
IBM System/3SD Operating System
.,-~~

Conversational Remote Jab Entry

Program Logic: Manual

PrDgram Numbllr 360S-RC-551

This publication describes the internal logic of the Conversational
Remote Job Entry (CRJE) facility of the IBM System/360 Operating
System (OS). CRJE provides Remote Job Entry capability for users at
remote keyboard terminals that are connected to an IBM System/360
via communication lines.

This program logic manual is intended for use by personnel involved
in program maintenance and by system programmers who are altering
the system design.

File No. S360-36
Order No. GY30-2011·1

Program Logic

PREFACE

This publication describes the structure of
CRJE, its functions, the control flow among
its routines, and The internal logic of its
modules.

This manual has been organized and
written to provide information for program
maintenance and modification. The
introduction provides background
information necessary to understand the
internals of CRJE: information such as the
purpose of CRJE, its relationship to the
operating system, its structure, system
options, and a brief description of control
blocks and data areas.

The method of operation section
discusses the events or steps of the
program that accomplish the functional
objectives. Reference is made to the
individual module that performs the event.
The functional diagrams in this section
show the flow of the program in achieving a
particular function. These diagrams
provide aid in getting to the proper module
or control block.

The program organization section gives a
detailed description of the events
performed in each module. A flowchart of
each module is also provided. These
individual module descriptions and
flowcharts provide a useful tool for the
person using the book to perform
maintenance or modification.

The data area layouts section contains
information on all control blocks in CRJE.
A map of each control block is provided and
detailed information on the fields in each

Second Edition (March 19721

This publication corresponds to Release 21.

block. This section is arranged
alphabetically.

All reference material is contained in
the appendixes. ,

Readers should have a thorough knowledge
of the IBM System/360 Operating System and
should be familiar with the contents of the
following publications:

IBM System/360 Operating System: Basic
Telecommunications Access Method,
GC30- 2004.

IBM System/360 Operating System:
Conversational Remote Job Entry.
Concepts and Facilities, GC30-2012.

IBM System/360 Operating System:
Conversational Remote Job Entry, System
Prograrr~er's Guide, GC30-2016.

Readers may refer to the following
publications for more detail in special
areas:

IBM System/360 Operating System: PL/I
Syntax checker, Program Logic Manual,
GY33-8009.

This is a major revision of, and makes obsolete, GY30-2011-0 and
Technical Newsletters GY30-2550 and GY30-2553. Changes to the text. and
small changes to illustrations, are indicated by a vertical line to the
left of the change.

The contents of this publication are subject to change from time to
time. Changes will be reflected in periodically updated editions.
aefore using this publication, consult the latest §Y~~/360 2RL
Newsletter, GN20-0360, fer the editions that are applicable and current.

Requests for copies of IBM publications should be made to your laM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for your comments.
If the form is missing, comments may be addressed to IBM Corporation,
Programming Publications, 1271 Avenue of the Americas, New York, New
York 10020.

@ copyright International Business Machines corporation 1970

summary of Amendments Number 1

Date of Publication: March, 1972
Form of Publication: Revision: GY30-2011-1

STAE Exit Support

New: Programming and Doclli~entation

CRJE now supports a STAE exit for subtask abend conditions. The
following changes have been made to reflect this support:

The descriptions of "Session Management" and "Closedown" (Method of
operation section) have been updated.

The following flowcharts have been updated:

IHKBGN
IHKCIP
IHKCLN
IHKSRV
IHKLDC
IHKCCI
IHKCC5

IHKSDQ
IHKCMD
IHKEOS
IHKPUT
IHKRER
IHKSTS
IHKSUB

Appendix E includes additional messages for STAE exit support.

80-character User Record Support

New: Programming and Documentation

CRJE now supports 80-character user library records. The following
items have been updated to reflect this support:

• "Input/Output Flow" description (Method of operation
section)

• Flowcharts for modules IHKAWS, IHKSAV, and IHKBPM

• TUB (Terminal User Block)

Appendix B includes additional messages for 80-charac.ter user
record support.

LOGOFF Exit

Maintenance: Programming and Documentation

The following descriptions have been updated to include handling of
incomplete logon processing by the LOGOFF command processor
(IHKLGF) •

• The "LOGOFF EXIT" description (Method operation section)

• IHKCMD, IHKLGF, and IHKLGN module descriptions

~ ...J
~

JOBFAIL Name Description

Mainten!~: Proqranuning and Dooumentation

tnenaxne JOBFAILcannot be used as a name for a remotely submitted
job. This restriction has been noted in the "Notification of Job

'Output" description (Method of operation section), and in the
IHKDEQ module description.

Data Areas Updated

Maintena~: pr~ramming and Documentation

The following data areas have been updated fOr technical accuracy:

AVT
DEF table
RJCT
TUB

Maintenance: Documentation Only

The PL/I fields of the DIR data area have been updated for
technical accuracy:

Messages Updated

Maintenance: Programming and Documentation

Appendixes Band E now include updated messages.

~: Documentation Only

Appendix G, which contains the origin of c;entral operator messages,
has been' added.

Miscellaneous

Maint~~: Documentation Only

,The format of an entry in the system message file has been updated
to show differences between entries ·for central installation
messages and terminal user messages.

The IHKLST module description has been upd~ted to correct the NONUM
operand for the LIST subcommand.

Maintena~: Programming and Documentation

The "Command Exit" description (Method of operation section) has
been updated to point out additional' information in the user
command control table.

Method of Operation charts A, E, and H have been updated for
technical accuracy.

-------------------------------~--Editorial changes that have no technical significance are not noted
here.

specific changes. to the text made as of this publishing date are
indicated by a vertical bar to the left of the text. These bars ~ill be
deleted at any subsequent republication of the page affected.

INTRODUCTION • • • • • • • • • • • 9
Purpose of CRJE • • • • • • • • 9
Relationship to operating System •• 10
system Structure • • • • • • • • • 10

Loader/Controller Task • • • • • • 11
Utility Task • • • • • • • 11
Open Task • • • • • 11
Main CRJE Task • • • • • 12

Control Blocks • • • • • • • 12
Address Vector Table (AVT) • 13
CRJE Control Table (CCT) • • • • • 13
Conversational Line Block (CLB) ••• 13
Command Default Table (DEF) 13
Parameter Position Table (PPT) • • •• 13
Remote Job Control Table (RJCT) 13
Subtask Control Block (STeB) ••••• 13
Terminal User Block (TUB) •••• 13

Selected Options • • • • • • • 15
Installation Exits • • • • • • • • 15
PL/I and FORTRAN Syntax Checkers • • • 16

System And User Libraries • 17
CRJE Active Area • • • • • • • 17
CRJE System Library •••••• 17
User Library • • • 18

Input/Output Flow • • • • • • • • • 18
Input • • • • • 18

Commands • • • • • • • • • 19
Data • • • • • 19

Output. • • • •••••• 19
Message s • • • • • • • • 19
Data. • • • • • 20

METHOD OF OPERJ-_';ION • • • • • • • 21
CRJE Generation and Assembly • 21

CRJELINE • • • • • • 21
CRJETABL •• ••••••• • • • • 21
CRJEUSER • • • • • • • • • 23

Initialization and Start-up • 23
Initialization • • • • • 23
start-Up • . • • • • • • • • . • . . . 23

Session Management • • • 25
Initiation. • • • • • • • • • • • 25
Termination • • • • • • 26

Da ta Management • • • • • • • • • • 27
Create Function •• -. • 27
Copy Function • • • • 28

OS Data Set • • • • • • • 28
CRJE Data Set • • • • • • • • • 28

Update Function • • • • 28
Entering Lines • • • • 29
Deleting Lines • • • • • 29
Changing Lines • • • • • • • • 30
Merging Lines • • • • • 30
Renumbering Lines • • • • 31
Setting Tabs • • • • • 31

Scan Function • • • • • 31
LIST Function 32
SAVE Function • • • • • 33
SCRATCH Function 0 33

Job Management • • 0 • 35
Submission ot vUUo • • • • 35
Notification of Job Output • 35

Retrieval of Job
Canceling a Job

System Inquiry •
Data Sets

Output 36
37
37
37

Jobs • • • • • • 38
Messages • • • • • • • • 38

Terminal User Messages ••.•• 38
Central Operator Messages • • • • 39

Interfaces • • • • • • • • • • • • • • • 39
OS Reader/Interpreter Interface 39
Central Command Interface • • • • 39
Syntax Checker Interface • • • 40
Multiple Console Support (MCS)
Interface • • • .. • • • • • • • • • • 40

CRJE System Error Procedures • • 41
Classification • • • • • • • 41
Recovery • • • • • • • • • • • • • 42

GETMAIN Failure • • • • 42
Active Area Out of Space • • • • • • 42
User Library Out of Space 42
User Library I/O Errors •••••• 42
Acti ve Area I/O Errors • • • • • 43
Communications Line Errors • 43
Start-up Errors • • • • • 43
Shutdown Errors • • • • 43

Central Operator Control of CRJE • 43
RESOURCE MANAGEMENT • • • • 44

Resident and Nonresident Modules 0 44
Control of Serially Reusable Modules • 45

Closedown • • • • • • • • • 45
Abnormal Closedown • 45
Normal Closedown • 46

PROGRAM ORGANIZATION • 0

Start-up Routines • •
CRJE System Library Initialization
Utili ty UHKIN!) • • • • 0 • • • •

Start Command Processor (IHKBGN) •
CRJE Initialization Routine (IHKCIP) 0

Active Area Start-up/Initialization
Module (IHKAST) • • • • • • • • •
Active Area Recovery Module (IHKAWS) •
Library I/O Start-up Module (IHKBST) •

Shutdown Routines • 0 0 • • • 0 •

CRJE Stop Module <IHKSTP) ••••••
CRJE Closedown Module (IHKCLN) ••••
Library I/O Shutdown Module (IHKBSH) •

Utility Task ••••••• " ••••
START RDR, ALLOCATE, AND Q MANAGER

74
74

74
75
76

77
79
80
81
81
82
83
84

SERVICE TASK (IHKSRV) •••••• 84
Loader/Controller Task • • • • • • • 86

Loader/Controller Module (IHKLDC) 86
OPEN TASK • • • • • • • 0 • • 0 • • 88

OS DATA SET OPEN MODULE (IHKOPN) • 88
Central Command Processors • • • • • 89

RJE/CRJE Central Command· Scheduling
Routine (IGC1503D) 0 0 0 0 0 0 ••

Central Command Interface Module
89

(IHKCCI) 0 0 0 0 • 0 0 0 • '0 91
SHOW USERS and SHOW JOBS Central

Command Processor lIHKCC1) 0 • 92

j

SHOW LERB, SHOW BRDCST, and MODIFY
Central Command Processor (IHKCC2) 93
BRDCST Central Command Processor
(IHKCC3) • • • • • • • • • • • • • 94
SHOW MSGS and MSG D=userid central
Command Processor (IHKCc4) • • • • 96
cenout central Command Processor
(IHKCC5) • • • • • • • • • • • • • • • 97
SHOW SESS and SHOW SESSREL Central
Command Processor (IHKCC6) • • • • 98
Userid Central Comrand Processor
(IHKCC7) ••••••••••••••• 100
Msg And Show Active Central Command
Processor (IHKCC8) •••••••••• 101

JOB Termination Subtask •••••••• 103
Job Termination Handling Module
(IHKSDQ) ••••••••••••••• 103
Dequeue/Job End Processor (IHKDEQ) •• 104

System Administrator. • • • • • • .105
Command Analyzer Module (IHKCMD) • • .105
crje Dispatcher (IHKDSP) • • .110
Line Error And Active Area I/O Error
Recovery Module (IHKERR) • • • .112

Line Administrator •• 113
Macros • • • • .113

CREAD .113
CREAD I ••••••• 113
CREAD R •••••• 114
CWRITE • • .114
CWRITE R • • • • • • .114

General Description • • • .115
communication Line Administrator
Module (IHKLAD) • • • • • .117
Input/Output operation Initiation
Module <IHKLAP) •••• ••• • 120
Output Text Formatting Module
(IHKLAB) • • • • • • • • • • • •
TABSET Edit Module (IHKLATl

.121
1 '"} '"}

•• .L':'L

Line Edit Write Module (IHKLEW) ••• 123
1050X Programmed Time-out Module
(IHKLAY) • •• • • • • • • •

Terminal Command and Subcommand
Processors • • • • • • • • • • • •

CHANGE Subcommand Processcr <IHKCGN)
Edit, Delete, And Exec Command
Processor (IHKEDT) ••••••

.124

.126

.126

.·127
EDIT, DELETE, and EXEC Command
Processor (IHKED1) • • • • • •
Edit Command Processor (IHKEOS)

.128
••• 130

•• 132 END Subcommand Processor (IHKEND)
INPUT Subcommand Processor CIHKIPT)
Insert/Replace/Delete Processor
(IHKIRL) • • • • • • • • • • • • • •
List Subcommand Processor (IHKLST) •
LISTDS AND LISTLIB COMMAND PROCESSOR

.133

.135

.137

(IHKLDS) ••••••••••••••• 138
Logoff Command Processor (IHKLGF) •• 140
Logon command Processor HHKLGN) • • .141
Merge Subcommand Processor (IHKMGE) .143
Merge Subcommand Processor HHKMAA) .144
Merge Subcommand Processor (IHKMUF) .145
Output And Continue Command
Processor (IHKOUT) •••••••••• 146
Transmit Output Module (IHKPUT) .147
SYSOUT Open, Job Delete, Data Set
Scratch, and CANCEL Module (IHKRER) .149
Renumber Subcommand Processor
(IHKRNR) ••••••••••••••• ,152

L

Save Subcommand Processor (IHKSAV) •• 153
Scan Subcommand Processor (IHKSCN) •• 155
Send Command Processor (IHKSND) ••• 156
Status Command Processor (IHKSTS) •• 157
Submit Command Processor HHKSUB) ..159
Submit Input Record Processor
(IHKGET) ••••••••••••••• 161
Allocate Routine (IHKALC) •••••• 162
Tabset Command Processor (IHKTAB) •• 163

Message Writer CIHKMSG)164
CRJE Librarian ••• ••• ••••••• 168

Active File Input/Output (AFIO) ••• 171
AFIO/Library I/O Constants,
Control Fields, and Work Areas
(IHKNBX) •••••••••••••• 171
AFIO Extended Work Area (IHKEXF)
and AFIO Restricted Work Area
(IHKIRP) • • • • •••••••• 172
AFIO Fields in the Terminal User
Block (TUB) •••••• 172
AFIO Macros ••• 174
Active Area Organization •• 180
Master Index Track. • •••• 183
File Index Track. • • .184
Data Track. • • •• • ••••• 187
AFIO General Theory .187
AFIO Macro Argument (TUBAFPAR) ••• 191
AFIO Search/Track Data Analysis
Routines • • • • .'. • • • • • • • • 192
AFIO Register Usage •••••••• 194
Subroutines Within the AFIO I/O
Scheduler (IHKAFI) ••••••••• 196
AFIO Internal Parameter Passing
and Linkage • • • • • •••• 197

Library Input/output ••••••••• 199
Library I/O Macros ••••••••• 199
Librarian Queue Module (IHKRNQI •• 202
Library I/O Module (lHKBPM) .204
Library I/O Wait Module (IHKWTR) •• 206
Library Condense Module (IHKCDP) •• 208

Service Routines •••••••••••• 210
Scan Routine (IHKCCSI •••••••• 210
Numeric Verification Module (IHKNUM) .211
FORTRAN and PL/1 Conversational
Syntax checker Interface (IHKSYN) •• 212
User File Manager (IHKUTM) •• 213

FLOWCHARTS

MICROFICHE DIRECTORY •
Tables • • • • • • •

• • • fI

.216

•• 389
.393

DATA AREA LAYOUTS ••••••••••• 395
Address Vector Table. • ••••• 395
Crje Control Table (CCT) •••••••• 397
Conversational Line Block <CLB) •• 402
Terminal Command Default Table (DEFI •• 407
Parameter Position Table (PPT). • .410
Remote Job Control Table (RJCT) •• 412
Subtask control Block (STCB) • • .415
Terminal User Block (TUB) ••• • 41b
User Verification Record (UVR). ..427
Crje-Created User Library Directory
Entry (oIR) •••••••••••• • 430
Crbe-Created User Library Directory
Entry • • • • • • • • • • • • • . 433
Utility-Created User Library Dire~tory
Entry ••••••••••••••••• 435

DIAGNOSTIC AIDS ••••••••• 436
Chart Of General Register Usage By
Module. • • • • • • • • • • • • • .436

APPENDIX A: CRJE COMMAND CODES · · .440

APPENDIX B: ORIGIN OF TERMINAL USER
MESSAGES . · · · · · · · · · · · · .441

APPENDIX C: COMPONENT BREAKDOWN OF
MODULES . · · · · · · · · · · · · · · .447

Figure 1. CRJE System Structure

· · · · 11
Figure 2. Control Block Pointers 14
Figure 3. Defining the CRJE System 22
Figure 4. CRJE Data Management:
Active File · · · · · · · · · · · · 27

Chart A. Start-Up and Initialization . 49
Chart B. Session Management (Part 1
of. 21 · · · · · · · · · · · · · · . 51
Chart B. Session Management (Part 2
of 2) · · · · · · · · · · · · 53
Chart C. Data Management: Create and
copy Functions · · · · · · · · 55
Chart D. Input and Delete Update
Functions · · · · · · · 51

APPENDIX D: TERMINAL COMMAND FORMATS •• 449
COMMANDS. • • • • • • • •••• 449
Edit Subcommands •••••••••••• 449

APPENDIX E: CENTRAL OPERATOR MESSAGES .451

APPENDIX F: AFIO AND LIBRARY I/O MACROS 455

APPENDIX G: ORIGIN OF CENTRAL OPERATOR
MESSAGES. • • ••••• 456

INDEX · . . .459

FIGURES

Figure 5. Library Condensation • · · · 34
Figure 6. Dispatcher • • • · · · · · .111
Figure 7. Overview of AFIO · · · · · .170
Figure 8. Track Allocation Table · · .182
Figure 9. File Index Track · · .186
Figure 10 AFIO Macro Request · .189

CHARTS

Ch"art E • Change and Renumber Update
Functions . . · · · . · · · · 59
Chart F. Merge Update Function · · 61
Chart G. LIST, SAVE, and SCRATCH
Functions · · · . · · · · 63
Chart H. Job Submission (Part 1 of 2) 65
Chart H. Job Submission (Part 2 of 2) 61
Chart I. Notification of Job Output · 69
Chart J. Job Out:,put · · · · · 11
Chart K. CLOSEDOWN · · · · · · · · 13

FLOWCHJl.RTS

Chart AA. System Library
Initialization Utility (IHKINI) •• 217
Chart AF. START Command Processor
{IHKBGNI • • • •• • • • • • • • •• 218
chart AK. CRJE Initialization Routine
{IHKCIPI •••••••••••••••• 219
Chart AL. CRJE Initialization Routine·
(IHKCIPI •••••••••••••••• 220
Chart AM. CRJE Initialization Routine
(IHKCI Pl. • • • • • • • • • • • • • • • 221
Chart AN. CRJE Initialization Routine
(IHKCIP) •••••••••••••••• 222
Chart AP. Active Area
Start-up/Initialization Module (IHKASTI 223
Chart~. Active Area Recovery Module
(IHKAWSI •••••••••••••••• 224
Chart AS. Active Area Recovery Module
(IHKAWS I • • • • • • • • • • • • • • • • 225
Chart AT. Active Area Recovery Module
(IH KAWS I • • • • • • • • • • • • • • • • 226
Chart AV. Library I/O start-up Module
(IHKBSTI • • • • • • •••••••• 227
Chart AW. Library I/O Start-up Module
(IHKBST) • • • • • • •••••••• 228
Chart BA. CRJE STOP Module (IHKSTP) •• 229
Chart BF. CRJE Closedown Module
(IHKCLN I • • • • • • • • • • • • • • • • 230
Chart BG. CRJE Closedown Module
(IHKCLNI ••••• '.' ••••••••• 231
Chart BI. Library I/O Shutdown Module
(IHKBSHI • • • • • • •••••••• 232
Chart BJ. Library I/O Shutdown Module
(IHKBSHI • • • • • • • • • • • .233
Chart CA. START RDR, Allocate, Q
Manager Service Task (IHKSRVI .234
Chart CB. START RDR, Allocate, Q
Manager Service Task (IHKSRVI ••••• 235
Chart DA. Loader/Controller Module
(IHKLDC I • • • • • • • • • • • • • • • .236
Chart DB. Loader/Controller Module
(IHKLDC I • • • • • • • • • • • • • • • • 237
Chart DC. Loader/Controller Module
(IHKLDC) • • • • • • • • • • • • • • • .238
Chart DO. Loader/Controller Module
CIHKLDCI • • • • • .239
Chart DH. OS Date Set Open Module
(IHKOPNI •••••••••• ~ ••••• 240
Chart EA. RJE/CRJE Central Command
Scheduling Routine (IGC1503DI •• 241
Chart EE. Central Command Interface
Module (IHKCeI) •••••••••••• 242
Chart EG. SHOW USERS and SHOW JOBS
Central Command Processor (IHKCC1) ••• 243
Chart EH. SHOW USERS and SHOW JOBS
Central Command Processor (IHKCC1) .244
Chart EJ. SHOW LERB, SHOW BRDCST, and
MODIFY Central Command Processor
(IHKCC2) • • • • • • • • • • • • • .245
chart EK. SHOW LER.B, SHOW BRDCST, and
MODIFY Central Command Processor
(IHKCC2) • • • • • • • • • • • • • • 246
Chart EN. BRDCST Central Command
Processor (IHKCC3) ••••••••••• 247
Chart EO. BRDCST Central Command
Processor (IHKCC3) ••••••••••• 248
Chart EP. SHOW MSGS and MSG D=userid
Central Command Processor (IHKCC4) ••• 249

Chart EQ. SHOW MSGS and MSGD=userid
Central Command Processor· CIHKCC4) ••• 250
Chart ER. CFNOUT central Command
Processor (IHKCC5) ••••••••••• 251
Chart ES. CENOUT Central Command
Processor CIHKCC 5) • • • • • • •• .• 252
Chart ET. CENOUT central Command
Processor (IHKCC5) ••••••••••• 253
Chart EU. SHOW SESS and SHOW SESSREL
Central Command Processor <IHKCC6) • • • 254
Chart EV. SHOW SESS and SHOW SESSREL
Central Command Processor (IHKCC6) ••• 255
Chart EW. USERID central Command
Processor (IHKCC7) ••••••••••• 256
Chart EX. MSG and SHOW ACTIVE Central
Command Processor (IHKCC8) ••••••• 251
Chart EY. MSG and SHOW ACTIVE Central
Command Processor (lHKCC8) ••••••• 258
Chart FA. Job Termination Handling
Module (IHKSDQ) ••••••• 259
Chart FJ. Dequeue/Job End Processor
(IHKDEQ) • • • • • • • • •••••• 260
Chart FK. Dequeue/Job End Processor
(IHKbEQ) • • • • • • •••••• 261
chart GA. Command analyzer Module
(IHKCMD) •••••••••••••••• 262
Chart GB. Command Analyzer Module
(IHKCMD) • • • • • • • • • • • • • .263
Chart GC. Command Analyzer Module
(IHKCMD) •. • • • • • • • • • • •• .264
Chart GO. Command Analyzer Module
(IHKCMD) • • • • • • • • • • • • • • • .265
Chart GE. Command Analyzer Module
(IHKCMD) • • • • • • • • • • • • • • • • 266
Chart GF. Command Analyzer Module
(IHKCMD) • • • • • • • • • • • • • • • .267
Chart GG. Command Analyzer Module
(IHKCMD) • • • • • • • • • • • • • .268
Chart GH. Command Analyzer Module
(IHKCMD) •••••••••••••••• 269
Chart GI. Command Analyzer Module
(IHKCMD) • • • • • • • • • • • • • .270
Chart GJ. Command Analyzer Module
(IHKCMD) •••••••••••••••• 271
Chart GK. Command Analyzer Module
(IHKCMb) • • • • • • • • • • • • .'. • .• 272
Chart GP. CRJE Dispatcher <IHKDSP) •• 273
Chart GS. Line Error and Active Area
I/O Error Recovery Module CIHKERR). • .274
Chart GT. Line Error and Active Area
I/O Error Recovery Module <IHKERR) .• • .275
Chart BA. Communication Line
Administrator Module CIHKLAD)· ••••• 276
Chart HB. Communication Line
Administrator Module (IHKLAD) •• 271
Chart HC. Communication Line
Administrator Module CIHKLAD) ••••• 218
Chart HD. Communication Line
Administrator Module (IHKLAD) •• 219
Chart HE. Communication Line
Administrator Module (IHKLAD) •• 280
Chart HK. Input/Output Operation
Initiation Module (IHKLAP) ••••••• 281
Chart HL. Input/Output Operation
Initiation Module (IHKLAP) ••••••• 282
Chart HP. output Text Formatting
Module (IHKLAB) •••••••••••• 283

Chart HO. Output Text Formatting Module
(IHKLAB) •.•••••.••••.•.• 284
Chart HU. TABSET Edit Module (IHKLAT) .285
Chart HW. Line Edit Write Module
(IHKLEW) • . • • • • • • • • • • .286
Chart HX. 1050X Programmed Time-Out
Module (IHKLAY). • • • • • • • • • • • .287
Chart HY. 1050X Programmed Time-Out
~1odule (IHKLAY). • • • • • • • • • • • .288
Chart HZ. 1050X Programmed Time-Out
Module (IHKLAY). • • • • • • • •• 289
Chart MA. CHANGE Subcommand
Processor (IHKCGN) • • • • • •
Chart MB.CHANGE Subcommand
Processor (IHKCGN) • • • • • •
Chart MC. CHANGE Subcommand
Proces sor (IHKCGN) • • • . • •
Chart MG. EDIT, DELETE, and EXEC
Command Processor (IHKEDT) •
Chart MH. EDIT, DELETE, and EXEC
Command Processor (IHKEDT) •
Chart MI. EDIT, DELETE, and EXEC
Command Processor (IHKEDT) .
Chart MJ. EDIT, DELETE,and EXEC

• .290

• • .2.91

• .292

• •• 293

• •.• 294

• • .295

Command Processor(IHKED1) ••••••• 296
Chart MK. EDIT, DELETE, and EXEC
Command Processor (IHKED1) •
Chart MM. EDIT Command Processor

• .297

(IHKEOS) • • • • • • . • • • • • • .' •.• 298
Chart MN. EDIT Command Processor .
(IHKEOS). • • • • • • • • • • .299
Chart MW. END Subcommand Processor
(IHKEND) • • . • • • • • • • • • .300
Chart NA. INPUT Subcommand Processor
(IHKIPT) • • • • • • • • • • • • .301
Chart NB. INPUT Subcommand Processor
(IHKIPT) • • • • • • • • • • • • .. 30 2
Chart NC. INPUT Subcommand Processor
(IHKIPT) • • • • • • • • • • • • .303
Chart NJ. Insert/Replace/Delete
Processor (IHKIRL) • • • • • • • •
Chart NK. Insert/Replace/Delete
Processor (IHKIRL) • • • • • • • •
Chart NL. Insert/Replace/Delete
Processor (IHKIRL) • • • • • • •
Chart NM. Insert/Replace/Delete

.304

.305

.306

Processor (IHKIRL) •••.••••••• 307
Chart NR. LIST Subcommand Processor
(IHKLST) ••••••.••••••••• 308
Chart NS. LIST Subcommand Processor
(IHKLST) •.•••••••••••••• 309
Chart NT. LIST Subcommand Processor
(IHKLST) • • . • • • • • • • • • • • • .310
Chart NV. LISTDS and LISTLIB Command
Processor (IHKLDS) • • • • • • • • • . .311
Chart NW. LISTDS and LISTLIB Command
Processor (IHKLDS) ••••••••.•• 312
Chart NX. LISTDS and LISTLIB Command
Processor (IHKLDS) . • • • . . • • • ..313
Chart NY. LISTDS and LISTLIB Command
Processor (IHKLDS) ••••••.•.•. 314
Chart PA. LOGOFF Command Processor
(IHKLGF) •
Chart PEe
(IHKLGN) •
Chart PF.
(IHKLGN) .
Chart PG.
(IHKLGN) •
Chart PH.
(IHKLGN) •

LOGON

LOGON

LOGON . . .
LOGON

· · · · Command

· · · · Command

· · · · Command

· · · · Command

· · · · · Processor

· · · · · Processor

· · · · · Processor

· · · · ·
Processor

· · .315

· .316

· .317

.318

.319

Chart PJ. MERGE Subcommand Processor
(IHKMGE) . • • • • • .'. 32 0
Chart PK. MERGE Subcommand Processor , '
(IHKMGE) • •• • . .• • • . • . . • . • .321
Chart PN. MERGE Subcommand Processor
(IHKMAA) . • ••.•.••••..• 322
Chart PO. MERGE Subcommand Processor
(IHKMAA) • • ••..•...••• 323
Chart PS •. MERGE Subcommand Processor
(IHKMUF) • • • • • . • . . . • • ,.324
Chart OA. OUTPUT and CONTINUE Command
Processor (IHKOUT) • • . . •••.•
Chart OB. Transmit Output Mod~le

.325

(IHKPUT) . • • • . • • • . • '. . • .326
Chart OC. Transmit Output Module
(IHKPUT) ••••••••.••••••• 327
Chart OD. Transmit Output Module
(IHKPUT) • . • • • . • . • . .
Chart OE. Transmit Output MOdule
(IHKPUT) • ••.
Chart OF. Transmit Output Module
(IHKPUT) • • • . • • • • • • . • '.
Chart OJ. SYSOUT Open, Job Delete,
Data Set Scratch, and CANCEL Module
(IHKRER) .~ • • • • • .'. . .
Chart OK •. SYSOUT Open., Job Delete,
Data Set Scratch, and CANCEL Module
(IHKRER) • • • • •.. . • . • . •
Chart 00. RENUMBER Subcommand
Processor (IHKRNR) • • • • • • •
Chart OR. RENUMBER Subcommand

.328

.329

.330

.331

.332

• .333

Processor (IHKRNR) • • • • • • • • . • .334
Chart OS. RENUMBER Subcommand
Processor (IHKRNR) . • •
Chart QT. RENUMBER Subcommand
Processor (IHKRNR) . • • .

.335

• .336
Chart OW. SAVE Subcommand Processor
(IHKSAV) • • • . . • • . . • • . . • • .337
Chart OX. SAVE Subcommand Processor
(IHKSAV) • • • • . • • • • • • • . . • .338
Chart OY. SAVE Subcommand Processor
(IHKSAV) • • • • . • • • • • • • • • • .339
Chart OZ. SAVE Subcommand Processor
(IHKSAV) •••••••••••••••• 340
Chart RA. SCAN Subcommand Processor
(IHKSCN) •••..•.•••....•• 341
Chart RB. SCAN Subcommand Processor
(IHKSCN) •••....••..•. • .342
Chart RE. SEND Command Processor
(IHKSND) • • • . • • . • • • • . . • .343
Chart RF. SEND Command Processor
(IHKSND) • • • . . .• • • • • • . . .344
Chart RG. SEND Command Processor
(IHKSND) • • • • • . • • . • . • • .345
Chart RJ. STATUS Command' Processor
(IHKSTS) . • . • • . • • • • .346
Chart RK. STATUS Command Processor
(IHKSTS)347
Chart RO. SUBMIT Command Processor
(IHKSUB) • . . . • • . • . . • • 3 4 8
Chart RP. SUBMIT Command Processor
(IHKSUB) • • • . . • • . . • • • . • .349
Chart RO. SUBMIT Command Processor
(IHKSUB) • • . • . • • • • • • • • . • • 350
Chart RR. SUBMIT Command Processor
(IHKSUB) • • • . . • .
Chart RS. SUBMIT Input Record
Processor (IHKGET). ••
Chart RT. SUBMIT Input Record
Processor (IHKGET)

.351

.352

.353

-J

7

Chart RU. SUBMIT Input Record '"
Proces.sor (IHKGET) ••• • • • • • • • .35'
Chart RZ. Allocate Routine (IHKALC) • .355
Chart BE. TAB SET command Processor
(IHKTAE) •••••••••••••••• 356
Chart SF • TAB SET Command Processor
(IHKTAB) • • • • • • • • • • • • • • • .357
Chart SG. TABSET command Procesl;lor
(IHKTAB) •••••• ' •••••••
Chart SH. Message Writer (IHKMSG)

,Chart 51. Mesl;lage ,WriteX' (IHKMSG)
Chart SJ. Message Writer (IHKMSG)
Chart SK. Message Writer (IHKMSG)
Chart TE. Active Area I/O

.358

.359

.360
••• 361
• • .362

Control/Command Interpreter (IHKAFI) •• 363
Chart TF. Active Area I/O
Control/Command Interpreter (IHKAFI) •• 364
Chart TG. Active Area ~/O
Control/Command Interpz:-eter (IHKAFI) •• 365
Chart TH.. Acti ve Az:-ea I/O
Contz:-ol/Command Interpz:-eter (IHKAFI) •• 366
Chart TI. Active Area I/O
Control/Command Interpreter (IHKAFI) •• 367
Chart TJ. Active Area I/O
Control/Command Interpz:-eter (IHl(AFI) •• 368
Chart TK. Active Area I/O
Requester/Executoz:- (IHKEXC)
Chart TL. Active Area I/O
Requester/Executor (IHKEXC)

.369

.37Q
Chart TM. Active Area I/O
Requester/Executor (IHKEXC) ••••••• 371

Chart TN. Acti ve Area I/O
RequestElr!Executor (IHKEXC) • • • • • .372
Chart TO. Active Area I/O'
Req\,1ester /Executor (IHKEXC) • 373
ChartUA. Librarian Queue Module
(IHKRNQ) • • • • • • •• • •• ...374
Char~ UE. Library I/O Module (IHKBPM).375
Chax;-t UFo Library I/O Module (IHKBPM).376
ChartUG. Libraz;-y I/O Module (IHKBPM).377
Chart OP. Library I/O Wait Module
(IHKWl'R) • • .'. • • • • • • • • • • •• 378
Chart U,R. Libz:-ary Condense Module
(IHKCDP) • •• • • • • • • • • •• • • 379
Chax;-t US. Library Condense Module
(IHKCDP) • • • • • • • • • • • • • • • 380
chart UT. Library Condense Module
(IaKCDP) • • • • • • • • • • • • • • • 381
Chart WA. Scan Module (IHKCCS). •• 382
Chart WJ. Numeric verification Module
(IHKNUM) • • • • • • • • • • • • • • • 3 83
Chart WR. FORTRAN and PL/:r
ConveX'sational Syntax Checker
Interface (IHKSYN) • • • • • • • • •• 384
Chart WS. FORTRAN and PL/I
Conversational Syntax Checker
InteX'face (IHKSYN) • • • • • ••••• 385
Chart WI'. FORTRAN and PL/I
Conversational Syntax Checker
Interface (IHKSYN) • • • • • • • • • • 386
Chart WZ. User File Manager (IHKUTM). 387
Chart, WY. User File Manager (IHKUTM). 388

The Conversational Remote Job Entry
(CRJE) facility of the IBM System/360
Operating System (OS) operates in a
multiprogramming environment. It can run
under MFT with at least 256K bytes of main
storage or under MVT (or MP65) with at
least 384K bytes of main storage.
Direct-access storage space for CRJE
tables, system libraries, the active area,
and work areas is provided on a 2311 Disk
Storage Drive, a 2314 Direct-Access Storage
facility, or a 2319 Direct-Access Storage
facility. Requirements for direct-access
storage space depend upon the number of
communication lines, the average size of
the data sets being updated, the number of
active users allowed at anyone time, the
number of delayed and/or broadcast messages
allowed at one time, and the number of CRJE
jobs submitted to OS for processing at any
one time. User libraries require
additional direct-access storage space.

PURPOSE OF CRJE

Conversational Remote Job Entry allows
users at remote keyboard terminals to
prepare and enter jobs to OS for
processing. Data sets can be created and
maintained through the facilities of CRJE.
The data sets can contain program source
statements, data, CRJE commands, data set
names, or job control statements.

TO submit data sets to OS for
processing, the user simply lists the data
sets in the order they are to be submitted.
The user may request that the data sets be
listed at his terminal. The output of jobs
submitted can be printed at the user's
terminal or directed to a central
installation output writer.

The user invokes the functions of CRJE
by CRJE commands. These commands are
grouped by the functions they represent.

Session Management: The user's session is
initiated by a LOGON command and terminated
by a LOGOFF command.

Data Set Manipulation: Data sets are
created and maintained by the EDIT command
and the EDIT subcommands. A data set is
created a line at a time by the EDIT NEW
command, the Implicit subcommand, or the
INPUT subcommand. Lines of a data set are
inserted or replaced by the INPUT or
Implicit subcommand and deleted by the

INTRODUCTION

DELETE or Implicit subcommand. Character
strings within lines are replaced by the
CHANGE subcommand. Two data sets are
merged into one by the MERGE subcommand.
The lines of a data set are renumbered by
the RENUMBER subcommand. If a data set
contains PL/1 or FORTRAN program source
statements, the statements are scanned for
syntax errors by the SCAN subcommand. The
data set that has been updated is then
saved in a user library by the SAVE
subcommand.

Job Submission and Retrieval: Jobs are
given to oS~or processing-when a SUBMIT
command is entered at the terminal. If a
job contains more than one data set, the
data sets are listed in the order they are
to be submitted. Jobs are canceled by the
CANCEL command. Output of jobs is
requested by the OUTPUT command.
Interrupted output is obtained by the
CONTINUE command.

Retrieval of Status Information: The user
enters a LISTLIB or LISTDS command to
obtain information about a data set in his
user library. The information available
includes the attributes and size of the
data sets, the date last used, and whether
the data sets have protection keys. The
STATUS command is used to obtain
information about jobs the user has
submitted for processing.

Communication: The user can communicate
with other terminal users and with the
central operator by the SEND command.

A data set may contain a list of
terminal commands. If an EXEC command is
entered for this data set, the commands are
executed as if they were being entered from
the terminal.

The central operator controls the CRJE
system. He issues the START command to
initiate the system and the STOP command to
terminate the system. He obtains
information about users, jobs, or messages
by the SHOW command. He sends messages to
terminal users (MSG command), and he
maintains the broadcast messages (BRDCST
command). He removes job output in the
CRJE SYSOUT class and processes it with a
central installation output writer by the
CENOUT command. He adds and deletes users
by the USERID command.

Introduction 9

RELATIONSHIP TO OPERATING SYSTEM

CRJE operates as a problem program under
NVT or MFT with four separate tasks. The
main CRJE task is attached by the OS master
scheduler when a START command referring to
a CRJE procedure is entered by the central
operator. Control is given to the main
CRJE task at the IHKBGN entry point of the
START command processor and the task is
given a pro'tection key of zero. The open
task is attached by the IHKEOS module. The
other two tasks are service tasks of the
main CRJE task and are attached by the CRJE
start-up module IHKCIP.

CRJE uses the OS facilities for data
management, task management, and job
management. The following as routines are
used in job management: IEFQMDQ2,
IEFQDELE, IEFQMSSS, IEFQMUNC, and IEFLOCDQ.
OS data sets on direct-access storage
devices are handled with the Basic
sequential and Basic Partitioned Access
IVJethods (BSAM and BPAM). Task management
is handled by the as dispatcher. To
allocate space for the job stream data set,
the allocate module (IHKALC) uses the OS
routine IGC0003B. The utility task issues
a START RDR (SVC 34) on the job stream data
set when submitting jobs to os. The
interface for starting the as
reader/interpreter on the job stream is
handled by the utility task (IHKSRV).

Data is transmitted and received over
the communication lines by the Basic
Telecommunications Access Method (BTAM) ,
which provides error recovery for the
communication lines supported. BTAM issues
I/O 'error messages to the central operator
for irrecoverable line errors, and BTAM
also issues messages giving line error
statistics. The BTAM on-line terminal test
facility is provided unless o~itted by
coding ONLNT=NO in the CRJELINE macro at
CRJE assembly time.

CRJE and RJEmay exist in the same
system at the same time, each providing a
separate function. The only routine they
have in common is the IGC1S03D routine for
scheduling central commands.

When a central command is entered, the
IGC1503D module gets control from SVC 34.

10

The scheduling routine determines whether
the command is for RJE or CRJE. The os
routine IGCOS03D is used to write error
messages at the central console.

CRJE is divided into four separate
tasks: loader/controller task, utility
task, as data set open task, and mainCRJE
task (see Figure 1). The main CRJE task is
attached by the os master scheduler when
CRJE is started. Control is first given to
the START command processor (IHKBGN). The
CRJE start-up module IHKCIP attaches the
two service tasks (loader/controller and
utility). The open module (IHKOPN) is
loaded when an os data set is to be
accessed. The module is attached as a task
by the EDIT command processor (IHKEOS).
The ATTACH macro instruction specifies that
the task can be neither rolled out nor
cause another task to be rolled out. Each
ATTACH macro specifies an event control
block (ECB) to be posted by the os control
program when the attached task has
terminated. This is done to ensure that
each attached task is complete before CRJE
detaches the task at CRJE closedown and
returns to the as control program.

All three of the attached tasks perform
service functions for the main CRJE task.
They are removed from the main CRJE task
beca use they contain os functions that
issue WAIT macros in os rather than in the
CRJE dispatcher. Having these tasks
external to the main CRJE task allows CRJE
processing to take place while the OS WAIT
macro is in effect for the attached task.

The tasks communicate by a series of
ECBs. Each of the attached tasks has a
list of ECBs that determine when there is
work for that task to do. There is one EeB
entry in the list for each CRJE subtask
that uses that task. The post codes in the
ECBs are addresses of parameter lists.
Return is made by posting a return ECB that
was passed as a parameter. The open task
has one ECB that it posts when the task
returns to the control program.

OADERi L
C ONTROlLER

Ii mit priority
251

TeB TC8

. MAIN CRJE
TASK

limit priority
=251

STCB

CENTRAL TP LINE

TCB TC8

UTILITY TASK OS DATA S ET
(Allocote, Q OPEN TASK
Mgr. START RDR)
limit pri orily limit priorit
;250 =250

y

STCB STCB

JOB
COMMANDS (one eoch) TERMINATION

priority = priority = priority =
Low Top Medium

LINE
ADMIN

LIBRARIAN SYSTEM
ISTRATOR

TERMINAL
COMMAND
PROCESSORS

Figure 1. CRJE System Structure

LOADER/CONTROLLER TASK

The function of the loader controller
task is to load and delete nonresident
routines. The nonresident routines are·
loaded into the CRJE transient area.

The minimum size of the transient area
is 8K bytes. It can be increased at
start-up time in multiples of 2Kbytes.
This is done by specifying the amount to be
increased in the PARM field of the EXEC
statement for the CRJE procedure~ All
modules are loaded or deleted in blocks of
2K bytes.

The loader/controller task has a limit
priority of 251, the same as the main CRJE
task.

UTILITY TASK

The utility task has three functions:
allocation of direct access space for the
job stream of CRJE jobs; interfacing with

MESSAGE
WRITER

ADMINIS TRATOR

the OS queue manager modules; and
interfacing to start an OS reader on the
submitted job stream. The OS
reader/interpreter interface is handled as
a separate task since CRJE allows only one
reader/interpreter to operate in the system
at a given time.

The reader/interpreter is invoked by
issuing the START command internally. It
is recommended that the central operator
not issue a START RDRCRJE.S command while
CRJE is executing; this will ensure that
the reader/interpreter will be available to
CRJE when needed. Only. one system-assigned
reader is allowed at any given time when
operating in an MFT environment.

The utility task operates with a limit
priority of 250, which is one less than the
main CRJE task.

OPEN TASK

The open task handles the opening and
scratching of OS data sets and members of

Introduction .11

partitioned data sets, e]C:cept user
libraries. The open t 3~ is attached and
detached by the IHKEOS modUle. The open
task has a limit priority of 250, which is
one less than the main CRJE task.

MAIN CRJE TASK

A subtask in CRJE is .a sequence of
instructions receiving control only from
theCRJE dispatcher and yielding control
only to the CRJE dispatcher. The main CRJE
task is composed of a variable number of
subtasks: the central command subtask,a
subtask for each communication line, and
the job termination subtask. The CRJE
dispatcher controls the subtasks by means
of an ECB list that contains an entry for
each subtask.

Associated with each ECB list entry is a
subtask control block (STCB). The CRJE
dispatcher scans the ECB list for an ECB
that is posted. A postedECB means that
the event the subtaskis waiting for has
completed. The dispatcher restores the
registers for the subtask and returns
program control to that subtask. Whenthe
CRJE dispatcher gets control again, it
continues to look for posted ECBs. If at
any time the CRJE dispatcher cannot find a
posted ECB, it will issue a WAIT macro to
qive control to the OS dispatcher.

The central command subtask processes
the commands entered by the central
operator.

The job termination subtask dequeues
remote jobs as they finish and queues
notification messages for the user who
submitted the job. The notification
message includes an indication of whether
.the job completed normally or abnormally.

The routines that perform the fUnctions
of the communication line subtasks are
divided into the following components:
line administrator, librarian; message
writer, system administrator, and terminal
command processors. .

The line administrator handles all
servicing of the communication lines. It
provides translation of the characters
being sent or received from EBCDIC to the
transmission code or from the transmission
code to EBCDIC. It provides editing of
lines sent and received. Editing consists
of removing line control characters and.
backspace characters, translating to upper
case, if requested, and adding the proper
number of idle characters and new line
characters.

12

The librarian provides access to the
CRJE user libraries and the active area by
means of ~acros. (See Appendix F for a
list of these macros.) The user libraries
are pre-:-allocated, partitioned data sets
that contain the terminal users' permanent
data sets. The active area is a
pre-allocated data set that contains active
files (ope for each active user) and global
files. Pre-allocation means that the data
sets are allocated before the start-up of
CRJE. The active files are assigned to
active users for storage of temporary data
sets. Each global file contains a member
of the CRJE system library.

The message writer queues messages for
or sends n~ssages to the terminal user and
the central operator. If a prepared
message is not used, the message writer
builds a message •. If indicated on LOGON
command, the message writer appends the
standard message code to the message.

The. system administrator controls the
flow of terminal commands through the
system and handles any abnormal situations,
such as line failures, that result in
terminating a user's session. The system
administrator provides the command analysis
function, which validates all terminal
command verbs, builds a PPT (Parameter
Position Table) containing the command and
its parameters, and requests the loading of
the command processor if the processor is
nonresident. The disposition of system
messages is controlled by the system
administrator before requesting a new
command from the line administrator.

The terminal command processors provide
the functions requested by the commands.
The processors use the librarian, .the
message writer, and the line administrator
to process the commands.

£QNTROL BLOCKS

The communication of information within
CRJE is by means of control blocks. The
information in these blocks and tables is
stored in a compact form that is easily
accessible. They have a standardized
format so that the information is available
to all parts of the CRJE system. The
addresses maintained in the control blocks
permit access to other blocks and tables.
By using addresses in the AVT, all control
blocks can be found. This is illustrated
in Figure 2.

The KONBOX is not a CRJE control block
and is not treated as such. It contains
constants, control fields, and work areas
required by the library I/O and active file
I/O modules.

ADDRESS VECTOR TABLE (AVT)

This table contains the addresses of the
entry points of the resident modules, the
addresses of the control blocks, and any
other addresses that the command processors
need. The address vector table, IHKAVT,
resides in main storage.

CRJE CONTROL TABLE (CCT)

There is only one CCT for the entire
CRJE system. It is generated by the
CRJETABL macro at CRJE assembly time. The
CCT resides in main storage in the IHKMAC
module.

This table contains installation-wide
switches and options plus line control
information for all teleprocessing lines in
the CRJE network.

The CCT is reinitialized at each
start-up. Some fields may be altered by
the central operator by issuing central
commands.

CONVERSATIONAL LINE BLOCK (CLB)

A CLB exists for each line in the CRJE
system. They are generated by the CRJELINE
macro at CRJE assembly time. They reside
in main storage in the IHKMAC module. The
CLB contains information about the terminal
on that line. The information is necessary
for the line administrator to perform BTAM
operations on the line. Certain fields in
the CLB are used for communicating line
status and termination of line operations
to the rest of the system. The CLB
contains a pointer to the DECB for the
line.

COMMAND DEFAULT TABLE (DEF)

The DEF contains the default options for
the operands of each terminal command.
When the default option of a command is to
be used, the command processor checks the
DEF table to find the default.

PARAMETER POSITION TABLE (PPT)

The function of the PPT is to pass the
terminal command and its operands from the

system administrator to the command
processor. The system administrator
allocates the PPTs as they are needed. One
PPT is allocated for each line of input
received from the terminal. If more than
one PPT is needed for one command and all
its operands, then the PPTs are chained
together. They are variable in length with
a minimum of 32 bytes. A pointer to the
PPT is. contained in the terminal user
block.

REMOTE JOB CONTROL TABLE (RJCT)

The RJCT resides in the system library
on disk. A copy of it is .in the global
file of the active area under the name
CRJE.SYSLIBeJBTBLS). Each command
processor interfaces with the Active File
I/O (AFIO) of the librarian to read, write,
delete, and search entries in the RJCT. An
RJCT entry is initialized for each job that
is submitted to OS for processing. The
entry is deleted when the job is canceled
or the ou~put received. The job name is
used as the key to locate entries in the
global file member.

SUBTASK CONTROL BLOCK (STeB)

One STeB exists for each CRJE subtask.
The STCB contains a pointer to its entry in
the ECB list for the CRJE dispatcher, a
pointer to the register save area, a
pointer to the next STCB in the circle, and
a dummy ECB that is always posted at
start-up time. The CRJE dispatcher uses
this information to determine which subtask
is to be given control next.

The STeBs for the communication lines
are generated by the CRJELINE macros. All
of the STeBs reside in the IHKMAC module.

TERMINAL USER BLOCK (TUB)

A TUB is allocated by the line
administrator when a user initiates his
LOGON procedure; there is a TUB for each
active user. The TUB contains the address
of the CLB for the li~e of the terminal at
which the user is logged on~ The TUBs are
also chained backward and forward.

Introduction 13

AVT (Address Vector Table) CCT (CRJE Control Table)

IHKYYCCT (0)

IHKYYCLB (24)

IHKYYTUB (28) CCTUSR (52) INSTALLATION COMMAND PROCESSOR

IHKYVTUB+ 4 (32) CCTIAX (56) INSTALLATION ACCOUNTING EXIT

CCTISX (60) JOB CARD EXIT

CCTILX (64) LOGOFF EXIT

IHKYVDEF (56)

CLB (Conversational Line Block) CLB CL8

~

•
CLBDECB (1) CLBDECB (1) CL8DECB (1)

b· •
.-/ ~

QEC' '0.,. "".,
Control Block) DECB DECiI

~\
.(••

........ '- \..

"'\) DEF (Command Default Table) '" TUB (Terminal User BIOC~ TUB TUB

.. TUBCLBAD (1) /: TUBCLBAO (I)
..

TUBCLBAD (1)

J/ TUBPREV (20) TUBPREV (20) TUBPREV (20)

(.::ontains zeros) •••
TUB NEXT (24) TUBNEXT (24) TUBNEXT (24)

(contains zeros)

TUBPPTAD (33)

~
TUBPPTAD

~) f1 TUBPPTAD (33)

D. -/'
~

PPT (Parameter Position Table) \.jPT .~~
•••

Figure 2. Control Block Pointers

14

The TUB is divided into 2 sections:
terminal user section and the AFIO control
section. The first section contains all
status information concerning the terminal.
Also in this section is the status
information concerning the user's current
session, including the attributes of the
data set in his active file, the accounting
information for his session, the options
requested by the user, whether any messages
exist for the user, and what type of
commands are valid at this point in his
session.

The AFIO control section contains
information necessary for AFIO to operate
within CRJE. This section also contains
fields pertinent to library I/O.

NOTE: See the section, Data Area Layouts,
for a map of the control blocks and a
description of the fields.

SELECTED OPTIONS

INSTALLATION EXITS

Four exits in CRJE allow the
installation to include routines of their
own to meet special requirements. A
routine can be added to process accounting
information (LOGON exit); a routine can be
added to obtain LOGOFF time (LOGOFF exit):
and a routine can be added to check the JCL
cards (JCL exit). An installation can also
add commands and routines to process these
commands.

LOGON Exit: The LOGON exit gives the
installation the opportunity to create a
routine to process accounting information
which is given as an operand on the LOGON
command. The entry point to the routine
must be specified in the ONEXIT operand of
the CRJETABL macro.

If all the operands given on the LOGON
command are correct, the LOGON processor
(IHKLGN) checks the CCT to find an entry
point address for the routine. If there is
no routine, the entry point address is zero
and the accounting information is ignored.

The following parameter list is provided
for the LOGON exit and its address is
passed in register one:

Word 1 a pointer to the userid given on
the LOGON command (this is a
pOinter to the TUBUSRID field in
the TUB).

Word 2 - The address of the accounting
intormation in the LOGON command,

if present. This information has
the following format:

r-------T-------------T-------,
Ilength1Iparameter1··.llengthnl L _______ .L _____________ .L _______ J

r----------T-----'
IparameternlX'FF~1 L __________ .L _____ J

The first byte gives the length of the
first parameter and X'FF' indicates the end
of the parameter list. These parameters
are already stored in the PPT, so the
installation exit is passed a pointer to
this area.

If no accounting information exists, the
address of a byte containing X'FF' is
passed to the exit routine.

When the LOGON exit routine gives
control back to the LOGON processor, the
return code is checked. If 0, the user is
allowed on the system and processing
continues normally. If the return code is
4, the user is not allowed on the system.
In this case a message is sent to the user
notifying him of why he is not logged on,
and control is given to the command
analyzer to ask for another command.

LOGOFF Exit: The LOGOFF exit allows the
installation to process information
concerning session termination by using a
routine of its own. The entry point must
be specified in the OFFEXIT operand of the
CRJETABL macro.

The LOGOFF processor (IHKLGF) checks to
see if there is an entry point address in
the IHKYYILX field of the AVT. If so,
register one points to the following
parameter list:

Word 1 - address of userid for the user
whose session is being terminated.
(This is the address of the
TUBUSRID field in the TUB.)

Word 2 - address of first field in the CLB,
which contains the type of
terminal at which the user logged
on.

Word 3 - address of field containing LOGON
time, LOGOFF time, and elapsed
time of session. This field also
contains an indication of whether
the session was terminated
normally or abnormally.

This field is the same field used in giving
the message writer the information for the
LOGOFF message.

Introduction 15

There are no return codes from the
LOGOFF exit routine.

Note: If a processing error occurs during
logon processing at the point (or any time
thereafter) where CRJE gives control to the
Logon exit, if one exists, CRJE gives
control to the LOGOFF exit (if one exists)
to get accounting information for the user
currently logged on the system. If during
logon processing where CRJE would have
branched to the LOGON exit there is no
exit, CRJE gives control directly to the
LOGOFF exit (if it exists).

JCL Exit: This exit lets the installation
provide a routine to examine and modify JCL
statements of conversationally submitted
jobs. The installation-provided routine
can modify the JCL statements, but cannot
add new SO-character records or delete
records. Statements returned to CRJE from
the exit routine are passed to OS after a
check is made for duplicate jobname on the
JOB card. The entry point for the exit
routine must be provided in the JOBEXIT
operand of the CRJETABL macro.

The SUBMIT command processor (IHKSUB)
checks the CCT to get the entry point
address for the JCL exit routine. If there
is not an address, the JCL cards are sent
to OS after a check is made for duplicate
jobname on the JOB card. This routine is
entered every time a JCL card is found.
The address of the following parameter list
is passed in register one:

Word 1 - address of JCL statement.

Word 2 - address of userid for user
submitting the job.

A 0 return code from the JCL exit
routine means that the job is to be passed
to the operating system. A return code of
4 means that the job is not to be
submitted. A return code of 8 means that
the job is not to be submitted and the
message supplied by the exit is to be sent
to the user. Register 1 should contain the
address of a 60-byte message to be sent to
the user.

command Exit: The installation is given
the opportunity of adding terminal user
commands and subcommands with routines to
process them. The commands and subcommands
must be specified in the USRMCMD and
USRSCMD operands of the CRJETABL macro.
The entry point of the)
installation-provided routine must. be given
in the CMDEXIT operand of the CRJETABL

16

macro. Only one entry point is specified.
This entry point is given control when any
of the commands or suhcommands are
recognized by the command analyzer. The
commands and subcon~ands that are added are
put in the major command list and
subcommand list. The entry pOint address
of the routine is put in the AVT.

Register 1 points to a parameter list
containing the address of the user command
control .table. This table is a section of
the TUB. It contains the address of a
120-byte user buffer, the userid, and the
data length. Upon entry to the command
exit routine, the user buffer contains the
command or subcommand with its operands
after editing by the Line Administrator.
Upon return from the command exit routine,
the user buffer may contain a message (120
characters in length) to he sent to the
terminal user.

A return code of 0 means that processing
is complete. A 4 return code means that
processing is complete and there is a
message in the user buffer to be sent to
the terminal.

PL/I AND FORTRAN SYNTAX CHECKERS

The installation has the option of
including one or more versions of the PL/1
syntax checker and/or the FORTRAN syntax
checker. The syntax checkers are included
if the macro CHECKER is specified at the
generation of the OS system supporting
CRJE. The specific version of the syntax
checker that is to be utilized is specified
by a PARM field parameter of the EXEC
statement in the cataloged procedure to
start CRJE.

Source statements are scanned as lines
are entered from the terminal or existing
statements are scanned in response to a
specific request. specific requests are
made by the SCAN subcommand. The automatic
scan facility can be turned on by the EDIT
command or SCAN SUbcommand. While the
automatic scan is on, all lines entered in
input mode are passed to the syntax
checker. The automatic scan facility is
turned off with the SCAN subcommand.

If SCAN is specified in the EDIT
command, the data set must have the
attribute of PL/l or FORTRAN. If the
character set and source margin are not
specified, the default options are used.

SYSTEM AND USER LIBRARIES

CRJE ACTIVE AREA

The active area is allocated as a
sequential data set on a direct-access
device. Active data sets are files within
the active area that are allocated to
individual active users. Active files are
basically sequential sets of unblocked
records. Each record is 80 bytes long and
has an associated 8-byte key, which is the
line number. The keys and their associated
records are logically arranged in
increasing sequential order by key value.

Active files are allocated from within
the active area one track at a time.
Consequently, an active file may never have
adjacent tracks assigned to it. The
availability of a track for allocation to
an active file is determined by examination
of the track allocation table (TAT), which
is constructed by the active area start-up
module (IHKAST) at CRJE start-up time.

The active area consists of two types of
files: global and private. Private files
are active data sets that are assigned to
users when they enter an EDIT command.
Active data sets are referred to as active
files. Active files are released when an
END subcommand is entered by the user. The
global files are allocated at start-up time
and each member of the system library is
copied as a global file.

Access to the files in the active area
is provided with Active File I/O (AFIO)
macros. The macros are listed in Appendix
F and are discussed in detail in the
Librarian section of Program Organization.
These macros invoke the IHKAFI module,
which is the AFIO control routine.

CRJE SYSTF..M LIBRARY

The Conversational Remote Job Entry
system library (CRJE.SYSLIB) is a
partitioned data set that contains user,
system, and broadcast messages, user
verification information, and control
tables for jobs that have been submitted to
OS through CRJE.

The CRJE system library is a five-member
partitioned data set containing the
following files:

1. System Message File -
CRJE.SYSLIB(SYSMSGS). This member
consists of messages and diagnostics
written to the terminal user or the
central operator.

2. User Verification File -
CRJE.SYSLIB(USERS). This file
contains the userid and password of
all potential active users and
internal CRJE control information
related to each user.

3. User Message File -
CRJE.SYSLIB(USRMSGS). This file
contains the delayed messages for
users who were not active <logged on)
when the messages were sent, or
messages from a subtask other than the
user's, or messages sent after one
message had already been queued in
storage for the user.

4. Broadcast Message File -
CRJE. SYSLIB (BRDCST) • This file
contains messages from the centra.l
operator that are of general interest
to all system users.

5. Remote Job Control Tables -
CRJE.SYSLIB(JBTBLS). This file
contains status information for all
active jobs currently in the CRJE
system.

These five members of the system library
are copied into the global files of the
active area at start-up/initialization
time. They make up the global files in the
following order:

Global File #1 - SYSMSGS
Global File #2 - USERS
Global File #3 - USRMSGS
Global File #4 - BRDCST
Global File #5 - JBTBLS.

Global files #6, #7, and #8 are utility
files that are dormant. When needed, they
are created by the AFIO macro CREATE and
are released by the AFIO macro RELEASE when
their function is completed.

Global file #6 is used by the CRJE
library condense module (IHKCDP). Global
file #7 is used by the MERGE subcommand
processor. Global file #8 is used by the
RENUMBER subcommand processor.

The format for the 80-byte records in
the system message file is as follows:

Introduction 17

For the central installation messages:

018
r-------T~------------,---,
IIHKdddII~IText of messagel L _______ ~_~ _______________ J

13 15
r------------------T----------,
IOffset for inserts I Descriptor I L __________________ ~ __________ J

71
r-------------,
IRouting Codes I L _____________ J

where ddd is the sequence number of the
message.

For the terminal user messages:

o 6 8 13
r------T--T---------------T----------,
IIHKdddl~blText of messageloffset fori
I I I I inserts I L ______ ~ __ ~ _______________ ~ __________ J

15 71
r----------T-------------,
I Descriptor I Routing Codes I L __________ ~ _____________ J

where ddd is the sequence number of the
message.

Each entry in the user verification file
is 88 bytes in the sy'stem library and tlO
bytes plus an eight-byte key in the global
file. This user verification file is
discussed in detail in Data Area Layouts.

The user message file has the same
format as the system message file except
that the "offset for inserts" field is
blanks, and there are no routing codes or
descriptor codes. The key is the userid
plus the sequence number, which is in the
last 8 bytes of the record in the system
library.

The broadcast message file has the
following format:

o 8 49

r----------~--'·---------~--------,
IMSG NUMBERIMESSAGE TEXT I NOT USED I L __________ ~ ____________ ~ ________ J

Bytes 0-1 - contain the message number,
which is in the form, BRD5nnnn,
where nnnn can be 0-9999.

An installation-defined number of broadcast
messages, with a maximum of 100, is
maintained in this member. The large
numbering scheme (0-9999) allows for the

18

ordering of messages with a sufficient
increment between numbers to facilitate
adding messages anywhere within the file.
Messages ~re inserted, replaced, and
deleted within the active area.

The remote job control table (RJCT has
the format that was previously discussed in
the section on control blocks. Detailed
information about each field is contained
in the Data Area Layouts section.

USER LIBRARY

The user libraries are partitioned data
sets with a name of CRJE.LIB.userid. A
library must be allocated for each
potential active user who plans to maintain
permanent libraries. The user libraries
must be allocated before the start-up of
CRJE.

The size of the library depends on the
estimated number of data sets that will be
stored at anyone time and on the size of
thE: data sets.

User library directory entries are of
variable length depending upon how they are
created. The entries that are created by
CRJE are 40 bytes; those created by CRBE
are 30 bytes; and those created by utility
programs are 12 bytes. Each one has a
different format.

The EDIT command processor is the only
command processor that recognizes all three
types of data sets. The IHKED1 module
checks the length of the directory entry;
if it is not a CRJE or CRBE entry, the
directory entry is created using the
information given on the EDIT command and
the default operands. If the entry was
created by CRBE, it is expanded using the
information already in the entry and the
information in the EDIT command.

The formats of the three types of
directory entries are discussed in section
5, Data Area Layouts.

INPUT/OUTPUT FLOW

INPUT

Input to the CRJE system from the
terminal exists in two forms: commands and
data. The user enters input in one of
three modes: command mode, edit mode, and
input mode. Data or the type of commands
entered determines the mode in which the

user operates. Data is entered as lines of
text in input mode to create a data set.
~his data set might be saved in the user
library and used later as job input.

In command mode the user can enter any
command, but not subcommands. The user is
in command mode as soon as he logs on, and
he stays in command mode unless he enters
an EDIT command, after he enters an END
subcommand in edit mode, or until he logs
off.

The user enters edit mode when he issues
an EDIT command that initiates updating
operations on an existing data set. In
edit mode the user can enter EDIT
subcommands to delete, replace, and add
lines to an old data set. A null line or
an INPUT subcommand puts the user in input
mode. From edit mode the user returns to
command mode by entering an END subcommand.
The user's active file is deleted when an
END subcommand is entered, and EDIT
subcommands are no longer accepted.

. The user enters input mode from command
mode by issuing an EDIT command that
initiates the creation of a new data set in
his active file. Input mode is entered
from edit mode by issuing an INPUT
subcommand or a null line. A data set is
created in input mode by entering one line
at a time. The user cannot go from input
mode directly to command mode. A null line
must be entered to go to edit mode~ then an
END subcommand puts the user in command
·mode.

Job input can be the data set being
created by the user in his active file.
Data sets that have been created by the
user and then saved in his user library can
also be job input. The input for one job
can be a combination of the user's data
sets stored in his library, his active
file, and data sets stored in another user
library. Whether input is a data set in
the user's active file or a data set that
the user has saved in his library, the data
was initially created by the user or by
another CRJE user. If another user's data
set is included and is protected, the key
must be provided before use of the data set
is permitted.

Data is entered into the user's active
file in input mode. The user can specify
that line numbers be displayed at his
terminal as a prompt for a line of input.

Whether the user receives the line-number
prompts or not, the line numbers are still
maintained in his active file. Input lines
must be 80 characters unless line numbers
are kept in the last S characters of the
line, in which case 72 characters is the
maximum. Input lines of more, than 80
characters (or 72 if line numbers are
specified) are ·truncated, and input lines
of less than 80 characters (or 72 if line
numbers are specified) are padded with
blanks.

Note: When a user attempts to save input
lines in an 80-character instead of an
SS-character record user library, the input
lines should not exceed 72 characte·rs. If
they do, the data in pOSitions 73-80 is
truncated, and a warning message is sent to
the user.

OUTPUT

Output that can be received at a
terminal is divided into two categories:
data and messages. Data output can be the
contents of a specific CRJE or OS data set,
or it can be output of a submitted job •
The terminal user must request data output.
Besides messages from the central operator
and messages from other users, there are
other kinds of CRJE terminal user messages:
error messages, information messages, and
syntax checker messages.

The central operator can send messages
to terminal users by the central command
MSG. If the terminal user is not active,
the central operator can request that the
message be queued for later delivery, and
the user will receive the message when he
logs on. The central operator also creates
and maintains the broadcast messages.
These are messages that contain information
of general interest to all users. The
broadcast messages are sent if requested to
each user when he initiates his session.
The. user may request the broadcast messages
any time during his session by entering the
LISTBC command.

Terminal users can send messages to
other users by the SEND command. If the
user is not active at the time the message
is sent, it can be queued for later
delivery. The message then becomes a
delayed message and the user receives it
when he logs on. These messages are not
queued for later delivery unless the user
sending the message designates them as
such.

Introduction 19

Most:. of the CRJE terminal user messages
are dependent upon the input from the
terminal. A message response to a command
usually ind:i,.cates an error in the command
or an unexpected situation. Nonexistent
information might be specified in the
command, or the command might have a syntax
error. An out-of-space condition or a data
set that could not be found are examples of
such unexpected situations. A message
response to a command might be information.
Commands such as STATUS, LISTLIB, and
LISTDS request information about jobs and
data sets. This information is given to
the user in the form of messages. Messages
that are sent to a user in response to a
command.entered are usually delivered to
the terminal immediately following the
command.

The only messages that are sent to the
user in response to data entered are line
number prompts, syntax checker error
messages, and messages indicating
unexpected situations such as out-of-space
messages.

When conversationally submitted jobs
terminate, and when the CRJE system closes
down, notification messages are sent to
user. Since these messages are not related
to input entered at the terminal, they may
be sent.at: any time. They will be printed
at the terminal "before a command is
entered. The CRJE closedown message is
printed immediately, regardless of what
mode the user is in.

20

Data

By use of the OUTPUT command the user
may request data output of a job he
submitted conversationally to OS. Once the
output of a conversationally submitted job
is returned in full to the user, the data
set is scratched. Thus, there is only one
copy of output available.

The LlST subcommand lets the user get a
copy of the contents of his active file.
Since the data set in his active file is
only scratched when an END subcommand is
entered, the contents of the user's active
file can be listed as many times as
desired. Data sets are listed at the
terminal one logical record per line or in
80-character lines. A line of an as data
set, with a maximum of 120 characters, is
printed as one line.

The terminal user can discontinue the
transmission of SYSQUT output data at his
terminal. How he discontinues the output
depends upon his particular terminal. When
output requested by the OUTPUT command is
discontinued, the data set is not
scratched. The user can receive the
remaining output by entering the CONTINUE
command. If data output requested by a
LIST subcommand is discontinued, the only
way the user can get the remaining output
is by entering another LIST subcommand.

CRJE GENERATION AND ASSEMBLY

The CRJE facility is incorporated into
the operating system in the following
manner: by copying the resident CRJE
modules and BTAM modules from the component
libraries into the telecommunications
library (TELCMLIB), by copying the
nonresident CRJE modules into the link
library (LINKLIB), and by copying the
initialization module IHKINT into the
telecommunications library (TELCMLIB). The
MACLIB must be specified since it contains
the CRJE assembly macros, and the PROCLIB
must be included because it contains the
START procedure for CRJE~ the assembl.er and
the linkage editor must also be included.
All of the facilities to support CRJE are
specified with macros at the generation of
the operating system.

After an operating system has been
generated with the features required for
CRJE, the CRJE system must be defined and
generated. Generating the CRJE system
involves the assembly of CRJE macros~ the
assembly of any installation exit routines~
the creation of the CRJE load module~ the
allocation and initialization of CRJE data
sets~ and the provision of a procedure for
the execution of CRJE and a procedure for
the reader. This generating process is
discussed in detail in IB~ System/360
Qperating_System: CRJE System Progr!!!!m~~
Guide, GC30-2016.

Each installation is allowed to define
its system configuration by three assembly
macros residing on SYS1.MACLIB: CRJELINE,
CRJETABL, and CRJEUSER. The operands of
the macros provide the installat.ion with
the opportunity of specifying information
about the system configuration as well as
specifying system options.

The object module IHKMAC is produced
when the CRJELINE macro and CRJETABL macro
are assembled. This object module contains
the CCT for the system and the CLB, STCB,
DCB, and DECB for each line~ the module
resides on SYS1.TELCMLIB. The IHKMAC
module is linkage edited with the
installation exit routines, the AVT, and
the preassembled resident CRJE modules.
The output of this linkage edit forms the
CRJE load module, IHKBGN.

CRJELINE

The CRJELINE macro describes the
communications network supported by the
CRJE system. For each communications line
one macro must be assembled. For each
line, a macro generates the following
control blocks according to the operands
specified on the macro:

• A BTAM DCB for each line group and a
DECB for each line. (These are used in
reading from and writing to the line.)

• A conversational line block (CLB).

• A DDNAME of the data set that will be
used for writing a submitted job stream
to disk.

• A subtask control block (STCB).

• An event control block (ECB) entry in
the CRJE dispatcher's ECB list.

• An ECB entry in the ECB list of the
utility task and an entry in the list
of the loader/controller task.

CRJETABL

The CRJETABL macro specifies all
installation-wide options selected for a
particular system, such as the maximum
number of broadcast messages, the maximum
number of 4elayed messages, the maximum
number of CRJE-submitted jobs that can
reside in the CRJE system at one time, the
number of central commands that can be
queued and waiting to be processed at any
one time, the installation exit routines,
and the installation-provided commands and
subcommands.

The maximum number of CRJE-submitted
jobs that may reside concurrently in the
CRJE system is equal to the number of
records allowed in the remote job control
table (RJCT) of the system library. The
CRJE control table (CCT) is generated
according to the operands specified. If
the exit routines exist and are specified,
the entry pOint addresses of the JCL exit
routine, the LOGON exit routine, and the
LOGOFF exit routine are put in the AVT.

Method of operation 21

CIJE
Assembly
MACROS

I. CRJELINE--one
for each line in
the system.

A

II. CRJETABL--one
for entire
system.

A M L R

III. CRJEUSER--one
for system, giving
userid and password
for all potential
users.

A SEMBl R

Figure 3.

22

IHKMAC (object module)

{ ~TC8

~=:J
• ,.
•

CSTCS

• • ..

IHKSlKS

DCB)

• ..

C""'DCB :]

[--STAM '
DFTRMlST

[~:I~SLATE CCC-;~
b~====::::;:;:"'----,-,
IHKUSR (object module)

[~~~RY [~~~~;; ~]

OVR J trrtry ~ [:D _,_Entry

Defining the CRJE System

[

LERB

LERB

• • •
LERB

UVR
Entry

• • •
U\lR
Entry

}"".
Assembled User
Exit Routines:
LOGON
LOGOFF
JOBCARD
USER Commonds •

CRJEUSER'

The CRJEUSER macro specifies the userid
and password for all potential users. This
macro generates one record in the
CRJE.SYSLIB(USERS) member of the system
library for each potential user. When a
user logs on, his userid and password are
checked for validity against the userids
and passwords in the USERS global file.

The assembly of the CRJEUSER macro
produces the object module' IHKUSR, which
resides on SYS1.TELCMLIB. 'This module
contains a user verification record (UVR)
for each potential active user. The IHKUSR
module is linkage edited with the IHKINI
module and IHKSMG module, which have been
preassembled and placed on SYS1.TELCMLIB.
The IHKINI module is the system library
initialization module and the IHKSMG module
contains all system messages. When these
modules are linkage edited, the output
forms the initialization module IHKINT,
which resides on SYS1.LINKLIB. This
initialization routine must be executed
before the first start-up of CRJE.

Figure 3 (DEFINING THE CRJE SYSTEM)
illustrates the assembled macros, the
generated control blocks, and the linkage
edit steps. '

INITIALIZATION AND START-UP

I NITIALI ZATION

The initialization of CRJE begins before
the start-up of the system. The CRJE
system library initialization routine
IHKINI is a CRJE utility program that must
be executed before the first start-up of
CRJE. This routine resides on SYS1.LINKLIB
as the load module IHKINT with the entry
point IHKINI. The load module consists of
the CRJE system messages (IHKSMG), the list
of users and passwords (IHKUSR), and the
system initialization" routine CIHKINI).

The initialization routine opens the
system library and writes the system
messages. The user entries, if any, are
written in the system library and the
directory entries are stored by the STOW
macro. The remaining system library
directory entries (user messages, broadcast
messages, and job tables) are also stored.
The CRJE system library is then closed and
control is returned to the operating
system.

If any I/O errors are encountered in
this initialization, a message is sent to

the central operator and processing
discontinues.

START-UP

When the START command for CRJE is
entered at the central console, the command
scheduling routine of OS (SVC 34) gives
control to the START command processor
(IHKBGN) •

Chart A illustrates the function of CRJE
start-up and initialization, beginning at
the time the START command is entered at
the central console.

The START command processor issues an
ENQ macro to be sure that CRJE is not
already an active task in the operating
system. If CRJE is not already an active
task, the CRJE initialization routine
(IHKCIP) inspects the parameters on the
START command and performs the
initialization of CRJE.

If the parameters on the START command
are valid, an ATTACH macro is issued for
the loader/controller task (IHKLDC) and for
the utility task (IHKSRV). A LOAD macro is
issued for the OS routines IEFQMDQ2,
IEFQDELE, and IEFQMSSS.

As illustrated in Chart A,
initialization depends upon the parameters
specified on the START command. The
process of initializing the active area
depends upon whether the NORM or ABNO
parameter is on the START command. NORM
indicates a normal start-up. This means
the previous closedown was normal and the
copy of the system library in the global
files was saved in CRJE.SYSLIB and all
active files were saved in user libraries.
In this case all that has to be done is
initialize the active area and copy the
members of CRJE.SYSLIB into the global
files of the active area.

ABNO means the last closedown of CRJE
was an abnormal closedown and the active
area contains active, files and system
information that has not been saved.
Therefore, this informa·tion must be saved
and the system library updated and
rewritten.

There are four modules that perform
initialization on the active area: active
area start-up/initialization module,
(IHKAST), active area recovery module
(IHKAWS), library I/O shutdown module
(IHKBSH), and library i/o start-up module
(IHKBST). The following diagram
illustrates how the modules work together
to perform the complete active area

Method of Operation 23

initialization under normal or abnormal
condl tions.

IHKAST

Initialize
Active
Area

IHKCIP

Norm ABNO
Or Abnorm
Start~up ?

NORM

IHKAWS

Save Active
Files in
User
Libraries.

IHKBSH

Save Global
Files in
CRJE System
Library

IHKBST

Copy System
Library into
Global Files.

IHKCIP

By use of the DEVTYPE macro, the IHKAST
module checks to be sure that the device to
which the active area data set has been
assigned is a 2311, 2314, or 2319. The
active area DCB is op~ned and the DEB is
checked to be sure that no more than one
extent has been allocated to the active
area. A GETMAIN macro is issued for the
track allocator table (TAT); and the table
is initialized to show all of the tracks in
the active area are available for
allocation. Several fields in the KONBOX
are initialized: such as number of heads
per cylinder, maximum track length, block
overhead, tolerance factor, track address
of master index, length of master index,
and mean cylinder number. The IHKAFI

24

module and the IHKEXC module of AFIO uses
these fields during the active file track
allocation, deallocation, and master index
track initialization.

If the start-up is abnormal, the IHKAWS
module attempts to save the ac.tive files
that existed at the time of the abnormal
closedo'wn. This operation depends upon
gaining access to the acti ve.area.

The USERS global file is used to
determine which users had an active file at
the time of closedown. For users with an
active file at clo~edown, the AFIO work
area in the TUB is reinltialized with
information from the user's active file
entry in the master index track and from
the user's own file index track. His user
library is opened and a library I/O macro
is used to paint to the beginning of the
user's active file. The user's active file
is saved in his user library under the
member name of ACTIVE. This processing is
done for each user having an active file at
the time.of the last closedown.

The library I/O shutdown module (IHKBSH)
saves the global files of the active area
into the system library CRJE.SYSLIB.
Librarian macros are used in the copy
process. If the operation is terminated
because of an error, the central operator
is notified of the situation.

If the start-up is normal or if the
start-up is abnormal, after recovery, the
library I/O start-up module (IHKBST) copies
the members of CRJE.SYSLIB into the global
files. This module also searches the
direct-access devices ~hat contain user
libraries. When a user library with the
name CRJE.LIB.userid is found, the userid
is checked for validity; and if valid, the
DDNAME for the volume on which the library
resides is put in the last eight bytes of
that user's entry in the USERS global file.

The CRJE initialization module <IHKCIP)
performs RJCT initialization according to
the type of start-up--FORM, NFMT, or NONE.
A START RDRCRJE command is issued for each
job submission data set built by the SUBMIT
processor and not processed by the OS
reader. The remote job control table
(RJCT) entries are inspected. All jobs not
marked complete and not on SYS1.SYSJOBQE
are deleted from CRJE and a message is
queued for the. user. To delete a job from
CRJE means to delete the RJCT entry for
that job and remove all references from
SYS1.SYSJOBQE.

If the start-up specified is FORM, all
RJCT entries are deleted. In this case
there is nothing on SYS1.SYSJOBQE
(reformatted at IPL); therefore, the RJCT
entries are deleted for jobs marked

complete. If the start-up specified is
NFMT (SYS1.SYSJOBQE not reformatted at
IPL), all jobs marked complete are changed
to not complete because all the pointers in
the RJCT entries are incorrect. When the
pointers are corrected, the jobs are marked
complete again. If the start-up specified
is NONE (no IPL since last start-up), an
lOB (Input/Output Block) is built for each
job marked complete.

An OPEN macro is issued for each line
having a DD card. A X, 40' is post.ed in the
dummy ECB in the STCB for the lines
successfully opened. A X'40' is posted in
the stop acknowledgment ECB in the CLB for
the lines not opened successfully.

The loader/controller now fills the
transient area with nonresident modules.
If the syntax checkers are specified, they
are loaded and are given a chance to
initialize their areas. A delete request
is made for each module that was brought
into the transient area by the
loader/controller. This is done to reduce
the request count to zero but physically
leave the modules in the transient area.

The address of the communications ECB is
put in the dispatcher's ECB list as the
entry for the central commands. A message
is sent to the central operator informing
him that CRJE is now active.

After all initialization has been
completed, the job termination handling
routine (IHKSDQ) is given control to start
processing on the lines. But, before any
actual processing is done, the job end
processor checks to see if any CRJE. jobs
have completed, and if so, dequeues the job
from OS and queues a message for the user
who submitted the job.

If a job is found on the output queue, a
search is made for the RJCT entry for that
job. If the RJCT entry is not found, the
job is deleted because it is not a CRJE
job.

If the RJCT entry is found for the job
that is on the output queue, if the Os
queue manager dequeue routine reads an 5MB
(System Message Block), and if the job is
already marked complete, the job is deleted
because it is a duplicate. If it is not
marked complete, the job end processor
marks it complete, queues a notification
message for the user, and updates the RJCT
entry for the job.

At this point the job termination
handling routine attempts to retrieve the
next job on the output queue. If there are
no jobs to dequeue, the job termination
handling routine waits for the ECB given to
the OS queue manager by the IHKDEQ module.

COntrol is returned to the point where the
IHKDEQ module is invoked.

CRJE is now ready to perform processing
on the communications lines.

SESSION MANAGEMENT

A session is the period of time that a
user is active at a terminal. A user's
session is initiated by a LOGON command,
but may be terminated in anyone of three
ways. If he enters a LOGOFF command the
session is terminated. If another user
enters a LOGON command at the terminal
before the first user enters a LOGOFF
command, he is logged off automatically.
An irrecoverable line error or closedown at
the central installation causes automatic
termination of a user's session.

Chart B illustrates the functional
process of session management.

INITIATION

A command and its operands are put in
the line buffer when entered at the
terminal. The line administrator
translates the text to EBCDIC and removes
all line control characters and backspace
characters. The system administrator
examines the command. If it is invalid, it
is rejected and an error message is sent to
the user. Otherwise, a PPT(Parameter
Position Table) is allocated and the
parameters specified on the command are put
in the PPT along with a code specifying the
command.

If the command entered was a LOGON
command, the system administrator checks
the TUB to see if the previous terminal
user was logged off. If the previous user
was not logged off, the command analyzer
issues a request for the loader/controller
to .load the LOGOFF processor. Control is
then passed to the LOGOFF processor to log
off the old user, but the PPT still
contains the LOGON command code and
parameters. The LOGOFF processor performs
the LOGOFF functions and then checks the
suppress bit in the CCT. If the bit is on,
meaning that no more users can be logged
on, the LOGON suppressed message is sent to
the terminal, and the LOGOFF processor then
returns to the command analyzer with a
return code of 0 to indicate no LOGON is to
be performed. If the suppress bit is not
on, the LOGOl'F processor returns to the
command analyzer with the negative value of
the LOGON command in register 15. The

Method of operation 25

command analyzer then requests the loading
of the LOGON processor.

If the previous user was logged off
(meaning that no automatic LOGOFF is to be
performed). the system administrator checks
the suppress bit in the CCT. If the
suppress bit is on, this means that the
central operator has requested that no more
users be allowed to log on. So ,the LOGON
command is refused and the user is
notified. If the suppress bit is not on,
the loader/controller is requested to load
the LOGON p:r·ocessor.

The operands of the command are checked
and the TUBBRD (broadcast messages
requested) and TUBMID (message IDs
requested) switches in the TUB are set
depending upon the operands specified on
the cormnand. The user verification file
manager (IHKUTM) is called to verify the
userid and password. If no userid was
entered or if the userid is not found or is
already in use, then the user is prompted
for a userid that is not in use. The user
is prompt.ed only once for a useriq. If. a
correct one is not entered, he is notified
that his LOGON is not accepted.

The IHKUTM module turns ,on the activ,e
bit in the user's verification record WVR)
in the global files. The password entered
on the LOGON command is compared with the
password in the user verification record.
If they are not the same or if no password
was specified on the LOGON command, the
user is prompted for a password. Again the
user is prompted only once. If the correct
password is not specified, the LOGON
command is not accepted and the us.er is
notified.

If a LOGON user. exit is provided, then.
the parameter list is set up to pass
control to the exit. The first word Of the
parameter list points to the userid in the
TUBUSRID field of the TUB. The second word
points to the accounting information, or to
a one-byte area containing X'FF' if no
accounting information is given. Register
1 pOints to the parameter list, and the
exit routine is then given control,. If the
return code from the exit routine is 4, the
user is not allowed on the system. In this
case a message is sent to the user, the
active bit in 'the UVR is turned off, and a
delete request is issued to h,ave the.
loader/controller delete the LOGON
processor from the transient area. If the
return code is zero, the TIME macro is
issued to get the LOGON time and it is .
stored in the TUB. The message writer then
sends a LOGON message.

The IHKLGN module checks the CCT.to find
out if ,a SHOW SESSION for all LOGONs has
been requested. If not, the UVRis checked

26

to determine if a show ses£don has been
requested for this particular user. In
either case,' a message is sent to the
central operator indicating the session.

The user is now successfully logged on
and his userid is put in the TUB. Control
is returned to the command analyzer, and a
deletion request is issued for the LOGON
processor.

TERMINATION

There are three possible reasons for the
termination of 'a user's session: an error
condition (active area I/O error, line
error, orsubtask abend), a LOGOFF command
from the the terminal user, or a LOGON
command from t.erminal User before the
previous user issued a LOGOFF command.
Normal termination of the CRJE system (STOP
central command) causes the system
administrator to issue a LOGOFF command for
each active user. This LOGOFF command is
handled in the same way asa'LOGOFF command
from a terminal. The reason for the
termination of the session affects certain
procedures in the LOGOFF process. If the
reason for the LOGOFF is ail active area I/O
error, the TUBUTMN flag in the TUB is set.
This means that no calls can be made to the
IHKUTM routine, no show session messages
can be sent to the central operator, and no
LOGOFF message can be-sent to the terminal
user. OtherWise, processing is the same.
If the reason for the LOGOFF is a line
error; the TUBABEND flag in the TUB is set.
The only change in the LOGOFF process in
this case is -that no messages can ,be sent
to the terminal User. If the LOGOFF is
automatic because of another user logging
on, the only change in the process is t.hat
the LOGONs suppress bit in the CCT is
checked before returning to the command
analyzer.

The LOGOFF processor first gets the
LOGOFF time by issuing the TIME macro. If
an active area I/O error is not the cause
of the LOGOFF, the IHKLGF 'module calls the
IHKUTMmodule to ,verify the userid, to turn
off.the active bit in the UVR, and if
abnormal termination is the cause of the
LOGOFF· <which was found by checking the
ABEND bit in the TUB), t,o turn on the
abnormal termination bit in the UVR. The
show session bit in the CCT is checked and,
if it is cn, the message writer is
requested to send the SHOW SESSION message
to the central operator. If this bit is
not on, the show session bit in the UV:R is
checked and if on; the SHOW SESSION message
is sent to the central operator. The
session time is calculated using the LOGON
time, which is stored in the TUBTIME field

of the TUB, and the LOGOFF time. If
abnormal termination is not the cause of
the LOGOFF, the message writer sends the
LOGOFF message to the user indicating
LOGOFF time and total session time.

The parameter list is built for the
LOGOFF exit, if one exists. The first word
pOints to the TUBUSRID field in the TUB,
which contains the userid. The second word
points to a field containing the type of
terminal at which the user was logged on.
The third word points to a field containing
the LOGON time, LOGOFF time, and session
time. There are no return codes from the
LOGOFF exit routine to be checked.

If .ain storage has been allocated for
the IBKTAB module, it is now freed. The
PPT is checked to see if this is an
automatic LOGOFF caused by another LOGON.
If it is, the command code in the PPT is
that of the LOGON command. In this case
the suppress bit in the CCT is checked: if
it is on, the LOGONs suppressed message is
sent to the terminal user, and control is
returned to the command analyzer. If it is
not on, the negative code for the LOGON
command is put in register 15 and the TUB
is initialized to zero except for the first
60 bytes. If the LOGOFF was automatic
because of another LOGON, the command
analyzer issues a delete request to the
loader/controller for the LOGOFF processor
and a load request for the LOGON processor.

. Processing then continues in the LOGON
processor as described in the section on
initiation.

DATA MANAGEMENT

Data management is divided into two
areas. One area is the management of an
active file in its entirety. This involves
assigning space in the active area to a
user and getting the data set into this
space. The active file may contain an OS
data set: it may contain a user's CRJE data
set from his library; or it may contain a
new data set the user creates. Managing
the active file in its entirety also
involves transferring it from the user's
space in the active area to his user
library, to OS for processing, to the user
at his terminal, or deleting it altogether.
Figure 4 illustrates these ways of getting
a data set into the active area.

The second area of data management is
manipulating the active file line by line
or by groups of lines. This type of data
management is discussed as the update
function, which involves changing,
deleting, or inserting lines or groups of
lines or changing line numbers. The scan

function is considered line-by-line data
management.

LIST
EDIT NEW
Implicit
INPUT

Figure 4. CRJE Data Management: Active
File

CREATE FUNCTION

By entering an EDIT command with the NEW
operand specified, the user indicates that
he wants to create an active file. The
command and its operands are put in a PPT
by the command analyzer. Then the command
analyzer branches to the command processor,
which in this case is the IHKEDT module.
The IHKEDT module checks the operands; if
any operand is invalid, a message is sent
to the user and control is returned to the
command analyzer. If the dsname is valid,
the IHKIRL module is entered to process the
lines entered from the terminal. (See
Chart C.)

A GETMAIN macro is issued and a
directory entry is created. The address of

Method of operation 27

the GETMAIN area is put in the TUBDIRAD
field. A CREATE macro is then issued to
allocate space for an active file. The
message writer prompts the user with a line
number. His reply is a line of text that
is put in his active file. The IHKAFI
module is used to insert the lines of text
into the user's active file. (This module
is discussed in detail in the Librarian
part of the Program Organization section of
this publication.)

COpy FUNCTION

The copy function of data management
withinCRJE involves getting information
into the active area space that is
allocated to a user. The user issues an
EDIT conunand with the OLD operand specified
and the data set name. The data set can be
a CRJE data set residing in a user library
or an OS data set. (See Chart C.)

After the data set is copied into the
space in the active area assigned to a
user, it is referred to as his active file.

OS Data Set

The IHKEDT processor gets control with
the command and its operands in a PPT. The
operands are checked for validity. If any
operand is invalid, a message is queued for
the user and control is returned to the
command analyzer. Otherwise, control is
passed to the IHKEOS module, which calls
the IHKIRL module to allocate space in the
active area for an active file.

The IHKEOS routine, using the ATTACH
macro, attaches the IHKOPN module, which
issues a LOCATE macro and an OBTAIN macro
to get the DSCB (Data Set Control Block).
The DCB is set up in a GETMAIN area. The
IHKOPN module then re'curns control to the
IHKEOS routine. The IHKEOS module issues a
GETMAIN macro for a read buffer, the size
of which depends upon the blocksize of the
data set to be read; then the data set is
opened. The way in which the records are
put in the buffer depends upon the record
size and whether the records are fixed,
fixed blocked, variable, or variable
blocked. As the lines are built they are
assigned line numbers using the default for
starting line number and increment. When a
block of ten lines is moved into the
buffer, an AFIO macro is issued to insert
the lines in the active file. This is
continued until the entire data set is read
and inserted into the active file. The
IHKOPN module is then detached.

28

The command processor (IHKEDT) receives
control with the command and operands in a
PPT. The operands are checked for
validity. If any operand is invalid, a
message is queued for the user and control
is returned to the calling routine.

The CREATE macro is issued by the IHKEDl
module to allocate space for an active
file. The user verification file manager
(IHKUTM) is called to verify the userid as
the owner of the data set, to put the
ddname of the library DD card into the
KONBOX. and to queue the subtask for
library I/O in order to access the user
library. After this is done the CRJE data
set is opened and the directory entry is
made available.

The directory entry is inspected to see
if it conforms to the CRJE format. If it
does, changes are made in the directory
entry according to the operands specified
on the EDIT command, and the count of the
number of times it was read is updated. If
the directory entry does not conform to the
CRJE format, it is expanded using the
information already in the entry, the
information in the operands of the EDIT
command, and the EDIT default options.

When XiS are found in the key field
while reading the data set, the keys are
sequenced. The default starting line
number and default increment are used.
When neither XIS nor numerics are found in
the key field, the key is set to 0 and a
message is queued for the user. A library
I/O macro is issued to read a block of
records. An AFIO macro is issued to insert
the records into the active file. This is
continued until the complete data set is
read and put into the active file. The
IHKBPM module performs the reading of the
CRJE data set, and the IHKAFI module
initiates the function of inserting the
lines in the active file.

UPDATE FUNCTION

The EDIT command initiates updating
operations by getting a data set into the
user's space in the active area. The
second area of data management, which is
done line-by-line, is requested by the EDIT
subcommands. The functions that can be
performed line-by-line are:

Insert lines
iReplace lines
Delete lines
Replace character strings within lines

Combine a data set with the active
file or copy lines from one place to
another in the active file

Reassign line numbers to the lines
Request a syntax analysis of PLII or

FORTRAN source language statements
Indicate tab settings while entering

lines

After the EDIT command is entered, only
EDIT subcommands are accepted until an END
subcommand is entered.

Entering Lines

Lines are entered into the active file
by the Implicit subcommand or the INPUT
subcommand. When the INPUT subcommand is
entered, the INPUT processor (IKKIPT) gets
control from the command analyzer, with the
subcommand and its operands in a PPT. The
numeric verification module (IHKNUM) checks
the first two operands to see if they are
all numeric. The INPUT subcommand
processor saves the line number and
increment in the PPT, and a switch is set
depending upon whether R(eplace) or
I(nsert) was specified. If the PROMPT
operand was specified, the TUBLNPMT switch
is set. If any errors are found in
checking the operands, an error message is
queued for the user, and control is
returned to the command analyzer.

If no numeric operands are specified,
the Implicit subcommand processor (entry
point: IHKIRL01) inserts the lines of text
at the end of the active file and uses the
same increment as the other line numbers in
the active file.

Otherwise an AFIO macro is issued to
find the point in the active file at which
the lines are to be inserted. If I was
specified, the macro is for the specific
line. If that line number already exists,
an error message is queued for the user,
and control is returned to the command
analyzer. Otherwise the pointer is to the
next lower line number. The Implicit
subcommand processor (IHKIRL) prompts the
user with a line number. The user responds
with a line of text. An AFIO macro is then
issued and the IHKAFI module·of AFIO
initiates the process of inserting the line
into the active file. The user is then
prompted with another line number. This is
repeated until the user enters a null line
or until the line number to be inserted is
greater than the next line number in the
active file.

If the R operand was specified, the AFIO
macro is for the specific line number. If
the line number does not exist, an error

message is queued for the user and control
is returned. otherwise the Implicit
subcommand proc~ssor (IHKIRL) prompts the
user with the line number. The user
responds with a line of text. An AFIO
macro is issued to put this line of text in
the active file. This process is repeated
until a null line is entered or the end of
the data set is reached. If a line number
does not exist, the user is notified.

If neither the R nor the·I operand is
specified, the AFIO macro is issued for the
specific line number. If the specific line
number does not exist, the macro is for the
next lower line number.

When the Implicit subcommand is entered,
the IHKIRL module inserts or replaces the
lines in the active file or deletes the
line. An AFIO macro is issued for the. line
number. If the line already exists in the
active file, another macro is issued and
the line of text typed at the terminal
overlays the old line already in the file.
If the line does not exist, a macro is
issued and the line of text is inserted
after the next lower line number.

Deleting Lines

If there is no text in the Implicit
subcommand, a macro is issued by the IHKIRL
module to delete the line from the file.
If the line does not exist, an error
message is queued for the user. In either
case control is returned to the command
analyzer.

When the DELETE subcommand is entered,
the numeric verification module (IHKNUM)
checks that the operands (if any were
specified) are all numeric. If one line
number is specified, a macro is issued to
delete the line from the active file. If
the line does not exist in the active file,
an error message is queued for the user,
and control is returned to the system
administrator. If no operands are
specified on the subcommand, the last line
in the active file is deleted. If two line
numbers are specified on the subcommand,
all of the lines in the active file with
line numbers greater than or equal to the
first line number specified and less than
or equal to the second line number
specified, are deleted.

The complete process of entering and
. deleting lines in the active file is

illustrated in Chart D.

Method of Operation 29

Changing Lines

The CHANGE subcommand is used to change
cbaracter strings within a line. This
subcommand is used when correcting
statements having a syntax checker error.
In this case the TUBCORRN switch must be
set, and the line numbers specified on the
subcommand must be within the range
specified in the TUBIRLSA field. If they
are not, an error message is queued for the
user.

The system administrator puts the
subcommand code with the operands in a PPT
and passes control to the CHANGE subcommand
processor (IHKCGN).

The IHKCGN module checks the operands
specified. The IHKNUM module verifies that
the line numbers given are all numerics.
If any errors are found, an error message
is queued for the user and control is
returned to the command analyzer. If more
than one line is specified, the first line
is read into the AFIO buffer. The IHKCCS
module scans the line for a character
string that matches textl. When a match is
found, the first part of the line is put in
the work area. Text2 is then put into the
work area. The remainder of the line after
textl (as it is in the AFIO buffer) is put
in the work area. The entire line is then
put back in the AFIO buffer. ' If ALL is
specified in the subcommand, the complete
process is repeated until the end of the
line is reached.

The line always exists in the AFIO
buffer as it appeared after the previous
scan. This is to insure that the line will
be correctly updated,when the ALL operand
is specified.

If text2 is shorter than textl, the line
is condensed and padded with blanks. If
text2 is longer than textl, the line is
expanded and text2 is inserted. If the
line exceeds the maximum length after text2
is inserted, the line is truncated and an
error message is queued for the user.

When the complete line is scanned, an
AFIO macro puts the line back in the active
file. If two line numbers are specified,
the next line is read and the process is
repeated until the last specified line is
reached or EOD is detected. Control is
then returned to the command analyzer.

If only one line number is specified,
the same process is done for that one line.
If the line does not exist or if there is
no match on textl within the line or lines
scanned. an error message is queued for the­
user and control is returned to the IHKCMD

30

module. (The change process is illustrated
in Chart E.)

The MERGE subcqmmand is used to insert
lines from a user'S data set into the
active file or to insert lines that are in
the active file to another place in the
active file. A complete data set 'may be
inserted or just the lines specified. The
lines may be inserted at the end of the
active file or after a specified line
within the active file.

The system administrator passes control
to the IHKMGE prncessor with the subcommand
code and the subc:>rnmand operands in a PPT.
The operands are checked for validity. The
IHKNUM module checks the line number
operands for all numerics. If any errors
are found, a message is queued for the user
and control is returned to the system
administrator.

If one or three line number operands are
specified, a utility file is created and
all the lines in the active file are read
and written into the utility file. The
active file is then released and a new one
created. The IHKAFI module initiates the
manipulation of lines in the active file
when AFIO macros are issued.

If the single asterisk (*) is specified
on the subcommand4 control is passed to the
IHKMAA module to process a merger of the
active file into the active file. If a
utility file exists, all the lines of the
utility file, up to and including the line
specified as the line number after which
the merger is to be made, are inserted into
the new active file. Then the entire
utility file when no or only one numeric
operand is specified, or the specified
range when two or three numeric operands
are specified, is inserted at the end of
the new active file and the lines are
resequenced. The lines in the utility file
after the line number at which the merger
was made are inserted at the end of the new
active file. The lines in the new active
file are resequenced, and the utility file
is then released.

If there is a data set name specified on
the subcommand, the IHKMUF module handles
the merging process. If the directory
entry for the data set to be merged is not
of the CRJE or CRBE format and a line range
is specified, the command is rejected. If
the library I/O module (IHKBPM) cannot find
the data set in a user library, an error
message is queued for the user and control
is returned to the command analyzer. If

the data set is found and is in a user
library, it is opened; or if the owner's
userid and any protection key have been
specified, it is opened.

