
IBM System/360 Operating System User Libraries

The purpose of this document is to illustrate, by means of a
program testing application, the creation, use, and maintenance
of user program libraries operating under the IBM System/360
Operating System. The program testing application was chosen
for illustrative purposes only and should not be construed as a
workable system as it stands. The information in this text is
based on information and components available at the time of the
initial release of Operating System/360. The use of Assembler E,
COBOL E, FORTRAN E, and Linkage Editor E is assumed. The
user should therefore refer to the following texts and their most
recent technical newsletters for the most complete, accurate,
and up-to-date information:

IBM System/360 Operating System: Utilities (C28-6586)

IBM System/360 Operating System: System Generation (C28-6554)

IBM System/360 Operating System: Linkage Editor (C28-6538)

IBM System/360 Operating System: Job Control Language (C28-6539)

IBM System/360 Operating System: System Programmer's Guide
(C28-6550)

C20-1663-0

Programming

This text is a major revision of, and obsoletes IBM Operating System/360 User

Libraries, Preliminary Edition (Y20-0008). The major changes are on pages 12, 14,
22, 32, 34, and 37.

Copies of this and other IBM publications can be obtained through IBM branch
offices. Address comments concerning the contents of this publication to
IBM, Technical Publications Department, 112 East Post Road, White Plains, N. Y. 10601

© International Business Machines Corporation, 1966

Technical Newsletter Re: Form No. C20-1663-0

This Newsletter No. N20-1010-0

Date February 15, 1967

Previous Newsletter Nos. None

IBM SYSTEM/360 OPERATING SYSTEM USER I.JBRARIES

This technical newsletter amends the publication IBM System/360 Operating System User Libraries
(C20-1663-0). Make the corrections and additions listed below in existing copies of the publication.

Cover and Preface Pages

Add the following to the list of reference texts on both pages:

IBM System/360 Operating System: System Control Blocks (C28-6628)

Page 12

In the drawing at top of page, change the word above the volume containing the SYSl. PROCLIB
from "TESTVL" to "SYSRES".

In the program listing below this drawing, add a comma at the end of the second line of item 4:
"DISP=(NEW, KEEP), ". Similarly, add a comma at the end of the second line of item 5. The
commas indicate continuation of the data definitions.

Page 32

In the Note at bottom of page, change the next to last line from:

require an additional parameter, that is VOLUME=SER-TESTVL.

to the following:

require two additional parameters, that is, VOLUME=SER=TESTVL and UNIT-2311.

Page 37

Add "(see C28-6628)" to the end of the next to last paragraph.

Note: File this newsletter at the back of the publication. It will provide a reference to changes,
a method of determining that all amendments have been received, and a check that the publication
contains the proper page s.

IBM Corporation, Technical Publications Dept., 112 E. Post Road, White Plains, N. Y. 10601

Printed in U.S.A. N20-1010-0 (C20-1663-0) Page 1 of 1

PREFACE

The purpose of this document is to illustrate the creation, use, and
maintenance of user program libraries operating under OS/360. To
facilitate the explanation of interplay and control among the various
components of OS/360, the application of program testing has been
chosen as a vehicle to demonstrate:

Library creation and use
Cataloged procedure creation and use
Library maintenance
Backup procedures

The program testing application, hereafter referred to as TESTS, was
chosen for illustrative purposes only and should not be construed as a
workable system as it stands. The information in this manual is based
on the information and components available at the time of the initial
release of OS/360. The use of Assembler E, COBOL E, FORTRAN E,
and Linkage Editor E is assumed.

The user should therefore refer to the following texts and their most
recent technical newsletters for the most complete, accurate, and
up-to-date information:

IBM System/360 Operating System Utilities (C28-6586)
IBMSystem/360 Operating System System Generation (C28-6554)
IBM System/360 Operating System Linkage Editor (C28-6538)
IBM System/360 Operating System Job Control Language (C28-6539)
IBM System/360 Operating System System Programmer's Guide (C28-6550)

CONTENTS

Definition of a Library.
Overall Example - Program Testing - "TESTS" .

The Test Cycle.
Overall Flow.

Creation of TES TS Libraries .
Volume Initialization
Library Naming and Creation.

Utilization of TESTS.
Source Library.

Source Module Creation. . .
Source Module Correction.

Obj ect Module Creation . .
Load Module Creation. . .
Execution of Load Modules.

Library Maintenance.
Reducing Extent Requirements .
Purging Unused Members
Completed Programs . . .

Library Backup - Audit Trail
Backup Copy
Reinitialize TESTS

Multiple Job Flow in TESTS

1
2
2

4
9

9

9
14
14
14
14
14
19
26
29
29
30
30

37
37
40
43

LIST OF ILLUSTRATIONS

Figure 1.
Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.
FigUre 7.
Figure 8.
Figure 9.
Figure 10.
Figure 1I.
Figure 12.
Figure 13.

Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.

Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.

Figure 29.

Libraries in TES TS system
Job flow of one program from source to execution: source program to
source library
Job flow of one program from source to execution: source program in
source library assembled into object library
Job flow of one program from source to execution: object module is link­
edited and becomes a load module in the load library (TEST. LOAD)
Job flow of one program from source to execution: execution of
program A13
To initialize the TESTS volume
To create the TESTS libraries and add a procedure that will add procedures
To add a procedure to SYS1. PROCLIB with ADDPROCS
To enter symbolic (source) module into the source library
Form fOl entering changes into the source library
To make corrections to the source library
Results of source correction
To compile or assemble a source module from the source library into the
obj ect library
To create object modules using TESTS cataloged procedure for FORTRAN
To create object modules using TESTS cataloged procedure for COBOL
To linkage-edit multiple load modules in one Linkage Editor run
To test programs from the load library
Generalized compile-Linkage-Edit - Execute procedure
Increasing the available space in a PDS
To list TESTS system control data
To reduce extent requirements on a volume
To print and punch a source program and delete it from the source, object
and load libraries
PRINT, PUNCH, and DELETE
To concatenate utility control statements
To obtain a backup copy of the TESTS volume
Document received from BACKUP procedure
To reinitialize the TESTS volume
Document received from reinitializing the TESTS volume (see Figure 27
for execution)
Job flow of multiple programs from source to execution

DEFINITION OF A LIBRARY

A 'library' is a partitioned data set (PDS), which is a data set with one or
more sequentially organized members, residing on and not exceeding in
space one direct access volume. OS/360 libraries may be categorized as
follows:

1. Libraries required by OS/360 for its operation, and residing on either
the system residence volume or some other direct access volume.

2. Libraries required when using certain processors or features of
08/360 (for example, the COBOL and FORTRAN libraries), but not
required for the system to function.

3. Libraries defined, organized, and named by the user to best
accommodate the installation's requirements.

The libraries falling in category 1 and referred to in this document are:

SYSI. LINKLIB (Link library)
SYSI. PROCLIB (Procedure library)

Those falling in category 2 and referred to here are:

SYSl.MACLIB (Macro library)
SYSI. COB LIB (COBOL library)
SYSl. FORTLIB (FORTRAN library)

Full descriptions of these two categories may be found in C28-6554.

Libraries in category 3 may be given simple or qualified names. Since a
library is nothing more than a data set, it may be created during execution
of any job step by defining the library name, allocating space on a volume,
etc. (see "Library Naming and Creation"). While libraries in categories
1 and 2 are neither created nor named by the user, they may be accessed
and used as in category 3.

User programs may be located in the Link library. To execute such a
program, the user merely specifies the name of this program in the EXEC
statement.

User programs may also be located in a library createdby the user
(category 3). To execute a program in a user-created library, the user
must define this library by inserting a data definition (DD) statement
(with a ddname of JOBLIB) prior to the EXEC statement or statements
requiring the use of this library. This DD statement causes OS/360 to
search the identified user's library for the program to be executed before
searching the Link library.

1

OVERALL EXAMPLE - PROGRAM TESTING - "TESTS"

In many installations the development and testing of applications
consumes a great deal of effort and time. While testing systems vary
from installation to installation, certain library maintenance methods
should be followed to take full advantage of the computing system.

The Test Cycle

The sample testing system example, TESTS, is based on the concept of
using a separate disk-pack exclusively for all program testing within an
installation. The basic reason for this approach is to isolate undebugged
programs and to ensure that they do not contaminate space on other
packs or the system residence volume.

TESTS is further thought of as a "stacked testing" procedure in which
it is desirable to perform testing at convenient intervals during a shift
and thus stack all tests to be performed, mount the TESTS pack, and
perform the tests required. This approach will probably be valid for
most OS/360 installations, at least in the early phases of their
development.

From an operations point of view, TESTS is thought of as an application
in which the user may specify certain standard procedures to be
performed in this test environment.

From a programmer's point of view the tests performed on his program
are done on a remote basis. The programmer must request the type of
test he wishes.

