C20-1640-0

Operating System/360
OTAM User's Guide - - Message Control Task Specification
Preliminary Edition

The Queued Telecommunications Access Method (QTAM) provides macro
instructions for the programming of a communications-based data
processing system within the Operating System/360. This book is a
compilation of logic flowcharts and explanations designed fo instruct the
programmer in the coding of a program using QTAM. In a tutorial manner, : .
the reader is led through the necessary decisions and a workbook-like Programmlng
development of the system macro coding on the queued access method level.

(© International Business Machines Corporation, 1965

Copies of this and other IBM publications can be obtained through IBM branch
offices, Address comments concerning the contents of this publication to
IBM, Technical Publications Department, 112 East Post Road, White Plains, N,Y. 10601

CONTENTS

INTRODUCTION .

SECTION A: COMMUNICATION LINE GROUP DCB

SECTION B: DIRECT ACCESS STORAGE

SECTION C:

SECTION D:

SECTION E:

SECTION F:

SECTION G:

SECTION H:

SECTION J:

DCB.

DEVICE QUEUE DCB
DCB.
LOGGING DEVICE DCB
DCB.
TERMINAL TABLE . .
TERMTBL.
OPTION .
TERM.
PROCESS .
LIST . . .
TERMTBL.
DCB.
POLLING LIST .
POLL .
BUFFERS.
BUFFER.
DFNSUBT .
RECEIVE SEGMENT.
LPSTART . .
RCVSEG
TRANS . .
LOGSEG.
BREAKOFF .
RECEIVE HEADER
RCVHDR. .

SKIP

LOGSEG. .

MSGTYPE.

MSGTYPE .
MODE .
DATESTMP .
SEQIN. .
ROUTE .
MODE .
MODE.
MODE.
MODE.
TIMESTMP
SOURCE.
EOA . .
DIRECT .
LOGSEG. .
RCVSEG. .
LOGSEG.
SKIP

‘END RECEIVE.

ENDRCVE .
EOBLC .

i

1

[

10
10
11
12
16
17
18
18
20
20
22
22
24
26
27
27
27
28
29
30
30
31
32
33
34
35
37
38
39
40
41
42
44
45
46
47
47
48
49
49
50
52
52
53

EOB

ERRMSG.

REROUTE .

REROUTE.

CANCELM.

POLLIMIT.

POSTRCVE .
SECTION K: SEND HEADER . .

SENDHDR . .

LOGSEG

MSGTYPE.

MSGTYPE.,

SKIP

SKIP

SEQOUT.

TIMESTMP .

DATESTMP .

MODE

LOGSEG.

SECTION L: SEND SEGMENT
SENDSEG .
LOGSEG.
TRANS . .
PAUSE
SECTION M: END SEND .
ENDSEND .
EOBLC .
EOB
ERRMSG
REROUTE,
REROUTE.
INTERCPT
POSTSEND
LPSTART .

SECTION N: DATA SET INITIALIZATION .

OPEN
ACTSUBT
ENDREADY .
SECTION P: STRUCTURING . .
APPENDIX A: SAMPLE PROGRAM .
Application Implementation
System Configuration .
Job Definition.
Message Formats.
Program Flowchart . .
Message Processing Program . .
Operator Control Message Processing
Program .
Macro Coding.
APPENDIX B: MESSAGE HEADERS
FOR QTAM .

53
54
57
58
59
60
60
62
62
63
64
65
66
67
67
68
69
70
71
74
74
74
75
75
78
78
79
79
80
83
84
85
86
87
88
88
92
93
94
96
96
96
98
99
100
101

102
103

111

INTRODUCTION

The Operating System/360 Queued Telecommuni-
cations Access Method (QTAM) provides macro
instructions for specifying the operation of a
communications-based data processing system.
This book is a compilation of logic flowcharts and
explanations designed to instruct the programmer in
the use of these macros. In a tutorial manner, the
reader is led through the necessary decisions in a
workbook-like development of the system macro
coding on the queued access method level.

A sample program using QTAM is included in the
Appendix along with some guidelines to designing
message formats for efficient use of QTAM.

Upon completing this book, the user will have
completely specified and put together all the coding
needed to perform the following functions:

Polling and addressing of terminals

Dialing and answering of terminals

Allocation of core storage buffers

Routing of messages

Queuing of messages

Header analysis and synthesis

Message logging

Error checking

Error procedures
Functions not provided for in this book are:

Processing of message contents

Formulating replies to inquiry messages

Operator control of the communications system

This book is largely a presentation of information
found in the SRL document IBM Operating System/360:
Telecommunications (C28-6553). It is intended that
the SRL document be a reference for further detail
in specific areas.

Prerequisites for using this book are:

o Knowledge of a system configuration and its

application-oriented operating procedures.

o Layouts of the message formats that will be

sent and received via communication lines.

o An understanding of the principles of Operating

System/360 (IBM Operating System/360, Concepts

and Facilities, C28-6535).

e A general, but not extensive, knowledge of the
System/360 Assembly Language (IBM Operating
System/360; Assembler Language, C28-6514).

The QTAM macro coding produced with this book
specifies the operation of a Message Control Task
within the framework of Operating System/360. A
Message Control Task encompasses all the communi-
cations-oriented functions listed but does not include
user programs to process the data content of messages
received from communications lines. The processing
of the data content of the messages is performed by
Message Processing Tasks that are user-provided
and operated as separate tasks within Operating
System/360. These Message Processing Tasks are
not obtainable through use of this book.

There is, however, the facility within QTAM to
incorporate programs as subtasks of the Message
Control Task in order to do a moderate amount of
data processing. These subtasks will not then
operate as separate tasks of the Operating System,
and consequently will make it possible to operate in
a task-restricted environment.

Instruction is given at the appropriate points in
this book for inclusion of such subtasks. The reader
is again referred to C28-6553 for further description
of the details and restrictions of such operation.

The Message Control Task to be developed here
consists of the following parts:

Data set definition

Control information

Line procedure specification

Data Set Definition is concerned with the writing of
DCB (data control block) statements. These state-
ments specify the operation of direct access storage
devices, logging devices, and communication lines.

Control Information is necessary for operation of
communication lines. It consists of terminal device
information, polling list descriptions, and buffer
assignments.

Line Procedure Specification (LPS) uses standard
delimiter and functional macros to provide the
necessary logic flow for header analysis/synthesis
and for message handling.

This book breaks the above three main parts into
the following sections:
Communication Line Group DCB
Direct Access Storage Device Queue DCB
Logging Device DCB
Terminal Table
Polling List
Buffers
Receive Segment
Receive Header
End Receive
Send Header
Send Segment
End Send
Data Set Initialization
Structuring

MZERrRSNEQEBUOE

Using this book to develop a Message Control
Task, the reader will proceed through each of the
above sections as directed. As part of the job of
progressing through a section, macro statements for
that section are to be filled out. These macro state-
ments will then be collected and ordered to form the
three parts: Data Set Definition, Control Information,
and LPS(s). These, in turn, are gathered to form
the Message Control Task.

The first part to be considered will be Data Set
Definition. Here we will be concerned with the
writing of DCB macro statements. This is in
harmony with the control procedures for Operating
System/360.

ii

SECTION A. COMMUNICATION LINE GROUP DCB BEGIN

'

Write !'Section A. Communication Line Group DCE'' in the margin at the
top of the first coding sheet. This will identify the macro statements for
Section A.

r--_'Ec:ch communication line group in the system must have a statement defining ifs—l
| characteristics. This is done with a Data Control Block (DCB) statement. (A
line group consists of all communication lines in the system that have the same
channel programs, the same buffer requirements, the same line procedure speci- l
I fications, the same send-receive relative priority, the same polling intervals,
l_cmd the same type terminals.)

_________ Y

Choose symbolic names for each line group. Enter each name in a Name field
of macro statements for this section. (Allow about iwo lines per statement.)
Each of these statements will be a DCB statement — one for each line group.

EXAMFLE DCB

L ————————
I Nane Operation Operand
DCBGRUPT DCB DDNAME=DDGROUP, DSORG=CX,

MACRF=(G, P), CPOLL=(POLLINET,
POLLINE2), INTVL=5, BUFRQ=3,
ACLOC=bb, CLPS=LPS1

L_similar procedure should be followed for each.]
[Write DCB in the Operation field of the macro statement.]

Y

Write DDNAME = name in the Operand field, where name is the symbolic name
for the line group that will be in the Data Definition Statement (DD card) for
this line group. (DD cards are job control cards that will be prepared when the
Message Control Task being written is entered into -he Operating System for
execution. There will be a DD card entered for every Data Set defined by a
DCB statement in the Message Control Task.)

Ex: DDNAME = DD GROUP

Write DSORG = CX as the next entry in the Operand field; CX identifies this

statement as a communication line group DCB.

Y

Write MACRF = (G, P) as the next entry in the Operand field. This allows the
lines to operate at the GET/PUT level.

Y

Write CPOLL = (x,y,z) in the Operand field, as the polling list names for all
the lines in the line group, where x,y,z represent the polling list names of each
line as specified by the POLL macro (section E.) Every line in the system must
reference a polling list name, whether it actually has polled terminals on it or
not. (An output-only or non-polled line will not have any terminal entries in
the polling list specified by its POLL macro. The polling list name for such a
line may be shared by all other similar lines.) These names are to be listed

in the order specified in the Data Definition Statement, each one separated

by commas and the list enclosed in parentheses.

Ex: CPOLL=(POLLINET,POLLINE2, POLLINES5)

Are the
terminals in
this line group
to be polled?

Yes

Do you want a

delay between consecutive passes
of the polling lists?

Write in the Operand field INTVL=t, where t is the time delay desired between
consecutive polling passes in seconds (t <255) for each line of the line groups.
Ex: INTVL =5

]

@ p‘3

/

N
\,

p.2

Enter in the, Operand field the number of buffers(n) that are to be requested ahead
for the buffering of each communications line. A value of n=2 will be assigned
by the syste}'n if this parameter is omitted. This entry is written as BUFRQ =n.

' BUFRQ =3

!

E‘? p.2

i

Yes

Is a relative
priority of Receive
over Send desired ?

Enter in the Operand field the number of buffers(n) that are to be requested ahead

for the buffering of each communications line. A value of n=2 will be assigned

by the system if this parameter is omitted. This entry is written as BUFRQ =n.
Ex: BUFRQ =3

No No

the CPRI parameter is not specified, then Send has priority over Receive-_.-:

Write CPRI =R as the next entry in the Operand field to indicate that Receive

has priority over Send.

Is equal priority
between Receive and
Send desired ?

Yes

between Send and Receive

Write CPRI = E os the next entry in the Operand field to indicate equal priority

H

Next write in the Operand field ACLOC=bb where bb represents two blank
spaces that will be filled in after specifying the Terminal Table (Section D).
Ex: ACLOC =bb

v___

To identify the LPS (Line Procedure Specification) that will be specified for this
line group (sections G = M), write the symbolic name of the LPS in the Operand
field as: CLPS =d where d is the symbolic name. This LPS name is the same
as the name that will be used in the Name field of the LPSTART macro described
in Section H. Ex: CLPS = LPS1

__________ y

I_fhe section concerned with line group DCBs is completed, The next section will—l

-

SECTION B. DIRECT ACCESS STORAGE
DEVICE QUEUE DCB

Is queuing of messages
to be done on a Direct Access
Storage Device (DASD) or in
core storage (CORE)?

CORE

Y

rNo DCB is needed for a core storage data set.

I

Write "Section B. Direct Access Device Queue DCB" in the margin at the top
of the next blank coding sheet. This will dentify the macro statement for

Section B.
[The Direct Ac ce—ss‘—S—to-r_o_g_e-[.)_e-\-/ ice used for q-:; L.v_i;r_g_c;_f the ;_ess_ag; inthe _]
Ls_ystem must have a DCB statement defining its characteristics. _I

Choose a symbolic name for the Direct Access Device and enter it in the Name
field of the first macro statement for this section. This will be the DCB statement.
Ex: DCBFILE

EXAMPLE DCB

Operation Operand
DCB DDNAME=DDFILE, DSORG=CQ,

Write DCB in the Operation field of the macro statement. J

Y

Write in the Operand field the symbolic name for the device that will be
in its Data Definition Statement (DD card).
Ex: DDNAME=DDFILE

Write DSORG=CQ as the next entry in the Operand field, since this DCB
statement is for a Direct Access Storage Device.

Write MACRF = (G, P) as the next entry in the Operand field. This allows the
DASD to operate at the GET/PUT level,

[Tha secion concerned with The Direct Access Sorege Devies DCB T — 7]
completed. _The next section will define the logging device. J

SECTION C. LOGGING DEVICE DCB
pp4,5

| used for the queuing of messages. In addition fo this, messages may be logged |
sequentially on a secondary storage device by use of the LOGSEG macro]
instruction in the LPS. Use of the LOGSEG macro implies using the Queuved |
Sequential Access Method (QSAM), the operation of which will be taken I
| care of completely by QTAM, The message segments logged on this device |
will be interleaved if more than one line uses the same device. g}

Is logging of
messages on a secondary storage
device needed ?

No

p.]O

Write *‘Section C. Logging Device DCB'’ in the margin at the top of the
next blank coding sheet. This will identify the macro statements for Section C.

_________ |

l_Ec:ch secondary storage device used for the logging of messages in the system musT‘
| have a statement defining its characteristics. This is done with a DCB statement |

L NOTICE o

| The parameters of the Logging Device DCBs are subject to the requirements of l
QSAM and are described here only to ensure their inclusion in the Message
Conirol Task. The reader is referred to IBM Operating System/360: Control]

LProgram Services (C28-6541) for exact specification. J

@p.é

Choose symbolic names for each logging device needed and enter them in the
Name fields of the macro statements for this section. The symbolic names will
be a parameter of the LOGSEG macro instructions issued in the LPS. Differ-
ent LOGSEG macros may use the same symbolic name or different ones,
depending on whether the same logging device is to be used. Each of the
macro statements containing symbolic names will be a DCB statement —

one for each logging device.