The insertion of the lines into the
active file is done in the same way as
described before, by overlapping AFIO
macros and library I/O macros. If a range
of lines is specified, only these lines are
inserted; otherwise the entire data set is '
inserted. If lines from the active file
have 'been read into a utility file, they
are reinserted at the end of the active
file. All lines are resequenced when
inserted into the active file. Control is
returned to the command analyzer. (Chart F
illustrates the merge function.)

Renumbering Lines

The RENUMBER subconmand is used to
request that new line numbers be assigned
to the lines of the active file. Control
is passed to the RENUMBER subccx.and
processor (IHKRNR) with the subcoaaand code
and the operands in a PPT. The IHKNUM
module first checks the operands for all
numerics. If an error is found, an error
message is queued for the user, and control
is returned to the command analyzer. If no
operands are specified, the default option
is ten for both line number and increment.
The operand values are stored in the last
40 bytes of the user buffer, which is used
as a work area.

A block of records is read from the
active file, and the line numbers are
resequenced. If line numbers are contained
in the last eight characters of the line,
they are also changed. A utility file is
created and, when all the lines in the
block are resequenced, the block is written
to the utility file. The process of
reading a block, resequencing the line
numbers, and writing the block in the
utility file is continued until BOD is
encountered ;on the active file. The
utility file is then releas4!d and control
is returned to the command analyzer. The
RENUMBER processor issues AFIO macros to
manipUlate the lines in the active file and
utility file.

If the RENUMBER subcommand is issued for
an active file that has no lines in it, the
increment operand becomes the default
increment for prompting the user with the
line numbers in input mode. If the
RENUMBER subcommand is issued for an active
file that has no lines in it, the
subcommand has the effect of changing the
default increment. (Chart E illustrates
the renumber process.)

Setting Tabs

The TABSET command is used to define
input tab settings or output tab settings.
~f the command is entered to indicate OFF
for either input or output tabs, the
processor (IHKTAB) deallocates the area in
which the tab settings are stored and sets
the tab address pointer in the TUB to zero.

When the command is entered with tabs,
they are checked for length, ascending
sequence, and numerics. A maximum of 10
tab settings is accepted. If more are
submitted, the first valid 10 are taken and
an error message is queued. A tab setting
of 0 or 1 is not accepted, and a setting
greater than 80 for input or 120 for output
is rejected. As the tabs are checked they
are stored in a work area. After all the
tab settings have been checked, they are
moved to the user buffer. If no errors are
found, the number of settings is put in the
first halfword of the area containing the
settings. If the tab address pointer in
the TUB is 0, a GETMAIN macro is is'sued for
a tab area. If the tab address pointer is
not zero, the tab settings are put in that
area. If any errors are encountered, a
message is queued for the user before
returning to the command analyzer.

When the line administrator reads a line
of text from the terminal and encoun~ers a
horizontal tab character, the TABSETedit
module (IBKLAT) is called if the TUBTABAD
field is nonzero. The IHKLAT module gets
the address of the area containing the tabs
from the TUBTABAD field. The line is
edi ted by adding the proper number of blank
characters whenever a horizontal tab
character is encountered.

When the line administrator is ready to
write a line of text to the terminal, the
line edit write module (IHKLEW) is called
if the TUBOUTAB field is nonzero. The
IHKLEW module gets the address of the area
containing the tabs from the TUBOUTAB
field. The line is edited by substituting
either the horizontal tab character and
idle characters, or the horizontal tab
character plus backspace characters and
idle characters to replace strings of blank
characters.

SCAN FUNCTION

The scan function can be invoked while
lines are being entered in input mode, or
it can be invoked after the lines are
entered, which is referred to as delayed
scan mode. The scan function is invoked in
input mode by specifying the SCAN operand

Method of Operation 31

on the EDIT Gom"maml entering the SCAN
subcommand ",11th ON operand
specifiedo It" is off by entering
the SCAN subco:mlnand with the OJi'F operand.
Delayed scan mode is inV"oked by entering
the SCAN subconunand l'tl'i th line numbers
designating the of lines to be
scanned or by the SCAN subcoxll1raand with no
operandS.

Scanning lines in input mode means the
IHKIRL module accepts lines from the
terminal a.s long as t.here are any
continuati.on lines (continuation charact.er:
-) • The cont.inuation character is removed
and each line is put into the active file.
When a line without a continuation
character is detected or when max.imum
continuation is reached, the line is put
into the active file and the line number
range since the la.st non-continuation line
is passed to the syntax checker interface
(IHKSYN) • A pointer t.othese line numbers
is put in the TUBIRLSA field. Therefore,
when scanning lines in input mode the
syntax checker interface always assumes
that it receives line numbers specifying a
complete statement. If it is not a
complete statement~ an error message is
returned.

The syntax checker interface retrieves
the lines from the active file, chains them
together. builds the parameter list, and
enters the checker. The checker returns to
the interface each time an error is found.
The interface queues the error message and
returns to the checker until the complete
statement is scanned. When the complete
statement is scanned, the interface returns
to the IHKIRL module. If there were
errors, the IHKIRL module then returns to
the command analyzer. If there were no
errors, the IHKIRL module prompts the user
with the next line number, and input mode
continues.

In the case of errors. the command
analyzer sends the error messages to the
user. The user has several choices of
reply: null line, Implicit subcommand,
CHANGE subcommand, or several Implicit
subcommands followed by a null line. A
null line means the lines with errors will
not be corrected: input. mode continues.
The IHKCGN module processes any corrections
made with the CHANGE subcommand. If the
Implicit subcommand is entered, the IHKIRL
module is given control from the command
analyzer. The IHKIRL module checks to see
if the line is in t.he range of lines being
scanned. If so, the line replaces a line
in the active file, and the TUBCORCN bit in
the TUB is set to indicate that a
correction was made. 'I'he CHANGE subcommand
processor makes corrections in the same way
as the Implicit subcommand processor. The
terminal user indicates by a null line that

32

he has finished his corrections. The
interface is then entered again and the
process continues.

When t.he SCAN subcommand is entered with
line numbers specified (or without any
operands, meaning that. thB entire active
file is to be scanned). the SCAN subcommand
processor (IHKSCN) checks the CCT for the
presence of either the PLil or FORTRAN
syntax checker. If the proper syntax
checker is not available, an error message
is queued for the user, and control is
returned to the command analyzer. If the
syntax checker is available, the line
number operands given on the subcommand are
moved to the user buffer. The IHKNUM
routine checks the line numbers for all
lTllIDerics. The IHKSCN module moves the line
numbers back to the PPT and puts a pointer
to them in the TUBIRLSA field. The IHKRNQ
module is called to queue the SCAN
processor for the syntax checker interface.

For the FOR'rRAN syntax checker the
interface reads a line ahead to check for
continuation or for a comment; then it
chains the lines together, builds the
parameter list, and branches to the
checker. For PLil one line at a time is
sent t.O the checker. If the last line is
not the end of a statement, the checker
returns and the interface chains another
line and enters the checker again. If the
maximlw number of continuation lines is
reached before the end of the statement,
the interface queues an error message for
the user and the lines collected are sent
to the checker.

When an error is encount:ered, the
checker returns and the interface queues
the error message for the user and returns
to the checker until the complete statement
group is scanned. If there are errors
queued when the statement group has been
completely scanned, the interface returns
to the SCAN processor, which sends the
messages to the user. The SCAN processor
then goes back to the interface, which
returns to the checker with the next lines
to be scanned. The scan is finished when
end-of-data is reached or the last line
numbe.r has been scanned. 'l'he SCAN
processor t,hen returns to the command
analyzer.

LIS'l' :FUNC'l'ION

'I'he LIST subcommand is used to display,
at the user's terminal, certain lines or
all the lines in the active file. (Chart G
illustrates the list function. save
function and scratch function.» If the
line number operands are present, they are

checked to see that they are all numerics
by the IHKNUM routine. An error causes a
message to be queued and control to be
returned to the command analyzer. If the
line number· operands are not present, the
entire active file is to be listed.
otherwise only the line or range of lines
specified is listed. (See Chart G.)

The line numbers are moved to a GETMAIN
area and a switch is set in the first byte
of the PPT if NUM is specified (or is the
default). The LIST subcommand processor
(IHKLST) issues AFIO macros and reads one
line at a time from the active file. The
line is moved to the user buffer, and a
CWRITE macro is issued to send the line to
the terminal. If more than one line is to
be listed, the next line is read from the
active file and sent to the terminal. This
process continues until EOD is detected in
the active file or until the next line
number in the active file is greater than
the specified last line number in the
range. Control is returned to the· command
analyzer when the lines have been listed.

SAVE FUNCTION

The SAVE subcommand is the only means
the user has of keeping his active file.
The active file is stored in his user
library. The IHKSAV module checks the
operands on the subcommand. If an error is
found, a message is queued for the user and
control is returned to the command
analyzer. If the OLD keyword is specified
on the EDIT command, and if either the data
set name is not specified on the SAVE
subcommand, or if the data set name on the
SAVE subcommand is the same as the name on
the EDIT command,the data set in the
library is replaced by the one in the
active file. If the NEW keyword is
specified on the EDIT command or if the
data set name on the SAVE subcommand is
different from the data set name on the
EDIT command, a check is made for an
existing CRJE data set with the same name.
If a duplicate data set name is found, the
user is prompted for a new data set name.
If the user responds with a null line, then
the active file replaces the existing data
set in the user library.

AFIO macros are issued to read a block
of records from the active file. Another
macro is issued to write the block of
records into the user library. If there is
not enough space in the user library, it is
condensed. An attempt is made again to
write the block of records. If there is
still not enough space available, a message
is sent to the user indicating that his
library is full and requesting the name of
a data set to be deleted. The user may
respond with a data set name or a null
line. A null line terminates the save
process. (See Figure 5.)

If a data set name is entered, it is
checked for validity. If invalid, the user
is notified and is asked to enter another
name. If the data set name is valid, it is
deleted from the user library. Then the
user is again prompted for the name of a
data set to be deleted. This process of
deleting data sets is continued until the
user enters a null line. The user's
library is then condensed again if at least
one data set was deleted, and an attempt is
made to write the block of records into his
library. If there is still no room, the
complete process is repeated until space is
available or until the user terminates the
process by entering a null line when first
prompted.

When space is available, the block of
records is written in the user library. A
block of records is read and written until
EOD is encountered in the active file.
Return is to the command analyzer.

SCRATCH FUNCTION

The END subcommand terminates creating
and updating operations on the active file
and the active file is deleted. The END
subcommand processor (IHKEND) checks the
TUBDIRAD field to determine whether main
storage has been allocated for a directory
entry. If main storage has been allocated,
then the area is freed and the field is set
to zero. A RELEASE macro is issued for the
active file and the following switches are
set to zero: TUBEXIT, TUBSCN, TUBFOR,
TUBPL1, TUBLNUMN, and TUBLONGN. Control is
then returned to the command analyzer.
(See Chart G).

Method of Operation 33

Directory

Figure 5. Library Condensation

34

After· Deletion
and Replacement

After Condensation

JOB MANAGEMENT

SUBMISSION OF JOBS

The SUBMIT command allows users to
submit jobs to OS for processing. The
SUBMIT command processor allows up to ten
data set names (plus dsnames found in
DSLIST files) to be combined into a
sequential data set and entered into the OS
job input stream. If more than ten data
set names are specified, only the first ten
are used. The data sets specified must be
CRJE data sets. If the user is in EDIT
mode, his active file may be entered in the
input stream. The data sets are put into
the input stream in the order they are
listed. Together they may make up one job
or several jobs.

Chart H illustrates the functional
aspect of job submission.

The SUBMIT input record processor
(IHKGET) and the allocate module (IHKALC)
perform special services for the SUBMIT
processor. The IHKGET module syntax checks
the dsnames submitted and pOSitions the
file to the beginning of these data sets.
The IHKALC module allocates the sequential
reader/interpreter input data set and
builds the START RDRCRJE command.

The IHKSUB module inspects all the
records that are to be submitted for JOB
statements and DD data statements. All JCL
statements are passed to the JCL exit, if
it exists. The JCL exit can request that
the SUBMIT processor accept the statement,
or the exit routine can request that the
SUBMIT be aborted with or without a message
to the user. The inspection of JCL is
suspended while DD data input is being
processed.

When the first JOB card is found, the
IHKALC module is called to allocate the
reader/interpreter data set.

All records except the JOB statement are
blocked when they are written to the
reader/interpreter data set. This prevents
a loss of data if the reader (RDRCRJE) is
rolled out in MFT. After the JOB card has
been written, the TTR of the statement is
saved for abnormal processing.

When an instream procedure is
encountered, the reader is rolled out in
MFT. The rollout causes the record
containing the instream procedure to be
repeatedly processed "nn times, where "nn
is the number of records remaining in the
block to be processed. For example, if the
instream procedure is the third record in
the block of data to be processed (the

first two records of the block having been
processed already), the reader will be
rOlled out, and the record will be
processed a total of eight times,
representing the processing of records
three through ten. To avoid unpredictable
results, instream procedures should not be
used when submitting input under MFT.

When a complete job cont.aining an EXEC
statement has been collected, the RJCT
entry for the job is written in the JBTBIB
global file. If no EXEC statement was
received for the job, the SUBMIT is
aborted.

If the SUBMIT is to be aborted because
of a bad return code from the IHKGET
routine, the error message returned by the
IHKGET module is sent to the user, and the
IHKGET modulp is deleted. If the abort is
for any other reason, the IHKGET module is
called to force end-of-input and the RJCT
base register is cleared.

In a normal SUBMIT termination the RJCT
base is tested. If it is nonzero, the RJCT
entry for the last job is written. If no
jobs were collected, a message is sent to
the user informing him that no jobs were
found. The CRJE service routine (IHKSRV)
is called to close the reader/interpreter
data set DCB and to start the reader
procedure (RDRCRJE) on the data set. Then
the save area and work area are freed
before control is returned to the command
analyzer (IHKCMD).

NOTIFICATION OF JOB OUTPUT

At start-up time the IHKSDQ module
passes control to the IHKDEQ module to look
for work on the CRJE SYSOUT queue. The
IHKDEQ module posts the IHKSRV module with
a request to invoke the IEFQMDQ2 routine,
which attempts to dequeue a job from the
CRJE SYSOUT queue. If there are no jobs on
the queue, the OS queue manager keeps an
ECB, which it will post when an entry is
queued on the SYSOUT queue. The IHKDEQ
module then returns control to the IHKSDQ
module, which sets up the appropriate ECB
address and return address for waiting in
the dispatcher. The IHKSDQ module then
waits for the ECB given to the OS queue
manager (IEFQMDQ2) by the IHKDEQ module.

If the IHKDEQ module finds work on the
SYSOUT queue, regular job end processing is
performed. This is explained later in this
section.

When OS executes a job entered through
CRJE, an entry is queued on the CRJE SYSOUT
queue, if the user submitting the job

Method of Operation 35

specified the CRJE SYSOUT class. If,
however, the user specified a SY50UT class
other than CRJE, no entry is made in the
CRJE SYSOUT class. When a job is queued by
os on the CRJE SYSOUT queue, the ECB that
the IHKDEQ module gave to the os queue
manager gets posted. This gives control to
the IHKSDQ module, which in turn invokes
the job end processor (IHKDEQ). (See Chart
1.)

The job end processor first sets a flag
t.O indicate to the closedown module that
job termination is in progress. The IHKSRV
module is posted with a request to inVOke
the IEFQMDQ2 routine, which will attempt to
dequeue a job from the CRJE SYSOUT queue.
If a job is dequeued by the IEFQMDQ2
rout.ine. the IHKAFI module is used to
search for the RJCT entry with the jobname
of the job that was dequeued. If the RJCT
entry is not found, the jobname is checked
for ,JOBr'AIL (this is the jobname that OS
returns after encolmt.ering JCL errors on
the JOB statement). If it is not. the job
does not belong to CRJE. Control is given
to the second entry point (IHKRER01) of the
IHKRER module to delete the job. The OS
queue manager read routine CIEFQMSSS) reads
the 5MB/DSBs for the job. The data set
scratch routine (IHKRER02) scratches the
associated data sets. The OS queue manager
delete routine (IEFQDELE) deletes the OS
queue space. When this is completed. the
job end processor issues another dequeue
request to the IHKSRV module for the next
job on the SYSOUT queue.

If the RJCT entry is not found but the
jobname is JOBFAIL, IHKDEQ scans the 5MBs
for the original jobname. If the jobname
is found, search is made for the RJCT
entry. If the jobname is not found, the
job is deleted. For this reason, the user
is cautioned against the use of JOBFAIL as
a jobname.

If the RJCT entry is found, it is
checked to see if the jOb is marked
complete. If it is already marked complete
(the job is a duplicate), the delete job
routine (IHKRER01I of the IHKRER module is
called to delete this job. A dequeue
re~lest is then issued for the next job on
the CRJE SYSOUT queue.

If the RJCT entry is not already marked
complete, it is now marked complete and a
notification message is sent to the user
who submitted the job. The necessary
information for locating the output of the
job is placed in the RJC'r entry, and the
entry is written in the global file. Then
another dequeue request is issued for the
next job on the CRJE SYSOUT queue.

When there are no more jobs on the CRJE
SYSOUT queue, control is returned to the

36

IHKDEQ module, but the OS queue manager
dequeue routine keeps the ECE, which will
be posted when OS queues a job on the CRJE
SYSOUT queue.

RETRIEVAL OF JOB OUTPUT

The OUTPUT command allows the user to
obtain output of jobs he has SUbmitted.
Only as data sets in the CRJE SYSOUT class
and job man~gement messages, if MSGCLASS
$pecified the CRJE SYSOUT class, are
available. After the syntax of the command
is checked and the operands are verified,
the RJCT entry for the job is read into
main storage. The first 5MB or DSB for the
job is read from the CRJE SYSOUT class. If
an 5MB was read and SMSG was specified on
the command, the job management messages
are sent to the terminal user. When the
end of an 5MB is reached, the next 5MB or
DSB is read and processed until all for
this job are processed. (See Chart J.)

If a DSB is read, it contains the TrOT
entry for the DD statement. This TIOT is
used by the OUTPUT processor to create a
new TIOT referred to by the OPEN, CHECK,
and CLOSE macros to provide access to the
SYSOUT data set. BSAM is used to read the
SYSOUT data. The OUTPUT processor deblocks
the data and transmits it to the remote
terminal, one logical record at a time.
After all the data has been transmitted, it
is scratched. The next 5MB or DSB is read
and processed until there are no more for
this job.

When all the 5MBs or DSBs are read and
processed, the IEFQDELE routine deletes the
entry on the SYSOUT queue. The IHKAFI
module is then used to delete the RJCT
entry for this job.

The TTR of the current block being
transmitted to the terminal is saved by the
OUTPUT processor when an unsuccessful write
to the line is detected. This permits
resumption of processing from that pOint
after a discontinue/continue sequence.

When a CONTINUE command is entered at
the terminal, the same process as for the
OUTPUT command is performed. If a record
is a scratched data set, then it has
already been read and the TTR of the last
block read is reinitialized. The next data
set is then read and processed.

CANCELING A JOB

When a CANCEL command is entered, the
IHKRER module processes the command. The
RJCT entry is found and read to verify the
existence of the job to be canceled. A
check is then made to be sure that the user
canceling the job is the user who submitted
the job. If the job is not found or the
requesting user did not submit the job, an
error message is sent to the user informing
him of the situation.

If the job is not complete, an as CANCEL
command is issued for the job. The job
delete bit in the RJCT entry is turned on
and the RJCT entry is written in the global
file. The as CANCEL command causes the job
to terminate abnormally. The IHKDEQ module
gets control when the job terminates. The
dequeue routine, after checking the job
delete bit, passes control to the IHKREROl
entry point where the job is deleted. The
IHKDEQ routine sends a message to the user
indicating that the job was canceled.

If the job is complete, the associated
data sets are scratched, the as queue space
is deleted, and the RJCT entry is deleted.

SYSTEM INQUIRY

There are commands available to both the
terminal user and the central operator for
obtaining information about the CRJE
system. The terminal user may obtain
information about all the data sets in his
user library by the LISTLIB command.
Information about one particular data set
in his library is obtained by the LISTDS
command. The terminal user can keep track
of his jobs by the STATUS command.

The SHOW command allows the central
operator to have information about the CRJE
system printed at his console. The
following information can be requested, but
only one type at a time:

A list of all CRJE jobs and their
status (whether the job is complete)

Status of a particular job
A list of all valid CRJE users with an

indication of whether the user is
active, the user's line address, and
the time each active user has been
logged on

An indication of whether a particular
user is active

A list of currently active users and
the amount of time each has been
active and each user's line address

A display of the number of currently
active users

A list of the current values of all
line error accumulators for all
lines being used by CRJE

A list of error and transmission
counts for a specified line

Notification as users log on and off
Notification when a specific user logs

on and off
A list of all broadcast messages
A list of the delayed messages for all

users or a specific user

DATA SETS

A terminal user issues a LISTLIB command
to get a list of all the CRJE data sets in
his library and the attributes of each. If
STATUS is specified on the command, the
size of each data set and whether it is
protected is included in the list. If
HISTORY is specified as an operand, the
following information is given about each
data set: creation date (first time
saved), date last modified (last time
saved), and the number of times accessed
since created. All of this information may
be obtained in the same manner for a
particular data set by the LISTDS command.

The LISTDS command processor (IHKLDS)
handles both the LISTLIB command and the
LISTDS command. The processor first
determines which command was entered,
checks the operands, and sets the
appropriate flags in the PPT. Library I/O
is used to read lines of the data set if
the command is LISTDS, or to read a block
of directory entries if the command is
LISTLIB. A file is created in the active
area, and a header message is obtained from
the message writer and inserted at the
beginning of the active file. Information
is obtained from the directory entry and
inserted into the user buffer. The
information in the user buffer is aligned
according to the labels of the header. The
operand flags are tested to determine
exactly what information was requested.
Any unnecessary information is blanked out.
Then the line of information is inserted
into the active file.

When the information has been inserted
into the active file for the requested data
sets, control is passed to the LIST
subcommand processor (IHKLST). The IHKLST
module lists the contents of the active
file at the terminal and then releases the
active file.

The central operator cannot request
through CRJE any information about a data
set in a user library.

Method of operation 37

JOBS

To obtain information about jobs he has
submitted, the terminal user issues the
STATUS command. The user may request the
status of one job by specifying the jobname
on the command, or he may request the
status of all the jobs he has submitted by
issuing the command with no operands. The
status inforrration given is whether a job
is scheduled for execution, is currently
being executed, has not been executed, or
is not in the system. If a job is
scheduled for execution, its position on
the job queue is given.

The STATUS command processor checks the
operand of the command. If a jobname is
specified, the RJCr entries are checked to
find out if the job is in the system. If a
jobname is not specified, the RJCT entries
for all jobs submitted by the user are
checked. If a job is marked complete, a
job complete message with a normal or
abnormal indication is returned to the
user.

Otherwise the IEFLOCDQ routine checks
the OS job queue. If a job is found
belonging to the user, its position on the
queue is returned. Otherwise the CSCBs are
searched to determine whether a job is
executing. If it is, the appropriate
message is sent to the user. Otherwise the
RJCT entry is checked again to determine
whether a job is complete.

The central operator uses the SHOW
command to request certain information
about jobs in the system. He can request a
list of all CRJE jobs with an indication of
whether the jobs are complete. He can also
use t.he SHOW command to inquire about a
particular job.

MESSAGES

The central operator communicates with
terminal users by sending messages, and
users communicate with the central operator
in the same way. Terminal users can
communicate with each other by sending
messages.

The SEND command directs a message from
one terminal user to another or to the
central operator. The central operator
uses the MSG command to send messages to
terminal users. The central operator also
communicates with terminal users through
broadcast messages. Broadcast messages
contain information that is of interest to
all terminal users but they are only sent
to a user upon request.

38

TERMINAL USER MESS.AGES

The message writer handles most messages
to terminal users. The message writer
sends a message that is already built or
builds one. using information that the ~i'
processor provides and previ.ously-prepared
text. The processor requesting .the message
sends the message writer all needed
information in parameter lists. The
message writer gets the previously-prepared
text from the SYSMSGS global file. The
message may be sent to the user immediately
or queued for later delivery.

Most command processors branch to the
message writer to queue messages for the
user. When the system administrator gets
control back from a processor, it branches
to the message writer to send all messages
that are queued for the user. There are
exceptions. however. Some processors
interface directly with the line
administrator in sending information or
messages to the terminal. In input mode
the IHKIRL module prompts the p.ser with
line numbers by issuing a CWRITE R macro.
The LIST processor builds a file and sends
it directly to the terminal. If the line
administrator encounters any errors in
sending information to the terminal, it has
messages within its own module that it can
send to the user.

only one message for each user can be
queued in main storage. The second message
to be queued is kept in the USRMSGS global
file. The messages are kept in the order
in which they are issued for each user.
The TUBMSG bit in the TUBFLGl field is
turned on to indicate there are messages in
the USRMSGS global file for this user.
When the system administrator branches to
the message writer to send all messages,
the message queued in main storage as well
as all the messages in the USRMSGS global
file for this user are sent.

If the user is inactive when messages
are queued for him, all the messages become
delayed messages and are written in the
USRMSGS global file. In this case the
UVRDMSG bit in the UVRCNTLl field of his
user verification record is turned on.
When the user lags on, he receives all of
these delayed messages.

The user may request that the message ID
be attached to t.he message when it is
printed at his terminal. To get the
message IDs,the user must specify MSGID on
his LOGON command.

A message that a user sends to another
user with a SEND command is never queued in
main storage. Even if no messages are
queued for the user, the message is written

in the USRMSGS global file aDd the TUBMSG
bit is turned on.

CENTRAL OPERATOR MESSAGES

Messages are built and sent to the
central operator, or a supplied message is
sent to the central operator. A message
for the central operator is never queued by
CRJE. The execute form of the WTO macro is
used to print messages at a console.

The required format of a message area
referred to by the execute form of the WTO
macro is as follows:

o 2 4 +4

r------~-------T--------T------,
I Length I MCSFIAGS I MSG I Descrip- I
lof MSG I Iw/o Itor I
Itext +41 I trailing I Codes I
1 I Iblanks I I L _______ ~ ______ ~ _______ ~ ________ J

+6 +8

r-------T------,
I Routing 1 MSGTYPI
I Codes I I
I I I
I I I
I I I l. ______ ~ _____ J

MCS requires the MCSFLAGS field, the
descriptor code, and the routing code for
each message. The descriptor code and
routing code are contained in bytes 75-78
of the message area in the SYSMSGS global
file. The MCSFLAGS field .is inserted by
the message writer when the message is
built and sent. The MSGTYP field is added
by the message writer for messages to be
sent to consoles that have issued the
general SHOW SESS command. System messages
may have a maximum length of 72 bytes.
After the length of the text is determined,
the descriptor code and routing code are
moved to the area immediately following the
message text. For more detailed
information on the requirements of MeS, see
the section Multiple Console Support
Interface.

The central operator can issue broadcast
messages to provide users with system
information. If CRJE is not active, he can
put the messages in the BRDCST member of
the system library by a utility program.
When CRJE is active, he can issue the
BRDCST command. By this command the
central operator can add or delete
broadcast messages in the BRDCST global
file.

Every terminal user has access to the
broadcast messages, but the messages are
sent only upon request. When the user logs
on, if he does not specify NOBC, all the
broadcast messages are listed at his
terminal after his delayed messages. At
any time (except in edit mode) the user may
request a listing of the broadcast
messages. The LISTBC command is used for
this purpose. This command causes the
broadcast message bit in the TUB to be
turned on by the system administrator.

The next time the system admi'nistrator
branches to the message writer to send all
available messages for this user, the
message writer recognizes that the bit is
on and all the broadcast messages are sent
to the user.

OS READER/INTERPRETER INTERFACE

The OS reader/interpreter interface
involves building a reader procedure and
cataloging it in the SYS1.PROCLIB. The
procedure must be named RDRCRJE and should
be the same as the installation's standard
unblocked reader procedure with three
exceptions. These exceptions and more
detailed information about the procedure
are given in the CRJE system Programmer's
Guide, GC30-2016.

When a SUBMIT command is entered, the
allocate routine issues a GETMAIN macro for
104 bytes and builds the START RDRCRJE
command. The address of the area
containing the command is put in the
TUBIRLSA field. Space is obtained and the
input job stream is built. The IHKSRV
module then issues an SVC 34 if no reader
is currently active. If a reader is
active, a STIMER macro is issued for two
seconds. After two seconds a check is
again made for a currently active reader.

CENTRAL COMMAND INTERFACE

When an RJE or CRJE central command is
entered through the central console or the
card reader, it is recognized and SVC 34
gives control to the proper job management
routine. This routine builds a command
input buffer (CIB), which is chained to
either the RJE or CRJE command queue.

The IHKCCI routine provides the
interface between the RJE/CRJE scheduling
routine and the command processors. The

Method of Operation 39

scheduling routine (IGC150 3D 01:' IGC0703D)
posts the communications ECB in the CRJE
CSCB (command scheduling control block).
'1'1'1is causes the CRJE dispatcher to give
control to the interface routine CIHKCCn.
The address of the CIB, which contains the
command, is in the SPL (start parameter
list) and the address of the SPL is in the
AVT. The command and its operands, if
necessary, are examined to det,ermine which
processor is needed.

Since all the processors are
nonresident, a load request for the
processor needed is passed to the
loader/controller. When the processor is
loaded, control is passed t:o it with
register 1 pointing to a two-word parameter
list containing the address of the AVT and
the address of the CIB. When the processor
is finished and control is returned to the
interface routine, the loader/controller
deletes the processor and the interface
routine dequeues the CIB and returns
control to the dispatcher.

SYNTAX CHECKER INTERFACE

Lines entered in input mode are put into
the active area by the command processor.
At the end of a statement, indicated by a
carrier ret.urn (CR) with no hyphen at the
end of a line, the command processor enters
the interface, passing to it the beginning
and ending line numbers of the group. The
SCAN subcommand processor passes the
beginning and ending line numbers of the
requested scan to the interface. Both
processors use the same entry to the
interface. In the TUB is the address of
the work area containing the beginning and
ending line numbers.

Continuation lines for both PL/1 and
FORTRAN statements in input mode are
indicated by a -CR at the end of the line.
The line number range passed to the
interface in input mode represents one
statement. For PL/1 input mode, the lines
in the range are read one at a time and
chained until the end of data or maximum
continuation is reached; the group of lines
is then passed to the checker to be
scanned. F'or FORTRAN input mode, the next
line is read and kept, while the current
line is passed to the checker with the
return-12-expected bit set. For standard
FORTRAN, the checker always returns a code
of 12 when this bit is set, indicating that
another line is to be passed. The current
line is freed, the next line already read
is set up, and the succeeding line is read.
When the end of data is reached, the
return-12-expected bit is not set, and the
current line is passed to the checker. The

40

group collected by the checker is then
scanned.

The line number range passed to the
interface in delayed scan mode may be more
than one statement. For PLl1, the lines
are read one at a time, chained to the
previous line if there is one, and passed
to the checker with the return-12··expected
bit set. I~ the last line is not the end
of a statement, the checker returns a code
of 12, indicating which, if any, lines in
the group may be freed. When the elld of a
statement is found, or when maximum
continuation or the end of data is reached,
the lines are scanned. On maximum
continuation, the interface queues an error
message.

For FORTRAN, the interface reads a line
ahead, checking for a WC" in column 1 to
indicate a comment, or a nonblank and
nonzero character in column 6to indicate
continuation. For a group of comments, or
several within a continuation group, all
but the first are are freed immediately.
When the next line is a comment or
continuation, the return-12-expected bit is
set and the current line is passed to the
checker. On return 12, the line is freed,
the next line already read is set up, and
the succeeding line is read. When the next
line is not a comment or a continuation, or
when the end of data is reached, the
return-12-expected bit is turned off and
the current line is passed. The collected
group is then scanned.

Both syntax checkers return to the
interface on errors and may be reentered to
continue scanning the statement. The
interface queues all error messages until
the statement is completely scanned, then
returns to the processor to have the
messages sent to the user. The interface
returns to the SCAN subcommand processor
only when there are messages to be sent to
the user and at the end of the scan. In
input mode the terminal user may make
corrections and cause the lines to be sent
back to the checker. Lines entered with
the Implicit subcommand are not scanned,
except when corrections are being made.

MULTIPLE CONSOLE SUPPORT (MCS) INTERFACE

The message writer handles most of the
functions necessary to support multiple
consoles, which involves specifying
descriptor codes and routing codes for all
messages sent to the central operator.
Routing codes define the type of console
and descriptor codes specify the type of
message. These codes are determined in
advance for each prepared CRJE message and

are contained in bytes 15-7S of the message
area in the system library.

Interfacing with MCS involves
determining whether MCS is in the system.
The CVTUCM field of the communications
vector table (CVT) points to the UCM (unit
control module) base. The UCMMCS bit in
the UCMMODE field of -the UCM base is on if
MCS is in the system. The UCM base is
followed in main storage by all the UCM
entries. A UCM entry exists for each
console. composite consoles (separate
input and output devices) have two UCM
entries; the first UCM entry is for the
input device and points to the second entry
which is for the output device. Each UCM
entry contains the console ID in the UCMID
field. The following entries in the UCM
base are used to find the UCM entry for a
specific console:

UCMVEA - address of first UCM entry,
UCMVEZ - size of UCM entries,
UCMVEL - address of last UCM entry.

Most CRJE central messages are sent as a
response to central commands. Therefore,
the message goes to the console from which
the command was issued. The module calling
the message writer indicates the requesting
console by storing the console ID in the
high order byte of the word of binary zeros
pointed to by the second parameter and by
setting the high order byte of the message
number to X' 20'. The message writer then
sets the routing code to zero, the MCSFLAGS
field to X'4000', and loads the requesting
console ID in register 0 (right-justified).

When delayed or broadcast messages are
displayed on the console, the IHKCC4 module
(SHOW BRDCST, SHOW MSGS, and MSG D=userid
Central Command Processor) stores the
descriptor code (X'OSOO') and the routing
code (zeros) at the end of the message
text, sets the MCSFLAGS field to X'4000',
and passes the console ID in the high-order
byte of the word of zeros to the IHKMSG02
entry point of the message writer for
delayed messages or to the IHKMSG03 entry
pOint for broadcast messages.

The terminal user may send a message to
a specific console by specifying the
routing code (1-16). When this number is

-passed to the message writer, it is in
binary and the message writer converts . .it
so that the correct bit gets turned on •.
The message writer also sets the MCSFLAGS
field to X'SOOO'. If a routing code is
specified for a non-existent console, the
message goes to the master consQle. If the
message goes to all consoles that have
issued a general SHOW SESS, the mOd.ule
calling the message writer sets the
high-order byte of the message number to
X'OS'. The message writer sets the

MCSFLAGS field to X'lOOO' and adds the
MSGTYP field (X'OBOO') to the message area.
Multiple console support does the
processing to send this message to all
requesting consoles. In all other cases
the message writer uses the routing codes
stored with the message and sets the
MCSFLAGS field to X'SOOO'.

The descriptor code for responses to
central commands is the immediate command
response (ICR) with a code.of X'OSOO'. The
only other descriptor code used by CRJE is
system status (SS) with a code of X'lOOO'.
The system-status code indicates status
such as disk error or out of main storage.

CRJE SY2TEM~!Q!L~ROCEDURES

CLASSIFICATION

Certain recognized errors, from which
the system cannot recover, occur in CRJE.
Other errors cause error recovery
procedures to be followed, which help the
system to recover. These errors are listed
below along with the results:

• GETMAIN failure - requires the terminal
user to reenter a command.

• Active area out of space - results in
notification to the terminal user and
the central operator, and termination
of processing of the last command
entered.

• User library out of space - results in
notification to the terminal user, and
in addition, the user is prompted for
data sets to be deleted from his
library.

• User library I/O errors - result in
making the user library as inoperative
and notifying the terminal user and
central operator of the error
condition. No other attempt is made to
read the library during this CRJE
session.

• Active area I/O errors - result in the
termination of CRJE: the active users
and central operator are notified of
the shutdown.

• communications line errors - result in
BTAM error recovery including text-read
error retry (EROPT=RWC): failure to
recover results in notifying the
central operator and reinitializing the
line.

Method of Operation 41

• Start-up errors - result in termination
of CRJE.

• Shutdown errors - result in recor41ng
these errors at the central operator's
console.

RECOVERY

Following are the error handling
procedures for the errors listed above:

GETMAIN'Failure

When a GETMAIN failure occurs in a line
subtask, the command processor returns to
the system administrator with a return code
of S. Files that are partially copied intQ
the active area must be released. The
system administrator notifies the user by
sending an out-of-space message
immediately.

If a GETMAIN failure occurs in the line
administrator in trying to obtain a line
save area, return is made to the system
administrator with a nonzero return code.
The system administrator will notify the
central console and pass control to the
CRJE dispatcher to wait on the line ECB
until it is activated by the MODIFY central
canunand.

If a GETMAIN failure occurs in the line
administrator in trying to obtain a
terminal user buffer, the line
administrator notifies the terminal user,
if possible, and returns to the system
administrator. The system administrator
tests for a CLB and sends a message to the
central operator. Then control passes to

, IHKDSP to wait on the line until it is
activated. If a GETMAIN failure occurs in
the central command subtask, no procedure
is required. All required buffers, work
areas, and save areas are contained within
the load module.

Active Area out of Space

If this error occurs in a line subtask,
a return code of 20 is sent to the system
administrator. The system administrator
then notifies the central operator. The
command processor releases private files
and queues a notification message for the
terminal user.

42

If the error occurs in the central
command subtask, the central operator is
notified. Any required messages pertaining
to the command are sent by the message
writer.

The following procedure is attempted by
the message writer when it encounters an
out-of-space condition while attempting to
write delayed messages:

• The mesage is lost.

• For an active user the message lost bit
(TUBLMSG) in the TUB is set.

• For an inactive user the message lost
bit in the USer verification record is
set.

• A MESSAGE LOST message is sent to'the
user if the message lost bit in the TUB
is set; then the bit is reset.

Note: The LOGON proCessor must set the
message lost bit in the TUB if the
message lost bit in the UVR is set.
The LOGOFF processor must set the UVR
message lost bit if the TUB message
lost bit is set.

• A return code of 20 is sent to the
calling routine.

User Library Out of Space

This error is recognized by the SAVE
subcommand processor. When the error
occurs, the processor prompts the user for
data sets to be deleted from his library.
After several data sets are deleted the
user library is condensed to provide more
space, and another attempt is made to save
the active data set.

User Li2rary I/O Error~

These errors are encountered by the
library I/O modules. The following
prQCed~es define the error processing
require4 of the modules that use the
library I/O facilities:

• The IHKUTM module is called to mark the
ova, indicating the user library is
inoperative (UVRLITIN).

• BTAM start-up (IHKBST) resets this
indication at start-up.

• The IHKUTM module returns a code of 24
if the library is marked inoperative
following queuing requests (X'SO').

• A LIBRARY INOPERATIVE message must be
queued for the terminal user.

• A message must also be sent to the
central operator notifying him which
library is inoperative.

Active Area I/O Errors

When one of these errors occurs in a
line subtask, a return code of 12 is sent
to the system administrator by the command
processor. The system administrator sets
the abnormal stop bit (CCTATERM) in the CCT
if it is not already set. The suppress
LOGON bit in the CCT is also set. A STOP
CRJE command is executed internally. A
message is sent to the central operator
notifying him of the abnormal closedown. A
similar message is also sent to the
terminal user. The user is logged off.
The LOGOFF processor bypasses any calls to
the IHKUTM module. A CREAD R macro is
issued to reset the line and free the
terminal user buffer. The stop
acknowledgment ECB in the CLB (CLBSAECB) is
posted. The line subtask waits for the
line ECB. If the abnormal stop bit in the
CCT is set, the line administrator returns
the error code to the processor.

When an active area I/O error occurs in
the central command subtask or the job
terminator subtask, the abnormal stop bit
in the CCT is set, and additional central
commands are rejected.

communications Line Errors

All line errors are returned to the
system administrator for the appropriate
action. The system administrator notifies
the central operator and executes a SAVE
command for the active file if the subtask
is in edit mode. An END subcommand is then
executed to get out of edit mode. A LOGOFF
command is also executed. If the line can
be recovered, a CREAD I macro is issued to
free the TUB and the line buffer and to
reinitialize the line; otherwise a CREAD R
macro is issued to free the TUB, line
buffer, and line save area and to flag the
line as inoperative.

Start-up Errors

Errors encountered during start-up
terminate CRJE with the central operator
being notified whenever possible.

Shutdown Errors

The system library may be out of space
if the library allocation is not consistent
with the variable system parameters
specified at CRJE assembly time. If this
occurs, a message is sent to the central
operator and the shutdown process
continues.

If an I/O error occurs in the active
area during shutdown, an error message is
sent to the central operator.

CENl'RAL OPERATOR CONTROL OF CRJE

The central operator initiates and
terminates the operation of CRJE. By means
of the central commands, the central
operator has the capability of dynamically
controlling the CRJE system. In
controlling the CRJE system the central
operator has the following capabilities:

Maintaining the broadcast messages;

Removing job output in the CRJE SYSOUT
class and processing it with a central
installation output writer;

Sending messages to CRJE terminal users;

Deleting delayed messages for a user not
currently logged on the system;

Requesting a display of CRJE system
information;

Controlling availability of the CRJE
system to terminal users by adding or
deleting authorized users, by
suspending or resuming new sessions,
and by activating or deactivating
communication lines.

CRJE and RJE use the same scheduling
routine, IGC1503D. When CRJE and RJE are
in the system at the same time, a C must be
specified on the central commands for CRJE.
When a central command is recognized for
CRJE or RJE, SVC 34 gives control to the
scheduling routine. The IGC1503D
scheduling routine determines whether the
command is for CRJE or RJE. A 96-byte
command input buffer <CIB) is then built
and chained to the proper command buffer
queue. If the central command is for CRJE,
and CRJE is not active, an error message is
sent to the central operator. After the
command has been processed, the scheduling
routine turns on the completion bit of the
communications ECB in the CRJE CSCB. The
dispatcher then gives control to the
interface routine.

Method of Operation 43

The IGC1503D routine does not process
the MODIFY command. The CSCB marking
routine of OS recognizes the MODIFY command
and determines that it.is for CRJE. The
IGC0703D routine sets up the command input
buffer (CIB) with the command and its
operands. The IGC0703D routine then posts
the ECB, thereby giving control to the
IHKCCI routine.

The interface routine (IHKCC!) issues an
EXTRACT macro to retrieve the address of
t.he CIB (command input buffer I. The IHKCCI
routine then examines the command and its
operands and determines -~hich nonresident
routine is needed to process the command.
A load request for the appropriate routine
is sent to the loader/controller. Control
is then passed to the routine with register
1 pOinting to a two-word oarameter list.
When the command is processed and control
returns, the nonresident processor is
deleted and the CIB is dequeued. The
dispa tcher then regains control.

There are eight nonresident processors
for the central commands. The processors
are composed according to size and
similarity in processing rather than
according to external function.

Following is a list of the CRJE central
command processors with the external
functions they perform and the estimated
size of each module:

Module Name
IHRCCl

IHKCC2

IHKCC3

IHKCC4

IHRCCS

IHKCC6

IHKce7

IHKCCS

Function
SHOW USERS
SHOW JOBS

SHOW LERB
SHOW BRDCST
MODIFY

BRDCST

SHOW MSGS
MSG D=userid

CENOUT

SHOW SESS
SHOW SESSREL

USERID

MSG
SHOW ACTIVE

Size
2K

2K

2K

2K

2K

2K

2K

2K

Each module is discussed in detail in the
Program Organization section.

44

RESOURCE MANAGEMENT

RESIDENT AND NONRESIDENT MODULES

The nonresident modules are loaded into
the transient area by the loader/controller
when requested. The minimum size of the
transient area is SK. It can be increased
at start-up time by multiples of 2K. The
nonresident routines are grouped together
in 2K load modules and the
loader/controller loads routines into the
transient area in terms of 2K. The number
of modules necessary to make 2K are linkage
edited together into one load module.

Every nonresident module has a 12-byte
entry in the nonresident mo~ule.table .
(IHKMOD). This table conta1ns 1nformat1on
such as whether the routine is reentrant or
serially reusable: whether the routine is
currently in the transient area: whether
the module is a "trouble module," the
number of routines in the load package: and
the name and entry point address of the
routine.

A "trouble module" is a module that
requests the loading of another module
before it is deleted itself, or a module
that queues itself for library I/O or uses
the IHKUTM module to be queued for library
I/O. The number of "trouble modules"
allowed in the transient area at one time
is the number of 2K blocks assigned to the
transient area minus one. The "trouble
module count" in the first byte of the
mOdule table contains the number of
"trouble modules" allowed in the transient
area. Each time a "trouble module" is
loaded, one is subtracted from the count:
when a "trouble module" is deleted, one is
added. If the count is zero, no rr~re
"trouble modules" can be loaded.

The block table contains an entry for
each 2K block in the transient area. Each
entry contains a block request count, which
is increased for load requests and
decreased for delete requests. Also, in
each entry is the code of one of the
routines cUrrently occupying that 2K block.

The LOAD request that is sent to the
loader/controller is for the particular
module needed, not for the entire load
module. When a load request is received by
the loader/controller, a check is made to
see if the module is already in the
transient area. If it is already there but
no LOAD macro has been issued for it, then
a macro is issued to find the address of
the entry point.

Before any modules can be loaded into
the transient area, a block must be found
with no requests for any of its modules:
this load module is deleted. Then a 2K
load module can be loaded into this block

of the transient area. The process of
loading and deleting modules into and from
the t,ransient area is described more fully
in thE.. module description of the
loader/controller.

CONTROL OF SERIALLY REUSABLE MODULES

Control of serially reusable modules
depends upon whether the module is resident
or nonresident or whether it is one of the
resources handled by the queuing module
(IHKRNQ). Control of the nonresident
serially reusable modules is handled by the
loader/controller. The librarian queue
module (IHKRNQ) controls the following
serially reusable resources: AFIO extended
work area, user libraries, global files,
job submission, and the syntax checker
interface.

The loader/controller handles the
control of serially reusable modules that
are nonresident. A bit in the first byte
of each entry in the module table indicates
whether the module is reentrant or serially
reusable. Another bit indicates whether
the routine is locked (meaning someone is
currently using it). When a load request
is found for a routine already in the
transient. area, the flag is checked to see
if the module is reentrant. If it i , the
entry point address is inserted in the
return ECB and this ECB is posted. If the
module is serially reusable, the flag
indicating whether the module is already in
use is checked. If the module is already
in use, the event count of the WAIT macro
is incremented and the request is flagged
as waiting for a module.

The librarian queue module handles the
control of t.he user libraries, global
files, syntax checker interface, and the
AFIO extended work area by queuing requests
for the resources as they are issued. Each
queue has a queue control element
associated with it. Each user (or line)
also has an individual queue element
associated with the queue control element.
The queue control elements are in the
KONBOX and all of the queue elements,
except the ones for the syntax checker
interface which are gotten dynamically from
main storage, are in the TUB. When a
resource is needed, control is passed to
the IHKRNQ module with register 1 pointing
to a parameter list containing the address
of the queue element and the address of the
queue control element for the resource
desired.

The IHKRNQ module determines if the
specified queue is empty. If it is empty.
the queue element is placed as the first in

the queue for that resource and control is
returned to the caller. If the queue is
not empty, the .queue element provided by
the caller is placed on the end of the
queue and a call is made to the CRJE
dispatcher to wait until the queue element
for this request is posted. Once the queue
element is posted, the dispatcher returns
control to the IHKRNQ module. The IHKRNQ
module then returns control to the calling
routine. The queue module (IHKRNQ) never
returns control to the calling routine
until it is the first on the queue for the
requested resource.

CLOSEOOWN

The process of closing down the CRJE
system is essentially the same whether the
closedown is normal or abnormal. Normal
closedown occurs whenever the central
operator enters a STOP command at the
central console. Abnormal termination
occurs whenever an error occurs from which
the system cannot recover.

ABNORMAL CLOSEDOWN

Three types of errors cause abnormal
closedown of the CRJE system: (1) start-up
errors, (2) active area I/O errors, and (3)
sUbtask abends.

The central operator is notified, if
possible, when a start-up error occurs.

Active users and the central operator
receive notification when an active area
I/O error occurs. The command processor
sends a return code of 12 to the system
administrator. The system administrator
sets the stop and abnormal bits in the CCT
if they are not already on. The suppress
LOGON bit in the CCT is also turned on.
CRJE is then stopped by executing an
internal STOP command. From this point on,
the process of abnormal closedown is the
same as for normal closedown.

Subtask abends are reported to the
central operator when they occur. For the
service and loader/controller tasks, the
STAE exits for these tasks post all
outstanding requests and set the stop bits
for the main task. The subtask abnormal
termination messages are written to the the
central operator by the closedown routine
(IHKCLN) for the main task.

Method of Operation 45

NORMAL CLOSEDOWN

The OS command scheduling routine of SVC
34 recognizes a STOP command from the
central console and turns on the stop bit
in the ECB of the CSCB (command scheduling
control block) for the CRJE task. The
IGC0103D module checks the stop bit,
processes the command, and turns on the
completion bit of the ECB. When the IHKCCI
module discovers that the stop bit is on,
the CRJE stop routine is loaded and control
is passed to this module (IHKSTP).

The stop routine sets the stop bit in
the CCT and scans the STeBs for the lines.
If the stop acknowledgment ECB in the CLB
is not posted, the system administrator
forces a LOGOFF for the user, does general
cleanup for the line, and posts the stop
acknowledgment ECB. When all the stop
acknowledgment ECBs are posted, the global
files in the active area are written to the
CRJE system library by the library I/O
shutdown module (IHKBSH). The stop ECB for
the job terminator is posted, indicating
that STOP processing is complete and that
the job termination module (IHKSDQ) can

46

return to the START cerumilu"Ad processor
(IHKBGN). Control is then returned to the
IHKCCI module, which waits in t.he
dispatcher, thereby giving the IHKSDQ
module control.

Chart K illustrates the functional
process of closing down the CRJE system.

The IHKSDQ module checks whether a STOP
command is pending. If it is, the module
waits for its stop ECB to be posted. it
returns to the START command processor
(IHKBGN), which in turn passes contrel to
the closedown routine. The closedown
module (IHKCLN) informs the attached tasks
of the closedown, unchains the job
terminator ECB from the OS queue manager,
issues a DELETE macro for certain as
routines, closes all the lines. detaches
the attached tasks, notifies the central
operator of the closedown, and returns
control.t.o the START command pt:'ocessor
(IHKBGN) •

The START command processor (IHKBGN)
issues a DEQ macro to indicate that CRJE is
no longer an active task. Control is then
returned to the as system control program.

LEGEND FOR METHOD OF OPERATION CHARTS:

LEGEND for Method of Operation Charts

Main CRJE processing routine

Secondary CRJE routine

Main as proceHing routine

Secondary as routine

CRJE Contral Block

r: OS Control Block

• Conlrol Flow

--------------- Data R.ference or Movement

Method of Operation 47

Chart A. Start-Up and Initialization

Input BufferJ

START CRJEPROC" , ~~;~J
1None'~

r, NORMl
k ABNO J

I From SVC 34
I {cmd. scheduling rtn}

IHKBGN

Yes

IHKCIP

• Issue ATTACH Macro for Loader/Controller
Task and for Utility Task.

lit Issue LOAD Macro for IEFOMDQ2,
IEFDELE, and IEFQMSSS Routines.

IHKAST

." Open Active Area DCB.
---------- --.----

.. Build and Initialize TAT.

.. Initialize KONBOX.

IHKCIP

NORM ABNO

SVC34

• START cmd.
Refused.

I

AFIO l
r------,

IHKAWS

• Save Active
Flies in User
Libraries.

• Mark Active
Users as
Inactive.

IHKBSH

• Save Global
Files in CRJE
System
Library.

- --- - - - --- - --- -- 1----_

• Branch to IHKMSG
IHKMSG

• Queue
Messages
from IHKAWS
for User

I

Saved
Under
Name
ACTIVE'

" - ----_

L ________________ ,

r
I
I
I
I
I

_.J

I __ ~!.O _____________ ...!

r---
I
I
I

IHKBST
___________ .1

• Capy System Library into Global Files of
Active Area.

III locate User Libraries.

• Put in UVR the DDNAME of Volume on
which User Library Resides.

.,
I
I
I
I
I
I
I
I
I
I
L

L

• Issue SCRATCH for Job Stream Built by
SUBMIT Command and Not Yet Processed.

• Issue START RDRCRJE for Job Stream
Built by SUBMIT Command and Not
Yet Processed.

• Delete -RJCT Entries for All Jobs on

..s~J.::.s~E ..:'.n~ ~t~,:ko::: ~mf::e:..._

NFMT NONE

• Delete all RJCT Entries

.-M~rk Ai I Jo~ 0;-SYSJOBQE Not- - - -
S2..m.e!!!.e.:.. ___________ -t--t~

Build lOB for Each Completed Job •

• Issue OPEN for Each Line •

if OPEN Faile; ---- - - - -Ifi-
• Issue LOAD Macro for Syntax Checkers.

• Issue Load Request for Modu I es into
Transient Area.

• Issue Delete Request for Modules in
Transient Area to Reduce User Count to
Zero.

• Branch to IHKMSG.

• Set up Appropriate EC B Address and Return
Address for Waiting in Dispatcher.

• Inspect SYSOUT Queue for CRJE-Submitted
Jobs. ---- -- --------

• Mark All CRJE Jobs Found on Queue as
Complete.

• Branch to IHKMSG.

• Delete All References from OS and from
CRJE of Jobs Found on Queue That Were
Not Submitted Through CRJE.

Via IHKSDQ

CLB

CLBSAECB (40)

Send Active
Message to
Central
Operator.
{MSG.

Send Job
Completion
Message to
User.
(MSG. '329)

'--------......, ... CRJE Dispatcher

Method of Operation 49

Chart B. Session Management (Part 1 of 2)

PPT

LOGON Userid/Passward

No

CCT

CCTSUP (0) .. - - - -...... -------t Ves

No

:;.---1-t Via Loader/Controller

IHKLGN

• Operands Checked ond Flags Set.
--- - --- - - ----

• Branch to IHKUTM.

Ves No

• Branch to IH KUTM Again.

Ves No

via IHKLDC

IHKMSG

or

From IHKCMD
Because of LOGOFF
Command

Send Lagons
Suppressed
(301) MSG. to
User

'. --,-
I
L.._ ...

TUB

Return to IHKCMD

TUBMID (60)

TUBBRD (60)

IHKMSG

• Prompt User
for New
Userid
(MSG.1350)

IHKUTM

• Search for
UVR on New
Userid

IHKMSG

• Notify User
Logon is
Terminated.
(MSG. '352)

or

From IHKCMD
Because of ABNORMAL
Termination

IHKUTM

• Search for
UVR. If Found,
Check Active
Bit. If Off,
Tum On.

e PutPasSw"Orr
in TUB.

Return to IHKCMD

Ves

_:.B::: ~H~~ ~a':' ___ -.J--:.....--~r-~.~S~ea;,r;;;cthf:fo:r:--1

No

Ves

Ves

No

No

• Bronch to IH KUT M to Turn off
Active bit in UVR.

L---tl-"'--•• Pass Accounting Informotian to Exit.

Logan Exit Routine

I

L--------4 .. ~- Chart B iii Part 2

UVR.
.. ch;;CD.ctive

Bit • ------
• If Off, Tum

On.

• Notify User
That Lagon
is Terminated
(MSG.1352)

• Prompt U_
for New
Password.
(MSG.I351)

• Notify User
That Logon
is Terminated
(MSG.I353)

Return to IHKCMD

Return to IHKCMD

TO IHKLGF
See (Part 2)

Method of operation 51

Chart B. session Management (Part 2 of 2)

TUB

IHKMSG

Notify User -
Not Allowed
On System.
(MSG. #303)

TUBTIME (324)

r----
I
I
I

~

CCT

IHKMSG

Send
LOGON
Msg. to
User.
(MSG. #327)

CCTSESS (11)

UVR

UVRSESS (24)

IHKMSG

Send Show
Session
Msg. to
Central
Operator.

(MSG. '201)

r
I

14 ---'-I
I

I
I

_--l

IHKLGN

No

• Turn Off Active Bit in UVR.

• Issue Time Macro.

• Store Time in TUB.

• Branch to IH KMSG.

,
I
I

J

No

• Return to IH KCMD.

Yes

Return to IH KCMD

IHKLDC

Delete
LOGON
Processor
From
Transient
Area.

IHKMSG

Send Delayed
Msgs., if Any,
and Broadcast
Msgs., if
Requested.

UVR

UVRUSRID (8)

UVRACTVN

IHKMSG
• Send

LOGOFF
Msg. to
User.
MSG.354)

IHKCMD

~----~r--~.~B:ra:nch to IHKLDC.

IHKUTM
• Verify Userid.
; Turn-CSfT - --

Active Bit.
; Tu;:-n -0-;'- ---

ABNO
Term. Bit
if Requested.

______ .J

IHKMSG

• Send Show
Session MSG.
to Central
Operator.
(M$G *200)

Branch

Cont i nued From Part 1

IHKLGF

Yes

Yes ----- ------
• Request ABNO Term. Bit in UVR Turned

On.

• Branch to IHKUTM.

If Bad Return Code fromlH KUT M

Yes

• Calculate Session Time.

• If Not Closedo .. n, Branch to IH KMSG. ------------
• Branch to LOGOFF Exit Routine

No
Return to IHKCMD .. -----+......:..;.::..<

IHKMSG

• Send
LOGONs
Suppressed
MSG.

Yes

r---___ -r------------- To User
(MSG *301) • Branch to IH KMSG

• Continue Processing on Lines.

Return To CHKCMD

• Initial ize TUB 10 Zero.

• Load Negative Value of LOGON in
Reg. 15.

IHKCMD

• Branch to IHKLDC to Load IHKLGN.

Chart B
Part 1 :.~----------------~

TUB

TUBABEND (6)

TUBUTMN (62)

CCT

CCTSESS (11)

LOGOFF EXIT
ROUTINE

CCT

CCTSUP (0)

Method of operation 53

Chart C. Data Management: Create and copy Functions

PPT

EDIT clsnome NEW

I
I From IHKCMD

No

- .-UPdate TLJlIA~o;di;;g ~ Op~.;ds -
Specified on Command.

IHKIRL

• Create an Active File.

• GETMAIN for Directory Entry.

• Send Li ne Number Prompts to User.

• Put Line of Text in Active File.

Yes

IHKMSG
Inval id Operand
MSG. Queued
for User.
(MSG. #302)

L.. __ ... Return to IHKCMD

- - -, TUB

--,

I
I
I
L

L.._ ---,
I
I
I
I
L

TUBDIRAD (36)

TUBFLG1 (60)

TUBFLG2 (61)

TUBFLG3 (62)

TUBUSRNM (236)

TUBPMFNM (244)

~

r-----
I
I
I ___ .J

IHKBPM
Access User
Library

PPT

EDIT dsname [(userid [key])] OLD

: From IH KCMD

IHKEDT

• Update TUB According to Operands.

IHKED1

• CREATE Active File.

• Userid Verified as Owner of Data Set.

• RFIND to Open User's Data Set.

• Count is Updated and Changes Made in
__ D~e~0.2: En"'t:.. _____ _

• RREAD User's Data Set

• INSERT in Active File.

I
I
I
I
I L ______ ,

I

• Queues for
_L~r~ ..!!2,. _

• ddname of DO
Card for
Library Put in
KONBOX.

IHKENQ

Queues Line

IHKMSG

Message
Queued for
User.
(MSG. '302)

Return to IH KCMD
TUB

IHKIRL

• CREATE
Directory Entry
and CREATE
New Active
File.

PPT

EDIT 'clsname [(member name)], OLD

IHKEDT

I Fram IH KCMD
I

• Update TUB According to Operands

• ATTACH IHKOPN •

• GETMAIN for Buffer.

• Read Li nes from OS Dato Set.

• INSERT Lines into Active File.

• Line Numbers are Assigned.

-,
I
I
I
I
I
I
I
I
I
I
I

r------------~--------
for Library I/O. • DETACH IHKOPN.

No

Yes

Return to IH KCMD

I

IHKSYN

Interfaces
W/Syntax
Checkers ta
Scan Lines

~--~ Buffer i
~-----~I~

I
I
I
I
I

I
L_

I
I
I
I
I
I
I
I
L_

EOD Reached.

Return to Call er

User Libraries

I nput Buffer

:-1 1 --" "E-,
I
I
I
I
I _____________ ..J

.J

Input Buffer
L ________ ~

,-------- -- ---1 T
I
I
I
I
I
I
I ____ ...1

Return to IHKCMD

IHKOPN

• LOCATE and
OBTAIN DSCB.

• Set Up DCB

• OPEN Data Set.

Method of Operation 55

Chart D. Input and Delete Update Functions

PPT

INPUT linenum, increment I REPLY

From IHKCMD

IHKIPT

• Check Operands.

• Set Flags in PPT and TUB According to
_0J:!!r~d!.;m2ubco~m~~ ____ _

No ',"'_-1---<
Chart C

• RPOINT to Linenum in Active File
According to Operands on Subcommand:

(N~ither Operand) I

Yes

• RPOINT for High or Equal Linenum.

• Set up Parameters for IH KIRL.

IHKIRL

,~--------~--~~
R

Chart C

• REPLACE Issued for REPLY.

No

Return to IH KCMD

r
I
I

_...J

...

IHKNUM

Check Linenum
and Increment
for all Numerics.

IHKMSG

Queue Message
for User.
(MSG. '302)

TUB

TUBPPTAD (33)
TUBDIRAD (36)

TUBLNPMT (62)

IHKAFI

• Initiate
Manipulation
of Active
File.

R

IHKMSG

• Prompt User
With Line
Number.

Return to
IHKCMD

Yes

IHKAFI

• Manipulates
Lines in
Active File.

L--.._L_i n_e __ Bu_f_fe_r __ ..J~- - - - ...J

+
I

L --l __ T_erm_i_na_1 _J

IHKAFI
• Positions,

Replaces,
or Inserts •

IHKAFI

PPT

Implicit Subcommand

I
I From IH KCMD

No Yes

• RPOINT to Line Number.

.~~~T":i~ c::.P~~P~c..:: ___ _

• REPLACE Line.

PPT

2 Line Nos.

Return to IH KCMD

DELETE Subcommand
I
I From IHKCMD

No
Operands

• Deletes Line
or Li nes From
Active File.

• DELETE Issued hr That Line.

.... 1-+---1 • DELETE Issued for Last Line of Active File.

I
I
I

• DELETE all Lines Between line Numbers
Specified.

I Return to IHKCMD L _______________________ ...,

L _______ , I

IHKMSG

• Queue Error
Message for
User.
(MSG. '346 or
1349) ,

I I
I I
I I
I I

~ ACTIVE AREA I

I ---~
.... ----

Active File

,L.-____ • Return to
IHKCMD

Active File

,
I
I
I
I
I L _______ _

Global file No.1

Activo File

Active File

Active File

Method of Operation 57

Chart E. Change and Renumber Update Functions

PPT

CHANGE linenum Dinenum] text2 text2[ALl]

I From IHKCMD

• Read Line From Active File
(RPOINT, RGET).

• Move Line to Work Area and Scan.

No

• Write Text2 (PPT) Over Text! • *

• Shift Un~canned Portion of Line so that it
Follows Text2.

• Move Line Back to AFIO Buffer.

No

• Repeat Scan of Line, Until End of Line is
Reached.

• REPLACE Line in Active File.

Yes

No

Return to IH KCMD

*If a Match on Text2 is Never Found During the Entire.
Processing of the Subcommand, an Error Message is
Sent to the User.

IHKNUM

• Check Linenum
For All
Numerics.

IHKMSG

• Queue Error
Message For
User.
(MSG. #302)

L---I1=!B!~I==J Return to IH KCMD r IHKAFI
• Manipulates - - - - - - -,

Active File ---,

IHKCCS

• Scan Line
For Text!.

I
I
I
J

Buffer

I
I ,
I
I
I
I
I ,
I ,

Work Area

Return to
IHKCMD

IHKAFI r--
• Put New Line
• Into Active

File

I _______ ...J

IHKMSG

• Queue Error
Message for
User.

ACTIVE FILE

Active File

Active File

Active File

TUB

IHKNUM

• Check all
Operands for
all Numerics.

TUBUFFAD (5)

.- -,
I
I 1... __ _

r----
TUBPPT AD (33) I

I

I
I
I
I

i --I ... __ us_e_r_B_u_ff_er_--,~ J , , ,
L ___ 1-IH-K-A-F-'----t

,
I , , ,
I
I ,
~
I
I
I
I ,
I ,

_J

PPT

RENUM [linenum [incrementl J
12 J.Q.J

, From IH KCMD

IHKRNR

• Check Operands.

• Store Operond Values.

• RGET Block of Records from Active File

and Resequence.

• Insert Records in Utility File.

No

• RGET Records from Utility File.

• INSERT Records Back in Active File.

• Release Utility File.

Return tolH KCMD

Method of operation 59

Chart F. Merqe Update Function
PPT

Merge [dsn"ame} [linenum linenum][linenum]

I 1 From: IHKCMD

IHKMGE I
• Check Operands.

~-.------------

2 or 0

Error in Operands?

No

How Many Ii ne·nums
Specified?

1 or 3

Yes

IHKNUM

Linenum
Operands
Must Be All
Numeric.

IHKMSG

• Send Error
Message to
User.
(MSG. '302)

. +
Return to IHKCMD

IHKMUF I
• Find User's Data Set.

t-- - -------

Oor2

Data Set Found?

Yes

How Many Linenums
Specified?

lor 3

No

IHKBPM

• Access User
Library.

IHKMSG

Send Error
. Message to User.

(MSG. '338)

~-.. ~----~ User Library

~---i'-..~ __

~~--

IHKAFI

1--------_. ---------,. ________ ~
• Lines in Utility FileS, 1st or 3rd linenum

Manipulate
User's Active
File and Utility
File •

are Copied to Active File. . 1------------
t........-- • Lines Specified in User's Dato Set or Lines
- in User's Entire Dato Set are Read. •

1--. U~..;; u;;..;;oat;"S~r;Th~ - - -~~==------i::::B]§l~::~ Inserted at the End of the Active File. [IHKBPM
f- - - - - - : -- - - - - 1-'

• Copy All Lines in User's 1I--.... 1-~IH~K~AF~I~ __ ~
Active File to Utility File. •

too- - - - - - - - - - - - RREAO U$8r's
Data Set.

f-- --- - -- - --I-'

*
Specified?

No

Yes

• Manipulates
Lines From
Active File
to Utility File.

IHKMAA J •
No Linenum
• All Lines in User's Active File are Copied 1'--+

at End of His Active File. t----- ----- ----I Linenum
• All Lines ~ linenum are Copied to New

Active File. .

• Return to
IHKCMD

Oor 2 Number ·of Linenums
Specified?

1 or 3
i... __________ .,..------

• Lines That Were Not Copied from Utility
File are Copied Back at End of Active

lHKAFI

Insert Li nes
Into User's
Active File.

• All Lines in Utility File are Then Copied
to New.Active File and Resequenced. ~

• All Lines in Utility File That Were Not
Copied the First Time are Now Copied
to End of Active File and Resequenced.

File. •
f-. Li~ :: R;e;e:-ed -:;; They -;e Copi:d -I--r-L,-H-K-A-F~,---.,

into the Active File.

t---- - - - ---- -----
2 Linenums IHKAFI

• All Lines in Range Specified are Copied ~ r--
to End of Active File and Resequenced.

Manipulates
Lines in
Active File

f-3- Li;;n;:';s- - - - - ----

• Same as for 1 Li nenum, Except That
Range of Lines are Copied Instead of
Entire Utility File.

~ and Utility
I- File I-- L.-...I.~_---'

l ___________ Return to IHKCMD

+
Return to I H KCMD

Manipulate
Lines from
Utility File to
Active File.

Method of Operation 61

Chart G. LIST, SAVE, and SCRATCH Functions

,......-.

PPT

LIST [Iinenum [linenum]] [Num]
Nonum

I From IHKCMD
t

IHKLST I IHKNUM

• First Twa TUB
• Operands Checked. Operands 1-- ---------.----- Must be all

Numerics. TUBDATAL (18)

1+-.,.
IHKMSG TUaPRMLS (140) I

Error Found in Yes I

Message Sent to I
Operands? I

User. (MSG. I

'302) I
No I

~
I f-------- --- ---- ,

• GETMAIN to Store Linenums. I --------------- Return to IH KCMD IHKAFI I
I • Flogs Set in PPT (if NUM).
I --------------- Initiates Reading I

• RPOINT to Lines in Active File.
of Lines from --------------- I

• RGET Line from Active File to Buffer. Active File. I

---------- - - --- I
• Li ne M>ved to Li ne Buffer. 1 I

I --------- ---- - ------ - - _____ -1 _____________ ..J

• CWRITE ta Write Line of Terminal. I

i r--i f------- - - -----
r--------L.-1 AFIO Buffer
I I
I

L-.j i---: Line Buffer

No EOB or Lines
Specified Have

I IHKLAD I Been Listed?
I I

.J I
'-' Handles Writing I

of Line to I I
'--- Terminal. I I Yes I I I

I I
I I
I I Return to IHKCMD I I
I I
I I

~_J
I
I
I
I

ACTIVE AREA I

~ t::::: .- ____________________ -l I
I

Active File

~-- ~ Active File

Active File

Global File No.4

Global File No.5

Active File

Active File

_________________________ J

TUB

TUBFLG2 (61)

TUBPRMlS (140)

TUBGBLKY (192)
ruBCNTFS (210)
TUBPMFNM (244)

II

i AFIO Buffer
I
I
I
I

I
I IHKBPM I
I
I • Writes Lines
I in User Library.
I
I
I
I ,
L_ ------ - ---f

I
I
I
I
I
I
I
I ,.... ,~ I
I ------- i

~
I

'-- f+J
I'... User Library ./

' _----

I r

PPT

Save [dsname] [KEY (key il

I - 1-1"" 1 I i t'- User Library / I I IHKSAV J I
I I IHKBPM
I I ...' - I I ------ I I
I I

I From IHKCMD ----..., r-

dsname Diff!lrent from Yes Data Set Exist With ..'!!!. I
I dsname on Save? I Same dsname? ________J

I
I
I

No I No

----------------- I
I • RPOINT l'o Block of Lines in Active File.
I ------------------ I • RGET Lines from Active File. . IHKMSG f----------,------- IHKBPM

L_
User is Prompted f-I-for New dsname. Delete dsname

Yes Space Available No (MSG. #394) from User's
in User Library? Library

I
L--.t. IHKCDP

Condense User's
f----...1

Library •

Space Now Available? No

I IHKMSG
Yes I -------- ---------

• RWRITE lines 10 User's Library if Space

I
. ~.esl Dato Set

10 be Deleted.
is Obtained. (MSG. '396) -----------------• If Space was not Obtained, Return to
IHKCMD ---------------- PPT

I I END
I Yes EOD? Return to IHKCMD : From IHKCMD

m
TUB

TUBTEXTN (4)

TUBDIRAD (36)

TUBSCN (60)

TUBFOR (60)

TUBPLl (60)

TUBEDIT (61)

No

I
...
...

foI

r--------
I
I
I
I
I
I
I
I
I __________ -J

-----.,
I
I , L.. _____________ _

IHKAFI

• Release Active
File.

IHKEND I I

Is Storage Allocated No
.,

• Free Storage.

• Pvt Zero in TUBDIRAD.

• Put Zeros in TUB.

No

------- --------
Negative Value of LOGOFF Cammand Put J
in Reg. 15. Retvrn to

IHKCMD

Method of Operation 63

Chart H. Job submission (Part 1 of 2)

PPT I Submit [d,~,!me I

- ."Actlv;-Fii;; F;.
Released if it Exist. ------------.Old Active File for User is Recreated. ___ L- ______ _

• R/I Data Set i. Scratched if no Jobs
have been Call ected.

• Return to IHKSUB W/Code of 4.

- .el;;; l";;te;:;;aiSwiich',; ;;;;iCo;';-te-;:;
and Initialize PPT Pointers to
dsname on Command.

-~--------

• dsname from PPT is Syntax Checked.

Ves

- • Posiiio.;FiI;-to Re;i 1 rtBI:ck;;r -
Records.

• Count of dsnames is Increased.

-. 5;itd;" i;S.;tlnd;catin9Ac~e- -
File or User Librory Data Set.

T IHKGETT---- -----

Return
=0

• File is Read into 2nd Private File
in Active Area.

• Read Next Record (dsname).

No

------ ------• Position to Read lst Block of Records.

• Send Error
Message to
User.

(MSG. '336)

RPOINT -
if Active File.

Return
Code = 0

RFIND -
if User File
in Library

Chart H
Part 2

Return
Code = 4

• Writes File in
Active Area
After it is
Read.

RPOINT -
if Active File.

TUB

.. TUBACTNM (190)

.. TUBNXKEV (252)

RFIND -
if User File
in Library.

Chart H
>---iI-l":·"' Part 2

• length and Address i. Saved for Each
Block of Records.

• Each Record is Processed:

No

Yes

DO Data Switch
Turned Off

IHKAFI

• Write New
Entry in
Global File.

No

_~I:!:- __
• All Records Before Job Statement

_ .!.':!r!!!."~n ~I!~ ~. __ _
• length and Address Poi nters are

Modified.

• Dummy DO Statement Written in
R/I Data Set. ------------

• TTR of DO Stotement is Saved •

• RJCT Entry Written in Global File.

• Process Job Statement.

Chart H
Port 2

- - -;-R;.;d Ne;d ~c:k. - - - - -
- - -. poi; ;; N;xtie~Z - - - -

• •

Method o,~ Operation 65

Chart H. Job Submission (Part 2 of 2)

Post
ECB in
IHKSRV
for Start
Reader

• DCB is Positioned After HR.
(Close Writes EOF After Last
CRJE DD Statement.)

• Base Reg of RJCT is Cleared.

Zero

No

• A CRJE DD Statement is Written
for Last Job.

• R/I Data Set is Closed.

• Start Reader (I H KSRV).

.. SUBMIT Requesl Dequeued.

,. Work Area is Freed.

Return to IH KCMD

IHKSRV

Ves

• Request Code is 'OB' to
START Reader.

No

- - - -; Ts;~e START RDR C"o':;;-m";;nd (rve 34 -
____ a.!!d~E!!u~. _________ _

• Issue STiMER for 2 Seconds.

• Mark Request. ---- -------------
• Increase Event Count in WAIT Macro.

- - -. Ched: if Ne;t Req;;ert ~,~"b; - --
Serviced.

- - -; Whe;;-2S;';0-;;ch ;;;"-O;"r-;- A~;;- -
Processing is Repeated.

CharI H
Part 1

Chart H
Port 1

Chart H
Part 1

Chart H
Part 1

IHKSUB

.. JC L Cards are Sent to SU BMIT
Installation Exit.

o

• Installation Rejected Statement.

8 IHKLAD

SUBMIT
Installation

User is Sent Exit
Message.

~ ~tify ~e~ -=- -=--_~ -=--_ -=--=--r------.... t-I~H!!K~M~SG~ __ ~
• Abort SUBMlT (X 'BO') 10 IHKGET)

• Abart SUBMIT (X'BO' ta IHKGET)

• RJCT is Built and Initialized.

Ves No

• R/I Data Set Allocated Switch is Turned
On.

Chart H
Part 1

... -----~.Notify User of
Abart SUBMIT.
(MSG # 376)

IHKAFI

r-
I
I
I

RJCT

Initiates Access
to Global File
in Active Area.

_-1

RJCT JOB (2B)
------,

Via IHKSRV

r---------------
I
t

rr------------------JI--------------------~,
006000005 RDRCRJE.S"" DSNAME = SVSl .CRJE. jobname,

DISP = (OLD,DELETE),UNIT = 231 X, Volume = SER = valid

~~------------------v-----,-------------J

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I ,
I
I
I
I
I
I
I L ___ _

r--
I
I
I
I
I
I
I

Return Code = 20

IHKALC

• 104 - Bytes Obtained for START Reader
Command

--- - ----------
• DADSM ALLOCATE Routine (SVC 32)

is Called to Allocate Sequential Data
Set.

• DDNAME for DCB is Obtained from CLB.

• Search CRJE TIOT for DDNAME

No

.. READ JFCB is Issued. --------------
• OPENJ Issued far Data Set.

-; Ratu;;' ';-IHKSUB - - -- - ---

Method of operation 67

Chart I. Notification of Job OUtput

Job is Queued by as on
eRJE SYSOUT Queue.

• Ptequest loader/Controller to load
IH KDEQ Routine and Pass Control to it.

r------ ----
I
I
I
I

~---,
---'

r-------
1
I _

Via IHKLDe

• Search for RJCT Entry for Job That Was
Oequeued. ----- -----

No

Yes

Nc

Job is Marked Complete

• All Infonnotion Needed to Locate Job
Output is Put in RJCT Entry.

eeT

... eelJTBSY (0)

• Job Termination F'rocess.ing Flog is Turned
Off •

• Job T erminotion Initialization Flag is
Turned Off •

Queue Notify
Iv\essoge for User.
(MSG '329)

Scratched"

...
eeT

eeT JTBSY (0)

eeTSRTlJP (1)

l5$u. Delete
Requ •• t to
IHKLDC for
IHKOtQ. t---I"'<:all. Di.patch«

Method of Operation 69

Chart J. Job Output

[

Compressed

PPT

OllTPIJT iobnomo [SMSG] J

IHKMSG

No Queue Error
M ... ago lar \Jsor.
(MSG. '302) Vi. IHKOUT

_ ~-= ~~n~. _______ r-----..... ~I.H~K~A~F~I---_J
• Rood RJCT Entry

,.---------+---------1 From Global fil ••

Ves IHKMSG

Queue Mesloge
for User.
(MSG. '323,

Return to IHI<.CMD

#324, or Via IHKOUr
'233)

Vio IHKCMD and IHKLDC Rerum to IHKCMD

IHKPUT

No

Via IHKPUT

• Read 5MB or DSB.

No

IHKLAD

• Transmit 5MB to Terminal., --- --,
'----I" - ;-D-;'';;;;pr-;' 5MBondTh= r;;,,;;;.i, it"to

Terminul. '

• Send Data to
Terminal. I

I
I

IHKAFI

Delete RJCT
Entry lar Job.

IHKPUT
if DSB is Read,

Via IHKPUT

Return to IH KCMD

• TlOT Contained in DSB is Used to Build
New TlOT (Refenenced by OPEN, CHECK,

..a.nd.flQSLA1!5r2!l· ___ ---

IHKRER

*Errors:

• Jobnam. Not Found.
• User Requesting Output Did Nat

Submit Job.
• Jab Not Marked Camplete.

• Open Data Set •

• !!:a~ !!I~R~ _______ .t---.... "l ______ J
• BSAM Used to Rood SYSOUT Dala Sel.

• Deblock Dola.

• Branch to IHKlAD.

• Branch 10 IHKRER02 •

IHKLAD

• T ronsmit Data
to Terminal
one logical
Rocard 01 a
Time.

----,
c¢;J

cF;J IHKRER()2

• Scratch Data
S.t.

Method of Operation 11

• Check STOP Bit.
.P~e;-C-;'~nd. - - - - - --

• Turn on Completion Bit in ECB of CSCB.

Via Dispatcher

IHKCCI

• Check STOP Bit.

• Branch to IHKLDC to Load IHKSTP.

IHKSTP

~~S!!p~~~~ ______ _
• Check-Stop Acknowledgment ECB in CLB.

• Check Stop-Acknowledgment ECB in
elB for Next line Until all Have
Been Checked.

• When 011 Stop-Acknowledgment ECB.
Have, Been Posted,

;-Br";"J; i; iHKBsH
• Post Stop ECB for Job Terminator.

,--------,
I I
I I
I

--1
I
I
I
I
I

--1

t SPL

PARM
ECB

CIS

I
I --1 STOP CRJE

I
I
I __ .J

CCT

,- - -. CCTOPT (0)
I
I
I
I __ J

--,
!C jiLBillIlIlIlIlIlIlI.
L _ _ CLBSAECB (40)

(WAIT)

IHKCMD
Force. LOGOFF via

STCB

STCBECBL (4)

Command for IH KLDC
.,bi.!!.'!.: ____ -y;;.:,:.:::...:...r.-==::-----,

I

• Post Stop­
Acknowledgment
ECBinCLB. t-------1-~~~~~~

IHKBSH
• ave hve

Area Global
Files Into

RES SUB
---,

I
I
I
I
I
I
L_

CCT r-­

"-cIIC.T.O.PT-(O.)--'- - - __ J

Operator.
(MSG '230,222)

via Dispatcher and
IHKBGN

• Post ECB of IHKSRV and IHKLDC 10 Infcnn
Them of Closedown.

• Unchain Jab T erminotor ECB from OS
QMGR.

• Issue Delele for IEFQMDQ2, IEFDElE,
and IEFQMSSS Roulines.

• Issue Delete for Syntax Checkers.

• Issue DETACH for IH KlDC ond IH KSRV
Routines.

Branch to Message Writer.

Close DeB for Active Area.

(')

g
t1
rt

:0: .

PROGRAM ORGANIZATION

This section contains a description of every module in the CRJE
program. The modules are grouped together by the function they perform.

START-UP ROUTINES

The following three modules contain the main start-up and
initialization routines. Other modules are used in performing
initialization, but as that is not their main function, they are
described in another section.

CRJE SYSTEM LIBRARY INITIALIZATION UTILITY (IHKINI)

Entry Point

IHKINI - No parameters are passed. Input requirements - IHKSMG (CRJE
system messages) and IHKUSR (CRJE users) must be linkage edited with the
IHKINI routine, and a DD statement with the DDNAME of the SYSLIB
describing CRJE.SYSLIB must be present in the job stream.

Function

This module is a CRJE utility program that must be executed before
using the CRJE system. The program resides as a load module IIHKINT) on
SYS1.LINKLIB and results from the linkage editing of IHKSMG, IHKUSR, and
IHKINI.

The IHKINI module opens the CRJE system library, writes the CRJE
system messages in the system library, and issues a STOW macro for the
directory entry. If the open fails, an error message is sent to the
central operator and control is returned to the operating system.

If the CRJE USERS member is to be initialized, it is written to the
CRJE system library and the directory entry is stored.

When the CRJE USERS member has been written (if it was present), the
remaining directory entries (user messages, broadcast messages, and job
tables) are stored. The system library is closed and control is
returned to the operating system.

If any I/O errors are encountered during initialization, a message is
sent to the central operator and no further processing is attempted.

The DCB used by this module has the following parameters:

DCB BFALN=F,BLKSIZE=880,DDNAME=SYSLIB,DSORG=PO,LRECL=80,
MACRF=WO,RECFM=FB

External Routines
BPAM Invokes the following macros

WRITE, CHECK, NOTE, STOW, OPEN, and CLOSE.

14

x

Tables/Work Areas

is-word save area
BS-byte DCB
20-byte DECB

Exits

Normal - return to operating system
Error - none

Attributes

Serially reusable

START COMMAND PROCESSOR (IRKBGN)

Entry Point

IRKBGN

IHKBGNOl -

Function

register 1 contains the address of the start
parameter list (SPL). The SPL contains three
pointers: PARM field on the EXEC statement in
the procedure to start CRJE, an ECB for
communication with OS, and the command input
buffer (CIB).

STAE exit routine for the main CRJE task. It
expects no input parameters.

The IHKBGN routine is given control by the operating system task
control. routine at CRJE system start-up time. An ENQ macro is issued to
ensure that CRJE is not already an active task within the operating
system. If CRJE is already active, the START command is refused. If it
is not already active, this routine passes control to the IHKCIP module
to initialize the CRJE system. When control returns, the return code is
checked:

-0 - initialization was complete ~

- 4- error encountered, branch to the IHKCLN module for cleanup
before exit;

- 8 - bad parameters, issue DEQ macro and exit.

If initialization was successful, a STAE macro is issued to intercept
any abend of CRJE and a branch and link is made to the job terminator
module (IHKSDQ) to start processing on the lines. When control returns
at stop time or a return code of 4is received during initialization,
control is passed to the closedown routine (IHKCLN) to perform cleanup
of CRJE before exit. Upon return from the IHKCLN module, a DEQ macro is
issued indicating that CRJE is no longer active. Control is then
returned to the system control program. .

As a result of the ST.AE macro, when the CRJE main task abends, the
CRJE STAE exit routine, IHKBGN01, gains control. IHKBGNOl links to
IEFQMUNC to unchain the CRJE job termination ECB and then returns to the
operating system so that the abend may be processed.

External Routines

IHKCIP
IHKSDQ
IBKCLN

CRJE initialization
entry point to main body of CRJE
cleanup before exit

Program organization 75

IHKMSG

IEFQMUNC -

Tables/Work Areas

l8-word save area

(entry point:IHKMSG01) error messages sent to
central operator

unchain the CRJE ECB

AVT address of start parameter list is put in IHKSPL.

Normal
Error

Attributes

return to system control program
none

Resident and serially reusable

CRJE INITIALIZATION ROUTINE (IHKCIPI

Entry point

IHKCIP

Function

Register 1 contains the address of the CRJE address
vector table (AV'I').

This routine inspects the parameters on the START command. If an
error is detected, the return code is set to 8 and control is returned
to the START command processor (IHKBGN). If syntax checkers are
specified, the appropriate FORTRAN and PL/l syntax checkers are loaded
and dummy passes are made to them for initialization purposes. If the
parameters are valid, an ATTACH macro is issued for the loader/
controller (IHKLOC) and the service task (IHKSRV). A LOAD macro is
issued for the following OS routines: IEFQMDQ2, IEFQDELE, and IEFQMSSS.

A branch is made to the active area start-up/initialization module
(IHKAST is described in the librarian section) to open the active area.
If ABNO is specified on the START command, a branch is made to the
active area recovery module (IHKAWS is also described in the librarian
section). This routine saves the global file in the CRJE system
library, saves the user's active file in his library under the name
ACTIVE, and releases the allocated space. If NORM is specified, the
call to the IHKAWS module i~ bypassed. The IHKBST module is called to
read the CRJE system library into the global files of the active area.

Once the active area has been initialized the CRJE job control table
is updated according to the type of START command that was entered:
FORM, NFMT, or NONE. This is a two-pass operation.

On the first pass and if FORM was specified, IHKCIP scratches each
data set that was built by the SUBMIT processor and that has not been
processed by an OS reader.

On the first pass for NORM or NFMT, a START RDR command is issued for
each data set that was built by the SUBMIT processor and that has not
been processed by an OS reader.

On the second pass each RJCT entry is inspected. All jobs that are
not marked complete and that are not found on the SYS1.SYSJOBQE are
deleted from CRJE (RJCT entry is deleted).

Depending upon the parameter specified on the START command, the
following processing is done for jobs marked complete and found on the
SYS1.SYSJOBQE:

76

FORM start
NFMT start
NONE start

all RJCT entries are deleted
RJCT entry market not complete
lOB built for each complete job

After all RJCT entries are processed the lines are opened. If the open
is successful, the dummy ECB in the STCB for that line is changed from a
wait (X'SO') condition to a post (X'40') condition. If the open failed,
the stop acknowledgment ECB in the CLB is posted.

Then the parameters on the EXEC statement are processed. The
loader/controller is primed with load requests to fill the transient
area. A delete request is issued for all modules that the
loader/controller brought into the transient area. This reduces the
request count to the correct value (zero) but does not physically remove
the modules.

The address of the communications ECB (second word of the SPL) is put
in the dispatcher's ECB list for central commands. A message is sent to
the central operator notifying him that CRJE is active. Control is then
returned to the IHKBGN module.

External Routines

IHKMSG

IHKAST
IHKAWS

IHKBST
IHKAFI
IHKSRV
IEFLOCDQ

(entry point:IHKMSG02) to send active message to
central operator

to initialize the active area
to recover the active area if ABNO is specified on

START command
- to initialize the global files from the system library

to search global file (RJCT entries) for job recovery
to get lOB for completed job .
to determine if jobs marked not· complete are on job

queue, SYSOUT queue, or hold queue.
Alias is IHKLOC.

Tables/Work Areas

18-word save area
113-byte START RDR command buffer
80-byte buffer for RJCT entry
CLB stop acknowledgment ECB (CLBSAECB) is posted with X'FFOOOO'

is the open fails.
STCB dummy ECB (STCBDUMY) is posted if open is success.ful.

Exits

Normal - return to the IHKBGN module wi th return code of 0 in
register 15

Error return to the IHKBGN module with one of the following
return codes in register 15:

04 - error in intialization
08 - bad parameters

Attributes

serially reusable and nonresident

ACTIVE AREA START-UP/INITIALIZATION MODULE (IHKAST)

Entry Point

IHKAST - register 1 must contain the address of the AVT.

Program organization 77

Function

The initialization module, IHKCIP, branches to this module during
CRJE start-up. The functions of this module are:

• open the active area DCB;

• build and initialize the track allocation table (TAT);

• initialize several track allocation control fields in the IHKNBX
(KONBOX) •

A DEVTYFE macro is issued to determine the characteristics of the
device to which the active area data set has been assigned. This is
done to ensure that the device is a 2311, 2314, or 2319. If it is not,
error returns are made. The active area DCB is then opened, and the DCB
pointer to the DEB is used to determine the DASD extent allocated to the
acti ve area. If more than one ext.ent is allocated, an error return is
made.

The number of cylinders in the allocated extent and the number of
heads per cylinder according to the device (2311, 2314, or 1219)
determine the number of bytes necessary for the TAT. A GETMAIN macro is
then issued for that number of bytes. The TAT is initialized to reflect
all of the tracks in the active area that are available for allocation.
After initialization of the TAT~ the following fields in the KONBOX are
initialized: NUMHEAD, UMAXAVAL, UC1FW, UC12FW, UC3FW, MASTRKFW,
MASLGHFW. MIDCYLFW. These fields are used by the IHKAFI and IHKEXC
modules during active file track allocation, deallocation, and master
index track initialization during a CRJE session.

None

Tables/Work Areas

Track Allocation Table

IHKNBX (KONBOX)

Normal

Error

- return to IHKCIP with 0 in register 15

- return to IHKCIP with one of the following return codes
in register 15:

04 GETMAIN failed
08 No DO card for active area data set
12 Device not DASD
16 Device not 2311, 2314, or 2319
20 Multiple extents allocated to active

area da ta set

Attributes

Nonresident and serially reusable

78

ACTIVE AREA RECOVERY MODULE (IHKAWS)

Entry Point

IHKAWS

Function

register 1 contains the address of the CRJE address
vector table (ACT).

The initialization module, IHKCIP, branches to this module at CRJE
start-up time when the ABNO parameter is specified on the CRJE START
command. This module attempts to save the user's active files that
existed at the time of a previous abnormal closedown. The user's active
file is saved in his user library under the name ACTIVE. If there is
not enough space in his library, his active file is lost.

The operation of this module depends upon the ability to gain access
to the USERS global file in the active area. If the abnormal closedown
from which recovery is being attempted resulted from an inability to
gain access to the active area, this module cannot perform its function.

The UVRLNSEQ field in the USERS global file contains the line
sequence number t~at was assigned to the user's TUB when he was active.
UVRLNSEQ is used to locate the entry of this user's active file on the
master index track. The information contained in this entry allows this
module to sufficiently initialize the required AFIO work areas to allow
the reading of the user's records from his active file and the saving of
them in his user library.

The IHKAST module has initialized the track allocation table, the
IHKNBX fields that control active area track allocation, and the master
index track location before control is passed to the IHKAWS module. The
track allocation table is not used during recovery; the information in
the KONBOX concerning the master index track location is used instead.

The IHKAWS module obtains a save area. Then the RPOINT macro is
issued to point to the beginning of the USERS global file. An RGET
mac,ro is used to retrieve the first record. The UVRLNSEQ field of the
record is examined to determine whether this particular user had an
active file at the time of closedown. If the user did not have an
active file, the next record is read from the USERS global file. If the
user did have an active file, a CREATE 0 macro is issued to reinitialize
the AFIO work area in the TUB using information from the user's active
file entry in the master index track and from the user'S own file index
track, located through his master index entry.

In a normal CRJE start-up environment, the first CREATE macro that is
issued by any command processor causes initialization of the master
index track. This function is bypassed during recovery so that
information in the master index track existing from the previous CRJE
session will not be destroyed.

After the CREATE 0 macro is issued for the user's active file, an
RFIND macro is issued to open and point to his user library. An RPOINT
macro is then used to point to the beginning of the user's active file.
Alternate RGET and RWRITE macros are used to save the user's active file
in his library under the name ACTIVE. If the user library has a logical
record length of 80 characters (as opposed to a length of 88
characters), IHKAWS checks positions 73-80 for either blank~ or the line
sequence number. If neither is present, a flag is set so that a warning
message will be sent to the user, informing him that the data in columns
73-80 was lost (message IHK410 DATA LOST IN TRUNCATION).

If the save process ends without error, the user library is closed, a
saved message is inserted into the message chain, and the next record in
the USERS global file is processed in the same manner. If errors are

Program Organization 79

encountered during the save process, a message is entered into a message
chain, built and maintained by this module, and the process continues
until EOD is encountered on the USERS global file.

Upon the completion of processing all the records in the USERS global
file, a call is made to the IHKBSH module to save all the global files
in the system library. This is attempted to save any updates that were
made to the global files during the previous CRJE session.

External Routines

IHKAFI
IHKBPM
IHKBSH
IHKWTR

TUB
IHKNBX
AVT

Exits

Normal

Error

Attributes

to read USERS global file and to read users' : active files
to write the user's active file to his library
to save global files into the system library
to check for completion of RWRITE

AFIO related fields
information concerning the master index track location
addresses

return to IHKCIP with a pointer to the first message of
the message chain in TUBPARM4 (zero if no message chain
exists) and zero in register 15.

return to IHKCIP with one of the following return codes
in register 15:

04 - Active file open failure
08 - I/O error in active file
12 - GETMAIN failure
16 - I/O error in IHKBSH

Nonresident and serially reusable

LIBRARY I/O START-UP MODULE (IHKBST)

Entry Point

IHKBST

Function

register 1 must point to a one-word area containing the
address of the AVT.

The library I/O start-up module generates the active global files by
copying the members of the CRJE system library (CRJE.SYSLIB) into the
active area.

. After generating the active global files, this module searches the
DASD devices for which a DD card was provided with the ddname LIBXXX.
These DD cards identify volumes that contain CRJE user libraries having
the name CRJE.LIB.userid. When these user libraries are located, the
userid is checked for validity. The ddname for the volume on which the
library is found is saved in the last eight bytes of that user's entry
in the UfERS global file.

If a user's library is found for which there is no entry in the USERS
global file, the library is ignored. If I/O errors occur while gaining
access to the active area or the system library, control is returned to
the CRJE initialization routine to initiate closedown.

80

External Routines

IHKBPM
IHKAFI
IBKRNQ

to gain access to user libraries
to ga1n access bo the global files in the active area
to queue for library 1/0

TableslWork Areas

18-word save area
352-byte DSCB buffer
TUB
KONBOX

Exits

Normal
Error

Attributes

return to calling routine with a 0 in register 15
return to calling routine with one of the following
return codes in register 15:

04 - maximum users exceeded
08 - permanent 1/0 error in active area
12 - permanent 1/0 error in system library

Nonresident and serially reusable

SHUTDOWN ROUTINES

CRJE STOP MODULE (IHKSTP)

Entry Point

IHKSTP

Function

register 1 must point to a one-word area containing the
address of the AVT.

The IHKSTP module first sets the stop bit in the CCT. The 'CLBs for
the lines are then scanned. If the stop acknowledgment ECB in the CLB
is posted, the scan moves on to the next CLB. If it is not posted', the

. stop module issues a RESETPL macro. The RESETPL macro issues a HALT I/O
only if an enable or prepare is on the line. This forces the line
administrator out of the wait condition. If an enable or prepare is not
on the line, the STOP command is recognized by the system administrator
when the current command from the line completes processing.

The line administrator recognizes that closedown is in progress and
returns to the system administrator. The system administrator forces a
LOGOFF for the user, performs general cleanup on the line, and posts the
stop acknowledgment ECB.

After performing the previously described actions, the IHKSTP module
moves to the next CLB until all CLBs are scanned. When all CLBs have
been scanned, IHKSTP makes another pass through them. On this second
pass, it waits in the CRJE dispatcher for the stop acknowledgment ECB to
be posted for each line.

When all stop acknowledgment ECBs have been posted (indicating that
STOP is recognized and completed for each line), control is passed to
the IBKBSH module. This module writes the global files of the active
area into the CRJE system library. The IHKSTP module then posts the
stop ECB for the job terminator, indicating that stop processing is

Program Organization 81

complete and the IHKSDQ module can now return to the START command
processor (IHKBGN). A check is ma.de to see whether the IHKSDQ module is
busy. If it is not busy, this module posts the QMGR ECB of the IHKSDQ
module. since the IHKSDQ module may be at this time waiting for either
the QMGR or stop ECE. Control is then returned to the IHKCCI module,
which waits in the dispatcher, thereby giving the IHKSDQ module control.

External Routines

IHKDSP
IHRBSH

to wait for the lines to close
to write the global files of the active area into the
system library

Tables/Work Areas

lS-word save area

CCT
CCTOPT

CLB

(CCTCLS) turned on to indicate closedown in
progress

CLSAECB (stop acknowledgement ECB) waits for this ECB to
be posted indicating line activity is now
terminated

Normal
Error

Attribu1:es

return to the IHKeCI
none

Reentrant and nonresident

CRJE CLOSEDOWN MODULE (IHKCLN)

Entry Point
IHKCLN

Function

register 1 must point to a one-word area containing the
address of the AVT •

•

This closedown module first informs the CRJE attached tasks (IHKLDC
and IHKSRV) of the closedown. It then unchains the job terminator's ECB
from the OS Queue Manager CIEFQMUNC); issues a DELETE macro for the
IEFQMSSS, IE~QMDQ2, and IEFQDELE routines: and issues a CLOSE macro for
the lines. If syntax checkers are present, they close down, and a
DELETE macro is issued for them. If the attached tasks abended, an
error message is sent to the central operator.

The CRJE attached tasks are detached. If a SHOW SESS is outstanding
and Multiple Console Support (MCS) has been included in the system, the
SHOW SESS bit in the unit control module (UCM) is turned off for each
console.

A closedown message (normal or abnormal) is sent to the central
operator. Then theDCB for the active area is closed, and control is
returned to the IHKBGN module.

External Routines

82

IEFQMUNC
IHKMSG

to unchain queue manager ECB
(entry point: IHKMSG) to send normal closedown message

(entry point:IHKMSG02) to send abnormal closedown
message

Tables/Work Areas

18-word save area
CCT

CCTOPl'

CLB

(CCTATERM) set if OS queue manager UEFQMUNC) has
disk error; inspected for type of.closedown
message to be sent t~ central operator.

CLBSAECH (stop acknowledgment ECB for line) checked for
X'FF' at CLBSAECB + 1; if X'FF', line DCB is not
opened and no CLOSE macro is issued for that
line's DCB.

Exits

Normal
Error

Attributes

return to the IHKBGN module
none

serially reusable and nonresident

LIBRARY I/O SHUTDOWN MODULE (IHKBSH)

Extry Point

IHKBSH

Function

register 1 must point to a one-word area containing the
address of the AVT.

This module saves the active area global files in the CRJE system
library (CRJE.SYSLIB) at closedown and at an abnormal start-up.

There is a possibility that an end-of-extent situation may arise. If
the copy operation is terminated because of an end-of-volume condition
or I/O error, a message is sent to the central operator notifying him of
the situation.

If no end-of-volume or I/O error situation arises, all global files
are copied into their respective members of the CRJE system library
~CRJE.SYSLIB) and control is returned.

