
------- ---- ------- -- ::::::::;:- - -- - -- -- .
(

(

Application Program GH20-0673-5

CALL - OS Version 2

System Description Manual

Program Number 360A-C::X-42X

This manual is intended primarily to define
the scope of applicability of CALL-OS for
customer executives, system analysts, and
programmers. It describes the facilities of
CALL-OS and includes a general discussion of the
CALL-OS system configuration, terminal
processing, system structure and control, and
system support and maintenance facilities, and
an introduction to the language processors
supported. The CALL-OS terminal command
language is summarized for the user.

CALL-OS is a high-performance, terminal­
oriented, time-sharing system designed to
operate as a problem program under the IBM
Operating system (OS) Multiprogramming with a
Fixed Number of Tasks (MFT) or Multiprogramming
with a Variable Number of Tasks (MVT) control
program. The Model 65 Multiprocessing System
CM65MP) is not supported.

CALL-OS provides a personal computing
facility designed to handle a high volume of
traffic in a problem-solving environment. The
system is designed to satisfy the needs of the
professional programmer as well as of the
individual with no programming experience. It
provides remote terminal services for CALL-OS
BASIC, CALL-OS FORTRAN, and CALL-OS PL/I users.

In addition, CALL-OS permits the terminal
user to create OS jobs and submit those jobs via
the CALL-OS Batch Interface (COB!) option for OS
batch processing. All or a portion of the
output of submitted jobs can be listed at the
terminal.

Terminal Eguiva1ence

Terminals which are equivalent to those explicitly supported may also
function satisfactorily. The customer is responsible for establishing
equivalency. IBM assumes no responsibility for the impact that any
changes to the IBM-supplied products or programs may have on such
terminals. ·

Sixth Edition (June 1972)

This edition, GB20-0673-5, is a major revision obsoleting GH20-0673-4.
It reflects Version 2, Modification Level 1, of the CALL-OS time-sharing
system and all subsequent versions and modifications until otherwise
indicated in new editions or Technical Newsletters. All changes to text
and illustrations are indicated by vertical lines in the left margin.

Changes are continually being made to the specifications contained
herein. Therefore, before using this publication, consult the latest
System/360 SRL Newsletter (GN20-0360) for the editions that are
applicable and current.

Copies of this and other IBM publications can be obtained through IBM
branch offices.

A form bas been provided at the back of this publication for reader
comments. If this form has been removed, address comments to IBM,
Technical Publications Department, 1133 Westchester Avenue, White
Plains, N.Y. 10604.

@) Copyright International Business Machines Corporation 1971, 1972

PREFACE

CALL-OS is a terminal-oriented, time-sharing system designed to
operate as a problem program under the IBM Operating System COS)
Multiprogramming with a Fixed Number of Tasks (MFT) or Multiprogramming
with a Variable Number of Tasks CMVT) control program. It provides a
personal computing facility for both the professional programmer and the
individual with no programming experience. A user interacts with the
system using the CALL-OS terminal command language and CALL-OS BASIC.
CALL-OS FORTRAN, or CALL-OS PL/I. Programs can be entered at a terminal
and executed immediately and/or placed in either source or object form
in system libraries for subsequent, immediate use. CALL-OS Batch
Interface CCOBI) facilities permit the user to create OS jobs. submit
those jobs to the OS batch-processing environment. and request that all
or a portion of the output from submitted jobs be listed at the
terminal.

This publication is intended primarily to define the scope of
applicability of CALL-OS for customer executives. system analysts. and
programmers. The manual includes a general discussion of the CALL-OS
system configuration, terminal processing. system structure and control.
and system support and maintenance facilities. and an introduction to
the language processors supported. The terminal command language is
summarized in Appendices A and B.

For additional details concerning the CALL-OS system. the following
CALL-OS publications should be referred to:

CALL-OS BASIC Language Reference Manual (GH20-0699)

CALL-OS PL/I Language Reference Manual (GH20-0700)

CALL-OS FORTRAN Language Reference Manual (GH20-0710)

CALL-OS Executive and Utilities Program Description Manual (GH20-0786)

CALL-OS Terminal operations Manual (GH20-0787)

CALL-OS Operator's Manual (GH20-0788)

CALL-OS PL/I Reference Card (GX20-1810)

CALL-OS BASIC Reference Card (GX20-1811)

CALL-OS FORTRAN Reference Card (GX20-1812)

CALL-OS Terminal Command Language Reference Card CGX20-1830)

CONTENTS

Introduction •
system overview.
Advantages
system Features.

Languages.
User Libraries •

•
•

Multiple Input/Output Files.
CALL-OS Batch Interface (COBI)
security • •

Performance considerations

System Configuration • • •
Minimum Configuration.
Terminals and Consoles •

CALL-OS Terminals.
command and Communications consoles.

Interval Timer Considerations.
RPQ Summary. •

•

Representative os Configurations • •
Customer Responsibilities.

Terminal Processing.
sign-on.
Terminal command Language.
CALL-OS Programming Languages.

CALL-OS BASIC Language •
CALL-OS PL/I Language.
CALL-OS FORTRAN Language •

CALL-OS Batch Interface (COB!) Option.

System Structure and Control
Relationship to OS •
Data Base Concepts •
System Processing.

Executive FUnctions.
Time Slicing •
Job Queue Management •

• •

•

System Support and Maintenance Facilities.
System Build and Initialization.
system Termination •
Accounting • •
Statistics •
Data Base Build and Maintenance.
Paper Tape Faci1ities. •

•

•
•

•

Appendix A: CALL-OS Terminal Command Language summary •

Appendix B: CALL-OS Terminal Command Language for COB!.

Index.

FIGURES

Figure 1. sample CALL-OS BASIC program.
Figure 2. Sample CALL-OS PL/I program •
Figure 3. Sample CALL-OS FORTRAN program.

•

•

•

Figure 4. Sample CALL-OS JOB to be submitted for OS batch
processing.

Figure 5. Core relationship of OS and CALL-OS . •
Figure 6. Job flow diagram. • •

•

•

•

•

•

•

1
1
1
2
2
2
3
3
3
4

5
5
6
6
1
8
8
8
9

10
10
10
11
12
13
14
16

18
18
19
21
21
22
22

24
24
25
25
25
25
26

28

41

46

12
14
16

17
19
23

/

I

"'---

INTRODUCTION

CALL-OS is a terminal-oriented, interrupt-driven, time-sharing system
which provides an individualized computing capability to a variety of
users. It is designed to handle a high volume of traffic in a problem­
solving environment, and to satisfy the needs of the experienced
professional programmer as well as the uninitiated computer user..,

SYSTEM OVERVIEW

CALL-OS operates as a task under the control of the IBM Operating
System, Multiprogramming with a Fixed Number of Tasks (MFT) or
Multiprogranuning with a variable Number of Tasks CMVT) -• hereafter
referred to in this manual as OS. It may reside totally or in part in
the IBM 2361 Large Capacity Storage (LCS) under OS Hierarchy Memory
Support. Background jobs may execute concurrently with CALL-OS to
capitalize on remaining central processing unit (CPU) time and core
storage capacity. Thus the multiprogramming functions of the standard
operating syst~..m plus a time-sharing capability are provided. In this
environment, each CALL-OS terminal user operates independently of every
other user. and is usually unaware of other terminal users or other OS
activity.

The CALL-OS system includes the CAI.L-OS Executive, which interfaces
to OS, language processors which operate under control of the CALL-OS
Executive, and utilities designed to be run under OS when the CALL-OS
time-sharing system is not active. The system is designed as a modular.
multiprogramming system. Program modules are written in System/360
Assembler Language.

CALL-OS Batch Interface (COBIJ facilities permit CALL-OS terminal
users to create OS jobs, submit those jobs to the OS batch-processing
environment, and list all or a portion of the output from submitted
jobs. COBI is an optional component of the CALL-OS system. If it is to
be used, it must be included in the system at system build time. If
included at system build, it may or may not be activated for a
particular session of CALL-OS.

ADVANTAGES

Some of the highlights of the CALL-OS system follow:

• Highly responsive personal computing system under OS

• Concurrent batch-processing capability under os

111 Extensive terminal command 1anguage--directed towards both
expe.rienced and inexperienced users

• system structure designed for problem solving

• Multiprogramming within a single task area

111 Dynamic assignment of dispatching priorities to provide efficient
use of CPU time

• Fastw load-and-go compilers

• Compiler-generated dynamica.lly relocatable code

1

• Extensive edit capabilities for modification of source programs

• Optional storing of programs in object format

• Terminal checkout of user programs

• Operator control of system resources

• Facility for entry of source programs. data, and terminal commands
via paper tape

• Facility for terminal entry of OS jobs. submittal of those jobs to
os batch processing. and retrieval of output from submitted jobs via
the CALL-OS Batch Interface (COBI) option

• Extensive CALL-OS data-base manipulation and maintenance
capabilities available via offline (OS batch-oriented) CALL-OS
utilities

• Support of 2314. 2319. and 3330 disk storage devices; CALL-OS will
run with all of one device type. or a combination of supported
devices

SYSTEM FEATURES

LANGUAGES

CALL-OS supports the following languages:

• CALL-OS BASIC. an enhanced version of the BASIC language originally
developed at Dartmouth College. Hanover, New Hampshire

• CALL-OS PL/I, a powerful general-purpose language

• CALL-OS FORTRAN. a widely used scientific and engineering language

Details concerning language capabilities are provided in three CALL­
os language reference manuals: CALL-OS BASIC Language Reference Manual.
~-os PL/I Language Reference Manual. and CALL-OS FORTRAN Language
Reference Manual. The language capabilities are summarized on three
corresponding reference cards.

USER LIBRARIES

CALL-OS supports multiple levels of stored libraries that can be used
to retain either program or data files. The libraries are:

• A library accessible to an individual user (user library)

• A library accessible to only a specified group of users as
determined by the user installation (*Library>

• Two libraries accessible to all users (the **Library. into which
files can be pooled by terminal users. and the ***Library. whose
contents are controlled by central computer installation personnel)

Thus. the *Library. **Library. and ***Library are shared libraries.
When the term "system libraries• appears in this manual. these libraries
are inferred. Program files can be shared by multiple users of CALL-OS.
They can be pooled into system libraries in either source or object
form. Data files can also be shared. but a shared data file can be used

2

(

only for input (when accessed by other than the pooling user>: that is,
only the originator of a data file can modify it.

MULTIPLE INPUT/OUTPUT FILES

CALL-OS allows data files to be attached to programs at execution
time. These files may also be detached and other files attached,
permitting access to all of a user•s files during one execution of a
program. Up to a maximum of four files per program may be open
simultaneously. Each file comprises a number of 3440-byte disk storage
units. If the maximum number of units to be allowed for a file is not
specified <via a FILE command), a default of four is assumed.

The maximum file allocation as specified in the FILE command cannot
be greater than the maximum number of disk storage units allowable for a
data file, as established at system initialization time. The maximum
value that can be specified by an installation for maximum number of
units is 100 units, permitting up to 344,000 bytes per file. If no
maximum value is specified at system initialization time, the default
maximum number is 100. (Thus, both the maximum that can be specified by
an installation and the default maximum are 100.)

