
IBM System/360 Operating System

Catalog Management

Program Number 360S-DM-50S

This manual provides detailed informa­
tion on catalog management routines. These
routines record identification of volumes
used by data sets by maintaining informa­
tion in logical records called indexes.
The functions and structures of the rou­
tines are described, as are their relation­
ships to other portions of IBM System/360
Operating System. This manual also des­
cribes the structure Of catalog data sets
that contain the indexes processed by
catalog management routines. It is intend­
ed for use by persons involved in program
maintenance, and system programmers who are
altering the program design. Program logic
information is not necessary for the use
and operation of the program; therefore,
distribution of this publication is limited
to those with the aforementioned require­
ments.

RESTRICTED DISTRIBUTION--SEE ABSTRACT

Y2S-6606-0

Program Logic

PREFACE

The information contained in this manual
is intended for programmers engaged in
maintenance of catalog management routines.
Because of the close relationship between
catalog management and other portions of
the control programs of IBM System/360
Operating System, many details in this
manual are helpful in understanding overall
system operations.

This manual is arranged in two sections.
The first describes the structure of a
catalog data set and how indexes and volume
control blocks are recorded in such a data
set. The second is the description of the
catalog management functions and the inter­
nal logic of the routines that perform the
functions.

The manual is a detailed and comprehen­
sive guide to the internal structure and
functions of the catalog management rou­
tines. It is designed to be used in
conjunction with assembly listing and, con­
sequently, does not discuss program struc­
ture at the machine instruction level.

PREREQUISITE PUBLICATIONS

IBM System/360 Operating System: Con­
cepts and Facilities, Form C28-6535

IBM System/360 Operating System: Data
Management, Form C28-6537

IBM System/360 Operating System: Intro­
duction to Control Program Logic, Pro­
gram Logic Manual, Form Z28-6605

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

Copies of this and other IBM publications can be obtained through IBM
Branch Offices.

A form for readers' comments appears at the back of this publication.
It may be mailed directly to 1Bt-i. Address any auuitional comments
concerning this publication to the IBM Corporation, Programming Systems
Publications, Department D58, PO Box 390, Poughkeepsie, N. Y. 12602

INTRODUCTION • •

The catalog.

catalog Management Routines.

CATALOG STRUCTURE. •

Index Contents • • ,.
Control Entries •
Pointer Entries •

The Volume Control Block Contents. •
A Sample Catalog •••

CATALOG MANAGEMENT ROUTINES.

5

5

5

6

7
9

• 10

11
• 12

14

CONTENTS

The Locate Function (Modules IGC0002F
and IGGOCLC4) • • • • • '. • • • '. • • • 15

The Index Function (Modules IGC0002F,
IGGOCLC2 " and IGGOCLC3) • • • • • • • • 16

The Catalog Function (Modules
IGC0002F., IGGOCLC2" IGGOCLC3"
IGGOCLC4, and IGGOCLC 5) • • '.

The CVOL Routine •• '. • • • • • '.
The CVOL Routine Modules (Modules

IGC0002H and IGGOCLF2)

INDEX,. • • •

• 16

• 17

· 17

• 19

ILLUSTRATIONS

FIGURES

Figure 1. Catalog Index Chaining. • •• 7
Figure 2. A Sample Catalog ••••••• 13
Figure 3. The Catalog Routine Modules,. • 14
Figure 4. CVOL Routine Modules,. • • • • 15

TABLES

Table 1. Summary of Index Entry
Formats 8

The system for identifying the volumes
on which data sets are recorded consists of
two parts: the catalog and the catalog
management routines. The catalog is one or
more data sets each of which is recorded on
a separate direct-access volume. The
catalog contain~ the information necessary
to identify the volumes on which other data
sets reside. Catalog management routines
provide access to the catalog and update
the catalog as necessary.

THE CATALOG

A direct-access volume that contains a
catalog data set is called a control vol­
ume. In any operating system, the system
residence volume is always a control volume
because a catalog data set is created on it
at system generation time. Each catalog
data set is named SYSCTLG. One such data
set can serve as the catalog of an operat­
ing system. If there is more than one
catalog data set in an operating system,
each data set can be separate and distinct,
or several data sets can be logically
connected.

Catalog data sets contain two types of
unit: indexes and volume control blocks.
Both are variable-length records recorded
in one or more fixed-length blocks. An
index is a series of variable-length
entries that identify other indexes" con­
trol volumes, or volumes of data sets by
name and physical location. A volume con­
trol block contains volume identification
for a data set when the data set extends
over more volumes (five) than can be easily
identified in an index. Volume control
blocks, therefore, supplement information
in indexes and are identified by entries in
indexes.

There are three types of index: the
volume index, the generation index, and the
normal index. Every control volume is
initialized by catalog management routines
with a basic index structure called the
volume index. This is all the structure
that is required to catalog data sets with
simple names-. Generation indexes contain
the identification of data sets of genera-

INTRODUCTION

tion data groups. They allow the automatic
cataloging functions provided for genera­
tion data groups as described in the publi­
cation IBM System/360 Operating System:
Data Management. Normal indexes facilitate
data separation among several functions or
departments by providing names that are
used to qualify simple data set names. For
example, two departments, A and B, can
create two indexes named A and B, respec­
tively. Both departments can give the name
DATA to one of their data sets and refer to
it without ambiguity by using their indexes
as qualifying names (i.e., A.DATA, and
B.DATA) .

CATALOG MANAGEMENT ROUTINES

The catalog management routines provide
the functions for the LOCATE, INDEX, and
CATALOG macro-instructions described in the
publication IBM system/360 Operating Sys­
tem: System prograrmner's Notebook:, Form
C28-6550. For the locate function, catalog
management finds volume information of a
cataloged data set by searching the index
structure for the qualified name of the
data set. It can also read an index block,
if provided with the address of the block.
For the index function, catalog management
inserts or deletes indexes in a catalog
data set. For the catalog function, catal­
og management can enter or delete the
identification of the volumes of a data
set.

