
Operating System/3S0
OT AM U ser' s Guide - - Message Control Task Specification

Preliminary Edition

The Queued Telecommunications Access Method (QTAM) provides macro
instructions for the programming of a communications-based data
processing system within the Operating System/360. This book is a
compilation of logic flowcharts and explanations designed to instruct the

C20-1640-0

programmer in the coding of a program using QTAM. In a tutorial manner, Programming
the reader is led through the necessary decisions and a workbook-like
development of the system macro coding on the queued access method level.

© International Business Machines Corporation, 1965

Copies of this and other IBM publications can be obtained through IBM branch

offices. Address comments concerning the contents of this publication to

IBM, Technical Publications Department, 112 East Post Road, White Plains, N. Y. 10601

CONTENTS

INTRODUCTION . i EOB 53
SECTION A: COMMUNICATION LINE GROUP DCB ERRMSG. 54

DCB. 1 REROUTE. 57
SECTION B: DIRECT ACCESS STORAGE REROUTE. 58

DEVICE QUEUE DCB 4 CANCELM. 59
DCB. 4 POLLIMIT. 60

SECTION C: LOGGING DEVICE DCB 6 POSTRCVE 60
DCB. 7 SECTION K: SEND HEADER . 62

SECTION D: TERMINAL TABLE ., . 10 SENDHDR. 62
TERMTBL. 10 LOGSEG 63
OPTION. 11 MSGTYPE. 64
TERM. 12 MSGTYPE. 65
PROCESS 16 SKIP 66
LIST . 17 SKIP 67
TERMTBL. 18 SEQOUT. 67
DCB. 18 TIMESTMP 68

SECTION E: POLLING LIST 20 DATESTMP . 69
POLL. 20 MODE 70

SECTION F: BUFFERS. 22 LOGSEG. 71
BUFFER. 22 SECTION L: SEND SEGMENT 74
DFNSUBT . 24 SENDSEG . 74

SECTION G: RECEIVE SEGMENT. 26 LOGSEG. 74
LPSTART . 27 TRANS 75
RCVSEG 27 PAUSE 75
TRANS 27 SECTION M: END SEND. 78
LOGSEG. 28 ENDSEND. 78
BREAKOFF 29 EOBLC . 79

SECTION H: RECEIVE HEADER 30 EOB 79
RCVHDR. . . 30 ERRMSG 80
SKIP 31 REROUTE. 83
LOGSEG. 32 REROUTE. 84
MSGTYPE. . 33 INTERCPT 85
MSGTYPE. 34 POSTSEND 86
MODE. 35 LPSTART. 87
DATESTMP 37 SECTION N: DATA SET INITIALIZATION. 88
SEQIN. 38 OPEN 88
ROUTE 39 ACTSUBT 92
MODE. 40 ENDREADY. 93
MODE. 41 SECTION P: STRUCTURING • 94
MODE. 42 APPENDIX A: SAMPLE PROGRAM . 96
MODE. 44 Application Implementation 96
TIMESTMP 45 System Configuration 96
SOURCE. 46 Job Definition. 98
EOA 47 Message Formats. 99
DIRECT. . 47 Program Flowchart. 100
LOGSEG. . 48 Message Processing Program 101
RCVSEG. 49 Operator Control Message Processing
LOGSEG. 49 Program. 102
SKIP 50 Macro Coding. 103

SECTION J: END RECEIVE. 52 APPENDIX B: MESSAGE HEADERS
ENDRCVE. 52 FORQTAM 111
EOBLC ! 53

INTRODUCTION

The Operating System/360 Queued Telecommuni­
cations Access Method (QTAM) provides macro
instructions for specifying the operation of a
communications-based data processing system.
This book is a compilation of logic flowcharts and
explanations designed to instruct the programmer in
the use of these macros. In a tutorial manner, the
reader is led through the necessary decisions in a
workbook-like development of the system macro
coding on the queued access method level.

A sample program using QTAM is included in the
Appendix along with some guidelines to designing
message formats for efficient use of QTAM.

Upon completing this book, the user will have
completely specified and put together all the coding
needed to perform the following functions:

Polling and addressing of terminals
Dialing and answering of terminals
Allocation of core storage buffers
Routing of messages
Queuing of messages
Header analysis and synthesis
Message logging
Error checking
Error procedures

Functions not provided for in this book are:
Processing of message contents
Formulating replies to inquiry messages
Operator control of the communications system
This book is largely a presentation of information

found in the SRL document IBM Operating System/360:
Telecommunications (C28-6553). It is intended that
the SRL document be a reference for further detail
in specific areas.

Prerequisites for using this book are:
• Knowledge of a system configuration and its

application-oriented operating procedures.
• Layouts of the message formats that will be

sent and received via communication lines.
• An understanding of the principles of Operating

System/360 (IBM Operating System/360, Concepts
and Facilities, C28-6535).

• A general, but not extensive, knowledge of the
System/360 Assembly Language (IBM Operating
System/360; Assembler Language, C28-6514).

The QTAM macro coding produced with this book
specifies the operation of a Message Control Task
within the framework of Operating. System/360. A
Message Control Task encompasses all the communi­
cations-oriented functions listed but does not include
user programs to process the data content of messages
received from communications lines. The processing
of the data content of the messages is performed by
Message Processing Tasks that are user-provided
and operated as separate tasks within Operating
System/360. These Message Processing Tasks are
not obtainable through use of this book.

There is, however, the facility within QTAM to
incorporate programs as subtasks of the Message
Control Task in order to do a moderate amount of
data processing. These subtasks will not then
operate as separate tasks of the Operating System,
and consequently will make it possible to operate in
a task-restricted environment.

Instruction is given at the appropriate points in
this book for inclusion of such subtasks. The reader
is again referred to C28-6553 for further description
of the details and restrictions of such operation.

The Message Control Task to be developed here
consists of the following parts:

Data set definition
Control information
Line procedure specification

Data Set Definition is concerned with the writing of
DCB (data control block) statements. These state­
ments specify the operation of direct access storage
devices, logging deVices, and communication lines.

Control Information is necessary for operation of
communication lines. It consists of terminal device
information, polling list descriptions, and buffer
as signments.

Line Procedure Specification (LPS) uses standard
delimiter and functional macros to provide the
necessary logic flow for header analysis/synthesis
and for message handling.

This book breaks the above three main parts into
the following sections:

A. Communication Line Group DCB
B. Direct Access Storage Device Queue DCB
C. Logging Device DCB
D. Terminal Table
E. Polling List
F. Buffers
G. Receive Segment
H. Receive Header
J. End Receive
K. Send Header
L. Send Segment
M. End Send
N. Data Set Initialization
P. Structuring

Using this book to develop a Message Control
Task, the reader will proceed through each of the
above sections as directed. As part of the job of
progressing through a section, macro statements for
that section are to be filled out. These macro state­
ments will then be collected and ordered to form the
three parts: Data Set Definition, Control Information,
and LPS(s). These, in turn, are gathered to form
the Message Control Task.

The first part to be considered will be Data Set
Definition. Here we will be concerned with the
writing of DCB macro statements. This is in
harmony with the control procedures for Operating
System/360.

ii

BEGIN

•
SECTION A. COMMUNICATION LINE GROUP DCB

Write "Section A. Communication Line Group DC(J" in the margin at the
top of the first coding sheet. Th is will identify the macro statements for
Section A.

,
'Eac h ;;;;-m;;';n; caHan li,;"e -;0;;;; ;;-;h~,tem ;;';,"0;,~ ;;-;;atem ent de Hn ; n;itsl

characteristics. This is done with a Data Control Block (DCB) statement. (A
I line group consists of all communication lines in the system that have the same I
I

channel programs, the same buffer requ irements, the same I ine procedure speci-,
fications, the same send-rece ive relative priority, the same poll ing intervals,

~nd the same type terminals.) ~ ----------.--------
Choose symbolic names for each line group. Enter Hach name in a Name field
of macro statements for th is sect ion. (Allow about two I ines per statement.)
Each of these statements will be a DCB statement - one for each I ine group.

EXAMF'lE DCB

Operation
DCBGRUPl DCB DDNA

o erand

ME=DDGROUP DSORG=CX ~ne
MACR
POLLI

F=(G, P),CPOLL=(POLLINE1,
NE2), I NTVL=5, BUFRQ=3,

ACLO C=bb, C LPS=LPS 1

" ----------'-----------
IFrom here on, the discussion will be per DCB. For 110re than one DCB a I
Lf~~a':...£":.o~u~h~d ~ f~~ 1-e~ ' _________ -.J

Write DCB in the Operation field of the macro statement. I ,
Write DDNAME = name in the Operand field, where name is the symbolic name
for the I ine group that will be in the Data Definition Statement (DD card) for
th is I ine group. (DD cards are job control cards thclt will be prepared when the
Message Control Task being written is entered into'he Operating System for
execution. There wi II be a DD card entered for every Data Set defi ned by a
DCB statement in the Message Control Task.)

Ex: DDNAME = DD GROUP

p.3

Write DSORG = CX as the next entry in the Operand field; CX identifies th is
statement as a communication line group DCB.

Write MACRF = (G, P) as the next entry in the Operand field. This allows the
I ines to operate at the GET/PUT level.

Write CPOLL = (x,y,z) in the Operand field, as the polling list names for all
the I ines in the I ine group, where x, y, z represent the poll ing I ist names of each
line as specified by the POLL macro (section E.) Every line in the system must
reference a polling list name, whether it actually has polled terminals on it or
not. (An output-only or non-polled line will not have any terminal entries in
the polling list specified by its POLL macro. The polling list name for such a
line may be shared by all other similar lines.) These names are to be listed
in the order spec ified in the Data Definition Statement, each one separated
by commas and the list enclosed in parentheses.

Ex: CPOLL=(POLL! NEl ,POLL! NE2, POLL! NE5)

No

Are the
terminals in

th is I ine group
to be polled?

Write in the Operand field I NTVL=t, where t is the time delay des ired between
consecutive polling passes in seconds (t ~255) for each line of the line groups.

Ex: INTVL=5

No

2

3

Enter in th~ Operand field the number of buffers{n) that are to be requested ahead
for the buffkring of each communications line. A value of n=2 will be assigned
by the systefn if this parameter is omitted. This entry is written as BUFRQ = n.

Enter in the Operand field the number of buffers{n) that are to be requested ahead
for the buffering of each communications line. A value of n=2 will be assigned
by the system if this parameter is omitted. This entry is written as BUFRQ = n.

i Ex: BUFRQ = 3

No No

Ex: BUFRQ = 3

Is equal priority
between Receive and

Send des ired?

Write CPRI = R as the next entry in the Operand field to indicate that Rece ive
has priority over Send.

Write CPRI = E as the next entry in the Operand field to indicate equal priority
between Send and Rece ive

Next write in the Operand field ACLOC=bb where bb represents two blank
spaces that will be filled in after specifying the Terminal Table (Section D).

Ex: ACLOC = bb

To identify the LPS (Line Procedure Specification) that will be specified for tf1is
line group (sections G - M), write the symbolic nome of the LPS in the Operand
field as: CLPS = d where d is the symbolic name. This LPS name is the same
as'the name that wi II be used in the Name field of the LPSTART macro described
in Section H. Ex: CLPS = LPSl

SECTION B. DIRECT ACCESS STORAGE
DEVICE QUEUE DCB

CORE

DASD
No DCB is needed for a core storage data set.

Write" Section B. Direct Access Device Queue DCB" in the margin at the top
of the next blank coding sheet. This wi II dentify the macro statement for
Section B.

m;-Direct Acc~sStorag-;-Device ~edfor queuing ~ the ~ssages lnthe --I
l..:Ystem must have a DCB statement defining its character istics. J
------------t~------------

Choose a symbo I ic name for the Direct Access Dev ice and enter it in the Name
field of the first macro statement for this section. Th is will be the DCB statement.

Ex: DCBFILE

.EXAMPLE DCB

Name Operation o erand
DCBFILE DCB DDNAME =DDFILE, DSORG=C_Q_, __ __

MACRF=(G P

1W

Write DCB in the Operation field of the macro statement •

• Write in the Operand field the symbolic name for the device that will be
in its Data Definition Statement (DD card).

Ex: DDNAME=DDFILE

~P.5
4

t'4
IAc~m~~b~s;;dto--;-p~t;this and a~ubsequent~tries ;Tth;operand 1
UleM:..--------T----------J

Write DSORG=CQ as the next entry in the Operand field, since this DCB
statement is for a Direct Access Storage Device.

This allows the

5

SECTION C. LOGGING DEVICE DCB (C0 pp.4,5

~ _________ l _________ ,
I Messages are automatically retained when a Direct Access Storage Device is I
I used for the queuing of messages. In addition to this, messages may be logged I
I sequentially on a secondary storage device by use of the LOGSEG macro I
I instruction in the LPS. Use of the LOGSEG macro impl ies using the Queued I
I Sequential Access Method (QSAM), the operation of which will be taken I

care of completely by QTAM. The message segments logged on this device I
L will be interleaved if more than one I ine uses the same device. J --------- ----------

No

Write "Section C. Logging Device DCB" in the margin at the top of the
next blank coding sheet. This will identify the macro statements for Section C.

~-------------------I
I Each secondary storage device used for the logging of messages in the system must I
I have a statement defin ing its characteristics. Th is is done with a DCB statement I
LFo~a~pecifi~ogging devic~ __________ J

,---------3----------1 I NOTICE
I The parameters of the Logging Device DCBs are subject to the requirements of I

QSAM and are described here only to ensure their inclusion in the fv\essage I
I Control Task. The reader is referred to I BM Operating System/360: Control I
LProgram ~vke.:.iC28-654!2. for eXOCj:c ification. _______ J

~p.7

6

~P.6

Choose symbolic names for each logging device needed and enter them in the
Name fields of the macro statements for this section. The symbolic names will
be a parameter of the LOGSEG macro instructions issued in the LPS. Differ-
entLOGSEG macros may use the same symbolic name or different ones,
depending on whether the same logging device is to be used. Each of the
macro statements containing symbolic names will be a DCB statement -
one for each logging device.

Ex: LOGFILE

EXAMPLE DCB

Name Operation

LOGFILE DCB DDNAME=

BLKSIZE=9
RECFM-V,

TRTCH=T ,r ________ --J -----------
~bsequent discussion for specification of the logging device DCB's will be for a l

Operand

DDLOG, DSORG=PS, LRECL=95

5, MACRF=(PM),
BFTEK=S, DEVD=TA, DEN=l,

~~o~~v~ ~t~n~Tn~~Si~a~~ ~,:!!oo:..:.a:'::l

Write DCB in the Operation field of the macro statement.

