
OS ISAM Logic

Release 21

Program Number 3605-10-526

This publication describes the program logic of the two indexed
sequential access methods: the queued indexed sequential access
method (QISAM) and the basic indexed sequential access method
(BISAM). It also discusses the relationship of indexed sequential
access method routines to other parts of the control program.

File Number S360-30
Order Number GY28-6618-5

Program Logic

Sixth Edition (February 1972)

This is a major revision of, and makes obsolete, the edition of this manual identified as
GY28-6618-4.

This edition applies to OS Release 21 and to all subsequent releases until otherwise indicated
in new editions or technical newsletters. Changes to the information in this book may be
made at any time; before using this publication in connection with the operation of IBM
systems, consult the latest SRL Newsletter, GN20-0360, for the editions that are
applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or to
the IBM Branch Office serving your locality.

Forms for readers' comments are provided at the back of this publication. If the forms have
been removed, comments may be addressed to IBM Corporation, Programming Publications,
Department D78, Monterey and Cottle Roads, San Jose, California 95114. Comments
become property of IBM.

© Copyright International Business Machines Corporation 1966, 1968, 1969, 1971, 1972

PREFACE

This publication describes the program structure of the two indexed sequential access
methods: queued indexed sequential access method (QISAM) and basic indexed
sequential access method (BISAM).

The manual is divided into seven sections:

"Section 1: Introduction" is an overview of indexed sequential access method
organization and an overall description of ISAM operations.

"Section 2: Method of Operation" comprises four parts:

1. ISAM common open, common close, and validation modules - a discussion of
the common processing operations for QISAM scan, QISAM load, and BISAM.

2. Queued Indexed Sequential Access Method, Load Mode - a discussion of the
operations and routines unique to creating data sets with QISAM.

3. Queued Indexed Sequential Access Method, Scan Mode - a discussion of the
operations and routines involved in retrieving and updating records sequentially
using QISAM.

4. Basic Indexed Sequential Access Method - a discussion of the techniques and
operations used in the direct storage and retrieval of records in an indexed
sequential data set.

"Section 3: Program Organization" contains flowcharts of individual ISAM routines.

"Section 4: Director" contains a table of ISAM modules, by type, and module
selection tables for QISAM load mode, open executors, and close executors.

"Section 5: Data Areas" contains descriptions of data management control blocks and
work areas used by ISAM.

"Section 6: Diagnostic Aids" summarizes appendage, asynchronous, and exception
codes set and used by ISAM routines.

"Section 7: Appendixes" supplements this manual and program listings with a
description of ISAM data set organization (Appendix A) and the ISAM channel
programs (Appendix B).

Prerequisite Knowledge

Before reading this book, you should understand the material presented under
"Processing an Indexed Sequential Data Set" in OS Data Management Services
Guide, GC26-3746.

Recommended Reading

The following publications contain information that you may need in conjunction with
reading this book:

OS DADSM Logie, GY28-6607

OS Data Management Macro Instructions, GC26-3794

iii

OS Data Management for System Programmers, GC28-6550

OS I/O Supervisor Logic, GY28-6616

OS MFT Guide, GC27-6939

OS MVT Guide, GC28-6720

OS Open/Close/EO V Logic, GY28-6609

OS Supervisor Services and Macro Instructions, GC28-6646

OS Sytem Control Blocks, GC28-6628

iv

CONTENTS

iii

xiii

1
1
2
5

7
9
9

12
13
14
15
15
15
16
16
16
17
20
22
22
23
24
27
27
28
29
30
31
33
33
33
35
36
37
38
39
42
43
45
45
47
48
49
49

Preface

Summary of Changes for Release 21

Section 1: Introduction
Open Phase
Processing Phase
Close Phase

Section 2: Method of Operation
ISAM Common Open, Common Close, and Validation Modules

The ISAM Common Open Executors
The Validation Modules
Common Close Phase Executors

Queued Indexed Sequential Access Method, Load Mode
Load Mode Open Phase Operations

Initial Load or Reload Open Operations
Resume Load Open Operations
Full-Track-Index-Write Open Operations
The Final Load Mode Open Phase Operations

Load Mode Open Phase Organization
Initial Load Organization
Resume Load Open Organization
Full-Track-Index-Write Phase Organization
The Final Executors in Load Mode Open Phase Organization

Load Mode Processing Phase Operations
Put Routine
Beginning-of-Buffer Routine
End-of-Buffer Routine
Full Track-Index-Write
Appendages

Load Mode Processing Phase Organization
Channel Programs
Control Blocks and Work Areas

Load Mode Close Phase Operations
Load Mode Close Phase Organization

Queued Indexed Sequential Access Method, Scan Mode
Scan Mode Open Phase Operations
Scan Mode Open Phase Organization
Scan Mode Processing Phase Operations

Buffer Control Techniques
SETL Routine
Get Routine
EOB Routine
Scheduling Routine
PUTX Routine
ESETL Routine
RELSE Routine
Appendages

v

51 Scan Mode Processing Phase Organization
51 Processing Routines
51 Scan Mode Channel Programs
52 Scan Mode Control Blocks and Work Areas
52 Scan Mode Close Phase
55 Basic Indexed Sequential Access Method
55 BISAM Open Phase Operations
56 BISAM Open Phase Organization
60 BISAM Processing Phase Operations
61 An Example of BISAM Processing Flow
62 Privileged Macro-time Routines
64 Nonprivileged Macro-time Routines
65 Appendage and Asynchronous Routines
67 Dynamic Buffering Routines
68 Check Routine
71 BISAM Processing Phase Organization
71 BISAM Channel Programs
89 BISAM Control Blocks and Work Areas
91 BISAM Close Phase

93 Section 3: Program Organization

139 Section 4: Directory
141 ISAM Module Identified in Alphameric Sequence

147 Section 5: Data Areas
149 ISAM Control Blocks and Data Areas
149 Data Control Block (DCB)
159 Data Event Control Block (DECB)
160 Data Set Control Block (DSCB)
167 Data Extent Block (DEB)
170 Input/Output Block (lOB)
172 Buffer Control Block (BCB)-BISAM
174 Buffer Control Block (BCB)-QISAM
175 Buffer Control Table (IOBBCT)
179 QISAM Load Mode DCB Work Area
187 QISAM Scan Mode DCB Work Area
193 BISAM DCB Work Area
196 QISAM Track-Index Save Area
198 ISAM DCB Field Area

199 Section 6: Diagnostic Aids
201 Appendage Codes
201 QISAM Scan Mode Appendage Codes
201 BISAM READ and WRITE K Appendage Codes
201 BISAM WRITE KN Appendage Codes
202 Asynchronous Codes
202 BISAM READ and WRITE K Asynchronous Codes
203 BISAM WRITE KN Asynchronous Codes
204 Exception Codes
204 QISAM Exception Codes
205 BISAM Exception Codes

vi

207 Section 7: Appendixes
209 Appendix A: ISAM Data Set Organization
209 Introduction
209 Data Set Structure
211 Prime Data Area
211 Index Areas
213 Adding Records to a Data Set
215 Detailed Index Description
222 Appendix B: ISAM Channel Programs

285 Index

vii

ILLUSTRATIONS

Figures

3 Figure 1. SIO Appendage for ISAM RPS
10 Figure 2. ISAM Open Flow of Control
11 Figure 3. RPS Identification Field in the Data Event Block
14 Figure 4. Flow of control through the Close Executors
17 Figure 5. Flow of Control through Load Mode Open Executors
25 Figure 6. Load Mode Put Routine
26 Figure 7. Load Mode BOB Routine
27 Figure 8. Load Mode EOB Routine
28 Figure 9. Load Mode Channel-end Appendage Routine
29 Figure 10. Load Mode Abnormal-end Appendage Routine
30 Figure 11. Load Mode Processing Modules
31 Figure 12. QISAM-Load Mode Channel Program Flow (Fixed-Length

Records)
32 Figure 13. QISAM-Load Mode Channel Program Flow (Variable-Length

Records)
34 Figure 14. Load Mode Control Blocks and Work Areas
36 Figure 15. The Flow of Control through QISAM Load Mode Close Executors
38 Figure 16. Flow of Control through Scan Mode Open Executors
40 Figure 17. Scan Mode Channel Program/Buffer Queues
40 Figure 18. Buffer Queuing and Movement in Scan Mode
43 Figure 19. Scan Mode SETL Routine
44 Figure 20. Scan Mode GET Routine
46 Figure 21. Scan Mode EOB Routine
47 Figure 22. Scan Mode Scheduling Routine
48 Figure 23. Scan Mode ESETL Routine
51 Figure 24. QISAM Scan Mode Processing Modules
53 Figure 25. Scan Mode Channel Program
54 Figure 26. Scan Mode Control Blocks and Work Areas
56 Figure 27. BISAM Open Executors
59 Figure 28. Flow of Control through BISAM Open Executors
62 Figure 29. Privileged Macro-time Routines
64 Figure 30. Nonprivileged Macro-time Routines
66 Figure 31. BISAM Appendage and Asynchronous Routines
67 Figure 32. Dynamic Buffering Routines
68 Figure 33. BISAM Check Routine
69 Figure 34. BISAM Processing Flow (Not WRITE KN)
70 Figure 35. BISAM Privileged Macro-time Modules
71 Figure 36. BISAM Nonprivileged Macro-time Modules
71 Figure 37. BISAM Asynchronous Modules
72 Figure 38. BISAM Appendage Modules
73 Figure 39. BISAM Channel Program Modules
76 Figure 40. READ K, WRITE K, READ KU Channel Program Flow
77 Figure 41. WRITE KN Channel Program Flow-Index Searching
78 Figure 42. WRITE KN Channel Program Flow-Add to Prime

(Fixed-Length Unblocked Records, System Work Area)

ix

79 Figure 43. WRITE KN Channel Program Flow-Add to Prime
(Fixed-Length Unblocked Records, User Work Area)

80 Figure 44. WRITE KN Channel Program Flow-Add to Prime
(Fixed-Length Blocked Records, System Work Area)

81 Figure 45. WRITE KN Channel Program Flow-Add to Prime
(Fixed-Length Blocked Records, User Work Area)

82 Figure 46. WRITE KN Channel Program Flow-Add to Prime (Variable-
Length Records, System Work Area)

83 Figure 47. WRITE KN Channel Program Flow-Add to End (Fixed-Length
Records, System Work Area)

84 Figure 48. WRITE KN Channel Program Flow-Add to End (Fixed-Length
Records, User Work Area)

85 Figure 49. WRITE KN Channel Program Flow-Add to End (Variable-
Length Records)

86 Figure 50. WRITE KN ChanneL Program Flow-Add to Overflow (Fixed-
Length Records, System Work Area)

87 Figure 51. WRITE KN Channel Program Flow-Add to Overflow (Fixed-
Length Records, User Work Area)

88 Figure 52. WRITE KN Channel Program Flow-Add to Overflow (Variable-
Length Records)

89 Figure 53. Elements of a BISAM Request
90 Figure 54. BISAM Control Blocks and Processing Modules
91 Figure 55. BISAM Work Areas and Queues

142 Figure 56. ISAM Modules Identified by Function and Mode
143 Figure 57. IS AM Modules Identified by Alphameric Sequence
150 Figure 58. BISAM/QISAM DCB
159 Figure 59. Data Event Control Block
161 Figure 60. Format-2 DSCB
166 Figure 61. ISAM Extention to DEB
170 Figure 62. ISAM Extension to lOB
172 Figure 63. Fields of the BISAM Dynamic Buffering BCB
174 Figure 64. Fields of the QISAM BCB
175 Figure 65. QISAM Load Mode Buffer Control Table
180 Figure 66. QISAM Load Mode DCB Work Area
186 Figure 67. Area Y: QISAM Load Index Fields
187 Figure 68. QISAM Scan Mode DCB Work Area
193 Figure 69. BISAM Work Area
196 Figure 70. Track-Index Save Area
197 Figure 71. TISA Control Fields
198 Figure 72. DCB Field Area
204 Figure 73. QISAM Exception Code Summary
205 Figure 74. BISAM Exception Code Summary
210 Figure 75. Indexed Sequential Data Set Structure
211 Figure 76. Initial Structure of Prime Cylinder
212 Figure 77. Structure of Cylinder Index and Track Index
213 Figure 78. Structure of Prime Cylinder after Cylinder Overflow
215 Figure 79. Structure of Prime Cylinder after Independent Overflow
216 Figure 80. Format of ISAM Index Entry
219 Figure 81. Description of Track Indexes
220 Figure 82. Description of Cylinder Indexes
221 Figure 83. Description of Master Indexes
223 Figure 84. ISAM Channel Program Summary

x

Flowcharts

95 Chart AA
98 Chart AB

100 Chart AC
101 Chart AD
102 Chart AE
105 Chart AF
108 Chart AG
109 Chart AH
110 Chart AI
114 Chart AJ
116 Chart AK
130 Chart AL
133 Chart AM
134 Chart AN
136 Chart AP

137 Chart AQ

First Common Open Executor (IGGOl92A)
Second Common Open Executor (IGGOl92B)
Third Common Open Executor (IGGOl92C)
Fixed-length Validation Open Executor (IGGOl920)
First Load Mode Open Executor (IGGOl92I)
First Initial Load Mode Open Executor (IGGOl92D)
First Resume Load Open Executor (IGG0196D)
Last Scan Mode Open Executor (IGGO 1924)
First Scan Mode Open Executor (IGG01928)
ISAM Common Close Executor Module (IGG0202D)
QISAM Scan Processing Module (IGG019HB)
Scan Mode Appendage (IGG019HG)
Scan Mode Close Executor Module (IGG02029)
BISAM Open Executor-Load Privileged Module (IGG0192I)
BISAM Nonprivileged Macro-time Processing- READ K,
READ KU, WRITE K (IGG019JV)

BISAM Privileged Macro-time Processing Module (WRITE KN.
without Read, and Update) (IGG019JX)

xi

SUMMARY OF CHANGES FOR RELEASE 21

Control Block Changes

Several fields containing addresses of ISAM routines have been moved to the DEB
from the DCB and DCB work areas. These changes are for QISAM load and scan
modes and for BISAM.

New QISAM Load Mode Open Executors

There are two new open executors for load mode - IGG01925 and IGG01927. They
are executed when high-level indexes are created on 2301 and 2321 devices.

Summary of ISAM Modules

A table listing all ISAM modules in alphameric order has been added to the Directory.
The table indicates the pages on which each module is described and replaces individual
module names in the index.

Summary of ISAM Channel Programs

A table listing all ISAM channel programs has been added to the introductory text of
Appendix B.

M~ceUaneous Changes

This manual is to be used with MFT and MVT systems. All information about
PCP has been removed.

New information has been added to channel programs 20 and VXCCW(1A) in
Appendix B.

Technical and editorial corrections have been made throughout the manual.

xiii

SECTION 1: INTRODUCTION

Open Phase

The indexed sequential access methods (ISAM) are data management techniques used
for storing indexed sequential data sets on direct-access devices, or for retrieving those
data sets.

A detailed description of the structure of an indexed sequential data set is provided in
Appendix A of this manual. Detailed information on how to create and process an
indexed sequential data set is in the publication OS Data Management Services
Guide, GC26-3746.

ISAM routines are part of the operating system control program. They are grouped
into modules that are placed in the supervisor call (SVC) library during system
generation. Only the modules needed to perform those functions required by a
processing program are loaded into main storage from the system-residence volume.
Wherever possible, all processing programs use the same copy of a module.

There are two indexed sequential access methods: queued indexed sequential access
method (QISAM) and basic indexed sequential access method (BISAM).

QISAM has routines for two modes: load mode routines, which are used to create an
indexed sequential data set and to add records to the end of a data set; and scan mode
routines, which are used to retrieve and update records from a previously created data
set.

BISAM routines provide direct storage and retrieval of any logical record by its record
key. The BISAM routines also permit records to be updated in place. The BISAM
Write-Key-New (WRITE KN) routine provides the user a means of inserting new
records into an indexed sequential data set.

Routines within QISAM load mode, QISAM scan mode, and BISAM are divided into
three phases of execution: the open phase, the processing phase, and the close phase.

When a data control block (DCB) is opened to process an indexed sequential set, the
Open routine gives control to ISAM open executors. (The Open routine is described in
OS Open/Close/EOV Logic, GY28-6609.)

The ISAM open executors are modules that perform the initial ISAM processing. Open
processing is performed in two stages: the first or common open stage which is
executed for both QISAM and BISAM; and the second or mode-oriented stage which is
executed by separate open modules for QISAM load mode, QISAM scan mode, and
BISAM.

The common open executors receive control from the Open routine of II 0 support
when it is determined that an indexed sequential access method is to be used. The
same executors are used for both QISAM and BISAM. These common open executors
determine which mode of ISAM has been specified in the processing program and then
select the required ISAM modules from the system-residence library. The common
open executors determine storage requirements for the access method routines and also
begin the building of control blocks and control lists for subsequent use by the
processing and closing phases. When these operations are completed, the common
open executors transfer control to the mode-oriented, second-stage open executors.

Section 1: Introduction 1

The common open executors are described in detail in the first part of the Method of
Operation section of this manual; the mode-oriented executors are discussed in their
respective QISAM and BISAM parts.

Processing Phase

During the processing phase of indexed sequential access method operations, several
types of routines are invoked: these include input/output routines (in some cases, both
privileged and nonprivileged) and their related channel programs, channel program
appendage routines, asynchronous routines, and buffer management routines. Control
blocks, work areas, and queues are used by the processing phase routines and by the
corresponding channel programs.

When an input or output macro instruction is encountered in the processing program,
ISAM routines construct the needed channel programs for processing the data and
request the I/O supervisor to schedule those channel programs for execution. If an
error occurs during the execution of the channel program, the ISAM appendage and
asynchronous routines inform the processing program of the error. In the processing
phase of ISAM, buffers are allocated, queued, and scheduled (buffer management);
indications of whether or not the channel programs have been executed successfully are
given by both the buffer management and appendage routines.

Processing Routines

The ISAM processing routines select and complete the channel programs that store,
process, and retrieve an indexed sequential data set. These routine~ perform various
operations and construct different channel programs depending on the characteristics of
the data to be processed, the type of macro instruction issued by the processing (user)
program, and the indexed sequential access method (or mode) being used.

For QISAM load mode, the primary processing routine is the Put routine. The load
mode Put routine is used in creating or resuming the creation (see "Resume Load") of
an indexed sequential data set.

In QISAM scan mode, five macro instruction routines are used for data retrieval and
updating; the scan mode routines are described under Scan Mode Processing Phase in
the Method of Operation section.

The BISAM processing routines consist of several variations of the basic Read and
Write routines. In BISAM, both nonprivileged and privileged routines are used to
facilitate channel program execution.

The QISAM load, QISAM scan, and BISAM processing routines are described fully in
their respective sections of this manual.

Appendage Routines

2 OS ISAM Logic

The appendages are routines entered from the input/output supervisor when a channel
program is to be started or when a channel program ends. The appendage routine
determines if additional processing is necessary before an input/output operation has
started or after it has been completed. For example, more than one channel program
may be needed to satisfy completely a specific input or output request from the
processing program. In such a case, the channel appendage would keep track of the

channel programs needed and assist in initializing and scheduling these channel
programs sequentially. Appendages may also schedule asynchronous routines to handle
the additional processing of an I/O request. (Appendages and asynchronous routines
are described in OS Data Management for System Programmers, GC28-6650.)

Rotational Position Sensing Start I/O Appendages

The rotational position sensing (RPS), start I/O (SIO) appendage routines decrease
channel time by disconnecting the channel from RPS devices whenever possible. This
is done by inserting channel command word (CCW) slots in the various ISAM channel
programs.

When an ISAM data set is being used with an RPS device, the RPS start I/O
appendages modify the channel command word slots dynamically to either an NOP, Set
Sector, Read Sector, or a TIC, depending on the device type and the channel program.

Three RPS SIO appendages are used: one each for QISAM scan and load modes, and
one for BISAM. These SIO appendages convert non-RPS channel programs to RPS
channel programs and vice versa, as necessary.

Conversion of a non-RPS channel program to an RPS channel program involves:

Conversion of the CCW slots from TICs or NOPs to Read or Set Sectors

Possibly modifying a CCW's command-chaining flag so that the RPS CCWs are
executed

Interposing an RPS channel program prefix when the channel program starts with
a search ID of five bytes

Setting up sector values where necessary

Note: The rotational position sensing (RPS) devices referred to in this manual are the
IBM 3330 and 2305 Direct-Access Storage Devices.

Set up non-RPS
channel program

No
RPS deVice

Figure 1. SIO Appendage for ISAM RPS

Yes Set up
channel program
for RPS

Update sector value

Section 1: Introduction 3

Asynchronous Routines

Asynchronous routines are used in QISAM scan mode and in BISAM to perform any
additional processing of an I/O request required when a channel program ends.

Complete processing of an I/O request may require several channel programs. For
BISAM, the asynchronous routines set up and schedule the requests as required. Also,
when I/O request processing is complete, whether satisfactorily or in error, the
completion must be posted. These routines do the posting. For QISAM scan mode,
the asynchronous routine schedules the channel programs when the next record is to be
read or written on another device.

The appendage routines of QISAM scan mode and BISAM select and schedule the
appropriate asynchronous routines.

Further description of the scan mode asynchronous routines can be found in the
discussion of "Appendages" under "Scan Mode Open Phase Operations" in Section 2.
For more detail about the BISAM asynchronous routines, see "Appendage and
Asynchronous Routines" under "BISAM Processing Phase Operations" in Section 2.

Buffer Handling Routines

4 OS ISAM Logic

Buffer handling or buffer management routines are provided in both modes of QISAM
and, optionally, in BISAM.

In QISAM load mode, the Put routine has two subsidiary buffer handling routines: the
beginning-of-buffer (EOB) routine and the end-of-buffer (EOB) routine. The BOB and
EOB routines perform both the Put move mode and Put locate mode processing.

In move mode, the Put routine and its buffer handling routines move an output record
from the user work area or input area to an output buffer.

In locate mode, the Put routine and its subsidiary routines give the address of an output
buffer area to the user; the user must move the record to the buffer.

In QISAM scan mode, five buffer queues are used to control input/output operations.
The queuing of buffers is handled primarily by the Get routine and its subsidiary
routines-the scheduling routine and the end-of-buffer routine.

In scan mode, a copy of channel program 22 (CP 22) is allocated to each buffer. The
buffers are manipulated among the queues and scheduled for I/O operations according
to the macro instructions issued in the processing program. Refer to the discussion of
"Buffer Control Techniques" under "Scan Mode Processing Phase Operations" in
Section 2 for a description of the buffer queues.

Dynamic buffering may be used in BISAM to allow the queuing of mUltiple read
requests. A buffer is automatically acquired from a buffer pool and assigned to the
request just before data transfer begins. The buffer is returned automatically to the
buffer pool when its contents are written, or it is returned under programmer control
with the free dynamic buffer (FREEDBUF) macro instruction. Dynamic buffering
requires relatively fewer buffers since the read requests waiting in the queue do not
monopolize buffers.

Close Phase

When a DCB for an ISAM data set is closed, the Close routine gives control to ISAM
close executor modules which terminate processing for the particular mode of ISAM
being used. As do the open executors, the close executors have two stages: (1) the
mode-oriented stage (that is, the load mode, scan mode, or BISAM close executors), and
(2) the common close stage executor.

When invoked by the CLOSE macro, the CLOSE routines first determine that an
ISAM data set is being processed. They then examine the DCBMACRF field in the
DCB to determine which mode of ISAM is in use and which mode-oriented close
executor should be given control. The close executors for load mode, scan mode, and
BISAM are described in their respective sections.

Section 1: Introduction 5

SECTION 2: METHOD OF OPERATION

Section 2: Method of Operation 7

ISAM Common Open, Common Close, and Validation Modules

There are three distinct indexed sequential access methods: QISAM load mode, QISAM
scan mode, and BISAM. Each comprises a group of modules.

In addition to the three separate groups of modules, certain ISAM modules are used for
both QISAM and BISAM processing. In particular, the three common open executor
modules (IGG0192A, IGGOl92B, and IGG0192C), the common close executor
module (IGG0202D), and the validation open executor modules (IGG01920,
IGG01922, and IGG01950) are used in both modes of QISAM and in BISAM.

This part of the manual describes the common open and common close executors in
detail, and generally describes the validation modules which are further detailed in the
discussion of QISAM (load, scan) and BISAM.

The ISAM Common Open Executors

The first stage, or common, open executors receive control from the Open routine. A
preexecutor module of Open (module IGG0190W):

1. Reads in the additional DSCBs for this data set (if multivolume)

2. Tests first volume for a format-2 DSCB

3. Checks DSCBs for ascending order on the same sequence in which space was
allocated

4. Transfers control (XCTL) to the first ISAM open executor

The common executors, upon completion, pass control to second stage open executors
required to initialize the specific form of QISAM or BISAM called for by the
processing program.

The DCB Integrity Feature: ISAM routines maintain DCB integrity by preserving
pertinent DCB fields and maintaining the current status of these fields during
processing. The DCB integrity feature is invoked for the user whenever he opens with
DISP=SHR.

This feature prevents multiple tasks, when sharing the same indexed sequential data set,
from altering the data set without updating its attributes in the DCB. This could
happen if one of the tasks opens the data set for Write-Key-New and modifies an area
in order to change various DCB fields. For example, adding records to the last
prime-data track would result in updating DCBLPDA and possibly DCBLIOV.
Another task with concurrent access to the data set in QISAM scan mode would not
process the added records.

With the DCB integrity feature, any change in the DCB caused by a modification of
the data set causes a corresponding change in all DCBs currently open for that prticular
data set. An ISAM common open module, IGG0192C, determines whether another
ISAM data set has previously been opened, and if not, obtains space for a DCB field
area (DCBF A) associated with each ISAM data set that is opened. The DCB field
area is obtained (by a GETMAIN from subpool 255) by the ISAM open executor
module, IGGOl92C, when a data set is opened for the first time.

Section 2: Method of Operation 9

10 OS ISAM Logic

The DCBF A contains the DCB information that can be changed while processing the
data set and is pointed to by all DCBs opened for that data set. The DCB fields that
require this updating are DCBLIOV, DCBLPDA, DCBNOV, DCBNOREC,
DCBNREC, DCBRORGl, DCBRORG2, DCBRORG3, DCBST, and DCBTDC.
These fields require a 36-byte DCB field area.

During procesing of a data set opened for WKN or RU, ISAM routines gain access to
the associated DCB fields and modify them from the DCBF A. This eliminates the
possibility of a user's inadvertently and incorrectly modifying these fields.

The ISAM open executors are each 1024 bytes in length and overlay each other in the
transient area.

The three common open executor modules are IGGOl92A, IGG0192B, and
IGG0192C. The flow of operations among these executors and to the second stage
open executors is depicted in Figure 2.

Open routme

,- ---,
I IFG0196V I
L - -- -l

+
Common open executors

I - - --,
I

IGG0192A

I IGG0192B

L IGG0192C --...J - - -

+
Second stage open executors

+
BISAM open QISAM scan mode QISAM load mode

executors open executors open executors
(see Figure 28) (see Figure 16) (see Figure 5)

I I ,
Open routine

t
Processmg
program

Figure 2. ISAM Open Flow of Control

Note: The second stage open executors return control to the Open routine of 1/0
support, which returns control to the processing program.

Common open executor IGGO 192A receives control from the Open routine of
input/output support. The primary functions of IGG0192A are:

1. It calculates the space needed for the DEB. (16 bytes are allocated for the DEB
prefix, and 32 bytes for the basic section of the DEB.) The number of extents
indicated by the user's data definition statements is picked up from the DSCBs
(the data sets allocated must be online). The number of extents, plus 1, is
multiplied by 16. Thus, each extent has 16 bytes.

2. It executes a GETMAIN macro instruction for the DEB.

3. It places a pointer to the DEB in the DCB and a pointer to the DCB in the DEB.

4. It sets the pointer to the UCB in each extent (there may be from 1 to 16 extents
per volume.) The UCB in each extent points to the direct-access device where
the data set (or extent) resides.

S. It checks the devices allocated to the data set to see if these devices have the
rotational position sensing (RPS) feature and sets a bit in DSCCWI +4
accordingly. If bit 0, 1, or 2 is on and if the data set is being opened for either
QISAM scan mode or BISAM, a count of 1 is added to the module count
(DEBNMSUB) in anticipation of loading the necessary RPS start I/O appendage.
(See the description of these bits in Figure 3, DEBRPSID.)

After the GETMAIN macro instruction has been performed for the DEB, IGG0192A
moves the byte at DXCCW1+4 to DEBISAD in the DEB; the result is that DEBISAD
has its high-order byte cleared to Os if no RPS devices are being used. If RPS devices
are being used, the bit is set as shown in Figure 3.

Field

DEBRPSID

Bit

o
1
2
3

Setting Meaning

Prime is on an RPS device
Index is on an RPS device
Overflow is on an RPS device
An SIO appendage has been loaded
(set by IGG0192K)

Figure 3. RPS Identification Field in the Data Event Block

Upon completion, IGG0192A transfers control to the common open executor module
IGGOI92B. The primary functions of IGGOI92B are outlined below:

1. IGG0192B uses the DCBBUFNO and DCBBUFL fields (plus 8 bytes for a
control field) to develop the buffer pool.

2. It develops the buffer control block (BCB), using DCBBUFNO and DCBBUFL,
and uses a GETMAIN from subpool 250 for the BCB space.

3. It also calculates the buffer lengths (using DCBBLKSIZE) and places the
calculation in the DCBBUFL field (unless the user sets up his own buffers).

4. The number of buffers (DCBUFNO) field is checked, and if none have been
specified, two buffers are allocated for the data set.

S. If the computed buffer length is inadequate, IGGOI92B schedules an ABEND
with a completion code of hexadecimal 37.

Section 2: Method of Operation 11

6. IGG0192B then returns to the initialization of the DEB, initializing the extent
entries with the address and count fields already established in the DEB.

The DEB now contains the VCB pointer, the starting addresses of the extents
(cylinder, track, and head), and the number of cylinders per extent.

ISAM common open executor IGG0192B passes control to common open module,
IGGOI92C. The functions of IGG0192C are outlined below:

1.. Free.s the main storage space occupied by all data set control blocks (DSCBs)
except the format-l and the format-2 DSCBs.

2. Sets the device type fields (DCBDEVT and DCBOVDEV).

3. If the data set can be shared by two or more tasks (as indicated with a
DISP=SHR parameter in the JCL), IGG0192C executes a GETMAIN macro
instruction from subpool 255 for the DCBPA (DCB field area), unless the
DCBP A was previously obtained for this same data set.

The Validation Modules

12 OS ISAM Logic

Modules IGGOI920, IGGOI922, and IGG01950 are open executors used to validate
and maintain DSCB and DCB fields for resume load, scan mode, and BISAM. An
initial load (or reload) in load mode does not cause execution of the validation
modules.

The operlitions done in IGGOI920, IGGOI922, and IGG01950 are described in detail
below. Thereafter the validation modules are referred to in the load, scan, and BISAM
discussions.

Modules IGG01920 lind IGOOI922 process fixed-length records and module
IOG01950 processes varilible-Iength records.

The validation modules may not be executed, although they are entered if the user has
specified tqat the datli set may be shared by other tasks (DISP=SHR). They are not
executed in that case because another DCB may have already been opened for the data
set lind a DeBP A (DCB field area) already set up for the purpose of maintaining the
DCB fields ..

Open Ex;ecutorIGG01920

1. Validate and reset, if necessary, the following fields in the format-2 DSCB:

a. DS2LPRAD-the address of the last record in the prime-data area. This
address is in the form MBBCCHHR and subsequently moved to the
DCBLPDA field.

b. DS2PRCTR-the number of records in the prime-data area. This count is
later moved to the DCBNREC field.

Open Executor IGG01922

1. Validate and reset, if necessary, the following fields in the format-2 DSCB:

a. DS2LOV AD-the address of the last record in the current independent
overflow area. This address is in the form of an MBBCCHHR address and
subsequently moved to the DCBLlO field.

b. DS2BYOVL-the number of bytes remaining on the current independent
overflow track. This count is later moved to the DCBNOV field.

c. DS2RORG2-the number of tracks remaining in the independent overflow
area; subsequently merged into the DCBRORG2 field.

d. DS20VRCT-the number of records in all overflow areas; later merged to
DCBNOREC.

These fields may be incorrect if the data set was previously closed improperly.

Open Executor IGG01950

1. Validate and reset, if necessary, the following fields in the format-2 DSCB:

a. DS2LPRAD-the address of the last record in the prime-data area. This
address will be in the form MBBCCHHR and subsequently moved to the
DCBLPDA field.

b. DS2LOV AD-the address of the last record in the current independent
overflow area. This address will be in the form of an MBBCCHHR address
and subsequently moved to the DCBLlOB field.

c. DS2BYOVL-the number of bytes remaining on the current independent
overflow track. This count is later moved to the DCBNOV field.

d. DS2RORG2-the number of tracks remaining in the independent overflow
area; subsequently merged into the DCBRORG2 field.

e. DS20VRCT -the number of records in all overflow areas; merged to
DCBNOREC.

These fields may be incorrect if the data set was previously closed improperly.

Common Close Phase Executors
Like the open executors, the close executors are 1024 bytes in length and overlay each
other in the transient area. The common close executor module is module IGG0202D;
its functions are as follows:

1. Obtains main-storage space for the format-2 DSCB.

2. Reads the format-2 DSCB, updates it from the DCB, and writes it back into the
volume table of contents (VTOC).

3. If operating with QISAM load mode, frees the main storage used for the load
mode work area and channel programs.

4. If initial load, sets bit 2 of the DCB status byte field (DCBST).

The flow of control through the I/O support routines and the stages of ISAM close
executors is shown in Figure 4.

Section 2: Method of Operation 13

Input/output
support
Close routine

~
OISAM load mode

OISAM scan
close executors

IGG02021,or
BISAM mocle close IGG02028,
close executor executor IGG0202J,
IGG0202A IGG02029 IGG0202K,

IGG0202L,
IGG0202M

I

ISAM common
close executor
IGG0202D

Input/output
support
Close routine

Figure 4. Flow of Control through the Close Executors

Queued Indexed Sequential Access Method, Load Mode

14 OS ISAM Logic

The load mode of QISAM is used to create (or recreate) indexed sequential data sets
and may also be used to reopen existing data sets to add records to the end of the
prime-data area. Creating a data set is called initial loading; recreating one is called
reloading; and reopening a data set is called resume loading. (See as Data
Management Services Guide, GC26-3746, for a user-oriented discussion of resume
loading.)

Since it is part of the queued access method, load mode handles all required buffering,
blocking, and I/O activity synchronization.

There are three groups of QISAM load mode routines:

• The open phase

The processing phase

• The close phase

The open phase routines include executor modules that perform tasks needed to open a
data set, initialize data areas, and prepare to load other routines for the processing
phase. The open phase executors receive control from the Open routine. The
processing phase routines include the Put routine (which receives control and is
executed when a PUT macro instruction is issued in the user's program), appendages,
and channel programs. The processing phase routines perform the actual access

method functions in QISAM load mode. The close phase routines perform functions
essential to closing the indexed sequential data set when all processing phase operations
are finished. The close phase routines are executor modules that receive control from
the Close routine.

Load Mode Open Phase Operations

There are two stages of IS AM open executors. The first stage executors are entered
for all indexed sequential access methods and are the common open executors (see
Figure 2). The second stage open executors for load mode receive control from the
common open executors. These second stage executors perform initialization
operations required for load mode processing, whether creating, reloading, or resume
loading the data set, with either variable or fixed-length records.

The second-stage executor for load mode (module IGG01921) is entered for both initial
and resume loading to provide main storage space for the load mode work area.
ISLCOMON is the load mode DCB work area and contains the input/output blocks
(lOBs), location tables, counters, and various pointers. The load mode processing
modules and channel programs refer to and modify· the ISLCOMON area.

The lOBs, tables, and pointers in ISLCOMON are used in scheduling, controlling,
checking the load mode processing operations, filling the buffers with records, loading
these records into the ISAM data set, and referring to these records and their locations
in the various ISAM indexes.

Besides obtaining main storage space for an initializing ISLCOMON, the beginning
open executor for load mode determines if the user intends to create a new ISAM data
set (initial load), to reload an old data set, or to reopen an existing data set.

Initial Load or Reload Open Operations

For the initial load or reload of an ISAM data set, the ISAM load mode open executors
structure, allocate space for, and format the prime-data area, the track-index area, and,
if specified, the high-level index areas. An initial load open module (lGGO 192G) also
initializes fields in the ISLCOMON area to be used by the load mode buffering
routines.

The initial load or reload open routines of the load mode open executors also determine
whether or not the last track of the track index for each cylinder will contain one or
more data records, (that is, shared track). If there is to be a shared track, temporary
records representing each track-index entry (preformat) must be written so the first
data records can be written before the actual index entries are developed and written.
Refer to the descriptions of modules IGGOl92D and IGG0192S in the discussion of
"Load Mode Open Phase Organization" for further information on the preformatting
of shared tracks.

Resume Load Open Operations

When opening an existing ISAM data set to add records at the end of the prime-data
area (resume load), the load mode open executors for resume load must ensure that the
addressing control fields for prime, index, and overflow records are accurate and usable
for locating the last records in each area and loading additional records into the data
set. Control fields for buffering and record-moving logic must be initialized in
accordance with the dimensions of the already created data set; this is also done as part
of the resume load open operations. (Refer to "Resume Load Open Organization" for
further details.)

Section 2: Method of Operation 15

Full-Track-Index-Write Open Operations

The full-track-index-write feature of load mode allows for accumulating and writing a
full track of track-index entries as a group rather than singly (refer to "Appendix A:
ISAM Data Set Organization"). The track-index entries are accumulated in the
track-index save area (TISA) shown in Section 5. A full track of track index is written
into the track-index area of the data set when the TISA is full, when end-of-cylinder
is reached, or when the data set is closed.

When the user opens the DCB for load mode and specifies the full-track-index-write
option (DCBOPTCD=U), the load mode open phase executors perform operations
especially for the initialization of the full-track-index-write feature. These operations
include acquiring the track-index save area, and initializing channel program 20 to
write the track-index entries from the TISA to the direct-access storage device.

The Final Load Mode Open Phase Operations

The final load mode open phase operations are performed for all load mode open
options. The final load mode open executors:

1. Load the needed ISAM load mode modules containing the appropriate routines,
appendages, and channel programs.

2. Initialize and execute channel program 19 for preformatting shared track in Area
Z of ISLCOMON when required.

3. Initialize channel programs 20 and 21 for writing track-index and high-level
index entries.

Load Mode Open Phase Organization

16 OS ISAM Logic

Load Mode Open Executor IGG01921

As indicated in the load mode open operations discussion, the first load mode open
executor, module IGGOI921, is entered for both initial and resume load. The
operations for this module are outlined below.

1. Obtains main-storage space for the load mode work area (ISLCOMON) and sets
the work area pointers.

2. Fills in the load mode input/output blocks (lOBs) in ISLCOMON.

3. Determines from the DISP parameter the user's intent to reload the data set;
resets the DCB status bits if necessary, and reinitializes the data set in
accordance with DCB parameters supplied in the DD statement.

4. Calculates and sets the DCBHIRPD field (highest record that can be written in
the prime area) and the DCBHIROV field (highest record of overflow).

5. Determines if track capacity of the independent overflow device is sufficient to
contain the maximum length record for an overflow chain (the longest possible
record in an overflow chain).

6. Checks the data control block for contradictory specifications; issues an ABEND
macro instruction if RKP + key length is greater than LRECL.

Upon completion of module IGGO 1921, the selection of modules to continue load
mode open operations depends on whether initial or resume loading is to take place:
this is indicated by Figure 5 which shows the flow of control through the load open
executors.