CALL-OS BATCH INTERFACE (COB!)

The CALL-OS Batch Interface (COB!) option permits a CALL-OS terminal
user to create and maintain OS jobs. Terminal commands are issued to
route such jobs to the OS batch-processing environment. The job control
language (JCL), programs, and data for a job must be available in the
user's library when the user enters his SUBMIT command. It may have
been entered from a terminal and saved in the user's library, loaded
into the user's work area from a CALL-OS shared library and saved in the
user's library, or copied into the user's library via a CALL-OS utility.
The user can specify that JCL or specific user or procedure-defined
SYSOUT data sets of the job be retained for scanning. He can inquire
about the status of submitted jobs or of data sets associated with a
submitted job. After a job has been completed, all or a portion of the
specified output can be printed at the terminal. See "CALL-OS Batch
Interface (COB!) Option" and Appendix B for a description of the
facilities available.

SECURITY

To protect against inadvertent access to or destruction of programs
and data files, CALL-OS requires that each terminal user follow a
specific sign-on procedure. supplying his user number and password. All
resources belonging to a user are protected under this identification.

When a user chooses to make his program available to other CALL-OS
users through the system library facilities, he can control the use of
that program by issuing a PROTECT command to assign a run-only status to
it (see Appendix A). A protected program can be run or merged with
other programs, but cannot be listed, stored, or saved by any CALL-OS
user other than the contributor of the file. Terminal commands
controlling edit operations such as adding strings of characters to ends
of lines, finding specified character strings in lines, or moving lines
cannot refer to protected programs. A program resulting from a merge
involving a protected program is also protected and subject to the
restrictions this status implies.

A data file placed in a system library may also be protected by
issuance of a PROTECT command. A protected data file cannot be opened

3

by anyone other than the contributor of the file. Thus, access to the
file can be restricted prior to or during a required update process.

CALL-OS program and data files are similarly protected against
unautho~ized use via CALL-OS utilities. For any program or data file
saved or stored through a terminal or created via a CALL-OS utility, a
SECURE attribute is set automatically. No one other than the creator of
a file can copy, modify, or delete any part or all of the file. To
permit his file to be copied by another user, the creator of a file can
issue a RELEASE command, causing a RELEASE attribute to be set. After
the RELEASE attribute has once been set, it is reset by user issuance of
a SECURE command or automatically by a CALL-OS utility that accesses the
file.

While the CALL-OS data base is mounted, access to critical user-group
data sets can be controlled by specifying DISP=OLD in the data
definition (DD) statements for system initialization or the utilities.

PERFORMANCE CONSIDERATIONS

CALL-OS system performance is a function of several variables,
including the following:

• Number of terminal lines to be supported

• Size and characteristics of the time-sharing programs

• IBM System/360 or System/370 CPU model

• Core size allotted to CALL-OS

• Amount of background activity

• Frequency and distribution of command execution

• System arrangement of frequently used libraries

• Direct access storage configuration

Great care should be exercised in predicting performance levels in
any specific situation.

4

(

SYSTEM CONFIGURATION

The hardware configuration for the CALL-OS system is determined by
the requirements of OS, CALL-OS, and the objectives of each
installation.

MINIMUM CONFIGURATION

The minimum central processing unit (CPU) for the CALL-OS system is
one of the following:

• System/360 Model 50HG

• system/370 Model 145H (384K, where K is 1024) with:

3345 Main Storage Frame
4901 Main storage Frame Adapter
3046 Power Storage
3910 Extended Precision Floating Point Feature (optional feature,
but no charge>

• System/370 Model 155HG

The minimum peripheral equipment required for online operation with
each of these CPU's is shown below.

• System/360 Model 50HG:

one selector channel
One IBM 2314 Storage Control Model A1
One IBM 2312 Disk Storage Model A1
one IBM 2702 or 2703 Transmission Control
Two terminal consoles (see below>

• System/370 Model 1458 (384K, as defined above)

One IBM 2319 Disk Storage Facility Model A1
One IBM Integrated File Adapter feature (#4650)
one IBM 2702 or 2703 Transmission Control
Two terminal consoles (see below)

• System/370 Model 155BG:

One block multiplexer channel
One IBM 2314 Disk Storage Control Model A1
One IBM 2312 Disk storage Model A1
One IBM 2702 or 2703 Transmission Control
TWO terminal consoles <see below)

The 2314 Direct Access Storage Facility must be on the selector
channel of a System/360 Model 50 configuration or the block multiplexer
channel of a System/370 Model 155 configuration. The CALL-OS system
employs the 2314 or 2319 for system residence, for program and data file
storage, and for a work area for terminal users. CALL-OS can operate
with one IBM 2316 Disk Pack, but it is recommended that more than one
disk pack be mounted and available to the system during processing.
(For discussion of a configuration that includes 3330 Disk Storage, see
"Representative OS Configurations• in this section.)

5

The 2703 Transmission control unit (TCU) acts as an interface between
the terminal lines and os. The 2702 TCU, with equivalent features and
RPQ's, may be substituted. With the appropriate expansion features, a
2702 TCU can support up to 31 lines. The 2703 can support up to 176
lines, expanding in groups of eight-line units. The IBM 3705
Communications controller, with emulator program (EP), can serve as a
2703 in a system/360 or system/370 configuration supporting CALL-OS.

The two terminal consoles are used for system communication. One
serves as a command console from which the operator issues special
operator commands <•commands). The other serves as a communications
console for recording system error messages and activity. The OS system
console is used to initialize CALL-OS and may serve as the
communications console, thus reducing to one the number of terminal
consoles required.

The following additional peripherals are required for the system
support and maintenance functions performed by CALL-OS:

• One printer output unit, OS-supported, with 120 print positions and
graphics equivalent to the PN print arrangement

• One card input unit Cas required by an OS minimum system>

• One punched card output unit (as required by an OS minimum system)

• One IBM 2401 Magnetic Tape Unit (any model)

Any peripheral devices, in addition to those given above, will be
supported within the limits of os support. Specifically, CALL-OS can
use additional selector channels and any appropriate 2314 Direct Access
Storage Facility A or B Series configuration. A System/360 Model 85 or
195 or a system/370 installation can include 3330 Disk Storage. In a
System/360 configuration, use of the high-resolution timer RPQ gives the
most accurate accounting capability. This RPQ is available on the
Models 50 CRPQ E15092) and 65 CRPQ E43528) central processing units.

In addition to the above minimum hardware configuration, the user
must have an MVT or MF'l' system with at least an OS Assembler, a Linkage
Editor (F), the OS utilities IEHPROGM, IEHMOVE, and IEBUPDTE, and the
hardware required to run OS.

TERMINALS AND CONSOLES

CALL-OS TERMINALS

CALL-OS supports the following terminals:

• IBM 2741 Communications Terminal (Correspondence or EBCD)

• Teletype Units, Type 33 or 35

Any of the above terminals can be used as a user terminal, a command
console, or a communications console. Not more than 255 terminals
(including the command and communications consoles) can be
simultaneously online with CALL-OS.

The 2741 <used for any of the above functions) should have the
following features:

• #3255 Dial-Up Feature

• #4708 Interrupt Feature

6

(

• #9104 Spacing Feature <10 character/inch)

• #9114 Data Set Attachment Feature: Western Electric Data Set 103A2
or equivalent

• #9435 Line Feed Feature (6 1ine/inch)

• For the 2741 (Correspondence>. RPQ S30006 CALL/360 Printing Element
and Keyboard

For the 2741 CEBCD>. RPQ S30021 CALL/360 Printing Element and
Keyboard

Note: The RPQ number is sufficient identification. No additional
feature code to specify keyboard type is required.

• 98XX Line Voltage as appropriate

If a 2741 Communications Terminal with all above features except RPQ
S30006 or RPQ 530021 is current1y installed, a CALL/360 Printing Element
with:

• Part No. 1167087 for the 2741 (Correspondence) or

• Part No. 1167643 for the 2741 (EBCD)

should be obtained. Termina1 Character Decal GX20-1806 is desirable.

Note: Use of a leased line for the command and communications consoles
is recommended. A four~wire IBM Line Adapter or Western Electric
103F may be used. The Dial-Up Feature (#3255) is not required.
The #9115 Data set Attachment <rather than #9114) should be
specified for use with Western Electric 103F. Any one of several
appropriate IBM Line Adapter feature codes may be specified.
Compatible features must be included on the 2702 or 2703.

Te1etype units, Types 33 and 35. are standard units. Either termina1
may be selected in any of three mode1s: RO (Receive Only), KSR
(Keyboard send-Receive>. and ASR (Automatic Send-Receive). RO termina1s
can be used only for output. KSR and ASR terminals can be used for
keyboard input as well as output. In addition, ASR terminals provide
capability for input of source programs, data, and terminal commands via
punched paper tape. The Reader Control Arrangement feature is required
if paper tape input is to be restarted automatically.

COMMAND AND COMMUNICATIONS CONSOLES

Two special types of conso1es are used by the system. The first is
the command console. Although there are no special hardware features
associated with this console. commands not available to the ordinary
termina1 user <•commands) are initiated from this console for operator
communication with the CALL-OS system. A minimum of one command console
is required; two termina1s may be specified for use as command consoles
if desired. Either or both may be operated as user terminals after the
initial startup of the system.

The second special type of console used in the CALL-OS system is the
communications console. This console is used throughout execution of
CALL-OS to record system error messages and activity.

The 2741 or a Teletype unit. Type 33 or 35, can be used for either
the command conso1e or the communications console. If a Teletype unit
is used, the Type 35 is recommended. The Type 35 RO can be used only as

7

a communications console. A Type 35 KSR or ASR can be used for either.
The OS system console can be used as the communications console.

INTERVAL TIMER CONSIDERATIONS

CALL-OS is designed to operate with either the high-resolution (13.02
microsecond resolution) or standard (16.667 millisecond resolution)
interval timer available on the System/360 Model 50 or 65, or the
standard interval timer available on the System/370 Models 145, 155, and
165 C3.3 millisecond resolution).

Time-slice values, controlling time allotments for compilation and
execution of user programs, are established by a user installation at
system initialization time and then interpreted and applied during
system operation by CALL-OS and OS timer routines. Since the execution
of a job may be fragmented into many small pieces, some of which may be
less than 16 milliseconds duration, use of the standard interval timer
on the System/360 Model 50 or 65 could lead to failure to record such
fragments during some executions. Therefore, use of the high-resolution
interval timer is recommended for repeatable program execution times and
most accurate accounting on the System/360 Models 50 and 65.

RPQ SUMMARY

Engineering Change Levels (Ec•s) and several RPQ's are important to
CALL-OS hardware:

• Any IBM 2703 used in the CALL-OS environment must be at Engineering
Change Level 307695 or higher.

• Similarly, any IBM 2702 used in the CALL-OS environment must be at
Engineering Change Level 307575 or higher.

• For an IBM 2703 with attached Model 33/35 Teletype units, the
Telegraph Terminal Control Type II (#7912) requires RPQ E62376.
This RPQ causes the terminal control to recognize carrier returns
and control X characters instead of X-ON and X-OFF, respectively.

