
Systems Reference Library 

IBM System/360 Operating System 

PL/I (F) 

Programmer's Guide 

Program Number 360S-NL-Sll 

The PL/I (F) Compiler translates PL/I source 
programs into object programs in System/360 
machine language. This publication describes the 
facilities provided by the compiler, and the 
conventions and restrictions which the user must 
observe. It explains how to compile, link-edit, 
and execute PL/I source programs in the environ­
ment of System/360 Operating System. Features of 
PL/I which are not supported by the (F) Compiler 
are detailed in Appendix H of this publication. 

File No. S360-29 OS 
Form C28-6594-4 



PREFACE 

This publication describes the facili­
ties provided by the PL/I (F) Compiler, 
which functions under IBM System/360 Oper­
ating System. It covers those language 
restrictions and operating considerations 
that the user must take into account in 
using the (F) Compiler. 

PREREQUISITE PUBLICATION 

The reader is assumed to have a working 
knowledge of PL/I; he should therefore be 
familiar with the material contained in the 
following publication: 

The following publications are referred 
to in the text for information beyond the 
scope of this publication: 

!~~_§yst~ffil3£Q_QE~fati~~System: 

~i~~~g~_Editof' Form C28-6538 

~ob Control~~~~age, Form C28-6539 

r-----------------------------------------------------------, 
IFifth Edition (November, 1968) I 
I I 
IThis is a major revision of, and obsoletes, C2B-65911-3 andl 
ITechnical Newsletters N33-6006 and N33-6007. Changes tol 
I the text, and small changes to illustrations, are indicated I 
I by a vertical line to the left of the change: changed or I 
I added illustrations are denoted by the • symbol to the left I 
lof the caption. I 
I I 
IThis edition applies to Release 17, of IBM System/3601 
IOperating System, and to all subsequent releases until! 
lotherwise indicated in new editions or Technical News-I 
I letters • Changes are continually made to the specifica-I 
I tions herein: before using this publication in connection I 
Iwith the operation of IBM systems, consult the latest IBMI 
ISystem/360 Bibliography SRL Newsletter, Form N20-0360, fori 
I the editions that are applicable and current. I L ___________________________________________________________ J 

Requests for copies of IBM publications should be made to 
your IBM representative or the IBM branch office serving your 
locality. 

A form for reader's comments is provided at the back of this 
publication. If the form has been removed, comments may be 
addressed to IBM United Kingdom Laboratories Ltd., Program­
ming Publications, Hurs ley Park, Winchester, Hampshire, 
England. 

CI Copyright International Business Machines Corporation 1966, 
1967, 196B 

Job Control Language Charts, 
Form C28-6632 

Supervisor and Data Management~ervi= 
ces., Form C28-6646 

system 
C28-6550 

Programmer's 

Utilities, Form C28-6586 

Guide, Form 

In addition to those mentioned above, 
the following publications contain informa­
tion which may be helpful to the user. 

IBM System/360 Operating system: 

Concepts and Facilities, Form C28-6535 

Form 

Storage Estimates, Form C28-6551 

RL/1-2~£f~~i~~_~iQra£YL_Co~2~tatiQ~~! 
2~Q£Q~~i~~~, Form C28-6590 



INTRODUCTION • • • 

PL/I (F) Compiler. 

Different Versions of the Compiler • 
Changes at Second Version •.• 
Changes at Third Version • • 
Changes at Fourth Vers ion. .• 
Changes at Fourth Version, 

• 11 

• 11 

11 
· 11 
• 12 
• 12 

• 13 Release 17. • • • • • • • • 
Programming Techniques and 

Optimization of Source Code. 14 
Compatibility between 

Different Versions of the 
PL/I Library and Compiled 
Code • .• • 14 

Language Level • • • • • • 16 
Language Support • . 16 
Language Features Not Supported 
in the Fourth Version • • 16 

Compiler Options • • • • • • • • • 16 

Processing and the Operating system. • • 16 
Job. • • • • • • • • 17 
Job step • • • •• 17 
Data Set. . 17 

PL/I Processing. • • • • 
Data Set Considerations. 
Cataloged Procedures 

JOB PROCESSING • • • • 

Compiler Processing .••••• 
Compiler ddnames. • 
Compiler Device Classes 
Blocking of Compiler Input and 

Output • • • 0 • • • • • • • 0 

Blocking of Compiler Input • . 
Blocking of Compiler output. 
Calculations for Storage 

Requirements. • • • • .• • • 
SYSPUNCH/SYSLIN in Batched 
Compilations. • • • • • • • 

Compil er opt ions • . • . • . 
completion Codes for the Compiler • 
Job Control Procedure for 

Compilation. 0 • 0 • • 

Batched Compilation. 
Compiler Output • • • • 
Printed Listings •••• 

Compiler Options • . 
Compile-Time Processor Input 
Listing • • 00 • 0 • • 

Source Program Listing • • • 0 

Storage Requirements . • . • • 
A'ttribute and Cross Reference 
Table • • • • • • • • • . • 

Aggregate Length Table. • • 
External Symbol Dictionary 
Listing • • • • • • • • • 

• 18 
· 19 
• 19 

• 20 

• 20 
• 20 
• 21 

· 23 
23 

• 23 

· 23 

24 
· 24 
• 30 

• 30 
• 30 

31 
31 
32 

32 
32 
33 

• 33 
• 35 

36 

CONTENTS 

Description of Contents of ESD 
Listing • • • • • • • • • • • • • 36 

STATIC INTERNAL Storage Map. • • • 37 
• • 38 Object Program Listing • 

Diagnostic Messages ••.• 
Time of compilation. • • • 

• • • • 39 

Object Module output. • • . • 
Serialization of Object 

Abnormal End of compilation • 

· • 40 
• • 40 

Decks • 40 
· . 40 

Linkage Editor Processing. • •• •• 40 
Linkage Editor Input and output. • 40 
Unit Names and ddnames • • • • • . 41 
Specifying Additional Libraries. • 41 
Link-Editing a PL/I Subroutine 
into a Private Library. • • • • 

Linkage Editor Priority. • • • • 
Overlaying of PL/I Programs.. . 
Other Linkage Editor Facilities. 

• 41 
• 41 
• 42 
• 44 

Options for Linkage Editor 
Processing • • • • • .• • • • . q4 

Job Control Procedure for Linkage 
Editor • • • • • • • • 

Linkage Editor output . 
• • 45 
• • 45 

Size of Load Module. 
Module Map • .• .• • • 
Cross Reference Table. . 
Disposition Data • • 

• • • • • 45 
• • 45 

• • • • • 45 

Diagnostic Messages • . 
• • 45 
· . 46 

Load Module Execution. . . 46 
Execution Device Specification • • 46 
DCB Parameter. • • • • . . • 46 

Job Control Procedure for 
Compiling, Processing by Linkage 
Edi tor, and Execut ing. . . . . 46 

Object Program Outp ut . • • . • 47 
Stream-Oriented Output. 47 
Record-Oriented Output • . . 47 
Object Time Diagnostic Messages .• 48 
Operator Messages. • • • • • 48 

System output . • . • • . • . • 48 

Use of Cataloged Procedures. . . . 48 
Compilation with Deck Output • • . 49 
Compilation with Object Modulp 

Output. • . • . • • • . • • • . . 49 
Compilation and Link-Editing ••• 49 
Compilation, Link-Editing and 

Execution • ••• •• . . 49 
Link-Editing and Execution •• 50 
Link-Editing and Execution of 

Several Separate Compilations . • 50 

MANAGING DATA. 

Files and Data Sets. . 
CONSECUTIVE Organization .• 
INDEXED Organization. . • • 
REGIONAL Organization • . • 

Source Keys and Recorded Keys. 
REGIONAL (1) Data Sets •• 

• • 51 

• • 51 
• • 51 
• • 51 
• • 55 

55 
• • 56 



REGIONAL (2) Data Sets. • •• • • • 5 (. 
REGIONAL(3) Data sets ••••••• 57 
Dummy Records within REGIONAL 

Data Sets • • • • 58 

Data Set Definition. • • 58 

specifying Data Sets • • • • • • 58 
Naming of the Data Set (DSNAME). 
Extent Allocation (UNIT, VOLUME, 

• 58 

SPACE, LABEL) • • • • • • • 
Disposition (DISP,SYSOUT) •• 
Data Set Attributes (DCB). 
File Attributes and the DD 
Statement • • • • • • • 

Record Format Information • 
Record Types • • • • • • 
Block Size • • • • • • .• 
Logical Record Length. • 
Record Format. 
Use of the Various Record 

• 58 
59 

• • 59 

• • 59 
61. 

.• • 61 
61 
62 

• • 62 

Formats in STREAM I/O • • • • • • 63 
Use of the Various Record 

Formats in RECORD I/O • • .• 
Use of Spanned Records .• • • 
Spanned Records and LOCATE I/O • 
Number of Buffers. • • • • • 
Number of Channel Programs • 
Chained Scheduling • • • 
Source Code (Paper tape) 
Density (Magnetic Tape). 
conversion (Magnetic 

• 64 
• 64 
• 65 
• 65 
• 65 
• 65 
• 65 
• 65 

tape - 7-track) • • • • 66 
Mode (Card Reader, Punch). • • 66 
Stacking (Card reader, punch) ••. 66 
Print Spacing (Printer).. • • • • • 66 
UCS Printer - Suppress TRANSMIT. • 66 
Validi ty Check • • • • • • 66 
Deleted Records. • • • • 66 
Keys • • • • • • • • • • • • 66 
Extended Search Limit. • • • 67 
Relative Key position. • •• • 67 
Master Indexes • • • • • • • 67 
Independent Overflow Area. • • •• 67 
Cylinder Overflow Area • • • M • • 67 
Data Set Organization. • • • • 67 
PRINT Files. • • • • • • • • • 68 
The Tab Control Table. • • • • 69 
changing the Tab Settings.. • 69 

Creating and Accessing Data Sets • • 70 

Stream Data Sets • • • • • • • • • • 70 
Creation of STREAM Data Sets • 70 
Accessing of STREAM Data Sets. • • 70 

Record Data Sets • • • .• • 70 
Use of the EVENT Option. • • • 70 

CONSECUTIVE • • • • • • 70 
Creation of CONSECUTIVE Data 
sets. • • • • • • • • • • 70 

Accessing of CONSECUTIVE Data 
Sets. • • • • • • • • • • • 70 

INDEXED • • • • • • • • • • • • • • • 71 
Creation of INDEXED Data Sets. • • 71 
Accessing of INDEXED Data Sets • • 72 
SEQUENTIAL Access. • • 72 
DIRECT Access. • • • • • • • • • • 73 

REGIONAL. • • • • • • • • • • • • • • 73 
creation of REGIONAL Data Sets • • 73 
Accessing of REGIONAL Data Sets. • 74 
SEQUENTIAL Access.. • 74 
DIRECT Access. • • • • • 75 

Processing Modes in Record I/O • 76 
76 

• • 76 
Move Mode • • • • • 

Characteristics. 
Language Forms • 
File Attributes. 

• • • • • 76 
• • • • • 76 

• • 76 Loca te Mode • • '. • 
Characteristics. 
Language Forms • 
File Attributes. 

• • • • • 76 

SYSTEM REQUIREME~S,. • 

Minimum system/360 Requirements for 
the (F) Compiler. • • • • • • 

Instruction Sets • • • 
Timing Clock ,~ • ,. • • • 
Printer Character sets • 
Operator's Console Character 
Sets. • • • • • • • • • • 

System/360 Operating System 
Requirements • • • • • • • 

Primary control Program of the 
operating System. • • • • 

Multiprogramming with a Fixed 

77 
• • 77 

• • 78 

78 
• • 78 
• • 78 
• • 78 

• • 78 

• • 78 

• • 78 

Number of Tasks CMFT) • • • • • • 79 
Multiprogramming with a Variable 

Number of Tasks (MVT) • • • 79 

Compiler Support • • 79 

Object Program Support • • 79 
control Program Options. • • 79 
Usage of Data Management Access 

Methods for STREAM I/O. • • • • • 79 
Usage of Data Management Access 

Methods for RECORD I/O. • 79 

MANAGING PROGRAMS. 

Program Segmentation • 
The MAIN Option:. 
communication Between Separate 

Compilati ons. • • • • • • 
Estimation of Program Size • • 

• • 81 

· • 81 
• • 81 

• • 81 
• • 81 

Non-PL/I Modules in PL/I Programs •••• 82 
Combination of PL/I With Other 

Languages • '. • • • • • • • 82 
Variable-Length Argument List. • • 82 
PL/I Library Subroutines •• 83 

Conditional Execution of Job Steps • • • 83 
Setting Conditions • .. • .• • • • • 83 
Return Code Setting by PL/I 
Object Program. • • 83 

Checkpoint/Restart • • • • • • • • • 83 
Compatibility with Release 11 
Checkpoint/ Restart 

Introduction • •• • 
Step Restarts. • • • 
Checkpoint Restarts. 

• • 83 
83 
84. 
84 



Single Checkpoint. • • • • ,. • • • 84 
Multiple Checkpoints • • • •••• 84 
Specifying Checkpoint Restart. • • 85 
Restarts • • • • • • • • • • • • • 86 

Data sets for Programmer-Deferred 
Checkpoint Restarts. • • • • • 

Card Input when Using PCP. • • 
SYSIN. • • • • 
SYSOUT - PCP 
SYSOUT - MVT 

• 86 
• • 86 

• 86 
· 86 
• 87 

Preservation of Data sets • 
Temporary Data sets. 
Updated Data Sets. • • • 

• • • • • 87 
87 

• 87 

Multitasking • • • •••••• · 87 
Multitasking Requirements. • 87 

Hystem/360 Requirements. 
Operating System Requirements •• 
Programming Requirements • '. 

• 87 
• 87 
· 88 

Mul ti tasking Management • '. • • 
Programming considerations • • 
Use of Priorities in PL/I. 
I/O Handling • • 
Strings. • • • • • 
Task Termination • 

Multiprocessing •• 
Synchronization. • • 

object Program Management • 
Pseudo-Register Vector (PRV) 

PL/I Sort. • • • • • • • • • 
PL/I Sort Environment. 
User Control of SORT ddnames 
sorting Records from One Data 
Set to Another. • • • • • • 

Sorting Records from a PL/I 
Program or Procedure onto a 
Data Set. • • • • • • • • • 

Sorting Records from a Data Set 
into a PL/I Program or 

• 88 
88 

• • 90 
• • 91 

· 92 
• 93 
• 94 
• 94 
• 95 
• 95 

• 95 
• 95 
• 96 

· 97 

• 100 

Procedure • • • • • _ • • _ • • • 101 
Supplying~ Sorting, and Passing 

Back Records to a PL/I 
Procedure • • • • • • • • • 

Use of PL/I SORT in a 
Mul ti tasking Environment. ,. 

Data Interchange • • • 

PROGRAMMING TECHNIQUES • 

.102 

.103 

.103 

'. .104 

1. Common Errors and Pitfalls .104 
a. Operating System and Job 
Control. • • • • .104 

b. Source Program and General 
Syntax •••••••••••••• 104 

c. Program Control •••••••• 104 
d. Declarations and ~ttributes •• 105 
e. Assignments and 
Initialization. • • •• • • • • .107 

f. Arithmetic and Logical 
Operations. • • • • .108 

g. DO groups. • • • • .110 
h. Data Aggregates. • .111 
i. Strings..... .111 
j. Functions and 
Pseudo-Variables. • .111 

k. ON-Conditions and ON-Units •• 111 

1. Input/Output •••••••.• 112 

2. Programming for Increased 
Efficiency. • • • • • • • • • 

a. Improving Speed of 
• .115 

Compilation ,. • • • • • • .115 
b. Improving Speed of Execution .116 

• .120 
• .122 

c. Decreasing size of 
Dict ionary • • • • • • 

d. Use of Storage • • • 
e~ Use of Compile-Time 
Facilities. • • • • • • •• 123 

f. Use of Input/Output 
Facilities. • 

g. Additional Hints 

TESTING PROGRAMS • • • 

• .124 
• .126 

• .128 

Debugging Facilities. • .128 
Control of Interruption and 
Error Handl ing,. • • • •• . .128 

ON-Codes • • • • • • • •••••• 128 
Trace of Active Procedures •• 131 
Symbolic Output. • • . • • • • • .132 
Communication with the Program .. 132 
User Requested Dump. • •• •• 132 
User Completion Codes for 

Abnormal Termination. • • .133 
Return Codes. • • • .134 

APPENDIX ~: DATA FOR~TS • 

compiler Input • 

Representation of Data 
Coded Arithmetic Data •• 
String Data. _ • • • • • • 
Pi ct ured Data. • • • • • • 
Data Element Descriptor (DED). 
Pointer Data • • 
Offset Data • 
Label Data • 
Task Data •• 
Event Data • 

• .135 

• .135 

· .135 
• .135 
· .136 
· .137 
• .137 
• .138 
· .138 
• .138 
· .138 
· .139 

~rea Data. 
Arrays . • 

• • .139 
· .140 

Structures • • .140 
The Creation of Dope Vectors • • .140 

APPENDIX B: IMPIEMENT~TION CONVENTIONS 
AND RESTRICTIONS. • • • • • • • • • • .141 

Input/Output Conventions and 
Restrictions. • • ,. • • • 

PL/I and Data Sets • 
DISPLAY •• 

• .141 
• .141 
• .141 

PAGESIZE 
LINESIZE 

• •• 141 
• .141 

LINESIZE, SKIP and COLUMN in 
Non-PRINT Files • • • • • 

Block Size and Record Size •• 
Data-Directed Input/Output 
Edit-Directed Input/Output 
Character Code • • • • • • 
48-Character Set • • • • • 
The ENVIRONMENT Attribute. 
GENKEY Option. • 
EVENT Option • •• • • •• 

· .142 
· .142 
• .142 
• .142 
• .142 
• .142 
• .142 
• .145 
• .146 



WAIT statement • • • • • 
TITLE Option • • • • • • 
BASED Variables. • 
Initializing LABEL Variables in 
structures with the LIKE 
Attribute • • • • • • • • • 

Compile-Time Processing Conventions 
and Restrictions.. • • • 

The MACRO Option • • • • 

.146 

.146 
• 146 

• 146 

• 147 
. 147 

Precision. • • _ • • • • 
INCLUDE Conventions. • • 
Compile-Time Procedures. 
Compile-Time DECLARE • • 
Combined Level of Nesting and 

• •• 147 
• .147 

• 11.n 
• •• 147 

Depth of Replacement. • • • • • 
Limitations on Size of 

compile-Time Processor Input. • 
Limitations on Number of 
Compile-Time Variables. 

Output Line Numbering. • 

other Compiler conventions and 
Restrictions. • • • • • • • • • • 

OPTIONS Attribute. • • • • . 
Parameter to the MAIN Procedure • 
Number of Variables. • • • • • • 
Number of Executable Statements. 
Size of an Individual Statement. 
Factoring of Attributes. 

.147 

.147 

.148 
• 148 

.148 

.148 
• 148 
• 148 
.148 
• 148 
.149 
• 149 Limitations on Nesting • 

The GENERIC Attribute. • 
Number of Blocks in a 

• .149 

Compilation • • • • • • .149 
Level Numbers. • • • • • • .149 
Number of Parameters .149 
Number of Dimensions. • • .149 
Array Boun1s • • • • • • .149 
Data-Directed List. • •• 150 
Structure and Array Expressions •• 150 
Constants. • • • • • .150 
Sterling Constants. • • .150 
String Constants • • • • .150 
Floating-Point Constants and E 
Format Items. • . .150 

Constants Returned by Procedures .150 
Compiler-Generated Names ••••• 150 
Temporary Results in Expression 
Evaluation. • • • • 

Multiple Assignments and 
Pseudo-Variables. 

Function Values. • • • • 
Qualified Names. • • 
String Lengths 

.151 

• 151 
• .151 

• •• 151 
.151 

String Lengths in Intermediate 
Result Fields • • ••• 

AREA Sizes • • • • • • • 
LABEL Attribute. 
POSITION • 
PICTURE. • • 
SETS List. • • • • • • • 
Scale Factor 
Precision. • 

.151 
• • .151 
• •• 152 

.152 

.152 

.152 
• 152 
.152 

Floating-Point Magnitude 
Built-In Functions • • • • • • • 
MAX, MIN, MOD Built-In Functions 
MOD Built-In Function. • • • • • 

.152 
• 152 
• 152 
.153 

COMPLETION Built-In Function and 
Pseudo-variable • • • • 

STRING Built-In Function • 
Length of Identifiers •• 
Subscripted Identifiers •• 
CHECK Lists. • • • • • • 

Object-Time Conventions and 
Restrictions. • • • • • • 

Data-Directed Input. • • 
Edit-Directed Output •• 
CHECK Condition. • • • • 
CONVERSION ON-Condition • 
ON-Units and Entry Parameter 

Procedures ••• _ • 
Exponentiation • • 
Collating Sequence 
ENTRY Names as Arguments and ON 

Statements in Recursive 
Contexts •••••••• 

Concatenated Data Sets • 
Locate Mode • • • • 

ON Conditions. • 
Record Alignment • • 

APPENDIX C: OBJECT PROGRAM 
ORGANIZATION AND CONVENTIONS. • 

Introduction. • • • • • • • 
Pseudo-Register Vector (PRV) • 
Run-Time Stack.. • • • • • • 
Dynamic Storage Area (DSA) •• 
variable Data Area (VDA) ••• 
Prologues and Epilogues • • • 
Interrupt Activity and control •• 
Initial Entry to Procedures with 
the MAIN Option. . • • . • • • • 

Combination of PL/I with Other 
Languages. • . • • • • • •••• 

Calling Sequences and Register 
Usage. • • • • • • • • • • • 

Linkage Conventions for Library 
Modules. • • • • • • • • • 

Presentation of Arguments • • 
String Dope Vector (SDV) •• 
AREA DOP8 Vector. • • • • • 
Array Dope Vector (ADV) • • 
Structure Dope Vector • • • 
String Array Dope Vector (SADV) • 
Structure Mapping • • • • • • • • 

Rules for Order of Pairing • • 
Rules for Mapping One Pair •• 
Effect of UNALIGNED Attribute. 
Example of Structure Mapping • 

Allocation and Release of Storage 
in an Area • • • • • • • • • 

• .153 
· .153 
• .153 
• .153 
• .153 

• .153 
• .153 
• .154 
• .154 
• .154 

· .154 
• .154 
• .154 

• .154 
• .155 
• .155 
· .155 
· .155 

• .158 
• .158 
• .158 
• .158 
· .159 
· .159 
• .159 
• .160 

• .160 

· .160 

• .160 

• .161 
• .161 
· .161 
• .162 
• .162 
· .163 
· .163 
• .164 
· .165 
• .165 
• .165 
• .167 

• .174 

APPENDIX D: PROGRAMMING EXAMPLE ••••. 176 

APPENDIX E: CATALOGED PROCEDURES •••• 182 
Installation Modifications ••.• 182 

Compilation with Deck Output • • .182 

Compilation with Object Module Output •• 183 

Compilation and Link-Editing • .183 



compilation, Link-Editing, and 
Executi on • • • .• • • .184 

Link-Editing and Execution .184 

Overriding cataloged Procedures. • .184 
overriding Parameters in the 

EXEC statement. • • • • .184 
Overriding and Adding DD 
statements •••••• '. .185 

APPENDIX F: DYNAMIC INVOCATION OF THE 
COMPILER. • • • • • • • • • • .186 

APPENDIX G DIAGNOSTIC MESSAGES .188 

Source Program Diagnostic Messages ••• 188 

Compile-Time Processing Diagnostic 
Messages. • • • • • • • • • • • • .250 

Object-Time Diagnostic Messages. • .260 

APPENDIX H: LANGUAGE FEATURES 
RESTRICTED OR NOT SUPPORTED IN THE 
FOURTH VERSION. • • • • • • • .272 

IDENT Opt.ion • • • • • • • • • • .272 

EVENT Option in the DISPLAY 
Statement.,........ 

EVENT Option in the WRITE 
statement • • • • • 

INITIAL Attribute. • • • 
DEFINED Attribute. • • • 
Structures and Arrays of 

• .272 

• .272 
• .272 
• .272 

Structures in Certain special 
Contexts ••••••••••••• 272 

VARYING Strings.. . . . . . . . . 27 3 
Interleaved Arrays of Varying 
strings Passed as Arguments ••• 273 

LABEL Arrays. • • • ••••• 273 
The FLOAT Attribute •••••••• 273 
List Processing, Table Handling, 

and Locate-Mode Input/Output 
Facilities. • • • • • • • .273 

The SECONDARY Attribute •••••• 273 
The NORMAL and ABNORMAL 
Attributes •••• 

BASED Variables.. • • • • 
OFFSET and POINTER Built-In 
Function s • • • • • • • • 

Based Variable Declaration 
ONCOUNT Built-In Function. 

APPENDIX I: MODEL 91 . 

INDEX •• 

• .274 
• .274 

• .274 
• .275 
• .275 

· .276 

• .279 



Figure 1. Job Control Language 
statements. • • • • • • • ~ • 

Figure 2. Input/Output Data sets 
Figure 3. Device Class Names • • •• 
Figure 4. BCD and EBCDIC Punched Card 
Codes and Graphics for PL/I 
60-character Set. • • • • • • • 

Figure 5. Specimen ESD Listing • 
Figure 6. Linkage Editor Input/Output 

• 20 
21 
21 

• 28 
• 36 

Flow. • • • • • • • • • • . • • • • ~ . 41 
Figure 7. Linkage Editor ddnames •••• 42 
Figure 8. Example of PL/I Procedure 

Using STREAM I/O. • • • • • • • • • • . 47 
Figure 9. Example of LIST/DATA/EDIT 

Output to PRINT Files using the PUT 
Statement • • . • • •• '" • • • 48 

Figure 10. Invoking the Cataloged 
Procedure PL1DFC.. • • • . • o 49 

Figure 11. Invoking the Cataloged 
Procedure PL1LFC. • • • • • • • • • 49 

Figure 12. Invoking the Cataloged 
Procedure PL1LFCL • • • • • • . 

Figure 13. Invoking the Cataloged 
Procedure PL1LFCLG. • _ • • • 

Figure 14. Invoking the cataloged 
Procedure PL1LFLG • 

Figure 15. CONSECUTIVE Data Set 
Organization and Applicable Language 

49 

• 50 

• 50 

Features •••••••••••••••• 52 
Figure 16. INDEXED Data Set 
Organization and Applicable Language 
Features •••••••••••••••• 53 

Figure 17. REGIONAL Data Set 
Organization an1 Applicable Language 
Features. • • • • ••••• 

Figure 18. DCB Subparameters for 
STREAM I/O. • • • • • • • • • 

Figure 19. Additional DCB 
Subparameters for RECORD I/O. 

Figure 20. Format of the Tab Control 

• 54 

60 

• 60 

Table • ~ • • • • • • • • • • • 69 
Figure 21. Control Program Options ••• 79 
Figure 22. Usage of Data Management 

Access Methods for RECORD-Oriented 
I/O . • • • • • • • • • • • • • • • • • 80 

Figure 23. Storage Required by PL/I 
Library Modules when Opening and 
Closing Files • • . • • • • • • • • • • 82 

Figure 24. Basic Parameters for the 
SYSCHK DD Statements. • • • • • • • • • 85 

Figure 24.1. Figure-Length 160-byte 
Records, showing Fields on which Sort 
is to be Made • • • • • • • '" • • • • 

Figure 25. Implicit Data Conversions 
Performed In-Line • • • • • ~ • • • • 

Figure 25. Implicit Data Conversions 
Performed In-Line (continued) •••• 

Figure 26. Conditions under which the 
string Operations are Handled In-Line 

Figure 27. Conditions under which the 
String Functions are Handled In-Line. 

· 97 

.119 

• 120 

.121 

• 122 

Figure 28. Situations under which 
RECORD Condition is raised in 
RECORD-Oriented I/O • .. • • • •• .126 

Figure 29. Main ON-Code Groupings .131 
Figure 30. Detailed ON-Code Groupings .131 
Figure 31. Abbreviations for 

ON-Conditions •••••••••• '" •• 132 
Figure 32. Attributes and Precisions 
for Coded Arithmetic Data • • • •• • .136 

Figure 33. Data Element Descriptor 
(DED) ••••••••••••••••• 138 

Figure 34. Eight-Bit Encoded Form of 
DE!clared Information in Flags •• .138 

Figure 35. Format of the Task Variable .139 
Figure 36. Event Variable Used with 

I/O • • • • . • • • • • • • • • • • • .139 
Figure 36.1. Event Variable Used with 

a Task •••••. '" • ~ • • . . .139 
Figure 37. Format of the Area 
Variable. • • • • • • • • • . • .140 

Fiqure37.1. Effect of LEAVE and 
RE~WIND Options on Repositioning of 
Magnetic-Tape Volumes. • • .144 

Figure 38. Equivalence of COBOL and 
PL/I Data • • • • • • • • • •••••• 145 

Fisrure 39. Format of structure s .... 156 
Figure 40. Block Created from 
S1:ructure S • • • • • • • • • • • • • .156 

Figure 41. Block Created by structure 
s with Correct Alignment. • • • .156 

Figure 42. Alignment of Data in a 
Buffer in Locate Mode I/O, for 
Different Formats and File 
Organizations • • • • • • • • . .157 

Figure 43. Functional Content of a 
Dynamic Storage Area. • • • . • .159 

Figure 44. Initial Entry to Procedures 
with the MAIN Option.. '. • • •• .160 

Figure 45. Format of the String DOpe 
Vector (SDV). • • • • .• • • •• • • • .161 

Figure 46. Format of the Array Dope 
Vector (ADV) •••••••••••••. 162 

Figure 47. Format of the Structure 
Dope Vector (SDV) ••••••••••• 163 

Figure 48. Format of the Primary 
String Array Dope Vector (SADV) •• 164 

Figure 49. Summary of Alignment 
Requirements for ALIGNED Data ••••• 166 

Figure 49.1. Summary of Alignment 
Requirements for UNALIGNED Data • • • .167 

Figure 50. Mapping of Minor Structure 
G •• • • • • • • • • • • • .• • • .168 

Figure 51. Mapping of Minor Structure 
E · · · · · · · · · · · a · · · · .169 

Figure 52. Mapl?ing of Minor Structure 
N · · .. · · · · · · · · · · · · · .170 

Figure 53. Mapping of Minor Structure 
S · · · · · · · · · · · · · · · .170 

Figure 54. Mapping of Minor Structure 
C · · · · · · · · · · · · · · · · .171 

Figure 55 • Mapping of Minor Structure 
M · · · · · · · · · · · · · · · · .172 



Figure 56. Mapping of Major structure 
A ••••••••••••• ' •••••• 173 

Figure 56.1. Offsets in Final Mapping 
of Structure A ••••••••••••• 174 

Figure 57. AREA Format, Showing 
Example of Allocated Storage and Free 
Elements •••••••••••••••• 175 

Figure 58. Ca"taloged Procedure 
(PL1DFC) for Compilation with Deck 
output ••••••••••••••••• 183 

Figure 59,. cataloged Procedure 
(PL1LFC) for Compilation with Object 
Mo d ul e au tp ut • • • • • • • • • • • 18 3 

Figure 60. Compilation and 
Link-Editing Cataloged Procedure 
(PL1LFCL) • • • • • • • • • • • • .183 

Figure 61. Compilation, Link-Editing, 
and Execution cataloged Procedure 
(PL1LFCLG) ••••••••••••••. 184 

Figure 62. Link-Editing and Execution 
Cataloged Procedure (PL1LFLG) ••••• 184 





The PL/I (F) compiler translates PL/I 
source programs into object programs in 
System/360 machine language. It is 
designed to provide fast compilation and 
comprehensive diagnostic facilities. 

The source program is maintained in 
storage throughout the compilation process, 
as far as possible, and successive phases 
of the compiler are passed against it. 
This means that the use of input/output 
data sets is kept to a minimum, with a 
consequent improvement in performance. 

The compiler is of modular construction. 
For the compilation of a given source 
program, it uses only those modules that 
are actually required, and these are 
selected automatically. 

A comprehensive set of compiler options 
is available to the user. The default 
values for these options are set at system 
generation time, and the options required 
for a particular compilation are selected 
at compilation time. 

Wide use is made of modular library 
routines, us~n~ selective loading tech­
niques to mlnlmize the storage space 
required by object progr.ams. 

This edition Form C28-6594-4 of the PL/I 
(F) Programmer's Guide documents the fourth 
version of the compiler with the improve­
ments incorporated for' Release 17 of the 
operating system. 

Earlier versions are: 

1st version Form: C28-6594-0 
2nd version Form: C28-6594-11 
3rd version Form: C28-6594-2 
4th version Form: C28-6594-3 

The more important differences between 
these versions of the compiler are listed 
below. There then follows a statement 
concerning the compatibility between com­
piled code and Library modules of various 
versi·ons. 

The most significant changes for the 
second version of the compiler were: 

RECORD I/O: The statements: READ, 
WRITE, REWRITE, and DELETE 

The attributes: RECORD, UPDATE, 
SEQUENTIAL. DIRECT, BACKWARDS, 
BUFFERED, UNBUFFERED, and KEYED 

The ON-conditions: RECORD and 
KEY 

The built-in functions: ONFILE 
and ONKEY 

Note: The usage UPDATE SEQUEN­
TIAL was not supported except 
for INDEXED data set organiza­
tion. 

COMPILE-TIME PROCESSING: The compile­
time processing feature of PL/I 

COMPILER OPTIONS: Abbreviated names as 
alternatives to the full names 
for compiler options 

ARRAY INITIALIZATION: Initialization of 
arrays of STATIC variables by 
means of the INITIAL attribute 

STREAM I/O: The options PAGESIZE and 
LINESIZE 

The ON-condition NAME 

LIST/DATA-DIRECTED OUTPUT: Alignment of 
data on preset tab positions 

RECORD FORMAT: The use of undefined­
format source records 

PAPER TAPE: Paper tape as input to the 
compiler and object program 

OPERATORS: The operators ,> and ,<, and 
their 48-character set 
equivalents NG and NL 

QUALIFIED NAMES: The resolution of 
apparently ambiguous name qual­
ification 

Introduction 11 



OBJECT PROGRAM LISTING: Double-column 
format for the object program 
listing 

OBJECT-TIME ERROR HANDLING: Optional 
inclusion of the statement 
number in object-time diag­
nostic messages 

Combination of SNAP output with 
SYSTEM action for ON statements 

RECURSION ENVIRONMENTS: A change in the 
interpretation of ENTRY param­
eters and ON units in recursive 
contexts 

CATAL03ED PROCEDURES: A new cataloged 
procedure (PL1LFLG) for linkage 
editing and execution 

~hanges at Third Version 

The most significant changes for the 
third version of the compiler are: 

12 

OBJECT PERFORMANCE: Changes in the 
object code generated by the 
compiler will result in consid­
erable improvements in the 
object-time performance. The 
most significant improvements 
are in the following areas: 
data conversions, the SUBSTR 
function and pseudo-variable, 
the INDEX function, the UNSPEC 
function, object-time error 
handling and procedural house­
keeping, and the usage GO TO 
label-variable. 

ARRAY INITIALIZATION: Initialization of 
arrays of AUTOMATIC or CON­
TROLLED variables by means of 
the INITIAL attribute. 

UPDATE SEQUENTIAL: The usage UPDATE 
SEQUENTIAL for CONSECUTIVE and 
REGIONAL data set organiza­
tions. 

ASYNCHRONOUS OPERATION: The EVENT 
option on I/O statements, the 
COMPLETION built-in function 
and pseudo-variable, and the 
WAIT statement. 

BATCHED COMPILATION: The facility for 
batched compilation of programs 
and a new compiler option, 
OBJNM. 

LINKAGE EDITING: A changed method of 
link-editing library routines 
into an object program, facili­
tating both the link-editing of 
PL/I object modules from a 
library and the use of overlay 
technique with PL/I object 
modules. 

MIXED DEFINING: The severity of diag­
nostic messages for defined 
data of type different from the 
type of the base is reduced 
from terminal to error, permit­
ting the compilation of pro­
grams using mixed defining. 

The most significent changes for the 
fourth version of the compiler are: 

LOCATE I/O AND LIST PROCESSING: The 
following language is now sup­
ported: 

Statements and options: 

READ FILE(filename) SET{pointer 
variable) [KEY{expression) I 
KEYTO(character-string 
variable)]; 

LOCATE based variable 
FILE (filename) [SET (pointer 
variable)] [KEYFROM(expres­
sion)]; 

REWRITE FILECfilename); 
ALLOCATE based variable 

[IN(area variable)] 
[SET{pointer variable)]; 

FREE based variable [IN (area 
variable)]; 

Assignment: 

AREA to AREA 
POINTER/OFFSET to 

POINTER/OFFSET 

Attributes: 

AREA[Cexpression)] 
BASED (pointer) 
OFFSET (based variable) 
POINTER 
REFERCidentifier) 

Built-in functions: 

ADDR 
EMPTY 
NULL 
NULLO 



Condition: 

AREA 

Operation: 

-> in 60-character set 
PT in 48-character set 

ASYNCHRONOUS OPERATIONS AND MULTI TASK- : 
ING : The following language is 
now supported: 

Statements and options: 

CALL statement with TASK, EVENT 
and PRIORITY options in any 
combination, . 

WAIT statement extended to 
allow array names in the 
event list 

DISPLAY statement with REPLY 
and EVENT options 

UNLOCK statement 
NOLOCK option in READ statement 

Assignment: 

EVENT to EVENT 

Attributes: 

EVENT 
EXCLUSIVE 
TASK 

Built-in functions/pseudo­
variables: 

COMPLETION 
PRIORITY 
STATUS 

Multitasking is supported by the 
MVT system 

Multiprocessing 

DATA INTERCHANGE: The COBOL option in 
the ENVIRONMENT attribute; the 
ALIGNED/UNALIGNED attributes 
(for FORTRAN data interchange) 

ASSEMBLER SUBROUTINES: A variable­
length argument list can be 
passed to assembler subroutines 
invoked by a PL/I program 

STRING HANDLING: The STRINGRANGE condi­
tion for use with SUBSTR; the 
STRING function 

STREAM I/O: LINESIZE. SKIP and COLUMN 
in non-PRINT files; PUT DATA 
with no data list 

RECORD I/O: Some types of VARYING 
string may be used with the 

INTO or FROM options; the KEY 
option in the DELETE statement 
is now optional. The DELETE 
statement is now supported for 
INDEXED data sets using SEQUEN­
TIAL access. Four new ENVIRON­
MENT options (INDEXAREA, NO­
WRITE, REWIND, and 3ENKEY) 
provide improved performance 

COMPILER OPTIONS: SIZE and SORMGIN have 
been changed, and four new 
options (OPLIST, EXTDIC, MACDCK 
and NEST) have been added 

COMPILE-TIME OPTIMIZATION: Macro­
processor concatenations are 
improved 

OBJECT PROGRAM OPTIMIZATION: Constant 
subscri~t and constant 
expres~ion evaluation; some 
instances of VARYING strings in 
assignment; in-line code for 
some VARYING string operations; 
prologue optimization; in-line 
handling of certain data con­
versions and some bit-string 
assignments; rounding-off 
<instead of truncation> for E­
and F-format output; dope vec­
tor initialization improved; 
optimization of some IF state­
ments. 

LISTING IMPROVEMENTS: More details in 
attribute listings; aggregate 
listing is in alphabetical 
order; sizes of the STATIC and 
program control sections are 
given; the size of each DSA is 
given; statement number provid­
ed in diagnostic message for 
invalid pictures; improvements 
of aggregate length table for 
BASED items. 

PROGRAM RESTART: The operating system 
checkpoint/restart facility is 
available under PCP 

EVALUATION OF EXPRESSIONS: The order of 
priority is changed; concatena­
tion now comes before the com­
parison and logical-operators 
in the sequence of priority 

PL/I SORT: The operating system sort 
program is available for use 
with PL/I programs 

The most Significant changes for the 
fourth version at Release 17 are: 

Introduction 13 



RECORD I/O: Spanned records (VS- or 
VBS-format) can be specified to 
span blocks 

Generic keys (GENKEY option) 
can be specified to access 
groups of records on an INDEXED 
data set 

PL/I SORT: User control of SORT ddnames 
for multiple use of PL/I SORT 
within a single job step is 
provided 

MULTIPROCESSING: More than one PL/I 
task may be executed simulta­
neously by a multiprocessing 
system 

PROGRAM RESTART: Improved checkpoint/ 
restart facilities are 
supported by PCP and MVT sys­
tems 

CATALOGED PROCEDURES: Changes to some 
condition codes and to the 
dsnames for temporary data sets 
have been incorporated into the 
PL/I cataloged procedures 

Details on avoiding common pitfalls and 
coding for improved efficiency are given in 
t.he section entitled E.rogramming Tech­
niSl};!~~· 

Co~atibility between Different Versions of 
the FL/I Library and Compiled Code 

Certain changes and improvements have 
been made to PL/I, the compiler, and the 
library between the four versions of the 
compiler. As a result, certain incompati­
bilities have unavoidably arisen between 
library modules of the different versions. 
The purpose of this compatibility statement 
is to make clear to the user what incompa­
tibilities exist, and how the problems 
raised by them can be overcome. 

Several changes in the fourth version 
prevent this version from being completely 
compatible with earlier versions: 

1. In the evaluation of expressions, the 
pri.ority of concatenation has been 
increased so that it now takes prec­
edence over the comparison and logical 
operations. 

14 

2. In string to arithmetic conversion, 
the precision obtained is now the 
maximum precision, not the default 
precision. 

3. E- and F-format items are now rounded 
on output, not truncated. 

4. Multitasking is supported in this ver­
sion of the compiler. Therefore a 
fourth-version program with the TASK 
option will only execute successfully 
with programs based on earlier ver­
sions if these programs have been 
recompiled with the TASK option. Even 
then, subprograms of these earlier 
programs may need rearranging to exe­
cute succesfully. 

A program containing a CALL statement 
with the EVENT option should be com­
piled with the TASK option in the main 
procedure. If the TASK option is not 
specified, it is assumed by default. 

~ot~~ There is an incompatibility 
between multitasking in Release 15 and 
multitasking in Release ~6, caused by 
the removal of multitasking code from 
some PL/I library modules. Multi­
tasking programs coded using a Release 
15 version of the compiler must be 
recompiled and re-link edited if they 
are to be executed with a Release 16 
version. 

5Q If a procedure is to be used recur­
sively or in a reentrant manner, the 
attributes RECURSIVE (for any 
procedure) or REENTRANT (for the ma1n 
procedure) must be specified in the 
PROCEDURE statement. In earlier ver­
sions if these attributes were omit­
ted, a procedure would function cor­
rectly if used recursively or in a 
reentrant manner. 

6. The removal of PACKED from the lan­
guage, and the introduction of UNAL­
IGNED as the complementary attribute 
to ALIGNED, has brought differences 
between the current and earlier ver­
sions of the compiler in the mapping 
of some aggregates and in the applica­
tion of default attributes. 

When a PL/I program containing a 
statement with the PACKED attribute is 
compiled by a PL/I (F) compiler that 
supports ALIGNED/UNALIGNED, then 
PACKED is recognised and ignored, and 
the current defaults for the data type 
are applied. The mapping is the same 
as that formerly obtained with PACKED. 

For example: 

DCL A(5) BIT(7) PACKED; 



The default for string elements in 
aggregates is UNALIGNED, which pro­
vides the same mapping as for PACKED. 

DCL 1 STR PACKED, 
2 A FLOAT(5)., 
2 B BIT( 3) ; 

The data-type defaults are applied; A 
is ALIGNED and B is UNALIGNED. The 
mapping is the same as that for 
PACKED. 

It must be remembered that PACKED and 
UNALIGNED are not similar in meaning. 
If UNALIGNED is substituted for PACKED 
in the explicit declaration of a major 
structure, then there may be signifi­
cant differences in the two mappings. 
For example: 

DCL 1 STR PACKED, 
2 A CHAR(3), 
2 B FLOAT DECIMAL(15), 
2 C BIT( 2) ; 

Here A would be aligned on a byte 
boundary, B on a doubleword, and C on 
a bit boundary. If UNALIGNED were 
substituted for PACKED, A and B would 
be byte-aligned. and C bit-aligned. 

The change in the default attributes 
has brought an incompatibility for bit 
string arrays. In the statement: 

DCL A(10) FLOAT(5). 
B(5) BIT(3); 

the former defaults for A and B would 
be ALIGNED; A would be an array of 
word~aligned arithmetic data, and B 
would be an array of byte-aligned bit 
strings. But the default for arrays 
is now according to data type; A is 
ALIGNED and hence still word-aligned 
and B is UNALIGNED and becomes bit­
aligned. To make string arrays in 
programs with PACKED as default 
compatible (without recompiling) with 
those in programs with the data-type 
default, the latter must be explicitly 
declared ALIGNED. 

On the other hand, the default mapping 
for structures is the same as before. 
A structure declared as: 

DCL 1 STR, 
-2 A FLOAT(5), 
2 B CHAR(4), 
2 C(10) BIT(7); 

formerly had the default attribute 
PACKED; it now has default attributes 
that depend on the data type. The 
mapping is the same in both cases: A 

is word-aligned, B is byte-aligned, 
and C is bit-aligned. 

7. Exponentation by integers is now 
changed. Previously, both operands 
were converted to floating-point, and 
the result precision was the greater 
of the operand precisions. Now, if 
the second operand is a fixed-point 
variable with precision (p,O), the 
first operand is converted to 
floating-point, and the prec1s1on of 
the result is the precision of the 
first operand. 

Two definite compatibility statements 
can be made about the compilers in general: 

1. Compiled code from any version of the 
compiler must always be executed using 
a library of the same version or a 
later version .. 

2. Library modules of different versions 
can be mixed only in the following 
circumstances: 

a. All link-edited modules must be ot 
the same version as each other, 
and 

b. All dynamically linked or loaded 
modules must be of the same ver­
sion as each other and must be of 
at least as late a version as the 
link-edited modules. 

Unless a user has link-edited PL/I 
external procedures with modules from a 
PL/I library and placed them in a private 
library for future use with main programs 
compiled by a later version of the compil­
er, these incompatibilities should cause no 
problems. Provided the user has installed 
the latest compiler and library components, 
all future link-editing operations will 
result in the incorporation of the correct 
library modules. If. however, he has link­
edited some of his external procedures, 
then, if he intends to use them in 
conjunction with a main program containing 
later-version library modules, he must 
remove the earlier-version library modules 
from them. 

Two methods may be employed to carry 
this out. one temporary and the other 
permanent: 

1. The linkage editor map for the exter­
nal procedure is examined to see 
whether any library modules have been 
incorporated in the load module; these 
can pe identified by the initial let­
ters IHE. If there are no library 
modules present in the load module, no 
further action is required. If 
library modules are present, then 

Introduction 15 



every time a main program needs to use 
the external procedure. it should be 
link-edited with it, using INCLUDE 
cards naming the library modules which 
are to be replaced (i.e., all of them) 
and an INCLUDE card naming the exter­
nal procedure its elf. (The latter 
must be a separate card and it must 
follow the INCLUDE card for the 
library modules.) This will result in 
the incorporation of the correct 
later-version library modules and then 
the external procedure itself. This 
method is temporary. 

20 The permanent method is to link-edit 
the external procedure using the 
replace facility on the NAME card. In 
other words, the linkage editor is 
executed using the INCLUDE cards nam­
ing the library modules which are to 
be replaced, followed by an INCLUDE 
card naming the external procedure, 
followed by a NAME card naming the 
external procedure with the replace 
option. 

LANGUAGE LEVEL -------------

rh~ language features supported by the 
(F) Compiler are as defined in the publica­
tion I!~_~y~~g~Ll~Q_Q~rating System, PL/I 
Reference Mdnual. Certain minor restric­
tions-are-necessary for the efficient oper­
ation of the compiler. For full details of 
these restrictions refer to Appendix B of 
this publication. 

In addition to the restrictions speci­
fied in Appendix B, certain areas of the 
language are not implemented in the fourth 
version of the compiler. For fuller 
details of features not supported by this 
version, refer to Appendix H of this publi­
cation. 

A number of compiler options are availa­
ble to the user. These can be specified at 
compilation time as parameters on the exe­
cute statement (EXEC) card. They include 
the following: 

16 

storage size 

Line count 

Source program listing 

Object program listing 

compiler options listing 

External reference listing 

Attribute listing 

Cross reference listing 

Object program deck 

Object program load file 

Production of a NAME card for linkage 
editor processing 

Optimization 

Use of either BCD or EBCDIC 

Specification of source margins and of 
carriage control character for source 
program listing 

Use of either 48- or 60-character set 

Inclusion of source program statement 
numbers in diagnostic messages 

Level at which diagnostic messages are 
printed 

Compile-time processing 

Compile-time processor input listing 

compilation to 
processing 

follow 

Extended dictionary 

compile-time 

Nesting count for source program list­
ing 

Macro-processor card deck 

Model 91 option 

For details of these options, see the 
section called "Job Processing." 

The basic units of processing in the 
operating system are the job and job step. 
The programmer communicates with the PL/I 
(F) compiler via the PL/I language; he 
communicates with the operating system via 
the job control language. 



On receiving a problem, a programmer 
analyzes that problem and constructs a 
precise procedure to solve it; in other 
words, he writes a program to solve the 
problem. The computer then carries out the 
work specified in the programmer's proce­
dure. The amount of work specified by the 
programmer for the computer is called a 
job, and is defined by using the JOB 
control statement in the job control lan­
guage. For example, executing a single 
program to solve an equation is a job to 
the computing system. 

If the problem is complex, the program­
mer may break it down into a series of 
steps, each step corresponding to a pro­
gram. For example, the programmer may 
receive a tape containing raw data from an 
aircraft test flight. His objective may be 
to transform the raw data into a series of 
charts and reports. He may define the 
tnree following steps: 

1. g~ii!!i!!g_g~~_Qat~: Because of inter­
mittent errors in meters and data 
transmission facilities, errors may 
occur in the raw data. The first step 
is to compare the raw data to project­
ed data and to eliminate errors. 

2. Q~Y~lQEi!!9. __ ~al~~~: To use the refined 
data and a set of parameters as input 
to a set of equations to develop the 
values for the creation of charts and 
reports. 

3. 9~!!er~~i!!g __ g~Eor~~ and Graphs: To use 
the values to develop points for the 
charts, and to print the charts and 
reports. 

The important aspect of a job is that it 
is defined by the programmer. In this 
example the job can cover all three steps. 
In operating system terminology, a stage of 
processing executed to perform part of a 
job is called a iQ2-st~E. The programmer 
defines the job step to the operating 
system by using an EXEC control statement 
of the job control language. 

By designating several related steps as 
one job, with each step designated as a job 
step, efficient use is made of the operat­
ing system. In the aircraft test flight 
example, each step may be defined as a job 
step in a job encompassing all the required 
processing, as follows: 

JOB: Aircraft test flight 

JOB STEP 1 : Refine raw data 

JOB STEP 2: Develop values 

JOB STEP 3 : Generate reports and 
graphs 

Data Set 

In the example, job step 1 used three 
collections of data as input and 
output -- raw data, projected data. and 
refined data. Any job step can use collec­
tions of data. In the System/360 operating 
system, a collection of data is called a 
data set. A data set is defined to the 
operating system by a DD (Data Definition) 
statement of the job control language. ~ne 
word "file," as defined for PL/I, may for 
the most part be equa~ed with the term 
"data se~," as defined for the operating 
system. 

A data set resides on one or more 
volumes. A volume is a standard unit of 
external storage~hat can be written on or 
read by an input/output device. (For exam­
ple, a volume may be a reel of ta~e, a disk 
pack, or a card deck.) The operating 
system provides the feature of device inde­
pendence; that is, when writing his source 
code, the user need not concern himself 
with the physical device from or onto which 
he may be reading or writing. The same 
data set may at different times reside on 
different volumes (and hence different 
types of device). 

The names of data sets and any informa­
tion identifying the volumes on which they 
reside may be placed in a catalog to help 
the operating system find the data set. 
This catalog resides on the direct-access 
volume that contains the operating system. 
Any data set whose name and volume iden­
tification are placed in the catalog is 
called a catal25l.ed data se~. Other infor­
mation concerning the data set, such as 
device specification, the position of the 
data set in the volume or the format of 
records in the data set, can also te 
accessed by the operating systemo If the 
data set is cataloged when it is first 
created, the only information needed to 
retrieve the data set is its name. 

Note: Data set names that begin with the 
letters SYS and have a P as the nineteenth 
character of the name should not be used. 
Data sets with such names are created for 
temporary data sets on PCP systems, but not 
for temporary data sets on MVT or MFT 
systems, and are deleted when the IEHPROGM 

Introduction 17 



utility is used and the SCRATCH 
control statement is specified 
VTOC, PURGE, and SYS keywords. 

utility 
with the 

Furthermore, a hierarchy of indexes may 
be devised to enable the operating system 
to find data sets faster. For example, an 
installation may divide its cataloged data 
sets into four groups: SCIENCE, ENGRNG u 

ACCNTS, and INVNTRY. In turn, each of 
these groups may be subdivided into groups. 
For example, the SCIENCE group may be 
divided into groups called MATH, PHYSICS B 

CHEM, and BIOLOGY; MATH may be further 
divided into ALGEBRA, CALCULUS, and BOOLm 
To find the data set BOOL, it is necessary 
to specify the names of all indexes of 
which it is a part, beginning with the 
largest group (SCIENCE), then the next 
largest group (MATH), and finally, the data 
set BOOL. The complete identification 
needed to find the data set BOOL is 
SCIENCE. MATH. BOOL. 

Data set names may be either unqualified 
or qualified. An ~!lg~lified name is a 
data set name that is not preceded by an 
index name; for example, in the preceding 
text, if data sets were not indexed, BOOL 
would be an unqualified name. A gualifieQ 
!l~m~ is a data set name preceded by index 
names representing index levels; for exam­
ple, in the preceding text, the qualified 
name of the data set BOOL is 
SCIENCE. MATH. BOOL. 

Data set identification may also be 
based upon the time of generation. In the 
System/360 operating system, a collection 
of successive historically related data 
sets is called a generation data group. 

Some data sets are updated periodically, 
or are logically part of a group of data 
sets, each of which is created at a differ­
ent time: for example, a series of data 
sets used for weather reporting and fore­
casting. The data set name for these data 
sets might be WEATHER. A generation number 
is attached to the data set name to refer 
to a particular generation. The most 
recently cataloged data set is always 0; 
the generation before 0 is -1; the genera­
tion before -1 is -2; and so on. The 
generations for the generation dat~ group 
WEATHER are: 

WEATHER (0) 

WEATHER (-1) 

WEATHER (-2) 

When a new generation data group is 
created, it may be called generation +~. 
After a job has created WEATHER (+1), the 
operating system changes its name to WEATH­
ER (0), if cataloged automatically. The 

18 

data set that was WEATHER (0) at the 
beginning of the job becomes WEATHER (-1), 
and so on, and the oldest one is usually 
deleted automatically. 

In the System/360 operating system, the 
output of the (F) compiler is called an 
Q!2~£~_!!!od~!.~ (object program).. The object 
module cannot be executed until the 
required references to functions and sub­
routines are resolved (that i~6 identified 
for the use of the operating system), and 
the object module is put into a format 
suitable for loading. Its external ref­
erences are resolved by a program supplied 
by IBM called the li!l~~g~_edi1QE. 

The output of the linkage editor is 
called a load module~ However, the input 
to the linkage editor may be either object 
modules or load modules. Linkage- editor 
execution- can be expanded further: several 
object modules and load modules may be 
combined to form one load module. The 
linkage editor automatically picks out the 
library functions and the requested subrou­
tines and inserts them into the load 
moduLe. The name of the library is speci­
fied to the linkage editor by a SYSLIB DD 
card. For example, if the compiled object 
module TEST calls subroutines ALPHA and 
BETA (which in this example are assumed to 
be object modules) and the library function 
SIN (a load module), the linkage editor 
combines the object modules ALPHA, BETA, 
and TEST and the load module SIN to form a 
single load module. 

A program written in PL/I may call 
subprograms written in the assembler lan­
guage. An example is given in Appendix D. 

After an object module is processed by 
the linkage editor, the resulting load 
module may be executed. Therefore# to 
execute a PL/I program, a minimum of three 
steps is necessary: 

1. Compile the PL/I source program 

2. Process the resulting object module 
and any load modules (which may 
include any PL/I subprograms) to form 
a load module 

3. Execute the load module 

Compiling, link-editing, and execution are 
a series of jobs and/or job steps; to the 
operating system, each job and job step is 
defined by the programmer. 



Each compilation, the linkage editor 
execution, and the load module execution 
may be defined as separate jobs. (If this 
is done, there is only one job step in each 
job.) However, several single job steps 
may be combined into one job. For example, 
all the compilations may be combined. In 
this case, each compilation is a single job 
step. Furthermore, all of the steps, com­
pilations, link-editing, and execution may 
be combined into one job. Then each compi­
lation, the linkage editor processing, and 
the execution of the load module are separ­
ate steps. An exception is that a batched 
compilation facility (described later) per­
mits more than one compilation within a 
single job step. 

To further clarify these distinctions, 
assume that a ~30urce program MAIN is to be 
compiled and executedQ MAIN requires the 
services of two subprograms, SUB1 and SUB2u 
and neither subprogram is compiled. In 
this example, five steps are used to per­
form the job: 

JOB: Multiple compilations, link-
editing, and execution 

JOB STEP 1 : Compile MAIN 

JOB STEP 2: Compile SUB1 

J'j,..) STEP 3 : Compile SUB2 

JOB STEP 4 : Process by linkage 
editor 

JOB STEP 5: Execute the load 
module called MAIN 

A data set has been defined as a collec­
tion of data. The (F) compiler and linkage 
editor are concerned with two types of data 
sets, sequential data sets and partitioned 
data sets. 

A ~3equential_data~~ is a data set in 
which the records are arranged to be read 
in the sequence in which they are physical­
ly stored. A sequential data set may 
reside on any type of volume. 

A ~~titi~~Q~ata ~ (PDS) is a group 
of members, each of which has many of the 
properties-of a sequential data set, and 
which can be used individually as a sequen­
tial data set. A partitioned data set must 
reside on a direct access volume, and it 

includes a directory which is used to 
locate a particular member. One of the 
uses of partitioned data sets is the stor­
age of load modules. In fact, a load 
module can be executed only if it is a 
member of a partitioned data set. 

cataloged data sets and generation data 
groups do not have to reside on direct­
access devices. A catalog is maintained by 
the operating system for cataloged data 
sets and generation data groups. However, 
a PDS must reside on a direct-access 
device, and its members must be sequential 
data sets. The PDS maintains its own 
directory of its members. 

An installation may have certain proce­
dures to follow in its daily processing. 
For example, weather reporting is processed 
daily. To reduce the possibility of error 
in the daily reproduction of these job 
control statements, a cataloged procedure 
may be written. A £~~alQg~~_EEQcedure is a 
set of EXEC and DD control statements that 
are placed in a PDS accessed by the operat­
ing system. The JOB statement cannot be 
cataloged. To describe a job stef an EXEC 
statement may invoke a cataloged procedure. 
Because EXEC statements may be cataloged, 
the cataloged procedure may consist of a 
series of steps. The equivalent of a job 
step in a job is called a procedure step in 
a cataloged procedure. Cataloged proce­
dUres cannot be nested; that is, one cata­
loged procedure cannot invoke another cata­
loged procedure. 

For a job step, a number of data sets 
may be defined by the DD statement. DD 
statements may be written in cataloged 
procedures. To simplify the steps involved 
in compiling and link-editing, five cata­
loged procedures have been supplied by IBM 
for the PL/I (F) compiler. These five 
cataloged procedures and their uses are: 

PL1DFC 

PL~LFC 

compilation with deck output 

compilation with object module 
output for linkage editor 
input 

PL1LFCL compilation and link-editing 

PL1LFCLG compilation, link-editing* and 
execution 

PL1LFLG link-editing and execution 

Introduction 19 



JOB PROCESSING 

To execute a PL/I program three steps 
are required: compilation, processing of 
object output by the linkage editor, and 
execution of the load module. These steps 
all require the use of job control language 
statements. A summary of these statements 
is given in Figure 1. 

r-----------T-----------------------------, 
I Statement I Function I 
~-----------+-----------------------------~ 
I JOB I Indicates the beginning of I 
I I a new job I 
~-----------+-----------------------------i 
I EXEC I First statement for each I 
I I job step. It indicates the I 
I I cataloged procedure or I 
I J program to be executed I 
~-----------+-----------------------------i 
I DD I Describes data sets and I 
I I controls device and volume I 
I I assignment I 
~-----------+-----------------------------i I delimiter I Used, when data is included I 
I (/*) I in the input stream, to I 
I I separate data from sub- I 
I I sequent control statements I 
~-----------+-----------------------------i 
I null (II) I Marks the end of the last I 
I I job in an input stream I L ___________ L _____________________________ J 

Figure 1. Job Control Language Statements 

If data is included in the input stream, 
the data cards must normally be preceded by 
a DD * statement (e.g., SYSIN DD *) and 
followed by a delimiter statement, although 
these are not always necessary when operat­
ing with a priority scheduler. For full 
details, refer to the publication 1~~ 
§~~em/360_Qe~~~igg __ §ystem, Job Control 
Lang£~g~. 

Job processing can often be simplified 
by using the cataloged procedures described 
1n this chapter and in Appendix E of this 
publication. 

The names for DO statements (ddnames) 
connect 1/0 statements in the compiler with 
data sets used by the compiler. Names for 
1/0 device classes have also been esta­
blished and must be used by the programmer. 
The program name for the compiler is IEMAA, 
so that if the compiler is to be executed 
in a job step, the parameter PGM=IE~~ must 
be used in the EXEC statement. Normally, 

20 

however, the parameter would appear on an 
EXEC card within a cataloged procedure. 

If the compiler is to be dynamically 
invoked by the CALL, LINK, XCTL, or ATTACH 
macro instructions, details of the method 
to be used will be found in Appendix F. 

COMPILER DONAMES 

The (F) compiler uses a maximum of seven 
standard data sets. Each data set has been 
assigned a specific ddname in order to 
establish communication between the compil­
er and the programmer. Each data set is 
given a specific function which must meet 
device requirements for the PL/I (F) com­
piler. The ddnames l functions, and device 
classes for the data sets are given in 
Figure 2. These ddnames ~~~~ be specified 
as ddnames for compiler DO statements, and 
must correspond to the function listed in 
Figure 2. The requirements for each data 
set designate which type of inputloutput 
device must be used for the data set. In 
additLon to the seven standard data sets, 
each data set explicitly referenced in a 
compile-time INCLUDE statement must also 
have a corresponding DD statement. The 
device requirements for these data sets are 
the same as for the SYSLIB data set. 

To compile a PL/I program on the (F) 
compiler, two of these data sets are neces­
sary: SYSIN and SYSPRINT, along with the 
direct-access volume that contains the 
operating system. With these two data 
sets, only the listing is generated by the 
compiler, If an object deck or a MACDCK 
deck is to be provided, a SYSPONCH DD 
statement must be specified. If the object 
module is to be written, a SYSLIN DD 
statement must be supplied. SYSUT1 is 
always required if the SIZE option 
(explicitly or by default) specifies a 
value less than 53,248. With higher values 
of SIZE, the SYSUT1 data set is used only 
when the source program and internal tables 
cannot be wholly contained in main storage. 
The table of space requirements for SYSUT1 
(see "Compiler Device Classes") is a guide 
to when the data set will be used. For 
practical purposes* however, it is advisa­
ble to include the DO statement for SYSUT1 
as a matter of course. SYSUT3 is used for 
compile-time processing, and for programs 
using the 48-character set. SYSLIB is used 
for compile-time processing of INCLUDE 
statements in which a ddname is not expli­
citly specified. 



r-----------T-----------------------T-----------------------------------, 
I ddname I Function I Possible I 
I I I Device Classes I 
~-----------+-----------------------+-----------------------------------~ I SYSIN I Source Input I SYSSQ, the input stream device I 
I I I (specified by DD *), or paper tapel 
I I I reader J 
I I I I 
I SYSPRINT I Listing Output I SYSSQ, or SYSOUT device I 
I I 1 I 
I S~SPUNCH I Deck and MACDCK I SYSCP, SYSSQ I 
1 I output, or SYSOUT I I 
I I (punch) device I J 

1 I II 
I SYSLIN I Object Module Output I SYSSQ I 

I I I 
SYSUr1 I Auxiliary Storage for I SYSDA I 

I Text and Dictionary I I 
I I I 

SYSUr3 I Auxiliary Storage for I SYSSQ I 
I Compile-Time Process- I I 
I ing and 48-Character I I 
I Syntax I I 
I I J 

SYSLIB I Default input for I SYSDA I 
I compile-time INCLUDE I J 

I statements I I ___________ L _______________________ ~ ___________________________________ J 

Figure 2. Input/Output Data Sets 

r------------T------------------------------------"-----T-----------------------------, 
I Class Name I Class Function I Device Type I 
r------------+-----------------------------------------+-----------------------------~ 
I SYSSQ I Writing, reading I Magnetic tape, DASD I 
~------------+-----------------------------------------+-----------------------------~ I SYSDA I Writing, reading, updating records in I DASD I 
I I place I I 
~------------+-----------------------------------------+-----------------------------~ I SYSCP I Intermediate or ultimate device for I Card punch, magnetic tape I 
I I punched cards I DASD 1 L ____________ ~_. ________________________________________ ~ _____________________________ J 

Figure 3. Device Class Names 

For the DD statements SYSIN, SYSPUNCH, 
or SYSPRINT, an intermediate storage device 
may be specified instead of the card read­
er, card punch, or printer, respectively. 

If an intermediate storage device is 
specified for SYSIN, the compiler assumes 
that the source program deck was placed 
there by a previous job or job steps. If 
an intermediate storage device is specified 
for SYSPRINT, the listing and diagnostic 
messages are written on the device; a new 
job or job step can print the contents of 
the data set. Similarly, if an intermedi­
ate storage device is specified for SYS­
PUNCH, the card deck is written on that 
device, and another job or job step will be 
needed to punch the card deck. Under the 
MVT system, this can be done automatically 
by specifying a SYSOur data set. 

COMPILER DEVICE CLASSES 

Names for input/output device classes 
used for compilation are specified to the 
operating system at system generation time. 
The usual class names, functions, and types 
of devices are shown in Figure 3. 

The data sets used by the compiler must 
be assigned to devices eligible for the 
classes listed in Figure 2. 

It should be noted that a direct-access 
storage device may be used for all compiler 
devices. The SPACE parameter in the DD 
statement must be used if there is a 
possibility that the data set will be 
written on a direct-access device. 

Job Processing 21 



For most practical situations, the 
values used in the SPACE parameters of the 
data sets defined in the cataloged proce­
dures in Appendix E will be adequate. 
However, typical space requirements for 
various data sets can be calculated from 
tne following information (All values given 
are in bytes): 

22 

IR = number of input records (i.e., num­
ber of records containing source 
text + number of records included 
through the compile-time INCLUDE 
statement). 

SR number of records containing source 
statements after compile-time time 
processing is completed. 

SN number of source statements after 
compile-time processing is complet­
ed. 

VN numb~r of variables used in the 
program. 

Space required = 

120x( IR if SOURCE2 op~ion 
is specified 

+ SR if SOURCE option 
is specified 

+ 10xSN if LIST option is 
specified 

+ VN if ATR option is 
specified 

+ VN if XREF option is 
specified 

+ 30) bytes if EXTREF option 
is specified 

Space required = 80 x SN bytes 

Source programs which are large enough 
to cause the SYSUr1 data set to be used 
will compile more efficiently if this 
data set resides on a drum or in a 
contiguous area on a disk. 

Since it is not advisable to use 
EXTDIC if SIZE=44K, the figures for this 
value must be taken as applying to a 48K 
capacity. 

r----T------T-----------------------, 
I I INO. of tracks required 1 
I SN I SIZE r-------7-------T-------~ 
I 1 1 2311 1 2301 1 2321 1 
~----+------+-------+-------+-------~ 
1 1 44K 1 8 I 4 I 22 I 
I I 1 I I 24* I 
I ~------+-------+-------+-------~ 
I 150 I 100K I 0 I 0 I 0 1 
I t------+-------+-------+-------~ 
I I 200K I 0 I 0 I 0 I 

~----+------+-------+-------+-------~ 
I I 44K I 31 I 14 J 92 I 

I 1 I 1 1 97* 1 
1 ~------+-------+-------+-------~ 
I 5 00 1 100K 1 18 1 9 I 27 I 
1 1 I 22*1 11*1 33*1 
1 ~------+-------+-------+-------~ 
I 1 200K 1 0 I 0 1 0 I 
r----+------+-------+-------+-------~ 
1 1 44K 1 64 I 28 1 192 I 
1 1 1 1 1 202*1 
1 r------+-------+-------+-------~ 
110001 100K 1 68 1 34 1 102 1 
1 1 1 74*1 37*\ 111*1 
I t------+-------+-------+-------~ 
\ 1 200K 1 15 1 9 1 27 1 
1 1 1 20*1 12*1 28*1 L ____ L ______ L _______ L _______ L _______ J 

* EXTDIC option specified 

Space required for 48-character set proc-
essing 2 x SR x (average record 
length) bytes 

Space required for compile-time 
processing = size of program after 
compile-time processing 

Space required for both 48-character set 
and compile-time processing = 
2 x (size of program after compile­
time processing 

These formulas give only approximate 
answers, in that considerable variation 
may result from the nature of individual 
source programs. The figures given 
should provide adequate space in most 
cases. The secondary allocation facility 
should be used as a protection against 
exceptional requirements. 

Record parameters on this data set 
depend on whether the MACRO or the CHAR48 
option is used. 



If the MACRO option is specified (with 
or without the CHAR48 option), SYSUT3 
will be opened with the following param­
eters: 

Record format: 

Recorc1 size: 

F(available size < 56K) 
FB(available size 2 56K) 

80 bytes 

Blocking factor: 1 (available si~e < 56K) 
2(available size 2 56K) 

For available size, see 'SIZE Option'. 

If the CHAR48 option (but not the 
MACRO option) is specified~ SYSUT3 con­
tains a CHAR48 and a CHAR60 copy of each 
source record. It is opened wi t.h the 
following parameters: 

Record format: 

Record size: 

F(available size < 56K) 
FB(available size 2 56K) 
U(if SYSIN record format 

is U) 

SYSIN record length 

Blocking factor: 1 (available size < 56K) 
2(available size 2 56K) 

For available size., see 'SIZE Option.' 

Data set:. Write-yerifLlQ~2D) 

The Write Verify option for DASD is not 
fully supported for SYSUT1. Although the 
Wri te VE~rify may be requested by specifying 
OPTCD = W in the DCB for SYSUT1, not all 
the data blocks written on this data set 
will in fact be verified. Specifying the 
OPTCD parameter results in write verifica­
tion only when a new dictionary or text 
block is written on the device; reuse of 
this block will not result in verification 
of the data written. 

The Write Verify feature is always avai­
lable for use with a data block on other 
data sets on direct-access devices, and is 
obtained by specifying the appropriate 
option on the data set DD card. (See 
'supervisor and Data Management Services~) 

BLOCKING OF COMPILER INPUT AND OUTPUT 

Blocking of ComEiler Ineut 

The compiler allows the programmer to 
request blocked input on SYSIN (other than 
SYSIN DO DATA or .) by specifying a BLKSIZE 
parameter on the appropriate DD card or by 
obtaining the block size from the data set 
label (see Appendix A, ftCompiler Input ft ). 

Of the 44K bytes minimum storage neces­
sary for the F compiler, 1000 bytes are 
reserved for two SYSIN buffers, so that the 
SYSIN block size can always be up to SOO 
bytes (i.e., the size of one SYSIN buffer). 
A block size greater than SOO bytes is 
allowed if the extra storage necessary for 
the SYSIN buffers is available in the 
amount of storage requested in the SIZE 
option (i.e., SIZE must be at least 44K-
1K + 2 x block size). If the SIZE option 
does not allow for 4~OS6 bytes more than 
the additional storage required by the 
SYSIN buffers, compilation will be termi­
nated. 

The compiler allows the programmer to 
request blocked output on SYSPRINT, SYS­
PUNCH and/or SYSLIN by specifying a BLKSIZE 
parameter on the appropriate DO card. 

Of the 44K bytes minimum storage neces­
sary for the F compiler, 2S8 bytes are 
reserved for two SYSPRINT buffers (129 
bytes each), 400 bytes are reserved for the 
SYSPUNCH buffer, and 400 bytes are reserved 
for the SYSLIN buffer. Thus when SIZE=44K, 
SYSPRINT block size must be 129 bytes and 
SYSPUNCH and SYSLIN block sizes can be up 
to 400 bytes. Greater block sizes than 
these are allowed if extra storage for 
larger buffers is specified in the SIZE 
option. (See next section "Calculations 
for Storage Requirements.") 

If the SYSPUNCH block size or the SYSLIN 
block size is greater than 400 bytes and 
the SIZE parameter is not great enough to 
accommodate it, then the corresponding com­
piler options will be deleted. 

SYSPRINT block size must be of the form 
(4 + n x 12S) bytes. If the SIZE option 
does not allow for 4S056 bytes more than 
the additional storage required by the 
SYSPRINT buffers, compilation will be ter­
minated. 

The E-Ievel Linkage Editor cannot accept 
blocked input, so the compiler output 
should be blocked only if the F-Ievel 
Linkage Editor is in use. 

Calculations for Storagg-E~~i!~m~~~ 

Storage requirements for blocking com­
piler input and output should be based on 
the following: 

44K is needed for the compilation, and of 
this 

Job Processing 23 



1000 bytes are saved for two SYSIN 
buffers (500 bytes each) 

258 bytes are saved for two SYSPRINT 
buffers (129 bytes each) 

400 bytes are saved for the SYSPUNCH 
buffer 

400 bytes are saved for the SYSLIN 
buffer 

If SYSIN block size is greater than 500 
bytes then (2 x SYSIN block size - 1K) 
is subtracted from the storage speci­
fied by SIZE. 

If SYSPRINT block size is greater than 129 
bytes then (2 x SYSPRINT block size-
258) is subtracted from the remaining 
storage. 

If SYSPUNCH block size is greater than 400 
bytes then (SYSPUNCH block size - 400) 
is subtracted from the remaining stor­
age. 

If SiSLIN block size is greater than 400 
bytes then (SYSLIN block size - 400) 
is subtracted from the remaining stor­
age. 

The storage that finally remains must be 
equal to or greater than 44K. 

SYSPUNCH/SYSLIN in Batched Compilations 

Once SYSPUNCH or SYSLIN has been opened, 
it is left open and buffer space is allo­
cated for all subsequent compilations in 
the batch, whether or not there is any 
SYSPUNCH or SYSLIN output for those compi­
lations. 

If SYSPUNCH or SYSLIN block sizes great­
er than 400 are asked for, the extra space 
needed for the larger buffers will be 
subtracted from the SIZE specified for each 
compilation in the batch before calculating 
the text and dictionary block sizes. In 
some cases, compilations which do not have 
SYSPUNCH or SYSLIN output may be allocated 
smaller text and dictionary block sizes 
than they would otherwise get if they 
follow a compilation which opened SYSPUNCH 
or SYSLIN. If SYSPUNCH or SYSLIN has been 
successfully opened with a big block size 
and a following compilation specifies 
SIZE < (44K + extra buffer space needed), 
this will be ignored and SIZE = (44K + 
extr~ buffer space needed) will be assumed. 

24 

COMPILER OPTIONS 

A number of compiler options are availa­
ble to the programmer. These may be passed 
to the compiler through the PARM parameter 
on the EXEC card at compilation time. 
Included in the information that may be 
specified to the compiler are the following 
items: 

The amount of main storage allocated to 
the" compiler for this compilation 

The number of lines to be printed on 
each page of the source listing 

Whether a source program listing is to 
be printed 

Whether an object program listing is to 
ne printed 

Whether a list of the compiler options 
specified for the program is to be 
printed. 

Whether a listing of the External Sym­
bol Dictionary (ESD) is to be provided 

Whether a list of the attributes of 
identifiers is to be provided 

Whether a list of cross-references to 
identifiers is to be provided 

Whether the compiler is to produce an 
object module for input to the linkage 
editor, output either as a data set on 
SYSLIN, or SYSPUNCH, or both, as the 
user requires 

Whether the compiler is to produce the 
linkage editor control statement NAME 
to follow either the object module or 
the onject program deck 

The level of optimization required 

Whether the source code is in BCD or 
EBCDIC 

The specification of source margins and 
the specification of a carriage control 
character for the source program list­
ing 

The choice of 48- or 60-character set 
for source programs 

Whether diagnostic messages produced 
during execution are to include state­
ment numbers from the source program 

The choice of severity level at which 
diagnostic messages will be printed 



Whether compile-time 
required 

processing is 

Whether a compile-time processor input 
listing is to be printed 

Whether compile-time processing is to 
be followed by compilation 

Whether the extended dictionary is to 
be used 

Whether a nesting block level is to be 
printed next to each statement number 

Whether a sequenced card deck is to be 
punched as the macro-processor output 

Whether the object program is to be 
executed on a System/360 Model 91 

r------------------T------------T---------, 
I Compiler IAbbreviated IStandard I 
I option I name 1 default I 
~------------------+------------+---------i 
\SIZE=yyyKlyyyyyy I SIZE 1999999 I 
ILINECNT=xxx I LC 150 I 
ISOURCEINOSOURCE I SINS I SOURCE I 
ILISTINOLIST I LINL I NOLIST I 
IOPLISTINOOPLIST I OLINOL \OPLIST I 
IEXTREFjNOEXTREF I EINE INOEXTREF I 
IATRINOATR \ AINA 1 NOATR I 
IXREFINOXREF I X\NX I NOXREF I 
IDECKINODECK I DIND I NODECK I 
ILOADINOLOAD I LDjNLD I LOAD \ 
IOBJNM=aaaaaaaa I NINo actionl 
\ OPT=nn I 0 I 01 I 
IBCDJEBCDIC I BlEB I EBCDIC I 
ISORMGIN=(mmm,nnn[, I SM 1(2,72) I 
I ccc] ) I I I 
\CHAR60 ICHAR48 I C60lC48 ICHAR60 I 
ISTMTINOSTMT I STINST I NOSTMT I 
IFLAGWIFLAGElFLAGS I FWIFEIFS IFLAGW I 
IMACROINOMACRO J M\NM 1 NOMACRO \ 
!SOURCE2!NOSOURCE2 I s21 NS 2 ISOURCE2 I 
ICOMPINOCOMP I CINC ICOMP I 
IEXTDIC!NOEXTDIC I ED1NED INOEXTDIC] 
INESTINONEST I NT]NNT I NONEST I 
IMACDCKINOMACDCK I MDINMD INOMACDCK I 
I M91 J NOM91 I I NOLV191 I l __________________ ~ ____________ L _________ J 

The list of compiler options following 
the equals sign in the PARM parameter must 
be enclQsed in quotation marks; the separ­
ate options are separated by commas. The 
list must not exceed 40 characters includ­
ing commas, but excluding the quotation 
marks. Because of the 40 character limita­
tion, the compiler has been designed to 
accept the abbreviated compiler option 
names given in the table below, as alterna­
tives to the longer mnemonics. Where an 
option includes a numerical specification, 
as in SIZE, LINECNT, OPT, and SORMGIN, only 
significant digits need be specified by the 
user. There is no required order for 
specifying the compiler options, but if 

conflicting options are specified the last 
specification in the list will be used. 
The default for all options (except OBJNM) 
can be set at system generation time to 
suit the requirements of the installation. 
In the absence of any such setting, the 
standard defaults shown in the table below 
will be effective. The DELETE parameter of 
the system generation PL1 macro instruction 
(described in the publication IEM 
§y~te~Ll~Q ___ QEerating systemL __ ~~!~~ 
Generation) may be used at system genera­
tion time to specify any compiler options 
not to be used at compilation time. 

SIZE=yyyyyylyyyKl999999 - The SIZE option 
indicates to the compiler the amount 
of main storage (in bytes) available 
for the compilation. The programmer 
specifies this amount as one of the 
following: 

yyyyyy: This gives the number of bytes 
available for the compilation. For 
blocked input, the amount yyyyyy must 
be greater than 45056 + (2*SYSIN 
BLKSIZE if BLKSIZE>500) + (2*SYSPRINT 
BLKSIZE if SYSPRINT is blocked). If 
it is not, the compiler will terminate 
abnormally. For unblocked input, if 
the amount yyyyyy is less than 45056, 
the default size is taken. 

yyy~: This gives the number yyy of K 
units (K = 1024 bytes) available for 
the compilation. If the number of 
bytes specified is less than 44K, a 
message is printed and the default 
size is taken. 

299222: This instructs the compiler to 
obtain as much main storage as it can. 
If this amount is less than 44K, the 
compiler will comment and then will 
attempt to continue; later it may 
terminate abnormally. Because the 
compiler calculation of the amount of 
storage available is only an approxi­
mation, SIZE=999999 should not be used 
if the amount of storage available is 
less than 48K. 

The partition (MFT) or region (MVT) in 
which the compilation step is executed 
must be at least 8K larger than the 
amount specified in the SIZE option. 
Failure to ensure this may result in a 
system abnormal termination before the 
compiler can provide any diagnostic 
aid. 

The following table shows the text and 
dictionary block sizes used for various 
core availabilities as specified by the 
SIZE option. The available size is the 
amount specified in the SIZE option minus 
the extra space needed for larger input and 
output buffers. The text and dictionary 

Job Processing 25 



block sizes are determined from the amount: 
available after any extra storage needed 
for larger input/output buffers has been 
subtracted from the amount specified in the 
SIZE option. 

r-------------------~------------, 
I Available Size I Block Size I 
I (bytes) I (bytes) I 
r-------------------t------------i 
1 45,056 - 57,343 I ~,024 I 
I 57,344 - 73,727 I 2.048 I 
I 73.728 - 135,167 I 4.096 I 
! 135,168 - 172,031 I 8,192 I 
I ~72,032 or more 1 16,384 I l ___________________ ~ ____________ J 

LINECNT=xxx - the LINECNT option informs 
the compiler how many lines are to be 
printed on a page of listing. The 
number specified includes heading 
lines and blank lines. If a number is 
not specified. a standard default of 
50 lines is assumed. 

SOURCE or NOSOURCE (Source Program 
Listing) - the SOURCE option specifies 
that the source program is to be 
written on the device indicated on the 
SYSPRINT DD card. The source listing 
is in the same character set as the 
source records. rhe statement number 
of the first statement in each line is 
printed to the left of that line. but 
a statement number is not given on a 
line containing only a continued 
statement. NOSOURCE indicates that no 
source listing is required. If ne~~h­
er option is specified, the compiler 
assumes the standard default SOURCE. 
A description of the listing is given 
in the section called "Compiler Out­
put." 

LIST or NOLIST (Object Program Listing) -
the LIST option specifies that gener­
ated machine instructions are to be 
listed in a format resembling the 
listing output of the operating 
system/360 assembler program. (This 
output is not suitable for use as 
input to the assembler.) Each line 
contains the location counter value 
and text in hexadecimal, the mnemonic 
symbol for the operation code, and a 
variable field in assembler language 
format. Source program identifiers 
are used wherever possible, and com­
ments are inserted to assist in corre­
lation with the source program. When 
the LIST option is specified, a STATIC 
INTERNAL storage map is also printed. 
The NOLIST option indicates that no 
object program listing or STATIC 
INTERNAL storage map is to be provid-' 
ed. If no option is specified, the 
~tandard default. NOLIST, is assumed 
by the compiler. A description of the 

26 

object program listing is given in the 
section called "Compiler Output." 

OPLIST or NOOPLIST - the OPLIST option (the 
standard default) causes the list of 
compiler options to be printed. The 
NOOPLIST option provides that no such 
list shall be printed. 

EXTREF or NOEXTREF (External Listing) - the 
EXT REF option causes a listing of the 
external symbol dictionary (ESD) to be 
provided. The NOEXTREF option speci­
fies that no listing is required and 
is the standard default assumed if no 
option is specified. A description of 
the ESD listing is given in the sec­
tion called "Compiler output." 

ATR or NOATR (Attribute Table) - the ATR 
option gives: 

~. A table showing. fOE each ~den­
tifier: 

Statement 
in which 
declared 

Identifier 
structures 

number of the statement 
the identifier is 

and all containing 

A list of attributes pertaining to 
the identifier 

2. A listing showing the length. in 
bytes, of every aggregate (array 
or structure> variable declared or 
allocated with fixed extents with­
in the program. 

The list of identifiers is sorted, igno­
ring the qualification. The NOATR option 
specifies that no listing is required and 
is the standard default assumed if no 
option is specified. A description of the 
attribute listing is given in the section 
called "Compiler Output." 

XREF or NOXREF (Cross Reference Table) -
the XREF option produces output show­
ing, for each identifier: 

Statement 
in which 
declared 

Identifier 
structures 

number of the statement 
the identifier is 

and all containing 

List of all statements in which a 
reference is made to the identifi­
er 

The list of identifiers is sorted, 
ignoring the qualification. The NO­
XREF option indicates that no cross 
reference listing is required~ and is 



the standard default assumed if no 
option is specified. A description of 
the listing is given in the section 
called "Printed Listings." 

DECK or NODECK (Object Program Deck) - the 
DECK option specifies that the com­
piled program (i.e. the object 
module) is to be output in the form of 
a sequenced card deck in linkage edi­
tor format. The data set is defined 
by a SYSPUNCH DO statement. No job 
control statements, (DD cards, etc.) 
are generated by the compiler. NODECK 
specifies that no object program deck 
is required; if NODECK is specified, 
the DD statement SYSPUNCH is not 
required. If no option is specified, 
the standard default, NODECK, is 
assumed. A description of the deck is 
given in the section called "Compiler 
Output." 

LOAD or NOLOAD (Object Program output) -
the LOAD option causes object program 
output to be produced as a sequential 
data set defined by a SYSLIN DD state­
ment in standard linkage editor input 
format. NOLOAD specifies that no load 
module is to be created. LOAD is 
assumed as the standard default if no 
option is specified. If NOLOAD is 
specified, the DO statement SYSLIN is 
not required. 

OBJNM=aaaaaaaa - this option causes the 
compiler to produce the linkage editor 
control statement NAME following eith­
er the object module, the object pro­
gram deck, or both. If neither LOAD 
nor DECK has been specified 
(explicitly or by default), the use of 
this option will have no effect. The 
NAME statement produced will be of the 
following form: 

l:?Q§'!l~1. 

2NAMEQaaaaaaaa(R) 

where aaaaaaaa represents the name 
given, which may have up to eight 
characters n and 2 represents one or 
more blanks. 

Care should be taken when using this 
option in conjunction with cataloged 
procedures, otherwise the program name 
used in the EXEC statement will be 
incorrect. The principal purpose of 
this option is to enable the user to 
create a partitioned data set of load 
modules from a series of batched com­
pilations, by means of the linkage 
editor. 

OPT=nn (Optimization) - two 
levels of optimization are 

alternative 
available 

to the user. The decimal integer 
constant (nn) indicates the level 
required. The choice depends upon 
whether the prime concern of the user 
is execution speed or object-time 
storage space. 

OPT=OO: in this case, the object-time 
storage requirement is kept to a mini­
mum. 

OPT=01: in this case, the execution 
speed is improved at the expense of 
object-time storage space. 

The difference in the compilation time 
for the two options is negligible. 
The standard default assumption if 
neither is specified is OPT=01o 

BCD or EBCDIC Source Code - the BCD or 
EBCDIC option allows the programmer to 
state in which character code his 
source program is punched. The BCD 
and EBCDIC punched card codes and 
graphics for the PL/I 60-character set 
are shown in Figure 4. If neither 
option is specified, the standard 
default assumption is EBCDIC. 

SORMGIN=(mmm,nnn[,ccc]) - the source margin 
option allows the programmer to speci­
fy: 

mmm,nnn - margin for source statements 

ccc - carriage control character posi­
tion (optional) 

The values for these arguments are 
subject to the constraints: 

1. mmm $ nnn $ 100 

2. ccc must be outside the range 
(mmm, nnn). 

The carriage control characters are: 

b Skip one line before printing 
o Skip two lines before printing 

Skip three lines before print­
ing 

+ Suppress space before printing 
1 Skip to Channel 1 (i.e. start 

new page> 

If the source margin is not specified, 
a standard default of SORMGIN~(2,72) 
is assumed. The compile-time proc­
essor produces output requiring mar­
gins (2,72) and changes SORMGIN 
accordingly. The default value for 
the carr1age control character is 
installation-defined, that is, the 
user must decide at system generation 
whether a default is required and what 
it is to be. 

Job Processing 27 



r------------~---------------T------------'---T------------T---------------T-------------1 I Punched I BCD I EBCDIC I Punched I BCD I EBCDIC I 
I ~-------T-------+-------~----·---i ~-------r-------+-------r-----+ 
, Card Code I Graphicl PL/I ,Graphicl Pl/I I Card Code IGraphicl PL/I I Graphic I PL/II 
~------------+-------+-------+-------+----.---+------------+-------+-------+-------+-----~ 
I No punches I 12-7 GIG G G 
I 12-8-3 I 12-8 H I H H H 
I 12-8-4 » J < < 12-9 I I I I I 
, 12-8-5 [ % I ( (11-1 J, J J J 
I 12-8-6 < <] + + 11-2 K I KKK 
I 12 - 8 - 7 .' I I I 11-3 L ILL L 
I 12 & + + & & 11-4 M I M M M 
I 11-8-3 $ $ $ $ 11-5 N INN N 
I 11-8-4 * * * * 11-6 0 I 0 0 0 
I 11-8-5 & 11-7 PIP P P 
I 11-8-6; 11-8 Q I Q Q Q 
I 11-8-7 !J. 11 1'1 11 1 ~-9 R I R R R 
I 11 0-2 SIS S S 
I 0-1 / / / / 0-3 T T T T 
J 0-8-3 , , , , 0-4 U U U U 
I 0-8-4 % ( ( % % 0-5 V V V V 
I 0-8-5 "i 0-6 W W W W 
I 0-8-6 , # > > 0-7 X X X X 
I 0-8-7. ?? 0-8 Y Y Y Y 
I 8-2 b @ 0-9 Z Z Z Z 
I 8-3 #-= # # 0 0 0 0 0 
I 8-4 @ I @ @ 1 1 1 1 1 
I 8-5 2 2 2 2 2 
1 8-6 > > 3 3 3 3 3 
, 12-0 ?? 4 4 4 4 4 
I 12-1 A A A A 5 5 5 5 5 
1 12-2 B B B B 6 6 6 6 6 
I 12-3 C C C C 7 7 7 7 7 
I 12-4 D D D D 8 8 8 8 8 
I 12-5 E E E E 9 9 9 9 9 
, 12-6 IFF IFF I I l ____________ L _______ L_p _____ L _______ L _______ L ____________ L _______ L _______ L _______ L _____ J 

Figure 4. BCD and EBCDIC Punched Card Codf:s and Graphics for PL/I 60-character Set 

CHAR60 or CHAR48 - this option allows th.: 
source language to be written in one 
of two character sets: 60- or 
48-characters. The standard default 
assumed if no character set is 
specified is the 60-character set. 
Note that all characters in the 
60-character set are acceptable to thl: 
compiler, even when the CHAR48 option 
has been selected. However, there are 
two points to be borne in mind by 
anyone intending to use 60-character 
set input after selecting the CHAR48 
option. Firstly, the restrictions of 
the 48-character set must be observed 
in the 60-character set input. 
otherwise errors may result. Second­
ly, such a mode of operation is inef­
ficient, and should not, therefore, be 
made a general practice. 

STMT or NOSTMT - the STMT option specifies 
to the compiler that extra code is to 
be produced which will allow diag­
nostic messages printed during execu­
tion of the compiled program to con­
tain statement numbers from the sourCf~ 

28 

program, in addition to offsets rela­
tive to PL/I entry points; these off­
sets alone are given if NOSTMr is 
specified. The standard default 
assumed if no option is specified is 
NOSTMT. 

Note: The average PL/I program can be 
executed without significant degrada­
tion in speed or space requirements. 
However., the use of the STMr option 
will cause both the execution time and 
the object-code space requirements to 
increase in direct proportion to the 
number of statements in the program. 
The benefits obtained as a result of 
the debugging aid that this option 
gives, should offset and justify these 
increases. 

FI.AGWIFLAGEIFLAGS - a high level of diag­
nostic capability is available in the 
(F) compiler. Compile-time processor 
diagnostic messages are written after 
the SOURCE2 listing and before the 
source program listing. All other 
diagnostic messages are written in a 



group following the source program 
listing. In both cases, messages are 
listed in order of their severitye 
There are four classes of diagnostic 
messages, which are graded in order of 
severity: 

Specification 

warning (lowest) FLAGW 

error FLAGE 

severe error FLAGS 

terminal error (highest) 

A ~~f~!~g is a message that calls atten­
tion to a possible error, although the 
statement to which it refers is syntacti­
cally valid. In addition to alerting the 
programmer, it may assist him in writing 
more efficient programs in the future. 

An Error message describes an attempt to 
correc~-~~-erroneous statement; the pro­
grammer is informed of the correction. 
Errors do not normally terminate processing 
of the t:ext. 

A Severe error message indicates an 
error whIch cannot be corrected by the 
compiler. The incorrect section of the 
program is deleted, but compilation is 
continued. Where reasonable, the ERROR 
condition will be raised at object time, if 
execution of an incorrect source statement 
is attempted. If a severe error occurs 
during compile-time processing, compilation 
will be terminated after the SOURCE listing 
has been produced. 

A rerminal error message describes an 
error whIch;-when discovered, forces the 
termination of the compilation. 

The choice of the severity level at and 
above which diagnostic messages appear on 
the output is an option which may be 
selected by the programmer. FLAGW is 
assumed if no level is specified. 

A source program message consists of the. 
(F) compiler's identification code (IEM) 
followed by a number which is unique to 
this message. Where applicable, the state­
ment number to which the message refers is 
given .next. The message then follows. It 
will normally refer to the number of the 
statement which has produced the diagnostic 
message with the number corresponding to 
that on the source program listing. It may 
also contain a numeric parameter, a source 
program identifier, or a segment of source 
program text. During compile-time process­
ing, messages will contain input line num­
bers, source text identifiers, or segments 
of source text. 

IEM0096I 23 SEMI-COLON NOT FOUND ~HEN 
EXPECTED IN STATEMENT NUMBER 
23. ONE HAS BEEN INSERTED. 

A detailed list of diagnostic messages 
is given in Appendix G of this publication. 

MACRO or NOMACRO - the MACRO option indi­
cates that compile-time processing is 
required. The NOMACRO option causes 
the compile-time processor to be 
bypassed. If no option is specified, 
the compiler assumes the standard 
default NOMACRO. 

SOURCE2 or NOSOURCE2 - the SOURCE2 option 
indicates that the input to the 
compile-time processor is to be listed 
on the device indicated on the SYS­
PRINT DD card. The SOURCE2 listing is 
in the same character set as the input 
text. Each line is preceded by a line 
number. NOSOURCE2 suppresses the 
listing of compile-time processor 
input. If no option is specified, the 
compiler assumes the standard default 
SOURCE2. If MACRO has not been speci­
fied, the SOURCE2 option is ignored. 

COMP or NOCOMP - the COMP option specifies 
that compilation is to proceed after 
compile-time processing has been com­
pleted. NOCOMP specifies that compi­
lation is not required. If neither 
option is specified, the compiler 
assumes the standard default COMP. If 
MACRO has not been specified, 
COMPINOCOMP is ignored. 

EXTDIC or NOEXTDIC - The EXTDIC option pro­
vides a compiler dictionary with a 
capacity 1.5 times that of the normal 
dictionary if the block size is 1K 
bytes, and 3.5 times that of the 
normal dictionary if the block size is 
greater than 1Ko This allows success­
ful compilation of some larger pro­
grams that would otherwise overflow 
the dictionary capacity. As the use 
of EXTDIC reduces compilation speed, 
it should be specified only when the 
program will not compile with the 
normal dictionary. The default is 
NOEXTDIC. 

Programs that are large enough to 
require the EXTDIC option will compile 
very much more efficiently if a large 
storage size is available to the com­
piler. Enough storage should be spec­
ified, if possible, for the dictionary 
to be held in storage throughout the 
compilation. As a rough rule, the 
SIZE option should allow about 100,000 
bytes plus 75 times the number of 
identifiers in the source program. 

Job Processing 29 



NEST 

EXTDIC should not 
SIZE<47104 bytes. 

be used if 

or NON EST - If NEST is specified, a 
number is printed under the heading 
LEVEL showing the depth of block­
nesting for the first statement on 
each line of the source program 
listing, and a number is printed under 
the heading NEsr showing the depth of 
DO-group nesting for such statements 
which are contained within DO groups. 

MACDCK or NOMACDCK - The MACDCR option 
causes the output records of the macro 
processor to be written on SYSPUNCH as 
sequenced card images. rhe default is 
NOMACtJCK. 

M91 or NOM91 - the M91 option must be spec­
ified when the object program is to be 
executed on an IBM System/360 Model 
91. This option may be specified in 
the PARM field of the EXEC card at 
compilation time or it may be set 
during system generation time. The 
standard default for this option is 
NOM91. 

COMPLETION CODES FOR THE COMPILER 

At the end of compilation, the compiler 
returns a completion code to the operating 
system indicating the degree of success 
achieved in compilation of the source pro­
gram and anticipated in execution of the 
object program. rests of this code may be 
requested on the JOB and EXEC cards of the 
job control language, allowing later steps 
of a job to be suppressed if compilation 
has not achieved the required degree of 
success. The compiler completion codes 
are: 

Code 

o 

4 

8 

12 

30 

No diagnostic messages 
compilation completed 
errors; successful 
expected 

issued; 
with no 

execution 

Warning messages only issued; pro­
gram compiled; successful execu­
tion is probable 

Error messages issued; compilation 
completed, but with errors; execu­
tion may fail 

Severe error messages issued; com­
pilation may be completed, but 
with errors; successful execution 
improbable. If a severe error 
occurs during compile-time proc­
essing, the compilation will be 

16 

terminated and, if the SOURCE 
option has been specified, a list­
ing of the PL/I program text pro­
duced by the compile-time proc­
essor will be printed 

Terminal error messages issued; 
compilation terminated abnormally; 
successful execution impossible 

JOB CONTROL PROCEDURE FOR COMPILATION 

An example of a job control procedure 
showing the job control cards and deck 
required for a compilation is shown below. 

IIJOB1 JOB 123,JOHNSMITH, 
MSGLEVEL=1 

IISTEP 1 EXEC PGM=IEMAA" PARM= 
'options' 

IISYSPUNCH DD SYSOUT=B 

IISYSPRINT DD SYSOUT=A 

/ISYSUT1 

IISYSIN 

DD UNIT=SYSDA, 
SPACE=(1024, (60, 60}), 
SEP=(SYSPRINT, 
SYSPUNCH) 

DD * 
(Source Program Deck) 

/* 

A facility is available which allows 
more than one external procedure to be 
compiled within the same job step. This is 
achieved by preceding the second (and each 
subsequent) compilation by a control record 
of the following form: 

* PROCESS('options'): 

The first character of the record is an 
asterisk. which must appear in column 1. 
It denotes the end of the preceding source 
deck. Note that if SORMGIN=(1.72) has been 
specified, this facility is obtained only 
when there is an asterisk in column 1 and 
the first non-blank character string is 
PROCESS. 

Any number of spaces, or no space, is 
acceptable between the asterisk and the 
keyword PROCESS. Spaces are permitted 
between: 



1. The keyword PROCESS and the option 
list delimiter 

2. T Ie option list delimiter and the 
o itions 

! 

3. T ,e option list delimiter and the 
s lmi-colon 

Opt ',ons in the list are separated by 
commas, as in the PARM field on the EXEC 
card. 

The options to be listed are the compil­
er op ,ions to be used in compiling the 
source deck that follows. If any option is 
not Ii ted, the installation default is 
assume I; there is no carry-over of the 
option listed on the preceding EXEC card. 
If th' us er dOes not wish to specify any 
option explicitly, he can simply place the 
termin :ting semicolon immediately after the 
word P 'OCESS. The number of characters in 
the 0 ~ion list is limited only by the 
length of the record, and may exceed 40 
characers. 

The length of the control record is 
limite to the length of the SYSIN record. 
The re :ord must be punched in EBCDIC. 

I 

The return code given for the job step 
is the highest code from those which the 
indivi ual compilations would return. 

The advantages of batched compilation 
are reduction of control program 
overhe ds, and a reduction in the number of 
cards to be punched. The disadvantage is 
that terminal error in one compilation 
may re ,ult in termination of the whole 
batch. 

The following example shows the job 
contra statements required (in conjunction 
with cltaloged procedure PL1LFCL): to batch 
compil e three separate source programs; to 
link-e,it source program 1 as one load 
module source programs 2 and 3 together as 
a seco d load module, and to put both load 
module into an existing cataloged data 
set; a ld to execute both load modules. 

I 

//BTCHCP JOB PL1PROG,MSGLEVEL=1 

//STPCMP EXEC PROC=PL1LFCL, 
PARM.PL1L='LOAD, 
NODECK,OBJNM=BATCHA' 

//PL1L.SYSIN DD * 
source program one 

* PROCESS('LOAb,ATR,NODECK'); 

source program two 

* PROCESS('LOAD,LIST,ATR,NODECK, 
OBJNM=BATCHB'); 

source program three 

/* 

//LKED.SYSLMOD DD OSNAME=PL1.PROGRAMS, 
DISP=OLD 

//BTCHEX JOB PL1PROG,MSGLEVEL=1 

//JOBLIB DO DSNAME=PL1.PROGRAMS, 
DISP=(OLD,PASS) 

//STPEXA EXEC PGM=BATCHA 

//SYSPRINT DD SYSOUT=A 

//STEPEXB EXEC PGM=BATCHB 

//SYSPRINT DO SYSOUT=A 

COMPILER OUTPUT 

The compiler can generate listings of 
source statements, compile-time statements, 
attributes, cross references, External Sym­
bol Dictionary entries, aggregate lengths 
and object code. Source program and 
compile-time diagnostic messages are also 
produced during compilation. 

PRINTED LISTINGS 

The first page has the following head­
ing: VERSION x RELEASE zz on the left-hand 
side of the page (where x indicates the 
version of the compiler, and zz the 
System/360 operating system release 
number); OS/360 PL/I COMPILER (F) in the 
center of the page; and DATE yy.ddd on the 
right-hand side of the page (where yy=year 
and ddd=day). Page numbering, which 
appears at the top right-hand corner of 
each page, begins on this page. Following 
the heading is the invocation parameter 
list containing the options specified for 

Job Processing 31 



I 

the compilation. rhe diagnostic messages, 
if any, associated with the specification 
of compiler options appear next. 

If the compiler options specified 
incluje OPLIsr, these diagnostic messages 
are followed by a complete list of the 
compiler options used for the compilationo 
This list includes all options validly 
specified at the time of invocation, as 
well as those options assumed by default. 

Each page thereafter has a heading and a 
page number. If the compiler is invoked by 
an EXEC statement, the heading used is the 
first record of PL/I source text read from 
the input source (SYSIN). 

The listings consist of the following 
items in the order given; items 1 through 
10 depend on the appropriate compiler 
options being selected and specified on the 
EXEC statement card; items 5 through 9 are 
not produced if a terminal error halts the 
compilation. 

1 .. 

2. 

3. 

40 

5 .. 

6. 

7. 

ti. 

90 

10., 

List of compiler options specified 

Compile-time processor input listing 

Compile-time processor diagnostic mes­
sag8s 

Source program listing 

Attribute and/or cross reference table 

Aggregate length table 

Storage requirements listing 

External symbol dictionary listing 

Assembly listing 

Source program diagnostic messages 

rhe time taken for the compilation is also 
shown on the listing. 

The compiler options listed are those 
used for ~he particular compilation. A 
description of the options is given in the 
section called "Compiler Processing." 

If the 
spe~ified, 
processor 

32 

MACRO and SOURCE2 options are 
the input to the compile-time 
is written on the output device 

specified in the SYSPRINT DD statement, one 
input record per line. Each line is 
assigned a number which appears to the left 
of the line. 

§.xampl~: 

% DCL A CHAR, B FIXED; 

2 % A='B+C'; % B=2; 

3 X=A; 

Source Program Listing 

If the SOURCE option is specified, the 
source program is written on the output 
device specified in the SYSPRINT DD state­
ment. The contents of one card are printed 
on one line; if a carriage control charac­
ter is specified, these may be skips 
between lines or to a new page. The number 
of the first statement starting on that 
line is printed at the left-hand side of 
that line. 