Components of the operating system use
the catalog management routines when catal­
oging operations are requested in data
definition (DD) statements of the job con­
trol language. Utility programs also use
catalog nanagement routines to build a
catalog in an operating system. The locate
function of catalog management is used by
job management to find a cataloged data set
when the data set is requested as input to
a program. The locate operation includes
calculation of new generation numbers of
generation data sets. The catalog function
is used by job management to catalog a data
set after it has been created. The index
function of catalog management is used by
utility programs to build indexes in a
catalog data set.

Introduction 5

CATALOG STRUCTURE

An index is a record of indefinite
length consist~ng of a series of fields or
entries. The record is open-ended to
accommodate new entries. The entries are
in ascending sequence of the binary value
of their name fields, and they are contigu­
ous to one another at the beginning of the
index.

To be recorded on a direct-access vol­
ume" the records are divided into fixed­
length blocks. Each block consists of an
eight-byte key and a 256-byte data portion.
Index entries are placed in the data
portion of the block, and the key is used
to identify the block. An index may extend
over several blocks, but two indexes can
not share a block.. Blocks of an index are
chained together in the proper sequence by
addresses at the end of each block. When
processing an index, the catalog management
routines begin with the first block of the
index and, through chain addresses, contin­
ue to the last block.

The first field in the data portion of
an index block is two bytes long and
contains the count of the number of used
bytes in the data portion. That field is
necessary because the lengths of index
entries vary, and an index block will not
always be filled (i.e., there may be unused
bytes at the end of the block's data
portion). Index entries are placed in the
data portion following the byte count
field.

Each entry in an index is either a
control entry or a pointer entry. Control
entries contain information about the index
in which they appear, such as the address
of the first and last blocks assigned to
the index or the chain address to the next
block. Pointer entries contain the names
of other index levels and the identifi­
cation of the entity (index address, con­
trol volume, volumes of a data set, or a
volume control block) to which each name
applies.

The first entry in the first block of an
index is a control entry. The entry indi­
cates the address of the last block of the
index and the number of unused bytes at the
end of that block. The special control
entry at the beginning of the volume index
indicates the first available block in the
catalog data set not assigned to any index.

6

The last entry in an index block is usually
a control entry that contains the address
(the chain address) of the next block in
the index. If two blocks are adjacent and
if the blocks are in the proper logical
sequence in an index, the control entry can
be eliminated from the end of the first of
the two blocks. Pointer entries are placed
in the data portion of an index block
following the control entry at the begin­
ning of the index and up to the control
entry at the end of each block. The last
entry in the last block of any index is a
control entry with a chain address of zero.

The key of each block contains the name
that appears in the last entry <control or
pointer} in the data portion of the block.
Since entries are placed in the index in
ascending sequence of their name values,
the name in the key will always be the one
of highest binary value in the block.

A volume control block, like an index,
is recorded in one or more blocks with
8-byte keys and 256-byte data portions. If
a volume control block extends over more
than one block, the blocks are chained
together. One block of a volume control
block contains up to~ 20 volume serial
numbers for one data set. The key of each
block contains the hexadecimal number FF.

Figure 1 shows a method of chaining
blocks that provides ease of access to
catalog entries. Blocks A, B~ C# D, and E
are all of one index. The entries are
placed in the index in the sequence of the
binary value of the name fields of the
entries, from name A to name Z. The key of
each block contains the eight-byte name
that is the last entry in the data portion
of the block.

Blocks A, B, and C are contiguous. The
last entry in block C is an index link
entry that indicates block D as the next
block of the index. Blocks C and Dare
separated by blocks of another index or by
volume control blocks, and the name in the
key of block C is, therefore, hexadecimal
FF. Blocks D and E are contiguous, and the
last entry in block E is the index link
entry indicating that no block follows
block E. The name in the key of block E is
hexadecimal FF, and the address in the last
entry of block E is zero. This system of
recording indexes allows the catalog man­
agement routines to use a channel program
to search the keys for a name greater than
or equal to a name to be found.

Block A

Block B

Block C

Block D

Block E

Key

BJ

c:J FF

cd
~
LJ

Byte Index
Count Control

Entry

Byte Pointer
Count Entt"y

to F

Byte Pointer
Count Entry

to L

Byte Pointer
Count Entry

to Q

Byte Pointer
Count Entry

to V

Key and
256-Byte Block

Data Portion

Pointer Pointer
Entry Entry
to A to B

Pointer Pointer
Entry Entry
to G to H

Pointer Pointer
Entry Entry
to M to N

Pointer Pointer
Entry Entry
to R to S

Pointer Pointer
Entry Entry
to W to X

Figure 1. Catalog Index Chaining

Except for the first volume index block,
index blocks or blocks of volume control
blocks have no assigned position in a
catalog data set. Blocks of the same index
or volume control block are not necessarily
contiguous; they may be chained together.
The address of the first available block in
a catalog data set is recorded in its
volume index. When an index or volume
control block overflows, the first availa­
ble block is assigned to that index or
volume control block. When an index or
volume control block is reduced so that one
of its blocks becomes empty, binary zeros
are written in the empty block" s key, and
the block is returned to the pool of
available blocks. I'f the block is closer
to the beginning of the data set than any
other available block, it is the first to
be used when an index overflows or when a
block is needed to record a volume control
block. Thus, unused blocks will tend to
accumulate close to the end of the data
set.

INDEX CONTENTS

An index contains one or more
length entries of which there

variable­
are two

Pointer Pointer Pointer
Entry Entry Entry
to C to D to E

Pointer Pointer Pointer
Entry Entry Entry
to I to J to K

Pointer Pointer Index Link
Entry Entry Entry with
to 0 to P Name FF

and Address
of Block D

I

Pointer Pointer
Entry Entry
o T to U

Pointer Pointer Index Link
Entry Entry Entry with
to Y to Z Name FF

and Address
of Zero

types: control and pointer. Control
entries identify the beginning and end of
each index and the end of each block.
Control entries are used to chain blocks of
the same index. Pointer entries identify
one of the following:

• Another index.
• A data set's volumes.
• A volume control block.
• A control volume.
• A generation index.
• An alias of an index.

