
IBM System/360 Operating System

Introduction to Control Program Logic

Program Number 3605-CI-505
3605-DM-50B

This publication
nents of the primary
System/360 Operating
the program logic
these components.

discusses the compo­
control program of IBM
System and indicates
manuals that describe

Program Logic Manuals are intended for
use ny IBM customer engineers involved in
program maintenance, and by system program­
mers involved in altering the program
design. Program logic information is not
necessary for program operation and use;
therefore, distribution of this manual is
limited to persons with program maintenance
or modification responsibilities.

RESTRICTED DISTRIBUTION

Form Y28-660S-2

Program Logic

,PREFACE

This publication is an introduction to
the logic of the primary control program
and to the program logic manuals that
describe its components. The figures that
trace the flow of CPU control for varfous
operations are examples of typical uses of
control program facilities.

Before using this publication, the read­
er should be familiar with the contents of:

IBM System/360 Operating System: Intro­
duction, Form C28-6534

IBM Systern/360 Operating System: Con­
cepts and Facilities, Form C28-6535

IBM Systern/360: Principles of Operation,
Form A22-6821

Major Revision (September 1966)

This edition, Form Y28-6605-2, is a major reV1S10n of and obsoletes
Forms Y28-6605-0 and -1. The system control blocks that were formally
in Part II of this publication have been deleted and are now in the
publication IBM System/360 Operating System: System Control Blocks,
Form C28-6628.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's
comments. If the form has been removed, comments may be addressed to
IBM Corporation, Programming Systems Publications, Department D58,
PO Box 390, Poughkeepsie, N. Y. 12602

© International Business Machines Corporation 1966

INTRODUCTION

Functions of the Control Program •
Job Management Routines •
Task Management Routines ••
Data Management Routines. •

5

5
5
5
6

ORGANIZATION OF THE CONTROL PROGRAM. 7

Resident Portion of the Control
Program

Nonresident Portion of the Control
Program • • • • •

Transient Areas
Dynamic Area. •

PROGRAM FLOW .

SYSTEM CONTROL

7

8
8
8

9

. • . 13

Control Flow to the Control Program. 13

SVC Interruptions • • • •
Other Interruptions • • •

CONTENTS

• • 13
• 15

Control Flow to a Processing Program • • 16
Returning Control to a Processing

Program. • • • • • • • • • • • 16
Supervisor-Assisted Linkages ••••• 16

INPUT/OUTPUT CONTROL • .. 18

Processing Input/Output Operations • • • 18
Opening a Data Control Block. • • • • 19
Executing an Input/Output Operation • 20

Starting an Input/Output
Operation • • • • • • • • • • 20

Terminating an Input/Output
Operation. • • 21

GLOSSARY 23

APPENDIX A: SVC ROUTINES. • • • 25

INDEX. • • • 29

ILLUSTRATIONS

FIGURES

Figure 1. Loading of the Control
Program • • • • • • • • • • 7

Figure 2. Divisions of Main storage
for the Operating System. • • • • • 8

Figure 3. Example of CPU Control Flow
for a Job Processing Cycle. • • • • • • 10

Figure 4. Example of CPU Control Flow
for an SVC Interruption • • • • • • • • 14

Figure 5. Example of CPU Control Flow
for an Asynchronous Interruption. • • • 15

Figure 6. Example of CPU Control Flow
for a Supervisor-Assisted Linkage ••• 17

Figure 7. Example of CPU Control Flow
When an OPEN Macro-Instruction Is
Issued. • • • • • • • • • • • • • • • • 19

Figure 8. Example of CPU Control Flow
for an I/O Operation. • • • • • • • • • 21

Form Y28-6605-2, Page Revised by TNL Y28-2222, 4/10/61

The control program is a collection of
supervisory and service routines that gov­
ern System/360 Operating System. These
routines have exclusive control over all
input/output and machine-oriented func­
tions. The control program schedules work,
allocates system resources., and performs
input/output (I/O) operations.

The operation of the control program is
described in a series of program logic
manuals, each of which describes a func­
tional area within the control program.

This publication briefly discusses the
processing performed by the components of
the primary control program and indicates
the program logic manuals in which more
detailed information can be found. The
publication is divided into four sections:

• Organization of the control program.
• Program flow.
• system control.
• Input/output control.

The first section describes the organi­
zation of the control program in ma1n and
auxiliary storage; the second, the control
program processing required to execute a
job step; the third, some of the supervisor
operations during the execution of a job
step; and the last, the control program
operations required to perform I/O opera­
tions.

FUNCTIONS OF THE CONTROL PROGRAM

,..--' i control program routines are grouped
iinto three functional areas:
!

I • Job management routines.
f ~ ;ask management routines.
~ata management routines.

JOB MANAGEMENT ROUTINES

Job management routines provide communi­
cation between the user and the operating
system by:

• Analyzing the input job stream and
collecting the information needed to
prepare the job for execution.

• Analyzing operator commands, and trans­
mitting messages from a program to the
operator.

There are three major job management
routines:

• Master scheduler, ~hicn analyzes com­
mands from the console and transmits
messages to the operator.

• Reader/interpreter, ~hich reads the
input job stream and constructs control
blocks and tables from information in
the control statements.

• Initiator/terminator, ~hich collects
the information and resources needed to
execute a job step and performs the
operations required to terminate a job
step.

The operation of these routines is de­
scribed in the publication !~~ __ ~y~tg~3~Q
Operatin~~teill~ __ ~ob_~an~~illgQ~L_~rog~~~
Logic Manual, Form Y28-6613.

TASK MANAGEMENT ROOTINES

Task management routines monitor and
control the entire operating system, and
are used throughout the operation 6f both
the control program and processin~ pro­
grams.

There are six functions performed by
these routines:

• Interruption handlin~.
• Task Supervision.
• Main storage supervision.
• contents supervision (and

fetch).
• Overlay supervision.
• Time supervision.

pro~ram

lpe task management routines are collec­
tively referred to as the "sueervisor". A
description of these routines 1S g1ven in
the publication !~~_§y~t~m/3~Q_QE~~atigg
System: Fixed-rask SUEervisQ~L __ ~rog~~~
Logic Manual, Form Y28-6612.

Introduction 5

Form Y28-6605-2, Page Revised by TNL Y28-2222, 4/10/61

DATA MANAGEMENT ROUTINES

Data management routines control all the
operations associated with input/output
devices: allocating of space on volumes,
channel scheduling, storing, naming, and
cataloging of data sets, moving of data
between main and auxiliary storage and
handling errors that occur during I/O oper­
ations. Data management routines are used
by both processing programs and control
program routines that require data move­
ment. Processing programs use data manage­
ment routines primarily to read and write
data. The control program uses data man­
agement routines not only to read and write
required data, but also to locate input
data sets and to reserve auxiliary storage
space for output data sets of the process­
ing programs.

There are five categories of
agement routines:

data man-

6

• Input/output (I/O) supervisor, which
performs I/O operations and processes
I/O interruptions.

• Access methods, which communicate with
the I/O supervisor,.

• Catalog management, which maintains the
catalog and locates data sets on auxil­
iary storage.

• Direct-access device space
(DADSM), which allocates
storage space.

management
auxiliary

• Open/Close/End-of-Volume, which per­
forms required initialization for IIO
operations anj handles end-of-volume
conditions.