1 PGMNAME: 

PROCEDURE; 

2 DECLARE A STATIC, 

3 B AUTOMATIC; A=B; 

For numbering purposes, statements con­
tained within compound statements (IF and 
ON) are counted, as well as the compound 
statements themselves. In addition# when 
an END statement closes multiple groups or 
blocks, all implied END statements are 
included in the count. 

~~~!!!21~: 

P: PROC; 

2 X: BEGIN; 

3 IF A=B 

4 THEN A=1; 

5 ELSE DO; 

6 A=O; 

7 C=Bi 

8 END Xi 

10 D=E; 

11 END; 



If the input to the compiler is produced 
by th~ compile-time processor, the SORMGIN 
optio will be (2,72) and columns 73-80 
will ontain auxiliary information. This 
infor ation can be used by the programmer 
to de~ermine how the input to the compiler 
was g.nerated from the original input. 

rh~se columns, which are listed as part 
of th~ SOURCE listing, are used as follows: 

73-77 

78-79 

80 

Contains the input line number 
from which this output line was 
generated. These numbers corres­
pond to the line numbers printed 
with the SOURCE2 listing. 

Contains a two-digit number giv­
ing the maximum depth of replace­
ment which occurred for this 
linc~ If no replacement 
occurred, this field will be 
blank. 

If an error occurs while replace­
ment is being attempted (e.g., a 
% is found in a replacement 
value), this column will contain 
the letter "E". Otherwise it 
will be blank .. 

If th~ NEST option is specified then: 

1. he block level at the begining of the 
tatement indicatej is printed next to 
he statement number for that line. 

2. in iterative DO level count is printed 
~ext to the level count. 

STMT ~EVEL NEST 

1 A: PROC OPTIONS (MAIN); 
2 1 B: PROC (L) ; 
3 2 DO I = 1 TO 10; 
4 2 1 DO J = 1 TO 10; 
5 2 2 END; 
6 2 1 BEGIN; 
7 3 1 END; 
8 2 1 END B; 
9 1 END A; 

Th's listing is printed out whenever the 
SOURC: option is in effect and gives the 
follo~ing information in bytes: 

Storage area for each procedure 
Storage area for each begin block 
Storage area for each on-unit 
Length of program CSECr 
Length of static CSECT 

If the ATR option is specified, the 
identifiers used in the program are listed 
in alphameric order, together with their 
explicitly declared and default attributes. 

The attributes INTERNAL, NORMAL, and 
REAL are not listed; these attributes can 
be assumed unless the conflicting attri­
butes EXTERNAL, ABNORMAL, and COMPLEX are 
listed. 

For file identifiers. only explicitly 
declared attributes are listed, except for 
EXTERNAL, which is listed even when applied 
by default. 

For an array, the dimension attribute is 
printed first. The dimensions are printed 
as in the declaration except that expres­
sion3 are replaced by asterisks. Constants 
and expressions for string lengths are 
represented in the length attribute in the 
same way as constants and expressions for 
array dimensions are represented in the 
dimension attribute. 

If an identifier is declared in a 
DECLARE statement, it is preceded by the 
number of that statement. Statement labels 
and entry labels are preceded by the defin­
ing statement number. No statement number 
precedes a contextually declared identifi­
er. 

If the XREF option is specified in 
addition to the ATR option, each identifier 
has the numbers of all the statements in 
which it occurs printed immediately below 
its attributes. 

If the XREF option is specified without 
the ATR option, the table is printed with­
out the attributes. 

Job Processing 33 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 
20 
21 
22 

150 

QQ: PROCEDURE: 
DCL 1 A, 2 B(3), 2 C. 3 0: 
DCL G(10.10) CHAR(2); 
DCL 1 E# 2 F LIKE C: 
DeL I(10) CHAR(2) DEF G(1SUB,1SUB); 
DCL 1 J, 2 K BIT(1), 2 L BIT (9): 
DCL S(V): 
DCL H(10,10) CHAR(2) DEF G: 
DCL U(*> CONTROLLED: 
DCL 1 M BASED(P), 2 N POINTER, 2 T: 
DCL Y(2:4,II); 
DCL X (2: II) : 
DCL W AREA: 
DCL Z(II:JJ,2): 

ALLOCATE M IN (W) SET (P): 
GET LIST(P->T): 
ALLOCATE M IN (W) SET (Q): 
GET LISTCQ->T): 
P->N=Q: 
PUT LIST(Q->T): 
R=4: 
ALLOCATE U ( R) : 

END QQ: 

The foregoing procedure will produce the following attribute and cross reference 
table .. 

DCL NO. IDENTIFIER 

2 A 

2 B 

2 C 

2 D 

4 D 

4 E 

4 F 

3 G 

8 H 

5 I 

II 

6 J 

JJ 

6 K 

34 

ATTRIBUTE AND CROSS-REFERENCE TABLE 

ATTRIBUTES AND REFERENCES 

AUTOMATIC .• UNALIGNED, STRUCTURE 

(3)IN A, AUTOMATIC, ALIGNED, DECIMAL, FLOAT (SINGLE) 

IN A,AUTOMATIC,UNALIGNED,STRUCTURE 

IN C IN A,AUTOMATIC,ALIGNED,DECIMAL#FLOAT(SINGLE) 

IN F IN E,AUTOMATIC,ALIGNED,DECIMAL.FLOAT(SINGLE) 

AUTOMATIC, UNALIGNED" STRUCTURE 

IN E,AUTOMATIC,UNALIGNED,STRUCTURE 

(10,10)AUTOMATIC,UNALIGNED,STRING(2),CHARACTER 

(10,10)AUTOMATIC.DEFINED,UNALIGNED,STRING(2),CHARACTER 

(10)AUTOMATIC.DEFINED,UNALIGNED,STRING(2),CHARACTER 

AUTOMATIC,ALIGNED,BINARY,FIXED(15,0) 
14,12,11 

AUTOMATIC, UNALIGNED, STRUCTURE 

AUTOMATIC,ALIGNED,BINARY,FIXED(15,0) 
14 

IN J.AUTOMATIC,UNALIGNED.STRING(1),BIT 



6 L 

10 M 

10 N 

P 

Q 

1 QQ 

R 

7 s 

SYSIN 

SYSPRINT 

10 T 

9 u 

v 

13 w 

12 x 

11 Y 

14 z 

IN J.AUTOMATIC,UNALIGNED,STRING(9).BIT 

BASED(P),UNALIGNED,STRUCTURE 
15,17 

IN M.BASED(P),ALIGNED,POINTER 
19 

AUTOMATIC" ALIGNED, POINTER 
15,,16,19 

AUTOMATIC. ALIGNED, POINTER 
17, 18, 19,,20 

ENTRY,DECIMAL~FLOAT(SINGLE) 

AUTOMATIC, ALIGNED" DECIMAL" FLOAT (S INGLE) 
21,22 

(*)AUTOMATIC#ALIGNED,DECIMAL~FLOAT(SINGLE) 

FILE. EXTERNAL 
16., 18 

FILE" EXTERNAL 
20 

IN ~BASED(P)~ALIGNED,DECIMAL,FLOAT(SINGLE) 
16,18,,20 

(*)CONTROLLED,ALIGNED~DECIMAL,FLOAT(SINGLE) 

22 

AUTOMATICBALIGNED, DECIMAL, FLOAT (SINGLE) 
7 

AUTOMATIC II ALIGNED, AREA 
15,17 

(2:*)AUTOMATIC,ALIGNED,DEClMAL,FLOAT(SINGLE) 

(2:4,*)AUTOMATIC,ALIGNED.DECIMAL,FLOAT(SINGLE) 

(*:*,2)AUTOMATIC g ALIGNED,DECIMAL,FLOAT(SINGLE) 

The attributes FLOAT(SINGLE) and FLOAT(DOUBLE) refer to the precision of the 
floati g-point data. These precisions are defined in Figures 32. 49, and 49.1. 

SpeCification of the ATR option or the 

for every ALLOCATE statement involving a 
non-BASED aggregate since such statements 
may have the effect of changing the aggre­
gate length during execution. Allocation 
of a BASED aggregate does not have this 
effect, and only one entry, which is that 
corresponding to the DECLARE statement, 
appears for any BASED aggregate. 

XREF 'ption produces an aggregate length 
which gives, where possible. the 
in bytes of all major structures and 
uctured arrays used in the program. 

Each entry in the table consists of the 
identi: ier of an aggregate preceded by a 
state ~nt number and followed by the length 
of th aggregate in bytes. 

Th 
er of 
gate 
non-B 
ment 

statement number is the number eith­
DECLARE statement for the aggre­
in the case of a CONTROLLED, 

aggregate, of an ALLOCATE state­
the aggregate. An entry appears 

The length of an aggregate may not be 
known at compilation, either because the 
aggregate contains elements having adjusta­
ble lengths or dimensions, or hecause the 
aggregate is dynamically defined. In these 
cases, the words 'ADJUSTABLE' or 'DEFINED' 
appear in the 'Length in Bytes' column. 

The entry for a COBOL mapped structure 
has the word '(COBOL)' appended. 

Job Processing 35 



The procedure in the foregoing attribute 
and cross reference table example produces 
the following aggregate length table. 

AGGREGATE LENGTH TABLE 

STATEMENT NO. IDENTIFIER LENGTH IN BYTES 

2 A 16 

4 E 4 

3 G 200 

8 H 200 

5 I DEFINED 

6 J 2 

10 M 8 

7 S ADJUSTABLE 

22 U ADJUSTABLE 

12 X ADJUSTABLE 

11 Y ADJUSTABLE 

14 Z ADJUSTABLE 

If the option EXTREF is specified, all 
entries in the external symbol dictionary 
(ESD) are listed. The information appears 
under the following headings: 

SYMBOL - an eight-character field contain­
ing the name identifying the ESD entry 

TYPE - two characters from the following 
list, to identify the particular type 
of ESD entry: 

SO 
CM 
ER 
PR 
LD 

Section Definition 
Named Common 
External Reference 
Pseudo-register 
Label Definition 

(For a detailed description of the 
different types of ESD entries, refer 
to the publication IBM System/36Q 
Q£erating sY2teIDL~kage Editor.) 

ID - a 4-digit hexadecimal number which 
identifies the symbol 

ADDR - the hexadecimal representation of 
the compiled address of the symbol 

36 

LENGTH - the length in bytes of the section 
(applicable only to SD. CM, and PR 
type entries). expressed as a hexa­
decimal number 

The sizes of the program and STATIC 
INTERNAL control sections are printed at 
the end of the ESD: they are also printed 
at the end of the compilation. This makes 
the sizes available even if EXTREF is not 
specified. The size of each DSA is also 
printed at the end of the compilation. 
Printing of these sizes is under the con­
trol of the SOURCE option. 

Description of Contents of ESD Listing 

The first seven entries are in standard 
format, as shown in Figure 5. 

r-----------------------------------------, I SYMBOL TYPE ID ADDR LENGTH 
1 
J PGMNAME so 0001 000000 00033A 
J 
J PGMNAMEA SD 0002 000000 00005F 
l 
J IHEQINV PR 0003 000000 000004 
I 
) IHESADA ER 0004 000000 
J 
J IHESADB ER 0005 000000 
J 
I IHEQERR PR 0006 000000 000004 
I 
J IHEQTIC PR 0007 000000 000004 L _________________________________________ J 

Figure 5. Specimen ESD Listing 

The seven entries are: 

1. Name of the program control section. 
This is the first label in the exter­
nal procedure statement. 

2. Name of the STATIC INTERNAL control 
section. This is the same label as in 
1, (left-filled with asterisks if 
necessary) to seven characters, with 
an eighth character, A. 

3. Pseudo-register for the invocation 
count (the count of the number of 
times a block is invoked recursively). 

4. Entry point of the library routine 
used to obtain AUTOMATIC storage for a 
PL/I block. 

5. Entry point of the library routine 
used to obtain storage for some AUTO­
MATIC variables. 

6. pseudo-register for the error handling 
routine. 



7. pseudo-register used for tasking. 

Tl~e remainder of the listing is varia­
ble, but the general organization is as 
foIl )ws: 

1. Section definition for one-word con­
trol section IHEMAIN, which contains 
the address of the principal entry 
point to the external procedure. This 
item is present only if the external 
procedure has the option MAIN. 
Section definition for the three-word 
control section IHENTRY (always 
present), which provides the linkage 
with the library at execution time. 

2. LD type items for all names of entry 
points to the external procedure. 
except the first, which has been used 
as the name of the program control 
section .. 

3.. A PR type entry for the display 
pseudo-register for each block in the 
compilation.. The names are generated 
from the external procedure name which 
is left-filled to seven characters 
with asterisks. The eighth character 
is selected from a table of printable 
characters which are assigned to names 
in the order in which the blocks 
appear in the compilation. 

If each character in the table has 
been used once and more names are 
still required, the first character of 
the name is replaced from another 
(smaller) table and the eighth charac­
ter recycles. The first and, if nec­
essary, the second character of the 
name are allowed to cycle through this 
second table .. 

If the first or second character over­
written in this way was a character in 
the external procedure name (as 
opposed to an asterisk used in 
padding), a warning message is printed 
out, since this could mean that separ­
ate external procedures with distinct 
names could contain identical generat­
ed names. 

X: PROC; 
Y: PROC; 

Z: BEGIN; 
END X; 

The display pseudo-registers for X, Y, 
and Z would have the names: 

******XB 

******XC 

******XO 

4. ER type entries for all library rou­
tines and external routines called by 
the compilation. The list of names of 
library routines contains the names of 
routines which are directly called by 
the compiled code (first-level 
routines) and the names of modules 
which are called by the first-level 
routines. 
ER type entries for all library rou­
tines not directly called by the com­
piled code but required for successful 
compilation. 

5. SO type entries for EXTERNAL FILE 
constants and STATIC EXTERNAL varia­
bles, except in the case of STATIC 
EXTERNAL variables without any initial 
text. which have CM type entries .. 
File constants, both internal and 
external, have a pseudo-register asso­
ciated with them, used by the library 
for addressing a dynamically allocated 
data set control block. For EXTERNAL 
FILE constants the pseudo-register 
name is the same as the file name, and 
for internal ones it is generated as 
for display pseudo-registers. 

6. PR type entries for all CONTROLLED 
variables. For external variables the 
declared name is used. and for inter­
nal variables a name is generated as 
for the display pseudo-registers. 

A STATIC INTERNAL storage map is pro­
duced only when the compiler option LIST is 
specified. The size of this storage area 
is given at the end of the compilation. 

The first 52 bytes of the STATIC INTER­
NAL Control Section are of a standard form 
and are not listed. They contain the 
following information: 

DC F'4096' 
DC AL4(SI.+X'1000') 

DC 
DC 
DC 
DC 
DC 
DC 

AL4CSI.+X·7000') 
VL4(IHESADA) 
VL4(IHESADB) 
A(OSASUB) 
ACEPISUB) 
A(IHESAFA) 

Job Processing 37 



SI. is the address of the STATIC INTERNAL 
control section, and IHESADA, IHESADB and 
IHESAFA are library routines. DSASUB and 
EPISUB are compiler routines for getting 
and freeing DSAs. 

The remainder of STATIC is listed in the 
following form: 

1. 6-character hexadecimal offset 

2. Up to 8 bytes of hexadecimal text 

3. Comment indicating type of item to 
which the text belongs (only appears 
against first line of text for item) 

The possible 
(xxx indicates 
identifier): 

OED FOR TEMP 
or 
OED 

FED 

DV •. xxx 

DVD •• 

comments are as follows 
the presence of an 

Data Element Descriptor 
for temporary or for a 
programmer's variable 

Format Element Descriptor 

Dope Vector of a STATIC 
variable 

Dope Vector Descriptor 

D.V. SKELETON Dope Vector skeleton for an 
AUTOMATIC or CONTROLLED 
variable 

38 

RDV •• 

A •• xxx 

ARGUMBNT 
LIST 

CONSTANTS 

SYMTAB 

SYM •• xxx 

FILE •• xxx 

ON •• xxx 

ATTRIB 

xxx 

Record Dope Vector 

Address of EXTERNAL control 
section or entry point, or 
of an internal label 

Argument list skeleton 

Symbol table entry 

Symbolic name of label con­
stant or label variable 

File name 

Programmer-declared 
ON-condition 

File attributes 

STATIC variable. If the 
variable is not initial­
ized, no text appears 
against the comment, and 
there is also no STATIC 
offset if the variable is 
an array. (This can be 
calculated from the dope 
vector if required) 

If the LINECNT specification for the 
listing is 72 or less. and the actual 
number of lines to be printed (including 
skips) exceeds the LINECNT, double-column 
format is used. If LINECNT is greater than 
72, or if the actual number of lines to be 
printed (including skips) is less than the 
LINECNT, single-column format is used. 

A sample of a STATIC INTERNAL storage 
map is given in Appendix D. 

If the LIST option is specified, a 
listing of the object code is produced, 
together with its equivalent in a form 
similar to assembler language. If the 
LINECNT specification for the listing is 72 
or less, and the actual number of lines to 
be printed (including skips) exceeds the 
LINECNT, double-column format is used. If 
LINECNT is greater than 72, or if the 
actual number of lines to be printed 
(including skips) is less than the LINECNT, 
single-column format is used. Comments, of 
the form shown below, are included to help 
the programmer to identify the functions of 
different segments of the object program. 

* STATEMENT NUMBER n - identifies the start 
of the code generated for source list­
ing statement number n 

* PROCEDURE xxx - identifies the start of 
the procedure labeled xxx 

* REAL ENTRY xxx - heads the initialization 
code for an entry point to a procedure 
labeled xxx 

* PROLOGUE BASE - identifies the start of 
the initialization code common to all 
entry points to that procedure 

* PROCEDURE BASE - identifies the address 
loaded into the base register for the 
procedure 

* APPARENT ENTRY xxx - identifies the point 
of entry into the procedure for the 
entry point labeled xxx 

* END PROCEDURE xxx - identifies the end of 
the procedure labeled xxx 

* BEGIN BLOCK xxx - indicates the start of 
the BEGIN block with label xxx 

* END BLOCK xxx - indicates the end of the 
BEGIN block with label xxx 

* INITIALIZATION CODE FOR xxx - indicates 
that the code following performs ini­
tial value assignment or dope vector 
initialization for the variable xxx 



Whbrever possible, a mnemonic prefix is 
used to identify the type of operand in an 
instr ction, and where applicable this is 
folIo ed by a source program identifier. 
The f'llowing prefixes are used: 

A •• 

AE. 

BLO~K. 

c.o 

CL. 

FVR ... 

ON ... 

PR •• 

Address constant 

Apparent entry point (point in 
the procedure to which control 
passed from the prologue) 

Label created for an otherwise 
unlabeled block (followed by the 
number of the block) 

constant (followed by a hexa­
decimal dictiona+y reference) 

A label generated by the 
compiler (followed by a decimal 
number identifying the label) 

Data Element Descriptor 

Dope Vector 

Dope Vector Descriptor 

Data Element Descriptor of 
function value 

Function value 

Invocation count pseudo 
register 

ON-condition name 

pseudo-register 

Record Definition Vector 

Return switch 

Address of STATIC INTERNAL 
control section 

Skeleton dope vector, followed 
by hexadecimal dictionary ref­
erence 

Skeleton parameter list, 
followed by hexadecimal 
tionary reference 

symbol table entry 

Symbolic representation of a 
label 

dic-

Temporary control Area. A word 
containing the address of the 
dope vector of the specified 
temporary 

Temporary, followed by hexa­
decimal dictionary reference 

TMPDV •• Temporary dope vector, followed 
by hexadecimal dictionary ref­
erence 

VO.. Virtual origin 

WP1. 

WP2. 

WS1. 

WS2. 

WS3. 

Workspace~ followed by decimal 
number of block which allocates 
workspace 

Workspace, followed by decimal 
number of block which allocates 
workspace 

Workspace~ followed by decimal 
number of block which allocates 
workspace 

Workspace~ followed by decimal 
number of block which allocates 
workspace 

Wo~kspaceg followed by decimal 
number of block which allocates 
workspace 

A listing of the various storage areas 
is not produced, but the addresses of 
variables can be deduced from the object 
program listing. 

Exampl~: 

A=B+10E1; in the source program pro-
duces: 

0002CA 78 00 B 058 LE O,B 

0002CE 7A 00 B 064 AE 0,C •• 08F4 

0002D2 70 00 B 060 STE O,A 

A and B a~e STATIC INTERNAL variables at an 
offset of X'60' and X'58'g respectively, 
from the start of the control section. 

A sample of an object program listing is 
given in Appendix DA The size of this 
listing is always printed at the end of the 
compilation. 

Diagnostic messages are produced whenev­
er the compiler detects an error (or possi­
ble error) in the program and are sorted in 
order of severity. The four levels of 
severity and types of message are fully 
described in the section "Compiler 
Options." 

Each error message is preceded by a code 
in the form IEMnnnnI, where IEM is the 
identification code for the PL/I (F) com­
piler, and nnnn is a decimal number iden­
tifying the message. 

Job Processing 39 



For a detailed list of the diagnostic 
messages refer to Appendix G of this publi­
cation. 

At the end of a compilation, the time 
taken, in minutes and hundredths of 
minutes, is printed out, provided that the 
appropriate control-program timing options 
have been selected at the time of system 
generation. The time given is the time 
during which the compiler is actually in 
control. For details of these options, 
refer to 'system Requirements'. 

OBJECT MODULE OUTPUT 

The object module is in a form suitable 
for direct input into the linkage editor. 
It is made up as follows: 

1. ESD entries for the object module. 

2. TXT and RLD entries for the compiled 
program. TXT and RLD entries are 
intermingled, although RLD entries are 
always preceded by their related texto 

3. TXT and RLD entries for the STATIC 
INTERNAL control section. 

4u TXT and RLD entries for a one-word 
control section IHEMAIN, whicq con­
tains the address of the principal 
entry point to the external procedure. 
This control section is produced only 
when the external procedure has the 
MAIN option; it is used by the library 
routines IHESAPA, IHESAPC, IHETSAP and 
IHETSAO when passing control to the 
program. 

5. TXT and RLD entries for a three-word 
control section IHENTRY. This control 
section is referenced by the END card 
and contains a branch to one of the 
four library routines IHESAPA, IHE­
SAPC, IHETSAP or IHETSAO. The last 
two routines are used for tasking. 

6. TXT and RLD entries for all STATIC 
EXTERNAL control sections and EXTERNAL 
file constant control sections. The 
sections appear in increasing order of 
ESD identification. 

7. END statement for the compilation. 
This specifies the IHENTRY control 
section as the one to be entered. 

8. NAME statement for the compilation. 

40 

This card appears only when the OBJNM 
option is specified. 

Object decks generated as a result of 
the use of the DECK option will be serial­
ized in the following manner. 

Columns 73 to 76 will contain the first 
four characters of the first entry label of 
the external procedure. If the label has 
fewer than four characters, it will be 
left-adjusted in the field and the remain­
der padded with blanks. 

Columns 77 to 80 will contain a four­
digit decimal serial number. Numbering 
starts at 0001 and the increment is 1 each 
time. 

ABNORMAL END OF COMPILATION 

If a program check occurs during a 
compilation, a diagnostic message is 
printed giving the type of interruption. 

LINKAGE EDITOR PROCESSING 

The linkage editor processes PL/I object 
modules, resolves any references to subrou­
tines and functions, and forms a load 
module. To communicate with the linkage 
editor program, the programmer supplies an 
EXEC statement and DO statements that 
define all data sets. He may also supply 
control statements for the linkage editor. 
The program name for the linkage editor is 
IEWL. If tne linkage editor is executed as 
a job step, the parameter PGM=IEWL is used 
in the EXEC statement. 

The primary input to the linkage editor 
is in the form of object modules and/or 
linkage editor control statements. (A load 
module, by itself, cannot be the primary 
input.) While processing an object module, 
the linkage editor finds any references to 
functions or subroutines in the object 
module, and uses an automatic library call 
to resolve them. The automatic call 
library consists of either object modules 
and linkage editor control statements, or 
load modules, but not both. 



r-------, r---------, r---------, 
ISource 1 ILanguage 1 IObject 1 
1 1->ITrans- 1->1 t-------, 
IPrograml Ilator 1 I Module 1 ] l _______ J L __________ J l _________ J I 

1 
] 
v 

r-------, r---------, r---------, r---------, r---------, r---------, r--------, 
ISource I ILanguage 1 IObject 1 1 Linkage 1 ILoad ] 1 Control I IMain I 
1 1->ITrans- 1->1 1->1 1->1 1->1 1->] 1 
IPrograml Ilator 1 1 Module 1 1 Editor I IModule 1 1 Program 1 IStorage 1 l _______ J l _________ J L _________ J l _________ J l _________ J L _________ J l ________ J 

" J 
I 

r-------, r---------, r---------., I 
I Source 1 I Language I IObject 1 I 
I 1->ITrans- I->l r------- J 

Iprograml Ilator I I Module l L _______ J L _________ J l _________ J 

Figure 6. Linkage Editor Input/Output Flow 

The programmer can specify additional 
libraries and data sets for use by the 
linkage editor; the LIBRARY card is used 
for this purpose (see the publication 1~~ 
~Y~~~~~l£Q_QE~r~tig~_~~!emL Linkage Edi­
tor.) 

The output of the linkage editor is 
always placed in a library. Error messages 
and optional diagnostic messages are writ­
ten on either an intermediate storage 
device or the printer. In addition, a work 
data set is required by the linkage editor 
to do its processing. Figure 6 shows the 
input/output flow in linkage editor proc­
essing. 

The programmer communicates information 
about data sets to the linkage editor 
through DD statements identified by speci­
fic ddnames, similar to the ddnames used by 
the compiler. The programmer must use 
these ddnames and he must meet the func­
tions and requirements for data sets speci­
fied in Figure 7. 

Any data sets defined by SYSLIB or 
SYSLMOD, and any additional data sets, must 
be partitioned data sets. The ddname given 
to refer to any additional libraries is not 
fixed by the linkage editor. L~hkage edi­
tor control statements are used to inform 
the linkage editor about the additional 
libraries. 

The data sets used by the linkage editor 
are assigned to the device classes listed 
in Figure 7. 

The user can specify additional librar­
ies by means of the linkage editor control 
statements INCLUDE and LIBRARY. These con­
trol statements can appear in either the 
input stream or the libraries. For details 
of these statements refer to the publica­
ti on !~!~L.§y§.!~rn/ 360 _QEer a t i:!!L§y§.!~!!!L_1.!!}~:. 
~L~£itQr· 

Space can be conserved by link-editing 
PL/I subroutines into a private library 
with their external references unresolved. 
To do this, the linkage editor option NCAL 
is specified; the SYSLIB DD statement is 
then unnecessary. It is also possible to 
maintain a liorary of PL/I object modules. 

Either of these techniques requires con­
siderably less disk space than link-editing 
all PL/I object modules with their external 
references resolved. 

Linkage Editor Priority 

If modules with the same name appear in 
the input to the linkage editor, the link­
age editor accepts the first module which 
appears. 

Job Processing 41 



r------------r-----------------------------·------T-------------------------, 
I I I Possible I 
) ddname I Function I Device Classes I 
.------------+-----------------------------------+-------------------------i I SYSLIN I Primary input data, normally the I SYSSQ# or the input I 
I I output of the compiler I stream device (specifiedl 
I I I by DD *) I 
t------------+-----------------------------------+-------------------------~ l SYSLIB I Automatic call library (usually I SYSDA I 
I I the PL/ I Library) I I 
t------------+----------------------------------·-+-------------------------~ ! SYSUT1 I Work data set I SYSDA I 
.------------+-----------------------------------+-------------------------i 
t-~:~:~~~:---t-~~:~~~:~~~-~:::~~::---------·------+-~~~~~~-~:-~~~~~:-~=~~~=-~ 
I SYSLMOD I Output for load module I SYSDA I 
r------------+------------------------------------+-------------------------~ I (user- I Additional libraries and data setsl SYSDA ) 
l specified) I I I L ____________ L ___________________________________ .J. _________________________ J 

Figure 7. Linkage Editor ddnames 

In order to overlay PL/I programs, the 
user must have some knowledge of the con­
trol sections produced by the compiler. 
The following control sections are produced 
for each external procedure: 

One control section containing the exe­
cutable portion of the program and all 
constants. 

One control section containing STATIC 
INTERNAL data. 

One control section for each STATIC 
EXTERNAL item or EXTERNAL file name. 
(This is a named common control section 
only for a non-string scalar variable 
declared without the INITIAL 
attribute.) 

One control section IHEMAIN 
oprrONS(MAIN) is specified 
procedure). 

One control section IHENTRY. 

(only 
for 

if 
the 

There is a linkage editor requirement that 
each segment of an overlay structure con­
sists of one or more complete control 
sections. No control section can be split 
between different segments. 

The input to the linkage editor must 
contain all external procedures required in 
the overlay structure, together with the 
linkage-editor control cards describing the 
required structure. The external proce­
dures may be in the form of: 

1. Object modules in the input stream 

42 

2. Object and load modules in a library. 
These modules are called by means of 
the linkage-editor INCLUDE statement. 

For a full description of the overlay 
facilities, s~e IBM System/360 0Eeratigg 
System~ __ bi~~~~ __ §gitQr~ The two examples 
given below show how the simple overlay 
structure illustrated in the diagram can be 
produced from each of the forms of external 
procedure described above. Both examples 
use cataloged procedures; the first one 
also uses batched compilation methods. 

I 
JA 

r------J.------, 
I X I 
IB JF 
+ I 
IC I 

r----L ----, I 
I Y I 
JD jE 
I I 
I 

EX~~El~-1~ QQ~ct Modules in the Input 
§t£~~ The cataloged procedure PL1LFCLG is 
used, with two additional DD statements for 
SYSIN in the compilation and link-edit job 
steps. 

//jobname JOB 
//stepname EXEC 

//PL1L.SYSIN DD 

etc. 
PL1LFCLG" 

PARM.LKED='OVLY' 

* 
A:PROC OPTIONS(MAIN)i ••• END Ai 

• PROCESS ••• 
B:PROC; ••• END B; 

* PROCESS ••• 



C:PROC; · .. END 

* PROCESS ••• 
D:PROCi · .. END 

* PROCESS ••• 
E:PROC; · .. END 

* PROCESS ••• 
F:PROCi END 

1* 
IILKED.SYSIN DD * 

INSERT A 
OVERLAY X 
INSERT B 
INSERT C 
OVERLAY Y 
INSERT D 
OVERLAY Y 
INSERT E 
OVERLAY X 
INSERT F 

C; 

Di 

Ei 

Fi 

Note that the DD statement LKED.SYSIN 
allows data in the input stream to be 
concatenated with the object file. 

~xa~E~~~~ QQiect and Load Modules in a 
Li£ra~~ The cataloged procedure PL1LFCL is 
used to compile source modules in a library 
LIB.S and to use the object modules from 
this as input to the link-edit step. The 
load modules produced are placed in a 
library of load modules, LIB.L. Both LIB.S 
and LIB.L are cataloged data sets. Each 
external procedure requires: 

Iistepname EXEC 

IIPL1L.SYSIN DD 

IILKED.SYSLMOD DD 

PL1LFCL,PARM.LKED= 
'XREF,LIST,NCAL' 
DSNAME=LIB.S(member), 
DISP=SHR 
DSNAME=LIB.L(member>, 
DISP=OLD 

To create an overlay structure from modules 
in LIB.L, the cataloged procedure PL1LFLG 
is used witn the INCLUDE statement: 

Iistepname EXEC 

IILKEDePRIVLIB DD 

PL1LFLG,PARM.LKED= 
OVLY 
DSNAME=LIB. L, 
DISP=SHR 

IILKED.SYSIN DD * 
INCLUDE PRIVLIB(A,B,C,D,E,F) 
INSERT A 
OVERLAY X 
INSERT B 
INSERT C 
OVERLAY Y 
INSERT D 
OVERLAY Y 
INSERT E 
OVERLAY X 
INSERT F 
ENTRY IHENTRY 

Use of the NCAL option (see below) ensures 
that only those modules required are placed 
in the load module library. The 

LKED.SYSLMOD DD statement overrides the DD 
statement with the same ddname in the 
cataloged procedure. The other DD state­
ments are additions to those in the cata­
loged procedure. 

The basis of the above method is that 
all object and load modules appear in the 
input stream before the first OVERLAY 
statement. All control sections are there­
fore placed in the root segment until 
explicitly moved to another segment by an 
INSERT statement. Each INSERT statement 
moves into the appropriate overlay segment, 
only the control section containing execu­
table code. 

Since all modules required from the PL/I 
library are obtained using the automatic 
library call procedure to resolve external 
references, all library modules and data 
are in the root segment, where they are 
available to all other segments. This is 
basically necessary, since PL/I does not 
support exclusive calls, i.e., calls 
between segments which do not lie on a 
single path. For example, in the above 
structure, procedures in the segment con­
taining D could call procedures in the 
segments containing A, B, C, and D, but not 
in the segments containing E or Fo Proce­
dures in the segments containing Band C 
could call procedures in the segments con­
taining A, H, C, D and E, but not in the 
segment containing Fa A procedure in, say, 
the segment containing B may not call a 
procedure in the segment containing A which 
in turn calls a procedure in the segment 
containing F. 

However, certain modules may not be 
required ~y all segments, in which case 
they can be moved out into a lower segment. 
The method of doing this is to compile the 
procedures using the compiler option EXTREF 
and then to examine the lists of external 
references produced. For example, if in 
the above structure a module IHExxx is 
called only by the segment containing E, it 
may be moved into that segment by a control 
statement of the form INSERT IHExxx immedi­
ately following the statement INSERT E. 
Similarly, if module IHEyyy is called only 
by the segments containing D and E it may 
be moved into the segment containing B or 
C. Any module called by both the segment 
containing F and anyone or more of the 
segments containing B, C, D, and E must 
remain in the root segment. 

Similarly, data control sections may be 
moved from the root structure to segments 
lower in the structure. For example: 

1~ To move the STATIC INTERNAL control 
section for procedure F into the seg­
ment containing F, the statement 

Job Processing 43 



2. 

INSERT F must 
INSERT ******FA. 

be followed by 

To move the STATIC EXTERNAL control 
section PQR (which is referenced by B 
and C only) into the segment contain­
ing Band C, the statement INSERT C 
must be followed by INSERT PQR. 

Values assigned to these STATIC data items 
are not saved when the segment is overlaid; 
when the segment is reloaded the original 
values are restored. STATIC data should 
therefore be left in the root segment 
unless it consists of: 

1 • Values set 
and then 
read-only> 

by the INITIAL attribute. 
unchanged (that is~ 

2. Values that need not be retained 
between different loadings of the seg­
ment. 

An alternative method of producing an 
overlay structure is to obtain object decks 
and intermingle these with OVERLAY cards. 
This method requires much more careful 
handling. STATIC INTERNAL control sections 
must be moved up into the root segment, 
unless they are read-only. Named common 
control sections (which are produced only 
for non-initialized~ non-string EXTERNAL 
scalar variables> are automatically moved 
up so that they are accessible to all 
segments requ1r1ng them, but all other 
EXTERNAL items will need to be moved up by 
the use of INSERT statements. 

Further information on the use of over­
lay structures can be obtained from the 
publication IBM_£ystem/360 Operating Sys­
!~~_binkag~Editof~ 

In addition to those already discussed, 
other linkage editor control statements are 
available: 

1. NAME statement: Specifies the name of 
the load module created from the 
preceding input modules. 

2. ALIAS statement: Specifies alternative 
names for the load module and can also 
specify alternative entry points. 

3. CHAN3E statement: Changes a control 
section name, an entry name. or an 
external reference. 

4. REPLACE statement: Deletes a control 
section, an entry name. or an external 
reference; or deletes a control sec-

44 

tion to be replaced by another; or 
changes an entry name or an external 
reference. 

For a detailed description of these 
facilities, see the publication IEM 
2Y§~60_QEerating System, Li~n~k~a~g~e~~E~d~i=. 
to!:. 

OPTIONS FOR LINKAGE EDITOR PROCESSING 

The linkage editor options can be speci­
fied in the EXEC statement. The options 
that are most applicable to the PL/I pro­
grammer are: 

PARM='LIST,MAPIXREF,LETIXCAL,NCAL.OVLY' 

LIST - the LIST option specifies that all 
control statements processed by the 
linkage editor are listed in card­
image format on the diagnostic output 
data set. 

MAP or XREF - the MAP option tells the 
linkage editor to produce a map of the 
load module; this map indicates the 
relative location and length of 
control sections. If XREF is speci­
fied, a map of the load module is 
produced and a cross reference list 
indicating all external references in 
each control section is generated. If 
neither MAP nor XREF is specified, 
neither the map nor the cross ref­
erence listing is generated. 

LET or XCAL - the LET option specifies that 
the linkage editor should mark the 
load module ready for execution even 
though certain error or abnormal con­
ditions were found during linkage 
editing. (It should be noted that, 
because of the selective loading tech­
niques, certain external references to 
library modules may not be resolved.) 
The XCAL option marks the load module 
executable even though improper 
branches were made between control 
sections; this occurs only if the 
OVERLAY feature of the linkage editor 
is being used. 

NCAL - the NCAL option informs the Linkage 
Editor that no external references are 
to be resolved by the automatic 
library call mechanism. The subpro­
grams in the library are not inserted 
in the load module. However, the load 
module is marked executable. 

Other options can also be specified for 
the linkage editor. For a detailed des­
cription of all linkage editor options, see 
the publication IBM System/360 operatin~ 
Syst~Link~ge Editor. 



JOB CONTROL PROCEDURE FOR LINKAGE EDITOR 

An example of a linkage editor procedure 
that handles the object program deck from 
the PL/I (F) compiler is given below. 

IIJOB2 

/ I]~INK 

JOB 345,JOHNSMITH, 
MSGLEVEL=i1 

EXEC PGM=IEWL, 
PARM='XREF,LIST' 

//SYSPRINT DD SYSOUT=A 

//SYSLIB 

//SYSUT1 

DD DSNAME=SYS1.PL~LIB~ 
DISP=SHR 

DD UNIT=SYSDA, 
SPACE=(1024.(200,20» 

/ISYSLMOD DD DSNAME=PRIVATE(PROGRAM), 
DISP=OLD 

//SYSLIN DD * 
(Object program deck) 

/* 

LINKAGE EDITOR OUTPUT 

The linkage editor produces a map of the 
load module if the MAP option is specified. 
or a cross reference list and a map if the 
XREF option is specified. The linkage 
editor also produces diagnostic messages, 
which are fully described in the publica­
tion I~~_§y~tgm/36~~~tin~ System, Link­
~gg_§Qi:!:.Qr· 

The size of the load module produced by 
the linkage editor must not exceed 512K 
bytes. Programs producing a load module 
larger than this should be segmented. 

The module map shows all control sec­
tions in the output module and all entry 
names in each control section. The control 
sections are arranged in ascending order 
according to their assigned origins. All 
entry names are listed below the control 
section in which they are defined. 

If the module is in an overlay struc­
ture. the control sections are arranged by 
segment in the order in which they were 
specified. 

Each control section that is included 
from a library during automatic library 
call is indicated by an asterisk. 

After the control sections, the module 
map shows the contents of the pseudo­
register vector (PRV). 

1. 

At the end of the module map is: 

The relative address of 
instruction with which processing 
the module begins. 

the 
of 

2. The total length of the module in 
bytes 

3. The total length of the pseudo­
register vector. 

In the case of an overlay load module# 
the length ~s that of the longest path. 
The addresses shown in the module map are 
those assigned by the linkage editor prior 
to loading for execution. 

The cross reference table consists of a 
module map and a list of cross references 
for each control section. Each address 
constant is listed with its assigned 
location, the symbol referred to# and the 
name of the control section in which the 
symbol is defined. For overlay programs, 
this information is provided for each seg­
ment. In addition, the number of the 
segment in which the symbol is defined is 
provided. 

If the program is in an overlay struc­
ture, a list of cross references is provid­
ed for each segment. 

If a symbol is unresolved after process­
ing by the linkage editor, it is identified 
by $UNRESOLVED in the list. However. if an 
unresolved symbol is marked by the never­
call (NCAL) function, it is identified by 
$NEVER-CALL. 

Disposition Data 

Information indicating the options and 
attributes specified is provided with each 
load module produced. 

Job Processing 45 



There are, in addition, a number of 
disposition messages to indicate the 
conditions of the load module in the output 
module library. For full details see the 
publication IBM_§ystem/360 Operating Sys­
~emL_bin~~~ Editof. 

DIAGNOSTIC MESSAGES 

Certain conditions that are present when 
a module is being processed can cause an 
error or warning message to be printBd. An 
error or warning message consists of a 
message code and a message text. 

The message text contains combinations 
of the following: 

The code lEW, which identifies linkage 
editor messages 

The message classification 
error or warning) 

Cause of the error 

(either 

Identification of the symbol, segment 
number (when in overlay>, or member in 
error 

Instructions to the programmer 

Actions taken by the linkage editor 

If an error is encountered during proc­
essing, the message code for that error iEI 
printed with the applicable symbol, sym-· 
boIs, or record in error. After processing 
has been completed, the diagnostic message 
associated with that message code is print­
ed. 

When the system is generated, device 
names are assigned by the operating system 
and the installation, and the programmer 
chooses devices by specifying either the 
installation or operating system names. 

The programmer can choose which device 
to use for his data sets and can specify 
the name of the device or class of devices 
in the UNIT parameter of the DO statement. 

46 

£)CB Paramet er 

The data control block <DCB) parameter 
in the DD statement is used to specify 
record formats, record lengths, blocking, 
and other information regarding the uses of 
the data set. It may be used for data sets 
when a load module is executed. For infor­
mation concerning the subparameters in the 
DeB used by PL/I load modules and assump­
tions made if the DCB parameter is not 
specified, see the section "Managing Data." 

JOB CONTROL PROCEDURE FOR COMPILING, 
PROCESSING BY LINKAGE EDITOR, AND EXECUTING 

An example follows of the card deck 
required for compiling, process1ng by the 
linkage editor, and executing a PL/I pro­
gram: 

//CLG JOB 789, JOHNSMITH, 
MSGLEVEL=1 

//STEP1 EXEC PGM=IEMAA, 
PARM='Options' 

//SYSPRINT DD SYSOUT=A 

//SYSLIN 

//SYSUT1 

//SYSIN 

DO DSNAME=&&LOADSET. 
UNIT=SYSDA, 
DISP=(MOD,PASS), 
SPACE=(80, (250,100» 

DO UNIT=SYSDA" 
SPACE=(1024, (60,60», 
SEP=(SYSPRINT, 
SYSLIN) 

DO * 
(Source Program Deck) 

/* 

/ILKED EXEC PGM=IEWL 

//SYSPRINT DD SYSOUT=A 

//SYSLMOD DO DSNAME=&&LOADSET, 
SPACE=(1024, (50,20,1», 
DISP=(NEW,PASS), 
UNIT=SYSDA 

//SYSLIB DD DSNAME=SYS1.PL1LIB, 
DISP=SHR 

//SYSUT1 DO UNIT=SYSDA, 
SEP=(SYSLMOD,SYSLIB), 
SPACE=(1024,(200,20» 

//SYSLIN DD DSNAME=*.STEP1.SYSLIN, 
DISP=(OLD,DELETE) 



/ISTEP3 EXEC PGM=*.LKED.SYSLMOD, 
COND=(C5,LT,STEP1), 
C5,LT,LKED» 

//SYSPRINT DD SYSOUT=A 

//SYSIN DO * 
(Data) 

/* 

OBJECT PR03RAM OUTPUT 

Figure 9 illustrates various forms of 
external data representation as produced by 
PUT statements employing the EDIT, LIST, 
and DATA keywords. It should be noted that 
the output of data fields to PRINT files by 
list- or data- directed techniques will 
automatically be aligned upon preset tab 
positions, the initial data field of a line 
being aligned upon the left margin, posi-

OUTPUT: PROCEDURE OPTIONSCMAIN)~ 

DCL A FIXED, 
B FLOAT, 
C FLOAT COMPLEX, 
D BIT(10), 
E CHAR (10), 
ARRAY(2,2)~ 

A,B = 12345~ 
C A+12345I~ 
D '1100111'B; 
E 'ABC"DEFG'; 

DO I = 1 TO 2; DO J 
ARRAY(I,J) = I+J; 
END; END~ 

1 TO 2; 

tion 1. The preset tab positions are: 25, 
49, 73, 97, and 121. (See the section "The 
Tab Control Table" for details of how to 
alter these values.) A numeric data field 
for list- or data- directed output will not 
be split over two lines when this can be 
avoided. A field which exceeds the resi­
dual space on the current line will begin a 
new line, and only if the new line cannot 
accommodate the complete field will it be 
carried over to subsequent lines. 

Execution of the PL/I procedure shown in 
Figure 8 will produce the object time 
output in Figure 9. 

This form of output is concerned with 
writing complete records, instead of one 
item at a time. One record is the contents 
of one variable. rhe external data rep­
resentation is the same as the internal 
form; there is no data conversion. RECORD­
oriented output is described in 'Managing 
Data' • 

PUT PAGE LIST('EXAMPLES OF LIST/DATA/EDIT OUTPUT'); 

LIST: 

DATA: 

EDIT: 

END; 

PUT SKIPC2} LIST('LIST DIRECTED EXAMPLES:'); 

PUT SKIP(1) LISTCA,B,C,D,E); 

PUT SKIP(2) LIST('DATA DIRECTED EXAMPLES:'); 

PUT SKIP(1) DATA(A,B,C,D,E); 
PUT SKIP DATACARRAY); 

PUT SKIP(2) LIST('EDIT DIRECTED EXAMPLES:-); 

PUT SKIP(1) EDIT(A,B,C,D,E) 
(F(10,2),E(~O,O,5),C(E(10,O,5»,X(5),2A); 

Figure 8. Example of PL/I Procedure Using STREAM I/O 

Job Processing 47 



EXAMPLES OF LIST/DATA/EDIT OUTPUT 

LIST DIRECTED EXAMPLES: 
Q2345 1.23450E+04 1.23450E+04+1.23450E+04I '1100111000'B 

ABC'DEFG 

DATA DIRECTED EXAMPLES: 

E='ABC"DEFG 'i 
ARRAY(l,l)= 2.00000E+00 ARRAY(1,2)= 3.000000E+00 ARRAY(2,1)= 3.000000E+00 ARRAY(2,2)= 4.00000E+00; 

EDIT DIRECTED EXAMPLES: 
12345.00 12345E+00 12345E+00 12345E+00 1100111000ABC'DEFG 

Figure 9. Example of LIST/DATA/EDIT Output to PHINT Files using the PUT Statement 

when an exceptional or error condition 
arises during the execution of a PL/I 
program, a message of the form 
IHEnnnI - text is printed. The first three 
characters IHE are standard and indicate a 
PL/I library message. The message number 
is specified by the digits nnn. The final 
character, I, is a system standard action 
code, indicating an informative message for 
the programmer. These messages are printed 
on an output data set which is specified by 
the SYSPRINT DD statement provided by the 
programmer. If the SYSPRINT DD statement 
is absent, the object time messages appear 
on the operator's console, except for the 
ON CHECK system action messages and the 
COpy option output, which are not printed 
at all in this case. rhe text of the 
message, which may consist of any number of 
characters, is separated from the I by one 
blank. PL/I input/output messages include 
the word FILE and the file-name at the 
start of the message, to assist in the 
identification of the file causing the 
error. 

If the statement number compiler option 
has been specified, each message will also 
contain IN STATEMENT nnnnn prior to AT 
location message. nnnnn gives the number 
of the statement in which the condition 
occurred. 

Messages are generated for two reasons: 

1.. An error occurred for which no 
specific ON condition exists in PL/I. 
A diagnostic message is printed out 
and the ERROR condition is raised. 

2. A'n ON condition is raised, by compiled 
code or by the library, and the action 
required is system action, for which 
the language specifies COMMENT as part 
of the necessary action. 

The complete list of object time diag­
nostic messages appears in Appendix G of 
this publication. 

48 

2E~rator Messages 

A message is transmitted to the operator 
when the DISPLAY statement is specifiea in 
the PL/I program. The two forms in which 
an operator message may appear are as 
follows: 

1. Without the REPLY option - the message 
is in the form of a character string 
specified by the programmer. 

2. with REPLY option - the message is in 
the form of a character string speci­
fied by the programmer, but it 1S 
preceded by a two-digit code generated 
by the operating system. rhe operator 
must use this code as the prefix to 
his reply message. 

SYSTEM OUTPUT 

Diagnostic messages and completion codes 
are issued by the operating system, indi­
cating coding errors found in job control 
statements and system macro instructions, 
and errors detected during processing by 
the linkage editor. The completion codes 
indicate conditions causing the control 
program to abnormally terminate execution 
of a job. For details of the system 
messages and completion codes, refer to the 
publication IBM System/360 0Eerating Sys­
tem" Messages, Completion Codes and Stora~ 
r:umE§.. 

To ease the work of the PL/I programmer, 
IBM has supplied cataloged procedures to 
assist in the compilation, linkage editor 
processing, and execution of PL/I source 
programs. The job control statements need­
ed to invoke the procedures, and the deck 
structures used with the procedures, are 
described in the following paragraphs. 



In the examples given in this section, 
the operand is specified as: 

PROC = cataloged procedure name 

but the 'PROC=' can be omitted if required. 

It is recommended that each installation 
review the procedures supplied by IBM, and 
modify them to obtain more efficient use of 
the devices available, to allow for instal­
lation conventions, to accommodate local 
changes to the compiler options, to alter 
the REGION fields to correspond to availa­
ble storage, or to set block sizes for 
output data sets. 

The cataloged procedure for compilation 
with deck output is PL10FC. The programmer 
invokes this procedure by using an EXEC 
statement with the first parameter contain­
ing the name PL10FC. An example is shown 
as follows: 

//STEP1 EXEC PROC=PL1DFC 

The cataloged procedure, PL1DFC, con­
sists of the control statements shown in 
Figure 43 in Appendix E. 

lrrY2~~~ the PL10FC Cataloged Procedure: 
Figure 10 shows control statements that 
might be used to invoke the procedure. 

r-----------------------------------------, I /ICOMPIL JOB PL1PROG,MSGLEVEL=1 I 
I I 
I //STEP1 EXEC PROC=PL1DFC I 
I I 
I /IPL1D.SYSIN DO * I 
I I 
I (Source Program) I 
I I 
I /* I L _________________________________________ J 

Figure 10. Invoking the Cataloged Proce­
dure PL1DFC 

The cataloged procedure for compilation 
with object module output is PL1LFC. The 
programmer invokes this procedure by using 
an EXEC statement with the first parameter 
containing the name PL1LFC. An example is 
shown as follows: 

//STEP1 EXEC PROC=PL1LFC 

The cataloged procedure, PL1LFC, con­
sists of the control statements shown in 
Figure 59 in Appendix E. 

Invoking the PL1LFC catalo~ed_E£2~~~~ 
Figure 11 shows control statements that 
might be used to invoke the procedure. 

r-----------------------------------------, I //COMPLM JOB PL1PROG,MSGLEVEL=1 I 
I I 
1 //STEP1 EXEC PROC=PL1LFC I 
1 I 
~ //PL1L.SYSIN DO * I 
! I 
~ (Source Program Deck) I 
1 I 
I /* I L _________________________________________ J 

Figure 11. Invoking the Cataloged Proce­
dure PL1LFC 

Compilation and Link-Editigg 

The cataloged procedure for compiling 
and link-editing a PL/I source program is 
PL1LFCL. The programmer invokes this pro­
cedure by using an EXEC statement with the 
first parameter containing the name 
PL1LFCL. For example: 

//STEP1 EXEC PROC=PL1LFCL 

The cataloged procedure for compiling 
and link-editing consists of the control 
statements shown in Figure 60 in Appendix 
E. 

InY2~!gg __ ~h~ _ _fL1~E£~_£~~alQg~Q_f£2ce1Q£~~ 
Figure 12 shows the statements that might 
be used to invoke the procedure PL1LFCL. 

r-----------------------------------------, 
1 //JOBCLE JOB PL1PROG,MSGLEVEL=1 I 
I I 
I //STEP1 EXEC PROC=PL1LFCL I 
I I 
I //PL1L.SYSIN DO * I 
I I 
] (Source program) I 
I I 
1 /* I L _________________________________________ J 

Figure 12. Invoking the cataloged Proce­
dure PL1LFCL 

Compilation, Link-Editing and Execution 

Another cataloged procedure, PL1LFCLG, 
passes a source program through three pro­
cedure steps - compilation. link-editing, 
and execution. The cataloged procedure is 

Job Processing 49 



invoked by specifying the name PL1LFCLG as 
the first parameter in an EXEC statement. 
For example: 

//STEP1 EXEC PROC=PL1LFCLG, 
REGION. GO=xxxxK 

where xxxxK represents the REGION 
cation (leading zeros need 
specified). 

specifi­
not be 

Figure 61 in Appendix E shows the state­
ments that make up the cataloged procedure 
PL1LFCLG. 

1!!YQls!!!g:_~h~_!:!:!1.LF£!:!~_~~e.12g:ed Procedure.:.. 
Figure 13 shows statements that might be 
used to invoke the procedure PL1LFCLG. 

r-----------------------------------------~ 
I //COMPLEG JOB PL~PROG,MSGLEVEL=l ~ 

I I 
I //STEP1 EXEC PROC=PL1LFCLG, I 
I REGION. GO=xxxxK I 
I I 
I //PL1L.SYSIN DD * I 
I I 
I (Source Program) I 
J I 
I /* I l _________________________________________ J 

Figure 13. Invoking the Cataloged Proce­
dure PL1LFCLG 

The cataloged procedure for link-editing 
and executing a previously compiled PL/I 
program is PL1LFLG. This procedure is 
invoked. by an EXEC statement with the first 
parameter containing the name PL1LFLG. For 
example: 

50 

//STEP1 EXEC PROC=PL1LFLG, 
REGION. GO=xxxxK 

where xxxxK represents the REGION specifi­
cation (leading zeros need not be 
specified). 

Figure 62 in Appendix E shows the state­
ments that make up the cataloged procedure 
PL1LFLG. 

1nY2king _~h~_-f!:!1.1f1~-fe.~aIQged_Pr2~£~~ 
Figure 14 shows statements that might be 
used to invoke the procedure PL1LFLG. 

r------------------------~----------------, 
J //jobname JOB PL1PROG,MSGLEVEL=1 I 
~ I 
J //STEPl EXEC PROC=PL1LFLG, I 
J REGION. GO=xxxxK I 
J J 
1 //LKEO.SYSIN DO parameters defining I 
I the input data set I 
] to the Linkage I 
J Editor I l _________________________________________ J 

Figure 14. Invoking the Cataloged Proce­
dure PL1LFLG 

Link-Editigg and Execution of Several 
separate Com.1&lations 

Several programs can be separately com­
piled, then link-edited together and exe­
cuted as one program. This is done by 
using the cataloged procedure PL1LFC for 
each individual compilation except the 
last, then using the procedure PL1LFCLG for 
the last, all within the same job. 



The term "file," as defined for PL/I, 
may be equated for the most part with the 
system'360 operating system term "data 
set." However, there is not necessarily a 
one-to-one correspondence between the num­
ber of files being used within a program 
and the number of data sets being used. 
That is, a program may declare two files, 
ALPHA and BETA, both of which are concur­
rently open and both referring to the same 
data set. This may be effected in two 
ways: 

1. When opened, both files ALPHA and BETA 
use the same TITLE option value, i~e •• 
they refer to the same DD statement. 

2. Two DO statements are used, one for 
each file, and each nominates the same 
data set. 

From the above, it may be seen that the 
PL'I program does not itself nominate data 
sets directly. The TITLE option of the 
OPEN statement is employed to specify the 
name (ddname) of the OD statement to be 
associated with a given file; in turn, the 
00 statement specifies its associated data 
set (dsname). Should the TITLE option be 
omitted from the OPEN statement. or should 
the file be opened implicitly by another 
I/O statement, a default TITLE is obtained 
from th~ file identifier; the initial eight 
characters, padded with blanks if neces­
sary, are used. 

If two or more files are assigned to the 
same data set or SYSOur class (via differ­
ent DO statements) and are simultaneously 
open for sequential output, then~ if the 
PCP or MFT system is being used, the 
records in the files will be intermixed or 
the job will be abnormally terminated. If 
MVT is being used, the records will remain 
separate. This practice is extremely dan­
gerous and is not recommended. 

There are three data set organizations 
which are supported by PL/I object pro­
grams. Specification of data set organiza­
tion is made by means of an option within 
the ENVIRONMENT attribute, which is dis­
cussed further in Appendix B. 

The organization of a data set deter­
mines the manner in which data is stored 
within the data set and the permitted 
techniques of accessing it. The PL/I 

organizations used in the System/360 Oper­
ating System are: 

CONSECUTIVE 

INDEXED 

REGIONAL 

CONSECUTIVE organization permits only 
sequential access, while REGIONAL and 
INDEXED organization permit both direct and 
sequential access. 

The permitted combinations of data set 
organization, PL/I statements, access meth­
ods. etc. are detailed in Figures 15. 16, 
and 17. 

CONSECUTIVE ORGANIZATION 

In CONSECUTIVE organization, the data 
set consists of records whose placement 
within the data set is determined solely by 
the order in which they were initially 
added. Such a data set does not employ 
keys; records may be retrieved only in 
sequential order. Device support for CON­
SECUTIVE data sets includes magnetic tapes, 
card readers/punches, direct access storage 
devices, and paper tape readers. However, 
for UPDATE files, only direct access devi­
ces may be used. 

Both STREAM and RECORD I/O facilities 
may employ data sets of this organization. 
STREAM I/O is limited to this organization. 

The facility for reading BACKWARDS is 
available only for files with records in 
F,FB,FBS, or U format on 9-track magnetic 
tapes, or 7-track magnetic tapes recorded 
without the use of the data converter. If 
the data converter is used, only string 
records should be read BACKWARDS (Record 
formats are described later in this chap­
ter.) 

INDEXED ORGANIZATION 

In INDEXED organization. the data set 
consists of keyed records whose placement 
within the data set is determined by the 
value of the key. Since a key is associat­
ed with each record, direct retrieval, 
replacement, addition, or deletion of 

Managing Data 51 



r-------T-------T-------------------------v-----·--r-------T--------------r-----T--------, 
IOrgani-IAccess I File Declaration I ModE~ Istate- I Options IData IRecord I 
~zation I I I Iment I I Mgmt. I Format I 
~-------+-------+------------~-----------+-------+-------+--------------+-----+--------~ 
I J I [BUFFERED] I INPU'l~ I READ I [INTO I IGNORE I I I I 
I I I [BACKWARDS] 1 I I I SET] I I I 
I I ~------------+-------+-------+--------------i IFIFBIFBSI 
I I I I I WRITE I FROM IQSAM I I 
I t I IOUTPUT ~-------+--------------i I I 
I I I I I LOCATE I [SET] 1 I I 
I I I l·-------+-------+--------------i I U I V I VB I 
I J I [BUFFERED] I I READ I [INTOIIGNOREI I IVSIVBS I 
I I I I I I SET]] I I 
ICONSEC- SEQUEN-I[ENV I IUPDATE2~-------+--------------~ I I 
IUTIVE TIAL ICCONSECU- I I I REWRITE I [FROM] I I I 
I I TIVE)] .------------+-------+-------+--------------+-----+--------i 
I I I UNBUFFERED I INPUT I READ I [INTOIIGNORE] I I I 
I I I [BACKWARDS] ~ I I I [EVENT] I I I 
I J .------------+-------+-------+--------------~ I I 
I I I IOUTPUT IWRITE IFROM [EVENT] I I I 
I I J r-------+-------+--------------iBSAM IFIUIV I 
~ I I UNBUFFERED I I READ I [INTOIIGNORE] I I I 
I I I I I I [EVENT] I I I 
I I I IUPDATE .-------+--------------i I I 
I J I I I I REWRITE I FROM [EVENT] I I I 
~-_-----~-------~------------L------------L-------~-------~--------------~-----~--------i 
I~ BACKWARDS is available only for records of F, FB, FBS, and U format. I 
I I 
12 UPDATE is not available for records of VS and VBS format. I 
) I 
I NO:!;!,:" The syntax notation used in this table is the same as that used in IB~ I 
I §y2:!:.!!!!~1§.Q_QE!!:~:!:.in9._§.y2~!!!, PL/I Ref·erenc~~!!!!e.!. I L __________________________________________ . _____________________________________________ J 

.Figure 15. CONSECUTIVE Data Set Organization and Applicable Language Features 

records is possible, as well as se~uential 
access of such records. The keyed records 
of an INDEXED data set are located by means 
of several levels of indexes which are 
initially constructed when the data set is 
created. 

Keys for INDEXED data sets consist of 
character strings, 1 through 255 characters 
in length, defined by means of the DCB 
subparameter KEYLEN(described later in this 
chapter). Should the length of a character 
string key specified in a KEY or KEYFROM 
option differ from that specified by KEY­
LEN, it is truncated or padded with blanks 
to KEYLEN. 

Device support for INDEXED data sets is 
restricted to direct access storage devi­
ces. 

Basically, there are three areas within 
an INDEXED data set: 

Prime data area 
Overflow area 
Index area 

The prime data area is the area into 
which records are inserted during creation. 

52 

Subsequent addition of records" when using 
DIRECT access for UPDATE# may cause records 
to be moved from the prime data area to an 
overflow area, in order to keep the indexes 
in order. Access to records in an overflow 
area is slower than to those in the prime 
data area; accordingly~ the data set should 
be "reorganized" periodically (see: 
"Accessing of INDEXED Data Sets"). 

There are two types of overflow area: 

1. a cylinder overflow area (a certain 
number of tracks per cylinder reserved 
during creation) 

2. an independent overflow area, which 
requires special DD statement usage 
(see "Creation of INDEXED Data Sets"). 

The index area may be spread, physical­
ly, through the space allocated to the data 
set. There are two basic index types, the 
track index and the cylinder index; a third 
type, the master index, is used if the 
cylinder index becomes too large for effi­
cient access. 

The track index specifies the highest 
key value for each track of a given cylin-



r--------T-------r------------------------~------~---------T-------------~------~-------, 
10rgani- IAccess I File Declaration I Mode I statement I Options IData IRecord 1 
Ization I I I I I 1 Mgmt. IFormat 1 
~--------+-------+---------~--------------+------+---------+-~-----------+------+-------~ 
I I [BUFFERED I I I I [INTO I SET4 I I 
1 I UNBUFFEREDJIINPUT I READ I [KEYTOIKEYJI IQISAM I 
I I [KEYED] 2 I I I IGNORE) I (SCAN) I 
I ~--------------+------+---------+-------------+------i 
I I [BUFFERED I I I WRITE IFROM KEYFROM I I 
I I UNBUFFERED) I OUTPUT I I IQISAM I 
I SEQUEN- ENV I KEYED I ~---------+-------------~ (LOAD) I 
I TIAL (INDEXED) I I I LOCATE4 I [SET] KEYFROMI I 
I r--------------+------+---------+-------------+------~ 
t I I I I [INTOISET4 I I 
I I [BUFFERED ~ I I READ I [KEYTO I KEY] I I I 
I I UNBUFFERED] I UPDATE I I IGNORE] IQISAM I 
I I [KEYED] 2 I .---------+-------------~ (SCAN) I FIFB3 
1 I I I REWRITE I [FROM] 4 I I 
I I I t---------+-------------~ I 
I I I I I DELETE 1 I 1 
IINDEXED1~-------+---------+--------------+------+---------+-------------+------~ 
1 I 1 [KEYED] IINPUT I READ 1 INTO KEY I I 

I I I I I I [EVENT] I I 
I I t--------------+------+---------+-------------~ I 
1 I I I I READ I INTO KEY 1 1 

I 1 I I I I [NOLOCK] 1 I 
I I 1 I 1 I [EVENT] I I 
I I 1 I t---------+-------------~ 1 
J IENV I I I WRITE5 IFROM KEYFROM I I 
I DIRECT I (INDEXED) I [KEYED] I I I [EVENT] I BISAM 1 
I I I [EXCLUSIVE]IUPDATE~---------+-------------~ I 
I 1 I I I REWRITE IFROM KEY 1 1 
I 1 I I I I [EVENT] I I 
I I I I t---------+-------------~ I 
I I I I I DELETE 1 KEY [EVENT] I I 
I I I I r---------+-------------~ I 
I I I I I 1 UNLOCK I KEY I I 
~--------~-------~---------L--------------L------~----_____ L _____________ L ______ L _______ ~ 
11 INDEXED organization is supported only for direct access storage devices. 
~ 
12 
I 
I 
I 

For INDEXED SEQUENTIAL INPUT and UPDATE, the file attribute KEYED must be declared 
if the KEYTO or KEY option on the READ statement is to be used. DIRECT access 
implies KEYED. 

13 Blocked records are not supported for UNBUFFERED files. 
I 
14 Locate mode I/O operations are applicable to BUFFERED files only. 
I 
15 WRITE is ignored if NOWRITE is specified. 
I 
INot~ The synt:ax notation used in this table is the same as that used in IBM 
ISys~~ill/36Q_QE~fatin9-§y~~~ill, PL/I Reference Manual. L _______________________________________________________________________________________ J 

Figure 16. INDEXED Data Set Organization and Applicable Language Features 

der; the cylinder index specifies the 
highest key value of each cylinder. The 
master index may be created (by specifi­
cation of the NTM subparameter of the DCB 
parameter in the DD statement) when the 
cylinder index exceeds the specified number 
of tracks. Each entry in the master index 
points to a track within the cylinder 
index. Up to three levels of master index 
(addressing tracks within the next lowest 
level master index) may be created automat­
ically. 

Records within an INDEXED data set are 
either "actual" (representing still valid 
data> or "dummy" (marked as deleted, and 
inaccessible to the user). Dummy records 
are recognized only when both of the fol­
lowing are present: 

1. The DCB subparameter OPTCD = L in the 
DD statement used to create the data 
set. 

Managing Data 53 



r---------T-------T-------------------------T--·----T-------T-------------T------T-------, 
IOrgani- IAccess I File Declaration I Mode ]State-, Options IData 'Record I 
Ization I I , ,ment, ,Mgmt. ,Format I 
r---------+-------+-------------T---------·--+------+-------+-------------+------+-------~ 
/ / I ![BUFFERED] IINPUT /READ / [INTO'SET[KEYIBS~M2 I 
/ / I , [KEYED] 2, , , TO] I IGNORE], I 
I ] I r-----------+------+-------+-------------+------i 
I I I I (BUFFERED] ] I WRITE IFROM KEYFROM IBSAM I 
I I I JKEYED 'OUTPUT~-------+-------------i(LOAD) I 
I I' I "LOCATE '[SET] KEYFROM, , 
I I l r-----------+------+-------+-------------+------1 
I I I I I' READ I [INTO] SET[KEYI I 
, I I I [BUFFERED] I I I TO] I IGNORE] I I 
] ~ I I [KEYED12 'UPDATE~-------+-------------iBSAM2 I 
/ / I , "REWRITE/ [FROM] , I 
I /SEQUEN-IENV .-----------+------+-------+-------------+------i 
I ITIAL /(REGIONAL(1) I 'UNBUFFERED I I I [INTO[KEYTO] I I I 
1 I IREGIONAL(2) I J [KEYED] 2 IINPUT IREAD I IGNORE] lBSAM I 
I I IREGIONAL(3» , I I I [EVENT] , I 
I I ) r-----------+------+-------+-------------+------i 
I I I IUNBUFFERED IOUTPUTIWRITE IFROM KEYFROM IBSAM I 
I / I I KEYED I I I [EVENT] , (LOAD) I 
I / I .-----------+------+-------+-------------+------1 
/ I I I I' I [INTO[KEYTO] II IREG(1) / 
/ I I / UNBUFFERED I I READ I IGNORE] I I and (2) : I 
I REGIONAL" I II [KEYED12 I UPDATE I I [EVENT] I BSAM I F only I 
I / J I / ~-------+-------------i I / 
I I I / I /REWRITEIFROM [EVENT] l IREG(3): I 
1 ~-------+-------------+-----------+------+-------+-------------+------iFIUIV 
/ I I , IINPUT /READ ,INTO KEY / / 
/ / I , / I , [EVENT] , I 
I / I 'KEYED ~------+-------+-------------1 I 
, I' , IOUTPUT/WRITE IFROM KEYFROM I I 
I I I I I / I [EVENT] I J 

I I I .-----------+------+-------+-------------1 I 
I I I , / /INTO KEY IBDAM I 
/ I J ENV] I READ I [EVENT] I (BSAM: I 
I IDIRECT /(REGIONAL(1)/1 I ,[NOLOCK] /LOAD) / 
I I I REGIONAL (2) I I ~-------+-------------i I 
I ] I REGIONAL (3» / I WRITE I FROM KEYFROM i I 
I I I I [EXCLUSIVE] UPDATE I , [EVENT] I ! 
1 / I I [KEYED] ~-------+-------------i I 
I 1 I 1 IREWRITEIFROM KEY I / 
1 I I I I I [EVENT] I I 
1 I I J ~-------+-------------i I 
I I I I I DELETE I KEY [EVENT] I / 
I I I I ~-------+-------------i I 
I I / 1 IUNLOCK IKEY I I 
~---------L-------L-------------~-----------~------L-------L-------------L------L-------i 
11 REGIONAL organization is supported only for direct access storage devices. / 
1 1 
12 For REGIONAL SEQUENTIAL INPUT and UPDATE, the file attribute KEYED must be declared I 
, if the KEYTO option on the READ statement is to be used (DIRECT access impli~s , 
/ KEYED). If the KEYED attribute is not declared, QSAM is used for REGIONAL(1) INPUT / 
~ and UPDATE. / 
I / 
I~Q~~: The syntax notation used in this table is the same as that used in IBM / 
'§y~~~m/l£Q_opeEatin~_§ystem PL/I Reference Manual. I L _______________________________________________________________________________________ J 

Figure 17. REGIONAL Data Set Organization and Applicable Language Features 

2. A character whose value is (8)'1'B in 
the initial position of the record. 

Should either condition not apply, a given 
record is not recognized as a dummy 
(deleted) record. Should the OPTCD = L 

54 

subparameter be employed, the user is cau­
tioned that unless care is taken to prevent 
the unintentional presence of such an ini­
tial character (for example, cecause of 
negative FIXED BINARY data), records may 
vanish from the data set. 



REGIONAL ORGANIZATION 

There are three types of REGIONAL data 
organization: REGIONAL(1), REGIONAL(2}, and 
RE3IONAL(3}. REGIONAL(1) and (2) support 
unblocked F-format records; REGIONAL(3} 
supports unblocked records of U, F, or 
V-format. 

In all tnree REGIONAL organizations, the 
data set consists of regions numbered con­
secutively, starting at zero. In 
REGIONAL(1) and (2), each region contains 
just one record. In REGIONAL(3), each 
region is a whole track, containing as many 
records as will fit onto the track. The 
actual number will depend upon the size of 
the records and the device characteristics. 

REGIONAL organizations support DIRECT 
access of records by directly locating the 
region in which the record is placed and 
then, if necessary, performing a sequential 
search for the specified record in the 
vicinity of the located regiono REGIONAL 
organizations also support SEQUENTIAL 
access of records. 

A major advantage of REGIONAL organiza­
tion is that it permits program control 
over the relative physical placement of 
records. Accordingly, optimization of 
record access in terms of particular appli­
cation requirements and device capabilities 
can be obtained by judicious programming. 

Two types of key are used with REGIONAL 
organizations: source keys and recorded 
keys. 

The §'Q.~f£~ __ !s§'Y is a character string 
specified in the KEY FROM option of a WRITE 
or LOCATE statement or in the KEY option of 
a READ, REWRITE, or DELETE statement. In 
the WRITE statement, its purpose is to 
determine whereabouts in the data set a new 
record will be written; in the READ, REW­
RITE, or DELETE statement, its purpose is 
to identify the record which is to be read, 
rewritten, or deleted. The last eight 
characters of the source key (or all of it. 
if there are less than eight) represent the 
region number of the record. In 
REGIONAL(1), any additional characters in 
the source key are ignored. 

In REGIONAL(1}, the region number alone 
is sufficient to determine the location in 
which a record will be placed and to 
identify it for retrieval. In REGIONAL(2) 
and (3) (as will be explained below), a 
further means of identification is needed; 

it takes the form of a character string 
which is actually written in the data set 
attached to tne record, and is known as the 
~rded_!s§.y. The recorded key consists of 
the initial n characters of th~ source key. 
where n is the number specified in the DCB 
subparameter KEYLEN. If the source key 
specified in the KEY or KEYFROM option is 
not equal in length to the number specified 
by KEYLEN. the source key is either padded 
with blanks or truncated (on the right) 
before being written with the record as the 
recorded key or compared with existing 
recorded keys in the search for a particu­
lar record. 

The relationship between the portion of 
the source key which represents th~ region 
number of the record (i.e., the last eight 
characters of the source key) and the 
portion which constitutes the recordej key 
(i.e., the first n characters, where 
KEYLEN = n) should be carefully considered. 
Some possibilities are illustrated below. 
Note that all the examples refer to 
REGIONAL (2) or (3). In REGIONAL ( 1 ), there 
is no recorded key, and any characters in 
the source key other than the final eight 
are ignored. 

Source key of 16 characters; KEYLEN 8 

8 9 16 
r--------T--------, 
J I I L ________ L ________ J 

Characters 9 through 16 represent the 
region number; characters 1 through 8 
are used as the recorded key. 

Source key of 12 characters; KEYLEN 8 

5 8 12 
r----'T----T----l 
I I I I L ____ L ____ L ____ J 

Characters 5 through 12 represent the 
region number; characters 1 through 8 
are used as the recorded key. 

Example 3: 

Source key of 8 characters; KEYLEN 8 

8 
r--------, 
I I l ________ J 

Characters 1 through 8 represent the 
region number; characters 1 through 8 
are also used as the recorded key. 

Managing Data 55 



Source key of 6 characters; KEYLEN 12 

6 12 
r------, 
I I L ______ J 

Characters 1 through 6 represent the 
region number; characters 1 through 6 
are padded on the right with blanks to 
make 12 characters, which are then used 
as the recorded key. 

Source 
KEYLEN 

3 

key 
16 

10 

of 

16 
r--T--------l --, 
I I I I L __ L ________ J __ J 

10 characters; 

Characters 3 through 10 represent the 
region number; characters 1 through 10 
are padded on the right with blanks to 
make 16 characters, which are then used 
as the recorded key. 

Source key of 16 characters; KEYLEN = 6 

1 6 9 16 
r------T--r--------, 
I I I J L ______ L __ L __ ------1 

Characters 9 through 16 represent the 
region number; characters 1 through 6 
are used as the recorded key. Charac­
ters 7 and 8 are not used. 

From the above illustrations, it can be 
seen that it is optional whether the region 
number portion of the source key is includ­
ed in the recorded key. Similarly, the KEY 
option may sp'ecify a source key longer than 
the recorded key, thereby causing a search 
for a key matching only the initial n 
characters of the source key, where n is 
defined by KEYLEN; this facilitates reading 
data sets created by other processors 
(e.g., COBOL, which has a different source 
language keying mechanism). 

SEQUENTIAL access of REGIONAL data sets 
will retrieve records in the order in which 
they are physically located in the data 
set. The recorded key will not affect the 
sequence, but can be obtained by use of the 
KEYTO option. 

Equality between the value specified by 
the KEYFROM option and that subsequently 
assigned to a character string by means of 

56 

the KEYTO option can only be guaranteed if 
the length of the KEYFROM value is equal to 
that specified by KEYLEN. 

REGION L(1) Data Sets 

A REGIONAL(l) data set consists of 
unblocked F-format records without asso­
ciated recorded keys. The data set is 
divided into regions each of which is large 
enough to con~ain just one record, hence 
each region number corresponds to a rela­
tive record position within the data set. 
The location of a particular record can be 
determined by the source key alone. The 
final eight characters of the source key 
are the character-string representation of 
an unsigned decimal integer not exceeding 
16777215, and may contain only the charac­
ters 0 through 9 and blank. If more than 
eight characters are given in the KEY or 
KEYFROM option, only the last eight are 
used; otherwise all characters are used. 

If the KEYTO option specifies a 
character-string variable of more than 
eight characters, the source key value 
returned is padded at the left with blanks; 
if it has fewer than eight characters, the 
value is truncated on the left without 
raising any condition. 

A REGIONAL(2) data set contains 
unblocked F-format records with associated 
recorded keys. As in REGIONAL(1), the data 
set is divided into regions each of which 
will hold just one record. Unlike 
REGIONAL(1) however, in REGIONAL(2) organi­
zation a particular record will not neces­
sarily occupy the relative position speci­
fied by the region number in the source 
key. When writing a new record in a data 
set opened for DIREcr access. the location 
in which the record will be written is 
determined as follows. A search is com­
menced at the beginning of the track con­
taining the region number specified by the 
source key. The record is written in the 
first available position on that track or, 
if that track is full, on a subsequent 
track. The record maYI therefore, be writ­
ten either before or after the specified 
region number, depending on the availabili­
ty of space. The search for a vacant 
position can, however, be limited by the 
DCB subparameter LIMCT. (The use of LIMCT 
in REGIONAL(2) is described below.) Simi­
larly, when accessing a record in a 
REGIONAL(2) data set opened for DIRECT 
access, the record is located as follows. 



Commencing at the beginning of the track 
containing the specified region number, a 
sequential search is made for a record 
whose recorded key matches the source key 
(truncated or padded as required). Again, 
tne extent of the search can be restricted 
by the use of the DCB subparameter LIMCT. 

The DCB subparameter LIMCT limits the 
number of regions which are to be sequen­
tially searched. In REGIONAL(2), the 
search commences at the beginning of the 
track containing the region number speci­
fied by the source key, and continues to 
the end of the track containing the region 
whose number is given by: 

region number specified in source key + 
LIMcr value - 1 

Each track of a device holds ten 
records. The final eight characters of 
thE~ source key represent the number 17. 
LIMCT has the value 15. 

The sequential search will commence at 
the start of track 2 (since region 
number 17 is on this track) and contin­
ue through to the end of track 4 (since 
region number 31u given by source key 
region number + LIMCT value - 1, is on 
track 4). 

It can be seen from the foregoing that, 
in REGIONAL(2) " the nearer a record is to 
the beginning of a track, the more quickly 
can the record be accessed. 

REGIONAL(2) organization does provide a 
degree of device independence. Provided 
that access to the data set is DIRECT and 
that all keys are unique, the programmer 
does not need to modify his algorithms in 
consideration of the device type. If, 
however, a data set created or updated by 
DIRECT access is subsequently read by 
SEQUENTIAL access, then the order in which 
the records are read will vary slightly 
according to the type of device. 

The final eight characters of the source 
key are the character-string representation 
of an unsigned decimal integer not exceed­
ing 16777215, and may contain only the 
characters 0 through 9 and blank. If more 
than eight characters are given in the KEY 
or KEYFROM option, only the last eight are 
used as the region number; otherwise all 
characters are used. 

If the KEYTO option specifies a 
character-string variable of different 
length from that of the recorded key, the 
recorded key returned is padded with blanks 
at the right or truncated at the right; no 
condition is raised. 

REGIONAL(3) Data Sets 

A REGIONAL(3) data set may contain 
unblocked records of U,F, or V-format, with 
associated recorded keys. The data set is 
divided into regions, but unlike 
REGIONAL(1) and (2), in REGIONAL(3) a 
region is a whole track on the direct­
access device. The region number in the 
source key thus corresponds not to a 
relative record position, but to a relative 
track on the device. The number of records 
within any region will depend on the record 
sizes and the device characteristics. 

When writing a new record in a data set 
opened for DIRECT access, the location in 
which the record will be written is d~ter­
mined as follows. A search is made for an 
available position, commencing at the start 
of the track whose relative position is 
represented by the region number in the 
source key. The record will be written in 
the first available position on that track, 
or, if that track is full, on a subsequent 
track. The search can, however, be limited 
by use of the DCB subparameter LIMCT. (The 
use of LIMCT in REGIONAL(3) is described 
below.> Similarly, when accessing a record 
in a REGIONAL(3) data set opened for DIRECT 
access, the record is located as follows. 
Commencing at the beginning of the track 
whose relative position is representEj by 
the region number in the source key, a 
sequential search is made for a r~cord 
whose recorded key matches the source key 
(truncated or padded as required). Again, 
the extent of the search can be restricted 
by use of the DCB sUbparameter LIMCT. 

The DCB subparameter LIMCT limits the 
number of regions which are to be sequen­
tially searched. In REGIONAL(3)~ ~ach 
region is a track, hence the value s~eci­
fied in LIMCT qUite simply specifies the 
number of tracks which are to be searched. 

The final eight characters of the source 
key are the character-string representation 
of an unsigned decimal integer not exceed­
ing 32767, and may contain only the charac­
ters 0 through 9 and blank. If more than 
eight characters are given in the KEY or 
KEYFROM option, only the last eight are 
used as the region number; otherwise all 
characters are used. 

If the KEYTO option specifies a 
char~cter-string variable of length differ­
ent from that of the recorded key, the 
recorded key returned is padded with blanks 
at the right or truncated at the right: no 
condition is raised. 

I
Note~ The EVENT option should be used with 
caution when v- or U-format records are 
being added to a REGIONAL(3) data set. 

Managing Data 57 



Dummy Records within RE3IONAL Data Sets 

Records within a REGIONAL data set are 
either "actual" (representing valid data> 
or "dummy" (inserted during creation or 
when actual records are deleted>. Dummy 
records vary in format according to the 
REGIONAL type and, in the case of REGIONAL 
(3), according to the record format as 
well. See also the section "Accessing of 
REGIONAL Data Sets." 

REGIONAL(1) - initial character of record 
has the value (8) '1'B; the remainder 
of the record is undefined. 

REGIONAL(2) - initial character of recorded 
key has the value (8)'1'B, the remain­
der of the key being undefined; the 
initial character of the record is an 
internal representation of the 
sequence number of the record within a 
track, the remainder of the record 
being undefined. 

REGIONAL(3) - if F-format records, as for 
REGIONAL (2). If U- or V-format 
records, the initial character of the 
key has the value (S)'1'B, the remain­
der of the key being undefined. If 
V-format, the control bytes of the 
record are valid, but the remainder is 
undefined. 

DATA SET DEFINITION -------------------

Whereas the attributes of a file (which 
may be considered to be a "data set usage") 
are declared within a PL/I program, the 
attributes of ~ts associated data set are 
specified by means of the DD statement or 
the ENVIRONMENT attribute. (For the format 
of the options available in the ENVIRONMENT 
attribute, refer to Appendix Be) In this 
manner a large degree of device indepen­
dence is achieved. rhe DO statement per­
mits the specification of object time 
device type, unit assignment, record for­
mat" etc. 

Since PL/I itself does not define data 
set attributes, there are no default attri­
butes, witn the exception of PRINT files 
which have a default of the V-format, with 
unblocked records of 129 bytes. Informa­
tion regarding specific data sets is com­
municated to the Operating System via DD 
statements. It is not, however, necessary 
for each programmer to understand the 
details of DD statements: in some instances 
the use of cataloged procedures will allow 
the programmer to be oblivious of the 
particular I/O device configuration. These 
cataloged procedures will be prepared by 

58 

personnel familiar with requirements at a 
given installation (see Appendix E). Also, 
use of cataloged data sets will reduce the 
amount of configuration knowledge required. 

S~ECIFYING DATA SETS 

Data sets in the operating system can be 
specified by parameters in the DO state­
ment. This section describes the use of 
such DD statements. 

The DO statement provides the following 
functions: 

1. Naming of the data set (DSNAME) 

2. Extent allocation, i.e., device and 
space (UNIT, VOLUME. SPACE, LABEL) 

3. Disposition (DISP, SYSOUT) 

4. Data set attributes (DCB) 

The functions are summarized in the 
following paragraphs. For full details 
refer to the publication IBM __ £Y~~~Ll~Q 
Qfera~in~~yste~L_~QQ_fQgifQ!_1~gg~~~· 

The DSNAME ~arameter allows the program­
mer to specify the name of a newly defined 
data set or to refer to a previously 
defined data setu rhis parameter should De 
supplied for all but temporary data sets. 

Note: Data set names that begin with the 
letters SYS and have a P as the nineteenth 
character of the name should not be used. 
Data sets with such names are created for 
temporary data sets on PCP systems, but not 
for temporary data sets on MVT or MFT 
systems, and are deleted when the IEHPROGM 
utility is used and the SCRATCH utility 
control statement is specified with the 
VTOC, PURGE, and SYS keywords. 

The UNIT parameter allows the programmer 
to state the type and quantity of 
input/output devices to be allocated for 
the data set. The type of unit is speci­
fied by a symbol that refers to a collec­
tion of one or more devices. 



The VOLUME parameter is used to specify 
the identification of the volume on which 
the data set resides. Other information 
includes instructions to the system for 
volume mounting actions. 

The SPACE parameter permits the specifi­
cation of the type and amount of space 
required to accommodate the data set on a 
direct-access device. This space is 
obtained either from the volume designated 
in the VOLUME parameter or from the volume 
mounted on one of the devices specified in 
the UNIT parameter. 

The LABEL parameter specifies the type 
and contents of the label or labels asso­
ciated with the data set. 

The disposition (DISP) parameter indi­
cates the current status of the data set 
and what is to be done with it when the 
step is completed. Parameters are provided 
to delete the data set, to pass the data 
set to another step within the same job, to 
enter the data set name into the catalog, 
or to remove the data set name from the 
catalog. 

DISP must be carefully specified when 
the EXCLUSIVE attribute is used. This 
attribute protects records against access 
by different tasks in the same program. 
provided the references to a data set are 
made by means of the same file. DISP=OLD 
ensures that a data set is used by one job 
onlYi DISP=SHR allows a data set to be used 
by different jobs. If a data set is to be 
updated by more than one job, DISP=SHR must 
got be specified. 

The system output (SYSOUT) parameter is 
used to schedule a printing or punching 
operation for the data set described by 
this DD statement. 

The DCB parameter allows the programmer, 
at execution time, to complete information 
declared for his file at the time of 
compilation via a FILE declaration or OPEN 
statement. 

File Att,ributes._and the DD Statement 

The DCB parameter of the DD statement 
permits object-time definition of various 

data set characteristics. Whereas the 
other DD statement parameters deal chiefly 
with the physical residence of a data set, 
or aid in data set identification. the DCB 
parameter may specify information required 
to process the data records themselves. 
Information supplied to the object program 
by means of the DCB parameter can only De 
"additive" information, i.e., it may not 
override information already established 
for a data set during compilation. DCB 
subparameters which specify DCB fields 
already completed during compilation (by 
means of the file declaration or OPEN 
attributes) will be ignored. 

DCB sUbparameters which may be specified 
for STREAM-oriented I/O are listed in Fig­
ure ~8. The DCB subparameters which may be 
specified in the PL/I language for this 
mode of I/O are: 

RECFM 

BLKSIZE 

LRECL 

BUFNO 

The first three are specifiable by means 
of the record option of the ENVIRONME~T 
file declaration attribute (see Appendix 
B)i the fourth is specified by means of tne 
BUFFERS option. In addition, the LINESI~E 
attribute of the OPEN statement for PRINT 
files may specify the initial three subpar­
ameters to be established by default; see 
the section called "PRINT Files." 

DCB sUbparameters which may be specified 
for RECORD 1/0 include those available for 
STREAM I/O. Additional subparameters are 
listed in Figure 19. 

Data set information supplied within the 
PL/I program may not be overridden by DD 
statement parameters, or data set label 
information (in the instance of direct­
access devices, the DSCB). Accordingly, 
files which are to remain open to object­
time definition of data set characteristics 
must not specify these characteristics 
within a program. (It should be noted that 
data sets which are defined by a "DD *" 
statement are supplied with full DCB sub­
parameters by the Operating System.) Data 
control blocks generated by the PL/I "open" 
process at object time are of a format 
which allows complete device-type indepen­
dence when applicable. During various exe­
cutions of a program, a file may be asso­
ciated with a card reader, paper tape, 
magnetic tape, or a direct-access device. 

Managing Data 59 



r---------T------------------------------------------T----------------, 
I Keyword I Specifies I PLiI Option I 
~---------+------------------------------------------+----------------~ 
I BLKSIZE I Maximum, or fixed, number of bytes per I ENV (Record) I 
I I physical record (block) I LINESIZE I 
,---------+------------------------------------------+----------------~ 
I LRECL I Maximum, or fixed, number of bytes per I ENV (Record) I 
I I logical record I LINESIZE I 
r---------+------------------------------------------+----------------~ 
I RECFM I Record format and characteristics (usage I ENV (Record) I 
I I of printer/punch control character) I LINESIZE I I 
I I I PRINT I 
r---------+------------------------------------------+----------------i 
I BUFNO I Number of buffers for physical record I ENV (BUFFERS) I 
I I transmission I I 
r---------+-------------------------·-----------------+----------------~ 
I CODE I Paper tape: code in which the data was I J 

I I punched I J 

r---------+------------------------------------------+----------------~ 
I DEN I Magnetic tape: tape recording density I I 
.---------+------------------------------------------+----------------1 
I TRTCH I Magnetic tape: tape recording technique I I 
I I for 7-track tapes I I 
t---------+------------------------------------------+----------------~ 
I MODE I Card reader or punch: mode of operation, I 
I I column binary or EBCDIC I I 
r---------+------------------------------------------+----------------1 
I STACK I Card reader or punch: stacker selection I I 
t---------t-------------------------------·-----------+----------------i 
I PRTSP I Spacing of printer between each line I I 
I I ( 0, 1, 2, or 3) I I 
t---------t------------------------------------------+----------------i 
I OPTCD I Optional data management services and I I 
I I data set attributes I I L _________ ~ __________________________________________ ~ ________________ j 

Fig~re 18. DCB Subparameters for STREAM 1/0 

r---------T-------------------------------·-----------T----------------, 
I I I Applicable J 
I Keyword I Specifies I Organization I 
r---------+------------------------------------------+----------------1 
1 KEYLEN I Number of characters in recorded key I INDEXED I 
I I I REGIONAL J 
I I I ( 2) and (3) I 
r---------+------------------------------------------+----------------~ 
I LIMcr I Maximum number of records or tracks I REGIONAL ) 
I I to be searched I (2) and (3) I 
t---------+------------------------------------------+----------------~ 
I RKP I Relative key position within record I INDEXED I 
r---------+------------------------------------------+----------------~ 
I NTM I Number of tracks in cylinder index I INDEXED I 
I I per master index entry I J 

r---------+-------------------------------·-----------+----------------i 
I CYLOFL I Number of overflow tracks in each I INDEXED J 

I I cylinder I I 
r---------+------------------------------------------+----------------i 
I DSOR3 I Creation of INDEXED or I INDEXED I 
I I REGIONAL data set I REGIONAL I 
II I ( 1) , (2), and (3) I 
t---------+-------------------------------·-----------+----------------~ 
I NCP I Number of channel programs allocated I All I 
I I to a file I I L _________ L __________________________________________ L ________________ J 

Figure 19. Additional DeB Subparameters for RECORD I/O 

60 



The format of the DCB subparameters is 
given in the following paragraphs. Refer 
to Appendix B for the format of the ENVIR­
ONMENT option. 

RECORD FORMAT INFORMATION 

The notation used in the format descrip­
tions of record format is interpreted as 
follows: 

Upper case letters and numbers must be 
coded by the programmer exactly as 
shown. 

Lower case letters represent variables 
for which the programmer must substi­
tute specific information or specific 
values. 

Items or groups of items within brack­
ets [] are optional. They may be 
omitted at the programmer's discretion. 

A logical OR sign ~ indicates a choice 
of option. 

The PL/I programmer may create and 
access data sets which consist of one of 
the following types of record: 

Fixed-length (F-format) records 
Undefined-length (U-format) records 
Variable-length (V-format) records 

whichever record type is used, data is 
transmitted to and from main storage, and 
written on external storage in blocks. A 
block is considered to be either the data 
between two interrecord gaps in the case of 
magnetic storage devices such as disks and 
magnetic tape, or the number of bytes which 
can be transmitted to or from a unit record 
device, such as a line printer or card 
reader, in one input/output operation. 

Fix~d-~eB~_E~2££~~ A fixed-length 
(F-format) record consists of a predeter­
mined number of bytes, and is transmitted 
in a block containing one or more of these 
records. The length of a block containing 
fixed-length records is an exact multiple 
of the record length used. If unblocked 
records are specified, each record is 
transmitted and stored as a separate block. 

Undefined-Lenqth __ Recor~s~ An undefined­
length (U-format) record simply consists of 
a string of bytes containing data. Each 
record is transmitted or stored as a 

separate block. The interrecord gap 
between blocks delimits undefined-leng~h 
records when held on an external s~orage 
medium, such as magnetic tape or disk. 

Variable-Length Records: A variable-length 
(V-format) record consists of a four-byte 
control field containing the number of 
bytes in the record# including the control 
field, followed by bytes containing data. 
A variable-length record is transmitted in 
a block formed by one or more such records. 
The length of the block depends on th~ 
number and length of consecutive variable­
length records which can be accommodated 
within the maximum block size specifieo. 
The block itself contains a four-byte 
length field to determine its actual 
length, including the control field. 

Variable-length records can also be 
specified as ~~nned eVS-format or 
VBS-format) records. Spanned records are 
written over block boundaries in order ~o 
enable maximum-length blocks to ce used in 
conjun~tion with variable-length records, 
thereby permitting efficient use of exter­
nal storage. A spanned record is a logical 
record which can be divided into segmen~s 
which are written on separate consecutive 
blocks. Each segment contains a four-byte 
control field to indicate the length of the 
segment, including the control field, and a 
flag byte to designate a segment as th~ 
first, intermediate, or last segment of a 
logical record which spans blocks. If a 
complete logical record does not span 
blocks, i.e., it is contained entirely 
within one block, it is designated as the 
last or only segment of the logical record. 
Spanned records are created and retrieved 
automatically, and their use in no way 
affects the programmer. Data sets contain­
ing spanned records must be CONSEcurIVE. 
They can be opened as INPUT or OUTPUT 
files, but not as UPDATE files. 

Block Size 

BLKSIZE=nnnnn: the decimal integer speci­
fied must not exceed 32,760, and may 
be limited by the device used, such as 
a unit record device. Blocks to con­
tain V-format records must exceed the 
maximum record length by four bytes, 
for control purposes. Blocks to con­
tain VS- or VBS-format records may be 
shorter than the maximum record 
length. 

Managing Data 61 



LRECL=nnnnn: the decimal integer specified 
must not exceed 32,760 bytes for F­
format records, and 32,756 for V­
format records. The LRECL 
subparameter specifies the length of 
fixed-length records, and the maximum 
length of V-format, VS- and VBS-format 
records. It is not specified for 
U-format records for which the maximum 
length is 32,760 bytes. If not speci­
fied for the v-, VS-, or VBS-format, 
or F-format records, the BLKSIZE spec­
ified is assumed. For VS-, VBS- or 
V-format records, a four-byte control 
field must be included in the LRECL 
quantity. An extra byte must be added 
for all record formats which include a 
printer/punch control character. This 
includes all PRINT files, which use 
ASA printer control characters. 

Note that for INDEXED data sets which 
contain blocked records, if RKP=O the 
value of LRECL must include the number 
of bytes required for the recorded 
key. 

RECFM= U [T][AIM] 

62 

V [B] [S] [T] [AI M] 

F [B] [S] [T] [A I M] 

The record format is specified as 
follows: 

U: Undefined-length records 

V: Variable-length records 

F: Fixed-length records 

The additional subfields are indicated 
by the following: 

B: Blocked records 

S: (F-format records only) Stand­
ard: no blocks of a length less 
than the specified blocksize, 
except possibly the last, are 
present in the data set 

S: (V-format records only> Spanned 
records: variable-length records 
can span maximum-length blocks. 
A spanned record is written on 
one or more consecutive blocks. 
The length of the spanned record 
can exceed the length of the 
maximum-length block. 

For variable-length VS-format 
records the maximum block size 
must always be stated. VS­
format records that exceed the 
maximum block size are 
segmented, and the segments are 
placed in consecutive blocks. 
Each block can contain only one 
record or segment of a record. 
For example, if a record format 
is specified as VS(SO,200), an 
ENV or DeB record that includes 
180 bytes of data will appear in 
the data set as two blocks of 80 
bytes (S control bytes and 72 
data bytes) and one block of 44 
bytes (8 control bytes and 36 
data bytes). 

Varying-length VBS-format 
records are similar to VS-format 
records except that they are 
blocked, that is, each block 
contains as many complete 
records or segments of recoris 
as it can accommodate; each 
block is substantially the same 
size, although there can be a 
variation of up to four bytes, 
since each segment must contain 
at least one byte of data. For 
example, a block might contain 
the last segment of one record, 
one or more complete records, 
and the first segment of another 
record. 

T: Track OverflowD Track overflow 
is a feature of System/360 oper­
ating system which can be incor­
porated at system generation 
time; it requires the record 
overflow feature on the direct 
access storage control unit. 
Track Overflow allows a record 
to overflow from one track to 
another. It is useful in 
achieving a greater data packing 
efficiency, and allows the size 
of a record to exceed the capac­
i ty of a track. 
Note: Track overflow is not 
available for REGIONAL(3) data 
sets with U- or V-format records 
or for INDEXED data sets. 

A: ASA printer/punch control char­
acters are present within the 
records 

M: Machine code printer/punch con­
trol characters are present 
within the records 

The following figures illustrate the 
various record formats: 



r--------, 
1 Data 1 L ________ J 

U-Format Record 

r--------, 
1 Data 1 L ________ J 

F-Format Record 

r--------T--------, r--------, 
1 Data 1 Data 1 ••• 1 Data 1 L ________ ~ ________ J L ________ J 

F-Format (Blocked) Record 

r--T--T--------, 
IC"IC 2 1 Data I L __ J. __ ~ ________ J 

V-Format Record 

r--T--T--------T--T--------, r--T-------, 
IC,,/C 2 l Data IC2 1 Data / ••• IC2 1 Data I L __ ~ __ L ________ L __ L ________ J L __ L _______ J 

V-Format (Blocked) Record 

r--T--T----------~ 

IC~IC2J Record 1 I 
III 1 L __ ~ __ L __________ J 

r--T--T------, 
Ic~lc2IRecord/ 
1 I 1 1 I L __ J. __ L ______ .J 

r--T--T--------, r--T--T--------, 
1 C" 1 C2 1 Record 2/ 1 Cl'I 1 C2 1 Record 31 L __ ~ __ ~ ________ J L __ ~ __ ~ ________ J 

VS-Format (Spanned) Records 

r--T--T------T--T------, 
IC1lC2]RecordlC2lRecordl 
1 1 I 1 I 1.2 I L __ ~ __ L ______ ~ __ J. ______ .J 

r--T--T----------------l 
IC~IC21 Record 2 ] l __ ~ __ ~ ________________ J 

r--T--T------T--T------, 
I C!lIC 2 IRecordIC 2 )Record] 
I 1 I 2 I I 3 1 l __ ~ __ L ______ ~ __ L ______ J 

VBS-Format (Blocked Spanned) Records 

The control field C. (four bytes) speci­
fies the total byte count of the block 
(including C~); the field C2 (four bytes) 
specifies, for each logical record, the 
byte count of the logical record (including 
C2 ). In the figure depicting spanned 
(VS-format) records, the field C2 contains 
the number of bytes including C2 , in the 
segment of a spanned record that is written 
on a particular block. Field C2 also 
contains a flag to indicate the relative 
position of any segment of a spanned record 
within a logical record which is written on 
one or more blocks. It designates a seg­
ment as the first, intermediate, last, or 
only segment of a record. The flag is set 
and used automatically when this type of 
record format is specified. 

If the file is a PRINT file, the initial 
byte of the data portion of each logical 
record is reserved for an ASA printer 
control byte. 

Blocked records are not accepted from 
paper tape. Fixed-length records on paper 
tape have a fixed number of characters 
after translation; the number of characters 
before translation is not fixed. 

Use of the Various Record Formats in STREA~ I/Q---------------------------------

The three available record formats, 
undefined, variable-length, and iixe3-
length, must each be considered for its 
application to the features of STREAM I/O. 
The following points should be consijercd 
when making a choice for OUTPUT files. 

Variable-L~~~~ Rec££~~~ The variab12-
length record format is the most versatile 
of the three available formats. In order 
to prevent the output of possible 'noise' 
records, i.e., records of less than the 
System/360 operating system standardizei 
minimum length, the records for output 
files are padded to contain at least ten 
data characters. With the addition of tne 
eight bytes required for the control 
fields, this gives a total of 18 data 
characters. Accordingly, LINESIZE should 
not specify a value less than 10 (9 for 
PRINT files, because a control character is 
required) • 

Fixed-Le~RecorQ~~ For output files-­
as the printing options/format items have 
the ability to truncate a record (line), 
each record is padded with blanks when the 
following record is prepared for output. 

Blocked output is not supported on unit 
record devices, where each logical record 
begins on a new card or line. For example, 
specification of recordsize=20, 
blocksize=80 for a card punch will result 
in only the first 20 columns of each card 
being punched. If these cards are then 
read in, the stream will contain 60 blank 
characters between each of the original 
records. 

Also, the length of logical records 
should not exceed the physical size of each 
unit record, as the excess characters will 
be truncated without notification. 

Managing Data 63 



Use of the Various Record Formats in RECORD 
I/O 

Data transmitted by a single RECORD I/O 
statement is always contained within a 
single record, the size of which should be 
large enough to hold the data aggregate 
being transmitted, yet small enough to 
conform to device restrictions on the 
length of records which may be transmitted. 
Determination of the record length required 
for the various formats of data aggregates 
may require the information available in 
the section "Structure Mapping" in Appendix 
C of this publication; similar calculations 
are required for determination of space 
required for array data aggregates. 

It should be noted that when a data 
aggregate is moved into a record buffer, or 
transmitted immediately from the area in 
which the data aggregate is stored, no 
"padding bytes" are added before or after 
those bytes defined by the aggregate (or 
string). The current length of a variable­
bit string will be such as to terminate the 
s~ring on a byte boundary. 

Another consideration affecting the 
transmission of data aggregates is the fact 
that the implementation includes locate 
mode I/O. This allows data to be processed 
in the input/output buffers. Therefore a 
programmer who is creating files to be read 
using READ statements with the SET option 
should bear in mind that: 

1. The first byte in a block read from a 
file will be aligned in the buffer on 
a doubleword boundary. 

2. If any data within any record in the 
block has an alignment requirement, 
this requirement must be preserved in 
the buffer when the record is read in. 

For all record formats, this first byte 
is, with one exception, the first byte of 
data in the first record of the block. The 
exception is for FB-format records in an 
INDEXED file where RKP=O; here the first 
byte of the key of the first record is 
aligned on the doubleword boundary. The 
following information, if present, precedes 
this double word boundary: 

1. Keys for F-format INDEXED files or for 
REGIONAL files. 

2. Control fields for V- and VB-format 
records. 

The user must be aware that, for the 
subsequent records in the buffer. the pre­
sence of keys and control fields will 
affect the alignment of the data elements 
in these records. 

64 

There are several constraints regard~ng 
record format in RECORD I/O which depend 
upon the data set organization and the 
manner in which it is accessed. 

CONSECUTIVE Records: V-, VB-, VS,- and 
VBS-format data sets may not be read BACK­
WARDS. 

INDEXED Records: Only F- and FB-format 
records are available. 

REGIONAL(1) and (2) Records: Only F-format 
records are available. 

REGION L(3) Records: Record formats U,F, 
and V-are available;-i.e., records cannot 
be blocked. 

Additionally~ there are various 
overheads which apply to the use of differ­
ent formats within different data s~t 
organizations. The choice between BUFFERED 
and UNBUFFERED for SEQUENTIAL files may 
depend upon the time and space overheads 
outlined, as may the choice between tne 
record formats U and V for REGIONAL(3) data 
sets. In the following details, the term 
"hidden buffers" refers to work buffers 
allocated by the object program library to 
provide special areas for the actual trans­
mission of records to and from the data 
set, even though the file is declarea 
UNBUFFERED or DIRECT. 

UNBUFFERED access of CONSECUTIVE data 
sets employs hidden buffers if V-format 
records are used, in order to handle tne 
V-format control bytes. 

An INDEXED data set always requires hia­
den buffers in order to handle a special 
10 byte control field. 

A REGIONAL data set accessed sequential­
ly, and declared KEYED, requires hidden 
buffers (except for REGIONAL(1» to han­
dle both the key and the record, which 
must be transmitted to and from contigu­
ous storage areas. 

Use of Spanned Records 

The blocksize (BLKSIZE) used for spanned 
records can be selected independently of 
the record lengths likely to be encoun­
tered. It should be chosen with regard to 
attaining efficient use of external storage 
combined with efficient use of 
processor-I/O overlap. For instance, the 
block size seleGted for use on a 2311 disk 
store should be the correct part of one 
track, to ensure that the entire track is 
used and that efficient processing is 
achieved. 



When READ SET is used with spanned 
records, each record is built up from its 
segments in an additional area (buffer) 
supplied by the PLiI library, and the 
pointer is set to address this area; the 
record is not processed in the data manage­
ment buffer. Similarly, with LOCATE, a 
record for output is built up in a library 
area before being passed to data management 
for segmentation and transmission. Conse­
quently, the advantage gained by using 
locate mode is lessened if the records are 
spanned .. 

BUFNO=n; the decimal constant must be less 
than 256. 

If a file is declared BUFFERED, but 
the number of buffers is not specified 
or is specified as zero, the number is 
assumed to be 2. 

Performance is not necessarily 
improved by specifying a large number 
of buffers. Generally, the use of 
more than two gives little improve­
ment. In some circumstances, however, 
more may be required; for example, 
chained scheduling requires at least 
three. 

NCP=n: the decimal constant must not exceed 
99. 

Specifies the number of channel pro­
grams allocated to the file when it is 
opened. The number of incomplete 
input/output operations may not exceed 
the number of channel programs. This 
option is available only for DIRECT 
access to INDEXED data sets or for 
UNBUFFERED SEQUENTIAL access to CONSE­
CUTIVE or REGIONAL data sets. The 
default value assumed if the option is 
not specified is 1. 

An attempt to exceed the appropriate 
number of incomplete input/output 
operations will have one of two 
results. For UNBUFFERED SEQUENTIAL 
access to CONSECUTIVE or REGIONAL data 
sets, the ERROR condition will be 
raised. For DIRECT access to an 
INDEXED data set, the operations, will 
be queued until a channel program 
becomes available. 

Chained Scheduling 

OPTCD=C 

Specifies chained scheduling, which 
improves input/output performance by 
reducing the time required to transmit 
records to and from external devices. 
If this option is specified with QSAM, 
it is recommended that at least three 
buffers are specified for the file: 
with BSAM, the number of channel pro­
grams should be at least three. 

If BSAM or QSAM are used, then chained 
scheduling will not be used for INPUT or 
UPDATE with U-format records. 

CODE=IIFIBICIAITIN. where the codes speci­
fy: 

I: IBM BCD perforated tape and 
transmission code (8 tracks) 

F: Friden (8 tracks) 

B: Burroughs (7 tracks) 

C: NCR (8 tracks) 

A: ASCII (8 tracks) 

T: Teletype (5 tracks) 

N: No conversion (F-format recoras 
only> 

If no code is specified, I is assumed. 

DEN=011121 3 

r-------T-------------------, 
I I Bytes per Inch I 
I DEN ~---------T---------~ 
1 Value I 7-track I 9-track I 
~-------+---------+---------~ 
I 0 I 200 I I 
I 1 I 556 I I 
I 2 I 800 I 800 I 
I 3 I I 1600 I L _______ L _________ L _________ J 

The density assumed, if none is speci­
fied, is: 

7-track 
9-track (one density> 
9-track (dual density> 

200 
800 

1600 

Managing Data 65 



Conversion (Magnet!£-1~e - 7-track) 

TRTCH=CIEITIET 

C: Data conversion feature is used 

E: Even parity 

T: Translation from BCD to EBCDIC 
required 

ET: (Both E and r, above) 

This subparameter is required only for 
7-track magnetic tape data sets. 

Use of a tape recording technique 
other than TRTCH=C restricts the char­
acter set in which data can be written 
if it is subsequently to be reread and 
result in the same bit-configuration 
in storage. 

In PL/I terms, for STREAM and RECORD 
iqput/output of character strings or 
pictured data, acceptable modes are 
TRTCH=CIT (with TRTCH=ET acceptable if 
characters are restricted to the 
48-character set). For RECORD 
input/output of arithmetic data, 
TRTCH=C must be used. 

MODE=CIE 

C: Column binary card images 

E: EBCDIC card code 

STACK=112 

1: All cards read or punched are to 
be fed into stacker po~ket 1 

2: All cards read or punched are to 
be fed into stacker pocket 2. 

Stacker pocket 1 is assumed if neither 
is specified. 

PRTSP=OI11213 

Specifies spacing of 0 through 3 lines 

66 

after printing each line; a value of 3 
will cause 2 blank lines to appear 
between each printed line. 

This parameter is ignored if the 
record format uses ASA control charac­
ters. 

OPTCD=U 

If a printer has the universal charac­
ter set feature~ the TRANSMIT condi­
tion is normally raised when an inval­