All indexes do not contain all types of
pointer entries. Normal indexes can not
contain entries that identify control
volumes or aliases of indexes. Generation
indexes can contain only those entries that
identify data set volumes or volume control
blocks. Volume indexes can contain any
type of pointer entry. Names appearing in
entries in volume indexes are called high
level names, and indexes identified by such
entries are called high level indexes.
Table 1 is a graphic summary of all the
entries. The entries are described in the
following paragraphs.

Catalog Structure 7

Table 1 .• Summary of Index Entry Formats

CONTROL ENTRIES

Volume Index Control Entry

Address of Address of Address of Count of
Last Block in Last Block in First Unused Unused

Name Field Containing Binary One Volume Index 05 SYSCTLG Data 00 Block in Data 00 Bytes in
Set Set Last Block

in Index

1 8 9 12 13 15 16 17 19 20 21 22
Index Control Entry

Address of Address of
I-

Count of
Last Block in First Block in l/lZ Unused

Name Field Containing Binary One Index 03 Index <{=:l Bytes in ::::i0
<{u Last Block

in Index

1 8 9 12 13 15 16 17 18
Index Link Entry

Address of

Name Field Containing Hexadecimal FF
Next Block in

00
Index or
Zero

1 8 9 12
POINTER ENTRIES

Index Pointer Entry

Address of
Index Name First Block in 00

Index

8 9 12
Data Set Pointer Entry

Data Set Name
Zeros C* Volume Device Volume Serial Number Sequence

Count Code Number

8 9 12 13 I .. 15 19 25

*Count Field Contains the First of Up to 5 Va lume Entries in the Pointer
Number 0= 6 (number of volume entries) +1

Volume Control Block Pointer Entry

Address of

Data Set Name First Block in
Volume
Control Block

8 9
Control Volume Pointer Entry

Index Name

1 8
Alias Entry

Alias of Index

8 9
Generation Index Pointer Entry

Address of
Generation Data Group Name First Block in

Index

8 9

8

01 Zeros

12 13 14

Control Volume Serial
Number

13

True Name of Index

12 13

l/l r:lJ Count of
0

02 <{ Z Index
....J w

Entries '-'- 0

12 13 14 15 16

18

20

FLAGS= 01 for EMPTY, 02 for DELETE
03 for EMPTY and DELETE

GfNER= Maximum number of entries
allowed in index.

CONTROL ENTRIES

A volume index control entry is always
the first entry in a volume index. It
consists of the ending address of the
volume index, the amount of available space
in the volume index, and the address of the
first available block in the catalog data
set. It appears only in volume indexes.
The entry is 22 bytes long and contains 8
fields.

Field 1: Name Field (8 bytes long) -- This
field contains the binary number one to
ensure that the entry will appear as the
first entry in the first block of the
index.

Field 2: Last Block Address (3 bytes long)
This field contains the relative track

address of the last block in the volume
index. The address is in the form TTR,
where TT is the track address and R is the
block address.

Field 3: Half-word Count (1 byte long) -­
This field contains the binary number five
to indicate that five half-words follow
this field in this entry.

Field 4: Catalog Upper Limit (3 bytes
long) This field contains the relative
track address of the last block in the
catalog data set. The address is in the
form TTR.

Field 5: Zero Field (1 byte long) -- This
field contains binary zeros.

Field 6: First Available Block Address (3
bytes long) This field contains the
relative track address of the unused block
in the catalog that is closest to the
beginning of the catalog data set.

Field 7: Zero Field (1 byte long) -- This
field contains binary zeros.

Field 8: Unused Bytes in Last Block (2
bytes long) This field contains the
binary count of the number of unused bytes
in the last block of the volume index.

An index control entry is always the
first entry in any index except in volume
indexes. It indicates the amount of space
available in the last block of the index,
and the addresses of the first and last
blocks aSSigned to the index. The entry is
18 bytes long and contains 6 fields.

Field 1: Name Field (8 bytes long) -- This
field contains the binary number one to

ensure
entry in
because
value.

that
the

it

this entry will be the first
first block of the index

has the lowest binary name

Field 2: Last Block Address (3 bytes long)
-- This field contains the relative track
address of the last block assigned to the
index. The address is in the form TTR.

Field 3: Half-word Count (1 byte long)
This field contains the binary number three
to indicate that three half-words follow
this field in this entry.

Field 4: Index Lower Limit (3 bytes long)
This field contains the relative track

address of the block in which this entry
appears. The address is in the form TTR.

Field 5: Number of Aliases (1 byte long)
-- This field contains the binary count of
the number of aliases to this index. If
this index is not a high level index, this
field must be zero.

Field 6: Unused Bytes in Last Block (2
bytes long) This field contains the
binary count of the number of unused bytes
remaining in the last block in the index.

An index link entry is the last entry in
either the last block of an index or any
block not physically contiguous to the next
block of the same index. When the entry is
in the last block of the index, it contains
the hexadecimal number FF and an address
field of zeros. When the entry is in a
block that is not physically contiguous to
the next block of the index, it contains
the hexadecimal number FF and the address
of the next block of the index. The entry
is 12 bytes long and contains 3 fields.

Field 1: Name Field (8 bytes long) -- This
field contains the hexadecimal number FF.
That number ensures that this entry will
appear as the last entry in any index block
because it has the highest name value.

Field 2: Link Address (3 bytes long) -­
This field contains the relative track
address of the next block in the same
index, if there is a next block in the
index. otherwise, the field contains
binary zeros.

Field 3: Half-word Count (1 byte long) -­
This field contains the binary number zero
to indicate that this field is followed by
no fields in this entry.

