IBM

SYSTEM/360 COBOL
COBOL Program Fundamentals
Reference Handbook

Programmed Instruction Course

Copies of this publication can be obtained through IBM Branch Offices.,
Address comments concerning the contents of this publication to:
IBM DPD Education Development, Education Center, Endicott, New York

© International Business Machines Corporation, 1966

(3/66)

PREFACE

This reference handbook provides useful
information for people who want to be
able to read COBOL programs with a high
degree of comprehension. It is designed
to be studied in conjunction with the
COBOL Program Fundamentals programmed
instruction textbook (Form R29-0205).

The reader of these publications is
expected to have prior experience in
data processing and computer programming,
as well as knowledge of System/360
features, but no prior knowledge of
COBOL.

This publication is not intended to
provide all of the information a
student needs in order to compose
original COBOL programs. Additional
information for that purpose is given
in the next course of this series,
Writing Programs in COBOL. The
publications that make up that course
are a programmed instruction text
(Form R29-0210) and a reference hand-
book (Form R29-0211).

Complete specifications for System/360
COBOL may be found in the reference
manual, IBM Operating System/360 COBOL
Language (Form C28-6516-3).

ACKNOWLEDGEMENT

The following information is reprinted from COBOL-61 EXTENDED, published
by the conference on Data Systems Languages (CODASYL), and printed by

the U. S. Government Printing Office.

This publication is based on the
COBOL System developed in 1959 by
a committee composed of government
users and computer manufacturers.
The organizations participating

in the original development were:

Air Materiel Command,
United States Air Force
Bureau of Standards,
Department of Commerce
David Taylor Model Basin,
Bureau of Ships, U.S. Navy
Electronic Data Processing Divi-
sion, Minneapolis-Honeywell
Regulator Company
Burroughs Corporation
International Business Machines
Corporation
Radio Corporation of America
Sylvania Electric Products, Inc.
Univac Division of Sperry-Rand
Corporation

In addition to the organizations
listed above, the following
organizations participated in the
work of the Maintenance Group:

Allstate Insurance Company

Bendix Corporation, Computer
Division

Control Data Corporation

DuPont Company

General Electric Company

General Motors Corporation

Lockheed Aircraft Corporation

National Cash Register Company

Philco Corporation

Royal McBee Corporation

Standard 0il Company (N.J.)

United States Steel Corporation

This manual is the result of
contributions made by all of the
above-mentioned organizations.

no warranty, express or implied,
is made by any contributor or by
the committee as to the accuracy
and functioning of the programming
system and language. Moreover, no
responsibility is assumed by any
contributor, or by the committee,
in connection therewith.

(3/66)

if

It is reasonable to assume that a
number of improvements and addi-
tions will be made to COBOL., Every
effort will be made to insure that
the improvements and corrections
will be made in an orderly fashion,
with due recognition of existing
users' investments in programming.
However, this protection can be
positively assured only by individ-
ual implementors.

Procedures have been established
for the maintenance of COBOL.
Inquiries concerning procedures
and methods for proposing changes
should be directed to the Executive
Committee of the Conference on
Data Systems Languages.

The authors and copyright holders
of the copyrighted material used
herein: FLOW-MATIC (Trade-mark of
the Sperry-Rand Corporation),
Programming for the UNIVAC ® I and
II, Data Automation Systems © 1958,
1959, Sperry-Rand Corporation;

IBM Commercial Translator, Form No.
F28-8013, copyrighted 1959 by IBM;
FACT, DSO 27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell; have
specifically authorized the use of
this material, in whole or in part,
in the COBOL specifications. Such
authorization extends to the repro-
duction and use of COBOL specifi-
cations in programming manuals or
similar publications.

Any organization interested in
reproducing the COBOL report and
initial specifications in whole or
in part, using ideas taken from
this report or utilizing this
report as the basis for an instruc-
tion manual or any other purpose
is free to do so. However, all
such organizations are requested
to reproduce this section as part
of the introduction to the
document. Those using a short
passage, as in a book review, are
requested to mention "COBOL" in
acknowledgement of the source, but
need not quote this entire section.

TABLE OF CONTENTS

- Introduction

Introduction to. COBOL ., . . . 3
COBOL programming system
te ms * L] L] * L] L3 * . - L] L) 4

- Language Elements

Language elements «

L] Literals. L] L] [] [] [] ® [] L] (] .12
Reserved words. « « « « « « 8

Level numbers . . « « « « « 13
Programmer-supplied names . Pictures. « « « o« « « « « . .14

SYmbO].S [} L]

HOWV

1
1

Program Structure and Contents

Program structure 16-17
Program contents.18

Identification Division

Identification division
entries « o ¢ o o o o o o 21

Environment Division

Environment division
entriES 3 0 'y o . ° . . 25-26

Data Division

Data division entries . . 28-30 File description entry. . 32-34
System/360 COBOL terms Record descriptions . .,. . .35
for units of data31 Item description entries. 36-42

: Procedure Division

Procedure division Procedural words. 48=51
entries . . .+ + i o o o 44-45 Test conditions 52-54
Proceduresc . e o . * o e o 047 FlOW Of Control e o o . . 55-57

Case Study |

Caae stUdY. e o o o s o o 61-67

(3/66) v

Introduction

INTRODUCTION TO COBOL

Orl in COBOL (COmmon Business Oriented Language) is the result of
an effort to establish a standard language for programming computers

to do business data processing. The original specifications for COBOL
were drawn up in 1959 by representatives of several computer manu-
facturers and users. The specifications have been revised and improved
several times since 1959.

Aims. COBOL is designed for producing source programs that are

Py standardized, using standard language elements in standard
entry formats within a standard program structure. COBOL
endeavors to provide one common language for all computers,

regardless of make or model.

° easy to understand, because they are written in English.
The bulk of every COBOL program is made up of English words
in entries that resemble English sentences. Good COBOL
programs are easy to read and comprehend, for non-~-programmers
as well as for programmers.

® oriented to business procedures, not to the technology of
computing machinery. This makes it possible for business
people who are not computer experts to use COBOL.

Differences. In order to adjust to major differences in computers,
certain language differences are allowed in COBOL for individual
computer systems, within the framework of one common language.
System/360 COBOL igs different in some ways from COBOL for other
computers. (This handbook is concerned only with System/360 COBOL.)

(3/66) 3

COBOL PROGRAMMING SYSTEM TERMS

COBOL program: a source program written in COBOL, from which an
object program is compiled.

Object program: the machine language program compiled from a COBOL
program.

Compile: to use a computer to produce an object program from a COBOL
program. During compilation, listings of the source and object programs
are printed, as well as diagnostic messages that pinpoint errors the
compiler has discovered in the COBOL program.

COBOL compiler: a program supplied by IBM that directs the computer
during compilation.

Source computer: the computer used to compile the object program.

Object computer: the computer used to execute the object program.

(3/66) 4

| Language Elements

LANGUAGE ELEMENTS

The COBOL language is made up of these elements:
° Reserved words
™ Programmer—-supplied names

(] Symbols

® Literals
) Level numbers
™ Pictures

Programmers compose programmer-supplied names, literals, and pictures.
0f course, there are rules that govern the choice and arrangement of
characters. Within the latitude permitted by the rules, however,
programmers are free to compose an almost infinite number’ of names,
literals, and pictures to suit particular needs in programs.

By contrast, the reserved words, symbols, and level numbers are
provided in fixed sets, from which programmers select the ones they
need. Programmers are not allowed to invent new reserved words,
symbols, or level numbers. Even so, there are rules to follow =--

for example, in determining which reserved word to use for a particular
entry.

Examples of elements. The sample COBOL program entry below contains
all six elements.

programmer-supplied reserved
name words literal

| N S

" Tol2] | [REIclolRIDI=iclolole] | Telilc|TURE] Xx[,| VALVE J2]7].

level pieture symbols

(3/66) 7

RESERVED WORDS

Approximately 250 English words and abbreviations have been set aside
to be used only for certain purposes. Special meanings have been
preassigned to the reserved words; therefore, the programmer

) does not define reserved words.

) has no way of changing the meanings of reserved words.
o cannot add words of his own to the reserved word list.
° cannot substitute other words for those on the list.

° must not alter or misspell reserved words.

° may use reserved words only for specified purposes.

Types of reserved words. Some of the main types of reserved words are:

° words that identify program units; for instance, SECTION,
ENVIRONMENT, and WORKING-STORAGE.

) words that identify or explain parts of entries; for
instance, BLOCK, PICTURE, and VALUE.

° words that specify actions to be taken, like READ, MOVE,
and ADD.

° words with specific functional meanings, such as NEGATIVE,
COMPUTATIONAL, and EQUAL.

) words that represent certain data values; for instance,
ZERO, SPACES, and HIGH-VALUE. (See "Figurative constants" below.)

Figurative constants. As a rule, it is up to the programmer to define
data items and to supply names for them. However, a few data items
with predefined values have been built right into the COBOL language.
The names of these built-in data items are reserved words which are
called "figurative constants".

The most frequently used figurative constants are ZERO and SPACE.
These reserved words (and their plural forms, ZERO or ZEROES, and
SPACES) represent the data characters zero and blank, respectively.
The programmer may use these words whenever zero or blank values are
required in a program; for instance, he might write MOVE ZEROS TO
TOTAL-WAGES in order to put all-zeros into a data item. Similarly, he
might write MOVE SPACE TO CONTROL-CODE in order to blank-out a data
item.

-

(Continued on next page)

(3/66) 8

RESERVED WORDS (continued)

Complete list of reserved words for System/360 COBOL.

ACCEPT
ACCESS
ACTUAL
ADD
ADVANCING .
AFTER

ALL
ALPHABETIC
ALTER
ALTERNATE
AND

APPLY

ARE

AREA
AREAS
ASCENDING
ASSIGN

AT

AUTHOR

BEFORE
BEGINNING
BLANK
BLOCK

BY

CALL

CF

CH

CHANGED
CHARACTERS
CHECKING
CLOCK-UNITS
CLOSE

COBOL

CODE

COLUMN

COMMA
COMPUTATIONAL
COMPUTATIONAL-1
COMPUTATIONAL-2
COMPUTATIONAL-3
COMPUTE
CONFIGURATION
CONSOLE
CONTAINS
CONTROL
CONTROLS

coprpYy
CORRESPONDING
CREATING

CYCLES

DATA

DATE-COMPILED
DATE-WRITTEN

(3/66)

DE
DECIMAL-POINT
DECLARATIVES
DEPENDING
DESCENDING
DETAIL
DIRECT
DIRECT-ACCESS
DISPLAY
DISPLAY-ST
DIVIDE
DIVISION

ELSE
END
ENDING
ENTER
ENTRY
ENVIRONMENT
EQUAL
ERROR
EVERY
EXAMINE
EXHIBIT
EXIT

FD

FILE

FILES
FILE-CONTROL
FILE-LIMIT
FXLLER

FINAL

FIRST
FOOTING

FOR
FORM-OVERFLOW
FROM

GENERATE
GIVING
GO
GREATER
GROUP

HEADING
HIGH-VALUE
HIGH-VALUES
HOLD

IBM-360
IDENTIFICATION
IF

IN

INCLUDE

INDEXED
INDICATE
INITIATE
INPUT
INPUT-OUTPUT
INSTALLATION
INTO

INVALID

I-0
I-0-CONTROL
Is

JUSTIFIED
KEY

LABEL
LABELS
LAST
LEADING
LESS

LINE
LINE-COUNTER
LINES
LINKAGE
LOCK
LOW-VALUE
LOW-VALUES

MODE
MORE-LABELS
MOVE
MULTIPLY

NAMED
NEGATIVE
NEXT

NO

NOT
NOTE
NUMERIC

OBJECT-~COMPUTER
OCCURS

OF

OH

OMITTED

ORGANIZATION
OTHERWISE
OUTPUT

ov

OVERFLOW

PAGE

PAGE-COUNTER

PERFORM
PF

PH
PICTURE
PLUS
POSITIVE

PRINT-SWITCH

PROCEDURE
PROCEED
PROCESS
PROCESSING
PROGRAM-ID
PROTECTION

QUOTE
QUOTES

RANDOM

RD

READ
READY
RECORD
RECORDING
RECORDS
REDEFINES
REEL
RELATIVE
RELEASE
REMARKS
REPLACING
REPORT
REPORTING
REPORTS
RERUN
RESERVE
RESET
RESTRICTED
RETURN
REVERSED
REWIND
REWRITE

SA

SD
SEARCH
SECTION
SECURITY

SELECT

SENTENCE
SEQUENTIAL

SIZE

SORT

SOURCE
SOURCE-COMPUTER
SPACE

_ SPACES

SPECIAL-NAMES
STANDARD

STOP

SUBTRACT

SUM

SYMBOLIC
SYSIN

SYsouT
SYSPUNCH

TALLY
TALLYING
TERMINATE
THAN

THEN

THRU
TIMES

TO

TRACE
TRACK-AREA
TRACKS
TRANSFORM
TRY

TYPE

UNIT
UNIT-RECORD
UNITS

UNTIL

UPON

USAGE

USE

USING
UTILITY

VALUE
VARYING

WHEN

WITH
WORKING-STORAGE
WRITE
WRITE-ONLY

2ERO
ZEROES
ZEROS

PROGRAMMER-SUPPLIED NAMES

Names for data items, data conditions, and procedures are supplied by
programmers. These names must be defined within the program in which
they are used, since, unlike reserved words, they do not have pre-
assigned meanings.