Write in the Operand field the symbolic name for the logging device that will be
in its Data Definition Statement (DD card) specified as DDNAME==name.

Ex: DDNAME=DDLOG

Write DSORG=PS as the next entry in the Operand field, since this DCB
statement is for a logging device.

Write LRECL=n as the next entry in the Operand field, where n is the maximum­
length logical record to be written on the logging device.

7

Write BLKSIZE=n as the next entry in the Operand field, where n is the
maximum physical block length in bytes to be written on the logging device.

Ex: BLKSIZE=95

Write MACRF = (PM) as the next entry in the Operand field. This allows the
device to operate in the PUT and MOVE mode.

No

Write RECFM = V as the next entry in the Operand field. This allows writing of
variable length records.

Write RECFM=VB as the next entry in the Operand field. This allows writing
of variable-length blocked records. The maximum physical block size will be
defined by the BLKSIZE parameter.

Write BFTEK = S as the next entry in the Operand field. This allows the
logging device to use simple buffering techniques.

To define the device upon which the data is to be logged, a DEVD parameter
is needed. The various options for this device are described in the referred
QSAM document. For illustration, the specification of a magnetic tape
device with a recording density of 556 bits/inch, odd parity, BCDIC to
EBCDIC translation, is written as: DEVD = TA, DEN = 1, TRTCH = T.

8

6

SECTION D. TERMINAL TABLE
__________ l(pp.6,~ _____ _

~he sections needed to define the Data Sets are finished. The next sections I
will define Control Information needed for QTAM. I __________________________ -1

Write "Section D. Terminal Table" in the margin at the top of the next
coding sheet. This wi II identify the macro statements for Section D.

~-------- ---------,
The first Control Information Section that will be specified is that of the

I Terminal Table. The series of statements needed to define the size of the I
I table, each terminal device in the system, each distribution list of termi- I

nals, and each processing message queue is described here. {Other
I information about the particular terminal devices is specified at System I
~~~i~.) ______________ ~ 

Write TERMTBL in the Operation field of the first macro statement. 

EXAMPLE TERMTBL 

I I Opemtion Name 

TERMTBL 

~-------- --------1 
The next type of statement that may be specified, following the TERMTBL I 

I statement, is one that will identify and give the size of optional user fields within I 
I each TERM term i na I entry. There must be one of these statements for each type 

optional field. The optional fields defined might be used for such things as to I 
II imit the number of consecutive polls for a terminal, to supply QTAM with an I 
I 

alternate destination for a terminal, or any other user-desired information that 
is needed on a per-terminal basis. If an INTERCEPT macro is specified in the I 

I LPS ~tion, ~wo-byt~Ption~el~l~me~TERc~~must '::..:pecifi~ _ I 

L.:.. l.§J p. 11 -l 

Operand I 

10 



No 

In the next macro statement for this section, enter into the Name field the 
symbolic name (maximum of 8 characters) of the field to be defined. 

Ex: LIMIT 

EXAMPLE OPTION 

FL3 

Write OPTION in the Operation field of the macro statement. 

In the Operand field of this macro statement define with assembly language 
notation the length and type of optional field whose contents will be 
specified by the TERM macro statement. 

Ex: FL3 Ex: CL8 Ex: XL3 

c-------- ------~ 
I The next type of statement (TERM statement) to be specified is the type I I that defines terminal or group code entries. (A group code allows a I 
group of terminals on a given line to simultaneously receive a message.) I 

lOne of these statements is needed for each terminal and group code in 
I the system. I L________ _ ______ --' 

11 

Operand 



~---------L---------l Although the following discussion is written per statement, a TERM statement 
I should be written concurrently for each terminal (or group code) in the system. I 
L---------·r---------~ 

For each TERM statement to be defined, write in the Name field the symboli c 
name for each terminal or group code to be defined. The symbolic names 
assigned will be referred to as "Terminal Table entry names II and will be stated 
in message headers to identify message source and destination{s). Each symbolic 
name may be of a different length, up to a maximum length of 8 characters, 
provided that they are delineated by blank character{s) when stated in the message 
header. (A field equivalent to the maximum name specified wi II be reserved for 
each TERM statement entry.) If they are not delineated by blank characters in 
the message header, each name must be of the same length, and that length must 
be specified in the functional macro statements that reference them. 

Ex: NYC 

EXAMPLE TERM 

I Name 
I NYC 

1 Operation I 0 erand 
=---~~--~~~----------ITERM I L,DCBLlNE, 1,6202620E,(1) 

Write TERM in the Operation field of the macro statement • 

• ~formation-;;;-b-;-;ntered in theOp~if~ld of"th; Term~teme~--I 
I depends on the terminal type and desired method of operation. Those currently I 
I supported will be classified here as: I 
I Type 1. IBM 1050 - Polled Terminals I 
I IBM 1060 - Polled Terminals I 

I 
AT&T 83B3 - Polled Terminals 
WU 115A - Polled Terminals I 

I Type 2. IBM 1050 - Dialing I 
I Type 3. Common Carrier TWX J 
~_TYpe~~~~ __ ~ ________ _ 

~p.13 
12 



No 

Write L as the first entry in the Operand field of the macro statement. 
This causes the outgoing messages to be queued by line. 

Next write in the Operand field a comma followed by the symbolic name of 
the DCB defining the I ine group to which this terminal is attached. 

Ex: ,DCBGRUP1 

fTh~lativelin~mber 0n)~~mmunication line withi~l~group is""l 
I 
determined by the order in which the lines will be listed in the Data I 
Definition (DD) Statement. If, for example, a line is specified first, its 

~~~----- --------~ 
Write in the Operand filed a comma followed by the rln for the line to which
the terminal being described is attached.

Ex: ,1

Yes

Write T as the first entry in the Operand field of the macro statement.
This causes the outgoing messages to be queued by terminal.

Next write in the Operand field a comma followed by the symbolic name of
the line group to which this terminal is attached.

Ex: ,DCBGRU Pl

Next write in the Operand field a comma followed by a 1.
Ex: ,1

Next write in the Operand field a comma followed by:
1. Number of dial digits, specified in EBCDIC hexadecimal notation.
2. Actual dial digits for this terminal, in EBCDIC hexadecimal notation.
3. Two addressing characters, specified as a hexadecimal number using

1050 code structure.
Ex: ,F7F3F8F3F6F9F3F06202

13

No

Next write in the Operand field a comma followed by the two-character
addressing and polling codes respectively for the terminal whose TERM
statement ;s currently being described. The code must be specified in the
terminal's Code Structure as a hexadecimal number (see IBM 2702 Trans­
mission Control, A22-6846). If this TERM statement is for a group code,
only the addressing code is specified.

Ex: ,6202620E

Are the terminals we are
describing Type 3?

Next write in the Operand field a comma followed by:
1. Number of dial digits, specified in EBCDIC hexadecimal notation.
2. Actual dial digits for this terminal, in EBCDIC hexadecimal notation.
3. Number of :dentification digits, in EBCDIC hexadecimal notation.
4. Actual identification digits for this terminal, in hexadecimal Eight­

Bit Data Interchange Code.
Ex: F4F3F8F3F6F4F8F1F2F3

~--------~-------I The terminals presently being described must then be of Type 4. I ________________J

Next write in the Operation field a two-character addressing code for the
present terminal specified as a hexadecimal number using 1030 Code Structure
(see IBM 2702 Transmission Control, A22-6846). QTAMwill develop
the poll i ng characters needed.

Ex: 6207

14

Were any OPTION
macro statements

specified that apply
to this terminal?

No

Write in the Operand fields of the TERM statements the actual data to be inserted
into the optional fields that were defined by the OPTION macros. The data
must be of the type and size that was specified. The data to be written in the
optional fields must be specified in the same order as the OPTION macros
that define the fields. The data for all fields must be written within parentheses,
preceded by a comma, with the fields separated from each other by commas.

Ex: ,(1) Ex: ,(l,OPR)

Is this strictly
a message switching

application?

Yes

No

~--------- --------~
I Since the application is not strictly message switching, some of the messages I

I need special processing. To do this, the messages are sent to a process queue I
I where the user's processing programs can access them by means of GET/PUT I
I macro instructions. The statements needed to define these process queues are I

called PROCESS macro statements. Messages that would need special I
I processing could be Inquiry, Data Collection, Control Messages, etc. I

~---------r---------~

15

EXAMPLE PROCESS

,r
In the next macro statements enter into the Name field the symbolic name
assigned to each Process queue. These names are subject to the same
restrictions as terminal table entry names specified in the TERM statement.

I ·_I_N_~~._a_m_e __ +-I_p_~~T~~on.~t-______ O-=-. --"p,--=e,-r-=-a,-nd~ ______ -II
Ex: INQ

Write PROCESS in every Operation field that contains a Process queue terminal
table entry name.

r;k"oge~esti ned fa, p,oce" queues ~ ~ ,outeddl,ect Iy ;;;-;; pcoce:-;;cogco~
I bypassing the normal queuing on a DASD (or in core storage). If messages
are routed directly, their segments are not collected until the entire message is
I received. GET macro instruction may then obtain interspersed segments of other I
I

messages between segments of a multisegment message. If direct routing is I
specified, the messages are not written on the DASD and the RETRIEVE macro

~y ~ be us~ _ __ __ __ _ ___ ..J

No

Write E~PEDITE in the Operand field of the process statements that define
Ildirect routing ll queues.

Ex: EXPEDITE

~
-------- -------1

A destination code can be a "terminal table entry name'l that represents a list I
of terminals. Each terminal on the list will represent a destination for the I
message. ______ ~.~ _____ ~

16

In the next macro statements, enter into the Name fields the symbolic names
assigned to the distribution lists. These names are subject to the same
restrictions as the terminal table entry names specified by the TERM statement.

Ex: PBW

EXAMPLE LIST

Write LIST in every Operation field specifying a distribution list.

The entries to be made in the Operand fields of the LIST statements are the
names (of TERM or PROCESS statements) that are to be included in the
distribution lists. The names must be separated by commas, and the group.
enclosed by parentheses.

Ex: (PHI, BOS, WAS)

Go back and fill in the Operand field of the TERMTBL statement with the name
of the last entry in the Terminal Table, followed by a comma and the decimal
number of bytes used by the maximum-length Terminal Table entry name.

Ex: INQ,3

17

erand

EXAMPLE TERMTBL I Nom; I Operation I
TERMTBL INQ,3

We are now able to finish specification of the ACLOC parameters that were not
written in the Communication Line Group DCB's in Section A. The numbers to
be written in the blank spaces reserved will define the II Device Address" field
of each terminal relative to the first character of its Terminal Table Entry.

To calculate this decimal number n, use the formula n = 9+x-+y I where
x = the maximum number of characters used for a TERM statement Terminal Table

entry name and y = the number of characters used for optional fields in each
TERM statement.

Ex: ACLOC=14

EXAMPLE DCB

Name Operation

Operand

Operand

DDNAME=DDGROUP, DSORG=CX, __ ---------+----------r--------DCBGRUP1 DeB
MACRF=(G I P) I CPOLL=

-----------+----------~------~ (POLLINE1, POLLlNE2), INTVL=5,
-----------+----------~--~~-

BUFRQ=3, ACLOC=14,
-----------+----------r-C-L-P-S-=-LP-S-l

I

----------------~
El p.20

18

19

SECTION E. POLLING LIST ~P.18

Write II Section E. Polling List" in the margin at the top of the next blank coding
sheet. This will identify the macro statements for Section E.

r:------------------ ~
I

Each line in the line group must have a polling list associated with it. Lines that I
are for output only, or any non-polled lines, may share a common polling list

I with ~ terminal entries in it. The terminals on each line must be listed in the I
I order in which they are to be polled. A given terminal may be listed more than I

once within a list. Each terminal on the list will be polled to exhaustion unless
I a POLLIMIT macro instruction is specified in the LPS. The polling I ist I
~ specified with a POLL statement. ..-J --------,--------

Write symbolic names (up to 8 characters) for each polling list to be specified
in the Name fields of the macro statements for this section. The names wi II be
specified in the CPOLL parameter of the line group DCB. Each of these will be
a POLL statement - one for each line.

Ex: POLLlNE2

EXAMPLE POLL

I Name I Operation I perand

IpOLLlNE2 IpOLL I(NYC, PHI, N YC, WAS)

"
Write POLL in the Operation field of each of these macro statements.

+
Write in the Operand field for each POLL statement a list of the polled terminals
on its associated communication line. (There wi II be none for the non-polled
lines.) This polling list must contain the terminal table entry names in the order
in which they are to be polled for each line. These terminal table entry names
must be those used in the Name fields of the TERM macro instructions. The
entry names must be separated by commas, and the group enc losed by parentheses.
A given entry name may be listed more than once in a given POLL macro
instruction.

Ex: (NYC, PHI, NYC, WAS)

_____ L _________

Irhe polling list section has now been completely specified. Go to the next I
~ction which defines the buffers. -1 --------I---------

~P.22

20

21

SECTION F. BUFFERS

Write IISection F. Buffers ll in the margin at the top of the next blank coding sheet
This will identify the macro statement for Section F.

~--------- ---------.
I A statement is needed to define the size of a buffer pool and to define whether I

I main storage or direct access device queuing is to be used. The statement used I
I to specify this is the BUFFER statement. I L- _____ _ _ __ _ ___ - _________ ---1

Write BUFFER in the Operation field of the macro statement for this section.

Operand
DCBFILE,lO,95

No Is queuing of
the messages to be done on a

direct access device?

The first entry in the Operand field of the BUFFER statement must identify the
symbolic name given to the direct access device DCB statement.

Ex: DCBF ILE

Place a comma next in the operand field of the macro statement.

22

~P.22

The next entry to be made in the Operand field is the decimal number of buffers
to be reserved for QTAM. An order of magnitude estimate for the number of
buffers requi red wi II be the product of the number of lines in each Ii ne group
times the BUFRQ parameters of the line groups.
If main storage queuing is to be used, the amount of core storage needed must
be provided for in the buffer number specification. (Maximum number of buffers
= 32,768). The specified number must be followed by a comma.