External Routines

IHKRNQ
IHKAFI
IHKMSG

IHKBPM

to queue for library I/O
to gain access to active area
(entry point:IHKMSG02) to send message to central
operator
to perform library I/O

TableS/Work Areas

KONBOX
TUB (dummy)

Normal
Error

return to calling routine
none

Program Organization 83

Attributes

Nonresident and serially reusable

UTILITY TASK

START RDR. ALLOCATE, AND Q MANAGER SERVICE TASK (IHKSRV)

IHKSRV

IHKSRVOl

the address of the AVT and the address of the
initialization ECB, for which the IHKCIP module is
waiting, are passed via the ATTACH macro.

parameters are passed to the STAE exit entry point.

Function

This service task issues a POST macro for the initialization ECB to

I inform the IHKCIP module that the ATTACH macro has completed. A STAE
macro, with IHKSRVOl as the STAE exit routine, is issued to intercept
abends within the service task. This routine then issues a multiple
WAIT macro for its ECB list and waits for work. The ECB list, which was
generated at CRJE assembly time, contains the following pointers:

• to an ECB in the CCT that is used by the timer exi t routine in this
task;

• to an ECB in the CLB for each line;

• to an ECB in the CCT for the central conunands;

• to an ECB in the CCT for job termination.

This service task gets control again when a requester issues a POST
for one of the ECBs in the ECB list. The posted ECB points to the
following parameter list:

00

84

Word 1
Word 2

Word 3

Word 4

STOP

the address of the return ECB,
the address of a one-byte field containing a code that
specifies the function requested,
the address of the parameter list that must be passed to
the requested module,
the entry point address of the IHKALC routine (used only
for the allocate request).

When control is given back to this module, the START
RDR request queue is checked. If th~ queue is not empty
and if no reader is currently active the first request
is taken from the queue and a STAR~ RDR (SVC 341 is
issued. If a reader is currently activ~. a STIMER macro
is issued. This gives control back to the IHKSRV routine
after fhre seconds, and the remaining START RDRCRJE
requests can be satisfied.

On an empty queue or if a reader is running,
processing continues. The different requests passed to
this routine are analyzed and, according to the codes,
the service task takes the following actions:

Return to the control program after all START
RDRCRJE requests have completed.

04 ALLOCATE Give control to the IHKALC routine and issue a
POST macro for the return ECB (with return code
from IHKALC).

08 START RDRCRJE On a START RDRCRJE request a 104-byte parameter
list is passed to the IHKSRV routine. The last
two words are used by the IHKSRV routine to put
this request on a queue (START RDR request queue)
and to close the DCB. When the request is queued,
the return ECB is posted. If no queue,_ entry is
passed to the IHKSRV module, the R/I data set is
scratched.

12 QMSSS Give control to the IEFQMSSS routine and issue a
POST macro for the return ECB (with return code
from IEFQMSSS).

16 QMDQ2 Give control to the IEFQMDQ2 routine and issue a
POST macro for the return ECB (with return code
from IEFQMDQ 2) •

20 QDELE Give control to the IEFQDELE routine and issue
POST macro for return ECB (with return code from
IEFQDELE) •

24 LOC Give control to the IEFLOCDQ routine after being
loaded by loader/controller. Issue a POST macro
for the return ECB (with return code from the
IEFLOCDQ routine).

28 GETCORE A GETMAIN macro is issued for 72 bytes for an lOB
from subpoo1 253, and a POST macrb is issued for a
return ECB (with the address of the GETMAIN area
as the post code).

IHKSRVOl gains control if an abend occurs within the service task.
IHKSRVOl posts the main CRJE task to prevent further accesses to the
service task. It then posts each CRJE subtask that is waiting on the
service task. The~losedown and abnormal c1osedown flags in the CCT are
set and the main CRJE task is posted to initiate c1osedown of CRJE. It
then posts each CRJE subtask that is waiting on the service task and
returns control to the operating system.

External Routines

SVC 34

IEFQMSSS,IEFQMDQ2,
IEFLOCDQ and IEFQDELE

IHKALC

Tables/Work Areas

18-word save area
AVT
CCT
ECB list

START RDR

read or write records on SYS1.SYSJOBQE

allocate SYSIN data set for job
submission

Exits

Normal
Error

return to calling routine
none

Attributes

Resident and serially reusable

Program organization 85

LOADER/CONTROLLER TASK

LOADE·R/CONTROLLER MODULE UHKLDC>

Entry Points

IHKLDC

IHKLDCOl

is attached by the initialization module (IHCIP.) at
start-up time and it runs with the same dispatching
priority as the originating task. The address of the
ECB for the initialization module and the address of
the AVT are passed using the ATTACH macro.

the STAE exit routine for the loader/controller task.
At entry. no parameters are passed to it.

Function

The purpose of the loader/controller is to load and delete
nonresident modules and to serialize requests for serially reusable
modules.

The size of the transient area in which the modules are loaded has a
minimum of 81< and can be increased at start-up time in multiples of 2K.
The modules loaded by the loader/controller are grouped together in 2K
load modules. And the modules are always brought into main storage in
terms of 2K.

When the IHKLDC module is entered, initialization is performed, the
ECB for which the initialization routine (IHKCIP) is waiting is posted,
and a STAE macro is issued to intercept abends within the task. Then
the loader/controller waits for an ECB list pointing to an ECB in each
CLB, to an ECB for central commands, and to an ECB for job termination.

The following conventions must be followed to load or delete a
nonresident module:

• ECB (pointed to by loader/controller ECB list) must point to a
7-byte area containing the following:

Bytes 0-3 - return ECB on which the CRJE dispatcher is waiting while
load:ng or deleting is performed.

Byte 4 - coce of the routine to be deleted or zero if there is no
delete request.

Byte 5 code of the routine to be loaded or zero if there is no
load request.

Byte 6 - zero (used for marking request as waiting).

• ECB <pointed to by lo~der/controller ECB list) must be posted.

• Branch is made to dispatcher with register 1 pOinting to the return
ECB.

By using the ECB and tables, which are described later, the
loader/controller can find all the information needed to perform the
delete or load function. The requests for deletions or loads are filled
9Y scanning, three times in the following manner, the ECBs for which the
IHKLDC module is waiting:

1. The ECBs and the appropriate parameters are scanned first for
.deletion requests. These requests are satisfied immediately by
decreasing the block request count by one. Then the return ECB for
this request is posted.

86

2. The second scan is for load requests asking for modules that are
already in the transient area. If the requested module is
reentrant, the entry point address is inserted in the return ECB
and this ECB is posted. If the module is serially reusable and is
already occupied by another user, the event count of the WAIT macro
is incremented and the request itself is flagged as waiting for a
module. Then the scan is resumed with the next ECB.

3. The third scan is for load requests asking for modules that are not
already in the transient area. Before the load module containing
the requested module can be loaded, a load module in the transient
area must be found for which there are no requests for any of its
modules. This load module is then deleted leaving an empty 2K
block in the transient area. If no load module is found with a
zero request count, the new load request cannot be satisfied. The
event coUnt of the WAIT macro is increased and the request is
marked as waiting for a module (byte 6 of the area pointed to by
the ECB). All requests still pending at this time are treated this
way. Then the loader/controller waits for new requests. The next
time the loader/controller gets control, all three scans are
performed starting with the first request that could not be
satisfied.

When a load module is found with a zero request count in the block
table and the load request is not for a "trouble module," the load
module in the block is deleted and the load module that was requested is
loaded. (A "trouble module" is a module that requests the loading of
another module before the "trouble module" itself is deleted, or is a
module that queues itself for library I/O or uses the IHKUTM module to
be queued for library I/O.) If the load request is for a "trouble
module," the "trouble module" count (first byte in module table) is
checked. The "trOUble module" count contains the number of 2K blocks
assigned to the transient area minus one. Each time a "trouble module"
is loaded, one is subtracted from the count. When a "trouble module" is
deleted, one is added to it. So if the count is zero, the load request
is marked as waiting. If the count is not zero, the load module is
loaded and the count updated.

At closedown time the closedown routine passes binary zeros to the
loader/controller in bytes 4 and 5 of the 7-byte area. The
loader/controller then deletes all the modules in the transient area and
returns.

The loader/controller task STAE exit routine (IHKLDC01) gains control
if the task abends. IHKLDC01 posts the completion ECB <IHKLCE) to
prevent further accesses to the task. The closedown and abnormal
closedown flags in the CCT are set and the main CRJE task is posted to
initiate the closedown of CRJE. Each CRJE subtask that is waiting on
the loader/controller task is posted. Control is then returned to the
operating system to process the abend.

External Routines

None

Tables/Work Areas

AVT

CCT
Module Table (IHKMOD) contains one entry for each nonresident

module. Each entry in the table consists
of the following 12 bytes:

Byte 0
Bit 0
Bit 1

set if last entry in table,
set if module is not reentrant (i.e., module is
serially reusable).

Program Organization 87

Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

Byte 1

Byte 2

Byte 3

Bytes 4-8

Bytes 9-11

set if module is a "trouble module,"
not used,
set if module is in the transient area,
set if module is loaded (LOAD macro issued for it»,
set if module is locked,
not used.

Offset in block table of 2K block allocated

number of modules in this load module

number of entry in module table for the next module
in this load module

five significant characters of module name

entry point address of module

The first entry in the IHKMOD module is a dummy.
It contains the trouble module count in the first word.

Block Table (IHKMAP) one entry for each 2K block in the
transient area.

Byte 0

Byte 1

block request count (increased for load
requests decreased for delete requests).

number of entry in IHKMOD of module
occupying this 2K block (zero if block is
empty) •

Translate Table (IHKTRT) - associates the number of the entry in
IHKMOD to the command and subcommand codes as they are listed in
the major command list (IHKMCL) and the subcommand list (IHKSCL).
This is necessary for the loader/controller since one module may
process several commands or sllbcommands.

Normal
Error

return to calling routine
none

P!.ttributes

Resident and serially reusable

OPEN TASK

os DATA SET OPEN MODULE (IHKOPN)

IHKOPN

88

- register 1 must point to a five-word parameter list
containing the following:

1. address of the TUB
2. address of the AVT
3. address of a 1, 376-byte work area
4. address of the end-of-data routine
5. address of the I/O error subroutine in IHKEOS

Function

This module is attached by the IHKEOS ro.utine for opening or
scratching an OS data set. If the request is to open, a LOCATE macro is
issued to find the data set in the SYSCATLG, and an OBTAIN macro·is
issued to get the DSCBM. The JFCB is then read and the data set name is
inserted. A DCB is set up and an OPEN TYPE=J macro is issued. If the

. open request is for a member of a PDS, a FIND macro is issued to obtain
the desired member. The ECB by which the IHKOPN module received control
is then posted with the return code. The IHKOPN module issues a WAIT
macro for an ECB to be posted by the IHKEOS routine. When the WAIT is
complete, the IHKOPN module closes the data set and returns to the
operating system.

If the request is to scratch, the catalog is checked to make sure
that the data set exists. If a complete data set is to be scratched and
not just a member, the data set must reside on less than 20 volumes~ A
check is made to be sure that all of the volumes are mounted. If they
are not or the data set is on more than 20 volumes, an error message is
queued for the user and control is returned. If a complete data set is
to be deleted, a SCRATCH macro is issued and the entry is deleted from
the catalog. If only a member of a data set is to be deleted, the data
set is opened~ a STOW DELETE macro is issued and the dat;!l set is closed.
Control is then returned to the calling routine in the same manner as
described in the previous paragraph.

External Routines

None

Tables/Work Areas

Work area passed from IHKEOS, which contains the following:

DCB
DSCB
JFCB

Miscellaneous work areas

TUB
TUBIRLSA
TUBPRMLS
TUBUFFAD

area to save caller's register 13
work areas
contains address of user buffer

User buffer contains data set name, member name, and ECBs

Exits

Normal
Error

Attributes

return to calling routine
none

Reentrant and nonresident

CENTRAL COMMAND PROCESSORS

RJE/CRJE CENTRAL COMMAND SCHEDULING ROUTINE (IGC1503D)

Entry Point

IGC1503D when SVC 34 gives control to this entry point, register 2
pOints to the following 40-byte extended save area:

Program organization 89

Bytes 0-3

Bytes 4-7
Bytes 8-15
Byte 16
Bytes 17-19

Byte 20

Bytes 21-23

Bytes 24-31

Bytes 32-39

address of XCTL routine used to send error
messages to the central oonsole
zero
IGC1503D
error message code
address of input buffer (first two bytes of buffer
contain the total length; second two bytes are
unused: remainder of buffer contains the total
input including the command verb. I
verb code:
120 - MSG
124 - CENOUT
128 - BRDCST
132 - USERID
136 - SHOW
address of operand field of the command (the first
nonblank character following the verb); zero if
there are no parameters
command verb, left-adjusted and padded with
blanks.
not used

FUDctioy!

SVC 34 gives control to the IGC1503D routine whenever an RJE or CRJE
central command is entered through the central console or the card
reader. This routine builds a command input buffer (CIB) and chains it
to either the RJE or CRJE command queue. The C required on all CRJE
central commands for systems having both RJE and CRJE is used to
determine the appropriate command queue.

This routine posts the communications ECB in the CRJE CSCB (Command
Scheduling Control Block). This is done so that the interface routine
will receive control from the CRJE dispatcher.

The IGC1503D routine handles all RJE and CRJE commands except START,
STOP, and MODIFY. When a MODIFY command is entered at a central
console, the CSCB marking routine, IGC0703D, recognizes it and
identifies the procedure name as being the one for CRJE. The IGC0703D
routine sets up the command input buffer (CIB) and then posts the
communications ECB for the MODIFY command. The IHKCCI routine then gets
control and interfaces with the IHKCC2 routine to process the command.

External Routines

IGC0503D (Message module) to send error messages to the central
console

Table/Work Areas

None

Normal
Error

Attributes

return via register 14
IGC0503D is entered via an XCTL, and control is not
returned. Register 2 contains the address of the extended
save area. An error code in byte 16 requests a particular
prepared error message, and bytes 24-31 of the extended
save area are inserted in the variable portion of the
message.

Reentrant and nonresident

90

CENTRAL COMMAND INTERFACE MODULE (IHKCCI)

Entry Point

IHKCCI

Function

This routine provides an interface between the RJE/CRJE command
. scheduling module (IGC1503D) and the CRJE central command processors.

This routine receives control from the CRJE dispatcher after the
command scheduling routine has posted the communications ECBin the CRJE
CSCB (command scheduling control block). The CIB can be found using
EXTRACT. The command and its operands are inspected to determine which
of the command processors is needed to perform the requested functions.
All of the processors are nonresident, soa load request is sent to the
loader/controller for the particular processor needed. Control is then
passed to 'this processor with register 1 pointing to a two-word
parameter list containing the address of the AVT and the address of the
CIB. If the command is a STOP command, the loading and linking of the
command processor is not done with the loader/controller but with the
LINK macro.

When the processing of the command has been completed and control is
returned, the loader/controller is requested to delete the module. This
rdutine dequeues the CIB and returns control to the dispatcher.

Before the loader/controller is requested to load or delete a command
processor module, a test is made to determine if the loader/controller
task has not abended. A similar test is made after the
loader/controller completed the load/delete of the module. If the
loader/controller has abended in any case, control is returned to the
dispatcher.

External Routines

IHKLDC
IHKCC1

IHKCC2

IHKCC3
IHKCC4
IHKCC5
IHKCC6
IHKCC7
IHKCC8
IHKSTP

to load and delete nonresident central command processors
to process the following central commands:

SHOW USERS
SHOW JOBS

to process the follOWing central commands:

to

SHOW LERB
SHOW BRDCST
MODIFY

process the
to process the
to process the
to process the
to process the
to process the
to process the

BRDCST central command
SHOW MSGS and MSG D=userid central commands
CENOUT central command
SHOWSESS and SHOW SESSREL central commands
USERID central command
MS~ and SHOW ACTIVE central commands
STOP command

Tables/Work Areas

CIB
Save area
AVT
CCT

CCTSLECB - address of ECB

Program Organization 91

Normal
Error

Attributes

return to dispatcher
none

Resident and serially reusable

SHOW USERS AND SHOW JOBS CENTRAL COMMAND PROCESSOR (IHKCC1)

Ent!Y Point

IHKCCl

Function

register 1 must point to a two-word parameter list
containing the address of the AVT and the address of the
CIB.

Since the functions to be performed depend upon the command verb and
its operands, this routine contains a table with valid operands of the
command verbs and a branch code for each. This routine first inspects
the command verb. Then the address of the operand table is passed to a
subroutine. If the operand is not in the table, an error message is
sent to the central operator, and control is returned to the interface
routine.

The following processing is performed according to the command verb
and the operands specified.

SHOW USERS: Each UVR entry is read into the user buffer. If the user
is active, his TUB is found. The time that the user has been active is
computed and sent to the central operator along with the userid, the
line address, and the ACTIVE USER message. If the user is not active,
the INACTIVE CRJE USER message with the userid is sent to the central
operator.

SHOW JOBS: The IHKAFI module is used to read each RJCT entry into the
user buffer. The second bit. of the RJCTFLGS field is tested to find out
if the job is complete. A message is then sent to the central operator
indicating the name of the job and the status.

If a jobname is specified on the command, only that particular RJCT
entry is read. A message is then sent to ~~e central operator
indicating the status of the job.

External Routines

IHKMSG

IHKAFI

(entry point:IBKMSG) to send messages to the central
operator
(entry pOint:IBKMSG02) to send supplied error messages to
the central operator

to read and write the UVR file, and to read the RJCT
entries

Tables/Work Areas

92

Dummy TUB (co~tained

TUBGBLNM
TUBAFISW

TUBCLBAD
TUBGBLKY

in IHKCCl)
set to two for UVR and five for RJCT
set to cause records to be read into user
buffer (contained in IHKCCl)
pointer to CLB to get line address of user
used in IHKARI

TUBPARM1-TUBPARM5
TUBRAFBF
TUBSIZE
TUBUFFAD

contains parameters for IHKMSG
address of user buffer
used in allocating storage for TUB
address of user buffer

CIB contains the command and the operands

CLB

RJCT

TUB

UVR

Normal
Error

CLBLINE

RJCTUSER -
RJCTFLGS -
RJCTJOB

TUBTIME
TUBNEXT

line address

userid
job complete bit checked
jobname

used in computing time since LOGON
used to find next TUB

UVTCNTLl - (UVRACTVN) active bit checked

return to the interface routine with a 0
None

Attributes

Reentrant and nonresident

SHOW LERB, SHOW BRDCST, AND MODIFY CENTRAL COMMAND PROCESSOR (IBKCC2)

Entry Point

IBKCC2

Function

register 1 must point to a two-word area containing the
address of the AVT and the address of the CIB.

This routine checks the command verb and the operands. A branch code
is obtained from a table according to the operands specified. If the
operand is not found in the table, an error message is sent to the
central operator and control is returned to the interface routine.

SHOW LERB: If a line address is specified, it is checked for length and
the first character is checked for a zero. If these tests are passed,
the relative line number and the DCB address are obtained from the
corresponding CLB. If the line address is invalid or is not found, an
error message is sent to the central operator. If the specified line is
not open, a message is sent. Otherwise, control is passed to the
IECTLERP routine, which will send the line error values to the central
operator. On a SHOW LERB for all lines, the DCB address and the
relative line number of all lines that are open are sent to the IECTLERP
routine. When a SHOW LERB command is entered from any console besides
the main one, the response is sent to the main console.

SHOW BRDCST: In this case control is passed to the IBKMSG03 entry pOint
of the message writer to send all broadcast messages to the central
operator.

MODIFY: When several line address are specified,' they must be contained
inparentheses. If any errors are encountered, a message is sent to the
operator and the next line address is inspected.

Program organization 93

For a MODIFY A= command, if the line is open and is not active, and a
STOP command has not been issued, this routine posts the ECB, stores the
console ID in the CLE, and sets the modify bit in the CLB. If the line
is active or is not open, the routine sends a message to the central
operator and processes the next line specified.

For a MODIFY D= command, if the line is active, this routine sets the
stop bit in the CLB. If: the read bit is on, a HALT I/O SVC is issued.
The console ID is then stored in the CLB nnd the modify bit in the CLB
is set. If the line is not active, a message is sent to the central
operato.r.

EXternal Routines

IECTLERP - to send line error values to the central operator

IBKMSG (entry point:IHKMSG) to send messages to the central
operator
(entry point:IHKMSG02) to send supplied error messages
to the central operator
(entry point:IHKMSG03) to send all broadacast messages
to the central operator

Tables/Work Areas

CIB - contains command verb and operands

CLB
CLBS'l'ATS
CLBSTATS
CLBREQST
CLBLDECB
CLBLINE
CLBMCSCD
CLBSAECB

(CLBACT\~) active bit checked
(CLBMODYN) set for MODIFY
(CLBSTOPN) set for MODIFY D=
pOinter to DECB
physical line address
console ID stored
checked for X'FF' .

DECB of line - read bit is checked

lOB - RESETPL flag is set for MODIFY D=

DCB of line DCBFLGS checked for DCBOPEN
-offset into line lOB and address of line lOB used
-address of DEB used

Dummy TUB <contained in IHKCC2)

Normal

Error

TUBPRMLS used for parameter list

return to interface routine with 0
return code in register 15
none

Attributes

Reentrant and nonresident

BRDCST CENTRAL COMMAND PROCESSOR (IHKCC3)

Entry Point

IHKCC3

94

register 1 must point to a two-word parameter list
containing the address of the AVT and the address of the
CIB.

Function

The command verb is inspected first. If the command is anything
other than BRDCST. control is returned to the interface module with a
code of 0 in register 15.

The possible operands and the functions performed in each case are as
follows:

DELETE
nnnn

All broadcast messages are deleted.
The broadcast message having the specified
identifier is deleted.

'text' This text is added to the broadcast message data
set as a broadcast message with an identifier that
is ten greater than the highest identifier
curr~ntly being used. If it is not possible to
increment the current highest identifier. an error'
message is sent to, the central operator.

nnnn,'text' If a broadcast message exists with the specified
identifier, it is replaced with the text given on
the command. If a message does not exist with this
identifier, the text is inserted at the proper
place with the specified identifier.

The broadcast message identifier must be numeric and no more than
four characters in length. The text of the message cannot exceed 40
characters in length. If any errors are detected, a message is sent to
the central operator. When the maximum number of broadcast messages is
reached, the message is added and two messages are sent to the central
operator. One message indicates that the broadcast message file is full
and the other is an error message.

External Routines

IBKAFI

IHKMSG

to read BRDCST message file and to replace, add. or ,delete
records as specified
(entry point:IHKMSG) t9 send messages to the central
operator
(entry point:IHKMSG01) to send supplied error messages to
central operator

Tables/Work Areas

CCT

CIB
Dummy

Normal

Error

CCTBRDNO checked when a message is to be added to
file; incremented when a message has been
deleted; decremented when a message has
been added; when field becomes zero.
message is sent to central operator.

contains command and operands
TUB (contained in IHKCC3)

TUBGBLNM set to 4 for BRDCST file
TUBAFISW set to read records into user buffer
TUBGBLKY used by IHKAFI
TUBPARM1-TUBPARM5 parameters for IHKMSG
TUBRAFBF address of user buffer
TUBSI~E used in allocating storage for TUB
TUBUFFAD address of user buffer

return to interface routine with 0 return code in register
15
none

Program Organization 95

Attributes

Reentrant and nonresident

SHOW MSGS AND MSG O=USERID CENTRAL COMMAND PROCESSOR (IHKCC4)

Entry Points

IHKCC4 register 1 must point to a two-word parameter list
containing the address of the AVT and the address of the
CIB.

Function

This routine first checks the command verb <:\nd t.he operands. If any
operands are invalid, an error message is sent to the central operator.
Once the operands have been validated the following functions are
performed according to the command and the operands specified:

SHOW MSGS: The CRJE DELAYED MESSAGES message .is sent to the central
operator followed by the delayed messages. The userid of the recipient
is placed in the first eight bytes of each message. When all messages
have been processed and sent to the central operator, the END DELAYED
MESSAGES message is also sent. If there are no messages, the NO CRJE
MESSAGES message is sent.

SHOW MSGS,USERID: Processing is the same as for the SHOW MSGS command
except that only the messages for the specified user are displayed at
the central console.

MSG D=USERIQ: All messages in the delayed message file for this user
are deleted and if this is a valid userid, the delayed messages
available bit in the UVR is turned off. A message is sent to the
central operator indicating that there were no me~sages for the user or
that the delayed messages for the user have been deleted.

External Routines

IHKAFI
IHKMSG

to manipulate delayed message and UVR global files
(entry point:IHKMSG) to send delayed messages to the
central operator
(entry point:IHKMSG02) to send supplied error messages to
the central operator

Tables/Work Areas

96

CIB - contains command verb and operandS

UVR
URVCNTLl (UVRMSG) turned off when delayed message

is deleted.

Dummy TUB (contained in IHKCC4)

TUBGBLNM

TUBGBLKY
TUBAFISW
TUBPARM1-TUBPARM5
TUBRAFBF
TUBUFFAD
TUBSIZE

set to 2 for UVR file and 3 for delayed
message file
used by IHMFI
set to read records into user buffer
used for parameters for IHKMSG
address of buffer to· contain records
address of user buffer
used in allocation of storage for TUB

Exits

Normal
Error

Attributes

return to interface routine with 0 in register 15
none

Reentrant and nonresident

CENOUT CENTRAL COMMAND PROCESSOR UBJ(CCS)

Entry Point

IHKCC5

Function

register 1 must point to a two-word parameter list that
contains the address of the AVT and the address of the CIB.

The CENOUT command allows the central operator to have a CRJE user's
job output processed by a central installation output writer. This
routine first checks the operands specified on the command. The only
operands allowed on this command are J=jobname and C=class, where
jobname is a one to eight character name and class is one character.
Any variation is considered an error, the central operator is notified,
and control is returned to the interface routine.

If the operands are valid, the RJCT is searched to determine if the
job is in the system. If an entry is not found for the job, the JOB NOT
IN SYSTEM message is sent to the central operator and control is
returned to the interface routine. If the job is in the system but has
not completed processing, the JOB NOT COMPLETE message is sent and
control is returned. otherwise, the TUBs are checked to determine if
the job is already queued for delivery. If it is, the JOB WAITING
DELIVERY message is sent and control is returned.

If the job is not already queued for delivery, the entry in the RJCT
is deleted, and the queue manager is called to read a record for the
job. The queue manager assigns queue space for the output records.
Each record is processed, depending upon whether it is a data set block
or a system message block, and is moved from the old output queue to the
new output queue. A zero record is the last record written on the new
queue. The CENOUT message is sent to the central operator, the space on
the old queue is deleted, and control is returned to the interface
routine.

If the service task has abended when the queue manager is to be
called or an error causing the serVice task to abend when calling the
queue manager occurred, control is returned to the interface routine,
IHKCCI. In the case of an I/O error in calling the queue manager, an
error message is sent to the central operator, and control is returned
to the interface routine.

External Routines

I HKAF I
IRKMSG

IRKDSP
IHKCCS
IEFQMSSS
IEFQDELE

to gain access to RJCT
(entry point:IBKMSG) to send messages to the central
operator
to wait for event completion
to scan operands for commas
to gain access ·to·output queues
to delete job from queue

Program organization 97

Tables/Work Areas

RJCT
l8-word save area
l76-byte buffer for queue manager
44-byte queue manager parameter area
Dummy TUB (contained in IHKCCSI

TUB

CCT

RJCT

AVT

Normal
Error

TUBGBLKY used by IHKAFX
TUBAFISW set to in&icate use of optional buffer
TUBGBLNM used by IHKAFI
TUBAFBF address of buffer
TUBPARM1-TUBPARM5 used for parameters for IHKMSG

TUBNEXT
TUBRJCT

CCTCSECB

CCTJOBS

CCTSYSCE

RJCTFLGS
RJCTJOB
RJCTQMPA
R,TCTQMPE

used to find next buffer
checked to see if job output has already
been requested

used for passing control to IHKSRV
routine
incremented when entry for job in RJCT is
deleted
interrogated to determine the CRJE SYSOUT
class

tested for job completion
contains jobname
queue manager parameter area
extension of QMPA

addresses of entry points and of CCT and TUB

return to the interface routine with 0 in register 15
none

Attributes

Reentrant and nonresident

SHOW SESS AND SHOW SESSREL CENTRAL COMMAND PROCESSOR (IHKCC61

Entry Point

IHKCC6

Function

register 1 must point to a two-word parameter list
containing the address of the AVT and the address of the
CIB.

The command verb is first inspected for SHOW. The address of an
operand table containing valid operands of the SHOW verb and a branch
code for each is passed to a subroutine. If the operand is not in .the
table, an error message is sent to the central operator, and control is
returned to the interface routine.

The following processing is performed according to the operands
specified on the command verb:

98

SHOW SESS: If MeS is in the system and a general SHOW SESS command is
issued, the UCM entry for the, requesting console is found. The UCMMSGE
(x'0800'. bit in the UCMMSG field is set to indicate that SESS is in
effect. ',If it is a composite console, it has two UCM entries and the
bit in the second entry is 8,et. The count (CCTSESS> of consoles that
have issued SESS commands is incremented so that the central operator
will receive notification as CRJE users log on and off the system. The
SESS IN EFFECT message is sent to the central operator.

If MCS is not in the system when a general SHOW SESS command is
issued, only the CCTSESS count is incremented.

If a userid is specified on the command, the UVR for that' user is
read. If MCS is not in the system, the UVRSESS bit in the UVRCNTLl
field is set so that the central operator will be notified as this user
logs on and off the terminal. If MCS is in the system, the UVR is
checked to determine if this console has already requested a SHOW SESS
for this user. The UCM e~ry for this console is checked to see if a
general SHOW SESS is in effect for that console. If neither is in
effect, the console ID is stored in either the UVRCID1, UVRCID2, or
UVRCID3 field. If a SHOW SESS command is in effect for that console, or
if the three fields in the UVR are already filled, a message indicating
the problem is sent to the central operator. After the console ID is
stored in the first available field in the UVR, the SESS IN EFFECT
message is then sent to the central operator.

If a general SHOW SESS is in effect, a SHOW SESS for a specific user
is not allowed at that console.

SHOW SESSREL: The CCTSESS count in the CCT is decremented so that the
central operator will no longer be notified as users log on and off. If
MCS is in the system, the UCM entry for that console is found and the
UCMMSGE bit (X'0800', in the UCMMSG field is turned off to indicate that
a SHOW SESS is no longer in effect. The SESS RELEASED message is sent
to the central operator.

If a oserid is specified on the command and if MCS is not in the
system, the UVRSESS bit in the user's UVR entry is turned off. If MCS
is in the system, the console ID in the UVRCD1, UVRCID2, or UVRCID3
fteld is set to zero. In either case the SESS RELEASED message is sent
to the central operator.

External Routines

IHKMSG

IHKAFI

(entry point:IHKMSGI to senfi response messages to the
central operator
(entry point:IHKMSG021 to send supplied error messages to
the central operator
to read and write the UVR entries

Tables/Work Areas

CIB - contains command and operands

CCT

CVT

UCM

CCTESS

CVTUCM

UCMID
UCMMSG

UCMMODE
UCMVEL
UCMVEZ

checked for SESS in effect;
incremented on a SHOW SESS;
decremented for a SHOW SESSREL.

pointer to the UCM base

checked for requesting console;
(UCMMSGE) set for SHOW SESS; turned off
for SESSREL.
(UCMMCS) checked if MCS is in system.
last entry of UCM
length of each UCM

Program Organization 99

UVR
UVRCIDl (-3)
UVRCNTLl

UVRMXCON

console 10 for MCS in system
checked for SESS in effect for this user.
when MCS is not in system, set to one for
SHOW SESS for this user: turned off for
SESSREL.
maximum number of console IDs for SHOW
SESS

Dummy TUB <contained in IHKCC6)

Normal
Error

TUBGBLNM set to 2 for UVR
TUBAFISW set to cause records to be read into user

TUBGBLKY
TUBARM1-TUBPARM5
TUBRAFBF
TUBSIZE
TUBUFFAD

buffer (contained in IHKCC6)
used by IHKAFI
used for parameters for IHKMSG
address of user buffer
used in allocating storage for TUB
address of user buffer

return to interface with 0 return code in register 15
none

Attributes

Reentrant and nonresident

USERID CENTRAL COMMAND PROCESSOR (IHKCC1)

IHKCC1

Function

register 1 must point to a two-word parameter list
containing the address of the AVT and the address of the
CIB.

The command verb is checked for USERID and the address of a table
containing valid operands and branch codes is passed to a subroutine.
If the operand specified on the command is not in the table, an error
message is sent to the central operator, and control is returned to the
interface routine.

The following functions are performed according to the operands
specified on the command:

USERID
USERID
USERID
USERID

A=
D=
S(UPPRESS)
R(ESUME)

When a user is to be added, the UVR entries are checked to see if the
userid is a duplication. The userid and password are checked for
validity. Each must begin with an alphabetic character and the other
characters must be alphameric. If the userid has not already been
assigned, the userid and password are inserted into a UVR entry. The
remainder of the UVR entry is initialized, and the count of users that
can be added to the system is decremented. The ADDED TO USER LIST
message is sent to the central operator specifying the user who was
added. If no more users are allowed on the system, the USER LIST FULL
message is sent to the central operator.

100

If the password entered at the terminal matches the password in the
UVR entry for the user who is to be deleted, the UVR entry is deleted.
When a user is deleted, the count of users allowed on the system is
incremented. The DELETED FROM USER LIST me~sage is sent to the central
operator indicating the user who has been deleted. If the user is
active at the time, he cannot be deleted.

USERID SUPPRESS: The CCTSUP bit is set; no users can log on as long as
this bit is set. The LOGONS SUPPRESSED message is sent to the central
operator.

USERID RESUME: The CCTSUP bit is turned off; this makes it possible for
users to log on and off the system. The LOGONS RESUMED·message is sent
to the central operator.

External Routines

IHKMSG
IHKAFI

(entry point:IHKMSG) to send message to central operator
to read, write, or delete the UVR entries

Tables/Work Areas

CCT
CCTOPTl

CCTUSERS

(CCTSUP) set for USERlD SUPPRESS: turned
off for USERlD RESUME.
decremented when a user is added;
incremented when a user is deleted.

ClB - contains command and operands

Dummy TUB (contained in IHKCC7)

UVR

Normal

Error

TUBGBLNM set to 2 for UVR
TUBAFISW set to cause UVR entry to be read into

TUBGBLKY
TUBPARM1-TUBPARM5

TUBRAFBF
TUBSIZE
TUBUFFAD

UVRCNTLl

user buffer (contained in lHKCC7)
used in reading and writing UVR entries
used for work area and for parameters for
IHKMSG
address
used in
address

of user buffer
allocation of storage for TUB
of user buffer

(UVRACTUN) active bit checked

return to interface routine with a 0 return code in
register 15
none

Attributes

Reentrant and nonresident

MSG AND SHOW ACTIVE CENTRAL COMMAND PROCESSOR (IHKCCS)

Entry Point

lHKCCS

Function

register 1 must point to a two-word parameter list
containing the address of the AVT and the address of the
CIB.

Program Organization 101

The command verb is inspected for MSG or SHOW, and the address of a
table containing valid operands and branch codes is passed to a
subroutine.

If the operand specified on the command i8 not found in the table, an
error message is sent to the central operator, and control is returned
to the interface routine.

MSG: The possible operands and the functions performed in each case are
as follows:

M='text' The message text is sent to all active users.

M='text',U=userid The message text is sent to the specified user
if he is active

M='text' ,U=userid,Q The message text is sent to the specified user
if he is active. otherwise, the message is
queued and will be sent to the user when he logs
on.

The operands of the MSG command are keyword operands and are not
positional. The userid is verified by the message writer; if an invalid
userid is found, the message is not sent. A message may be sent to the
central operator indicating that the message was not sent. As with
broadcast messages, the message text cannot exceed 40 characters.

SHOW ACTIVE: The TUBs are searched and the time since LOGON is computed
for each user having a TUB. The ACTIVE USER message together with the
userid, the line address, and the session time for each active user is
sent to the central operator.

If the command is SHOW ACTIVE, NUMBER, the only message sent to the
central operator is the ••• ACTIVE USERS message with the correct
number inserted.

When a SHOW ACTIVE cc;>mmand 0": a MSG command for all active users is
entered, the TUBs are searched initially and l:he TUBCMSG bit is set.

_ The TUBs are then searched again, and when th(' bit is found on, it is
turned off. If the command was SHOW ACTIVE, t.he active message is sent
to the central console for that user. If the command was MSG, the
delayed message is queued. The search is repeated until no more TUBs
are found with the bit on.

External Routines

IHKMSG (entry pOint:IHKMSG) to send cesponse messages to central
operator
(entry point:IHKMSG01) to queue messages for user
(entry point:IHKMSG02) to send supplied error messages to
the central operator

Tables/Work Areas

CIB - contains command and operands
TUB

TUBNEXT
TUBFLGl

used to find next TUB
(TUBCMSG) initially set, then turned off
when message is sent.

Dummy TUB (contained in IHKCCS)
TUBPARM1-TUBPARM5 used for parameters for IHKMSG
TUBRAFBF address of user buffer
TUBSIZE used for allocation of storage for 'rUB
TUBUFFAD address of user buffer

102

Exits

Normal return to interface routine with a 0 return code in
register 15

Error none

Attributes

Reentrant and nonresident

JOB TERMINATION SUBTASK

JOB TERMINATION HANDLING MODULE (IIIJ(SDQ)

Entry Point

IBKSDQ (The IBKBGN module passes control to this when
initialization is complete.)

FUnction

The job termination handling routine first passes control to the
dequeue module (IHKDEQ) to perform job end processing. When control
returns, this module determines whether a STOP (either normal or
abnormal) is pending. It then sets up the appropriate ECB address and
return address for waiting in the dispatcher.

If a STOP is not pending, this IHKSOQ module waits on the ECB given
to the os queue manager (IEFQMDQ2) by the job end processor (IHKDEQ).
This ECB will be posted by OS when a job is queued on the CRJE SYSOUT
queue. Return is set to the point where the IB~EQ module is invoked.

If a STOP is pending. or if the module IBKDEQ cannot be loaded (abend
of. the loader/controller task), the IHKSDQ module waits on its STOP ECB.
When control is returned from the dispatcher, this module returns to the
IHKBGN module.

External Routines

IHKDEQ to perform job end processing

Tables/Work Areas

18-word save area
CCT

CCTOPT (CCTCLS) tested for STOP CRJE condition

Normal- return to the IHKBGN module
Error - none

Attributes

Resident and serially reusable

Program Organization 103

DEQUEUE/JOB END PROCESSOR (IHKDEQ)

Entry Point

IHKDEQ- register 1 must contain the address of the AVT.

Function

The job end processor provides CRJE with a means of recognizing when
CRJE jobs (entered by the SUBMIT command) are complete and of notifying
the CRJE user that his job is complete.

When the job end processor gets control, a flag is set indicating
that it is processing job output. This is done so that at STOP time,
the STOP processor (IHKSTP) will know whether or not job termination is
in process. If this routine is processing a job at STOP time, it
returns control to the job termination handling routine (IHKSDQ), which
recoqnizes the STOP command. However, if this routine is not processing
a job when the STOP command is received, the IHKSDQ module will be
waiting in the CRJE dispatcher for work. In this case the STOP
processor (IHKSTP) must enter the IHKSDQ module to force it out of the
wait so that closedown can proceed.

Before control is returned to the IHKSDQ mOdule the in-process flag
and the job termination initialization bit are turned off. The job
termination initialization bit is checked to insure that all jobs that
are complete are dequeued from OS before any line I/O is attempted by
CRJE. The bit is checked by the CRJE system administrator, and nO I/O
is initiated until it is turned off.

The job end processor then branches to the OS queue manager dequeue
routine (IEFQMDQ2) to look for jobs on the CRJE SYSOUT queue. If the
IEFQMDQ2 routine encountered an I/O error, an error message would be
sent to the central operator, and control would be returned to the job
termination-handling routine (IHKSDQ).

If a job is found on the output queue, a search is made for an RJCT
entry having the jobname of the job that was dequeued. If an RJCT entry
is not found, or if the jobname is JOBFAIL but the original name cannot
be determined from 5MBs, control is passed to the IHKREROlroutine to
delete the job. Then the next job on the SYSOUT queue is processed.

If the RJCT entry was found, a check is made to see if the RJCT entry
is marked job completed. If it is marked job completed, this means that
a job with a duplicate jobname has been entered at the central system •

. Control is passed to the IHKREROl routine to delete the duplicate job.
Then the next job on the SYSOUT queue is processed. If the RJCT entry
is not already marked completed, it is now marked complete, updated, and
written in the global file. A notification massage is queued for the
user, and the next job on the SYSOUT qUE.,ue is processed.

If the IHKAFI routine encountered an error, the CRJE abnormal
termination bit in the CCT is set, the central command subtask is posted
to stop, and control is returned to the IHKSDQ routine.

If IHKDEQ cannot perform its function because cf an abend of a CRJE
task (service or loader/controller), control is returned to IHKSDQ to
wait on the closedown.

External Routines

IEFQMDQ2

IHKRER

IHKDSP

104

(OS queue manager dequeue) to dequeue jobs from CRJE
SYSOUT queue
(entry point:IHKRER01) to delete OS .queue entry and if
indicated, RJCT entry
CRJE dispatcher for dummy wait

IHKMSG (entry point:IHKMSG02) to send or queue messages for
terminal user

. IHKAFI to access JBTBLS global fil~

Tables/Work Areas

18-word save area
80-byte RJCT buffer
176-byte 5MB-DSB buffer
44-byte QMPA and QMPE buffer

Exits

Normal
Error

Attributes

return to IHKSDQ
none

Reentrant and nonresident

SYSTEM ADMINISTRATOR

The three principal functions of the system administrator are
reflected in its three modules: conunand analyzer (IHKCMD), error
recovery routine (IHKERR), and dispatcher (IBKDSP).

The system administrator makes available the CRJE function that the
user requested when he typed in a command at his terminal. The command
analyzer first examines the command for validity. If the command is
invalid, it is rejected and an error message is sent to the user. The
parameters of a valid command are taken out of the line buffer and put
in a PPT. The routine that is responsible for performing the specified
function is loaded into the transient area, if it is nonresident, and
then control is passed to it. When the conunand processor has completed
its function, the command analyzer again gets control. A request to
delete the command processor, if it is nonresident, is passed to the
loader/controller. Then the user is asked by the line administrator to
enter a new command.

The message writer and command processors use the same set of return
codes. The line administrator and the command processors pass different
return codes back to the command analyzer, indicating the occurrence of
abnormal conditions. The command analyzer inspects these return codes
and takes the appropriate action. Recovery from line errors and active
area I/O errors is handled by the nonresident routine IHKERR.

The dispatcher is responsible for making the CRJE services available
to all users. When a routine cannot continue (waiting for completion of
I/O operation), control is returned to the dispatcher. The dispatcher
saves the registers and establishes a connection between the ECB that
was returned to the dispatcher and the STCB representing the subtask
that yielded control. The dispatcher scans the STCBs for a posted ECB.
When one is found the registers are restored, and return is made to the
module that had entered the dispatcher to wait for an event.

COMMAND ANALYZER MODULE fIHKCMD)

Entry Point

IHKCMD - register 1 must point to a CLB.

Program organization 105

I

Function

A CREAD I macro is issued at the very beginning" for every connected
line. In response to this macro, the line administrator returns control
to the command analyzer with a zero-length record in the user buffer.
The command analyzer then prompts the user for his first command. The
user buffer contains the command as it was typed in at the terminal.
The command is checked for validity, and a PPT is built. If the command
is continued on a succeeding line, another PPT is allocated and chained
to the previous one for as many lines and PPTs as necessary.

Before control is passed to the command processor (determined by
command verb), the command analyzer takes the following actions:

• Before the first command is analyzed, the LOGON suppression flag is
checked. If it is on. a message is sent to the user and a CREAD I
macro is issued.

• The first command entered must be a LOGON command; any other command
is rejected. The user is prompted once more to enter a LOGON
command. After the second non-LOGON command is received, a CREAD I
macro is issued.

• A zero-length record in major command mode is ignored, and the user
is prompted for another command.

• For a zero-length record in edit mode, the command code for the
IHKIRL01 routine is inserted into the PPT.

• For a zero-length record while the user is making corrections, the
command code for the IHKIRL02 routine is inserted into the PPT.

• If an active file has the TEXT attribute, the command analyzer sets
the TUBTEXTN flag before the CREAD macro is issued. This tells the
line administrator not to translate the incoming command to upper
case. For verification, the command analyzer translates the command
verb and the operands (with the exception of the two text operands
in the CHANGE comma~d and the entire Implicit command) to upper
case.

• If a CLIST is being processed, the LOGON, LOGOFF and EXEC commands
are rejected.

• A command with unpaired parentheses in its operands is rejected, and
a message is sent to the user. "

• A command with unpaired quotes in its operands is rejected, and a
message is sent to the user.

• Double quotes are resolved to single quotes.

• A command containing a zero-length operand, e.g. (). is rejected.

• A command containing an operand longer than 56 characters is
rejected (except on the Implicit command), and a message is sent to
the user.

• The two text operands in the CHANGE command cannot exceed 40
characters each.

• If operands on a command are separated by multiple commas, a warning
is sent to the user. The command is accepted, however.

• If the command verb and the first operand are separated by one or
more commas, a warning message is sent to the user; the command is
accepted, however.

106

• For a LISTBC command the broadcast messages required flag (TUBBRD)
is set, and control is given to the point in the command analyzer
where all the command processors return.

• If a LOGON command is entered while a user is already logged on,
control is given first to the LOGOFF command processor. Upon
returning, the LOGOFF processor requests that control be given to
the LOGON processor.

• If the command processor specified by the command code in the PPT is
nonresident, a load request for the appropriate module is passed to
the loader/controller, and control is given back to the dispatcher
until the requested module is loaded. If it is determined that
IHKLDC abended, control is passed to IHKERR with a LINK macro
instruction.

After all of the preceding functions are checked or performed,
control is passed to the requested command processor with register 1
pointing to a two-word parameter list containing the address of the TUB
and the address of the AVT. For installation-provided commands, control
is passed to the entry point specified in the CRJETABL macro with
register 1 pointing to the UCCT (User Command Control Table). Upon
return from the installation-provided command, the return code is
checked. If the return code is zero, the next command is read from the
terminal. If it is not zero, the 120-byte message in the user buffer is
sent to the t~rminal before the user is prompted for another command.

When control is returned to the command analyzer, the command code in
the PPT is checked to determine whether the returning processor is
resident or nonresident. Nonresident processors must be deleted.
Before the deletion request is passed to the loader/controller, register

. 15 is checked for a negative value. If it is a negative value, it is
the command code of the processor that is to receive control next. If
the next'command processor is nonresident and the returning processor is
nonresident also, a deletion-load request is passed to the
loader/controller. If only the returning processor is nonresident, a
deletion request is passed to the loader/controller. During the time
the loader/controller performs the deletion or the deletion/load
f~nction, the command analyzer waits in the dispatcher. If register 15
is not negative, it contains the return code used to select the action
to be performed.

If the return code is 0 (good return) and an EXEC command is not
being processed, the following actions are performed:

• All queued messages are sent.

• If the returning processor is the LOGOFF processor, the PPTs are
deallocated, the save area is freed, and a CREAn I macro is issued.

• If the returning processor is the LOGON processor and the LOGON
process was not successful, the action taken is the same as
returning from the LOGOFF processor.

• For all other command processors, the PPTs are deallocated. If the
user is in edit mode, the directory entry is checked. If the
directory entry contains the TEXT attribute, the lower case
preservation flag (TUBTEXTN) is set for the line administrator.
Then the user is prompted to enter a new command.

If the return code is 0 and the EXEC command is being processed, the
following actions are performed:

• If control was not returned fx'om the EXEC processor (IRKED!), all
queued messages are sent, the PPTs are deallocated, and a dummy PPT
is used to go to the EXEC processor to get the next command from a
CLIST file.

Program Organization 107

• If control was returned from the EXEC processor (IHKED1), then the
user buffer contains the next command that must be analyzed by the
command analyzer. If the TUBEXLST flag is set, the command is
written at the terminal before it is analyzed.

If the return code is 4 (interrupt, line error, or closedown) and no
TUB is allocated for the line, a dummy PPT is used to branch to the
error recovery routine (IHKERR) in the same way that control is given to
the command processors. The parameter list passed to the IHKERR routine
contains a pointer to the AVT and a pOinter to the CLB.

If the return code is 4 and a TUB is allocated, the following actions
are taken:

• If the TUBRAKEN flag is not set and if no user is logged on, the
PPTs are deallocated, and a dummy PPT is used to branch to the
IHKERR routine. If a user is logged on, a PPT is allocated, if
necessary, and the command code for the IHKERR routine is inserted
into the PPT, and control is given to the IHKERR routine.

• If the TUBRAKEN flag is on, this means that a break has occurred,
either real or simulated. The command entered after the break is
already in the user buffer. If an EXEC command is not in progress,
the command is analyzed and processing continues. If an EXEC
command is in progress and the command in the user buffer is not
END, the EXEC process is terminated and the new command is analyzed.
If the new command is END, only the currently active command is
terminated, and control is given to the EXEC processor to get the
next command from the CLIST.

If the return code from the command processor or the message writer
is 8 (GETMAIN failure), an OUT OF SPACE message is sent to the terminal.
If the processor that returned the 8 return code was IHKLGN, then IHKLGF
is loaded to call the logoff exit, if it is required. In the case where
the processor was IHKLGF, the TUBLGNAB flag is set, and the TUBUSRID
field is not cleared, the IHKLGF processor is reloaded. If the EXEC
command was in progress, it is terminated. The user is then prompted
for the next command. An OUT OF SPACE message is also sent to the
central operator.

I If a return code of 12 (active area I/O error or subtask abend) is
received from the command processor or from the message writer, the
TUBAARRN flag is turned on, and control is given to the error recovery
routine (IHKERR). This is done by using a dummy PPT if no user is
logged on, or by using a real PPT if a user is logged on.

If a return code of 16 (error message lost) is received from the
command processor or from the message writer, and the EXEC command is in
progress, the EXEC process is terminated. The user is then prompted to
enter his next command.

If a return code of 20 (active area out of space) is received from
the command processor or the message writer, a message is sent to the
central operator, and the user is prompted for his next cow~and.

A return code of 24 is received from the EXEC command processor when
an EOF is encountered in a CLIST file. In this case the command
analyzer frees the EXEC buffer and prompts the user for the next
command.

A return code of 28 is only received from the error recovery routine.
The CLBSAECB field is posted in this case and control is given to the
dispatcher to wait for the line ECB.

A 32 return code is received exclusively from the IHKERR routine. In
this case the command analyzer (IHKCMD) issues a CREAD I macro
instruction.

108

. ,

External Routines

IHKCCs
IHKMsG

IHKDsP

IHKERR

to scan a character string for one or more given characters
(entry points:IHKMsG, IHKMSG01; and IHKMSG02) to build,
queue, and send error messages to the terminal and to the
central operator
to wait for various actions to be completed to perform
operations on the lines when CREAD I, CWRITE, CWRITE R. and
CREAD R macros are issued
to recover from line errors and from active area I/O errors

All command processors - to process the command contained in the PPT

Tables/Work Areas

GETMAIN save area
CCT

CLB

TUB

CCTsUP
CCTUsR

CLBsAECB

TUBAARRN
TUBBRD
TUBCLBAD
TUBCNTEN
TUBCNTsN
TUBCOMAN
TUBCORRN
TUBDATAL
TUBDIRAD

TUBEDIT
TUBEXCAD
TUBEXCLG
TUBEXLsT

indicates that LOGONs are to be suppressed
address of the user-supplied command exit

stop acknowledgment ECB

indicates active area I/O error
indicates broadcast messages are to be sent
contains the address of the CLB
indicates a continued command
indicates that this command is to be continued
indicates comma found in command scan
indicates syntax error corrections may be made
length of data in user buffer
contains address of directory entry for active
file
indicates edit mode
contains address of EXEC work area
length of EXEC work area
indicates the command is to be listed before it is
processed on the EXEC command

TUBIDENT identifies this control block as a TUB
TUBLGNRN indicates user has been prompted for a LOGON
TUBNOCRN no carriage return after a line
TUBNULPN null parameter is indicated
TUBPRMLs parameter list area
TUBPPTAD address of the PPT
TUBRAKEN break has occurred on the line
TUBREAKN . break has occurred on the line
TUB STOP closedown is in progress
TUBTEXTN active file has text attribute
TUBUFFAD address of the user buffer
TUBWARNN comma warning message must be sent

buffer contains command User
PPT
IHKMCL
IHKSCL

DIR

Exits

Normal
Error

used to pass command to command processor
list of major commands
list of editsubcommands

DIRATEXT indicates active file has text attribute

return to dispatcher
none

Attributes

Reentrant and resident

Program Organization 109

CRJE DISPATCHER CIHKDSP)

Entry Point

IHKDSP

Function

A subtask is represented by a subtask control block (STCB). For each
priority the STCBs are chained together in a circle. The priorities of
the STCBs are as follows:

Highest priority: one STCB for each line;

Medium priority: one STCB for job termination handling:

Lowest priority: one STCB for the central command processor.

Each CRJE routine returns to the dispatcher instead of issuing a WAIT
macro.

For each priority the AVT contains a pointer to the STCB that last
I received service. The: current priority is saved in the dispatcher.

When the dispatcher gets control, it saves the registers (unless
register 13 contains zero upon entry, which effectively frees the STCB),
places the pointer to the ECB (passed in register 1 by the returning
routine) in the ECB-list of the multiple wait, and inserts a pointer to
this ECB list entry in the corresponding STCB. (See Figure 6.)

The dispatcher now lOoks for a posted ECB by scanning the STCB circle
of the highest priority one time. When a posted ECB is found, the
current priority and the pointer to the STCB are saved, the registers
are restored, and return is made via register 14. If no ECB is posted,
the next lower STCB circle is scanned. only after·an unsuccessful scan
through all three circles of STCBs does the dispatcher issue a WAIT
macro. When one event that the dispatcher is waiting for Occurs,
control is returned to the dispatcher, and the scan starts with the
highest priority.

External Routines

None

Tables/Work Areas

STCBs
AVT

Exits

Normal
Error

Attributes

to OS supervisor to wait for completion of an event
none

Resident and reentrant

110

AVT

last high ",iorlty STCa gi_ control

, last medium priority STCa given control

, lost low priority STC8 given control

lave area

dummy ECa

STca for II ...

t
t
t save area

dummy ECa

save area

dummy ECB

save area

dummy ECB

Figure 6. Dispatcher

IHKDSP

. '. ",Iorlly 01 STCI In control

next low priority STCI

fCllI,t ry for STCa

lave area

dummy ECI

cu"."t ECI for STCI

cumont ECI for STCI

cumont ECI for STCI

curront ECI for STCI

current ECI for STCI

t curront ECI for STca

ECI lill entry for S TCI

IOYI aNa

dummy ECI

posted
by
Loader/ troll ..

ECB List on which
I.ocder/Controlier wait, , ECI for centrol commands

In CCT (CCTClECa) , ECa for job termination
In CCT (CCTJLECa) , ECa for line In Cla
(ClalCECB)

t ECa for line in ClB , ECa for Ii ne in Cla

, ECa for line in Cla

Eca LIST on which
Utility Task Wall>

t
t
t
t
t

EeB far reader/timer
in CCT (CCTMSECB)

Eea for centrol commands
in eeT (eCTeSEeB)

EeB for job terMinotion
in eCT (eeT JSEeB)

EeB for Line in eLB
(eLBeSEeB

EeB for line in eLB

t EeB for line in eLB

Program Organization 111

LINE ERROR AND ACTIVE AREA I/O ERROR RECOVERY MODU~ (IHKERR)

Entry Point

IHKERR

Function

The command analyzer (IHKCMD) is the only module that calls
this routine. A two-word parameter ~ist is passed. The
first word points to the AVT and the second word points to
the TUB or the CLS.

If a pOinter to the CLB is received in the par~meter list, the
message OUT OF MAIN STORAGE is sent to the user and to the central
operator. A return code of 32 is sent to the com~and analyzer.

If a TUB is allocated, the following actions are taken:

• If the CCTCLS flag and the CLBSTOPN flag are not set,something must
be wrong with the-line. The user's session i~1 terminated in the
following way: If the EXEC command is in progress, it is terminated
and the buffer is freed. If the user is in EDIT mode, the TUBABEND
flag is set and control is given to the SAVE processor; If the user
is not in EDIT mode he is logged off. The message TP LINE ERROR is
queued.

• If the CLBSTOPN flag is set, the TUBSTOP flag and the TUBABEND flag
are turned on by the command analyzer. Processing then continues as
if the flag was not set. The message LINE DEACTIVATED BY OPERATOR
is queued for the user.

• If the CCTCLS flag is set, the sessi~n of the user is terminated in
the same way as if the flag was not ~et. The message CRJE CLOSEDOWN
is sent to the user, a CREAD R macro is issued, and control is
returned to the command analyzer witi a retur:l code of 28.

If the TUBAARRN flag is set, the error recovery routine has been
called because of an active area I/O error. In this case the following
functions are performed:

• If the CCTATERM flag is not yet set, the IHKERR routine sets the
CCTCLS, CCTSUP, and CCTATERM flags. The communications ECB is
posted with the stop code to stop CRJE, and the CRJE ABNORMAL
CLOSEDOWN message is sent to the central operator. The same message
is sent to the terminal, and if a user is logged on, the LOGOFF
processor is given control after the TUBUTMN flag is set. Then a
CREAD R macro is issued, and control is returned to the command
analyzer with a return code of 28.

• If the CCTATERM flag is set, the CRJE ABNORMAL CLOSEDOWN message is
sent to the user, the TUBUTMN flag is set, and control is then
passed to the LOGOFF processor. A CREAD R macro is issued, and
control is returned to the command analyzer wi,th a return code of
28.

External Routines

IHKMSG

IHKLAD

(Entry point:IHKMSG) to build and send error messages to
the terminal user and to the central operator

issue CREAD R macro and send message~ to the user

Tables/Work Areas

GETMAIN for save area '
CCT
CLB

112

TUB

AVT

Normal
Error

TUBUFFAD
TUBUSRID.
TUBUTMN

TUBXLSTF

indicates user buffer address
indicates user's identification sequence
indicates not going to IBKUTM to mark the user
inactive
turns off list-commands-before-processing flag for
EXEC

return to command analyzer (IBKCMD)
none

Attributes

Reentrant, refreshable, and nonresident

LINE ADMINISTRATOR

MACROS

There are two macros by which routines in CRJE request reading and
writing on the telecommunications lines. The CREAD macro specifies the
read operation. Two operands are provided: the I operand specifies a
read initial operation; the R operand indicates a resetting of a line
that has become inoperative. The CWRITE macro indicates writing to the
line. The R operand on the CWRITE macro means a combined write/read
operation is performed on the line.

Register 15 must contain the address of the TUB.
Register 13 must contain the address of the save area.

Function

This macro sets the request flag for the read continue operation,
provides register 1 with the address of a one-word parameter list
containing the address of the TUB, and generates a branch and link to
the IBKLAD routine. The IBKLAD routine performs the read continue
operation.

CREAD I

Register 15 must contain the address of the TUB. (Except for the
very first time on a line, register 15 must contain the address of
the CLB.)

Register 13 must contain the address of the save area.

Function

This macro allows a user to log on at the terminal. It sets the
request flag for a read initial operation, provides register 1 with the
address of a one-word parameter list containing the address of the TUB

Program Organization 113

or the CLB, and generates a branch and link to the IHKLAD routine, which
will perform the operation.

CREAD R

Register 15 must contain the address of the TUB.
Register 13 must contain the address of the save area.

Function

This macro is used when a line has become inoperative or the central
operator has requested that the line be disconnected again. The CREAD R
macro causes a FREEMAIN macro to be issued for the line buffer, line
save area, and the TUB~ the CLBACTVN flag is turned off.

CWRITE

Register 15 must ~ontain the address of the TUB.
Register 13 must ~ontain the address of the save area.
The length of the data to be written must be specified in the
half-word field TUBDATAL. The data to be written must be in the user
buffer (pointer to user buffer in TUBUFFAD).

Function

This macro sets the request flag for the write continue operation,
provides register 1 with the address of a one-word parameter list
containing the address of the TUB, and generates a branch and link to
the IHKLAD routine. The routine requesting the write operation must set
the TUBNOCRN flag in the TUBFLG3 field or the line administrator will
remove all trailing blanks that appear on the text to be sent and return
the carrier.

CWRITE R

Register 15 must contain the address of the TUB.
Register 13 must contain the address of the save area.
The length of the data to be written must be specified in the
half-word field TUBDATAL. The data to be written must be in the user
buffer (pointer to user buffer in TUBUFFAD field). If the response
is expected to appear on the same line as the text that was sent, the
TUBNOCRN flag in the TUBFLG3 field should be turned on.

Note: When specifying the length of d3ta to be written, the number
of trailing blanks necessary to provide enough space between the text
to be sent and the response expected should be included.

Function

This macro is used to request a combined write/read operation on the
line. It is used when a text response to the data being sent is
expected. The macro sets the request flag for a write operation
followed by a read operation, provides register 1 with the address of a
one-word parameter list containing the address of the TUB, and generates
a branch and link to the IHKLAD routine. Unless the routine requesting
the operation sets the TUBNOCRN flag in the TUBFLG3 field, the line
administrator removes all trailing blanks appearing on the text to be
sent and returns the carrier.

GENERAL DESCRIPTION

Upon request from a CRJE module, the line administrator performs read
and write operations on the communications line using BTAM
device-dependent code. The line administrator provides translation of
the characters being sent or received from EBCDIC to another
transmission code or from the transmission code to EBCDIC.

The line administrator is composed of six modules: IHKLAD, IHKLAB,
IHKLAP, IHKLEW. IHKLAT, and IHKLAY. IHKLAD is always used a~ the entry
point when a routine issues one of the line administrator macros. The
IHKLAB, IHKLAP, IHKLEW, IHKLAT, and IHKLAY modules are accessible only
to the IHKLAD module.

The following functions are performed when the IHKLAD module is
entered following the issuance of a CREAD I macro, with register 1
pointing to a parameter list containing, the address of the CLB:

• a 72-byte line save area is acquired,

• the address of the save area for the routine issuing the macro and
the address of the line save area are saved,

• the CLB is updated,

• the IHKLAP module is called by a branch and link.

The IHKLAP module initiates a read initial operation allowing the
user to start his session at the terminal. The user starts his session
by entering a carrier return (CR) and an EOB (1050/2740 terminal) or an
EOT (2741 terminal). Control is returned to the IHKLAD module. CRJE
recognizes that the user wants to log on. The command analyzer then
requests that the user be prompted with an underscore.

The IHKLAD module checks the BTAM return code. All nonzero return
codes indicate that the I/O operation was not initiated. Errors are
flagged and control is returned to the routine that issued the macro.
If' the return code is 0, the bECB address is put in register 1, and this
module waits in the dispatcher for the completion of the operation.

When the operation is completed, the IHKLAD module again gets
control. The BTAM completion code is checked and if it is not X"7F",
only the lost-data condition is accepted. (A negative response to
polling for the 1050 nonswitched is retried by BTAMi a negative response
to polling for the 1050 switched is retried by the line administrator.)
Otherwise, a line error is flagged, and ,control is returned to the
calling routine with a nonzero return code in register 15.

IfaX'7F" return code is received from BTAM and the DEC FLAGS field
is zero, a GETMAIN macro is issued for a line buffer and a TUB. If the
GETMAIN macro is successful, the address of the line buffer + 16 (user
buffer) is put in the TUB and the address of the line buffer is put in
the CLB. The address of the TUB is added to the chain. The address of
the line buffer is put in the TUB. Control is returned to the
requesting routine with a length of zero in the TUBDATAL field and a 0
return code in register 15. If the GETMAIN macro fails, the NO SPACE
message is sent to the terminal, and control is returned to the
requesting routine with a nonzero return code.

:'The functions performed depend upon the macro that was issued.

CREAD R TUB is deallocatedi TUB chaining is updatedi FREEMAIN
macro 1S issued for TUB, line buffer, and 72-byte
line save areai active flag in CLB is reseti and
control is returned with 0 return code.

Program Organization 115

CREAD I

CREAD

CWRITE

CWRITE R

TUB is deallocated; TUB chaining is updated; FREEMAIN
macro is issued for line buffer and TUB; request flag
in CLB is set; and control is passed to the IHKLAP
routine, which initiates a read initial operation on
the line.

Con"t..:ol is passed to the IHKLAB routine, which
recognizes read request and returns control to the
IHKLAD routine. control is then passed to the IHKLAP
routine, which initiates the read operation. The
IHKLAD routine then waits in the dispatcher for the
completion of the operation.

The IHKLAB routine recognizes the write request,
moves the output text from the user buffer to the
line buffer, inserts the necessary line control
characters and idle characters to allow the carrier
to return, before returning control to the IHKLAD
routine. The IHKLAP routine translates the text to
be written to the appropriate code for that line and
initiates the write operation. The IHKLAD routine
waits in the dispatcher for the completion of the
operation.

The sequence of functions performed is the same as
for the CWRITE macro, except that the IHKIAP routine
recognizes the request for a response and initiates a
combined write/read operation before returning
control to the IHKLAD routine.

When the operation is completed and the dispatcher gives control back
to the IHKIAD modale, the BTAM completion code is. checked. If a good
BTAM completion code is posted in the DECB and the operation was a read,
the text that was read is translated from transmission code to internal
EBCDIC code. If the character sequence at the beginning of the text
contains the ending sequence, the TUBDATAL field is set to zero and
control is returned to the requesting routine. If the character
sequence at the end of the text contains the ending sequence preceded by
a backspace character, the line of input is canceled and the line
administrator prompts the user with another read without returning
control to the requesting routine.

Otherwise, the text is properly edited in the user buffer,
nonsignificant characters such as line feed and backspace are
eliminated, the length of the data is computed, and the exact value is
put in the TUBDATAL field. Flags are set if no CR was in the text and
if EOT was the ending character (1050/27QO). Then control is returned
to the requesting routine with a 0 return code.

If a bad completion code from BTAM is posted in the DECB, the line
administrator tries to recover from those error conditions that are
recoverable, as follows:

Lost data - When the user enters too many characters and the input
exceeds the line buffer, the IHKLAD routine sends a
message to the terminal and prompts the user to reenter
the line.

Time-out - On a 1050 terminal without time-out suppression, the user
did not enter a character before time elapsed. The IHKLAD
routine sends a message to the user and prompts him to
reenter the line of input.

Negative response to polling or addressing when a 1050 switched
terminal does not respond to polling or addressing (BTAM retries a
nonswitched line). The IHKLAD routine repolls the terminal without
returning control to the requesting routine. The IHKLAD routine sends

116

messages and retries when a data check is received on a read from a
2741.

For other error conditions, the IHKLAD module flags the error in the
TUB and returns control to the requesting routine with a nonzero return
code.

COMMUNICATION LINE ADMINISTRATOR MODULE (IHKLAD)

Entry Points

IHKLAD

Function

control is passed to this entry point whenever one of the
line administrator macros is issued. Register 1 must point
to a one-word area containing the address of the TUB or the
address of the CLB.

If register 1 points to a one-word area containing the address of the
CLB, a GETMAIN macro is issued for a 72-byte line save area. If the
GETMAIN macro is successful, the save area address is saved, the active
flag in the CLB is turned on and the IHKLAP routine is called to issue
the read initial on the line. If the GETMAIN macro fails, control is
returned to the requesting routine with a nonzero return code in
register 15.

If the return code from the IHKLAP routine is bad when line operation
is initiated, the inoperative flag in the CLB is set, the line save area
is freed, and contro! is returned to the requesting routine with a
nonzero return code. If the return code is good, the line administrator
waits in the dispatcher for the completion of the line operation.

When the line operation is complete and control is returned from the
dispatcher, a check is made to see if a TUB exists. If a TUB has not
been allocated yet and a bad completion code is received from BTAM
indicating that the error is a lost data condition, the error is ignored
and processing continues normally. If the error is anything besides
lost data, the inoperative flag in the CLB is set and control is
returned to the requesting routine with a nonzero return code. If a TUB
has not been allocated and a good completion code is received from BTAM,
a GETMAIN macro is issued for a 156-byte line buffer and a TUB. If the
GETMAIN fails, the OUT OF SPACE message is sent to the terminal, if
possible~ the line save area is freed; and control is returned to the
requesting routine with a nonzero return code.

If the GET MAIN is successful, the address of the line buffer and the
address of the CLB are stored in the TUB. The entire TUB is zeroed, and
the TUB chain is then updated, the address of the last TUB in the chain
is put in the AVT, and the address of the user buffer (line buffer +16t
is stored in the TUB. The TUB identifier flag (TUBIDENT)is set, and
the sequence number from the CLB (CLBLNSEQ) is stored in the TUB. The
request flag in the CLB (CLBRDTIF) is turned off, and control is
returned to the requesting routine with a zero length in the TUBDATAL
field.

Note: Since the request was a CREAD I with the CLB as a parameter.
the command anlayzer is assumed to be the requesting routine, and it
is assumed that the next request will be a CWRITE R (to prompt the
user) •

If the request is for reset (CREAD R), the TUB is deallocated, the
TUB chain is updated, and if the TUB is the first or last in the chain.
the addresses in the AVT are updated. A FREEMAIN macro is issued for
the 156-byte line buffer, the 72-byte line save area, and the TUB.
Control is then returned to the requesting routine with a 0 return code.

Program Organization 117

If the request is for a read initial (CREAD I) for a switched line
connected to a 1050 or 2140 terminal, a WRITE TTR macro is issued to
reset the terminal and prevent the printing of unwanted data at the
terminal. A FREEMAIN macro is issued :for the line buffer and the TUB.
The TUB chain and the TUB addresses in the AVT are updated. The read
initial request flag in the CLB is set and control is passed to the
IHKLAP routine to initiate the line operation.

For a CWRITE or CWRITE R request the IHKLAB routine is called to
check the length of the data to be written and to eliminate any trailing
blanks. When control is returned, the TUBOUTAD field is checked to
determine whether TABSET is specified. If it is not specified, the
IHKLAB routine is called a second time to insert idles, other control
characters, and to format the text. If TABSET is specified and the
return code from the IHKLAB routine is 0, the IHKLEW routine is called
to insert the necessary tab and idle characters. After control is
returned from the IHKLEW routine, the IHKLAB routine is called the
second, ,time. If TAB SET is specified and the return code from the IHKLAB
routine is nonzero, the IHKLAB routine is called the second. time. When
control is received from the IHKLAB routine the second time, the IHKLAP
routine is called to initiate the write operation.

For the CREAD request, the n-lines override flag (TUBOVERN) is reset
and the IHKLAP routine is called to initiate the read operation. When
control is returned from the IHKLAP routine, the BTAM return code is
checked. If nonzero, the error flag in the TUB is set and control is
returned to the requesting routine with a nonzero return code. If the
BTAM return code is 0, the line administrator waits in the dispatcher
for the completion of the line I/O operation.

When the operation is complete and control is returned from the
dispatcher, the BTAMcompletioncode is checked. If the code is good
and the operation waS a write, the request flag in the TUB for write is
reset, and control is returned to the requesting routine with a 0 return
code. If the completion was good and the operation was a read, then the
text that was read is translated from the transmission code to EBCDIC
code. The following tests are performed and the necessary actions
taken:

• If the text starts' with any of the ending sequences and interrupt
flag in the TUB is not set, control is returned with a length of
zero specified in the TUBDATAL field. If the interrupt flag is set,
then before returning with a length of zero the flag is reset.

e If the text ends with a backspace character followed by an ending
sequence, the line of text is canceled, and another read operation
is initiated by the IHKLAP routine.

• If the interrupt flag is set and the line of text starts a space
character followed by the ending sequence, the interrupt override
flag in the TUB is set, the interrupt flag is turned off, and
control is returned.

If all of these tests are passed, the line of text is scanned for all
nonsignificant characters such as line feed and backspace characters.
These are eliminated, and the valid text is provided in the user buffer.
If the horizontal tab character is found and the TAB SET request is
specified in the TUBTABAD field, control is passed to the IHKLAT routine
to edit the input data. When control is returned, the scan is continued
until the ending sequence is found. The length of the edited text is
stored in the TUBDATAL field and in the DECB. The request flags in the
TUB are reset, the requesting routine's registers are restored, and
control is returned with a 0 return code.

If a bad completion code is received when control is returned from
the dispatcher, the following investigations are made and the
appropriate action taken:

118

• When the terminal is a 2741 and the interrupt flag in the DECB is
set, the simulated interrupt flag and the read request flag in the
TUB are set, the write request flag in the TUB is reset, and cont-rol
is passed to the IHKLAP routine.

• When a negative response to polling is posted by BTAM and the
simulated interrupt flag in the TUB is set, then the interrup~ flag
is reset, and control is returned with a zero length specified.

• When a negative response to polling is indicated, a switched ltne is
repolled by issuing another read request.

• When the lost data condition is posted on a read operation, the
message LINE TOO LO~, REENTER LINE is moved to the user buffer, the
request for write and read is set in the TUB, and control is passed
to the IHKLAB routine.

• When a time-out occurs on a text operation, the TIMEOUT message is
moved to the user buffer and the remainder of the procedure is the
same as for lost data.

• When a time-out occurs on a response to polling, the time-out error
flag in the TUB is set, and control is returned with a nonzero
return code.

• When nontext time-out occurs the terminal is considered off line/on
hook, the appropriate error flag in the TUB is set, and control is
returned with a nonzero return code.

For any other error condition, the TUBTIMEN flag is set and control is
returned. The TUBTIMEN flag is recognized by the command analyzer to
issue a request to reset the line (CREAD R).

External Routines

IHKLAT
IHKLAB
IHKLAP
IHKDSP
IHKLEW
IHKLAY

to edit input when horizontal tabs are encountered
to format output text
to initiate the input/output operations on the line
to wait for completion of line I/O operations
to insert tab and idle characters
to handle 1050X programmed time-out situations

Tables/Work Areas

DECB
User buffer
CLB

TUB

CLBACTVN
CLBINOPN
CLBRDTIF
CLBSTOPN
CLBLNSEQ

TUBIDENT
TUBDATAL
TUBTIMEN
TUBWRITF
TUBREAKN
TUBOVERN
TUBREQST
TUBREADN
TUBWRITN
TUBOFFLN
TUBTABAD
TUBOUTAD

active flag is set
line inoperative flag is set
request flags are turned off
stop flag is checked
sequence number is stored in TUB

set to identify TUB
set to length of data
set to indicate time-out error
reset to indicate write request
checked for interrupt
set for interrupt override
reset for certain requests
set for read request
set for write and read
set for off line/on hook error
checked for input tabs
checked for output tabs

Program Organization 119

Exits

Normal return to requesting routine with a 0 return code in
register 15

Error return to requesting routine with a nonzero return code
in register 15

Attributes

Reentrant and resident

INPUT/OUTPUT OPERATION INITIATION MODULE UHKLAP)

Entry Point

IHKLAP register 1 must point to a one-word area containing the
address of the CLB or the TUB.

Function

This is the line input/output operation initiation module of the line
administrator. BTAM READ/WRITE macros are used to initiate the
operation on the communication line.

If the address of a CLB is the parameter that was passed to this
module, the request is for a read initial the very first time.
consequently, a read initial is issued for only four characters,
permitting the user to start the session at the terminal by entering the
ending sequence. A 72-byte save area is provided. The BTAM READ macro
is issued, and the return code is stored in the CLB. If a return code
of 20 is received, an LOPEN macro is issued to try to recover from a
line error at open .time. If the LOPEN macro succeeds, then the read
initial operation is restarted.

If the address of a TUB was passed as a parameter, the request field
in the TUB must be checked. If the request is for a write, the text in
the user buffer is translated into the proper terminal transmission
code. In the case of continuous output to those terminals without the
automatic interrupt feature, an interrupt is simulated by setting the
interrupt flag in the TUB when the number of lines specified in the CCT
is reached.

If the request is for a write with response, a combined write/read
operation is initiated. After either a single or COmbined operation is
started, the BTAM return code is stored in the CLB, and control is
returned to the IHKLAD routine.

If the request is for a read, depending on the previous operation
performed on the line, the proper type of BTAM READ macro is used.
After the operation is started, the BTAM return code is stored in the
CLB, and control is returned to the IHKLAD routine.

External Routines

BTAM whenever BTAM READ/WRITE macros are used
IECTLOPN- used if OPEN failed

Tables/Work Areas

120

DECB
CCT
User buffer/line buffer
CLB

CLBRTNCD set with BTAM return code

CLBDIAL checked for type of terminal
CLB1050 checked for type of terminal
CLB2141D checked for type of terminal
CLBREAD checked for interrupt feature on
CLBRDTIN checkeil for read initial request

TUB
TUBREADN set to simulate interrupt feature
TUBREADN checked for read request
TUBIDENT checked for identifier
TUBWRITN checked for write request
TUBOVERN checked for line override

Normal
Error

return to the IHKLAD routine
return to the IHKLAD routine with BTAM
return code stored in the CLBRTNCD field

serially reusable and resident

OUTPUT TEXT FORMATTING MODULE (IHKLAB)

Entry Point

terminal

IHKLAB register 1 mu~t point to a one-word parameter list
containing th~ address of the TUB.

Function

The basic functions of the IHKLAB module are formatting outgoing
text, inserting idles when printing on "fly back" is to be aVOided,
appending necessary line control characters, and moving the text from
the user buffer to the line buffer.

The IHKLAB module performs its functions in a two-pass operation.
This is necessary because of the IHKLEW routine, which speeds up the
output to the terminal by inserting tabs. The IHKLAB module is entered
twice fram the IHKLAD module before the IHKLAP module is called to
initiate the line operation.

The IHKLAB module recognizes an entry as the first one if the
TUBIDAPN flag in TUBFLG4 is set. The length of the data to be written
is tested for zero on the first pass of a two-pass operation. If the
length is zero, control is returned immediately to the IHKLAD ~dule.
If the TUBNOCRN flag is set, no CR (carrier return) is appended, and the
trailing blanks are not removed. Any trailing blanks are eliminated if
they are not required, and the new length is stored in the TUBDATAL
field. The length is also saved in the TUBPARM2+2 field to be used on
the second pass. control is then returned to the IBKLAD module.

On the second pass to the IHKLAB module, the TUBNOCRN flag is checked
to determine whether a carrier return shOUld be appended at the end of
the text. If the flag is set,the CR is appended at the end of the
text. For the 1050 and 2140 terminals an EOB is also inserted at .the
end of the text. When the previous read operation has terminated
without a CR or when the previous text written to the terminal contained
the correct number of characters to cause printing on the fly back, then
the necessary number of idle characters are inserted in front of the
text. After the number of preceding idles is defined, the text is moved
to the line buffer, the exact length is stored in the TUBDATAL field,

Program Organization 121

the length for the next idle computation is saved in the TUBIDLENfield,
and control is returned to the IHKLAD module.

External Routines

None

Tables/Work Areas

DECB
CLB

CLBDEVTP checked for device and line type
TUB

TUBIDAPN
TUBIDLEN
TUBNOCRN

checked for first or second entry
set for preceding idle characters
checked for carrier return character at end of
text

Normal
Error

return to the IHKLAD module
none

Attributes

Reentrant and resident

TABSET EDIT MODULE (IHKLAT)

Entry Point

IHKLAT register 1 must point to a 3-word parameter list
containing the :::ollowing:

Function

• address of TUB,
• address of position in user buffer where horizontal tab

character is encountered by the IHKLAD routine,
• address of the position in the user buffer following the

last valid character.

When the IHKLAD routine is called as a result of a CREAD macro and
the TUBTABAD field is nonzero, the TABSET edit module is called each
time a horizontal tab character is encountered. This module performs
all necessary editing according to the tab settings specified in the
TABSET command.

If editing the line would cause the number of characters to exceed
128, control is returned to the IHKLAD module with a four in register
15.

If nonvalid characters such as backspace or line feed immediately
precede the horizontal tab character, then the horizontal tab character
and the text following are shifted to the left within the user buffer so
that the horizontal character follows the last valid character.

The text preceding the horizontal tab character is moved to a work
area and padded with blanks if necessary. When the horizontal tab
character is encountered past the logical location of the last tab
setting entered by the TABSET command, then the horizontal tab character
is replaced by one blank. The text remaining in the user buffer is then
moved to the work area. When the complete line is edited, it is moved
back to the user buffer, and control is returned to the IHKLAD routine.

122

The following 2-word parameter list is returned to the IHRLAD routi~e
with a pointer in register 1:

• address of TUB,

• address of position where the scan is to be continued.

The IHRLAD routine stores the length of the.unedited data (the text
following the horizontal tab character) in the TUBDATAL field.

External Routines

None

Tables/Work Areas

128-byte work area
TUB

TUBUFFAD
TUBTABAD

contains address of user buffer
contains address of the tab buffer

User buffer - contains line to be edited
Tab buffer - contains tab settings

Normal
Error

Attributes

return to IHRLAD with 0 in register 15
return to IHRLAD with 4 in register 15

Serially reusable and resident

LINE EDIT WRITE MODULE CIHRLEW)

Entry Point

IHRLEW

Function

used only by the IHKLAD module.
Register 1 points to a one-word parameter list containing
the address of the TUB.

This routine is used by the IHRLAD·module to insert tab characters
(when TABSET has been specified) in lines of output to avoid sending a.
string of blanks over the line to the terminal. The horizontal tab (HT)
character and idle characters are inserted into the output line whenever
possible. sometimes it is necessary to use the backspace character (BS)
along with the horizontal tab and idle characters.

The line of output is contained in the user buffer. The length of
the data is in the TUBDATAL field. The count of tab settings and the
logical carrier position of each tab is contained in the tab table, the
address of which is in the TUBOUTAD field. The complete data string
that has been edited with tab, idle, and backspace characters is passed
to the IHRLAD routine in the user buffer. The length of the string is
put in the TUBPARMSfield.

There are two situations in which the data string will be modified.
The first situation is when a blank string precedes a user specified tab
setting. No change is made to the data string unless the blank string
contains more than three blanks. A horizontal tab (HT) character and
idle characters are substituted in the data string in place of the blank
string. The number of idle characters inserted is computed by the
following algorithm:

Program Organization 123

Idle characters = [2i~PJ

where P .is the number of positions to the tab, using the first blank
position as the origin.

The second situation in which the data string will be modified is
when a tab is preceded by a character string which is preceded by a
blank string. The following algorithm must be satisfied:

2C + 3.$ B

where C is the length of the character string preceding the tab position
and B is the length of the blank string preceding the character string.
If the algorithm is satisfied, the tab and idle characters are inserted
in the data string. Backspace characters are used to return the carrier
to the proper position for printing the character string. The blank
string is ignored and the character string is repositioned as part of
the data string.

All tabs in the output data are examined. Control is then returned
to the IHKLAD module for the output to be sent to the terminal.

External Routines

None

Tables/Work Areas

TUB
TUBUFFAD
TUBOUTAD
TUBDATAL
TUBPARMS

user buffer address
address of area containing output tabs
user buffer data length
user buffer edited data length

User buffer - at entry contains output data; at exit contains edited
data string

Dummy three-word save area

Tab Table

Exits

Normal
Error

Attributes

count of tab settings specified and logical carrier
position of each tab

return to IHKLAD module
none

Resident and reentrant

10S0XPROGRAMMED TIME-OUT MODULE (IHKLAY)

. Entry Point

IHKLAY - register 1 must point to a one-word area containing the
address of the CLB.

Function

The function of this module is to prevent. a permanent wait from
occ~ringon a read response to polling (INHIBIT) for the 10S0X terminal
on a leased line. The module is loaded at start-up ti,me if such a

124

terminal is found. The IHKCIP module passes the address of the AVT.
This module then includes its STCB in the first priority circle and adds
its ECB to the end of the ECE list. After initialization the module is
called by either the IHKLAD module or the IHKLAP module.

When control is from the IHKLAP module, the completion time is
computed and stored in the CLB, and the CLB is then queued. If this is
the first CLB on the queue, an STIMER macro is issued specifying the
lay timer subroutine of this time-out module as the exit. After the
queued flag is set (CLBTQUENI, control is returned to the IHKLAP module.

Control i~ from the IHKLAD module when there is an I/O completion on
a line with the queued flag set. The dequeue subroutine removes the CLB
from the queue and, if necessary, issues a STIMER macro for the first
CLB on the queue. The dequeue subroutine also scans the queue to
determine if any CLBs on the queue can be removed because of a positive
response to polling, or if the completion time is within a certain
predefined limit. The module then checks for an IOHALT macro. If one
has not been issued, control is returned to the IHKLAD module to allow
normal processing to continue. If an IOHALT macro was issued, a check
is made to see if a MODIFY command or a STOP command is in progress,
since they also issue IOHALT macros. If one of these commands is in
progress, control is returned to the IHKLAD module. Otherwise, it is
assumed that the IOHALT macro was issued elsewhere in the module, and
the DECB is posted as a should-not-occur error. Control is then
returned to' the IHKLAD module.

The lay timer subroutine gets control asynchronously from OS when the
outstanding time interval expires. A check is first made for line I/O
completion, for a STOP command, or for a.MODIFY command in progress.
Any of these conditions result in an immediate return to os. If none of
these conditions are found, a check is made for a READ TI and for zeros
in the input buffer. If this condition i~found, an IOHALT macro is
issued. If a READ TI is not found, a check is made for a positive
response to ·text before checking for zeros in the input buffer. If an
IOHALT macro is not issued, the ECB for the IHKLAY module is posted.
Control is then returned to the IHKLAD module.

When this module (laypost subroutine) gets control from the CRJE
dispatcher, the dequeue subroutine checks for a negative response. If
it is not found, control is returned to the dispatcher. If a negative
response is found, the queue subroutine computes the completion time and
stores it in the CLB. TheCLB is queued, and, if it is the first one on
the queue, a STIMER macro is issued with the lay timer subroutine
specified as the exit. The queued flag (CLBTQUEN) is set before eontrol
is returned.

External Routines

None

Tables/Work Areas

DECB
UCB
lOB
DEB
CLB

~its

CLBTQUEN
CLBSTOP
CLBQUEUE

set if CLB has been queued
checked for STOP or MODIFY con,mand
checked for CLB pointer for 1050 terminals on
leased lines

Normal - return to calling routine (IHKCIP, IHKLAP, or IHKLAD)
Error - none

Program organization 125

Attributes

Nonresident and reentrant

TERMINAL COMMAND AND SUBCOMMAND PROCESSORS

CHANGE SUBCOMMAND PROCESSOR (IHKCGN)

Entry Point

IHKCGN register 1 must point to a. two-word parameter list
containing the address of the TUB and the address of the
AVT.

Function

All operands of the CHANGE subcommand are checked. If any errors are
found, an error message is sent to the user, and control is returned to
the calling routine.

If the TUBCORRN field is set, indicating that syntax analysis errors
are to be corrected, the line numbers specified on the subcommand must
be within the range of line numbers pointed to by the TUBIRLSA field.

If no errors are found and if two line numbers are specified, the
lines starting with the first line number are scanned for a match on
textl. If no match is found, the next line is retrieved and the process
is repeated. When a match is made, textl is replaced by text2. If
text2 is shorter than textl,the line is condensed and padded with
blanks. If text2 is longer than textl, the line is expanded. If the
insertion of text2 causes the line to exceed the maximum length, then
the line is truncated and an error message is sent to the user. When
the ALL operand is specified, the process is repeateq for each instance
of textl within each line. If ALL is not specified, only the first
textl in each line is ~eplaced.

After replacement the next line is retrieved, and the process is
repeated until the specified last line is reached or EOD is detected.
If only one line is specified, the same process is performed for only
that one line. If the specified line does not exist, or if there are no
lines within the specified range of line numbers, an error message is
sent to the user and control is returned. .

If a match on textl is not found within the specified line or lines,
an error message is sent to the user, and control is returned to the
calling routine.

External Routines

IHKAFI
IHKMSG
IHKCCS
IHKNUM

to manipulate active area
(entry point:IHKMSG01) to queue error messages for user
to scan lines for textl
to check line number operands for all numerics

Tables/Work Areas

126

18-word save area
88-byte work area
PPT - conta:!.ns subcommand and operands
TUB

TUBPPTAD
TUBUFFAD
TUBPRMLS

contains address of PPT
contains address of user buffer
contains parameter lists for IHKMSG, IHKCCS, and

TUBIRLSA
TUBAFISW
TUBAFISW
TUBCORCN
TUBCORRN

TUBLNUMF
TUBNXXKEY -
TUBRAFBF
TUBUSRID

IHKNUM
contains address of line numbers scanned
buffer control switch turned on and off
buffer control switch turned on and off
turned on to indicate correction made
checked to find out if syntax error corrections
are to be made
checked for line number in data set
set and checked for key for RPOINTmacro
set and checked for AFIO buffer address
userid that is passed to message writer

User buffer - last 40 bytes used as work area.

Exits

Normal
Error

Attributes

return to
return to
follOWing

04
08
12
16
20

calling routine with 0 in register
calling routine with one of the
return codes in register 15:

line error
GETMAIN failure
active area 1/0 error
error message lost
active area out of space

15.

Reentrant and nonresident

EDI.T, DELETE, AND EXEC COMMAND PROCESSOR (IHKEI7l')

Entry Point

IHKEDT

FUnction

register 1 must point to a two-word area containing the
address of the TUB and the address of the AVT.

This module checks the validity of the operands for the EDIT, DELETE
(major), and EXEC commands. All of these commands must have at least
one operand, the dsname, which is checked for length and first
alphabetic character. OS data sets are indicated by quotes around the
dsname. For deletion of an OS data set, the dsname must begin with the
userid. If an OS data set is to be edited, the name must not begin with
CRJE.

All operands are checked, and error messages, if any, are queued. If
any errors occurred, any bits that were turned on in the TUB are turned
off, the entire GETMAIN area is freed, and control is returned to the
calling routine.

For a valid EDIT command this module turns on the bits in the TUB as
specified by the operands, turns on the edit bit, and frees the entire
GETMAIN area. For an EDIT NEW command, control is passed to the IHKIRL
module. For an EDIT OS command, control is passed to the IHKEOS module.
For an EDIT OLD (CRJE data set) command, control is passed to the IHKEDl
module.

For a valid EXEC command, this module initializes the GETMAIN area to
contain the dsname, key, userid, and record and block numbers. The
address and length of this area are then stored in the TUB, the
remaining GETMAIN area is freed, and control is passed to the IHKED1
module.

Program Organization 127

For a valid DELETE command, the dsname is put in the TUBPMFNM field,
and control is passed to the IHKEDl module or the IHUOS module,
depending upon whether the data set is a CRJE data set or an os data
set.

External Routines

• IHKED1
IHKEOS
IHKIRL
IHKMSG

for EXEC, DELETE, or EDIT (CRJE data set)
for DELETE or EDIT (OS data set)
for EDIT NEW
(entry point:IHKMSG01J to queue error messages

Tables/Work Areas
GETMAIN - save area, switches, EXEC area
PPT switches in PPTFLG and PPTPARS to be passed to

other modules

DEF·
DEFDEL
DEFEDIT
DEFEATTR
DEFPLBSM
DEFPLESM
DEFEXEC

TUB
TUBPARM1
TUBPRMLS
TUBEXCAD
TUBEXCLG
TUBFLG1
TUBFLG2
TUBPMFNM

TUBUSRNM
User Buffer

Normal return
module
return
return

Error

o
8

12
16
20

DELETE default
EDIT default
EDIT default
EDIT default
EDIT default
EXEC default

for GETMAIN
for IHKMSG
set to address of GETMAIN area for EXEC
set to length of GETMAIN area for EXEC
(TUBSCN, TUBFOR, TUBPL1) may be set
(TUBLNPMT) may be set
dsname for CRJE data set, stored for EDIT, DELETE,
and EXEC
userid of user or userid specified
dsname, key, or member name, stored to be passed
to IHKED1 or IHKEOS

to calling routine with the negative code of the
to be loaded in register 15
to calling routine with one of the following
codes in register 15:

error(s) found and message(s) queued
GETMAIN failure
active area I/O error
message lost
active area out of space

Attributes

Reentrant and nonresident

EDIT, DELETE, AND EXEC COMMAND PROCESSOR CIHKEDl)

Entry Point

IRKED1

Function

register 1 must point to a two-word area containing the
address of the TUB and the address of the AVT.

This module is called to delete or edit a data set in a user' library,
or to execute the next line from a CLIST data set. If there is no PPT,

128

the command is assumed to be EXEC. If there is a PPT, this module
checks for the EXEC command code.

If EXEC is the command, the IHKUTM module verifies the userid and
queues the line for library I/O. The data set whose dsname, userid, and
~ey are in the GETMAIN area indicated by the TUBEXCAD field is found,
and the directory entry is checked for a CRJE data set with the CLIST
attribute. The block and record number of the record to be read is kept
in the GETMAIN area and is updated each time a record is read. The
indicated record is read, and the block and record numbers are updated.
The record is stored in the user buffer, and the block area is freed.
The data set is then closed, and control is returned with a 0 return
code. If the data set is not found, or does not have the CLIST
attribute, or if end-of-data is reached, this module returns with a 24
return code. If the EXEC data set is increased while being executed, a
~ssage is 9ueued for the user and a 24 return code is used.

For the DELETE command, the IHKUTM module verifies the userid, queues
for library I/O, then deletes the data set. Return is then made to the
calling routine.

For the EDIT command, this module creates the active file and points
to the beginning. The IHKUTM module is used to verify the userid and
queue fOr library I/O. The data set is then £ound, and a GETMAIN macro
issued for the directory entry. The directory entry is moved to the
GETMAIN area and is inspected to ensure that the user data portion is in
the CRJE format. If the data set is key protected, the user-specified
key must match. If they do not match, an error message is queued for
the user, the edit bit in the TUB is turned off, and return is to the
calling routine with a 0 in register 15. Otherwise, changes are made in
the user data portion of the directory entry according to the operands
specified on the EDIT command. The count of the number of times
accessed is updated.

If the directory entry format is for CRBE, the entry is expanded to
the CRJE format using the information in the directory entry and the
operands of the EDIT command. A directory entry that does not conform
to either format is expanded using the operands from the EDIT command
and the EDIT default options in the default table (DEF).

As the data set is read in, it is tested for XS in the first 8
spaces, which indicate a data set created by a utility program with no
line numbers. When this situation occurs, the keys are sequenced using
the default starting line number and the default increment. If the SEQ
attribute has been specified (by NUM or by default), the sequence number
is stored in positions 13-80. If XS are not found, the first 8. spaces
are checked for numerics. If any non-numeric characters are found, the
8 characters are changed to zeros and the edit continues. An error
message is sent for the first incorrect line number; all subsequent
incorrect line numbers are changed to zeros. After the data set has
been read into the active file, control is returned to the calling
routine.

External Routines

IHRMSG

IHKUTM

IHRAFI
IHRBPM

(entry point:IHKMSG01) to queue message for user
(entry point:IHKMSG02) to queue message for central
operator
to verify userid and queue for library I/O; to declare
library inoperative on I/O error
to manipulate active file
to manipulate data set in user library

Tables/Work Areas

GETMAIN - for save area and for directory entry
PPT - contains switches for EDIT and DELETE
DEF - line number increment used to initialize directory entry

Program organization 129

TUB

for non-CRJE or non-CRBE data setsl line number increment
and starting line number used to sequence data sets crea.ted
by utility programs.

TUBPRMLS for IHKMSG parameter list
TUBEXCAD used for EXEC
TUBDATAL length of line stored in user buffer set by EXEC
TUBCNTFS number of lines read
TUBDIRAD address of directory entry stored
TUBFLG1

TUBPL1 set as specified in EDIT
TUBFOR command or default for
TUBSCN non-CRJE or non-CRBE data set

TUBFLG2
TUBLNUMN - set as specified in EDIT or if directory

entry indicates line-numbered data set
TUBGBLKY userid of file to be accessed stored here for UTM
TUBNXXKEY - starting line number stored for non-CRJE and

non-CRBE data sets
TUBPMFNM data set name for data set in library
TUBUSRNM userid name
TUBPPTAD pointer to PPT
TUBRAFBF address of buffer
TUBUFFAD pointer to user buffer
TUBUSRID userid

User buffer dsname and key, if any, stored for EDIT and
DELETE; for EXEC, line to be executed is stored
here.

NOrmal
Error

Attributes

return to command analyzer with a 0 in register 15
return to command analyzer with one of the following return
codes in register 15:

8- GETMAIN failure
12- active area I/O error
16- message lost
20- active area out of space
24- EXEC is to be terminated

Reentrant and nonresident

EDIT COMMAND PROCESSOR (IHKEOS)

Entry Point

IHKEOS

Function

register 1 must point to a two-word parameter list
containing the address of the TUB and the address of the
AVT.

This module receives control from the IHKEDT module to read an OS
data set into a user's active file or to delete an OS data set. If an
OS data set is to be read into the active area, the IHKIRL routine is
called to create the directory entry and the active file. The
loader/controller is then called to load the IHKOPN module. If the
loader/controller routine (IHKLDC) abended, control is returned to the
caller with a return code of 12 in register 15. After the module is
loaded it is attached as a task, and control is passed to it .to open or

130

scratch the os data set. If the data set was scratched. the IHKEOS
routine detaches the IHKOPN module and returns to the calling routine_
If the data set was opened. the block size of the data set is found. and
a GETMAIN macro is issued for a read buffer. The TUBLNUMN field is
checked to see if it is on: if it is on, a maximum line length of 72 is
set. If it is not on, a maximum line length of 80 is set. A block of
records is read into the buffer. and the record size and blocking factor
are checked. For fixed blocked or unblocked records with a record size
equal to the maximum line length or less, each record is put in a line
and padded as necessary. For fixed blocked or unblocked records with a
record size greater than t~e maximum line length, the records are put
into as many lines as needed to contain each line. If the record size
is between the maximum line length and 120, the TUBLONGN field is set to
indicate that the data set is to be listed on a single line per record.
For variable blocked and unblocked records, each record is placed into
as many lines as needed to contain the record, depending on the record
length. When undefined records are encountered, each block is placed in
as many lines as needed to contain the block. As the lines are built,
they are assigned line numbers using the default starting line number .
and increment. If the TUBLNUMN flag is set. these line numbers are also
put in bytes 73-80 of the line. When end-of-data is encountered on the
data set. the IHKOPN module is detached, and control is returned to the
calling routine.

External Routines

IHKDSP
IHKAFI
IHKMSG
BSAM
IHKOPN
IHKLDC

to wait for completion
to manipulate active file
(entry point:IHKMSGOlt to queue error messages
to read data set
to open or scratch OS data sets
to load IBKOPN module

Tables/Work Areas

18-word save area
PPr
DCB
OSCB
JFCB
DIR directory
TUB

TUBUFFAO
TUBLNUMN
TUBLONGN
TUBAFISW
TUBPPTAD
TUBPPTAD
TUBCNTFS
TUBDIRAD
TUBNXXKEY -
TUBPRMLS
TUBRAFBF

buffer contains parameters
indicates line numbers contained in line
set to indicat~ record length between 80-120
indicates buffer control used
indicates buffer control used
PPT contains processing switches
number of lines to be inserted
contains directory address
contains line number for IHKAFI
parameter lists for calling routines
IHKAFI buffer address

User buffer contains OS data set name, parameter list, and
ECBs for IHKOPN .

Variable length Read Buffer
888-byte IHKAFI buffer

for reading data set

Normal

Error

return to calling routine with a zero return code in
register 15
return to calling routine with one of the
following return codes in register 15:

08 GETMAIN failure
12 active area I/O error or IHKLOC abend

Program Organization 131

16
20

error message lost
active area out of space

Attributes

Reentrant and nonresident

END SUBCOMMAND PROCESSOR (IHKEND)

Entry Point

IHKEND register 1 must point to a two-word area containing the
address of the TUB and the address of the AVT.

Function

The TUBDIRAD field in the TUB is checked first to determine if main
storage has been allocated for a directory entry. If main storage has
been allocated, it is freed, and the TUBDIRAD field is cleared to zeros.
A RELEASE macro is issued to free the user's active file. The following
switches in the TUB are reset to zero: TUBEXIT, TUBSCN, TUBFOR, TUBPL1,
TUBLONGN, and TUBLNUMN.

If a disk error occurred on the RELEASE macro, control is returned to
the calling routine with a return code of 12.