ISAM common

open executor
IGG0192C

~~~-e----------~---------
Load Open Executors 

On 
2301 

IGG01925 

On 
2321 

IGG01927 

Resume Loadlllg 
IGG01921 

Variable Fixed 

length length 

l ___ Initial Load Records Records 

I' (or reload) I 
Cylinder/Master 

Indexes 

On 

IGG01920 

Other '--_...,-_ ..... 
DeVice 

IGG0192E 

IGG0192F 

IGG0192G 

A 

IGG01950 

IGG0196D 

IGG0195G 

IGG0196G 

IGG01920 

IGG01922 

I 

Cylinder Mdster 

~exes 

IGG0195D 

Figure 5 (Part 1 of 2). Flow of Control through Load Mode Open Executors 

Initial Load Organization 

If an indexed sequential data set is to be created, the first load mode open executor 
(IGGO 1921) passes control to module IGGO 192D. 

Section 2: Method of Operation 17 



Fu 
Op 

II Track Index Write 
en Executors 

~ No FuJI Track Index Write 

FTIW 

IGG0195T 

FTIW 

IGG0195U 

- ------ ---- --- -
Write-checking 

I 
IGG0192U 

I 
al Load Mode Fin 

Op en Executors 

Write-checking 

I 
IGG0192V 

I 
-- --

No Write-checking 

I 
IGG0192R 

I 

IGG0192S 

+ No Write-checking 

I 
IGG0192T 

I 
-t- - -- --

I/O support 
Open routine 

--

---

Figure 5 (Part 2 of 2). Flow of Control through Load Mode Open Executors 

18 OS ISAM Logic 



Load Executor IGG0192D 

IGG0192D calculates several control fields needed in load mode processing. Listed 
below are some of the primary functions performed by module IGG0192D in 
structuring the prime-data area and calculating various DCB fields needed to allocate 
direct-access device storage for track, cylinder, and master indexes: 

1. Determines if the higher levels of index are to be used and where they are to be 
located. 

2. Determines whether the track index will share a track with prime-data records 
(shared track). 

3. Uses the DEBFIEAD field (indicates if high-level indexes are to be used and set 
from the user-specified OPTCD parameter in the DCB) to determine whether 
high-level indexes are to be used. If the user has not specified an independent 
index area, the DEBNOEE field is used to determine whether an independent 
overflow area has been specified. 

4. Module IGGO 192D also sets indicators to specify whether the independent index, 
the independent overflow, or the prime area is to be used for the high-level 
indexes when they are requested by the user. The indicators are passed to 
module IGGOI92E, module IGGOI925, or module IGGOI927 when high-level 
indexes are required. Module IGG0192D transfers control to module IGG0192F 
if high-level indexes are not needed. 

5. Before transferring control, module IGG0192D establishes several fields in the 
DCB work area, ISLCOMON, to be used by other open modules. 

6. Determines if the last index track can be shared by calculating the number of 
index entries required per cylinder and dividing by the number of entries that fit 
on a track, to yield the number of entries on the final track and the portion of the 
track available for data. 

7. If a 3330 device is being used, IGGOI92D treats the cylinder value on the device 
as a halfword. It also refers to the two halfwords, defined in IGGO 1921 
(described previously), rather than to the I/O device table for its track capacity 
calculations for prime-data records. A similiar field is used during open 
processing for the analogous calculations on the index device. However, this field 
is already defined in the DSECT for the QISAM load mode work area and is 
returned to its normal usage at the completion of open operations. The index 
backup routine in IGGOI92D set bits 1 or 2 of DEBRPSID, if necessary, as does 
IGGOI95D. 

The Load Mode Open Executors IGG0192E, IGG01925, and IGG01927 

If in the initial loading (creation) or reloading of an ISAM data set, cylinder or master 
indexes are specified, then executor IGG0192D passes control to module IGG01925 if 
the indexes are on a 2301 device, module IGGOI927 if the indexes are on a 2321 
device, or module IGG0192E of the indexes are on any other device. The functions of 
these executors are outlined below: 

1. Structures the high-level indexes, using information from the data fields 
established by module IGGOl92D. 

Section 2: Method of Operation 19 



2. Allocates space for the cylinder and/or master indexes in the independent 
overflow, or prime areas depending on the user's specifications (in his DCB and 
data definition statements). 

Load Mode Open Executor IGG0192F 

If cylinder or master indexes are not required in the initial load for creating an ISAM 
data set, then module IGG0192D passes control directly to module IGGOI92F, instead 
of IGGOI92E, IGGOI925, or IGGOI927. Executor IGG0192F might also receive 
control from IGGOI92E, IGGOI925, or IGGOI927 after the high-level index areas 
have been structured. The primary functions of IGG0192F are: 
1. Initializes several index location table pointers (the ISLIXL T fields in 

ISLCOMON) to point to high-level indexes if these indexes have been created by 
module IGGOI92E. 

2. Initializes pointers in the DCB to the high-level index entries. 

3. Places the calculated amount of storage needed for cylinder and master indexes in 
the DCBNCRHI field. This field of the DCB is useful to the user if he later 
needs to bring the high-level indexes into main storage to search them. 

4. Module IGGOI92F also computes the number of tracks available for independent 
and cylinder overflow and places this calculation in the DCB, the JFCB, and the 
DSCB. 

Note: When the JFCB or DSCB are modified, they are scheduled for rewriting. 

Load Mode Open Executor IGG0192G 

During the initial loading of an ISAM data set, control is transferred from module 
IGG0192F to executor module IGGOI92G. 
1. Module IGGOI92G sets up the buffer control table (IOBBCT) used by the Put 

macro processing modules. 

2. Formats and initializes several fields in the DCB work area (ISLCOMON) which 
are used later in load mode processing. These fields include: 
• ISLCBF - a pointer to the buffer to be loaded next by the Put processing 

routine. 

• ISLBMPR - calculated by adding the logical record length to the key 
length and used to facilitate "stepping through" a series of records in 
blocked buffers. 

• ISLFBW - (equal to the number of buffers specified in the DCB minus 1) 
used to determine when buffers are filled and can be scheduled for writing. 

• ISLEOB - contains the end-of-block address calculated from adding the 
contents of the DEBBUFL field to the starting address of the buffer. 

Resume Load Open Organization 

20 OS ISAM Logic 

If the user is adding new records to the prime area of a previously created data set 
(resume loading), then module IGG01921 doesn't pass control to module IGG0192D 
and the rest of the initial load modules; instead, control goes to the resume load 
modules beginning with IGGOI920 (and IGGOI922) or IGGOI950. 

The beginning open executors for resume load ensures the accuracy of the required 
DSCB and DCB fields. If the user is resume loading a data set containing fixed-length 
records, module IGG01920 is the first module entered. If variable-length records are 
being added to the prime area, module IGG01950 is entered first. 



) 

Load Mode Open Executor IGG0196D 

From module IGGOI922 or module IGGOI950, module IGG0196D is given control 
during the opening of a DCB for resume load. The functions of IGG0196D follow: 

1. Sets up the buffer control table. 

2. Sets up the R, F, and P bytes for the current-normal and current-overflow 
track-index entries. 

3. Initializes and executes channel program 31 A which reads the key portion of the 
last overflow track-index entry of the last cylinder. CP 31A reads this last 
overflow track-index entry into the key save area of ISLCOMON. 

4. If necessary, module IGG0196D initializes and executes channel program 31B. 
CP 31B is used when the last prime-data block allocated for the data set is not 
full. CP 31B reads this unfilled last prime-data block into the first buffer 
specified in the buffer control table. 

Load Mode Open Executor IGG0195G 

The next module, after IGGOI96D, to be executed during open processing for resume 
loading is module IGG0195G. IGG0195G is the resume load counter - a part of the 
initial load module IGGOI92G. Both modules calculate and initialize fields in the 
ISLCOMON area for buffer and record management in load mode. IGG0195G also: 

1. Sets up ISLCBF, ISLEOB, ISLBMPR, and ISLFBW in the load mode DCB work 
area (ISLCOMON). (See module IGGOI92G, and the ISLCOMON area in 
"Section 5: Data Areas.") 

2. Sets the DCBMSW A field to the direct-access device address (MBBCCHH) of 
the next-to-Iast track in the last prime-data extent. The DCBMSW A field 
normally contains the address of a user-supplied work area used when records are 
being added to an existing data set. 

3. Initializes record moving logic. 

4. Initializes Area Y, the load mode processing work area containing a high-level 
index entry, and normal and overflow track-index entries. Area Y is shown in 
Figure 68. ISLVPTRS (in ISLCOMON) points to area Y. 

Load Mode Open Executor IGG0196G 

1. Sets the count fields in ISLCOMON as follows: 

ISLNCNT - the count field for the current normal-track-index entry. 

ISLOCNT - the count field for the current overflow-track-index entry. 

ISLDCNT - the count field for the current dummy-track-index entry. 

2. Sets the count field in the first buffer. 

3. Checks the DCBST field to determine where the data set is loaded. 

4. Reads in the last block to determine setting of appropriate lOBS field in buffer 
control block (BCB). 

Section 2: Method of Operation 21 



Load Mode Open Executor IGG0195D 

If the user has no high-level indexes (cylinder or niaster indexes), then upon 
completion of module IGGOI96G, all the open executors used for resume load only 
will have been executed; the flow of control will pass to the rest of the load mode open 
executors which are used for both initial and resume load. 

However, if during the opening of a DCB for resume loading, high-level indexes are 
required, control is transferred from module IGG0196G to module IGGOI95D. 

The functions of IGGOI95D, the last resume load open executor, are described below: 

1. Initializes the index location table (ISLIXLT) in the load mode DCB work area 
(ISLCOMON). ISLIXLT contains the beginning and ending address for each 
level of index above the track index. 

2. Corrects the bin number in the index location table if the direct-access device 
being used is a 2321. 

Full-Track-Index-Write Phase Organization 

If the full-track-index-write option has been selected by the user, two load mode open 
executors (used exclusively with full-track-index-write initialization) are entered. 
These modules are IGG0195T and IGGOI95U. Both modules are executed during a 
resume load when the full-track-index-write option has been selected. For an initial 
load, module IGG0195U receives control from IGG0195T but is not executed. 

Modules IGG0195T and IGG0195U are both described below. 

Load Mode Open Executor IGG0195T 

1. Calculates the size of the track-index save area (TISA). When the full-track­
index-write feature is selected, the TISA is used by the full-track-index-write­
put routine module (either IGGOI9I1 or IGGOI92, see Figure 11) to accumulate 
track-index entries and write them as a group. This is done once for each track 
of track index. (The full-track-index-write is described in "Load Mode 
Processing Phase Operations.") 

2. Calculates the size of the appropriate version of channel program 20. 

3. Obtains main-storage space for both the TISA and CP 20 and initializes both. If 
main-storage space is not available, the full-track-index-write feature will not be 
employed. 

Load Mode Open Executor IGG0195U 

If the data set is being opened for resume loading, IGG 1 095U initializes the 
track-index save area and CP 20 to resume writing track-index entries. Otherwise, 
IGGO 195U transfers control to the final load mode open executors. 

The Final Executors in Load Mode Open Phase Organization 

22 OS ISAM Logic 

From the resume or initial load open modules, and from the full-track-index-write 
modules (if used), control is passed to the final load mode open modules which are 
used for all forms of load mode open processing. ( 



II,,, 
) 

~' 

) 

Load Mode Open Executor IGG0192U 

The first of the final open executors entered may be either module IGG0192U or 
IGGO 192R. IGGO 192U receives control if the user has specified that write-checking is 
used; module IGGOI92R receives control if write-checking is not used. 

1. Load the modules that contain the: 

Macro-time routines - modules IGG019GB or IGG019IB for the Put 
routine, or module IGG01912 for full-track-index-write routine 

Appendage routines - module IGG019GD 

Channel programs - module IGG019GF or IGG019IF 

2. Module IGG0192U also obtains main-storage space for the channel programs 
needed by the processing routines. 

3. Module IGGOI92U builds channel program 18 from its skeleton brought in by 
module IGG019GF or IGGOI9IF. 

Load Mode Executor IGG0192R 

IGG0192R performs exactly those functions outlined above for module IGGOI92U, 
except those necessary for write-checking. 

Load Mode Executor IGG0192S 

Module IGGOI92S receives control from either IGGOI92U or IGGOI92R. 

1. 

2. 

This module builds channel program 19 from its skeleton. CP 19 is used to 
initialize the cylinder overflow record and to preformat shared tracks when 
required with fixed-length records. 

If a track is being shared, the temporary index entries on the shared track of the 
first cylinder are written. This is referred to as preformatting the first shared 
track. Channel program 19 is used to preformat shared index tracks and to write 
the cylinder overflow control record (COCR). The preformatting of shared 
tracks pertains to fixed-length records only. Area Z in ISLCOMON is used as a 
work area in pre formatting the first shared track. 

The description of module IGGO 192D also discusses the shared track feature. 

3. This module loads the RPS SIO appendage module (IGG019GG). 

Load Mode Processing Phase Operations 

When loading or resuming the loading of an ISAM data set, the user issues a PUT 
macro instruction to place the record in the data set. The Put routine moves the record 
to the buffer. When a specified number of buffers are full, channel programs are 
scheduled to write the buffers into the prime-data area of the data set and to create or 
update any required index entries. 

An appendage routine analyzes the results of each channel program execution. When 
necessary, the appendage routine will start a new channel program to continue or 
complete the request, or it will process and resolve errors resulting from the channel 
program execution. When necessary, the appendage routine will start a new channel 
program to continue or complete the request, or it will process and resolve errors 
resulting from the channel program execution. If the original request was successfully 
completed, the appendage routine returns control to the user. 

Section 2: Method of Operation 23 



Put Routine 

24 OS ISAM Logic 

Information about the data set is communicated among the processing routines and the 
channel programs in control blocks and work areas. These data areas are described in ( 
detail in "Section 5: Data Areas." 

This part describes the processing routine logic, the flow of control through the channel 
programs, in addition to the relationships of the data areas to each other, the channel 
programs, and the processing routines. 

Successive PUT macro instructions cause entries to the Put routine which places 
records into the data set and creates the necessary indexes. The records must be in 
data key sequence. The Put routine (shown in Figure 6) may operate in either of two 
modes: move or locate. In move mode, the routine actually moves a logical record 
from an input buffer or work area into an output buffer. In locate mode, the routine 
supplies the address of an output buffer to the processing program, which must then 
move the record to that buffer. The mode of PUT is specified in the DCBMACRF 
field of the DCB. 

The Put routine utilizes the beginning-of-buffer and end-of-buffer subsidiary routines 
to accomplish buffer management. The Put routine initializes the various channel 
programs and requests their execution when writing data or indexes. The appendage 
modules gain control after channel program execution and indicate whether or not the 
writing was successful. 

The Put routine first checks to see if the appendage routine has signaled (in 
DCBEXCDl) an uncorrectable write error on a previous attempt to write either data 
or index entries. If so, the Put routine takes the exit to the processing program's 
synchronous error routine, where the user may either issue a CLOSE macro instruction 
or terminate the task. In any event, no more records will be accepted. The results are 
unpredicatable if the programmer issues another PUT macro instruction. 

The Put routine then performs a check on the data key. (In locate mode the key 
checked is that of the previous record.) If the keys are not in ascending sequence, 
control is given to the user's synchronous error routine. However, in this case, if the 
processing program is able to correct the sequence error, it may issue another PUT 
macro instruction for this record, and continue normal processing. 

For variable-length records, the Put routine compares the length of the record with the 
maximum record length specified in DCBLRECL. If it is greater than the maximum 
record length, the Put routine sets bit 4 of DCBEXCD2 and enters the user's 
synchronous error routine. The user may either change the record length and reissue a 
PUT macro instruction for this record or he may reissue one for the next record. 

The Put routine next determines if the processing mode is move or locate mode. 

Move Mode Processing 

Fixed-Length Records: If the current buffer is full, the routine links to the 
beginning-of-buffer routine to initialize a new buffer. 

It then moves the user's record to the buffer. If this record completes the buffer, the 
routine links to the end-of-buffer routine to attempt to write the buffer. If the buffer 
is not full but a write-channel program is available, the routine uses the end-of-buffer 
routine to attempt to write any previously filled buffers which could not be written for 
lack of a channel program. ( 



The routine then returns control to the user. 

Variable-Length Records: If the record format is blocked and the record fits in the 
current buffer and/or on the current track, it is moved into the buffer and control is 
returned to the user. If the record format is unblocked or if the current buffer is full, 
control is passed to the end-of-buffer routine to schedule the current buffer for 
writing. The end-of-buffer routine will pass control to the beginning-of-buffer 
routine to initialize the next buffer. Then the record is moved into the new buffer and 
control is returned to the user. 

PrevIous 
permanent 
I/O error 

No 

Sequence check 

Okay 

Mode 

Move 

Current buffer full 

No 

Move record 
to buffer 

Current buffer full 

Yes 

EOB routine 

Attempt to wr,:~ 
current buffer 

Yes 

Error 
Set error signal 

Locate 

BOB routine 

Yes 
Initialize new buffer 

No Channel program 

available 

Yes 

EGS routine 

Attempt to write 
prevIOus buffers 

Figure 6. Load Mode Put Routine 

No 

Current 
buffer full 

Provide buffer pOinter 

Yes 

EOB routine 

Attempt to wnte 
current buffer 

Initialize new buffer 

If the record does not fit on the current track either as part of the current buffer or as 
another block, the current buffer is marked as the last for the current track. Control is 

Section 2: Method of Operation 25 



26 OS ISAM Logic 

then passed to the end-of-buffer routine to schedule the current buffer for writing. 
The end-of-buffer routine passes control to the beginning-of-buffer routine to 
initialize the next buffer. The record is moved into the new buffer and control is 
returned to the user. 

Locate Mode Processing 

Fixed-Length Records: If the current buffer is full, the Put routine links to the 
end-of-buffer routine to attempt to write the buffer just filled and then immediately 
links to the beginning-of-buffer routine to initialize a new buffer. If the current buffer 
is not full but channel program 18 is now available, the routine links to the 
end-of-buffer routine to attempt to write any buffers that could not be written 
previously because the channel program was in use. 

The locate Put routine then provides the processing program with the address of an 
available buffer and returns control to the processing program. 

Variable-Length Records: The Put routine computes the number of bytes remaining in 
the current buffer, using the buffer size and subtracting the sum of the logical record 
lengths of the records that have already been placed in the buffer by the user. Then 
the routine determines if another record of maximum LRECL can be placed into the 
address of the available position in the buffer. Otherwise, if the number of bytes 
remaining in the buffer is less than LRECL or if record format is unblocked, control is 
passed to the EOB and BOB routines, as described in the discussion of move mode. If 
it is determined the LRECL bytes added either to the current buffer or as another 
block exceeds the remaining capacity of the current track, the current buffer is marked 
as the last for the track. Control is then passed to the EOB and BOB routines. 

Locate cou nt field 
In prevIous buffer 

Will new count 
start new cylmder 

No 

Initialize 
new buffer 

Yes 

Figure 7. Load Mode BOB Routine 

Preformat 

No 

Yes Preformat 
new cylinder 



Beginning-of-Buffer Routine 

The beginning-of-buffer routine (shown in Figure 7) initializes a new buffer and 
determines the device location into which the buffer will eventually be written. If the 
records are fixed-length and the location for this buffer proves to be the first location 
available for data records on a new cylinder, CP 19 may be called to preformat the 
track index of the cylinder if it is to contain a shared track and/ or a cylinder overflow 
control record. In the preformatted records, only the count field is significant. 

If writing this buffer causes the data set to exceed the prime-data space allocated to it, 
or if the appendage routine has indicated that a~ uncorrectable write error occurred 
during an attempt to add the previous contents of this buffer to the data set, the 
beginning-of-buffer routine takes the exit to the processing program's synchronous 
error routine. 

The user may either issue a CLOSE macro instruction or terminate the task. In any 
event, no additional records will be accepted when either of these errors occurs. The 
end-of-buffer routine is entered when the Put routine has determined that the current 
buffer is full. The EOB routine initiates writing of the current buffer and any 
previously filled buffers not yet written under these conditions: when the current buffer 
is marked as the last one for the current tracks, or when the number of buffers ready 
for writing is equal to the value of ISLFBW. 

End-of-Buffer Routine 

The number of buffers that must be filled in order for a write to be scheduled (so that 
the number of writes per track is kept minimal) is maintained in the field ISLFBW. Its 
content depends on the number of buffers in the pool; however, it does not exceed the 
number of buffers necessary to fill an empty tracy: if one is to be started or to fill a 
partially written track if one has already been started. 

If a channel program is available and if the number of full buffers is equal to the 
content of ISLFBW, the end-of-buffer routine (shown in Figure 8) schedules a write 
channel program for that number of buffers and then recomputes the number. If a 
track or cylinder is to be completed, it also schedules channel programs to write index 
entries. 

Figure 8. Load Mode EOB Routine 

Schedule 
channel 
program(s) 

Compute number 
of buffers to be 
written next 

Section 2: Method of Operation 27 



Fun Track-Index-Write 

28 OS ISAM Logic 

The full track-index-write is an option for load mode that may be selected by 
specifying DCBOPTCD=U. 

Channel End 
CP 18/20 

Reset CP 18/20 
busy bit 

Set status bits 
'Buffer Available' for 
each buffer written 

Update pOinter to 
next buffer group to 
be written (IOBPTRAI 

Construct entry In area 
Y portion of load 
mode work area 

Initialize CP 21 
to wnte 
master Index entry 

Set CP start address 
to skip cylinder 

overflow control 

I nltlall2e 
count fields 
In area Z 

Channel End 
CP 21 

Channel End 
CP 19 

No 

Note CP 21 writes the cylinder and master Index entries 
on Initial entry to the cylinder Index entry already 
written 

Figure 9. Load Mode Channel-end Appendage Routine 

When the full-track-index-write option is specified, ISAM accumulates track-index 
entries in a track-index save area (TISA) obtained during open processing and writes 
these entries as a group, once for each track of track index. 

The TISA obtained during open processing is preceded by a 20-byte control field 
which controls placement of entries. If an area of sufficient size is not available for the 
TISA, ISAM defaults to the usual mode of processing. (Normal and overflow entries 
written at the end of each prime-data track.) 



Appendages 

The TISA is written when it is full, when end-of-cylinder is detected, or at processing 
time. 

There are both channel-end and abnormal-end appendages (shown in Figures 9 and 
10) for the channel programs of load mode. 

Channel-End Appendage: The channel-end appendage for CP 18 and CP 20 indicates 
successful completion of the channel program to the Put routines. The channel-end 
appendage of CP 21 indicates successful writing of an index record and determines 
whether a higher level index entry is needed. If so, it creates that index entry and 
issues an EXCP so that entry will be written. The channel-end appendage of CP 19 
receives control after ten index entries have been written on a shared track and checks 
to see if more are needed. If the track is not yet full, it continues to issue EXCP 
commands until the track is properly formatted. 

Abnormal-end 
Appendage 

Permanent No 

110 error 

Yes 

CP 18 
prime data 

Set DCBXCD1 
uncorrectable 
110 error 

Yes Set status bits 
of buffer(sl 
In error 

Move first 16 bytes 
of lOB to load 
mode work area 

Load reg O-address 
of buffer I n error, 
reg l-address of first 
16 bytes of lOB 

Figure 10. Load Mode Abnormal-end Appendage Routine 

When write-checking has been specified, the CP 18 and CP 19 channel-end 
appendages reinitialize those channel programs to reread the data or index entry written 
before indicating successful completion. Appendages do not modify the channel 
programs when CP 20 and CP 21 are used with write-checking, because those channel 
programs are designed to read back without modifications. 

Abnormal-End Appendage: The abnormal-end appendage for CP 18, upon finding a 
permanent error, identifies the buffer in error, saves the contents of the appropriate 
input/output block (lOB), and indicates the error to the Put routine. The abnormal­
end appendages for CP 19, CP 20, and CP 21 also indicate permanent errors to the 
Put routine. 

Section 2: Method of Operation 29 



When write-checking has been specified, the CP 18 and CP 19 abnormal-end 
appendages have an additional function. If an error (for example, data check) is 
detected during read-back, the appendage reinitializes CP t 8 or CP 19 for writing and 
issues the EXCP command. 

Load Mode Processing Phase Organization 

Module Name 

IGG019GA 

IGG019GB 

IGG0191A 

IGG0191B 

IGG01911 

IGG01912 

IGG019GC 

IGG019GD 

IGG019GE 

IGG019GF 

IGG0191E 

IGG0191F 

IGG019GG 

The processing routines of load mode include one module that contains the Put routine 
and its subsidiary routines: the beginning-of-buffer (BOB) routine and the 
end-of-buffer (EOB) routine. In addition, there is one module of appendages and one 
module of channel programs. Each of these modules exists in several versions; the 
version selected and executed depends on the options specified by the user. Load 
mode open executors, IGGOI92U and IGGOI92R, load the proper version according to 
the user's program options. Figure 11 shows the load mode processing modules. 

Additional Considerations Function 

No write-check 
Fixed-length Records 

Put processing contains Put Write-check 
routine, EOB routine, and 

No write-check 
BOB routine. 

Variable·length Records 
Write-check 

Full track index write No write-check 

(Fixed·length records only) 
Write-check 

No write-check Put appendage routines-

channel-end and 
Write-check abnormal·end. 

No write-check 
Fixed·length Records Channel program skeletons-

Write-check contains CP 18, CP 19, CP 20 
and CP 21. 

No write-check 
Variable-length Records 

Write-check 

RPS SIO appendage 

Figure 11. Load Mode Processing Modules 

30 OS ISAM Logic 



EOB Routine 

BOB Routine r--- ----, 

I I 
I 
I 
I 
I 

Calculate device 

address for buffer 

Will this 

I 
I 
I 
I 
I 

buffer begin neVJ >--+---"II~ 

cylinder 

Yes 

entries to be 

I 
I 
I 
I 
L __ _ 

~NO~ ____ 4-____________________ ~No 

r--------- ---I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Update extent 

number and 
extent address 

Will this 

extent 

No 

I 
I 
I 
I 
I 
I 

buffer begm new >--+-'-::jo..j 
cylinder 

No 

Will this Yes 
buffer begin new >-+'-< 

track 

No 

Full track 

Index write 
option 

Yes 

No 

Accumulate 

track Index 

entry In T I SA 

CP 18/20 Appendage 

L ________ _ 

Figure 12. QISAM-Load Mode Channel Program Flow (Fixed-Length Records) 

Channel Programs 

The channel programs (except CP 31 and CP 91) exist in write-checking and 
no-write-checking versions. CP 19 and CP 20 also exist in different versions for 
fixed-length records and variable-length records. Figure 11 shows which channel 
program skeleton modules are loaded for each combination of user options. Flow of 
control through the channel programs is shown in Figure 12 for fixed-length records 
and in Figure 13 for variable-length records. 

Section 2: Method of Operation 31 



32 OS ISAM Logic 

EOB Routme r---

I 

I 
I 
I 
I 
L_ 

Update extent 

Ilumber and 

extent address 

No 

BOB Routine 
r---
I 
I 
I 
I 

Calculate device 

address for buffer 

L __ _ 

Will this 

----, 
I 
I 
I 

buffer beglll new >-+-_"'1 
cylillder 

Cylinder 

overflow option 

Will this 

buffer beglJl new >-+-_~ 
track 

No 

Figure 13. QISAM-Load Mode Channel Program Flow (Variable-Length Records) 

CP 18 

CP 19 

CP 20 

Used to write prime-data records. 

Fixed-length Records: used to initialize cylinder overflow record and shared 
index tracks (preformat). 

Variable-length Records: used to initialize cylinder overflow control record. 

Used to write track-index entries. 



CP 20A Used to write a full track of track-index entries on a nonshared track of 
track-index entries. 

CP 20B Used to write a shared track of track-index entries. 

CP 20C Used to perform write-checking for CP 20A and CP 20B .. 

CP 21 Used to write cylinder and master-index entries. 

CP 31A Used to read the key portion of the last overflow track-index entry of the 
last prime-data cylinder into the key save area. (Resum~ loading only, 
located in IGGOI96D.) 

CP 31B Used when the last prime-data block is not full enough to read it into the 
first buffer specified in the buffer control table. (Resume loading only, 
located in IGGOI96D.) 

CP 91 Used to fill unused index tracks with inactive and dummy entries. (CP 91 is 
located in IGG0202K.) 

Control Blocks and Work Areas 

Information about the data set and processing requests is carried in various control 
blocks and work areas. The relationship of these areas to each other and to the data 
set and processing programs is shown in Figure 14. 

Load Mode Close Phase Operations 

The first load mode close executor is entered from the Close routine. When all 
previously scheduled writes are finished, the load mode close executors complete the 
data set activity for load mode. The load mode close phase: 

• Pads the last buffer 

• Completes the writing of buffers 

• Completes the writing of index entries 

• Writes end-of-data mark 

• Pads track indexes on unused cylinders 

• Pads high-level indexes 

Load Mode Close Phase Organization 

The close phase of QISAM load mode comprises six executor modules that perform 
operations required to complete data set activity when a previously scheduled write 
operation is completed. 

Section 2: Method of Operation 33 



DCB DCB WORK AREA IISLCOMONI Channel Programs 

ECB I 10BA -_ 
14 

;----120 
DCBBUFCB 

DCBDEBAD 

o 
2C 

5B 

ECB I 10BB ...... - -
f-c-,---t-----------j -''-, -, -

EeB I IOBC - ....... , " ~,: -.....1-_______ -1 
CP 18 

'--

,.-
\..:::;: 

B4 Area Z (Preformat Work Areal " " ' .. , , CP 20/20A 

\ " 

~
\'" 

E4 DCBWKPTl ~ '" , --.-
FO DCBWKPT4 DC " ~J---------l 
F4 DCBWKPT5 144 Various buffer/data set work ........ -..,. CP 19/91 
Fa DCBWKPT6 fIelds and pOinters 

L-~L----------J-----~~r-------------i ------~---C-P-3-,A-I-3-,B--4 

Index Location Table DC CP 21 

DEB 

-20 
-18 
-14 

18 

lC 

20 
24 

28 
2C 

t SID appendage 
t CE appendage table 
t AE appendage table 

PrefIX section 

DEBOCBAD BasIc section 

DEBAPPAD 

# Index DE8FIEAD 
# Prime DEBFPEAD M ~ 0 

# Overflow DEBFOEAD extent 

t ISAM ExtenSion 

Prime extents 

Index extents 

Overflow extents 

Module 10 table 

t Put module 

RPS 
810 
appendage 

ISLVPTRS CP 20B 
(Pomters to CPs, Area Y ) 

CP 20C 
Buffer Control Table 

TISA 
Area Y -r B 

qs Key save Area 

ISAM DATASET 

Index 

~ __ rBU~FrF~E~RS~ ________ , 

0.Fjr-
~ 

(-
Prime (-

= (-
(-

Overflow = 

Vector table 

Put module Put 
appendage 
module 

NOTE DIsplacements ate In hexadeCimal 

Figure 14. Load Mode Control Blocks and Work Areas 

34 as ISAM Logic 

Load Mode Close Executor IGG0202I 

After receiving control from the Close routine for a fixed-length record data set, 
IGG0202I does the following: 

1. Pads (fills with dummy records) the last buffer, if necessary 

2. Writes all filled but unwritten buffers 

3. Completes the index entries 



Load Mode Close Executor IGG02028 

This module receives control from the Close routine for variable-length record data 
sets only. It then: 

1. Pads the last buffer when necessary 

2. Writes all buffers that are filled but not yet written into the data set 

3. Completes the index entries so these reflect the complete data set 

Load Mode Close Executor IGG0202J 

1. Writes the end-of-data mark after the last data record 

2. Writes the end-of-file mark in independent overflow 

Load Mode Close Executor IGG0202K 

1. Performs calculations for modules IGG0202L and IGG0202M in padding unused 
index space 

2. Initializes channel program CP 91 which is used to fill unused index tracks with 
inactive dummy entries 

Load Mode Close Executor IGG0202L 

1. Writes the final dummy end-index entry. 

2. Pads, with inactive entries, the unused track-index space of the cylinder 
containing the last prime-data record. Module IGG0202L uses ISLNIRT to 
signal the end-of-track index padding. 

Load Mode Close Executor IGG0202M 

1. Determines if higher level indexes exist and, if so, writes the final dummy entries 
for them. 

2. Pads any unused index space with inactive entries. (See "Appendix A: ISAM 
Data Set Organization" for information on dummy entries and padding.) 

The flow of control through the close executors is shown in Figure 15. After the 
mode-oriented close executors have completed their functions, the ISAM common 
close executor (IGG0202D) receives control. After completing the closing functions 
common to all ISAM, it returns control to the input/output support close routines. 

Queued Indexed Sequential Access Method, Scan Mode 

The scan mode of QISAM retrieves and updates the records of an indexed sequential 
data set in a manner similar to that of the queued sequential access method. 

There are three phases of scan mode routines: 

• The open phase 

• The processing phase 

• The close phase 

Section 2: Method of Operation 35 



Input/Output Variable-length Records 
Support 
Close Routine 

Fixed-length Records + 

IGG02021 

IGG02028 

IGG0202J 

t 

IGG0202K 

t 
IGG0202L 

t 

IGG0202M 

t 
ISAM common 
close esecutor 
IGG0202D 

t 
Input/Output 
Support 

Close Routine 

Figure 15. The Flow of Control through QISAM Load Mode Close Executors 

Scan Mode Open Phase Operations 

36 as ISAM Logic 

The ISAM common open executors are executed when an indexed sequential data set is 
opened and is to be processed by scan mode. The last ISAM common open executor 
passes control to the scan mode open executors. The scan mode open executors: 

1. Move format-2 DSCB items to the DCB 

2. Construct the DCB work area 

3. Load the scan mode modules 

4. Initialize channel programs and free queues. 



Scan Mode Open Phase Organization 

The scan mode open executor modules are IGGOl920, IGGOl922, IGG019S0, 
IGGOl928, IGGOl929, and IGGOl924. 

The common open executor IGG0192C transfers control to the beginning open 
executors which are the validation modules, IGG01920, IGG01922, and IGG019S0. 
The validation modules ensure that the DSCB and DCB fields needed are still accurate. 
If the data set contains fixed-length records, module IGG01920 will be the first 
module entered. For variable-length records, module IGG019S0 is entered first. 
IGG01920, IGG01922, and IGG019S0 are described in the common processing 
module description part of this manual. 

Upon completion, the validation modules pass control to the first executor used 
exclusively in opening for scan mode, module IGG01928. 

Scan Mode Open Executor IGG01928 

1. Obtains main storage space for and structures the QISAM scan mode DCB work 
area (see "Section 5: Data Areas"). 

2. Loads scan mode processing modules processing routines. 

3. Loads module IGG019HL which contains the channel program skeletons. 

4. Moves the required channel program skeletons into the scan mode work area (see 
Figure 26). This includes moving one copy of the read/write channel program, 
CP 22, into the work area for each buffer. 

s. Deletes the channel program skeleton module, IGG019HL, from main storage. 

6. Tests the bits at DEBRPSID for an RPS device. If any of the bits are on, the 
scan mode RPS SIO appendage, IGG019HA, is loaded by executor IGG01924. 
A GETMAIN macro instruction for a 16-byte larger work area is issued to allow 
for the channel program prefix required RPS devices. 

Scan Mode Open Executor IGG01929 

1. Initializes the channel programs loaded by module IGGOl928 in the DCB work 
area. If necessary, it initializes these channel programs to their non-RPS state. 

2. Chains the copies of CP 22 together. Assigns a buffer to each copy of CP 22. 

Scan Mode Open Executor IGG01924 

1. Moves the format-2 DSCB fields needed into the DCB. (See modules IGG019S0 
and IGGOl920 in Section 2.) 

2. Loads the RPS SIO appendage if required. (See module IGG01928 above.) 

3. Completes the initialization of the scan mode work area. 

4. Obtains the interruption request block (IRB) that is used by the supervisor to 
maintain information concerning an asynchronous routine located in the Get 
appendage module (IGG019HG). Among the information in the IRB is the entry 
point address (RBEP-see the IRB as shown in Figure 26) of the asynchronous 
routine within module IGG019HG. (See the discussions of the scan mode Get 
routine and the appendages for further information on this asynchronous routine.) 

Section 2: Method of Operation 37 



S. Calculates WlICNOT, which is equal to the integer that contains the number of 
buffers (DCBBUFNO) divided by (WlICNOT=BUFNO/2). 

WlICNOT is located in the scan mode DCB work area, and is used in scheduling 
input/ output requests. The read/write channel program (CP 22) is only 
scheduled if the WlICNOT field is set. 

I 
IGG0192C 

I 
IGG01950 IGG01920 

I 

IGG01922 

, 
IGG01928 

~ 
IGG01929 

~ .. 
IGG01924 

~ 
os 

Open routine 

Figure 16. Flow of Control through Scan Mode Open Executors 

Scan Mode Processing Phase Operations 

38 OS ISAM Logic 

QISAM scan mode is designed to read records from and/or write records back to an 
ISAM data set, selectively. Scan mode may be used to retrieve and update indexed 
sequential data records sequentially or randomly. The basic features of scan mode that 
make it able to retrieve and update records from any point in the data set are: 

A buffer controlling technique that allocates a copy of the read/write channel 
program (CP 22) to each buffer. 

• Several logical buffer queues to which each copy of CP 22 and the buffer that the 
CP 22 points to may be moved. Figure 17 illustrates the chaining of channel 
program 22 and the buffers on these queues. 



• Use of the WlICNOT field in the scan mode DCB work area. WlICNOT is 
equal to the number of buffers being used (DCBBUFNO/2) or the number of 
records on a prime track, whichever is less. WlICNOT is especially important in 
the scheduling routine operations. (Refer to the scheduling routine description.) 

The five macro instructions that cause scan mode processing routines to retrieve and 
update indexed sequential data records are SETL, GET, PUTX, ESETL, and RELSE. 
These macro instructions are described fully in OS Data Management Macro 
Instructions, GC26-3794. 

The SETL routine sets the starting point of retrieval. The Get routine makes records 
available to the processing program. The PUTX routine restores the records to the 
data set. The ESETL routine terminates scanning of the data set. The RELSE routine 
causes the remaining records of the current buffer to be bypassed. 

SETL initializes channel programs to search the indexes for the start-of-retrieval point 
and to read in the first buffer or buffers. GET initializes channel programs to read 
successive buffers, and PUTX causes the same channel programs to be reset and 
rescheduled to write the updated buffers back into the data set. 

The channel programs for scan mode are described in detail in "Appendix B: ISAM 
Channel Programs." Appendage routines analyze the results of each channel program 
and initiate further processing operations depending on the status of the channel 
program's successful or unsuccessful execution. 

Information about the data set is communicated among the processing routines and the 
channel programs in control blocks, work areas, and queues. This section shows the 
relationship of these areas to each other. They are described in detail in "Section 5: 
Data Areas." 

This section describes the processing routine logic. 

Buffer Control Techniques 

Buffers are attached, by a copy of CP 22, to anyone of the five buffer queues. (See 
Figure 17.) These queues are used in controlling input/output operations. The buffers 
are assigned to particular queues according to the current status of each buffer. 

• Free queue buffer is not in use. 

• Read queue buffer is scheduled to be filled (a version of CP 22 reads a record or 
records into the buffer). 

• User queue buffer is made available for processing program use by the GET 
macro instruction. 

• PUTX queue buffer is flagged as ready to be written. 

• Write queue buffer is scheduled to be written. 

The queuing on these buffer queues is handled by the Get routine and its subsidiary 
routines - the scheduling routine and the end-of-buffer (EOB) routine. However, all 
scan mode routines handle the buffer queuing to some degree. Figure 18 illustrates the 
buffer movement during scan mode processing. 

The buffer queue movements of SETL and ESETL are shown in the upper portions of 
Figure 18, and the effects of Get and PUTX in the lower portion. The routines that 
process the queues are indicated on the flowlines to and from queues. 

Section 2: Method of Operation 39 



Free Queue Read Queue User Queue PUT X Queue Write Queue 

First CP First CP First CP First CP First CP 

Last CP Last CP Last CP 

C C I C I C 

Channel Program 22 Channel Program 22 Channel Program 22 Channel Program 22 

The number of buffers in the queue. 
Note: 

c= 
R= A residue of unused buffers In the Read queue. The R field is used to provide more efficient 

scheduling of overflow records. 

Figure 17. Scan Mode Channel Program/Buffer Queues 

ESETL 

~ 

To initiate a Scan To Terminate a Scan 

SETL ESETL ESETL 

Free Read User PUT X WRITE 

Queue Queue 
r--- Queue Queue Queue 

Scheduling Routine GET/EOB Routine EOB Routine EOB Routine 

(If PUTX is Issued) 
End of Buffer or ESETL 

(If No PUTX is Issued) 

GET/End of Buffer Routine 

Figure 18. Buffer Queuing and Movement in Scan Mode 

40 OS ISAM Logic 



An Example of Buffer Movement in Scan Mode 

For this example, it has been assumed that the number of buffers=3, the number of 
logical records per buffer=2, and each GET macro instruction issued is followed by a 
PUTX macro instruction. 

Macro Instructions Buffer Movement 

l. OPEN All buffers (3 buffers in this example) are placed on 
the Free queue. 

2. SETL a. Locate the starting record of the file (or string 
of records) specified in the SETL macro instruction. 

b. Place buffer 1 on the Read queue and schedule a read 
of the specified records into buffer 1; wait for completion 
of the read. 

3. GET (1st GET) a. Move buffer 1, which has been filled, to the User 
queue. 

b. Move buffers 2 and 3 to the Read queue and schedule a 
read operation. 

c. Return the address of the first r~trieved record to the 
user. 

4. PUTX Any PUTX will set an indicator that the current record is to 
be written back to the data set and returned. 

5. GET (2nd GET) a. If the outstanding reads from the previous GET are 
completed, move those buffers to the User queue. 

b. Return the address of the next input record to the 
user. 

6. GET (3rd GET) a. On the third GET macro instruction, move the processed 
buffer (buffer 1) to the PUTX queue. (It is assumed that 
a PUTX macro instruction follows each GET macro 
instruction in the processing program.) 

b. Move buffers 2 and 3 from the Read queue to the User 
queue, unless these buffers were moved to the User 
queue by the Get routine in step 5. 

c. Return the address of the next input record in the file 
to the user. 

7. GET (4th GET) Return the address of the next input record to the processing 
program. 

8. GET (5th GET) a. Move the processed buffer (buffer 2, in this instance) to 
the PUTX queue. 

b. Move two buffers from the PUTX queue to the Write 
queue and schedule a write operation. Since the PUTX 
has been executed for two buffers, a Write may now be 
scheduled. (See "Scheduling Routine" and 
"EOB Routine.") 

c. Return the address of the next input record. 

Section 2: Method of Operation 41 



SETL Routine 

42 OS ISAM Logic 

9. GET (6th GET) a. If the scheduled write is completed (step 8), move the two 
buffers from the Write queue to the Read queue and 
schedule a read. 

b. Return the address of the next input record. 

10. GET (7th GET) a. On the seventh GET, the processed buffer (buffer 3, in 
this example) is moved to the PUTX queue. 

b. When the scheduled read is completed (step 9), move two 
buffers to the User queue. (It may be necessary to wait 
for the last scheduled write, move the buffers to the 
Read queue, issue a Read, and wait for that Read 
before this step can be executed.) 

c. Return the address of the next input record. 

11. GET/PUTX The succeeding GET and PUTX macro instructions repeat 
steps 7 through 10. Every time a read takes place, 2 
blocks will have been filled. For a write to occur, 
2 buffers must be filled. 

12. ESETL a. Wait for any outstanding read or write to be completed. 

b. Move buffers from the Read or Write queue to 
the Free queue. 

c. Move any buffers from the User queue to the 
PUTX queue or to the Free queue. 

d. Move any buffers on the PUTX queue to the Write 
queue and schedule a write. 

13. CLOSE a. Wait for any scheduled, but uncompleted writes 
to be completed. 

b. Return all buffers to the buffer pool. 

The SETL routine (shown in Figure 19) determines the start of a scan by executing a 
channel program (dependent on the SETL option used) to search the indexes for the 
first record or block to be retrieved. In scan mode, records are retrieved from the 
beginning of the data set unless a SETL macro instruction is used. 

In addition to determining the starting point, the SETL routine initializes the buffer 
queues. When scanning is initiated, all buffers are on the Free queue. (See "Scan 
Mode Open Phase Operations. ") However, when subsequent scans are to be initiated, 
it is possible that buffers remain on the Write queue from the previous scan. When this 
is the case, the SETL routine moves these buffers to the Free queue after awaiting the 
completion of any writes in progress. The SETL routine then moves a buffer from the 
Free queue to the Read queue, initiates a read operation, and upon completion of the 
read operation, returns control to the processing program. 

If the SETL routine detects any error condition, it sets the corresponding bit for that 
error in the DCB exceptional condition (DCBEXCDl) field. (The exceptional 
condition codes are described in "Section 6: Diagnostic Aids. ") After setting this bit, 
SETL passes control to the processing program's synchronous error routine (SYNAD). 
If no synchronous error routine is present, the task is abnormally terminated. 



Get Routine 

No 

Determine 

start of scan 

Write 

queue 

empty 

Yes 

Move N/2 
buffers from 
Free queue 
to Read queue 

Yes 

Figure 19. Scan Mode SETL Routine 

SVC 54 

Refresh DCB 

MoveWnte 
queue to 
Free queue 

Move one 

buffer from 
Free queue 

to Read queue 

When the data set is shared (DISP=SHR), the SETL routine issues an SVC 54 
instruction to update the DCB field area (DCBFA). (See "The DCB Integrity 
Feature" under "The ISAM Common Open Executors.") 

The Get routine (shown in Figure 20) retrieves records from the data set sequentially 
and gives the processing program access to a record in the current buffer on the User 
queue. (SETL fills the first buffer.) The Get routine has two subsidiary routines: the 
end-of-buffer routine and the scheduling routine. 

Section 2: Method of Operation 43 



44 OS ISAM Logic 

If, on entry from the macro instruction, the user has already been given access to the 
last record of the User queue buffer currently being scanned, the routine links to the 
end-of-buffer routine to advance to a new buffer. 

Then, if a write has been initiated and is complete, the Get routine moves the buffers 
on the Write queue to the Free queue. If the Get routine finds that an appendage 
routine has indicated unsuccessful completion of a previous write, the exit to the 
processing program's synchronous error routine is taken. Another GET macro 
instruction must be issued before a record becomes available for processing. 

If the previous attempt to schedule a read has been unsuccessful because of a shortage 
of available buffers (refer to "Scheduling Routine" for criteria for determining the 
minimum number of buffers necessary), the scheduling routine is used to make another 
attempt to execute the read. 

No 

Write 
queue empty 

Yes 

Yes 

No 

No 

EOB routme 

Advance to 
new buffer 

Read 
complete 

No 

Figure 20. Scan Mode Get Routine 

Yes 

Yes 

Move Write 
Queue to 
Free queue 

Move Read 
queue to 
User queue 

New Read 

If a read has been initiated and is complete, the routine moves the buffers on the Read 
queue to the User queue and uses the scheduling routine (refer to "Scheduling 
Routine") to attempt to schedule a new read. 

If a buffer on the User queue has been incorrectly read, each GET command issued to 
that buffer causes control to pass to the synchronous error routine. For blocked 



EOB Routine 

Scheduling Routine 

records, successive GET commands to the buffer give the synchronous error routine 
access to each record of the buffer in turn. When the buffer is exhausted and another 
GET macro instruction is issued, the return to the processing program is normal unless 
another read error occurred. 

The end-of-buffer (EOB) routine, which is shown in Figure 21, moves the buffer just 
completed from the User queue to either the PUTX queue or the Free queue. It moves 
the buffer to the PUTX queue if the user has issued a PUTX macro instruction for any 
of the records in that buffer; otherwise, it moves the buffer to the Free queue. 

If there is a minimum of N/2 buffers on the PUTX queue and a previous write has 
been completed, the routine moves the Write queue buffers to the Free queue, the 
PUTX queue buffers to the Write queue, and initiates a write. 

If at this point there are buffers on the User queue, the routine returns control to the 
calling routine. Otherwise, the routine must move buffers from the Read queue to the 
User queue. If the Read queue is empty, the routine waits for completion if a write is 
in progress, moves the Write queue to the Free queue and uses the scheduling 
subroutine to initiate a read and, on completion of that read moves the Read queue to 
the User queue. If the Read queue is not empty, the routine moves the Read queue to 
the User queue. It then returns control to the calling routine. 

Before moving a buffer from the Write queue to the Free queue, the routine ensures 
that the write operation of that buffer was successfully completed. If not, the 
synchronous error routine is given control. 

Processing in the scheduling routine (shown in Figure 22) depends primarily on 
whether the next record to be read is on a prime-data or overflow track. 

If an overflow record is to be read, a read may be scheduled if there are at least two 
buffers on the Free queue. It may also be scheduled if there is only one buffer and 
that buffer is on the Free queue. Before initiating the read, the routine moves the Free 
queue to the Read queue. It then returns control to the calling routine. 

If prime data is to be read, it attempts to schedule a read of N/2 buffers. Provided 
N/2 buffers are available and at least N/2 blocks remain on the track, this can be 
done. It can also be done with fewer than N/2 blocks remaining on the track if the 
track is not the last one of a cylinder and no overflow chain is associated with the 
track. If these conditions are met, the routine moves N/2 buffers from the Free queue 
to the Read queue, initiates a read, and returns control to the calling routine. 

If these conditions are not met, the scheduling routine initiates a read operation to 
complete the last track of a cylinder or a track having an overflow chain associated 
with it, provided that sufficient buffers are available on the Free queue. As before, it 
moves the buffers required to the Read queue, initiates a read, and returns control to 
the calling routine. 

If a read cannot be initiated, the routine returns control to the calling routine. 

Section 2: Method of Operation 45 



46 OS ISAM Logic 

Move buffer 
from User 

queue to 

Free queue 

Move buffer 
from User 
queue to 

PUTX queue 

Figure 21. Scan Mode EOB Routine 

No 

PUTX queue 
to Write 

queue 

Wnte queue 
to Free 

queue 

Schedule Read 

Read queue to 

User queue 



PUTX Routine 

Ves 

N/2 from Free 
queue to 
Read queue 

Ves 

No 

Move buffers to 
com plete track 
Free queue to 

Read queue 

Figure 22. Scan Mode Scheduling Routine 

Ves 

No 

Ves 

Free queue 

to Read queue 

Ves 

Enough 
buffers on Free 

qu eu e to com· 

plete track 

No 

Ves 

The PUTX macro is used in updating data sets. When the PUTX macro instruction is 
issued in the processing program, the PUTX routine of scan mode will be used (see 
Processing Routines - Figure 24). The PUTX routine causes records obtained by the 
locate mode GET macro instructions to be written back to the data set. 

Section 2: Method of Operation 47 



ESETL Routine 

48 OS ISAM Logic 

The PUTX routine sets an indicator flag associated with the current buffer on the User 
queue. The GET macro instruction's end-of-buffer (EOB) routine uses this indicator 
to determine if the User queue buffer should be moved to the PUTX queue. 
Eventually, the buffer will be moved from the PUTX queue to the Write queue (it is 
moved either by the EOB routine for GET or by the ESETL routine when an ESETL 
is issued in the processing program). Once on the Write queue, the buffer is scheduled 
to be written - that is, the channel program used to read or write the buffer (a copy 
of CP 22 is used with each buffer) is reset and scheduled to write the udpated buffer 
back into the data set. 

The ESETL routine (shown in Figure 23) ends scanning of the data set. 

PUTX Issued 

No 

Move buffer 

from User 

queue to 

queue empty 

Yes 

Yes 
Move buffer 
from User 

queue to 

PUT X queue 

queue empty 

Yes 

PUT X queue 

to Wnte queue 

Figure 23. Scan Mode ESETL Routine 

No 

Read queue 

to Free queue 

Wnte queue 

to Free queue 



RELSE Routine 

Appendages 

If the user has issued a PUTX macro instruction for any of the records in the current 
buffer on the User queue, the routine moves the buffer to the PUTX queue. If the 
Read queue is not empty, the routine awaits completion of pending reads and then 
moves the Read queue to the Free queue. 

If the PUTX queue is empty, the routine returns control to the processing program. 
Otherwise, the routine awaits completion of pending writes and moves the Write queue 
to the Free queue if the write was successful. (If the write was not successful, the 
synchronous error routine is entered, and another ESETL macro instruction must be 
issued to end this scan.) It then moves the PUTX queue to the Write queue, initiates a 
write, and returns control to the user. 

The RELSE routine links to the end-of-buffer routine causing the current buffer to be 
released and a new buffer to be initialized. If the current record is the first or last 
logical record in the buffer, the request is ignored. The RELSE routine then returns to 
the user. 

The RELSE routine also determines if there were any write errors for those buffers on 
the Write queue whose writing had been completed. If so, the processing program's 
synchronous error routine is given control and another RELSE must be issued to 
release this buffer. 

There are both channel-end and abnormal-end appendages for those routines that 
cause input/output operations. (Refer to Figure 24.) 

The channel-end appendage of the SETL I routine causes a normal return to the I/O 
supervisor if CP 25 was completely executed. If CP 25 was not completely executed, 
either the channel-end or abnormal-end appendage of the SETL I routine may be 