The operation of these routines is de~
scribed in the following publications:

IBM Systeml360 Operating System:
Input/Output Supervisor, Program Logic
Manual, Form Y28-6616

IBM Systeml360 Operating System: Sequen­
tial Access Methods, Program Logic Manu­
al, Form Y28-6604

IBM Systeml360 Operating System: Indexed
Sequential Access Methods, Program Logic
Manual, Form Y28-6618

IBM Systeml360 Operating System: Basic
Direct Access Method, Program Logic
Manual, Form Y28-6611

IBM System/360 Operating System: Gra­
phics Access Method, Program Logic Manu­
al, Form Y21-1113

IBM System/360 Operating System: Catalog
Management, Program Logic Manual, Form
Y28-6606

IBM Systeml360 Operating System: Direct
Access Device space Management, Program
Logic Manual, Form Y28-6607

IBM System/360 Operating system:
Input/output Support <OPEN/CLOSE/EOV),
Program Logic Manual, Form Y28-6609

Form Y28-6605-2, Page Revised by TNL Y28-2222, 4/10/67

Different portions of the control pro­
gram operate from different areas of main
storage. Main storage is divided into two
areas: the fixed ar~ and the dynamic (or.

"J;>rogram) area.

The fixed area of main storage is the
lower portion of main storage; its size is
determined by the control program configu­
ration. The fixed area contains those
control program routines that perform a
system function during the execution of a
processing program.

The dynamic area is the upper portion of
main storage. It is occupied by a process­
ing program, or control program routines
that either prepare job steps for execution
(i.e., job management routines), or handle
data for a processing progra~ (i.e., the
access methods).

On auxiliary storage, the control pro­
gram resides in three partitioned data sets
that are created when the operating system
is generated. These data sets are:

• The NUCLEUS partitioned data set
(SYS1.NUCLEUS) which contains the resi­
dent portion of the control program and
the nucleus initialization program.

• The SVCLIB partitioned data set
(SYS1.SVCLIB) which contains the nonre­
sident SVC routines, nonresident error
handling routines and the access method
routines.

• The LINKLIB partitioned data set
(SYS1.LINKLIB) which contains the other

Main Storage

ORGANIZATION OF THE CONTROL PROGRAM

nonresident control
and the IBM-supplied
grams.

program routines
processing pro-

Figure 1 shows the main storage areas
into which the routines from each parti­
tioned data set are loaded.

RESIDENT PORTION OF THE CONTROL PROGRAM

The resident portion of the control
program (the nucleus) resides in the
NUCLEUS partitioned data set. This portion
of the control program is made up of those
routines, control blocks, and tables that
are brought into main storage at
initial-program-Ioading (IPL) time and that
are never overlaid by another part of the
operating system. The nucleus is loaded
into the fixed area of main storage.

The resident task management routines
are: all of the routines that perform
interruption handling, main storage
supervision, and time supervision; and some
of the routines that perform task supervi­
sion, contents supervision, and overlay
supervision. These routines are described
in IBM System/360 Operating System: Fixed-.
Task Supervisor, Program Logic Manual.

The only resident job management routine
is that portion of the master scheduler
that receives commands from the operator.
This routine is described in IBM System/360

System Residence Volume(SYSRES)

Dynamic Area Access Method Routines

Nonresident Control Program Routines -------1
or Processing Program

I/O Supervisor
Transient Area ---......--------

SVC Transient Area

Fixed Area

I/O Error Handling Routines

Nonresident SVC Rautines

Resident Portion of
the Control Program

Figure 1. Loading of the Control Program

Organization of the Control Program 7

Form Y28-6605-2, Page Revised by TNL Y28-2222, 4/10/67

Operating System: Job Management, program
Logic Manual.

The resident data management routines
are the I/O supervisor and the BLDL
routine. These routines are described in
IBM System/360 Operating System:
Input/Output Supervisor" Program Logic
Manual and IBM System/360 Operating System:
Sequential Access Methods, Program Logic
Manual.

The user may also select access method
modules to be made resident. These modules
are referred to as the resident access
method (RAM). They are loaded during IPL
rather than during open processing. RAM
modules reside in the fixed area adjacent
to the higher end of the nucleus.

SVC routines and modules of SVC routines
that are normally nonresident (i.e., type 3
and 4 SVC routines) can be made part of the
resident portion of the control program.
When the system is generated, the user
specifies that he wants nonresident SVC
routines to be made resident. When IPL is
performed, he specifies which SVC routines
he wants resident and the nucleus initiali­
zation program loads them into the fixed
area adjacent to the RAM modules, or to the
nucleus if there are no RAM modules.

The test translator (TESTRAN) has an SVC
routine in the nucleus. This routine pro­
vides a linkage to nonresident TESTRAN
routines. The operation of TESTRAN is
described in IBM System/360 Operating Sys­
tem: TESTRAN, Program Logic Manual, Form
Y28-6611.

In systems that support graphic devices,
the graphics access method has an SVC
routine and a table in the nucleus. Both
are described in IBM System/360 Operating
System: Graphics Access Method, Program
Logic Manual.

NONRESIDENT PORTION OF THE CONTROL PROGRAM

The nonresident portion of the control
program is made up of those routines that
are loaded into main storage as they are
needed, and can be overlaid after their
completion.. The nonresident routines oper­
ate from the dynamic area and from two
sections of the fixed area called transient
areas.

TRANSIENT AREAS

The transient areas are two blocks of
main storage defined in the nucleus and
embedded in the fixed area. The first, the
SVC transient area, is reserved for nonre­
sident SVC routines. The second, the I/O

8

supervisor transient area, is used by non­
resident I/O error handling routines that
are brought in by the I/O supervisor. Each
transient area contains only one routine at
a time. When a nonresident SVC or error
handling routine is required, it is read
into the appropriate transient area. All
routines read into the transient areas
reside in SYS1.SVCLIB.

DYNAMIC AREA

The dynamic or program area is all main
storage that is not part of the fixed area.
It is used for all processing programs as
well as for the access method routines and
the nonresident job management routines of
the control program. Processing programs
are brought from either SYS1.LINKLIB, or a
user-specified partitioned data set.
Access method routines are brought in from
SYS1.SVCLIB. Job management routines are
brought in from SYS1.LINKLIB. when the
control program needs main storage to build
control blocks or for a work area, it
obtains this space from the dynamic area.

The dynamic area is subdivided as shown
in Figure 2. Job management routines,
processing programs, and routines brought
into storage via a LINK, ATTACH, or xc-rL
macro-instruction are loaded into the low­
est available portion of the dynamic area.
The highest portion of the dynamic area is
occupied by a table (the task input/output
table) built by a job management routine.
This table is used by data management
routines and contains information about DD
statements. It remains in storage for the
whole job step. Access method routines and
routines brought into storage via a LOAD
macro-instruction are placed in the highest
available locations in the dynamic area.

Task Input/Output Table

Processing Program or Job Management Routine

Dynamic
(Program)

Area

o Supervisor)
If Transient Area FdA

I ______ -----' ixe rea _ Isvc Transient Areal

Figure 2. Divisions of Main
the Operating System

Storage for

The stages to execution of a program
under System/360 Operating System are:

O. Loading the nucleus into main storage
(IPL).

1. Reading control statements.

2. Initiating a job step.

3. bxecuting a job step.

4. Terminating a job step.

The operating system is given control of
the computer when the control program
nucleus is loaded. Thereafter, jobs may be
processed continuously without reloading
the nucleus.

When the user introduces a job into the
input stream, the initial processing
required to prepare his job for execution
is performed by JOD management routines.
control statements for a complete job are
read during stage 1. (When a user data set
is included in the input stream, only
control cards for job steps preceding this
data set are read during stage 1.>

Stage 2 is the processing required to
initiate the execution of a user's job
step. Stage 3 occurs when CPU control ~s

passed to that job s~ep. Stage 4 occurs
when the jon step terminates; job manage­
ment routines perform termination proce­
dures for the step <and, when applicable,
for the job).

Upon completion of a jOb or a job step
that had a data set in the input job
stream, control passes back to stage 1. If
further job step control statements had
been read during stage 1, control passes to
the initiation of the next job step (stage
2) •

PROGRAM FLOW

When a job terminates, and there are no
succeeding jobs in the input job stream,
the control program places the CPU in the
wait state. As long as the nucleus remains
intact in main storage, the user can intro­
duce new jobs into the input job stream
without reloading the nucleus.