Rules governing programmer-supplied names,

® A name may be as many as 30 characters long.
° It may contain letters, digits, and hyphens.
° Names of procedures may be composed entirely of digits, but

names of data items and data conditions must contain at least
one letter.

° A name must not begin or end with a hyphen, although there may
be hyphens anywhere else in the name.

°® Spaces (blanks) must not appear within a name.

° No name may be spelled exactly the same as a reserved word.

Examples of programmer-supplied names in an entry.

[T]ablo! [REGULAR-Wa'GE]s', lolvERT|IME],| 6/iM1NG] [clRlols|sI-lEla|rIN/IINJels

Al

T

‘\\\u——— programmer-gupplied ————-——J///’

names

(3/66) 10

SYMBOLS

Symbols are special characters which, individually, have particular
meanings for the compiler.

Punctuation symbols -~ used to punctuate program entries.

. period used to terminate entries
P comma used to separate operands or
clauses in a series
H semicolon used to separate clauses in a
series
' quofation-mark used to enclose non~-numeric literals
Q) parentheses used to enclose subscripts

Arithmetic symbols -- found in arithmetic formulas.

+ plus addition; "plus"

- minus subtraction; "minus"

* asterisk multiplication; "times"

/ slash division; "divided by"

*x two asterisks exponentiation; "raised to the
power of"

= equal ' "make equal to"

() parentheses used to enclose quantities, to

control the sequence in which
operations are performed

Condition symbols -- found in expressions which involve tests of
data conditions.

= equal "is equal to"

> greater than "is greater than"

< less than "is less than"

() parentheses used to enclose expressions,

to control the sequence in which
conditions are evaluated

(3/66) 11

LITERALS

A literal is an actual value used in a program. Literals are

supplied by programmers; but unlike a programmer-supplied name, a
literal describes itself and needs no separate definition in the program.
The two main types of literals are "numeric" and "non-numeric" literals.

Rules governing numeric literals,

° A numeric literal may be made up of digits, a plus sign or a
minus sign, and a decimal point.

) It may contain as many as 18 digits.

™ If there is a sign, it must be the leftmost character of the
literal.

° If there is no sign, the number is assumed to be positive.

' A decimal point may appear anywhere in the number, except as

the rightmost character. Whole numbers are written without
decimal points.

An example of a numeric literal in an entry.

MULTN [P [slalLlEls! lv] [.lolsl2ls] [e[iM1]N6 [elolnuls].

\L—— numertic

literal
Rules governing non-numeric literals.
) A non-numeric literal is always enclosed by quotation marks.
The quotation marks are not part of the literal.
° It may be as many as 120 characters long.
° It may contain any character except a quotation mark. So, digits,

letters, spaces, and all special characters except one, may be
found in non-numeric literals.

An example of a non-numeric literal in an entry.

77 iES%AGE-4 PiI CTIURE k(1
1L vialiule] tlojuit] ofF| IsiTloick!!|.
N non-numeric

literal

(3/66) 12

LEVEL NUMBERS

Level numbers are found in entries that assign names to data items and
data values. The major purpose of level numbers is to designate the
levels of data items, in relation to each other. The numbers that may
be used are 01 through 49; 77; and 88.

Level numbers 0l through 49 are used to designate the levels of data
items that form records. Level number 01l is always assigned to the
record as a whole, while 02 through 49 are assigned to items that are
parts of records.

Level number 77 is used in entries that describe independent data items,
that is, items that are not records or parts of records.

Level number 88 is used in entries that assign names to specific values
that data items may assume.

When an entry contains a level number, the level number is always the

first element of the entry. The level number is followed either by a
programmer-supplied name or the reserved word FILLER.

Examples of level numbers in entries.

Jol1] [trirlalN]s|alciT] 1lolNRIEICIO|RD]. | | | |
102 | IREIclolRD-1[DENT]1IF]1IclAT IOIN.
rovel ~ o3/ | [REICORID-ICloDIE], PIICITURE| X..
ninbors v —|sls| | [1INClom ING], | IVIAlLIUEl |"al"!,
\\kwaa' ouTieloING|, VIAILUE ['B".
N loia| | [alcicoluNT-NUMBIER],| [PlICTIURE! [ol9l9l.
l—f | { o2 | [clulsTloMER|- tDEINTIIFi/claT[1iON.]| | | |

(3/66) 13

PICTURES

Pictures describe certain characteristics of data items, such as

o how many characters an item contains.

) whether the characters are numeric, alphabetic, or alphanumeric.
° whether the item has a sign.

) where an assumed decimal point is located.

o what editing (deletion, replacement, or insertion of characters)

is to be done to form the item.

Each picture is a string of characters, and may be from 1 to 30
characters long. Pictures are composed of one or more of the
characters listed below. (Each character or pair of characters has a
symbolic meaning; the meanings of some of these characters are
explained later in this book.)

A B CR DB E K P S V X Z2 0 9 + ~- , . $ * ()
Pictures may also contain numeric literals (unsigned whole numbers
only) enclosed in parentheses. The literals provide an abbreviated
way of repeating a picture character; for instance, X(20) means the
same as 20 Xs in a row.

In an entry, a picture is always preceded by the word PICTURE or by -
the words PICTURE IS.

Examples of pictures in entries.

pictures

o

L AN
o lFI%%gR. pliicluRE! Ixl(8D)].
c

NN
[72]

-t

(@)

C
0 KI-VIAILVE[,| |P[IICITIURIE| i.[$/$/$].|99].

(3/66) 14

Program Structure and Contents

PROGRAM STRUCTURE

COBOL programs are composed of entries arranged in divisions, sections,
and paragraphs. In general, a division is made up of sections, and a
section is made up of paragraphs.

Divisions. All COBOL programs are divided into four separate divisions.
The divisions have fixed names =~- IDENTIFICATION, ENVIRONMENT, DATA,
and PROCEDURE; and always appear in that order in a program.

The beginning of each division is marked by a division header entry,
which consists of the name of the division followed by the word DIVISION
and a period. A division header always appears on a line by itself.

Sections. Sections are not found in the Identification division.

The Environment and Data divisions always contain sections, and the
sections in those divisions have fixed names. In the Procedure
division, sections are optional; there programmers may, if they wish,
create sections and supply names for them.

Each section is identified by a header entry which consists of the
section name followed by the word SECTION and a period. A section
header usually appears on a line by itself.

Paragraphs. All of the divisions except the Data division contain
paragraphs. In the Identification and Environment divisions, the names
of all paragraphs are fixed. In the Procedure division, paragraph
names are supplied by programmers.

Paragraphs are identified by header entries which consist of a name
followed by a period. Paragraph headers do not contain the word
PARAGRAPH. Also, a paragraph header does not have to appear on a line
by itself; it must be the first entry on a line, but it may be followed
on the same line by other entries of that paragraph. '

Entries. An entry can be defined as a series of two or more language
elements, the last of which is a period. (However, the programmer
cannot arbitrarily string together a bunch of elements, and call them
an entry. The sequence of elements in each entry is dictated by
precise format rules.)

A paragraph header is probably the simplest entry, since it consists of
a reserved word or a programmer-supplied name, and a period. Likewise,

division and section headers are relatively simple entries. Most
entries, though, are longer and more complex.

(Continued on next page)

(3/66) 16

PROGRAM STRUCTURE (continued)

Sample division with structural units identified.

)
D
<+
bt
.
[\
[+

diviesion

— [EnV IRONMENT! [olI]
] H

sections

e
Fil GURIJAIT I OIN

paragraphs

n
o
c
Bl
)
m
|
o
wlo
=

[M E=
Oolu
m

C
_ C

\

AWARLAWALWAWA

s

)
r

=14

2
(@]

\

m|— o |r |

C |<

-14lo

(ol i (o (= A [P
o (Ao 4]
= Zc |—|o]lr

- |®

II
/
/
/

o v Mo [=|m

Jlz g |Zzlo
Ol— 1Mo |=1m
cl<

Z|o [m|Z[o ™
o |3

(@)

(3/66) 17

PROGRAM CONTENTS

Identification division. The Identification division contains
information that identifies the program. It is intended, for the most
part, to inform people who read the program. »

At the very least, the division states the name of the program.
Usually it contains further information about the program, such as
when the program was written and who the programmers were. There may
also be remarks that explain the data processing job for which the
program was written.

Environment division. The Environment division contains information
about the equipment that will be used when the object program is ‘
compiled and executed. Most importantly, it ties together the devices
of the computer system and the data files that will be processed.

The model numbers of the System/360s on which the program will be
compiled and run may be given. Each data file, by name, is assigned
to an input-output device. Sometimes, special input-output
techniques are specified.

Data vis . The Data division describes the data to be processed
by the object program. It describes the data items that make up each
of the files named in the Environment division, and in addition,
describes the data items that make up working-storage -- such as
constants and work areas.

Entries in this division show how the data items are grouped and
organized into records and files. Data names, pictures, and other
information about the data items are given.

Procedure division. The Procedure division specifies the actions

that are required.to process the data. Also, it indicates the order
in which the actions are to be carried out, and provides for alternate
paths of-eetion under given conditions.

The main types of actions that may be specified are input~output,
arithmetic, data movement, and sequence control.

(3/66) 18

Identification Division

IDENTIFICATION DIVISION ENTRIES

Unquestionably the simplest division, the Identification division is
only required to have the following three entries:

° Division header
) PROGRAM-ID paragraph header gézzvuxzm?f; 4;§ék//zZLwad
° Program name, enclosed in quotation marks (fecicaci,” « -

g ' ! o 7 2%, s doR g]
The division may also contain up to six additional paragraphs. Fixed
names are provided for these paragraphs(AUTHOR, INSTALLATION, DATE-
WRITTEN, DATE-CCMPILED, SECURITY, and REMARKS), but the programmer is
free to write any number of entries in each paragraph, and to give any
desired information in the entries. The entries may contain any
characters and words, including reserved words.

Sample Identification division.