entered, depending on the setting of the CSW status bits. In the case of incomplete 
execution, an indicator is set so that the SETL I routine can later inform the processing 
program that the record was unreachable. A normal return to the I/O supervisor is 
issued. 

The channel-end and abnormal-end appendages of the SETL K (or SETL KC) routine 
examine CP 23 to find out where and why the channel program terminated. Based on 
this examination, either CP 23 is reinitialized to continue searching for the desired key 
by issuing an EXCP return, or an indicator is set to inform the processing program that 
the key could not be found and a normal return is issued. Whether the examination is 
performed by the channel-end or abnormal-end appendage depends on the setting of 
the CSW status bits and the contents of the higher level indexes. 

The channel-end appendage of the Get routine issues a normal return to the 1/ 0 
supervisor if there are no more buffers on the Read queue, or the last record on a track 
has been read, or the buffers on the Read queue were filled with records read from a 
prime-data area. This channel-end appendage issues an EXCP return to the I/O 
supervisor, or schedules an asynchronous routine to issue an EXCP return if an 
overflow record was read after it modified CP 22 to continue reading the records in the 
overflow chain. When the last record of an overflow chain has been read, a normal 
return is issued. The abnormal-end appendage of the Get routine sets an indicator to 
mark the buffer that contains the record in error and issues an EXCP return if there 
are more records to be read. Otherwise, it issues a normal return. 

Section 2: Method of Operation 49 



50 OS ISAM Logic 

The channel-end appendage of the PUTX routine (without write-checking) makes a 
normal return to the I/O supervisor if there are no more buffers on the Write queue. 
An EXCP return is issued if there are more buffers on the queue to be written. The 
abnormal-end appendage makes the same returns under the same conditions, but, in 
addition, it sets both a write-error indicator and an indicator to inform the processing 
program which buffer contains the record in error. 

When a write-checking is in effect, the PUTX routine channel programs are 
command-chained to write the contents of a set of buffers at a time, rather than 
writing all the buffers on the Write queue. For prime-data records, a set of buffers is 
the number of buffers on the queue or the number needed to complete the current 
track, whichever is lower. For overflow records, a set is one buffer. The contents of a 
set of buffers is written and checked before the next set is written. 

If return is to the channel-end appendage after the inital write of a set, CP 22 is 
modified to accomplish readback, and an EXCP return to the I/O supervisor is issued. 

If return is made to the abnormal-end appendage after the initial write of any buffer in 
the set, that buffer is marked unreachable or unwritable and an EXCP return is issued 
to write the remaining buffers in the set; if no buffers remain in the set, CP 22 is 
modified to accomplish readback of the successfully written buffers, and an EXCP 
return is issued. No attempt will be made to rewrite the buffer in error; the processing 
program will be informed of the error the next time a GET macro instruction is issued 
for the buffer. 

If channel-end return is made for both writing buffers and reading them back, an 
EXCP return is issued if there is another set to be written. Otherwise, a normal return 
is issued. 

If a return to the abnormal-end appendage occurs when reading back a buffer that was 
successfully written, an EXCP return is issued to rewrite, and an additional EXCP 
return is issued to recheck the buffer in error. Up to ten rewrites and rechecks per 
buffer are permitted; CP 22 must be modified for each readback and rewrite. If a 
successful readback cannot be accomplished, or if an abnormal-end return is made on 
any of the attempts to rewrite the buffer, the buffer is marked as unwritable and an 
EXCP return is issued to start writing the next set. If there are no more sets to be 
written, a normal return is issued. 

When an EXCP return is to be issued and the next record to be written or searched is 
on another device, the appendage routine cannot issue the EXCP command itself. 
Instead, it schedules an asynchronous routine (located in the GET appendage). When 
the asynchronous routine receives control, it issues the EXCP macro instruction. 



Scan Mode Processing Phase Organization 

Processing Routines 

The modules containing the scan mode processing routines are shown in Figure 24. 

Module Name Function 

IGG019HB 
(Fixed-

length 
records) 

Get, PUTX, RELSE, ESETL, SETL B 

IGG019HN 
processing routines 

(Variable-

length 
records) 

IGG019HD SETL K processing routines 

IGG019HF SET L I processing routines 

IGG019HG 
Get channel-end and abnormal-end appendages and 
asynchronous routine 

IGG019HH PUTX channel-end and abnormal-end appendages, no write-check 

IGG019HI PUTX channel-end and abnormal-end appendages, write-check 

IGG019HJ SETL I channel-end and abnormal-end appendages 

IGG019HK SETL K channel-end and abnormal-end appendages 

IGG019HL channel program skeletons 

IGG019HA RPS SIO Appendage 

Figure 24. QISAM Scan Mode Processing Modules 

Scan Mode Channel Programs 

The scan mode channel program skeletons are contained in module IGG019HL. The 
channel program skeletons are moved to a work area and completed during the open 
phase of scan mode. 

Section 2: Method of Operation 51 



In processing and updating an ISAM data set, the following scan channel programs are 
used: 

Channel Program 22 (CP 22) 

Channel Program 23 (CP 23) 

Channel Program 24 (CP 24) 

Channel Program 25 (CP 25) 

Channel Program 26 (CP 26) 

The two versions of CP 22 are used to read or 
write data records. Version 22A (CP 22A) is 
used to read the key and data fields of 
unblocked records. Version 22B (CP 22B) is 
used to read either the data field of unblocked 
records, or any blocked records. 

Used to locate the data record by SETL K or 
KC; searches the index and data tracks. 

Used to read count and data fields of the 
track-index entries. 

Used with SETL I to obtain track-index entries. 

Used on overflow chains as an extension of CP 
23 (SETL K). 

If the user has allocated enough buffers and is reading a full track at a time, as many 
CP 22s as are needed (one for each buffer) are chained together for reading the track; 
the same is true for writing a full track at one time, that is, all copies of CP 22 are 
chained together. 

Assuming the use of a file with no overflow, CP 23 is used by SETL to locate the 
proper record; then CP 22 is used to read the record; CP 24 then reads the next level 
of track-index entries and schedules the next CP 22. 

Figure 25 illustrates the operations of one scan mode channel program (CP 23). 
Channel program 23 is used by SETL to position to the first record of the specified 
file. For this example, it is assumed that no master indexes are being used. 

Scan Mode Control Blocks and Work Areas 

Information about the data set and processing requests is carried in various control 
blocks, work areas, and queues. The address relationships of these areas to each other 
and processing routines and channel queues are shown in Figure 26. 

Scan Mode Close Phase 

52 OS ISAM Logic 

The QISAM scan mode close phase has only one close executor, module IGG02029, 
which is entered from the I/O support Close routine. Module IGG02029 uses the 
ESETL routine to terminate scanning and clear the buffer queues. (Refer to "ESETL 
Routine" and "Buffer Control Techniques.") 

Even if the user has already issued an ESETL, the close executor issues another one. 
The close executor then awaits completion of any outstanding writes. If any of these 
writes are unsuccessful, the user synchronous error is entered. The user must return to 
the close executor to complete the release of buffers and work areas to the operating 
system. 

If the oustanding writes or the return from the synchronous error routine to the close 
executor have been completed successfully, then the close executor: 

1. Returns all buffers to the buffer pool. 



1------------ 1 

'

Cylinder Read the home I 
Index Seek to 

'Search address I ROJ of __ cylinder I 

'

the cylinder Index I 
Index track 

I I 
I 

I I 
I LT I 

I 
I I 
, I 

I : 
I Read data of Locate the I 

the cylinder - -correct track I 
I Index entry Index track I 
L _____________ J 
r------ ------, 
IFlnd 
Index 
I Entry 

LT 

I 

Seek to the 
track Index track 

Read the 
home address 
of the track 
Index 

Read count 

L ____ _ 

I , 
I 
I 
I 
I 

Position to I 
beginning 

of track 

Index track 

---, 
Read I 

Read data Index 

1 of the key Entry I 
entry 

I I 
I I 
I Read count I 
I field of I 

Index entry 

I I 

I ' I Read data I 
field of I I Index entry 

L L--__ -r_----l _______ J 
1-------- I 
I Read ID- I 

Data I Seek data track Record I 
I I 
I I 
I Read home I 
I address of I 
I data track I 

I I 
I I 
I I 
I I 
I I 
I I 
I ;;~~~ :~I:eof I 
I ~~~n I 

I I 
I I 
I Read Count I 
L ______________ -.J 

Figure 25. Scan Mode Channel Program 23 

2. Releases the work area. 

3. Updates the DCB tag deletion count, DCBTDC. 

4. Updates the number-of-overflow-references field in the DCB, DCBRORG3. 

5. Moves the DCB fields that may have been changed during processing from the 
DCB field area (DCBFA) to the DCB if the data set was opened for DISP=SHR. 
Frees the DCB field area if this is the last DCB open for the data set. 

Section 2: Method of Operation 53 



When finished, the scan close executor, module IGG02029, passes control to the ISAM 
common close executor. 

DCB DeB Work Area 
B' 

14 DCBBUFCB f-0 
0 Input ECB 

2D DCBDEBAB Get , 4C DCBSETL ~ 4 Input lOB processing module 
54 DCBESETL 

30 Output ECB 

34 Output lOB 

C 
E4 DCBWKPTl 

~ SETL 60 Sense bits and pOinters 
processing module 

80 Queue table* r----. 
Track mdex information 

E BC 
and save area Get ,...... 

appendage module 
W1CP23PT Channel @ r--~ (asynchronous 

F4 W1CP26PT program routme) 
F W1CP25PT pOinters 

@r--
DEB 

~ 130 CP 24 
-20 T SID appendage .. 
-18 r CE appendage table 

SETL 
150 W1DCBFA r-r. appendage module 

~ -14 T AE appendage table - .. 
0 lA4 - f-oir- -' 
8 DEBIRBAD -., 

'- - 18 DEBDCBAD 
CP 22 

'-- 16 DEBAPPAD (one copy per buffer) 

..-- 2C i ISAM Extension 'a... PUTX 

'-- appendage module 
Extent descriptIons 

----.. 0 T Get or Put module I-~® .... 4 T UCB CP 23/26 or CP 25 
8 i Get appendage module I-~0 @ 
C Channel-end A VT I-~® RPS SID 

24 Abnormal-end AVT ~® 
appendage module 

I-

IRB' ~ @~ Buffers' 

C RBEP HD DCBFA 

~D D * Figures 17 and 18 describe the channel 
program/buffer queues 

* * If the prime area IS on a different volume than 
the high level Indexes, the asynchronous 
routine IS executed and a dIfferent UCB IS needed. 

Note DIsplacements are In hexadecimal. 

Figure 26. Scan Mode Control Blocks and Work Areas 

54 OS ISAM Logic 



Basic Indexed Sequential Access Method 

The basic indexed sequential access method (BISAM) provides direct storage and 
retrieval of the records in an indexed sequential data set. The READ K macro 
instruction permits the retrieval of a logical record from main storage by its record key. 
The READ KU and WRITE K macro instructions, when used together, provide the 
ability to update logical fixed-length (or variable-length if the record length does not 
change) records in place. The WRITE K macro instruction, when used without READ 
KU, allows the user to replace unblocked fixed-length (or variable-length if the record 
length does not change) logical records. The WRITE KN macro instruction is used 
with the READ KU macro instruction to update variable-length records when the 
record length can change. The WRITE KN macro instruction allows the user to insert 
new logical records into the data set or to replace a variable-length logical record with 
one having the same key and possibly a different record length. 

Since storage and retrieval of records are direct in BISAM, the BISAM routines are not 
able to read ahead as the QISAM scan mode Get routine can. Consequently, the user 
must issue aWAIT or CHECK macro instruction in order to determine whether a read 
operation has been completed. 

As in QISAM, there are three phases of BISAM routines: 

• The open phase 

The processing phase 

• The close phase 

BISAM Open Phase Operations 

The first BISAM open executor is entered from the last common ISAM open executor. 
The BISAM open executors load the BISAM processing routines, selecting the 
processing phase modules according to the processing program options. Particular 
processing modules are selected depending on such options and considerations as: 

• The number of levels of index to be searched on the direct-access device (NLSD) 

Whether the records are blocked or unblocked 

Whether work areas are supplied by the user or by the access method routines 

Whether or not write-checking is to be used 

• Are buffers controlled by the user program or by the ISAM dynamic buffering 
routine (module IGG019JI) 

The user's intent to add new records to the data set with the WRITE KN macro 
instruction 

Section 2: Method of Operation 55 



Some of these considerations also affect the sequence in which the BISAM open 
executors are called. Figure 27 illustrates the flow of control through the BISAM open 
executors. 

Those BISAM open executors that initialize channel programs include conversion to a 
non-RPS state as part of their processing. 

BISAAf Open Phase Organhanon 

56 OS ISAM Logic 

When a DCB is being opened for BISAM processing, one or two of the validation 
modules are selected to correlate format-2 DSCB and DCB fields. The validation 
modules (IGGOI920, IGGOI922, and IGGOI950) are also used in open processing for 
resume load and scan mode. 

If the records are fixed-length records, modules IGGO 1920 and IGGO 1922 are selected 
for validation and initial BISAM open processing. 

Move format-

2 DSCB 
Items to DeB 

No 

Determine 

and load 

modules 

Construct 
work area 

Need 

system area for 

WRITE KN 

Figure 27. BISAM Open Executors 

Yes 

Yes 

Read high­
level Index 

Into storage 

Construct 

system area for 

WRITE KN 



These two modules reset certain fields in the DCB and format-2 DSCB which may be 
incorrect if the data set was previously closed improperly. 

If variable-length records are used, module IGGO 1950 is selected to merge end 
pointers from the format-2 DSCB to the DCB and adjust, if necessary, the 
independent overflow control information in the DCB. 

IGG01950 is the VLR counterpart to modules IGGOI920 and IGGOl922. It is the 
first BISAM open module entered when variable-length records are being added. 

The validation module may not be executed, although it will be entered, if the user has 
specified that the data set may be shared by other tasks (DISP=SHR). It will not be 
executed in that case if another DCB has already been opened for the data set and a 
DCB field area (DCBFA) set up for the purpose of maintaining the DCB fields. (See 
"The DCB Integrity Feature" under "The ISAM Common Open Executors" and the 
description of the DCBF A.) 

Module IGG0192W or IGGOI92H receives control from modules IGG01920 and 
IGGOI922, or module IGG01950 during the opening of a DCB for BISAM. 

BISAM Open Executor IGG0192H (Fixed-length records) 

1. Moves the format-2 DSCB fields needed for BISAM into the DCB. 

2. Obtains and structures the work are ass and provides pointers to the work area. 

BISAM Open Executor IGG0192W (Variable-length records) 

1. Moves the format-2 DSCB fields needed for BISAM into the DCB. 

2. Obtains and structures the work areas and provides pointers to the work areas. 

BISAM Open Executor IGG0192P 

1. When the high-level indexes are to be searched in main storage, module 
IGGOI92P schedules CP 87 to read the high-level index into the user-specified 
work area. The work area is specified in the DCB at DCBMSHI. Channel 
program 87 is contained in module IGGOI92P. 

2. After reading the high-level index into the user work area, module IGG0192P 
saves the address of the last active entry in the high-level index. 

BISAM Open Executor IGG01921 

1. Selects and loads the proper privileged module, according to the options specified 
in DCBMACRF by the user. (See Figure 35 for the privileged macro-time 
modUle.) 

2. Selects, loads, and initializes CP 1 when cylinder and master indexes are to be 
searched on the direct-access device. 

3. Selects, loads, and initializes CP 2 when the cylinder index is the highest level 
index to be searched on the device. 

Section 2: Method of Operation 57 



58 OS ISAM Logic 

4. If an RPS device is being used, IGG0192I saves and restores the high-order byte 
of DEBISAD when storing the address of the privileged macro-time module. 
(See step 1.) This is done to preserve the RPS bits at DEBRPSID. 

5. This module also initializes RPS fields in the DCB work area. 

6. Initializes the error queue counter to 2(NCP) + DCBBUFNO. 

BISAM Open Executor IGG0192K (READ K, READ KU, WRITE K) 

1. Selects and loads CP 4, CP 5, CP 6, and CP 7; initializes these channel programs. 

2. Selects and loads the nonprivileged macro-time routine, module IGGOI9JV, for 
READ K, READ KU, and WRITE K. 

3. If dynamic buffering is specified, loads the dynamic buffering module, IGGO 1911. 

4. If RPS is used and the dynamic buffering module loaded, IGGOI92K also sets bit 
3 of DEBRPSID. 

BISAM Open Executor IGG0192L (WRITE KN) 

1. Loads the set of WRITE KN channel programs needed with the data set being 
processed - blocked or unblocked records, user work area or'system work area, 
etc. (See BISAM channel programs, Figures 40-52.) 

2. Loads the nonprivileged macro-time routines for WRITE KN, module 
IGGOI9JW. 

3. Initializes CP 8 and CP lOB. 

BISAM Open Executor IGG0192M (WRITE KN with fixed-length records) 

1. Initializes CP 14 which is used to update the cylinder overflow control record 
(COCR) and writes overflow records. There· are six different versions of this 
channel program, which are described in "Appendix B: ISAM Channel 
Programs. " 

BISAM Open Executor IGG0192X (WRITE KN with variable-length records) 

1. Performs the same functions as IGG0192M as described above. See CP 14 in 
"Appendix B: ISAM Channel Programs." 

BISAM Open Executor IGG0192Q (WRITE KN) 

1. Initializes CP 1 or CP 2, CP lOA, CP 15, CP 16, CP 17. 



No Hlgh­
level Index 
Search In 
Mam Storage 

Variable-length Records 

ISAM common 
open executor 

IGG0192C 

High-level Index 
Search In MaIO Storage 

WR ITE KN only 

No H,gh­
level Index 
Search In 
Main Storage 

Variable-length Records 

User Provides Work Area 

Input/output 
support Open 
routine 

Figure 28. Flow of Control through BISAM Open Executors 

Section 2: Method of Operation 59 



BISAM Open Executor IGG01920 (WRITE KN, fixed-length records, user work area) 

1. Initializes CP 12 or CP 13 series, and CP 123W; deletes skeleton channel 
program modules. 

BISAM Open Executor IGG0192N (WRITE KN, fixed-length records, system work 
area) 

1. Initializes CP 9 series or CP 11 series; deletes skeleton channel program modules. 

BISAM Open Executor IGG0192Z (WRITE KN, variable-length records) 

1. Initializes CP 12AV, CP 12BV, and CP 123WV; deletes skeleton channel 
program modules. 

BISAM Open Executor IGG0192J 

1. Module IGG0192J selects and loads the proper appendage modules and one 
asynchronous module. Refer to the BISAM appendage and asynchronous 
modules tables shown in Figures 37 and 38. 

2. Initializes the interrupt request block (IRB) used by the asynchronous routine. 

3. If any of the RPS bits at DEBRPSID in the DEB are set, IGGOI92J loads the 
RPS SIO appendage, IGGOI9JH. 

During processing, if bit 3 of DEBRPSID is on, control is passed to IGGO 19JH. 

BISAM Processing Phase Operations 

60 OS ISAM Logic 

BISAM processing is performed by channel programs that read and search indexes, 
prime-data tracks, and overflow chains. They also write prime-data and overflow 
records and index entries. The channel programs are set up and controlled by the 
BISAM processing routines. 

All BISAM READ and WRITE macro instructions enter a nonprivileged macro-time 
routine, which enters a privileged macro-time routine where I/O interruptions may be 
readily enabled or disabled. The privileged routine returns to the nonprivileged routine 
upon completion. The nonprivileged routine then starts a channel program, if possible, 
and returns control to the user. 

When a channel program ends, the I/O supervisor passes control to an appendage 
routine that analyzes the manner in which the channel program ended and determines 
the action to be taken as a result. This involves either an EXCP return to the I/O 
supervisor or the scheduling of an asynchronous routine. The overall control flow 
through these routines is shown in Figure 7. 

The user can supply his own buffers or use the dynamic buffering option of BISAM. 
In the latter case, the dynamic buffering routine obtains and frees buffers for each 
processing request. 

A check routine is available to all BISAM requests to allow the user to analyze 
processing errors. 



Information about the data set and the processing requests is communicated among the 
processing routines and the channel programs in control blocks, work areas, and 
queues. This section describes the processing routine logic, the flow of control through 
the channel programs, and the relations of the data areas to each other and to the 
processing routines and channel programs. 

Descriptions of the channel programs are in "Appendix B: ISAM Channel Programs." 
"Section 5: Data Areas" contains detailed layouts of the data areas. 

An Example of BISAM Processing Flow 

Whenever a BISAM macro is issued, a nonprivileged macro-time module is entered. In 
this example the nonprivileged module entered will be IGG019JW after a WRITE KN 
macro instruction is issued. 

1. The WRITE KN is issued from the processing program. 

2. The nonprivileged module is entered; module IGG019JW issues an SVC 54 to 
disable interrupts and link to the privileged macro-time routine. In the case of a 
WRITE KN without READ K, WRITE K, or READ KU, the privileged routine 
module entered is IGG019JX. (See Figure 35.) 

3. Module IGGOI9JX: 

a. Initializes the lOB. 

b. Determines if another WKN is in progress; if so, the lOB is added to the 
on-schedule queue and the on-schedule switch is set on. 

c. If another WKN is not in progress and it is'necessary to search the 
high-level index in main storage, the following operations are done: 

(1) The first WKN channel program is initialized. 

(2) The Seek address for the channel program is determined, using the 
DCBFTHI field. 

(3) If the track index is the highest level of index (this is assumed for this 
example), the appendage code is set to 8. 

4. Channel program 8 is initialized - CP 8 is used to determine where the new 
record should be inserted. 

5. Return to the SVC 54 issued by IGG019JW. 

6. The SVC 54 exits to the original nonprivileged module. 

7. Module IGGO 19JW tests the on-schedule switch; if it is set, return is made to the 
processing program. If the on-schedule switch is off, an EXCP is issued using 
the lOB just created. 

8. When the channel program ends, the appendage routine uses the appendage code 
in the lOB and the appendage vector table in the appendage module to select the 
needed appendage routine for this particular channel program. 

Section 2: Method of Operation 61 



Privileged Macro-time Routines 

A privileged macro-time routine (shown in Figure 29) schedules the first channel 
program for a given macro instruction. BISAM has several modules of privileged 
macro-time routines (refer to Figure 35). However, no more than one of these 
modules is loaded into storage by the BISAM open executor, IGG0192I, for a single 
DCB. 

Obtain 108 
from update 
queue 

Determine 
first channel 
program 

Initialize 

channel 

program 

No 

No 

No 

Signal 

Invalid request 

8 

Figure 29. Privileged Macro-time Routines 

62 OS ISAM Logic 

Ves 

Ves 

Isl08 
on error 

Construct 
108 

Search 

Ves 

No 

Remove from 

Signal no 

record 
found 

Place 108 
on unscheduled 

queue 

A 

Ves 
8 

c 



Selection of the macro-time routine module to be loaded depends on the BISAM 
macro instructions specified in the DCB, the record format, and the number of levels of 
index searched on a direct-access device (rather than searched in main storage). These 
factors determine the choice of channel programs needed in a macro-time routine. 

A nonprivileged macro-time routine enters a privileged macro-time routine by means 
of an SVC S4 (disable) instruction to disable I/O interruptions. If the lOB being 
reused has a dynamic buffer associated with it, the buffer is returned to the dynamic 
buffer pool. 

For any read or write request, the routine checks the error queue and the update queue 
to see if any existing lOB refers to the data event control block (DECB) of the present 
request. If so, the old lOB is reused for the current request. If the lOB being reused 
has a dynamic buffer associated with it, the buffer is returned to the dynamic buffer 
pool unless the request requires a dynamic buffer. If no lOB is found that refers to the 
DECB of the present request, and a dynamic buffer must be assigned to the request, 
DECBAREA is zeroed to force the assignment of a dynamic buffer in function 1 of the 
dynamic buffer module (IGG019JI). 

When a WRITE K macro instruction is issued after a READ KU, both with the same 
DECB, an lOB for the DECB should be on an update queue (as the result of the 
READ KU). If the lOB is not on the update queue, an invalid request condition exists 
and the privileged routine returns to the calling nonprivileged routine. Otherwise, the 
privileged routine for the WRITE K associated with a previous READ KU removes the 
lOB from the update queue. In all other cases, the routine constructs an lOB for the 
request. 

Subsequently, the privileged routine attempts to schedule the first channel program 
needed for the user's request. If the channel program is available and the high-level 
index is to be searched in main storage, the routine performs this search. If the search 
is unsuccessful, a record-not-found condition exists and the routine posts the DECB as 
complete, sets the appropriate exceptional condition bit in DECBEXCD, and returns 
control to the nonprivileged routine. (Searching is always successful in the case of 
WRITE KN.) If the search is unsuccessful or no search in main storage is necessary, 
the routine determines the first channel program to be scheduled. If it is available, the 
routine schedules it. If it is unavailable, an unscheduled condition exists, and the 
routine queues a request for the channel program by placing the lOB on a queue called 
the unscheduled queue. The routine then returns to the nonprivileged routine. 

A special case exists if the WRITE KN macro instruction is being used with other 
READ or WRITE macro instructions. Possib!~ conflicts between these macro 
instructions are avoided because WRITE KN changes indexes and record positions. Its 
channel programs are not scheduled if another WRITE KN, WRITE K, READ K, or 
READ KU has been scheduled but not completed, or if a READ KU has been 
completed but a FREEDBUF or a WRITE K for that DECB has not. The WRITE KN 
channel programs are not scheduled if there are lOBs on the update queue, or if there 
are lOBs on the unscheduled queue for reasons other than those associated with 
WRITE KN. Similarly, WRITE K, READ K, and READ KU are not scheduled if a 
WRITE KN has been scheduled but not completed, or if a previous WRITE KN cannot 
be scheduled. 

Section 2: Method of Operation 63 



Note: Entry to the privileged routine from the asynchronous routine is also possible. 
In this case, the return will be to the asynchronous routine. 

Nonprivileged Macro-time Routines 

64 OS ISAM Logic 

There are two modules of nonprivileged macro-time routines. (Refer to Figure 36.) 
The READ K, READ KU, and WRITE K macro instructions link to one routine and 
the WRITE KN macro instruction links to the other. The nonprivileged routine is 
shown in Figure 30. 

record length 
spec 

No 

Signal 

invalid 

record 

length 

rs~~----------------l 

I (D,s"ble) I 
I Ves I 
I DISP"SHR Refresh DCB I 

I I 
I No I 
I I 
I I 
I Execute privileged I 
I macro time I 
! routine I 
L __________________ ~ 

No 

No record 
found 

Unscheduled 

No 

EXCP 

Start 

channel 
program 

POST 

Ves 

Completion 

Ves 

Ves 

Figure 30. Nonprivileged Macro-time Routines and SVC 54 



If the user has specified a record length in a READ K, READ KU, or WRITE K macro 
instruction, the respective macro instruction routine checks the record length specified 
against the logical record length supplied by the user in the DCB (DCBLRECL). If 
the length specified in the macro instruction is invalid or if the user has specified a 
record length in a WRITE KN macro instruction, the nonprivileged macro-time 
routines set the record length check indicator in the DECB exceptional condition code 
field (DECBEXCDl) and return control to the user. Otherwise, an SVC 54 is issued 
to link to a privileged macro-time routine. The privileged routine, upon completion, 
returns to the non privileged routine. 

If no channel program was scheduled, the nonprivileged macro-time routine issues the 
EXCP and returns to the user. When the channel program is completed, an I/O 
interruption takes place and the I/O supervisor links to an appendage routine. 
(Appendage routines are described in the BISAM "Appendage and Asynchronous 
Routines" section.) 

If no channel program was scheduled because of an invalid request, a no-record-found 
condition, or an unscheduled condition, the nonprivileged routine returns to the user. 
In the case of an invalid request, the routine posts the DECB as complete and returns 
to the user. 

Appendage and Asynchronous Routines 

The BISAM appendages and asynchronous routines are shown in Figure 31. The 
asynchronous modules are listed in Figure 37; the appendage modules are listed in 
Figure 38. 

Appendage routines determine the action to be taken when a channel program ends. 
Asynchronous routines perform that action except in certain cases, which are explained 
below. Appendage modules consist of an appendage vector table and a group of 
appendage routines. Asynchronous modules consist of an asynchronous vector table 
and a group of asynchronous routines. 

When a channel program ends, a general appendage routine uses a combination of the 
appendage code in the lOB and the appendage vector table for the module to select the 
appropriate appendage routine. A list of appendage and asynchronous codes is 
contained in "Section 6: Diagnostic Aids." 

If the channel program is complete, the appendage routine schedules an asynchronous 
routine that sets up the next channel program. If the channel program is not complete, 
the appendage routine returns to lOS to reschedule that channel program. 

If the channel program did not end in error, the action taken depends on whether (1) it 
is the final channel program needed to satisfy the user's request, (2) an additional 
channel program is needed to satisfy the request and no other requests are waiting for 
the channel program just completed, or (3) neither of the above conditions exists. 

In the first case, the appendage routine schedules an asynchronous routine to report 
completion to the user. If the data set is shared (DISP=SHR), the DCBF A (DCB field 
area) is reset as needed before completion is posted. In the second case, the 
appendage routine schedules the additional channel program by a special return to the 
I/O supervisor. In the third case, the appendage schedules an asynchronous routine 
which in turn schedules an additional channel program for the current request and, if 
possible, reschedules the channel program just completed for a waiting request. 

If the present request used a dynamic buffer, the address of the buffer is saved in the 
lOB before the lOB is placed on either the update or error queue. 

Section 2: Method of Operation 65 



66 OS ISAM Logic 

B 

Place on 
unscheduled 

queue 

No 

Error 

No 

Schedule 
asynchronous 

routine (create 

IRB) 

Dispatcher 

Enter 
asynchronous 

routrne 

Another 

Next channel 

Ves 

Ves 

First time 

Set up 
channel 

orogram 

Place lOB 
on error queue 

READ KU 

Free lOB 

area 

POST 

CornpletJOn 

Figure 31. BISAM Appendage and Asynchronous Routines 

No 

Ves 

Report error via 

asynchronous routine 

B 

Place lOB 

on update 

queue 

Refresh 

DCBFA 



The first time a channel program ends in error, the appendage routine returns control 
to the I/O supervisor to retry the operation. If the I/O supervisor finds the error is 
permanent, it reenters the appendage routine which schedules an asynchronous routine 
to report the error to the user and place the request on the error queue. 

Dynamic Buffering Routines 

The READ K and READ KU macro instructions require an area into which a block 
can be read. The user may supply this area or use BISAM routines to provide the area 
through the dynamic buffering option of the macro instruction. Figure 32 shows the 
dynamic buffering routines. 

When the dynamic buffering option is used, BISAM routines release the buffer when a 
corresponding WRITE K macro is completed. If no WRITE K is issued, the processing 
program may release the area obtained with dynamic buffering for a READ K or 
READ KU by issuing a free dynamic buffer (FREEDBUF) macro instruction. 

Also, the privileged macro routine automatically releases the buffer if a READ macro 
instruction is followed by a WRITE KN or another READ. The buffer is released, 
reusing a DECB, without an intervening WRITE K or FREDBUF. 

The dynamic buffering module contains two routines. The first, called function 1, 
obtains buffers in response to the dynamic buffering option of a READ K or READ 
KU macro instruction. The second routine, called function 2, frees the buffers. 

DynamiC 
buffering 

Can Place buffer 
another No area on 
lOB use available 
a buffer 

list 

Yes 

Remove lOB 
from 

waiting 
queue 

EXCP 

Channel 
program 

Return 

Figure 32. Dynamic Buffering Routine 

Yes 

Any No 
on available 

queue 

Yes 

Remove 
buffer 

from 

queue 

Place lOB 
on queue 
Clwaltlng 

buffers 

Section 2: Method of Operation 67 



Check Routine 

68 OS ISAM Logic 

Function 1 is an appendage routine entered by the 110 supervisor just prior to 
executing the scheduled channel program. When used by the FREEDBUF macro 
instruction, function 2 is considered a macro-time routine. When used on completion 
of a WRITE K macro instruction, function 2 is considered an asynchronous routine. 
The function 2 routine of IGG019JI, when executed from FREEDBUF, also frees any 
lOB on the error or update queue that is associated with the DECB, regardless of 
whether a dynamic buffer is also associated with the DECB. 

Rather than returning to lOS, IGG019JI passes control to the RPS SIO appendage 
(IGG019JH) if bit 3 of DEBRPSID is set. 

A description of the BISAM dynamic buffering buffer control block appears in 
"Section 5: Data Areas." 

The check routine module (shown in Figure 33), loaded when check is specified in the 
DCBMACRF field, gets control each time the user issues a CHECK macro instruction. 

Get IOB+2 

Is there 
aSYNAD 

Figure 33. BISAM Check Routine 

No 



Processing 
Program 

READ/WRITE 

WAIT 

I - NONPRIVILEGED - -l 
~ ~C~ROUT~ --1 
I 
I 
I Yes 

I 
I 
I 
I 
I 

I 

I/O 
Interrupt 

record length 
specified 

lOB Yes 
sched u I ed >-...:...::"----+~ 

I 
--.J 

IRB 

SVRB 

BALR-+--.J 

EXI r 

I - - - PRiVIlEGED - - -- "I 
t- - - - MACR~UTINE - - - --j 

I I 
I ~ 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I Entry 

L+-_____ .:.:N~o_<from asynchronous>'Y"'e"-s----+'--i 

routine 

L _________ J 
1-­
t--

APPENDAGE ROUTINE 

I 
I 
I 
I 

Error 

Yes 

File 
protect from 

CP 4 

No 

Permanent error 

Yes 

L ____ L--------' 

I 
I 

L 

ASYNCHRONOUS ROUTINE 

Another 
rf'quest awaiting 

completed 
CP 

No 

Yes 

No 

Final 
CP of request 

No 

All 

-, 
-1 
I 
I 
I 

I 

--j 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

I 

J 

Figure 34. BISAM Processing Flow (Not WRITE KN) 

Section 2: Method of Operation 69 



The check routine examines the DECB exception code (DECBEXCD) fields. If a 
permanent error has been posted, it searches the error queue for the corresponding 
lOB. The check routine then either gives control to the user's synchronous error 
(SYNAD) routine or, if the user has no SYNAD routine, issues SVC 55 (EOV) to 
request an ABEND with a code of 00l. 

Upon entry to the SYNAD routine, register 0 contains the address of the first sense 
byte of the lOB (sense information is valid only when a unit check has occurred) and 
register 1 contains the address of the DECB. In the SYNAD routine, the user can 
issue a SYNADAF macro instruction. It places all pertinent information on the request 
in a buffer and returns the buffer's address to the user. For a description of the 
SYNADAF macro instruction, refer to OS Data Management Macro Instructions, 
GC26-3794. 

Macro Instructions Additional Considerations Module Names 

READ K, WRITE K 
*NLSD=O IGG019J6 

READ KU 
Fixed-length Records 

NLSDr"O IGG019J7 

Variable-length Records IGG019H7 

WRITE KN None IGG019JX 

READ K, WRITE K NLSD=O IGG019JO 
READ KU in combination Fixed-length Records 
with WRITE KN NLSDr"O IGG019J3 

Variable-length Records IGG019H3 

*NLSD represents the number of levels of indexing (cylinder or master indexes) that are searched 
on the device. 

NLSD=O represents the case where the data set was allocated no more than one cylinder and has no 
cylinder or master indexes or there is only a cylinder index and it is searched in main storage. 

N LSDFO means: (1) there is only a cylinder index that is searched on the device and (2) there are 
at least two levels of indexing, one of which is searched in main storage and the other is 
searched on the device. 

Figure 35. BISAM Privileged Macro-time Modules 

70 OS ISAM Logic 



Macro Instructions Additional Considerations Module Names 

READ K, WRITE K, READ KU None IGG019JV 

WRITE KN None IGG019JW 

Figure 36. BISAM Nonprivileged Macro-time Modules 

Macro Instruction Additional Considerations Modules 

Fixed-length Records IGG019GX 

READ K, WRITE K, READ KU 
Variable-length Records IGG0191X 

No Write Check IGG019GY 

Fixed-length Records 
WRITE KN Write Check IGG019GV 

Variable-length Records IGG0191Y 

No Write Check IGG019GZ 

READ K, WRITE K, READ KU Fixed-length Records 

in combination with Write Check IGG019GW 

WRITE KN 
Variable-length Records IGG0191Z 

Figure 37. BISAM Asynchronous Modules 

BISAM Processing Phase Organization 

BISAM Channel Programs 

BISAM uses the channel programs that are enumerated below and described in 
Appendix B. The flow of control through the READ K, WRITE K, and READ KU 
channel programs is shown in Figure 40 and the flow for WRITE KN channel 
programs is shown in Figures 41 through 52. Channel program modules are indicated 
in Figure 39. 

Note: Figures 40 through 52 show only the normal (nonerror) flow of control through 
the channel programs. For WRITE KN, two different methods are used to add records 
to the data set. For fixed-length records with a system work area, the prime track is 
rewritten and the index entries are updated before the overflow record is written. For 
fixed-length records with a user-supplied work area and for variable-length records, 
the overflow record is written before the prime track and index entries. This requires 
two different methods for executing CP 14 as explained in "Appendix B: ISAM 
Channel Programs." 

Section 2: Method of Operation 71 



Macro Instructions Additional Considerations Module Names 

No Write Check IGG019G8 READ K, WRITE K, 
Fixed-Length Records 

Write Check IGG019G9 READ KU 

Variable Length Records IGG01919 

Unblocked, System Work 
IGG019GO and IGG019GL 

Area, No Write Check 

Unblocked, System Work 
IGG019Gl and IGG019GM 

Area, Write Check 

Unblocked, User Work 
IGG019G2 and IGG019GL 

Area, No Write Check 

Unblocked, User Work 
IGG019G3 and IGG019GM 

Area, Write Check 

Fixed-Length Records 
Blocked, System Work 

IGG019G4 and IGG019GL WRITE KN 
Area, No Write Check 

Blocked, System Work 
IGG019G5 and IGG019GM 

Area, Write Check 

Blocked, User Work 
IGG019G6 and IGG019GL 

Area, No Write Check 

Blocked, User Work 
IGG019G7 and IGG019GM 

Area, Write Check 

Variable-Length Records IGG01910 and IGG0191M 

Unblocked, System Work 
IGG019GO and IGG019GN 

Area, No Write Check 

Unblocked, System Work 
IGG019Gl and IGG019GO 

Area, Write Check 

Unblocked, User Work 
IGG019G2 and IGG019GN 

Area, No Write Check 

READ K, WRITE K, Unblocked, User Work 
IGG019G3 and IGG019GO 

Area, Write Check READ KU in 
Fixed-Length Records 

combination with 
Blocked, System Work 

IGG019G4 and IGG019GN WRITE KN 
Area, No Write Check 

Blocked, System Work 
IGG019G5 and IGG019GO 

Area, Write Check 

Blocked, User Work 
IGG019G6 and IGG019GN 

Area, No Write Check 

Blocked, User Work 
IGG019G7 and IGG019GO 

Area, Write Check 

Variable-Length Records IGG01910 and IGG0191N 

RPS SIO Appendage IGG019JH 

Figure 38. BISAM Appendage Modules 

72 as ISAM Logic 



Macro Instructions Additional Considerations Module Names Channel Programs 

NLSD = 1 IGG019JK 2 
Any READ or WRITE 

NLSD> 1 IGG019JJ 1 

None IGG019JL 4 5 6 7 

READ K, WRITE K, READ KU 
Write Check IGG019JM 4 5W 6W 7W 

Unblocked, System Work 
IGG019JN 8 9A 9B 9C lOA 

Area, No Write Check lOB 14 15 16 17 

Unblocked, System Work 
IGG019JP 

8 9A 9BW 9CW 10AW 
Area, Write Check 10BW 14W 15 16 17W 

Unblocked, User Work 
IGG019JR 

8 lOA lOB 12A 12B 
Area, No Write Check 12C 14 15 16 1 7 

Unblocked, User Work 
IGG019JT 

8 10AW 10BW 12A 12B 
Area, Write Check 12CW 14 15 16 17W 123W 

WRITE KN Fixed-Length Records 
Blocked, System Work 

IGG019JO 
8 lOA lOB llA 11 B 

Area, No Write Check 14151617 

Blocked, System Work 
IGG019JQ 

8 10AW 10BW llA l1BW 
Area, Write Check 14W 15 16 17W 

Blocked, User Work 
IGG019JS 

8 lOA lOB 13A 13B 
Area, No Write Check 13C 14 15 16 17 

Blocked, User Work 
IGG019JU 

8 10AW 10BW 13A 13B 
Area, Write Check 13CW 14W 15 16 17W 123W 

Variable-Length Records IGG019HP 8 12AV 12BV 14/14W 
1 5 16 1 7 1 23WV 

Figure 39. BISAM Channel Program Modules 

CP 1 

CP 2 

CP 4 

CP 5 

CP5W 

U .. ed to search master and cylinder indexes. 

Used to search a cylinder index when it is the highest level to be 
searched on a device. 

Used to search a track index. CP 5 and CP 5W are always appended 
to this channel program. 

Used to search prime-data tracks and to read or write prime-data 
records. 

Write-checking version of CP 5. 

Section 2: Method of Operation 73 



74 OS ISAM Logic 

CP 6 

CP6W 

CP 7 

CP7W 

CP 8 

Used to search an overflow chain and read or write overflow records. 

Write-checking version of CP 6. 

Used to write data records when WRITE K is associated with READ 
KU. 

Write-checking version of CP 7. 

Used to search track indexes and search prime-data tracks for the 
place to insert a new record. There are separate versions for 
fixed-length records and variable-length records. 

The following channel programs are used for insertion of fixed-length unblocked 
prime-data records when the work area is provided by the system. 

CP9A 

CP 9B 

CP 9BW 

CP 9C 

CP9CW 

Used to read into the work area the record occupying the position at 
which an insertion is to be made. 

Used to read an even-numbered record after writing a record into the 
previous slot and write back the last record of a non-EOF track when 
the number of records bumped is odd. 

Used instead of CP 9B when write-checking is specified. 

Used to read an odd-numbered record after writing a record into the 
previous slot and write back the last record of a non-EOF track when 
the number of records bumped is even. 

Used instead of CP 9C when write-checking is specified. 

The following channel programs are used for fixed-length records regardless of whether 
they are blocked or unblocked or whether the work area is obtained by the system or 
the user. 

CP lOA 

CP IOAW 

CP lOB 

CP IOBW 

Used to write a record or block to replace an EOF mark. 

Used instead of CP lOA when write-checking is specified. 

Used to write an EOF mark. 

Used instead of CP lOB when write-checking is specified. 

The following channel programs are used for insertion of fixed-length prime-data 
records into blocks when the work area is provided by the system. 

CP IIA 

CP lIB 

CP llBW 

Used to read into the work area a block to be bumped. 

Used to write back a rearranged block. 

Used instead of CP lIB when write-checking is specified. 

The following channel programs are used for insertion of fixed-length unblocked 
prime-data records when the work area is supplied by the user. 

CP 12A Used to read all records from the track following the slot into which a 
new record is to be inserted. 



CP 12B 

CP 12C 

CP 12CW 

Used to write a new record followed by the records read by CP 12A. 

Used to write a new record with a key identical to that of a record 
which, although logically deleted, is still physically present on the 
track. 

Used instead of CP 12C when write-checking is specified. 

The following programs are used for insertion of blocked or unblocked variable-length 
records. 

CP 12AV 

CP 12BV 

Used to read all records from the track following the slot into which a 
new record is to be inserted. 

Used to write a new record and the records read by CP 12AV. 

The following channel programs are used for insertion of fixed-length prime-data 
records into blocks when the work area is provided by the user. 

CP 13A 

CP 13B 

CP 13C 

CP 13CW 

Used to read all blocks from the track following and including the slot 
into which a record is to be inserted. 

Used to write back the rearranged blocks read by CP 13A. 

Used to write back a block if the insertion is a record with a key 
identical to that of a record which, although logically deleted, is still 
physically present within the block. 

Used instead of CP 13C when write-checking is specified. 

The following channel programs are used regardless of whether records are 
fixed-length or variable-length, blocked or unblocked, or whether the work area is 
obtained by the system or the user. 

CP 14 

CP 14W 

CP 15 

CP 16 

CP 17 

CP 17W 

CP 87 

Used to update track-index entries, update the cylinder overflow 
control record (COCR), and write overflow records. The six different 
setups for this channel program are explained in "Appendix B: ISAM 
Channel Programs." 

There are separate versions for fixed-length records and for 
variable-length records. 

For variable-length records and fixed-length records with a 
user-supplied work area, CP 14 is divided into two parts. Part I writes 
the overflow record and Part II udpates the COCR and index entries. 
See "Appendix B: ISAM Channel Programs" for details. 

Used instead of CP 14 when write-checking is specified. 

Used to read in the cylinder overflow control record and the overflow 
track-index entry when a new record is added to the end of a data set. 

Used to search an overflow chain for the record that logically precedes 
or is equal to the new record to be added, or the last record in the 
chain. 

Used to change the key in a normal or normal-and-overflow 
track-index entry or in a higher-level index entry. 

Used instead of CP 17 when write-checking is specified. 

Used to read a high-level index into main storage. 

Section 2: Method of Operation 75 



76 OS ISAM Logic 

CP 123W 

CP 123WV 

Addendum to CP 12A and CP 12B or to CP 13A and CP 13B when 
write-checking is specified (fixed-length records). 

Addendum to CP 12BV when write-checking is specified 
(variable-length records). 

READ K 
WRITE K 
READ KU 

Cylmder 

Create lOB for 
Request 

Higher level Yes 
Index searched on >-------;~ 

storage 
Search It 

Highest level Cylmder 
~I-------< Index searched on >-~an':';d:':M;:'a:':'s"'te-r-~ 

device 

READ K 
Free IDB f-oI-"7W~R::-I:::T:::E"7K:---::" Type of request 

NOTE Search IS Key High or 
Equal If unsuccessful, "No Record 

Found" condition eXists 

'FREEDBUF may be ISsued by the 
user or automatically by the 
pnvlleged macro-time routine 

READ KU 

WRITE K 

Place IDB on 
update queue 

Remove lOB from 

update queue 

Free lOB 

Figure 40. READ K, WRITE K, READ KU Channel Program Flow 



WRITE KN 
Create lOB 

for request 

No 

Cylinder 

and Master '----"='F--' 

Yes 
A 

No 

New key Yes 
'------.<hlgherthan any on >...:..;:::.... ... -{ 

CP result 

Record on 

overflow 

data set 

Fixed-length Records, System Work Area -Figure 47 

No Fixed-length Records, User Work Area -Figure 48 

Variable-length Records -Figure 49 

Fixed-length Records, System Work Aren -Figure 50 

Fixed-length Records, User Work Area ·Flgure 51 

Variable-length Records -Figure 52 

Fixed-length Unblocked Records, System Work Area -Figure 42 

Fixed-length Unblocked Records, User Work Area ·Flgure 43 

Fixed-length Blocked Records, System Work Area -Figure 44 

Fixed-length Blocked Records, User Work Area -F Igure 45 

Variable-length Records -F Igure 46 

Figure 41. WRITE KN Channel Program Flow - Index Searching 

Section 2: Method of Operation 77 



Leftover 
Record Deleted 

Fixed-length 
Unblocked Records, 
System Work Area 

From Figure 41 

Last record Yes 
on track read 

Last record on 
track read 

No 

Figure 42. WRITE KN Channel Program Flow - Add to Prime (Fixed-Length Unblocked Records, System 
Work Area) 

78 OS ISAM Logic 



Fixed-length 
Unblocked Records, 
User Work Area 

Old record 
marked for 

Yes deletion 

No 

Independent 

overflow No 

No 

Report "duplicate 
record" error 

to user 

Bumped 
record marked 

for deletion 

Yes 

No 

Yes 

From Figure 41 

End of file 

No 

Last prime 
track of 
data set 

Yes 

Last track full 

No 

Figure 43. WRITE KN Channel Program Flow - Add to Prime (Fixed- Length 
Unblocked Records, User Work Area) 

Section 2: Method of Operation 79 



80 OS ISAM Logic 

Fixed-length 
Blocked Records, 
System Work Area 

Ves 

No Report "space 
not found" ~,-_< eXists for overflow 

Set last block 
and last track 

No full switches 
on 

From Figure 41 

Form padding 
records following 
bumped record In 

new block 

No 

Figure 44. WRITE KN Channel Program Flow - Add to Prime (Fixed-Length 
Blocked Records, System Work Area) 



Fixed-length Blocked Records, 

User Work Area 

Y~ O~ Y~ 
'/4,1----'-''''-<:::: record marked for >..---=< 

Report "duplicate 

record" error 

to user 

No 
Bumped 

recor d marked for 
No 

deletion 

Yes 

Yes 

Independent >...;N~o~ _____ ---, 

overflow 

dupllcdte 

End of file 

I nSE'rt new record 

In block 

Redrrange track 

Last 
pnme track of data 

set 

Last block full 

Last 

prime track of 

From Figure 41 

Yes 

Yes 

LdSt 
block previously 

full 

Yes 

Form padding 

record .. following 

bumped records 

In new block 

Last 
record paddll1g 

Yes 

No-Padding 

R(>cord 

Bumped 

No Set last block 

and last track 

full sWitches ON 

Figure 45. WRITE KN Channel Program Flow - Add to Prime (Fixed- Length Blocked Records, User 
Work Area) 

Section 2: Method of Operation 81 



Varlable·length Records From Figure 41 

Report" 00 Old Old 
Ves record to be Yes record marked Yes New key 

record found" 
replaced a duplicate 

error to user 
for deletion 

No No 

Old Merge new 
Yes record to be record and 

replaced reorganize 
records 

No 

All 
Report "duplicate blocks after No 

record" error to user insertion pomt 
read 

Yes 

Oneor 
Yes more records No 

bumped to 
overflow 

Yes 
More 

records to be 

New 

written 

No 

Ves t ndependent 
overflow 

No 

Figure 46. WRITE KN Channel Program Flow - Add to Prime (Variable- Length Records) 

82 OS ISAM Logic 



Ves 

FIxed-length Records. 
System Work Area 

Overflow 
cham already 

Ves 

From FIgure 41 

Last track fu II 

Executed Once for 
Each Index Level 

No 

Figure 47. WRITE KN Channel Program Flow - Add to End (Fixed-Length Records, System Work Area) 

Section 2: Method of Operation 83 



Ves 

Fixed-length Records 
User Work Area 

Overflow 

chain already 

eXIsts 

Ves 

Independent >_N-'-o ____ --, 
overflow 

From Figure 41 

No 
Last track full 

Figure 48. WRITE KN Channel Program Flow - Add to End (Fixed-Length Records, User Work Area) 

84 OS ISAM Logic 



Independent 

overflow 

No 

Yes 

Variable-length Records 

Overflow 
chain already 

eXists 

Yes 

From Figure 41 

No 
Last track full 

Figure 49. WRITE KN Channel Program Flow - Add to End (Variable- Length 
Records) 

Section 2: Method of Operation 85 



86 OS ISAM Logic 

Fixed-length Records, 
System Work Area 

Ves 

Report "duplicate 
record" error to 1---..... .; 
user 

c 

Figure 50. WRITE KN Channel Program Flow - Add to Overflow (Fixed-Length 
Records, System Work Area) 



Flxed·length Records. 
User Work Area 

record 
deleted 

No 

Report "dupllcate 

From Figure 41 

No 

New Record 

1st on Chain 

record" error to I-----~ 
user 

Figure 51. WRITE KN Channel Program Flow - Add to Overflow (Fixed-Length 
Records, User Work Area) 

Section 2: Method of Operation 87 



88 OS ISAM Logic 

Vartable-Iength Records 

No 

Does 
overflow chain 

eXist 

No 

Report "duplicate 

From Figure 41 

No 

New Record 

1st on Chain 

record" error to "'"""------' 
user 

Independent 

overflow 

No 

Figure 52. WRITE KN Channel Program Flow - Add to Overflow (Variable-Length 
Records) 



BISAM Control Blocks and Work Areas 

Information about the data set and processing requests is carried in control blocks, 
work areas, and queues. The address relationships of the control blocks to the 
processing modules, work areas, buffers, channel programs, lOB, and channel program 
queues are shown in Figures 54 and 55. Figure 53 below shows the elements of a 
BISAM READ or WRITE request. 

Data set 

Key I Record I 

I 
I Buffer t-- 1 RQ I 

Channel lOB DECB 
program 

Rl I 

J 
r 

Control blocks 
and DCB 
work areas 

/ \ 
Processing ~ DEB 
modules 

Figure 53. Elements of a BISAM Request 

Section 2: Method of Operation 89 



DCB 
Check module 

2C DCBDEBAD 

~ 4C DCBSETL 
5B DCBLRAN 

Nonpnvlleged Nonpnvlleged 
5C DCBLWKN 

macro module macro module 
(WRITE KN) (Non-WRITE KN) 

E8 DCBWKPT2 -

C 

DCB Dynamic 

~ 
work area buffermg r 

-20 T SIO appendage (See Figure 55) module 
-18 T CE appendage table 

E 

-14 T AE appendage table 
0 

8 DEBIRBAD r----, 
"- I-- 18 DEBDCBAD I@ '-- 1C DEBAPPAD B 

I 

AI Appendage Appendage 

'------ Vi module 
TI module 

I (part 1) (part 2) 

2C T ISAM extension I 

l } 

0 DEBDISAD 
4 DEBWKPT4 

~ 8 DEBWKPT5 

C DEBFREED ~ 
Privileged RPS SID 

10 DEBRPSIO macro appendage 
module module 

.co 

E 

IRB (If dynamic buffering 
IS not used.) 

C RBEP ~ 
Asynchronous 
module 

(created dynamically by Open) 

Figure 54. BISAM Control Blocks and Processing Modules 

90 as ISAM Logic 



14 

40 
49 

DCBBUFCB 

DCBMSWA 
DCBMSHI 

-----
DCBWKPT1 
DCBWKPT2 
DCBWKPT3 

r-------l There Isene copy of 

I I CPl/2andtheWRITE 
I I KN CPs Theyare 
I CP 1/2 I described by DSECTS 
I I rn processing module L _____ --' and addressed by uSing 

r------, 
I I 
I I 

CPS I 
I followed by I 
I other required I 
I WRITE KN CPs I 
I I 
L ______ J 

DCBWKTPl/3 as a 
base register 

Full-track work area 
for WRITE KN 

DCB Work Area 

o DCWFCP4 

4 
C 

10 
14 
18 

30 
34 
3C 

DCWFCP7 
DCWFIOBU rUnscheduledl 
DCWLlOBU Lqueue J 
DCWFUPDI rUpdate ] 
DCWLUPDI Lqueue 

DCWFIOBE hErrorJ 
DCWLlOBE queue 

DCWDCBFA 

CP4 

CP 5 

CPS 

CP4 

CP 5 

CPS 

DCB F,eld Area 

Storage area for highest level 
Index (If searched In storage) 

lOB 

Buffer Control Block 

4 

8 BC8NAVBrNext bUffer] 
Lavallable 

14 
Buffer 1 

Buffer 2 

I 
----' Buffer 3 

_:9:. .J Buffer 4 

Figure 55. BISAM Work Areas and Queues 

BISAM Close Phase 

The BISAM close executor (module IGG0202A) is entered from the I/O support Close 
routine. It terminates outstanding I/O requests and releases main storage obtained for 
the work area and for channel programs. If dynamic buffering was used, it releases the 
system-obtained buffer area. If the data set was opened for DISP=SHR, move the 
DCB fields that may have been changed during processing from the DCB field area 
(DCBF A) to the DCB. If this is the last DCB open for the data set, free the DCB 
field area. The BISAM close executor passes control to the ISAM common close 
executor. 

Section 2: Method of Operation 91 





SECTION 3: PROGRAM ORGANIZATION 

Section 3: Program Organization 93 





IGG0192A 

fAl 
'-... __ E_N..,T_R_Y __ ) 

j SCAN DSCB I S FOR 

6~~~~L6~D~~TE~D ENTRIES 

ISLOOA3 811...1:---.., 

-8 
8-

Chart AAl First Common Open Executor (lGGOl92A) (Part 1 of 3) 

~ 

G G-
L-___ --I 

Section 3: Program Organization 95 



~~--'--'~~CfcO~D»Ei:=~3BB--"1-------•• ~AB~!~D EXIT 
UNSUCCESSFUL \. '''' J.J J>AH J 

LOAD 

L~ 

Chart AA2 First Common Open Executor (IGG0192A) (Part 2 of 3) 

96 OS ISAM Logic 



VARIABLE­
LENGTH 
RECORDS 

Chart AA3 First Common Open Executor (IGG0192A) (Part 3 of 3) 

TO: IGG0192B 

Section 3: Program Organization 97 



IGGOl92B 

fAl 

'-... __ E_N,..T_R_Y __ ) 

~ ISL01E4 
ISL01H3 

ISL02Al 

Fl,""' ~--.. 

r LS_E_T_OC_B .. B_U_F_N_0_=_2..J 

(0 
NO 

YES 

1----~t"!B~U~F:;Fi;ERRipP;oicoiiL:_1-83 FROM SUBPOOL 
L.-~~==~.J 250 

Chart ABI Second Common Open Executor (IGGOl92B) (Part 1 of 2) 

98 OS ISAM Logic 

OF 
IN 
OF 

D5i~--....., 

= 0 



--~) 
TO: IGG0192C 

Chart AB2 Second Common Open Executor (IGG0192B) (Part 2 of 2) 

Section 3: Program Organization 99 



IGG0192C 

CA:~ 

G-
841---....., IF INDEPENDENT OVERFLOW 

2~s~1Fb~§5~~TD~6I~~FEi~¥' 
PRIME DEVICE TYPE 

) 
TO: IGG01921, OR 

IGG01920, OR 
IGG01950 

Chart ACl Third Common Open Executor (IGGOl92C) 

100 OS ISAM Logic 



IGG01920 

c-A1 ENTRY ) 
"-----:----" e 

t YES 
831-----. 

TCTLRTN 

TO: IGG01922 

':J.~--.. I-C:DDi;-:::3311---_. G:D EXIT) 

,-----,,) 
TO: IGG01922 

-8 
Chart AD1 Fixed-length Validation Open Executors (IGG01920) 

Section 3: Program Organization 101 



IGGOl921 

CA:::-J 

1----•• G~D EXIT) 
L-___ --I 

KJ 
SAVE DEV TBL 

PTR AT DCBLRAN ~ & ISLOCNT. SAVE --. AE2 
Iy~ty~Kp& B1 

Chart AEI First Load Mode Open Executor (IGGOl92l) (Part 1 of 3) 

102 OS ISAM Logic 



~l ISL02G21 
B1...l.----, 

SET IOBFLAGS 
FOR DATA & 

COMMAND 
CHAINING 

IF DISP= OLD & DATA SET 
~~~~~gSF~~ b~~DpR~~ER 