• Similarly, for an IBM 2702 with attached Model 33/35 Teletype units.,
the Telegraph Terminal Control Type II (#7912) requires RPQ E62920.
This RPQ modifies the terminal control to recognize two pluggable
characters (carrier return and control X).

• High-resolution timers recommended are RPQ E15092 for the Model 50
CPU and RPQ E43528 for the Model 65.

• To utilize the ASR paper-tape feature of any attached TTY in TAPE
mode, RPQ E54838 for the 2702 or RPQ Z16087 for the 2703 is required
to modify the Telegraph Terminal Control Type II on the transmission
control unit. For the .2702, RPQ EA3120 is required to inhibit
interrupt on X-OFF if the TAPE ALL command is to be used.

REPRESENTATIVE OS CONFIGURATIONS

A representative System/360 configuration supporting CALL-OS
includes:

8

•One primary command console and.one alternate command console.,
usually consisting of one 2741 Communications Terminal
(Correspondence or EBCD) and one Teletype unit, Type 35 ASR; one
communications console, either a 2741 Communications Terminal
(Correspondence or EBCD) or a Te1etype unit, Type 35 RO

' \

• One 2314 Storage Control. Model A1

• One or more 2313 Disk Storage Modules. Model A1

• system/360 Model 50 with Model I core storage

• High-resolution timer.

A representative System/370 configuration includes:

• One primary command console. one alternate command console, and one
communications console. as described above

• one 3830 Storage Control, Model 001

• One or more 3330 Disk Storage Modules. Model 001

• system/370 Model 155IH

CUSTOMER RESPONSIBILITIES

During the installation of the CALL-OS system, it is necessary to
contact the local telephone company and arrange for communication
service for the data center and for the various user installations. The
local telephone company should be apprised of the number of lines that
will be required for the data center. the size of the line groups, and
the system characteristics. The customer is responsible for ordering
and installing the communications equipment required to support CALL-OS.

The customer is also responsible for the following functions:

• An OS system generation to include support for CALL-OS devices, the
storage protect function. the interval timer function. and one
•user• SVC (provided with the CALL-OS system)

• Ordering and installing at least one of the three CALL-OS language
processors

• Allocating direct-access storage space for the CALL-OS Executive and
libraries

• Building a CALL-OS Executive and data base

• Ensuring that proper steps are taken to maintain the security of his
confidential program and data files

If the CALL-OS Batch Interface CCOBI) option is utilized. the
customer is also responsible for:

• Building COBI data sets <via a COBI utility program)

• Converting catalog procedures for use by COBI

9

TERMINAL PROCESSING

SIGN-ON

To use the CALL-OS system, a user dials the system telephone number.
Subsequent action is determined by terminal type as follows:

1. If the user is at a Teletype unit. the system prints a sign-on
message as shown below and requests entry of user number and
password.

2. If the user is at a 2741 communications Terminal (Correspondence
or EBCD), he may type LOGON or LOG and press the carrier return.
The system determines the terminal type and prints a sign-on
message in the appropriate 2741 code.

If the user does not type LOGON or LOG. followed by a carrier
return or pressing of the Attention (ATTN) key. the system
assumes that the 2741 is as defined in the system startup deck
and prints a message in the appropriate code.

If the default assumption is not valid. the sign-on message is
garbled. The user can perform either of two actions to cause the
terminal to be identified correctly:

a. Type LOGON or LOG.

b. Type his user number and password.

A user number consists of three alphabetic and three numeric
characters (such as ABC123). The password, which the user defines and
controls himself, has up to eight characters in any combination Csuch as
WXYZ90+). This user number and password are checked and decoded to
confirm that he is a valid user.

After confirmation, the system responds with READY. The entire sign­
on procedure might look like this:

ON AT 9:30 09/13/71 MONDAY PAO LINE 60
USER NUMBER,PASSWORD--ABC123,WXYZ90+
READY

Note: ABC123,WXYZ90+ is typed by the user.

TERMINAL COMMAND LANGUAGE

When the user has successfully signed on. he may enter terminal
commands or source-language statements. A command begins with an
alphabetic character. A language statement begins with a line number.

The terminal command language is designed to facilitate communication
between the terminal user and the computer. This language provides
commands that permit the terminal user to:

10

• Log on and log off the system with password security

• Select the CALL-OS language appropriate to the solution of his
problem

• Develop problem solutions (user programs) at his own pace

{

• Create, modify, and save source programs

• Perform various edit operations on one or a number of source-program
files

• Store programs in object format

• Develop and use multiple data files within his own programs

• Share both program and data files with other CALL-OS users by
pooling them in system 1ibraries

• Protect program and data files pooled by him into system libraries

• Purge program and data f i1es from his library

• Obtain listings of program fi1es

• Cause a program to be compi1ed and/or executed

• Obtain information relative to terminal connect time, CPU time, and
program and data files

• Use routines residing in CALL-OS system libraries

• Submit jobs for OS batch processing via the COBI option

• Scan <print), inquire about, and scratch or keep all or a portion of
the output from jobs submitted for OS batch processing

CALL-OS terminal commands, together with brief descriptions of their
functions, are listed in Appendices A and B. The commands are explained
in detail in the CALL-OS Terminal Operations Manual and summarized on
the ~-os Terminal command Language Reference Card.

To disconnect from the system, the user types OFF. The terminal and
CPU processing time used are then printed automatically.

CALL-OS PROGRAMMING LANGUAGES

Upon initial sign-on to CALL-OS, the system assumes that CALL-OS
BASIC with short-form arithmetic is the programming language to be used.
If a user desires to use another language, he types the terminal command
ENTER followed by the language name (FORTRAN, PL/I, or BASICL, for BASIC
with long-form arithmetic).

In all of the CALL-OS languages, each line entered through the
terminal must begin with a line number which:

• Identifies the line to the system as a language statement rather
than a command

• Specifies to the system the order in which lines are to be
considered and acted upon

Two types of data files are created by user programs within CALL-OS:
external (EBCDIC) and internal (binary). The former can be created by
programs written in CALL-OS FORTRAN or CALL-OS PL/I, and can be used by
programs written in the language that created them. The latter can be
created and used interchangeably by programs written in CALL-OS FORTRAN,
CALL-OS PL/I, and CALL-OS BASIC. The created data should, of course, be
in a form supported within the structure of the language used.

11

CALL-OS BASIC LANGUAGE

CALL-OS BASIC is designed for ease of use. The experienced
programmer or the terminal user having little or no experience with
computers or programming languages will find CALL-OS BASIC simple to
learn and use.

CALL-OS BASIC has the following features:

• Short- and long-form arithmetic

• Simple and precise control of printed output

• Acceptance of input from an internal data list, a terminal, or a
disk file

• Built-in mathematical functions and constants

• Statements for matrix manipulation

Sample CALL-OS BASIC Program

Shown below is a CALL-OS BASIC program to compute compound interest
using the following formula:

A = p

where Pis the principal (amount originally invested), i is the annual
interest rate, and N is the length of time of the investment in years.

r--·---,
ON AT 9:30 05/15/72 MONDAY PAO LINE 60
USER NUMBER,PASSWORD--ABC123,WXYZ90+
READY

10 PRINT "ENTER LENGTH OF TIME OF INVESTMENT"
20 READ P, I
30 DATA 1000.00, 5
40 INPUT N
50 LET A = P* {1 + I/100) **N
60 PRINT USING 70, N,A
70 :IN ## YEARS, THE AMOUNT WILL BE $####.##
80 END
RUN

10:35 05/15/72 MONDAY PAO LINE 60

ENTER LENGTH OF TIME OF INVESTMENT
?5
IN 5 YEARS, THE AMOUNT WILL BE $1276.28
TIME 0 SECS.

L--•-J
Figure 1. Sample CALL-OS BASIC program

12

(

CALL-OS PL/I LANGUAGE

CALL-OS PL/I is an efficient problem-solving tool for both commercial
and scientific users. It combines many of the features of the full
PL/I-F language with the advantages of a remote terminal system and
provides the following capabilities:

• A large number of built-in functions and subroutines

• Extended array facilities

• capability of handling a variety of data types including character
strings and complex numeric data

• Flexible stream-oriented input/output facilities

• Free-field format for entering programs

Sample CALL-OS PL/I Program

The problem of solving the roots of the quadratic equation AX2 +BX+C =
0 illustrates fundamental CALL-OS PL/I elements and concepts. If A * o.
this equation always has a solution of the form

x =
-B :!: Ja2 - 4AC

2A

A sample procedure for solving this problem follows.

13

r---·------------------,
ON AT 9:30 05/15/72 MONDAY PAO LINE 60
USER NUMBER,PASSWORD--ABC123,WXYZ90+
READY

ENTER PL/I
READY

100 EXAMPLE: PROCEDURE;
110 GET LIST(A,B,C);
120 D = B**2-4*A*C;
130 IF D < 0 THEN GO TO ERR;
140 ROOT1=(-B+SQRT(D))/(2*A); ROOT2=C-B-SQRT(D))/(2*A);
150 PUT LIST
160 (A,B,C,ROOT1,ROOT2);
170 GO TO STOP;
180 ERR: PUT LIST ('THE ROOTS OF THIS EQUATION ARE COMPLEX') ;
190 STOP: END;
RUN

10:40 05/15/72

?7,17,7
7.00000E+OO 1.70000E+01
-1. 90311E+OO

TIME 1 SECS.

RUN
10:40 05/15/72

?7,-17, 7
7.00000E+OO -1.70000E+01
5.25453E-01

TIME 1 SECS.

RUN
10:41 05/15/72

?7,17,80

MONDAY PAO LINE 60

7.00000E+OO -5.25453E-01

MONDAY PAO LINE 60

7.00000E+OO 1.90311E+OO

MONDAY PAO LINE 60

THE ROOTS OF THIS EQUATION ARE COMPLEX
TIME 1 SECS.

L--J
Figure 2. sample CALL-OS PL/I program

Each CALL-OS PL/I statement must end with a semicolon, indicating to
the system where the statement ends. Using the semicolon in this manner
permits the terminal user to write more than one statement on the same
line (see line 140), or to use more than one line to write a single
statement <see lines 150 and 160 above>.

CALL-OS FORTRAN LANGUAGE

CALL-OS FORTRAN implements most features of the FORTRAN language and
provides the following terminal-oriented extensions:

14

• Statement format, as entered from the terminal, is free-form.

• The characters percent (~), quote (") and up-arrow ct> have been
added to the character set to denote continuation, comments, and
exponentiation, respectively. The hyphen <-> character may also be
used to denote continuation and may be used interchangeably with the
percent character.

(

• The characters <. ~. >. ~. and * have been added to the character
set to denote relational operations. The use of the character = has
been extended to denote relational operation as well as assignment.

• A syntactic variation of the READ and WRITE statements has been
defined to allow free-formatted input/output for terminal and data
files.

A line entered using CALL-OS FORTRAN consists of a line number, an
optional statement number. and a FORTRAN language statement. A blank
must follow the line number. Line numbers serve the same purpose in
CALL-OS FORTRAN as in CALL-OS BASIC and CALL-OS PL/I. They order the
source statements of the program.