Ex: 10,

The next entry to be made in the Operand field is the number of bytes in each
buffer. All buffers in the buffer pool will be of this length. The minimum-size
buffer is equal to the message header prefix (32 bytes) plus the maximum size of
the message header. The maximum size that may be specified for the buffer
length is 278 bytes.

Ex: 95

~ ________ L ________ ,
~e~.ff~sectio~ completed_. _____________________ J

[8."f.;;;;(eavi n;the-;;sh;;;; deli n iii on--;-ck;;;r;h;-M.ssag-;c"n trorr;,;- --l
I specification, there is one more related item-definition of a subtask to I

operate within the Message Control Task - if such an operation is desired
~fer to~roduction)_. _ __ __ __ _ _______________ J

No

23

Write in the Name field of the next available macro statement the name
to be given to the subtask.

Ex: SUBTl

EXAMPLE DFNSUBT

Name
SUBTl

o eration 0 erand
DFNSUBT STRTSUB 1,3

Write DFNSUBT in the Operation field.

-
Write in the Operand field the symbolic name of the entry point in the subtask.

Ex: STRTSUBl

Next write in the Operand field a comma followed by a decimal number up to 254
to designate the priority to be assigned to the subtask.

Ex: ,3

Yes

No

24

25

SECTION G. RECEIVE SEGMENT _ ______ ~po2~ ______ _

fOota Sets and Control Information Sections have now been completely specified. l
~e next~a~b~nsidered is that 0l Line ~cedure~ecificotion (LPS).:...J

r-
I

An LPS defin~t~~ge-handling and head~ analysis function00r message;-l
sent and received on communication lines. Each group of I ines that have the same I
~mina~ntrols~d~nsmit the ~e mr~rmots ~I ~d on LPSo __ ~

fThe next char~ction~illdefine statement;;hat--:he~i~y~emble~i-II-I
make up an LPS. When more than one LPS is needed to make up the Message I

I Control Task, directions will be given to repeat these sections until each LPS

~ the set ~~o ~temen~eede~o form ~desire~nctio~ __ -.J

f/f a~task ~he Messag~ontro~s~as defined--;;t~preVio~sectio~it-11
I is here pointed out that activation of such a subtask can be specified at any

point within any of the LPS sections about to be specified. This is accomplished I I by writi ng on ACTSUBT macro statement, with the name of the subtask as its
Operand parameter, at the point that activation is desired. It is important to I I note that the subtask will be activated each time the sequence of macros in

I which the ACTSUBT macro is embedded is referenced. To operate in other than I
this manner, the ACTSUBT macro may be included in the Data Set Initial- I
I ization section described later in this book.

I I Deactivation of a subtask is accomplished within the subtask itself by use of an J
~DSUBT macro statement.

~e macros needed to specify an LPS wilw be defined ° ~
Write "Section G. Receive Segment" in the margin at the top of the next blank
coding sheet. This will identify the macro statements for Section G.

~------- -------~
I Each LPS requires as its first statement a LPSTART macro. The LPSTART macro I

I identifies the beginning of the LPS and reserves space in the first buffer of the I
input message for insertion of timestamp, datestamp, and output sequence number
~I~ ________ ________ J

Write LPSTART in the Operation field of the first macro statement for this section.

26

G3 p.26

EXAMPLE LPSTART I Name I Opecat;"n j LPSTART
H

LPSl

Write in the Name field a symbolic name of 8 or fewer characters to identify this
LPS. This name is used for the CLPS parameter of the associated Communication
Line Group DCB (Section A).

Ex: LPSl

+
Write RCVSEG in the Operation field of the next macro statement for this section
to identify the succeeding macros of this section as those concerned with both
header and text portions of the message received. (This type of macro statement
is known as a delimiter macro and is not to be confused with the delimiter
character which is a blank.)

EXAMPLE RCVSEG

I Name I OpecaHon

I RCVSEG

"
Specify code translation of the incoming message by writing TRANS ion the
Operation field of the next macro statement. Normally only one receive code
translation table is permitted per LPS/Line Group.

EXAMPLE TRANS

I Name I OpecaHon
IRCVE105 TRANS o

" Write the symbolic name of the particular code translation table needed for
the incoming messages in the Operand field of the macro statement.

Ex: RCVE1050

_________ L _______
It is possible to log entire messages at this stage of header analysis. Messages 1
logged on an external I/o device at this point will not contain header additions I
such as timestamp or datestamp. It should be noted that this logging is in addition

I to the queuing of messages on the DASD. I L.: _____________________ --l

27

Operand

I

Operand I

Operand

I

Code Translation Tables Provided by QTAM
Name Code

RCVE1050 1050 to EBCDIC
RCVE1030 1030 to EBCDIC
RCVETl TTY to EBCDIC
RCVET2 TWX to EBCDIC
RCVF1050 1050 to monocase EBCDIC

No Is
logging desired
at this point?

Write LOGSEG in the Operation field of the next available macro statement.

EXAMPLE LOGSEG

I Name I Lgr;:~an I

Write the symbolic name of the DCB associated with the desired external logging
device in the Operand field of the macro statement.

Ex: LOGFILE

fA ~r;is' provided that ~ checkfo~ maxim~ lengthon ~u~essage~ndl

I
also determine if all characters in an input buffer are the same. Detection of I
either of these conditions would result in an error bit being set in the error
I halfword (BREAKOFF ERROR) and reception of the message terminated. I _______________________________ -.-J

~P.29

Operand I

28

No

Write BREAKOFF in the Operation field of the next available macro statement
in this section.

EXAMPLE BREAKOFF

I Name I Ope,at;on I
BREAKOFF 1500

In the Operand field write a decimal number ~32000 to specify the maximum
length of input messages to be a "owed.

Ex: 1500

All the macro statements that affect both the header and text portions of incoming
messages have been accounted for. Proceed to the next section that is concerned
only with the incoming message headers.

29

Operand I

SECTION H. RECEIVE HEADER ~P.29

Write "Section H. Receive Headerll in the margin at the top of the next blank
coding sheet. This will identify the macro statements for Section H.

Write the delimiter macro RCVHDR in the Operation field of the first macro
statement for this section to identify the succeeding macros of this section as
those concerned only with incoming message headers.

EXAMPLE RCVHDR

I
Name I Operation

I RCVHDR

If ----------1.....------------
lThis section of the LPS will perform the desired header analysis/~ynthesis of -,
I incoming message headers. To do this, it is necessary to start at the beginning of I

I
the message header and proceed through it (left to right) by specifying the 1

appropriate functional macro instructions in the same order in which they apply II

I to the header. As each macro that operates on a particular field is executed,

I
the LPS will advance to the beginning of the next field of the header before the I
next macro will be executed. The beginning of the next field will be the first I

I nonblank character after the end of the field being operated on. It should be

~t~hat ~ blank ~aract~ w~ automatical~b~ippe~etwe~h~ieldsJ

r itisTmportantth;.th;lPS b-;;1ept -;;jig! with the actu~~g;-head;.:by--'
I proper delineation of the header fields. This is done by specifying field lengths I

within the macro statements and by skipping over nonblank fields not involved I

~ header analysis with :he SK IP macroI -= =--=--=--= = =-=--=- J
fAt this point the LPS program is automatically aligned with the first character o("l

~ ~eived~ssog~~'==sSOri~tlst ~ingf~characte~ the header} ~

~P.31

Operand I

30

No

Write SK IP in the Operation field of the next macro statement

EXAMPLE SK IP

I I Operatian I Name
SKIP 8

!skipping ca:be ~ompl ished by either skipping a fixed numbe~ nonbla~ I
I character positions or by having a certain character configuration specifying the I
~~~~~~'--------------------~ 

Yes Is a fixed 
number of characters 

to be skipped? 

No 

Operand 

I 

Write in the Operand field of the SK IP statement the actual number of 
nonblank characters to be skipped. This number cannot be greater than the 
number of character positions remaining in the buffer. 

Write in the Operand field of the SK IP statement a comma followed by C'chars', 
where chars represents a certain character configuration that denotes the end of 
the field{s) to be skipped. The character configuration must not exceed 8 

Ex: 8 characters. Ex: ,C'$I 

EXAMPLE SK IP I Name I~~~eration I,C'$' 
Operand I 

31 



~----------j----------~ I The first character of the header field of interest to header analysis should now I 

I be aligned. J 

~=~~~==~~~-}-----~:-~~~~~ fit is possible to log only input message headers on an external I/o device. I 
I Further definition of at just what stage of header analysis the header will be logged I 
I depends on the position of the LOGSEG macro withing the RCVHDR section. 
I (This logging is in addition to queuing of the complete messages.) J L..:.- _________ _________ _ 

No 

Write LOGSEG in the Operation field of the next available macro statement to 
specify external logging of incoming message headers. 

EXAMPLE LOGSEG 

LOGFILE2 

Write the symbolic name of the DCB associated with the desired external logging 
device in the Operand field. 

Ex: LOGF ILE2 

H4 p.33 

~P.31 

Operand 

32 



(H4Jp.32 

~--------J--------l 
I If messages received from lines using the same LPS require different handling I procedures, a macro (MSGTYPE) can be used to sectionalize an LPS into separate I 

procedures for each type message. The LPS can in effect be broken into smaller I LPS sections for sequences of macro instructions that will apply to only certain I 
I messages. Only the macros appropriate to each type of message will then be I 

executed. In general, a MSGTYPE macro will be needed to delineate each such 

~~~~~----- --------------~ 

No

Write MSGTYPE in the Operation field of the next ava; lable macro statement.

EXAMPLE MSGTYPE

MSGTYPE I
Name I OperaHon

fA speci~harac~i;;hehea~ field may be us~oidentify ~ncomi-;- I
I messages that will use the next sequence of macros. If no special character is J
I

present, all such messages will be handled by the next sequence of macros. A
MSGTYPE macro, with no special character, must be specified to identify the

I sequence of macros to handle these messages. L..::.: __ ______ __ ___ _ ____ - ____ _

33

Operand I

Write th is special character in the Operand field
Ex: (,P'

Yes No

~--------- -----------, IThe Operand field will remain blank. This MSGTYPE macro statement will
I normally be the last MSGTYPE macro in this section, since it must handle all I
lremaining messages that did not have a defined type. .J L.:..:.:.__________ ----------

EXAMPLE MSGTYPE

I
Name I Operal;on I Operand

I
~---------- ---------.
I All macro statements listed from this point in the LPS to the next MSGTYPE or I
li:limiter ~ro w~a£.eIl...9~.!r..t.£....!.h~ e mess~e~t~s~ated. ____ J

~--------- -----
ITo operate in the conversational mode means that a terminal sending ~~ag; I
El retain control of the communication line until the reply is received. J
---------- ----------

No

34

H7 p.34 Write MODE in the Operation field of the next available macro statement.

EXAMPLE MODE

Name I OperaHan I
MODE CONVERSE I

Write CONVERSE in the Operand field.

Write MODE in the Operation field of the next available macro statement.

Write INITIATE in the Operand field.

EXAMPLE MODE

I Name I OperaHon I
MODE INITIATE

~-------- -------,
I It is possible to have E..!! messages that use this part of the LPS operated on at this
I point (before header analysis) by a user-provided routine; tlie function of whi ch is I

up to the user. Certain precautions must be taken when including such routines. I
I For further discussion of the possibilities and consequences of doing this, the reader
I is referred to IBM Operating System/360: Telecommunications. (C28-6553). J
~-- J ---

35

Operand

I

Operand

I

No Is a user
routine desired for

these messages?

Write MODE in the Operation field of the next available macro statement.

Write in the Operand field the symbolic name of the user provided routine.

~-------- -------~
The MODE macro provides the exit to the user routine and the return address in I

I General Register 14. General Registers 2,3,9,10,12,15 may be used in the I
I user routine and General Register 1 must be used as a base register. I L- _________________ ~

Yes

36

No

No

Write DATESTMP in the Operation field of the next available macro statement.
No parameter is needed jn the Operand field to specify the length of the field,
since it is a fixed number (7); 7 spaces will be reserved for the insertion of
datestamp by the LPSTART macro. The datestamp insertion will be of the
following format: bYY. DDD, where b = blank, YY = year, DDD = day of year.

Is there an input
message sequence number
to be checked at this point

in the header?

No

Yes

EXAMPLE DATESTMP

Name I Operation
DATESTMP

r;;-i s-n-ot-p-oss-i b-I e-t-o check -th-e -i n-pu-t -seq-ue-nc-e-l

.... 11-----1 number of this point unless a SOURCE macro has I
been previously specified. This implies that a

Are the
terminals polled

terminals?

L.:0~" fiel~pears ~he message~der. J
Yes

37

Operand I

Write SEQIN in the Operation field of the next available macro statement.

No

EXAMPLE SEQIN

I

Is the input sequence number
in the message header followed

by a blank character{s)?

I Opeca';an I
SEQIN 3

Yes

Operand I

Write in the Operand field a decimal number for the length of the input sequence
number field as found in the message header (4 max).

The SEQ I N field con then be of variable length. No parameter is needed in
the Operand field of the SEQIN statement. The LPS will advance in the
message header past the last character of the SEQIN field. Ex: 3

Yes

38

No

No

Write ROUTE in the Operation field of the next avai lable macro statement.

EXAMPLE ROUTE

I Operation I
ROUTE 3

Name

Yes

In the Operand field, write in decimal the number of characters that make up
each message destination code. They must all be the same length (max of 8
characters) and must all be terminal table entry names.

Ex: 3

iH20 p.47
V

39

Operand I

No

o eration Operand

MODE ROUTlNE,C!'

Write MODE in the Operation field of the next avai lable macro statement.

In the Operand field write the symbolic name of the user-provided routine to be
entered. Ex: ROUTINEl

~------- --------1
I The MODE macro provides the exit to the user routine and the return address in
I General Register 14. General Registers 2,3,9,10,12,15 may be used in the user'
I routi~~~al Register ~u~e used ~ base regist2 ______ ---J

r:::-, The MODEm~o may opera~n~s fsGTYPE section,~ther conditionally!;l
specifying a special message identification character to identify when the user- I
I provided function is to be entered, or unconditionally by not specifying a second
I parameter so that the routine wi II be entered for each message. I L- _ __ __ __ __ __ __ _ _______ - _____ ---l

Yes Is the MODE
macro to operate
unconditionally?

40

In the Operand field write a comma followed by Ccharl, where char is the
special character that identifies the message as one that is to be operated on
by the user-provided function. Ex:, C !I

~-----------------~
I The LPS will now be ready for the next field in the header following the special I
I character. I
L:.:..:. _______ ~P.~----------.J

No Is there a
message-priority field

at this point?