I-------------ALLOCATED SPACE

t 8 YES

::L~-l
E2!"'""'---..

CALCULATE HIROV
(HIGHEST R FOR

CYLINDER
OVERFLOW)

F3-----,

Chart AE2 First Load Mode Open Executor (IGGOl92l) (Part 2 of 3)

Section 3: Program Organization 103

TCTLRTN

~l
TOOLONG Fl...J..---,

ABEND CODE
= 20

c-E3 ENTRY) ------:---
DEVRTN

FROM: AEl -J4
AE2-J4

F3,...J..---,

TO: AE1-J5
AE2-J5

c-E4 ENTRY) ------:---
FROM: AE1-J5

AE2-K4

Chart AE3 First Load Mode Open Executor (IGG01921) (Part 3 of 3)

104 OS ISAM Logic

F5---.,

TO: AE1-K5
AE2-D2

IGG0192D

CA~::v=)

TOOLONG J
ABEND CODE

= 20

"l
('ABEND EXIT)

ISLFB01A
ISLFB02
ISLFB03

H3-'-==--.
CALC & STORE

~~~~~~~i~~~-I-------~ 
NEEDED TO HOLD 
HIGHEST INDEX) 

ISLFB04 

Chart AFl First Initial Load Mode Open Executor (IGGOl92D) (Part 1 of 3) 

Section 3: Program Organization 105 



Chart AF2 First Initial Load Mode Open Executor (IGG0192D) (Part 2 of 3) 

106 as ISAM Logic 



GET NUMBER OF 
INDEX EXTENTS 

(DEBNIEE) 

OF 
ATI-------------------------~ 

INITIALIZE 
ISLAREAZ IN 

ISLCOMON 

mz:::c j 
E41-'----, 

PERFORM 
WHERE-TO-GO 

LOGIC 

TO: IGG0192D, OR 
IGG0192E 

Chart AF3 First Initial Load Mode Open Executor (IGGO 192D) (Part 3 of 3) 

Section 3: Program Organization 107 



IGGOl96D 

CA~~ 

B1 ! 

SETTYPEJ '~_-. E1-
SAVE INDEX DEV 
TYPE (USE PRIME 
NO INDEPENDENT 

INDEX AREA) 

ISLBUFNO 

L..---
2 --I~ 

G 

H2'-----, 

J 
INIT RFP BYTES 

OF ISLODAT 
(CURRENT 

OVERFLOW TRK 
INDEX ENTRY) 

~mXIT _J.l ___ ..., 
D4 

INITIALIZE 
WHERE-TO-GO 

LOG I C TO LOAD 
MODULE IGG0195G 

RELOOP 

TO: IGG0195G 

CHANNEL PROGRAM 31 INITIALIZED 
-----------USING SKELETON IN THIS MODULE 

J 
INITIALIZE 

CP31B TO READ 
COUNT &, DATA OF 

LAST PRIME (INTO FIRST BUFFER 
L-_________ -JSPECIFIED IN IOBBeT) 

Le 
Chart AGI First Resume Load Open Executor (IGG0196D) 

108 OS ISAM Logic 



IGG01924 

"'""" I SETD ~~1 ~IC~N~O~T--' 
SMALLEST 

INTEGER 
CONTAINING 

BUFNO/2 

-------,-------r---E3------~ 
SEE SCHEDULING 

RTN USE OF 
ICNOT FIELD 

Chart AHI Last Scan Mode Open Executor (IGGOl924) 

Section 3: Program Organization 109 



IGG01928 
SlS04A2 

ONE CP22 FOR EACH 
BUFFER IN SCAN MODE 

5I504D2 

J 
SET RELOC'D 

PTR5 TO APPDGE 
RTNS IN CHAN --"'1 QUI 2 
~~g ~E~B¥~~~ B 1 

'----'--=~ 

Chart All First Scan Mode Open Executor Module (IGG01928) (Part 1 of 4) 

11 0 OS ISAM Logic 



D31--------,---~~ 

LOADING FIXED 
LENGTH GET 

MODULE 

Chart AI2 First Scan Mode Open Executor Module (IGGOl928) (Part 2 of 4) 

Section 3: Program Organization 111 



MOVE 1 COPY OF 
CP 2 2 FOR EACH 

BUFFER INTO 
SPACE FOLLOWING 

WORK AREA 

SET ~~lF~R~L-A-S~T--="(PTR TO LAST CP22 
~~~~S~IT~ST ON FREE QUEUE) 
AFTER WORK AREA

L~

Chart AI3 First Scan Mode Open Executor Module (IGGOl928) (Part 3 of 4)

112 OS ISAM Logic

83,----,

TO: 1GG01929

Chart AI4 First Scan Mode Open Executor Module (IGG01928) (Part 4 of 4)

Section 3: Program Organization 113

IGG0202D

C-A1 ENTRY)
IF DCB BEING CLOSED IS FOR GET
WITHOUT PUTX OR READ WITHOUT
WRITE, FMT-2 DSCB IS NOT UPDATED

Chart AJI ISAM Common Close Executor Module (IGG0202D) (Part I of 2)

114 OS ISAM Logic

SET STATUS BIT
(DCBST) FOR

RESUME LOAD

ITISSCAN 1
E2:....:..-----.

MOVE FIELD FOR
SCAN (DCBTDC)

FROM DeB TO
FORMAT-2 DSCB

Chart AJ2 ISAM Common Close Executor Module (IGG0202D) (Part 2 of 2)

Section 3: Program Organization 115

SISCTSA

CA:~

8-

SIs~-l
ADD ~6"":'C~U-R~R~EN~T~

BUFFER LENGTH
WITH LENGTH OF
CURRENT LOGICAL

RECORD

CHECK FOR READ
ERROR THIS

BUFFER

IF ERROR CHECK RTN
GOES TO USER

AKll-Al

t
(0

NO

TO END OF FILE IN
END-DF-BUFFER RTN

SISTAE2
SISTAE23

G4

<E:::wc

NO

YES

YES

Chart AK1 QISAM Scan Processing Module (IGG019HB) GET Macro Routine (Part 1 of 14)

116 OS ISAM Logic

SISSAD42 1
MOV~ 1~L-:-A~ST::-':"(O~R~
ONLY) PART OF

RECORD TO USER
AREA

r;:;:}.._
l...:Y'

SISSAE3

SISSAH3

02....;.----.

GETOUT

-----)
TO: USER

Chart AK2 QISAM Scan Processing Module (IGG029HB) GET Macro Routine (Part 2 of 14)

Section 3: Program Organization 117

CA~~
(PUTX RTNJ

NOPUTX

>-N-O-----;~G:~R""EXIT)

J
SET PUTX FLAG

ON IN CP OF
CURRENT BUFFER

ON USER QUEUE

"~""' j
C=~~

TO: USER

SISREA2

CA:~
RELSE RTN

SISREA3
B4

<E:::~o"

SISREB2

TO: USER

AX14-A3

OF

RELSE BIT SET
BY LAST RELSE

MACRO OR A SETL
NOT FOLLOWED BY

A GET

Chart AK3 QISAM Scan Processing Module (IGGOI9HB) PUTX Macro Routine, RELSE Macro Routine
(Part 3 of 14)

118 OS ISAM Logic

SISCTBS

CA:::=J

TO USER

FOR WRITE ERROR

SIs~-l
Hl-'---.....,

IAKsl
~

jER:OR IN
SPECIFYING

SISBSFl
SETL

SISBSAB

G:~D""OOTJ

SIs~l_.l... __ """
B3

SISBSE1

1----•. cm:D EXIT)
L-___ -.J

Chart AK4 QISAM Scan Processing Module (IGG019HB) SETL B Macro Routine (Part 4 of 14)

Section 3: Program Organization 119

SISBSH1

READ 1ST RECORD
& TRACK INDEX

ENTRY

""'""" j
fK1~

'- RETURN)

TO: GET

E2---....,

~-~
SISBSB4

SISBSC4 1
QUEU~3:"'AK=1':"O-~A~1"

MOVE ENTIRE
WRITE QQTO FREE

L~

SISBSHS

1----> C!TURN)

'------..... TO: USER

Chart AK5 QISAM Scan Processing Module (IGGOI9HB) SETL B Macro Routine (Part 5 of 14)

120 OS ISAM Logic

SISCTES

C-A1 ENTRY)
"-----'

AK14-A3

SISESC3 l~·~--------------------~
QU ED ~"'AK~l:-:O:-:--A-:I"

MOVE ALL OF
U~~hQg5M5ETO

OF

AKIO-AI

FROM

PREPARE WRITE
CP FOR OUTPUT

!lm!l j C

C~:~
TO: USER

TO: CLOSE EXECUTOR
IGG02029

Chart AK6 QISAM Scan Processing Module (IGG019HB) ESETL Macro Routine (Part 6 of 14)

Section 3: Program Organization 121

SISCTSB

c-A1 ENTRY)

"'----:---

>Y:..:E...:S __ C:~w:=)

r;;;'\.
l.!.Y

SISSBA2

SISSBB31
K2 ... --......

G
SISSBB32

B4 ... --......

j
SET READ TRACK
INDEX SWITCH ON

(WlOSBITl)

Chart AK7 QISAM Scan Processing Module (IGGOI9HB) Schedule Routine (Part 7 of 14)

122 OS ISAM Logic

COMPARE
W1 ICNOT

DETERMINE WHAT IS
TO BE READ

H1...l.----,

SAME

SWITCH l,--_~~~~~~""'--"""

rAKe\.
~~

SISSBK3
D4...l.----,

ON CYLINDER
BIT

~-+j SCHEDULE . ~ SUCCESSFUL

SISSBD51
5,-'----,

J~p-j
rH5'~
'-- RETURN)

Chart AK8 QISAM Scan Processing Module (IGG019HB) Schedule Routine (Part 8 of 14)

Section 3: Program Organization 123

""'~, I El ---.,

L~
L!V

~l
SISSCF2 84 . ..1.--.....

L~
L.:o/

Chart AK9 QISAM Scan Processing Module (IGG019HB) Schedule Routine (Part 9 of 14)

124 as ISAM Logic

SISCTSD

CA~::=)

>----.. C::::=-)

~§O;M~¥~UE 1
SISSDF3 Fl~------~

MOVE FIRST
POINTER FROM
"Fl\~~:: 8 TO

E2-----,

TO: CALLING ROUTINE

Chart AK10 QISAM Scan Processing Module (IGG019HB) Queue Routine (Part 10 of 14)

Section 3: Program Organization 125

SISCTSE

t
G

,K/I

\.. EXIT)I".~---I
L-___ ---I

Chart AK11 QISAM Scan Processing Module (IGG019HB) End-of-Buffer Routine (Part 11 of 14)

126 OS ISAM Logic

LQ u

SET lOBI
COMPLETED BIT ~

TO ZERO

'--------'

OF

r;::;;l
~

Chart AK12 QISAM Scan Processing Module (IGG019HB) End-of-Buffer Routine (Part 12 of 14)

Section 3: Program Organization 127

SISCTSF

C-A1 ENTRY)

"--------,----"

SISSFA2 _1~ ____ '"1
81
SET PTR

(W1FCPS) TO
FIRST CHAN PROG

ON QUEUE

SIs0-1
SISSFH2

K1...1.--...,
CHAIN TO

PROG GET THE ~
PREVIOUS CHAN ~81

NEXT CHAN PROG

D3:---...,

F3,...I.----.

TO: CALLING ROUTINE

Chart AK13 QISAM Scan Processing Module (IGG019HB) SETC4 Subroutine (Part 13 of 14)

128 OS ISAM Logic

SISCTSGC

c-A1)
CHECK RTN

.... __ E_N~T_R_Y ___ "

"l C EXIT)
TO: EINFO RTN

B2-----,

SET ON DCBEXCD1
ON READABLE

BLOCK BIT

SISCTSGE

{A3~ EINFO RTN

" ENTRY J

J
SET ON

UNREACHAB"LE I OUTPUT BIT IN
DCBEXCD1

"----===---' '---------' ,,",~n [,
E3:....J.. __,

SET OFF ALL
FLAG BITS

EXCEPT DATA
-KEY/DATA

SISSGAB

>N_O ___ (AB::D EXIT)

ERROUT

(H/I

>---+" EXIT) NO

ABEND CODE

TO: 'JSER SYNAD

I--t--·· CK~::=J G TO: IGG02029

!
(0

31

Chart AK14 QISAM Scan Processing Module (IGGOI9HB) Check Routine and EINFO (Error Information)
Routine (Part 14 of 14)

Section 3: Program Organization 129

SISSAPRET

CA~~
FROM: lOS

SISAPAS4

CD~~

j ASYNCHRONOUS
ROUTINE ENTRY

El"'!---......,
GET lOB DCB

D~~B ~g~~E~~~·
FROM RQE

SISCERTN

CA~~
CHANNEL­
END ON READ

SISABRTN

(A"
'-.. __ E_N_T_R_Y_....,)

J ABNORMAL­
END ON REAl

'---:==-----,1'-------'

ADD 8 TO GET
MODULE BASE

ADDRESS

YES

SISAPOl
E4"'!---......,

ADD APPENDAGE
CODE TO GET

ADDRESS 1 MODULE BASE

j~. '-------'
(F3....:..--........
'- EXIT)

TO: APPENDAGE
ROUTINE

Chart ALl Scan Mode Appendage (IGGO 19HG) (Part 1 of 3)

130 OS ISAM Logic

SISRAB2

CA~::=J
ABNORMAL-END
APPENDAGE READ QUEUE

SISRAC2

tW YES
C3-

J
MOVE roB FIELDS

INTO CHANNEL
PROG FOR USER

ERROR EXIT

~---,l
G

(K3
----+.~ EXIT)

TO: lOS EXCP ROUTINE

Chart AL2 Scan Mode Appendage (IGG019HG) Abnormal-end, Read Queue (Part 2 of 3)

Section 3: Program Organization 131

SISCTRG

C-A1 ENTRY)

NO

""---)
TO: lOS

C-H2 NO)
~------. , ___ E_X_I_T ____ ~

TO: ASYNCHRONOUS ROUTINE

Chart AL3 Scan Mode Appendage (IGG019HG) Channel-end, Read Queue (Part 3 of 3)

132 OS ISAM Logic

SISC4Al

C-A1 ENTRY)

'----:---

8-
SISC4Fl

El...1.--...,
ESETL AK6-Al

INITIATE LAST
WRITES. MOVE

BUFS TO FREE Q

SISC4J3
Kl --....,

PREPARE FOR
ERROR EXIT

SISC4Cl
FJ...I--....,

RETURN POINT
WBEN ALL BUFS

WITH WRITE
ERRORS HAVE

BEEN HANDLED

USER SYNAn
MUST RETURN
TO CLOSE
EXECUTOR

TCTLRTN

r-<q
I-------.I~EXIT)

TO: 10002020

Chart AMI Scan Mode Close Executor Module (IGG02029)

Section 3: Program Organization 133

IGG0192I

E3:-l.-----.
TEST IF READ &
UPDATE OR WRITE

K~PEg~F¥~6H ------~~

ON
o

OPN07K2D j
OPN07K2F
OPN07K2EK5,....l ___ ..,

ADJUST ADDR OF ~ CHECK MODULE AN2
AND I~O¥5 ~~~ULE ----+ B 1

Chart ANI BISAM Open Executor - Load Privileged Module (IGGOI92I) (Part 1 of 2)

134 OS ISAM Logic

8-

TCTLRTN ,KS
1----+-L XCTL

...... _-----'
Chart AN2 BISAM Open Executor - Load Privileged Module (IGG0192I) (Part 2 of 2)

)

Section 3: Program Organization 135

IGG019JV

-------..~:~
L-____________ -' TO: USER- (PROCESSING PROGRAM)

Chart API BISAM Nonprivileged Macro-time Processing - READ K, READ KU, WRITE K (IGGOI9JV)

136 OS ISAM Logic

IGG019JX

C-A1 ENTRY)

"'-----:---
FROM: NON-PRIVILEGED MACRO-TIME
ROUTINE VIA QING SVC

WKNN2J2

TO: NONPRIVILEGED
l AT SVC ROUTINE)

Chart AQI BISAM Privileged Macro-time Processing Module (WRITE KN, without Read and Update)
(IGG019JX) (Part 1 of 2)

Section 3: Program Organization 137

C-A1 ENTRY)

--~---
FROM: CC1-J5, OR ASYNCHRONOUS RTN

Kl ---,

D2----..
SET lOB SEEK

ADDRESS =
DCBFTHI

F2:----,

8-
WKNS5G2

H3 --.....,

CYLINDER INDEX HIGHEST
LEVEL, USE CP 2

TO: CC1-K5, OR ASYNCHRONOUS RTN

Chart AQ2 BISAM Privileged Macro-Time Processing Module (WRITE KN, without Read and Update)
(IGG019JX) (Part 2 of 2)

138 OS ISAM Logic

SECTION 4: DIRECTORY

Section 4: Directory 139

ISAM Modules Identified in Alphameric Sequence

All ISAM modules are listed according to function and mode in Figure 56 and in
alphameric order in Figure 57.

Section 4: Directory 141

~ OISAM Load Mode OISAM Scan Mode 8iSAM
Function

Common 192A 1928 192C 192A 1928 192C 192A 1928 192C

Validation
1920 1950 1922 1920

Modules
1950 1922 1920 1950 1922

Open
Executor 192D 192T 195D 1924 192H 192N 192Z

192E 192U 195G 1928 1921 1920

Mode- 192F 192V 195T 1929 192J 192P

oriented 192G 1921 195U 192K 1920
192R 1925 196D 192L 192W
1925 1927 196G 192M 192X

19GA 191A 1911 19H8 19HD 19HF 19JV 19JO 19H3

Macro-time 19GB 191B 1912 19HN 19JW 19J3 19H7
19JX 19J6

19J7

Channel-end 19GC 19HG 19GL 19G3 191M

and 19GD 19HH 19GM 19G4 191N

Abnormal-end 19HI 19GN 19G5 1910

Appendages 19HJ 19GO 19G6 1919
19HK 19GO 19G7

19G1 19G8
19G2 19G9

Processing SIO
19GG 19HA 19JH

Modules Appendage

19GE 19HL 19HP 19JO 19JU
19GF 19JJ 19JP

Channel 191E 19JK 19JO

Program 191F 19JL 19JR
19JM 19J5
19JN 19JT

19GV 19GY 191X

Asynchronous 19GW 19GZ 191Y
19GX 191Z

Other
054(SVC54) 054(SVC54)

19JC (CHECK)
19JI (Dynamic Buffer)

Mode- 2021 202K 202M 2029 202A

Close oriented 202J 202L 2028

Executor
Common 202D 202D 202D

Figure 56. ISAM Modules Identified by Function and Mode

142 OS ISAM Logic

References
Module Mode and Function Text Figures

Pages Pages

IGG019GA QISAM load (macro routines) 30
IGG019GB QISAM load (macro routines) 30
IGG019GC QISAM load (appendage routines) 30
IGG019GD QISAM load (appendage routines) 30
IGG019GE QISAM load (channel programs) 30
IGG019GF QISAM load (channel programs) 30
IGG019GG QISAM load (RPS appendage routine) 30
IGG019GL BISAM (appendage routines) 72
IGG019GM BISAM (appendage routines) 72
IGG019GN BISAM (appendage routines) 72
IGG019GO BISAM (appendage routines) 72
IGG019GV BISAM (asynchronous routines) 71
IGG019GW BISAM (asynchronous routines) 71
IGG019GX BISAM (asynchronous routines) 71
IGG019GY BISAM (asynchronous routines) 71
IGG019GZ BISAM (asynchronous routines) 71
IGG019GO BISAM (appendage routines) 72
IGG019G1 BISAM (appendage routines) 72
IGG019G2 BISAM (appendage routines) 72
IGG019G3 BISAM (appendage routines) 72
IGG019G4 BISAM (appendage routines) 72
IGG019G5 BISAM (appendage routines) 72
IGG019G6 BISAM (appendage routines) 72
IGG019G7 BISAM (appendage routines) 72
IGG019G8 BISAM (appendage routines) 72
IGG019G9 BISAM (appendage routines) 72
IGG019HA QISAM scan (RPS appendage routines) 51
IGG019HB QISAM scan (macro routines) 51
IGG019HD QISAM scan (macro routines) 51
IGG019HF QISAM scan (macro routines) 51
IGG019HG QISAM scan (appendage routines) 51
IGG019HH QISAM scan (appendage routines) 51
IGG019HI QISAM scan (appendage routines) 51
IGG019HJ QISAM scan (appendage routines) 51
IGG019HK QISAM scan (appendages) 51
IGG019HL QISAM scan (channel programs) 51
IGG019HN QISAM scan (macro routines) 51
IGG019HP BISAM (channel programs) 73
IGG019H3 BISAM (macro routines) 70
IGG019H7 BISAM (macro routines) 70
IGG0191A QISAM load (macro routines) 30
IGG0191B QISAM load (macro routines) 30
IGG0191E QISAM load (channel programs) 30
IGG0191F QISAM load (channel programs) 30
IGG0191M BISAM (appendage routines) 72
IGG0191N BISAM (appendage routines) 72
IGG01910 BISAM (appendage routines) 72
IGG0191X BISAM (asynchronous routines) 71
IGG0191Y BISAM (asynchronous routines) 71
IGG0191Z BISAM (asynchronous routines) 71
IGG01911 QISAM load (macro routines) 30
IGG01912 QISAM load (macro routines) 30

Figure 57 (Part 1 of 3). ISAM Modules Identified in Alphameric Sequence

Flowcharts
Pages

116

130

Section 4: Directory 143

References
Module Mode and Function Text Figures Flowcharts

Pages Pages Pages

IGG01919 BISAM (appendage routines) 72
IGG019JC BISAM (check routine) 68
IGG019JH BISAM (RPS appendage routine) 68 72
IGG019JI BISAM (dynamic buffering routine) 67-68
IGG019JJ BISAM (channel programs) 73
IGG019JK BISAM (channel programs) 73
IGG019JL BISAM (channel programs) 73
IGG019JM BISAM (channel programs) 73
IGG019JN BISAM (channel programs) 73
IGG019JO BISAM (channel programs) 73
IGG019JP BISAM (channel programs) 73
IGG019JQ BISAM (channel programs) 73
IGG019JR BISAM (channel programs) 73
IGG019JS BISAM (channel programs) 73
IGG019JT BISAM (channel programs) 73
IGG019JU BISAM (channel programs) 73
IGG019JV BISAM (macro routines) 71 136
IGG019JW BISAM (macro routines) 71
IGG019JX BISAM (macro routines) 70 137
IGG019JO BISAM (macro routines) 70
IGG019J3 BISAM (macro routines) 70
IGG019J6 BISAM (macro routines) 70
IGG019J7 BISAM (macro routines) 70
IGG0192A Common open executor 9 10 95
IGG0192B Common open executor 9 10 98
IGG0192C Common open executor 9 10,17,38,59 100
IGG0192D QISAM load (open executor) 19 17 105
IGG0192E QISAM load (open executor) 19 17
IGG0192F QISAM load (open executor) 20 17
IGG0192G QISAM load (open executor) 20 17
IGG0192H BISAM (open executor) 58 59
IGG01921 BISAM (open executor) 57 59 134
IGG0192J BISAM (open executor) 60 59
IGG0192K BISAM (open executor) 58 59
IGG0192L BISAM (open executor) 58 59
IGG0192M BISAM (open executor) 58 59
IGG0192N BISAM (open executor) 60 59
IGG01920 BISAM (open executor) 60 59
IGG0192P BISAM (open executor) 57 59
IGG0192Q BISAM (open executor) 58 59
IGG0192R QISAM load (open executor) 23 17
IGG0192S QISAM load (open executor) 23 17
IGG0192T QISAM load (open executor) 17
IGG0192U QISAM load (open executor) 23 17 101
IGG0192V QISAM load (open executor) 17
IGG0192W BISAM (open executor) 57 59
IGG0192X BISAM (open executor) 58 59
IGG0192Z BISAM (open executor) 60 59
IGG01920 Common open executor (validation) 12 17,38,59 101
IGG01921 QISAM load (open executor) 16 17 102
IGG01922 Common open executor (validation) 12 17,38,59 103
IGG01924 QISAM scan (open executor) 37 38 109

Figure 57 (Part 2 of 3). ISAM Modules Identified in Alphameric Sequence

144 OS ISAM Logic

References
Module Mode and Function Text Figures Flowcharts

Pages Pages Pages

IGG01925 QISAM load (open executor) 19 17
IGG01927 QISAM load (open executor) 19 17
IGG01928 QISAM scan (open executor) 37 38 110
IGG01929 QISAM scan (open executor) 37 38
IGG0195G QISAM load (open executor) 22 17
IGG0195G QISAM load (open executor) 21 17
IGG0195T QISAM load (open executor) 22 17
IGG0195U QISAM load (open executor) 22 17
IGG01950 Common open executor (validation) 12 17,38,59
IGG0196D QISAM load (open executor) 21 17 108
IGG0196G QISAM load (open executor) 21 17
IGG0202A BISAM (close executor) 13 14
IGG0202D Common close executor 13 14,36 114
IGG02021 QISAM load (close executor) 34 14,36
IGG0202J QISAM load (close executor) 35 14,36
IGG0202K QISAM load (close executor) 35 14,36
IGG0202L QISAM load (close executor) 35 14,36
IGG0202M QISAM load (close executor) 35 14,36
IGG02028 QISAM load (close executor) 35 14,36
IGG02029 QISAM scan (close executor) 52 14 133

Figure 57 (Part 3 of 3). ISAM Modules Identified in Alphameric Sequence

Section 4: Directory 145

SECTION 5: DATA AREAS

Section 5: Data Areas 147

ISAM Control Blocks and Data Areas

Indexed sequential access method (ISAM) routines use a number of control blocks that
are common to all of data management.

The control blocks are:

Data control block (DCB)

Data event control block (DECB)

Data set control block (DSCB)

Data extent block (DEB)

Input/ output block (lOB)

ISAM routines also use certain work areas and buffer control areas.

The ISAM work areas are:

QISAM load mode work area

QISAM scan mode work area

BISAM work area

QISAM load mode track-index save area (TISA)

ISAM DCB field area

The ISAM buffer control areas are:

BISAM dynamic buffering buffer control block (BCB)

QISAM buffer control block (BCB)

QISAM load mode buffer control table (IOBBCT)

Data Control Block (DCB)

The data control block (DCB) is the major means of communication between the
problem program and the control program. The sources for ISAM DCB information
are: the open executors, the DCB macro instruction, the problem program, the data
definition (DO) statement, and the data set control block (DSCB). Figure 58 shows
the portion of the DCB that is unique to ISAM.

Section 5: Data Areas 149

49(31) DCBG ET IDCBPUT

52(34) DCBOPTCD 53(35) DCBMAC 54(36) DCBNTM 153(17) DCBCYLOV

56(38) DCBSYNAD

60(3C) DCBRKP 62(3E) DCBBLKSI

64(40) DCBMSWA

68(44) DCBSMSI 70(46) DCBSMSW

72(48) DCBNCP 73(49) DCBMSHI

76(4C) DCBSETL

80(50) DCBEXCD1 81 (51) DCBEXCD2 82(52) DCBLRECL

84(54) DCBESETL

88(58) DCBLRAN

92(5C) DCBLWKN

96(60) DCBRELSE

100(64) DCBPUTX

104(68) DCBRELX

108(6C) DCBFREED

112(70) DCBHIRTI 113(71)

DCBFTMI2

120(78) DCBLEMI2

125(70)

DCBFTMI3

132(84) DCBLEMI3

137(89) DCBNLEV 138(8A) DCBFIRSH

DCBFIRSH (cont.) 141(80) DCBHMASK 142(8E) DCBLDT

144(90) DCBHIRCM 145(91) DCBHIRPD 146(92) DCBHIROV 1 147(93) DCBHIRSH

148/941 DCBTDC 150(96) DCBNCHRI

Figure 58 (Part 1 of 2). BISAM/QISAM DeB

150 as ISAM Logic

152(98) DCBRORG3

156(9C) DCBNREC

160(AO) DCBST I 161(A1)

DCBFTCI

168(A8) DCBHIIOV I 169(A9)

DCBFTMI1

176(BO) DCBNTHI 1 177(B1)

DCBFTHI

184(B8)

DCBLPOA

192(CO)

DCBLETI I 197(C5) OCBOVDEV I 198(C6) DCBNBOV

200(C8)

OCBLECI 1205(CO) Reserved 1206(CE) OCBRORG2

208(DO)

OCBLEMI1 1 213(D5) Reserved 1 214(06) OCBNOREC

216(08)

OCBLlOV

224(EO) OCBRORG1 1 226(E2) Reserved

228(E4) OCBWKPT1

232(E8) OCBWKPT2

236(EC) OCBWKPT3

240(FO) OCBWKPT4

244(F4) DCBWKPT5

248(F8) DCBWKPT6

Figure 58 (Part 2 of 2). BISAM/QISAM DeB

Section 5: Data Areas 151

Offset
49(31)

Field Name
DCBGET /DCBPUT

Bytes
3

Field Description
Address of Get module or address of Put module.

Note: This field is not used by ISAM routines. See the extension of the data extent block (DEB).

53(34) DCBOPTCD 1

53(35) DCBMAC 1

54(36) DCBNTM 1

55(37) DCBCYLOV 1

56(38) DCBSYNAD 4

152 OS ISAM Logic

Option codes:

Bit 0 W - Write validity-check

1 U - Full track-index write

2 M - Master index(es)

3 I - Independent overflow area

4 Y - Cylinder overflow area

5 Reserved

6 L - Delete option

7 R - Reorganization criteria

MACRF Extension for ISAM

Bit 0 3 - Reserved

4 U - Update type of READ

5 U - Update type of WRITE

6 A - Add type of WRITE

7 Reserved

The number of tracks that determine the
development of a master index. If the number of
tracks in the cylinder index exceeds this
number, a master index is developed. If the
number of tracks in the master index in turn
exceeds this number, then a higher level master
index is developed, and so forth. Maximum
permissible value: 99.

The number of tracks to be reserved on each
prime-data cylinder to hold records that
overflow from other tracks on that cylinder.
Refer to the section on allocating space for an
ISAM data set in the as Data Management Services
Guide, GC28-3746, to determine how to calculate
the maximum number.

Address of user's synchronous error routine
to be entered when uncorrectable errors are
detected in processing data records.

Offset Field Name Bytes Field Description

60(3C) DCBRKP 2 The relative position of the first byte of the
key within each logical record. Maximum
permissible value: logical record minus key
length.

62(3E) DCBBLKSI 2 Blocksize. For fixed-length record formats,
this must be an integral multiple of DCBLRECL.
For variable-length record formats, it must
be maximum blocksize and must include the
4-byte block length field.

64(40) DCBMSWA 4 Address of a work area supplied by the user
when new records are being added to an existing
data set.

68(44) DCBSMSI 2 Number of bytes in an area reserved to hold the
highest level index. The address of this area
is in DCBMSHI. Maximum size allowed is 65,535
bytes.

70(46) DCBSMSW 2 Number of bytes in work area used by the control
program when new records are being added to
the data set. The address of this area is
in DCBMSWA. Maximum size allowed is 32,767
bytes.

72(48) DCBNCP 1 Number of copies of the READ/WRITE type K
channel programs that are to be established
for this data control block (99 maximum).

73(49) DCBMSHI 3 Address of a main-storage area to hold the
highest level index.

76(4C) DCBSETL 4 Address of SETL module for QISAM. Address of
Check module for BISAM.

80(50) DCBEXCD1 1 First byte in which exceptional conditions
detected in processing data records are reported
to the user (see "Appendix B: ISAM
Channel Programs").

Bit 0 -Lower key limit not found

1 - Invalid device address for lower limit

2 -Space not found

3 -Invalid request

4 - Uncorrectable input error

5 - Uncorrectable output error

6 -Unreachable block (input)

7 -Unreachable block (update)

Section 5: Data Areas 153

Offset

81(51)

82(52)

84(54)

88(58)

92(5C)

96(60)

100(64)

104(68)

108(6C)

Field Name

DCBEXCD2

DCBLRECL

DCBESETL

DCBLRAN

DCBLWKN

DCBRELSE

DCBPUTX

DCBRELX

DCBFREED

Bytes

1

2

4

4

4

4

4

4

4

Field Description

Second byte in which exceptional conditions
detected in processing data records are reported
to the user (See "Appendix B: ISAM
Channel Programs").

Bit 0 - Sequence check

1 - Duplicate record

2 - DCB closed when error was detected

3 -Overflow record
4 -The logical record length

specified in the record field
is greater than that specified ip
DCBLRECL. (Variable-length
records only).

Logical record length for fixed-length record
formats. For variable-length record formats,
may either be maximum logical record length or
an actual logical record length changed
dynamically by the user when creating the data
set.

QISAM: Address of the ESETL routine in the
Get module.

Address of READ/WRITE K module.

Address of WRITE KN module.

Work area for temporary storage of register
contents.

Work area for temporary storage of register
contents.

Reserved.

Address of dynamic buffering module.

Note: This field is not used by ISAM routines. See the extension of the data extent block (DEB).

112(70) DCBHIRTI

154 OS ISAM Logic

1 Highest number of index entries that fit on
a prime-data track.

Offset Field Name Bytes Field Description

113(71) DCBFTMI2 7 Direct-access device address of the first
track of the second level master index (in
the form MBBCCHH). If the second level
master index crosses an extent boundary,
the first B byte holds the M of the last
active entry in this master index (LEMI2).
Otherwise, the first B byte will be O.

120(78) DCBLEMI2 5 Direct-access device address of the last
active entry in the second level master
index (in the form CCHHR). The M for this
address is the same as the M contained in
the field DCBFTMI2 (above) if the first B
byte of that field is o. Otherwise,
the M for the address is contained in the
first B byte of DCBFTMI2.

125(7D) DCBFTMI3 7 Direct-access device of the first track of
the third level master index (in the form
MBBCCHH). As for FTMI2, the first B byte
will either be 0 or will hold the M of
the last active entry in the index (in this
case, the M for LEMI3).

132(84) DCBLEMI3 5 Direct-access device address of the last
active entry in the third level master index
(in the form CCHHR). The M for this address
is the same as the M for FTMI3 if the first
B byte is contained in the first B byte of
FTMI3.

137(89) DCBNLEV 1 Number of levels of index. Has a maximum
value of 4, corresponding to the case
where there is a cylinder index and three
master indexes. If the track index is
the highest level index, then NLEV =0.

138(8A) DCBFIRSH 3 HHR of the first data record on each
cylinder. The first data record on each
cylinder may be on the last track of the
track index for that cylinder (in which
case, the track is said to be shared).

141(8D) DCBHMASK 1 If the device is a 2301 drum, HMASK = X'37';
otherwise, HMASK = X'FF'.

Section 5: Data Areas 155

Offset Field Name Bytes Field Description

142(8E) DCBLDT 2 HH of the last prime-data track on each
cylinder. This differs from the last
physical track on a cylinder when the user
has reqeusted cylinder overflow areas.

144(90) DCBHIRCM 1 Highest possible R for tracks of the cylinder
and master indexes. This is the number of
index entries that fits on a track. Note
that these indexes may be on a different type
of device than the rest of the data set.

145(91) DCBHIRPD 1 Highest possible R for any prime-data track.
This is the number of records or blocks
that fits on a prime-data track.

146(92) DCBHIROV 1 Highest possible R for overflow data tracks,
fixed-length record formats' only. This
is the number of fixed-length records
or blocks that fits on an overflow data track.

147(93) DCBHIRSH 1 R of the last data record on a shared track,
if applicable (fixed-length records only).

148(94) DCBTDC 2 Tag deletion count. A field reserved for the
user in which he may keep the number of records
that have been tagged for deletion. It is
merged to and from the format-2 DSCB for
BISAM, scan mode, and load mode resume load.

150(96) DCBNCHRI 2 Number of storage locations needed to hold the
highest level index. This is equal to
(KL + 10) (N), where N is the total number of
index entries, including dummy entries. Note
that the track index may be the highest level
index, and the track index is never held and
searched in main storage.

152(98) DCBRORG3 4 For each use of the data set, the number of
Read or Write accesses to an overflow record
which is not the first in a chain of such
records.

156(9C) DCBNREC 4 N1.Jmber of logical records in the prime-data
area.

156 OS ISAM Logic

Offset Field Name Bytes Field Description

160(AO) DCBST Status indicators.

Bit 0 - Single schedule mode

1 - Key sequence to be checked

2 - Initial load has been
completed

3 - Data set extension (resume loading)
will begin on new cylinder

4 -Reserved

5 - First macro not yet received

6 - Last block full

7 - Last track full

161(Al) DCBFTCI 7 Direct-access device address of the first track
of the cylinder index (in the form MBBCCHH). As
for FTMI2, the first B byte will either be 0
or will hold the M of the last active entry in
the index (in this case, the M for LEMI).

168(A8) DCBHIIOV 1 Highest R for independent overflow track.

169(A9) DCBFTMII 7 Direct-access device address of the first track
of the first level master index (in the form
MBBCCHH). As for FTMI2, the first B byte will
either be 0 or will hold the M of the last
active entry in the index (in this case, the M
for LEMIl).

176(BO) DCBNTHI Number of tracks of the high-level index.

177(Bl) DCBFTHI 7 Direct-access device address of the first track
of the highest level index (in the form
MBBCCHH). Note that this may be the track
index.

184(B8) DCBLPDA 8 Direct-access device address of the last
prime-data record in the prime-data area (in
the form MBBCCHHR).

192(CO) DCBLETI 5 Direct-access device address of the last active
normal entry of the track index on the last
active cylinder (in the form CCHHR). The M
of this entry is the same as the M of LPDA.

197(C5) DCBOVDEV Independent overflow device type (field
description same as DCBDEVT).

Section 5: Data Areas 157

Offset Field Name Bytes Field Description

198(C6) DCBNBOV 2 Number of bytes remaining on current overflow
track (variable-length records only).

200(C8) DCBLECI 5 Direct-access device address of the last active
entry in the cylinder index (in the form CCHHR).
The M for this address is the same as the M for
FTC I if the first B byte in FTCI is O.
Otherwise the M for this address is contained
in the first B byte of FTCI.

205(CD) Reserved for future use.

206(CE) DCBRORG2 2 Number of tracks (partially or wholly) remaining
in the independent overflow area.

208(DO) DCBLEMIl 5 Direct-access device address of the last active
entry in the first level index (in the form
CCHHR). The M for this address is the same
as the M for FTMIl if the first B byte in FTMIl
is O. Otherwise the M. for this address is
contained in the first B byte of FTMll.

213(D5) Reserved for future use.

214(D6) DCBNOREC 2 Number of logical records in an overflow area.

216(D8) DCBLIOV 8 Direct-access device address of the last record
written in the independent overflow area (in
the form MBBCCHHR).

224(EO) DCBRORGI 2 Number of cylinder overflow areas that are full.

226(E2) 2 Reserved for future use.

228(E4) DCBWKPTl 4 BISAM: pointer to CP 1 or CP 2.
QISAM: pointer to DCB work area.

232(E8) DCBWKPT2 4 BISAM: pointer to DCB work area.

236(EC) DCBWKPT3 4 BISAM: pointer to CP 8.

240(FO) DCBWKPT4 4 BISAM: pointer to appendage module (part 1).
QISAM: pointer to VCB.

Note: This field is not used by ISAM routines. See the extension of the data extent block (DEB).

244(F4) DCBWKPT5 4 BISAM: pointer to appendage module (part 2).
QISAM: pointer to appendage module.

Note: This field is not used by ISAM routines. See the extension of the data extent block (DEB).

248(F8) DCBWKPT6 4 QISAM: pointer to DCB work area vector pointers
(ISLVPTRS).

158 OS ISAM Logic

Data Event Control Block (DECB)

The data event control block is constructed as part of the expansion of a READ or
WRITE macro instruction. The DECB contains a parameter list, an event control
block, a pointer to the desired logical reco::d, and an exception code. Figure 59 shows
the format of the DECB.

~.~---------------------------------- 4bytes----------------------------------~.

0(0) DECBECB

4(4) DECBTYP1 1 5(5) DECBTYP2 16(6) DECBLGTH

8(8) DECBDCBA

12(C) DECBAREA

16(10) DECBLOGR

20(14) DECBKEY

24(18) DECBEXC1 1 25 (19) DECBEXC2
1

Figure 59. Data Event Control Block

Offset Field Name Bytes Field Description

0(0) DECBECB 4 Standard ECB

4(4) DECBTYP1 1 First byte of macro type field

Bit 0-5 - Reserved

6 - Length coded as'S' (take
length from DCBBLKSI)

7 - Area coded as'S' (dynamic
buffer option)

5(5) DECBTYP2 1 Second byte of macro type

Bit 0 - READ K
1 - Reserved
2 - READ KU
3 - Reserved
4 - WRITE K
5 - WRITE KN
6-7 - Reserved

6(6) DECBLGTH 2 Number of bytes read or written

8(8) DECBDCBA 4 Data control block address

Section 5: Data Areas 159

Offset Field Name Bytes

12(C) DECBAREA 4

16(0) DECBLOGR 4

20(14) DECBKEY 4

24(18) DECBEXCI 1

25(19) DECBEXC2 1

Field Description

Address of storage area for record

Pointer to logical record

Record key address

Exceptional condition code byte (see
"Appendix B: ISAM Channel Programs")

Bit 0 Record not found

1 Record length check

2 Space not found in which to
add a record

3 Invalid request

4 - Uncorrectable I/O error

5 Unreachable block

6 Overflow record

7 - Duplicate record presented
for inclusion in data set

Exceptional condition code byte (see
"Appendix B: ISAM Channel Programs")

Bit 0-5 - Reserved

6 Channel program initiated by an
asynchronous routine (variable­
length records only)

7 - Previous macro was READ KU

Data Set Control Block (DSCB)

160 OS ISAM Logic

Data sets on direct-access devices use a control block called a data set control block
(DSCB) as their data set label. There are actually three kinds of DSCBs used to
describe the attributes and extents of an ISAM data set. The information in the
attribute fields of the DSCBs includes data set organization, record format, and other
information needed to refer to and use a data set. The extent entries in the DSCBs
describe the physical boundaries of a data set.

The three kinds of DSCBs used to describe ISAM data sets are:

• The identifier (format-I) DSCB contains such items as the data set name, the
number of extents on the volume, creation and expiration dates, block length,
logical record length, and three extent entries that are used to build the DEB.
There is one format-l DSCB for each volume of a data set. (OS DADSM
Logic, GY28-6607, provides additional details on the construction of the
DSCBs at allocation of the data set.)

The index (format-2) DSCB is used only for ISAM data sets. There is one
format-2 DSCB for each data set; it is used in constructing the ISAM DCB
interface. The format-2 DSCB resides in the VTOC of the first volume on which
the data set was allocated. When the QISAM scan mode open executor module
(IGGOI928) or the BISAM open executor module (IGGOI92H) is executed, data

in the associated format-2 DSCB are moved to the BISAM/QISAM interface portion
of the DCB. The DCB field corresponding to each DSCB field is shown in the
following detailed description of the format-2 DSCB. The format-2 DSCB is shown in
Figure 60.

• The extension (format-3) DSCB is required on each volume of a data set that
contains more than three extents. It contains as many as 13 additional extent
entries, permitting a maximum of 16 extent entries per volume.

Detailed descriptions of DSCBs are given in OS System Control Blocks,
GC28-6628.

~.~------------------------------------4bytes------------------------------------~.