The statement number. if entered. is used for reference within the
CALL-OS FORTRAN program. Its actual numerical value does not affect the
ordering of program statements during the compilation process. Comments
may be entered between statements in the program for purposes of
explanation without affecting program execution.

Sample CALL-OS FORTRAN Program

The following program illustrates some of the features of the CALL-OS
FORTRAN language.

15

r--,
I
I ON AT 10:05 05/15/72 MONDAY PAO LINE 60
I USER NUMBER,PASSWORD--ABC123,WXYZ90+
I READY
I
I ENTER FORTRAN
I READY
I
I 10 8 THIS PROGRAM COMPUTES THE REAL ROOTS
I 20 •oF A QUADRATIC EQUATION
I 30 10 READ(5,•) A,B,C
I 40 D=B••2-4*A*C

50 IFCD<O) GO TO 15
60 ROOT1 = (-B+SQRT(D))/%
70 (2*A)
75 ROOT2 = (-B-SQRT(D))/(2*A)
80 WRITE(6,*) A,B,C,ROOT1,RooT2
85 GO TO 10
90 8 IF THE BRANCH IS TAKEN AT THIS POINT
100 8 THE ROOTS OF THE EQUATION ARE COMPLEX
110 15 WRITE(6,20)
120 20 FORMAT(' THE ROOTS OF THIS EQUATION ARE %
130 COMPLEX')
140 GO TO 10
900 END

RUN
10: 15 05/15/72 MONDAY PAO LINE 60

?1, 17, 1

1. 17. 7~ -.525454 -1.90312
?7,-17,, 1

1. -11. 1. 1.90312 .525454
?7,17,80

THE ROOTS OF THIS EQUATION ARE COMPLEX
? (Bit Attention Rey)
STOP.

IRAN 1 SECS.
I
l--J

Figure 3. Sample CALL-OS FORTRAN program

CALL-OS BATCH INTERFACE (COBI) OPTION

The program files of CALL-OS can be used for the creation and
maintenance of jobs to be submitted to the OS batch-processing
environment. When the user has completed preparation of an OS jobr he
can submit the job to be run in the OS batch~·processing environment as
though it were entered via the card reader. When the job has been
completed, he can scan <print) all or a portion of its output at the
terminal.

COBI input simulates data punched in 80-column cards. A CALL-OS
program file created to be sent to OS batch processing is shown in
Figure 4. One space or tab character must follow each line number. The
next position is treated as though it were column 1 of an input card.

16

i:f'
',i

r--~-------------------,

100 //AAA123XY JOB (•••••••••),etc.
110 //ABC EXEC ASMFCLG
120 //SYSIN DD *
130 CNVT TITLE 'THIS ROUTINE IS A BEX CONVERSION ROUTINE''
140 HEXCNVRT CSECT
150
160

300 END
310 /*

l---------------------------------------·--------------------------J
Figure 4. Sample CALL-OS JOB to be submitted for OS batch processing

When input is initially entered into CALL-OS via a 2741
Communications Terminal or Te1etype, the tabulation function available
with this terminal can be used to simulate the program drum card of a
keypunch. This function is invoked by means of a $$TABS control
statement formatted as shown by the example below.

110 $$TABS 1,10,16,36,72,73-80

The entries 1, 10, 16, 36, and 72 correspond to the label, operation,
operand, comments, and continuation fields of a source-program statement
line. The entry 73-80 in the $$TABS control statement indicates that
each CALL-OS program-file line number is to be converted to an eight­
digi t number with leading zeros and placed in columns 73-80 of the
output record corresponding to that line. Thus, the output is formatted
to be compatible with IEBUPDTE and other OS utilities.

For this $$TABS control statement, the left margin on the 2741
Communications Terminal should be set at o. Tabs should be set at 11w
20, 26, 46, and 82. Thus, position 1"I on the 2741 corresponds to column
1 of an input line, position 20 to column 10, and so on.

If the user presses the TAB key on the 2741 when the type element is
positioned between the left margin and eleventh position on the line,
the next character will be placed in the eleventh position of the line,
and so on. When the user enters the tab character (control I) from the
Teletype keyboard, neither printing nor spacing occurs at the terminal.
A $$TABS control statement must precede the initial use of tab
characters it is to control in the input stream.

Use of the tabulation function permits efficient skipping of columns
which are to be blank (during initial keying of input). Tab characters
are autoroatical1y placed in the internal record for later deblocking
control. the input is compressed to an optimum reduced format, and disk
storage requirements are lessened accordingly. In addition, the
readability of subsequent printer output is enhanced through use of the
tabulation function.

I The functions of CALL-OS terminal commands designed specifically for
COBI users are explained in Appendix B. For additional information, see
the CALL-OS Terminal <?Eerations Manual.

11

SYSTEM STRUCTURE AND CONTROL

RELATIONSHIP TO OS

All os concepts and facilities as explained in IBM Systems Reference
Library publications are available to the installation using CALL-OS.
Program design and job, data, and task management features of OS are
fully operational.

The CALL-OS system is considered a normal job by the OS job
management facilities. It is initiated by job control language (JCL)
statements. once loaded, the CALL-OS resident modules remain in core
during the CALL-OS period of operation. Transient routines are called
for as needed by CALL-OS overlay management facilities. After the CALL­
OS job is terminated, control of its resources is returned to os.

CALL-OS has the facility of segmented operation in high- and/or low­
speed core under OS Hierarchy Memory support. It will benefit from
instruction retry but will not benefit from the remaining facilities
offered by the OS Recovery Management System.

CALL-OS operates in the task environment of os. The CALL-OS task is
divided into two segments. One segment, called the Executive area, is
dedicated to CALL-OS system modules and subroutines; the other, called
the user program area, is dedicated to compilation and execution of user
programs. Figure 5 is a simplified diagram of the structure of core
when the CALL-OS task is operating.

18

•

CALL-OS

OS NUCLEUS
Low Address

PROBLEM
PROGRAM

AREA

COMPILER AREA

USER TERMINAL
TABLES

BUFFERS TABLES

RESIDENT
CALL-OS
NUCLEUS

Figure 5. Core relationship of OS and CALL-OS

DATA BASE CONCEPTS

The CALL-OS data base consists of three logical sections:

User
Program

Area

Executive
Area

• The CALL-OS index, which is a one-track data set that identifies all
data sets used by the CALL-OS system. This data set is created and
modified by CALL-OS utility programs, which are run under OS when
the CALL-OS time~sharing system is not operating. The data set is
also used by CALL-OS at initialization time to verify that JCL in
the system startup deck is complete and accurate.

• System data-base data sets, which are used for compiler storage,
work/swap areas, and overlay modules

• user data-base data sets, which contain user catalogs, source
programs, object programs, data files, and shared libraries

19

In addition. the CALL-OS Batch Interface (COBI) option utilizes four
OS data sets. The first of these provides an index containing job
status information. The second provides storage for requested JCL. The
remaining two are used alternately by CALL-OS and os. They provide
storage of jobs submitted for OS batch processing and are read by OS
using a standard OS reader procedure.

The organization of user data-base data sets is based on three
logical groupings: a set of 99 users (subscription group. or sub
group>. a set of sub groups (user group>. and a set of user groups
(cluster).

A sub group consists of 99 users whose six-character user numbers are
identical for the first four characters. Each user number that is
validated with the numeric digits 00 as its last two characters creates
a dummy user catalog (called a directory) for use by the entire sub
group. This directory is then available for the pooling and use of
shared program and data files by all members of the same sub group.
Thus. for example. when user number ABC600 is validated. a directory is
created and available for pooling of program and data files by all users
having user numbers in the range ABC601 through ABC699. The sub group
is the smallest set of user numbers for which pooling is allowed. The
directory is referred to as the *Library <single-star library> for that
sub group.

Note: TWo other libraries are designed for pooling and use of shared
program and data files in CALL-OS. These are the **Library and
***Library. Any program and data files pooled in these libraries
are available for system-wide usage. To ensure data set
integrity. a program entered into any library can be marked as
run only Cby means of a PROTECT command>. The program can be
executed by other users. and it can be merged with other
programs. but it cannot be listed. stored, or saved. A program
resulting from a merge involving a protected program is also
protected and subject to the restrictions this status implies. A
pooled data file can be protected to prevent users other than the
creator of the file from opening it for input prior to or during
a required update process. When a file need no longer be
protected. an ALLOW command can be issued to permit other CALL-OS
users to access the file.

A user group consists of a range of user numbers (such as AAAOOO
through CCC999). This range can include as few as 1000 user numbers
CAAAOOO through AAA999) or more than 17 million of them CAAAOOO through
ZZZ999). Each user group is defined by the user installation to include
a set of related users. only user numbers ending with 000 or 999 can
serve as bounds. Each CALL-OS user group is assigned a collection of
single-volume OS data sets <not all of which need reside on the same
volume). These data sets are used for the storage of catalogs,
programs. and data for all users in the group. A given user is assigned
disk storage space only from the data sets assigned to his group, thus
ensuring data set integrity.

To permit a user installation to group its users in alternate ways.
and/or to allow a user group to be allocated alternate data sets for
backup purposes, CALL-OS additionally defines each organization of user
groups as a cluster. Two clusters may be defined, either of which may
be activated for a particular session of CALL-OS~ The same users and the
same user group organization may be included in each cluster. or one
cluster may differ from the other.

The CALL-OS data base may be built and organized to fit the specific
needs of any user installation. It may reside on 2314. 2319, or 3330
disk storage units. or on any combination thereof. To meet its
immediate needs. a new installation may choose one of three default data

20

(

bases to use until defining its own data base according to its
objectives. The default data base may use one pack, two packs, or three
packs. The installation specifies pack volume ID's and the number of
lines to be supported.

All default data bases include CALL-OS FORTRAN, CALL-OS PL/I, and
CALL-OS BASIC. The number of packs chosen determines the number of user
groups to be defined. For example, if the two-pack default data base is
used, two user groups, AAA000-MZZ999 and NAA000-ZZZ999, are defined.

The default data base allows an installation to initialize CALL-OS
using a proven, easy method. The system can be placed in operation
within a minimum amount of time.

SYSTEM PROCESSING

CALL-OS provides its own internal task switching. The OS
Input/Output supervisor (IOS) is utilized at the execute channel program
(EXCP) level. CALL-OS also supplies its own data management facilities.

EXECUTIVE FUNCTIONS

The CALL-OS Executive operates in the supervisor state and utilizes
protect-key zero. Compilers and user programs operate with the protect
key assigned by OS to the CALL-OS task area. This approach ensures the
integrity of the CALL-OS system and of os.

The Executive performs the following functions (invoked by the
compilers and user programs through the use of a Type 1 SVC).

• Handles the CALL-OS overlay facilities, invoking nonresident modules
as needed

• Performs multiprogramming within the CALL-OS task area

• Queues and dequeues direct-access I/O requests

• Allocates direct-access storage space within CALL-OS data sets

• Schedules and allocates for compilation and execution of programs

• Allocates and manipulates three types of files on 3330/2319/2314
disk storage:

Source-program files consisting of lines beginning with line
numbers

object-program files created by the STORE command

Data files defined by the FILE command

• Analyzes and executes terminal commands entered by the terminal user

• Analyzes and executes operator commands <•commands) entered from a
command console

• Allocates and manipulates four COBI-related files, or data sets, on
3330/2319/2314 disk storage:

COBI index data set used for recording submitted OS jobs

JCL data set used for storing JCL of completed OS jobs

21

Two SYSIN data sets used for OS input job stream

These tasks are performed on a priority basis such that work
requiring the fastest response time is assigned the highest priority.