LDENTIIF|cAT N Dliiviisfiion.] | 1 [L R
; ! H ‘ s : P

] i

lPROGIRAM-[1DI.[| | [1] 1 e |
V' PURICHASIE!" . | @ | EEN RSN R
Lty 2k i i i
AUTHIOR . \ R R 5
PIAULL MELN CHARL.|] | %ﬂ
_ : g | 5 b P
|NSITIALIL AT 1 OIN]. | EERNRRRENR |
| iPuRlclHAS!1|NG| RIE/COR|D'S| 'DIEPIAR[TMENT.. §
MEnl SEEE . 1R |
DATIE-WR| |[TITIEN. ! HERS
OR1/6l1|N/AL| IPIRIOjGIRAM WR!I[TTIEN| JUL|Y/,l1gle'2..
FH[S s [REVII|s|iloN| 4, WRIIT|ITEN [SEPTIEMBEIR],{1l9]6!5!.
! « L
REMARKS].| | | %
1 L iouTPuT olF! TH1s PIRIOGRIAM [1|s! A IREPORIT lOlF
Al lpulriclHiAsEls| FolR! THE! PIRIEV 1lojuls] MoINITH].
| ‘THE| REPORT [1|s| REJou[IRED| BlY! THIE' 5TH DAY
- _loF! ElaclH MoNTIH, lalNID! [1]s| IDli{s'TR I|BUTE[D, ITIO
AL PURCHAS! NG| RIEPREISENT|ATIVIES . [INPUT
s THE! PlurcHAls NG REICORD]S! cAlRD FlHLE||
_ I }SORTEED BlY| PURICHA|SIE DIATEE] |W/ITH[IN cloMMO[D! I TlY|.! !

(3/66) 21

Environment Division

ENVIRONMENT DIVISION ENTRIES

The Environment division may have two sections, the Configuration
section and the Input-Output section. The Configuration section
identifies the source and object computers. The Input-Output section
(required in all programs that process input or output files) assigns
.files to input~cutput devices and may specify special input-output
techniques.

Sample Environment division.

[EnM uRONMENT [oltvi]sTilon]. T 1 1
| i *

| i

IcONF1IlGIURIAT 1 ON! ISE|CTIIION. |

' 1
1

SOURICEI-ICIOIMPUUITEER!, |
1IBM—|3l6/0! |Fi3l0l.
]
] .
|0BWEICT—IClOMPUITER!.
'IiBM—{3lelol |Fi3lol,

-|m

> O B[O+
wldln 4|
[0
— |0 =9l
olclo|c]
Zlo |20
[2)
HIT 41z
o> [0 >
w
-Im
1.
2
o |Mm |20
N[l [
C
2
.—l
|
2
m
[¢)
(@]
T
(=]
1)
o
N
o
C
2
_|

{0
m

i
o
[|
o
P-4
-1
a
o
L
.

b [
2
m
-
m|O
il
o
2
ES
11
o
1<
m
3
mn
-
()
=

(Continued on next page)

(3/66) 25

ENVIRONMENT DIVISION ENTRIES (continued)

System/360 model numbers. The Source-Computer and Object-Computer
paragraphs may give a model number that consists of a letter followed
by a number, for instance, F40. The letter designates the main core
storage capacity of the computer, according to the following code:

C = 8,192 bytes G = 131,072 bytes
D = 16,384 H = 262,144

E = 32,768 I = 524,288

F = 65,536

The number that follows the letter designates the System/360 model.
The number 50, for example, means System/360 Model 50.

Asgignment of files to input-output devices. Files are assigned to
devices in the File-Control paragraph. For every file, there is an
entry that selects the file by name, and assigns it to an "external”
name and to a device.

sELELCIT] PlaYRO|LILL,[[alsisli[eN [T]o] ["ma'sTE[RI' ufritLli|Tivl 2311 julNiiT].]

— —_—
file external device device
name name class number

°® File name is the programmer-supplied name by which the file is

referred to in the COBOL program.

° External name (always enclosed by quotation marks) is the name
by which the file will be identified on a job control card at the
time that the object program is executed.

° Device class can be UTILITY, DIRECT-ACCESS, or UNIT-RECORD.
The UTILITY class is composed of machines that can read and write
data sequentially -- magnetic tape, disk, drum, and data cell
devices. The DIRECT-ACCESS class is composed of machines that can
read and write data randomly =-- disk, drum, and data cell devices.
The UNIT-RECORD class is composed of printers and card read/punches.

° Device number is the IBM number of a specific device. For example,
2311 means the IBM 2311 Disk Storage Drive. An exception to this
rule is device number 2400, which stands for any of the magnetic
tape units in the IBM 2400 series (2401, 2402, 2403, or 2404).
Device number is sometimes omitted.

- (3/66) 26

+*

Data Division

DATA DIVISION ENTRIES

The most commonly used sections of the Data division are the File
section and the Working-Storage section. The File section contains
descriptions of the data files to be processed by the program, and
descriptions of the data records in those files. The Working-Storage
section contains descriptions of work areas and constants.

Sample Data division,

DATAEDIVISIOM.
a1
[FlHILE! IsiElciT!iioN].
] : : i
- i
Fp|.| PURICHIAIS|I[NG=IF|IILE
'mecoaolﬁe MOIDE! lI|s! 'F
| LABE|L| [REIcORD|s! |AR[E| 'oM{I /T TIE[D
| blaiTia| [RIEIClORD If PlUR.CH|A'S IIN[G'-RE|ClORD|.
]
. L !
0!1] | PIURICH|AIS|1|NIGI—RIE/CORIDI|.
1 lol2! | |clommolpli(Tly].| |
| 03 | INUMBIER PILICTIURE [9l(1i2])].
i 03! | [DESic|rR!IPIT|I|ON PHICTIURE! [X!(I3i0)!,
02! | [PlulriclHASE].
K o3| | [NumBlER PliICTIURE! [ol(l8)],
L] 03| | [DIATIE PIICITIVRE! |97(6)].
| 1 joi2] | [uN!ITiS-/PIU[RICHAISIEID PlIiCTIURE! [9it'se].
| | jol2l | [uNliT]-Iclols|T PlIICTIURE! |9l(lah|vislol.
02 | [ToTiall-Iclols'T PlIICTIURE! [9/t/6]){vI9l9].
jol2| | |clAIRD|-|CIOID[E PLICTIURE] |X](14])].

(Continued on next page)

(3/66) 28

DATA DIVISION ENTRIES (continued)

Sample Data division (continued).

O,
o
o] E
. [N
-)
TN - . w
~r] . . <+)
[o [[2) %]
[7)) N [& | -
[0} o [N . > o
BN] al | A @ & 4 lTo
~| D o] =~ o O N ol €9 o] | ~ \’..v
1] ~| W o[m O a|FTIN[O] 4] 4+~ o I
- x| o] X X X[0| XIN| x| & X[X ol o] o
] T
0 W] W W w| wwww] w w wlw] wl: | wl W
[AR AN AN 4 AN <44 &l ol @
o) = =))) =) B Y = =) =) = == =)
[e) H FFEE[FElET]] IR =
W Olololololololololol ol o Ol o[O
[=114 alajalajafala]ajolalajala ajajal
Wi | [i :
=]
[K2
lA N i
wl |elx w o .
Julolo 2] 2)
= 14 - [+7) w [e) <<
wmnuw D] = = w [[— =
=lala 1 p=) << [- [=] [e)
b= < - P-4 2| < 2 (@) O [
ol w [72) [+4] 1l 1o) [3) w)
ololn[— [« > > 1 i] [| -
alolo a [[1] > o w . =
u=sxlo w - — 7)) = wl o 1] []K~)
[4 ol rlelocoaedel—wlalelg|lal [To xl-lo
ololo Hwlojlwojw[E|w|k-lw] k w T|wl [< wf 1] 1
Wl 2| Wl o F#hFM o] Ol Z] | =] 3] O] J [V D >| Wi
0 —[elw oSl dlS| el dlal Il o] Jafac] [) S| n
L=il=) [\ A+l o|—[o|=[2][—|I2[=[C]] ={D]— [ol —| <<
1[Il Tlujolwlolulajuldluloluialw 72 Z =T
olojlw|< O] K : 1 112l O
ol e~ 1< |- (G) olqal @
Sl NN NN 2] =) =)
uwmwhmmw A8/0/ OO0 QI QLRI Q[QI QO Ol mm Qo
14
[a) -~ [e) NS
L] [e) KN~

(Continued on next page)

29

(3/66)

DATA DIVISION ENTRIES (continued)

Another sample Data division, with entry types identified.

[
)
Beg
™
£ Qe
Qs &
H R : .
w0 R ,
2o jjjjjl_: 1T 1171 11111117
i) Y vy Y vV v ¥ \ A | ¥ ¥ ¥ Y Y Yryy vty
[} [e) (2]
| o o a » ()
. N —~ - [TY] N e
- (2} © - . N o . o TN
24 wlf ~| - [e) (o) [K7 B [olN
oo < 4 w . —~| w{ N[W N
1] =) [2) - (Y] =] ©[O] J[O[N[O[4
o Hlw| N]) ~|[<g[~[<|N| <N
5 Ol x| o 1y} < - olalolal §ajN
. [= ojx —~ > w > - o O N[O N
[Z (&) oo . 7] = > [2) [-~ N -
..... (=] - Ol > <~ <] o ol W< W Nl
- Y 1 =10 -] > < P w 0D =) K =10
- > a[=] > > w [o] Jlw] N[Jl e
: o 1 e o el [~ R e =) RAEEEIESEE]
- MY I I B - ¢ 14 [r< I =] LA (02} - o] | F Ol > >ul > =
b Ll |ojn [<[@4 === o2} ~ > o = 4 (&)
w2 [alwlw || Jolole o0 ~ ~ =| W o 4] 4—
olg< 2 BRI o 0| —| — , -~ © a | X|—=[X|{—[x%]| a
4 f=)N:4 u| OIS0 ool ow] [o)) - SIX[a[X[O[X
“Tui| Tol2Zl- B4 =IKE) [2) i< [i4) o o B X=X -
2 ol i =T=Z[" w Ll =] =) 1] o IR EINEIN
= _luw[x] Zla J 1[0 [alww] e+ . = 4 w i — 1])
wlolelun[o Ol=[dl[F[Z =) < =) =) L] I [3) > [14 [3] ajuwlajw] ~wl
1] .]© . =[0I Z[= [=) =) o el B) = = Sl |= E>-le[>-E <
Z|njolu|+ Z[|+ Z[e[D]a ol ol ofa — [N o [=) EEIEEIEERE
O~ T [E[n ol 2|1 [—lola —[Oo[T1[= [] - O Z el =] I
- < —lTwa|o[Z[O] = o|—=2Zlal 4 [o p a - i w[o[Z]O| o[Z]
[1K) %) - o] —| O[O O[T — [a[o] T] a X [] B o) e -4 B K
olajZ[un[= o[| J]ol [w E =45 7! w - O RN
<[O] —|o I Dl el 4= >Fa) & (@)) = > =
=g N Z| 0| - I >Oo[<] juw w [w [Z| 40| 4a] 40
. Z Flole| (21 =[4a[T[T wl < =[> [0 | — S o Ieelaje] Tl g
1= . <l o/=Zz]olo < d[olo|o[o]o] | >alwn| 1] < ! =] i Xl o[w| Jju| &)
[@) 2 i Zlojlwo [(4KS) T 1w 2] 2]~ [+4 > =) < D JOod[Zdl <[] 2]
- [e) = ~lol e[= Ke) [| <«[= [e) = [> > P =)] I I T I
[- Ta 4 1] m[™m amm[e] 3[=Z = - w) o el —[e[=[o|—| &
= = X[~ Y| | olo ool o[- oD %) o [e) | — g ol =l
> o olo[olul< [3) . ' of] << > =
= w olololml= [e) O — =] =] =
[=)) Flw| <[< [K N I @ =) [¢) 3 NN
| _|--|-J-Jejelal ol |l L _J__Jo_|-] (<) I N K= Je1 K<) P = I - B 7] B) B - B K] ko] K=] K= k=] o] Ke] K]
L] , X ,
[| N4 . -
< ot [=] - . [e) ~, N~ = = =
a i [[e) - = [= ~ [e)
] .
= [- 14
r.wi.l|o|\ /IXL/l.wL
B x ..a.ﬂ" .M” N o .Mt
A4 S, Ay, S E o
o O ey Q Q G...
Sag e £ Oaw]
o9) o 9°e £90
™ L o S ©
U D Q b4)
S BN N d

30

(3/66)

SYSTEM/360 COBOL TERMS FOR UNITS OF DATA

Item: an area used to contain data of a particular kind. (In general,
an "item" is the same as a "field".)

