.

System Action: Compilation is
terminated.

User ResQonse: Save relevant
data and inform the system
manager or administrator of the
error.

T IEM38581 COMPILER ERROR. REQUESTED OR
UNWANTED PHASE NOT IN PHASE
DIRECTORY.

Explanation: Request to mark a
phase which is not in phase
directory. Compiler cannot
cont.inue.

System Action: Compilation is
terminated.

User Response: Save releva.nt
" data and inform the system
manager or administrator of the
error.

T IEM3859I INSUFFICIENT CORE IS AVAILABLE
TO CONTINUE THIS COMPILATION.

Explanation: An attempt is
being made to expand the number
of text blocks in main storage.
The GETMAIN routine has failed
to get the storage. This will
only occur where less than
45,056 bytes are available to
the compiler. This message is
written dire~tly onto SYSPRINT.

System Action: compilation is
terminated. Message IEM38651
may foll.ow.

User Response: Check that the
required main storage is
available in the system on
Which the compilation is being
run.

E IEM3860I I/O ERROR ON SYSIN. RECORD
ACCEPTED AS INPUT.

Explanation: The error may be
a machine error. or. if SYSIN
is a card reader. there may be
a hole pattern which does not

represent a valid S:ystem/360
cnara<..'"te:r.: (validity check).

System Ac:tion; 'The error
message number is printed in
the source listing before the
record in error. The record is
accepted as input.

User ~esponse: If SYSIN is a
card reader. check that every
column of the indicated card
contains a valid code. If the
I/O error perSists, have the
computing system checked.

T IEM3861I I/O ERROR IN LOAD DATA SET.
GENERATION OF LOAD DATA SET IS
TERMllV\TED •

User Response: Attempt to
recompile. If error persists,
save relevant data and inforn,
the system manager or
administrator.

T IEM3865I ERROR IN COMPILER ABORT

T IEM3872I

Explanation: This message is
written directly on SYSPRINT
(SYSOUT). The compiler has
tried twice to abort and cannot
do so. Compilation will
therefore terminate without the
pl:oduction of any further
diagnostic messages.

system ,Act,ion: Compilation is
t erminat eo.

~. Response: If this message
fOllows directly after message
IEM3859I. correct the error
which gave rise to that
message; otherwise, save
relevant, data and inform the
system ma:nager or administrator
of the error".

I/O ERROR ON SYSUT3

EXFlaIL~_tion: 'l'bis nlessage is
written directly on SYSPRINT,
or SYSOUT. There is an I/O
error on SYSUT3 (PLIMAC). The
compiler cannot continue.

Syst~ Action: Compilation is
terminated.

User Response: Recompile. and
if I/O error perSists, inform
the system manager or
administrator.

E IEM38731 I/O ERROR ON PLlMAC. RECORD
ACCEPTED AS INPUT.

Part IV; Appendixes 217

System Action: The error
message number is -printed in
the source listing before tbe
record in error. The record is
accepted as input, and
compilation continues.

User Response: Recompile, and
if I/O error persists, inform
the system manager or
administrator.

T IEM38741 UNABLE TO OPEN SYSIN

Explanation: This message is
written directly on SYSPRINT
(SYSOUT). Unable to open SYSIN
(PLIINPUT). The compiler
cannot continue.

System Action: Compilation is
termina ted.

User Response: Recompile, and
if error persists, inform the
system manager or
administrator.

T IEM3878I INSUFFICIENT VIRTUAL MEMORY.
COMPILATION TERMINATED

S IE~3889I LOAD DATA SET BLOCKSIZE NOT A
MULTIPLE OF 80. THE LOAD
OPTION HAS BEEN DELETED.

Explanation: On opening the
load data set, the blocksize
definition, either in the DDEF
statement or in the data set
label, was not a multiple of
80.

System Action: The LOAD option
is deleted.

User Response: Correct the
blocksize definition and
recompile.

W IEM3890I NO RECFM GIVEN FOR SYSIN. U
TYPE RECORDS ARE ASSUMED.

Explanation: No RECFM
definition has been found in
the DCB parameter of the SYSIN
DDEF statement or the data set
label.

System Action: Compilation
proceeds assuming U type
records. U format will be
specified in the data set label
when SYSIN is closed.

User Response: Check RECFM
definition in SYSIN DDEF
statement and rerun if
necessary •

118 Appendix H: PL/I Diagnostic Messages

W IEM38981 COMPILER CORE REQUIREMENT
EXCEEDED SIZE GIVEN. AUXILIARY
STORAGE USED.

System Action: SPILL file
opened.

W IEM3899I A BLOCK FOR OVERFLOW DICTIONARY
ENTRY OFFSETS WAS CREATED
DURING COMPILER PHASE yy

Explanation: This message
occurs only in compilations run
with the extended dictionary
option. An entry offset table
in a dictionary block became
full before the entries filled
the block.

Sytem Action: The block is
created to hold the entry
offsets overflowing from any
entry offset tables during this
compilation.

E IEM3900I ERROR IN PROCESS STATEMENT.

Explanation: This message is
written directly on SYSPRINT
(SYSOUT). The syntax of the
PROCESS statement is incorrect.

System Action: An attempt is
made to interpret the statement
correctly. Actual results will
depend on the nature of the
syntax error.

User Response: Check that the
options required have been
correctly applied. If not, and
recompilution is necessary,
correct the syntax of the
PROCESS statement.

E IEM39011 ERROR IN PROCESS STATEMENT.
DEFAULT OPTIONS ASSUMED.

Explanation: This message is
written directly on SYSPRINT
(SYSOUT). Invalid syntax in
the PROCESS statement has
rendered the options
unrecognizable.

System Actio~: The
installation defaults are
assumed for all options.

User Response: If the use of
installation default options is
unsatisfactory, correct the
syntax of the PROCESS statement
and recompile.

I IEM3902I OBJNM FIELD TOO LARGE. FIRST
EIGHT CHARACTERS OF NAME HAVE
BEEN USED.

Explanation:
specified in
may not have
characters.

The name
the OBJNM option
more than eight

System Action: F'irst eight
characters of name used.

User Response: Either amend
object module name as required.
or alter other references to
object module to correspond
with truncated name.

W IEM39031 CARRIAGE CONTROL POSITION LIES
WITHIN THE SOURCE ~~RGIN. IT
HAS BEEN IGNORED.

User Response: Recomp1.le with
carriage control position
outside source margin.

E IEM3904I THE F'OLLOWING STRING NOT
IDENTIFIED AS A KEYWORD - yyyy

Explanation: This message is
written directly on SYSPRINT
(SYSOUT). The compiler was
processing the option list
passed to it as an invocation
parameter. when it found a
character string that it could
nat identify as a keyword.

System Action: The offending
character string is ignored.

User Response: Correct the
erroneous parameter and
recompile.

E IEM39051 THE FOLLOWING KEYWORD DELETED,
DEFAULT USED FOR - yyyy

Explanation: This message is
written directly on SYSPRINT
(SYSOUT). The compiler was
processing the aptian list
passed to it as an invocation
parameter, when it found an
option keyword that had been
deleted at system generation.

System Action: The keyword
passed at invocation time is
ignored. The default
interpretation for the option.
as set at system generation. is
used.

User Response: None, unless it
is required to reinstate the
deleted keyword, in which case
it is necessary to generate the
required version of the
compiler with a system
generation run.

E IEM39061 OPTION SPECIFICATION CONTAINS
INVALID WYNTAX. DEFAULT USED
FOR - yyyy

EXElan~tioE: This message is
written dir.ectly on SYSPRINT
(SYSOUT). The compiler was
processing the option list
passed to it as an invocation
paraweter. when it found that a
sub-parameter, associated with
the keyword given in the
diagnostic message. was
incorrectly specified.

System Ac.''tion: The key\olord
passed at invocation time is
ignored. The defau1.t
interpretation for the aptian,
as set at system generation, is
used.

User Response: Correct the
erroneous parameter and
recompile.

E IEM39071 THE FOLLOWING NAME IGNORED AS
IT DOES NOT APPEAR IN THE PHASE
DIRECTORY - yy

Explanation: This message is
written directly an SYSPRINT
(SYSOUT). The t\olO characters
given in the message were used
as parameters to the DUMP
option. This usage is
incorrect since the characters
do not represent the narre of a
compil el:- phas e.

System A<-"!:.iq!!: The processing
of the DUMP option continues,
unless the two characters were
used to indicate the first
phase of an inclusive phase
dWIlP, in which case the scan of
the DUMP option is terminated.

User Response: Cor:r·ect the
erroneous parameter and
recompile.

S IEM39081 SYNTAX ERROR IN DUMP OPTION
SPECIFICATION

Explanation: This message is
~ritten directly an SYSPRINT
(SYSOUT). Inco.rrect use of
delimiters in the specification
of the DUMP option parameters.

System _Ac.ti_on: Processing of
DUMP option is terminated.

User Response: Correct the
erroneous specification and
recompile.

Part IV: Appendixes 219

'1' IEM39091 EXTENDED DICTIONARY CAPACITY
EXCEEDED. COMP,U:,ATION
'r ERMINA TEO •

~liPLanat1Q!.': This message
occurs only in comFilations run
with the extended dictionary
option. The block created to
hold overflow dictionary entry
offsets is fulL

System Action: Coltpilation is
terminated.

!l..~~,~esponse: Subdivide
program and recompile.

T IE.M3910f SYSPRIN'l' BLOCKSIZE IS TOO
LARGE.

Explanation: 'rhe cutfer area
allowed is s~aller than that
required by the specified
blocksize.

.?J_~tf~'!l1 _Act iOi}: compilation is
terminated.

User Resgonse: Use sma11er
blockS-he. --

T IEM39121 SYSIN BLOCKSIZE IS TOO LARGE.

Explanation: The buffer area
allowed is smaller than that
required by the buffers for
SYSIN, or for SYSIN and
SYSPRINT (SYSOUT) together.

System Action: Compilation is
terminated.

Oser_~espons~: Save relevant
data and inform the system
manager or administrator of the
error.

S IEM391l1I 1,01,0 DATA SET BLOCKSIZE IS TOO
LARGE. THE LOAD OPTION HAS
BEEN DELETED.

ExplanatiOQ: The tuffer area
allowed is smaller than that
:n=quired by the specified load
data set blocksize.

System Action: The I,GAD option
is deleted.

User Response: Save relevant
data and infonn the system
manager or administrator of the
error.

E IEM39151 THE CONFLICTING COMPILER
OPT.IONS MACDCK AND NOHACRO HAVE
BEEN SPECIFIED. THE MACDCK
OPTION HAS BEEN DELETED.

220 Appendix H: PL.iI Diagnostic Messages

E IEM39161 T.!:iE C.!£.J.\"LIClhlG ctmPILER
OP'1'IOtlS DECK AND f-mCmiP HAVE
BEEN SPECIFIED. 'fEE DECK
OP'rrD1'l H.AS £ll'!:EN DELETED.

E IEM39171 THE COb!i'I,IC'tING ,::m~f'ILER
OP'fIONS I,O!',D AND NOCOMP HAVE
BEEN SP ECn lED. THE LOAD
OPTION HAS BEEN DELETED.

Note: The reco"n:'l number in 'the lllessages
refers to the record. in which the error was
found. The incm.:rect. statement may have
commenced in an earlier reeort'L

S IEM41061 UNEX1?'"1':CTE'lJ EHD""OF" FILE IN
S'.tRING A'r OR BEYOND RECORD
NUMBER xxx. A. STRING DELHU'fER
HAS BEEN INSERTE[L

Explanatio!l: 1::nd""of-file
eocount.ered while scanning for
closing quot.e of a string
constant.

System A<..'tion: Closing quote
inserted hefore end-ot-file.

T 1EM41091 REPIACEMI!.'N'f VALUE IN RECORD
NUMBER xxx CONT.AINS UNDELIMITED
STRING. PROCESSING TERMINATED.

Explanat iOl~: E11o-of- str ing
delimi te.r caIIDot be found in a
replacement value.

E IEM41121 ILLEGAL CHARACTER IN APPARENT
BIT STRING IN ngCORD NUMBER
xxx. STHH·)i:; 'fREA.TED AS A
CHARACTER STRING.

S IEM41151 UNEXPF.CT1c~O END"'OF-FII.E IN
COMMEN1' A'I' OR B:E."YOND REeOHD
NUMBER xxx. A COMMENT
DEI,IMITER HAS BEEN INSERTED.

Explana:tion: End·"of,·fi Ie
encountered 'wbile scanning for
end-oi-colillllent dellllliter.

T IEM4118I REPLAt".:'EMENT VALUE IN RECOHD
NUMBER XX)!; CONTAINS UNDELIMITED
COMMENT. FROCESSING
TERM INATED.

Exp!ana:';j,oE:: End-'of ~COIl:1l:l\€nt
delimit_er cannot be found in a
replacement value ..

E IEM41211 INVALID CH~\RACTER ImS BEEN
REPLACED BY BLAm< IN OR
FOLLOWING RECORD fmMBER xxx

Explana'cl,on: Invalid character
-f-oUnd in-sou:iCcetext .•

T IEM4124I COMPILER ERROR. PUSH DOWN
STACK OUT OF PHASE

System Action: Processing is
terminated.

User Response: Save relevant
data and inform system manager
or administrator of the error.