Catalog Structure 9

POINTER ENTRIES

An index pointer entry can appear in all
indexes except generation indexes. It con­
tains the name of an index in the same
SYSCTLG data set and the relative address
of the first block of that index. The
entry is 12 bytes long and contains 3
fields.

Field 1: Name Field (8 bytes long> -- This
field contains the name of the index being
pointed to by field 2.

Field 2: Index Address (3 bytes long> -­
This field contains the relative track
address of the first block of the index
named in fi~ld 1. The address is in the
form TTR.

Field 3: Half-word Count (1 byte long) -­
This field contains the binary number zero
to indicate that no fields follow this
field in this entry.

A data. set pointer entry can appear in
any index. It contains the simple name of
a data set and from one to five 12-byte
fields that each identify one volume on
which the named data set resides. If the
data set pointer entry appears in a genera­
tion index, the generation number and ver­
sion number together form the simple name
of the data set in the entry. The genera­
tion, but not the version number, of the
data set in the entry is the ones comple­
ment of the true generation number. If the
data set resides on more than five volumes,
a volume control block must be used to
point to the data set·s volumes. The
volume control block is identified by a
volume control block pointer entry, not a
data set pointer entry.

The data set pointer entry is variable­
length. The length is determined by the
formula (14+12m), where m is the number of
volumes containing the data set. The
variable m can be from 1 through 5. The
entry can appear in any index, and it
contains 5 fields.

Field 1: Name Field (8 bytes long) -- This
field contains the simple name of the data
set whose volumes are identified in field 5
of this entry. The simple name of a
generation data set consists of the ones
complement of the data set's true genera­
tion number followed by the true version
number.

Field 2: Address Field (3 bytes long)
This field contains the binary number zero.

Field 3: Half-word Count (1 byte long) -­
This field contains the binary count of the
number of half-words that follow this field

10

in this entry. The number is found by the
formula (6m+1), where m is the number of
volumes upon which the data set resides.
The variable m can be from 1 through 5.

Field 4: Volume Count (2 bytes long)
This field contains the binary count of the
number of volumes identified in field 5 of
this entry.

Field 5: Volume Entries (12 to 60 bytes
long, one to five entries> This field
contains from one to five 12-byte entries.
Each entry contains the device code, serial
number and sequence number of one volume
containing the data set named in field 1.
The device code is 4 bytes long, the volume
serial number is 6 bytes long, and the
sequence number is 2 bytes long. The
sequence number indicates the position of
the data set on a tape volume. The
sequence number is zero for direct-access
volumes.

A volume control block pointer entry can
appear in any index. It contains the
simple name of the data set and the address
of the first or only physical block of the
volume control block for the dataset. The
volume control block can identify up to 20
volumes. When this entry appears in a
generation index, the generation number and
version number together form the simple
name of the data set. The generation, but
not the version number, is the ones comple­
ment of the actual EBCDIc coded generation
number. The entry is 14 bytes long and
contains 4 fields.

Field 1: Name Field (8 bytes long) -- This
field contains the simple name of the data
set identified by this entry. The data set
resides on the volumes whose serial numbers
are given in the volume control block
pointed to by field 2.

Field 2: Address Field (3 bytes long)
This field contains the relative track
address of the volume control block iden­
tifying the volumes containing the data set
named in field 1. The address is in the
form TTR.

Field 3: Half-word Count (1 byte long)
This field contains the binary number one
to indicate that one half-word follows this
field in this entry.

Field 4: Zero Field (2 bytes long) -- This
field contains binary zeros.

A control volume pointer entry can
appear only in volume indexes. It contains
the name of a high level index name in the
volume index on another control volume. It
is used in installations whose catalogs
extend over several volumes. A control
volume pointer entry in one catalog data

set directs catalog searches from one con­
trol volume to another that contains the
desired index. (A high level index is one
that is identified by an entry in a volume
index. The name of a high level index can
have no qualifiers ..) It also contains the
serial number of the control volume con­
taining that volume index. The entry is 18
bytes long and contains 4 fields.

Field 1: Name Field (8 bytes long) -- This
field contains a high level name that
appears in the volume index of the control
volume identified in field 4.

Field 2: Address Field (3 bytes long) -­
This field contains binary zeros.

Field 3: Half-word Count (1 byte long)
This field contains the binary number three
to indicate that three half-words follow
this field in this entry.

Field 4: Control Volume Serial Number (6
bytes long) This field contains the
volume serial number of the control volume
whose volume index contains an entry iden­
tifying the high level name in field 1.

An alias entry can appear in volume
indexes only. It contains an alias given
to an index, the address of the index, and
the true name of the index. An alias can
be given only to indexes., and only if they
are high level indexes. An alias entry is
20 bytes long and contains 4 fields.

Field 1: Name Field (8 bytes long) -- This
field contains the alias of the high level
index identified in field 2.

Field 2: Address Field (3 bytes long) -­
This field contains the relative track
address of the first block of the index
named in field 4. The address is in the
form TTR.

Field 3: Half-word Count (1 byte long) -­
This field contains the binary number four
to indicate that four half-words follow
this field in this entry.

Field 4: True Name Field (8 bytes long) -­
This field contains the name of the index
to which was given the alias name that
appears in field 1. The address of the
index is in field 2.

A qeneration index pointer entry can
appear in all indexes except generation
indexes. It contains the name of a genera­
tion index, the address of the first block
of the index, and control information about
the generation data group identified in the
index. The entry is 16 bytes long and
contains 6 fields.

Field 1: Name Field (8 bytes long) -- This
field contains the name of the generation
index whose address is given in field 2.

Field 2: Address Field (3 bytes long)
Th;is field contains the relative track
address of the generation index named in
field 1. The address is in the form TTR.

Field 3: Half-word Count (1 byte long) -­
This field contains the binary number two
to indicate that two half-words follow this
field in this entry.