The Executive maintains contro1 of termina1 1ines by means of
information in the user termina1 tab1e (UTT). There is one UTT for each
terminal line availab1e at system initia1ization. It contains all
information pertinent to a specific line.

TIME SLICING

Time slicing is a technique whereby each terminal job is a1lowed to
execute for on1y a fixed 1ength of time (a time slice).

Within CALL-OS, CPU time is a11ocated according to two priorities.
Higher priority is given to jobs that may complete execution within an
initial time s1ice (new jobs). Lower priority is given to jobs whose
execution has exceeded an initial time slice (old jobs>. The percentage
of CPU time given to each priority leve1 within CALL-OS is determined by
the installation at system initialization.

Time slices for job execution do not include compilation time. A
separate time slice, the 1ength of which is dependent on the compiler
being used, is given to the compi1er for compi1ation of the job. The
length of the compi1er time slice is variable and can be specified by
the installation at system initia1ization.

An additional option availab1e to the user installation permits a
percentage of the times allotted (1) for o1d-job execution, or (2) for
old-job execution, new-job compilation, and new-job execution to be
reassigned to OS background jobs. The compi1ation and execution times
of CALL-OS jobs and of OS background jobs are affected accordingly.
Thus, time slicing within CALL-OS can be defined to meet the needs of an
insta1lation.

JOB QUEUE MANAGEMENT

TWo queues are used within CALL-OS to control the compilation and
execution of jobs--the new job queue and the old job queue. Both are
serviced primari1y on a first-in, first~out basis.

An entry is made for a job at the end of the new job queue for one of
the fol1owing reasons:

• A RUN or STORE conunand is entered.

• Compi1ation of the job is not completed within the compiler time
s1ice.

• Data is entered in response to an input request.

• A user output buffer for the job is filled.

When a job enters execution after completion of compilation, it is
given a full new-job time slice. It continues to execute until it
requests input, or the output buffer is full, or the new-job time slice
expires.

If execution of the job is comp1eted within the initial new-job time
slice, the job is ended. If execution is not completed, an entry for
the job is placed at the end of the old job queue. Each time the entry
reaches the top of the old job queue, the job is al1owed to execute for

22

an old-job time slice. If the job is not finished, and is not entered
in the new job queue because an input request is made or an output
buffer is filled, another entry for the job is made at the end of the
old job queue.

A job in either queue is read into the user program area of core when
it is ready to be compiled and/or executed. At all other times, the job
resides in the user's work/swap area on disk storage.

Figure 6 illustrates a job flow through the system in response to
either a RUN command or a request for input data.

User sign on

User enters
RUN command

Entry is mnde in
new job queue

Entry comes to
the top of the
queue

Job waits

Figure 6.

Job is read into
problem program

Job is compiled

Job is given full
new job time
slice & begins
execution

No

Job flow diagram

Input
received

Transmit to
terminal
user

Entry is made
in old job queue

Entry comes to
the top of the
queue

Job is given
old job time
slice & allowed
to execute

Broken lines indicate
elapsed time.

Buffer
empty

23

SYSTEM SUPPORT AND MAINTENANCE FACILITIES

SYSTEM BUILD AND INITIALIZATION

An IBM Operating System generated to support the CALL-OS system must
include the following optional control-program features:

• Storage protection

• Interval timing

• CALL-OS Type 1 SVC

If CALL-OS is used in an MFT environment, the OS subtasking option is
required.

If the 2702 Transmission Control is used, the appropriate SAD command
CSADO, SAD1, or SAD2) must be specified.

A recommended feature that may be included is trace.

In addition, CALL-OS permits the user installation to:

• Specify the system resources (for example, main storage, direct
access storage devices) to be allocated to CALL-OS

• Format the system data base

• Specify the number of terminal lines to be supported

• Specify which of the supported language processors are to be part of
the active CALL-OS system

• Format data sets required for the COBI option

The CALL~OS system is started via the normal OS job and task
management facilities. At the time CALL-OS is loaded into core, the
user installation can:

• Select resident and nonresident modules from a set of previously
established combinations

• Select which of the language processors included at system-build
time are to be available during this period of CALL-OS usage

• Select time-slice lengths for new job execution, old job execution,
background job execution, and compiler time slices

• Eliminate CALL-OS trace entries

• Select which portions of the CALL-OS system are to be resident in
high- or low-speed core

If the COBI option is included at system-build time, the installation
can:

24

• Specify that COBI is to be inactive during this period of CALL-OS
usage

• Change various COBI default options

r(· . .

After the system has been initialized, a message to indicate that the
system is ready is displayed on the OS system console.

SYSTEM TERMINATION

The CALL-OS means for normal termination is the *OFF operator
command. This command is used as the final step in system shutdown.
All CALL-OS closeout procedures are invoked, the OS environment is
restored, and a final return to os is made.

In the event of a system failure, there are no built-in restart
procedures. The operator at the central computer installation must
reinitialize the system.

ACCOUNTING

CALL-OS accounting facilities enable each CALL-OS user to obtain the
following information <per user number):

• Accumulated terminal connect time

• Accumulated CPU time

• Maximum disk storage space used

• Tape journal of accounting information

• Printed journal of monthly billing information <output to the system
print unit)

The user can request that accounting information be reset to zero.
Normally, this is done after monthly billing information is provided.

STATISTICS

A statistical report can be obtained by entering a *REPORT operator
command at a command console. The report is directed to the SYSPRINT
data set and contains information regarding current operational
characteristics of the CALL-OS system. Statistics such as the following
are provided:

• Total number of disk tracks assigned to each user group

• Number of disk tracks currently available to each user group

• Number of calls received on each terminal line

• Number of lines in use

DATA BASE BUILD AND MAINTENANCE

CALL-OS utilities perform the following CALL-OS data base
manipulation and maintenance functions:

• Format the CALL-OS index to x•FF's (hexadecimal) prior to indexing
the data-base data sets

• Initialize compiler, work/swap, overlay, system-group, and user­
group data sets and make corresponding entries in the CALL-OS index

25

• Maintain the CALL-OS index when reorganization of the system data
base is desired

• Reorganize the system group or one or more user groups of one
c1uster of the CALL-OS data base into the system group or a user
group of the other c1uster from-to: 2316/2316, 2316/3330,
3330/2316, 3330/3330

• Re-create part or all of a CALL-Os data base from a backup tape

• Convert CALL-OS program files to a format compatible with OS batch
compilers and convert CALL-OS data fi1es to OS data sets: converted
program fi1es are partitioned data sets in card-image format, and
converted data files are sequentia1 data sets in fixed, fixed
b1ocked, variable, or variable b1ocked format

• Punch program and data fi1es in card format, converted to a format
compatible with OS batch compilers

• List program files, data fi1es, and control information from the
CALL-Os data base

• Delete any CALL-OS data-base records (program fi1es, data files,
directory entries, or catalog entries) on a selective or
comprehensive basis, for a sing1e user or a range of users

• Insert or rep1ace a program or data fi1e in the CALL-OS data base by
means of card, tape, or disk input

• Write a11 or a portion of a CALL-OS data base to a backup tape

• Va1idate a single user or a range of users

• Cance1 a sing1e user or a range of users

• Provide user disk-storage space-usage accounting statistics

• Update a user cata1og with respect to current COBI jobs

These functions permit a great dea1 of f1exibi1ity in the
organization, manipu1ation, and maintenance of the CALL-OS data base.
They are invoked by means of user-provided control cards during norma1
OS batch processing. security is maintained by means of an
insta11ation-control1ed password.

PAPER TAPE FACILITIES

Once entered into CALL-OS by means of the 2741 Communications
Terminal (Correspondence or EBCD) or a Teletype unit, Type 33 or 35,
infrequent1y used programs need not necessarily be carried in online
storage. A complete program can be stored on paper tape and reentered
into CALL-OS whenever it is required.

A complete program, CALL-OS terminal commands, and run-requested data
can be punched in paper tape for subsequent entry into CALL-OS by either
offline or online punching operations. For the latter, the user enters
a PUNCH ON command causing a required line-ending character sequence to
be appended to each line of 1isted or runtime output. Later, when the
paper tape is to be read into CALL-OS, the user issues a TAPE ALL
command. It is possible to read, compile, and execute the program
without operator intervention. see the CALL-OS Terminal Operations
Manual for specific examples of CALL-OS paper tape facilities.

26

(

Notes: 1. The 2741 has a 1arger character set than either Te1etype
unit. Therefore. some characters of a 2741 program may not
be meaningfu1 when disp1ayed as Type 33 or 35 printed output.
However. this has no effect on the punched output produced as
a resu1t of punching operations.

2. Readjusting 1ine width may be necessary if a program created
at a 2741 is 1isted at the Te1etype <see WIDTH command).

27

APPENDIX A: CALL-OS TERMINAL COMMAND LANGUAGE SUMMARY

The terminal user tells the computer, via CALL-OS terminal commands,
what he wants the computer system to do. A summary of these commands
follows. Most of the commands can be invoked by specifying only their
first three characters (and any required parameters). All exceptions
are noted in the descriptions below. A complete description of the
CALL-OS terminal command language is given in the CALL-OS Terminal
Operations Manual.

28

• ADD

Adds a specified string of characters to the end of a single
line, the end of each of a group of consecutive lines, or the
ends of all lines in the program in the user work area.

ADD 10,30,55,'THIS'
READY

(terminal entry)
(system response)

The word THIS is added at the ends of lines 10, 30, and 55.

ADD 10 THRU 30,55,'THIS'
READY

(terminal entry>
<system response)

The word THIS is added to lines 10 through 30 inclusive and to
line 55.

ADD ALL,'THIS'
READY

(terminal entry)
(system response)

The word THIS is added to all lines of the program in the user
work area.

• ALLOW program or data filename

Removes protection from a program or data file whose filename is
in a CALL-OS system library. (See PROTECT command.)

ALLOW PROG1
READY

• CATALOG

<terminal entry>
(system response>

Prints a list of program and data files stored in the user'' s
library.

CATALOG
16: 18
PROG1

• CATALOG *
CATALOG **
CATALOG ***

05/18/72
PROG6

THURSDAY
<terminal entry)
<system response>

Prints a list of the program and data filenames in the designated
system library.

(_

CATALOG *
16:18 05/18/72
PROG4 MYPROG

THURSDAY
STATPROG NEWDATA

<terminal entry)
(system response)

/OBJP

• CATALOG ALL

Instructs the system to print a list of the program and data
files in the user's library. The command may be given in full or
abbreviated CAT ALL. The example below illustrates the
descriptive information that is provided.

CATALOG ALL
16:18 05/18/72 THURSDAY
FILENAME TYPE LANGUAGE PROGRAM SIZE

PROG1
PROG2
PROG3
FORECAST
/PROG4

• CLEAR

PROG
PROG
PROG
DATA
OBJ

BASIC
BASICL
PL/I
PL/I
FORTRAN

Clears the user work area.