If this processor was called because of abnormal termination, then
the negative of the LOGOFF command verb is put in register 15, and
control is returned. otherwise, control is returned to the calling
routine with 0 in register 15.

External Routines

1S-word save area
AVT
PPT contains any operands entered
TUB

TUBPPTAD contains address of PPT
TUBDIRAD contains address of directory

zeros
TUBEDIT set to zero
TUBSCN set to zero
TUBFOR set to zero
TUBPL1 set to zero
TUBLONGN set to zero
TUBLNUMN set to zero
TUBABEND checked to determine abnormal
TUBPRMLS used for parmaeter lists
TUBUSRID contains userid

entry; cleared to

termination

Normal- return to calling routine with 0 in register 15; or if
abnormal termination, the negative of LOGOFF command verb
code in. register 15.

Error - return to calling routine wi·ch one of the following return
codes in register 15:

08 GETMAIN failure
12 acti ve area I/O error

Attributes

Reentrant and nonresident

132

INPUT SUBCOMMAND PROCESSOR UHKIPT)

Entry Point

IHKIPT- register 1 must point to a two-word parameter list
containing the following: the address of the TUB and the
address of the AVT.

Function

This module first checks each of the operands entered with the INPUT
subconunand. The IHKNUM module is called to check the operands for eight
or fewer numeric characters. The first two such numeric operands are
saved as the line number and the increment. If the I operand is
specified, the appropriate switch in thePPT is set. The operand I must
follow a line number, and, if no increment is specified before the.I,
then the default increment of 1 is saved. If a line number is specified
without the operand I, then the increment value is obtained from the
user's directory entry. If the R operand is specified, . the appropriate
switch is set in the PPT. The R operand must follow a line number·and
cannot be preceded by an increment. The PROMPT operand causes the
TUBLNPMT switch to be set, and the NOPROMPT operand causes the TUBLNPMT
switch to be turned off.

The following conditions cause the excessive operands message to be
queued for the user: more than four operands: any operands after a
P[ROMPT] or NOP[ROMPT] operand. Testing· of operands ceases after this
message is queued, and control is returned to the calling routine.

The following conditions cause the invalid operand message to be
queued: R or I operand before line number operand: increment before or
after R operand: increment after I operand: ·unrecognizable operand. The
multiple keywords message is queued whenever two or more I or R operands
are specified or whenever both the I and R operands are specified. When
a condition for the invalid operand or multiple keywordS message is
detected, the remainder of the operands are checked, and control is
returned to the calling routine.

If no numeric operands are specified, control is passed back to the
calling routine with the call code for the IHKIRL module (entry point:
IHKIRL01) in register 15. Otherwise, an RPOINT macro is issued to gain
access to the active area •. If the I operand is specified, the RPOINT
macro is for the specific line number. If the line number already
exists in the active file, then an error message is queued and control
is returned. Otherwise, the RPOINT macro is for after the next
lower-numbered line. Parameters are set up for the IHKIRL module, and
control is returned to the calling routine with the call code for the
IHKIRL module in register 15.

If the R operand is entered, then an RPOINT macro is issued to point
to the specific line number. If the line number does not exist, an
error message is queued, and control is returned to the calling routine.
Otherwise, parameters are set up for the IHKIRL module, and control is
returned to the calling routine with the call code for the IHKIRL module
in register 15.

If neither the I or R operand is specified, the RPOINT macro is
issued to point to the specific line number. If the line number exists,
then the parameters are set up for the IHKIRL module, and control is
retllrned to the calling routine with the call code for the IHKIRL module
in register 15. If the line number does not exi s·t , the RPOINT macro is
for after the next lower-numbered line. Then parameters are set up for
the IHKIRL module, and control is returned with the call code for the
IHKIRL module in register 15.

Program Organization 133

The parameters that are set up for the IHKIRL routine depend upon the
operands specified on the INPUT command. If no line number is
speci'fied, the TUBDATAL field is cleared to zeros, and control is
returned to the calling routine with the eode for the IHKIRLOl routine
in register 15. If a line number is specified on the INPUT command,
then the following flags are set according to the operands:

INPUT linenum [increment]

If the record exists, the x'02' flag is set in the flag byte.
otherwise, the flag is not set. The increment is set to the value
entered on the command, or to the value in the directory entry if
no increment is given on the command.

INPUT linenum [increment] I

The x·qo· flag is set in the flag byte. The increment is set to
the value'specified,or toone if no value is specified.

INPUT linenum R

The X· 20' ,flag is set in the flag byte.

In all three cases the X'SO' flag is set to indicate to the IHKIRL
routine that control came from the IHKIPT routine. The parameters
o'Uerlay the PPT and have the follOWing forma.t:

FLAGS

LN
INCRE

DS
,DS
DS
DS

C
CL5
CL8
F

FLAGS
UNUSED
LINE NUMBER
INCREMENT

External Routines

IHRMSG
IHKAFI
IHKNUM

(entry point:IHKMSG01) to queue messages for the user
to manipulate the active file
to check operands for numerics

Tables/Work Areas

,18-word save area
PPT contains command operands and processing switches
AVT
DIR

TUB
DIRINC

TUBPPTAD
TUBDIRAD
TUBLNPMT

TUBDATAL
TUBNXXKEY -
TUBUSRID
TUBUFFAD

default increment

contains address of PPT
contains address of directory entry
line number prompts switch, which is set or turned
off as requested
set to 0 for IHKIRLOl
key set for IHKAFI
userid for IHKMSG
address of user buffer

Normal return to calling routine with negative of command verb
code in register 15 as directed by operands specified for
either IHKIRL or IHKIRL01.

Error return to the calling routine with one of the following
return codes in register 15:

OS GETMAIN failure
16 error message lost.

Attributes

Reentrant and nonresident

134

INSERT/REPLACE/DELETE PROCESSOR (IBKIRL)

Entry Points

IHKIRL

IHKIRL01

IBKIRL02

Function

to insert lines into the active file, to create a new
active file, to delete lines in the active file, or to
create a directory entry. Register 1 must point to a'
two-word area containing the address of the TUB and the
address of the AVT.

to process the Implicit subcommand, a nulL line of
input in edit mode, or an INPUT subcommand with no
operands. Register 1 must point to a two-word area
containing the address of the TUB and the address of
the AVT.

to process a null line when corrections are being made
(control passed from command analyzer). Register 1
must point to a two-word area containing the address of
the TUB and the address of the AVT.

This routine services requests to create an active file, to modify an
existing file, and to .create a directory entry. It also processes the
Implicit subcommand and the DELETE subcommand.

When c~ntrol is passed to the IHKIRL entry point from an EDIT
command, a new active file is created, a directory entry is created, and
if NEW is specified on the command, lines are inserted into the active
·file as described for an insert-only request. Otherwise, a return is
made to the calling routine.

When a DELETE subcommand is entered the operands are checked, and if
an error is detected, an error message is queued for the user. When the
command is accepted, and if one line has been specified, that line is
deleted. If that line does not exist, an error message is queued for
the user and return is made to the calling routine. When a range of
lines is specified, those lines with line numbers greater than or equal
to the first line number specified and less than or equal to the second
line number are deleted. If there are no lines existing in the
specified range, a message is queued for the user.

If the request is for insert only, the user is prompted with a line
number, the reply text is inserted into the active file, the next line
number is calculated, and the user is again prompted. This continues
until the user enters a null line or until the calculated line number is
greater than or equal to the next line number already existing in the
active file.

If the request is for insertion or replacement, the user is prompted,
and the line is inserted into or replaced in the active file at that
place. The next line number is calculated and the user is prompted
again. This continues until the user enters a null line.

When the request is for replacement, the line number in the
subcommand is used to prompt the user for a line of text. When the user
enters the line, it is put in place of the old line. The next line
number is taken from the TUBNXKEY field, and the user is prompted again.
This continues until the user enters a null line, or until the end of
the active file is reached.

If the user has requested that input lines be syntax scanned, each
input line, except those entered with the Implicit subcommand, are
checked for a continuation character (-) at the end of the line. If
there is a continuation character, it is removed and the line is put

Program Organization 135

into the active file in the normal manner. When a line without a
continuation character is detected, it is put into the active area, and
the line number range since the last noncontinuation line is passed to
the syntax checker interface routine (IHKSYN). The return code from the
interface is checked. If the code indicates an error, the appropriate
error message is queued for the user. If the code is good, the user is
prompted with the next line number and normal processing continues. If
the return code from the interface indicates a syntax error, return is
made to the command analyzer. This module is reentered at the IHKIRL02
entry pOint upon detection by the command analyzer of a null line of
input. If the TUBCORCN switch is set, the lines are again passed to the
interface routine and the cycle repeats.

External Routines

IHKLAD
IHKSYN
IHKAFI
IHKMSG

to prompt user for input lines
to pass lines to syntax checker
to manipulate active file
(entry point:IHKMSG and IHKMSG01) to queue and send
messages for user

Tables/Work Areas

AVT
18-word save area
TUB

TUBDIRAD
TUBSCN
TUB FOR
TUBPL1
TUBCORCN
TUBCORRN
TUBIRLSA
TUBTEXTN
TUBDATAL
TUBLNPMT
TUBLNUMN
TUBNXXKEY -
TUBPRMLS
TUBRAFBF
TUBUFFAD

directory entry address
tested for syntax scan requested
FORTRAN scan requested
PL/l scan requested
tested for syntax errors corrected
tested for syntax errors
address of parameter list for IHKSYN
set for upper/lower case preservation
contains line length
tested for line number prompts
tested for line numbers in line
line number
parameter area

User buffer
PPT

IHKAFI buffer address
buffer address
buffer for IHKAFI
contains DELETE and Implicit subcommands
directory entry DIR

CCT
CCTPLl
CCTFOR

Normal

Error

PL/l syntax checker in system
FORTRAN syntax checker in system

return to calling routine with 0 in
register 15
return to calling routine wi th one of the
following return codes in register 15:

4 line error
8 GETMAIN failure

12 active area I/O error
16 error message lost
20 active area out of space

Attributes

Reentrant and resident

136

LIST SUBCOMMAND PROCESSOR (IRKLST)

Entry Point

IHKLST

Function

register 1 must point to a two-word parameter list that
contains the address of the TUB in the first word and the
address of the AVT in the second word.

The numeric verification module (IHKNUM) checks the linenum operands,
if specified, for all numerics. A GETMAIN macro is issued for two
double words to contain the, line numbers. If there are any errors in
the operands, an error message is sent to 'the user, and control is,
returned to the calling routine.

If no line numbers are specified, the entire data set is listed. If
a range of line numbers is specified, the listing starts with the first
specified line or, if that line does not exist, with the next higher
numbered line. The listing continues to give all successive lines until
EOD is detected or until the next line number in the data set is greater
than the specified last number. If only one line number is specified,
that line alone is listed. If the line cannot be found, a message
informs the user that the line does not exist.

If the NOM operand is specified, each line listed is preceded by its
line number. If the NONUM operand was given, only the line is listed.
However, even if the data set has the SEQ attribute, the last 8
positions of the line 'are not printed for either NOM or NONUM
conditions.'

The TUBLONGN switch of the TUBFLG3 field is checked to determine the
presence of records with a length of up to 120 characters. If so, the
extra forty characters are listed following the standard 80-character
line, if line numbers are not contained in the line. If line numbers
exist, the first 72 characters of the first line are listed, followed by
the first 48 characters of the next line.

The RPOINT and RGET macros of AFIO are used to read the active file
one line at a time. An 80-character line is put in the user buffer. If
a 120-character line is indicated, a second line is put in an allocated
AFIO buffer, and the first 40 or 48 characters are moved into the user
buffer following the first full line. The AFIO buffer is then freed.
Both 80- and 120- character lines are written from the user buffer to
the user at a terminal by use of the CWRITE macro.

The routine is also used by the LISTDS/LISTLIB processor to list the
requested information pertaining to a data set or sets from a user
library. The IRKLDS module builds the lines in the active area and
branches to this module to write the lines. Upon completion of this
IHKLDS listing, the active area created by the IHKLDS routine is
released.

External Routines

IHKNUM
IHKAFI
IHKLAD
IHKMSG

to check 1inenum operands for all numerics
to read active file (or certain linest
to write active file (or certain lines) at the terminal
(entry point:IHKMSG011 to queue error messages for user

Tables/Work Areas

IS-word save area
96-byte buffer used when listing line of a 'length

greater than 80 characters.
2 doublewords to store line numbers

Program organization 137

user buffer to pass line to IHKLAD module .
PPT flag byte
TUB

DEF

TUBLNO
TUBNXKEY
TUBPRMLS

TUBDATAL
TUBAFISW
TUBLNUMN
TUBLONGN
TUBPPTAD
TUBRAFBF
TUBUFFAD
TUBUSRID

DEFLST

indicate whether line numbers are requested
indicates line number for FlO operations
used for parameter lists for the IHKNUM and IHKMSG
modules
used to specify data length for CWRITE operation
set and turned off for AFIO buffer control.
checked for sequential nUmber in line
checked for 80- or 120-character line
checked for PPT address .
checked and set for AFIO buffer address
checked for user buffer address
userid passed to message writer

indicates default for line numbers

Exits

Normal
Error

return to calling routine with 0 in register 15
return to calling routine with register 15 set to one of
the following:

4 line error
8 GETMAIN failure

12 active area or library I/O error
16 message lost
20 active area out of space

Attributes

Resident and reentrant

LISTDS AND LISTLIB COMMAND PROCESSOR (IHKLDS)

Entry Point

IBKLDS

Function

register 1 must point to a two-word parameter list
containing the address of the TUB in the first word and
the address of the AVT in the second word.

The operands of the LISTDS or LISTLIB command are checked. If an
error is found, an error message is sent to the user and control is
returned to the calling routine with a 0 in register 15. The command
code in the PPT is checked to determine which command was entered. If a
data set name is specified on the LISTLIB command, it is flagged as an
error. A dsname must be specified on the LISTDS command and is put in
the TUBPMFNM field. If STATUS and/or HISTORY is specified,
corresponding flags are set in the PPTFLG byte.

The IHKUTM module is used to queue for library I/O. The I form
(LISTDS) or the F form (LISTLIB) of the RFIND macro is then issued to
find data sets in the user library. If the requested data set (LISTDS)
or the user library (LISTLIB) is not found, an appropriate message is
sent to the user. If the command is a LISTDS, the directory for the
data set is in the KONBOX at BPBLDLST + 4. If the command is a LISTLIB,
a block of directory entries is read into the area pointed to by the
SFBUFFl field. If the RREAD macro indicates no data sets in the user
library, a message is sent to the user to indicate that the library is
empty. The IBKLDS module terminates after sending these messages to the
user.

138

CREATE and RPOINT macros are issued to acquire an active area in
.. which to build the information to be sent back to the terminal. A
header message is obtained from the message writer and inserted into the
active area. The information requested will be listed under the
appropriate labels of the header.

The requested information contained in a directory is interpreted.
The necessary information is assembled in the user buffer in an
alignment that corresponds to the labels of the header. The flags
indicating what operands were specified in the command are checked. Any
unnecessary information is blanked out and the line is compressed. The
line of information is then inserted into the active area.

When all the information requested is gathered in the active file,
the processor dequeues itself from the library I/O queue and control is
passed to the LIST processor (IHKLST). The LIST processor requests that
the active file be listed at the terminal. After all .th€ lines are
listed, the active file is released by the LIST processor.

External Routines

IHKBPM
IHKAFI
IHKMSG

to manipulate a user library
to create and manipulate an active area
to send error messages to the terminal user and to obtain
the message header

IHKUTM
IHKLST

to queue for library I/O
to list the header and the data set information requested
at the terminal

Tables/Work Areas

18-word save area
TUB

TUBUSRID

TUBPRMLS
TUBAFISW

TUBGBLKY
TUBMID
TUBPMFNM
TUBPPTAD
TUBRAFBF
TUBUFFAD
TUBUSRNM

used to obtain specified data set .name directory
information for LIST processor
contains parameter list for external routines
to indicate to AFIO that the user buffer is not to
be released
used to pass userid to the IHKUTM routine
checked for message IDs
set to BPAM file name
checked for address of PPT
used for buffering control when inserting lines
contains address of user buffer
set to user name for RFINDl for LISTDS

User buffer used to assemble the data set information to be
inserted into the active area

Active area used to retain the assembled line of information
from the user buffer and pass the line or lines to
the IHKLST processor

PPT
PPTFLG
PPTPARS

indicates operands specified on the command
used to pass a code to the IHLST module that
identifies this listing as an IHKLDS request

Normal return to command analyzer with the negative value of the
LIST command in register 15 or a 0 to indicate good
completion, without going to the IHKLST module.

Error return to command analyzer with one of the following
return codes in register 15:

4 line error
8 GETMAIN failure

12 active area I/O error

Program Organization 139

16 message lost
20 active area out of space

Attributes

Reentrant and nonresident

LOGOFF COMMAND PROCESSOR (IHKLGF)

Entry Point

IHKLGF

Function

register 1 must point to a two-word parameter list
containing the address of the TUB and the address of the
AVT.

This routine is responsible for terminating a user's session at the
terminal. Upon entry, the time of LOGOFF is obtained and saved. If any
operands are entered with the command, the excessive operands message is
sent to the user and control is returned to the calling routine. The
IHKUTM routine is used to verify the userid and to turn off the active
bit in the user verification record (UVR). The CCT is then checked to
determine whether or not any consoie has requested that all LOGOFFs be
shown. If a request has been made,then a show session message is sent
to the central console. If a nonzero return code is received from the
IHKUTM module, then the console IDS, which were returned by the IHKUTM
module, are checked and a show session message is sent to each of the
requesting consoles.

Using the LOGOFF time and the LOGON time, which was saved in the TUB,
the total session time is calculated. The LOGOFF message is sent to the
user, and the LOGOFF exit routine is called. If storage has been
allocated for the IHKTAB routine, it is freed. The eight-byte field in
the TUB containing the userid (TUBUSRID) is cleared to zeros. If the
return code for the IHKLGF routine is not 0, or if the command verb in
the PPT is the command code for LOGOFF, then control is returned to the
calling routine. Otherwise, the TUB is cleared to zeros with the
exception of the first sixty bytes. If the CCTSUP bit is set, the
LOGONs suppressed message is sent to the user, and control is returned
to the calling routine. otherwise, the negative of the command verb for
LOGON is placed in register 15 and control is returned.

If the TUBUTMN switch is set, it means that the user is being logged
off because of an I/O error in the active area. In this case the
following procedures are not executed:

• No ,call to the IHKUTM routine;

• No session messages are sent; and

• No LOGOFF message is sent.

If the TUBLGNAB flag is set, IHKLGF was entered because of incomplete
logon processing. The following procedures are not executed:

• No operand check is made;

• No LOGOFF message is sent;

• The LOGOFF exit is not entered if logon processing did not get to
the point where the logon exit would be entered if there was one;

140

• No session messages are sent.

The return code for the LOGOFF routine is set to 12.

If the TUBABEND switch is set. this means that the user is being
logged off because of abnormal termination. In this case the abnormal
termination switch in the UVR is set when the IHKUTM routine is called
.and the return code for the LOGOFF routine is set to 4. Also, if the
TUBSTOP switch is not set, then no session messages and no LOGOFF
messages are sent. Both the TUBUTMN switch and the TUBA BEND switch are
checked before the IHKUTM routine is called.

External Routines

IHKUTM to verify userid, turn off active bit. and if requested.
turn on abnormal termination bit in UVR.

IHKMSG (entry point:IHKMSG) to send error message or LOGOFF
message to user.

Tables/Work Areas

lS-word save area
AVT .
TUB

PPT

CCT

TUBUTMN
TUBLGNAB
TUBTIME
TUBGBLKY
TUBABEND
TUBPPTAD
TUBUSRID
TUBTABAD
TUBPRMLS
TUBCLBAD
TUBSTOP
TUBUFFAD

PPTCMD

CCTSESS
CCTSUP

indicates I/O error in active area
indicates incomplete LOGON processing
contains LOGON time
key for IHKUTM (set by IHKLGF)
checked for abnormal termination
adcb:ess of PPT
userid
address of main storage used in IHKTAB
used for parameters
address of CLB
modify off
user buffer

command verb code

show session
suppress mode

Exits

Normal
Error

return to calling routine with 0 in register 15

Attributes

return to calling routine with one of the following in
register 15:

4 TUBABEND is on
8 GETMAIN failure

12 TUBUTMN is set or active area I/O error
16 error message lost

Reentrant and nonresident

LOGON COMMAND PROCESSOR (IHKLGN)

Entry Point

IHKLGN register 1 must point to ~ two-word parameter list
containing the address of the TUB and the address of the
AVT.

Program organization 141

Panction

The presence of operands is checked first. The first operand
detected is considered the userid and password. If a slash is found, it
is removed and the operand is separated. If no slash is found, the
operand is considered to be only the userid. I·f the first c~racter of
the operand is a slash it is removed, and the operand is considered the
password. If. the last charaq,ter is a slash then the slash is removed,
and the operand is considered a userid. The remaining operands are
checked, and appropriate switches in the TUB are set. If any errors
Csuch as duplication of operands or contradictory operands) occur, then
an error message is sent to the user and control is returned to the
calling routine.

Khen all operands have been checked, theIHKUTM module is called to
validate the useridand password. If nouserid was specified, the
message writer prompts the user for a userid.. The .. userid is used as .the
key in TUBGBLKY for the IBItU'l'M routine. If theuserid is not found or
is already in use, the user is prompted for another one. If the userid
is valid, the IHKUTM module returns the password in the TUB~ARM4 field.
If no password was entered with the command, the user is prompted for a
password. The passwords are compared; and if they are not the same, the
user is prompted for another one. If the passwords are the same, then
the IBKUTM module is called again to set the active bit in the user
verification record (UVR). The user is prompted only once for a userid
and only once for a password. If the reply to a prompt is invalid the'
user is noti.fied, and control is returned to the calI'ing routine.

If' a LOGON exit routine exists, the parameter l.ist is specified, and
a branch is made to the exit routine. If a nonzero return code is
received from the user exit, indicating that the user is not to be
allowed on the system, a message is sent to the user, and control is
returned to the calling routine. Otherwise, the ~IME macro is issued
and the value ·is stored in the TUB. The message writer is called to
s~d the LOGON message to the use.r. If the CCTSESS, field is nonzero,
indicating all LOGONs are to be shown, the ,show session messag~ is sent
to the central console. If the CCTSESS field is zero and the ,UVRSESS
field is nonzero (indicating LOGON is to be shown for a particular
user), then the show session message is sent to the central console.

I If a nonzero return code is to be returned, the TUBLGNAB, flag is set
to indicate that IBRLGF is to be entered in order to call the LOGOFF
exit if .the LOGON processor actually logged the user on the system.

External Routines

IBRMSG

IHKUTM

LOGON exit

Tables/Work Areas

(entry point:IHKMSG) to send messages to terminal
user and central operator
to verify userid, set active bit in OVR, get
password, and --put console IDs in TUBPARM3
to process accounting information

18-word save area
TUB

142

TUBMID
TUBUSRID
TUBTIME
TUBBRD
TUBLGNAB
TUBGBLRY
TUBPPl'AD
TUBPRMLS
TUBDATAL
TUBUFFAD

.. TUBCLBAD
TUBDIRAD

set according to operands on command
userid inserted
time of LOGON inserted
set or turned off according to operands on command
set to indicate incomplete LOGON processing
key for IHRUTM
address of PPT
used for parameter lists
contains length of data in user buffer
address of user buffer
address of CLB
used as temporary work area

TUBIRLSA used as temporary work area
TUBRJCT used as temporary work area

PPl' contains command and operands
CCT

CCTSESS tested for show session
CLB

CLBLINE contains physical line address
ova

tJVRMXCON number of console IDs
AVT

~

NOrmal
Error

return to calling routine with 0 in register 15
return to calling routine wi th one of the following
return codes in register 15:

4 line error in IHKMSG
8GETMAIN failure

12 active area I/O error
16 error messag~ lost

Attributes

Reentrant and nonresident

MERGE SUBCOMMANJ) PROCESSOR (IBKMGE)

Entry Point

. IBKMGE register 1 must pOint to a two-word area containing the
address of the TUB and the address of the AVT •

. FUnction
The first operand is checked and if it is an asterisk (*), a

switch is set to indicate that an active area merger is to be performed.
Otherwise, the dsname is stored. The next operands, .if any, are checked
for all numerics and stored. Any error causes an error message to be
sent to the user and control returned.

If there are none or two numeric operands, a test is made to find if
an active area merger is to be performed or if lines from a user library
are to be merged. If the merger is within the active area, the IBKMAA
module is loaded and control is passed to it. If the merger is from a
user library, the IBKMUF module is lOaded and control is passed to it.

When there are one or three numeric operands, the entire active file
is moved to a utility file, the active file is released and a new one
created. Control is then passed to the IHKMUF or tHKKAA routine.

External Routines
IBKAFI to move lines to utility file
IBKMSG (entry point:IBKMSG01) to queue error messages
IBKNUM to verify all numerics in operand

TableS/Work A~

l8-word save area
28-byte work area
PPl'-contains subcommand and operands
User buffer - used as work area
888-byte buffer
TUB

TUBAFISW
TUBCNTFS

buffer control for IBKAFI
number of lines (IBKAFI)

Program Organization 143

TUBGBLKY
TUBNXKEY
TUBPARMLS -
TUBRAFBF
TUBUFFAD
TUBUSRID
TUBUSRNM

utility file pointer
active file pointer
parameter area
IHKAFI buffer address
user buffer address
userid of user
userid of owner of library

Normal return to calling routine with the negative of the code
for IHKMAA or IHKMUF in register 15

Error return to the calling routine with one of the following
return codes in register 15:

8 GETMAIN failure
12 active area I/O error
16 error message lost
20 active area out of space

Attributes

Reentrant and nonresident

MERGE SUBCOMMAND PROCESSOR (IHKMAA)

Entry Point

IHKMAA register 1 must point to a two-word area containing the
address of the TUB and the address of the AVT.

Function

This module handles the merging of active area lines. If a utility
file exists, the lines up to and including the line after which the
merger is to be made are moved to the new active file. If a range of
lines has been specified, the lines within the range are copied to the
end of the user's active file and resequenced. If no range is
specified, the entire active file is copied to the end of the active
file.

If a MERGE after a line number is specified, the rest of the lines in
the utility file are copied at the end of the merged active file and the
lines are resequenced. Control is then returned to the calling roatine.

External Rout~

IHKAFI
IHKMSG

to manipulate active file and utility file
(entry point:IHKMSG011 to queue error message for user

Tables/Work Areas

144

18-word save area
TUB

TUBLNUMN
TUBPPTAD
TUBUFFAD
TUBLNUMN
TUBNXKEY
TUBCNTFS
TUBGBLKY
TUBPRMLS
TUBRAFBF

indicates line numbers are contained in line
address of PPT
buffer has parameters from IHKMGE module
checked for line numbers to be contained in line
active file pointer
number of lines (IHKAFI)
utility file pointer
parameter area
IHKAFI buffer address

PPl'
User buffer
BBB-byte buffer for IHKAFI

Normal
Error

Attributes

return to the calling routine with a 0 in register 15
return to the calling routine with one of the following
return codes in register 15:

8 GETMAIN failure
12 active area I/O error
16 error message lost
20 active area out of space

Reentrant and nonresident

MERGE SUBCOMMAND PROCESSOR (IHKMUF)

Entry Point

IHKMUF

Function

register 1 must point to a two-word area containing the
address of the TUB and the address of the AVT.

This module merges lines from a data set in a user library to the
active file. If a utility file exists, the lines up to and including
the line after which the merger is to be made are moved to the new
active file. The data set is opened and the member found. If the data
set or member is not found, an error message is queued for the user, and
control is returned to the caller. The remainder of the utility file,
if it exists, is moved to the active file.

If a range of line numbers is specified, the data set is read until a
line number equal to or higher than the beginning line number is found.
All lines in the range specified are inserted at the end of the active
file and resequenced using the last line number and increment of the
active file. If no range of lines is specified, the entire data set is
copied.

If a utility file exists, the rema~ft1ng lines are inserted at the end
of the active file and resequenced. Control is then returned to the
calling routine.

External Routines

IHKBPM
IHKAFI
IHKMSG

to read from a user library
to manipulate active file and utility file
(entry point:IHKMSG01) to queue messages for user and to
send messages to central operator

IHKUTM to verify userid, to put ddname in UVR, and to queue for
library I/O

Tables/Work Areas

is-word save area
TUB

TUBLNUMN
TUBPPTAD.

TUBUFFAD

indicator for line numbers contained in line
PPT contains switches passed from the IHKMGE
module
buffer contains parameters from the IHKMGE module

Program Organization 145

PPT

TUBNX:KEY
TUBCNTFS
TUBGBL:KY
TUBDIRAD
TUBGBLNM
TUBPRMLS
TUBRAFBF
TUBUSRNM

User buffer
SSS-byte buffer
Directory entry

active file pOinter
number of lines
utility file pointer
directory entry address
utility file number
parameter area
IHKAFI and IHKBPM buffer address
owner of library

Exits

Normal
Error

return to the calling routine with a 0 in register 15
return to the calling routine with one of the following
return codes in register 15:

S GETMAIN failure
12 active area I/O error
16 error message lost
20 active area out of space

Attributes

Reentrant and nonresident

OUTPUT ~ND CONTINUE COMMAND PROCESSOR (IH:KOUT)

Entry Point

IH:KOUT

Function

register. 1 must contain the address of a two-word
parameter list containing the address of the TUB and the
address of the AVT.

The OUTPUT command allows the user to obtain the output.of jobs he
has submitted through CRJE. Only OS data sets in the CRJE SYSOUT class
and job management messages, if MSGCLASS specified the CRJE SYSOUT
class, are available. This'module also processes the CONTINUE command
for discontinued output.

This module first inspects the operands of the OUTPUT and CONTINUE
commands. If an invalid operand is found, an error message is sent to
the user. If a CONTINUE command is entered when the user is not in a
discontinued state, the command is rejected and a message is sent to the
user. If the command is OUTPUT and any of the fOllowing errors are
detected, a message is sent to the user: jobname not found, user
requesting output did not submit the job, or the job is not complete.

If the operands are verified, the IH:KAFI module is called to get the
RJCT entry. Control is then returned to the command analyzer with a
code in register 15 requesting that the transmit output routine (IHKPUT)
be loaded and control passed to it.

External Routines

146

IHKAFI
IH:KMSG

to read RJCT entry from global file
(entry point :IH:KMSGOl) to queue messages 'for user

Tables/Work Areas

504-byte GETMAIN work area for IHKPUT routine
PPl',

RJCT

TUB

DEF

PPTCMD
PPl'CBAD
PPTPARS

RJCTFLGS
RJCTUSER

TUBFLG2

TUBRJCT ~"" ,-

TUBUSRID

checked for OUTPUT or CONTINUE command
checked for operands in another PPT
contains first operand on command

(bit 1) test for job completion
userid of user who submitted job; checked against
TUBUSRID who issued OUTPUT command.

CTUBDISOP) checked for discontinued output
(TUBSMSG) set to 1 if SMSG is specified
jobname inserted to process OUTPUT command; used
as jobname for CONTINUE command
userid who entered OUTPUT command

DEFCON • - checked for default CONTINUE operand if none is
specified

Normal return to command analyzer with negative value of code
for IBKPUT in register 15

Error

Attributes

return to command analyzer with one of the following
return codes in register 15:

o - error message queued for the user
8 - GETMAIN failure

12 - Active area I/O error

Reentrant and nonresident

TRANSMIT OUTPUT MODULE (IBKPUT)

Entrv Point

IBKPUT

Function

register 1 must contain the address of a two-word
para~ter list containing the address of the TUB and the
address of the AVT.. TUBPARMS must contain the address
of the save and work area for IBKPUT.

A check is made to determine if there is an 5MB or DSB to be read
from the CRJE SYSOUT class. If there is not one, the IEFQDELE routine
is called to del.ete the entry on the"SYSOUT queue, the IBKAFI module is
called to delete the RJCT entry, and control is returned to the calling
routine. If there is an 5MB or DSB, it is read. If the record is a
scratched data set, this routine "reinitializes the TTR of the last block
read from the data set, and the next 5MB or DSB is read if it exists.
If the record is not a scratched data set and if an 5MB was read instead
of a DSB, a check is made to see if SMSG was specified on the command.
If it was not, the next 5MB or DSB is read and the process repeated.

If SMSG was specified, this indicates that the user wants the job
management messages. This module then determines" if· the 5MB isa
compressed Or normal 5MB. Normal 5MBs are transmitted directly to the
remote terminal. compressed 5MB text is decompressed before being
transmitted to the user. When the end of the 5MB is reached, the next
5MB or DSB is read and processed if it exists~

Program Organization 147

If a DSB is read instead of an 5MB, IHKPUT determines whether it
needs an SMF buffer to write the SMF type-6 record. If an SMF buffer is
needed, it is gotten and initialized from the DSB. If an SMFbuffer
already exists, the count of SYSOUT data sets is incremented by one.
The DSB contains the TIOT for a SYSOUTdata set entry and is, used by
this routine to create a new TIOT referred to bY the OPEN, CHECK, and
CLOSE macros to provide access to the SYSOUT data set. BSAM is used to
read the SYSOUT data. This mOdule deblocks the data and transmits it to

I the remote terminal one logical record at a time. For each line
transmitted, the SMF logical record count is incremented by one. Once
transmitted, the data set is scratched and the next 5MB or DSB is read.

I When all SYSOUT data sets have been transmitted, the SMF record is
written to SYS1.MAN.

The TTR of the current block being transmitted is saved by this
module when an unsuccessful write to the line is detected. This permits
resumption of processing from that point after a discontinue/continue
sequence.

IHKPUT makes use of the CRJE loader/controller task to load IHKRER
and the CRJE service task to interface with IEFQDELE and IEFQMSSS. If
either task is not active when IHKPUT needs to use them, IHKPUT returns
to the system administrator with a return code of 12.

External Routines

IHKAFI
IHKMSG

IHKDSP
IHKLAD
IHKRER

IEFQDELE-

IEFQMSSS­
BSAM

to delete or replace the RJCT entry in the active area
(entry pOint:IHKMSG01) queue message for user
(entry point:IHKMSG) send message to the central operator
CRJE dispatcher to wait on I/O
CWRITE macro to write to the line
(entry point:IHKRER) to read DSCB of SYSOUT data set from
the VTOC to determine if there is a DSCB and if so, if
the data set was accessed. If not, the data set is not
opened.
(entry point:IHKERR01) to scratch SYSOUT data sets
to return chain of 5MB/DSBs to queue manager disk free
space
to read 5MB/DSBs into main storage
to read SYSOUT data sets

Tables/Work Areas

148

20-byte model DECB
88-byte model DCB for SYSOUT data sets
504-byte work area for parameter lists for subroutines, save area,
DCB, DECB, 5MB/DSBs, RJCT entry, and temporary constants.
48 bytes for a new TIOT entry
57-byte SMF buffer
BSAM input buffer (size is defined in DCBLKSI of DCB for SYSOUT data
set

RJCT

TUB

RJCTTTRB

RJCTQMPA

TUBDATAL
TUBFLG2

TUBRJCT

TTR of last SYSOUT block read, set after every
read.
used to read 5MB/DSBs from SYS1.SYSJOBQE.

set to length of data for CWRlTEmacro
(TUBDISOP) set on I/O error or discontinue:
(TUBSMSG) set to 1 if SMSG specified, otherwise
set to O.
set to jobname to· process for OUTPUT command: used
as jobname for CONTINUE comntand.

I

Normal
Error

Attributes

return to command analyzer with 0 in register
return to command analyzer with one of the following
return codes in register 15:

4 - unsuccessful write'to line
8 - GETMAIN failure

12 - CRJE task failure

Reentrant and nonresident

SYSOUT OPEN, JOB DELETE, DATA SET SCRATCH, AND CANCEL MODULE (IHKRER)

The load module IBKRER is composed of four control sections, each of
which performs an independent function. Linkage to a control section in
the IHKRER module is made through a branch and link if from another
CSECT in the IHKRER module J otherwise linkage is through the
loader/controller (IBKLDC). The IHKRER module resides on SYS1.LINKLIB
under, the name IHKRER with aliases of IHKRER01, IHKRER02, and IHKRER03.
The control section IBICRER is invoked by theIBKOUT module to open .
SYSOUT data sets Of jobs being processed. The IHKREROl section is
inVQked by the IHKDEQ module and the IHKRER03 section to delete a job
from the CRJE and OS systems. The IBKRER02 section is invoked by the
IHKOUT module and the IBKRER01 section to scratch a SYSOUT data set.
The IHKRER03 section is invoked by the command analyzer to cancel a CRJE
submitted job.

Entry Points
IHKRER
IHKRER01
IBKRER02
IBDER03

Attributes

- to open SYSOUT data sets
to delete jobs
to scratch SYSOUT data sets
to cancel jobs

Reentrant and nonresident

First Entry Point

IBKRER

Function

(from IBKOUT) register 1 must point to a two-word
parameter list containing the following: '

1. pointer to a six-character string of volume serial
nUlllbers,

2. pointer to SYSQUT DCB.

When an OUTPUT command is processed, the IHKOUT module is called to
send the output to a remote terminal. The IHKOUT module linles to the
IHKRER section to determine whether the SYSOUT data sets can be opened,
and if so, opens them.

When this section gets control it reads the job file control block
(JFCB) into main storage and changes the BUFNO field to zero. Using the
DSHAME of the JFCB, this section tries to read the corresponding data
set control block (DSCB) from the volume table of contents (VTOC). If
no DSCB is available, no attempt is made to open the. data set. If the
oseB is available, it is read into main storage, and the TTR of the last
block written is checked for zero. If it is zero •. the data set was not
accessed, and th,ts section does not try to open it. If it is not zero,
this IBKRER section issues the OPEN macro (TYPE=J)to open the SYSOUT
data set. control is then returned to the IBKOUT module.

Program Organization 149

External Routines

SVC 64
SVC 27
SVC 22

RDJFCB macro reads JFCB into main storage.
OBTAIN macro reads DSCB into main storage.
OPEN macro, TYPE=J, opens'SYSOUT data set.

Tables/Work Areas

JFCB
DSCB

contains DSNAME
contains TTR pointer

Exits

Normal return to IHKOUT with a 0 in register 15 if the OPEN J
macro was issued; return to IHKOUT with a nonzero code in
register 15 if the OPEN J macro was not issued.

Error none

second Entry Point

IHKRER01- register 1 points toa four-word parameter list
containing:

1. pointer to RJCT entry
2. not used
3. pointer to the TUB
4. pointer to the AVT

Function

This section removes all references to a job from the CRJE system
(except named data sets, which remain under OS control).

I As a result of the OS CANCEL command, the job is enqueued on the
output queue. When the job is enqueued, the CRJE job termination
subtask (IHKDEQ) gets control and inspects the job-delete bit. Control
is then passed back to this section to delete the job, which is then
marked complete. When thi,s section returns to the IHKDEQ module, the
job cancel message is sent to the user.

If the job is complete, three routines are called to remove it from
the'system:

• The OS queue manager read routine reads the 5MB/DSBs for the job.

• The data set-scratch routine (IHKRER02) scratches the associated
data sets.

• The OS queue manager delete routine deletes the OS queue space.

I If access cannot be gained to the OS queue- manager read or delete
routines because of an abend in the CRJE service task, control is
returned to the caller so that CRJE may be closed down..

External Routines

IHKRER02
IEFQDELE
IEFQMSSS

to scratch given data set
to delete OS queue space
to read 5MB/DSBs from disk

Tables/Work Areas

150

19-byte buffer to build OS CANCEL command
176-byte buffer for 5MB/DSB

RJCT
RJCTFLGS (bit 3) chj;!cked for job .completion

- (bit 4) set for CANCEL command

RJCTQMPA Q manager parameter area to interface with OS
queue manager.

Exits

NOrmal
Error

return to calling routine
none

Third Entry Point

IRKRER02- register 1 must contain the address of a two-word
parameter list:

1. address of queue manager parameter area (QMPA)
2. address of data set block (OSB)

Function

This section is used by the IHKOUT module and by the IHKREROl section Ito scratch output data sets. The JOb. File Control Block (JFCB) is read
~ IEFQMSSS to determine the number of volumes on which the data set
resides. A scratch list is built for all vOlumes (maximum of five)
occupied by the data set, and the SCRATCH macro is issued to scratch the
data set. If more than five volumes are involved, allover five remain
unscratched.

I If access cannot be gained to the OS queue manager read or delete
routines because of an abend in the CRJE service task, control is
returned to the caller so that CRJE may be closed down.

External Routines

IEPQMSSS- to read 5MBs/OSBs from disk.

Tables/Work Areas

None

Exits

Normal

Error

return to calling routine with a 0 in register 15 to
indicate the data set has been scratched successfully.
return to calling routine with a nonzero value in
register 15 to indicate the scratch was unsuccessful.

Fourth Entry Point

IRKRER03 -register 1 must point to a two-word parameter list
containing the address of the TUB and the address of the
AVT.

FUnction

This section verifies the existence of the job for which the CANCEL
command was issued. It also verifies that the user who issued the
CANCEL command is the user who submitted the job. The IHKAFI routine is
called to remove the RJCT entry and the IHKREROl routine is called to
remove the job if it is complete. If the job is not complete, an OS
CANCEL command is issued for the job, the job-delete bit in the RJCT is
turned on, and the RJCT entry is writt~n in the global file. If the job
is not found, a message is sent to the user.

External Routines
IBKAFI to search for job entry in RJCT
IHKRER (entry point:IHKRER01) to cancel the job
IHKMSG (entry point:IHKMSG01) to send error

messages to user

Program Organization 151

Tables/Work Areas

lS-word save area
SO-byte buffer for RJCT entry

TUB

RJCT
TUBUSRID

RJCTFLGS

userid of user who subnitted the job

(bit 4) delete bit is checked on return
from IHKERROl

Exits
---Normal return to command analyzer

none Error

RENUMBER SUBCOMMAND PROCESSOR (IHKRNR)

Entry Point

IHKRNR register 1 must pOint to a two-word parameter list contai
ning the address of the TUB and the address of the AVT.

Function

The operands, if any, of the subcommand are checked. If either
operand contains a non-numeric character, an error message is queued for
the user, and return is made to the calling routine. The first operand
is assumed to be the starting line number and the second, the increment.
A default value of ten is assumed for any missing operand.

After the operand values are stored in a work area, a utility global
file is. accessed. A block of records is read from the active file, and
the keys are resequenced. If line numbers are contained in the last
eight characters of the line, they are also changed. When all lines in
the block have been resequenced, "the block is written to the utility
file. This process continues until EOD is encountered in the active
file. The utility file is then read, and the updated lines written back
to the act~ve file. The utility file is released when the entire file
bas been written back to the active file, and control is returned to the
calling routine.

The increment used by the RENUMBER subcommand processor is inserted
into the directory entry and becomes the increment for the data set. If
a RENUMBER subcommand is entered for a null data set, the increment
attribute in the directory entry is updated.

If in resequencing the line numbers the maximum allowable line number
is reached before EOD, the utility file is released, the active file
line numbers are not changed, and an error message is sent to the user.

External Routines

IHKAFI
IHKMSG
IHKNUM

to manipulate active file and utility file
(entry point:IHKMSG01) to queue error messages
to verify numeric operands

Tables/Work Areas

152

lS-word save area
BBB-byte buffer .used by AFIO
TUB

TUBUFFAD
TUBPPTAD
TUBPRMLS

contains address of user buffer
contains address ofPPT
contains parameter lists for IH~SG and IHKNUM

PPl'

TUBDIRAD
TUBAFISW
TUBCNTPS
TUBLNOMN
TUBRAFBF
TUBUSRID

User buffer
DIR

contains address of directory entry
set and turned off for buffer control
set and checked for block count for RGE'l' _cro
checked for line number
set for buffer control
userid passed to message writer
contains subcommand and operands
last 40 bytes used as work area
directory entry

Normal
Error

return to calling routine with 0 in regis~er 15.
return to calling routine with one of the following
return codes in register 15:

4 line error
8 GETMAIN failure

12 active area Ie/O error
16 error message lost
20 active area out of space

Attributes

Reentrant and nonresident

SAVE SUBCOMMAND PROCESSOR (IBKSAV)·

Entry Point

IHKSAV

Function

register 1 must point to a two-word area containing the
address of the TUB in the first word and the address of
the AVT in the second word.

The operands, if any, are checked; if an error is found, an error
message is sent to the user, and control is returned with a 0 in
register 15. If the OLD keyword was specified on the EDIT command, and
either the dsname is not specified on the SAVE subcoremand, or the daname
on the SAVE subcommand is the same as the dsname on the EDIT command,
the active file replaces the CRJE data set that has the same name. If
the NEW keyword was specified on the EDIT command, or if the dsname on
the SAVE subcommand is different from the dsname on the EDIT command,
CRJE checks for an existing data set with the same name. If a duplicate
data set name is found, the user is prompted for a new dsname. If the
user responds with a null input line, then the active data set replaces
the data set in the user library, and a new creation date is entered in
the directory. In all cases the last modified date is updated.

If there is not enough space available in the user library, the
library is automatically condensed to free unused space. If sufficient
space is not available after condensing, the user is notified that his
library is full and is asked for the name of a data set that can be
deleted. If the dsname the user sends in response is valid, it is
deleted. The user is prompted for data set names until he enters a null
line. Then the library is again condensed. If there is still not
enough space, the process is repeated beginning with the deletion
prompts. If the user is unable to give a data set name for deletion the
first time that he is prompted to do so subsequent to each condensing of
the library, he may.terminate the save attempt by entering a null line.

If enough space becomes available, the active file is saved in his
library. After the active file is saved, or after the user terminates
the process of condensing, control is returned to the calling routine
with a 0 in register 15.

Program Organization 153

If the user enters a valid protection key op.erand without a data set
name, the key is positioned in the key field of the directory pelonging
to the data set named in the EDIT commapd. If a valid protection key is
given along with a data set name, the directory for that data set.
receives the new key. In both cases the key replaces any existing key
without notification to the user.

If neither the dsname nor a key is specified with the SAVE command,
the key field of the directory belonging to the data set named in the
EDIT command remains unchanged. If a dsname is given with the SAVE
command but no key is specified, the key field is blanked in the
directory belonging to the named data set. This is the means that CRJE
provides for dropping a key already assigned to a .data set. However, no
check of the key field is made prior to the blanking out and if a key is
destroyed, no warning notification is issued to the user.

If the user has an 80-character library (as opposed to an
88-character library», a message will be sent warning him that data 1n
positions 73-80 of a line or lines has been destroyed during the save,
if the line sequence field is not blanks or does not equal the key
field.

External Routines

IHKAFI
IHKBPM
IHKWTR
IHKUTM
IHKMSG

IBKMSG

IBKRNQ
IHKCDP

to manipulate active area
to manipulate user library
to wait for completion of RWRITE macro
to queue for library I/O operations
(entry point:IHKMSG) to prompt user for data sets to be
deleted and retrieve the response
(entry,point:IHKMSG01) to inform the user of existing
conditions and/or errors
to queue for library I/O after the initial use of IHKUTM
to condense user library

Tables/Work Areas

154

1S-word save area .
PPT-flag byte used for SAVE indicators
KONBOX

TUB

DIR

BPBLDST + 4 and succeeding Pytes equaling
the length of the DIR are changed to reflect
the new dsname and/or keyword, if specified
as operands.

BPPARMFS used to retrieve DDNAME from IHKUTM
BPQCTLFW used for BPAM queue control

TUBCNTFS
TUBFILNM
TUBFLG2
TUBPRMLS
TUBGBLKY
TUBDATAL
TUBBPQEL
TUBDIRAD
TUBPPTAD
TUBRAFBF

TUBUFFAD

TUBUSRID

DIRNAME

set for RGET: altered by RGET for use by RWRITE
set with new dsname, if specified as an operand
tested for ABEND call to IHKSAV
used for parameters to external routines
used for userid for IHKUTM
used to retrieve user response to prompt
checked for BPAM queue element for IHKRNQ
checked for directory entry address
checked for address of PPT
used for retrieval of line by RPOINT macro,
referred. to in order to pass record from RGET AFIO
buffer to SEBUFFl address for RWRITE into library
operation
referred to when returned from message writer
prompts
referred to for IHKUTM.and for message writer

used to retain file name as edited

Normal

Error

Attributes

return to the calling routine with 0 in register 15 or
the negative value of the END command verb, which signals
the normal completion of SAVE in response to an ABEND
condition.
return to the calling routine with one of the following
return codes in register 15:

4 line error
8 GETMAIN failure

12 active area I/O error
16 message lost
20 active area out of space
Negative value of X'4A' for ABEND condition

Reentrant and nonresident

SCAN SUBCOMMAND PROCESSOR (IHKSCN)

Entry Point

IHKSCN

Function

register 1 must point to a one-word area containing the
address of the TUB.

The SCAN processor checks the presence of the PL/l syntax checker or
a FORTRAN syntax checker depending upon the attribute of the data set.
The FORTRAN syntax checker checks for the specific FORTRAN checker since
there are several possibilities. It returns with an error code if the

. specified FORTRAN checker is not present. The numeric ve·rification
module (IHKNUM) checks the linenum operands for all numerics. If an
error is found, a message is queued for the user, and control is
returned. If no errors are found in the operands, this routine passes
the lines to be scanned to the syntax checker interface (IHKSYN).

When a range of lines is specified, these lines plus continuation
lines are scanned. A SCAN subcommand with one line number specified
causes a scan of that one line plus continuation lines. A subcommand
with no operands causes the entire data set to be scanned. If ON or OFF
is specified on the subcommand, it must be the last operand. If ON or
OFF is the only operand specified, the SCAN flag in the TUB is turned on
or off, and no scan is performed.

This module uses the IHKRNQ module to be queued for the syntax
checker interface, since the module is serially reusable. It dequeues
itself immediately after return from the interface. The interface
returns to this module when error messages have been queued, or when all
lines have been scanned. If the scan is not finished, this module sends
the messages and calls the interface (IHKSYN) again. When the scan is
finished, control is returned to the calling routine.

External Routines

IHKNUM
IHKSYN
IHKMSG

IHKRNQ

to verify the linenum operands as all numerics
to send line numbers to be scanned to interface
(entry point:IHKMSG) to send error messages to the user
(entry point:IHKMSG01) to queue operand error messages
for user
to queue the SCAN processor for the syntax checker
interface

Program Organization 155

Tables/Work Areas

GETMAIN area for save area and parameters for the interface
PPT contains subcommand and operands, Q element and line

numbers are stored while lines are being scanned.

CCT
CCTOPT1
CCTOPT2 -

TUB
TUBFLG1

TUBFLG3
TUBIRLSA

TUBPARM1
TUBPRMLS
TUBPPTAD

User Buffer

Exits

Normal
Error

return
return
return

Attributes

4
8

12
16

(CCTPL1) checked for PL/I checker
(CCTFORT) checked for FORTRAN checker

TUBFOR or TUBPL1 checked, TUBSCN turned on or off
if specified.
TUBDLAYN set on while scanning
pointer to address of line number range to be
scanned
used for GETMAIN
used for parameter list
pointer to PPl'
used while operands are

to calling routine with
to calling routine with
codes in register 15:

line error
GETMAIN failure
active area I/O error
error message lost

for IHKMSG and IHI<RNQ

syntax checked

o in register 15
one of the following

Reentrant and resident

SEND COMMAND PROCESSOR (IHI<SND)

Entry Point

IHI<SND

Function

register 1 must point to a two-word parameter list
containing the address of the TUB and the address of the
AVT.

All operands are checked for validity except the first one (which is
the message to be sent». An error message is sent to the user for each
invalid operand.

If the message is to be sent to a terminal user, the IHI<UTM module is
called to verify the userid and to determine whether the user is active.
If the userid is invalid, an error message is sent to the user who
entered the SEND command, and control is returned to the calling
routine.

If the user is active, the message writer is called to send the
message to the terminal user. If the user .is not active and if LOGON is
specified on the command, the message writer is called to queue the
message. When LOGON is not. specified, a message is sent to the user who
entered the command to indicate that the message was not sent.

If the message is the only operand, or if OPERATOR is specified, the
message writer is called to send the message to the central operator.
NOW and LOGON are ignored when used with OPERATOR. If there is more

156

than one central console, the user can specify where the message is to
be sent by including the routing code (followidg OPERATOR). Arouting
code greater than 16 results in an error message. A code of 0 has the
same meaning as a code of 1.

External Routines

IHKMSG (entry point:IHKMSG) to send the message to the central
operator; ,

IHKUTM

(entry point:IHKMSG01) to queue the message for a
terminal user and to queue error me~sages for the sender.
to verify the recipient userid and to dertermine if the
recipient user is active.

Tables/Work Areas
18-word save area
TUB

TUBPPTAD
TUBUFFAD
TUBPRMLS
TUBGBLKY
TUBUSRID

contains address of PPT
contains address of user buffer
contains parameter lists for IHKMSG and IHKUTM
set with userid for IHKUTM
used in calling message writer
last 40 bytes used as work area User Buffer

PPT contains command and operands

Normal
Error

Attributes

return
return
return

4
8

12
16
20

to calling routine with 0 in register 15.
to calling routine with one of the following
codes in register 15:

line error
GETMAIN failure
active area I/O error
error message lost
acti.ve area out of space

Reentrant and nonresident

STATUS COMMAND PROCESSOR (IHKSTSI

Entry Point

IHKSTS

Function

register 1 must point to a two-word parameter list
containing the address of the TUB and the address of the
AVT.

The operand, if specified, is checked for validity. If more than one
operand is specified and if the length of the operand is greater than
eight, or if the operand is in parentheses, an error message is queued
for the user, and control is returned to the calling routine. If one
jobname operand is present, an RPOINT macro is issued for the &JCT entry
to determine whether the job is in the system. If the RJCT entry is not
found, or if the job was not submitted by the user that issued the
STATUS command, a message is queued for the user, and control is
returned to the calling routine. If the job is found but was submitted
by another user, then the invalid recipient message is sent to the user,
and control is returned to the calling routine. . Otherwise, the CBKSTS
subroutine in the IHKSTS module is used to get the status of the job.

Program Organization 157

When the jobname operand is not present, an RPOINT macro is issued to
search the RJCT entries for a job submitted by the user. If none is
found, a message is queued for the user, and control is returned to the
calling routine. If a job is found, the CHKSTS subroutine is used to
obtain the status of the job. Then search of the RJCT entries is
continued to get the next job belonging to the user. After the status
of all the jobs submitted by the user is determined, control is returned
to the calling routine.

The CHKSTS subroutine is used to test the information returned when
the RJCT entry was read to determine whether the job was complete. If
the job is complete, a job complete message with an indication of normal
or abnormal completion is queued for the user. Otherwise, the
loader/controller is called to load the IHKLOC routine and the IHKSRV
module is called to pass control to the IHKLOC routine. This routine
searches the job queue. If the job is queued, then a message indicating
the position on the queue is queued for the user. Otherwise, the TIOTs
are searched to determine whether the job is executing. If it is, the
executing message is queued for the user. Otherwise. the RJCT entry is
checked to determine whether or not the job is complete. If it is, then
a job complete message with an indication of normal or abnormal
completion is queued for the user. otherwise, the not-queued message is
queued for the user. Control is then returned to the calling routine.
In case of an error in calling the IHKLOC routine, a disk error message
is queued for the user. If either the loader/controller task or the
service task abends, control is returned to the calling program with a
return code of 12.

External Routines

IHKDSP
IHKMSG

IHKLOC
IHKAFI

to wait for event completion
(entry point:IHKMSG01) to queue messages for the terminal
user
to search the os job queue
to search and read RJCT entries

Tables/Work Areas

158

lS-word save area
PPT contains command and operands
TUB

TUBGBLKY
TUBRAFBF

TUBAFISW
TUBPRMLS
TUBPPTAD
TUBUSRID
TUBUFFAD
TUBGBLNM

User buffer

CLB

RJCT

CLBLCECB
CLBUTECB

RJCTFLGS
RJCTJOB
RJCTUSER

Normal
Error

return
return
return

4
8

key for AFIO
load address of area into which AFIO inserts
information
indicates that an optional buffer is provided
used as parameter list
contains address of PPT
contains userid
contains address of user buffer
key for global file
used as work area

ECB for IHKLDC
ECB for IHKRSV

check for job completion
contains jobname
user identification

to calling routine with
to calling routine with
codes in register 15:

TP line error
GETMAIN failure

o in register 15
one of the following

12 active area I/O error or CRJE task abend
16 error message lost

Attributes

Reentrant, refreshable, and nonresident

SUBMIT COMMAND PROCESSOR (IHKSUB)

Entry Point

IBRSUB

FUnction

register 1 must pOint to a two-word parameter list
containing the address of the TUB in the first word and
the address of the AVT in the second word.

The SUBMIT command processor allows up to ten CRJE data set names
(plus dsnames found in DSLIST files), combined into a sequential data
set, to be entered into the OS job input stream.

The following two modules perform special services for the SUBMIT
processor. The IHRGET module checks the syntax of the dsnames submitted
and points to blocks of input records (usually ten per block) from which
the reader/interpreter data set is built. The IHRALC routine allocates
the sequential, reader/interpreter data set and builds the S RDRCRJE
command.

For each block of records, the IHRSUB module saves the length and
address of the block. Each record of the block is inspected. The first
check is for a slash in column one. If there is not a slash in column
one, the record is passed to the reader/interpreter data set write
subroutine (WRITIT). The WRITIT subroutine checks to see whether the
reader/interpreter data set has been allocated. If it has not, the DO
DATA switch is turned off, and the next record is inspected. If the
reader/interpreter data set has been allocated, the WRIT IT subroutine
determines whether the record is the last one of the block. If it is
not, the next record is inspected. If it is the last record of the
block, the entire block is written in the reader/interpreter data set,
and the next block is read.

If there is a slash in column one,- the DO DATA switch is tested. If
it is on, the record is inspected for a slash asterisk (/.). If there
is a '/.' in columns 1 and 2, the DO DATA switch is turned off, and the
WRITIT subroutine writes the record in the reader/interpreter data set.
If there is not a '/.' in columns 1 and 2, the WRITIT subroutine writes
the record without any switches being turned on or off. If the DO DATA
switch is not on, columns one and two are inspected for slashes (//).
If double slashes are not present, the WRITIT subroutine is called to
write the record in the data set.

If the installation JCL exit is present, it is called, and depending
on the return code, the SUBMIT processor either sends the user an error
message and aborts the SUBMIT process, aborts the SUBMIT process with no
exit message, or continues processing.

If there is a slash in columns 1 and 2 and the record is a DO DATA
statement, the DO DATA switch is set, and the .WRITIT subroutine writes
the record in the data set.

If the record is not a JOB statement, the WRITIT subroutine writes
the record in the data set. If the record is a JOB statement, the job
card and the DO DATA switches are cleared.

Program Organization 159

If the statement is a job statement, and the return code from the
installation exit is 0, the RJCT is searched for an entry with the
specified job name. If an entry is found or any other error occurs,- the
SUBMIT is aborted. If an entry is not found, the RJCT entry with the
job name is built in main storage and initialized.

If the input data set for the OS reader/interpreter has not been
allocated, the IHKALC module is called to perform the allocation, and
the reader/interpreter data set-allocated switch is turned on.

Each JOB card is written as a separate block in the
reader/interpreter data set. This prevents loss of data if the reader
RDRCRJE is rolled out in MFT. After the JOB card has been written, the
TTR of the sta.tement is saved for abnormal processing.

When a complete job has been collected, the RJCT entry for the job is
written in the JBTBLS global file.

If the SUBMIT is to be aborted because of a bad return from the
IHKGET routine, the error messages returned by the IHKGET routine are
sent to the user, and the IHKGET module is deleted. If the abort is for
any other reason, theIHKGET routine is called with a special flag to
force end of input. If the IHKGET module finds that no jobs were
collected, it builds the parameter list to scratch the
reader/interpreter data set (scratched by IHKSRV) and frees the START
RDRCRJE command area. For all SUBMIT aborts, the TTR, which was saved
after writing the last JOB. card, is inspected. If the TTR does not
exist, no jobs have been COllected. A message is sent to the user
informing him that no jobs were found; the save and work area is freed;
and control is returned to the calling routine. If the TTR is present,
the DCB is positioned before the TTR forcing the CLOSE macro to write
EOF after the last completely collected job. The base register of the
RJCT is cleared for normal SUBMIT termination.

In normal SUBMIT termination the base register for the RJCT is
tested. If it is nonzero, the RJCT entry is written for the last job.
The reader/interpreter data set is closed, if it exists. 'The CRJE
service routine, IHKSRV, is called to close the DeB and to start the
reader processor (RDRCRJE) on the data set; the save and wOrk area is
freed; and control is returned to the routine that called the SUBMIT
processor.

If either the loader/controller task or the service task has abended,
control is returned to the system administrator with a return code of
12.

External Routines

IHKALC
IHKGET
IHKAFI
IHKMSG
IHKLAD
IHKUTM

to allocate the reader/interpreter data set
to check the dsname and position to the next input record
to write the RJCT entry in the global file
(entry point:IHKMSG01) to send error messages to the user
to write JCL exit message to user
to mark library inoperative on library I/O error

Tables/Work Areas

160

432-bytes for save area, RJC7, and work area

Normal
Error

return to calling routine with 0 in register 15
ret urn to ca lling routi ne wi th a 12 (acti ve area I/O
error or CRJE task abend) or 8 (GETMAIN failure) in
register 15.

:"',

Attributes

Nonresident and reentrant (marked reusable in IBKMOD table)

SUBMIT INPUT RECORD PROCESSOR C IBJ(GET)

Entry Point

IHKGET

Function

register 1 must contain the address of a four-word
parameter list. The first word is not used; the second
word points to the SUBMIT work area; the third word
contains the address of the TUB; and the fourth word is
the address of the AVT.

The function of the SUBMIT input zecord processor is to set up
pointers to blocks of input records from which the input job stream is
built for the OS reader/interpreter.

If this is the first entry of the SUBMIT processor, the IHKGET module
clears its internal switches and counters and initializes its internal
PPT pointers to the first dsname in the PPT. If this is not the first
entry, the IHKGET routine attempts to read the next data set name. The
internal subroutine GETDSR gets the data set name from the PPT, checks
the syntax of it, and if valid, the file is positioned to read the first
block of records. If an error is found in the data set name, an error
message is sent to the user, and an exit is made to the SUBMIT processor
with an end-of-data condition indicated.

After the file has been positioned, the count of the data set names .
processed is increased by one, and a switch is set indicating whether
the file is an active file or a data set from a user library. The
attribute of the file is checked and if it is not a DSLIST file, control
is returned to the SUBMIT processor.

If it is a DSLIST file, the entire file is read into a second.private
file in the active area. All subsequent calls to this module result in
processing data set names from the private file instead of the PPT.
When end-of-file is reached, control is given to the GETDSN subroutine
to inspect the next data set name in the PPT. Nested DSLIST files are
not pend tted.

The SUBMIT status switch is inspected upon entry to this module. If
bit 0 (X' 80'1 is set, the entry is for closedown. If a second private
file for DSLIST files exist, it is released, and the old active file for
the user is recreated. If the reader/interpreter data set has been
allocated but no jobs have been collected, the scratch parameter list is
built.

External Routines

IHKAFI
IHKBPM
IHKUTM

to manipulate active files
to read a data set from a user library
to get ddname for ueerlibrary and to get on library I/O .
queue

Tables/Work Areas

Work area is provided by the IHRSUB module.

Program Organization 161

Exits

Normal

Error

Attributes

return to IHKSUB with a completion code of 0 in register
15, except if end-of-input is encountered, when a return
code of 4 is used.
return to IHKSUB with completion code of 4 in register 15
and the address of the error message in the TUBPARMS
field.

Nonresident and reentrant.
IHKSUB.)

(The module is actually used serially by

ALLOCATE ROUTINE (IHKALC)

Entry Point

IHKALC

Function

register 1 must contain a pointer to a five-word
parameter list containing the following:

1. address of the DECB
2. address of the RJCT
3. address of·the DCB
4. address of the TUB
5. address of the AVT

This routine allocates the data set used by the SUBMIT processor to
build the OS job stream and o~ens the data set.

Before the data set is allocated, 104 bytes of main storage are
obtained for the START RDRCRJE command. The DCB and the DECB for the
data set are initialized. The count, constant parameters, jobname (from
RJCT) , and unit and voiume (from UCB) fields are moved to the 104-byte
area. The address of the START RDRCRJE command is placed in the
TUBIRLSA field for the job card processor. If any errors are found in
this routine, the 104 bytes are freed before returning.

The format of the START command is as follows:

RDRCRJE.S""DSNAME=SYS1.CRJE.jobname,DISP=(OLD,DELETE),UNIT23x,
VOLUME=SER=volid

A sequential data. set is allocated for the job stream using the DADSM
ALLOCATE routine (SVC 32). There is a DO card for each line in the CRJE
procedure. The DO card specifies volume, unit, and primary and .
secondary allocation for the data set. The ddname for the DCB is
obtained from the CLB. A search of CRJE's TIOT (task input/output
table) is made for the ddname. If the ddname is not found, control is
retur.ned to the SUBMIT processor. If the ddname is found, a READ JFCB
(job file control block) macro is issued. Block size and logical record
length are fixed at 800 and 80, regardless of what is specified on the
DO card. Once the data set is allocated, an OPENJ macro is issued for
it and control is returned.

External Routines

RDJFCB Read JFCB into storage for DADSM allocate
IGC0003B- (DADSM Allocate) - to allocate space

for the job stream data set
OPENJ to open the data set

162

Tables/Work Areas

288-byte buffer gotten by IHKALC is used as a save area for the
JFCB and for the START RDR command

TUB
TUBIRLSA contains address of START RDRCRJE command

RJCT
RJCTUNIT
RJCTVOL

set to 1 for 2311 and 4 for 2314
set to volume serial of pack on which the
reader/interpreter data set resides

Normal
Error

Attributes

return to IHKSUB with return code of 0 in register 15
return to IHKSUB with one of the following return codes
in register 15:

4 duplicate DSNAME on volume
8 out of space

12 I/O error
16 GETMAIN failure
20 no DO statemen~ in procedure
24 reader/interpreter data set not on

2311 or 2314

Reentrant and nonresident

TAB SET COMMAND PROCESSOR (IHKTAB)

Entry Point

IHKTAB

FUnction

register 1 must point to a two-word area containing the
address of the TUB and the address of the AVT

When no operands are specified, or when IN or INPUT and/or OFF are
specified, the TUBTABAD field is tested. If it contains an address, the
area to which it points is deallocated, and the TUBTABAD field is set to
zero. If the TUBTABAD field is already zero, no action is taken.

When OUT or OUTPUT is specified with or without OFF, the TUBOUTAB
field is tested. If it contains an address, the area to which it points
is deallocated, and the TUBOUTAB field is set to zero.

When tab settings are specified, they are checked for length,
ascending order, and numerics. If an error is found, an error message
is sent to the user, and the settings are rejected. Settings of 0 and 1
are rejected as being without meaning: in this case, the user is
notified and the settings are ignored. A setting greater than 80 for
input or 120 for output is rejected: the user is notified: the
acceptable settings are retained, but the checking of remaining settings
is terminated. When more than 10 settings are specified, an excessive
operand message is sent to the user and the first 10 settings are
retained. As the settings are checked they are temporarily stored in
the user buffer.

When tab settings are specified (with pr without IN or INPUT), the
TUBTABAD field is tested. If it contains an address, the area to which
it points is used to store the input tab settings. If it contains zero,
an area is dynamically allocated for the input tab settings, and the
address is stored in the TUBTABAD field. .

Program Organization 163

When OUT or OUTPUT is specified with the tab settings, the TUBOUTAB
field is tested. If it contains an address, the area to which it pOints
is used to store the output tab settings. If it contains zero, an area
is dynamically allocated for the output tab settings, and the address is
stored in the TUBOUTAB field.

After all the operands have been checked and no terminal errors
detected, the number of settings is placed in the first halfword of the
area followed by the settings.

External Routines

IHKMSG (entry point:IHKMSG01) to build and send error messages

Tables/Work Areas

16-byte tab area
18~word save area
TUB

TUBOUTAB
TUBPPTAD
TUBUFFAD
TUBPRMLS
TUBTABAD
TUBUSRID
TUBCLBAD

contains address of output tab table
contains address of PPT
contains address of user buffer
contains parameter lists for IHKMSG
contains address of input tab table
used in calling message writer
contains the address of the CLB

PPT contains command and operands
User buffer
Input tab table
output tab table
CLB

CLBDEVTP

Normal
Error

return
return
return

4
8

12
16
20

last 40 bytes used as work area
contains input tab settings
contains output tab settings

contains the terminal and line type

to calling routine with 0 in register 15
to calling routine with one of the following
codes in register 15:

line error
GETMAIN failure
active area I/O error
error message lost
active area out of space

Attributes

Reentrant and nonresident

MESSAGE WRITER (IHKMSG »

Entry Points

IHKMSG to build and send a message to the central operator;
to build and send a message to a terminal user with or
without a response;
to send all messages (broadcast, delayed, and queued)
that the user has requested either explicitly or
implicitly;
to build a message.

Register 1 must point to a variable parameter list:

164

Word 1
Word 2

address of TUB for requesting CRJE subtask;
address of TUB for terminal user or zero if message is

Word 3

for central operat'or: if message is for specific console,
console ID is in the high-order byte of the word of
zeros:
address of a four-byte message area (on a word boundary'.

The high-order byte of the message area contains:

X'10'
X' 01' .
X'02'

X'OS'
X' 20'

if message is to be built. but not sent:
if a response is required from the terminal user:
if all available m~sages are to be sent to the terminal
user:
if message is a general response to a SHOW SESS request:
if message is to go to a specific console.

The lew-order three bytes of the message area contain:

Word 4

Word 5

• serial number, in EBCDIC, of prepared message to be
built:

• X'POPOPO' if no message is to be built:
• X'OOOOOO' if message is from another user or operator,

and therefore CRJE MSG FR USERID or CRJE MSG FR CENTRAL
is to be placed in front of supplied text.

address of an optional parameter area (on a word
boundary) containing a one-byte text length followed by
data to be inserted in the prepared text:
address ofa second optional parameter area with the same

. format as for word 3.

IHKMSG01- to build and queue a meSSage for later delivery to a
terminal user. If the user is inactive, the message is
written to the delayed message data set.

Register 1 must contain the address of a variable length parameter
list:

Word 1 address of TUB for requesting CRJE subtask:
Word 2 address of userid of terminal user who is to. receive the

message:
Word 3 address of a 4-byte message area (on a word bo1Dldary).

The high-order byte of the message area is ignored. The
low-order three bytes of the area contain the serial
number, in EBCDIC, of the prepared message to be used.

Word 4 address of an optional parameter area (on a word.
bo1Dldary) containing a one-byte text length followed by
text to be inserted in the prepared text.

Word 5 address of a second optional parameter area with the same
format as for word 3.

IBKMSG02- to queue a message that is already built: to send a
supplied message to the central operator.

Register 1 contains the address of a three-word parameter list (with
high-order bit of the third word turned on):

Word 1 address of TUB for the requesting CRJE subtask:
Word 2 address of TUB for an active terminal user or binary zero

if the message is for the operator:
Word 3 address of a 72-byte message (including the message 10)

for a supplied message f.or a terminal user or the address
of a halfword message length field followed by a half word
of binary zeros and the message text for an operator
message.

IHKMSG03- to list broadcast messages for a central operator.
Register 1 contains the address of a parameter list:

Program Organization 165

Word 1
Word 2

FUnction

address of TUB for the requesting CRJE subtask;
address of a one-byte arE!a containing the console ID for
the console to receive the messages.

All messages, whether for the central operator or for the terminal
user, are built in the same manner. The prepared section of the message
text is read from the SYSMSGS global file and is put in the first 88
bytes of the user buffer. The first two words contain AFIO control
information. The key for the record is IHK3xxor IHK4xx for messages
for a terminal user. ThekE!Y is IHK2XXI for messages for a central
operator.

If bytes 72 and 73 of the prepared text contain X'OOOO'; no text can
be inserted. If text can be inserted, these bytes contain the two
offsets at which the supplied text is to be added. If text insertion is
permissible and text has been provided, it is moved into the proper
place in the prE!Pared message.

If the request is for build only, all switches in the TUB are set
exactly as required for a CWRITE macro. The message is placed in the
user buffer.

If the message is to be queued for later delivery, a check is made to
see if the CRJE subtask that requested the queuing is the subtask for
the user who is to receive the message. If this is the case and no
message is currently queued for that user (TUBFQEB = X'OOOOOOOO'J, a
conditional GETMAIN macro is issued for a 72-byte area to contain the
message. The entire text of the message is moved into this area, and
the address of the area is placed in the TUBFQEB field. If a message is
currently queued for ,the user and the subtasks are the same, the message
is written in the USRMSGS global file. If the user is active, the
TUBMSG bit in the user's TUBFLGl field is turned on. If the.user is
inactive, the UVRDMSG bit in the user's verification record is turned
on.

If the CRJE subtask that reques'ted the queuing is not the subtask for
the user who is to receive the message (whether or not a message is
currently queued for that user), the entire message is written in the
USRMSGS global file. The key used for the message is the seven-byte
userid of the recipient user plus a one-byte sequence number to denote
the relative pOSition of the message in the list of messages for that
user. If the recipient user is active, the TUBMSG bit in the TUBF~l
field of the user's TUB is turned on. otherwise, the UVRDMSG bit in the
UVRCNTLl field of the recipient's user verification record,is turned on.

If the message is to be sent immediately to a terminal user, a check
is made to see if message IDs have been requested. If the TUBMIO bit in
the TUBFLG1 field is not on, message IDs are not requested, and the
message text is moved to the left to remove the message ID from any
message whose first four characters are neither CRJE nor BRDb. The
TUBOATAL. field is set to X'40' if the message 10 is not included or is
set to X'48' if the message 10 is included. If a response to the
message is requested, the TUBNOCRN flag is turned onto suppress the
carrier return on the terminal after the message is printed. Also, when
a response is expected, all switches are left exactly as set by the line
administrator, and the input line in the user buffer is not changed. A
CWRITE macro is then issued to print the message at the terminal, or a
CWRITE R macro is issued to print the message and read a response.

In sending a message to the central operator, the last nonblank
character in the message is located, and the length of the text + '4, and
minus any trailing zeros, is placed in the halfword located in the user
buffer + 4. The correct MCS flags are set in the next halfword. The
MCS descriptor codes and routing codes are moved from bytes 75-77 of the
prepared text into the area immediately following the text, minus any
trailing blanks. For a requesting console routing code, the console ID

166

is right justified in register O. For a SHOW SESS command response, the
Mes type flags occupy the two bytes immediately after the descriptor
codes. The execute form of the WTO macro is issued to print the message
at the operator console. Register 1 in this case contains the address
of the user buffer + 4.

When the message writer is called to send all available messages, the
LOST MES~GE message is sent if the lost message bit in the TUB is on.
The queued message in main storage is sent, and all messages in the
USRMSGS global file for this user are sent. The broadcast messages are
also sent if the broadcast message bit in the TUB is on.

External Routines

IBKAFI to obtain messages from the USRMSGS global file and the
SYSMSGS global file and to write messages in the USRMSGS
global filei also to read from and write to the USERS
global fl,le.

IBKLAD to write messages to a terminal user and read responses.

Tables/Work Areas

TUB
TUBSTATS
TUBREAKN
TUBUFFAD
TUBDATAL

TUBUSERID

TUBNEXT

TUBFLG1
TUBMID

TUBMSG

TUBBRD

TUBFLG2
TUBLMSGN

TUBFLG3
TUBNOCRN

TUBFQEB

TUBRAFBF

TUBGBLNM

status flags
checked for real or simulated interrupt
address of 136-byte user buffer
two-byte length of text to be written to a
terminal or text read from a terminal (set to
72 bytes for messages containing a message ID
or beginning with CRJE or BRDb~ set to 64
bytes for messages, whose ID has been
deleted)
ID of user active on this terminal (checked
to locate TUB for a given user)
address of next TUB in chain (used in search
for TUB for a given user to set message lost
bit)
status flags
checked to see if terminal user has requested
message identifiers on his system messages
checked to see if any messages exist in the
USRMSGS global file for a given active user
checked to see if terminal user has requested
a listing of broadcast messages.
status flags
checked to see if a message for the user has
been lost (if bit is on, LOST MESSAGE is sent
to the user)
status flags
set on when the line administrator is called
to send a prompt and read a reply (causes no
carrier return at the terminal after the
prompt>
four-byte address of a 72-byte message
located in main storage for the user or
binary zero if no message exists
four-byte address of the area from which or
into which the prepared text of a system
message, delayed message, user record, or
broadcast message is to be written or read
(this module always stores the address of the
user buffer in this area)
one-byte field containing number Of the
global file being referred to:
X'Ol' prepared text of system messages

- SYSMSGS
X' 02'
X' 03'

user verification records - USERS
delayed messages - USRMSGS

Program Organization 161

TUBGBLKY

TUBPARMl

TUBAFISW

AVT
IHKYYCcr
IHI<YYTUB

ccr
CCTMSGNO

UVR
UVRCNTLl
UVRACTVN
UVRDMSG

UVRLMSG

User buffer

X'04' broadcast messages ~ BRDCST
eight-byte field containing key of record in
global file
four-byte area used for parameter list for
IHI<AFI
set to X'80'to request optional AFIO buffer
control

address of CRJE control table (CCT)
address of first TUB in chain

maximum number of delayed messages (set and
checked)

flag byte
checked to see if user is active
turned on when a message for an inactive user
is added to the delayed message data set
turned on when a delayed message cannot be
added for an inactive user.
first 88 bytes are used as work area. All
AFIO reading is into this buffer and all AFIO
writing is from this area. All messages are
built at TUBUFFAD + 8 and all CWRITE macros
are issued from the user buffer. After a
CWRITE R, the response is returned in the
user buffer.

Format of prepared message text:

o 72 73 75 77 79

r-------------T---T---T----------T-------T------, I IHK---text---IOFFloFFIDescriptorIRouting I MSGTYP I
I I SET I SET I Codes I codes I I L _____________ ~ ___ ~ ___ ~ __________ ~ _______ ~ ______ J

Normal.

Attributes

return to calling routine with one of the following
return codes in register 15:

04 line error
08 GETMAIN failure
12 active area I/O error
16 message lost
20 active area out of space
24 invalid userid

Resident and reentrant

CRJE LIBRARIAN

The CRJE librarian performs all disk I/O for the active area and for
the system and user libraries. The librarian functions are performed by
the following modules:

ACTIVE AREA I/O (AFIO>

168

IHI<AST
IHKAWS
IHKEXF

Active Area Start-up
Active Area Recovery
Working storage Areas for AFIO

IBKIRP
IBICNBX
IBKAFI
IBKEXC
IBKGCW -

APIO/LIB I/O constants, Cont.rol Fields and woEk an ..
AFIO/LIB I/O Conat.ant.s, Cont.rol Fields, and work areas
Act.i ve AEea I/O Cont.rol/CCBllllnd Int.eJ:pnt.eE
Channel Program Init.ializer.IRequest.er
Channel Conaand HoEd List. GeneEat.or

LIBRARY I/O (LIBIO)

IIIKBST
IBICBPM -
IHKBSB
IBICCDP
IHKWTR
IIIKRNQ

Library I/O St.art-up
Library I/O Execut.or
Library I/O Shut.down
Library Condense
Library I/O wei t
Librarian Queue

The IBKEXF, IBKIRP, and IBKRBX modulescont.ain no execut.able code.
There are module desCEipt.ions fOE all of t.he modules of the llbEarian
except the three main APIO modules IIIKAPI, IBKEXC, and IDGCW. These
three modules are disC1J8ee4 as a group in t.he last. five sect.ions of
Active File Input./OUtput. (APIO). (See Figure 7.)

The AFIO modules perform all updat.e functions vit.hin the act.ive area.
The CRJE COIIIIIland processors issue APIO _cro instructions t.o init.iate
insert, delet.e, and replace functions on t.he proper user's active file.
The fetching. and saving of data sets in user libraries is acca.plished
by the overlapping of library I/O and APIO operat.ions. The addit.ion and
deletion of data set.s in user libraries-CCRJE data sets) is .peEformed bf
Library I/O.

System library informat.ion, copied into the global files of t.he
active area at st.art.-up time, is accessed by APIO, facilit.at.ing fast.er
system information retrieval and updat.ing.

APIO and library I/O are macro driven programs. All request.s for
librarian service are issued via macros. Macro expansion pEovides the
required codes necessary t.o perform the requested service.

All requests for manipulat.ion of a user's active file cause
AFIO to dynamically define what I/O is necessary to perform the -
requested operation and to dynamically build the required Channel
Command Program, schedule, il'litiate, aJJ4 monitor that program, and to
check the results of the I/O operation. Figure 5 gives an overviev of
the modules of APIO int.eract.ing vi th ot.her lIOdules of the CRJE syet.-.

In most cases, macro request for Library I/O operation vill cause
standard 08/360 BPAMIBSAM manipulation of the system and user libraries.

Program Organization 169

IHKCIP

CRJE
Slart'-up

L--.......----I~

IHKAST

Active Area
Initial ization

c:J 1-______;;C...;;.los;.;.ed;,;;.ow;.;..n~ _ _+

r­
I
I ,

No

Yes
ABNO?

IHKAWS

Recovery

CREATE
RELEASE
RPOINT
ENDUP
INSERT
RDELETE
REPLACE
RGET
RSKIP --------- -----~- --,

IHKEXC IHKAFI

AFIO Control
r-­
I

Channe I Program
Initialize, ... ---..,...---toj and

Command and

I
Requester

I
I
I IHKGCW

r-- Channel Command ~ ___ ...I

I
I
I

Ward list
Generator

1----------...
I
I
I
I L _________ •

IHKEXF

Extended
Work Area
for
Active File I/O

IHKIRP

Restricted
Work Area
for
Active File I/O

Interpreter

I
I
I
I
I
I
I
I

14--~
I
I
I
I

~_..J

I
I .

~~-------------------~
Figure 1. Overview of AFIO

110

-

IHKDSP

CRJE
Dispatcher

OS
GETMAIN
FREEMAIN

ACTIVE FILE INPUT/OUTPUT (AFIO)

Entry Point

This module contains no executable code; therefore, entry points, as
such. do not exist.

Function

The constants. control fields, and work areas that this module
contain are required by the library I/O module (IHKBPM) and by the
-active file I/O modules (IHKAFI, IHKEXC,. and IHKGCW). Most fi.elds and.
areas within the KONBOX are sufficiently defined by accompanying
comments. However, several areas require further explanation as to
their purpose and use.

RECTABFW - This area contains the definitions of the records
supported in the active area. These records are defined with the RECDEF
macros that specify key length. data length, and an eight-byte work area
that is used by th$ CREATE macro interpreter.

BUFTABFW - This area contains the definitions of the different types
of buffer configurations that AFIO supports for CRJE. The buffer
configurations are specified with BUFDEF macros. which allow for
defining the block size, logical record size, key position, and data
position. The resulting constants that are generated by the BUFDEF
macros are used by AFIO at macro interpretation time to define the type
of buffer being used, where the key begins, and where the data begins.
This information is part of the data that is mapped in the IHKEXF and
IHKIRP modules.

RECTYPFW - This area specifies which of the reco.rd types (defined in
RECTABFW) is used with each of the eight global files and the active
files. The record types are specified with the AFRECTYP macro.

BUFTYPFW - This area specifies, for each of the eight global files
and the active files. the type of buffer for AFIO to use in each of the
six AFIO operations that require a buffer. This information is
specified with the AFBUFTYP macro. The macro operand is coded with the
b\ufer definition code for each buffer type desired for the following
AFIO operations:

• Point with retrieval

• Insert single

• Insert multiple

• Replace

• RGET single

• RGET multiple

This information is also part of the data that is mapped in AFIO work
areas IHKEXF and IHKIRP.

GBFORGFW ~ A 56-byte work area for each of the eight global files is
defined in this area. The first two words of each of the eight areas
are the queue control element and the queue element for the particular
global file. These are used by the queuing module IHKRNQ.

. .

Program organization 171

AFIO Extended WOrk Area (IHKEXF) and AFIO Restricted Work Area (IHKIRP)

Enta Point

These two modules contain no executable code; therefore, entry points
do not exist.

Function

The IHKIRP module contains a set ·of constants that describe the
record and buffer formats for the particular file being processed. The
IHKEXF module contains all the fields in the IHKIRP module plus the
active area DCB, lOB, and a large work area (4K) that is used for
transient I/O requirements.

The restricted work area (IHKIRP) is used by the macro interpreter
routines in the IHKAFI module and the requester routines in the IHKEXC
module, which request channel program execution. The extended work area
(IHKEXF) is used primarily by the IHKEXC module and the IHKGCW module
for channel program initialization, CCW list generation, channel program
execution, and cleanup.

Each AFIO macro request may be in one of three states at a given
time:

• interpretation

• execution

• waiting for execution

Interpretation consists mainly of determining which channel program to
execute to accomplish the requested function. Interpretation requires a
small amount of working storage; therefore, the IHKIRP module is used by
AFIO for interpretation. Execution consists of generating, executing,
and waiting for completion of channel programs. Execution requires a
large work area; therefore, the IHKEXF module is used by AFIO for
execution.

The reason for the overlap of fields in the IHKIRP and IHKEXF modules
is to facilitate some degree of overlap of the AFIO interpretation and
execution processes. An interpreting operation may be overlapped with
an execution operation within AFIO. At the time the interpretation
process finishes and an execution is requested, the next requested

,execution is queued for access to the extended work area (IHKEXF). If
the IHKEXF module is available for use (no other execution is in
process), the requested execution process may begin. If the IHKEXF
module is not immediately available, the request is queued and a wait in
the CRJE dispatcher results.

AFIO Fields in the Terminal Use~!Qck (TUB)

.The terminal user block is discussed in detail in the section Data
Area Layouts. The fields that are pertinent to AFIO and library I/O are
specified, and a small explanation is given for each field. FOllowing
is a more complete description of fields in the TUB that are pertinent
to AFIO and library I/O:

TUBRAFBF

172

buffer pointer used in AFIO operations. This field
must be initialized to point to the buffer being used
for input operations. For output operations; AFIO
initializes this field to point to the dynamically
allocated buffer into which. the records were read by

.AFIO.

TUBAFQEL

TUBGBLQL

TUBAFPR1
TUBAFPR2

TUBREZUM

TUBNCCWS

TUBNSRCH·

TUBXTNDF

TUBTRKFW

TUBACTNM

TUBGBLNM

TUBGBLKY

TUBBPQEL

TUBPAMSW

TUBCNTFS

TUBNXKEY

queue element used by the IHKAFI module in AFIO to
request access to the AFIO extended work area (IHKEXFt.

queue element used by the IHAKFI module in AFIO to
request access to the global files in the active area.

switches used by the macro interpreter routines in
AFIO. These switches are initialized by the AFIO macro
expansions.

half-word linkage save area for internal saving of
return displacements within AFIO.

work area used by the lHAKFI module to save the
computed maximum number of CCWs required for a
particular channel program.

work area used by the IHKAFI module to save the
computed maximum number of search arguments required
for a channel program.

work area that is initialized by the IHAKFI module
after determining the total amount of storage required
for a channel program --including buffers, CCW lists,
DCB, and lOB. The IHAKFI module of AFIO uses
internally the high-order byte of this field to
indicate that a buffer allocation is desired.

track address save area used by the lHAKFI mbdule.

indicator that is initialized by the AFIO macro CREATE
to indicate to the macro interpreter in the lHAKFI
module the type of private active file requested.

same as TUBACTNM except that the relation is to the
global files in the active area.

key value of the record the processor is attempting to
manipulate. This field must be initialized by the
module that wishes to issue an AFIO macro for a global
file in the active area. In certain AFIO macro forms,
the value of the key of a record residing in a global
file in the active area is returned to the processor in
this field.

queue element used for a request to the IHKRNQ module
to gain access to the library I/O facilities.

SWitch that is initialized by the library I/O macros to
inform the IHKBPM module of the options available in
the various forms of the macros. The IHKBPM module
also uses this field to reflect the status of the
library I/O activity that was generated as a result of
the macro request.

block definition for multiple operations. This field
is shared by AFIO and library I/O to reflect the number
of records read for a multiple read request. This
field must be initialized by the command processor to
reflect the number of records the processor wishes to
write for multiple write requests.

key value of the record the processor is attempting
tomanipulate. This field must be initialized by the
processor that is to issue an AFIO macro for a private
active file. In certain AFIO macro forms, the value of

Program Organization 173

TUBAFCTL

TUBLNSEQ

the key of a record residing in a private active file
is returned to the processor in this field.

fourteen-word area that contains AFIO control
information concerning a user's active file. This
information is kept as long as the user's active file
exists. Control information, as mapped in the AFCTLDS
macro, is stored in this work area.

a unique sequence number that is assigned to each TUB
as it is allocated to a user. AFIO uses this field as
part of the process of identifying a particular user
with his private active file.

AFIO Macros

These macros are used by the CRJE command processors to gain access
to and to modify the global files and private files residing in the
active area. For global files, the relative file number is taken from
TUBGBLNM and the key from TUBGBLKY; for private files, the relative file
number is taken from TUBACTNM and the key from TUBNXKEY.

CREATE

The CREATE macro is used to assign space in the active area to a user
for his active file.

r--------~-------------------------------------, I Operation I Operand I
~---------+-------------------------------------i
\ CREATE I {~S} [,ACTUM=valueJ [FTYPE={~~~L}JI
L-________ J. _________________ . ____________________ J

IS

Creates new indexed sequential file by performing the following
functions:

o

• Assigning and initializing the index track:

• Updating the master index to point to the index track;

• Modifying TUBACTNM to equal the relative file number if for private
file (relative file number=ACTNUM+number of global files is used for
master index reference and record description constants in the
KONBOX) :

• Computing the remainder of the record description constants in the
KONBOX:

• Initializing the file control area (TUBAFCTL) to null file,
positioned at EOD.

Reinitializes the file control area to refer to a dormant file by
performing the following functions:

• Modifying TUBACTNM to equal the relative file number if a private
file (relative file number=ACTNUM+number of global files is used for
the master index reference and record description constants in the
KONBOX);

114

• computing the remainder of record description constants in the
KONBOX;

• Reading index record track to locate the most recent index record,
the length of the track and segment bits,and the index track
balance.

~I The file is not positioned when 0 is specified on the CREATE
macro.

ACTNUM=

For private files this is the relative private file number and TUBACTNM
is set accordingly.

Default: ACTNUM=l.

For global files this is the relative global file number and TUBGBLNM is
set accordingly.

Default: TUBGBLNM is unchanged.

FTYPE=
GBL and XGBL means that reference is to a global file
TUBGBLNM, which must be initialized. XGBL means that
control of the file will be maintained for this line.
description of this parameter is the same for all the

Return Codes:
00 normal
04 not one track available to assign for index

record (IS only)
08 GETMAIN failure
12 I/O error or incorrect macro usage

(i.e., CREATE 0 for nonexistent fileJ

RELEASE

specified by
exclusive

(The
AFIO macros.J

This macro is issued when a file is no longer needed. The master
index is updated to indicate that this active file no longer exists. '
And all tracks (including index track) assigned to the file (i.e., all
extended storageJ are released.

r---------T----------------------, I Operation I Operand I
~--------:+----------------------~
I RELEASE I. A [, FTYPE={ GBL}] I
I I XGBL I L _________ L ______________________ J

Return
00
04
08
12

RPOINT

Codes:
normal
not used
GETMAIN failure
I/O error or incorrect
assumed completed; the

macro usage. RELEASE should be
tracks will not be recognized.

This macro is used to posj,tion before .. orafter a particular record in
the file. For a private file the key of ith.erecord is in TUBNXKEY; for
global files the key is ih TUBGBLKY. ..

Program Organization 175

~ If the'eighthbyteO'f the key is X'OO' orX'FP",the reference is
to the first or last record of the file respectively. This is the
equivalent of coding KEY=FIRST or KEY=LAST respectively. If the
reference is to the last record of the file, the actual key of this
record will replace TUBNXKEY or TUBGBLKY.

r--------T-----------~---------------------------------, ,Operation, Operand ,
~--------+-----.:---------------------------------------~
'RPOINT 'jB j,R t [,KEY= ~FIRST~] [,FTYPE= j GBL tJ ' , , lA 1,NR~ LAST ' 1 XGBL~ I
" HIEQ , L _________ L ___ J

B
Position is before record

A
Position is after record

R
Retrieval of record and pointer to buffer in TUBRAFBF

NR
No retrieval of record

KEY=FIRST
Position is to first record of file

KEY=LAST
Position is to last record of file

KEY=HIEQ

Return
00
04

Indication that the key may not exist or that there are several
adjacent records with the same key. If the key does not exist,
the record with the highest key not in excess of the specified
key is the record referred to (the return code will be set to 4).
If there is more than one record with the specified key, the
first of the group is the referred to.

Codes:
normal
specified record does not exist, with the following
exceptions for a null file:

• POINT B,NR,FTYPE=GBLlXGBL with 8th byte of key equal to
X'OO' (i.e., point before first without retrieval).

• POINT A,NR,FTYPE=GBL/XGBL with 8th byte of key equal to
X'FF' (i.e., point after last without retrieval); R is
ignored. '

08 GETMAIN failure
12 I/O error or incorrect usage of macro. File is not

positioned.

Note: Inconsistent parameter specifications:

• R is ignored if KEY=HIEQ is specified.
• KEY=HIEQ is ignorec;'i if last "or first is the, record referred to. R is

not ignored in this case.

ENDUP

This macro insures that, any pending upda~esare done. After this
macro is executed the file is no longer position:d, and, th~ file con~rol
area can be used for other purposes. (I~ the file control area

176

(TUBAFCTL) is used for some other PUrpose, it must be restored by the
macro CREATE O,FTYPE=GBL before any other macro is executed.)

I--~-----T------------------' I Operation I Operand I
~---------+------------------i
I ENDUP 1 [FTYPE= ~ GBL l] 1

.1 1 1 XGBL 5 1 L-________ ~~ ________________ J

Return Codes:
00
04
08
12

normal
not used
GETMAIN failure
I/O error or incorrect macro usage. File is no longer
positioned and the last set of updates may be
incomplete.

INSERT

This macro inserts one record or multiple records into the file at
its present location. (No check is made on the keys: it is assumed they
are in order.) TUBRAFBFpoints to the buffer containing a single record
or a block of multiple records. The buffer is always released.

r---------T-------------------------------,
I Operation 1 Operand I
~--------+-------------------------------i
I INSERT I j S l i' B t [, FTYPE= .I GBL t]· 1
I 11M ~ 1, A ~ 1 XGBL 5 1 L-________ L _______________________________ J

S

M

B

A

Single record

Multiple records - TUBCNTFS must have been initialized to the
relative first logical record of the block (normally zero).
TUBCNTFS + 1 must have been initialized to the relative last logical
record of the block + 1 (normally the number of logical records to
be inserted). If the I/O completed operation without error, .on exit
TUBCBNFS equals TUBCNTFS +1.

Final position is before the last record that was inserted.

Final position is after the last record that was completely inserted

Return Codes:
o
4

8
12

RDELETE

normal
not enough external storage available for records to be
inserted (not all records inserted)
GETMAIN failure
I/O error or incorrect macro usage. The file is no longer
positioned and the insert process is incomplete.

If file was not positioned, results are unpredictable.

This macro is used to delete a record and optionally to read the next
key. If a key is read, it is read into·TUBNXKEY for private files or
TUBGBLKYfor global files.

Program Organization 177

r------... --T-----------~-----"'7---,-----~------------------,
I operation I ' Operand I
~----~---t---------------------------------------~-----~
IRDELETE I ~ NXKt ~:, Bt [,REC=PREVIOUS] ,FTYPE= l~GBL t] I
I I 1 NK ~ 1,A~ lXGBLS I ~ ________ ~ ___ J

NXK
'"

NO key retrieval. A is the assumed option for the second parameter.

XK

B

A

Retrieval of the key of the record following the deleted record. B
is the assumed option for the second positional parameter.

Position is before the deleted record if NXK is specified. If XK is
specified, position is before the record with the next key.

Position is after the deleted record if NXK is specified. If XK is
specified, position is after the record with the next key.

REC=PREVIOUS

Deletion of the previous record in the file rather than the next record.
If this option is not specified, the next record is assumed.

Return
00
04

Codes:
normal
end-of-data' occurred before end of operation (i. e., previous
or next record does not exist, which is beginning or end of
file, or XK record does not exist, which means last record in
file was deleted).

08
12

GETMAIN failure
I/O error or incorrect macro usage; file is no longer
positioned and delete is incomplete.

On EOD, the file is no longer positioned.

REPLACE

This macro is used to replace a record and, optionally, to read the
next key. If a key is read, it is read into TUBNXKEY for private files
or TUBGBLKY for global files.

r---------T---,
I I I
I Operation I Operand ,

~---------+---~
'REPLACE I ~NXKt ~,Bt [,REC=PREVIOUSJ [,FTYPE= ~GBL t]'
, , lXK ~ 1,AS lXGBLS, L _________ ~ __ ~ __ J

NXK

xx

B

178

No key retrieval. A is the assumed option for the second positional
parameter.

Retrieval of the key of the record following the replaced record. B
is the assumed option for the second positional parameter.

Position is before the +eplaced record if NXK is specified. If XK
is specified, position is before the record with the next key.

A
Position is after the replaced record if.NXK is specified. If XK is
specified, position is after the record with the next key.

REC=PREVIOUS
Replacement of the previous record in the file rather than the next
record. If this option is not specified, the next record is
assumed.

Return
00
04

codes:
normal
end-of-data reached before end of operation (i. e.; .no
previous record with REC=PREVIOUS, no next record, or no next
key after next record or previous record)

08
12

GETMAIN failure
I/O error or incorrect usage of macro; file is no longer
positioned and replacement is incomplete.

On EOD, the file is no longer positioned.

RGET

This macro is used to retrieve a single record, a block of records,
or a key from the file. Record retrieval causes dynamic buffer
allocation. The pointer to the buffer is put in the TUBRAFBF field. If
a key is retrieved, it is put in the TUBNXKEY field for private files or
in the TUBGBLKY field for global files.

r--------~---------------------------------------, I Operation I Operand I
~~--------+---------------------------------------~
IRGET I jR t j ,St j ,Bt [,REC=PREVIOUSJ I
I I 1 XK 5 1 , M 5 1, A 5 I
I I [j GBL t] I
I I , FTYPE= 1 XGBL r I ~ ________ ~ ______________________________________ J

R

S

M

B

A

. Retrieval of one record or multiple records

Retrieval of a key

Retrieval of a single record or ke.y

Retrieval of multiple records (multiple key retrieval not
supported). TUBCNTFS must be set equal to the relative logical
record number of the first logical buffer or the block (normally
ze~o). TUBCNTFS + 1 must be set to the maximum logical buffer to be
used +1 (normally the maximum number of logical records to
retrieve). On completion, TUBCNTFS +1 because the last record
retrieved +1 is equal to the number of records retrieved.)

Position is before the last, or only, record or key referred to.

Position is after the last, or only, record or key referred to.

REC=PREVIOUS

The first, or only, record of the operation is to be the previous
record rather than the next record. If this option is not
specified, the next record is assumed.

Program Organization 179

Return
o
4

8
12

Codes:
normal
end-of":'data reached'before end of operatlon~ No buffer
allocated or partial block retrieval, depending upon the S or
M parameter.
GETMAIN failure
I/O error or incorrect usage of macro; file is no longer
positioned and no buffer is allocated.

NOTE: ,On EOD the file is no longer positioned.

RSKIP

This macro is used to skip a record and, optionally, to retrieve a
key from the file. If a key ~s retrieved, it is put in the TUBNXKEY
field for private files or the TUBGBLKY field for global files.

I

r--------~~-------------------------------, I Operation I Operand I
.---------+---------------~----------------i
I RSKIP I! NXK t !, B t [, REC=PREVIOUS] I
I I 1 XK r 1 ,A 5 I
I I [, FTYPE= !GBL t] I
I I 1 XGBL 5 I L-________ ~ _______________________________ J

NXK '

XK

B

A

No key retrieval. A is the assumed option for the second position
parameter.