The TESTS system consists of three libraries, or PDS's. As shown in
Figure 1, a library is available for each of the following:

Source modules - programs in source language
Object modules - compiled programs or subroutines
Load modules - Linkage Editor output (executable programs)

The programmer's first action is to request that his source module be
entered into the source library. Once this is done, he may request one
or more of the following:

1. Compilation
2. Modification of his source program
3. Linkage editing
4. Execution
5. Linkage editing to combine additional object or load modules
6. Compile - linkage edit - execute

Each of the modules (source, object, load) is retained in the appropriate
library until the test cycle has been completed and the programmer
wishes to remove it.

2

TESTVL

1. Source code and modifications entered
2. Compilations
3. Link-edit runs
4. Program executions

Figure 1. Libraries in TESTS system

3

Overall Flow

Thus the programmer debugs his program using computer output. He
then updates and retests his program by requesting the appropriate
phases mentioned above, without having to continually maintain a source
deck throughout the complete compilation and testing cycle.

Once his program has been thoroughly tested, he may request (among
other things) the updated source deck, a listing, and the deletion of his
program from the three TEST libraries.

To illustrate the flow of operations that occur in the TESTS application
environment, two examples have been given. Both consist of a diagram­
matic representation of the job stream, the processing to occur, and the
libraries used, as well as a description of the function of each statement
in the job stream. The statements in the job stream are illustrative
rather than actual. The actual job control language and control state­
ments are specified in the detailed illustrations of each phase of the
TEST application.

The first example (Figures 2-5) illustrates the processing of A13, a
source program that is to be placed in the source module library
(TEST. SOURCE), assembled into an object module library
(TEST. OBJEC T), link-edited into a load module library (TEST. LOAD)
and executed from TEST. LOAD.

The second example (see "Multiple Job Flow in TESTS") illustrates the
flow of multiple programs operating in the TESTS environment and is
more meaningful as a summary of the contents of this document.

4

SYSRES

I EBUPDAT

AI

OS/360

SOURCE DECK

./ ADD AI3

PROC= NEWSORC

Job Stream

AI. EXEC PROC=NEWSORC

A2. ADD Al3

A3. Source Deck

A2

A3

TESTVL

Processing Incurred

Invokes cataloged procedure to place source
program on source library (see Figure 9).

Indicates the name of the source program, A13.

The source statements that are entered into
TEST.SOURCE as A13.

Figure 2. Job flow of one program from source to execution: source program to
source library

5

SYSRES

LI NKEDIT

COBOL

FORTRAN

OS/360

II SYSPUNCH DO AI3

I I SYSIN DO AI3

81 II EXEC PROC=TESTASSM

Job Stream

Bl. EXEC PROC=TESTASSEM

B2. SYSIN DD A13 (Input)

B3. SYSPUNCH DD A13 (Output)

TESTVL

83

Processing Incurred

Invokes the cataloged procedure to assemble
the source module A13 (see Figure 13).

Represents the DD statement indicating the
name of the source module to be assembled.

Represents the DD statement indicating
that the member name A13 be assigned to the
output object module to go into TEST. OBJECT.

Figure 3. Job flow of one program from source to execution: source program in source
library assembled into object library

6

SYSRES

LINKEDIT

COBOL

FORTRAN

OS/360

NAME AI3

INCLUDE AI3

CI II EXEC PROC=TESTLINK

Job Stream

Cl. EXEC PROC=TESTLINK

C2. INCLUDE A13

C3. NAME A13

TESTVL

TEST. LOAD

Processing Incurred

Invokes the cataloged procedure to link-edit the
object module (see Figure 16).

Represents the Linkage Editor statement that
speCifies the name of the object module to be
link-edited, A13.

Represents the Linkage Editor statement that
specifies the name to be assigned to the output
load module going into the load library.

Figure 4. Job flow of one program from source to execution: object module is link­
edited and becomes a load module in the load library (TEST. LOAD)

7

360

II EXEC PGM=AI3

Job Stream

DI. JOBLIB TEST. LOAD

D2. EXEC PGM=AI3

*D3. OUTPUT Al3

*D4. INPUT Al3

TESTVL

Processing Incurred

Specifies to the control program that the
program to be executed resides in the library
named TEST. LOAD.

Specifies the member name, A13, of the
program in the library to be executed.

Symbolically represents one or more DD
statements required to specify the devices and
data sets required for the output results of A13.

Symbolically represents one or more DD
statements required to specify the sources of
input data for A13.

*Must be specified by the programmer or set up as standard DD statements for input and
output at the user's descretion. Note: It is not the intent of this document to stress test
data set manipulation and control-.--

Figure 5. Job flow of one program from source to execution: execution of program Al3

8

CREATION OF TESTS LIBRARIES

Two phases are required before TESTS may be put into operation:
(1) initialization and (2) library naming and creation.

Volume Initialization

In this phase the Independent utility DASDI (see C28-65.86) is used to
create a volume label and to allocate space for the Volume Table of
Contents (VTOC). Figure 6 shows the control statements required for
this phase. The volume serial number to be placed in the volume label
is TESTVL.

Library Naming and Creation

Three libraries (partitioned data sets) are required in the TESTS
environment (see note at end of this section). They will be named:

TEST. SOURCE - for source modules
TEST. OBJECT - for object modules
TEST. LOAD - for load modules

Although the three libraries in the TESTS example are not cataloged,
each library is assigned a two-element name. The reason for this is
that someone else may wish to refer to a data set called SOURCE. To
avoid duplication, the second person could call his library MY. SOURCE
instead of TEST. SOURCE.

It is apparent that all users of a test volume could have unique names
for their libraries. However, if this were the case, each user would
have to develop his own procedure or use the TESTS procedures and
override certain DD cards.

The approach taken in the TESTS example is a more standardized one
permitting more accurate control, easier procedure specification, and
more convenient maintenance of the TESTS volume. This standardization,
however, requires the programmer to name his program according to
some convention.

A member (module) or program may have a name as large as eight
characters. Without some type of naming convention, two independent
programmers could name their programs by the same name - say,
MATRIX. This would be intolerable, especially if both programs were
expected to be in TESTS at the same time. Therefore, a naming con­
vention must be established. For our example we will assign a two-digit
code to individuals or departments. Thus department 23 will submit a
program named MATRIX23 to TESTS. It must retain this name at least
for the life of this program within TESTS.

9

Figure 7 shows the job control statements required to allocate space for
and create the three libraries as well as to enter a standard procedure,
described in the following paragraphs, into SYS1. PROCLIB. It is
desirable to develop standard procedures for the testing environment
such as those for updating source modules, linkage editing, compiling,
etc., and to place these procedures in the procedure library
(SYS1. PROCLIB). This document describes several of the procedures
used in TESTS.

Since the entering of a procedure into the SYS1. PROC LIB is a procedure
itself, it will also be convenient to place that procedure in
SYSl. PROCLIB. This procedure (called ADDPROCS) was initially put
into the SYS1.PROCLIB via the UPDATE utility, as seen in Figure 7.
The use of ADDPROCS for adding a procedure to SYSl. PROCLIB is
illustrated in Figure 8.

It is possible to add to or delete from a procedure in SYS1.PROCLIB
through the UPDATE utility program. However, since a TESTS
procedure would represent relatively few cards, a change to the proce­
dure could also be accomplished by updating the original card deck. The
updated procedure deck would then be added to SYSl.PROCLIB using the
ADDPROCS procedure (Figure 8). Although the original procedure has
the same name as the new one, the ADDPROCS will remove the pointers
in SYS1.PROCLIB to the old one and point to the new procedure.

Although not illustrated, all procedures for TESTS have been entered
into SYS1.PROCLIB. Further references to these TESTS procedures
will assume their residence in SYSl. PROCLIB.

Note: Although not implemented in the TESTS examples, it would be
advantageous to preallocate space for all utility (work) data sets - for
example, SYSUT1 and SYSUT2 - at the same time that the TESTS
libraries are created (see Figure 7). If this were done, space allocation
for the utility (work) data sets would be avoided in subsequent procedures.

10

Card

1.
2.
3.
4.
5.
6.

CC2

i
1. JOB 'INITIALIZE DISK ON 191 TO VOLIO=TESTVL'
2. MSG TOOEV=1403,TOADDR=OOE
3. CADEf TOOEV=2311,TOAOOR=191,VOlID=SCRATCH
~ VlD NEWVOlIO=TESTVl,OWNERID=INSTlWORK
5. VTGCD STRTADR=OOOl,EXTENT=0009
6. Et'lD

Narrative

JOB with comments.
Messages will be printed on the printer.
The specific pack to be initialized.
The volume will be called TESTVL and owner is INSTLWORK.
The VTOC will span nine tracks starting in cylinder 0, track 1.
END card indicating end of JOB to the DASDI utility.