-------- --------1
I-fhere are two ways to specify priorities within messages: I

11. A special character in the header of priority messages to indicate that the 1

I
very next character following it contains the actual message priority. I

2. Only the actual message priority in the message header. In this ('Jse, a

L message priority must be given to every message using this part of the LPS. ~
-------- -------------

Write MODE in the Operation field of the next available macro statement.

Write PRIORITY in the Operand field.

EXAMPLE MODE I Nome IM~;~ot;on I

41

Operand I

No

Next I in the Operand field write a comma followed by C'charl, where char is
the special character that is to precede the message priority character in the
message header. Ex: ,C'*I

PRIORITY I C'*I

~------- --------~
I The LPS will now advance in the message header to the last character of the field I
I just orocessed. I

L..!..:.-L- ______ ~P.:----------.J

o erand

42

~P.41

~ _______ J __________ I
I A special character field may be specified in the message header to indicate
I conversational mode of operation, or the desire to start sending a message I
~~i!2.:.completel~ceive~ ____ __ ___________ J

No Is there such a special
character at this point in

the message header?

Yes

43

~----------- --------
I All the message header fields of concern whi Ie receiving a message should ha~
~en taken care of at thi s point. Try one more pass through the logi c flow. I

----------l----------~

~P.48
CONVERSATIONAL MODE I NIT IALIZAT ION MODE

Write Mode in the operation field of the next available macro statement Write MODE in the Operation field of the next available macro statement.

o erand
CONVERSE, C'o'

In the Operand field write CONVERSE.

Next, in the Operand field write a comma followed by C'char', where char
is the character that is to specify that conversational mode of operation is
wanted with this message.

Ex: , C'o'

In the Operand field write INITIATE.

Next, in the Operand field write a comma followed by C'char', where char
is the character that is to identify this message as one that can start sending
before being completely received.

Ex: ,C'?'

44

H18 pp.37,38,46

Write TIMESTMP in the Operation field of the next available macro statement.

EXAMPLE TIMESTMP

I Name I ODeraHon I

T1MESTMP 9

Write in the Operand field, in decimal, the number of characters n (2 ~ n ~ 12
depending on the time increment desired) reserved for the timestamp field.
The time of day wi II be given in the form bHH. MM. SS. th, where b = blank,
HH = hours, MM = minutes, SS = seconds, t = tenths of a second, and h =
hundredths of a second. When fewer than twelve spaces are reserved, the time
wi II be truncated from the right.

Ex: 9

~-------- -------,
I The LPS will now advance in the message header past the last character of the I

lfiel~~~~----T----.--- I

~ ~P.48 ----I

45

Operand

I

Write SOURCE in the Operation field of the next available macro statement.

No

EXAMPLE SOURCE

I
Nome

Is the source fi e Id in the
message header followed by

a blank character(s)?

I OperaHon I
SOURCE 3

Yes

Operand I

Write in the Operand field a decimal number for the length of the source field
~--------- --------1
I The LPS will advance in the message header past the last character of the I

in the message header (max 8). Ex: 3 I source field. I

c __________ ~~:------~

46

No

EXAMPLE EOA

, Name !Egrration!

Write EOA in the Operation field of the next available macro statement.

In the Operand field, write C#' where # represents in EBCDIC code the trans­
lated character that will be used in the message header to designate the end of all
destination fields. Ex: C%'

~------- --------~ I The LPS wi II now advance in the message header past the last character of the end I
I of destination field (EOA). . I L:..:..________ _ __________ -.J

A fixed destination for all messages handled by this LPS section or fixed
destinations for messages from each source terminal can be specified by the
use of a single DIRECT macro. To do this, write DIRECT in the Operation
field of the next available macro statement.

EXAMPLE DIRECT I Name I Operation I
DIRECT = ('CHI'

Operand

Operand I

r-------------------~
If the terminals are non-polled this can be done only if a source I

source terminal?

In the Operand field write = C 'dest', where dest is the symbolic name of
the destination. This destination must be a terminal table entry name.
Note: The DIRECT macro instruction may be issued only once per LPS
MSGTYPE section. Ex: = C'CHI'

~a~o~~e~ previou~ specified i~~P":': ______ J

Write in the Operand the symbolic name of the optional
field in the terminal table that contains the desired
destination for messages from each terminal. (Refer to
section D.) Ex: DEST

47

I

No

Write LOGSEG in the Operation field in the next avai lable macro statement.

EXAMPLE LOGSEG

I Ope,a!;on I I Name
LOGSEGLOGFILE2

Write the symbolic name of the DeB associated with the desired external logging
device in the Operand field.

Ex: LOGF ILE2

No Is the MSGTYPE

Operard I

48

Write RCVSEG in the Operation field of the next available macro statement.
(This makes the following LOGSEG macro apply to both header and text.)

EXAMPLE RCVSEG

I Name I Opera';on
RCVSEG

Write LOGSEG in the Operation field of the next available macro statement.

EXAMPLE LOGSEG

Write the symbol ic name of the DCB associated with the desired external logging
device in the Operand field.

Ex: LOGFILE2

No

Write SK IP in the Operation field of the next available macro statement.

49

Operand I
Operand I

EXAMPLE SK IP

I Name I Operot;on I

~--------- ---------~ , A field can be skipped by either specifying a given number of nonblank I

I characters to be skipped or by specifying a parti~ular character configuration that I
I will indicate the end of the skipped field. J L.....:..:...:__________ _ ________ _

No Yes

Operand I

Write ('chars' in the Operand field of the SKIP statement I where chars represents
the particular character.configuration in the internal system code.

Write in the Operand field of the SK IP statement the actual number of nonblank
characters to be skipped. The number cannot be greater than the number of
character positions remaining in the buffer I past the present position of the LPS.

Ex: 10

EXAMPLE SK IP

Operand I

50

No

No

No

Is this the last
MSGTYPE section

to be specified?

51

SECTION J. END RECEIVE

Write "Section J. End Receive" in the margin at the top of the next blank coding
sheet. This wi II identify the macro statements for Section J.

EXAMPLE ENDRCVE

I Operotion I Name
ENDRCVE

To identify the following section of the LPS as macro instructions concerned only
with functions to be performed after the entire message has been received, write
the delimiter macro statement ENDRCVE in the Operation field of the first
macro statement for this section.

No Is this LPS

Yes

Operand

I

52

Yes No

Write EOBLC in the Operation field of the next available macro statement. Write EOB in the Operation field of the next available macro statement.

EXAMPLE EOBLC

EXAMPLE EOB

I
Name I Operatia"

EOB

Operand I
~---------- ----------~
,To provide for specification of error procedures, a halfword error mask is maintainedl
Ifor each communication line. This mask can be interrogated by macro statements, I
land the desired error procedure initiated upon finding a given error condition. I
~---------~---------~

10 TAM-;rovid-;- fixe~rror procedures for ~ding~ erro~essage,~a;;-eling-l
I an erroneous message, and rerout i ng of messages. Wi t h each error oroced ure I
I specified, an erro~ mask representing the error condition that the error procedure I
I is to act on, must be specified in hexadecimal notation. Chart 1 describes the I

~"ars pr~v;ded far when rece;v;ng. =[=========--=-_J
fAn example of how to specify an error mask: "I
I The error ha"lfword specif ing a transmission error looks like this: I
I 0000000010000000 I
I
I 0 0 8 0 I
I Its corresponding error mask in hexadecimal will be written as X'0080'. I

~----------T---------~

Operand I

53

Chart 1: Ha I fword Error Mask
Hexadecimal Error Mask Positions

Hex 1 Hex 2 Hex 3 Hex 4

Bit Positions 1 2 3 456 7 8 9 10111213141516

c
.~
-0
C
o

U

CD-
-0
0

U
C
0
~
0

~
Q)

Cl

"0
0)

~ --

o.!:
~ 0)

:c 0
....J

....
Q) Q)

...!l ...!l
E E
:::> :::>

Z Z
Q) Q)

0 0
c c
Q) Q)

:::> :::>
0- cr-
Q) Q)

Vl Vl

Q) -0 '" Q) -g
0 .2 -0 U 0 4-

Q) Q) w :::>
:c eo

~ c
of-

2 :::>

:~ c
0 Q) Q) :::> Vl 0

0...-
~ 0 .~

E 0 I ..:::L
0 0) c Q)

"
.....

Q) 0 E ~
:::>

0 II)

c= i-= c eo - -
A l-bit in any position indicates the presence of the error
condition associated with that position.

~ ~ « «
0 0

>.. 1la
""0 ""0
~ ~
:::> :>

2'- 2'-
0 " c c

2 OJ

1 ..E

No

Write ERRMSG in the Operation field of the next available macro statement in
this section.

EXAMPLE ERRMSG

Name Operation o erand
ERRMSG X'0080', ERRDEST, =C' Ebbbbbbbbb. MESS

AGEbCONTAINSbAbTRANSMISSIONb
ERROR

In the Operand field write the error mask of the error condition for which this
message is to be sent, specified as X'mask' where mask is a four-digit hexa-
decimal number. Ex: X'0080'

~P.55
54

No

I~h~essage ~sing the err~me from a non-polled terminal, -a- --,

SOURCE macro must have been previously specified in the LPS and I
I a source field m~ be in ~message head~ ____________ --1

Next, in the Operand field write a comma followed by the word SOURCE.

Yes No

--------- -------, I To provide for this, an optional field can be specified for the Terminal ~I I
I Table entries that would contain the desired error message destinction. The I

Terminal Table entry whose optional field is used would be the one defining
I the terminal that had sent the message that caused the error condition. I
I (See Option statement, Section D.) Note: If the terminal that sent the I

message causing the error is a non-polled terminal, a SOURCE macro must

~v~e~~iously:!:ecified i~e LP~ _______ J

55

"
J6 p.55

"
Next, in the Operand field write a comma followed by the fixed destination
specified as = C'dest', where dest represents the symbolic name of the
destination Terminal Table entry name.

Next, in the Operand field write a comma followed by the name of the
optional field in the Terminal Table that contains the desired
destination.

Ex: =C'PHI' Ex: ERRDEST

" - -- " -
r::;- - - - -- -- - - -'- -- -- -- - - - -- -- -----,
I The contents of the error message text must now be specified. This error message I

I text can be stated directly in the Operand field of the ERRMSG statement or it can I
be prestored in a symbolic location and referenced by the ERRMSG statement. I Before writing this text, however, the following items must be known: I
1. The first part of the error message text must be a header compatible with the I LPS for sending (same as other output headers). I

'

2. The entire error message header, plus text, is not to exceed the length of a I
buffer.

I
3. A period as the first character of the error message text wi II be replaced by the I

header of the message whose transmission caused the error. This additional L head~ust b~nsidered i~) abov-=-=- ____________ ---l

Yes

Next, in the Operand field write a comma followed by the symbolic name of the
location in core storage that contains the desired error message. This location
and its contents must be defined elsewhere.

Ex: ERRTEXT

No

Next, in the Operand field write a comma followed by the header plus text,
specified as = C'errmsg', where errmsg represents the actual header and
message text.

Ex: , =C' Ebbbbbbbb. MESSAGEbCO NT AI NSbAb TRANSMISS IONbERROR

56

Yes

No

Write REROUTE in the Operation field of the next available macro statement.

EXAMPLE REROUTE

o erand
X'0020' ,=C'NYC'

In the Operand field write the error mask for the desired error condition specified
as X'mask', where mask represents the four-digit hexadecimal number.

Ex: X'860Q'

57

Yes No

error condition occurs?

Next, in the Operand field write a comma followed by the Terminal Table entry
name of the rerouted destination, specified as =C'tername l where tername is the
symbolic name of the destination.

Ex: =C'NYC'

Yes

No

J12 p.59

Another choice of reroute destinations is to have an alternate destination
specified in an optional field of the message source entry in the Terminal
Table (see Terminal Table Specification). To use this alternate destination,
next in the Operand field write a comma followed by the symbolic name of
the optional field that is to contain the alternate destination for each terminal
entry. Ex: RERTE

Operand
X'0020',RERTE

58

J12 p.58

~P.58
~-----------------~
I When a message is canceled, all references to it are destroyed.J L- __________________ _

Write CANCELM in the Operation field of the next available macro statement in
this section.

EXAMPLE CANCELM I Name I Opera';an I

In the Operand field write the error mask for the desired error conditions,
specified as XI mask I, where mask represents the four-digit hexadecima I number.

Ex: X'0020'

~------- --------1
I Only one CANCELM statement is needed since all error types requiring message I
I cancellation can be specified in the same error mask. J L __________________ _

No

No

Yes

59

Operand I

Write POLL/MIT in the Operation field of the next available macro statement.

EXAMPLE POLL/MIT I Name I Operation I Operand I POLLIMITLlMlT

Yes No

In the Operal.1d field write =FLl'n', where n is the decimal number specifying
the maximum number of consecutive polls for each terminal.

In the Operand field write in the symbol ic name of an optional field in the
terminal table that contains the poll limit desired for each terminal (see

Ex: =FLl'2' Section D). Ex: LIMIT

EXANIPLE POLL/MIT
EXAMPLE POSTRCVE

Operand I ~ame ! Operation I
POLLIMIT =FLl'2' I I Name I Operation Operand

. POSTRCVE

Write POSTRCVE in the Operation field of the next available macro
statement. This identifies the end of the ENDRCVE section. The receive
part of the LPS is now completely specified.

I

60

61

SECTION K. SEND HEADER

No

Write "Section K. Send Header" in the margin at the tape of the next blank coding
sheet. Th is wi II ident i fy the macro statements for Section K.

To identify the first section of the send LPS as that pertaining to only outgoing
message headers, write SENDHDR in the Operand field of the first macro
statement for this section. This is a delimiter macro.

EXAMPLE SENDHDR

I Operation I Name

SENDHDR

~-------- --------l I It is possible to log only output message headers on an external I/o device.

I
Further definition of the state of development at which the header will be
logged depends on where in the SENDHDR section the LOGSEG macro is
~ven. (This logging is in addition to queuing of the complete message.) I

-------l---·------~

(§Jr. 6J

Operand I

62

No

Write LOGSEG in the Operation field of the next available macro statement.

EXAMPLE LOGSEG I Name I Operat;an I
LOGSEGLOGFILE3

Write the symbolic name of the DeB associated with the desired external logging
device in the Operand field.