T IEM41301 UNDECLARED IDENTIFIER zzzz
REFERENCED AT RECORD NUMBER
xxx. PROCESSING TERMINATED.

Explanation: An attempt is
made to execute a statement
which references an identifier
for which a DECLARE statement
has not been executed.

E IEM4133I S ENCOUNTERED IN LABELLIST OF
STATEMENT IN RECORD NUMBER xxx.
IT HAS BEEN IGNORED.

User Response: Remove I from
label list.

E IEM4134I UNEXPECTED COLON WITHOUT
PRECEDING LABEL IN RECORD
NUMBER xxx. COLON HAS BEEN
IGNORED.

S IEM4136I STATEMENT TYPE NOT RECOGNIZABLE
IN RECORD NUMBER xxx.
STATEMENT DELETED.

E IEM41391 PREVIOUS USAGE OF IDENTIFIER
zzzz CONFLICTS WITH USE AS
LABEL IN RECORD NUJoA.BER xxx.
ANY REFERENCE WILL TERMINATE
PROCESS ING •

System Action: No action
unless an attempt is made to
execute a statement which
references the ill-defined
identifier.

E IEM4142I LABEL zzzz IN RECORD NUMBER xxx
MULTIPLY DEFINED. ANY
REFERENCE WIlL TERMINATE
PROCESSING.

System Action: No action
unless a statement which
references the multiply defined
label is executed.

W IEM4143I LABELS BEFORE DECLARE STATEMENT
IN RECORD NUMBER xxx ARE
IGNORED.

E IEM4148I IDENTIFIER zzzz IN RECORD
NUMBER xxx USED WITH
CONFLICTING ATTRIBUTES. ANY
REFERENCE WILL TERMINATE
PROCESSING.

Explanation: Usage of
identifier conflicts with a
previous usage or declaration.
If t_he record number refers to
a procedure END statement, the
error occurred within the
procedure.

System Action: No action
ullless a statement is executed
which references the identifier
in error.

E IEMQ1501 FORMAL PARAMETER zzzz WAS NOT
DECLARED IN PROCEDURE ENDING IN
RECORD NUMBER xxx. TYPE
CHARACTER HAS BEEN FORCED.

E IEMQ151I LABEL 2222 IS NOT DEFINED. ANY
REFERENCE WILL TERMINATE
PROCESSING.

System Action~ No action
unless a statement is executed
which references the label.

E IEM41521 END OF FILE OCCURS BEFORE END
FOR CURRENT PROCEDURE OR DO.
END HAS BEEN INSERTED AT RECORD
NUMBER xxx.

E IEM41531 LABEL zzzz IS UNDEFINED IN THE
PROCEDURE ENDING IN RECORD
NUMBER xxx. ANY REFERENCE WILL
TERMINATE PROCESSING.

Explanation: Label may have
been defined outside of
procedure. but transfers out of
procedures are not allowed.

System Action: Any reference
to the label in the procedure
will terminate processing.

E IEM41541 SEMICOLON TERMINATES IF
EXPRESSION IN RECORD NUMBER
xxx. SEMICOLON HAS BEEN
IGNORED.

S IEM4157I NEITHER ~ NOR THEN FOLLOWS IF
EXPRESSION IN RECORD NUMBER
xxx. IF STATEMEN'l' DELETED.

E IEM4160I % MISSING BEFORE THEN OF IF
STATEMENT IN RECORD NUMBER xxx.
I HAS BEEN INSERTED.

E IEM41631 THEN ~ISSING FOLLOWING % IN IF
STATEMENT IN RECORD NUMBER xxx.
A THEN HAS BEEN INSERTED.

E IEM4166I COMPII.E TIME STATEMENT MUST
FOLLOW THEN OR ELSE IN RECORD
NUMBER xxx. A ~ HAS BEEN
INSERTED IN FRONT OF STATEMENT.

Part IV: Appendixes 221

!£xpla!"!9:S:l.5::!:i!: % does not
precede the first sstatement in
the THEN or ELSE c1.ause of an
If' statement.

Qse;'_B~§'122112~; If the
statement in lJuef>tion is meant
t_o be a. e t.il!se
statement, i.t should be put
inside of '" "';4 00'" group.

E IEM4169I THEN MISSING FORM IF STATEMENT
AT RECORD NUMBER xxx IN A
COMPILE 'Tlfo:E PROCEDURE. A THEN
HAS BEEN INSERTED.

E IEM4172I THE % IN REeOHO NUMBER xxx IS
NOT AJ,LOWED IN COl'JPI.LE TIME
PROCEDURES. 1'1' HAS BEEN
IGNORED.

VI IEM41751 LABELS BEFORE t-:LSE IN .RECORD
NUMBER xxx HAVE BEEN IGNORED.

~,!<E!~J..1~~ t:L2!}; .l.-d be Is found
preced inq an ELSE st.atement.

S IEM4176I NO STATEMEN'I FOI,I,oWS THEN OR
ELSE IN RECORD NUMBER xxx. A
NUI,L STATEMENT' HAS BEEN
INSERTED.

E IEM4178I ELSE WITHOUT PRECEDING IF IN
RECORD NUMBER xxx HAS BEEN
IGNORED.

S IEM41841 ASSIGNMENT STATEMENT IN RECORD
NUMBER xxx MUST END WITH
SEMICOLON. TE..XT DELE.'TED TILL
SEMICOLON IS ~'OUND.

E. IEM4187I LABEL MISSING FROM PROCEDURE
S'l'ATEMENT IN RECORD NUMBER xxx.
A DUMMY Ll,BEL HAS BEEN
INSERTED.

'1' IEM4188 I IMPLEMENTA'I'ION RFSTRIC7.'ION. NO
MORE THAN 254 COMPILE-TIME
PROCEDURES MAY BE DEFINED IN A
COMPILATION. PROCESSING
TERM1NA,!'ED.

Us~!...Resf>onse: Delete excess
procedures.

E IEM41901 LAEEI, 2::1:Z2; ON PROCEDURE IN
RECORD NUMBER xxx IS PREVIOUSLY
DEFINED. ANY REFERENCE TO IT
WILL TERMINATE PROCESSING.

System Action: No action
unless a statement is executed
which refe:If!nces the multiply
defined label.

E IEM41931 ILLEGAL USE 01" FUNCTION NAME
zzzz ON LEFT HAND SIDE OF

222 Appendix H: PUT Diagnost.ic Messages

EQUAlS $ '{f'mOL " ANY ItEFERENCE
WILl. TKRtUNATE PROCESSING.

E .IE1'!4196I PRL'V.i()OG US:!:: OF IDENI'IFIER zzzz
CONFLIC"fSwrfH (lSE AS EN'I'RY
MAID!; IN REeOHD NUMBER xxx., ANY
REFEi<f:NC£ 1;)ILL TERMINATE
PROCf;'sSIN;; c

Syst€lu .. ~ct.i!2!!: No action
unlesfJ d stcatement is executed
which refeI.ences the erroneous
identifier.

S IEM4199I FORMAl .• PARAMETER zzzz IS
IlEPEATED IN I'ARAME1.'ER LIST IN
RECORD tHJt·lBF;R xxx. THE sEcorm
OCCURIiENCE Hl>S BEEN HEPLACED BY
1>, DUMMY PARA.I-lETER.

S IEM42021 I.MPLEMENTATION RESTRICTION.
MORE THAN I"'. PARAMETERS OCCUR
IN RECORD NUMBER xxx. ANY
REFERENCE WIT,I, TERMIN.A'i.'E
PROCESSING.

Syst~ •.. Act.io~: Processing is
terminated if an attempt is
made to execute a statement
~hich references the procedUre
that bas more than 15
parameters.

E IEM420S1 FORMAL PARAMETER MISSING IN
RECORD NUMBER xxx. A DUMMY HAS
BEEN INSERTED.

E IEM42081 UNRECOGNIZABLE PARAMETER yyyy
IN RECORD NUMBER xxx. IT HAS
BEEN HEPI,ACED BY A DUMMY
PARAMET.ER..

S IEli!42111 PARAME'l'E.HiN RECORD NUMBER xxx
NOT FOLLOWED BY COMMA OR
PARENTHESIS. TEXT DELETED TO
NEXT COMMA OR END OF STATEMENT.

S IEM4212I UNEXPECTED F;ND OF PROCEDUHE
STATEMENT IN RECORD NUMBER xxx.
RIGHT PARl!:N'rJjESIS INSER,!'ED.

ExplaI1~i;j,.9~~ A semicolon was
encountered during scan of an
apl-urent. paramet.er list.

System .Act_iom 1~ right
parenthesis in inserted befo:n~'
the semicolon and processing
continues.

E IEH42141 ILLEGAL FORM OF RETURNS OPTION
IN RECORD NUMBER xxx. .RETURNS
(CHAR) ~S BEEN ASSUMED.

Explanation: RETURNS option
should!)e of the form
RETURNS(CHARIFIXED).

..
E IEM42151 DATA ATTRl BU'fE IN PROCEDURE

STATEMENT IN RECORD NUMBER xxx
IS NOT PARENTHESIZED AND IS NOT
PRECEDED BY RETURNS. RETURNS
AND PARENTHESES HAVE BEEN
ASSUMED.

E IEM42161 THERE IS NO RIGHT PARENTHESIS
FOLLOWING THE DATA ATTRIBUTE OF
THE RETURNED VALUE IN RECORD
NUMBER xxx. ONE HAS BEEN
ASSUMED.

E IEM42111 NO ATTRIBUTE FOR RETURNED VALUE
IN RECORD NUMBER xxx.
CHARACTER ATTRIBUTE IS USED.

System Action: CHARACTER
attribute is assigned.

S IEM4220I SEMICOLON NOT FOUND WHERE
EXPECTED IN PROCEDURE STATEMENT
IN RECORD NUMBER xxx. TEXT
DELETED UP TO NEXT SEMICOLON.

E IEM4223I ENTRY ATTRIBUTE AND PROCEDURE
STATEMENT FOR EN'!'RY 'Z'Zzz
DISAGREE ON THE NU~BER OF
PARAMETERS. THE LATTER IS
USED.

System Action: The number of
parameters specified in the
PROCEDURE statement is used.

E IEM4226I RETURNS ATTRIBUTE AND PROCEDURE
STATEMENT FOR ENTRY zzzz
DISAGREE ON ATTRIBUTE OF
RETURNED VALUE.

System Action: The returned
value will first be converted
to the type on the procedure
statement and will then be
converted to the type given in
the RETURNS attribute. A third
conversion can occur if the
type given in the returns
attribute does not agree with
the type required where the
result is used.

S IEM4229I PROCEDURE STATEMENT AT RECORD
NUMBER xxx MAY NOT BE USED
WITHIN A PROCEDURE. PROCEDURE
HAS BEEN DELETED.

Explanation: Compile-time
precedures may not be nested.

System Action: Text is deleted
up to and including the first S
END following the erroneous
PROCEDURE statement.

S 1EM42321 PROCEDURE STATEMENT AT RECORD
NUMBER xxx MAY NOT FOLLOW THEN

OR ELSE. PROCEDURE HAS BEEN
REPLACED BY A NULL STATEMENT.

Explanation: A PROCEDURE
statement may appear in a THEN
or ELSE clause only if it is
inside a compile-time DO group.

S 1EM42351 RETURN STATEMENT IN RECORD
NUMBER xxx IS NOT ALLOWED
OUTSIDE OF COMPILE-TIME
PROCEDURE. STATEMENT DELETED.

E IEM42381 RETURNED VALUE MUST BE
PARENTHESIZED IN RECORD NUMBER
xxx. PARENTHESIS INSERTED.

E 1EM42411 RETURNS EXPRESSION IN RECORD
NUMBER xxx DOES NOT END RETURN
STATEMENT. REMAINDER OF
STATEMENT HAS BEEN IGNORED.

S 1EM42441 GOTO IN RECORD NUMBER xxx IS
NOT FOLLOWED BY LABEL.
STATEMENT DELETED.

E 1EM42411 PREVIOUS USE OF IDENTIFIER zzzz
CONFLICTS WITH USE AS OBJECT OF
GOTO IN RECORD NUMBER xxx. ANY
REFERENCE WILL TERMINATE
PROCESSING.

System Action: No action
unless a statement is executed
which references the erroneous
identifier.

S 1EM4248I SEMICOLON NOT FOUND WHERE
EX?ECTED IN GOTO STATEMENT IN
RECORD NUMBER xxx. TEX'!'
DELETED UP TO NEXT SEMICOLON.

T IEM4250I GOTO zzzz IN RECORD ffiJMBER xxx
TRANSFERS CONTROL INTO
INTERATIVE DO OR ENCLOSED
INCLUDED TEXT. PROCESSING
TERMINATED.

S 1EM42531 ACTIVATE OR DEACTIVATE IN
RECORD NUMBER xxx NOT ALLOWED
IN A COMPILE-TIME PROCEDURE.
STATEMIINT DELETED.

E: IEM4254I EMPTY ACTIVATE OR DEACTIVATE
STATEMENT IN RECORD NUMBER xxx.
STATEMENT DELETED.

E 1EM42561 SURPLUS COMMA IN ACTIVATE OR
DEACTIVATE IN RECORD NUMBER
xxx. THE COMMA HAS BEEN
DELETED.