Figure 6;. To initialize the TESTS volume

11

IIINITAL
1. I I' EXEC
2. I ISY SUT2 DO
3. IISYSPRINT DO
4. 11001 DO

II
II

5. 11002 DO
II
II

6. 11003 DO
II
IISYSIN DO

7. • I ADD
, {IIPROC EXEC

8. IISYSUT2 DO
IISYSPRINT DO

9. 1*

~-

JOB 007,INSTLWORK,MSGLEVEL=1
PGM=IEBUPDAT,PARM=NEW
OSNAME=SYS1.PROCLIB,DISP=OLO

TESTVL

SYSOUT=A
DSNAME=TE~T.SOURCE~VOLUME=SER=TESTVL,UNIT=2311,
SPACE=(TRK,(SO,lO,lO»,DISP=(NEW,KEEP),
OCB=(,RECFM=F,BLKSIZE=80)
DSNAME=TEST.OBJECT,VOLUME=SER=TESTVL,UNIT=2311,
SPACE=(TRK,(400,20,10»,DISP=(NEW,KEEP).
OCB=(,RECFM=F,BLKSIZE=80)
DSNAME=TEST.LOAO,VOLUME=SER=TESTVL,UNIT=2311,
SPACE=(TRK,400,20,10»,DISP=(NEW,KEEP)

DATA
ADOPROCS,Ol ,0,1
PGM=IEBUPDAT,PARM=NEW
OSNAME=SYS1.PROCLIBioISP=MOO
SYSOUT=A .

*
*

*
*

*

1. Execute the utility UPDATE program (see C28-6586) in order to enter into
SYS1. PROCLIB a standard procedure for entering procedures into SYS1.
PROCLIB.

2. The data to follow will be put into SYSl. PROCLIB (SYSIN DD DATA).
3. Required by the utility.
4,5,6. DD cards which allocate space on TESTVL. Note that each library directory

will handle 10x(4 to 7) members. Therefore, at anyone time, a library
directory can handle 10x6 (on the average) = 60 members. Note also that the
actual number of modules that can be stored in a library depends on the size of
the modules and the total space allocated to the data set.

7. Control statement for IE BUPDAT • It names the member to be added. In this
case it will be named ADDPROCS.

8. The job control language for the procedure called ADDPROCS.
9. Required by the utility and the control program.

Figure 7. To create the TESTS libraries and add a procedure that will add procedures

12

i. IISTEP EXEC ACOPROCS
2. IIPROC.SYSIN CO DATA
3 .• 1 e~'o""""'ADO ~.,.'b ... NEWSORCE,Ol,Ot 1

{

IINEWSORCE lXEC PGM=IEBUPOAT,PARM=NEw
IISYSPRINT 00 SYSOuT=A

4 IISYSUT2 00 DSNAME=TEST.SOURCE,VOlUME=SER=TESTVl,
II UNIT=2311,DISP=OlD

5. 1* - .

1. Executes the ADDPROCS procedure (see Figure 7) for entering a procedure into the
SYSl. PROCLIB.

2. DD * statement for the ADDPROCS procedure - that is, the member(s) follows.
Note: the DD name must be qualified with the step name of the procedure. The step
name is PROC (see Figure 7).

3. Required by the utility UPDATE (see C28-6586). The NEWSORCE name will be the
name of the member (procedure) that will be added.

4. The job control cards that will be entered as a procedure.

5. Required by the utility and the control program.

Note: Any procedure may be added in this manner. If multiple procedures are to be
added with one EXEC ADDPROCS, the ADD cards (with the procedure names and
associated job control statements to be entered) must be in binary collating
sequence.

Figure 8. To add a procedure to SYSl. PROCLIB with ADDPROCS

13

UTILIZATION OF TESTS

Source Library

The library called TEST • SOURCE contains source modules. Each
module is in source code (Assembler, FORTRAN, COBOL, PL/I).
The original source code is entered into the TEST. SOURCE PDS once.
After errors are detected via the debugging cycle; the programmer
requests changes to his source code. This method eliminates
voluminous card and tape handling since the source code is always on
disk.

SOURCE MODULE CREATION

By executing the NEWSORCE procedure, any set of symbolic coding may
be entered into the TEST. SOURCE library. This source coding then
becomes a member of the source library, with a program name specified
by the programmer. Figure 9 illustrates this method. Note that
NEWSORCE assigns a sequence number to each source statement. This
sequence number can be referenced by the programmer when making
changes to the source module.

SOURCE MODULE CORRECTION

After a debugging run, changes to the original source code may be
needed. The procedure CHGSORCE allows the programmer to specify
which original source statement(s) he desires to have deleted (if any)
and whether he wishes new source statements added to the original source.

A standard TESTS form is illustrated to allow the subsequent additions
and deletions of source code (see Figure 10). The implementation of
these changes is shown in Figure 11, and the listed results indicating
what took place is shown in Figure 12.

Obj ect Module Creation

Once the source modules have been entered on TEST .SOURCE, they are
processed by one of the language translators (Assembler,. FORTRAN, PL/I,
or COBOL). The output of a language translator is defined as an object
module, which in this application becomes a member in the object
library (TEST. OBJECT).

14

SOURCE CODE MODULE

./ NUMBR OOOOOOOO~OOOOOOOO~00000010~00000010

• ./ . ------ADD t:l:3~ 01 ~ 0, 1
I III I

· .. · .. ··"is:nS!]R(~. S'y':? L·I Dtl DAT1~

I III I II III
PR~OC=NE[·fst!f<:CE .

III I II G
I I II

11000 00 olooooooooooolluuuooooooooooooooooooooooooooOOOOOOOOO
l234517 9W"nU~ft~Dq~~nn~u~a~aa~~nUM~.n •• g~ua~a~~~U~~~~MH~~~9H~a

1111 11 11

2222222222222222122222222222222222222222222222222222222

I
"NE~SORCE EXEC PGM=IEBUPOAT,PARM=NEW
IISYSPRINT 00 SYSOUT=A

2. IISYSUT2 DO OSNAME=TEST.SOURCE,VOlUME=SER=TESTVl,
II UNIT=2311,OISP=OlD

1. Execute the NEWSORCE procedure.
2. NEWSORCE procedure in SYS1.PROCLIB.
3. Name the added member B13.
4. Sequence-number the source code, starting at 10 and incrementing by 10.
5. Symbolic code to be entered into TEST. SOURCE.

CC7:2.

~
*

6. Required by IEBUPDAT (C28-6586) and reader-interpreter. ~ote: Source code
for multiple members may be entered with one EXEC NEWSORCE; however, the
ADD card with the member name and associated source code must be in collating
sequence by me~ber name.)

Figure 9. To enter symbolic (source) module into the source library

15

GENERAL PURPOSE CARD PUNCH LAYOUT /; NAME DEPT. BLDG. PHONE DATE
SHEET OF

I ~checksquareiftobepunched II
I 2 3 4 5 6 7 8 9 10 " 12 13 14 15 16 17 18 19 20121 22 2~ 2425 26 27 28 29 30131 3213< 3' 3~ 3637 38 3940 41 4243 44 4~ 4E 474849 50 51 52 53/ J 73 74 7576 7 '8 9 80

{ II E Ix EC Ie HG so RC E /1
III CH G~ aiR CE sly SI N DD bA TA ~ III o •

~ napE ~f ~.~ I
IP: 0 ~ra n p "/

v. I CIH NlQrn lB' 3 p2. 0 1 I I

% FI R S--'I ILA ST

· I Ir.::E LET ,
II'" · I IDE LEIT ~rp ¢lrJ , 9 7; 01t ¢,'J 19 8~
V · I IDE LEIT ¢Itf !~rJ 211 50 ¢Ift (11¢ Z{i S'~ \

I IDE LEIT , \ l
I IDE LET ,

~ S)l ~F~C ES I,<~r ~EllV ENT~ 'C~L LP, ~ S~, o{.ll~ 1\Ji'--' ~l\T ,TUfl Rl=i t"h I Nc . 7~ EO 1\ ' S e qn o

\ \
~ GO 'TO 6 (;:; ~ , lDl¢ ~~~ J
?" 'fiR. IT Ei(b ~ 'I~ IS-) No '\ r. Y'R. ... P AY Pi. NI PII YI W r. To D4 r~ !:1M ()() N7\ \ n.,,;, ttl y

J/ IUJ ~ IT rt: (6 "Ib "7) I"
" \ ~ld ~ rJ I ,

J

1/ /
I~ I * ,

I 2 3 4 5 6 7 8 9 10 /I 12 13 14 15 16 17 18 19 20 21 22 2324 2526 2728 2930 31 32 333 35 36 3738 3940 4142 4344 4~ 4E 4748 4950 511 i 7273 4 5 6f'? 890

J L

Figure 10. Form for entering changes into the source library

DELET OOOO~~50~o~bb2050
11_1 __

~ II I I I I II I I
DELET 00001370~00001380

I U I

I
(H:"hJEJ::13 ~ 02;O~ 1--
II II I

III III I II II I
D~EC-- F'Rt1C~(f-l!~:~:O~~:E··""

I II I III II

G III II
1100000 001 00000000000100000000000000000000000000000000 000000000
123458789WI a~M~~"n~~~un~~~n~~~~~~M~~~~H~~~~~~~O~~~~~~~~~ 7273747576 n 787980

111111 111 111 111111111

222222222

TE5TVL

5Y51 PROCLIB

I CHG-ORCE 111
~ ~ ! IICHGSORCc EXEC PGM=IEBUPDAT,PARM=MOO

IISYSPRINT DO SYSOUT=A
IISY5UTl OD OSNAME=TEST.SOURCE.VUlUME=SER=TESTVL.