Field 4: Flags (1 byte long) -- This field
contains flags that govern the uncataloging
of data sets from the index as specified by
the DELETE or Elf~TY options of the INDEX
macro that were used when the generation
index was created. The options and their
hexadecimal codes are as follows:

EMPTY=Ol DELETE=02 EMPTY and DELETE=03

Field 5: Maximum Generations Allowed (1
byte long) This field contains the
binary count of the maximum number of
generations allowed in the index at one
time as specified in the INDEX macro when
the index was created.

Field 6: Current Generation Count (2 bytes
long) This field contains the binary
count of the number of generations cata­
loged in the index.

THE VOLUME CONTROL BLOCK CONTENTS

The format of a volume control block is
always the same. Each block of a volume
control block contains up to twenty volume
serial numbers for one data set. Each
block is 256 bytes long and contains five
fields. The fields are described in the
following paragraphs.

Field 1: Number of Volumes (2 bytes long)
-- This field contains the binary count of
the number of volume serial numbers con­
tained in this physical block and in all
subsequent blocks chained to this block.
If a data set is on 61 volumes, for
example, it will have four volume control
blocks. The first fields of those blocks
will contain 61,41,21., and 1, respectively.

Field 2: Volume Serial Numbers (240 bytes
long) This field contains up to 20
entries of 12 bytes each. Each entry
identifies one volume of the data set by
giving the volume's device code, serial
number, and data set sequence number. The
device code is 4 bytes long, the serial
number is 6 bytes long" and the sequence
number is 2 bytes long. The sequence
number is zero for direct-access volumes.

Catalog Structure 11

Field 3: Zero Field C10 bytes long)
This field contains binary zeros.

Field 4: Chain Address (3 bytes long) -­
This field contains the relative track
address of the next block of this volume
control block, if additional blocks exist.
The address is in the form TTR. If no next
block exists, the field contains binary
zeros. If this field is not zero, this
block must contain twenty 12-byte fields
identifying volumes of the data set.

Field 5: Zero Field (1 byte long) -- This
field contains binary zeros.

A SAMPLE CATALOG

Figure 2 shows a sample catalog that
consists of two catalog data sets: one on
the system residence volume and the other
on a control volume. The catalog contains

12

volume identification for the following
data sets:

Q
A.B.MCalias B.B.M)
D.B
E
A.J(alias B.J)
A.G(alias B.G)
D.C
D.A .• B
A.B.KCalias B.B.K)
A.B.NCalias B.B.N)
D.A.C

It also identifies the following genera­
tion data sets:

F(O)
F(-3)
F(-I)
D.A.DCO)
F(-2)

System Residence Volume

Volume Index

Index Pointer
Entry to the
Index A

Index Pointer
Entry to Index B

Data Set Pointer
Entry to Data
Set K

Con tro I Vo lume
Pointer Entry to
Volume "X" Whose
Volume Index
Contains the
Index Name D

Volume Control
Block Pointer
Entry for Data
Set G

Data Set Pointer
Entry to Data
Set M

Volume Control Block for Data Set G

Alias Entry to
Index A that
Indicates B as
an Alias to A

Data Set Pointer
Entry to Data
Set J

Data Set Pointer
Entry to Data
Set N

Volume Identification for Volumes Containing Data Set G

Volume Control Block for Data Set E

Volume Identification for Volumes Containing Data Set E

Generation Index F

Data Set Pointer Data Set Pointer Data Set Pointer
Entry to Data Entry to Data Entry to Data
Set That Is Set That Is Set That Is
Latest Latest - 1 Latest - 2
Generation of Generation Generation
Data Group

Volume Control Block for Data Set F (- 3)

Data Set Pointer
Entry to Data
Set Q

Volume Control
Block Pointer
Entry for Data
Set That Is
Latest - 3
Generation

Volume Identification for Volumes Containing the Latest - 3 Generation of Data Group F

Control Volume "X"

Volume Index

Index Pointer
Entry to Index

D

Index Pointer
Entry to Index

A

Data Set Pointer
Entry to Data
Set B

Generation Index D

Data Set Pointer
Entry to Latest
Generation Data
Set D

Volume Control Block C

Data Set Pointer Volume Control
Entry to Data Block Pointer
Set B Entry for Data

Set C

Data Set Pointer Generation Index
Entry to Data Pointer Entry to
Set C Generation Index

D

Volume Identification for Volumes Containing Data Set C

Figure 2. A Sample Catalog

Volume Control Generation Index
Block Pointer Pointer Entry to
Entry to Volume Index F
Control Block E
for Data Set E

Catalog Structure 13

CATALOG MANAGEMENT ROUTINES

There are two catalog management rou­
tines: the catalog routine and the CVOL
routine~ The catalog routine provides the
catalog" index, and locate functions. In
providing the locate function, catalog man­
agement finds entries in the catalog by
searching indexes specified in a qualified
data set ·na~e. For the catalog function,
catalog management inserts, deletes, or
replaces data set pointer entries, volume­
control block pointer entries_, and volume
control blocks. For the index function,
catalog management enters into and deletes
from the catalog the indexes, generation

Entry Point
to Catalog

Routine

Module 1
IGCOOO2F

index pointer entries, index pointer
entries, control volume pointer entries 6

and alias entries. The CVOL routine pro­
vides services to the catalog routine by
opening catalog data sets for processing
and by writing format blocks in new catalog
data sets. The catalog routine consists of
five modules: IGC0002F, IGGOCLC2, IGGOCLC3,
IGGOCLC4, and IGGOCLCS. <See Figure 3.>
The CVOL routine consists of two modules:
IGC0002H and IGGOCLF2. (See Figure 4.>
Each module is loaded separately into the
transient area of main storage and is
executed in the supervisor mode.