0(0) 11 (1)
OS22MINO

8(8) OS2L2MEN

1 13(0)
OS23MINO

20(14) OS2L3MIN

1 25(19)

Reserved

44(2C) OS2FMTI0 145(20) OS2NOLEV 1 46(2E) OS20VINO \47(2F) OS21 RCYL

Figure 60 (Part 1 of 2). Format-2 DSCB

Section 5: Data Areas 161

(Continued)

DS21 RCYL (cont.) 50(32) DS2LTCYL

52(34) DS2CYLOV 53(35) DS2HIRIN 54(36) DS2HiRPR 55(37) DS2HIROV

56(38) DS2RSHTR 57(39) DS2HIRTI 58(3A) DS2HIIOV 59(3B) DS2TAGDT

DS2TAGDT (cont.) 61(3D) DS2RORG3

64(40) DS2NOBYT 66(42) DS2NOTRK 67(43) DS2PRCTR

DS2P RCTR (cont.) 71(47) DS2STIND

72(48)

DS2CYLAD

79(4F)

DS2ADLIN

86(56)

DS2ADHIN

93(5D)
DS2LPRAD

101 (65) DS2LTRAD

DS2L TRAD (cont.) 106(6A)

DS2LCYAD
111(6F)

DS2LMSAD

116(74)
DS2LOVAD

124(7C) DS2BYOVL 126(7E) DS2RORG2

128(80) DS20VRCT 130(82) DS2RORGl

132(84) DS2NIRT 135(87)

DS2PTRDS

Figure 60 (Part 2 of 2). Format-2 DSCB

162 OS ISAM Logic

DeB Field
to Which

Offset Field Name Bytes Field Description 'Moved

0(0) 1 Contains hexadecimal code 02 in order to
avoid conflict with a data set name.

1(1) DS22MIND 7 Address of the first track of the DCBFTMI2
second-level master index (in the
form MBBCCHH).

8(8) DS2L2MEN 5 Contains the CCHHR of the last active DCBLEMI2
index entry in the second-level master
index.

13(D) DS23MIND 7 Address of the first track of the DCBFTM3
third-level master index (in the
form MBBCCHH).

20(14) DS2L3MIN 5 Contains the CCHHR of the last active DCBLIMI3
index entry in the third-level master
index.

25(19) 19 Reserved.

44(2C) DS2FMTID 1 Format identification for format-2
DSCB (EBCDIC "2").

45(20) DS2NOLEV 1 Number of index levels. DCBNLEV

46(2E) DS2DVIND 1 Number of tracks determining DCBNTM
development of the master index.

47(2F) DS21RCYL 3 Contains the HHR of the first data DCBFIRSH
record on each cylinder.

50(32) DS2LTCYL 2 Contains the HH of the last data DCBLDT
track on each cylinder.

52(34) DS2CYLOV 1 Number of tracks of cylinder overflow DCBCYLOF
area on each cylinder.

53(35) DS2HIRIN 1 Highest possible R on a track DCBHIRCM
containing high-level index entries.

54(36) DS2HIRPR 1 Highest possible R on prime-data DCBHIRPD
tracks for format-F records.

Section 5: Data Areas 163

DeB Field
to Which

Offset Field Name Bytes Field Description Moved

55(37) DS2HIROV 1 Highest possible R on overflow data DCBHIROV
tracks for format-F records.

56(38) DS2RSHTR 1 Contains the R of the last data DCBHIRSH
record on a shared track.

57(39) DS2HIRTI 1 Highest number of index entries that DCBHIRTI
fit on a prime-data track.

58(3A) DS2HIIOV 1 Highest R for independent overflow DCBHIIOV
track.

59(3B) DS2TAGDT 2 The number of records that have been DCBTCD
tagged for deletion. This field is
updated by the user during BISAM, scan
mode, and load mode resume loading.

61(3D) DS2RORG3 3 The number of random references to DCBRORG3
overflow records other than the first
overflow record in a chain.

64(40) DS2NOBYT 2 The number of bytes needed to hold the DCBNCRHI
highest-level index in main storage.

66(42) DS2NOTRK 1 The number of tracks occupied by the DCBNTHI
highest-level index.

67(43) DS2PRCTR 4 The number of records in the prime- DCBNREC
data area.

71(47) DS2STIND 1 Status indicators. DCBST

Bits Bit Setting Meaning

0 0 Reserved

1 1 Key sequence to be
checked

2 1 Initial load has been
completed

3-5 1 Reserved (must remain zero)

6 1 Last block full

7 1 Last track full

72(48) DS2CYLAD 7 Address of the first track of the DCBFTCI
cylinder index (in the form
MBBCCHH).

164 OS ISAM Logic

~,
DCB Field , to Which

Offset Field Name Bytes Field Description Moved

79(4F) DS2ADLIN 7 Address of the first track of the DCBFTMll
lowest-level master index (in the
form MBBCCHH).

86(56) DS2ADHIN 7 Address of the first track of the DCBFTHI
highest-level master index (in the
form MBBCCHH).

93(5D) DS2LPRAD 8 Address of the last record in the DCBLPDA
prime-data area (in the form
MBBCCHHR).

101(65) DS2LTRAD 5 Contains the CCHHR of the last normal DCBLETI
entry in the track index on the last
cylinder.

106(6A) DS2LCYAD 5 Contains the CCHHR of the last index DCBLECI
entry in the cylinder index.

111(6F) DS2LMSAD 5 Contains the CCHHR of the last index DCBLEMIl
entry in the master index.

'", 116(74) DS2LOVAD 8 Address of the last record written in DCBLIOV
the current independent overflow area
(in the form MBBCCHHR).

124(7C) DS2BYOVL 2 The number of bytes remaining on the DCBNBOV
current independent overflow track.

126(7E) DS2RORG2 2 The number of tracks remaining in the DCBRORG2
independent overflow area.

128(80) DS20VRCT 2 The number of records in the overflow DCBNOREC
area.

130(82) DS2RORGI 2 The number of cylinder overflow areas DCBRORGI
that are full.

132(84) DS2NIRT 3 HHR of the dummy track-index entry.

135(87) DS2PTRDS 5 If there are more than 3 extent segments
for the data set on this volume, this
field contains the address of a format-3
DSCB (in the form CCHHR). Otherwise,
this field contains binary Os.

Section 5: Data Areas 165

ISAM-dependent Section (Occurs only once) (
32(20) DEBNIEE 33(21) DEBFIEAD

36(24) DEBNPEE 37(25) DEBFPEAD

40(28) DEBNOEE 41(29) DEBFOEAD

44(2C) DEBRPSID 45(2D) DEBEXPTR

Device-dependent Section (Occurs once for each extent)

+0(0) DEBDVMOD I +1 (1) DEBUCBAD

+4(4) DEBBINUM +6(6) DEBSTRCC

+8(8) DEBSTRHH +10(A) DEBENDCC

+12(C) DEBENDHH +14(E) DEBNMTRK

DEBSUBID Subroutine Name Section (Occurs once for eacti subroutine)

ISAM Extension
Load Mode Extension

1+0(0) DEBPUT

Scan Mode Extension

+0(0) DEBGET,DEBPUT +4(4) DEBWKPT4

+8(8) DEBWKPT5 +12(C) DEBCREAD

+16(10) DEBCSETL +20(14) DEBCWRIT

+24(18) DEBCCHK +28(1C) DEBCREWT

+32(20) DEBCRECK +36(24) DEBAREAD

+40(28) DEBASETL +44(2C) DEBAWRIT

+48(30) DEBACHK +52(34) DEBAREWT

+56(38) DEBARECK

BISAM Extension

+0(0) DEBDISAD +4(4) DEBWKPT4

+8(8) DEBWKPT5 +12(C) DEBFREED

+16(10) DEBRPSIO

Figure 61. ISAM Extensions to DEB (
166 OS ISAM Logic

Data Extent Block (DEB)

) The ISAM open executors construct the data extent block (DEB). The DEB contains
the extents of the opened data set, pointers to the unit control blocks (UCBs) for the
extents, and the names of access method routines to be used. The ISAM-dependent,
device-dependent, and subroutine name sections of the DEB are shown in Figure 61.

ISAM-DEPENDENT SECTION

Offset Field Name Bytes Field Description

32(20) DEBNIEE 1 Number of extents of independent index area

33(21) DEBFIEAD 3 Address of first index extent

36(24) DEBNPEE 1 Number of extents of prime-data area

37(25) DEBFPEAD 3 Address of the first prime-data extent

40(28) DEBNOEE 1 Number of extents of independent overflow
area

41(29) DEBFOEAD 3 Address of the first overflow extent

44(2C) DEBRPSID 1 Identifiers for prime, index, or overflow
areas on an RPS direct-access storage
device.

... Bits Meaning
\

I 0 Prime area is on an RPS device.

1 Index area is on an RPS device.

2 Overflow area is on an RPS device.

3 An SIO appendage for RPS has been
loaded. (This bit set by IGG0192K.)

4-7 Reserved.

45(2D) DEBEXPTR 3 Address of ISAM DEB extension.

The device-dependent sections (one for each
extent) are in the following order: prime
extents, index extents, overflow extents.

DEVICE-DEPENDENT SECTION

Offset Field Name Bytes Field Description

+0(0) DEBDVMOD 1 Device modifier: file mask.

)
Section 5: Data Areas 167

Offset Field Name

+1(1) DEBUCBAD

+4(4) DEBBINUM

+6(6) DEBSTRCC

+8(8) DEBSTRHH

+lO(A) DEBENDCC

+12(C) DEBENDHH

+14(E) DEBNMTRK

DEBSUBID

Load Mode Extension

+0(0) DEBPUT

Scan Mode Extension

Bytes Field Description

3 Address of UCB associated with this data extent.

2 Bin number if the device is a 2321 data cell drive, 0
for other devices.

2 Cylinder address for the start of an extent limit.

2 Read/write track address for the start of an
extent limit.

2 Cylinder address for the end of an extent limit.

2 Read/write track address for the end of an extent
limit.

2 Number of tracks allocated to a given extent.

SUBROUTINE NAME SECTION

2n Subroutine identification. Each access method
subroutine, appendage subroutine, and IRB
routine has a unique 8-byte name. The low-order
two bytes of each routine name are in this field
if the subroutine is loaded by the open
routine.

ISAM EXTENSION

4 Address of the PUT processing module

+0(0) DEBGET, DEBPUT 4 Address of the Get processing module

+4(4) DEBWKPT4

+8(8) DEBWKPT5

+ 12(C) DEBCREAD

+16(10) DEBCSETL

+20(14) DEBCWRIT

+24(18) DEBCCHK

168 OS ISAM Logic

4

4

4

4

4

4

Address of the UCB

Pointer to the Get appendage module

Address of channel-end appendage for Read

Address of channel-end appendage for SETL

Address of the channel-end appendage for Write

Address of the channel-end appendage for
Write-validity-check

(

Offset Field Name

+28(1C) DEBCREWT

+32(20) DEBCRECK

+36(24) DEBAREAD

+40(28) DEBASETL

+44(2C) DEBAWRIT

+48(30) DEBACHK

+52(34) DEBAREWT

+56(38) DEBARECK

BISAM Extension

+0(0)

+4(4)

+8(8)

+12(C)

+16(10)

DEBDISAD

DEBWKPT4

DEBWKPT5

DEBFREED

DEBRPSIO

Bytes

4

4

4

4

4

4

4

4

4

4

4

4

4

Field Description

Address of the channel-end appendage for
Rewrite

Address of the channel-end appendage for
Recheck

Address of the abnormal-end appendage for
Read

Address of the abnormal-end appendage for
SETL

Address of the abnormal-end appendage for
Write

Address of the abnormal-end appendage for
Write-validity-check

Address of the abnormal-end appendage for
Rewrite

Address of the abnormal-end appendage for
Recheck

Address of the privileged module entered
when a BISAM macro instruction is
executed.

Address of the Part 1 appendage module
(abnormal-and channel-end appendages).

Address of the Part 2 appendage module
(abnormal-and channel-end appendages).

Address of the dynamic buffering module.

Address of the RPS SIO appendage module
if dynamic buffering is used. (If dynamic
buffering is not used, the appendage vector
table of the DEB contains the address of
the RPS SIO appendage module.)

Section 5: Data Areas 169

Input/Output Block (lOB)
The input/output block (lOB) contains information required by the I/O supervisor to
perform an input/output operation. The ISAM routine constructs an lOB for each
such operation.

The lOB consists of 40 bytes of standard information as described in OS System
Control Blocks, GC28-6628. The standard information is common to all access
methods. BISAM and QISAM (scan mode) use extensions of the standard lOB, and
QISAM uses an lOB prefix. The ISAM extensions and prefix are shown in Figure 62.

OISAM Prefix
--~

1-4(-4) Event Control Block

BISAM Extension

40(28) IOBCCWAD

44(2C) IOBINDCT 45(2D) IOBUNSOR I 46(2E) IOBAPP I 47(2F) IOBASYN

48(30) IOBCOUNT 49(31) IOBFCHAD

52(34) IOBBCHAD

56(38) IOBCCW1

64(40) IOBCCW2

OISAM Extension (scan mode)

140(28) 011 EXTEN·W1 OEXTEN

Figure 62. ISAM Extensions to lOB

Offset Field Name Bytes Field Description

QISAM Prefix

-4(-4) 4 Event control block.

BISAM Extension

40(28) 10BCCWAD 4 Address of first CCW of channel program
or address of buffer after completion
of a READ KU (BISAM dynamic buffering).

170 OS ISAM Logic

Offset Field Name Bytes Field Description

44(2C) IOBINDCT 1 Indicators.

Bit Bit Setting Meaning

0 1 Remove channel program
from queue.

1 1 lOB is on the unscheduled
queue.

2 0 DECBAREA (+6) points to
overflow record data; DCBMSW A
points to the key and data of
an overflow record.

3 0 DECBKEY points to overflow record
key.

1 DCBMSW A (+8) points to overflow
record key.

4-6 0 Reserved.

7 0 Normal channel end has occurred.
1 Abnormal channel end has occurred.

45(2D) IOBUNSQR 1 Reason for unscheduled or error queue.

Bit Bit Setting Meaning

0 1 CP I or CP 2 busy.

1 1 No CP 4, CP 5, or CP 6.

2 1 No CP 7.

3 1 WRITE KN is in effect (unscheduled
lOB is for WRITE KN).

4 1 WRITE KN is in effect (unscheduled
lOB is for READ or WRITE K).

5 1 An error condition is associated
with this lOB.

6-7 0 Reserved.

46(2E) IOBAPP 1 Appendage code (see "Section 6: Diagnostic Aids").

47(2F) IOBASYN 1 Asynchronous routine code (see "Section 6: Diagnostic
Aids").

48(30) IOBCOUNT 1 Write-check counter.

49(31) IOBFCHAD 3 Forward chain address.

52(34) IOBBCHAD 4 Backward chain address.

56(38) IOBCCWI 8 Set sector CCW for use with RPS direct-access
storage devices.

64(40) IOBCCW2 8 TIC CCW to the channel program,
used with RPS devices.

Section 5: Data Areas 171

Offset

40(32)

Field Name Bytes

QISAM Extension (scan mode)

QlIEXTEN
WIOEXTEN

2

Field Description

Appendage codes (see "Section 6: Diagnostic Aids").