2. II UNIT=2311,DISP=OLD
IISYSUT2 DO DSNAME=TEST.SOURCE,VOlUM~=SER=TESTVl,
II UNIT=2311,DISP=OLD

1. Invoke the CHGSORCE procedure.
2. CHGSORCE JCL in SYS1.PROCLIB.
3. Name of the program (member) to be changed - in this case B13.

MERGE
05/360

4. Specified deletions of 80-character records and source code to be added.
5. Required by IEBUPDAT (C28-6586) and the Interpreter.
6. This DELET card is not required since both the old 1970 and 1980

would be automatically deleted and replaced by the new 1970 and 1980
source statements.

Figure 11. To make corrections to the source library

17

*
*

SOURCE Ll~E lN~tRTED

SUURCE LiNE DELETtD
SOURCf LINt DELETED
SOURCE LINt INSERTtD
SOURCE LINE INSERTED

SOURCE LINE DELETED

C

604 WK t", C\ 0, ~"' ~ • _ "

605 fORMAT(2I3,4FI0.2)
IYK=IYR+l
1=1
GO TO 603

C BALANCE DUE IS LESS THAN MUNTHLY PAYMENT
C

606 PAYPRN=AMOUNT+PAYPRN
AMOUNT=O. .

.1 DELET 00001970,00001980
WR1rE(S,60QlMO,IYR,PAYPRN,PAYINT,TODATE,AMOUNT
wRITE(5,602)
WRITEt6,60S)MO,IYR,PAVPRN,PAYINT,TODATE,AMOUNT
WRITE(6,6071

607 fDRMAT('O'/'O***** LOAN AMORTIZED *****'/'0'/'0'/'0')
CALL CLDCK(ITIME)
IDELTA~{lrlMES-lTIME)/76800

IF (IOELTA) 710,720,710
110 WRITE (6,999) IDELTA
999 FORMAT (. TOTAL TIME = ',110,' SECONDS')
.1 DELET 00002050,00002050
720 PAuSE 99999

GO TO 1
END

ABOVE NAMEUH3 jfDUNU IN NM DJRECTORV,TTR IS NUW ALTERED

ENU Of J08, ./ ENDUP READ
******** HIGHEST CONCODt: iN PROGRAM WAS 00

Figure 12. Results of source correction

A cataloged procedure named TESTASSM, using the assembler as the
language translator, compiles a source module from TEST. SOURCE
into an object module. The name of each of the input source modules
from the source library, and the names of each of the output modules
to be entered in the object library (TEST. OBJECT), are specified in
the job stream for each language translator job step. This procedure
and the required DD statements specifying input and output are
illustrated in Figure 13. Similar procedures may be executed for
FOR TRAN and COBOL (see Figures 14 and 15).

Load Module Creation

Object module output from language translators is in relocatable, but
not executable, format. Therefore, before execution, the object
modules must be processed by Linkage Editor so that they may become
executable load modules. In addition, adhering to OS/360's basic
concept of modularity, modules that have been separately tested may
be combined by the Linkage Editor. Also, any editing or overlay
structuring of existing object or load modules is done at this time.
Because in this application all object modules are in TEST. OBJECT and
all load modules are in TEST. LOAD, each has access to the others in
the TESTS environment, easing conSiderably the difficulties in locating
modules.

While the linkage editing can be done on a compile-linkage edit-execute
basis for each program to be tested within the TEST environment (see
Figure 18), the procedure to be discussed here addresses itself to a
single Linkage Editor run during which multiple load modules are
created, thereby reducing the number of times the processor is brought
into core storage.

Once the programs to be tested are in the TEST. OBJECT library as
object modules, they will be link-edited via the cataloged procedure
TESTLINK, onto the load module library (TEST. LOAD). This, then,
allows the programmer to reference these libraries for any additional
modules he may require by use of the Linkage Editor INCLUDE statement.

As illustrated below, the job stream for the Linkage Editor run, contains
(1) an EXEC statement calling for execution of the cataloged procedure
TESTLINK, (2) a DD * statement named TESTLINK. SYSLIN, which
indicates that the input specifications to Linkage Editor will follow in
the job stream, and (3) a set of Linkage Editor control statements
specifying the names of the input and output modules of each load module
to be created.

/ / EXEC PROC=TESTLINK
/ / TESTLINK. SYSLIN DD *

19

INCLUDE OBJPDS (object module name 1)
NAME load module name 1 (R)
INCLUDE OBJPDS (object module name 2)
NAME load module name 2 (R)

9.
JOB STREAM

IITESIASSM.SYSPUNCH DO DSNAME=TEST~OBJECT(A13)

DO

EXEC PROC=TESTASSM

OS/360

ASSEMBLER

SYS1. PROCLI B

TES T. OBJECT

AI3

I lIES IA.SSM
IISYSUTI
//
IISYSUT2
/1
IISYSL13
/1

EXEC ..f?GM: I E lASM. . C.C..71 ~
DO OSNAME=UTX,UNIT=2311,SPACE=(TRK,(SO,lO»,.

DO

DD

IISYSPRINI DO
IISYSllB DO
II
./ /SYSIN
/1

DD

IISYSPUNCH DP
,II

VOlUME=SER=TESTVl
DSNAME=UTY,UNIT=2311,SPACE=(IRK,(SO,lO),+
VOLUME=SER=TESTVl
DSNAME=UTl,UNIT=2311,SPACE=(TRK,(50,lO)),~
VOlUME=SER=TESTVl
SYSOlJT=A
DSNAME=SYSl.MACLIB,UNIT:2311,DISP=OlO,
YOLUME=SER=llllll
DSNAME=TEST.SOURCE,UNIT=2311,OISP=OLD,
VOlUME=SER=TESTVl
DSNAME=TEST.OBJECT,UNIT=2311,DISP=OlO,
VOlUME=SER=TESTVl

Underlined parameters are not necessary.

Figure 13. To compile or assemble a source module from the source library into the
object library

20

1. This EXEC statement in the job stream invokes the cataloged.
procedure TESTASSM.

2. This EXEC statement invokes the assembler IETASM.

3. Three DD statements defining the space and volume (TESTVL) on
which the three utility data sets required by the assembler should
be allocated.

4. SYSPRINT specifies that the assembly listing should be printed.

5. This SYSLIB DD statement specifies that SYS1. MAC LIB, which is
required for the assembler, resides on the system residence volume,
111111.

6. SYSIN specifies the name of the library (TEST. SOURCE) containing
the input source modules, which will be used as input to the
assembler or compiler, and indicates that this library resides on
TESTVL.

7. TESTASSM. SYSIN specifies the name of the source module (A13) to be
assembled from the library and overrides the parameter in 6.

8. SYSPUNCH specifies that the library named (TEST. OBJECT) reSiding
on TESTVL is the library in which the object modules are to be
placed.

9. TESTASSM. SYSPUNCH specifies that the name of the object module
to be placed in TEST. OBJECT is A13 and overrides the DSNAME
parameter in 8.

Figure 13 (continued).

21

CC72

SYS1. PROCLI B

IITESTFORT EXEC PGM=IEJFAAAO,PARM~'SIZ~=50000'
IISYSPRINT 00 SYSOUT=A
IISYSUTI 00 OSNAME=UTl,UNIT=2311,SPACE=(TRK,(30,lO», *
II VGlUME=SER=TESTVl
IISYSUT2 DD DSNAME=UT2,UNIT=2311,SPACE=(TRK,(30,lO», *
II VGlUME=StR=TESTVL
I/SYSIN CD U5NAME=TEST.SOURCE,UNIT=2311,DISP=OLD, *
II VOlUME=SER=TESTVL

Job stream to execute FORTRAN procedure

//TESTFORT.SYSLIN DO DSNAME=TEST.OBJECT(B13)

IITESTFORT.SYSIN 00 DSNAME=TEST.SDURCEtB13)

EXEC PROC=IESTFORr

SPECI FY THE NAMES
OF THE INPUT AND OUTPUT
MODULES FOR FORTRAN

Figure 14. To create object modules using TESTS cataloged procedure for FORTRAN

SYS1. PROCLIB

IITESTCOBL
IISYSUTI DO
II
IlSYSUT2 CD
II
IISYSUT3 DO
II
IISYSPRINT 00
IISYSIN CD
II
/ISYSPUNCH DO
II

EXEC PGM=IEPCBlOO
USNAME=UTA,UNIT=2311,SPACE=(TRK,(40,lO»,
VOLUME=SEK=TESTVL
OSNAME=UTb,UNIT=2311,SPACE={TRK,(40,lO»,
VOlUME=SER=TESTVL
DSNAME=UTC,UNIT=2311,SPACE=(TRK,(40,lO),
VClUME=SER=TESTVl
SYSOUT=A
OSNAME=TEST.SUURCE,UNIT=2311,OISP=OlO,
VULUME=SER=TESTVl
DSNAMf=TEST.OBJECT,UNIT=2311,DISP=OlD,
VOlUME=SER=TESTVL

Job stream to execute COBOL procedure

IITESTCOBl.SYSPUNCH 00 DSNAME=lEST.OBJECT(CD13)

'/TESTCOBl.SYSIN 00 OSNAME=TEST.SOURCECCD13.