Ex: LOGFILE3

~--------.- ---------~
I Th is section of the LPS wi" perform the desired header analysis/synthesis of
lo::u..!§L::ing messa~headers._ _ _ _ _________ J

lAs w;ththe in~ming ;;;;SSageheaderJ,ii is n~ssary to start-;:;; the --I
I beginning of the output message header and proceed through it from left to I
I :right by specifying the appropriate macro instructions in the same order as
L!h~eade!J!elds~whic~~applL.:. __ __ _____ --.J

lit;;; mportanithatth~PS ~ pas; t;anIt th;Prape;-p!a;;; ;;th;;;;;.;;;g;;--1
I header when each macro is executed. J
~---------- --.--------.

63

Operand I

.----__ ------___ - ___ - _1_ -____ -----------___ --I
lEach macro that inserts information in a particular field when executed wi II I

j advance I the LPS the number of character spaces provided by the macro. Blank :
:tcharacters between fields are skipped automatically. In all other cases correct I

I positioning must be maintained by use of the SKIP macro as instructed. ;
1------- - --- -------------f------------------------
I Th;p;;~i;th;~~~~~-h~~d~~ ~~hkh tf,; LPS-a~d ;e-;s~g-; h;ad;;'-a-;:-e-~Iig-n;~
: when the Send LPS is sl'arted depends on whether the message is from a reply I

I queue (PUT), or a Switched Message. If from a reply queue, the LPS will be :
l aligned with the first c~aracter of the output message as prepared by the process I
1 program. If it is a switched message, the LPS will be aligned with the last 1
I character of the last field processed by the Receive LPS. :
1 ______ --------------- ------------------------

No

There must be a special character in each message header to identify it by type :
except for one type, which may be identified by its lack of a special character. I

(The functional macros for the latter must be the last of this section.) It is I
I