Buffer Control Block (BCB)-BISAM

The buffer control block (BCB) used to control dynamic buffering in BISAM is
structured by the stage 2 Open executor IGG0293B if the problem program has
requested dynamic buffering. If the user does not specify the number of buffers he
desires, two buffers are provided. The fields of the BISAM BCB are shown
schematically in Figure 63.

~~~------------------------------------4bytes------------------------------------~) 

0(0) BCBFIOB 

4(4) BCBLlOB 

8(8) BCBNAVB 

12(C) BCBSIZE 

16( 1 0) Reserved (for doubleword alignment) 

20(14) First Buffer (Link Field) 1 

24(18) 
First Buffer (continued) 

Second Buffer (Link Field) 

Second Buffer (continued) 

Nth Buffer (Link Field) 

Nth Buffer (continued) 

1 The first buffer begins at 20( 14) if buffer alignment specified was fullword; it begins at 24(18) if alignment was at doubleword. 

Figure 63. Fields of the BISAM Dynamic Buffering Buffer Control Block 

172 OS ISAM Logic 

The following describes the contents and uses of the fields of the BISAM BCB. 

Field Name: 

Offset: 

Bytes: 

BCBFIOB 

0(0) 

4 



Field Description: 

Field Name: 

Offset: 

Bytes: 

Field Description: 

Field Name: 

Offset: 

Bytes: 

Field Description: 

If there are not enough buffers available for the number of 
READ K or READ KU requests issued, the dynamic buffering 
routine, entered from the start I/O appendage routine, activates 
this field as a pointer to the first lOB that needs a buffer. Later, 
when a buffer has become available (because it was released by 
either the WRITE K macro instruction or the FREEDBUF macro 
instruction), the dynamic buffering routine, entered through one 
of those macro routines, updates BCBFIOB to point to the next 
lOB that needs a buffer. If there are no more lOBs on queue for 
a buffer, this field is then reset to O. Initially, this field is set to 0 
by the IS AM open module IGGOI92B. 

BCBLIOB 

4(4) 

4 

If there are not enough buffers available for the number of 
READ K or READ KU requests issued, the dynamic buffering 
routine, entered from the start I/O appendage routine, activates 
this field as a pointer to the last lOB that needs a buffer (the 
lOB of the latest Read requested). The lOB forward chain 
address (IOBFCHAD) of the lOB previously pointed to by this 
field, if BCBLIOB has been previously activated, is also set to 
point to this latest lOB. 10BFCHADs thus provide the linkage 
between BCBFIOB and BCBLIOB. BCBLIOB is initialized and 
reset whenever BCBFIOB is. 

BCBNAVB 

8(8) 

4 

Points to the next buffer available to a READ K or READ KU 
request. Initially, BCBNA VB is set to point to the first buffer 
by ISAM Open module IGGOI92B. The dynamic buffering 
routine is entered from the start I/O appendage routine to select 
the buffer pointed to by this field when a read is issued. The link 
field of the buffer selected is placed into BCBNA VB. When a 
buffer has been released either by a FREEDBUF macro 
instruction or because it has been written back into the data set, 
entry is made to the dynamic buffering routine. If an lOB is 
waiting for a buffer (see BCBFIOB), the buffer just released is 
assigned to the lOB, and an EXCP is issued. If, however, the 
lOB queue is empty, the buffer is placed on the available queue. 
This is accomplished by placing a pointer to the buffer in 
BCBNAVB after moving the contents of BCBNAVB into the 
link field of the buffer. When there are no buffers on the 
available queue, BCBNA VB contains O. 

Section 5: Data Areas 173 



Field Name: 

Offset: 

Bytes: 

Field Description: 

Field Name: 

Offset: 

Bytes: 

Field Description: 

BCBSIZE 

12(C) 

4 

Total main-storage size of the BCB and the attached buffers. 
Calculated by open module IGGOl92B. Used by Close module 
IGG0202A to free the buffer control block and the associated 
buffers. 

First Buffer (Link Field) 

20(14) 

4 (first 4 bytes of each buffer) 

If a buffer is on the available queue, its link field contains the 
address of the following buffer to be made available. When a 
buffer is the last buffer on the available queue, its link field 
contains O. When a buffer is not on the available queue, these 4 
bytes are used as a part of the buffer. 

Buffer Control Block (BCB)-QISAM 

174 OS ISAM Logic 

The BCB used in QISAM differs in format from the BISAM BCB. Figure 64 pictures 
schematically the fields of the QISAM BCB. This BCB may result from a GETPOOL 
or BUILD macro instruction issued by the processing program, or it may be 
constructed by the stage 1 open executors. The information it contains is needed by 
the stage 2 open executors. 

0(0) 

ADDRESS OF FIRST BUFFER 

4(4) 6(6) 

NUMBER OF BUFFERS LENGTH OF EACH 
BUFFER 

Figure 64. Fields of the QISAM Buffer Control Block 

The following is a description of the contents and uses of the fields of the QISAM 
BCB. 

Field Name: 

Offset: 

Bytes: 

Address of first buffer 

0(0) 

4 



Field Description: 

Field Name: 

Offset: 

Bytes: 

Field Description: 

Field Name: 

Offset: 

Bytes: 

Field Description: 

Load mode open module IGGOl92G uses this address to 
initialize the load mode buffer control table field named 
IOBABUF. Scan mode open module IGGOl929 uses the address 
(in conjunction with the link field of each buffer) to initialize its 
channel programs. 

Number of buffers 

4(4) 

2 

The number of buffers in this buffer pool. 

Length of each buffer 

6(6) 

2 

Scan mode open module IGG01929 uses this field to ensure the 
buffer size is adequate for the records to be retrieved. 

Buffer Control Table (JOBBCT) 

0(0) 

4(4) 

8(8) 

.., 

,. 

2N+10 

The buffer control table, used by QISAM load mode to control the filling of buffers, is 
initialized by Stage 2 Open executor module IGGOl92G. The area for the IOBBCT is 
obtained by Stage 1 Open executor module IGGOl92B. The fields of the buffer 
control table are shown schematically in Figure 65. 

10BFLAGS 

10BB 

lOBS 
(1st Buffer) 

lOBS 
(Nth Buffer) 

1 (1) 

5(5) 

9(9) 

2N+11 

IOBPTRA 

10BPTRB 

10BABUF 
(1st Buffer) 

10BABUF 
(Nth Buffer) 

Figure 65. QISAM Load Mode Buffer Control Table 

Section 5: Data Areas 175 

lJ 



176 OS ISAM Logic 

The following is a description of the contents and uses of the fields of the IOBBCT. 

Field Name: 

Offset: 

Bytes: 

Field Description: 

Bit 0: 

IOBFLAGS 

0(0) 

1 

General I/O conditions pertaining to all buffers. IOBFLAGS is 
initialized by open executor IGG0192G. At this time, bit 4 is 
set; all other bits are reset. 

When the end-of-buffer routine schedules an EXCP to use CP 
18/CP 20 (to write data records and the associated track 
indexes), the bit is set on to indicate CP 18/ CP 20 are busy. 

The CP 18/CP 20 appendage routine resets the bit. 

Bit 1: 

Bit 2: 

Bit 3: 

Bit 4: 

Bit 5: 

Bit 6: 

When the end-of-buffer routine cannot schedule the EXCP 
because CP 18/CP 20 are busy (bit 0 = 1), this bit is set. It is 
interrogated after every PUT macro instruction and, if set, 
another attempt is made to schedule the EXCP. If the attempt is 
successful, the bit is reset. 

When bit 1 = 1 and an attempt is being made to write previously 
filled buffers, but the current buffer is not full, this bit must be 
set to tell the end-of-buffer routine, which schedules the EXCP, 
to return to the Put routine. 

This bit is set by close executor module IGG0202I. It ensures 
return to closing routines after using channel programs to 
complete processing of the final buffers. 

This bit is set by the Put routine (in move mode only) when the 
last record PUT filled a buffer. It is interrogated by the Put 
routine to determine if a new buffer must be initialized before 
moving the current record and is reset by the 
beginning-of-buffer routine after the new buffer has been 
intialized. 

When the Put routine determines that there is enough space on 
the current track-index track for only one more normal and 
overflow track-index entry, it sets this bit. Prior to this 
determination, it has reset this bit. If the Put routine determines 
that an end-of-cylinder condition exists, it interrogates the bit to 
see if the extra track-index dummy entry will fit on the current 
track (bit 5 = 0), or whether a new track is needed (bit 5 = 1). 

This bit is set by close executor module IGG0202I. It ensures 
return to closing routines after completing the data set's 
high-level index. 



Bit 7: 

Field Name: 

Offset: 

Bytes: 

Field Description: 

Field Name: 

Offset: 

Bytes: 

Field Description: 

Field Name: 

Offset: 

Bytes: 

Field Description: 

Field Name: 

Offset: 

Bytes: 

Set by open executor module IGGOl92R (or IGG0192U) if the 
data set consists of unblocked records whose relative key position 
(RKP) is O. The bit is interrogated during initialization of CP 18. 

IOBPTRA 

1(1) 

3 

This field serves as a pointer to the address of the first buffer of 
the group that is written next. During the execution of CP 18, it 
points to the address of the first buffer of the group currently 
being written. When CP 18 is completed, the appendage r~utine 
updates this field to point to the address of the first buffer of the 
next group. IOBPTRA is needed to initialize CP 18 before CP 
18 is executed. IOBPTRA is initialized by open executor module 
IGGOl92G to point to the address of the first buffer. 

IOBB 

4(4) 

1 

IOBB contains the number of buffers filled but not yet scheduled 
for writing. It is updated by the Put routine as each buffer is 
filled and reset to 0 by the end-of-buffer routine when the 
buffers are scheduled for writing. IOBB is initialized to 0 by 
open executor module IGG0192G. 

IOBPTRB 

5(5) 

3 

This field serves as a pointer to the address of the buffer 
currently being filled. It is updated when the 
beginning-of-buffer routine is called to prepare a new buffer 
before executing a PUT command. IOBPTRB is initialized by 
open executor module IGG0192G to point to the address of the 
first buffer. 

lOBS 

2n+ 10 where n is the buffer number. 

1 

Section 5: Data Areas 177 



Field Description: 

Bit 0: 

Bits 1 and 2: 

Bit 3: 

Bit 4: 

Bit 5: 

Bit 6: 

178 OS ISAM Logic 

There is one status byte (lOBS) for each buffer. The bits are 
used to indicate conditions peculiar to each buffer. All status bits 
(except bit 0) are initially reset by open executor module 
IGGOI92G. 

Set (by open executor module IGGOI92G) if this is lOBS field 
for buffer N (last buffer); otherwise reset. Interrogated to ensure 
proper sequence of buffering when going from last to first buffer. 

A 2-bit code indicating buffer availability as follows: 

00 buffer available - set by CP 18/CP 20 appendage 
routine after writing; interrogated by beginning-of­
buffer routine prior to using buffer again. 

01 contents of buffer caused permanent write 
error - set by CP 18/CP 20 appendage routine; 
interrogated by beginning-of-buffer routine prior to 
using buffer again. 

10 buffer full, but not yet scheduled for writing - set 
by Put routine when buffer becomes full; prevents 
refilling of buffer before writing. 

11 buffer scheduled for writing - set by end-of-buffer 
routine when scheduled; interrogated by appendage 
routine to reset these bits and to update 10BPTRA. 

This bit is set by the beginning-of-buffer routine when it 
determines that this buffer, when written, will begin a new 
extent. Interrogated, then reset, by end-of-buffer routine before 
scheduling writing of this buffer in the new extent. 

This bit (the T-Bit) is set by the beginning-of-buffer routine 
when it determines that this buffer will be the last written on a 
track. Interrogated by end-of-buffer routine so that CP 20 is 
executed to write the track index. The T -Bit is reset by the CP 
18/CP 20 appendage routine. 

This bit (the C-Bit) is set by the beginning-of-buffer routine 
when it determines that this buffer, in addition to being the last 
written on a track, is also the last written on a cylinder. 
Interrogated by end-of-buffer routine so that CP 21 is executed 
to write the cylinder index when necessary. The C-Bit is reset 
by the CP 21 appendage routine. 

This bit (the PF-Bit) is set by the beginning-of-buffer routine 
when it determines that this buffer is the first buffer written on a 
cylinder and track-sharing is in effect. CP 19 is used to 
preformat the shared track. The end-ofbuffer-routine 
interrogates this bit and does not schedule a write on the new 
cylinder until the CP 19 appendage routine has reset the bit. 



Bit 7: 

Field Name: 

Offset: 

Bytes: 

Field Description: 

Not used. 

IOBABUF 

2n+ 11 where n is the buffer number. 

3 

There is one IOBABUF field for each buffer, and it contains the 
address of its associated buffer. Stage 1 open executor module 
IGG0192B provides the address of the first buffer (through 
DCBBUFCB) and Stage 2 open executor module IGGGOI92G 
uses the buffer link field of each buffer to fill out the r~maining 
IOBABUFs. (When buffers are structured, the first four bytes of 
each buffer - the buffer link field - contain the address of the 
next buffer in the chain. After these addresses are put into the 
IOBBCT, these four bytes become part of the buffer.) Buffer 
addresses are used for initialization of CP 18 and provide the 
storage location into which records are to be moved. 

QISAM Load Mode DCB Work Area 

Offset 

0(0) 

4(4) 

44(2C) 

48(30) 

88(58) 

92(5C) 

132(84) 

The QISAM load mode DCB work area is pointed to by the DCBWKPTl field of the 
DCB. The DCB work area format is shown in Figure 66. 

Field Name 

ISLECBA 

ISLIOBA 

ISLECBB 

ISLIOBB 

ISLECBC 

ISLIOBC 

ISLAREAZ 

Bytes Field Description 

4 The ECB for CP 18 and CP 20. 

40 The lOB for CP 18 and CP 20. 

4 The ECB for CP 21. 

40 The lOB for CP 21. 

4 The ECB for CP 19 and CP 91. 

40 The lOB for CP 19 and CP 91. 

88 This area contains the data field for cylinder 
overflow records and the count field for ten index 
entries. These are used to preformat shared tracks 
during the Put load mode function and to pad dummy 
track indexes on unused cylinders during the Close 
routine. 

Area Z appears as follows: 

CYL.OVL. 
CTRL.RCD. COUNT 1 COUNT 2 COUNT 10 
HHRYVT 

z Z+6(6) Z+14(E) Z+78(4E) 

Section 5: Data Areas 179 



~.~--~---------------------------8bytes --------------------------------~) 

0(0) ISLECBA 4(4) 

ISLIOBA 

44(2C) ISLECBB 

48(30) 

ISLIOBB 

88(58) ISLECBC 92(5C) 

ISLIOBC 

132(84) 

ISLAREAZ 

220(DC) 

ISLlXL T 

324(144) ISLNIRT 1327(147) 
ISLHIRT 

328(148) ISLCBF 332(14C) ISLBMPR 

336(150) ISLFBW 340(154) ISLEOB 

344(158) ISLNCNT 

352(160) ISLOCNT 

Figure 66 (Part 1 of 2). QISAM Load Mode DeB Work Area 

180 OS ISAM Logic 



(Continued) 

360(168) ISLDCNT 

368(170) ISLNDAT 

I 378(17A) Reserved 380(17C) ISLODAT 

1290(176) 
Reserved 

1391(187) 
ISLBUFNO 

392(188) ISLBUFN 396(18C) ISLMVC 

400(190) ISLMVCT 404(194) 

ISLVRSAV 

476(1DC) 

ISLAPSAV 

516(204) 

ISLWRSAV 

580(244) TSTWK1C 

584(248) TSTWK2C 588(24C) Reserved 

592(250) ISLNOENT 596(254) ISLOFFST 

600(258) ISLD 604(25C) ISLFSTBF 

608(260) ISLLSTBF 612(264) ISLCCFAD 

616(268) ISLKEYAD 620(26C) CL 1 AD/ISLF8AD 

624(270) CM1AD/ISLFXAD 628(274) C01 AD/ISLFYAD 

632(278) COT1AD/ISLFZAD 636(27C) C040AD/ISLPAAD 

640(280) C045AD/ISLF1AD 644(284) 

ISLVPTRS (pointed to by DCBWKPT6) 

704(2CO) ISLIGAP 1 706(2C2) ISLLGAP 708(2C4) ISLRPSSS 

Variable-length areas follow: 
Pointed to by 1SLVPTRS 
Area Y (See Figure 67) 
Key save area 
Buffer control table 
Channel programs 

Figure 66 (Part 2 of 2). QISAM Load Mode DeB Work Area 

Section 5: Data Areas 181 



Offset Field Name 

220(DC) ISLIXLT 

324(144) ISLNIRT 

327(147) ISLHIRT 

328(148) ISLCBF 

332(14C) ISLBMPR 

182 as ISAM Logic 

3 

1 

4 

4 

Bytes 

104 

Field Description 

The index location table contains the direct-access 
device addresses for high-level indexes. 

IND. BEGIN STEPPING END 

0(0) MBBCCHHR MBBCCHHR MBBCCHHR 

26(lA) MBBCCHHR MBBCCHHR MBBCCHHR 

CYL 

Ml 

52(34) MBBCCHHR MBBCCHHR MBBCCHHR M2 

78(4E) MBBCCHHR MBBCCHHR MBBCCHHR M3 

There is an indicator byte and three device addresses for 
each level of index; cylinder, and up to three master index 
levels. 

The begin and end addresses are set during the Open 
routine according to formulas based on space allocation. 
The stepping addresses are used during data set creation 
to point to the current index entry location at each level. 
The indicator byte is as follows: 

Bit 0 = 1 for last level 
= o otherwise 

1 = 1 for dummy switch on 
= o for dummy switch off 

2 = 1 for current level 
o otherwise 

3 = 1 during Close 
= o otherwise 

4 = 1 when track index has been written 
but not cylinder index 
o when cylinder index has been written 

Indicator bit 4 only applies to the first level of 
the index location table. 

HHR of the dummy track-index entry. It is used in 
Close to signal the end-of-track index padding. 

The number of index entries that fit on a prime-data 
track. 

Buffer control pointer. This field contains the 
address of the current record in the current buffer. 
It is used to move records into a buffer. 

Size of individual records (equal DCBLRECL or 
DCBLRECL + DCBKEYLE). This field is used to bump 
ISLCBF to next record location in a buffer. 



Offset Field Name Bytes Field Description 

336(150) ISLFBW 4 The number of buffers scheduled to be written. This 
number is determined immediately following each 
execution of CP 18. It is the number of buffers 
(DCBBUFNO) minus one, or the number of buffers 
that completes a track, whichever is smaller. 

340(154) ISLEOB 4 End-of-buffer address. When ISLCBF and ISLEOB are 
equal, a buffer has been filled. 

344(158) ISLNCNT 8 CCHHRKDD. This is the count field for the current 
normal track-index entry. 

352(160) ISLOCNT 8 CCHHRKDD. This is the count field for the current 
overflow track-index entry. 

360(168) ISLDCNT 8 CCHHRKDD. This is the count field for the current 
dummy track-index entry. 

368(170) ISLNDAT 10 MBBCCHHRFP. This is the data field for the current 
normal track-index entry. 

378(17A) 2 Reserved. 

380(17C) ISLODAT 10 MBBCCHHRFP. This is the data field for the current 
overflow track-index entry. 

390(186) 1 Reserved. 

391(187) ISLBUFNO 1 Number of buffers. ISLBUFNO equals DCBBUFNO. 

392(188) ISLBUFN 4 Address of Slot N in buffer control table. 

396(18C) ISLMVC 4 The count used for the Executed Move at ISLFX21 
when moving a record from the user's work area into 
a buffer. This count equals R-1 where R is the 
remainder when dividing ISLBMPR by 255. If R=O, 
ISLMVC is set decreased (see ISLMVCT). 

400(190) ISLMVCT 4 The count used for the BCT at ISLFX21 when moving a 
record from the user's work area into a buffer. 
This is the number of 255-byte moves, plus one, 
needed to move the record. This count equals Q+ 1 where 
Q is the quotient when dividing ISLBMPR by 255. When 
R, alone, equals 0, ISLMVCT is set to equal Q. 

404(194) ISLVRSAV 72 Index register save area. This area is used during load 
mode macro time to save index registers within load mode. 

476(1DC) ISLAPSAV 40 Index register save area. This area is used during load 
mode appendage time to save index registers belonging to 
either the I/O supervisor or load mode Close. 

516(204) ISLWRSAV 64 Index register save area. This area is used during load 
mode Close to save index registers belonging to common 
Close. 

Section 5: Data Areas 183 



Offset Field Name Bytes Field Description 

580(244) TSTWKIC 4 Open work field. 

584(248) TSTWK2C 4 Open work field. 

588(24C) 4 Reserved. 

592(250) ISLNOENT 4 Number of spaces for track-index entries remaining on 
the current track-index track. 

596(254) ISLOFFST 4 Size of WRITE channel commands in CP 18. If 
unblocked records, RKP=O, ISLOFFST=8. Otherwise, 
ISLOFFST=24. 

600(258) ISLD 4 At Macro Time: 
ISLD is the displacement from the start of CP 18 
to the CC flag in the first WRITE CCW in the chain. 
If unblocked records, RKP=O, ISLD=28. Otherwise, 
ISLD=44. (ISLOFFST+20) 

During Close: 
ISLD is a set of switches used when padding indexes: 

Bit 0 1 for new cylinder; 0 otherwise 
1 = 1 for end entry; 0 otherwise 
2 = 1 for chained entry; 0 otherwise 

604(250) ISLFSTBF 4 Pointer to first buffer scheduled for writing. This 
is the slot number in the buffer control table associated 
with the first buffer to be written in the current output 
chain. 

608(260) ISLLSTBF 4 Pointer to last buffer scheduled for writing. This is the 
slot number in the buffer control table associated with 
the last buffer to be written in the current output chain. 

612(264) ISLCCFAD 4 Address of CC flag in the last WR CKD CCW in CP 18 
chain. This CC flag is turned off to stop the write chain. 

616(268) ISLKEYAD 4 Address of the key in the last record that is placed on the 
current prime--data track. This key becomes the 
track-index key for the given track. 

620(26C) CLIAD 4 Address of the CP 18 skeleton (Open). 
ISLF8AD Address of instruction at ISLF800+6=PUT base (Close). 

624(270) CMIAD 4 Address of the CP 19 skeleton (Open). 
ISLFXAD Address of the instruction at ISLFYOI (Close). 

628(274) CQIAD 4 Address of the CP 20 skeleton (Open). 
ISLFYAD Address of the instruction at ISLFYOI (Close). 

632(278) CQT1AD 4 Address of CP 20 write-check extension skeleton (Open). 
ISLFZAD Address of the instruction at ISLFZOI (Close). 

636(27C) CQ40AD 4 Address of the CP 21 skeleton (Open). 
ISLPAAD Address of the instruction at ISLPAOI (Close). 

184 OS ISAM Logic 



Offset Field Name Bytes Field Description 

640(280) CQ45AD 4 Address of CP 21 write-check extension skeleton (Open). 
ISLFIAD Address of the instruction at ISLF 11 0 (Close). 

644(284) ISLVPTRS 60 Address of variable-length areas and channel programs. 

0(0) - A(Area Y) (Figure 67) 

+ 4(4) - A(Key save) 

+ 8(8) - A(IOBBCT) 

+ 12(C) - A(CP 18) 

+ 16(10) - A(CP 19) 

+ 20(14) - A(CP 20A or Os) - full track-index 
write option 

+ 24(18) - A (CP 21) 

+ 28( 1 C) - Size of DCB work area - ISLCOMON (for 
FREEMAIN in Close) 

+ 32(20) - Size of channel program area for 
FREEMAIN 

+ 36(24) - A (TISA) 
Bit 0 - full track-index write 
Bit 1 - successful GETMAIN 

+ 40(28) - A (CP 31A/3IB) - resume load 
A (CP 20B or Os) - full track-
index write option 

+ 44(2C) - A (CP 20C or Os) - full track-
index write option 

+ 48(30) - ISLFXWKI (macro work field) 

+ 52(34) - ISLFXWK2 (macro work field) 

+ 56(38) - ISLF9WKI (work field) 

Note: When there is a permanent I/O error, ISLVPTRS+ 
36 is overlaid with the address of the buffer that caused 
the error if CP 18 failed; otherwise, it is set to O. 
ISLVPTRS+40 is overlaid with the SYNAD address and 
ISLVPTRS+44 is overlaid with the second word 
of the lOB. 

704(2CO) ISLIGAP 2 Overhead (record gap) for other than the last record. 
Used in RPS device space allocation calculations for 
VLR track capacity of prime-data records. 

706(2C2) ISLLGAP 2 Last record overhead for RPS devices. Used to 
calculate VLR track capacity of prime-data records. 

708(2C4) ISLRPSSS 4 Sectors values used in CP 18, CP 19, CP 20, and CP 21 
for RPS devices. 

Section 5: Data Areas 185 



HIGH LEVEL INDEX ENTRY 
COUNT DATA 

CCHHRKDD MBBCCHHRFP 

y y+8(8) 

TRACK INDEX ENTRIES 

NORMAL OVERFLOW 
COUNT DATA COUNT DATA 

CCHHRKDD MBBCCHHRFP CCHHRKDD MBBCCHHRFP 

y+18(12) y+26(lA) y+36(24) y+44(2C) 

DUMMY ENTRY 

CCHHRKDD KEY OF ALL ls MBBCCHHRFP 

y+54(36) y+62(3E) y+62(3E) +key length 

Figure 67. Area Y: QISAM Load Index Fields 

186 OS ISAM Logic 



QISAM Scan Mode DCB Work Area 

The QISAM scan mode DCB work area is pointed to by.the DCBWKPTI field of the 
DCB. The DCB work area format is shown in Figure 68. 

~.~---------------------------------8bytes----------------------------------~~~ 

0(0) W1 ECBI 4(4) 

W110B 

44(2C) W11EXTEN I 46(2E) W1CPNUP 

48(30) W1 ECBO 52(34) 

W110BO 

92(5C) WlOEXTEN 194(5E) W1SAV7 

96(60) 197(61) 198(62) 199 (63) 
WlOSBIT1 WlOSBIT2 W10SBIT3 W11CNOT 

100(64) W1KEYBLK 

104(68) W1 LPDR 

112(70) W1CBF 116(74) W1EOB 

120(78) W1COUNTR 1 PRIMEIND 1 FIXIND 124(7C) W1 FCPS 

W10TABLE 

128(80) W1FR1ST 132(84) W1 FRLAST 

136(88) Reserved 
1 

W1 FREEC 140(8C) W1 RDIST 

144(90) W1RDLAST 148(94) W1 READR 1150(96) W1READC 

152(96) W1US1ST 156(9C) W1USLAST 

160(AO) Reserved 1162(A2) W1USERC 164(A4) W1PX1ST 

168(A8) W1PXLAST 172(AC) Reserved 1174(AE) W1PUTXC 

176(BO) W1WR1ST 180(B4) W1WRLAST 

184(B8) Reserved I 186(BA) W1WRITEC 

Figure 68 (Part 1 of 2). QISAM Scan Mode DCB Work Area 

Section 5: Data Areas 187 



(Continued) 
W1WAREA 

224(EO) 

232(E8) 

240(FO) 

248(F8) 

256(100) 

324(144) 

340(154) 

356(164) 

372(174) 

380(17C) 

388(184) 

412(19C) 

W1WCOUNT (cont.) 

W1WCNXDM (cont.) 

W1WOVFL (cont.) 

W1WPLEN 1226(E2) 

W1REGSV2 

W1REGSV3 

W1CP26PT 

W1WDCXDM 

1 334(14E) 

W1CN5SAV 

WlOVLEN 1414 (19E) 

188(BC) 

196(C4) 

204(CC) 

W1WDNXDM (cont.) 

W1CURLEN 228(E4) 

236(EC) 

244(F4) 

252(FC) 

W1CP24 

W11SECT 335(14F) 1336 (150) 
W10SECT 

W11CPEXT 

W10CPEXT 

W1RDCNT 

W1 RDSECT 

392(188) 

W1 RPSSA 

408(198) W1TOTAL 

W1FSTSH 
416(lAO) I 417(lA1) 
Wl RPSC1 W1RPSC2 

Figure 68 (Part 2 of 2). QISAM Scan Mode DCB Work Area 

188 OS ISAM Logic 

W1WCOUNT 

W1WCNXDM 

W1WOVFL 

1 214(D6) W1WDNXDM 

W1TEMPSA 

W1REGSAV 

W1CP23PT 

W1CP25PT 

W1DCBFA 

410(19A) W1RECLEN 

418(lA2) I 419(lA3) 
W1 RPSl1 W1RPSI2 



Offset Field Name Bytes Field Description 

0(0) WIECBI 4 Input ECB. 

4(4) WHOBI 44 Input lOB and extension. This includes: 
40 lOB. 

44(2C) WIIEXTEN 2 Input appendage code. 

46(2E) WICPNUP 2 Save area for schedule routine. 

48(30) WIECBO 4 Output ECB. 

52(34) WHOBO 44 Output lOB and extension. This includes: 
40 lOB. 

92(5C) WIOEXTEN 2 Output appendage code. 

8 - Write 

C - Check 

10 - Rewrite 

14 - Recheck 

94(5E) W1SAV7 2 Save area for schedule routine. 

96(60) WIOSBITl 1 Overall status, byte 1. 

Bit 0 Scan mode 

1 End of data set 

2 Overflow 

3 Read track index 

4 Key found (for SETL K) 

5 Unreachable record 

6 lOBI completion 

7 lOBO completion 

97(61) WI0SBIT2 1 Overall status, byte 2. 

Bit 0 Unwritable record 

1 Work bit for write appendage 

2 Same-cylinder indicator 

3 Shared track 

4 GET - SETL communication 

5 Scheduling 

6 RELSE 

7 SETL K blocked 

Section 5: Data Areas 189 



Offset Field Name Bytes Field Description 

98(62) WI0SBIT3 1 Overall status, byte 3. 

Bit 0 Buffer size 

1 CLOSE - ESETL communication 

2 Bad set indicator for write-checking 

3-7 Unused 

99(63) WlICNOT 1 BUFNO/2- used to schedule input/output. 

100(64) WIKEYBLK 4 Used by SETL K for address within the block of the 
requested record. 

104(68) WILPDR 8 Seek - Search address of the last prime-data record read. 

112(70) WICBF 4 Current buffer address. 

116(74) WlEOB 4 End-of-buffer address. 

120(78) WI COUNTER 2 Counter used to count number of retries for 
Write-validity-checking. 

122(7A) PRIMEIND 1 Switch for testing same device. 

123(7B) FIXIND 1 Temporary storage. 

124(7C) WIFCPS 4 First Write channel program scheduled. 

128(80) WIQTABLE 60 Queue table (comprising the following fields) 

128(80) WIFR1ST 4 Pointer to first channel program on the 
Free queue. 

132(84) WIFRLAST 4 Pointer to last channel program on the Free queue. 

136(88) 2 Reserved. 

138(8A) WIFREEC 2 Number of buffers on the Free queue. 

140(8C) WIRD1ST 4 Pointer to first channel program on the Read queue. 

144(90) WIRDLAST 4 Pointer to last channel program on the Read queue. 

148(94) WIREADR 2 Number of unusued buffers on the Read queue. 

150(96) WIREADC 2 Number of buffers on the Read queue. 

152(98) WIUS1ST 4 Pointer to the first channel program on the User queue. 

190 OS ISAM Logic 



Offset Field Name Bytes Field Description 

156(9C) WIUSLAST 4 Pointer to the last channel program on the User queue. 

160(AO) 2 Reserved. 

162(A2) WIUSERC 2 Number of buffers on the User queue. 

164(A4) WIPX1ST 4 Pointer to first channel program on the PUTX queue. 

168(A8) WIPXLAST 4 Pointer to last channel program on the PUTX queue. 

172(AC) 2 Reserved. 

174(AE) WIPUTXC 2 Number of buffers on the PUTX queue. 

176(BO) WIWRIST 4 Pointer to the first channel program on the Write queue. 

180(B4) WIWRLAST 4 Pointer to the last channel program on the Write queue. 

184(B8) 2 Reserved. 

186(BA) WIWRITEC 2 Number of buffers on the Write queue. 

188(BC) WIWAREA 36 Area for track-index entries (comprising the following 
three fields). 

188(BC) WIWCOUNT 8 Count of current index entry. 

196(C4) WIWCNXDM 8 Count of next normal or dummy entry. 

204(CC) WIWOVFL 10 Data of current, overflow entry. 

214(D6) WIWDNXDM 10 Data of next normal or dummy entry. 

224(EO) WIWPLEN 2 Byte length of work area. 

226(E2) WICURLEN 2 Length of current logical record. 

228(E2) WITEMPSA 4 Temporary storage. 

232(E8) WIREGSV2 4 Area to save contents of a register. 

236(EC) WIREGSAV 4 Area to save contents of a register. 

240(FO) WIREGSV3 4 Temporary storage. 

244(F4) WICP23PT 4 Address of CP 23. 

248(F8) WICP26PT 4 Address of CP 26. 

Section 5: Data Areas 191 



Offset Field Name Bytes Field Description 

252(FC) W1CP25PT 4 Address of CP 25. 

256(100) W1CP24 68 CP 24 - read track indexes. 

324(144) W1WDCXDM 10 Data of current normal track-index entry 
(variable-length records only). 

334(14E) WlISECT 1 Current input channel program sector value. 

335(14F) W10SECT 1 Current output channel program sector value. 

336(150) W1DCBFA 4 Pointer to DCB field area. 

340(154) WlICPEXT 16 Extension to the input channel program used with 
an RPS device. Set sector and TIC to input channel 
program. 

356(164) W10CPEXT 16 Extension to the output (PUTX) channel program 
used with an RPS device. 

372(174) W1RDCNT 8 Read count of next block for channel program. 

380(17C) W1RDSECT 8 Read Sector of next block for channel program. 

388(184) W1CN5SAV 4 Save area to restore TIC address CN5 during 
overflow processing. 

392(188) W1RPSSA 16 Register save area for RPS processing. 

408(198) W1TOTAL 2 Byte count on track. 

41O(19A) W1RECLEN 2 Minimum record length, prime records. 

412(19C) W10VLEN 2 Minimum record length, overflow records. 

414(19E) W1FSTSH 2 Byte count to first shared track. 

416(1AO) W1RPSC1 1 Lower limit cylinder overflow. 

417(1A1) W1RPSC2 1 Upper limit cylinder overflow. 

418(1A2) W1RPSIl 1 Lower limit independent overflow. 

419(1A3) S1RPSI2 1 Upper limit independent overflow. 

192 OS ISAM Logic 



BISAM DCB Work Area 

The BISAM DCB work area is pointed to by the DCBWKPT2 field of the DCB. The 
DCB work area format is shown in Figure 69. 

0(0) DCWFCP4 

4(4) DCWFCP7 

8(8) DCWNUCPS 19(9) DCWNUCP4 10(A) DCWNUCP7 111 (B) DCWNLSD 

12(C) DCWFIOBU 

16(10) DCWLlOBU 

20(14) DCWFUPDI 

24(18) DCWLUPDI 

28(lC) DCWHIAV 129(10) DCWWKNI 30(lE) DCWLEVC 131!lF) DCWNUWKN 

32(20) . DCWMSHIL 

36(24) DCWHIRPS 137(25) DCWNACT 38(26) DCWSIZE 

40(28) DCWOPCLS 

48(30) DCWERRCT 149(31) DCWFIOBE 

52(34) DCWLlOBE 

56(38) DCWSIOA 

60(3C) DCWDCBFA 

64(40) DCWIPG 66(42) DCWLPG 

68(44) DCWIOG 70(46) DCWLOG 
, 

Figure 69. BISAM Work Area 

Section 5: Data Areas 193 



Offset Field Name Bytes Field Description 

0(0) DCWFCP4 4 Pointer to the first available set of channel programs in 
the CP 4-CP 5-CP 6 or CP 4-CP 5W-CP 6W queue. The 
second word of the second CCW in the channel program set 
points to the next set of channel programs. The 
pointer is 0 in the last set on the queue. If no set of 
channel programs is available, this field is O. 

4(4) DCWFCP7 4 Pointer to the first available CP 7 or CP 7W. This queue is 
handled similarly to the one pointed to by DCWFCP4. 

8(8) DCWNUCPS 1 The number of lOBs awaiting CP 1 or CP 2. 

9(9) DCWNUCP4 1 The nuptber of lOBs awaiting CP 4-CP 5-CP 6 or 
CP 4-CP 5W-CP 6W. 

lO(A) DCWNUCP7 1 The number of lOBs awaiting CP 7 or CP 7W. 

11(B) DCWNLSD 1 The number of high-level indexes searched on a device. This 
number equals DCBNLEV unless the highest level index 
is searched in main storage in which case the number equals 
DCBNLEV minus 1. 

12(C) DCWFIOBU 4 Address of the first lOB in the queue of unscheduled 
lOBs. This field is 0 if no lOBs are unscheduled. 

16(10) DCWLIOBU 4 Address of the last lOB in the queue of unscheduled lOBs. 
This field is 0 if no lOBs are unscheduled. 

20(14) DCWFUPDI 4 Address of the first lOB in the update queue, that is, the 
queue of lOBs for which a READ KU has been successfully 
completed, but for which no WRITE K has yet been issued. 
This field is 0 when the queue is empty. 

24(18) DCWLUPDI 4 Address of the last lOB in the update queue. This field 
is 0 when the queue is empty. 

28(1C) DCWHIAV 1 Switches 

Bit Meaning 
0 CP 1 or CP 2 is available. 
1 Highest-level index must be searched in main storage. 
2-7 Reserved. 

29(1D) DCWWKNI 1 0 WRITE KN is in process. 
1 First time switch (used with various WRITE KN channel 

programs which are executed repetitively). 
2 Same module switch. 
3 Add to the end of the data set. 
4 CP 12A or CP 13A detected an end-of-file mark. 
5 CP llA-First use by a given WRITE KN. 
6 Work area for WRITE KN was obtained by Open (VLR 

only) 
7 Reserved. 

194 as ISAM Logic 



Offset Field Name Bytes Field Description 

30(1E) DCWNLEVC 1 Counter used when rewriting high-level indexes. 

31(1F) DCWNUWKN 1 The number of WRITE KN lOBs awaiting completion of 
WRITE KN. 

32(20) DCWMSHIL 4 Address of the last active high-level index entry in main 
storage. This field is 0 when the high-level index 
is not searched in main storage. 

36(24) DCWHIRPS 1 Used with WRITE KN. It contains DCBHIRPD if the current 
track of prime data being processed is not shared with a 
track index or DCBHIRSH if it is. 

37(25) DCWNACT 1 The number of READ or WRITE K lOBs awaiting completion 
of WRITE KN. 

38(26) DCWSIZE 2 The total size, in doublewords, of (1) the DCB work area, (2) 
all the channel programs, and (3) the minimum size work area 
used by WRITE KN if the user has not supplied a work area. 

40(28) DCWOPCLS 8 Data saved by common ISAM open executor in DCBWKPT3 
and DCBWKPT4. This data will be restored in these two 
fields by the BISAM Close routine and used by the common 
ISAM close executor. (The data saved is the address of the 
format-2 DSCB and the UCB address of the device on which 
the volume containing the DSCB is mounted. This address 
has 5 bytes for CCHHR and 3 bytes for UCB address.) 

48(30) DCWERRCT 1 Number of positions left for lOBs to be placed on the error 
queue. Maximum value = 2(NCP)+DCBUFNO. 

49(31) DCWFIOBE 3 Address of the first lOB on the error queue, which contains 
requests that ended with a permanent error or used a dynamic 
buffer. This address is 0 if the queue is empty. 

52(34) DCWLIOBE 3 Address of the last lOB on the error queue. This address is 
o if the queue is empty. 

56(38) DCWSIOA 4 Address of the RPS SIO appendage. 

Note: This field is not used by ISAM routines. See the ISAM extension of the DEB. 

60(3C) DCWDCBFA 4 Pointer to DCB field area. 

64(40) DCWIPG 2 Prime record (other than the last) overhead (variable-length 
records only). 

66(42) DCWLPG 2 Last prime record overhead (variable-length records only). 

68(44) DCWIOG 2 Overflow record (other than the last) overhead (variable-
length records only). 

70(46) DCWLOG 2 Last overflow record overhead (variable-length records 
only). 

Section 5: Data Areas 195 



QISAM Track-Index Save Area 

196 OS ISAM Logic 

Calculations for the track-index save area 

The size of the track-index save area (TISA) is equal to the total of the following five 
items: 

1. TISA control fields - 20 bytes. 

2. Area for the track-index entries 

a. Number of entries equal to the maximum number of entries on a track. This 
is ISLNIRT if the track index is on one track; otherwise, ISLHIRT is used. 
If ISLHIRT is odd, then the calculations are performed with the number of 
entries equal to ISLHIRT + 1 to allow the save area enough space for the 
last pair of entries. 

b. Size of each entry equals COUNT + KEY + DATA 

COUNT = 8 

KEY =KEY LENGTH 

DATA = 10 

Pointers To Save Area 

ISLVPTRS +36 

Save Area 

TISA CONTROL FIELDS 

TRACK INDEX ENTRIES 

ISL VPTRS +20 

CP20A 
ISLVPTRS +40 

CP20B 
ISLVPTRS +44 

CP20C 

Figure 70. Track-Index Save Area 

3. Channel program 20A if no shared track. 

4. Channel program 20B if shared track. 

5. Channel program 20C if write-check. 



Track-Index Save Area (TISA) 

+0 
FTIWIOB 

+8 
SIZE FLAGS HIGHR CURRR NEXTTI 

+16 

TISASIZE 

Figure 71. TISA Control Fields 

Field Name Bytes 

FTIWIOB 8 

SIZE 2 

FLAGS 1 

HIGHR 1 

CURRR 1 

NEXTTI 3 

TISASIZE 4 

Description 

MBBCCHHR for the prime-data track which is pointed to 
by the seek CCW in CP 20 and the search CCW in CP 18. 

Length of one track-index entry (8+KL+ to). 

X'80' Resume load. Turned on for the first track 
index write. 

X'40' Close. Turned on by 2021 to force writing of 
the l. ack index. 

X'20' End of track-index track. 

X'to' End of cylinder. 

X'08' Execute CP 20 alone (with one CP 18). 

X'04' Close. Track-index entries previously 
generated. 

Highest record number for the current track of track index 
(either ISLHIRT or ISLNIRT). 

Current record number (last record moved to TISA). 
Initialized to O. 

Address in TISA where the next track-index entry will be 
placed. Initialized to TISA + 20. 

Size of TISA saved for the Close routine to issue a 
FREEMAIN. 

Section 5: Data Areas 197 



IS AM DeB Field Area 

00(00) DFATDC 02(02) DFARORG3 106(06) DFANREC 

DFANREC (cent.) 
10(OA) 

11 (OB) DFALPDA 
DFAST. 

DFALPDA (cent.) 19(13) DFANBOV 121 (15) DFARORG2 T 23( 17) 
DFANOREC 

DFANOREC 25(19) DFALIOV 
(cent.) 

DFALIOV 33(21 ) DFARORG1 
35(23) 

/36(24) DFACOUNT 
(cent.) Net used 

Figure 72. DCB Field Area 

Offset Field Name Bytes Field Description 

00(00) DFATDC 2 Tag deletion count. User's count field for records 
marked for deletion. (Refer to DCBTDC in the data 
control block.) 

02(02) DFARORG3 4 The number of times an overflow record was referred to 
by a READ or WRITE instruction. 

06(06) DFANREC 4 Number of logical records in the prime-data area. 

lO(OA) DFAST 1 Status indicators. 

Bit 0 Single schedule mode 
Key sequence to be checked 

2 Initial load has been completed 
3 Data set extension (resume loading) will 

begin on new cylinder. 
4 Reserved 
5 First macro not yet received 
6 Last block full 
7 Last track full 

11(OB) DFALPDA 8 Direct-access device address of the last prime-data record 
in the prime-data area (in the form MBBCCHHR). 

19(13) DFANBOV 2 Number of bytes remaining on current overflow track 
(variable-length records only). 

21(15) DFARORG2 2 Number of tracks (partially or wholly) remaining in the 
independent overflow area. 

23(17) DFANOREC 2 Number of logical records in a overflow area. 

25(19) DFALIOV 8 Direct-access device address of the last record written in 
independent overflow area (in the form MBBCCHHR). 

33(21) DFARORGI 2 Number of full cylinder overflow areas. 

35(23) Not used. 

36(24) DFACOUNT 4 Number of open DCBs on this data set. 

198 OS ISAM Logic 



SECTION 6: DIAGNOSTIC AIDS 

Section 6: Diagnostic Aids 199 



( 



Appendage Codes 

Before an EXCP command is issued, QISAM scan mode and BISAM enter an 
appendage code into the lOB extension. When the appendage is entered from the I/O 
supervisor, the appendage routine tests the code to determine which functions to 
perform to complete processing for the input/output request. 

When an appendage routine schedules an asynchronous routine, it puts an 
asynchronous code into the lOB extension. When the asynchronous routine gains 
control it tests the asynchronous code to determine the functions it must perform. 

QISAM Scan Mode Appendage Codes 

The following codes apply under both channel-end and abnormal-end conditions: 

Code Meaning 

o Completion of READ 

4 Completion of SETL (K or I) 

8 Completion of WRITE (with or without write-checking) 

12 Completion of CHECK (read-back for write-checking) 

16 Completion of REWRITE (write-back when write-checking) 

20 Completion of RECHECK (read-back after REWRITE during 
write-checking) 

BISAM READ and WRITE K Appendage Codes 

The following codes apply under both channel-end and abnormal-end conditions: 

Code Meaning 

o Completion of CP 4-S-SW for READ 

1 Completion of CP 4-S-SW for WRITE 

2 Completion of CP 7 or 7W 

3 Completion of CP 1 or 2 

5 Completion of CP 6 or 6W 

6 Compietion of CP 5W for wnte-checking after WRITE 

BISAM WRITE KN Appendage Codes 

The following codes apply under both channel-end and abnormal-end conditions: 

Code Meaning 

4 Completion of CP 14 part 2 (fixed-length records with user work area) 

7 Completion of CP 1 or CP 2 for WRITE KN 

Section 6: Diagnostic Aids 201 



Code Meaning 

8 Completion of CP 8 

9 Completion of CP lOA for true insert or part 2 of CP 14 (variable-length 
records), for EOF extension 

10 Completion of CP lOB for true insert or part 2 of CP 14 (variable-length 
records), when part 1 has been executed 

11 Completion of CP lOB for addition to end-of-data set 

12 Completion of CP 14 or part 1 of CP 14 (fixed-length records with user 
work area and variable-length records), for setups 1, 2, and 5 
(asynchronous routine codes 9, 10, and 13) 

13 Completion of CP 14 or part 1 of CP 14 (fixed-length records with user 
work area and variable-length records), for setups 3, 4, and 6 
(asynchronous routine codes 11, 12, and 14) 

14 Completion of CP 15 

15 Completion of CP 16 for setup 2 (search overflow chain for last overflow 
record in the chain: addition to end-of-data set) 

16 Completion of CP 16 for setup 2 (search overflow chain for record which 
logically precedes or is equal to new record to be added: true insertion) 

17 Completion of CP 17 when used for track index only or part 2 of CP 14 
(variable-length records) when part 1 has not been executed (no overflow) 

18 Completion of CP 17 when used for track index and when it is to be 
continued for higher level indexes 

19 Completion of CP 17 when it is to be started or continued for higher level 
indexes 

20 Completion of CP 9A, CP l1A, CP 12A, CP 13A, or CP 12AV 

21 Completion of CP 9B, CP 11B, CP 12B, CP 13B, or CP 12BV 

22 Completion of CP 9C, CP 123W, or CP 123WV 

23 Completion of CP lOA for addition to end of data set 

24 Completion of CP 12C or CP 13C 

Asynchronous Codes 

BISAM READ and WRITE KN Asynchronous Codes 

The following codes direct asynchronous coding to the proper routines: 

Code Condition 

o Successful completion of CP 4-5-6 

202 OS ISAM Logic 



Code Condition 

1 EXCP macro instruction to be issued 

2 Successful completion of CP 7 

3 Successful completion of CP 1 or CP 2 

4 Unsuccessful completion of CP 4-5-6 

6 Unsuccessful completion of CP 1 

7 Unsuccessful completion of CP 1 or CP 2 

BISAM WRITE KN Asynchronous Codes 

The following codes direct asynchronous coding to the proper routines: 

Code Condition 

1 Scheduled to issue an EXCP which could not be done in an appendage 
routine because a different device (UCB) was involved. 

8 Scheduled upon the successful or unsuccessful completion of a WRITE KN 
macro instruction. 

9 Scheduled to set up and execute CP 14 when a record is bumped from a 
prime-data track as a result of a new record being placed on that track 
(setup 1). 

10 Scheduled to set up and execute CP 14 when a new record is to be added to 
the end of the data set, the last track is full, and no overflow chain currently 
exists for the last track (setup 2). 

11 Scheduled to set up and execute CP 14 when a new record is to be added to 
the end of the data set, the last track is full, but an overflow chain already 
exists for the last track (setup 3). 

12 Scheduled to set up and execute CP 14 when a new record is a true insert 
and is to go in the middle of an overflow chain (setup 4). 

13 Scheduled to set up and execute CP 14 when a new record is a true insert 
and it is to become the first record in an already existing overflow chain 
(setup 5). 

14 Scheduled to set up and execute CP 14 when a new record is a true insert 
and it has a key equal to that of the key of a record in the overflow chain 
(the record is marked for deletion). The new record simply replaces the 
deleted record (setup 6). 

15 Scheduled to set up and execute CP 14 (for variable-length records only) 
when more than one record is bumped from a prime-data track (setup 1). 

16 Scheduled to set up and execute the CP 14 extension (the variable-length 
records only) to write an EOF mark in independent overflow. 

Section 6: Diagnostic Aids 203 



Exception Codes 

QISAM Exception Codes 

QISAM exception codes and the macro instructions which set them are summarized in 
Figure 73. 

Exception Code Code Set By 

Condition if On 
Field Bit CLOSE GET PUT PUTX SETL 

DCBEXCDl 0 Type K Record is not found 

1 Type I 
Invalid actual address 
for lower limit 

2 X 
Space is not found in 
which to add a record 

3 X Invalid request 

4 X Uncorrectable input error 

5 X X X Uncorrectable output error 

6 X X 
Block could not be 
reached (input) 

7 X X 
Block could not be 
reached (update) 

DCBEXCD2 0 X Sequence check 

1 X Duplicate record 

2 X 
Data control block is closed 
when error routine is entered 

3 X Overflow record' 

Length of logical record is 
4 X greater than DCBLRECL 

(Variable length records only) 

5-7 Reserved for future use 

'The SYNAD routine is entered only if bit 4,5,6, or 7 of DCBEXCDl is also on. 

Figure 73. QISAM Exception Code Summary 

204 OS ISAM Logic 



BISAM Exception Codes 

BISAM exception codes and the macro instructions which set them are summarized in 
Figure 74. 

Exception Code Code Set By 

Condition if On 
Field Bit READ WRITE 

DECBEXCDl 0 X Type K Record is not found 

1 X X Record length is checked 

2 Type KN Space is not found 

3 Type K Invalid request 

4 X X Uncorrectable I/O error 

5 X X Unreachable block 

6 X Overflow record 

7 Type KN Duplicate record 

DECBEXCD2 0-5 Reserved for future use 

Channel program initiated 

6 X X by an asynchronous routine 
(variable length records only) 

Previous macro was 
7 X 

READ KU 

Figure 74. BISAM Exception Code Summary 

Section 6: Diagnostic Aids 205 





SECTION 7: APPENDIXES 

Section 7: Appendixes 207 





Appendix A: ISAM Data Set Organization 

Introduction 

The indexed sequential access methods (ISAM) can be defined as the combination of 
data set organization and the techniques used to process the data. With the indexed 
sequential organization, data records are arranged in logical sequence by a key field. 
An indexed sequential data set resides on direct-access storage devices and can occupy 
up to three different areas: 

• Prime area 

This area contains data records and related track indexes. It exists for all ISAM 
data sets. 

• Overflow area 

This area contains overflow from the prime area when new data records are 
added. It is optional. 

• Index area 

This area contains master and cylinder indexes associated with the data set. It 
exists for a data set that has a prime area occupying more than one cylinder. 

The indexes of an ISAM data set are analogous to the card index in a library. For 
example, if the library user knows the name of the book or the author, he can look in 
the card index and obtain a catalog number which will enable him to locate the book in 
the book files. He would then go to the shelves and proceed through each row until he 
found the shelf containing the book. Usually each row contains a sign to indicate the 
beginning and ending numbers of all books in that particular row. Thus, as he 
proceeded through the rows, he would compare the catalog number obtained from the 
index with the numbers posted on each row. Upon locating the proper row, he would 
then search that row for the shelf that contained the book. Then he would look at the 
individual book's numbers on that shelf until he found the particular book. 

ISAM uses the indexes in much the same way to locate records in an indexed 
sequential data set. The operating system provides both the queued and basic access 
techniques to process an indexed sequential data set. The queued access technique is 
used to create the data set and add records to the end. It can also be used to 
sequentially process or update the records. The basic technique is used to read or 
update records and to insert ne\v records at any place in the data seL 

Data Set Structure 

The overall structure of an indexed sequential data set is shown in Figure 75. The 
prime area contains data records arranged according to the collating sequence of a key 
field in each record. As the records are stored (written) in the prime area, the system 
prepares a track index. Each entry in the track index identifies the key of the last 
record on each track. There is a track index for each cylinder in the data set. If more 
than one cylinder is used, the system develops a higher level index called a cylinder 

Section 7: Appendixes 209 



210 OS ISAM Logic 

index. Each entry in the cylinder index identifies the key of the last record in the 
cylinder. 

CYLINDER 1 CYLINDER 2 CYLINDER N 

~ Track Index ~ Track Index .. crrack Index 

100 200 6850 

I 
100 200 550 

r---+ 800 

r 6850 f0o-

I 
550 800 1650 

~ 2300 

~ 3550 

r 6850 -

I 
1650 2300 3550 4700 

~ 6850 ~ 

I 
4700 6850 

Figure 75. Indexed Sequential Data Set Structure 

PRIME 
AREA 

CYLINDER 
INDEX 

MASTER INDEX 
(1st LEVEL) 

MASTER INDEX 
(2nd LEVEL) 

MASTER INDEX 
(3rd LEVEL) 

To increase the speed of searching the cylinder index, you can request the system to 
create a master index that indexes the cylinder index. You can specify through the 
data control block (NTM and OPTeD operands) that, if the size of a cylinder index 
exceeds a certain number of tracks, a master index should be created. The example in 
Figure 75 shows an entry in the master index (first level) for each one track of cylinder 
index entries. If the size of the master index exceeds the number of tracks specified in 
the data control block the master index is automatically indexed by a higher level 
master. This is illustrated in Figure 75 by the second level master. Three such higher 
level master indexes can be constructed. 



Prime Data Area 

Records are written in the prime area when the data set is created or updated. Figure 
76 illustrates the initial structure of a cylinder of the prime area. The track index is 
contained on the first track of the cylinder. Note that a pair of track index entries is 
associated with each prime track in the cylinder. In this example, the last track of the 
cylinder is reserved for a cylinder overflow area. 

I 
N 0 N 0 2~1~1 8 8 19 19 

-+- 2 4 

14 15 

22 24 

90 93 

N 
100 

6 8 

16 19 

26 27 

...--

97 100 

0 
100 

--

TRACK 
INDEX 

PRIME 
DATA 

CYLINDER 
OVERFLOW 

Figure 76. Initial Structure of Prime Cylinder 

Index Areas 

The operating system automatically generates at least two levels of indexes: a track 
index and a cylinder index. (Up to three levels of master indexes are created if 
requested. ) 

Track Index: This is the lowest level of index and is always present. There is one such 
index for each cylinder in the prime area; it is written on the first track of the cylinder 
that contains the indexes. The index consists of a series of paired entries; that is, a 
normal and an overflow entry for each prime track. The normal entry contains the 
home address of the prime track and the key of the highest record on the track. The 

Section 7: Appendixes 211 



Cylinder Index 

Track Index 

Home 
Addr. 

,/ ... 

overflow entry is originally the same as the normal entry but is changed when records 
are added to the data set. 

In Figure 77, the track index is an expanded detail of the index shown in Figure 76. 
Note that the data area of the first normal entry points to track 01 and the key area 
represents the highest key on track 01. Since this figure illustrates the initial structure 
of the data set, the first overflow entry is the same as the normal entry. 

200 I 02000 I I 310 I 03000 ..... IDUmmyl 

Data: Home address of track 

1 
One such entry for 

index for cylinder 01 each cylinder of 

Key: Highest key on the prime data area 

cylinder 01 

Normal Overflow Normal Overflow 

008 

Data: 

Key: 

100 I 01031 I I 100 

01011 I I 019 I '--_-.a..._0_l_02_1 ....... 1 I 019 I 01021 

Home address of 

} prime data track 01 
Highest key on 
prime data track 01 

01031 IDummyl 

One normal and one 
overflow entry for 
each prime data track 
on cylinder 01 

I Data Records \. 

Figure 77. Structure of Cylinder Index and Track Index 

212 OS ISAM Logic 

Cylinder Index: For every track index created, the system generates a cylinder index 
entry. There is one cylinder index for a data set, each entry of which points to a track 
index. Since there is one track index per cylinder, there is one cylinder index entry for 
each cylinder in the prime area. In Figure 77, the data area of the first cylinder index 
entry points to the home address of the track index for cylinder 01. The key area 
contains the number 100 which represents the highest key on the cylinder. For 
simplicity, in Figure 77 only the cylinder, track, and record number portion of the 
address in the data areas is shown. 

Overflow Areas: As records are added to an indexed sequential data set, space is 
required to contain those records that do not fit on the prime data track on which they 
belong. You can request that a number of tracks be set aside as a cylinder overflow 
area to contain overflows from prime tracks in each cylinder. When a cylinder 
overflow area is specified, record 0 of the track index is used as a cylinder overflow 
control record (see Figure 77). ISAM uses this record to keep such information as the 
address of the last the overflow record in cylinder and the number of bytes remaining 
on the current overflow track. 

An advantage of using cylinder overflow areas is a reduction of search time required to 
locate overflow records. To access the cylinder overflow area requires only a seek to 



another track within the cylinder. This can be performed with less system overhead 
than a seek to another cylinder as is required to access an independent overflow area. 

Instead of, or in addition to, cylinder overflow areas, you can request an independent 
overflow area. Overflow from anywhere in the prime data area is placed in a specified 
number of cylinders reserved for this area. An advantage for having an independent 
overflow area is a reduction in unused space reserved for overflow. A disadvantage is 
the increased search time required to locate overflow records in an independent area 
(see Figure 79). 

It is good practice to request cylinder overflow areas large enough to contain a 
reasonable number of additional records, and an independent overflow area to be used 