Retrieval of the key of the record following the record skipped. B
is the assumed option for the second positional parameter.

Position is before the record skipped if NXK is specified. If XK is
specified, position is before the record with the next key.

Position is after the record skipped if NXK,is specified. If XK is
specified, position is after the record with the next key.

REC=PREVIOUS
Indication that the previous record rather than the next record is
to be skipped. If not specified, the next record is skipped.

Return
o
4
8

12

Codes:
normal
end-of~.data reached before end of operation
GETMAIN failure
I/O error or incorrect usage of macro: file is no longer
positioned.

On, EOD the file is no longer positioned.

Active Area Organization

The active area must be allocated on a 2311, 2314, or 2319
Direct-Access storage Device (DASD) as a single extent. Multiple
extents are not supported. A performance degradation occurs if
defective tracks, with alternate track assignments, are in the space
allocated to the active area. Therefore, an effort should be made to
allocate to the active area space that is free from defective tracks to
achieve maximum efficiency of AFIO.

180

Active files are allocated from within the active area a track at a
time. Therefore, an active file seldom has adjacent tracks assigned to
it. The availability of a track for allocation to an active file is
determined by checking the track allocation table (TAT). The TAT is
built and initialized at CRJE start-up time by the active area
initialization module IHKAST. The active area DCB, which is located in
the extended work area module IHKEXF, is opened by the IHKAST module at
the same time. The process of initializing the active area is
illustrated in the start-up and initialization functional diagram and is
discussed in the Initialization and Start-up section of this book.

ACTIVE AREA TRACK ALLOCATION TABLE (TAT): The TAT resides in a GETMAIN
area with a pointer to it in the KONBOX. It is initialized at CRJE
start-up time to reflect all tracks in the active area available for
allocation. The mean cylinder within the extent allocated to the active
area is determined by examining the upper and lower extent limits in the
Data Extent Block (DEB). The TAT is constructed by assigning relative
cylinder number values to each cylinder in turn from both sides of the
mean.

Example:

Mean cylinder
Relative cylinder# + 1
Relative cylinder# - 1
Relative cylinder# + 2
Relative cylinder# - 2

= 10
11

= 09
= 12
= 08

The TAT is just a sequence of bits, with each bit representing a
track. A bit value of 1 means that the associated track is available
for allocation to an active file. A bit value of 0 means that the track
is not available. The bits are ordered in strings. Each string
represents a cylinder of a 2311, 2314, or 2319 disk. Bit 0 of a given
string corresponds to track 0 of the cylinder. Bits corresponding to
tracks on the first and last cylinders of the active area extent that
are not included in the extent are set to zero.

Track
cylinder
track at
Tables.

allocation to active files is made starting at the mean
and progressing outward is both directions from the mean, a
a time. Figure 8 gives two examples of Track Allocation
One is for a 2311 DASD and the other for a 2314 DASD.

CRJE ACTIVE AREA FILE ORGANIZATION: The active area is allocated as a
sequential data set. The active files are areas within the active area
that are allocated to individual active users. Active files contain
sequential sets of unblocked records. Each record is 80 bytes long and
has an associated 8-byte key, which is the line number. The keys and
their associated records are logically arranged in increasing sequential
order by key value.

Since tracks within the active area are allocated to active files one
at a time, adjacent records are not necessarily on adjacent tracks.
Records that reside on different tracks but are part of the same active
file are kept in logical sequential order by grouping them into segments
and ordering the segments sequentially by using a track chain (see
Active Area Track Formats).

A segment is defined as consisting of records that are logically
adjacent to each other and reside on the same track. A segment must
exist on one track. But more than one segment may exist on a track. If
more than one segment exists on the same track, they cannot be logically
sequential segments; otherwise, they would exist as one segment.

Program Organization 181

TtACK ALLOCATION TABLE
For a 2311 Disk Pack
(Number of Heads per Cylinder -10)
tMan Cylinder Number = M.

Cylinder M M+I M-I M+2 M-2
Number

Relative 0 +1 -I +2 -2
Cylinder
Numller

StrIng 0 2
Number

5 6

Relotiv.
Bit Number = 29

Cylinder
Number
String
Number

8

o

TRACK ALLOCATION TABLE
Far a 2314 Disk Pack
Allocated Extent From Cylinder 5, Head 4
to Cylinder 12, Head 8
Mean Cylinder Number" 8.

9 7 10 6 11

2 3 -4

Thi' Bit Carrespand. to
Cyli~der 10, Head 14.

Initio; Value. for

5 12

7

Initial Value. for

M+3

+3

5

First Cylinder of Extent La.t Cylinder of Extent

Figure 8. Track Allocation Table

182

Example:

Each segment is assigned a relative number within a user's active
file. A file index is added to facilitate rapid positioning within the
file (see Active Area Track Formats). The file index contains one entry·
for each segment in the file. These entries are in order by segment
number. Each entry in the file index contains the following information
about the segment:

• track address of segment

.• number of records in segment

• physical record number of first and last records in segment

• key value of last record in segment

When file update operations are performed, the index for that file is
read into main storage. And if it is necessary to locate a particular
segment, the index is searched.

Another part of the active area file organization that facilitates
rapid positioning is the master index, which resides on the master index
track (see Active Area Track Formats). The master index has an entry
for each possible active file in the active area. Each entry in the
master index points to the index track of a particular active file and
also points to the first data record of that file.

ACTIVE AREA TRACK FORMATS: There are four types of tracks that exist
with the active area:

• master index track

• file index track

• data track

• unassigned track (available for file index track or data track)

Master Index Track

There is only one master index track in the CRJE system. It is the
first track allocated in the active area. It is allocated and
initialized as a result of the first CREAT~ macro issued by a command

Program Organization 183

processor. Subsequent CREATE and RELEASE macros cause the master index
to be referred to and rewritten. The RPOINT macro in certain instances
may refer to the index but not cause it to be rewritten.

The master index is written on track 0 of the Il\E.an cylinder. The
master index is composed of two records, which are formatted as follows:

Record 1

,-----------------,
I I
I I L ______ --__________ J

Record 1 - (1 byte) not used

Record 2

, -::-::-=-... -... -... -.. -... -~'TIII-lll-III-III-... -""-... -~-~-~-'::'--~~::-:T~-~-"'-"'-~-IIII-IIII-IIIII-IIIII-III-III-~i"~-~-~-~-~-~-':'-':'--~.-'
I Prefix I Entry I Entry I N Entries I L-__________ ~ _______________ ~ ___________ ~ __________ J

o 8 16 24 - ~

DATA ---
Record 2 - Master Index Record

Prefix - (8 bytes) contains:
• number of global files in s:rstem
• number of private files allowed per
• maximum number of active users
• length of record

user

Data - contains one entry for each global file and one set
(currently 2) of entries for each potential active file
allowed a user at one time.

One Entry

r----T--------T---------T--------T--------T--------T---------T------,
IR I A I C I H I X I A I C I . H I L ____ ~ ________ L _________ ~ ________ ~ ________ ~ ________ ~_-_______ ~ _____ J

o 7 - ~-----------------------------~
Pointer to first
record of file

Pointer to index
track for this file

R record number (hardware defined record)
A access index (always 1~ multiple extents not supported)
C cylinder number
H head number
X not used

File Index Track

The file index track is allocated and formatted when an active .file is
created. Therefore, there is a file index track for· each existing·
active file. This track contains information concerning the data tracks
allocated to this active file and informat.ion concprning the segments
within this active file. Figure 9 showstbe format of the file index
track.

184

A file index track for a user's active file or for a global file is
one record divided into thX'ee sections: count, key, data.

Key

The key section of the X'ecord has a 16-byte prefix that is not used.
The remainder of the key is the variable-length track list. The track
list is composed of a 5-byte entry for each data track that is allocated
to this active file but is not full. If a data track is allocated but
is full, it has no entry in the track list. The first three bytes of
the entry contain a pointeX' to the data track. The fourth byte contains
the number of record entries available on the data track. The fifth
byte is the record positon (hardware) of the first unused record.

Program Organization 185

Record 1

I \
I \

I \
I \

I \
I \

I \

r A I c H I ' I p 1

\

Figure 9. File Index Tr~ck

Data

The data section of the re~cord also has an unused sixteen-byte
prefix. The remainde'Z,' of thE! data secticn is of variable length and
contains a sixteen-b'yte entry for each segment of the file. The entries
are in ascending or~er by the key value contained in the last eight
bytes. Figure 9 sbovs the fOJ:mat of thE! entry. The following
information is sp',!cified in each entry;

Bytes
o
1-3
4
5
6
7
8-1~

186

~,ol
X -
AC'd
X

R.F
T.{L
KEY

E.!Plana'tion
Not used
Point~r to data track
Not tlsed
Number ()f records in segment
First (hardwaI:'e) record in segment
Last (hardware) record in segment
Key value (left-adjusted) of last data record in
segment associated with this entry.

• Key

J

Data Track

There are from one to two hundred data tracks allocated to each
active file. (Two hundred is the capacity of the file index track.)
Data tracks are allocated to active files one at a time. Each data
track consists of two types of records. The first record on the track
(hardware record 1) is the chain r·ecord. All records following the
chain record are data records.

r--------,
IRecord 11 L ________ J

Chain
Record

r--------, r--------, r------------,
IRecord 21 IRecord 31 I ••• Record N I
L ________ J L ________ J L ____________ J

--------------~--------------Data Records

Data records in the active area have B-byte keys and BO-byte data
areas_ The format of the dat_a records in a buffer after they have been
read from the active area depends upon the values specified in buffer
definitions (BUFOEF) in the KONBOX (IHKNBX). Regardless of the format,
all data records residing on data tracks in the active area have key
lengths of B bytes and data lengths of BO bytes.

The key area of the chain record is a track chain, and the data area
is a record chain.

COUNT K.EY DATA

Track Chain Record Chain

The track chain is of variable length and consists of a 3-byte entry for
each data record on the track. The value of the entry is zero unless
this entry is for the last record of a segment. If it is for the last
record, the value of the entry is a pointer (ACH) to the data track of
the next sequential segment. The record chain is also of variable
length and contains a one-byte entry for each data ~ on this data
track. (A data record need not occupy this data area. The entry is for
the space not for the particular record.) The entry has the following
format:

r-----,-----~------T------T-------T------T------T------,
I . I I I I I I I I L ____ ~ _____ ~ _____ ~ ______ ~ _______ ~ ______ ~ ______ ~ ______ J

0 7
Flag REC NO. (hardware)

The first entry refers to the first hardware record ~, second entry
refers to second hardware record area, etc. The value of each entry is
the next sequential record number (logical, not hardware), or the value
is zero if the record area is not being used. The flag bit is on (11 if
the next sequential record (logical, not hardware) is on the next data
track. Otherwise, the flag bit is off (0). The record chain
facilitates the reading of data records from a data track in logical
sequential order, even though they may not be in physical sequential
order.

AFro General Theory

The ten major functions of AFIO are discussed in this section. AFIO
refers to the three executable modules, IHKAFI, IHKEXC, and IHKGCW, and
to the two non-executable modules, IHKIRP and IHKEXF. The functional

Program Organization 187

desciptions are not easily defined as being in one particular module or
another because of the interaction between modules to perform a
particular function. The interpreter (IHKAFIt, the requester (IHKEXCJ,
and the generator UHKGCW) communicate via nonstandard linkages. The
ten major functions of AFIO are listed below along with the module that
is responsible for initiating the function:

• I/O Scheduler -IHKAFI
• Macro Initializer - IHKAFI
• Channel Program Selection and Macro Interpreter - IHKAFI
• Exit Handler - IHKAFI
• Buffer and Storage Acquisition - IHKAFI
• Channel Program Initializer - IHKEXC
• Channel Program Generator - IHKGCW
• Search Program/Track Data ~nalysis - IHKEXC
• Channel Program Execution/Monitor - IHKAFI
• Storage Release/Error Handler - IHKEXC.

The result of all AFIO processing is the execution of a channel program
to perform the desired or required manipulations on the CRJE user's
active file. Figure 10 shows the order in which the functions of AFIO
are performed. A short functional analysis is given for each of the ten
major functions.

I/O Scheduler

The I/O scheduler is the master control routine for every AFIO macro
request received from a command processor. It handles the interface
with the issuing processor and provides linkage to the specialized AFIO
subroutines that maintain the AFIO data organization.

Macro Initializer

The AFIO macro initializer handles the macro argument that is passed
as part of the calling sequence. If a global file reference is
requested, this routine handles the queuing for access to the global
file. Requests for global file access are serviced on a FIFO basis.
The macro argument passed to AFIO is used to locate the proper macro
interpreter entry point. Also contained in the macro argument is
information concerning multiple or single operation, record or key
retrieval, etc. (The macro argument, TUBAFPAR, is discussed later.'
The macro initializer also determines whether a buffer is required; and
if so, the size and format definition of the buffer to be used for this
macro request.

188

I/O
Scheduler

MGcro
Inltlallzer

ChanMI Prog.
Selection exit
MGcra Hc!ndl ...
Interpreter

c:hantMt1 $--
Pragr- "" T_" Deto Initlall.er An!Ilytll

Buff.
qnd Slarap
Acquilitian

Cha_1
Program
Generation

ChanMI
Program
execution!
Monitor

Starap
Relea ..
& Error
Handler

Figure 10 AFIO Macro Requ~st

Channel P~ogram Selection and Macro Jnt,rpreter.

This routine initially ~eceives cPntrol from the .aero initializer
and then from the storage rei ease handler after ~/O is compl~e. It is

Program Organization 1$9

assumed that before this routine is given control the restricted work
area has been assigned and initialized and that the primary linkage
register (LINK1RG) contains the half-word displacement entry address to
the macro interpreter. This routine provides flexible linkage between
interpreter and requester routine, the result being an exit to the
processor that issued the macro or a request for I/O.

The macro interpreter routines select the next channel program or
exit to the issuing processor. The requester routines in the IH~XC
module request an appropriate amount of storage and provide a track
address for the channel program. Actually, due to an optional no-op
return from the requester, the channel program selection process is hot
so clearly defined. Common subroutines in IHKEXC can be used by the
interpreter routines in AFIO. Many of the interpreter channel program
selections are conditional upon requester logic.

Exit Handler

This 'routine receives control when the execution of the channel
programs generated by an AFIO macro is complete. If the access was to a
global file, the line is dequeued and the next request is posted. If
XGBL was specified, the line i~ not dequeued. Standard return is made
to the processor that issued the macro.

Buffer and Storage Acquisition

Storage acquisition provides and initializes al,l storage required to
generate and to execute the requested channel program and to allocate a
buffer if requested. All transient storage is assigned from the
extended work area (IHKEXF). Only one request at a time is allowed to
use this area; therefore, subsequent requests are queued. When the work
area is free, it is assigned to the first line on the queue.

Storage in excess of the minimum extra storage required is aSSigned
to the space 'provided immediately following the DCB in the IHKEXF
module. This area precedes the CCW list and corresponds to the dummy
CCW lists in the IHKGCW module. The number of search arguments, the CCW
list base, and the search argument base are left in registers for the
channel program initializer.

If a buffer is required, a GETMAIN is issued to obtain a buffer of
the proper size. AFIO allows each command processor to provide its own
buffer for input and/or output operations. If it is providing the.
buffer, it must turn on the first bit of the TUBAFISW field. AFIO
provides a dynamic buffer of the proper size for the RPOINT Rmacro and
for the RGET macro. AFIO also frees the buffers that are used for the
INSERT macro and for the REPLACE macro. These services are not provided
if the first bit of the TUBAFISW field is set. The buffers provided by
the user must be of the same configuration as those buffers gotten and
freed by AFIO itself. For single operations to private files the buffer
must be 96 bytes long. For single operations to global files the buffer
must be 88 bytes long. The first eight bytes are not used byAFIO, so
information starts at eight bytes beyond the start of the buffer. These
eight bytes are used for control words when AFIO performs dynamic buffer
control. For multiple operations to both private and global files, the
buffer length is 888 bytes with information beginning 8 bytes beyond the
beginning of the buffer. This length (888) supports multiples of 10 and
11 for user libraries and the system library respectively. Smaller
multiples may be used but the TUBCNTFS field should be initialized
accordingly. The TUBRAFBF field must point to the beginning of the
buffer. When a processor is managing its own buffer, it must initialize
and maintain the TUBRAFBF field.

Channel Program Initializer and Generator

The I/O operations that are required to provide the requested
fUnction.are determined ,by the'IHKEXC module. Channel program

190

initialization routines in the IHKEXC module construct a table of
indices that reference channel program elements within the IHKGCW
module. Routines within the IHKGCW module then use this table to
construct the actual CCW lists.

Search Program/Track Data Analysis

This function is accomplished by a complex set of routines in the
IHKEXC module. These routines determine and analyze track content,
segmentation, record changing, and other pertinent data conc~rning data
tracks. This is done to ensure that the most efficient channel program
will be generated.

Channel Program Execution/Monitor

The functions of these routines consist. of executing one or more EXCP
macros, monitoring errors, and communicating with the execution control
routines in the IHKEXC module. After ail I:XCP macro is issued, a call is
made to the CRJE dispatcher to WAIT for completion of the I/O. Upon
return from the dispatcher, error mOnitoring is performed. Then control
is returned (via storage release) to the processor that issued the macro
or more I/O is performed, depending upon return displacements generated
by the IHKEXC module.

Storage Release/Error Handler

If any storage was acquired for buffers, it is freed. The line is
dequeued from the extended work area queue, the next request is posted,
aild control is returned (via exit handler) to the processor that issued
the macro.

AFIO Macro Argument (TUBAFPAR)

Within every expansion Of the AFIO macros is the instruction STH
O,TUBAFPAR. TUBAFPAR is a half word field in the terminal user block
(TUB). At the time the STH instruction is issued register 0 contains a
unique numeric value. Thrs value is computed by the inner macros issued
by the AFIO macros. The following inner macros reside on CRJE.MACLIB:

VALARG
RAFIOARG
RAFIOXK

The macros examine the operands specified on the AFIO macro and put in
register 0 the numeric value that causes AFIO to perform the function
requested.

The half·word field TUBAFPAR is actually structured as two one· byte
fields named TUBAFPR1 (AFPAR1FS) and TUBAFPR2 (AFPAR2FS). The TUBAFPR1
field is formatted as follows:

r-----------T-------------,
\ \ MACRO \
\ Internal \ Interpreter ,
\ Use \ Indicator \ ~ __________ ~ _____________ J

o 4 7

Bits 0-3 are not used for input arguments to AFIO but are used instead
to reflect certain error conditions and control logic information
internal to AFIO

Program Organization 191

r----T--------,
I Bits I 0 1 2 '31
.... ---+-------..; ~"
I I 1 1 0 01 I/O error
I I 0 1 0 01 File exception
I 1 0 0 0 11 Internal indication to proceed to next segment.
1 1 0 0 1 01 Internal indication to return to macro interpreter. L ____ L-_______ J

Bits 4-1 are initialized by the AFI,O macros to reflect the numeric value
of the macro being issued. This value is used within the IHKAFI module
to determine the proper entry poipt to the macro interpreters.

All eight bits of the TUBAFPR2 field"are initialized by the AFIb
macros to the numeric value that reflects the operand options coded on
the AFIO macro. Several bit patterns have more than one meaning. The
proper meaning of these similar bit patte~ns is determined by the macro
interpr.eter, which is entered in the IHKAFI module.

Example:

TUBAFPR2 = X'Ol'
x' 01'

means old file to CREATE macro interpreter
,means final position is before record
processed to macro interpreters other than
CREATE.

Following are some more examples of how the field is used:

TUBAFPR2 = X'02' Read key
= X· 04' Read record
= x' 08' Exclusive global
= X'10' Position not first 6r last
= X' 20' Position aftEr last
= X'20' Multiple reql'est
= X'40' Next record
= X'40' Positioned to last record
= X· 80' Search by record number.

The TUBAFPR2 field is used in the IHKAFIand IHKEXC modules, but it is
used more extensively in the search program/track data analysis routines
within the IHKEXC module.

AFIO search/Track Data Analysis Routines

The search program is used to position within a previously determined
segment. The chain record is always read and checked., The chain
pointer is followed from the first record of' the segment to an
end-of-segment entry. If the chain does not terminate within ,the
maximwn number of records on a data track, or if any entry point is
outside the chain, the chain is not considered valid and an I/O error is
indicated. The number of available recording areas on the track is
determined from the chain record. If there is a track list entry (at
least one available record) but its positonis unknown, a switch is set
indicating that a track list scan is necessary. ' '

Entry point SRCHRQ is used for sequential positioning. The search
program reads the record chain into temporary storage, checks its
validity, and moves it to the TUB. If the file was not last positioned
on this same track, it is positioned to the beginning Or end of the
segment for forward or backward processing respectively. The record,
address has been determined by the chain record update program or the
index update program (backward processing necessitates index reference).
If the file was last positioned on this track but processing was ,
interrupted for an index record update, 'the, position within the segment
is already specified and is not changed. If the record number that.

192

specifies the present position is not found within this segment on the
record chain, the search program sets the I/O error indication.

Entry point SRCBXKRQ supports the XR option on the RDELETE, REPLACE,
SRIP, and RGET macros. It is used if the key retrieval requires
positioning to a new track. If it is not necessary t~ combine tracks,
the file is positioned after the first record of the next segment. The
record chain is read into temporary storage, checked for validity, and
moved to the TUB. The key of the first record of the next segment is
read into temporary storage and moved to the area specified by NXTREYFW.

After the index record program has deleted the intervening segment,
the RDELETE macro interpreter may discover that the previous and next
segments are located on the same track. In this case the macro
interpreter indicates that the search program is to combine these two
segments. If combined segments is specified and XR is not also
specified, the file is positioned before the first record of the next
segment. When XR is also specified, the file is positioned after the
first record of the next segment. To combine segments, the track chain
and record chain are read into temporary storage. The end-of-segment
entry in the record chain for the first of the two combined segments is
replaced by the record number of the first record of the next segment.
The end-of-segment entry for the first of these segments is eliminated
from the track chain (but saved in the track chain save area). I/O is
then initiated to write the updated chain record and write-check on the
track. If XR is specified, the key of the first record of the second
segment is retrieved. It is later moved from temporary storage to the
area specified ~y NXTREYFW. The record chain is moved to the TUB.

Entry point SRCBPTRQ is used by the RPOINT macro interpreter. This
entry can be used to RPOINT FIRST or LAST, position to an exact key, or
search high or equal on a given key. If FIRST is specified, the index
record (or the master index if no index record update is needed) is used
to locate the first segment of the file, and the search program
positions the file after the first record. If LAST· is specified, the
index record is used to locate the last segment, and the search program
positions the file after the last record. The record chain is read into
temporary storage, checked for validity, and moved to the TUB. The
first or last record of the segment is referred to by physical record
number for key and/or text retrieval. If the record number of the last
record (RPOINT LAST) is not found within the segment definition in the
record chain, the search program indicates an I/O error. If record
retrieval is specified, a buffer is requested, and the key and text are
read into it. If key retrieval is also specified, the key is moved from
the buffer to the area specified by NXTREYFW. If key retrieval but not
record retrieval is specified, the key is read into temporary storage
and then moved to the area specified by NXTKEYFW.

When the RPOINT macro is used to position before or after a given
key, the macro interpreter uses the index record update program to
position the file to the proper segment (if the key is within the file
range). Then the search routine is entered with search on exact key
specified. The record chain is read into temporary storage, checked for
validity, and moved to the TUB. The track is searched for the specified
key, alDd if it is found, its -record number (part of count field) is
obtained. If the user specified text retrieval, a buffer is obtained
and the text is read into it. The key is moved into the buffer later
and the file is positioned after the specified record. If the specified
key is not found by the channel program, file exception is indicated.
If the key is found, but that record is not within the segment according
to the record chain (record has been deleted), the search program sets
file exception. In both cases the search program positions the file
before the first record of the segment. If a buffer was obtained, its
release is requested.

When the user specifies the high-or-equal option on the RPOINT macro,
the index record update program locates ·the segment (if the key is
within the file range). The search program reads the record chain into

Program Organization 193

temporary storage, checks its validity, and moves it to the TUB. All
the keys on the track are read into temporary storage. The keys of the
segment are searched in logical order (according to the record chain)
for one that is at least as high as the given key. If the key whi'ch
satisfies the search is eqqal to the given key, the file is positioned
after that record. If the key that satisfies the search is higher than
the given key, file exception is indicated and the file is positioned
before that record. (1'f key retrieval is specified, its key is returned
in the area specified by NXTKEYFW.) If no key within the segment
satisfies the search, an I/O error is indicated. The search
high-or-equal option does not support text retrieval.

When a file contains duplicate keys, RPOINT on exact key gives
unpredictable results. Thus the RPOINT high-or-equal option must be
specified. If the key that satisfies a search is one of a string of
duplicates, it will necessarily be the first of the string. If the key
that satisfies a search is equal to the given key, the file is
positioned after the first record of the string. If the key that
satisfies the search is higher than the given key, the file is
positioned before the first record of the string.

If the RPOINT macro (exact key or high-or-equal option) refers to a
key that is higher than any key in the file, the index record update
program detects this condition, positions to the last segment of the
file, and passes anend-of~data indication to the search program. The
search program positions the file after the last record of the segment
and sets file exception. The record chain is read into temporary
storage, checked, and moved to the TUB.

AFIO Register usage

On all calls to and exits from AFIO, register usage is standard.
However, register usage within the three AFIO modules (IHKAFI, IHKEXC,
and IHKGCW) and register usage for linkage between the modules is
nonstandard. .

Several registers within AFIO are fixed. Their contents and/or their
usage are not changed from entry to exit. Other registers are variable.
Their use changes from subroutine to subroutine within a module. These
registers are listed with a short explanation of their purpose.

Fixed Registers

Register 8 (KBXRG)

Register 9 (AFWRG)

Register 10 (BASERG)

Register 11 (TUBRG)

194

used as the base register. It is
initialized upon entry to AFIO and is not
used for any other purpose.

used as the base register for the
restricted work area (IHKIRP) and the
extended work area (IHKEXF). These work
areas are defined with the EXCPFWDS
TYPE=DSECT macro.

used as the program base register for all
three of the modules that comprise AFIO.
When linkage is made to either the IHKEXC
module or the IHKGCW module from the IHKAFI
module, this register is initialized with
the proper base for V-type constants in the
KONBOX.

used as the base register for the terminal
user block (TUB). It is initialized upon
entry to AFIO and is not altered during.
AFIO processing.

Register 12 (FBXRG)

Register 13 (REGO)

Variable Registers

Register 0 (GRORG~GRERG)

used as the work area base register. Work
area for private files is the TUB and for
global files is the GBFORGFW in the KONV0X.
Either area is defined with the dsect macro
AFCTLDS. This is the work area into which
information from the master index track and
the user's file index track is read.

used as the AFIO save area register.

used as work register.

Register 1 (GR1RG-GRORG-:INCRG) used as work register.

Register 2 (GR2RG-GRDRG-CYLERG)

Register 3 (GR3RG-GR02RE-CYLORG)

Register 4 (INTLNKRG-HEJ\DRG)

Register 5 (CCWRG)

Register 6 (SRCHRG)

Register 7 (ICRG)

Register 14 (LINK1RG)
Register 15 (LINK2RG)

used as work register.

used as work register.

used most extensively as the branch
register for internal AFIO closed
subroutines. It is also used as a
work register to contain head
number information in the AFIO
active area track allocation
routines.

used mainly to contain the number
of CCws required for the Channel
Program. It is also used in the
IHKGCW module as the base register
for the CCW list.

used mainly as the search argument
list base register. The search
argument list is generated by the
IHKEXC module and used by the
IHKGCW and IHKEXC modules.

used as the parameter register for
TUBAFPAR (AFIO macro arguments) and
as the offset register for internal
AFIO linkages. It is also used as
the index register to access the
proper global file work area in the
KONBOX. These work areas are
defined by the macro AFCTLOS. It
is also used extensively by all
three AFIO modules to contain
offsets and index values for
Channel Program requesting and
generating.

used as linkage registers within
and between the
controller/interpreter (IHKAFI).
the executor/requester (IHKEXC),
and the generator (IHKGCW). The
linkage conventions used are
discussed later.

program Organization 195

Subroutines Within the AFIO I/O schemY,.~~ (IH~F!!.

~hefollowing routines are in the scheduler and interpreter sections
of the AFIO control routine (IHKAFI). These routines are called from
various locations within the IHKAFI module. They are listed in
alphabetical order with a short description of their function.

BACK2INT

This subroutine restores register 15 (LINK2RG) with the REZOOMLK
field; (the IOREQ subroutine stored register 15 in the REZOOMLK field).
This subroutine puts in register 15 (LINK2RG) the next required entry
offset to the IHKEXC module, and then returns to the NEXTIO subroutine.

EXNTRYO

This subroutine loads register 4 (INTLNKRG) with the entry pOint of
the IHKEXC module and then goes to the EXNTRY1 subroutine.

EXNTRYl

This subroutine initializes register 10 (BASERG) for the IHKEXC
module and loads register 15 (LINK2RG) .with the secondary return
address. This subroutine is called from the IOREQ subroutine by using
register 14 (LINK1RG·). Therefore LINK1RG contains the primary return
address and is used by the requestor routine to return to the IOREQ
subroutine if I/O is not reque~t8d. Register 15 (LINK2RG) is loaded
with LINK1RG +8 and is used hv +he requestor routine to return the the
IOREQ subroutine if I/O is re-':;:~lested. Both the primary and secondary
returns are saved and a branch '.:>n register 4 (INTLNKRG) is made to the
proper requestor routine in the IHKEXC module.

EXNTRY2

Upon entry to this subroutine register 4 (INTLNKRG) is loaded with
the proper entry point to the IHKGCW module (generator). Also at this
time the number of search arguments and the number of CCWs required (as
computed by the IHKEXC module) are known and entry is being made to the
IHKGCW module to build the Channel Program that will be executed.

GETFNUM

If the I/O request is for a private file, this subroutine inserts the
file number (TUBACTNM) into register 7 (ICRG), loads the address of the
TUBNXKEY field into register 2 (GR2RG), and returns. If the I/O request
is for a global file, this subroutine inserts the global file number
(TUBGBLNM) into register 7 (ICRG), loads the address of the TUBGBLKY
field into register 2 (GR2RG), and returns.

GETGBASE

This subroutine loads register 1 wi ~;h the address of the beginning cf
the proper (determined by TUBGBLNM) gl')bal file work area in the KONBO~
and then returns to the caller.

GTFBASEO

If a private file is being accessed, this subroutine returns to th(~
caller with register 12 loaded with the address of the TUBAFCTL field,
which is the AFIO work area in the TUB.. If a global file is being

196

accessed, this subroutine goes to the GETGBASE subroutine; upon return
loads register 12 with register 1; and returns to the caller with the
address of the SETCON subroutine in register 15 (LINK2RG).

IOREQ

This subroutine is called from the NEXTIO subroutine if the macro
interpreter (called from NEXTIO) requests I/O operation. The linkage
offset entry to the IHKEXC module that is in register 14 (LINK1RG) is
saved in register 7 (ICRG). The half-word return address is computed
and stored in the REZOOMLK field so that macro interpretation will be
resumed at the proper place. Register 2 (GR2RG) is loaded with the
offset to the beginning of the extended work area in the IHKEXF module.
Then the subroutine performs a branch and link on register 14 (LINK1RGI
to the EXNTRYO subroutine.

LOCINTRO

The macro code number is gotten from the TUBAFPRl field; the macro
interpreter entry point displacement in register 3 (GR3RG) is computed;
and a return is made to the caller with the macro interpreter entry
point in register 15 (LINK2RG).

NEXTIO

This subroutine branches to the proper macro interpreter. The offset
to the proper interpreter from the label MACTAB is in register 15
(LINK1RG). Return from the macro interpreter is on register 14
(LINK1RG) or register 4 (INTLNKRG) to return to the processor that
issued the macro.

SETCON

A branch is made to the GETFNUM subroutine to get the file number and
next key pointer. Using register 7 (ICRG), the record type, record
definition, and bu~fer description constants are moved from the KONBOX
into the restricted work area (IHKIRP). This subroutine returns to the
processor that issued the macro.

AFIO Internal Parameter Passing and Linka~

Parameter passing and module linkages within the AFIO modules
(IHKAFI, IHKEXC, and IHKGCW) are nonstandard to increase performance and
to lower the main storage requirements. There are several basic
concepts involved in the processing of building and executing a channel
program.

A basic AFIO concept is that the I/O required for two similar
functions may require two dissimilar channel programs to be generated.
The search/track data analysis routines of the IHKEXC module does a lot
of checking to determine position, segment arrangement, record location,
empty records, etc. This is done in order that the most efficient
channel program will be generated.

In support of this concept there is a table of half-word
displacements located at the beginning of the generator module (IHKGCW).
These half-word constants are displacements to the twenty-seven CCWlist
generating routines within the IHKGCW module. The IHKEXC module also
has a table of displacements and constants at its beginning. Although
this table is constructed differently, its function is the same -- to
allow flexibility in channel program generation. The displacements are

Program Organization 197

to the for~y-seven different requestor and executor routines in .the
IBKEXC module. Linkage to these routines is invoked Qy the macro
interpreter routines in the IHKAFI module.

The initial entry to the proper _cro interpreter routine is made by
the I/O scheduler at the NEXTIO label in the IHKAFI module. Register 15
(LINK2RG) has been previously loaded with the offset to the proper
interpreter (from MACTAB table). The macro interpreter is entered with
the following sequence:

BAL LINK1RG,INTERPRETER
B I/O REQUEST
B RETURN

The interpreter returns on LINK1RG +4 if the macro request is invalid.
NOrmally return is made on LINK1RG.

The. exit from the interpreter is with the following sequence:

BALR
DK
DK

LINK1RG, LINI<lRG
REQUESTOR INDEX
EXECUTOR INDEX

The DK macros expand to a one-byte value that indexes to the proper
half-word value at the beginning of the IHKEXC module. The first index
is to the requestor routines and the second is to the executor routine$
in the IHKEXC module. The BALR instruction serves a dual purpose. It
returns control to the location that initially called the interpreter
(NEXTIO). And it leaves in LINK1RG the address of the first index value
(DK REQUESTOR).

Upon return to the NEXTIO subroutine from the interpreter, a branch
to the IOREQ label is made. At this time the interpreter return address
(and a DK index value) is saved as a half-word displacement in the
REZOOMLK field. A branch is then made (via the EXNTRYO routine in the
IBKAFI module) to the proper requestor routine in the IHKEXC module with
the following sequence:

BAL LINK1RG,REQUESTOR
B BACK2INT

request I/O

If the requestor routine returns on LINKlRG, a branch is made to the
BACK2INT label. . The REZOOMLK field is used to load register 15
(LINK2RG) with the interpreter return address, bumped passed the DK
indices, and a return is made to the interpreter routine via the NEXTIO
subroutine again, and the process is repeated. .

If the requestor routine returns on LINI<lRG +4 (I/O request) the
following occurs: The line is put on the extended work area queue and
control is lost to the CRJE dispatcher until this request is returned, a
buffer is requested if required and the control fields, search argument
list, and CCW lists (DUMMY) are initialized. LINK1RG is loaded with the
REZOOMLK field, bumped by one to reference the second DK index
(executor), and a branch is made to the proper executor routine in the
IHKEXC module via the EXNTRYO subroutine in the IHKAFI module. The
follOwing sequence is used:

BAL LINK1RG,EXECUTOR (initial entry)
B SOPT
B NOf:ORT

SORT and NOSORT refer to the two entry points in the generator.

Each channel pro~ram is constructed in two phases. The executor
routine constructs a table of indexes. These indexes reference various
channel program elements in the following manner. The table of indexes
is made up of one-byte values that are used as an index into·the

198

half-word displacement table at the beginning of the IHKGCW module. The
generator uses this table to branch to various CCW generating routines
within itself to construct the desired channel program. The SORT/NOSORT
entries are used to either sort the search argument list or to leave it
as it exists. The decision is made in the executor module and the
proper return is made to the I/O scheduler on either LINK1RG or LINK1RG
+4.

Upon return from the executor module, the return address to the
executor module is in register 14 (LINKlRG). And this value is saved in
the EXRETLK field, and the proper branch (SORT/NOSORT) is taken to the
generator module via the EXNTRY2 subroutine in the IBAFI module.

The search argument list and the dummy CCW list are made available to
the IBKGCW module by saving the location in the restricted work area.
The table of index entries built by the executor module is actually a
one-byte field in the search argument list entries •. The IHKGCW uses
these values to index to its displacement table and branch to the proper
routine to build a section of the channel program. This process is
repeated until the search argument list is completed. At this time the
channel program is complete and return is made to the I/O scheduler
routine.

The scheduler routine issues an EXCP macro and goes to the CRJE
dispatcher to await I/O completion. Error checking is then performed by
the scheduler. The EXRETLK field (return to executor after I/O) is used
to load LINK1RG. Return is then made to the executor with the following
sequence:

BAL LINK1RG,EXECUTOR
B ENOIO
B EXCP

The executor returns on LINK1RG if processing is complete or on LINK1RG
+4 if the channel program is to be issued again (for write checking).
If return from the executor is on LINK1RG, the one final call is made to
the executor. The return from that call is used to determine if a
buffer should be released or not. If required, the buffer is released,
the line is removed from the extended work area queue, and return is
made to the processor that issued the macro.

LIBRARY INPUT/OUTPUT

Library I/O Macros

RFIND

This maCrO initiates library I/O operations. It must be issued
before any other library 1/0 macros except the RSCRATCH macro. If no
operands are specified, the options used previously are assumed.

r---------~------------, 10peration 10perand I
~---------+------------~
IRFIND 1[0] [, S] I I I I ,NS I
I I F I ~ _________ ~ ___________ J

O(utput)
Output operations are initiated. RWRITE and RCLOSE macros can be
issued.

Program Organization 199

I (nput)
Input operations are initiated:'
issued.

RREAD and RCLOSE macrOS can be

F(DI)
The directory of a BPAM data set is read.RREAD 'and RCLOSE macros
can be issued.

s
Standard library I/O acce'ss is requested. InformatiOn is obtained
as follows: library name of the formCRJE.LIB.userid,·whereuserid
has a maximum of eight characters and is taken from the TUBUSRNM
field; the member name is taken from TUBPMFNM; ddname for OS job
control is taken from the BPPARMFS field in the KONBOX.

NS
Nonstandard library I/O access is initiated.. The data set name must
be of the form CRJE.LIB.bserid where the use rid has a maximum of
eight characters. The BPPTRFS field in the KONBOX must have been
initialized to point to an address list of the form:

Return
00
04
12
16

RREAD

DC A(dsname)
DC A (ddname)

code on completion:
file name found (if applicable) ;no
file name not found (if' applicable)
I/O error in reading directory
directory full (O,S operands ~nly)

error

The RREADmacro reads a block from a user library or from the system
library.

r---------T-------,
IOperation I operandI
~----------+-------i
I RREAD I none I L __________ ~ _______ J

Return
00
04
08
12

code on completion:
normal
end of data (no block retrieved)
GETMAIN failure
I/O error in reading block.

If no errors are encountered, the number of logical records read is
returned as a half-word value in the TUBCNTFS field. If EOD is
returned, the TUBCNTFS field is unpredictable. The buffer address is
returned in the SFBUFF1 field of the KONBOX. If EOD or I/O error is
encountered, the buffer is released before control is returned to the
calle.r.

Prerequisites: a return code of 0 or 16 from the RFIND macro.

RWRITE

This macro writes a block of records in a user library or in the
system library.

r---------~-------,
10peration I operandi
~---------+-------i
I RWRITE I 'none I L-_________ ~ _______ J

200

Return code on completion: none.

The buffer address must be in the SFBUFF1 field of the KONBOX. The
number of logical records to be written must be placed in the first byte
of the TUBCNTFS field by the calling routine. Zero is put in this byte
before returning to the caller.

control is returned to the caller before the I/O operation has
completed. To insure that the write has finished and to determine the
results of that operatiOft, the IHKWTR module must be called. Upon
return from the IHKWTR routine the return codes are:

00 last write normal
04 end-of-volume
08 GETMAIN failure
12 I/O error in writing block.

The routine issuing the macro must ensure that the last write has
finished before issuing another library I/O macro for that file.

Prerequisites: a return code of 0 or 4 from the RFINDmacro and a
return code of 0 on all previous RWRITE macros.

RSCRATCH

The purpose of this macro is to delete a data set Cmember) from a
user library.

r---------~-------,
10peration I Operandi
~---------+-------i I RSCRATCH I none I L-_________ ~ _______ J

code on completion:
normal
name not found
GETMAIN failure

Return
00
04
08
12 I/O error in reading/writing directory

Input fields are the same as described under RFIND, SCtandard) except
that file attributes are iqnored.

Prerequisities: Same as RFIND SCtandard). Currently only SCtandard)
access is supported.

RCLOSE

The purpose of this macro is to terminate library I/O operations.

r---------~----------_,
,Operation, Operand ,
~---------+-----------i
'RCLOSE '[STOW] ,
, , NOSTOW , L-_________ ~ ____ ~ ______ J

STOW
A library I/O STOW is performed to record or update the file and FDI
in the directory. The RCLOSE macro is iqnored if

• the RFIND macro was type F or I,
• an I/O error occurred,or
• no RWRITE macros were completed successfully.

Program Organization 201

Return
00
04
08
12
16

code on completion:
normal
EOV

. GETMAIN failure
I/O errOr­
direC:::tory full

Prerequisities: library I/O operations must have been initiated for
this file, and the last RWRITE macro must have been completed. -

NOTE: All library I/O operations except the RSCRATCH macro must be
terminated by issuing the RCLOSE macro. No other library I/O access is
possible until a line releases control of the module by use of this
macro.

Librarian Queue Module (IHKRNQ)

Entry Point

IHKRNQ

Function

The IHKRNQ module controls the queuing necessary for sequential
access to the following CRJE system resources: user libraries, system
global files, and the serially reusable functions of the syntax checker
interface and the CRJE SUBMIT command.

Each queue handled by this module has associated with it a queue
control element. Each routine requesting access (command processors or
AFIO) has a queue element to associate with the queue control element.
The control element and the queue elements that are associated with the
resources that the queue module controls are as follows:

r------------------~---------~---,
IQ Control Element*IQ ElementlResource 1
~-----------------+---------+---~
IAFQCTLFW ITUBAFQEL IAFIO extended work area I
IBPQCTLFW ITUBBPQEL IUser libraries I
IGBQCTLFW ITUBGBLQL IGlobal files (One Q control element I
1 I I exists for each global file •.) I
ISUBQCTEL ITUBSUBQL 1Job submission I
I SYNQCTEL I ** i Syntax checker interface I
i------------------..L---------.L---------------------------------.--------~
I*All queue control elements are located in the KONBOX. I
1 I
1**The syntax checker interfaoe module gets main storage dynamically I
1 for its required queue elements. I L-_____ • ___ J

Queue Elements

When this module receives control, register 1 must point to a
parameter list that contains the address of the queue element and the
address of the queue control element. Register 13 must point to a
72-byte save area provided by the calling routine.

A check is made to determine if the specified queue is empty.- If it
is empty, the queue element is placed as the first in the queue and
control is returned. If the queue is not empty, the queue element
provided by the calling routine is placed on the end of the queue, a
GETMAIN is issued for a save area, and a call is made to the CRJE
dispatcher to wait until the queue element for this request ,is posted.

202

When the queue element is posted, the dispatcher returns control to the
IHKRNQ module. Then this module frees the storage for the associated
work area and returns control to the calling routine. .

QUEUE CONTROL ELEMENT QUEUE ELEMENTS

t
ECB

@
I

The llUtAFI module dequeues all requests for the global files and the
AFIO extended work area. The IHKBPM module dequeues all requests for
user library accesses. The SUBMIT command processor and the syntax
checker interface modules dequeue themselves. The dequeuing process
consists of pointing the first word of the queue control element to the
next queue element in line and posting the ECB of that queue element.
The dequeuing sequence inclUdes the posting of the ECB associated with
the next queue element in the queue.· This ECB is the ECB provided for
the dispatcher by the queuing routine (IHKRNQ) when it calls the
di spc!1. tcher •

External Routines

IBKDSP CRJE dispatcher, to wait for queue element to be posted.

Tables/Work Areas

TUB (see chart of queue elements)
KONBOX (see chart of queue elements)

Exits

Normal

Error

branch is to dispatcher if requested queue is not empty •.
to the calling routine if queue is empty or when queue
element is firs.t on the queue with a return code of 0 in
register 15.
return is to calling routine with a return code of 4 in
register 15 indicating a GETMAIN failure.

Program Organization 203

Attribut.es

Resident and reentrant

Libr~EY-liO Module . (IHKBPM)

Entry Point

IHKBPM

Function

This library I/O module is the interface module responsible for
gaining access to user libraries and to the CRJE system library. Access
to these libraries is obtained by issuing CRJE library I/O macros. The
IHKBPM module uses OS BSAM and BPAM to provide the library I/O
requested.

This module allows only one line at a time to gain access to a user
library. No other requests for library I/O are processed until the
library currently being processed is closed (RCLOSE) or scratched
(RSCRATCH). The user verification module (IHKUTM) employs the services
of the queuing module (IHKRNQ) to queue all requests for library I/O.
The requests are serviced in FIFO order.

One DeB in this module is used for reading, writing, and directory
processing of all user and system libraries.

Since the functions this module provides is dependent upon the macro
issued, it can be described best by these macros. Each library I/O
macro has a processor within this module that provides the function
requested.

RFIND

• Synchronous routines are established (end-of-data, synad exit).

• Data set is opened, if necessary. by the read job filecont~ol block
(RDJFCB) and OPENJ macro. The data set name field is generated in
the JFCB and merged fields a~e zeroed out before the OPENJ is
issued. If .the dataset is to be opened for input, the DCB EXIT is
also established before the OPENJ is issued.

• The BLKSIZE and LRECL fields are set to 256 if the directory is to
be read. Otherwise, they are checked for nonzero entries. If LRECL
is zero, 88 is the assumed value. If BLKSIZE is zero, the assumed
value is the maximum buffer size (880).'

• The build list is created for the user libraries.

• BLDL is issued to locate the data set(s).

• Directory space is checked if O(output) is specified.

• Directory is updated for user libraries.

• BPAM FIND C is issued to prepare for the first read if opened for
input.

• Control is returned to the routine that issued the macro with one of
the following return codes:

00 normal
04 name not found (if applicable)

204

08 directory full
12 I/O error in reading directory.

RREAD

• Input buffer is obtained.

• BSAM read is initiated.

• Wait for I/O completion.

• Record count is computed and stored in COUNTFS.

• If 80-character logical records are read, they are expanded to
88-character records.

• Buffer is released if end-of-data or I/O error.

• Control is returned to issuing routine with one of the following
return codes:

00 normal
04 end-at-data
08 directory full
12 I/O error.

RWRITE

• Block size is computed from logical record size and record count.

• It the user library is an 80~character library, the blocks are
truncated from 88 to 80-character records.

• BSAM WRITE is initiated.

• Control is returned immediately if I/O is not complete.

• It I/O is complete, a check is made for EOV or other error and
buffer is released.

• Control is returned to the routine that issued the macro.

~: The return code is set by the wait module CIHKWTR) when 1/0 is
complete. I/O can be overlapped by initiating other I/O operations
before the previous BPAM write has been c.ompleted. A check must be made
to ensure that the BPAM write is completed, before requesting further
BPAM services. The IHKWTR module may return one of the following codes:

00 normal
04 EOV
08 not used
12 I/O error.

RSCRATCH

• Data set is opened by the first two functions described under the
RFIND macro.

• Data set is deleted by the macro STOW D.

• Data set is closed.

• User is dequeued.

• Return to issuing routine with .one of the following condition codes:

Program Organization 205

00 normal
04 name not found
08 not used
12 I/O error.

RCLOSE

• Build list set up for STOW macro •

• -Exit to close data set if requested or required by previous events.

• If output and writes were done without error, a STOW A or R is
issued to store file name in directory and write end of data.

• If a user library was opened for input and if the name was found, a
STQW R is issued to update the directory.

• Data set is closed.

• Line is dequeued.

• Return to routine that issued macro with one of the following codes:

00, -
04
08
12

normal
EOV
directory full
I/O error.

External Routines

None

Tables/Work Areas

TUB
KONBOX

Normal

Error

Attributes

return to routine that issued macro with proper return
code
none

Serially reusable and resident

Library I/O Wait Module (IHKWTR) ,

Entry Point

IHKWTR register 1 must contain. a pointer to the TUB.

Function

The purpose of this wait module is to allow overlapping of I/O·when
writing to a user library or CRJE system library. Overlapping is
achieved by the RWRITE (library I/O) macro initiating the I/O and this
WAIT module testing for errors and exceptional conditions at the
completion of the I/O. A call to this routine must be made for each
RWRITE macro before another RWRITE macro may be invoked.

206

Upon entry this module checks whether or not the 1/0 is complete. If
the 1/0 is not complete this module waits in the CRJE dispatcher until
the 1/0 is posted as complete. A CHECK macro is then issued to inspect
the results. If an error occurred, the CHECK macro passes control to
the SYNAD routine in the library 1/0 module, which sets the I/O error
flag in the 'l'UBPAMSW field and returns. When control is returned from
theCHBCK macro, this module frees the output buffer, moves the TUB
buffer pointer to the BPAM output buffer location, gets the completion
code from the TtJBPAMSW field, and 'returns to the caller.

If the routine using this wait module specifies that it. will control
its own buffers (bit 0 of TUBAFISW field set to 1), no freeing of the
output buffer or switching of the TUB APIO buffer pointer (TUBRAFBF) to
the library 1/0 output buffer (SFBUFFl in KONBOX) is done.

If the 1/0 is posted as complete when this module gets control, a
check is made for the following two exceptional conditions:

End-of-volume When end-of-volume is. detected by the RWRITE processor
(IHKBPM), the end-of-volume switch in the TUBPAMSW
field is set and the output buffer is freed before
control is returned to the caller (unless buffer
control is specified).

1/0 Error When the library 1/0 module (IHKBPM) determines that
START 1/0 failed on the write operation, it sets the
1/0 error switch in the TUBPAMSW field and frees the
output buffer (unless t error switch in the TUBPANSW
field and frees the output buffer (unless buffer
control is specified).

If either of these conditions is found, the issuing of the CHECK macro
and the freeing of the output buffer are bypassed by the IHKWTR module.
If either,of these two conditions is not found, processing is resumed at

. the point where the CHECK macro is issued.

External Routines

IHKDSP CRJE dispatcher to wait on 1/0
BPAN (CHECK) - to inspect results of 1/0

TableslWork Are~s

TUB

KONBOX

Exits

Normal

Error

Attributes

TUB SAVE
TUBPAMSW

TUBRAFBF

SFBUFF1

18-word save area in TUB
(BPAN switch byte) bits 6 and 7 used to set
return code; bits" and 6 inspected for 1/0
error
(APIO buffer pointer) moved to library 1/0
buffer pointer

(library 1/0 buffer pointer) replaced by TUBAPBF

return to calling routine with one of the following
return codes in register 15:

00 normal return, 1/0 complete with no errors
04 end-of-volume
12 library 1/0 error

none.

Resident and r.eentrant

Program Organization 207

Library Condense Mogule (IHKCDP)

Entry Point

IHKCDP register 1 must point to a two-word par~eter list
containing the address of the TUB and the address of the
AVT.

Function

The function of this· module is to recove.r the lost space within a
partitioned data set. This space becomes unavailable whenever a member
of a PDS is deleted or updated and then written back. This module
copies the members to the beginning of the PDS, thereby recovering the
lost space and making it available for use at the end of the data set.

Condense is a serially reusable resource. When it gains control, it
requests exclusive control of global file #6 (utility sort file reserved
for condense). Once the condense module has control of this utility
file, it becomes serially reusable, and all subsequent requests for this
utility file are delayed until the condense module relinquishes
exclusive control of it.

The queuing module (IHKRNQ) is used to get the condense module
UHKCDP)· on the queue for library I/O. Since the condense process is
time consuming, the IHKCDP module only takes exclusive control of
library I/O when it is the only function requesting the resource. This
is accomplished in the following manner: The IHKCDP module requests
control of library I/O via a call to the IHKRNQ module. (Control is not
returned from the IHKRNQ module until that request for condense is at
the top ·of the queue for library I/O.) The IHKCDP dequeues itself from
the library I/O queue and checks to see if it .wasthe only requester on
the queue. If it was not, this module goes back to the queuing module
again and continues this loop until it is the only one.on the queue.
Once the condense module is the only requester on the library I/O queue,
the IHKRNQ module is called to place the condense module on the library
I/O queue.

The partitioned data sets directory is opened for input. All
directory entries are read and sorted into global file #6 with the TTR
and five blanks as the eight-byte key. The format of the records in the
utility sort file is as follows:

o 8 12 16 44 52 80
r---T------T----T--------------T------T--~----,
I Key I Member I TTRCIDirectory-User I Userid I I
I I Name I I Information I I I L ___ ~ ______ ~ ____ ~ ______________ ~ ______ ~ _______ J

When all members of the PDS have been sorted on the TTR, the output DCB
(contained in the IHKCDP module) is opened and the utility sort file is
positioned to the member with the lowest TTR. The address of the next
block to be read (on processing the first member, the address is the
block following the directory) is moved from the input DCB to the output
DCB, and theTTR in the output DCB for the beginning of this member is
updated to reflect the address of the next block to be read.

A member from the utility sort file (·lowest TTR not processed) is
retrieved, and the input DCB is positioned to the beginning of that
member. The member is then read using the input DCB, then the type of
operation is determined.

Three modes of operation can exist: skip, copy, or dump.
mode the member is already located in its most condensed.form
data set, no unused space has been encountered.. In copy mode
two tracks of unused space have been encountered. The member

208

In skip
in the
at least
is to be

copied from its old position in the data set to a new position so that
no unused space exists. Two tracks of unused space must exist because
the records are written using a write of count, key, and data. This
form of the write erases the portion of the track following the data.
All existing data on the track before a write count, key, and data is
lost. If a block that is to be written will not fit in the space
remaining on a track, the access method (BSAM) will write it at the
beginning of the next track and erase the remainder of the track. Thus,
before a member can be copied from one portion of the data set to
another, at least two tracks of unused space must be available so that
no data is lost.

If a member needs to be copied but two unused tracks do not exist,
dump mode is entered to provide at least two tracks. In dump mode the
member is spilled to a second private file in the active area, keeping a
count of the number of records and number of members dumped. When the
last member of the PDS has been copied, all files that were spilled will
be copied back to the PDS.

Each member, using the input DCB, is read and is either skipped,
copied, or dumped. For each member skipped or copied, the record in the
utility sort file for that member is deleted. In addition, on a copy
the new TTR of the member is stored in the directory. For each member
dumped, the utility sort file record is replaced using the count of
records dumped as the key. The actual data records are spilled
sequentially to the private file that was created. If the first member
spilled contained four records and the second member spilled contained
three records, the record counts used as the keys would be four and
seven respectively.

When all members of the partitioned data set have been read, the
spilled members (if any) are copied back to the PDS, the directory entry
is stored, and the utility sort file record is deleted.

When all spilled members have been restored to the non-condensed PDS,
a check is made to see if any writes were done to the POSe (If all
members were deleted, it is possible that the library was out of space
but contained no members.) In this case an SVC 25 <stand alone seek) is
executed to ensure that the data set control block will be updated at
close time (first available space was updated in the output DCB
immediately after it was opened).

If any I/O errors were encountered, the DCBOFLGS (bit 0) field is set
off to prevent the updating of the DSCB at close time. The output DCB
is closed, the input DCB is closed, the spill private file is released,
the utility sort file is released, and the old private active file is
recreated.

External Routines

IHKAFI
IHKBPM
IHKRNQ
BPAM
SVC 25

to handle I/O in active area
to handle library I/O (on bottom of queue)
to get ddname for library and get on library I/O queue
STOW, to update directory entries
stand alone seek (establish track balance if no writes
attempted)

Tables/Work Areas

is-word save area
SS-byte DCB
TUB

AFIO and library I/O fields are modified
for the various macros.

Program Organization 209

Normal
Error

Attributes

return to calling routine with zero in register 15
return to calling routine wi th one of the. following
return cod.es in register 15:

04AFIO I/O error, librqry not modified
08 AFIO I/O error, library modification started,

members may be lost or invalid
12 library I/O error, library not modified
16 library I/O error, library modification started,

members may be lost or invalid
20 GETMAIN failure

Reentrant and .nonresident

SERVICE ROUTINES

SCAN ROUTINE (IHKCCS)

Entry Point

IHKCCA

Function

register 1 must point to a three-word area containing the
following:
• the starting address of the scan;
• the stopping address of·the scan (if a maximum scan

length is specified, the contents of this ward is
arbitrary) ;

• the address of the follOWing parameter list, which
starts on a half-word boundary:
1. In the first half-word is the maximum scan

length (if the stopping address is specified,
this half-word must contain binary zero).

2. In the second half-word is the number of
characters to which the scan is sensitive this
number is binary zero, the scan is for (if the
first nonblank character).

3. In the following bytes is a character string
containing the characters to which the scan is
sensitive. The maximum length of this string is
12.

Given a character string and a starting location, this routine scans
in the direction of high main storage. The scan terminates with the
first character observed that belongs to the character string.
Alternatively, a scan may be made for the first nonblank character. The
user must specify either a maximum number of characters over Which to
scan or a stopping address. .

External Routines

None

Tables/Work Areas

256-byte work area (TRTTAB) is used, tQ build a tra.nslation table
sensitive to the proper number of characters.

210

Normal

Attributes

return to calling routine with one of the following codes
in register 15:

00 no sensitive character or nonblank character was
found.

04 a find was made on a request for the first
nonblank character

4j a find was made on ~e jth character of the
character string.

Register 1 always contains the address of the character
found. It contains 0 if no find was made.

serially reusable and resident

NUMERIC VERIFICATION MODULE (IHKNUM)

Entry Point

IHKNUM

FUnction

.register 1 must point to a variable parameter list
containing the following:

1. the address of a one-byte length field;
2. the address of a one to eight-byte data field

(dependent on length parameter).
3. the address of an eight-byte area; (the high-order

bit of the last parameter in the list is set to
one) •

The purpose of this routine is to verify a field of eight or
fe~r numerics and, optionally, to move the field. The length byte of
the parameter list is checked first. If the length is less than one or
greater than eight, then a code of 4 is placed in register 15 and
control is returned. The characters in the data field are checked for
all numerics. If any charact.er in the field is not numeric, then
control is returned with a 4 in register 15. If each character is a
numeric and if the data field address is the last address in the
parameter list, then control is returned with a 0 in register 15. If
the third address is present in the parameter list, then the data field
is moved into the eight-byte area, right justified with leading numeric
zeros. Then control is returned to the calling routine.

External Routines

None

Tables/Work Areas

None

~

Normal
Error

Attributes

return to the calling routine with a 0 in register 15
return to the calling routine ..,ith a 4 in register 15
when either length or data is invalid

Reentrant and resident

Program Organization 211

FORl'RAN AND PL/1 CONVERSATIONAL SYNTAX CHECKER INTERFACE (IBKSYN)

Eritry Point

IHKSYN

Function

register 1 must pOint. to a one-word area containing the
address of the TUB

This interface module builds the parameter list for the FORTRAN and
PL/1 syntax checkers, reads lines' from the active ,f,ile, 'and, passes them
to the checker. The TUB contains a pointer (TUBIRLSA) to the range of
lines to be scanned. Both checkers return with a pointer to an error
message and an indication if scanning can continue. The interface goes
to IBKMSG to queue the message.

The line number range passed to the interface in input mode
represents one statement. For PLl1 input mode, the lines in the range
are read one at a time, and chained until the end of data or maximum
continuation is reached. The group then is passed to the checker to be
scanned. For FORTRAN input mode, the next line is read and kept, while
the current line is passed to the checker with the return-12~expected
bit set. For standard FORTRAN, the checker will always return a code of
12 when tllis bit. is s~, indicating that another line is to be passed.
The current line is freed, the next line 'already 'read is set up, and the
succeeding line is read. When the end of data is reached, the
return-12-expected bit is not set, and the current line is passed to the
checker. The group collected by the checker is then scanned. When the
statement has been completely scanned in input mode and any error
messages have been queued, the bits for correction mode are set, the
bits indicating changes made are turned off, and control passes to the
caller.

The line number range passed to the interfaoein delayed scan mode
(indicated by a bit in the TUB--TUBDLAYN) may be more than one
statement. For'PL/i, the lines are read one at a time, chained to the
previous line if there is one, and passed to the checker with the
return-12-expected bit set.' If the last line is not the, end of a
statement, the checker returns a code of 12, indicating which, if-any,
lines in the group maybe freed. The interface then reads the next
line, chains it, sets the return-12-response .. bit, and passes the lines
to the checker. If'the end of data or maximum-continuation -is reached,
the interface sets the return-12-response bit and again calls-the
checker. For m,aximum contihu~tion~ the interface queues an error
message.

For FORTRAN, in delayed scan mode, the interface :.:eads alin~ahead,
checking for a "C" in column 1 to indicate a comment, or a nonblank and
nonzero character in column 6 to indicate continuation. Fora group of
comments, or several within a continuation group, all but the first are
freed immediately. When the next line is a comment-or a,continuat.ion,
the return-12-expected bit is set, and the current line already read is
set up, and the succeeding line is read. When the next line is not a
comment or continuation, or when the end of data is reached, the
return-12-expected bit is turned off, and the current line is passed.
The collected group is then scanned.

For both FORTRAN and PL/i in delayed scan mode, if no 'er·rors have
been found in a statement, the interface begins COllecting the next
statement. When error messages have been queued, the interface stores
the line number of the next line in the active file in the'location
containing the first line to be scanned (or a maximum number if the end
of data has been reached), and returns to ehecaller ..

212

External Routines

FORTRAN Syntax Checker
PL/1 Syntax Checker
IHKMSG (entry point:IHKMSG01) to queue maximum continuation or

wrong FORTRAN level message
(entry point;IHKMSG02) to queue messages from checkers

IHKAFI to read lines from active file

Tables/Work Areas

CCT
CCTFRTFG CCTPLIFG

CCTPL1MX

TUB
TUBFLGl

TUBFLG3

TUBIRAD

TUBIRLSA

TUBNXKEY
TUBPARM1-TUBPARM5

TUBUFFAD

TUBRAFBF
TUBUSRID

DIR
DIRATTRL

bits set to indicate old or new input,
and response to return a code of 12
used to count continuation for PL/l

(TUBPL1 and TUBFOR) cor.tain attribute of
active file
(TUBDLAYN) delayed scan mode
(TUBCORRN and TUBCORCN) set for
corrections to be made
address of directory entry for data set
in active file
pointer to area containing range of line
numbers to be scanned
line number used by AFIO
used as parameter list for syntax
checkers and for IHKMSG
address of buffer used for line numbers
to be inserted in maximum continuation
message
pointer to buffer for AFIO
userid used by IHKMSG

checked for FORTRP.~ level

Normal
Error

return to calling routine with 0 in register 15
return to calling routine with one of the following
return codes in register 15:

Attributes

04 error message queued (input mode - corrections
are being made; delayed scan mode - scan may be
finished)

08 GETMAIN failure
12 active area I/O error
16 message lost
20 data set is wrong level of FORTRAN (message is

queued)

Serially reusable and resident

USER FILE MANAGER (IHKUTM)

Entry Point

IHKUTM register 1 points to a two-word parameter list containing
the address of the TUB and the address of a one-byte
area. Th one-byte area contains one of the following
hexadecimal request codes indicating which functions of
the user verification file manager are desired:

Program Organization 213

Function

X· SO'
X'40'

X'60'

X'10'
X'lS'

X'04'

verify userid and queue for library I/o;
verify userid and test active bit in control
byte of user verification record (UVR);
verify userid, test active bit, and set active
bit on if not already on;
turn off active bit in control byte; .
turn off active bit and set abnormal
termination bit in control byte;
set library inoperative bit in control byte.

The user verification file manager is called to gain access to the
global file to obtain the user verification record. An exclusive RPOINT
macro with retrieval is issued using the userid, which is passed to this
routine in the TUBGBLKY field, as the key. This routine makes use of
the optional buffer control for this call to the IHKAFI module. If the
user's verification record (UVR) cannot be found, control is returned to
the calling routine with a return code of 4. If the .record is found,
then the userid is valid and the request code in the parameter list is
tested to determine the functions to be performed. The request code is
checked by testing the bits in the request code byte.

If the request code X'04' is set, the library inoperative bit is set
in the control byte of the UVR. A REPLACE macro is issued to update the
UVR, and control is returned to the calling routine.

If the request code X' 40" is set, then the active bit in the UVR is
tested. If the bit is set the user is active, and control is returned
with a code of 20 in register 15. Otherwise, a test is made for the
X'02' bit in the request code. If it is not set, then a check is made
for the X'20' bit.

If the request code X'02' is set, then the password is moved from the
UVR into the TUBPARM4 field. If the X'20' bit is not set, then control
is returned with a code of zero. If the X'20' request code is set, then
the active bit in the qvR is set. If the delayed message bit (UVRDMSG)
and/or the message lost bit (UVRLMSGN) are set, the following bits in
the TUB are set: TUBMSG and TUBLMSGN. The TUB sequence number is moved
from the TUB into the UVRLNSEQ field. Console IDs are moved from the
UVR into the TUBPARM3 field. A REPLACE macro is issued to replace the
UVR in the global file with the updated copy of the UVR. Control is
then returned with a 0 return code.

If the X'10' bit in the request code is set, the active bit in the
UVR is turned off. The TUB sequence number in the UVRLNSEQ field is
cleared to zeros. The delayed message bit (UVRDMSG) and the message
lost bit (UVRLMSGN) in the control byte are set or turned off to
correspond to the TUBMSG and TUBLMSGN fields respectively. If the X'OS'
bit in the request code is set, the abnormal termination bit in the
control byte of the UVR is set. Console IDs are moved from the UVR into
the TUBPARM3 field. The REPLACE macro is then issued to update the
global file with a new copy of the UVR. Control is returned to the
calling routine.

If neither X'04', X'40', X'60', X'42', X'10', nor X'lS' is detected,
then X'SO is assumed to be the request code. If the library inoperative
bit is set, control is returned to the calling routine with a return
code of 24 in register 15. Otherwise, the ddname in the UVR is checked
for blanks. If tbe ddname is all blanks, control is returned with a
code of 16 in register 15. Otherwise, the key in the TUBGBLKY field is
moved into the TUBUSRNM field and the IHKRNQ module is called to queue
the line for library I/O. Upon return from the IHKRNQ routine, the
ddname is moved from the UVR into the BPPARMFS field of the KONBOX.
Control is then returned to the calling routine.

214

In all cases, "however, an ENDUP macro is issued to ensure completion
of updates and to allow another routine to gain access to the global
file.

External Routines

IBKRNQ
IBKAFI

to queue for library 1/0
to manipulate global files

~bles/Work Areas

AV'r
l8-word save area
i-byte area with request code
KONBOX

TUB
bpparmfs

TUBGBLKY
TUBUSRNM
TUBPRMLS

TUBLNSEQ
TUBLMSGN
TUBMSG
TUBRAFBF
TUBUFFAD
TUBPARM3
TUBPARMl
TUBPARM2
TUBAFISW
TUBBPQEL

User Verification
UVRACTVN
UVRABTMl
UVRDDNAM
UVRDMSG
UVRLMSGN
UVRLMSGN
UVRLNSEQ
UVRCIDl
UVRPASSW

Exits

Normal
Error

Attributes

return
return
return

04
08
12
16
20
24

ddname moved from UVR

contains key for AFIO macros
set equal to TUBGBLKY if requested
contains password on return from request code
of X' 60'
contains TUB sequence number
tested or set or turned off
tested or set
buffer address for IBKAFI
address of user buffer
used to return console IDs to IHKLGF and IHKLGN
parameter list
parameter list
buffer control switch
library 1/0 queue element

Record (UVR)
active bit, set or turned off
abnormal termination. set
contains ddname
tested or set
tested or set
tested or set
TUB sequence number
contains console IDs
contains password

to calling routine with
to calling routine with
codes in register 15:

userid not found
GE'l'MAIN failure
active area 1/0 error
ddname blank
userid active
library inoperative

o in register 15
one of the following

Reentrant and resident

Program Organization 215

FLOWCHARTS

216

• Chart AA. System Library Initialization Utility CIHKINI)

IHKINI

11 OPEN

OPEN QJE
SYSTEM
LIIIlARY

DI_4-_--,

'INITIALIZE
TO START
OF SYSMSGS
(lHKSMG)

C2 WTO

E2:...,S=TOW=::'""""'T'

YES STOW

$YNAD

SYSMSGS
ENTlYIN
DIIECTORY

'VO ERROR
ON CRJE,
SYSLII'

Flowcharts 217

.. Chart AF. START Command Processor (IHKBGN)

IHKBGN

218

FROM:
OS

Bl"'ENQ"""'-"""''''

ENQ
ON
CRJE

INITIALIZE

CRJE

CLEAN UP
BEfORE
EXIT

DEQ
CRJE

C2
IHKMSG02 SKAI

START
CRJE
REFUSED

BGNSDQ

E2 STAE

AT ABEND,
IHKBGNOI
GETS
CONTROL

E3
IHKSDQ FAIL

GET CRJE
SYSTEM
ACTIVE

IHKBGNOI

(84 ENTRY

C4
leFQMUNG

UNCHAIN
JOB
TERMINATOR
ECB

-04

SET RETURN
CODE TO
ZERO

(E4
EXIT

Chart AK. CRJE Initialization Routine (IHKCIP)

ATTACH
IHKSRV

KI--'-........
LOAD

LOAD
IEFQMDQ2

J2---'1..---,....,
LOAD

LOAD
IEFQDELE

LOAD
IEFQMSSS

NO

A3JI..-_

SET
RETURN
CODE TO
FOUR

SHII2

K31-..:L---,
IKM002

LET PI,II 27K
HECKER

INITIALIZE

F04~-_~

LOAD
LOAD
FORTRAN
CHECKER
IPDSNEXC

IPDSNEXC

YES

4..,...J.A""'D-­

LOAD PI,II
CHECKER
IKMOO2(27K).
IKM 001 (20K)
IKMOO3(16K) .

IS --''---r..,
QEDIT

REMOVE
START
FROM
QUEUE

0--''----.-....,
·QEDIT

os --''----..,
IHKMSG SHII2

CRJE
ACTIVE
MESSAGE

E5 --''---...,
SET
RETURN
CODE TO
ZERO

FlowcHarts 219

• Chart AL. CRJE Initialization RoutinE! (IBKCIP)

INITIALIZE
ACTIVE
AREA

RECOVER
ACTIVE
FILES

NORMAL
FI-.J'--_..,....

IHKBST AVAI

ROLL IN GLOBAL
FILES FROM
SYSTEM LIB

=4

=8

= 12
OR B

= 20

SHB2

02----,
IHKMSG

MULTIPLE
EXTENTS
MESSAGE

= 4 B2

= 8 F2

= 12 A2

= 16 AKA3

=8

ACTERR

F2 "-''--_-,
IHKMSG SHB2

DISK ERROR
ACTIVE AREA
MESSAGE

SYSLIBER ~
'IH~MSG SHB2 ~

= 4 DISK ERROR
)--'---1 CRJE.SYSLIB

220

SEND
MESSAGE
TO USER

FREE
MESSAGE
AREA

MESSAGE

RJCTCLNI '-----,

IH~D-SP"'--~-'

NO WAIT FOR
ATTACH OF
IHKSRV

• Chart AM. CRJE Initialization Routine (lBJ{CIP)

Al.....L.---.

INITIALIZE
TO LOAD
NONRESIDENT
CRJE ROUTINES

11.....1.--...
POST

LET IHKLDC
LOAD
ROUTINE

FOR
LOAD

GET RJCT
ENTlIV

SEARCH FOR
JOlON
SYSI. SYSJOIQE

SCRATCH

INPUT
DATASET

STRTRD~S ._-.,.....,
JSVC 34

NO START
RDRCRJE
ONJOI
STREAM

KS..L--"T"""
STlMER
GIVE
READER
50 SEes
TO RUN

Flowcharts 221'

• Chart AN. CRJE Initialh;ation Routine <lHKeI.\?)

222

SEARCH FOR
JOB ON
SYSI.SYSJOBQE

DELETE
RJCT
ENTRY

A2--.,.-,
STIMER

WAIT 5
SECONDS
FOR READER
TO CLOSE

YES

B3----,
IHKAFI TEAl

RECREATE
RJCT TABLE
FOR FUTURE
JOBS

C3:-PO- S-T-'-'

IHKSRV
TO GET
~OB

BUILD lOB
FOR RJCT
ENTRY

G'3-....... -......,
IHKAFI

UPDATE
RJCT
ENTRY

TEAl

H4---..,
IHKMSG SHB2

DISK ERROR
ON)OBQ
MESSAGE

YES

D5: ---...,

SET TO
SEARCH
FIRST
QUEUE

FOR
ACCESS TO
QUEUE

F5:-L--,-..,
IHKLOC

SEARCH
QUEUE
FOR JOB

G5-''----,r--,
DEQ

FROM
ACCESS
TO QUEUE

H5

J5

I/O
ERROR

NO JOB r ~-<.. FOUND

YES

Chart AP. Active Area Start-up/Initialization Module (IBKAST)

IHKAST

FROM:
IHKCIP

INITIALIZE
TRACK
ALLOCAtOR
TAILE

13-'-_..,
INITIALIZE
TAT CONTROL 1---4101
FIELDS IN
KONIOX

14---...

SET RETURN
COD~

Flowcharts 223

Chart AR. Active Area Recovery Module (IHKAWS)

• Chart AS. Active Area Recovery Module (IHJ(AWS)

SET
RETURN
CODE a 12

DI --..,

SETUP
POINTER
TOMSG
CHAIN

GI---.,

SET
RETURN
CODE =20

ENDUP

TEAl

CREATE 0

SET RETURN
CODE =0

A
13

AWSLI:a:J:~=::;-..,
SETUP
TO ADD
MSGTO
MSG CHAIN

a..J..---.
AWSMSGL ATA2

IN$ERT MSG
FOR USER
INTOMSG
CHAIN

SET UP TO
ADDMSG
TOMSG
CHAIN

H3..L---.
AWSMSGL ATA2

UEAI

CLOSELII
WITH NO
STOW

ENDUP.

AWSCLOSE

AS
85

85-'----,
IHKWTR UPAI

CHECK
RESULT OF
LAST WRITE

CLOSE
LIB
W/STOW

TURN OFF
WARNING
MSG FLAG

GS-"'---,

SET UP TO
ADD WARNING
MSGTO MSG
CHAIN

HS,-'--....,
AWSMSGl ATA2

INSERT MSG
FOR USER
INTOMSG
CHAIN

J5 -''-----,

SET UP TO
ADDMSG
TOMSG
CHAIN

K5 -''-----,
AWSMSGl ATA2

INSERT MSG
FOR USER
INTOMSG
CHAIN

Flowcharts 225

Chart AT. Active Area Recovery Module (IHKAWS)

AWSMSGL

INITIALIZE
AND GET
STORAGE AREA
fOR MSG

YES

D2_'--_--.
INDICATE MSGS
IN CHAIN­
MOVE MSG'INTO
AREA -'SET END
OF CHAIN

~~"---....,
SAVE MSG
NUM8£RAND
USERID FOR
RECIPIENT.
UPDATE CHAIN

226

AWSMSGLI

C3---...,

PICK UP
POINTER TO
FIRST MSG
IN CHAIN

Chart AV.

IHKBST

GET ON
LIB 1/0 QUEUE

1~~'-=BP=:M~~U~EA~I~

RF1ND OPEN
CRJE SYSLIB
DCB

CREATE
GLOBAL
FILE

Hl-..L.-.---,

SET UP TO
POINT TO
BEGINNING OF
FILE

RPOINT TO
POINT TO
BEGINNING

Library I/O Start-up Module (IHKBST)

END
H2,--I---...

SET REruRN
CODE TO 0

SYABENDI
A3

SET REruRN
CODE TO 4

SYSGEN2 B3
lHKBPM UEAl

RREAD
BLOCK FROM
CRJE SYSLlB

RPOINT
POINT FILE
FOR INSERT

TEAl

TEAl
INSERT USER
RECORD INTO
USER'S GLOBAL
FILE

INSURE
DISK POINTERS
ARE UP-TO-DA JE

Y EN4 A4
lHKAFI TEAl

C4
lHKBPM VEAl

RCLOSE TO
CLOSE
CRJE SYSL1B

A4

SYJBTS

/ft-n-'7TI1"""''''''''
NUMIEROF
JOBS LEFT

>-'-=--- BEF04tE MAX.

SYGEN2A
F4_-L __
IHKAFI TEAl
INSERT MJLTI­
PLE PUT RECORDS
READ IN ACTIVE
FILE

ALLOWED IS

Flowcharts 227

Chart AW. Library I/O start-up Module (IHKBST)

lAw]

228

002311
GI-'-----,

SET TRACKS
PER CYLINDER
TO 10.

002314
HI-.L----,

CONVERT
TTR OF VTOC
TO CCHHR.

JI~_...,.....,
OBTAIN

A2

A2_'--_-,

.GET GLOBAL
FILE NUMBER
AND INCREASE
BY I.

G2--''----,

SET TRACKS
PER CYLIN 0 ER
TO 20.

RDOKI

RDOK3
J2 --"' __ -,
SAVE LAST
FORMAT I
CCHHRAND
NUMBER OF
DSCB'S PER
TRACK

YES

M-__ --,
-GLOBAL FILES
I=SYSM5GS
2=USERS
3--USRMSGS
4=8RDCST
5=JBTBLS

NOT FOUND

TEAl

POINT TO
AND RETRIEVE
US ER RECORD.
(RPOINT)

F5
FOUND,

NOT FOUND,
OR

ERROR

FOUND

G5-L----,

MOVE
DONA ME TO
USER P.ECORD.

H5
IHKAF-I-'--T-EA-I-'

REPLACE USER
RECORD IN
GLOBAL FI LE.

ENDUP TO
INSURE DISK
POINTERS ARE
UP-TO-DATE.

ERROR

I
r+v-,
\.0/

• Chart BA. CRJE STOP Module (IHKSTP)

YES

, ROLLOUT
E3---..,

IHKISH IIAI

SAVE
GLOBAL
FILES

F3----,
IHKDSP GPAI

WAIT FOR LINE
TO CLOSE
DOWN

E4-----.
POST STOP
ECIOF JOB
TERMINATOR
(IHKSDQ)

POST JOB
TERMINATOR
QMGRECI

Flowcharts 229

• Chart BF. CRJE Closedown Module (IHKCLN)

IHKCLN

(AI
ENTRY

FROM:
IHKBGN

r- BI
POST

IHKLDC
TO
EXIT

LINCLOSE

r- CI ;;; POST

IHKSRV LOCATE

TO EXIT FIRST aa

~ - I~~QMUNC D3 D4
r- DSCLOSE

UNCHAIN END NO DCB YES
ECB OF OF

Y.
Dca FOR

JOB TERMI- CLB'S LINE
NATOR

YES NO I
CLNDLT

"~-~ r- EtELETE
. E4

(r~m ERROR . IEFQMDQ2 TO NEXT
CLB

YES

F2 I ,e
r-FI - ALLCLOSE - F4 r- FS

IHKMSG SH82 DELETE F3 IPDSNEXC DELETE

SEND 1/0 FORTRAN YES ETCHECKER

ERROR
IEFQDELE CHECKER REE ITS IPDSNEXC

MESSAGE LOADED WORK
AREAS

G2 J

NO I
- PUCK

DELETE
G PL/I

IKMOO2

NO 2~
ETCHECKER

IEFQMSSS CHECKER REE ITS -LOADED WORK
AREAS

KS
YES

H2 H3 IKMOOI

IHKLAY NC 27K, 20K ETCHECKeR

LOADED 10K, OR 16K REE ITS
CHECKER WORK

AREAS

YES

- J2 - J4 r- J5
DELETE IKMOO3 DELETE

~
LET CHECKER

PL/I IHKLAY REE ITS
WORK SYNTAX
AREA CHECKER

I
KS J

RMVTASKSI

'IH:6sp GPAI

WAIT FOR
IHKLDC TO
EXIT

-
clJ Al

230

• Chart BG.

II -'---r--,
DETACH

IHKLDC

CI~--..,
IHKDSP GPAI

WAIT fOR
IHKSRV
TO EXIT

IHKSRV

Hl-L---,
IHKMSG SHB2

CRJE
CLOSE DOWN
MESSAGE

CRJE Closedown Module (IHKCLN)

NO

A2----.
IHKMSG SHB2

SEND TASK
AIENDMSG

D2!----.
IHKMSG SHB2

NO SEND TASK
AIEND
MESSAGE

G2----,
IHKMSG SHB2

ABNORMAL
CLOSE DOWN
MESSAGE

H2-L--r--,
CLOSE

ACTIVE
AREA
DCB

J2--i.--,--,
FREEMAIN

ACTIVE ARE
RACK AL­

LOCATION
ABLE

YES

F3'---..,
TURN OFF
SESS BIT
INUCM

Flowcharts 231

Chart BI. Library I/O Shutdown Module (IHKBSH)

232

QUEUE ON
LIB I/O

1~~B:::P"'M:-'----'-'V"'"EA"'I'
RFIND-oPEN
SYSLIB DCB
FOR OUTPUT

NWRTY
JI-....... __ ...,

SET
NO-WRITES­
YET SWITCH

WBk?""C:-::K~_==-:-",
IHKAFI TEAl

RGET-GET
BLOCK OF
RECORDS
FROM FILE

NOVE BUFFER
POINTER FROM
TUB TO
KONBOX

WRlnT
02--'-----,

TURN OFF
NO-WRITES-
YET SWITCH

BLANK IT
H2-...... ---,
CLEAR DDNAME
FIELD AND
BUMP TO
NEXT RECORD

UEAI

RWRITE­
WRITE BLOCK
TO CRJE
SYSLIB.

CKWRT

B3.=::-_~'-7"1
IHKWTR

CHECK VO
OF PREVIOUS
RWRITE

P INTERR 03 ___ ..,

INDICATE WANT
TO SEND DISK
ERROR ONAC-
TIVE FILE
MESSAGE

E3
SND":"MS'::":!.G'--B-JA""""'1

SEND
MESSAGE

GETERR
F3-..&..----,
INDICATE
SEND ACTIVE
AREA DISK
ERROR
MESSAGE

M __ ----,
IHKWTR UPAI

YES CHECK I/O
OF PREVIOUS
RWRITE

STO~ERR
SND,.,MS,..".,G,..-I~BJ.,..A,..I..,

>-'NO"'----I~ SEND I/O ERROR

ENDUP

RCLOSE­
CLOSE
CRJE. SYSUB
DCB

MESSAGE

G3:-:":,:"=-~""",,,
SNDMSG BJAI

SEND
MESSAGE

SET UP fOR
UNABLE TO
OPEN
MESSAGE '

SET UP
OUT-Of-SPACE
MESSAGE

H4="","_::":7':"'1
SNGMSG BJAI

SEND
MESSAGE

J4=-=.,.-_-....
SNDMSGI BJAI

SEND
VO ERROR
MESSAGE

K4 ____ ..,

SNDMSG BJAI

SEND
MESSAGE

SEND VO ERROR
MESSAGE

RETURN!

TO, IHKSTP OR
IHKAWS

Chart BJ. Library I/O SbutcSoVl\ Moclule CI-,XBSH)

SNDMSGI

110 IIE3 __ ~_'"

81G3
81G5
IIH"
BIJ"
BIU

SET UP PAlM
USTFOR
MESSAGE
WRITER

Dl
IHKMS::"!O""""""SH=I2'"'

SEND MESSAGE
TOCEI'ITRAL

Flowcharts 233

• Chart CA. START RDR, Allocate, Q Manager Service Task (IHKSRV)

Jl

234

IHKSRV

STAE
IF ABEND,
IHKSRVOI
GETS
CONTROL

Cl_..L._---,

POST
START-UP
ECB

WAlTON
ECB LIST

YES

GETfIRST
ECB LIST
ENTRY TO BE
SERVICED

C2--'----.

BRLST

CLEAR
ECB

J2~-L.--....,

IHKLOC

SEAlCH
JOIQUE
FOR JOB

1:2 --......,

DEQ
FROM
JQ8QUE

YES

YES

GET NEXT
ECB LIST
ENTRY

ALLOC
E31-____ ...,

IHKALC
ALLOCATE
SYSIN DATA
SET FOR
SUBMIT

QMSSS
F3:---...,....,

IfFQMSSS
Q-MANAGER
READ
AND
WRITE

GETfIRST
ENTRY IN
ECB LIST

H4-----..
POST
SUBTASK OF
MAl I'!TAS K

IHKSRVOI

YES

05.-"'-----.
POST MAIN
TASK TO
PREVENT
FURTHER
CALLS

E5-.l.--,-,
POST

IHKCCI
TO INITIATE
CLOSE DOWN

F5;-'----,

LOCATE ECB
LISTS FOR
IHKSRV AND
IHKDSP

G5
END

OF LIST

BUMP TO
NEXT ENTRY
IN LIST

Chart CB.

El--'---,~
GETMAIN

GET lOB
FOR
START-UP

LASIRQ
Fl

QUEUE
RDR
REQUEST

START RD~, Allocate, Q Manager Service Task (IHKSRV)

ENQ

CLOSE
R/I
PCB

G2-'---.-..,
SCRATCH

SCRATCH
R/I
DATA SET

GET FIRST
CSCB

DEQUEUE
FIRST RPR
REQUEST
FROM QUEUE

E3 -..,....,

START
ROR

YES

YES

NO

C4----,

STiMER

GET NEXT
CSCB

G4--"""''''
SET
TIMER
FOR
START
RDRCRJE

GS----..,

• TIMER
EXIT ROUTINE
WILL POST
TIMER ECB

Flowcharts 235

• Chart DA.

FROM:
IHKSRV
IHKCCI
IHKCMD

~I

POST
START~UP

ECB

INITIALIZE
TO PROCESS
ABENDS AT
IHKLDCOI

WAIT

~
Fl

WAIT ON
ECB LIST

GET FIRST
TO BE SERVICED
ECB LIST ENTRY

236

Loader/Controller Module UHKLDC)

B2---..,

GET NEXT
ENTRY IN
ECB LIST

rE2 I SET SWITCH,
SCAN FOR

\
OADS FOR MO

ULES OUT
OF MAIN
STORAGE

LOAD'

YES

NO

AS

B5--~~
DELETE '

ALL
LOADED
MODULES

* MODULE OUT OF MAIN STORAGE .
• * MODULE IN MAIN STORAGE.

Chart DB. LOader/Controller MOdule (IHKLDC)

81--'----,

GET APPRO­
PRIATE
MODULE TABLE
ENTRY

DI_L-_--.

GET APPRO­
PRIATE
ILOCK TAILE
ENTRY

EI-..J.._--,

SUITRACT ONE
FROM REQUEST
COUNT

ADD I TO
TROUBLE MOD­
ULE COUNT

NTRMDI
12-----.
CLWDELETE
REQUEST IN
PARAMETERS

YES

DA

ADD I TO
EVENT COUNT

C3---.....

NO CLEAR Eel
ON WHICH
IHKLDCWAS
WAITING

D3--'--...

POST
RETURN
ECI

F3---...

SUBTRACT
I FROM
EVENT
COUNT

H31-...I----.

ADD 1 TO
REQUEST COUNT
IN aLOCK
TAlLE ENTRY

14_.1..-_-..

GET APPRO­
PRIA TE
MODULE TABLE
ENTRY

NO

YES

05--...,...,
"LOAD
MODULE

J5;----,

SUBTRACT 1
FROM TROUILE
MODULE COUNT

Flowcharts 237

chart DC. Loader/controller Module <IHKLDC)

LOCK
MODULE

DONTLOCK

Dl--'----.

238

CLEAR ECB
ON WHICH
IHKLDC WAS
WAITING

El---,,--..,

POST RETURN
ECBWITH
ENTRY POINT OF
MODULE

GET APPIIO­
PIllA TE MODULE
TABLE ENTRY

RESTART

NO

NOINCORE
D3-___ ~

GET FIRST
ENTRY IN
BLOCK TABLE

CKIFEND

ADD 1 TO
EVENT COUNT

NO

ES_ -_

GET NEXT
ELEMENT IN
BLOCK TABLE

• Chart DD. Loader/Controller Module (IHKLDC)

FREEILKI
12~-----.

GET MO"DULE
NO TABLE ENTRY TO

~=-!'""'t~ WHICH BLOCK

<I IS
TROUBLE
MODULE
COUNT~

m,~~ TROUBLE MODULE
CAN 'ELOADED

DI
F2

NO

TABLE ENTRY
POINTS

GET MODUlE
TAII;E ENTRY
OF REQUESTED
MODULE

~
F2

INSERT MODULE
TABLE ENTRY
NUMIERINTO
BLOCK TABLE
ENTRY

. IHKLDCOI

F3:---...
RETURN ~_.!Y=ES~

POST
SUITASKOF
MAIN TASK

YES

POST MAIN
TASK TO
PREVENT
FURTHER
CALLS

LOCATE Eel
LISTS FOR
IHKLDCAND
IHKDSP

lUMP TO
NEXT ENTRY
IN LIST

Flowcharts 239

Chart DH.

240

OS Date Set open Module (lHKOPN)

DATA SET
FROM
SYST~M
CATALOG,

OPNOEL

G30·-::P=EN-:--,....,

OPEN
DATA SET
(OUTPUT)

HI4--=!".,........,.,"""I

OPEN
DATA
SET

1(4---....
RETURN

POST
IHKfOS
EC8WITH
RElURN
CODE

H~'."A..,IT"..-....... -.
WAITFOIt
COMPLE­
TION
OF IHKEOS

CLOSE
DATA
SET

Chart EA. RJE/CRJE Central Command SCheduling Routine <IGC1503D)

IGCI503D

BI--'----..,

GET FIRST
CSCB

CI

KEEP POINTER
TO IT

NO

CRJE

EI-----,

TESTR

GET FIRST
CSCB

E2

KEEP POINTER
TO IT

14-__ Y.!.:E:::S< CRJE'S
CSCB

NOC

GI

HI

NO

~ RJE/CRJE"
INITIALIZATION YES

FINISHED/'

NO

IGC0503D

H2
GETMAIN

GETAR~
FOR CIB

J2

CHAIN
CIB TO
CSCB

YES

NO

C3-L-_-,

GET NEXT
CSCB

TESTCR
E3
ARE THERE YES

OTHER ')..:.:.:...-~
cscas

H3

FIND END OF
OPERANDS

POST
J3

POST
COMMJNICA-
TIONS ECB

E4--'-----.

GET NEXT
CSCB

H4~
OPERAND

TOO
LONG

NO

YES

H5
FREEMAIN

FREE
CIB

(J5
EXIT)
·IGC0503D

Flowcharts 241

~ Chart EE. Central Command, Interface Module CI8KCCI)

IHKCCI

MSG
Gl --..,

MSGFND
Hll--''--_--....

G3

242

CLEAR
ECB

C3

COMMAND
PROCESSOR
IS IHKCCI

COMMAND
PROCESSOR
IS IHKSTP

D31,.....l---,

LOAD AND
LINK TO
COMMAND
PROCESSOR

'-----\ 05

COMMAND
PROCESSOR
IS lIiKCC3'

SHWSESS

J3---..,

COMMAND
PROCESSOR
IS iHKCC6

G3

YES

COMMAND
PROCESSOR
IS IHKCC2

GPAI

WAIT FOR
POSTED
ECB

B2

CENOUT

CENOUT
F4--l-_....,

COMMAND
PROCESSOR
IS IHKCCS

GOTDLDC

IHKLDC DAAI

LOAD
COMMAND
PROCESSOR

DEQUEUE
CIB

USERID

USERID
F5-L--.....

COMMAND
PROCESSOR
IS IHKCC7

LINK TO
COMMAND
PROCESSOR

DELETE
COMMAND
PROCESSOR

A2

Chart EG. SHOW USERS and SHOW JOBS Central Connnand Processor (IHKCC1)

IHKCCI

(:2 ___ ,

.RETURN

HI IS
NEXT NO

CHARACTER >-_..K.-_<

Jl--'----,

STORE SWITCH.
GET BRANCH
CODE FROM
TABLE.

NO
SENDMSG

IH~M"'SG"""'--:S'""H-B2'"
SEND
OPERAND
INVALID
MESSAGE.

SET UP TO
READ NEXT
RECORD
(RJCT OR UVR)

JOBS

=0

F4

EHC2

USERS, USERI D
JOBS, JOBNAME

=4 EHHI
USERS OR JOBS

=4 EHG2
USERS, USERID
JOBS, JOBNAME

=4 EHA4

USERS, JOBS

=8 G5

=12 J5

YES
TUBFOUND

04--"---...,

COMPUTE
TIME
SINCE

,·l,oGON
~1"'':''

GET NEXT
KEY

=0 EHB2

=4 EHBI

=8 G5

=12 J5

SHB2

QUEUE
MESSAGE

SH82

SEND OUT OF
SPACE MESSAGE

AAIOERR
J5

IHKMSG SHB2

SEND ACTIVE
AREA I/O
ERROR
MESSAGE

Flowcharts 243

Chart EH. SHOW USERS and SHOW JOBS Central Command Processor (IHKCCl)

SNDOUTSP

El.-=:---::-:-:c~
IHKi.'.SG SHB2

244

SEND OUT
OF SPACE
MESSAGE

SHB2

QUEUE NO
USERS OR
NO JOBS
MESSAGE

ENDUPl
82--'---,

TEAl

ENDUP -
INSURE
UPDATES ARE
COMPLETE

SEND
INVAUD
USERID
MESSAGE

=12

SNDOUTSP

C3-,---,,=,......,
IHi(MSG SH82

AAIOERR
E3 ___ --,

IHKMSG SHB2

SEND ACTIVE
AREA I/O
ERROR
MESSAGE

SENDMSG
G3

IHKMS~G--S"'H"'B2'"

YES SEND
INVALID
JOBNAME
MESSAGE

ENDUP -
INSURE
UPDATES
COMPLETE

TEAl

POINT TO
NEXT HIGHER
RJCT AND
READ

=12

AAIOERR

IH~MS·:: "'G--S""H7S2::-1

SEND ACTIVE
AREA I/O
ERROR
MESSAGE

Chart EJ.

PRTLERB

GI1E:C::"'TL-=ER:::P-'-"'"

DISPLAY
LERBON
CONSOLE
FOR THIS
LINE

SHOW LERB, SHOW BRDCST, and MODIFY Central Command Processor
(IHRCC2)

Flowcharts 245

Chart EK. SHOW LERB, SHOW BRDCST, and MODIFY Central Command Processor
(IHKCC2)

246

FINDSUBR

GI--'---.,

PICK UP
BRANCH
CODE

CKCIBFND

SEND
INVALID
OPERAND
MESSAGE

SEND
BROADCAST
MESSAGES

RETURNO

Chart EN.

IHKCC3

FROM:
IHKCCI

•

BRDCST Central Command Processor (IHKCC3)

B2 I---~
SENDMSG ...-___ ..L......J

K2_....L._---.
IHKMSG SHB2

ACTIVEARi... .
VO ERROR OR
OUT OF MAIN
STORAGE

SHB2
SEND

. MESSAGES
DELEnD
MESSAGE

SHB2

MOVE REST
OF CII
TO LEFT

ADD TO
NUMIEROF
IRDCST
MESSAGES

.u
IHKAF:"""":-I .L...-:TEA,=-,'"'

YES

YES

flowcharts 247

Chart EO. BRDCST Central Command ProcesSOr (IBRCC3)

248

SENDM,SG
CI ____

IHKMSG SHB2

GETLAST
A2_-'-__ -.

IHKAFI TEAl

RGET -
GET LAST
RECORD

BRDFNDB
C2 HAS""

SEND MAX BRDCSTI4-__ Y:..:E;::S<
IDENTIFIER

MAXIMU~
IDENTIFIER

BEEN
REACHED

REACHED
MESSAGE.

SENDMSG
GI
IH:';'K"'"'MS=G:---::CSH"'B2O":""1

SEND ACTIVE
AREA OUT
OF SPACE
MSG

=4

NO

02-.1...----.

ADD TEN TO
IDENTIFIER

INSERT
MESSAGE

DECREMENT
CCT

NO

SENDMSG

1~~"'MS-:-:G"I--::S"'"H:::B2'"
SEND

_ MSG -ADDED
MESSAGE

BRDEODB
83--'-__ -,

SET UP TO
READ FIRST
RECORD.
SET
IDENTIFIER = 0

I~A""F""I..L..-~TEA-_ -'1

RPOINT -
POINT TO
FIRST
RECORD

SHB2

SEND BRDCST
FILE FULL
MESSAGE

TEAl

REPl.ACE
MESSAGE

SENDMSG

1~:MS~G~""':-:-:C:-1
SEND

• MESSAGE
REPLACED
MESSAGE

•

Chart EP.

IHKCC4

FROM:
IHKCC4

SHOW MSGS and MSG D=userid Central Command Processor (IHKCC4)

TEAl

RPOINT - POINT
10 FIRST
MESSAGE

/DOES~

~NO FI O~~~D YES

EXCEED 7
"CHARY

B4 'V' AS

SEND ERROR
MESSAGE

Flowcharts 249

Chart EQ. SHOW MSGS and MSG o=:userid Central.C()mmand Proc;essor CIHKCC4)

250

ENDUP -
INSURE
UPDATES
COMPLETE

A3
IHKAF""I --:T=EA""I~

YES RDELETE -
DELETE
ME~SAGE

SKAI
SEND DELAYED
MESSAGE TO
CENTRAL
OPERATOR

Chart ER. CENOUT Central Command Processor (IHKCCS)

SCAN OPERAND
FIELD FOR
COMMAS

Jl----'----,

INCREMENT
COUNTER

H2

SAVE
JOBNAME

GET AND
SAVE INTERNAL
REPRESENTATION
OF CLASS CODE

H2----., I~~~MS"'G:--"'S "'82""
SET POINTER
TO INVAUD
OPERAND

1~~-MS-:-::"G--:S""kA~l
SEND GETMAIN
FAILED)+.....L_,,<
MESSAGE TO
OPERATOR

0,4

POINT TO
NEXT OPERAND

IH'k"'MS=G"-"""'SKA""""'l

SENPACTIVE
>,-;....1-""" FILE I/O ERROR

MSG TO OPeRA­
TOR

Flowcharts 251

Chart ES. CENOUT Central Command Processor (IHKCC5)

TEAl

RPOINT (WITH
RETRIEVAL)
TO RJCT

CI

YES

C2 ____ ~

IHKAFI TEAl

- 4 ENDUP-TO
RELEASE GLOBAL
CONTROL

D2 ___ --.

IHKAFI TEAl

NO ENDUP-TO
RELEASE GLOBAL
CONTROL

SEARCH F2 ____ ~

252

IHKAFI TEib<1
FI JOB

WAITING
DELIVERY

,>-Y:.:E;::S_-tol. ENDUP-TO
RELEASE GLOBAL
CONTROL

NO

I~ ~A-:-'F:-:'I-'---:T:::EA-:-I",
RDELETE - TO
REMOVE JOB
FROM RJCT

QM H2 ___ ...,

CALLQM ETB5

CALL QUEUE
MANAGER TO
READ RECORD

NOTCOMP
E3 __ ~_...,

IHKMSG

ERROR

J3.~:--__ .,
IHKMSG SH82

SEND QUEUE
MANAGER DISK
ERROR MSG
TO OPERATOR

84-...L..---.

SAVE POINTER
FOR NEXT
RECORD

5MB H5
CALL"'Q-M--ET-B5~

~=-...-.l . WRITE AND

ASSIGN NEW
POINTER

ASSIGN BLOCK
(SMB)

SAVE POINTER
FOR NEXT
WRITE

• Chart ET.

tl-...l-_--.