Group item: an item that is composed of smaller items.

Elementary item: an item that is not composed of smaller items.

Independent item: any item that is not a record and not a part of a
record. Must be an elementary item. Used as a work area or to contain
a constant.

Data record: the most inclusive item, usually (though not always) a
group item comprising several related items. Sometimes spoken of as
the "logical record”. (Whenever the term "record" is used in COBOL,
data record is implied -- unless label record is specified.)

Label record: a record that contains information about a file.

Label records are normally written in files stored on magnetic tape
or direct-access devices. Some files (such as card files) do not have
label records.

Block: . a unit of data, containing one or more data records, that is
transferred to or from main storage at one time by an input-output
device. Sometimes spoken of as the "physical record". When data
records are stored on magnetic tape or direct-access devices, each
block generally contains more than one data record.

File: a collection of related data records. The records in a file
may have the same or different lengths and formats.

(3/66) 31

'FILE DESCRIPTION ENTRY

For each file, there is a file description entry in the File section
of the Data division. The entry consists of a level indicator and the
file name, plus clauses that describe how many records or characters a
block contains, how many characters are in a record, what the recording
mode is, whether there are label records, and what data records are in
the file, The file description entry will be followed by a record
description for each type of record in that file.

Fo| | rirlolplulciT-ulsialelel-FlilLE
IREEICIO[RID]1[N{6] Molple] [1]s| M |
'Biiolclk| [cloiniTalilnls| [il8] [REElcloRipls
'RE|Clo[RID] |cloiniTlal1Ns| |s2] [Tlol 3lole| [cHIARACITIERIS
' aBEL] RElcloRRpls! [ARIE [slT]aiNplalrl] | |
_iolalTlal [REEIClolRID] |1[s] [P|RlojplulciT-lu]s!AlGE|-RIEC/oRID].

Level indicator. File description entries always begin with a level
indicator. A level indicator is a special, two-letter reserved word.

The level indicator that is used most often is FD, which stands for
File Description.

File name. The programmer-supplied name of the file always follows
the level indicator.

{Continued on next page)

(3/66) 32

FILE DESCRIPTION ENTRY (continued)

RECORDING MODE clause. The RECORDING MODE clause specifies whether the
recording mode in this file is V, F, or U. The clause may appear as
RECORDING MODE IS U, but it can also be abbreviated to RECORDING MODE U,
or simply RECORDING U. The clause may be omitted when the recording
mode is V.

° "Recording mode" means the same as "data record format". The
three permissible recording modes are V (Variable length),
F (Fixed length), and U (Unspecified length).

® Recording mode V is the only mode in which blocks of two or more
variable~length records can be handled. However, it is also
possible to have just one record per block and to have fixed
record lengths in this mode. The distinguishing feature of mode V
is that each data record includes a record-length field and each
block includes a block-length field. These fields are not
described in the Data division, because provision is automatically
made for them.

° In recording mode F, all of the records in a file are the same
length. Blocks may contain more than one record, and there is
generally a fixed number of records per block. In this mode,
there are no record-length or block-length fields.

) Mode U records may be either fixed or variable in length; however,
there is only one record per block. There are no record-length or
block-length fields.

BLOCK CONTAINS clause. The BLOCK CONTAINS clause tells either how
many records are in a block, or how many characters are in a block.

When the number of records per block is given, the clause may appear
as BLOCK CONTAINS 25 RECORDS, or simply BLOCK 8 RECORDS. If the
number of records in a block varies, the clause tells only how many of
the longest records would form the longest possible block. The clause
may be omitted when there is only one record per block.

When the number of characters per block is given, the clause specifies -
the number of bytes that the longest block will occupy in storage.

(Continued on next page)

(3/66) 33

FILE DESCRIPTION ENTRY (continued)

RECORD CONTAINS clause. The RECORD CONTAINS clause specifies how many
characters are in the longest data record in the file. More precisely,
it specifies how many bytes the longest record will occupy in storage,
for instance, RECORD CONTAINS 140 CHARACTERS. It may also give the
range of record sizes, as RECORD CONTAINS 82 TO 540 CHARACTERS, or in
abbreviated form RECORD 80 TO 160. This clause may be omitted, since
the compiler can determine the size of records from the record
descriptions.

LABEL RECORDS clause. A LABEL RECORDS clause is required to appear in
every rile description entry. The clause may indicate that label
records are standard, it may give a name for label records, or it may
state that label records are omitted.

() When the clause states that LABEL RECORDS ARE STANDARD, it means
' that the labels have the standard System/360 label format. In this
case, the labels are checked or created automatically, and the
label records are not described in the COBOL program.

® When a name is given, for example, LABEL RECORDS ARE
BALANCE-TOTALS, it means there are user labels in addition
to standard labels. Such additional label records are
described in the Linkage section of the Data division
(not in the File section), and are processed by "declarative"
procedures (separate from the main body of the Procedure
division).

® LABEL RECORDS ARE OMITTED means either that the file has no
labels at all (as in the case of a card file), or that the
file has non-standard labels. (As a rule, non-standard label
records are treated as if they were data records. Each label
is defined as a separate file, described as a record in the
File section, and processed in the main body of the Procedure
division.)

DATA RECORD clause. The DATA RECORD clause gives the name of each
different kind of record in the file. For example, DATA RECORDS ARE
SALES, RETURNS, PAYMENTS, CHARGES. There must be at least one kind of
record in the file, and there may be several kinds, so this clause
appears in every file description entry. Below the file description
entry, there must appear a record description entry for every record
that is named in this entry.

(3/66) 34

RECORD DESCRIPTIONS

At least one record description will be found below each file description
entry. A record description is written for each type of record in the
file; for example, if a file contains four types of records, there will
be four record descriptions below the file description entry.

A record description shows the structure of the recerd: the order in
which items appear in the record, and how the items are related to each
other. For every item, there is an item description entry that begins
with the level number of the item.

loi1! T PluRIcHIAIS! 1[N[G].
j02| | |alcicloluNT!.
' | 1 1103] | [cATE|GIORY PUCTIURE! [x[X].
! jol3| | INumBIER! | plilcTIURE! [o!(le])].
lo2! | |siTlAIT|uiS-iClODE P!IICITIURE! |X/.
'o2! | [TIRIANISAlCT]1IONI.
r 03| | IVENDI|OR!.
l 04 | INAME P/IICT|URE! [X/(25])].
: olal | INuMB[ER PliicTluRE! lolt|e)].
\ 03| | |PIURICIHASE].
| 04! | IDIATE].
: 0l5! | IMOINITIH PlICTIURE! [9l9l,
i o5 | [Dlaly PIICTIURE! |olol.
} ols! | JylElaRr PliicTlulRE] [olol,
BN 04| | |AMOUINT PlICTIURE |o!(/a)|violsl.
™ Record descriptions always begin with an entry for the level 01

item, which is the record as a whole. Usually, the record is
subdivided, and entries for items that make up the record appear
below the level 01 entry.

° The item description entries are made in the order in which
items appear in the record.

° An entry for a group item is followed by entries for the items
that make it up. A group item comprises all the items described
under it, until a level number equal to or less than the level
numbers of the group item is encountered.

) Item description entries are usually indented to help the reader
comprehend the structure of the record. The entries for each
level are indented more than the entries for the preceding
level. Indenting is not required, however.

° Level 88 (condition name) entries may appear in a record
description. These are not item description entries, and can
be ignored when the structure of a record is being analyzed.

° Sometimes a record is treated as an elementary item, with no

subdivisions. In such a case, the level 0l entry is the only
item description entry in the record description.

(3/66) 35

ITEM DESCRIPTION ENTRIES

There is a separate item description entry for each item. An item
description entry always begins with a level number, followed by
either a name or the word FILLER, and usually includes one or more
descriptive clauses that begin with words like USAGE, PICTURE, VALUE,
OCCURS, or REDEFINES.

| 10l2] | [sialLialRlY],| [PliicT|UREE] [sis!(s])viols],| ‘clOMPIUT|AT IiO|NIAILI-{3!.
18 J

item deseription
entry

Level number. A level number is always the first element found in an
item description entry.

Level number 01 indicates that the item is a record. A record is
generally a group of related items, but it may also be an elementary
item.

Level numbers 02 through 49 are used for items that are subdivisions
of records.

Level number 77 identifies an independent item, which is an elementary
item that is not related to other items. An independent item is not

a record, and not part of a record. Level 77 items are found only in
the Working-Storage section.

Level number 88 designates a condition-name entry, which strictly
speaking, is not an item description at all. Instead, a condition-
name entry gives a name to one of the values that the preceding item
can assume. Level 88 entries are found after elementary items only;
however, sometimes there are two or more consecutive level 88 entries
after one elementary item.

3] 1 |sHPMENTSIriH] (s ImolNTil. | elilcirluRlel Teltal.]
__ level

number

Tl

(Continued on next page)

(3/66) 36

ITEM DESCRIPTION ENTRIES (continued)

Name or FILLER., Every item description entry contains either a
programmer-supplied name or the reserved word FILLER, following the
level number.

A name is a data name if it follows level numbers 01-49 or 77; or it
is a condition name if it follows level number 88.

FILLER may be found in place of a name, following level numbers 01-49.
FILLER is not a name, and therefore, cannot be used to refer to an item
in a procedure. It is used in descriptions of items that will not be
referred to, usually because the items will not contain any information,
or because the information will not be processed.

data condition
name names
| 11 102 | [slcloRIE // pliicTuRE [oloisl,
BN 8isl | |Liow-L1Mi|T vALU[E! lolelol.
: sigl | [HlileH]-ILliM1T | [viAlLulE] 100!,
ol | [FlILILIER PlICITIURE] |xIx].
FILLER

(Continued on next page)

(3/66) 37

ITEM DESCRIPTION ENTRIES (continued)

USAGE clause. The USAGE clause indicates the code that will be used
To represent data that is stored in the item. It may be found in
descriptions of both elementary and group items. The usage that is
specified for a group item applies to all of the items in that group.

The words that specify usage are DISPLAY, COMPUTATIONAL,
COMPUTATIONAL~-1, COMPUTATIONAL-2, and COMPUTATIONAL-3. The word
USAGE, or the words USAGE IS, may also appear in the clause, but these
words are optional and generally not written. So if an item's usage
is computational, the usage clause will probably consist of the single
word, COMPUTATIONAL, but it may also be USAGE COMPUTATIonal, or USAGE
IS COMPUTATIONAL.

The word DISPLAY is also optional, and is often not written. The
usage of an elementary item is assumed to be display if some other
usage is not specified for it or for any group item that it is part of.

USAGE clause

™

[vY)
>
=

oz PﬁNIWUM—

[Pli[ciTlulRE! [sle

alNICE! [c ﬁUTATIO%AL—3

o
N
o
jo

What the usage words indicate:

If the usage is Then the data code is Which means that

display external decimal --- one character is stored in each byte of the
also called BCD (binary- item; if the item is used to store a number,
coded decimal), or EBCDIC the rightmost byte may contain an operation-
(extended binary coded al sign in addition to a decimal digit

decimal interchange code)

computational binary one binary digit is stored in each bit of
the item, except the leftmost bit, in which
the operational sign is stored

computational-1 internal floating-point,
short (full word) format the item has a special format designed for
floating-point arithmetic operations;

part of the item is stored in binary code,
computational-2 | internal floating-point, and part in hexadecimal code

long (double word) format

computational-3 internal decimal =--- two decimal digits are stored in each byte
also called packed of the item, except the rightmost byte,
decimal in which one digit and the operational sign

are stored

0. G i A e e e, , <
| ‘l"/ o MC?M‘ /,,Z/ , WI/J r{//""ﬂ L »gé/l«é’t@
222129 / 7 /WM%’ ‘ ez P))
£t dﬂ/,4i¢4i)¢4x~jyo T :i:/3342 codage oo 2ppremed @ ﬁfgfzgfgéy

(Continued on next page)

(3/66) 38

ITEM DESCRIPTION ENTRIES (continued)

PICTURE clause. PICTURE clauses are found only in descriptions of
elementary items. They are required for all elementary items except
those whose usage is computational-1 or computational-2. (These ‘
floating-point items are not given pictures because they have a definite
storage format.)