id character is passed to the printer. 
Specifying OPTCD=U suppresses the con­
dition. Either way, a blank character 
is printed. 

op~rCD=W 

op~rCD=L 

W: Perform write validity check 
when writing on a direct-access 
device. 

records within an 
are to be recogniz~d 
the initial charact~r 

record has the valu~ 

Specifies that 
INDEXED data set 
as deleted if 
(byte) of the 
(8)'1'B. 

KEYLEN=n 

Specifies the number of characters to 
be written, or retrieved, a~ the 
recorded key of records in data sets 
of the INDEXED or REGIONAL(2) and (3) 
organizations. Note that this value 
is fixed during data set creation, and 
that all records within a data set 
will have keys of the same length~ the 
maximum length being 255 characters. 



LIMCT=n 

RKP=n 

Limits the extent of the search 
through a REGIONAL(2) or (3) data set 
beyond the region number specified in 
the source key. If LIMCT is not 
specified, the search for a particular 
record, or for space to add a new 
record, will continue from the speci­
fied region to the end of the data 
set. 

In RE3IONAL(2) LIMCT specifies 
records, but the search will continue 
to the end of the track containing the 
record whose region number is given 
by: 

source key region no. + LIMCT - 1 

In REGIONAL(3). LIMCT specifies 
tracks: the number of tracks searched 
will be the number specified by LIMCT. 

Keys for INDEXED records may be separ­
ate from or embedded in the records. 
RKP=n specifies the position (n) of 
the first byte of the key relative to 
the beginning of the record (byte O). 
RKP=O implies that the key is not 
embedded. Note that n is always 1 
less than the byte number of the first 
character of the key; that is, if 
RKP=1 then the first character of the 
key is in byte 2. 
Embedded keys obviate the need for the 
KEYTO option for sequential input, but 
not the KEYFROM option for output (the 
data specified by the KEYFROM option 
may be the embedded key itself, 
however). Unblocked records always 
have a separate key (recorded key) 
attached to the record. even when 
there is already an embedded key; such 
records will therefore require double 
the space for key information. The 
maximum value for n is {recordsize -
keylength}. 

OPTCD=M 

NTM=n 

Specifies the number of tracks within 
a cylinder index which are to be 
filled before a master index entry is 
to be created. It also specifies the 
number of tracks within a master index 
(of which there may be three levels), 
which. when exceeded, will cause an 
entry in the next higher master index 
level. Such a facility is advanta­
geous for large data sets, in order to 
avoid extensive serial searches 
through large low-level indexes. The 
maximum value for n is 99. Note that 
the OPTCD subparameter list must 
include the "M" option in order to 
create master indexes. 

Independent Overflow Area 

OPTCD=I 

Specifies that an independent overflow 
area is to be used and must be defined 
in a separate DD statement. 

Cylinder Overflow Area 

OPTCD=Y 

CYLOFL=n 

Specifies number of tracks within each 
cylinder to be reserved. during crea­
tion, for overflow records. If an 
independent overflow area is requested 
(via another DD statement), a cylinder 
overflow area need not be specified. 
The maximum number of such tracks is 
99, but the limit varies with the 
particular device: there must be at 
least one track on a given cylinder to 
hold the track index, and one to hold 
prime data. 

DSORG=IS\DA 

IS: specifies that an INDEXED data 
set is being created 

DA: specifies that a REGIONAL data 
set is being created 

Managing Data 67 



Declaration of the PRINT attribute for a 
file causes the initial data byte within 
each record to be reserved for an ASA 
printer control character. These control 
characters are set by the PAGE, SKIP, or 
LINE options and format items. Unless 
overridden by these options or format 
items, the printer control character is set 
for single spacing. rhe following control 
characters are used: 

Page eject 1 
Single space b 
Double space 0' 
Triple space 
Suppress space + 

All these characters cause the spacing 
action to occur before printing the g~ven 
record (it should be noted that a record 
is, in System/360 operating system, a 
line). The ASA control characters for 
'skip to channel n' are not employed. It 
is possible to use them, however, by speci­
fying in the DD statement that the ASA 
character is present, but nQ~ declaring the 
file to be a PRINr file and not specifying 
record format information in the ENVIRON­
MENT attribute: in this case, the initial 
byte of each record is available to the 
program. Also, by the above means, it is 
possible to use the initial byte for prin­
ter control if the RECFM subparameter spe­
cifies the use of machine carriage control 
characters oy the letter M. 

While a PRINT file is always an output 
file, it is possible to read such a file, 
but not as a PRINT file. This is effected 
simply by-not declaring the file as PRINT, 
and opening it for INPUT: the initial data 
byte of each record in the data set will 
then be available for inspection. 

PRINT files, since they have a default 
LINESIZE of 120 characters, need not have 
any record information specified for them. 
The complete default record information 
will become: 

BLKSIZE 
LRECL 
RECFM 

129 
125 

= VA 

Note: rhe LINESIZE for a PRINT file can be 
varied during execution by closing the file 
and reopening it with a different LINESIZE 
option. If this action is taken on a file 
which is being output to any medium other 
than a printer, (the use of MVT and MFT-II 
may cause a file intended for direct print­
ing to be held temporarily on a direct­
access device) the record and block size 
established for the file originally cannot 
be changed, and any change to LINESIZE must 

68 

be accommodated within the existing record 
and block size. For example, a PRINT file 
declared with V-format records with a 
maximum length of 60 bytes, a block size of 
69 bytes, and opened with a LINESIZE of 60 
bytes may not be reopened with a LINESIZE 
of 100 bytes, as this will raise the 
UNDEFINEDFILE condition. To avoid this, 
declare the file explicitly with a maximum 
record length and block size large enough 
to accommodate the increased LINESIZE. The 
block size should exceed the LINESIZE by at 
least 9 bytes. If the record length is not 
declared explicitly, it is set to the 
length specified in LINESIZE when the file 
is first opened. 

When the SYSPRINT file is opened, the 
PL/I program automatically positions the 
file output at the start of a new physical 

I paqe.. A blank page will appear if the 
first PUT statement using the file: 

1. Has the PAGE option, or 

2. Is a PUT EDIT with PAGE as the first 
format item 

If a SIGNAL ENDPAGE (filename) statement 
is present for which there is no corres­
ponding ON ENDPAGE (filename) on-unit, the 
statement is ignored, and the standard 
system action to start a new page is 
suppressed. This prevents the standard 
system action from attempting to start a 
new page on a file which may not have been 
opE~ned. 

RECORD I/O is not applicable to PRINT 
files, but the use of printer spacing 
characters (ASA or machine code, the latter 
being device dependent) is available 
through the DD statement by means of the 
DCB subparameter of RECFM, or by using one 
of the options CTLASA/CTL360 in the ENVIR­
ONt'.lENT attribute. The user is then 
responsible for ensuring that the initial 
character of the record is a valid printer 
control character, which may be a 'skip to 
channel n'. 

The ASA channel skip codes are: 

Channel 

1 through 9 
10 through 12 

Code 

1 through 9 
A through C 

Also, punch stacker select uses the 
following characters: 

punch pocket 1 V 
punch pocket 2 W 

Should any other code be employed, it will 
be interpreted as either single-space or 
pocket 1, depending upon the device in use. 



Byte 0 2 3 

r---------------------~---------------------, 
Word 1 I PAGESIZE I LINESIZE I 

~----------T----------t----------T----------~ 
2 I (Reserved) I (Reserved)ITab count I Tab. I 

r----------t----------t----------t----------i 
3 I Tab2 I Tab 3 I Tab. • • I Tab. •• I 

r----------t----------t----------t----------~ 
I I I I I 

I I I I I 
r----------t----------~----------~----------J 

m I Tabn I 
L __________ J 

Figure 20. Format of the Tab Control Table 

DATA and LIST directed output to PRINT 
files will automatically align data on 
preset tab positions. The positions are 
determined from the tab control table. 
which is the PL/I Library module IHETAB. 
This table can be altered, as described 
below, and either replaced within the 
library permanently or inserted in the 
linkage editor input stream for use in a 
single program only. the format of the tab 
control table is shown in Figure 20. 

PAGESIZE: Half-word binary integer 
defining the default 
PAGESIZE 

LINESIZE: Half-word binary integer 
defining the default 
LINESIZE 

Reserved Bytes: Reserved for left and 
right margin fac~lities 

Tab count: 

Tab 1l ··Tabn : 

specifies number of tab 
position entries within 
table (maximum of 255). 
If the tab count = 0, 
then the tab positions 
are not used; each data 
item is put out according 
to the STREAM file output 
mode used. 

Tab positions within the 
print line: initial posi­
tion is numbered 1, grea­
test position is numbered 
255. The value of each 
tab should be greater 
than that of the tab 
preceding it in the 
table; if not, it is 
ignored during table 
scanning, which proceeds 
through the table from 
rab~ to Tabn for each 
data field. Data fields 

are begun at the tab 
position specified, or, 
in the case of the first 
data field of a line, at 
the left margin default 
(position 1). 

In its unaltered form~ the table is set 
up as follows: 

r---------T---------, 
I 60 I 120 1 
r----T----t---~----~ 
I 0 I 0 I 5 I 25 1 

.----t----t----t----i 
I 49 I 73 I 97 1121 1 L ____ ~ ____ ~ ____ ~ ____ J 

To change the tab settings# a user must 
change the values in the assembler language 
control section listed below. To become an 
installation standard, this must be link­
edited into the PL/I library (data set 
SYS1.PL1LIB) to replace module IHErABS. 
For use in one program only, the object 
deck is link-edited with that program. 

TAB TITLE 'IHETAB' 
IHETAB CSECT 

ENTRY IHETABS 
IHETABS DS OD 
PAGESIZE DC AL2(60) 
LINESIZE DC AL2(120) 

DC H'O' 
NOTABS DC AL1(ENDTABS-*-1) 
TAB1 DC AL1(25) 
TAB2 DC AL1(49) 
'rAB3 DC AL1(73) 
TAB4 DC AL 1( 97) 
'rAB5 DC AL1(121) 
ENDTABS EQU * 

END 

Managing Data 69 



CREATING AND ACCESSING~~TA_SETS 

The facilities available for initially 
creating data sets are outlined in the 
following paragraphs, together with details 
for the subsequent usage of created data 
sets. It should be noted that creation of 
a data set is indicated by opening a file 
for OUTPUT, while subsequent access is 
indicated by either INPUT or UPDATE. 

There are no special considerations with 
regard to the data set specification beyond 
those already indicated under nFile 
Attributes and the DD statement." 

Accessing of STREAM Data Sets 

After a STREAM data set is created, it 
may, with one exception, be opened only for 
INPUT. The ~xception is that it may be 
opened for OUTPUT using the parameter 
DISP=MOD, in which case the new records are 
added at the end of the existing records in 
the data set. In any other circumstances, 
opening a STREAM data set for OUTPUT will 
result in the data set being overwritten. 

creation and acceSSing of RECORD­
oriented data sets varies according to the 
three data set organizations available. 
Details are given below for each of the 
three types: CONSECUTIVE, INDEXED, and 
REGIONAL. 

The EVENT option gives the user the 
ability to overlap input/output operations 
with internal processing. This option may 
be used with statements for all RECORD 
files except: 

1. SEQUENTIAL BUFFERED (PLII 
restriction) 

language 

2. SEQUENTIAL INDEXED «F) compiler 
implementation restriction). 

70 

When an I/O statement is executed with 
the EVENT option, input/output of the 
record is initiated but is not completed 
before control is returned to the user's 
problem program. The user can take advan­
tage of the time taken for the I/O opera­
tion by incorporating statements whose exe­
cution is independent of the I/O operation. 
When, at some later stage, it is necessary 
to ensure tnat the I/O operation is com­
plete, the WAIT statement is used. 

Event Variable: The Event Variable, when 
used--In--con]unction with a RECORD I/O 
statement, can be in either an active or an 
inactive state. It becomes active when an 
I/O statement with which it is associated 
is executed. It remains active until any 
I/O conditions associated with the I/O 
operation have been raised or until the I/O 
operation has been completed (either nor­
mally or abnormally). The Event Variable 
also becomes inactive after a GO TO out of 
an ON-unit entered as a result of a condi­
tion being raised. An Event Variatle which 
is active must not be used again in any I/O 
statement, a CALL or assignment statement, 
or in the COMPLETION pseudovariable, until 
it has become inactive. 

Ra!~igg_£2g~!~!2n~~ All I/O conditions are 
raised at the time of execution of the WAIT 
statement. The UNDEFINEDFILE condition is 
raised in the normal way when an implicit 
OPEN error occurs. Any statement errors 
that occur cause the I/O operation to be 
terminated and an ERROR condition raised; 
in this case, the ERROR condition is raised 
when the I/O statement is executed, and the 
Event Variable is unchanged. 

CONSECUTIVE 

There are no special considerations with 
regard to the data set specification beyond 
those already indicated under "File Attri­
butes and the DD Statement." Note that 
LOCATE is only valid for BUFFERED files. 

Accessin9-of CONSECUTIVE Data Sets 

After a CONSECUTIVE data set is created, 
it may, with one exception, be opened only 
for INPUT or UPDATE. The exception is that 
it may be opened for OUTPUT using the 
parameter DISP=MOD, in which case the new 
records are added at the end of the exist­
ing records in the data set. In any other 
circumstances, opening a CONSECUTIVE data 
set for OUTPUT will result in the data set 



being overwritten. Reading of such a data 
set may be either forwards or backwards if 
it resides on tape; to read backwards, the 
file must be opened with the BACKWARDS 
attribute. If a file is first read (or 
written) forwards, and then read backwards, 
the LEAVE option in the ENVIRONMENT attri­
bute should be specified, to prevent the 
normal rewind at close time, or when volume 
switching occurs on a multivolume data set. 

~~1~£em~~~_2f-gec2EQ~l When a CONSECUTIVE 
data set is opened for SEQUENTIAL UPDATE, 
the only I/O' statements which may be used, 
apart from OPEN and CLOSE, are READ and 
REWRITE. READ· SET and REWRITE without 
options can only be used for BUFFERED 
files. h REWRITE statement may not be 
issued until' 'a READ statement has been 
issued; and a REWRITE statement will always 
update the last record read. It is not 
permissible'~o have intervening READ state­
ments between a READ and a REWRITE refer­
ring to the same record in the ~ata set. 
For example: 

READ FILE(F) INTO(A); 

5 READ FILE(f) INTO(B); 

9 REWRITE FILE(F) FROM(C); 

In the above example, statement number (9) 
updates the record which was read at state­
ment number (5). The record which was read 
at statement number (1) can never be updat­
ed after statement number (5) has been 
executed. 

consider also the following: 

READ FILE(F) INTO(A) EVENT(E1); 

5 READ FILE(F) INTO(B) EVENT(E2); 

9 WAIT (E1); 
10 REWRITE FILE(F) FROM(A); 

Statement number (10) would cause the ERROR 
condition to be raised, since between the 
REWRITE statement and its corresponding 
READ statement (1), there is an intervening 
READ statement (5). 

When blocked records are used with UPDATE 
files, it must be remembered that if one 
record in a block is rewritten, then all 
the records in that block are rewritten. 
The user must take this into account when 

updating records obtained by means of 
READ •••• SET. 

INDEXED 

£f~~~!on of INDEXED Data Sets 

Special DD statement requirements are as 
follows: 

One, two~ or three DD statements are 
required. The number depends on the 
sizes and relative positions of the 
three parts of the INDEXED data set, 
namely the prime data area, the over­
flow area, and the index area. The 
SPACE and DSNAME fields of the CD caru 
have special formats for INDEXED data 
sets. 

The following DCB subpararneters mu~~ be 
specified: 

KEYLEN=n 
DSORG=IS 

The following DCB subparameters may be 
specified: 

RKP=n 
OPTCD=LIMIYII (or any combination) 
NTM=n 
CYLOFL=n 

Space for the data set must ce allocat­
ed in cylinders, unless the absolute 
track (ABSTR) technique is used. If 
ABSTR is used, the number of tracks 
must be equivalent to an integral num­
ber of cylinders, and the first track 
used must be the first track on a 
cylinder which is not the first cylin­
der on a volume. 

Programming considerations are as fol­
lows: 

For blocked INDEXED data sets, the DCB 
subparameters LRECL and BLKSIZE must be 
sp~cified as follows: 

Without embedded key (i.e., RKP=O), 
LRECL size of data area + size of 
key 

With embedded key (i.e., RKP*O), 
LRECL = size of data area 

In both cases, BLKSIZE 
blOCking factor. 

LRECL x 

Creation of an INDEXED data set is only 
available in the SEQUENTIAL OUTPUT 
mode. The EVENT option is not support-

Managing Data 71 



ed for SEQUENTIAL access to INDEXED 
.data sets. The LOCATE statement is 
only valid for BUFFERED files. 

When creating INDEXED data sets, the 
values of the keys presented must be in 
ascending collating sequence order; 
i.e., the binary value of each succes­
sive key must be greater by at least 1 
than that of the previously presented 
key. Therefore, duplicate keys cannot 
be added to the data set. 

Data set specifications made during 
creation may not be altered during 
subsequent processing of the data set; 
e.g. KEYLEN is fixed during creation. 
Also prov1s1on for overflow areas, 
whether cylinder or independent, must 
be made when the data set is created. 
If the prime data area is not filled 
during creation, then, with one excep­
tion, the unused area is not usable for 
overflow records, nor for any records 
subsequently added during direct 
access. The exception is that the 
unfilled portion of the last track used 
may be filled if required. It is 
possible to reserve space for later use 
within the prime 1ata area by writing 
"dummy" records during creation: pro­
vided that the initial byte of the 
record has the value (8) 11'B, and that 
the option OPTCD=L has been specified, 
these dummy records can subsequently be 
replaced by actual records with the 
same key. 

Refer to the publication 11M System/360 
OpeEating_§y~te~L-~QQ_£QQ~E2l Language, and 
lBM __ §y~te~Ll£Q __ QE~E~~Q~§ystem, Job Con­
~EQ!_~an~~~g~_fh~rt~, for more detailed 
discussion of the above considerations. 

After an INDEXED data set is created, it 
may be reopened for INPUT or UPDATE, for 
either SEQUENTIAL or DIRECT access. If 
opened for DIRECT access, records may then 
be added and deleted. It should be noted 
that once created~ an INDEXED data set may 
not be opened for OUTPUT to add further 
records; it must be opened for UPDATE. 

The user is cautioned that only one 
DIRECT UPDATE file that adds records to an 
INDEXED data set should be open at anyone 
time. If two files are simultaneously open 
for SEQUENTIAL and DIRECT processing of the 
same INDEXED data set, then the following 
records might not be accessed by the 
SEQUENTIAL file: 

1. Records added to the end of the data 
set. 

72 

2. Records written directly in the over­
flow area of the data set. 

3. Records written on the overflow area 
when forced out of the prime data area 
by a record being added to this data 
area. 

INDEXED data sets accessed in the 
SEQUENTIAL fashion may be opened for either 
INPUT or UPDATE, once created. sequential 
access is in the order defined by the 
values of the recorded key, i.e., ascending 
collating sequence order. Records are 
retrieved in this order irrespective of the 
sequence in which they were added to the 
data set. Those records which have been 
deleted are not retrieved, and may be 
overwritten or lost when other records are 
added to the data set. 

It is possible to use the KEY option on 
READ statements to cause repositioning, in 
either a forward or backward direction, 
among the records being sequentially 
accessed either for INPUT or UPDATE. This 
facility is available only if the KEYED 
attribute is specified. Repositioning may 
be either to a specified record or, if 
GENKEY has been specified in the ENVIRON­
MENT option list, to the first non-dummy 
record of a particular key class. In 
either case a record is retrieved followed 
by the next higher keyed record if the 
subsequent READ does not have a KEY option. 
If the specified KEY is not found in the 
data set. the KEY condition is raised. A 
subsequent READ without the KEY option will 
retrieve the first record in the data set. 

The EVENT option is not supported for 
SEQUENTIAL access to INDEXED data sets. 
READ SET and REWRITE without the FROM 
option are only valid for BUFFERED files. 

When opened for SEQUENTIAL UPDATE, only 
the statements READ and REWRITE (other than 
OPEN and CLOSE) may apply to the file. The 
order of operation must be READ then REW­
RITE~ but not every record read need be 
rewritten. When blocked records are used 
with UPDATE files, it must be remembered 
that if one record in a block is rewritten, 
then all the records in that block are 
rewritten. The user must take this into 
account when updating records obtained by 
means of READ •••• SET. Records may not be 
added to the data set when in this mode, 
but they may be deleted simply by setting 
the initial character of the record to the 
delete-code (i.e. a character of the value 
(8)ll I B) and then rewriting it. This can 
also be done by using the DELETE statement 



which marks as deleted the last record 
read. Records which are marked "deleted" 
are not made available during sequential 
input. 

If blocked records are to be deleted, 
RKP must be greater than O. This is 
necessary because a deleted record is indi­
cated by (S)'1'B in the first byte and, for 
blocked records, this byte is part of the 
recorded key; hence if RKP=O, the access of 
subsequent records in the block may be 
impossible. 

After several usages of an INDEXED data 
set in which records have been added or 
deleted, it may become desirable to copy 
the data set from one volume to another in 
order to purge the data set of records 
marked deleted, but still physically pre­
sent, and to collect records from overflow 
areas into the prime data areas. Such 
reorganization will allow more efficient 
future access to the data set. 

INDEXED data sets accessed in the DIRECT 
fashion may be opened for INPUT or UPDATE, 
once created. A DIRECT UPDATE file may 
have records added, deleted, or replaced, 
as well as retrieved. 

Retrieval of Records: Records marked 
"deleted"-are-no~made-available. 

:ddition of Records: If the key is unique, 
the-record-isadded-to the data set, either 
in the prime area <possibly replacing one 
marked deleted), or in an overflow area; 
indexes are automatically updated as neces­
sary. Duplicate keys cause the KEY condi­
tion to be raised, as will failure to find 
available space for the addition of 
records. 

If a new record is added to a data set 
whose overflow areas are already full, a 
record will be irretrievably lost. The 
position of the new record, in relation to 
the existing records on the track, will 
determine whether it is the new record or 
an existing one which is lost. If the new 
record would follow the last existing 
record on the track, the new record will be 
lost. otherwise, the last existing record 
on the track will be lost. In either case. 
the KEY condition will be raised. 

Deletion of Records: The specified record 
ISIocatecr;--marked deleted, and rewritten 
into the data set. Note that deletion of 
records is only available if the DCB param­
eter of the DD statement specified OPTCD=L. 

If blocked records are to be deleted, 
RKP must be specified as greater than zero. 
Otherwise, owing to the technique by which 
records are marked as deleted -- ty setting 
the initial byte of the record, which for 
blocked records includes the recorded key. 
to the value (S}"'B -- the locating of 
subsequent records in the data set may be 
impossible. 

~E1~~~~n~ __ 2K--E~£ords~ The specified 
record is overwritten ty the replacement 
record. Records may be replaced without 
having been read, unless the data set 
contains blocked records, in which case the 
sequence must be READ then REWRITE. In the 
case of blocked records, a WRITE, DELETE, 
or READ statement may not be issued while a 
previous READ statement is still outstand­
ing; that is, before its corresponding 
REWRITE statement has been issued. The 
EXCLUSIVE attribute should be specified to 
synchronize the READ-REWRITE cycle and 
WRITE statements. 

REGIONAL 

The three types of 
organization are treated 
following paragraphsa 

REGIONAL data set 
together in the 

Creation of REGIONAL Data Sets 

Special DD statement requirements are as 
follows: 

rhe following DCB subparameters mu~~ be 
specified: 

KEYLEN=n (except for REGIONAL(1}) 
DSORG=DA 

The following DCB subparameters may be 
specified: 

LIMCT=n (except for REGIONAL(1» 

Space allocation (via the DD statement 
parameter SPACE) may be in terms of 
records, tracks, or cylinders; use of 
the ABSTR subparameteris permitted 
also. When allocating space for a 
REGIONAL data set, it is possible to 
request secondary allocation, such that 
when the initial allocation is filled, 
a second allocation is automatically 
made; further allocations are also made 
when necessary. (Secondary allocation 
is only available when the data set is 
being created, and then only when 
opened for SEQUENTIAL OUTPUT; opening 
for DIRECT OUTPUT causes the initial 

Managing Data 73 



allocation, only, to be "formatted" for 
direct placement of records.) 

Programming considerations are as fol­
lows: 

74 

Creation of REGIONAL data sets may be 
performed with either DIRECT or SEQUEN­
TIAL access; the mode must be OUTPUT. 

~JE~f~_£E~ationL Upon opening the data 
set, it is initialized in accordance 
with the record format employed. 

F-format. (REGIONAL(1), (2), and (3»: 
E~ch track within the initial alloca­
tion is initialized with dummy records 
(and keys, if (2) or (3». 

U- and V-format (REGIONAL(3»: Eacn 
track within the initial allocation is 
"cleared" by writing a special record 
termed the capacity record. This 
record is set to indicate that the 
complete track is available for the 
addition of records. 

Creation employing the DIRECT access 
technique permits records to be placed 
anywhere within the data set, in any 
order. Subsequent retrieval of these 
records in a SEQUENTIAL fashion, howev­
er, will access the records in a physi­
cally sequential order. 

When there is a danger of more than one 
record having the same recorded key, 
the DCB subparameter KEYLEN should be 
increased so that the region number is 
also recorded; provided that the region 
number of the two records is not also 
the same, there will then be no retrie­
val problem. 

~!QUE~~J~b~feati2~~ Keyed records are 
presented for addition to the data set 
according to the following rules. 

REGIONAL(1) and (2): The positioning 
value of the key must increment by at 
least 1 for each successive key; if the 
value increments by a value greater 
than 1, say n, then n - 1 dummy records 
are added to the data set before the 
given record is added. 

REGIONAL(3): The positioning value of 
the key remains constant for addition 
of records to a given track. When 
switching to a new track is desired, 
the positioning value is incremented by 
at least 1. If the value increments by 
a value greater than 1, say n, then 
n - 1 intervening tracks are cleared 
(if formats U or V) or written with 
dummy records (if format F., in which 
case the current track is completed 
with dummy records). 

If a LOCATE statement was used in the 
addition of KEYED records to any type 
of REGIONAL data set. then, if the 
RECORD condition is raised, the key 
value presented at subsequent opera­
tions must not be less than the current 
one. 

Creation employing the SEQUENTIAL 
access techniques causes records to be 
added to the data set in a physically 
sequential order, according to ascend­
ing relative record or track value. 
subsequent retrieval of the data set in 
a SEQUENTIAL fashion will access these 
records in the same order (as well as 
any records which may have been insert­
ed between them). When a sequentially 
created REGIONAL data set is closed, 
the current extent is completed with 
dummy records, or the remaining tracks 
are cleared. 

The user is cautioned that, for 
REGIONAL(3) data sets, the addition of 
duplicate keys is not detected; subse­
quent DIRECT access will read the first 
record with the required key on the 
given track (or tracks. if 
"extended-search" has been requested, 
i.e., if the DD subparameter LIMCT is 
absent or specifies a value greater 
than one). 

Also note that when a given track of a 
REGIONAL(3) data set becomes filled by 
sequential addition of records with the 
same region number (relative track 
value), the current track number is 
automatically incremented by 1. If an 
attempt is then made to add another 
record with the same region number, the 
KEY condition is raised (key sequence 
error) and the excess record is not 
added to the data set. 

After a REGIONAL data set is created, it 
may be reopened for INPUT or UPDATE, 
SEQUENTIAL or DIRECT. If opened for DIRECT 
access, records may then be added or delet­
ed. It should be noted that once created, 
a REGIONAL data set may not be opened for 
OUTPUT to add further records; it must be 
opened for UPDATE. 

SEQUENTIAL Access 

REGIONAL data sets accessed in the 
SEQUENTIAL fashion may be opened for either 
INPUT or UPDATE, once created. sequential 



access is in the order of ascending rela­
tive record (REGIONAL(1) and (2» or track 
value; the value of the keys does not 
affect the order of retrieval. It should 
be noted that all records within a 
REGIONAL(1) data--set, whether dummy or 
actual, are retrieved in sequence; if dummy 
records are present, the user should be 
prepared to recognize them if necessary. 
Deleted (dummy) records in REGIONAL(2) or 
(3) data sets are not made available. 

It is not possible to employ the KEY 
option when retrieving REGIONAL data sets 
sequentially. 

~~E!~£em~~~_-2!. __ g~£2fds~ When a REGIONAL 
data set is opened for SEQUENTIAL UPDATE# 
the only IIO statements which may be used, 
apart from OPEN and CLOSE, are READ and 
REWRITE. A REWRITE statement may not be 
issued until a READ statement has been 
issued; and a REWRITE statement will always 
update the last record read. It is not 
permissible to have intervening READ state­
ments between a READ and a REWRITE refer­
ring to the same record in the data set. 
For example: 

READ FILE(F) INTO(A); 

5 READ FILE(P) INTO(B); 

9 REWRITE FILE(P) FROM(C); 

In the abovE example, statement number (9) 
updates the record which was read at state­
ment number (5). The record which was read 
at state~ent number (1) can never be updat­
ed after statement number (5) has been 
executed. 

Consider also the following: 

READ PILE(P) INTO(A) EVENT(E1); 

5 READ FILE(P) INTO(B) EVENT(E2); 

9 WAIT. (E1); 
10 REWRITE FILE(F) FROM(A)i 

Statement number (10) would cause the ERROR 
condition to be raised, since between the 
REWRITE statement and its corresponding 
READ statement (1), there is an intervening 
READ statement (5). 

DIRECT Access 

REGIONAL data sets accessed in the 
DIRECT fashion may be opened for either 
INPUT or UPDATE, once created. An UPDATE 
file may have records added, deleted, or 
replaced, as well as retrieved. Facilities 
available for DIRECT access vary according 
to the REGIONAL type, and the record format 
in the case of REGIONAL(3). 

The user is cautioned that, for 
REGIONAL(1) data sets, records added with a 
source key specifying the relative recorJ 
position of an existing record will over­
write the existing record without notifica­
tion. Also, for REGIONAL(2) and (3), the 
use of the "extended search" feature may 
cause a record to be added beyond the track 
containing the specified region 
(REGIONAL(2», or beyond the specifiea 
track (REGIONAL(3)}; this can be prevented 
by use of the DCB subparameter LIMCT (S8P 

the paragraph "Extended Search Limit," ear­
lier in this chapter). If LIMCT is speci­
fied as 1, insertion is confined to the 
track containing the specified recorj 
(REGIONAL(2)} or the specified track 
(REGIONAL(3». Another point to note is 
that it is quite possible to add, in a 
REGIONAL(2) or (3) data set, a new recora 
whose recorded key is the same as that of 
an existing record. In such a case, the 
record which is physically farthest from 
the beginning of the data set may never be 
retrieved by DIRECT access. 

REGIONAL(1): 

REGIONAL(2) : 

REGIONAL(3): 

REGIONAL(1}: 

REGIONAL(2): 

REGIONAL(3): 

All records, whether dummy 
or actual, may be 
retrieved. 

Records marked dummy cannot 
be retrieved. 

Records marked dummy cannot 
be retrieved. 

"Addition" is actually 
replacement of existin] 
records, whether dummy or 
actual (no condition is 
raised in either case). 

"Addition" is actually 
replacement of dummy 
records on the track con­
taining the relative record 
number specified (or subse­
quent tracks, if extended­
search has been requested, 
i.e., LIMCT> 1 or absent). 

If P-format records, as for 

Managing Data 75 



REGIONAL(1): 

REGIONAL (2) : 

REGIONAL(3): 

REGIONAL(1): 

REGIONAL(2): 

RE3IONAL( 3) : 

REGIONAL(2). If U- or V­
format records, records are 
added to available space on 
specified track (or 
subsequent tracks, if 
extended-search has been 
requested, i.e., LIMCT> 1 
or absent). 

The specified record is 
overwritten with a dummy 
record; the space may be 
reused. 

The specified record is 
overwritten with a dummy 
record, the key being re­
written as a dummy key: the 
space may be reused. 

If F-format records, as for 
REGIONAL(2). If U- or V­
format records, the record 
is overwritten with a dummy 
record" the key being re­
written as a dummy key: the 
space may rr2t be reused. 

The specified record, 
whether a dummy or an 
actual record, is re­
written. 

The specified record is re­
written; a record with the 
specified key must exist. 

As for REGIONAL(2), for all 
record formats .. 

If a REGIONAL file has the EXCLUSIVE attri­
bute, then, in order to lock a particular 
record, different tasks must use the same 
region number to refer to the record. 

In RECORD I/O, the user has the choice 
of processing a record in a work area or in 
a buffer. This choice is exercised by 
selecting one of two processing modes: moyg 
mode or locate mode. There are advantages 
in processing-an-entire file with one mode, 
but it is permitted to use a combination of 
both modes in the same file. 

76 

MOVE MODE 

Characteristics 

In~~: Data is moved (possibly via a 
buffer) from a file to a work area, 
where it is processed. (The work area is 
the £~coE3-yariable.) 

OU,tput: Data is moved from the work area to 
a file, possibly via a buffer. 

Move mode may be simpler to use than 
locate mode, as there are no buffer align­
ment problems. In cases where there are 
numerous references to the contents of a 
record, it can also be faster, as it does 
not have the indirect addressing overhead 
of locate mode. 

The basic statements used in move mode are: 

READ FILE (filename) INTO (record 
variable) ; 

WRITE FILE (filename) FROM (record 
variable) ; 

REWRITE FILE (filename) FROM (record 
variable) ; 

The full set of RECORD-oriented I/O file 
attributes is permitted. 

LOCATE MODE 

InEut: Data is moved from a file to an 
input buffer, where it is processed. 

Ou!put: The data record is constructed by 
the user in an output buffer. The 
buffer is then transmitted to a file. 

The locate mode input statement sets the 
address of the record (in the buffer) in a 
Eointer variable. The record can then be 
identified for processing by using this 
pointer in conjunction with a Q~~g_-y~~~ 



ble that defines the structure of the 
record. As many based variables as are 
required can be declared for a file; the 
record can be associated with any of them. 

Locate mode can be used to read self~ 
~efini!,.9:~~2rds. These are records where 
information in one part of the record is 
used to indicate the structure of the rest 
of the record. This information could be, 
for example, a count of the number of 
repetitions of a subfield, or a code 
identifying which one of a class of struc­
tures should be used to interpret the 
record. 

Locate mode should also provide faster 
execution, as there is no need to move data 
from a buffer to a work area, and may have 
a smaller storage requir~ment, because no 
storage is needed for separate work areas. 

Whenever a statement that causes data 
transmission to or from a file is executed. 
any logical record accessed previously by a 
locate mode statement is no longer availa­
ble for processing. 

The basic statements used in locate mode 
are: 

READ FILE (filename) SET (pointer 
variable) ; 

LOCATE based variable FILE (filename) 
[SET (pointer variable)i] 

REWRITE FILE (filename); 

Locate mode can only be used with SEQUEN­
TIAL BUFFERED files. The KEYED and ENVIR­
ONMENT attributes may be specified; the 
other file attributes permitted depend on 
the statement used: 

Statement 
READ-'(with SET) 
LOCATE 
REWRITE (without FROM) 

File Attribute 
OOUT/UPCATE­
OUTPUT 
UPDATE 

If any of these attributes is not explicit­
ly or implicitly declared, or if any other 
attribute is present, the ERROR condition 
is raised. 

Managing Data 77 



To operate successfully, the PLiI (F) 
Compiler and its associated load modules 
must have the required amount of main 
storage and input/output devices, as speci­
fied in the following paragraphso 

System/360 operating system operates in 
a device-independent environment. In par­
ticular, the (P) Compiler may operate with 
different combinations of devices. Howev­
er, certain restrictions should be noted. 

The PL/I (F) Compiler requires at least 
a System/360 Model 30 with a minimum of 
64K bytes of storage. At least 45,056 
(44K) bytes should be allocated in the 
SIZE option. If additional storage is 
available and allocated, the compiler 
will in general run more efficiently 
and provide a faster compilation. 

At least one direct access device must 
be used for residence of the operating 
system, and for the use of the SYSUT1 
data set. The same volume may be used 
for both purposes. The use of certain 
source program and operating system 
features requires a storage minimum 
greater than that given above. For 
example, PL/I tasking uses the MVT 
system, which requires at least 256K 
bytes of storage. 

Instruction Sets ----------------
The standard, decimal, and floating­

point instruction sets are required by the 
compiler and object programs, irrespective 
of declared data attributes. 

The timer feature is required in order 
to provide elapsed time of compilation, or 
to support the timer built-in function. In 
the absence of the clock, no time 
information will be printed out. 

78 

For flexibility in character sets and 
graphic representation, the following types 
of chains, trains, or type bars are availa­
ble for use with output printers. 

48-character set 
BCD 
60-character set 

48-character set 
BCD 
60-character set 

HN 
HN 
PN or QN 

52H 
52H 
63-character bar 

The operator's console should have the 
IBM 1052 printer keyboard Model 7 with dual 
case printing element, feature code 9572. 

SYSTEM/360 OPERATING SYSTEM REQUIREMENTS 

The primary control program of the oper­
ating system provides all sequential sche­
duling features of the job control languag~ 
as specified in the publications IBM 
§ystemL360 _QE~atig~~te~~2f-f2g~!21 
LanC[uage, and IBM System/360 0Eer~!ing_§.Y§.:. 
~illl_Q~rator's Guide. It affords data 
management capability and contains a super­
visor which provides for: 

Efficient overlapping of central proc­
essing unit operations and input/output 
channel activity 

Error checking and standard input/ 
output error recovery procedures 

Supervision and processing of interrup­
tions 



Supervision of requests for various 
services provided by the system 

This control program provides for a 
single input job stream and the sequential 
processing of job steps through single task 
operations. 

!'1ul:!:.!.Erog£~!!!!!!!.!!g with a. Fixed Number of 
Tas~:§._lMF~l. 

This is an extension of the primary 
control program. It provides for concur­
rent control of up to four independent 
tasks representing separate jobs. Each job 
occupies its own fixed partition of main 
storage. 

This provides, in addition to the facil­
ities provided by the primary control pro­
gram: 

Priority scheduling of jobs submitted 
from single or multiple job streams 

Concurrent scheduling and execution of 
up to 15 separately protected jobs 

The MVT system is used in PL/I tasking • 

cm1PILER SUPPORT -----------_._-

After the compiler initially receives 
control from the calling program of the 
operating system by means of a supervisor­
assisted linkage, communication is 
maintained with the operating system 
through the compiler control routinesQ 

The functions provided by the primary 
control program of the opera~lng system, 
together with the data management routines 
BSAM and QSAM, are required by the compil­
er. In addition, BPAM data management 
routines are required by the compile-time 
processor if the INCLUDE statement is used~ 

Object-time interfaces with the operat­
ing system control program are made through 
the PL/I Library routines. 

The facility for providinJ details of 
the time taken for each compilation must be 
specified at system generation time through 
the control program options (see "Object 
Program Support"). On completing a compi-

lation, a message will be generated giving 
the actual time taken. Under MVT, the time 
given is CPU time only, as I/O time cannot 
be measured. 

Figure 21 shows the control program 
options which may be added to the primary 
control program in order to provide greater 
performance and/or programming flexibili~y 
for the various features of PL/I. These 
exclude input/output features. 

r------------T----------------------------, 
!PL/I Featurel Control Program Option* I 
.------------+----------------------------~ 
)WAIT I Multiple WAIT I 
I I I 
I Tasking I MVT I 
] I I 
ITIME, DATE I Timing: A. Time I 
I I I 
ITIME, DATE I Timing: B. Interval timing) 
] DELAY I I 
.------------~----------------------------i 
1* See the publication !BM~Y:§.:!:.~!!!~l£Q I 
] QE~E~:!:.!.!!g_§Y:§.1~!!!L-§~QE~g~-~:§.:!:.!.!!!~:!:.~:§. I 
I for further details of these options. I 
L _________________________________________ J 

Figure 21. Control Program Options 

STREAM I/O ~ithin PL/I is supported by 
the queued sequential access method (QSAM). 
In order to conserve space and time# the 
GET and PUT macros are used in the locate 
mode whenever possible. Automatic data­
transmission computing-time overlap is 
provided~ as are blocking-deblocking func­
tions. In order to achieve an efficient 
degree of I/O overlap, two buffers are 
normally allocated to each data set when it 
is opened. The number of buffers allocated 
is, however, under the control of the DD 
statement, or the BUFFERS option of the 
ENVIRONMENT attribute. 

The access method employed depends upon 
the following factors: 

System Requirements 79 



r------------T-----------T-------~-----------T-------------T-----~---------------------, 
I Organization I Access J Mode 1 Buffering I Record IAccessl Notes on Use of I 
I I J I I Format I Method 1 Access Method I 
~------------+-----------+-------+-----------+-------------+------+---------------------i 
I I lINPUT I BUFFERED IAII IQSAM jLocate mode I 
I I I UPDATE I I I I (except paper tape) I 
ICONSECUTIVE ISEQUENTIAL jOUTPUT ~-----------+--.-----------+------+---------------------i 
I J 1 IUNBUFFERED IFIU]V IBSAM I I 
f------------+-----------+-------+---------·--+--·-----------+------+---------------------~ 
I I IINPUT I BUFFERED I I IScan mode I 
I I lUPDATE lor I I ~ESETL/SETL I 
I ISEQUENTIAL ~-------iUNBUFFERED I IQISAM ~---------------------~ 
lINDEXED I J OUTPUT I IFIFB I ILoad mode I 
I ~-----------+-------+-----------i ~------+---------------------i 
I 1 DIRECT I INPUT f I IBISAM I I 
I I I UPDATE I I I I I 
.------------+-----------+-------+-----------+-------------+------+---------------------i I I 1 INPUT I BUFFERED I I IQSAM (under certain I 
I I I UPDATE lor I I] circumstances) I 
I ISEQUENTIAL ~-------iUNBUFFERED I I BSAM ~---------------------i 
I I JOUTPUT I IF (REGIONAL I IBDAM load mode I 
I .-----------t-------t-----------i(1) and (2» ~------t---------------------~ 
I I ! I I I I REGIONAL ( 1) * 1 
) REGIONAL( 1), I ] I I F I UI V I I Relative record I 
I (2), and (3) I I I I ,( REGIONAL (3) ) I 1 wi thout keys I 
I I I INPUT t I I BDAM I REGIONAL( 2) * I 
I I DIRECT IOUTPUT ] I I IRelative record I 
] I IUPDATE I I I Iwith keys I 
I I I I I I I REGIONAL (3) * I 
I I I I I I 1 Relative track J 
I I I I 1 I I wi th keys 1 

~------------~---------~-L-------~---------~-i---.----------~------i---------------------i 
1* OUTPUT causes data set to be formatted using BSAM (BDAM load mode) at open time I L ___________________________________________ • ____________________________________________ J 

eFigure 22. Usage of Data Management Access Methods for RECORD-Oriented I/O 

Organization 
Record format 
File attributes 

The various combinations of the above., 
and the resultant usage of data management" 
are illustrated in Figure 22. 

80 



Although external procedures must be 
compiled separately, several compilations 
may be processed by the linkage editor to 
form a single load module. In order to 
execute such a load module, the external 
procedure of one of the compilations must 
possess the option MAIN. 

If more than one compilation has this 
option, then the linkage editor will cause 
control to be passed to the first of these 
compilations to appear in its input streamo 
Note that tnis is a function of the linkage 
editor itself and is not a formal PL/I 
facility. 

An attempt to execute a PL/I program in 
which no procedure has been given the MAIN 
option will result in termination of execu­
tion, accompanied by a message on the 
console or system output listing. 

Communication between separate compila­
tions can be achieved by means of EXTERNAL 
jeclarations or by passing arguments in 
CALL statemsnts or function references. It 
should be noted that the PL/I language 
makes the following restrictions: 

AUTOMATIC variables cannot be EXTERNAL 
(but may be passed as arguments) 

Descriptions of an external variable in 
separate compilations must not be con­
tradictory. If they are, the compiler 
will not be able to detect this. 

rhe linkage editor will load the INITIAL 
value of a STATIC EXTERNAL variable from 
the first object module encountered in its 
input stream which declared the variable. 

In order to estimate with any accuracy 
the maximum overall storage requirements 
for a PL/I program, several factors must be 
taken into account. The information pro-

vided by the compiler and the linkage 
editor 1S a guide only to the space 
required by the executable control section 
and the STATIC INTERNAL control section in 
the load module. Several other items must 
be added to this to obtain a realistic 
estimate of the maximum object-time 
requirements. These include the following: 

1 • !:~QgQ:.Bg9i: s t ~!: __ Y:~£!Q!: __ iEBY:l. • Th e 
overall length of the PRV is contained 
in the linkage editor module map, 
which is produced when the MAP option 
is specified. The maximum size of a 
PRV is 4096 bytes. (Refer to Appendix 
C of this publication for a more 
detailed description of pseudo­
register vectors.) The primary 
workspace requirement for the library 
is approximately 1100 bytes, which 
should De added to the PRV requir~­
ment, plus 512 bytes if optimization 
level OPT=1 has been chosen. 

2. ~~!~!:EQE! __ ~~Q __ ~EfQE __ ~~~Qli~g. For 
each PL/I interrupt, 1100 bytes ar~ 
required for library workspace. In 
addition, library modules which a~e 
dynamically invoked as a result of 
interrupts may require up to 2600 
bytes (irrespective of the number 0: 
interrupts). All storage requir2j for 
interrupt and error handling is 
released when the interrupt has been 
cleared. 

3. 2Yn~~i£_~§~2E~g~_~f~~~iQ§~~1.. A gen­
eral guide to the length of each DSA 
is to add 200 bytes per active Dlock 
to the space required for the AUTOMAT­
IC variables declared within the clock 
and their dope vectors. This is only 
a guideline; there may be consiieratls 
variations between different programs. 

4. CONTROLLEG Variables. Each allocated 
generation of -each CONTROLLED variable 
will require 12 bytes in addition to 
the space required for the contents of 
the variable and its dope vector. 

5. !il~_~~~iEQ!~!i2~. The main factors 
to be considered in estimating the 
storage required when opening and 
closing files are as follows: 

a. File Control Block (FCB). Approx­
imately 150 bytes for CONSECUTIVE 
and REGIONAL data set organiza­
tions; approximately 300 bytes for 
INDEXED organization. 

Managing Programs 81 



r------------T--------------------------T---------------~---------------T---------------, 
" I OPEN* (bytes) ICLOSE* (bytes) INORMAL* (bytes) I 
,Organization/ PL/I Attributes ~-------T-------+-------T-------+-------T-------i 
I I / Non- I I Non- I I Non- I , 
I' ITasking,TaskingITasking,Tasking,TaskingITaskingl 
.------------+---------?----------------+-------+-------+-------+-------+-------+-------i 
}CO.\lSECUTIVE /STREAM / 1900 ,1900 / 1300 / 1700, I I 
I ISEQUENTIAL BUFFERED I 2400 I 2400 I 2400 I 2800 ,1100 I 1100 , 
1 ISEQ.BUFF.(spanned input) I 1900 ,1900 , 1900 , 2300 , 600 I 600 , 
I ISEQ.BUFF.(spanned output} , 1800 ,1800 I 1800 ,2200 I 500 , 500 , 
l I SEQ. UNBUFFERED I 5100 I 5100 I 5100 ,5500 ,3800 I 3800 I 
r------------+--------------------------+-------+-------+-------+-------+-------+---~---~ 
I INDEXED I SEQUENTIAL ,3600 ,3600 ,3600 I 4000 ,2300 ,2300 , 
! IDIRECr ,3100 / 3900 I 3100 1 4300 I 1800 I 2600 I 
.------------+-------~------------------+-------+-------+-------+-------+-------+-------~ 
I REGIONAL /SEQUENTIAL INPUT/UPDATE I 5100 I 5100 ,5100 I 5500 I 3800 ,3800 I 
I jSEQUENrIAL OUTPUT ,3900 ,3900 I 3900 I 4300 I 2600 I 2600 I 
I 1 DIRECT 1 3100 I 3900 I 3100 1 4300 I 1800 I 2600 I 
r------------L--------------------------~-------~-------~-------~-------~-------~-------i 
1* These figures show the extra storage required by linked PL/I library I/O modules inl 
I both non-tasking and tasking environments. The first two columns show the maximum I 
I space occupied by the library modules during the opening of a file with the givenl 
I attributes. The second two columns show the maximum space occupied during thel 
I closing of the same file. The third two columns show the space occupied by thel 
1 library modules while the file is open. If several files with the same attributes I 
I are processed, then the storage requirements are unaffected. If, however~ anotherl 
I file with different attributes is open when a file is opened or closed~ then thel 
I figure for that file must be added to the figure in the OPEN and CLOSE column. I 
I For instance, if a SEQUENTIAL INDEXED file is open in a non-tasking environment atl 
I the time that a CONSECUTIVE SEQUENTIAL BUFFERED file is being closed, then the totall 
I storage required by the linked modules w:lll be 2300+2400=4700 bytes. The figures dol 
I not include the storage required by data management. I L ______ - ________________ --________________________________________________ --------------J 

.Figure 23. Storage Required by PL/I Library Modules when opening and Closing Files 

b. ~i~!~!Y __ ~2g~le~. The greatest 
storage requirement generally 
occurs when a file is opened or 
closed. Figure 23 shows the stor­
age required at these times. In 
all cases, the space required by 
data management must be added to 
the figures givend 

Co ~~ifer~. In addition to the fac­
tors given above, space must be 
allowed for buffers or I/O control 
blocks. This requirement can 
become very large if large block­
sizes are used. 

All space required by files is 
released and becomes reusable after 
the file has been closed. 

The combination of modules written in 
other languages with modules written in 
PL/I is possible only in a rather limited 
way, since most other languages are not 

82 

structured to support the advanced features 
of PL/I. In order to achieve more than a 
limited use, the user would require an 
intimate knowledge of the object code 
structure and requirements of a PL/I pro­
gram. Appendix C is provided as an intro­
duction to the sUbject. Appendix D of the 
present manual contains an example illus­
trating one way in which an assembler 
language program can be written in order to 
combine it with a PL/I procedure. 

When an assembler subroutine is called 
by a PL/I program, by means of a CALL 
statement or a function reference, a varia­
ble number of arguments can be passed. The 
compiler indicates the last argument by 
setting X'80' in its high-order byte. 

This feature provides compatibility with 
COBOL and FORTRAN calling sequences. It 
cannot be used in an exclusively PL/I 
environment because PL/I does not allow a 
variable number of arguments. 



PLiI object programs make use of a large 
number of subroutines. These subroutines 
are held in the PL/I library and are 
incorporated into the PL/I program by the 
linkage editor. Library modules not 
directly referenced by the compiled module, 
but which are selectively referenced by 
other required modules (e.g., modules with­
in in the data conversion package) are 
specified by the compiler in ESD entries. 
These ESD entries, in conjunction with the 
linkage editor control statement, LIBRARY* 
are used to keep the program's storage 
requirements to a minimum. The form of the 
LIBRARY statement used specifies that the 
linkage editor is not obliged to resolve 
certain external references within a given 
module, unless the referends are already 
included within the module being edited. 
Those modules which require this feature 
use the LIBRARY control statement when they 
are edited into the PYI library. Thus, 
when these modules are subsequently proc­
essed by the linkage editor when building a 
PL/I program, there will be no second-level 
search of the library. Library subroutines 
are automatically selected, and no user 
intervention is needed. 

Other library modules are used on a 
transient basis, and are dynamically loaded 
during program execution. These modules 
reside within the data set SYS1.LINKLIB. 
Modules of this type include those required 
for opening and closing files, RECORD I/O 
data management interface modules, and 
object-program error-handling routines and 
message tables. 

It is possible for the programmer to 
specify that a particular job step shall 
not be executed if any of certain condi­
tions are satisfied by return codes passed 
from previously executed job steps. A 
return code can be set during execution of 
a PL/I program .. 

The conditions under which a job step is 
to be bypassed are set out in the COND 
parameter of the EXEC statement for the 
step. For example, if the EXEC statement 
for a job step, STEPC, contained the param­
eter 

COND=(22,GT,STEPA),(59~NE,STEPB» 

then, if 22 were greater than the return 
code passed from STEPA, or if 59 were not 
equal to the return code passed from STEPB, 
the job step STEPC would not be executed. 
For further information on the use of the 
COND parameter, see the publication IEM 
§ystem/360_QEerating System« Job Control 
Language. 

To use this facility in a PL/I program, 
it is first necessary to declare the 
library module antry point IHESARC: 

DCL IHESARC ENTRY(BINARY FIXED); 

Once IHESARC has been declared, the 
return code can be set at any point in the 
program by the following CALL statement: 

CALL IHESARC(expression); 

The routine may be called as often as 
requiredft Each time, the expression will 
be evaluated and its value will be saved. 
On normal termination, the return code will 
be set to the latest value~ modulo 4096. 
(On abnormal termination, the complete job 
would be terminated.> 

If the facility is not used, a return 
code of zero will be passed. 

The major differences between Release 17 
and the earlier Release 11 version of 
Checkpoint/Restart are the increased number 
of Checkpoint/Restart features and the 
changed method the programmer must use to 
initiate a programmer-deferred checkpOint 
restart, or step restart. 

When a job step terminates because of, 
for example, an I/O error or a machine 
check~ the programmer may require that 
processing begins again from a point ~ithig 
the job step or, alternatively, from the 
beginning of the job step. This can be 
done by means of the IBM System/360 Operat­
ing System checkpoint/Restart facility. 

Managing Programs 83 



Checkpoint/Restart is supported by the 
MVT and PCP supervisors, and provides the 
following features: 

Automatic step restart 
Automatic checkpoint restart 
Programmer-deferred step restart 
Programmer-deferred checkpoint 

restart 

If automatic checkpoint restart or auto­
matic step restart is specified when using 
MVT, MSGLEVEL=1 must be specified in the 
JOB statement .. 

Programmer-deferred step restart enables 
the programmer to resubmit a multistep job 
and cause any number of steps to be 
bypassed, until the required step is 
reached, at which point execution commen­
ces. Automatic step restart causes the 
excution of a job step which terminates 
abnormally to be recommenced from the orgi­
nal starting point. 

programmer-deferred checkpoint restart 
is the technique used if the job is to be 
discontinued, and resubmitted for checKpo­
int restart by the user at a later time; 
automatic checkpoint restart is the tech­
nique used if a restart at the last 
checkpoint taken is to ce performed during 
the job immediately that the system recog­
nizes that the job step has been terminated 
abnormally. Both checkpoint restart tech­
niques require £h~£~E2in~_g2~2' in order to 
carry out the restart operation. Checkpo­
int data consists of all the information 
about a program at a point in its execution 
which can be used to recommence execution 
from that point. Multiple checkpoints can 
be preserved, or, alternatively, only a 
single checkpoint may be required, in which 
case each checkpoint is overwritten by a 
subsequent checkpoint. Deferred checkpoint 
restart can be performed at any of these 
checkpoints, if multiple checkpoints are 
preserved, or from the latest checkpoint, 
if it is the only checkpoint that is 
preserved. Automatic checkpoint restart 
will use only the last checkpoint taken. 
To create a checkpoint from within a PL/I 
program, code the statement 

CALL IHECKPT; 

at a strategic point in the program such 
that any data sets used by the program can 

84 

be repositioned by the restart program to 
the positions held at the time the checkpo­
int was taken. 

Note: The CALL IHECKPT statement must not 
Ee--executed in a multitasking environment. 

When the CALL IHECKPT statement is exe­
cuted, a checkpoint data set is created, 
for which a unique name or checkid is 
generated by the system. rhe-checkId is 
displayed on the operator's console for 
each checkpoint taken. The checkid for a 
particular checkpoint data set which is to 
be used to restart execution of the program 
should be noted, and later used to identify 
the data set. The checkpoint data set is 
sequential only, and may not be a member of 
a partioned data set. 

A DD statement with the ddname SYSCHK 
must be provided in the job stream for each 
step which produces checkpoints. This DD 
statement contains the specifications for 
the checkpoint data set. rhe parameters 
for this statement are given in Figure 24. 

The SYSCHK DD DISP parameter depends on 
whether there is a ~ing!~ __ £he£~E2!~~ or 
whether m~!~iE!e chec~oint~ are required. 
For a single checkpoint code 
DISP=(NEW,KEEP), for multiple checkpoints 
code DISP=(MOD,KEEP). 

With a single checkpoint, the informa­
tion stored at a checkpoint overwrites the 
information stored by any previous check po­
inl:; thus only the latest checkpoint infor­
mation is available. 

The information for a checkpoint is 
stored after the information for a previous 
checkpoint; thus all the checkpoints taken 
are available for a restart. 

The other checkpoint/restart techniques 
mentioned, automatic step restart and 
programmer-deferred step restart, do not 
require either the CALL IHECKPT or SYSCHK 
DD statements. (Automatic step restart 
causes a step to be reexecuted immediately 
if it is terminated abnormally; programmer­
deferred step restart permits the job to be 
resubmitted, but any job steps preceding 
the step to be reexecuted are bypassed, 
permitting the immediate restart of the 
step.) 



r------------T-----------------------------------------------, 
I I Tape, Drum, Disk I 
I Parameter ~----------------------T------------------------~ 
I I Single checkpoint 1 Multiple checkpoints I 
r-----·-------t----------------------~------------------------~ 
I OSNAME= J Any name I 
~-----·-------t-----------------------------------------------~ I VOLUME= I Volume number or other reference , 
t------------t-----------------------------------------------~ 
~ UNIT= I 2400, 2400-2, 2301, 2311, 2314, 2321 etc. I 
r------------t----------------------T------------------------~ I DISp:= , (NEW,KEEP) , (MOO.KEEP) , 
r------------t----------------------~------------------------~ 
I SPACE= I Provided by formulas for direct-access devices I 
t------------t-----------------------------------------------i 
I DCB= I (TRTCH=C> if UNIT=2400-2 I 
t------------~-----------------------------------------------1 , * The space allocated on a direct-access device must bel 
I sufficient for the job-step requirements together withl 
, the system blocks. In effect, this means that it mightl 
I have to be as much as one and a quarter times mainl 
I storage or region size. For example, a 256K machine orl 
I region might require 10 cylinders on a 2311 disk pack., 
, The amount required is derived from the formulas provided] 
, in !g~_~y~~~~~l~Q_QEerating System: storag~_~st!~~~~~. I 
I , 
, A secondary quantity can appear in the SPACE parameter ofl 
, the SYSCHK DD statement. However, if it is specified, itl 
I is not used. , L ____________________________________________________________ J 

• Figure 24. Basic Parameters for the SYSCHK DD Statements 

Automatic checkpoint restart is 
specified implicitly by the execution of a 
CALL IHECKPT statement. 

RNC (restart, but 
no checkpoints) 

requests automatic 
step restart and 
totally suppresses 
the execution of the 
CALL IHECKPT 
statement. The remaining checkpoint restart fea­

tures are controlled from the RD (Restart 
Definition) parameter, which can be speci­
fied in either a JOB statement or an EXEC 
statement. The settings of the RD parame­
ter are listed below: 

1. An RO parameter coded in a JOB state­
ment overrides one coded in an EXEC 
statement. 

RD [.procstep] = {R]NCINRIRNC} 

where: 

R (restart) requests automatic 
step restart. 

NC (no checkpoint) totally suppresses 
both the execution 
of the CALL IHECKPT 
statement, and the 
implicit automatic 
checkpoint restart. 

NR (no restart) Checkpoints may be 
written. but auto­
matic checkpoint re­
start is inhibited. 
2.Eecify this 
12arameter for 

2. If the RD=value is coded in an EXEC 
statement for a cataloged procedure, 
it applies to all the steps within the 
procedure. RD.procstep=value can be 
coded instead of RO=value; it then 
applies only to the specified proce­
dure step. RO.procstep=value can be 
coded for each step in the cataloged 
procedure, in procedure step order. 

3. The CALL IHECKPT statement causes a 
request for automatic checkpoint 
restart and overrides the request for 
automatic step restart, if the parame­
ter RO=R has been specified. 

4. RD=NC and RD=RNC are provided to sup­
press the execution of a CALL IHECKPT 
statement which is contained in a 

Managing Programs 85 



program to be executed, but is not 
required for a particular job. 

5. RD=NC and RD=NR have no effect on a 
step in which there is no CALL IHECKPT 
statement to be executed. In this 
case RD=RNC has the same effect as 
RD=R, specifying automatic step 
restart. 

6. If no RD parameter is specified, auto­
matic step restart is suppresed but an 
automatic checkpoint restart can occur 
if a checkpoint is taken. 

1. The RD parameter is ignored when the 
MFT II supervisor is used. 

Automatic restarts are specified in the 
RD parameter described previously. 

Prugrammer-deferred restarts are per­
formed by resubmitting the deck containing 
the job control statements for the original 
job, with the JOB statement containing a 
RESTART parameter to specify that a restart 
is required, and how it is to be performed. 
The RESTART parameter specifies the step to 
be restarted, and, if a checkpoint restart 
is required, the checkpoint identity, i.e., 
checkid, of the checkpoint data set to be 
used. It is specified as follows: 

{ 
stepname } 

RESTART= ( ~tepname.procstep [,checkid) 

If the restart is a programmer-deferred 
step restart, the checkid information must 
not be specified, and the enclosing paren­
theses may be omitted. The stepname param­
eter identifies the step in the job to be 
restarted. The form stepname.procstep is 
used if the step is in a cataloged proce­
dure. The form '*' can be used to indicate 
that the first step in the job is to be 
restarted. <The first step can be a cata­
loged procedure step.) If a programmer­
deferred checkpoint restart is to be 
Derformed, the checkid information should 
be present and correspond to the checkid 
generated for the appropriate checkpoint 
data set by the system; this data set must 
be available, and specified to the job in a 
SYSCHK DD statement. The SYSCdK DD state­
ment must appear after the JOB statement, 
but before the EXEC statement for the first 
step in the job. If JOBLIB DD statements 
are present, the SYSCHK DD statement 
appears after them. This SYSCHK DD state­
ment must have the disposition parameter 
coded either as DISP={OLD,KEEP) or as 
DISP=(OLD,PASS}. 

86 

DATA SETS FOR PROGRAMMER-DEFERRED 
CHECKPOINT RESTARTS 

To perform a programmer-deferred 
checkpoint restart, the data sets open at 
the time that the checkpoint was taken must 
be available for repositioning for use by 
the restarted step. All the DD statements 
used for the original job step must be 
present in tne restart job step. A second 
SYSCHK DD statement, as orginally supplied, 
must also be present to specify the 
checkpoint data set for the restarted step. 

A restarted program may require the 
omission of a certain number of cards since 
the system cannot reposition a data set 
read from a card reader. The user should 
omit any cards which were read prior to the 
checkpoint from which the restart is to be 
performed. 

A SYSIN data set will be repositioned 
correctly to the position it occupied when 
the checkpoint was taken. If the card 
input is used under a PCP system, it will 
not be repositioned. The position is 
achieved by bypassing the number of cards 
that were processed when the checkpoint was 
issued. Care must be taken if the data set 
needs to be changed; in this case the new 
data set must contain some dummy cards up 
to the point to be reached for reposition­
ing, to replace any data cards which are 
taken out, modified, and replaced in the 
data set at or beyond the repositioning 
poi.nt. 

If a PCP system is used in which output 
for the SYSOUT data set is transmitted 
directly to a printer or card punch, a 
checkpoint taken while the output file is 
open causes the restarted program to pro­
duce output on SYSOUT from the point in 
execution at which the checkpoint was 
taken. 

If the SYSOUT data set is written onto 
an intermediate tape, the tape is reposi­
tioned so tnat records written after the 
checkpoint are overwritten by records from 
the restarted program. 



If the SYSOUT data set is on tape, and 
has been opened and closed prior to the 
check~oint, and 1S then reopened by the 
restarted program, the original SYSOUT data 
set is preserved, and the new data is 
written immediately after it. 

If an MVT system is used, in which 
SYSOUT data sets are written onto a direct­
access device for output by the system 
output writer, the output is produced up to 
the point at which the abnormal termination 
occurred. The 9utput produced by the 
restarted progra~ is written on a new 
SYSOUT data set wbich is opened at the 
point reached by the checkpoint, and con­
tains records written from that pOint. 
This can cause duplication of output for 
the part of the processing which is repeat­
ed until the point of failure of the 
original job step is passed. 

PRESERVATION OF DATA SETS 

A job step which produces temporary data 
sets cannot be restarted. Temporary data 
sets with no dsname, or with a dsname of 
the form && ••••• , cannot be preserved. 
However, temporary data sets can be pres­
erved for restarts if the conditional form 
of the DISP parameter is used, and provid­
ing that permanent dsnames have been speci­
fied. The conditional DISP parameter in 
the DO statements for temporary data sets, 
e.g., DISP=(NEW,PASS,KEEP), permits the 
data set to be passed (or deleted) at the 
normal end of the job step, or to be kept 
if the job step terminates abnormally. 

Direct-access UPDATE data sets which are 
updated by use of the REWRITE statement can 
prevent successful restarts because of 
changes to records taking place after the 
last checkpoint and before abnormal termi­
nation of the job step. A restart in such 
circumstances can cause an updated record 
to be re-updated, giving incorrect results. 
To avoid this situation, two identical data 
sets of the same file should be used, one 
for input and one for output, ~nd process­
ing performed using a READ statement to 

access a record from one of the data sets, 
and a WRITE statement to overwrite the 
corresponding record on the output data set 
with the updated record. 

MULTITASKING 

In PL/I multitasking, a number of tasks, 
each of which can have a different priori­
ty, can exist within the execution job­
step. Control is given to the task that 
has the highest priority and is not waiting 
for any reason. If there are two or more 
tasks with the same priority, control is 
given to the first one in the system queue. 
Thus multitasking allows the programmer to 
make fuller and more efficient use of 
machine time, by reducing the time during 
which the CPU is waiting or the IIO devices 
are not used. It allows him to ~xploit the 
full range of PL/I language features, and 
thus to arrange his program to be as 
flexible, and effective as possible. 
Lastly, it allows the program to which it 
can be applied to be coded more easily. 

This section describes multitasking with 
regard to: 

1. System and implementation 
ments. 

require-

2. Management of multitasking in planning 
and executing a program. 

Multitasking is a sophisticated feature 
and will only g1ve satisfactory results 
when used correctly. Provided the user 
understands the concepts involved and 
arranges his program accordingly, he will 
be able to obtain the full advantages of 
this facility. 

MULTITASKING REQUIREMENTS 

A storage capacity of at least 256K 
bytes is required for multitasking. 

PL/I multitasking uses the MVT system. 
A PL/I program compiled with the TASK 
option and executed under the MFT or PCP 
systems will terminate abnormally. (For 

Managing Programs 87 



details of this and other control programs 
see the section, 'System/360 operating 
Requirements'). All the tasks exist within 
the same job step; the priorities for these 
tasks exist only within the job step and 
can be varied over a range that is deter­
mined by the job-step priority. PL/I is 
not concerned with establishing priorities 
between jobs or between job steps. 

The minimum PL/I multitasking overhead 
in space and execution time, over and above 
that resulting from a single-task PLiI 
program, is: 

Space: About 3500 bytes plus 2K bytes 
for each subtask attached 

Time: About 70 milliseconds per task 
attached on a model 40 

£QillEi!~r_~~Y~!~ Multitasking requires a 
Version 4 PL/I (F) compiler and a Version 4 
PL/I library. Programs based on earlier 
versions can only be executed in a multi­
tasking environment if recompiled with the 
TASK option (see below); even then subpro­
grams in these programs may need rearrang­
ing to execute successfully. 

~ro£ed~~QE£i2g~~ All programs and exter­
nal compilations that are to be executed in 
a multitasking environment must have been 
compiled with the TASK option in the exter­
nal PROCEDU~E statement. For example: 

X: PROC OPTIONS (MAIN, TASK); 

A CALL statement with the EVENT, PRIORITY 
or TASK options also requires a multitask­
ing environment; the TASK option should, 
therefore, be specified for the external 
procedure. If it is not, it is assumed by 
default. 

Use of the TASK option causes 
library multitasking modules, 
the single-task modules, to be 
into the load module. The load 
contains multitasking modules 
multitasking is required. 

the PL/I 
instead of 

link-edi ted 
module thus 

only when 

£QillQigatiQg_~-2£h~r-1~nguages: When a 
routine in System/360 assembler language is 
to be used in multitasking, the DSA 
obtained in it must be at least 108 bytes 
long. (The minimum for a DSA in a non­
multitasking environment is 100 bytes). 
PL/I library routines used in multitasking 
must be those designed for multitasking, 
for example, IHEITH, IHETSA. 

88 

MULTITASKING MANAGEMENT 

There are a number of topics that must 
be fully understood for successful 
multitasking management. These are: 

1. Programming considerations 

2. Use of priorities 

3. I/O handling 

4. Task termination. 

These topics are discussed briefly here; 
further information is provided by the 
diagnostic messages. 

~£ogr~illillin~considerations 

A task may lose control under any of the 
following circumstances: 

1. Termination 

2. I/O operations 

3. A task is attached with a higher 
priority than the current task 

4. Use of the PRIORITY pseudo-variable 

5. A higher-priority task may come out of 
a wait state or may complete I/O 

6. Use of the DELAY or WAIT statements 

Eyent QE£iQg~ Only one task at a time can 
wait on a particular eventa If a situation 
occurs where two or more tasks wait on the 
same event, a diagnostic message is provid­
ed. This kind of situation can easily 
occur; for example: 

CALL X TASK (A); 
CALL X TASK (B); 

If no event is explicitly declared in X, 
then, if X contains a WAIT statement, both 
tasks may be waiting for the same event. 

Variables: The scope of variables must be 
watched carefully in a multitasking pro­
gram. A variable that has not been expli­
citly declared may be altered unpredictably 
when control passes from one task to anoth­
er. For example: 

COMPLETION (ASSIGNMENT) 'alB; 
A = 1; 
CALL A TEST(A) TASK(ONE); 
WAIT (ASSIGNMENT); 
A = 2; 
CALL A_TEST (A) TASK(TWO)i 



A TEST; PROC(PARM); 
-DCL VARIABLE FIXED BINARY; 

VARIABLE = PARM; 
COMPLETION (ASSIGNMENT) = '1'B; 
IF VARIABLE = 1 THEN DO; 

The WAIT statement ensures that the 
program must wait for the task to assign a 
value to a variable known only to A TEST, 
and then set the event 'ASSIGNMENT' com­
plete. If the WAIT statement was not used 
then TASK(ONE) PARM would be overwritten by 
TASK{TWO) PARM, then A may possibly have 
the value 2 before the assignment to VARIA­
BLE, in which case the statements following 
THEN DO would never be executed. 

Q~~Qll!~~~ If there is an ERROR ON-unit in 
a task, and the condition to which the 
ON-unit applies is raised in a subtask of 
that task, a GOTO out of the ON-unit will 
also rais~ the ERROR condition" causing the 
ERROR ON-unit to be reentered repeatedly in 
a loop, because the GOTO label will not be 
known to the attached subtask. This prob­
lem is avoided by using a separate ERROR 
ON-unit in the subtask with a GOTO label 
that is known to the subtask. For example: 

MAJOR: PROC OPTIONS (MAIN, TASK); 
ON ERROR GO TO FINISH; 
CALL A TASK; 

A: PROC; 
ON ERROR GO TO FINISH; 

SIGNAL ERROR; 

END A; 

FINISH: END MAJOR; 

CHECK Condition: If, in a multitasking 
program,--the-use of the CHECK condition is 
not not carefully synchronized. the results 
obtained may be unpredictable. A program 
executed with the CHECK condition may pro­
duce differ~nt results to the same program 
not using CHECK, since the presence of 
CHECK in a program may cause the task in 
which it occurs to wait for I/O and hence 
to lose control. When this task eventually 
regains control, some of the variables may 
have new values. 

§'!:!1~ __ QE~!Q!! in_Q~_Qnill If an entry point 
has been called with the TASK option speci-

fying a task name, then the entry point in 
the SNAP print-out is followed by the task 
name in brackets. 

User Reguested Dump~ A useful debugging 
feature is the ability to obtain a storage 
dump at any point in the program. 

A dump is obtained by the statement: 

CALL dump identifier [(argument)] 

The dump identifier is one of the fol­
lowing 

IHEDUMP - dump all core associated 
with active tasks, and termi­
nate all tasks 

IHEDUMJ - dump all core associated 
with active tasks, and con­
tinue processing 

IHEDUMT - dump all core associated with 
current task only, and termi­
nate this task (and its 
subtasks) 

IHEDUMC - dump all core associateJ with 
current task only# anj con­
tinue processing. 

When IHEDUMJ or IHEDUMP is specified, 
the contents of the dump may not necessari­
ly be the contents of main storage at the 
time when the CALL statement was executed. 
This is because while the dump for one of 
the tasks is being written on an output 
device, the other tasks are still being 
processed. Contempory dumps can be 
obtained by use of the WAIT statement. 

To ensure that a complete dump is pro­
vided, a WAIT should be given to prevent 
the task being terminated before the damp 
is complete. 

If a PL1DUMP DD card has been supplied a 
standard OS/360 SNAP dump will be printed; 
if the identifier is IHEDUMP or IHEDUMT 
there will be one dump for each active 
task. The dump will include information 
such as register values, load list, con­
tents of PIE, and storage dump. To help 
the user interpret the dumps, a directory 
is printed out at the start of each jump. 
This directory includes: 

1. The task name and priority, and the 
attaching statement. if available. 

2. The contents 6f the SYSPRINT file 
buffers, if the file is open. 

3. The name of the files currently open, 
with the addresses of the relevant 
control blocks. 

Managing Programs 89 



4. The name of the current file. 

5. The addresses of the save areas and of 
other areas of special interest. 

The argument in the CALL statement is 
optional; if it is used the dump identifier 
must be declared as ENTRY {FIXED BINARY). 
The argument is an expression that is 
~valuated at execution-time; the result is 
a fixed binary integer that appears in the 
heajing of the dump. This integer must be 
in the rang2 0 to 127, a number outside 
this range is replaced by 127. 

If no DD card is supplied, or if an 
unrecoverable error is deteted during the 
output, e.g, incorrect chaining of save 
areas, th~n a standard operating sytem 
ABEND dump will occur, and will terminate 
the job step. 

For more information on storage dumps 
and the information they provide, see IBM 
~Y§.:t:~!!}~l§'Q_QE~.E~!:.!!!g_§.ystem: Messages, carr;:: 
E!~!:.i2!! ___ ~2Q~§, __ ~!!2 __ St2rage Dumps, FO~!!} 
228-6631. --------

Ret~rn Cod~s: These can be set by use of 
:the--statement CALL IHETSAC. Return codes 
can be set in the major task. 

The priority associated with a particu­
lar job is supplied by the programmer" 
using the PRTY parameter in the JOB state­
ment. The job priority can have any value 
from 0 to 14 inclusive; the higher the 
value the higher the priority. 

This priority determines 
priority of the major task 
program, using the formula: 

the initial 
in the PL/I 

p={16*<job priority» + 10 

The absolute range of values provided by 
this formula is 10 to 234 inclusive; the 
range for a particular program is from 10 
to a value that depends on the job priori­
ty. This value is not only the initial 
priority of the major task, it is also the 
maximum priority that any other task in the 
program can have. If an attempt is made to 
Create a task priority greater than the 
maximum priority, the task will be executed 
at the maximum priority_ 

The priority of any task major, 
current or subtask -- can be reduced to 
zero: an attempt to create a priority of 
less than zero will result in the task 
concerned being executed at zero priority. 
An attached task can have a priority great-

90 

er or smaller than its attaching task or of 
the major task, provided that this priority 
is within the limits given above. A prior­
ity can be changed within a program but 
only when it is the priority of the current 
task or of an immediate subtask of the 
current task. 

A priority can be assigned to a task 
variable before the variable is associated 
with an active taskQ If the task is 
attached without the PRIORITY option, the 
priority has the value that was assigned to 
the task variable. 

These conventions must be interpreted 
carefully when the PRIORITY pseudovariable, 
function or option is being used to mani~u­
late the priority of a task. In particu­
lar, the effect of the maximum ~riority in 
restricting the manipulation should be 
noted. In the example given below, it is 
assumed that none of the omitted statements 
can cause transfer of control or create a 
wait situation. 

In the example, control passes through 
the program to statement 12. Here task T1 
is attached with a priority of 45: this is 
greater than the maximum priority, so T1 is 
given the maximum priority, 42. As this is 
higher than that of T(Z)u the major task, 
control at once passes to T1, that is, to 
statement 26. 

At statement 31, task T2 is a~tached 
with a priority of 38. Control remains in 
T1; statement 32 is executed. The priority 
of T2 is now the highest priority (r(Z)=35, 
T1=32, T2=38), so control passes at onc~ to 
statement 41. After the execution of 
statement 47, the tasks have the priori­
ties: T(Z)=35, T1=32, T2=30. Control now 
returns to T(Z), at statement 13. 

For example: 

//jobname JOg 123, JOHNSMITH, MSGLEVEL=1, 
PRTY=2 

Hence maximum priority=42 

Statement 
~U!iTI!2~E ---

Z:PROC OPTIONS (M~IN,TASK); 

6PRIORITY=-7i 

12 CALL Y TASK(T1) PRIORITY(10); 
113 

fEi2E!!:.Y 
or value --------

T(Z)=42 

T(Z)=35 
T1=42 



16 PRIORITY=2: 
17 A=PRIORITY (T1); 
18 PRIORITY (T1)=-9; 

25 END Z; 

26 Y:PROC; 

31 CALL X TASK (T2) PRIORITY (-4) 

32 PRIORITY=-10; 
33 B=PRIORITY (T2); 

40 END Y, 

41 X: PROC; 

47 PRIORITY=-8; 

55 END X; 

T(Z)=37 
A=-5 
T1=28 

T(Z)=37 

T1=42 

T1=42, 
T2=38 
T1=32 
NE 
NE 
NE 
NE 
NE 

T2=38 

T2=30 
NE 
NE 
NE 
NE 

Note: T(Z) is the priority of the major 
task 
NE=Not executed 

In this program, the main procedure Z 
terminates normally, while the procedure Y 
and X terminate abnormally. This is 
because: 

1. The value of the PRIORITY pseudovaria­
ble specified in procedures Y and X is 
such that it causes control to be 
transferred out of these procedures, 
leaving several statements in the pro­
cedure unexecuted. 

2. There is no statement in the program 
that causes either procedure to be 
re-ent8red before the main procedure 
is terminated. 

Only the priorities of the current task 
and of an immediate subtask of the current 
task can be determined directly. The cal­
culation of priorities in PL/I is relative~ 
not absolute; absolute values, including 
that of the major task, are not easily 
available. 

EV!~! __ QE~i2g~ An I/O event must be waited 
for in the task that initiated it. 

Use of the I/O EVENT option requires 
careful consideration. In multitasking, 
the waiting time in a given task is over­
lapped by processing in another task. 
Using the EVENT option requires extra CPU 
time, which is obtained at the expense of 
time that could be used for processing 
another task. However, EVENT and WAIT can 
be used with advantage provided that a 
processing overlap can be guaranteed, that 
is, while one task is waiting for comple­
tion of an event, another task is being 
processed. 

Another instance of the difficulties met 
when using an I/O event occurs in the use 
of WRITE statements in REGIONAL(3) files. 
If a REGIONAL(3) file with V- or U-format 
records is opened for DIRECT UPDATE or 
OUTPUT, and records are being adjed to the 
file, then under certain conditions, the 
program may not execute properly. These 
conditions are: 

If two or more tasks are simultaneously 
attempting to add records to the same 
track of the data set, and at least one 
of the WRITE statements concerned has 
the EVENT option, then if the WRITE 
statements are not correctly synchron­
ized g the results are unpredictable. 

This difficulty can be avoided in sever­
al ways: 

1. The EVENT option should not be used on 
such WRITE statements 

2. Such WRITE statements should be con­
fined to one task 

3. Use of non-I/O EVENT variables and 
WAIT statements to synchronize the 
WRITE statements in the various tasks 

~QUENTIAL-fi!~g~ Use of a SEQUENTIAL file 
other than SYSPRINT in more than one task 
can present difficulties. For example, a 
task may be interrupted in the middle of a 
PUT statement. If, in the task that gets 
control, another PUT statement is executed 
on the same file, the result, at best, will 
be garbled fields in the output buffer and, 
at worst, will be changes to the internal 
control blocks so that the original task 
may not continue to execute prop2rly and 
will probably terminate abnormally. Again, 
in the updating of a SEQUENTIAL RECORD 
file, a REWRITE will replace the last 
record read (or waited for) irrespective of 
which task read it. suitable use of event 
variables and WAIT statements will avoid 
these situations, but the best solution is 
to keep all references to a SEQUENTIAL file 
to within a single task. 

Only one file should sequentially create 
a data set on a direct-access device or a 

Managing Programs 91 



tape volume. If two or more files are 
writing on the same sequential data set on 
a direct-access device, each file will 
write on the data set independently of the 
others, and records written by one file 
will be overwritten by records from another 
file. Similarly, if two or more files 
attempt to write on a sequential data set 
on the same tape volume. the program will 
terminate abnormally. To avoid this, a 
file should be opened in a common ancestor 
task of those using the file name. 

In sequential-access operations a parti­
cular data set should be referred to by 
only one file at a time in a program. If 
in PCP or MFT two or more files opened for 
sequential output refer to two data sets 
having the same SYSOUT class then the 
records written by one file will be over­
written by the records from the other file, 
and the job may be abnormally terminated. 
If the MVT system is being used, the 
records will be written separately, and 
will not be mixed or overwritten. 

If two or more files opened for seqaen­
~ial access refer to two data sets related 
by, for example, having the same magnetic 
tape device or the same data set name, then 
the records will be overwritten whatever 
the system used. 

since error messages are written on the 
SYSPRINT file, it should be opened in the 
major task. Otherwise SYSPRINT will be 
opened in each task, and the error messages 
may be overwritten or lost. 

The use of SYSPRINT for large STREAM 
E il as in multitasking is not recommended., 
The implementation uses system facilities 
to synchronize operations (PUT statements) 
and error messages) on the file; the effect 
of this is to make PUT statements on thE; 
SYSPRINT file longer to execute than PUT 
statements on other PRINT files. 

EXCLUSIVE Files: If a record of a REGIONAL 
(2)-or-{3)-EXCLUSIVE file is referred to: 

1. More than once in a task, or 

2. By more than one task 

then the same region number must be speci­
fied in each KEY option. 

~y!!£hroniza!i2n: I/O synchronization mean!:; 
avoiding operations on a given data set by 
two or more tasks at the same time. If 
user I/O synchronization is inadequate ff 

then either a system completion code of 001 
is given or the results are unpredictable. 

If a task terminates abnormally while 
I/O operation on a file is in progress in 
an attached task, and later the same fil.e 

92 

is accessed in another task, the results 
may be unpredictable. 

system completion codes 301 and 001 are 
returned under the following conditions: 

301 is returned under one of two circum­
stances: 

1. Synchronization 
program 

error in PL/I 

2. An attaching task terminates 
abnormally while an attached task 
is still active 

The first situation occurs if an 
attaching task attempts an I/O opera­
tion on a file on which an attached 
task is already performing an I/O 
operation. Use of EVENT and wAIT can 
eliminate this problem. 

The second situation occurs when an 
attached task is performing an I/O 
operation by means of QSAM and the 
attaching task terminates abnormally 
(due to, for example, a source program 
error). The attaching task issues a 
WAIT to the ECB (event control block) 
associated with the file, in order to 
allow the I/O operation to complete 
before the file is closed. But the 
attached task has already issued a 
WAIT for the same ECB; as only one 
WAIT can be issued for an ECB, the 
operating system terminates the pro­
gram abnormally and the completion 
code is returned. 

001 Irrecoverable I/O error caused by 
unsynchronized access to data set from 
more than one task. or from more than 
one file. 

Unpredictable results may occur when two 
tasks are performing simultaneous opera­
tions on the same bit string or character 
string. Unpredictable results may also 
occur when an operation involving an unal­
igned bit string is taking place in one 
task at the same time as an operation 
involving data, which is not necessarily 
bit data, whose storage is contiguous with 
that of the bit string, is taking place in 
another task. The occurrence of this prob­
lem is likely to be extremely infrequent. 
However, if it does occur, the WAIT state­
ment and COMPLETION pseudo-variable should 
be used when multiprocessing to avoid such 
results. The following examples indicate 
cases which may produce unpredictable 
results becaase the attaching task and 
subtask are executing simultaneously. 



§~illEl~_ll 

MAIN: PROC OPTIONS(MAIN,TASK); 
DCL C CHAR(3) VARYING INIT('1'); 
CALL A EVENT(E); 
c=c Ii I ' 2' ; 
WAIT(E) ; 

A: PROC; 
C=C I I ' 3' ; 
END; 

pur DATA(C); I*THE VALUE OF C MAY BE 
, 12' OR '1 3' OR '~2 3 ' 
OR '132'*1 

END MAIN; 

MAIN: ?ROC OPTIONSCMAIN,TASK); 
DCL 1 A, 2 B CHAR(1) INITIAL('X'). 

2 C BIT(3) UNALIGNED 
I NIT I AL ( • 111 • ) " 

2 D DEC FIXED(5,O) INITIAL(O); 
CALL SUB EVENT(E); 
C=' 101 ' B; 
WAIT(E) ; 

SUB: PROC; 
B=' Y' ; 
D=6: 
E:"ID; 

pur DATA(A); 

END MAIN; 

I*THE VALUES OF B, C, 
AND D MAY BE 
INCORRECT*I 

Normal Termination: If a task terminates 
normally-WIth-actIve subtasks, then: 

1. An indefinite wait situation might be 
created. For example, a task K (with 
subtasks I and M) might itself be a 
subtask of a task A. If I and M 
contain events that are waited for in 
A t.hen, if K terminates normally while 
I and M are still active, the result 
is an indefinite wait in A. 

2. A warning message (IHE577I) will be 
put out on SYSPRINr for each immediate 
active subtask of the task which is 
terminating normally. 

rhe user must be aware that this situa­
tion -- normal task termination with active 
subtasks -- can happen unexpectedly. For 
instance, a task that was not expected to 
lose control may do by some implicit IIO, 
as in the following example: 

A:PROC; 

Y = 0: 

CALL B PRIORITY (10); 

B:PROC; 

x = 5/Y; I.ZERODIVIDE*I 

END B; 

END A; 

When ZERODIVIDE occurs in B, a consider­
able amount of 1/0 may be necessary to load 
dynamically the error handling module to 
deal with the interrupt. This can allow A 
to gain control of the CPU; if A terminates 
normally before B can regain control, B is 
terminated abnormally. 

It is advisable to wait for subtasks to 
terminate 'before terminating any block in 
the attaching task. Terminating such a 
block, however, can be useful as it pro­
vides a means of terminating a subtask that 
is being waited for. 

If a subtask is terminated when it has 
active subtasks, the completion value of 
these subtasks will be unchanged i.e., 0, 
and their status values will t~ set abnor­
mal. 

Abnormal Termination: In addition to the 
InformatIon-en-abnOrmal termination provid­
ed in "Testing Programs", the following is 
reI event to multitasking: 

1. If a STOP statement is executed in a 
subtask, the FINISH condition is 
raised in the subtask, not in the 
major task. 

2. If the EXIT statement is executed in a 
subtask, the subtask and all subtasKS 
attached by it are terminated, and the 
status of the event variable in the 
subtask is set abnormal (if it is not 
already so). 

3. If the ERROR condition is raised in a 
major task, and there is no ERROR ON 
unit or normal return from an ERROR ON 
unit, then the FINISH condition is 
raised and the program is terminated. 

4. If the ERROR condition is raised in a 
sUbtask, and there is no ERROR ON unit 
or normal return from an ERROR ON 

Managing Programs 93 



unit, an error message is printed, but 
the FINISH condition is not raised. 
The subtask (and any subtasks attached 
to it) is terminated and the status of 
its event variable is set to abnormal. 

If the operating system detects an 
error, such as 'No core available', in a 
subtask, then the subtask is terminated, 
the status of its event variable is set 
abnormal, and a message describing the 
error is printed on SYSPRINT (if it is 
OPEN, otherwise on the console). If the 
subtask has subtasks of its own, the status 
of these subtasks will be unchanged. The 
ERROR con1ition is not raised (because the 
task is already terminated before the PL/I 
library recei~es control), but, if a SYSA­
BEND or SYSUDUMP card exists, a dump will 
be producfd .• 

!V1ULTIPROCESSING 

Multiprocessing permits two or 
tasks to be executed simultaneously. 

more 

On a machine with a single CPU, the 
highest priority task which is not in the 
wait state or not performing any I/O opera­
tions is executed by the cpu. No other 
tasks can be exec~ted at the same time. On 
a multiprocessing machine (i.e., a machine 
with more than one CPU), the CPUs can 
3xecute tasks simultaneously. To obtain 
the best ~erformance from a multiprocessing 
machine, the tasks should be kept as inde­
pendent of each other as possible so that 
~hey can execute simultaneously without 
having to wait for operations to be com-' 
?leted in another task. 

The following example is assumed to bE~ 
executed on a two CPU machine with no other 
jobs executing at the same time so that 
both CPUs are available for execution. In 
the example, the major task attaches tas~ 
T1, whic~ has a higher priority than the 
major task, at the first CALL statement. 
After the CALL statement has been executed~ 
the major task executes sim~ltaneously with 
T1 even though one major task has a lower 
?riority. At the second CALL statement w 
task 1'2 is attached, again with a higher 
9riority than the major task. In this 
case, af~er the CALL statement has been 
executed, T1 and T2, being the two highest: 
?riority tasks, execute simultaneously and 
the major task does not proceed unless T~ 
or T2 performs some 1/0 operations or goes 
into the wait state. Assuming this does 
not happen, when 1'1 completes, a CPU is 
available for continuing the execution of 
the major task. The major task then exe­
cutes simultaneously with T2 until the WAIT 

94 

statement when (assuming that T2 has not 
completed by this time) it waits for the 
completion of T2 and terminates itself. If 
the major task did not wait for T2 to 
complete, then T2 would be terminated 
abnormally when the major task terminated. 

Z: PROC OPTIONS(MAIN,TASK): 

PRIORITY -5: 

CALL X TASK(T1) EVENT(E1) PRIORITY(2): 

CALL Y TASK{T2) EVENT(E2) PRIORITY(2): 

X: PROC: 

END Xi 
Y: PROC: 

END Y: 

WAIT(E2): 
END Z: 

Synchronization of 110 is most important 
since the likelihood of simultaneous opera­
tions on a given data set by two or more 
tasKs is increased in multiprocessing. 
(see "110 Handling" in this section.) 
Also, it is possible that an attaching task 
may complete execution before its subtask. 
Attaching a subtask with a higher priority 
than the attaching task does not ensure 
that the subtask completes first, since the 
attaching task may execute at the same time 
as the subtask although it has a lower 
priority. Hence, it is always advisable to 
wait for a subtask to terminate before 
terminating the attaching task. 



OBJECT PROGRAM MANAGEMENT 

The PRV is 
area; one PRV 
or subtask. 
and use, see 
Organization 

a task-oriented communication 
is established for each task 
For details of the PRV format 

'Appendix' C: Object Program 
and Conventions'. 

This feat~re provides an interface 
between a PL/I program and the Systeml360 
operating syst~m Sort/Merge program. The 
user calls the PL/I litrary module IHESRT 
at the appropriate entry point; this in 
turn calls the Sort/Merge program by means 
of a LINK macro. Information defining the 
'lata to be sorted and the records in which 
this data exists is passed as arguments to 
the IHESRT module. 

The entry point selected depends on the 
source of tne records to be sorted and 
th~ir disposition afterwards. Four circum­
stances are possible: 

1. Records in a data set are retrieved 
and passed for sorting; the sorted 
records are placed in a data seta 

2. Records constructed or updated in a 
PL/I program or procedure are passed 
for sorting; the sorted records are 
placed in a data set. 

3. Records in a data set are retrieved 
and passed for sorting; the sorted 
records are passed to a PL/I program 
or procedure. 

4. Records constructed or updated in a 
PL/I program or procedure are passed 
for sorting; the sorted records are 
passed to a PL/I program or proce­
dure. 

The retrieval of records from a data sete 
passing them to the sort program and plac­
ing the sorted records in a data set are 
a-II performed by the PL/I program. Records 
constructed or updated in a PL/I program or 
procedure can be passed, after sorting, to 
the same PL/I program or procedure or to a 
different one. 

The records passed to the sort program 
are sor~ed a numDer of times until the 
required sequence is obtained. Each of 
these minor sorts is performed on the 
contents of selected fields within the 
record; up to twelve of these fields can be 

designated. This is adequate to ensure 
even long complicated records containing a 
small range of data types and values can De 
correctly and successfully sorted. 

The sequence in which the records are 
placed is the System/360 collating 
sequence. This is described in IBM 
§ystem~l~Q __ Q£~Eat!gg_§Y~~~~_fL/l_E~feE~~£~ 
~f~L_~~Y~QE£~ __ anQ __ £h~E~£i~E __ §~i~L __ fQE~ 
2£~Q:.1144:.. 

The user must be familiar with the usage 
of the Sort/Merge program; full details of 
this are given in l~!:L§.y~~~~~l£Q __ QE~E~i!!!g 
§Y~i~~ __ §QE~~~~Eg~L Form C48-6543. Brief 
information on some aspects, for example, 
record format, storage requirements, data 
set description, is provided here as a 
guide to the environment required, but this 
is not intended to supplant use of the 
Sort/Merge manual. 

Record format:Blocked and untlocked fixed­
and--varIable-length records can be passed 
t9 the sort program. Record size can vary 
over a wide range: 

Minimum: 18 bytes 

Maximum: about 32,000 bytes. The size 
for a particular application 
depends on the size of the main 
storage and on the type of 
intermediate storage used. 

Sort performance is improved if the input 
records are blocked. There are no restric­
tions on block size; however, where possi­
ble, large records should have small block­
ing factors. 

~Q!~g~ __ E~g~iE~me~~~~ At least 15500 bytes 
of main storage are required .The amount of 
intermediate storage ~equired (used for 
workspace and temporary storing of partial­
ly sorted records) depends on the size of 
the input data set. The amount required 
for a particular application can be calcu­
lated from formulas provided in the 
Sort/Merge manual. rhe number of devices 
required is: 

Minimum: Three tape units or one direct­
access device 

Maximum: Thirty-two tape units or six 
direct-access devices. 

The devices used must not be mixed; either 
all tape units or all direct-access devices 
of the same device-type must be used. Tape 
units can be 7- or 9-track, or a mixture of 
both .. 

Managing Programs 95 



If a 2314 disk storage device is used. at 
least six work files must be made available 
for the sort. 

If direct-access devices are used" then 
sort performance is impr.oved if: 

1. Each data set is kept on a seperate 
device 

2. The number of data sets used is a 
minimum 

3. All data sets are the same length. 

Data Sets: Input and output data sets must 
be--accessed with the queued sequential 
access method (QSAM). 

The load-module execution step requires 
some or all of the following DO statements 
in addition to the DO statements for the 
PLI I program. 

IISORTIN DD Input data set 

IISORTOUT DD output data set 

IISORTWK01 DO Data sets for work areas; 
IISORTWK02 DD from 3 up to 32 of these 
/ISORTWK03 DO data sets can be used 
IISORTWKnn DO 

/ISORTLIB DO Sort program data set 

IISORTCKPT DD Sort checkpoint data set 

IISYSOUT 

I/SYSLMOD 
IISYSLIN 
I/SYSUT1 

DD system output data set 

DO These are required because 
DO the sort program calls the 
00 linkage editor to select 

the appropriate routines 
for SORTLIB, to generate 
the sort program required 
by the PL/I program 

/ISYSUOUMP DD Storage dump data sets, 
IIPL1DUMP DO useful while the PLiI 

program is being debugged 

The parameters for all except two of these~ 
data sets depend on the particular 
application requiring the sort. The two 
exceptions are: 

IISORTLIB DD DSNAME=SYS1.S0RTLIB,OISP=OLD 

/ISYSOUT DO SYSOUT=A 

DISP=SHR should be specified 
SORTLIB data if SORTLIB is to 
concurrently by more than one job. 

for the 
be used 

PL/I Sort checkpoints are written on a 
data set identified by the DD statement 
/ISORTCKPT DO ••• etc. A programmer­
deferred checkpoint restart of a PL/I Sort, 

96 

should use the DO statement //SYSCHK DD ••• 
etc., to identify the checkpoint data set 
to the restart program. Further 
information on the use of checkpoint 
restart is given in the section 
"Checkpoint/Restart," in this publication. 

User parameters specified for the SYSUT~ 
DD statement should include: 

IISYSUT~ DD UNIT=(SYSDA,SEP=(SORTLIB, 
SYSLMOD,SYSLIN» 

If both the following occur: 

I/SYSOUT OD SYSOUT=A 

I/SYSPRINT DO SYSOUT=A 

then, if the SYSOUT device is a tape 
storage unit, the user must take care that 
the two data sets do not use the same 
output device. Under MVT it can be avoided 
by specifying a different device class for 
each data set. 

SORTIN and SORTOUT are not always 
required; details are given in the descrip­
tion of the various entry points to IHESRT. 
SORTCKPT, SYSUOUMP and PL1DUMP are' option­
al, as is the number of SORTWKxx state­
ments. 

If the PL/I program uses an IBM cata­
loged procedure for its job control lan­
guage, then SORTIN, SORTOUT and the 
SORTWKxx statements must be specified as 
GO.SORTIN, etc., because they are associat­
ed with the PL/I program, not the sort 
program. On the other hand, SYSLMOD, SYS­
LIN and SYSUT1 are associated with the sort 
program and therefore should be specified 
as given above and not as part of the 
cataloged procedure. 

The user requires either SYS1.LINKLIB 
(which contains the sort/merge program) or 
a private job library in which sort/merge 
has been placed. SYS1.LINKLIB is loaded 
automatically with IEMAA, but a //JOBLIB DO 
statement will be required for the job 
library. 

For multiple invocations of SORT within 
a single job step, the standard ddnames of 
SORT (SORTIN, SORTOUT, SORTWK, SORTMODS, 
and SORTCKPT) can be changed by replacing 
the first four characters of the ddnames. 
This is achieved by adding an extra argu­
ment to the end of the argument list in the 
CALL statement to IHESRT. The argument is 
a character string, which can be any 
length, but only the first four characters 



are used to replace the letters SORT in the 
standard ddnames. 

If the string is null, the standard 
ddnames remain unchanged. If the string is 
more than four characters long, only the 
first four characters are used. If the 
string is from one ~o four characters long, 
then the first one to four characters in 
the standard ddnames are replaced. 

The first character in the string must 
be alphabetic otherwise either an OPEN 
error may occur in SORT or an error will 
occur during scheduling of the job step if 
an illegal ddname (e.g.# 20RT) is found. 

The PL/I (F) Compiler does not permit a 
variable number of arguments to the same 
entry name in separate CALL statements. 
Therefore a compilation which invokes mul­
tiple sorting operations must contain the 
CALL statements with the argument to speci­
fy the Jdnames set to null ('I) when using 
standard ddnames. and set to the required 
character string for the modified ddname. 

TEST: PROCEDURE OPTIONS(MAIN); 
DECLARE IHESRTA ENTRY(CHAR, CHAR, 

FIXED BIN, FIXED BIN~ CHAR); 
DECLARE STRING CHARACTER(2) 

INITIAL('PA'); 
/*INVOKE SORT USING STANDARD 

DDNAMES*/ 
CALL IBESRTA(ARG1, ARG2, ARG3, 

ARG4, "); 

I*INVOKE SORT USING MODIFIED 
DDNAMES*/ 

CALL IHESRrA(ARG1, ARG2, ARG3, 
ARG4 17 STRING); 

END TEST; 

In the first invocation of IHESRTA the 
following DO statements are required: 

//SORTIN DD ••• 
//SORTOUT DD 
I/SORTWK1 DD 
//SORTWK2 CD 

In the second invocation of IHESTRTA the 
following DD statements are required:-

I/PARTIN DD ••• 
//PARTOUT DD 
//PARTWKl DD 
//PARTWK2 DD 

Suppose that a data set containing 4000 
logical records of the type shown in Figure 
24.1 is to be sorted according to the 
values in four fields in each record: 

1. PKDEC, a fixed-point 
the contents are to 
ascending order 

decimal field; 
be arranged in 

2. CHTER, a character field, in ascending 
order 

3. FLTNUM, a floating-point decimal 
field, in descending order 

4 .. BINNUM, a fixed-point binary field, in 
ascending order 

When the records are finally sorted, the 
contents of the field dAscribed above could 
be printed as: 

PKDEC --oT-
01 
01 
01 
01 
01 
01 
01 
01 
02 

CHTER 
BLACK 
BLACK 
BLACK 
BLACK 
BLACK 
ORANGE 
ORANGE 
ORANGE 
ORANGE 
BLACK 

FLTNUM 
-':-034 

1.034 
1.033 
1.033 
1.033 
2.087 
2.087 
0.072 
OD072 
1.029 

etc. 

BINNUM 
-OlOB-

o 11B 
OOOB 
001B 
101B 
010B 
011B 
101B 
110B 
001B 

r-----------------------T-----T--------------------T-------~------------T---T---' 
I I PKDEC I I FLTNUM I I BIN I I 
I I I I I I NUMI I L ___ J ___ J ___ J ___ J ___ J ___ L ___ J_L_J ___ J ___ J ___ J ___ J ___ LJ ___ J __ ~J ___ J ___ J ___ L ___ L ___ J 

o 24 30 51 59 80 
r----------------------T-------T-------------------------------------------------, 
I I CHTER I I 
I II I l __ J __ . __ J ___ J ___ J ___ J_L_J ___ J_L_J ___ J ___ J ___ J ___ J ___ J ___ J ___ J ___ J ___ J ___ J ___ J ___ J 

80 102 110 160 

Figure 24.1. Figure-Length 160-byte Records, showing Fields on which Sort is to be Made 

Managing Programs 97 



The information defining the data to be 
sorted and the records in which it exists 
is described in two sort program 
statementS -- the SORT statement and the 
RECORD statement. 

The SORT 
,'lord that 
sort is to 
consists of 
each control 
record to be 
is: 

statement describes a control 
defines the fields on which the 

be made. The control word 
up to twelve control fields; 

field describes a field in the 
sorted. The statement format 

SOKT FIELDS=(b~,l1'£1,s1,--.bn.ln.fn,sn), 
SIZE=m, SKIPREC=z, CKPT 

where 

b = first byte of field to te sorted. 

1 

f 

98 

Binary data can start on any bit within 
a byte and is specified: 

7.2 Bit 2 in byte 7 

10.3 Bit 3 in byte 10 

All other ~ata starts on a byte bounda­
ry, which is specified as an integer. 

length (in bytes) of the control field. 
since Dinary data can start and end on 
any bit, its lenqth is specified in the 
byte bit notation given above: 

2.1 the length of the binary data 
field is 17 bits 

All other lengths are specified as 
integers. 

data type. The code for the various 
::lata tYfes is: 

BI 
CH 
FI 
FL 
PD 
ZO 

Binary 
Character 
Fixed-point 
Floating-point 
Packed decimal 
Zoned decimal 

If all the control fields have the same 
data type, then f o •••• f n can be omit­
ted from the control fields and 
FORMAT=x(where x is the data type) 
inserted after the right parenthesis 
and before the SIZE parameter. 

These sort data types correspond to the 
following PL/I data types: 

Sort 

BI 

CH 

BINARY 
BIT 

CHARACTER 

s = 

m 

z 

FI FIXED BINARY 
FIXED DECIMAL 

FL FLOAT BINARY 
FLOAT DECIMAL 

PD FIXED DECIMAL 

ZD PICTURE 

the order in which the contents of the 
field are to be sorted. The codes are: 

A ascending order 
D descending order 

the number of records in the input data 
set. If this number is not known 
precisely, an estimated total can be 
specified thus: 

SIZE=Em 

the number of records to be skipped 
before the sort begins. This allows a 
sort to begin at any point in a data 
set, omitting any records for which a 
sort is not required. 

CKPT A checkpoint is taken at 
points in the sort program. 

several 

The specification of these SORT fields 
is subject to the following restrictions 
and conventions: 

1. The total lengths specified in all the 
fields in one SORT statement must not 
be greater than 256 bytes. If binary 
data specifies part of a tyte, the 
whole of that byte must be included in 
the length count. For example, a 
binary field starting at 11.3 and 
ending at 27.2 is 17 bytes long. 

2. All the fields specified by the con­
~rol fields must he in the first 4092 
bytes of the record. 

3. The maximum length of a decimal field 
is 16 bytes; all other fields can De 
up to 256 bytes long. 

The SORT statement for the records in 
the example is: 

SORT FIELDS=(24,6.PD,Aw102,8,CH,A,51,8,FL, 
D,74.7#0.3~BI,A),SIZE=4000 

The RECORD statement describes the for­
mat and length of the records to be sorted. 
The format is: 

where 

r = record formatu The code is: 



F 
V 

fixed-length 
variable-length 

1 1 = length of each record in the input data 
set, as follows: 

F records 
V records 

record length 
maximum length 