Ex: LOGFILE
EXAMPLE DCB
Name Operation Operand
| _LOGFILE DCB | DDNAME=DDLOG, DSORG=PS, LRECL=95
| BLKSIZE=95, MACRF=(PM),

RECFM=V, BFTEK=S,DEVD=TA,DEN=T,
TRTCH=T

I Write DCB in the Operation field of the macro statement. I
Write in the Operand field the symbolic name for the logging device that will be

in its Data Definition Statement (DD card) specified as DDNAME=name.
Ex: DDNAME=DDLOG

________ v

’_Acomma must be used to separate this and all subsequent entries of the Opemnd—.l
field.

Write DSORG=PS as the next entry in the Operand field, since this DCB
statement is for a logging device.

Write LRECL=n as the next entry in the Operand field, where n is the maximum~
length logical record to be written on the logging device.

Write BLKSIZE=n as the next entry in the Operand field, where n is the
maximum physical block length in bytes to be written on the logging device.
Ex: BLKSIZE=95

]

Write MACRF = (PM) as the next entry in the Operand field. This allows the
device to operate in the PUT and MOVE mode.

Are the messages to be
written on the logging device

as blocked records ?

Yes variable length records.

Write RECFM =V as the next entry in the Operand field. This allows writing of

Write RECFM=VB as the next entry in the Operand field. This allows writing
of variable-length blocked records. The maximum physical block size will be
defined by the BLKSIZE parameter.

Write BFTEK =S as the next entry in the Operand field. This allows the
logging device to use simple buffering techniques.

Y

To define the device upon which the data is to be logged, a DEVD parameter
is needed. The various options for this device are described in the referred
QSAM document. For illustration, the specification of a magnetic tape
device with a recording density of 556 bits/inch, odd parity, BCDIC to
EBCDIC translation, is written as: DEVD =TA, DEN =1, TRTCH =T.

__________ v _

The logging device DCB section is completed. The next section will define the —I
terminal table.]

SECTION D. TERMINAL TABLE

The sections needed to define the Data Sets are finished. The next sections
will define Control Information needed for QTAM.

_______ e

Write "'Section D. Terminal Table'' in the margin at the top of the next
coding sheet. This will identify the macro statements for Section D.

Terminal Table. The series of statements needed to define the size of the
table, each terminal device in the system, each distribution list of termi~
nals, and each processing message queue is described here. (Other
information about the particular terminal devices is specified at System

l Generation time.)

________ e

[Wrife TERMTBL in the Operation field of the first macro statement.

EXAMPLE TERMTBL

Name Operation

Operand

| TERMTBL

me next type of statement that may be specified, following the TERMTBL

-

statement, is one that will identify and give the size of optional user fields within I

l each TERM terminal entry. There must be one of these statements for each type
optional field. The optional fields defined might be used for such things as to
limit the number of consecutive polls for a terminal, to supply QTAM with an
alternate destination for a terminal, or any other user-desired information that

| is needed on a per~-terminal basis. If an INTERCEPT macro is specified in the

LPS section, a two-byte optional field named INTERCPT must be specified.

10

Is there an optional

field to be defined ?

In the next macro statement for this section, enter into the Name field the
symbolic name (maximum of 8 characters) of the field to be defined.
Ex: LIMIT

EXAMPLE OPTION

Operand

Name Operation
LIMIT OPTION FL3
[Wrire OPTION in the Operation field of the macro statement.]

Y

In the Operand field of this macro statement define with assembly language
notation the length and type of optional field whose contents will be
specified by the TERM macro statement.

Ex: FL3 Ex: CL8 Ex: XL3

Ifhuf defines terminal or group code entries. (A group code allows a l
group of terminals on a given line to simultaneously receive a message.)
One of these statements is needed for each terminal and group code in I

n

For each TERM statement to be defined, write in the Name field the symbolic
name for each terminal or group code to be defined. The symbolic names
assigned will be referred to as "Terminal Table entry names" and will be stated
in message headers to identify message source and destination(s). Each symbolic
name may be of a different length, up to a maximum length of 8 characters,
provided that they are delineated by blank character(s) when stated in the message
header. (A field equivalent fo the maximum name specified will be reserved for
each TERM statement entry.) [f they are not delineated by blank characters in
| the message header, each name must be of the same length, and that length must
be specified in the functional macro statements that reference them.

Ex: NYC

EXAMPLE TERM

Name Operation Operand

NYC TERM L, DCBLINE, 1,6202620E, (1)

\
l Write TERM in the Operation field of the macro statement. |

| depends on the terminal type and desired method of operation. Those currently |
I supported will be classified here as:

| Type 1. IBM 1050 - Polled Terminals

I IBM 1060 - Polled Terminals
AT&T 83B3 - Polled Terminals

| WU 115A - Polled Terminals

| Type 2. IBM 1050 - Dialing

I Type 3. Common Carrier TWX

L__ Type 4. 1BM 1030

— e — — — —

Are the terminals we are
describing Type 27?

Yes

Write L as the first entry in the Operand field of the macro statement.
This causes the outgoing messages to be queued by line.

Write T as the first entry in the Operand field of the macro statement.
This causes the outgoing messages to be queued by terminal.

v

Next write in the Operand field a comma followed by the symbolic name of
the DCB defining the line group to which this terminal is attached.
Ex: ,DCBGRUP1

________ I

me relative line number (rIn) of a communication line within a line group is —I

Idefermined by the order in which the lines will be listed in the Data
Definition (DD) Statement. If, for example, a line is specified first, its

Ir_ln is one. __J

Next write in the Operand field a comma followed by the symbolic name of
the line group to which this terminal is attached.
Ex: ,DCBGRUP1

Y

Next write in the Operand field a comma followed by a 1.
Ex: ,1

Y

Write in the Operand filed a comma followed by the rin for the line to which
the terminal being described is attached.
Ex: ,1

Next write in the Operand field a comma followed by:
1. Number of dial digits, specified in EBCDIC hexadecimal notation.
2. Actual dial digits for this terminal, in EBCDIC hexadecimal notation.
3. Two addressing characters, specified as a hexadecimal number using
1050 code structure.
Ex: ,F7F3F8F3F6F9F3F06202

p.'lS

13

Are the terminals we are

describing Type 1?

Next write in the Operand field a comma followed by the two-character
addressing and polling codes respectively for the terminal whose TERM
statement is currently being described. The code must be specified in the
terminal's Code Structure as a hexadecimal number {see IBM 2702 Trans-
mission Control, A22-6846). If this TERM statement is for a group code,

only the addressing code is specified.
Ex: ,6202620E

Are the terminals we are
describing Type 3?

<

Next write in the Operand field a comma followed by:
1. Number of dial digits, specified in EBCDIC hexadecimal notation.
2. Actual dial digits for this terminal, in EBCDIC hexadecimal notation.
3. Number of identification digits, in EBCDIC hexadecimal notation.
4. Actual identification digits for this terminal, in hexadecimal Eight-
Bit Data Interchange Code.
Ex: F4F3F8F3F6F4F8F1F2F3
Th— T T T T -
e terminals presently being described must then be of Type 4.]

the polling characters needed.

Next write in the Operation field a two~character addressing code for the
present terminal specified as a hexadecimal number using 1030 Code Structure
(see IBM 2702 Transmission Control, A22-6846). QTAM will develop

Ex:

6207

@ p.15

14

Were any OPTION

macro statements
specified that apply
to this terminal ?

Write in the Operand fields of the TERM statements the actual data to be inserted
into the optional fields that were defined by the OPTION macros. The data
must be of the type and size that was specified. The data to be written in the
optional fields must be specified in the same order as the OPTION macros
that define the fields. The data for all fields must be written within parentheses,
preceded by a comma, with the fields separated from each other by commas.

Ex: , (1) Ex: ,(1,OPR)

Is this strictly
a message switching
application?

need special processing. To do this, the messages are sent to a process queue
| where the user's processing programs can access them by means of GET/PUT
I macro instructions. The statements needed to define these process queues are
called PROCESS macro statements. Messages that would need special

l
!
|

processing could be Inquiry, Data Collection, Control Messages, etc. __I
—

EXAMPLE PROCESS

Name) Operation

Operand

l INQ PROCESS

In the next macro statements enter into the Name field the symbolic name
assigned to each Process queue. These names are subject to the same
restrictions as terminal table entry names specified in the TERM statement.

Ex: INQ

v

Write PROCESS in every Operation field that contains a Process queue terminal
table entry name.

ﬁ/_essoges destined for process queues may be routed directly to a process program,|
Ibypossing the normal queuing on a DASD (or in core storage). I messages
are routed directly, their segments are not collected until the entire message is l
received. GET macro instruction may then obtain interspersed segments of other I
messages between segments of a multisegment message. If direct routing is
!specified, the messages are not written on the DASD and the RETRIEVE macro l

No Are there messages that will

require direct routing?

Write EXPEDITE in the Operand field of the process statements that define
"direct routing'' queues.

Ex: EXPEDITE

|

of terminals. Each terminal on the list will represent a destination for the |

message.

16

Will any

destination codes represent
a distribution list?

—_— —_———— ——— —— —,

In the next macro statements, enter into the Name fields the symbolic names

assigned to the distribution lists. These names are subject to the same

restrictions as the terminal table entry names specified by the TERM statement.
Ex: PBW

EXAMPLE LIST

Name Operation

Operand

PBW LIST PHIL, BOS, WAS

LWrHe LIST in every Opercﬁdn field specifying a distribution list.

Y

The entries to be made in the Operand fields of the LIST statements are the
names (of TERM or PROCESS statements) that are to be included in the
distribution lists. The names must be separated by commas, and the group
enclosed by parentheses.

Ex: (PHI, BOS, WAS)

~!

Go back and fill in the Operand field of the TERMTBL statement with the name
of the last entry in the Terminal Table, followed by a comma and the decimal
number of bytes used by the maximum-length Terminal Table entry name.

Ex: INQ,3

7

Name

EXAMPLE TERMTBL

Operation

Operand

TERMTBL

\

INQ,3

We are now able to finish specification of the ACLOC parameters that were not
written in the Communication Line Group DCB's in Section A. The numbers to
be written in the blank spaces reserved will define the ''Device Address" field
of each terminal relative to the first character of its Terminal Table Entry.

To calculate this decimal number n, use the formula n = 9+x4y, where

x = the maximum number of characters used for a TERM statement Terminal Table
entry name and y = the number of characters used for optional fields in each

TERM statement.
Ex: ACLOC=14

EXAMPLE DCB

Name

Operation

Operand

DCBGRUP1

DCB

DDNAME=DDGROUP, DSORG=CX,

MACRF=(G, P), CPOLL=

(POLLINE1, POLLINE2), INTVL=5,

BUFRQ=3, ACLOC=14,

CLPS=LPS1

18

19

SECTION E. POLLING LIST @p.ls

Write "' Section E. Polling List'' in the margin at the top of the next blank coding
sheet. This will identify the macro statements for Section E.

. | I

I Each line in the line group must have a polling list associated with it. Lines that l
are for output only, or any non-polled lines, may share a common polling list
with no terminal entries in it. The terminals on each line must be listed in the I

l order in which they are to be polled. A given terminal may be listed more than
once within a list. Each terminal on the list will be polled to exhaustion unless
| @ POLLIMIT macro instruction is specified in the LPS. The polling list

Write symbolic names (up to 8 characters) for each polling list to be specified
in the Name fields of the macro statements for this section. The names will be
specified in the CPOLL parameter of the line group DCB. Each of these will be
a POLL statement = one for each line.

Ex: POLLINE2

EXAMPLE POLL

Name Operation perand
POLLINE2 |POLL (NYC, PHI, NYC, WAS)
LWrite POLL in the Operation field of each of these macro statements. T

Y

Write in the Operand field for each POLL statement a list of the polled terminals
on its associated communication line. (There will be none for the non-polled
lines.) This polling list must contain the terminal table entry nomes in the order
in which they are to be polled for each line. These terminal table entry names
must be those used in the Name fields of the TERM macro instructions. The

entry names must be separated by commas, and the group enclosed by parentheses.
A given entry name may be listed more than once in a given POLL macro
instruction.

Ex: (NYC, PHI, NYC, WAS)

________ I

I-?he polling list section has now been completely specified. Go to the next _l

21

SECTION F.

BUFFERS

p.20

Write "'Section F. Buffers'' in the margin at the top of the next blank coding sheet
This will identify the macro statement for Section F.

I ‘v

(A statement is needed to define the size of a buffer pool and to define whether 1
main storage or direct access device queuing is to be used. The statement used

rWrite BUFFER in the Operation field of the macro statement for this section. j

EXAMPLE BUFFER

Name Operation Operand
BUFFER DCBFILE, 10,95

Is queuing of

the messages to be done on a
direct access device?

The first entry in the Operand field of the BUFFER statement must identify the
symbolic name given to the direct access device DCB statement.

Ex: DCBFILE
Place a comma next in the operand field of the macro statement. J
p.23

22

p.22

The next entry to be made in the Operand field is the decimal number of buffers
to be reserved for QTAM. An order of magnitude estimate for the number of
buffers required will be the product of the number of lines in each line group
times the BUFRQ parameters of the line groups.
If main storage queuing is fo be used, the amount of core storage needed must
be provided for in the buffer number specification. (Maximum number of buffers
=32,768). The specified number must be followed by a comma.

. Ex: 10, '

]

The next entry to be made in the Operand field is the number of bytes in each
buffer. All buffers in the buffer pool-will be of this length. The minimum-size
buffer is equal to the message header prefix (32 bytes) plus the maximum size of
the message header. The maximum size that may be specified for the buffer
length is 278 bytes.