A picture always tells how many characters will be stored and what
kinds of characters they will be. The characters that an item will
contain are represented by picture characters such as X, A, or 9.
The picture character 9, for example, represents one decimal digit;
so, the picture 999 stands for three decimal digits.

In addition to characters with symbolic meanings, pictures often
include numeric literals (unsigned whole numbers only) enclosed in
parentheses. Such numbers are a shorthand way of repeating picture
characters. The number is parentheses tells how many consecutive times
the character in front of the parentheses is repeated; in other words,
X(6) is another way of writing XXXXXX, and S9(9) means the same as
5999999999,

PICTURE clause

-

C h)

[T ol [IvI=r-lo-plElMaliN],] IcomPuTar i oNALL] [PiciTuRE] [siele Vsl

]

How to identify an item from its picture.

If the picture and also . Then the item | t t
contains (possibly) For example.. is called And will be used to store
1 T T 1T lphanumeric haracters of any kind
one or more Xs ledX!I }I,I!]! | e getters? digits,yspeci;1
characters, or spaces
one or more As alphabetic only letters or spaces
one or more 9s, 8 numeric only digits, and possibly
| but no editing v an operational sign
symbols P
one or more 9 report numeric data that is
editing symbols;. v edited with spaces or
z * 5 . P certain special characters
» DB CR 1] when the data is moved
+ - 0 B 1] into the item
an E, + <y 'i: r‘ ! | external a decimal quantity in an
in addition - JH. 9B EHS9 ' | floating~point | edited floating-point
to 9s . 1 format that includes
v spaces or certain special
| characters

Note: Pictures of all kinds of items may contain numbers in parentheses.

(Conhinued on next page)

(3/66) 39

ITEM DESCRIPTION ENTRIES (continued)

PICTURE clause (continued)

Wwhat some common picture characters mean.

X Each X stands for one character of any kind -- a letter, digit, special character,
or space. The picture X(12) indicates that the item will contain twelve characters,
but gives no indication of what characters they will be; all twelve could be spaces,
or all could be digits, or there could be a mixture of various kinds of characters.

A Each A stands for one letter or space.

9 Each 9 stands for one decimal digit. Numbers are always described in terms of the
decimal digits they are the equivalent of - even when the data code is binary.

] S indicates that the number has an operational sign. An “operétionq;" sign tells the

computer that the number is negative or positive; it is not a separate character that
will print as "+" or "-",

\'4 V shows the location of an assumed decimal point in the number. An "assumed” decimal
point is not a separate character in storage.

P Each P stands for an assumed zero. Ps are used to position the assumed decimal point
away from the actual number. For example, an item whose actual value is 25 will be
treated as 25000 if its picture is 99PPPV; or as .00025 if its picture is VPPP99.

How picture and usage are related. Certain combinations of picture and
usage are not compatible. For instance, an alphabetic item cannot
possibly be computational, because letters cannot be represented in
binary; this item -- in fact, any item that will store letters, spaces,
or special characters -- must have display usage.. Therefore, the
following kinds of items can only have display usage: alphanumeric,
alphabetic, report, and external floating-point.

Digits, on the other hand, can be stored in any data code; so numeric
items can have any usage: display, computational, computational-l,
computational-2, or computational-3.

Conversely, these rules mean that a disglag item might have any kind of

picture; but that an item with other than isglax usage can only have a
numeric picture. (Except that computational-l and computational-2
items have no pictures at all.)

(Continued on next page)

(3/66) 40

ITEM DESCRIPTION ENTRIES (continued)

VALUE clause. The VALUE clause consists of the word VALUE, or the
words VALUE IS, followed by a literal.

This clause is mainly used to assign initial values to certain
elementary data items, in particular, to constants. The value assigned
to an item remains constant during the execution of the object program,
unless it is changed by a procedure in the program. (This use of the
VALUE clause is permitted in the wOrking-Storage section, but not in
the File section.)

717 | Iolilsiclouln], | lus|alcE! [clomPlulTialT] i onalL!,
1 cTIURIE| [siviolel, | VialLIUE] [.|ol2].
C J

VALUE celause

A different use of the VALUE clause is found in level 88 (condition-
name) entries. There the clause specifies the data value which the
condition name will represent. (This use of the VALUE clause is

permitted in both the File section and the Working-Storage section.)

ol3! | IsluiBlclr 1 PiT]I OIN-IB sl, PlicTulRE| X|.

i AS||
: sis| | [REGUILAR,| VAL|UEl ‘|11'].]
(.)

VALUE clause

- OCCURS clause. An OCCURS clause indicates that an item is repeated
with no change in its usage or picture. It specifies the number of
times the item is repeated, for instance, OCCURS 100 TIMES, or just,
OCCURS 100. OCCURS clauses are used to define groups of identical
items that will store related information, such as data tables.

lol2

sicoRlEl,] PlilcITUlRE] [s|olols
! clomplulTiaT]ilolvAlLI=3l,| locicluiR's| [slol 'T|i MEs].
1§ : J
~

OCCURS clause

(Continued on next page)

(3/66) 41

ITEM DESCRIPTION ENTRIES (continued)

REDEFINES clause. A REDEFINES clause signifies that this entry gives
another name and description to an item that was just previously
described. The word REDEFINES is written right after the data name,
and is followed by the name of the item that is being redefined.

When an item is redefined, a new area of storage is not set aside for
it; instead, the same area of storage may be called by this name as
well as by the previous name. Redefining is done when different names
or descriptions are desired for the same item, for instance, when the
item may hold different kinds of information, or may be processed in
different ways, under different conditions.

"ACCOUNT" ig being

redefined.
T " -
02 | IACICOUNTI,| PPLIICITURE] 91(7)
02 | LEDGER RIEDEF|INES| laciclouNT],| PlijciTiuRiE ix!(|7])].
L J

N

REDEFINES clause

"LEDGER" will occupy the same
atorage area as "ACCOUNT"

(3/66) 42

Procedure Division

PROCEDURE DIVISION ENTRIES

Each paragraph has

The Procedure division generally consists of a series of paragraphs,

which may optionally be grouped into sections.
a programmer-supplied name, and may contain a varying number of

entries.

DIVIAN[C|IING| [1].

|
r

Sample Procedure division,

iPRoc
IBIEIG|1

. _ E
r Y 2
[+4 uw o o =
w =]] e
. @ < I <[1
ul 3 [=) L e
Z > 11 Tolol el
o] =m 2 Wl o .TTOE
[y] I [e) D> -l ii1lalF
10 [=) - <= o> W| =
ol ”) I|——|O|Hwlxxla
wle . ol > o[Z[o[—]o] T =|w
BI=)) ~ FHEELEEDT =
JFEla [e) (o] = Sl W Zlijolwjul
W el > = [a) ool glul gl
Jolae] | o FIMMEEIRESE
—lall w > 3 o lalx[olalo] wlw]
wlwju] [O = = ol (o I 2
irelol Tl —) el olol o] =]
o[T[] ~a al o w ool -elalold|
ZlW[T|[w[Z ol N ool a o) .
o 2] K3) [TV sSlwlu] Jajwfo olalwl o[-
ol <= siaolulxln ol w =l Zle
< x|olufo o= [S|o[g[o[H|w|ol-|=]O
) TiolalllF- OlolZl <l x|+ qd—lelolal
. ol [T Zlo| 2Z[o]o [l = S 2w
=z 4=kl 4K Jul i |=[ilale[rlol o[+ =i
(<) dolal=[o] Jolol>|F[>] [D|n[o]jx|n] 4>
— o|a %) 2 Hlal-lulalolol ool wlalul
n[o o<l = [—lel—=[=—=[o]1lo] i|aJolZ]<|n
- S[H[Dlw[x[o nlu|olel o I <
> I[ofajolol2 nio|oj/o|ojuw|HalunJ] J E|XT]|
- wlal— (i< l[] W= =N)] e el e = A N Y
[=) olzZz(olalo ool slul =</ Z[Z|o] =]
il=lojwnlalr o|Z|o|alolo|2| 2|+ Z[o|wnjuw|D
w [C1N g 4 [3) (&) Sl <la]
i Z Z|Z|W[o ol w 7] W w] Wl w T3 1
) —lTwlw[>< 1> > SIS >l
[=) Zialal[olw O [e) RIlEIEER ™
ul__|Zlolol =] —[Z- = - 1= & =] =22 L=
< - |
T
wi
[a)

(Continued on next page)

(3/66)

PROCEDURE DIVISION ENTRIES (continued)

Sample Procedure division (continued) .

L od []
w
. G L
(= 2 -
) —T w
[e) Q |
ol - [3) 2 ~
=l i b= [14
Z . w > (@)
[= (1]) [a) a
- -4 < P wi-
) =) — T xlo
[<]Ke) |] O 74 (R
wla 1> w w| T
[=) [nln
JE=l2 el —lal A wf g —
ool « ol] < (2
Ol ZIF alZl ol Ol —
- (o) wlg<| | [1Y] [rq ™
it ol x|(> [e) 2 o=
wl— . 1ol af+] |- ol
o =0 1] S| T a3 . 14
>l Al o[>« 4 « O
- O] O] — g/ [Ol wjwla
wlZ —=lulun T =1 —lolax} Z| J| W
Jlulaolelwn oldl 1 [FIF]Oo = —la
— Ol w| w el [ZlTal =
wlo|/=lalo Sl S Tw] -
- (@) ajojolojnla olOlnlw
[C) () 14 =lolol ol | Z] |
2 0lo|lax|a ol 111 olw I|—=lX|O
—|o® wl i =i >-lw]o]ilw Jjounlolun
) wlol J o< | a| x| Z
Ja A0S — nl -l 21+ [EdE=1Ke)
ol Tl o S|l | JJwlF[T[] g]of ololalo
clolz|lelz|H] |wlo|Z]/O|Oo|x|mx Hleel- 1 | o]
G E ETETERET AR 4 51 =) =) 2] 2
E] =) o] ala —lal o DJuela JSlal>0ol 2
{al—=[=S HlololalN]DT ol gl al e
[l I I 4 =] Ke] K<]1 BN =] ol olojwl Jl D
3= 2 [olwlw|wlw [Slulnla a
Twuf< . cl>[>> > — (R4 K=1k") [«
12w [Ol JT]lololo]o [wlw| J— -
I < T (K N] -1 - - 1 I I =) W S =1 i)
=) . | ‘ [
g [a
(] [e) Z
& [tJ

(3/66)

PROCEDURES

A procedure is a paragraph or section in the Procedure division.
Procedures contain two kinds of entries: header entries and sentences.
Hence, any entry (in a procedure) that is not a header is a sentence.

A sentence, in turn, is composed of one or more statements that specify
actions. Most statements begin with a verb that indicates the action
to be taken (for instance, MOVE, ADD, READ, GO, or STOP); some
statements begin with the word IF, which calls for the testing of a
condition.

) The shortest procedure is a paragraph consisting of a header
entry and one sentence.

N AL ZEL | IMoivE] TzIElRjols! ol Iclo[NTRolLI=Tiof Al

® A longer procedure may contain several sentences. The paragraph
header may optionally appear on a line by itself.
[INSERT-INEW-RIE/CIORID!.
MOWVIE| |CIARID—=RE|CIORD| T'O! |OUT!P|UT—RIEICIOR|D!.
WR|I[TIE| loulTlPlulT|-REICloRID]. 11
RIEAD! [CIARIDI-FII|LIE!s _
: AT EIND.,| |6lol [Tlol IFli|N/1iSIH[=RUUN].
i60] [Tlot [TElsITI—R|E/ClOR|DI~/ClODIE!.
[A sentence may contain only one statement (as in the above

examples), or more than one statement (as shown below).