assumed that the very first character of a II PUTI! message, and the very first I
character not processed by the received LPS in a "Switched" message, will be :
this message type character as recommended in the Message Header Preparation I

~~~~~~~~_~~~~~: ____________________________ J 

Write MSGTYPE in the Operation field of the next available macrc;> statement. 

EXAMPLE MSGTYPE I Name I Operation 
MSGTYPE 

Operand 

I 

64 



65 

Yes No 

Write this special character in the Operand field as (,#' where # is the ~---------- ----------~ I The operand field will remain blank in this case, ·indicating that all messages not I 
special character, Ex: (' P' I having a special character will be handled by the sequence of macros immediately I 

I following, Note: This must be the last MSGTYPE macro of the section, J L...: ______ ~_ .. ___ ~- ___________ _ 

EXAMPLE MSGTYPE 

Operand I ~ame I Operation I 
MSGTYPE (' P' I 

~---------- ---------, 
I All macro statements I isted from th is point in the LPS to the next MSGTYPE macro I 

~ ~ im it~ m~~.E.EIl...9!2!t .! .. ~_..t~ f)pe messa~ ~!...i.e~ated_. ____ J 

rn;;;;;-essag-;typ;-that will currentiy"l,;:[dled'is now ~i;dout. Theref;';,-l 
I the header format of this type of message is known and the required macros can I 
~ow be specifi ~t~and I..:....:..h ~~age type_, _______________ ___ I 



No 

EXAMPLE SK IP I Name IS~I~erat;an I Operand I 
Write SK IP in the Operation field of the next available macro statement. 

~--------- ----------l 
I A skip can be made for a fixed number of ,nonblank character spaces or up to 
L.9~i)~~uding ~rtain..£b..arac~~fi uratio!l.t...- _____________ ~ 

Yes No 

66 



Write in the Operand field a comma followed by ('chars·, where chars represents 
the character configuration (max 8 characters) that denotes the end of the field 
to be sk i pped • 

No 

EXAMPLE SEQOUT I Nome I Opew';on I Operand I 

Write in the Operand field the fixed number of nonblan'< characters to be 
skipped. The maximum number that can be specified is the number of character 
positions remaining in the buffer past the present position of the LPS. 

Ex: 8 

EXAMPLE SK JP 

Operand I 

Write SEQOUT in the Operation field of the next available macro statement. 

In the Operand write the decimal number of character spaces (n) to be used 
by the output sequence number (l~ n~5), where the first character space is 
always a blank. 

Ex: 3 

67 



K10 p.69 

V 

No 

Write TIMESTMP in the Operation field of the next available macro statement. 

EXAMPLE TlMESTMP I Name I Opera';an I 
T1MESTMP7 

In the Operand field write in decimal the number of characters (n) reserved for 
the timestamp field. Here n can vary from 2 to 12, depending on the time 
increment desired. (See TIMESTMP macro under Section H for the timestamp 
format.) Ex: 7 __ ~ ______________________________ -J 

Operand I 

68 



~ 

K10 p.68 

Yes 

No 
EXAMPLE DATESTMP I Name I OperaHan Operand 

DATESTMP . 

No 

~--------- ---------1 
I This block should not have been entered unless the foregoing premise that we arel 
I at a point in the message header where action is to be taken is false. J L--------L---------

~p.66 

I 
Write DATESTMP in the Operation field of the next available macro statement. 

No entry is needed in the Operand field to specify the number of spaces that the 
datestamp is to occupy. However 1·7 spaces (n=7) must have been reserved by 
either the LPSTART macro or by the user program, as explained in Section M. 
The datestamp insertion will be of the following format: bYY.DDD, where 
b = blank, YY = year, DDD = day of year. 

Yes 

69 



Write MODE in the Operation field of the next available macro statement. 

EXAMPLE MOD E 

I Name I Ope,at;an I 
MODEUSERl 

Write in the Operand field the symbolic name of the user-provided routine 
to be entered. Ex: USER1 

r:::-
I 

TheMODE ~r;;ovides~ exit~the use~t~a~he return address ~ 
General Register 14. General Register 2,3,9,10,13,15 may be used in the user I 

I routine and General Register 1 must be used as a base register. I L:.: _______ [ ________ ~ 

!"The user-provided ~ti~can operate eith~n eve~essagel:ndled b; t-;:- I 
I MSGTYPE section or only on those messages containing a special identification I 
~aracte~ _ __ __ __ __ _ __________ -.J 

Yes 
Is the user­

provided routine to operate on all 
messages? 

Next, in the Operand field write a comma followed by Cchar', where char is 

the special character that identifies the message as one that is to be operated 
on by the user-provided routine. 

Ex: ,C'*' 

USER1,C*' 

Operand I 

Operand 

70 



r---I 

K12 pp.67,68,69,70 

No 

Write LOGSEG in the Operation field of the next available macro statement. 

EXAMPLE LOGSEG I Nome I Opecot;on I Opemnd 

In the Operand field write the symbolic name of the DeB associated with the 
desired external logging device. 

Ex: LOGFILE4 

71 

I 



Yes Is the MSGTYPE No 

No No 

No 

c---------- ---------~ 

~---------- ________ ~eL~~utomatic~~anc~~thenex~~-------J 
I A macro must be provided to skip the nonblank characters to get to the next 1 
~ader field. J 
----------~P.6~-------- K9 p.67 

72 



73 



SECTION L. SEND SEGMENT 

Write "Section L. Send Segment" in the margin at the top of the next blank 
coding sheet. This will identify the macro statements for Section L. 

To identify the following section of the LPS as macro instructions that pertain to 
both header and text portions of the output message, a delimiter macro statement 
SENDSEG is needed. Write SENDSEG in the Operation field of the first macro 
statement for this section. 

EXAMPLE SENDSEG 

I • __ N __ am __ e ____ ~ls=~~~~~~r=~E~t~=o-n~-------------ope-I-.a_n_d ______________ 1 

No 

Specify external logging of outgoing messages by writing LOGSEG in the 
Operation field of the next macro statement. 

EXAMPLE LOGSEG 

I Nome I L ~~~o-E t_~-on--+I-L O--G-F-I-L-E-4-----0...1.P-"" e_r a_n __ d ________________ 1 
Write the symbolic name of the DeB associated with the desired external 
logging de~ice in the Operand field. 

Ex: LOGFILE4 

74 



Code Translate Tables 
Provided by QTAM 

Name 

SEND1050 
SEND1030 
SENDTl 
SENDT2 

Code 

EBCD IC to 1050 
EBCD IC to 1030 
E BCD IC to TTY 
EBCD IC to TWX 

Specify code translation of the outgoing message by writing TRANS in the 
Operation field of the next macro statement in this section. 

EXAMPLE TRANS I Name I Operation I 
Write the symbol ic name of the Code Translation Table needed for the outgoing 

I messages in the Operand field of the workblock. 

~------- --------l I Idle characters may be inserted after such designated characters as Carriage 
I Return, Line Feed, End of Block, or End of Message. J 
~------------------- --------

No 

the message? 

Write" PAUSE in the Operation field of the next macro statement in this section. 

X'151,20X'171 

In the Operand field, the first entry will designate what characters the idle 
characters are to follow, specified as X'char', where char represents the 
hexadecimal notation of the designated character in the terminal code. 
Follow this entry with a comma. 

Ex: X'15', 

75 

Operand I 



The next entry in the Operand field defines the idle character and the number of 
idle characters to be inserted, specified as nXlid l , where n represents the actual 
decimal number of idle characters to be inserted after char, and id represents the 
hexadecimal notation of the idle character in the terminal code. 

Yes 

Ex: 20X 1 171 

Is another 
P AU S E macro statement 

needed? 

76 



77 



SECTION M. END SEND 

~P.79 

Write "Section M. End Send" in the margin at the top of the next blank coding 
sheet. This will identify the macro statements for Section M. 

To identify the following section of the LPS as macro instructions concerned on Iy 
with functions to be performed after the entire message has been sent, write the 
delimiter macro statement ENDSEND in the Operation field of the first macro 

statement for this section. 

EXAMPLE ENDSEND I Nome I Opero';o" 
ENDSEND 

No 
Is this LPS 

termina Is? 

Yes No 

Operand 

I 

M3 p.79 

78 



Write EOBLC in the Operation field of the next available macro statement. Write EOB in the Operation field of the next available macro statement. 

EXAMPLE EOBLC 

I 
I Opecat;on Name 
EOBLC 

EXAMPLE EOB 

Operand I I Nome 1E~~~:_e_ra_t_io_n __ r-____________ o~p~e_r_a_n_d ____________ ~1 

F'fO provide for spec i fi cat ioooferror ~cedure~ hOi fworderror mask---r; - -, 
Imaintained for each communication line. This mask can be interrogated by macro I 
Istatements, and the desired error procedure initiated upon finding the occurrence I 

~f a g;ve~ error conditiono-=-__ --=-r -~_-~~~=~~-.J 
lOT AM provides fixed error procedures for sending an error message, canceling ~ 
I erroneous message, and rerouting messages. With each error procedure I 
I specified, an error mask, representing the error procedure it is to act on, must be I 
I specified in hexadecimal notation. Chart 2 describes the errors provided for I 

~en send;ngo -_-==-=-_-I _==-===--=-_-_-=--.J 
rAn example of how to specify an error mask l 
I The error halfword specifying a transmission error looks like this: I 
I @lQlol 01 0 1 0 1 0 1 0 11 1 0 10 10 1 0 1 0 1 0 10 1 I 
I 0 0 8 0 I 
I Its corresponding error mask in hexadecimal will be written as: X10080 1

• I L-_________ _ ________ ---l 

79 



Chart 2. Ha I fword Error Mask 
Hexadecimal Error Mask Positions 

Hex 1 Hex 2 Hex 3 Hex 4 

Bit Positions 23456789 10111213141516 

c 

~ 
-0 
C 
o 

U ... 
o 
l:: 

w 

Q) 
-0 
0 

U 
c 

.2 
15 
-E 
~ 

0 

"0 
0> 
Q) 

Q) 

.~ 
15 
a; 
0.. 
0 

.£ 

'0 .:: 
E 
a; 
l-

II> ... ... 
[! .2 ...... ... ::l W co 
c 

C 0 
'u; .... .~ 
.~ ::l U 
E 0 

I ~ 
II> Q) ...... c ::l 
0 E II> ... ;;: .E I-

A l-bit in any position indicates the presence of the error 
condition associated with that position. 

No 

Write ERRMSG in the Operation field of the next available macro statement 
in this section. 

EXAMPLE ERRMSG 

Name Operation o erand 

ERRMSG X'0040' ,=C'OPR', TMOUTERR 

In the Operand field write the error mask representation of the error condition for 
wh i c h th is messag e is to be sent, speci fi ed as XI mask I, where mask is a four­
digit hexadecimal number. 

Ex: X10040~ 

~P.81 

~ ~ «« 
l- I-
00 

>-. ~ ..0 

-0 -0 
~ ~ 
::l ::l 

~ ~ 
'0 '0 

C C 
a; a; 
C .£ 

80 



No 

Yes 
Is the error 

Next, in the Operand field write a comma followed by the fixed destination 
specified as =Cdest', where dest represents the symbolic name of the destination 
Terminal Table entry name. 

Ex: =C'OPR ' 

Yes 

Next, in the Operand field write a comma followed by the word SOURCE. 
Note: If the terminal involved is a non-polled terminal, a SOURCE macro 
must have been specified in the RCVHDR section of the LPS. 

No 

81 

Next, in the Operand field write a comma followed by the name of the optional 
field in the Terminal Table that contains the desired destination. (See OPTION, 
Section D.) The optional field will be the one associated with the Terminal 
Table entry to which the message causing the error condition was to be sent. 

Ex: ERROPT 

M 



~-------J---------l The contents of the error message text must now be specified. This error message 
1 text can be stated directly in the Operand field of the ERRMSG statement or it can 1 

I be prestored in a symboli c location and referenced by the ERRMSG statement. 
Before writing this text, however, the following information must be known: 1 

11. The first part of the error message text must be a header compatible with the 

I LPS for sending (same as other output headers). I 
2. The entire error message header plus text is not to exceed the length of a I I buffer segment. 

1

3. A period as the first character of the error message text will be replaced by I 
the header of the message whose transmission caused the error. This 

L additional header must be considered in (2) above. I ________________________ ---1 

No Is the text of the Yes 

Next, in the Operand field write a comma followed by the symbolic name of the 
location in core storage that contains the desired error message. This location 
and its contents must be defined elsewhere. 

Ex: TMOUTERR 

Next, in the Operand field write a comma followed by the header plus text, 
specified as = C'errmsg ' , where ermsg represents the actual header and message 
text. 

Ex: , =C'Ebbbbb. TIMEbOUTbERROR' 

Yes 

82 



No 

Write REROUTE in the Operation field of the next available macro statement. 

EXAMPLE REROUTE 

o erand 
X'OOlO', =C' OPR' 

In the Operand field write the error mask for the desired error condition specified 
as X'mask', where mask represents the four-digit hexadecimal number. 

Ex: X'OOlO' 

Yes No 

83 



Next, in the Operand field write a comma followed by the Terminal Table 
entry name of the rerouted destination, specified as =C'tername', where 
tername is the symbol ic name of the destination. 

Ex: =C'OPR' 

No 

Another choice of reroute destinations is to have an alternate destination specified 
in an optional field of the message destination entry in the Terminal Table (see 
Terminal Table Specification). To use this alternate destination, next in the 
Operand field write a comma followed by the symbol ic name of the optional field 
that is to contain the alternate destination for each terminal entry. If the 
terminals involved are non-polled terminals, a source macro must have been 
previously specified in the ROIHDR section of the LPS. 

Ex: ERRDEST 

EXAMPLE REROUTE 

o erand 
X'OOl 0' , ERRDEST 

84 



~P.84 8 P•84 

r.::--------1---------, 
C0~ ~~s~celed ~eferen~o it ar.:..iestroye~ ________ -1 

Write CANCELM in the Operation field of the next available macro statement 
in this section. 

In the Operand field write the error mask for the desired error conditions, 
specified as X'mask', where mask represents the four-dig it hexadecimal number. 

Ex: X'OOlO' 

~------- ---------1 
I Only one CANCEL statement is needed, since all error types requiring message 

L:::n~lation--=::n-,== specified~ the same~o~a~ _________ -1 

~------- ---------. 
I Transmission of a message to a terminal can be halted and all further messages to I 

I that terminal suppressed by use of an INTERCEPT macro statement. The interception I 
I of all messages to the terminal will occur when the error specified by the mask is I 

detected. The sequence number of the first untransmitted message for a terminal 
I will be stored in the INTERCPT optional field of the terminal table. I L:.:..:..:_______ _ _____________ ---.J 

No 

Write INTERCPT in the Operation field of the next macro statement in 

this section. 

EXAMPLE I NTERCPT 

Name 

X'OOlO' 

85 

Operand 



,r 

In the Operand field write the error mask for the desired error conditions, 
specified as Xlmask I, where mask is a four-digit hexadecimal representation of 
the error mask. 

Ex: XI0010I 

f"""M,k;s;;;:; that ~ption-;;Jfield has !n-;'cifiedin" the"" Terminal Table- -l 
I (Section D) to receive the sequence number of the next message to be transmitted I 
~e~n~e~p~ ___ -:1-- -- - - - - - __ J 

-
The send part of the LPS is now completely specified. To identify the end of the 
ENDSEND section, write the del imiter macro POSTSEND in the Operation field 
of the next macro statement. 

EXAMPLE POSTSEND 

I Name I Operation 
POSTSEND 

" ~-------~--------~ 

~e LPS is now finished except for onfmOining ;tem. = = = =--= -..J 
lThe Operand field of the LPSTART macro that was written as the first macro of th~ 
~ceive Segment LPS (Section G) 5 now be filled in.=--=-=-=-_-.J 

fThe number of character spaces to be reserved in the first buffer of an input l 
message by the LPSTART macro depends on whether or not the first buffer of I an input message is also the first buffer of an output message (e.g., t,,~essage I 
I Switching Application). It this is the case, space must be reserved in the first I 

buffer for both input and output - timestamp, datestamp, and sequence )ut 
~~r.=_______ _ _______________ ~ 

Operand I 

86 



Yes 

Write in the Operand field of the LPSTART macro the decimal number equal to 
the sum of all the values assigned to the n parameters of the TIMESTAMP (in), 
TIMESTAMP (out), and SEQOUT macros, plus 7 bytes for each DATESTAMP (in) 
and DATESTAMP (out) macro used in the LPS for switched messages. 

Ex: 19 

No 

Write in the Operand field of the LPSTART macro for this LPS the decimal number 
equal to the sum of the values assigned to the n parameters of all the 
TIMESTAMP (in) macros plus 7 bytes for each DATEST AMP (in) macro used in the 
LPS. 

Ex: 8 

EXAMPLE LPSTART 

Operand 
19 

~------- --------1 I For the reply of any messages that are generated by a user program, space 

I must be reserved in the first buffer of the output message equal to the sum I 
of the values of the n parameters for all TIMESTAMP (out) and SEQOUT macros 

I plus 7 bytes for each DATESTAMP (out) macro used in the LPS. I 
~ _ _ _ __ ______ _ ___________ __ ---l 

Yes 

~
------- -------) 

Repeat the LPS Sections starting at Receive Segment LPS Section G, being I 
careful~t ~ secti~of ea~l:cified keep ~i~entity_. _ _ I 

~p.26 ---...J 

No 

~-------- -------] I All LPS macros have been specified at this point. The next section will be 
I concerned with specifying statements that will be used as initialization for the 
I Message Control Task. 
L...:--------L-----·--

~p.88 

87 



SECTION N. DATA SET INITIALIZATION 

*Terminals may be activated on a per-line or per­
terminal basis, rather than by line group, by use 

of the CPY"RL/CHNGPL or STRTIN/STOPIN macro 
instructions respectively. These macros may be 

included in the present section prior to, and 

immediately following, the OPEN macro instruc­

tion{s) as required to provide the necessary contt'ol 
(see C28-6553). 

Write "Section N. Data Set Initialization" in the margin at the top of the 
next blank coding sheet. This will identify the macro statements for Section N. 

~-------- --------~ 

I 
The purpose of this section is to provide for specification of macros that will I 

initialize all Data Sets that will be referenced by the Message Control Task I 
~d by use of OPEN and ENDREADYfcros. -=-___ ~ __=_ ~ ~ ~ 

When a Data Set is "opened", the following functions are performed: I 
11. Control blocks are initialized. I 
1

2. Subroutines are acquired for the access method. 
3. Control blocks are assigned core storage locations. I 

14. In the case of a communication line, the line will be made operative for I 
sending or receiving provided its polling list and terminal entries are 

L in an active status. * J -------r----------
~-------.~--------~ 

Data Sets which will be referenced by the Message Control Task, and which I 
I therefore must ~e "opened" , are: I 
1

1. Communication line Groups. 
2. Direct Access Storage Device used for queuing messages. I 

13. External I/o device (s) used for logging messages. I 
Each such Data Set has a Data Control Block (DCB) by which it is 

I referenced. I 

~=====-=--=-I==-======~ I Opening of the Direct Access Storage Device, Logging Devices, and I 
~~nicatio~ine Groups~l~w be provided fo~ _________ J 

Write OPEN in the Operation field of the first macro statement for this 
section. 

EXAMPLE OPEN 

Name Operation Operand 
STQTAM OPEN (DCBFILE, (lNOUT), LOGFILE1, (OUTPUT), 

DCBGROUP, (I NOUT)) 

88 



Write in the Name field of this macro statement the symbolic name to be 
given to the Message Control Task. (The OPEN statement described is 
considered to be the first statement of the MessageControl Task. This is 
not necessarily the case, since other user coding, if specified, may precede 
the OPEN statement. In such a case it would be the first such statement that 
wou Id have the name of the Message Contro I Task.) 

Ex: STQTAM 

First write in the Operand field of the OPEN macro a left parenthesis. 
Ex: ( 

No 
Are messages to be queued 

on a direct access storage device (rather 
than in core storage)? 

In the Operand field, write the symbolic name of the Direct Access Storage Device 
DCB on which messages are to be queued, followed by a comma. 

Ex: DCBF ILE, 

Next write in the Operand field the word I NOUT, enclosed in parentheses, and 
followed by a comma. This specifies the direct access device as both an Ilinput" 
and an II output I I Data Set. 

Ex: (INOUT), 

89 



No 

Write in the Operand field the symbolic name of a Logging device DCB 
defined in the Message Control Task, followed by a comma. 

Ex: LOGF ILEl , 

Next write in the Operand field the word OUTPUT, enclosed in parentheses, 
and followed by a comma. This specifies the direct access device as an "output" 
Data Set. 

Ex: (OUTPUT), 

Yes 

Write in the Operand field the symbolic name of a line group DCB in the 
L...----------..-t system to be opened, followed by a comma. 

Ex: DCBGROUP, 

90 



Next write in the Operand field the word INPUT, OUTPUT, or INOUT, 
whichever is appropriate for the line group being "opened". For example, a 
line group that has both sending and receiving of messages would be specified 
as INOUT, whereas a line group that only received messages from terminals 
would be specified as INPUT. Precede the selected word with a left 
parenthesis. 

Ex: (lNOUT 

r-----..,...------ -------------. 
I To specify that all lines in the communication line group being opened initially I 
I be inactivated (in preparation for their later activation with the STRTLN I 
I macro) an IDLE parameter may be specified in the OPEN macro statement. This I 
I specification has the effect of issu ing a STOPLN macro to each line. I 
1 ______ ------ ____________ 1 

Yes 

Next write in the Operand field a comma followed by the word IDLE; 
followed by a right parenthesis. 

Ex: ,IDLE) 

Yes 

Write a comma in the Operand field following the last entry. 

Is an 
IDLE parameter 

desired for the I ine group 
be i ng opened? 

No 

Next write in the Operand field a right parenthesis. 
Ex: ) 

No 

91 



* A final parameter may be placed in the Operand field 

of the OPEN macro statement specifying a parameter 

list that includes operand parameters for the OPEN macro. 

The purpose of this specification is to have a list of 

parameters that can be shared by many OPEN macro 
instructions. Sharing of the list is specified by writing 
a comma followed by MF=(E and another comma fol­

lowed by the name of the parameter list. 

Ex: ,MF=(E, LISTNAME) 
Specification of MF=E requires that an OPEN macro be 
included elsewhere (at the end) in the Message Control 
Task that has an MF=L specification. The name of this 
macro will be the name of the parameter list mentioned 

above. If neither MF=E nor MF=L is specified, the 
parameters specified in the OPEN macro instruction will 
be assembled "in line" and executed. For further 
description of the MF specification refer to mM 
Operating System/360 Control Program Services 
(C28-6S41) • 

N6 p.93 

EXAMPLE ACTSUBT 

I Operation I 
ACTSUBT SUBTl 

Complete the Operand specification for the OPEN macro by closing the 
parentheses following the last entry*. 

Ex: ) 

r - - - - - - - - _1_ --
If a subtask of the fv\essage Control Task was defined in Section F and it is 

I desired to activate it only once, before receiving the fi rst message into the 
I system, the ACTSUBT macro instruction may be written at this point. This 

I is in contrast to activating the subtask within the LPS structure, which wou Id 
result in its being activated each time the LPS sequence is passed through 

I (every message or message sequent). Deactivation of a subtask is accomplished I 
Lithi~~ubtas~self ~u:. o~ ENDSU~ m~ro~a~e~. ___ --' 

Is activation of 
a subtask desired 

at this point? 

No 

Write ACTSUBT in the Operation field of the next available macro statement. 

Operand I 
Write in the Operand field the symbolic name of the sub task that was 
assigned to the subtask with its DENSUBT statement in Section F. 

Ex: SUBTl 

92 



EXAMPLE ENDREADY 

I Nome I Operation 
ENDREADY 

Yes 
to be activated at 

this point? 

No 

Write ENDREADY in the Operation field of the next macro statement 
for this section. This is essentially a WAIT type macro needed by the 
Message Control Task. The ENDREADY macro statement has no further 
parameters. 

Operand I 

93 

N7 p. 92 



SECTION P. STRUCTURING JP.92 
rAilcl t~ Messa-;-Cont~ Task Sections clQTAM hav~owb~ complet~ I 
~ci fie~ Now ..!.!.!s~cessary on.!r.!Lmbl~e~ction~ the proper order:.J 

~ d~hi~~e~erely has to ta~the macro statemenhofthe vari~ sectio~ 

I 
and assemble them sequentially in the following order for each LPS specified: 

Section G. Receive Segment ~ I Section H. Receive Header I 
Section J. End Receive LPS I Section K. Send Header I 

L 
Section L. Send Segment 

SectionM.~Endsend~'_~~~~===~ 
[After assembling all sections o'f each LPS, each LPS must be assembled in sequence I 
I 

as shown below with the Data Set Initial ization section placed at the head of the 
Assembly and all of the Data Set Definition and Control Information Sections I 
I placed at the end of the assembly. Order is not important within and-or between 

the Data Set and Control Information Sections. I 
I Section N. Data Set Initialization I 

LPSl (Sections G-M) I LPS2 (Sections G-M) '1 
Section A. Communication Line Group DCB 

I Message Control Task Section B. Direct Access Storage Device Queue DCB 1 

Section C. ' Logging Device DCB r 
Section D. Terminal Table 
Section E. Polling List 1 
Section F. Buffers 

~is assembly will be the desired Message Control Task. ' _ ~ 

rr;; incorporate this coding as the Mes! Control Task of QTAM within on -- "1"1 
1 Operating System, the user is referred to IBM Operating System/360 Job 

I 
Control Language (C28-6539). A brief checklist of other considerations I 
necessary for an operable communications systems is given here: I 

1 • Specification of message-processing tasks 

I 
• Operator control messages and procedures I 
• ktivating and reactivating of communication lines 

L ~pecificotI~f operoting~sys.tem/360 contro~ar~ ____ J 

The 
End 

94 



95 



APPENDIX A: SAMPLE PROGRAM 

The sample problem used here to illustrate the 
Queued Telecommunication Access Method will con­
si st of three areas: 

1. Message Switching Application. A message 
switching application involves messages sent from a 
remote terminal that have as their destination 
another terminal or a group of terminals and require 
no intermediate processing. In this application, the 
following functions will be provided for: 

Receive 
a. Control 1050 communication terminals 

and lines 
b. Assemble messages received over 

communication lines 
c. Code convert messages from line code 

to internal EBCDIC code. 
d. Perform message-editing functions, 

such as time and date stamping, 
sequence number and source checking 

e. Route messages according to destination 
code to either single or multiple 
destinations 

f. Check for errors in messages 
g. Perform corrective action when errors 

are detected 
h. Perform queuing and logging of 

messages on a 2311 Disk Storage Drive. 
Send 

a. Insert sequence-out number of message 
b. Format message for transmission to 

terminal 
c. Code-convert message from the system 

EBCDIC code to the line code 
d. Address terminal and transmit message 

2. Inquiry Application. In the inquiry application 
described here. messages are sent from remote 
terminals that contain data to be processed, and a 
reply is sent back to the source terminal. A system 
data file is accessed by the processing program using 
an Operating System/360-supported access method. 
This file is on a 2311 Disk Storage Drive and is 
separate from the one used for the queuing of messages. 

In addition to those functions listed under mes­
sage switching, an inquiry application must also provide 
for the follo'vving: 

a. Get message from the inquiry Process 
Queue 

b. Access file record 
c. Extract required information as 

indicated by message type 
d. Compute value specified by inquiry 

message 
e. Format reply message 
f. Put message into the message source 

destination queue 

3. Operator Control Program. In the operator 
control program described here, the control mes­
sages are entered into the system through an in­
house system terminal. These messages are sent 
either to modify the polling list or to inquire about 
the line or process queue. This operator control 
program consists of one main program and two 
subroutines. The main program will be permanently 
resident in core storage. The two subprograms will 
be linked by the main program. They will not 
necessarily be resident in core storage. 

In addition to functions a - g under message 
switching, an operator control program must also 
provide for the following: 

a. Get message from the Control Process 
Queue 

b. Examine message to determine type 
c. Link to the program that will handle the 

message type 
d. Operate on message request 
e. Format reply message 
f. Return to initial program 
g. Put message to the in-house terminal 

destination queue 

APPLICATION IMPLEMENTATION 

For these applications, certain functions are 
supplied by QTAM while other functions must be 
provided by the user. The functions listed under 
message switching and used by the other applications 
will be completely specified through the use of this 
manual and will be handled by QTAM. 

The remaining functions listed under inquiry 
application and operator control program will be 
programmed as separate tasks. These tasks will 
be programmed like other processing programs 
in the system and are completely the responsibility 
of the user. QTAM does, however. supply certain 
macro instructions so that the needed programs can 
communicate with the main QTAM Task (Message 
Control Task). 

The QTAM Task, the Inquiry Task, and the 
Operator Control Task will all be assembled and 
executed through a normal job stream. Job control 
cards required by the job scheduler, such as JOB, 
EXEC, and DD statements, are not discussed here 
(see IBM Operating System/360 Job Control Language, 
C2S-6539). 

SYSTEM CONFIGURATION 

The configuration of the system for the sample 
program is shown in Figure 1. Each device shown 
may be categorized into one of two groups. 

96 



MPX Channel 

Model 
F 30 

Sel Channel 

2311 
Disk 

Storage 
Drive 

Figure 1. System configuration [or sample problem 

97 

2841 
Storage 
Control 

2311 
Disk 

Storage 
Drive 

CHI 

BOS 

OPR 

1403 
Printer 

-G NYC 

2701 
Data 

Adapter 
Unit 

2821 
Contro I 

Unit 

1402 Card 
Read Punch 



For Communications: 

6 1050 Data Communication Systems 
2 Half-Duplex Communication Lines 
1 Data Adapter Unit 
1 Multiplexor Channel 
1 2311 Disk Storage Drive 

For the Operating System: 
System/360, Model F30 (64K) 

1 Selector Channel 
1 1052 Console 
1 2311 Disk Storage Drive 
1 Printer 
1 Card Read Punch 

JOB DE FINITION 

Each task difference and peculiarity is defined in the 
following paragraphs. 

Message Switching Application 

Switched messages (which require no processing of 
message text) are to be routed to their destinations. 
Destinations sp~cified in the input header may be 
any of the follpwing. 

• Single destination specified in the destination 
field of the header - for example, NYC. 

• Multiple destinations specified in sequence in 
the header - for example, "NYC PHI. ... " 

• Distribution list specified in the header. For 
example, PDW would specify destinations 
contained in the terminal table list for PDW, 
that is, Philadelphia, Boston, Washington. 

The switched message, when sent to its destination, 
will have inserted in its message header the in-time 
stamp and in-date stamp, and a sequence-out number. 
Output IT?-essages will be given priority over input, 
or received, messages. 

Inquiry Application 

Inquiry messages require processing of the message 
by a problem program resident in the central proc­
essing system. A reply message must be generated 
for transmission back to the sending terminal. The 
input message to be processed by the Inquiry routine 
must have the destination code INQ. The message 
entering the process queue (INQ) will have the date 
and time stamp inserted in the message header. The 
reply message generated by the inquiry processing 
program must contain the message type code P in 
the outgoing message header format. This outgoing 
message type will have inserted within the message 
header an out-date and time stamp and a sequence­
out number. To allow for these insertions, 19 blank 
spaces must precede the first character of the reply 
message. " 

Operator Control Program 

Control messages require processing of the message 
by a problem program resident in the central proc­
essing system. A reply message must be generated 
for transmission back to the in-house terminal (OPR). 
The message generated by the Operator Control 
program will have the destination code (OPR). The 
message entering the process queue (CTR) will have 
the date and time stamp inserted in the message 
header. These messages will be queued in main 
storage rather than on disk. The reply message is 
handled in the same manner as the Inquiry reply 
message. 

The message text format of a control message 
might be like one of the following: 

Text 

CHPL, LINE1, 0 
CHPL, LINE1, 1 
CHPL, LINE2, 0 
CHPL, LINE2, 1 
CPYQ, LINE1 
CPYQ, LINE2 
CPYQ,INQ 
CPYQ,CTR 

Function 

Stop polling line 1 
Start polling line 1 
Stop polling line 2 
Start polling line 2 
Get line one queuing information 
Get nne two queuing information 
Get INQ queuing information 
Get C TR queuing information 

98 



MESSAGE FORMATS 

Figure 2 shows the message formats for the switched, 
inquiry, and control messages. The format of the 
messages is shown for both the receiving of the 
message from the terminal and the sending of the 
message or the reply to the terminal. 

SWITCHED MESSAGE FORMATS 
Switched Message (in) 

Bytes 0 1 2 3 4 5 10 15 20 22 

I@ 11 19 I 2 I b I C I H II I b I N I y I C I b I P I H II I b I P I D I wi 0/0 I • 11 I TEXT 

'--'~~ ~~ ~~~ 
EOA Seq in Source Dest 1 Dest 2 Dest 3 EOA Priority 

Switched Message (out) 

'-.,J'--y----i '---v---' ~ '----v--' '---v--'''"-.,.J''--------...--------'/~ ~~ 
EOA Seq in Source Dest 1 Dest 2 Dest 3 EOA in time stamp in date stamp Priority Seq. out 

PROCESS MESSAGE FORMATS 

Process Message (in) 

It== 
EOT 

Bytes 0 1 2 3 4 5 6 7 B 9 10 11 1 2 j) 
~1@~1_2~1~1~13~I~b~l~c~i~H~II~I~b~1~1~I~N~IQ~I~~~ol~TE~XT~ ______________________________________________ ~------------~I©~cl 

Bytes 

Bytes 

'-'~~ ~'-" 
EOA Seq in Source Dest EOA 

Process Message (out) 

o 1 2 3 4 5 10 15 20 28 

TEXT 

~ ~ ~ ~~-----*-O-u-tt-i~~s-ta-m-p-----JI~~----------R-e-pl-y-ge-n-er-at-ed--by~me-ss-ag-e-P-ro-ce-ss-P-ro-g-r-a-m-----------------J 
Type 

Inserted by problem program 

CONTROL MESSAGE FORMATS 

Control Message (in) 

o 1 4 10 20 

I@I 0 11 11 I b 10 I P I Rib I CiT I RIOlo I C I Hlp I L I ' I L II I N I E 11 I ' I 0 IQ] 
~~~~~ 