Ex: 95
A A
The buffers section is completed. ~— 1
Befc;gleaving the system definition secﬁons.o—th;_Me—ss_age_Cc:f-l:ol Task —_l

specification, there is one more related item-definition of a subtask to
l operate within the Message Control Task — if such an operation is desired

No

Is there a

subtask to be defined?

Yes

le

23

Write in the Name field of the next available macro statement the name
to be given to the subtask,

Ex: SUBTI
EXAMPLE DFNSUBT
Name Operation Operand
SUBTI | DFNSUBT | STRTSUBT, 3
| Write DENSUBT in the Operation field. |

Y

Write in the Operand field the symbolic name of the entry point in the subtask.
Ex: STRTSUB1

Y

Next write in the Operand field a comma followed by a decimal number up to 254
to designate the priority to be assigned to the subtask.
Ex: ,3

Yes

Are there other

subtasks to be defined ?

24

25

SECTION G.

p.24

RECEIVE SEGMENT

—_———— e ——
I An LPS defines the message-handling and header analysis functions for messages i

sent and received on communication lines. Each group of lines that have the same I

make up an LPS. When more than one LPS is needed to make up the Message
|Con1'ro| Task, directions will be given to repeat these sections until each LPS ‘
l_his the set of macro statements needed to perform its desired functions. _l
|-l—fa subtask of the Message Control Task was defined in the previous section, it

is here pointed out that activation of such a subtask can be specified at any
lpoin’r within any of the LPS sections about to be specified. This is accomplished

A

|
I by writing on ACTSUBT macro statement, with the name of the subtask as its l
Operand parameter, at the point that activation is desired. It is important to |
note that the subtask will be activated each time the sequence of macros in
which the ACTSUBT macro is embedded is referenced. To operate in other than |
this manner, the ACTSUBT macro may be included in the Data Set Initial- |
lizcn‘ion section described later in this book. I

| Deactivation of a subtask is accomplished within the subtask itself by use of an
IE\IDSUBT macro statement. _l

['T—"_'__—__—_ Y e, T T ™
L

Write ''Section G. Receive Segment'' in the margin at the top of the next blank
coding sheet, This will identify the macro statements for Section G.

lidenfiﬁes the beginning of the LPS and reserves space in the first buffer of the |
input message for insertion of timestamp, datestamp, and output sequence number

| fields.]

!Write LPSTART in the Operation field of the first macro statement for this section. l

p.27

26

p.26

EXAMPLE LPSTART

I Name Operation Operand I

LPS1 LPSTART

Write in the Name field a symbolic name of 8 or fewer characters to identify this
LPS. This name is used for the CLPS parameter of the associated Communication
Line Group DCB (Section A).

Ex: "LPS1

Y

Write RCVSEG in the Operation field of the next macro statement for this section
to identify the succeeding macros of this section as those concerned with both
header and text portions of the message received. (This type of macro staiement
is known as a delimiter macro and is not to be confused with the delimiter
character which is a blank.)

EXAMPLE RCVSEG
Name Operation Operand
RCVSEG
Y

Specify code translation of the incoming message by writing TRANS in the
Operation field of the next macro statement. Normally only one receive code
translation table is permitted per LPS/Line Group.

EXAMPLE TRANS

I Name Operation Operand l
I TRANS RCVE1050 I

Write the symbolic name of the particular code translation table needed for
the incoming messages in the Operand field of the macro statement.

Ex: RCVEI050

o |

, It is possible to log entire messages at this stage of header analysis. Messages _[
logged on an external /O device at this point will not contain header additions I
l such as timestamp or datestamp. It should be noted that this logging is in addition

Code Translation Tables Provided by QTAM

Name Code
RCVET050 1050 to EBCDIC
RCVE1030 1030 to EBCDIC
RCVET1 TTY to EBCDIC
RCVET2 TWX to EBCDIC
RCVF1050 1050 to monocase EBCDIC

No Is

logging desired
at this point?

Write LOGSEG in the Operation field of the next available macro statement. J

EXAMPLE LOGSEG

Name Operation Operand I

LOGSEG LOGFILE

Write the symbolic name of the DCB associated with the desired external logging

device in the Operand field of the macro statement.
Ex: LOGFILE

________ e D

ﬂmocro is provided that can check for a maximum length on input messages and |
|also determine if all characters in an input buffer are the sume. Detection of |
either of these conditions would result in an error bit being set in the error

p.29

Is this feature desired ?

Write BREAKOFF in the Operation field o{‘ the next available macro statement
in this section.

EXAMPLE BREAKOFF

Name Operation

Operand

I BREAKOFF [1500 I

In the Operand field write a decimal number £32000 to specify the maximum

length of input messages to be allowed.
Ex: 1500

All the macro statements that affect both the header and text portions of incoming
messages have been accounted for. Proceed to the next section that is concerned
only with the incoming message headers.

p.30

29

SECTION H. RECEIVE HEADER

p.29

Write ''Section H. Receive Header'' in the margin at the top of the next blank
coding sheet. This will identify the macro statements for Section H.

Write the delimiter macro RCVHDR in the Operation field of the first macro
statement for this dection to identify the succeeding macros of this section as

those concerned only with incoming message headers.

EXAMPLE RCVHDR

Name Operation

Operand

RCVHDR

mis section of the LPS will perform the desired header analysis/synthesis of 1
incoming message headers. To do this, it is necessary fo start at the beginning of |
the message header and proceed through it (left to right) by specifying the 1

| appropriate functional macro instructions in the same order in which they apply !

| to the header. As each macro that operates on a particular field is executed, |
the LPS will advance to the beginning of the next field of the header before the |
| next macro will be executed, The beginning of the next field will be the first |

l nonblank character after the end of the field being operated on. It should be

Iproper delineation of the header fields. This is done by specifying field lengths |
within the macro statements and by skipping over nonblank fields not involved |

e ——— —— — — — — — — — e —— — — . —— . .

p.31

30

nonblank characters
preceding the message header that
are not involved in
header analysis?

31

Are there any
No

p.32

rWrife SKIP in the Operation field of the next macro statement]

Yes

number of characters

Write in the Operand field of the SKIP statement the actual number of
I nonblank characters to be skipped. This number cannot be greater than the
number of character positions remaining in the buffer,

Ex: 8

L

EXAMPLE SKIP

Name Operation Operand
SKIP 8

Is a fixed No

to be skipped ?

Write in the Operand field of the SKIP statement a comma followed by C'chars’,
where chars represents a certain character configuration that denotes the end of
the field(s) to be skipped. The character configuration must not exceed 8
characters, Ex: ,C'$'

e]

EXAMPLE SKIP

Name - Operation Operand
SK1P ,C'$'

p.31

__________ v

W is possible to log only input message headers on an external 1/O device.
| Further definition of at just what stage of header analysis the header will be |oggedl
depends on the position of the LOGSEG macro withing the RCYHDR section.

Are message headers

No to be logged just as they are

received and translated?

Write LOGSEG in the Operation field of the next available macro statement to
specify external logging of incoming message headers.

EXAMPLE LOGSEG
Naome Operation Operand

I LOGSEG LOGFILE2 I

Write the symbolic name of the DCB associated with the desired external logging
device in the Operand field.

Ex: LOGFILE2

\
@p.33

32

procedures, a macro (MSGTYPE) can be used to sectionalize an LPS into separate
procedures for each type message. The LPS can in effect be broken into smaller

I LPS sections for sequences of macro instructions that will apply to only certain l
messages. Only the macros appropriate to each type of message will then be
executed. In general, a MSGTYPE macro will be needed to delineate each such

Do we need to distinguish

the following succession of macros
as pertaining only to certain
input message types?

p.34

Mrife MSGTYPE in the Operation field of the next available macro statement . —l

EXAMPLE MSGTYPE

I Name Operation Operand

] MSGTYPE

messages that will use the next sequence of macros. If no special character is
l present, all such messages will be handled by the next sequence of macros. A
MSGTYPE macro, with no special character, must be specified to identify the

— — e ———— e — . s —— —— —————

Yes

Will a special character
identify messages using the next
sequence of macros?

\ . A
Write this special character in the Operand field [The Operand field will remain blank. This MSGTYPE macro statement will 1
Ex: C'P* |[normally be the last MSGTYPE macro in this section, since it must handle all l
[remaining messages that did not have a defined type. |

o

EXAMPLE MSGTYPE

I Name Operation Operand I

MSGTYPE |C*P*

["All macro statements listed from this point in the LPS to the next MSGTYPE or B p.33
Ldelimiter macro will apply only to the type message just designated,]
4
. N —
lT_ooperafe in the conversational mode means that a ferminal sending a message 1
llvill retain control of the communication line until the reply is received. J

Are all messages using
this part of the LPS, conversational
type messages?

p.35

34

H7| p.34

p.34

Write MODE in the Operation field of the next available macro statement. |

EXAMPLE MODE

Name Operation Operand
MODE CONVERSE

[Write CONVERSE in the Operand field. |

________ ¢ I

For very long messages in a message-switching application, it may be desirable to

Are all messages using
this part of the LPS to initiate

sending before completely
receiving the message ?

[Wrife MODE in the Operation field of the next available macro statement.]
’Wrife INITIATE in the Operand field.]
EXAMPLE MODE
Name Operation Operand
E MODE INITIATE

|point (before header analysis) by a user-provided routine; the function of which is l
up to the user. Certain precautions must be taken when including such routines.

| For further discussion of the possibilities and consequences of doing this, the rec:derl

Ii_sreferrecl to IBM Operating System/360: Telecommunications. (C28-6553). _I

i

35

Is a user
routine desired for
these messages ?

LWrife MODE in the Operation field of the next available macro statement. l
| Write in the Operand field the symbolic name of the user provided routine. l

pp.49,50

Is the LPS now- aligned at a
point in the message header
at which a timestamp is to

be inserted ?

Yes

36

W p.36

No

Is a datestamp
insertion desired here?

Write DATESTMP in the Operation field of the next available macro statement.
No parameter is needed in the Operand field to specify the length of the field,
since it is a fixed number (7); 7 spaces will be reserved for the insertion of
datestamp by the LPSTART macro. The datestamp insertion will be of the

following format: bYY.DDD, where b = blank, YY =year, DDD =day of year.

EXAMPLE DATESTMP

Name Operation

DATESTMP
@ p.45

Is there an input
message sequence number
to be checked at this point
in the header ?

Yes

Are the
terminals polled
terminals?

number of this point unless a SOURCE macro has l
been previously specified. This implies that a

L"_source" field appears in the message header. _I
Yes

37

Y

Write SEQIN in the Operation field of the next available macro statement.]

EXAMPLE SEQIN
—
Name Operation Operand

[SEQIN 3

il

Is the input sequence number
in the message header followed
by a blank character(s) ?

Yes

Write in the Operand field a decimal number for the length of the input sequence.
number field as found in the message header (4 max).

Ex: 3

The SEQIN field con then be of variable length. No parameter is needed in
the Operand field of the SEQIN statement. The LPS will advance in the
message header past the last character of the SEQIN field.

@p.:ﬂ %,;.45

p.48

Yes

w p.46

Is there a source
terminal to be checked
at this point in the message
header ?

Are message destination(s) to

be handled at this point?

Are the destination(s)

listed in the message header ?

p.47

LWrife ROUTE in the Operation field of the next available macro statement. J
EXAMPLE ROUTE
Name Operation Operand

ROUTE 3

Are blank characters used

e . L
Yes to delineate the message destinations

field(s) from each other and the next
header field?

In the Operand field, write in decimal the number of characters that make up
each message destination code. They must all be the same length (max of 8
characters) and must all be terminal table entry names.

Ex: 3

QZ/O p.47

No Is there a user-
provided function to be performed
at this point ?
p.41
EXAMPLE MODE
I Name Operation Operand I
I MODE ROUTINE,C' I’ I
Mrife MODE in the Operation field of the next available macro statement.]
In the Operand field write the symbolic name of the user-provided routine to be
entered. Ex: ROUTINE!
me MO-D_Em_a:ro prov-i—des_f_h—e exit to the user—ro—ufine and the reh;md?ess_inj
| General Register 14. General Registers 2,3,9,10,12,15 may be used in the user
routine and General Register 1 must be used as a base register. _]
T ey S e —
lThe MODE macro may operate on this MSGTYPE section, either conditionally by l
specifying a special message identification character to identify when the user-
provided function is to be entered, or unconditionally by not specifying a second
lﬂujameter so that the routine will be entered for each message. I
Yes Is the MODE
macro to operate
unconditionally ?
p.48

40

H14 p.40

[In the Operand field write a comma followed by C'char’, where char is the
. special character that identifies the message as one that is to be operated on
I by the user~provided function. Ex: ,C'I"

I

[The LPs will now be ready for the next field in the header following the special_l

character.

p.48

p.40
No Is there a
message-priority field

at this point?

w p.43
mere are two ways to specify priorities within messages: —l

l 1. A special character in the header of priority messages to indicate that the l
very next character following it contains the actual message priority .
12. Only the actual message priority in the message header. In this case, a l

rWrife MODE in the Operation field of the next available macro statement. l

Y

LWrife PRIOQRITY in the Operand field. —I

EXAMPLE MODE

I Name Operation Operand I
I MODE PRIORITY I

41

Does a special

character precede the
message priority ?

EXAMPLE MODE

Name

Operation

Operand I

MODE

PRIORITY, C'*!

message header. Ex: ,C'*'

Next, in the Operand field write a comma followed by C'char', where char is
the special character that is to precede the message priority character in the

H22|p. 48

42

Is there such a special
character at this point in
the message header ?

Yes

43

Is this the end of the input message
header, beginning of text, or output
message header portion?

p.48

CONVERSATIONAL MODE

Il\/rife Mode in the operation field of the next available macro statement j
EXAMPLE MODE

Which function is to be
. performed upon recognition of
the special character ?