Reading control statements and initiat­
ing a job step are performed by the
reader/interpreter and initiator/terminator
routines, respectively. Descriptions of
these routines are given in the publication
IBM System/360 Operating System: Job Man­
agement, Program Logic Manual.

A job step is performed by a user­
written (e.g., a payroll program), or IBM­
supplied (e.g., linkage editor, COBOL)
processing program.

Terminating a job step is performed by
the initiator/terminator and the supervi­
sor. Description of these routines is
given in the publications IBM System/360
Operating System: Job Management, Program
Logic Manual and IBM System/360 Operating
System: Fixed-Task Supervisor, Program
Logic Manual.

Figure 3 shows the overall flow of CPU
control through the job proceSSing cycle.
This figure describes the processing per­
formed by various components of the control
program as it loads the nucleus, reads
control statements, initiates the job step,
and terminates the job step. Control pro­
gram processing performed during the execu­
tion of a job step is discussed in the
subsequent chapters of this publication.

Program Flow 9

r---.

I PL

Load Nucleus

NIP

Initialize Nucleus

SUPERVISOR

Bring
Reader/I nterpreter
and Part of Master

Scheduler into
the Dynamic Area

MASTER SCHEDULER

Interpret Commands

~
Bui Id Tables

SUPERVISOR

Bring
Initiator/Terminator

into
Dynam i c Area

START READER
START WRITER
SET

To load the nucleus, the operator speci­
fies t.he device on which the system resi­
dence . volume is mounted, and presses the
LOAD button on the console." This action
tauses an IPL record to be read and to be
given CPU control. This record reads a
second IPL record which, in turn, reads the
rest of the IPL program into main storage.

The IPL program searches the volume
label '. to locate the volume table of con­
tents~VTOC) of the system residence vol­
ume.The volume table of contents is then
searched for the SYS1.NUCLEUS. The nucleus
is brought into the fixed area, and the
nucleus initialization program (NIP), which
is also part of SYS1.NUCLEUS, is brought
into the dynamic area. NIP receives CPU
control from the IPL program, and initiali­
zes the nucleus. After completing its
processing~ NIP causes itself to be
replaced 1n the dynamic area with the
reader/interpreter and the master command
routine of the master scheduler.

When the start reader (START RDR), start
writer (START WTR) , and set date (SET)
commands are issued, the resulting inter­
ruption causes CPU control to be given to
the master command routine. After process­
ing the commands, this master scheduler
routine passes CPU control to the reader
interpreter. The master scheduler and
reader/interpreter are described in the
publication IBM Systeml360 Operating Sys­
tem: Job Management, Program Logic Manual.

The reader/interpreter reads the control
statements from the input job stream.
Information from the JOB, EXEC, and DD
statements is used to control the execution
of job steps. This information is used to
construct a job control table (JCT) for the
job being read, a step control table (SCT)
for the job step being read, and a job file
control block (JFCB) and step input/output
table (SIOT) for each data set being used
or created by the job step. Information
from these tables and control blocks is
combined with information in the data con­
trol block (DCB) and data set control block
<DSCB) or label when a data set is opened
during step execution.

The reader/interpreter has itself
replaced by the initiator/terminator rou­
tine.

I
1
1
I
I
I
I
1
I
1
1
1
I

.1

Figure 3. Example of CPU Control Flow for a Job processing Cycle
(Continued)

1.0

r-------------------------------------~---,
I
I
I
I
I
I
I
I
J

I NITIATOR/TERMI NATOR

Locate
Input

Data Sets

1
Assign

Input/Output
Devices to
Data Sets

1
Allocate
Auxiliary

Storage

T'
Write Tables

and
Control Blocks

SUPERVISOR

Bring
Processing Program

into
Dynamic Area

Processing Program
to

Execute Job Step

B

After receiving CPU control, the
initiator/terminator prepares to initiate
the job step that has been read and inter­
preted. Using the data which the
reader/interpreter extracted from DD state­
ments, the initiator/terminator:

Locates Input Data sets: The initiator/
terminator determines the volume containing
a given input data set from the data
definition (DD) statement, or from a search
of the catalog. This search is performed
by a catalog management routine that is
entered from the initiator/terminator. A
description of the routines that maintain
and search the catalog is given in the
publication IBM System/360 Operating Sys­
tem: Catalog Management, Program Logic
Manual.

Assigns I/O Devices: A job step cannot be
initiated unless there are enough I/O de­
vices to fill its needs. The initiator/
terminator determines whether the required
devices are available, and makes specific
assignments. If necessary, messages to the
operator direct the mounting of volumes
(tapes, etc.).

Allocates Auxiliary storage Space: Direct
access volume space required for output
data sets of a job step is acquired by the
initiator/terminator, which uses DADSM. A
description of the operation of DADSM is
given in the publication IBM System/360
Operating System: Direct Access Device
Space Management, Program Logic Manual.

The JFCB, which contains information
concerning the data sets to be used during
step execution, is written on auxiliary
storage. This data is used when a data set
is opened, and when the job step is termi­
nated (e.g., disposition).

The initiator/terminator causes itself
to be replaced by the processing program to
be executed.

The processing program can be one of the
IBM-supplied processors (e.g., COBOL, link­
age editor), or a user-written program.
The processing program uses control program
services for operations such as loading
other programs, and performing I/O opera­
tions.

--------___ J

Figure 3. E1xample of CPU Control Flow for a Job Processing Cycle
(Continued)

Program Flow 11

r--\
I I
I I
I I
I I

SUPERVISOR

Dump, if
Required

t
Load

Initiator/
Terminator

I NITIATOR/TERMI NATOR

Dispose of Data Sets,
Write Messages

SUPERVISOR

Bring
Reader/I nterpreter

into the Dynamic Area

When the processing program terminates,
the supervisor receives CPU control. The
supervisor uses, the OPEN/CLOSE/EOV routines
to close any, open data control blocks.
These routines are described in the publi­
cation IBM System/360 Operating System:
Input/Output Support (OPEN/CLOSE/EOV), Pro­
gram Logic Manual.

Under abnormal termination conditions,
the supervisor may also provide special
termination procedures such as a storage
dump.

The supervisor passes control to the
initiator/terminator, which is brought into
the dynamic area replacing the processing
program.

The initiator/terminator performs func­
tions required to terminate individual job
steps and complete jobs. It executes an
installation accounting routine if one is
provided.

The initiator/terminator releases the
I/O devices, and disposes of data sets used
and/or created during the job step. (This
requires reading tables prepared during
initiation, which include information such
as disposition of data sets.)

next
the

step

If the control statements for the
job step were read and interpreted,
initiator/terminator initiates that
(entry point Y on page 11). If the
ments were not read#

state­
the
the
the
for

initiator/terminator is replaced with
reader/interpreter which starts
read-initiate-execute-terminate cycle
the next job step or job (entry point
page 10).

Z on

I
I
I
I
I

__ ----_______________________ ~---------J
Figure 3. Example of CPU Control Flow for a Job processing Cycle

12

Form Y28-6605-2, Page Revised by TNL Y28-2222, 4/10/67

(a

and
the
the
is
the

During execution of a processing program
job step), CPU control is passed back
forth between the control program and
processing program. This section of

publication discusses how CPU control
passed between programs and routines in

fixed and dynamic areas of main
storage.

CONTROL FLOW TO THE CONTROL PROGRAM

SYSTEM CONTROL

An SVC interruption is the only type of
interruption that must be initiated in the
interrupted program; the other types of
interruptions occur because of an event
that is generally not anticipated by the
program that is interrupted.