II EXEC PROC=TESTCUBl

SPECIFY THE NAMES

CC72

*

*'
*
*

Underlined parameters are not necessary • OF THE INPUT AND OUTPUT
MODULES FOR COBOL

Figure 15. To create object modules using TESTS cataloged procedure for COBOL

22

To combine additional object modules in a load module, their names may
be specified in one INCLUDE statement (see item 1 below), or additional
INCLUDE statements may be inserted (see items2 and 3 below).

1. INCLUDE OBJPDS (name 1, name 2, name 3)

2. INCLUDE OBJPDS (name 2)

3. INCLUDE OBJPDS (name 3)

Load modules from the load library may be combined with other modules
as follows:

INCLUDE SYSLMOD (load module name or names)

Additional specifications for each load module may be inserted between
the INCLUDE and NAME statements. If more than one module is to
comprise the load module, an ENTRY statement specifying the entry
point to be assigned to the load module should immediately precede the
NAME statement.

Any Linkage Editor control statements to create an overlay structure or
to edit the modules should be placed in the job stream preceding the
NAME statement as specified in the Linkage Editor manual (C28-6538).

The Linkage Editor procedure in Figure 16 (TESTLINK) produces a
module map and a list of all Linkage Editor control statements. If
additional or different processing options are desired, all parameters
required should be specified in the EXEC card, as shown in Figure 16.

FOR TRAN and COBOL object modules require that SYSl. FOR TLIB
and SYSI. COBLIB respectively be specified as the Linkage Editor
automatic call library (SYSLIB) (see C28-6538). Therefore, they have
been concatenated in the TESTLINK procedure.

23

NAME C013(R)

f::NTRY START

INClUUt SYSlMOo(C13)

lKCLUDE OBJPCS(D13)

NAME BI3(R)

INCLUDE OBJPOS(B13)

NAMf:: ASUB13(R)

INClUDf:: OBJPOS(A13,SUBAI3)

SYS1.PROCLIB
IITESTlINK
IISYSl18
II
II
II
IISYSUTl 00
II
IISYSPtUNT 00
IIOBJPDS CD
.II
IISYSLMOo DO
II

DO *

TESTVL

05/360

EXEC PGM=lINKEDIT,PARM='MAP,lIST'
DSNAME=SYS1.FORTlIB,UNIT=2311,PISP=Olo, *
vel tlME= SER= 111111
DO OSNAME=SYSl.COBlIB,UNIT=2311,DISP=OLD, *
YOlUME=SER-llll11
oSNAME=LTl,UNIT=2311,SPACE=(TRK,(60,lO», *
VOlUME=SER=TESTVL
SYSOUT=A
DSNAME=TEST.ObJECT,UNIT=2311,OISP=OlD, *
VOlUME=SER=TESTVl
DSNAME=TEST.lOAD,UNIT=2311,OISP=OlD, *
VOlUME=SER=TESTVl

1. The EXEC statement in the job stream invokes the cataloged
procedure TESTLINK. PARM. TESTLINK='XREF, LIST, LET'
overrides the PARM field in the EXEC statement of the cataloged
procedure and will cause a cross-reference listing to be produced
instead of a memory map and put into effect the processing option
LET.

2. The EXEC statement invokes Linkage Editor and specifies processing
optioris MAP and LIST (in this example they were overridden).

Figure 16. To linkage-edit multiple load modules in one Linkage Editor run

24

3. SYSLIB defines the automatic call library to Linkage Editor and con­
catenates SYS1. FORTLIB and SYS1. COBLIB. This allows any
object modules to be processed, whether compiled by COBOL or
FORTRAN.

4. SYSUT1 specifies that the Linkage Editor's utility (work) data set be
allocated space on the volume TESTVL.

5. SYSPRINT specifies that the diagnostic messages, memory map, and
a list of Linkage Editor control statements processed should be
written on the printer.

6. This DD statement indicates that any reference to OBJPDS in Linkage
Editor control statements will refer to the obj ect library (TEST.
OBJECT), which resides on volume TESTVL.

7. The SYSLMOD DD statement specifies that all load modules created
by Linkage Editor in this run will be placed in the load library
(TEST. LOAD), which resides on the volume TESTVL.

8. This specifies that the primary input data (SYSLIN) follows
immediately in the job stream.

9. This Linkage Editor control statElment specifies that there are two
members, A13 and SUBA13, in the library specified by the DD
statement named OBJPDS that will be the input to this load module.

10. This control statement specifies that the name of the first load module
to be placed in TEST. LOAD is ASUB13.

11. This control statement specifies that the input to the second load
module is the member named B13 on TEST. OBJECT.

12. This control statement specifies that the name of the second load
module to be entered in the load library is B13.

13. This statement specifies that member D13 on TEST. OBJECT will be
part of the third load module.

14. This specifies that C13, previously link-edited and on TEST. LOAD
(indicated by the SYSLMOD DD statement, which points to that library)
is to be combined with D13 as input to the third load module.

15. This ENTRY statement assigns an entry point named START to the
load module.

16. This NAME statement assigns the module name CD13 to the load
module containing C13 and D13 on TEST. LOAD.

17. /* denotes the end of the Linkage Editor input.

Figure 16 (continued).

25

Execution of Load Modules

14

13

12

II

10

9

8

7

6

5

4

3

2

Because all of the load modules now ready for execution are in the library
named TEST. LOAD, the JOBLIB DD statement required for execution
of each of the load modules to be tested is the same (see "Definition of a
Library") . Therefore, the job stream required to execute any load
module will contain a JOB card, a JOBLIB DD statement pointing to
TEST. LOAD, an EXEC statement where PGM='member name to be
tested', followed by the appropriate DD statements for that particular
program. (See Figure 17 for an illustration of a job stream to test
programs in TEST. LOAD). While it is possible to test multiple load
modules in one JOB, each as a separate job step, all using only one
JOB LIB statement, it should be noted that once an abnormal end of one
execution is encountered, the ensuing job steps will be bypassed.

IIOUT 00 SYSOUT=A

VOlU~E=SER=TESTVl

1~ ___________ O_b ___ D_S_N_A_M_E_=_O_A_i_A_{_O_N_E_)_'U_N __ IT_=_2_3_1_1_'_0_1_S_P_=_O_l_0_' ___ ~

EXEC PGM=F13 .C.C.72

DO

DO 0~NAME=INPGT,UNIT=(2400,~OEFER),lABEl=(,Nl)
, TESTVL

t:XEC PGM=C013

DATA

IIFT03FOOl DO

PGM=B13

DATA

DO *
DO SYSOUT=A 813

f:Xf:C PGM=ASUB13

VOlUME=SER~TESTVL

DO OSNAME=TEST.lOAD,UNIT=2311,OISP=COlD.PASS),

C.C.72
C07.TESTf:XEC,MSGlEVEl=1 Joe

Figure 17. To test programs from the load library

26

1. The JOB statement indicates that a new job, JOBD, follows.

2. JOB LIB indicates that before searching the Link library for the
programs to be executed, the library TEST. LOAD on volume TESTVL
should be searched.

3. The EXEC statement causes the program ASUB13 to be executed.

4. This DD statement indicates that the output (assigned the ddname
OUTPUT by the programmer) of ASUB13 is to go on the printer.

5. This DD statement specifies that the input data (INPUT) for ASUB13
follows in the job stream.

6. The second job step indicated by this EXEC statement causes program
B13 to be read into core from TEST. LOAD and executed.

7. FT03F001 is the ddname assigned by FORTRAN to the output data
set for B13, the printer.

8. FT01F001 is the ddname assigned by FORTRAN to the DD statement
that specifies that B13 f S input data follows in the job stream.

9. The third job step causes program CD13 to be executed.

10. INFILE specifies that the input data set for CD13, INPUT, is on tape.

11. OUTFILE specifies that the results of CD13 are to be printed.

12. The fourth job step causes program F13 to be executed from
TEST. LOAD.

13. IN, the ddname defining the input data set for F13, indicates that it
is a member named ONE in the PDS named DATA.

14. OUT specifies that the results of F13 are to be printed.

Figure 17 (continued).