Locate Named Entry

Module J
IGGOCLC2

Determine Function
and Option

Requested

Build New Index
Entries

Bui Id New Indexes
and Volume Control

Blocks

Indicate Items to
be De I eted from

Catalog

Module J
IGGOCLC3

Add, Delete, or
Replace Indexes,
Volume Control
Blocks, and Index

Entries

Update Volume
Index and Index
Control Entry

t
Exit to
Caller

In Volume and
Norma I Indexes -------

Charge Aliases to
True Names in
Inpu Names

Normal Index Updating
Place Code in
Register to

Indicate Result of
Search

Figure 3. The Catalog Routine Modules

14

Generation Index Updating

Module I
IGGOCLC4f

Locate Entries in
Generation Indexes

Calculate New
Generation Numbers

Module I
IGGOCLC5

Determine Function
and Option

Build New Index
Entries

Build New Volume
Control Blocks

Indicate Items to
be Deleted from

-
Catalog

Entry from
Catalog Routine

Module 1
IGCOOO2H

Find Control Volume

Read DSCB

Create DEB and DCB

Call Extend Routine

Module
IGGOClF2

Write Format Blocks
in Cata log Data Set
or Partitioned Data
Sel' Directory

!
Return to

Calling Routine

t---

Return to
Catalog Routine
if no new space
is to be allocated
to catalog

Figure 4. CVOL Routine Modules

THE LOCATE FUNCTION (MODULES IGC0002F AND
IGGOCLC4)

In performing the locate function., the
catalog routine finds entries in catalog
data sets ... The function is performed by
modules IGC0002F and IGGOCLC4 of the catal­
og routine. Entry to the routine is made
in module IGC0002F. The calling routine
provides a qualified name (such as A.B.C),
the function to be performed, and possibly
identification of a control volume. Module
IGC0002F searches for the named entry
beginning at the volume index of the system
residence volume, unless a control volume
was specified in the input.

The search proceeds through each index
level in the qualified name until all
levels are found or until one of the named
levels can not be found. If module
IGC0002F encounters a generation index,
control passes to module IGGOCLC4 to find
the last level of the name.

When an index is being searched for a
named entry, a channel program is con­
structed, and searches the keys for a name
that is equal to or greater 'than the given
name. Contiguous blocks of the index are
searched by the channel program automat­
ically. But the search program must termi­
nate at a block that is not contiguous to
the next block of the index. The termina­
tion is caused by the fact that the key
name of a block not contiguous to the next
is hexadecimal FF" a value greater than any
name in an index. The search program can
then be reinitiated at the next block of
the index.

In Figure 1, for example, the locate
function might be requested to find the
item named F. A channel program would
compare F to the key name of block A.
Since E is less than F, the channel program
would proceed to the next contiguous block.
The key of that block would be compared to
F. Since K is greater than F, the channel
program would read in block B which con­
tains, or should contain, the item named F.

When searching the index for the item
named R, the channel program would compare
the key names of the blocks A,B, and C to
the name R. Since the key name in block C
is greater than R, the channel program
would read in block C. A comparision would
then be made between the name R and the
name in the next to the last entry in block
C,. Since that name, P, is not equal to or
greater than R, catalog management would
process the next block of the index at the
address indicated in the last entry of
block C. If the address in the last entry
is zero, the search terminates because it
has reached the end of the index.

When the locate search terminates, the
module in control indicates the outcome of
the search with an error code placed in a
general register. The code indicates
whether all levels were found, why the
search failed, if it did, and what type of
entry was the last found.

Module IGC0002F reads information from
the catalog and passes it to the calling
routine. The information passed depends on
the kind of entry found. If the last entry
found is a volume control block pointer
e~try, the entry and the control block are
read from the catalog data set. If the
entry is a data set pointer entry, the
volume information from the entry is placed
in the work area. If the last entry found
is a normal or generation index pointer
entry" the pointer entry and the first
block of the index pointed to are placed in
the work area.

Module IGC0002F always returns to the
calling routine with the true name of the
catalog entry that was located. For exam­
ple., if S is an alias of TRUE in the
catalog, and if the module finds S.T,.U, the
true name TRUE. T. U is returned by the
locate function.

In addition to finding a named entry in
the catalog, module IGC0002F reads any
block in a catalog data set when the
calling routine provides a relative track
address instead of an entry name. A rela­
tive track address is supplied by a pre­
vious locate operation and is used to
locate the second and subsequent blocks of
an index. Only one block is read at one

Catalog Management Routines 15

time, and it is placed in the work area
specified by the calling routine.

Module IGGOCLC4 must provide special
operations to find an entry in a generation
index. Generations of a group are indicat­
ed by the calling routine in one of two
ways: by generation and version number
<X.Y.Z.GnnnVmm) or by relative qualifier
(X.Y.Z(-3». When the data set name pro­
vided to the locate function contains the
generation and version number, the module
IGGOCLC4 must complement the generation
number and search the proper generation
index for the named entry. The volume
identification provided by the entry is
placed in the work area.

To find an entry specified by a relative
qualifier, module IGGOCLC4 determines the
required generation by the relative posi­
tion of the generation's entry in the
index. If the relative qualifier is zero,
the latest generation is needed, and module
IGGOCLC4 provides the information from the
first entry in the index. If the relative
qualifier is negative, the module finds the
generation index entry that is the speci­
fied number of entries from the first in
the index. If the relative qualifier were
-2, for example, the module would find the
generation index entry that was the third
in the index.

If the relative qualifier were positive,
indicating a new generation, module
IGGOCLC4 would find the latest entry in the
generation data group (first in the index)
and would calculate the generation and
version number of the new generation data
set. The new generation and version num­
bers are found by the formulas:

(new generation) (latest generation
number) + (relative qualifier)

(version number) = 00

Whenever a relative qualifier is used"
module IGGOCLC4 returns the corresponding
absolute name of the generation. For exam­
ple, if generation index A.B.C contained
the latest generation numbered 25, and if
module IGGOCLC4 were given the name
A.B.C(O), the routine would return with the
name A.B.C.G0025VOO. If the module were
given A.B.C(+3), the routine would return
with the name A.B.C.G0028VOO.