SVC INTERRUPTIONS

SVC interruptions result from program
requests for contol program services. The
SVC interruption handler saves critical
information about the interrupted program

CPU control is passed from a processing, before passing CPU control to the SVC
pro~ram to the control prOgram via an ~ routine that performs or initiates the
c~~trr~Pt!~;h!n 7nterr~Ptlon .causes tiPU ~ requested service.

_ __ _ n 0 aft Illterrup ~on
handler routine of the c r ram:
The interrupt~on n ~ves CPU control
to a routine that processes the interrup­
tion. This routine returns CPU control to
the supervisor which, in turn, causes CPU
control to be passed to the appropriate
processing program. A description of the
~n· . . .
lication IBM System/360 Operating System:
Fixed-Task Supervisor, Program Logic Manu-
!!.

The processing performed by the control
program is determined by the type of inter­
ruption and falls into five categories:

• SVC interruption. The processing pro­
gram requires a control program service
and requests that service via an SVC
instruction.

• Input/output interruption. An input/
output operation terminates, or the
operator issues a command.

• Timer/external interruption. An event
(e.g., a timer or external signal)
indicates the need for control program
processing.

• Program interruption. The processing
program execution generates an unex­
pected need for control program pro­
cessing either because an invalid oper­
ation is attempted (e.g., execution of
a privileged instruction by a program
in the problem state), or a data error
(e.g., overflow) is detected.

• Machine-check interruption. A computer
error signal indicates that a recog­
nizable machine error has occurred.

tThere are four types of SVC routines:

AtlY); Type 1 SVC routines are part of the .
'\,-<") residen, t ,porti,o,n" of the control program 'I

[" and are disabled (masked) for all types,
"of interruptJ,.o~s_ except machine-check

interruptions.

"

• Type 2 SVC routines are part of the
resident portion of the control pro­
gram, but may be enabled (inter­
ruptable) for part of their operation.

• Type 3 SVC routines are part of the
nonresident portion of the control pro­
gram, may be enabled, and occupy not
more than 1024 bytes of main storage
when loaded.

• Type 4 SVC routines are nonresident,
may be enabled and are larger than 1024
bytes. They are brought into main
storage in segments of 1024 bytes or
less.

When the requested service is performed
by a type 3 or type 4 routine, the supervi­
sor fetches it into the SVC transient area,
unless it was loaded by the nucleus ~n~­
tialization program. A list of the SVC
routines, their types, and the program
logic manuals in which they are described
is given in Appendix A.

A processing program uses the SVC facil­
ities to request services that can be
performed only by the control program. One
of these services, dynamic allocation of
main storage, is requested via the GETMAIN
macro-instruction. Figure 4 shows the
overall flow of CPU control when the expan­
sion of a GETMAIN macro-instruction is

System Control 13

Form Y28-6605-2, Page Revised by TNL Y28-2222, 4/10/67

executed in a processing program. The flow
of CPU control for all SVC interruptions is
similar to the flow for that of GETMAIN;
the SVC interruption handler receives CPU
control, determines which SVC routine is to
perform the requested service, brings that

routine into storage if it is not already
there, and passes CPU control to it. After
the SVC routine performs its service, it
returns control to the supervisor which in
turn, returns control to the processing
program.

r---,

Processing Program

GETMAIN-

SVC Interruption

•
SUPERVISOR

i-
SVC

Interruption
Handler

I
~

GETMAI N SVC Routine

Allocate Main Storage

~
SUPERVISOR

t

Type 1 Exit

t

Dispatcher

I
I

Processing Program

id

--
-

Expansion of a GETMAIN macro-instruction
includes an SVC instruction and instruc­
tions that set up the parameters of the
requested main storage area. Execution of
the SVC instruction causes an SVC interrup­
tion to occur. CPU control is passed to
the SVC interruption handler which saves
the program status word and register con­
tents.

The SVC interruption handler analyzes
the cause of the interruption. Since, in
this case, the SVC routine that is to
receive CPU control is a type 1 routine,
the SVC interruption handler passes CPU
control directly to the GETMAIN SVC rou­
tine.

The GETMAIN routine determines whether
the request is valid and whether there is
enough available main storage to fill the
request. When storage is allocated, indi­
cators are set, showing that this storage
is in use. The GETMAIN SVC routine is
described in the publication IBM System/360
Operating System: Fixed-Task SupervisorL
Program Logic Manual.

When the GET MAIN SVC routine has com­
pleted its processing, it passes CPU con­
trol to the type 1 exit routine which
determines whether the routine that issued
the GETMAIN macro-instruction is enabled or
disabled. Since a processing program
(i.e., an enabled program) issued the
request, CPU control is passed to the
dispatcher which, in turn, passes CPU con­
trol to the processing program.

___ J

Figure 4. Example of CPU Control Flow for an SVC Interruption

14

OTHER INTERRUPTIONS

Program, timer/external, input/output,
and ffiachine-check interruptions give CPU
control to the control program when certain
computer or program events occur. The main
characteristic of these interruptions is
that they are asynchronous (i.e., they
occur at an undetermined point in the
program). Each of these interruptions is
processed in a unique way but the overall
flow of CPU control is si~lar for all of
them. Figure 5 uses a program interruption
as an example of the overall flow of CPU
control for an asynchronous interruption.

the routine that processes the interrup­
tion. After this routine completes its
processing, it passes control to the super­
visor. The routine that now receives CPU
control is determined by the result of the
interruption processing.

The routines that process asynchronous
interruptions are described in the publica­
tions:

• IBM System/360 Operating System: Fixed­
Task Supervisor, Program Logic Manual.

• IBM System/360 Operating System: Job
Management, Program Logic Manual.

When such an interruption occurs, the
appropriate interruption handler receives
CPU control and, in turn, passes control to

• IBM System/360 Operating System:
Input/Output Supervisor, Program Logic
Manual.

r--~----,
I
I
I
I

I

~ocessing Program

Program Interruption

~
SUPERVISOR

...

I
Program

I Interruption
Handler

User-Written Routine

SUPERVISOR

Processing Program

--

-
-
-

--

During execution of a processing
program, a program interruption occurs
causing CPU control to be passed to the
program interruption handler routine. This
routine stores register contents and the
PSW of the interrupted program" and deter­
mines the cause of this interruption.

If the user has not indicated (via a
SPIE macro-instruction) a routine to pro­
cess this particular program interruption
type, the job is abnormally terminated. If
such a routine is provided, the program
interruption handler passes CPU control to
this user-written routine.

When the user-written .routine has com­
pleted its processing, CPU control is
returned to the supervisor which returns
control to the interrupted program.

L __ _

Figure 5. Example of .CPU Control Flow for an Asynchronous Interruption

System Control 15

CONTROL FLOW TO A PROCESSING PROGRAM

Two conditions that can exist when the
control program is to pass CPU control to a
processing program are:

• The supervisor must return CPU control
to a processing program that previously
relinquished control for some control
program service or supervisory func­
tion.

• The supervisor must pass CPU control to
a new processing program whose execu­
tion was requested via a supervisor­
assisted linkage.

The supervisor passes CPU control to any
program in the dynamic area by loading the
program status word (PSW) for that program.
The supervisor routine that loads the PSW
is the dispatcher; its operation is
referred to as dispatching.

RETURNING CONTROL TO A PROCESSING PROGRAM

Normally after the control program has
performed some requested service or
required supervisory function for a pro­
cessing program, the supervisor returns CPU
control to that processing program. When
this processing program had been interrupt­
ed, certain registers and the PSW under
which it was operating were stored by the
interruption handler. The dispatcher re­
stores the registers to their previous
values and loads this PSW, returning CPU
control to that program.

SUPERVISOR-ASSISTED LINKAGES

By using certain SVC macro-instructions,
the user can have the control program

16

perform all the linkages required to pass
CPU control from one program or routine to
another. In general, when a supervisor­
assisted linkage such as a LINK, ATTACH, or
XCTL macro-instruction is used, the control
program brings the desired program into
storage, builds a PSW for that program,
passes CPU control to this program, and
saves the information required to pass CPU
control to the proper program when the
'linked-to' program is complete.