S IEM42591 UNRECOGNIZABLE FIELD IN
ACTIVATE OR DEACTIVATE
STATEMENT IN RECORD NUMBER xxx.
THE FIELD HAS BEEN DELETED.

Part IV: Appendixes 223

S IEM42621 ONLY PROCEDURE:;
KAY HAVE ACT

VARIABLES
CHANGED.

IDENTIFIER zzzz IN I-<ECORD
NUMBER xxx HAS BEEN m:LErED
FROM STAT EMEN 'I.' ,

S IEM42651 COMMA MUS'r SEPA.~ATE EIELDS OF
ACTIVATE AND DEACTIVAT.E
STATEMENTS. IN RECORD NUMBER
xxx '1'EXT AFTER IDENTIFIER yyyy
HAS BE.EN DELETED UP TO NEXT
COMMA.

.s IEM4271I INVA.LID SYNTAX HI DO STA'l'EMENT
IN RECORD NUMBER xxx. IT HAS
BEEN CONVERTED 'ro A GROUPING
DO.

W IEM42771 NO MAXIMUM VALUE WAS SPECIFIED
IN ITERATIVE DO IN RECORD
NUMBER xxx. PROGRAM WILL LOOP
UNLESS ALTERNATE EXIT IS
PROVIDED.

E IEM42801 UNEXPECTED ~ IN RECORD NUMBER
xxx TREATED AS HAVING BEEN
PRECEDED BY SEMICOLON.

E IEM4283I MULTIPLE 'TO'S HAVE OCCURRED IN
DO STATEMENT IN RECORD NUMBER
xxx. SECOND 'TO' HAS BEEN
CHANGED 'i'0 • BY' •

E IEM4286I MULTIPLE BY'S HAVE OCCURRED IN
DO STATEMENT IN RECORD NUMBER
xxx. SECOND 'BY' HAS BEEN
CHANGED TO • '1'0' •

E IEM4289I DO STATEMENT IN RECORD NUMBER
xxx SHOULD END WITH SEMICOLON.
TEXT TO SEMICOLON DEL.ETED.

L IEM42921 END STATEMENT AT RECORD NUMBER
xxx MAY NOT FOLLOW THEN OR
ELSE. A NULL STATEMENT HAS
BEEN INSERTED BEFORE THE END
STATEMENT.

E IEM4295I SEMICOLON NOT FOUND WHERE
EXPECTED IN END STATEMENT IN
RECORD NUMBER xxx. 'rEXT
DELETED UP TO SEMICOLON.

E IEM4296I END STATEMENT IN RECORD NUMBER
xxx NOT PRECEDED BY DO OR
PROCEDURE STATEMENT. END HAS
BEEN DEI.ETED.

Explanation: An END statement
has been encountered which is
not preceded by a DO or
PROCEDURE statement that has
not already been terminated.

E IEM42981 LABEL REFERENCED ON END
STATEMENT IN RECORD NUMBER xxx
CANNOT BE FUUND. END TREATED
AS HAVING NO OPERAND.

224 Appendix U: PL/I Diagnostic Messages

.Explanal;:!.!?l!: The label cannot
be found on a DO or PROCEDURE
statement that has not already
been terminated.

E IEM42991 END STATEMENT ENDING PROCEDURE
IN RECORD NU~B."KR xxx DID NOT
HAVE A PRECEDING PERCENT. A
PERCENT IS INSERTED.

Explanatio~: The END statement
referred to in this message is
logical end of the procedure •

E IEM43011 IDENTU'IER zzzz ON END
STATEMENT IN RECORD NUMBER xxx
IS NO'!' A LABEL. END TREATED AS
HAVING NO OPERAND.

E IEM43041 PROCEDURE zzzz DID NOT INCLUDE
A RETURN STATEMENT.

Explanation~ Language syntax
requires use of RETURN
statement. in a p1tocedure.

System Action: A null value is
returned if the procedure is
invoked.

S IEM4301I INCLUDE STATEMENT AT RECORD
NUMBER xxx IS NOT ALLOWED IN
COMPILE-TIME PROCEDUR.ES.
STATEMENT DELETED.

E IEM4310I IMPLEMENTATION RESTRICTION.
DDNAME IN RECORD NUMBER xxx BAS
BEEN TRUNCATED TO 8 CHARACTERS.

Explanation: The first of a
pair of data set idl?.ntifiers in
an INCLUDE statement is a
DDNAME 3nd as such is limited
to a maximum of 8 characters.

S IEM43131 UNRECOGNIZABLE FIELD IN INCLUDE
STATEMENT AT RECORD NUMBER xxx.
FIELD HAS BEEN DELETED.

System Action: Text is deleted
up to next comma or semicolon.

S IEM43191 EMPTY INCLUDE STATEMENT IN
RECORD NUMBER xxx. STATEMENT
DEI,ETED.

Explanation: At least one
identifier must appear in an
INCLUDE statement, that is, the
data set member name.

E IEM43221 IMPLEMENTATION RESTRICTION.
MEMBER NAME IN RECORD NUMBER
xxx HAS BEEN TRUNCATED TO 8
CHARACTERS .

Syst_~Actiofl: Uses first 8
characters of member name.

User RespodSe: Correct data
set member name in INCLUDE
statement.

E IEM4325I RIGHT PARENTHESIS INSERTED
AFTER MEMBER NAME IN RECORD
NUMBER xxx.

E IEM4326I LEFT PARENTHESIS INSERTED
BEFORE MEMBER NAME IN RECORD
NUMBER xxx.

T IEM4328I COMPILER ERROR. DICTIONARY
INFORMATION INCORRECT.

Explanation: A name containing
an invalid character is found
in the dictionary.

System Action: Processing is
terminated.

User Response: Save relevant
data and inform system manager
or administrator of the error.

S IEM4331I DECLARE STATEMENT IN RECORD
NUMBER xxx IS ILLEGAL AFTER
THEN OR ELSE. STATEMENT
DELETED.

User Response: Correct
program. A DECLARE statement
can appear in the THEN or ELSE
clause of an IF statement if it
is inside a DO group.

E IEM4332I EMPTY DECLARE STATEMENT IN
RECORD NUMBER xxx. STATEMENT
DELETED.

S IEM4334I H!PLEMENTATION RESTRICTION.
FACTORING IN DECLARE STATEMENT
IN RECORD NUMBER xxx EXCEEDS 3
LEVEkS. REMAINDER OF STATEMENT
DELETED.

User Response: Reduce level of
factoring in DECLARE statement.

E IEM4337I SURPLUS COMMA HAS BEEN FOUND IN
DECLARE STATEMENT IN RECORD
NUMBER xxx. THIS COMMA HAS
BEEN DELETED.

E IEM4340I IDENTIFIER MISSING WHERE
EXPECTED IN RECORD NUMBER xxx.
A DUMMY IDENTIFIER HAS BEEN
INSERTED.

E IEM4343I IDENTIFIER zzzz IN RECORD
NUMBER xxx HAS MULTIPLE
DECLARATIONS. ANY REFERENCE
WILL TERMINATE PROCESSING.

Explanation: An identifier may
be declared only once.

System Action: No action
unless a statement is executed
Which references the mul~iply
declared identifier.

S IEM43461 UNRECOGNIZABLE SYNTAX IN
DECLARE STATEMENT IN RECORD
NUMBER xxx. STATEMENT DELETED.

E IEM4349I LABEL zzzz CANNOT BE DECLARED
IN RECORD NUMBER xxx. ANY
REFERENCE WILL TERMINATE
PROCESSING.

EXElanatio~: An attempt has
been made to declare an
identifier which has already
been used as a label.

System Action: No action
unless a statement is executed
which references the declared
label.

E IE~43521 EXTRA PARENTHESIS DELETED IN
RECORD NUMBER xxx.

E IEM4355I ILLEGAL ATTRIBUTE yyyy IN
RECORD NUMBER xxx. ATTRIBUTE
HAS BEEN DELETED.

Explanation: Legal attributes
are FIXED, CHARACTER, ENTRY,
and RETURNS.

System Action: The illegal
attribute is deleted.

E IEM4358I CLOSING RIGHT PARENTHESIS
INSERTED IN RECORD NUMBER xxx.

E IEM4361I RETURNS ATTRIBUTE OCCURRED
WIThOUT ENTRY ATTRIBUTE FOR
PROCEDURE zzzz IN DECLARE
STATEMENT AT OR BEFORE RECORD
NUMBER xxx.

Explanation: Both ENTRY and
RETURNS attributes must be
declared for a compile-time
procedure name.

System Action: The identifier
is treated as an ENTRY name.
If i.t is referenced, the
arguments will be converted to
the types declared for the
procedure parameters.

E IEM4364I NO ATTRIBUTES WERE DECLARED FOR
IDENTIFIER zzzz IN DECLARE
STATEMENT AT OR BEFORE RECORD
NUMBER xxx. CHARACTER HAS BEEN
ASSIGNED.

E IEM4367I RETURNS ATTRIBUTE NOT GIVEN FOR
ENTRY NAME zzzz IN DECLARE

Part IV: Appendixes 225

STATEMENT A'I' OIl. B£:F'ORE RECORD
NUMBER xxx.

~lanati_on: ty;th ENTRY and
RE'rURNS at.tril:,'L,tes must be
declared tm: a campi l€·-time
procedure name.

Syst€:m __ ~c;tiOl:~: The a'l:t.l:'ibute
of the returLed value is
determined by the relevant
PROCEDURE statement.

E IEM4370I ENTRY A'l'TRiBU'I'E DISAGREES WITH
DEChll.HATION FOR FORMAL
PA.Rfu"'lE'rEH zzzz. THE LATTER HAS
BEEN USED.

Explanation: 1m ENTRY
attribute in a DECLARE
statement does not agree with
the parameter attributes
declared in the procedure.

§ystem Action: If the relevant
procedure is referenced, the
argument will be converted to
the type declared for the
formal pararoet.er.

E IEM4 37 3 I RETURNS A'l'TRIBUTE IN RECORD
NUMBER xxx MUST BE
PARENTHESIZED. PARENTHESIS
INSERTED.

E IEM4376I ONI,Y FIXED OR CHARAC'I'ER ARE
ALLOWED IN RETURNS ATTRIBUTE IN
RECOHD NUMBER xxx. ATTRIBUTE
IGNOHED.

Explanation: An illegal
attribute was found.

£y§t~ActioE: The attribute
of the returned value is
determined by the relevant
PROCEDURE statement.

E IEM4379I ATTRIBlJ'f'E yyyy IS ILLEGAL IN
ENTRY A'TTRIBUTE IN RECORD
NUMBER xxx. NO CONVERSION WILL
BE DONE.

_Explana:i;:ion: An invalid
attribute was found.

System Action: No conversion
to an ENTRY attribute will be
carried out. However. if the
relevant procedure is
referenced, arguments will be
converted to the types declared
for the procedure ~axameters.

E IEM4382I ATTRIBUTE CONFUCTS WITH
PREVIOUS ATTRIBUTE FOR
IDENTH'IER zzzz IN HECORD
NUMBER xxx. A'rTRIBUTE IGNORED.

226 Appendix H: PL/I Didgnostic Messages

E IEM43831 PREVIOUS USAGE GF IDENTIFIER
zzzz CONFI,IC'rS WITH A'I'TRIBUTE
IN RECORD NUMBER xxx. ANY
REFERENCE WI:LL TERMINATE
PROCESSING.

E IEM4391I OPERAND MISSING IN RECORD
NUMBER Xl{X. A f'IXED DECIMAL
ZERO HAS BEEN INSERTED.

S IEM4394I II,LEGAL OPERATOR yyyy IN RECORD
NUMBER xxx. IT HAS BEEN
REPLACED BY A PLUS.

W IEM4397I A LETTER IMMEDIATELY FOLLOWS
CONSTANT yyyy IN RECORD NUMBER
xxx, AN IN"I'ERVE'NING BLANK HAS
BEE.'N ASSUMED.

E IEM4400I OPERATOR .NOT. IN RECORD
NUMBER xxx USED AS AN INFIX
OPERATOR. IT HAS BEEN REPLACED
BY • NE.

T IEM4403I COMPILER ERROR. EXPRESSION
SCAN OUT OF PHASE.

§ystem Action: Processing is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

E IEM4406I PREVIOUS USAGE OF IDENTIFIER
zzzz CONFLICTS WITH USE IN
EXPREmjION IN RECORD NUMBER
xxx.

§Y!?-teI!l.J\cti2-tl: Process in9 is
tenninated if .'in attempt is
made to (,,)lecute a statement
which references the identifier
in question.

S IEM44071 UNDECrPHERABLE KEYWORD. nnn
IDENTIFI ERS HAVE BEEN I)ELE,!'ED
BEPORE yyyy IN RECORD NUMBER
xxx.

Explanation: The processor has
found a mismatch while scanning
a keyword consisting of more
than one identifier.

System Action: The identifiers
preceding the non-matching
iderltifier are del.eted.

S IEM44091 OPERATOR NISSING IN RECORD
NUMBER xxx. A PLUS HAS BEEN
INSERTED.

S IEM44121 NO EXPRESSION WHERE ONE IS
EXPl!:erED IN RECORD NUMBER xxx.
A FIXED DEC lMAL ZERO HAS BEEN
INSERTED.

S IEM4415I ILLEGAL OPERAND YY1Y IN RECORD
NUMBER xxx HAS BEEN REPLACED BY
A FIXED DECI~~L ZERO.