27

COMPILE

LINKEDIT

EXECUTE

Job Stream

IITESTPROC JOB 007, INSTLTEST, MSGLEVEL=1
II EXEC PROC =@
I I@AA.SYSINDDDSNAME=TEST.SOURCE(@)
II ®.@ DDDSNAME=TEST.OBJECT (@)

I I EXEC PROC=TESTLINK, PARM. TESTLINK='@'
IITESTLINK. SYSLIN DD*

INCLUDE OBJPDS (@)
NAME ® (R)

1*

IITEST B
IIJOBLIB

II
II ®
II ®
1*

JOB
DD

EXEC
DD
DD

007, INSTLEXEC, MSGLEVEL=1
DSNAME=TEST. LOAD, DISP=(OLD, PASS).
VOLUME=SER=TESTVL
PGM=@

@ Language Procedure Name
FORTRAN PROC=TESTFORT
COBOL PROC=TESTCOBL
ASSEMBLER PROC=TESTASSM

®C = Member name, that is, name of program to be compiled
© = Compiler Qutput ddname

FOR TRAN SYSLIN (See Figure 14)
COBOL SYSPUNCH
ASSEMBLER SYSPUNCH

i~
= Optional Linkage Editor parameters
= Member name to be assigned to load module. E may equal B
= DD statements required to specify input and output data sets for

execution of the program.

Figure 18. Generalized compile-Linkage-Edit - Execute procedure

28

LIBRARY MAINTENANCE

Three types of maintenance are required to keep the three libraries
(source, object, load) to a manageable size:

1. Reducing the PDS's extent requirements
2. Purging unused members
3. Punching, listing, and deleting completed programs

Reducing Extent Requirements

The frequency with which the installation would wish to reduce the
extents of a PDS depends on the volume of testing being performed and
the original size of the PDS. Additional extents may be required, as
new members (programs) are added or updated in a library. As an
example, if a source program named MA TRIX13 were originally put
into the source library and subsequently changed through the CHGSORCE
procedure, the original space for the MATRIX13 module would be
unavailable for use.

Probably on a shift basis or daily basis, the installation would want to
obtain a picture of the situation. In order to do this, a procedure is
included here called TESTPEEK. This procedure allows the printing
of the TESTVL Volume Table of Contents, and the contents of each
library. Figure 20 illustrates the TESTPEEK procedure~ Note that
only one card is required in the job stream to obtain the listings,
because the control statements for the utility IEHLIST are located in
SYS1. PROCLIB, cataloged under the name CNLPEEK2. The control
statements are called by the SYSIN DD statement in TESTPEEK, which,
of course, is also in SYS1. PROCLIB. An examination of the output,
with particular attention to the number of extents in each library, may
lead to the decision to reorganize the libraries if they contain much
space that is unavailable for use.

To perform this function, we MOVE (see C28-6586) the TESTVL
volume to itself. This particular utility program for each PDS specified,
examines the directory and moves it to the new PDS. It also places the
members in the top of the new PDS as illustrated in Figure 19.

To perform this for all the partitioned data sets on the entire TESTS
volume, a procedure called CLEAN can be used, which is illustrated
in Figure 21. Note that again only one card is required in the job stream
to perform the CLEAN procedure, because both the CLEAN procedure
and the IEHMOVE control statement required by it are on SYS1. PROCLIB.
The SYSIN DD in C LEAN calls the control statement which is cataloged
under the name C LEAN1.

29

A

C

OLOPOS~
A I B

C I F }

l 1

IB
IF

01 RECTORY

UNAVAILABLE
SPACE

AVAILABLE
SPACE

MOVEO pos

{

A B
C F

t------'------I

B

__________ __ --_______ -...J

Figure 19. Increasing the available space in a PDS

Purging Unused Members

From the listing received from the TESTPEEK procedure, it will be
desirable to audit the usefulness and timeliness of the va.rious modules
(programs) •

If it is determined, for instance, that a particular module is no longer
useful, the installation may run the utility IEHPROGM and scratch a
particular member from all libraries. A procedure for this has not been
included in this document, but it could be similar to the last three steps
in the SORCEDOC procedure (see Figure 22).

Completed Programs

After a program has completed its required testing and is performing
satisfactorily, it can be (1) moved to LINKLIB or a specific JOB LIB ;
(2) used to obtain a copy on tape or cards, or to obtain a listing; etc.

One of the most common joint functions performed on a completed
program would be to (1) list the source code, (2) punch a source deck,
and (3) delete the program member from the source, object, and load
libraries. The SORCEDOC procedure, (see Figure 22) together with
the cataloged control statements that are also in SYSl. PROCLIB (see

30

Figure 23) will perform all these functions. To reduce the number of
cards required in the job stream (only four are required to print and
punch a program while deleting it from three libraries), the SORCEDOC
procedure uses several features of OS/360:

1. The ability to execute a multiple-step procedure. (SORCEDOC
contains a number of EXEC statements.)

2. The ability to call utility control statements from a library rather
than placing them in the job stream.

3. The ability to specify that a sequential data set is to be concatenated
with a PDS member, and the ability to continue a utility control
statement. (See "Data Set Utilities" in C28-6586 for concatenation
restrictions.)

In this case (Figure 22) the name of the program to be printed, punched,
and scratched (entered in the job stream) is recorded in a newly created
temporary data set called TEMP (see point 1 in Figure 22) by the utility
IEBGENER. This temporary data set then supplies the name of the
program to the other utility programs in SORCEDOC. Note that the
SYSIN DD statements in steps 2-6 of SORCEDOC call a utility control
statement (a member of a PDS) from SYSIN. PROCLIB. The following
DD statement, since it has no ddname, concatenated this temporary
data set with the control statement. Also note that each utility control
statement is prepared with an = sign in cc 71 (following ME MBER or
MEMBER NAME) and a continuation indicator in cc 72. Therefore, each
utility in steps 2-6 of SORCEDOC looks for the member name in TEMP
after reading the = sign of the control statement. (See Figure 24 for a
detailed illustration of the concatenation of the data sets and continuation
of the utility control statement.)

Further, it is important to observe that to print/punch a member using
the utility Print/Punch program, the detailed statement must be written
MEMBER NAME = XXXX. In the IEHPROGM utility, to scratch a
member, it must be specified as ••• , MEMBER = XXXX.

One of the most important features of the SORCEDOC approach is that
it protects the user from inadvertently scratching a library. If, for
example, a nonexistent member is speCified or a member specification
was omitted from the job stream, the utility will not scratch the library,
since no member name was specified for the MEMBER or MEMBER
NAME parameter.

31

II EXEC TESTPEEK

SYSl. PROCL I B

CNLPEEK2 TESTPEEK

{

'/PEEK2 EXEC PGM=IEHLISI
/ISVSPRINT DD SYSOUT=A

2 1/001 DO VOLUME=SER=TESTVL,UNIT=2311,OISP=OLO
IISYSIN DO OSNAME=SYS1.PROCLIB(CNLPEEK2),OISP=OLD

~
llSrVTOC
lISTVTOC

3.~ l I STPOS

VDL=2Jll=T.ESTVL
DUMP,VOl=2311=TESTVl
VGl=2311=TESTVL,OSNAME=lEST.SOURCE
VOl=2311=TESTVl,DSNAME=TEST.OBJECT
VOl=2311=TESTVl,OSNAME=TEST.lOAD

llSTPDS
llSTPDS

IITEST"
SYSTEM
CONTROL

1. Only one card required to obtain listings.
2. The procedure TESTPEEK located in SYSl. PROCLIB.
3. The control statements for the utility IEHLIST to list the desired data.

Note that these five statements are located in SYSl. PROCLIB under
the name CNLPEEK2. These statements are called by the DD State­
ment in TESTPEEK. A SYSIN DD * cannot reside in a cataloged
procedure.

4. Output results.

Note: In the TESTs environment it would be desirable to have the
SYSl. PROCLIB on the TESTVL volume. This would allow the
procedures for TESTs to be mounted only when the testing is in
process and would leave system residence SYSl. PROCLIB space
open for more universal procedures. It should be noted, however,
that if the SYSl. PROCLIB were on TESTVL and pOinted to at IPL
time, DD eards in this writeup that reference SYSI. PROCLIB would.
requireT:: additional parameter~ that is, VOLUME=SER .. TESTVL. f
This would eliminate a catalog search.

Figure 20. To list TESTS system control data

32

II EXEC CLEAN
I.

/IClEAN EXEC PGM=IEHMUVE
IISYSPRINT DO SYSOUT=A
IISYSUTI DO UNIT=2311,VOlUME=SER=111111,OISP=OlD
/1002 DO DNIT=2311,VOlUME=SER=TESTVl,DISP=OlD
//SYSIN DD DSNAME=SYSl.PRGClIB(ClEANl),OlSP=OlD

VOlUME=2311=TESTVl.TO=2311=TESTVl

NOT C.C.!