Figure 6 shows the flow of CPU control
when a processing program uses the LINK
macro-instruction to pass CPU control to
another program. The SVC interruption
handler receives CPU control as a result of
the interruption, and passes control to the
link SVC routine. This routine uses pro­
gram fetch to bring the linked-to routine
into storage and constructs a control block
so that the supervisor can control this
routine. The link SVC routine then returns
CPU control to the supervisor which dis­
patches the linked-to routine.

When the linked-to routine is complete,
CPU control is returned to the supervisor
which dispatches the processing program
that issued the LINK macro-instruction.

Supervisor-assisted linkages are used
not only by processing programs, but also
by certain control program routines. Job
management routines use supervisor-assisted
linkages to pass CPU control between its
own routines. When the initiating of a job
step is completed, the initiator/terminator
uses an XCTL macro-instruction to pass CPU
control to the processing program that is
to execute the job step. This macro­
instruction causes the program that issued
it (in this case the initiator/terminator)
to be overlaid by the program that is to
receive CPU control.

Form Y28-6605-2, Page Revised by TNL Y28-2222" 4/10/67

r---,
Processing Program

LINK B ---,

= =

SVC Interruption ..
SUPERVISOR

SVC
Interruption

Handler

LINK SVC Routine

I
If Necessary I Have the

Linked-to Routine Brought
into the Dynamic Area

• Modify Queue

SUPERVISOR

Exit SVC
Routine

Dispatcher

I
I

~utine B(Linked-to Routine)

RETURN -----,

I
SVC Interruption

+
SUPERVISOR

SVC
Interruption

Handler

Exit SVC
Routine

Dispatcher

I
Processing Program

~~
--

Expansion of the LINK macro-instruction
includes an SVC instruction and
instructions that set up parameters. Exe­
cution of the SVC instruction causes an SVC
interruption. CPU control is passed to the
SVC interruption handler which saves the
program status word and register contents,
and analyzes the cause of the interruption.
Since the link SVC routine is a type 2
routine, the SVC interruption handler can
pass CPU control directly to the LINK
routine.

If necessary, the link SVC routine has a
copy of the linked-to routine brought into
main storage. The link SVC routine then
modifies a request block queue so that the
'linked-to' routine will receive CPU con­
trol, and passes CPU control to the exit
SVC routine. This routine passes control
to the dispatcher which dispatches the
'linked-to' routine. The link SVC routine,
and request block queue are discussed in
the publication IBM System/360 Operatin~
System: Fixed-Task Supervisor, Program
Logic Manual.

When the 'linked-to' routine is complet­
ed, it issues a RETURN macro-instruction.
In this case, an SVC interruption occurs
causing CPU control to pass first to the
SVC interruption handler and then to the
exit SVC routine. The exit SVC routine
restores the conditions required by the
program that issued the LINK macro­
instruction. CPU control is then passed to
the dispatcher which returns CPU control to
the program that issued the LINK macro­
instruction.

L ___ J

Figure 6. Example of CPU Control Flow for a Supervisor-Assisted Linkage

System Control 17

Form Y28-6605-2, Page Revised by TNL Y28-2222, 4/10/67

INPUT/OUTPUT CONTROL

The I/O control facilities provided by
the operating system perform services
associated with the moving of data between
main and auxiliary storage. These services
are performed by the control program's data
management routines and consist of:

• Catalog management.
• Direct access device space management.
• Input/output support.
• Input/output operation control.

The catalog management routines maintain
a catalog of certain data sets and the
volumes on which they reside. These rou­
tines locate cataloged data sets, and add
and delete items from the catalog. A
description of the catalog management rou­
tines is given in the publication IBM
System/360 Operating System: Catalog Man­
agement, Program Logic Manual .•

The catalog management routines are SVC
routines which operate from the SVC tran­
sient area. The initiator/terminator of
job management uses catalog management rou­
tines both to locate cataloged input data
sets for a job step being initiated, and to
catalog specified data sets created during
the job step. The IEHPROGM utility program
uses catalog management routines to add.,
change, or delete the components of the
catalog.

The direct access device space manage­
ment (DADSM) routines allocate and release
space on direct access volumes. A descrip­
tion of the DADSM routines is given in the
publication IBM System/360 Operating Sys­
tem: Direct Access Device Space Management,
Program Logic Manual.

The DADSM routines are SVC routines that
operate from the SVC transient area. They
are used by the initiator/terminator when a
job step is being initiated to get direct
access storage space for output data sets,
and by I/O support routines to acquire
additional space and to release unneeded
space.

The I/O support routines are SVC rou­
tines that perform operations directly
associated with an I/O operation. These
operations. are:

• Opening a data control block.
• Closing a data control block.
• Performing end-of-volume procedures.

The I/O support routines operate from
the SVC transient area. They are used by

18

processing programs, the supervisor, and
job management routines, and are described
in the publication IBM System/360 Operatigg
System: Input/Output Support (OPEN/CLOSE/
EOV), Program Logic Manual.

Control of I/O operations occurs both
when an I/O operation is to be initiated,
and when an I/O operation terminates.

Initiation of an I/O operation normally
is performed by access method routines and
the I/O supervisor. The access method
routines operate from the dynamic area, and
the I/O supervisor operates from the fixed
area. The access methods are described in
the publications:

• IBM System/3~6~0 __ ~0~.p~e=r~a~t~i~n~g~ __ ~S~y~s~t~e~m~:
Sequential Access Methods, Program
Logic Manual.

• IBM System/360 Operating System:
Indexed Sequential Access Methods, Pro­
gram Logic Manual.

• IBM System/360 Oper~ting System: Basic
Direct Access Method, Pr09ram~ic
Manual.

• IBM System/360 Operating System: Gra­
phics Access Methods, Program Logic
Manual.

The I/O supervisor is described in the
publication IBM System/360 Operatin~~~~
tern: Input/Output Supervisor, Program Logic
Manual.

Termination of an I/O operation causes
another part of the I/O supervisor to
receive CPU control. During its process­
ing, the I/O supervisor uses error handling
routines and access method routines called
appendages. The I/O supervisor and the
error handling routines are described in
the Input/Output Superv!sor, Program Logic
Manual. The access method appendage rou­
tines are described in the program logic
manuals for the various access methods.

PROCESSING INPUT/OUTPUT OPERATIONS

The processing directly associated with
I/O operations is performed when a data
control block is opened and when an I/O
operation is executed.

"" Form Y28-6605-2, Page Revised by TNL Y28-2203, 2/27/67

OPENING A DATA CONTROL BLOCK

Before any information can be read from
or written into a data set, initialization
must be performed. This initialization is
referred to as 'opening' the data control
block of the data set, and consists of:

The program that uses or creates a data
set specifies the opening of its DCB via an
OPEN macro-instruction. The execution of
this macro-instruction causes an SVC inter­
ruption. The SVC interruption handler
passes CPU control to the aata management
open SVC routine.

• Completing the data control block
(DCB), job file control block (JFCB),
and data set control block (DSCB) of
the data set.

When the open routine has completed its
processing, it returns CPU control to the
supervisor which, in turn, dispatches the
processing program.

The open routine completes the DCB so
that sufficient information is available to
perform I/O operations on the associated
data set. Empty fields in the DCB are
filled from information in the DSCB or
label (if the data set is input) and the
JFCB. The DSCB is the data set label for
data sets residing on a direct-access vol­
ume; the JFCB was built when the job step
was read and interpreted, and contains
information from the DD statement. The
formats of the DCB, JFCB, and DSCB are
given in the publication IBM System/360
Operating System: System Control Blocks,
Form C28-6628.

• Building the data extent block (DEB).

• Acquiring the access method routines
that are to operate on the data set.