• DELETE

CLEAR
READY

599
975
670

<terminal entry>
<system response>

FILE UNITS DAYS SINCE USED

10
12

6
27
55
55
17

<terminal entry>
<system response)

Deletes one or more lines from the program currently in the user
work area, through references to line numbers. Single lines or
selected groups of lines may be deleted.

DELETE 10,30,65,80
READY

(terminal entry>
(system response>

The single lines with line numbers 10, 30, 65, and 80 are deleted
from the program in the user work area.

Note: A single line can also be deleted by entering its line
number, followed by a carrier return.

DELETE 10 THRU 100,120 TBRU 130
READY

(terminal entry)
(system response)

The system deletes the lines with line numbers 10 through 100 and
120 through 130 inclusive.

• ECHO

Checks transmission between the terminal and the computer system.
The text entered by the user should be printed out at the
terminal.

ECHO
ECHO

TEST
TEST

TRANS
TRANS

(terminal entry)
<system response)

29

30

• ECBOX

Checks transmission between the terminal and the computer system.
The terminal should print exactly what was entered, repetitively,
until the terminal user presses the ATTN or BREAK key (on the
2741 or Teletype, respectively). This command cannot be
abbreviated.

EC BOX
EC BOX

EC BOX

ECBOX

TEST
TEST

TEST

TEST
•

• ENTER language-name

TRANS
TRANS

TRANS

TRANS

<terminal entry>
(system response>

Selects the programming language to be used to compile a program.
Valid language names are PL/I, FORTRAN, BASIC, BASICL, and DATA.
The ENTER DATA facility is provided to enable CALL-OS users to
enter line-numbered information without associating that
information with a specific CALL-OS language compiler. The
information can be retained in a user•s library by means of a
SAVE command; the language-name DATA is retained with the file.

ENTER PL/I
READY

(terminal entry)
(system response>

Upon initial entry (sign-on) to CALL-OS, BASIC is assumed.

• EXTRACT

Extracts lines from a program. Single lines or selected groups
of lines may be extracted, using line numbers as references. All
other lines are cleared from the user work area.

EXTRACT 10,15,25,40
READY

<terminal entry>
(system response>

The system retains only the lines with line numbers 10, 15, 25,
and 40 of the program in the user work area.

EXTRACT 10 THRO 120,180 THRO 220
READY

<terminal entry)
<system response)

The system retains the lines with line numbers 10 through 120 and
180 through 220, inclusive.

• FILE filenameC,n1

Names a data file to be used with a program at runtime, increases
the maximum number of disk storage units that can be allocated to
an existing data file, or determines the maximum number of disk
storage units that can be allocated to an existing data file.

If the command is being used to name a new data file, n specifies
the maximum number of disk storage units to be allowed for the
file. If n is omitted, a value of four is assumed. Thus, DATA1 i

\'-

(_

is established as a new file for which a maximum of seven disk
storage units will be allocated as shown below.

FILE DATA1.7
READY

(terminal entry)
<system response)

If the command is being used to increase the permissible maximum
amount of storage that can be allocated for a file. n specifies
the maximum number of disk storage units to be allowed. The
entry n must be specified and greater than the current n.
Assuming that DATA2 is an existing file for which less than nine
storage units have been specified. the following command can be
used to increase the maximum number of disk storage units that
can be allocated for the file to nine.

FILE DATA2.9
READY

(terminal entry>
(system response>

If the command is being used to determine the maximum amount of
storage that can be allocated for a file. no entry should be
given for n. Assume. for example. that the user wishes to know
how many disk storage units can be allocated for the existing
file DATA1. The appropriate terminal entry and the system
response generated for this entry are shown below, where xx is
the total number of storage units that can be allocated for the
file.

FILE DATA1
DATA1 LIMIT = xx UNITS

• FIND

(terminal entry)
<system response>

Locates the use of a string of characters throughout a program or
in a specified line or lines of the program. A character string
enclosed in single quotes in the FIND command is located wherever
it appears in the specified search area. A string enclosed in
double quotes Ca qualified character string) is located only when
bounded at either end by one of a set of delimiting characters.
If the optional parameter NOTEXT (or its abbreviated form, N) is
specified in the FIND command, only the line numbers of lines in
which the string is found are listed at the terminal. If the
optional parameter is omitted, the entire text of each line in
which the string appears is printed at the terminal.

FIND 10 THRU 30.50 THRU 75.'ABCD',N
10 25 65
READY

(terminal entry)
<system response>

Lines 10 through 30 and 50 through 75, inclusive. are searched
for the character-string ABCD. This response indicates that the
string of characters is contained in lines 10, 25, and 65.

FIND ALL."X1"
30 X1 = B + C:
70 ROOT = TOTAL/X 1:

(terminal entry)
<system response)

All lines of the program are searched for the qualified character
string X1. The text of all lines containing x1. appropriately
delimited, is printed at the terminal.

31

32

111 HELP

Instructs the user to take installation-determined action.

HELP (terminal entry)
PLEASE CONTACT YOUR INSTALLATION MANAGEMENT FOR ASSISTANCE

111 INSERT

Inserts a specified line in the program currently in the user
work area. The new line is assigned the line number specified in
the INSERT command. If multiple line numbers are specifiedr the
new line is inserted at the location indicated by each specified
line number. Any current line having a specified line number is
deleted ..

INSERT 10r15r'PRINT x•
READY

(terminal entry)
(system response)

The statement PRINT X is assigned line number 10 and inserted in
the current program. A duplicate statement is assigned line
number 15 and inserted at its appropriate point in the program.

111 KEY

Restores all functions which were inhibited by the TAPE or TAPE
ALL command in order to permit paper tape input from the Teletype
<see TAPE); should be entered only from Teletype.

• LIST

.KEY
READY

(terminal entry)
<system response)

Prints all or part of a program currently in the user work area.

LIST
LIST 120

(terminal entry>
(terminal entry)

In the first example. the system responds by printing the
complete program. In the second example. the program is listed
beginning with line number 120. Either listing begins with a
heading line that contains the name of the program and the
current date.

111 LIST-NO-HEADER

Identical to LIST except that the heading line is not printed.
The command may be given in full or abbreviated LIST-N.

LIST-NO-HEADER
LIST-N 120

• LIST-Tk~XT

(terminal entry)
(terminal entry>

Identical to LIST except that line numbers do not print; only
text is provided as output. The command may be given in full or
a.b:breviated LIST·-'!'.,

(

LIST-TEXT
LIST-T 120

(terminal entry)
<terminal entry>

Note: The user can combine use of the LIST-N and LIST-T commands by
specifying either LIST-TN or LIST-NT. Either causes the
program in the user work area, beginning with a specified
line number <if any>. to be printed without headers and
without line numbers.

• LOAD program-name

Loads the named source program from the user's library into the
work area so that it can be examined or modified. The work area
is automatically cleared before loading.

LOAD MYPROG
READY

• LOAD •program-name
LOAD ••program-name
LOAD •••program-name

<terminal entry>
<system response)

Loads the named source program from the system library designated
by asterisks into the work area, clearing the work area
automatically before loading.

LOAD *STARP
READY

(terminal entry>
<system response>

• LOCK program or data filename

Prevents a program or data file in the user's library from being
accidentally destroyed by any CALL-OS user. A named program
cannot be deleted from the user•s library, nor may another
program or data file with the same name be saved or stored in the
library without first removing the LOCK protection. If a data
file is locked, it cannot be opened for output.

• LOGON

LOCK PROG1
READY

<terminal entry)
(system response>

This command is used to:

1. sign-on at a 2741 Communications Terminal after
successfully dialing in the system, or

2. sign-on with a different user number at a 2741
communica~ions Terminal or Teletype without disconnecting
the terminal from the system.

In the former case, the system determines the type of the 2741
Communications Terminal (Correspondence or EBCD) by analysis of
the transmission codes generated by the LOGON or LOG command. It
prints out a sign-on message in correspondence or EBCD code
accordingly. If the input data is only a carrier return or data
other than the LOGON command, the system defaults to the terminal
type defined in the system startup deck. The time and sign-on
message are printed at the terminal accordingly.

33

34

In the 1atter case. the user types LOGON or LOG without
disconnecting the line to the system. The system responds by
printing the off message. time. and sign-on message at the
termina1. The termina1 is then used by a second user to sign-on
the system from the same termina1 without performing the
disconnect sequence.

In either case. the user then enters a user number and password.
After the LOGON command bas been comp1eted successfu11y. the user
has a c1eared work area. The BASIC 1anguage processor with
short-form arithmetic is assumed. The termina1 1ine width is
assumed to be 72.

• MERGE

LOG ON
OFF AT 14:38
PROC. TIME •••
TERM. TIME •••

2 SEC.
17 MIN.

<termina1 entry)
<system response)

ON AT 14:39 05/15/72 MONDAY PAO LINE 60
USER NUMBER.PASSWORD--ABC213.WXYZ+90
READY

A11ows the user to merge from two to nine source programs into a
sing1e combined program. Any source programs avai1ab1e to the
user. inc1uding those in system 1ibraries. may be merged. If a
run on1y (protected> program is se1ected for a merge operation.
the entire resulting program is assigned a run on1y status and is
subject to al1 restrictions that this status implies.

Each subprogram is renumbered to fit in its indicated p1ace in
the main program. If possib1e. an integra1 value which al1ows
the entire subprogram to fit between successive bordering main­
program statements is se1ected for use as an increment. If this
is not possib1e. the subprogram is renumbered using an increment
of 1. If the renumbering causes existing main program line
numbers to be over1apped (that is. if new subprogram line numbers
are greater than or equa1 to existing main program 1ine numbers>.
successive main program 1ines are renumbered unti1 overlapping is
e1iminated. As far as possible. existing main program 1ine
numbers are retained in the resu1ting program.

MERGE PROG1.PROG2.10.PROG3.200
READY

(termina1 entry>
<system response>

PROG2 is inserted into PROG1. starting after the 1ine with line
number 10 in PROG1. and PROG3 is inserted into PROG1. starting
after the 1ine with 1ine number 200 in PROG1.

• MOVE

Moves a sing1e line or b1ock of consecutive 1ines to a new
1ocation in the working program. The new 1ocation cannot be
within the range of the 1ines to be moved. If an increment is
specified as a third parameter of the MOVE command. the moved
1ines (and succeeding 1ines as necessary to prevent 1ine-number
over1ap) are renumbered using this increment. If no increment is
specified. a defau1t of 1 is assumed.

MOVE 50.,20
READY

(termina1 entry>
<system response>

(

Line 20 is moved to fo11ow 1ine 50 and renumbered 51.

MOVE 50.10 THRU 20,10
READY

(terminal entry)
<system response)

Lines 10 through 20, inc1usive, are moved to follow line 50 and
renumbered using an increment of 10 <60.10 ••••).

• NAME program-name

Assigns a name to the program in the user work area. A program
name is required for a program that is to be saved or stored.

• OFF

NAME PROG1
READY

(terminal entry)
<system response)

Causes the user's termina1 to be disconnected from the computer
system. CPU processing and terminal connect times for the
session are printed. (A session is the total period of time from
user sign-on to user sign-off.)