Seq. in Source Dest Program to be used Parameter List

~------------~--------~
Text Format

Control Message (out)

EOT

Bytes ~0~~ __ r-.-.--r-. __ r-.--r1~0.-'--r-'-''-'-'--r-,-.~20~-, __ ,-,-~2~5.-.--r-,~29-r ____________ ------------------jl)r-------------------,-,
I p I b I 0 11 11 I b I 0 I p I R I b I b II II I b I b I I 11 I . I 5 I 4 I . I 2 I I b I 6 I 4 I I 3 I 2 I 4 I TEXT ~\ I © I
----' ~ ~ ~ ~------~''-----------~'--------

Msg Seq. in Dest *Seq. out *Out time stamp *Out date stomp Reply generated by Control Program

Type

*Blonk spaces are to be provided by the problem programs preceding the start of message equal in number to the total number of characters to be inserted in the sequence out, time stamp, and data stamp fields. This will be the
new start of message.

Figure 2. Formats for switched, inquiry, and control messages

99

PROGRAM FLOWCHART

The following charts show the logic flow of the Line
Procedure Specification portion of QTAM, the Inquiry
Task, and the Operator Control Task. This is included
for descriptive information only and does not necessarily
represent the actual program logic flow of QTAM.

SENT

NO

after every carriage
return character

Segment is processed
go to LPSI

NO

NO

YES

NO

100

Message Processing Program

101

Operator Control Message Processing Program

Set bits to stop the
polling of the line

Prepare a message to
notify operator thot the
specified changes were

made

Cancel Messa e

102

MACRO CODING

The following pages illustrate the coding needed for
each application. The Message Control Task, the
coding of which is obtainable with this book, is
completely coded. The Inquiry Application and the
Operator Control Programs show methods of using
the needed QTAM macro instructions and the over­
all structure of the processing programs but do not
show the actual program coding.

MESSAGE CONTROL TASK OF QTAM

Name Operation

STQTAM OPEN

ENDREADY

LPS1 LPSTART

RCVSEG

TRANS

RCVHDR

SKIP

SEQIN

SOURCE

103

Operand

(DCBFILE, (INOUT),
DCBLINE, (INOUT),
DCBOPRLG, (INOUT»

19

RCVE1050

, C'#'

Comments

Data Set Initialization makes ready for use the
Operator in-house terminal communication line and
the direct access storage device used for message
queuing. It causes polling to be initiated on the line,
and updating of queue status tables.

Receive Segment LPS Section - identifies the start
of the LPS and reserves 19 spaces for the date stamp,
time stamp, and sequence-out number at the beginning
of the header segment.

Instructions between this delimiter macro and the
next will service both the header and the text seg­
ments of the input message.

Converts 1050 message characters to the common
system-wide code EBCDIC.

Receive Header LPS Section. Instructions between
this delimiter macro and the next will service only
the header segment of the input message.

Causes all characters up to and including the # to be
skipped, thus allowing the LPS to be in position for
the first field (# is a translated @).

Checks sequence of numbered messages for each
terminal as they arrive. No operand is needed since
the sequence number is ended with a field delimiter
character (blank).

Checks the validity of the source terminal code
received in the message header against the code of
the terminal that was polled. No operand needs to
be specified since the field is ended with a field
delimiter character. If the source code is invalid,
an error is indicated in the error halfword of the
line involved.

Name Operation

ROUTE

EOA

TIMESTMP

DATESTMP

MODE

ENDRCVE

°EOBLC

ERRMSG

ERRMSG

CANCELM

POLLIMIT

Operand

C'%'

9

PRIORITY, C '*'

X'3000', SOURCE,
=C'bbb. MESSAGE
NOT IN SEQUENCE'

X'8600'SOURCE,
=C'bbb. MESSAGE
HEADER FORMAT
ERROR. CORRECT
AND RESEND'

X'8600'

LIMIT

Comments

Routes the message to the destination queue(s)
specified in the message header and checks the
validity of the destination code against the terminal
table provided by the user. If the destination code
is valid, the message is queued for the speCified
destination.

Indicates that multiple destination routing is expected
and must be checked for. The operand identifies %
as the end-of-address character. This character
must appear in the message header after the last
destination code.

Inserts the time of day in the header field. First
character is blank. The operand (9) indicates the
number of characters to be inserted.

Inserts the date in the header field. The insertion
will consist of a blank character followed by a six­
character date stamp.

If the next character is an *, the character following
the * will indicate the message priority.

End Receive LPS Section. Macros between this
delimiter macro and the next will service the message
after the end of message is received.

Allows the 1050 terminal to continue receiving after
an EOB. It also provides for up to two retrans­
missions of the message segment if a transmission
error is detected. If the error is not corrected, an
error is indicated in the error halfword for this line.

Sends the error text specified to the source terminal,
when the error type specified by the mask is detected.
The header of the message causing the error will be
placed at the beginning of the text. The mask 3000
is the bit configuration (in hexadecimal) used to test
the halfword error indicator.

Sends the error text specified to the source terminal
when the error type specified by the mask 8600 is
detected.

Message containing error indicated by mask 8600
is canceled.

Determines whether the terminal has sent the maxi­
mum number of messages allowed on a single polling
pass. The operand is the symbolic name of an
optional field in the terminal table that contains the
limit of consecutive polls for each terminal.

104

Name Operation Operand

POSTRCVE

SENDHDR

MSGTYPE CIpI

SKIP 6

SEQOUT 3

TIMESTMP 9

DATESTMP

MSGTYPE

SEQOUT 3

SENDSEG

TRANS SENDI050

PAUSE X'15 I, 20X'171

105

Comments

Delimiter macro which indicates the end of the
receiving section of the LPS.

Send Header LPS Section. Macros between this de­
limiter macro and the next will service only the
header segment of the output message.

Message Type P Section. Determine whether the
message is type P. If the next character is a P, the
macros between this MSGTYPE macro and the next
delimiter macro will handle these messages. The
problem program must leave 19 spaces at the
beginning of the inquiry reply message for the out­
time stamp, date stamp, and sequence number.

Causes 6 nondelimiter characters (sequence-in
number and destination code) to be skipped to position
the LPS for the first field.

Sequentially number outgoing message by terminal.
The operand (3) is the number of" characters to be
inserted (two digits preceded by a blank). Space
must be reserved at the beginning of the message by
the problem program for the sequence-out number.

Inserts a 9-character time-of-day stamp in the out­
going header field. (The first of the 9 characters is
a blank.)

Inserts a 7 -character date stamp in the outgoing
message header. The first character is a blank,
followed by a 6-character date stamp.

Remaining Message Type Section. All mess'ages
except type P messages will be handled by the macros
between this MSGTYPE macro and the next de­
limiter macro (SENDSEG).