• Priming buffers when the queued sequen­
tial access method (QSAM) is used for
input.

Figure 7 shows the flow of CPU control
when an OPEN macro-instruction is issued
for the data control block of a data set
residing on a direct-access volume.

r---,

~ocessing Program

OPEN-

SVC Interruption

SUPERVISOR

SVC
Interruption

Handler

BLDL

Program Fetch

SVC

OPEN SVC Routine

Verify volume and
data set .,

Read DSCB and JFCB ., comODCB

Routine

Expansion of an OPEN macro-instruction
includes an SVC instruction which causes an
SVC interruption when executed. CPU con­
trol is passed to the SVC interruption
handler.

If a table of record addresses for type
3 and 4 SVC routines was not set up at
initial-program-Ioading time, the SVC
interruption handler uses the BLDL routine
of data management to find the open SVC
routine on SYS1.SVCLIB. Program fetch then
loads the first segment of the open SVC
routirie into the SVC transient area.

The open SVC routine first verifies that
the proper volumes are mounted, and then
finds the data set on the volume. If the
data set has password-protection, the open
routine issues a message to the operator
requesting the proper password. If the
operator provides a wrong password twice,
the job step is: terminated.

The open routine reads the JFCB and DSCB
into an open work area obtained from the
dynamic area. Information from the DSCB is
used to fill empty fields in the JFCB. The
JFCB is now used to fill empty fields in
the DCB .

• Figure 7. Example of CPU Control Flow When an OPEN Macro-Instruction Is Issued
(Continued)

Input/Output Control 19

r---,

Complete JFCB

If Data Set
is Output,

Complete DSCB

SUPERVISOR

If the user has provided a DCB exit
routine, CPU control is passed to this
routine. Upon completion of this user
routine, control returns to the open SVC
routine which merges fields from the now
complete DCB into the JFCB. For input data
sets, this merge fills only empty fields;
for output data sets, it also overlays any
affected field except the JFCDSORG field.

The segment of the open SVC routine that
is now loaded and given CPU control is
called an access method executor. These
executor routines perform processing that
is unique to the access method specified;
they are described in the program logic
manuals for the various access methods.

The access method executor builds a DEB
and loads the required access method rou­
tines into the dynamic area of main stor­
age.

If the data set is output, fields in the
JFCB are now merged into DSCB overlaying as
well as filling any affected fields except
the DSORG field. The now-complete DSCB is
written on auxiliary storage overlaying the
DSCB that was read in initially.

The open SVC routine passes CPU control
to the exit SVC routine. This routine, in
turn, passes control to the dispatcher
which dispatches the processing program.

L __ _

Figure 7. Example of CPU Control Flow When an OPEN Macro-Instruction Is Issued

EXECUTING AN INPUT/OUTPUT OPERATION

Executing an I/O operation is discussed
in two phases: processing required to start
the operation, and processing performed
when the operation is terminated. The flow
of CPU control during the execution of an
I/O operation is shown in Figure 8.

20

Starting an Input/Output Operation

The expansion of an I/O macro­
instruction specified in the processing
program results in a branch to the access
method routines. These routines gather
information used to initiate the I/O
operation and place this information in

,.

control blocks. An access method routine Terminating an Input/Output Operation
then issues an EXCP macro-instruction caus­
ing an SVC interruption. The SVC interrup­
tion handler gives CPU control to the I/O
supervisor.

When an I/O operation terminates, an I/O
interruption occurs causing CPU control to
pass to the I/O interruption handler. This
routine passes control to the input/output
supervisor which performs the termination
processing. The input/output supervisor
may pass control to error handling routines
and access method appendage routines to
perform special processing. When its pro­
cessing is complete, the input/output
supervisor passes control to the supervisor
which dispatches the processing program.

The
the I/O
to the
returns
routine
returns

input/output supervisor initiates
operation and returns CPU control
supervisor. The supervisor then

CPU control to the access method
which finishes its processing, and

control to the processing program.

r---,
I
I
I
I
I
I
I
I
I

!2'ocessing Program

READ

=

ACCESS METHOD RTNE

SVC Interruption

SUPERVISOR

I/O SUPERVISOR

SUPERVISOR

To execute an I/O operation, an I/O
macro-instruction such as READ is specified
in the processing program. The expansion
of this macro-instruction includes a branch
to an access method routine. The address
of this routine is obtained from the DCB
where it was stored when the DCB was
opened.

The access method routines set up a
channel program and an input/output block
(lOB) so that the I/O supervisor can ini­
tiate the I/O operation. The access method
routine then issues an SVC instruction.

An SVC interruption occurs causing CPU
control to be passed through the SVC inter­
ruption handler to the EXCP SVC routine of
the I/O supervisor. The EXCP SVC routine
passes CPU control to the I/O interruption
supervisor portion of the I/O supervisor.
This routine checks queues of pending I/O
operations and, if possible, starts some of
these operations. The EXCP SVC routine and
the I/O interruption supervisor are des­
cribed in the publication IBM System/360
Operating System: Input/Output Supervisor,
Program Logic Manual. CPU control is now
passed from the I/O interruption supervisor
through the EXCP SVC routine to the type 1
exit routine. Since the program that
issued the SVC is enabled, the type 1 exit
routine passes control to the dispatcher
which in turn, returns control to the
access method routine.

L ___ -------------------------____ _

Figure 8. Example of CPU Control Flow for an I/O Operation
<Continued}

Input/Output Control 21

r------------'---,

ACCESS METHOD ROUTINE

=

Processing Program

EE~
I/O Interruption

+
SUPERVISOR

+

I
I/O

I Interruption
Handler

+
I/O SUPERVISOR

~

I
I/O

I Interruption
Supervisor

+

I
Access Method

I Appendage
Routine

+

I
I/O

I Interruption
Supervisor

• SUPERVISOR

•
I

I/O

I Interruption
Handler

t
I Dispatcher I

~
Processing Program

~:J
-

The access method routine completes its
processing and passes CPU control back to
the processing program. The requested I/O
operation can be in one of three condi­
tions: complete, in process, or queued as a
pending request. In this last case, the
operation will be started as part of the
processing of some subsequent interruption.

When an I/O operation terminates, an I/O
interruption occurs causing CPU control to
be passed through the I/O interruption
handler to the I/O interruption supervisor
portion of the I/O supervisor which pro­
cesses the I/O interruption.

The I/O interruption supervisor branches
to access method appendage routines to
perform processing unique to the access
method used. These routines are discussed
in the program logic manuals for the var­
ious access methods. The I/O interruption
supervisor then services pending I/O inter­
ruptions and tries to restart free channels
before passing CPU control back to the I/O
interruption handler. This routine gives
control to the dispatcher which returns
control to the processing program at the
point where the I/O interruption occurred.

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I I L ___ J

Figure 8. Example of CPU Control Flow for an I/O Operation

22

Access Method Executor: A routine that is
entered during the performance of the open,
close, or end-of-volume function, and per­
forms processing unique to the access meth­
od to which it applies.

Appendage; A routine that performs a func­
tion of the input/output supervisor but is
not a part of the input/output supervisor.
Appendages are provided by the user of the
input/output supervisor (e.g., Access
Method) •

Asynchronous: Without regular time rela­
tionship to the affected program; as
applied to program execution, unpredictable
with respect to instruction sequence.

catalog: One or more data sets that specify
the volumes upon which cataloged data sets
reside.

Disabled: (masked) A state of the CPU that
prevents the occurrence of certain types of
interruptions. The types of interruptions
for which the CPU is masked is determined
by the current program status word. Unless
qualified, the terms 'masked' and
'disabled' apply to I/O and External inter­
ruptions.

Dynamic Area: That portion of main storage
from which processing programs, job manage­
ment routines, access method routines and
appendages operate.