as the cylinder overflow areas are filled. 

Adding Records to a Data Set 

A new record added to an indexed sequential data set is placed into a location on a 
track determined by the value of its key field. If records were inserted (added) in 
precise physical sequence, insertion would require shifting all records of the data set 
with keys higher than that of the one inserted. However, because an overflow area 

,- - - Key of normal entry changed 

I ,/ f - - Data of overflow entry changed 

N 10 1 Nil 0 6 8 15 19 ~I~I 
2 3 4 

9 10 14 

22 24 26 

---
90 93 97 

- . - .~ 

I~ IU 

Figure 78. Structure of Prime Cylinder After Cylinder Overflow 

11~011~0 
6 

15 

27 

--
100 

TRACK 
INDEX 

PRIME 
DATA 

CYLINDER 
OVERFLOW 

exists, the indexed sequential data organization allows a record to be inserted into its 
proper position with only the records on the track in which the insertion is made being 
shifted. When a record is to be inserted, the records already on the prime track that 

Section 7: Appendixes 213 



214 OS ISAM Logic 

are to follow the new record are written back on the track after the new record. If the 
addition of records results in insufficient track space for all the records to be written 
onto the track, the records that do not fit are written onto an overflow track. This 
technique maintains the sequential order of records on the prime track. Three 
situations may occur when a record is added to a data set. Each is discussed below. 

First Addition to a Prime Track: When a data set is created, its records are placed on 
the prime tracks in the storage area allocated to the data set as shown in Figure 76. If 
a record (for example, record 3) is to be inserted into the data set, the indexes indicate 
that record 3 belongs on prime track 01. Record 3 is written immediately following 
record 2, and records 4 and 6 are retained on prime track 01 (see Figure 78). Since 
record 8 no longer fits on this track, it is written on track 09 (cylinder overflow track). 

The key area of the normal index entry is changed, since record 6 is now the highest 
record on the track. The data area of the overflow index entry is changed; it no~ 
points to record 8 as the first record on track 09. The first addition to a track is 
always handled in this way. 

When records 9 and 10 are added, prime track 02 receives these records as shown in 
Figure 78. Record 19 is shifted to track 09 (cylinder overflow track). Record 16 is 
also shifted to the overflow track after record 19. Note that records 16 and 19 are 
chained together to show the logical sequence and to indicate that they are associated 
with the same prime track. (Overflow records are chained through a link field which 
forms the first 10 bytes of each overflow record.) 

Subsequent Additions to a Track: Subsequent additions are written either on the prime 
track where they belong or as part of the overflow chain from that track. If the 
addition belongs between the last prime record on a track and a previous overflow from "" 
that track, it is written in the first available location in the overflow area, with its link 
field containing the address of the next record in the chain. Because the data area of 
the overflow index entry always refers to the address of the lowest key in a chain, it is 
changed. 

If subsequent additions belong on a prime track, they are written in proper sequential 
location on the prime track. For example, records 11 and 13, as shown in Figure 79, 
are written in proper sequential position on track 01. Record 15 (previously the 
highest record on the prime track) is shifted to the cylinder overflow area with its link 
field chaining to record 16. Record 14 is shifted to the independent overflow area 
since the cylinder overflow area is full. The link field in record 14 points to record 15, 
the next record in the chain. The key area of the normal index entry is changed to 
indicate that record 13 is the highest on the prime track. The data area of the overflow 
index entry is changed to point to record 14 in the independent overflow area as the 
first record in the overflow chain. 

Addition of High Keys: A record with a key higher than the current highest key in the 
data set is placed at the end of the prime area, if there is room. Such an addition is 
handled, in effect, as if it had been presented when the file was first created. 



I 
NIOINIO 
6 8 13 19 ~I~I 

2 3 4 

9 10 11 

22 24 26 

90 93 97 

8 19 16 

-+ • / . 
t / 

14 EOF 

Figure 79. Structure of Prime Cylinder After Independent Overflow 

11~011~0 
6 

13 

27 

---...-

100 

15 

/ t 

-

TRACK 
INDEX 

PRIME 
DATA 

CYLINDER 
OVERFLOW 

INDEPENDENT 
OVERFLOW 

If the prime area is full, the new record is written in the overflow area and linked to 
the overflow chain from the last prime track. The key area of higher level indexes is 
changed to reflect the addition. 

Detailed Index Description 

An index records have three stcii(J11s: count, key, diid data (except the cylinder 
overflow control record, which has no key section). Index records are formed in main 
storage and written on direct-access devices by QISAM load mode channel programs 
operating with I/O supervisor. BISAM channel programs may later cause sections of 
the indexes to be updated when deleting and/or adding records to the data set. In all 
records (index and data), the BB portion of MBBCCHHR is o. The BB portion of the 
lOB is filled prior to EXCP from the DEB. This avoids having to mount 2321 bins 
back into their original position. Figure 80 shows the ISAM index entry format. 

Section 7: Appendixes 215 



-------8 Bytes ----... - .. K - 4 1 D Bytes .. 
I ~ 

INDEX ENTRY 

l M P 

ID K D D 

cl HH[ R 'DDDA' 

COUNT KEY DATA 

Figure 80. Format of ISAM Index Entry 

216 OS ISAM Logic 

The count section is 8 bytes in length, in the following format: CC HH R K D D. 

CC HHR 

K 

DD 

is the direct-access device address of this index entry; the components of this 
address vary with the type of device. 

is the length of the key of each record in the data set. It is also the length of the 
key section of each index entry. 

is the length of the data section of each index record. It is always hexadecimal 
'OOOA' (indicating 10 bytes) except for the cylinder overflow control record, 
whose data section is 8 bytes long. 

The key section is always the same length as the key of each record in the data set and 
has a value equal to the highest key referenced by this entry. 

The data section is always (except for the cylinder overflow control record) 10 bytes in 
length, in the following format: 

M BB CC HH R F P. 

The first 8 bytes contain the direct-access device address of the data record whose key 
is equal to the key section of this index entry. 

This address is represented as follows: 

M 
is the DEB extent serial number. 

BB CC HH R 
is the direct-access device address of the data record. The components of the 
address vary with the type of device. 

F, the flag reference code byte, is broken down into bits, as follows: 

Bh a 1 2 3 4 5 6 7 
CCCCCI I 

where CCCCC is the index entry type code and I I I indicates the level of index entry. 

if 

\~ 

({ 



The following are valid index entry type codes: 

CCCCC 00000 normal entry data record resides on unshared track 
00001 normal entry data record resides on shared track 
00010 overflow entry end (last entry in chain) 
00011 overflow entry chained (not last entry in chain) 
00100 dummy entry end of index 
00101 dummy entry chained 
00110 inactive entry 

Inactive entries are written by QISAM load mode Close executors to fill out allocated, 
but unused, space at the end of each index. 

The following are valid codes for level of index entry: 

II I = 000 
001 
010 

The track index 
The cylinder index 
The first level master index 

011 The second level master index 
100 The third level master index 

P, the command code byte, is referenced by channel programs. The three valid 
hexadecimal command codes are 1B, OB, and 07. 

1B = Seek HH 

OB = Seek CC HH 

07 = Seek BB CC HH 

These are used for entries whose data records are on the 
same volume as the index entry. 

This is used when the data record is on a volume other than 
the one on which the index entry resides. For the 2321 
data cell drive, the seek code must be 07 if the data set 
crosses a strip. It is also used in all overflow and dummy 
index entries. Its purpose is to cause an interrupt during the 
execution of ISAM channel programs (protection check) so 
that the ISAM appendage routines can issue another EXCP 
or check for an error or special procedure. 

Track-Index Records: Track-index entries consist of a series of paired entries; that is, 
a normal and an overflow entry for each track. A dummy end entry indicates the end 
of the index, which may be padded with inactive entries. The first track of a track 
index may contain a cylinder overflow control record. 

TrA~k Cap~::ity R~::crd: The tra!:k caps!!)' record is RO of e~ch prlme-data track for 
variable-length records. Bytes 0-1 of the data portion contain the number of unused 
bytes currently left on the track. Byte 2 contains the highest record ID currently on 
the track. 

Section 7: Appendixes 217 



218 OS ISAM Logic 

Cylinder Overflow Control Record: The cylinder overflow control record is the RO 
record on the first track of the track index, if the DCBOPTCD field has specified the 
cylinder overflow option. It has no key section. The 8-byte data section is in the 
following format: 

HHR YYTOO 

Initially, 

HHR 
indicates the first track of the cylinder overflow area, and R = O. 

After overflow has occurred, 

HHR 

YY 

T 

00 

indicates the track and record number of the last overflow record. 

indicates the number of unused bytes remaining on the current overflow track, 
but is not maintained when the data records are of fixed length. 

indicates the number of tracks remaining unused in the cylinder overflow area. 

indicates that these two bytes are not used. 

Figure 81, which follows, contains a detailed explanation of track-index records. 

Overflow Linkage: On the first overflow from a prime-data track: 

1. The data portion of that track's overflow index entry is written onto the overflow 
track as a link field in front of the data section of the overflow record. 

2. The key of the prime-data track's normal index entry is updated to contain the 
key of the last record remaining on the prime-data track. 

3. M BB CC HH R in the data portion of the prime-data track's overflow index 
entry is updated to contain the address of the overflow record. The F byte is 
changed from CCCCC = 00010 to CCCCC = 00011 to indicate that this 
overflow index entry is pointing to an overflow chain. 

On subsequent overflows from the prime-data track: 

1. The link fields of all but the highest overflow record are modified to contain the 
location of the next higher overflow record. The F byte indicates CCCCC = 
000 11 (overflow chain). 

2. The link field of the highest overflow record will contain a meaningless address 
and the F byte indicates CCCCC = 00010 (end of the overflow chain). 

3. The key of the overflow index entry for the prime-data track is modified, if 
necessary, to contain the highest overflow key. This occurs only when adding a 
record to the end of the data set. 



Type of Entry 

Normal, Data 
Record on 
Unshared Track 

Normal, Data 
Record on 
Shared Track 

Overflow, End 
and Chained 

Dummy, End 
of Index 

irJd(,;i.iv~ 

4. The key of the normal index entry for the prime-data track is modified to contain 
the key of the last record on the prime-data track. 

5. The data portion of the overflow index entry for the prime-data track is modified, 
if necessary, to contain the location of the lowest overflow record. 

Data 

Key 
M BB CC HH R F P 

Highest key on prime Location of track whose Hexadecimal '00' CCCCC = Hexadecimal '1 B' 

data track pointed highest key equals the 00000, 
to by data portion of key field of this index III = 000 
this index entry. entry. (The cylinder is 

the same cylinder on 
which this index entry 
resides.) 

Same as Normal, Same as Normal, Data Record number of CCCCC = Hexadecimal '1 B' 

Data Record on Record on Unshared first data record 00001, 
Unshared Track. Track. on the shared track. III = 000 

For variable length 
records, R equals 
the highest record 
I D currently on 
the track that the 
index entry 
references. 

End-same as pre- End-same as preceding End-Hexadecimal End- Hexadecimal '07' 
ceding normal index normal index entry. 'FF'. Chained- CCCCC = 
entry. Chained- Chained-location of record number with 00010, 
highest key to over- record with lowest key lowest key to 111=000 

flow from the track to overflow from the overflow the track Chained-

referenced by this track referenced by referenced by CCCCC = 

entry. this entry. this entry. 00011, 
III = 000 

Maximum value Minimum Value (each Hexadecimal '00' CCCCC = Hexadecimal '07' 

(each byte equal to byte equal to 00100, 
hexadecimal 'FF'). hexadecimal '00'). III = 000 

1\ II __ • _ _ _ I _ I\II~_:_. _ ._ ... 1. .... 1 ___ L I. t~.~ __ L . .,_:~_1 'n,,' CCCCC = H~xud~c;iTiu! '07' IVldAlIllUll1 VdIUt: IVIIIIIIIIUII. VQIUt:: \va""ll IICAOUG\.oIIIIOI vv 

(each byte equal to byte equal to 00110, 
hexadecimal 'FF'). hexadecimal '00'). III = 000 

Figure 81. Description of Track Indexes 

Section 7: Appendixes 219 



Data 

Type of Entry Key 
M BB CC HH R F P 

Normal Highest key on the Location of start of track Record number CCCCC = Hexadecimal '07' 
cylinder whose track index on the cylinder of first data 00000, if this cylinder 
index begins at whose highest key record on first III = 001 index entry 
location specified equals the key of this track of the track references a 
by data portion of index entry. index. If no data track entry on 
this index entry. records on that eith er a different 

track ( an unshared volume, or on a 

track), R = different strip 

hexadecimal '00'. if the device is 
a 2321 data 
drive. Hexa· 
decimal 'OB' if 

same volume 
or strip. 

Dummy, Maximum value, Minimum value, (each Hexadecimal '00' CCCCC = Hexadecimal '07' 
End (each byte equal to byte equal to hexa- 00100, 

hexadecimal 'FF'). decimal '00'). III'" 001. 

Dummy, Maximum value Location of next track Hexadecimal '00' ccccc = Hexadecimal '07' 
Chained (each byte equal of this cylinder index. 00101, 

to hexadecimal III = 001 
'FF'). 

Inactive Maximum value Minimum value (each Hexadecimal '00' ccccc = Hexadecimal '07' 
(each byte equal byte equal to hexa- 00110, 
to hexadecimal 'FF'). decimal '00'). III = 001 

Figure 82. Description of Cylinder Indexes 

220 as ISAM Logic 

Cylinder Index Records: A cylinder index is created for the data set if the processing 
program has requested space that extends over more than one cylinder. Figure 82 
contains a detailed explanation of cylinder index records. 

Master Index Records: One or more levels of master indexes are created if the 
DCBOPTCD field has specified this option. 

Figure 83 contains a detailed explanation of master index records. 



Data 

Type of Entry Key 
M BB CC HH R F P 

Normal Highest key on a Location of the track Hexadecimal '00' ccccc = Hexadecimal '1 B' 

track of the next within next lower level 00000 if next lowest 

lower level index. index, whose highest III = 010, level index is on 

That track is key equals the key of 011, or same cylinder 

pointed to by the this index entry. 100 as this index 

data portion of entry. 

this index entry. Hexadecimal 'DB' 
if not on same 
cylinder, but, for 
2321 data cell 
drive, on same 
strip. 
Hexadecimal '07' 
for 2321 data 
cell drive if 
indexes cross 
strip boundaries. 

Dummy, Maximum value Minimum value (each Hexadecimal '00' ccccc = Hexadecimal '07' 

End (each byte equal to byte equal to hexa- 00100, 
hexadecimal 'FF'). decimal '00'). III = 010, 

011, or 

100 
Dummy, Maximum value Location of next track Hexadecimal '00' ccccc = Hexadecimal '07' 

Chained (each byte equal to of this level master 00101, 
Hexadecimal 'FF'). index. III =010, 

011, or 
100 

Inactive Maximum value Minimum value (each Hexadecimal '00' CCCCC= Hexadecimal '07' 

(each byte equal to byte equal to hexa- 00110 
hexadecimal 'FF'). decimal '00'). III = 010, 

011, or 
100 

Figure 83. Description of Master Indexes 

Section 7: Appendixes 221 



Appendix B: ISAM Channel Programs 

222 OS ISAM Logic 

The channel program for each request using ISAM is constructed by the appropriate 
module. All ISAM channel programs are listed in Figure 84. The address of the 
channel program is placed in the lOB for that request. A channel program consists of 
a group of channel command words (CCWs), each word of which has the following 
format: 

Command Code Address Flags 000 (ignored) Count 

(1 byte) (3 bytes) (5 bits) (3 bits) (1 byte) (2 bytes) 

Note: The last 4 bytes are ignored by a transfer-in--channel (TIC) command word. 

(In some TIC CCWs, these bytes contain flags or a chain address.) The entry in the 
address field is one of the following: 

• The main-storage address where data is to be placed or found; for a Read or a 
Write command word 

• The location of the seek or search argument; for a Seek or Search command word 

• The CCW to which a transfer is made; for a transfer-in-channel command word 

The entry (or entries) in the flags field has the following meanings: 

CC Command chaining 

DC Data chaining between gaps of a record 

SK Skip the transferring of data 

SLI Suppress incorrect length indication 

The entry in the count field represents either the number of data that are to be 
transferred or the number of bytes of data on which a search is to be made for 
comparison. 

The function or purpose of each command word or group of words is given in the 
comment following the count field. The channel command words are identified by the 
number to the left of the command code. 

The following abbreviations are used in the address and count fields: 

WA Work area 

KL Key length 

DL Data length 

CF Storage area for count fields (8 x DCBHIRPD bytes) 



Those BISAM or QISAM scan mode channel programs beginning with a Search ID 
with a count of 5 bytes are executed with a channel program prefix if a rotational 
position sensing (RPS) device is being used. The prefix will be a Set Sector followed 
by a TIC to the regular channel program. The channel command words that vary 
depending on the presence of RPS are shown in the following channel programs with 
both possible command codes. 

Channel 
Program 

2 

4 

5/5W 

6/6W 

7/7W 

8 

9A 

9B/9BW 

9C/9CW 

10A/10AW 

10B/10BW 

11 A 

11B/11BW 

12A 

12AV 

Description 

Searches cylinder and master indexes. 

Searches a cylinder index when it is the highest­
level index searched on the device. 

Searches a track index. 

Searches prime-data tracks and reads or wntes 
prime-data records. 

Searches an overflow chain and reads or writes 
overflow records. 

Writes data records when WRITE K is associated 
with READ KU. 

Searches the track index and the prime-data track 
for place to Insert new record. 

Reads the record occupying the position at which 
a new record is to be inserted into the work area. 

Reads an even-numbered record after writing a record 
Into the previous slot and wntes back the last 
record of a non-EOF track when the number of records 
bumped is odd. 

Reads an odd-numbered record after writing a 
record Into the previous slot and writes back the 
last record of a non-EOF track when the number of 
records bumped is even. 

Writes a record or block to replace an EOF mark. 

Writes an EOF mark. 

Reads an odd-numbered record after writing a 
record into the previous slot. 

Writes a rearranged block back onto the prime­
Ui::Ild hack. 

Reads data records following slot into which new 
records are to be inserted. 

Records variable-length data records or blocks 
following point at which a new record is to be 
inserted. 

Mode 

BISAM (all) 

BISAM (all) 

BISAM (no 
WRITE KN) 

BISAM (no 
WRITE KN) 

BISAM (no 
WRITE KN) 

BISAM (no 
WRITE KN) 

BISAM (WRITE KN) 

BISAM (WRITE KN) 

BISAM (WRITE KN) 

BISAM (WRITE KN) 

BISAM (WRITE KN) 

BISAM (WRITE KN) 

BISAM (WRITE KN) 

BISAM (WRITE KN) 

BISAM (WRITE KN) 

BISAM (WRITE KN) 

Figure 84 (Part 1 of 3). ISAM Channel Program Summary 

Section 7: Appendixes 223 



Channel 
Program Description Mode 

12B Writes back prime-data records. BISAM (WRITE KN) 

12BV Writes back variable-length prime-data records BISAM (WRITE KN) 
or blocks. 

12C/12CW Writes a new record which has replaced a deleted BISAM (WRITE KN) 
record. 

13A Reads all blocks from the track following and BISAM (WRITE KN) 
including the slot Into which a record is to be 
Inserted. 

13B Writes back the blocks read by CP 13A after they BISAM (WRITE KN) 
have been rearranged. 

13C/13CW Writes back a block If the record Inserted has the BISAM (WRITE KN) 
same key as a record which has been logically 
deleted but is still physically present in the block. 

14/14W Writes some combination of COCR, normal and over- BISAM (WRITE KN) 
flow track-index entries, and overflow records. 

15 Reads In the COCR and the overflow track-Index BISAM (WRITE KN) 
entry when a new record is added to the end of 
a data set. 

16 Searches an overflow chain for (1) the record that BISAM (WRITE KN) 
logically precedes or IS equal to the new record to 
be added or (2) the last record In the chain. 

17/17W Changes the key in a normal or overflow-track-index BISAM (WRITE KN) 
entry or in a higher level Index entry. 

18 Writes prime-data records or blocks. QISAM load 

19 Preformats the shared track and/or writes the COeR. QISAM load 

20 Writes track-Index entries. QISAM load 

20A Writes a full track of a nonshared track Index. QISAM load 

20B Writes a full track of a shared track index. QISAM load 

20C Write-check for CP 20A and 20B. QISAM load 

21 Writes high-level (cylinder and master) index QISAM load 
entries and end-of-data marks. 

22A Reads or writes prime-data records (key and data, QISAM scan 
unblocked records). 

22B Reads or writes prime-data records (data only, QISAM scan 
unblocked records, and all blocked records). 

23 Searches high-level indexes, the track index, and QISAM scan 
the prime-data track when a SETL K is issued. 

Figure 84 (Part 2 of 3). ISAM Channel Program Summary 

224 OS ISAM Logic 



Channel 
Program 

24 

25 

26 

31A 

31B 

87 

91 

123W 

123WV 

CLOSE 
CCW(1) 

CLOSE 
CCW(2) 

VXCCW 
(1A) 

VXCCW 
(1 B) 

'!XCCW 
(2) 

Description 

Reads track-Index entries. 

Reads track-Index entries when SETL I IS Issued. 

Extension of CP 23 to read overflow chains 

Reads the key of the last overflow track-Index 
entry Into the Key save area (resume loading only). 

Reads the count and data of the last prime-data 
block Into the first buffer specified In the buffer 
control table (resume loading only). 

Reads the highest level Index Into the user work 
area (specified by DCBMSHI). 

Fills unused Index tracks with Inactive and dummy 
(end-of-index) entries (same as CP 19). 

Extension of CP 12A and CP 12B or CP 13A and 
CP 13B when write-checking IS specified. 

Extension of CP 12AV and CP 12BV when wrlte­
checking is specified. 

Reads the format-2 DSCB for updating by close 
phase. 

Writes the format-2 DSCB back in the volume table 
of contents (VTOC). 

Reads to the end of the file or the end of the 
last track in the prime-data area. 

Reads to end of file of Independent overflow 
area. 

Reads to the end of the prime-data track. 

Mode 

QISAM scan 

QISAM scan 

QISAM scan 

QISAM load 

QISAM load 

BISAM (all) 

QISAM load 

BISAM (WRITE KN) 

BISAM (WRITE KN) 

Common Close 

Common Close 

Common Open 
(validation) 

Common Open 
(validation) 

Common Open 
(validation) 

Figure 84 (Part 3 of 3). ISAM Channel Program Summary 

Section 7: Appendixes 225 



CHANNEL PROGRAM 1 

Searches cylinder and master indexes 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

COl 31 Search 10 equal IOBSEEK+3 60 CC, SLI 4 Search for equal CCHH to verify seek-

IOBSEEK set from either DCBFTHI or 

CO2 08 TIC COl 00 0 index entry in main storage 

Cl 69 Search key high Contents of 60 CC, SLI KL Too far along index? Search for 

or equal DECBKEY master index 
entry 

C2 08 TIC C4 00 0 No 

C2B 03 NOP 
60 CC,SLI 1 Set sector to zero 

23 Set sector 
C2B+5 

C3 lA Read home C8 50 CC,SK 5 Yes, pOSition to 

address start of track 

C4 E9 Search key high Contents of 40 CC KL. Search for entry 

or equal (MT) DECBKEY 

C5 08 TIC C4 00 

C6 06 Read data C8+7 00 CC (lowest 10 When found, read master index, CC off if 

40 master) lower level master index is to be searched 

C7 08 TIC Cl0 00 0 Go search cylinder index 

C8 - - - - - - M Master index entry-IOBSEEK set to 
C8+ 7 when this CP is restarted for 

C9 B B C C H H R F lower level master index 

Cl0 P Seek C9 40 CC 6 Seek cylinder index (Figure 83) 

Cl0A 31 Search 10 equal C9+2 40 CC 4 Search for equal CCHH to verify seek 

Cl0B 08 TIC Cl0A 40 CC 0 

Cll 69 Search key high Contents of 40 CC KL Too far along index? Search for 

or equal DECBKEY cylinder 
index entry 

C12 08 TIC C14 00 0 No 

C12B 03 NOP 
C12B+5 60 CC, SLI 1 Set sector to zero 

23 Set sector 

C13 lA Read home C8 50 CC,SK 5 Position to start of track 

address 

C14 E9 Search key high Contents of 40 CC KL Search for entry 

or equal (MT) DECBKEY 

C15 08 TIC C14 00 0 

226 OS ISAM Logic 



CHANNEL PROGRAM 1 (continued) 

Searches cylinder and master indexes 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

C16 06 Read data C17 00 DL Read in cylinder index entry 

C17 MBBC C H H R Cylinder index entry-IOBSEEK for 
CP4 set to C17 

C18 FP------

Section 7: Appendixes 227 



CHANNEL PROGRAM 2 

Searches a cylinder index when it is the highest level index searched on the device 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

C28 31 Search ID equal IOBSEEK+3 60 CC, SLI 4 Search for equal CCHH to verify seek-
IOBSEEK set from either DCBFTHI or 

C29 08 TIC C28 00 0 index entry in main storage 

C30 69 Search key high Contents of 60 CC, SLI KL Too far along index? Search for 

or equal DECBKEY cylinder index 
entry 

C31 08 TIC C33 00 0 No 

C31B 03 NOP 
C31B+5 60 CC, SLI 1 Set sector to zero 

23 Set sector 

C32 1A Read home C37 50 CC, SK 5 Yes, position to start 
address of track 

C33 E9 Search key high Contents of 40 CC KL Search for entry 
or equal (MT) DECBKEY 

C34 08 TIC C33 00 0 

C35 06 Read data C36 00 10 Read in cylinder index entry. 

C36 MB B C C H H R Cylinder index entry-IOBSEEK set to 
C36 when CP4 is executed 

C37 F P --------

228 OS ISAM Logic 



CHANNEL PROGRAM 4 

Searches a track index 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

CAOl 31 Search I D equal IOBSEEK+3 60 CC 4 Search for equal CCHH to verify seek-
IOBSEEK set from C17 (CP1), C36 

(CP2), DCBFTHI or entry in main 
storage 

CA02 08 TIC CAOl Address of CP5 in CP 4-5-6 
chain (see Figure 55) 

CA03 08 TIC CAlor CA5 00 0 TIC to CA 1 if shared track is present. 
Otherwise, TIC to CA5. 

CAl 71 Search ID high IOBSEEK+3 40 CC 5 I n prime data part of track? Search 
or equal track 

index 

CA2 08 TIC CA5 00 0 No 

CA4 08 TIC CA7 or CA6B 00 0 Yes 

CA5 69 Search key high Contents of 60 CC, SLI KL Too far along in index? 
or equal DECBKEY 

CA6 08 TIC CA8 00 0 No 

CA6B 
03 NOP 

CA6B+5 60 CC, SLI 1 Set sector to zero 
23 Set sector 

CA7 lA Read home 50 CC,SK 5 Yes, position to start of track 
address 

CA8 E9 Search key high Contents of 40 CC KL Search for entry 
or equal (MT) DECBKEY 

CA9 08 TIC CA8 00 0 

CAlO 06 Read data CA12+7 40 CC 10 If found, read index entry 

CAll 08 TIC CA14 00 0 

C,A.12 - - - - - - - II!! Track: inde")( entry 

CA13 B B C C H H R F 

CA14 P Seek CA13 40 CC (to CP5) 6 Seek prime-data track (see Figure 81) 

Section 7: Appendixes 229 



CHANNEL PROGRAM 5i5W 

Searches prime data tracks and reads or writes prime data records 

CCW Command Code Flags 

N'o. Address Count Comments 
Hex Oescription Hex Oescription 

CA15 
23 Set sector 

CA15+5 60 CC, SLI 1 
Position to beginning of track if RPS 

03 NOP device. Set sector to zero if RPS. 

CA16A 31 Search 10 equal CA13+2 40 CC 5 Search past index on shared track or past 
RO on normal track. Should be RHA 
and TIC to CA20 for VLR. 

CA16B 08 TIC CA16A 00 0 

CA16C 08 TIC CA21 00 0 Avoid read count of FIRSH+1. (CA25+3 
set to FIRSH prior to execution.) 

CA20 12 Read count CA25+3 60 ce, SLI 5 Read count of record (see CA25) 

CA21 29 Search key equal Contents of 
60 CC, SLI KL 

Search (29) if Read, Records Unblocked, 
69 Search key equal OECBKEY or Write. Search (69) if Read, Records 

or high Blocked. 

CA22 08 TIC CA20 00 0 

CA23 
06 Read data Contents of 

40 CC OL 
Read prime data or write prime data 

05 Write data OECBAREA 

CA24 
03 NOP 

IOBSECT 60 CC, SLI 1 
Obtain address of record just read or 

22 Read sector written. No CC if read. 

CA240' 
03 

Set sector IOBSECT 40 CC 1 
23 

CA24A* 31 Search 10 equal CA25+3 40 CC 5 Search for record again 

CA24B* 08 TIC CA24A 00 0 

CA24C* 06 Read data 10 SK OL Read it back 

CA240" 31 Search 10 equal IOBSEEK+3 40 CC 5 Rewrite record if necessary 

CA24E* 08 TIC CA240 00 0 

CA24F* 05 Write data Contents of 40 CC OL 
OECBAREA 

CA24G* 08 TIC CA24A or 40 CC 0 Write check again 
CA240 

CA25 - - -CCHHR If Read KU, CHHR of count is moved 
into IOBSEEK+4 (without destroying 
MBBC in IOBSEEK) when record is 
written back (CP7) 

*Write Validity Check 

230 OS ISAM Logic 



CHANNEL PROGRAM 6/6W 

Searches an overflow chain and reads or writes overflow records 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Descn ptlon Hex Description 

CA26* 31 Search 10 equal IOBSEEK+3 40 CC 5 Search for first record in overflow 
chain-IOBSEEK set from CA12+7 

CA27 OB TIC CA26 00 0 (CP4) 

69 Search key RKP=Q and blocked or RKP*O; read 
CA28 equal or high 

29 Search key Contents of 40 CC 0 Check key In overflow record. If equal, 
equal DECBKEY read (CA31) or write (CA40) record; 

otherwise, go to next one in chain 
CA29 08 TIC CA32 00 0 

CA30 08 TIC 
CA31 

CA40 
00 0 

iContents of 
CA31 06 Read data DECBAREA 00 ** DL40 Read the overflow record (end of CP) 

(+6) 

CA31B 22 Read sector 10BSECT 00 1 

CA32 06 Read data CA34+7 60 CC, SLI 10 Read link field to next record 

CA33 08 TIC CA36 00 0 

CA34 - - - - - - - M Link field from overflow entry 

CA35 B B C C H H R F 

Seek next record in overflow chain 
CA36 P(07) Seek CA35 40 CC 6 (see Figure 81 for value of P-seek 

command code) 

CA36B 
03 NOP 

10BSECT 60 CC, SLI 1 NOP if CP unbroken. Set sector if stop 
23 Set sector 

at CA32 or CA30 (estimate if VLR). 

CA37 31 Search ID equal CA35+2 40 CC 5 Search for overflow record 

CA38 08 TIC CA37 00 0 

CA39 08 TIC CA28 00 0 If found, check key 

CA40 06 Read data Contents 60 ce;, fiLl iO Reaa link fieid Write 
(+6) of overflow 
DECBAREA record 

CA40A 
08 TIC CA41 

40 CC 1 
22 Read sector 10BSECT Position to record again 

CA40B 23 Set sector 10BSECT 40 CC 1 

*This channel program is preceded by a set sector-TIC if RPS is present. This prefix is located in 
the lOB extension. 

(continued) 

**CC if RPS 

Section 7: Appendixes 231 



CHANNEL PROGRAM 6/6W (continued) 

Searches an overflow chain and reads or writes overflow records 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

CA41 31 Search I D equal CA35+2 40 CC 5 Position to record again Write 
overflow 

CA42 08 TIC CA41 00 0 record 

CA43 05 Write data Contents (+6) 40 CC Write record 
of 
DECBAREA 

CA430* 
03 NOP 

IOBSECT 60 CC, SLI 1 Reposition to correct record 
23 Set sector 

CA43A 31 Search I D equal CA35+2 40 CC 5 Find record again 

CA43B* 08 TIC CA43A 00 0 

CA43C* 06 Read data 10 SK 0 Read it back 

"Write Validity Check 

232 OS ISAM Logic 



CHANNEL PROGRAM 7!7W 

Writes data records when WRITE K is associated with READ KU 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

CA44* 31 Search ID equal IOBSEEK+3 40 CC 5 Search for record to be updated-
See CA25 (CP5) 

CA45 08 TIC CA44 Address of nex t 
CP7 in queue 
(see Figure 55) 

CA46 05 Write data Contents of 40 CC DL Write updated record 
DECBAREA 

CA460** 
03 NOP 

10BSECT 60 CC,SLI 1 
23 Set sector 

CA46A** 31 Search I D equal IOBSEEK+3 40 CC 5 Fi~d record again 

CA46B** 08 TIC CA46A 00 0 

CA46C** 06 Read data 10 SK Read it back 

*This channel program is preceded by a prefix if RPS is present. The prefix consists of a set sector and TIC which are 
located in the lOB extension. 

**Write Validity Check 

Section 7: Appendixes 233 



CHANNEL PROGRAM 8 

Searches track index and prime data track to determine first record to be moved and position to insert it. 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

CB1* 31 Search I D equal IOBSEEK+3 40 CC 5 Search for (COCR) RO 

CB2 08 TIC CBl 00 0 

CB3 06 Read data CB22 60 CC, SLI 6 Read RO COCR (HHRYYT) into CB22 

CB4 92 Read count (MT CB22+6 60 CC, SLI 5 Read count of index entry 

CB5 69 Search key equal Contents of 40 CC KL Search for index entry 
or high DECBKEY 

CB6 08 TIC CB4 00 0 

CB7 06 Read data CB10+7 40 CC 10 Read data of track index entry 

CB8 92 Read count (MT CB24 40 CC 8 Read count of following entry 

CB8A 06 Read data CB25 40 CC** 10 Read data of next entry 

CB9 08 TIC CB12 00 0 

CB10 - - - - - - - M Track-index entry contains search 
address for prime or overflow data 

CBll B B C C H H R F 

CB12 P Seek CBll 40 CC 6 
Seek prime or overflow track. 
See Figure 81 for value of P 
(Seek Command Code). 

CB16 
03 NOP 

CB16+5 60 CC, SLI 1 
Position to beginning of track if RPS. 

23 Set sector Set sector to 0 if R PS. 

The following versions of CB17-CB20 are used with fixed-length records 

CB17 31 Search ID equal CB11+2 40 CC 5 
Search for prime record 

CB18 08 TIC CB17 00 0 

CB18A 08 TIC CB19 00 0 Avoid skipping first record 

CB18B 12 Read count CB23+3 60 CC,SLI 5 Get count of insertion record 

CB19 69 Search key equal Contents of 
or high DECBKEY 60 CC,SLI KL 

Search track for insertion block 

CB20 08 TIC CB18B 00 0 

*This channel program is preceded by ... lOB extension. 

234 OS ISAM Logic 



CHANNEL PROGRAM 8- (Continued) 

Searches track index and prime data track to determine first record to be bumped and place to insert it. 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

The following versions of CB17-CB20 are used with variable-length records 

CB17 16 
Read home 

0 address 
70 CC,SK,SLI 1 Position to beginning of track 

CB18 08 TIC CB18B 00 0 Avoid skipping first record 

CB18A 06 Read data WATKL 60 CC,SLI 0 Read in block prior to insertion block 

CB18B 12 Read count CB23+3 60 CC,SLI 5 Get count, probable insertion block 

CB19 69 Search key equal Contents of 40 CC KL 
or high DECBKEY 

Search for probable insertion block 
CB20 08 TIC CB18A 00 0 

CB21 03 NOP IOBSECT 20 SLI 1 Read insert-block sector for RPS 

22 Read sector 

CB22 HHRYYTCC COCR--start of count of index 
entry 

CB23 HHRCCHHR Finish count of index entry and 
count of record after insertion 
(record to be bumped) 

CB24 C C H H R KL DL DL Count of the index entry following the 
entry that meets the search conditions 

CB25 MBBCCHHR Data field of the index entry following 
the entry that meets the search 

CB26 FP------ conditions 

Section 7: Appendixes 235 



CHANNEL PROGRAM 9A 

Read into work area an unblocked record occupying the position at which an insertion is to be made 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

CB30 31 Search I D equal IOBSEEK+3 40 CC 5 Search for record 

CB31 08 TIC CB30 00 0 

CB32 OE Read key and WA 80 DC KL Read record into work area 
data 

CB33 00 WA+KL+16 00 DL 

CHANNEL PROGRAM 9BroBW 

Reads an even numbered record after writing a record into the previous slot and writes back the last record of a non-EOF 
track when the number of records bumped is odd. 

CCW 
Command Code Flags 

No. Hex Description 
Address 

Hex Description 
Count Comments 

CB34* 31 Search I D equal IOBSEEK+3 40 CC 5 Search for record 

CB35 08 TIC CB34 00 0 

CB36 OD Write key and Contents of 80 DC KL Write new record or record pointed to 
data DECBKEY by DECB 

CB37 00 Contents of 00 DL 
DECBAREA 

CB370** 
03 NOP 

10BSECT 60 CC. SLI 1 
23 Set sector 

CB37A* 31 Search ID equal 40 CC 5 Search for record again 

CB37B** 08 TIC CB37A 00 0 

CB37C** OE Read key and 10 SK KL+DL Read it back 
data 

CB38 OE Read key and Contents of 80 DC KL Read next record 
data DECBKEY 

CB39 00 Contents of 00 DL 
DECBAREA 

*This channel program is preceded by a set sector-TIC if RPS is present. This prefix is locatlld in the lOB extension. 
**Write Validity Check 

236 OS ISAM Logic 



CHANNEL PROGRAM 9C/9CW 

Reads an odd numbered record after writing a record into the previous slot and writes back the last record of a non-EOF 
track when the number of records bumped is even. 

CCW 
Command Code Flags 

Address Count Comments 
No. Hex Description Hex Description 

CB40* 31 Search I D equal IOBSEEK+3 40 CC 5 Search for record 

CB41 08 TIC CB40 00 0 

CB42 OD Write key and WA 80 DC KL Write record into work area 
data 

CB43 00 WA+KL+16 00 DL 

CB430** 
03 NOP 

10BSECT 60 CC, SLI 1 
23 Set sector 

CB43A ** 31 Search I D equal IOBSEEK+3 40 CC 5 Search for record again 

CB43B** 08 TIC CB43A 00 0 

CB43C** OE Read key and 10 SK KL+DL Read it back 
data 

CB44 OE Read key and WA 80 DC KL Read record and point DECB to that 
data area 

CB45 00 WA+KL+16 00 DL 

*This channel program is preceded by a set sector-TIC if RPS is present. This prefix is located in the lOB extension. 
**Write Validity Check 

Section 7: Appendixes 237 



CHANNEL PROGRAM 10A/10AW 

Writes a record or block to replace an EOF mark 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

CB46* 31 Search ID equal IOBSEEK+3 40 CC 5 Search for last data record 

CB47 08 TIC CB46 00 0 

CB48-' ID Write count, key, CB51 80 DC 8 Write record or block over EOF mark 
and data 

CB49 00 Contents of 80 DC KL 
DECBKEY 

CB50 00 WA+KL+16 40 CC DL 

CB500** 03 NOP 
IOBCCW2+4 60 CC, SLI 1 

23 Set sector 

CB50A** 31 Search I D equal IOBSEEK+3 40 CC 5 Search for record again 

CB50B** 08 TIC CB50A 00 0 

CB50C** 1E Read count, key, 10 SK 8+KL Read it back 
and data +DL 

~B51 C C H H R KL DL DL Count of record or block which 
replaces EOF 

*This channel program is preceded by a set sector-TIC if RPS is present. This prefix is located in the lOB 
extension. 

**Write Validity Check. 

238 OS ISAM Logic 



CHANNEL PROGRAM 10B/10BW 

Writes an EOF mark 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

CB52* 31 Search ID equal IOBSEEK+3 40 CC 5 Search for last data record 

CB53 08 TIC CB52 00 0 

CB54 10 Write count, CB55 40 CC 8 Write EO F mark 
key, and data 

CB540** 
03 NOP 

10BSECT 60 CC, SLI 1 
23 Set sector 

CB54A ** 31 Search I D equal IOBSEEK+3 40 CC 5 Search for EOF mark 

CB54B** 08 TIC CB54A 00 0 

CB54C** 1E Read count, 10 SK 8 Read it back 
key, and data 

CB55 C C H R R 000 EOF mark (count field) 

*This channel program is preceded by a set sector-TIC if RPS is present. This prefix is located in the lOB extension. 
**Write Validity Check 

Section 7: Appendixes 239 



CHANNELPROGRAMllA 

Reads an odd numbered record after writing a record Into the previous slot 

CCW Command Code Flags 

No 
Address Count Comments 

Hex Description Hex Description 

CC1 31 Search 10 equal IOBSEEK+3 40 CC 5 Search for block 

CC2 08 TIC CCl 00 0 

CC2A DE Read key and WA 80 DC KL Read in block 
data 

CC3 00 WA+KL+RL 00 DL 

CHANNEL PROGRAM llB/llBW 

Writes a re-arranged block back onto the prime data track 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex DesCription 

CC4* 31 Search 10 equal IOBSEEK+3 40 CC 5 Search for insertion point 

CC5 08 TIC CC4 00 0 

CC6 00 Write key and WA 40 CC KL+DL Write block 
data 

CC60* 
03 NOP 

10BSECT 60 CC, SLI 1 
23 Set sector 

CC6A* 31 Search 10 equal IOBSEEK+3 40 CC 5 Search for block again 

CC6B* 08 TIC CC6A 00 0 

CC6C* DE Read key and 10 SK KL+DL Read it back 

data 

"This channel program is preceded by a set sector - TIC if RPS is present. This prefix is located in the lOB extension. 
* 'Write Validity Check 

240 OS ISAM Logic 



CHANNELPROGRAM12A 

Reads data records following slot in which new record is to be inserted 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

CD1 31 Search ID equal IOBSEEK+3 40 CC 5 Search for block prior to insert 

CD2 08 TIC CD1 00 0 

CD3 OE Read key and WA+10 60 CC,SLI KL+DL Read first prime data block 

data 

CD4 1E Read count, key. WA+10+ 60 CC, SLI DL Read successive prime data record. 

and data KL+DL There is one copy of CD4 for each 
record on a prime data track; the CC 
bit is set off in the appropriate copy 
depending on how many blocks are to 
be read. 

Section 7: Appendixes 241 



CHANNEL PROGRAM 12AV 

Reads variable length data records or blocks following point at which new record is to be inserted 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

COO CCHHR008 Capacity record for prime data track 

COOA Y Y R- - - --

COOA1* 31 Search 10 equal COO 40 CC 5 Search for RO (track capacity record) 

COOA2 08 TIC COOAl 00 0 

COOB 06 Read data COOA 60 CC, SLI 3 Read capacity record 

COOC 08 TIC COOO or 00 0 TIC to C03 if a full track is to be read 
C03 or prior block full 

COOO 
03 NOP 

10BSECT+l 60 CC, SLI 1 
23 Set sector 

COl 31 Search 10 equal IOBSEEK+3 40 CC 5 Search for record prior to insert point 

CO2 08 TIC COl 00 0 

C02A 08 TIC C02B or 00 0 TIC to C02B if this is first execution of 
C03 channel program * * 

C02B OE Read key and WA 60 CC, SLI KL Read key of record prior to insert point 
data 

C03 06 Read data WA+KL+CF 60 CC,SLI OL Read data portion of record. There is 
+LRECL one copy of C03 for each record which 

can be read in a single execution. * 

*This channel program is preceded by a set sector-TIC if RPS is present. This prefix is located in the lOB extension. 
**With unblocked records and a large HIRPO, the WRITE KN work area (DCBMSWA) may not be large enough to contain 

all records past the insertion point. CP 12AV is then executed more than once. "ISAM Buffer and Work AREA 
Requirements" in Data Management Services Guide, GC26-3746, tells how to determine the best size for the work area. 

242 OS ISAM Logic 



CHANNELPROGRAM12B 

Writes back prime data records 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Desert ption Hex Description 

CE1 31 Search I D equal IOBSEEK+3 40 CC 5 Search for block prior to insert 

CE2 08 TIC CE1 00 0 

CE3 10 Write count, key, WA+2 80 DC 8 Write prime data records. There is one 
and data set of CE6-CE7 for each record on a 

prime data track; the CC bit is set off 
CE4 00 DECBKEY 80 DC KL in the appropriate copy of CE7 

depending on how many records are 
CE5 00 DECBAREA 40 CC DL written back. 

CE6 10 Write count, key. WA+KL+ 80 DC 8 
and data DL+10 

CE7 00 WA+10 40 CC KL+DL 

Section 7: Appendixes 243 



CHANNEL PROGRAM 12BV 

Writes back variable length prime data records or blocks 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

CEO* 31 Search 10 equal COO 40 CC 5 Search for RO 

CEOA 08 TIC CEO 00 0 

CEOB 05 Write data CODA 60 CC, SLI 3 Write updated track capacity record 

CEOC 
03 NOP 

10BSECT+l 60 CC, SLI 1 
23 Set sector 

CEl 31 Search ID equal IOBSEEK+3 40 CC 5 Search for record prior to insert point 

CE2 08 TIC CEl 00 0 

CE3 08 TIC CE4 00 0 TIC to CE4 to write partial track 

CE3A 39 Search home COO 40 CC 4 Search for start of track 
address 

CE3B 08 TIC CE3A 00 0 

CE3C 15 Write RO COO 60 CC, SLI 11 Write updated track capacity record 
again 

CE4 10 Write count, WA+KL 80 DC 8 Write prime data record. The number of 
key, and data sets of CE4·CE6 equals DCBH I RPD; 

the CC bit is set off in the appropriate 

CE5 00 WA+KL+CF 80 DC KL copy of CE6 depending on how many 

+(DL-LRECL records are written back 

+RKP 

CE6 00 WA+KL+CF 40 CC OL 
! -

*This channel program is preceded by a set sector-TIC if RPS is present. The prefix is located in the lOB extension. 

244 OS ISAM Logic 



CHANNEL PROGRAM 12C/12CW 

Writes a new record which has replaced a deleted record 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

CL1* 31 Search I D equal IOBSEEK+3 40 CC 5 Search for deleted record 

CL2 08 TIC CLl 00 0 

CL3 05 Write data Contents of 40 CC DL Replace deleted record 
DECBAREA 

CL30** 
03 NOP 

10BSECT 60 CC, SLI 1 
23 Set sector 

CL3A** 31 Search ID equal IOBSEEK+3 40 CC 0 Search for record aga i n 

CL3B** 08 TIC CL3A 00 0 

CL3C** 06 Read data 10 SK DL Read it back 

*This channel program is preceded by a set sector- TIC if RPS is present. This prefix is located in the lOB extension. 
**Write Validity Check 

Section 7: Appendixes 245 



CHANNELPROGRAM13A 

Reads all blocks from the track following and including the slot into which a record is to be inserted 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description , Hex Description 

CF1 31 Search I D equal IOBSEEK+3 40 CC 5 Search for first record to be read 

CF2 08 TIC CF1 00 0 

CF3 06 Read data Data address 00 DL Read first prime data block 

CF4 12 Read count WA 40 CC 8 Read successive prime data block. There 
is one copy of CF4·CF5 for each block 

CF5 06 Read data Data address 40 CC DL on a prime data track; the CC bit is set 
off in the appropriate copy of CF5 
depending on how many blocks are to 
be read. 

CHANNELPROGRAM13B 

Writes back the rearranged blocks read by CP13A 

CCW Command Code Flags 
Address Count Comments 

No. Hex Description Hex Description 

CG1 31 Search I D equal IOBSEEK+3 40 CC 5 Search for record before insertion pOint 

CG2 08 TIC CG1 00 0 

CG3 10 Write count, WA 80 DC 8 Write back prime data block. There is 
key, and data one copy of CG3·CG4·CG5 for each 

CG4 00 Key address 80 DC KL 
block on a prime data track; the CC bit 
is set off in the appropriate copy of 

CG5 00 Data address 00 DL 
CF5 depending on how many blocks 
are to be written. 

246 OS ISAM Logic 



CHANNEL PROGRAM 13C/13CW 

Writes back a block if the insertion is a record with a key identical to that of a record, which although logically deleted, 

is still physically present within the block. 

CCW 
Command Code Flags 

No. Hex Description 
Address 

Hex Description 
Count Comments 

Cl5* 31 Search ID equal IOBSEEK+3 40 CC 5 

Cl6 08 TIC Cl5 00 0 Search for block insertion point 

Cl7 05 Write data Data address 40 CC Dl Replace block 

CL70** 03 NOP 
10BSECT 60 CC, SLI Find record again 

23 Set sector 
1 

Cl7A** 31 Search I D equal IOBSEEK+3 40 5 

Cl7B** 08 TIC Cl7A 00 0 

CL7C** 06 Read data 10 SK Dl Read it back 

*This channel program is preceded by a set sector-TIC if RPS is present. The prefix is located in the lOB extension. 
**Write Validity Check 

Section 7: Appendixes 247 



CHANNEL PROGRAM 14/14W - Fixed Length Records 

Writes some combination of COCR, normal and overflow track Index entries, and overflow records. (See BISAM Write KN Asynchronous 
Codes in Section 6 for descriptions of the setups of this channel program.) 

Part II-Rewrites COCR and track index * 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

CH1** 31 Search I D equal IOBSEEK+3 40 CC 5 Search for COCR Entry pOint for Setups 
1·5 (add to cylinder overflow) 

CH2 08 TIC CH1 00 

CH3 05 W rite data CB22 60 CC, SLI 6 Write updated COCR from CP8 

CH3A,.** 23 Set sector 
CH3A1+5 60 CC, SLI 1 Set sector to zero If RPS 

03 NOP 

CH3A** 31 Search I D equal IOBSEEK+3 40 CC 5 Search for COCR again 

CH3B"* 08 TIC CH3A 00 0 

CH3C*" 06 Read data 70 CC, SK,SLI Read It back 

CH4 08 TIC CH5,CH9, 00 0 TIC to CH5 for Setup 1, CH9 for Setups 2,3 
CH55,CH14, 5; CH 14 for Setup 4 
orCH8D 

03 NOP 
CH5 23 Set sector 10BSECT 60 CC, SLI 6 

1B Seek head CI5 

CH55 31 Search I D equal CB22+6 40 CC 5 Search for prime index entry; entry pOint for 
Setups 1·2 (add to Independent overflow) 

CH6 08 TIC CH55 00 0 

CH7 OD Write key and data Contents of 80 DC 0 Write new hl·key prime data chain 
DECBKEY 

CH8 00 CB10+7 40 CC 10 Write prime Index entry 

CH80'" 
03 NOP 

10BSECT 60 CC, SLI 
23 Set sector 

1 

CH8A*' 31 Search I D equal CB22+6 40 CC 5 Search for entry again 

CH8B'" 08 TIC CH8A 00 0 

CH8C*" OE Read key and data 50 CC,SK 0 Read It back 

CH8D 31 Search I D equal CB24 40 CC 5 Search for overflow track Index entry 

CH8E 08 TIC CH8D 00 0 

CH8F 05 Write data CB25 10 SK 10 

CH8G 08 TIC CH13t8 00 0 

'CP14 IS executed in two parts only when the work area IS provided by the user. 
"This channel program IS preceded by a set sector-TIC If RPS IS present. This prefix IS located In the lOB extension. 

""Write Validity Check 

(Continued) 

248 OS ISAM Logic 



CHANNEL PROGRAM 14/14W - Fixed Length Records (continued) 

Writes some combination of COCR, normal and overflow track Index entries, and overflow records (See 81SAM Wote KN Asynchronous 
Codes in Section 6 for descriptions of the setups of this channel program.) 

Part II-Rewrites COCR and track Index" 

CCW Command Code Flags 
Address Count Comments 

No. Hex Descr i pt i on Hex Description 

CH9 
03 NOP 

IOBSECT+1 60 CC, SLI 1 
23 Set sector 

CH95 31 Search 10 equal CB24 40 CC 5 Search overflow track mdex entry 

CH10 08 TIC CH95 00 0 

CH12 00 Write key and data 80 DC 0 Write new overflow key·data cham 

CH13 05 Write data CB25 40 CC 10 Write overflow Index entry 

CH130* 
03 NOP 

IOBSECT+1 60 CC, SLI 1 
23 Set sector 

CH13A* 31 Search 10 equal CB24 40 CC 5 Search for entry agam 

CH13B* 08 TIC CH13A 00 0 

CH13C* OE Read key and data 50 CC,SK KL+OL Read It back 

CH14 
07 Seek 

CH23+1 40 CC Seek new overflow record (seek IS set by 
OB Seek cy linder 

appendage rout me) . For user work area 
1B Seek head 
03 NOP 

thiS CCW IS a NOP. 

Part I-Writes overflow record." 

CH150 
03 NOP 

IOBSECT+2 60 CC, SLI 1 Entry pomt for Setup 6 
23 Set sector 

CH15 31 Search 10 equal CH23+3 40 CC 5 Search for overflow slot 

CH15A 08 TIC CH15 00 0 

CH16 10 Write count, key, CH24 80 DC 8 Write new overflow record 

and data 

CH17 00 Contents of 80 DC KL 
DECBKEY 

CH18 00 
Contents of 
OECBAREA 

40 CC DL 

CH180* 
03 NOP 

IOBSECT+2 60 CC,SLI 1 
23 Set sector 

CH18A* 31 Search 10 equal CH23+3 40 CC 0 !)earch tor new overflOw recora agam 

CH18B* 08 TIC CH18A 00 0 

CH18C* 1E Read count, key, 10 SK 0 Read It back. Termination for Setups 1,2, 
and data 5,6 

CH19 07 Seek CJ11+1 40 CC 6 Seek previous overflow record (appropriate 
OB Seek cylinder seek set by appendage routine). 
1B Seek head 

'Wrlte Validity Check (continued) 
* *CP14 IS executed In two parts only when the work area IS provided together 

Section 7: Appendixes 249 



CHANNEL PROGRAM 14/14W - Fixed Length Records (continued) 

Writes some combinatIon of COCR, normal and overflow track Index entries, and overflow records. (See B/SAM Write KN Asynchronous 

Codes In Section 6 for descriptions of the Setups of this channel program.) 

CCW 
Command Code Flags 

No. Hex Description 
Address 

Hex Description 
Count Comments 

CH200 
03 NOP 
23 Set sector 

IOBSECT+3 60 CC, SLI 1 

CH20 31 Search I D equal CJ11+3 40 CC 5 Search for record 

CH21 08 TIC CH20 00 0 

CH22 05 Wrote data WA 40 CC 0 Wrote back prevIous overflow record 

CH220' 
03 NOP 
23 Set sector 

IOBSECT+3 60 CC, SLI 1 

CH22A* 31 Search I D equal CJ11+3 40 CC 5 Search for prevIous overflow record again 

CH22B* 08 TIC CH22A 00 0 

CH22C* 06 Read data 10 SK DL Read It back. TerminatIon for Setups 3-4. 

CH23 M B B C C H H R Search address of new overflow record 

CH24 C C H H R KL DL DL Count of new overflow 

'Wrote ValIdIty Check 

250 OS ISAM Logic 



CHANNEL PROGRAM 14/14W-Variable Length Records 

Writes some combination of COCR, normal and overflow track index entries, and overflow records. (See BISAM Write KN 

Asynchronous Codes in Section 6 for descriptions of the Setups of this channel program.) 

CCW 
Command Code Flags 

No. Hex Description 
Address 

Hex Description 
Count Comments 

Part II-ReWrites COCR and Track Index 

CH1* 31 Search I D equal CH23+3 40 CC 5 Search for COCR Entry point for Setups 
1·5 (add to cylinder overflow) 

CH2 08 TIC CHl 00 

CH3 05 Write data CB22 60 CC, SLI 6 Write updated COCR from CP8 

CH3Al 
23 Set sector 

CHA1+5 60 CC, SLI 1 Set sector to zero if RPS 
03 NOP 

CH3A* 31 Search I D equal CH23+3 40 CC 5 Search for COCR again 

CH3B** 08 TIC CH3A 00 0 

CH3C** 06 Read data 70 CC, SK, SLI Read it back 

CH4 08 TIC CH50, CH5, 00 0 TIC to CH5 for Setup 1; CH8G for 

CH3FO,CH3GV Setups 2, 3, 5; CH14 for Setup 4 

or CH14 

CH5 
03 NOP 

10BSECT 60 CC, SLI 6 
23 Set sector 

1B Seek head CI5 

CH55 31 Search I D equal CB22+6 40 CC 5 Search for prime index entry; Entry 
point for Setups 1-2 (add to 

CH6 08 TIC CH55 00 0 independent overflow) 

CH7 OD Write key and Contents of 80 DC 0 Write new hi-key prime data chain 

data DECBKEY 

CH8 00 CB10+7 40 CC 10 Write prime index entry 

CH80* 
03 NOP 

10BSECT 60 CC, SLI 
23 Set sector 

1 

---

CH8A** 31 Search I D equal CB22+6 40 CC 5 Search for entry again 

CH8B** 08 TIC CH8A 00 0 

CH8C"* OE Read key and 50 CC,SK 0 Read it back 

data 

*This channel program is preceded by a prefix if RPS is present. The prefix consists of a set sector and TIC, which are 
located in the lOB extension. 

**Write Validity Check (continued) 

Section 7: Appendixes 251 



CHANNEL PROGRAM 14/14W-Variable Length Records (continued) 

Writes some combination of COCR, normal and overflow track index entries, and overflow records. (See BISAM Write KN 

Asynchronous Codes in Section 6 for descriptions of the setups of this channel program.) 

CCW 
Command Code Flags 

No. Hex Description 
Address 

Hex Description 
Count Comments 

CH8D 08 TIC CH8G5 00 0 

CH8F This CCW not used 

Part II-Rewrites COCR and Track Index 

CH8G 
23 Set sector 

IOBCCW2+5 60 CC,SLI 1 
03 NOP 

CH8G5 31 Search I D equal CB24 40 CC 5 Search overflow track index entry 

CH9 08 TIC CH8G5 00 0 

CH10 08 TIC CH12orCH13 00 0 TIC to CH13 to write data only of 
overflow record 

CH12 OD Write key and data 80 DC 0 Write new overflow key-data chain 

CH13 05 Write data CB25 40 CC 10 Write overflow index entry 

CH130* 
03 NOP 

IOBSECT+1 60 CC, SLI 1 
23 Set sector 

CH13A* 31 Search I D equal CB24 40 CC 5 Search for entry again 

CH13B* 08 TIC CH13A 00 0 

CH13C* OE Read key and data 50 CC,SK KL+10 Read it back 

CH14 03 NOP 20 SLI 1 

*Write Validity Check (continued) 

252 OS ISAM Logic 



CHANNEL PROGRAM 14/14W-Variable Length Records (continued) 

Writes some combination of COCR, normal and overflow track index entries, and overflow records. (See BISAM Write KN 

Asynchronous Codes in Section 6 for descriptions of the setups of this channel program.) 

CCW 
Command Code Flags 

No. Hex Description 
Address 

Hex Description 
Count Comments 

Part I-Writes Overflow Record 

CH150 
03 NOP 
23 Set sector IOBSECT+2 CC, SLI 