The length must be the same as the 
LRECL value in the DCB parameter for 
the SORTIN data set; if it is not, then 
the LRECL value is taken. 

1 2= length of each record to be handled by 
the sort program, as follows: 

F records 
V records 

record length 
maxi.mum length 

If this value is not given in the 
RECORD statement, then it is assumed to 
be th~ same as 1 1 -

13= length of eaCh record in the output 
data set, as follows: 

.IT records 
V records 

record length 
maximum length 

If ~his value is not given in the 
~ECORD statement, it is assumed to be 
1 2 0 The value must be the same as 
LRECL value in the DCB parameter in the 
SORTOUT data set: if it is not, then 
the LRECL value is used. 

l~= minimum length of variable-length 
records in the input data setM 

If thiti value is not given, then it is 
assumed to be the greater of: 

ao The minimum necessary to contain 
the control fields specified in 
the SORT statement, or 

b. the minimum physical-r?cord length 
required by the operating system. 

ls= the most frequent record length occur­
ing in a data set containing variable­
length records_ It is called the modal 
length. If this value is not given, 
then it is assumed to be the average of 
the minimum and maximum lengths of the 
records in the input data set. 

The specifications of these RECORD 
fields is subject to the following restric-
tions and conventions: 

1. 

2. 

The lengths specified for variable­
length records must include ~he. four 

t field at the beg1nn1ng of byte coun 
each record. 

When a direct-access device is used 

for intermediate storage, the record 
length must not exceed one track. 

3. The record format must be the same as 
that specified in the RECFM 
subparameter in the DCB parameter for 
the SORTIN and SORTOUT data sets. If 
it is not, then the SORTIN RECFM 
specification is used. 

4. Values in the LENGTH parameter that 
are equal to those assumed by the 
program can be dropped from the oper­
and. Values dropped from the right­
hand end of the operands are simply 
omitted; values dropped at the begin­
ning or middle of the operand must ne 
indicated by commas: 

LENGTH=(11,12) 
LENGTH=(l~,.,l~) 

The RECORD statement for the records in the 
example is: 

RECORD TYPE=F, LENGTH=(160) 

For this application (sorting records 
from one data set to another) the PLII 
library module IHESRT is entered at the 
entr.y point IHESRTA as follows: 

CALL IHESRTA(argument~,argument2,argument3' 
argument q ): 

where 

argument" a character-string expression 
representing the SORT state­
ment. 

argument 2 = a character-string expression 
representing the RECORD state­
ment. 

argument 3 

argument~ 

an arithmetic expression that 
on evaluation gives a fixed 
binary integer. This int~ger 
gives the amount of main stor­
age available to the sort pro­
gram. If this value is l~ss 
~ham 12,000 bytes, then 12,000 
is assumed. 

a fixed-binary variable of 
precision (15,0) that contains 
the value of the return code 
returned by the sort frogram: 

o Sort successful 
16 Sort unsuccessful 

If the sort is unsuccessful, diagnostic 
messages are printed on the console listing 
or the listing of the system output file 
(SYSOUT or SYSPRINT). 

Managing Programs 99 



To use this module in a PL/I program, 
IHESRTA is declared as an entry name with 
the appropriate parameters. IHESRTA is 
then called with arguments described above. 
Once called, it continues to pass records 
for sorting and placing the sorted records 
in a data set until either the specified 
number of records has been sorted or the 
sort is unsuccessful. In the latter case~ 
the sort stops at this point. 

The value of the character-string 
expression for the SORT and RECORD state­
ments has the form: 

'bstatementb ' 

The blanks at the beginning and end of the 
expression are always required. An embed­
ded blank must occur between SORT and 
FIELDS, and between RECORD and TYPE; no 
other embedded blanks are permitted. 

When character-string constants are used 
that are too long for one record of the 
PL/I source program, they are continued in 
the following record. rhe user must take 
care that embedded blanks are not inadver­
tantly inserted at the beginning and end of 
such records; the value of the SORMGIN 
paramEter must be taken into consideration. 

A PL/I program to sort the records 
iescribed above would require both the 
SORTIN and SORTOUT DD statements, as well 
as any others that are necessary. The 
source code could be: 

ALPHA: PROC OPTIONS (~AIN); 

DCL IHESRTA ENTRY(CHAR(70),CHAR(28), 
FIXED BINARY(31,O), FIXED 
BINARY(15,O», 

SFIELD CHAR(70), 
RFIELD CHAR(28), 
RETCDE FIXED BINARYC15,O); 

SFIELD=' SORT FIELDS=(24,6,PD,A,102,8, 
CH,A,51,8,FL,D,74.7,0.3,BI,A), 
SIZE=4000 'i 

RFIELD=' RECORD TYPE=F,LENGTH=(160) Ii 

CALL IHESRTA(SFIELD,RFIELD,45056, 
RETCDE)i 

END ALPHA; 

Records constructed or updated in a PL/I 
program or procedure can be passed to the 
sort program by means of a RETURN 
(expression) statement, and (when sorted) 

100 

placed in a 
poi.nt IHESRTB. 

data set, by using the entry 
This is invoked as follows: 

CALL IHESRTB Cargument.,argument2 , 

argument3,arg~ment4Iarguments) 

where 

arguments 1l - 4 = as for IHESRTA 

arguments = the entry name of the PL/I 
procedure supplying the records 
to the sort program. 

The PL/I records are passed to an entry 
point in the sort program called a user 
exit. A user exit is a point in the 
executable code of the sort program at 
which control can be received from or 
passed to a user program that modifies the 
sort program or uses only part of it. The 
user exit for passing records from a user 
proqrarn to the sort program is E15. 

The procedure invoked by argument pass­
es to the sort program a character-string 
representation of the record to be sorted. 
If the record is not in character-string 
form, it must be defined on a character 
string and then passed. This may lead to 
difficulties in the PL/I program. The 
language rules specify that the attributes 
of the defined and the base items must 
match exactly except for their lengths and 
that string overlay defining on an aggre­
gate parameter is not permitted. The (F) 
implementation permits the use of differing 
attributes and of this type of overlay 
defining, and produces error-level diag­
nostics when these situations occur. Suc­
cessful link-Editing and execution are pos­
sible provided the condition codes on the 
appropriate EXEC statements are adjusted to 
allow the step concerned to be executed. 

In addition to the return code supplied 
by the sort program to the PL/I program, 
the PL/I program supplies a return code to 
the sort program that indicates whether 
there are any more records to be passed for 
sorting. This return code is set by one of 
the :Eollowing statements: 

CALL IHESARCCn); 
CALL IHETSACCn)i 

(single-task programs) 
(multitasking programs) 

where n has the values: 

8 No more records will be passed 

12 Insert the record passed into the file 
to be sorted 

If the CALL IHETSAC(n) statement is to 
be used, the TASK option must be specifi~a 
in the MAIN procedure statement. 



The PL/I program supplying the records 
requires all the DD statements given above 
except the SORTIN DD statement. As there 
is no input data set, the SIZE parameter is 
not required. The code for a program 
supplying the records described above could 
be: 

BETA: PROC OPTIONS (MAIN); 
DCL IHESRTB ENTRY (CHAR(60),CHAR(28), 

FIXED BINARY(31,0), 
FIXED BINARY{15,0), ENTRY), 

IHESARC ENTRY (FIXED BINARY), 
ENT15 RETURNS(CHAR(160», 
SFIELD CHAR(60), 
RFIELD CHAR(28), 
RETCDE FIXED BINARY (15,0); 

SFIELD=' SORT FIELDS=(24,6,PD,A,102,8,CH,A, 
51,8,FL,D,74.7,0.3,BI,A) I; 

RFIELD=' RECORD TYPE=F,LENGTH=(160) '; 
CALL IHESRTB (SFIELD,RFIELD,45056,RETCDE, 

ENT15); 
ENT15: PROC CHAR(160); 

DCL INPUT FILE RECORD DIRECT ENV 
(REGIONAL(3»KEYED, 

INREC CHAR(160) DEF INRECX, 
1 INRECX UNALIGNED, 

2 PADA CHAR(23), 
2 PKDEC FIXED DECIMAL (11), 
2 PADB CHAR(21), 
2 FLTNUM FLOAT(16), 
2 PADC CHAR(13), 
2 BINNUM FIXED BINARY(16), 
2 PADD CHAR(26), 
2 CHTER CHAR(8), 
2 PADE CHAR(51), 

N STATIC FIXED BINARY(15,0) 
INIT(4000); 

IF N.,=O THEN DO; 
READ FILE(INPUT) INTO(INRECX) 

KEY(N); 
CALL IHESARC(12); 
N=N-1 ; 
RETURN(INREC); 
END; 
ELSE CALL IHESARC(8); 
RETURN; 

END ENI'15; 
END BETA; 

Records from a data S2t can be sorted 
and than passed as arguments to a PL/I 
program or procedure, by using the entry 
point IHESRTC. This is invoked by: 

CALL IHESRTC(argument 1 ,argument 2 ,argument 3 , 

argument~,argument6) 

where 

argument l1 - ~ = as for IHESRTA 

argument6 = the entry name of the PL/I 
procedure to which the sorted 
records are to be passed. The 
user exit for this is E35. 

The records passed by the sort program 
must be in a character-string form. If 
this form is not the one required by the 
PL/I program, then the PL/I record must be 
defined on a character string. The same 
difficulties can be expected here as for 
IHESRTB. 

The return code passed by the PL/I 
program to the sort program, using the CALL 
IHESARC(n) or CALL IHETSAC(n) statement has 
the values: 

4 the record passed has been accepted, 
pass the next record 

8 stop passing records, even if there are 
still more to come. 

If no return code is passed to the sort 
program, then this program continues to 
pass records until all have been passed. 

All the DD statements described earlier 
may be used except the SORTOUT DD state­
ment. 

If the records described above were 
retrieved from a data set, sorted and the 
passed to a PL/I program or procedure for 
printing on SYSPRINT, the code for the 
source program could be: 

GAMMA: PROC OPTIONS (MAIN) ; 

DCL IHESRTC ENTRY (CHAR(70), CHAR(28), 
FIXED BINARY(31,O), 
FIXED BINARY(15,O),ENTRY), 

IHESARC ENTRY (FIXED BINARY), 
SFIELD CHAR(70), 
RFIELD CHAR(28), 
RETCDE FIXED BINARY(15,O); 

SFIELD=I SORT FIELDS=(24,6,PD,A,102,8, 
CH,A,51,8,FL,D,74.7,O.3,BI,A), 
SIZE=4000 '; 

RFIELD=' RECORD TYPE=F,LENGTH=(160) I; 
CALL IHESRTC (SFIELD,RFIELD, 45056, 

RETCDE,ENT35) ; 
ENT35: PROC (OUTREC); 

DCL OUTREC CHAR{160), 
1 OUTRECX DEF OUTREC, 

2 PADA CHAR{23), 
2 PKDEC FIXED DECIMAL(11), 
2 PADB CHAR(21), 
2 FLTNUM FLOAT(16), 
2 PADC CHAR(13), 
2 BINNUM, 

3 NOBITA BIT(23), 
3 BINNO BIT(3), 
3 NOBITB BIT(6), 

2 PADD CHAR(26), 
2 CHTER CHAR{8) .. 

Managing Programs 101 



2 PADE CHAR(51), 
N STATIC FIXED BINARYC15,0) 

INIT(4000); 
IF N,=O THEN DO; 

CALL IHESARC(4); 
PUT FILE(SYSPRINT) SKIP EDIT(PKDEC, 

CHTER,FLTNUM,BINNO) (F(11),X(2), 
A(8),X(2),F(16,3).X(2),B(3»; 

N=N- 1; 
RETURN; 
END; 

ELSE CALL IHESARC(S); 
RETURN; 

END ENr35; 
END GAMMA; 

Records constructed or updated by a PL/I 
program or procedure can be passed to the 
sort program; the sorted records can then 
be passed tack to the same PLiI program or 
procedure or to a different one. 

This requires the entry point IHESRTD, a~ 
follows: 

CALL IHESRTD (argument~rargument2q 

argument3,argument~,argument5' 

argum~nt45) 

where 

arguments'1- ~ = as for IHESRTA 

argumen~5= as for IHESRTB 

argumente = as for IHESRTC 

Neither the SORTIN nor the SORTOUT DD 
statements are required for this entry 
point, nor is the SIZE parametern A PI/I 
program to sort the records described ear­
lier could be: 

DELTA: PROC OPTIONS(MAIN); 

102 

DCL IHESRTD ENTRY(CHAR{60),CHAR(2S), 
FIXED BINARY(31,0), 
FIXED BINARY(15,0)qENTRY,ENTRY), 

IHESARC ENTRY (FIXED BINARY), 
ENT15 RETURNS(CHARC160», 
SFIELD CHAR(60), 
~FIELD CHARC2S), 
RETCDE FIXEO BINARY (15,0); 

SFIELD=' SORT FIELDS=(24.6"PD,A, 
102,S,CH,A.51,S,FL,D,74.7, 
0.3,BI,A) '; 

RFIELD=' RECORD TYPE=F,LENGTH= 
(160) '; 

CALL IHESRTD(SFIELD,RFIELD,45056, 
RETCDE,ENT15,ENT35); 

IF RETCDE=16 THEN DO; 
PUT FILE(SYSPRINT) SKIP LIST 
('SORT WAS UNSUCCESSFUL'); 
GO TO ENDA; 
END; 

ENT15: PROC CHAR(160); 
DCL INREC CHAR(160) DEF INRECX, 

1 INRECX UNALIGNED~ 
2 PADA CHAR(23), 
2 PKDEX FIXED DECIMAL(11), 
2 PADB CHAR(21), 
2 FLTNUM FLOAT(16), 
2 PADC CHAR(13), 
2 BINNUM FIXED BINARY(16). 
2 PADD CHAR(26).., 
2 CHTER CHAR(S)" 
2 PADE CHAR(51) ; 

(Code for generating records) 

IF 1<=100 THEN DO; 
CALL IHESARC(12); 
1=1+1; 
RErURN(INREC); 
END; 

ELSE CALL IHESARC(S); 
RETURN; 

END ENT1S; 

ENT3S: PROC(OUTREC); 
DCL OUTREC CHAR(160)~ 

1 OUTRECX UNALIGNED DEF OUTREC, 
2 PADA CHAR(23), 
2 PKDEC FIXED DECIMAL(11), 
2 PADB CHAR(21), 
2 FLTNUM FLOAT(16), 
2 PADC CIfAR(13), 
2 BINNUM, 

3 NOBITA BIT(23), 
3 BINI.'lO BIT(3), 
3 NOBITB BIT(6), 

2 PADD CHAR(26), 
2 CHTER CHAR(8), 
2 PADE CHAR(S1), 

N STATIC FIXED BINARY(15 g 0) INIT(1); 
IF N<=100 THEN DO; 

CALL IHESARC(4); 
PUT FILE(SYSPRINT) SKIP EDIT(PKDEC, 

CHTER,FLTNUM,BINNO) (F{11),X(2), 
A(8),X(2),F(16,3).X{2),B{3»; 

N=N+ 1 ; 
RETURN; 
END; 

ELSE CALL IHESARC(S); 
RETURN; 

END ENT35; 
ENDA: END DELTA; 



If the PL/I SORT is invoked from differ­
ent tasks within a main PL/I procedure. 
i.e., two or more sorting oper~tions are to 
be performed asynchronously by separate 
subtasks, the following restriction applies 
when messages output by the sort programs 
are to be listed on the line printer: the 
SYSOUT DD statements which specify the data 
set for the messages must not use SYSOUT= 
in the operand field; this operand field 
must specify an actual device, rather than 
the system output stream, for example: 

IISYSOUT DD UNIT=1403 

This restriction does not apply if the 
messages are to be printed on the console. 

The facilities that allow non-PLII data 
sets to be used with PL/I programs are now 
extended to include FORTRAN datao Pre­
viously, the COBOL attribute (see 'The 
ENVIRONMENT Attribute' in Appendix B) pro­
vided the only facility for data inter­
change with a high-level language. NOw, 
the ALIGNED and UNALIGNED attributes pro­
vide a similar facility for FORTRAN, that 
is, they allow PL/I programs to use FORTRAN 
data sets. 

A FORTRAN unformatted data set consists 
of records which are simply the concatena­
tion of individual internal data items 
without regard to alignment stringency. In 
general, the data construction in these 

records is equivalent to that of a PL/I 
UNALIGNED structure containing base ele­
ments which are the same as the data items 
on the record. For eX3mple 

INTEGER * 4 A 
LOGICAL * 1 B 
REAL * 8 C 

WRITE (5) A,B,C 

The record written has the same format as 
the data in a PL/I structure of the form: 

DECLARE 1 R UNALIGNED, 
2 S FIXED BINARY, 
2 T BIT{S), 
2 U FLOAT ( 16) ; 

There are, however, two exceptions: 

1. FORTRAN records may contain halfword 
binary data, which is not sUPforted by 
the PL/I (F) compiler. such data can 
still be read, however, (providing it 
is unsigned) by reading it into a 
character string of length 2, and then 
using UNSPEC to assign it to a PL/I 
FIXED BINARY variable. 

2. FORTRAN IOCS can split its logical 
records into several physical records, 
a technique known as spanning. The 
fact that a record is sfanned is 
transparent to the FORTRAN frogrammer. 
Spanned records are not supported by 
the PL/I (F) compiler. Unspanned FOR­
TRAN records can be read by PL/I using 
UNALIGNED structures. 

For use of the ALIGNED/UNALIGNED attri­
butes, see 'Use of Storage' in the chapter 
'Programming Techniques.' 

Managing Programs 103 



The information in this section is 
divided into two main categories: the first 
part provides a list of the errors and 
pitfalls most likely to be encountered by 
users when first programming in PLlI; the 
second part lists various methods of 
improving the performance of a program. 
together with some housekeeping points and 
additional hints. 

This is a list of the errors and pit­
falls most likely to be encountered when 
writing a PL/I source program. Some of the 
items concern misunderstood or overlooked 
language rules, while others result from 
fail~re to observe the implementation con­
ventions and restrictions of the PL/I (F) 
compiler, and are indicated by (I) appear­
ing after the item. 

(1) The option list in the PARM parameter 
of an EXEC statement should be 
enclosed in quotation marks, and is 
limited to a maximum length of 40 
characters (including commas but 
excluding quotation marks). (I) 

(2) When the source deck is in the input 
stream to the sequential scheduler, 
check that the last card in the source 
deck is a delimiter (/* in columns 1 
and 2). (I) 

(3) A STATIC variable in an overlay seg­
ment could be overwritten during an 
overlay operation unless it has the 
EXTERNAL attribute. (I) 

(4) Special care should be taken 
using ENVIRONMENT (INDEXED). 
example, no secondary quantity can 
allocated by the SPACE parameter. 

when 
For 

be 
(I) 

(1) Keypunch transcription errors may 
occur unless particular care is taken 
when writing the folLowing characters: 

104 

1 (numeral), I (letter), I (or), 
/ (slash), • (quotation mark) ; 

, (not) , 7 (seven), 
> (greater than) ; 

L (letter), < (less than) • 

0 (letter), 0 (zero) ; 

S (letter), 5 (five) ; 

Z (letter), 2 (two) ; 

(break character), 
(minus sign); 

(2) Ensure that the source program is 
completely contained within the mar­
gins specified by the SORMGIN 
option. (I) 

(3) Inadvert~nt omission of certain sym­
bols may give rise to errors that are 
difficult to trace. Common errors 
are: unbalanced quotation marks; 
unmatched parentheses; unmatched com­
ment delimiters (e.g., /* punched 
instead of */ when closing a comment); 
and missing semicolons. 

(4) Reserved keyword operators in the 
48-character set (e.g., GT, CAT) must 
in all cases be preceded and followed 
by a blank or comment. 

( 5) Care should be 
END statements 
appropriate DO, 
statements. 

taken to ensure that 
correctly match the 

BEGIN, and PROCEDURE 

(6) In some situations. parentheses are 
required when their necessity is not 
immediately obvious. In particular, 
the expression following WHILE and 
RETURN must be enclosed in 
parentheses. 

(1) The procedure to be given initial 
control at execution time must have 
the OPTIONS(MAIN) attribute. If more 
than one procedure has the MAIN 
option, the first one gets 
control. (I) 



(2) When a procedure of a program is 
invoked while it is still active, it 
is said to be used recursively. 
Attempting the recursive use of a 
procedure that has not been given the 
RECURSIVE attribute may result in a 
program interrupt after exit from the 
procedure. This will occur if ref­
erence is made to AUTOMATIC data of an 
earlier invocation of the procedure. 

(1) DECL~RE statements for AUTOMATIC vari­
ables are in effect executed at entry 
to a block: sequences of the following 
type are therefore likely to lead to 
unpreiictable storage requests: 

A: PROC; 
N=4; 
DCL B(N) FIXED; 

END; 

(2) Missing commas in DECLARE statements 
are a common source of error. For 
example, a comma must follow the entry 
for each element in a structure dec­
laration. 

(3) External identifiers should neither 
contain more than seven characters n 
nor start with the letters IHE. (I) 

(4) In a PICTURE declaration, the V char­
acter indicates the scale factor, but 
does not in itself produce a decimal 
point on output. The point picture 
character produces a point on output~ 
but is purely an editing character and 
does not indicate the scale factor. 
In a decimal constant, however, the 
point does indicate the scale factor. 
For example: 

DCL A PIC'99.9', 
B PIC'99V9', 
C PIC'99.V9~; 

Ai B ,C=45.6; 
PUT LIST (A,B,C); 

This will cause the following values 
to be put out for A, B, and C, 
respectively: 

04.5 456 45.6 

If these values were now read back 
into the variables by a GET LIST 
statement, A, B, and C would be set to 
the following respective values: 

004 56.0 45.6 

If the PUT statement were then repeat­
ed, the result would be: 

00.4 560 45.6 

(5) Separate external declarations of the 
same identifier must not specify con­
flicting attributes, either explicitly 
or by default. If this occurs the 
compiler will not be able to detect 
the conflict. PL/I also requires that 
if an INITIAL value is sp~cified in 
one declaration of a STATIC EXTERNAL 
variable, the same INITIAL value 
should appear in every declaration of 
that variable. 

(6) An identifier cannot be used for more 
than one purpose within its scope. 
Thus, the use of X in the following 
sequence of statements would be in 
error: 

PUT FILE (X) LIST (A,B,C); X=Y+Zi 
X: M=N; 

(7) It is advisable to declare all 
points, associated parameter 
and any return values, to avoid 
vertent clashes of attributes. 

entry 
lists, 
inad-

If the attributes of the data items in 
an argument list do not match those 
declared for the ENTRY# a dummy argu­
ment is created with the correct 
attributes, and the data item is con­
verted into the dummy_ For example: 

DCL X ENTRY (FIXED. CHAR(4}), 
Y FIXED, Z FIXED(1,0); 

Y=45; 
Z=O; 
CALL X(Y,Z); 

X:PROC(A,B); 
DCL A FIXED, 

B CHAR(4); 
END; 

In the above example, a dummy is 
created for the second argument, Z, 
and is passed to X as 'bbbO'. 

If the attributes declared for X in 
the entry name declaration W8re incom­
patible with the attritu~ps of tne 
arguments in the CALL statem~nt, the 
compiler would issue a diagnostic mes­
sage, and at execution time no conver­
sion would take place. However, if 
the attributes declared for X in the 
entry name declaration conflicted with 
the attributes of the corresponding 
parameters in the PROCEDURE statement, 
the compiler would not detect the 
disagreement, and at execution time 

Programming Techniques 105 



the consequences of such an error 
would, in general, be unpredictable. 
For example, if X were declared 

DCL X ENTRY (FLOAT, CHAR(4»; 

then 45 would be passed as FLOAT, but 
would be interpreted by X as FIXED# 
possibly with disastrous results. 

Similarly, attributes declared for 
RETURN values must agree in the invok­
ing and invoked procedures; however, 
the actual expression returned may be 
of any data type and will be converted 
to that declared. For example: 

DCL X RETURNS (CHAR(4»i 
DCL A CHAR(4); 

X: PROC CHAR(4); 
RETURN (I*J*K); 
END X; 

A=X; 

The precision of decimal integer con­
stants should be taken into account 
when such constants are passed. For 
example: 

CALL ALPHA(6); 

ALPHA: PROCEDURE(X)i 
DCL X FIXED DECIMAL; 
END; 

The above example is incorrect because 
X will be given a default precision. 
while the constant, 6, will be passed 
with precision (1,0). 

(8) When a data item requires conversion 
to a dummy, and the called procedure 
alters the value of the parameter 6 

note that the dummy is altered, not 
the original argument. For example: 

DCL X ENTRY (FIXED, FIXED)# 
A FIXED, 
B FLOAT; 

CALL X(A,B); 

X:PROC(Y,Z); 
DCL (Y,Z) FIXEDi 
Y=Z**100i /*A IS ALTERED IN 

CALLING PROC*/ 
Z=Y**3; /*B IS UNALTERED IN 

CALLING PROC*/ 
END Xi 

(9) When the attributes for a given iden­
tifier are incompletely declared, the 
rest of the required attributes are 
supplied by default. The following 
default assumptions should be careful­
ly noted. 

106 

FLOAT DECIMAL REAL is assumed for 
implicitly declared arithmetic varia­
bles, unless the initial letter is in 
the range I through N, when FIXED 
BINARY REAL is assumed. 

If a variable is explicitly declared 
and any of the base, scale, or mode 
attributes is specified. the others 
are assumed to be from the set 
FLOAT/DECIMAL/REAL. For example: 

DCL I; /*1 IS FIXED BINARY 
(15,0) REAL 
AUTOMATIC*/ 

DCL J REAL; /*J IS FLOAT DECIMAL 
(6) REAL 
AUTOMATIC*/ 

DeL K STATIC; /*K IS FIXED BINARY 
(15,"0) REAL 
STATIC*/ 

DCL L FIXED; /*L IS FIXED DECIMAL 
(5,0) REAL 
AUTOMATIC*/ 

(10) The precision of complex expressions 
is not obvious. For example, the 
precision of 1 + 11 is (2#0), that is, 
the precision follows the rules for 
expression evaluation. 

(11) When a procedure contains more than 
one entry point, with different param­
eter lists on each entry, make sure 
that no references are made to param­
eters other than those associated with 
the point at which control entered the 
procedure. For example: 

A: PROCEDURE(P,Q)i 
P=Q+8i RETURN; 

B: ENTRY(R,S)i 
R=P+Si /*THE REFERENCE TO P 

IS AN ERROR*/ 
END; 

(12) BASED storage is allocated in terms of 
doublewords; therefore, even for the 
smallest item, at least eight bytes 
are required. (I) 

(13) The variable used in the REFE~ option 
must be referred to unambiguously. 
For example: 

DCL 1 A, 
2 Y FIXED BIN, 
2 Z FLOAT, 
B, 
2 Y FIXED BIN 
2 T(1:N REFER(BoY»; 

In any references to this declaration, 
Y must be fully qualified to prevent a 
possible ambiguity. 



(14) A pointer qualifier (explicit or 
implicit) may not be based or sub­
scripted. (I) 

(15) Conflicting contextual declarations 
must be avoided. P is often used as 
the name of a pointer: it must not, 
therefore, assume by default the char­
acteristics of another data type. For 
example: 

B BASED (P), 

P AUTO, 

. , 
P is first contextually declared to be 
a pointer and then, by default, to be 
FLOAT DECIMAL. 

(16) BASED variables cannot be used as 
arguments or parameters. (I) 

(17) Offsets must be declared with a level 
1 unsubscripted BASED area. 

~~_Assignments and Initialization 

(1) When a variable is accessed, it is 
assumed to have a value which has been 
previously assigned to it and which is 
consistent with the attributes of the 
variable. If this assumption" is 
incorrect~ either the program will 
proceed with incorrect data or a pro­
gram interrupt will occur. such a 
situation can result from failure to 
initialize the variable, or it can 
occur as a result of the variable 
having been set in one of the follow­
ing ways: 

(a) by the use of the UNSPEC pseudo­
variable 

(b) by RECORD-oriented input 

(c) by overlay defining a picture on a 
character string, with subsequent 
assignment to the character string 
and then access to the picture 

(d) by passing as an argument a 
var~able assigned in a different 
procedure, without matching the 
attributes of the parameter. 

Failure to initialize a variable will 
result in the variable having an 
unpredictable value at execution time. 
Do not assume this value to be zero. 

Failure to initialize a subscript can 
be detected by checking for subscripts 
out of range, when debugging the pro­
gram. 

(2) Any attempt to write out a variable or 
array that has not been initialized 
may well cause a data interrupt to 
occur. For example: 

DCL A(10) FIXED: 
A(1)=10i 
PUT LIST (A): 

To avoid the data interrupt, the array 
should be initialized before the 
assignment statement, thus: 

A=O: 

Note that this problem can also occur 
as a result of CHECK system action for 
an uninitialized array. If the CHECK 
condition were enabled for the array 
in the above example, and system 
action were taken, the results, and 
the way in which the program termi­
nates, would be unpredictable. The 
same problem arises when PUT DATA is 
used. 

(3) Note the 
= (assignment) 
The statement 

A=B=C: 

distinction between 
and = (comparison). 

means "compare B with C and assign the 
result (either '1'B or 'O'B) to A, 
performing type conversion if neces­
sary." 

(4) Assignments that involve conversion 
should be avoided if possible (see 
section 1.f.2., below). 

(5) In the case of initialization of or 
assignment to a fixed length string: 
if the assigned value is shorter than 
the string, it is extended on th~ 
right with blanks (for a character 
string) or zeros (for bit strings). 
For example: 

DCL A CHAR(6), 
B CHAR(3) INIT('CR'): 
A=B: 

After the execution of the above 
statements, B would contain CRb, and A 
would contain CRbbbb. 

(6) It is not possible to assign a cross 
section of an array of structures in a 
single statement; the whole of an 
array of structures, or a single ele­
ment may be referenced, but not a 
cross section. (I) 

Programming Techniques 107 



(7) When SIZE is disabled, the result of 
an assignment which would have raised 
SIZE is unpredictable: 

FIXED BINARY: The result of an assign­
ment here which includes, for 
instance, source language assignments 
and the conversions implied by parame­
ter matching may be to raise FIXE­
DOVERFLOW. 

FIXED DECIMAL: Truncation to the near­
est byte may occur, without raising an 
interrupt. If the target precision is 
even, an extra digit may be inserted 
in the high-order byte. 

(1) The rules for expression evaluation 
should be carefully noted, with parti­
cular reference to priority of opera­
tions. The following examples show 
the kind of mistake that can occur: 

X>YIZ is not equivalent to X>YIX>Z 
Dut is equivalent to (X>Y) IZ 

x>y>Z is not equivalent to X>Y&X>Z 
but is equivalent to (X>Y»Z 

The clause IF A=BI IC is equivalent 
to IF A=(BI IC),not to IF (A=B)] IC 

All operation sequences of equal 
priority are evaluated left to right~ 
except for **, prefix +, prefix -, and 
" which are evaluated right to lefto 
Thus, the statement 

is equivalent to 

A=B**(-(C**D»; 

The normal use of parentheses is to 
modify the rules of priority; however, 
it may be convenient to use redundant 
parentheses as a safeguard or to clar­
ify the operation. 

(2) Conversion is governed by comprehen­
sive rules which must be thoroughly 
understood if unnecessary trouble is 
to be avoided. Some examples of the 
effect of conversion follow. 

~08 

(a) DECIMAL FIXED to BINARY FIXED can 
cause unexpected results if frac­
tions are involved: 

DCL I FIXED BIN(31,S) INIT(1); 
1=1+.1; 

The value of I is now 1.062S. 
This is because .1 is converted to 
FIXED BINARY(S~4), so that the 
nearest binary approximation is 
0.0001B (no rounding occurs). The 
decimal equivalent of this is 
.062S. A better result would have 
been achieved by specifying .1000 
in place of .1. (See also item 
(f) below.) 

(b) If arithmetic is performed on 
character string data, the inter­
mediate results are held in the 
maximum precision: 

DCL A CHAR(6) INIT('12304S'); 
DCL B FIXED(S,2); 
B=A; /*B HAS VALUE 123.4S*/ 
3=A+A; /*B HAS VALUE 246.00*/ 

(c) The rules for arithmetic to bit 
string conversion affect assign­
ment to a bit string from a deci­
mal constant: 

DCL A BIT(1), 
D BIT(S); 

A=1i /*A HAS VALUE 'O'B*/ 
0=1; /*D HAS VALUE '00010'B*/ 
D='1'Bi /*D HAS VALUE 

'10000'B*/ 
IF A=1 THEN GO TO Y; 

ELSE GO TO Xi 

The branch will be to X, because 
the assignment to A resulted in 
the following sequence of actions: 

(1) The decimal constant, 1, is 
assumed to be FIXED DECIMAL 
(1,0) and is assigned to tem­
porary storage with the attri­
butes FIXED BINARY(4,0), tak­
ing the value '0001'B; 

(2) This value is now treated as a 
bit string of length (4), so 
that it becomes '0001'B; 

(3) The resultant bit string is 
assigned to A. Since A has a 
declared length of 1, and the 
value to be assigned has 
acquired a length of 4, trun­
cation occurs at the right, 
and A has a final value of 
'O'B. 

To perform the comparison op~ra­
tion in the IF statement, 'O'B and 
1 are converted to FIXED BINARY 
and compared arithmetically. They 
are unequal, giving a result of 
"false" for the relationship A=1. 

In the first assignment to 0, a 
sequence of actions similar to 



that described for A takes place. 
except that the value is extended 
at the right with a zero, because 
D has a declared length that is 1 
greater than that of the value to 
be assigned. 

Cd) Assignment of arithmetic values to 
character strings involves conver­
sion according to the rules for 
LIST-directed output. 

Example 

DCL A CHAR(4), 
B CHAR(7) : 

A='O'; /*A HAS VALUE 'Obbb'*/ 
A=O: /*A HAS VALUE 'bbbO'*/ 
B=1234567; /*B HAS VALUE 

'bbb1234'*/ 

Note: The three blanks are neces­
sary to allow for the possibility 
of a minus sign and/or a decimal 
or binary point, with provision 
for a single leading zero before 
the point. 

Example 2 

DCL CTLNO CHAR(S) INIT('O'); 
DO I=1 TO 100; 

CTLNO=CTLNO+1; 

END; 

In this example, a conversion 
error occurs because of the fol­
lowing sequence of actions: 

(1) The initial value of CTLNO, 
that is, 'Obbbbbbb', is con­
verted to FIXED DECIMAL(5,0) 
for the addition, giving a 
temporary value of 00000. 

(2) The decimal constant, 1. 
assumed to be FIXED 
DECIMAL(1,0), is added; in 
accordance with the rules for 
addition, the precision of the 
result is (6,0), giving a 
value of 000001 .. 

(3) This value is now converted to 
a character string of length 
9, value 'bbbbbbbb1', in pre­
paration for the assignment 
back to CTLNO. 

(4) Because CrLNO has a length of 
8, the assignment causes trun­
cation at the right; thus. 
CTLNO has a final value that 
consists entirely of blanks. 
This value cannot be success-

fully converted to arithmetic 
type for the second iteration 
of the loop .. 

Ce) FIXED division can result in unex­
pected overflows or truncation. 
For example. the expression 

25+1/3 

would yield a value of 5.33 ••• 3. 
To obtain a result of 25~33 •• _3, 
it would be necessary to write 

25+01/3 

The explanation is that constants 
have the precision and scale fac­
tor with which they are written, 
while FIXED division results in a 
value at maximum implementation­
defined precisiono The results of 
the two evaluations are reached as 
follows: 

r-------T-------T-----------------, 
1 1 Preen/I I 
I I Scale I I 
I Item I Factorl Result I 
t-------+-------+-----------------~ 
I 1 1 (1,0) I 1 I 
I 3 I (1,0) 1 3 I 
I 1/3 1(15,14)10_33333333333333 1 
I 25 1 (2.0) I 25 I 
125+1/3 I (15,14) 15 .. 33333333333333 I 
I I 1 (truncation on I 
1 1 I left: I 
1 1 I FIXEDOVERFLOW I 
1 I 1 would be raised I 
I I I unless disabled) I 
~-------+-------+-----------------~ 
101 1 (2,0) I 01 I 
I 3 I (1.0) ] 3 I 
101/3 1 (15,13) 100 .. 3333333333333 1 
125 I (2,0) 1 25 i 
125+01/31(15,13)]25.3333333333333 1 L _______ L _______ L _________________ J 

(f> Checking of a picture is performed 
only on assignment into the pic­
ture variable: 

DCL A PIC'999999', 
B CHAR(6) DEF A, 
C CHAR(6); 

3=' ABCDEF' ; 
C=A; /*WILL NOT RAISE CONV 

CONDITION*/ 
A=C; /*WILL RAISE CONV*/ 

Note also (A, B, C as declared 
above) : 

A=123456; /*A HAS VALUE 
123456*/ 

/*B HAS VALUE 
'123456'*/ 

Programming Techniques 109 



C=123456; /*C HAS VALUE 
'bbb123'*/ 

C=A; /*C HAS VALUE '123456'*/ 

(g) A FIXED DECIMAL scalar with a 
declared even precision (P,Q) may 
have an effective precision of 
(P+1,Q), as the high-order byte 
may not be non-zero. The SIZE 
condition can be used to eliminate 
this effect: 

DCL (A,B,C) FIXED DECIMAL (6,0); 
ON SIZE; 

(SIZE): A = B + C; 

This ensures 
byte of A 
assignment. 

that the high-order 
is zero after the 

(1) The scope of a condition prefix 
applied to a DO statement is limited 
to execution of the statement itself; 
it does not apply to execution of the 
entire group. 

(2) An iterative DO group is not executed 
if the terminating condition is satis­
fied at initialization: 

I=6; 
DO J=I TO 4; 

X=X+J; 
END; 

x is not altered by this group, since 
BY 1 is implied. Iterations can step 
backwards, and if BY -1 had been 
specified, three iterations would have 
taken place. 

(3) Expressions in a DO statement are 
assigned to temporaries with the same 
characteristics as the expression, not 
the variable. For example: 

110 

DCL A DECIMAL FIXED(5,O); 
A=10; 
DO 1= 1 ro A/ 2; 

END; 

This loop will not be executed~ 
because A/2 has decimal precision 
(~~,10), which, on conversion to 
binary (for comparison with I), 
becomes binary (31,34). 

Five iterations would result if the DO 
statement were replaced by 

ITEMP=A/2; 
DO I=1 TO ITEMP; 

(4) DO groups cannot be used as ON-units. 

(5) Upper and lower bounds of iterative DO 
groups are computed once only, even if 
the variables involved are reassigned 
within the group. This applies also 
to the BY expression. 

Any new values assigned to the varia­
bles involved would take effect only 
if the DO group was started again. 

(6) In a DO group with both a control 
variable and a WHILE clause, the 
evaluation and testing of the WHILE 
expression is carried out only after 
determination (from the value of the 
control variable) that iteration may 
be performed. For example, the fol­
lowing group would be executed at most 
once: 

DO I=1 WHILE(X>Y); 

END; 

(7) I is frequently used as the control 
variable in a DO group, for example: 

DO 1=1 TO 10; 

Within the scope of this implicit 
declaration, I might be contextually 
declared as a pointer, for example: 

DCL X BASED(I); 

The two statements are in conflict and 
will produce a diagnostic message. 
When I is a pointer variable~ it can 
only be used in a DO group in one of 
the following ways: 

1. DCL (P, lA, IB, IC) POINTER; 

DO P=IA,IB,IC; 

2. DCL (P, IA) POINTER; 

DO WHILE(P=IA); 



(1) Array arithmetic should be thought of 
as a convenient way of specifying an 
iterative computation4 For example: 

DCL A(10,20); 

A=A/AC 1,1); 

has the same effect as 

DCL A(10,20); 

DO 1=1 TO 10; 
DO J=1 TO 20; 
A(I,J)=A(I,J)/A(1,1); 
END; END; 

Note that the effect is to change the 
value of A(1,1) only, since the first 
iteration would produce a value of 1 
for A(1,1). If the programmer wished 
to divide each element of A by the 
original value of A(1,1), he could 
write 

B=A(1,1) ; 
A=A/B; 

or alternatively, 

DCL A ( 10, 20) , 
B(10,20) ; 

B=A/A (1, 1) ; 

(2) Note the 
plication: 

effect of 

DCL (A,B,C) (10,10); 

A=B*C; 

array multi-

This does not effect matrix multi­
plication; it is equivalent to: 

DCL (A,B.C) (10,10); 

DO 1=1 TO 10; 
DO J=1 TO 10; 
A(I,J)=B(I,J)*C(I,J); 
END; END; 

:i.e strings 

(1) Assignments made to a varying string 
by means of the SUBSTR pseudo-variable 
do not set the length of the string4 
A varying string initially has an 
undefined length, so that if all 
assignments to the string are made 
using the SUBSTR pseudo-variable, the 
string still has an undefined length 
and cannot be successfully assigned to 
another variable or written out4 

(2) The user must ensure that the lengths 
of intermediate results of string 
expressions do not exceed 32767 bytes. 
This applies particularly to variable 
string lengths, as there is no object­
time length checking. (I) 

(1) When UNSPEC is used as a pseudo­
variable, the expression on the right 
is converted to a bit string. 
Consequently, the expression must not 
be invalid for such conversion; for 
example, if the expression is a char­
acter string containing characters 
other than 0 or 1, a conversion error 
will result. 

(~) Note the correct positioning of the ON 
statement. If the specified action is 
to apply when the named condition is 
raised by a given statement, the ON 
statement must be executed before that 
statement. The statements: 

GET FILE CACCTS) LIST (A,B~C); 
ON TRANSMIT (ACCTS) GO TO TRERR; 

would result in the ERROR condition 
being raised in the event of a trans­
mission error during the first GET 
operation, and the required branch 
would not be taken (assuming that no 
previous ON statement applies). 
Furthermore, the ON statement would be 
executed after each execution of the 
GE'l' statement. 

(2) An ON-unit cannot be entered by means 
of a GOTO statement4 To execute an 
ON-unit deliberately, the SIGNAL 
statement can be used. 

Programming Techniques 111 



(3) CONVERSION ON-units entered as a 
result of an invalid conversion (as 
opposed to SIGNAL) should either 
change the invalid character (by means 
of the ON SOURCE or ONCHAR 
pseudo-variable), or else terminate 
with a GOTO statement. Otherwise, the 
system will print a message and raise 
the ERROR condition. 

(4) At normal exit from an AREA ON-unit, 
the standard system actio~ is to try 
again to make the alloc?tion. As a 
result the ON unit will be entered 
again, and an indefinite loop will be 
created. To avoid this, the amount 
allocated should be modified in the ON 
unit, for example, by using the EMPTY 
built-in function or by changing a 
pointer variable. 

(1) The UNDEFINEDFILE condition may be 
raised if a STREAM file is reopened 
with attributes or options that con­
flict with attributes, options, or 
parameters previously specified for 
it. For example, if a file originally 
opened with a LINESIZE of 100 is 
subsequently reopened with a LINESIZE 
of 131, the UNDEFINEDFILE condition 
will be raised if the DCB sUbparameter 
BLKSIZE is not specified on the DD 
card, or if it is specified as less 
than 132. Difficulties of this nature 
can be avoided by the use of different 
file names, or by using the same file 
name with different TITLE option 
specifications. (I) 

(2) The UNDEFINEDFILE condition is raised 
not only by conflicting language 
attributes (such as DIRECT with 
PRINT), but also by the following: 

112 

Ca) Block size smaller than record 
size. This condition is not 
raised if spanned (VS- or 
VBS-format) records are used. 

(b) LINESIZE exceeding the permitted 
maximum. 

(c) Blocked records specified for REG­
IONAL organization. 

(d) U- or V-format records specified 
fOI INDEXED, REGIONAL(1), or 
REGIONAL(2) organizations. 

(e) KEYLEN not specified for creation 
of INDEXED, REGIONAL(2), or 
REGIONAL(3) data sets. 

(f) Attempting to open an INDEXED data 
set for DIRECT OUTPUT. 

(g) Attempting to open a CONSECUTIVE 
data set with DIRECT or KEYED 
attributes. 

(h) Specifying an RKP option, for an 
INDEXED data set, with a value 
resulting in KEYLEN+RKP exceeding 
LRECL. 

(i) Specifying a V-format logical 
record length of less than 18 
bytes for STREAM data sets. 

(j) Specifyingl for F-format blocked 
records, a block size which is not 
an integral multiple of the 
recordsize. 

(k) Specifying~ for V-format records, 
a logical record length that is 
not at least four bytes smaller 
than the specified block size. 

(1) Attempting to open a paper-tape 
reader for OUTPUT or UPDATE. 

(m) Attempting to open a file with the 
UNBUFFERED attribute for blocked 
records. 

(n) Attempting to use blocked records 
in the system input stream (SYSIN 
DD DATA or SYSIN DD *) with an 
UNBUFFERED file. The default 
record format for the system input 
stream is FB-format. Since this 
stream is not checked on input, 
the presence of FB-format records 
will not be detected until an 
attempt is made to open the file, 
when UNDEFINEDFILE will be raised. 

~Q£~~ If the UNDEFINEDFILE condition 
1S raised because either the key 
length or the block size is not speci­
fied, a subsequent attempt to open the 
file will not raise this condition 
again. 

(I) 

(3) If a file is to be used for both input 
and output, it must not be declared 
with either the INPUT or the OUTPUT 
attribute. The required option can be 
specified on the OPEN statement. 
Th~re must be no conflict between file 
attributes specified in the declara­
tion and those specified by the OPEN 
statement. 



(4) Input/output lists must be surrounded 
by a pair of parentheses: so must 
iteration lists. Therefore, two pairs 
of outer parentheses are required in 

GET LIST «A(I) DO I=1 TO N»: 

(5) The last eight bytes of a source key 
to access a regional data set must be 
the character string representation of 
a fixed decimal integer. When gener~ 
ating the key, the rules for arithmet­
ic to character string conversion 
should be considered. For example, 
the following group would be in error: 

(6 ) 

DCL KEYS CHAR(S); 
DO I=1 TO ~O: 

KEYS=I: 
WRITE FILE(F) FROM (R) 

KEYFROM (KEYS); 
END; 

The default for I is FIXED 
BINARY(15,0), which requires not Sbut 
9 characters to contain the character 
string representation of the arithmet­
ic values. 

Note that the 
attribute if 
KEYTO options 
input/output 
that file. 

file must have the KEYED 
the KEY, KEYFROM, or 

are to be used in any 
statement referring to 

(7) The standard file names SYSIN and 
SYSPRINT are implicit only in GET and 
PUT statements. Any other reference, 
such as those in ON statements or 
RECORD-oriented input/output state­
ments, must be explicit. 

(S) PAGESIZE and LINESIZE are not file 
attributes, that is, they cannot be 
included in a DECLARE statement for 
the file: they are options on the OPEN 
statement. 

(9) When an EDIT-directed data list is 
exhausted, no fu~ther format items 
will be processed, even if the next 
format item does not require a match­
ing data item. For example: 

DCL A FIXED(5), 
B FIXED(5,2); 

GET EDIT (A,B) (F(5).F(5,2),X(70»; 

The X(70) format item will not be 
processed. To read a following card 
with data in the first ten columns 
only, the SKIP option can be used: 

GET EDIT (A,B) (F(5). F(5,2» SKIP; 

(10) The number of data items represented 
by an array or structure name appear­
ing in a data list is equal to the 

number of scalar elements in the array 
or structure; thus if more than one 
format item appears in the format 
list, successive elements will be 
matched with successive format items. 
For example: 

DCL 1 A, 
2 B CHAR(5), 
2 C FIXED(5,2); 

PUT EDIT (A) (A(5)"F(5,2»; 

B will be matched with the A(5) item, 
and C will be matched with the F(5,2) 
item. 

(11)1 Arrays are transmitted in row rna jor 
order (e.g., A(1,1), A(1,2), A(1,3), 

A(2,1), etc.) 

(12) Strings used as input data for GET 
DATA and GET LIST must be enclosed in 
quotation marks. 

(13) The 4S-character representation of a 
semicolon ( •• ) is not recognized as a 
semicolon if it appears in a DATA­
directed input stream; the 11-S-6 
punch must be used. (I) 

(14) If a new record is added by DIRECT 
access to an INDEXED data set whose 
overflow areas are already full, a 
record will be irretrievacly lost. 
The position of the new record, in 
relation to the existing records on 
the track, will determine whether it 
is the new record or an existing one 
which is lost. If the new record 
would follow the last existing record 
on tbe track, the new record will be 
lost. otherwise, the last existing 
record on the track will be lost. In 
either case, the KEY condition will be 
raised. 

(15) The user must be aware of two 
limitations of PUT DATA; (i.e., no 
data list). Firstly, its use with an 
ON statement is restricted because the 
data known to PUT DATA would be the 
data known at the point of the ON 
unit. Secondly, and more serious. the 
data will be put out as normal data­
directed output, which means that any 
unallocated or unassigned data may 
raise a CONVERSION or other cond-i tiona 

If the ON-unit 

ON ERROR PUT DATA; 

is used in an outer block, it must be 
remembered that variables in inner 
blocks are not known and therefore 

programming Techniques 113 



will not be dumped. It would be a 
good practice, therefore, to repeat 
the ON-unit in all inner blocks during 
debuggL1g. 

If an error does occur during 
execution of the PUT DATA statement, 
and this statem9nt is within an ON 
ERROR unit, the program will recur­
sively enter the ERROR unit until no 
more storage remains for the DSA. 
Since this could be wasteful of 
machine time and printout, the ERROR 
unit should be turned off once it is 
activated. Instead of: 

ON ERROR PUT DATA; 

better code would be: 

ON ERROR BEGIN; 
ON ERROR SYSTEM; 
PUT DATA; 
END; 

When PUT DATA is used without a data­
list every variable known at that 
point in the program is transmitted in 
data-directed output format to the 
specified file. Users of this 
facility, however, should note that: 

a) Uninitialized FIXED DECIMAL data 
may raise the CONVERSION condi­
tion or a data interrupt. 

b) Unallocated CONTROLLED data will 
cause arbitrary values to be 
printed and, in the case of 
FIXED DECIMAL, may raise the 
CONVERSION condition or a data 
interrupt. 

(16) Qse_2f_!2£~~~_~2Q~I~Q. A pointer set 
in READ SET or LOCATE SET may not be 
valid beyond the next operation on the 
file, or beyond a CLOSE statement. In 
OUTPUT files, wRIrE and LOCATE state­
ments can be freely mixed. 

114 

For UPDATE files, the REWRITE state­
ment with no options must be used if 
it is required to rewrite an updated 
record. The result of this REWRITE is 
always to rewrite the contents of the 
last buffer onto the data set. 

For example: 

3 READ FILE (F) SET (P); 

5 P->R S; 

7 REWRITE FILE (F); 

1. 

~1 READ FILE (P) INTO (X); 

15 REWRITE FILE (F); 

~9 REWRITE FILE (F) FROM (X); 

Statement 7 will rewrite a record 
updated in the buffer. 

Statement 15 will only rewrite 
exactly what was read, i.e.# it 
will not change the data set at 
all. 

Statement 19 will 
since there is 
READ statement. 

raise ERROR, 
no preceding 

There are two cases where it is not 
possible to check for the KEY condi­
tion on a LOCATE statement until 
transmission of a record is attempted. 
(This will generally occur on execu­
tion of the next PL/I output statement 
for this file.) 

These are: 

When there is insufficient room 
specified region to output the 
on a REGIONAL(3) V- or U-format 
Neither the record raising the 
tion nor the current record are 
mitted. 

in the 
record 
file. 

condi­
trans-

2. When the embedded key differs from the 
KEYFROM in an ISAM file. 

If this LOCATE statement is to trans­
mit the last record before the file is 
closed, in case 1, the record is not 
transmitted, and in the second case, 
the embedded key is overwritten with 
the KEYFROM string, and the record is 
transmitted. 

Thus the condition may be raised by a 
CLOSE statement or by an END statement 
that causes implicit closing. Until 
the error is corrected, the record 
cannot be transmitted nor can any 
further operation be carried out on 
the file. 

If a LOCATE statement was used in the 
addition of KEYED records to any type 
of REGIONAL data set then. if RECORD 
condition is raised, the key value 
presented at subsequent operations 
must not be less than the current one. 



(18) Allocation and ffe~ing of BASED Varia­
bles: If a reference is made, at 
object time, to a BASED variable that 
has not been allocated storage, an 
unpredictable interrupt (protection, 
addressing or specification) may 
occur. 

(19) Areas, pointers, offsets and struc­
tures containing any of these cannot 
be used with STREAM I/O. PUT DATA 
cannot be used with BASED variables. 

When a BASED variable is freed, the 
associated pointer no longer contains 
useful information. This pointer can 
only be used again if: 

1. It is re-allocated with the same or 
another BASED variable, or, 

2. A value is assigned to it from an 
offset or another pointer 

A BASED variable allocated in an 
must be freed in that area. 
example: 

DCL A AREA, B BASED (X); 
ALLOCATE B IN (A); 

area 
For 

FREE B; 
FREE B IN (A); 

1* ILLEGAL */ 
/* LEGAL */ 

In PL/I there are often several differ­
ent ways of producing a given effect. One 
of these ways will usually be more effi­
cient from a particular point of view than 
another, depending largely on the method of 
implementation of the language features 
concerned. However, it should be realized 
at the outset that a primary cause of 
program inefficiency occurs at the problem 
definition stage, before any actual pro­
gramming is done: PLII cannot be used to 
full advantage unless the problem is 
defined in terms of PL/I. 

The purpose of this section is to help 
the programmer make the best use of the 
PL/I (F) Compiler. The first two parts are 
presented from two different viewpoints: 

a. Improving the speed of compilation 

b. Improving the speed of execution. 

The remainder of the section is of common 
interest, and deals with methods of 
decreasing the dictionary size: use of 
storage; use of compile-time facilities; 

use of input/output facilities; and addi­
tional hints. 

The following measures are suggested for 
use where compilation time is an important 
factor. 

(1) Allocate as much storage to the com­
piler as possible, using the 
SIZE=999999 option on the EXEC state­
ment. This reduces the chances of 
bringing the spill mechanism into 
operation. 

(2) Keep the number of BEGIN blocks and 
procedures to a minimum. Do not use 
BEGIN-END to effect statement group­
ing; this is more simply obtained by 
use of DO-groups. 

(3) Try to avoid 
LIST, DECK, 
options. 

using 
and 

the ATR, XREF, 
CHAR48 compiler 

(4) Avoid features which give rise to 
large dictionary entries and large 
amounts of text. For example, 

DCL A PIC '(4000)X'; 

occupies 
block. 

one complete dictionary 

(5) Use of the following features causes 
optional compiler phases to be loaded: 
ALLOCATE, LIKE, USES/SETS. CHECK, iSUB 
defining, built-in functions with 
aggregate arguments, GENERIC entry 
names, DELAY/DISPLAY. If any of these 
features can be completely avoided 
without extensively increasing the 
source code, there will be a corres­
ponding increase in compilation speed. 

(6) On re-runs, further slight increases 
in efficiency can be obtained by 

(a) removing all unreferenced labels 
and data; 

(b) correcting §!ll source errors, and, 
where possible, m1n1m1zing the 
number of diagnostic messages pro­
duced, including such messages as 
"FILE/STRING option missing in 
GET/PUT statement"; 

(c) subdividing the program if the 
auxiliary storage has been used: 

(d) specifying the NOSOURCE option: 

(e) specifying the FLAGS option. 

Programming Techniques 115 



See also 2.c. Decreasing Size of Dic­
tionary. 

The following measures are suggested for 
use where execution time is an important 
factor. Note that while some of these 
measures may slow down the compilation, 
this is offset by the fact that others will 
accelerate it. In the main, there should 
be no serious increase in compilation time. 

(1) Make use of the OPT=01 option. 
the STMT option. 

Avoid 

(2) Avoid unnecessary program segmentation 
and block structure; all procedures, 
ON-units and BEGIN blocks need prolo­
gues and epilogues, the initialization 
and housekeeping for which carry a 
considerable overheado (Prologues and 
epilogues are described in Appendix C 
of this publication.) Whenever possi­
ble, use GOTO or IF statements to 
control program logic, rather than the 
CALL statement. 

(3) Branching in IF statements can be 
improved by using DO and END state­
ments to bracket a THEN clause, rather 
than using a GOTO statement in the 
THEN clause. For example: 

IF A=B THEN DO; 
C=D; 
E=F; 

END; 
L: etc. 

is more efficient than 

IF A,=B THEN GO TO L; 
C=D; 
E=F; 

L: etc. 

(4) When GO TO is used in an IF st~tement, 
more efficient object code is produced 
by tha GO TO if it refers to a label 
within the same block rather than to a 
label outside the block. 

(5) Keep IF clauses simple; separate any 
multiple conditions into a series of 
simple IF statements. For example: 

116 

IF A=B 
THEN IF C=D 

THEN IF E=F 
THEN GO TO Mi 

is more efficient than 

IF (A=B)&(C=D)&(E=F) 
THEN GO TO Mi 

(6) Avoid extensive use of adjustable 
arrays and/or CONTROLLED storage. 

(7) Use constants wherever 
instead of expressions. 

possible 

(8) Exercise care in specifying precision. 
For example, 

DCL A FIXED DEC(8,4), 
B FIXED DEC(10,2), 
C FIXED DEC(10,1); 

C=A+Bi 

This requires almost twice as much 
code as it would if B had been 
declared (10,4), because tho: evalua­
tion of A+B requires a scale factor of 
4. 

(9) Use the PICTURE attribute only when 
necessary. For example, use FIXED 
DECIMAL(5,2) instead of PIC'999V99'. 
If a picture field is used in more 
than one arithmetic operation, convert 
it once and then use the new form in 
each operation. This holds for any 
conversion required more than once. 

If it is necessary to use data with 
the PICTURE attribute in arithmetic 
expressions, use pictures that will be 
handled in-line, as this considerably 
reduces execution time. Pictures with 
all 9s, a V and a non-drifting sign 
are particularly useful. For example: 

'999' 
'$99v99' 
, s99' 
'V999' 

(10) Internal switches and counters, and 
data involved in substantial computa­
tion or used for subscripts, should be 
declared BINARY; data required for 
output should be kept in DECIMAL form. 

(11) Keep data conversions to a minimum. 
Some possible methods follow: 

(a) Use additional variables. For 
example, if a problem specifies 
that a character variable has to 
be regularly incremented by 1, 

DCL CTLNO CHAR(18); 

CTLNO = CTLNO+1; 

requires two conversions, while 



DCL CTLNO CHAR(S), 
DCTLNO DEC FIXED: 

DCTLNO=DCTLNO+1: 
CTLNO=DCTLNO: 

requires only one conversion. 

(b) Take special care to make struc­
tures match when it is intended to 
move data from one structure to 
another. 

(c) Avoid mixed mode arithmetic, espe­
cially the use of character 
strings in arithmetic calcula­
tions. 

(12) Declare arrays in the procedure in 
which they are used, instead of pass­
ing them as arguments. Declare sub­
script variables in the block in which 
they are used, as FIXED BINARY. 

(13) In multiple assignments to subscripted 
variables, restrict the assignment to 
three variables. 

(14) If a subscripted item is referred tc 
more than once with the same sub­
script, assign the element to a scalar 
variable: 

R={A(I)+1/A(I»+A(I)**A(I) ; 

should be replaced by 

ASUB=A(I)i 
R=(ASUB+1/ASUB)+ASUB**ASUB; 

(15) Bit strings should, if possible, be 
specified as multiples of eight bits. 
Bit strings used as logical switches 
should be specified according to the 
number of switches required. In the 
examples below, (a) is preferable to 
(b), and (b) to (c): 

(a) DCL SW BIT(1) INIT ('1'B); 

IF SW THEN DO: 

(b) DCL SW BIT(S) INIT('1'B): 

IF SW THEN DO; 

(c) DCL SW BIT(S) INIT('1·B): 

IF SW '10000000'B THEN DO; 

2. M~l~~E1e s~~~ches 

(a) DCL B BIT(8); 

B '11100000'B: 

IF B '11~OOOOO'B THEN DO; 

(b) DCL B BIT(3); 

B '111'B; 

IF B = '11~'B THEN DO; 

(c) DCL <SW1,SW2,SW3) BIT ( 1) ; 

SW1, SW2", SW3, , l' B i 

IF SW1&SW2&SW3 THEN DO; 

If bit string data is to be held in 
structures, such structures should be 
declared ALIGNED. 

(16) Note that concatenation operations are 
time-consuming. 

(17) Varying length strings are not as 
efficient as fixed length strings. 

(1S) Fixed length strings are not efficient 
if their length is not known at com­
pile time, as in the following exam­
ple: 

DCL A CHAR(N); 

Programming Techniques 117 



(19) Avoid using the SIZE, SUBSCRIPTRANGE, 
STRINGRANGE and CHECK ON-conditions, 
except during debugging. Debugging 
aids (see "Testing Programs" in this 
publication) should be removed from 
the program before running it as a 
production job. 

(20) Do not refer 
function more 
is expensive. 
function once 
variable for 
instead of 

to the DATE built-in 
than once in a run; it 

Instead, refer to the 
and save the value in a 
subsequent use; e.g. 

PAGEA= TITLEAI IDATE; 
PAGEB= TITLEBI IDATE; 

it is more efficient to write 

DTE=DATE; 
PAGEA=TITLEAIIDTE; 
PAGEB=TITLEBIIDTE; 

(21) Allocate sufficient buffers to prevent 
the program becoming I/O bound. 

(22) Use blocked output records. 

(23) Open a number of files in a single 
OPEN statement. 

(24) In STREAM input/output, use long data 
lists instead of splitting up 
input/output statements. 

(25) Use EDIT-directed input/output in pre­
ference to LIST- or DATA-directed. 

(26) consider the use of overlay defining 
to simplify transmission to or from a 
character string structure. For exam­
ple: 

118 

DeL IN, 
2 TYPE CHAR(2), 
2 REC , 

3 A CHAR(S), 
3 B CHAR(7), 
3 C CHAR(66); 

GET EDIT(IN) (A(2) ,A(S) ,A(7) ,A(66»; 

In the above example, each 
format-item/data-field pair is matched 
separately, code being generated for 
each matching oper.ation. It would be 
more efficient to define a character 
string" on the structure and apply the 
GET statement to the string: 

DCL STRNG CHAR(SO) DEF IN; 

GET EDIT (STRNG) (A(SO»; 

(Input/output is also discussed in 
item 2.e., below.) 

(27) Many operations which, in earlier 
versions of the PL/I (F) compiler, 
were handled by calls to PL/I library 
routines, are now handled in-line. 
The consequent saving in execution 
time for these operations can be of 
the order of ten to one or more; the 
overall effect on program execution 
will obviously depend on the number of 
times these operations are used in a 
program. It will repay the user, 
therefore* to recognise which opera­
tions are performed in-line and which 
require a library call, and to arrange 
his program to use the former wherever 
possible. The majority of these in­
line operations are concerned with 
data conversion and string handling. 

Data Conversion: 
performed-in-line 
25. A conversion 
condition given, 
is performed by a 

The data conversions 
are shown in Figure 
outside the range or 
or marked 'Not done' 
library call .. 

Not all the picture characters 
available may be used in a picture 
involved in an arithmetic converSlono 
The only ones permitted are: 

1.. V and 9 

2.. Drifting or non-drifting characters $~ 
S,+, -

3. Zero suppression characters Z, * 

4. Punctuation characters I' ., /, B 

1. 

For in-line conversions, pictures with 
this subset of characters are divided 
into three types: 

Pictures of all 9s with (optionally) a 
V and a leading or trailing sign. 
~xa~le: '99V999', '99', 'S99V9' 

, '99V+', '$999' 

2. Pictures with zero suppresion charac­
ters and (optionally) punctuation 
characters and a sign character. 
Also, type 1 pictures with punctuation 
characters. 
~xample: 'ZZZ', '**/**9', 'ZZ9V.99'" 

'+ZZ.ZZZ', '$///99', '9.9' 

3. Pictures with drifting strings and 
(optionally) punctuation characters 
and a sign character. 
Exa~l~: '$$$$', '-,--9', 'S/SS/S9'" 

'+++9V.9~,'$$$9-' 



r-------------------------------T-------------------------------------T-----------------, 
I Conversion I I Minimum Opti- I 
I I I mization Code I 
~-------------T-----------------~ Comnents and Conditions ~--------T--------~ 
I Source 1 Target 1 1 SIZE I SIZE I 
I I I \Disabled I Enabled 1 

~-------------+-----------------+-------------------------------------+--------+--------~ 
FIXED BINARY I 0 0 

I 
FIXED DECIMAL If either s~ale factor = 0 and the! 1 1 

other scale factor ~ 0, then the opt. I 
code may be 0 I , 

FIXED BINARY FLOAT If s~urce scale factor = 0, then thel 1 1 
opt. code may be O(whether SIZE isl 
enabled or not} I 

I 
Bit string String must be fixe1-length, ALIGNED,l 0 Not done 

and with length <256 I 
I 

Character string Source scale factor must be ~ 0 I 1 Not done 
or Picture string must be fixed-length with 1 

length <256 Picture types 1, 2 or 3 , 
~-------------+-----------------+-------------------------------------+--------+--------~ 
I IFIXED BINARY IIf source and target scales have thel 0 1 
I I Isame sign and are non-zero, then thel 
I \ lopt. code (SIZE disabled) must be 1 I 
1 1 I I 
I I FIXED DECIHAL I I 0 0 
1 I 1 I 
I FIXED DECIMAL FLOAT Isource precision must be <10 I 1 1 
I I I 
I Bit string ISource scale factor must be zerol 0 Not done 
I ,String must be fixed-length, ALIGNED, I 
1 land with length <256 I 
I I I 
, Character string ISource scale factor must be ~ 01 1 1 
I IString must be fixed-length andl 
I Ilength <256 I 
I I I 
1 Picture IPicture types 1, 2 and 3 For picture I 1 Not done 
1 I types 1 and 2 with no sign, the Opt. I 

, I code may be 0 I 
~-------------+-----------------+-------------------------------------+--------+--------~ 
1 I FIXED BINARY I I 1 1 Not done, 
I \ I I I 1 
, IFIXED DECIMAL ITarget precision must be ~9 I 1 'Not done 1 

, I' I , , 
I FLOAT I FLOAT Isource and target may be single orl 0 I 0 I 
I I !1ouble length I 1 1 
I I I I I I 
I IBit string Istring must be fixed-length, ALIGNED, I 1 INot done 1 
I ! land with length <256 I 1 , 

~-------------+-----------------+-------------------------------------+--------+--------~ 
I IFIXED BINARY ISource string must be fixed-length, \ 0 INot done, 
I , \ ALIGNED, and with length <256 I I 1 

1 I I I 1 1 
IBit string \ FIXED DECIMAL \Source must be fixed-length, ALIGNED, \ 1 I Not done I 
I \ land I 1 I 
I land FLOAT Iwith length <32 I I 1 

, 'I I I 1 
I I Bit string I Source and target must be ALIGNED I 0 I 0 1 
1 I Iwith length <2040 '" L _____________ ~ _________________ ~ _____________________________________ ~ ________ ~ ________ J 

Figure 25. Implicit Data Conversions Performed In-Line 

Programming Techniques 119 



r-------------------------------T-------------------------------------T-----------------, 
I Conversion I I Minimum Opti- I 
I I I mization Code I 
~-------------T-----------------~ Comments and Conditions ~--------T--------~ 
I Source I Target I I SIZE I SIZE I 
I I I IDisabledlEnabled I 
~-------------+-----------------+-------------------------------------+--------+--------~ 
I Character I I I I I 
I str ing: I I I I I 
IFixed-length ICharacter string: I I I I 
I I Fixed-length ITarget length must be ~256 I 0 I 0 I 
I I VARYING Isource and target lengths must bel 0 I 0 I 
I I I ~256 I I I 
I I I I I I 
I VARYING ICharacter string ISource and target lengths must bel 0 I 0 I 
I I 1~256 I I I 
I I (VARYING) I I I I 
~-------------+-----------------+-------------------------------------+--------+--------~ 
I ICharacter string IString must be fixed-length withl 0 I 0 I 
I I Ilength <256 I I I 
I P ict ure I I I I I 
I I Picture IPictures must be identical I 0 I 0 I 
~-------------+-----------------+-------------------------------------+--------+--------~ 
I IFIXED BINARY ISource precision must be <10 I 1 INot done I 
I I FIXED DECIMAL I I f picture has a sign., then the opt. I 0 I Not done I 
I I Icode must be 1 I I I 
I Picture I I I I I 
I type 1 I I I I I 
I I FLOAT ISource precision must be <10 I 1 I Not done I 
I I I I I I 
I I Picture IPicture types 1, 2 or 3 I 1 I Not done I 
~-------------+-----------------+-------------------------------------+--------+--------~ 
I Label ILabel I I 0 I 0 I 
~-------------+-----------------+--------------------------------------+--------+--------~ 
I I Pointer/Offset I Pointer/Offset I 0 I 0 I L _____________ ~ _________________ ~ _____________________________________ ~ ________ ~ ________ J 

Figure 25. Implicit Data Conversions Performed In-Line (continued) 

Sometimes a picture conversion is not 
performed in-line even though the pic­
ture is one of the above types. This 
may be because: 

1. The optimization code value (OPT=nn) 
is too low, 

2. SIZE is enabled, 

3. There is no overlap between the digit 
positions in the source and target. 
Example: DECIMAL (6,8) or DECIMAL (5, 

-3) to PIC '999V99' will not 
be performed 

4. The picture may have certain charac­
teristics that make it difficult to 
handle in-line. 

120 

Example: 'ZZ.99' 

a. Punctuation between a drifting Z 
or a drifting * and the first 9 is 
not preceded by a V 

b. Drifting or zero expression char­
acters to the right of the decimal 
point 
Example: 'ZZV.ZZ', '++V++' 

String Handling: The string functions 
and operations performed in-line are 
shown in Figures 26 and 27. It should 
be noted that even the string func­
tions indicated as always being per­
formed in-line may sometimes call a 
library routine. For example, if the 
expression in the 'BIT or CHAR func­
tions requires an implicit conversion 
not handled in-line, the appropriate 
library routines will be called. 

(27) If a file is declared DIRECT INDEXED, 
then the ENVIRONMENT options INDEXAREA 
and NOWRITE should be applied if pos­
sible. 

c. Decreasing Size of Dictionary 

If a compilation overflows the dictiona­
ry, the immediate solution is to subdivide 
the program, recompiling internal proce­
dures as separate external procedures. If 
this is impracticable or undesirable, the 
dictionary requirements of the compilation 
must be reduced. The following cause large 



r-------------------T-------------------------------------------------------------------, 
1 String Operation 1 comments and Conditions 1 

~-------------------+---------------------------------T---------------------------------~ 
1 Source 1 Target 1 

~---------------------------------+---------------------------------~ 
Assign INon-adjustable, ALIGNED. fixed- Non-adjustable, ALIGNED, fixed-

(OPT=O) 

length bit string <2048 bits long length bit string <2048 bits long 

Non-adjustable, ALIGNED, bit 
string <2048 bits long 

Non-adjustable, UNALIGNED, fixed­
length bit string that is a 
scalar element of an AUTOMATIC, 
BASED or STATIC structure with no 
adjustable bounds or extents 

Non-adjustable, ALIGNED, VARY­
ING bit string <2048 bits long 

Non-adjustable, UNALIGNED, fixed­
length bit string that is a 
scalar element of an AUTOMATIC, 
BASED or STATIC structure with no 
adjustable bounds or extents. The 
string must be 1 bit long. 

Note: The assign- Fixed-length or VARYIN3 Fixed-length or VARYING character 
ment VARYING string character string <256 characters string <256 characters long 
to fixed-length long 
string is not 
handled in-line 
~-------------------+---------------------------------~---------------------------------~ 
'And', 'Not', 'Or' 1 Non-adjustable, ALIGNED, fixed-length or VA.qYING bit strings, with 

1 length: 
1 
1 
1 

fixed-length - <2048 bits 
VARYING - ~32 bits 

Compare INon-adjustable fixed-length character strings <256 characters long 
!Non-adjustable, ALIGNED, fixed-length or VARYING bit strings, with 
Ilength: 
1 
1 
I 

fixed-length - <2048 bits 
VARYING - ~32 bits 

Concatenate !Non-adjustable fixej-length or VARYING character strings <256 
Icharacters long 
1 Non-adjustable, ALIGNED, fixed-length or VARYING bit strings ~32 
Ibits long 
! 

ISTRING function IScalars and non-adjustable contiguous array or structure variables 1 

~-------------------~-------------------------------------------------------------------~ 
INotes: I 
11. Operations with VARYING strings require OPT=l. I 
12. If the expression in an IF statement is a bit string satisfying the conditions for I 
I the source string when OPT=O, then, if the string is <10 bits long, in-line code I 
I is generated to test the value of the string. I L _______________________________________________________________________________________ J 

Figure 26. Conditions under which the String Operations are Handled In-Line 

dictionary requirements, and should 
avoided if possible: 

(1) Excessive use of labels. 

be 

(2) Use of structures rather than separate 
scalar variables. 

(3) The LIKE attribute. 

(4) CONTROLLED identifiers. If they are 
necessary, min1m1ze the number of 
ALLOCATE statements in the program. 

(5) Adjustable bounds and string lengths. 

(6) The DEFINED attribute. 

(7) secon~ary entry points. 

(8) Long BCD identifiers. 

(9) Expressions as function arguments. 

(10) iSUB defining. 

(11) Passing subscripted structures or 
cross-sections of arrays as arguments 
to procedures. 

(12) Explicitly qualified BASED variables. 
If it is necessary to use explicit 
pointer qualification, m1n1m1ze the 
number of different pointer variables 

Programming Techniques 121 



used as explicit qualifiers of the 
same BASED variable. 

r--------T--------------------------------, 
I String I comments and Conditions I 
I Function I I 
~--------+--------------------------------~ 

BIT Always I 
I 

BOOL Non-adjustable, ALIGNED bitl 
strings, where the third argu-I 
ment is one of the logical oper-I 
ators 'and', 'not', 'or' orl 
exclusive 'or' I 

1 
CHAR Always 1 

I 
INDEX Second argument must be a non-I 

adjustable character string <2561 
characters long I 

1 
LENGTH Always I 

I 
SUBSTR STRINGRANGE must be disabled I 

I 
I UNSPEC Always I L ________ ~ ________________________________ J 

Figure 27. Connitions under which the 
string Functions are Handled 
In-Line 

(1) Wherever possible, data for computa­
tion should be binary, rather than 
~lecirnal. 

(2) The following character string assign­
ment causes a constant of 250 blanks 
to be generated at compile-time: 

DCL A CHAR(250) 
A='b' ; 

To avoid generating such a large con­
stant, the coding could be as follows: 

DCL A CHAR(250) 
DCL B CHAR(l); 
B=' b' ; 
A=B; 

B is padded, and no constant is gener­
ated. 

If A had a length of 256 or more, then 
the assignment would be handled by a 
library call and a constant with only 
one blank would be generated at 
compile-time. In this case, the first 
coding example would be satisfactory. 

(3) If a file declared as INDEXED is to be 
used for DIRECT UPDATE but will not 

122 

have records added to it, the use of 
the ENVIRONMENT option NOWRITE will 
save data management about 5000 bytes 
of storage. 

(4) The Alignment Attributes: These allow 
the user to provide alignment for 
string and arithmetic data as follows: 

ALIGNED: Arithmetic: 
FIXED DECIMAL: byte 
FLOAT(DOUBLE): doubleword 
Other: word 

String: byte 

UNALIGNED: Arithmetic and character 
string: byte 

Bit string: bit 

Thus the UNALIGNED attribute can be 
used to obtain denser packing of data 
in main storage, with the minimum of 
padding. 

Area, pointer, offset, label, task and 
event data are always aligned on word 
or doubleword boundaries (see Figure 
49). They can never be UNALIGNED. 

In data aggregates, the explicitly 
declared alignment for the aggregate 
applies to each element in the aggre­
gate. In structures, however, this 
alignment can be overridden by an 
alignment specified for a particular 
base element. 

For example: 

DCL 1 STR UNALIGNED, 
2 A, 
2 B ALIGNED, 
2 C; 

Here A and C will be UNALIGNED and B 
will be ALIGNED. 

Default attributes now denend on the 
data type of the element concerned, 
both for data items and for data 
aggregates. These defaults are: 

UNALIGNED All string ~ata and 
PICTURE items 

ALIGNED All arithmetic data i.e., 
BINARY 

For example: 

DCL A BIT(4), 
I, 

DECIMAL 
FIXED 
FLOAT 
COMPLEX 

(B CHAR(10), X) UNALIGNED, 
(C BIT(12), Y FIXED) ALIGNED; 



Here A is UNALIGNED by default, I is 
ALIGNED by default, and B. C, X and Y, 
are as explicitly declared. 

DCL (Al(SO) CHAR(6), A2(SO) BINARY) 
ALIGNED, 

Bl ( 3, 3) BIT ( 2 ) , 
Cl (3,3) CHAR(4), 
Dl (100) DECIMAL; 

Here Al and A2 are as explicitly 
declared, Bl and Cl are UNALIGNED by 
default, and D1 is ALIGNED by default. 

DCL 1 A, 
2 B, 
2 C BIT(4) UNALIGNED, 
2 D ALIGNED, 

3 E BIT(2), 
3 F, 

2 G CHAR(10); 

Here A i s a major structure 
B is FLOAT DECIMAL ALIGNED by 

default 
C is explicitly UNALIGNED 
D is a minor structure 
E is BIT ALIGNED (inherited from 

D) 
F is FLOAT DECIMAL ALIGNED by 

default(here ALIGNED is inher­
ited from D, but it is also the 
default for F if D had not been 
declared ALIGNED) 

G is CHAR UNALIGNED 

The user must take care that the 
alignment attributes are correct when 
matching variables for: 

1. Use of the DEFINED attribute 

2. Arguments and associated paramet­
ers 

3. Accessing different generations 
of a based variable. 

e. Use of Compile-Time Facilities 

A facility is provided which allows the 
programmer to manipulate and modify his 
source text during compilation. This 
facility can be used to effect conditional 
comoilation of sections of PL/I code, to 
exp~nd sections of PL/I code in line (e.g., 
DO loops), to insert text into a program 
from an external library (see below), and 
to replace or eliminate PL/I identifiers 
(e.g., variable names, keywords, etc.). In 
order to use this facility, the MACRO 
option must be specified on the EXEC con­
trol card and a SYSUT3 DD statement must be 
included in the job control cards for the 
compilation. The requirements for this 

data set are given in the section "Job 
Processing." If the SOURCE2 option is 
specified on the EXEC card, a listing of 
the input to the compile-time processor is 
produced. 

The implementation restrictions for this 
facility are listed in Appendix B of this 
publication. 

usig~ the Compile-time INCLUDE Statement: 
A string of text from an external library 
can be inserted into a program by using the 
compile-time statement INCLUDE. This text 
must be a member of a partitioned data set 
and may consist of either PL/I source 
statements or compile-time statements 
(including another INCLUDE) or a mixture of 
the two. A DD statement for the data set 
to be included must be present in the job 
control cards for the compilation. 

The identifier pairs in the INCLUDE 
statement specify the ddname which occurs 
in the name field of the appropriate DD 
card, and a data set member name, in that 
order. The first identifier, the ddname, 
is optional. If it is not specified, the 
default data set SYSLIB is assumed. In 
this case, a SYSLIB DD card is required. 
The second identifier, the data set member 
name, is not optional. If it is missing, 
the statement is considered to be incor­
rect. Therefore, if only one identifier is 
specified, it is assumed to be the member 
name. 

Restrictions on data sets for the 
INCLUDE statement are specified in Appendix 
B of this publication. 

A library of text can be created by 
using the operating system update utility 
routine called IEBUPDTE. This facility is 
described in the publication IBM System/360 
Operati~stem, Utilities. 

The following examples illustrate the 
creation of a partitioned data set and the 
use of the INCLUDE statement to insert text 
into a source program. 

Ex~~~: Create Library 

//JOBl JOB 123,JOHNSMITH, 
MSGLEVEL=l 

//STEP1 EXEC PGM=IEBUPDTE, 
PARM=NEW 

//SYSPRINT DD SYSOUT=A 

//SYSUT2 DD DSNAME=MACROLIB, 
DISP=(NEW,KEEl?) , 
UNIT=2311, 
VOLUME=SER=NNNNNN, 
SPACE= ( SO, (25,25,1» 

Programming Techniques 123 



//SYSIN DO * 

./ ADD NAME=DCL,LEVEL=OO,SOURCE=O 

./ NUMBER NEW1=DCOOOOOO,INCR=00000010 

./ 

% DCL CI, J) FIXE1); 
% I=10; 

ADD NAME=DCLP,LEVEL=OO,SOURCE=O 

./ NUMBER NEW1=D0500000,INCR=00000010 

VAR(1)=15; 

% DO J=2 TO 5; 

VAR(J)=10*(VAR(J-1)+J)i 

% END; 

./ ENDUP 

/* 

comment: 

In the foregoing example, a library of 
text called MACROLIB is created, with two 
members, named DCL and DOLP. 

Example 2: INCLUDE Library 

//JOB2 

//STEP1 

JOB 123,JOHNSMITH# 
MSGLEVEL=l 

EXEC PROC=PL1LFC, 
PARM.PL1L='MACRO, 
SOURCE2' 

//PL1L.PRIVLIB DO DSNAME=~CROLIB, 

DISP=(OLD,DELETE), 
UNIT=2311, 
VOLUME=SER=NNNNNN 

//PL1L.SYSIN DD * 

124 

PROC1:PROCEDURE OPTIONS (MAIN); 

/* 

DCL VAR(5) DEC FIXED; 

% INCLUDE PRIVLIB (DCL); 

% IF I,=10 % THEN % DO; VAR=O; 

% END; 

% ELSE % INCLUDE 
PRIVLIB (DOLP) ; 

PUT DATA (VAR) ; 

END PROC1; 

The ~ INCLUDE PRIVLIB (DCL) statement 
causes the following text to be inserted: 

% DCL(I,J) FIXED; 
% I=10 i 

The % INCLUDE PRIVLIB (DOLP) statement 
causes the following text to be inserted: 

VAR(1)=15; 
% DO J=2 TO 5; 
VAR(J)=10*(VAR(J-1)+J) ; 
% END; 

In this example, the member called DCL 
is read in, scanned, and the compile-time 
statements are executed, thus assigning a 
value of 10 to the compile-time variable I. 
If the value of I had not been 10, the 
source program produced by the compile-time 
processor would have been: 

PROC1: PROCEDURE OPTIONS (MAIN); 
DCL VAR(5) DEC FIXED; 
VAR=O; 
PUT DATA (VAR) ; 
END PROC1; 

However, since the value of I is 10, the 
source program generated in the example is: 

PROC1: PROCEDURE OPTIONS (MAIN); 
DCL VAR(5) DEC FIXED; 
VAR(1)=15; 
VAR (2) =10* (VAR (2--1) +2) ; 
VAR(3)=10*(VAR(3-1)+3)i 
VAR(4)=10*(VAR(4-1)+4); 
VAR(5)=10*(VAR(5-1)+5); 
PUT DATA (VAR) ; 
END PROC1; 

f. Use of Input/Output Facilities 

The characteristics of a data set 
(record format, length, blocking factor, 
etc.) will significantly alter the time 
overhead of programs performing a large 
amount of input/output. Use of the ENVIR­
ONMENT attribute should be kept to a m1n1-
mum in order to allow the DD statement to 
supply the optional data set charac­
teristics for a given use of a program. In 
general, the use of two or more buffers is 
advantageous to achieve overlap between I/O 
transmission and computing time. Further, 
the blocking of recoras will generally save 
both time and space on a data set. 

It is advantageous to open a number of 
files in a single OPEN statement, since 
separate opening activities (either expli­
cit or implicit) will require the reloading 
of the OPEN modules from the system resi-



dence. It should also be considered that 
when a file is open, buffers or workspace 
and data management interface modules are 
occupying storage. Accordingly, if storage 
space is a prime consideration., the judi­
cious use of the OPEN and CLOSE statements 
will help to control the available storage. 

Of the three STREAM data transmission 
techniques available, DATA-directed will 
generally be the most costly" both in time 
and space (symbol table entries exist at 
object time for each data variable 
transmitted). LIST-directed I/O is availa­
ble for free format I/O" but the greatest 
degree of control is available by using 
EDIT-directed facilities, which is general­
ly the most efficient technique, both in 
object time space and execution. 

RECORD I/O offers facilities for han­
dling data aggregates as single data enti­
ties, rather than element by element. Cer­
tain advantages, accordingly, are available 
in terms of efficient access to data set 
records and efficient use of data set 
space, since the data is unconverted and 
unedited. 

When using variable-length (V-format) 
records, the use of spanned (VS- or 
VBS-format) records should be considered. 
Spanned records permit the programmer 
greater flexibility in selecting the opti­
mum block size for the most efficient 
input/output-processor overlap and external 
storage utilization. 

When using the INDEXED data set organi­
zation, accessing records in an overflow 
area can slow processing considerably. It 
is recommended that INDEXED data sets are 
regularly recreated so that logically­
deleted but physically-present records are 
purged from the data set and records are 
collected from the overflow areas into the 
prime data areas. Another good reason for 
making this a regular practice is that when 
the overflow areas are full, records can be 
irretrievably lost. 

Consideration should be given especially 
to the choice between the BUFFERED and 
UNBUFFERED file attributes, available for 
SEQUENTIAL access. A BUFFERED file permits 
the object program to perform "anticipatory 
buffering", that is, overlap of device 
transmission and computing time. An 
UNBUFFERED file, though sometimes saving 
space required for buffers, does not permit 
such overlap, unless the EVENT option is 
used. (It should be noted, in any case, 
that an UNBUFFERED file will require hidden 
buffers if the record format is v, or if 
the data set is INDEXED, or REGIONAL(2) or 
( 3) • ) 

RECORD Condition: Depending upon the 
record format employed" the RECORD condi­
tion mayor may not be raised when the 
length of a record variable differs from 
the length of records within the data set. 
Figure 28 indicates when the condition is 
raised, and the results of transmissions 
before raising the condition (a dash indi­
cates a valid situation" the condition not 
being raised). Note that if the record 
variable in the READ statement is the null 
string, no data is transmitted into the 
variable but a record is transmitted from 
the data set. In this case, the RECORD 
condition is raised. 

If the RECORD condition is raised on a 
LOCATE statement, the pointer variable is 
not set and the contents of the previously 
located buffer will not be transmitted. 

ONKEY Built-in Function: The value 
returned by this function is the key of the 
record that caused an I/O condition to be 
raised. This value depends on the condi­
tion raised and the key option specified in 
the I/O statement: 

1. ERROR Condition raised because the I/O 
statement is invalid: 

2. 

Q2~ion 
KEY I KEYFROM 
KEYTO 

Value returned 
KEYIKEYFROM String 
Null String 

I/O condition other than ENDFILE 
raised, or ERROR condition raised 
after data transmission is complete: 

Q2tion 
KEYIKEYFROM 

KEYTO 

Value returned 
Recorded key (or intend­
ed recorded key produced 
from the source string), 
with length=data-set key 
length; an exception is 
REGIONAL(l), where the 
value is the 8-byte 
character representation 
of the region number. 
Recorded key, with 
length: 
Fixed:Length of KEYTO 
string 
VARYING: As for 
KEY I KEY FROM 

3. ENDFILE condition raised: 

Option 
KEYTO 

Value returned 
Null string 

4. Any condition, or no condition: 

Q2tion 
None 

Value returned 
Null String1. 

Note: Under the following conditions: 

Programming Techniques 125 



r--------T-----------------------------------------------------------------, 
I I Mode I 
1 ~--------------------------------T--------------------------------~ I Record 1 INPUT1 I OUTPUT 2 I 
1 Format ~-------------T------------------+------------------,-------------~ 
1 I Rl < R2 I Rl > R2 I Rl < R2 I Rl > R2 1 
~--------+-------------+------------------+------------------+-------------~ 
1 F 1 Truncate R2 1 Excess Rl 1 Excess R2 1 Truncate Rl 1 
1 1 I length undefined#1 length undefined 1 I 
~--------+-------------+------------------+------------------+-------------~ 
1 U V vs 1 Truncate R2*1 1 1 Truncate Rl I 
1 VBS I I I 1 I 
~--------~-------------~------------------~------------------~-------------~ 
IR1: Length of record variable I 
IR2: Actual or maximum length of data set record 1 
11 If record variable is a VARYING string, then its current length 1 
1 is set equal to MIN(R 2 , maximum length of record variable). 1 
12 Rl=current length if the record variable is a V~RYING string. 1 
1* If U-format and the file is UNBUFFERED (and requires no hidden 1 
1 buffers), truncation occurs, but the RECORD condition cannot be I 
I raised since this condition cannot be detected. 1 
1# A short record read from the data set will raise the TR~NSMIT 1 
1 condition; the RECORD condition is raised only if the length of I 
1 the record variable does not equal LRECL. 1 L __________________________________________________________________________ J 

.Figure 28. Situations under which RECORD Condition is raised in RECORD-Oriented I/O 

1. File is SEQUENTIAL INDEXED 

2. RKP * 0 

3. The statement was a REWRITE 

if the KEY condition is raised because the 
embedded key in the record variable or the 
buffer (if there is no FROM option) is not 
equal to the embedded key provided on the 
preceding READ, then ONKEY returns the key 
of the record provided by the READ. The 
length of this key is the length of the 
data set. 

Input/Output Error Recovery: When I/O 
transmission errors are encountered, 
exhaustive recovery procedures are per­
formed automatically by data management, so 
that, upon entry to a TRANSMIT ON-unit, it 
is unnecessary and impossible to perform 
further transmission error correction pro­
cedures. Synchronization of transmission 
errors and entry to relevant ON-units can 
only be guaranteed for input errors. ~n 
output operation error will be detected in 
a succeeding output operation, the particu­
lar one being dependent upon the blocking 
factor and the number of allocated buffers. 

g. Additional Hints 

(1) Operating System and Job Control 

External procedures, but not internal 
procedures, are treated as separate control 
sections. 

126 

(2) Declarations and Attributes 

(a) Do not rely too heavily on default 
attributes. Explicit declarations 
help to clarify the source program 
logic, and in some cases (for 
example# preciSion) reduce the 
chance of error. 

(b) Variables declared FIXED BINARY or 
FLOAT BINARY are automatically 
aligned on the proper word bounda­
ry, regardless of whether they are 
single or part of an aggregate. 
FIXED DECIMAL variables are stored 
in packed decimal format and the 
System/360 decimal instructions 
are used in operations involving 
them. FLOAT DECIMAL variables are 
stored in floating-point format; 
operations involving them are car­
ried out using the floating-point 
instruction set. 

(3) ~ssignments and Initialization 

(a) High order zeros will be inserted 
if required on assignment to or 
initialization of an arithmetic 
variable: 

DCL A FIXED DECIMAL (5,2) INIT (12); 
/*~ HAS VALUE 012.00*/ 

DCL B FIXED BINARY (15,0); 
B=12; 
/*B HAS VALUE 000000000001100B*/ 

(b) ~rrays may be ini tial ized by 



assignment from a scalar expres­
sion: 

DCL A(10)~ 
A=O~ 

The scalar value will be assigned 
to each element of the array. 
Similarly, when a scalar expres­
sion is assigned to a structure, 
its value will be assigned to each 
element of the structure: 

DCL IB, 
2 C BIT(l), 
2 D CHAR(l), 
2 E CHAR (4); 

B=O; 

It is possible to transfer from within a 
DO loop to a label on the END statement for 
the group. This has the effect of incre­
menting the control variable without inter­
mediate processing; control will not fall 
through. It is also possible to transfer 
out of an iterative DO group before the 
terminating value of the control variable 
is reached. 

(5) Functions 

The arguments in a function reference 
can be modified by the function. 

(6) ON-conditions and ON-units 

As a result of this assignment, Note the scope of condition prefixes: 
the values of the various elements 
will be: (SIZE):A:PROC; 

C 'O'B 
D 'b' 
E 'bbbO' 

(4) DO Groups 

Iterations can step backwards., and the 
expression in the WHILE clause can refer to 
the control variable, e.g., 

DO I=N+2*L BY -x WHILE (1)0); 
END; 

The control variable can be modified within 
the loop. 

(NOSIZE):IF M>N THEN DO; 
J=E+F; 
END; 

END A; 

In the above example, SIZE is disabled 
only during the evaluation of the 
expression M>N; SIZE is enabled for the 
assignment J=E+F. 

Programming Techniques 127 



TESTING PROGRAMS 

Programs can be checked using the debug­
ging facilities provided by PL/I. When the 
user is satisfied that his program is 
working correctly, debugging statements 
should be removed from the source deck, 
which is then recompiled to produce an 
optimum object program ready for execution. 

DEBUGGING FACILITIES 

certain language features are provided 
in PL/I to assist the programmer to debug 
his program. The facilities include: 

Control over interruptions and error 
handling 

The ability to obtain a trace of active 
procedures 

Symbolic output 

communication 
execution 

with the program during 

The use of specific language features 
proviies the debugging facilities; in addi­
tion, the programmer may use his own tech­
niques, such as inserting PUT statements at 
selected points. 

Control of Interruption and Error Handling 

Some conditions may be enabled or disa­
bled by means of the prefix option feature, 
full details of which can be found in the 
publication IBM System/360 Operating Sys­
tem, PL/I Reference Manua~. 

In association with this, the programmer 
may specify his own exit (to be taken when 
a particular condition occurs) or may cause 
an interruption by means of the SIGNAL 
statement. In particular, attention should 
be paid to the CHECK condition, as this 
enables the programmer to maintain a close 
watch on any variables he wishes to nomi­
nate. 

Should the programmer wish to exercise 
control of a more general nature, he may 
make use of the ERROR condition and, in his 
"ON-unit" further analyze the program by 
means of the ONCODE and ONLOC functions. 

128 

Standard system action for an ERROR 
condition raised in a non-tasking environ­
ment causes the FINISH condition to be 
raised. 

The ONCODE built-in function may be used 
by the programmer in any ON-unit to deter­
mine the nature of the errqr or condition 
which caused entry into that ON-unit. 

An ON-unit, which has been established 
by the execution of an ON statement, is 
entered when the associated ON-condition is 
raised during execution of PL/I compiled 
code or of a PL/I library module. Thus, 
for example, a FIXEDOVERFLOW ON-unit would 
be entered whenever any of the conditions 
occur for which the language demands the 
raising of the FIXEDOVERFLOW condition. 

Two ON-conditions, ERROR 
require special explanation. 
condition is raised: 

and FINISH, 
The ERROR 

1. 

2. 

3. 

Upon execution of a SIGNAL 
statement 

ERROR 

As a result of system action for those 
ON-conditions for which the language 
specifies system action to be "comment 
and raise the ERROR condition" 

As a result of an error (for which 
there is no ON-condition) occurring 
during program execution 

The FINISH ccndition is raised: 

1. Upon execution of a SIGNAL FINISH, 
STOP, or EXIT statement 

2. Upon normal completion of the MAIN 
procedure of a PL/I program 

3. Upon completion of the action asso­
ciated with the raising of the ERROR 
condition, except when a GO TO state­
ment in the ON ERROR unit has resulted 
in transfer of control out of that 
unit 

As a general rule, the value of the 
ON-code returned by the ONCODE function is 
that of the specific condition which caused 
entry into the ON-unit. Thus, in an ON 
CONVERSION unit, the programmer can expect 
an ON code corresponding to one of the 



conversion conditions which cause the CON­
VERSION condition to be raised in PL/I. 
However, this is not necessarily true when 
executing an ON ERROR or an ON FINISH unit; 
the values are as follows: 

1. When entered as a result of a SIGNAL 
ERROR or a SIGNAL FINISH, STOP or EXIT 
statement. or as a result of normal 
termination, the ON code values will 
be those of ERROR or FINISH respec­
tively. 

2. When entered for any other reason, the 
ON code value will be that associated 
with the error or condition which 
originally caused the ERROR condition 
to be raised. 

Several separate but related occurrences 
may cause a particular PL/I ON-condition to 
be raised. For example, the TRANSMIT con­
dition may be raised: 

1. By execution of a SIGNAL TRANSMIT 
statement 

2. By occurrence of an input TRANSMIT 
error 

3. By occurrence of an output TRANSMIT 
error 

Although it is often useful to know prec­
isely what caused an ON-condition to be 
raised, at times it will be sufficient 
simply to know which ON-condition was 
raised. This will apply particularly if 
the ONCODE function is used in an ERROR 
ON-unit after system action has occurred 
for an ON-condition. The ON codes have 
therefore been grouped, each group contain­
ing the codes associated with a particular 
ON-condition. 

From time to time it may become neces­
sary or desirable to add new ON-codes into 
a group. Perhaps a group containing one 
ON-code only may be expanded. rhis fact 
must be remembered when the ONCODE function 
is used to determine if a particular PL/I 
ON-condition has been raised. It is impor­
tant to test to see whether the ON-code is 
within the range specified, even if there 
is only one ON-code in the range; other­
wise, when a new set of library modules is 
used, it may become necessary to recompile 
the program. 

When a group contains only one ON-code 
value, it is impossible to test specifi­
cally for the signaled condition. With 
more than one ON-code in the group, the 
first in the group represents the signaled 
condition, provided the program was com­
piled using a compiler which was released 
at the same time as the library in which 
the expansion of the group first appeared. 

The ON-codes and their associated condi­
tions and errors are shown below. The 
groups and their ON-code ranges are shown 
in Figures 29 and 30. Language ON­
conditions are shown in capitals, others in 
lower case letters.) 

o 
3 
4 
9 

10 
20 
21 

22 

23 

24 
40 
41 
42 
50 
51 
52 
53 
54 
55 
56 

57 

70 
80 
81 
82 

83 

84 

85 

90 
300 
310 
320 
330 
340 
341 
350 
360 
361 
362 
500 
510 
511 
520 
600 
601 
602 
603 
604 

Condition/Error 

ONCODE function used out of context 
Source program error 
FINISH 
ERROR 
NAME 
RECORD (signaled) 
RECORD (record variable smaller than 
record size) 
RECORD (record variable larger than 
record size) 
RECORD (attempt to write zero length 
record) 
RECORD (zero length record read) 
TRANSMIT (signaled) 
TRANSMIT (output) 
TRANSMIT (input) 
KEY (signaled) 
KEY (keyed record not found) 
KEY (attempt to add duplicate key) 
KEY (key sequence error) 
KEY (key conversion error) 
KEY (key specification error) 
KEY (keyed relative record/track 
outside data set limit) 
KEY (no space available to add keyed 
record) 
END FILE 
UNDEFINEDFILE (siqnaled) 
UNDEFINEDFILE (attribute conflict) 
UNDEFINEDFILE (access method not 
supported) 
UNDEFINEDFILE (blocksize not 
specified) 
UNDEFINEDFILE (file cannot be 
opened, no DD card) 
UNDEFINEDFILE (error initializing 
REGIONAL data set) 
ENDPAGE 
OVERFLOW 
FIX EDOVER FLOW 
ZERODIVIDE 
UNDERFLOW 
SIZE (normal) 
SIZE (1/0) 
STRINGRANGE 
AREA raised in ALLOCATE statement 
AREA raised in assignment statement 
AREA signaled 
CONDITION 
CHECK (LABEL) 
CHECK (VARIABLE) 
SUBSCRIPTRANGE 
CONVERSION (internal) (signaled) 
CONVERSION (I/O) 
CONVERSION (transmit) 
CONVERSION (error in F-format input) 
CONVERSION (error in F-format input) 
(I/O) 

Testing Programs 129 



605 

606 
607 

608 

609 
610 

611 

612 

613 

614 

615 

616 

617 

618 
619 

620 

621 

622 

623 

624 

625 

626 

627 

628 

629 

1000 
1001 
1002 
1003 

1004 
1005 

1006 

1007 

1008 

1009 
1010 
1011 
1012 
1013 

1014 

130 

CONVERSION (error in F-format input) 
(transmit) 
CONVERSION (error in E-format input) 
CONVERSION (error in E-format input) 
(I/O) 
CONVERSION (error in E-format input) 
(transmit) 
CONVERSION (error in B-format input) 
CONVERSION (error in B-format input) 
(I/O) 
CONVERSION (error in B-format input) 
(transmit) 
CONVERSION (character string to 
arithmetic) 
CONVERSION (character string to 
arithmetic) (I/O) 
CONVERSION (character string to 
arithmetic) (transmit) 
CONVERSION (character string to bit 
string) 
CONVERSION (character string to bit 
string) (I/O) 
CONVERSION (character string to bit 
string) (transmit) 
CONVERSION (character to picture) 
CONVERSION (character to picture) 
(I/O) 
CONVERSION (character to picture) 
(transmit) 
CONVERSION (P-format input -
decimal) 
CONVERSION (P-format input -
decimal) (I/O) 
CONVERSION (P-format input -
decimal) (transmit) 
CONVERSION (P-format input -
character) 
CONVERSION (P-format input -
character) (I/O) 
CONVERSION (P-format input -
character) (transmit) 
CONVERSION (P-format input -
sterling) 
CONVERSION (P-format input -
sterl ing) (I/O) 
CONVERSION (P-format input -
sterling) (transmit) 
Attempt to read output file 
Attempt to write input file 
GET/PUT string length error 
Unacceptable output transmission 
error 
Print option on non-print file 
Message length for DISPLAY state­
ments zero 
Illegal array datum data-directed 
input 
REWRITE not immediately preceded by 
READ 
GET STRING -- unrecognizable data 
name 
Unsupported file operation 
File type not supported 
Inexplicable I/O error 
outstanding READ for update exists 
No completed READ exists - incorrect 
NCP value 
Too many incomplete I/O operations 

1015 
1016 

1017 
1018 

1019 

1500 
1501 
1504 
1505 
1506 
1507 
1508 
1509 
1510 
1511 
1514 
1515 
1550 

1551 

1552 

1553 

1554 

1555 

1556 

1557 

1558 

1559 

2000 
2001 

3000 
3001 
3002 
3003 
3004 
3005 
3006 
3798 
3799 

3800 
3801 

3900 

3901 
3902 
3903 

EVENT variable already in use 
Implicit-OPEN failure - cannot pro­
ceed 
Attempt to REWRITE out of sequence 
ERROR condition raised if end-of­
file is encountered before the 
delimiter while scanning list­
directed or data-directed input, or 
if the field width in the format 
list of edit-directed input would 
take the scan beyond the end-of­
file,. 
Attempt to close file not opened in 
current task 
Short SQRT error 
Long SQRT error 
Short LOG error 
Long LOG error 
Short SIN error 
Long SIN error 
Short TAN error 
Long TAN error 
Short ARCTAN error 
Long ARCTAN error 
Short ARCTANH error 
Long ARCTANH error 
Invalid exponent in short float 
integer exponentiation 
Invalid exponent in long float 
integer exponentiation 
Invalid exponent in short float 
general exponentiation 
Invalid exponent in long float gen­
eral exponentiation 
Invalid exponent in complex short 
float integer exponentiation 
Invalid exponent in complex long 
float integer exponentiation 
Invalid exponent in complex short 
float general exponentiation 
Invalid exponent in complex long 
float general exponentiation 
Invalid argument in short float 
complex ARCTAN or ARCTANH 
Invalid argument in long float com­
plex ARCTAN or ARCTANH 
Unacceptable DELAY statement 
Unacceptable use of the TIME built­
in function 
E-format conversion error 
F-format conversion error 
A-format conversion error 
B-format conversion error 
A-format input error 
B-format input error 
Picture character string error 
ONSOURCE or ONCHAR out of context 
Improper return from CONVERSION 
ON-unit 
Structure length ~ 16**6 bytes 
Virtual origin of array ~ 16**6 or ~ 
-16**6 
Attempt to wait on inactive and 
incomplete event 
Task variable already active 
Event already being waited on 
Wait on more than 255 incomplete 
events 



r-----------T---------------------------------, 
I Range I Group I 
~-----------+---------------------------------~ 
I 3-5 I As for 1000-9999 I 

I 10-199 I I/O ON-conditions I 

I 300-399 I Computational ON-conditions I 

I 500-549 I Program check-out conditions I 

I 600-899 I Conversion conditions I 
I 1000-9999 I Error conditions (also 3-5) I l ___________ ~ _________________________________ J 

Figure 29. Main ON-Code Groupings 

r-----------T-------------------------T-----------T-----------------------------------, 
I Range I Group I Range I Group I 
~-----------+-------------------------+-----------+-----------------------------------~ 
I 0 I ONCODE I 510-519 I CHECK 
I 3 I Source program error I 520-529 I SUBSCRIPTRANGE 
I 4 I FINISH I I 
I 9 I ERROR I 530-599 I (Unallocated) 
I 10-19 I NAME I 600-899 I CONVERSION 
I 20-39 I RECORD I 900-999 I (Unallocated) 
I 40-49 I TRANSMIT I 1000-1199 I I/O errors 
I 50-69 I KEY I 1200-1499 I (Unallocated) 
I 70-79 I ENDFILE I 1500-1699 I Data processing errors 
I 80-89 I UNDEFINEDFILE 1700-1999 I (Unallocated) 
I 90-99 I ENDPAGE 2000-2099 I Unacceptable statement errors 
I 100-299 I (Unallocated) 2100-2999 I (Unallocated) 
I 300-309 I OVERFLOW 3000-3499 I Conversion errors 
I 310-319 I FIXEDOVERFLOW 3500-3799 I (Unallocated) 
I 320-329 I ZERODIVIDE 3800-3899 I Structure and array errors 
I 330-339 i UNDERFLOW 3900-3999 I Tasking errors 
I 340-349 I SIZE 4000-8090 I (Unalloca ted) 
I 350-359 I STRINGRANGE 8091-8199 I Program interrupt errors 
I 360-369 I AREA 8200-8999 I (Unallocated) 
I 370-499 I (Unallocated) 9000-9999 I System errors 
I 500-509 I CONDITION I I l ___________ ~ _________________________ ~ ___________ L ___________________________________ J 

Figure 30. Detailed ON-Code Groupings 

3904 

3905 

3906 

3907 
3908 

8091 
8092 
8093 
8094 
8095 
8096 
8097 
9000 

9002 

Active event variable as argument 
to COMPLETION pseudo-variable 
Invalid task variable as argument 
to PRIORITY pseudo-variable 
Event variable active in assignment 
statement 
Event variable already active 
Attempt to wait on an I/O event in 
wrong task 
Invalid operation 
Privileged operation 
EXECUTE statement executed 
Protection violation 
Addressing interruption 
Specification interruption 
Data interruption 
Too many active ON-units and entry 
parameter procedures 
Invalid free storage (main 
procedure) 

Trace of Active Procedures 

A trace of active procedures may be 
obtained by use of the SNAP option in an ON 

statement. However, this technique has the 
limitation that it records only procedures 
which are active at the time when the 
condition occurs, because of the use of 
dynamic storage; when the storage is 
released it is immediately available for 
some other use, and so cannot be used to 
maintain a full trace. If a full flow 
trace is required, then this should be 
programmed, either by means of the SIGNAL 
statement in association with an ON state­
ment and ON-unit, or by specifying all 
procedure names in a CHECK list with the 
appropriate action in an ON-unit. 

The format of the SNAP output is either 
of the following: 

1. CONDITION xxxx OCCURRED AT OFFSET ± 
hhhhh FROM ENTRY POINT E1 

2. CONDITION xxxx OCCURRED AT OFFSET ± 
hhhhh FROM ENTRY POINT OF xxxx ON-UNIT 

Testing Programs 131 



followed by: 

CALLED FROM PROCEDURE WITH ENTRY POINT 
E2 
CALLED FROM PROCEDURE WITH ENTRY POINT 
E3 
etc., etc. 

If the statement number compiler option 
is specified, the SNAP output message will 
also contain IN STATEMENT nnnnn immediately 
following the word OCCURRED in the first 
line, or after the word CALLED in subse­
quent lines. The notation nnnnn gives the 
number of the statement in which the condi­
tion occurred. 

The characters that replace xxxx are an 
abbreviated form of the name of the ON­
condition which has occurred (the 
abbreviations are given in Figure 31). 
hhhhh is a hexadecimal offset; El, E2, 
etc., are entry point names indicating the 
actual entry points used to enter the 
procedure in which the condition occurred, 
or from which the next named entry point 
was called. 

If a condition occurs in an ON-unit, 
then the entry point name in the second 
line will be that of the procedure from 
which the ON-unit was entered, not neces­
sarily the procedure in which the ON-unit 
is situated. 

r--------------------T--------------------, 
I Condition I Abbreviation I 
~--------------------+--------------------~ 

I 
I 
I 
I 
I 
I 

OVERFLOW OFL 
SIZE SIZE 
F IXEDOVE'R FLOW FOFL 
SUBSCRIPTRANGE SUBRG 
CHECK 
CONDITION 
FINISH 
ERROR 
ZERODIVIDE 
UNDERFLOW 
STRINGRANGE 
NAME 
RECORD 
TRANSMIT 
KEY 
ENDFILE 
UNDEFINEDFILE 
CONVERSION 
ENDPAGE 

CHCK 
COND 
FIN 
ERR 
ZDIV 
UFL 
STRG 
NAME 
REC 
TMIT 
KEY 
ENDF 
UNDF 
CONV 
ENDP L ____________________ L-__________________ _ 

Figure 31. Abbreviations for ON-Conditions 

If SNAP SYSTEM has been specified in a 
programmer's ON statement, the system 
action message described in the section 
called "Object Time Diagnostic Messages" 
will be printed, followed by the trace of 
active procedures: 

132 

CALLED FROM PROCEDURE WITH ENTRY POINT 
E2 
etc. 

The one exception is the case of SNAP 
SYSTEM for the CHECK conditions. In these 
cases a standard SNAP message will be 
written, followed by the standard system 
action print-out for the CHECK condition. 

symbolic output 

The data-directed input/output features 
may be used instead of, or in addition to, 
the CHECK condition handling. The program­
mer may use data-directed output to obtain 
status information in terms of the symbols 
used in the source program. Refer to the 
publication IBM System/360 Operating Sys­
tem'I PL/I: Refrence Manual., for a full 
description of this feature. 

communication with the Program 

The DISPLAY statement provides a means 
of communicating with the program while it 
is being executed. 

The two forms in which an operator 
message can appear on the typewriter are as 
follows: 

Without the REPLY option, which gives 
the unaltered character string speci­
fied by the programmer. 

With the REPLY option, which gives the 
character string specified by the pro­
grammer preceded by a two-digit code 
generated by the Operating System. The 
operator must use this code as a prefix 
to his reply message. The EVENT option 
may be used here. 

User Requested Dump 

An additional debugging feature is the 
ability to obtain a storage dump at any 
point in the program. 

A dump is obtained by the statement: 

CALL dump identifier [ (argument) ] ; 

The dump identifier is one of the fol-
lowing 

IHEDUMP or IHEDUMT - dump all core and 
terminate 



IHEDUMJ or IHEDUMC - dump all core and 
continue processing 

The dump will include information such 
as register values, load list, contents of 
PIE, and a storage dump. To help the user 
interpret the dumps, a directory is printed 
out at the start of each dump. This 
directory includes: 

1. The contents of the SYSPRINT file 
buffers, if the file is open. 

2. The name of the files currently open, 
with the addresses of the relevant 
control blocks. 

3. The name of the current file. 

4. The addresses of the save areas and of 
other areas of special interest. 

The argument in the CALL statement is 
optional; if it is used the dump identifier 
must be declared as ENTRY(FIXED BINARY). 
The argument is an expression that is 
evaluated at execution-time; the result is 
a fixed binary integer that appears in the 
heading of the dump. This integer must be 
in the range 0 to 127, a number outside 
this range is replaced by 127. 

If no DD card is supplied, or if an 
unrecoverable error is detected during the 
output, e.g. incorrect chaining 'of save 
areas, then a standard operating system 
ABEND dump will occur and will terminate 
the job step. 

For more information on storage dumps 
and the information they provide, see IBM 
£ystem/360 Operating system: Messages, Com­
pletion Codes .and Storage Dumps, Form 
C28-6631. 

User Completion Codes for Abnormal 
Termination 

PL/I programs can terminate abnormally 
in six different ways: 

1. EXIT (abnormal termination of a task) 

2. 

3. 

4. 

5. 

STOP (abnormal termination of 
program) 

the 

If the ERROR condition is raised and 
there is neither an ERROR ON-unit nor 
a FINISH ON-unit with a GO TC state­
ment. 

CALL IHEDUMP or CALL IHEDUMT. 

If an 
tion of 

interrupt occurs during execu­
the error handler routine. 

This results in'execution of the ABEND 
macro. 

6. An ABEND in OS/360 in the major task. 

In cases (5) and (6) above, a full 
storage dump will be printed, provided that 
a SYSABEND DD card has been used. If no 
such card exists, and MFT or PCP is being 
used~ an indicative dump will be printed. 

If~ in cases (1) to (5), a program 
terminates abnormally in a non-tasking pro­
gram. a completion code is printed out. In 
the first four cases listed above, the 
completion code has a value which is the 
sum of a basic code plus the current value 
of the return code. (The return code can 
be set by the programmer or may have a 
default value of zero - see the chapter 
"Managing Programs".) The basic code 
values are: 

EXIT and STOP 
ERROR 
CALL IBEDUMP 
Interrupt in error 
handler 

1000 
2000 
3000 
4000 

When a program terminates abnormally with a 
completion code of 4000, this means that 
disastrous error has occurred, such as a 
control block being overwritten. 

When a program terminates abnormally 
with a completion code of 3333 this means 
that a disastrous error has occurred in the 
dump output modules. 

When the operating system terminates a 
program, the user completion code is zero, 
and the system completion code is the 
operating system completion code. 

There are two instances in which, since 
execution of the program has never com­
menced, no user completion code is issued. 
Instead, a special return code value is 
generated by the PL/I library and then 
passed to the return code register of the 
operating system in the usual way. These 
two instances, and the return codes gener­
ated, are: 

Pseudo-register vector too long 
No MAIN procedure 

400L: 
4008 

All the 4000-series codes mentioned 
above are accompanied by a message at the 
operator's console. (For further explana­
tion of the underlying causes of these 
messages, refer to the explanations given 
for each message in "Object-Time Error 
Messages" in Appendix G of this publica­
tion. ) 

Testing Programs 133 



Return Codes 

Return codes are set by use of the 
statement CALL IHESARC. 

134 



COMPILER INPUT 

Source records must be in one of the two 
following formats: 

Fixed-length records of logical record 
length up to 100 characters. Blocked 
records are acceptable. The maximum 
block size must be a multiple of the 
logical record length and must be one 
capable of being accommodated by the 
SIZE opti on. 

However, blocked records are not 
accepted from paper tape. Fixed-length 
records on:" paper tape have a fixed 
number of characters after translation; 
the numberl of characters before tran­
slation is not fixed. 

Undefined format records of length up 
to 100 characters. 

The format, logical record length, and 
block size may be specified in the DCB 
operand in the DD statement, they may be 
taken from the data set label, or they may 
be implied from the occurrence of the 
source file in the input stream. If not 
specified, undefined format is assumed with 
a block size of 100. 

In order to use the undefined format, 
the identity of SYSIN must be switched to 
the appropriate input device for the dura­
tion of the compilation job-step by means 