Enabled: (interruptable) A state of the CPU
that allows the occurrence of certain types
of interruptions. The types of interrup­
tions for which the CPU is interruptable is
determined by the current program status
word. Unless qualified, the terms
'interruptab~e' and 'enabled' apply to all
types of interruptions.

Fixed Area: That portion of main storage
occupied by the resident portion of the
control program (nucleus).

GLOSSARY

Interruptable: See Enabled.

Masked: See Disabled.

Nonresident Portion of Control Program:
Those control program routines that are
loaded into main storage as they are need­
ed, and can be overlaid after their comple­
tion.

Nucleus: That portion of the control pro­
gram that is loaded into main storage at
initial-program-Ioading time and is never
overlaid by another part of the operating
system.

SVC Routine: A control program routine that
performs or initiates a control program
service specified by a supervisor call
(SVC).

System Residence Volume: The direct-access
volume that contains SYS1.NUCLEUS,
SYS1.SVCLIB, a catalog data set, and the
data set reserved for recording data about
machine errors <i.e., SYS1.LOGREC).

SYS1.LINKLIB: The partitioned data set that
contains the IBM-supplied processing pro­
grams and part of the nonresident portion
of the control program. It may also con­
tain user-written programs.

SYS1.NUCLEUS: The partitioned data set that
contains the resident portion of the con­
trol program (i.e., the nucleus).

SYS1.SVCLIB: The partitioned data set that
contains the nonresident SVC routines, non­
resident error-handling routines, and the
access method routines.

Transient Areas: Two areas of main storage
defined in the nucleus; one is reserved for
nonresident SVC routines, the other is used
by nonresident error-handling routines.

Glossary 23

This appendix contains two lists: the first is a list of those macro-instructions
whose expansion includes an SVC instruction and the SVC number (decimal) associated with
that instruction; the second is a list of the routines that perform the services
requested via the SVcs and the program logic manuals (PLMs) in which these routines are
described.

MACRO-INSTRUCTION SVC NUMBER MACRO-INSTRUCTION SVC NUMBER

ABEND 13 LOAD 08
ATTACH 42 LOCATE 26
BLDL 18 OBTAIN 27

BSP 69 OPEN 19
CATALOG 26 OPEN (TYPE=J) 22
CHAP 44 POST 02

CHKPT 50 PURGE 16
CIRB 43 RELEX 53
CLOSE 20 RENAME 30

CLOSE (TYPE=T) 23 RESTART 52
DELETE 09 RESTORE 17
DEQ 48 SCRATCH 29

DETACH 62 SEGLD 37
DEVTYPE 24 SEGWT 37
ENQ 56 SPIE 14

EOV 55 STAE 60
EXCP 00 STIMER 47
EXTRACT 40 STOW 21

FEOV 31 SYNCH 12
FIND 18 TIME 11
FREEDBUF 57 TTIMER 46

FREEMAIN 05 WAIT 01
GETMAIN 04 WAITR 01
IDENTIFY 41 WTO 35

INDEX 26 WTOR 35
IOHALT 33 WTL 36
LINK 06 XCTL 07

Appendix A: SVC Routines 25

In the following list, 'ROUTINE NAME' indicates the name by which each SVC routine is
referred to in the associated PLM. Two entries in the 'TYPE' field indicate that at
system generation time, the user can choose either type for this SVC routinec The first
number indicated is the dominant one and is the type assigned unless the second number is
explicitly specified.

Use of an SVC number that has '**' in the
interruption handler to abnormally terminate
nonsupported SVcs fall into this category.

'ROUTINE NAME'
the job step.

field causes the SVC
All unassigned and some

Use of the remaining nonsupported SVC numbers is effectively a no-operation instruc­
tion* An interruption will occur, but after the SVC interruption handler analyzes the
SVC, it immediately passes CPU control to the SVC exit routine. Nonsupported or
unassigned SVC numbers cannot be assigned to user-written SVC routines.

SVC ROUTINE
NUMBER NAME

00 EXCP
01 Wait
02 Post
03 Exit
04 Getmain
05 Freemain

06 Link
07 XCTL
08 Load
09 Delete
10 Getmain/Freemain

11 Time
12 SYNCH
13 ABEND
14 SPIE
15 ERREXCP

16 Purge
17 Restore
'18 BLDL
19 Open
20 Close

21 Stow
22 OpenJ
23 Tclose
24 DEVTYPE
25 Track Balance

26 Catalog
27 Obtain
28 CVOL
29 Scratch
30 Rename

31 FEOV
32 Allocate
33 IOHALT
34 Master Command

EXCP
35 Write to

Operator

36
37 Overlay

Supervisor
38 Resident svc

26

TYPE

1
1
1
1
1
1

2
2
2
1
1

1
2
4

3,2
1

3
3
2
4
4

3
4
4
3
3

4
3
4
4
4

4
4
3

4

3

2'
2

Input/Output Supervisor
FixeQ-Task Supervisor
Fixed-Task Supervisor
Fixed-Task Supervisor
Fixed-Task Supervisor
Fixed-Task Supervisor

Fixed-Task Supervisor
Fixed-Task Supervisor
Fixed-Task Supervisor
Fixed-Task Supervisor
Fixed-Task Supervisor

Fixed-Task Supervisor
Fixed-Task supervisor
Fixed-Task Supervisor
Fixed-Task Supervisor
Input/Output Supervisor

Input/Output Supervisor
Input/Output Supervisor
Sequential Access Methods
Input/Output Support (OPEN/CLOSE/EOV)
Input/Output Support (OP-E-N/CLOSE/EOV)

Sequential Access Methods
Input/Output Support (OPEN/CLOSE/EOV)
Input/Output Support (OPEN/CLOSE/EOV)
Input/Output Supervisor
Sequential Access Methods

Catalog Management
Direct Access Device Space Management
Catalog Management
Direct Access Device Space Management
Direct Access Device Space Management

Input/Output bupport (OPEN/CLOSE/EOV)
Direct Access Device space Management
Input/Output Supervisor

Job Management

Job Management

Not supported in this configuration

Fixed-Task Supervisor
TESTRAN

Form Y28-6605-2, Page Revised by TNL Y28-2222, 4/10/67

SVC
NUMBER

39
40
41
42
43
44
45

46
47
48
49
50

51
52
53
54
55

56
57
58
59
60

61
62
63
64
65

66
67
68
69
70

71
72
73
74
75
76-199

200-255

ROUTINE
~ TYPE

Label 4
Extract 3,2
Identify 3,2
Attach 3,2
CIRB

Overlay
Supervisor

Ttimer
Stimer

Ttopen1

ABDUMP

**
Disable
EOV

Freedbuf
**
**

Save

**
RDJFCB
**

**
**
**
Backspace
GSERV

ASGNBFR
**
SPAR
DAR
DEQUEUE
**

Available for assignment
to user-written SVC rou­
tines. Until a number is
assigned, its use in a
processing program
causes termination.