=1
o

MoVIE| [NAME| [Tio| [EMP|LIOIYIEIE VEL |
Isiocl1|AlL|—SIEICIURR| | T|Y|-|N'UMBIER! [T|O| |AC|CIOUN[T,
tapip] [1] [Tlo] INuMBIER| |olF| ITIRIAN'S|AC!T]t|oN'S.

()

-—

[Every procedure has a programmer-supplied name, which is
given in the header entry. This name is used to refer to
the procedure, for instance, when specifying a branch to
the procedure.

(3/¢6) 47

PROCEDURAL WORDS

The most commonly used actions are listed below, alphabetically.
The function of each word is summarized, and a sample sentence using
the word is given.

\ ACCEPT. Input. Obtains up to 80 characters of data from the system
input device (which might be a disk file, tape drive, card reader, etc.),
or up to 72 characters from the console keyboard. Used to read low-
volume data, such as information needed to initialize program switches,
balance totals, or serial numbers. Not used to read files of data
(see READ).

IAcIElPIT] IcloNTIRIO[L I 1 INIFIoRIMAIT

SNIITTIIT]

“~~ADD. Arithmetic. Adds two or more numbers. Puts the sum into the
data item named after the word TO, unless there is a GIVING clause.
If GIVING is specified, the sum is put into the data item named after
the word GIVING, and it is edited according to the item's picture; the

value of this item is not added. (Numbers can also be added by using
the verb COMPUTE.)

MDD‘FEGULAR-
G

PlAY],| OVERTIIME-PlalY],| BloNUIS],
L1 v]iNje] [Tlo[TlAlL|-ElARINEID]. “ |

t

\\CLOSE. Input-output. Terminates the processing of one or more data
files. Such actions as checking and creating end-of-file labels are
done automatically when a file is closed. Used after processing is
finished for any file that was opened (see OPEN).

‘oSl Tollo-MalsilElRI=Fl1ILEL] INEW-MalsTElRFElILEL

—

" COMPUTE. Arithmetic. Computes the value of the data item, literal,
or formula written to the right of the equal sign; and puts that value
into the item named after the verb. Can add, subtract, multiply,
divide, or exponentiate numbers; or combine these operations.

(May be used in place of the other arithmetic verbs: ADD, SUBTRACT,

MULTIPLY, DIVIDE.) Edits the result according to the receiving item's
picture.

()
|
L]

Hon an hﬂ

oMPIUITIE] Wl THIRloILBl T INeHTIal 1=] [.1a]e] T* gb_P&s., ;'
e -l o EWBlENTS] o | RRRENNNE

(Continued on next page)

(3/66) 48

PROCEDURAL WORDS (continued)

DISPLAY. Output. Puts data out on the system output device (which
might be a disk file, tape drive, etc.), for printing later. Can also
punch out data, or type it on the console typewriter. Data displayed
cannot exceed 120 characters when put on the system output device, but
cannot exceed 72 characters if punched or typed. Used for low-volume
output, such as exception records or messages to the operator.

Not generally used to write files of data (see WRITE).

o1 siPllalY] T REElclolRio] INuMBlER ' [IFEM-NUMBER
VLT hiisl oluim] lolF| IsiElaulENClE]! | uipjolN] IcloNsojLE].

\ DIVIDE. Arithmetic. Divides one number into another. Puts the quotient
into the data item named after the word INTO, unless there is a GIVING
clause. If GIVING is specified, the quotient is put into the data item
named after the word GIVING, and it is edited according to the item's
picture; the value of this item is not used in the division.

(Numbers can alsc be divided by using the verb COMPUTE.)

i1vi10lE] NuMBEIR-OF|-sTUDENT]S] |IN[TI
: sluM-lolF/-alLL —G|RIADE|s!,| |6]1 VNG |
H AV|EIR|A/GIE|-|GIRIADIE! . - |

GO TO. Sequence control. Causes a branch to é procedure in the program.
The normal flow of control is resumed at the beginning of that procedure.
(Contrast with PERFORM, which causes a return branch as well.)

6ol [Tl0] [GElT—RIECIORD) I 117

. IF, Sequence control. Causes alternate paths of action to be taken,
depending on whether it finds the description of a data condition to

be true or false when it evaluates the data. The word IF is followed
by the description of the condition, followed by the actions to be taken
if the description of the condition is true. Then, optionally, may

come to the word ELSE or OTHERWISE, followed by the actions to be taken
if the description of the condition is false.

I/F|_DlEMANID]| |1s| |GREIATIER| ITHAIN| IST/0/CiKI-|OIN-HANID],
MAIND| 'Tlo| BIAICK|-O|RDER|S!,|
c

AICIK—OR|IDIERIE|D! |TIO] ACIT

(=)
=
—
o
>
O

1 191
= > [m
[@ [m
>
o
2

]
2)
(e)

10
im
)

o
—
I
L
)

o
0 |m |

A
DD
oV

|

B

V

E
Wi IS .
VBT T| DEMIAINDD| |[FROM| [STO|CK—OIN—H
O|VEE Dl deD T|0| /ACIT|10N—|CloiD

mip»
<
O

c
OR

(Continued on next page)

(3/66) 49

PROCEDURAL WORDS (continued)

MOVE. Data movement. Moves data from one area of main storage to
another. Converts the data (for instance, from decimal to binary) if
required to fit the description of the receiving item. Edits the data
(inserts, deletes, or replaces characters) if the picture of the
receiving item calls for it.

M%%g cRRENTI-BIALANCE ol TaMoulnT=lulEl Tiln

{111 lclusiTloMER]-BlILIL.]

~y MULTIPLY. Arithmetic. Multiplies one number by another. Puts the
product into the data item named after the word BY, unless there is a
GIVING clause. If GIVING is specified, the product is put into the
data item named after the word GIVING, and it is edited according to
the item's picture; the value of this item is not multipltled.
(Numbers can also be multiplied by using the verb COMPUTE.)

wullithilplLivl lalulalnitiirly
t | jsliiviiiNiG| [Elx TIEINDEE]

Y| UNI|TI-COI|SIT!,
-|ICIOIS|T]|. '

L
\'

oo

NOTE. Program comments. Allows programmers to write explanatory
sentences which will be printed in the program listing, but which

serve no other purpose during compilation. A note can be any length
and can contain any words or characters. If NOTE is the first word of
a paragraph, all of the sentences in the paragraph are treated as notes.

Vi NoTE TiH S| [RoTIUNE[[clomlPulTE[s! [THIE| |'lap*lol"
1l DGlE| |FlalciTIOR|.| UISIEID] |1{N] DEITERM I NI NG!

INEENARGEN
L] EEQ@QE PlolIN[TIs| FloR w| 1 lolel1[Tls!.

m
e

b > e

1)

yy OPEN., Input-output. Makes one or more data files ready for reading
or writing., Input files are named after the word INPUT; output files
after OUTPUT. Such actions as checking and creating beginning-of-file
labels are done automatically when a file is opened. Opening does not
make input records available for processing; a READ statement is
required for that. A file must be open before a READ or WRITE
statement can act on it. (See READ, WRITE, CLOSE.)

[T T el

- |INPlulT] lo]L|Dl-MAlS|TEIR-IF|I[LE],
; TRIA ‘ACTIOWFFI%E;
RS Jolulriplult] INEW-MASITIE[RI-FI1|LEL.

-d--les

(Continued on next page)

(3/%6) 50

PROCEDURAL WORDS (continued)

. PERFORM. Sequence control. Causes a branch to a procedure or series of

Vprocedures, and following their execution, a return branch to the state-
ment after the PERFORM statement. Sets up the linkage for procedures to
serve as closed subroutines. Also used to control the execution of
loops. (Contrast with GO TO, which causes a branch but not a return.)

PR WO S

PlERIFIORM [o[1]slcloluNir=lc/allclullalrlion]. [TT

\, READ. Input. Makes a data record from an input file available for
processing. For sequential files, such as tape and card files, the
READ statement contains an AT END clause, which specifies actions that
are to be taken after the last record of the file has been processed.
A READ statement is valid only if the file is open (see OPEN).

INlel-FhILE

ElAD| BIEAM-LIojAD
AT _EIND!.] [slol ol lci|olskEl-lF liiE]s].

oo

mle)

STOP. Sequence control. Stops the execution of the object program,
“either permanently or temporarily. If STOP is followed by the word RUN,
execution is stopped permanently; this would be done at the end of the

job, or when a serious data error made it impossible to continue the
run. If STOP is followed by a literal, such as a message to the
operator, the literal is typed out and then execution is delayed until
the operator takes required steps; execution is resumed at the statement
after the STOP statement.

is{TolP [RIUN[.] |

y SUBTRACT., Arithmetic. Subtracts one or more numbers from another
number. Puts the difference into the data item named after the word
FROM, unless there is a GIVING clause. If GIVING is specified, the
difference is put into the data item named after the word GIVING, and
it is edited according to the item's picture; the value of this item
is not used in the subtraction. (Numbers can also be subtracted by
using the verb COMPUTE.

EU&IFACT SAVINGs-Bdﬂos. BLUE-CROls!S|,| | |
} ClHAR] 1|TlY!=|CIONIT|R| | BIU[T|1/OIN|S| [FR|IOM E[AIRNII|NIGIS.

, WRITE. Output. Releases a record for an output file. The actual
transfer of this record to an output device may not occur until sometime
later; in particular, if there are to be two or more records per block,
the record may be held until there are enough records to fill a block.
When the record is to be printed or punched, the WRITE statement contains
an AFTER or AFTER ADVANCING clause to specify carriage control or stacker
selection. A WRITE statement is valid only if the file is open (see OPEN).

[T wrLE TiNVENTloRY-REEIColRiDL

(3/68) 51

TEST-CONDITIONS

Types of conditions that can be tested in IF statements.

Relation test. Consists of two "operands" with relational words or
symbols written between them. Compares the values of the operands to
see if their relation is the same as specified.

Relations that can be specified: EQUAL TO [=], NOT EQUAL TO {[NOT =],
GREATER ([>], NOT GREATER [NOT], LESS [<], NOT LESS [NOT <].

The operands may be data items, literals, and arithmetic expressions.
A data item may be compared with another data item, with a literal, or
with an arithmetic expression. An arithmetic expression may also be
compared with a literal, or with another arithmetic expression. Two
literals may not be compared.

When an arithmetic expression is written in a conditional statement,
the value of the expression is calculated first, before the comparison
is made.

HIF] PlalyMEINT! [1]s] ILE[s!s! TlHIAN| |PREV|IOlU's|-BALIANICIE[H
! ICIURRIEINT-JAMOUINT-IDJUIE| |-| D!I'S|CIOUN[T],
N clo| ITlol PlalRIT!ilalLI-PlA|Y MEIN|T!. |

Sign test. Consists of the name of a data item, or an arithmetic
expression, followed by the specification of a sign condition.
Determines whether the number, or the value of the arithmetic
expression, matches the specified condition.

Sign conditions that can be specified: POSITIVE, NOT POSITIVE,
NEGATIVE, NOT NEGATIVE, ZERO, NOT ZERO. The value zero is considered
to be neither positive nor negative. (For a zero item in storage,
the sign, if any, is ignored.)

LF| olilFlFElRIENCIE] [1s] [Plois]i T vIE], -
[pl1)v1[plEl Ip|IFIFEIREENCIE! [1IN[TIO] |AlcicluMUlLIATIED|=[T|o[TIAL]. |

Note: A sign test is another way of stating a relation test for numbers,
since "positive" means greater than zero, "negative" means less than
zero, and "zero" is, of course, equal to the literal "0".

(Continued on next page)

(3/66) 52

TEST-CONDITIONS (continued)

Condition-name test. Consists of a name called a "condition name",
with no other words or symbols. Tests whether a data item has a
specific value; however, neither the name of the data item nor the
value are written in the IF statement.