CH15 31 Search I D equal CH23+3 40 CC 5 Search for overflow slot 

CH15A 08 TIC CH15 00 0 

CH16 10 Write count, key. CH24 80 DC 8 
and data 

CH17 00 Contents of 80 DC KL 
Write new overflow record 

DECBKEY 

CH18 00 
Contents of 

40 CC DL 
DECBAREA 

CH180* 
03 NOP 

IOBSECT+2 60 CC, SLI 1 
23 Set sector 

CH18A 31 Search I D equal CH23+3 40 CC 5 Search for new overflow record again 

CH18B* 08 TIC CH18A 00 0 

CH18C* 1E Read count, key, 10 SK 0 Read it back. Termination for Setups 
and data 1,2,5,6 

CH19 07 Seek CJ11+1 40 CC 6 
Seek previous overflow record 

OB Seek cylinder 
SECT+3 

(appropriate seek set by appendage 
1B Seek head routine). 

CH200 
03 NOP 

I o BCCW2+7 60 CC, SLI 1 
23 Set sector 

Search for record 
CH20 31 Search I D equal CJ11+3 40 CC 5 

CH21 08 TIC CH20 00 0 

CH22 05 Write data WA 40 CC 0 Write back previous overflow record 

CH220 
03 NOP 

IOBSECT+3 60 CC, SLI 1 
23 Set sector 

CH22A* 31 Search I D equal CJ11+3 40 CC 5 Search for previous overflow record 
again 

CH22B* 08 TIC CH22A 00 0 

CH22C" 06 Read data 10 SK DL Read it back. Termination for Setups 
3-4 

*Write Validity Check (continued) 

Section 7: Appendixes 253 



CHANNEL PROGRAM14/14W-Variable Length Records (continued) 

CH23 MBBCCHHR Search address of new overflow record 

Writes some combination of COCR, normal and overflow track index entries, and overflow records. (See BISAM Write KN 

Asynchronous Codes in Section 6 for descriptions of the Setups of this channel program.) 

CCW 
Command Code Flags 

No. Hex Description 
Address 

Hex Description 
Count Comments 

CH24 C C H H R KL DL DL Count of new overflow 

EOF Extension 

CH25 31 Search I D equal CH31+3 40 CC 5 
Search for last overflow record 

CH26 08 TIC CH25 00 0 

CH27 1D 
Write count, key, 
and data 

CH32 40 CC 8 Write EOF mark 

CH280* 
03 NOP 

IOBSECT 60 CC,SLI 1 
23 Set sector 

Search for record again 
CH28* 31 Search I D equal CH31+3 40 CC 5 

CH29* 08 TIC CH28 00 0 

CH30* 1E 
Read count,key, 

30 SK, SLI 8 Read it back 
and data 

CH31 M B B C C H H R Address of last overflow record 

CH32 C C H H R K K D EOF mark 

*Write Validity Check 

254 OS ISAM Logic 



CHANNEL PROGRAM 15 

Reads in the cylinder overflow control record and the overflow track index entry when a new record is added to the end 
of a data set 

CCW 
Command Code Flags 

No. Hex Description 
Address 

Hex Description 
Count Comments 

Cil * 31 Search I D equal IOBSEEK+3 40 CC 5 
Search for COCR 

CllA 08 TIC Cil 00 0 

CllB 06 Read data CB22 60 CC, SLI 6 Read RO (COCR) into CP8 

CllC lB Seek head CI5 40 CC 6 Find last active index track 

03 NOP 
IOBSECT+1 60 CC, SLI 1 CllD 23 Set sector 

Search for last active normal track 
Cl1E 31 Search I D equal C15+2 40 CC 5 index entry 

CI2 08 TIC Cl1E 00 0 

CI3 92 Read count CB24 40 CC 8 Read count of last overflow entry 
into CP8 

CI4 06 Read data CB25 00 10 Read data of last overflow entry 
into CP8 

CI5 BBCCHHR- ID of last active normal track index 
entry 

*This channel program preceded by a set sector-TIC if RPS is present. This prefix is located in the lOB extension. 

Section 7: Appendixes 255 



CHANNEL PROGRAM 16 

Searches an overflow chain for (1) the record that logically precedes or is equal to the new record to be added or 
(2) the last record in the chain. 

CCW 
Command Code Flags 

No. Hex DeSCription 
Address 

Hex Description 
Count Comments 

CJ1** 31 Search I D equal IOBSEEK+3 40 CC 5 Search for next overflow record in chain 

CJ2 08 TIC CJ1 00 0 

CJ3 69 Search key Contents of 40 CC KL Is this the desired record? 
equal or high DECBKEY 

CJ4 08 TIC CJ10 00 0 No 

CJ4A 
03 NOP 

10BSECT 60 CC, SLI 1 
23 Set sector 

CJ5 31 Search I D equal IOBSEEK+3 40 CC 5 Search for overflow record 

CJ6 08 TIC CJ5 00 0 

CJ7 29 Search key Contents of 40 CC 0 Test If key equals user key 
equal DECBKEY 

CJ8 03 NOP 0 20 SLI 1 No, stop here 

CJ9 06 Read data WA 20 SLI 11 Yes, read 11 bytes of equal key record 

CJ10 06 Read data WA* OOt 
DL 

Read next overflow record in chain 
+10*** 

CJ11 M B B C C H H R Address of record in chain before insert 

*The address is WA+20 for variable length records 
**This channel program preceded by a prefix if RPS is present. The prefix consists of a set sector and TIC which are 

located in the lOB extension. 
***DL+14 if VLR 

tSLI if VLR 

256 as ISAM Logic 



CHANNEL PROGRAM 17/17W 

Changes the key In a normal or overflow track Index entry or In a higher level Index entry 

CCW Command Code Flags 
Address Count Comments 

No. Hex Description Hex Description 

CK1* 31 Search 10 equal IOBSEEK+3 40 CC 5 Search for last entry In index 

CK2 08 TIC CK1 00 0 

CK3 06 Read data CK8 40 CC 10 Read data of last entry 

03 NOP 
CK30 23 Set sector 

10BSECT 80 CC, SLI 1 
Search for entry aga in 

CK4 31 Search 10 equal IOBSEEK+3 40 CC 5 

CK5 08 TIC CK4 00 0 

CK6 00 Write key Contents of 80 DC KL 

and data DECBKEY Write new high key and rewrite data 
of entry 

CK7 00 CK8 40 CC 10 

CK70" 03 NOP 
10BSECT 60 CC,SLI 1 

23 Set sector Search for updated entry 
CK7A*" 31 Search I 0 equal IOBSEEK+3 40 CC 5 

CK7B** 08 TIC CK7A 00 0 

~K7C** OE Read key and data 10 SK KL+10 Read it back 

CK8 M B B C C H H R Data of Index entry 

CK9 F p-------

*Write Validity Check 
**This channel program preceded by a prefix if RPS is present. The prefix consists of a set sector and TIC which are located 

in the lOB extension. 

Section 7: Appendixes 257 



CHANNEL PROGRAM 18 

Write Prime Data Blocks-load Mode, ISAM. 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

ClO 23 Set sector ISlRPSSS 40 CC 1 Position for first record 

CL1 1 31 Search ID equal IOBSEEK+3 40 CC 5 Search for count field of the block pre-
COl, C014A ceding the block to be written next 

Cl2 1 08 TIC Cll 1 00 0 The count field contains the address of 
the write check segment of this channel 
program (Cl 12 ) 

Cl31 08 TIC Cl4 or Cl6 00 0 Transfer to the first CCW of the group 
of write CCWs to be executed next. 
The count field contains the address of 
the last read CCW in the write check 
segment of this channel program +8. 

One copy of Cl4 for each buffer. Cl4 is used to write blocks for fixed length, unblocked record formats where R KP = 0 
because count, key, and data are contiguous. 

Cl4a 10 Write count, Buffer N 40 CC 8+Kl Write prime data records when 
key data +Dl RECFM=F, RKP=O 

One copy of Cl6, CL7, Cl8 for each buffer. Cl6, CL7, Cl8 are used to write blocks for fixed length, unblocked formats 
where RKPfO, fixed length, blocked formats because count, key, and data are not contiguous. 

Cl6a 10 Write count Buffer N 80 DC 8 Write prime data records when 
RECFM=F; RKP~O or RECFM=FB; 
RKP-N/A 

CL7 00 Write key Buffer 80 DC KL 
N+8+RKP 

Buffer 
CL8 00 Write data N+8 40 CC# DL 

The next CCW follows each copy of CL4 or CL8 except the last. It transfers to the beginning of the Write Validity Check 
segment of this channel program (CL 12 ), If this is the last of the current group of write CCWS; otherwise it transfers to 
the next copy of CL4 or CL6. This CCW is omitted if Write Validity Check is not specified. 

08 TIC CL 12 , 00 0 The count field of this CCW contains 

CL4 n, or the address of the next sequential 
CL6n copy of CL4 or CL6 

The next CCW (CL5) follows the last copy of CL4 or CL8. It transfers to the beginning of the Write Validity Check 
segment of this channel program (CL02 ), if this is the last of the current group of write CCWs; otherwise it transters to 
the first copy of CL4 or Cl6. If Write Validity Check is not specified, this CCW points to the first copy of Cl4 or Cl6. 

CL5 08 TIC CL1 2 ,Cl02 , 00 0 The count field of this CCW contains 

CL4 1 I the address of CL4 1 or CL6 1 

or CL6 1 

(continued) 

258 OS ISAM Logic 



CHANNEL PROGRAM 18 (continued) 

Write Prime Data Blocks-Load Mode, ISAM. 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

CL02 
23 Set Sector 

ISLRPSSS 60 CC, SLI 1 Position for first record 
03 NOP 

CL1 2 * 31 Search I D equal IOBSEEK+3 40 CC 5 Search for the count field of block 
or Buffer N preceding the first block of the group 

60 
last written; Buffer N is the address of 

CL22 * 08 TIC CL1 2 0 the count field if this is a shared track. 

The following CCW (CL32 ) transfers to the first read CCW to be executed. 

CL32 * 08 TIC CL9 00 0 

One copy of CL9 IS generated for each buffer. Each copy of CL9 is command chained except the last. CL3 transfers to 
the copy of CL9 whose position in relation to the last copy of CL9 is equal to the number of blocks written by this 
execution of channel program 18. 

CL9* 1E Read count, 50 CC, SK# 0 
key, and data 

#Command chain is off if this is the last read or write of a group to be executed. 
*Write Validity Check 
aFor shared (preformatted) tracks. The count field is not written. 

Section 7: Appendixes 259 



CHANNEL PROGRAM 19m1 

CP19-Preformat shared track and/or write cylinder overflow control record (COCR) 
CP91-Fill unused index tracks with inactive and dummy (end of index) entries 

CCW 
Command Code Flags 

No. Hex Description 
Address 

Hex Description 
Count Comments 

CMO#t 23 Set sector CMO+5 40 CC 1 Position for COCR 

CM1# 31 Search I D equal DCBLPDA 40 CC 5 When CP is being generated, DCBLPDA 
contains the DAD AD of the record 
preceding the first prime data record 

CM2# 08 TIC CM1 00 

CM3# 05 Write data Area Z 60 CC, SLI 8 Write COCR 

CM4# 1B Seek head DCBLPDA 40 CC 6 DCBLPDA if COCR and DCBFIRSH 
or CM27+1 are same track, otherwise CM27+1 

CM40 
23 Set sector 

ISLRPSSS+1 60 CC, SLI 1 Position to index entries 
03 NOP 

CM5 31 Search I D equal DCBLPDA 40 CC 5 DCBLPDA if COCR and DCBFIRSH 
or CM27+3 are same track, otherwise CM27+3 

CM6 08 TIC CM5 00 

CM7 10 Write count,key, Area Z+6 80 DC 8 

data 

CM8 00 Buffer 40 CC KL+10 Write inactive track index entries 

CM9 10 Write count,key Area Z+14 80 DC 8 
data 

CMlO 00 Buffer 40 CC KL+10 

CM11 10 Write count, Area Z+22 80 DC 8 
key. data 

CM12 00 Buffer 40 CC KL+l0 

CM13 10 Write count, Area Z+30 80 DC 8 
key, data 

CM14 00 Buffer 40 CC KL+l0 

CM15 10 Write count, Area Z+38 80 DC 8 
key, data 

CM16 00 Buffer 40 CC KL+10 

CM17 10 Write count, Area Z+46 80 DC 8 
key, data 

#Cylinder Overflow Control Record (COCR) to be written. With variable length records, 
CP19 consists of CMl through CM4 only because the track index is not preformatted. 

tSet sector to zero if RPS. 

(continued) 

260 OS ISAM Logic 



CHANNEL PROGRAM 19/91 (continued) 

CP19-Preformat shared track and/or write cylinder overflow control record (COCR) 
CP91-Fill unused index tracks with inactive and dummy (end of index) entries 

CCW 
Command Code Flags 

No. Hex Description 
Address 

Hex Descri ption 
Count Comments 

CM21 10 Write count, Area Z+62 80 DC 8 
key, data 

CM22 00 Buffer 40 CC KL+lO 

CM23 10 Write count, Area Z+70 80 DC 8 
key, data 

CM24 00 Buffer 40 CC KL+10 

CM25 10 Write count, Area Z+78 80 DC 8 
key, data 

CM26 00 Buffer 00 KL+10 

CM27 M B B C C H H R If the COCR and the Shared Track are 
not the same track; this field is used to 
store the Seek and Search arguments 
for CM4 and CM5. 

CM27 08 TIC CM5 00 0 
This CCW resides in the 

CP91 
skeleton only and replaces CM 1 

only 
when COCR is not to be written. 

CM28 OD Write key and data Buffer 00 0 This CCW can replace CM8 

CM29 10 Write count, Area Z+6 80 DC 8 This CCW can replace CM7 

key, and data 

Section 7: Appendixes 261 



CHANNEL PROGRAM 20--Fixed Length Records 

Writes Track Index Entry(s) 

CCW Command Code Flags 
Address Count Comments 

No. Hex Description Hex Description 

The following segment of CP20 is executed for fixed length record formats when shared tracks are in effect. CP19 has 
preformatted the track index by writing a count field for each entry. 

COO 23 Set sector ISLRPSSS+2 40 CC 1 Position for normal track Index entry 

Cal 31 Search 10 equal ISLIOBA 40 CC 5 Search for normal track index entry to 
be written next 

CO2 08 TIC Cal 00 0 

C03 00 Write key, data Buffer N+8 80 DC KL Write normal track index entry 
+RKP 

C04 00 Area Y+26 40 CC 10 

C05 Bl Search 10 equal Area Y+36 40 CC 5 Search for track to write overflow track 
(MT) index entry 

C06 08 TIC C05 00 0 

COl 00 Write key, data Buffer N+8 80 DC KL Wnte overflow track index entry 
+RKP 

C08 00 Area Y+44 40 CC 10 

C09 08 TIC COlO, COT1, 00 0 Transfer to write dummy track index 
or C013 entry (COlO) or to COTl if Write 

Validity Check is specified, or transfer to 
to CO 13 if CP 18 (write prime data) is 
to be executed next 

COlO Bl Search 10 equal Area Y+54 40 CC 5 Search for dummy track entry to be 
(MT) written next 

Call 08 TIC COlO 00 0 

C012 00 Write key, data Area Y+62 40 CC KL+l0 Write key, data fields of dummy track 
index entry 

CO 13 lB Seek HH ISLIOBA+33 40 CC 6 

C014 08 TIC COT1 or CL 1 20 SLI 5 Transfer to COTl if Write Validity Check 
is specified, or to CL 1 (CP18); this CCW 
is a NOP during Close processing. 

(continued) 

262 OS ISAM Logic 



CHANNEL PROGRAM 20--Fixed Length Records (continued) 

Writes Track Index Entry(s) 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Descri ptlon Hex Description 

C014A MBBCCHHR Seek address for CP18 

C014B 23 Set sector ISLRPSSS+2 40 CC 1 Position to next index entry 

C015 31 Search I D equal Area Y+18 40 CC Index entry to be written next 
(R=R-l) 

CO 16 08 TIC C015 00 0 

CO 17 10 Write count, Area Y+18 80 DC 8 Write count, key,and data fields of 
key, data normal track index entry 

ISLKEYAD points to key 
C018 00 Buffer N+8 80 DC KL 

+RKP 

C019 00 Area Y+26 40 CC 10 

C020 08 TIC C0210rC027 00 0 Transfer to C021 if normal and overflow 
entries are on the same track, or to 
C027 if normal and overflow entries 
are on different tracks 

C021 10 Write count, Area Y+36 80 OC 8 Write overflow index entry 
key, data ISLKEYAD points to key 

C022 00 Buffer N+8 80 DC KL 

C023 00 Area Y+44 40 CC 10 

C024 08 TIC COT1 00 0 Transfer to COT1 if Write Validity 
C013 Check is specified, or to C013 if 
C025 CP18 is to be executed next, or to 
C027 C025 if overflow and dummy track 

index entries are on the same tracks, or 
to C027 if overflow and dummy track 
index entries are on different tracks 

C025 10 Write count, Area Y+54 40 CC 8+KL+10 Write count, key, and data of dummy of 
key, data 

" __ 1_- __ ... ~ 

IIIUt::1\ t::IILI y 

C026 08 TIC con 00 0 Transfer to COTl if Write Validity 
or C013 Check is specified, or to C013 if 

CP18 is to be executed next 

C027 Bl Search I D equal C030+3 40 CC 5 I ndex entries are spl it across tracks. 
Search for next physical track 

C028 08 TIC C027 00 0 

(continued) 

Section 7: Appendixes 263 



CHANNEL PROGRAM 20-Fixed-length Records (continued) 

Writes Track-index Entry(s) 

CCW Command Code Flags 
Address Count Comments 

No. Hex DescriptIOn Hex Description 

C029 08 TIC C021orC025 00 0 Transfer to write overflow track index 
entry (C021), or to write dummy track 
index entry (C025) 

C030 MBBCCHHR Search argument for next track if index 
entries are spl it across track boundary 

COTO' 23 Set sector ISLRPSSS+2 40 CC 1 Position for track index 

COT1' 31 Search 10 equal Area Y+18 40 CC 5 Find last normal entry written 

COT2* 08 TIC COT1 00 0 

COT3* OE Read key 50 CC,SK KL+10 Read entry back 
and data 

COT4* B1 Search 10 Area Y+36 40 CC 5 Find last overflow entry written 
equal (MT) 

* COT4A 08 TIC COT4 00 0 

COT5* OE Read key 50 CC,SK KL+10 Read entry back 
and data 

• 08 
COT5A 

TIC COT7 60 CC,SLI 1 No inactive entry written 

08 TIC COT7 60 CC,SLI 1 Inactive entry written 

COT5B* B1 Search ID Area Y+54 40 CC 5 Find inactive entry 
equal (MT) 

COT5C* 08 TIC COT5B 00 0 

COT6* OE Read key 50 CC,SK KL+10 Read entry back 
and data 

COT7* 1B Seek head C014A+1 40 CC 6 FLR - Prime track 

COT8* 08 TIC CL1 0 0 FLR - Transfer to write prime-CP 18 

*Write-validity-check 

264 OS ISAM Logic 



CHANNEL PROGRAM 20-Variable Length Records 

Writes Track Index Entry(s) 

CCW Command Code Flags 
Address Count Comments 

No. Hex Description Hex Description 

COOt 23 Set sector COO+5 40 CC 1 Position for RD 

COl 31 Search I D equal C05+3 40 CC 5 Search for RO on current prime track 

CO2 08 TIC COl 00 0 

C03 05 Write data C07 40 CC 3 Write track capacity record 

C04 08 TIC CLl 00 0 TIC to CP18 to write prime data 

C05 LL-CCHHR Maximum record length (LL) and RD 
I D for current prime track 

C06 This CCW not used 

C07 YYR------ Data of track capacity record (RO) 

C08 This CCW not used 

C09 --YYR--- Running capacity 

COlO This CCW not used 

CO 11 PPLL---- PP-pointer to last used CCW In CP18, 
LL-Iength of current record 

C012 This CCW not used 

C013 lB Seek HH ISLIOBA 40 CC 6 

C014 08 TIC IcOT1 or CL 1 20 SLI 5 Transfer to COTl if Write Validity 
Check is specified, or to CL 1 (CP18) 
if it is not specified; this CCW is a 
NOP during close processing 

C014A MBBCCHHR Seek address for CP18 

C014B 23 Set sector ISLRPSSS+2 40 CC 1 Position for next entry 

C015 31 Search I D equal IOBSEEK+3 40 CC 5 I ndex entry to be written next 

C016 08 TIC C015 00 0 

CO 17 lD Write count, Area Y+18 80 DC 8 Write count, keY,and data fields of 
key, and data normal track index entry 

C018 00 Buffer N+8 80 DC KL 
ISLKEYAD points to key 

+RKP 

C019 00 Area Y+26 40 CC 10 

tSet sector to zero if RPS (continued) 

Section 7: Appendixes 265 



CHANNEL PROGRAM 20-Variable-length Records (continued) 

Writes Track Index Entry(s) 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

C020 08 TIC C021orC027 00 0 Transfer to C021 if normal and overflow 
entries are on the same track, or to 
C027 if normal and overflow entries are 
on different tracks 

C021 10 Write count, Area Y+36 80 DC 8 Write overflow index entry 

key, data 

C022 00 Buffer N+8 80 DC KL ISLKEYAD points to key 

+RKP 

C023 00 Area Y+44 40 CC 10 

C024 08 TIC COT1 or 00 0 Transfer to COT1 if Write Validity 

C013 or Check is specified, or to C013 if CP18 

C025 or is to be executed next, or to C025 if 

C027 overflow and dummy track index entries 
are on the same tracks, or to C027 if 
overflow and dummy track index entries 
are on different tracks 

C025 10 Write count, Area Y+54 40 CC ~KL+10 Write count, key, and data of dummy 

key, data index entry 

C026 08 TIC COT1orC013 00 0 Transfer to COT1 if Write Validity 
Check is specified, or to C013 if 
CP18 is to be executed next 

C027 B1 Search I D equal C030+3 40 CC 5 I ndex entries are split across tracks. 

(MT) Search for next physical track 

C028 08 TIC C027 00 0 

C029 08 TIC C0210rC025 00 0 Transfer to write overflow track index 
entry (C021), or to write dummy track 
index entry (C025) 

C030 MBBCCHHR Search argument for next track, if track 
entries are spl it across track boundary 

COTO* 23 Set sector ISLRPSSS+2 40 CC 1 Position for track index 

COT1* 31 Search I D equal Area Y+18 40 CC 5 
Find last normal entry written 

COT2* 08 TIC COT 1 00 0 

*Write-validity-check 

266 OS ISAM Logic 



CHANNEL PROGRAM 20-Variable length Records (continued) 

Writes Track Index Entry(s) 

CCW 
Command Code Flags 

Address Count Comments 
No. Hex Description Hex Description 

COT3* OE Read key and data * SO CC,SK KL+l0 Read entry back 

COT4* Bl Search ID Area Y+36 40 CC S Find last overflow entry written 

equal (MT) 

* 
COT4A 08 TIC COT4 00 0 

COTS * OE Read key * 50 CC,SK KL+l0 Read entry back 

and data 

* COTSA 08 TIC COT7 60 CC,SLI 1 No inactive entry written 

08 TIC COT7 60 CC,SLI 1 Inactive entry written 

* COTSB Bl Search ID Area Y+54 40 CC S 
equal (MT) Find inactive entry 

.. 
TIC COTSC 08 COTSB 00 0 

COT6* OE Read key * 50 CC,SK KL+l0 Read entry back 
and data 

COT7* lB Seek head COS+2 40 CC 6 VLR-Track capacity record 

COT8* 08 TIC COl 0 0 VLR-Write track capacity record 

*Write-validity Check 

Section 7: Appendixes 267 



CHANNEL PROGRAM 20A 

Write a non-shared track of track index 

CCW Command Code Flags 

No_ 
Address Count Comments 

Hex Description Hex Description 

COO 23 Set sector ISLRPSSS+2 40 CC 1 Position for the track index entry 

COl 31 Search I D equal IOBASEEK+:1 40 CC 5 Search for the Count Field of the record 
preceding the record to be written next 

CO2 08 TIC COl 00 The count field contains the address of 
the CCW that TICs to CP18 when non-
write check 

C03 08 TIC C04 00 TIC to the first write CCW to be 
executed, as follows: 
1_ C04 
2_ Resume Load write CCW (some C04) 
3_ Non-shared last track of track Index_ 

The address of some C04 is stored in 
the count portion of this TIC (may 
be C04) 

One copy of C04 for each track index entry 

C04 10 Write count, TISA+20 or 40 CC 8+KL+l0 Write a track index entry 
key, and data TISA+20+N 

(8+KL+l0) 

For non-write checking, the following two CCW's are at the end of CP20A 

lB Seek head TISA+l 40 CC 6 Seek on the prime data track to be 
written 

08 TIC CP18 00 0 TIC to CP18 

For write checking, the following CCW is at the end of CP20A 

08 TIC CP20C 00 0 TIC to CP20C 

268 OS ISAM Logic 



CHANNEL PROGRAM 20B 

Write a shared track of track index 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

COO 23 Set sector ISLRPSSS+2 40 CC 1 Position for the next index entry 

COl 31 Search I D equal IOBASEEK+3 40 CC 5 Search for the count field of the record 
to be written next 

CO2 08 TIC COl 00 The count field contains the address of 
the CCW that TICs to CP18 for non-
write check 

C03 08 TIC C04 00 TI C to the first write key, data CCW to 
be executed, as follows: 
1. C04 
2. Resume Load write KD CCW 

(some C07) 

C04 OD Write key, data TISA+20+80r 40 CC KL+l0 Write the first track index entry on a 
TISA+20+8+N shared track 
(8+KL+l0) 

One copy of C05, C06, and C07 for each remaining track index entry 

C05 31 Search I D equal TISA+20+N 40 CC 5 Search for the count field of the record 
(8+KL+l0) to be written next 

C06 08 TIC C05 00 0 TIC to C05 

COl OD Write key, data TISA+20+8+ 40 CC KL+l0 Write the key and data portion of a 
N (8+KL+l0) track index entry 

For non-write checking, the following two CCW's are at the end of CP20B 

lB Seek head TISA+l 40 CC 6 Seek on the prime data track to be 
written 

08 TIC CP18 00 0 TIC to CP18 

For write checking, the following CCW is at the end of CP20B 

1 08 ITiC ICP20C I 00 I I 0 I TIC to CP20C 

Section 7: Appendixes 269 



CHANNEL PROGRAM 20C 

Write check for CP20A and B 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Descri ption Hex Description 

03 NOP 
CQO 23 Set sector ISLRPSSS+2 60 CC,SLI 1 Position for the next index entry 

CQl 31 Search I D equal IOBASEEK+~ 40 CC 5 Search for the count field of the record 
to be written next 

CQ2 08 TIC CQl 00 CQg The count field contains the address of 
the CCW that TICs to CP18 

CQ3 08 TIC CQ4 00 TIC to the first read CCW to be executed 
as follows: 
1. CQ4 
2. Resume Load read CCW (some CQl) 
3. Read CCW for non-shared last track 

or shared track. The address of th is 
CCW is stored in the count portion 
of this TIC (may be CQ4). 

CQ4 OE Read key, data TISA+20+8 50 CC,SK KL+l0 Read back a track index entry 
or TISA+20+ 
8+N 
(8+KL+1O) 

One copy of CQ5, CQ6, and CQ7 for each remaining track index entry. 

CQ5 31 Search I D equal TISA+20+N 40 CC 5 Search for the count field of the record 
(8+KL+l0) to be written next 

CQ6 08 TIC CQ5 00 0 TIC to CQ5 

CQ7 OE Read key, data TISA+20+8+ 50 CC,SK KL+l0 Read back a track index entry 
N (8+KL+l0) 

CQ8 lB Seek head TISA+l 40 CC 6 Seek on the prime data track to be 
written 

CQg 08 TIC CP18 00 0 TIC to CP18 

270 OS ISAM Logic 



CHANNEL PROGRAM 21 

Write High Level Index and End of Data (EOD) Mark(s)' 

CCW Command Code Flags 
Address Count Comments 

No, Hex Description Hex Description 

CQ39A 23 Set sector ISLRPSSS+3 40 CC 1 Position for entry 

CQ40 31 Search ID equal Area Y 40 CC 5 Search for ID of index entry to be 
written with R=R·1 

CQ41 08 TIC CQ40 00 

CQ42 10 Write count, Area Y 80 DC# 8 Write count field of current under entry 
key, data 

CQ43 00 ISLKEYA or 80 DC KL ISLKEYAD is used for normal entry 
Area Y+62 area Y+62 is used for dummy and 

inactive entry 

CQ44 00 Area Y+8 
00 CC (Write 10 Write data field of high level index entry 
40 validity check) 

CQ44A* 
03 NOP 

CC,SLI Position for entry 
23 Set sector 

ISLRPSSS+3 60 1 

CQ45* 31 Search ID equal Area Y 40 CC 5 Search for ID (CCHHR) of current 
index entry with R=R· 1 

CQ46* 08 TIC CQ45 00 0 

CQ47* 1E Read count, 10 SK KL+18 Read back current high level index 
key, data entry 

#Close processing utilizes CP21 to write end of data marks in the prime data area and independent overflow area. ISL 
area Y is initialized with the 'KDD' portion of the count field set to zero, The data chain bit is turned off. 

*Write Validity Check 

Section 7: Appendixes 271 



CHANNEL PROGRAM 22A 

Read/Write data record - key and data, unblocked records 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Oescri ptlOn Hex Description 

CN1* B1 Search 10 CN6+3 40 CC 5 MT set off for 1st CP 22 in chain 
equal (MT) 

CN2 08 TIC CN1 XX CN2+4 used 0 See description of CN2+4 and CN2+5 
as buffer below 
flags 

Transfer is set when records are blocked 

CN3 08 TIC CN4 00 0 or when data only (instead of key and 
data) is read or written 

OE Read key and Buffer 
SKIP bits set on in CN3 and CN4 for data address and 80 DC KL 

00 Write key and write check processi ng 
data offset 

CN4 
06 Read data Buffer 

40 
CC (off when Fixed-length records: the blocksize 

05 Write data address end of chain) 
OL 

(OLl is constant so the count field is 
and offset unless CN5 is set at open 

used for RPS) Variable-length records: the actual 
block size is set in the count field by 
the EOB routine each time this CP is 
executed 

CN5 08 TIC Next CN1 00 0 Transfer to next CP 22 in chain if record 
is not last or not RPS 

** If RPS, and record is not last on track 
88 TIC WIREAOSC 00 0 and last in chain, transfer to ROCNT 

and ROSECTOR for read only. 

22 Read sector CN2+6 00 1 Save sector of record read for PUTX. 

CN6 M B B C C H H R Set from W1 LPOR or link field in 
overflow record 

CN7 Address buffer and offset Set from OCBBUFCB init. 

* If RPS is present and this channel program is not chained from CP 24, it will be preceded by a set sector and a TIC. The 
set sector and TIC are located in the work area. If the channel program is chained from CP 24, the set sector will be per­
formed in CP 24. 

**Wl0SECT of channel program is writing. 

The following is a description of buffer flags at CN2+4 and CN2+5. 

CN2+4 CN2+5 

BIT 0 Buffer marked for PUT X BIT 0 1 . . End of track 
1 Overflow record 
2 1 Key and data to be read 

0 Data only to be read 
3 End of data buffer 
4 Input error 
5 Unwritable block 
6 Unreachable block 
7 Reserved 

272 OS ISAM Logic 



CHANNEL PROGRAM 22B 

Read/Write data records-data only, unblocked records; all blocked records 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

CN1* B1 Search I D equal CN6+3 40 CC 5 MT is set for first CP 22 In chain 

(MT) 

CN2 08 TIC CN1 XX CN2+4 used 0 See description of CN2+4 and CN2+5 
as flags for below, CP 22A 
buffer de· 
scription 

CN3 08 TIC CN4 80 DC (ignored) KL 

CN4 
06 Read data Buffer 

40 
CC (off when Fixed length records: the block size 

05 Write data address last in chain 
DL 

(D L) is constant so the count field is 
and offset unless CN5 set, at open time. 

is used for 
RPS) Variable length records: the actual 

block size is set in the count field by 
the EOB routine each time this CP is 
executed. 

CN5 08 TIC Next CN 1 00 0 
Transfer to 1st CCW in next CP22 
in chain if not lost in chain or if 
not RPS 

WIREADSEC** If RPS, and record is not last on track 
88 TIC 00 0 and last in chain, transfer to RDCNT 

and RDSECTOR for read only. 
-

22 Read sector CN2+6 00 1 Save sector of record read for PUTX 

CN6 M B B C C H H R Set from WI LPDR or link field in 
overflow record 

CN7 Address buffer and offset Set from DCBBUFCB 

*See note to CP22A. 

**W10SECT if channel program is writing. 

Section 7: Appendixes 273 



CHANNEL PROGRAM 23 

Search hi-level indexes, track index, and data track for SETL K or KC 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

CS1 31 Search I D equal W1IMBBCC+3 40 CC 4 Position read head to first index track 

CS1A 08 TIC CS1 00 0 

CS1B 69 Search key high Key address 60 CC, SLI KL Too far along index 

or equal 

CS1C 08 TIC CS2 00 0 No 

CSlO 
03 NOP 

CSlO+5 60 CC, SLI 1 
Set sector to zero if R PS 

23 Set sector Yes, position to index point. 

CS1E 1A Read home 50 CC,SK 5 Position to home address 

address 

CS2 E9 Search key high Key address 40 CC KL Key address passed in register 0 

or equal (MT) 

CS3 08 TIC CS2 00 0 

CS4 06 Read data CS6+7 40 CC (off for 10 CC set on when read cylinder index; 

master indexes) read data of current index entry 

CS5 08 TIC CS8 00 0 

CS6 - - - - - - - M 

CS7 B B C C H H R F Address of next lower level index 

CS8 P Seek CS7 40 CC 6 Seek track index. See Figure 82 for 
value of P (seek command code). 

CS80 
03 NOP 

CS80+5 60 CC, SLI 1 
23 Set sector 

CS9 31 Search I D equal CS7+2 40 CC 5 Starting CCW when only track index; 
position read head to RO to track index 

CS9A 08 TIC CS9 00 0 

CS10 92 Read count (MT) W1WCOUNT 40 CC 8 Read count of current index entry 

(normal or overflow) 

CS11 69 Search key high Key address 40 CC KL Key address passed in register 0 
or equal 

CS12 08 TIC CS10 00 0 

CS13 06 Read data CS17+7 40 CC 10 Read data of current index entry 
(normal or overflow) 

CS14 92 Read count (MT) W1WCNXDM 40 CC 8 Read count of next Index entry 
(normal or overflow) 

(continued) 

274 OS ISAM Logic 



CHANNEL PROGRAM 23 (continued) 

Search hi-level indexes, track index, and data track for SETL K or KC 

CCW Command Code Flags 
Address Count Comments 

No. Hex Description Hex Description 

CS15 06 Read data W1WDNXDM 60 CC, SLI 10 Read data of next index entry (normal 
or overflow) 

CS16 08 TIC CS19 00 0 

CS17 - - - - - - - M 
B B C C H H R F Track index entry contains address of 

CS18 prime data or overflow track containing 
record 

C19 P Seek CS18 40 CC 6 Seek data track_ (Figure 81) 

CS19A 
03 NOP 

CS19A+5 60 CC, SLI 1 
Set sector to zero if R PS 

23 Set sector Position to start of track if RPS 

CS20 31 Search 10 equal CS18+2 40 CC 5 Search to the first data record on track 

CS21 08 TIC CS20 00 0 

CS26 08 TIC CS22 00 0 

CS25 12 Read count First CN6+3 60 CC, SLI 5 Read count (CCHHR) of record into 
first CP22; R set to 0 

CS22 
29 Search key equal Key address 60 CC, SLI (on KL Search for desired record (29) or search 
69 Search key high for KC) for desired block (69) 

or equal 

CS23 08 TIC CS25 00 0 

CS24 
03 NOP 00 

20 SLI Exit when record found 22 Read sector W11SECT 1 

Section 7: Appendixes 275 



CHANNEL PROGRAM 24 

Read track index entries 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

CNS' 31 Search ID equal W1WCOUNT 40 CC 5 W1WCOUNT - count of current index 
entry; set from W1WCNXDM 

CN9 OS TIC CNS 00 0 

CN10 06 Read data WlDCXDM 40 CC 10 Read data of current normal index entry 

CN 11 S6 Read data (MT) W1WOVFL 40 CC 10 Read data of current overflow index 
entry 

CN12 92 Read count (MT) W1WCNXDM 40 CC S Read count of next normal or dummy 
entry 

CN13 06 Read data W1WDNXDM 40 CC 10 Read data of next normal or dummy 
entry 

CN14 1B Seek HH CN6+1 40 CC 6 Seek to track in W1 LPDR 

CN14A 
03 NOP 

CN14A+5 60 CC, SLI 1 
Set sector to zero 

23 Set sector Position to first record next track 

CN15 OS TIC CN1 00 0 Transfer to read or write the record 

* If RPS is present this channel program will be preceded by a set sector - TI C located in the work area. 

276 OS ISAM Logic 



CHANNEL PROGRAM 25 

Read track index entries for SETL I 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

CN20* 31 Search I D equal W1IDAD 40 CC 5 Search to record at actual direct·access 
address 

CN21 08 TIC CN20 00 0 

CN22 DE Read key and CN7+5 60 CC, SLI KL Read record key into 1 st buffer 

data 

~N23 18 Seek head CN31+1 40 CC 6 Seek to beginning of track index 

iCN23A 
)3 NOP 

CN23A+5 60 CC, SLI 1 
Set sector to zero 

23 Set sector Position to first record of next track 

CN24 1A Read home CN31 50 CC,SK 5 Position read head to start of track 

address 

CN25 E9 Search key high CN7+5 40 CC KL Serially search index tracks for index 

or equal (MT) entry containing key 

CN26 08 TIC CN25 00 0 

CN27 06 Read data W1WDCXDM 40 CC 10 Read data of current normal index 

entry 

CN28 86 Read data (MT) W1WOVFL 40 CC 10 Read data of current overflow index 
entry 

CN29 92 Read count (MT) W1WCNXDM 40 CC 8 Read count of next normal or dummy 
entry 

CN30 06 Read data W1WDNXDM 00 10 Read data of next normal or dummy 
entry 

CN31 MBBCCHHR Address of track index; set from lower 
entry with HH=O, R=l 

* If RPS is present this channel program will be preceded by a set sector-TIC located in the work area. 

Section 7: Appendixes 277 



CHANNEL PROGRAM 26 

Extension of CP23 to read overflow chains 

CCW Command Code Flags 
Address Count Comments 

No. Hex Description Hex Description 

CS27* 31 Search I D equal W1IMBBCC+3 40 CC 5 Search to first record of overflow chain 

CS28 08 TIC icS27 00 0 

CS29** 69 Search key high Key address 40 CC KL SLI on when KC, search for desired 
or equal record in chain 

CS30 08 TIC CS32 00 0 

CS31 03 NOP 20 SLI 1 Exit when record found if RKP = 0, 
unblocked 

08 TIC CN4 of buffer 20 1 Read in record if R KP=O or blocked 
format 

CS32 06 Read data CS34+7 60 CC, SLI 10 Read link field of overflow record 

CS33 08 TIC CS36 00 0 

CS34 - - - - - - - M Address of overflow record 

CS35 B B C C H H R F 

CS36 P Seek CS35 40 CC 6 
Seek overflow track containing next 
record in chain. See Figure 81 for 
value of P (seek command code). 

CS37 31 Search I D equal CS35+2 40 CC 5 Search for overflow record 

CS38 08 TIC CS37 00 0 

CS39 08 TIC CS29 00 0 

*If RPS is present this channel program will be preceded by a set sector-TIC located in the work area. 
**Search key equal if RKP=O, RECFM=F and not SETL KH or SETL KDH. 

278 OS ISAM Logic 



CHANNEL PROGRAM 31A 

Reads the key of the last overflow track index en.try into the Key save area 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

CAl 31 Search 10 equal IOBASEEK+3 40 CC 5 Search for the last normal track index 
entry 

CA2 08 TIC CAl 00 

CA3 9E Read count, 90 DC, SK 8 Read last overflow track index entry 
key, data 

CA4 00 Key save 80 DC KL Read key of last overflow track index 
area entry into key save area 

CA5 00 10 SK 10 
50 CC, SK is turned 

on if CP31B is 
executed 

CHANNEL PROGRAM 31B 

Reads the count and data of the last prime data block into the first buffer specified in the Buffer Control Table 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

CAl lB Seek head CA6+1 40 CC 6 Seek to the head of the last prime 

data block 

CA2 31 Search 10 equal CA6+3 40 CC 5 Search for the next to last prime data 

record 

CA3 08 TIC CA2 

CA4 12 Read count First bu ffer 40 CC 8 Read count of the last prime data block 
into the first buffer (buffer control 
table + 9) 

CA5 06 Read data First buffer 00 DL Read data of the last prime data block 
+8 into the first buffer + 8 

CA6 M B BCCHHR MBBCCHHR of DCBLPDA, R is set 
to R-l 

Section 7: Appendixes 279 



CHANNEL PROGRAM 87 

Reads high-level Index into user work area (specified by DCBMSHI)-thls channel program is in module IGG0192P 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

CZl 31 Search ID equal IOBSEEK+3 40 CC 5 
Search for first entry of high level index 

CZ2 08 TIC CZl 00 0 

CZ3 8E Read key and DCBMSHI 40 CC 0 Read it into the work area. There are 
data (MT) several copies of CZ3. The channel 

program is executed as many times as 
needed to read in the entire index. 

280 OS ISAM Logic 



CHANNEL PROGRAM 123W 

Addendum to CP 12A and CP 12B or to CP 13A and CP 13B when write-checking is specified 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Descrtption Hex Description 

CEAOO 
03 NOP 

IOBSECT 
23 Set sector 

60 CC, SLI 1 

CEA 31 Search 10 equal 40 CC 5 
Search for record or block again 

CEB 08 TIC CEA 00 0 

CEE 1E Read count, 10 SK 0 Read It back 
key, and data 

CHANNEL PROGRAM 123WV 

Addendum to CP 12AV and CP 12B V when write-checking is specified 

CCW Command Code Flags 
Address Count Comments 

No. Hex Description Hex Descrtption 

CEAOO 
03 NOP 

CEAOO+5 40 CC 1 Set sector to 0 
23 Set sector 

CEAO 31 Search 10 equal COO 40 CC 5 
Search for track capacity record (RO) 

CEA05 08 TIC CEAO 00 0 

CEA1 06 Read data 70 CC, SK, SLI 3 Read capacity record 

CEA2 08 TIC CEO or CEA3 00 0 Transfer to CEO if the full track is 
being checked 

CEA3 
03 NOP 

IOBSECT+1 40 CC, SLI 1 
23 Set sector 

Search for first data record written 
CEA 31 Search 10 equal IOBSEEK+3 40 CC 5 

CEB 08 TIC CEA 00 0 

CEO 

I 
1E Read count, 90 DC, SK !:l 

keY,and data Read record back. 
The number of CEE-CEF sets equals 

CEE OE Read key and 50 CC,SK KL+DL DCBHI RPD, the CC flag is set off in 
data the appropriate CCW depending on how 

many records are read. 
CEF 1E Read count, key, 90 DC, SK 8+KL+ 

and data DL 

Section 7: Appendixes 281 



CHANNEL PROGRAM CLOSECCW(l) 

Reads format-2 DSCB-this channel program is in module IGG0202D 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

DXCCW1 31 Search 10 equal Format-2 60 CC, SLI 5 Search for format-2 DSCB 
DSCB address 

DXCCW2 08 TIC DXCCW1 00 0 

DXCCW3 DE Read key and DXDADDR 00 140 Read format-2 DSCB into work area 
data 

CHANNEL PROGRAM CLOSECCW(2) 

Writes format-2 DSCB back in the VTOC- this channel program is in module IGG0202D 

CCW Command Code Flags 
Address Count Comments 

No. Hex Description Hex Description 

OX 31 Search 10 equal Format-2 60 CC, SLI 5 Search for format-2 DSCB position 

CCWl DSCB address 

OX 08 TIC DXCCW1 00 0 
CCW2 

DX 00 Write key and DXDADDR 40 CC 140 Write format-2 DSCB back in VTOC 
CCW3 data 

OX 31 Search 10 equal Format-2 60 CC, SLI 5 Search to format-2 DSCB again 

CCW4* DSCB address 

OX 08 TIC CCW4 00 0 
CCW5* 

OX OE Read key and 10 SK 140 Read back 
CCW6* data 

*Write-validity-check 

282 OS ISAM Logic 



CHANNEL PROGRAM VXCCW (lA) 

Reads to EOF or end of LPDA track for prime data-this channel program is in module IGG01920 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

VX 31 Search I D equal DS2LPRAD+3 40 CC 5 

CCWl 
Search to the last prime data record 

VX 08 TIC VXCCWl 00 0 
CCW2 

VX 
08 VXCCW3A 00 Skip first read count 

CCW2A TIC 0 

VX 92 Read count, VXCCW6 60 CC, SLI 8 Read count field (normally, count of 
CCW3 (MT) EOF) 

VX 
06 Read data WA* 

CCW3A 
60 CC,SLI DL Read in block 

VX 92 Read count, VXCCW7 60 CC, SLI 8 Executed when DS2LPRAD IS incorrect 

CCW4 (MT) 

VX 
CCW4A 

06 Read data WA* 60 CC,SLI DL Read in block 

VX 08 TIC VXCCW3 00 0 

CCW5 

VX C C H H R KL DL DL Count field 

CCW6 

VX C C H H R KL DL DL Count field 

CCW7 

*The work area is obtained by a GETMAIN. 

Section 7: Appendixes 283 



CHANNEL PROGRAM VXCCW(lB) 

Reads to EOF for independent overflow or end of LPDA track for prime data -this channel program is in 
modules IGG01922 and IGG01950 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

VX 31 Search I D equal DS2LOVAD+3 40 CC 5 Search to the last overflow record 

CCW1 

VX 08 TIC VXCCW1 00 0 
CCW2 

VX 9E Read count, key, VXCCW6 60 CC, SLI 8 Read count field (should be count of 

CCW3 and data (MT) EOF) 

VX 9E Read count, key, VXCCW7 60 CC, SLI 8 Executed when DS2LOVAD is incorrect 

CCW4 and data (MT) 

VX 08 TIC VXCCW3 00 0 
CCW5 

VX C C H H R KL DL DL Count field 

CCW6 

VX C C H H R KL DL DL Count field 
CCW7 

CHANNEL PROGRAM VXCCW(2) 

Reads to end of track - this channel program is in module IGG01920 

CCW Command Code Flags 

No. 
Address Count Comments 

Hex Description Hex Description 

VX 12 Read count SAVEREG 60 CC, SLI 8 Read count of each record on track 
CCW4 

VX 08 TIC VXCCW4 00 0 CP will end with count of last record on 
CCW5 track in SAVEREG 

284 as ISAM Logic 



INDEX 

Indexes to program logic manuals are consolidated in the publication IBM System/360 Operating System: 
Program Logic Manual Master Index, GY28-6717. For additional information about any subject listed 
below, refer to other publications listed for the same subject in the Master Index. 

abnormal end appendages 
(see Appendages) 

adding records to data set 
basic description 213-214 

allocating space on ISAM data set 152 
appendage codes 201-202 
appendage definition 2 
appendages 

BISAM 
codes 201-202 
diagram 66 
modules 72 
pointers to 90 
processing 65,69 
vector table 65,90 

QISAM (load mode) 
abnormal end 29 
channel-end 28 
pointers to 34 
processing 23,30 
vector table 34 
write checking functions 29 

QISAM (scan mode) 
abnormal end 49 
channel-end 49 
codes 201 
GET 49,44 
modules 52 
pointers to 54 
processing 49,50 
PUTX 50,47 
SETL 49,42 
vector table 54 
write-checking function 50 

Area Y 185,181,34 
Area Z 180,179,34 
asynchronous codes 
asynchronous routines -- BISAM 

codes 202 
flow diagram 66,69 
modules 72 
pointers to 90 
vector table 65 

II 
BCB 

(see buffer control block) 
BCT 

(see buffer control table) 
beginning-of-buffer (BOB) routine 

flow diagrams 26,30,31,32 
processing 27 

BISAM 
channel programs 

(see Channel programs, BlSAM) 
code phase 91 
control blocks and work areas 89-91 
DCB work area 193-195 
flowcharts 

processing routines 134-138 
channel program flow 76-88 

open phase 55 
processing flow 69 
processing phase 61 

buffer control block 
BISAM 

format 172-174 
pointers to 91 
use by dynamic buffering routine 67 
use by open routines 172 

QISAM 174 
buffer control table (load mode) 

format 175-179 
pointers to 34 
use by open routines 175 

Buffers 
BlSAM 

conuoi biock i 72-i 74 
dynamic buffering 67-68 
pointers to 90 
queues 91 

QISAM(scan mode) 
control block 174 
control technique 39 
initialization 37 
pointers to 40,54 
queues and processing 39-42 
scheduling 45 

Section 7: Appendixes 285 



Buffers (continued) 
QISAM (load mode) 

closing functions 33 
control block 174 
control table 175-179 
pointers to 34 
processing 15,34,35 
scheduling 23-27 

C-bit 178 
CCWs, explanation of 222 
Chaining 

channel program 22 
scan mode 38,45 

Chains 
(see overflow clnins) 

Channel program descriptions and 
formats 226-290 

CLOSECCW(I) 286 
CLOSECCW(2) 287 
VXCCW(1A) 288 
VXCCW(1B) 289 
VXCCW(2) 290 
1 226-227 
2 226 
4 229 
5/5W 230 
6/6W 231-232 
7/7W 233 
8 234-235 
9A 236 
9B/9BW 236 
9C/9CW 237 
lOA/lOAW 238 
lOB/lOBW 239 
llA 240 
llB/llBW 241 
12A 242 
12B 243 
12C/12CW 244 
12AV 245 
12BV 246 
13A 247 
13B 248 
13C/13CW 249 
14/14W (fixed length records) 250-252 
14/14W (variable length records) 253-256 
15 257 
16 258 
17/17W 259 
18 260-261 
19/91 260-261 

20 (fixed length records) 262-264 
20 (variable length records) 265-267 
20A 268 
20B 269 
20C 270 
21 271 

286 OS ISAM Logic 

22A 272 
22B 273 
23 274-275 
24 276 
25 277 
26 278 
31A 279 
31B 279 
87 280 
123W 281 
123WV 281 
Channel programs 

BISAM 
flow-of-control (non write KN) 76 
flow-of-control (write KN) 77-78 
functions 71-76,60 
modules 73 
list of 143 

QISAM (load mode) 
flow-of-control 31-32 
functions 32-33 
modules 30 

QISAM (scan mode) 
functions 51-52 
modules 51 
queues 55 

Check routine - BISAM 
description 68 
flow diagram 68 

Close phase executors and modules 
common 13-14 
BISAM 91 
errors during 205-205,53 
flow-of-control 14 
QISAM 

load mode 33-35 
scan mode 52,204 

COCR 
(see cylinder overflow control record) 

codes 
appendage 201-202 
asynchronous 202-203 
exception (error) 204,205 

common close 13-14,9 
channel programs used 286-287 
flow diagram 14 
module 13 

common open 9-12 
channel programs used 288-289 
modules 9 

count field 216 
CP 

(see channel programs) 
cylinder index 

BISAM processing 77,71 
definition 212 
direct access extents 157,158,182 
format 216 
load mode processing 31-32 

Cylinder overflow area 212 
cylinder overflow control record (COCR) 

definition 212 

I 

\ 



cylinder overflow control record (COCR) (continued) 
BISAM processing 77-88 
format 218 

data control block (DCB) 
BISAM processing use 89-91 
format 149-158 
initialization 

BISAM 56 
common 9 

QISAM 
load mode 16 
scan mode 37 

integrity feature 9 
QISAM - load mode processing use 34 
QISAM - scan mode processing use 54 

data extent block (DEB) 
BISAM processing use 89-91 
format 166-169 
initialization 11 
QISAM 

load mode processing use 34 
scan mode processing use 54 

data event control block (DECB) 
BISAM processing use 89,69 
format 159-160 

data set control block (DSCB) 
format 161-165 
use by open routines 9,12 
use by close routines 13 

data set organization 209 
adding records of data set 213 
indexes 211 

detail description 215 
overflow area 212 
prime data area 211 

DCB 
(see data control block) 

DCB work area 
BISAM 

format 193-195 
initialization 57 
pointers to 90-91 

QISAM 
load mode 
fmmat 180-185 
pointers to 34 

QISAM 

DCW 

scan mode 
format 187-192 
pointers to 54 

(see DCB work area - BISAM) 
DEB 

(see data extent block) 
DECB 

(see data event control block) 

deletion, record 
BISAM asynchronous code 202 
count fields tagged for deletion 156,164 
processing 78-88 

disable SVC 63-64 
DSCB 

(see data set control block) 
DS2 

(see data set control block) 
dummy index entries 

creation 35 
format 212,216-217 

duplicate records 
error indications 204-205 
processing 78-88 

dynamic buffering routine - BISAM 
description 67,60 
control block 170-172 
flow diagram 67 
initialization 58 
pointers to 90 

II 
ECB 

(see event control block) 
enable, BISAM I/O interruptions 61 
end-of-buffer (EOB) routine 

load mode 
description 27,30 
fields used 174-179 
flow diagram 27 

scan mode 
description 45,46 
flowchart 126 

end-of-cylinder processing 
fields used 
flowcharts 31,32 

end-of-extent processing 
fields used 174-179 
flowcharts 31,32 

end-of-file (EOF) mark processing 78-88 
end-of-track processing 

fields used 174-179 
flowcharts 31,32 

end index entries, format 212 
cylinder 220 
master 221 
track 219 

EOB 
(see end-of-buffer routine) 

EOF 
(see end-of-file mark) 

error codes 
BISAM 205 
QISAM 204 

Section 7: Appendixes 287 



error descriptions 
duplicate record 78-88 
record length - BISAM 65 
sequence error 24 
write K with read KU 63 

error queue - BISAM 
format 91,195 
flowchart references 137 
use in processing 65,69 

ESETL macro instruction 39 
ESETL routine - scan mode 

description 48 
flowchart 121 

event control block 
BISAM 159 
QISAM 

load mode 170,34 
scan moae 170,54 

exception codes 
BISAM 205 
QISAM 204 

EXCP 
BISAM 69,201 
QISAM 

load mode 28,29 
scan mode 49 

executors 
(see open executors and close executors) 

extents 157,163 

II 
flowcharts 

BlSAM macro time routines 136-138 
BISAM open executor 134-136 
common close executor 114-115 
common open executors 95-100 
load mode open executors 101-108 
scan mode appendage routines 130-132 
scan mode close executors 133 
scan mode open executors lO9-113 
scan mode processing routines 116-129 

format, data set 
(see data set organization) 

free queue - scan mode 
format 40 
flow diagram references 43-48 
use in processing 43-48 

FREEDBUF macro instruction 63,173 
(see also dynamic buffering routine) 

full track index 
full track index write 16 
track index save area 196 

GET appendage routine - scan mode 

288 OS ISAM Logic 

description 49 
module 51 
pointers to 54 

GET macro instruction 39,204 
GET routine - scan mode 

description 43-44 
flowchart 116 
module 51 
pointers to 54,149 

a 
inactive index entries 219-221 
index 

(see cylinder, master, or track) 
index location table -- load mode 

format 180,182 
initialization 
pointers to 34 

input/output block (lOB) 
BISAM 

pointers to 90-91 
processing use 61-62,106,172-174 
queues 91,193 

format 170-172 
channel program use 226 
codes 201-203 
QISAM 

lOB 

load mode 34,179 
scan mode 54,189 

(see buffer control table) 
integrity feature, DCB 

(see data control block integrity feature) 
ISAM data set 

(see data set organization) 
ISL 

(see DCB work area - load mode) 

II 
keysave area - load mode 33,34 

II 
levels of indexes 

description 211-212 
format 216-221 

library, SVC 1 
load mode 14 

channel programs 31 
descriptions flow of control 31-32 

close phase 33-35 
control block and work areas 34 



load mode (continued) 
DCB work area 180-185,34 
flow diagrams 25-29 
open phase 15-23 
processing phase 23-33 

locate mode processing 26 

II 
M=O DEB extent 34,167 
macro instructions 

(see GET, PUT, etc.) 
Macro-time routines 

(see privileged and nonprivileged) 
master indexes 

format 221 
BISAM processing 76,77 
direct access extents 149,163,182 
QISAM load mode processing 31-32 

MBBCCHHRFP 216 
modules directory 143-145 
move mode processing 24 

II 
N/2 buffers 45 
new high key records 

BISAM 78,83-85 
QISAM load mode 24 

nonprivileged macro-time routine - BISAM 
description 64 
flow diagram 64,69 
modules 70 
pointers to 90 

normal track index entry 
description 212 
format 216-219 

nrO'Qni'7~tin.... A~i'Q fIlPt ...... c-... ............ _ ............. , --- .. ~-

(see data set organization) 
open phase executors and modules 

BISAM 59-60 
common 9-12 
QISAM 

load mode 15-16 
scan mode 37-38 

overflow records and chains 
BISAM processing 76-77 
description 212 
format 218 
QISAM - scan mode processing 38,53,54 

overflow track index entry 
description 212 
format 216-219 

II 
padding records 35 
PF-bit 178 
phase 

(see open, close, or processing) 
pointer diagrams 

BISAM 89-92 
QISAM 

load mode 34 
scan mode 54 

prime data area 
adding records to 213 
pointers to 31 

prime data track, shared 
(see shared track) 

privileged macro-time routine - BISAM 
description 62-64 
flow diagrams 62,69 
modules 70 
pointers to 90 

processing phase 
BISAM 60 
QISAM 

load mode 23 
scan mode 38 

PUT appendage 
(see appendage routines -load mode) 

PUT macro instruction 23 
exception codes set 204 

PUT routine - load mode 
description 24-25 
flow diagrams 25 
pointers to 34 

PUTX appendage 
(see appendage routines scan mode) 

PUTX macro instruction 39 
exception codes set 204 

PUTX queue - scan mode 
format 40,54,191 
flow diagram references 46,48 
use in processing 39-42 

PUTX routine - scan mode 
description 47 
flowchart 118 
pointers to 54 

QISAMmodes 
(see load mode and scan mode) 

queues 
BISAM load mode 34 
QISAM 

scan mode 40-42,54 

II 
reopen data set 

(see resume loading) 

Section 7: Appendixes 289 



Read appendages 
(see appendage routines - BISAM) 

READ macro instruction 56 
exception codes set 205 

Read queue - scan mode 
format 40-42,54 
flow diagram references 43-48 
use in processing 38-48 

RELSE macro instruction 39 
RELSE routine 

description 49 
flowchart 118 
pointers to 54 

resume loading 20 
channel programs 31-33 
initialization 21-22 

rotational position sensing 
devices 3 
identification in DEB 11 
start I/O appendages 2-3 

II 
scan mode 

channel programs 51,52 
close phase 52 
control blocks and work areas 52,54 
DCB work area 187-192,54 
flowcharts 116-133 
open phase 37 
processing phase 38 
queues 40-42,54 

schedule routine -- scan mode 
description 45 
flowchart 122 
pointers to 54 

scheduling of BISAM 
channel programs 61-63 

SELT macro instruction 39 
exception codes set 204 

SETL routine - scan mode 
description 42 
flowchart 119 
pointers to 54 

shared track 
channel programs used 51,33 
fields used 

BCB 178 
DCB 156 
DCB work area (load) 180 
DSCB 164 

initialization 23 
index format 216-217 
processing 33 

stages of open and close executors 1-4 
status indicators 

buffers - load mode 173 
DCB 157 
DSCB 164 
scan mode 189 

SYNAD macro instruction 
(see synchronous error routine) 

SYNADAF macro instruction 70 
synchronous error routine 

290 OS ISAM Logic 

address 152 
BISAM use 68-70 
QISAM 

load mode use 24,27 
scan mode use 42-49,52 

a 
T-bit 178 
TISA 

(see track index save area) 
track index 

BISAM processing 76-89 
description 219 
format 216-217 
QISAM 

load mode processing 31-32 
track index save area (TISA) 196-197 
track, shared 

(see shared track) 

II 
unit control block (UCB), pointers to 34,54 
unreachable block error 205 
unscheduled queue - BISAM 

format 91 
pointers to 91,194 
use in processing 62,64,66,171 

update processing - BISAM 76,60 
update queue - BISAM 

format 91 
pointers to 91,194 
use in processing 60 

User queue - scan mode 
format 40,54,190-191 
flowchart references 44,46,47 
use in processing 39-42 

II 
WAIT macro instruction - BISAM 55 
Write appendages 

(see appendage routine - BISAM) 
WRITE macro instructions 55 

exception codes set 205 
WRITE K processing 58,76 

channel programs 73 
flow of control 77,88 

differing methods of adding records to a data 
set 71-72 

Write queue - scan mode 
format 40,54,191 
flowchart references 44,46,47,48 
use in processing 39-42 



READER'S COMMENT FORM 

OS ISAM Logic Order Number GY28-6618-1) 

Your comments about this publication will help us to produce better publications for your use. If 
you wish to comment, please use the space provided below, givin~ specific page and paragraph 
references. 

Please do not use this form to ask technical questions about the system or equipment or to make 
requests for copies of publications. Instead, make such inquiries or requests to your IBM represen­
tative or to the IBM Branch Office serving your locality. 

Reply requested Name 

Yes D Job Title 

No D Address 

_________________________ up ______________________ __ 

No postage necessary if mailed in the USA 



Order Number GY28-6618-5 

YOUR COMMENTS, PLEASE ... 

This publication is one of a series which serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. Your answers to the questions on the back.of 
this form, together with your comments, will help us produce better publications for your 
use. Each reply will be carefully reviewed by the persons responsible for writing and 
publishing this material. All comments and suggestions become the property of IBM. 

Please note: Requests for copies of publications and for assistance in utilizing your IBM 
system should be directed to your IBM representative or to the IBM sales office serving 
your locality. 

fold 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. 

POSTAGE WILL BE PAID BY. 

IBM Corporation 
Monterey & Cottle Rds. 
San Jose, California 
95114 

Attention: Programming Publications, Dept. D78 

fold 

International Buslne .. Machines Corporation 
Data Proce .. lng Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

FIRST CLASS 
PERMIT NO. 2078 
SAN JOSE, CALIF. 

fold 

fold 





Order Number GY28-6618-5 

Intematlonal Business Machines Corporation 
Da .. Proce .. lng Division 
1133 Westchester Avenue, White Plains, New York 10804 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Piau, New York, New York 10017 
(lntematlonal) 

Ii , 