Sequentially number outgoing messages by terminal.
The operand (3) indicates that a three-character
output sequence number is to be inserted (two digits
preceded by a blank). Space must be reserved by
the use of LPSTART for message-switching messages.

Send Segment LPS Section. Macros between this
delimiter macro and the next will service both the
header and the text segments of the output message.

Translates output message using code conversion
table name SENDI050.

Upon recognition of each carriage return character
(X'15 I), this routine will insert 20 idle characters
(X'17 I) to provide time for the carriage to return.

Name Operation

ENDSEND

EOBLC

REROUTE

POSTSEND

DCBLINE DCB

DCBOPRLG DCB

DCBFILE DCB

TERMTBL

Operand

X'0040', =C'OPR'

DDNAME
=DDGROUP1,

DSORG=CX,

MACRF=(G, P),

CPOLL=(POLLINE1,
POLLINE2) ,

BUFRQ=2,

ACLOC=13,

CLPS=LPSl

DDNAME
=DDGROUP2, DSORG
=CX, MACRF=(G, P),
CPOLL=(POLLINE3) ,
BUFRQ=2, ACLOC=13,
CLPS=LPSl

DDNAME=DDFILE,

DSORG=CQ,

MACRF=(G, P)

PBW, 3

Comments

END SEND LPS SECTION. Macros between this
delimiter macro and the next define functions to be
performed after the message has been sent.

Informs QT AM to continue sending upon recognition
of an EOB. It also specifies retransmission of a
message segment if a transmission error is detected.
If the error is not corrected, an error is indicated
in the error halfword for this line.

Causes a message to be queued for the terminal name
OPR when the error type specified is detected.

Delimiter macro which identifies the end of the sending
portion of the LPS. It also indicates the last instruction
of this LPS.

Communication Line Group DCB Section - identifies
DD statement name associated with this DCB.

Define DCB as a communication line group type.

I/O access level is GET/PUT.

Symbolic names assigned to the polling list of the
two lines.

Number of buffer requests required by each line.

Relative position of the selecting address of terminals
within its terminal table entry (see terminal table
entry format).

Identifies LPSl as the name of the LPS for these two
lines.

Identifies the operator in-house terminal line group.

Direct Access Device Queue DCB Section -:- identifies
DD statement associated with this DCB.

Defines DCB as a direct access device type.

Queue to be accessed at the GET/PUT level.

Terminal Table Section - specifies the extent of the
terminal table. PBW is defined as the last entry in
the terminal table.

106

Name Operation

LIMIT OPTION

CHI TERM

NYC TERM

PHI TERM

BOS TERM

WAS TERM

OPR TERM

INQ PROCESS

CTR PROCESS

PBW LIST

POLLINE1 POLL

POLLINE2 POLL

POLLINE3 POLL

BUFFER

STPROCES OPEN

OPEN

LOOP GET

107

Operand

FL1

L, DCBLINE,1,
6407640D, (3)
L, DCBLINE, 2,
6207620D, (3)
L, DCBLINE, 2,
6407640D, (2)
L, DCBLINE, 1,
6207620D, (2)
L, DCBLINE, 2,
6707670D, (1)
L, DCBOPRLG,
6207620D, (5)

EXPEDITE

(PHI, BOS, WAS)

(CHI, BOS)

Comments

Limit is the symbolic name of the field in this terminal
table which contains the limit of consecutive polls for
each terminal.

The six terminals and their parameters are here
defined. L indicates outgoing messages are to be
queued by line; DCBLINE is name of associated DCB;
1 is relative line number within the line group; 6407
is 1050 addressing code; 640D is 1050 polling code;
the number in parentheses defines the maximum
number of consecutive polls for each terminal to be
inserted in the LIMIT field defined above.

Defines the symbolic names of the process queues in
the terminal table, thus allowing INQ and CTR as
valid destinations.

The CTR queue will be in main storage since EXPEDITE
was used.

Define a distribution list of message destinations as
PHI, BOS, WAS.

Polling List Section - defines order of polling of
terminals attached to line 1.

(NYC, PHI, NYC, WAS) Defines order of polling of terminals attached to
line 2.

(OPR)

DCBFILE, 10, 95

Defines polling of the operator in-house terminal line.
Polling is initiated upon execution of the open for the
line group.

Buffer Section - provides internal storage buffering
for the DCBFILE used for message queuing. Ten
buffers are specified with 95 bytes per buffer.

INQillRY MESSAGE PROCESSING TASK OF QTAM

(PROCESSQ)

(REPLYQ)

Opens the message control queue (INQ) so that
messages can be obtained from the queue by the use
of a GET macro instruction.

Opens the output DCB; this causes a linkage to the
Message Control Task so that the PUT macro
instruction can send messages to their destination.

PROCESSQ, \VORKA1 Queue Access Section. Get the next sequential
segment from the queue (INQ) referenced by the DCB
and place it in work area \VORKA1. If no segments
are available, a '\TAIT it implied.

(The message is now available for processing by the problem program. References to files for data to be
used in preparing the reply, if required, would be under normal procedures of Operating System/360.)

Name Operation

PUT

B

WORKAI DS

WORKA2 DS

SOURCE DS

PROCESSQ DCB

REPLYQ DCB

Operand

REPLYQ, WORKA2

LOOP

CLIOO

CLIOO

CL3

DDNAME=INQ,

MACRF=G',

BUFRQ=2,

SYMAD=ERROR,

TRMAD=:=SOURCE,

DSORG=MQ,

SOWA=IOO,

RECFM=S

DDNAME=DDREPL Y,
MACRF=P,

TRMAD=SOURCE,
DSORG=MQ,
SOWA=IOO,
RECFM=G

Comments

Place the processed message on the appropriate
destination queue specified by the reply DCB parameter
TRMAD. The terminal table entry name in the
location specified by TRMAD will be the destination.

Branch to beginning to "GET" next message for
processing.

Define work areas.

Defines a 3-character area referred to by the TRMAD
parameter of the DCB. It will contain the message
destination Terminal Table entry name.

Process Program Queues DCB Section (Type 1) - name
of the Process Queue Terminal Table entry name and
associated :qD statement for this process DCB.

Program at the GET level.

Two buffers will be queued ahead in core from the
direct access device queue.

Nam.e of routine that will handle overflow of messages.

Specifies the name of the location that will contain
where the message came from in the case of a GET
macro, and the message destination in the case of
a PUT macro.

Defines DCB as a process program type.

Work area size (in bytes).

Working unit is a segment.

Process Program Queue's DCB Section (Type 2).

Refer to PROCESSQ DCB for explanation of parameters.
RECFM=G means that the complete messages are
being PUT to the destination.

108

Name Operation

STOPRTOR OPEN

OPEN

NEXT GET

OPERATOR CONTROL TASK OF QTAM

Operand

(PRCDCB)

(RPLYDCB)

PRCSDCB, WORKAl

Comments

OPENs the message control queue (CTR) so that
messages can be obtained from the queue by the use
of a GET macro instruction.

OPENs the output DCB; this causes a linkage to the
message control task so that the PUT macro instruction
can send messages to their destination.

Get the next sequential message segment from the
queue (CTR) and place it in the work area.

(Determine which subprogram the message requests and LINK to it. The program that is linked will do the
compilation required to accomplish the request. The program will execute CPYPL, CHNGPL, and CPYQ
macros as required. The linked program will then prepare a reply for the operator and place it in WORKA2
and return to the main program.)

PUT

B

WORKAl DS

WORKA2 DS

SOURCE DS

'DEST DS

PRCSDCB DCB

RPLYDCB DCB

109

RPL YDCB, WORKA2 Sends the reply message to OPR.

NEXT GET next message from queue, or wait until next
message enters the queue.

CLlOO

CL200

CL3

C'OPR'

DDNAME=CTR,
MACRF=G,
BUFRQ=2,
SYNAD=ERROR,
TRMAD=SOURCE,
DSORG=MQ,
SOWA=lOO,
RECFM=S

DDNAME=DDRPL Y,
MACRF=P,
TRMAD=DEST,
DSORG=MQ,
SOWA=200,
RECFM=G

Define work ar~as.

Provide area that will contain the source terminal
entry name. The name will be examined by the operator
control program to see if it is OPR. If not, the
message will be canceled (see program logic flow).

Provide the destination terminal entry name. All
replies will then go to this terminal (OPR) when a
PUT macro references the DCB named REPL YDCB.

110

APPENDIX B: MESSAGE HEADERS FOR QTAM

A message header is a prefix to a message received
or sent via communication lines containing infor­
mation for:

Routing of the message.
Sequence numbering
Source validity checking
Time stamping
Date stamping
Priority assignment
Identification of message type
Specification of special user functions

The message header may contain other information
not of immediate use for handling of the message -
for example, various device-required characters,
identification fields for operator use, or fields
required for later processing of the message.

A particular telecommunications system appli­
cation using QTAM may have all or none of this
information in the message headers, depending on
the desired flexibility of the system and the functions
to be performed.

QTAM provides a flexible, high-level macro
language that can be used to specify header analysis
procedures for nearly all reasonable message headers
and supported communications equipment. This
document describes desirable and necessary features
for message headers being analyzed by QTAM.

In general, message headers are for input messages
(messages received from terminals via communication
lines), output messages (messages sent to terminals
via communication lines), or both, as in the case of
a message-switching application where the same
header (and text) is sent as is received, except for
additions made by the QTAM program.

Message headers change in appearance as they
proceed through, and are operated on by, various
parts of the communications system. The following
discussion is concerned only with the message
headers as they are prepared at the terminal for
sending.

A number of considerations should be made when
preparing message header formats designed for
easy and efficient use of QTAM:

111

• Line control characters. Depending on the
particular terminal device and communication
line control discipline used (for example,
Teletype 28ASR terminals in an 83B2 control
system), particular control characters or
sequences of characters will be needed in the
message header. The actual characters used
are very device-dependent and will not be
covered here. To determine what these
characters are for a particular system, it is
best to consult manuals describing the par­
ticular devices used.

Just who is responsible for placing specific
control characters in a message header also
depends on the devices used. Usually it is a
shared responsibility of both the person pre­
paring the message and the terminal device
used to transmit it. * This information is also
to be derived from the manual for the particular
devices involved.

• Header field definition. The content of a mes­
sage header is contained within "fields"
consisting of one or more characters each
(Figure 3). Each such field contains information
for a particular operation or function to be
performed on that message (header and text).

Message Message
Msg Type Input Sequence Dest. 1 Dest. 2

Field Number Field Field Field EOA EOT
~'~"" ~, ~ ~~, ~ ~

I I I I I I I I I I I I I I I I I I I M;ssa~e Te~: I

Figure 3. Example of message header fields

• Fixed or variable length. Message header fields
must in general be of a fixed length for each
particular field. Exceptions to this are
(1) source and destination fields of a message
that may consist of any number of characters
up to a maximum of eight bytes (characters),
and (2) input sequence number fields, which
may be any length up to five bytes containing
four digits (the first byte is always blank).

• Field separation. Header fields may be
separated by any number of blank characters.
If blank characters are used to separate the
fields, the length of the fields need not be
specified in the QTAM macros. For variable­
length fields (as discussed above) blank charac­
ters must be used to delineate the field, since
a fixed length cannot be specified. If fields
are not separated by blank characters, the
exact lengtp. of each field must be specified.

• Order of fields within header. In message
headers for a message-switching application
using QT AM, all fields concerned with receiving
the message must precede those concerned
with sending it (Figure 4).

Messag~~H_ea_de_r ___ ______

Receive Fields Send Fields Message Text

Figure 4. Order of header fields for message switching

*The same is true for reception of the message by the CPU. Certain

control characters will be deleted by the control unit and others

will be passed through to be handled by the QTAM program.

• Header length. The length of the message
header must be less than or equal to that of
the buffer length specified in the QTAM macro
program, minus 32 bytes used for the header
prefix. Conversely, when specifying the
macro program for QTAM, the length of the
buffers specified must be sufficient to contain
the maximum message header plus 32 bytes
for the prefix.

• Message type identification. Message headers
that require different handling procedures or
have different formats from other messages
on a line may be identified by a special
character or sequence of characters. It is
desirable that this "message type" identification
be the first field of the message header. This
makes possible early separation of the various
types of messages involved so that the proper
procedure can be followed by each.

• Skipping unwanted fields. Fields that are not
checked or used by header analysis may be
skipped by either specifying within the QTAM
macros the number of nonblank characters in
the field to be skipped or by identifying the
end of the field by a special character con­
figuration in the message header. This
configuration can be from one to eight nonblank
characters in length. (See Figure 5.)

Identification

Field to be Skipped of End of Skip

~ (Not)!sed) _____ ~eld

1013111 IpIHloINIEI#1 Ixlxl71-l slolol 111&1*1

Figure 5. Skipping a variable-length field

• Message priorities. Priority of a message can
be identified by either a special character in
the message header followed by the message
priority or by just specifying the message
priority. A special character should be used
when all messages are not necessarily given
a priority, while the second case can be used
when a priority is inserted in every message.
Message priority levels range from 1, 2, ---,
9, A, B, ---, Y, Z, where Z is the highest
priority and 1 is the lowest.

• Destination fields. When multiple destinations
are desired in the message header, a special
character or sequence of characters must be
reserved to identify the last destination
(address) listed. This character(s) is termed
the end of address (EOA) character(s). Each
destination may be separated by a blank
character(s) from the others. If this is done,
the length of each destination will not have to
be specified within the QTAM macro program,
and the destinations may then be variable in
length (Figure 6).

EOA

Figure 6. Multiple destination fields of variable length

If there is never more than one destination,
the End of Address field is not needed, and if
the destination is fixed it does not even have to
be included in the message header.

• Special handling. A special character may be
placed in the message header to specify that the
message is to be handled in the "initiate" mode.
When a message is handled in the "initiate" mode,
message segments may be either processed or
sent to a destination before the entire message
is received. The special character is needed
only when not all of the messages ofa given
type are to be handled in this mode.

• Conversational mode. A special character may
also be placed in the message header to identify
that the message is to be handled in !!conver­
sational" mode. Receipt of a message in this
mode will imply that the next terminal on the
line will not be !!polled!! until a further exchange
of messages has occurred. The special
character is needed only when not all of the
messages operate in this mode.

• User routines. Just as for the "initiate!! and
!!conversational!! modes, a user routine can be
specified to operate only on certain messages
containing a special character. Again, this
special character is needed in the message
header only if not all messages require the
particular user routine.

112

C20-1640-0

International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, New York 10601