OFF
OFF AT 17: 11
PROC. TIME •••
TERM. TIME •••

• PASSWORD password

11 SEC.
24 MIN.

<terminal entry)
<system response)

Permits a terminal user to change his password.

PASSWORD NEWPASS
READY

• POOL •filename
POOL **filename

(terminal entry)
<system response)

Permits a user's saved or stored program or data file to be made
available to other CALL-OS terminal users, through the shared
library facility. Users other than the pooling user can use a
shared data file only for input.

POOL *PROG1
READY

• PROTECT program or data filename

<terminal entry>
<system response)

Specifies that a program or data file pooled into a CALL-OS
system library is protected. A protected program is assigned a
.!!!!! only status. It may not be listed. saved. or stored by any
CALL-OS terminal user other than its originator. A protected
data file may not be opened by anyone other than its originator~
Thus, a CALL-OS user can prevent use of his file prior to or
during a required update process.

PROTECT PROG1
READY

(terminal entry)
<system response>

35

36

• PULL *filename
PULL **filename

Removes a named program or data file from a CALL-OS system
library, so that it is no longer available to other terminal
users.

PULL *PROG6
READY

• PUNCH OFF

(terminal entry>
<system response>

Resets the paper-tape punch mode-switch so that a conventional
two-character line-ending sequence (C/R, L/F) is appended to each
line of listed or runtime output (see PUNCH ON). The command may
be abbreviated PUN OF. It is meaningful only when entered from
the Teletype.

PUNCH OFF
READY

• PUNCH ON

(terminal entry>
(system resfOnse)

Causes a six-character line-ending sequence to be appended to
each line of listed or runtime output. These characters CC/R,
L/F, X-OFF, and three RUBOUT characters) are required to produce
paper tape (program statements, terminal commands, and program­
requested data) reenterable in TAPE ALL mode. The command may be
abbreviated PUN ON. It is meaningful only when entered from the
Teletype.

PUNCH ON
READY

• PURGE filename

(terminal entry)
<system response>

Deletes the named program or data file from the user's library
unless the program or data file is locked. It also deletes any
references to the program in system libraries.

PURGE MYPROG
READY

• RELEASE filename

(terminal entry)
<system resfonse>

Allows users other than the creator of a file to copy any part or
all of the file by means of a CALL-OS utility. (If this command
is not issued, the SECURE attribute for the file is set and
remains set automatically; the file cannot be copied by other
users via a CALL-OS utility.)

RELEASE PROG1
READY

• RENUMBER

(terminal entry)
<system response)

Renumbers the lines of the program in the user work area. A new
line number, old line number, and increment can be specified.
One, two, or all parameter entries may be omitted; defaults of
100, O, and 10 for the new line number, old line number, and

increment, respectively, are assumed. The comma that otherwise
follows a parameter should be retained if specified parameters
follow.

RENUMBER 200,10,20
READY

(terminal entry)
<system response)

The system assigns line number 200 to the line identified by line
number 10 in the user work area. Subsequent lines are renumbered
220, 240, and so on.

• REPLACE

• RUN

Replaces a first-named character string by a second-named
character string wherever it occurs in a specified line,
consecutive group of lines, or complete program. If only one
string is specified, the string is deleted wherever it occurs in
the specified lines or in the complete program.

REPLACE 10,25 THRU 50,•THIS','NEW'
READY

(terminal entry)
(system response>

The characters THIS are replaced by NEW wherever THIS occurs in
line 10 and lines 25 through 50, inclusive.

REPLACE ALL,'THIS'
READY

(terminal entry)
(system response)

The characters THIS are deleted wherever THIS occurs throughout
the program in the user work area.

Causes compilation and execution of the program currently in the
user work area. When serious errors are detected in program
statements, error messages are printed at the terminal; then the
compilation/execution process is terminated. statements in error
may be corrected, and the RUN command may be entered again.

RUN
PROG1 16:18 05/18/72

(terminal entry)
THURSDAY (system response)

• RUN program-name

causes the named program to be located in the user's library. A
source program is loaded, compiled, and executed. A program in
object form is executed directly from the library. If a source
program contains serious errors, subsequent actions are as
described above. Either source or object programs can be rerun
immediately without reentering the program name.

RUN PROG1
PROG1

• RUN *program-name
RUN **program-name
RUN ***program-name

16:18 05/18/72
(terminal entry)

THURSDAY (system response)

causes the named program to be located in the system library
designated by asterisks. A source program is loadedw compiled,
and executed. A program in object form is executed directly from

37

38

the library. Either source or object programs can be rerun
immediately without reentering the program name.

RUN *PROG1
PROG1 16:18

• SAVE [program-name]

05/18/72
(terminal entry)

THURSDAY <system response>

Writes a source program from the work area into the user's
library. The program-name parameter need not be specified if the
program in the work area has already been assigned the name to be
associated with it.

SAVE
READY

• SECURE filename

(terminal entry)
<system response>

Sets the .SECURE attribute for a file so that it cannot be copied
by any CALL-OS utility user other than the creator of the file.

• STATUS

SECURE PROG1
READY

(terminal entry)
(system response>

Prints information about the program currently in the user work
area. The amount of terminal <connect> time and processor (CPU)
time used during the user's current session are also printed.

STATUS
TERMINAL N0 •• 32
USER NO •• ABC123
PGM NAME •• EXAMPLE
PGM LENGTB •• 4823 CHARS.,191 LINES
LANGUAGE •• FORTRAN
TERMINAL TIME •• 33 MIN
PROCESSOR TIME •• 3 SEC

• STORE (program-name]
STORE ?

(terminal entry)
(system response>

Compiles the source program in the work area and stores it in
object format in the user's library and prints the number of disk
storage units <each 3440 bytes in length) required. When the
second form is used, the number of disk storage units that would
be required to store the object program is printed, but the
program is not stored. If the program-name parameter is not
specified in the first form of the command, and the current
source program name is not more than seven characters in length,
the object program is stored under a name consisting of a slash
followed by these characters.

STORE
/PROG1 10:15
OBJ PROG STORED
TIME 8 SECS.

<terminal entry)
05/26/72 FRIDAY <system response>

12 STORAGE UNITS REQUIRED

\ '
~ /

(

STORE ? (terminal entry>
/PROG2 10:40 05/26/72 FRIDAY <system response)
10 STORAGE UNITS REQUIRED TO STORE /PROG2
TIME 8 SECS.

• TAPE

Allows input of source-program statements from paper tape using
the Teletype. After this command has been issued, output line
feeds, carrier returns, and messages are inhibited. Only the
TAPE ALL, OFF, and KEY commands are acted upon. All other
commands and unnumbered statements are ignored.

TAPE
READY

• TAPE ALL

(terminal entry)
(system response)

Allows input of source-program statements, terminal commands, and
data from paper tape via the Teletype on a line-by-line basis.
The command may be given in full or abbreviated TAP A. If the
Type 33 or 35 Reader Control Arrangement feature is installed,
the paper tape is restarted automatically whenever it is halted
after one of the following:

1. A source-program statement

2. A successfully completed LIST, LIST-NO-HEADER, LIST-TEXT, or
RUN operation

3. A terminal command that terminates with a READY response to
the user

4. A request for input from an executing program (the system
prints a question mark at the terminal)

In any other situation, the system awaits an operator decision to
manually restart the tape or to enter data from the keyboard.

• TIME

TAPE ALL
READY

(terminal entry)
<system response)

causes the following month-to-date information for the user to be
printed at the terminal: CPU time, terminal time, and maximum
number of disk storage units in use at any time during the month.
(Current session time may be obtained by using the STATUS
command.)

TIME
PROCESSOR TIME MONTB-TO-DATE •• 74 SEC.
TERMINAL TIME MONTH-TO-DATE •• 570 MIN.
DISK STORAGE MONTH-TO-DATE •• O UNIT(S)

• UNLOCK program or data filename

(terminal entry)
<system response>

Removes protection from a previously locked program or data file
in the user's library.

UNLOCK PROG1
READY

{terminal entry>
<system response>

39

40

• WEAVE

Weaves up to nine source programs together according to the
existing line numbers of the program statements. Each program
must be saved in a library available to the user. None of the
programs may be run only <protected)~ if a protected program is
named, the WEAVE command is rejected. The combined program
resides in working storage. All lines retain their original line
numbers. If lines have duplicate line numbers, the line from the
rightmost of the programs specified in the WEAVE command and
having this line number is retained. other duplicate-numbered
lines are deleted.

WEAVE PROG1,PROG2
READY

<terminal entry>
<system response>

Assume that PROG1 contains lines 10, 30, and 80 and that PROG2
contains lines 20, 30, 40, and 45. This command yields a program
with line numbers as follows: 10, 20, 30, 40, 45, 80. Line 30
of PROG1 is eliminated.

• WIDTH

Sets the width of a print line to be used for printing
information at the terminal. This command is used only if the
line width desired is other than 72 positions. The line width
specified by the WIDTH command remains in effect during the
current session unless another WIDTH command is given. Although
the program accepts a maximum of 255 positions, the actual,
effective maximum number of positions is the maximum line width
for the particular terminal. Thus, effective maximum limits are
130 positions for the 2741 with ten positions per inch and 72
positions for the Teletype.

WIDTH 130
READY

(terminal entry)
(system response)

/ '

(

APPENDIX B: CALL-OS TERMINAL COMMAND LANGUAGE FOR COBI

The CALL-OS Batch Interface (COBI) option permits CALL-OS terminal
users to create OS jobs and submit those jobs to the OS batch-processing
environment. At this time also, the user may specify that job control
language (JCL), procedure-defined SYSOUT data sets, and user SYSOUT data
sets of the job be saved for subsequent scanning <printing) at the
terminal.

Each job is assigned an internal job number of the form #nnnnn by the
system when it is suhnitted. A message indicating this job number is
printed on the user's terminal. The job number assigned to the job must
be specified by the user in subsequent CALL-OS terminal commands
pertaining to the job. Specific capabilities are invoked by means of
CALL-OS terminal commands as summarized below.

• CANCEL

Provides a means by which the terminal user can cancel a job
submitted via CALL-OS for OS batch processing. If a SCRATCH
parameter is specified in the CANCEL command, the COBI index
record and any data sets created for the job are scratched.

CANCEL #78 <terminal entry>

CANCEL #78,SCRATCH (terminal entry>

The system responds with the first message shown below if the job
can be cancelled before being sent to OS batch processing. The
second message is printed if the job has been sent to OS batch
processing and OS has been requested to cancel it. The third
message is printed if the job has already been processed by os.
In either of the last two cases, unless the SCRATCH parameter
was specified in the CANCEL command, the user is responsible for
scratching any created data sets.

JOB CANCELLED <system response)

JOB CANCELLATION REQUEST INITIATED <system response>

JOB COMPLETED <system response)

• DSSTATUS

Prints the names, serial numbers, and status of the SYSOUT data
sets pertaining to all completed jobs for a terminal user, to a
specified completed job, or to a number of specified completed
jobs. The first command shown below causes the status of the
data sets of job #120 to be printed on the terminal <provided the
job has been completed). The second causes the status of the
data sets of jobs #3276, #441, and #1085 to be indicated. The
third causes the status of all jobs submitted by the user to
OS/360 batch processing, and completed, to be described.