THE INDEX FUNCTION (MODULES IGC0002F,
IGGOCLC2, AND IGGOCLC3)

In performing the index function, the
catalog routine places into and removes
from a catalog, indexes, aliases, and con­
trol volume pointer entries as well as the

16

items those entries identify,. The index
function is performed by modules IGC0002F,
IGGOCLC2, and IGGOCLC3. Entry to the rou­
tine is in module IGC0002F; the same entry
point as that of the locate function. The
calling routine specifies a name of an
index, the option to be provided by the
function, and possibly a control volume
serial nunmer. Other parameters must be
supplied depending on the option requested.
For example, if the routine is to create an
alias entry, an alias name must be provided
by the calling routine.

Module IGC0002F performs a locate opera­
tion as the first step in the index fUnc­
tion. The locate operation consists of
searching the catalog for the name provided
in the input. At the completion of the
search, a general register indicates the
outcome of the search, and the work area
contains the last entry found, as in any
locate operation.

Hodule IGC0002F passes control to module
IGGOCLC2. Module IGGOCLC2 interrogates the
general register set by the locate opera­
tion to determine whether the requested
index operation can be performed with the
existing catalog. If the operation can not
be performed, control returns to the caller
with an indication of the error encoun­
tered. Otherwise~ module IGGOCLC2 creates
any new pointer entries and index blocks or
sets an indication of what entry and index
are to be deleted. Control passes to
module IGGOCLC3.

Module IGGOCLC3 updates the index indi­
cated by module IGGOCLC2. The updating of
an index includes processing of the index
to maintain ascending sequence of entry
names and to eliminate "holes" created by
deletion of entries. Updating also
includes the assignment or release of index
blocks when indexes are created or extend­
ed, or deleted or emptied.

THE CATALOG FUNCTION (MODULES IGC0002F,
IGGOCLC2, IGGOCLC3, IGGOCLC4, AND IGGOCLC5)

In performing the catalog function, the
catalog routine inserts into and deletes
from a catalog index the data set pointer
entries and volume control blocks and their
pointer entries. Before a data set is
cataloged, the indexes used by the catalog
function must exist. The catalog function
provides the CATALOG, UNCATALOG, and RECA­
TALOG options and is performed by modules
IGC0002F, IGGOCLC2, IGGOCLC3, IGGOCLC4, and
IGGOCLCS. The sequence of module execution
depends on whether the index to be updated
is a normal (or volume) index or a genera­
tion index. Generation data sets are cata-

loged by modules IGC0002F,
IGGOCLC5, and IGGOCLC3. Other
are cataloged by modules
IGGOCLC2, and IGGOCLC3.

IGGOCLC4,
data sets

IGG0002F,

Entry to the catalog routine for the
catalog function is ln module IGC0002F.
The calling routine must provide the name
of the data set, the list of the data set's
volume serial numbers, the option to be
provided, device type, data set sequence
number, and possibly a control volume seri­
al number. Module IGC0002F locates the
name of the data set by searching the
catalog as in a normal locate operation.
The module passes control to module
IGGOCLC4 if a generation index is found.
Otherwise, the outcome of the search is
indicated in a general register and the
entry and index found are placed in a work
area, and control passes to module
IGGOCLC2.

Module IGGOCLC2 interrogates the general
register to determine if the requested
function can be performed in the existing
catalog. If not, control passes to the
calling routine with an error indication.
Otherwise, a new data set pointer entry or
volume control block pointer entry is
created by module IGGOCLC2 if cataloging
was requested. If a volume control block
is required, it is created by the module.
If uncataloging was requested, module
IGGOCLC2 sets an indication of what entry
is to be deleted from the catalog. If
recataloging was specified" module IGGOCLC2
creates the new entry and indicates what it
is to replace in the catalog. Control then
passes to module IGGOCLC3.

Module IGGOCLC3 updates the index as
indicated by module IGGOCLC2. During the
updating, the ascending sequence of entry
names in the index must be maintained" and
"holes" created by deletion of entries must
be eliminated. Index processing also
includes the assignment or release of index
blocks when index blocks are emptied, when
indexes are extended, or when volume con­
trol blocks are created or deleted,.

When generation data sets are being
cataloged, the catalog routine must be
given the name of the data set with the
generation and version numbers in the form
GnnnnVmm. Modules IGG0002F and IGGOCLC4
find the generation index that is to
receive the new entry and determine that
the name of the new generation is not a
duplicate of a name in the index,. Module
IGGOCLC5 creates any new index entries and
volume control blocks" and module IGGOCLC3
places the new entries and blocks in the
catalog or deletes entries and blocks as
specified. Automatic recataloging of a
data set occurs when duplicate generation

numbers are found (version numbers are
ignored).

When cataloging generation data sets,
the catalog function may uncatalog a data
set from the generation index. The unca­
taloging is specified by the generation
index control entry that contains a number
indicating the maximum number of entries
allowed in the index at one time. The
number is supplied by the user when the
index is created. If a data set is unca­
taloged and the DELETE option was specified
when the index was created, the catalog
function calls the scratch routine of DADSM
to scratch the data set. If the EMPTY
option was specified and the index contains
the maximum number of entries allowed by
the user, cataloging of a new generation
causes all existing entries to be removed
from the index. Control passes from module
IGGOCLC5 to module IGGOCLC4 if the EMPTY
option was specified and the index over­
flows. Module IGGOCLC4 then creates a new
generation number for the new pointer entry
calculated on the basis of the empty gener­
ation index.

THE CVOL ROUTINE

The CVOL routine performs services for
the catalog routine: it opens and extends
catalog. data sets, and writes format blocks
in catalog data sets and in directories of
partitioned data sets.