of a DD statement, e~ther explicit or 
cataloged, for that job-step. The DD 
statement must specify u-type record for­
mat, and if the input is of paper tape 
origin, the appropriate translate mode must 
also be specified, depending on the nature 
of the tape code. The user must ensure 
that an end-of-record indication is given 
by the correct code on the paper tape, with 
the paper tape reader keys set correctly to 
interpret the code. 

In both cases the source listing option 
(SOURCE) causes the complete input record 
to be printed. 

The SORMGIN option specifies the area 
within the record which contains PLII 
source text. The rest of the record may be 
used for identification purposes. If SORM­
GIN is not specified, the standard default 
values of 2 and 72 are assumed (see the 
section called "Compiler Processing" for a 
description of the SORMGIN option). 

APPENDIX A: DATA FORMATS 

REPRESENTATION OF DATA 

The representation of data in System/360 
storage is described in the following para­
graphs, together with the various permitted 
precisions and lengths of such data. 

Coded Arithmetic Data 

By virtue of declared attributes, the 
following eight types of coded arithmetic 
data forms may exist: 

REAL FIXED DECIMAL prec1s10n (P,Q) data 
is represented in the packed-decimal for­
mat. The P. digits occupy FLOOR {(P + 2)/2) 
bytes, aligned on any byte. When P is 
even, the effective precision is (P + l,Q) 
for arithmetic operations other than divi­
sion. An unwanted high-order digit may 
exist, therefore, and may remain undetected 
and be included in further operations. It 
can only be eliminated if SIZE is enabled. 
The maximum precision avaialble is 15 
digits. Arithmetic operations are per­
formed on P-digit integers, according to 
the scale factor Q. The scale factor is 
not directly associated in storage with the 
data, but is specified in a data element 
descriptor (DED) passed to the library for 
operations involving the data. The default 
precision is 5,0. 

REAL FIXED BINARY precision (P,Q) data 
is represented in the fixed-point hinary 
format. The P digits occupy four bytes, 
word aligned (half-word or double-word pre­
cision is not supported). The maximum 
precision is 31 digits. Arithmetic opera­
tions are performed as for real fixed 
decimal data; again, the scale factor is 
supplied to the library via a DED. The 
default precision is 15,0. 

REAL FLOAT DECIMAL precision (P) data is 
represented in the hexadecimal floating­
point format. Before and after arithmetic 
operations, the data is normalized in 
storage. The maximum available precision 
is 16 digits. If the specified precision 
~s less than or equal to 6, the data 
occupies four bytes, word aligned (short 
floating-point form). If the specified 
precision is 7 or more, the data occupies 
eight bytes, double-word aligned (long 
floating-point form). The default preci­
sion is 6. 

Appendix A: Data Formats 135 



r-------------------T--------------------T--------------------T--------------------, 
I Declared I Default I Maximum I Default I 

I attributes I attributes I precision I precision I 

~-------------------+--------------------+--------------------+--------------------~ 
I Initial letter: I I I I 

I A --> H, 0 --> Z I REAL, FLOAT, DECIMAL I I 6 decimal digits I 

I I --> N I REAL,FIXED,BINARY I I 15 bits I 

~-------------------+--------------------+--------------------+--------------------~ 
I BINARY I REAL, FLOAT I 53 bits I 21 bits I 

I DECIMAL I REAL, FLOAT I 16 decimal digits I 6 decimal digits I 

I FIXED I REAL, DECIMAL I 15 decimal digits I 5 decimal digits I 

I FLOAT I REAL, DECIMAL I 16 decimal digits I 6 decimal digits I 

I REAL1 I FLOAT, DECIMAL I 16 decimal digits I 6 decimal digits I 

r-------------------+--------------------+--------------------+--------------------~ 
I FIXED BINARY I REAL I 31 bits I 15 bits I 

I FIXED DECIMAL I REAL I 15 decimal digits I 5 decimal digits I 
I FLOAT BINARY I REAL I 53 bits I 21 bits I 

I FLOAT DECIMAL I REAL I 16 decimal digits I 6 decimal digits I 
~-----------------.--+--------------------+--------------------+--------------------~ 
I REAL1 FIXED I DECIMAL I 15 decimal digits I 5 decimal digits I 
I REAL1 FLOAT I DECIMAL I 16 decimal digits I 6 decimal digits I 
I REAL1 BINARY I FLOAT I 53 bits I 21 bits I 
I REAL1 DECIMAL I FLOAT I 16 decimal digits I 6 decimal digits I 
~-------------------~--------------------~--------------------~--------------------~ 
I Note 1: If COMPLEX is declared instead of REAL, the attributes are the same as I 
I for REAL and are applied to each Jf the two arguments. I l __________________________________________________________________________________ J 

Figure 32. Attributes and Precisions for Coded Arithmetic Data 

REAL FLOAT BINARY precision (P) data is 
represented in the hexadecimal floating­
point format. Before ann after arithmetic 
operations the data is normalized in 
storage. The maximum available preclslon 
is 53 digits. If the specified precision 
is less than or equal to 21 the data 
occupies four by-tes, word aligned (short 
floating-point form). If the specified 
precision is 22 or more, the data occupies 
eight bytes, double-word aligned (long 
floating-point form). The default preci­
sion is 21. 

COMPLEX FIXED DECIMAL precision (P,Q) 
data is represented as for REAL FIXED 
DECIMAL. The real and imaginary parts 
occupy immediately adjacent fields, the 
real part first. 

COMPLEX FIXED BINARY precision (P,Q) 
Qata is represented as for REAL FIXED 
BINARY. The real and imaginary parts occu­
py immediately adjacent full words, the 
real part first. 

COMPLEX FLOAT DECIMAL precision (P) data 
is represented as for REAL FLOAT DECIMAL. 
The real and imaginary parts occupy immedi­
ately adjacent full or double Nords, 
oepending upon the precision; the real part 
occupies the first field. 

COMPLEX FLOAT BINARY precision (P) data 
is represented as for REAL FLOAT BINARY. 
The real and imaginary parts occupy immedi­
ately adjacent full or double words, 

136 

depending upon the precision; the real part 
occupies the first field. 

There are four types of string data: 

1. Fixed-length CHARACTER 

2. Fixed-length BIT 

3. Variable-length CHARACTER 

4. Variable-length BIT 

Variable-length data has associated con­
trol areas known as "dope vectors" which 
describe the strings. A dope vector con­
tains a record of the maximum length and 
the current length of the string, together 
with a pointer to the beginning of the 
string. Dope vectors need not be adjacent 
to the data they describe, but will normal­
ly occupy storage of the same storage 
class. 

A string dope vector is created for all 
variable-length strings. In addition a 
dope vector is created for any fixed-length 
string which is an argument to either a 
procedure or a library routine. A 
variable-length string is addressed through 
its dope vector. A fixed-length string may 
be addressed directly or, if it has one, 
through its dope vector. Refer to Appendix 



C of this publication for a detailed des­
cription of string dope vectors. 

CHARACTER data is stored contiguously 
from the left end of a field long enough to 
accommodate the maximum length declared for 
the string. The leftmost byte has no 
special alignment: it is this byte which is 
addressed by a CHARACTER string's dope 
vector. 

BIT data may be either UNALIGNED or 
ALIGNED. Both are stored eight bits per 
byte. Unalignment refers to the relative 
location of adjacent strings, not to the 
density of a single string. Aligned data 
fields occupy an integral number of bytes. 
Unaligned data fields occupy only as many 
bits as their maximum lengths require. BIT 
data is stored contiguously from the left­
most bit of its field, and is addressed at 
this leftmost bit. 

Pictured Data 

Data declared with a PICTURE attribute 
is stored in two fields. One field con­
tains the picture information, the other 
the data element. The data is addressed 
independently of the picture information. 
Pictured data requires two addresses. 

Data of either type, arithmetic or 
string, may be specified by a PICTURE 
attribute. A pictured arithmetic data item 
is termed a numeric field. There are five 
types of numeric fields, which are des­
cribed as follows: 

REAL PICTURE (fixed decimal picture) 
data is represented by bytes on a byte 
boundary. The precision of a fixed decimal 
numeric field may not exceed the limits for 
the corresponding coded arithmetic form, 
i.e., 15 digit positions. 

REAL PICTURE (float decimal picture) 
data is represented by bytes on a byte 
boundary. The precision must not exceed 
the limits for the corresponding coded 
arithmetic form, i.e., 16 digit positions 
and an exponent of P digits where P is 
defined as for the exponent of an E format 
item. 

REAL PICTURE (sterling picture) data is 
represented by bytes on a byte boundary. 
The precision is 3 + number of digits in 
the pound field + number of fractional 
digits in the pence field; this must not 
exceed the limits for the coded fixed 
decimal form, i.e., 15 digit positions. 

COMPLEX PICTURE (fixed decimal picture) 
data - the real and imaginary parts are 

represented as two immediately adjacent 
byte fields, the real part first. Both 
parts are described by the single picture 
specification which is as described for a 
REAL fixed decimal numeric field. 

COMPLEX PICTURE (floating decimal 
picture) data - the real and imaginary 
parts are represented as two immediately 
adjacent byte fields, the real part first. 
Both parts are described by the single 
picture specification which is as described 
for a REAL float decimal numeric fieln. 

CHARACTER, but not BIT, string data may 
be specified by a PICTURE attribute. The 
data is represented by one byte per charac­
ter on a byte boundary. 

The picture field contains the declared 
picture specification without its surround­
ing quotation marks and with iteration of 
characters expanded. 

Data Element Descriptor {DED) 

The format of the data element descrip­
tor (DED) (Figure 33) is as follows: 

Flags: An eight-bit encoded form of 
declared information (see Figure 34). 

The P byte is the declared or default 
precision of the data item. Maximum values 
are: 

Binary Fixed: 31 
Binary Float: 53 
Decimal Fixed: 15 
Decimal Float: 16 

The Q byte is the declared or default 
scale factor of the data item in excess 128 
notation (i.e., if the implied fractional 
point is between the last and next to last 
digit, Q will have the value 129). For 
numeric fields, Q is the resultant scale 
factor derived from the apparent precision 
as specified in the picture, i.e., the 
number of digit positions after a V picture 
item as modified by an F (scale factor) 
item. 

The W byte specifies the number of bytes 
allocated for the numeric field. 

The L byte specifies the number of bytes 
allocated for the picture associated with a 
numeric field; if the data item is string, 
L occupies two bytes; if arithmetic, one 
byte. 

The picture specification field contains 
the picture declared for the data item; if 
the data item is string, the picture may 

Appendix A: Data Formats 137 



r-----------T----------------T-----------------------------------, 
I I IDEO Formats (in Bytes) I 
I Data Type I Representation ~-------T---T---T-----T---T---------~ 
I I I 1 I 2 I 3 I 4 I 5 I 6..... I 
~-----------+----------------+-------t---t---t-----t---+---------~ 
I I Fixed-point I I I I I I I 
I I I I I I I I I 
I Ar i thmetic I Floating-point I Flags I P I ~ I I I I 
I I I I I I I I I 
I I Packed-decimal I I I I I I I 
I ~----------------t-------t---t---t-----t---t---------~ 
I I Numeric ~ield I Flags I P I Q I W I L I Picture I 
~-----------t----------------t-------t---t---t-----t---t---------~ 
I I Unpictured I Flags I I I I I I 
I String ~----------------t-------t---~---t-----~---~---------~ 
I I Pictured I Flags I L I Picture I L ___________ ~ ________________ ~ _______ ~ ______ ~ ___________________ J 

Figure 33. Data Element Descriptor (OED) 

r--------T---T----------T-------T----------T--------T-------T---------, 
10 111 2 131 4 I 5 I 6 I 7 I 
~--------t---t----------t-------t----------t--------t-------t---------~ 
I I 0 I Unaligned! Fixed I Pictured I Bit I 0 I 0 I 0 

o I string ~---t----------+-------t----------t--------t-------t---------~ 
I I 0 I Aligned I Vary- I Un- I Charac-I 0 I 0 I 1 
I I I I ing I pictured I ter I I I 
r--------t---t----------t-------t----------t--------+-------t---------~ 
I I 0 I Non- I Short I Numeric I Deci- I Fixed I Real I 0 

1 ,Ari th- I I sterling ! I Field I mal I I I 
I metic r---t----------t-------t----------t--------t-------t---------~ 
I I 0 I Sterling ! Long I Coded I Binary I Float I Complex I 1 
L ________ ~ ___ ~ __________ ~-------~----------~--------~ _______ ~ _________ J 

Figure 34. Eight-Bit Encoded Form of Declared Information in Flags 

occupy 1 through 32,767 bytes; if arithmet­
ic, 1 through 255 bytes. If the original 
picture specification contained iteration 
factors, it will have been fully expanded. 

Pointer Data 

A pointer variable is stored as four 
bytes aligned on a fullword boundary. rhe 
four bytes contain: 

Byte 0: Zero 

Bytes 1-3: A (Based variable): 

For null values, the four bytes contain 
X'FFOOOOOO'. 

Offset Data 

An offset variable is stored in 
bytes aligned on a full word boundary. 
data consists of byte offsets. The 
value is X'FFOOOOOO'. 

138 

four 
The 

null 

Data of type LABEL takes on the values 
of statement labels. Label variables occu­
py a two-word field aligned to a fullword 
address. The field is used as follows: 

Word 1: Activation indicator 
Word 2: Bits 0-7 Gives nature of 

activation indicator 
Bits 8-31 Address of statement 

in object program 

The data is addressed at the first full­
word address. 

A task variable is stored in a 28-byte 
area aligned on a fullword boundary. The 
format is shown in Figure 35. On 
allocation, the compiler initializes the 
variable as follows: 

Byte 0: Zero 
Byte 8-11: A(Symbol table entry) 



o 1 2 7 8 31 
r-T-T--------T----------------------------, 
IAIDI Unused I A(PRV VDA) I 
~-~-~--------~---------------------------~ 
I A(Task control block) I 
~-----------------------------------------~ 
I A(Symbol table entry) l 
~-----------------------------------------~ 
I A(Event variable) I 
~--------------------T--------------------~ 
I Limit priority IDespatching priority I 
~--------------------~--------------------~ 
I Chain-back address I 
~-----------------------------------------~ 
I Chain-forward address I l _________________________________________ J 

Figure 35. Format of the Task Variable 

The flags set are: 

A 0 TASK variable inactive 
1 TASK variable active 

D 0 CALL with TASK option 
1 CALL without TASK option 

Event Data 

An event variable is stored in a 32-byte 
area aligned on a full word boundary. The 
formats are shown in Figures 36 and 36.1. 
On allocation. the compiler initializes the 
variable as follows: 

o 

Byte 0: Zero 
Byte 4: Zero 
status: Zero 
Flag Zero 

7 8 31 
r----------T------------------------------, 
I FLAG 1 I A(Event DECB/FCB) I 
~----------+------------------------------~ 
I FLAG 2 I Unused I 
~----------~------------------------------~ 
I Chain-forward address (task) I 
~------------------------------------.----~ 
I Chain-back address (task) I 
~-------------------T---------------------~ 
I Status I Unuse1 I 
~-------------------~---------------------~ 
I Chain-forward pointer (file) I 
~-----------------------------------------~ I Chain-back pointer (file) I 
~-----------------------------------------~ I A(Task PRV) I l _________________________________________ J 

-Figure 36. Event Variable Used with I/O 

a 7 8 31 

r---------T-------------------------------, 
I FLAG 1 I 0 I 
~---------+-------------------------------~ 
I FLAG 2 I ECB I 
~---------~-------------------------------~ 
I Unused I 
~-----------------------------------------~ I Unused I 
~---.----------------T --------------------- ~ 
I Status I Statement number I 
~---------T---------+----------T----------~ 
I Unused I MCF I WTF I Unused I 
~---------~---------~----------~----------~ 
I Infinite Wait ECB I 
~-----------------------------------------~ 
t Wait to Terminate ECB I l _________________________________________ J 

eFigure 36.1. Event Variable Used with a 
Task 

The flags set are: 

I/O Event 

1000 0000 
0100 0000 

0010 0000 
0001 0000 

0000 1000 
0000 0100 
0000 0010 

Active EVENT variable 
EVENT variable associated 
with I/O 
No WAIT required 
A(FCB) in first word of 
variable 
EVENT variable to be checked 
DISPLAY EVENT variable 
IGNORE option with this 
event 

Task EVENT 

0000 0000 

1000 0000 
0010 0000 
0001 0000 
0000 0001 

Flag 2 

Multitasking non-I/O EVENT 
variable 
Acti ve EVENT variable 
Normal PL/I termination 
Abnormal PL/I termination 
EVENT variable being waited 
on 

I/O EVENT 

1000 0000 
0100 0000 

EVENT being waited for 
EVENT is complete 

An area variable is stored as 16 bytes 
plus the area length required; it is 
aligned on a doubleword boundary. The 
format is shown in Figure 37. The AD DR 
function applied to an area returns the 
address of the 16-byte area, not of the 
area itself. An area is described by an 

Appendix A: Data Formats 139 



area dope vector (see Appendix C, 'Object 
Program Organization and Conventions') 

o 7 8 31 
r-T------T--------------------------------, 
IA!Unusedl Length (Area) ! 
~-L------i--------------------------------~ 
I Length (Current extent) ! 
~-----------------------------------------~ 
I Offset of largest free element I 
~-----------------------------------------~ 
I Unused/O I 
~-----------------------------------------~ 
I I 
I I 
I Area ! 
I I 
I I L _________________________________________ J 

Figure 37. Format of the Area Variable 

The flag set is: 

A = 1 AREA variable contains free list. 

If a free list exists, the fourth word is 
set to O. 

Arrays 

Arrays of any data type described in the 
section on scalars are allowed. Arrays are 
stored in row-major order, in increasing 
storage addresses. Except for aligned bit 
strings, the elements of an array which is 
not in a structure are stored contiguously. 

Each array may be described by a dope 
vector holding the dimension information 
declared for the array. The number of 
dimensions of the array is not included in 
its dope vector. The routine which refers 
to the dope vector must know the number of 
dimensions. External procedures know the 
number from a declaration of the parameter, 
and Library routines receive the number as 
an argument. 

Arrays of scalars and fixed-length 
strings are described by a single level of 
dope vector. 

Arrays of variable-length strings have a 
dope vector which points to an array of 
string dope vectors, which in turn give the 
current and maximum lengths of each element 
and point to the actual strings. 

Structures 

structures require dope vectors whether 
they contain arrays or not. 

140 

A structure dope vector for a non­
dimensioned structure is an ordered list of 
addresses of the elements of which the 
major structure is composed, including the 
elements of minor structures contained 
within the major structure. Minor struc­
tures do not have separate dope vectors. 
The elements of a minor structure are a 
contiguous subset of the elements of its 
major structure, and can therefore be 
addressed from the major structure's dope 
vector. If an element is an array, the 
address in the structure dope vector is 
replaced by the array dope vector. An 
array of variable-length strings in a 
structure would therefore be addressed as 
follows: 

The structure dope vector has an entry 
which is an array dope vector 

This array dope vector points to an 
array of string dope vectors 

Each string dope vector then points to 
a string 

If a structure has a dimension attri­
bute, it specifies an array of structures. 
However, the dope vector does not pOint 
through an array dope vector to an array of 
structure dope vectors. Instead, the 
dimensionality is applied to the elements 
of the structure. 

The Creation of Dope Vectors 

The PL/I (F) compiler produces dope 
vectors in the following five circumstan­
ces: 

1. 

2. 

3. 

4. 

When arguments are passed to a proce­
dure (whether internal or external). 

When lengths of strings or 
of arrays are variable, 
than 256 bytes (or 2048 
length. 

dimensions 
or greater 
bits) in 

When a variable is DEFINED on another. 

When minor 
arguments 
structure 
cases) • 

structures are passed as 
(a subset of the major 

will not suffice in all 

5. When asterisk notation is used, crea­
tion of separate dope vectors is 
required for projections of arrays. 



APPENDIX B: IMPLEMENTATION CONVENTIONS AND RESTRICTIONS 

The following implementation conventions 
and restrictions apply to the operating 
system/360 PL/I (F) implementation. 

INPUTIOUTPUT CONVENTIONS AND RESTRICTIONS 

PLII and Data Sets 

A PL/I program does not nominate data 
sets directly. Instead, under the 
System/360 operating system, it associates 
a file with a job control DD statement that 
identifies a data set. The file is asso­
ciated with the DD statement by means of: 

1. The TITLE option: This specifies the 
name (up to eight characters long) of 
the DD statement 

2. The file name: If there is no TITLE 
option, the file name (padded or trun­
cated to eight characters) is used as 
the ddname. 

Associating the file with the data set 
requires the merging of information des­
cribing each of them and ensuring that 
there is no conflict of information on any 
particular item. At execution time the 
compiler calls the PL/I library 110 modules 
to handle the source program information. 
The 1/0 modules generate a skeleton DCB and 
insert in it, first, the file attribute 
from the DECLARE and OPEN statements, and 
then, any default file attributes required. 

The library modules then issue an OPEN 
macro, which fills in the rema~n~ng DCB 
fields with information from, first, the DD 
statement for the data set and, then, the 
data set label. Neither the DD statement 
nor the data set label can override infor­
mation already provided by the source pro­
gram; the data set label cannot override 
information provided by the DD statement. 

If there are any DCB fields still not 
set, default information is provided by the 
PL/I library OPEN module. 

SYSPRINT is normally used as a STREAM 
OUTPUT PRINT file; it can be used as a 
RECORD file if declared INTERNAL. 

DISPLAY 

The maximum lengths of character string 
acceptable are 100 characters for the mes­
sage and 72 characters for the reply. The 
reply string's current length is set equal 
to its maximum length and padded with 
blanks if necessary. 

The maximum size of a page is 32,767 
lines; the minimum is 1 line. If the page 
size is not specified a value of 60 lines 
is assumed. 

The maximum and minimum line size depend 
on the record format. 

r--------T--------------------------------, 
I I LINESIZE I 
I Record ~------------------T-------------~ 
I Format I Min. I Max. I 
~--------+------------------+-------------~ 
I V I Non-PRINT file: 101 32,751 I 
I IPRINT file: 9 I I 
I U.F I 1 I 32,759 I L ________ ~ __________________ ~ _____________ J 

If a line size is not specified, the 
default values are: 

PRINT file - 120 characters 

Non-PRINT output file - no default value 

The LINESIZE value determines the 
logical-record length in the data set (i.e. 
the value of LRECL): 

F- and U-format records: LRECL = LINESIZE 

V-format records: LRECL = LINESIZE + 4 

For PRINT files, an extra byte (for the 
ASA control character) is added to each of 
the above LRECL values. 

If BLKSIZE is specified, its value and 
the LRECL value must be compatible. If 
BLKSIZE is not specified, its value is 
calculated from the LINESIZE value. 

Appendix B: Implementation Conventions and Restrictions 141 



LINESIZE, SKIP and COLUMN in Non-PRINT 
Files 

LINESIZE (expression): Evaluation of the 
expression gives an integer that must be 
within the limits described above. For V 
and U format records, LINESIZE is the 
maximum size of a line. If a variable 
LINESIZE is required, the maximum value 
must be specified as the BLKSIZE in the DD 
statement or in the ENVIRONMENT attribute. 
Short lines are padded with blanks for F 
format records only. 

SKIP(expression): For output files, SKIP 
action depends on the record format: 

F'-format 
out the 
blanks. 

On a short line, SKIP fills 
remainder of the line with 

V-format SKIP puts out the current line 
as a short record. If the byte count 
of the line is less than 14 (18 with 
control bytes), the line will be 
blanked up to that size. Successive 
lines will be of the same minimum 
length, padded with blanks. 

U-format SKIP will put out the current 
line as a short record. 

COLUMN (expression): For input files, if 
the value of the expression is greater than 
the current record length, a value of 1 is 
assumed. 

F'or both input and output files, if the 
value is less than the current position on 
the line, the file is positioned at COLUMN 
(value) on the next line. 

For output files, all characters from 
the current position in the line to the 
next position are blanked out. For U- or 
V-format records, if another record is 
required, a short record is put out subject 
to the rules described under the SKIP 
option. 

Block Size and Record Size 

The maximum size of a block or a record 
must not exceed 32,760 bytes. 

See the section "Structure Mapping" in 
Appendix C for details of data aggregate 
size requirements necessary in calculating 
the record and block size for data sets 
using RECORD I/O facilities. 

142 

Data-Directed Input/Output 

The maximum length of a qualified name, 
including the separating periods, is 255 
characters. 

The semicolon, which is not in the 
48-character set, must always be represent­
ed in the input stream by the proper 11-8-6 
punch (i.e., the character sequence ,. is 
not recognized as a semicolon). 

Edit-Directed Input/Output 

When using the E-format output, 
E (w" d., s) " s mus t be less than 1 7 digits. 
When using E(w~d). j must be less than 16 
digits,. 

If the number of significant digits in 
E-format data is greater than 16, then: 

E-format input: CONVERSION condition 
raised 

E-format output: Data is truncated 

Character Code 

Input to the object program is assumed 
to be in EBCDIC mode. 

48-Character Set 

48-character set "reserved" words (e.g., 
GT, LE, CAT, etc.) words must be preceded 
and followed by a blank or a comment. If 
they are not, the interpretation by the 
compiler is undefined and may not, there­
fore, be what the user intended. 

A record containing part or all of a 
48-character set reserved word must be 3 
characters or mere in length. 

The ENVIRONMENT Attribute 

The ENVIRONMENT attribute may contain 
the subfields given below. Only one option 
from each group is permitted. 

General format of the ENVIRONMEIff attri­
bute is: 



ENVIRONMENT([CONSECUTIVEIINDEXEDI 
REGIONAL (1) \REGIONAL(2)\REGIONAL(3)] 
[{VIVS\VBSIF\U} (Blocksize 
[,Recordsize ])] [LEAVE I REWIND] 
[BUFFERS(n)] [COBOL] [CTLASA\CTL360] 
[INDEXAREA[ (m)]] [NOWRITE] [GENKEY]) 

Data set Orqanization: There are five 
types of data set organization. These are 
detailed below. 

CONSECUTIVE: A data set consisting of 
unkeyed records, which are accessed in a 
physically sequential order. This organi­
zation is assumed if none is specified. 

INDEXED: A data set which consists of 
keyed records, located by means of several 
levels of index. 

REGIONAL(l): A data set. which consists 
of keyed records, without recorded keys, 
which are located by means of relative 
record positions within the data set. 

REGIONAL(2): A data set which consists 
of keyed records, with recorded keys, which 
are located by means of relative record 
positions, and by a search for a recorded 
key to match the given key. 

REGIONAL(3): Identical to 
except that positioning is 
relative tracks. 

REGIONAL(2), 
in terms of 

Record Format: Logical records may be in 
one of three formats: fixed length (format 
F), variable length (format V), or unde­
fined (format U). Information regarding 
record format may be supplemented by the DD 
statement DCB subparameters, BLKSIZE and 
LRECL. The block size and record size must 
be specified in bytes. 

F(blocksize[,recordsize]) specifies 
fixed length records with the block 
size as stated. The record size may be 
specified optionally, which indicates 
that records are blocked (i.e., that 
each physical record contains more than 
one logical record). In this case, the 
block size must be a simple multiple of 
the record size. If the record size is 
not specified, the records will not be 
blocked. Blocked records are not sup­
ported for UNBUFFERED files. 

V(max-blocksize[,max-recordsize]) 
specifies that records are of varying 
length. A number of complete logical 
records are grouped together to form a 
physical record in such a way that each 
physical record does not exceed the 
maximum block size stated. If the 
maximum record size is specified, no 
logical record may exceed this size. 
Four bytes of control information per 
record, plus four bytes per block, are 

contained in V-format records. These 
items must te considered when speci­
fying the block size and record size 
subfields. Blocked records are not 
supported for UNBUFFERED files. 

VS(max-blocksize[max-recordsize]) 
specifies that spanned records are to 
be processed. The maximum block size 
can be exceeded by any logical record, 
in which case the record is segmented 
and written on two or more consecutive 
blocks. One block is written for each 
complete record, or segment, if span­
ning takes place. 

VBS(max-blocksize[max-recordsize]) 
specifies that spanned records are to 
be processed. The maximum block size 
can be exceeded by any logical record, 
in which case the record is segmented 
and written on two or more consecutive 
blocks. Each block is written to with­
in four bytes of the maximum length 
specified. A block can contain up to 
two spanned record segments or any 
number of complete records, or a mix­
ture of both. 

U(max-blocksize) specifies blocks of 
varying length up to the maximum sp.eci­
fied. 

1. All record formats permit the use of a 
"printer control character." This 
character appears as the initial char­
acter of each record (except for V 
format, when it appears after the four 
control bytes). 

2. The specification of a single parame­
ter (blocksize) in the record format 
in the ENVIRONMENT attribute is taken 
to imply unblocked records. For F­
and V-format records record size is 
then derived from the block size pa­
rameter and therefore overrides infor­
mation supplied on the DD statement. 

Data Set Positioning: The LEAVE and REWIND 
options are used for positioning a 
magnetic-tape volume when a data set is 
closed or when a volume switch is required 
in a multi-volume data set. The REWIND 
option allows the DISP parameter in the 
data set DD statement to control the action 
taken. Figure 37.1 shows the result when 
these options are specified. 

Buffer Allocation: BUFFERS(n) specifies 
the number of buffers to be allocated for 
the data set: this number must not exceed 
255. For BUFFERED files, if the option is 
omitted or the number specified is zero, 
two buffers are automatically allocated 
upon opening the data set. The buffer 

Appendix B: Implementation Conventions and Restrictions 143 



r------------------T---------------------------------------T---------------------, 
I Option I Action at Closing of Data Set I Action at End of I 
I I I Volume I 
~------------------+---------------------------------------+---------------------~ 
I LEAVE I volume wound on to end of data set I No repositioning I 

I I (If the file is BACKWARDS, the volume I Channel: available I 

I I is rewound to the beginning of the I I 

I I data set) I I 

I I Channel: busy I I 

.--------T---------+---------------------------------------+---------------------~ 
I I Volume is wound on to end of data set I I 
I I (If the file is BACKWARDS., the volume I No repositioning I 
I PASS I is rewound to the beginning of the I Channel: available I 
I I data set) I I 

I I Channel: busy I I 
REWIND .---------+---------------------------------------~---------------------~ 

I KEEP, I volume is rewound and unloaded I 
I CATLG, I Channel: available I 
I UNCATLG I I 
.---------+-------------------------------------------------------------~ 
I DELETE I Volume is rewound I 
I I Channel: available I 

.--------~---------+-------------------------------------------------------------~ 
I Both LEAVE and I REWIND is ignored I 
I REWIND I I 
.------------------+-------------------------------------------------------------~ 
I Neither LEAVE I Volume is repositioned to the beginning of the current iata I 

I nor REWIND I set on that volume. (If the file is BACKWARDS, the volume I 

I I is wound to the end of the data set.) I 
I I Channel: busy I L __________________ ~ _____________________________________________________________ J 

Figure 37.1. Effect of LEAVE and REWIND Options on Repositioning of Magnetic-Tape Volumes 

count may be supplied by a DD statement DCB 
subparameter BUFNO, if not specified in the 
ENVIRONMENT attr ibute. 

An additional buffer 
STREAM output data sets 
records. 

is obtained for 
using U-format 

COBOL Option: This specifies that files 
with this attribute will contain structures 
mapped according to the COBOL algorithm. 
This type of file may be used only for READ 
INTO, WRITE FROM, and REWRITE FROM state­
ments. 

COBOL data types and the equivalent PL/I 
data types are shown in Figure 38. 

Files with the COBOL option may not be 
passed as arguments. 

READ INTO, WRITE FROM and REWRITE FROM 
statements specifying COBOL files may have 
the EVENT option only if the compiler is 
able to determine that the PLII and COBOL 
structure mappings are identical (i. e,., all 
elementary items have identical 
boundaries). If they are not identical, or 
if the compiler cannot detect that they are 
identical, then an intermediate variable is 
created to represent the level 1 item 
mapped using the COBOL algorithm. The PLII 
variable is assigned to this variable 
before the WRITE FROM is executed, or 

144 

assigned from it after the READ INTO is 
executed. Thus the 1/0 statement contain­
ing the EVENT is not the one that completes 
the 1/0 operation; in these cases, the 
EVENT is ignored. 

If an ON condition arises during a READ 
INTO, then 

1. the INTO variable may not be used in 
the on-unit, 

2. if the completed INTO variable is 
required, there must be a normal 
return from the on-unit. 

Printer/Punch Control Characters: Two 
options are available, for' RECORD CONSECU­
TIVE OUTPUT files only: CTLASA and CTL360. 
They have the following meaning:-

CTLASA - Requires the implementation to 
set the ASA control bit in the DCB 
subparameter DCBRECFM. 

CTL360 - Requires the implementation to 
set the machine code control bit in the 
DCB subparameter DCBRECFM. 



r--------------------T--------------------, 
I COBOL data type I PLII data type I 
~--------------------+--------------------~ 
I DISPLAY I PICTURE with A andl I 
I I or X picture char-l 
I I racters I 
I I CHARACTER I 
t--------------------+--------------------~ 
!COMPUTATIONAL I I 
jDecimal lenqth (=No.1 I 
lof 9s in picture) isl I 
I I I 
lito 4 INO equivalent I 
I 5 to 9 I FIXED BINARY I 
I I Cint-_egers only) I 
I 10 to 18 INa equivalent I 
t--------------------+--------------------~ 
ICOMPUTATIONAL-l IFLOAT Cn) BINARY I 
I I (for n ~ 21) I 
I IFLOAT Cn) DECIMAL I 
I I ( for n ~ 6) I 
t--------------------+--------------------~ 
ICOMPUTATIONAL-2 IFLOAT (n) BINARY I 
I I (for n > 21) I 
I IFLOAT (n) DECIMAL I 
I I (for n > 6) I 
t--------------------+--------------------~ 
ICOMPUTATIONAL-3 I FIXED DECIMAL I 
I I Cpreci sion and I 
I I scale as in COBOL I 
I I picture) I L ____________________ L ____________________ J 

figure 38. Equivalence of COBOL and PL/I 
Data 

These options are used in order that 
spacing, skipping, etc., may be achieved in 
RECORD 110 files. It is the user's 
responsibility to ensure that the first 
byte of each record contains a valid ASA or 
machine code control character. These 
options will be ignored for STREAM files. 

Performance with DIRECT INDEXED Cln~t o~ 
Update~iles: Performance is improved if 
INDEXEJ DIRECT files (which use BISAM) are 
specified with the INDEXAREA and NOWRITE 
options. 

INDEXAREA [em)]. Used with INDEXED DIRECT 
files opened for INPUT or UPDATE Cand 
ignored by other files). This option caus­
es the highest level of index to be loaded 
into main storage. The permitted formats 
are: 

INDEXAREA (m): the parameter m is a decimal 
constant ~ 32767. If the index size ~ 
m, the index is loaded into main stor­
age; if the index size > m, the index 
is not loaded. This enables the pro­
grammer to place a limit on the amount 
of core he is prepared to allocate for 
an index area. If m > 32767, the 
parameter is ignored and the index 
(whatever its size) is loaded into main 
storage. 

INDEXAREA: if no parameter is specified the 
index (whatever its size) is loaded 
into main storage. 

NOWRITE. Used for INDEXED DIRECT files 
--- opened for UPDATE Cand ignored by other 

files). This option indicates to data 
management that there are no records to 
be added to the file and therefore the 
write-add facility is not required. If 
an attempt is made to execute a WRITE 
statement on a file with this option, a 
diagnostic message will be printed and 
the ERROR condition raised. 

GENKEY Option 

The GENKEY option applies only to 
INDEXED data sets. It enables the program­
mer to classify keys used in the data set 
into generic classes and to use a SEQUEN­
TIAL KEYED INPUT or SEQUENTIAL KEYED UPDATE 
file to access and read records according 
to the classification of their keys. 

A generic key is a character string that 
identifies a class of keys. All keys which 
begin with such a string are members of 
that class of keys. For example, the 
recorded keys 'ABCD', 'ABCE', and 'ABDF' 
are all members of the classes identified 
by the generic keys 'A' and 'AB'. The 
first two keys are also members of the 
class 'ABC', and the three keys can be 
considered as unique members of the classes 
'ABCD', ABCE', 'ABDF', respectively. 

The GENKEY option allows the programmer 
to start sequential reading or updating of 
an INDEXED data set from the first non­
dummy record that has a key in a particular 
class. The class is identified by the 
inclusion of its generic key in the KEY 
option of a READ statement. Subsequent 
records can be read by READ statements 
without the KEY option, or they can be 
updated by REWRITE statements. It is the 
responsibility of the programmer to check 
that the last record in a generic class has 
been processed, as no indication is given 
when it is reached. 

In the following example, a key length 
of more than three bytes is assumed: 

DCL IND FILE RECORD SEQUENTIAL 
UPDATE KEYED 
ENVCINDEXED GENKEY); 

READ FlLE(IND) INTO (INFIELD) 
KEY ( • ABC') ; 

Appendix B: Implementation Conventions and Restrictions 145 



NEXT: READ FILE (IND) INTO(INFIELD); 

GO TO NEXT; 

In the above example, the first READ 
statement causes the first non-dummy record 
in the data set whose key begins with 'ABC' 
to be read into INFIELD. Each time that 
the second READ statement is executed, the 
next non-dummy record will be retrieved. 

If the data set contains no non-dummy 
records with keys of the specified gener1c 
class, the KEY condition is raised, and, on 
return from the on-unit, the next READ 
statement will read the first record in the 
data set. However, if the data set con­
tains only dummy records, the ENDFILE con­
dition is raised. 

Note how the use of the GENKEY option 
affects execution of a READ statement that 
supplies a source key shor.te!: than the key 
length specified in the KEYLEN subparameter 
of the DD statement which defines the data 
set. If the GENKEY option is used, it 
causes the source key to be interpreted as 
a generic key, and the record to be read is 
the first non-dummy record in the data set 
whose key begins with this source key. If 
the GENKEY option is not used, a short 
source key is padded on the right with 
blanks to form a source key of the speci­
fie1 key length, and the record to be read 
is the record which has this padded key, if 
such a record exists. 

The use of the GENKEY option does not 
affect the result of supplying a source key 
whose length is greater than or equal to 
the specified key length. The source key, 
truncated on the right if necessary, iden­
tifies a specific record whose key can be 
considered the only member of its generic 
class. 

EVENT Option 

The EVENT option is implemented for 
RECORD input/output statements used as fol­
lows: 

SEQUENTIAL 

DIRECT 

146 

File Organization 

CONSECUTIVE UNBUFFERED 
REGIONAL UNBUFFERED 

CONSECUTIVE INDEXED 
or REGIONAL 

Note: The EVENT option should not be used 
on a WRITE statement if V or U format 
records are being added to a REGIONAL(3) 
data set which is being accessed in a 
direct update mode. 

WAIT Statement 

If the user wishes to specify more than 
one event name in a WAIT statement, the 
multiple-wait option must have been speci­
fied at SYSGEN time. 

If a WAIT statement is executed and the 
events required to satisfy the WAIT contain 
a mixture of 1/0 and non-I/O events all 
non-I/O events will be set complete before 
any of the 1/0 events. 

If the TITLE option specified exceeds 
eight characters, then the first eight are 
used. 

I BASED Variables 

The implementation of offsets and poin­
ters does not support bit addressing. This 
restriction has no practical effect on 
ALIGNED bit strings. with UNALIGNED bit 
strings belonging to arrays or structures, 
however, only offsets or pointers to major 
structures or minor structures with byte 
(or higher) alignment should be used. 
Other restrictions on the use of based 
variables are given in Appendix H. 

!gitializing LABEL Variables in Structures 
with the LIKE Attribute 

Initialization of LABEL variables in 
these structures requires careful handling 
particularly as the implementation does not 
provide the result specified by the lan­
guage. A structure A is declared, using 
the LIKE attribute, to be identical to a 
structure B. Structure B contains a LABEL 
variable that is initialized, using the 
INITIAL attribute, to the value of a LABEL 
constant. The initial value of the corres­
ponding LABEL variable in A is the initial 
value of the LABEL constant known in the 
block containing the declaration of B, not 
A. 



For example: 

DCL 1 B, 
2 L LABEL INITIAL (Ll); 

Ll: . , I*B.L Ll*1 

BEGIN; 
DCL A LIKE B; 

Ll: 

END; 

. , I*A.L IS GIVEN THE VALUE OF 
Ll IN STRUCTURE B*I 

COMPILE-TIME PROCESSING CONVENTIONS AND 
RESTRICTIONS 

The MACRO Option 

The MACRO option should be included 
among the complete set of options for the 
compiler invocation if the program contains 
compile-time statements. 

Precision 

The precision, N, for a compile-time 
variable declared FIXED is 5. 

INCLUDE Conventions 

Included text must be a member of a 
partitioned data set. If only a sing.le 
identifier is specified, i.e.~ of either of 
the following forms 

(identif ier) 
identifier, 

then it is assumed to be the name of a 
member of the data set with the ddname 
SYSLIB. If identifier1. (identifier.:!) is 
written then identifier1. is the ddname and 
identifier,2 is the member name. DD cards 
must be provided for those data sets used. 
Records in these data sets must have a 
fixed length of not more than 100 charac­
ters. The maximum blocking factor is 5. 
The source margin and character set options 
on the EXEC control card also apply to 
included text. 

Compile-Time Procedures 

There may be no more than 254 compile­
time procedures per compilation~ Further, 
each procedure is limited to a maximum of 
15 parameters. 

Compile-Time DECLARE 

No more than three levels of factoring 
are permitted in a compile-time DECLARE 
statement. 

Combined Level of Nesting and Depth of 
Replacement 

At any point in the program the combined 
level of nesting and depth of replacement 
is restricted to 50 levels. However, since 
not all nested or replacement items require 
the same amount of space, a program may run 
with a greater actual nesting or 
replacement depth than 50 levels. Depth of 
replacement is self-defining, but nesting 
level requires some clarification. A nest­
ing level is required for: 

each pair of parentheses, either expli­
cit or implied by hierarchy of opera­
tion 

each IF, DO, or PROCEDURE statement 

each member of a parenthesized list, 
such as factor lists in DECLARE state­
ments or argument lists of procedures. 

Limitations on size of Compile-Time 
Processor Input 

The user~s program is maintained inter­
nally as blocks of text. BlocKsize is 
assigned at the start of processing and is 
a function of machine size as specified by 
the SIZE option on the EXEC card. The 
total size of internal text is restricted 
to 90 times the size of a text block. The 
minimum system configuration results in a 
blocksize of lK, so a total of 90K is 
allowed for internal text. This minimum 
figure is roughly equivalent to 1000 source 
input statements. 

Appendix B: Implementation Conventions and Restrictions 147 



Limitations on Number of Compile-Time 
Variables 

The maximum number of compile-time vari­
ables which can be used in a program 
depends on the total size of the diction­
ary, which is restricted to 65,000 bytes. 
Assuming an average dictionary entry size 
of 28 bytes, this restricts the processor 
to approximately 2,300 items. An entry is 
made in the dictionary for each macro 
variable, macro procedure name, INCLUDE 
identifier, macro label, and unique 
compile-time constant. In addition, two 
dictionary entries are created for each 
iterative DO, one for each THEN or ELSE 
clause, and one for each compile-time pro­
cedure. Error message references are also 
entered into the dictionary. The diction­
ary is cleared at the end of compile-time 
processing; it is therefore unnecessary to 
keep the above considerations in mind if 
estimating available dictionary space dur­
ing actual program compilation. 

Output Line Numbering 

Where constants or comments span more 
than one line, the output line numbering 
refers to the first input line number of 
the string or comment. 

OTHER COMPILER CONVENTIONS AND RESTRICTIONS 

OPTIONS Attribute 

The list in the OPTIONS attribute may 
include the options MAIN, TASK and REEN­
TRANT. The MAIN option should be used for 
the external procedure which is required to 
be given initial control at object time. 
The REENTRANT option must be specified. if 
the object program generated by the compil­
er is to be reenterable. 

The TASK option must be used if the 
procedure is to be invoked for tasking or 
to be invoked with other procedures with 
the TASK option. 

Parameter to the MAIN Procedure 

A single parameter may be passed by the 
EXEC statement for the execution job step 
to the MAIN procedure. If this facility is 
used, the first parameter to the MAIN 
procedure should be declared as a VARYING 

148 

character string; the maximum length is 
100~ and the current length is set equal to 
the parameter length at object time. The 
parameter can also be a fixed-length char­
acter string. 

Number of Variables 

The maximt~ number of variables in the 
source program depends on the total size of 
the dictionary, which (for NOEXTDIC) is 
restricted to approximately 65,000 bytes. 
This is equivalent to a restriction of 
roughly 1,200 variables for a scientific 
user and to 1.000 for a commercial user. 
In computing these figures a reasonable 
allowance has been made for constants, 
statement labels, and other items which may 
require dictionary entries. 

If the EXTDIC option is specified, the 
maximum size of the dictionary is approxi­
mately 1.5 times 65,000 bytes for a block 
size of lK, and approximately 3.5 times 
65,000 bytes for other block sizes. 

The figures for variables are necessari­
ly approximate, since the size of a dic­
tionary entry varies with the type of 
variable, length of identifier, whether it 
is a structure element, and so on. 

Number of Executable statements 

The total size of the internal text, at 
any point in the compilation, is restricted 
to 90 times the size of a text block. The 
size of a text block is itself dependent on 
the amount of core storage available to the 
compiler, as specified by the SIZE option 
The minimum block size is 1,024 bytes (lK), 
giving a maximum size for the internal text 
of 92,260 (90K). This is equivalent to 
roughly 280 executable statements. 

The maximum block size is 16,384 bytes, 
giving a maximum of 1,474,560 bytes for the 
size of internal text. This is equivalent 
to roughly 14,000 executable statements. 

The figures given for numbers of state­
ments are necessarily approximate, since 
the number of bytes per statement will vary 
between different types of source programs. 

Size of an Individual Statement 

All statements, other than a DECLARE 
statement" are limited to 3,500 source 



characters, i.e., equivalent to 50 cards. 
The 'content' of any statement, other than 
a DECLARE statement, is limited by the size 
of a text block; this varies, as described 
in the preceding paragraphs, with the stor­
age available. but will not be less than 
1,024 bytes. 

The content of a statement can be calcu­
lated by ignoring nonsignificant blanks and 
comments, expanding iteration factors in 
string constants and pictures, and then 
adding one byte for each occurrence of an 
identifier, and three bytes for each occur­
rence of a constant. To this, for binary 
constants add the iterations of any CHARAC­
TER or BIT strings (note that at this point 
BIT strings are treated as characters, not 
bits), since the (F) compiler expands the 
strings as if the programmer had written 
them in full, and two decimal digits for 
decimal constants. At most, these restric­
tions will limit a statement to six cards, 
but the limit will normally be between 20 
and 30 cards, even for a text block of 
1,024 bytes. 

These restrictions also apply to a 
DECLARE statement for the text between any 
two commas which are not contained within 
parentheses. 

Factoring of Attributes 

The number of left parentheses used for 
factoring attributes in DECLARE statements 
is limited to 73 in a compilation. 

Limitations on Nesting 

There must not be more than 50 levels of 
nesting at any point in the compilation. 
The degree of nesting at any point is the 
number of PROCEDURE, BEGIN, or DO state­
ments without a corresponding END state­
ment, plus the number of currently active 
IF compound statements, plus the number of 
currently unmatched left parentheses, plus 
the number of dimensions in each active 
array expression, plus the maximum number 
of dimensions in each active structure 
expression. 

The number of nested iteration factors 
in a format list must not exceed 20. The 
maximum nesting of ENTRY attributes within 
an ENTRY or GENERIC attribute is 3. 

The GENERIC Attribute 

There is a limitation on the number of 
family members and arguments wh~ch may be 
associated with a GENERIC entry name. The 
value given by evaluating the following 
formula must not exceed 700: 

n 
3n + 82:a.+ 8MAX(a1,a2, ••• ,an) + 3d 

1 1 

where n 
a i 

d 

the number of family members 
= the number of arguments relating 

to the ith family member 
the greatest function nesting 
depth at which an invocation of 
the GENERIC entry name appears 

Number of Blocks in a Compilation 

The number of PROCEDURE, BEGIN, and 
iterative DO groups~ plus the number of ON 
statements, must not exceed 255. 

Level Numbers 

The maximum declared level number per­
mitted in a structure is 255. The maximum 
true level number permitted in a structure 
is 63. 

Number of Parameters 

The maximum r:umber of parameters permit­
ted at any entry point is 64. 

Number of Dimensions 

The maximum number of dimensions permit­
ted" including dimensions inherited from 
containing structures, is 32. 

Arrays are limited, for each dimension, 
to a lower bound of -32,768 and to an upper 
bound of 32.,767. 

Appendix B: Implementation Conventions and Restrictions 149 



Data-Directed List 

The maximum number of elements permitted 
in a list for data-directed input is 320. 
Each base element of a structure counts as 
a separate list element. 

structure and Array Expressions 

The level of nesting in structure and 
array expressions is limited by the follow­
ing rule: 

For each level of nesting of structure or 
array expressions, add 2 for the maximum 
number of dimensions in the structure or 
array, add 2 for the maximum level in a 
structure expression, add 3 for each sub­
script or arqument list in the expression 
or assignment, and finally, add 15. 

The total for the whole nest should not 
exceed 900. 

constants 

The precision or length of constants may 
not be greater than the precision or length 
of the corresponding type of variable. 

sterling Constants 

The maximum number of digits allowed in 
the 90unds field of a sterling constant is 
13. 

The number of digits following the deci­
mal point in the pence field must not 
exceed 13 minus the number of digits in the 
pounds field. 

string Constants 

The number of characters in a string 
constant, after expansion of iteration fac­
tors, may not exceed the size of a diction­
ary block minus 14. The size of a diction­
ary block will vary with the storage avai­
lable to the compiler in the same way as 
does text block size, but will not be less 
than 1,024 bytes. 

150 

Floating-Point Constants and E Format Items 

The exponents of floating-point numbers 
are restricted to a maximum of 2 digits for 
decimal or 3 digits for binary. 

Constants Returned by Procedures 

If a procedure has more than one entry 
point, and each entry point returns a 
value, code is generated to convert each 
value returned to each of the data types 
for the entry points. If any of these 
values is a constant, it is possible that 
this constant cannot be converted to all 
the data types specified. A severe error 
message will be put out, and execution will 
be unsuccessful. 

This situation can be avoided by assign­
ing the constant to a variable of the same 
data type, and then returning this varia­
ble. For example: 

DCL A ENTRY RETURNS(CHAR(S», 
B ENTRY RETURNS (FIXED DECIMAL(15», 
C ENTRY RETURNS(BIT(64», 
ATEMP CHAR(S); 

A: ENTRY CHAR(S); 
ATEMP = 'AOS'; 
RETURN (ATEMP) ; 

B: ENTRY FIXED DECIMAL(15) ; 
RETURN (108) ; 

C: ENTRY BIT(64); 
RETURN('10101'B); 

The use of ATEMP avoids the interrupt 
caused by the CHARACTER->FIXED DECIMAL and 
the CHARACTER->BIT conversions. However, 
execution may still be unsuccessful, and a 
warning message is put out to remind the 
user. 

Compiler-Generated Names 

The number of narres generated by the 
compiler must not exceed 11,264 in a compi­
lation. One name is generated for each 
PROCEDURE, BEGIN, or ON block, for each 
variable declared as CONTROLLED INTERNAL, 
and for each INTERNAL file. 



Temporary Results in Expression Evaluation 

The maximum number of temporary results 
which may exist during the evaluation of an 
expression or during an assignment state­
ment is 200. 

An estimate of the number of temporary 
results which may exist during the evalua­
tion of an expression can be obtained from 
the following: 

At each level of parenthesis, count one for 
each operator which is forced to be evalu­
ated before an inner level of parentheses. 
For each such operator, count one for each 
operand which -requires conversion before 
use, count one for each nested function, 
count one for each subscripted variable 
used as a target in an assignment state­
ment, and finally, count one for each 
pseudo-variable and each argument of a 
pseudo-variable. 

Multiple Assignments and Pseudo-Variables 

Multiple assignments are limited by the 
following rule: 

count 11 for each target of a multiple 
assignment, add 3 for each pseudo­
variable, and then add 11 for each 
argument of a pseudo-variable. The 
total must not exceed 4,085. 

Function Values 

The maximum number of different data 
types or precisions returned by one 
function may not exceed 256. 

Qualified Names 

The number of characters in a qualified 
name, which is to be used either for 
data-directed input/output or in CHECK 
lists, must not exceed 256. 

Note that if the DATA option without a 
list is used for data-directed input, this 
will include all structure elements in the 
compilation.. 

String Lengths 

The length, in characters or bits, of a 
string variable or intermediate string 
result is limited to 32,767. 

String Lengths in Intermediate Result 
Fields 

When non-ad-ustable VARYING strings, or 
functions which return non-adjustable VARY­
ING strings# are used in an expression, the 
lengths of the intermediate result fields 
are calculated from the maximum lengths of 
the operands. If these lengths are at or 
near the maximum permitted by the implemen­
tation (32767 bytes or bits), the length of 
the intermediate fields may be greater than 
the implementation maximum; if so, they 
will be truncated on the left~ This situa­
tion can occur with concatenation, the 
UNSPEC function with a character-string 
argument, the REPEAT function, and the 
STRING function. 

The use of adjustable VARYING strings 
can create a similar problem. When an 
operand of the concatenate operator or the 
argument of the UNSPEC function is an 
adjustable VARYING string, the length of 
the intermediate result field is not test­
ed, and execution will fail. This situa­
tion can also occur with SUBSTR if the 
third argument is not a constant, because 
in this case the result is an adjustable 
VARYING string. 

Similarly, when a VARYING string is 
passed as an argument to a fixed-length 
string parameter, the length of the tempor­
ary argument created is the maximum length. 
If the user wishes to pass the current 
length of the VARYING string (in, for 
example, Y=X(A»_ a possible method is: 

DCL ATEMP CHAR<*) CTLi 
ALLOCATE ATEMP CHAR(LENGTH(A»; 
ATEMP=A; 
Y=X (ATEMP) i 
FREE ATEMP; 

AREA Sizes 

The size of an area is limited to 32767 
bytes. In this implementation, the AREA 
size is provided by thp. value associated 
with the AREA attribute or by the default 
value of 1000 bytes. 

Appendix B: Implementation Conventions and Restrictions 151 



LABEL Attribute 

The number of statement-label constants 
specified by the LABEL attribute is limited 
to 125 in any particular label list. 

POSITION 

The maximum value of the integer con­
stant in the POSITION attribute is 32,767. 

The maximum length of a PICTURE describ­
ing a numeric field, after expansion of 
iteration factors, is 255. 

The maximum length of a PICTURE describ­
ing a character string, after expansion of 
it€ration factors, is the size of a dic­
tionary block, less 14. The size of a 
dictionary block will vary with the storage 
available to the compiler in the same way 
as does text block size, but will not be 
less than 1,024 bytes (or 768 bytes if the 
EXTDIC option is in use). 

SETS List 

The t.otal of twice the number of iden­
tifiers in a SETS list, plus the number of 
parameter numbers in a SETS list, must not 
exceed 255. 

Scale Factor 

The scale factor of a variable, or of an 
intermediate result of type FIXED, must be 
in the range -128 and +127. 

Precision 

The maximum precision of a variable or 
of an intermediate result is: 

152 

53 
16 
31 
15 

for 
for 
for 
for 

FLOAT BINARY 
FLOAT DECIMAL 
FIXED BINARY 
FIXED DECIMAL 

Floating-Point Magnitude 

The magnitude of a normalized floating­
point variable or intermediate result must 
lie in the range from 2.4 x 10-78 to 7.2 X 

10 75 • 

Built-In Functions 

The default value for the second 
argument of the FIXED built-in function is 
15 for binary data, and 5 for decimal data. 

The default value for the second argu­
ment of the FLOAT built-in function is 21 
for binary data, and 6 for decimal data. 

The length of the bit string which is 
the val ue ret lIned by the UNSPEC function 
is defined by the type of the argument. 

Argument Type Length of Bit String 

32 FIXED BINARY (p,q) 
FIXED DECIMAL (p,q) 
FLOAT BINARY (p) 

8*FLOOR 
32 if p 
64 if P 

FLOAT DECIMAL (p) 32 if p 
64 if P 

CHARA..CTER (n) 8*n 
BIT en) n 
POINTER 32 
OFFSET 32 

«p+2)/2) 
:s; 21 
~ 22 
:s; 6 
2 7 

AREA (Number of bytes 
allocated + 16>*8 

The length of the string returned by the 
ONSOURCE and DATAFIELD built-in functions 
is subject to an implementation maximum of 
255 characters. 

MA~~IN, MOD Built-In Functions 

When the arguments to these functions 
have different attributes, all the argu­
ments are converted, before the function is 
invoked, to the highest characteristics. 
Contrary to the language specification, 
both the precision and the scale factor of 
an argument will be adjusted. If all the 
arguments are FIOED, application of tne 
highest-character1stics rule may, in con­
junction with the maximum precision defined 
by the implementation, cause truncation and 
hence an inaccurate result. For example: 

DCL X FIXED DECIMAL (12,1), 

Y FIXED DECIMAL (12,9); 

Z MOD eX,y); 



Here Z (whatever its attributes) will be 
wrong. X and Yare stored in a temporary 
field which would have, according to the 
precisions o~ the operands, a precision 
larger than the implementation permits. 
Therefore the implementation-defined maxi­
mum is applied. resulting in a precision of 
(15,9). Y can be stored satisfactorily 
inside such a field but X is truncated, 
with the loss of its five high-order 
digits. 

MOD Built-In Function 

When the MOD function is used with FIXED 
arguments of different scale factors, the 
results may be truncated. If SIZE is 
enabled, an error message will be printed; 
if SIZE is disabled, no error message will 
be printed and the result is undefined. 

COMPLETION Built-In Function and 
Pseudo-variable 

The COMPLETION built-in function and 
pseudo-variable were previously defined in 
PL/I with the name EVENT. The (F) compiler 
implements the COMPLETION built-in function 
and pseudo-variable whether the keyword 
used is COMPLETION or EVENT. 

STRING Built-In Function 

The argument may be a scalar, array, or 
structure variable that consists of one of 
the following: 

1. Bit strings 

2. Character strings 

3. Decimal numeric pictures 

4. A mixture of (2) and (3) 

It may not be an expression. 

The argument can be 
IGNED; if it is ALIGNED, 
included in the result. 

ALIGNED or UNAL­
padding is not 

The concatenated string in the result 
has a maximum length of 32767 bytes. 

Length of Identifiers 

The following types of identifiers 
should contain not more than seven charac­
ters: 

All EXTERNAL data identifiers 
EXTERNAL PROCEDURE and ENTRY labels 
EXTERNAL Files 
CONDITION identifiers 

If this restriction is exceeded, the 
first four characters are concatenated with 
the last three to form an abridged iden­
tifier. 

In addition, such identifiers must not 
start with the letters IHE, lest they 
conflict with the names of Library modules. 

Sub$cripted Identifiers 

For subscripted identifiers, the maximum 
number of characters in the subscript is 
limited to 225 characters. This figure 
includes the first left parenthesis, the 
commas, and the final right parenthesis; it 
excludes redundant characters such as 
blanks and plus signs. 

The maximum number of entries in a CHECK 
condition, whether in a prefix list or in 
an ON statement, is 510. 

The maximum number of data items being 
checked at any point in the compilation 
varies between 2078-2n and 3968-2n, where n 
is the number of currently checked items 
which have the attribute EXTERNAL. 

If a structure or part of a structure is 
in a CHECK condition, the number of items 
in this restriction must include all ele­
ments of the structure. 

OBJECT-TIME CONVENTIONS AnD RESTRICTIONS 

Data-Directed Input 

When the CHECK condition is enabled 
data-directed input., assignment of 
element of an array will cause the 
array to be written out. 

for 
each 

whole 

Appendix B: Implementation Conventions and Restrictions 153 



Edit-Directed Output 

E- and F-format items are rounded, not 
truncated. 

CHECK Condition 

If an identifier which is read in by a 
GET DATA statement is included in a CHECK 
list anywhere in the proqram, then the 
CHECK condition is raised, and will be 
treated as enabled unless the block con­
taining the GET DATA statement has an 
explicit NOCHECK prefix. If the CHECK 
condition is raised, SYSTEM action will be 
taken unless the GET DATA statement lies 
within the dynamic scope of an ONCHECK 
statement for the identifier in question. 

If a READ statement with the EVENT 
option has a KEYTO or an INTO variable for 
which the CHECK condition is enabled, the 
value of the variable will be printed 
immediately after the READ statement, not 
after the WAIT statement. Consequently the 
printed values of the variable will be the 
old, not the new values. 

CONVERSION ON-Condition 

If a return from an ON-unit for CONVER­
SION is made, then, unless it was entered 
on accou~t of a SIGNAL statement, the data 
conversion will be reattempted. This 
implies the use of corrective measures on 
the field in error using either the 
ONSOURCE or the ONCHAR pseudo-variables. 
If corrective action is not taken in the 
ON-unit, and normal return is attempted, a 
message will be printed and the ERROR 
condition will be raised. 

If the ONSOURCE or ONCHAR pseudo­
variable is used outside an ON-unit, or in 
an ON-unit other than either a CONVERSION 
ON-unit or an ERROR or FINISH ON-unit 
entered because of system action for 
CONVERSION, then a message is printed and 
the ERROR condition is raised. 

If the ONSOURCE built-in function is 
used out of context, a null string is 
returned. If the ONCHAR function is used 
out of context, a blank is returned. 

154 

ON-Units and Entry Parameter Procedures 

There is an implementation limit to the 
number of ON-units and/or entry parameter 
procedures which can be active at any time. 
An entry parameter procedure is one that 
passes an entry name as parameter to a 
procedure it calls. The total permissible 
number of these ON-units and/or entry pa­
rameter procedures is 127. 

Exponentiation 

The expression X**(-N) for N>O is evalu­
ated by taking the reciprocal of X**N. 
This may cause the OVERFLOW condition to 
occur as the intermediate result is comput­
ed, which corresponds to UNDERFLOW in the 
original expression. 

Collating Seguence 

In the execution of PL/I programs, com­
parisons of character data will observe the 
collating sequence resulting from the rep­
resentations of characters in bytes of 
System/360 storage, in extended binary 
coded decimal interchange code (EBCDIC). 
The BCD and EBCDIC punched card codes and 
graphics for the PLiI 60-character set are 
tabled in collating sequence order in Fig­
ure 4 of this publication. 

ENTRY Names as Arguments and ON Statements 
in Recursive Contexts 

In the first version of the (F) compil­
er, ENTRY parameters were invoked with the 
environment existing at the time of invoca­
tion. In subsequent versions, they will be 
invoked with the environment existing at 
the time when the ENTRY name was passed as 
an argument. 

Pi: PROC RECURSIVE; 
B = 1; 
CALL P4 (P3) ; 
RETURN; 

P4: ENTRY(PP); 
B = 2; 
CALL PP; 
P3: PROC; 

END; 

PUT DATA (B); 
END; 



Note: For the first version., the above 
procedure gave B = 2 ;" for subsequent 
versions it gives B = 1;. 

In the first version of the (F) compil­
er, ON-units in recursive contexts were 
entered with the environment existing when 
the condition occurred. In sUbsequent ver­
sions, the ON-unit will be entered with the 
environment which was in existence when the 
ON statement was executed. 

Example: 

P: PROCEDURE RECURSIVE; 
DECLARE I STATIC INITIAL (0), 

M AUTOMATIC; 
I = I + 1; 
M = I; 
IF I = 1 THEN DO; 

ON OVERFLOW PUT DATA (M); 
END; 

IF I = 3 THEN SIGNAL OVERFLOW; 
ELSE CALL P; 

END; 

Note: In the first version, the procedure 
gave M = 3; subsequent versions give 
M = 1. 

These modifications of semantics can 
affect only those programs which contain 
both recursive procedures and either entry 
parameters or ON statements. 

Concatenated Data Sets 

Concatenation of data sets with "unlike 
attributes" (device type., record format, 
etc.) is not supported at object time. 

LOCATE MODE 

ON Conditions 

UNDEFINEDFILE condition for implicit 
OPEN is raised in the normal way. 

TRANSMIT condition is raised when it is 
detected, which may be some statements 
later. ONKEY does not necessarily give the 
key of the record that caused an I/O 
transmission error. 

RECORD condition is raised in the usual 
way for LOCATE. It cannot occur for READ 
SET or REWRITE without the FROM option. 

KEY condition is raised in the usual way 
except for a LOCATE statement on an INDEXED 
file with RKP*O. If this happens then the 
sequence of operations is: 

1. On the LOCATE statement the KEYFROM 
key is checked for sequence; the KEY 
condition is raised if a sequence 
error is found. 

2. Processing continues until the next 
operation on the file. 

3. At the next operation on the file, the 
embedded key in the buffer is checked 
against the KEY FROM string that was 
given in the LOCATE statement. If 
they differ, then: 

Explicit CLOSE: the KEY condition is 
raised 

Implicit close: the KEYFROM string 
replaces the embedded key in the 
buffer, an error message is Writ­
ten on the console, and the file 
is closed. 

4. On normal return from the ON unit, 
control passes to the next statement 
The current statement is not executed. 

Record Alignment 

The user must pay attention to record 
alignment within the buffer when using 
locate mode I/O. The first data byte of 
the first record in a block is generally 
aligned in a buffer on a doubleword bounda­
ry (see Figure 39); the next logical record 
begins at the next available byte in the 
buffer. The user must ensure that the 
alignment of this byte matches the align­
ment requirements of the based variable 
with which the record is to be associated. 

Most of the alignment problems described 
here occur in ALIGNED based or non-based 
variables. If these variables were UNAL­
IGNED, the preservation of the record 
alignment in the buffer would be considera­
bly easier. 

If a VB format record is to be con­
structed with logical records defined by 
the struct ure: 

DeL 1 S, 
2 A CHAR (1) , 
2 B FIXED BINARY; 

this structure is mapped as in Figure 39. 

Appendix B: Implementation Conventions ar.d Restrictions 155 



r--------T--T-----------, 
I IA I B I L __ J __ J __ ~_~ __ l __ J __ J_-J 

t t t 
W W W 

w = Word boundary 

Figure 39. Format of structure S 

If the block was created using a 
sequence of WRITE FROM(S) statements, the 
format of the block would be as in Figure 
40, and it can be seen that the alignment 
in the buffer differs from the alignment of 
S. 

There is no problem if the file is then 
read using move mode READ statements, e.g., 
READ INTO(S), because information is moved 
from the buffer to correctly aligned stor­
age. 

If, however, a structure is defined as: 

1 SBASED BASED(P) LIKE S; 

and READ SET(P) statements are used, then, 
reference to SBASED.B would, for the first 
record in the block, be to data aligned at 
a doublewor~ plus one byte, and would 
probably result in a specification inter­
rupt. 

The same problem would have arisen had 
the file originally been created by using 
the statement: 

LOCATE SBASED SET(P); 

Again, for the first record in the 
block, P would be set to address a double­
word and references to SBASED.B would be 
invalid. 

In both cases the problem is avoided if 
the structure is padded in such a way that 
B is always correctly aligned: 

1 S,' 
2 PAD CHAR(3), 
2 A CHAR(l), 
2 B FIXED BINARY; 

The block format would now be as in Figure 
41; B is always on a word boundary. Pad­
ding may be required at the beginning and 
end of a structure to preserve alignment. 

The alignment of different types of 
record within a buffer is shown in Figure 
42. For all organizations and record types 
except blocked records in INDEXED files 
with RKP=O, the first duta byte in a block 
is always on a doubleword boundary. The 
position of any successive records in the 
buffer depends on the record format. 

For unblocked INDEXED, the LOCATE state­
ment will use a hidden buffer if the data 
set key length is not a multiple of 8. The 
pointer variable will point at this hidden 
buffer. 

A special problem ar£ses when using 
locate mode in conjunction with based vari­
able containing adjustable extents, i.e., 
containing a REFER attribute. Consider the 
based structure: 

1 S BASED(P), 
2 N, 
2 C CHAR (L REFER (N»; 

If it is desired to create blocked V-format 
records of this type, using locate mode, 
then this record alignment must be such 
that N is word aligned. If L is not a 
multiple of 4 then, if the alignment of the 

r-----------T-----------T--T-----------T-----------T--T-----------T---------
I BL I RL IA I B I RL IA I B I l __ J __ J __ J __ ~ __ J __ J __ J __ L-_~ __ J __ J __ J __ ~ __ J __ J __ J __ ~ __ ~ __ J __ J __ J __ ~ _____ --__ 

t t t , , , 

D W D W D W 

BL Block length 
RL = Record length 

D 
W 

Doubleword boundary 
Word boundary 

Figure 40. Block Created from structure S 

r-----------T-----------T--------T--T-----------T-----------T--------T--T-----------T---
I BL I RL I PAD I A I B I RL I PAD I A I B I L __ J __ J __ J __ ~ __ J __ J __ J __ L-_J __ J __ J. __ ~ __ J __ J __ J __ J. __ J __ J __ J __ ~ __ J __ J __ ~ __ ~ __ J __ J __ J __ ~ __ _ 

, t , t t , t 
D W D W D W D W 

BL 
RL 

Block length 
Record length 

D 
W 

Doubleword boundary 
Word boundary 

Figure 41. Block Created by structure S with Correct Alignment 

156 



current record is correct, that of the 
following record will be wrong.. Correct 
alignment can be obtained by the following 
sequence: 

/* ROUND UP TO MULTIPLE OF 4 */ 
LOCATE S FILE (F); 
N = LENGTH; 

/* SET REFER VARIABLE */ 

LENGTH = L; 
/* SAVE DESIRED LENGTH L */ 

L = 4* CEIL(L/4); 
This technique can be adapted to other uses 
of the REFER attribute. 

CONSECUTIVE 

F 

V or VS 

u 

FB 

VB or VBS 

INDEXED 

F 

FB RKP o 

Doubleword 
boundary 

I 
~----------, 
I data I 
~----------J 

r---T---t----------, 
I L I 1 I data I 
L---i---t----------J 

~----------, 
I data I 

L 
1 

~----------J 
~----------T----------T---
I data I data I 

block length 
record length 

~----------i----------~--­
r---T---t----------T---T----------T---T---
I L I 1 I data I 1 I data I 1 I 
L---~---t----------~---i----------i---~---

I 
I 

r---t----------, 
IkeYI data I 
L---t---------- J 

~-----T----------T-----T----------T---
I key I data I key I data I 
~-----~----------i-----~----------~---
~---T--T---T---T--T---T----

RKP '* a I IEKI I IEKI I 

REGIONAL 

F 

V 

U 

~---~-~---i---i--i---L----
I <--data--> <--data--> EK = embedded key 
I 
I 

r---t ----------, 
IkeYI data I L---t __________ J 

r---T---T---t----------, 
I L I 1 IkeYI data I 
L---L---i---t----------J 

r---t----------, 
I keYI data I L---t __________ J 

I 
I 

-Figure 42. Alignment of Data in a Buffer in Locate Mode I/O, for 
Different Formats and File Organizations 

Appendix B: Implementation Conventions and Restrictions 157 



APPENDIX C: OBJECT PROGRAM ORGANIZATION AND CONVENTIONS 

INTRODUCTION 

The main features of PL/I which affect 
object code organization are, briefly, as 
follows: 

1. The block structure, rules of scope, 
and storage class 

2. Interruption activity 

3. Asynchronous facilities 

4. Data types and extents 

The term 'block' is used to mean either 
a PROCE~URE or a BEGIN-END group which 
contains declarations of AUTOMATIC varia­
bles. Because such storage is dynamic, it 
is allocated only when the block is 
entered. It is stressed that the code for 
a block is present at all times and as that 
code is read-only, one copy only is neces­
sary, even if the procedure is recursive. 
Therefore, when a block is activated, stor­
age is allocated. 

PSEUDO-REGISTER VECTOR (PRV) 

The pseudo-register vector (PRV) is a 
task-oriented communications area, 
addressed through register PR(12): one PRY 
is established for each task or subtask. 
Object programs not employing multitasking 
will have only one PRY. Because of the 
possibility of multitasking in a dynamic 
environment, the PRY is contained in dynam­
ic storage. The PRY contains a number of 
pseudo-registers which effectively operate 
as implicit arguments and give information 
about, for example, current program status. 
Since all references to specific pseudo­
registers within the PRY are made by the 
addition of a fixed displacement to the 
base address (contained in register PR) of 
the PRY, read-only modules are able to 
address dynamically allocated storage 
obtained for any task (library workspace, 
for example). 

Addressinq of the PRY within library 
modules is effected by using Q-type address 
constants which are fixed during link­
editing. All pseudo-register address 
constants within the PLII implementation 
are two bytes in length; the maximum size 
of a PRY is 4096 bytes. 

158 

RUN-TIME STACK 

At anyone time during the execution of 
a PL/I program, control resides in one 
particular block of code. If this block 
invokes another, then the old block is 
"pushed down" in the stack when the new one 
assumes control. This stacking of blocks 
of executable code is exactly matched by 
the allocations of AUTOMATIC storage, and 
so both storage and code can be controlled 
by the same stacking mechanism. This is 
achieved by means of the dynamic storage 
allocation facilitie~ (provided by the 
library or control program) in association 
with general register 13. This register is 
maintained such that it always points at 
the storage area corresponding to the cur­
rent block of code. As the areas are 
chained together it is a comparatively 
simple matter to "pop up" the stack when 
leaving a block, by resetting general reg­
ister 13 to point at the previous area in 
the chain, and to release the current area. 
The following program and diagram illus­
trate this mechanism. 

A: PROCEDURE; 

CALL B; 

B: PROCEDURE; 

C: BEGIN; 

END C; 

END B; 

END A; 

When control is in block C. the stack 
looks like this: 



r-----' 
I 1<--, 
I I I storage for A 
I I I L _____ J I 

I 
r-----' I 

I---J 
I <--, storage for B 

1 1 I 
L _____ J I 

I 
GR 13 ---> r-----' I 

I---J 
I storage for C 

I I L _____ J 

When control reverts from block C to 
block B, the stack takes on the following 
appearance: 

r-----' 
I 1<--, 
1 I 1 storage for A 
1 I I L _____ J I 

I 
GR 13 ---> r-----' I 

I---J 
I storage for B 

I I 
L _____ J 

These areas of storage are known as 
dynamic storage areas (DSAs). 

DYNAMIC STORAGE AREA (DSA) 

Each Dynamic Storage Area is an entry in 
the run-time stack and, consequently, each 
DSA must possess a standard layout. Figure 
43 shows the functional content of a DSA. 

r--------T------------------, 
1 FLAGS I LENGTH OF AREA I 

~--------L------------------~ 
I CHAIN BACK I 
~---------------------------~ 
I CHAIN FORWARD I 
~---------------------------~ 
I REGISTER SAVE AREA I 
~---------------------------~ 
I ENVIRONMENT AND INTERRUPTI 
I CONTROL INFORMATION I 
~---------------------------~ 
1 DOPE VECTORS AND DEDS 1 
I (IF- ANY) 1 
I AUTOMATIC DATA, I 
1 PARAMETER LISTS, I 
1 WORKSPACE, I 
I EXTRA SAVE AREAS 1 L ___________________________ J 

Figure 43. Functional content 
storage Area 

, 
1 
1 
1 STANDARD 
> SAVE AREA 

1 
1 
1 
J 

of a Dynamic 

When a routine in System/360 assembler 
language is used in a tasking environment, 
any DSA obtained in it must have at least 
108 bytes. (The minimum for a DSA in a 
non-tasking environment is 100 bytes). 

VARIABLE DATA AREA (VDA) 

In some instances, it may be necessary 
to obtain storage after the DSA has been 
allocated. For example, the following 
statements would cause this situation to 
arise: 

A : PROC; 
DCL I INITIAL(10); 
DCL A(I) CHAR(6)i 

END Ai 

In the above example, the prologue of 
procedure A would first establish its DSA, 
then initialize the variable I, and then 
obtain more dynamic storage for the array 
A. This storage is known as a variable 
data area (VDA) and can conceptually be 
regarded as a secondary stack based on 
individual members of the primary stack of 
DSAs. 

VDAs are required in a nrnTber of circum­
stances in addition to that outlined above. 
In particular, code may be compiled to 
obtain a VDA whenever there is a demand for 
temporary ~orkspace (e.g. for strings of 
more than 256 bytes). 

PROLOGUES AND EPILOGUES 

It can be seen from a study of the 
language and from the foregoing descrip­
tion, that it is necessary for each block 
to have a "prologue" and an "epilogue." 
Each prologue must save registers in the 
area provided, obtain storage for its new 
DSA., update register 13 to point at the 
DSA, maintain the forward and backward 
chains~ initialize the environment and 
interrupt control entries, initialize the 
dope vectors (if any), and decide which 
entry point is required. The epilogue has 
complementary tasks to perform before 
finally returning. 

In view of the fact that these 
prologues/epilogues must be executed each 
time a block is entered and left, space 
economy is achieved by incorporating as 
much of this work into subroutines as 
possible. 

Appendix C: Object Program Organization and Conventions 159 



The library routines contain certain 
sections of the prologue and epilogue which 
are cornmon to all prologues and epilogues. 
The functions of the prologue subroutines 
are: 

1. To preserve the environment of the 
invoking block 

2. To obtain and initialize AUTOMATIC 
storage for the block 

3. To provide chaining mechanisms to ena­
ble the program's progress to be 
traced. 

The main functions of the epilogue sub­
routine are to release storage for the 
block, and to recover the environment of 
the invoking block before returning control 
to it. 

INTERRUPT ACTIVITY AND CONTROL 

All interrupt activity in PL/I is con­
trolled at the language level by means of 
prefix options and ON statements. At 
object time, all interruptions are chan­
neled through the library error handling 
module, IHEERR. Hardware interruptions are 
passed to IHEERR because a SPIE macro is 
issued as part of a PL/I program's initial­
ization, in which IHEERR is nominated as 
the exit for the user. Programmed inter­
ruptions reach IHEERR by means of the 
normal branch and link instruction. 

In order to locate the ON-unit (if any) 
specified in the PL/I program, the error 
handler searches through the stack until it 
finds the necessary information in the 
interruption control area of a DSA. If the 
search is unsuccessful, then SYSTEM action 
is taken. 

INITIAL ENTRY TO PROCEDURES WITH THE MAIN 
OPTION 

In order to achieve the proper initiali­
zation of PL/I programs, the primary entry 

PROCl IHEMAIN 

is always to a compiler generated control 
section, IHENTRY. This calls the appropri­
ate PL/I library initialization routine 
(IHESA or IHETSA)i the choice depends on 
the OPT parameter and whether the main 
procedure has the TASK option or not. The 
routine selected provides the PRV and 
Library workspace, issues a SI?IE macro, and 
then transfers control to the address con­
tained in a control section named IHEMAIN. 
This address constant is produced by the 
compiler for each external procedure with 
the MAIN option. The situation is illus­
trated in Figure 44. If an argument list 
is to be passed to the PL/I program, IHESA 
or IHETSA must be entered at the appropri­
ate entry point. 

If more than one module has the MAIN 
option, the linkage editor will accept the 
first appearance of the control section 
IHEMAIN in its input stream and ignore the 
rest. 

COMBINATION OF PL/I WITH OTHER LANGUAGES 

The programming example in Appendix D 
illustrates the inclusion of a subroutine 
written in assembler language. This sub­
routine performs some of the functions of a 
PL/I procedure and shows how to make use of 
PL/I library subroutines. The functional 
capabilities of the subroutine are fully 
described in the commentary contained with­
in it. 

CALLING SEQUENCES AND REGISTER USAGE 

Linkage between PL/I procedures is pro­
vided by the standard operating system 
System/360 calling sequence with the excep­
tion that the last a~gument in the parame­
ter list is not indicated by a '1' in the 
high-order bit. (Refer to the publication 
IBM System/360 Operating System, Supervisor 
and Data Management Services). In addi­
tion. the trace forward chain is main­
tained. 

IHESA/IHETSA IHENTRY 
r-----------, r----------, r------------, r----------------, 
I PL/I ,<---------~ A(PROC1) I<--------~ A(IHEMAIN) I<--------~ A (IHESA/IHETSA) I I PROCEDURE I L _________ J L ____________ J L _________________ J 

I WITH MAIN I 
I OPTION I L ___________ J 

Figure 44. Initial Entry to Procedures with the MAIN Option 

160 



Register usage in object 
by the PLiI (F) compiler 
following conventions: 

code produced 
observes the 

o 

1 

2-8 

9 

10 

11 

12 

Description of Use 

Work Register 

Work Register and Parameter 
List Pointer 

Work Registers 

Address Register 

Program Base 

static Data Pointer 

pseudo-Register vector 
Pointer 

13 Current DSA Pointer 

14 Arithmetic and Return 
Register 

15 Arithmetic and Branch 
Register 

The linkage conventions 
modules, some of which employ 
standard, are described be~ow. 

for library 
an internal 

LINKAGE CONVENTIONS FOR LIBRARY MODULES 

Intermodule linkage conforms to either 
the System/360 operating system calling 
sequence standards or an internal PL/I 
standard. The latter applies only to cer­
tain library modules which require a higher 
degree of efficiency. The internal stand­
ard passes the addresses of arguments in 
registers rather than through a parameter 
list; in all other respects, it is identi­
cal to the System/360 operating system 
standards. The internal standard is 
optionally employed under the following 
constraints: 

1. The number of arguments must be less 
than eight 

2. The arguments must be fixed in number 

If these constraints cannot be met, the 
operating system standard is employed. 
Definition of operating system linkage con­
ventions is provided in the publication IBM 
System/360 Operating System, Supervisor and 
Data Management Services. Several salient 
features of these conventions are: 

1. Arguments are passed by name, not by 
value 

2 .• Caller provides a standard format reg­
ister save area addressed through reg­
ister DR(13) 

3. Registers used by the called program 
are saved in the save area provided 

4. If the called module 
another module# it 
module with a save 
register DR to address 
area~ and chaining it 
area 

in turn calls 
provides that 
area, updating 
the new save 

to the old save 

5. Upon return to the calling module, 
registers RB(2) through LR(14), the 
program mask and PICA will be 
unchanged# while registers 
RO(O),RA(l), BR(15), the floating­
pOint registers, and the condition 
code may be changed 

PRESENTATION OF ARGUMENTS 

The normal System/360 operating system 
standard of passing parameters, by pointing 
at a list of addresses, is employed in PL/I 
object code. These addresses point 
directly at data in the case of scalar 
variables only, provided they are not 
strings. In all other cases, the address 
passed is that of a control block known as 
a "dope vector." Various types of dope 
vector are described below. 

STRING DOPE VECTOR (SDV) 

This control block specifies storage 
requirements for string data. An SDV con­
sists of eight bytes (word-aligned), in the 
format shown in Figure 45. 

023 7 8 31 
r----T-----T------------------------------, 
IBtOfl 0 I Byte address of string I 
~----~-----~--------T---------------------~ 
I Maximum length I Curre~t length I L __________________ ~ _____________________ J 

Figure 45. Format of the String Dope Vec­
tor (SDV) 

Definition of SDV fields: 

BtOf (Bit offset): If the string is a bit 
string, positions 0 to 2 of the SDV 
specify the offset of the first bit of 
the string within the addressed byte. 
The bit offset is only applicable to 
bit strings which form part of a data 
aggregate, and then only if that aggre­
gate has the UNALIGNED attribute. 

Appendix C: Object Program Organization and Conventions 161 



Byte address of string: For both character 
and bit string this three-byte field 
specifies the address of the initial 
byte of the string. 

Maximum length: Halfword binary integer 
which specifies the number of storage 
units allocated for the string; byte 
count if character, bit count if bit. 
This value does not vary for a particu­
lar generation of its associated 
string. 

Current length: Halfword binary integer 
which specifies the number of storage 
units, within the maximum length, cur­
rently occupied by the string. 

The two length fields exist to accommo­
date strings with the VARYING attributes; 
in the instance of a fixed-length string, 
the two fields contain identical values. 
For both fields the maximum value is 
32,767. 

AREA DOPE VECTOR 

This has the same format as the string 
dope vector, except that both the length 
fields are the same and contain the length 
of the AREA (not including the 16-byte 
control area). 

ARRAY DOPE VECTOR (ADV) 

This control block, shown in Figure 46, 
contains information required in the deri­
vation of elemental addresses within an 
array data aggregate. The ADV has three 
functions: 

1. Given an array, to step through the 
array in row-major order 

2. Given the subscript values of an array 
element, to determine the element 
address 

3. Given an element address, to determine 
its subscript values 

Within PL/I implementation, arrays are 
stored in row-major order, upward in stor­
age. The elements of an array are normally 
held in contiguous storage, although this 
may not be so if the array is a member af a 
structure. However, any lack of contiguity 
is transparent to algorithms which employ 
an array dope vector. 

162 

o 2 3 7 8 31 
r----T-----~------------------------------, 
I BtOf I I virtual origin I 
~----~-----~------------------------------~ 
I Multiplier1 I 
~-----------------------------------------~ 
I I 
I I 
I I 
~-----------------------------------------~ 
I Multipliern I 
~-------------------T---------------------~ I Upper bound 1 I Lower bound 1 I 
~-------------------+---------------------~ 
I I I 
I I I 
I I I 
~-------------------+---------------------~ 
I Upper boundn I Lower boundn I L ___________________ ~ _____________________ J 

Figure 46. Format of the Array Dope Vector 
(ADV) 

The ADV contains (2n + 1) 32-bit words, 
where n is the number of dimensions of the 
array. The number of dimensions in the 
array is not described within the ADV, but 
is passed to the library as an additional 
argument. 

Defini~ion~of ADV fields: 

BtOf (= Bit offset): For an array of bit 
strings with the UNALIG~ED attribute, 
this is the bit offset from the byte 
address of the virtual origin. 

Virtual origin: The byte address of the 
array element whose subscript values 
are all zero, i.e.,X(O, ••. ,O);this ele­
ment need not be an actual member of 
the array, in which case the virtual 
origin will address a location in stor­
age outside the actual bounds of the 
array. 

Multiplier: Multipliers are fullword 
binary integers which in the standard 
ADV algorithm effect dimensional 
incrementation or decrementation to 
locate an element. Multipliers are in 
bits for fixed-length, bit string 
arrays, otherwise in bytes. 

Upper Bound: Halfword binary integer, 
specifying the maximum value permitted 
for a subscript in the ith dimension. 
This value may be negative. 

Lower Bound: Halfword binary integer, 
specifying the minimum value permitted 
for a subscript in the ith dimension. 
The value may be negative. 



ADV Algorithm: Given subscript values 
for an n-dimensional array, the address 
of any element is computed as: 

Address 
n 

virtual origin + L.: 
i=l 

S.*M. 
1. 1. 

where Si = value of the ith subcript 
Mi = value of the ith multiplier 

For an array of bit st:i~gs with the 
UNALIGNED attribute, the orl.gl.n is a bit 
address formed by concatenating the virtual 
origin and the bit offset. For q;ll other 
arrays, the origin is the virtual origin. 

STRUCTURE DOPE VECTOR 

This control block contains information 
required to 1erive, directly or indirectly, 
the address of all elements of the struc­
ture. 

The format of a structure dope vector is 
determined as follows. The dimensions 
which have been applied to the major struc-

o 31 
r-----------------------------------------, 
I CiS Virtual origin I 
~-----------------------------------------~ 
I Multiplier1 I 
~-----------------------------------------~ 
I Multiplier 2 I 
~--------------------T--------------------~ 
I Upper bound1 I Lower bound 1 I 
~--------------------+--------------------~ 
I Upper bound2 I Lower bound2 I 
~--------------------+--------------------~ 
I Maximum length I Current length I 
~--------------------L--------------------~ 
I D's virtual origin I 
~-----------------------------------------~ 
I Multiplier I 
~--------------------T--------------------~ 
I Upper bound I Lower bound I 
~--------------------+--------------------~ 
I Maximum length I 0 I 
~--------------------L--------------------~ 

ture or to minor structures are inherited 
by the contained structure base elements: 
undimensioned non-string base elements are 
assigned a dope vector consisting only of a 
single-word address field. The structure 
dope vector is then derived by concatenat­
ing the dope vectors which the base ele­
ments would have if they were not part of a 
structure. in the order in which the ele­
ments appear in the structure. 

The following structure would have a 
dope vector of the form shown in Figure 47: 

1 A" 2 B ( 10), 3 C (1 0) CHAR ( 6 ) , 
3 D BIT (10) VARYING, 

2 E, 3 F FLOAT (5), 
3 G (10) FIXED, 
3 H CHAR (3); 

STRING ARRAY DOPE VECTOR (SADV) 

This control block contains information 
required to derive, directly or indirectly 
(through a secondary array of SDV entries), 

, 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
J 

> 
B's 
Dope 
Vector 

, 

A's 
> Dope 

I Vector 

I F's Address I, 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

~-----------------------------------------~ I 
I G's virtual origin I I 
~-----------------------------------------~ I 
I Multiplier I IE's 
~-------------------~--------------------~ > Dope 
I Upper bound I Lower bound I I vector 
~--------------------~--------------------~ I 
I H's Address I I 
~--------------------T--------------------~ I 
I Maximum length I Current length I I L ____________________ ~ ____________________ J J 

J 

Figure 47. Format of the structure Dope vector (SDV) 

Appendix C: Object Program Organization and Conventions 163 



the address of elemental strings. The SADV 
is identical to the basic ADV, with the 
addition of a fullword which describes the 
string length. as shown in Figure 48. 

o 31 

r-----------------------------------------, 
I I 
I I 
I I 
I ADV I 
I I 
I I 
I I 
~--------------------~--------------------~ I Maximum length I Current length/O I L ____________________ ~ ____________________ J 

Figure 48. Format of the Primary String 
Array Dope Vector (SADV) 

Fixed-length strings require only a pri­
mary dope vector. The two length fields 
are set to the same value, which is the 
declared length of the string. 

Variable-length strings require, in 
addition to the pr1mary dope vector, a 
secondary dope vector which consists of SDV 
entries for each elemental string within 
the array. The secondary dope vector is 
addressed via the primary dope vector by 
the standard ADV algorithm; having located 
the relevant SDV, the actual string data is 
directly addressable. The maximum-length 
field appended to the ADV is set to the 
maximum length of each array element. The 
current-length field is set to zero for 
arrays of VARYING strings, while for fixed­
length strings it is set to the maximum 
length. Whereas the multipliers of the ADV 
for a fixed-length string apply to the 
actual string data, those of the ~DV for a 
variable-length string apply to the 
secondary dope vector of SDV entries. 

STRUCTURE MAPPING 

For any structure (major or minor), the 
length, alignment requirement, and position 
relative to a doubleword boundary will 
depend on the lengths, alignment require­
ments, and relative positions of its mem­
bers. The process of determining these 
requirements for each level in turn and 
finally for the complete structure, is 
known as structure mapping. 

During the structure mapping process, 
the F compiler minimizes the amount of 
unused storage (padding) between members of 
the structure. It completes the entire 
process before the structure is allocated, 
according (in effect) to the rules dis­
cussed in the following paragraphs. It is 
necessary for the user to understand these 

164 

rules for such purposes as determining the 
record length required for a structure when 
record-oriented input/output is used, and 
for determining the amount of padding or 
rearrangement required to ensure correct 
alignment of a structure for locate-mode 
input/output (see "Record Alignment" in 
Appendix B). 

Structure mapping is not a physical 
process. Although during this discussion 
such terms as "shifted" and "offset" are 
used, these terms are used purely for ease 
of discussion, and do not imply actual 
movement in storage; when the structure is 
allocated, the relative locations are 
already known as a result of the mapping 
process. 

The mapping for a complete structure 
reduces to successively combining pairs of 
items (elements, or minor structures whose 
individual mappings have already been 
determined). Once a pair has been com­
bined, it becomes a unit to be paired with 
another unit, and so on until the complete 
structure has been mapped. The rules for 
the process are therefore categorized as: 

Rules for determining the order of 
pairing 

Rules for mapping one pair 

These rules are described below, and the 
example at the end of this section shows an 
application of the rules in detail. 

Note: To follow these rules, it is neces­
sarY-to appreciate the difference between 
logical level and level number.. The item 
with the greatest level number is not 
necessarily the item with the deepest logi­
cal level. If the structure declaration is 
written with consistent level numbers or 
suitable indention (as in the detailed 
example given after the rules), the logical 
levels are immediately apparent. In any 
case., the logical level of each item in the 
structure can be determined by applying the 
following rule to each item in turn, start­
ing at the beginning of the structure 
declaration: 

The logical level of a given item is 
always one unit deeper than that of the 
nearest preceding item that has a les­
ser level number than the given item. 

For example: 

DCL 1 A, 4 B, 5 C, 5 D, 3 E, 8 F, 7 G; 

1 2 3 3 2 3 3 

The lower line shows the logical level 
for each item in the declaration. 



Rules for Order of Pairing 

The steps in determining the 
pairing are as follows: 

1. Find the minor structure 
deepest logical level (which 
call logical level n). 

order of 

with the 
we will 

2. If the number of minor structures at 
logical level n exceeds one, take the 
first one of them as it appears in the 
declaration. 

3. Using the rules for mapping one pair 
(see below), ~air the first two ele­
ments appear1ng in this minor struc­
ture, thus forming a unit,. 

4. Pair this unit with the next element 
(if any) appearing in the declaration 
for the minor structure, thus forming 
a larger unit. 

5. Repeat rule 4 until all the elements 
in the minor structure have been com­
bined into one unit. This completes 
the mapping for this minor structure; 
its alignment requirement and length, 
including any padding, are now deter­
mined and will not change (unless the 
programmer changes the structure 
declaration). Its offset from a dou­
bleword boundary will also have been 
determined; note that this offset will 
be significant during mapping of any 
containing structure, and it may 
change as a result of such mapping. 

6. Repeat rules 3 through 5 for the next 
minor structure (if any) appearing at 
logical level n in the declaration. 

7. Repeat rule 6 until all minor struc­
tures at logical level n have been 
mapped. Each of these minor struc­
tures can now be thought of as an 
element for structure mapping purpos­
es. 

8. Repeat the process for minor struc­
tures at the next higher logical 
level; that is, make n equal to 
(n - 1) and repeat rules 2 through 7. 

9. Repeat rule 8 until n = 1; then repeat 
rules 3 through 5 for the major struc­
ture. 

Rules for Maoping One Pair 

(As stated earlier, terms apparently 
implying physical storage are used here 
only for ease of discussion; the storage 

thus implied may be thought of as an 
imaginary model consisting of a number of 
contiguous doublewords. Each doubleword 
has eight bytes numbered zero through 7, so 
that the offset from a doubleword boundary 
can be given; in addition, the bytes in the 
model may be numbered continuously from 
zero onwards, starting at any byte, so that 
lengths and offsets from the start of a 
s'tructure can be given.) 

1. Begin the first item of the pair on a 
doubleword boundary; or, if the item 
is a minor structure that has already 
been mapped .. offset it from the dou­
bleword boundary by the amount indi­
cated. 

2. Begin the other item of the pair at 
the first valid position following the 
end of the first item. This position 
will depend on the alignment require­
ment of the second item. Alignment 
and length requirements for elements 
are given in Figures 49 and 49.1. (If 
the item is a minor structure, its 
alignment requirement will have been 
determined already.) 

3. Shift the first item towards the sec­
ond item as far as the alignment 
requirement of the first item will 
allow. The amount of shift determines 
the offset of this pair from a double­
word boundary. 

After this process has been completed, 
any padding between the two items will have 
been minimized and will remain unchanged 
throughout the rest of the operation. The 
pair can now be considered to be a unit of 
fixed length and alignment requirement; its 
length is the sum of the two lengths plus 
padding., and its alignment requirement is 
the higher of the two alignment require­
ments (if they differ). 

Effect of UNALIGNED Attribute 

The example of structure mapping given 
below shows the rules applied to a struc­
ture declared ALIGNED, because mapping of 
aligned structures is more complex owing to 
the number of different alignment require­
ments. Briefly, with the F compiler, the 
general effect of the UNALIGNED attribute 
is to reduce fullword and doubleword align­
ment requirements down to byte, and to 
reduce the alignment requirement for bit 
strings from byte down to bit. The same 
structure mapping rules apply, but the 
reduced alignment requirements are used. 
This means that unused storage between 
items can only be bit padding within a 
byte, and never a complete byte; bit pad-

Appendix C: Object Program Organization and Conventions 165 



r-------------------T-----------------T-----------------T------------T--------------, 
I I I storage I I I 
I Variable Istored Internally I Requirements I Alignment I Explanation I 
I Type I as I (in Bytes) I Requirements I I 
.-------------------+-----------------+-----------------+------------+--------------~ 
IBIT (n) lOne byte for eachl n rounded I 
I Igroup of 8 bits I - up I 
I I (or part thereof) I 8 .; I 
~-------------------+-----------------+--------------;---~ 
ICHARACTER Cn) lOne byte per I n I 
I I character I I 
~-------------------+-----------------+-----------------~ 
I PICTURE lOne byte for eachlNumber of I Byte 
I IPICTURE characterlPICTURE charac- I 
I I (except I ters other than I 
I 1M, V, K, G) 1M, V, K, and G 1 

~-------------------+-----------------+-----------------~ 
IDECIMAL FIXED (p,q) 11/2 byte per I P + 1 rounded I 
1 Idigit plus 1/2 I ----- up I 
I Ibyte for sign I 2 I 

Data may 
begin on 
any byte 
o through 7 

.-------------------+-----------------+-----------------+------------+--------------~ 
IBINARY FIXED (p,q) IBinary integer I I 
~-------------------+-----------------~ I 
IBINARY FLOAT (p) I I I 
I p < 22 I Short I 4 I Full 
~-------------------~floating point I I word 
I DECIMAL FLO~_T (p) I I I 
I p < 7 I I I 
~-------------------+-----------------~ I 
I POINTER I I I 
~-------------------+-----------------~ I 
I OFFSET I I I 
~-------------------+-----------------+-----------------~ 
I LABEL 1 - I 8 I 
~-------------------+-----------------+-----------------~ 
I TASK 1 I 28 I 
~-------------------+-----------------+-----------------~ 
I EVE NT I I 32 I 

Data may 
begin on 
byte 0 or 
4 only 

~---.. ----------------+-----------------+-----------------+------------+--------------~ 
IBINARY FLOAT (p) I I I IData may I 
1 21 < P < S4 I Long I I Double Ibegin on 1 
~-------------------~floating point I 8 Iwor1 Ibyte 0 1 
IDECIMAL FLOAT (p) I 1 I lonly I 
I 6 < P < 17 I 1 I I 1 
~-------------------+-----------------+-----------------~ I I 
I AREA I I 16+length I I I L ___________________ ~ _________________ ~ _________________ ~ ____________ ~ ______________ J 

eFigure 49. Summary of Alignment Requirements for ALIGNED Data 

ding may occur when the structure contains 
bit strings. 

POINTER, OFFSET, LABEL, TASK, EVENr, and 
AREA data cannot be unaligned. If a struc­
ture has the UNALIGNED attribute and it 
contains an element that cannot be unal­
igned, then UNALIGNED is ignored for that 
element; the element is aligned by the 
compiler and error message IEM3181I is put 

166 

out. For example, in a program with the 
declaration 

DECLARE 1 A UNALIGNED, 
2 B, 
2 C AREA(100) ; 

C is given the attribute ALIGNED, as the 
inherited attribute UNALIGNED conflicts 
with AREA. 



r-------------------T-----------------T-----------------T------------T--------------, 
I I I storage I I I 
I Variable IStored Internally I Requirements I Alignment I Explanation I 
I Type I as I (in Bytes) I Requirements I I 
t-------------------t-----------------t-----------------t------------t--------------~ 
IBIT (n) lAs many bits as I n bits IBit IData may beginl 
I I are required" I I Ion any bit in I 
I I regardless of I I I any byte 0 I 
I Ibyte boundaries I I Ithrough 7 I 
t-------------~-----t-----------------t-----------------t------------t--------------~ 
ICHARACTER (n) lOne byte per I n I I 
I I character I I I 
r-------------------t-----------------t-----------------~ I 
I PICTURE lOne byte for eachlNumber of PICTURE I I 
I IPICTURE character I characters other I I 
I I (except M, V,K,G) I than M, V, K and G I 
t-------------------t-----------------t-----------------~ 
IDECIMAL FIXED (p,q) 11/2 byte per I P + 1 rounded I 
I Idigit, plus 1/2 I ----- up I 
I Ibyte for sign I 2 I 
~-------------------t-----------------t-----------------~Byte 
IBINARY FIXED (p/q) IBinary integer I I 
r-------------------t-----------------i I 
IBINARY FLOAT (p) I I I 
I p < 22 I Short I 4 I 
~-------------------~floating point I I 
I DECINAL FLO.AT (p) I I I 
I p < 7 I I I 
~-------------------t-----------------t-----------------~ 
IBINARY FLOAT (p) I I I 
I 21 < P < 54 I Long I I 
~-------------------~floating point I B I 
IDECIMAL FLOAT (p) I I I 
I 6 < P < 17 I I I I 

Data may begin 
on any byte 0 
through 7 

L ____________ ~ ______ ~ _________________ ~ _________________ ~ ____________ ~ ______________ J 

Note: POINTER, OFrSET, LABEL, TASK, EVENT, and AREA data cannot be UNALIGNED. 

-Figure 49.1. Summary of Alignment Requirements for UNALIGNED Data 

Example of structure Mapping 

This example shows the application of 
the structure mappipg rules for a structure 
declared as follows: 

DECLARE 1 A ALIGNED, 
2 B POINTER, 
2 C, 

3 D FLOAT DECIMAL(14), 
3 E, 

4 F LABEL, 
4 G, 

5 H CHARACTER(2) , 
5 I FLOAT DECIMAL(13), 

4 J FIXED BINARY (15,0) " 
3 K CHARACTER ( 2) " 
3 L FIXED BINARY(15,O), 

2 M, 
3 N, 

4 P FIXED BINARY(15,O), 
4 Q CHARACTER(2), 
4 R FLOAT DECIMAL(2), 

3 S, 
4 T FLOAT DECI~AL(15), 
4 U CHARACTER ( 2), 

3 V POINTER, 
2 W PICTURE '$9V99 1

; 

The minor structure at the deepest logi­
cal level is G, so that this is mapped 
first. Then E is mapped, followed by N, S, 
C, and M, in that order. Finally, the 
major structure A is mappe1. For each 
structure, a table is given showing the 
steps in the process, accompanied by a 
diagram giving a visual interpretation of 
the process. At the end of the example, 
the structure map for A is set out in the 
form of a table showing the offset of each 
member from the start of A. 

Appendix c: Object Program Organization and Conventions 167 



r---------T-------------T--------T-----------T-----------T-------------, 
I I I IOffset froml I I 
I Name of I Alignment I Length IDoubleword I Length of I Offset from I 
I Item I Requirement I t-----T-----1 Padding I G I 
I I I I Begin I End I I I 
~---------t-------------t--------t-----t-----t-----------t-------------i 

step 1 I H I Byte I 2 I 0 I 1 I I I 
I I I Doubl e I 8 I 0 I 7 I I I 
I I I I I I I I 

step 2 I *H I Byte I 2 I 6 I 7 I I 0 I 

Step I 

Step 2 

I I I Double I 8 I 0 I 7 I 0 I 2 I 
~---------t-------------t--------t-----t-----t-----------t-------------i 
I G I Double I 10 I 6 I 7 I I I L _________ ~ _____________ ~ ________ ~ _____ L _____ L ___________ L _____________ J 

*First item shifted right 

H 
,-A--.. 

I 

H I 
,..-A--.., • 

G 

-Figure 50. Mapping of Minor Structure G 

168 



r---------T-------------T--------T-----------T-----------T-------------, 
I I "Offset froml , I 
I Name of I Alignment I Length 'Doubleword , Length of , Offset from I 

I Item I Requirement I ~-----T-----~ Padding I E I 
I I I IBeginl End I I I 
~---------+-------------+--------+-----+-----+-----------+-------------~ 

Step 1 I F I Word I 8 I 0 I 7 I I I 
I G I Double I 10 I 6 , 7 I , , 
I , I I I I , I 

Step 2 I *F I Word ,8 I 4 I 3 I I 0 I 
I G I Double I 10 I 6 I 7, 2 I 10 I 
I I 'I I I I I 

Step 3 I F I I' I I , I 
I through I Double I 20 I 4 I 7 I I I 
I G I I I I I I I 
I J I Word I 4 I 0 I 3 I 0 I 20 I 
~---------+-------------+--------+-----+-----+-----------+-------------~ 
I E I Double I 24 I 4 I 3 I I I L _________ ~ _____________ ~ ________ ~ _____ ~ _____ ~ ___________ ~ _____________ J 

*First item shifted right 

F G 

Step I o o 

F G 

Step 2 o 

F G J 

Step 3 o 

.I 

E 

-Figure 51. Mapping of Minor Structure E 

Appendix C: Object Program Organization and Conventions 169 



r---------T-------------T--------T-----------T-----------T-------------, I I I IOffset froml , I 
I Name of I Alignment I Length IDoubleword I Length of , Offset from , 
I Item ,Requirement, ~-----T-----~ Padding' N I 
I I I ,Beginl End I I I 
~---------+-------------+--------+-----+-----+-----------+-------------~ 

step 1 I P ,Word I 4 I 0 I 3 I I 0 I 
I Q I Byte I 2 I 4 I 5 I I 4 I 
I I I I I I I I 

Step 2, P I I I I I I I 
I through I word I 6 I 0 I 5 I , I 

I Q I 'I I I I I 
I R I Word ,4 ,0 I 3 I 2 I 8 I 
~----~----+-------------+--------+-----+-----+-----------+-------------~ 