SAVE JFCB
POINTERANP
CHAIN RECORD
POINTERS

CI
CALL:;::Q~M-!--E::;T::::as;'

WRITE AND
ASSIGN RECORD

READ J08
FILE CONTROL
BLOCK

WRIT~ JfC8
TO NEW QUEUE

CENOUT Central COIlaIIand Processor UBKCcSt

RECO

83-"---_...,

CREATE A
ZERO RECORD

C3
CALLQ;;::-:M7-""'E;';T::::as"

WRITEANP
QUEUE

SEND CENOUT
MESSAGE TO
OPERATOR

DELETE CRJE
QUEUE SPACE

CAUQM

ESH2
!SF4
!SJ4
ESHS
ETC I
ETEI
ETGI
ETC3
ETG3

0'5--.&.---,

SET UP
PARAMETeRS
FOR QUEUE
MANAGER

POSTECBAND
SETCODEFOR
CALL TO
QUEUE
MANAGER

I~~''''D'''SP:-'-'''G'''P::-:A"':"I''
WAIT FOR
COMPLETION
OF NEXT
EVENT

ESJ2
ESG4
ESK4
ESJ5
ETOI
Elf I
ETHI
ETD3
ETH3

Flowcharts 253

Chart EU. SHOW SESS and SROW S~SSREL Central Command Pro~essor (IHKCC6)

254

SHB2

SEND
INVALID
OPERAND
MESSAGE

SESS, H3
USERID

SESS J3

SESSREL, J5
USERID

TURN BIT
OFF (UCMMSG)

SET
UCMMSG
BIT

SHB2

SEND
INVALID
USERID
MESSAGE

=4 H4

=8 EVOI

=12 EVG3

Chart EV. SHOW SESS and SHOW SESSREL Central Command Processo~ (IHKCC6)

REPLACEUVR
ENTRY

SEND SESS SET
OR RELEASED
MESSAGE.

SHI2
SEND AcnVE
AREA I/O
ERROR
MESSAGE

I KMSG SHI2

SEND
CONSOLE 10
FUU MESSAGE.

SENDMSG

IHICMS SHI2

>-_ ~ SEND SESS NOT
IN EFfECT
MESSAGE.

Flowcharts 255

Chart EW. USERID Central Command Processor (IBKCC71

256

IHKCC7

FROM:
IHKCCI

SENDMSG
JI_-'-__

IHKMSG SHB2

SEND
OPERAND
INVALID
MESSAGE

GETBRNCH

G2-----.

GET -BRANCH
CODE

D=

A2

A3

RESUMECS

SUPPRE S 55

SHB2

DELETE -
DELETE UVR
ENTRY

K3

ADD TO
NUMBER OF
USERS IN
CCT

NOPAREN

IH~MS=G::----:S::CH"'"B2:"1

SENDMSG
J4
IHKMSG SHB2

=12

SEND
LOGONS
SUPPRESSED
MESSAGE

SHB2

SEND ACTIVE
K2 AREA OUT OF

SPACE MESSAGE
F5L.-_-r __ -'

L SENDMSG
J5 r IHKMSG SHB2

SEND USERID
PREVIOUSLY
ASSIGNED
MESSAGE

IHKCca

FROM.
IHKCCI

EI IS
./' OPERAND

<"'IN CIBONLY

'01:'
FI'~

<'" IT IE THE.
" ONLY

OPERANt!

NOTEXT
0: ___,

IHKMSG SHI2

SEND INVALID
OPERAND
MESSAGE

SEND USERID
INVAUD!NOT
FOUND
MESSAGE

rYES 13 ANY
MORE

OPRANDS

NO
01

SEND INVALID
OPERAND
MeSSAGE

NOQUOTE
145 ____ ...

IHKMSG SHI2

NO SEND INVALID
DELIMITER
MESSAGE

"----..{H2

FlNDSUIR

NO
E5 IS

OPERAND)
IN CI.~
OPERAND

IN1T~:

Ft IS'
~~D>
ONLY

O~P~
GSSHOU
on.
NLYOPERAND

GET BRANCH
CODE FROM
TABLE

Flowcharts 257

El "'-----'i

ADD TO
COUNT.

SETUBIT
Fl--_...,

SET BIT
TO INDICATE
MESSAGE TO
BE SENT

258

GETNXTUB

D2--~...,

Gfr"NEXT
)'\JB
\A~DAESS

SiNDU5R
Flt~··-'-_....,

SEND MESSAGE
TO ClNtRAL
OR Q\J~UE
MESs.t..GE FOR
iJ6ER.

SEND MSG
QUEUED FOR
DELIVERY TO
USER.

Chart FA. Job Termination Handling Module (IHKSDQ)

IHKSOQ

FROM:
IHKBGN

SET UP
PARAMETER
LIST FOR
IHKLDC

INFORM
IHKLDC
OF
REQUEST

WAIT FOR
ECB TO
BE POSTED

TO: IHKBGN

J2:--l----,
GET ADDRESS
OF QMGR ECB
TO BE POSTED
WHEN A CRJE
JOB COMPLETES.

I:D"'E-=Q-'-F S""A-:"I"

YES PERFORM
~:':'-_.,.j JOB

H31--~...,

GET ADDRESS
OF STOP
ECB.

TERMINATION
PROCESSING

Flowcharts 259

• Chart FJ. Dequeue/Job End Processor (IHKOEQ)

260

Al---_

Dl----,
lHKAFI TEAl

GET RJCT
ENTRY

El -'---'--.

MOVE QMPA
TO RJCT
ENTRY

Fl

SCAN 5MB'S
fOR JOBNAME

ENDUP

C2 --''-----.
SRVGO FKAI

INTERFAC TO
IHKSRV TO
EXECUTE
DEQUEUING
OF JOB

D2

QMGR DISK
ERROR MESSAGE

RDELETE
RJCT
ENTRY

BUMP COUNT
OF JOBS THAT
CAN BE
ADDED

DEQDELTI
K2-_..,,--,

LDCGO FKGl

LOAD
IHKREROI

4

NO

INCLUDE LI NE
ECB'S IN
DISPATCHER
ECB LIST

D31-L __ -,

SET SUBTASK
PRIORITY IN
DISPATCHER
T04

J3---'-.,
IHKMSGOI SJAI

JOB DELETED
MESSAGE

K3---..,
IHKREROI QJA2

DELETE
JOB

ENDIT

041---..,
INDICATE JOB
END NOT IN
PROCESS AND
START-UP
COMPLETE

REPLACE RJCT
ENTRY ON
GLOBAL FILE

DELETE
IHKREROI

85---.--.
POST

POST
CENTRAL
COMMAND
SUBTASK
FOR STOP

CS-L __ -,

IHKMSG02 SKAI

ACTIVE
ERROR
MESSAGE

B3

FS-'----,
\¥RITNOT FKG3

SEND
NOTIFY
MESSAGE

NO

HS ---.,
I HKAF I TEAl

RPOINT POINT
TO RJCT ENTRY

• Chart FK.

011-1. __ -.

lHKDSP GPAI

WAlT FOR
QMGR DEQUEUE
TO COMPLETE

PUT RETURN
CODE IN
REGISTER 15

Dequeue/Job End Processor (IKKDEQ)

SET MESSAGE
TO NORMAL

K31-1.--.,

PUT J08NAME
IN MESSAGE

0<1'-1.--....
IHKDSP GPAI

H4---....
NO SET MESSAGE

TOA,NORMAL

SEND
NOTIFY
MESSAGE

Flowcharts 261

Chart GA.

IHKCMD

CREAD I.

SAVE AREA

262

Command analy~er Module (IHKCMD)

FRMC~2 __ -,-_--,

DEALLOCATE
AVAILA"-E PPTS
IF NO LINE
CONTINUA TlON

SEND MSG 301
TO USER

TSTEDT

84

INSERT IMPLICIT

CRINCO'R
CS-----,

INSERT CODE
LEADING TO
IHKIRL02 INTO
PPT

COMMAND ~ ____ ~~
CODE INTO
PPT

E
C2

Chart GB.

EDIT

Command Analyzer Module (IHKCMD)

I~K""C"'C:-S -W""""AA""2"

NO SCAN FOR
FIRST NON­
BLANK

SCAN NOT MORE
THAN 9 CHARAC­
TERS FOR COMMA
OR BLANK

G31-----,

INSERT END
~~-~COMMANDCODE

INTO PPT

H2~---.,

JI-....... ----, J3:----..,

GET SUB­
COMMAND
LIST

SCAN COMMAND
NO LIST FOR VERB

>'---~~~:l'G~~~S
VERB ENTERED

K31HKMSG SHB2

NO SEND MSG
308

SHB2

SEND MSG
305

YES

SUBI

~:-:MS::'G::::--S~H:::B2::'1

SEND MSG
391

F4

Flowcharts 263

Chart GC. Command Analyzer Module (IHKCMO)

264

VLAWCMD
1~'~MS=G--S::7H"'B2::"1

SEND MSG
309

G.2--'----.
LINK TO USER­
SUPPLIED
COMMAND
PROCESSOR

~A~iA~reRS
FROM USER
BUFFER TO
TERMINAL

YES

MVCCODEl

F3

NO

SEND MSG
308

F4·----.,

IS IT NO WOVE COMMAND
CO~ND >---+1 CODE TOPPT

YES

SEND MSG
379

Chart GD. command Analyzer Module (XHKCMD)

IHKecs WM2

SCANFOI
FIRST NON­
DEUMITR

SCAN FOR
.... O·

MOVEPARAM­
EYER TO PPT AND
INSERT LENGTH
INDICATOR

E
I

Flowcharts 265

Chart GE. Command Analyzer Module (IHKCMD).

SEND MSG 313

SEND ALL.
QUEUED
MESSAGES

ENDLNE
0----

INSERT STOP
CHARACTER
INTO PPT

ALLOCATE
AND COMPLETE
PPT

G2

1+-__ Y.:cE:::S(O~~~~ED

NO

JI GOOD
COMPLETION ').!.Y~ES~--<

266

K2...L_
FREE MAIN

EXEC'S
GErMAIN
AREA

SEND MSG
372

F3
'PPT IS BUILT UP
IN USER BUFFER
WHEN COMPLETE,
THE CONTENT IS
MOVED TO A GET­
MAIN PPT

G3 WLLBCONT

SEND MSG 380

H4---~

SAVE PARAM-
YES HER COUNT

IN PPT FLAG
BYTE

• Chart GF.

CRJE
COMMAND
PROCESSOR

J1MUST,

~CONTR01.
BEGIVENTO

ANOTHER

R~OUT~:
GG
B1

Command Analyzer Module (IHKCMD)

CKUSRID

83----,
IHKMSG SHB2

SEND MSG 334 GH

D3---':'

GO FIRST'
TO LOGOFF
PROCESSOR

F3---..,
IHKLDC DM1

LOAD
PROCESSOR

YES

F4

WAlTON
LOAD

LINK
TO
IHKERR

H5
IHKLDC

NO DELETE RETURN­>-----., ING ROUTINE
AND LOAD NEW
ROUTINE

J4 ------,
DAA1

DELETE
RETURNING
ROUTINE

IHKDSP GPA1

!--_o-t WAIT UNTIL
ROUTINE IS
DELETED

Flowcharts 267

• Chart GG.

268

GOOD
RETURN

LIST
COMMAND

Command Analyzer Module (IHKCMD)

NO

GETMAIN
FAILED

RTNCDOB
E2--"---,

IHKMSGQ2 SHB2

SEND OUT OF
SPACE MESSAGE
TO CONSOLE

J2--'-__ -,

DEALLOCATE
PPT'S

GET DUMMY
PPT TO GO
TO EXEC
PROCESSOR

83 ___ .,

IHKMSG SHB2

DEALLOCATE
-PPT'S

RETURNS
FROM
IHKERR
ONLY

LINE ERROR

ACTIVE AREA
I/o ERROR

HS----,

SET UP
-LOAD CODE
FOR IHKLGF

J5_--,--,
FREEMAIN

SHB2

SEND
MESSAGE
380

GF

Chart GR. Command Analyzer Module (IHKCMD)

RDF~N_.;_L..-_--.

DEALLOCATE
PPT'S

1~:4K-MS-G-I.--SH""I2""

DEALLOCATE
PPT'S

)4-----.
ALLOCATE
MINIMUM
LENGtH PPT

CDTOPPT
1(.41-........ ---,

CODE FOR
IHKERR INTO
PPT

CLBBIC HI_---...
GET DUMMY
PPT TO GO TO
IHKERR

Flowcharts 269

Chart GI. COIlImand Analyzer MQdule q~K9MD)

EI-...... ---,

ALLOCATE
MINIMUM
LENGTH PPT

FI-...... ---,

CODE FOR
IHKERR TO
PPT

270

CLEAR FlAG:
MODIFY-IN­
PROGRESS

SAVE AREA

DISPATCH
C3:--'---.,

POST DEC.
INOPERATIVE

D3-.,..-'-__ .,
IHKDSP GPAI

WAIT

chart GJ.

BUILD UP
PPT

SH82

SEND MSG 311

Command Analyzer Module (IHKCMD)

NO

82 ___ ...,

IHKMSG SHB2

SEND MSG 30S

J2--'-__ -.

NOVE REIMIN­
DER OF USER
BUFFER TO RE­
SOLVE DOUBLE
QUOTES

SCAN FOR
QUOTE

NO

SCAN FOR
NON­
DELIMETER

GS.-=~~~
IHKMSG SH82

SEND MSG 314

Flowcharts 271

Chart GK.

SCAN FOR
TEXT DELIMITER

,.'
GI

FOUND

MOVE PARAMETER
TO PPT AND IN­
SeRT LENGTH
INDICATOR

272

Command Analyter Module (IHKCMD)

NO

'i~~MSG SHIl2

SEND MSG
314

THE PARAMETERS IN Ti;E CHANGE COMMAND ARE NUMBERED
AS SHOWN IN THE FOllOWING EXAMPLES.

CHANGE 21 31 XXX VYY
PARAMETER' 1 3 4

CHANGE 21 XXX VYY
PARAMETER' 1 3 4
THE PARAMETER COUNT IS CHANGED WHEN THE END OF THE
PARAMETER IS FOUND.

SCAN FOR
NONDELIMITER

G4 WILL

<"!MIS LINE BE

C't
oNTI

::
O

GE
G4

CTCHNGE
D5----..,

RESTORE
PARAMETER
COUNT

Chart GP. CRJE Dispatcher (IHKDSP)

GET CURRENT
PRIORITY

01

GET CURRENT
STC8FOR
THIS PRIORITY

El
STORE SAVE
AREA
ADDRESS
IN STCB

Fl

STOREADDR
OF ECIIN
ECILIST

SET TOP
PRIORITY

Hl-I...--...,

GET NEXT
STCB IN
CIRCLE.

Kl--'----,

GET
APPROPRIATE
ECI

0---1--,
•

STORE
CURRENT
STC8ADDR

02

STORE
CURRENT
PRIORITY

~

RESTORE
~EGISTERS

"B3~
STCI-CIRCLE1NO
SCANNED

COMPLETELY

YES Jl

03

WAIT
ON
ECI LIST

Flowcharts 273

Chart GS.

CI-'----......,
GETMAIN

FOR
SAVE
AREA

HI-....L---,

POST
COMMUNICATION
ECB WITH
STOP CODE

JI-...J.----.
IHKMSG SHB2

S'1?;;,32;:;:2'-L __ ~

IHKMSG SHB2

SEND MSG.
TO CENTRAL
OPERATOR
('322)

274

Line Error and Active Area I/O Error Recovery Module (IHKERR)

EXEC
GETMAIN
AREA

F3 MODIFY <-. OR

SNDMOD
G2-----. MOO:~

IHKMSG SHB2

QUEUE LINE
DEACTIVATED
MSG. FOR USER
('400)

HAS
J2 USER

RECEIVED

M~SG.*:::
GT
DI

14_..;N..:;07..<G3 ClOSE­
DOWN

J3-......... --~
IHKMSG SHB2

QUEUE ClOSE­
DOWN MSG.
FOR USER
('330)

,

NO

NOUSER NOUSER2

SHB2

SEND MSG.
TO CENTRAL
OPERATOR
('244)

SAV~R",S.:..T ___ ~

PUT NEGATIVE
>-'..:;;;.. __ VALUE OF

SAVE COMMAND
IN REG. 15

AUW;.:LG::;;F-.l. __

PUT NEGATIVE
VALUE OF
LOGOFF
COMMAND IN
REG. 15

SAVE
AREA

(
K5

I----I~ RETURN)

Chart GT.

PUT RETURN
CODE 36
IN REG 15

Line Error and Active Area I/O Error Recovery Module (IHKERRI

PUT RETURN
CODE 32
IN REG 15

YES

CLBBACK
83-..... _.....,

IHKMS SHB2

SEND MSG
TO CENTR ... L
OP"",TOR
(1219)

PUT RE1URN
CODE 28
IN REG 15

Flowcharts 275

Chart HA.

IHKLAD

BI

CI
MOVE CLB
ADDRESS TO
CLB REG
AND CLEAR
TUB REG

GI--'----,
CHAIN NEW
SAVE AREA
AND FLAG
CLB AS
ACTIVE

216

Communication Line Administrator Module (IHKLAD)

YES

B2

C2

GET CLB
ADDRESS
FROM TUB

CHAIN
SAVE AREAS

WRITE TN
(NEGATIVE
ACKNOWL­
EDGEMENT)

I ~~'''D"''SP::-'-'''G:':P:-:A':"11
LINK TO
DISPATCHER
TO WAiT

GET ADDRESS
OF FIRST AND
LAST TUB IN
CHAIN

E3:-.....L---,
STORE ADDR
OF PREVIOUS
TUB IN AVT
AND PUT 0 IN
PT TO NEXT TUB

72-BYTE
QEB

H3--'---.,
TRANSFER
REQUEST
FLAGS FROM
TUB TO CLB

J~"'RE'-E""M"'AI-N-"-'"

TUe AND
lISER BUFFER

E4---''---.....,
MOVE
TUBNEXT TO
PREVIOUS TUB
AND TUBPREV
TO NEXT TUB

YES

YES

HA
J5

C5

STORE 0 IN
AVT POINTERS
TO BEGINNING
AND END

LINE
SAVE
AREA

K5---"--.....,
CLEAR RE­
QUEST FLAGS
AND LINE
SAVE AREA
ADDRESS

Chart HB. communication Line Administrator Module (IHKLAD)

TURN OFF
OVERRIDE
FlAG

TURN OFF
READ REQUEST
FlAG

VO Of'ERAnON
INITIALIZATION

GPAI

WAIT

HXAl

SET FlAGS
FOR CREAD I

C2

D2
GETMAIN.

FOR TUB
AND USER
BUFFER

F2
CLEAR THE t-ft-
TUB, GET ADDRESS
OF FIRST AND
lAST TUB
IN CtlAIN

STORE TUB
ADDRESS AS FIRST
AND lAST

J2
STORE NEW TUB
ADDRESS. IN
AVTAND
UPDATE CtlAIN

K2
STORE CL8 AND
USER BUFFER AD-
DRESSES IN TUB,
seT TUBIDENT •
INSERT SEQ. NO.
SET CR AND
MSGIDFIAGS

Cot C5

E4
SET NEGATIVE
RESPONSE TO
POlliNG FlAG

PROCESS
REQUEST

G4

STORE
MESSAGE
LENGTH

tI4
t1WA2

DECREMENT
MESSAGE EDIT
LENGTH OUTPUT

J3 JS
GET ADDRESS IHKIAB HKAI
OF CORRESPON-
DENCE CODE FORMAT
MESSAGE OUTPUT

K3 K4
STORE MESSAGE

GET ADDRESS APDRESSAND
OF BCD/EBai GET MESSAGE
CODE MESSAGE LENGTH

Flowcharts 277

Chart HC.

FI---L--..,

ru~N OFF
ERP FLAGS,
COMPUTE
DATA LENGTH

SET FLAG
FOR DATA
CHECI(

278

communication Line Administrator Module (IHKLAD)

YES

A2'-....... --..,

83----...,
GET ADDR OF
LOWER CASE
PRESERVATION
TRANSLATE
TABLE

031----..,

SET FLAG
TO RETU~N
CARRIER
NEXT TIME

SET 0 DATA
LENGTH, SET
NO CR FLAG
OFF

F2 ... F3"" <WRITE (TTV» NO ~READ TT OR TP
CONTINUE)-'":.=...-.... (CONTINUE
CONVE~SA- ~R REPEAT)
'TIONAi!'

YES NO

G2----_

GET INPUT
ADD~ESS AND
DECREMENT'
LENGTH

G3--'---.....
SHIFT DATA
ONE CHAR
AND
DECREMENT
COUNT

K31---'---,

SET NEGATIVE
RESPONSE
TO POLLING
FLAG

NO

YES

A4--'---~

INSERT
END-OF-TEXT
CHARACTER

F4----_

TURN OFF
WRITE AND
TURN ON
READ

YES

D5_....L-_--,
TURN OFF
LEADING CR
FLAG, SET
END-OF-TEXT
CHARACTER

E5i--1--....,

SET LEADING
CR FLAG FOR
NEXT TIME

COMPUTE
DATA
LENGTH

Chart HD.

INCREMENT
DATA SCAN
POINTER

DECREMENT
BUFFER
POINTER

JI--'---..,

DECREMENT
COUNT
REMAINING

Communication Line Administrator Module (IHKLAD)

A2
SET N-liNES
OVERRIDE
FLAG AND
DATA LENGTH
=1

B2
TURN OFF ERP
AND REQUEST
FLAGS SET UP
TO PASS BACK
TUB ADDR

02'----......

STORE TRUE
DATA LENGTH
IN TUBDATAL

B3
IHKLAT HUAI

EDIT
INPUT

GET NEW
LENGTH AND
ADDRESS FROM
IHKLAT

YES

04--'---....,

TURN OFF
NOCR'
FLAG

SET
TUBREAKN
FLAG

G4--'---.....
SET READ
FLAG AND
TURN OFF
WR:TE FLAG

NO

NO

A5

B5

DECREMENT
COUNT
REMAINING

MOVE
CHARACTER
TO USER
BUFFER AND
INCREMENT

INCREMENT
LINE BUFFER
POINTER

SET SECOND
RETRY FLAG

H5--"--...,

SET FIRST
RETRY FLAG

Flowcharts 279

chart HE.

280

READ TP
(REPEAT)

COmmunication Line Administrator Module UHKLAD)

B3 B4
GET ADDR AND GET ADDR AND
LENGTH OF LENGTH OF MSG
MSG. '3B8 AND '373 AND SET
SET NEGATIVE UNIT EXCEPTION
RESPONSE FLAG BIT

C4

GET USER
BUFFER
ADDRESS

NO

HE
E3

E3

SET SElFLAG

OFF LINE FOR
IRRECOVERABLE FLAG
ERROR

F2 F4

GET ADDRESS MAKE SURE
AND LENGTH CARRIER IS
OF MESSAGE RETURNED
'406

C5

SET WRITE
REQUEST
FLAG

D5
DECREMENT
LENGTH BY 8
AND INCRE-
MENT POINTER
8Y 8

E5

STORE LEN GTH
IN TUB AND
MOVE MSG.
INTO BUFFER

F5

SET WRITE
AND REA.D
REQUEST
FLAGS

SET NEGATIVE
RESPONSE
FLAG

Chart HK.

BI-...... ---,

STANDARO
INITIALIZATION

01-.1----.

SET TUB
REGISTER
TO ZERO

LAPCLBAO
EI-----,

GET CLB
ADDRESS
FROM TUB

LAPOECBO

r F:E-T-O""'E'-CB-A-N-O--'

TERMINAL LIST
ADDRESSES
FROM CLB

Input/Output Operation Initiation Module (IHKLAP)

A2--'---.....
GET USER
BUFFER
ADDRESS AND
STANDARO
REAO LENGTH

LAPCKTUB
02--'----.
WRAPOLL HLA5

YES

LAPBREAK
C3----~
OPENPOLL HLF4

PREPARE
TERMINAL
LIST,

STORE RETURN
CODE IN
CLB

K3-___ .,

IHKLAY HXAI

S10RE TIME
IN CLB,
QUEUE CLB

F4----..,

~ '-'~:~~

05-........ ---.

TRANSLATE
DATA

SET COUNT TO YES
ONE AND CLEAR .. -...!.!:~
SWITCH REGISTER

G5BREAK c::ES . FEATURE STOP
OR OVERRIDE

HL
EI , NO

H5-~--..,

GET CURRENT
RECORO COUNT
ANOAOOONE

Flowcharts 281

Chart HL. Input/output operation Initiation Module <IHKLAP)

282

SET BREAK
AND READ
FLAGS

LAPZERO /4~~----I

CI--'----,

STORE RECORD
COUNT IN
TtlB

GI-'-----.

SET DECFLAGS
TO ZERO

PREPARE
TERMINAL
LISTS

F2 -'---,.-,

INCREMENT
AREA
POINTER

G2!-'---.......
WRITE

ISSUE
BTAM
WRITE
INITIAL

ISSUE
BTAM WRITE
CONVERSA­
TIONAL

HK
H3

TURN OFF
REQUEST AND
OVERRIDE
FLAGS

LApWRTTV
E3-L..._~

F3 .-J. __ ~
WRAPOLL HLA5

PREPARE
TERMINAL
LIST

G3 -1_---.-,
WRITE

IssunTAM
WRITE
CONTINUE
CONVERSA­
TIONAL

K3-1-_-,
INSERT
ADDRESS

YES

84_...1-._---,

SET READ
REQUEST
FLAG

LAPWRCTI
C4-L...-~

ISSUE HAM
WRITE
CONTINUE

E4-~---.

INSERT POLLING
CHARACTER
AND SET
WRAP 81T

OPENPOLL

Gp

CHARACTER AND I---~
SET WRAP
BIT

WRAPOLL

85

NO

YES

DIALPOLL
E5-1-_-,

INSERT
POlliNG
CHARACTER

OPENADDR

INSERT
ADDRESS
CHARACTER

Chart HP.

IHKLAB

FROM:
IHKLAD

GET ADDRESS
OF TUB, CLB,
DECB, AND
USER BUFFER

Output Text Fomatting Module (IHKLAB)

B2-...L __ ...,

GET LENGTH
OF USER DATA
FROM TUBPARM2,
END ADDRESS
OF DATA

ADD CR TO END
INCREMENT
LENGTH, UPDATE
END ADDRESS

APPEND EPB;
UPDATE END
ADDRESS

YES

E4-...... ---,

GET LENGTH
OF PREVIOUS
OPERATION

STORE EXCESS
FOR IDLE
COMPUTATION

Flowcharts 283

Chart HQ. Output Text FOrmatting Module (IHKLABt

CI
NO

YES

CLEAR REGISTER,
GET LENGTH
FOR IDLE
COMPARE

EI-.....1..---,

GET QUANTITY
FOR IDLE
ALGORITHM,
DIVIDE BY 10

Fl
YES READ

PREVIOUS

284

C2-----,

GET LENGTH
INTO
REGISTER

SAVE LENGTH
OF USER DATA,
STORE NEW
LENGTH

BGNLINK
J2--'----,

RESTORE
REGISTERS
FROM SAVE
AREA

INCREMENT NO

K3

NO

A4·-----'----,

GET LENGTH
OF USER
DATA

COMPUTE
END ADDRESS

E4

BLANK

MOVE TEXT
LENGTH FOR
NEXT ENTRY

J4

IMBEDDED
CR

YES

E5DECRE­
>,-Y;;;ES,--~~ ME NT LENGTH

AND TEST FOR
ZERO

ZERO

K4.--'----,

REPLACE WITH
BLANK

Chart BU. TABSET Edit Module (IHKLAT)

B4
ADD TEXT LENGTH
AND BLANKS

OUNTERAND
UNEDITED
TEXT LENGTH

LATSHIFT LATERR
C2 cs
MOVE H TAB
CHAR AND SET

NO PRECEDING TEXT YES REGISTER
TO POSITION 15 TO 4
AFTER LAST
VALID CHAR

MOVE TAB MOVE
CHARACTER AND UNEDITED
PRECEDING TEXT TEXT TO
TO WORK AREA WORK AREA

EI E4
SET TAB AREA
POINTER TO 0, MOVE WORK
SET WORK AREA AREA TO
POINTER TO USER BUFFER
POSITION OF
TAB CHARACTER

LATPAD2
Fl F4

GET
STORE POINTER
TO UNEDITED TABSETTING TEXT IN FROM TAB

AREA PARAMETER
LIST

G

BH MOVE BLANK SET REGISTER
TO WORK 15 TO 0
AREA

H2

MOVE BLANK
TO WORK
AREA

Flowcharts 285

Chart HW.

Dl--'----.

BUFFER
CLEANUP

286

Line·Edit Write Module <IHKLEW)

F~o",:

IHKLAD

NO
D2

MORE
TABS

E2-...... ---

F2

SCAN FOR
NONBLANK
OR TAB

TAB

COMPUTE NUMBER
POSITIONS TO
TAB AND ADJUST
STRING LENGTH
FOR ALGORITHM

YES

J2
INSEH TAB,
IDLES, AND
BACKSPACE
CHARACTERS IN
DATA STRING

K2
ADJUST DATA
STRING IN
PROCESSED
PORTION OF
BUFFER

YES YES

H3

SCAN FOR
TAB, ENQ OF
DATA OR
BLANK

F4

INSERT TAB
AND IDLE
CHARACTERS

Go!

REPOSITION
PROCESSED
PORTION OF
BUFFER

H5

H4 REPOSITION
TAB YES CHARACTER

FOUNO STRING IN
BUFFER

0

BLANK

K

REPOS!TION
CHARACTER
STRING IN
BUFFER

Chart HX. l050X Programmed Time-Out Module (IHKLAY)

IHKLAY

FROM:
IH~LAD
IHKLAP­
IHKCIP

/81 FIRST

". TIME

YES

(I
I SAVE AVT

ADDRESS

01--'----,

ADD STC8 FOR
LAYPOST TO
STCB CIRCLE

EI--'----,

SET UP ECB FOR
LA YPOST AT END
OF EC8 L1ST

FI--'-----.

SAVE fC8 LIST
ENTRY ADDRESS
IN LA YPOST STC8

82
NO

CREAD r YES

REMOVE CL8
FROM TIMER
QUEUE

84 8TAM

,>-N=O_~-< RETURN CODE
ZERO

YES

C4_-'-__ ~
ENQUEUE HXAS

QUEUE THIS CLB
LAST ON TIMING
QUEUE

GI

E4------,

ENQUEUE

HXC4
HYG4
HZH4

85 ---'----,

GET CURRENT
TIME

SAVE E NO TIME
(CURRENT TIME+
DELAY) IN CLB

DS--'---..,

SET FIRST
BYTE OF INPUT
AREA TO ZERO

QUEUE THIS CLB NO
ON END OF ---'-'=<
TIMING QUEUE

E5
QUEUE
EMPTY

FS---'------,

QUEUE THIS CLB
FIRST ON TIMING
QUEUE

GI r-----~4-------------------------------~ G4 ____ ~

KI-----,

DEQMID

HYHI
HY82

H2 l--,-H,-,Y-"C::.4 ~

K2

NO

POINT TO NEX1 ~ __ --,N~O'::.(POINTED
CLB ON QUeuE TO BY THIS

CLB

YES

DEOFIRST

HYEI

K3--'---~
ZERO CHAIN
POINTER AND
TIME FIELD IN
DEQUeuE 0
CLB

LAYTIMER HZA I

STIMER EXIT

K4---_

RETURN

GS STiMER

INTERVAL"
DELAY TIME,
STiMER EXIT
" LAYTIMER

Flowcharts 287

Chart HY. 1050X Programmed Time-Out Module HHKLAY)

DEQUEUE
Al-----.,.

288

HXC3
HZE4

BI

CI--'-~..,
TIMER

TO (,ANCEl
ANY OUT­
STANDING
STIMER

DI--'---..,

CLEAR
ECB OF
LAYPpST

HXH3

REMOVE CLB
FROM QUEUE
AND CLEAN
IT UP

HXG2

DEQUEUE
THIS CL8

NO

r B2----.
DEQMID HXG2

REMOVE
CLB FROM
QUEUE

1-----IC2

POINT TO
NEXT CL8
ON QUEUE

B3

83 -.J.~-.-.,
TIME

D3 TIME
<" REMAINING
',..LESS THAN

. TOLERANCE

NO

E3_-L-_-..,

COMPUTE
INTERVAL
TIME
REMAINING

F3-'---.---.
STiMER

REMAINING
INTERVAL

YES

YES

C4----..,
DEQMID HXG2

DEQUEUE
CL8 FROM
TOP OF
QUEUE

D4--.l..--..,

GET DECB
FOR CLB THAT
WAS DE QUEUED

F4--'-~-.,

SET FIRST
BYTE OF
INPUT AREA
TO ZERO

G4--'---..,
ENQUEUE HXA

RE-QUEUE
ON END
OF QUEUE

YES

E5 ____ .,

10HALT HZAS

ISSUE I/O
HALT ON
THE LINE

Chart HZ. 1050X Pro9'rammed Time-out Module (IBKLAY)

LA YTIMER I OHAL T

BI--'---..,

GET DECS
OF FIRST
CLION
QUEUE

FI-'--,...,
POST

POST ECB
FOR
LAYl'OST
ROUTINE

YES

10HALT H)!:AS

ISSUE
I/o
HALT

FROM:
IHKDSP

&4)-----1
&4--'---.,

CLEAR
ECB

04--'---,
IHKDSP GPAI

WAIT
FOR
POST

1)4,_-'-_-'-1

GET
QUEUE
POINTER

E4-....... --..,
DEQUEUE HYAI

REMOVE eLB
FROM
QUEUE

ENQUEUE HXAS

PUT CLB
BACK ON
QUEUE

HYG5
HZF3

GET UCB
VIA DCB,
101, AND
DEB

SET RESET
FLAG IN
101

Flowcharts 289

Chart MA. CHANGE Subcommand:processor.· UHKCGN)

IHKCGN

290

C~-E-TMA-'--IN-"""

GET SAVE
AREA AND
WORK AREA

FI_-L __ .,

STORE OPERAND
IN FIRST LINE
NUMBER

WJAI

TEST FOR
NUMERIC
LINE NUMBER

SEND
ERROR
MSG

84-----,

STORE ADDRESS
AND LENGTH
OF TEXT I

YES

STORE SECOND
LINE NUMBER

MCE4

SEND
ERROR
MSG

MCE4

Chart MB.

RAFRTN
A 1-·-'--....,

MOVE LINE NO,
TO TUBNXKEY

RAFRTNI
BI---'----,

IHKAFI TEAl

POINT TO
FIRST LINE
OF RANGE

TEAl

POINT TO NEXT
LINE AFTER
STARTING
NUMBER

FI

CHANGE Subcommand Processor (IHKCGN)

I-__ ~MC
A4

E2_-'-__ .,

MSGRTN MCE4

SEND
ERROR
MSG

SCAN FOR
TEXT!

REPLACE TEXT I
WITH TEXT 2.
CONDENSE OR
EXPAND LINE
IF NECESSARY

RETURN CODE >-";:,:8,,,-1::.2 ____ -.

RAFRTN2A
G 1--'-----,

IHKAFI TEAl

GET KEY OF
NEXT RECORD

)-___ -lNO

TEAl

GET LI NE FROM
ACTIVE AREA

K2_...L __ ..,

MSGRTN MCE4

SEND
ERROR
MSG

H4 WAS
~HANGED LlNE,>.:Y!,!;E~S_..l

CONDENSED •

CALCULATE NEW
LINE LENGTH

H5;-----,

PAD LINE
WITH BLANKS

HAS
K4 IS ALL

SWITCH ON
YES K5 ENTIRE

>.:..::::.~ < LINE BEEN

'S~CAN:::
MC

I

Flowcharts 291

Chart MC. CHANGE Subcommand Processor (IHKCGN)

292

TEAl

REPLACE OLD
LINE WITH NEW

EI_-'--__ -.
MSGRTN

SEND
ERROR
MSG

MCE4

LINE CHANGEDlrY~E;:.S_ ... o(

Gl WAS A
/RANGE OF

"" LINES

SPy,::

~1~

NO

<ENTIRE RANGE ")-=-1-_0.<,
"'" BEEN

SCANNED

SEND
ERROR
MSG

MCE4

ENDKAF
A4 ___ --,

IHKAFI TEAl

}--'--e-f COMPLETE AFIO
OPERATIONS

M8E2
M9K2
MCEJ
MCK2
MAF2

B4 =8,J2
RETURN CODE >-":--.-(

MSGRTN

QUEUE MSG

H4 REQUEST NO
SATISFIED r=---<

YES

MAJJ
MAF4
MAF3
MAH3
MCA4
MCCS

DE­
ALLOCATE
SAVE AREAS
AND WORK

Chart MG.

FROM:
IHKCMD

B1G---ET..JML...A-1 N-'-'

FOR SAVE
AREA, AND
EXEC AREA,
IF EXEC

EDIT, DELETE, and EXEC Command Processor (IHKEDT)

F2 ____ ...,

CKNAMI MGD4

CHECK LENG TH,
STORE IN
TUBUSRNM

PLiSUBOP

CHECK LENGTH,
STORE IN
USER BUFFER

CHKNAMI

MIM

STORE EITHER
FIRST OR LAST

NO F30s NAME
i4'----< (IN QUOTES) QUEUE INVALID 14-"";'';'';''<

OPND MSG

H4_---,
CKNAM3 MGE4

>-,Y,-"E;;"S_-II"1 CHECK LENGTH,
STORE IN
USER BUFFER

"STODSN
J3_-'-__

CKNAM3 MGE4

CHECK LENGTH, f-----i~
STORE IN
USER BUFFER

STORE IN
SPECIFIED
LOCATION, PAD
WITH BLANKS

F4

Flowcharts 293

Chart MH. EDIT, DELETE, and EXEC Command ProceSlsor (IHKEDT)

EI

294

= 5 MHAS

= 6 MHE5

= 7 MHJI

NONE OF
THESE MGGI

EXEC

CHECK FOR
S(CAN)

YES

SU8RCLC

CKLIST
E2,---''-_-,

SU BRCLC MHA2

CHECK FOR
L(lST)

83 ~
H

TESTOPR

83,MULTIPLE
" OR

'CONTRADICTORY
"OPERANDS'"

QUEUE MSG

E3
EXEC

NEW

YES

NO

E4=-:.l. __ .,
SUBRCLC MHA2

CHECK FOR
NOL(IST)

r::5 CLIST NO

<NONUM, FORTE.~
"""FORTG,/

FOf:ES . ~¥
(0

.--____ ..;..N...;O-<G5 DSLIST

J4.~-:-,-~.......,
SU8RCLC MHA2

CHECK FOR
NOS(CAN)

Chart MI. EDIT, DELETE, and EXEC Conunand Processor (IHKEDT)

FREE MAIN
STORAGE
FOR SAVE
AREA

NOOPER

E~Q~M~S:-::G:--~M~INI~

r N;.;::O:""_oIQUEUE REQUIRED
OPND MISSING
MSG

INVMARC 82-____,

ENQMSG MINI

NO QUEUE INVAliD
SOURCE MARGIN
MESSAGE

MINI

QUEUE EXCESS
OPERAND MSG

ENQMSG

E~~:-M-:SG~-M-:I-Nl'
NO .>----t QUEUE INVALID

EDIT MSG

Flowcharts 295

• Chart MaJ. EDIT. DELETE. and EXEC Command Processor (IHKED1)

29b

IHKEDI

FROM:
IHKCMD

~E:::'TM.J.A~I~N"'''
GETMAIN
STORAGE
OR SAVE
AREA

CREATE --
CREAT E ACTIVE
FILE

RPOINT-
POINT TO
START FILE

WXAI

SHB2

DECLARE
LIBRARY
INOPERATIVE

IHKBPM UEAI

RClOSE --
CLOSE DATA SET,
STORE DIRECTORY

TEAl

ENDUP -
INSURE UPDATES
COMPLETE

J4
IHKBPM UEAI

SHB2

QUEUE LIBRARY
1/0 ERROR
MESSAGE FOR
OPERATOR

SH82

QUEUE LI BRARY
INOPERATIVE
MESSAGE

SHB2

QUEUE
DIRECTORY
FUll MESSAGE

ES --.,
IHKAFI TEAl

RELEASE -­
RELEASE
ACTIVE
AREA

TURN OFF
ANY BITS
SET

JS
FREEMAIN

FREE
SAVE
AREA

YES

NO

Chart MK.

HII_....L. __ ...,

SET ATTRIBUTE
AS SPECIFIED

RREAD
READ

UEAI

A BLOCK

EDIT, DELETE. and EXEC Command Processor (IHKED1)

CLIST

UPDATE NUMBER
Of TIMES READ

NO

NO

ENQMSG
A3

IHKMSG SHB2

QUBJE EDIT
REQUIRED
MESSAGE

ENQMSG

IHKMSG SHB2

FREE READ
BUFFER

G'04--'-----.

SEQUENCE
LINE BUFFER

WJAI

CHECK ON
'NUMERIC

SHB2

QUEUE LINE
NUMBER NOT
X'I OR NUMERIC
MESSAGE

ES--'---...

SET LINE
NUMBER
TO ZERO

INS
G5,_..L __

IHKAfI TEAl

INSERT­
INSERT LINES
INTO ACTIVE
AREA

Flowcharts 297

• Chart MM.

IHKEOS

CREATE
DIRECTORY
ENTRY AND
ACTIVE FILE

PROCOS

LOADIHKOPN

ATTACH
IHKOPN

Hl_..,..L __ ~
IHKDSP GPAl

298

WAIT FOR
IHKOPN

QUEUE ERROR
MESSAGE

EDIT Command Processor (IHKEOS)

EDITEOS
112:_....1-___ ,.....,.

GETMAIN

GET READ
BUFFeR

SET UP
INSERT
BUFFER

WAIT FOR
COMPLEtiON
OF READ

CHECK READ

1~~'-M-SG"""'Ol---S-JA"'l"

QUEUE ERROR
MESSAGE

UNDEF
C31_ --,

CALCULATE
BLOCK
LENGTH

H3--J. __

CALCULATE
END Of
BLOCK
ADDRESS AND
SAVE IT

INSERT
G41--'-_--,

CALCULATE
NEXT LINE
NUMBER

INSERTl

1::A:-:F""I--T"'E:-:"A"'"'l

INSERT LINES
INTO ACTIVE
FILE

NXTGET
G5,-...... ---,

POINT TO
FIRST LINE IN
I NSERT BUFFER

• Chart MN.

RLGT80C
Bl

CALCULATE
REMAINING
LENGTH OF
RECORD AFTER
NEXT INSERT

RLGT80E
Cl
SET UP
LENGTH OF
80 OR 72
FOR NEXT
MOVE

DAAI

LOAD OR
DELETE
IHKOPN

Gl-L-----.
IHKDSP GPAI

WAIT

EDIT Command Processor <IHKE.OS)

VAR

F2--L.-_-.

GET END
OF BUFFER
ADDRESS

VARREC2

G2--'----.

GET RECORD
LENGTH AND
SAVE

NO

YES

J2--L---.

POINT AFTER
RECORD LENGTH
AND SET UP
FOR MOVE

REINITIALIZE
REMAINING
LENGTH

VARGT80
H3_-L. __ -,
CALCULATE
REMAINING
LENGTH OF
RECORD AFTER
NEXT INSERT
AND SAVE

J3-....I-----.

SET UP
FOR MOVE

B4

CALCULATE
NUMBER OF
LINES

INSERT!

C4
IHKAFI TEAl

INSERT LINES
INTO ACTIVE
FILE

YES

G4_..1-_--,
IHKAFI

RELEASE
ACTIVE
FILE

TEAl

F5,--___ .,
IHKAFI TEAl

ENDUP­
FOR ACTIVE
FILE

DETACH
IHKOPN

J5_-L. __ -,
LDELOPN MNFI

DELETE
IHKOPN

I~D~S:-::P-'---::G-::PA-"l

WAIT FOR
COMPLETION
OF DELETE

Flowcharts 299

Chart MW.

IHKEND

FROM,
IHKCMD

Hl

300

NO

END Subcommand Processor (IHKEND)

C3----..,

SET RETURN
CODE EQUAL
TO RETURN
FROM IHKMSG

H3-----,
SET RETURN

YES H2"2:l~~~~OR yes CODE EQUAL ")..:..:.:..--<)"';'::;:""-t"'i TO NEGATIVE
ABNORMAL OF lOGOFF

TERM. COMMAND VERB

NO

Chart NA.

01 IS <OPERAND IN
PARENTHESES

CHECK OPERAND
FOR NUMERICS

~A >---LE-N-l--I

JIOPERAND
LENGTH = 1

INPUT Subcommand Processor (IHKIPT)

YES

YES

E2-__ --,

SET
INCREMENT
TO 1 AND
SAVE

SAVE
INCREMENT

NO

NO

G3-----,

SAVE LINE
NUMBER

MULT

NB
Fl

BUILD PARM
LIST FOR
MULTIPLE
KEYWORD MSG

ERROR

BUILD PARM
LIST FOR
INVALID
OPERAND MSG

SJAI

QUEUE MESSAGE
FOR USER

Flowcharts 301

Chart I~B. INPUT Subcommand Processor (IHKIPT)

SJAI

QUEUE INVALID
OPERAND MSG
FOR USER

Dl RETURN
CODE" 0

02---,

J2 REPLY
r---C. SWITCH SET

YES

302

NO

YES

EXCESS
H4--'----, I BUILD PARM

LIST FOR
EXCESSIVE
OPERANDS

I MSG

SJAI

QUEUE MESSAGE
FOR USER

F5----..,

LOAD CALL
CODE FOR
IHKIRLOI

Chart NC. INPUT Subcommand Processor (IHKIPT)

B2 _...1-_--,

SET KEY
fOR AfIO

NO

C3..",..._..".,,...,,,
IHKAfI TEAl

YES RPOINT TO
SPECifiC
RECORD

YES

D3i ___".,
IHKAfI TEAl

RPOINT TO
SPECifIC
RECORD

f2_ __ ..,

IHKAfI TEAl

Gl---.....
REru~N }+_=T8;.:,.._12-<.

RPOINT TO
SPECIFIC
RECORD

ISSUE RPOINT
TO PREVIOUS
RECORD

=0

5---..,
>-N;.;:O'--_oojGET INCREMENT

FROM DIRECTORY

SET fLAGS IN
PPT FOR IHKIRL

J4-...I----,

PUT LINE
NUMBER AND
INCREMENT
INTO PPT

K4.--L--,

LOAD CALL
CODE fOR
IHKIRL

KS---,
RETURN

Flowcharts 303

Chart NJ. Insert/Replace/Delete Processor (IHKIR~)

304

IHKIRL

FROM,
IHKCMD
IHKEOS

EI_--''--_--,
IHKAFI TEAl

CREATE
ACTIVE FILE

NEWDIREC

CREATE
DIRECTORY
ENTRY
QI

SAVE MAX.
LINE NUMBER

HAAI

PROMPT AND
READ FROM
LINE

TEAl

INSERT LINE

NO

NOPMT

II~:'L-A-D--H-AA--'I

READ
FROM LINE

REPONLY
G4_.l-_--,

IHKAFI

REPLACE
LINE

LENERR

TEAl

K4_-L __ ...,

ASi_...L.._---,
IHKMSG SJAI

QUEUE
MSG

CALCULATE
NEXT LINE
NUMBER

QUEUE
LINE EXISTS
MSG

TEAl

POINT FOR
NEXT INSERT

Chart NK. Insert/Replace/Delete Processor (IHRIRL)

01

<CONTINUATlONlPYES
LINE .

NJ
NO C5

UAA2

QUEUE
FOR SCAN
INTERFACE

Fl_-,-__ -.
IHKSYN WRA2

SCAN LINES

POINT AFTER
LAST LINE

TEST FOR
LAST OPERAND

NLM

TEST FOR
NUMERICS
AND STORE

D3_....L __

INCREMENT
TO NEXT
OPERAND

E3_....L._--.
TSTLAST N KM

TEST FOR
LAST OPERAN 0

F3_....L __ ~
TSTNUM NLM

TEST FOR
NUMERICS
AND STORE

G31_....L __ ~

INCREMENT
TO NEXT
OPERAND

H3i_...L.._---.
TSTLAST NKM

TEST FOR
LAST OPERAND

J31_....L __ ~
IHKMSG SJAI

QUeuE
EXCESSIVE
OPERANDS
MSG FOR USER

TSTLAST

NKB3
NKE3
NKH3

QUEUE
INVAliD
RANGE MSG

EXIT

I~:~-:~I~.--"'T"'EA-l"

DELETE
LAST LINE

Flowcharts 305

Chart NL. InSert/Replace/Delete Processor (IHKIRL)

DELPOINT
AI_....L. __ ...

INKAFI TEAl

POINT
AFTER 1ST
OR ONLY
LINE NO.

DELETE LINE

TEA!

POINT AFTER
PREVIOUS
LINE NO.

F2 ___ -'-_
IHKMSG SJA!

NEXT
.J!'LINE NO.
",>ENDING

~Y::ES:..-_.,j QUeuE
INSERT TERM.
MSG FOR USER Lly.:'

e

306

B:l ___ --.
IHKMSG SJA!

TSTNUM

NKC3
NKF3

1r!!:'"'N-U-M.I.--W-J-A""'1

TEST OPERAND
FOR NUMERICS
AND STORE

C4

D4_--L __ ~
IHKMSG SJA!

QUEUE
OPERAND ERROR
MESSAGE
FOR USER

=0

Chart NM.

SJAI

SJAI

QUEUE ACTIVE
AREA OUT OF
SPACE MSG.
FOR USER

Insert/Replace/Delete Processor (IHKIRL)

~
EOD A
A2'IMPLlCIT~ <,.CMD OR I YES

DELETE
OPERAND

C2
NO

82_....L __ _

IHKMSG

E2-....L--_

SAVE SCAN
INFORMATION
AND FREE AREA

IHKIRLOI

FROM:
IHKCMD

E3_-L._---,
IHKNUM WJAI

TEST LINE NO.
FOR NUMERICS
AND STORE

POINT TO LINE

GET SCAN
PARM.
AREA

E4_..L._---,
IHKAFI TEAl

POINT TO
END OF FILE

SJAI

=4 QUEUE
LINE NO.
INVALID MSG
FOR USER

NORECF

IHKIRL02

CHGI

POINT AfTER
LAST LINE
SCANNED

Flowcharts 307

Chart NR.

IHKLST

FROM:
IHKCMD

Cl,_-,--_,......,
GETMAIN
ESTABLISH
LINKAGE'
OF SAVE
AREAS

SET STARTING
LINE NUMBER
EQUAL TO
OPERAND

308

LIST Subcommand Processor (IHKLST)

B2_-L-_--, NEXTTEST

SET ENDING
LINE NUMBERS
TO D'S

831 ___

ENTRY

FROM:
NRC2
NRG2

C2:_-,-__ -,
FRSTTEST NEXTTEST NR83

TEST FOR
OPERAND
IN PPT

SET ENDING
LINE NUMBER
EQUAL TO
OPERAND

C3-__

ENTRY

FROM:
NRHI

ERRANGE

IH~MI=SG:-:O~I-S-J-A~1
YES SEND MSG TO

>-=:'+-~USER INDICATING
ERROR IN LINE
NUMBER RANGE

NRB3

ERREXCSS

IHHiM:-S-G-O-l ~S:-:J-A:"I1
SEND MSG TO

>-';":;;-~USER INDICATING
EXCESSIVE
OPERANDS

1'4_-'-_--,
ESTABLISH
ADDRESSABILITY
TO NEW PPT
AND RELOCATE
FLAG BYTE

SJAI
SEND MSG TO
USER INDICATING
ERROR IN THIS
OPERAND'

EXIT

CHKERRSW ,

Chart NS.

ERRLNTPF

LIST Subcommand Processor (IHKLST)

NO

PTHHIQI
E2 ___ --. CHECK KEY

IHKAFI TEAl

TEAl

-RGEl - GET LINE
POINTED TO AND
POINT AFTER
THE LINE

MOVELONG
C4_...L-_---.

MOVE-48
CHARACTERS
FROMAFIO
TO USER
BUFFER

FREE THE
AFIO
BUFFER

WRTLDSLN
E4,----..

MOVE LOS
LINE INTO
POSITION
IN IlJFFER

FI CHECKNUM
IHKMSGOI SJAI

SEND MSG TO
USER THAT THE
REQUESTED LINE
DOES NOT EXIST

/IS,
G3,CURRENT
<' LINE NUMBER

......... >ENDING
NUMBER

~
H3

MOVEBO
CHARACTERS
FROM ACTIVE
AREA TO USER
IlJFFER

YES

YES

POSITION
LINE NUMBER
IN THE USER
BUFFER

MOVESHRT HS-...L __

MOVE 72
CHARACTERS
FROM ACTIVE
AREA TO USER
BUFFER

Flowcharts 309

Chart NT. LIS~ Subcommand processor(I~~LST)

310

ENDUP

I::""MSG~O""I """"SJ""A"'1

Sl;ND MSG TO
~;';:;"'-"';USER INDICATING

NO LINES IN­
RANGE

I~KAF=I--:::T£:""A~1
YES RELEASE

;>-:.::.:..-~ THE ACTIVE
AREA OBTAINED
BY IHKLDS

FREENEED
u-........ _....., E4, ___ ,...,

IHKAfI TEAl

ENDUP­
PENDING AfIO
FUNCTIONS

FREEMAIN

FREE LIST
SAVE AND
WORK AREA

TO: IHKCMD

Chart NV.

IHKLDS

AI-----...
ENTRY

FROM,
IHKCMD

TEST FOR
OPERAND
IN PPT

ERRNODSN
HI,_ __ ..,

IHKMSGOI SJAI

SEND MSG TO
USER INDICATIN
REQUIRED OPND
IS MISSING

LISTDS and LISTLIB Command Processor (IHKLDS)

FROM,
NVH3

FRSTTEST

C2---.....
ENTRY 1--_,(

FROM,
NVFI
NVF2

D2:----~

RESET
POINTERS
TO THE
NEW PPT

LIBOPNDI
F2-__ ---.

FRSTTEST NVC2

TEST FOR
OPERAND
IN PPT

YES

LOADDSNM
G3----..

SEND MSG TO
USER INDICATINGI---t-f
ERROR IN THIS
OPERAND

NVB2

TEST FOR
OPERAND
IN PPT

SJAI
SEND MSG TO
USER INDICATING
MULTIPLE USE
OF OPERAND

Flowcharts 311

Chart NW.

NW
Bl

Bl-......I.--......,

PROVIDE POINTER
TO TUSAND
USER ID FOR
IHKUTM

Cl_..L-_--,
IHKUTM WXAI

QUEUE
FOR SPAM .

LISTDS and LISTLtB Command Processor (IHRLI)S)

READ A SLOCK
OF DIRECTORIES
FOR USER LIBRARY

CHKINSRT

LAN
C4 PREVIOUS YES

>----... "'r.!NE INSERTION
INTO ACTIVE'

'~
YES

FINDLIB
El_-,-__ ...,

IHKBPM UEAl

'F' FORM OF
RFIND FOR
USER LIBRARY

CREATE

IH ~A7:F:7I...L.~T::E~A-:11

POINT

CREATE
ACTIVE
AREA

Gl_..L-__ -,
IHKAFI

POINT TO
BEGINNING

TEAl

OF ACTIVE AREA

I;IEADER

I H~~:"'S::G:-'---:S:7H""B2:"1
OBTAIN
HEADER OF
LABELS FROM
MESSAGEWTR

Jl-,::~--:=~
PTINSERT NYAI

INSERT
HEADER INTO
ACTIVE AREA

312

E2_~ __,
IHKBPM UEAI

'J' FORM OF
RFIND FOR
USER DATA SET

IS
E3 DIRECTORY

<DISPLACEMENT>,-Y;:;;ES,-_..,

""" > BUFFER

LENf~~

F3IS~W
<" DIRECTORY
'THE LAST IN THE

'LiBRARY/

G3

~STA8LISH
DIRECTORY

ADDRESSA&lLlTY
WITH Sf BUFF 1

'Tm

cW

YES

E~-R-EE-M-A-I-N-r.,

FREE
DIRECTORY
BUFFER

F4===-r-,
FREEMAIN

FREE
DIRECTORY
BUFFER

Chart NX. LISTDS and LISTLIB command Processor (IBKLDS)

LDSLINE
BI B3 B5
ESTABLISH POSITION POSITION
ADDRESSABILITY FORTRAN-E YES CREATION
TO USER BUFFER LABEL IN DATE IN
FOR THE LINE BUFFER BUFFER
DSECT

CI C3 cs
BLANK USER POSITION POSITION BUFFER AND FORTRAN-G DATE LAST POSITION DATA LABEL IN MODIFIED SET NAME IN BUFFER IN BUFFER BUFFER

03 D4 05

POSITION FILL IlJFFER POSITION
FORTRAN-H BYTES AFTER COUNT OF
LABEL IN ACTIVE NAME TIMES READ
BUFFER WITH ASTERISK IN IlJFFER

INSERTLN
E2

PTINSERT NYAl
POSITION

INSERT Pl/l-48 YES
MEMBER LABEL IN
LINE INTO IlJFFER
ACTIVE AREA

NOLNO
F2 F

POSITION POSITION POSITION
PI/I NO LABEL YES LABEL
LABEL IN IN BUFFER IN BUFFER
BUFFER

G2

POSITION
DATA
LABEL IN
IlJFFER

H2

POSITION
POSITION TEXT

LABEL IN BLOCK COUNT

BUFFER INIlJFFER

J2

POSITION
DSLIST YES
LABEL IN
BUFFER

K2 K4

YES POSITION POSITION POSITION
CLIST NO LABEL YES LABEL
LABEL IN IN BUFFER IN BUFFER
BUFFER

Flowcharts 313

Chart NY.

PTiNSERT

FROM,
NWJI
NXE5

TEAl

RPOINT TO THE
END OF THE
LAST LINE IN
ACTIVE FILE

NO

EII----'~ __

BLANK ALL
BYTES OF
HISTORY
AREA

NO

Gl_-L __ -.

BLANK ALL
BYTES OF
STATUS AREA

MOVE HISTORY
TO OVERLAY
STATUS FIELD

KII--4 __,

BLANK ALL
BYTES OF
REMAINING
HISTORY FIELD

314

LISTDS and LISTLIB Command Processor (IHKLDS)

B2! ____ ..,

MOVE LINE
8 POSITIONS
TO THE LEFT
IN THE USER
BUFFER

RTRNLIST

831--'--_-.

LOAD NEGATIVE
OF INKLST
COMMAND VERB
AS RETURN CODE

HAS
C3 THERE

< BEEN AFIO
""'-OPERATION

YES

D3_-4 __ -.

IHKAFI TEAl

ENDUP ALL
PENDING AFIO
OPERATIONS

CLOSE

HAS

NO

E3 THERE NO

" BEEN BPAM
OPERATION

INSERT1 K2: ____ _

IHKAFI TEAl

INSERT MEMBER

YES

F3,_-,-__ ~

IHKBPM UEAI

NOSTOW FORM
OF RCLOSE TO
DATA SET

FREEMAIN
G3-'--_~
FREEMAIN

RELEASE
SAVE
AREA

HI3---' __ ..,

RESTORE
REGISTERS
TO CALLING
ROUTINE

LINE FROM t---~
BUFFER INTO '-----~
ACTIVE AREA TO,

NWJI
NXE5

LOAD ZERO
AS RETURN
CODe

H4---~

EXIT

TO,INKCMD

Chart PA.

IHKLGF

FROM,
IHKCMD

GET AND
SAVE TIME

Dl BYPASS
CALLS TO
IHKUTM

NO

ABTRM

YES

LOGOFF Command Processor (IHKLGF)

B2'-----,
IHKILX

CALL LOGOFF
EXIT

YES B3 LOGOFF
I+-"';';;~ EXIT EXISTS

C2----..., FREE

FREE STORAGE
FOR IHKTAB

YES C3 STORAGE
\4-":":,=-< ALLOCATED

FOR IHKTAB

D2 ____,

RETURN
CODE = 12

E2 :-RE=TccUc:R-N----,

CODE = 4

"'-./

E3

NO

A4 RETURN
CODE FOR

IHKLGF
=0

NO

SUP

I:T~~
>Y~E;;:S_-I"'< AT TERMINAL NO

CAUSED
LOGOFF

YES E5

85--'-_--,

CLEAR FIELDS
IN TUB TO 0

C4-----,

BUILD PARM
LIST FOR
SUPPRESS
MODE MSG

... __ Y~E;;;S<C5 SUPPRESS

MODE

D5.---'----,

SET CALL
CODE FOR
IHKLGN

1---(E5

E 1 ABNORMAL YES
<TERMINATION >-=--1-.1
"" FOR USER

MODIFY
OFF

~
E4~
CONSOLE ID

SWITCH SET

NO

YES

EXCESS

Hl--'----....,

BUILD PARM
LIST FOR
EXCESSIVE
OPERANDS MSG

SHB2

SEND MESSAGE
TO USER

YES

SET CODE
FOR IHKUTM

F2 ____ -,

SET CODE
FOR IHKUTM

CALLUTM
G2--'-_--,

IHKUTM WXAI

TURN OFF
ACTIVE BIT IN
UVR AND SERVIC'E
REQUEST CODE

NO

G4_-'--__ -,

IHKMSG SHB2

SEND SHOW
SESSION MSG
TO OPERATOR

= 8,12 H2 TEST
RETURN
CODE

= 0 H3 CONSOLE
>-..;.......---< REQUESTING

ALL SESSIONS

K2 CAN
MESSAGES

BE SENT

NO

F5

YES

J3-....L---,

BUILD PARM
LIST FOR SHOW
SESSION MSG

1'.3,_-'-__ -,
IHKMSG SHB2

K4 TEST
SEND MESSAGE t----< RETURN
TO OPERATOR CODE

CALC

F5 ---'----,

CALCULATE
TOTAL SESSION
TIME

G5ABNORMAL

~ERMINATION
SWITCH

SET

NO

H5_-'-__ --,

IHKMSG SHB2

SEND LOGOFF
MSG TO USER

Flowcharts 315

Chart PEe LOGON Command Ptocessor (IHKLGN)

316

IHKLGN

FROM:
IHKCMD

INIT

INCREMENT
TO NEXT
OPERAND

SHB2

SEND INVALID
PARENTHESE S
MSG TO USER

E2~--_-..,

REMOVE SLASH
AND SEPARATE
OPERAND INTO
USERID AND
PASSWORD

H2----..,

IN<;REMENT
COUNTER

ERROR
B3,-...... --...,

BUILD PARM
LIST FOR
INVALID
OPERAND MSG

C3-....L. __ ..,
IHKMSG SHB2

SEND MESSAGE
TO USER

INCREMENT
TO NEXT
ELEMENT IN
PARENTHESES

MULT
841-....L.----,

BUILD PARM
LIST FOR
MULTIPLE
KEYWORDS
MSG

H4 ____ ..,

IHKMSG SHB2

')..:':;;'--eot SEND EXCESSIVE
OPERANDS MSG
TO USER

Chart PF. LOGON Command Processor (IHKLGN)

LENI

BI OPERAND
LENGTH = I

NO

LEN2

NO

LEN3

)..:Y:.:;E.;:.S __ <B2 OPERAND

=A

EI OPERAND YES
LENGTH = 3 ~:.:;.::.--<

NO

LENS

HI OPERAND
LENGTH::: 5

YES

YES

JI OPERAND YES
LENGTH = 7 :>---.... -<:

NO

ACNT

B3 OPERAND YES
~':':"..I.._< FOLLOWED BY >-~-_-<

PARENTHESIS

MID

~ 'PE'
~

YES

85---_..,
SAV~

ACCOUNTING
INFORMATION
POINTER

Flowcharts 317

• Chart PG. LOGON Command Processor (IHKLGN)

BUILD PARM
LIST FOR
USERID INVALID!
MISSINGMSG

BUILD PARM
LIST FOR
INVALID USERID
MESSAGE

FI __ ...,
IHKMSG SHB2

SEND
MESSAGE TO
USER

YES

SHB2

SEND MESSAGE
TO USER

GI r------r~~~--------~

318

YES

CALLUTM

B3---
IHKUTM WXAI

VERiFY USERID
AND SAVE
PASSWORD

BUILD PARM
LIST FOR
USERID IN
USE MESSAGE

F3---...,

BUILD PARM
LIST FOR
INVALID
PASSWORD MSG

SHB2

SEND MESSAGE
TO.USER

PROMPTPW

NO

BUILD PARM
LIST FOR
PASSWORD
INVALID!
MISSING MSG

YES

SET ACTIVE
BIT ON

• Chart PH. LOGON Command Processor (IHKLGN)

SEREXIT

Bl

ACCOUNTING rN.;.;;O,_,
EXIT EXISTS

SET POINTER
TO ACCOUNTING
INFORMATION

El-L---,
IHKIAX

LOGON
EXIT

BUILD PARM
LIST FOR
USER NOT
ALLOWED MSG

B2----,

GET TIME
AND DATE
OF LOGON

C2-'----.

BUILD PARM
LIST FOR
LOGON
MESSAGE

02-1---..,
IHKMSG SHB2

SEND MESSAGE
TO USER

YES

G"-'~--,
IHKMSG SHB2

SEND SHOW
SESSION TO
CONSOLES
REQUEST ALL
LOGONS

GET CONSOLE
10 FROM TUB
AS PASSED BY
IHKUTM

F3

G3-J'----,
IHKMSG SHB2

SEND SHOW
SESSION MSG
TO OPERATOR

NO

YES

Flowcharts 319

Chart PJ. MERGE Subcommand Processor (IHKMGE)

IHKMGE

FROM,
IHKCMD

LAST

320

NO

GET OPERAND
LENGTH

D2 ____

IHKMSG SJAI

YES QUEUE REQUIRED
>'-~--I OPERAND

MISSING MSG
FOR USER

K2_-'-__ -.
IHKMSG SJAI

QUEUE LINE
NUMBER
INVALID MSG
FOR USER

A3

B3

LAST
OPERAND

USERID
STORED

NO

SAVE
USERID

YES

YES

TSTCONTI
A4

TSTCONT PJG3

TEST FOR
CONTINUATION
PPT

D4

Kl

KEY
VALID

E4--'---.,

G4

SAVE
KEY

LAST

NO

YES

YES

NO

UIDERR
AS

IHKMSG SJAI

QUEUE USERID
INVALID MSG
FOR USER

OPRERR
C5 ____ ..,

IHKMSG SJAI

QUEUE
OPERAND
INVALID MSG
FOR USER

KEYERR
D5-___

IHKMSG SJAI

QUEUE KEY
INVALID
MSG FOR USER

G5
TSTCONT PJG3

TEST FOR
CONTINUATION
PPT

H5
IHKMSG SJAI

QUEUE
OPERAND
INVALID MSG
FOR USER

J5
IHKNUM WJAI

TEST OPERAND
FOR NUMERICS
AND SAVE

•

Chart PK.

= 0 Fl

= 1 HI

= 2 01

= 3 H2

F11_-'-_--,
GETAF1BF PKC5

GET BUFFER

MERGE Subcommand Processor (IHKMGE)

1 ~~:-M-:SG-::--':"SJ-:A7Il
QUEUE LINE
NO. RANGE
INVALID MSG
FOR USER

ONEOPR
H2:-...L.--.,

MOVE LINE
NO. TO
PARMATER
LIST

MOVELINE
J2:_-'-__ -.

IHKRNQ UAA2

QUEUE FOR
UTILITY FILE

K2~--'---...,
IHKAFI TEAl

CREATE
UTILITY
FILE

GET BUFFER

I~~I"'A-=F""I ~"""'TE""A-:"Il
POINT TO
BEGINNING OF
ACTIVE FILE

TEAl

GET BLOCK

SAVE LAST
LINE NO.

G3--'-_--,
IHKAFI TEAl

INSERT BLOCK
INTO UTILITY
FILE

=4

1~'M:-:-::SG;:--::-SJ~A7Il
QUEUE OUT OF

RETURN
AS_,--_,........,

FREEMAIN

SPACE ACTIVE I----l FREE
SAVE
AREA AREA MSG FOR

USER

E4
IHKAFI TEAl

RELEASE
ACTIVE
FILE

F4
IHKAFI TEAl

CREATE
ACTIVE
FILE

RETURN 1

GETAFIBF

D5,_L-_,........,
GETMAIN

GET BUFFER

Flowcharts 321

Chart PN.

IHKMAA

011_-" __ -,
IHKAFI TEAl

POINT TO 1ST
LINE OF UTILITY
FILE AND
RETREIVE 1ST KEY

Jl RANGE
MERGE

NO

Kl_-L __ -,
IHKAFI TEAl

POINT TO THE
BEGINNING OF
THE ACTIVE FILE

322

MERGE Subcommand Processor (IHKMAA)

YES

GETAA I>J.,_ __ -,
IHKAFI TEAl

GET BLOCK
FROM ACTIVE
FILE

PNM

CALCULATE
LINE NUMBERS

02_-'-__
INSAA POAI

INSERT
LINES INTO
ACTIVE FILE

TEAl
POINT BEFORE
1ST LINE OF
RANGE IN
UTILITY FILE

GETBLKUF
J2:_......L. __ ":::

RGETUF POA2

GET BLOCK
FROM UTILITY
FILE

NO

NO

TEAl

PTBFAA
G3 __ ----.

IHKAFI TEAl

POINT BEFORE
1ST LINE OF
RANGE IN
ACTIVE FILE

POA3

INSERT LINES
IN RANGE

INITIALIZE
AND SAVE
LINE NUMBER

J4~~~~~. NO .(MERGE AFTER
"LINE NO.

YES G5

K4._......L. __
CALC INS POA3

INSERT BLOCK

CALCULATE
LINE NO.
AND SAVE
IN LINE

Chart po.

ENDUP
ACTIVE
FILE

MERGE Subcommand Processor (IHKMAA)

PTAFTUFl
G2--'----.

RGETUF TEAl

POA2

GET LINES
FROM UTILITY
FilE

J2:_-'-__ _
CALCLNO PNM

CALCULATE
LINE NUMBERS

K2_-L_-,-.."
INSAA POAl

INSERT LINES
INTO ACTIVE
FILE

Flowcharts 323

Chart ps.

IHKMUF

YES

DI-~----,

IHKAFI TEAl

GET 1ST LINE
NO. FROM
UTILITY FILE

ENQBPM
HI_-1... __ ...,

IHKUTM WXAI

QUEUE
FOR IHKBPM

UTMGOOD

l~k=B=-PM-L-=-"

Kl

FIND
DATA SET

FOUND

MERGE Subcommand Processor (I~MUF)

NO

DSREAD
A2_.l..--_...,

IHKBPM UEAI

READ BLOCK

D2_-L. __ ...,

CALCINS PSH5

CALCULATE NO.
OF LINES AND
INSERT INTO
ACTIVE FILE

CALCULATE
AND INSERT
LINE NUMBER

SJAI

QUEUE DATA
SET NOT
FOUND MSG

TEAl

GET BLOCK
FROM UTILITY
FILE

ENDRANGE
H3-..L---...,

CALCINS PSH5

CALCULATE
NO. OF LINES
AND INSERT
INTO ACTIVE FILE

EODDS

J3
INSERTS NO

CLOSE
A4_..L.-_--.

IHKBPM UEAl

CLOSE
DATA SET

B4_....L-_-...,
IHKAFI TEAl

POINT AFTER
LAST LINE RE;t..D
FROM UTILITY
FILE

RANGE

NO

RANGEl

LAST

F4/l.INE OF7GO <" BLOCK.? 1ST A2
~L1NE OF

RANGE

YES

RANGE2
G4-...L.--....

FIND 1 ST LINE
IN RANGE AND
CALCULATE NO.
OF LINES LEFT
IN BLOCK

J4---_..,
IHKMSG SJAI

QUEUE NO.
LINES IN
RANGE MSG

YES

I H~-AF"'I-L.-T:::E""A""1

RELEASE
UTILITY FILE

C5_..1-_--,

DEQUEUE FROM
UTILITY FILE
QUEUE

RETURNI

CLOSE
E5_-L. __

IHKBPM UEAl

CLOSE
DATA SET

RETURN3

F5_.L-_,..-,
FREEMAIN

FREE
BUFFER

CALCINS

J5--L.--...,

CALCULATE
NUMBER OF
LINES TO BE
INSERTED

INSAF
K5----'---..,

IHKAFI TEAl

INSERT LINES
INTO ACTIVE
FILE

Chart QA.

IHKOUT

FROM:
IHKCMD

Bl
GErMAIN

GETMAIN
FOR WORK
AREA

Cl NO

OUTPUT and CONTINUE Command Processor (IBKOUT)

A:J.
IHKMSGOI SJAI

EXCESSIVE
OPERANDS
MESSAGE

C2

SET RETURN
CODE TO EIGHT

YES

K2-----,

SET SMSG
REQUESTED

A3
IHKMSGOI SJAI

INVALID
OPERAND
MESSAGE

ERREXIT
B3

FREEMAIN

FREE WORK
AREA

3---.......,
BUMP TO
NEXT PPT

IH~M-SG-OI--SJ-A-'l

JOB NOT
COMPLETE
MESSAGE

NO,

YES

SJAI
NO
DISCONTINUED
OUTPUT
MESSAGE

F4----,

SET TO
CONTINUE
BEGIN

G4 ____ ...,

IHKAFI TEAl

GET RJCT
ENTRY
FOR JOB

05---.......,

SET DEFAULT
CONTINUE

SET TO
CONTINI,JE
NEXT

INVALID
RECIPIENT
MESSAGE

KS--....,....-,
SET RETURN
CODE FOR
LOADING
IHKPUT

Flowcharts 325

-Chart QB. ~ransmit Output Module (IHKPUT)

326

IHKPlJr

FROM,
IHKCMD

BI.-L--~

INITIALIZE
TO SEND
OUTPUT

EI --.......

MOVE TTR
TO QMPA
EXTENSION

FI...L--..,
SRVGO QFAl

READ
SMWDSB

~ETMAIN
GET
SMF
BUFFER

83--...,...,
INITIALIZE
SMF
BUFFER

QFAl

TEAl

DELETE RJCT
ENTRY FOR

'JOB

E3-1-__ -,

BUMP COUNT
OF JOBS
ALLOWED IN
SYSTEM

F3-'---..,

CLEAR
JOB NAME
IN TUB

H'3-'-----.
IHKMSGOI SJAI

FREE
WORK
AREAS

YES

YES

DIS'CNOUT

A5---..,

YES ' TURN OFF
>=-oooool DISCONTINUE

BIT

NO

IHK~SGOI SJAI

SEND QMGR
DISK ERROR
MESSAGE TO
USER

J4--...............
SMFWTM

WRITE
SMF
RECORD

SAVE
POINTER
TO OLD
TlOT

05-1.--,-....,
GETMAIN

GET
$TORAGE
FOR TIOT

TURN ON
FREE TIOT
SWITCH

G5--'---...,

MOVE TlOT
FROM DSB
ENTRY TO
NEWTIOT

H5....L---,

CHANGE TCB
POINTER TO
NEWTIOT

J5....1..--,

GET VOLUME
SERIAL
FROM UCB

QFAI

LOAD
,IHKRER

Chart QC. Transmit OUtput Module (IHKPOT)

OPEN
SYSOUT
.DATA SET

111-""'----,
LDCGO QFAI

DELETE
IHKRER

Cl--I.-.--,

CHANGE
TCI POINTER
TO OLD
TIOT

FOR
SYSOUT
BUFFER

TO BLOCK
TO BE
READ.

WAIT FOR
I/O

ERR ,.-
I

®

FREE
nOT

. CHANGE
TC8 POINTER
TO NEW
TIOT

H2
CHECK

CHECK
RESULTS
OF 1/0

J2
CHANGE
TCI POINTER
TO OLD
TIOT

FIND
NUMIER OF
BYTES
JUST READ

E3
LDCGO QFAI

NO
LOAD
lHKRER

F3
lHKRER02 QKA 1

SCRATCH
DATA
SET

G3
LDCGO QFAI

NOSCRAT
H3

EOF
SETml
TO FIRST -,

I BLOCK

cW

SJAI

Flowcharts 327

• Chart QD.

Bl--'----,

SET UP
DEBLOCKING
STOP
ADDRESS

Cl-'---...-.
NOTE

TTR OF
BLOCK
JUST
READ

01---'--_-,

SAVE TTR
IN WORK
AREA

GI----'----.
OUTWRIT QFA3

SEND
RECORD

328

Transmit output Module (IHKPUT)

YES

YES

OUTFIXED

E2------,

GET LRECL
SIZE FOR
DEBLOCKING

F2 ___ ---,

GET
PHYSICAL
RECORD SIZE
FOR
DEBLOCKING

G2_ __ -,

GET
LRECL

OUTWRIT QFA3

SEND ONE
LOGICAL
RECORD

FIXMORE.
E3----.,

OUTWRIT QFA3

SEND ONE
LOGICAL
RECORD

CHANGE
TCB POINTER
TO OLD
TlOT

C5--'-----,
IHKMSGO 1 SJA I

SEND DISK
1/0 ERROR
MSG.

05--'-_---,

POINT TCB
TO NEW
TlOT

CLOSE
SYSOUT
DATA SET

F5--'-----,

POINT TCB
TO OLD
TIOT

G5--'--...,......,
FREEMAIN

SYSOUT
BUFFER

Chart QE. Transmit OUtput Module ClBKPOT)

GET ADDRESS
OF START
OF 5MB
WORK AREA

O2_...L._--.

INITIALIZE
MSGSIZE
COUNTER
TO ZERO

GETMSG
LENGTH TO
POINT TO
NEXTMSG

IGNORE
MESSAGE
TEXT

SMINC
F3

GET
MESSAGE
LENGTH

MOVE TEXT
TOUFER
IN WORK
AREA

GET LENGTH
OF TEXT
FIElD

ADD LENGTH
TO TOTAL
MESSAGE
lENGTH

MOVE TEXT
FROM
5MBTO
WORKARfA

PASS
WORK
ARfA
ADDRESS

QFA3

SEND
MESSAGE

SMIIL

GET
NO LENGTH

OFItANK
FIElD

H5

MOVE
PROPER SIZE
IN BlANK
FIElD

J5
ADD LENGTH
OF llANK
FIElD TO
TOTAlMSG
LENGTH

Flowcharts 329

• Chart QF.

QBKS
QCBI
QCE3
QCG3

REQUEST
LOAD OR
DELETE BY
IHKLDC

01 --,
IHKDSP GPAI

WAIT FOR
LOAD OR
DELETE

330

Transmit OUtput Module UHKPUT)

QBC3
QBFI

PASS ADDRESS
OFQMPA
AND ECB

YES

QBC4
QBGI

QDGI
QDE3
QDH2
QEJ4

YES

NO

YES

QCJI.
QDF3
<;IDJ2
QEC2

84-----,

. BUMP PAST
CONTROL
CHARACTERS

F4-....... ---,

SET DIS­
CONTINUe
BIT IN USER
TABLE

SAVE RJCT
POINTER AND
TTR
INFORMATION
IN USER TABLE

YES

YES

5---,--,
FREEMAIN

FREE
SYSOUT
BUFFER

J5---,-,
FREEMAIN

FREE
TIOT

• Chart QJ.

IHKRER

FROM:
IHKPIJ,T

GET ADDRESS
OF EXLIST
FROM
SYSOUT DCB

CI--'---,

PUT ADDRESS
OF JFCB
INTO EXLIST
OF DCB

011--'---...,

GET ADDRESS
OF VOLUME
SERIAL FOR
OBTAIN

GET JFCB
FOR
DSNAME
FOR OBTAIN

F11"0=-B"'TLA:-1 N-:-r-,

GET Dsce
OF SYSOUT
DATA SET

GOOD

EXIT

OPEN
SYSOUT
DCB

SYSOUT Open, Job Delete, Data Set scratch, and CANCEL Module
<IHKRER)

IHKREROI

FROM:
IHKDEQ
IHKRER

B2'_-L. __
IHKRNQ UAA2

GETON
QUEUE
FOR JOB
DELETION

SRVGO

QJD2
QJJ3
QKBI

841--,"-_-,
CLEAR WAIT
ECB AND
SET UP
PARAMETER
LIST

~N;::O;..,.._oo(H4

DT010
D2--'---~

SRVGO QJM

IEFQMSSS
READ IN
5MB/DSB

G2:_-L. __ ~
IHKRER02QKAI

SCRATCH
DATA SET

DTERRI
DTERR2

1~:M'-SG--S:-H""B""2

REQUEST
SERVICE
FROM
IHKSRV

I HE'K4D-S-P-'--G-P-A-l .,

WAIT FOR
SERVICE
TO BE
PERFORMED

DT020
H4-___ -,

H3 YES REMOVE REQUEST
;;';;;"++-1 FOR JOB

YES J2 MORE
5MB/DSB'S

DTOl5
J31_-L __ -,

SRVGO QJM

')..:.N;,;:O;..,.._ol DELETE JOB
FROM OS
SYSI • SYSJOBQE

DELETION QUEUE

H4

F5:---~

EXIT

H5

QJE2
QJH3
QKCI

J5i_-J.. __ ~

POST NEXT
REQUEST
FOR QUEUE

YES

Flowcharts 331

Chart QK.

IHKRER02

Bl_ __

SRVGO QJA4

READ J08
FILE CONTROl
BLOCK

PUT DATA SET
NAME IN
SCRATCH LIST

El--'----,

PUT NUMBER
OF VOLUMES
IN LIST

FI--'-----.

SET POINTERS
TO VOLUME
INFORMATION

PUT DEVICE
TYPE AND
VOlUME SERIAL
IN LIST

HI MORE
VOLUMES

SCRATCH
DATA SET

RMVOO15

332

SYSOUT Open, Job Delete, Data Set Scratch, and CANCEL Module
(IHKRER)

82_.1.-_,......,
GETMAIN

NO

RPOINT
GET RJCT
ENTER

NO

=812 F2 4
-~TURN CODE)=...;.-_~

C3i-___ _

SET RETURN
CODE TO
EIGHT

D3 ____ _

IHKMSGOI SJAI

SEND ERROR
MESSAGE

F3 ____ _

IHKMSGOI SJAI

JOB NOT
FOUND
MESSAGE (0 '--____ ...J

YES

G2 NO

H2-___

UPDATE
POINTERS
TO NEXT
VOlUME

G31 ____
IHKMSGOI SJAI

INVALID
RECIPIENT
MESSAGE

NO

A4

A4_-'-_--.
IHKAFI

RDELETE­
DELETE

TEAl

RJCT ENTRY

C4._-,-__ ...,
IHKREROI QJA2

REMOVE 05
REFERENCES
TO JOB

TEAl

FREE SAVE
AREA AND
RJCT BUFFER

HI4-----.

SET DELETE
FLAG IN RJCT

I:K-A-FI-'----TE-A-,l

REPLACE RJCT
ENTRY IN
GLOBAL FILE

K4--1L..---r--.
CANCEL

ISSUE OS
CANCEL
COMMAND

Chart QQ. RENUMBER Subcommand Processor (IHKRNR)

IHKRNR

GET SAVE
AREA &
WORK AREA

HII_....L. __ _

IHKNUM WJAI

CHECK OPERAND
FOR LENGTH
& NUMERICS

K2 ___ --.

PROCESS
INCREMENT

f<'-----.

PROCESS
LINE NUMBER

MSGRTN QT04

SEN~'

ERROR
MSG

SEND
ERROR
MSG

'&:-:RT:::N-:--::Q:::rD4=-:"1

SEND
ERROR
MSG

Flowcharts 333

Chart QR. RENUMBER Subcommand Processor (IHKRNR)

334

TEAl

POINT TO
FIRST RECORD

UTILITY GLOBAL
FILE IS CREATED

AFIO
BUFFER

POINT TO FIRST
LINE IN
ACTIVE FILE

RAFRTN4

I~~A-F-I---TE-A""'I

GET RECORD
FROM ACTIVE
FILE

GET NEXT
RECORD

RNRO

C4
ANY RECORDS)NO C~ ~;r~ <- TO BE r~-04-<-'" RECORDS

RErNUMB:::D RENUMBE~ED X:sr;?-
RNR3 ~

RNRI OS
O4/IS THIS

/' THE FIRST)"';';;:"'_-<.
'-RECORD TO BE

0.~:i;O
E4

ADD INCREMENT
TO LAST LINE
NUMBER

MOVE LINE NO.
TO RECORD KEY·

MOVE UNE NO.
INTO RECORD

NONUMREC
ALL

YES K4 RECORDS r NWORKAREA
'RENUMBERED"

OS '--/
AI

E348

YES

Chart QS. RENUMBER Subcommand Processor (IHKRNR)

TEAl

INSERT RECORD
IN UTILITY FILE

RELEASE
UTILITY
FILE

RNRIO

I J~A -",F1--l-""T"'"EA7'I"

REPO

CREATE NEW
ACTIVE FILE

Hl_ __ -,
IHI<AFI TEAl

REPI

POINT TO
BEGINNING
OF \.IT1LITY
FIL~

KI_-I. __ --.
IHI<AFI TEAl

POINT TO
BEGINNING
OF ACTIVE
FILE

GET
RENUMBERED

. RECORD FROM
UTILITY FILE

GET NEXT
RECORD

=<1,12

RER4
.....::'AN~

F4 RECORDS, NO
<TO BE INSERTED1P INTO ACTIVE

"AREA' aT

YES Al

G4_-'-___ ""

IHKAFI TEAl

INSERT RECORDS
INTO NEW
ACTIVE FILE

REP5
ALL

J4 RECORDS

~EPlACEDIN
ACTIVE

FilE

UPDATINC
K4--'----,

SET NEW
INCREMENT

Flowcharts 335

Chart QT. RENUMBER Subcommand Processor CIHKRNR)

336

TEAl

ENDUP
FTYPE=XGBL

TEAl

RELEASE
GLOBAL
FILE

FI
RETURN
CODe

TEAl

ENDUP

=12

HI RETURN =12
CODE >--.;;:...-+(

YES

SEND
ERROR
MSG

UPDATINC
A31-...l----,

SET NEW
INCREMENT

DEALLOCATE
SAVE AREA
AND WORK
AREA

RNRRET

IHKCMD

QQJ4
QQK5
QQB5
QTK2

F4
IHKMSGOI

QUEUE
ERROR
MSG

SJAI

GOODRET

G5
YES

RETURN

QQAJ
QTB3

Chart QW. SAVE Subcommand Processor (IHKSAV)

DI IS THIS
/A RETURN TO
"",-SAVE AFTER lCOND:N:E

IS
EI THIS < AN ABEND
TERMINATION

FI_.....L __ ...,
INITIALIZE
TUBPMFNM
WITH THE
FILE NAME
FROM DIR

G II~'_L-_---.
FRSTTEST QWBJ

TEST FOR
OPERAND
IN PPT

,/I's

B2
NEXTTEST QWA3

TEST FOR
OPERAND
IN PPT

'K'

F2_-L __ ~
IHKMSG SJAI

SEND MSG TO
USER INDICATING
THIS OPERAND
IS IN ERROR

HI OPERAND NO <OF ACCEPTABL >--------,
"LENGTH

ERROPNDI
J2_..1-_--.

DOES IHKMSG SJAI

<B~I~~~H ')-:.N.:::O~_,.j~~~I~~~C:~ING
APHABETIC THIS OPERAND

CHAR' IS IN ERROR
YES

KI--'----,

MOVE FILE
NAME INTO
TUBPMFNM

C2

YES

YES

FRSTTEST

BJ
ENTRY

FROM
QWGI

TSTOPND3
D

NEXTTEST QWA3

TEST FOR
NEXT OPERAND
IN PPT

IS

NO

RESET POINTERS
TO THE NEW
PPT

F3 OPERAND NO <2 CHARACTERS >-=------1
IN LENGTH

SAVE KEY WORD

IS
J3 THIS THE < SECOND
""-OPERAND

REINITIALIZE
TU8PMFNM
WITH THE FILE
NAME FROM DIR

NO

NO

H4---'-~_~
IHKMSG SJAI

SEND MSG TO
USER INDICATING
THIS OPERAND
IS IN ERROR

LASHEST

N~-T-TE-SLT -Q-:O-W-A:"'I3

TEST FOR
OPERAND
IN PPT

K4,_-,-__ ."
IHKMSG SJAI

SEND MSG TO
USER INDICATING
EXCESSIVE
OPERANDS

115---_
EXIT

ERRDSDUP
E5-......L __ ...,

IHKMSG SJAI

PROMPT USER
FOR NEW
FILE NAME

H5 DOES
NO OPERAND

BEGIN WITH
ALPHABETIC

J5,-'--'-----.

MOVE FILE
NAME INTO
TUBPMFNM

Flowcharts 337

Chart QX. SAVE Subcommand Processor (IHKSAV)

TEAl

POINT TO THE
BEGINNING OF
ACTIVE AREA

CI

82_-1.. __

SET DSNAME
EQUAL TO
'ACTIVE'

NULLFILE
C2----~

IHKMSG SJAI

YES SEND MSG TO
~';';;"-~USER INDICATING

NULL FILE AND
SAVE TERMINATED

NO

FREERAFB
EII-..I--.,.....,

FREEMAIN

FREE AREA
OBTAINED
WITH POINT

HAS

<fl THERE BEEN YES
~ CONDENS >-'-;;.;..----..,

PREVIOUS

NO

ENQUEUE
GI_...L.. __ ..,

PROVIDE CODE
AND USERID AND
ADDRESS OF TUB

HI_-'-__,

IHKUTM WXAI

FIND

QUEUe FOR
BPAM
OPERATIONS

Jl_-1 __ ~

SAVE DDNAME
FOR USE BY
CONDENSE

338

RNQUEUE

G2-..l-_--,

PROVIDE BPAM
QUEUE ELEMENT
AND COUNT
ADDRESSES

H2-....L._--,
INKRNQ UAA2

QUEUE fOR
BPAM
OPERATIONS

FINDI
J2_....L. __ ~

IHKBPM UEAI

USE '0' fORM
OF RFIND TO
ACCESS
LIBRARY

IS

A3 NAME UNIQUE')..!Y..:;;ES::....----_____ 0-<3 THE FILE

IN LIBRARY

C3 IS
DUPLICATE
FLAG SET

YES

YES

NO

04 IS
TUBABEND
FLAG SET

NO

/DOES
E4TUBPMFNM)

EQUAL
DIRFNAME

FIRSTEST

I-----<QX

PROVIDE
COUNT FOR
MUL TlPLE
RGET

G5_..L. __ ~
IHKAFI TEAl

RGET GeT A
FROM ACTIVE
AREA

f5

Chart QY.

CHKWRITE
BII_-L __ ...,

IHKWTR UPAI

EI

CHECK ON
RESULTS OF
LAST RWRITE

IS
END-OF-DAT ,<Ii

FLAG SET

Fl

MOVE THE
DIRECTORY
INTO THE
KONBOX

GI
TIME

OBTAIN
DATE

IS
HI DIRFNAME

=TUBPMFNM

YES

SAVE Subcommand Processor (IHKSAV)

YES

NO

NO

RTRNOSTW
C31--'----,

IHKBPM UEAI

SET RETURN
CODE TO
ZERO

)--_-iRCLOSE-NOSTOW ~----.l~

UEAI

H2----

ZERO TlMES-
SAVED COUNT
IN KONBOX DIR.

J2

SET NEW
CREATION
DATE

SETDATE
K2

SET NEW
LAST MODIFIED
DATE

THE DATA SET
NAMED IN FIND

PLACE DATA
SET NAME IN
KONBOX DIR

E3

PLACE BLOCK
COUNT IN
KONBOX
DIRECTORY

G3 WAS

~DSNAME
OPERAND
GIVEN

YES

SET KEY
H3

SET THE KEY,
IF ANY, IN
KONBOX
DIRECTORY

C 1,0 STOW
J3

IHKBPM UEAI

RCLOSE-STQW
THE DATA SET
NAMED IN FIND

NO

SETABENDI
E4

IHKMSGOl SJAI

QUEUE MSG TO
USER INDICATING
ABEND SAVE
UNSUCCESSFUL

SETABEND2
F4

IHKMSGOl SJAI

QUEUE MSG TO
USER INDICATING
ABEND SAVE
SUCCESSFUL

NO

LOST
DATA IN
80 CHAR
LIBRARY

NO

(0

NO

IS

~UPLICATE
DSNAME FLAG

ON

E5
RESTORE TO
ruSPMFNM
THE DSNAME
GIVEN IN THE
EDIT COMMAND

F5
FREEMAIN

RELEASE
SAVE AREA

G5·

RESTORE
REGISTERS
TO CALLING
ROUTINE

TO,IHKCMD

IHKMSG SJAI

YES QUEUE
WARNING
MESSAGE

Flowcharts 339

Chart QZ. SAVE Subcommand Processor (IHKSAV)

340

CONDENS1
82--&,.-_

SAVE FILE NAME
>---~ GIVEN IN

SAVE
FILE NAME
GIVEN IN
TUBPMFNM

CHKSRTCH

MOVDSNM
H1----...,

MOVE DSNAME
INTO TUBPMFNM

)1--'-__ ...,

IHKRNQ UAA2"

NO

YES

TUBMFNM

02 IS
TUBABEND
FLAG SET

PROMPT USER
FOR DSNAME
TO SCRATCH

rD3

I PROVIDE ADDRESS
OF TUB AND AVT
FOR CONDENSE
PROCESSOR

ERRDSNM
G3i_ __ ...,

IS IHKMSGOl SJA1
G2 REPLY
OF ACCEPTABLEi~N.:::O~_"iINDICATE ERROR

'-' IN DSNAME
LENG TH AND PROMPT FOR

J2 ____ _

IHKBPM UEA1

RSCRATCH­

NO

NEW DSNAME

NO

QUEUE
FOR BPAM
FUNCTION

I---~ REMOVE
DATA SET FROM
USER LIBRARY

RTRNCNDS M. ___ --,

RESTORE FilE
NAME IN PROCESS
TO TUBPMFNM

B4

IS

YES

ERRCNDS
85--_--,

IHKMSG01 SJA1

INFORM USER
THAT FILE MAY
BE DAMAGED

ERRCNDS

I~~'M--SG-O:-l--""
C4 THERE YES

<0DICATION OFF:>-=--oeoI
DAMAGE TO

'~
B1

PRMTDSNM
E4--'---:;

IHKMSG01 SJAl

INFORM USER
OF DUPLICATE
DSNAME AND
PROMPT FOR NEW

TSTDSDUP

ERRDSDUP
GSi_-'-_--,

IH KMSG01 SJA 1

INDICATE ERROR
IN DSNAME
AND PROMPT FOR
NEW DSNAME

H4 IS REPLY
OF ACCEPTABLE :>-N,.;.;O"-____ -!

LENGTH

MOVE DSNAME
INTO TUBPMFNM

NO

"

Chart RA.

IHKSCN

FROM:
IHKCMO

01
SUCCESSFUL

JI

PRESENT

SCAN Subcommand Processor. (IHKSCN)

NO

GETFAIL

02'-----,

STORE RETURN
COOE OF 8 IN
REGISTER 15

Flowcharts 341

Chart RB. SCAN Subcommand Processor UHKSCN)

342

QUEUE FOR
IHKSYN

B2.~ ___ ...,

STORE O'S
IN FIRST LINE,
9'S IN LAST
LINE

FREE
SAVE
AREA

A3_ _--,
IHKSYN WRA2'

J3:---.....
RETURN

SJAI

Chart RE. SEND Command Processor (IHKSND)

FROM,
IHKCMD

Cl_'--_~

GETMAIN

OBTAIN
SAVE AREA

TSTANY

HI ANY

ERR317
H2

!INITIALIZE

OPERANDS
NO / PARAMETER

)---...,IST FOR REQUIRED
OPERANDS MISSING

YES

Jl---'----,

STORE
ADDRESS OF
MESSAGE
TEXT

MSG·

J2_-.L.~_...,

MSGRTN RGGI

SEND ERROR
MESSAGE

A3 UNITIALIZE
PARAMETER
LIST FOR MSG

LENGTH EXCEEDS

B3_-,-__ ...,
MSGRTN RGGI

E3

IS
54 THIS A

DUPLICATE
OPERAND

~

YES

F3 ANY MORE YES F4-MAXIMUM) YES
OPERANDS >'-:.:....-....... < OPERANDS ~;;:""--I"

EXCEEDED

NO

G4--'---...,

MOVE OPERAND
TO WORK AREA

H4 OP~R~~OR
~ ORO

SUBMITTED

NO

J4 US~~R U
SUBMITTED

NO

IS
-K4 T I

~
O· HSAN

M OPERATOR
ORO _

OPERAND
'"

YES

YES

C5-...L ___ :1

MSGRTN RGGI

SEND ERROR
MESSAGE

SEND ERROR
MESSAGE

Flowcharts 343

Chart RF. SEND Command Processor (IHKSND)

344

Jl--'---.....
MSGRTN RGGI

SEND ERROR
MSG

RGGI

SEND ERROR
MSG

J31_--'---'-..,
MSGRTN RGG!

SEND ERROR
MSG

B4--~-......
MSGRTN RGGI

SEND ERROR
MSG

IHKUTM WXAI

VALIDATE
USERID

STORE
USERID

Chart RG. SEND Command Processor (IHKSND)

Al IS
COMMAND

VALID

Bl IS NO
MSG FOR A

USER

Cl IS YES THE USER
ACTIVE

OJ/SHOULD

~SG BE SAVED YES
FOR LATER

ELiVERY

Fl~-'-__ ,
MSGRTN RGGl

SEND MSG

RFE2 REG2 '. --,--­
RF J3 REKl
RGFI REJ5
RGF2 REC5
RGE3 RFB4
RGE4 RFJl Hl_-,-__ .,

IHKMSG SH82

QUEUE
MSG

Jl REQUEST
SATISFIED

YES

FREESAV
A:2
FREEMAIN

DE-
ALLOCATE
SAVE AREA

IHKCMD

B2
IHKMSG SHB2

SEND MSG (0
CENTRAL
OPERATOR -

C2 MSGRET
IHKMSG SHB2

C3 TEST
SEND MSG I-...... ~~ RETURN CODE
TO USER

F2_--,-__ ,
MSGRTN RGGl

SEND MSG

J2-----.....
RETURN

REA3
RGA':1
RFJ5

RGGl

SEND ERROR
MSG

E4--'-__ -,
MSGRTN RGGl

SEND ERROR
MSG

Flowcharts 345

Chart RJ. STATUS Command Processor (IHKSTS)

346

IHKSTS

GI

TEAl

RPOINT TO
JOBNAME IN
RJCT

ERROR
E2---_~

IHKMSG SJAI

QUEUE
INVALID

OPERAND
MSG

NOJOBNAM
83--'---.

IHKAFI TEAl

RPOINT TO
1ST RECORD
IN RJCT

YES

E3_-L __ ~
CHKSTS RKAI

CHECK STATUS
OF JOB

J3_~-,-_~

CHKSTS RKAI
J2 JOB

>-~.:.o __ ~ BELONGS TO ~Y;:;ES=--_-l CHECK STATUS
OF JOB

QUEUE JOB
NOT FOUND
MESSAGE

THIS USER

NO

INVREC
K2_-'-__ ~

IHKMSG SJAI

QUEUE INVALID
RECIPIENT MSG

NOJOBS C4 ____ ~

IHKMSG SJAI

QUEUE NO J5
JOBS IN
SYSTEM MSG

D4 ____ ~

IHKAFI

G4 ___ --.

IHKMSG SJAI
G5 CHECK .0

QUEUE JOB
STATUS MSG

I--_~ RETURN CODE J5

J5
RESTORE

J4 CHECK =8,12 J5 IEFLOCDQ
RETURN CODE >--+-< LOADED

SJAI

QUEUE JOB
STATUS MSG

NO

YES

• Chart RK.

RJE3
RJJ3

GPAI

WAIT FOR
IHKLOC TO
BE LOADED

SET POINTER
TO FIRST
JOB QUEUE

STATUS Command Processor (IHKSTS)

YES

NO

NORM
B3-----.