E IEM4421I MISSING LEFT PARENTHESIS
INSERTED AT BEGINNING OF
EXPRESSION IN RECORD NUMBER
xxx.

T IEM4433I REFERENCE IN RECORD NUMBER xxx
TO STATEMENT OR IDENTIFIER
WHICH IS IN ERROR. PROCESSING
TERMINATED.

S IEM44361 EXCESS ARGUMENTS TO FUNCTION
zzzz IN RECORD NUMBER xxx.
EXTRA ARGUMENTS HAVE BEEN
DELETED.

Explanation: Too many
arguments appear in a procedure
reference.

W IEM4439I TOO FEW ARGUMENTS TO FUNCTION
zzzz IN RECORD NUMBER xxx.
MISSING ARGUMENTS HAVE BEEN
REPLACED BY NULL STRINGS OR
FIXED DECIMAL ZEROS.

Explanation: Too few arguments
appear in a procedure
reference.

E IEM4448I NO ENTRY DECLARATION FOR
PROCEDURE zzzz REFERENCED IN
RECORD NUMBER xxx. ATTRIBUTES
TAKEN FROM PROCEDURE.

Explanation: All procedure
names must be declared with
ENTRY and RETURNS attributes
before the procedure is
referenced.

T IEM4451I PROCEDURE zzzz REFERENCED IN
RECORD NUMBER xxx CANNOT BE
FOUND. PROCESSING TERMINATED.

T IEM4452I RECURSIVE USE OF PROCEDURE zzzz
IN RECORD NUMBER xxx IS
DISALLOWED. PROCESSING
TERMINATED.

E IEM4454I TOO FEW ARGUMENTS HAVE BEEN
SPECIFIED FOR THE BUILTIN
FUNCTION SUBSTR IN RECORD
NUMBER xxx. A NULL STRING HAS
BEEN RETURNED.

E IEM4457I TOO MANY ARGUMENTS HAVE BEEN
SPECIFIED FOR THE BUILTIN
FUNCTION SUBSTR IN RECORD
NUMBER xxx. EXTRA ARGUMENTS
HAVE BEEN IGNORED.

E IEM4460I FIXED OVERFLOW HAS OCCURRED IN
RECORD NUMBER xxx. RESULT
TRUNCATED.

System Action: Truncation
occurs on left to five decimal
digits.

E IEM4463I ZERO DIVIDE HAS OCCURRED AT
RECORD NUMBER xxx. RESULT SET
TO ONE.

S 1~44691 END-OF-FILE FOUND IMBEDDED IN
STATEMENT IN RECORD NUMBER xxx.
EXECUTION OF STATEMENT WILL
CAUSE TERMINATION.

E 1EM44721 IDENTIFIER BEGINNING zzzz IN
STATEMENT AT RECORD NU~BER xxx
IS TOO LONG AND HAS BEEN
TRUNCATED.

Explanation: Identifiers may
not exceed 31 characters in
length.

System Action: The identifier
is truncated to the first 31
characters.

5 IEM44731 CONSTANT yyyy IN RECORD NUMBER
xxx BAS PRECISION GREATER THAN
5. A FIXED DECIMAL ZERO HAS
BEEN INSERTED.

Explanation: Implementation
restriction. Precision of
fixed decimal numbers is
liroited to five digits.

System Action: A value of zero
is aSSigned.

E IEM44751 QUESTION MARK IN RECORD NUMBER
xxx BAS NO SIGNIFICANCE. IT
HAS BEEN IGNORED.

Explanation: Question mark,
although a recognizable
character in PL/I. has nc
syntacti.cal meaning.

T IEM4478I STRING IN RECORD NUl~BER xxx
CONVERTS TO A FIXED DECIMAL
NU~BER WITH PRECISION GREATER
THAN 5. PROCESSING TERMINATED.

Explanation: Implementation
restriction. Precision of
fixed decimal numbers is
limited tc five digits.

System Action: Processing is
terminated.

T IEM4481I CHARACTER STRING IN RECORD
NUMBER xxx CONTAINS CHARACTER
OTHER THAN 1 OR 0 AND CANNOT BE
CONVERTED TO A BIT STRING.
PROCESSING TERMINATED.

Part IV: Appendixes 227

T IEM4484I STRiNG IN P.£C()RD NUfWEH xxx OR
IN PROCEDUHE EEF:f!PENCED IN SAID
REeOHD Nu~mEH CAW,'lO'T Ell':
CONVER"l'gD TO i'l FIXED DECIMAL
CONSTANT., PHOCeSSING
TERMINATED.

T IEM4499I l\ ~ STATamN'T I::: FOUND IN A
REPI.ACEMENT VALUE IN Rl'~CORD

NUMBER xxx. PROCESSING
TERMINATED.

EXElanat,i2D; Ii ref-laceruent
value may not contain a
compile-time stat:eTIlent>

T IEM45021 AN IDENTIFIER zzzz WITH
CONFL ICTING USI\GJ:, OR MULTIPLE
DEFINITIONS IS H.EFERENCED IN
RECORD NUMBER xxx. PROCESSING
TERMINATED.

Explal)9.t"ior!~ 1m att.empt: is
made to execut<; a statement
which :r·'~ferences an identifier
that:. WdS not properly defined.

S IEM4504I VARIABLE zzzz IS USED IN RECORD
NUMBER xxx BEFORE 1'1:' I.S
INITIA.LIZED. IT HAS BEEN GIVEN
NULL STRING on ZERO VALUE.

Explana!=-i2E: A value must be
assigned to variables before
they are referenced after being
declared.

T 1EM45051 DO STA'I'EMEN'l' FOR INCI.UDE zzzz
MISSING IN RECORD NUMBER xxx.
PROCESS ING T ER.~INATED.

Expl~Ei!!:.4:on A :DDEr' statement
must be present in t.he command
stream for the comr;il.ation with
a name in the name field that
corres pones to the ddYlame
identifier in the INCLUDE
stat~ement. I f no ddnaroe is
specified in the INCLUDE
statement:. a SYSLIE DDEF
statement is required.

User Response: Insert.
approprWe--DDEF statement and
recompil,=<

T IEM45081 UNRECOVERABLE 1/0 ERROH WHILE
SEARCHING FOR MEMBER OF INCLUDE
222Z IN RECORD NUMBER xxx.
PROCESSING TERMINATED.

User Response; Check DDEF
statement and reattempt
compilation. If error
persists, check computing
system.

228 Appendix H~ PL/l f)iagnostic Messages

T IEM45101 INVAIID DSOHG FOUND FOR INCLUDE
MEMBEI~ IN RECORD NUMBER xxx.
PROCESSING TERMINATED.

T IEM45111 ILLEGAl. RECORD FORJ.1AT SPECIFIED
FOR INCr,UDE ZZll:Z IN RECORD
NUMBER xxx. PROCESSING
TEBMHIA'l'ED.

Exp12~~t.ion: Included records
must be a fixed length of not
moze than 100 charact'."!rs with a
maximum blocking factor of
five. Blocksize must be a
multiple of the record length.

T IEM4514I ... EMBER OF IllCr,UDE zzzz IN
RECORD NUMBER ';(xx NOT FOUND ON
DATA SE'!'. PROCESSING
'fERMINATED"

User Respons(;: Check INCLUDE
statement. DDEF statement, and
data file.

W IEM4517I RECORD LENGTH NOT SPECIFIED FOR
INCLUDE zzzz IN RECORD NUMBER
xxx. RECORD LENGTH EQUAL TO
BLOCKSIZE HAS BEEN ASSUMED.

User Re~l~: Correct record
length specification in DDEF
statement if necessary.

W IE144520I BLOCRSIZE l'OT SPECH'IED FOR
INCLUDE zzzz IN RECORD NUMBER
xxx. BLOC.l<.SIZE EQUAL TO RECORD
LENGTH HAS BEEN ASSUMED.

yse.!:.~~:f.'l1':§2: Correct
blocksize specification in DDEF
statement if necessary.

W IEM45231 RECORD LENG'l'H AND BLOCKSIZE NOT
SPECIFIED FOR INCLUDE 2ZZZ IN
RECORD WJMBER xxx. RECORD
LENGTH OF eo AND BLOCKSIZE OF
400 HAVE BEEN ASSUMED.

User Re~~2~~: Correct record
length and block size
specifications in DDEF
statement if necessary.

T IEM4526I I/O ERROR WHILE READING TEXT
INCLUDED FROM zzzz AT RECORD
NUMBER xxx. PROCESSING
TERMINATED.

User Response: Check DDEF
statement and reattempt
compilation. If error
persists, check computing
system.

T IEM45291 IMPLEMENTATION RESTRICTION.
EXCESSIVE LEVEL 01" NESTING OR

· REPLACEMENT AT RECORD NUMBER
xxx. PROCESSING TERMINATED.

Explanation: Level of nesting
in this case is calculated by
summing the number of current
unbalanced left parentheses,
the number of current nested
OO·s. the number of current
nested IF's, and the number of
current nested replacements. A
level of 50 is always
acceptable.

T IEM4532I INPUT RECORD AT RECORD NUMBER
xxx IS TOO LONG. FOLLOWING
TEXT DELETED -- (up to 10
characters)

Explanation: Input record
contains more than 100
characters.

System Action: The indicated
text is deleted and compilation
continues.

User Response: If you want,
press the attention key and
edit the data set.

T IEM4535I INPUT RECORD CONTAINS FEWER
CHARACTERS THAN SORMGIN
REQUIRES. PROCESSING
TERMINATED.

Explanation: The length of the
input record is less than the
left margin of the SORMGIN
specification.

User Response: Check SORMGIN
option in PLI command.

T IEM45471 COMPILER ERROR. INSUFFICIENT
SPACE FOR TABLES.

System Action: Processing is
terminated.

User Response: Save relevant
data and inform the system
manager or administrator of the
error.

E IEM4550I RIGHT PARENTHESIS INSERTED IN
RECORD NUMBER xxx TO END
ARGUMENT LIST FOR PROCEDURE
zzzz.

Ex£Janation: The argument list
referred to is in a source
program reference to a
compile-time procedure.

T IEM4553I IN RECORD NUMBER xxx ARGUMENT
LIST FOR PROCEDURE zzzz

CONTAINS COMPILE TIME CODE.
PROCESSING TERMINATED.

Explanation: compile-time code
may not be embedded in argument
list of compile-time procedure
reference.

E IEM4559I LEFT PARENTHESIS BEGINNING
ARGU~£NT LIST OF PROCEDURE zzzz
WAS NOT roUND. PROCEDURE WAS
INVOKED AT RECORD NUMBER xxx
WITHOUT ARGUMENTS.

Explanation: The argument list
xeferred to is in a source
program reference to a
compile-time procedure.

E IEM45621 IDENTIFIER IN RECORD NUMBER xxx
EXCEEDS 31 CHARACTERS.
REPLACEMENT WAS DONE ON
TRUNCATED FORM zzzz.

Explanation: A
non-compile-time source text
identifier consists of more
than 31 characters.

E IEM4570I THE THIRD ARGUMENT OF BUILT-IN
FUNCTION SUBSTR IS NEGATIVE. IN
RECORD NUMBER xxx. A NULL
STRING HAS BEEN RETURNED.

E IEM45721 THE THIRD ARGUMENT OF EUILT-IN
FUNCTION SUBSTR EXCEEDS THE
STRING LENGTH. IN RECORD NUMBER
xxx. THE SUBSTRING BAS BEEN
TRUNCATED AT THE END OF THE
ORIGINAL STRING.

E IEM4574I THE CO~BINED SECOND AND THIRD
ARGUMENTS OF BUILT-IN FUNCTION
SUBSTR EXCEED THE STRING
LENGTH, IN RECORD NUMBER xxx.
THE SUBSTRING HAS BEEN
TRUNCATED AT THE END OF THE
ORIGINAL STRING.

E IEM4576I THE SECOND ARGUMENT OF BUILT-IN
FUNCTION SUBSTR IS LESS THAN
ONE, IN RECORD NUMBER xxx. ITS
VALUE RAS BEEN RESE'I TO ONE.

E IEM4578I THE SECOND ARGUMENT OF' BUILT-IN
FUNCTION SUBSTR EXCEEDS THE
STRING LENGTH, IN RECORD NUMBER
xxx. A NULL STRING HAS BEEN
RETURNED.

S IEM4580I AN UN INITIALIZED VARIABLE HAS
BEEN FOUND IN A BUILT-IN
FUNCTION ARGUMENT LIST, IN
STATEMENT NUMBER xxx. A NULL
STRING HAS BEEN RETURNED.

Part IV: Appendixes 229

Use~_R€!.lpOl'lSe; XIM.tialize the
variable befo:r.~ invoking the
built-in funct_ion.

An object-time diagnostic message t_aites
one of th<2 following forms:

1. IHEnnnI FILE name - t.ex1: AT location
message

2. IHEnnnI rtname - text AT location
message

3. IHEnnnI text AT location message

where ~name· is the name of the file
associated with the error (given only in
1/0 diagnostic messages); "rtname" is the
name of the library routine in which the
error occurred (given only for
coroputdt:.ional subroutines); and -location
message- is either

or

OFFSE~ ± hhhhh FROM ENTRY POINT El

OFFs~r ± hhhhh FROM ENTRY POINT OF cccc
ON--UNIT

Note: Since the phrase "AT location
message- is common to each object-time
diagnostic message, it will not. be shown as
part of the message in the following list.
It will, however. appear, and have the
meaning given above, with each issued
object-time diagnostic message.