3

2

1
2

3

4

2
4

3

3

3

3
2

3

3
3
3

Utilities
Fixed-Task supervisor
Fixed-Task Supervisor
Fixed-Task Supervisor
Fixed-Task Supervisor
Not supported in this configuration

Fixed-Task Supervisor

Fixed-Task Supervisor
Fixed-Task Supervisor
Not supported in this configuration
TESTRAN
Not supported in this configuration

Fixed-Task supervisor
Not supported in this configuration
Not supported in this configuration

Input/Output Support (OPEN/CLOSE/EOV)
Sequential Access Methods

Not supported in this configuration

Unassigned
Not supported in this configuration
Not supported in this configuration

TESTRAN
Not supported in this configuration
Unassigned
Input/Output Support (OPEN/CLOSE/EOV)
Not supported in this configuration

Not supported in this configuration
Not supported in this configuration
Not supported in this configuration
Sequential Access Methods
Graphics Access Method

Graphics Access Method
Not supported in this configuration
Graphics Access Method
Graphics Access Method
Graphics Access Method
Unassigned

Appendix A: SVC Routines 27

Form Y28-6605-2, Page Revised by TNL Y28-2222, 4/10/67

ABEND macro-instruction 25
Access method

appendages 21,,23
executors

definition of 20 r, 23
operation of 20

routines
loading of 8,19
operation of 18/,21, 22

Allocation
main storage 13

Appendage 17,21,22
definition of 23

ATTACH macro-instruction 8,14,24

Backspace routine 27
Buffer priming 19

Catalog 23,25
Catalog management 6,,11,17
Channel

program 21
scheduling 6

Close routine 6
Console 5

DADSM (direct-access device space
management)

function of 6,17
use of 11

Data control block (DCB)
closing of 18
construction of 10,19
exit routine 20
opening of 18,19
use of 20,21

Data extent block (DEB) 19,20
Data movement 6,17
Data set control block (DSCB)

construction of 10,,19,20
use of 19,20

Data set label 19
DCB (data control block)

closing of 18
construction of 10,19
exit routine 20
opening of 18,19
use of 20,21

DD statement 8,10,11,19
DEB (data extent block) 19,20
Direct-access device space management

(DADSM)
function of 6,17
use of 11

Dispatcher 14,17,20-22
DSCB (data set control block)

construction of 10,19,20
use of 19,20

Dynamic allocation of storage 13
Dynamic area of storage

definition of 7,23
use of 8,10,14,18-20

ECB (see event control block)
Error-handling routines

use of 7,8,18,21
EXCP

macro-instruction 21
routine 21,25

EXEC statement 10
Executor, access method 20,23
Exit

DCB 20
routine 14,17,21,25

Fetch, program 5,14,19

GETMAIN
macro-instruction 13,14,25
routine 14,26

Handler
input/output 21
program 15
SVC 14,16,17,19,21,25
(also see interruption handler)

Initiator/terminator
function 5,9
operation 11,12,14,18

Input job stream 5,9,10
Input/output

interruption 13,14
supervisor 6,8,18,20,21
support 6,18

Input/output block (lOB) 21
Interruption handlers 13,14

input/output 21
program 15
SVC 13,14,16,17,19,21,26

Interruptions 13
asynchronous 16

lOB (Input/Output block) 21
IPL 7,9,10

JFCB (Job file control block) 10,19
Job control table (JCT) 10
Job file control block (JFCB) 10,19
Job management routines 5,7,14

function 9
location 8
resident routine 8

Job statement 10
Job step 5,7-9

initiation of 11,14
termination of 11,12,14,26

Job stream 5,9,11
(also see input job stream)

Label
construction of 10
use of 10

Link
macro-instruction 8,16,17,25
routine 16,17,25

Index 29

Form Y28-6605-2, Page Revised by TNL Y28-2222, 4/10/67

Linkage, supervisor assisted 16,17,25
Load

button 10
macro-instruction 8,25

Macro-instruction
ATTACH 8,16
EXCP 21
GETMAIN 13,14
LINK 8,16,17
LOAD 8
OPEN 19,20
SPIE 15
WAIT 24
XCTL 8,16

Master command routine 10
Master scheduler 8

function 5,10

NIP
(nucleus initialization program) 7,10,13

Nonresident routines
control program 7,8,13,23
I/O error handling 8,23
SVC 7,8,13,23
TESTRAN 8

Nucleus
definition of 7,23
loading of 9,10
partitioned data set 7,10,23
(also see SYS1.NUCLEUS)

Nucleus initialization program (NIP)

Open
function 6
macro-instruction 19, 20
operation 10
routine 19,20

Operator commands 5,8.13

Password protection 19
Program area of storage 8
Program interruption 13,15
P~ogram status word (PSW) 16,17,23
PSW (program status word) 16,17,23

Queue, request block 17

30

7,10,
13

Reader/interpreter
function 5,9
operation 10

Request block (RB)
queue 17

Resident access method (RAM) 8
Resident SVC modules 8

Scheduler (see master scheduler)
step (see job step)
Storage

auxiliary 6,7,11,17,20
main 5-9,13,14,16,17,19

SVC
instruction 13,14,16,17,21,25
interruption 13,14,17,19,21
interruption handler

13,14,16,17,19,21,26
library 8
transient area 8,13,17,19

SYS1.LINKLIB 7,8,23
SYS1.NUCLEUS 7,10,23
SYS1.SVCLIB 7,8,19,23

Task input/output table (TIOT) 8
Task management 5,7
Termination

abnormal 12
of I/O operations 17

TESTRAN 8
SVC routine 27

TIOT (task input/output table) 8
Transient area 8

definition of 8,23
I/O supervisor 8
SVC 7,13,17,19

User-written routine 11,15,23

Volume
label 10
system residence 10
table of contents (VTOC) 10

Wait
macro-instruction 25
routine 26
state 9

Technical Newsletter
Re: Form No. Y28-6605-2

This Newsletter No. Y28-2222

Date April 10, 1967

Previous Newsletter Nos. Y28-2180
Y28-2203

IBM SYSTEMl360 OPERATING SYSTEM
INTRODUCTION TO CONTROL PROGRAM LOGIC
PROGRAM LOGIC MANUAL

Program Numbers 360S-CI-505 and
360S-DM-508

This technical newsletter amends 'the publication, IB~
System/360 Operating System: Introduction to Control PrQ[~~
Logic, Program Logic Manual, Form Y28-6605-2. Corrections and
additions to the text are noted by vertical bars at the left of
the change. Changes to illustrations are indicated by bullets at
the left of the title.

Pages to be Pages to be
Inserted Removed

5,6 5,6
7,8 7,8
13,14 13,14
17,18 17,18
27,28 27,28
29,30 29,30

Summary of Amendment

Discussion of the resident SVC modules and new graphics access
method routines.

Note: Please file this cover letter at the back of the publica­
tion. Cover letters provide a quick reference to changes and a
means of checking receipt of all amendments.

RESTRICTED DISTRIBUTION

IBM Corporation, Programming Systems Publications, P.O. Box 390, Poughkeepsie, N.Y. 12602

PRINTED IN U.S.A.

READER'S COMMENTS

Title: IBM System/360 Operating System
Introduction to Control Program Logic
Program Logic Manual

Is the material:
Easy to Read?
Well organized?
Complete?
Well illustrated?
Accurate?
Suitable for its intended audience?

How did you use this publication?

Yes No

Form: Y 28-6605- 2

As an introduction to the subject ___ For additional knowledge Other ________________________________ __

Please check the items that describe your position:
_ Customer personnel _Operator
_ IBM personnel _ Programmer
_ Manager _Customer Engineer
_ Systems Analyst _ Instructor

fold

_ Sales Representative
_ Systems Engineer
_Trainee

Other ____________ __

Please check specific criticism(s), give page number(s) ,and explain below:
__ Clarification on page (s)
_ Addi tion on page (s)

~ _ Deletion on page (s)
~ _ Error on page (s)
....:I
~ Explanation:
z
o
....:I
.ex:
E-4
::>
u

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

fold -

staple

Y28-6502-2

fold

staple

fold

-----------------------------------~---------~---------------------------------------~---r--------------------,
I FIRST CLASS I
I PERMIT NO. 81 I
I I
I POUGHKEEPSIE, N.Y. I
L ________ ~_----------J

r--,
I BUS INESS REPLY MAIL I
I NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. I L __ J I I ,I I I I

POSTAGE WILL BE PAID BY

IBM CORPORATION
P.O. BOX 390
POUGHKEEPSIE, N. Y. 12602

ATTN: CUSTOMER PROGRAMMING DOCUMENTATION
DEPT. D58

111.111

111111

111111

111111

111111

111111

en .

t<
tv
co
I

'" '" o
U1
I

tv

--~

fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

fold

i
. I
. j .

staple

3