I N I Word I 12 I 0 I 3 I I I L _________ ~ _____________ ~ ________ ~ _____ ~ _____ ~-_________ -~-____________ J 

p a 

p Q R 
----~ 

Step 2 

\-

N 

·~igure 52. Mapping of Minor structure N 

r---------T-------------T--------T-----------T-----------T-------------, 
I I I IOffset from I I I 
I Name of I Alignment I Length IDoubleword I Length of I Offset from I 
I Item I Requirement I ~-----T-----~ Padding I S I 
I I I IBegin' End, I I 

~---------+-------------+--------+-----+-----+-----------+-------------~ 
Step 1 I T I Double I 8 I 0 I 7 I I 0 I 

I U I Byte I 2 I 0 I 1 I 0 I 8 I 

~---------+-------------+--------+-----+-----+-----------+-------------~ 
I s I Double I 10 I 0 I 1 I I I L _________ ~ _____________ ~ ________ ~ _____ L_----~--------___ ~ _____________ J 

T U 

Step I 0 
-+~~~+_~~~~-L-L4_~~~~~-L~~~~~~~_+-L~~~ 

S 

.Figure 53. Mapping of Minor Structure S 

170 



r---------T-------------T--------T-----------T-----------T-------------, 
I I I IOffset froml I I 
I Name of I Alignment I Length IDoubleword I Length of I Offset from I 
I Item I Requirement I ~-----T-----~ Padding I C I 
I I I IBeginl End I I I 
~---------t-------------t--------t-----t-----t-----------t-------------i 

step 1 D Doubl e 8 0 7 I 0 
E Double 24 4 3 I 4 12 

I 
step 2 D I 

through Double 36 0 3 I 
E I 
K Byte 2 4 5 I 0 36 

I 
step 3 D I 

through Double 38 0 5 I 
K I 
L Word 4 0 3 I 2 40 

~---------t-------------t--------t-----t-----t-----------t-------------~ 
I C I Double I 44 I 0 I 3 I I I L _________ ~ _____________ ~ ________ ~ _____ ~ _____ ~ ___________ ~ _____________ J 

D E (Ienqth 24) 

Step I 

D E (Ienqth 24) K 
I .A , , .&, ,,--A--... 

Step 2 10 II 121314151617 ~ 415 r AII--7 -1 0 """"'1 rlr--I21~31-41--51--rb 1----r7 1-'-o I--r", 12-"-13-"-14--'-15-'-16'-17'--10 

D E (Ienqth 24) K L 
, ,., , I ~ ,--A--..., £ .. 

Step 3 I011121314151617~1415rk10111213141516171011121314151bl?F 
, 

c 
-Figure 54. Mapping of Minor structure C 

Appendix C: Object Program Organization and Conventions 171 



r---------T-------------T--------T-----------T-----------T-------------, 
, , "Offset froml I I 
I Name of I Alignment I Length IDoubleword I Length of I Offset from I 
I Item I Requi rement I ~-----T-----~ Padding I M I 
, I I ,Beginl End I I 1 
~---------+-------------+--------+-----+-----+-----------+-------------~ 

step 1 I N I Word I 12 I 0 I 3 I I I 
I s I Double I 10 I 0 I 1 I I I 

I I I I I' I I 
step 2 I *N 'Word I 12 I 4 I 7 I I 0 I 

I s I Double I 10 I 0 I 1 I 0 I 12 I 

I I I I I I I I 
Step 3, N I I I' I I I 

I through I Double I 22 I 4 I 1 I I , 

I S I I I 1 I I I 
I V I Word I 4 I 4 I 7 I 2 I 24 I 

~---------+-------------+--------+-----+-----+-----------+-------------~ 
, M I Double ,28 I 4 I 7 I I I l _________ i _____________ L ________ i _____ i _____ L ________ ___ i _____________ J 

*Pirst item shifted right 

N S 

Step I 0 

N S 
__ --------A--------__ ,~---------A--------

Step 2 

Step 3 

M 

.Pigure 55. Mapping of Minor Structure M 

172 



r---------T-------------T--------T-----------T-----------T-------------, I I I IOffset froml I I 
I Name of I Alignment I Length IDoubleword I Length of I Offset from I 
I Item I Requirement I ~-----T-----~ Padding I A I 
I I I I Beginl End I I I 
~---------+-------------+--------+-----+-----+-----------+-------------~ step 1 B Word 4 0 3 

step 2 

step 3 

step 4 

Step I 

Step 2 

Step 3 

Step 4 

C Double 44 0 3 

*B Word 4 4 7 
C Double 44 0 3 

B 
through Double 48 4 3 

C 
M Double 28 4 7 

B 
through Double 76 4 7 

M 

o 

o 

o 
4 

48 

W Byte 4 0 3 0 76 
~---------+-------------+--------+-----+-----+-----------+-------------~ 
I A I Double I 80 I 4 I 3 I I I L _________ ~ _____________ ~ ________ ~ _____ ~ _____ ~ ___________ ~ _____________ J 

*First item shifted right 

B C (lenqth 44) 
r", ~ 

IOII12131415IbI7IOIIP.'j1~3--14~15~lb~17~IOI~I 1~21~31~41~51~bl~7IO~I-r1 12~13~14~15~lb~17'-~ 

B C 

B C M (Ienqth 28) 
" 

B C M w 

"" 
A (length 80) 

-Figure 56. Mapping of Major structure A 

Appendix c: Object Program Organization and conventions 173 



r--------------------~--------T--------T--------T--------, 
A From A 

B 0 
C From C 4 

D 0 4 
padding (4) 8 12 
E From E 12 16 

F 0 12 16 
padding (2) 8 20 24 
G From G 10 22 26 

H 0 10 22 26 
I 2 12 24 28 

J 20 32 36 
K 
padding (2) 
L 

36 40 
38 42 
40 44 

M From M 48 

w 

N 

s 

p 

Q 
padding( 2) 
R 

T 
U 

padding (2) 
V 

From-E 
o 
4 
6 
8 

From S 
--0-

8 

o 48 
o 48 
4 52 
6 54 
8 56 

12 60 
12 60 
20 68 
22 70 
24 72 

76 l __________ . __________ -1-_______ .1. ________ .L ________ .L ________ J 

-Figure 56.1. Offsets in Final Mapping of structure A 

ALLOCATION AND RELEASE OF STORAGE IN AN 
AREA 

The AREA attribute defines storaae res­
erved for the allocation of based Jvaria­
bles. In this implementation the amount 
reaserved consists of sixteen bytes of 
control information plus the amount 
requested for each allocation (see Figure 
57). The control information and each 
allocation start on a doubleword boundary. 

The amount of storage required is 
defined in one of two ways: 

1. Area size: This is the amount of 
storage reserved in the declaration of 
an area. For example, in the state­
ment: 

DCL Z AREA(500); 

The size of area Z is 500 bytes. The 
maximum size that can be declared is 
32767 bytes. The effective minimum 
size is 8 bytes; 0 bytes can be 
declared but the AREA condition would 
be raised if an attempt was made to 
allocate a based variable into it. If 
a size is not declared, a default 
value of 1000 bytes is assumed. 

2. Area length This is the amount of 
storage needed for an area allocation. 

174 

It is the area size. plus the 16 bytes 
of control information. For example: 

DeL Z AREA(500) CONTROLLED; 
ALLOCATE Z; 

creates an allocated area Z of 516 
bytes. The maximum length is 32783 
bytes; the effective minimum length is 
24 bytes. The default length is 1016 
bytes. When an area is written using 
RECORD I/O, the amount transmitted is 
the area length., not the area size. 

The storage allocated for a variable 
always starts and ends on a doubleword 
boundary, whatever the amount requested. 
The amount allocated is 

8*(CEIL«L+H)/8» 

when L Variable length (in bytes) 

H Offset (in bytes) of beginning of 
this variable from a doubleword 
boundary. Maximum value of H is 7 
bytes. 

The total amount of storage allocated 
for variables in an area is the extent; the 
amount at a particular time in the current 
extent. The value of the current extent is 
increased every time an allocation is made 
beyond the end of the current extent. It 
is decreased only if the allocation that 
forms the end of the current extent is 



freed; then the value of the current extent 
is reduced accordingly. The current extent 
is not changed when an allocation ~ithin 
the extent is freed. 

When an allocation within the extent is 
freed, the freed area is called a free 
element. Each free element starts ~ith two 
control words: 

Word 1: length 
bytes) 

of free element(in 

Word 2: Offset (in bytes) of next smal­
lest free element. The last 
free element contains the off­
set of the fourth word of the 
control information. 

The chain of free elements created in 
this way in the fre~list. 

When an allocation is required, the free 
list is examined to find the smallest free 
element in which the variable will fit. If 
no free element is large enough, then the 
unused section at the end of the current 
extent is used. If this in turn is not 
large enough, the AREA condition is raised. 

When an element is freed, the free list 
is scanned to find if this element is 
contiguous with another free element. If 
so, the two are combined and then placed in 
the free list according to the combined 
size. If there is no contiguous element" 
the freed element is placed in the free 
list according to its size. 

r--------------------------------------, 
o I Length I 

~--------------------------------------~ 
4 I Current extent I 

r--------------------------------------~ 
8 I Offset of largest free element I 

r--------------------------------------~ 
12 I Reserved/O I 

r--------------------------------------~ 
16 I I 

· I Allocated I 
· I I · r--------------------------------------~ 

I I 
I Free element I 
I I 
r--------------------------------------~ 
I I 
I Allocated I 
I I 
r--------------------------------------~ 
I I 
I I 
I Free element I 
I I 
I I 
r--------------------------------------~ 
I I 
I Allocated I 
I I 
r--------------------------------------~ 
I Free element I 
r--------------------------------------~ 
I I 
I Allocated I 
I I 
r--------------------------------------~ 
I I 
I I 
I I 
I I 
I Unused I 
I I 
I I 
I I 
I I L ______________________________________ J 

Note: If there is a free list, the 
fourth control word contains 0; 
otherwise it is unused. 

Figure 57. AREA Format, showing Example of 
Allocated Storage and Free Ele­
ments 

Appendix C: Object Program Organization and Conventions 175 



VERSION 4 RELEASE 17 OS/360 PLII COMPILER (F) 

PLII F COMPILER OPTIONS SPECIFIED ARE AS FOLLOWS--

LIST ,ATR.XREF, 0PT=1., LC=60, SIZE=96000 

THE COMPLETE LIST OF OPTIONS USED DURING THIS COMPILATION IS-- EBCDIC 

1 

2 

3 
4 

5 

6 

7 

176 

CHAR60 
NOMACRO 

SOURCE2 
NOMACOCK 

COMP 
SOURCE 
ATR 
XREF 

NOEXTREF 
LIST 
LOAD 

NODECK 
FLAGW 
STMT 
SIZE-096000 
LINECNT=060 
OPT =01 
SORMGIN=(002,072) 

NOEXTDIC 
NONEST 

OPLIST 

/*THIS IS A SMALL PROGRAMMING EXAMPLE ./ 

/.THIS IS A SMALL PROGRAMMING EXAMPLE 
/.TO SHOW HOW ASSEMBLER LANGUAGE SUBPROGRAMS CAN BE INCORPORATED 
/.INTO A PLII !9.IN PROGRAM. 

/.THIS MODULE IS DESIGNED TO ACCEPT A CHARACTER STRING ARGUMENT 
/.OF ANY SIZE AND WRITE IT IN THE DATA SET DEFINED ON THE SYSPRINT 
1'.00 CARD. 

/*THE ACTUAL OUTPUT OPERATION IS CARRIED OUT BY THE PL/I LIBRARY 
/.MODULE lHEPRTB, WHICH IS INVOKED BY THE ASSEMBLER LANGUAGE 
/.MODULE (PRINTER). 

/.' PRIlfl'ER' IS INVOKED BY WRITING THE STANDARD CALL STATEMElfl' 
/.IN PLlI, USING THE ENTRY NAME TO WHICH CONTROL IS TO BE PASSED. 

I'.TO RUN THIS JOB, THERE MUST BE A DO CARD TO DESCRIBE THE DATA SET 
/.SYSPRINT. THE PL/I LIBRARY CONTAINS A DCB FOR THIS DATA SET, AND 
I'*WILL OPEN THE FILE FOR OUTPUT WHEN IT IS INVOKED, IF IT IS NOT 
/* ALREADY OPEN. 

I'.TO EXECUTE THIS PROGRAM, THE PLII AND ASSEMBLER LANGUAGE OBJECT 
/.MODULES MUST BE LINKAGE EDITED TOGETHER INTO ONE MODULE. THE 
I'.MODULES MUST BE PREPARED FOR LINKAGE EDITING IN THE ORDER PL/I 
/.MODULE FIRST, THEN ASSEMBLER LANGUAGE MODULE. 

TEST: PROCEDURE OPTIONS (MAIN) ; 

DECLARE A1 CHARC3S); 

C.B = 2; 
D = 4; 

A1 = (B.(C •• 2»/D; 

CALL PRINTER(Al); 

END TEST; 

/.A1 IS THE VARIABLE TO BE 
/.WRITTEN ON SYSPRINT. 

/~INITIALIZE C AND B 
/.AND D. 

/.CALCULATE A VALUE IN FLOATING 
/.POINT AND CONVERT IT TO A CHAR­
/.ACTER STRING. 

/.TO USE FACILITIES PROVIDED BY 
/.THE LIBRARY ROUTINE TO PUT OUT 
/.ERROR MESSAGES, IT IS NECESSARY 
/.TO CALL THE SUBROUTINE PRINTER. 
/.THIS IS WRITTEN IN ASSEMBLER 
/.LANGUAGE, AND ILLUSTRATES TWO 
/.IMPORTANT ASPECTS OF THIS SORT 
/.OF LINKAGE. 

PAGE 1 

DATE 68.306 

PAGE 2 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 



DCL NO. 

2 

1 

000038 
000040 
000044 
000030 
000048 
000050 
000058 
000060 
000068 

/.THIS IS A SMALL PROGRAMMING EXAMPLE 

IDENTIFIER 

A1 

B 

C 

o 

PRINTER 

TEST 

/*THIS IS A SMALL PROGRAMMING EXAMPLE 

STORAGE REQUIREMENTS 

ATTRIBUTE AND CROSS-REFERENCE TABLE 

ATTRIBUTES AND REFERENCES 

AUTOMATIC. STRING, CHARACTER 
5,6 

AUTOMATIC.DECIMAL,FLOATCSINGLE) 
3.5 

AUTOMATIC. DEC I f9.L., FLOAT( SINGLE) 
3.5 

AUTOMATIC.DECIMAL,FLOATCSINGLE) 
4.5 

EXTERNAL. ENTRY, DECIMAL. FLOAT C SINGLE) 
6 

ENTRY ,DECIMAL., FLOAT CSINGLE) 

THE STORAGE AREA FOR THE PROCEDURE LABELED TEST IS 240 BYTES LONG 
THE PROGRAM CSECT IS NAMED TEST AND IS 184 BYTES LONG 
THE STATIC CSECT IS NAMED ••• TEST AND IS 100 BYTES LONG 

/.THIS IS A SMALL PROGRAMMING EXAMPLE 

8A0680 
00000000 
00000000 
00000000 
00000000 
4140000041200000 
000000AC00230023 
8A0600 
2C 

( 

STATIC INTERNAL STORAGE M~P 

OED FOR TEMP 
A.. TEST 
A.. IHEDNCA 
A.. IHESAFA 
A.. PRINTER 
CONSTANTS 
D.V. SKELETON 
OED 
OED 

PAGE 3 

PAGE 4 

PAGE 5 

Appendix D: Programming Example 177 



/*THIS IS A SMALL PROGRAMMING EXAMPLE */ PAGE 6 

OBJECT LISTING 000082 7c 00 0 OA4 ME 0, B . 
000086 70 00 0 OAO DE 0,0 

* STATEMENT NUMBER 1 00008A 70 00 0 090 STE O,WS1.l 
00009B 41 10 0 090 LA 1,WS1.l 

* PROCEDURE TEST 000092 41 20 B 030 LA 2,OED •• 04AO 
000096 41 30 0 098 LA 3, DV •• Al 

* REAL ENTRY TEST 00009A 41 40 B 05B LA 4,OEO •• Al 
000000 47 FO F OOA B 10(0,15) 00009B 58 FO B 038 L lS,A •• IHEONCA 
000004 OC ALl (4) 0000A2 05 EF BALR 14,15 
000005 OC C'TEST' 
OOOOOA 90 EB 0 OOC STM 14,11,12(13) * STATEMENT NUMBER 6 
OOOOOE 41 AO 1 OOA LA 10,10(0,lS) 0000A4 92 06 0 063 MVI 99 (13) ,X' 06' 
000012 41 80 A 026 IA 8,38 (0,10) 0000A9 41 80 0 098 LA 9,OV •• Al 
000016 59 BO A OlE L 11, 30( 0, 10) OOOOAC 50 90 0 090 ST 9, WS1.1 
00001A 58 FO B 020 L 15,32(0,11) OOOOBO 41 10 0 090 LA l,WS1.1 
00001E 59 00 A 022 L 0,34(0,10) 0000B4 59 FO B 040 L 15,A •• PRINTER 
000022 05 EF BALR 14,15 0000B9 05 EF BALR 14,15 
000024 07 F8 BR 9 
000026 07 00 NOPR 0 • STATEMENT NUMBER 7 
000029 00000000 OC A(SI.) OOOOBA 92 07 0 063 MVI 99(3),X'07' 
00002C OOOOOOFO OC F'2110' OOOOBE 58 FO B 03C L lS,A •• IHESAFA 
000030 OS AO BALR 10,0 0000C2 05 EF BALR 14,15 
000032 05 AO BALR 10,0 

* END PROCEDURE TEST 
• PROLOGUE BASE END 
000034 41 90 0 000 LA 9,209(0,13) 
000038 CL.4 EQU • 
000039 50 DC 0 000 ST 13,PR •• TEST(2) 
00003C 92 00 0 062 MYI 99 (13) ,X'OO' 
000040 92 01 0 063 MYI 99(13),X'01' 
000044 92 CO 0 000 MYI 0(1) ,X'CO' 
000049 02 07 0 098 B OSO MYC DV •• A1(9),SKOV •• 04 

CC 
00004E 41 FO 0 OAC IA 15,Al 
000052 50 FO 0 099 ST 15,OV •• Al 
000056 41 AO A 029 IA 10,CL.2 
00005A 07 00 NaPR 0 

* PROCEDURE BASE 
00005C CL.2 EQU * 

* APPARENT ENTRY TEST 

* STATEMENT NUMBER 3 
00005C 92 03 0 063 MVI 99(1),X'30' 
000060 02 03 0 OA9 B 04C MVC C(4) ,C •• 0414 
000066 02 03 0 OA4 B 04C MVC B(CI) ,C •• 0414 

• STATEMENT NUMBER 4 
00006C 92 04 0 063 MYI 99(13),X'04' 
000070 02 03 0 OAO B 048 MVC 0(4) ,C •• 0440 

* STATEMENT NUMBER 5 
000076 92 OS 0 063 MVI 99(13),X'OS' 
00007A 79 00 0 OA9 LE o,e 
00007E 7C 00 0 OA9 ME o,e 

/* THIS IS A SMALL PROGRAMMING EXAMPLE PAGE 7 

NO ERRORS OR WARNINGS DETECTED. 

COMPILE TIME 2.09 MINS 

178 



SYMBOL 
PRINTER 
IHESADA 
IHEPRTB 
IHESAFA 

OUTPUT FROM OS/360 ASSEMBLER (E) 

TYPE ID ADDR LENGTH 
SD 01 000000 000044 
ER 02 
ER 03 
ER 04 

LOC OBJECT CODE ADOR1 ADDR2 STMT 

5· 
6. 
7. 
8. 
9· 

10· 
11· 
12· 
13· 
14. 
15· 
16· 
17. 
18. 
19· 
20· 
21· 
22· 

PAGE 1 

PAGE 2 

SOURCE STATEMENT 

THIS SUBROUTINE ILLUSTRATES SOME OF THE FUNCTIONS 
NECESSARY IN ORDER TO COMMUNICATE BETWEEN A PL/I MAIN 
PROGRAM AND AN ASSEMBLER LANGUAGE SUBPROGRAM. 

THE COMMENTS INCLUDED EXPLAIN FULLY WHAT HAS BEEN 
DONE TOGETHER WITH AN INDICATION OF WHAT MIGHT HAVE 
BEEN DONE. 

WHILE THIS IS A TRIVIAL EXAMPLE IT DOES 
SERVE TO DEMONSTRATE MOST OF THE LINKAGE 
PROBLEMS. IT SHOULD BE NOTED THAT TqE STANDARD 
SAVE MACRO COULD HAVE BEEN EMPLOYED IN THIS 
SUBPROGRAM. 

THIS PROGRAM IS LIMITED TO EXTRACTING THE 
ADDRESS AND CURRENT LENGTH OF A CHARACTER STRING 
FROM ITS DOPE VECTOR, AND PRESENTING THESE ITEMS AS 
ARGUMENTS TO A LIBRARY PRINT ROUTINE. 

THE PROGRAM ~ND STORAGE MANAGEME~T ROUTINES USE 
DIFFERENT MODULES FOR MULTITASKING AND 
NON-MULTITASKING 

Appendix D: Programming Example 179 



LOC OBJECT CODE ADDR1 ADDR2 STMT 

000000 
000000 
000000 
000004 
000005 

OOOOOC 

000010 
000012 

000012 

000016 
00001A 

00001C 

180 

47FO FOOC 
07 
D7D9C9D5E3C5D9 

90EB DOOC 

05AO 

4100 0064 

58FO A026 
05EF 

9280 DOOO 00000 

23PRINTER 
24 

OOOOC 25 
26 
27 
28* 
29* 
30* 

OOOOOC 31PRINT1 
32* 
33* 
34* 
35* 
36* 
37* 
3p· 
39· 
40· 
41· 
42· 
43· 
44· 
45· 
46 
47 
48 
49· 
50· 
51* 
52· 
53· 
54· 
55· 
56· 
57. 
58· 
59* 

00064 60 

00038 61 
62 
63* 
64· 
65* 
66· 
67* 
68* 
69· 
70· 
71· 
72 
73· 
74· 
75· 
76* 

SOURCE STATEMENT 

START 0 
USING .,15 
BC 15.,PRINT1 
DC r-.L1 (7) 
DC C' PRINTER' 

STM 14.11,12 (13) 

DROP 15 
BALR 10.0 
USING .,10 

PAGE 3 

LENGTH OF THE CHARACTER STRING 
WHICH FOLLOWS. ITS PURPOSE IS TO 
ENABLE THE PL/I SNAP OPTION TO 
PRINT OUT A TRACE IF SO REQUIRED. 

SAVE REGISTERS IN CALLER'S SAVE 
AREA. NOTE THAT THIS SUBPROGRAM IS 
PREPARED TO PRESERVE REGISTER 12. 
IN THE EVENT 0 F AN IN'IERRUPTION 
THE PL/I EXECUTION ERROR PACKAGE 
WOULD BE INVOKED. 

(IF IT WERE FELT TO BE NECESSARY 
THIS SUBROUTINE COULD HAVE HANDLED 
INTERRUPTIONS ITSELF BY SAVING 
REGISTER 12 AS WELL, ISSUING A 
SPIE MACRO, AND SAVING THE FORMER 
PICA ADDRESS. ON EXIT THESE ITEMS 
MUST BE RESTORED.) 

ESTABLISH ADDRESSIBILITY FOR 
REST OF ceNTROL SECTION. THIS 
FOLLOWS THE SYSTEM USED BY THE 
OBJECT CODE PRODUCED EY THE F 
COMPILER. 

USE IS NOW M~DE OF THE PL/I LIBRARY IN ORDER TO 
OBTAIN A SAVE AREA. THIS HAS BEEN DONE DYNAMICALLY AS 
THIS IS EXACTLY WHAT IS DONE BY PL/I OBJECT CODE. IF 
THERE IS NO ABSOLUTE REQUIREMENT roR THIS CODE TO BE 
EITHER REENTRANT OR RECURSIVE THEN STORAGE COULD HAVE 
BEEN RESERVED roR IT BY MEANS OF DC'S OR DS'S. 

LA 0,100 

L 15,ADDR1 
BALR 14,15 

LENGTH OF DYNAMIC SAVE AREA 
(LENGTH IS 108 IF MULTITASKING IS 
USED) 
GET ADDRESS OF LIBRARY GETDSA 
ROUTINE, AND BRANCH TO IT. 

IT IS NOW NECESSARY TO INITIALIZE THE SAVE AREA. 
NOT MUCH WORK IS DONE IN THIS EXAMPLE BUT PL/I OBJECT 
CODE USUALLY PERFORMS MAtN MORE FUNCTIONS. IT IS NOT 
ABSOLUTELY NECESSARY TO DO MORE THAN IS INDICATED HERE 
BUT IF THE READE~ WISHES TO OBSERVE ALL THE PL/I 
CONVENTIONS THEN CONSIDERABLY MORE CODE WOULD BE 
REQUIRED. 

MVI 0(13),X'80' MOVE IN FLAG BYTE AS REQUIRED 
BY LIBRARY FREEDSA ROUTINE. 

AT THIS STAGE THE SAVING CONVENTIONS HAVE BEEN 
DEALT WITH AND ATTENTION CAN BE GIVEN TO PARAMETERS 



LOC 

000020 

000024 

000028 

00002C 
000030 

000032 
000036 

000038 
00003C 
000040 

POS.ID 

01 
01 
01 

OBJECT CODE ADDRl 

5860 1000 

5810 EOOO 

4120 E006 

58FO A02A 
05EF 

58PO A02E 
07FF 

00000000 
00000000 
00000000 

REL. ID FLAGS 

02 lC 
03 1C 
04 1C 

ADDR2 S'l'MT 

00000 77 
78· 
79. 

00000 80 
81· 

00006 82 
83· 

0003C 84 
85 
86· 
87. 
88· 
89· 
90· 
91· 
92· 

00040 93 
94 
95· 
96· 
97. 
98ADDRl 
99ADDR2 

100ADDR3 
101· 
102· 
103 

ADDRESS 

000038 
00003C 
000040 

PAGE 4 
SOURCE STATEMENT 

L 14.0 (0,1) GET ADDRESS OF ARGUMENT - NOTE 
THAT THIS IS NOT TaE STRING 
ITSELF BUT ITS DOPE VECTOR. 

L 1,,0 (0,14) GET ADDRESS OF STRING FROM THE 
DOPE VECTOR. 

LA 2,6(0,14) GET ADDRESS OF CURRENT LENGTH 
OF STRING FROM DOPE VECTOR. 

L 15.,ADDR2 GET ADDRESS OF LIBRARY PRINT 
BALR 14,15 MODULE, AND BRANCH TO IT. 

UPON RETURN THIS SUBPROGRAM HAS COMPLETED 
ITS TASK AND NOW MAKES USE OF THE LIBRARY 
FREEDSA ROUTINE IN ORDER TO RELEASE ITS DYNAMIC 
STORAGE (USED AS A SAVE AREA), AND TO RETURN TO 
ITS CALLER. 

L 15.ADDR3 GET ADDRESS OF LIBRARY FREED SA 
BCR 15.,15 MODULE AND BRANCH TO IT. 

DC V(IHESADA) ADDRESS OF LIBRARY GETDSA RTN 
DC V( IHEPRTB) ADDRESS OF LIBRARY PRINT RTN 
DC V(IHESAPA) ADDRESS OF LIBRARY FREEDSA RTN 

END 

RELOCATION DICTIONARY 

Appendix D: Programming Example 181 



APPENDIX E: CATALOGED PROCEDURES 

This section lists the PLiI (F) cata­
loged procedures. It also describes state­
ments used to override statements and par­
ameters in any cataloged procedure. (The 
use of cataloged procedures is discussed in 
"Job Processing".) 

The procedures may be used with any of 
the System/360 operating system job schedu­
lers. When parameters required by a parti­
cular scheduler are encountered by another 
scheduler not requiring those parameters, 
either they are ignored or alternative 
parameters are substituted automatically. 
For example, if these procedures are used 
with a sequential scheduler the following 
parameters, which are required for the 
multiprogramming option with variable num­
ber of tasks (MVT), are treated as follows: 

REGION=xxxxK is ignored 
DISP=SHR is interpreted as DISP=(OLD) 

Installation Modifications 

Before use, these procedures should be 
studied with a view to modifying them for 
greater efficiency within the particular 
environment of the installation. Some such 
modifications are detailed below. 

In installations using the MVT option of 
the operating system., the REGION specifi­
cations for the compilation and link­
editing steps must be altered where 
necessary to suit the available storage. 
The REGION specification for the compila­
tion step must be at least 4K bytes greater 
than the storage specified in the compiler 
SIZE option (unless SIZE=999999). Failure 
to ensure this may result in a system 
abnormal termination before the compiler 
can provide any diagnostic aid. In the 
three procedures in which the Linkage Edi­
tor is invoked, a REGION of 96K has been 
specified for the link-editing step. If 
necessary, this REGION specification may be 
reduced to conserve storage. The minimum 
REGION specifications for the various 
design levels of the Linkage Editor are: 

Linkage Editor 

E15 
E18 
E44 

REGION Specification 

24K 
26K 
54K 

Installations using the MVT option should 
also insert a REGION specification for the 

182 

execution step in procedures PL1LFCLG and 
PL1LFLG, unless the default value is accep­
table. The default value is established by 
the input reader procedure. 

Installations not using the MVT option 
should remove the superfluous parameters. 

In addition, the following general 
recommendations should be considered: 

under MVI', the system task initiator 
requires 52K bytes to initiate or ter­
minate a step. If REGION<52K, the 
initiator may be held up during step 
termination until 52K bytes are availa­
ble. 

when the MVT option is used, a SPACE 
parameter may be required for SYSPRINT 
if the device is other than a printer. 

the PARM fields for compilation and 
linkage editing steps should follow 
installation conventions. 

the SPACE and UNIT parameters for tem­
porary data sets should be modified 
according to installation configuration 
and conventions. 

blocking factors should be specified 
for output data sets. 

For further information on writing 
installation cataloged procedures" see the 
publication IBM System/360 Operating Sys­
tern~ystern Programmer" s Guide. 

COMPILATION WITH DECK OUTPUT 

The cataloged procedure for compilation 
with deck output is shown in Figure 58. 

The cataloged procedur~ specified in the 
user's EXEC statement that invokes the PL/I 
(F) compiler is named PL1DFC. In turn, the 
EXEC statement PL1D within the cataloged 
procedure itself, indicates that the oper­
ating system is to execute the program 
IEMAA (the name for the PLII (F) compiler). 
If compiler options are not explicitly 
supplied with the procedure, default 
options are assumed. The programmer can 
override the default options by specifying 
the required options in the EXEC statement 
invoking the cataloged procedure. 



r-----------------------------------------, 
IIPL1D EXEC PGM=IE~ 

PARM=- DECK, NOLOAD' " 
REGION=52K 

IISYSPRINT DD SYSOUT=A 

IISYSPUNCH DD SYSOUT=B 

IISYSUT3 DD UNIT=SYSSQ, 
SPACE=(SO, (250,250», 
SEP=SYSPRINT 

IISYSUT1 DD UNIT=SYSDA, 
SPACE=(1024,(60,60)" 
CONTIG) , 
SEP= (SYSUT3, 
SYSPRINT,SYSPUNCH) _________________________________________ J 

.Figure 58. Cataloged Procedure (PL1DFC) 
for compilation with Deck out­
put 

COMPILATION WITH OBJECT MODULE OUTPUT 

The cataloged procedure for compilation 
with object module output is shown in 
Figure 59. 

The cataloged procedure specified in the 
user's EXEC statement that invokes the PL/I 
(F) compiler is named PL1LFC. In turn, the 
EXEC statement PL1L within the cataloged 
procedure itself indicates that the operat­
ing system is to execute the program IEMAA 
(the name for the PL/I (F) compiler). 

r-----------------------------------------, 
IIPL1L EXEC PGM=IEMAA, 

PARM='LOAD,NODECK', 
REGION=52K 

IISYSPRINT DD SYSOUT=A 

IISYSLIN 

IISYSUT3 

DD DSNAME=&&LOADSET, 
DISP=(MOD,PASS), 
UNIT=SYSSQ, 
SPACE= (80, (250,100» 

DO UNIT=SYSSQ, 
SPACE=(SO, (250,250», 
SEP=SYSPRINT 

IISYSUT1 DD UNIT=SYSDA, 
SPACE=(1024,(60,60)" 
CONTIG) , 
SEP= (SYSUT3, 
SYSPRINT,SYSLIN) L ________________________________________ _ 

eFigure 59. Cataloged Procedure (PL1LFC) 
for Compilation with Object 
Module output 

COMPILATION AND LINK-EDITING 

The cataloged procedure for compiling 
and link-editing a PL/I source program is 
shown in Figure 60. 

The EXEC statement invoking the linkage 
editor is named LKED, and specifies that 
the operating system is to execute IEWL, 
the name for the linkage editor program. 
If linkage editor options other than those 
in the cataloged procedure are required, 
the parameters an the IILKED EXEC card must 
be overridden as described below. 

r-----------------------------------------, 
IIPL1L EXEC PGM=IEMAA, 

PARM=4LOAD,NODECK', 
REGION=52K 

IISYSPRINT DD SYSOUT=A 

IISYSLIN 

IISYSUT3 

IISYSUT1 

IILKED 

IISYSLIB 

IISYSLMOD 

I/SYSUT1 

DO DSNAME=&&LOADSET, 
DISP=(MOD, PASS), 
UNIT=SYSSQ, 
SPACE=(SO, (250,100» 

DD UNIT=SYSSQ, 

DO 

EXEC 

DO 

DD 

SPACE= ( 80, (25 0 , 250) ) , 
SEP=SYSPRINT 

UNIT=SYSDA, 
SPACE=(1024,(60,60)" 
CONTIG) , 
SEP=(SYSUT3,SYSPRINT, 
SYSLIN) 

PGM=IEWL, 
PARM='XREF,LIST', 
COND=(9,LT,PL1L), 
REGION=96K 

DSNAME=SYS1.PL1LIB, 
DISP=SHR 

DSNAME=&&GOSET(GO), 
OISP=(MOD,PASS), 
UNIT=SYSDA, 
SPACE=(1024,(50,20,1), 
RLSE) 

DO UNIT=SYSDA, 
SEP=(SYSLMOD,SYSLIB), 
SPACE=(1024,(200,20» 

IISYSPRINT DO SYSOUT=A 

IISYSLIN 

II 

DO OSNAME=&&LOADSET, 
DISP=(OLD,DELETE) 

DO DDNAME=SYSIN 

.Figure 60. Compilation and Link-Editing 
Cataloged Procedure (PL1LFCL) 

Appendix E: Cataloged Procedures lS3 



COMPILATION, LINK-EDITING, AND EXECUTION 

The cataloged procedure for compiling, 
link-editing, and executing PL/I source 
programs (PL1LFCLG) is shown in Figure 61. 

r-----------------------------------------, 
//PL1L EXEC PGM=IE~Ar 

PARM=' LOAD, NODECK' 
REGION=52K 

//SYSPRINT DD SYSOUT=A 

//SYSLIN 

//SYSUT3 

//SYSUTl 

//LKED 

//SYSLIB 

DD DSNAME=&&LOADSET, 
DISP=(MOD,PASS), 
UNIT=SYSSQ, 
SPACE= (80, (250,100» 

DD UNIT=SYSSQ, 
SPACE=(80, (250,250», 
SEP=SYSPRINT 

DO UNIT=SYSDA, 
SPACE=(1024,(60,60),. 
CONTIG) , 
SEP=(SYSUT3,SYSPRINT, 
SYSLIN) 

EXEC PGM=IEWL, 
PARM='XREF,LIST', 
COND=(9,LT,PL1L), 
REGION=96K 

DD DSNAME=SYS1.PL1LIB, 
DISP=SHR 

//SYSLMOD DD DSNAME=&&GOSET(GO), 
DISP=(MOD, PASS), 
UNIT=SYSDA, 
SPACE=(1024, (50,20,1), 
RLSE) 

//SYSUTl DD UNIT=SYSDA, 
SEP=(SYSLMOD,SYSLIB), 
SPACE=(1024,(200,20» 

//SYSPRINT DD SYSOUT=A 

//SYSLIN DD DSNAME=&&LOADSET, 
DISP=(OLD,DELETE) 

// 

//GO 

DD DDNAME=SYSIN 

EXEC PGM=*.LKED.SYSLMOD, 
COND=( (9 ,LT, LKED), 
(9 .. LT, PL1L» 

//SYSPRINT DD SYSOUT=A _________________________________________ J 

.Figure 61. Compilation, Link-Editing, and 
Execution cataloged Procedure 
(PL1LFCLG) 

184 

LINK-EDITING AND EXECUTION 

The cataloged procedure for link-editing 
and executing a previously compiled PL/I 
program is shown in Figure 62. 

r-----------------------------------------, 
//LKED EXEC PGM=IEWL, 

PARM='XREF,LIST' " 
REGION=96K 

//SYSLIB DD DSNAME=SYS1.PL1LIB, 
DISP=SHR 

//SYSLMOD DD DSNAME=&&GOSET(GO), 
DISP=(MOD,PASS), 
UNIT=SYSDA, 
SPACE=(1024,(50,20,1}, 
RLSE) 

//SYSUTl DD UNIT=SYSDA, 
SEP= (SYSLMOD., SYSLIB), 
SPACE=(1024,(200,20» 

//SYSPRINT DD SYSOUT=A 

//SYSLIN DD DDNAME=SYSIN 

//GO EXEC PGM=*.LKED.SYSLMOD, 
COND= (9, LT, LKED) 

I 
//SYSPRINT DD SYSOUT=A I l _________________________________________ J 

.Figure 62. Link-Editing an1 Execution 
Cataloged Procedure (PL1LFLG) 

OVERRIDING CATALOGED PROCEDURES 

Cataloged procedures are composed of 
EXEC and DD statements. A feature of the 
operating system is its ability to read 
control statements and to modify a cata­
loged procedure for the duration of the 
current job. Overriding is only temporary; 
that is, the parameters added or modified 
are in effect only for the duration of the 
job; the cataloged procedure is not perman­
ently modified. This section discusses the 
techniques used in modifying cataloged pro­
cedures. 

Overriding Parameters in the EXEC Statement 

The PL/I programmer can change compiler 
or linkage editor options for execution of 
a cataloged procedure, or he can state 
different conditions for bypassing a job 
step. For full details, see the publica­
tion IBM System/360 Operating System, Job 
Control Language. 



Example: 

Assume a source program is compiled, link­
edited, and executed using the cataloged 
procedure PL1LFCLG. Assume further that 
the compiler option SIZE and the linkage 
editor option XREF are used, that the 
linkage editor option LIST is not required, 
and that the time for execution of the load 
module is charged to account number 123. 
The following EXEC statement adds and over­
rides parameters to the procedure: 

//STEPl EXEC PL1LFCLG,PARM.PL1L= 
'SIZE=065536, 
LOAD, NODECK', 
REGION.PL1L=68K, 
PARM.LKED='XREF' 
ACCT.GO='123' 

Note that if the COND parameter is to be 
overwritten, it must be specified as 
COND.catprocname.stepname, where catproc­
name is the name of the cataloged proce­
dure. 

overriding and Adding DD statements 

The programmer may also override and add 
parameters in DD statements. The form 
"procstep. d,"1name" is used for this purpose. 
The "procstep" ir1entifies the step in the 
cataloged procedure. If "ddname" is the 
name of a DD statement present in the step, 
the parameters in the new DD statement 
override parameters in the DO statement in 
the step. 

If "ddname" is the name of a DD state­
ment not present in the step, the new OD 
statement is added to the step. 

In any case, the modification is effec­
tive only for the current execution of the 
cataloged procedure. 

When overriding takes place, the origi­
nal DO statement in the cataloged procedure 
is copied, and the parameters specified in 
the original DD statement are replaced by 
the corresponding parameters in the new DD 
statement. Therefore, only parameters that 
must be changed are specified in the new DD 
statement. 

If more than one DO statement is modi­
fied~ the overriding DD statements must be 
in the same order as the original DD 
statements in the cataloged procedure. Any 
DD statements that are added to the proce­
dure must follow the overriding statements 
within the job step to which they belong. 

In procedure steps, the programmer can 
catalog data sets, assign names to data 
sets~ supply DCB information for data sets, 
add data sets, or specify particular 
volumes for data sets by using overriding 
DD statements. 

Note: ~ temporary name assigned to a data 
set--should be preceded by a double amper­
sand (&&). A single ampersand (&) denotes 
a symbolic parameter. Since the occurence 
of a single ampersand defines a symbolic 
parameter., two consective ampersands should 
be coded when a symbolic parameter is not 
being defined (e.g., a DSNAME value or a 
PARM field value). However, if a character 
string preceded by a Single ampersand is 
encountered and no symbolic value has been 
assigned to it, the single ampersand is 
processed as if double ampersands had been 
coded. For further information on the use 
of single and double ampersands see the 
section on symbolic parameters in the pub­
lication IBM System/360 Operating System: 
Job Control Language. 

Appendix E: Cataloged Procedures 185 



APPENDIX F: DYNAMIC INVOCATION OF THE COMPILER 

The PL/I (P) compiler can be invoked by 
using one of the assembler language macro 
instructions CALL, LINK, XCTL, or ATTACH. 
If the XCTL macro is used to invoke the 
compiler, then no user options may be 
stated. The compiler will use the standard 
default, as set during system generation, 
for each option. 

If the compiler is invoked by CALL, 
LINK, or ATTACH, the user may supply: 

The compiler options 

The ddnames of the data sets to be used 
during processing 

The first page number to be used on the 
output listing 

r----------T----------T-------------------, 
I Name I Operation I Operand I 
r----------+----------+-------------------i 
I [symboll I CALL IIEMAA,([optionlistl I 
I I I [,[ddnamelistl I 
I I I [,pagenbrl]), VL I 
I I I I 
I [symbol] I LINK I EP=IEMAA, I 
I I ATTACH IPARAM=([optionlistll 
I I I [,[ddnamelistl I 
I I I [,pagenbr]]), VL=l I L __________ ~ __________ ~ ___________________ J 

EP - specifies the symbolic name of the 
compiler. The entry point at which 
execution is to begin is determined by 
the control program (from the library 
directory entry). 

PARAM - specifies, as a sublist, address 
parameters to be passed from the prob­
lem program to the compiler. The 
first word in the address parameter 
list contains the address of the 
option list. The second word contains 
the address of the ddname list. The 
third word contains the address of the 
page number parameter. If standard 
pagination is to be used, this parame­
ter nlay be omitted. 

optionlist - specifies the address of a 
variable length list containing the 
options. If no list is provided, the 
position must be marked by a comma. 

186 

The option list must begin on a half­
word boundary. The two high-order 
bytes contain a count of the number of 
bytes in the remainder of the list. 
If no options are specified, the count 
must be zero. The option list is free 

form with each field 
comma. No blanks 
appear in the list. 

separated 
or zeros 

by a 
should 

ddnamelist - specifies the address of a 
variable length list containing 
alternate ddnames for the data sets 
used during compiler processing. If 
standard ddnames are used and the page 
number operand is not used, then this 
operand may be omitted. If it is 
omitted and the page number operand is 
specified, a comma must be included to 
represent the omission. If the page 
number operand is specified, the 
address must be written whether or not 
standard ddnames are used. 

The ddname list must begin on a half­
word boundary. The two high-order 
bytes contain a count of the number of 
bytes in the remainder of the list. 
If no ddnames are specified but the 
page number operand is used, then the 
count must be zero. Each name of less 
than eight bytes must be left­
justified and padded with blanks. If 
an alternate ddname is omitted, the 
standard name will be assumed. If the 
name is omitted within the list, the 
8-byte entry must contain binary 
zeros. Names can be omitted from the 
end merely by shortening the list. 
The sequence of the 8-byte entries in 
the ddname list is as follows: 

Entry Alternate Name for: 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

SYSLIN 
not applicable 
not applicable 
SYSLIB 
SYSIN 
SYSPRINT 
SYSPUNCH 
SYSUT1 
not applicable 
SYSUT3 

pagenbr - specifies the address of a 6-byte 
fixed length list containing a number 
to be used as the initial page number 
on the output listing of the compiler. 
If standard pagination is to be used, 
then this operand may be omitted. 

The page number list must begin on a 
halfword boundary. the halfword 
containing the value four, followed by 
four bytes containing the page number 
in binary. 



VL - specifies that the sign bit is to be 
set to 1 in the last word of the 
address parameter list. 

Appendix F: Dynamic Invocation of the Compiler 187 



APPENDIX G DIAGNOSTIC MESSAGES 

SOURCE PROGRAM DIAGNOSTIC MESSAGES 

All source program diagnostic messages 
produced are written in a group following 
the source program listing and any other 
listings specified as a parameter on the 
EXEC statement card. 

Each message number is of the form 
IEMnnnnI, where the code IEM indicates the 
PLII (F) Compiler, and nnnn the number of 
the message. The letter I is a system 
standard action code indicating an informa­
tive message for the programmer. 

There are four types of diagnostic mes­
sage: warning, error, severe error, and 
terminal error. 

A Warning is a message that calls atten­
tion to a possible error, although the 
statement to which it refers is syntacti­
cally valid. In addition to alerting the 
programmer, it may assist him in writing 
more efficient programs in the future. 

An Error message describes an attempt to 
correct an erroneous statement; the pro­
grammer is informed of the correction. 
Errors do not normally terminate processing 
of the text. 

A Severe error message indicates an 
error which cannot be corrected by the 
compiler. The incorrect section of the 
program is deleted, but compilation is 
continued. Where reasonable, the ERROR 
condition will be raised at object time, if 
execution of an incorrect source statement 
is attempted. If a severe error occurs 
during compile-time processing, compilation 
will be terminated after the SOURCE listing 
has been produced. 

A Terminal error message describes an 
error which, when discovered, forces the 
termination of the compilation. 

The choice of the severity level at and 
above which niagnostic messages appear on 
the output is an option which may be 
selected by the programmer. FLAGW is 
assumed if no level is specified. 

In the list of diagnostic messages 
below, the abbreviations W, E, S, and T, 
respectively, are used to indicate the 
severity of the message, and appear immedi­
ately before the number of the message. 
They do not appear in this way in the 
compiler output listings; instead, the mes-

188 

sages are printed in separate groups 
according to severity~ 

In the following text, messages are 
followed where necessary by an explanation, 
a description of the action taken by the 
system, and the response required from the 
user. "Explanation" and "System Action" 
are given only when this information is not 
contained in the text of the message. When 
no "User Response" is stated explicitly, 
the user should assume that he must correct 
the error in his source program unless the 
action taken by the system makes it unne­
cessary for him to do so. However, even 
when system action successfully corrects an 
error, the user should remember that if he 
subsequently recompiles the same program, 
he will get the same diagnostic message 
again unless he has corrected the source 
error. 

E IEM0002I INVALID PREFIX OPERATOR IN 
STATEMENT NUMBER xxx. REPLACED 
BY PLUS. 

E IEM0003I 

E IEM00041 

E IEM0005I 

E IEM0006I 

S IEM0007I 

E IEM0008I 

W IEM0009I 

E IEM0010I 

RIGHT PARE~THESIS INSERTED IN 
STATEMENT NUMBER xxx 

OPERATOR 
NUMBER xxx 
OPERATOR. 
BY .NE. 

.NOT. IN STATEMENT 
USED AS AN INFIX 

IT HAS BEEN REPLACED 

RIGHT PARENTHESIS INSERTED 
AFTER SINGLE PARENTHESIZED 
EXPRESSION IN STATEMENT NUMBER 
xxx 

RIGHT PARENTHESIS INSERTED AT 
END OF SUBSCRIPT, ARGUMENT OR 
CHECK LIST IN STATEMENT NUMBER 
xxx 

IDENTIFIER MISSING IN STATEMENT 
NUMBER xxx. A DUMMY IDENTIFI­
ER HAS BEEN INSERTED. 

RIGHT PARENTHESIS INSERTED AT 
END OF CALI ARGUMENT LIST OR 
OTHER EXPRESSION LIST IN STATE­
MENT NUMBER xxx 

A LETTER 
CONSTANT 
xxx. AN 
ASSUMED. 

IMMEDIATELY FOLLOWS 
IN STATEMENT NUMBER 

INTERVENING BLANK IS 

IMPLEMENTATION RESTRICTION. 
IDENTIFIER yyyy IN OR NEAR 
STATEMENT NUMBER xxx IS TOO 
LONG AND HAS BEEN SHORTENED. 



Explanation: 
restriction. 
not exceed 
length. 

Implementation 
I dentif iers may 

31 characters in 

System Action: Identifier has 
been shortened by concatenating 
first 16 characters with last 
15. 

W IEMOOllI CONSTANT IMMEDIATELY FOLLOWS 
IDENTIFIER IN STATEMENT NUMBER 
xxx. AN INTERVENING BLANK IS 
ASSUMED. 

E IEM0012I EXPONENT MISSING IN FLOATING­
POINT CONSTANT BEGINNING yyyy 
IN STATEMENT NUMBER xxx. ZERO 
HAS BEEN INSERTED. 

E IEM0013I INTEGER yyyy TOO LONG IN 
STATEMENT ~UMBER xxx. IT HAS 
BEEN TRUNCATED ON THE RIGHT. 

E IEM0014I EXPONENT TOO LONG IN FLOATING­
POINT CONSTANT BEGINNING yyyy 
TN STATEMENT NUMBER xxx. IT 
HAS BEEN TRUNCATED. 

E IEM0015I SOLITARY DECIMAr~ POINT FOUND IN 
OPERAND POSITION IN STATEMENT 
NUMBER xxx A FIXED-POINT 
ZERO HAS BEEN INSERTED. 

E IEM0016I FLOATING-POINT CONSTANT 
BEGINNING yyyy IN STATEMENT 
NUMBER xxx IS TOO LONG AND HAS 
BEEN TRUNCATED ON THE RIGHT. 

E IEM0017I ZERO INSERTED IN FLOATING-POINT 
CONSTANT BEGINNING .E IN STATE­
MENT NUMBER xxx 

E IEM0018I ZERO INSERTED IN PENCE FIELD OF 
STERLING CONSTANT BEGINNING 
yyyy IN STATEMENT NUMBER xxx 

E IEM0019I POUNDS FIELD IN STERLING CON­
STANT BEGINNING yyyy IN STATE­
MENT NUMBER xxx IS TOO LONG AND 
HAS BEEN TRUNCATED. 

E IEM0020I ZERO INSERTED IN POUNDS FIELD 
OF STERLING CONSTANT BEGINNING 
yyyy IN STATEMENT NUMBER xxx 

E IEM0021I DECIMAL POINT IN EXPONENT FIELD 
OF CONSTANT BEGINNING yyyy IN 
STATEMENT NUMBER xxx FIELD 
TRUNCATED AT DECIMAL POINT. 

E IEM0022I DECIMAL PENCE TRUNCATED IN 
STERLING CONSTANT BEGINNING 
yyyy STATEMENT NUMBER xxx 

E IEM0023I LETTER L MISSING FROM STERLING 
CONSTANT BEGINNING yyyy IN 
STATEMENT NUMBER xxx 

E IEM0024I 

System Action: None 

SHILLINGS FIELD TRUNCATED IN 
STERLING CONSTANT BEGINNING 
yyyy IN STATEMENT NUMBER xxx 

E IEM0025I ZERO INSERTED IN 
FIELD OF STERLING 
BEGINNING yyyy IN 
NUMBER xxx 

SHILLINGS 
CONSTANT 

STATEMENT 

E IEM0026I ILLEGAL CHARACTER IN APPARENT 
BIT STRING yyyy IN STATEMENT 
NUMBER xxx. STRING TREATED AS 
A CHARACTER STRING. 

E IEM0027I FIXED-POINT CONSTANT BEGINNING 
yyyy IN STATEMENT NUMBER xxx 
HAS BEEN TRUNCATED ON THE 
RIGHT. 

S IEM0028I LABEL REFERENCED ON END STATE­
MENT NUMBER xxx CANNOT BE 
FOUND. END TREATED AS HAVING 
NO OPERAND. 

S IEM0029I INVALID CHARACTER IN BINARY 
CONSTANT IN STATEMENT NUMBER 
xxx CONSTANT TREATED AS 
DECIMAL CONSTANT. 

S IEM0030I POINTER QUALIFIER FOLLOWS EITH­
ER A SUBSCRIPT OR ANOTHER POIN­
TER QUALIFIER IN STATEMENT NUM­
BER xxx. 

System Action: As stated in a 
further message referring to 
the same statement. 

S IEM0031I OPERAND MISSING IN OR FOLLOWING 

T IEM0032I 

E IEM0033I 

STATEMENT NUMBER xxx DUMMY 
OPERAND INSERTED. 

Explanation: Something invalid 
has been found in an expres­
sion~ or where an expression 
was expected but not found. In 
order that further diagnosis 
can be made., the compiler has 
inserted a dummy operand. This 
may cause further error messa­
ges to appear for this state­
ment. 

IMPLEMENTATION RESTRICTION. 
STATEMENT NUMBER xxx IS TOO 
LONG. COMPILATION TERMINATED 
AT THIS POINT. 

User Response: subdivide 
statement and recompile 

AN INVALID 
IMMEDIATELY 
IN STATEMENT 
PICTURE HAS 
THIS POINT. 

PICTURE CHARACTER 
FOLLOWS TEXT yyyy 
NUMBER xxx. THE 

BEEN TRUNCATED AT 

Appendix G: Diagnostic Messages 189 



W IEM00341 A LETTER IMMEDIATELY FOLLOWS A 
CONSTANT AT nnnn SEPARATE 
POSITION(S> IN STATEMENT NUMBER 
xxx. AN INTERVENING BLANK HAS 
BEEN ASSUMED IN EACH CASE. 

User Response: check that the 
system action will have the 
required effect 

E IEM00351 LETTER F IS NOT FOLLOWED BY 
LEFT PARENTHESIS IN PICTURE IN 
STATEMENT NUMBER xxx. ONE HAS 
BEEN INSERTED. 

E IEM00371 ZERO INSERTED IN SCALING FACTOR 
IN PICTURE yyyy IN STATEMENT 
NUMBER xxx 

E IEM00381 RIGHT PARENTHESIS INSERTED 
AFTER SCALING OR REPLICATION 
FACTOR IN PICTURE yyyy IN 
STATEMENT NUMBER xxx 

E IEM00391 NO CHARACTER FOLLOWS REPLICA­
TION FACTOR IN PICTURE yyyy IN 
STATEMENT NUMBER xxx. THE PIC­
TURE HAS BEEN TRUNCATED AT THE 
LEFT PARENTHESIS OF THE REPLI­
CATION FACTOR. 

E IEM00401 A REPLICATION FACTOR OF 1 HAS 
BEEN INSERTED IN PICTURE yyyy 
IN STATEMENT NUMBER xxx 

S IEM00431 RIGHT PARENTHESIS INSERTED IN 
STATEMENT NUMBER xxx 

Explanation: Right parenthesis 
missing from length attached to 
character or bit string. 

E IEM00441 IN STATEMENT NUMBER xxx PRECI­
SION NOT AN INTEGER 

Expl~nation: Precision should 
be an unsigned integer 

System Action: The action 
taken depends on whether the 
precision is found in a DECLARE 
statement or a PROCEDURE state­
ment. A further message will 
be produced. 

E IEM00451 Z£RO INSERTED IN FIXED PRECI­
SION SPECIFICATION IN STATEMENT 
NUMBER xxx 

E IEM00461 RIGHT PARENTHESIS INSERTED 
AFTER PRECISION SPECIFICATION 
IN STATEMENT NUMBER xxx 

E IEM00481 RIGHT PARENTHESIS INSERTED IN 
FILE NAME LIST IN STATEMENT 
NUMBER xxx 

190 

E IEM00491 

S IEM00501 

W IEM0051I 

S IEM00521 

THE COMMENT FOLLOWING THE LOGI­
CAL END OF PROGRAM HAS NOT BEEN 
TERMINATED. 

Explanation: A 1* was found 
following the logical end of 
the program and was interpreted 
as the start of a comment, but 
end-of-file was reached before 
the comment was terminated. 

system Action: All text fol­
lowing the 1* is read as a 
comrrent. 

User Response: Check 
is a delimiter in 
column of the record. 

if this 
the wrong 

INVALID STATEMENT LABEL CON­
STANT IN LABEL ATTRIBUTE IN 
STATEMENT NUMBER xxx. THE 
STATEMENT LABEL CONSTANT LIST 
HAS BEEN DELETED. 

MISSING RIGHT PARENTHE·SIS 
INSERTED FOLLOWING STATEMENT 
LABEL CONSTANT IN LABEL ATTRI­
BUTE IN STATEMENT NUMBER xxx 

INVALID ATTRIBUTE IN RETURNS 
ATTRIBUTE LIST IN STATEMENT 
NUMBER xxx. THE INVALID ATTRI­
BUTE HAS BEEN DELETED FROM THE 
LIST. 

W IEM00531 SURPLUS COMMA HAS BEEN FOUND IN 
DECLARE OR ALLOCATE STATEMENT 
NUMBER xxx. THIS COMMA HAS 
BEEN DELETED. 

S IEM00541 ILLEGAL FORM OF CALL STATEMENT. 
STATEMENT NUMBER xxx DELETED. 

W IEM00551 LABEL OR LABELS ON DECLARE 
STATEMENT NUMBER xxx HAVE BEEN 
IGNORED. 

E IEM00561 NULL PICTURE FORMAT ITEM IN 
STATEMENT NUMBER xxx. THE 
CHARACTER 9 HAS BEEN INSERTED 
IN THE PICTURE. 

Explanation: The null picture 
may be the result of the com­
piler truncating an invalid 
picture. 

E IEM00571 INVALID CHARACTER FOLLOWING 
ITERATION FACTOR IN PICTURE 
BEGINNING yyyy IN STATEMENT 
NUMBER xxx. THE PICTURE HAS 
BEEN TRUNCATED AT THE LEFT 
PARENTHESI S OF THE ITERATION 
FACTOR. 

E IEM00581 ITERATION FACTOR IN PICTURE 
BEGINNING yyyy NOT AN UNSIGNED 



E IEM0059I 

INTEGER IN STATEMENT NUMBER 
xxx. THE PICTURE HAS BEEN 
TRUNCATED AT THE LEFT PARENTHE­
SIS OF THE ITERATION FACTOR. 

MISSING RIGHT PARENTHESIS 
INSERTED IN POSITION ATTRIBUTE 
I~ STATEMENT NUMBER xxx. 

E IEM0060I POSITION MISSING IN POSITION 
ATTRIBUTE IN STATEMENT NUMBER 
xxx. POSITION OF 1 INSERTED. 

E IEM0061I MISSING LEFT PARENTHESIS 
INSERTED IN POSITION ATTRIBUTE 
IN STATEMENT NUMBER xxx. 

W IEM0062I THE ATTRIBUTE 'PACKED' IN DEC­
LARATION STATEMENT NUMBER xxx 
IS NOW OBSOLETE, ~ND HAS BEEN 
IGNORED. 

EXE1~~ation: PACKED has been 
removed from the language; the 
complementary attribute to 
ALIGNED is now UNALIGNED. 

system Action: Since PACKED 
applied only to arrays and 
maJor structures, the new 
alignment defaults will be com­
patible w~th those of earlier 
versions of the compiler, 
except for bit string arrays 
that are not members of struc­
tures. 

User Response: Correct source, 
and recompile if necessary. 

E IEM0063I MISSING LEFT PARENTHESIS 
INSERTED IN RETURNS STATEMENT 
NUMBER xxx. 

S IEM00641 ILLEGAL STATEMENT FOLLOWS THE 
'T'HEN IN STATEMENT NUMBER xxx. 
SEMICOLON HAS BEEN INSERTED 
AFTER THE THEN. 

S IEM0066I TEXT BEGINNING yyyy IN ST~TE­
MENT NUMBER xxx HAS BEEN DELET­
ED. 

Explanation: The source error 
is detailed in another message 
referring to the same state­
ment. 

E IEM0067I EQUAL SYMBOL HAS BEEN INSERTED 
IN DO STATEMENT NUMBER xxx 

T IEM00691 IMPLEMENTATION RESTRICTION. 
SOURCE PROGRAM CONTAINS TOO 
MANY BLOCKS. 

system Action: Compilation is 
terminated 

T IEM0070I 

User Response: Rewrite program 
with fewer blocks, or divide 
into more than one separate 
compilation. 

BEGIN 
NESTED 
LEVEL. 

STATEMENT NUMBER xxx IS 
BEYOND THE PERMITTED 

COMPILATION TERMINATED. 

User Response: Reduce level of 
nesting of blocks to 50 or 
less. 

T IEM0071I TOO MANY PROCEDURE, BEGIN, 
ITERATIVE DO, ON STATEMENTS IN 
THIS PROGRAM. COMPILATION TER­
MINATED. 

Explanation: There is an 
implementation restriction on 
the number of blocks in a com­
pilation. Refer to Appendix B 
of this publication for 
details. 

User Response: Subdivide pro­
gra n into two or more compila­
tions. 

S IEM00721 DO STATEMENT NUMBER xxx 
REPLACED BY BEGIN STATEMENT. 

E IEMOO 7 41 THEN INSERTED I;~~ IF STATEMENT 
NUMBER xxx 

S IEM0075I NO STATEMENT FOLLOWS THEN IN IF 
STATEMENT NUMBER xxx 

S IEM0076I NO STATEMENT FOLLOWS ELSE IN OR 
FOLLOWING STATEMENT NUMBER xxx 

S IEM00771 ELSE DELETED IN OR FOLLOWING 
STATEMENT NUMBER xxx 

E IEM00781 IMPLEMENTATION RESTRICTION. 
TOO MANY CHARACTERS IN INITIAL 
LABEL· ON STATEMENT NUMBER xxx. 
LABEL IGNORED. 

Explanation: There is an 
implementation restriction on 
the number of characters in the 
subscript of a subscripted 
identifier. The maximum per­
missible number is 225. 

E IEM00801 EQUAL SYMBOL HAS BEEN INSERTED 
IN ASSIGNMENT STATEMENT NUMBER 
xxx 

S IEM0081I LABELS OR PREFIX OPTIONS BEFORE 
ELSE TRANSFERRED TO STATEMENT 
NUMBER xxx 

Explanation: Labels or prefix 
options illegal before ELSE and 
therefore transferred to fol­
lowing statement. 

Appendix G: Diagnostic Messages 191 



S IEM00821 OPERAND MISSING IN CHECK LIST 
IN STATEMENT NUMBER xxx. DUMMY 
INSERTED. 

S IEM0083I ON-CONDITION INVALID OR MISSING 
IN STATEMENT NUMBER xxx. ON 
ERROR HAS BEE~ ASSUMED. 

E IEM0084I 

E IEM0085I 

Syst.~e~m~~A~c~t~i~o~n: 
inserted in place 
condition 

ON ERROR 
of invalid 

THE I/O ON-CONDITION IN STATE­
MENT NUMaER xxx HAS NO FILENAME 
FOLLOWING IT. SYSIN IS 
ASSUMED. 

COLON MISSING AFTER PREFIX 
OPTION IN OR FOLLOWING STATE­
MENT NUMBER xxx. ONE HAS BEEN 
ASSUMED. 

T IEM0090I THERE ARE NO COMPLETE STATE­
MENTS IN THIS PROGRAM .. 20MPI­
LATION TERMINATED. 

W IEM0094I RECORD IN OR FOLLOWING STATE­
MENT NUMBER xxx IS SHORTER THAN 
THE SPECIFIED SOURCE START. 
THE OUTPUT RECORD HAS BEEN 
MARKED WITH AN ASTERISK AND 
IGNORED. 

E IEM0095I LABEL ON STATEMENT NUMBER xxx 
HAS NO COLON. OtlE IS ASSUMED. 

Explanation: The compiler has 
encountered an identifier which 
appears to be a statement 
label, but without a colon. 

System Action: 
inserted 

A colon is 

E IEM0096I SEMI-COLON NOT FOUND WHEN 
EXPECTF.D IN STATEMENT NUMBER 
xxx. O~E HAS BEEN INSERTED. 

E IEM0097I INVALID CHARACTER HAS BEEN 
REPLACED BY BLANK IN OR FOLLOW­
ING STATEMENT NUMBER xxx. THE 
CONTAINING OUTPUT RECORD IS 
MARKED BY AN ASTERISK. 

S IEM0099I LOGICAL END OF PROGRAM OCCURS 
AT STATEMENT NUMBER xxx. THIS 
STATEMENT HAS BEEN IGNORED SO 
THAT SUBSEQUENT STATEMENTS MAY 
BE PROCESSED. 

192 

Explanation: Although the com­
piler has detected the end of 
the program, there is more text 
following it. The programmer 
appears to have made an error 
in matching END statements with 
PROCEDURE, BEGIN, DO or ON 
statements. 

System Action: The END state­
ment is ignored 

S IEM0100I END OF FILE FOUND IN OR AFTER 
STATEMENT NUMBER xxx, BEFORE 
THE LOGICAL END OF PROGRAM. 

.§ystem ktion: If the state­
ment is incomplete, it is del­
eted. Whether or not the 
statement is incomplete, the 
required number of END state­
ments are added to the program 
so that compilation can con­
tinue. 

User Response: Correct the 
source code. Possible causes 
of this error include: 

1. Unmatched quote marks 

2. Insufficient 
ments 

END state-

3. Omission of final semico­
lon. 

S IEM0101I PARAMETER MISSING IN STATEMENT 
NUMBER xxx. A DUMMY HAS BEEH 
INSERTED. 

S IEM0102I LABEL MISSING FROM PROCEDURE 
STA TEMENT NUMBER xxx. A DUMMY 
LABEL HAS SEEN INSERTED. 

S IEM0103I LABEL MISSING FROM ENTRY STATE­
MENT NUMBER xxx 

S IEM0104I ILLEGAL STATEMENT FOLLOWS ELSE 
IN STATEMENT NUMBER xxx 

System Action: Null statement 
inserted 

S IEM010SI ILLEGAL STATEMENT FOLLOWS ON IN 
STATEMENT NUMBER xxx 

System Action: Null statement 
inserted 

T IEM0106I IMPLEMENTATION RESTRICTION. 
SOURCE PROGRAM CONTAINS TOO 
MANY BLOCKS. 

system Action: Compilation is 
terminated. 

User Response: Rewrite program 
with fewer blocks, or divide 
into more than one separate 
compilation. 

T IEM010?I IMPLEMENTATION RESTRICTION. 
STATEt1ENT NUMBER xxx IS TOO 
WNG. THIS STATEMENT MAY CON­
TAIN UNMATCHED QUOTE MARKS. 



User Response: Subdivide 
statement and recompile 

S IEM01081 ENTRY STATEMENT NUMBER xxx IN 
AN ITERATIVE DO GROUP HAS BEEN 
DELETED. 

S IEM01091 TEXT BEGINNING yyyy IN OR FOL­
LOWING STATEMENT NU~1BER xxx HAS 
BEEN DELETED. 

Explanation: The source error 
is detailed in another message 
referring to the same state­
ment. 

S IEMOll01 TEXT BEGINNING yyyy IN OR FOL­
LOWING STATEMENT NUMBER xxx HAS 
BEEN DELETED. 

~xplanation: The source error 
is detailed in another message 
referring to the same state­
ment. 

S IEMOlll1 FIRST STATEMENT NOT A PROCEDURE 
STATEMENT. A DUMMY PROCEDURE 
STATEMENT HAS BEEN INSERTED. 

S IEMOl12I ENTRY STATEMENT NUMBER xxx IN 
BEGIN BLOCK HAS BEEN DELETED. 

S IEM01131 RIGHT PARENTHESIS INSERTED IN 
STATEMENT NUMBER xxx 

Explanation: Parenthesized 
list in ON statement is either 
not closed or contains an error 
and has been truncated. 

E IEMOl141 RIGHT PARENTHESIS INSERTED IN 
PREFIX OPTION IN OR FOLLOWING 
STATEMENT NUMBER xxx 

E IEMOl151 LEFT PARENTHESIS INSERTED AFTER 
WHILE IN STATEMENT NUMBER xxx 

E IEM01161 PREFIX OPTION FOLLOWS LABEL IN 
STATEMENT NUMBER xxx. PREFIX 
OPTION IS IGNORED. 

S IEMOl181 OFFSET ATTRIBUTE NOT FOLLOWED 
BY PARENTHESIZED BASED VARIABLE 
IN STATEMENT NUMBER xxx. THE 
ATTRIBUTE IS IGNORED. 

S IEM01281 LENGTH OF BIT OR CHARACTER 
STRING MISSING IN STArEMENT 
NUMBER xxx. LENGTH 1 INSERTED. 

S IEM01291 INVALID WAIT STATEMENT NUMBER 
xxx DELETED. 

E IEM0130I OPERAND MISSING. COMMA DELETED 
IN WAIT STATEMENT NUMBER xxx 

S IEM0131I RIGHT PARENTHESIS INSERTED IN 
STATEMENT NUMBER xxx 

S IEM01321 DUMMY OPERAND INSERTED 
STATEMENT NUMBER xxx 

IN 

S IEM0133I RIGHT PARENTHESIS INSERTED IN 
STATEMENT NUMBER xxx 

S IEM0134I IMPLEMENTATION RESTRICTION. 
TOO MANY LEVELS OF REPLICATION 
IN INITIAL ATTRIBUTE IN STATE­
MEN'! NUMBER xxx. THE ATTRIBUTE 
HAS BEEN DELETED. 

Explanation: The implementa­
tion restriction on levels of 
nesting has been contravened. 
For details, refer to Appendix 
B of this publication. 

User Response: 
attribute with 
rep lica tion 

Rewrite INITIAL 
lower level of 

E IEM01361 'IN' CLAUSE IN STATEME~T NUMBER 
xxx HAS NO ASSOCIATED 'SET' 
CLAUSE. 

Explanation: An IN clause must 
be accompanied by a SET clause 
in the same statement. 

system Action: The IN clause 
is ignored 

E IEM01381 SOLITARY I FOUND WHERE A CON­
STANT IS EXPECTED IN INITIAL 
ATTRIBUTE IN STATEMENT NUMBER 
xxx. FIXED DECIMAL IMAGINARY 
11 HAS BEEN ASSUMED. 

Explanation: The programmer 
has initialized an element 
using the variable I where the 
constant 11 was expected. 

system Action: 11 is assumed 

S IEM01391 TEXT IMMEDIATELY FOLLOWING yyyy 
IN INITIAL ATTRIBUTE IS ILLE­
GAL. INITIAL ATTRIBUTE DELETED 
IN STATEMENT NUMBER xxx 

Explanation: A language fea­
ture has been used that is not 
supported by this version of 
the compiler. For details, 
refer to Appendix H of this 
publication. Although the mes­
sage states that the error fol­
lows the quoted text, the quot­
ed text may itself be invalid, 
and the compiler may have 
attempted to correct the source 
error. In this case, there 
will usually be another diag­
nostic message associated with 
the statement. 

Appendix G: Diagnostic Messages 193 



W IEM0140I NO IDENTIFIER APPEARS IN 

S IEM0142I 

DECLARE STATEMENT NUMBER xxx 

system Action: 
is ignored 

The statement 

RIGHT PARENTHESIS INSERTED IN 
STATEMENT NUMBER xxx 

S IEM0143I RIGHT PARENTHESIS INSERTED IN 
STATEMENT NU~BER xxx 

S IEM0144I ~ETURNS ATTRIBUTE IS NOT rOL­
LOWED BY A DATA DESCRIPTION IN 
STATEMENT NUMBER xxx. THE 
RETURNS ATTRIBUTE HAS BEEN DEL­
ETED. 

S IEM0145I DUMMY IDENTIrIER INSERTED IN 
GENERIC ATTRIBUTE LIST IN 
STATEMENT NUMBER xxx 

S IEM0146I ~IGHT PARENTHESIS INSERTED IN 
STATEl..ffiNT NUMBER xxx 

S IEM0141I 'T.'HE USE or RErER IN STATEMENT 
NUMBER xxx IS EITHER INVALID OR 
IS NOT IMPLEMENTED IN THIS 
RELEASE 

Explanation: 
tion of the 
restricted; 
'Language 
supported' • 

The implementa­
REFER option is 

see Appendix H, 
features Not 

system Action: Ignore the 
REFER clause. A further mes­
sage identifying the invalid 
text will usually accompany 
this message. 

E IKM0148I LEFT PARENTHESIS MISSING 
STATEMENT NUMBER xxx 

IN 

System Action: See further 
messages relating to this 
statement 

E IEM0149I COMMA HAS BEEN DELETED FROM 
LIST IN STATEMENT NUMBER xxx 

E IEM0150I STATEME~~'l' NUMBER xxx IS AN 
INVALID FREE STATEMENT. THE 
STATEMENT HAS BEEN DELETED. 

Explanation: The format of the 
statement is invalid 

S IEM0151I SEMI-COLON INSERTED IN STATE­
MENT NUMBER xxx 

S IEM0152I TEXT BEGINNING yyyy IN STATE­
MENT NUMBER xxx HAS BEEN DELET­
ED. 

194 

Explanation: The source error 
is detailed in another message 

E IEM0153I 

referring to the same state­
ment. 

THE ATTRIBUTED BASED HAS BEEN 
ASSUMED IN STATEMENT NUMBER xxx 
WHERE CONTROLLED WAS SPECIFIED. 

Explanation: The PL/I feature 
CONTROLLED (pointer) has been 
changed to BASED (pointer). 

S IEM0154I IMPLEMENTATION RESTRICTION IN 
STATEMENT NUMBER xxx. BASED 
MUST BE FOLLOWED BY AN IDEN­
TIFIER IN PARENTHESIS. 

System Action: Text is delet­
ed. See further error message 
for this statement. 

User Response: Correct source 
statement 

E IEM0158I ZERO STRUCTURE LEVEL NUMBER 
DELETED IN DECLARE STATEMENT 
NUMBER xxx 

E IEM0159I 

Explanation: Zero level number 
not allowed 

SIGN DELETED PRECEDING STRUC­
TURE LEVEL NUMBER IN DECL~RE 
STATEMENT NUMBER xxx 

Explanation: The level number 
must be an unsigned integer 

S IEM0163I FORMAT LIST MISSING, (A) 
INSERTED IN STATEMENT NUMBER 
xxx 

E IEM0164I MISSING RIGHT PARENTHESIS 
INSERTED IN STATEMEL'lT NUMBER 
xxx 

S IEM0166I OPERAND MISSING IN GO TO STATE­
MENT NUMBER xxx. DUMMY IS 
INSERTED. 

E IEM0112I LEFT PARENTHESIS INSERTED IN 
DELAY STATEMENT NUMBER xxx 

Explanation: The expression in 
a DELAY statement should be 
contained in parentheses 

E IEM0180I EQUAL SYMBOL HAS BEEN INSERTED 
IN DO SPEC I FICATIONS IN STATE­
MENT NUMBER xxx 

E IEM0181I SEMICOLON INSERTED IN STATEMENT 
NUMBER xxx 

Explanation: An error has been 
discovered. A semi-colon is 
therefore inserted and the rest 
of the statement is skipped. 



S IEM0182I TEXT BEGINNING yyyy SKIPPED IN 
OR FOLLOWING STATEMENT NUMBER 
xxx 

Explanation: The source error 
is detailed in another message 
referring to the same state­
ment. 

S IEM0185I OPTION IN GET/PUT STATEMENT 
NUMBER xxx IS INVALID AND HAS 
BEEN DELETED. 

S IEM0187I DATA LIST MISSING IN STATEMENT 
NUMBER xxx. OPTION DELETED. 

S IEM0191I DUMMY OPERAND INSERTED IN DATA 
LIST IN ST~TEMENT NUMBER xxx 

E IEM0193I RIGHT PARENTHESIS INSERTED IN 
DATA LIST IN STATEMENT NUMBER 
xxx 

E IEM0194I MISSING RIGHT PARENTHESIS 
INSERTED IN FORMAT LIST IN 
STATEMENT NUMBER xxx 

S IEM0195I INVALID FORMAT LIST DELETED IN 
STATEMENT NUMBER xxx. (A) 
INSERTED. 

S IEM01981 COMPLEX FORMAT ITEM yyyy IN 
STATEMENT NUMBER xxx IS INVALID 
AND HAS BEEN DELETED. 

S IEM0202I DEFERRED FEATURE. STATEMENT 
NUMBER xxx NOT IMPLEMENTED IN 
THIS VERSION. 

Explanation: The 
referred to is of a 
supported by this 
the compiler. For 
refer to Appendix H 
publication. 

statement 
type not 

version of 
details, 
of this 

system Action: 
continues 

Compilation 

User Response: Rewrite source 
program avoiding use of unsup­
ported feature 

E IEM0207I COMMA REPLACED BY EQUAL SYMBOL 
IN ASSIGm~ENT STATEMENT NUMBER 
xxx 

E IEM0208I LEFT PARENTHESIS INSERTED IN 
CHECK LIST IN STATEMENT NUMBER 
xxx 

T IEM0209I IMPLEMENTATION RESTRICTION. 
STATEMENT NUMBER xxx IS TOO 
COMPLEX 

Explanation: The level of 
nesting exceeds the implementa­
tion restriction. Refer to 

Appendix B of this publication 
for details. 

System Action: Terminates com­
pilation 

User Response: Divide state­
ment into two or more state­
ments 

E IEM0211I LEFT PARENTHESIS INSERTED IN 
STATEMENT NUMBER xxx 

E IEM0212I MULTIPLE TASK OPTIONS SPECIFIED 
IN STATEMENT NUMBER xxx. THE 
FIRST ONE IS USED. 

system Action: Ignores options 
other than the first 

E IEM0213I MULTIPLE EVENT OPTIONS SPECI­
FIED IN STATEMENT NUMBER xxx. 
THE FIRST ONE IS USED. 

System Action: Ignores options 
other than the first 

E IEM0214I MULTIPLE PRIORITY OPTIONS SPEC­
IFIED IN STATEMENT NUMBER xxx. 
THE FIRST ONE IS USED. 

system Action: Ignores options 
other than the first 

E IEM0216I INVALID EVENT OPTION IGNORED IN 
STATEMENT NUMBER xxx 

E IEM0217I 

S IEM0220I 

INVALID PRIORITY OPTION IGNORED 
IN STATEMENT NUMBER xxx 

IDEt~IFIER MISSING OR INCORRECT 
AFTER OPTION IN STATEMENT NUM­
BER xxx. OPTION DELETED. 

S IEM0221I NUMBER OF LINES NOT GIVEN AFTER 
LINE OPTION IN STATEMENT NUMBER 
xxx. (1) INSERTED. 

S IEM0222I DEFERRED FEATURE. THE IDENT 
OPTION ON OPEN/CLOSE STATEMENT 
NUMBER xxx IS NOT IMPLEMENTED 
BY THIS VERSION. 

Explanation: A language fea­
ture has been used that is not 
supported by this version of 
the compiler. Refer to Appen­
dix H of this publication for 
details. 

System Action: Option ignored 

S IEM0223I EXPRESSION MISSING AFTER 
IDENT/TITLE/LINESIZE/PAGESIZE 
OPTION IN STATEMENT NUMBER xxx. 
OPTION DELETED. 

Appendix G: Diagnostic Messages 195 



Explanation: No left parenthe­
sis found following keyword 

S IEM0224I INVALID OPTION DELETED IN 1/0 
STATEMENT NUMBER xxx 

S IEM0225I OPTION AFTER OPEN/CLOSE IN 
STATEMENT NUMBER xxx IS INVALID 
OR MISSING. 

S IEM0226I EXPRESSION MISSING AFTER FORMA.T 
ITEM IN STATEMENT NUMBER xxx. 
ITEM DELETED. 

W IEM0227I NO FILE/STRING OPTION SPECIFIED 
IN ONE OR MORE GETIPUT STATE­
MENTS. SYSIN/SYSPRINT HA.S BEEN 
ASSUMED IN EACH CASE 

Explanation: One or more GET 
or PUT statements have appeared 
in the program with no speci­
fied FILE option or STRING 
option. 

System Action: The compiler 
has assumed the appropriate 
default file (SYSIN for GET, 
SYSPRINT for PUT). 

S IEM0228I EXPRESSION MISSING AFTER OPTION 
IN STATEMENT NUMBER xxx. 
OPTION DELETED. 

S IEM0229I FORMAT ITEM IN STATEMENT NUMBER 
xxx IS INVALID AND HAS BEEN 
DELETED. 

S IEM0230I INVALID DATA LIST IN STATEMENT 
NU~BER xxx. ST~TEMENT DELETED. 

E IEM0231I MISSING COMMA INSERTED IN DATA 
LIST IN STATEMENT NUMBER xxx 

Explanation: Comma miSSing 
between elements of a data list 

E IEM0232I KEYWORD DO MISSING IN DATA LIST 
IN STATEMENT NUMBER xxx. DO IS 
INSERTED. 

S IEM0233I RETURN STATEMENT NUMBER xxx IS 
HITHIN ]I,N ON-UNIT IT IS 
P~PLACED BY A NULL STATEMENT. 

S IEM0235I ARGUMENT OMITTED FOLLOWIN3 yyyy 
OPTION IN STATEMENT NUMBER xxx. 
OPTION DELETED. 

S IEM0236I THE OPTION yyyy IN STArEMENT 
NUMBER xxx IS UNSUPPORTED OR 
INVALID. 

S IEM0237I INSUFFICIENT OPTIONS SPECIFIED 
IN STATEMENT NUMBER xxx. THE 
STATEMENT HAS BEEN REPLACED BY 
A NULL STATEMENT. 

196 

S IEM0238I THE LOCATE-VARIABLE IN LOCATE 
STATEMENT NUMBER xxx IS OMITTED 
OR SUBSCRIPTED. THE STATEMENT 
HAS BEEN DELETED. 

Explanation: The omission of 
the locate variable renders the 
statement meaningless. Sub­
scripted locate variables are 
invalid. 

System Action: Replaces inval­
id statement with a null state­
ment. 

T IEM0240I COMPILER ERROR IN PHASE ev. 
SCAN CANNOT IDENTIFY DICTIONARY 
ENTRY. 

Explanat1Qg: The main scan of 
fifth pass of read-in has found 
something in the dictionary 
which it cannot recognize 

System Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

E IEM0241I MULTIPLE USE OF A PREFIX OPTION 
HAS OCCURRED IN STATEMENT NUM­
BER xxx. THE LAST NAMED OPTION 
IS USED. 

S IEM0242I INVALID PREFIX OPTION IN STATE­
MENT NUMBER xxx. THE OPTION 
HAS BEEN IGNORED. 

T IEM02431 COMPILER ERROR. PHASE CS HAS 
FOUND AN UNMATCHED END. 

system Action: Compilation is 
terminated 

User Re§E~: Save relevant 
data. Call your local IBM rep­
resentati ve,. 

E IEM0244I CHECK PREFIX OPTION IN STATE­
MENT NUMBER xxx IS NOT FOLLOWED 
BY A PARENTHESIZED LIST. THE 
OPTION HAS BEEN IGNORED. 

E IEM02451 A CHECK PREFIX OPTION IS GIVEN 
FOR STATEMENT NUMBER xxx WHICH 
IS NOT A PROCEDURE OR BEGIN. 
THE OPTION HAS BEEN IGNORED. 

S IEM0247I ALL SUBSCRIPTED LABELS PREFIX­
ING PROCEDURE OR ENTRY STATE­
MENT NUMBER xxx HAVE BEEN 
IGNORED. 

Explanation: Subscripted 
labels may not be used as pre-



fixes on PROCEDURE or ENTRY 
statements. 

T IEM025QI COMPILER UNABLE TO RECOVER FROM 
I/O ERROR - PLEASE RETRY JOB. 

T IEM02551 

W IEM0510I 

System Action: Terminates com­
pilation 

User Response: Re-attempt com­
pilation 

THERE ARE NO COMPLETE STATE­
MENTS IN THIS PROGRAM 

Explanation: 
reconcile END 
stack entries. 
by a program 
comments. 

Compiler cannot 
statements with 
Usually caused 
containing only 

System Action: Compilation is 
terminated 

User Response: Check source 
for completed statements. If 
these are present then save 
relevant data and call your 
local IBM representative. 

THE TASK OPTION H&S BEEN 
ASSUMED TO APPLY TO THE EXTER­
NAL PROCEDURE STATEMENT NUMBER 
xxx 

Explanation: TASK, EVENT or 
PRIORITY options have been 
1etected in a CALL statement, 
but the TASK option has not 
been specified in the external 
procedure. 

system Action: The TASK option 
is correctly applied 

W IEM05111 OPTIONS MAIN AND/OR TASK ARE 
NOT ALLOWED ON THE INTERNAL 
PROCEDURE STATEMENT NUMBER xxx 

system Action: The 
options are ignored 

invalid 

S IEM05121 IDENTIFIER yyyy IN STATEMENT 
NUMBER xxx IN INITIAL ATTRIBUTE 
LIST IS NOT A KNOWN LABEL CON­
STANT AND HAS BEEN IGNORED. 

system Action: Identifier 
changed tb * in the list. 

S IEM05131 REPEATED LABEL IN SAME BLOCK ON 
STATEMENT NUMBER xxx. LABEL 
DELETED. 

Explanation: A label may not 
be used more than once in the 
same block. 

S IEM051QI PARAMETER yyyy IN STATEMENT 
NUMBER xxx IS SAME AS LABEL. 
PARAMETER REPLACED BY DUMMY. 

S IEM05151 IMPLEMENTATION RESTRICTION. 
CHARACTER STRING LENGTH IN 
STATEMENT NUMBER xxx REDUCED TO 
32,767. 

S IEM05161 ILLEGAL OPTIONS LIST ON STATE­
MENT NUMBER xxx. LIST IGNORED. 

S IEM05171 

S IEM05181 

S IEM0519I 

system Action: Compiler scans 
for next right bracket. If 
this is not the bracket closing 
the illegal options list, a 
compiler error will probably 
follow. 

CONFLICTING ATTRIBUTE DELETED 
IN STATEMENT NUMBER xxx 

IMPLEMENTATION RESTRICTION. 
PRECISION TOO LARGE IN STATE­
MENT NUMBER xxx. DEFAULT PRE­
CISION GIVEN. 

Explanation: If later a valid 
precision is given, this will 
be accepted in place of the 
default. 

System Action: Attribute 
ignored. Attribute test mask 
restored so that later attri­
bute will not be found to con­
flict with deleted one. 

ILLEGAL ATTRIBUTE ON STATEMENT 
NUMBER xxx IGNORED. 

Explanation: Only data attri­
butes allowed on procedure or 
entry statements. (No dimen­
sions allowed). 

T IEM0520I COMPILER ERROR CODE nnnn 

Explanation: A compiler error 
has occurred. 

system Action: Terminates 
immediately 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

S IEM0521I INVALID STRING LENGTH IN STATE­
MENT NUMBER xxx. LENGTH OF 1 
ASSUMED. 

Explanation: Either no length 
has been given or string length 
* has been used in source code. 

System Action: Assumes length 

Appendix G: Diagnostic Messages 197 



S IEM05221 

S IEM05231 

S IEM05241 

T IEM0525I 

W IEM5261 

of 1 and skips to next attri­
bute 

IMPLEMENTATION RESTRICTION. 
NUMBER OF PARAMETERS IN PROCE­
DURE OR ENTRY STATEMENT NUMBER 
xxx TRUNCATED TO 64. 

PARAMETER zzzz IN STATEMENT 
NUMBER xxx APPEARS TWICE. SEC­
OND ONE REPLACED BY DUMMY. 

IDENTIFIER yyyy IN LABEL LIST 
IN STATEMENT NUMBER xxx IS NOT 
A LABEL OR IS NOT KNOWN. 

System Action: 
tifier 

Ignores iden-

IMPLEMENTATION RESTRICTION. 
MORE THAN 73 PAIRS OF FACTORED 
ATTRIBUTE BRACKETS. 

Explanation: There is an 
implementation restriction lim­
iting the number of left paren­
theses used for factoring 
attributes in DECLARE state­
ments to 73 within a compila­
tion. 

System Action: Terminates com­
pilation 

User Response: Reduce factor­
ing by expanding declarations. 

OPTION MAIN HAS NOT BEEN SPECI­
FIED FOR THE EXTERNAL PROCEDURE 
STATEMENT NUMBER xxx 

S IEM0527I IMPLEMENTATION RESTRICTION. 
ARRAY BOUND IN STATEMENT Nur-1BER 
xxx IS TOO LARGE AND HAS BEEN 
REPLACED BY THE MAXIMUM PERMIT­
TED VALUE (32767 OR -32768). 

T IEM05281 COMPILER ERROR CODE nnnn IN 
STATEMENT NUMBER xxx 

Explanation: Compiler error 
found in processing a DECLARE 
statement 

system Action: Terminates com­
pilation 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

S IEM05291 IMPLEMENTATION RESTRICTION. 
STRUCTURE LEVEL NUMBER IN 
STATEMENT NUMBER xxx REDUCED TO 
255. 

S IEM05301 IMPLEMENTATION RESTRICTION. 
TOO MANY LABELS IN LABEL LIST 

198 

S IEM05321 

S IEM05331 

IN STATEMENT NUMBER xxx. THE 
LABEL zzzz AND ANY FOLLOWING IT 
HAVE BEEN IGNORED. 

Explanation: There is an 
implementation restriction lim­
iting the number of label con­
stants following the LABEL 
attribute to 125. 

ILLEGAL ASTERISK AS SUBSCRIPT 
IN DEFINING LIST IN STATEMENT 
NUMBER xxx. LIST TRUNCATED. 

system Action: Compilation 
continues with truncated iSUB 
1ist# possibly causing cascade 
errors. 

IMPLEMENTATION RESTRICTION. 
I-SUB VALUE IN STATEMENT NUMBER 
xxx TOO LARGE. REDUCED TO 32. 

Explanation: There is an 
implementation restriction lim­
iting the number of dimensions 
to a maximum of 32. 

S IEM05341 IMPLEMENTATION RESTRICTION. 
STRING LENGTH IN STATEMENT NUM­
BER xxx REDUCED TO 32,767. 

S IEM05351 IMPLEMENTATION RESTRICTION. 
KEYLENGTH IN STATEMENT NUMBER 
xxx REDUCED TO 255. 

S IEM05361 IDENTIFIER yyyy IN STATEMENT 
NUMBER xxx IS NOT A LABEL CON­
STANT OR IS NOT KNOWN. IT IS 
IGNORED. 

Explanation: Identifiers fol­
lowing the LABEL attribute must 
be LABEL constants and must be 
known. 

S IEMO 5 3 71 IMPLEMENT.ATION RESTRICTION. 
POSITION CONSTANT IN STATEMENT 
NUMBER xxx REDUCED TO 32,767. 

E IEM05381 IMPLEMENTATION RESTRICTION. 
PRECISION SPECIFICATION IN 
STATEMENT NUMBER xxx TOO LARGE. 
eEFAULT PRECISION GIVEN. 

E IEM05391 ILLEGAL NEGATIVE PRECISION IN 
STATEMENT NUMBER xxx. DEFAULT 
PRECISION GIVEN. 

S IEM05401 * BOUNDS ARE MIXED WITH NON--* 
BOUNDS IN DECLARE STATEMENT 
NUMBER xxx ALL THE BOUNDS 
ARE MADE *. 

E IEM05411 LOWER BOUND GREATER THAN UPPER 
BOUND IN DECLARE OR ALLOCATE 
STATEMENT NUMBER xxx THE 
BOUNDS ARE INTERCHANGED. 



S IEM05421 IMPLEMENTATION RESTRICTION. 
NUMBER OF DIMENSIONS DECLARED 
TRUNCATED TO 32 IN STATEMENT 
NUMBER xxx 

T IEM05431 COMPILER ERROR. ILLEGAL STATE­
MENT FOUND IN THE DECLARE 
CHAIN. 

T IEM05441 

F.xplanation: Compiler error 
found in scanning chain of 
DECLARE statements 

system Action: 
terminated 

Compilation 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

COMPILER ERROR. 
BYTE OF DECLARE 
NEITHER STATEMENT 
STATEMENT LABEL. 

INITIAL CODE 
ST~TEMENT IS 

NUMBER NOR 

Explanation: Compiler error 
found in first byte of DECLARE 
statements 

System Action: 
terminated 

Compilation 

User Response: Save relevant 
data. Call your local IBM rep­
resentative .• 

T IEM05451 COMPILER ERROR. ILLEGAL INI­
TIAL CHARACTER TO DECLARED ITEM 
IN STATEMENT NUMBER xxx 

Explanation: Compiler error 
found in scanning start of 
declared item 

system Action: 
terminated 

Compilation 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM05461 COMPILER ERROR. ILLEGAL CHAR­
ACTER FOUND AFTER LEVEL NUMBER 
IN DECLARE STATEMENT NUMBER xxx 

W IEM05471 

Explanation: Compiler error 
found after structure level 
number in DECLARE statement 

System Action: 
terminated 

Compilation 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

THE IDENTIFIER yyyy DECLARED IN 
STATEMENT NUMBER xxx I S A NON-

MA.JOR STRUCTURE MEMBER AND HAS 
THE SAME NAME AS A PARAMETER IN 
THE SAME BLOCK. THESE ARE 
DIFFERENT IDENTIFIERS, AND 
UNQUALIFIED REFERENCES REFER TO 
THE PARAMETER. 

System Action: Same BCD treat­
ed as different identifiers 

T IEM05481 COMPILER ERROR. ILLEGAL CHAR­
ACTER FOUND IN DECLARATION 
LIST. 

Explanation: Compiler error 
found in list of declarations 
in DECLARE statement 

System ~ction: 
terminated 

Compilation 

User Resp~: Save relevant 
data. Call your local IBM rep­
resentative. 

EIEM05491 THE DECLARED LEVEL OF IDENTIFI­
ER yyyy IN STATEMENT NUMBER xxx 
SHOULD BE ONE. THIS HAS BEEN 
FORCED. 

system Action: Illegal level 
number treated as 1 

S IEM05501 THE IDENTIFIER yyyy HAS BEEN 
DECLARED IN STATEME~T NUMBER 
xxx WITH A TRUE LEVEL NUMBER 
GREATER THAN THE IMPLEMENTATION 
RESTRICTION OF 63. TriE DECLAR­
ATION OF THE IDENTIFIER IS 
IGNORED. 

E IEM05511 THE IDENTIFIER yyyy HAS BEEN 
DECLARED IN STATEMENT NUMBER 
xxx WITH ZERO PRECISION. THE 
DEFAULT VALUE HAS BEEN ASSUMED. 

T IEM05521 COMPILER ERROR. ILLEGAL CHAR­
ACTER FOUND IN FACTORED ATTRI­
BUTE LIST IN DECLARE STATEMENT 
NUMBER xxx 

Explanation: Compiler error 
found in factored attribute 
list 

system Action: 
terminated 

Compilation 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

E IEM05531 THE IDENTIFIER yyyy HAS HAD A 
CONFLICTING ATTRIBUTE IGNORED 
IN DECLARE STATEMENT NUMBER xxx 

Explanation: The two 
butes may conflict as a 

attri­
result 

Appendix G: Diagnostic Messages 199 



of a feature not supported by 
this version of the compiler. 
For details of these features, 
refer to Appendix H of this 
publication. 

T IEM0554I COMPILER ERROR. ILLEGAL CHAR­
ACTER FOUND IN PARAMETER LIST 
FOLLOWING 'GENERIC' ATTRIBUTE. 

System Action: 
terminated 

compilation 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

E IEM0555I STORAGE CLASS ATTRIBUTES MAY 
NOT BE SPECIFIED FOR STRUCTURE 
MEMBER yyyy ATTRIBUTE 
IGNORED. 

Qser~Qg§~: Delete illegal 
storage class attribute for the 
structure member. 

T IEM0556I COMPILER ERROR. ILLEGAL CHAR­
ACTER FOUND IN PARAMETER LIST 
FOLLOWING AN 'ENTRY' ATTRIBUTE 
IN DECLARE STATEMEt~ NUMBER xxx 

System Action: 
terminated 

Compilation 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

E IEM0557I THE MULTIPLE DECLARATION OF 
IDENTIFIER yyyy IN STATEMENT 
NUMBER xxx HAS BEEN IGNORED. 

S IEM0558I IMPLEMENTATION RESTRICTION. 
NUMBER OF PARAMETER DESCRIP­
TIONS DECLARED FOR PROCEDURE OR 
ENTRY NAME yyyy IN STArEMENT 
~UMBER xxx TRUNCATED TO 64. 

E IEM0559I THE IDENTIFIER yyyy HAS BEEN 
DECLARED IN STATEMENT NUMBER 
xxx WITH CONFLICTING FACTORED 
LEVEL NUMBERS. THE ONE AT 
DEEPEST FACTORING LEVEL HAS 
BEEN CHOSEN. 

E IEM0560I IN STATEMENT NUMBER xxx A CON­
FLICTING ATTRIBUTE HAS BEEN 
IGNORED IN THE DECLARATION OF 
THE RETURNED VALUE OF ENTRY 
POINT yyyy 

S IEM0561I IN STATEMENT NUMBER xxx THE 
IDENTIFIER yyyy IS A MULTIPLE 
DECLARATION OF AN INTERNAL 
ENTRY LABEL. THIS DECLARATION 
IS IGNORED. 

200 

S IEM0562I THE IDENTIFIER yyyy IS DECLARED 
IN STATEMENT NUMBER xxx AS AN 
INTERNAL ENTRY POINT. THE NUM­
BER OF PARAMETERS DECLARED IS 
DIFFERENT FROM THE NUMBER GIVEN 
AT THE ENTRY POINT. 

S IEM0563I THE IDENTIFIER yyyy DECLARED 
'BUILTIN' IN STATEMENT NUMBER 
xxx IS NOT A BUILT-IN FUNCTION. 
DECLARATION IGNORED. 

E IEM0564I THE IDENTIFIER yyyy HAS BEEN 
DECLARED IN STATEMENT NUMBER 
xxx WITH PRECISION GREATER THAN 
THE IMPLEMENTATION LIMITS. THE 
MAXIMUM VALUE HAS BEEN TAKEN .• 

E IEM0565I THE IDENTIFIER yyyy IS DECLARED 
IN STATEMENT NUMBER xxx AS A 
MEMBER OF A GENERIC LIST, BUT 
ITS ATTRIBUTES DO NOT MAKE IT 
AN ENTRY POINT. THE DECLAR­
ATI eN OF THE IDENTIFIER HAS 
BEEN IGNORED. 

E IEM0566I ONE OF THE PARAMETERS DECLARED 
FOR ENTRY POINT yyyy IN STATE­
MENT i-lUMBER xxx SHOULD BE AT 
LEV EL ONE. THIS HAS BEEN 
FORCED. 

W IEM0567I IF FUNCTION zzzz IN STATEMENT 
NUMBER xxx IS INVOKED,THE USE 
OF' DEFAULT ATTRIBUTES FOR THE 
VALUE RETURNED WILL CONFLICT 
WITH THE DECLARED ATTRIBUTES 
FOR THAT VALUE. 

Explanation: The data type to 
which a result will be convert­
ed at a RETURN (expression) 
will not be the same as that 
expected at an invocation of 
the entry label as a function. 

System Action: None 

User Response: Write an ENTRY 
declaration in the containing 
PROCEDURE or BEGIN block, giv­
ing the same data attributes as 
on the PROCEDURE or ENTRY 
statement. 

S IEM0568I THE IDENTIFIER zzzz IS CALLED 
BUT IS EITHER A BUILTIN FUNC­
TION OR IS NOT AN ENTRY POINT. 

system Action: The erroneous 
statement is deleted. 

T IEM0569I COMPILER ERROR NUMBER nnnn IN 
MODULE EP. 

Explapation: Compiler error 
found in scan of chain of CALL 
statements 



system Action: 
terminated 

Compilation 

User~onse: Save relevant 
data. Call your local IBM rep­
resentative .. 

W IEM05701 THE ENTRY POINT yyyy HAS BEEN 
DECLARED IN STATEMENT NUMBER 
xxx TO HAVE A RETURNED VALUE 
DIFFERENT FROM THAT GIVEN ON 
THE PROCEDURE OR ENTRY STATE­
MENT. 

System Action: None 

User Response: Change the dec­
laration, or the PROCEDURE or 
ENTRY statement. 

S IEM05711 IMPLEMENTATION RESTRICTION. 
IDENTIFIER yyyy IN STATEMENT 
NUMBER xxx HAS MORE THAN 32 
DIMENSIO~m. DIMENSION ATTRI­
BUTE IGNORED. 

S IEM05721 THE IDENTIFIER yyyy HAS BEEN 
DECLARED IN STATEMENT NUMBER 
xxx WITH THE ATTRIBUTE "NORMAL" 
OR "ABNORMAL". THE APPLICATION 
OF THIS ATTRIBUTE IS AN UNSUP­
PORTED FEATURE OF THE FOURTH 
VERSION, AND IT HAS BEEN 
IGNORED. 

]!xplanation: A language feature 
has been used which is not 
supported by this version of 
the compiler. Refer to Appen­
dix H of this publication for 
rletails. 

S IEM05731 THE SELECTION OF GENERIC FAMILY 
MEMBERS WHOSE PARAMETERS HAVE A 
STRUCTURE DESCRIPTION IS 
DEFERRED. ENTRY NAME yyyy., 
DECLARED IN STATEMENT NUMBER 
xxx, IS SUCH A MEMBER AND HAS 
BEEN DELETED. 

Ex21anation: The usage 
referred to is not supported by 
this version of the compiler. 
For details, refer to Appendix 
H of this publication. 

T IEM05741 THE MULTIPLE DECLARATION OF 
IDENTIFIER yyyy IN STATEMENT 
NUMBER xxx HAS BEEN IGNORED. 

S IEM05891 COMPILER ERROR. ITEM zzzz IN 
LIKE CHAIN IS NOT A STRUCTURE. 
ITEM IS IGNORED. 

User Response: Save relevant 
data. Call your local IBM rep­
resentative,. 

S IEM05901 STRUCTURE ELEMENT zzzz WHICH 
HAS LIKE ATTRIBUTE ATTACHED TO 
IT, IS FOLLOWED BY AN ELEMENT 
WITH A NUMERICALLY GREATER 
STRUCTURE LEVEL NUMBER. LIKE 
ATTRIBUTE IS IGNORED. 

S IEM05911 

System 
atory: 
errors. 

Action: Self explan­
may result in cascade 

STRUCTURE ELEMENT zzzz IS LIK­
ENED TO AN ITEM WHICH IS NOT A 
STRUCTURE VARIABLE. LIKE 
ATTRIBUTE IS IGNORED. 

System Action: Self explan­
atory: may result in cascade 
errors. 

S IEM05921 STRUCTURE ELEMENT zzzz IS LIK­
ENED TO A STRUCTURE WHICH CON­
TAINS ELEMENTS WHICH HAVE ALSO 
BEEN DECLARED WITH THE LIKE 
ATTRIBUTE. LIKE ATTRIBUTE ON 
ORIGINAL STRUCTURE IS IGNORED. 

System Action: Self explan­
atory: may result in cascade 
errors. 

S IEM05931 STRUCTURE NAME TO WHICH zzzz IS 
LIKENED IS NOT KNOWN. LIKE 
ATTRIBUTE IGNORED. 

E IEM05941 

~S~y~s~t~e~m~~A=c~tion: Self explan­
atory: may result in cascade 
errors. 

AMBIGUOUS QUALIFIED NAME yyyy 
USED AS A BASE IDENTIFIER. 
MOST RECENT DECLARATION USED. 

E IEM05951 QUALIFIED NAME yyyy USED AS A 
BASE IDENTIFIER CONTAINS MORE 
THAN ONE IDENTIFIBR AT THE SAME: 
STRUCTURE LEVEL. 

system Action: The erroneous 
statement is deleted. 

S IEM05961 MAJOR STRUCTURE yyyy HAS BEEN 
LIKENED TO AN ITEM WHICH IS NOT 
A VALID STRUCTURE. DECLARATION 
OF STRUCTURE IGNORED. 

system Action: Self explan­
atory: may result in cascade 
errors. 

S IEM0597I IDENTIFIER zzzz WHICH IS NOT A 
FORMAL PARAMETER OR OF STORAGE 
CLASS CONTROLLED HAS BEEN LIK­
ENED TO -A STRUCTURE CONTAINING 
* DIMENSIONS OR LENGTH. * 
DIMENSIONS OR LENGTH HAVE BEEN 
IGNORED I N THE CONSTRUCTED 
STRUCTURE. 

Appendix G: Diagnostic Messages 201 



System Action: Self explan­
atory: may result in cascade 
errors from later phases. 

S IEM05981 QUALIFIED NAME TO WHICH zzzz 
HAS BEEN LIKENED IS AN AMBIGU­
OUS REFERENCE. LIKE ATTRIBUTE 
HAS BEEN IGNORED. 

S IEM05991 zzzz WHICH IS A PARAMETER OR A 
BASED VARIABLE, HA S BEEN 
DECLARED (USING THE LIKE 
ATTRIBUTE) AS A STRUCTURE WITH 
THE INITIAL ATTRIBUTE. THE 
INITIAL ATTRIBUTE IS INVALID 
AND HAS BEEN IGNORED. 

User Response: Declare the pa­
rameter or based variable with 
the LIKE attribute specifying a 
structure without the INITIAL 
attribute. 

S IEM06001 STATIC STRUCTURE zzzz HAS BEEN 
DECLARED BY MEANS OF THE LIKE 
ATTRIBUTE TO HAVE ADJUSTABLE 
EXTENTS. THE EXTENTS HAVE BEEN 
IGNORED. 

Explanation: A STATIC variable 
cannot have adjustable extents 

System Action: All bounds on 
the offending variable are set 
to zero 

S IEM06011 OFFSET ATTRIBUTE ON PROCEDURE 
STATEMENT NUMBER xxx IS NOT 
BASED ON A BASED AREA. IT HAS 
BEEN CHANGED TO POINTER. 

T IEM06021 IDENTIFIER IN BASED ATTRIBUTE 
ON zzzz DECLARED IN STATEMENT 
NUMBER xxx IS NOT A NON-BASED 
POINTER 

system Action: Compilation is 
terminated 

T IEM0603I INVALID POINTER EXPRESSION IN 
BASED ATTRIBUTE ON zzzz IN 
STATEMENT NUMBER xxx 

Explanation: The pointer asso­
ciated with the based variable 
does not obey the implementa­
tion rules (e.g.~ it may be 
subscripted) • 

System Action: The compilation 
is terminated 

T IEM0604I LENGTH DECLARED FOR BASED 
STRING zzzz IN STATEMENT NUMBER 
xxx IS INVALID 

202 

Explanation: The declaration 
violates the compiler implemen-

tation rules. (see Appendix B, 
'Implementation Conventions and 
Restrictions'). 

system Action: Terminates com­
pilation 

T IEM06051 BOUNDS DECLARED FOR BASED ARRAY 
zzzz IN STATEMENT NUMBER xxx 
ARE INVALID 

Explanation: The adjustable 
bounds declared are outside 
those permitted by this implem­
entation, .. 

system Action: Terminates com­
pilation 

S IEM0606I OFFSET VARIABLE zzzz HAS BEEN 
DECLARED IN STATEMENT NUMBER 
xxx RELATIVE TO AN IDENTIFIER 
WHICH IS NOT A BASED AREA. IT 
HAS BEEN CHANGED TO A POINTER 
VARIABLE. 

System Action: The offset is 
changed to a pointer to prevent 
the compiler from producing 
further error messages. 

W IEM06071 IF THE BASE OF zzzz CORRESPON­
DENCE DEFINED IN STATEMENT NUM­
BER xxx IS ALLOCATED WITH THE 
DECLARED BOUNDS THE DEFINING 
WILL BE IN ERROR .. 

T IEM06081 

Explanation: For correspon­
dence defining not involving 
iSUB's, the bounds of the 
defined array must be a subset 
of the bounds of the base. In 
this case the bounds declared 
for the base do not satisfy 
this requirement. However, the 
base is of CONTROLLED storage 
class and if it is allocated 
with different bounds the 
defining may be legal. 

System Action: Nothing further 

ILLEGAL DEFINING IN 
NUMBER xxx '. BAS E 
zzzz IS A MEMBER OF 
SIONED STRUCTURE~ 

STATEMENT 
IDENTIFIER 

A DIMEN-

Explanation: In the case of 
string class overlay defining 
where the base is an array, it 
is an error if it is a member 
of an array of structures. 

system Action: The compilation 
is termina ted. 

User Response: Refer to the 
PL/I Reference Manual "The 



DEFINED Attribute" - and cor­
rect error. 

T IEM0609I DEFERRED FEATURE. DEFINING OF 
zzzz DECLARED IN STATEMENT NUM­
BER xxx WITH A SUBSCRIPTED 
BASE. 

Explanation: Overlay defining 
on a subscripted base is not 
supported by this version of 
the compiler. 

system Action: The compilation 
is terminated. 

User Response: Replace all 
references to the defined item 
by appropriate subscripted ref­
erences to the base. 

T IEM0610I DEFERRED FEATURE. DEFINING OF 
zzzz DECLARED IN STATEMENT NUM­
BER xxx ON A BASE OF ~ONTROLLED 
STORAGE CLASS. 

ExE1~nation: If the base is 
declared CONTROLLED, neither 
overlay defining nor correspon­
dence defining is supported by 
this release of the compiler. 

System Action: The compilation 
is te;rminated. 

User Response: Replace 
references to the defined 
by appropriate references 
the base. 

all 
item 

to 

T IEM0611I SCALAR zzzz DECLARED IN STATE­
MENT NUMBER xxx IS ILLEGALLY 
DEFINED WITH ISUBS. 

Explanation: Only arrays may 
be correspondence defined using 
iSUB notation. 

System Action: The compilation 
is terminated. 

User Response: Refer to the 
PL/I Reference Manual "The 
DEFINED Attribute" - and cor­
rect error. 

E IEM0612I INITIAL ATTRIBUTE DECLARED FOR 
DEFINED ITEM zzzz IN STATEMENT 
NUMBER xxx WILL BE' IGNORED. 

Explanation: DEFINED items may 
not have the INITIAL attribute. 

system Action: INITIAL attri­
bute ignored 

T IEM0623I THE BASE SUBSCRIPT LIST USED 
WITH THE DEFINED VARIABLE zzzz 

IN STATEMENT NUMBER xxx ILLE­
GALLY REFERS TO OR IS DEPENDENT 
ON THE DEFINED VARIABLE. 

Explanation: It is illegal for 
a base subscript list in the 
DEFINED attribute to refer 
directly, or via any further 
level of defining, to the 
defined item. 

System Action: The compilation 
is terminated. 

User Response: Refer to the 
PL/I Reference Manual - "The 
DEFINED Attribute" - and cor­
rect error. 

T IEM0624I THE DEFINING BASE FOR zzzz 
DECLARED IN STATEMENT NUMBER 
xxx IS ITSELF DEFINED. 

T IEM0625I 

T IEM0626I 

Explanation,: The base of 
DEFI~~D data may not itself be 
DEFINED 

System Action: The compilation 
is terminated. 

User ReSDonse: Replace the 
specified base by an appropri­
ate reference to its base. 

THE DEFINING 
DECLARED IN 
xxx HAS THE 
SUBSCRIPTS. 

BASE FOR zzzz 
STATEMENT NUMBER 

WRONG NUMBER OF 

Explanation: If the base ref­
erence in a DEFINED attribute 
is subscripted, it must have 
the same number of subscript 
expressions as the dimensional­
ity of the base array. 

System Action: The compilation 
is terminated. 

User Response: 
subscript list, or 
of the base, 
appropriate. 

Correct the 
declaration 

whichever 

THE DEFINING B~SE FOR zzzz 
DECLARED IN STATEMEHT NUMBER 
xxx IS NOT DATA. 

Explanation: The only legal 
data types that may be used for 
defining bases are string, 
Arithmetic, Task, Event, and 
Label. 

~tem Action: The compilation 
is terminated. 

User Response: Check that the 

hppendix G: Diagnostic Messages 203 



defining base is correctly 
written and declared. 

T IEM0627I IMPLEMENTATION RESTRICTION. 

T IEM0628I 

STATEME~T NUMBER xxx IS TOO 
LONG. 

Explanation: system Generation 
compiler restriction 

system Action: The compilation 
is terminated. 

User Response: 
ment size 

Reduce state-

IMPLEMENTATION RESTRICTION. 
THE NESTING OF REFERENCES TO 
DATA DEFINED WITH A SUBSCRIPTED 
BASE IS TOO DEEP. 

Explanation: The complexity of 
defining has resulted in a 
level of nesting which is too 
great for the compiler. 

~ystem Action: The compilation 
is terminated. 

User Response: Reduce complex­
i ty of defining .. 

T IEM0629I ARRAY zzzz DECLARED IN STATE­
MENT NUMBER xxx ILLEGALLY HAS 
THE POS ATTRIBUTE WITH ISUB 
DEFINING. 

Explanation: The POS attribute 
may not be specified for cor­
respondence defining. 

System Action: The compilation 
is terminated. 

User Response: Delete pas 
attribute 

T IEM0630I THE DESCRIPTION OF zzzz CORRES­
PONDENCE DEFINED IN STATEMENT 
NUMBER xxx DOES NOT MATCH THAT 
OF THE DEFINING BASE. 

I T IEM0631I 

204 

Explanation: For correspon­
dence defining, if either the 
base or the defined item are 
arrays of structures, then both 
must be arrays of structures. 

system Action: The compilation 
is terminated. 

User Response: Correct the 
program. Note that POS (1) may 
be used to force overlay defin­
ing. 

IMPLEMENTATION RESTRICTION. 
THE CORRESPONDENCE DEFINING OF 

yyyy AN ARRAY OF STRUCTURES 
DECLARED IN STATEMENT NUMBER 
xxx. 

Explanation: Correspondence 
defining with arrays of struc­
tures is not supported by the 
compiler. 

System Action: The compilation 
is terminated. 

User Response: Declare the 
base arrays of the defined 
structure as correspondence 
defined on the matching base 
arrays of the base structure. 
Note that for this to be valid, 
the base arrays of the defined 
structure must have unique 
names anj be declared at level 
1. This alternative method 
precludes structure operations 
with the defined item# but 
achieves the desired mapping. 

T IEM06~2I THE BOUNDS OF zzzz CORRESPON­
DENCE DEFINED IN STATEMENT NUM­
BER xxx ARE NOT A SUBSET OF THE 
BASE. 

Explanation: For correspon­
dence defining not involving 
iSUB's. the bounds of the 
defined array must be a subset 
of the corresponding bounds of 
the base array. 

system Action: The compilation 
is terminated. 

User Response: Refer to the 
PL/I Reference Ma nual "The 
DEFINED Attribute" - and cor­
rect program. Note that pas 
(1) may be used to force over­
lay defining. 

S IEM0633I ITEM TO BE ALLOCATED IN STATE­
MENT NUMBER xxx IS NOT AT LEVEL 
1. THE STATEMK~T HAS BEE~'l 

IGNORED. 

Explanation: An identifier 
specified in an ALLOCATE state­
ment must refer to a major 
structure or data not contained 
in a structure. A major struc­
ture identifier may optionally 
be followed by a full structure 
description. 

System Action: The ALLOCATE 
statement is deleted 

User Response: Replace erro­
neous identifier by that of the 
containing major structure. 



S IEM0634I ITEM TO BE ALLOCATED IN STATE­
MENT NUMBER xxx HAS NOT BEEN 
DECLARED. THE STATEMENT HAS 
BEEN IGNORED. 

Explanation: Only CONTROLLED 
data may be allocated. Data 
may only obtain the attribute 
CONTROLLED from an explicit 
declaration. 

System Action: The ALLOCATE 
statement is deleted 

User Response: Construct a 
DECLARE statement for the iden­
tifier 

S IEM06361 ITEM TO BE ALLOCATED IN STATE­
MENT NUMBER xxx WAS NOT 
DECLARED CONTROLLED. THE 
STATEMENT HAS BEEN IGNORED. 

E IEM06371 

Explanation: Only CONTROLLED 
data may be specified in ALLO­
CATE statements. 

system Action: The ALLOCATE 
statement is deleted 

User Response: Declare the 
identifier CONTROLLED 

A CONFLICTING ATTRIBUTE WAS 
GIVEN FOR zzzz IN STATEMENT 
NUMBER xxx. THE ATTRIBUTE HAS 
BEEN IGNORED. 

Explanation: Attributes given 
for an identifier in an ALLO­
CATE statement may not conflict 
with those given explicitly or 
assumed by default from the 
declaration .. 

System Action: Ignores the 
attribute from the ALLOCATE 

S IEM0638I THE STRUCTURE DESCRIPTION GIVEN 
ON STATEMENT NUMBER xxx DIFFERS 
FROM THAT DECLARED. THE STATE­
MENT HAS BEEN IGNORED. 

Explanation: If a description 
of a major structure is given 
on an ALLOCATE statement, the 
description must match that 
declared. 

system Action: The ALLOCATE 
statement is deleted 

S IEM06401 AN INVALID ATTRIBUTE WAS GIVEN 
IN STATEMENT NUMBER xxx. THE 
STATEMENT HAS BEEN IGNORED. 

Explanation: 
INITIAL, and 

Only CHAR, BIT, 
Dimension attri-

E IEM06411 

butes are permitted in ALLOCATE 
statements. 

system Action: The ALLOCATE 
statement is deleted 

CONFLICTING ATTRIBUTES 
BEEN GIVEN FOR zzzz IN 
MENT NUMBER xxx. THE 
LEGAL ONE HAS BEEN USED. 

HAVE 
STATE­

FIRST 

Explanation: At most, one 
attribute in the following 
classes may be given for an 
identifier in an ALLOCATE 
statement: Dimension, 
StringCCHAR or BIT), INITIAL. 

Syste~_~~~ion: All attributes 
after the first in a particular 
class are ignored. 

S IEM0642I DIMENSIONALITY GIVEN IN STATE­
MEN'] NUMBER xxx 01 FFERS FROtlJ 
THAT DECLARED. THE STATEMENT 
HAS BEEN IGNORED. 

Explanati£n: If a dimension 
attribute is given for an iden­
tifier in an ALLOCATE state­
ment'l the identifier must have 
been declared with the same 
dimensionality. 

System Action: The ALLOCATE 
statement is deleted 

User Response: Correct declar­
ation or ALLOCATE Statement, 
whichever applicable. 

W IEM0643I THE LEVEL NUMBER DECLARED FOR 
zzzz IS NOT THE SAME AS THAT 
GIVEN IN STATEMENT NUMBER xxx. 
THE FORMER HAS BEEN USED. 

Explanatio~: If a structure 
description is given in an 
ALLOCATE Statement, it must 
match the declaration. The 
indicated level number discre­
pancy may be an error. 

System Action: Nothing further 

User Response: Check that 
ALLOCATE statement is as 
intended 

S IEM06441 STATEMENT NUMBER xxx CONTAINS 
AN ILLEGAL PARENTHESIZED LIST. 
THE STATEMENT HAS BEEN IGNORED. 

Explanation: Factored attri­
bures are not allowed on ALLO­
CATE statements. 

Appendix G: Diagnostic Messages 205 



~s~y_s_t_e_m~ ____ Action: 
ignored 

statement 

User Response: Remove paren­
theses and any factored attri­
butes 

S IEM0645I ATTRIBUTE GIVEN WITH BASED 
VARIABLE zzzz IN ALLOCATE 
STATEMENT NUMBER xxx HAS BEEN 
IGNORED. 

Explanations: Based variable 
may not be specified with 
attributes 

User Response: Correct ALLO-
CATE statement 

S IEM0646I IDENTIFIER yyyy PRECEDING POIN­
TER QUALIFIER IN STATEMENT NUM­
BER xxx IS NOT A NON-BASED 
POINTER VARIABLE 

System Action: The identifier 
is replaced by a dummy dic­
tionary reference; a later 
phase will delete the state­
ment. 

User_ Response: Correct 
invalid statement 

the 

S IEM0647I POINTER-QUALIFIED IDENTIFIER 
zzzz IN STATEMENT NUMBER xxx IS 
NOT A BASED VARIABLE 

system Action: Identifier is 
replaced by a dummy dictionary 
reference; a later phase will 
delete the statement. 

User Response: Correct the 
invalid statement 

T IEM0652I IMPLEMENTATION RESTRICTION. 
STATEMENT NUMBER xxx IS TOO 
LONG. 

system Action: 
terminated 

Compilation 

User Response: Rewrite state­
ment in question and recompile 

T IEM0653I COMPILER ERROR. ILLEGAL ENTRY 
IN STATEMENT NUMBER xxx 

206 

Explanation: Compiler error 
found in scan of statement 

system Action: 
terminate::] 

Compilation 

User Response: Save relevant 
oata. Call your local IBM rep­
resentative. 

T IEM0654I COMPILER ERROR IN 
NUMBER xxx 

STATEMENT 

Explanation: Compiler error 
found in scan of statement 

System Action: 
terminated 

C ompi la ti on 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

S IEM0655I QUALIFIED NAME BEGINNING yyyy 
USED IN STATEMENT NUMBER xxx 
BUT NO PREVIOUS STRUCTURE DEC­
LARATION GIVEN. DUMMY REF­
ERENCE INSERTED. 

System Action: Refer.ence to 
the illegal variable or the 
whole statement will be deleted 
by later phases. 

User Response: Correct program 
by inserting DECLARE statement 

E IEM0656I MOST RECENT DECLARATION USED OF 
AMBIGUOUS QUALIFIED NAME OR 
STRUCTURE MEMBER BEGINNING yyyy 
IN STATEMENT NUMBER xxx 

E IEM0657I QUALIFIED NAME BEGINNING yyyy 
IN STATEMENT NUMBER xxx CON­
TAINS MORE THAN ONE IDENTIFIER 
AT THE SAME STRUCTURE LEVEL. 

S IEM0658I 

System Action: 
is deleted 

The statement 

QUALIFIED NAME BEGINNING yyyy 
IN STATEMENT NUMBER xxx IS AN 
AMBIGUOUS REFERENCE. DUMMY 
REFERENCE INSERTED. 

Syste~_b£tion: statement will 
be deleted by later phase 

S IEM0673I ILLEGAL USE OF FUNCTION NAME O~~ 

LEFT HAlW SIDE OF EQUAL SYMBOL 
IN STATEMENT NUMBER xxx 

System Action: S"tateroent will 
be deleted by later phases 

S IEM0674I STATEMENT NUMBER xxx CONTAINS 
ILLEGAL USE OF FUNCTION yyyy 

System Action: Reference to 
function or whole statement 
will be deleted by later phases 

S IEM0675I IN STATEMENT NUMBER xxx IDEN­
TIFIER yyyy AFTER GO TO IS NOT 
A LABEL OR LABEL VARIABLE KNOWN 
IN THE BLOCK CONTAINING THE GO 
TO. 



System Action: statement del­
eted by later phases. 

S IEM06761 DEFERRED FEATURE. IDENTIFIER 
yyyy NOT ALLOWED AS A BUILT-IN 
FUNCTION OR PSEUDO-VARIABLE 
DUMMY REFERENCE INSERTED IN 
STATEMENT NUMBER xxx 

S IEM06771 

IEM06821 

S IEM06831 

W IEM0684I 

Explanation: ~ language fea­
ture has been used that is not 
supported by this version of 
the compiler. For details~ 
refer to Appendix H of this 
publication. 

System Action: Statement del­
eted by later phases 

User Response: Correct state­
ment by removing reference to 
function in error 

ILLEGAL PARENTHESIZED LIST IN 
STATEMENT NUMBER xxx FOLLOWS AN 
IDENTIFIER WHICH IS NOT A FUNC­
TION OR ARRAY. LIST DELETED. 

IN STATEME11T NUMBER xxx GO TO 
TRANSFERS CONTROL ILLEGALLY TO 
A FORMAT STATEMENT. 

zzzz WAS FOUND WHERE A FILE 
VARIABLE IS REQUIRED IN STATE­
MENT NUMBER xxx. DUMMY DIC­
TIONARY REFERENCE REPLACES 
ILLEGAL ITEM. 

System Action: Statement will 
be deleted by later phases 

USE OF LABEL VARIABLE zzzz MAY 
RESULT IN AN ILLEGAL BRANCH IN 
STATEMENT NUMBER xxx 

Explanation: It is possible 
that the label variable may 
contain a value which would 
cause control to branch ille­
gally into a block. 

System Action: None 

User Response: Check validity 
of possible branches. 

S IEM06851 zzzz IS NOT A STATEMENT LABEL 
ON AN EXECUTABLE STATEMENT. 
DUMMY REFERENCE INSERTED AFTER 
GO TO IN STATEMENT NUMBER xxx 

System Action: Statement will 
be deleted by later phases 

S IEM06861 zzzz APPEARS IN A FREE OR ALLO­
CATE STATEMENT BUT HAS NOT BEEN 
DECLARED CONTROLLED. DUMMY 

REFERENCE INSERTED IN STATEMENT 
NUMBER xxx. 

system Action: A dummy ref­
erence is inserted. The state­
ment will be deleted by a later 
phase 

W IEM06871 IN STATEMENT NUMBER xxx GO TO 
zzzz TRANSFERS CONTROL ILLEGAL­
LY TO ANOTHER BLOCK OR GROUP. 

system Action: Statement will 
be deleted by later phases 

S IEM06881 COMPILER ERROR. TOO FEW LEFT 
PARENTHESES IN STATEMENT NUMBER 
xxx 

S IEM06891 

S IEM06901 

Explanation: This is a compil­
er error 

~tem Action: None taken. 
Cascade errors may result. 

User Response: Save relevant 
data. Call your local IBM rep­
resentati ve,. 

zzzz WAS FOUND WHERE A TASK 
IDENTIFIER IS REQUIRED IN 
STATEMENT NUMBER xxx. DUMMY 
REFERENCE INSERTED. 

System Action: Statement will 
be deleted by later phases 

zzzz WAS FOUND WHERE EVENT 
VARIABLE IS REQUIRED IN STATE­
MENT NUMBER xxx. DUMMY REF­
ERENCE INSERTED. 

system Action: Statement will 
be deleted by later phases 

S IEM06911 INVALID ITEM zzzz IN DATA LIST, 
OR 'FROM' OR 'INTO' OPTION, IN 
STATEMENT NUMBER xxx 

system Action: Statement will 
be deleted by later phases 

S IEM06921 DATA DIRECTED I/O LIST, OR 
FROM'll OR I NTO OPT ION IN STATE­
MENT NUMBER xxx CONTAINS FORMAL 
PARAMETER OR DEFINED ITEM zzzz 

system Action: Statement will 
be deleted by later phases 

S IEM06931 ILLEGAL USE OF FUNCTION zzzz IN 
INPUT LIST IN STATEMENT NUMBER 
xxx. DUMMY REFERENCE INSERTED. 

System Action: Statement will 
be deleted by later phases 

Appendix G: Diagnostic Messages 207 



S IEM0694I IN THE FORMAT LIST IN STATEMENT 
NUMBER xxx A REMOTE FORMAT ITEM 
REFERENCES zzzz, WHICH IS NOT A 
STATEMENT LABEL IN THE CURRENT 
BLOCK. DUMMY REFERENCE INSERT­
ED. 

System Action: Format item 
deleted by later phase 

S IEM0695I LABEL ARRAY zzzz IS NOT FOL­
LOWED BY A SUBSCRIPT LIST AFTER 
GO TO IN STATEMENT NUMBER xxx. 
DUMMY REFERENCE REPLACES REF­
ERENCE TO ARMY. 

System Action: Statement will 
be deleted by later phases 

W IEM0696I IN STATEMENT NUMBER xxx IT IS 
AN ERROR IF THE PARAMETER zzzz 
IN A REMOTE FORMAT ITEM REFERS 
TO A FORMAT STATEMENT WHICH IS 
NOT INTERNAL TO THE SAME BLOCK 
AS THE REMOTE FORMAT ITEM. 

Explanation: Remote formats 
become executable code, but not 
internal procedures. Therefore 
they must appear in the same 
block in which they are used. 

System Action: Object-time 
error message is compiled 

User ResDonse: Correct program 
and recompile 

S IEM0697I STATEMENT LABBL zzzz ATTACHED 
TO STATEMENT NUMBER xxx IS USED 
AS A REMOTE FORMAT ITEM IN TH1\.T 
STATEMENT. A DUMMY REPLACES 
THE REMOTE FORMAT ITEM. 

System Action: statement will 
be deleted by a later phase 

S IEM0698I THE BASED VARIABLE zzzz IN 
LOCATE STATEMENT NUMBER xxx IS 
NOT AT LEVEL 1. DUMMY REF­
ERENCE INSERTED. 

System Action: 
will be deleted 
phase. 

The statement 
by a later 

S IEM0699I STRUCTURE ARGUMENT zzzz OF FROM 
OR INTO OPTION IN STATEMENT 
NUMBER xxx IS NOT A MAJOR 
STRUCTURE. DUMMY REFERENCE 
INSERTED 

system Action: statement del­
eted by later phase 

S IEM0700I ILLEGAL USE OF FUNCTION, LABEL 
OR VARYING STRING zzzz AS ARGU­
MENT OF FROM OR INTO OPTION IN 

208 

STATEMENT NUMBER xxx. DUMMY 
REFERENCE INSERTED. 

system Action: Statement del­
etej by later phase 

S IEM0701I ARGUMENT zzzz OF SET OPTION IS 
NOT A POIN~ER VARIABLE. DUMMY 
REFERENCE INSERTED. 

system Action: Statement del­
eted by later phase. 

W IEM0702I LABEL, TASK OR EVENT VARIABLE 
zzzz USED IN FROM OR INTO 
OPTION IN STATEMENT NUMBER xxx 
MAY LOSE ITS VALIDITY IN TRANS­
MISSION 

S IEM0703I INVALID IDENTIFIER zzzz FREED 
IN STATEMENT NUMBER xxx 

Explanation: An identifier in 
the FREE statement is not a 
CONTROLLED variable. 

System Action: Invalid iden­
tifier replaced by dumroy. 

S IEM0704I STATEMENT NUMBER xxx CONTAINS 
INVALID USE OF FUNCTION zzzz 

System Action: Statement del­
eted by later phase 

W IEM0705I IF THE LABEL VARIABLE IN GO TO 
STATEMENT NUMBER xxx ASSUMES 
THE VALUE OF ITS VALUE-LIST 
MEMBER zzzz., THE STATEMENT WILL 
CONSTITUTE AN INVALID BRA.NCH 
INTO AN ITERATIVE DO GROUP. 

System Action: None 

User Response: Check that 
branch will be valid at execu­
tion time .. 

S IEM0706I VARIABLE zzzz IN ·LOCATE STATE­
MENT IS NOT A BASED VARIABLE. 
DUMMY REFEFENCE INSERTED. 

System Action: The statement 
is deletej by a later phase. 

User Response: Correct the 
invalid statement 

S IEM0707I ARGUMENT zzzz OF IN OPTION IS 
NOT AN AREA VARIABLE. DUMMY 
REFERENCE INSERTED. 

System Action: The statement 
is deleted by a later phase. 

User Response: Correct 
invalid statement 

the 



E IEM0708I ASTERISK NOT ALONE IN SETS OR 
USES LIST. REMAINDER OF LIST 
IGNORED. 

S IEM0709I IMPLEMENTATION RESTRICTION. 
ARGUMENT NUMBER IN SETS OR USES 
LIST TOO LARGE. REDUCED TO 
255. 

E IEM0710I REPEATED ARGUMENT NUMBER 
IGNORED IN SETS OR USES LIST. 

T IEM0711I COMPILER ERROR IN SETS LIST. 

~xplanation: Compiler error 
found in scan of SETS list 

system Action: 
termi nat ed. 

Compilation 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

E IEM0712I IDENTIFIER yyyy IN SETS OR USES 
LIST NOT KNOWN AT POINT OF 
OCCURRENCE OF LIST. IDENTIFIER 
IGNORED. 

E IEM0713I IDENTIFIER yyyy IN SETS LIST IS 
BASED VARIABLE. DUMMY REF-! 
ERENCE INSERTED. 

User_Response: Correct source 
program by removing reference 
to based variable. 

S IEM0715I TEXT yyyy ASSOCIATED WITH THE 
INITIAL ATTRIBUTE IN STATEMENT 
NUMBER xxx IS ILLEGAL AND HAS 
BEEN IGNORED. 

S IEM0718I 

Expl~~ation: The INITIAL 
attribute has been used incor­
rectly. 

System Action: The 
attribute is deleted 

INITIAL 

INVALID CHECK LIST IN STATEMENT 
NUMBER xxx. STATEMENT HAS BEEN 
CHANGED TO 'ON ERROR'. 

S IEM0719I ELEMENT OF LABEL ARRAY zzzz 
WHICH IS DECLARED WITH INITIAL 
ATTRIBUTE USED AS STATEMENT 
LABEL ON STATEMENT NUMBER xxx 

System Action: Label is delet­
ed 

S IEM0720I SUBSCRIPTED IDENTIFIER zzzz 
USED AS LABEL ON STATEMENT NUM­
BER xxx IS NOT A LABEL ARRAY 

system Action: Label is delet­
ed 

S IEM0721I ELEMENT OF STATIC LABEL ARRAY 
zzzz USED AS LABEL ON STATEMENT 
NUMBER xxx 

System Action: Label is delet­
ed 

S IEM0722I ELEMENT OF LABEL ARRAY zzzz 
USED AS LABEL ON STATEMENT NUM­
BER xxx IN BLOCK OTHER THAN THE 
ONE IN WHICH IT IS DECLARED. 

system Action: An error state­
ment is inserted in the text in 
place of the offending label. 

T IEM0723I COMPILER ERROR IN 
NUMBER xxx 

STATEMENT 

S IEM0724I 

S IEM0725I 

Explanation: Compiler 
found in scan of text 

error 

System Action: 
terminated 

compilation 

User Response: Save relevant 
data. Call your local IBM rep­
resenta ti ve. 

FORMAL PARAMETER zzzz IN CHECK 
LIST. PARAMETER IS IGNORED. 

Explanation: The identifier 
list of a CHECK prefix must not 
contain formal parameters 

STATEMENT NUMBER xxx HAS BEEN 
DELETED DUE TO A SEVERE ERROR 
NOTED ELSEWHERE. 

System Action: The 
statement is replaced 
error statement. 

whole 
by an 

S IEM0726I IDENTIFIER zzzz IN STATEMENT 
NUMBER xxx IS NOT A FILE NAME. 
THE STATEMENT IS DELETED. 

Explanation: The identifier 
has been used previously in a 
different context and is there­
fore not recognized as a file 
name 

S IEM0727I IDENTIFIER zzzz IN STATEMENT 
NUMBER xxx IS NOT A CONDITION 
NAME. THE STATEMENT IS DELET­
ED. 

Explanation: The identifier 
has been used previously in a 
different context and is there­
fore not recognized as a condi­
tion name 

T IEM0728I COMPILATION TERMINATED DUE TO A 
PREVIOUSLY DETECTED SEVERE 
ERROR IN STATEMENT NUMBER xxx 

Appendix G: Diagnostic Messages 209 



Explanation: A previous module 
has inserted a dummy dictionary 
reference into the second file .• 
The compiler cannot recover. 

S IEM0729I COMPILER ERROR IN SCALE FACTOR 
IN PICTURE BEGINNING yyyy. 
THIS PICTURE OCCURS IN STATE­
MENT NUMBER xxx, AND POSSIBLY 
IN OTHER STATEMENTS. 

system Action: Scan of picture 
halted. All references to pic­
ture deleted. 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

S IEM07301 MORE THAN ONE SIGN CHARACTER 
PRESENT IN A SUBFIELD OF PIC­
TURE yyyy. THIS PICTURE OCCURS 
IN STATEMENT NUMBER xxx, AND 
POSSIBLY IN OTHER STATEMENTS. 

system Action: Scan of picture 
terminated: picture ignored by 
later phases. 

S IEM07311 PICTURE CHARACTER M APPEARS IN 
NON-STERLING PICTURE yyyy. 
THIS PICTURE OCCURS IN STATE­
MENT NUMBER xxx, AND POSSIBLY 
IN OTHER STATEMENTS. 

System Action: Scan of picture 
terminated; picture ignored by 
later phases. 

S IEM07321 FIELD MISSING IN STERLING PIC­
TURE yyyy. THIS PICTURE OCCURS 
IN STATEMENT NUMBER xxx, AND 
POSSIBLY IN OTHER STATEMENTS. 

System Action: Scan of picture 
terminated; picture ignored by 
later phases. 

S IEM0733I ILLEGAL EDIT CHARACTERS AT 
START OF STERLING PICTURE yyyy. 
THIS PICTURE OCCURS IN STATE­
MENT NUMBER xxx, AND POSSIBLY 
IN OTHER STATEMENTS. 

system Action: Scan of picture 
terminated: picture ignored by 
later phases. 

S IEM0734I ILLEGAL CHARACTER OR ILLEGAL 
NUMBER OF CHARACTERS IN POUNDS 
FIELD OF STERLING PICTURE yyyy. 
THIS PICTURE OCCURS IN STATE­
MENT NUMBER xxx, AND POSSIBLY 
IN OTHER STATEMENTS. 

210 

system Action: Scan of picture 
terminated; picture ignored by 
later phases. 

S IEM07351 ILLEGAL CHARACTER OR ILLEGAL 
NUMBER OF CHARACTERS IN SHILL­
INGS FIELD OF STERLING PICTURE 
yyyy.. THIS PICTURE OCCURS IN 
STATEMENT NUMBER xxx, AND POS­
SIBLY IN OTHER STATEMENTS. 

System Action: Scan of picture 
terminated: picture ignored by 
later phases. 

S IEM07361 WRONG NUMBER OF DELIMITER CHAR­
ACTERS M IN STERLING PICTURE 
yyyy. THIS PICTURE OCCURS IN 
STATEMENT NUMBER xxx, AND POS­
SIBLY IN OTHER STATEMENTS. 

system Action: Scan of picture 
terminated; picture ignored by 
late r phases. 

S IEM07371 ILLEGAL CHARACTER OR ILLEGAL 
NUMBER OF CHARACTERS IN PENCE 
FIELD OF STERLING PICTURE yyyy. 
THIS PICTURE OCCURS IN STATE­
MENT NUMBER xxx, AND POSSIBLY 
IN OTHER STATEMENTS. 

system Action: Scan of picture 
terminated: picture ignored by 
later phases. 

S IEM07391 STA.TIC PIC'IURE CHA.RACTER $ S + 
- NOT AT EXTREMITY OF SUBFIELD. 
PICTURE IN ERROR IS yyyy. THIS 
PICTURE OCCURS IN STATEMENT 
NUMBER xxx, AND POSSIBLY IN 
OTHER STATEMENTS. 

System Action: Scan of picture 
continued with item ignored, 
but picture will be ignored by 
la ter phases .• 

E IEM0740I MULTIPLE USE OF E K OR V IN 
PICTURE. PICTURE TRUNCATED AT 
ILLEGAL CHARACTER. PICTURE IN 
ERROR IS yyyy. THIS PICTURE 
OCCURS IN STATEMENT NUMBER xxx, 
AND POSSIBLY IN OTHER STATE­
MENTS. 

system Action: Picture trun­
cated at point indicated 

E IEM0741I CR OR DB INCORRECTLY POSITIONED 
IN SUBFIELD. PICTURE TRUNCATED 
AT THIS POINT. PICTURE IN 
ERROR IS yyyy. THIS PICTURE 
OCCURS IN STATEMENT NUMBER xxx, 
AND POSSIBLY IN OTHER STATE­
MENTS. 

system Action: Picture trun­
cated at point indicated 

E IEM0742I CR OR DB GIVEN FOR A NON-REAL, 
NON-NUMERIC OR FLOATING FIELD. 



PICTURE TRUNCATED BEFORE CR OR 
DB IN PICTURE yyyy. THIS PIC­
TURE OCCURS IN STATEMENT NUMBER 
xxx, AND POSSIBLY IN OTHER 
STATEMENTS. 

system Action: Picture trun­
cated at point indicated 

S IEM0745I ILLEGAL USE OF PICTURE CHARAC­
TER Z OR * IN PICTURE yyyy .• 
THIS PICTURE OCCURS IN STATE­
MENT NUMBER xxx" AND POSSIBLY 
IN OTHER STATEMENTS. 

System Action: Scan of picture 
continued with item ignored. 
but picture will be ignored by 
later phases. 

S IEM0746I STERLING MARKER FOUND IN OTHER 
THAN FIRST POSITION IN PICTURE 
yyyy. THIS PICTURE OCCURS IN 
STATEMENT NUMBER xxx, AND POS­
SIBLY IN OTHER STATEMENTS. 

2Ystem Action: Scan of picture 
continued with item ignored, 
but picture will be ignored by 
later phases. 

S IEM07471 STERLING PICTURE CHARACTERS 
FOUND IN NON-STERLING PICTURE. 
SCANNING OF PICTURE STOPPED. 
PICTURE IN ERROR IS yyyy. THIS 
PICTURE OCCURS IN STATEMENT 
NUMBER xxx, AND POSSIBLY IN 
OTHER STATEMENTS. 

§ystem Action: Scan of picture 
terminated; picture ignored by 
later phases. 

E IEM07481 ILLEGAL USE OF SCALING FACTOR 
IN PICTURE. SCALING FACTOR 
ONWARDS DELETED. PICTURE IN 
ERROR IS yyyy. THIS PICTURE 
OCCURS IN STATEMENT NUMBER xxx, 
AND POSSIBLY IN OTHER STATE­
MENTS. 

system Action: Picture trun­
cated at point indicated 

S IEM07491 ILLEGAL USE OF SCALING FACTOR 
IN PICTURE. SCAN OF PICTURE 
TERMINATED. PICTURE IN ERROR 
IS yyyy. THIS PICTURE OCCURS 
IN STATEMENT NUMBER xxx, AND 
POSSIBLY IN OTHER STATEMENTS. 

System Action: Scan of picture 
terminated; picture ignored by 
later phases. 

S IEM07501 ILLEGAL CHARACTER PRESENT IN 
CHARACTER STRING PICTURE yyyy. 
THIS PICTURE OCCURS IN STATE-

ME NT NUMBER xxx, AND POSSIBLY 
IN OTHER STATEMENTS. 

System Action: Scan of picture 
continued with item' ignored, 
but ~icture will be ignored by 
later phases. 

S IEM0751I NO MEANINGFUL CHARACTERS IN 
PICTURE yyyy. THIS PICTURE 
OCCURS IN STATEMENT NUMBER xxx, 
AND POSSIBLY IN OTHER STATE­
MENTS. 

System Action: Scan of picture 
continued with item ignored, 
but picture will be ignored by 
later phases. 

S IEM07521 ILLEGAL USE OF,OR ILLEGAL CHAR­
ACTERS IN, STERLING PICTURE 
yyyy. THIS PICTURE OCCURS IN 
STATEMENT NUMBER xxx, AND POS­
SIBLY IN OTHER STATEMENTS. 

system Action: Scan of picture 
continued with item ignored, 
but picture will be ignored by 
later phases. 

S IEM07541 ILLEGAL CHARACTER IN PICTURE 
yyyy. THIS PICTURE OCCURS IN 
STATEMENT NUMBER xxx. AND POS­
SIBLY IN OTHER STATEMENTS. 

system Action: Scan of picture 
continued with item ignored, 
but picture will be ignored by 
later phases. 

S IEM0755I ILLEGAL USE OF DRIFTING EDITING 
SYMBOLS S $ + IN PICTURE 
yyyy. THIS PICTURE OCCURS IN 
STATEMENT NUMBER xxx, AND POS­
SIBLY IN OTHER STATEMENTS. 

system Action: Scan of picture 
continued with item ignored, 
but picture will be ignored by 
later phas es .• 

S IEM07561 IMPLEMENTATION RESTRICTION. 
PRECISION TOO LARGE OR PICTURE 
TOO LONG IN PICTURE BEGINNING 
yyyy.. THIS PICTURE OCCURS IH 
STATEMENT NUMB ER xxx " AND POS­
SIBLY IN OTHER STATEMENTS. 

System Action: Scan of picture 
continued with item ignored, 
but picture will be ignored by 
later ph as es. 

T IEM07581 COMPILER ERROR IN PHASE FT. 

Explanation: Compiler error 
found in scan of dictionary 

Appendix G: Diagnostic Messages 211 



S IEM07591 

S IEM07601 

System Action: 
terminated 

Compilation 

User Response: Save relevant 
data. call your local IBM rep­
resentative. 

IMPLEMENTATION RESTRICTION. 
STERLING CONSTANT EXCEEDS 
4166666666666.13.3t. HIGH 
ORDER DIGITS LOST DURING CON­
VERSION TO DECIMAL. 

System Action: High order 
digits lost somewhere in the 
following conversion process: 
shift pounds field left one 
digit, double by addition.. Add 
shillings field. Add result, 
doubled by addition, to result 
shifted left one digit. Add 
pence field. 

IMPLEMENTATION RESTRICTION. 
EXPONENT FIELD TOO LARGE IN 
PICTURE yyyy. THIS PICTURE 
OCCURS IN STATEMENT NUMBER xxx, 
AND POSSIBLY IN OTHER STATE­
MENTS. 

system Action: 
picture deleted 

Reference to 

S IEM0761I PICTURE CHARACTER E OR K 
APPEARS WITHOUT AN EXPONENT 
FIELD FOLLOWING IT.. PICTURE IN 
ERROR IS yyyy. THIS PICTURE 
OCCURS IN STATEMENT NUMBER xxx, 
AND POSSIBLY IN OTHER STATE­
MENTS. 

System Action: Reference to 
picture deleted from program 

User Response: Correct picture 

S IEM0762I PICTURE CHARACTER E OR K IS NOT 
PRECEDED BY A DIGIT POSITION 
CHARACTER. PICTURE IN ERROR IS 
yyyy. THIS PICTURE OCCURS IN 
STATEMENT NUMBER xxx, AND POS­
SIBLY IN OTHER STATEMENTS. 

S IEM0769I 

T IEM0770I 

212 

system Action: 
picture deleted 

References to 

IMPLEMENTATION RESTRICTION. 
STATEMENT NUMBER xxx AS EXPAND­
ED IS TOO LONG AND HAS BEEN 
DELETED. 

User Response: Simplify by 
splitting into two or more 
statements and recompile 

COMPILER ERROR IN INPUT TO 
PHASE GA IN STATEMENT NUMBER 
xxx 

S IEM0771I 

S IEM0778I 

S IEM0779I 

Explanation: 
encocntered 
to phase GA. 

The compiler has 
meaningless input 

system Action: 
terminated 

compilation 

User ResQ~: Save relevant 
data. Call your local IBM rep­
resentative. 

IMPLEMENTATION RESTRICTION. 
NESTING OF FORMAT LISTS IN 
STATEMENT NUMBER xxx EXCEEDS 
20. STATEMENT DELETED. 

AN INTERMEDIATE VARIABLE HAS 
BEEN CREATED IN READ INTO 
STATEMENT NUMBER xxx. THIS 
STATEMENT SPECIFIES FILE zzzz, 
WHICH HAS BEEN DECLARED WITH 
THE ENV(COBOL) ATTRIBUTE AND 
THE EVENT OPTION. THE EVENT 
OPTION HAS BEEN DELETED. 

Explanation: The intermediate 
variable has been created 
because there is a difference 
between the PLII mapping and 
the COBOL mapping of the READ 
INTO variable. The READ INTO 
statement has been expanded 
into: 

READ INTO (Intermediate 
variable) ; 

Variable = Intermediate 
variable; 