TEl IcloMPluTEREIPRIOGIRIAMMER

R
{ | [[IPERIFlolRM |slalL]alR|Y]-[1|NIcIRIE|a[SIE].

The condition name represents the condition that exists when the data
item has a specific value. It is defined in the Data division, where
the condition name and the value may be found in a level-88 entry,
following the description of the data item which is to be tested.

Here is how the condition name used in the above example might be
defined:

T I{ON-ICIODIE,| PIIICITIURIE] [9/9].

S

102] | lJjoB-(CILIAIS|S|1|F]1]C
1| || [8/8] |CloMPUTER-|P

2

Ol6{RIAMMIEIR, | |VIAILUIE| [7]2].

Interpretation of this example: A job-classification code is one of
the data items in the records that are to be processed. The name
COMPUTER-PROGRAMMER represents the code value 72. Therefore, the IF
sentence above means, "If the record contains job code 72, perform
the salary-increase procedure."

Note: A condition-name test is another way of testing whether a data
item is equal to a literal.

(Continued on next page)

(3/66) 53

TEST-CONDITIONS (continued)

Overflow test. A special type of condition-name test. Determines
whether the forms in a printer are at the end of a page. (The end of
a page is recognized when the printer senses a hole punched in channel
12 of the carriage control tape.)

'1iF| Iplalelel 1]s=IFlulLiL], 2

V] MRlITIE] lolvIERIDIU[EI-IAlCIclolUNITIHIL 1INE] [AlF|TIER

! SIK| 1 |P{P|1!N|G|=I TIO|=[NIE|X!T|-'PIAIGIE |3

! olT/HIE[RW 1/S|E[,| MR I|T]E| |olVIE[RIDUE]-IAIC|ClOjUIN|TI=IL| 1 IN]E
! AF|TEEIR| |s[Plalc]iN[6[-[2/-[L|IINIE|s|. _

The form-overflow condition name is defined in an APPLY entry in the
Environment division. Here is how the name used in the above example
might be defined:

WMPPILIY PIAIGIE|- 1fs-FluLiL| [Tjo| [FlojRM-IO]VIEIRIF|Llom
1 | || |oN] JoJvE NTHL]ES[TIN

m
ps)
o
C
m
|
>
()
()
o
c
|0
(2]
LN

Class test. Consists of the name of a data item followed by the
specification of a class. Examines the item to see if the data it
contains belongs to the specified class. Classes that can be specified:
ALPHABETIC, NOT ALPHABETIC, NUMERIC, NOT NUMERIC.

O
o

| F ACTIVITY—RATING is ALPHABETi
1 clo| [T]o] [H[t|c/H-lAlc|T]iIv]1[T]Y|-[ANIAIL|Y|S]!

v

An item is

° alphabetic if it consists only of letters, and possibly spaces.

' not alphabetic if it contains any digits oxr special characters.

° numeric 1f it consists only of digits, and possibly an
operational sign.

[) not numeric if it contains any spaces, letters, or special
characters.

(3/66) - 54

FLOW OF CONTROL

The way in which control flows through procedures in a COBOL program
represents the sequence in which instructions in the object program
will be executed, How control will flow depends on the kinds of
statements in the Procedure division, and their arrangement.

Startin oint. Control starts at the first statement of the first
procedure in the division, provided that there are no declaratives.
If there are any declaratives, control starts at the first procedure
after the END DECLARATIVES entry.

° Declaratives are special, optional procedures that are grouped
together at the beginning of the Procedure division. Declarative
procedures are logically separate from the main body of the
Procedure division; that is, they cannot be affected by the
flow of control through other procedures.

° If the program contains declaratives, a DECLARATIVES header
will appear on the line after the PROCEDURE DIVISION header,
and an END DECLARATIVES header will appear on the line after
the last declarative procedure.

Sequence. Control automatically flows from one statement to the
next statement in sequence, and from one paragraph to the next,
except when

) a GO TO statement causes a branch.
) an IF sentence causes control to jump over certain statements.
) a PERFORM statement gives control temporarily to another
procedure.
° :hzTgﬁ statement causes a delay in execution, or terminates
n.

Branching. When a GO TO or PERFORM statement causes a branch to a
procedure, control is transferred to the first statement of that
procedure. It is permissible for a GO TO statement to send control
back to the beginning of the procedure that the GO TO is part of.

(Continued on next page)

(3/66) 55

FLOW OF CONTROL (continued)

Flow of control through an IF sentence that does not contain ELSE or

OTHERWISE.

DESCRIPTION OF
DATA CONDITION
IS FALSE

DATA IS
EVALUATED

DESCRIPTION OF
DATA CONDITION
IS TRUE

STATEMENTS UP TO THE
PERIOD ARE ACTED ON

Example.,
1| 11F|_BlalLlANICE] [ils| INElslalT!1IVIE], il |
2 ' olvel ['/BlalLlaNClE] [1]s] [1N] |YlouR| IFlavioR]'
3 ! TI0 MEISSIAIGE|-AIREIA. | |
4 Wr[1[TlE| cluls|TioME/R—B]1L|LI-REIClo]RDI,

The data item (BALANCE) is evaluated to see if it is negative. If it
is negative, the statements on lines 2-3 are acted on, and then control
passes to the next sentence (line 4). If BALANCE is either positive
or zero, control jumps. directly to the next sentence (line 4).

(Continued on next page)

(3/66) 56

FLOW OF CONTROL (continued)

Flow of control through an IF sentence that containé ELSE or OTHERWISE.

DESCRIPTION OF
DATA CONDITION
IS FALSE

DATA 1S
EVALUATED

DESCRIPTION OF
DATA CONDITION
1S TRUE

STATEMENTS UP TO
ELSE OR OTHERWISE
ARE ACTED ON

J
Y

STATEMENTS AFTER ELSE
OR OTHERWISE, UP TO
THE PERIOD, ARE ACTED ON

Example.
1 HIF] RElclovERIY] [ils! NoiT! [GIREATIER [TIHAN
2 BCRAR—PONNT,
3 h O\VE| [IITEM-NUMBER]| TO
4 F siciRIAlP|-!1 [TIEM,
5 K ADID| [REEICOIVIEIR)Y| ITIO| ISICIRAIP|s
6 IOTHEIRW, I SIE|, '
7 i RITIE! |ClOINISIER|VIAT|1|ONI-|R|E|COR|D].
8 ADbp! [1] [Tlo] [TIRIANIslAlC|T]I/oN[-[cloju|NiT].

RECOVERY is compared with SCRAP-POINT. If RECOVERY is equal to or less
than SCRAP-POINT, the conditional description is true, so the statements
on lines 3-5 are acted on, and then control jumps to the next sentence
(line 8). 1If RECOVERY is greater than SCRAP-POINT, the conditional
description is false, in which case control jumps to lines 6-7, and
then passes to the next sentence (line 8).

(3/66) 57

CASE STUDY.

Customer billing program,

Input. Billing record.
ACCOUNT IDENTIFICATION CREDIT STATUS (
R
ngE SATC::SNT NU':i?fE BILLING | cusTOMER | STREET | ciTY- | RATING | PURCHASE
AcCoNT | onemE | e | cveLe NAME ADDRESS | STATE | CODE LIMIT
{ACCOUNT HISTORY LAST YEAR {
YEAR I§2$ HIGHEST | MONTHS 'Mgcggs TOTAL TOTAL
OPENED | ,crive | BALANCE | AcTivE %0 PURCHASES | RETURNS
\ THIS YEAR TO DATE LAST MONTH (
MONTHS Mgvg:s TOTAL TOTAL N”:)‘EER BALANCE
ACTIVE S PURCHASES | RETURNS | roansacrions | FORWARD
LTH|$ MONTH (
PURCHASES PAYMENTS CREDITS
BILLING NU'gE_’ER CURRENT -
DATE TRANSACTIONS | BALANCE | NUMBER | AMOUNT | NUMBER | AMOUNT | NUMBER | AMOUNT
) COLLECTION HISTORY
RETUR A ; AST
Y ETURNS 3§vsaztés B Ig_oANCEZO LAST PAYMENT |
iNUMBER AMOUNT | S8 | S0 | Sav | bay | DATE | AmounT CODE
Qutput. Monthly statement.
'|234?67870)234‘567&9{9‘2342.5 ‘7 9| 1"‘57 : ”4‘ lllllllll 5'11”i."‘67"llj ”7“7 - 71877
10/7/819) 6 4 718/1910{1121314 314(5(6i7(819{0[1]2{3/4 73901234567120 45£
: SRl 6 CGHEEa ZeelaEs
2
3 ol 1, RED |7 P AVEINUE! ¢ ORK | I37
4
s T nn
s L]
7 CE FROM| TRANSACTIONS |MADE |THI5| MONTH TACGOUNT WUING
8 | iUt PURCHASEL T@(MEN‘ 5 CRED(TIS [|| _NUNHERM 1 oarEl [T
9
10 SEERMY $1126/./03 18l56l. 117 9l 312 |36i5| l8olold 10] 18] l
11 :
12 111
13 b -
14 11 1 LD
15 QUNT DUE $176/./81 MRS RALSTON WRATITH DR s
16 13869 N RIVERSTDE gb, |
17 - | BIENGHR v 13002 i
18
19 L]
20 L
21
{Continued on next page)
(3/66) 61

CASE STUDY (continued)

Identification division.

vipENThIEN IclalTh |oin pl1iviiis[i ol ENES BAEERIRREERER ‘
' [] 1 [IREEE R H
! 1 . : | : IR R !
PRIOGIRIAM -1 D!, B N
1'BlLILI NG|] i)
1 B IEREE B i 1 i] |
Ly AN SN v
AUTHOR, NN A RER | |
PAUL| IMELI1LCHAIR L1 ;
i ’ RN !
1 ! i
DATE-WRITITEN. Pyt |
ISEPTIEMBER!, [119]65!, | i .
[} 1 [N] i
1 1 | :
IREMAlRK]S], EERRAN : | RS
| STATIEMENTS ARE' NIOT S[ENT |TO |N$kﬁ|V£ﬁACC0UNTs. ANOTMER PRIO
HAND|LE]S accloluNTs] Wit NElcATIVE (cRED]IT)! [laLANCES[.[T [T1T[]
‘FloluR] L[t NEls| (ARE] PRIINT|ED loln! ElAlcH SITATEMENT],| 'UNDER [clARR|1I'AGE
iCONTIRIOILL| Lt INIE! 1 [1s' PIR'I NTIED' IAIFTER| A SiK'I'P! [T'0l 'ClHANNEL] l1],] L1t
| L FTER Al [skiile| [t [cHlanNel! [2, 1L[iINE'S] 3| lAND 4] laRE| ‘st NGl E-skiac

(Continued on next page)

(3/66) 62

CASE STUDY (continued)

Environment division.

ENVlhmeFm&?DHV|S|ON.
[RREE R !

CONF1I GUR|AT I ON: [SECIT

ENERENEE

B
SOURICE—CIOMPU|TER|.

T

(1 BM-[3l6'0' l6:50].

RN

oBlUE!CT-C

o

MP
11BN 60 |F30.

[

1
1IN[PlUIT—l0!

FlilLE-cloN

SELE

=
(o]

@

c oM
Z =)0
IJlololE

(=3

(2]

=

[e)

g .

km

]

i

(]

ISELE
[

s

]
c|ml>e

(Continued on next page)

(3/66)

63

CASE STUDY (continued)

Data division.