If the statement number compiler option
has been specified, each message will also
contain .. IN STATEMEN'I' nnnnn" prior to A'l'
location message; nnnnn gives the number of
the stat~ment in which the condition
occurred.

Diagnostic messages are p.J:"il1ted at
execution time for two main reasons:

1. An error occurs for which no specific
ON-condition exists in PL/I. A
diagnostic message is printed. and the
ERROR ON-condition is raised.

2. An ON-condition is raised, by compiled
code or by the library. and the action
required is system action, for which
the language specifies COII':MENT as part
of the necessary action.

The object-time diagnostic messages are
grouped as follows:

Message ?eguence Condition
IHE003I-IHE0111 General execution errors.

230 Appendix H: PLiI Diagnostic Messages

IHE018I-IHE039I

IHE100I-IHE161I

IHE200I-IHE213I

IHE3001-IHE3621

IHE3801-IHE3821

IHE500I-IBE5011

IHE550I-IHE511I

IHE600I-IHE6091

IHE100I-IHE799I

IHE8001-IBE806I

I/O e:n:ors.

I/O ON-,cDndi tions ~ all
'these conditions may be
raised by the SIGNAL
statement.

computational errors.

computational
ON-conditions: all these
conditions may be raised
by the SIGNAL statement.

Structure and array
errors.

Condi t ion-- type
ON-conditions.

Errors associated with
t.asking: associated with
·the WAIT stateroent er
with the COMPLETION
psuedo-variable.

Conversion ON-conditions:
conversion errors occur
most often on infut,
owing to an error ei t_her
in the input data or in a
format list. For
example, in edit-directed
input, if the field width
of one of tile items in
the data list is
incorrectly specified in
the format list, the
input stream will get out
of step with the format
list and a conversion
error is likely to occur.

Conversion errors,
non-aN-type.

Noncomputational program
int.errupt errors:
certain program
interrupts may occur in a
PL/I program because the
source progrQw has an
error which is seVEre but
which cannot be detected
until execution time. An
example is a call to an
unknown procedure, which
will result in an illegal
operation program
interrupt. Other frog ram
interrupts, such as
addressing,
specification,
protection, and data
interrupts, may arise if
PUI control bI-ocks have
been destroyed. This can
occur if an aSSignment is

IHE8S0I-IHE8S7I

IHE900I-IHE9021

made. t,Q an area}! elel1lent
who~e uutscript is OUt of
Liinq!:', :ciince.),f
SUBSC!UPTRANGE has not
been enabled. the
compiler does not check
array suhscript,s; a
program irrterrupt may
occur at, th(} t:iroe of the
assignment or at a later
stage in the program.
Similarly, an attempt to
use the valne of an array
element ",hose subscript
is out: of range may cause
an interrupt. care most
be taken when parallH"ters
are passed to a
procedut'e. lithe data
attributes of tbe
arguments of the
stat:emen't do not, agree
wi,th those ot the invoked
entxy pOint, or if an
argument is not passed at
all. a program interrupt
may occur. The use of
the value of a variable
that has not been
initialized, or has had
no assignment made to it,
or the use of CON'rROLLED
variables that have not
been allocated, may also
cause one of these
interrupts.

TSS/360 execution
messages.

Storage management
errors: associated with
the handling of storage
and transfer of control
out of blocks> In some
cases, these errors are
the result of a program
error, but it is possible
that the rressages may be
issued because 'the save
area chain, allocation
chain. or psuedo-register
vector have been
overwrittl:-:n.

Object-Time DiagnostiC Messagg~

IHE0031 SOURCE PROGRAM ERROR IN STATEMENT
nnnnn

This message will. always contain a
statement number whether or not
the compiler option is specified.

IHE004I INTERRUPT IN ERROR HANDLER -
PROGRAM TERMINATED

J:JU?1~~!§t~2!': When an unexpected
program interrupt occurs during
the handling of another prograre
interruFt. it indicates that the
proqJCam has a disastrous error in
it. such as overwrit.ten
instr!(jction~1 or such. 1'he t:rogram
is abnormally terminated, and the
ahove message is printed out at.
the console.