1. One card required to invoke the C LEAN procedure.
2. The CLEAN procedure is located in SYSl. PROCLIB.
3. Control statement for the utility IEHMOVE located in SYSl. PROCLIB under the name

CLEAN1. This single statement moves TESTS volume to itself.
4. Conceptually, the action that takes place. The running time depends on the number of

data sets and members within the data sets. The old data sets are deleted.

Figure 21. To reduce extent requirements on a volume

33

A.
1.

2.

I *

CC16
AI3

II SORCE DOC. SYSUT 1 DO *

SYS1.PROCLIB

TESTVL
PROGRAM
LISTING

PROGRAM
PUNCHED

1. IISYSUI2 00 OSNAME=TEMP,UNtT=2311,VOlUME=SER=TESTVl,OISP=(NEW,KEEP), * ~
II~URCEOOC EXEC PGM=IEBGENER
IISYSPRINT DO SYSOUT=A n

II DeB= (,RECFM=F t. 61-KS ILE:=8Q ._, Sf:lACE::;(TRK, (2))
IISYSIN DO CUMMY

~
IISI EXEC PGM=lERPTPCH
IISYSPRINT 00 SYSOUT=A
IISYSUTI DO OSNAME=TEST.SOURCE,VOlUME=SER=TESTVl, *

2.(II UNIT=2311,0ISP=OlD
IISYSUT2 DO SYSOUT=A
IISYSIN 00 DSNAME=SYSl.PROClIB(PRTSORC1),OISP=OlO

-II DO OSNAME=TEMP,VOlUME=SER=TESTVl,UNIT=2311,0ISP=OlO
IIS2- - -EXEC PGM=IEBPTPCH

1
IISYSPRINT DO SVSOUT=A
IISYSUTI 00 OSNAME=TEST.SOURCE,VOLUME=SER=TESTVl, *

3. 1/ UNIT=2311,0ISP=(lLO
I/SYSUT2 00 UNIT=OOO ~
/ISVSIN DO OSNAME=SYSl.PROCLIB(PCHSORCl),OlSP=Ol~v
II 00 OSNAME=TEMP~VOLUME=SER=TESTVL,UNIT=2311,0ISP=OlO

~
I/scm EXEC PGM=IEHPROGM
11001 DO VOlUME=SER=TESTVl,UNIT=2311,0ISP=OLO

4 /ISYSPRINT DO SYSOUT=A
/ISYSIN DO OSNAME=SVSl.PROCLIB(SCHSORCE),DISP=OlO ____ ~

_I L~D---PSNAME=TEMP, VOLUME=SER=TES TVL, UN I T=2311, ° I SP=OlO

~
I I SCH2 EXEC PGM= I EHPROGM
11001 00 VOlUME=SER=TESTVL,UNIT=2311,0ISP=OlD

~. IISYSPRINT 00 SYSOUT=A
IISVSIN DD OSNAME=SYSl.PROClIB1SCHOBJCT),0(SP=OlO

-L/ __ ~ ___ OSNAME=TEMP,VOLUME=SER=TESTVL,UNIT=2311,OISP=Ol°

~
IISCH3 EXEC PGM=IEHPROGM
11001 DO VOLUME=SER=TESTVl,UNIT=2311,DISP=OlO

~ IISYSPRINT DO SVSOUT=A
/ISYSIN DO OSNAME=SYSl.PROClIB(SCHlOAOT),OISP=OlO

-L1QO_DSNAME=TEMP, VOLUME=SER=TES TVL, UN I T=2311, DI SP=(OLD, DEL ETE)

JCL required to execute procedure SORCEDOC.
Brings program name (in this example, A13) from card reader and stores it in a
newly created sequential data set called TEMP.
Prints program - A13 (source).

3.
4,5,6.

Punches program - A13 (source).
Scratches member A13 from TEST. SOURCE, TEST. OBJECT, TEST. LOAD,
respectively.

Figure 22. To print and punch a source program and delete it from the source, object
and load libraries

34

r,:PROCLIB \
I PCH SORCi I~I PRTSORCl It I SCH LOADT I I SCHOBJCT I I SCHSORCE I I

--- 6. if 5./f 4./1
112" PRINl-rVPGRG=PO,MAXNAME= 1 ,MAXFLDS= 1 CC71

\
. TITLE ITEM=('PRINT OF SOURCE PROGRAM',48)

MEMBER NAMF.!*

~31:PUNCH TVPO~G=POtMAXNAME=l.CDSEQ=OOOOOOOO,MAXFLDS=l
MEMBER NAME=*

~C1

4. SCHSGRCE SCRATCH DSNAME=TEST.SGURCE.VOl=2311=TESTVl,MEMBER=*

jC1

6. SCHlOADT SCRATCH DSNAME=TEST.LOAU~VOL=l311=TESTVL,MEMBER=*

ICL

5. SCH08JCT SCRATCH DSNAME=TEST.OBJECT,VOL=2311=TESTVl.MEMBER=*

Figure 23. PRINT, PUNCH, and DELETE

35

SORCE DOC

SYSLPROCLIB

IISCHl EXEC P~M=iEHPRUGM
/1001 1:)0 VULUME=SER=TlSIVL,UNII=2311,DISP=OLD

~ I~SYSPRINT OD 5YSUUT=A
IISYSIN 00 OSNAME=SYS1.PkGCLld(SCHSORCt),QISP=OLO
II 00 O~NAM£=TEMP,VOLUM~=SER=TESJVL,UNIT=2311,DISP=OLO_

TESTVL

OUTPUT DOCUMENT

S¥SIEjloj SUPPUAT UTiLITIES ---- lEHPkUGM CC71

CGI6 I
o. GCHSGRCt: -=-~ -= W -=-- SCRATCH DSNAI"lt:=TES T • SOURCE, VOL=2Jll=TESTVl 'MEM8ER~
b. L _ _ _ _ _ ll.l L _____ -..!

NCHMAL tND uf TASK RtTURNEO FKOM SCRATCH

UTILIT¥ END

4. See Figures 22 and 23, the fourth step.
a. utility control statement to scratch an unnamed member. The named member is

found on TEMP, which is concatenated with the control statement.
b. The concatenated sequential data set containing the member name.

Figure 24. To concatenate utility control statements

36

LIBRARY BACKUP - AUDIT TRAIL

Backup Copy

It is apparent that with such a system as described in this example, a
means of protection against unforeseen circumstances is mandatory.

It will be desirable to obtain a "backup" of the TESTS volume as well as
a listing of its condition at the time a copy is made. The frequency with
which a backup copy should be made will depend upon the volume of
testing, but presumably a copy would be made at least once per shift or
at the end of a large test run where multiple tests were performed.

The overall procedure for obtaining a backup copy of the TESTS volume
is shown in Figure 25. Before executing the BACKUP procedure, a
standard volume label of "BACKUP" must be written on a tape reel, with
the eleventh byte an EBCDIC zero. Is., (J & , , ~ II)

Excluding the listing received from TESTPEEK, Figure 26 illustrates
the document received when the BACKUP procedure is executed.

37

G /1 EXEC TESTPEEK

II EXEC BACKUP

BACKUP!

PGM.= I EHMOVE IIBACKUP EXEC
I/SYSPRINT DO
IISYSllTl DO
IIDOI 00
11002 DO
I/SYSIN DO

SYSOUT=A
UNIT=2311,VOLUME=SER=111111,OlSP=OlO
UNIJ=2400,VOlUME=SER=BACKUP,DISP=OlO
UNIT=2311,VOlUME=SER=TESTVl,OISP=OlD
DSNAME=SYSl.PROClIBfBACKUPl),OISP=OlO

VOlUME=2311=TEST~l,TO=2400~BACKUP

TE5TVL

05/360

1. Invokes the BACKUP procedure.
2. JCL for the BACKUP procedure.
3. Utility control statement for IEHMOVE.
4. Invokes the TESTPEEK procedure (see Figure 20).
A. Overall flow.

DOCUMENT
SEE FIG.

26

Figure 25. To obtain a backup copy of the TESTS volume

38

S't'.').J!:M SUPPORT UTILiTiES ---- IEHMOVE

COpy VOLUME=2311=TESTVL,TO=2400=bACKUP
ThE FOLLOWING DATA SET IS BEING MUVED. TEST.DBJECT

8
H4111 DATA SET TEST .OBJE(.T UNLOADED BECAUSE ACCESS METHOD NOT COMPATIBLt:

A _ DATA SET TEST.ObJECT HAS BEEN CUPtED TO VOLUMEtS)
. >- BACKUP, 000 1

ThE FOLLGWl~b DAIA SET IS BEING MOVED. TEST.LOAD
lEH411I DATA SET fEST.LOAD UNLOADED BECAUSE ACCESS METHOD NOT COMPATIBLE
MEMB~ ASUb13 HAS dEEN UNLOADED
M- b~ TEMPNAME HAS BEEN UNLOADED

A DATA SET TEST.LOAD HAS BEEN COPIED TO VOLUME(S)
. 8ACKUP,0002

Tht FOLLOWING DATA SET IS BEING MUVED. TEST.SOURCE
lEH4111 DATA SET JEST.SOURCE UNLOADED BECAUSE ACCESS METHOD NOT COMPATIBLE
MtMb~ 813 HAS BEEN UNLOADED
MEMB~ TEMP HAS BEEN UNLOADED
f:\ DATA SET lEST.SOURCE HAS BEEN COPIED TO VOLUMElS) 0..J > i3ACKUP t 0003

A. Note: These are sequence numbers assigned to the data sets on tape. These numbers
will be used to retrieve the libraries (see Figure 28).