The READ statement must have 
been completed before the 
assignment takes place. The 
EVENT option has been deleted 
to ensure that the READ state­
ment is complete before proc­
essing continues. 

System Action: Delete the 
EVENT option and continue 

User ResQonse: Check the use 
of the EVENT option or of the 
COBOL file. 

AN INTERMEDIATE VARIABLE HAS 
BEEN CREATED IN WRITE/REWRITE 
FROM STATEMENT NUMBER xxx. 
THIS STATEMENT SPECIFIES FILE 
zzzz, WHICH HAS BEEN DECLARED 
WITH THE ENV(COBOL) ATTRIBUTE 
AND THE EVENT OPTION. THE 
EVENT OPTION HAS BEEN DELETED. 

Explanation: The intermediate 
variable has been created 
because there is a difference 
between the PL/I mapping and 
the COBOL mapping of the 



WRITE/REWRITE FROM variable. 
The WRITE/REWRITE FROM state­
ment has been expanded to: 

Intermediate 
variable = variable; 

WRITE/REWRITE FROM 
(Intermediate variable); 

The WRITE/REWRITE statement 
must have been completed before 
the intermediate variable can 
be deleted. The EVENT option 
has been deleted to ensure that 
the WRITE/REWRITE statement is 
complete before processing con­
tinues. 

System Action: Delete 
EVENT option and continue 

the 

User Response: Check the use 
of the EVENT option or of the 
COBOL file .. 

S IEM0780I THE USE OF COBOL FILE zzzz IN 
LOCATE STATEMENT NUMBER xxx MAY 
LEAD TO ERRORS WHEN THE RECORD 
IS PROCESSED. 

Explanation: The COBOL 
structure-mapping is not neces­
sarily the same as the PL/I 
structure-mapping. 

System Action: 
is deleted 

The statement 

User Response: Either the 
LOCATE statement must be 
replaced by a WRITE FROM state­
ment, or a non-COBOL file must 
be used. 

S IEM0781I THE USE OF COBOL FILE zzzz IN 
READ SET STATEMENT NUMBER xxx 
MAY LEAD TO ERRORS WHEN THE 
RECORD IS PROCESSED. 

S IEM07821 

Explanation: The COBOL 
structure-mapping is not neces­
sarily the same as the PLII 
structure-mapping. 

System Action: 
is deleted 

The statement 

User Response: Either the READ 
SET statement must be replaced 
by a READ INTO statement, or a 
non-COBOL file must be used. 

THE ATTRIBUTES OF zzzz USED IN 
RECORD I/O STATEMENT NUMBER XXX 
ARE NOT PERMITTED WHEN A COBOL 
FILE IS USED. 

S IEM07841 

Explanation: 
referred to 
COBOL 

The attributes 
do not exist in 

system Action: 
is deleted 

The statement 

INVALID ARGUMENT LIST FOR ALLO­
CATION FUNCTION IN STATEMENT 
NUMBER xxx HAS BEEN TRUNCATED 
OR DELETED. 

Explanation: Only a single 
argument can be g1ven in the 
ALLOCATION function. and it 
must be one of the following: 

1. a major structure 

2. an unsubscripted array or 
scalar variable, not in a 
structure 

It must also be of nonbased 
CONTROLLED storage class. 

System Action: If the argument 
list begins with a valid oper­
and, that operand is used as 
the argument; otherwise, the 
argument list is deleted. 

W IEM07861 NAME, NOT VALUE, OF FUNCTION 
zzzz PASSED AS ARGUMENT IN 
STATEMENT NUMBER xxx 

S IEM07871 INCORRECT NUMBER OF ARGUMENTS 
FOR FUNCTION zzzz IN STATEMENT 
NUMBER xxx 

T IEM0790I IMPLEMENT~TION RESTRICTION. 

W IEM0791I 

STATEMENT NUMBER xxx IS TOO 
LONG AND HAS BEEN TRUNCATED. 

Explanation: The first bytes 
of a statement to be moved out 
exceed the text block length. 

System Action: The statement 
is truncated. compilation will 
not be completed. 

User Response: Subdivide 
statement into two or more sep­
arate statements, and recom­
pile .• 

NUMBER OF ARGUMENTS FOR zzzz 
STATEMENT NUMBER xxx INCONSIS­
TENT WITH NUMBER USED ELSEWHERE 

Explanation: The number of 
arguments for zzzz has not been 
explicitly declared. 
'ELSEWHERE' refers either to 
the PROCEDURE or ENTRY state­
ment for zzzz, or to a previous 
invocation of the function. 

Appendix G: Diagnostic Messages 213 



E IEM0792I IN STATEMENT NUMBER xxx IT IS 
IMPOSSIBLE TO CONVERT FROM THE 
ATTRIBUTES OF ARGUMENT NUMBER 
nnnn TO THOSE OF THE CORRES­
PONDING PARAMETER IN ENTRY 
zzzz. THE PARAMETER DESCRIP­
TION IS IGNORED. 

Explanation: Self explanatory. 
Examples of circumstances under 
which the error message is gen­
erated are label arguments to 
data item parameters, array 
arguments to scalar parameters. 

system Action: The parameter 
description is ignored. If the 
parameter description is cor­
rect, this will give rise to 
totally incorrect execution. 

User Response: Correct the pa­
rameter description or the 
argument so that at least con­
version is possible. 

W IEM0793I IN STATEMENT NUMBER xxx ARGU­
MENT NUMBER nnnn OF ENTRY zzzz 
IS A SCALAR AND THE CORRESPOND­
ING PARAMETER IS A STRUCTURE. 

System Action: A temporary 
structure of the same type as 
the parameter description is 
created and the argument is 
assigned to each base element, 
converting where necessary. 

S IEM0794I IN STATEMENT NUMBER xxx ARGU­
MENT NUMBER nnnn OF ENTRY zzzz 
CONTAINS A SUBSCRIPTED VARIABLE 
WITB THE WRONG NUMBER OF SUB­
SCRIPTS. THE STATEMENT HAS 
BEEN DELETED. 

S IEM07951 DEFERRED FEATURE. IN STATEMENT 
NUMBER xxx ARGUMENT NUMBER nnnn 
OF ENTRY zzzz CONTAINS A CROSS­
SECTION OF AN ARRAY OF 
STRUCTURES. STATEMENT DELETED. 

S IEM07961 

S IEM07971 

214 

Explanation: The usage 
referred to is not supported by 
this version of the compiler. 
For details, refer to Appendix 
H of this publication. 

IN STATEMENT NUMBER xxx ARGU-
MENT NUMBER nnnn OF ENTRY zzzz 
IS A GENERIC ENTRY NAME AND 
THERE IS NO CORRESPONDING ENTRY 
DESCRIPTION. STATEMENT DELET-
ED. 

I N STATEMENT NUMBER xxx ARGU-
MENT NUMBER nnnn OF ENTRY zzzz 
IS A BUILT-IN FUNCTION WHICH 

MAY NOT BE PASSED AS AN ARGU­
MENT. STATEMENT DELETED. 

S IEM07981 IN STATEMENT NUMBER xxx ARGU­
MENT NUMBER nnnn OF ENTRY zzzz 
IS NOT PERMISSIBLE. THE STATE­
MENT HAS BEEN DELETED. 

Explanation: The message is 
gene rated, for example" when 
scalar arguments are given for 
array built-in functions. For 
the ADDR function the message 
could indicate that the func­
tion cannot return a valid 
result because the argument 
does not satisfy the require­
ments of contiguous storage. 
This could occur# for example, 
if the argument was a cross­
section of an array. 

E IEM07991 IN STATEMENT NUMBER xxx A DUMMY 
ARGUMENT HAS BEEN CREATED FOR 
ARGUMENT NUMBER nnnn OF ENTRY 
zzzz. THIS ARGUMENT APPEARS 
IN A SETS LIST. 

System Action: The value 
assigned to the temporary argu­
ment during the execution of 
the procedure is lost on return 
from the procedure. 

W IEM08001 Hi STATEMENT NUMBER xxx ARGU­
MENT NUMBER nnnn IN ENTRY zzzz 
IS A SCALAR AND THE CORRESPOND­
ING PARAMETER IS AN ARRAY. 

System Action: A temporary 
array with the attributes of 
the entry description is creat­
ed and the scalar is assigned 
to each element of the array, 
converting the type if neces­
sary. 

S IEM08011 IN STATEMENT lJUMBER xxx ARGU­
MENT NUMBER nnnn IN ENTRY zzzz 
IS SCALAR CORRESPONDING TO AN 
ARRAY PARAMETER WITH * BOUNDS. 
THE STATEMENT HAS BEEN DELETED. 

W IEM08021 IN STATEMENT NUMBER xxx ARGU­
MENT NUMBER nnnn OF ENTRY zzzz 
DOES NO!' MATCH THE PARAMETER. 
A DUMMY ARGUMENT HAS BEEN 
CREATED. 

T IEM08031 IMPLEMENTATION RESTRICTION. 
STATEMENT NUMBER xxx CONTAINS 
TOO MANY NESTED FUNCTION REF-
ERENCES. LIMIT EXCEEDED AT 
ARGUMENT NUMBER nnnn OF ENTRY 
zzzz 

system Action: Compilation 
terminated 



User Response: Reduce dep·th of 
function call nesting. 

T IEM0804I IMPLEMENTATION RESTRICTION. 
STATEMENT NUMBER xxx IS TOO 
LONG AND HAS BEEN DELETED. 

system Action: 
terminated 

Compilation 

User Response: 
ment size 

Reduce state-

S IEM0805I DEFERRED FEATURE. IN STATEMENT 
NUMBER xxx ARGUMENT NUMBER nnnn 
OF ENTRY zzzz IS AN EVENT. 
STATEMENT DELETED. 

Explanation: A language fea­
ture has been used that is not 
supported by this version of 
the compiler. For details, 
refer to Appendix H of this 
publication. 

S IEM08061 IN STATEMENT ~UMBER xxx ARGU­
MENT NUMBER nnnn OF ENTRY zzzz 
IS NOT CONTROLLED BUT THE COR­
RESPONDING PARAMETER IS. 

§ystem Action: An 
error will occur on 
the called procedure 

execution 
entry to 

S IEM0807I IN STATEMENT NUMBER xxx ARGU­
MENT NUMBER nnnn OF BUILT-IN 
FUNCTION zzzz IS ~N ENTRY NAME~ 
THE STATEMENT HAS BEEN DELETED. 

T IEM0816I COMPILER ERROR. INVALID END OF 
STATEMENT NUMBER xxx 

Explanation: Compiler error in 
scan of input text 

system Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM0817I COMPILER ERROR IN LABEL CHAIN 
FOR STATEMENT NUMBER xxx 

Explanation: Compiler error in 
scanning labels of a statement 

System Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. Note that this 
error can be avoided by using 
only one label on the state­
ment. 

T IEM08181 COMPILER ERROR IN DICTIONARY 
ENTRY FOR STATEMENT NUMBER xxx 

Explanation: Compiler error in 
scanning source text 

system Action: 
terminated 

Compilation 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM0819I COMPILER ERROR IN CHECK/NOCHECK 
LIST ENTRY FOR ST~TEMENT ~lUMBER 
xxx 

T IEM0820I 

Explanation: Compiler error in 
CHEC F or NOCHECK list dictiona­
ry entry 

System Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

IMPLEMENT~TION RES~RICTION. 

STATEMENT NUMBER xxx TOO LONG. 

Explanation: Statement length 
exceeds text-block size. 

System Action: Compilation is 
terminated 

User Response: Subdivide 
statement and recompile 

E IEM0821I INVALID I'lEM zzzz IGNORED IN 
CHECK LIST IN STATEMEN~ NUMBER 
xxx 

Explanation: Valid items in 
CHECK lists are: statement 
labels, entry labels. and sca­
lar, array, structure, or label 
variables. Subscripted varia­
ble names, or data having the 
DEFINED attribute, are not 
allowed. 

W IEM0823I IMPLEMENTATION RESTRICTION. NO 
ROOM FOR zzzz IN CHECK TABLE 
STATEMENT NUMBER xxx 

Explanation: The CHECK list 
table has overflowed 

System Action: The item men­
tioned is ignored 

User Response: Do not CHECK so 
many items 

~ppendix G: Diagnostic Messages 215 



T IEM0824I IMPLEMENTATION RESTRICTION. 
TOO MANY CHECKED ITEMS WITHIN 
STATEMENT NUMBER xxx 

Explanation: A stack used to 
trace nested IF statements has 
overflowed 

System Action: Compilation is 
terminated 

User Response: Rephrase IF 
statements, or do not CHECK so 
many items. 

T IEM08251 COMPILER ERROR IN READ DATA 
STATEMENT NUMBER xxx 

W IEM08261 

S IEM08321 

216 

Explanation: Compiler error in 
processing GET or READ DATA 
statement 

System Action: Compilation is 
terminated 

User Response: 
by supplying an 
list 

Avoid the error 
explicit DATA 

IMPLEMENTATION RESTRICTION. 
CHECK WILL NOT BE RAISED FOR 
zzzz IN STATEMENT NUMBER xxx 
BEC.;l\USE OF EVENT OPTION 

Explanation: The compiler does 
not raise the CHECK condition 
for variables when they are 
changed in statements contain­
ing an EVENT option. 

IN THE EXPANSION OF BY NAME 
ASSIGNMENT STATEMENT NUMBER xxx 
A SET OF MATCHING ELEMENTS HAS 
BEEN FOUND BUT THEY ARE NOT ALL 
BASE ELEMENTS. THE STATEMENT 
HAS BEEN DELETED. 

Explanation: For a valid com­
ponent scalar assignment to 
result from a BY NAME structure 
assignment, it is necessary 
that all the scalar names der­
ived from original structure 
name operands have identical 
qualification relative to the 
structure name originally spec­
ified. e.g: DCL lS, 2T, 2U, 
3V; DCL lW, 2T, 2U; W=S; gives 
rise to the component assign­
ments W.T=S.T; W.U=S.U; the 
second of which is invalid. 

System Action: The BY NAME 
assignment statement is deleted 

User Response: 
PL/I Reference 
for expansion 

Refer to the 
Manual - rules 

of structure 

assignment BY NAME - and cor­
rect the error. 

S IEM0833I THE EXPANSION OF BY NAME 
ASSIGNMENT STATEMENT NUMBER xxx 
HAS RESULTED IN NO COMPONENT 
ASSIGNMENTS. 

system Action: The statement 
is treated as a null statement 

S IEM0834I THE ASSIGNED OPERAND IN BY NAME 
ASSIGNMENT STATEMENT NUMBER xxx 
IS NOT A STRUCTURE OR AN ARRAY 
OF STRUCTURES. STATEMENT DEL­
ETED. 

S IEM0835I 

S IEM0836I 

T IEM0837I 

Explanation: In BY NAME 
assignment, the operand to the 
left of the equals sign must be 
a structure or an array of 
structures .• 

ALL OPERANDS LEFT OF EQUAL SYM­
BOL IN MULTIPLE STRUCTURE 
ASSIGNMENT STATEMENT NUMBER xxx 
ARE NOT STRUCTURES. STATEMENT 
DELETED 

Explanation: In multiple 
structure aSSignment, all the 
operands being assigned to must 
be structures. 

system Action: Replaces state­
ment by c null statement and 
continues 

User Response: Break statement 
up into a series of separate 
statements 

ILLEGAL ARRAY REFERENCE IN 
STRUCTURE ASSIGNMENT OR EXPRES­
SION. STATEMENT NUMBER xxx 
DELETED. 

Explanation: In PL/I, arrays 
of scalars are invalid operands 
in structure, or array of 
structure, expressions. 

COMPILER ERROR IN INPUT TO 
PHASE IEMHF. 

Explanation: Meaningless 
input. This message is also 
produced if an error is found 
in a DECLARE statement. In 
that case, a second message, of 
severity level severe, is 
issued giving details of the 
error. 

System Action: 
terminated 

Compilation is 



User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

E IEM0838I EXPRESSION RIGHT OF EQUAL SYM­
BOL IN BY NAME ASSIGNMENT 
STATEMENT NUMBER xxx CONTAINS 
NO STRUCTURES. BY NAME OPTION 
DELETED. 

S IEM0848I 

S IEM0849I 

Explanation: In an assignment 
statement having the BY NAME 
option. the expression to the 
right of the equal symbol 
should contain at least one 
structure or array of struc­
tures. 

IMPLEMENTATION RESTRICTION. 
THE EXPANSION OF STRUCTURE 
EXPRESSIONS IN STATEMENT NUMBER 
xxx HAS CAUSED A TABLE INTERNAL 
TO THE COMPILER TO OVERFLOW. 
STATEMENT DELETED. 

Explanation: The nesting of 
structure expressions in argu­
ment lists is too deep. 

User Response: 
nesting. 

Decrease the 

AN EXPRESSION OR ASSIGNMENT IN 
STATEMENT NUMBER xxx EITHER 
CONTAINS SEPARATE STRUCTURES 
WITH DIFFERENT STRUCTURING, OR 
CONT AINS BOTH A STRUCTURE AND 
AN ARRAY OF STRUCTURES. THE 
STATEMENT HAS BEEN DELETED. 

Explanation: PL/I does not 
allow separate structures with 
different structuring within 
the same expression or assign­
ment. The (F) compiler does 
not support reference to both a 
structure and an array of 
structures within the same 
expression or assignment. 

User Response: Correct the 
source code. The two restric­
tions quoted above are detailed 
in the PL/I Reference Manual 
and in Appendix H of this pub­
lication, respectively. 

S IEM0850I THE BOUNDS OF THE BASE ARRAYS 
OF THE STRUCTURE OPERANDS OF 
THE STRUCTURE EXPRESSION OR 
ASSIGNMENT IN STATEMENT NUMBER 
xxx ARE NOT THE SAME. THE 
STATEMENT HAS BEEN DELETED. 

Explanation: In a structure 
assignment or expression, all 
structure operands must have 
the same number of contained 

elements at the next level. 
Corresponding sets of contained 
elements must all be arrays of 
structures, structures, arrays, 
or scalars. The arrays must 
have the same dimensionality 
and bounds. 

User Response: Refer to the 
PL/I Reference Manual the 
expansion of array and struc­
ture expressions and assign­
ments - and correct the pro­
gram. 

S IEM0851I IMPLEMENTATION RESTRICTION. 

S IEM0852I 

STATEMENT NUMBER xxx IS TOO 
LONG AND HAS BEEN DELETED. 

EXPla~tion: The expansion 
struc~re expressions 
assignments has given rise 
statement which exceeds 
text block in length 

of 
or 

to a 
one 

User Response: Decrease state­
ment size 

A SUBSCRIPTED REFERENCE TO AN 
ARRAY OF STRUCTURES IN STATE­
MENT NUMBER xxx HAS THE WRONG 
NUMBER OF SUBSCRIPTS. THE 
STATEMENT HAS BEEN DELETED. 

Explanation: Subscripted ref­
erences to arrays must have 
subscript expressions equal in 
number to the dimenSionality of 
the array 

User Response: Correct sub­
scripted reference 

S IEM0853I DEFERRED FEATURE. A STRUCTURE 
ASSIGNMENT OR EXPRESSION IN 
STATEMENT NUMBER xxx INVOLVES 
CROSS SECTIONS OF ARRAYS. 
STATEMENT DELETED. 

Explanation: This version of 
the compiler does not support 
reference to cross sections of 
arrays of structures. 

User Response: Expand the 
statement in DO loops replacing 
'* f S in subscripts by the 
appropriate DO control varia­
ble. 

S IEM0864I IMPLEMENTATION RESTRICTION. 
NESTING OF ARRAY ASSIGNMENTS OR 
I/O LISTS TOO DEEP. STATEMENT 
NUMBER xxx DELETED. 

Explanation: Nesting of func­
tions,. combined with size of 
arrays inVOlved, is too great 

Appendix G: Diagnostic Messages 217 



S IEM08651 

S IEM08661 

User Response: Simplify by 
splitting into two or more 
statements 

IMPLEMENTATION RESTRICTION. 
STATEMENT NUMBER xxx IS TOO 
LONG AND HAS BEEN DELETED. 

Explanation: 
tions with 
involves a 
text 

Nesting of func­
array arguments 

large expansion of 

User Response: Simplify by 
splitting into two or more 
statements 

NEITHER MULTIPLE ASSIGNMENT 
COMMA NOR ASSIGNMENT MARKER 
FOUND IN CORRECT POSITION. 
STATEMENT NUMBER xxx DELETED. 

~xplan~tion: An expression 
occurr1ng on the left-hand side 
of an assignment must be con­
tained within parentheses. 

S IEM08671 NUMBER OF * SUBSCRIPTS SPECI­
FIED FOR zzzz IS NOT THE DIMEN­
SIONALITY OF THE LEFTMOST 
ARRAY. STATEMENT NUMBER xxx 
DELETED 

Explanation: Array references 
in expressions must have the 
same dimensionality 

S IEM08681 BOUNDS OF ARRAY zzzz ARE NOT 
SAME AS FOR LEFTMOST ARRAY IN 
ASSIGNMENT OR EXPRESSION. 
STATEMENT NUMBER xxx DELErED. 

Explanation: Array references 
in expressions must have the 
same bounds 

S IEM08691 DIMENSIONS OF ARRAY zzzz ARE 
NOT THE SAME AS FOR LEFTMOST 
ARRAY IN ASSIGNMENT OR I/O 
EXPRESSION. STATEMENT NUMBER 
xxx DELETED. 

Explanation: Array references 
in expressions must have the 
same dimensionality 

S IEM08701 ARGUMENT OF PSEUDO-VARIABLE 
INVALID. STATEMENT NUMBER xxx 
IS DELETED. 

Explanation: Arguments of 
pseudo-variables must be varia­
bles which are not expressions 

S IEM08711 SCALAR zzzz ON LEFT OF EQUAL 
SYMBOL IN ARRAY ASSIGNMENT. 
STATEMENT NUMBER xxx DELETED. 

218 

S IEM08721 NUMBER OF SUBSCRIPTS SPECIFIED 
FOR LEFTMOST OPERAND zzzz IS 
NOT SAME AS DIMENSIONALITY. 
STATEMENT NUMBER xxx DELETED. 

S IEM08731 

S IEM08741 

Explanation: The number of 
subscripts specified must be 
the same as the number of 
dimensions of the array 

ARGUMENTS OF PSEUDO-VARIABLE 
COMPLEX INCORRECT. STATEMENT 
NUMBER xxx DELETED. 

Explanation: Only one argument 
given for COMPLEX, or expres­
sion illegally used as argument 
for pseudo-variable. 

SECOND ARGUMENT OF PSEUDO­
VARIABLE COMPLEX OR FIRST 
ARGUMENT OF REAL, IMAG, OR 
UNSPEC EITHER IS NOT FOLLOWED 
BY A RIGHT PARENTHESIS OR IS AN 
EXPRESSION. STATEMENT NUMBER 
xxx DELETED. 

Explanation: Too many argu­
ments given for this pseudo­
variable~ or expression used as 
argument. 

S IEM0875I ONSOURCE OR ONCHAR APPEARS IN A 
DIMENSIONED ARRAY ASSIGNMENT. 
STATEMENT NUMBER xxx DELETED. 

Explanation: ON SOURCE and 
ONCHAR may only appear in sca­
lar assignments 

S IEM08761 ARGUMENTS OF PSEUDO-VARIABLE 
SUBSTR INCORRECT. STATEMENT 
NUMBER xxx DELETED. 

Explanation: Only one argument 
given for SUBSTR. or expreSS10n 
illegally used as argument for 
pseudo-variable. 

S IEM08771 UNSUBSCRIPTED ARRAY zzzz IN 
SCALAR ASSIGNMENT. STATEMENT 
NUMBER xxx DELETED. 

Explanation: Only scalars can 
be assigned to scalars 

S IEM08781 STRUCTURE zzzz FOUND IN ARRAY 
OR SCALAR EXPRESSION. STATE­
MENT NUMBER xxx DELETED. 

Explanation: Structures may 
only be aSSigned to structures 

S IEM08791 PSEUDO-VARIABLE COMPLEX, REAL, 
lMAG., UNSPEC, COMPLETION, OR 
SUBSTR LACKS ARGUMENTS. STATE­
MENT NUMBER xxx DELETED. 



Explanation: Pseudo-variables 
COMPLEX, REAL, I MAG" UNS PEC" 
COMPLETION. and SUBSTR require 
arguments 

User Response: Check whether 
the variable was intended as a 
pseudo-variable or whether it 
should have been declared oth­
erwise 

S IEM08801 NUMBER OF SUBSCRIPTS SPECIFIED 
FOR zzzz IS NOT SAME AS DIMEN­
SIONALITY. STATEMENT NUMBER 
xxx DELETED. 

Explanation: The number of 
subscripts specified must be 
the same as the number of 
dimensions of the array 

S IEM08811 NUMBER OF DIMENSIONS IN REF­
ERENCE TO zzzz IS NOT SAME AS 
THAT OF EXPRESSION OR ASSIGN­
MENT. STATEMENT NUMBER xxx 
DELETED. 

T IEM08821 COMPILER ERROR. INVALID INPUT 
TO PHASE HK AT STATEMENT NUMBER 
xxx 

T IEM08961 

Explanation: Illegal text has 
been encountered 

System Action: 
terminated 

Compilation 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

IMPLEMENTATION RESTRICTION. 
TOO MANY LEVELS OF ISUB NESTING 
IN STATEMENT NUMBER xxx 

Explanation: Stack has over­
flowed scratch core. The maxi­
mum number of levels of nesting 
possible depends on the dimen­
sionality of the arrays 
involved. 

system Action: 
terminated 

Compilation 

User Response: Reduce the num­
ber of levels of nesting in the 
statement 

S IEM08971 ISUB DEFINED OPERAND zzzz HAS 
NOT BEEN DECLARED AS AN ARRAY. 
ISUBS IN STATEMENT NUMBER xxx 
DELETED. 

User Response: Declare defined 
item with dimension attribute 

T IEM08981 NO SUBSCRIPTS AFTER ISUB­
DEFINED ITEM zzzz IN STATEMENT 
NUMBER xxx. 

Explanation: 
compiler error 

system Action: 
pila tion 

This is a 

Terminates com-

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

E IEM08991 MULTIPLIER IN ISUB DEFINING 
LIST FOR zzzz IN STATEMENT NUM­
BER xxx IS NOT A SCALAR EXPRES­
SION. 

Explanation: A comma has been 
found within the iSUB multipli­
er expression 

System Action: Remainder of 
expression, after comma, 
ignored 

User Response: Rewrite expres­
sion 

E IEM09001 * USED AS SUBSCRIPT FOR ISUB 
DEFINED ITEM zzzz IN STATEMENT 
NUMBER xxx. ZERO SUBSTITUTED. 

User Response: Rewrite without 

* 
E IEM09011 ISUB NUMBER IN DEFINING LIST 

FOR zzzz IN STATEMENT NUMBER 
xxx IS TOO GREAT. MAXIMUM NUM­
BER USED. 

E IEM09021 

System Action: 
is replaced by 
dimensions of 
array. 

The iSUB number 
the number of 

the defined 

User Response: Rewrite defin­
ing DECLARE statement 

WRONG NUMBER OF SUBSCRIPTS FOR 
ISUB DEFINED ITEM zzzz IN 
STATEMENT NUMBER xxx. SUB­
SCRIPTS IGNORED OR ZERO SUP­
PLIED. 

User Response: Rewrite with 
correct number of subscripts. 
The error may be in the ref­
erence to the defined item or 
in the defining DECLARE state­
ment. 

T IEM09031 COMPILER ERROR. ERROR DETECTED 
IN DEFINING ISUB LIST FOR zzzz 
IN STATEMENT NUMBER xxx 

Appendix G: Diagnostic Messages 219 



S IEM0906I 

Explanation: Compiler error. 
Either Ca) SUB not found where 
expected, or Cb) SUBO found 
without a multiplier expres­
sion,. 

System Action: 
terminated 

Compilation 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

STATEMENT DELIMITER FOUND WITH­
IN SUBSCRIPT LIST FOR ZZZZ IN 
STATEMENT NUMBER xxx 

Explanation: The subscript 
scan routine has found a state­
ment marker 

system Action: The present 
statement is dropped and the 
new one processed. Compilation 
will not be completed. 

User Response: Check text, but 
this is probably a compiler 
error, in which case save rele­
vant data and contact your your 
local IBM representative. 

S IEM0907I IMPLEMENTATION RESTRICTION. 
STATEMENT NUMBER xxx IS TOO 
LONG AND HAS BEEN TRUNCATED. 

Explanation: statement length 
exceeds text block size 

System Action: Statement is 
truncated. Compilation will 
not be compl eted,. 

User Response: Simplify state­
ment 

S IEM1024I ILLEGAL USE OF zzzz IN STATE­
MENT NUMBER xxx. A FIXED 
BINARY ZERO CONSTANT IS SUBSTI­
TUTED. 

Explanation: A non-scalar 
identifier has been specified 
in a context that requires a 
scalar identifier. 

System Action: Replaces ille­
gal identifier with arithmetic 
constant zero 

S IEM1025I IDENTIFIER zzzz ILLEGALLY USED 
AS SUBSCRIPT IN STATEMENT NUM­
BER xxx 

220 

Explanation: A subscript has 
been used which is not a sca­
lar, a scalar expression, or a 
constant 

System Action: 
gal subscript 
constant zero 

Replaces ille­
wi th arithmetic 

W IEM1026I STATEMENT NUMBER xxx IS AN 
UNLABELED FORMAT STATEMENT 

Explanation: A FORMAT state­
ment should have a label 

T IEM1027I THE SUBSCRIPTED STRUCTURE ITEM 
zzzz IS ILLEGALLY USED IN 
STATEMENT NUMBER xxx 

Explanation: 
structure item 
statement other 
ment statement 
list,. 

The indicated 
is used in a 
than an assign-
or an I/O data 

system .Action: Compilation is 
terminated 

T IEM1028I COMPILER ERROR IN STATEMENT 
NUMBER xxx. ILLEGAL INPUT TEXT 
FOR PHASE IA. 

system Action: Terminates com­
pilation 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM1029I IN STATEMENT NUMBER xxx AN 
ARRAY CROSS-SECTION APPEARS 
ILLEGALLY. 

Explanation: A feature has 
been used that is not supported 
by this version of the compil­
er. For details, refer to 
Appendix H of this publication. 

system Action: Terminates com­
pila tion 

T IEM1040I DEFERRED FEATURE. STRUCTURE 
ARGUMENT IS BEING PASSED TO 
FUNCTION Z2ZZ IN STATEMENT NUM­
BER xxx. 

Explanation: In this version 
of the compiler, structures may 
not be passed as arguments to 
built-in functions. 

System Action: Terminates com­
pilation 

User Response: Rewrite pro­
gram~ avoiding unsupported fea­
ture. 

T IEM1051I DEFERRED FEATURE. STRUCTURE 
ARGUMENT IS BEING PASSED TO 
PSEUDO-VARIABLE zzzz IN STATE­
MENT NUMBE R xxx. 



Explanation: In this version 
of the compiler, structures may 
not be passed as arguments to 
pseudo-variables. 

System Action: Terminates com­
pilation 

User Response: Rewrite pro­
gram, avoiding unsupported fea­
ture. 

T IEM10561 INVALID ARGUMENT IS BEING 
PASSED TO ENTRY NAME zzzz IN 
STATEMENT NUMBER xxx. 

System Action: Terminates com­
pilation 

T IEM1057I DECIMAL INTEGER CONSTANT IS NOT 
BEING PASSED, AS REQUIRED, TO 
FUNCTION zzzz IN STATEMENT NUM­
BER xxx. 

Explanation: ~rgument to 
built-in function is not a 
decimal integer as expected. 

system Action: Terminates com­
pilation 

T IEM10581 ARR~Y OR STRUCTURE ARGUMENT IS 
NOT BEING PASSED, AS REQUIRED, 
TO FUNCTION zzzz IN STATEMENT 
NUMBER xxx. 

Explanation: Argument 
built-in function is not 
array or 
expected .• 

a structure" 

to 
an 
as 

System Action: Terminates com­
pilation 

User Response: Correct state­
ment 

T IEM10591 FIRST ARGUMENT BEING PASSED TO 
FUNCTION zzzz IN STATEMENT NUM­
BER xxx SHOULD BE AN ARRAY. 

Explanation: Argument to 
built-in function is not an 
array as expected 

system Action: Terminates com­
pilation 

T IEM10601 TOO MANY ARGUMENTS ARE BEING 
PASSED TO FUNCTION zzzz IN 
STATEMENT NUMBER xxx. 

Explanation: Too many argu­
ments are being passed to a 
built-in fUnction 

System Action: Terminates com­
pilation 

T IEM10611 TOO FEW ARGUMENTS ARE BEING 
PASSED TO FUNCTION zzzz IN 
STATEMENT NUMBER xxx. 

Explanation: Too few arguments 
are being passed to a built-in 
function 

system Action: Terminates com­
pilation 

T IEM10621 COMPILER ERROR. CORRECT GENER­
IC SELECTION FOR FUNCTION zzzz 
IN ST~TEMENT NUMBER xxx HAS NOT 
BEEN ACHIEVED. 

Explanation: Compiler., 
althcugh being given a legal 
argument to a generic built-in 
function. is unable to make the 
selection. 

System Action: Function result 
is set to zero and compilation 
terminated .• 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM10631 COMPILER ERROR. UNEXPECTED 
SITUATION HAS ARISEN IN THE 
SCANNING OF THE ARGUMENTS 
PASSED TO FUNCTION zzzz IN 
STATEMENT NUMBER xxx 

Explanation: Compiler is una­
ble to correctly scan an argu­
ment list 

system Action: Function result 
is set to zero 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM10641 COMPILER ERROR. THE GENERIC 
FAMILIES ASSOCIATED WITH ENTRY 
NAME zzzz HAVE BEEN INCORRECTLY 
FORMED IN THE DICTIONARY. 

Explanation: The dictionary 
entry for one or more of the 
generic families is not a rec­
ognizable entry type .• 

system Action: Terminates com­
pila tion 

User Response: Save relevant 
data. Call your local IBM rep­
resenta ti ve .• 

T IEM10651 NO GENERIC SELECTION POSSIBLE 
FOR THE ENTRY NAME zzzz IN 
STATEMENT NUMBER xxx. 

Appendix G: Diagnostic Messages 221 



Explanation: Incorrect use of 
the GENERIC attribute resulting 
in no selection being possible 

System Action: Terminates com­
pilation 

T IEM1066I MORE THAN ONE GENERIC SELECTION 
IS POSSIBLE FOR THE ENTRY NAME 
zzzz IN STATEMENT NUMBER xxx. 

Explanation: Incorrect use of 
the GENERIC attribute resulting 
in more than one selection 
being possible 

system Action: Terminates com­
pilation 

T IEM10671 PSEUDO-VARIABLE zzzz APPEARS IN 
STATEMENT NUMBER xxx WITH AN 
ILLEGAL ARGUMENT,. 

Explanation: Argument to 
pseudo-variable cannot be con­
verted to a legal type; or, 
structure argument being used 
with pseudo-variable. 

System Action: Terminates com­
pilation 

T IEM1068I AN ARRAY IS BEING PASSED TO 
FUNCTION zzzz IN STATEMENT NUM­
BER xxx. THIS PRODUCES AN 
ARRAY EXPRESSION WHICH IS 
INVALID IN THIS ~NTEXT. 

System Action: Terminates com­
pilation 

T IEM1071I PSEUDO-VARIABLE zzzz APPEARS IN 
STATEMENT NUMBER xxx WITH TOO 
MANY ARGUMENTS,. 

system Action: Terminates com­
pilation 

T IEM1072I PSEUDO-VARIABLE zzzz APPEARS IN 
STATEMENT NUMBER xxx WITH TOO 
FEW ARGUMENTS .. 

T IEM1073I 

222 

System Action: 
pilation 

COMPILER ERROR. 
IC SELECTION 
VARIABLE zzzz 
NUMBER xxx 
ACHIEVED. 

Terminates com-

CORRECT GENER­
FOR PSEUDO­
IN STATEMENT 

HAS NOT BEEN 

Explanation: Compiler error. 
Although being given a legal 
argument to a generic pseudo­
variable. is unable to make the 
selection. 

System Action: 
terminated 

Compilation 

User Response: Save relevant 
data. Call your local IBM rep­
resenta ti ve,. 

T IEM1074I COMPILER ERROR. UNEXPECTED 

T IEM10761 

SITUATION HAS ARISEN IN THE 
SCANNING OF THE ARGUMENTS 
PASSED TO PSEUDO-VARIABLE zzzz 
IN STATEMENT NUMBER xxx 

Explanation: Unable to cor­
rectly scan an argument list of 
a pseudo-variable 

System Action: 
terminated 

Compilation 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

COMPILER ERROR IN PHASE JD 

system Action: 
terminates 

Compilation 

User Response: Save relevant 
data. Call your local IBM rep­
resentati ve,. 

T IEM10781 IMPLEMENTATION RESTRICTION. 

S IEM10821 

THE NUMBER OF FAMILY MEMBERS 
AND ARGUMENTS ASSOCIATED WITH 
THE GENERIC ENTRY NAME yyyy 
EXCEEDS THE LIMITATION IMPOSED. 

There is an 
restriction on 
family members 
associated with 

Explanation: 
implementation 
the number of 
and arguments 
GENERIC entry 
details, refer to 
this publication. 

System Action: 
terminated 

names. For 
Appendix B of 

Compilation 

User Response: Divide the gen­
eric family into two or more 
generic families. 

STATEMENT NUMBER xxx CONTAINS 
AN INVALID USE OF AREA OR POIN­
TER DATA. PART OR ALL OF THE 
STATEMENT HAS BEEN DELETED. 

Explanation: The statement 
contains an operation that: 

1. is not permitted for AREA 
or POINTER data. or 

2. can only be used with AREA 
or POINTER data but such 



data is not the data spec­
ified for the operationu 

System Action: Deletes the 
statement or clause responsible 
for the error. 

S IEM1088I THE SIZE OF AGGREGATE zzzz IS 
GREATER THAN 8,388,,601 BYTES .. 
STORAGE ALLOCATION WILL BE 
UNSUCCESSFUL. 

S IEM1089I 

Explanation: The message is 
generated when an array or 
structure size exceeds 223 -1 

System Action: Array or struc­
ture mapping for the item is 
terminated, but the compilation 
continues,. Execution of object 
decks containing references to 
the item will give incorrect 
results. 

User Response: 
code 

Chec k source 

THE RELATIVE VIRTUAL ORIGIN OF 
AGGREGATE zzzz IS LESS THAN 
-8,,388,. 608 BYTES,. STORAGE HAS 
NOT BEEN ALLOCATED,. 

Explanation: The low bounds of 
the arrays in the aggregate are 
too high. 

System Action: The mapping of 
the aggregate is undefined,. and 
will cause errors on execution. 

User Response: Reduce the size 
of the aggregate. or reduce the 
value of the low bounds in the 
aggregate,. 

S IEM1090I THE STRUCTURE zzzz DECLARED IN 
STATEMENT NUMBER xxx CONTAINS 
VARYING STRINGS AND MAY APPEAR 
IN A RECORD I/O STATEMENT 

W IEM1092I 

Explanation: VARYING strings 
in structures are not permitted 
in RECORD I/O statements. 

System Action: The RECORD I/O 
statement is processed but the 
record will contain erroneous 
information. 

User Response: 
source code 

Correct the 

THE TASKS, EVENTS OR LABELS 
CONTAINED IN STRUCTURE zzzz 
DECLARED IN STATEMENT NUMBER 
xxx MAY LOSE THEIR VALIDITY IF 
USED IN A RECORD I/O STATEMENT. 

Explanation: The TASK, EVENT, 
or LABEL variable may lose its 
validity in transmission. 

User Response: Correct 
source code if necessary 

the 

E IEM1104I THE DEFINING OF zzzz DECLARED 
IN STATEMENT NUMBER xxx 
INVOLVES DATA NOT ALLOWED FOR 
STRING CLASS OVERLAY DEFINING. 

E IEM11051 

T IEMll06I 

Explanation: The programmer's 
use of the DEFINED attribute 
contravenes the language rules 
concerned with the permitted 
data types and dimensionality 
of base and defined item. 

system Action: Defined item 
mapped onto same storage as 
item defined on. Data and 
specification interrupts may 
occur at execution. 

User Respons~: Refer to the 
PL/I Reference Manual - "The 
DEFINED Attribute" - and cor­
rec t the error. 

THE DATA CHARACTERISTICS OF 
zzzz DECLARED IN STATEMENT NUM­
BER xxx DO NOT MATCH THOSE OF 
THE DEFINING BASE. 

Explanation: For valid use of 
the DEFINED attribute, both the 
defined item and the base must 
be of the same defining class. 

system Action: Defined item 
mapped onto same storage as 
item defined on. Data and 
specification interrupts may 
occur at execution. 

User Response: Refer to the 
PL/I Reference Manual "The 
DEFINED Attribute" - and cor­
rect the error. 

THE DIMENSIONALITY OF zzzz 
DECLARED IN STATEMENT NUMBER 
xxx IS NOT THE SAME AS THAT OF 
THE DEFINING BASE. 

Explanation: With the excep­
tion of the case of string 
class d'efining, if either the 
base or the defined item are 
arrays., then both the base and 
the defined item must be arrays 
with the same dimensionality. 

system Action: Compilation is 
aborted after examining other 
uses of the DEFINED attribute 

Appendix G: Diagnostic Messages 223 



User Response: Refer to the 
PLII Reference Manual "The 
DEFINED Attribute" - and cor­
rect the error. 

T IEM1107I THE DEFINING OF zzzz DECLARED 
IN STATEMENT NUMBER xxx ILLE­
GALLY INVOLVES VARYING STRINGS. 

Explanation: In use of the 
DEFINED attribute. neither the 
base nor the defined item may 
involve strings declared VARY­
ING. 

system Action: Compilation is 
aborted after examining other 
uses of the DEFINED attribute. 

User Response: Refer to the 
PL/I Reference Manual "The 
DEFINED Attribute" - and cor­
rect the error. 

E IEM1108I THE DEFINING OF zzzz DECLARED 
IN STATEMENT NUMBER xxx ILLE­
GALLY INVOLVES DATA AGGREGATES 
THAT ARE NOT UNALIGNED. 

Explanation: In the case of 
string class overlay defining 
where either or both the base 
and the defined item are aggre­
gates, then the aggregates must 
have the PACKED attribute. 

System Action: Defined item 
mapped onto same storage as 
item defined on. Data and 
specification interrupts may 
occur at execution. 

User Response: Refer to the 
PL/I Reference Manual - "The 
DEFINED Attribute" - and cor­
rect the error. 

T IEM1110I THE DEFINING BASE OF zzzz 
DECLARED IN STATEMENT NUMBER 
xxx IS SHORTER THAN THE DEFINED 
ITEM. 

224 

Explanation: In the case of 
string class overlay defining, 
the defined item must occupy a 
subset of the base storage. 

In the case of correspondence 
defining, the length of each 
defined element must not be 
greater than the length of each 
base element. 

System Action: Compilation is 
aborted after examining other 
uses of the DEFINED attribute 

User Response: Refer to the 

PL/I Reference Manual - "The 
DEFINED Attribute" - and cor­
rect the error. 

E IEM1111I THE DEFINING OF zzzz DECLARED 
IN STATEMENT NUMBER xxx 
INVOLVES A STRUCTURE HAVING 
ELEMENTS NOT ALL OF THE SAME 
DEFINING CLASS. 

Explanation: In the case of 
string class overlay defining 
where the defined item or the 
base is a structure l then all 
the elements of the structure 
must be data of the same string 
defining class. 

System Action: Defined item 
mapped onto same storage as 
item defined on. Data and 
specification interrupts may 
occur at execution. 

User Response: Refer to the 
PL/I Reference Manual "The 
DEFINED Attribute" - and cor­
rect the error. 

T IEM1112I THE DEFINING OF zzzz DECLARED 
IN STATEMENT NUMBER xxx ILLE­
GALLY INVOLVES THE POS ATTRI­
BUTE. 

Explanation: The POSITION 
attribute may only be declared 
for data of the string class 
which is overlay defined 

System Action: Compilation is 
terminated 

User Response: Refer to the 
PL/I Reference Manual "The 
DEFINED Attribute" - and cor­
rect the error. 

E IEM1113I THE STRUCTURE DESCRIPTION OF 
zzzz DECLARED IN STATEMENT NUM­
BER xxx DOES NOT MATCH THAT OF 
THE DEFINING BASE. 

Explanation: Where a structure 
or an array of structures is 
defined on a structure or an 
array of structures, and it is 
not string class overlay defin­
ing, then the two structure 
descriptions must be identical. 

System Action: Defined item 
mapped onto same storage as 
item defined on. Data and 
specification interrupts may 
occur at execution. 

User Response: 
PL/I Reference 

Refer to the 
Manual - "The 



DEFINED Attribute" - and cor­
rect the error. 

W IEMll141 IF THE BASE OF zzzz DECLARED IN 
STATEMENT NUMBER xxx IS ALLO­
CATED WITH THE DECLARED 
EXTENTS" THE DEFINING WILL BE 
IN ERROR. 

ExElanation: In the case of 
string class overlay defining, 
the defined item must occupy a 
subset of the base storage. If 
the base is of CONTROLLED stor­
age class, its extents are not 
finally resolved until execu­
tion time. 

System Action: No further 
action 

User Response: Check that when 
the base is allocated it is of 
adequate size to accommodate 
the defined item 

E IEMll151 THE DEFINING BASE OF zzzz 
DECLARED IN STATEMENT NUMBER 
xxx IS AN ARRAY FORMAL PARAM­
ETER. IF THE MATCHING ARGUMENT 
IS AN ELEMENT OF AN ARRAY OF 
STRUCTURES OR A CROSS SECTION 
OF AN ARRAY, THE DEFINING WILL 
BE IN ERROR. 

Explanation: The base for 
string class overlay defining 
must occupy contiguous storage 

system Action: 
continues 

Comments and 

User Response: Check validity 
of arguments 

S IEMl1201 COMPILER ERROR. INVALID SIGN 
FOUND IN INITIAL VALUE LIST FOR 
zzzz IN STATEMENT NUMBER xxx. 
TREATED AS PLUS. 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

S IEM11211 COMPILER ERROR. INVALID MARKER 
FOUND IN INITIAL VALUE LIST FOR 
zzzz IN STATEMENT NUMBER xxx. 
INITIAL VALUE LIST TRUNCATED. 

User Response: Save relevant 
data. Call your local IBM rep­
resentati ve .. 

S IEMl1221 UNSUPPORTED FEATURE. AN 
EXPRESSION HAS BEEN USED TO 
INITIALIZE STATIC STRING zzzz 
IN STATEMENT NUMBER xxx. 
STRING INITIALIZED TO NULL. 

S IEMl1231 

Explanation: A complex expres­
sion has been use1 to initial­
ize a STATIC string. This is a 
feature of PL/I not supported 
by this version of the compil­
er. See Appendix H of this 
publication for details. 

System Action: The string is 
initialized to nUll. 

User Response: Amend source 
code. The restriction can be 
overcome by using an assignment 
statement instead of the INI­
TIAL attribute. 

INITIAL 
ITEM zzzz 
CONSTANT. 
MINATED. 

VALUE FOR STATIC DATA 
IN nnnn IS NOT A 

INITIALIZATION TER-

User Response: Use a constant 
in the INITIAL string. 

S IEMl1251 ITERATION FACTOR USED IN INI­
TIALIZATION OF STATIC ARRAY 
zzzz IN STATEMENT NUMBER xxx IS 
TOO LARGE. REPLACED BY ZERO. 

Explanation: Iteration factors 
are converted by the compiler 
to REAL FIXED BINARY with a 
default precision of 15,0. The 
iteration factor referred to in 
the message has a value greater 
than 2~5~ and therefore exceeds 
the defaul t precision. 

System Action: The iteration 
factor is replaced by zero 

User Response: Amend source 
code so that iteration factor 
does not exceed 2~5_ 

T IEM12001 COMPILER EFROR. ILLEGAL TRIPLE 
IN TEXT. CURRENT STATEMENT 
NUMBER xxx 

Explanation: Phase LA is out 
of step in scanning text 

System Action: Recovery impos­
sible. Compilation is termin­
ated .• 

User Response: Save relevant 
data. Call your local IBM rep­
resenta ti vee 

T IEM15691 IMPLEMENTATION RESTRICTION. 
SOURCE PROGRAM TOO LARGE. 

Explanation: The number of 
symbolic register names gener­
ated by the code generation 
section of the compiler has 

Appendix G: Diagnostic Messages 225 



exceeded the maximum 
allowed 

number 

system Action: Compilation is 
terminated 

User Response: Programmer 
should break down the compila­
tion into smaller modules 

T IEM1570I COMPILER ERROR. INVALID TRIPLE 
FOLLOWING WHILE PRIME TRIPLE. 

Explanation: Input to phase LG 
of compiler is erroneous. A 
WHILE' triple is not followed 
by CV' or compiler label. 

system Action: Compilation is 
terminated 

User Response: Save relevant 
data.. Call your local IBM rep­
resentat ive,. 

T IEM1571I IMPLEMENTATION RESTRICTION. 
SOURCE PROGRAM TOO LARGE. 

Explanation: No more core is 
available for the stack of 
nested DO statements (both in 
source language and those gen­
erated internally for array 
assignments etc.) 

system Action: Compilation is 
terminated 

User Response: Simplify nest­
ing so as to reduce number of 
levels. 

S IEM1572I ILLE~AL USE OF ARRAY OR STRUC­
TURE VARIABLE IN DO STATEMENT 
NUMBER xxx 

Explanation: A non-scalar 
variable has been used as (1) 
the control variable, or (2) a 
control variable subscript, or 
(3) a loop limit or increment 
value. 

system Action: Generates an 
error stop at execution time 

S IEM1574I INVALID LOOP CONTROL EXPRESSION 
OR CONTROL VARIABLE SUBSCRIPT 
IN STATEMENT NUMBER xxx 
REPLACED BY FIXED BINARY TEM­
PORARY. 

226 

Explanation: Either something 
other than an arithmetic or 
string datum has been used as a 
subscript in the control varia­
ble, or something other than an 
arithmetic or string datum, 

label variable, or label con­
stant has been used in an 1n1-
tial value" TO or BY clause. 

System Action: Ignore the 
erroneous expression and use a 
fixed binary temporary 

S IEM1575I DO LOOP CONTROL PSEUDO-VARIABLE 
IN STATEMENT NUMBER xxx HAS AN 
INVALID ARGUMEN~. BINARY INTE­
GER TEMPORARY ASSUMED. 

Explanation: An invali? argu­
ment" such as an express10n or 
function" has been used in a 
pseudo-variable. 

System Action: Assigns invalid 
argument to binary temporary, 
and uses the latter as argu­
ment. 

W IEM1588I VARYING STRING HAS BEEN USED AS 
AN ARGUMENT TO ADDR FUNCTION IN 
STATEMENT NUMBER xxx 

Explanation: If the VARYING 
strir.g is declared BASED, the 
ADDR result is invalid 

System Action: None 

User Response: Correct source 
program 

T IEM1600I COMPILER ERROR. ILLEGAL ABSO­
LUTE REGISTER NUMBER. STATE­
MEN T NUMBER xxx 

Explanation: Compiler error. 
Fixed binary arithmetic uses an 
unassigned general register 
number greater than 15, or 
floating arithmetic uses a 
floating register greater than 
6. 

system Action: 
terminated and 
printed. 

Compilation is 
error messages 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM1601I IM~LEMENTATION RESTRICTION. 
STATEMENT NUMBER xxx REQUIRES 
MORE THAN 200 INTERMEDIATE 
RESULT DESCRIPTIONS. 

Explanation: Compiler limita­
tion. The temporary result 
stack, which holds 200 items, 
is full. 



T IEM1602I 

System Action: 
terminated and 
printed 

Compilation is 
error messages 

User Response: This error 
should only occur in very large 
statements. Divide the state­
ment into two smaller state­
ments,. 

COMPILER ERROR. INSUFFICIENT 
NUMBER OF TEMPORARY RESULT DES­
CRIPTIONS. STATEMENT NUMBER 
xxx 

Explanation: compiler error. 
A temporary result is required 
but the temporary result stack 
is empty. This can happen if 
the triples are out of order or 
if extra triples have been 
inserted. 

system Action: 
aborted and 
printed 

Compilation is 
error messages 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM16031 COMPILER ERROR. COUNT OF FREE 
FLOATING REGISTERS IS WRONG. 
STATEMENT NUMBER xxx 

T IEM16041 

Explanation: Compiler error in 
express~on evaluation phase. 
Error 1n control blocks for 
floating registers. 

system Action: 
terminated and 
printed 

Compilation is 
error messages 

User Response: Save relevant 
data. Call your local IBM rep­
resentati ve,. 

COMPILER ERROR. SECOND OPERAND 
FOR RS OR SS INSTRUCTION IS IN 
A REGISTER. STATEMENT NUMBER 
xxx 

Explanation: Compiler error in 
expression evaluation phase .• 
Attempt to generate an RS or SS 
type pseudo-code instruction 
using a register as the 2nd 
operand. 

system Action: 
terminated and 
printed. 

Compilation is 
error messages 

User Response: Save relevant 
data. Call your local IBM rep­
resentative .. 

S IEM1605I IN STATEMENT NUMBER xxx FIXED 
DECIMAL VARIABLE CANNOT BE COR­
RECTLY CONVERTED TO BINARY DUE 
TO SIZE OF SCALE FACTOR. 

Explanation: Error in source 
program. When a fixed decimal 
variable is corrected to fixed 
binary. the magnitude of its 
scale factor is multiplied by 
3.31. If the original scale 
factor is >38 or <-38, then the 
fixed binary scale factor would 
be outside the range +121 to 
-128. 

System Action: The fixed 
binary scale factor is set to 
+127 or -1284 Processing con­
tinues,. 

User Response: The data in the 
expression must be re-declared 
with more suitable scale fac­
tors. 

T IEM16061 COMPILER ERROR. FUNCTION NOT 
FOLLOWED BY RESULT DESCRIPTION. 
STATEMENT NUMBER xxx 

Explanation: Compiler error. 
A function is not followed by 
TMPD or LEFT triples giving the 
result type. 

system Action: 
terminated and 
printed 

Compilation is 
error messages 

User Response: Save relevant 
data. Call your local IBM rep­
resentative .. 

S IEM16011 LABEL" EVENT, FILE" OR TASK 
ITEM zzzz IN STATEMENT NUMBER 
xxx IS USED IN AN EXPRESSION 
WHICH IS ILLEGAL. 

Explanation: Error in source 
program,. A label, event, file, 
or task datum cannot be used in 
an expression. ~lternatively, 
this can be a compiler error 
when an unrecognizable dic­
tionary entry is used in an 
expression,. 

System Action: Substitute a 
fixed binary (31,0) data item 
(if the illegal item occurs in 
an arithmetic expression) or a 
null bit string (if it occurs 
in a string expression). Proc­
essing is continued. 

User Response: If error in 
source program, correct it. 

Appendix G: Diagnostic Messages 227 



E IEM1608I LT. LE" GE, OR GT COMPARISON 
OPERATOR ILLEGALLY USED IN 
STATEMENT NUMBER xxx WITH COM­
PLEX OPERANDS. REPLACED WITH 
EQUALS OPERA'roR. 

T IEM1609I 

Explanation: Error in source 
program. The only legal com­
parison between complex oper­
ands is '= •. 

System Action: 
replaced with 
ing continues 

The operator is 
'=" and process-

User Response: Correct source 
program using either the ABS 
function or possibly the REAL 
and IMAG functions. 

COMPILER ERROR. ILLEGAL DIC­
TIONARY REFERENCE X" 00 ... • 
STATEMENT NUMBER xxx 

Explanation: Compiler error. 
The symbolic dictionary ref­
erence is less than 256. 

System Action: 
terminated and 
printed 

Compilation 
error messages 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM1610I COMPILER ERROR IN PHASE LW AT 
STATEMENT NUMBER x~x. INSUFFI­
CIENT NUMBER OF TEMPORARY 
RESULT DESCRIPTIONS. 

Explanation: Compiler error. 
A temporary result is required 
but the temporary result stack 
is empty. This can happen if 
the triples are out of order or 
if extra triples have been 
inserted. 

System Action: 
terminated and 
printed 

Compilation is 
error messages 

User Response: Save relevant 
data,. Call your local IBM rep­
resentative. 

E IEM1611I IMPLEMENTATION RESTRICTION. A 
STRING RESULT LONGER THAN 32767 
IS PRODUCED BY CONCATENATE IN 
STATEMENT NUMBER xxx. STRING 
TRUNCATED TO LENGTH 32767. 

228 

Explanation: Maximum string 
length for this implementation 
is 32767. This may be exceeded 
during concatenation, because 
the length of the intermediate 

W IEM1612I 

S IEM1613I 

resul t is the sum of the oper­
and lengths. 

System Action: Compilation 
continues with string result 
length truncated to 32767 

User Response: Shorter strings 
must be used 

IMPLEMENTATION RESTRICTION IN 
STATEMENT NUMBER xxx. INTER­
MEDIATE WORK SPACE IS OBTAINED 
MORE THAN 50 TIMES IN A STRING 
EXPRESSION. SOME WORK SPACE 
WI LL NOT BE RELEASED UNTIL THE 
END OF THE BLOCK. 

Explanation: The intermediate 
work space is required each 
time a function returns a 
string result or each time a 
lib rary module is called 

System Action: The first 50 
areas of work space are 
released. The remainder may 
not be released until the end 
of the block. Compilation con­
tinues and execution is valid. 

User Response: Divide the 
string expression into several 
sub-expressions 

ILLEGAL USE OF ARRAY OR STRUC­
TURE VARIABLE IN STATEMENT NUM­
BER xxx 

Explanation: 
program 

Illegal source 

System Action: Severe error 
message and object program 
branch. Compilation continues, 
assuming scalar of same type if 
array~ or fixed binary (31,0) 
type if structure. 

User Response: Insert DO 
blocks for array* or break down 
structure into its components. 

W IEM1614I IMPLEMENTATION RESTRICTION. A 
VARYING STRING RESULT LONGER 
THAN 32767 MAY BE PRODUCED BY 
CONCATENATE IN STATEMENT NUMBER 
xxx. STRING TRUNCATED TO 
LENGTH 32767. 

Explanation: The sum of the 
maximum lengths of two strings 
in a concatenation operation 
exceeds the implementation res­
triction of 32767. Since one 
or both of the operands is a 
VARYING string, it is not known 
at compile-time whether the 



restriction will be exceeded at 
execution time. 

System Action: 
continues with 
maximum length 
32767. 

Compilation 
string result 
truncated to 

User Response: Shorter strings 
must be used if the sum of the 
execution-time current lengths 
will ever exceed 327674 

E IEM16151 SECOND ARGUMENT IN THE SUBSTR 
FUNCTION IN STATEMENT NUMBER 
xxx IS ZERO, WHICH IS INVALID. 
ZERO HAS BEEN REPLACED BY ONE. 

E IEM16161 

T IEM16171 

SECOND ARGUMENT 
PSEUDO-VARIABLE 
NUMBER xxx IS 
INVALID. ZERO 
REPLACED BY ONE .• 

IN THE SUBSTR 
IN STATEMENT 
ZERO" WHICH IS 

HAS BEEN 

COMPILER ERROR. ILLEGAL RETURN 
FROM SCAN ROUTINE. STATEMENT 
NUMBER xxx 

Explanation: An illegal return 
of control has been made by the 
SCAN routine which supports the 
code generation phases. 

System Action: Compilation is 
terminated. 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

S IEM16181 PSEUDO-VARI~BLE IN STATEMENT 
NUMBER xxx INCORRECTLY SPECI­
FIED.. REPLACED BY FIXED BINARY 
TEMPORARY. 

Explanation: A pseudo-variable 
in the given source statement 
has been incorrectly specif ied" 
e.g. has an incorrect number 
of arguments. 

system Action: Ignores the 
pseudo-variable and uses a 
fixed binary temporary instead. 

S IEM16191 RIGHT HAND SIDE OF STATEMENT 
NUMBER xxx CANNOT BE ASSIGNED 
TO A PSEUDO-VARIABLE. ASSIGN­
MENT IGNORED. 

Explanation: The expression on 
the right-hand side of the 
specified statement cannot be 
assigned to a pseudo-variable" 
i.e. it is not an arithmetic 
or string datum. 

S IEM16201 

S IEM16211 

S IEM16221 

system Action: The assignment 
is deleted from the text. 

:'IMAG' IN STATEMENT NUMBER xxx 
HAS REAL ARGUMENT. REPLACED BY 
ASSIGNMENT TO TEMPORARY FIXED 
BINARY INTEGER. 

Explanation: The pseudo­
variable 'IMAG' is meaningful 
only if its argument is of type 
complex. 

System Action: A fixed binary 
temporary target is provided 
for the assignment or input 
data list iter; and the pseudo­
variable is ignored 

ILLEGAL PSEUDO-VARIABLE 
ARGUMENT IN STATEMENT NUMBER 
xxx REPLACED BY BINARY TEMPORA­
RY. 

Explanation: A pseudo-variable 
in the specified statement has 
an illegal argument, i.e. one 
whose data type is not permis­
sible in that context. 

System Action: A temporary 
whose type is legal in the 
context is used to replace the 
erroneous argument and the lat­
ter is removed from the text 

FIRST ARGUMENT OF PSEUDO­
VARIABLE SUBSTR IN STATEMENT 
NUMBER xxx IS NOT A STRING 
VARIABLE. ARGUMENT HAS BEEN 
CONVERTED TO STRING TEMPORARY 
AND THE ASSIGNMENT MADE 
THERETO. 

Explanation: SUBSTR 
variable cannot have 
argument which is not a 
variable,. 

pseudo­
a first 
string 

system Action: code is 
compiled to assign to a string 
temporary. The original argu­
ment remains unchanged. 

T IEM16231 IMPLEMENTATION RESTRICTION. 
SOURCE PROGRAM TOO LARGE. 

Explanation: The number of 
symbolic register names gener­
ated by the code generation 
section of the compiler has 
exceeded the maximum number 
allowed 

System Action: Compilation is 
terminated 

User Response: Programmer 

Appendix G: Diagnostic Messages 229 



should break down the compila­
tion into smaller modules 

W IEM1625I PSEUDO-VARIABLE REAL IN STATE­
MENT NUMBER xxx DOES NOT HAVE 
COMPLEX ARGUMENT. ARGUMENT HAS 
BEEN TREATED AS HAVING ZERO 
IMAGINARY PART. 

system Action: code is gener­
ated to perform assignment to 
the specified REAL argument 

S IEM1626I ILLEGAL NEGATIVE SECOND ARGU­
MENT IS BEING PASSED TO THE 
FUNCTION SUBSTR IN STATEMENT 
NUMBER xxx. AN EXECUTION ERROR 
WILL RESULT. 

S IEM1627I ILLEGAL NEGATIVE THIRD ARGUMENT 
IS BEING PASSED TO THE FUNCTION 
SUBSTR IN STATEMENT NUMBER xxx. 
AN EXECUTION ERROR WILL RESULT. 

S IEM16281 THE SUBSTRING SPECIFIED BY THE 
SECOND AND THIRD ARGUMENTS TO 
THE FUNCTION SUBSTR IN STATE­
MENT NUMBER xxx DOES NOT LIE 
WITHIN THE FIRST ARGUMENT. AN 
EXECUTION ERROR WILL RESULT. 

S IEM1629I THE SECOND ARGUMENT TO THE 
FUNCTION SUBSTR IN STATEMENT 
NUMBER xxx IS GREATER THAN THE 
LENGTH OF THE FIRST ARGUMENT. 
AN EXECUTION ERROR WILL RESULT. 

T IEM16301 COMPILER ERROR IN 
CEIL/FLOOR/TRUNC IN-LINE FUNC­
TION IN STATEMENT NUMBER xxx 

System Action: Compilation is 
terminated 

User Response: Save relevant 
data.. Call your local IBM rep­
resentative .. 

T IEM1631I COMPILER ERROR IN MOD IN-LINE 
FUNCTION IN STATEMENT NUMBER 
xxx 

W IEM16321 

230 

System Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

THE INVOCATION 0 F THE 
FUNCTION IN STATEMENT 
xxx WILL ALWAYS GIVE 
RESULT. 

ROUND 
NUMBER 
A ZERO 

Explanation: (p - q + r) is 
zero or negative, where 
p = precision, q = scale fac­
tor, and r = rounding position. 

System Action: Result is set 
to zero 

User Response: Check scale and 
precision of the first argument 
in ROUND function 

S IEM16331 ILLEGAL NEGATIVE SECOND ARGU­
MENT IS BEING PASSED TO THE 
PSEUDO-VARIABLE SUBSTR IN 
STATEMENT NUMBER xxx. AN EXE­
CUTION ERROR WILL RESULT. 

S IEM16341 ILLEGAL NEGATIVE THIRD ARGUMENT 
IS BEING PASSED TO THE PSEUDO­
VARIABLE SUBSTR IN STATEMENT 
NUMBER xxx. AN EXECUTION ERROR 
WILL RESULT. 

S IEM16351 THE SUBSTRING SPECIFIED BY THE 
SECOND AND THIRD ARGUMENTS TO 
THE PSEUDO-VARIABLE SUBSTR IN 
STATEMENT NUMBER xxx DOES NOT 
LIE WITHIN THE ST~ING zzzz. AN 
EXECUTION ERROR WILL RESULT. 

S IEM16361 THE SECOND ARGUMENT TO THE 
PSEUDO-VARIABLE SUBSTR IN 
STATEMENT NUMBER xxx IS GREATER 
THAN THE LENGTH OF THE STRING 
zzzz. AN EXECUTION ERROR WILL 
RESULT. 

S IEM16371 THE THIRD ARGUMENT TO THE FUNC­
TION SUBSTR IN STATEMENT NUMBER 
xxx IS GREATER THAN THE LENGTH 
OF THE FIRST ARGUMENT. AN EXE­
CUTION ERROR WILL RESULT. 

S IEM16381 THE THIRD ARGUMENT TO THE 
PSEUDO-VARIABLE SUBSTR IN 
STATEMENT NUMBER xxx IS GREATER 
THAN THE LENGTH OF THE STRING 
zzzz. AN EXECUTION ERROR WILL 
RESULT. 

T IEM16391 COMPILER ERROR. INCORRECT 

T IEM16401 

INPUT TO SUBROUTINE 6 IN MODULE 
IEIvlMF IN STATEMENT NUMBER xxx. 

System Action: Compilation is 
terminated 

User Response: Save relevant 
data and call your local IBM 
representative. 

THE PARAMETER DESCRIPTION 
RELATING TO THE PASSING OF THE 
GENERIC ENTRY NAME zzzz DOES 
NOT MATCH ANY OF THE FAMILY 
MEMBERS. 

system Action: Terminates com­
pilation 

User Response: Provide correct 
parameter description 



W IEM1641I THE PARAMETER DESCRIPTION 
RELATING TO THE PASSING OF THE 
GENERIC ENTRY NAME zzzz DES­
CRIBES THE ENTRY NAME'S RESULT 
TYPE RATHER THAN ARGUMENT TYPE. 
IF POSSIBLE, GENERIC SELECTION 
WILL BE MADE ON THE BASIS OF 
THIS RESULT TYPE. 

User Response: Provide fuller 
parameter description 

T IEM16421 THE PARAMETER DESCRIPTION 
RELATING TO THE PASSING OF THE 
GENERIC ENTRY NAME zzzz IS NOT 
SUFFICIENT FOR THE PURPOSES OF 
GENERIC SELECTION. 

System Action: Terminates com­
pilation 

User Response: Provide fuller 
parameter description 

T IEM16431 COMPILER ERROR. THE PARAMETER 
DESCRIPTION RELATING TO THE 
PASSING OF THE GENERIC ENTRY 
NAr~ zzzz IS INCORRECTLY FORMED 
IN THE DICTIONARY. 

System Action: Terminates com­
pilation 

User Response: Save relevant 
data. Call your local IBM rep­
resentative .. 

T IEM16441 COMPILER ERROR. THE GENERIC 
FAMILIES ASSOCIATED WITH ENTRY 
NAME zzzz HAVE BEEN INCORRECTLY 
FORMED IN THE DICTIONARY. 

E~planation: The dictionary 
entry for one or more of the 
generic families is not a rec­
ognizable entry type. 

system Action: Terminates com­
pilation 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM16451 THE PARAMETER DESCRIPTION 
RELATING TO THE PASSING OF THE 
GENERIC ENTRY NAME zzzz RESULTS 
IN MORE THAN ONE POSSIBLE FAMI­
LY MEMBER SELECTION. 

System Action: Terminates com­
pilation 

User Response: Provide fuller 
parameter description 

T IEMl6481 COMPILER ERROR. FUNCTION REF­
ERENCE MISSING FROM TEXT IN 
STATEMENT NUMBER xxx 

Explanation: 
dling of 
phase. 

Incorrect han­
text by previous 

System Action: Terminates com­
pilation 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM16491 COMPILER ERROR. INCORRECT FOR­
MATION OF ARGUMENT LIST ASSO­
CIATED WITH ENTRY NAME zzzz IN 
STATEMENT NUMBER xxx 

Explanation: Incorrect han­
dling of text by previous phase 

System Action: Terminates com­
pila tion 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM16501 COMPILER ERROR. INCORRECT HAN­
DLING OF ARGUMENT LIST ASSO­
CIATED WITH ENTRY NAME zzzz IN 
STATEMENT NUMBER xxx 

Explanation: Incorrect han­
dling of text by previous phase 

System Action: Terminates com­
pila tion 

User Response: Save relevant 
data. Call your local IBM rep­
resenta tive. 

T IEM16511 COMPILER ERROR. ARGUMENT REF­
ERENCE MISSING FROM ARGUMENT 
LIST ASSOCIATED WITH ENTRY NAME 
zzzz IN STATEMENT NUMBER xxx 

Explanation: Incorrect han­
dling of text by previous phase 

System Action: Terminates com­
pilation 

User Response: Save relevant 
data. Call your local IBM rep­
resent<ative. 

T IEM1652I IMPLEMENTATION RESTRICTION. 
INVOCATIONS ARE NESTED BEYOND 
THE MAXIMUM PERMITTED LEVEL IN 
STATEMENT NUMBER xxx 

Explanation: Nesting level 
exceeds implementation limit 

Appendix G: Diagnostic Messages 231 



system Action: Terminals com­
pilation 

User Response: Reduce nesting 
level 

T IEM1653I IMPLEMENTATION RESTRICTION. 
SOURCE PROGRAM TOO LARGE. NUM­
BER OF SYMBOLIC REGISTERS 
EXCEEDS LIMIT. 

Explanation: Too many symbolic 
registers required 

System Action: Terminates com­
pilation 

User Response: subdivide the 
program 

T IEM1654I THE GENERIC PROCEDURE zzzz IS 
BEING INVOKED WITHOUT AN ARGU­
MENT LIST IN STATEMENT NUMBER 
xxx 

System Action: Terminates com­
pilation 

User Response: Supply argument 
list 

T IEM1655I IMPLEMENTATION RESTRICTION. 
TOO MUCH WORKSPACE REQUIRED FOR 
TEMPORARY RESULTS IN STATEMENT 
NUMBER xxx 

system Action: Terminates com­
pilation 

User Response: subdivide the 
statement in question into two 
or more separate statements. 

T IEM1656I COMPILER ERROR. INCORRECT 
INPUT TO PHASE MF FOR COMPLE­
TION BUILT-IN FUNCTION IN 
STATEMENT NUMBER xxx. 

Explanation: 
encountered 
phase MF. 

The compiler has 
incorrect input to 

system Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

E IEM1657I THE FILE zzzz, WHICH HAS BEEN 
DECLARED WITH THE COBOL OPTION, 
IS BEING PASSED AS AN ARGUMENT 
IN STATEMENT NUMBER xxx. 

232 

Explanation: F Compiler res­
triction: files with the COBOL 
option may not be passed as 
arguments. 

System Action: 
continue 

Comment and 

User Response: Correct source 
program if necessary 

T IEM1670I STATEMENT NUMBER xxx HAS CAUSED 
A TABLE INTERNAL TO THE COMPIL­
ER TO OVERFLOW. 

Explanation: Either the nest­
ing of procedure arguments 
requiring dummies is too deep, 
or too many temporary results 
are' required between the 
assignment of an argument 
expression to a dummy and the 
procedure call. 

System Action: Compilation is 
terminated 

User Response: Reduce complex­
ity of argument expressions 

T IEM1671I COMPILER ERROR NUMBER MP nnnn 
IN STATEMENT NUMBER xxx 

Explanation: This is a compil­
er error 

system Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentati ve .• 

T IEM1680I COMPILER ERROR. TRIPLE OPERA­
TOR NOT RECOGNIZED IN STATEMENT 
NUMBER xxx 

T IEM1687I 

T IEM1688I 

Explanation: Illegal input 
from a previous phase 

System Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative .• 

COMPILER ERROR. OPTIMIZED SUB­
SCRIPT INCORRECTLY FORMED IN 
STATEMENT NUMBER xxx 

Explanation: Illegal input 
from a previous phase 

System Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative .• 

COMPILER ERROR. ARRAY NAME 



T IEM1689I 

zzzz INCORRECTLY DESCRIBED AS 
DEFINED IN STATEMENT NUMBER xxx 

Explanation: Array incorrectly 
described by a previous phase 
as having the DEFINED attribute 

System Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

COMPILER ERROR. ARRAY zzzz IS 
INCORRECTLY SUBSCRIPTED IN 
STATEMENT NUMBER xxx 

Explanation: Illegal input 
from a previous phase 

System Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative" 

T IEM1691I IMPLEMENTATION RESTRICTION. 
SOURCE PROGRAM TOO LARGE. 

Explanation: Too many symbolic 
registers have been requested 

System Action: Compilation is 
terminated 

User Response: subdivide pro­
gram and recompile 

T IEM1692I IMPLEMENTATION RESTRICTION. 
SUBSCRIPT NESTED TO DEPTH 
GREATER THAN 50 LEVELS IN 
STATE·MENT NUMBER xxx 

Explanation: subscript nesting 
exceeds fifty levels 

System Action: Compilation is 
terminated 

User Response: Reduce amount 
of nesting and recompile 

T IEM1693I NUMBER OF SUBSCRIPTS ASSOCIATED 
WITH ARRAY zzzz IN STATEMENT 
NUMBER xxx IS INCORRECT. 

Explanation: The number of 
subscripts given does not agree 
with the declared dimensionali­
ty of the array. 

system Action: Compilation is 
terminated 

User Response: Add or delete 
subscripts as appropriate 

S IEM1150I zzzz IS AN ILLEGAL OPERAND IN 
AN IF STATEMENT OR WHILE CLAUSE 
IN STATEMENT NUMBER xxx. IT 
HAS BEEN REPLACED BY A ZERO BIT 
STRING. 

S IEM1151I THE IDENTIFIER zzzz IS AN ILLE­
GAL ARGUMENT OF THE RETURN 
STATEMENT NUMBER xxx AND HAS 
BEEN DELETED. 

W IEM1752I 

ExPlanation: Illegal arguments 
include arrays and structures. 

THE ATTRIBUTES OF THE EXPRES­
SION USED IN THE RETURN STATE­
MENT IN STATEMENT NUMBER xxx 
CONFLICT WITH THE ATTRIBUTES OF 
SOME OR ALL OF THE ENTRY POINTS 
OF THE CONTAINING PROCEDURE. 
AN EXECUTION FAILURE MAY OCCUR 
AT THIS STATEMENT. 

Explanation: After a call to a 
procedure through an entry 
point with POINTER~ AREA or 
data attributes" any RETURN 
statement encountered must 
return a value of type POINTER 
or AREA or of a data type 
compatible with the data attri­
butes of the entry point. 

System Action: The ERROR con­
dition is raised 

E IEM1153I THE EXPRESSION USED IN THE 
RETURN STATEMENT IN STATEMENT 
NUMBER xxx AND THE ATTRIBUTES 
OF THE CONTAINING PROCEDURE ARE 
INCOMPATIBLE. EXECUtION OF 
THIS STATEMENT WILL RESULT IN A 
FAILURE. 

Explanation: After a call to a 
procedure through an entry 
point with POINTER, AREA or 
data attributes, any RETURN 
statement encountered must 
return a value of type POINTER 
or AREA or of a data type 
compatible with the data attri­
butes of the entry point. 

System Action: The ERROR con­
dition is raised 

E IEM1154I THE EXPRESSION USED IN THE 
RETURN STATEMENT IN STATEMENT 
NUMBER xxx IS INVALID 

Explanation: The only permit­
ted arguments are data types 
STRING" POINTER, and AREA. 

System Action: Raise ERROR 
condition on execution of the 
statement. 

Appendix G: Diagnostic Messages 233 



W IEM1790 DATA CONVERSIONS WILL BE DONE 
BY SUBROUTINE CALL IN THE FOL­
LOWING STATEMENTS yyyy 

User Response: Check to see if 
the conversion can be avoided 
or performed in line 

S IEM1793I ILLEGAL ASSIGNMENT OR CONVER­
SION IN STATEMENT NUMBER xxx. 
EXECUTION WILL RAISE THE ERROR 
CONDITION. 

Explanation: Illegal assign­
ment or conversion in source 
statement, e.g. label to 
arithmetic,. 

System Action: An instruction 
is compiled which will cause 
execution to a1x>rt if the 
statement is executed 

T IEM1794I COMPILER ERROR IN STATEMENT 
NUMBER xxx PHASE OE. 

Explanation: Compiler error 
caused by input text in bad 
format 

system Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

S IEM1795I INVALID ITEM IN FREE STATEMENT 
NUMBER xxx 

Explanation: Variable in FREE 
statement is either not CON­
TROLLED or not at level 1 

System Action: Error condition 
and message given at object 
time 

E IEM1796I ASSIGNMENT OF AN ILLEGAL LABEL 
CONSTANT IN STATEMENT NUMBER 
xxx. 

Explanation: The label con­
stant does not appear in the 
value list in the DECLARE 
statement for the label varia­
ble. 

system Action: Accepts label 
constant as if in value list 
and continues compilation~ 

W IEM1797I CONVERSION OF NULL VALUES IN 
POINTER/OFFSET ASSIGNMENTS IS 
INVALID. NULLO HAS BEEN 
REPLACED BY NULL, OR NULL BY 
NULLO, IN STATEMENT NUMBER xxx 

234 

Explanation: A NULLO offset 
type constant has been assigned 
to a pointer. or a NULL pointer 
type constant to an offset. 
Conversion of null values is 
not allowed.. The constant type 
has been corrected. 

System Action: The assignment 
is unaffected 

S IEM1800I AN ERROR HAS OCCURRED WHEN CON­
VER 'II NG THE CONSTANT yyyy TO 
PLOA~ING-POINT. THE ERROR WAS 
DETECTED IN STATEMENT NUMBER 
xxx BUT CHECK ALL SIMILAR USES 
OF THIS CONSTANT. 

System Action: Truncates 
result. 

User Response: Change the con­
stant and check its use in the 
given statement and elsewhere. 

S IEM180iI AN ERROR HAS OCCURRED IN THE 
CONVERSION TO FLOATING-POINT OF 
THE STERLING CONSTANT WHICH HAS 
DECIMAL PENCE FORM yyyy. THE 
ERROR WAS DETECTED IN STATEMENT 
NUMBER xxx BUT CHECK ALL SIMI­
LAR USES OF THIS CONSTANT. 

User Response: Change the con­
stant and check its use in the 
given statement and elsewhere. 

S IEM1802I AN ERROR HAS OCCURRED wHEN CON­
VERTING THE CONSTANT yyyy TO 
FIXED BINARY. THE ERROR WAS 
DETECTED IN STATEMENT NUMBER 
xxx BUT CHECK ALL SIMILAR USES 
OF THIS CONSTANT. 

User Response: Change the con­
stant and check its use in the 
given statement and elsewhere. 

S IEM1803I AN ERROR HAS OCCURRED IN THE 
CONVERSION TO FIXED BINARY OF 
THE STERLING CONSTANT WHICH HAS 
DECIMAL PENCE FORM yyyy. THE 
ERROR WAS DETECTED IN STATEMENT 
NUMBER xxx BUT CHECK ALL SIMI­
LAR USES OF THIS CONSTANT. 

User Response: Change the con­
stant and check its use in the 
given statement and elsewhere. 

S IEM1804I AN ERROR HAS OCCURRED WHEN CON­
VERTING THE CONSTANT yyyy TO 
FIXED DECIMAL. THE ERROR WAS 
DETECTED IN STATEMENT NUMBER 
xxx BUT CHECK ALL SIMILAR USES 
OF THIS CONSTANT. 



system Action: Truncates 
result .. 

User Response: Change the con­
stant and check its use in the 
given statement and elsewhere. 

S IEM18051 AN ERROR HAS OCCURRED IN THE 
CONVERSION TO FIXED DECIMAL OF 
THE STERLING CONSTANT WHICH HAS 
DECIMAL PENCE FORM yyyy. THE 
ERROR WAS DETECTED IN STATEMENT 
NUMBER xxx BUT CHECK ALL SIMI­
LAR USE OF THIS CONSTANT. 

User Response: Change the con­
stant and check its use in the 
given statement and elsewhere. 

S IEM18061 AN ERROR HAS OCCURRED WHEN CON­
VERTING THE CONSTANT yyyy TO 
DECIMAL NUMERIC FIELD. THE 
ERROR WAS DETECTED IN STATEMENT 
NUMBER xxx BUT CHECK ALL SIMI­
LAR USES OF THIS CONSTANT. 

User Res~: Change the con­
stant and check its use in the 
given statement and elsewhere. 

S IEM18071 AN ERROR HAS OCCURRED IN THE 
CONVERSION TO DECIMAL NUMERIC 
FIELD OF THE STERLING CONSTANT 
WHICH HAS DECIMAL PENCE FORM 
yyyy. THE ERROR WAS DETECTED 
IN STATEMENT NUMBER xxx BUT 
CHECK ALL SIMILAR USES OF THIS 
CONSTANT. 

User Esponse: Change the con­
stant and check its use in the 
given statement and elsewhere. 

S IEM18081 AN ERROR HAS OCCURRED WHEN CON­
VERTING THE CONSTANT yyyy TO 
STERLING NUMERIC FIELD. THE 
ERROR WAS DETECTED IN STATEMENT 
NUMBER xxx BUT CHECK ALL SIMI­
LAR USES OF THIS CONSTANT. 

User Response: Change the con­
stant and check its use in the 
given statement and elsewhere. 

S IEM1809I AN ERROR HAS OCCURRED IN THE 
CONVERSION TO STERLING NUMERIC 
FIELD OF THE STERLING CONSTANT 
WHICH HAS DECIMAL PENCE FORM 
yyyy. THE ERROR WAS DETECTED 
IN STATEMENT NUMBER xxx BUT 
CHECK ALL SIMILAR USES OF THIS 
CONSTANT. 

User Response: Change the con­
stant and check its use in the 
given statement and elsewhere. 

S IEM18i0I AN ERROR HAS OCCURRED WHEN CON­
VERTING THE CONSTANT yyyy TO 
BIT STRING. THE ERROR WAS 
DETECTED IN STATEMENT NUMBER 
xxx BUT CHECK ALL SIMILAR USES 
OF THIS CONSTANT. 

User Re~Q~: Change the con­
stant and check its use in the 
given statement and elsewhere. 

S IEM181i1 AN ERROR HAS OCCURRED IN THE 
CONVERSION TO BIT STRING OF THE 
STERLING CONSTANT WHICH HAS 
DECIMAL PENCE FORM yyyy. THE 
ERROR WAS DETECTED IN STATEMENT 
NUMBER xxx BUT CHECK ALL SIMI­
LAR USES OF THIS CONSTANT. 

User Response: Change the con­
stant and check its use in the 
given statement and elsewhere. 

S IEM1812I AN ERROR HAS OCCURRED WHEN CON­
VERTING THE CONSTANT yyyy TO 
CHARACTER STRING. THE ERROR 
WAS DETECTED IN STATEMENT NUM­
BER xxx BUT CHECK ALL SIMILAR 
USES OF THIS CONSTANT. 

User Response: Change the con­
stant and check its use in the 
given statement and elsewhere. 

S IEM1813I AN ERROR HAS OCCURRED IN THE 
CONVERSION TO CHARACTER STRING 
OF THE STERLING CONSTANT WHICH 
HAS DECIMAL PENCE FORM yyyy. 
THE ERROR WAS DETECTED IN 
STATEMENT NUMBER xxx BUT CHECK 
ALL SIMILAR USES OF THIS CON­
STANT. 

User Response: Change the con­
stant and check its use in the 
given statement and elsewhere. 

S IEM18141 AN ERROR HAS OCCURRED IN THE 
CONVERSION OF THE CONSTANT yyyy 
TO PICTURED CHARACTER STRING. 
THE ERROR WAS DETECTED IN 
STATEMENT NUMBER xxx BUT CHECK 
ALL SIMILAR USES OF THIS CON­
STANT. 

User Response: Change the con­
stant and check its use in the 
given statement and elsewhere. 

S IEM18151 AN ERROR HAS OCCURRED IN THE 
CONVERSION TO PICTURED CHARAC­
TER STRING OF THE STERLING CON­
STANT WHICH HAS DECIMAL PENCE 
FORM yyyy • THE ERROR WAS 
DETECTED IN STATEMENT NUMBER 
xxx BUT CHECK ALL SIMILAR USES 
OF THIS CONSTANT. 

Appendix G: Diagnostic Messages 235 



User Response: Change the con­
stant and check its use in the 
given statement and elsewhere. 

S IEM18161 zzzz USED IN FILE OPTION IN 
STATEMENT NUMBER xxx IS NOT A 
FILE. OPTION HAS BEEN IGNORED. 
EXECUTION ERROR WILL RESULT 

Explanation: Dictionary ref­
erence of file triple was not 
file constant or file parameter 
code. 

System Action: Ignores option" 
but continues to scan state­
ment. 

E IEM18171 INVALID KEYTO OPTION zzzz 
IGNORED IN STATEMENT NUMBER xxx 

Explanation: 
be scalar 
variable. 

KEYTO option must 
character string 

S IEM18181 zzzz USED IN KEY/KEYFROM OPTION 
IN STATEMENT NUMBER xxx IS NOT 
A SCALAR. OPTION IGNORED. 

System Action: Ignores option 
but continues scan of statement 

S IEM18191 zzzz USED IN THE IGNORE OPTION 
IN STATEMENT NUMBER xxx I S NOT 
A SCALAR. OPTION IGNORED. 

System Action: Ignores option 
but continues scan of statement 

User Response: Correct IGNORE 
variable 

T IEM18231 COMPILER ERROR 
PHASE NJ/NK. 

DETECTED IN 

Explanation: NJ/NK found some 
unexpected input. Register 9 
in dump will indicate cause of 
error. 

system Action: Terminates com­
pilation 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

S IEM18241 OPTIONS IN OPEN STATEMENT NUM­
BER xxx ARE IN CONFLICT WITH 
PAGESIZE AND/OR LlNESIZE. 

E IEM18251 INVALID REPLY OPTION IGNORED IN 
STATEMENT NUMBER xxx 

S IEM18261 INVALID MESSAGE IN DISPLAY 
STATEMENT NUMBER xxx. STATE­
MENT IGNORED. 

236 

S IEM18271 INVALID ARGUMENT TO DELAY 
STATEMENT NUMBER xxx. STATE­
MENT IGNORED. 

T IEM18281 COMPILER ERROR. INCORRECT NUM­
BER OF TMPDS FOLLOWING ZERO 
OPERAND IN STATEMENT NUMBER xxx 

System Action: Compilation is 
terminated 

User Response: Save relevant 
data.. Call your local IBM rep­
resenta ti ve,. 

S IEM18291 INVALID SCALAR EXPRESSION 
OPTION IN WAIT STATEMENT NUMBER 
xxx. MAXIMUM EVENT COUNT 
GIVEN. 

Explanation: The optional sca­
lar expression in the WAIT 
statement cannot be converted 
to a n integer. 

System Action: The number of 
event names in the list is 
assumed as the event count. 

T IEM18301 COMPILER ERROR. INCORRECT 
INPUT TO PHASE NG IN WAIT 
STATEMENT NUMBER xxx,. 

Explanation: The compiler has 
encountered incorrect input to 
phase NG and cannot continue,. 

system Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

E IEM18321 INVALID PAGE OPTION IGNORED IN 
STATEMENT NUMBER xxx 

E IEM18331 

E IEM18341 

INVALID LINE OPTION IGNORED IN 
STATEMENT NUMBER xxx 

MULTIPLE COPY OPTIONS SPECIFIED 
IN STATEMENT NUMBER xxx. THE 
FIRST ONE IS USED. 

system Action: The first 
option only is used 

E IEM18351 INVALID FILE OPTION IGNORED IN 
STATEMENT NUMBER xxx 

E IEM18361 INVALID STRING OPTION IGNORED 
IN STATEMENT NUMBER xxx 

S IEM18371 NO FILE OR STRING SPECIFIED IN 
STATEMENT NUMBER xxx. STATE­
MENT IGNORED. 



E IEM18381 

E IEM18391 

E IEM18401 

E IEM18411 

S IEM18431 

Explanation: No FILE or STRING 
given in GET/PUT statement 

INVALID TITLE OPTION IGNORED IN 
STATEMENT NUMBER xxx 

INVALID IDENT OPTION IGNORED IN 
STATEMENT NUMBER xxx 

INVALID LINE SIZE OPTION IGNORED 
IN STATEMENT NUMBER xxx 

INVALID PAGESIZE OPTION IGNORED 
IN STATEMENT NUMBER xxx 

NO FILE SPECIFIED IN OPEN/CLOSE 
STATEMENT NUMBER xxx. ANY 
OPTIONS ARE IGNORED. 

T IEM18441 COMPILER ERROR. INCORRECT NUM­
BER OF TMPDS FOLLOWING ZERO 
OPERAND IN STATEMENT NUMBER xxx 

E IEM18451 

E IEM18461 

S IEM18471 

system Action: Compilation is 
aborted 

User Response: Save relevant 
data. Call your local IBM rep­
resentati ve .• 

MULTIPLE DATA SPECIFICl\.TIONS 
IGNORED IN STATEMENT NUMBER xxx 

INVl\.LID SKIP OPTION IGNORED IN 
STATEMENT NUMBER xxx 

NO DATA SPECIFICATIONS GIVEN 
FOR GET STATEMENT NUMBER xxx. 
STATEMENT DELETED. 

S IEM18481 NO DATA SPECIFICATIONS OR PRINT 
OPTIONS GIVEN FOR PUT STATEMENT 
NUMBER xxx,. STl\.TEMENT DELETED. 

W IEM18491 THE USE OF THE BUILT-IN FUNC­
TION NULL IN STATEMENT NUMBER 
xxx IS INVALID; NULLO HAS BEEN 
SUBSTITUTED. CHECK ALL SIMILAR 
USES OF NULL. 

System 
NULLO 

Action: Substitute 

W IEM18501 THE USE OF THE BUILT-IN FUNC­
TION NULLO IN STATEMENT NUMBER 
xxx IS INVALID; NULL HAS BEEN 
SUBSTITUTED. CHECK ALL SIMILl\.R 
USES OF NULLO. 

System Action: Substitute NULL 

S IEM18601 THE ILLEGAL ITEM zzzz HAS BEEN 
DELETED FROM THE I/O DATA LIST 
IN STATEMENT NUMBER xxx 

S IEM18611 AN ILLEGAL TEMPORARY RESULT OR 
SUBSCRIPTED ELEMENT HAS' BEEN 

DELETED FROM THE I/O DATA LIST 
IN STATEMENT NUMBER xxx 

S IEM18621 AN EXPRESSION OR FUNCTION INVO­
CATION IS AN ILLEGAL DATA ITEM 
AND HAS BEEN DELETED FROM THE 
DATA-DIRECTED I/O STATEMENT 
NUMBER xxx. 

E IEM18701 THE FORMAT LIST IN STATEMENT 
NUMBER xxx CONTAINS NO DATA 
FORMAT ITEMS AND WILL BE EXE­
CUTED ONCE IF THE STATEMENT IS 
INVOKED. 

system Action: At execution 
time, on finding no data format 
items" control passes out of 
the statement at the end of the 
format list. 

S IEM18111 IN STATEMENT NUMBER xxx THE 
FORMAT LIST CONTAINS AN E OR F 
FORMAT ITEM WITH AN ILLEGAL 
SPECIFICATION. THE FORMAT ITEM 
HAS BEEN DELETED. 

W IEM18121 IN STATEMENT NUMBER xxx AN E 
FORMAT ITEM HAS A FIELD WIDTH 
WHICH WOULD NOT PERMIT PRINTING 
OF A MINUS SIGN. 

S IEM18131 IMPLEMENTATION RESTRICTION. IN 
STATEMENT NUMBER xxx AN A, B OR 
CONTROL FORMAT ITEM SPECIFIES 
AN EXCESSIVE LENGTH WHICH HAS 
BEEN REPLl\.CED BY THE MAXIMUM OF 
32.,767. 

E IEM18141 IN STATEMENT NUMBER xxx AN 
INPUT STATEMENT CONTAINS A FOR­
MAT ITEM WHICH MAY BE USED ONLY 
IN OUTPUT STATEMENTS. 

W IEM18751 

Explanation: PAGE, SKIP" LINE, 
COLUMN, and format items A and 
B with no width specification, 
may be used only for output. 

system Action: Invalid format 
item deleted 

IN STATEMENT NUMBER 
FORMAT ITEM HAS AN 
SPECIFICATION IF USED 
OUTPUT DATA ITEM. 

xxx AN E 
ILLEGAL 
FOR AN 

Explanation: The specification 
violates the restriction that 
the field width w must be 
greater than s+n+2. 

system Action: There will be 
an error at execution time. 

User Response: Correct speci­
fication 

l\.ppendix G: Diagnostic Messages 231 



T IEM2304I COMPILER ERROR. DICTIONARY 
ENTRY zzzz UNRECOGNIZED IN STA­
TIC CHAIN. 

Explanation: Due to a compiler 
error. a dictionary entry with 
an unrecognized code byte has 
been found in the static chain. 

system Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative .. 

T IEM2305I COMPILER ERROR. DOPE VECTOR 
REQUESTED BY NON-STRING" NON­
STRUCTURE MEMBER zzzz 

Explanation: Due to a compiler 
error. the allocation of a dope 
vector has been requested for 
an item which should never 
require one. 

System Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM2352I THE AUTOMATIC VARIABLES IN THE 
BLOCK HEADED BY STATEMENT NUM­
BER xxx ARE MUTUALLY DEPENDENT. 
STORAGE CANNOT BE ALLOCATED. 

Explanation: This message is 
generated when a number of 
automatic variables are mutual­
ly dependent. It is not then 
possible to allocate storage in 
order of dependency. 

system Action: Compilation is 
terminated 

User Response: Rewrite state­
ment. eliminating mutual depen­
dency,. 

T IEM2700I COMPILER ERROR IN INPUT TO 
PHASE IEMRF, STATEMENT NUMBER 
xxx. SPECIAL ASSIGNED REGISTER 
IN FORMAT/DATA LIST CODE CANNOT 
BE FOUND. 

system Action: Compilation is 
termi nat.ed 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM2701I COMPILER ERROR. PHASE IEMRF, 
STATEMENT NUMBER xxx. PSTOR 
GREATER THAN 32K. 

238 

System Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM2702I COMPILER ERROR IN INPUT TO 
PHASE IEMRF, STATEMENT NUMBER 
xxx. BCT WITHOUT DICTIONARY 
REFERENCE AS DESTINATION. 

System Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative .• 

T IEM2703I COMPILER ERROR IN INPUT TO 
PHASE IEMRF, STATEMENT NUMBER 
xxx. LINK REGISTER IN BALR IS 
NOT ASSIGNED. 

System Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative .. 

T IEM2704I COMPILER ERROR IN INPUT TO 
PHASE IEMRF, S'IATEMENT NUMBER 
xxx. 'USNG' ITEM DOES NOT HAVE 
ASSIGNED REGISTER. 

System Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

S IEM2705I COMPILER ERROR IN INPUT TO 
PHASE IEMRF, STATEMENT NUMBER 
xxx. DROPPED REGISTER NOT 
ACTIVE. 

Explanation: Register number 
in field in DROP item is not in 
register table nor in storage. 

System Action: continues com­
pilation. ignoring DROP. Exe­
cution is inhibited. 

User Response: Save relevant 
data,. Call your local IBM rep­
resentative. 

S IEM2706I COMPILER ERROR IN INPUT TO 
PHASE IEMRF, STATEMENT NUMBER 
xxx. NOT ALL REGISTERS IN 
'DRPL' ITEM CAN BE FOUND. 

System Action: Ignores DRPL 
item and continues 



User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

S IEM27071 COMPILER ERROR IN INPUT TO 
PHASE IEMRF. STATEMENT NUMBER 
xxx,. Nor ALL SYMBOLIC REG­
ISTERS DROPPED AT END OF PROCE­
DURE OR BEGIN BLOCK. 

S IEM27081 

Explanation: One or more sym­
bolic registers have been used 
in the PROCEDURE or BEGIN 
block, but no corresponding 
DROP has occurred. 

System Action: Inserts in 
listing at end of block: the 
register number. the offset 
from register 9 at which the 
register is stored~ and the 
words • ERROR STOP'. 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

COMPILER ERROR IN INPUT TO 
PHASE IEMRF. STATEMENT NUMBER 
xxx. ASSIGNED REGISTER USED IN 
SOURCE FIELD IS NOT INITIAL­
IZED. 

Explanation: 
ister should 
value (e,.g. 
Y, 10 (X) et c. ) " 
found. 

The assigned reg­
have a previous 

X in AR X" Y or L 
but none can be 

System Action: Register 13 is 
used instead of the correct 
number. and compilation is con­
tinued .. 

User Response: Save relevant 
data,. Call your local IBM rep­
resentative. 

S IEM27091 COMPILER ERROR IN INPUT TO 
PHASE IEMRF, STATEMENT NUMBER 
xxx. SYMBOLIC REGISTER SHOULD 
HAVE PREVIOUS VALUE" BUT HAS 
NOT. 

Explanation: Register X in an 
instruction such as AR X, Y" or 
L Y,10eX). has not been set up 
previously. 

System Action: Inserts reg­
ister 12 and continues compila­
tion. 

User Response: Save relevant 
data. Call your local IBM rep­
resentative .. 

T IEM2710I COMPILER ERROR IN INPUT TO 

PHASE IEMRF, STATEMENT NUMBER 
xxx. MORE THAN ONE REGISTER 
PAIR REQUIRED IN AN INSTRUC­
TION. 

System Action: Compilation is 
terminated 

User Response: Save relevant 
data,. Call your local IBM rep­
resenta ti ve,. 

S IEM27111 COMPILER ERROR IN INPUT TO 
PHASE IEMRF. STATEMENT NUMBER 
xxx. ASSIGNED REGISTER IS 
STILL IN USE AT THE START OF A 
PROCEDURE. 

S IEM27121 

Explanation: Assigned register 
status should be zero at the 
start of each procedure. 

System Action: Drops the 
assigned register and continues 
compilation 

User Response: Save relevant 
data. Call your local IBM rep­
resentati ve,. 

COMPILER ERROR IN INPUT TO 
PHASE IEMRF. STATEMENT NUMBER 
xxx. IPRM/IPRM' OR EPRM/EPRM' 
PAIRS ARE NOT MATCHED IN PRE­
VIOUS STATEMENT. 

System Action: Compilation is 
continued 

User Response: Save relevant 
data,. Call your local IBM rep­
resentative,. 

S IEM2816I ILLEGAL ENVIRONMENT OPTION IN 
STATEMENT NUMBER xxx 

System Action: Remainder of 
environment attributes ignored. 

S IEM28171 COMPILER ERROR. INVALID ATTRI­
BUTE CODE IN STATEMENT NUMBER 
xxx 

Explanation: An invalid attri­
bute marker has been found in 
the dictionary entry corres­
ponding to the file attributes 
in the statement specified 

system Action: Ignores the 
rest of the entry 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

S IEM2818I CONFLICTING ATTRIBUTE IN STATE­
MENT NUMBER xxx IGNORED. 

Appendix G: Diagnostic Messages 239 



Explanation: An attribute 
other than 'ENVIRONMENT' clash­
es with previously declared 
attributes in the specified 
statement 

system Action: 
attribute. 

Ignores this 

S IEM2819I ERRONEOUS USE OF PARENTHESIS IN 
ENVIRONMENT OPTION IN STATEMENT 
NUMBER xxx 

Explanation: Misplaced paren­
thesis in ENVIRONMENT attribute 

system Action: Remainder of 
ENVIRONMENT attribute ignored 

S IEM2820I ERRONEOUS USE OF COMMA IN EN­
VIRONMENT OPTION IN STATEMENT 
NUMBER xxx 

Explanation: Misplaced comma 
in ENVIRONMENT attribute 

System Action: Remainder of 
ENVIRONMENT attribute ignored 

S IEM2821I ILLEGAL CHARACTER IN KEYWORD IN 
ENVIRONMENT OPTION IN STATEMENT 
NUMBER xxx 

Explanation: Invalid keyword 
in ENVIRONMENT attribute 

system Action: Remainder of 
ENVIRONMENT attribute ignored 

S IEM2822I FIELD TOO LARGE IN ENVIRONMENT 
OPTION IN STATEMENT NUMBER xxx 

Explanation: Field in item in 
ENVIRONMENT attribute too large 

System Action: Remainder of 
ENVIRONMENT attribute ignored 

S IEM2823I ERROR IN FORMAT OF ENVIRONMENT 
ATTRIBUTE IN STATEMENT NUMBER 
xxx 

S IEM2824I 

240 

Explanation: Format of item in 
ENVIRONMENT attribute incorrect 

System Action: Remainder of 
ENVIRONMENT attribute ignored 

CONFLI'CT BE'IWEEN ENVIRONMENT 
ATTRIBUTE AND OTHER ATTRIBUTES 
IN STATEMENT NUMBER xxx 

Explanation: 
ENVI RONMENT 
with either 
option or 
attribute. 

An option in the 
attribute clashes 

another ENVIRONMENT 
with a declared 

System Action: Remainder of 
ENVIRONMEN~ attribute ignored 

S IEM2825I CONFLICTING OPTIONS IN ENVIRON­
MENT ATTRIBUTE IN STATEMENT 
NUMBER xxx. REST OF ENVIRON­
MENT IGNORED. 

System Action: DECLARE control 
block is constructed from 
attributes which have already 
been processed. The rest are 
ignored. 

User Response: Correct ENVIR­
ONMENT option 

S IEM2826I IMPLEMENTATION RESTRICTION. 
DIRECT FILE zzzz DECLARED IN 
STATEMENT NUMBER xxx MUST HAVE 
AN ORGANIZATION SUB FIELD IN THE 
ENVIRONMENT ATTRIBUTE. 

System Action: 
action, but 
fail. 

No compile-time 
execution will 

User Response: Provide ENVIR­
ONMENT attribute 

W IEM2827I A D COMPILER OPTION HAS BEEN 
DECLARED IN THE ENVIRONMENT 
LIST IN STATEMENT NUMBER xxx. 
IT HAS BEEN IGNORED. 

W IEM2828I ENVIRONMENT OPTIONS CLTASA AND 
CLT360 HAVE BOTH BEEN DECLARED 
IN STATEMENT NUMBER xxx. THE 
SECOND ONE LISTED WILL BE 
IGNORED. 

W IEM2829I IN STATEMENT NUMBER xxx THE 
PARAMETER SPECIFIED IN THE 
INDEXAREA OPTION IS GREATER 
THAN 32767 AND HAS BEEN 
IGNORED. 

Explanation: If the parameter 
is not specified or is outside 
the permitted range, data man­
agement uses as much main stor­
age as is required for the 
master index. 

S IEM2833I COMPILER ERROR. OPERAND OF CL 
OR SL NOT LABEL. 

Explanation: The dictionary 
entry referenced after a com­
piler label or statement label 
marker in the text is not in 
fact a label 

System Action: The label defi­
nition is ignored. 



User Response: Save relevant 
data. Call your local IBM rep­
resentative,. 

T IEM2834I COMPILER ERROR. INVALID 
PSEUDO-CODE OPERATION. 

Explanation: The input text 
contains a marker which is not 
valid 

System Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative,. 

S IEM2835I COMPILER ERROR. SUBSCRIPTED 
LABEL CHAIN ERROR. 

Explanation: Subscripted 
labels in the source program 
result in the creation of 
chains of dictionary entries. 
An error in the chaining causes 
this message to appear. 

system Action: The label defi­
nition is ignored 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM2836I IMPLEMENTATION RESTRICTION. 
SOURCE PROGRAM TOO LARGE. 

Explanation: Not enough 
scratch core is available for 
the generated label number 
table created by this phase. 
The condition arises when a 
large number of such labels 
have been used, and this in 
turn is related to the size of 
the program. 

System Action: The compilation 
is terminated 

User Response: Break down the 
program into smaller modules 

T IEM2837I COMPILER ERROR. MULTIPLY 
DEFINED LABEL OR INVALID LABEL 
NUMBER. 

system Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

S IEM2852I COMPILER ERROR. NON-ZERO OFF­
SET IN PSEUDO-REGISTER REF­
ERENCE. 

Explanation: Use of a pseudo­
register accompanied by literal 
offset has been called for by 
compiled code. This cannot be 
assembled owing to the manner 
in which pseudo-register 
relocation is performed. 

System Action: The literal 
offset is ignored. 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

S IEM2853I COMPILER ERROR. REFERENCE TO 
INVALID DICTIONARY ENTRY. 

Explanation: A dictionary ref­
erence in the input text does 
not correspond to a legal dic­
tionary entry. 

System Action: ~n offset of 
zero is assembled into the out­
put text. 

User Response: Save relevant 
data. Call your local IBM rep­
resenta ti ve,. 

S IEM2854I COMPILER ERROR. INVALID DIC­
TIONARY REFERENCE OFFSET. 

ExPlanation: A dictionary ref­
erence in the input text cor­
responds to a valid dictionary 
entry, but the dictionary ref­
erence offset is not valid. 

System Action: An offset of 
zero is assembled into the out­
put text .. 

User Response: Save relevant 
data. Call your local IBM rep­
resenta ti ve,. 

S IEM2855I COMPILER ERROR. REQUESTED OFF­
SET NOT ASSIGNED. 

Explanation: Although implied 
by a dictionary reference in 
the text* storage has not been 
allocated 

Syste~ction: An offset of 
zero is assembled into the out­
put text. 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

S IEM2865I IMPLEMENTATION RESTRICTION. 
SOURCE PROGRAM CONTAINS TOO 
MANY BLOCKS AND/OR CONTROLLED 
VARIABLES. 

Appendix G: Diagnostic Messages 241 



Explanation: The compiler 
allocates a pseudo-register 
entry for each block and CON­
TROLLED variable in the source 
program. The maximum number of 
such entries is 1,024 • 

System Action: No pseudo­
registers are allocated for 
items after the limit has been 
reached. 

User Response: Reduce number 
of blocks, or CONTROLLED 
variables, in program to less 
than 1,025. 

W IEM2866I THIS PL/I COMPILATION HAS GEN­
ERATED EXTERNAL NAMES IN WHICH 
THE FIRST LEADING CHARACTER OF 
THE EXTERNAL PROCEDURE NAME HAS 
BEEN REPLACED BY A SPECIAL 
CHARACTER. 

E IEM2867I 

Explanation: The external pro­
cedure name with its first 
character changed is being used 
as a base for generating names 
for External Symbol Dictionary 
entries. If the same thing 
happens in another compilation, 
and the two are then joined by 
the Linkage Editor, two Exter­
nal Symbol Dictionary entries 
may have the same name. 

system Action: None 

IMPLEMENTATION RESTRICTION. 
EXTERNAL NAME zzzz HAS BEEN 
TRUNCATED TO 7 CHARACTERS. 

Explanation: 
tifiers are 
characters 

External 
restricted 

iden­
to 7 

System Action: Name of ESD 
entry truncated by taking first 
4 and last 3 characters; 
phase then carries on normally. 

User Response: Shorten the 
name. 

W IEM2868I THIS PL/I COMPILATION HAS GEN­
ERATED EXTERNAL NAMES IN WHICH 
THE SECOND LEADING CHARACTER OF 
THE EXTERNAL PROCEDURE NAME HAS 
BEEN REPLACED BY A SPECIAL 
CHARACTER. 

242 

Explanation: The external pro­
cedure with its second charac­
ter changed is being used as a 
base for generating names for 
External Symbol Dictionary 
entries. If the same thing 
happens in another compilation, 

and the two are then joined by 
the Linkage Editor, two Exter­
nal Symbol Dictionary entries 
may have the same name. 

System Action: None 

T IEM2881I COMPILER ERROR IN STATEMENT 
NUMBER xxx. INVALID PSEUDO­
CODE OPERATION. 

Explanation: The input text 
contains a marker which is not 
valid. 

System Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM 
representative. 

S IEM2882I COMPILER ERROR IN STATEMENT 
NUMBER xxx. OPERAND OF DC CODE 
INVALID. 

S IEM2883I 

Explanation: The operand of a 
DCA4 pseudo-code item is not 
valid the operand should 
always be relocatable. 

System Action: An offset of 
zero is assembled into the 
text. 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

COMPILER ERROR IN 
NUMBER xxx. INVALID 
FOR RELOCATABLE TEXT. 

STATEMENT 
REQUEST 

Explanation: The operand of a 
branch instruction has been 
found to require relocation. 

System Action: An offset of 
zero is assembled into the 
text. 

User Response: Save relevant 
data. Call your local IBM rep­
resentative .• 

S IEM2884I COMPILER ERROR IN STATEMENT 
NUMBER xxx~ NON-ZERO OFFSET IN 
PSEUDO-REGISTER REFERENCE. 

Explanation: Use of a pseudo­
register accompanied by a 
literal offset has been called 
for by compiled code. This 
cannot be assembled owing to 
the manner in which pseudo­
register relocation is 
performed. 



System Action: The 
offset is ignored 

literal 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

S IEM2885I COMPILER ERROR IN STATEMENT 
NUMBER xxx. REFERENCE TO 
INVALID DICTIONARY ENTRY. 

Explanation: A dictionary ref­
erence in the input text does 
not correspond to a legal dic­
tionary entry 

System Action: An offset of 
zero is assembled into the out­
put text 

User Response: Save relevant 
data. Call your local IBM rep­
resentative .. 

S IEM2886I COMPILER ERROR IN STATEMENT 
NUMBER xxx. INVALID DICTIONARY 
REFERENCE OFFSET. 

Explanation: A dictionary ref­
erence in the text corresponds 
to a valid dictionary entry, 
but the dictionary reference 
offset is not valid. 

system Action: An offset of 
zero is assembled into the out­
put text 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

S IEM2887I COMPILER ERROR IN STATEMENT 
NUMBER xxx. REQUESTED OFFSET 
NOT ASSIGNED. 

Explanation: Although implied 
by a dictionary reference in 
the input text, storage has not 
been allocated. 

system Action: An offset of 
zero is assembled into the out­
put text. 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM2888I COMPILER ERROR IN STATEMENT 
NUMBER xxx. UNDEFINED LABEL. 

Explanation: No offset has 
been assigned to a label gener­
ated by the compiler,. 

system Action: 
terminated 

compilation is 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

S IEM2897I IMPLEMENTATION RESTRICTION. 
QUALIFIED NAME zzzz LONGER THAN 
256 CHARACTERS. 

Explanation: The fully quali­
fied name of the variable indi­
cated will not fit into its 
Symbol Table entry 

System Action: Leaves Symbol 
Table entry incomplete and car­
ries on with the initialization 
of the Static Internal control 
section .• 

Us er Respons e: 
qualified name 

Shorten the 

S IEM2898I DATA-DIRECTED GET STATEMENT IN 
PROGRAM WITH NO LIST BUT PRO­
GRAM HAS NO DATA VARIABLES. 

W IEM2899I 

System Action: Zeros are 
inserted in the argument list 
for the call to the Library 
routine to 'GET DATA', and com­
pilation continues 

User Response: 
statement 

Correct GET 

INITIALIZATION SPECIFIED FOR 
TOO FEW ELEMENTS IN STATIC 
ARRAY zzzz 

System Action: Initialization 
terminated when end of initial 
string is found. 

W IEM2900I INITIALIZATION SPECIFIED FOR 
TOO MANY ELEMENTS IN STATIC 
ARRAY zzzz 

system Action: Initialization 
is terminated when every ele­
ment has been initialized. 

T IEM2913I COMPILER ERRO~. INVALID 

IEM3088I 
-32131 

PSEUDO-CODE OPERATION. 

Explanation: The input text 
contains a marker which is not 
valid 

System Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

THE CONFLICTING ATTRIBUTE aaaa 
HAS BEEN IGNORED IN THE DECLAR-

Appendix G: Diagnostic Messages 243 



ATION OF IDENTIFIER yyyy IN 
STATEMENT NUMBER xxx 

Explanation: The attribute 
given in the message conflicts 
with another attribute declared 
for the same identifier, or is 
invalid for that identifier. 

system Action: 
given in the 
ignored .. 

The attribute 
message is 

E IEM35841 AN UNBALANCED NUMBER OF PAREN­
THESES HAS BEEN DETECTED WITHIN 
A STATEMENT AT OR NEAR STATE­
MENT NUMBER xxx 

Explanation: An occurrence of 
a comma immediately followed by 
a period at or near the given 
statement has been taken as a 
statement delimiter. The 
statement contains an unba­
lanced number of parentheses. 

T IEM38411 I/O LRROR ON SEARCHING DIRECTO­
RY. 

Explanation: This message is 
written directly on SYSPRINT. 
A permanent 1/0 error was 
detected when an attempt was 
made to search the directory of 
the library containing the com­
piler. 

System Action: Compilation is 
terminated 

User Response: Check the 
nirectory and re-attempt compi­
lation. If error persists, 
have the computing system 
checked. 

T IEM38421 COMPILER ERROR. ALL TEXT 
BLOCKS IN CORE ARE BUSY. REF­
ERENCED BLOCK CANNOT BE BROUGHT 
INTO CORE. 

Explanation: All blocks in 
core have become busy. Compil­
er cannot continue since an 
external block cannot be read 
in. 

system Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative .. 

T IEM38431 COMPILER ERROR. ZDABRF USED 
WITH BLOCK NOT IN CORE. 

244 

T IEM38441 

Explanation: Referenced block 
is not in core 

system Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentati ve,. 

COMPILER ERROR. 
ENTRY IS TOO LONG 
ENVIRONMENT. 

DICTIONARY 
FOR THIS 

System Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resenta ti ve,. 

T IEM38451 COMPILER ERROR. REFERENCED 
TEXT BLOCK NOT IN CORE. 

§ystem Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM38461 IMPLEMENTATION RESTRICTION. 
SOURCE PROGRAM TOO LARGE. ALL 
TEXT BLOCKS FULL. 

Explanation: There is no more 
space for text in this environ­
ment 

System Action: Compilation is 
terminated 

User ResQQnse: Subdivide pro­
gram and recompile 

T IEM38471 COMPILER ERROR. REQUEST FOR 
SCRATCH CORE IS GREATER THAN 
4K. 

EXQlanation: Request for 
scratch core exceeds 4096 bytes 

System Action: Compilation is 
terminated 

User ResQonse: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM38481 COMPILER ERROR. AN ATTEMPT WAS 
MADE TO RELEASE UNALLOCATED 
CORE. 

EXQlanation: Attempt to 
release unallocated scratch 
core 



System Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM3849I COMPILER ERROR. PHASE yy IN 
RELEASE LIST IS NOT IN PHASE 
DIRECTORY. 

System Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM3850I COMPILER ERROR. PHASE yy IN 
LOAD LIST IS NOT IN PHASE 
DIRECTORY. 

system Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM3851I COMPILER ERROR. PHASE yy NOT 
MARKED. IT IS LOADED. 

Explanation: An unmarked phase 
is loaded 

System Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative~ 

T IEM3852I COMPILER ERROR. REFERENCED 
BLOCK IS NOT IN USE. COMPILER 
CANNOT CONTINUE. 

system Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM3853I IMPLEMENTATION RESTRICTION. 

T IEM3855I 

SOURCE PROGRAM TOO LARGE. DIC­
TIONARY IS FULL. 

Explanation: This message is 
written directly on SYSPRINT. 

System Action: Compilation is 
terminated 

User Response: 
more than one 
recompile 

subdivide into 
program and 

ERROR IN PHASE yy. 

Explanation: This message is 
written directly on SYSPRINT. 
A compiler error has been 
discovered during the printing 
of compile-time diagnostic mes­
sages (if phase quoted in mes­
sage is BM) or of source­
program diagnostic messages (if 
phase is XA). 

system Action: Compilation is 
terminated. Note that only the 
diagnostic message output is 
incomplete. All other output 
files have been generated 
satisfactorily. 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM3856I COMPILER ERROR. PROGRAM CHECK 
TYPE nnnn HAS OCCURRED IN PHASE 
yy AT OR NEAR STATEMENT NUMBER 
xxx 

Explanation: A program check 
has occurred during compila­
tion. This is due to a compil­
er failure which may have been 
exposed by an error in the 
source code. 

System Action: Compilation is 
terminated 

User Response: Check source 
code carefully. If an error is 
found, correcting it may enable 
compilation to be completed 
successfully. Whether or not 
an error is found, please save 
relevant data and contact your 
your local IBM representative. 

T IEM3857I COMPILER ERROR. ATTEMPT TO 
PASS CONTROL TO AN UNNAMED 
PHASE. AN UNMARKED PHASE HAS 
BEEN ENCOUNTERED. 

T IEM3858I 

Explanation: An unmarked phase 
has been encountered. Compiler 
cannot continue 

system Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

COMPILER ERROR. 
UNWANTED PHASE 
DIRECTORY. 

REQUESTED OR 
NOT IN PHASE 

Explanation: 
phase which 

Request to mark a 
is not in phase 

Appendix G: Diagnostic Messages 245 



directory. 
continue. 

Compiler cannot 

system Action: Compilation is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

T IEM3859I INSUFFICIENT CORE IS AVAILABLE 
TO CONTINUE THIS COMPILATION. 

E IEM3860I 

T IEM3861I 

Explanation: An attempt is 
being made to expand the number 
of text blocks in core. The 
GETMAIN routine has failed to 
get the core. This will only 
occur where less than 45,056 
bytes are available to the com­
piler~ or when the SIZE option 
has been given too large a 
value. 

System Action: Compilation is 
terminated 

User Response: Check the SIZE 
option and check that the 
required core is available in 
the system on which the compi­
lation is being run 

I/O ERROR ON SYSIN. 
~CCEPTED AS INPUT. 

RECORD 

Explanation: The error may be 
a machine error, or" if SYSIN 
is a card reader, there may be 
a hole pattern which does not 
represent a valid System/360 
character (validity check). 

System Action: The error mes­
sage number is printed in the 
source listing before the 
record in error. The record is 
accepted as input. 

User Response: If SYSIN is a 
card reader, check that every 
column of the indicated card 
contains a valid code. If the 
I/O error persists, have the 
computing system checked. 

I/O ERROR 
TION OF LOAD 
ATED. 

ON SYSLIN. GENERA­
FILE IS TERMIN-

User Response: Check DD card 
and recompile. If I/O error 
persists, have computing system 
checked. 

T IEM3862I I/O ERROR ON SYSPRINT 

Explanation: This is an on-

246 

line message. It is written to 
operator. There is an I/O 
error on SYSPRINT. The 
compiler cannot continue. 

System Action: Compilation is 
terminated 

User Response: Check DD card 
and recompile. If I/O error 
persists. have computing system 
checked. 

T IEM3863I I/O ERROR ON SYSPUNCH. GENERA­
TION OF OBJECT DECK IS TERMIN­
ATED. 

User Response: Check DD card 
and recompile. If I/O error 
persists. have computing system 
checked. 

T IEM3864I I/O ERROR ON SYSUTl 

T IEM3865I 

T IEM3872I 

Explanation: This message is 
written directly on SYSPRINT. 
There is an I/O error on 
SYSUT1. The compiler cannot 
continue .. 

System Action: Compilation is 
terminated 

User Response: Check DD card 
and recompile. If I/O error 
persists_ have computing system 
checked,. 

ERROR IN COMPILER ABORT 

Explanation: This message is 
written directly on SYSPRINT. 
The compiler has tried twice to 
abort and cannot do so. Compi­
lation will therefore terminate 
without the production of any 
further diagnostic messages. 

system Action: Compilation is 
termina ted 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

I/O ERROR ON SYSUT3 

Explanation: This message is 
written directly on SYSPRINT. 
There is an I/O error on 
SYSUT3. The compiler cannot 
continue. 

System ~~~ion: Compilation is 
terminated 

User Response: 
and recompile. 

Check 
If 

DD card 
I/O error 



persists, have computing system 
checked. 

E IEM38731 I/O ERROR ON SYSUT3. RECORD 
ACCEPTED AS INPUT. 

system Action: 
continues 

Compilation 

User Response: Check DD card 
and recompile. If I/O error 
persists, have computing system 
checked. 

T IEM3874I UNABLE TO OPEN SYSIN 

Explanation: This message is 
written directly on SYSPRINT. 
Unable to open SYSIN. The com­
piler cannot continue. 

System Action: Compilation is 
terminated 

User Response: Check SYSIN DD 
card and recompile 

T IEM3875I UNABLE TO OPEN SYSLIN. LOAD 
FILE NOT GENERATED. 

user~2nse: Check SYSLIN DD 
card and recompile. If error 
persists, have computing system 
checked. 

T IEM3876I UNABLE TO OPEN SYSPRINT 

Explanation: This is an on­
line message. It is written to 
operator. Unable to open 
SYSPRINT. The compiler cannot 
continue 

system Action: Compilation is 
terminated 

User Response: Check SYSPRINT 
DD card and recompile 

T IEM3877I UNABLE TO OPEN SYSPUNCH. 
OBJECT DECK NOT GENERATED. 

User Response: Check SYSPUNCH 
DD card and recompile 

T IEM3878I UNABLE TO OPEN SYSUT1. COMPI­
LATION CANNOT CONTINUE. 

T IEM3880I 

system Action: Compilation is 
terminated 

User Response: Check SYSUTl DD 
card and recompile 

UNABLE TO OPEN SYSUT3 

Explanation: This 
written directly on 

message is 
SYSPRINT. 

Unable to open SYSUT3. 
compiler cannot continue. 

The 

System Action: Compilation is 
terminated 

User Response: Check SYSUT3 DD 
card and recompile 

S IEM3888I SYSPUNCH BLOCKSIZE NOT A MULTI­
PLE OF 80. THE DECK AND MACDCK 
OPTIONS HAVE BEEN DELETED. 

Explanation: On opening SYS­
PUNCH. the blocksize defini­
tion. either on the DD card or 
in the data-set label, was not 
a multiple of 80. 

System Action: The DECK and 
MACDCK optIons are deleted 

User Response: Correct the 
blocksize definition and recom­
pile 

S IEM3889I SYSIIN BLOCKSIZE NOT A MULTIPLE 
OF 80. THE LOAD OPTION HAS 
BEEN DELETED. 

Explanation: On opening SYS­
LIN# the blocksize definition, 
either on the DD card or in the 
data-set label, was not a mul­
tiple of 80. 

system Af1ion: The LOAD option 
is deleted 

User Response: Correct the 
blocksize definition and recom­
pile 

W IEM3890I NO RECFM GIVEN FOR SYSIN. u 
TYPE RECORDS ARE ASSUMED 

Explanation: No RECFM defini­
tion has been found. in the DeB 
parameter of the SYSIN DD card 
or the data-set label. 

system Action: Compilation 
proceeds assuming U type 
records. U format will be 
specified in the data-set label 
when SYSIN is closed. 

User Response: Check RECFM 
definition on SYSIN DD card and 
rer \,,'11 if necessary. 

T IEM3891I SYSIN BLOCKSIZE IS TOO LARGE 

Explanation: On opening SYSIN 
for unblocked records, a block­
size of greater than 100 has 
been specified either in the 

Appendix G: Diagnostic Messages 247 



DCB parameter of the SYSIN DD 
card or in the data-set label. 

system Action: Compilation is 
terminated 

User Response: 
invalid blocksize 
and recompile 

Change the 
definition 

T IEM3893I SYSIN BLOCKSIZE NOT A MULTIPLE 
OF RECORD LENGTH. 

Explanation: On opening SYSIN 
for FB format records, it has 
been noted that the blocksize 
definition, either on the DD 
card or in the data set label, 
is not an exact multiple of the 
record length. 

System Action: Compilation is 
terminated. 

User Response: Correct the 
blocksize definition and recom­
pile 

T IEM3894I SYSIN BLOCKSIZE NOT EQUAL TO 
RECORD LENGTH. 

Explanation: On opening SYSIN 
for F format records, the block 
size and record-length defini­
tions, either on the DD card or 
in the data-set label, were 
found to be unequal. 

system Action: Compilation is 
terminated. 

User Response: Change the 
incorrect definition and recom­
pile 

T IEM3895I SYSIN RECORD LENGTH TOO LARGE 

Explanation: On opening SYSIN 
for F format records, a record 
length definition, either on 
the DD card or in the data-set 
label, was found to be greater 
than 100. 

system Action: Compilation is 
terminated. 

User Response: Correct the 
record-length definition and 
recompile 

T IEM3896I SYSPRINT BLOCKSIZE IS NOT OF 
FORM 4+N*125 

248 

Explanation: On opening SYS­
PRINT, the blocksize defini­
tion, either on the DD card or 

in the data-set label, was not 
of the form 4+N*125. 

System Action: Compilation is 
terminated 

User Response: Correct the 
blocksize definition and recom­
pile 

T IEM3897I SYSIN DEFINITION IS INVALID 

Explanation: On opening SYSIN, 
the record-format definition, 
either on the DD card or in the 
data-set label, was varying. 
This is invalid. 

System Action: Compilation is 
terreinated 

User Response: Correct the 
nefinition of SYSIN and recom­
pile 

W IEM3898I COMPILER CORE REQUIREMENT 
EXCEEDED SIZE GIVEN. AUXILIARY 
STORAGE USED. 

§ystem 
opened 

Action: SPILL file 

~ IEM3899I A BLOCK FOR OVERFLOW DICTIONARY 
ENTRY OFFSETS WAS CREATED DUR­
ING COMPILER PHASE YY 

Explanation: This message 
occurs only in compilations run 
with the extended dictionary 
option. An entry offset table 
in a dictionary block became 
full before the entries filled 
the block. 

system Action: The block is 
created to hold the entry off­
sets overflowing from any entry 
offset tables during this com­
pilation. 

E IEM3900I ERROR IN PROCESS STATEMENT. 

Explanation: This message is 
written directly on SYSPRINT. 
The syntax of the PROCESS 
statement is incorrect. 

system Action: An attempt is 
made to interpret the statement 
correctly. Actual results will 
depend on the nature of the 
syntax error. 

User Response: Check that the 
options required have been cor­
rectly applied. If not, and 
recompilation is necessary, 



E IEM3901I 

E IEM3902I 

correct the syntax of the PROC­
ESS statement. 

ERROR IN PROCESS STATEMENT. 
DEFAULT OPTIONS ASSUMED. 

Explanation: This message is 
written directly on SYSPRINT. 
Invalid syntax in the PROCESS 
statement has rendered the 
options unrecognizable. 

system Action: 
tion defaults 
all options. 

The installa­
are assumed for 

User Response: If the use of 
installation default options is 
unsatisfactory, correct the 
syntax of the PROCESS statement 
and recompile. 

OBJNM FIELD TOO LARGE. 
EIGHT CHARACTERS OF NAME 
BEEN USED. 

FIRST 
HAVE 

Explanation: The name speci­
fied in the OBJNM option may 
not have more than eight char­
acters. 

System Action: First eight 
characters of name used. 

User Response: Either amend 
object module name as required, 
or alter other references to 
object module to correspond 
with truncated name. 

W IEM3903I CARRIAGE CONTROL POSITION LIES 
WITHIN THE SOURCE MARGIN. IT 
HAS BEEN IGNORED. 

User Response: Recompile witp 
carriage control position out­
side source margin. 

E IEM3904I THE FOLLOWING STRING NOT IDEN­
TIFIED AS A KEYWORD - yyyy 

Explanation: This message is 
written directly on SYSPRINT. 
The compiler was processing the 
option list passed to it as an 
invocation parameter, when it 
found a character string that 
it could not identify as a 
keyword. 

System Action: The offending 
character string is ignored. 

User Response: Correct the 
erroneous parameter, and recom­
pile. 

E IEM3905I THE FOLLOWING KEYWORD DELETED, 
DEFAULT USED FOR - yyyy 

E IEM3906I 

Explanation: This message is 
written directly on SYSPRINT. 
The compiler was processing the 
option list passed to it as an 
invocation parameter, when it 
found an option keyword that 
had been deleted at system gen­
eration. 

System Action: The keyword 
passed at invocation time is 
ignored. The default interpre­
tation for the option, as set 
at system generation, is used. 

User Response: None, unless it 
is required to reinstate the 
deleted keyword, in which case 
it is necessary to generate the 
required version of the compil­
er with a system generation 
run. 

OPTION SPECIFICATION CONTAINS 
INVALID SYNTAX, DEFAULT USED 
FOR - yyyy 

Explanation: This message is 
written directly on SYSPRINT. 
The compiler was processing the 
option list passed to it as an 
invocation parameter, when it 
found that a sub-parameter, 
associated with the keyword 
given in the diagnostic mes­
sage, was incorrectly speci­
fied. 

System Action: The keyword 
passed at invocation time 1S 
ignored. The default interpre­
tation for the option, as set 
at system generation# is used. 

User Res22Dse: Correct the 
erroneous parameter, and recom­
pile.o 

E IEM3907I THE FOLLOWING NAME IGNORED AS 
IT DOES NOT APPEAR IN THE PHASE 
DIRECTORY - yy 

Explanation: This message is 
written directly on SYSPRINT. 
The two characters given in the 
message were used as parameters 
to the DUMP option. This usage 
is incorrect since the charac­
ters do not represent the name 
of a compiler phase. 

System Action: The processing 
of the DUMP option continues, 
unless the two characters were 
used to indicate the first 

Appendix G: Diagnostic Messages 249 



phase of an inclusive phase 
dump, in which case the scan of 
the DUMP option is terminated. 

User Response: Correct the 
erroneous parameter, a nd recom­
pile. 

S IEM3908I SYNTAX ERROR IN DUMP OPTION 
SPECIFICATION 

Explanation: This message is 
written directly on SYSPRINT. 
Incorrect use of delimiters in 
the specification of the DUMP 
option parameters. 

system Action: Processing of 
DUMP option is terminated 

User Response: Correct 
erroneous specification, 
recompile. 

the 
and 

T IEM3909I EXTENDED DICTIONARY CAPACITY 
EXCEEDED. COMPILATION TERMIN­
ATED. 

Explanation: This message 
occurs only in compilations run 
with the extended dictionary 
option.. The block creat.ed to 
hold overflow dictionary entry 
offsets is full. 

system Action: compilation is 
terminated 

User Response: subdivide pro­
gram and recompile 

T IEM3910I SYSPRINT BLOCKSIZE IS TOO LARGE 
WITH THIS SIZE OPTION 

W IEM3911I 

Explanation: The size speci­
fied allows a limited buffer 
area which is smaller than that 
required by the specified 
blocksize. 

System Action: compilation is 
terminated 

User Response: Use smaller 
blocksize or larger SIZE option 

SIZE AVAILABLE FOUND 
yyyyyy BYTES. 
ASSUMED. COMPILATION 
UES. 

Explanation: SIZE is 
be less than 44K. 

TO BE 
SIZE=44K 

CONTIN-

found to 

T IEM3912I SYSIN BLOCKSIZE IS TOO LARGE 
WITH THIS SIZE OPTION 

Explanation: The size speci-

250 

fied allows a limited buffer 
area which is smaller than that 
required by the buffers for 
SYSIN, or for SYSIN and SYS­
PRINT together. 

System Action: Compilation is 
terminated 

User Response: Ensure that 
SIZE option allows room for 
both the SYSIN and the SYSPRINT 
buffers,. 

S IEM3913I SYSPUNCH BLOCKSIZE IS TOO LARGE 
WITH THIS SIZE OPTION. THE 
DEC 1< AND MACDCK OPTIONS HAVE 
BEEN DELETED. 

Explanation: The SIZE speci­
fied allows a limited buffer 
area which is smaller than that 
required by the specified SYS­
PUNCH blocksize. 

System Action: The DECK and 
MACDCK options are deleted 

User Response: Ensure that the 
SIZE option allows room for the 
SYSPUNCH buffers needed, and 
recompile. 

S IEM3914I SYSLIN BLOCKSIZE IS TOO LARGE 
WITH THIS SIZE OPTION. THE 
LOAD OPTION HAS BEEN DELETED. 

Explanation: The SIZE speci­
fied allows a limited buffer 
area which is smaller than that 
required by the specified SYS­
LIN blocksize. 

system Action: The LOAD option 
is deleted. 

User Response: Ensure that the 
SIZE option allows room for the 
SYSLIN buffers needed and 
recompile. 

COMPILE-TIME PROCESSING DIAGNOSTIC MESSAGES 

The details given under the heading 
"Source Program Diagnostic Messages" apply 
equally to compile-time processing messa­
ges, with one exception: all compile-time 
processing messages are listed in a group 