IHE0061 f>ROCE:r;URE INCORREC'l'LY INVOKED.
I'ROCEDURE '1:ERMINATED.

~~~~natio~: This message is 
caused by one of the following! 

1. A Pl./I subroutine called from 
Pl/I cooe has been called by 
module name; it should have 
be(~n called by procedure 
name ... 

2. A FIJI program called from 
cOIf<mand mode has no ext.ernal 
procedul~e with'the option 
MAIN. 

IHE0091 ABEND-INTERRUPT IN PLII DUMP. 

EXj21ana!i..2n: An unrecoveral:::le 
error has occurred during 
execution of the IHEDUM dUlY'f 
rout,ine, e. g.. inc:ol:rect chaining 
of save areas caused by a previous 
error. 

IHEOllI KEY ERROR WHEN CLOSING FILE AT END 
Oloe 'IASK 

EX12.J,5'11a.t!9"!}: An unresolved key 
error exiEts for which no 
condition can now be raised. 

IHE018I FILE rlcUle- .I?ILE TH'E NO'!' 
SUPPORTED 

IHE020I FILE name - A'fTEMPT '1'0 READ OUTPUT 
FII,E 

1HE021I FILE name - A'fTEMPT TO WRITE INPUT 
FII,E 

IHEO 22 I GET/PUT S'I'R ING EXCEEDS STRING SIZE 

EJq:)lal!<?t:Lon: For input: 
progralf:tr,er requested more than 
exists on the input string. For 
output: programmer is trying to 
write more than his output string 
will hold. 

IHE0231 l'~ILE nan:e - OU'l'PUT TRANSMIT ERROR 
NOT ACCEPTl',BLE 

Explanation: The ERROR is raised 
(1) up:m ret,urn f rom a TRANSMIT 
ON-unit. if the device in error is 

Part IV: Appendixes 231 



other than a printer .. or (2) if 
access to a tile hy RECORD I/O has 
been attempted aft",r the TRANSMIT 
condition has been raised for 
output. 

IHE0241 FILE name - PRINT OPTION/FORMAT 
ITEM FOR NON-PRINT FILE 

Explanation: Attempt to use PAGE, 
LINE, or SKIP ~ 0 for a non-print 
file. 

IHE0251 DISPLAY- MESSAGE OR REPLY AREA 
LENGTH ZERO 

Explanation: This message appears 
only if the REPLY option is 
exercised. 

IHE0261 FILE name - DATA DIRECTED INPUT -
INVALID ARRAY DATUM 

Explanation: Number of subscripts 
on external medium does not 
correspond to number of declared 
subscripts. 

IHE027I GET STRING - UNRECOGNIZABLE DATA 
NAME 

Explanation: 

1. GET DATA - name of data item 
found in string is not known 
at the time of the GET 
statement, or 

2. GET DATA data list - name of 
data item found in string is 
not specified in the list. 

IHE029I ,F'ILE name - UNSUPPORTED ,F'ILE 
OPERATION 

Explanation: Programmer has 
executed an I/O statement with an 
option or verb not apFlicable to 
the specified file. For example: 

I/O Option 
or Verb File Attribute 

READ SET I DIRECT I 
LOCATE (SEQUENT1AL 

UNBUFFERED) 

REWRITE (SEQUENTIAL 
(without FROM) I INPUT! OUTPUT I 

EXCLUSIVE I UPDATE) I 
UNLOCK I (DIRECT INPUT I 
(READ NOLOCK) OUTPUT) 

Kf;YTO REGIONAL 
DIRECT 

LINESIZEI STREAM (INPUT I 
PAGESIZE UPDATE) 

232 Appendix H: PLiI DiagnostiC Messages 

IDE0301 FILE 11an:€ -. REWRITF"/DELETE NOT 
IMMEDIATELY PRECEDED BY READ 

IDE031I FILE name - INEXPLrCABI~ I/O ERROR 

Explanation: T5S/360 data 
management has de-tected some error 
in the current input/output 
operation.. The message could be 
caused by one of the following: 

1. INDEXED data set_ with F-format 
records: a previously creatp.d 
data set was reopened for 
sequential output and the key 
of the record to be added was 
not higher in the collating 
sequence than that of the last 
key on the data set. 

2. An input/output error occurred 
for which no information was 
supplied by data management. 

IDE033I FILE name - NO COMPLETED READ 
EXISTS (INCORRECT NCP VALUE) 

Explanation: This message may be 
issued because the correct NCP 
value has not been specified or it 
may be due to incorrect source 
code. For example, the source 
code attempts to rewrite a record 
that was read with event but for 
which a WAIT has not been issued. 

IHE034I FILE name - TOO MANY INCO~PLETE 
I/O OPERATIONS 

Explanation: The number of 
incomplete I/O operations equals 
the NCP value. 

IHE035I FILE name - EVENT VARIABLE ALREADY 
IN USE 

IHE036I FILE name - IMPLICI'I' OPEN FAILURE, 
CANNOT PROCEED 

IHE037I 

IDE03SI 

Explanation: There has been a 
failure in an implicit OPEN 
operation. 

FILE name - ATTE~~T TO REWRITE OUT 
OF SEQUENCE 

Explanation: An intervening I/O 
statement occurs between a READ 
statement and a REWRITE statement 
referring to the same record. 

FILE name - ENDFILE FOUND 
UNEXPECTEDLY IN MIDDLE OF DATA 
ITEM. 

Explanation: The ERROR condition 
is raised when end-of-file is 
encountered before the delimiter 



IHE039:I 

when scanning clist-direct;ed or 
data-directed input. or if the 
field width in the format list of 
edit-directed input would take the 
scan beyond the end-ai-file. 

FILE name .- A'l"I'EMPT TO CLOSE FILE 
NOT OPENED IN CURRENT TASK 

IUE100I FILE name - UNRECOGNIZABLE DATA 
NAME 

Explanation: Initiating 
ON-condition: NAME. 

1. GET DATA - name of data item 
found on external medium is 
not known at the time of the 
GET statement, or 

2. GET DATA data list - name of 
data item found on external 
medium is not specified in the 
list. 

IHE110I FILE name - RECORD CONDITION 
SIGNALED 

IUE111 I FILE name - RECORD VARIABLE 
SMALLER THAN RECORD SIZE 

Explanation: The variable 
specified in the READ statement 
INTO option allows fewer 
characters than exist in the 
record. 

F format records: 
a WRITE statement attempts to 
put a record smaller than the 
record size. 

All formats: 
a REWRITE attempts to replace a 
record with one of smaller size. 
(Note: This condition cannot be 
detected for U-format records 
read for UNBUFFERED or DIRECT 
files. ) 

IHEl12I FILE name - RECORD VARIABLE LARGER 
THAN RECORD SIZE 

Explanation: A WRITE statement 
attempts to put out a record 
greater than the available record 
size; or a REWRITE statement 
attempts to replace a record with 
one of greater size. 

IUE1131 ATTEMPT TO WRITE/LOCATE ZERO 
LENGTH RECORD 

Explanation: A WRITE or REWRITE 
statement attempts to put out a 
record of zero length. or a LOCATE 
statement attempts to get buffer 
space for a record of zero length. 

HlE120I FILE naille - PEIUUi.NENT INPUT ERROR 

£l<:plan~!.io!!. : 
ON-CONDITION: 

Initiating 
TRANSMIT. 

IBE1211 F1I .. E nOla>€'- P&G:.MANENT OUTPUT ERROR 

~~E!anat:ion: 
ON-condition: 

Initiating 
TRANSMIT. 

IHE122I FILE name - TRANSMIT CONDITION 
SIGNALED 

IHE1301 FILE name .- KEY CONDITION SIGNALED 

IBE1311 FILE name - REYru) RECORD NOT FOUND 

E.x~la!:l~: READ, REWRITE, or 
DELI.",!'.E statement specified record 
key which does not match with 
recor:ds of da1:a set. If the 
access .is sequential, keys may be 
out of sequence or keys that 
should not be equal are. 

IHE132I FILE name - ATTEMPT TO ADD 
DUPLICATE KEY 

Explanation: WRITE statement 
specified a key value which 
already exists within data set. 
For INDEXED data sets, the 
condition is detected for both 
SEQUENTIAL and DIRECT access. 

IHE133I FILE name - KEY SEQUENCE ERROR 

Explanation: WRITE statement 
specified. during creation of data 
set (OUTPUT SEQUEN'l'IAL). a key 
which for INDEXED data sets is 
lower in binary collating sequence 
t.han prior key. 

IHE1351 FILE name .• K:r:Y SPECIFICATION 
ERROR 

EXE1~nation: INDEXED: the 
KEYFROM or KEY expression may be 
the NULL string. Alternatively, 
RKP does not equal zero and the 
embedded key is not identical with 
that specified by the KEYFROM 
option (or the KEY option in the 
case of a z'ewrite statement). A 
third possibility is that an 
attemFt has been made during 
SEQUENTIAL UPDATE to replace a 
recor.d by one whose embedded key 
does not match that of the 
original record. 

IHE137I FILF name - NO SPACE AVAILABLE TO 
ADD KEYED R.ECORD 

Explanatio~: WRITE statement 
attempted to a.dd record. but 
ei thert:he max.imum number of 

Part IV: Appendixes 233 



overflow pages or the ~ximum size 
of a shared data set has been 
exceeded. 

IHEI1101 FILE name -- END OF r:n .. E 
ENCOUNTERED 

Explanation: 
ON-condition: 

Initiating 
ENDFILE. 

18E1501 FILE name - CANNO'I' BE OPENED, NO 
DDEF 

Explanation: Initiating 
ON-condition: UNDEFINEDFILE. 

IHE1511 FILE name - CONF'LICTING DECLARE 
AND OPEN ATTRIBUTES 

Explanation: 
ON-condit ion: 

Initiat.ing 
UNDEFINEDFILE. 

There is a conflict between the 
declared PLII file attributes. 
For example: 

Conflicting 
Attribute Attributes 
PRINT INPUT, UPDATE, 

RECORD, DIRECT, 
SEQUENTIAL. 
'I'RANSIENT , 
BACKWARDS. BUFFERED, 
UNBUFFERED, 
EXCLUSIVE, KEYED 

STREAM UPDATE, RECORD. 
DIRECT, TRANSIENT, 
SEQUENTIAL. 
BACKWAHDS, BUFFERED, 
UNBUFFERED, 
EXCLUSIVE. KEYED 

EXCLUSIVE INPUT, OUTPUT, 
SEQUENTIAL, 
TRANSIENT. 
BACKWARDS, BUFFERED, 
UNBUFFERED 

DIRECT SEQUENTIAL, 

UPDATE 

OUTPUT 

BUFFERED 

TRANSIENT, 
BACKWARDS, BUFFERED, 
UNBUFFERED 

INPUT, OUTPUT, 
BACKWARDS, TRANSIENT 

INPUT. BACKWARDS 

UNBUFFERED 

Some attributes may have been 
supplied when a file is opened 
implicitly. Exam~le of attributes 
implied by I/O statements are: 

2311 Appendix H: PL/I Diagnost.ic Messages 

I/O 
Statement IIDElied Attributes 
DELETE RECORD, DIRECT, 

UPDATE 

GET INPUT 

LOCATE RECORD. OUTPUT, 
SEQUENTIAL, BUFFERED 

PUT OUTPU'l' 

READ RECORD, INPUT 

REWRITE RECORD, UPDATE 

UNLOCK RECORD, DIRECT, 
UPDATE, EXCLUSIVE 

WRITE RECORD, OUTPUT 

In turn, certain attributes may 
imply other attributes: 

Attribute Implied Attributes 
BACKWARDS RECORD. SEQUENTIAL. 

INPUT 

BUFF'BRED RECORD, SEQUENTIAL 

DIRECT RECORD. KEYED 

EXCLUSIVE RECORD, KEYED, 
DIRECT. UPDATE 

KEYED RECORD 

PRINT OUTPUT, STREA~ 

SEQUENTIAL RECORD 

UNBUFFERED RECORD, SEQUENTIAL 

UPDATE RECORD 

Finally, a group of alternate 
attributes has one of the group as 
a default. The default is implied 
if none of the group is specified 
explicitly or is implied by other 
attributes or by the opening I/O 
statement. The groups of 
alternates are: 

Group 
STREAM I RECORD 

Default 
STREAM 

INPUT I OUTPUT I UPDATE INPUT 

SEQUENTIAL I DIRECT SEQUENTIAL 
(RECORD files) 

BUFFEREDIUNBUFFERED BUFFERED 
(SEQUENTIAL files) 

IHE152I FILE name - FILE TYPE NOT 
SUPPORTED 



IHE153I 

IHE154I 

Explanation: ~ Initiating 
ON-condition: UNDEFINEDFlLE. 

The user has attempted to open or 
use a regional or transient file. 

FILE name - BLOCKSIZE NOT 
SPECIFIED 

Explanation: 
ON-condition: 

Initiating 
UNDEFINEDFILE 

Block size not specified on DDEF 
statement nor on environment. 
However, will never occur for 
PRINT file. because default block 
size is assumed. 

FILE name - UNDEFINEDFILE 
CONDITION SIGNALED 

IHE156I FILE name - CONFLICTING ATTRIBUTE 
AND ENVIRONMENT PARAMETERS 

IHE157I 

IHE158I 

Explanation: Initiating 
ON-condition: UNDEFINEDFILE. 

Examples of conflicting parameters 
are: 

ENVIRONMENT 
Parameter 

No file 
organization 
parameter 

INDEXED 

CONSECUTIVE 

.File Attribute 

KEYED 

STREMol 

DIRECT I 
EXCLUSIVE 

INDEXED OUTPUT without 
KEYED 

Blocked records UNBUFFERED 

FILE name - CONFLICTING 
ENVIRONMENT AND/OR DDEF PARAMETERS 

Explanation: 
ON-condition: 

Initiating 
UNDEFINEDFILE. 

FILE name - KEYLENGTH NOT 
SPECIFIED 

Explanation: Initiating 
ON-condition: UNDEFINEDFILE A 
keylength has not been specified 
for an INDEXED, file that is being 
opened for OUTPUT. 

IHE159I FILE name - INCORRECT BLOCKSIZE 
AND/OR LOGICAL RECORD SIZE IN 
STATEMENT NUMBER xxx 

Explanation: Initiating 
ON-condition: UNDEFINEDFILE. 

One of the following situations 
exists: 

1. 

2. 

F-foLEat records: 
(a) the specified block size 

is less than the logical 
record length, or 

(b) the specified block size 
is not a multiple of the 
logical record length. 

V-format records: 
ta) the specified block size 

is less than the logical 
record length .. 4, or 

(b) the logical record length 
is less than 14 for a 
RECORD file or 15 for a 
STREAM file. 

IHE160I FILE nawe - LINESIZE GREATER THAN 
IMPLEMENTATION DEFINED MAXIMUM 
LENGTH 

Explanation: Initiating 
ON-condition: UNDEFINEDFILE. The 
implereentation-defined maxiwure 
linesize is: F-forEat records 
32759, V-format records 32751 

IHE161I FILE name - CONFLICTING ATTRIBUTE 
AND DDEF PARAMETERS 

Explanation: Initiating 
ON-condition: UNDEFINEDFILE. The 
user has attempted to associate a 
file with the BACKWARDS attribute 
with a non-magnetic-tape device. 

IHE2001 rtname - X LE 0 IN SQRT(X) 

Explanation: A computational 
error has been detected by the 
routine identified as -rtname·. A 
list of routine names and their 
identifiers follows message 
IHE213!. 

IHE202I rtname - X LE 0 IN LOG(X) OR 
LOG2(X) OR LOG10(X) 

Explanation: A computational 
error has been detected by the 
routine identified as Wrtname-. A 
list of routine names and their 
identifiers follows message 
IHE2131. 

IHE2031 rtname - ABS(X) GE (2.*SO)*K IN 
SIN(X) OR COS(X) (K=PI) OR SIND(X) 
OR COSD(X} (K=lBO) 

Explanation: A computational 
error has been detected by the 
routine identified as "rtname·. A 
list: of routine names and their 
identifiers follOWS message 
IHE213I. 

Part IV: Appendixes 235 



18£204I rtname - ABS(X) GE (2 •• S0)*K IN 
TAN(XJ (K=PI) OR TANdex) (K=180) 

Explanation: A CCJiiljYu"\:.ational 
f!rrOr has been detected by t.ne 
routine identified as "':t't:.name". A 
list. of routine nal.!'*.,s and their 
identifiers follo\\is message 
IHE213I. 

IHE2061 r·tnall'e - X=Y::::O IN ATMHY.X) AND 
ATAND(Y,X) 

Explanation: A compl1t.ational 
error has been detect~ed by the 
r.outine identified as "'rtname". A 
list of ront.ine names and their 
identifiers follm .. s w€ssage 
IHE213I. 

IHE2081 rtname -. ADS on G/l' 1 IN ATANH(X) 

Explanation: A computational 
error has been detected by the 
routine identified as ~rtname". A 
list of routine names and their 
identifiers follows message 
IEE213I. 

IHE209I rtname - X=O. Y LE 0 L~ X •• Y 

Explanation: A computational 