INITIALIZATION MODE

Y

lWrife MODE in the Operation field of the next available macro sfotement;l

Name Operation

Operand I

Y

I MODE CONVERSE, C'’ I v

Lln the Operand field write CONVERSE. j [ln the Operand field write INITIATE.
EXAMPLE MODE
Name Operation Operand I
MODE INITIATE, C'?

Y

Next, in the Operand field write a comma followed by C'char', where char
is the character that is to specify that conversational mode of operation is
wanted with this message.

Ex: ,C'r!
{

Y

'Next, in the Operand field write a comma followed by C'char', where char
is the character that is to identify this message as one that can start sending
before being completely received.

Ex: ,C'?

p.48

44

Does the computer have

Yes . .
the internal timer feature?

L

@ pp.37,38,46

[Write TIMESTMP in the Operation field of the next available macro statement. l

EXAMPLE TIMESTMP

Name Operation

’Tn interval timer is needed if timestamp is to be specified. N

Operand

I TIMESTMP |9

Write in the Operand field, in decimal, the number of characters n 2 < n <12
depending on the time increment desired) reserved for the timestamp field.

The time of day will be given in the form bHH. MM.SS.th, where b = blank,
HH = hours, MM = minutes, SS =seconds, t = tenths of a second, and h =
hundredths of a second. When fewer than twelve spaces are reserved, the time
will be truncated from the right.

45

—

&
Y

19 p.38

[Wrife SOURCE in the Operation field of t

he next available macro sfqtement.l

EXAMPLE SOURCE

S e——
I Name Operation Operand
l SOURCE 3

Is the sourc

a blank ch

Write in the Operand field a decimal number for the length of the source field
in the message header (max 8). Ex: 3

p.45

message header followed by

e field in the Yes

aracter(s) ?

lﬁurce field. __l

p.48

46

Can multiple
destinations be expected in
the message header?

EXAMPLE EOQA

Name Operation Operand
EOA C'%'
LWrife EOA in the Operation field of the next available macro statement. 1

"

lated character that will be used in
destination fields.

In the Operand field, write C'# where # represents in EBCDIC code the trans-

the message header to designate the end of all
Ex: C'%’

v

l—TEe LPS will now advance in the message header past the last character of the end|

A fixed destination for all messages handled by this LPS section or fixed
destinations for messages from each source terminal can be specified by the
use of a single DIRECT macro. To do this, write DIRECT in the Operation
field of the next available macro statement.

Are there to be fixed

EXAMPLE DIRECT

Name Operation Operand
DIRECT = C'CHI'

If the terminals are non-polled this can be done only if a source

destinations for each
source terminal ?

In the Operand field write = C'dest', where dest is the symbolic name of

Note: The DIRECT macro instruction may be issued only once per LPS
MSGTYPE section. Ex: = C'CHI' :

the destination. This destination must be a terminal table entry name. » ¢

Myl

- .]E _________

macro has been previously specified in this LPS,]

Write in the Operand the symbolic name of the optional
field in the terminal table that contains the desired
destination for messages from each terminal. (Refer to
section D.) Ex: DEST

47

pp.38,40,41,
42,44,45,46

Is external logging of the
message header as it appears at this
point to be specified ?

No

Write LOGSEG in the Operation field in the next available macro statement.

EXAMPLE LOGSEG

———
I Name Operation Operand

LOGSEG LOGFILE2

Write the symbolic name of the DCB associated with the desired external logging
device in the Operand field.

Ex: LOGFILE2

No Is the MSGTYPE

macro used in this section?

@ p.49

H24| pp. 48, 51

p.51

Write RCVSEG in the Operation field of the next available macro statement.
(This makes the following LOGSEG macro apply to both header and text.)

EXAMPLE RCVSEG

I Name

Operation Operand l

I RCVSEG I

Write LOGSEG in the Operation field of the next available macro statement. l

Name

EXAMPLE LOGSEG

Operation Operand I

Y

LOGSEG LOGFILE2

device in the Operand field.

Ex: LOGFILE2

Write the symbolic name of the DCB associated with the desired external logging

p.52

Are there any nonblank

p.36

character fields to be skipped over to
align the LPS with the next header field
involved in header analysis?

LWrife SKIP in the Operation field of the next available macro statement.

49

EXAMPLE SKIP

I Name Operation l Operand I
SKIP ,C'#!
['A field can be skipped by either specifying a given number of nonblank |

characters to be skipped or by specifying a particular character configuration thatl
[Lwill indicate the end of the skipped field.

Is there a specified

No number of nonblank characters Yes
fo be skipped?
Y y
Write C'chars' in the Operand field of the SKIP statement, where chars represents Write in the Operand field of the SKIP statement the actual number of nonblank
the particular character.configuration in the internal system code, characters to be skipped. The number cannot be greater than the number of
: character positions remaining in the buffer, past the present position of the LPS,
Ex: 10

EXAMPLE SKIP

p.36 w Name Operation Operand
SKIP 10

50

Is the MSGTYPE section at this
point finished (an LPS section to
handle only certain messages) ?

H24{ p.49
No Is this the last
MSGTYPE section
to be specified ?
p.33

Are the complete message header
and the text to be logged at this point 2

p.52

51

SECTION J. END RECEIVE

pp.44,49,51

Write "Section J. End Receive" in the margin at the top of the next blank coding
sheet. This will identify the macro statements for Section J.

EXAMPLE ENDRCVE
Name Operation Operand

ENDRCVE

A

To identify the following section of the LPS as macro instructions concerned only
with functions to be performed after the entire message has been received, write
the delimiter macro statement ENDRCVE in the Operation field of the first
macro statement for this section,

No Is this LPS

handling messages from

IBM 1050 terminals?

Will the End of Block (EOB)

Yes character, rather than the End of

@p.SS

Transmission (EOT) character,
define the end of message ?

52

Yes / If transmission errors occur,

No
are two retransmissions of input messages
to be provided for?
/
Mrite EOBLC in the Operation field of the next available macro statement. Write EOB in the Operation field of the next available macro statement.
P52 EXAMPLE EOB
Name Operation Operand
EOB

EXAMPLE EOBLC
Name Operation Operand

EOBLC I

for each communication line. This mask can be interrogated by macro statements, |
land the desired error procedure initiated upon finding a given error condition. |
[_QTAN\ provides fixed error procedures for sending an error message, canceling -I
an erroneous message, and rerouting of messages. With each error orocedure]
I specified, an error mask representing the error condition that the error procedure |
| is to act on, must be specified in hexadecimal notation. Chart 1 describes the |
|_errors provided for when receiving,
MAn example of how fto specify an error mask: T
The error haflfword specifying a transmission error looks like this:

|

l [0To To[ofo oo [0l [o ofo] o[0T o[0] {
|
|

- A A A
0 0 8 0

Chart 1: Halfword Error Mask
Hexadecimal Error Mask Positions
Hex 1 Hex 2 Hex 3 Hex 4

e e e
Bit Positions 1 23 4567 8210111213141516

Error Condition
Insufficient Buffers

Time~-Out
Breakoff

(Internally used by QTAM)
(Internally used by QTAM)

lllegal Destination Code
Sequence Number High
Sequence Number Low
Incomplete Header
lllegal Source Code
Transmission Error

f the error

[}
o)

A 1-bit in any position indicates the presenc
condition associated with that position.

p.57

Can an error

condition be expected that
will require sending an
error message ?

this section.

Write ERRMSG in the Operation field of the next available macro statement in

EXAMPLE ERRMSG
Operation

Operand

w p.57

1 ERRMSG

X'0080°, ERRDEST, =C' Ebbbbbbbbb. MESS

AGEbCONTAINSbALTRANSMISSIONbD

ERROR

decimal number.

Ex: X'0080'

In the Operand field write the error mask of the error condition for which this
message is to be sent, specified as X'mask’' where mask is a four-digit hexa-

Y
@p.55

54

Does the error message always

go to the terminal that sent the
erroneous message ?

M e S T |

If the message causing the error came from a non-polled terminal, a
'SOURCE macro must have been previously specified in the LPS and '

LNexf, in the Operand field write a comma followed by the word SOURCE. l

p.56

Yes

Is the error message to
go to a fixed destination?

lTable entries that would contain the desired error message destinction. The
Terminal Table entry whose optional field is used would be the one defining
lfhe terminal that had sent the message that caused the error condition.

(See Option statement, Section D.) Note: If the terminal that sent the
Imessage causing the error is a non-polled terminal, a SOURCE macro must

55

Next, in the Operand field write a comma followed by the fixed destination
specified as = C'dest', where dest represents the symbolic name of the

destination Terminal Table entry name.
Ex: =C'PHI'

u p.55

Next, in the Operand field write a comma followed by the name of the
optional field in the Terminal Table that contains the desired
destination.

Ex: ERRDEST

|

|_T_he contents of the error message text must now be specified. This error messcxge_|
text can be stated directly in the Operand field of the ERRMSG statement or it can

| be prestored in a symbolic location and referenced by the ERRMSG statement.

I Before writing this text, however, the following items must be known:
1. The first part of the error message text must be a header compatible with the

| 2. The entire error message header, plus text, is not to exceed the length of a

buffer.

| 3. A period as the first character of the error message text will be replaced by the
header of the message whose transmission caused the error. This additional

|__ header must be considered in (2) above. I

I LPS for sending (same as other output headers). ‘
|
|

Yes

Next, in the Operand field write a comma followed by the symbolic name of the
location in core storage that contains the desired error message. This location
and its contents must be defined elsewhere.

Ex: ERRTEXT

Is the error message prestored
in a symbolic location?

No

Next, in the Operand field write @ comma followed by the header plus text,
specified as = C'errmsg’, where errmsg represents the actual header and
message text,

Ex: ,=C'Ebbbbbbbb. MESSAGEbCONTAINSbAbTRANSMISSIONbERROR

|

p.57

56

57

Yes Are there any other

p.54

w pp.54,58

error conditions that will require
sending an error message ?

p.54

Shall messages be rerouted to
alternate destinations upon detection
of certain error conditions?

p.58

Write REROUTE in the Operation field of the next available macro statement. |
EXAMPLE REROUTE

Name Operation Operand
REROUTE X'0020',=C'NYC’

In the Operand field write the error mask for the desired error condition specified
as X'mask’, where mask represents the four-digit hexadecimal number.
Ex: X'8600"

Yes

Are all messages to be rerouted
to the same destination when this
error condition occurs?

y

Next, in the Operand field write a comma followed by the Terminal Table entry Another choice of reroute destinations is to have an alternate destination
name of the rerouted destination, specified as =C'tername' where tername is the specified in an optional field of the message source entry in the Terminal
symbolic name of the destination. Table (see Terminal Table Specification). To use this alternate destination,
Ex: =C'NYC' next in the Operand field write @ comma followed by the symbolic name of
the optional field that is to contain the alternate destination for each terminal
entry. Ex: RERTE
|

EXAMPLE REROUTE

Name Operation Operand
REROQUTE X'0020',RERTE

Yes Are there other error
conditions for which messages
are to be rerouted ?
g ps57
p.57
No

Are messages to be
canceled upon detection of
certain error conditions?

[112] p.58

Write CANCELM in the Operation field of the next available macro statement in
this section.

EXAMPLE CANCELM

Name Operation

Operand

CANCELM | X'0020*

In the Operand field write the error mask for the desired error conditions,
specified as X'mask’, where mask represents the four-digit hexadecimal number.
Ex: X'0020'

No Are the terminals in the line

group for this LPS polled terminals?

Is there a limit to the
number of consecutive productive polls

No

p.60

desired for a given terminal before
polling the next terminal ?

L

Write POLLIMIT in the Operation field of the

next available macro statement. |

EXAMPLE POLLIMIT

Name Operation : Operand

POLLIMIT [LIMIT

Yes

number of polls for all

In the Operand field write =FL1’n’, where n is the decimal number specifying
the maximum number of consecutive polls for each terminal .
Ex: =FL1'2’

Is there to be a fixed

in the system?

terminals

In the Operand field write in the symbolic name of an optional field in the

terminal table that contains the poll limit desired for each terminal (see
Section D). Ex: LIMIT

.

EXAMPLE POLLIMIT I

EXAMPLE POSTRCVE

Name Operation Operand

Name Operation Operand

IPOLLIMIT |=FL1'2’

@pﬁ?

|POSTRCVE

part of the LPS is now completely specified.

Write POSTRCVE in the Operation field of the next available macro
statement. This identifies the end of the ENDRCVE section. The receivé

p.62

60

61

SECTION K. SEND HEADER

Are there any
output header analysis

functions to be performed other than
routing, such as timestamp,
datestamp, etc?

Write "'Section K. Send Header'' in the margin af the tape of the next blank coding
sheet. This will identify the macro statements for Section K.

Y

To identify the first section of the send LPS as that pertaining to only outgoing
message headers, write SENDHDR in the Operand field of the first macro
statement for this section. This is a delimiter macro.

EXAMPLE SENDHDR

Name Operation Operand
SENDHDR
I-I_Hs possible to log only output message headers on an external /O device. —-I

Further definition of the state of development at which the header will be
I logged depends on where in the SENDHDR section the LOGSEG macro is

|iiven. (This logging is in addition to queuing of the complete message.) _J

62

Are message headers

to be logged at this point of
header analysis?

¢ Yes

[Wri're LOGSEG in the Operation field of the next available macro statement. I

EXAMPLE LOGSEG
Name Operation Operand

LOGSEG LOGFILE3

Write the symbolic nome of the DCB associated with the desired external logging
device in the Operand field.