following the SOURCE 2 input listing and 
preceding the source program listing. 

The line number in the messages refers 
to the line in which the error was found. 
The incorrect statement may have commenced 
on an earlier line. 



S IEM4106I UNEXPECTED END-OF-FILE IN 
STRING AT OR BEYOND LINE NUMBER 
xxx. A STRING DELIMITER HAS 
BEEN INSERTED. 

Explanation: End-of-file 
encountered while scanning for 
closing quote of a string con­
stant. 

System Action: Closing quote 
inserted before end-of-file. 

T IEM4109I REPLACEMENT VALUE IN LINE NUM­
BER xxx CONTAINS UNDELIMITED 
STRING. PROCESSING TERMINATED. 

Explanation: End-of-string 
delimiter cannot be found in a 
replacement value. 

E IEM4112I ILLEGAL CHARACTER IN APPARENT 
BIT STRING IN LINE NUMBER xxx. 
STRING TREATED AS A CHARACTER 
STRING. 

S IEM4115I UNEXPECTED END-OF-FILE IN COM­
MENT AT OR BEYOND LINE NUMBER 
xxx. A COMMENT DELIMITER HAS 
BEEN INSERTED. 

Explanation: End-of-file 
encountered while scanning for 
end-of-comment delimiter. 

T IEM4118I REPLACEMENT VALUE IN LINE NUM­
BER xxx CONTAINS UNDELIMITED 
COMMENT. PROCESSING TERMIN­
ATED. 

Explanation: End-of-comment 
delimiter cannot be found in a 
replacement value,. 

E IEM4121I INVALID CHARACTER HAS BEEN 
REPLACED BY BLANK IN OR FOLLOW­
ING LINE NUMBER xxx 

T IEM4124I 

T IEM4130I 

Explanation: Invalid character 
found in source text 

COMPILER ERROR. 
STACK OUT OF PHASE 

PUSH DOWN 

system Action: Processing ter­
minated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

UNDECLARED IDENTIFIER zzzz REF­
ERENCED AT LINE NUMBER xxx. 
PROCESSING TERMINATED. 

Explanation: An attempt is 
made to execute a statement 
which references an identifier 

for which a DECLARE statement 
has not been executed. 

E IEM4133I ~ ENCOUNTERED IN LABELLIST OF 
STATEMENT IN LINE NUMBER xxx. 
IT HAS BEEN IGNORED. 

User Response: 
label list 

Remove % from 

E IEM4134I UNE 2U'ECTED COLON WITHOUT 
PRECEDING LABEL IN LINE NUMBER 
xxx. COLON HAS BEEN IGNORED. 

S IEM4136I STATEMENT TYPE NOT RECOGNIZABLE 
IN LINE NUMBER xxx. STATEMENT 
DELETED. 

E IEM4139I PREVIOUS USAGE OF IDENTIFIER 
zzzz CONFLICTS WITH USE AS 
LABEL IN LINE NUMBER xxx. ANY 
REFERENCE WILL TERMINATE PROC­
ESSING. 

system Action: No action 
unless an attempt is made to 
execute a statement which ref­
erences the ill-defined iden­
tifier .• 

E IEM4142I LABEL zzzz IN LINE NUMBER xxx 
MULTIPLY DEFINED. ANY REF­
ERENCE WILL TERMINATE PROCESS­
ING. 

System Action: No action 
unless a statement which ref­
erences the multiply defined 
label is executed. 

W IEM4143I LABELS BEFORE DECLARE STATEMENT 
IN LINE NUMBER xxx ARE IGNORED. 

E IEM4148I IDENTIFIER zzzz IN LINE NUMBER 
xxx USED WITH CONFLICTING 
ATTRIBUTES. ANY REFERENCE WILL 
TERMINATE PROCESSING. 

Explanation: Usage of iden­
tifier conflicts with a pre­
vious usage or declaration. If 
the line number refers to a 
procedure END statement, the 
error occurred within the pro­
cedure. 

System Action: No action 
unless a statement is executed 
which references the identifier 
in error. 

E IEM4150I FORMAL PARAMETER zzzz WAS NOT 
DECLARED IN PROCEDURE ENDING IN 
LINE NUMBER xxx. TYPE CHARAC­
TER HAS BEEN FORCED. 

Appendix G: Diagnostic Messages 251 



E IEM4151I LABEL zzzz IS NOT DEFINED. ANY 
REFERENCE WILL TERMINATE PROC­
ESSING .. 

system Action: No action 
unless a statement is executed 
which references the undefined 
label. 

E IEM4152I END OF FILE OCCURS BEFORE END 
FOR CURRENT PROCEDURE OR DO. 
END HAS BEEN INSERTED AT LINE 
NUMBER xxx. 

E IEM4153I LABEL zzzz IS UNDEFINED IN THE 
PROCEDURE ENDING IN LINE NUMBER 
xxx. ANY REFERENCE WILL TERMI­
NATE PROCESSING. 

E IEM4154I 

Explanation: Label may have 
been defined outside of proce­
dure, but transfers out of pro­
cedures are not allowed. 

system Action: ~ny reference 
to the label in the procedure 
will terminate processing,. 

SEMICOLON TERMINATES IF EXPRES­
SION IN LINE NUMBER xxx. SEMI­
COLON HAS BEEN IGNORED. 

S IEM4157I NEITHER % NOR THEN FOLLOWS IF 
EXPRESSION IN LINE NUMBER xxx. 
IF STATEMENT DELETED. 

E IEM4160I % MISSING BEFORE THEN OF IF 
STATEMENT IN LINE NUMBER xxx. 
% HAS BEEN INSERTED. 

E IEM4163I THEN MISSING FOLLOWING % IN IF 
STATEMENT IN LINE NUMBER xxx. 
A THEN HAS BEEN INSERTED. 

E IEM41661 COMPILE TIME ST~TEMENT MUST 
FOLLOW THEN OR ELSE IN LINE 
NUMBER xxx. A % HAS BEEN 
INSERTED IN FRONT OF STATEMENT. 

Explanation: % does not pre­
cede the first statement in the 
THEN or ELSE clause of an IF 
statement .• 

User Response: If the state­
ment in question is meant to be 
a non-compile time statement, 
it should be put inside of a "% 
DO" group. 

E IEM4169I THEN MISSING FROM IF STATEMENT 
AT LINE NUMBER xxx IN A COMPILE 
TIME PROCEDURE. A THEN H~S 

BEEN INSERTED. 

E IEM4172I THE % IN LINE NUMBER xxx IS NOT 
ALLOWED IN COMPILE TIME PROCE­
DURES. IT HAS BEEN IGNORED. 

252 

W IEM4175I LABELS BEFORE ELSE IN LINE NUM­
BER xxx HAVE BEEN IGNORED. 

Explanation: Label(s) found 
preceding an ELSE statement. 

S IEM41761 NO STATEMENT FOLLOWS THEN OR 
ELSE IN LINE NUMBER xxx. A 
NULL STATEMENT HAS BEEN INSERT­
ED. 

E IEM41781 ELSE WITHOUT PRECEDING IF IN 
LINE NUMBER xxx HAS BEEN 
IGNCRED,. 

S IEM4184I ASSIGNMENT STATEMENT IN LINE 
NUMBER xxx MUST END WITH SEMI­
COLON. TEXT DELETED TILL SEMI­
COLON IS FOUND. 

E IEM4187I LABEL MISSING FROM PROCEDURE 
STATEMENT IN LINE NUMBER xxx. 
A DUMMY LABEL HAS BEEN INSERT­
ED. 

T IEM41881 

E IEM4190I 

IMPLEMENTATION RESTRICTION. 
MORE THAN 254 COMPILE-TIME 
CEDURES MAY BE DEFINED 
COMPILATION. PROCESSING 
MINATED. 

NO 
PRO­
IN A 
TER-

User Response: 
procedures 

Delete excess 

LABEL zzzz ON PROCEDURE IN LINE 
NUMBEER xxx IS PREVIOUSLY 
DEFINED. ANY REFERENCE TO IT 
WILL TERMINATE PROCESSING. 

System Action: No action 
unless a statement is executed 
which references the multiply 
defined label. 

E IEM41931 ILLEGAL USE OF FUNCTION NAME 
zzzz ON LEFT HAND SIDE OF 
EQUALS SYMBOL. ANY REFERENCE 
WILL TERMINATE PROCESSING. 

E IEM4196I PREVIOUS USE OF IDENTIFIER zzzz 
CONFLICTS WITH USE AS ENTRY 
NAME IN LINE NUMBER xxx. ANY 
REFERENCE WILL TERMINATE PROC­
ESSING. 

System Action: No action 
unless a statement is executed 
which references the erroneous 
identifier. 

S IEM4199I FOR~L PARAMETER zzzz IS 
REPEATED IN PARAMETER LIST IN 
LINE NUMBER xxx. THE SECOND 
OCCURRENCE HAS BEEN REPLACED BY 
A DUMMY PARAMETER. 

S IEM42021 IMPLEMENT~TION RESTRICTION: 
MORE THAN 15 PARAMETERS OCCUR 



IN LINE NUMBER xxx. ANY REF­
ERENCE WILL TERMINATE PROCESS­
ING. 

System Action: Processing is 
terminated if an attempt is 
made to execute a statement 
which references the procedure 
that has more than 15 paramet­
ers. 

E IEM4205I FORMAL PARAMETER MISSING IN 
LINE NUMBER xxx. A DUMMY HAS 
BEEN INSERTED. 

E IEM4208I UNRECOGNIZABLE PARAMETER yyyy 
IN LINE NUMBER xxx. IT HAS 
BEEN REPLACED BY A DUMMY PARAM­
ETER. 

S IEM4211I PARAMETER IN LINE NUMBER xxx 
NOT FOLLOWED BY COMMA OR PAREN­
THESIS. TEXT DELETED TO NEXT 
COMMA OR END OF STATEMENT. 

S IEM4212I UNEXPECTED END OF PROCEDURE 
STATEMENT IN LINE NUMBER xxx. 
RIGHT PARENTHESIS INSERTED. 

Explanation: A semicolon was 
encountered during scan of an 
apparent parameter list. 

System Action: A right paren­
thesis is inserted before the 
semicolon and processing con­
tinues. 

E IEM4214I ILLEGAL FORM FOR ATTRIBUTE FOR 
RETURNED VALUE IN LINE NUMBER 
xxx. TEXT DELETED TO SEMICO­
LON. 

Explanation: Returned values 
may only be FIXED or CHARACTER. 

System Action: CHARACTER 
attribute is assigned 

E IEM4217I NO ATTRIBUTE FOR RETURNED VALUE 
IN LINE NUMBER xxx. CHARACTER 
ATTRIBUTE IS USED .• 

System Action: CHARACTER 
attribute is assigned 

S IEM4220I SEMICOLON NOT FOUND WHERE 
EXPECTED IN PROCEDURE STATEMENT 
IN LINE NUMBER xxx. TEXT DEL­
ETED UP TO NEXT SEMICOLON. 

E IEM4223I ENTRY ATTRIBUTE AND PROCEDURE 
STATEMENT FOR ENTRY zzzz DISA­
GREE ON THE NUMBER OF PARAMET­
ERS,. THE LATTER IS USED. 

System Action: The number of 
parameters specified in the 
PROCEDURE statement is used. 

E IEM4226I RETURNS ATTRIBUTE AND PROCEDURE 
STATEMENT FOR ENTRY zzzz DISA­
GREE ON ATTRIBUTE OF RETURNED 
VALUE. 

S IEM4229I 

System Action: The returned 
value will first be converted 
to the type on the procedure 
statement and will then be con­
verted to the type given in the 
RETURNS attribute. A third 
conversion can occur if the 
type given in the returns 
attribute does not agree with 
the type required where the 
result is used. 

PROCEDURE STATEMENT 
NUMBER xxx MAY NOT 
WITHIN A PROCEDURE. 
HAS BEEN DELETED. 

AT LINE 
BE USED 

PROCEDURE 

Explanation: Compile-time pro­
cedures may not be nested. 

System Action: Text is deleted 
up to and including the first % 
END following the erroneous 
PROCEDURE statement. 

S IEM4232I PROCEDURE STATEMENT AT LINE 
NUMBER xxx MAY NOT FOLLOW THEN 
OR ELSE. PROCEDURE HAS BEEN 
REPLACED BY A NULL STATEMENT. 

Exp la na ti on: A PROCEDURE 
statement may appear in a THEN 
or ELSE clause only if it is 
inside a compile-time DO group. 

S IEM4235I RETURN STATEMENT IN LINE NUMBER 
xxx IS NOT ALLOWED OUTSIDE OF 
COMPILE-TIME PROCEDURE. STATE­
MENT DELETED. 

E IEM4238I RETURNED VALUE MUST BE PAREN­
THESIZED IN LINE NUMBER xxx. 
PARENTHESIS INSERTED. 

E IEM4241I RETURNS EXPRESSION IN LINE NUM­
BER xxx DOES NOT END RETURN 
STATEMENT. REMAINDER OF STATE­
MENT HAS BEEN IGNORED. 

S IEM4244I GOTO IN LINE NUMBER xxx IS NOT 
FOLLOWED BY LABEL. STATEMENT 
DELETED. 

E IEM4247I PREVIOUS USE OF IDENTIFIER zzzz 
CONFLICTS WITH USE AS OBJECT OF 
GOTO IN LINE NUMBER xxx. ANY 
REFERENCE WILL TERMINATE PROC­
ESSING. 

Appendix G: Diagnostic Messages 253 



system Action: No action 
unless a statement is executed 
which references the erroneous 
identifier .. 

S IEM4248I SEMICOLON NOT FOUND WHERE 
EXPECTED IN GOTO STATEMENT IN 
LINE NUMBER xxx. TEXT DELETED 
UP TO NEXT SEMICOLON. 

T IEM4250I GOTO zzzz IN LINE NUMBER xxx 
TRANSFERS CONTROL INTO ITERA­
TIVE DO OR ENCLOSED INCLUDED 
TEXT. PROCESSING TERMINATED. 

S IEM4253I ACTIVATE OR DEACTIVATE IN LINE 
NUMBER xxx NOT ALLOWED IN A 
COMPILE-TIME PROCEDURE. STATE­
MENT DELETED. 

E IEM4254I EMPTY ACTIVATE OR DEACTIVATE 
STATEMENT IN LINE NUMBER xxx .• 
STATEMENT DELETED. 

E IEM4256I SURPLUS COMMA IN ACTIVATE OR 
DEACTIVATE IN LINE NUMBER xxx. 
THE COMMA HAS BEEN DELETED. 

S IEM4259I UNRECOGNIZABLE FIELD IN ACTI­
VATE OR DEACTIVATE STATEMENT IN 
LINE NUMBER xxx. THE FIELD HAS 
BEEN DELETED. 

S IEM4262I ONLY PROCEDURES OR VARIABLES 
MAY HAVE ACTIVITY CHANGED. 
IDENTIFIER zzzz IN LINE NUMBER 
xxx HAS BEEN DELETED FROM 
STATEMENT. 

S IEM4265I 

S IEM4271I 

W IEM4277I 

COMMA MUST SEPARATE FIELDS OF 
ACTIVATE AND DEACTIVATE STATE­
MENTS.. IN LINE NUMBER xxx TEXT 
AFTER IDENTIFIER yyyy HAS BEEN 
DELETED UP TO NEXT COMMA. 

INVALID SYNTAX I N DO 
IN LINE NUMBER xxx. 
BEEN CONVERTED TO A 
DO. 

STATEMENT 
IT HAS 

GROUPING 

NO MAXIMUM VALUE WAS SPECIFIED 
IN ITERATIVE DO IN LINE NUMBER 
xxx. PROGRAM WILL LOOP UNLESS 
ALTERNATE EXIT IS PROVIDED. 

E IEM4280I UNEXPECTED % IN LINE NUMBER xxx 
TREATED AS HAVING BEEN PRECEDED 
BY SEMICOLON. 

E IEM4283I MULTIPLE TO'S HAVE OCCURRED IN 
DO STATEMENT IN LINE NUMBER 
xxx. SECOND 'TO' HAS BEEN 
CHANGED TO 'BY'. 

E IEM4286I MULTIPLE BY'S HAVE OCCURRED IN 
DO STATEMENT IN LINE NUMBER 
xxx. SECOND 'BY' HAS BEEN 
CHANGED TO 'TO". 

254 

E IEM4289I DO STATEMENT IN LINE NUMBER xxx 
SHOULD END WITH SEMICOLON. 
TEXT TO SEMICOLON DELETED. 

E IEM4292I 

E IEM4295I 

E IEM4296I 

E IEM4298I 

E IEM4299I 

E IEM4301I 

E IEM4304I 

END STATEMENT AT LINE NUMBER 
xxx MAY NOT FOLLOW THEN OR 
ELSE. A NULL STATEMENT HAS 
BEEN INSERTED BEFORE THE END 
STATEMENT. 

SEMICOLON NOT 
EXPECTED IN END 
LINE NUMBER xxx. 
UP TO SEMICOLON. 

FOUND WHERE 
STATEMENT IN 

TEXT DELETED 

END STATEMENT IN LINE NUMBER 
xxx NOT PRECEDED BY DO OR PRO­
CEDURE STATEMENT. END HAS BEEN 
DELETED. 

Explanation: ~ END statement 
has been encountered which is 
not preceded by a DO or PROCE­
DURE statement that has not 
already been terminated. 

LABEL REFERENCED ON END STATE­
MENT IN LINE NUMBER xxx CANNOT 
BE FOUNo.. END TREATED AS HAV­
ING NO OPERAND. 

Explanation: The label cannot 
be found on a DO or PROCEDURE 
statement that has not already 
been termi na ted. 

END STATEMENT ENDING PROCEDURE 
IN LINE NUMBER xxx DID NOT HAVE 
A PRECEDING PERCENT. A PERCENT 
IS INSERTED .• 

Explanation: The END statement 
referred to in this message is 
the logical end of the proce­
dure .. 

IDENTIFIER zzzz ON END STATE­
MENT IN LINE NUMBER xxx IS NOT 
A LABEL. END TREATED AS HAVING 
NO OPERAND. 

PROCEDURE zzzz DID NOT INCLUDE 
A RETURN STATEMENT. 

Explanation: Language syntax 
requires use of RETURN state­
ment in a procedure. 

system Action: A null value is 
returned if the procedure is 
invoked. 

S IEM43071 INCLUDE STATEMENT AT LINE NUM­
BER xxx IS NOT ALLOWED IN 
COMPILE-TIME PROCEDURES. 
STATEMENT DELETED. 



E IEM4310I IMPLEMENTATION RESTRICTION. 
DDNAME IN LINE NUMBER xxx H~S 

BEEN TRUNCATED TO 8 CHARACTERS. 

Explanation: The first of a 
pair of data set identifiers in 
an INCLUDE statement is a 
ddname and as such is limited 
to a maximum of 8 characters. 

S IEM4313I UNRECOGNIZABLE FIELD IN INCLUDE 
STATEMENT AT LINE NUMBER xxx. 
FIELD HAS BEEN DELETED. 

system Action: Text is deleted 
up to next comma or semicolon. 

S IEM4319I EMPTY INCLUDE STATEMENT IN LINE 
NUMBER xxx. STATEMENT DELETED. 

Explanation: At least one 
identifier must appear in an 
INCLUDE statement i.e., the 
data set member name. 

E IEM4322I IMPLEMENTATION RESTRICTION. 
MEMBER NAME IN LINE NUMBER xxx 
HAS BEEN TRUNCATED TO 8 CHARAC­
TERS. 

System Action: First 8 charac­
ters of member name have been 
used. 

User Response: Correct data 
set member name in INCLUDE 
statement. 

E IEM4325I RIGHT PARENTHESIS INSERTED 

T IEM4328I 

AFTER MEMBER NAME IN LINE NUM­
BER xxx. 

COMPILER ERROR. DICTIONARY 
INFORMATION INCORRECT. 

Explanation: A name containing 
an invalid character is found 
in the dictionary. 

System Action: 
terminat ed 

Processing is 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

S IEM4331I DECLARE STATEMENT IN LINE NUM­
BER xxx IS ILLEGAL AFTER THEN 
OR ELSE. STATEMENT DELETED. 

User Response: Correct pro­
gram. A DECLARE statement can 
appear in the THEN or ELSE 
clause of an IF statement if it 
is inside a DO group. 

E IEM4332I EMPTY DECLARE STATEMENT IN LINE 
NUMBER xxx. STATEMENT DELETED. 

S IEM4334I IMPLEMENTATION RESTRICTION. 
FACTORING IN DECLARE STATEMENT 
IN LINE NUMBER xxx EXCEEDS 3 
LEVELS. REMAINDER OF STATEMENT 
DELETED. 

User Response: Reduce level of 
factoring in DECLARE statement. 

E IEM4337I SURPLUS COMMA HAS BEEN FOUND IN 
DECLARE STATEMENT IN LINE NUM­
BER xxx. THIS COMMA HAS BEEN 
DELETED. 

E IEM4340I IDENTIFIER MISSING WHERE 
EXPECTED IN LINE NUMBER xxx. A 
DUMMY IDENTIFIER HAS BEEN 
INSERTED. 

E IEM4343I IDENTIFIER zzzz IN LINE NUMBER 
xxx HAS MULTIPLE DECLARATIONS. 
ANY REFERENCE WILL TERMINATE 
PROCESSING. 

Explanation: An identifier may 
be declared only once. 

System Action: No action 
unless a statement is executed 
which references the multiply 
declared identifier. 

S IEM4346I UNRECOGNIZABLE SYNTAX IN 
DECLARE STATEMENT IN LINE NUM­
BER xxx. STATEMENT DELETED. 

E IEM4349I LABEL zzzz CANNOT BE DECLARED 
IN LINE NUMBER xxx. ANY REF­
ERENCE WILL TERMINATE PROCESS­
ING. 

Explanation: An attempt has 
been made to declare an iden­
tifier which has already been 
used as a label. 

System Action: No action 
unless a statement is executed 
which references the declared 
label. 

E IEM4352I EXTRA PARENTHESIS DELETED IN 
LINE NUMBER xxx. 

E IEM4355I ILLEGAL ATTRIBUTE yyyy IN LINE 
NUMBER xxx. AT~RIBUTE HAS BEEN 
DELETED. 

Explanation: Legal attributes 
are FIXED, CHARACTER, ENTRY and 
RETURNS. 

System Action: The illegal 
attribute is deleted. 

E IEM4358I CLOSING RIGHT PARENTHESIS 
INSERTED IN LINE NUMBER xxx. 

Appendix G: Diagnostic Messages 255 



E IEM4361I RETURNS 
WITHOUT 
PROCEDURE 
STATEMENT 

ATTRIBUTE OCCURRED 
ENTRY ATTRIBUTE FOR 

zzzz IN DECLARE 
AT OR BEFORE LINE 

NUMBER xxx. 

Explanation: Both ENTRY and 
RETURNS attributes must be 
declared for a compile-time 
procedure name. 

System Action: The identifier 
is treated as an ENTRY name. 
If it is referenced, the argu­
ments will be converted to the 
types declared for the proce­
dure parameters. 

E IEM4364I NO ATTRIBUTES WERE DECLARED FOR 
IDENTIFIER zzzz IN DECLARE 
STATEMENT AT OR BEFORE LINE 
NUMBER xxx.. CHARACTER HAS BEEN 
ASSIGNED. 

E IElJl4367I RETURNS ATTRIBUTE NOT GIVEN FOR 
ENTRY NAME zzzz IN DECLARE 
STATEMENT AT OR BEFORE LINE 
NUMBER xxx. 

Explanation: Both ENTRY and 
RETURNS attributes must be 
declared for a compile-time 
procedure name. 

System Action: The attribute 
of the returned value is deter­
mined by the relevant PROCEDURE 
statement. 

E IEM4370I ENTRY ATTRIBUTE DISAGREES WITH 
DECLARATION FOR FORMAL PARAM­
ETER zzzz. THE LATTER HAS BEEN 
USED. 

Explanation: An ENTRY attri­
bute in a DECLARE statement 
does not agree with the param­
eter attributes declared in the 
procedure. 

System Action: If the relevant 
procedure is referenced~ the 
argument will be converted to 
the type declared for the for­
mal parameter. 

E IEM4373I RETURNS ATTRIBUTE IN LINE NUM­
BER xxx MUST BE PARENTHESIZED. 
PARENTHESIS INSERTED. 

E IEM4376I ONLY FIXED OR CHARACTER ARE 
ALLOWED IN RETURNS ATTRIBUTE IN 
LINE NUMBER xxx. ATTRIBUTE 
IGNORED. 

256 

Explanation: An illegal attri­
bute was found. 

System Action: The attribute 
of the returned value is deter­
mined by the relevant PROCEDURE 
statement. 

E IEM4379I ATTRIBUTE yyyy IS ILLEGAL IN 
ENTRY ATTRIBUTE IN LINE NUMBER 
xxx. NO CONVERSION WILL BE 
DONE. 

Explanation: An invalid attri­
bute was found. 

System Action: No conversion 
to an ENTRY attribute will be 
carried out. However, if the 
relevant procedure is ref­
erenced. arguments will be con­
verted to the types declared 
for the procedure parameters. 

E IEM4382I ATTRIBUTE CONFLICTS WITH PRE­
VIOUS ATTRIBUTE FOR IDENTIFIER 
zzzz IN LINE NUMBER xxx. 
ATTRIBUTE IGNORED. 

E IEM4383I PREVIOUS USAGE OF IDENFIFIER 
zzzz CONFLICTS WITH ATTRIBUTE 
IN LINE NUMBER xxx. ANY REF­
ERENCE WILL TERMINATE PROCESS­
ING. 

E IEM4391I OPERAND MISSING IN LINE NUMBER 
xxx. A FIXED DECIMAL ZERO HAS 
BEEN INSERTED. 

S IEM4394I ILLEGAL OPERATOR yyyy IN LINE 
NUMBER xxx. IT HAS BEEN 
REPLACED BY A PLUS. 

W IEM4397I A LETTER IMMEDIATELY FOLLOWS 
CONSTANT yyyy IN LINE NUMBER 
xxx. AN INTERVENING BLANK HAS 
BEEN ASSUMED. 

E IEM4400I 

T IEM4403I 

E IEM4406I 

OPERATOR .NOT. IN LINE NUMBER 
xxx USED AS AN INFIX OPERATOR. 
IT HAS BEEN REPLACED BY .NE. 

COMPILER ERROR. 
SCAN OUT OF PHASE. 

EXPRESSION 

System Action: 
terminated. 

Processing is 

User Response: Save relevant 
data. Call your local IBM rep­
resentative .• 

PREVIOUS USAGE OF IDENTIFIER 
zzzz CONFLICTS WITH USE IN 
EXPRESSION IN LINE NUMBER xxx. 

System Action: Processing is 
terminated if an attempt is 
made to execute a statement 
which references the identifier 
in question .• 



S IEM4407I UNDECIPHERABLE KEYWORD. nnn 
IDENTIFIERS HAVE BEEN DELETED 
BEFORE yyyy IN LINE NUMBER xxx. 

Explanation: The processor has 
foun1 a mis-match while scan­
ning a keyword consisting of 
more than one identifier. 

system Action: The identifiers 
nreceding the non-matching 
identifier are deleted. 

S IEM4409I OPERATOR MISSING IN LINE NUMBER 
xxx. A PLUS HAS BEEN INSERTED. 

S IEM4412I NO EXPRESSION WHERE ONE IS 
EXPECTED IN LINE NUMBER xxx. A 
F'IXED DECH1AL ZERO HA.S BEEN 
INSE~TED. 

S IEM4415I ILLEGAL OPERAND yyyy IN LINE 
~UBBER xxx HAS BEEN REPLACED BY 
A FIXED DECIMAL ZERO. 

E IEM4421I MISSING LEFT PARENTHESIS 
INSERTED AT BEGINNIN3 OF' 
EXPRESSION IN LINE NUMBER xxx. 

T IEM4433I REFERENCE IN LINE NUMBER xxx TO 
STATEMENT OR IDENTIFIER WHICH 
IS IN ERROR. PROCESSING TER­
MINATED. 

S IEM4436I EXCESS ARGUMENTS TO FUNCTION 
zzzz IN LINE NUMBER xxx. EXTRA 
ARGUMENTS HAVE BEEN DELETED. 

TN IEM4439I 

Expl~nation: 
ments appear 
reference. 

Too many argu­
in a proc edure 

TOO FEW ARGUMENTS TO F'UNCTION 
zzzz IN LINE NUMBER xxx. r1ISS­
ING ARGUMENTS HAVE BEEN 
~EPL~CED BY FIXED DECIMAL 
ZEROS. 

Explanation: 
appear in a 
erence. 

Too few arguments 
procedure ref-

E IEIVJ4448I NO ENTRY DECLARATION FOR PROCE­
DURE zzzz REFERENCED IN LINE 
NUMBER xxx. ATTRIBUTES TAKEN 
FROM PROCEDURE. 

Explanation: 
names must 
ENTRY and 
before the 
erenced. 

All procedure 
be declared with 

RETURNS attributes 
procedure is ref-

T IEM4451I PROCEDURE zzzz REFERENCED IN 
LINE NUMBER xxx CANNOT BE 
FOUND. PROCESSING TERMINATED. 

T IEM4452I RECURSIVE USE OF PROCEDURE zzzz 
IN LINE NUMBER xxx IS DISAL­
Lm~ED. PROCESSING TERMINATED. 

E IEM4454I TOO FEW ARGUMENTS HAVE BEEN 
SPECIFIED FOR THE BUILTIN FUNC­
TION SUBSTR IN LINE NUMBER xxx. 
A NULL STRING HA.S BEEN 
RETURNED. 

E IEM4457I 

E IEM4460I 

E IEM4463I 

S IEM4469I 

E IEM4472I 

S IEM4473I 

E IEM4475I 

TOO MANY ARGUMENTS HAVE BEEN 
SPECIFIED FOR THE BUILTIN FUNC­
TION SUBSTR IN LINE NUMBER xxx. 
EXTRA ARGUMEN~S HAVE BEEN 
IGNORED. 

FIXED OVERFLOW HAS OCCURRED IN 
LINE NUMBER xxx. RESULT TRUN­
CATED. 

system 
occurs 
digits. 

Action: 
on left 

Truncation 
to 5 decimal 

ZERO DIVIDE HAS OCCURRFD AT 
LINE NUMBER xxx. RESULT SET TO 
ONE. 

END-OF-FILE FOUND IMBEDDED IN 
STATEMENT IN LINE NUMBER xxx. 
EXECUTION OF STATEMENT WILL 
CAUSE TERMINATION. 

IDENTIFIER BEGIW1ING zzzz IN 
STATEMENT AT LINE NUMBER xxx IS 
TOO LONG AND HAS BEEN TR.UNCAT­
ED. 

Explanation: 
not exceed 
length. 

Identifiers may 
31 characters in 

Syste!!}_ Action: 
is truncated to 
characters. 

The identifier 
the first 31 

CONSTANT yyyy I~ LINE NUMBER 
xxx HAS PRECISION GREATER THAN 
5. A FIXED DECIMAL ZERO HAS 
BEEN INSERTED. 

Explanation: Impleroentation 
restriction. ?recision of 
fixed decimal numbers is limit­
ed to 5 digits. 

System Action: A value of zero 
is assigned. 

QUESTION MARK IN LINE NUMBER 
xxx HAS NO SIGNIFICANCE. IT 
HAS BEEN IGNORED 

Explanation: Question mark, 
although a recognizable charac­
ter in PL/I, has no syntactical 
meaning. 

Appendix G: Diagnostic Messages 257 



T IEM44781 STRING IN LINE NUMBER xxx CON­
VERTS TO A FIXED DECIMAL NUMBER 
WITH PRECISION GREATER THAN 5. 
PROCESSING TERMINATED. 

Explanation: Implementation 
restriction. Precision of 
fixed decimal numbers is limit­
ed to 5 digits. 

system Action: 
terminated 

Processing is 

T IEM44811 CHARACTER STRING IN LINE NUMBER 
xxx CONTAINS CHARACTER OTHER 
THAN 1 OR 0 AND CANNOT BE 
CONVERTED TO A BIT STRING. 
PROCESSING TERMINATED. 

T IEM44841 STRING IN LINE NUMBER xxx OR IN 
PROCEDURE REFERENCED IN SAID 
LINE NUMBER CANNOT BE CONVERTED 
TO A FrXED DECIMAL CONSTANT. 
PROCESSING TERMINATED. 

T IEM4499I A % STATEMENT IS FOUND IN A 
REPLACEMENT VALUE IN LINE NUM­
BER xxx. PROCESSING TERMIN­
ATED. 

Expl~ation: A replacement 
value may not contain a 
compile-time statement. 

T IEM45021 AN IDENTIFIER zzzz WITH CON­
FLICTING USAGE OR MULTIPLE 
DEFI'NITIONS IS REFERENCED IN 
LI~~ NUMBER xxx. PROCESSING 
TERMINATED. 

Expl~nation: An attempt is 
made to execute a statement 
which references an identifier 
that was not properly defined. 

User Response: Correct program 

S IEM4504I VARIABLE zzzz IS USED IN LINE 
NUMBER xxx BEFORE IT IS INI­
TIALIZED. IT HAS BEEN GIVEN 
NULL STRING OR ZERO VALUE. 

Explanation: A value must be 
assigned to variables before 
they are referenced after being 
declared. 

T IEM4505I DD STATEMENT FOR INCLUDE zzzz 
MISSING IN LINE NUMBER xxx. 
PROCESSING TERMINATED. 

258 

Explanation: A DD statement 
must be present, in the Job 
Control cards for the compila­
tion, with a name in the name 
field that corresponds to the 
ddname identifier in the 
INCLUDE statement. If no 

ddname is specified in the 
INCLUDE statement, a SYSLIB DD 
statement is required. 

User Response: Insert 
appropriate DD statement and 
recompile. 

T IEM4508I UNRECOVERABLE I/O ERROR WHILE 
SEARCHING FOR MEMBER OF INCLUDE 
zzzz IN LINE NUMBER xxx. PROC­
ESSING TERMINATED. 

Us~~~: Check DD state­
ment and reattempt compilation. 
If error persists, check com­
puting system. 

T IEM45111 ILLEGAL RECORD FORMAT SPECIFIED 
FOR INCLUDE zzzz IN LINE NUMBER 
xxx. PROCESSING TERMINATED. 

Explanation: Included records 
must be a fixed length of not 
more than 100 characters with a 
maximum blocking factor of 5. 
Rlocksize must be a multiple of 
tb~ record length. 

T IEM4514I MEMBER OF INCLUDE zzzz IN LINE 
NUMBER XX}{ NOT FOU NO ON DATA 
SET. PROCESSING TERMINATED. 

W IEM45171 

User Response: 
sta tement, DD 
data file. 

Check INCLUDE 
statement and 

RECORD LENGTH NOT SPECIFIED FOR 
INCLUDE zzzz IN LINE NUMBER 
xxx. RECORD LENGTH EQUAL TO 
BLOCKSIZE HAS BEEN ASSUMED. 

Us eE-_Bg§pQnse: Correct record 
length specification in DD 
statement, if necessary. 

W IEM45201 BLOCKSIZE NOT SPECIFIED FOR 
INCLUDE zzzz IN LINE NUMBER 
xxx. BLOCKSIZE EQUAL TO RECORD 
LENGTH HAS BEEN ASSUMED. 

User Resp~: Correct block­
size specification in DD state­
ment. if necessary. 

W IEM45231 RECORD LENGTH AND BLOCKSIZE NOT 
SPECIFIED FOR INCLUDE zzzz IN 
LINE NUMBER xxx. RECORD LENGTH 
OF 80 AND BLOCKSIZE OF 400 HAVE 
BEEN ASSUMED. 

User Response: Correct record 
length and block size specifi­
cations in DD statement, if 
necessary. 

T IEM45261 I/O ERROR WHILE READING TEXT 
INCLUDED FROM zzzz AT LINE NUM-



BER xxx. 
ATED. 

PROCESSING TERMIN-

User Response: Check DD state­
ment and reattempt compilation. 
If error persists, check com­
puting system. 

T IEM4529I IMPLEMENTATION RESTRICTION. 

T IEM4532I 

T IEM4535I 

EXCESSIVE LEVEL OF NESTING OR 
REPLACEMENT AT LINE NUMBER xxx. 
PROCESSING TERMINATED. 

Explanation: Level of nesting 
in this case is calculated by 
summing the number of current 
unbalanced left parentheses, 
tta number of current nested 
DO'S, the number of current 
nested IF's, and the number of 
current nested replacements. A 
level of 50 is always accepta­
ble. 

INPUT RECORD AT LINE NUMBER xxx 
IS TOO LONG. PROCESSING TER­
MINA.TED. 

Explanation: Input record con­
tains more than 100 characters. 

INPUT RECORD CONTAINS FEWER 
CHARACTERS THAN SORMGIN 
REQUIRES. PROCESSING TERMIN­
ATED. 

Explanation: 
input record 
left margin 
specification. 

The length of the 
is less than the 
of the SORMGIN 

User Response: Check SORMGIN 
option on EXEC control card. 

T IEM4538I COMPILE~ ERROR. SUBSTR MUST BE 
A SINGLE WORD KEYWORD. 

Explanation: The keyword 
SUBSTR has been replaced, in 
the compiler tables, with a 
multiple keyword. The Compile­
Time Processor cannot handle 
this situation. 

System Action: 
terminated 

Processing is 

User Response: Replace the 
multiple keyword with a single 
keyword and recompile the com­
piler. 

T IEM4547I COMPILER ERROR. INSUFFICIENT 
SPACE FOR TABLES. 

system Action: Processing is 
terminated 

User Response: Save relevant 
data. Call your local IBM rep­
resentative. 

E IEM4550I RIGHT PARENTHESIS INSERTED IN 
LINE NUMBER xxx TO END ARGUMENT 
LIST FOR PROCEDURE zzzz. 

T IEM4553I 

E IEM4559I 

E IEM4562I 

Explanation: The argument list 
referred to is in a source 
program reference to a compile­
time procedure. 

IN LINE NUMBER xxx ARGUMENT 
LIST FOR PROCEDURE zzzz 
CONTAINS COMPILE TIME CODE. 
PROCESSING TERMINATED. 

Exolanation: Compile-time code 
may not be embedded in arqument 
list of compile-time procedure 
reference. 

LEFT PARENTHESIS BEGINNING 
ARGUMENT LIST OF PROCEDURE zzzz 
WAS NOT FOUND. PROCEDURE WAS 
INVOKED AT LINE NUMBER xxx 
WITHOUT ARGUMEN~S. 

Explanation: The argument list 
referred to is in a source 
program reference to a compile­
time procedure. 

IDENTIFIER IN LINE NUMBER xxx 
EXCEEDS 31 CHARACTERS. 
REPLACEMENT WAS DONE ON TRUN­
CATED FORM zzzz. 

Explanation: A non-compile­
time source text identifier 
consists of more than 31 char­
acters. 

E IEM4570I THE THIRD A..~GUMENT OF BUILT-IN 
FUNCTION SUBSTR IS NEGATIVE, IN 
LINE NUMBER xxx. A NULL STRING 
HAS BEEN RETURNED. 

E IEM4572I THE THIRD ARGUMENT OF BUILT-IN 
FUNCTION SUBSTR EXCEE0S THE 
STRING LENGTH, IN LINE ~UMBER 
xxx. THE SUBSTRING HAS BEEN 
TRUNCATED AT THE END OF THE 
ORIGINAL STRING. 

E IEM4574I THE COMBINED SECO~-J'D AND THIRD 
ARGUMENTS OF BUILT-IN FUNCTION 
SUBSTR EXCEED THE STRING 
LENGTH, IN LINE NUMBER xxx. 
THE SUBSTRING HAS BEEN TRUNCAT­
ED AT THE END OF THE ORIGINAL 
STRING. 

E IEM4576I THE SECOND ARGUMENT OF BUILT-IN 
FUNCTION SUBSTR IS LESS THAN 
ONE, IN LINE NUMBER xxx. ITS 
VALUE HAS BEEN RESET TO ONE. 

Appendix G: Diagnostic Messages 259 



E IEM4578I THE SECOND ARGUMENT OF BUILT-IN 
FUNCTION SUBSTR EXCEEDS THE 
STRING LENGTH, IN LINE NUMBER 
xxx. A NULL STRING HAS BEEN 
RETURNED. 

S IEM4580I AN UNINITIALISED VARIABLE H~S 
BEEN FOUND IN A BUILT-IN FUNC­
TION ARGUMENT LIST, IN STATE­
MENT NUMBER xxx. A NULL STRING 
HAS BEEN RETURNED. 

User Response: Initialise the 
variable before invoking the 
built-in function. 

OBJECT-TIME DIAGNOSTIC MESSAGES 

The messages in the following text may 
be printed on the output data set specified 
for SYSPRINT, as the result of an excep­
tional or error condition occurring during 
the execution of a PL/I program. If the 
SYSPRINT DD statement is absent, then the 
object-time messages appear on the 
operator's console, except for the ON CHECK 
system action messages and the copy option 
output, which will not be produced at all 
in this case. 

Each message number is of the form 
IHEnnnI, where the code IHE indicates a 
PL/I library message, and nnn the number of 
the message. The final character I indi­
cates the informative nature of the mes­
!:age. 

Diagnostic messages are printed at exe­
cution time for two main reasons: 

1. An error occurs for which no specific 
ON-condition exists in PL/I. A diag­
nostic message is printed, and the 
ERROR ON-condition is raised. 

2. An ON-condition is raised, by compiled 
code or by the Library, and the action 
required is system action_ for which 
the language specifies COMMENT as part 
of the necessary action. 

Object time diagnostic messages will 
take one of the following forms: 

1. IHEnnnI FILE name - text AT location 
message 

2. IHEnnnI rtname - text AT location mes­
sage 

3. IHEnnnI text AT location message 

260 

where 'name' is the name of the file 
associated with the error (given 
only in I/O diagnostic messages) 

'rtname' is the name of the Library 
routine in which the error 
occurred (given only for computa­
tional subroutines>. 

~location message' is either 

or 

OFFSET ± hhhhh FROM ENTRY POINT 
E1 

OFFSET ± hhhhh FROM ENTRY POINT 
OF cccc ON-UNIT 

~ote: If it is a Model 91 message 
resulting from an imprecise interrupt, 
"AT OFFSET ••• " is replaced by "NEAR 
OFFSET ••• " since the instruction 
causing the interrupt cannot be prec­
isely identified. 

If the statement number compiler option 
has been specified, each message will also 
contain IN STATEMENT nnnnn prior to AT 
location message. nnnnn gives the number 
of the statement in which the condition 
occurred. 

The diagnostic messages for other than 
ON-type errors are mainly self-explanatory. 
Explanations in the following lists are 
given only when the message is not self­
explanatory. 

IHE003I 

IHE004I 

IHE005I 

SOURCE PROGRAM ERROR IN 
STATEMENT nnnnn 

This message will always con­
tain a statement number whether 
or not the compiler option is 
specified. 

INTERRUPT IN ERROR HANDLER­
PROGRAM TERMINATED 

Explanation: When an unexpect­
ed program interrupt occurs 
during the handling of another 
program interrupt, it indicates 
that the program has a disas­
trous error in it, such as DSA 
chain out of order, instruc­
tions overwritten, or such. 
The program is abnormally ter­
minated, and the above message 
is printed out at the console. 
A dump is produced with a User 
Completion Code of 4000. 

PSEUDO-REGISTER VECTOR TOO 
LONG - PROGRAM NOT EXECUTED 

Explanation: This error arises 
when the sum of the number of 
procedures~ the number of 
files, and the number of con­
trolled variables exceeds 1000. 



IHE0061 

IHE0091 

IHE010I 

IHE0111 

I/O Errors 

IHE018I 

IHE020I 

IHE0211 

IHE022I 

It causes return to the Super­
visor from IHESAPi PL/I program 
is not entered. The message 
always appears at the console. 
A return code of 4004 is gener­
ated. 

NO MAIN PROCEDURE. 
TERMINATED. 

PROGRAM 

Explanation: No external pro­
cedure in the program has been 
given the option MAIN. This 
message appears at the console. 
A return code of 4008 is gener­
ated. 

IHEDUM*. NO PLIDUl-1P DD CARD. 
EXECUTION TERMINATED. 

Explanation: Execution has been 
abnormally terminated with a 
dump and a completion code of 
(3000 + Return Code (if set» 

PROGRAM ENDED BY OS360. RETURN 
CODE = hhh (a hexadecimal 
number) • 

Explanation: The 
been terminated 
the operating 
above message 
console. 

major task has 
abnormally by 
system. The 

appears on the 

KEY ERROR WHEN CLOSING FILE AT 
END OF TASK 

Explanation: An unresolved key 
error exists for which no con­
dition can now be raised. The 
above message appears on the 
console. 

FILE name - FILE TYPE NOT SUP­
PORTED 

FILE name 
OUTPUT FILE 

ATTEMPT TO READ 

FILE name - ATTEMPT TO WRITE 
INPUT FILE 

GET/PUT STRING EXCEEDS STRING 
SIZE 

Explanation: 

For input: programmer has 
requested more than exists on 
the input string. 

IHE0231 

IHE0241 

IHE0251 

IHE0261 

IHE0271 

IHE0291 

For output: programmer is 
trying to write more than his 
output string will hold. 

FILE name - OUTPUT 
ERROR NOT ACCEPTABLE 

TRANSMIT 

Explanation: The ERROR is 
raised, (i) upon return from a 
TRANSMIT ON-unit, if the device 
in error is other than a prin­
ter~ or (ii) if access to a 
file by RECORD I/O has been 
attempted after the TRANSMIT 
condition has been raised for 
output. 

FILE name - PRIN~r OPTION/FORMAT 
ITEM FOR N CN-PRINT FILE 

Explanation: Attempt to use 
PAGE, LINE or SKIP:$ 0 for a 
non-print file. 

DISPLAY - MESSAGE OR REPLY AREA 
LENGTH ZERO 

Explanation: This message 
appears only if the REPLY 
option is exercised. 

FILE name - DATA DIRECTED INPUT 
- INVALID ARRAY DATUM 

Explanation: Number of sub­
scripts on external medium does 
not correspond to number of 
declared subscripts. 

GET STRING 
DATA NAME 

Explanation: 

UNRECOGNIZABLE 

1. GET DATA - name of data 
item found in string is 
not known at the time of 
the GET statement, or 

2. GET DATA data list - name 
of data item found in 
string is not specified in 
the list. 

FILE name 
OPERATION 

UNSUPPORTED FILE 

Explanation: Programmer has 
executed an I/O statement with 
an option or verb not applica­
ble to the specified file. 

Appendix G: Diagnostic Messages 261 



IHE030I 

IHE03lI 

IHE032I 

IHE033I 

IHE034I 

IHE035I 

IHE036I 

262 

For example: 

I/O Option 
or Verb ----
READ SETI 
LOCATE 

REWRITE 
(without FROM) I 

EXCLUSIVE I 
UNLOCK \ 
(READ NOLOCK) 

KEYTO 

LINESIZE I 
PAGESIZE 

File Attribute 

DIRECTI 
(SEQUENTIAL 
UNBUFFERED) 

(SEQUENTIAL 
I NPur \ OUTPUT \ 
UPDATE) \ 
(DIRECT INPUT \ 
OUTPUT) 

REGIONAL 
DIRECT 

STREA~ (INPUT I 
UPDATE) 

FILE name - REWRITE/DELETE NOT 
IMMEDIATELY PRECEDED ~Y READ 

FILE name - INEXPLICABLE I/O 
ERROR 

Explanation: Data Management 
has detected some error in the 
current I/O operation, but has 
provided no furtherietails. 

FILE name - OUTSTA~ING READ 
FOR UPDATE EXISTS 

Expla~ation: When a record is 
read from an INDEXE0 file which 
contains blocked records and 
which is open for DIRECT 
UPDATE. the record mllst be rew­
rittene Between the READ 
statement and the associated 
REWRITE statement, no other 
operation may be performed on 
the file. 

FILE name - NO COMPLETED READ 
EXISTS (INCORRECT NCP VALUE) 

Explanation: This message may 
be issued because the correct 
NCP value has not been speci­
fied or it may be due to incor­
rect source code. 

FILE name - TOO MANY INCOMPLETE 
I/O OPERATIONS 

Ex21anation: The number 0= 
incomplete I/O operations 
equals the NCP value. 

FILE name - EVENT VARIABLE 
ALREADY IN USE 

FILE name - IMPLICIT OPEN FAIL­
URE, CANNOT PROCEED 

IHE037I 

IHE038I 

IHE039I 

Explana tion: 
failure in 
operation .. 

There has been a 
an implicit OPEN 

FILE name - ATT~MPT TO REWRITE 
OUT OF SEQUENCE 

EXDlanatiQ~: An intervening 
I/O statement occurs between a 
READ statement and a REWRITE 
statement referring to the same 
record. 

FILE name - ENDFILE FOUND UNEX­
PECTEDLY IN MIDDLE OF DATA 
ITEM. 

ExplanaiiQQ: The ERROR condi­
tion is raised when end-of-file 
is encountered before the deli­
miter when scanning list­
directed or data-directed 
input, or if the field width in 
the format list of edit­
directed input would take the 
scan beyond the end-of-file. 

FILE name - ATTEMPT 'IO CLOSE 
FILE NOT OPENED IN CURRENT TASK 

I/O ON-conditions 

All these conditions may be raised by 
the SIGNAL statement. 

IHElOOI 

IHEllOI 

IHElllI 

FILE name - UNRECOGNIZABLE DATA 
NAME 

Initiating ON-con1ition: NAME 

1. GET DATA - name of data 
item found on external 
mediQm is not known at the 
time of the GET statement, 
or 

2. GET DATA data list - name 
of data item 
external medium 
specified in the 

FILE name - RECORD 
SIGNALED 

founj on 
is not 

list. 

CONDITION 

FILE name - RECORD VARIABLE 
S~~LLER THAN RECORD SIZE 

Explanation: The variable 
specified in the READ statement 
INTO option allows fewer char­
acters than exist in the 
record. 

F format records: 
a WRITE statement attempts to 



IHE1121 

IHE1131 

IHE114I 

IHE1201 

IHE1211 

put a record smaller than the 
record size. 

All formats: 
a REWRITE attempts to replace 
a record with one of smaller 
size. (Note~ This condition 
cannot ~detected for U­
format records read for 
UNBUFFERED or DIRECT files.) 

FILE name - RECORD VARIABLE 
LARGER THAN RECO~D SIZE 

Explanation: The variable 
specified in the READ st~tement 
INTO option requires more char­
acters than exist in the 
record: or a WRITE statement 
attempts to put out a record 
gr~ater than the available 
record size; or a REWRITE 
statement attempts to replace a 
record with one of greater 
size. 

ATTEMPT TO WRITE/LOCATE ZERO 
LENGTH RECORD 

Explanation: A WRITE or REW­
RITE statement attempts to put 
out a record of zero length, or 
a LOCATE statement attempts to 
get buffer space for a record 
of zero l~ngth; such records 
are used for end-of-file mark­
ers for direct access storage 
devices. 

FILE name - ZERO LENGTH RECORD 
READ 

Explanation: A record of zerO 
length has been read from a 
REGIONAL data set accessed in 
the DIRECT mode. This shoUld 
not occur, unless the data· set 
was created by another proc­
essor. A zero length record, 
on a direct access device, is 
an end-ai-file signal. 

FILE name - PERMANENT 
ERROR 

Explanation: 

Initiating ON-CONDITION: 
TRANSMIT 

INPUT 

FILE name - PERMANENT OUTPUT 
ERROR 

ExplCj.nation: 

Initiating ON-condition: 
TRANSMIT 

IHE1221 

IHE1301 

IHE1311 

IHE1321 

IHE1331 

IHE134I 

1HE135! 

FILE name - TRANSMIT CONDITION 
SIGNALED 

FILE name - KEY CONDITION SIG­
NALED 

FILE name - KEYED RECORD NOT 
FOUND 

Explanation: READ, REWRITE, or 
DELETE statement specified 
record key which 10es not match 
with records of data set. If 
REGIONAL (2) or (3) data sets 
are employed, and the DD state­
ment pararreter LIMCT is used, 
then the record does not exist 
within the number of records or 
tracks searched, but may exist 
elsewhere. 

FILE name - ATTEMPT 
DUPLICATE KEY 

TO ADD 

Explanation: WRITE statement 
specified a key value which 
already exists within data set. 

1. INDEXED data sets: 
detected for both SEQUEN­
TIAL and DIRECT access. 

2. REGIONAL data sets: 
detected only for REGIONAL 
(1) and (2) SEQUENTIAL 
output. 

FILE name - KEY SEQUENCE ERROR 

Explanation: wRITE statement 
specifi~d, during creation of 
data set (OUTPUT SEQUENTIAL), a 
key which for: 

1. INDEXED data sets is lower 
in binary. collating 
sequence than prior key 

2. REGIONAL data sets the 
relative record/track 
value is .lower than that 
of prior key. 

FILE name - KEY 
ERROR 

CONVERSION 

Explanation: WRITE, READ, REW­
RITE., or DELETE statement for 
REGIONAL data set soecified 
character string key value 
whose relative record/track 
partition contains characters 
other than blank or the digits 
o through 9, or which contains 
only the character blank. 

FILE name - KEY SPECIFICATION 
ERROR 

Appendix G: Diagnostic Messages 263 



IHE136I 

IHE137I 

IHE140I 

IHE150I 

IHE151I 

264 

Explanation: 

1,. INDEXED: the KEYFROM or 
KEY expression may be the 
NULL string. Alternative­
ly, RKP does not equal 
zero and the embedded key 
is not identical with that 
specified by the KEY FROM 
option (or the KEY option 
in the case of a rewrite 
statement). A third pos­
sibility is that an 
attempt has been made dur­
ing SEQUENTIAL UPDATE to 
replace a record by one 
whose embedded key does 
not match that of the ori­
ginal record. 

2. REGIONAL: as for INDEXED, 
or initial character of 
KEY or KEYFROM expression 
value is the value 
(8) 'l l1 B. 

FILE name - KEYED RELATIVE 
RECORD/TRACK OUTSIDE DATA SET 
LIMIT 

Explanation: WRITE, READ, REW­
RITE, or DELETE statement for 
REGIONAL data set specified a 
key whose relative record/track 
value exceeds the number of 
records or tracks assigned to 
the data set. 

FILE name - NO SPACE AVAILABLE 
TO ADD KEYED RECORD 

Explanation: WRITE statement 
attempted to add record, but 
data set was full. If REGIONAL 
(2) or (3) data set, condition 
is raised if space within 
optional limits (DD parameter 
LIMCT) is unavailable. 

FILE name - END OF FILE ENCOUN­
TERED 

Explanation: 

Initiating ON-condition: 
END FILE 

FILE name - CANNOT BE OPENED, 
NO DD CARD 

Explanation: 

Initiating ON-condition: 
UNDEFINEDFILE 

FILE name - CONFLICTING DECLARE 
AND OPEN ATTRIBUTES 

ExPlanation: 

Initiating ON-condition: 
UNDEFINEDFILE 

There is a conflict between the 
declared PL/I file attributes. 
For example: 

Attribute Conflicting 
Attributes 

PRINT INPUT" UPDATE, 
RECORD, DIRECT, 
SEQUENTIAL, 
BACKWARDS. BUFFERED, 
UNBUFFERED, 
EXCLUSIVE. KEYED 

STREAM UPDATE, RECORD, 
DIRECT, SEQUENTIAL, 
BACKWARDS, BUFFERED, 
UNBUFFERED, 
EXCLUSIVE. KEYED 

EXCLUSIVE INPUT, OUTPUT, 
SEQUENTIAL, 
BACKWARDS. BUFFERED, 
UNBUFFERED 

DIRECT 

UPDATE 

OUTPUT 

BUFFERED 

SEQUENTIAL, 
BACKWARDS, BUFFERED, 
UNBUFFERED 

INPUT, OUTPUT., 
BACKWARDS 

INPUT, BACKWARDS 

UNBUFFERED 

Some attributes may have been 
supplied when a file is opened 
implicitly. Example of attri­
butes implied by I/O statements 
are: 

I/O 
Statement Implied Attributes 

DELETE 

GET 

LOCATE 

PUT 

READ 

REWRITE 

UNLOCK 

WRITE 

RECORD" DIRECT, 
UPDATE 

INPUT 

RECORD, OUTPUT, 
SEQUENTIAL, BUFFERED 

OUTPUT 

RECORD, INPUT 

RECORD, UPDATE 

RECORD, DIRECT, 
UPDATE, EXCLUSIVE 

RECORD, OUTPUT 



IHE152I 

IHE153I 

In turn, certain attributes may 
imply other attributes: 

Attribute ImQlied Attributes 

BACKWARDS RECORD., SEQUENTIAL, 
INPUT 

BUFFERED RECORD, SEQUENTIAL 

DIRECT RECORD, KEYED 

EXCLUSIVE RECORD, KEYED" 
DIRECT. UPDATE 

KEYED RECORD 

PRINT OUTPUT, STREAM 

SEQUENTIAL RECORD 

UNBUFFERED RECORD, SEQUENTIAL 

UPDATE RECORD 

Finally, a group of alternate 
attributes has one of the gro?p 
as a default. The default 1S 
implied if none of the group is 
specified explicitly or is 
implied by other attributes or 
by the opening I/O statement. 
The groups of alternates are: 

STREAM I RECORD STRE~M 

INPUTIOUTPUTIUPDATE INPUT 

SEQUENTIAL I DIRECT SEQUENTIAL 
(RECORD files) 

BUFFERED I UNBUFFERED BUFFERED 
(SEQUENTIAL files) 

FILE name - FILE TYPE NOT SUP­
PORTED 

EXJ?lanation: 

Initiating ON-condition: 
UNDEFINED FILE 

The user has attempted to asso­
ciate a paper-tape device with 
a file that does not have the 
INPUT attribute. 

FILE name - BLOCKSIZE NOT SPEC­
IFIED 

EXQlanation: 

Initiating ON-condition: 
UNDEFINED FILE 

IHE154I 

IHE155I 

IHE156I 

IHE157I 

Block size not specified on DD 
card" nor on environment. How­
ever. will never occur for 
PRINT file, because default 
block size is assumed. 

FILE name - UNDEFINED FILE CON­
DITION SIGNALED 

FILE name - ERROR INITIALIZING 
REGIONAL DATA SET 

Exolanation: 

Initiating ON-condition: 
UNDEFINEDFILE 

A REGIONAL data set, opened for 
DIRECT OUTPUT, cannot be pro­
perly formatted during the open 
process. 

FILE name - CONFLICTING ATTRI­
BUTE AND ENVIRONMENT PARAMETERS 

Explanation: 

Initiating ON-condition: 
UNDEFINEDFILE 

Examples of conflicting param­
eters N~ME block size is 
assumed. are: 

ENVIRONMENT 
Parameter 

No file 
organization 
parameter 

File Attribute 

KEYED 

INDEXEDIREGIONAL STREAM 

CONSECUTIVE 

INDEXED 

DIRECTI 
EXCLUSIVE 

DIRECT OUTPUT 

INDEXEDIREGIONAL OUTPUT without 
KEYED 

Blocked records UNBUFFERED 

V-format records BACKWARDS 

FILE name - CONFLICTING ENVIR­
ONMENT AND/OR DD PARAMETERS 

EXQlanation: 

Initiating ON-condition: 
UNDEFINEDFILE 

One of the following conflicts 
exists: 

1. F-format records have not 
been specified for an 

Appendix G: Diagnostic Messages 265 



IHE158I 

IHE159I 

IHE160I 

266 

INDEXED" REGIONAL(1), or 
REGIONAL ( 2> file. 

2. Blocked records have been 
specified with a REGIONAL 
file. 

FILE name - KEYLENGTH NOT SPEC­
IFIED 

Explanation: 

Initiating ON-condition: 
UNDEFINEDFILE 

A keylength has not been speci­
fied for an INDEXED, 
REGIONAL(2), or REGIONAL (3) 
file that is being opened for 
OUTPUT. 

FILE name - INCORRECT BLOCKSIZE 
AND/OR LOGICAL RECORD SIZE IN 
STATEMENT NUMBER xxx 

Explanation: 

Initiating ON-condition: 
UNDEFINED FILE 

One or the following situations 
exists: 

1. F-format records 

a. The specified block 
size is less than the 
logical record length. 

b. The specified block 
size is not a multiple 
of the logical record 
length. 

2. V-format records 

a. The specified block 
size is less than the 
logical record length 
+ 4. 

b. The logical record 
length is less than 14 
for a RECORD file or 
15 for a STREAM file. 

FILE name - LINESIZE 
THAN IMPLEMENTATION 
MAXIMUM LENGTH 

Explanation: 

Initiating ON-condition: 
UNDEFINED FILE 

GREATER 
DEFINED 

The implementation-defined max­
imum linesize is: 

IHEi61I 

F-format records 32758 

V-format records 32750 

FILE name - CONFLICTING ,ATTRI­
BUTE AND DD PARAMETERS 

Explanation: 

Initiating ON-condition: 
UNDEFINED FILE 

The user has attempted to asso­
ciate a file with the BACKWARDS 
attribute with a device that is 
not a magnetic tape device. 

QQIDPutational Errors 

IHE200I 

IHE202I 

IHE203I 

IHE204I 

IHE206I 

IHE20MI 

IHE209I 

IHE210I 

IHE2111 

IHE212I 

IHE213I 

rtname - X LT 0 IN SQRT(X) 

rtname - X LT 0 IN LOGeX) OR 
LOG2(X) OR LOG10(X) 

rtname - ABS(X) GE (2**50)*K IN 
SIN(X) OR COS (X) (K=PI) OR 
SIND (X) OR COSD (X) (K=180) 

rtname - ABS(X) GE (2**50>*K IN 
TAN (X) (K=PI) OR TAND(X) 
(K=180) 

rtname- X=Y=O IN ATAN(Y,X) AND 
ATAND(Y,X) 

rtname ... ABS(X) 
ATANH(X) 

GT 1 

rtname - X=O~ Y LE 0 IN x**y 

IN 

rtname - X=O, Y NOT POSITIVE 
REAL IN X**Y 

rtname - Z=+I OR -I IN ATAN(Z) 
OR Z=+l OR -1 IN ATANH(Z) 

rtname - ABS(X) GE (2**18)*K IN 
SIN(X) OR COS (X) (K=PI) OR 
SIND(X) OR COSO(X) (K=180) 

rtname ... ABS(X) GE (2**18)*K IN 
TAN (X) (K=PI) OR TAND(X) 
(K=180) 



List of Routine Names 

IHESQS 

IHELNS 

IHETNS 

IHEATS 

IHESNS 

IHEHTS 

IHESQL 

IHELNL 

IHETNL 

IHEATL 

IHESNL 

IHEflTL 

IHEXIS 

IHEXIL 

IHEXXS 

IHEXXL 

IHEXIW 

IHEXIZ 

IHEXXW 

IHEXXZ 

IHEATW 

IHEATZ 

Short float square root 

Short float logarithm 

Short float tangent 

Short float arctan 

Short float sine ana cosine 

Short float hyperbolic arctan 

Long float square root 

Long float logarithm 

Long float tangent 

Long float arctan 

Long float sine and cosine 

Long float hyperbolic arctan 

Short float integer exponentia­
tion 

Long float integer exponentia­
tion 

Short float general exponentia­
tion 

Long float general exponentia­
tion 

Short float complex integer 
exponentiation 

Long float complex integer 
exponentiation 

Short float complex general 
exponentiation 

Long float complex general 
exponentiation 

Short float complex arctan and 
hyperbolic arctan 

Long float complex arctan and 
hyperbolic arctan 

~utational ON-Conditions 

All these conditions may 
the SIGNAL statement. 

be raised by 

IHE300I OVERFLOW 

Explanation: This condition is 
raised~ by Library routines or 
by compiled code, when the 

IHE310I 

IHE320I 

IHE330I 

IHE340I 

IHE350I 

IHE360I 

exponent of a floating-point 
number exceeds the permitted 
maximum, as defined by implem­
entation. 

SIZE 

Explanation: This condi t~ion is 
raised~ by Library routines or 
by compiled code. when assign­
ment is attempted where the 
number to be assigned will not 
fit into the target field. 
This condition can be raised by 
allowing the fixed overflow 
interrupt to occur on account 
of SIZE. If associated with 
I/O, then "FILE name" will be 
inserted between the message 
number and the text. 

FIXEDOVERFLOW 

Explanation: This condition is 
raised. by Library routines or 
by compiled code, when the 
result of a fixed-point binary 
or decimal operation exceeds 
the maximum field width as 
defined by implementation. 

ZERODIVIDE 

Explanation: This condition is 
raised. by Library routines or 
by compiled code, 
attempt is made to 
zero, or when the 
exceeds the precision 
for the result of a 
The condition can be 
hardware interrupt or 
cial coding .• 

UNDERFLOW 

when an 
divide by 
quotient 

allocated 
division. 
raised by 

by spe-

Explana~ion: This condition is 
raised. by Library routines or 
by compiled code., when the 
exponent of a floating-point 
number is smaller than the 
implementation-defined mimimum. 
The condition does not occur 
when equal floating-point 
numbers are subtracted. 

STRINGRANGE 

Explanation: This condition is 
raised by library routines when 
an invalid reference by the 
SUBSTR built-in function or 
pseudo-variable has been 
detected,. 

AREA CONDITION RAISED IN ALLO­
CATE STATEMENT 

Appendix G: Diagnostic Messages 267 



IHE3611 

IHE3621 

Explanation: There is not 
enough room in the area in 
which to allocate the based 
variable. 

AREA CONDITION RAISED IN 
ASSIGNMENT STATEMENT 

Explanation: There is not 
enough room in the area to 
\-lhich the based variable is 
being assigned. 

AREA SIGNALED 

Structure and Array~rrors 

IHE3801 

IHE3811 

IHESTR - STRUCTURE OR 
LENGTH GE 16**6 BYTES 

ARRAY 

Explanation: During the map­
ping of a structure or array, 
the length of the structure or 
array has been found to be 
greater than or equal to 16**6 
bytes. 

IHESTR VIRTUAL ORIGIN OF 
ARRAY GE 16**6 OR LE -16**6 

Explanation: During the map­
ping of a structure, the 
address of the element lt1i th 
zero subscripts in an array, 
whether it exists or not, has 
been computed to be outside the 
range (-16**6 to +16**6). 

Control Program ~est~ict~ons 

IHE4001 

IHE4011 

DELAY STAT~MENT EXECUTED - NO 
TIMER FUNCTION IN SYSTEM 

TIME STATEMENT EXECUTED - NO 
TIMER FUNCTION IN SYSTEM 

Cond i tion Type ON-Conditions 

IHE5001 

IHE5011 

268 

SUBSCRIPTRANGE 

Explanation: This condition is 
raised~ by library routines or 
by compiled code, when a sub­
script is evaluated and found 
to lie outside its specified 
bounds. or by the SIGNAL state­
ment. 

CONDITION 

Explanation: This condition is 
raised by execution of a SIGNAL 
(identifier) statement, ref­
erencing a programmer-specified 
EXTERNAL identifier. 

Errors Associated with Tasking 

The following errors are associated with 
execution of the CALL. R~D. or WRITE 
statement with TASK option; with the WAIT 
statement; with the use of TASK or EVENT 
variables; with the PRIORITY pseudo­
variable or built-in function; or with the 
COMPLETION pseudo-variable. 

IHE5501 

IHE5511 

IHE5521 

IHE5531 

IHE5541 

IHE5551 

IHE5561 

IHE5571 

IHE5581 

ATTEMPT TO WAIT ON AN INACTIVE 
AND INCOMPLETE EVENT 

TASK VARIABLE ALREADY ACTIVE 

ExPlanation: Task variable is 
already associated with an 
active task. 

EVENT ALREADY BEING WAITED ON 

Explanation: During the execu­
tion of a WAIT statement, in 
order to complete the required 
number of events, an event must 
not be waited on which is 
already being waited on in 
another task. 

WAIT ON MORE THA~ 255 INCOM­
PLE'l'E EVENTS 

ACTIVE EVENT VARIABLE AS ARGU­
MENT TO COMPLETION PSEUDO­
VARIABLE 

INVALID TASK VARIABLE AS 
ARGUMENT TO PRIORITY PSEUDO­
VARIABLE 

ExplaD~tion: The task variable 
specified was active and not 
associated with the current 
task or one of its immediate 
subtasks. 

EVENT VARIABLE ACTIVE 
ASSIGNMENT STATEMENT 

EVENT VARIABLE ALREADY ACTIVE 

IN 

Explanati2~: Event variable is 
already associated with an 
active task. 

ATTEMPT TO WAIT ON AN I/O EVENT 
IN WRONG TASK 

Explanation: An 1/0 event can 
be waited on only in the same 
task as the statement which 
initiated the I/O operation 
with which the event is asso­
ciated. 

In the following group of 
messages, hhh is a hexadecimal 
number. 



IHE5711 

IHE5721 

IHE5731 

IHE574I 

IHE5751 

IHE5761 

IHE577I 

IHE5791 

TASK (name) TERMINATED. COM­
PLETION CODE= hhh. 

TASK (name) TERMINATED. 
PLETION CODE hhh .• 
VARIABLE OVERWRITTEN OR 
ROYED. 

COM­
EVENT 
DEST-

TASK (name) TERMINATED. COM­
PLETION CODE = hhh. TASK VARI­
ABLE OVERWRITTEN OR DESTROYED. 

TASK (NAME) TERMINATED. COM­
PLETION CODE hhh. INVALID 
FREE STATEMENT. 

Expl~nati2g: The FREE statement 
freed, or tried to free, stor­
age to which it is not applica­
ble. 

TASK (name) TERMINATED. COM­
PLETION CODE hhh. DISPLAY 
STATEMENT. REPLY NOT WAITED 
FOR. 

Explanation: The task termin­
ated normally without waiting 
for a reply from a DISPLAY 
statement with the REPLY 
option. 

TASK (name) TERMINATED. COM­
PLETION CODE = hhh.. TOO MUCH 
MAIN STORAGE REQUESTED. 

TASK (name) TERMINATED WHILE 
STILL ACTIVE -- END OF BLOCK 
REACHED IN ATTACHING TASK. 

Explanation: 
task reached: 

The attaching 

1. An EXIT statement., or 

2. The end of the block in 
which the subtask was 
attached 

while the subtask was still 
active. 

TASK (name) 
PLETION CODE 
TERMINATION 
MENT. 

TERMINATED. COM­
hhh. ABN ORMAL 

DURING PUT STATE-

Conversion ON-Conditions 

Conversion errors occur most often on 
input, either owing to an error in the 
input data, or because of an error in a 
format list. For example, in edit-directed 
input, if the field width of one of the 
items in the data list is incorrectly 
Epecified in the format list, the input 
stream will get out of step with the format 

list and a conversion error is likely to 
occur. 

IHE600I 

IHE6011 

IHE6021 

IHE603I 

IHE6041 

IHE6051 

IHE606I 

IHE6071 

IHE608I 

IHE609I 

CONVERSION CONDITION SIGNALED 

CONVERSION ERROR IN F-FORMAT 
INPUT 

CONVERSION ERROR IN E-FORMAT 
INPUT 

CONVERSION ERROR IN B-FORMAT 
INPUT 

ERROR IN CONVERSION FROM CHAR­
ACTER STRING TO ARITHMETIC 

ERROR IN CONVERSION FROM CHAR­
ACTER STRING TO BIT STRING 

ERROR IN CONVERSION FROM CHAR­
ACTER STRING TO PICTURED CHAR­
ACTER STRING 

CONVERSION ERROR IN P-FORMAT 
INPUT (DECIMAL) 

CONVERSION ERROR IN P-FORMAT 
INPUT <CHARACTER) 

CONVERSION ERROR IN P-FORMAT 
INPUT (STERLING) 

Note: When condition was due 
to an I/O conversion, then 
"FILE name" will be inserted 
between the message number and 
the text. Also, when the I/O 
conversion error was due to a 
TRANSMIT error, the word 
(TRANSMIT) is inserted between 
the file name and the text. 

Conversion Errors, Non-ON-Typ'~ 

IHE700I 

IHE701I 

IHE702I 

IHE703I 

IHE704I 

IHE705I 

IHE706I 

INCORRECT 
CATION 

E(W,D,S) SPECIFI-

F FORMAT W SPECIFICATION TOO 
SMALL 

A FORMAT w UNSPECIFIED AND LIST 
ITEM NOT TYPE STRING 

B FORMAT W UNSPECIFIED AND LIST 
ITEM NOT TYPE STRING 

A FORMAT W UNSPECIFIED ON INPUT 

B FORMAT W UNSPECIFIED ON INPUT 

Explanations: Messages 700 to 
705 reveal that an EDIT opera­
tion was incorrectly specified. 

UNABLE TO ASSIGN TO PICTURED 
CHARACTER STRING 

Appendix G: Diagnostic Messages 269 



IHE798I 

IHE799I 

Explanation: A source datum 
which is not a character string 
cannot be assigned to a pic­
tured character string because 
of a mismatch with the PIC 
description of the target. 

ONSOURCE OR ONCHAR PSEUDOVARIA­
BLE USED OUT OF CONTEXT 

Explanation: This message is 
prinL.ed and the ERROR condition 
raised if an ONSOURCE or ONCHAR 
pseudo-variable is used outside 
an ON-unit, or in an ON-unit 
other than either a CONVERSION 
ON-unit or an ERROR or FINISH 
ON-unit following from system 
action for CONVERSION. 

RETURN ATTEMPTED FROM CONVER­
SION ON-UNIT BUT SOURCE FIELD 
NOT MODIFIED 

Explanation: A CONVERSION ON­
unit has been entered as a 
result of an invalid 
conversion. and an attempt has 
been made to return, and hence 
reattempt the conversion, with­
out using one or other of the 
pseudo-variables ONSOURCE or 
ONCHAR to change the invalid 
character. 

Non-Computational Program Interrupt Errors 

certain program interrupts may occur in 
a PL/I program because the source program 
has an error which is severe but which 
cannot be detected until execution time. 
}n example is a call to an unknown proce­
dure, which will result in an illegal 
cperation program interrupt. Other program 
interrupts, such as addressing, specifi­
cation, protection, and data interrupts, 
may arise if PL/I control blocks have been 
destroyed. This can occur if an assignment 
is made to an array element whose subscript 
is ou·t of range" since, if SUBSCRIPTRANGE 
has not been enabled" the compiler does not 
check array subscripts; a program interrupt 
may occur at the time of the assignment or 
at a later stage in the program. Similar­
ly, an attempt to use the value of an array 
element whose subscript is out of range may 
cause an interrupt. 

Care must be taken when parameters are 
passed to a procedure. If the data attri­
butes of the arguments of the calling 
statement do not agree with those of the 
invoked entry pOint, or if an argument is 
not passed at all, a program interrupt may 
occur. 

270 

The use of the value of a variable that 
has not been initialized, or has had no 
assignment ~ade to it, or the use of 
CONTROLLED variables that have not been 
allocated, may also cause one of these 
interrupts. 

IHE800I 

IHE801I 

IHE802I 

IHE803I 

IHE804I 

IHE80SI 

IHE806I 

INVALID OPERATION 

PRIVILEGED OPERATION 

EXECUTE INSTRUCTION EXECUTED 

PROTECTION VIOLATION 

ADDRESSING INTERRUPT 

SPECIFICATION INTERRUPT 

DATA INTERRUPT 

Explanation: This condition 
can be caused by an attempt to 
use the value of a FIXED DECI­
MAL variable when no prior 
assignment to, or initializa­
tion of~ the variable has been 
performed. 

Model 91 Object-Time Di~nostic Messages 

After a multiple-exception imprecise 
interrupt on a Model 9 ~ certain exceptions 
will remain unprocessed if the ERROR condi­
tion is raised before all the exceptions 
have been handled. If the program subse­
quently is terminated as a direct result of 
the ERROR condition being raised in these 
circumstances, one or more of the following 
messages will be printed out,. 

IHE810I 

IHE811I 

IHE812I 

IHE813I 

IHE814I 

IHE815I 

PROTECTION EXCE"PTION UNPRO­
CESSED AFTER MULTIPLE-EXCEPTION 
IMPRECISE INTERRUPT 

ADDRESSING EXCEPTION UNPRO­
CESSED AFTER MULTIPLE-EXCEPTION 
IMPRECISE INTERRUPT 

SPECIFICATION EXCEPTION UNPRO­
CESSED AFTER MULTIPLE-EXCEPTION 
IMPRECISE INTERRUPT 

DATA EXCEPTION UNPROCESSED 
AFTER MULTIPLE-EXCEPTION IMPRE­
CISE INTERRUPT 

ZERODIVIDE UNPROCESSED AFTER 
MULTIPLE-EXCEPTION IMPRECISE 
INTERRUPT 

OVERFLOW UNPROCESSED AFTER 
MULTIPLE-EXCEPTION IMPRECISE 
INTERRUPT 



Etorage Management Errore 

The following errors are associated with 
the handling of storage and transfer of 
control out of blocks. In some cases, 
these errors are a result of program error, 
but it is possible that the messages may be 
printed because the save area chain, allo­
cation chain, or pseudo-register vector 
have been overwritten. 

IHE900I TOO MANY ACTIVE ON-UNITS AND 
ENTRY PARAMETER PROCEDURES 

Explanation: There is an 
implementation limit to the 
number of ON-units and/or entry 
parameter procedures which can 
be active at any time,. An 

IHE902I 

entry parameter procedure is 
one that passes an entry name 
as parameter to a procedure it 
calls. The total permissible 
number of these ON-units/entry 
parameter procedures is 127. 

GOTO STATEMENT REFERENCES A 
LABEL IN AN INACTIVE BLOCK 

Explanation: The label 
referred to cannot be found in 
any of the blocks currently 
active in the current task; 
blocks are not freed. The 
statement number and offset 
indicate the GO TO statement 
causing the error. 

Appendix G: Diagnostic Messages 271 



APPENDIX H: LANGUAGE FEATURES RESTRICTED OR NOT SUPPORTED IN THE FOURTH VERSION 

This appendix details the PL/I language 
features which are not implemented by the 
fourth version of the PL/I (F) Compiler, or 
which are implemented with restrictions. 

IDENT option 

The IDENT option on OPEN/CLOSE state­
ments is not permitted .• 

EVENT Option in the DISPLAY Statement 

If the EVENT option is specified in the 
DISPLAY statement, it must follow the REPLY 
option. 

Example: 

DISPLAY ('LEGAL') EVENT (El) REPLY 
(ANSWER)t /*ILLEGAL*/ 

DISPLAY ('LEGAL') REPLY (ANSWER) EVENT 
(El); /*LEGAL*/ 

EVEN1-QEtion in the WRITE Statement 

The EVENT option should not be used in 
the WRITE statement if V or U format 
records are being added to a REGIONAL(3) 
data set which is being accessed in a 
DIRECT UPDATE mode. 

lNITIAL Attribute 

An INITIAL attribute given for CHARACTER 
or BIT data of STATIC storage class may not 
specify 'complex expressions' as initial 
values. 

Example: 

DCL C CHAR(10) 
STATIC INITIAL (3+4I); /*ILLEGAL*/ 

DCL C CHAR(10) 
STATIC INITIAL ('3+4I');/*LEGAL*/ 

272 

DEFINED Attribute 

overlay defining is not permitted if the 
base is either subscripted or is declared 
CONTROLLED. correspondence defining is not 
permitted if the base is declared CON­
TROLLED. 

Example: 

DCL B CONTROLLED, C(10) AUTOMATIC; 

DCL 
A DEFINED B, /*ILLEGAL*/ 
E DEFINED C(I), /*ILLEGAL*/ 
F (10) DEFINED C; /*LEGAL*/ 

No correspondence defining may be used 
with arrays of structures. 

DCL 1 A (10), 2 B, 2 C; 

DCL 1 D (5) DEFINED A,2 E,2 F; /*ILLEGAL*/ 
DCL D (5) DEFINED B; /*LEGAL*/ 

Structures and Arrays of Strnctures in 
certain Special Contexts 

No structure or array of structures may 
be passed as an argument ·to either a 
built-in function (except the STRING, ADDR, 
an1 ALLOCATION functions), or to a proce­
dure declared with the attribute GENERIC. 

DCL 1 A(10), 2 B; 

A=SI~(A) ; 
B=SI:-;I(B); 

/*ILLEGAL*/ 
/*LEGAL*/ 

No reference may be made to both a 
structure and an array of structures in the 
same expression or assignment. 

~~ample: 

DCL 1 A (10), 2 B, 2 C, 
1 F(10), 2 B, 2 C, 
1 P, 2 Q, 2 R; 

A=P; 
A=F; 
A (I) =P; 
A=F, BY NAME; 
A= F (I), BY NAME; 

/*ILLEGAL*/ 
/*LEGAL*/ 
/*LEGAL*/ 
/*LEGAL*/ 

/*ILLEGAL*/ 



No references can be made to cross 
sections of arrays of structures; the whole 
of an array of structures may be ref­
erenced, or a single element of the array 
rray be referenced, but not a cross section. 

Example: 

DCL 1 A(10,10)# 2 B~ 2 C(10,10): 
DCL 1 X(10), 2 Y, 2 ZC10.l0); 

A C * ,J) =X; 
A=A+l; 
ACI,J)=XCI); 

I*ILLEGAL*I 
I*LEGAL*I 
I*LEGAL*I 

A cross-section of an EVENT array is not 
permitted to appear in a WAIT statement. 

Example: 

DCL EVT (10,10,,2) EVENT; 

WAIT CEVT) 200; I*LEGAL*I 

WAIT CEVTCI,J,2»100; I*LEGAL*/ 

WAIT (EVTC1,*,1»10; I*ILLEGAL*I 

VAiRYING strings 

The only form of varying strings permit­
ted in the INTO or FROM options in RECORD 
I/O are unsubscripted lev ell VARYING 
strings that are not members of arrays or 
structures. 

Interleaved Arrays of Va!ying strings 
Passed as Arguments 

A varying string" passed as part of an 
argument to a procedure, cannot have its 
length changed within the invoked procedure 
if all the following circumstances apply: 

1. the argument passed is in the form of 
a subscripted structure 

2. in the invoked procedure, the varying 
string is regarded as a scalar 

3. in the calling procedure, the varying 
string is one element of an inter­
leaved array. (An interleaved array 
is one in which other elements of a 
structure are mapped in storage 
between elements of the array. In the 
example below. S is an interleaved 
array. ) 

4. a dummy argument is not generated. 

DCL 1 P(10), 
2 Q(10), 

3 R FIXED( 5" 0) , 
3 S CHAR(5) VAR, 

2 T FIXED(5,0); 

CALL PROC1(P.Q(4,4»; 1* LENGTH OF STRING 
MAY NOT BE CHANGED 
IN PROC1*1 

CALL PROC1«P.Q(4,4»); 1* CHANGE PERMIT­
TED. DUMMY ARG­
UMENT CREATED *1 

CALL PROC2(P(4»; 1* CHANGE PERMIT­
TED. AN ARRAY OF 
STRINGS IS PAS­
SED *1 

Qualified names may not be used as label 
prefixes. Reference to arrays of label 
variables initializej by means of sub­
scripted labels must not require explicit 
structure qualification. 

For example: 

DCL Z(3) LABEL, 
1 S, 

2 YO) LABEL, 
1 Sl, 

2 YO) LABEL, 
1 S2, 

2 X( 3) LABEL; 

ZC1': ; I*LEGAL*I 
S.Y(l): ; I*ILLEGAL*I 
X(i): ; I*LEGAL*I 

The FLOAT Attribute 

Floating-point prec1s10n specified as 
FLOAT (*> in a parameter description within 
the GENERIC attribute, is not permitted. 

List Processing, Table Handling4 and 
Locate-Mode Input/Output Facilities 

The CELL attribute is not permitted. 

The SECONDARY Attribute 

The SECONDARY attribute will be recog­
nized but ignored. 

Appendix H: Language Features not supported in the Fourth Version 273 



The NORMAL and ABNORMAL Attributes 

The attributes NORMAL and ABNORMAL are 
not implemented. If declared# they will be 
ignored. 

BASED Variables 

The pointer variable explicitly or 
implicitly qualifying a based variable must 
be a non-based unsubscripted scalar pointer 
identifier. 

The BASED attribute must be followed by 
a pointer identifier in parentheses. 

The OFFSET attribute must be followed by 
an identifier in parentheses. 

The variable named in the OFFSET attri­
bute must be an unsubscripted level 1 based 
area. 

Offset variables may not be used in any 
SET option or in any explicit or implicit 
rased variable qualifier. 

A based variable may not have the INI­
'IIAL attribute. 

A based label array cannot be initial­
ized by means of subscripted label prefix­
es. 

A based structure can have either: 

1. One adjustable array round, or 

2. One adjustable-length bit or character 
string. 

Based structure with one adjustable array 
bound: This is permitted only when there 
are-Do adjustable strings in the structure. 
The bound must conform to the following 
rules: 

1. It must be of the form: 

274 

X REFER (Y) 

where X is an unsubscripted fixed 
binary variable of default 
precision. and 

Y is an unsubcripted fixed 
binary variable, of default 
precision, which is: 

(a) part of the structure, and 
(b) not associated with an 

explicit pointer qualifi­
er. 

2. It must be the upper bound of the 
leading dimension (including inherited 
dimensions) of the element with which 
it is declared. 

3. The structure member with which the 
bound is declared must be, or must 
contain, the last base element in the 
structure,. 

For exampl e: 

DeL 1 PARTS LIST BASED (P), 
2 FIRM NAME CHAR (40), 
2 REF NO FIXED BINARY, 
2 FIRM ADDRESS, 

3 STREET TOWN CHAR (50), 
3 COUNTRY CHAR (30), 

2 STOCK (20: N REFER( REF NO), 100: 200 >., 
3 NUMBER, -

4 HERE FIXED (10,0). 
4 ORDERED" 

5 PROVISIONAL FIXED (10,0), 
5 CONFIRMED FIXED (10,0), 

3 COST FIXED (5,,0); 

Based structure with one adjustable-length 
bit or character string: This is permitted 
only when there are no adjustable array 
bounds in the structure. The string must 
conform to the following rules: 

1. It must be scalar. 

2. It must be the last element in the 
structure. 

3. The length must be declared in the 
form: 

X REFER (Y) 

where X and Yare as described above. 

For exampl e: 

DCL 1 TYPE OF HOUSE BASED (P) " 
2 NUMBER:=O(=FLOORS FIXED (2,0)" 
2 AREA FIXED BINARY, 
2 RATES_CODE CHAR (N REFER (AREA»; 

Note: Pointer and AREA data types must be 
ALIGNED. 

OFFSET and POINTER Built-In Functions 

The OFFSET and POINTER built-in func­
tions cannot be specified explicitly. How­
ever~ if the value of an offset variable is 
assigned to a pointer variable, or a poin­
ter value to an offset variable. the neces­
sary conversion is implicit in the assign­
ment. 



Based Variable Declaration 

A pointer variable must be included in a 
cased variable declaration. (This is the 
pointer that will be set in the absence of 
a SET option from a LOCATE or an ALLOCATE 
statement referring to the based variable.) 

ONCOUNT Built-In Function 

This function is supported only for 
Model 91 requirements. 

Appendix H: Language Features not supported in the Fourth Version 275 



APPENDIX I: MODEL 91 

When using the (F) Compiler to produce 
cbject programs for execution on a 
System/360, Model 91 the option M91 must be 
specified .. 

In the following discussion, the terms 
exception and interrupt are used. An 
exception is a hardware occurrence (such as 
an overflow error) which can cause a pro­
gram interrupt. An interrupt is a suspen­
Eion of normal program activities. There 
are many possible causes of interrupts, but 
the following discussion is concerned only 
with interrupts resulting from hardware 
exceptions. 

The Model 91 is a high-speed processing 
system in which more than one instruction 
is executed concurrently. As a result, an 
exception may be detected and an interrupt 
occur when the address of the instruction 
which caused the exception is no longer 
held in the central processing unit. Con­
sequently, the instruction causing the 
interrupt cannot be precisely identified. 
Interrupts of this type are termed impre­
cise.. When an exception occurs, the 
machine stops decoding further instructions 
and ensures that all instructions which 
¥ere decoded prior to the exception are 
executed before honoring the exception. 
Execution of the remaining decoded instruc­
tions may result in further exceptions 
occurring. An imprecise interrupt in which 
more than one exception has occurred is 
known as a multiple-exception imprecise 
jnterrupt. When the M91 option is used, 
the compiler and library permit processing 
of imprecise interrupts. 

When the M91 option is specified, the 
following occurs: 

1. The compiler inserts 'no-operation' 
instructions at certain points in the 
program to localize imprecise inter­
rupts to a particular segment of the 
program, thus ensuring that interrupt 
processing results in the action spec­
ified in the source program. (A 
'non-operation' instruction is an 
Assembler Language 'flush' instruction 
of the form BCR x,O, where x is not 
equal to zero. This instruction is 
implemented in the Model 91 in such a 
way that its execution is delayed 
until all previously decoded instruc­
tions have been executed.) The situa­
tions in which the I no-operation' 
instructions are generated are: 

a. Before an ON statement. 

276 

b. Before a REVERT statement. 

c. Before compiled code to set the 
SIZE condition. 

d. Before compiled code to change 
prefix options. 

e. For a null statement. {This fea­
ture provides the programmer with 
source language control over the 
timing of program interrupts.} 

f. Before every statement of the STMT 
option (in the PARM field of the 
EXEC statement) is used. (This is 
an important debugging tool.) 

2. An external symbol dictionary (ESD) 
entry is created for the PL/I library 
module IHEM91, which is required only 
when an object program is to be exe­
cuted on a Model 91. The module is 
included when the object module is 
link-edited, and it is called when an 
imprecise interrupt is detected. 
Module IHEM91 provides the facilities 
for: 

a. Detecting mUltiple-exception 
impreci.se interrupts. 

b. Setting the value that is returned 
by the ONCOUNT built-in function. 

c. Raising the appropriate PL/I con­
ditions. 

The order of processing the exceptions 
is as follows: 

1. PL/I conditions in the order: 

UNDERFLOW 

FIXEDOVERFLOW or SIZE 

ERROR if system action is required for 
either FIXEDOVERFLOW or SIZE 

OVERFLOW 

ERROR if system action is required for 
OVERFLOW 

ZERODIVIDE 

ERROR if system action is required for 
ZERODIVIDE 

Note: The conditions FIXEDOVERFLOW and 
SIZE cannot occur together since the 



same hardware condition raises both of 
them. 

2. Hardware exceptions in the order: 

data 

specification 

addressing 

protection 

Conditions and exceptions are raised in 
the above order until one of the following 
situations occurs: 

1. A GO TO statement arising out of an 
ON-unit is executed. All other excep­
tions will then be lost,. 

2. The ERROR condition is raised. If the 
program is terminated as a result of 
this action (i.e. " system action caus­
ing the ERROR condition to be raised" 
followed by the FINISH condition> " 

messages will be printed to indicate 
the nature of the unprocessed excep­
tions. The exceptions themselves will 
not be processed. 

When an interrupt results from multi­
ple exceptions" only one of the PL/I 
conditions is raised for each type of 
exception that has occurred. 

When a multiple-exception imprecise 
interrupt occurs, the ONCOUNT built-in 
function provides a binary integer count of 
the number of exception types" including 
the current one. remaining to be processed. 
(The count does not include PL/I ON condi­
tions.) If the ONCOUNT function is used 
when only a single exception has occurred, 
or if it is used outside an ON-unit, a 
count value of zero is indicated,. 

Programs compiled with the M91 option 
can be executed on other System/360 models 
supported by the system/360 Operating Sys­
tem. 

Apendix I: Model 91 277 



278 



* PROCESS statement •••••• ' ••• ' ..... '. • • • • •• 30 

ABNORMAL attr ibute •• ~ ....... ' ....... '. • ••• 273 
ADV, format of ••• ~ ••• : •••••••••••••••• 162 
aggregate length table .~ ••••••••••••••• 35 
ALIAS linkage editor statement ••• ' •• ' •••• 44 
ALIGNED),UNALIGNED attributes ••••••• 14,103 

See also structure mapping ••••• '. • •• 164 
alignment 

of FIXED and FLOAT BINARY variables 126 
alignment attributes, use of •••••••••• 122 
area data, format of •••••••••••••••••• 139 
area dope vector '.' ............. ' ••••••••• 161 
AREA ON-unit, exit from ••••••••••••••• 112 
AREA, size of .......................... 151 
AREA storage allocation and release 174-175 
arguments, method ofpr~senting ••••••• 161 
array arithmetic - programming hints •• 111 
array assignment .'.' •••••• ' •••••••••••••• 109 
array dope vector, format of •••••••••• 162 
array expressions - nesting levels • '. •• 150 
array or structure elements 

matching with EDIT-directed format 
lists •••••••••• ' •• ' ••••••• ,. • • • • • • • •• 113 

arrays 
listed at~ributes .................... 33 
order of transmission •••••••••••••• 113 

arrays bounds permitted •• , •• , •• ' .......... 149 
arrays, format of ••••••••••••••••••••• 140 
ASA carriage control character ••••••••• 68 
assembler subroutine 

variable-length argument list for ••• 82 
assignment of variables ••••••••••••••• 107 
aSS1Qnment, efficient multiple 

assignments ' •••• ' ............ , •••• '. '. .. • • •• 117 
assignment to VARYING string •••••••••• 111 
assignments of variables 

programming hints •••••••••••••• 109,126 
ATTACH macro •••• '. ' •••• ' ........ ' .... , ••••• 'O. 186 
ATRINOATR option ••••••••• '. • • • • • • • • • • • •• 26 
attribute arid cross reference table • ' ••• 33 

example ••••••••••••••••••••••••••••• 34 
attribut~s, declaration of •• ~ ••••••••• 105 
attributes, factoring of •••••••••••••• 149 
AUTOMATIC variables, declaration •••• ,. 105 

BACKWARDS attribute •• '. • • • •• • • • • • • • •• 51,70 
based variables allocation •••••••••••• 115 
based variables using REFER 

forcing correct boundary alignment • 156 
batched compilation .; ,. , •••••••• ' •••••••••• 30 

programming example ••••••••••••••••• 31 
batched compilation output data sets ••• 24 
BCD/EBCDIC option •••• ' ....... '. '. '. • • • • • • • •• 27 
BEGIN blocks, use of ••••••••••••• ' ••••. 115 
binary data alignment ••••••••••••••••• 126 
BIT data •••••••••••••••••••••••••••••• 137 
BIT strings, efficient use of ••••••••• 117 
BLKSIZE 

for blocked INDEXED data sets ••••• '.. 71 
BLKS I ZE DCB subparameter ••••• '. • • • .. .. • • •. 59 
block initialization 

prologues and epilogues •••••••••••• 159 
block invocation 

recursive invocation count 
pseudo-register •• ' ........... '. • ..... • •• 36 

block management at run-time •••••• 158-160 
block nesting, limits ............... '. '. •• 149 
block size for records .................. 61 
block size, maximum ••• , .................. 142 
blocks in a compilation ••••••••••••••. 149 
bounds permitted for arrays ••••••••••• 149 
BUFFERS option 'O •••••••••••••••• ' ••• 143-144 
buffers, number of • ' ......... ' ••••••• ,. ' •••• 65 
BUFNO DCB sUbparameter ••••••••••••••••. 59 

CALL macro ••• '. ' ••• , ........... D • • ... • •• • •• 186 
calling sequence between modules •••••• 160 
card reader/punch mode ••••••••••••••.•• 66 
card reader/punch stacking .............. 66 
cataloged data sets ..................... 19 

definition of ......... ' ••• 'D • • • ... • • .. • •• 17 
cataloged procedures, use of ••••••••••• 48 

PLl D FC •••••• ' ..... ,. • • • • • • • ... • .. •• 183 , 19, 49 
PLl LFC ......... '. ... • •• • • • •• • • •• 183,19, 49 
PL1LFCL •••••••••••••••••••••• 183,19,49 
PL1LFCLG •••••••• oO •••••••••••• 184,19,50 
PLl L FLG ' ••• , •••••• , •• '. ' ...... ,. • • •• 18 4 , 19, 50 

CELL attribute ............................ 273 
chained scheduling ........................ 65 
CHANGE linkage editor statement ......... 44 
changes at Fourth version# Release 17 •• 13 
channel programs, number of •••••••••••• 65 
character code for object program ••••• 142 
CHARAC'r ER data .......... ' •••••••• '. • • • • •• 137 
CHARACTER PICTURE data •••••••••••••••• 137 
CHAR60lCHAR48 OPTION .................... 28 
CHECK condition •• ' ..... '.' •• ' ••• ' •••• 'D •• ,.' ••• 154 

for DATA-directed 1/0 •••••••••••••• 153 
CHECK lists, maximum number of items •. 153 
checkpoint/restart .................... 83-87 
CM 

See external symbol dictionary 
COBOL option •••••••••••••••••••••••••• 144 
COBOL structures length of ••••••••••••• 35 
COBOL-PL/I data interchange •.••••••••. 103 
CODE DCB subparameter for paper tape ••• 65 
coded arithmetic data ••••••••••••••••. 135 
collating sequence •••••••••••••••••••• 154 
COLUMN, used for non-PRINT file ••••••• 142 
communication between object modules ••• 81 
COMP/NOCOMP option ...................... 29 
compatibility 

between versions of the compiler •••• 14 
expression evaluation - concatenation 14 
multitasking •••••••.• ' ••••••••••• ' ••••• 14 
PACKED now removed from the language 14 
RECURSIVE procedures ........ ' •• '. • .. • • • •• 14 
REENTRANT procedures •••••••••••••••. 14 
structure mapping •••••••••••••••• 14-15 

compilation job control •••••••••••••••• 30 
compilation speed improvements • '. • •• • •• 115 
compile-time facilities ••••••••••••••• 123 
compile-time processor ............. 147-148 

Index 279 



compile-time processor, listing of input 32 
additional data in cols 73-80 of 

output ••••••••••••••••••••••••••••• 33 
compiler 

compatibility between different 
versions ••••••••••••••••••••••••••• 14 

compiler completion codes ••••••••••• 30 
features of different versions ••. 11-14 
summary of Release 17 changes ••••••• 13 

compiler ddnames ••••••••••••••••••••••. 20 
compiler interface with the supervisor • 79 
compiler options •••••••••••••••••••• 14,24 
compiler options, listing of ••••••••••• 32 
compiler output ••••••••••••••••••••• 31-40 

aggregate length table •••••••• : ••••• 35 
attribute and cross reference table • 33 
external symbol dictionary ESD 
listing •••••••••••••••••••••••••••. 36 

source program listing •••••••••.•••• 32 
STATIC I!~TERNAL storage map ••••••••• 37 

compiler phases, language features 
calling particular optional phases ••• 115 

compiler processing ..................... 20 
compiler storage requirements •••••••••. 23 
compiler-generated names, number of ••• 150 
compiler-input/output blocking ••••••••. 23 
COMPLETION built-in function •••••••••• 153 
COMPLETION pseudo-variable •••••••••••• 153 
completion codes 

for abnormal step termination •••••• 133 
for batched compilation .•••••••••••• 31 
for the compiler •••••••••••••••••••. 30 

COMPLEX FIXED BINARY data ••••••••••••• 136 
COMPLEX FIXED DECIMAL data ••••••••.••• 136 
COMPLEX FLOAT BINARY data ••••••••••••• 136 
COMPLEX FLOAT DECIMAL da ta .............. 136 
compound source statement numbering •••• 32 
concatenation of data sets •••••••••••• 155 
concatenation, priority of ••••••••••••• 14 
condition prefixes, scope of •••••••••• 127 
conditional job step execution ••••••••. 83 
CONSECUTIVE data set access •••••••••••• 70 
CONSECUTIVE data set creation •••••••••. 70 
CONSECUTIVE data set language features . 52 
CONSECUTIVE data sets •••••••••••••••••. 51 
CONSECUTIVE organization •••••••••••••• 143 
constants returned by procedures •••••• 150 
constants, floating-point, size of •••• 150 
constants, precision and length •• , ••••• 150 
constants, sterling ••••••.••••••••••••• 150 
constants, string, size of •••••• ' •••.•• 150 
control program options •••••••••••••••• 78 
control record for batched compilation • 31 
control sections 

procedure invoc,ation ••••••••••••••• 160 
section definition for IHEMAIN •••••. 37 
section definition for IHENTRY •.•••• 37 

control variables in DO-groups •••••••• 127 
CONVERSION ON condition ••••••••••••••• 154 
CONVERSION ON-un its .................... 112 
conversions 

hints for efficient execution •• 116-117 
programming hints •••••••••••••••••• 108 
supported by in~line code •••••• 118-120 

CSECTS 
See control section 

CTLASA option •••••••• ' ••••••.•••••••••••• 68 
CTLASA record I/O control characters •• 144 

280 

CTL360 option •••••••••••••••••••••••••• 68 
CTL360 record I/O control characters •• 144 
cyclinder overflow area •••••.•••••••••• 67 
CYLOFL subparameter ....................... 67 

data aggregates - programming hints ••• 111 
data attributes 

for efficient execution •..•••••••••• 116 
data control block DCB parame·ter ••••.•• 46 
DATA directed I/O, CHECK condition •••• 153 
data element descriptor DED •••••••••• 137 
data interchange ............ D. • •• • • ... •• 103 
data management access methods ••••••••• 78 
data set creation and access ••••••••••• 70 
data set definition •••• 0................. 58 
data set, definition of •••••••• ..,....... 17 
data set label, ordering sequence for 

DCB ••••••••••••••••••• ., ••••••• , ••• , •••• 141 
data set names 

generation data groups •••.•••••••••• lB 
indexes of •••• ' •••••• 0 ................. 18 
qualified or unqualified ............... 18 
restriction •••• ' .................. '. ... • •• 17 

da ta set naming •••• D • • ... • • • • • • • .. • • • • • •• 58 
data set organization •••••••••••••••••• 67 

types of ............................. 143 
data set positioning, magnetic tape 143-144 
DATA-directed I/O 

maximum length of qualified name ••• 142 
maximum n~mber of elements in list . 150 

DATAFIELD built-in functions 
DATAFIELD string length ................. 152 
DATE function •••••••••••••••••• '. • • • • •. 117 
DCB creation ............................. 141 
DCB parameter ......................... 46,59 
DCB subparameters ......................... 60 
DCB, file opening order of completion • 141 
DD statement .............................. 20 
DD statement, ordering sequence for DCB 141 
DD statements •••••••••••••••••••••• 19,184 

modified in cataloged procedures G •• 185 
ddnames 

for PL/I SORT •••.••••••••••••• ,. • ... • •• 96 
debugging facilities (testing) •••• 129-134 
DECK/NODECK option ........................ 27 
declaration of external indentifiers •• 105 
DED data element descriptor •••••••••• 137 
DEFINED items 

alignment attributes .......... '. .... •• 122 
deleted records •• '. •• •• • • • • ... • • ... • .... • •• 66 

SEQUENTIAL UPDATE of INDEXED data 
sets ................................ 72 

delimiter (/) statement co ......... , ........ 20 
DEN DCB subparameter .................... 65 
device cIa sses .................. ' •••• '. • •. 21 
devices 

execution device choice ••••••••••••• 46 
diagnostic messages 

See messages 
dictionary blocksize ••••••••••••••••••• 29 
dictionary, reducing the size of •• 120-122 
dimensions, maximum number of ••• ~ ••••. 149 
DIRECT access ••.•••• '. • • • • • • • • • • •.• • • • • • •. 51 

See also INDEXED and REGIONAL data 
sets 

DIRECT UPDATE files 
use of NOWRITE option ............... 122 

DISP parameter •.•••••••••••• ' •••• ' •••••••• 59 



DISPLAY message length •••••••••••••••• 141 
DISPLAY statement ........................ 132 
division 

FIXED division programming hints ••• 109 
DO groups - programming hints ••••••••. 110 
DO groups, use of ••••••••••••••••••••• 127 
dope vector for string data ••••••••••• 136 
dope vectors, creation of •••••••.•••••• 140 
DSA dynamic storage area ••••••••••••• 159 
DSNAME parameter ........ '. • • • • • • • • .• • • • • • •• 58 
DSORG subparamet er ....................... 67 
dummy records 

in INDEXED data sets ••••••••.•••••••• 53 
in REGIONAL data sets ••••••••••••••• 58 

dumping storage in multitasking .•••••••• 89 
dumps 

See storage dumps 
dynamic invocation of PL/I compiler ••• 186 
dynamic storage area DSA ••••••••••••• 159 

E format data, maximum size •••••.••••• 142 
EBCDIC/BCD option ......................... 27 
EDIT-directed I/O ••••••••••••••••••••• 154 

maximum length of E format data •••• 142 
EMPTY built-in function, use of ••••••• 112 
END statement ............................ 32 
entry names as arguments •••••••••••••• 154 
entry parameter procedures, max number 154 
entry points 

declaration of attributes ••••••••.•• 105 
ENVIRONMENT attribute •••••.•••••.••••• 142 
ENVIRONMENT attribute, use of ......... D. 124 
epilogue subroutine 

See dynamic storage area 
ER 

See external symbol dictionary 
ERROR condition ••••••••••••••••••••••• 128 
error messages 

See messages 
ESD (external symbol dictionary) ••.••••• 36 
ESD listing .............................. 36 
event data, format of ••••••••••••••••• 139 
EVENT option ••••••••••••••••••••••. 57,146 

ina DISPLAY statement •••.•••••••••• 272 
in a multitasking environment ••••••• 88 
in multi taski ng I/O •••••••.•••••••••• 91 
with REGIONAL(3) data sets •••••••••. 57 

EXEC s ta t erne n t ••• 0 • • • • • • • • • • • • • • • • • • • •• 2 0 
execution speed, improvements ••••••••• 116 
EXIT statement 

in a subtask ............................. 93 
exponentation ............................ 154 
expression evaluation ••••••••••••••••• 108 

maximum number of temporary results 151 
EXTDIC/NOEXTDIC option •••••.••.•••••• 29,148 
extended search limit •••••••••••••••••• 67 
external indentifiers 

restrictions •••••••••••.•.•.••••.•.••. 105 
external symbol dictionary listing •.••• 36 
EXTREF/NOEXTREF option ••••••••••••••••• 26 

F-format records •••••••••••••••••••••• 143 
factoring of attributes ••••••••••••••• 149 
FCB (file control block) ••••••••••••••• 81 
file and ddname relationship •••••••••• 141 
file attributes 

use of UNBUFFERED v BUFFERED .•••••.•• 125 
file attributes, specified in DD card •• 59 

file control block .".................... 81 
file opening and closing space 
requi r emen ts ........................... 82 

files 
for both input and output 

(programming hint) ••.••••••••••••• 112 
files and data sets..................... 51 
FINISH can di tion ........................ 128 
FIXED BINARY, maximum precision ••••••• 152 
FIXED built-in function, default •••••• 152 
FIXED data scale factor for ••••••••••• 152 
FIXED DECIMAL data with even precision 
FIXED DECIMAL variables •••••••• 0 •••••• 126 
FIXED DECIMAL, maximum precision •••••. 152 
FLAG option •••••••••••••••••••••••••••• 28 
FLOAT BINARY, maximum precision ••••••• 152 
FLOAT built-in function, default •••••• 152 
FLOAT DECIMAL variables ................ 126 
FLOAT DECIMAL, maximum precision •••••• 152 
floating-point constants, size of ••••• 150 
floating-point variable, magnitude of . 152 
FORTRAN-PL/I data interchange ••••••••. 103 
function values returned •••••••••••••• 151 

generation data groups ............... 18,19 
GENERIC attribute 

limit of family members and 
arguments ••••••••••••••••••••••••• 149 

GENKEY opt ion .................. ,. • • • • • • • .• 145 

hardware for PL/I (F) Compiler ••••••••. 78 

IDENT option .••••••••••••••••••••••••• 272 
identif iers, length of ••••• co • • •• • • •• •• 153 
IHEQERR 

See external symbol dictionary 
IHEQINV 

See external symbol dictionary 
IHEQTIC 

See external symbol dictionary 
IHESADA 

See external symbol dictionary 
IHESADB 

See external symbol dictionary 
in-line code for conve~sions and string 
handling .............................. 118 

INCLUDE STATEMENT 
data set requirements ••• 0 •••••••••• 147 
use of •••••••••••••••••••••••••••.• 123 

INDEXAREA paramet er .................... 145 
INDEXED data set access •••••••••••••••• 71 
INDEXED data set creation ••••.••••••••• 71 
INDEXED data set language features ...... 53 
INDEXED data set, DIRECT access •••••••• 73 
INDEXED data set, SEQUENTIAL access •••• 72 
INDEXED data sets ....................... 51 

KEY condition raised for lost record 113 
maintenance .................. D • • • .. •• 125 
records deleted by SEQUENTIAL UPDATE 72 
secondary storage restriction •••••• 104 

INDEXED organization ................... 143 
indexes for INDEXED data sets •••••••••• 52 
INITIAL attribute .................... 272-274 
initialization of program variables ••. 107 
initialization of variables, hints •••• 126 
input/output .•••••••••••••••••••••••.•. 91 

I/O bound programs ••••••••••••••••• 118 
INDEXED data sets •.•••••••••.•••••••••••. 51 

Index 281 



synchronization in multiprocessing ••••. 94 
input/output - programming hint ••• 112-115 
input/output conventions •••••••••• 141-147 
input/output error recovery ••••••••••• 126 
INSERT statement ••••••••••••••••••••••. 43 
instruction sets • ' •••••••••••••••••••••• 78 
interrupts 

M91 option •.••••••••••••••••••••••. 277 
interrupts, object time handling •• 16D,129 
interval timing options ••••••••.••••••• 79 
invocation of PL/I dynamically .••••••• 186 

job control for linkage editor ••••••••• 45 
job control statements 

example of compile, link and execute 
procedure •.•••••••••••••••••••••••. 46 

job priority ••••••••••••••••••••••••••• 90 
JOB statement ............................ 20 
job step 

def ini tion of ......................... 1 7 

KEY condition 
not detected using LOCATE statement 114 

KEY option •••••••••.•••••••• '. .. • • • • • • • •. 56 
key position, relative .................. 67 
KEYLF.N DCB sUbparameter •••••••••••••••. 66 
keys, for INDEXED data sets •••••••••••. 51 
keys, for REGIONAL data sets ••••••••••. 55 

LABEL attribute, maximum number ••••••. 152 
label data, format of ••••••••••••••••• 138 
LABEL parameter •••••••••••••••••••••••• 59 
LABEL variables in structures 

with INITIAL and LIKE attributes ••• 146 
language not supported •••••••••••••••• 272 
LD 

See external symbol dictionary 
LEAVE option ••••••••••••••.••••••• 143-144 
length of compiled modules .............. 81 
length of identifiers ••••••••••••••••• 153 
length of structures and arrays 

See aggregate length table 
LET linkage editor option •.••••.••••••. 44 
library module linkage conventions •••. 161 
library opening and closing modules 
storage requirements •••••••••••••••••. 82 

LIMCT DCB subparameter ..•••••••.••••••• 67 
LlNECNT option •••••••••••••••• '. • • • • • • •• 26 

for object program listings ••••••••• 38 
LlNECNT/NOLINECNT option ••.•••••••••••. 26 
LlNESIZE .option •••••••••••••••••••••••• 68 
LINESIZE, minimum and maximum ••••••••• 141 
LlNESIZE, used for non-PRINT file ••••• 142 
link editing into a private library •••• 41 
link editing, module name priority .•••• 41 
linkage editor , ••••••••••••••••••••••••• 18 

updating private procedure libraries 18 
linkage editor control statements •.•••• 44 
linkage editor diagnostics •••••••••• 45,46 
linkage editor options ••••••••••••••••. 44 
linkage editor output •••••••••••••••••• 45 
linkage editor overlay processing •.•••• 42 
linkage editor processing •••••••••••••. 40 
linkage editor, additional libraries ••• 41 
linkage editor. ddnames •••• ' ............. 41 
linkage editor, input and output ••.•••. 40 
LIST linkage editor option .' •••• ' •••••••• 44 
LIST/NOLIST option ••••••••••••••••••••• 26 

282 

load module •••••••••••••••••••••••••••• 18 
load module cross reference table •••••• 45 
load module map ........... ' ••••••• '. • • • • • •• 45 
load module, maximum size ................ 45 
LOAD/NOLOAD opt ion ••••••••• ~ ••• 0 • • • • • •• 27 
locate mode 1/0 •••• 0 ......... ' •••••••••••• 76 
LOCATE mode 1/0 ON conditions •• n •••••• 155 
locate mode I/O, use of •.••••••••••••. 114 
logical record length ................... 62 
LRECL 

for blocked INDEXED data sets ••••••• 71 
LRECL DCB subparameter .................. 59 

MACDCK data set •••••••• u ' ......... '. • • • • •• 20 
MACDCK/NOMACDCK option .................. 30 
MACRO option •••••••••••••••••••••••••. 123 
macro processor 

See compile-time processor 
MACRO-NOMACRO option •• 0 ................. 29 
magnetic tape conversion 7-track 66 
MAIN option ••••••• 00 ••••••••••••••• 81,148 
MAP linkage editor option •••••••••••••• 44 
mapping of structures •••••••.••••• 164-175 
master index specification ••••••••••.•• 67 
MAX function ........................... 152 
messages 

compiler diagnostic messages 39,188-260 
execution error messages •.••••. 260-271 
FLAG options •••••••••••••••••••••••• 28 
linkage editor ...................... 45,46 
to and from the operator •••••••••••• 48 

M FT ....................................... 79 
MIN function ...................... ,. • ... •• 152 
MOD function ................. , ............ 152 
MODE DCB s ubparameter ................... 66 
model 91 ............ ~ ••••••••••• _ •••••. 277 
modifying cataloged procedures ......... 184 
move mode I/O •••••••••••••••••••••••••• 76 
multiple assignments, limitations •• 0 •• 151 
multiple closure statement numbering ••• 32 
multiple WAIT option ••••••••••••••••••• 79 
multitasking .......................... 87-94 

I/O synchronization ............... D" ••• 92 
multitasking, Release 16 changes ••••••• 14 
multiprocessing ........................... 94 
multiprogramming, with a fixed number 
of tasks .••.•••••••••••••••••••••••••• 79 

multiprogramming, with a variable 
number of tasks .............. '. • • ... • • • • • •• 79 

MVT ....................................... 79 
M91/NOM91 option •••••••••••• ~ • ... • • • • • •. 30 

NAME linkage editor statement .••••••••• 44 
names generated by the compiler ••••••• 150 
NCAL linkage editor option •••••••• ~ •••• 43 
NEST/NONEST option ........... ~ ........... 30 
NTM DCB subparameter ••••••••••••••••••• 67 
null (/1) statement ••••••••• ' .•• '. • • • .. • •• 20 

obj ect deck data set ••••••••••••••••.•• 20 
object deck serialization •••••••••••••• 40 
object module ....................... ' ••••• 18 
object module data set •••••••.••••••.•• 20 
object module listing ...................... 38 
object module output. contents of •••••• 40 
object program initialization ••••••••• 160 
object program organization ••.•••• 158-175 
object program output 



object time messages .••••••••••••••. 48 
operator messages ••••••••••••••••.•. 48 
record oriented ...................... 47 
stream oriented •••• ' ••••••• '. • • • • • . • •. 47 

object-time interface with the 
supervisor ........................ '. . • • •• 79 

OBJNM opt ion • a ••••••• 0 •• • • • • • • • • • • • • • •• 26 
OFFSET function and attribute ••.•••••• 274 
offset variable, format of ••••••••..•. 138 
ON conditions n.......................... 111 

LOCATE mode I/O restrictions •••.••. 155 
ON statements in recursive contexts ••• 155 
ON-codes ••••••••••••••••••.••••••••••• 129 
ON-unit entry with SIGNAL •••••.••••••. 111 
ON-units 

in multitasking ••• 0 • •• •• • • • • • • • • •• •• 89 
ON-units, limit to active number .••••• 154 
ONCHAR pseudo-variable •••••••••••• 154,112 
ONCODE built-in function, use of •••••• 128 
ONCOUNT function ........................ 275 
ONKEY built-in function ••••••••••••••• 125 
ONSOURCE built-in function ••••.•••.••. 154 
ONSOURCE pseudo-variable •••••••••• 154,112 
ONSOURCE string length •.••••••.••••••. 152 
operating system requirements •••••••••. 78 
operator console •••••••.••. • ' •• • ' •••••••• 78 
OPLIST/NOOPLIST option ••••••••••••••••• 26 
OPT option .............................. 27 
OPTCD=C DCB subparameter ••.•••••.•.•••. 65 
OPTCD=L DCB subparameter ••.••••••••• ~ •• 66 
OPTCD=M DCB subparameter .•.•••••• '. .• • •. 67 
OPTCD=U DCB subparameter .•••••.•••••••. 66 
OPTIONS attribute ...................... 148 
overflow area, independent ••••••••••••• 67 
OVERFLOW conr'lition in exponentiation •• 154 
overlay program 

linkage editor cross reference table 45 
overlay programs, creation of •••••••••. 42 
overlay techniques - examples ••••••• 42-44 
overriding cataloged procedures ••••••. 124 
overriding EXEC statement parameters •. 184 

PACKED attribute ........................ 14 
PAGESIZE, maximum ••••••••••••••••••••• 141 
paper tape CODE subparameter ............ 65 
parameter lists 

declaration of attributes •••••••••. 105 
parameters, maximum number of •.••••••• 149 
parameters, method of passing ........... 161 
PARM paramete~ option list format •.••• 104 
PARM parameter override •••.••••••••••. 184 
partitioned data set 

definition •••••••••••••••.•••••••••• 19 
PCP ..................................... 78 
PDS (partitioned data set) .............. 19 
PGMNAME 

See external symbol dictionary 
PGMNAMEA 

See external symbol dictionary 
PICTURE attribute 

impact on execution speed •••••••••• 116 
PICTURE attribute, maximum size ••••••• 152 
picture checking (on assignment) •••••• 109 
PICTURE declarations 

with decimal points •••••••••••••••. 105 
pictured data .......................... 137 
PL/I language not supported ••••••••••• 272 
PL/I library .... ' •• ' •••••••• ' ••• '. • • • • • • • • •. 83 

PL/I modules combined with mojules from 
other languages ......................... 82 

PL/I preprocessor 
See compile-time processor 

PL/I SORT ....................... D •••• 95-103 
PL/I SORT - multitasking ••••..•••.•••. 103 
PL1DFC •••••••• • ' • ................. 183,19,49 
PLl L FC •••.••••••••• '. .• • • • • • • • . •• 183, 19" 4 9 
PL1LFCL ••••..•••..•••••••..••.•• 183,19,49 
PL1LFCLG ••••. ,. •• • • • • •• ... • • .... • •• 184,19,50 
PL1LFLG ••.•••••••••••••••••••••• 184,19,,50 
POINTER function ••• u • • • • • • • • • • • • • • • • •• 275 
pointer variable# format of ••••••••••. 137 
pointer variable~ reuse of ............. 115 
POSITION attribute, maximum value 152 
PR 

See external symbol dictionary 
precision# specified for efficient 

execution ............................. 116 
primary control program •••.••••••.••.•. 78 
primary string array dope vector •••••• 164 
PRINT files .............................. 68 
printed listings from compiler .......... 31 
printer character sets for PL/I ••.••••• 78 
printer spacing control ................. 66 
priorities in PL/I ••••••...••.••••••... 90 
PRIORITY pseudo-variable" function, or 
option ••.•.••• 0 ••••••••••••••••••••••• 90 

PROCESS card ........................ 0... 30 
program control section in ESD .......... 36 
program csects 

See control sections 
program size estimation 0 ••••••• 0 ••••••• 81 
program testing ..................... 128-134 
programming in a multitasking 

environment ••. '...... .• ... . • .• • • ... • . • • • •. 88 
programming techniques ••••.••••••. 104-127 

common errors and pitfalls •• 0 •• 104-115 
efficient programming ........... 115-127 

prologue and epilogue subroutines ••••• 159 
PRTSP DCB subparameter .a ................ 66 
PRTY parameter ........................... 90 
pseudo-register vector (PRV) •.••••. 95,158 
PUT DATA statement limitations ......... 113 

REAL FIXED BINARY data ••••.••••••.•••. 135 
REAL FIXED DECIMAL data ................. 135 
REAL FLOAT BINARY data ••.•.•..•••..••. 135 
REAL FLOAT DECIMAL data ................ 135 
REAL PICTURE data ...................... 137 
RECFM DCB subDarameter ................ 59,62 
record alignment ••• 0 ••• " ................. 155 
RECORD condition ........................ 125 
record data sets for printing •••••••••• 68 
record formats ................... 61,64,129 
RECORD-oriented input/output .... 0 •••••• 125 

hints for efficient performance •••. 118 
LOC?\TE mode ., .................... ~ ••.•• 76 
printer, punch control characters •. 144 
record format constraints •••••.•••.• 64 
record length ...•....... o ••••••• 62,142 

RECURSIVE attribute ••••••••••••••.••••. 14 
recursive use of a procedure •••••••••. 105 
REENTRANT attribute •.•• 0 • • ... • • • • • • • • ••• 14 
REENTRANT option ........................ 148 
REFER attribute 

forcing correct boundary alignment . 156 
REGIONAL data set access ••.••••••••••.. 74 

Index 283 



DIRECT access ••••••••••••••••••••••. 75 
replacement of records •••••••••••••• 75 
SEQUENTIAL access •••••••••••••••••.•• 74 

REGIONAL data set creation ••••••••••••. 73 
DIRECT creation ••••••••••••.•••••••• 74 
SFQUENTIAL creation ••••••••••.•••••• 74 

REGIONAL data set language features .••. 54 
REGIO~AL data set organization ••••••••• 55 
REGIONAL data sets 

source key last 8 bytes •••••••.••• 113 
REGIONAL organization ••.•••••••••••••• 143 
REGIONAL(l) data sets •••.•••••••••••••• 56 
REGIONAL(2) data sets •••••••• 0 .......... 56 
REGIONAL(3) data sets •••.•••••••••••••. 57 
REGIONAL(3) files 

in multitasking, with EVENT option •. 91 
register usage ••• ., •••••••••••••••••••• 161 
REPLACE linkage editor statement ••••••. 44 
REPLY message length •••.•••••••••••••• 141 
REPLY option ................. ' ........... 132 
restarts 

See checkpoint/restart 
return code setting by PL/I •••••••••••. 83 
return codes 

in mul titasking ••••••••••••••••••••. 89 
return values 

declaration of attributes •••••••••• 105 
REWIND option ...................... 143-144 
REWRITE statement 

in locate-mode I/O ••••••••••••••••. 114 
RKP DCB subparameter ••••••••••••••••••. 67 
run-time block management ••••••••• 158-160 

SADV ............................... •.• •• 163 
scale factor for FIXED DATA ••••••••••• 152 
scope of variables in multitasking .•••. 88 
SD 

See external symbol dictionary 
SDV string dope vector ••••••••••••••• 136 
SDV, format of •••••••••••••••••••••••• 161 
SECONDARY attribute ••••.•••••••••••••. 273 
sequential access I/O •••••••••••••••••• 51 
SEQUENTIAL access of REGIONAL data sets 56 
sequential data set 

definition •••••••••••••••••••••••••. 19 
SEQUENTIAL files 

in multitasking I/O ••••••••••••••••• 91 
SETS list, size of •••••••••••••••••••• 152 
SIGNAL statement ........................ 129 
SIZE CONDITION 

for even precision FIXED DECIM~L 
da ta •••• '. • • • • • • • • • • • • • • • • • • • • • • • •• 110 

SIZE disabled ••••••••••••••••••••••••• 108 
size of load module ....... '. '. • • • • • •• • • • •• 45 
SI ZE opti on .......... ' ••••••••••••••••• '.. 25 
SIZE requirements ••• 0.................. 23 
SKIP, used for non-PRINT file ••••••••• 142 
SNAP option, use of •••••••••••• '. '. • • •• 131 

in multitasking ...................... 89 
SNAP SySTEM ••••••••••••••••••••.••••••• 132 
SORMGIN option ••••••••••••••••••••• 27,135 
SORT, PL/I SORT •••••••••••••••••••• 95-103 
source keys, REGIONAL data sets •••••••• 55 
source program listing ••••••••••••••••• 32 
source statement numbering ••.••••••••••• 32 
source statement record format •••••••• 135 
SOURCE/NOSOURCE option ................... 29 
SOURCE2/NOSOURCE2 option ••••••••••••.••• 29 

284 

space allocation 
for REGIONAL data sets ••..••••••••••• 73 

SPACE parameter ......... co. • •• • • • • • • • • • •• 59 
space requirements for compiler data 
set s ••••.••••••••• ' ................. '. • •• 22 

spanned VS-format or VBS-forrrat recor1s 61 
spanned records ............. n • • •• • • • • •• 125 
spanned records, use of •••••••••••••••• 64 
STACK DCB subparameter ••••••••••.•••••. 66 
standard file names •••• 0 •••••••••••••• 113 

SYSIN implicit use •••••••••• ' •••••.• 113 
statement numbering ..................... 32 

listed in attribute table ••••••••••• 33 
listed in cross reference table ••••• 33 

statement size ..................... 148-149 
statements, number in a procedure ••••• 148 
STATIC INTERNAL control section 

name in ESD listing .................. 36 
STATIC INTERNAL storage map •••••••.•••• 37 
STATIC variable in overlay segment ••.• 104 
sterling constants ........................ 150 
STERLING PICTURE data ........ ~ • •• • • •• •• 137 
STMT option ................................ 48 
STMT /NOSTMT option •••••••••••••.•••••••• 28 
STOP statement 

in a subtask .............. ' •••••••••.•• 93 
storage dumps 

at execution time •• ' ....... ,~ • •• • • • • •• 132 
storage dumps in multitasking ••••.••••. 89 
storage for file opening and closing ••• 82 
storage requirements 

for PL/I SORT •••••• ' ••••••••••••••••• 95 
storage requirements for object program 33 
storage, h1nts for the use of ••••• 122-123 
STREAM data set creation and access ..... 70 
STREAH-oriented I/O .................... 125 

record forma ts ............. A • • • • • • • • •• 63 
access method ••••••• '" • • • • • • • • • • • .. • •• 78 
based variable restriction ••••••••• 115 

string array dope vector •••••••••••••• 163 
STRING built-in function •••••••••••••• 153 
string contants, size of •••••••••••••• 150 
string data ..................... 0 .......... 136 
string dope vector SDV ••••••••••••••• 136 
string dope vector, format of • '. OJ • • •• •• 161 
string functions 

supported by in-line code ....... 120-122 
string handling 

in multitasking •••• ' ................... 92 
string handling - programming hints 111 
string handling, for improved speed ••• 117 
strings 

for GET LIST or DATA ••••••••••••••• 113 
strings, VARYING 

intermediate result string length •• 151 
structure dope vector, format of •••••• 163 
structure expressions - nesting level • 150 
structure mapping ••••••••••••••••••••• 164 

PACKED and UNALIGNED compared •••• 14-15 
structures, format of .................. 140 
subscript variables ...................... 117 
subscripted identifiers, length of •••• 153 
SUBSTR pseudo-variable •••••••••••••••• 111 
switches. efficient use of •••••••••••• 117 
SYSIN DO statement....................... 20 
SYSLIB DO statement ••••••••••••••••• 18,20 
SYSLIB DO, llse of ................ '.. • • .. • •• 123 
SYS PRINT •• ' .............. ' ............. '. '. .. .. • •• 20 



use in ST~EAM IIO in multitasking ••. 91 
SYSPRINT implicit use .................... 113 
SYSPU~CH/SYSLIN in batched compilation . 24 
system requi rements ...................... 78 
S YSUT 1 ................................... 20 
SYSUT3 .................................. 20 
SYS1.LINK modules ••••••..•••••.•••••••. 83 

tab controls for STREAM IIO •••••••••••• 69 
task data, format of •••••••••••••••••• 138 
TASK option •••.••••.••••••••••.••••.•• 148 
,task priority ............................. 90 
task termination ......................... 93 
tasking 

1?seudo-register for ................... 36 
tasking 

See multitasking 
temporary results, maximum permitted •• 151 
temporary workspace VDAs ............. '.. 159 
testing programs ................ ".... 128-134 
text b 1 0 c k s i z e .."....................... 2 9 
TIME option .................... "......... 7 9 
time taken for compilation •••••••••. 40,79 
timer feature •.••••••••.••••••••••••• , •• 78 
TITLF option .................... 51,141,146 
trace of active procedures •••••••••••. 131 
TRANSMIT condition •••••••••••••••••.•. 129 
TRTCH DCB subparameter .................. 66 

U-format records ...... M •••••••••••••••• 143 
UCS printer, suppress TRANSMIT .•••.•••. 66 
UNALIGNED attribute ......... " ••••••••••• 14 

effect on structure mapping .••••.•• 166 
See also structure mapping •..•••••. 164 

UNDEFINEDFILE condition 
for a stream file "................. 113 
possible caus es .... "................. 112 

UNIT parameter .............................. 58 

UNSPEC built-in function 
length of bit-string returned •••••• 152 

UNSPEC pseudo-variable, - programming 
hint ••••••••••••••• ................... 111 

UPDATE, INDEXED data sets •• ~ ............ 52 
uti 1 it y da t a set s ....................... 2 0 

V-format variable-length records ••. 61,143 
validity check direct-access ••••••••••• 66 
variable data area VDA. .................. 159 
variable-length V-format records ••••.•• 61 
variable-length recoris 

use of spanned records ••••••••••••• 125 
variables, maximum number of •••••••••• 148 
VARYING string, assignment to ••••••••• 111 
VBS-format spanned-blocked records • ~1,143 
VDA 

for temporary workspace .............. 159 
volume 

definition of .... D .................... 17 
VOLUME parameter ......................... 59 
VS-format spanned records •• n ••••••• 61,143 

WAIT statement ........................... 146 
in multitasking ................... 88-89 

warning messages 
See messages 

WHILE clause, use of ............ " •••••. 127 

XC~L linkage editor options ............. 44 
XREF linkage editor option ••••••••••••• 44 
XREF INOXREF option .............. co • • • .. • •• 26 

48-character set 
semicolon in DATA-directed 1/0 ••••• 113 

48-character set, use of reserved wor1s 142 
60-character set ......................... 28 

Index 285 



READER'S COMME~IT FORM 

IBM System/360 
PL/I (F) Programmer's Guide 

• How did you use this publication? 

As a reference source 
As a classroom text 
As a self-study text 

............. 0 
o 
o 

• Based on your own experience, rate this publication 

As a reference source: 

As a text: 

• What is your occupation? 

Very 
Good 

Very 
Good 

Good 

Good 

Fair 

Fair 

Poor 

Poor 

Very 
Poor 

Very 
Poor 

Form C28-6594-4 

• We would appreciate your other comments; please give specific page and line references 
where appropriate. If you wish a reply, be sure to include your name and address. 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



C28-6594-4 

YOUR COMMENTS PLEASE .... 

This SRL bulletin is one of a series which serves as reference sources for systems analysts, programmers 
and operators of IBM systems. Your answers to the questions on the back of this form, together with your 
comments, will help us produce better publications for your use. Each reply will be carefully reviewed by 
the persons responsible for writing and publishing this material. All comments and suggestions become 
the property of IBM. 

Please note: requests for copies of publications and for assistance in utilizing your IBM system should be 
directed to your IBl\1 representative or to the IBM sales office serving your locality. 

fold fold ......................................................................................................................... 

Attention: Department 813 (HP) 

BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY ... 

IBM CORPORATION 

112 EAST POST ROAD, 
WHITE PLAINS, N.Y. 10601. 

FIRST CLASS 
PERMIT NO. 1359 

WHITE PLAINS, N.Y. 

••••••••••••••••••••••••••••••••••••••• 9 ••••••••••••••••• t-t •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• : 

fold 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.I060t 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[ International] 

fold 



C2&6594-4 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.I06ot 
[USA OnlyJ 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

OJ 
s: 
u: 
< 
l!l. 
CD 
3 
t:: 
g 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	replyA
	replyB
	xBack