error has been detected by the 
routine identified as 8 r tname-. A 
list of routine names and their 
identifiers follows message 
IHE213I. 

IHE2101 rtnaroe - X=O, Y NOT POSITIVE REAL 
IN X •• Y 

Explanatiol'p A coroput.ational 
error has been detected by the 
routine identified as "rtname-. A 
list of routine names and their 
identifiers follows message 
IHE213I. 

IHE21lI rtname - Z=+I OR --1 IN ATAl.iI(Z) OR 
Z=+l OR -1 IN ATANH(Z) 

Explanation: A computational 
error has been detected by the 
routine identified as -rtname-. A 
list of routine names and their 
identifiers follows message 
IHE213I. 

IHE2121 rtname - A.BS 00 GE (2 •• 1ID *1\ IN 
SIN (X) OR COSeX) (K=PI) OR SIND(X) 
OR COSD(X) (R=180> 

Explanation: A computational 
error has been detected by the 
routine identifi~d as Srtnamew • A 
list of routine names and their 
identifiers follows message 
rHE213I. 

236 Appendix H: PLiI Diagnostic Messages 

I 

lHE2131 rtname - ABS(X) GE C2 •• 18)*R IN 
TAN (X) (R=PI) OR TAND(X) (R=180) 

Explanatiol!= A computational 
error has been detected by the 
routine identified as -rtname-. A 
list of routine names and their 
identifiers follows message 
IEE2!3!. 

Note: Messages IHE200I-IHE2131 are issued 
when a computational error is detected. 
The identifier of the detecting routine, 
which immediately follows the message 
identifier. is associated with the routine 
name indicated below~ 

Identifier 
IHESQS 

lHELNS 

IHETNS 

IHEATS 

IHESNS 

IBEOTS 

IHESQL 

IHELNL 

IHETNL 

IHEATL 

IHESNL 

IHEHTL 

IHEXIS 

IHEXIL 

IHEXXS 

IHEXXL 

IHEXIW 

IHEXIZ 

IHEXXW 

IHEXXZ 

IHEATW 

Routine· Name 
Short float square root 

Short float logarithm 

Short float tangent 

Short float arctan 

Short float sine and cosine 

Short float hyperbolic arctan 

Long float square root 

Long float logarithm 

Long float tangent 

Long float arctan 

Long float sine and cosine 

Long float hyperbolic arctan 

Short float integer 
exponentiation 

Long f loa t integer 
exponentiation 

Short float general 
exponentiation 

Long float general 
exponentiation 

Short float complex integer 
exponentiation 

Long float complex integer 
exponentiation 

Short float complex general 
exponentiation 

Long float complex general 
exponentiation 

Short float complex arctan and 
hyperbolic arctan 



IHEATZ Long flOat complex arctan and 
hyperbolic arctan 

IHE3001 OVERFLOW 

Explanation: This condition is 
raised, by Library routines or by 
compiled code, when the exponent 
of a floating-point number exceeds 
the permitted maximum, as defined 
by implementation. 

IHE310I [FILE name] SIZE 

Explanation: This condition is 
raised, by Library routines or by 
compiled code, when aSSignment is 
attempted where the number to be 
assigned will not fit into the 
target field. This condition can 
be raised by allowing the fixed 
overflow interrupt to occur on 
account of SIZE. If associated 
with I/O, then -FILE name- will be 
inserted between the message 
number and the text. 

IHE3201 FIXEDOVERFLOW 

Explanation: This condition is 
raised, by Library routines or by 
compiled code, when the result of 
a fixed-point binary or decimal 
operation exceeds the maximum 
field width as defined by 
implementation. 

IBE3301 ZERODIVIDE 

Explanation: This condition is 
raised, by Library routines or by 
compiled code, when an attempt is 
made to divide by zero. or when 
the quotient exceeds the precision 
allocated for the result of a 
division. The condition can be 
raised by hardware interrupt or by 
special coding_ 

IHE340I UNDERFLOW 

Explanation: This condition is 
raised, by Library routines or by 
compiled code, when the exponent 
of a floating-point number is 
smaller than the 
implementation-defined mimimum. 
The condition does not occur when 
equal floating-point numbers are 
subtracted. 

IHE3S0I STRINGRANGE 

Explanation: This condition is 
raised by Library routines when an 
invalid reference by the SUBSTR 

built.-in function or 
pseudo-variable has been detected. 

IHE360I AREA CONDITION RAISED IN ALLOCATE 
STATEMENT 

Explanation: There is not enough 
room in the area in which to 
allocate the based variable. 

IHE3611 AREA CONDITION RAISED IN 
ASSIGNMENT STATEMENT 

Explanation: There is not enough 
room in the area to which the 
based variable is being assigned. 

IHE362I AREA SIGNALED 

IHE380I IHESTR - STRUCTURE OR ARRAY LENGTH 
GE 16**6 BYTES 

Explanation: During the mapping 
of a structure or array, the 
length of the structure or array 
has been founa to be greater than 
or equal to 16**6 bytes. 

IBE3811 IHESTR - VIRTUAL ORIGIN OF ARRAY 
GE 16**6 OR LE -16**6 

Explanation: During the ma~ping 
of a structure, the address of the 
element with zero subscripts in an 
array, whether it exists or not, 
has been computed to be outside 
the range (-16**6 to +16**6). 

IHE3821 IHESTR - UPPER BOUND LESS THAN 
LOWER BOUND 

Explanation: During the mapping 
of an array or structure, an upper 
bound of a dimension has been 
found to be less than the 
corresponding lower bound. If 
only an upper hound was declared 
then it may currently be less than 
one. the implied lower bound. 

IHESOO! SUBSCRIPTRANGE 

Explanation: This conditicn is 
raised, by Library routines or by 
compiled code, when a subscript is 
evaluated and found to lie outside 
its specified bounds, or by the 
SIGNAL statement. 

IHES011 CONDITION 

Explanation: This condition is 
raised by execution of a SIGNAL 
(identifier) statement, 
referencing a programmer-speCified 
EXTERNAL identifier. 

Part IV: Appendixes 237 



IHE5501 A'ITEMPT TO WAIT O:N ,'\.N" n<ACTIVE AND 
INCOMPLETE EVEN'T 

IHE5S3I \>;AIT ON MORE THAN 2~):} INCOMPL:E'I'E 
EVENTS 

IHES?lI TASK (name) 'l'El:WINi)TEu .. 
COMPLETION CODE= 11.1>]h. 

Explanation: hhh is a hexadecimal 
number. 

IHE600I CONVERSION CONDITION SIGNALED 

Note: 'When condi·tion was due to 
an I/O conversion. t .. hen "FILE 
name" will be inse.rt.ed between the 
nessage number and the text. 
Also, when the I/O conversion 
error was due to a TRANSMIT error, 
the word (TRANSJVJIT) is inserted 
between the file name and text. 

IHE601I CONVERSION ERROR IN ji'-FORMA'1' INPUT 

.Note: When condition was due to 
an I/O conversion, then "FILE 
name" will be insert,ed between the 
message numher and the text. 
Also, when the I/O conver,;ion 
Fr.-ror was due to a 'rRANSMI'r error. 
the word (TR.l\NS~dT) is inserted 
between the file name and text. 

IHE602I CONVERSION ERROR IN E-FORMAT INPUT 

Note: When condition was due to 
an I/O conversion, then -FILE 
name- will be inserted between the 
n;essage number and the text. 
Also, when the I/O conversion 
error was dneta a TRANSMrr error. 
the word (TRANSMIT) is insert.eo 
between the file name and text. 

IHE603I CONVERSION ERROR IN B-FOR~~T INPUT 

Note: 'When condition was due t:o 
an I/O conversion, then "FILE 
name N will be inserted between the 
message number and the text. 
Also. when t.he 1.10 conversion 
error was due to a 'rRANSMIT error. 
the word (TRANSMIT) is inserted 
between the file name and text. 

IHE604I ERROR IN CONVERSION FROM CHARACTER 
STRING TO ARTIHMETIC 

Note: 'When condition was due to 
an I/O conversion. then "FILE 
name" will be inserted between the 
message number dnd the text. 
Also, when the I/O conversion 
error was due t.o a 'fRl\NSMIT error. 
the word (TRANSMIT) is inserted 
between the file name and text. 

238 Appendix H: PL/I Diagnostic Messages 

lHE6051 ERROR IN CONVERSION FROM CHARACTER 
STRING TO BIT STRING 

~9..!:.~~ When condition was due to 
an I/O conversion, then "FILE 
name" will be inserted between the 
message nurnber and the text. 
Also, when the I/O conversion 
error was due to a TRANSMIT error, 
the word (TRANSMIT) is inserted 
between the file name and text. 

IBE606I ERROR IN CONVERSION FROM CHARACTER 
STRING TO PICTURED CHARACTER 
STRING 

Note: When condition was due to 
an I/O conversion, then -FILE 
name- will be inserted between the 
message nmnber and the text. 
Also, when the I/O conversion 
error was due to a TRANSMIT error. 
the word (TRANSMIT) is inserted 
between the file name and text. 

IBE601I CONVERSION ERROR IN P-FORHAT INPUT 
(DECIMAL) 

Note: When condition was due to 
an I/O conversion. then -FILE 
namewwill be inserted between the 
message number and the text. 
Also, when the I/O conversion 
error was due to a TRANSMIT error, 
the word (TRANSMIT) is inserted 
between the file name and text. 

IHE6081 CONVERSION ERROR IN P-FORMAT INPUT 
(CHARACTER) 

Note: When condition was due to 
an I/O conversion, then "FILE 
name- will be inserted between the 
message number and the text. 
Also, when the I/O conversion 
error was due to a TRANSMIT error, 
the word (TRANSMIT) is inserted 
between 1:he file name and text. 

IHE609I CONVERSION ERROR IN P-FORHAT INPUT 
(STERLING) 

Note: 'When condition was due to 
an I/O conversion. then -PILE 
name- will be inserted between the 
message number and the text. 
Also, when the I/O conversion 
error was due to a 'I'RANSMIT error, 
the word (TRANSMIT) is inserted 
between the file name and text. 

Conversion Error~_Non~ON"Type 

IHE1001 INCORRECT EfW,D,S} SPECIFICATION 

ExFlanation: An EDIT operation 
was incorrectly specified. 



IHE701I 

IHE702I 

IHE70n 

IHE701U 

IHE7051 

lHE706I 

IHE79S1 

IHE799I 

lHESOOI 

F FORMAT W ~ECIFICATION TOO 
SMALL 

Explanation: An EDIT operation 
was incorrectly specified. 

A FORMAT W UNSPECIFIED AND LIST 
ITE~ NOT TYPE STRING 

Explanation: An EDIT operation 
was incorrectly specified. 

B FORMAT W UNSPECIFIED AND LIST 
ITEM NOT TYPE STRING 

Explanation: An EDIT operation 
was incorrectly specified. 

A FORMAT W UNSPECIFIED ON INPUT 

Explanation: An EDIT operation 
was incorrectly specified. 

B FORMAT W UNSPECIFIED ON INPUT 

Explanation: An EDIT operation 
was incorrectly specified. 

UNABLE TO ASSIGN TO PICTURED 
CHARACTER STRING 

Explanation: A source datum 
which is not a character string 
cannot be assigned to a pictured 
character string because of a 
mismatch with the PIC description 
of the target. 

ONSOURCE OR ONCHAR PSEUDOVARIABLE 
USED OUT OF CONTEXT 

Explanation: This message is 
printed and the ERROR condition 
raised if an ONSOURCE or ONCHAR 
pseudo-variable is used outside 
an ON-unit, or in an ON-unit 
other than either a CONVERSION 
ON-unit or an ERROR or FINISH 
ON-unit following from system 
action for CONVERSION. 

RETURN ATTEMPTED FROM CONVERSION 
ON-UNIT BUT SOURCE FIELD NOT 
MODIFIED 

Explanation: A CONVERSION 
ON-unit has been entered as a 
result of an invalid conver­
sion, and an attempt has been 
made to return, and hence 
reattempt the conversion, without 
using one or other of the 
pseudo-variables ON SOURCE or 
ONCHAR to change the invalid 
character. 

INVALID OPERATION 

IHESOlI 

IHE8021 

IHES03I 

IHE804I 

IHE805I 

IHE806I 

IHES50I 

IHES51I 

IHES521 

IHESS31 

IHES54I 

IHES56:I 

IHEa57 I 

IHE9001 

IHE902I 

PRIVILEGED OPERATION 

EXECUTE INSTRUCTION EXECUTED 

PROTECTION VIOLATION 

ADDRESSING INTERRUPT 

SPECIFICATION INTERRUPT 

DATA INTERRUPT 

Explanation: This conditIon can 
be caused by an attempt to use 
the value of a FIXED DECIMAL 
variable when no prior aSSignment 
to. or initialization of, the 
variable has been performed. 

MULTITASKING NOT SUPPORTED IN 
TSS-EXECUTION TERMINATED. 

CHECKPOINT NOT SUPPORTED IN 
TSS-EXECUTION CONTINUES. 

CHECKPOINT CANCEL NOT SUPPORTED 
IN TSS-EXECUTION CONTINUES. 

SORT-MERGE NOT SUPPORTED IN 
TSS-EXECUTION TERMINATED. 

PROCEDURE ENTERED DIRECTLY FROM 
COMMAND MODE. USE MODULE NAME 
INSTEAD OF PROCEDURE NAME. 

TASK NOT IN 24 BIT MODE. 
EXECUTION TERMINATED. 

RESTART NOT SUPPORTED IN 
TSS-EXECUTION TERMINATED. 

TOO MANY ACTIVE ON-UNITS AND 
ENTRY PARAMETER PROCEDURES 

Explanation: There is an 
implementation limit to the 
number of ON-Units and/or entry 
parameter procedures which can be 
active at any time. An entry 
parameter procedure is one that 
passes an entry name as parameter 
to a procedure it calls. The 
total permissible number of these 
ON-units/entry parameter 
procedures is 127. 

GOTO STATEMENT REFERENCES A LABEL 
IN AN INACTIVE BLOCK 

ExFlanation: The label referred 
to cannot be found in any of the 
blocks currently active in the 
current task; blocks are not 
freed. The statement number and 
offset i.ndicate the GO TO 
statement causing the error. 

Part IV: Appendixes 239 



INDEX 

Where more than one page reference is 
given. the major reference is first. 

lEND command 30 
*PROCES,j st~atement 
%INCLUDE statement 

39-40 
40-41 

ABEND command 145 
dccess. data set 57 
dccess methods 62 
ag'Jregate length table 34 
AREA ON-code 82 
drray error ON-code 82 
ASCII tapes 

description 14' 
record formats 142 

ASM command 145 
assewbler-language programs 

called from PL/I programs 86 
calls to PL/I programs 90-93 
use ~ith PL/I programs 86-93 

AT command 145 
j,TR (compiler option) 153 
ATTENTION 

interruptions 129-131 
key 18 

attribute table 33~34 

BACK command 
example 100-101 
format 145 

BCD (compiler option) 152 
BEGIN command 145 
BLKSIZE (DDEF operand) 139 
BRANCH corr~nd 145 
BREVITY (PLC option) 28 
BSAM (see physical sequential data set) 
buffering 51 
HUFNO CDDEF operand) 143 
BUFOFF (DDEF operand) 143 
BUILTIN command 145 

calls, dynamic 121-123 
CANCEL command 

example 106 
format 145 

canceiing lines 
1050 terminal 18 
2741 terminal 19 
Teletype Model 33/35 RSR terminal 20 

carriage control characters 132 
catalog 53-56 

entries 54 
maintenance 
organization 
structure 54 

CATALOG corr.mand 
CDD command 

240 

55 
54 