Ex: LOGFILE3

| beginning of the output message header and proceed through it from left to I
| right by specifying the appropriate macro instructions in the same order as |
(_the header fields to which they apply. -]

—— — — — —— e — — — . — e — —— et e e S e e

63

lEcch macro that inserts information in a particular field when executed will I
1 advance|the LPS the number of character spaces provided by the macro. Blank :
jcharacters between fields are skipped automatically. In all other cases correct
1
1

:posiﬁoning must be maintained by use of the SKIP macro as instructed.

1 The point in the message header at which the LPS and message header are alngned'
: when the Send LPS is started depends on whether the message is from a reply |
1 queue (PUT), or a Switched Message. [f from a reply queue, the LPS will be :
: aligned with the first character of the output message as prepared by the process |
{ program. If it is o switched message, the LPS will be aligned with the last :
I character of the last field processed by the Receive LPS. 1

Is a sequence of macros that

p.66

will not be usable by all output messages
about to be wriften?

There must be a special character in each message header to identify it by type :
1 except for one type, which may be identified by its lack of a special character. |
i (The functional macros for the latter must be the last of this section.) It is :
| assumed that the very first character of a ''"PUT"' message, and the very first i
I character not processed by the received LPS in a ''Switched'' message, will be :
| this message type character as recommended in the Message Header Preparation i
: section of the Appendix. :

Write MSGTYPE in the Operation field of the next available macro statement. —I

EXAMPLE MSGTYPE

Operand

p.72

p.65 @ Name Operation
MSGTYPE

64

65

Is the message type that

Yes is to be handled by the following No
sequence of macros identified by
a special character?
\ e -
Write this special character in the Operand field as C'# where # is the l_The operand field will remain blank in this case, indicating that all messages not |
special character, Ex: C'P’ | having a special character will be handled by the sequence of macros immediately |
&Ilowﬂ;. Note: ﬂ’llf__ﬂ;!_s_f be the last MSGTYPE macro of the section. _|

P

EXAMPLE MSGTYPE
Name Operation Operand

I MSGTYPE |C’'P’

pp. 64,69

Are there any
nonblank characters
between the present position of
the LPS and the first character

No

p.67

of a field of interest to header
analysis?

i Yes
I_A SKIP macro must be given to skip to such a position. p.72
I___..__._________[______ _
EXAMPLE SKIP
Name Operafion Operand
SKIP ,C'$!
I Write SKIP in the Operation field of the next available macro statement. J

_________ .

[A skip can be made for a fixed number of nonblank character spaces or up to 1

Is there a special
character configuration to designate the

Yes

end of a skip field?

p.67

p.67

66

p.66

Write in the Operand field a comma followed by C'chars', where chars represents
the character configuration (max 8 characters) that denotes the end of the field
to be skipped.

p.66

Write in the Operand field the fixed number of nonblank characters to be
skipped. The maximum number that can be specified is the number of character
positions remaining in the buffer past the present position of the LPS.

Ex: ,C'$’ Ex: 8
EXAMPLE SKIP
Name Operation Operand
SKIP 8
.66,72 o e e e e e

@ PP 'ie LPS should now be ready for a field of interest to header analysis. j

Is this header to have an
Yes
output message sequence
number inserted at this point?
No v
EXAMPLE SEQOUT [Write SEQOUT in the Operation field of the next available macro sfafemenf.]
Name Operation Operand
SEQOUT 3

y

In the Operand write the decimal number of character spaces (n) to be used
by the output sequence number (1ISn<5), where the first character space is
always a blank.

Ex: 3

p.71

67

Is an output message

timestamp desired here?

Does the computer have

the interval timer feature?

T —————

I—n interval timer is needed if timestamping is specified.

Write TIMESTMP in the Operation field of the next available macro statement.]

EXAMPLE TIMESTMP

Name Operation

Operand

TIMESTMP |7

)

In the Operand field write in decimal the number of characters (n) reserved for
the timestamp field. Here n can vary from 2 to 12, depending on the time
increment desired. (See TIMESTMP macro under Section H for the timestamp
format.) Ex: 7

p.71

EXAMPLE DATESTMP

69

K10 p.68

No

Name Operation Operand
DATESTMP
———————

No

p.66

Is an output message
datestamp desired here?

Is a user-
provided routine to operate at
this point?

Yes

/
l Write DATESTMP in the Operation field of the next available macro statement. J

Y

No eniry is needed in the Operand field to specify the number of spaces that the
datestamp is to occupy. However,.7 spaces (n=7) must have been reserved by
either the LPSTART macro or by the user program, as explained in Section M.
The datestamp insertion will be of the following format: bYY.DDD, where

b =blank, YY = year, DDD = day of year.

p.71

Y

Write MODE in the Operation field of the next available macro statement. 1
EXAMPLE MODE
Name Operation Operand
MODE USER1

Y

Write in the Operand field the symbolic name of the user~provided routine
to be entered. Ex: USERIT

N

qe MODE macro provides the exit to the user routine and the return address in

| General Register 14. General Register 2,3,9,10,13,15 may be used in the user [
I routine and General Register 1 must be used as a base register. _[
I—ﬁve user-provided routine can operate either on every message handled by this ——l

MSGTYPE section or only on those messages containing a special identification |

character, _|

EXAMPLE MODE
Name Operation Operand

l MODE USERT,C'*! I
Is the user-

Yes

provided routine to operate on all
messages ?

p.71

Next, in the Operand field write a comma followed by C'char', where char is
the special character that identifies the message as one that is to be operated

on by the user-provided routine.
Ex: ,C'*'

p.71

Lo |
K12 pp.67,68,69,70

ms special character must appear as a field at the point in the message header af_l

No

Is logging of the output
message headers to be specified as
they appear at this point?

Mrife LOGSEG in the Operation field of the next available macro statement.]

EXAMPLE LOGSEG

Name Operation

Operand

LOGSEG LOGFILE4

In the Operand field write the symbolic
desired external logging device.,

Ex: LOGFILE4

name of the DCB associated with the

71

Is the MSGTYPE

macro used in this section?

Is the present
MSGTYPE section
finished ? (An LPS section to
handle only certain messages has been
specified for all header fields
of the output
message.)

Is the last macro specified the
last one in the SENDHDR section?
(All output message header fields
have been provided for.)

Is this MSGTYPE
section the last to be specified
in the send LPS?

Are there other than blank
characters between this field and the next
field in the header of interest
to header analysis?

Yes

72

73

SECTION L,

SEND SEGMENT

pp.62,72

Write "Section L, Send Segment” in the margin at the top of the next blank
coding sheet. This will identify the macro statements for Section L.

'

To identify the following section of the LPS as macro instructions that pertain to
both header and text portions of the output message, a delimiter macro statement

SENDSEG is needed. Write SENDSEG in the Operation field of the first macro
statement for this section.

EXAMPLE SENDSEG

Name

Operation Operand
SENDSEG
Are both header and
No text segments to be logged on an
external |/O device as they
appear at this point?
Specify external logging of outgoing messages by writing LOGSEG in the
Operation field of the next macro statement.
EXAMPLE LOGSEG
Name Operation Operand

LOGSEG LOGFILE4

/

Write the symbolic name of the DCB associated with the desired external
logging device in the Operand field.

Ex: LOGFILE4

p.75

74

p.74

Specify code translation of the outgoing message by writing TRANS in the
Operation field of the next macro statement in this section.

EXAMPLE TRANS
Name ‘Operation : Operand

TRANS SEND1050

Code Translate Tables
Provided by QTAM

Name Code
SEND1050 EBCDIC to 1050
SEND1030 EBCDIC to 1030
SENDT1 EBCDIC to TTY
SENDT2 EBCDIC to TWX

lWrite the symbolic name of the Code Translation Table needed for the outgoing
[messages in the Operand field of the workblock.

Are idle
characters to be inserted into
the message ?

p.78

[Wrire' PAUSE in the Operation field of the next macro statement in this section. 7
EXAMPLE PAUSE

Name Operation Operand

PAU SE X'15',20X'17

In the Operand field, the first entry will designate what characters the idle
characters are to follow, specified as X'char', where char represents the
hexadecimal notation of the designated character in the terminal code.

Follow this entry with a comma.
Ex: X‘15',

75

The next entry in the Operand field defines the idle character and the number of
idle characters to be inserted, specified as nX'id*, where n represents the actual
decimal number of idle characters to be inserted after char, and id represents the
hexadecimal notation of the idle character in the terminal code.

Ex: 20X"17

Is another

Y
°s PAUSE macro statement

needed ?

76

77

SECTION M. END SEND

pp.75,76

Write "Section M. End Send" in the margin at the top of the next blank coding
sheet. This will identify the macro statements for Section M.

To identify the following section of the LPS as macro instructions concerned only
with functions to be performed after the entire message has been sent, write the
delimiter macro statement ENDSEND in the Operation field of the first macro

statement for this section.

EXAMPLE ENDSEND

w p.79

Name Operation Operand
ENDSEND

N Is this LPS

° handling messages for IBM 1050
terminals?

Yes If transmission farr'ors occur, No
are two retransmissions of output
messages to be provided for ?
p.79

p.79

78

p.78

p.78

79

LWrife EOBLC in the Operation field of the next available macro statement . l

Write EOB in the Operation field of the next available macro statement.

EXAMPLE EOBLC EXAMPLE EOB
Name Operation Operand Name Operation Operand
ECBLC EOB
{M4] p.78
To provide for specification of error procedures, a halfword error mask is |

Imaintained for each communication line.

This mask can be interrogated by macro

|statements, and the desired error procedure initiated upon finding the occurrence |

lof a given error condition.

B ¥

I_Q—TAM provides fixed error procedures for sending an error message, cclncelfng-crl
Ierroneous message, and rerouting messages. With each error procedure |
| specified, an error mask, representing the error procedure it is to act on, must be |
| specified in hexadecimal notation. Chart 2 describes the errors provided for |

[when sending.]
[An example of how fo specify an error mask]

| The error halfword specifying a transmission error looks like this:

I [oJoJo]olo]oJoo]1]o]Jojo]o]o]o]o]

0 8 0

|
| D W S |
[

0

corresponding error mask in hexadecimal will be written as: X'0080'.

l Its
—_

p.82

Chart 2. Halfword Error Mask
Hexadecimal Error Mask Positions

Hex 1 Hex 2 Hex 3 Hex 4

16

Bit Positions 1 2 3 45 6 7 89 101112131415
b3
2 <
o L et
2|2 o | 2
255 5 g | |&
=IE| 8 = & >
=]
R w @ 2
O':.g g E >
UU)_ . — >\
=13 = als| |2 =
o <] =10 8] 3]
Els)€ 8l |& <
S| E 5| E| |2 2
— 1.0 == £)
—l.— S

(Internally used by QTAM)

A 1-bit in any pbsifion indicates the presence of the error
condition associated with that position.

Can an error condition
be expected that will require
sending an error message ?

p.83

Write ERRMSG in the Operation field of the next available macro statement
in this section. ‘

EXAMPLE ERRMSG

Name Operation Operand
ERRMSG X’'0040",=C’OPR’, TMOUTERR

In the Operand field write the error mask representation of the error condition for
which this message is to be sent, specified as X'mask®, where mask is a four-
digit hexadecimal number.

Ex: X'0040.

p.81

80

No

Yes

Next, in the Operand field write a comma followed by the fixed destination
specified as =C'dest', where dest represents the symbolic name of the destination

Terminal Table entry nome.
Ex: =C'OPR'

Is this application
exclusively message switching ?

Does the error message
always go the the terminal that sent the
erroneous message ?

Is the error
message to go to a fixed
destination ?

81

Yes

must have been specified in the RCVHDR section of the LPS.

Next, in the Operand field write a comma followed by the word SOURCE.
Note: If the terminal involved is a non-polled terminal, a SOURCE macro

Next, in the Operand field write a comma followed by the name of the optional
field in the Terminal Table that contains the desired destination. (See OPTION,
Section D.) The optional field will be the one associated with the Terminal
Table entry to which the message causing the error condition was to be sent.

Ex: ERROPT

1

—®

D o e T e me o ']

The contents of the error message text must now be specified. This error message
text can be stated directly in the Operand field of the ERRMSG statement or it can
be prestored in a symbolic location and referenced by the ERRMSG statement.
Before writing this text, however, the following information must be known:

| 1.

The first part of the error message text must be a header compatible with the ‘
LPS for sending (same as other output headers). ‘

I 2. The entire error message header plus text is not to exceed the length of a
I buffer segment.
3. Aperiod as the first character of the error message text will be replaced by
l the header of the message whose transmission caused the error. This
L__ additional header must be considered in (2) above. __l

Is the text of the Yes

message to be written as part of this
macro statement ?

Next, in the Operand field write o comma followed by the symbolic name of the
location in core storage that contains the desired error message. This location

and its contents must be defined elsewhere.
Ex: TMOUTERR

text.

Ex: , =C'Ebbbbb . TIMEbOUTLERROR’

Next, in the Operand field write a comma followed by the header plus text,
specified as = C'errmsg’, where ermsg represents the actual header and message

Are there any other Yes

error conditions that will require
sending an error message ?

p.80

82

83

No Shall messages be rerouted

w p.84

to alternate destinations upon detection
of certain error conditions?

., p.84

{Wrife REROUTE in the Operation field of the next available macro statement. J

EXAMPLE REROUTE

Name Operation Operand .
REROUTE X'0010',=C' OPR'

In the Operand field write the error mask for the desired error condition specified
as X'mask’, where mask represents the four-digit hexadecimal number.

Ex: X'0010’

Are all messages to be

Yes -
rerouted to the same destination when

this error condition occurs?

Next, in the Operand field write a comma followed by the Terminal Table
entry name of the rerouted destination, specified as =C'tername’, where

tername is the symbolic name of the destination.
Ex: =C'OPR'

Another choice of reroute destinations is to have an alternate destination specified
in an optional field of the message destination entry in the Terminal Table (see
Terminal Table Specification). To use this alternate destination, next in the
Operand field write a comma followed by the symbolic name of the optional field
that is to contain the alternate destination for each terminal entry. If the
terminals involved are non-polled terminals, a source macro must have been
previously specified in the RCYHDR section of the LPS.