BUILD PARM
LIST FOR
NORMAL END
MSG

ABNORM
C2-.1.....-----,

C3/----i

BUILD PARM
LIST FOR
ABNORMAL
END MSG

POST
IHKSRV
TO CALL
IHKLOC

-F2-L--~
IHKDSP GPAI

WAlTON
RETURN FROM
IHKLOC

YES

POINT TO
NEXT JOB

. QUEUE

FND

RETURN

RJF3
RJJ4

G3-----,

SET RETURN
CODE TO 12

QPOS
H3---~

BUILD PARM
LIST FOR JOB
SCHEDULED
MSG

J3 JOB'

EXECUTING
NO

YES

EXECUTE
K3----t----.·

BUILD PARM
LIST FOR JOB
EXECUTING
MSG

AGAIN
J4--

IHKAFI TEA 1

RPOINT TO
GET RJCT
ENTRY

K4
. RETURN

CODE

4,8,12

B5
LOADER

TASK
ACTIVE

IHKLDC
FOR
IHKLOC

GPAI

WAIT FOR
IHKLOC TO
BE DELETED

DISKERR
G5-'----,

BUILD PARM
LIST FOR
DISK ERROR
MSG

J5

K5-"-----,

BUILD PARM
LIST FOR JOB
NOT QUEUED
MSG

NO

Flowcharts 347

chart RO. SUBMIT Command Processor (IHKSUB)

FROM:
IHKCMD

B 1--''-----'r-1
GETMAIN

B4 JOB

85---,-..,
NOTE

GET SAVE
AND WORK
AREA

.>-,.;.;;;;;.... ... , CARD WRITTEN -r.;.;N",O'--+-t
FOR JOB IN

GET TTR
FOR END
OF FILE

348

Cl
GOOD
RETURN

REQUEST
CALL TO
IHKGET

F1RE~~~ED
FROM

IHKGET

NO

YES

C2----....

SET RETURN
CODE TO 8

F2--_--,
IHKMSGOI SJA 1

=16.ROD5

SEND
MESSAGE
TO USER

NO

NO

SET CLOSE
DOWN SWITCH
FOR IHKGET

J
SRVGO RRA5

REQUEST
IHKSRV TO
START
RDRCRJE

RETURN
K3
FREEMAIN

FREE
SAVe
AND WORK
AREA

ERROR
YES

READEOD
D4
IHKBPM UEAl

RCLOSE-
LI~ARY

E4

INDICATE
LIBRARY
NOT OPEN

F4
FREEMAIN

YES FREE LAST
OUTPUT
BUFFER

G4
SRCHRJCT RRAI

YES WRITE RJCT
FOR LAST
JOB

H4
IHKMSGOI SJAI

NO SEND NO
JOB IN
SUBMIT
MESSAGE

ERRCLSE
05--'---...,
IHKUTM WXAI

FLAG
LIBRARY AS
INOPERATIVE

E5--'----,
IHKMSGO 1 SJA 1

F5--'---...,

SET UP
FOR MESSAGE
*241

Chart RP.

Al R/I
DATA SET

ALLOCATED

81 ALL <' OF BLOCK
"'-!'ROCESSED

YES

WRITIT02
Cl--'----.

GET
ADDRESS
OF BLOCK

WRITlT03

D 1---''----,..-.
WRITE

WRITE
BLOCK TO
R/I DATA
SET

EI

LIB

Gl_...L.. __ -,

IHKBPM UEA 1

RREAD'
BLOCK

NO

NO

ACT

SUBMIT Command Processor (IHKSUB)

Al-----.
TURN OFF
DO DATA
FLAG

E2 //IN
FIRST TWO
COLUMNS

F2---
IHKAFI TEAl

RGET
BLOCK

EDITBLK

NO

A31---'----.
EDIT BLOCK
TO BO BYTE
RECORDS
FROM B8

POINT
TO INPUT
RECORD

GPAI

H4,--JL----,--,

FREEMAIN
HI WRITE NO
OUTSTANDING >----------------------1 FREE

BUFFER

JI I/O
COMPLETE

NO

E4'

A
~

RPA3 =0

ROD4 =4

ROC3 =8

ROD5 =12

J3 RETURN
CODE FROM

IHKBPM

F5

SJAI

IHKMSGO I SJA I

Flowcharts 349

Chart RQ. SUBMIT Command Process.or (Ilfl{SUB)

350

Gl-...1--..,

CLEAR J08
SWITCHES
AND INITIALIZE
RJCT

Hl--'--_.....,
IHKAFI T~1

SEARCH
FOR JOBNAME

Dl,JP
Kl-L-_--,

IHKMSGOI SJAI
SEND
DUPLICATE
JOBNAME
MESSAGE

NO

NO

A2 -....,.....,
JeL EXIT

L T J L
EXIT LOOK
AT
STATEMENT

F2--_...,
SRCHRJCT RRA 1

WRITE RJCT
FOR LAST
JOB

G2----..

WRITE
RECORDS
PRECEDING
,JOB CARD

NO

EXIT
HAVE

. MESSAGE

B4 LIBRARY
OPEN

C4_'--_-,
IHKLAD HAAI

WRITE EXIT
MESSAGE TO
USER

F4-----,
LDCGO RRA4

YES

NO INVOKE
>----I~ IHKALC TO

ALLOCATE R/I
DATA seT

H3--J~-.,

WRITE
JOB
STATEMENT

J3 -....,...,
NOTE

GeT TTR
• OF JOB

STATEMENT

= 4 RQKl

= 8 RPG5

= 12 RPH5

= 16 ROC,

=20 RQG5

=24 RQD5

A5 _-'--_--,
IAKMSGOI SJA 1

SEND EXIT
ABORTING
SUBMIT
MESSAGE

B5-----,
IHKBPM UEA 1

RCLOSE
LIBRARY

D5_..L-__ .,

IHKMSGOI SJA 1

SEND MESSAGE
TO USER
(MSG. *398)

G5-.l.----,
iHKMSGOl SJA 1

SEND NO
DDNAME IN
PROCEDURE
MESSAGE

H5 --''-----..,

SET UP
FOR
MESSAGE
*236

NO[iDMSG
J5-.l.-_--,

IHKMSG02 SKA 1
SEND
MESSAGE TO
CENTRAL
OPERATOR

• Chart RR. SUBMIT Command Processor (IHKSUB)

ROG4
RQf2

B2 B5 -

IHKMSGOI SJAI
POST

BIMAXIMUM
YES SEND YES IHKSRV fOR

JOBS MAXIMUM IHKALC OR
EXCEEDED JOBS EXCEEDED

START

M
RDRCRJE

NO

4

CI SET RETURN GPAI

EXEC NO CODE TO I WAIT FOR
RECEIVED SERVICE

YES

IHKAFI TEAl PAl

(D5
RPOINT- WAIT FOR

POINT LOAD
_ EXIT

FOR INSERT RRH4
ROK3

EI GOOD
E3 SET RETURN

NO LOAD NO CODE TO I
RETURN SUCCESSFUL

YES

FI 4
IHKAFI TEAl F3

SR GO RRA5

IHKACL ALC INVOKE
INSERT OR IHKSRV TO

IHKGET EXECUTE
IHKALC

GET

G2 G
IHKGET RSAI

GI
GOOD

DECREMENT
YES COUNT OF POINT TO RETURN

JOBS NEXT DATA
ALLOWED SET

NO

ENDAFI
H2 H5
IHKAFI TEAl H4

POST

LOADER NO IHKLDC TO

TASK DELETE

ACTIVE IHK GET 0
IHKAlC

YES

J3 J5
IHKMSGOI SJAI IHKDSP GPAI

NO
WAIT FOR
DELETE

NO

. K5

) C EXIT

ROH3 ROFI
RQGI RQG4

Flowcharts 351

'Cnart RS. SUBMIT Input Record Processor (lHKGET)

352

FROM:
IHKSUB

81 FIRST
ENTRY

POINT
TO DSNAME
IN PPT

GpDSNI

F1 END
OF
PPT

G1

CLEAR NAME,
USERID AND
KEY FIE~DS

SAVE
DSNAME

YES

GETDSNO
82------,

POINT
TO START
OF PPT

NO

E3

SAVE
USERID

D4;AAxIMUM
OPERANDS
EXCEEDED

E4

SAVE NEW
COUNTOF
OPERANDS

F4

SAVE
POSITION
IN PPT

IHKUTM WXA1
GET DONA ME
AND GETON
LIB I/o
QUEUE

J4 RETURN
CODE

YES

ACTIVE

HIGH

05

RETURN
EXCESSIVE
OPERAND
MESSAGE

FINDACT

RETURN OS NAME
NOT FOUND
MESSAGE

YES

Chart RT. SUBMIT Input Record Processor (IHKGET)

G4
TEAl USER IHKAFI TEAl RETURN

RPOINT NO G3 HAVE NO PARENTHESES
POINT TO ACTIVE

CREATE 0 UNBALANCED
BEGINNING FILE RECREATE MESSAGE
OF FilE DSLIST FILE

YES

LDSLRG2 DSLRELSE
H3 H4

IHKAFI TEAl IHKAFI TEAl
NO RPOINT- RELEASE

POSITION AFTER OS LIST
LAST OS NAME FILE
PROCESSED

YES

J2 J3
IHKAFI TEAl IHKAFI TEAl

Jl DSLIST YES RPOINT -
J4 GOOD YES

J5 NO
~ATTRIBUH RGET - RETRIEVE

RETRIEVE NEXT RETURN
FIRST OS NAME
DSNAME

lDSlRG3 LDSlEOD

K3 ~:61!T
IHKAFI TEAl

K2 RETURN EOD NO
CODe USER'S ACTIVE CREATE 0

FILE RECREATE
ACTIVE FILE

Flowcharts 353

Chart RU. SUBMIT. Input Record Processor (IHKG:E;T)

ERR

354

DSlISTl Bl_ ~ __

IHKAFI

CREATE
DSLIST
FILE

01
IHKAFI
RPOINT
POINT TO

TEAl

TEAl

BEGINNING OF
DSLIST FILE

El

IHKBPM UEAl

RReAD
BLOCK

G

IHKAFI TEAl
INSERT
MOVE BLOCK
TO OSLIST
FILE

I\l!--_..,
RETURN

YES NESTED

EOD

, DSLIST
DSNAMES
MES'SAGE

IHKBPM UEAl

RCLOSE

02
RETURN
OUT OF SPACE
ACTIVE AREA
MESSAGE

PNTERR
E2

IHKBPM UEAl

RCLOSE

DSLEOD

G2
IHKAFI TEAl

ENOUP

'H2
IHKBPM UEAl

RCLOSE

RTC4

F5
IHKAFI TEAl

NO CREATE
RECREATE
DSLIST FILE

YES

G5
IHKAFI TEAl

RELEASE
DSLIST
FILE

H5
lHKAFI TEAl

CREATE
RECREATE
USER'S FIle

Chart RZ. Allocate Routine (IHKALC)

IHKALC

FROM:
IHKSRV

BI_L-_~

GETMAIN

YES

INITIALIZE
DCBAND
DECB

Fl

SET RETURN
CODE TO
20

FREE JfCB
AND START
RDRCRJE
PARAMETERS

HI

0-----,
SET
RETURN
CODE
TO 16

SUBUCB

G2

SET RETURN
. CODE TO
24

YES

YES

E3
SET UNIT
TO 2311 IN
START
PARAMETERS
AND RJCT

F3
SET UNIT TO
2314 IN
START
PARAMETERS
AND RJCT

E4
MOVE VOLUME
SERIAL TO
START
PARAMETERS
AND RJCT

F4
RDJFCB

READ JOB
FILE
CONTROL
BLOCK

G4
SVC 32

SET
RETURN

. CODE
TO 0

K4--''--.....,,.....,
FREEMAIN

FREE
JFCB

S:~-::32::-----'
RETURN CODES:
4-DUPLICATE

NAME
a-OUT OF SPACE
12-1/0 ERROR

Flowcharts 355

Chart SE. TABSET Command Processor (IHKTAB)

IHKTAB

FROM:
IHKCMO

BII---'--,--,
GETMAIN

GET
SAVE
AREA

INITIAL
C2!-----,

CI SUCCESSFUL ,>-Y:.:E;:S_-eool ESTABLISH
, LINKAGE ANO

GETMAIN AODRESSABILITY

01_-'-__ ...,

SET RETURN
CODE TO 8

ERR321
JI~ ___ ...,

IHKMSGOI SJAI

356

YES

02--'----,

POINT TO
THE FIRST
PARM IN PPT

E2

POINT TO
NEXT PPT
OF CHAIN

SETOFF

IS
;;3 THIS OPNO

"'~ 0
OPNDNEX

03:-'--'----,

POINT TO THE
NEXT PARM IN
PPT

G3 OPNO
CTR>

2

YES

YES

INOUT321

ERRJ34
G4

IHKMSGOI SJAI

EXCESSIVE
OPERANDS
MESSAGE

PARENCHK

H4 OP~~!~D YES
IN PAREN

GROUP

YES

K4
SET SWITCH
FOR ERROR
MESSAGE SENT
FOR PAREN
GROUP

ERR321 AS ___ -,

IHKMSGOI SJAI

SJAI

INVALID
OPERAND
MESSAGE

PARENLST

H5 ERROR
MESSAGE

ALREADY SENT
FOR GROUP

NO

PARENOUT
J5

REDUCE OPND
COUNTER BY ONE

ERR302
K5

IHKMSGOI SJAI

INVALID·
OPERAND
MESSAGE

YES

Chart SF. TABSET Command Processor (IHKTAB)

ERR302
82 ____ -,

AS
81 THERE YES

<". A PRIOR OFF >-;..;;.;;.-~
""OPERAND/'

IHKMSGOI SJAI

INVALID
OPERAND
MESSAGE

IS
Jl THIS THE

<LAST OPERAND
""'OF PPT

CHAIN

NO

Kl--'----,

POINT TO THE
NEXT OPERAND
IN THE PPT CHAIN

YES

ERR302
E2~ ____ --,

IH KMSGOI SJAI

INVALID
OPERAND
MESSAGE

POINT TO THE
FIRST OPERAND
OF PPT CHAIN

83 NO
OPERANDS

G3 OFF
<: AND OUT OR

",",OUTPUT
OPNDS

NO

YES

YES

YES

C4_-,-_...--,
FREEMAIN

FREE INPUT
TAB AREA

OFFOUT

FREE
OUTPUT
TAB AREA

YES

C5----....,

ZERO
TUBTABAD
FIELD

G5----,

ZERO
TUBOUTAB
FIELD

ERR334A
K5_'""-__ -,

IHKMSGOI SJAI

EXCESSIVE
OPERAND
MESSAGE

Flowcharts 357

chart SG. TABSET Command Processor (IHKTAB)

358

IS

ERR302A
B2--_----,

IH KMSGOI SJAI

Bl OPERAND YES
OF LENGTH ~.:.:....-~

> 3

INVALID
OPERAND
MESSAGE

POINT TO
FIRST CHAR
POSITION
OF OPERAND

NO

Fll--'----,

POINT TO
NEXT CHAR
POSITION
OF OPERAND

E2'----"

PACK THE
NUMBER
AND CONVERT
TO BINARY

F2 IS
NUMBER

<TWO

STORE NUMBER
IN TEMPORARY
WORK AREA

NO H2 IS
.... -..;..;,;:...(NUMBER

>80
OF USER BUFFER

IS ~

YES

YES

YES

NO

STORTABI

A4 IS
TUBOUTAB

ZERO

NO

GETTAB
B4,_-'----,-,
GETMAIN

GET AREA
FOR TAB
TABLE

STTABI
C31_-'---..,

MOVE SETTINGS
FROM WORK
AREA INTO
ALLOCATED
TABLE AREA

YES C4 GE~~!'N
14---< SUCCESSFUL

STTAB2

IS
D3 'OUTPUT' YES

INDICATOR)-----1
SET

NO

E3-...I.---..,

STORE TABLE
ADDRESS IN
TUBTABAD

ERR302B
F3-----,

IHKMSGOI SJAI

INVALID
OPERAND
MESSAGE

OUTLIMIT

ERR381
H3-...L __ ..,

IHKMSGOI SJAI

SETTING
EXCEEDS
LIMITS
MESSAGE

ERRSEQ
J31-----,

IHKMSGOI SJAI

D4.-__ --,

STORE TABLE
ADDRESS IN
TUBOUTAB

SET
RETURN
CODE
TO 0

Jl THIS THE NO ' J2 THIS OPND NO
FIRST NUMERIC.>'~-_< THE PREVIOUSi>'-+-~ SEQUENCE

ERROR
MESSAGE

OPERANO OPND

YES

ENDPPT STORTAB

K2~ K3~
~ON-NUMERIC' NO 'NY'SETTINdS~

').:"::'..L..--<'OR ASCENDING>' -'---<. STORED '/ 6

~'~~ w7t§

NO

C5i----..,

SET
RETURN
CODE
TO 8

TABENOI
E5i--'----

STORE
RETURN CODE
IN CALLING
ROUTINE
AREA

F5-.J......._,-,
FREEMAIN

FREE
SAVE
AREA

TABRET

. r- G5i-L.----..
RETURN

TO, IHKCMD

.Chart SH. Message Writer (IHKMSG)

MSG70
SHAI

AS USER
MESSAGE NO

REQUESTED

SHA3
SHC4 ,
SID3

Bl

GET TUBFQEB GET PREPARED
AND CLEAR tEXT FOR MSG
THE FIELD INTO USER

FROM: BUFFER
COMMAND
PROCESSORS

MSGPARM

C5 TEXT

FREEMAIN TO BE NO

THE QEB INSERTED

YES

IT
OBTAIN SAVE

TEAl
MOVE DELAYED
MESSAGE TO AREA AND POINT BEFORE

USER BUFFER CHAIN SAVE FIRST MESSAGE
AREAS FOR USER

NO

EI
FREEMAIN

E~ESSAGE
FREE NO

THE FOROPE7
AREA

YES
MSGOPER

F4 F5
MSGSEND SIAl COMPUTE TEXT

f1 LENGTH Ar~D
READ IN SE ND MESSAGE REMOVE
MESSAGE TO TERMINAL TRAILING

BLANKS

MSGOPER4
G

SIAl SET MSGFLAGS,

SEND MESSAGE
PUT IN ROUTING

TO TERMINAL
AND
DESCRIPTOR
CODES

H5 SHOW
NO CWRITE TO SESS

SEND MESSAGE RESPONSE
LOST MESSAGE

J5

ADD MSGTYP
DELETE MSG FIELD TO
JUST S'ENT MESSAGE

K5
WTO

SEND
MSG TO
OPERATOR

Flowcharts 359

Chart 51. Message Writer CIHKMSG)

MSGSEND

FROM:
SH83
SHG3
SfiE4
SKK3
SKE5

A 1---_

CI

MSGSEND2
DII--"---~

MOVE MESSAGE
TO FRONT OF
USER
BUFFER

EI--"---~

SET MESSAGE
LENGTH TO
72 BYTES

MSGSEND4

GJ

NO

C2'---~
MOVE
MESSAGE
TEXT ONLY TO
FRONT OF
USER BUFFER

02-...1----,

SET MESSAGE
LENGTH TO
64 BYTES

RESPONSE YES
REQUIRED >-------....

NO
MSGSEND6

HI_-'---~
IHKLAD HAAI

ISSUE
CWRITE
MACRO

MSC;;RTN

360

H2_L-_---.
IHKLAD HAAI

ISSUE
CWRITE R
MACRO

FREE STORAGE
AND SET
TU8FQEB
TO 0

Access KEY OF
EACH MESSAGE
FOR USER AND
DELETE MESSAGE

Chart SJ.

IHKMSGOI

fROM,
COMMAND
PROCESSORS

OBTAIN SAVE
AREA AND
CHAIN SAVE
AREAS

Dl-~---,

BUILD MESSAGE
IN USER
BUffER

MSGOI
HI-...L._--,--,

GETMAIN

GET STORAGE
fOR 72-BYTE
MESSAGE

Jl
GETMAIN NO

SUCCESSfUL

YES

Kl_-'-__ -,

MOVE MESSAGE
INTO STORAGE

Message writer (IHKMSGI

G2--'---~

LOOP THRU
CHAINED TUBS
TO fiND
RECIPIENT'S

fJ_...L. __ .,
IHKAfl

K31-..l---...

A NO PUT f----to-< RETURN
ADDRESS IN
TUBfQEB

C4.--'---,
DECREMENT
NO.OF
DELA YED MSGS
THAT CAN BE
ADDED

MSGD07

D4 TH~iE A <" DELAYED

"" MESSAGE
FOR USER

E4--'----,
KEY FOR
CURRENT
MESSAGE IS
USERID +
X'OI'

MSGD07N
F4_-'-__ ..,

IHKAFI TEAl

INSERT MSG IN
USRMSGS
GLOBAL FILE

YES

MSGD07D

D5----~

INCREMENT
KEY BY
ONE

G5----,.-.

Flowcharts 361

chart SR. Message Writer (I~MSG)

IHKMSG02 IHKMSG03

362

FROM:
IHKBGN
IHKCC4
IHKCC5
IHKD,Q

01--'----,

OBTAIN SAVE
AREA AND
CHAIN SAVE
AREAS

r El-"'---.--,

MOVE SUPPLIED
MESSAGE TO
USER BUFFER

HI

HI_-,-__ ...,

IHKAFI TEAl

OBTAIN NO
BROADCAST
MESSAGES
MESSAGE

J I ~W±TO::--'"'T'"

SEND
MESSAGE

MSG250

C2

E2-J-.-,........
WTO

YES

A 3---"
ENTRY

OBTAIN SAVE
AREAS AND
CHAIN SAVE
AREAS

TEAl

cOCA TE FI RST
BROADCAST
MESSAGE

J3_--, __ -,

IHKAFI TEAl

ACCESS NO
BROADCAST
MESSAGES
MESSAGE

K3_-,-_..,.....--"
MSGSEND SIA I

SEND
MESSAGE TO
TERMINAL

YES

B4"'W~TO~-"""

SEND
BROADCAST
MESSAGES
START

TEAl

ACCESS
BROADCAST
MESSAGE IN
USER BUFFER

D4

YES

F4_-,-__ ..,

IHKAFI TEAl

ACCESS
BROADCAST
MESSAGES END

NO

MSGBRD26

C5

MESSAGE FOR
OPERATOR

YES

05 WTO

SIAl

SEND
BROADCAST
MESSAGE TO
TERMINAL

+ l{Y

(

H5
TURN OFf
BROADCAST
MESSAGE
REQUEST
F,AG

NO

chart TE. Active Area I/O Control/Command Interpreter (IHKAFI)

10Rm

IHKAFI
,AS

SET UP TO

(AI) 4 REQUEST I/O RETURN TO

ENTRY I/o OR REQUESTER
PORTION OF

RETURN MACRO INTER-
PRETER

RETURN I r-B3
RETURN

r-B5

"~ SAVE REGS
CREATNTR TGBI IHKEXC

AND INI- ~ ~
B4 XCLUSIVE

TlAlIZATION <GLOBAL QUEUE AFIO RE-

~
QUESTER
ROUTINES

~C2 ,-C3 r-C4
GETGBASE' RELESNTR TGB3 DEQUEUE RELEASE MORE

SET UP GLOBAL ---.. .~ FROM AFIO PROCESSING I/o
ACCESS FILE CONTROL GLOBAL QUEUE OR I/O

ADDRESSING

NO

I TE
NO 1/0
YET

AFIOI D4 RETI I BACK21NT
r-DI r-D2 r- D3 r-D4 r-D5

GTFBASEO' AFRNQ' POINTNTR THBI EXAMINE SET UP TO

SET UP FILE GET ON ~ flo
AFPARIFS RETURN TO

CONTROL ACTIVE AREA AND SET INTERPRETER

ADDRESSING GLOBAL RETURN CODE FOR MORE

QUEUE ACCORDINGLY PROCESSING

I GI I

I EI ,E3 ,E5 f
LOCINTRO' ENDUPNTR TGB4 EXIT AFRNQ'

~ (E4 DETERMINE ~ RETURN GET ON
PROPER MACRO ACTIVE AREA

INTERPRETER PRIVATE FILE
QUEUE

FI -F3 -FS I
SETCON' INSRTNTR TIBI SET UP

1~&IE~t.'~ER & ~ ~
EXTENDED

BUFFER AND WORK AREA
RECORD DESCRIP- CONSTANTS
nONS

GI

NEXTIO
.-G3

GI DETER- DELETNTR TJBl
MINE WHICH RDELETE G5 NO
MACRO IN- ~ BUFFER

JERPRETE

YES

.-H3 li5

REPLCNTR THB3 n GETMAIN

'* No Flowchart is provided
I REPLA~ ~ GET STORAGE

FOR PROPER
for this Routine. SIZED BUFFER

I
·J3 ,--J5 I
GETNTR THB4 IHKGCW'

~ ~
BUILD
REQUESTED
CHANNEL
PROGRAM

3 ~
SKIPNTR TGB5

~ f-

Flowcharts 363

Chart TF. Active Area I/O Control/Command Interpreter(IHKAFI)

364

EXCP
C 2---1"-_

EXCP

EXECUTe
CHANNeL
PROGRAM

G2~-I--M
SYNADAF

CHECK I/O
ERROR SENSE
AND STATUS
DATA

H2--J1--_..,...,
WTO

SEND ERROR
DESCRIPTION
TO CONSOLE

FREE THE
BUFFER

NO

E3-__

IHKEXC

AFIO
REQUESTER
ROUTINES

K3----,.,
DEQUEUE
FROM ACTIVE
AREA PRIVATE
FILE QUEUE

Chart TG.

r AI
\. ENTER

TEB3

Active Area I/O Control/Command Interpreter (IHKAFI)

IHKEXC

MASTREQ
ONEARG
CHKNDXEX
(SEE NOTE \)

r A3
'--_ ENTER

TEC3

RELESNTR ENDUPNTR SKIPNTR

C?REA:~::~TE NO ~:::::~
(SEE NOTE 1)