145 

description 64 
format 145 

CDS command 145 
CHAR48 (compiler option) 
CHAR60 (compiler option) 
character sets 32 
CHECK ON-code 82 
checkpoint/restart (not 
CHGPASS command 145 
CLOSE command 145 
closing a file 66 
commands 

entering 4,21 
formats 145-149 

COMP (compiler option) 
compile-time processing 
compiler 

data sets 30-31 
invcking 26-30 
listing 32 
multiple compilations 
options 32 
phases 25-26 
stopping 30 

compiling 24-41,5 
CONC (DDEF operand) 136 
CONDITION ON-code 82 
CONSECUTIVE file 

characteristics 74 
creating 115-116 
description 73 
retrieving 12-13 

CONT (PLC option) 27.39 
CONTEXT command 

example 113 
format 145 

continuation lines 
1050 terminal 18 
2741 terminal 19 

152 
152 

supported) 

151 
'10 

39-40 

127 

Teletype Model 33/35 KSR terminal 20 
control sections 44 

(see also CSECT) 
conversational 

task execution 20-21 
task initiation 11-18,97-98 
task termination 21,98 
task output 21 
use of system 17 

conversion error ON-code 82 
CONVERSION ON-code 82 
COpy (option of GET statement) 50 
copying data sets 57 
CORRECT command 

example 113 
format 145 

correcting errors 7 
correcting lines 

1050 terminal 18 
2741 terminal 19 
Teletype Model 33/35 KSR terminal 20 

cross-reference terminal 33.34 
CSECT 44 



CSECT packing 41 
shared 46 
static external 
static internal 

data 
entering 6 
manipulating 8-13 

data processing error ON-code 82 
data set 

(see also file) 
access 51 
compiler 30-31 
CONSECUTIVE 12-13 
copying 57 
erasing 57 
manipulating 53 
modifying 51 
names 9-10 
organizations 59-60 
physical sequential (see physical 
sequential data sets) 

PS (see physical sequential data sets) 
relationship to PLiI files 64-65 
relationship to STREAM files 72 
sharing 57-60 
storing 53 
user-specified 69 
VAM (see virtual storage data sets) 
VI (see virtual index sequential data 
sets) 

virtual index sequential (see virtual 
index sequential data sets) 

virtual partitioned (see virtual 
partitioned data sets) 

virtual sequential (see virtual 
sequential data sets) 

virtual storage (see virtual storage 
data sets) 

VP (see virtual partitioned data sets) 
VS (see virtual sequential data sets) 

DATA CHECK 18 
DATA command 

example 101 
fonnat 146 

data-directed input 50 
data-directed output 52 
DeB (DDEF operand) 136-131,64 
DDEF command 

basic form 62-64,10 
example 100,110,116 
format lQ6,133-143 
full form 133-143 
retrieving 104-105 
storing 104 

DDNAME (DDEF operand) 63.134 
DDNAME1 command 146 
debugging 79-85 
DECK (compiler otpion) 152 
DEFAULT command 

example 113 
format 146 

DELETE command 146 
DEVD (DDEF operand) 143 
DIAG (PLC option) 27 
diagnostic messages (see messages) 
DISABLE command 146 

/ 

DISP (DDEF operand) 63-64,136 
DISPLAY command 146 
DISPLAY statement 49,85 
DSNAME (DDEF operand) 63,134 
DSORG (DDEF operand) 63,134 
DSS? comn·and 

example 107 
format 146 

dump 
conversational 85 
nonconversational 85 
user-requested 85 

DUMP command 146 

EBCDIC (compiler option) 152 
EDIT command 

examples 111,112 
format 146 

edit-directed input 50 
edit-directed output 52 
embedded keys 78 
ENABLE command 

example 113 
format 146 

END cOlFmand 
examples 111,112 
format 146 

lEND command 30 
end-of-line sequence 20 
ENDFILE ON-code 82 
ENDFILE condition 68 
ENDPAGE ON-code 82 
entering 

commands 4 
data 6 

ERASE con,mand 
examples 106,108 
format 146 

erasing data sets 57 
error handling in PL/I programs 80-83 
ERROR ON-code 82 
ESD 35-36 
EVV command 146 
EXCERPT command 

example 113 
format 146 

EXCISE command 
example 112 
format 146 

EXECUTE command 
example 101-102 
format 146 

executing a program 5.7 
EXHIBIT command 

example 109 
format 146 

EXIT command 146 
EXPLAIN command 146 
EXPLICIT (PLI operand) 29-30 
EXTDIC (compiler dummy option) 153 
external names 45 
external symbol dictionary 35-36 

file 
(see also data set) 
associating with data set 65 

Index 241 



closing 66 
CSECT 44,45 
opening 65-66 
relationshif to TSS/360 access 
methods 62 

relationship to TSS/360 data sets 64-65 
STREA~ 67-68 

fINISH ON-code 82 
fixed-length records 61 
FIXEDOVERFLOW ON-code 82 
FLAGE (compiler option) 153 
FLAGS (comfiler option) 153 
FLAGW (compiler option) 153 
iormat items 52 
forIDdt-F records 61 
rormat-U records 61 
Format-V records 61 
j:"IN command 147 
:ully qualified data set name 10 

GDG 55 
generation data groups 55 
,.JET stdtement 49-50 
GO command 147 

IBM 1050 Data Communications System 18-19 
IBM 2741 Communications Terminal 19 
IF command 147 
IMSK (DDEF operand) 143 
%INCLUDE statement 40-41 
INDEXED files 

accessing 78 
characteristics 77 
creating 78,117-118 
DIRECT access 77 
SEQUENTIAL access 77 
updating 118-119 

initial keys 78 
initialization CSECT 44,45 
initiation procedure 

1050 terminal 18 
2741 terminal 19 
Teletype Model 33/35 KSR terminal 19 

input 
data-directed 50 
edit-directed 50 
list-directed 50 

input/output (see I/O) 
INSERT command 

example 111 
format 147 

interruption 
ATTENTION 129-131 

I/O 

control in PL/I program 80-83 
levels 129 

planning 56-57 
RECORD 13-18,11-12 
STREAM 49-52,10-11 
terminal 8-9 

I/O error ON-code 82 

job library 42-43 
private volume 43 
public volume 43 

JOBLIB (DDEF operand) 136 
JOBLIBS command 147 

REY ON-code 82 
keyboard operation 

1050 terminal 18 
2741 terminal 19 
Teletype Model 33/35 XSR terminal 19-20 

KEYLEN (DDFF operand) 64 
keys, record 78 
REYWORD command 

example 109 
format 147 

LABEL (DDEF operand) 135-136 
library 

job 42-43 
system 42 
user 42 
user-defined 43-44,42 

LIMEN (PLC option) 28 
LINE? command 

example 105,108 
format 147 

LINECT (compiler option) 152 
link-editing 45 
linkage editing 45 
LIST command 

example 112,114 
format 141 

LIST (compiler option) 153 
list-directed input 50 
list-directed output 52 
LISTDS (PLC option) 28 
LISTOUT (PLC option) 28 
LNK command 147 
LOAD command 147 
LOAD (compiler option) 152 
loading, error recovery during 47-48 
LOACTE command 

example 114 
format 141 

LOGOFF command 
example 98 
format 147 

LOOON command 
description 97-98 
example 97 
format 147 

LREeL (DDEF operand) 64,139 

~ACDCK (compiler option) 151 
MACRO (compiler option) 151 
~ACRODS (PLI operand) 29 
MCAST command 147 
~CASTAB command 148 
MERGEDS (PLI operand) 29 
~ERGELST (PLI operand) 28 
nessages 154-239 

severity levels 38-39 
types 20-21 

mixed-mode use of system 23 
MODIFY con:mand 

example 100 
format 148 



modifying data sets ./57 
module 

invoking 1&1 
multi~le versions of 98-100,43 
name 45 
storing 1&2-43 

multiple compilations 39-40,119-120 
M91 (compiler dummy option) 153 

NAME ON-code 82 
NAME (PLI operand) 26 
names 

data set 9-10 
external 45 
module 45 
reserved 44 
user-assigned 44 

NCP (DDEF operand) 143 
NEST (compiler option) 
NOATR (compiler option) 
NOCOMP (compiler option) 
NOCONT (PLC option) 21 
NOCONV (PLC option) 28 

153 
153 

151 

NODECK (compiler option) 152 
NODIAG (PLC option) 27 
NOEXTDIC (compiler dummy option) 153 
NOLIST (compiler option) 153 
NOLOAD (compiler option) 152 
NOMACDCK (compiler option) 151 
NOMACRO (compiler option) 151 
NOM91 (compiler dummy option) 153 
nonconversational 

SYSIN 23 

23 
21-22,100-102 

23 

SYSOUT 22-23 
task execution 
task initiation 
task termination 
use of system 21 

NONEST (compiler option) 153 
nonsupported language features 127-128 
NOOPLIST (compiler option) 152 
NOPRINT (PLC option) 27 
NOSOORCE (compiler option) 153 
NOSOURCE2 (compiler option) 152 
NOSTMT (compiler option) 151 
NOXREF (compiler option) 153 
NUMBER command 

example 112 
format 148 

OBEY facility 120-121 
object data set converter 24 
object module 

invoking 41 
listing 36-38 
multiple versions of 43 
name 45 
relationship with TSS/360 24-25 
storing 42-43 

OBJNM (compiler option) 40,151 
ODC 24 
ON-codes 81-84 
ONCODE ON-code 82 
opening a file 65-66 
OPLIST (compiler option) 152 
OPT (compiler option) 151 

OPTCD (DDEF operand) 143 
OPTION (DDEF operand) 136 
OS/360 - TSS/360 comparison 127-128 
output 

data-directed 52 
edit-directed 52 
list-directed 52 

OVERFLOW ON-code 82 
overview, system 3-4 

packing, CSECT 46-47 
partially qualified data set name 10 
PC? command 

exallrple 107 
format 148 

PCS 79-80 
PENDING condition (nonsupported) 128 
PERMIT command 148 
physical sequential data set 

access with BSAM 76-71 
access with QSAM 75-76 
CONSECUTIVE file 75-78 
creation 15 

PLC 

description 61 
record formats 140-141 
STREA., I/O 69 

fUnctions 24-25 
o~ions 27-28 
system interfaces 25 

PLCOPT {PLI operand} 27 
PLI command 

description 26-30 
examples 99-100,115-118 
format 27,148 

PLIINPUT data set 31 
PLILIST data set 31 
PLILOAD data set 31 
PLIMAC data set 31 
PLIOPT (PLI operand) 27 
POD? conm:and 

example 108-109 
format 148 

POST command 
example 113 
format 148 

preprocessor 
input 33 
invoking 40 

PRERASE (PLC option) 27 
print control options 51-52 
PRINT command 

example 106 
format 148 

PRINT file 
description 69-70 
using 116-117 

PRINT (PLC oFtion) 21 
printer" control characters 132 
PR.,PT con~and 148 
PROCDEF command 

example 11'1 
format 148 

proceed light (1050 terminal) 18 
*PROCESS statement 39-40 
PROFILE command 148 
progralr 

Index 243 



communication with 84-85 
cornpi~ing 26-32 
invoking 47 
storing 42-43 

program control system 79-80 
f-rogram interrupt error ON-code 82 
program language control (see PLC) 
program library 42 
program library list 42 
PROTECT (DDEF operand) 136 
PS data set (see physical sequential data 
set) 

PUNCH command 
example 106 
format 148 

punch control cbaracters 132 
PUSH command 148 
PUT statement 51 

QSAM (see physical sequential data set) 
qualified data set name 10 
QUALIFY command 148 

RECFM (DDEF operand) 137,139 
record formats 61 

ASCII tapes 142 
direct access devices 144 

- physical sequential data sets 140-141 
STREAM 1/0 71 
tape 144 
virtual index sequential data sets 138 
virtual sequential data sets 137 

record I/O 73-78,11-12 
record-oriented transmission 73-78,11-12 
RECORD ON-code 82 
REGION command 

example 112 
format 148 

REGIONA.L I/O (not supported) 128 
RELEASE command 149 
REMOVE command 149 
RESEND (1050 terminal) 18 
reserved names 44 
restricted language features 121-128 
RET command 149 
RET (DDEF operand) 136 
return codes 85 
RETURN key 

1050 terminal 18 
2741 terminal 19 

REVISE command 
example 111 
format 1I~9 

RKP (DDEF operand) 64 
RTRN command 149 

SECURE command 149 
SET command 149 
SHARE command 149 
sharing 

CSECTs 46 
data sets 51-60 

SIZE (compiler du~my option) 153 
SIZE ON-code 82 
SKIP (option of GET) 50 

244 

SNAP option 84 
SORMGIN (compiler option) 152 
SORT (not sUfPorted) 127 
source line format 32 
SOURCE (co«piler option) 153 
SOURCE2 (compiler op~on) 152 
SOURCEDS (PLI operand) 28 
SPACE (DCEF operand) 134-135 
STACK cou~nd 149 
stat.ic external CSECT 44,45 
static internal CSECT 44,45,80 
static internal storage map 37 
STET command 149 
STMT (compiler option) 151 
STOP command 149 
STREAM file 

description 61-68 
outfut 10 
relationship to TSS/360 data set 72 

STREAM I/O 49-52,10-11 
stream-oriented transmission 49-52,10-11 
STRINGRANGE ON-code 82 
structure error ON-code 82 
SUBSCRIPTRANGE ON-code 82 
SYNCHKE (compiler option) 
SYNCHKS (compiler option) 
SYNCHKT (compiler option) 
SYNONYM coa~and 149 
SYSIN 

conversational 67-68,20 
nonconversational 68,23 

SYSLIB 42 
SYSOBF 120-121 
SYSOUT 

151 
151 
151 

conversational 68,20 
nonconversational 68,22-23 

SYSPRINT 68 
system catalog (see catalog) 
system error ON-code 82 
system input file (see SYSIN) 
system library 42 
system messages (see messages) 
system output file (see SYSOOT) 
system overview 3-4 

tab control table 11 
task execution 

conversational 20-21 
nonconversational 23 

task initiation 
conversational 17-18 
nonconversational 21-22 

task output 21 
task termination 

conversational 21 
nonconversational 23 

Teletype Model 33/35 KSR terminal 19-20 
terminal I/O 42-52,8-9 
terminals 18-20 

1050 terminal 18 
2141 terminal 19 
Teletype Model 33/35 KSR 19-20 

text CSECT 44,45 
text editor 110-114 
TIME command 149 
trace, active procedure 84 
track overflow 16 



TRANSIENT file (not supported) 128 
TRANSMIT ON-code 82 
TV command 

example 110 
format 149 

unacceptable statement error ON-code 82 
undefined-length records 61 
UNDEFINED.FILE ON-code 82 
UNDERFLOW ON-code 82 
UNIT (DDEF operand) 134 
UNLOAD command 149 
UPDATE command 

example 112 
format 149 

USAGE command 
example 109 
format 1'19 

user library 42 
USERLIB 42 

VAM data set 60-61 
variable-length record 61 
VI data set (see virtual index sequential 
data set) 

virtual index sequential data set 
description 60 
record formats 138 

virtual partitioned data set 60 
virtual sequential data set 

access 75 

CONSECUTIVE files 73-75 
creating 74 
description 60 
record formats 137 
STREA}IJ I/O 69 

virtual storage 3 
virtual storage data set 60-61 
volume allocation 53 
VOLUME (DDEF operand) 135 
VP data set 60-61 
VS data set (see virtual sequential data 
set) 

VT command 
example 110 
format 149 

W command 
example 110 
format 149 

WT command 149 

XFERDS (PLI operand) 30 
XREF (compiler option) 153 

ZERODIVIDE ON-code 82 
ZLOGON command 149 

1050 terminal 18 
2741 terminal 19 

245 



International Business Machin •• CorporaUon 
Data Processing Division 
1133 Westchester Avenue, Whit. Plaina, New York 10804 
IU.S.A. onlyl 

IBM World Trade CorporaUon 
B21 United NaUone Plaza, New York, New York 100t7 
Ilnternation.1I 

~. 

~ 

c 
en 
)0 