DSSTATUS #120 (terminal entry)

DSSTATUS #3276,#441,#1085 (terminal entry)

DSSTATUS <terminal entry)

41

42

A representative response to the second command above is printed
below. In the SYSOUT column, entries preceded by u refer to user
SYSOUT data sets; entries of the form nPmm refer to SYSOUT data
sets defined in cataloged procedures. n is the procedure number,
and mm is the number of the data set.

JOB ID:

#3276
#441
#1085

SYSOUT:

U003
1P05
U007
3P01

VOL ID:

EXEC99
111111
222222
RTOSLK

STATUS:

OFF-LINE
ON-LINE
ON-LINE
OFF ... LINE

• JOBSTATUS

Prints the status of all jobs that the user has submitted for OS
batch processing, of a specified job, or of specified jobs. The
first command shown below causes the status of job #100 to be
indicated. The second causes the status of jobs #123, #48, and
#16 to be indicated. The third causes the status of all jobs the
user has submitted to OS batch processing to be described.

JOBSTATUS #100 (terminal entry)

JOBSTATUS #123,#48,116 (terminal entry)

JOBSTATUS {terminal entry)

A representative response to the third command above is printed
below, showing the four possible status conditions that may be
noted. CODE refers to system completion code. User ABEND codes
are preceded by u. In the rightmost column, entries preceded by
u refer to user SYSOUT data sets. Entries of the form nPmm refer
to SYSOUT data sets defined in cataloged procedures.

JOB ID: STATUS: CODE: DATA SET:

#13 CANCEL RQ 1P06,1P13, •••
#100 COMPLETED OC5,U0130 JCL,3P01,U003, •••
1123 JCL ERROR JCL,U027,3P04, •••
#17 NOT DONE 1P01,1P02, •••

• NOTIFY

Sends a message to the CALL-OS communications console or to one
or more OS operator consoles. Messages are directed to the CALL­
os communications console by a command of the form shown below.

NOTIFY CALL,'message•
READY

(terminal entry)
(system response)

To send a message to a single <or default) os operator console, a
command of the following form is issued.

NOTIFY OS,'message'
READY

(terminal entry)
<system response>

Messages to one or more OS operator consoles are directed to
specific consoles by means of OS routing codes. This capability

is available only when the Multiple Console Support (MCS) feature
is included at system generation. Multiple consoles may be
specified in one NOTIFY command as shown below.

NOTIFY 2.4.'message•
READY

(terminal entry)
<system response>

If no message destination is specified in a NOTIFY command, CALL
is assumed.

Note:

• SCAN

A NOTIFY command containing CALL. or in which CALL
applies by default, can be issued by any CALL-OS terminal
user. This form of the NOTIFY command is available in a
system that does not include the COBI option. or in a
system in which COBI modules are available~-irrespective
of whether COBI has been activated or deactivated (at
system initialization time) for the current session of
CALL-OS.

Causes all or a portion of an OS data set to be scanned and
listed at the termina1. The data set may be an output of an OS
job submitted via CALL-OS or a data set created by OS batch­
processing facilities not initiated via CALL-OS. The JCL of a
submitted job can also be listed at the terminal. Entries
preceded by u refer to user SYSOUT data sets. An entry of the
form nPmm refers to a SYSOUT data set defined in a cataloged
procedure. n is the procedure number. and nun is the number of
the data set. n may be omitted; if so, 1 is assumed.

The user may stop a scan operation at any time by pressing the
ATTN or BREAK key Con the 2741 Communications Terminal or
Teletype. respective1y>. If he does so, or when the scan
operation is completed. the system prints a question mark at the
terminal. The primary purpose of the question mark is to remind
the user that he has control of operations and is responsible for
disposition of the data set. The user must. in response to the
question mark. enter another scan request pertaining to the same
data set or exercise his option to KEEP or SCRATCH the data set.
A data set scanned by specifying a DSN parameter (see below>
cannot be scratched.

Note: The system wil1 respond to one other user action when the
user is in SCAN mode: entry of a WIDTH terminal command
to adjust the current width of the print line. If output
lines contain many blank characters between two columns.
for example. the user can set the width of the print line
at the last print position preceding the second column.
If he does so, a carrier return will be made immediately
following the 1ast nonb1ank character preceding the
specified width1 intervening blanks will not be printed;
and the characters beyond the width specification will be
printed at the beginning of the next line. Because
printing of b1anks is eliminated. the total printing task
can be accomplished more rapidly.

SCAN #120.3P2,3500 THRU 3600
list of specified data

(terminal entry)
(system response>

?

43

44

The content of print lines (logical records) 3500 through 3600
from SYSOUT data set 2 of the third procedure of job #120 are
printed at the terminal.

SCAN #130,JCL
list of specified data

?

(terminal entry)
(system response)

The JCL of job #130 is printed at the terminal.

SCAN DSN=OSFU.FORTRAN.IBM020,VOL=CARS09,MEM=PROG1 (entry)
list of specified data <system response)

?

The content of member PROG1 of data set OSFU.FORTRAN.IBM020 from
volume CARS09 is printed at the terminal, provided that one of
the qualifiers of the data set name Cin this case, of course,
IBM020) is the user number of the user issuing the SCAN command.
A request of this type generally pertains to an OS data set not
created using CALL-OS. When a data set name is specified but the
volume identification is omitted, the data set is assumed to be
cataloged and searched for via the OS catalog.

The DSN parameter of a SCAN command can also be used to request
scanning of a data set whose name contains, as its first
qualifier, one of two installation-specified high-level index
names. The user should contact the central computer installation
to learn the index names that have been specified.

• SCRATCH

Enables the user to scratch one or all of the SYSOUT data sets
attached to a specified job via a SUBMIT command. These may be
user, procedure-defined, or JCL (message class) data sets.

SCRATCH #200
READY

(terminal entry)
<system response>

All data sets attached to job #200 are scratched.

SCRATCH #210,U2
READY

(terminal entry>
<system response>

User SYSOUT data set 2 of job #210 is scratched.

SCRATCH #200,2P1
READY

(terminal entry>
<system response>

The first data set of the second procedure for job #200 is
scratched.

• SUBMIT

Copies a requested job from CALL-OS program files to a sequential
data set for input to OS batch processing. The job may consist
of from one to twelve job segments {programs, JCL, and/or data)
previously placed in the CALL-OS data base. The user may specify

(

options in the SUBMIT command to save data sets for scanning
<printing> at his terminal as follows:

.. an entry of the characters JCL refers to the JCL for the job

• an entry of the form Unnn refers to a user SYSOUT data set

• an entry of the form nPmm
in a cataloged procedure.
is the number of the data
assumed.

refers to a SYSOUT data set defined
n is the procedure number. and mm

set. n may be omitted; if so. 1 is

A maximum of eight SYSOUT data sets <not counting JCL) may be
specified. The system assigns a job number of the form #nnnnn to
the input. A message is printed at the terminal. informing the
user of this job number. which must be used in all terminal
commands referring to the job. The message also indicates the
name by which OS recognizes the job. In the examples below.
JOBNAME is:

• the user's job name from his JOB card if ANYJNAME is
specified in the system startup deck

• aaannnxx where aaannn is a user number and xx is a unique
system-generated identifier if ANYJNAME is not specified in
the system startup deck

SUBMIT JOB1,(P2,U1) (terminal entry)
#300 SUBMITTED AS JOBNAME (system response)

JOB1 is copied to a sequential data set for input to os. User
SYSOUT data set 1 and SYSOUT data set 2 from the first procedure
of the job will be saved for subsequent scanning. Job number
#300 is assigned to the job and must be used to refer to it.

SUBMIT JOB2,(JCL,P1,3P2) (terminal entry)
#310 SUBMITTED AS JOBNAME (system response)

JOB2 is copied to a sequential data set for input to os. JCL.
SYSOUT data set 1 from the first procedure. and SYSOUT data set 2
from the third procedure of the job will be saved. Job number
#310 is assigned to the job and must be used to refer to it.

SUBMIT tJOB3
#320 SUBMITTED AS JOBNAME

<terminal entry>
<system response)

The up-arrow identifies an indirect submit. This form of the
SUBMIT command makes it easier for the terminal user to submit a
job again. once it has been set up with its options for OS batch
processing. The example above indicates that a $$SUBMIT control
statement will be the first statement in the program file JOB3
and will control submission of the job. For example. the
$$SUBMIT control statement may appear as follows:

10 $$SUBMIT PROG1,PROG2,PROG3,(JCL,P1wP2.U1,U2,U3,U4.4P1)

If options are specified in the SUBMIT command. they override
options specified in the $$SUBMIT control statement. Since none
are specified in the SUBMIT command above. the options specified
in the $$SUBMIT statement control the saving of data sets. In
the example, job number #320 has been assigned and must be used
to refer to the job.

45

GH20-0673-5

INDEX

accounting 25

BASIC 2.11

cluster 20
COBI 1.3.16.24.41
configurations 5.8-9
consoles 5. 6-7
core storage. use of 18-19

data base 19-20.26

Engineering Change Levels (EC's> 8
Executive 1.21

files 3.21
FORTRAN 2.14

index 19-20
interval timer , 8

job queues 22-23

languages 2.11-12
libraries 2.19-20
line numbers 11.14-15

os 1.1-0.10.24

paper-tape input 7.26.36.39
performance 4
PL/I 2.13
program storage 26

lntematlonal Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, WhHe Plalns, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plue, New York, New York 10017
(lntematlonal)

RPQ's 6.8

security 3
sign-on 10
sub group 20
system

accounting 25
configurations 5.8-9
data sets 19-20
initialization 24
libraries 2.19-20
maintenance 25-26
overview 1.18
performance 4
processing 21
statistics 25
termination 25
utilities 25-26

terminal command language 10-11.28.41
terminals 6-7
time slicing 22

user
data-base data sets 19-20
groups 20-21
libraries 2.19-20
number 10
password 10

~
r

6 en
<
"' iii c;·
:s
~
:...

./

'

..

(

READER'S COMMENT FORM

CALL-OS Version 2.1 GH20-0673-5

System Description Manual

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges­
tions become the property of mM. If you wish a reply, be sure to include your name and address.

COMMENTS

fold fold

fold fold

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

GH20-0673-5

YOUR COMMENTS PLEASE •••

Your comments on the other side of this form will help us improve future editions of this pub­
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub­
lishing this material.

Please note that requests for copies of publications and for assistance in utilizing your IBM

system should be directed to your IBM representative or the IBM branch office serving your
locality.

fold fold

...

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

I BM Corporation

1133 Westchester Avenue

White Plains, N.Y. 10604

Attention: Technical Publications

fold

lnt1rnational Business Machines Corporation
Data Processing Division
11:!11 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM.World Trade Corporation
921 United Nations Plaza, New York, New York 10017
[International]

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS, N. Y.

fold

~
r
r
6
en

<
(!)

Ul
Ci'

" !'.l -
en
0 s:

c
Cn
~
CJ
:c
l\J
0
6
O'l
....i
w
01