Ex: ERRDEST

w p.83

Are there other error
conditions for which messages
are to be rerouted ?

w p.85

Are messages to be
canceled upon detection of certain
error conditions?

EXAMPLE REROUTE

Name | Operation Operand
REROUTE X'0010', ERRDEST

Yes

W p.83

84

|M1o]p.84 @ p.84

[. ;
When a message is canceled all references to it are destroyed. n

L=

Write CANCELM in the Operation field of the next available macro statement
in this section.

In the Operand field write the error mask for the desired error conditions,
specified as X'mask', where mask represents the four-digit hexadecimal number.
Ex: X'0010

I that terminal suppressed by use of an INTERCEPT macro statement. The infercepfionl
'of all messages to the terminal will occur when the error specified by the mask is l
detected. The sequence number of the first untransmitted message for a terminal

Are messages to be
intercepted upon detection of certain

error conditions?

Write INTERCPT in the Operation field of the next macro statement in
this section.

EXAMPLE INTERCPT

Name Operation

Operand

INTERCPT X'0010'

85

In the Operand field write the error mask for the desired error conditions,
specified as X'mask', where mask is a four-digit hexadecimal representation of
the error mask.

Ex: X'0010'
IVake sure that an optional field has been specified in the Terminal Table }

The send part of the LPS is now completely specified. To identify the end of the
ENDSEND section, write the delimiter macro POSTSEND in the Operation field
of the next macro statement.

EXAMPLE POSTSEND

Name Operation Operand
POSTSEND
|_T_he LPS is now finished except for one remaining item. 1

l_T—he number of character spaces to be reserved in the first buffer of an input —I
message by the LPSTART macro depends on whether or not the first buffer of

lan input message is also the first buffer of an output message (e.g., Message l

| Switching Application). It this is the case, space must be reserved in the first |
buffer for both input and output ~ timestamp, datestamp, and sequence >ut

loomber. — 7 |

p.87

Yes

Is the present
LPS to include handling of
switched messages ?

No

Write in the Operand field of the LPSTART macro the decima! number equal to
the sum of all the values assigned to the n parameters of the TIMESTAMP (in),
TIMESTAMP (out), and SEQQOUT macros, plus 7 bytes for each DATESTAMP (in)
and DATESTAMP (out) macro used in the LPS for switched messages.

Write in the Operand field of the LPSTART macro for this LPS the decimal number
equal to the sum of the values assigned to the n parameters of all the
TIMESTAMP (in) macros plus 7 bytes for each DATESTAMP (in) macro used in the
LPS. '

Ex: 19 Ex: 8
EXAMPLE LPSTART
Name Operation Operand
LPS1 LPSTART 19

—— —— ——— —— —— —— —

l For the reply of any messages that are generated by a user program, space -I
I must be reserved in the first buffer of the output message equal to the sum
of the values of the n parameters for all TIMESTAMP (out) and SEQOUT macros |

—_— i — e —— . ——

Yes

Repeat the LPS Sections starting at Receive Segment LPS Section G, being
careful that all sections of each LPS specified keep their identity.]

)

Is there another LPS to be
specified (see introduction)?

87

SECTION N. DATA SET INITIALIZATION p.87

Write ''Section N. Data Set Initialization'" in the margin at the top of the
next blank coding sheet. This will identify the macro statements for Section N.

'_T—he_pljr;c;eg this section is ;;-)m_v-ide for specification of macros that will 1
I initialize all Data Sets that will be referenced by the Message Control Task
lﬂd by use of OPEN and ENDREADY macros. |

‘ 1. Control blocks are initialized.
2. Subroutines are acquired for the access method.
| 3. Control blocks are assigned core storage locations.
l 4. In the case of a communication line, the line will be made operative for .
sending or receiving provided its polling list and terminal entries are
in an active status.* _|

l—-\/—Vhen a Data Set is ""opened"’, the following functions are performed: I

'Efo Sets which will be referenced by the Message Control Task, and which _—‘
therefore must be ''opened'', are: |
I 1. Communication Line Groups.
2. Direct Access Storage Device used for queuing messages. I
3. External 1/0O device (s) used for logging messages.
Each such Data Set has a Data Control Block (DCB) by which it is I
|£ferenced . _l

] Opening of the Direct Access Storage Device, Logging Devices, and _]
P g
‘E)mmunicafion Line Groups will now be provided for. B

Write OPEN in the Operation field of the first macro statement for this
section.

*Terminals may be activated on a per-line or per-
terminal basis, rather than by line group, by use
of the CPYRL/CHNGPL or STRTLN/STOPLN macro
instructions respectively. These macros may be
included in the present section prior to, and
immediately following, the OPEN macro instruc-
tion(s) as required to provide the necessary control
(see C28-6553).

EXAMPLE OPEN
Operation Operand

OPEN (DCBFILE, (INOUT), LOGFILE1, (OUTPUT),

DCBGROUP, (INOUT))
p.89

88

p.88

Write in the Name field of this macro statement the symbolic name to be
given to the Message Control Task. (The OPEN statement described is
considered to be the first statement of the MessageControl Task. This is

not necessarily the case, since other user coding, if specified, may precede
the OPEN statement. In such a case it would be the first such statement that

would have the name of the Message Control Task.)
Ex: STQTAM

Y

First write in the Operand field of the OPEN macro « left parenthesis.
Ex: (

Are messages to be queuved
on a direct access storage device (rather

No

than in core storage) ?

In the Operand field, write the symbolic name of the Direct Access Storage Device

DCB on which messages are to be queued, followed by a comma,
Ex: DCBFILE,

Y

Next write in the Operand field the word INOUT, enclosed in parentheses, and
followed by a comma. This specifies the direcr access device as both an ''input'!

and an "output'' Data Set.
Ex: (INOUT),

>

89

No Is there logging of messages

on external /O device(s) ?

Write in the Operand field the symbolic name of a Logging device DCB
defined in the Message Control Task, followed by a comma.
Ex: LOGFILE1,

'

Next write in the Operand field the word OUTPUT, enclosed in parentheses,
and followed by a comma. This specifies the direct-access device as an *‘output**

Data Set.
Ex: (OUTPUT),

Are there any more logging Yes

device DCB's defined in the
Message Control Task
to be "‘opened"' ?

Write in the Operand field the symbolic name of a line group DCB in the

system to be opened, followed by a comma.
Ex: DCBGROUP,

90

p.90

Next write in the Operand field the word INPUT, OUTPUT, or INOUT,
whichever is appropriate for the line group being "'opened’’. For example, a
line group that has both sending and receiving of messages would be specified
as INOUT, whereas a line group that only received messages from terminals
would be specified as INPUT. Precede the selected word with a left

parenthesis,
Ex: (INOUT

‘ : I
| To specify that all lines in the communication line group being opened initially |

| be inactivated (in preparation for their later activation with the STRTLN |
| macro) an IDLE parameter may be specified in the OPEN macro statement. This)
| specification has the effect of issuing a STOPLN macro to each line. |

Is an
IDLE parameter
desired for the line group
being opened ?

Yes

Next write in the Operand field a right parenthesis.

Next write in the Operand field a comma followed by the word IDLE;
Ex:)

followed by a right parenthesis.

Ex: ,IDLE)

Yes Are there any more line group DCBs
defined in the Message Control Task

to be ''opened’’ ?

!

Write a comma in the Operand field following the last entry.

w p.90

91

* A final parameter may be placed in the Operand field
of the OPEN macro statement specifying a parameter
list that includes operand parameters for the OPEN macro.
The purpose of this specification is to have a list of
parameters that can be shared by many OPEN macro
instructions, Sharing of the list is specified by writing
a comma followed by MF=(E and another comma fol-
lowed by the name of the parameter list,

Ex: , MF=(E, LISTNA ME)
Specification of MF=E requires that an OPEN macro be
included elsewhere (at the end) in the Message Control
Task that has an MF=L specification. The name of this
macro will be the name of the parameter list mentioned
above. If neither MF=E nor MF=L is specified, the
parameters specified in the OPEN macro instruction will
be assembled "in line" and executed. For further
description of the MF specification refer to IBM
Operating System/360 Control Program Services
(C28-6541).

w p.93

Complete the Operand specification for the OPEN macro by closing the
parentheses following the last entry*,

If a subtask of the Message Control Task was defined in Section F and it is l
desired to activate it only once, before receiving the first message into the

is in confrast to activating the subtask within the LPS structure, which would I
result in its being activated each time the LPS sequence is passed through |
I

‘ | system, the ACTSUBT macro instruction may be written at this point. This

(every message or message sequent), Deactivation of a subtask is accomplished

Is activation of

a subtask desired
at this point ?

EXAMPLE ACTSUBT

E:me Operation

LWrife ACTSUBT in the Operation field of the next available macro statement.]

Operand I

I ACTSUBT SUBTI l

Write in the Operand field the symbolic name of the subtask that was
assigned to the subtask with its DENSUBT statement in Section F.
Ex: SUBTI

w p.93

p.93

92

Are there other subtasks
to be activated at

Yes

p.92

EXAMPLE ENDREADY

Name

Operation

this point?

() p. 92

Write ENDREADY in the Operation field of the next macro statement
for this section. This is essentially @ WAIT type macro needed by the
Message Control Task. The ENDREADY macro statement has no further
parameters.

Operand

ENDREADY

—]

p.94

93

SECTION P, STRUCTURING

p.92'

| To do this the user merely has to take the macro statements of the various sections
and assemble them sequentially in the following order for each LPS specified:

| Section G. Receive Segment l
I Section H. Receive Header
Section J. End Receive LPS |
l Section K. Send Header I
Section L. Send Segment

| _SectonM. _EndSend _

I—Xﬂ-er assembling all sections of each LPS, each LPS must be assembled in sequenc_e|
as shown below with the Data Set Initialization section placed at the head of the |
l Assembly and all of the Data Set Definition and Control Information Sections |
placed at the end of the assembly. Order is not important within and-or between
‘ the Data Set and Control Information Sections, l
l Section N. Data Set Initialization
LPS1 (Sections G-M) l
‘ LPS2 (Sections G~M) |
Section A, Communication Line Group DCB
| Message Control Task Section B. Direct Access Storage Device Queuve DCB l
Section C. " Logging Device DCB
| Section D, Terminal Table I
!) Section E. Polling List l
Section F. Buffers

r'l; incorporate this coding as the Message Control Task of QTAM within an |
I Operating System, the user is referred to IBM Operating System/360 Job
I Control Language (C28-6539). A brief checklist of other considerations l

necessary for an operable communications systems is given here:
e Specification of message-processing tasks
e Operator control messages and procedures
I e Activating and reactivating of communication lines

94

95

APPENDIX A: SAMPLE PROGRAM

The sample problem used here to illustrate the
Queued Telecommunication Access Method will con-
sist of three areas:

1. Message Switching Application. A message
switching application involves messages sent from a
remote terminal that have as their destination
another terminal or a group of terminals and require
no intermediate processing. In this application, the
following functions will be provided for:

Receive
a. Control 1050 communication terminals
and lines

b. Assemble messages received over
communication lines

c. Code convert messages from line code
to internal EBCDIC code.

d. Perform message-editing functions,
such as time and date stamping,
sequence number and source checking

e. Route messages according to destination
code to either single or multiple
destinations

f. Check for errors in messages
Perform corrective action when errors
are detected

h. Perform queuing and logging of
messages on a 2311 Disk Storage Drive.

a. Insert sequence-out number of message
b. Format message for transmission to
terminal
c. Code-convert message from the system
EBCDIC code to the line code
d. Address terminal and transmit message
2. Inquiry Application. In the inquiry application
described here, messages are sent from remote
terminals that contain data to be processed, and a
reply is sent back to the source terminal. A system
data file is accessed by the processing program using
an Operating System/360-supported access method.
This file is on a 2311 Disk Storage Drive and is
separate from the one used for the queuing of messages.
In addition to those functions listed under mes-
sage switching, an inquiry application must also provide
for the following:
a. Get message from the inquiry Process
Queue
b. Access file record
c. Extract required information as
indicated by message type
d. Compute value specified by inquiry
message
e. Format reply message
f. Put message into the message source
destination queue

3. Operator Control Program. In the operator
control program described here. the control mes-
sages are entered into the system through an in-
house system terminal. These messages are sent
either to modify the polling list or to inquire about
the line or process queue. This operator control
program consists of one main program and two
subroutines. The main program will be permanently
resident in core storage. The two subprograms will
be linked by the main program. They will not
necessarily be resident in core storage.

In addition to functions a - g under message
switching, an operator control program must also
provide for the following:

a. Get message from the Control Process

Queue

b. Examine message to determine type

c. Link to the program that will handle the
message type
Operate on message request
Format reply message
Return to initial program
Put message to the in-house terminal
destination queue

© o o

APPLICATION IMPLEMENTATION

For these applications, certain functions are
supplied by QTAM while other functions must be
provided by the user. The functions listed under
message switching and used by the other applications
will be completely specified through the use of this
manual and will be handled by QTAM.

The remaining functions listed under inquiry
application and operator control program will be
programmed as separate tasks. These tasks will
be programmed like other processing programs
in the system and are completely the responsibility
of the user. QTAM does, however, supply certain
macro instructions so that the needed programs can
communicate with the main QTAM Task (Message
Control Task).

The QTAM Task, the Inquiry Task, and the
Operator Control Task will all be assembled and
executed through a normal job stream. Job control
cards required by the job scheduler, such as JOB,
EXEC. and DD statements, are not discussed here
(see IBM Operating System/360 Job Control Language,
C28-6539).