The open function is similar to the open
fUnction of data management. Before the
catalog routine can process a catalog data
set, the CVOL routine must find the DSCB of
the data set and complete a DCB and DEB
with extent descriptions from the DSCB. If
a catalog data set has never been processed
by catalog management, the CVOL routine
writes format blocks in the data set at the
same time that it opens it. When a catalog
data set overflows its boundaries, the
catalog routine requests the CVOL routine
to allocate additional space to the data
set and write format blocks in that space.
The CVOL routine calls the extend routine
of DADSM to allocate additional space and
update the data set's DSCB.

THE CVOL ROUTINE MODULES (MODULES IGC0002H
AND IGGOCLF2)

The CVOL routine consists of two separ­
ate modules that are loaded into the tran­
sient area of main storage at different
times. As shown in Figure 4, module
IGC0002H opens control volume catalog data

Catalog Management Routines 17

sets by creating a DCB and DEB from infor­
mation in the data set DSCB. This module
also calls the extend routine of DADSM to
extend a catalog data set. Module IGGOCLF2
writes format blocks in catalog data sets
with 256-byte data portions and 8-byte
keys. The module also constructs a volume

18

index in the first block of the data set
and places a volume index control entry at
the beginning of the index. When process­
ing a partitioned data set directory, the
module writes format blocks and places a
special entry in the first block of the
directory.

Address
chain 6,12
index 6,11
last block 9
link 9
of first available block 7,9
of generation index 11
relative track 9-12,15
volume index ending 9

Alias
entries 14,16
of an index 7~11

Block
catalog data set last 9
index 5, 6,9-11
key name of a 15
key of 6
volume control 5-7,10-11

pointer entries 14,17
volume index last 9

Catalog 5
data set 5-7,9,15

format block in 17,18
function 14,1 7

modules 16
option 16

macro-instructions 5
routine 14-17
searches 11
upper limit 9

Chain address 6,12
Channel program 6,15
Code

device 10,11
error 15

Control
entry 6.,7,9

generation index 17
volume index 18

volume 5-7,11,12,17
pointer entry 11
serial number 11,16

CVOL routine 14,15,17

DD statements 5
DELETE option 11.,17
Direct-access volume 5

sequence number of 10
Duplicate generation number 17

EMPTY option 11" 17
Error code 15
Extend routine 17,,18

Fields
of control volume pointer entry 10
of data set pointer entry 10
of generation index pointer entry 11
of index control entry 9
of index link entry 9

of index pointer entry 10
of volume control block pointer entry

10
of volume index control entry 9

Format block 14,17,18

Generation 10,16
calculation of 16
data groups 5,11
data sets 5

cataloging of 17
simple name of 10

index 5,7,10,15,16
pointer entry 11
relative track address of 11

maximum number of 11
numbers 5,10,16

and recataloging 17

IGC0002F 14
functions of module 15-17

IGC0002H 14
fUnctions of module 17,18

IGGOCLC2 14
fUnctions of module 16,17

IGGOCLC3 14
functions of module 16,17

IGGOCLC4 14
functions of module 15-17

IGGOCLC5 14
functions of module 16,17

IGGOCLF2 14
functions of module 18

Index 5,6~17,18
address 6,11
a lias of an 11
blocks 5,6,9-11
catalog 16
contents 7
functions 14,16
generation 5,10,11,16,17

relative track address of 11
high level 7,10

name of 11
link entry 9
lower limit 9
macro-instruction 11
normal 5
pointer entry 10
processing 17
true name of 11
updating of an 16
volume 5,,6,9

of system residence volume 15

Key of a block 6

Level
high 7,,9
last 15

Link address 9

Index 19

Locate
function 5,,14,15
macro-instruction 5

Name
alias 16
entry 15
fields of index entries
of a generation index
of an index 10,11
of data set 5,10
qualified 15

Normal index 5

6
11

Partitioned data set directory processing
18

Pointer
entry 6,,15,16

control volume 10,14
data set 10,17
generation index 11,14
index 10,14
volume control block 10,14,15

Qualifier
relative 16

20

Recatalog 16
Relative track address 9-12,15
Routine

catalog 14-17
CVOL 14,15,17
extend 17,,18
scratch 17

Scratch program 15
Sequence number 10,11,17
SYSCTLG 5,10
System residence volume 5,12,15

Track address
relative 9-12,15

VCB (see volume control block)
Version number 10,16,17
Volume

control 5-7,11~12,17

control block 2~5-7,10-12,15-17
index 5-7,9-11,18

block 7
control entry 9

serial number 6,10,11
system residence 5,12,15

~

READER'S COMMENTS

Ti tle: IBM System/360 Operating System

Catalog Management

Program Logic Manual

Is the material:
Easy to Read?
Well organized?
Complete?
Well illustrated?
Accurate?
Suitable for its intended audience?

How did you use this publication?
As an introduction to the subject

Yes

Other _________________ _

Please check the items that describe your position:
_ Customer personnel _Operator
__ IBM personnel _ Programmer

No

__ Manager _Customer Engineer
__ Systems Analyst _ Instructor

Form Z28-6606-0

For additional knowledge
fold

_ Sales Representative
_ Systems Engineer
_Trainee

Other _______ _

Please check specLfic criticism(s),
__ Clarification on~ page (s)
_ Addi tion on page (s)

give page nurnber(s) ,and explain below:

__ Deletion on page (s)
_ Error on page (s) ~ I

~ I
, Explanation:

5 I
h

Name _______________________________ __

Address _________________________ _

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

fold -

Y28-6606-0

fold

fold

r--,
I BUSINESS REPLY MAIL I
I NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. I L ____________________________________ - ___________ J

POSTAGE WILL BE PAID BY

IBM CORPORATION
P.O. BOX 390
POUGHKEEPSIE, N. Y. 12602

ATTN: PROGRAM LOGIC DOCUMENTATION
DEPT. D89

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.I060l
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

r--------------------,
I FIRST CLASS I
I PERMIT NO. 81 I
I I
I POUGHKEEPSIE, N.Y. I
L~-_-_--_--__ --------J

111111

111111

IIIIII

111111

111111

1 11111

111111

f(