FATA'DIVISIdN. ol il RESE IR }
i SEEEERE N
Fi1LE] ISiECITIIION]. 7T ;
, ; 1 | f
ol | 'sliiiING=FiILE ! 5
iBLIOCIK thTAnNs 5| RE/CIORDS L
L ABENL RE|cCloRDIS| ARIE| 's/TIAINDIAIRID
io'aTal [REE/clolRD! [i1s! I8 1iL]LIi[NG/-R|E[COR]D]. L
' REERREEEE] ‘
o1] | 'slijLiL]i|N|G-RIE|/C/ORIDI. L]t
lo2 | lalcicloluNT-{1IDENT IIFN [ClAlT i {oN B RE
! ol3| | [r|v|PlEl-lolF[-alc]cloluiniT] Llplilcirlurie] [x[. N
: o3| | |alcclojulNT-INuMBlER].! HEEREN !
H loia] | |s|TIoRIE-INUMBEEIR LlPliieulrie! folglel,f [T Tf [T »
: 04 | [FliiLEI-INUMBER Vi leivicjuirlel oltlah], ! i T
é B BlLLING-CYcﬂg L1 elnemuirlE] [olal. i | B
03] | |clu'sITIOMEIR|-INIAME [PircTURE! [x!(/2/2]) B
i 03| | |siTIRIEE[TI-lAlDIDIREE]S]S! plilciulrlEl |x|(22]) i
H 03] | icliTlvl-IsilalTlel | [| PlICTIURE| |x!(2i2])!. i
lolz! | [cIrlElp]1[T/-Is|ralTiuls]. :
1T bz #Arﬂus—coos 1 [plilciTlulRlel [xI.
T o3l PluRclHASE[-Il Ml [T[T [elviciulrel [olcahl.
02| | lalciclofuNTi-ll1 IsTiolRlY]. | A
HEEESE YEﬂN—OPﬂ@ED IPLilcTiuRlE] [9ls].
o3 | [YEA -L@ﬂT-ACTIVE PlIICTIURIE| [9l9].
VT Tl [IH) e[S BALAPCE Pl IcTURE] [ol(l4)violel
2l | Lialsm-YEAR!,! '
1111 o3l | IMoINTiHIS—AlcT 1 VIE! | l Pl1IcTURIE| |9la].
A 03 Ephhus4ovta4dd ! PICTMRaiss.
! pl3| | [ToTalL-PUR'CHAISE'S | | [pli'icmuiREE] |9](|shlvigial.
{ || lof3] | [Tlol7 quETdRﬁill LT el ciuiRlE] [sl¢is)visle
lo2| | fiHl1 s-lYE|ARI-TO-DIATE!, REEN
ARERE 1%&N si-alcT!i VE | lpliicTluRlE] [ol9
{1113 His-olVIEIR-Islo '(lblcrdns olg,,
: 03] | [TolTlalL|-/PURICHAISE]S | lpl1iculRlE! I9l(|sh]visle
: o3| | ItolT] L;#ETUR S | el lciuirlEl [ol(lshiviole
o2l | iLlalslt TR EE - B ‘
i |1 | lol3l | INumBlER-lolFl-ITirlaNSlalcTi o' | [Pl IclulRE] [olsl.
: 0/3 BAlﬁPb - oRPgtP | lPliicrulriE| [ol((4h|vio]s)
©l2| | |THl1|s-IMoIN|TIH], ‘i!*
| o3| | IBl1iLiL]iING/-jplAlTE] | | L TehicmuRle! [9iieh.
i 0/3 MUFPFR— Fl-TRANSAlc T OlNS | [Pt CTIURE] [olo].
RN SE !CURRENﬁﬂbA&l'p=5 LT Uenjemulrie] [o]diabviol

(Continued on next page)

(3/66)

CASE STUDY (continued)

Data division (continued).

41 losl [[purclasElst, f LT ol L]
R ola! ug%}mv 1 pliicinulRE! lolo),

O 0la | |AMOUNIT! | PlIlcT|URE|" 9'9
T T o] T plalvMENNT]S]. il
P 04, | INlumBlEIR] | . LlcTURIE . [
A o4l | [AMoulNT] T PlIICTURIE ol
AN ol3| | IclRiED]1 [TlS!. TTT1T1
R 0al | INUMBIEIR ! lelriclulRle]. lolol.

L 04 JOUINIT PlI'ICTURE 9

I ol3! | REITURINS!.

il 04/ | INUMBIEIR Pl cTURIE| |9

' ola | |AMoOUINIT Plilc q@? 9

02l | lcolLielclT]iloN—H 1 [siTiolRIY!.

1 03| | olvERIDUE!-BIALIAINICE!S]. | | | |

! ola] | [3lo=plaly ! plIchlulrE] [o([aDlv
! olal | |elo~ipja’y ! PLicrulRE] [9ltlahlv
! 04| | lelol-play | 1PliicTuiRE]: |9](l4])v
i ol | l1/2lo-pay: | | | leliicmulrlE] [9]¢laDhlv

H 3 lAqT-PAYMENh. BE | [

! ola| | IplaTel | i] T T ehierulRiE] [oltsN].
H 04 ‘f OMNn] LD lelhicTuiRE! [olclahlv i
1 [Tlol3[{ [oluinili NG=jcooe] T |~ T | T "lelicTjuREl |x ! AR

(Continued on next page)

(3/66) 65

CASE STUDY (continued)

Data division (continued).

1-
—
L
M
1
= o < B J
7 ® ﬁul# o 1o
- ’ o QM_ i To]
=4 E ezl A o))} +
- o .m.m .i o —
- o e s aa oo oo
o | x| - X| - > x| o] x| O X|
1 | |
W) L EEEE.E%EE ol W
_v RRRRBLBR![RRRM‘%
= EREEEEEEEE R
) R H A e H =
[Iy o O ol o] O O o OOl o] O O O
| — —]]]] —]] —]]]] -]
| B ajalajalalajajalalaial alal
B IR b
ﬂ,
-
] [_ju
arz
=g
-
=i [—
—=|
3
o.l
] [14
J | W
h 1] [12) [m
wl el || Tul =
jul < ol =) =
| ol 0| _.M._I 2 o) &f Z o
Tlrw_L Ql P L Y 1] 1]
—I={alof— [o o [+ [o [+
o |o| el 1| o] < 2] <] i X | 2| & 2 &
%U wil Wi oof wi T W wil =l w S | —fw
M)) 3 1]] O E»l.DL N | | |
MEEL o = 2 P Y S)
o] —| LILIUIAIRHMI,MI
®) @]G njal al o T8 ™
o] w 3 -
D =)
Slud € < — Nl f o NN N KN
= LD.--..--B.D..D.r&b QLR Q[QLQ_ QO]
[a) -
L] Q) B -

.,
[T1]
ol
-l-1d
~j Nl o
B K)
[¢)) EE...L
[<}) DI D
.] | |]
J of o of of o of o o g gl
~ B —~| ~ o~] o~ o~ -~ VVVA
N -~ TN~ SN -
~r| 4P| |] ol et Bt | | |
x| X| X| X XXX x| X| X x| X} X
Wi W] Wi il W W wjw W Wi w W Wi Wy
clelalela alele clefe olel e
DD D] D] =] =] 22|12 2122
HlEl =l [l [el =
| O O] O] O © OOl O Ol O] O O] O] O
ajajajoi o ajaja ajalo ajoaja
— - - ——}
- L || ~| N
1
d
wiwj |
Z|Z |
Zl2Zl |
by <
-4 o e o
o Ol O
- (B
= Wil
O O] O
w [T1] g g
2 [72) = =
" [=) 3 o [33]
)] o) [72) < : w el o
| el o [+ [(R4K71N: 4 i a m g g «
WiwlZ| (1) Wi W i w [) W | oloja
JHrW.H [TY)] I 3 L__W - rL.HHR [§ N7
=]] O]] e] =)] e I) I O, O]O] 1
=] = - r S ~[ol— A =] =] — - [e K1Y
e wiZl ul Tlul<lu Ll O 7] it
- . = = =] ajal®
=) i =J - [C) ==
—N[N[N NN =N Nf =Y 2 x| x| —|
I KoK= Ko K) B . K =TT) i =) e I
-~ - - O [i
[e. ol S

(Continued on next page)

(3/66)

CASE STUDY (continued)

Procedure division.

mmﬁqgoﬁﬂg'olvHQ|on. O
HE l i BN
S TARIT-PRIOICIE|s|S 1:NG]. | | '
11 1oPlEN lNPuFfBLLLWNG—FILE, ouTlPulT! [c'UsTloMER|-1B I L]LI-IF
L1 BRI REE ~
RIEAD-AND|-[cHE|cK~-RIEICORD!. [[T i l
o 'relap] BliUL iNGl-FiLE s TalT eNlpl,! l6lo’ ITlo] |ElNbl-lolF[-|R|un
el INuiMBEIR -0 F|-TRAIN'S AT 1ioN[S! 1IN TiH[1ls|-MoINITIH] [1]s] [Elalula ERO[, |
' lorR' IcRREINT-BlALIANICE !i]s! NE|GAT IVIE/,! |6lo) T]o| [RIE[alDI-AINIDI- RE|ClORID.. |
EREE ' i
L'IINEl-1-PRIOICEIDUIRE]. IR
1 mMolvEEl IslplalcEls! [Tlol Bl1juiLiLliINE]-]1]. RERE
' MovE| IslaiL|aNCIE[-|FloRWAIRD| |Tio! |oiLDi~BIAILIAINICEE|, i f
. MOVE[AMOUNT| [oF PURcHAszs‘ﬂﬁ*FHys- ON[TH i =
1 [[Tlol IPluRcHASE'S] [1N] TBl1LLI-ILINIE]-1 . RN
| wolvE| |AMolulNiTl lolF! lplalyiME[N[Tls| [iIN [T]H!1'si-IMoiNTIH N
(LT] ol plalyMEINTIS (1IN [BH LIL-[L[1NEL=]. ’ L]
‘Molvie| |aMojuinlti lolF| [clriElD]ilTls! [1]n| [Tinl1s-MolNlTIH 11!
. Tlol IcIRIEDI]TIS! [N IBlifuiL=IL] i NE=[1l T T T]
molvie| |alciclouiniT]-INuMBlEIR! |olF! B]1 ILL I|N/G'-|RIE/CIOIRID
! Tlo [Alclcloluln'TEINulMBIEIR] T1IN] iBlILILI-ILitINE=1], !
wolVIE] [B1L|Li1NG]-D/ATIE! lolF| [TiHi[s-MolNTHl [T TT] 7 i
T o I8 i) iNG-olaTe Tiin Bl LUy N] |
WRLITIEl 1Bl1LiL~{L] 1 [NIEH1] |AFITER skWP-H@Lc?wwrmseAﬂHAQmE
L INE}-2]- PRIOCIEIDIURE] . NN 1!
MolVEE! |sipialciEls! ITlol Bl 1 ILILIHLINE|-12i.! | | !
MolviEl [clulRlRIEINITI-IBIAIL[a'NICIE] ITio| |AMOUINITI-IDUE!.
Molvie] [cluls|TloMEIR-NAIME: Tlo' ‘NAIMEI. [
WR{IITIE BlLLi-LiINE-[2] "AFITER s%ﬁp-To—dﬂRR|Aes-cu NINE
[BEEREE 1 [
L {NE-3-PIRloICiElDlulRE] | | 1] ¢ 1]! 1
olVE| [slPlalclEs! {Tlol Bl ijLiLi-[Li1INE]-[3l. RN
MolVE| [s|TIRIEEIT|-|AIDIDRIE/S]S! [T/0l |A|DIDRE]S]S!.]
WRTE[[BlHLL-IL1NE-{3] |AlF|TER SINGLEﬁSPACE. i
|] ’
Ty ‘
L' 1N E;—4—|P|RIO|CEE[DIU|RIE]. g
11 molVE[[chillyi-s[Tlalrlel [rlol Ic]ilTlvl.
L WRNTEE! IBliLL-ILl INEl-l4] |aF[TIER] [siNGILIE-(slP/aiCiE].
||:] i
GET-INEXIT|-REIClORID|. ,
'siol [Tjo] [REEJabl-[AIND-|clHlE/clk|-[RIEIC|o/RD].
} E
ENDI-lOFI—R|UIN|, IR
V] cio'sie Bl inlei=FliLEl | [clulsiTlomeR]-8l1ILL—Fh]LE . I
T T e ol B ! | 1
‘1 STOP| RUN.: EARERERE

(3/66)

67

R28-0206-0

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York