SYSTEM CONFIGURATION
The configuration of the system for the sample

program is shown in Figure 1. Each device shown
may be categorized into one of two groups.

96

CHIJ 1050 |7 1 1050 | NYC
BOS| 1050 — —— 1050{ PHI
OPR| 1050 —— 1050 | WAS
2701
Data
Adapter
Unit
MPX Channel
Model
F 30 2821
Control
Sel Channel Unit
2841
Storage
Control

1403 1402 Card
Pri Read Punch
rinter

2311

2311

Disk Disk
Storage Storage
Drive Drive

Figure 1. System configuration for sample problem

97

For Communications:

1050 Data Communication Systems
Half-Duplex Communication Lines
Data Adapter Unit

Multiplexor Channel

2311 Disk Storage Drive

N e

For the Operating System:
System/360, Model F30 (64K)

Selector Channel

1052 Console

2311 Disk Storage Drive
Printer

Card Read Punch

[=l e

JOB DEFINITION

Each task difference and peculiarity is defined in the
following paragraphs.

Message Switching Application

Switched messages (which require no processing of
message text) are to be routed to their destinations.
Destinations specified in the input header may be
any of the following.

o Single destination specified in the destination

field of the header — for example, NYC.

e Multiple destinations specified in sequence in

the header — for example, NYC PHL. ...

e Distribution list specified in the header.

example, PDW would specify destinations
contained in the terminal table list for PDW,
that is, Philadelphia, Boston, Washington.

The switched message, when sent to its destination,
will have inserted in its message header the in-time
stamp and in-date stamp, and a sequence-out number.
Output messages will be given priority over input,
or received, megsages.

For

Inquiry Application

Inquiry messages require processing of the message
by a problem program resident in the central proc-
essing system. A reply message must be generated
for transmission back to the sending terminal. The
input message to be processed by the Inquiry routine
must have the destination code INQ. The message
entering the process queue (INQ) will have the date
and time stamp inserted in the message header. The
reply message generated by the inquiry processing
program must contain the message type code P in
the outgoing message header format. This outgoing
message type will have inserted within the message
header an out-date and time stamp and a sequence-
out number. To allow for these insertions, 19 blank
spaces must precede the first character of the reply
message. .

Operator Control Program

Control messages require processing of the message
by a problem program resident in the central proc-
essing system. A reply message must be generated
for transmission back to the in-house terminal (OPR).
The message generated by the Operator Control
program will have the destination code (OPR). The
message entering the process queue (CTR) will have
the date and time stamp inserted in the message
header. These messages will be queued in main
storage rather than on disk. The reply message is
handled in the same manner as the Inquiry reply
message.

The message text format of a control message
might be like one of the following:

Text Function
CHPL, LINE1, 0
CHPL, LINE1, 1
CHPL, LINE2, 0
CHPL, LINE2, 1

Stop polling line 1
Start polling line 1
Stop polling line 2
Start polling line 2

CPYQ, LINE1 Get line one queuing information
CPYQ, LINE2 Get line two queuing information
CPYQ, INQ Get INQ queuing information
CPYQ, CTR Get CTR queuing information

98

MESSAGE FORMATS

Figure 2 shows the message formats for the switched,
inquiry, and control messages. The format of the
messages is shown for both the receiving of the
message from the terminal and the sending of the
message or the reply to the terminal.

SWITCHED MESSAGE FORMATS
Switched Message (in) e e
Bytess O 1 2

L.l

LTl e E v e e ol b e el T [

_lel

e e e Y e
EOA Seqin Source Dest 1 Dest 2 Dest3 EOA Priority

Switched Message (out)

By 40

EOT

*

NonoanannNNEEEAnNERANOENNEANSAABANBANE

Tele [o0 |

lo]

;HK—V__J;—V_JW——J_V_J_V_J\J N

EOA Seqin Source Dest 1 Dest 2 Dest 3 EOA in time stamp in date stamp Priority Seq. out

PROCESS MESSAGE FORMATS

Process Message (in)

Bytes 0 1 10 11 12 W

2 3 4 5 16 7 8 9
lelz i fs[efcin[ilo[i [nfal®] mx { [o]
— e e v
EOA Seqin Source Dest ECA EOT

Process Message (out)

Bytes 0 1 2 3 4 5 i 10 15 20 28 -
CLTeD oo Telali o Lo s Lo [T [T -] [sTelel el 2 els] mma) ol
=) \r
Msg Seq. in Dest *Seq. out *Qut time stamp *Out date stamp Reply generated by message Process Program
Type

Inserted by problem program

CONTROL MESSAGE FORMATS

Control Message (in)

BRI LRI L FEE L N L o]
-

—_—— e Y

Seq. in Source Dest Program to be used Parameter List

By

N

Text Format

Control Message (out)
N

Bytes 0 10 20 25 2
elefoi i efofefefele i afe i [af -Tofaf-Tofalofefal - Tafole] roa i [o]
s — ——— Y)
Msg Seq. in Dest *Seq. out *Out time stamp *Out date stamp Reply generated by Control Program
Type
This will be the

*Blank spaces are to be provided by the problem programs preceding the start of message equal in number to the total number of characters to be inserted in the sequence out, time stamp, and data stamp fields.

new start of message.

Figure 2. Formats for switched, inquiry, and control messages

99

PROGRAM FLOWCHART

The following charts show the logic flow of the Line
Procedure Specification portion of QTAM, the Inquiry
Task, and the Operator Control Task. This is included
for descriptive information only and does not necessarily
represent the actual program logic flow of QTAM.

LPS1

Find the next messoge
segment to be processed
by either line

Is this
message seg being
received or

TRANSLATE
message segment to the
common system wide code

Is
this segment a
heoder ?

RCVHDR

Skip the first character
which is an End of Address

Y

Check the message
sequence number to
determine if it is correct

Check the message source
it Is a 3-letter code

y

Route messoge to the
destination identified

by a 3-char. code

the next character an
EOA?

Insert a 9-character
time stamp
Insert a 7-character

date stomp

Determine message
priority if an

ENDRCVE

Was EOM received ?

Was EOM actually
an EOB?

Was

message out of
sequence ?

ts
this segment a
header?

Is the
message an Inquiry
type 'P'?

SKIP the first 6
non - blank characters
Insert a 3-character
sequence-out number
Insert a 9-character
time stomp

Insert a 7-character
date stamp

All message headers
except type P messages
will be handled here

Insert @ 3~choracter

sequence-out number

Send error message
to source terminal

Did message
have illegal source
or dest?

Send error message to
source terminal and
cancel the message

Should

terminal be polied
ogain?

Change polling pointer to
next terminal on the
polling list

YES

POSTRCVE

Segment is processed
go to LPS1

SENDSEG

Insert 20 idle characters
after every carriage
retumn character

Translate message segment
to the terminal code

ENDSEN!

Was EOM sent? NO

YES

Was EOM YES
actually an EOB?

NO

Did a
transmission error
occur?

NO

YES

Reroute message to the
rator terminal

POSTSEND

Segment is processed
go to LPS1

100

Message Processing Program

Get next message segment
from INQ Process queue

Is
this the last
segment ?

Determine what operations
are needed to build o
reply for the message

Access needed files
by the use of another
access method

Build message reply
leaving 19 spaces at the
beginning for insertions

'

Send reply to the message
source teminal by the use
of the PUT macro

101

Operator Control Message Processing Program

GET message from
CTL Process Queve

CHPL

Is message

from OPR

Cancel Message j

terminal ?

CPYQ

Determine
which program is

Get the line identification,

from the message

needed

e

Others

Dynamically make the
CPYQ macro instruction

Prepcre an error message

y

to indicate wrong

CPYQ

program name

I

Get queuve information
for line in work area

Send message to the dest.

terminal (OPR) by the use .

of the PUT macro Pr

Get the line identification|
from the message

Take line ID and search
a table for proper

DCB and rin

Set bits to stop the
polling of the line

What
is next parameter in
message ?

1

Set BITS so line
will be polled

Dynamically make the

CHNGPL macro

instruction

CHNGPL

Return modified
polling list

Prepare a message to
notify operator that the
specified changes were

made

epare queue information
in message form

102

MACRO CODING

The following pages illustrate the coding needed for
each application. The Message Control Task, the
coding of which is obtainable with this book, is
completely coded. The Inquiry Application and the
Operator Control Programs show methods of using
the needed QTAM macro instructions and the over-
all structure of the processing programs but do not
show the actual program coding.

MESSAGE CONTROL TASK OF QTAM

Name Operation Operand
STQTAM OPEN (DCBFILE, (INOUT),
DCBLINE, (INOUT),
DCBOPRLG, (INOUT))
ENDREADY
LPS1 LPSTART 19
RCVSEG
TRANS RCVE1050
RCVHDR
SKIP , C'#'
SEQIN
SOURCE

103

Comments

Data Set Initialization makes ready for use the
Operator in-house terminal communication line and
the direct access storage device used for message
queuing. It causes polling to be initiated on the line,
and updating of queue status tables.

Receive Segment LPS Section — identifies the start

of the LPS and reserves 19 spaces for the date stamp,
time stamp, and sequence-out number at the beginning
of the header segment.

Instructions between this delimiter macro and the
next will service both the header and the text seg-
ments of the input message.

Converts 1050 message characters to the common
system-wide code EBCDIC.

Receive Header LPS Section. Instructions between
this delimiter macro and the next will service only
the header segment of the input message.

Causes all characters up to and including the # to be
skipped, thus allowing the LPS to be in position for
the first field (# is a translated (D)).

Checks sequence of numbered messages for each
terminal as they arrive. No operand is needed since
the sequence number is ended with a field delimiter
character (blank).

Checks the validity of the source terminal code
received in the message header against the code of
the terminal that was polled. No operand needs to
be specified since the field is ended with a field
delimiter character. If the source code is invalid,
an error is indicated in the error halfword of the
line involved.

Name

Operation

ROUTE

EOA

TIMESTMP
DATESTMP

MODE

ENDRCVE

EOBLC

ERRMSG

ERRMSG

CANCELM

POLLIMIT

Operand

C'%'

PRIORITY, C'*'

X'3000', SOURCE,
=C'bbb. MESSAGE
NOT IN SEQUENCE'

X'8600'SOURCE,

=C'bbb. MESSAGE
HEADER FORMAT
ERROR. CORRECT

AND RESEND'

X'8600'

LIMIT

Comments

Routes the message to the destination queue(s)
specified in the message header and checks the
validity of the destination code against the terminal
table provided by the user. If the destination code
is valid, the message is queued for the specified
destination.

Indicates that multiple destination routing is expected
and must be checked for. The operand identifies %
as the end-of-address character. This character
must appear in the message header after the last
destination code.

Inserts the time of day in the header field. First
character is blank. The operand (9) indicates the
number of characters to be inserted.

Inserts the date in the header field. The insertion
will consist of a blank character followed by a six-
character date stamp.

If the next character is an *, the character following
the * will indicate the message priority.

End Receive LPS Section. Macros between this
delimiter macro and the next will service the message
after the end of message is received.

Allows the 1050 terminal to continue receiving after
an EOB. It also provides for up to two retrans-
missions of the message segment if a transmission
error is detected. If the error is not corrected, an
error is indicated in the error halfword for this line.

Sends the error text specified to the source terminal,
when the error type specified by the mask is detected.
The header of the message causing the error will be
placed at the beginning of the text. The mask 3000

is the bit configuration (in hexadecimal) used to test
the halfword error indicator.

Sends the error text specified to the source terminal
when the error type specified by the mask 8600 is
detected.

Message containing error indicated by mask 8600
is canceled. =

Determines whether the terminal has sent the maxi-
mum number of messages allowed on a single polling
pass. The operand is the symbolic name of an
optional field in the terminal table that contains the
limit of consecutive polls for each terminal.

104

Name

105

Operation Operand
POSTRCVE

SENDHDR

MSGTYPE c'p!
SKIP 6
SEQOUT 3
TIMESTMP 9
DATESTMP

MSGTYPE

SEQOUT 3
SENDSEG

TRANS SEND1050
PAUSE X'15', 20X'17!

Comments

Delimiter macro which indicates the end of the
receiving section of the LPS.

Send Header LPS Section. Macros between this de-
limiter macro and the next will service only the
header segment of the output message.

Message Type P Section. Determine whether the
message is type P. If the next character is a P, the
macros between this MSGTYPE macro and the next
delimiter macro will handle these messages. The
problem program must leave 19 spaces at the
beginning of the inquiry reply message for the out-
time stamp, date stamp, and sequence number.

Causes 6 nondelimiter characters (sequence-in
number and destination code) to be skipped to position
the LPS for the first field.

Sequentially number outgoing message by terminal.
The operand (3) is the number of characters to be
inserted (two digits preceded by a blank). Space
must be reserved at the beginning of the message by
the problem program for the sequence-out number.

Inserts a 9-character time-of-day stamp in the out-
going header field. (The first of the 9 characters is
a blank.)

Inserts a 7-character date stamp in the outgoing
message header. The first character is a blank,
followed by a 6-character date stamp.

Remaining Message Type Section. All messages
except type P messages will be handled by the macros
between this MSGTYPE macro and the next de-
limiter macro (SENDSEG).

Sequentially number outgoing messages by terminal.
The operand (3) indicates that a three-character
output sequence number is to be inserted (two digits
preceded by a blank). Space must be reserved by

the use of LPSTART for message-switching messages.

Send Segment LPS Section. Macros between this
delimiter macro and the next will service both the
header and the text segments of the output message.

Translates output message using code conversion
table name SEND1050.

Upon recognition of each carriage return character
(X'15"), this routine will insert 20 idle characters
(X'17") to provide time for the carriage to return.

Name Operation Operand Comments

ENDSEND END SEND LPS ASECTION. Macros between this
delimiter macro and the next define functions to be
performed after the message has been sent.