,-B3 _.L-_--,
HANDLE ANY
PENDING up­
DATES TO
THIS FILE

~~~I~~E-

,C3_....L.._-, 
IHKEXC 

,-84--'-----, 
HANDLE PEND­
ING UPDATES 
FOR THIS 
SEGMENT 

_C4_.L-_--, 
IHKEXC 

BS_...L-_---. 
SET UP TO 
HANDLE 
END OF 
SEGMENT 
SITUATION 

C5_.L-_--. 

ALLOCATE 
MASTER 
INDEX TRACK 

,-01--'---..., 
lHKEXC 

MASTREQ 
ONEARG 
SIMPLE 
(SEE NOTE 1) 

CREATO 

El=-::-,:---:_--, 

rn
OMPUTE NO. 

OF DATA 
RECORDS PER 
TRACK, SET UP IWORK AREA 
AND CONSTANTS 

OLD 

NEW 

,-G 1_.1-__ 

ALLOCATE 
AND INITlAllZE 
INDEX TRACK 
FOR NEW 
ACTIVE FILE 

IHKEXC 
NDXREQ 
ONEARG 
SIMPLE 
(SEE NOTE 1) 

,-Jl--'-----, 
IHKGCW • 

NDXINTGN 

(SEE NOTE \) 

..-Kl-'------. 
SET UP TO 
UPDATE 
MASTER 
INDEX 

OLD 

RETURN TO ~C2 

AFIO SCHEDULE~ 
TEA4 

CREATl 
,--F2 ___ --, 

SET uno 
LOCATE INDEX 
TRACK 

,-G2--'----, 
IHKEXC 

MASTREQ 
ONEARG 
LOCNDXEX 
(SEE NOTE 1) 

IHKGCW • 

LOCNDXCW 

(SEE NOTE 1) 

NDUPRQ 
NDUPEX 

(SEE NOTE I) 

,-03'-...... --..., 
IHKEXC 

RLSTUPRQ 
RL$TUPEX 

(SEE NOTE 1) 

,E3_.L...._-, 
IHKEXC 

NDXRQ 
ONEARG 
NDXUEX2 
(SEE NOTE 1) 

,F3--'----, 
IHKGCW • 

NDXUCW 

(SEE NOTE 1) 

,-G31--'-----, 

RESET 
FILE CONTROL 
INFORMATION 

• NO FLOWCHART IS 
PROVIDED FOR THIS 
ROUTINE. 

NDUPRQ 
NDUPEX 

(SEE NOTE 1) 

,04-....... ---, 
IHKEXC 

RLSTUPRQ 
RLSTUPEX 
(SEE NOTE 1) 

r-E4-L-_-, 
IHKEXC 

NDXRQ 
ONEARG 
NDXUEX2 
(SEE NOTE 1) 

r-F4-.L-----, 
IHKGCW • 

NDXUCW 

(SEE NOTE 1) 

G4_.L-_--, 
IHKEXC 

FRSTMVRQ 
FRSTMVEX 

(SEE NOTE I) 

IHKEXC 

SKIPRQ 

Note 1 - The routine no .... specified in c.ll. to IHKEXC and IHKGCW are given control in the order shown, Control 
is paned to th.e routines CIS shown on Chart TE. 

Flowcharts 365 



Chart TH. Active Area I/O control./Commandlnterpreter (IHKAFII 

(AI ENTER 

TED3 

POINTNTR 
r-BI 
RESOLVE 
MACRO OPeRAND 
AND NUll 
FilE CON-
SIDERATIONS 

POINTO 
.-CI 

IHKEXC 

NDUPKQ 
NDU'PEX 

(SEE NOTE I) 

BY RECORD 
10 

YES 

,-EI 
IHKEXC 

MASTREQ 
ONEARG 
MASTlEX 
(SEE NOTE I) .. 

-FI 
IHKGCW • 

MASTICW 

(SEE NOTE I) 

,-GI 

SeT UP FOR 
SEARCH 
PROGRAM 

PO I NT2 

HI 
IHKEXC 

SRCHPTRQ 
SRCHEX 

(SEE NOTE I) 

.-JI 

SET UP 
FINAL 

@ 
POSITIONING 

1 

~KI ETURN TO 
AFIO SCHEDULER 

TEA4 

NO 

PO I NTl 

02 
IHKEXC 

RlSTUPRQ 
RlSTUPEX 

(SEE NOTE I) 

,-E2 I 
PASS USER 
ARGUMENT 
AND SET UP 
FOR INDEX 
RECORD SCAN 

-F2 I 
IHKEXC 

NDXPNTRQ 
ONEARG 
NDXUEX2 
(SEE NOTE I) 

r G2 I 
IHKGCW • 

NDXUCW 

(SEE NOTE I) 

H2 I 
IHKEXC 

FRSTMVRQ 
FRSTMVEX 

(SEE NOTE I) 

I 

REPlCNTR 
83--'--......... 

IHKEXC 

REPRQ 
REPEX 
(SEE NOTE 1) 

C31-....... ---. 

CHeCK 
POSITIONING 
AND POSITION 
PROPERLY 

• NO FLOWCHART I S PROVIDED 
E. FOR THIS ROUTIN 

Note 1 - The routine names specified in calls to IHKEXC and IHKGCW ore given control in the order 
,how"_ Control is pgssed to thes,e routines as shown on Chort TE. 

366 

GETNTR 
B4--'-~~ 

SET UP TO 
HANDLE END 
OF SEGMENT 
AND EOD 
SITUATIONS 

C4-.1----. 
IHKEXC 

GETRQ 
GETEX 

(SEE NOTE I) 

UPDATEl 
F4--'--_ ..... 
SET UP TO 
PROCESS 
SEGMENT 
CHAIN AND 
CONTINUE 
OPERATION 

IHKEXC 

NDUPRQ 
NDlJPEX 

(SEE NOTE I) . 

H4...,.-'----, 
IHKEXC 

RlSTUPRQ 
RlSTUPEX 

(SEE NOTE I) 

J4.~..L...--. 
IHKEXC 

NDXRQ 
ONEARG 
NDXUEX2 

-CSUl'lOTEll 

K4--'----. 
IHKGCW • 

NDXUCW 

(SEE NOTE I) 

. FRSTMVRQ 
FRSTMVEX 
(SEE NOTE I) 

B5 _..1----........., 
SET UP TO 
POSITION 
WITHIN NEWLY 
LOCATED 
SEGMENT 

C5'-..1----, 
IHKEXC 

SRCHRQ 
SRCHEX 



Chart TI. 

INSRTNTR 

SET UP FOR 
SIMPLE 
INSERT 
PROGRAM 

I NSRTIF2 
Dl 

IHKEXC 

INSRO 
INSEX 
(SEE NOTE I) 

Active Area I/O Control/Command Interpreter (IHKAFI) 

NO 

INSRTIF3 
B2 
ALLOCATE 
NEW TRACK 
READ AND 
SCAN TRACK 
LIST 

IHKEXC 

RlSTINRO 
RlSTUPEX 
(SEE NOTE I) 

IHKEXC 

NDUPMDRQ 
NDUPEX 

F2---'---, 
IHKEXC 

NDXSE RQ 
ONEARG 
NDXUEX2 
(SEE NOTE 1) 

G2--'----, 
IHKGCW • 

NDXUCW . 

(SEE NOTE I) 

IHKEXC 

FRSTMVRQ 
FRSTMVEX 

(SEE NOTE 1) 

:12--'---, 
RECORD 
POSITION 
WITHIN 
SEGMENT 

INSRTIF8 
A3 

IHKEXC 

NDUPRQ 
NDUPEX 
(SEE NOTE I) 

INSRTlF9 

IHKEXC 

NDXIN8RQ 
ONEARG 
NDXUEX2 
(SEE NOTE I) 

C3 
IHKGCW • 

NDXUCW 

(SEE NOTE I) 

D3 
IHKEXC 

FRSTMDRO 
FRSTMVEX 

(SEE NOTE 1) 

F3_-'-_--, 
IHKEXC 

OlDINSRQ 
OlDINSEX 

(SEE NOTE I) 

E4 
IHKEXC 

YES 
NEWINSRQ 
NEWINSEX 

• No Flowchart of this Routine Is Provided. 

Note 1 - The routine names specified in calls to IHKEXC and IHKGCW are given control in the order shown. Control is passed 
to these routines as shown on Chart TE. 

Flowcharts 367 



Chart TJ. Active Area I/O Control/comtnan<J tnt'9rp1.'eter UHI<AFl) 

DElETNTR 
81_..1-_--. 

DETERMINE 
SEGMENT RE­
ORGANIZATION 
AS A RESULT OF 
DELETE 

DII-...L---';" 
IHKEXC 

RlSTUPRQ 
RlSTUPEX 
(SEE NOTE I) 

EI-..I----. 
IHKEXC 

NDUPMDRQ 
NDUPEX 
(SEE NOTE I) 

FI-..I----. 
IHKEXC 

NDXRQ 
ONEARG 
NDXUEX2 
(SEE NOTE I) 

GI-.L...---. 
IHKGCW • 

NDXUCW 

(SEE NOTE I) 

COM81NE 
REMAINING 
SEGMENTS 

DECRCF'IA 
~11_..1. __ .., 

IHKEXC 

FRSTMVRQ 
FRSTMVEX 
(SEE NOTE I) 

DElRCF2 

DETERMINE 
RECORD 
POSITION 
WITHIN 
SEGMENT 

DELETE 
RECORD 
FROM 
SEGMENT 

RDXKRQ 
RDXKEX 

F2_ ...... __ _ 

DETERMINE 
FINAL, 
POSITiONING 

NO 
REPoSITK;)N 
PROPERLY 
'WITHIN 
SEGMENT 

• NO flOWCHART OF THIS, 
ROUTINE 1$ PROVIDED. 

KI~ ____ ~~ ____________ ~ 

368 

TEM 
Not. 1 - The routino nome. specified in tho call. to IHKeXC and IHKGCW Gr. ~Iv.., """trolln the ord.r sh""". Ccmtrol is 

patSed to these routine. as show~ on Chart TE. 



Chart TK. 

MASTREQ 

Bl--'----, 
PICK UP MASTER 
INDEX TRACK 
AND COMPUTE 
STORAGE 
REQUIREMENT 

STNDXRQ 
Cl-........ ---, 

SET UP COUNT 
OF CCW'S RE­
QUIRED AND 
SEARCH 
ARGUMENT 

Fl_-'-_-, 

LOCATE PROPER 
MASTER INDEX 
ENTRY 

Active Area I/O Requester/Executor CIHKEXC) 

F2..,.-..J....---, 

SET UP 
FOR SEQUENTIAL 
PROCESSING 

RQOOI 
G2-...L---.., 

SET: UP NEEDED 
NUMBER OF 
CCW'S AND 
ARGUMENTS, 
GET INDEX 
TRACK ADDRESS 

H2)----\ 

MOVECCW 
CODE TO 
LIST 

f-..:-~ F3 

SET TRACK 
POSITION 
AND SAVE 
SEGMENT 
NUMBER 

·CHKNDXEX 

84--'----, 
PICK UP ADDR 
OF INDEX 
RECORD 
MODIFY 
CHANNEL PROG 

RETURN TO 
EXECUTE 
CHANNel PROG 
AGAIN 

NO 

LOCNDXEX 

BS--L----, 
PICK UP 
FILE INDEX 
TRACK 
ADDRESS 
AND SAVE 

5-----, 
DUMMY 
UPS.EGMENT 
NUMBER 

NDXSEQRQ 

SET UP TO 
PROCEED TO 
NEXT 
SEGMENT 

Flowcharts 369 



Chart TL. Active Area I/O Requester/Executor CIHKEXC) 

N,O~C::':E~SS~-' 
SEGMENT 
ENTRIES AND 
RELEASE 
ASSOCIATED 
TRACKS 

NDUPRQ 

GI J------1 

370 

SET UP 
FOR INDEX 
UPDATE MODE 

YES 

MASTlEX 

82-........ -....., 
LOCATE MASTER 
INDEX ENTRY 
AND 1ST DATA 
TRACK ADDR 
SET SEGMENT 

SET UP 
SEGMENT 
POSITIONING 

DETERMINE 
REOUIREMENTS 
AND COMPUTE 
NO. OF CCW'S 
AND ARGUMENTS 

OlDNDXEX 

83-"----, 
COMpUTE 
AND SAVe 
TRACK 
BALANcE 

3:_ ....... _--. 
SAVE INDEX 
REC NO. AND 
TRACK LIST 
LENGTH, PICK 
UP SEGMENT 
LIST LENGTH 

03_""""---, 
COMPUTE 
SeGMENT 
LENGTH AND 
SAVE 

NDUPSQRQ 

G3-~-';"......, 

SET UP 
FOR 
SEQUENTIAL 
PROCESSING 

NDUPMDRQ 

SET FOR 
TRACK 
RELEASE 



Chart TM. 

BII-....L.--.., 
DETERMINE 
REQUIREMENTS 
FOR 
CHANNEL 
PROGRAM 

HII-..L-----, 

BUILD 
SEARCH 
TABLE 

JI_-L._--, 

RESOLVE 
OPTIONS 
SPECIFIED 

Kl---1--..., 

SEGMENT 
KEY 
SEARCH 

Active Area I/O Requester/Executor (IHKEXC) 

SET UP 
POINTERS 
AND 
TRACK 
ADDRESS 

D2_....L __ .., 

DETERMINE 
REQUIREMENTS 
FOR 
CHANNEL 
PROGRAM 

YES 

NO 

NO 

83-----.. 
SET FOR 
BACKWARD 
PROCESSING 

SET ERROR 
INDICATORS 

B4_L-_..., 

SET UP 
FOR NEXT 
KEY OPTION 

E-4_..L.._--, 

DETERMINE 
POSITION 
WITHIN 
SEGMENT 

POINT 
TO NEXT 
RECORD 

YES 

SRCHPTRQ 

85i-.&.-----, 

DETERMINE 
OPTIONS 
SPECIFIED 

F5-----, 

POINT 
TO NEXT 
SEGMENT 

Flowcharts 371 



Chart TN. 

FRSTMVRQ 

NO 

NO 

RLSTRQl 
H 1,_--,-__ -., 

SET UP 
TO READ 
TRACK LIST 

372 

Active Area I/O Requester/Executor (IHKEXC) 

FRSTMDRQ 
2 ___ .... 

DETERMINE 
NUMBER OF 
REQUIRED 
CCW'S AND 
ARGUMENTS 

RLSTUPRQ 

YES 

FRSTMVEX 

B3 
SET UP 
SEARCH 
ARGUMENT 
TABLE 

C3 
AFTER I/O, 
UPDATE 
MASTER 
INDEX 

RLSTUPEX 

rF3 
"--_ ENTRY 

MOVE TRACK 
LIST INTO 
WORK AREA 

[

G3 

(H3. 
RETURN 

) 

NEWINSRQ 
A4---_..... 

54 

DETERMINE 
REQUIRED NO. 
OF CCW'S 
AND SEARCH 
ARGUMENTS 

OLDINSRQ 

G4-,L......---, 
SET UP RE­
QUIREDNO. OF 
CCW'S AND 
SEARCH 
ARGUMENTS 

NEWINSEX 

as 
SET UP 
ARGUMENT 
AND DUMMY 
RECORD 
CHAIN 

C5 
SET UP POINTER 
TO LIST 
AND 1ST 
LOGICAL RECOR 
TO BE WRITTEN 

OLDINSEX 

G5--'----, 

SET UP 
ARGUMENTS 
AND DUMMY 
RECORD CHAI N 

H5_-'-__ -, 

SET UPPOINTER 
TO LIST AND 
1ST LOGICAL 
RECORD TO 
BE WRITTEN 



Chart TO. Active Area I/O Requester/Executor (IHKEXC) 

INSRQ 

81--'---., 
PICK UP NO. 
OF RECORDS 
AND INDICATE 
NUM8ER OF 
CCW'S 

INDICATE 
STORAGE 
REQUIREMENT 

SEQROO 
D1_L-_--, 

INDICATE 
MAX. NUMBER 
OF CCW'S 

SEQRQI 
E1-..L...---, 

PICK UP 
TRACK 
ADDRESS 

INSEX 

H1-L----, 

LOCATE 1ST 
RECORD 
UPDATE CHAIN 

REPEX 
J1_..L..._--, 

SET UP 
WRITE RE­
QUEST 

GETRQ 

82--1.---, 
PICK UP COUNT 
OF RECORDS 
AND INDICATE 
BUFFER RE­
QUIRED 

NO 

SET TO READ 
SEQUENTIAL 
RECORDS, 
UPDATE SEG­
MENT POSITION 

REPRO 

84,-1---...., 
COMPUTE NO. 
OF REPLACES 
AND INDICATE 
NUMBER 
OF CCW'S 

Flowcharts 373 



Chart UA. Librarian Queue Module (IHKRNQ) 

IHKRNQ 

fROM: 
IHKAWS 
IHKBST 
IHKBSH 
IHKIRL 
IHKMGE 

IHKRER 
IHK5AV 
IHKSCN 
IHKSUB 
IHKCDP 
iHKUTM 

374 

GET STORAGE 
FOR SAVE 
AREA 

F2_-L-_--. 

[

PUT QUEUE 

• 

ELEMENT INT. 0 
QUEUE AND 
UPDATE THE 
CHAIN 

G2 --.JL.-_.., 
IHKDSP GpAl 
WAIT IN DIS. 
PA TCHER. UNIT 
QUEUE ELEMENT 
IS POSTED 

H2'-..L.-___ -, 
FREE 
STORAGE 
AND 
SET RETURN 
CODE = 0 

FIRST 

C3 ---~ 
PUT THIS 

YES ELEMENT FIRST 
ON QUEUE 
AND SET 
ReTURN CODE"O 

NOCORE 
E3 ---.., 

NO SET RETURN 
CODE = 4 



Chart UE. 

IHKBPM 

FROM, 
IHKAWS 
IHKBST 
IHKBSH 
IHKEDI 
IHKLDS 

EI--L..---, 
ESTABLISH, 
EOD EXIT 
DCB EXITS 
SYNTAX 
ERROR EXIT 

BPGETB 
Fl_'--_.--. 
GETMAI~~ 

GET 
STORAGE 
FOR JFCB 
AREA 

Gl 
SUCCESSFUL 

YES 

Hl-'----,.--, 
RDJFCB 

READ THE 
PROPER 
JFCB 

BPTSIN 

Jl RFIND 
I 

OR 
o 

o 

K 1--'_--,-, 
OPENJ 

OPEN 
FOR 
OUTPUT 

NO 

Library I/O Module (IHKBPM) 

RFIND UEEI 

RREAD UFBI 

RWRITE UGAI 

RCLOSE UFB2 

RSCRATCH UEEI 

NOCORE 
G2 __ ol 

SET RETURN 
CODE = 8 

EXIT (H2 
RETURN 

J2----,r-1 
OPENJ 

OPEN FOR 
INPUT 

K2 
RSCRATCH NO 

BPTEST 

A3 
COMPUTE Bl.OCK 
SIZE AND 
LOGICAL 
RECORi; 
LENGTH 

eN"'''''' 
BUILD LIST 
AREA 

BPBLDl 

rr BLDL 

BUILD 
MEMBER 
LIST 

INPUT 

BPF3 

F3 --''---,-, 
FINDC 

LOCATE 
MEMBER 

BPSCRAT 
AS 

STOW D 

DELETE 
MEMBER 

Flowcharts 375 



Chart UFo Library I/O Module (IHKBPM) 

376 

NO 

CI-'---r--. 
GETMAIN 

GET 
BUFFER 
AREA 

01-'---.-, 
READ 

READ 
BLOCK 
FROM 
MEMBER 

EI--'----, 
IHKDSP GPAI 

WAIT IN 
DISPATCHER 
FOR I/o TO 
COMPLETE 

FI-'---,--, 
CHECK 

CHECK 
I/O 
RESULTS 

EDIT BLOCK 
TO BB CHAR 
RECORD 
FORMAT 

OK 

BPDMWRT 

B3 ------, 
PERFORM 
DUMMYWRlTE 

>-N_O_ .... -l r<&l~~~:~BEND 

02 OPENED 
FOR 

INPUT 

YES 

F2-.1---.-, 
STOW A OR R 

BPCS 

G2 

BPC2 
J2-'----,-, 

CLOSE 

WHEN CLOSE 
WRITES EOF 

YES 

DEQUEUE 
A4 _.1..-_--, 

DEQUEUE 
THIS ELEMENT 
FROM THE . 
LIB liO QUEUE 

B4 BUFFER 
ASSIGNED 

(4-'-_-,-, 
FREEMAIN 

NO 

NOTE - Specifications require that directory user information be updated for every library member access. In order to do a STOW on a data set 
opened for INPUT, several fie!ds and switehes must be monipulated. Refer to listing. 



• Chart UG. Library I/O Module (IHKBPM) 

A2:-----. 

DOES 
Al LIBRARY YES EDIT BLOCK 
HAVE LRECl ~ )-'=--'001 TO 80 CHAR 

80? RECORD FORMAT 

NO 

Bll--'-----, 

COMPUTE 
BLOCK SIZE 
AND STORE 
IN DCB 

BPWRIT 

C 1-'---.--. 
WRITE 

WRITE A 
BLOCK TO 
MEMBER 

01 I/o 
COMPLETE 

SEE NOTE E2 
EOV 

A3 DATA 
I-----to-< lOST IN 

EDIT 

NO 

NO 

YES 

I/o 
F3COMPlETE )-'N""O",-_~ 
wlo ERROR 

A4---.., 
SET 
TUBllB 80 
SWITCH IN 
TUB 

Note: Checking of BPAMSWCS ot BPRETURN is of no significance after a WRITE because user must call IHKWTR to check results of WRITE. 

Flowcharts 377 



Chart UP. 

IHKWTR 

378 

Library I/O Wait Module (IHKWTR) 

82-----. 
IHKDSP GP~l 

WAIT FOR 
1/0 TO 
COMPLETE 

NOWAIT 
B3---'L---,,--, 

CHECK 

INSPECT 
FOR I/O 
ERRORS 

C3 BUFFER 
CONTROL 

USED 

YES 

NOFREE 

03 BUFFER 
CONTROL 

USED 

YES 

ENDIT 
E3_-'-_--, 

SET RETURN 
CODE FROM 
ERROR SWITCHES 
IN BPAM 
SWITCHES 

NO 

NO 

84-
* IF ERROR 
SYNAD ROUTINE 
IN IHKBPM 
WILL SET 
ERROR SWITCHES 
AND RETURN 

C4---,-..., 
FREEMAIN 

FREE 
BUFFER 
USED IN 
RWRITE 

D4. ___ ---, 

MOVE AFro 
BUFFER 
POINTER TO 
LIB 1/0 



chart OR. Library Condense Module (IHKCDP) 

NO 

IHKCOP 

FROM: 
IHKCMD 

BII--'--'-...­
GerMAIN 

GET 
SAVE 
AREA 

/ 
CI GerMAIN 
~ SUCCESSFUL 

01-"'---, 
IHKAFI TEAl 
CREATE UTILITY 
FILE FOR 
DIRECTORY 
SORT 

Jl' QUEUE 
FOR LIB I/O 

EMPTY 

YES 

Kl1-'---..-~ 
GETMAIN 

GET BUFFER 
FOR LIB 
I/O 

NO 

un 
0/ 

B2!--L...-­
IHKRNQ UAA2 

GET BACK 
ON LIB 
I/O QUEUE 

// 

/2. GO~~ A 
~

RETUR/ GD 
YES 

02 
IHKBPM UEAI 

RFIND­
LOCATE 
DIRECTORY 

USE USER 
BUFFER FOR 
AFIO BUFFER 

C3--'----, 
MOVE DIRECTORY 
ENTRY AND 
GENERATE 
KEY 

K3 

CDERRI 

K3-"----, 

A4 
CDSWICH UTG2 

B4 
IHKBPM UEAI 

RFIND 
OPEN FOR 
OUTPUT 

C4 
CDSWICH UTG2 

SWITCH BACK 
TO INPUT 
DATA SET 

USD4 

SET UP 
NEXT BUILD 
LIST 

A5 
IHKBPM UEAI 

RFIND-
OPEN MEMBER 
FOR INPUT 

SAVE TTR 
OF MEMBER 
AND ZERO 
RECORD COUNT 

UEAI 

K5-"'----, 

INDICATE 
LIBRARY 
ERROR 

Flowcharts 319 



chart us. 

YES 

BI--'----, 
IHKAFI TEAl 
RPOINT-
POINT TO 
FIRST DUMPED 
MEMBER 

01_-'-__ ..., 

IHKAFI TEAl 
RPOINT-POINT 
TO MEMBER'S 
DIRECTORY EN­
TRY I N SORT FILE 

CDGETDI R USD4 

GET NEXT 
DIRECTORY 
ENTRY 

GET MAXIMUM 
RECORD COUNT 
AND REMAINDER 
COUNT 

JI ANY 
RECORDS 

LEFT 

YES 

Library Condense Module (IHKCDP) 

NO 

A:1:--'----. 

RESET TO 
SMALLER 
BLOCK 

C2!-.L.--..., 

SAVE 
RECORD 
COUNT 

02_'--_--, 
IHKAFI TEAl 

RGET-
GET NEXT 
BLOCK FROM 
DUMP FILE 

UTA3 

RESTORE BLOCK 
TO LIBRARY 

12 ___ --, 

CDSTOW UTGS 

UPDATE 
DIRECTORY 

YES 

E3 _..L.-_---. 
IHKAFI TEAl 

CREATE 
DUMP FILE 

'" 

CDCPY6 
A4----, 

IHKAFI TEAl 

INSERT 
BLOCK INTO 
DUMP FILE 

IHKAFi TEAl 
RGET NEXT 
DIRECTORY 
RECORD FROM 
SORT FILE 

MOVE DIRECTORY 
RECORD TO 
BUILD LIST 

INDICATE 
DUMP 
RESTORE 
SUCCESSFUL 

CDCPYB 
ASi-..L.----, 

CDCPMODE UTA4 

DETERMINE 
COPY 
MODE 

05--'----, 
CDSTOW ums 

UPDATE 
DIRECTORY 

CDCPY9 

UR 
J4 

FS-'------. 
RECONSTRUCT 
DIRECTORY ENTRY 
WITH RECORD 
COUNT AS 
KEY 

GS_.1-_--, 
IHKAFI TEAl 



Chart UTe 

INDICATE DSCB 
TO BE UPDATED 

PREVENT 
DSCB UPDATE 
ON CLOSE 

CDEND2 
Fl -'--.--. 

CLOSE 

CLOSE 
CONDENSE 
DCB 

IHKBPM UEAl 
RCLOSE-
CLOSE INPUT 
DCB, DEQUEUE 
FROM LIB 110 

Jl_-,-__ .., 

IHKAFI TEAl 

RELEASE 
DUMP FILE 

Kl--'---, 
IHKAFI TEAl 

CREATE -
RECREATE 
USER'S FILE 

Library Condense MOdule (IHKCDP) 

CDEND4 
A2 ...... '----,...-. 
FREEMAIN 

FREE 
BUFFER 

CDEND5 
82--'----, 

CDBPRET 

C2-'--T"'""1 
FREEMAIN 

CDSWITCH 

H2'-...... --..., 

INDICATE 
WRITE 
COMPLETED 

SWITCH LIB 
110 CONTROL 
BYTES AND 
DCB POINTERS 

83--'----, 
CDSWITCH UTG2 

SWITCH TO 
OUTPUT 
DCB 

C31_.L-_--, 
IHK8PM UEAl 

RWRITE 
BLOCK 

IHKWTR UPAI 

CHECK 
110 OF 
WRITE 

E3--'----, 
CDSWICH UTG2 

SWITCH DeB 
BACK TO 
INPUT 

YES 

CDCPMODE 

LOCATE INPUT 
AND OUTPUT 
DCB'S 

COMPUTE 
INPUT TTR 
- ONE TO 
OUTPUT TTR 

INDICATE 
ACTIVE 
FILE 
ERROR 

EQUAL 

85---... 

• COPY MODE 
CONDITION 
CODE WILL 
BE SET 

05---, 

• SKIP MODE 
CONDITION 
CODE WILL 
BE SET 

HS-L_....,...., 
STOW 

UPDATe 
DIRECTORY 

YES 

Flowcharts 381 



Chart WA. sean MOdule (IHRCCS) 

From: 
IHKCC5 
IHKCMD 
IHKCGN 

81 

r" 
BUILD TRANSLATE . SET A 
TABLE NO .. RETURN NO as 
SENSITIVE TO CODE OF 
A CHARACTER 4 
STRING 

BUILT SET 
CI 2 C4 C5 

BUILD TRANSLATE SET A SET RETURN 
SET SWITCH TABLE SENSITIVE YES RETURN CODE INDICAT-
TO BRANCH TO BLANK CODE OF INGWHICH 
TO B CHARACTER 0 CHARACTER 

ONLY WAS HIT 

D2 

SET SWITCH 
TO BRANCH 
TOA 

SCAN 
E2 

INITIALIZE SCAN 
START ADDRESS 
AND SET 
SCAN LENGTH 
TO 256 

F2 

SET MO 
EQUAL TO 
THE MAXIMUM 
SCAN LENGTH 

LT256 
G 

SET SCAN 
LENGTH NO 
EQUAL TO 
Me 

HI 

SETMO 
EQUAL DECREMENT 
TO 0 MO BY 256 

EXeC 
)2 

EXEcUTE 
SCAN 
I NSTRUCTIO N 

382 



Chart WJ. Numeric Verification Module (IHKNUM) 

From: 
IHKCGN 
IHKEDl 
IHKIPT 
IHKIRl 
IHKMSG 
IHKRNR 

IHKNUM 

01 ---''----, 

POINT TO 1ST 
CHARACTER 

F2 3RD 
~~--+< PARAMETER 

POINT TO 
NEXT 
CHARACTER 

PRESENT 

NO 

F3-,-----, 
MOVE THE 

",-Y_E_S_+t CHARACTERS 
-- INTO AREA 

(RIGHT JUSTIFIED) 

Flowcharts 383 



Chart WR. FORTRAN and PLII Conversational Syntax Checker Interface 
<IHKSYN) 

384 

IHKSYN 

FROM: 
IHKIRL 
IHKSCN 

CI 
<' PI/I 

POINT AFTER 
NEXT LOWER 
LINE 

=0 

PLIMAX 

GETNEXT 
G2--'---.... 
IHKAFI TEAl 

C3 MAX YES 
ONTINUA TloN>~---t 

COUNT 

CKDELAY 

NO 

03_-'-__ -, 
CHAINLIN WRAS 

CHAIN LINE 
IF FIRST. SET UP 
POINTER 

E3--'---.., 

DECREMENT 
MAXIMUM 
CONTINUATION 
COUNT 

SET NEW 
INPUT 
INDICATOR 

C4 =FR~EE=MA-:-:-:I:-:N"""" 

FREE LINE 
JUST READ 

04_-,-__ -, 

ENQSYS WTA2 

QUEUE MAX. 
CONTINUATION 
REACHED MSG 

NO 

CHAINLIN 

WRD3 
WSBI 

SETUPIN 
CHECKER 
FORMAT 

F5 WAS 
THIS RETUR 

12 

R~ESPOy::E 

WS 
K5 

FREE LINE 



Chart WS. FORTRAN and PL/I Conversational syntax Checker Interface 
(IHKSYN) 

WRAS 

CHAIN liNE; 
STORE POINTER 
IF FIRST 

READ 
RECORD 

01 

GI IS 
'THIS LINE 

A 

TEAl 

COMMENT 

HI 

SET UP 
PARAMETERS 
FOR Pl/I 

FRTEOD 

F2 
FREEMAIN 

FREE THIS 
liNE 
(RNEXTlN) 

ONTINUA TlON>~::"""---< 

SET UP 
PARAMETERS 
FOR FORTRAN 

WR 

FORTRAN 
OR Pl/I 
CHECKER 

YES 

SET OLD 
INPUT BIT 
FOR FORTRAN 

SET RETURN 
CODE FOR 
GETMAIN 
FAil 

OlDPLl 

E4 

SET OLD 
INPUT BIT 
FOR Pl/l 

Pl/l 

J4-.L--~ 

INCREMENT 
MAXIMUM 
CONTINUATION 
COUNT 

K4 ___ --. 

ENQSYS WTA2 

N>-'-"'::"""--l QUEUE MAX. 
CONTI NUA TlON 
MESSAGE 

NO 

SET RETURN 
CODE FOR 
WRONG LAN-
GUAGE lEVEL 

as 
ENQSYS WTA2 

QUEUE 
MESSAGE 

SET RETURN 12 
RESPONSE 

SET UP NEXT 
II NE POI NTER 
AS CURRENT 
LINE 

H5--L..--,--, 
FREEMAIN 

FREE LINE 
UNCHAIN 
LINE 

Flowcharts 385 



Chart WT. FORTRAN and PL/I Conversational Syntax Checker Interface 
(IHKSYN) 

386 

WTA3 

QUEUE CHECKER 
ERROR 
MESSAGE 

FREE 
LINE 
BUFFER(S) 

YES 

GI 

EOD 
YES 

ENQSYS 

WRD4 
WSK4 
WSB5 

ENQBUILT 

WSD3 
WTBI 

t+------~-~ C3 

STORE MAX. 
NUMBER IN 
BEGIN. LINE 
NUMBER 

YES 

SET RETURN 
CODE" 4 

03---'-----. 
IHKMSG SHB2 

QUEUE 
MESSAGE 

E3 

DELAYED 
SCAN 

G3 ENDUP 
~---< SWITCH 

SET 

K3 

E NDUP-RESET 
POINTERS 

J3 

<' Pl/I 

YES 

K3 
RETURN 

YES 

NO 

NO 

84 

E4 

F4 

SAVE 
RETURN 
CODE 

Pl/I 

Pl/I 

YES 

G4_-'-L __ ---. 
IHKAFI TEAl 

GET NEXT 
KEY 

H4---'---, 

STORE NEXT 
KEY-LINE NO. 
IN FIRST LINE 
OF RANGE 

J4 
NEXT LINE 

BEEN FREED 

NO 

K4 FREEMAIN 

FREE LINE 
(RNEXTlN) 

YES 

NO 

PASS BLANK 
LINE TO 
CHECKER TO 
FREE AREA 

F5-----'-, 

STORE NEXT 
LINE NUMBER 
IN FIRST LINE 
OF RANGE 



Chart WX. User File Manager (IHKUTM) 

FROM: 
IHKEDI 
IHKlDS 
IHKlGF 
IHKlGN 
IHKMUF 
IHKSAV 
IHKGET 

IHKUTM 

PTR 
Cl--'----, 
IHKAFI TEAl 

RPOINT TO 
UVRWITH 
RETRIEVAL 

)11-....... --.., 

PUT 
PASSWORD 
IN TUB 

D2-­

RETURN CODE 
= RETURN 
FROM IHKAFI 

SETINOP 
E2-----. 
MARK LIBRARY 
INOPERATIVE 
IN UVR 

RETURN 
CODE = 24 

PUT PASSWORD, 
CONSO lE ID' S, 
AND TUB ~----~ 
SEQUENCE NO. 
IN TUB 

CLEAR 
TUB SEQUENCE 
NO. 

PUT CONSOLE 
ID'S IN 
THE TUB 

Flowcharts 387 



Chart WY. User File Manager (IHKUTM) 

388 

REP 
Bl-..L-_~ 

IHKAFI TEAl 

ISSUE REPLACE 
TO UPDATE 
UVR 

'IHKAFI TEAl 

G 1 RE~6~ST 
QUEUE 

C2-----, 

RETURN CODE 
')...:-"'.1-+4 = RETURN FROM 

IHKAFI 

G21---__.. 

IS 
NO H2 DDNAME ').....;;:;.-... < IN UVR 

BLANK 

YES 

RET24 
rJl-..l----, 

RETl6 
J2---'----, 

I RETURN 
CODE = 24 

RETURN 
CODE = 16 

84 

84_.1.-_-, 

MOVE USERID 
INTO TUBUSRNM 

RNQ 
C4_-'--_--, 

IHKRNQ UAA2 

QUEUE FOR 
LIBRARY I/O 

TEST 
D4 RETURN 

FROM 
IHKRNQ 

i8 
MOVEDDN 

E4_-,-__ .., 

MOVE DDNAME 
INTO KONBOX 

D5----., 

=8 



MICROFICHE DIRECTORY 

All modules, except one, in the CRJE system have object module names with the first 
.ree letters the same as in the RJE system. Object module names in both systems begin 
th the letters IHK. Object module names in RJE are eight letters and object module 
mes in CRJE are only six letters, (aliases are eight letters). The one exception is 
.e module that RJE and CRJE share, which is the RJE/CRJE central command 

:ECT 
.ME 

;C1503D 

lKAFI 

!KALC 

IKAST 

:lKAWS 

IKBGN 

iKBLKS 

iKBPM 

:lKBSH 

:lKBST 

:iKCCl 

tlKCC2 

iiKCC3 

HKCC4 

HKCC5 

OBJECT GENERIC 
MODULE NAME 
NAME 

IGC1503D RJE/CRJE central 
Command scheduling 
Routine 

IHKAFI Active Area I/O 
Control/COMMAND 
Interpreter 

IHKALC Allocate Routine 

IHKAST Active Area start-up 
Initialization 

IHKAWS Active Area Recovery 
Module 

IHKBGN START Command Processor 

LOAD ATTRIBUTES 
MODULE OF MODULE* 

IGC1503D R, N 

IHKBGN SR, S 

IHKALC R, N 

IHKAST SR, N 

IHKAWS SR, N 

IHKBGN SR, S 

IHKMAC CLBs, STCBs, DECBs. DCBs IHKBGN 

IHKBPM 

IHKBSH 

IHKBST 

IHKCCl 

IHKCC2 

·IHKCC3 

IHKCC4 

IHKCC5 

Library I/O Module 

Library I/O Shutdown 
Module 

Library I/O Start-up 
. Module 

SHOW USERS and SHOW 
JOBS Central Command 
Processor 

SHOW LERB~ SHOW BRDCST, 
AND MODIFY Central Com­
mand Processor 

BRDCST Central Command 
Processor 

IHKBGN 

IHKBSH 

IHKBST 

IHKCCl 

IHKCC2 

IHKCC3 

SHOW MSGS and MSG D= IHKCC4 
Central Command Processor 

CENOUT central Command 
Processor 

IHKCC5 

SR, S 

SR, N 

SR, N 

R, N 

R, N 

R, N 

R, N 

R, N 

CHART ENTRY 
IDs POINTS 

EA IGC1503D 

TE-TJ iHKAFI 

RZ IHKALC 

AP IHKAST 

AR-AT IHKAWS 

AF IHKBGN 

IHKGML 

UE-UG IHKBPM 

Bl, BJ IHKBSH 

AV, AW IHI<BST 

EG-EH IHKCCl 

EJ-EK IHKCC2 

EN-EO IHKCC3 

EP, EQ IHKCC4 

ER-ET IHKCC5 

*SR=serially 
reusable;R=reentrant;F=refreshable:N=nonresident;S=resident 

Microfiche Directory 389 



IHKCC6 IHKCC6 SHOW SESS and SHOW IHKCC6 R, N EUSZEV IHKCC6 
SESSREL central Command 
Processor 

IHKCC7 IHKCC7 USERID Central Command IHKCC7 R, N EW IHKCC7 
Processor 

IHKCC8 IHKCC8 MSG and SHOW ACTIVE IHKCC8 R, N EX-EY IHKCC8 
Central Command Processor 

IHKCCl IHKCCl Central Command Interface IHKBGN SR,S EE IHKCCl 

IHKCCS IHKCCS Scan Routine IHKBGN SR,S WA IHKCCS 

IHKCDP IHKCDP Library Condense Module IHKCDP R,N UR-UT IHKCDP 

IHKCGN IHKCGN CHANGE Subcommand IHKCGN R,N MA-MC IHKCGN 
Processor 

IHKCIP IHKCIP CRJE Initialization IHKCIP SR,N AK-AM IHKCIP 
Module 

IHKCLN IHKCLN CRJE Closedown Module IHKCLN SR,N BF-BG IHKCLN 

IHKCMD IHKCMD Command Analyzer IHKBGN R,S GA-GJ IHKCMD 

IHKDEQ IHKDEQ Dequeue/Job End Processor IHKDEQ R,N FJ,FK IHKDEQ 

IHKDSP IHKDSP ·CRJE Dispatcher IHKBGN R,S GP IHKDSP 

IHKEDl IaKEDl EDIT, DELETE, and EXEC IHKEDl R,N MJ,MK IHKEDl 
Command Processor 

IHKECD IHKMAC ECB list for Dispatcher IHKBGN 

IHKECL IHKMAC ECB list for IHKLDC IHKBGN 

IHKECS IHKMAC ECB list for IHKSRV IHKBGN 

IHKEDT IHKEDT EDIT, DELETE, and EXEC IHKEDT R,N MG-MI IHKEDT 
Command Processor 

IHKEND IHKEND END Subcommand Processor IHKLGF R,N MW IHKEND 

IHKEOS IHKEOS EDIT Command Processor IHKEOS R,~ MM-MN IHKEOS 

IHKERR IHKERR Line Error and Active IHKALC R,F,N GS,GT IHKERR 
Area I/O Error Recorvery 
Routine 

IHKEXC IHKEXC Channel Program IHKBGN SR,S TK-TO IHK.EXC 
Initializer/Requester 

IHKGCW IHKGCW Channel Command Word IHKEGN SR,S No IHKGCW 
List Generator 

IHKGET IHKGFT SUBMIT Input Record IHKGET R,N RS-RU IHKGET 
Processor 

IHKINl IHKINl CRJE System Library IHKINT SR AA IHKINl 
Initializatiun Unity 

--------------------
*SR=serially reusable;R=reentrant;F=refreshable;N=nonresident;S=resident 

390 , 



IHKIPT IHKIPI' 

IHKIRL IHKIRL 

IHKLAB IHKLAB 

IHKLAD IHKLAD 

IHKLAP IHKLAP 

IHKLAT IHKLAT 

IHKLAY IHKLAY 

IHKLDC IHKLOC 

IHKLDS IHKLDS 

IHKLERB IHKMAC 

IHKLEW IHKLEW 

IHKLGF IHKLGF 

IHKLGN IHKLGN 

IHKLOC 

IHKLST IHKLST 

IHKMAA IHKMAA 

IHKMGE IHKMGE 

IHKMSG IHKMSG 

IHKMUF IHKMUF 

IHKNUM IHKNUM 

IHKOPN IHKOPN 

IHKOUT IHKOUT 

IHKPUT IHKPUT 

IHKRER IHKRER 

INPUT Subcommand 
Processor 

Insert/Replace/Delete 
Processor 

output Text Formatting 
Module 

Communication Line 
Administrator Module 

Input/Output Operation 
Initiation Module 

TABSET Edit Module 

IHKIPT 

IHKBGN 

IHKBGN 

IHKBGN 

IHKBGN 

IHKBGN 

l050X Programmed Time-out IHKLAY 
Module 

Loader/controller 

LISTDS and LISTLIB Com­
mand Processor 

IHKLDC 

IHKLDS 

Line Error Control Blocks IHKBGN 

Line Edit Write Routine IHKBGN 

LOGOFF Command Processor IHKLGF 

LOGON Command Processor IHKLGN 

Alias for IEFLOCDQ 

LIST Subcommand Processor IHKBGN 

MERGE Subcommand 
Processor 

MERGE Subcommand 
Processor 

Message Writer 

MERGE Subcommand 
Processor 

IHKMAA 

IHKMGE 

IHKBGN 

IHKMUF 

Numeric Verification IHKBGN 
Routine 

OS Data Set Open Routine IHKOPN 

OUTPUT and CONTINUE IHKIPT 
Command Processor 

Transmit Output Module IHKPUT 

SYSOUT Open, Job Delete, IHKRER 
Data Set Scratch, and 

R,N 

R,S 

R,S 

R,S 

SR,S 

SR,S 

R,N 

SR,S 

R,N 

R,S 

R,N 

R,N 

R,S 

R,N 

R,N 

R,S 

R,N 

R,S 

R,N 

R,N 

R,N 

R, N, 

NA-NC IHKIP'I' 

NJ-NM IHKIRL 
IHKIRLOl 
IHKIRL02 

HP-HQ IHKLAB 

HA- HE IHKLAD 

HK-HM IHKLAP 

HU IHKLAT 

HX-HZ IHKLAY 

DA-DD IHKLDC 

NV-NY IHKLDS 

HW IHKLEW 

PA IHKLGF 

PE-PG IHKLGN 

NR-NT IHKLST 

PN-PO IHKMAA 

PJ, PK IHKMGE 

SH-SK IHKMSG, 
IHKMSG01, 
IHKMSG02, 
IHKMSG03 

PS IHKMUF 

WJ IHKNUM 

DH IHKOPN 

QA IHKOUT 

QB-QF IHKPUT 

QJ, QK IHKRER, 
IHKRER01, 

*SR=serially reusable:R=reentrant:F=refreshable;N=nonresident:S=resident 

Microfiche Directory 391 



CANCEL Module IHKRER02, 
IHKRER03 

IHKRNQ IHKRNQ Librarian Queue Module IHKBGN R, S' UA IHKRNQ 

IHKRNR IHKRNR RENUMBER Subcommand IHKRNR R,N QQ+QT IHKRNR 
Processor 

IHKSAV IHKSAV SAVE Subcommand Processor IHKSAV R,N QW-QZ IHKSAV 

IHKSCN IHKSCN SCAN Subcommand Processor IHKBGN R,S RA,RB IHKSCN 

IHKSDQ IHKSDQ Job Termination Handling IHKBGN SR,S FA IHKSDQ 
Routine 

IHKSMG IHKSMG System Messages IHKINT 

IHKSND IHKSND SEND Command Processor IHKSND R,N RE-RG IHKSND 

IHKSRV IHKSRV START RDRCRJE, Allocate, IHKSRV SR,S CA,CB IHKSRV 
and Q Manager Service 
Rodtine 

IHKSTP IHKSTP CRJE Stop Module IHKTAB R,N )'i'i\ IHKSTP 

IHKSTS IHKSTS STATUS Command Processor IHKSTS R,F,N RJ,RK IHKSTS 

IHKSUB IHKSUB SUBMIT Command Processor IHKSUB R,N RO-RR IHKSUB 

IHKSYN IHKSYN FORTRAN and PL/I IHKBGN SR,S WR-WT IHKSYN 
Conversational Syntax 
Checker Interface 

IHKTAB IHKTAB TABSET Subcommand IHKTAB R,N SE-SG IHKTAB 
Processor 

IHKUSR IHKUSR USERIDs/Passwords IHKINT S 

IHKUTM IHKUTM User File Manager IHKBGN R,S ~lX, WY IHKUTM 

IHKWTR IHKWTR Library I/O Wait Module IHKBGN R,S UP IHKWTR 

--------------------
*SR=serially reusable:R=reentrant:F=refreshable:N=nonresident;S=resident 

392 



~E 

I1T 

CT 

LB 

CSECT GENERIC 
NAME NAME 

IHKAVT Address Vector 
Table 

IHKCCT CRJE Control 
Table 

Conversational 
Line Block 

EF IHKDEF Command Default 
Table 

HKNBX IHKNBX KONBOX 

MODULE 
CONTAINING 
TABLE 

IHKAVT 

IHKMAC 

IHKMAC 

IHKDEF 

IHKNBX 

LOCATION 

resident 

resident 

resident 

resident 

resident 

SYNOPSIS 

Contains entry points 
of resident modules. 

Contains information 
pertaining to entire 
CRJE system. 

Contains information 
about one line: a CLB 
exists for each line. 

Contains default op­
tions of operands on 
commands and 
subcommands. 

Contains information 
for AFIO and Library 
I/O. 

AP Block Table Allocated resident Contains entry for 

[CL 

100 

'PT 

:JCT 

iCL 

iTCB 

at start-up 

IHKMCL Major command List IHKMAC 

IHKMOD Module Table IHKMOD 

Parameter Position 
Table 

Remote Job 
Control Table 

IHKSCL Subcommand Table 

Subtask Control 
Block 

IHKMAC 

IHKMAC 

resident 

resident 

Allocated 
dynamically 
as needed 

Resides in sys­
tem library on 
disk: resides in 
global file on 
disk when sys­
tem is active. 

resident 

resident 

each 2K block of main 
storage in the 
transient area: used by 
IHKLDC. 

Contains all major 
commands and associates 
a code with each one. 

Contains an entry with 
a loading code for each 
nonresident module: 
us ed by IHKLDC. 

Contains command and 
operands: one or more 
PPTs associated with 
each TUB. 

Contains information 
about jobs submitted 
OS for processirig 
through CRJE. 

to 

Contains all 
subcommands and 
associates a code with 
each one. 

Contains pointer to 
entry in ECB list in 
dispatcher: one exists 
for each CRJE subtask: 
-used by dispatcher for 
giving control to CRJE 
subtasks. 

Microfiche Directory 393 



TRT 

TUB 

UVR 

394 

IHKMOO Translate Table 

Terminal User 
Block 

User Verification 
Record 

IHKMOD resident 

Allocated 
dynamically 
by line 
administrator. 

Resides in sys­
tem library 
and global 
file, both on 
disk. 

contains command and 
subcommand codes and a 
corresponding code for 
the module to be loaded 
or deleted; used by 
IHKLOC. 

contains information 
about one user and his 
session; a TUB exists 
for each active user. 

contains userid and 
password of all 
potential users. 



This section contains a de,-;criptL::m of t.he -eight control blocks used 
in CRJE. Whenever passibl", a )"-~p of the control block is provided. 
Displacements ( in bytes) ar(~ provided in the left-hand corner of the box 
representing the field. 

Following the map of the contcol block is a brief description of the 
fields. If possible, the field is broken down into flags or bits. The 
modules that set, check, or t,nrn off the bits are also indicated here. 

The user's verification rec{)cd,which is part of the system library 
and resides in a global file, and the three forms of user library 
directory entries are also described. in this section. 

ADDRESS VECTOR TABLE 

IHKYYCCT OS 
IHKYYSCB OS 
IHKYYSCl DS 
IHKYYSC2 OS 
IHKYYSC3 DS 
IHKYYSC4 OS 
IHKYYCLB OS 
IHKYYTUB OS 

DS 
IHKYYMCL DS 

IHKYYMOO OS 
IHKYYMAP DS 
IHKYYTRT DS 
IHKYYOEF OS 
IHKYYCIB DS 
IHKYYGML DS 
IHKYYDQE DS 
IHKYYDQS DS 
IHKYYLCE DS 
IHKYYLCT OS 
IHKYYSRE DS 
IHKYYSRT OS 
IHKYYSPL DS 
IHKYYECL - DS 
IHKYYECD OS 
IHKYYECS DS 

IHKYYQMS 
IHKYYQMD 
IHKYYQML 

IHKYYLAB 
IHKYYLAP 
IHKYYLAD 
IHKYYLAT 
IHKYYLAM 

DS 
OS 
OS 

DS 
DS 
DS 
DS 
OS 

A 
A 
A 
A 
A 
A 
A 
A 
A, 
A 

A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 

A 
A 
A 

V 
V 
V 
V 
A 

Cont.ral Blocks and Tables 

IHReeT 
IHKS'l"CB 1 
IHKSTCB2 
IHKSTCB2 
IHKSTCB3 
o 
IHKCI,B 
o 
o 
IHKl'lCL 

IHKMOD 
o 
IHK'I'R,]' 
IHKOEF 
IHKCIS 
IHKGIvlL 
IHKDQE 
IHKDQS 
IHKI.cE 
o 
IHKSRE 
o 
o 
IHKECI, 
IHKECD 
IHKECS 

CRJ'E control tables 
STCB pointer for start-up 
Current STCB in first circle 
Current STCB in second circle 
Curren't STCB in third circle 
Reserved 
Conversational line block list 
Address of first TUB in chain 
Address of last TUB in chain 
Major command code list 

Nonresident module table 
CUrrent map of transient area 
Command code translate table 
option default table 
Central command input buffer 
GETMAIN list for refreshability 
'3'lS dequeue ECB 
Stop ECB for SYS dequeue 
Loader/Controller return ECB 
Loader/Controller TCB address 
SRV ECB to return to OS 
SRV '1'CB address 
START parameter list 
Loader/Controller ECB list 
Dispatcher ECB list 
utility TASK (IHKSRV) ECB list 

operat:ing System Modules 

o 
o 
o 

Queue manager (queue) 
Queue manager <dequeue) 
Queue manager (delete) 

CR.H; Line Administrator 

IHKLAB 
IHKLAP 
IHKLAD 
IHKLA'r 
o 

Output preparation 
Read/Write 
Entry. analysis, and end 
Tab character editing 
Reserved 

Data Area Layouts 395 



IHKYYlv1SG 
IHKYMSGl 
IHKYMSG2 
IHKYMSG3 

IHKYYAFI 
IHKYYEXC 
IHKYYEXF 
IHKYYGCW 
IHKYYBPM 
IHKYYIRP 
IHKYYRNQ 
IHKYYKBX 
IHKYYW':rR 

IHKYYSYN 
IHKYYUTM 
IHKYYCCS 
IHKYYRJC 
IHKYYNUM 
IHKYYBGN 
IHKYYSDQ 
IHKYYDSP 

IHKYYPLl 
IHKYYFRT 

IHKYYIAX 
IHKYYISX 
IHKYYILX 

OS 
OS 
OS 
os 

OS 
OS 
OS 
OS 
os 
OS 
OS 
OS 
os 

DS 
OS 
OS 
OS 
OS 
OS 
OS 
os 

v 
V 
V 
V 

V 
V 
V 
V 
V 
V 
V 
V 
V 

V 
V 
V 
V 
V 
V 
V 
V 

Message Writer Entry Points 

IHKMSG 
IHKMSGOl 
IHKMSG02 
IHKMSG03 

Build, or build and send 
Build and queue 
Queue existing message 
List messages at central 

AFIO/BPAM Modules 

IHKAFI 
IHKEXC 
IHKEXF 
IHKGCW 
IHKBPM 
IHKIRP 
IHKRNQ 
IHKNBX 
IHKWTR 

IHKSYN 
IHKUTM 
IHKCCS 
IHKRJC 
IHKNUM 
IHKBGN 
IHKSDQ 
IHKDSP 

AFIO 
EXCCW 
EXCPFW 
GENCCW 
BPAM 
INTRPFW 
Queue service requests 
KONBOX 

Service Routines 

Syntax Checker Interface 
UVR Manager 
Character scan 
RJCT Manager 
Line number verification. 
CRJE Being module 
Job termination 
Dispatcher 

The Address of the Syntax Checkers are Inserted at 
the Operator's Discretion at Start-up Time. 

OS 
OS 

V 
V 

IHKPLl 
IHKFRT 

PL/l Syntax Checker 
FORTRAN Syntax Checker 

The Names of These Optional Installation-Defined 
Exits are Supplied in the CRJETABL Macro. 

OS 
OS 
os 

A 
A 
A 

o 
o 
o 

LOGON exit (accounting) 
SUBMIT exit (job card) 
LOGOFF exit 

The Name of the Optional Installation-Defined User Command 
Processor is Supplied in the CRJETABL Macro. 

IHKYYUSR 

IHKYYCMD 

IHKYYIRL 

IHKYDSPl 
IHKYYLPT 

I IHKYYLEW 
IHKYYLAY 

396 

OS 

OS 
OS 
OS 
OS 
OS 
OS 
OS 
OS 
OS 
OS 
OS 

A 

V 
A 
V 
V 
V 
V 
V 
V 
V 
A 
A 

o 

resident Command Processors 

IHKLST 
o 
IHKSCN 
IHKIRL 
IHKIRLOl 
IHKIRL02 
IHKIRL 
IHKDSPOl 
IECTLERP 
o 
o 

LIST 
Unused 
SCAN 
Insert/Replace 
Implicit subcommand 
Correction mode 
DELETE subcommand 
Current priority in dispatcher 
BTAM LERB print routine 
Tab output formatting 
l050X programmed time-out 



CRJE CONTROL TABLE (CCT) 

+0 +2 

CCTOPT CCTBRK 

+4 +6 

CCTBRDNO CCTMSGNO 

+8 +9 +10 +11 

CCTSYSCI CCTSYSCE CCTMSGRC CCTSESS 

+12 +14 

CCTPLlMX CCTFRTMX 

-+16 +18 

CCTJOBS CCTUSERS 

+20 +21 

CCTPLIFG CCTPLIWA 

+24 +25 

CCTFRl 'G CCTFRTWA 

+28 

CCTCLECB 

+3:? 

CCTJSECB 

+36 

CCTCSECB 

+40 

CCTJLECB 

+44 

CCTMSECB 

+48 +50 

CCTCCMDS CCTLNCNT· 

+52 

CCTUSR 

,+56 

CCTIAX 

+60 

CCTISX 

+64 

CCTILX 

Data Area Layouts 397 



FIELD DESCRIPTIONS 

CCTOPT 2 bytes 

Bits reflect either a parameter option or a condition of status 
wi thin the syst.em. If on, the condition exists; if off, the· . 
specifi.ed condition does not exist. 

Bit Definitions 

Bit 0 

Bit 1 
CCTPL1 

Bit 2 

Bit 3 

Bit 4 
CCTCLS 

Bit 5 
CCTSUP 
CCTSUPF 

Bit 6 

Bit 7 
CCTATERM 

Bit 8 
CCTSRTUP 

Bit 9 
CCTJTBSY 

Bit 10-13 

Bits 14-15 
CCTFORT 
CCTFRTGH 
CCTFORTE 

CCTBRK 2 bytes 

Not used 

PLl1 syntax checker available 
set by IHKCIP 
Checked by IHKSCN and IHKIRL 

Not used 
, 

Not used 

CRJE closedown in progress 
Set by IHKSTP 
Checked by IHKERR 

Suppress mode in effect 
Set by IHKCC7 
Checked by IHKLGF and IHKCMD 
Turned off by IHKCC7 

Not used 

Abnormal termination of the central system 
Set by IHKDEQ 
Checked by IHKCLN 

CRJE start-up in progress 
Set by CRJET~BL macro 

Checked by IHKCCI 
Turned off by IHKDEQ 

Job terminator busy 
Set by IHKDEQ 

Checked by IHKSTP 
Turned off by IBKDEQ 

Not used 

These two flags indicate whether or not the 
FORTRAN syntax checker is present in the 
system and, if so, what level it is. 

Set by IHKCIP 
Checked by IHKIRL and IHKSCN 

Number of lines of text to be sent between simulated'interrupts for 
those terminals without interrupt feature 

CCTBRDNO -

Set-by CRJETABL macro at assembly time 
Checked by IHKLAP 

2 bytes 

Maximum number of broadcast messages that may be added to the already 
existing broadcast messages 

398 

Set by CRJETABL macro at assembly tine 
Changed and checked by IHKCC3 



CCTMSGNO - 2 bytes 

Maximun number of delayed messages that may be added to the already 
existing delayed messages 

CCTSYSCI -

Set by CRJETABL macro at assembly time 
Changed and checked by IHKMSG 

1 byte 

Internal representation of SYSOUT code 

CCTSYSCE -

CCTMSGEC -

Set by CRJETABL macro at assembly time 
Checked by IKKOUT 

1 byte 

1 byte 

External representation of SYSOUT code 

CCTMSGRC -

Not used 

CCTSESS 

Set by CRJETABL macro at assembly time 
Checked by IHKOUT 

1 byte 

1 byte 

Number of central consoles that have entered SHOW SESS commands 

Set by IHKCC6 
Checked by IHKLGN and IHKLGF 

CCTPL1MX - ·2 bytes 

Maximum number of continuation lines (PLll) 

CCTFRTMX -

Set by CRJETABL macro 
Used by IHKSYNand IHKIRL 

2 bytes 

Maximum number of continuation lines (FORTRAN) 
Set by CRJETABL macro 
Used by IHKIRL 

CCTJOBS 2 bytes 

Maximum number of jobs that may be submitted by active users 

Set by CRJETABL macro at assembly time 
Checked by IHKSUB 

CCTUSERS - 2 bytes 

Maximum number of users that may be added to the system 

CCTPD1FG -

Set by CRJETABL macro at assembly time 
Checked and modified by IHKCC7 

1 byte 

Defines entry into PL/l syntax checker 
Set to zero by CRJETABL macro at assembly eime 

Data Area Layouts 399 



Bit Definitions 

Bit 0 Shows if work area exists zero indicates first, entry 
checked by syntax checker If zero" syntax checker 
obtains and initializes work area (lK)set to 1 by 
IHKCIP , 

Bit 1 0 - New statement to be scanned 1- Old input -
checking to be continued from where last error 
occurred. Checked by syntax checker Set by IHKSYN 
when moved to TUB for linkage to the syntax checkers 

Bit 2 0 - Normal syntax checking 1 - Last entry, no syntax 
checking WOrk area to be released 

Bits 3-7 Not used 

CCTPLlWA 3 bytes 

Address of work area obtained by PL/1 syntax checker on first entry for 
use in subsequent entries 

CCTFRTFG 1 byte 

Same bit configuration as CCTPL1FG Defines entry into FORTRAN syntax 
checker 

CCTFRTWA 3 bytes 

Address of work area for FORTRAN Stored by FORTRAN syntax checker on 
first entry 

CCTCLECB 4 bytes 

ECB for passing control from ~HKCCI to loader/controller 

CCTJSECB 4 bytes 

ECB for passing control from IHKDEQ to IHKSRV 

CCTCSECB 4 bytes 

ECB for passing control from central commands to IHKSRV 

CCTJLECB 4 bytes 

ECB for passing control from IHKSDQ to loader/controller 

CCTMSECB 4 bytes 

ECB for passing control from the IHKSRV timer routine to IHKSRV 

CCTCCMDS 2 bytes 

Maximum number of central commands that may be queued 

Set by CRJETABL macro at assembly line 
Passed to OS by IHKCIP at start-up 

CCTLNCNT 2 bytes 

Number of lines' defined in the system 

CCTUSR 

400 

Set by CRJETABL macro at asseinbly time 
Used by IHKBPM on warmstart 

4 byte 



Address of installation command processor 

CCTIAX 

Set by CRJETABL macro at assembly time 
Used by IHKCMD 

4 bytes 

Address of installation accounting exit 

CCTISX 

Set by CRJETABL macro at assembly time 
Used by IHKLGN 

4 bytes 

Address of installation - defined JCL exit 

CCTILX 

Set by CRJETABL macro at assembly time 
Used by IHKSUB 

4 bytes 

Address of installation LOGOFF exit 
Set by CRJETABL macro at assembly time 
Used by IHKLGF 

Data Area Layouts 401 



t;oNVERSATIONAL LINE BLOCK (CLB) 

+0 +1 

CLBDEVTP CLBLDECB 

+4 +5 

CLBREOST CLBTRLST 

\+8 +9 

CLBSTATS CLBSAVAD 

+12 ' +13 

CLBRTNCO CLBUFFAD 

+16 

CLBUTECB 

,+20 +21 , 
/CLBFEATR CLBTRNEC 

\+24 

CLBTRNUP 

1+28 

CLBTRNLW 

/+32 

CLBDDNAM (8 bytes) 

+40 

CLBSAECB 

+44 +45 

CLBLNSEQ CLBLINE 

+48 

CLBLCECB 

+52 

~ CLBSAVE; (72 bytes) '-

+124 

CLBQUEUE 

+128 

CLBSTOP 

402 . 



FIELD DESCRIPTIONS 

CLBDEVTP 1 byte 

The bit patterns of this byte reflect the line and terminal types 
associated with this CLBe 

Bits 0 

Bits 1-3 

Bit 4 
CLB2741 

Bit 5 
CLB2740 

Bit 6 
CLB1050 

Bit 1_ 
CLBDIAL 

CLBLDECB 

Reserved for future expansion 

Not used 

If on, the terminal is a 2741 
Set by CRJELINE macro at assembly time 
Checked by IHKLAB, IHKLAP, and IHKLAD 

If on, the terminal is a 2740 
Set by CRJELINE macro at assembly time 
Checked by IHKLAB, IHKLAP, and IHKLAD 

If on, the terminal is a 1050 
Set by CRJELINE macro at assembly time 
Checked by IHKLAB, IHKLAP, and IHKLAD 

If on, the line is a switched line 

3 bytes 

Set by CRJELINE macro at assembly time 
Checked by IHKLAB. IHKLAP, and IHKLAD 

Contains the address of _the BTAM DEeB associated with the line. 

Set by CRJELINE macro at assembly time 
Used by IHKLAB, IHKLAP, and 
IHKLAD for BTAM I/O operations 
~sed by IHKCC2 for SHOW LERB and MODIFY 

CLBREQST 1 byte 

Bit Definitions 

Bit 0 

Bit 1 

Bits 2 

Bit 5 
CLBSTOPN 
CLBSTOPF 

Bit 6 
CLBRDTIN 
CLBRDTIF 
CLBREADN 
CLBREADF 

Bit 7 
CLBINITN 
CLBINITF 

Not used 

TUB identifier, must be zero in CLB 
Checked by IHKCMD and IHKERR. 

Not used 

If on, a MODIFY D or P CRJE was entered 
Set by IHKCC2 or IHKSTP 
Checked by IHKLAP and IHKCMD 
Turned off by IHKERR 

If on, a CREAn I or a CREAn request has been 
received by line administrator. 

Set by caller via CREAD macro 
Checked by IHKLAD 
Turned off by IHKLAD 

If on, a CREAD I request has been received 
by line administrator. 
Set by caller via CREAD macro 

Checked by IHKLAD and IHKLAP 
Turned off by IHKLAD 

Data Area Layouts 403 



CLBTRLST 3 bytes 

Contains the address of the BTAM DFTRMLST for initial READ. 

CLBSTATS 

Set by CRJELINE macro at assembly time 
Used by IHKLAD and IHKLAP for initial 
I/O operations on the line 

1 byte 

The bits in this field reflect the line status and reasons for failing 
to complete caller's requests. 

Bit Definitions 

Bit 0 • 
CLBACTVN 
CLBACTVF 

Bit 1 
CLBMODYN 
CLBMODYF 

Bit 2 
CLBTQUEN 
CLBTQUEF 

Bits 3-5 

Bits 6-7 

CLBSAVAD 

If on, CLB/DCB is active 
Set by IHKLAD 
Checked by IHKCC2 

Turned off by IHKLAD 

MODIFY has been requested for this line 
Set by IHKCC2 
Checked and reset by IHKCMD 

If on, CLB has been queued by programmed 
time-out module (IHKLAY) •. 
Set by IHKLAY 

Checked by IHKLAD and IHKLAP 
Turned off by IHKLAY 

Not used 

Not used 

3 bytes 

Contains the line save area address (used for saving registers during 
linkage between line administrator modules and between the IHKLAD module 
and the CRJE dispatcher). 

CLBRTNCD 

Established by IHKLAD 
Used by IHKLAD 

1 byte 

Contains the return code from BTAM after line administrator issues an 
I/O operation. 

CLBUFFAD 

Set by IHKLAP 
Checked by IHKLAD 

3 bytes 

Contains the address of the line buffer used for all communications 
between. the CPU and the terminal. 

Established by IHKLAD 
Used by IHKLAB, IHKLAP, and IHKLAD 

CLBUTECB 4 bytes 

ECB for passing control from command processors to IHKSRV 

CLBFEATR 

404 

Posted by the requesting command processor 
Cleared by IHKSRV 

1 byte 



These fields reflect features possessed by all terminals that use this 
line. 

Bit Definitions 

Bits 0 

Bit 1 
CLBSUPRS 

Reserved for future use 

If on, terminal is a leased 1050 
with time-out suppression 

Set by IHKCIP 
Checked by IHKLAP 

Bits 2-4 Not used 

Bit 5 If on, terminalCs) on this line 
CLBBCD has PTTC/BCD code. 

Bit 6 If on, terminalCs) on this line has 
CLBCORRE correspondence code. 

Bit 7 If on, terminal has interrupt feature. 
CLBREAK Set by CRJELINE macro at assembly time 

Checked by IHKLAD 

Note If neither bit 5 nor 6 is on, the terminal 
on this line is assumed to have PTTC/EBCD code. 

CLBTRNEC 3 bytes 

Contains the address of the translation table for translating EBCDIC 
text to be sent to the terminal. 

Established by CRJELINE macro at assembly time 
Used by IHKLAD 

CLBTRNUP ~ 4 bytes 

Contains the address of the translation table for translating text sent 
from the terminal into all-uppercase EBCDIC. 

CLBTRNLW 

Established by CRJELINE macro at assembly time 
Used by IHKLAD 

4 bytes 

Contains the address of the translation table for translating text sent 
from the terminal into EBCDIC, preserving upper and lower case letters. 

CLBDDNAM 

Established by CRJELINE macro at assembly time 
Used by IHKLAI> 

8 bytes 

Contains EBCDIC representation of name specified in the DD statement 
defining the SYSIN data set. 

CLBSAECB 

Established by CRJELINE macro at assembly time 
Used by IHKALC 

4 bytes 

stop acknowledgment ECB 

Posted by IHKCIP and IHKCMD 
Waited on by IHKSTP 
Checked by IHKCC2 and IHKCLN 

Data Area Layouts 405 



CLBLNSEQ 1 byte 

Line.sequence number 

CLBLINE 

Established by CRJELINE macro 
Used by IHKLAO and AFIO 

3 bytes 

Contains the EBCDIC representation of physical line address. 

CLBLCECB 

Set at OPEN time by IHKCIP 
Used by IHKLG'N in LOGON message 
Used by IBKCC2, IHKCC1, and IHKCCS 

4 bytes 

ECB for passing control to IHKLDC 

CLBMCSCO 

Posted by IHKCMD, IHKCLN, IHKPUT, IHKSUB, 
IHKCCI, and IBKSTS 
Cleared by IHKLDC 

1 byte 

10 of console issuing MODIFY command 

CLBSAVE 72 bytes 

save area for registers of IHKCMD on a CREAD I 

CLBQUEUE 

Established by CRJELINE macro at system assembly time 
Used by IHKCMD only. These registers are restored and 

. returned if there is no TUB. 
The first byte is also used for passing the 10 of the 
console requesting a MODIFY from IHKCC2 to IHKCMD for use 
when the request has been satisfied. 

4 bytes 

Contains chain pointer for queuing of CLBs for leased 1050 terminals 
with time-out suppression. 

CLBSTOP 

Used exclusively by IHKLAY for 
queuing and dequeuing purposes. 

4 bytes 

Contains time at which this CLB will be dequeued and an IOHALT will be 
issued on the line if,there is no response from the line. 

406 

Used exclusively by IHKLAY for 
timing purposes 



TERMINAL COMMAND DEFAULT TABLE (DEF) 

+0, 

DEFSTLNO 

+4 

DEFINCRE 

, 

+8 +9 +10 +11 

DEFLGN DEFCON DEFDEL DEFEDIT 

+12 +13 +14 +15 

DEFEATTR DEFPLBSM DEFPLESM DEFEXEC 

+16 +17 +18 +19 

DEFSND DEFINP DEFLST DEFRSERV 

FIELD DESCRIPTIONS 

DEFSTLNO 4 bytes 

Default data set starting line number 

DEFINCRE 4 bytes 

Default data set increment 

DEFLGN 1 byte 

LOGON defaults 

Bit ° Not used 

Bit 1 Message IDs requested 
OEFLMID 

Bit 7 Broadcast messages requested 
DEFLBC 

DEFCON 1 byte 

CONTINUE defaults 

Bit 6 
DEFCBGN 

Continue at beginning 

Data Area Layouts 407 



Bits 5-6 
DEFCNXT 

Continue at next data set 

I Note: If bits 5 and 6 are both off, CONTINUE HERE is assumed. 

DEFDEL 1 byte 

DELETE (major) defaults 

Bit 0 Purge 
DEFDPURG 

DEFEDIT 1 byte 

EDIT options 

Bit 0 
DEFENEW 
DEFENEWF 

New data set 

Bit 1 
DEFENUM 
DEFENUMF 

Bit 2 
DEFESCAN 
DEFESCNF 

Line numbers in line 

Syntax scan requested 

Bit 5 PLil with 48 character set 
DEFPL148 

DEFEATTR 1 byte 

Content attribute of data set 

Bit 1 & 1 - FORTRAN H 
DEFEORTH 

Bit 1 FORTRAN G 
DEFFORTG 

Bit 2 Data 
DEFADATA 

Bit 3 Text 
DEFATEXT 

Bit 4 Data set 
DEFADLST 

list 

Bit 5 Command List 

Bit 6 PLil 
DEFPLl 

Bit 7 FORTRAN E 
DEFFORTE 

DEFPLBSM 1 byte 

PL/l beginning source margin 

DEFPLESM 1 byte 

PL/l ending source margin 

DEFEXEC 1 byte 

408 



EXEC defaults 

Bit 0 List requested 
DEFELST 

DEFSND 1 byte 

Send defaults 

Bit 0 Do not queue messages 
DEFSNOW 

DEFINP 1 byte 

Input defaults 

Bit 0 line number prompts requested 
DEFIREP 

DEFLST 1 byte 

List defaults 

Bit 0 line numbers to be listed 
DEFLNUM 

DEFRSERV 1 byte 

Not used 

Data Area Layouts 409 



PARAMETER POSITION TABLE (PPT) 

+0 +1 

PPTFLG PPTCHAD 

+4 +5 +6 

PPTLNG PPTCMD 

+8 

"-
.'-

T 
PPTPARS (26·130 bytes) 

FIELD DESCRIPTION 

PPTFLG 1 byte 

Bits reflect a condition of status within the system, If on, the 
condition exists; if'off, the condition does not exist. 

Bit Definitions 

Bits 0-7 used internally ·in IHKCMD and in command 
processors 

PPTCHAD 3 bytes 

Contains address of the next PPT. 

PPTLNG 

Set by IHKCMD 
Checked by command processorS 
Turned off by IHKCMD 

1 byte 

Contains length of this PPT. 

PPTCMD 

Set by IHKCMD 
Utilized by command processors and IHKCMD 
Turned off by IHKCMD 

1 byte 

Contains the command code. 

PPTPARS 

Set by IkKCMD 
Checked by command processors 
Turned off by IHKCMD 

Variable 

Contains command parameters <delimiters are removed). Each parameter is 
preceded by one byte indicating the length of the parameter. The first 

410 



bit of the length indicator is set if the parameter was enclosed in 
parentheses, and was the last parameter within the parentheses. The 
second bit is set for a parameter which was in parentheses put was not 
the last. The last parameter in the PPT is succeeded by X'FF'. 

Pata Area Layouts 411 



REMOTE JOB CONTROL TABLE (RJCTl 

--

+0 +1 +3 

RJCTUNIT Not Used 

+4 
RJCTVOL 

+8 
+9 

+12 RESERVED 

+16 

RJCTUSEfI 

+24 +27 
RJCTTTRB RJCTFLGS 

+28 

RJCTOMPA 

'-

+64 

.RJCTOMPE 

+72 
RJCTTTRO 

FIELD DESCRIPTIONS 

RJCTUNIT 1 byte 

contains last character of unit for which IS RDRCRJEI command was 
issued. Either 1 for 2311 or 4 for 2314. 

412 

Set by IHKALC 
Used by IHKCIP 



Not used 2 bytes 

RJCTVOL 6 bytes 

Contains volume serial of 'SRDR' unit. 

Reserved 

R.JCTUSER 

Set by IHKSUB 
Used by IHKCIP 

1 bytes 

8 bytes 

contains identification of user submitting the job. 

RJCTTTRB 

Set by IHKSUB 
Checked by IHKOUT, IHKDEQ, 
IHKCC1, IHKSTS, and IHKRER03 

3 bytes 

contains relative track and record address of first block of SYSOUT data 
set to be sent upon receipt of a CONTINUE HERE command •. 

RJCTFLGS 

Set by IHKPUT 
Checked by IHKOUT 

1 byte 

Each bit reflects a condition of status of this job. If on, the 
conditionn exists; if off, the specified condition does not exist. All 
bits are initialized to OFF by IHKSUB. 

Bit Definitions 

Bit 0 

Bit 1 

Notification message sent 
Set by IHKDEQ 
Checked by IHKDEQ 
Turned off by IHKDEQ 

Job complete 
Set by IHKDEQ 
Checked by IHKDEQ, IHKOUT, IHKCC5, 
IHKCC1, and.IHKSTS 
Turned off by IHKOUT and IHKCIP (warmstart) 

Bit 2 Job was first job in a SUBMIT command 
Set by IHKSUB 
Checked by IHKCIP (to determine if any S RDR commands 
were issued by CRJE but not processed by OS). 

Bit 3 Job terminated abnormally 
Set by IHKDEQ 
Checked by IHKSTS and IHKCC1 

Bit 4 Job to be canceled 
Set by IHKRER03 
Checked by IHKDEQ 

Bits 5-7 Reserved for future use 

RJCTQMPA 36 bytes 

Contains information to transmit output from this j·Ob 

OS queua manager parameter area 
Set by IHKDEQ 

Data Area Layouts 413 



Checked by IHKPUT, IHKREROl 
and IHKCCS . 

RJCTJOB First 8 bytes of RJCTQMPA 

contains name of the job from the user's job card (also key for the 
~ecordl. It identifies the job within the CRJE system. 

RJCTQMPE 

Set by IHKSUB 
Checked by IHKSUB, IHKOUT, IHKCCS, 
IHKDEQ, IHKSTS and IHKCCl 
Turned off (when entry is deleted) 
by IHKQUT, IHRCCS, IHKDEQ, and IHKCIP 
(coldstart specified) 

8 bytes 

os external queue manager parameter area is an extension of the 
RJCTQMPA. 

Set by IHKDEQ 
Checked by IHKOUT and THKCCS 

RJCTTTRO 4 bytes 

Contains relative track and record address of the next 5MB/DSB. 
Modified by IHKPUT and IHKSUB 



SUBTASK CONTROL BLOCK <STeBl 

+0 

STCBNEXT 

+4 
STCBECBL 

8 
STCBSAVE 

+12 

STCBDUMY 

FIELD DESCRIPTIONS 

STCBNEXT 4 bytes 
Address of next STCB in chain 

STCBECBL 4 bytes 
ECB list entry address 

STCBSAVE 4 bytes 
Caller's save area address 

STCBDUMY 4 bytes 
Dummy ECB for initialization 

Data Area Layouts 415 



TERMINAL USER BLOCK (TUB) 

+0 +1 
] 

TUBSTATS TUBCLBAD TUBSAVE (72 bytes) 

+4 +5 

TUBREOST TUBUFFAD 

+8 
+140 

TUBUSRID (8 bytes) 

TUBPRMLS (20 bytes) 

'-'"'\ I""" 

+16 +18 

TUBPOLLC TUBDATAL 

+20 +160 

TUBPREV TUBRAFBF 

+24 +164 

TUBNEXT 
" TUBAFQEL (8 bytes) 

+28 +29 

TUBEXCLG TUBEXCAD 

+32 +33 +172 

TU6PPTFL TUBPPTAD 
TUBGBLQL (8 bytes) 

+36 

TUBDIRAD 

+40 +180 +181 +182 

TUBIRLSA TUBAFPR1 TUBAFPR2 TUBREZUM 

1-44 +46 +184 +185 +186 

TUBLNSEQ TUBRECCT TUBNCCWS TUBNSRCH TUBXTNDF 

+48 +188 +190 +191 

TUBTABAD TUBTRKFW TUBACTNM TUBGBLNM 

+52 +192 

TUBRJCT (8 bytes) TUBGBLKY (8 bytes) 

+60 +61 +62 +63 +200 

TUBFLG1 TUBFLG2 TUBFLG3 TUBFLG4 
TUBBPQEL (8 bytes) 

+64 

TUBFQEB 



+208 +209 +210 

TUBPAMSW TUBAFISW TUBCNTFS 

+212 
TUBLBXAF 

+216 

TUBFDAD (8 bytes) 

+224 

TUBTRKBL (8 bytes) 

+232 
TUBIOLNK 

+236 

TUBUSRNM (8 bytes) 

+244 

TUBPMFNM (8 bytes) 

+252 

TUBNXKEY (8 bytes) 

+260 

~ TUBAFCTL (64 bytes) ~~ r\ 

+324 +326 

TUBTIME TUBIDLEL 

+328 

TUBOUTAB 

+332 

RESERVED 

Data Area Layouts 417 



FIELD DESCRIPTIONS 

TUBS'l;'ATS 1 byte 

Bits reflect status of terminal and/or user. 

Bit Definitions 

Bit 0 
TUBERPN 
TUBERPF 

Bit 1 
TUBREAKN 
TUBREAKF 

Bit 2· 
TUBTIMEN 
TUBTIMEF 

Bit 3 
TUBOFFLN 
TUBOFFLF 

Bit 4 
TUBRERNQ 

Bit 5 

Bit 6-7 
TUBERPN 
TUBERPF 

TUBCLBAD 

Line a.dministrator error recovery 
in progress 
Set and checked by IHKLAD. 

Interrupt (real or simulated) has occurred. 
Used within line administrator to indicate 
simulated interrupt should be performed, and to 
indicate to caller that interrupt has occurred. 

Set . by IHKLAP 
Turned off by IHKERR 
Checked by IHKMSG and IHKLAD 

Terminal has not responded to polling. 
Set by IHKLAD 
checked by IHKERR 

Terminal off-line/on-hook 
set by IHKLAD 

User is queued for job deletion. 
Used only by IHKRER 

Not ].lsed. 

Line administrator ERP count flags 
Used within IHKLAD to control retry 
counts on line errors 

Set, checked, and reset by IHKLAD 

3 bytes 

contains the address of the CLB. 

TUBREQST 

Inserted by IHKLAD at allocation 
Used by IHKLGN, IHKLGF, IHKCC1, IHKCC8, 
IHKLAB, IHKLAP, IHKCMD, and niKERR 

1 byte 

The bits of this byte reflect I/O requests for the line. 

Bit Definitions 

418 

Bit 0 

Bit 1 
TUBIDENT 

Bit 2 
TUBIDLEN 
TUBIDLEF 

Bit 3 
TUBRSETN 
TUBRSETF 

not used 

Identifies this as a TUB. Must be on at 
all times. 

. Set at allocation time by IHKLAD 
Checked by IHKCMD and IHKERR 

Indicates next block of text written must be 
preceded by carrier return and idles. 
Set by IHKLADif text read has no ending CR 

Checked and ~eset by IHKLAB 

lndicates occurrence of error on the line .and 
that line must be reset. 
Set by CWRITE R macro 



Bit 4 
TUBTEXTN 
TUBTEXTF 

Bit 5 
TUBWRITN 
TUBWRITF 

Bit 6 
TUBREADN 

Checked by IHKLAD 
Reset by IHKLAD (after CREAD RI 

Upper/lower case preservation 
Set by IHKIRL and IHKCMD 
Turned off by IHKLAD 

Indicates a write request. 
Set by CRWRITE macro 
Checked by IHKLAP and IHKLAD 

Reset by IHKLAD and ~HKLAP 

Indicates a read request. 
Set by GREAD or CWRITE macro 

Checked by IHKLAP and IHKLAD 
Reset by IHKLAD 

Bit 6 & 7 -
TUBRDTIN 
TUBRDTIF 

Indicates an initial operation. 
Set by CREAD I macro 
Checked by IHKLAP and IHKLAD 

Reset by IHKLAD 

TUBUFFAD 3 bytes 

Contains user buffer address. 

TUBUSRID 

Created and destroyed by IHKLAD 
Used for passing data betwee.n the line 
administrator modules and between 
IHKLAD and its callers. 

8 bytes 

Contains user's identification sequence. 

TUBPOLLC 

Reserved 

TUBDATAL 

Inserted by IHKLGN 
Utilized by most command processors and IHKMSG 
Checked by IHKLAP at request for on-line 
terminal test 

2 bytes 

2 bytes 

Contains length of data being passed in the user buf~er. 

TUBPREV 1+ bytes 

Contains address of the previous TUB in the chain. 

TUBNEXT 

Set by IHKLAD 
Modified by IHKLAD 
Used by IURLAB 

1+ bytes 

contains address of the next. TUB in the chain. 

TUBEXCLG 

Set by IHKLAD 
'Modified by IHKLAD 
Used by IHKLAB, IHKMSG, IHRCC1, 
IHKCeS, and IHReeS 

1 byte 

Data Area Layouts 419 



TUBEXCAD 3 bytes 

Contains length and address of EXEC work area. 

Inserted by IHKEDT 
Utilized by IHKED1 and IHKCMD 
Reset by IHKCMD and IHKERR 

TUBPPTFL 1. byte 

These flags reflect the status of the user. They are set, checked and 
reset only by IHKCMD, except for bit 0 which is turned off by IHKERR. 

Bit 0 Active area I/O error 
TUBAARRN 
TUBAARRF 

Bit 1 Null parameter (empty parentheses) 
.TUBNULPN 
TUBNULPF 

Bit 2 warning message to be sent (excessive commas). 
TUBWARNN 
TUBWAHNF 

Bit 3 Comma was recognized as delimiter. 
TUBCOMAN 
TUBCOMAF 

Bit 4 User is prompted for LOGON once. 
TUBLGNRN 
TUBLGNRF 

Bit 5 Interrupt has occurred (real or simulated). 
TUBRAKEN 
TUBRAKEF 

Bit 6 This is a continuation line. 
TUBCNTEN 
TUBCNTEF 

Bit 7 This line is to be continued. 
TUBCNTSN 
TUBCNTSF 

TUBPPTAD 3 bytes 

Contains the address of the parameter position table associated with 
this user. 

TUBDIRAD 

Created by IHKCMD 
Utilized by command processors 
Cleared by IHKCMD 

4 bytes 

Contains address of the PDS directory entr~ for the data set currently 
in the active area for this user. 

TUBIRLSA 

Set by IHKIRL, IHKED1, and IHKEOS 
Used by most command processors and IHKLAD 
Used by IHKLGN as temporary work area. 
Cleared by IHKEND 

4 bytes 

Contains address of IHKIRL GETMAIN area saved during correction mode; or 
Contains address of IHKIRL work area saved dUring input scan. 

420 



TUBLNSEQ 

Set by IHKIRL or IHKSCN during scan 
Used by IHKSYN, IHKCGN. and. IHKSCN 
Used by IHKLGN. IHI<MUF. IHKOPN. IHKALC, IHKGET, 
and IHKMGE 
IHKGET, and IHKMGE as temporary work area 
Cleared by IHKIRL 

2 bytes 

contains unique identification number for this particular user. 

TUBRECCT 

Assigned by IHKLAD at TUB allocation time 
Utilized by AFIO/BPAM and IHKUTM 

2 bytes 

Contains number of blocks sent to this terminal without an intervening 
READ. 

TUBTABAD 

Used in interrupt simulation 
Set by the CRJELINE macro at assembly time 
Incremented, checked and reset by IHKLAP 

4 bytes 

Cont~ins address of tab setting information. 

TUBRJCT 

In~erted by IHKTAB 
Utilized by IHKLAT and IHKLEW 
Checked by IHKLAD 
Reset by IHKLGF and IHKTAB 

8 bytes 

contains the jobname of a discontinued job. 

Set by IHKOUT 
Checked by IHKOUT and IHKCCS 

TUBFLGl 1 byte 

Bits reflect either a parameter option or a condition of status within 
the system. If on, the condition exists; if off, the specified 
condition does not exist. 

Bit Definitions 

Bit 0 
TUBLNO 

Bit 1 
TUBMID 

TUBMIDF 

Bit 2 
TUBSCN 
TUBSCNF 

Bit 3 
TUBFOR 

Line numbers are requested on the list. 
Set by IHKLST 
Checked and reset by IHKLST 

Message identifiers requested. 
Set by IHKLGN and by IHKLAD at time of TUB 
allocation 

Checked by IHKMSG and IHKLDS 

Automatic syntax scan requested. 
Set by IHKEDT, IHKSCN, and IHKIRL 
Checked by IHKIRL ... 
Turned off by IHKSCN, IHKEND and IHKIRL 

Data set in active area has FO~RAN attribute. 
Set by IHKEDT. IHKEDl, and IHKIRL 
Checked by IHKSCN, IHKSYN and IHKIRL 
Turned off by IHKEND 

Data Area Layouts 421 



Bit 4 
TUEPLl 

Bit 5 
TUBCMSGN 
TUBCMSGF 

Bit 6 . 
TUBMSG 
TUBMSGF 

Bit 7 
TUBBRD 
TUBBRDF 

Data set in active area has PL/l attribute. 
Set by IHKEDT. HiKED1. and .IHKIRL 
Checked by IHKSCN, IHKS~N and IHKIRL 
Turned off by IHKEND 

Delayed messages exist for user. 
Set, checked and turned off 
by IHK,MSG 

Message is queued for user. 
Set, checked and turned off by IHKUTM 
Checked by IHKMSG 

Broadcast messages requested. 
Set by IHKLGN and IHKLST 
Checked and turned off by IHKMSG 

TUBFLG2 1 byte 

Bits reflect either a parameter option or a condition of status within 
the system. Ii: on,the condition exists; if off, the specified 
condition does not exist. 

Bit 0-
TUBEXLST 
TUBXLSTF 

Bit 1 
TUBLMSGN 
TUBLMSGF 

Bit 2 
TUBEDIT 
TUBEDITF 

Bit 3 
TUBABEND 

Bit 4 
TUBDISOP 

Bit 5 
TUBLNUMN 
TUBLNUMF 

Bit 6 
TUBLGNAB 

Bit 1 
TOBSMSG 

List comrr.ands before processing. 
Set by IHKEDT 
Checked·by IHKCMD 

. Turned off by IHKCMD 

Message lost for this user. 
Set and checked by IHKUTM and IHKMSG 
Turned off by IHKMSG 

EDIT mode switch' 
Set by IHKEDT 
Checked by I HKCMD , IHKERR, and IHKLAD 

Turned off by IHKEND 

Abnormal termination for user 
Set by IHKERR 
Checked by IHKLGF and IHKEND 

Discontinued output. 
Set by IHKPUT 
Checked by IHKOUT and IHKPUT 

Turned off by IHKPUT 

Line nymbers to be included in data set line. 
Set by IHKED1,IHKEDT, and IHKIRL 
Checked by IHKLST, IHKCGN, IHKRNR, IHKIRL, 
IHKEOS, IHKMAA, IHKMUF, and IHKEDl 

TUrned off by IHKEND 

IHKLGN did not complete processing and returned 
a-bad return code. 

Set by IHKLGN 
Checked by IHKCMD and IHKLGF 

System messages specified in output. 
Set by IHKOUT 
Checked by IHKOUT 
Turned off by IHKOUT and IHKDEQ 

TUBFLG3 1 byte 

422 



Bits reflect either a parameter option or a condition of status within 
the system. If on, the condition exists; if off, the specified 
condition does not exist. 

Bit Definitions 

Bit 0 
TUBLNPMT 
TUBLNPMF 

Bit 1 
TUBNOCRN 
TUBNOCRF 

Bit 2 
TUBCORRN 
TUBCORRF 

Bit 3 
TUBUTMN 
TUBUTMF 

Bit 4 
TUBOVERN 
TUBOVERF 

Bit 5 
TUBLONGN 
TUBLONGF 

Bit 6 
TUBCORCN 
TUBCORCF 

Bit 7 
TUBDLAYN 
TUBDLAYF 

Line number prompts requested. 
Set by IHKEDT, IHKED1, IHKI·PT, and IHKIRL 
Checked by IHKIRL 

TUrned off by IHKIPT and IHKEND 

No carrier return made at end of text 
and trailing blanks not deleted. 
Set by IHKMSG, IHKCMD, and IHKIRL 

Checked by IHKLAP 
Checked and turned off by IHKLAD 

Syntax error corrections to be made. 
Set by IHKSYN 
Checked by IHKCMD, IHKCGN, and IHKIRL 

TUrned off by IHKIRL 

Active area I/O error 
Set by IHKERR 
Checked by IHKLGF 

N-lines override (no simulated interrypt) 
Set by IHKLAD 
Checked by IHKLAP 

'lurned off by IHKLAD and IHKLAP 

Data set logical record length is 80-120 
Set by IHKEOS 
Checked by IHKLST 

Turned off by IHKEND 

Correction has been entered. 
Set by IHKIRL and IHKCGN 
Checked and turned off by IHKIRL 

If bit is set, delayed scan is on. 
Set by IHKSCN 
Checked by IHKSYN 

Turned off by IHKSCN 

TUBFLG4 1 byte 

Bit Definitions 

Bit O. 
TUBSTOP 

Bit 1 
TUBIDAPN 
TUBIDAPF 

Bit 2 

Bit 3 
TUBLIB80 

Bits 4-7 

User logged off due to MODIFY or STOP. 
Set byIHKERR and IHKCC2 
Checked by IHKLGF and IHKERR 

IHKLAB entered to append idles at 
end of text. 
Set, checked, and reset by IHKLAB 

Unused 

User has an 80-character library. 
Set by IHKBPM 
Checked and reset by IHKAWSand IHKSAV 

Unused 

Reserved for future expansion 

Data Area Layouts 423 



TUBFQEB 4 bytes 

Contains address of the storage message queued for this user. 

TUB SAVE 

Save area 

. TUBPRMLS 

Set, checked, modified, and cleared by IHKMSG 
Checked by IHKLAD to determine if message area is to be 
freed prior to deallocation of TUB. 

72 bytes 

Utilized by AFIO 
Second word used by IHKLAD to store caller's save area 
address • 

20 BYTES (TUBPARM1-S) 

Parameter list area 

First two words will be modified by AFIO whenever it is· called. 

TUBRAFBF 4 bytes 

Used as a pointer to the buffer for the INSERT macro and must be 
initialized by the processor issuing the INSERT macro. Also used by 
AFIO when an RGET macro is issued to pOint to the dynamically-allocated 
buffer that the record(s) was read into. Also used by RPOINT macro with 
R operand. 

TUBAFQEL 8 bytes 

Active file queue element - used by AFIO and IHKRNQ for gaining access 
to the restricted work area. 

TUBGBLQL 8 bytes 

Global file queue element 
Used by AFIO to queue requests for access to the global files. 

TUBAFPAR 2 bytes (TUBAFPRl and TUBAFPR2. 

Switches used by the AFIO macro interpreter routines only. 

TUBREZUM 2 bytes 

Return displacement used by AFIO macro interpreter only. 

TUBNCCWS 1 byte 

This byte holds the number of CCWs generated for an I/O operation; used 
by AFIO only. 

TUBNSRCH 1 byte 

Contains maximum number of search arguments. (Used by AFIO only) 

TUBXTNDF 2 bytes 

Contains extended work area required indicator. (Used only by AFIO.) 

TUBTRKFW 2 bytes 

Contains track address indicator. (Used by AFIO only.) 

TUBACTNM 1 byte 

424 



contains number of the active file associated with this TUB. 

TUBGBLNM 

Set by processor with CREATE macro to either 1 (default) 
or 2 (private utility) 
Checked by AFIO 

1 byte 

Same as TUBACTNM except relation is to global files. This field 
(instead of TUBACTNM) is used when the FTYPE=parameter is coded in the 
CREATE macro. 

TUBGBLKY 8 bytes 

This field contains the key of the record desired in a global file. It 
is used by AFIO and by processors when it is desired to POINT, REPLACE, 
DELETE, RGET, or SKIP a specific record or key. 

TUBBPQEL 8 bytes 

Library I/O queue element - used by library I/O module and the IHKRNQ 
module to queue requests for access to the system or user libraries. 

TUBPAMSW 1 byte 

This field is used as a byte of switches for the library I/O mOdules. 

TUBAFISW 1 byte 

Contains internal switches for restart and buffer control for AFIO and 
library I/O. 

Bit 0 
TUBFCTLN 
TUBFCTLF 

Bit 1 

Bit 2 

TUBCNTFS 

Use user buffer, not GETMIAN area 
Set by callers to AFIO, BPAM 

Warmstart in progress 
Set by IHKAWS 

Warmstart completed 
Set by IHKAWS 

2 bytes 

This field is used by the processors requesting multiple AFIO operations 
and by AFIO itself. If a multiple RGET, for instance, is desired, this 
field is initialized to reflect the number of records requested. 

TUBLBXAF 4 bytes 

AFIO work area used for user-oriented processing. 

TUBFDAD 8 bytes 

Used by Lib I/O for track address 

TUBTRKBL 8 bytes 

Track balance informauion for Lib I/O 

TUBIOLNK 4 bytes 

AFIO linkage used only by AFIO. 

TUBUSRNM 8 bytes 

This field contains the userid of the user who owns the file. 
Set by IHKUTM, IHKLDS, and IHKEDT 

Data Area Layouts 425 



TUBPMFNM 8 bytes 

This field contains the name of the library or user library file being 
I processed. It is initialized by IHKEDT and IHKLDS for the users of 

library I/O. 

TUBNXKEY 8 bytes 

This field is used by processors and by AFIO. When,for instance,' POINT 
is used to pOint to a particular record, the key for that record should 
be in TUBNXKEY. When AFIO retrieves a key upon request, it is retrieved. 
into TUBNXKEY. 

TUBAFCTL 64 bytes 

This area is used by AFIO only for control of this user's active file 
area. 

. -
TUBTIME 2 bytes 

Time of day of LOGON 
Inserted by IHKLGN 
Utilized by IHKLGN, IHKLGF, and IHKCCl 

TUBIDLEL 2 bytes 

Logical data length of previous line operation 
Inserted by IHKLAD 
Utilized by IHKLAB 

TUBOUTAB 4 bytes 

Address of output tab setting information 
Set by IHKTAB 
Used by IHKLEW 
Checked by IHKLAD 
Reset by IHKTAB 

Reserved 4 bytes 

426 



USER VERI~ICATION RECORD (UVR) 

+0 

UVRFMAIN (8 bytes) 

+8 

UVRUSRID (8 bytes) 

+16 

UV RPASSW (8 bytes) 

+24 +25 +26 

UVRCNTL1 UVRCNTL2 UVRLNSEQ 

+28 +29 +30 +31 

. UVRCID1 UVRCID2 UVRCID3 

+32 

~ 
UVRUNUS2 (49 bytes) 

~ 

+80 

UVRDDNAM (8 bytes) 

FIELD DESCRIPTIONS 

UVRFMAIN ~ 8 bytes 

Reserved 

UVRUSRID 8 bytes 

corltains userid by which record is located. 

Data Area Layouts .427 



UVRPASSW 8 bytes 

Contains-corresponding password. 

UVRCNTLl 1 byte 

Bits reflect control information. 

Bit 0 
UVRSESS 
UVRSESSF 

Bit 1 
UVRDMSG 
UVRDMSGF 

Bit 2 
UVRABTMl 

Bit 3 
UVRABTM2 

Bit 4 

Bit 5 
UVRLMSGN 
UVRLMSGF 

Bit 6 
UVRLIBIN 

Bit 7 
UVRACTVN 
UVRACTVF 

UVRCNTL2 

Session is to be indicated to operator 
Set only if MCS is not in system 

Delayed messages are available. 
Set, checked, and turned cff by IHKMSG 
Turned off by IHKCC4 

Indicates abnormal termination. 
Set by IHKUTM 

Indicates abnormal termination. 

Unused 

Delayed message for this user was lost. 
Set, checked and t~rned off by IHKUTM 
Set by IHKMSG 

User's library was inoperative last session. 
Set and checked,by IHKUTM 

Indicates that user is active. 
Set, checked and turned off by 
IHKUTM 
Checked by IHKCCl and IHKCC7 

1 byte 

Used to facilitate user message handling. 

UVRLNSEQ 2 bytes 

TUB identification field to facilitate warmstart following abnormal 
termination of CRJE. 

UVRCIDl 

Set by IHKUTM 
Used by IHKAWS to retrieve user's active area 
Cleared by IHKUTM 

1 byte 

Console ID of an operator's console that requested notification whenever 
this user" logs on or logs off. 

UVRCID2 

See UVRCIDl 

UVRCID3 

428 

Set by IHKCC6 only when MCS is in 
system. 
Passed to IHKLGN and IHKLGF by 
IHKUTM 
Cleared by IHKCC6 

1 byte 

1 byte 



see UVRCIDl 

UVRUNUS2 

NOt used 

.UVRDDNAM 

49 bytes 

8 bytes 

Contains the name of the DD card describing the user library. 

Checked by IHKUTM 

Data Area Layouts 429 



CRJE-CREATED USER LIBRARY DIRECTORY ENTRY (DIR) 

+0 

OIRFNAME 

+8 
'" 

+11 . 
DIRUII.EN DlRTTR 

+12 +15 

OIRCRE 

.+16 +18 

DI RMOOA T (3 bytes) 01 RSAV 

+20 +21 +22 

OIRATTRI.. OIRATTRO 01 R KE Y (3 bytes) 

+25 +26 +27 

OfRPLIBS OIRPLIES 0lRSERV1 

+28 

OIRINC 

+32 +34 

OIRNOBLK 

+36 

0lRSERV2 

FIELD DESCRIPTIONS 

-DIRFNAME 8 bytes 
Member; name 

DIRTTR 3 bytes 
TTR for; beginning of member 

DIRUILEN 1 byte 
Number of halfwords of user information 

DIRCRE 3 bytes 
Creation date 

430 



DIRMODAT 3 bytes 
Date last mOdified 

DIRSAV 2 bytes 
Number of ~imes read 

DlRATTRL 1 byte 
File type 

Bit Definitions 

Bit 0 PL/l wit'l 48 character set 
DIRPL148 

Bit 1 FORTR .N G 
DIRFORTG 

Bit 2 Data 
DIRADATA 

Bit 3 Text 
DIRATEXT 

Bit 4 Data set list 
DIRADLST 

Bit 5 Command list 
DIRACLST 

Bit 6 PL/l 
DIRPLl 

Bit 1 FORTRAN E 
DIRFORTE 

Bits 1 , 1- FORTRAN H 
DIRFORTH 

DlRATTRO 1 byte 

other attributes 

Bi t 0 line n'umbers are contained in line. 
DIROLNO 
DIROLNOF 
Bit 1 EDIT old data set 
DIROLD 
DIROLDF 

DIRKEY 3 bytes 

Data set key 

DIRPLIBS 1 byte 

PL/1 beginning source margin 

DIRPLIES 1 byte 

PL/l ,ending source margin 

DIRSERV1 1 byte 

Reserved 

DIRINC 4 bytes 

Data Area Layouts 431 . 



Line number increment 
Set by IHKIRL 
Reset by IHKRNR 

DIRNOBLK 2 bytes 

Number of blocks in data set 

DIRSERV2 6 bytes 

Reserved 

432 



CRBE-CREATED USER LIBRARY DIRECTORY ENTRY 

+0 

NAME 

+8 +11 
TTR DATALEN 

+12 +15 

CREADATE LMDDDATE 

+16 +18 
LMODDATE NOXREAD 

+20 +21 +22 
FTYPE ATTRIB NTTR 

+24 +25 
NTTR RESERVED 

+28 

RESERVED 

FIELD DESCRIPTIONS 

I NAME 8 bytes 
Member name 

TTR 3 bytes 
Pointer to beginning .of member 

DATALEN 1 byt e 
Length of user information in halfwords 

CREADATE 3 bytes 
Creation date 

~ODDATE 3 bytes 
Date last modified 

NOXREAD 2 bytes 
Number of times read 

FTYPE 1 byte 
File type 

Data Area Layouts 433 



Bit Definitions 

Bit 0 
Bit 1 
Bit 2 
Bit 3 
Bit 4 
Bit 5 

Bits 6-7 

not used 
FORTRAN tile 
Non-FORTRAN 
Object module 
File list 
Record length less than 
120 and greater than 80 
Not used 

ATTRIB 1 byte 
Other file attributes 

Bit 0 
Bit 1 ... -
ait.2 

Bits 3-7 

Scan requested 
Line numbers contained in line 
Lower to upper case conversion 
not desired (not implemented) 
Not used 

INTTR (PTRONAR)- 3 bytes 
Pointer to narrative (TTR) 

RESERVED 5 bytes 
Not used 

434 



UTILITY-CREATED USER LIBRARY DIRECTORY ENTRY 

+0 

MEMBER NAME 

+8 +11 

TTR 
C 

FIELD DESCRIPTIONS 

MEMBER NAME 8 bytes 
Member name 

TTR ~ 3 bytes 
Pointer to beginning of member 

C 1 byte 
Length Of user data in halfwords 

Data Al:'ea Layouts 435 



DIAGNOSTIC AIDS 

CHART OF GENERAL REGISTER USAGE BY MODULE 

Module Register 

IHKALC 2 
3 
4 
5 
6 

12 

'IHKAST 8 

IHKAWS 

IHKBGN 

IHKBPM 

IHKBSH 

IHKBST 

IHKCCI 

IHKCCS 

IHKCC1 

436 

10 
12 
14 

7 
8 
9 

10 
12 

10 
12 

3 
8 

1'0 
12 

3 
5 
8 

10 
11 
12 

8 
9 

10 
12 

4 
5 

8 

9 
10 
11 
12 

12 

4 

5 

6 
7 

Contents 

DECB base 
R.1CT base 
DCB address 
TUB base 
AVT base 
base 

KONBOX 
base 
AVT base 
activ.e area DCB base 

AVTbase 
KONBOX base 
TUB active file work 
area address 
base 
TUB base 

AVT base 
base 

DCB address 
KONBOX base 
base 
TUB base 

DCB address 
index to next file 
KONBOX base 
TUB base 
AVT base 
base 

KONBOX base 
AVT.base 
base 
TUB base 

return ECB address 
code of routine to be 
loaded or deleted 
communications ECB 
address 
CIB address 
base 
CCT base 
AVT base 

base 

o return code from 
IHKAFI 
4 return code from 
IHKAFI 
UVR base 
internal linkage 

IHKCC2 

IHKCC3 

IHKCC4 

IHKCC5 

IHKCC6 

IHKCC7 

8 
9 

10 
11 
12 

5 
9 

10 
11 
12 

3 
4 

5 

7 

8 
11 
12 

2 
3 
4 
5 
6 
8 
9 

11 

2 
4 
8 
9 

10 
11 
12 

2 
6 
7 
8 
9 

10 
11 
12 

6 
7 
8 
9 

10 
11 
12 

CIB address 
dummy TUB base 
internal linkage 
AVT base 
base 

CLB base 
dummy TUB address 
CIB address 
AVT base 
base' 

CIB address 
o return code from 
IHKAFI, CIB data 
pointer 
4 return code from 
IHKAFI 
internal linkage, CCT 
base 
TUB base 
base 
AVT base 

AVT base 
CIB address 
pointer to data in CIB 
length of data in CIB 
CCT base 
TUB base 
internal linkage 
base 

internal linkage 
operand counter 
RJCT base 
CIB address 
AVT base 
base 
pointer to dummy TUB 

UCM base 
UVR base 
internal linkage 
CIB base 
TUB base 
CCT base 
AVT base 
base 

UVR base 
internal linkage 
CIB base 
TUB base 
CCT base 
AVT base 
base 



IHKCC8 5 last character in CIB 11 base 
7 internal linkage 12 TUB base 
8 CIB base 
9 TUB base IHKEOS 2 TUB base 

11 AVT base 11 base 
12 base 12' AVT base 

IHKCDP " internal linkage IHKERR " TUB or CLB base 
8 ,.. KONBOX base 8 CCT base 
9 AVT base 10 base 

10 base 12 AVT base 
12 TUB base 

IHKGET 2 address of DSLIST name 
IHKCGN 2 AVT base buffer 

3 TUB base 3 PPT base 

" PPT base 5 length of dsname and 
6 user buffer address base for directory 
8 pointer to work area entry 

10 line retrieved by AFIO 6 address of dsname 
11 base 8 KONBOX base 

10 TUB base 
IHKCIP 11 AVT base 11 AVT base 

12 base 12 base 

IHKCLN 3 DCB address IHKINI 10 DCB address 

" DECB base 12 base 
8 CLB base 
9 CCT base IHKIPT " address of user buffer 

11 AVT base 6 operand counter 
12 base 7 pointer to operands 

8 directory entry 
IHKCMD " CLB or TUB base address 

10 base 9 PPT base 
11 PPT base 10 AVT base 
12 AVT base 11 base 

12 TUB base 
lliKDEQ 3 SYSOUT class for CRJE 

7 CCT base IHKI~L 3 PPT base 
8 AVT base 5 TUB base 
9 ECB base 8 AVT base 

10 QMPA address 11 base 
11 RJCT base 
12 base IHKLAB 12 base 

tHKDSP 5 base IHKLAD 2 TUB base 
9 current priority 3 CLB base 

(O-top, "-medium, 4 DECB base 
8-low) 5 buffer address 

12 address of current 7 AVT base 
STCB 12 base 

IRKEDT 2 TUB base IHKLAP 2 TUB base 
3 PPT base 3 CLB base 
8 user buffer base 12 base 
9 address of current 

operand IHKLAT 2 TUB base 
11 base 3 pointer to work area 
12 AVT base 4 pOinter to work area 

5 line buffer address 
IRKED1 2 Tub base 6 tab buffer address 

4 address of directory 7 tab pointer 
entry 11 base 

10 KONBOX base 12 length of unedited 
11 base text 
12 AVT base 

IHKLAY 2 CLB base 
IHKEND 9 PPT base 3 DECB base 

10 AVT base 4 address of input area 

Diagnostic Aids 437 



IftKLDC 

IHKLDS 

IHKLEW 

IHKLGF 

IHKLGN 

IH~LST 

IHKMAA 

IH~MGE 

438 

10 
11 
12 

1 
2 
3 
1 

8 
9 

10 
12 

1 

4 
"'6 , 

1 
9 

10 
11 
12 

o 
2 
1 

10 
11 

14 

. 15 

8 
9 

10 
11 
12 

6 
1 
8 
9 

10 
11 
12 

3 
4 
6 
1 
8 

10 
12 

2 
.3 
5 

.11 

2 
3, 
4 

11 

internal linkage 
AVT base 
base 

module table entry 
ECB in CLB 
return ECB address 
ECB list entry getting 
first service 
current ECB list entry 
ECB list 
base 
block table entry 

address of parameter 
list 
KONBOX base 
directory entry 
displacement 
operand counter 
PPT base 
AVTbase 
TUB base 
base 

number of tab settings 
address of user buffer 
number of characters 
in string 
internal linkage 
pointer to tab 

. settings 
- .number of blanks in 

string 
base register 

user buffer address 
PPT base 
AVT base 
base 
TUB base 

operand counter 
pointer to operands 
user buffer address 
PPT base and CVT base 
AVT base 
base 
TUB base 

TUB base 
DEF baSe 
PPT base 
parameter counter 
user buffer address 
AFIO buffer address 
AVT base 
base 

AVT base 
TUB base 
PPT base 
base 

TUB base 
PPT base 
AVT BASE 
BASE 

IHKMSG 

IHKMUF 

IHKNUM 

IHKOPN 

IHKOUT 

IHKPUT 

IHKRER 

IHKRER02 

IHKRER03 

IHKRNQ 

2 
"6 

7 
9 

10 
11 

2 
3 
4 

11 

4 
7 

11 

2 
3 

9 
11 
12 

5 

1 
9 

10 
11 
12 

9 
10 
11 
12 

6 
1 
8 
9 

12 

3 
1 
8 
9 

10 
11 
12 

7 
8 

10 
11 

1 
3 
4 

10 

internal linkage 
TUB base of request 
CCT base 
address of user buffer 
AVT base 
address of recipient 
TUB or address of 
recipient userid or 
address of console 10 
followed by 3 bytes of 
zeros 

TUB base 
AVT base 
PPT base 
base 

pointer to length byte 
pointer to data 
characters 
base 

TUB base 
Save and work area 
base 
DCB base 
base 
A'i1T base 

address of length of 
operand and operand 
PPT base 
RJCT base 
TUB base 
AVT base 
base 

QMPA'address 
RJCT base 
TUB base 
base 

JFCB address 
EXLST address 
DCB address 
DSCB address 
base 

QMPA address 
UCB address 
JFCB address 
QMPA-extension address 
DSB address 
scratch list address 
base 

PPT base 
RJCT base 
TUB base 
AVT base 

parameter list address 
que\1e element address 
queue control element 
address 
base 



IHKRNR 

IHKSAV 

2 
3 
£> 

10 
11 

". 
5 
7 
9 

10 
11 
12 

IHKSCN 2 
3 

4 
5 
8 

9 
10 
11 
12 

IHKSDQ 7 

IHKSND 

IHKSRV 

IHKSTP 

8 
12 

3 
4 
6 
8 

10 
11 

2 
3 
5 

7 

8 
9 

10 
11 
12 

3 
5 
9 

11 
12 

AVT base 
TUB base 
user buffer address 
AFIO buffer address 
base 

KONBOX base 
directory entry base 
block count 

- ,PPl' base 
AVT base 
TUB base 
base 

TUB base 
address of current 
operand being 
processed 
KONBOX base 
count of operands 
base for switches and 
user buffer 
CCT base 
internal linkage 
AVT base 
base 

CCT base 
AVT base 
base 

TUB base 
PPT base 
user buffer address 
operand length 
AVT base 
base 

address of ECB in CLB 
addres of return ECB 
address of timer ECB 
in CCT 
ECB list entry getting 
first service 
current ECB list entry 
second entry in ECB 
list 
base 
AVT base 
ECB list 

DECB base 
CLB base 
CCT base 
AVT base 
base 

IHKSTS 

IHKSUB 

IHKSYN 

IHKTAB 

IHKUTM 

IHKWTR 

IGC1503D 

6 
8 
9 

10 
11 
12 

3 
5 
7 

10 
11 
12 

2 

5 
7 

8 

9 
10 

11 
12 

2 
3 
". 
5 

7 
10 
11 

7 
8 
9 

10 
11 
12 

8 
9 

11 
12 

2 

3 
10 

user buffer address 
RJCT buffer address 
PPl' base 
AVT base 
base 
TUB base 

AVT base 
DCB address 
RJCT base 
CLB base 
TUB base 
~,ase , 

maximum number of 
continuation lines 
AVT base 
address of line number 
of first line to be 
scanned 
address of line number 
of last line to be 
scanned 
CCT base 
address of current 
line 
TUB base 
base 

user buffer address 
TUB base 
PPT base 
PPl' length code 
pointer 
PPl' operand pointer 
operand counter 
base 

UVR base 
request code address 
KONBOX base 
AVT base 
base 
TUB base 

DCB address 
KONBOX base 
TUB base 
AVT base 
base 

address of extended 
save area 
CSCB address 
base 

Diagnostic Aids 439 



APPENDIX A: CRJE COMMAND CODES 

CODE 

X· 81' 
X'82' 
X' 83' 
X'S4' 
X· 85' 
X'S6' 
X'S7' 
X'SS' 
X'89' 
X'SA' 
X'SB' 
X'SC' 
X'SD' 
X'SE' 
X· SF' 
X'90' 
X'91' 
X'92' 
X' 93' 
X'94' 
X' 95' 
X'96' 
x'97' 
X'9S' 
X'99' 
X'9A' 
X' 9B' 
X'9C' 
X'9D' 
X'9E' 
X' 9F' 
X'AO' 
X' Al' 
X'A2' 
X, A3' 
X'A4' 
X' AS' 
X'A6' 
X'A7' 
X'AS' 
X'A9' 
X'AA' 
X, AB' 
X'AC' 
X'AD' 
X'Ol' 
X' 02' 
X'03' 
X'04' 
X'OS' 
X' 06' 
X'07' 
x' 08 t 

440 

COMMAND and/or FUNCTION 

LOGON 
LOGOFF 
END 
ERROR ANALYSIS and RECOVERY 
ALLOCATION (SUBMIT) 
PROVIDE INPUT (SUBMIT) 
CONDENSE USER LIBRARY 
SUBMIT 
CANCEL 
OPEN SYSOUT DATA SETS 
DELETE A JOB 
SCRATCH SYSOUT DATA SETS 
OUTPUT 
CONTINUE 
TAB SET 
STATUS 
EXEC 
DELETE (MAJOR) 
EDIT 
EDIT and DELETE (MAJOR) 
EXEC 
EDIT OS/360 DATA SET 
SEND 
INPUT 
CHANGE 
MERGE 
MERGE ACTIVE AREA LINES 
MERGE FROM USER LIBRARY 
RENUMBER 
SAVE 
SHOW USERS and SHOW JOBS 
SHOW LERB, SHOW BRDCST, and MODIFY 
BRDCST 
MSG D=userid and SHOW MSGS 
CENOUT 
SHUTDOWN 
JOB TERMINATION 
LISTDS 
LISTLIB 
OS/360 QUEUE MANAGER 
SHOW SESS and SHOW SESSREL 
TRANSMIT OUTPUT 
USERID 
MSG and SHOW ACTIVE 
OPEN OS DATA SET (EDIT) 
LIST 
LISTLIB and LISTDS 
SCAN 
INSERT/REPLACE 
IMPLICIT SUBCOMMAND 
CORRECTION MODE 
DELETE (SUBCOMMAND) 
LISTBC 

ENTRY POINT 

IHKLGN 
IHKLGF 
IHKEND 
IHKERR 
IHKALC 
IHKGET 
IHKCDP 
IHKSUB 
IHKRER03 
IHKRER 
IHKREROl 
IHKRER02 
IHKOUT 
IHKOUT 
IHKTAB 
IHKSTS 
IHKEDT 
IHKEDT· 
IHKEDT 
IHKEDl 
IHKEDl 
IHKEOS 
IHKSND 
IHKIPT 
IHKCGN 
IHKMGE 
IHKMAA 
IHKMUF 
IHKRNR 
IHKSAV 
IHKCCl 
IHKCC2 
IHKCC3 
IHKCC4 
IHKCCS 
IHKSTP 
IHKDEQ 
IHKLDS 
IHKLDS 
IEFLOCDQ 
IHKCC6 
IHKPUT 
IHKCC7 
IHKCCS 
IHKOPN 
IHKLST 
IHKLDS 
IHKSCN 
IHKIRL 
IHKIRLOl 
IHKIRL02 
IHKIRL 
IHKCMD 



MESSAGE 
.. NUMBER MESSAGE TEXT 

IHK300 OUT OF MAIN STORAGE 

IHK301 LOGONS SUPPRESSED 

IHK302 INVALID OPERAND [operand[line number]] 

IHK303 LOGON REJECTED BY INSTALLATION 

IHK304 VOLUME NOT MOUNTED 
volume serial 

IHK305 INVALID COMMAND command 

IHK306 I/O ERROR ON LIB DURiNG ACTIVE 
AREA RECOVERY 

IHK307 INVALID LINE NUMBER line number 

IHK308 LOGON REQUIRED 

IHK309 INVALID CLIST COMMAND command 

IHK310 INVALID NESTING OF DSLIST DATA SETS 
dsname [userid] [key] lineum 

IHK311 QUOTES NOT PAIRED 

IHK312 NO BROADCAST MSGS 

IHK313 PARENTHESES NOT BALANCED 
[DSNAME[USERID][KEY] LINEUM] 

IHK315 ILLEGAL DELIMITER delimiter 

IHK316 LINE TRUNCATED, LENGTH 
EXCEEDS [~~] line number 

IHK317 

IHK318 

IHK319 

l DSNAME l JOBNAME . 
TEXT 
LINE NUMBER 

REQ'D OPERAND MISSING 

CONDENSE ERROR, DATA SETS MAY BE 
LOST OR DAMAGED 

TEXT [~] EXCEEDS 40 CHARACTERS 

SOURCE OF MESSAGE 

IHKCMD, IHKSUB, 
IHKPUT 

IHKLGF, IHKCMD 

IHKRNR, IHKCGN, 
IHKTAB, IHKEDT, 
IHKSCN, IHKSTS, 
IHKLGN, IHKIPT, 
IHKCMD, IHKLST, 
IHKLDS, IHKSAV, 
IHKSUB, IHKOUT, 
IHKIRL, IHKMGE, 
IHKSND 

IHKLGN 

IHKEOS 

IHKCMD 

IHKAWS 

IHKIRL, IHKMGE, 
IHKRNR, IHKCGN 

IHKCMD 

IHKCMD 

IHKSUB 

IHKCMD 

IHKMSG 

IHKCMD, IHKSUB 

IHKCMD 

IHKIRL, IHKCGN 

IHKMSG. IHKSND. 
IHKCGN. IHKEDT. 
IHKLDS, IHKRER03, 
IHKMGE, IHKOUT 

IHKSAV 

IHKSND, IHKCMD 

Appendix B: Origin of Terminal User Messages 441 



IHK320 

IHK321 

IHK322 

IHK323 

IHK324 

IHK325 

IHK326 

IHK327 

IHK328 

IHK329 

IHK330 

IHK331 

IHK332 

IHiC333 

IHK334 

IHK335 

IHK336 

IHK337 

IHK338 

IHK339 

IHK340 

IHK341 

442 

DSNAME TYPE LNO [BLOCKS KEY] 
(CREATED LAST CHG XREAD] 

MULTIPLE OR CONTRADICTORY 
USE OF OPERAND Operand 

ABNORMAL DRJE,CLOSEDOWN 

INVALID JOB REFERENCE-JOB 

NOT SUBMITTED BY USER 

JOB NOT COMPLETE 

NO~JOB(S) IN SYSTEM 

DUPLICATE JOB NAME jobname 

IHKLDS 

IHKSND, IHKEDT, 
IHKLGN, IHKTAB, 
IHKIPT, IHKLDS 

IHKERR 

IHKSTS, IHKRER03, 
IHKOUT 

IHKOUT 

IHKSTS, IHKRER03 

IHKSUB 

••• CRJE LINE nnn DATE yy.ddd TIME xx:xx ••• IHKLGN 

MAX JOBS EXCEEDED jobname 

JOB TERMINATED 

CRJE CLOSED DOWN 

{ NORMALLY } jobname 
ABNORMALLY 

JOB CANCELLED (jobname] 

DISK ERROR {' dsname} 
, ddname 

INVALID USERID 

EXCESSIVE OPERANDS 
[~operand t] 

ldsname [userid][key]~ 

MSG SAVED FOR LOGON 

INVALID DSNAME dsname 
[userid] [key] [linenum] 

MSG NOT SAVED 

DATA SET NOT FOUND 
[dsname] [userid] [key]linenum 

DATA SET NOT PDS OR SEQUENTIAL 

NO LINES IN RANGE 

TEXT NOT FOUND 

IHKSUB 

IHKDEQ 

IHKERR 

IHKRER03, IHKDEQ 

IHKMUF, IHKSUB, 
IHKEOS, IHKPUT 

IHKMUF, IHKSND, 
IHKEDl 

IHKIRL, IHKMGE 
IHKSND, IHKRNR, 
IHKCGN, iHKTAB, 
IHKEDT, IHKSCN, 
IHKSTS, IHKLGF, 
IHKLGN, IHKEND, 
IHKIPT, IHKCMD, 
IHKLST, IHKLDS, 
IHKSAVE, IHKSUB, 
IHKOUT 

IHKSND 

IHKMSGE, IHKSUB 

IHKSND 

IHKMUF, IHKED1, 
IHKLDS, IHKEOS, 
IHKSUB 

IHKEOS 

IHKIRL, IHKMUF, 
IHKMAA, IHKCGN, 
IHKLST, 

IHKCGN 



Y. 

ItlK343 INVALID INCREMENT-O 

IHK344 JOB NOT FOUND jobname 

IHK345 ORIGINAL NO. OF BLOCKS IN CLIST EXCEEDED 

IHK346 LINE EXISTS, CANNOT INSERT line number 

IHK347 UNABLE TO OPEN dsname 

IHK348 MAX LINE NUMBER EXCEEDED 

IHK349 LINE NOT FOUND line number 

IHK350 ENTER USERID 

IHK351 ENTER PASSWORD •••••••• 

IHK352 INVALID USERID OR USERID IN USE, 
LOGON TERMINATED 

IHK353 INVALID PASSWORD, LOGON TERMINATED 

IHK354 LOGOFF time SESSION TIME xxxx MIN. 

IHK355 USERID IN USE, ENTER USERID 

IHK356 INVALID SOURCE MARGINS 

I~357 ACTIVE AREA OUT OF SPACE 

IHK358 MESSAGE LOST 

IHK359 INSERT TERMINATED. NEXT LINE 
NUMBER IS line number 

IHK360 INVALID SCAN REQUEST, DATASET 
NOT PL/l OR FORTRAN 

IHK361 END OF DATA 

IHK362 TP LINE ERROR 

IHK363 USER INACTIVE, MSG NOT SAVED 

IHK364 LINE line number NOT IN RANGE OF 
LINES SCANNED 

IHK365 INVALID JOBNAME jobname 

IHK366 DSNAME MUST BEGIN WITH USERID 

IHK367 INVALID LINE NUMBER RANGE 

IHK368 TOO MANY CONTINUATION LINES. 
SCAN line number line number 

IHK369 INVALID KEY 

{~~ame [userid] [key] [linenuml} 

IHKIPT 

IHKSTS, IHKOUT 

IHKEDl 

IHKIPT 

IHKEOS 

IHKIRL, IHKRNR 

IHKCGN, IHKIPT, 
IHKLST 

IHKLGN 

IHKLGN 

IHKLGN 

IHKLGN 

IHKLGF 

IHKLGN 

IHKEDT 

IHKIRL, IHKMGE, 
IHKMAA, IHKLDS, 
IHKMUF, IHKEOS 

IHKMSG 

IHKIRL 

IHKIRL, IHKED1, 
IHKSCN, IHKEOS 

IHKIRL, IHKPUT 

IHKERR 

IHKSND 

IHKIRL, IHKCGN 

IHKRER03 

IHKEDT 

IHKIRL, IHKMGE, 
IHKCGN, IHKSCN, 
IHKLST 

IHKSYN, IHKIRL 

. IHKMUF , IHKED1, 
IHKMGE, IHKSAV 

Appendix B: Origin of Terminal User Messages 443 



IHK370 LIBRARY INOPERATIVE 

IHK371 INVALID EXEC, DATA SET IS NOT CLIST 

IHK372 EXTRA COMMAS IGNORED 

IHK373 LINE TOO LONG, REENTER LINE 

IHK374 NO DISCONTINUED OUTPUT AVAILABLE 

IHK375 NO DD STATEMENT IN PROCEDURE 
OR LIBRARY UNAVAILABLE 

[~ddnameIJ[USerid][keY][linenum] 
tdsname\ 

IHK376' SUBMIT CANCELLED BY 
INSTALLATION xxxxxxxx 

IHK378 NO JOBS SUBMITTED 

IHK379 

IHK380 

IHK381 

IHK382 

IHK383 

IHK384 

IHK385 

IHK386 

IHK387 

IHK388 

IHK389 

IHK390 

IHK391 

IHK392 

IHK393 

IHK394 

IHK395 

444 

INVALID CORRECTION COMMAND 
command 

EXEC TERMINATED 

TABS EXCEED ALLOWED LIMIT 

TABS NOT IN ASCENDING ORDER 

ROUTING CODE NOT 1-16 

DATA SET RESIDES ON MULTIPLE 
VOLUMES 

STATUS jobname 

~ ii~~~T~~~ ~ 
NORMAL END 
ABNORM END 
NOT QUEUED 
DISK ERROR 

LEVEL OF SYNTAX CHECKER NOT 
AVAILABLE 

SYNTAX CHECKER NOT IN SYSTEM 

TIMEOUT 

SESSION TERMINATED-ACTIVE AREA 
SAVED-DSNAME=ACTlVE 

OUT OF SPACE ON LIBRARY 
DURING ACTIVE AREA RECOVERY 

INVALID EDIT SUBCOMMAND 
command 

INVALID SAVE, NO LINES IN DATA SET 

EDIT OF DATA SET REQ"D dsname 

DUPLICATE DSNAME, ENTER DSNAME 

LIBRARY FULL, ENTER DSNAME 
FOR DELETION 

IHKMUF, IHKED1, 
IHKLGN, lHKSAV, 
IHKLDS 

IRKEDl 

IHKCMD, IHKSUB 

lHKLAD 

IHKOUT 

IHKMUF, IHKED1, 
IHKSUB, IHKSAV. 
IHKLDS 

IHKSUB 

lHKSUB 

IHKCMD 

lHKCMD 

IHKTAB 

IHKTAB 

IHKSND 

IHKEOS 

IHKSTS 

IHKSYN 

IHKIRL, IHKSCN 

IHKLAD 

IHKAWS, lHKSAV 

IHKAWS 

IHKCMD 

IHKSAV 

IHKMUF, IHKEDl 

IHKSAV 

lHKSAV 



IHK396 ENTER DSNAME FOR DELETION IHKSAV 

IHK397 DSNAME INVALID/lUSSING, ENTER IHKSAV 
DSNAME 

IHK398 DATA SET NOT ON 2311 OR 2314 IHKSUB 
I ddname t 

dsname 

IHK399 OPERAND NOT IN PARENTHESES operand IHKSND 

IHK400 TP LINE DEACTIVATED BY OPERATOR IHKERR 

IHK401 NO MEMBER NAME FOR PDS IHKEOS 

IHK402 LINE NUMBER NOT XXXXXXXX OR IHKED1 
NUMERICS line number 

1HK403 SESSION TERMINATED-ACTIVE IHKSAV 
AREA LOST 

IHK40.4 EXPIRATION DATE NOT REACHED- IHKEOS 
DATA SET NOT DELETED 

IHK405 LIBRARY EMPTY IHKLDS 

IHK406 TP LINE ERROR, REENTER LINE IHKLAD 

IHK401 OPERATOR FAILED TO SPECIFY IHKEOS 
CORRECT PASSWORD 

IHK408 INVALID EDIT REQUEST IHKEDT 

IHK409 DIRECTORY FULL, ENT~R DSNAME IHKSAV 
FOR DELETION 

IHK410 DATA LOST IN TRUNCATION IHKAWS, IHKSAV 

IHK413 DIRECTORY FULL IHKED1 

Appendix B: Origin of Terminal User Messages 445 





APPENDIX C: COMPONENT BREAKDOWN OF MO!2!!!!ES 

SYSTEM ADMINISTRATOR r--------------------, 
, I 

IHKDSP IHI<CMD IHKERR I 
(D ispatcher) (Command (Error 

AI'lolyzer) Handler) 

L--'=-f::-:---= ----- _N_=_J 
-,------ .------, r'- ., ._ ... " .. _- .----.--" 

I 
,-
I 

I 
MESSAGE I WRITER 

IHKMSG 

R 

E}-, --, IHKWTR 

R 

IHKEXC 
(CCW def.) 
R 

IHKGCW 
(CCW gen.) 
R 

4-

I-- I 
I 

IHKCDP I 
~ I . 

NR I 
I 
I 1...----- ____________ ..I 

i 
.LiNE ADMINISTRATOR r--- .-"--.-.----..., 

I I 
I IHKLAD I I ! 
I (Move) ! 
I R I 
I I 
I I 
I I 
I I 
I I 
I I 
I I IHKLAB II 

! L._~ (~ormo' I 
! 'I ( ,uipd) I I 
I I _.--R_. __ ._J 

! I 
I 
I 
i 
I 
I 
! 
I 
I 
I 
I 
I 
I 

IHKLAT 
(Edit Input 
W/Tab) 
R 

IHKLEW 
(Tab and 
Idle) 
R 

: ~KlAP 
I (I/O) 
I R 
I ~----~ I 
L _____ - _____ J 

OUTPUT PROCESSOR 
r-­
I 

._------. 
I 
I 
I 

IHKOUT 
(Edit) 
NR 

IHKRER 
(Open) 
t-JR 

(Delete 
Job) 

IH KRER02 
(Scratch 
SYSOUT) 

IHKRER03 
(Cancel 
Jobs) 

IHKPUT 
(Transmit 
Output) 
NR 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
i 
I 
I 
I 
I 
I 
! 
I 
I 
I 
I 

4-
I 
I 

I L ____________ ...I 

{Process 
Command 
NR 

) 

CESSOR 

STATUS PROCESSOR 

IH KSTS 
(Process 
Command) 
t-JR 

SAVE 

I 

• The IHKSRV Module Composes the Utility Task, not the Main CRJE Task. 
** The IHKOPN Module Composes the Open Task, not the Moin CRJE Task. 

IHKSAV 
(Process 

SUBMIT PROCESSOR EDiT, DELETE, AND eXEC PROCESSOR r--------- -, r-- --------".-.--.-, 
I 
I IHKSUB 
I (Write 
I Data 5el) 
I NR 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I --Ifoo 

I 
I 
I 
I 
I 
I --tIo 
I 
I 

"'!i--

IHKGH 
(Check 
,nput) 
NR 

IHKALC 
(Allocate 
Data Set) 
NR 

IHKSRV· 
(Slart RDR) 
R 

I I I I ~IH~KV.E;:;:D:::;T~-.., 
I I (Edit Command 
I I and Operands) 
I I NR 
I 1'---..,....... 
I I 
I I 
I j 

I 
! I 
I I 

I 
I 
! 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

I I L ____________ ..J 

IHKEOS 
(Read OS 

IHKOP~ 
(Open OS 
Date Set 
NR 

I 
L _____________ -1 

T ABSET ~ PROCESS 
lHKTAB 
(Process 
Command) 
NR 

RENUMBER PROCESSOR 
IHKRNR 

r -" 
I 

(Process I 
Subcommand) I 
NR i . 

I PROCESSOR 
I 
I 
I 

OR 

SCAN PROCESSOR ----, 
I 
I 
I 
I 

r 
I 
I 
I 
I 
I 
i 

Subcommand) I 

Note: 
R = Resident. 

NR = Not Resident. 

NR I . IHKSYN i 
(Interface I 

: with Syntax ~ 
I Checker) ; 
L _________ "J 

,',,"'r:~rn~ CHANGE PROCESSOR 

IHKCGN ~ 
(Process 
5ubcomm. ('!nd) 
NR __ ... 

END PRO 

-

CESSOR 

1 
I ., 

LlSTLlB AND LlSTDS PROCES r---
I 

IHKEND 
(Process 
Subcomman 
NR 

d) I 
IHKLDS I 

I (Process 

LIST PROCESSOR I Commond) 
NR 

IHKLST I 
(Process I 
Subcommand 
C'nd Pr i nt li nes I 
R I 

L _______ _ 

MERGE PROCESSOR -.- - .. -- ----, LOGON PROCESSOR 
IHKLGN 
(Process 
Command) 
NR 

LOGOFF PROCESSOR 

IHKLGF 
(Process 
Command) 
NR 

c: Component Breakdown of Modules 441 



APPENDIX 0: TERMINAL COMMAND FORMATS 

COMMANDS 

1. CANCEL jobname 

[H [ERE] ] 2. CONTINUE B [EGIN] 
N[EXT] 

3. DELETE dsname 

[~~J Fo:UMJ 
[S [CAN] ] PL1[(parameters)] 

4. EDIT dsname NOS [CAN] 

~ ~. ~ FORT 

DSLIST 
VLIST 
DATA 
TEXT 

5. EXEC 
[L[ISTl ] 

dsname NO[LIST] 

6. LISTBC 

1. LISTDS dsname [S[TATUS]] [H[ISTORY]] 

8. LISTLIB [S[TATUS]] [H[ISTORY]] 

9. LOGOFF 

10. LOGON userid/password[ACCT] (accounting information) 

[:~BCJ [MISGID ] 
No~HSGID] 

11. OUTPUT jobname [SMSG] 

12. SEND 'text' [U[SER] 'userid) [NlOW) J] 
L[OGON] 

o [PERATOR] (integer) 

13. STATUS [jobname] 

14. SUBMIT dsname ••• 

15. TABSET [num •• oJ [l~PU!] ] 
OFF OUT [PUT] 

EDIT SUBCOMMANDS 

1. linenum . [iltext] 

2. CA[NCEL] jobname 

3. C[HANGE] linenum [linenuml text 1 text2 [A(LL]] 

Appendix D: Terminal Command Formats 449 



4. D(ELETE] [ linenwn [ linenuml ] 

5. END 

6. I[NPUTl 
~ . ~[INCREMENT] 
l~nenum R [IlJ] [p [ROMPT] ] 

NqP[ROMPTJ 

7. L[IST~ [linenum [linenum]] [NUM ] 
NONUM 

8. M[ERGE] {dSname} . * . [linenum linenum] llinenum] 

9. REN[UMBER] [lin~~um [inCI~ment ] ] 

10. SlAVE] [dsname] {K[EY] (key) ] 

11. SC[AN] [linenum [linenum]] [ON] 
OFF 

[UISER] (userid) [NIOW] J] 
12. SEND 'text' . L[OGON] 

o [PERATORl (integer) 

13. SUB [MIT] {~sname} ••• 

14. TAB [SETl [num •• oJ [IN [PUT] J 
OFF OUT [PUT] 

450 



APPENDIX E: CENTRAL OPERATQR MESSAGE§ 

MESSAGE 
CODE 

IEE301I 

IEE30Il 

IEE3261 

IEE341I 

IHK200I 

IHK201I 

IHK2021 

IHK2031 

IHK2041 

IHK2051 

IHK2061 

IHK2071 

IHK2081 

IHK209I 

MESSAGE TEXT 

jjj CANCEL COMMAND ACCEPTED 

{ 
~~ CORE } COMMAND INVALID 
blanks 
CSCB USE 

{ CRJE } 
RJE/CRJE 

NOT SUPPORTED 

ttt NOT ACTIVE 

LOGOFF userid 

ACTIVE CRJE USER userid lineaddress time 

USERID INVALID/NOT FOUND {=W } userid 

USERID 

START OF CRJE MESSAGES 

USERID PREVIOUSLY ASSIGNED userid 

INVALID PASSWORD password 

TEXT MUST BE 1 TO 40 CHARACTERS LONG 

{ BRDCST} chars 
MSG 

DELETED FROM USER LIST--userid 

ADDED TO USER LIST--userid 

MSG NOT SAVED BRDCST chars 

DESCRIPTOR 
CODE 

ICR 

ICR 

ICR 

ICR 

SS 

ICR 

ICR 

ICR 

ICR 

ICR 

ICR 

ICR 

ICR 

ICR 

IHK210I LINEADDRESS INVALID/NOT FOUND lineaddress ICR 

IHK211I JOB NOT IN SYSTEM jobname 

IHK212I LOGON userid 

IHK213I END OF CRJE MESSAGES 

IHK2141 CENOUT jobname 

IHK215I START CRJ.E REJECTED 

IBK216I DISK ERROR {ACTIVE AREA} 
CRJE. SYSLIB . {START } 

. (dsname) 

IHK2171 DRJE BROADCAST MESSAGES START 

IHK2181 CRJE BROADCAST MESSAGES END 

IHK2191 OUT OF MAIN STORAGE [START] 

IHK2201 NNN LINE NOT OPERATIONAL 

ICR 

55 

ICR 

ICR 

ICR 

S5 

ICR 

ICR 

SS 

55 

ROUTING 
CODE 

RC 

RC 

RC 

RC 

RC· 

RC 

RC 

RC 

RC 

RC 

RC 

RC 

RC 

RC 

RC 

RC 

RC 

RC 

RC 

RC,COI 

DP,ER 

RC 

RC 

COl 

TC,ER 

Appendix E: Central Operator Messages 451 



IHK221I 

IHK2221 

IHK2231 

IHK2241 

IHK2251 

IHK2261 

IHK227I 

IHK228I 

IHK2291 

IHK2301 

IHK231I 

IHK232I 

IHK2331 

IHK2341 

IHK2351 

IHK2361 

LOGONS SUPPRESSED 

ABNORMAL CRJE CLOSED OWN 

CRJE NOW ACTIVE 

NO ACTIVE AREA FOR RESTART 

CRJE BROADCAST MESSAGES(S)DELETED [nnnnl 

OPERAND MISSING/INVALID command operand 

NO JOBS IN SYSTEM 

UNABLE TO OPEN {ACTIVE } 
ddname [RLN=xxxxl 

LOGONS RESUMED 

CRJE CLOSED DOWN 

JOB NOT COMPLETE jobname [useridl 

NO CRJE BROADCAST MESSAGES 

NO CRJE DELAYED MESSAGES [useridl 

ACTIVE AREA NOT ON 2311 or 2314 

DD CARD NOT IN PROCEDURE {dSname} 
ddname 

MAXIMUM NO. OF CRJE USER MESSAGES 
REACHED 

ICR 

SS 

S5 

SS 

\CR 

ICR 

ICR 

SS 

ICR 

SS 

ICR 

ICR 

ICR 

SS 

SS 

SS 

IHK2311 MAXIMUM BRDCST IDENTIFIER EXCEEDED--LAST. ICR 
=nnnn 

IHK2381 

IHK239l 

IHK2401 

IHK241I 

IHK2421 

IHK2431 

IHK244I 

IHK2. 451 

IHK2461 

IHK241I 

IHK2481 

IHK2491 

IHK2501 

452 

SPECIFIC SHOW SESS MAXIMUM EXCEEDED 
--llserid 

SHOW SESS NOT IN EFFECT [useridl 

ACTIVE AREA OUT OF SPACE 

LIBRARY I/O ERROR ddname CRJE.LIB.userid 

ACTIVE AREA I/O Error--ABNORMAL CRJE 
CLOSEDOWN 

LINE BEING ACTIVATED lineaddress 

LINE DEACTIVATED lineaddress 

{ ~~n} ACTIVE CRJE USERS 

QUEUE MANAGER DISK ERROR [jobnarne) 

NO CRJE USERS 

INACTIVE CRJE USER userid 

SHOW SESS IN EFFECT [useridl 

SHOW SESS RELEASED [useridl 

ICR 

ICR 

SS 

SS 

SS 

ICR 

ICR 

ICR 

SS 

ICR 

ICR 

ICR 

ICR 

RC· 

COl 

COl 

COl 

RC 

RC 

RC 

ER,TC,COI 

RC 

COl 

RC 

RC 

RC 

COl 

COl 

COl 

RC 

RC 

RC 

COl 

ER,DP 

ER,DP,COI 

RC 

RC 

RC 

ER, DP,COI 

RC 

RC 

RC 

RC 



IHK251I 

IHK252I 

IHK253I 

IHK254I 

IHK255I 

IHK256I 

IHK257I 

IHK258I 

IHK259I 

IHK2601 

IHK2611 

IHK2631 

IHK264I 

IHK265I 

IHK261I 

IHK2681 

IHK2691 

IHK210I 

IHK2711 

IHK212I 

IHK273I 

IHK214I 

LINE NOT ACTIVE lineaddress 

USER LIST FULL [useridl 

JOB WAITING DELIVERY jobname 

ILLEGAL DELIMITER command operand 

MESSAGES DELETED FOR userid 

MSG QUEUED FOR DELIVERY userid 

JOB COMPLETE jobname userid 

MODIFY BEING PROCESSED lineaddress 

INVALID BRDCST IDENTIFIER operand 

NO SPACE AVAILABLE FOR SYNTAX CHECKER 
WORK AREA 

ACTIVE AREA CONTAINS MULTIPLE EXTENTS 

REQUIRED PARAMETER MISSING {START} 
EXEC 

LINE NOT OPEN lineaddress 

LINE ALREADY ACTIVE lineaddress 

MAXIMUM NO. OF CRJE BROADCAST MESSAGES 
REACHED 

CRJE BRDCST MESSAGE ADDED nnnn 

CRJE BRADCST MESSAGE REPLACED nnnn 

ACTIVE AREA I/O ERROR 

MODIFY DEACTIVATE UNSUCCESSFUL 
lineaddress 

JOB DELETED jobname 

OUT OF SPACE CRJE.SYSLIB (dsname) 

CRJE SUBTASK ABEND xxx 

ICR RC 

ICR RC 

ICR RC 

ICR RC 

ICR RC 

ICR RC 

ICR RC 

.ICR RC 

ICR RC 

SS COl 

00 COl 

ICR RC,COI 

ICR RC 

ICR RC 

SS COl 

ICR RC 

ICR RC 

S8 COI,ER,DP 

ICR RC 

ICR RC 

S8 DOI,ER,DP 

SS COl 

Descriptor Codes: 

ICR -

SS 

Immediate Command Response (Code 5) Immediate response to an 
operator command. 

System Status <Code 4) Indicates status of system or gives 
indication of uncorrectable I/O errors. 

Routing Codes: 

COl -

DP 

Chief Operator Information (code X'4000') Indicates a change in 
system status and alerts chief operator to a condition that may 
require his attention. 

Direct Access Pool (code X'1000') Indicates status of direct 
access device or disposition of disk. 

Appendix E: Central Operator Messages 453 



ER System Maintenance Error (code X'0040') Indicates system errors 
or uncorrectable I/O errors (not program errors). 

RC Requesting Console (Code) Indicates information requested by a 
central command 

TC Teleprocessing Control (code X· 0100',) Indicates status of or 
disposition of teleprocessing equipment. 

454 



APPE~DIX F: AFIO AND LIBRARY 1/0 MACROS 

AFIO MACROS 

CREATE j~S! [. ACTUlVJ=va1 ue ] [. F~YPE= l~~~L!J 
ENDUP 

[FTYPE= ~~~~LtJ 
INSERT ~ ~ ! t!\ 

[.FTYPE= 
1 ~~iLt ] 

RDELETE 1 ~~K! l:! t 
[. REC=Pt"{EVIOUS ] 

[,FTYPE= li~~LtJ 
RELEASE A [, FTYPE= 

\ i~~L tJ 
REPLACE l~~K! [::] [, REC=PREVIOUS] [.FTYPE= lGBL tJ 

XGBL 

RGET l~Kt t ~ t [:!] [, REC=PREVIOUS] 
[ ,FTYPE= 1 x~:t fJ 

RPOINT l! ! 1 : ~R! [' KEY= ~ FIRST n T FTYPE= 1 ~~iL fJ LAST 
HIEQ 

RSKIP 1 ~~K~ 1:: f [,REC=PREVIOUS] [,FTYPE= li~;Lt] 
• 

LIBRARY 1/0 MACRe:; 

RCLOSE [ STOW ] 
NOSTOW 

RFIND 

RREAD none 

RSCRATCH none 

RWRITE none 

455 



APPENDIX G: ORIGIN OF CENTRAL OPERATOR MESSAGES 

MESSAGE 
CODE MESSAGE TEXT 

IEE301I 

IEE305I 

jjj CANCEL COMMAND ACCEPTED 

{ ~~ CORE l COMMAND INVALID 
blanks 
CSCB USE 

IEE326I {CRJE } NOT SUPPORTED 
RJE/CRJE 

IEE341I ttt NOT ACTIVE 

IHK2001 LOGOFF userid 

IHK201I ACTIVE CRJE USER userid 
lineaddress time 

IHK202I USERID INVALID/NOT FOUND 

{
SHOW } use rid 
MSG 
USERID 

IHK203I START OF CRJE MESSAGES 

IHK204I USERID PREVIOUSLY ASSIGNED userid 

IHK205I INVALID PASSWORD password 

IHK206I TEXT MUST BE 1 TO 40 CHARACTERS LONG 

IHK207I 

IHK208I 

IHK209I 

IHK210I 

IHK211I 

IHK212I 

IHK213I 

IHK2141 

IHK215I 

{ BRDCST} chars 
MSG 

DELETED FROM USER LIST--userid 

ADDED TO USER LIST--userid 

MSG NOT SAVED BRDCST chars 

LINE ADDRESS INVALID/NOT 
FOUND lineaddress 

JOB NOT IN SYSTEM jobname 

LOGON use rid 

END OF CRJE MESSAGES 

CENOUT jobn~me 

START CRJE REJECTED 

SOURCE OF MESSAGE 

Master SCHEDULER 
Messages 

IHKLGF 

IHKCC1, IHKCC7, 
IHKCC8 

IHKCC1, IHKCC4, IHKCC6, 
IHKCC7, IHKCC8 

IHKCC4 

IHKCC7 

IHKCC7 

IHKCC3,IHKCC8 

IHKCC7 

IHKCC7 

IHKCC3 

IHKCC2 

IHKCC1, IHKCC5 

IHKLGN 

IHKCC4 

IHKCC5 

IHKBGN 

IHK216I DISK ERROR {ACTIVE AREA} {START } IHKBSH, IHKCIP, lHKINl 
CRJE SYSLIB _ (dsname) 

IHK217I CRJE BROADCAST MESSAGES START lHKMSG 

lHK218I CRJE BROADCAST MESSAGES END IHKMSG 

456 



IHK219I OUT OF MAIN STORAGE [START] 

IBK2201 

IHK2211 

IBK222I 

IBR223I 

IHK22S1 

IHR226I 

IHK227I 

IBR228I 

IBK229I 

IBR230I 

IHR2311 

IBK232I 

IBK233I 

IBR234I 

IBK235I 

IBK236I 

IBK237I 

IBK238I 

IBK239I 

IHK2401 

IHK2411 

IHK2421 

IHK2431 

IHK2441 

nnn LINE NOT OPERATIONAL 

LOGONS SUPPRESSED 

ABNORMAL CRJE CLOSEDOWN 

CRJE NOW ACTIVE 

CRJE BROADCAST MESSAGE(S) 
DELETED [nnnn) 

OPERAND MISSING/INVALID 
command operand 

NO JOBS IN SYSTEM 

UNABLE TO OPEN{ACTIVE } 
ddname [RLN=xxxx] 

LOGONS RESUMED 

CRJE CLOSED DOWN 

JOB NOT COMPLETE jobname [userid] 

NO CRJE BROADCAST MESSAGES 

NO CRJE DELAYED MESSAGES [useridl 

ACTIVE AREA NOT ON 2311, 2314, 
or 2319 

DD CARD NOT IN PROCEDURE{dSname} 
dd na me 

MAXIMUM NO. OF CRJE USER 
MESSAGES REACHED 

MAXIMUM BRDCST IDENTIFIER 
EXCEEDED--LAST=nnnn 

SPECIFIC SHOW SESS MAXIMUM 
EXCEEDED--userid 

SHOW SESS NOT IN EFFECT [useridl 

ACTIVE AREA OUT OF SPACE 

LIBRARY I/O ERROR ddname 
CRJE, LIB. userid 

ACTIVE AREA I/O ERROR--ABNORMAL 
CRJE CLOSEDOWN 

LINE BEING ACTIVATED lineaddress 

LINE DEACTIVATED lineaddress 

IHRCC1, IHKCC2, IHRCC3, 
IHKCC4, IHKCCS, IHKCC6, 
IHKCC7, IHKCC8, IBKCIP, 
IHRCMD, IHKERR 

IHRERR 

IHRCC7 

IHRCLN 

IHKCIP 

IHKCC3 

IHKCC1, IHRCC2, tHKCC3, 
IHKCC4, IHKCCS,IHKCC6, 
IHKCC7, IHKCCS 

IHKCC1 

IHKBSH, IHKCIP, IHKINI 

IHRce7 

IHKCLN 

IHRCC1, IHKCCS 

IHRMSG 

IHKCC4 

IHKCIP 

IHKSUB 

IHKCCS, IHKMSG 

IHKCC3 

IHRCC6 

IHKCC6 

IHKCC3, IHKeC7, IHKCC8, 
IHKCMD, IHKMSG 

IHKED1, IHKLDS, IHKMUF, 
IHKSAV, IHKSUB 

IHKERR 

IHKCC2 

IHKCC2, IHKERR 

IHKces 

Appendix G: Origin of Central Operator Messages 4S7 



IHK246I QUEUE MANAGER DISK ERROR [jobnamel IHKCC5, IHKDEQ 

IHK247I NO CRJE USERS IHKCCl 

IHK248I INACI'IVE CRJE USER userid IHKCC1, IHKCC8 

IHK249I SHOW SESS IN EFFECT [useridl IHKCC6 

IHK250I SHOW SESS RELEASED [useridl IHKCC6 

IHK251I LINE NOT ACTIVE lineaddress IHKCC2 

IHK252I USER LIST FULL [useridl IHKBST, IHKCC1 

IHK253I JOB WAITING DELIVERY jobname IHKCC5 

IHK254l;: ILLEGAL DELIMITER command operand IHKCC2, IHKCC3, 

IHK255I MESSAGES DELETED FOR userid IHKCC4 

IHK256I MSG QUEUED FOR DELIVERY userid IHKCC8 

IHK257I JOB COMPLETE jobname userid IHKCCl 

IHK258I MODIFY BEING PROCESSD lineaddress ntKcc2 

IHK259I INVALID BRDCST IDENTIFIER IHKCC3 
operand 

IHK260I CRJE,aaa,bb,cccccccc,dddddd, IHKAFI 
eeeeeeeeeeeeeee,ffffffffffffff, 
gggggg,hhh 

IHK261I ACTIVE AREA CONTAINS MULTIPLE EXTENTS IHKCIP 

IHK263I REQUIRED PARAMETER MISSING IHKCIP 
{ START} 

EXEC 

IHK26SI LINE ALREADY ACI'IVE lineaddress IHKCC2 

IHK267I MAXIMUM NO. OF CRJE BROADCAST IHKCC3 

IHK268I CRJE BRDCST MESSAGE ADDED nnnn IHKCC3 

IHK269I CRJE BRDCST MESSAGE REPLACED IHKCC3 
nnnn 

IHK210I ACTIVE AREA I/O ERROR IHKCC1, IHKCC2, IHKCC3, 
IHKCC4, IHKCCS, IHKCC6, 
IHKCC1, IHKCC8 

IHK212I JOB DELETED jobnarne IHKDEQ 

IHK213I OUT OF SPACE CRJE.SYSLIB (dsnarne) IHKBSH 

IHK214I CRJE SUBTASK ABEND xxx IHKCIP 

458 



Indexes to program logic manuals are 
consolidated in the publication IBM 
System/360 Operating System: Program Logic 
Manual Master Index, Y28-6717. For 
additional information about any subject 
listed belo~. refer to other publications 
listed for the same subject in the Master 
Index. 

accounting information 15 
active area 

general description 17 
initialization 23 
I/O 168 
110 error recovery module 

entry point code 392 
flowchart 274 
messages requested 441-445 
microfiche directory 390 
module description 112 
register usage 437 

I/O errors 108,41,42 
organization 180,181 
out of space 108,42 
recovery 168 
recovery module 

flowchart 224 
messages requested 441 
microfiche directory 389 
module description 79 
register usage 436 

start-up 168 
start-up/initialization module 

flowchart 223 
microfiche directory 389 
module description 77 
register usage 436 

active data sets (see active files) 17 
active file inputloutput 171 
active file I/O macros 17 

(see also name of macro) 
active files 181 
ACTIVE user file 78,79 
address vector table 13,395 
AFIO 

buffer acquisition 190 
channel command word list 
generator 169,190,390 

channel program executionlmonitor 191 
channel program 
initializer/requester 190,169,369,390 

channel pro9ram selector 190 
controllcommand interpreter 169,389,363 
exit handler 19~ 
extended work area 172 
110 scheduler 188 
110 scheduler subroutines 196 
linkage 197-
macro argument 191 
macro initializer 188 

macro interpreter 190 
macros 455 

(see also specific macro) 
parameter passing 197 
registers 194 
requesterlexecutor (see AFIO, channel 

program initializer/requester) 
restricted work area 172 
search program/track data 
analysis 191,197,192 

storage acquisition 190 
storage release/error handler 191 

AFQCTLFW (see queue control element) 
AFWRG (see AFIO, registers) 
allocate routine 

entry point code 440 
flowchart 355 
microfiche directory 334 
module description 162 
register usage 436 

AVT (See address vectory table) 

BACK2INT (see AFIO, 110 scheduler 
subroutines) 

BASERG (see AFIO, registers) 
block table 87,88,44,393 
BPQCTLFW (see queue control element) 
BRDCST central command processor 

entry point code 440 
flowchart 247 
microfiche directory 389 
module description 94 
register usage 436 

broadcast message file (see CRJE, system 
library, BRDCSTI 

broadcast messages 39 
BTAM 10 
BUFTABFW (see KONBOX) 
BUFTYPFW (see KONBOX) 

CANCEL command processor 149-152 
CCT (see CRJE, control table) 
CENOUT central command processor 

entry point code 440 
flowchart 251 
microfiche directory 389 
module description 97 
register usage 436 

central.command interface 39 
central command interface module 

flowchart 242 
function 44 
microfiche directory 390 
module description 91 
register usage 436 

central command processors 44 
central operator messages (see messages, 
central) 

Index 459 



chain record 187 
CHANGE subcommand processor 

entry pOint code 440 
flowchart 290 
functional description 30,32 
messages requested 441-442 
microfiche directory 390 
module description 126 
register usage 437 

CHKSTS subroutine 157 
CIB (see command input buffer) 
CLB (see conversational line block) 
closedOwn 

abnormal 45,46,108 
normal 45,46 

closedown module (see CRJE, closedown 
module) 

COl (see routing codes) 
command, analyzer module 

entry pOint code 440 
flowchart 262 
messages requested 441-443 
microfiche directory 390 
module description 105 
register usage 437 

command default table (see terminal command 
default table) 

command exit 16 
command input buffer 44,101 
command scheduling control block 40,46 
commands, terminal 449 
communication 9 
communication line administrator module 

flowchart 276 
messages requested 443-444 
microfiche directory 391 
module description 117 
register usage 437 

communications ECB 77 
communications line errors 41 
communications vector table 41 
condense module (see library condense 

module) 
CONTINUE command processor (see OUTPUT and 

CONTINUE command processor) 
control blocks 12 

(see also name of control block) 
conversational line block 

field descriptions 402 
general description 13 
map 402 
microfiche directory 393 

copy function (see data management, copy 
function) 

copy mode 208 
CREAD I macro 113,106,113 
CREAD macro 113,116 
CREAD R macro 112,114,115 
create function (see data management, 
create function) 

CREATE macro 174 
CRJE 

460 

assembly macros 
CRJELINE 21 
CRJETABL 21 
CRJEUSER 23 

closedown module 
flowchart 230 

microfiche directory 390 
module description 82 
register usage 437 

control table 
field descriptions 397 
general desc~iption 13 
map 397 
microfiche directory 393 

dispatcher 105,110,273,390,437 
generation 21 ' 
ini tialization module 76,219,390,437 
stop module 81,229,392,439,440 
SYSOUT queue 36 
system library 

BRDCST 17,18,39,94,166 
JBTBLS 13,17,18,35 

(see also remote job control table) 
SYSMSGS 17 
USERS 17,18,24,38,74 
USRMSGS 17,18,167 

system library initialization 
utility 74,217,390,437 

system structure 10 
tasks 

loader/controller 10,76 
main 10,12 
open 10,11 
utility 10,11,76 

CRJE.SYSLIB (see CRJE, system library) 
CSCB (see command scheduling control block) 
CVT (see communications vector table) 
CWRITE macro 114,116,166 
CWRITE R macro 114,116 

data extent block 181 
data management 

copy function 28 
create function 27 
scan function 31 
update function 28 

data set manipulation 9 
data track 187 
data, input and output 19,20 
DEB (see data extent block) 
DEF (see terminal command default table) 
DELETE command processor (see EDIT, DELETE, 

and EXEC command processor) 
dequeue/job end processor 

entry point code 440 
flowchart 260 
messages requested 442 
microfiche directory 390 
module description 104 
register usage 437 

dequeuing 203 
descriptior codes 39,41 
dispatcher (see CRJE, dispatcher) 
DP (see routing codes) 
DSLIST file 161 
dump mode 208 

ECB list 390 
EDIT command processor 

entry point code 440 



flowchart 29gr~ 
messages reques'bea#Jt1.,.J;.'.4~U~.;:J,; 
microfiche direcwt.y '3[9b:p~"L 
module description l''3C'i 
register usage 437 

~DIT, DELETE, and EXEC command processOr 
entry point code 440 
flowchart 293 
messages requested 441-444 
microfiche directory 390 
module description 128 
register usage 437 

~DIT subcornrnands 449 
~ND subcommand processor 

entry point code 440 
flowchart 300 
messages requested 442 
micrOfiche directory 390 
module description 132 
register usage 437 

~NDUP macro 177 
ER (see routing codes) 
error procedures (see specific error) 
EXEC command processor (see EDIT, DELETE, 

and EXEC command processor) 
EXNTRYO (see AFIO, I/O scheduler 
subroutines) 

EXNTRYl (see AFIO, I/O scheduler 
subroutines) 

EXNTRY2 (see AFIO, I/O scheduler 
subroutines) 

EXRETLK 199 

FBXRG (see AFIO, registers) 
file index 183 
file index track 183,79 
FORTRAN and PL/I conversational syntax 

checker interface 
flowchart 384 
messages requested 442-444 
microfiche directory 392 
module description 212 
register usage 439 

FORTRAN syntax checker 16,155,212 
(see also syntax checkers) 

GBFORGFW 171 
GBQCTLFW (see queue control element) 
GETFNUM (see AFIO, I/O scheduler 

subroutines) 
GETGBASE (see AFIO, 1/0 scheduler 
subroutines) 

GETMAIN failure 41,108 
global files 17 

(see also CRJE system library) 
GTFBASEO (see AFIO, I/O,scheduler 
subroutines) 

ICR (see descriptor codes) 
IEFLOCDQ 391 
IHKBLKS 389 
IHKtlAC 389 

IHKUSR 392 ""I,:: , .,' 80'1::,;:,j" 

implici t subconultmif.E.A\-~J~s1>T,~ ~~~:~/r .,' 
index track 184 1'-9L ,"?1' .• d .~\ 5;, I, 1, u,' ~AA, 
initializaUaAll "f41[~jfS' .,EE I,K'JbO\fl 

( see al so oeIQi ,8~'i~"£fl:cf;iliza1t!f~ft'F1ndd. tile; 
CRJE, system library i,nitialization 
utility) . 

initialization module (see CRJE, 
initialization module) 

input mode 32 
input record processor (see SUBMIT input 
record processor) 

INPUT subcornm3nd processor 
entry point code 440 
flowchart 301 
messages requested 442 
microfiche directory 391 
module description 133 
register usage 437 

input/output operation initiation 
module' 120,281,391,437 

INSERT macro 177 
insert/replace/delete processor 

entry point code 440 
flowchart 304 
messages requested 441-444 
microfiche directory 391 
module description 135 
register usage 437 

installation exit (see LOGON exit; LOGOFF 
exit; JCL exit; command exit) 

interrupt 108 
IOREQ (see AFIO, I/O scheduler subroutines) 

JCL exit 16 
job cancellation 37 
job end processor 36 
job input 160 
job output notification 36 
job output retrieval 9 
job submission 35,9 
job termination handling 
module 103,259,392,439 

job termination subtask 103 
JOBFAIL jobname, restriction 36 

KBSRG (see AFIO, registers) 
KONBOX 171,12,78,79,393 

librarian 12,168 
librarian queue module 

flowchart 374 
function 45 
microfiche directory 392 
module description 202 
register usage 438 

library condense module 
entry point code 440 
flowchart 379 
microfiche directory 390 
module description 208 
register usage 437 

Index 461 



library I/O 
macros 199,455 

<J:i:¥,.ill~ s~e9,ti~Jnalilrp) 
modtite ·''to\J\"''44o'(~tf16~-::l1''S, jag 
shutdown module 83, 23~;;3a:~, 4~~, 
sta;r;~,-;! ~tU~,;: ~?",~271,38,9,4 ~,~ 
wan: . - ,,:~, ~15'A,~1,g .,,39:2,1139 

line admilustrat"or- "ii,113 
line administrator macros (see specific 

macro) 
line edit write module 123,31,286,438 
line error 108 
line error control blocks 391 
line error recovery 

module 112,274,390,437,441-444 
LIST subcommand processor 

entry point code 440 
flowchart 308 
function 33,37 
messages requested 441-442 
micrOfiche directory 391 
module description 137 
register usage 438 

LISTDS and LISTLIB command processor 
entry point code 440 
flowchart 311 
function 37 
messages requested 441-444 
microfiche directory 391 
module description 138 
register usage 438 

loader/controller 45 
loader/controller module 86,236,391 
loader/controller task (see CRJE, tasks, 
loader/controller) 

LOCINTRO (see AFIO, I/O scheduler 
subroutines) 

LOGOFF, automatic 26 
LOGOFF command processor 

entry point code 440 
flowchart 315 
function 26 
messages requested 441-442 
micrOfiche directory 391 
module description 140 
register usage 438 

LOGOFF exit 15,27 
incomplete logon processing 16,25 

LOGON command processor 
entry pOint code 440 
fiowchart 316 
function 26 
-messages requested 441-444 
microfiche directory 391 
module description 141 
register usage 438 

LOGON exit 15,26,142 

main CRJE task (see CRJE, tasks, main) 
major command list 393' 
master index 183 
master index track 183,79 
MCS (see multiple console support) 
MCSFLAGS 35,37 
MERGE subcommand processor 

entry point code 369 

462 

flowchart 259-263 
messages requested 370-3~3 
microfiche di~~pqr i:;i~Ji' 
module descriptd0ll ·\lit) , 
register usage 43.~J ,-

message 
f or .. otllr.dI8Ja9~a:D;8f;YC;::: 
ID 38,166 ' 
output 19 

message writer 
flowchart 359 
function 39,12 
MCS 40 
messages requested 441,443 
microfiche directory 391 
module description 165 
out of space 42 
register usage 438 
SEND command 156 

messages 
central 451-454 
delayed 17,41 
queued 38,165 
terminal 38,165,441-444 

MODIFY central command 93,90 
(see also SHOW LERB, SHOW BRDCST, and 
MODIFY central command processor) 

module names 389 
module table 87,44 
:"lSG a ld SHOW ACTIVE central command 
processor 101~390 

MSG D=userid command processor 96 
(see also SHOW MSGS and MSG D=userid 
command processor) 

MSGTYP 39,168 
multiple console support 166 
multiple console support interface 40 

NEXTIO (see AFIO, I/O scheduler 
subroutines) 

nonresident modules 44 
numeric verification 

module 211,383,391,438 

open task (see CRJE, tasks, open) 
OS data set open module 88,240,391,438 
OUTPUT and CONTINUE command processor 

entry point code 440 
flowchart 325 
function 36,149 
messages requested 441-443 
microfiche directory 391 
module description 146 
register usage 438 

output text formatting 
module 121,283,391,437 

parameter position table 410,13,393 
PL/1 conversational syntax checker 
interface (see FORTRAN 'and PL/1 
conversational syntax checker interface) 

PL/1 syntax checker 16,155,212 



+i~,t ,iH] 3,it:hd c>:rEI,,:Ctl6::ct :toaa9::>0':lq f>".10::>9':1 ;tuqni TIMaUa 
9Lubom ::Iuq:tuo .:tlllmn:;:r.t QIlIl 9DO::> .:tnioq ,{-.I3C19 

PT (see parameter 
dvate files 15 

pos~n ~~rd:oq y:tjfi9 segment 181 S:~£ hSlbwoIl 
iEf j"".6,b""Joll SEND command proce~ 'l'l:0;t:)9:tib 9Ib.Llo:t::>lm 

(see also active f~~~s)j", 

ueue control element 
ueue element 202 
ueuing 202 

2 (see routing codes) 
2LOSE macro 201,206 

202 

DELETE macro 178 
eader/interpreter data set 35 
eader/interpreter interface 39 
ECTABFW 171 
ECTYPFW 171 
EGD (see AFIO, registers) 
ELEASE macro 175 
emote job control table 

field descriptions 412 
general description 13 
map 412 
microfiche directory 393 
usage 36 

ENUMBER subcommand processor 
entry point code 440 
flowchart 333 
function 31 
messages requested 441-442 
microfiche directory 392 
module description 152 
register usage 439 

EPLACE macro 178 
EZQOMLK 198 
FIND macro 199,204 
GET macro 179 
JCT (see remote job control table) 
JE 10,39 , 
JE/CRJE central command scheduling 
routine 89,40,241,389,439 
outing codes 39,40,41,166,450 
POINT macro 176 
READ macro 200 
SCRATCH macro 201,205 
SKIP macro 180 
WRITE macro 200,205 

AVE subcommand processor 
entry point code 440 
flowchart 337 
function 33 
messages requested 441-444 
microfiche directory 392 
register usage 439 

can mode, delayed 31,40,212 
can routine 210,382,390,436 
CAN subcommand processor 

entry point code 440 
flowchart 341 
messages requested 441,443 
microfiche directory 392 
module description 155 
register usage 439 

';11l entry point code 1IaU) lIoi;tql:t::>a9D 9Iubom 
flowchart '343 lifll 9U1'>2,[r '~~)-J,~r'n«.,'''' 

messages'requested 441-444 
microfiche directory 392 
module description 156 
register usage 439 

serially reusable modules 45 
service routines (see name of routine) 
session 

initiation 25 
management 9,25 
termination 26 

SETCON (see AFIO, I/O scheduler 
subroutines I 

SHOW ACTIVE command processor (see MSG and 
SHOW ACTIVE central command processor) 

SHOW BRDCST command processor (see SHOW 
LERB, SHOW BRDCST, and MODIFY central 
command processor) 

SHOW LERB, SHOW BRDCST,and MODIFY central 
command processor 93,24.5,389,436 

SHOW MSGS and MSG D=central command 
processor 249,96,389,436 

SHOW SESS and SHOW SESSREL central command 
processor 98,254,390,436 

SHOW USERS and SHOW JOBS central command 
processor 92,243,389,436 

shutdown errors 42 
skip mode 208 
SPL (see start parameter list) 
'SS (see descriptor codes) 
STAE exit 45 
START command processor 

flowchart 218 
format 162 
function 23 
microfiche directory 389 
module description 75 
register usage 436 

start parameter list 40,74,91 
START RDRClhlE 84 
START RDRCRJE, allocate, and Q manager 

service routine 84,234,392,439 
start-up 23,24,76 
start-up errors 42,43 
STATUS command processor 

entry point code 440 
flowchart 346 
messages requested 441-444 
microfiche directory 392 
module description 157 
register usage 439 

status information 9 
STCB (see subtask control block) 
STOP central command 81 
stop module (see CRJE, stop module) 
subcommand table 393 
subcommands (see EDIT subcommands) 
SUBMIT command processor 

entry point code 440 
flowchart 348 
function 35 
messages requested 441-444 
microfiche directory 392 
module description 159 
register usage 439 

Index 463 



SUBMIT input record processor 
entry point code 440 
flowchart . 352 
microfiche directory 390 
module description~&l 
register usage 437 

SUBQCTEL (see queue control element) 
subtask 12 
subtask abend (STAE) conditions 45 
subtask control block 

field descriptions 415 
general description 12,13,89 
map 415 
microfiche directory 392 

SYNAD subroutine 207 
SYNQCTEL (see queue control element) 
syntax checker interface 40,32 

(see also,FORTRAN and PL/I 
conversational syntax checker interface) 

syntax checkers 76,212 
SYSOUT open, job delete, data set scratch, 

and CANCEL module 
entry point code 440 
flowchart 331 
messages requested 441-443 
microfiche directory 391 
module description 149 
register usage 438 

system administrator 12,105 
system inquiry 37 
system message file (see CRJE, system 
library, SYSMSGS) 

system messages 392 

TABSET command processor 
entry point code 440 
flowchart 356 
messages requested 441-443 
microfiche directory 392 
module description 163 
register usage 439 

TABSET Edit module 285 
task management 10 
TAT (see track allocation table) 
TC (see routing codes) 
terminal command default table 

field descriptions 407 
general description 13 
map 343 
microfiche directory 393 

terminal command processors 13 
terminal commands 449 

(see also name of command) 
terminal user block 

fie~d descriptions 418 
general description 172,13 
map 416 
microfiche directory 394 

terminal user messages (see messages, 
terminal) 

track allocation table 17,78,182 
track chain 187 
transient area 144,25,86 

464 

translate table 88,394 
transmit output module 

entry point cOde ·440 
flowchart 326 
messages requested 441 
microfiche directOry 391 
module description 147 
register usage 348 

trouble module 44,87 
TRTTAB 210 
TUB (see terminal user block) 
TUBRG (see AFIO, registers) 

UCM (see unit control module) 
unit control module 41,99 
update function 

changing lines 30 
deleting lines 29 
entering lines 29 
list function 32 
merging lines 30 
renumbering lines 31 
save function 33 
scan function 31 
scratch function 33 
setting tabs 31 

user file manager 213,387,439 
user libraries 18,80 
user library directory entry 

CRBE-created 433 
CRJE-created 430 
utility-created 435 

user library I/O errors 42 
user library out of space 42 
user message file (see CRJE, system 
library, USRMSGS) 

user verification file 80,100,214 
(see also CRJE, system library, USERS) 

user verification file manager (see user 
file manager) 

user verification record 
field descriptions 427 
function 140 
map 427 
microfiche directory 394 

USERID central command 
processor 100,256,390,436 

utility file number 6 208 
utility file number 7 30 
utility files 16,17 
utility program 74 
utility task (see CRJE, tasks, utility) 

wait module (see library I/O wait module) 
WRITIT subroutine 159 
WTO macro 166 

1050X programmed time-out 
module 124,287,391,437 





READER'S COMMENTS 

TITLE: IBM System/360 Operating System 
Conversational Remote Job Entry 
Program Logic Manual 

ORDER NO. GY3()'2011-1 

Your comments assist us in improving the usefulness of our publications; they are an important part 
of the input used in preparing updates to the publications. All comments and suggestions become 
the property of IBM. 

Please do not use this form for technical questions about the system or for requests for additional 
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM 
representative or to the IBM Branch Office serving your locality. 

Corrections or clarifications needed: 

Page Comment 

Please include your name and address in the space below if you wish a reply. 

Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



GY3C).201,., 

fold fold 

; 8 · .. :e, 
• 0 
:cfij 
:st · ... 
• QI · ... 
• 5" : ~ 

..... ' ................................................ , ............................. ' .................................... . 

Attention: PUBLICATIONS· 

BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES 

PoSTAGE WILL IE PAID BY ••• 

IBM CORPORATION 
1271 Avenue of the Americas 
New York, New York 10020 

FIRST CLASS 
PERMIT NO. 3350" 
NIW YORK, N.Y. 

................................ ' ......... , .............................. ~ ............................................. : 
fold 

In"l'I\atianal Busin.ss M.~hin •• Carp .. r.tiaa 
D.t. Pral: ••• inl Divi.ian 
1133 W •• tl:h .... r Annu., Whits PI.ins, H •• Yark 10804 
[U.S.A. anly) 

IBM Warld Tnd. Carparatian 
8.jat Unit.d N.tian. Pl ... , H •• Yark, H ... Yark 10017 
(In''l'I\.tiaual\ 

fold 



GY30-2011-1 

Intematlonal Business Machines Corporation 
Da .. Proceulng Division 
1133 Westchester Avenue, White Plains, New York 10804 
(U.S.A. only) 

IBM World Tracie Corporation 
821 Unltacl Nations Plaza, New York, New York 10017 
(International) 

OJ 
s:: 
C/l 
W 
~ 
o 
C/l 
n 
::0 
<­
m 

" r 
s:: 


	001
	002
	002a
	002b
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	051
	053
	055
	057
	059
	061
	063
	065
	067
	069
	071
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	replyA
	replyB
	xBack