EOBLC Informs QTAM to continue sending upon recognition
of an EOB. It also specifies retransmission of a
message segment if a transmission error is detected.
If the error is not corrected, an error is indicated
in the error halfword for this line.

REROUTE X'0040', =C'OPR' Causes a message to be queued for the terminal name
OPR when the error type specified is detected.

POSTSEND Delimiter macro which identifies the end of the sending
portion of the LPS. It also indicates the last instruction
of this LPS.

DCBLINE DCB DDNAME Communication Line Group DCB Section — identifies
=DDGROUP1, DD statement name associated with this DCB.
DSORG=CX, Define DCB as a communication line group type.
MACRF=(G, P), I/0 access level is GET/PUT.

CPOLL=(POLLINE1, Symbolic names assigned to the polling list of the

POLLINE2), two lines.
BUFRQ=2, Number of buffer requests required by each line.
ACLOC=13, Relative position of the selecting address of terminals

within its terminal table entry (see terminal table
entry format).

CLPS=LPS1 Identifies LPS1 as the name of the LPS for these two
lines.
DCBOPRLG DCB DDNAME Identifies the operator in-house terminal line group.

=DDGROUP2, DSORG
=CX, MACRF=(G, P),
CPOLL=(POLLINES),
BUFRQ=2, ACLOC=13,

CLPS=LPS1
DCBFILE DCB DDNAME=-DDFILE, Direct Access Device Queue DCB Section — identifies
DD statement associated with this DCB.
DSORG=CQ, Defines DCB as a direct access device type.
MACRF=(G, P) Queue to be accessed at the GET/PUT level.
TERMTBL PBW, 3 Terminal Table Section — specifies the extent of the

terminal table. PBW is defined as the last entry in
the terminal table.

106

Name Operation Operand Comments

LIMIT OPTION FL1 Limit is the symbolic name of the field in this terminal
table which contains the limit of consecutive polls for
each terminal.

CHI TERM L, DCBLINE,1, The six terminals and their parameters are here
6407640D, (3) defined. L indicates outgoing messages are to be
NYC TERM L, DCBLINE, 2, queued by line; DCBLINE is name of associated DCB;
6207620D, (3) 1 is relative line number within the line group; 6407
PHI TERM L, DCBLINE, 2, is 1050 addressing code; 640D is 1050 polling code;
6407640D, (2) the number in parentheses defines the maximum
BOS TERM L, DCBLINE, 1, number of consecutive polls for each terminal to be
6207620D, (2) inserted in the LIMIT field defined above.
WAS TERM L, DCBLINE, 2,
6707670D, (1)
OPR TERM L, DCBOPRLG,

6207620D, (5)

INQ PROCESS Defines the symbolic names of the process queues in
the terminal table, thus allowing INQ and CTR as
valid destinations.

CTR PROCESS EXPEDITE The CTR queue will be in main storage since EXPEDITE
was used.

PBW LIST (PHI, BOS, WAS) Define a distribution list of message destinations as
PHI, BOS, WAS.

POLLINE1l POLL (CHI, BOS) Polling List Section — defines order of polling of
terminals attached to line 1.

POLLINE2 POLL (NYC, PHI, NYC, WAS) Defines order of polling of terminals attached to
line 2.

POLLINE3 POLL (OPR) Defines polling of the operator in-house terminal line.
Polling is initiated upon execution of the open for the
line group.

BUFFER DCBFILE, 10, 95 Buffer Section — provides internal storage buffering

for the DCBFILE used for message queuing. Ten
buffers are specified with 95 bytes per buffer.

INQUIRY MESSAGE PROCESSING TASK OF QTAM

STPROCES OPEN (PROCESSQ) Opens the message control queue (INQ) so that
messages can be obtained from the queue by the use
of a GET macro instruction.

OPEN (REPLYQ) Opens the output DCB; this causes a linkage to the
Message Control Task so that the PUT macro
instruction can send messages to their destination.

LOOP " GET PROCESSQ, WORKA1l Queue Access Section. Get the next sequential
‘ segment from the queue (INQ) referenced by the DCB
and place it in work area WORKA1. If no segments
are available, a WAIT it implied.

107

(The message is now available for processing by the problem program. References to files for data to be
used in preparing the reply, if required, would be under normal procedures of Operating System/360.)

Name

WORKA1
WORKA2

SOURCE

" PROCESSQ

REPLYQ

Operation

PUT

DS
DS

DS

DCB

DCB

Operand

REPLYQ, WORKA2

LOOP

CL100
CL100

CL3

DDNAME=INQ,

MACRF=G,

BUFRQ-=2,

SYMAD=ERROR,

TRMAD=SOURCE,

DSORG=MQ,
SOWA=100,
RECFM=S

DDNAME=DDREPLY,
MACRF=P,

TRMAD=SOURCE,
DSORG=MQ,
SOWA=100,
RECFM=G

Comments

Place the processed message on the appropriate
destination queue specified by the reply DCB parameter
TRMAD. The terminal table entry name in the
location specified by TRMAD will be the destination.

Branch to beginning to "GET'" next message for
processing.

Define work areas.

Defines a 3-character area referred to by the TRMAD
parameter of the DCB. It will contain the message
destinationn Terminal Table entry name.

Process Program Queues DCB Section (Type 1) — name
of the Process Queue Terminal Table entry name and
associated DD statement for this process DCB.

Program at the GET level.

Two buffers will be queued ahead in core from the
direct access device queue.

Name of routine that will handle overflow of messages.
Specifies the name of the location that will contain
where the message came from in the case of a GET
macro, and the message destination in the case of

a PUT macro.

Defines DCB as a process program type.

Work area size (in bytes).

Working unit is a segment.

Process Program Queues DCB Section (Type 2).

Refer to PROCESSQ DCB for explanation of parameters.

RECFM=G means that the complete messages are
being PUT to the destination.

108

Name

STOPRTOR

NEXT

Operation

OPEN

OPEN

GET

OPERATOR CONTROL TASK OF QTAM

Operand

(PRCDCB)

' (RPLYDCB)

PRCSDCB, WORKA1

Comments

OPENs the message control queue (CTR) so that
messages can be obtained from the queue by the use
of a GET macro instruction.

OPENSs the output DCB; this causes a linkage to the
message control task so that the PUT macro instruction
can send messages to their destination.

Get the next sequential message segment from the
queue (CTR) and place it in the work area.

(Determine which subprogram the message requests and LINK to it. The program that is linked will do the

compilation required to accomplish the request.

The program will execute CPYPL, CHNGPL, and CPYQ

macros as required. The linked program will then prepare a reply for the operator and place it in WORKA2

and return to the main program.)

WORKA1
WORKA2

SOURCE

DEST

PRCSDCB

RPLYDCB

109

PUT

B

DS

DS

DS

DS

DCB

DCB

RPLYDCB, WORKA2

NEXT

CL100
CL200

CL3

C'OPR'

DDNAME=CTR,
MACRF=G,
BUFRQ=2,
SYNAD=ERROR,
TRMAD=SOURCE,
DSORG=MQ,
SOWA=100,
RECFM=S

DDNAME=DDRPLY,
MACRF=P,
TRMAD=DEST,
DSORG=MQ,
SOWA=200,
RECFM=G

Sends the reply message to OPR.

GET next message from queue, or wait until next
message enters the queue.

Define work aréas.

Provide area that will contain the source terminal

entry name. The name will be examined by the operator
control program to see if it is OPR. If not, the
message will be canceled (see program logic flow).

Provide the destination terminal entry name. All
replies will then go to this terminal (OPR) when a
PUT macro references the DCB named REPLYDCB,.

110

APPENDIX B: MESSAGE HEADERS FOR QTAM

A message header is a prefix to a message received
or sent via communication lines containing infor-
mation for:

Routing of the message

Sequence numbering

Source validity checking

Time stamping

Date stamping

Priority assignment

Identification of message type

Specification of special user functions
The message header may contain other information
not of immediate use for handling of the message —
for example, various device-required characters,
identification fields for operator use, or fields
required for later processing of the message.

A particular telecommunications system appli-
cation using QTAM may have all or none of this
information in the message headers, depending on
the desired flexibility of the system and the functions
to be performed.

QTAM provides a flexible, high-level macro
language that can be used to specify header analysis
procedures for nearly all reasonable message headers
and supported communications equipment. This
document describes desirable and necessary features
for message headers being analyzed by QTAM.

In general, message headers are for input messages
(messages received from terminals via communication
lines), output messages (messages sent to terminals
via communication lines), or both, as in the case of
a message-switching application where the same
header (and text) is sent as is received, except for
additions made by the QTAM program.

Message headers change in appearance as they
proceed through, and are operated on by, various
parts of the communications system. The following
discussion is concerned only with the message
headers as they are prepared at the terminal for
sending.

A number of considerations should be made when
preparing message header formats designed for
easy and efficient use of QTAM:

e Line control characters. Depending on the
particular terminal device and communication
line control discipline used (for example,
Teletype 28ASR terminals in an 83B2 control
system), particular control characters or
sequences of characters will be needed in the
message header. The actual characters used
are very device-dependent and will not be
covered here. To determine what these
characters are for a particular system, it is
best to consult manuals describing the par-
ticular devices used.

m

Just who is responsible for placing specific
control characters in a message header also
depends on the devices used. Usually it is a
shared responsibility of both the person pre-
paring the message and the terminal device
used to transmit it. * This information is also
to be derived from the manual for the particular
devices involved.

e Header field definition. The content of a mes-
sage header is contained within "'fields"
consisting of one or more characters each
(Figure 3). Each such field contains information
for a particular operation or function to be
performed on that message (header and text).

Message Message

Msg Type Input Sequence Dest. 1 Dest. 2
Field Number Field Field Field ECA EOT
— e ——— el S ——— et et e, ——
LITTTTTTT T T T T T ET T T T Toecsmgeree]]

Figure 3. Example of message header fields

e TFixed or variable length. Message header fields
must in general be of a fixed length for each
particular field. Exceptions to this are
(1) source and destination fields of a message
that may consist of any number of characters
up to a maximum of eight bytes (characters),
and (2) input sequence number fields, which
may be any length up to five bytes containing
four digits (the first byte is always blank).

e Field separation. Header fields may be
separated by any number of blank characters.

If blank characters are used to separate the
fields, the length of the fields need not be
specified in the QTAM macros. For variable-
length fields (as discussed above) blank charac-
ters must be used to delineate the field, since
a fixed length cannot be specified. If fields

are not separated by blank characters, the
exact length of each field must be specified.

o Order of fields within header. In message
headers for a message-switching application
using QTAM, all fields concerned with receiving
the message must precede those concerned
with sending it (Figure 4).

Message Header
——

Y T
Receive Fields

i Send Fields I I Message Text

Figure 4, Order of header fields for message switching

*The same is true for reception of the message by the CPU., Certain
control characters will be deleted by the control unit and others
will be passed through to be handled by the QTAM program.

o Header length. The length of the message
header must be less than or equal to that of
the buffer length specified in the QTAM macro
program, minus 32 bytes used for the header
prefix. Conversely, when specifying the
macro program for QTAM, the length of the
buffers specified must be sufficient to contain
the maximum message header plus 32 bytes
for the prefix.

e Message type identification. Message headers
that require different handling procedures or
have different formats from other messages
on a line may be identified by a special
character or sequence of characters. It is

desirable that this "message type' identification

be the first field of the message header. This
makes possible early separation of the various
types of messages involved so that the proper

procedure can be followed by each.

e Skipping unwanted fields. Fields that are not
checked or used by header analysis may be
skipped by either specifying within the QTAM
macros the number of nonblank characters in
the field to be skipped or by identifying the
end of the field by a special character con-
figuration in the message header. This
configuration can be from one to eight nonblank
characters in length. (See Figure 5.)

Identification
Field to be Skipped of End of Skip

Used Field (Not Used) Field
P T — S —— et

Jelsfs] Tefufolnfe o] xfx]o]-Ts]ofof [[[e]-]

Figure 5. Skipping a variable-length field

e Message priorities. Priority of a message can
be identified by either a special character in
the message header followed by the message
priority or by just specifying the message
priority. A special character should be used
when all messages are not necessarily given
a priority, while the second case can be used
when a priority is inserted in every message.
Message priority levels range from 1, 2, ---,
9, A, B, -—-, Y, Z, where Z is the highest
priority and 1 is the lowest.

e Destination fields. When multiple destinations
are desired in the message header, a special
character or sequence of characters must be
reserved to identify the last destination
(address) listed. This character(s) is termed
the end of address (EOA) character(s). Each
destination may be separated by a blank
character(s) from the others. If this is done,
the length of each destination will not have to
be specified within the QTAM macro program,
and the destinations may then be variable in
length (Figure 6).

ECA
——

[els [InIr]e] [e]efs]rfofx] [w]alsfn] [of

Figure 6. Multiple destination fields of variable length

If there is never more than one destination,
the End of Address field is not needed, and if
the destination is fixed it does not even have to
be included in the message header.

e Special handling. A special character may be
placed in the message header to specify that the
message is to be handled in the "initiate' mode.
When a message is handled in the "initiate' mode,
message segments may be either processed or
sent to a destination before the entire message
is received. The special character is needed
only when not all of the messages of ‘a given
type are to be handled in this mode.

e Conversational mode. A special character may
also be placed in the message header to identify
that the message is to be handled in '""conver-
sational' mode. Receipt of a message in this
mode will imply that the next terminal on the
line will not be "polled' until a further exchange
of messages has occurred. The special
character is needed only when not all of the
messages operate in this mode.

e User routines. Just as for the "initiate' and
"conversational' modes, a user routine can be
specified to operate only on certain messages
containing a special character. Again, this
special character is needed in the message
header only if not all messages require the
particular user routine.

112

C20-1640-0

MBI

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York 10601

0-0¥9T-02D °V'S'[1 Ul pajurig