Note also that all data sets have been put on tape in an "unloaded" version (C28-6586).
This is perfectly all right, because, when they are returned to disk, they are returned
as they were originally.

Figure 26. Document received from BACKUP procedure

39

Reinitialize TESTS

If the TESTS volume should be damaged, it must be reinstated to its
condition at the time the last BACKUP procedure was executed. Since
this reinitializing will be performed infrequently, the job control state­
ments to accomplish this are maintained in a card deck rather than in
SYS1. PROC LIB.

After a volume has been initialized using DASDI (see Figure 6), the
MOVE/COPY utility for data sets will copy the three data sets (source,
object, load) onto the disk volume (see Figure 27). If additional data
sets were on the original volume, these could be retrieved at this time
by reviewing the listing from the BACKUP procedure and observing the
sequence number of the data set (Figure 26). Figure 28 shows the
results of this copy of data sets from tape to TESTVL.

Note: The MOVE/COPY volume utility will MOVE/COPY with direct
~ss as the FROM device only. Since FROM (in the MOVE/COPY
volume utility) may not refer to a non-direct access device such as tape,
we must use the MOVE/COPY for data sets rather than volume in order
to retrieve the data sets from tape.

40

I
I
I

l ."" .· :;:·lS I r'~ lJD
I II

I ····lJD2 TID

II II
UNIT -2:311, I OLUNC::::::.ER=TE:~TVL, DISP-']LII

I I I IU I

II
.····.··'S··t::::F'~~H-n . liD

. '. II

DD
II

urUT=240Q, l,l8UJME-SER-BACKUP, II I SP=QLD
I I I III II I

UNIT=2:311,VOLUME-SER-l11111,DISP=QLD
I I I II I

S'lSDUT=A

" ~>::EC: P!~l'l- I Ef-U"1DVE
I III I I II

.......... REI~11 T J'JB 007, I~ETu.m~:K, !'EGLE'·lEL=l
II I I I I I I

I I II I I III I I •
11000001000000011010011010001010001000]0
1234567'9ronttnM~nundM~~~~~ava~~~~~~~~».H~~U~~~~U~U~~~~~~~~~9M~uaM~M~upMnnnU~NnnNM

111 n 1

222222222222122222222122222122122122222212

333333313333333333133311333313331333133313

44444444444444444444444444444144~4

55515155555555555555155555555555511155t5

66666666666166666666666611666666666661666666666666666666666666666666666666666l6B

7777777777777777717777777777777177

a 8 a 8888 a 8 a 8 8 a a a a a ala a 8 a a a a a ala 8 8 a 8 a 8 al8 8 a 8 a 8 8 8 a 8 8 8 8 8 8 8 a 8 a 8 8 a 8 8 a a a 8 88 a 8 8 a a a a 8 a 8 8 8

9919191999999999999199999S19J9999999J999
123456789wnnnM~nunaM~u~~~~~n~~~~~~~~D~~~~U~~~~UUU~~~~~~~~g"~~U~M~M~""MnnnU~nnnn~

I IBM SDB1]

\

-

A. Three COpy utility statements to retrieve the three TESTS libraries. Notice that the
sequence number (BACKUP, 0001) specification corresponds to the sequence number
assigned when BACKUP was executed (see Figure 26).

Figure 27. To reinitialize the TESTS volume

41

SYSTEM ~UPPURT UTILITL~S ---- IEHMOVE

U~NAME=TtST.UBJECTtTO=23tl=TESTVl.FROM=2400=(BACKUP,0Q01)

DATA S~f TtST.OBJECT HAS BEEN COPIED TO VOLUME(S)
TESTVL

LOPY OSNAMt=TEST.LUAD,TO=2311=TESTVL,fRUM=2400={BACKUP.0002)
MEMBER ASU813 hAS BEEN MOVED/COPIED~
MtMBER TEMPNAME HAS uEEN MUVED,COpIED.

DATA SET TEST.LUAD HAS BEEN COPltD TO VOLUME{S)
TESTVL

CUPY DSNAME=TEST.~UURCl,TO=2311=TESTVL,FROM=2400=(BACKUPtOO03)

MEMBER B13 HAS BEEN MUVED/COPIED.
MtMeER TEMP HAS BEEN MOVED/COPIED.

DATA SET TEST.SOURCE HAS BEEN COPIED TO VOLUME(S)
TESJVl

1. Note: Although there were no members in this library, the data set still exists, and
the original space that had been allocated is still in effect.

Figure 28. Document received from reinitializing the TESTS volume (see Figure 27
for execution)

42

MULTIPLE JOB FLOW IN "TESTS"

Figure 29 illustrates the processing of multiple programs through the
TESTS environment. The purpose of this figure is to illustrate the
logical flow, rather than the actual format of the statements. The
operations involve programs Al3, SUBAl3, Bl3, Cl3, and Dl3.

Al3. To be modified and reassembled.

SUBAl3. To be entered as a new source module and link edited with
Al3 to form the new executable module ASUBl3.

Bl3. Entered as a new source module to be compiled by COBOL and
executed.

Cl3 and Dl3. Both have individually completed the test cycle and are
to be combined into a new load module (CDl3) for execution. Both
are members of the object and load module libraries and could be
combined in either format. This example combines the object
modules.

The processing illustrated in Figure 29 has been separated into four jobs:

43

JOBA enters the source decks into the source library or modifies a
module already there.

JOBB assembles or compiles the source modules onto the object
library.

JOBC link-edits the object modules into the load library.

JOBD executes the programs from the JOBLIB (TEST. LOAD) in
. successive job steps.

O.

C.

B.

A.

04 II EXEC PGM= BI3

03 II EXEC PGM=ASUBI3
02 /1 JOBLI B DO TEST. LOAD

01 II JOBO JOB

COl3

013

OS/360

C2 /1 EXEC PROC=TESTLINK ~--==--t;---r--l

CI II JOBC JOB

B9 /1 SYSIN DO BI3

B8 II EXEC PROC=TESTCOBL

B3 II SYSIN DO SUB AI3

B2 II EX EC PROC=TESTASSM
~---

BI I I JOBB JOB

/1 EXEC PROC=NEWSORCE

SOURCE DECK

A3 .I CHNGE AI3

A2 II EXEC PROC=CHGSORCE

AI II JOBA JOB

05/360

Figure 29. Job flow of multiple programs from source to execution

44

Job Stream A

A 1. / /JOBA JOB

A2. / /EXEC PROC=CHGSORCE

A3. • / CHNGE A13

A4. SOURCE for A13

AS. / /EXEC PROC=NEWSORCE

A6. • / ADD B13

A7. B13

A8. . / ADD SUBA13

A9. SUBA13

Job Stream B

B1. //JOBB JOB

B2. / /EXEC PROC=TEST ASSM

B3. / /SYSIN DD SUBA13

B4. / /SYSPUNCH DD SUBA13

BS. / /EXEC PROC=TESTASSM

B6. / /SYSIN DD A13

B7. / /SYSPUNCH DD A13

B8. / /EXEC PROC=TESTCOBL

B9. / /SYSIN DD B13

B1D. / /SYSPUNCH DD B13

Job Stream C

C 1. / /JOBC JOB

C2. / /EXEC PROC=TESTLINK

C3. INCLUDE B13

C4. NAME B13

CS. INCLUDE A13

C6. INCLUDE SUBA13

C7. NAME ASUB13 (R)

C8. INCLUDE (C13, D13)
(performs same function
as CS and C6)

C9. NAME CD13(R)

Job Stream D

D1. / /JOBD JOB

D2. / /JOBLm DD TEST. LOAD

D3. / /EXEC PGM=ASUB13

(DD statements for ASUB13

not shown)

D4. l/EXEC PGM=B13

(DD statements for B13 not shown)

DS. / /EXEC PGM=CD13

(DD statements for CD13
not shown)

Figure 29 (continued).

Processing Incurred

Job statement indicating start of JOBA.

Invokes the cataloged procedure to update programs already on the source library.

Indicates the name of the program (A13) to be updated in the soUrce library.

The source statements which will update A13.

Invokes the cataloged procedure to enter new programs in the source library.

Indicates the name of the program (B13) to be added to TEST. SOURCE •

The deck of source statements comprising B13.

(See A6.) In this case SUBA13 is the new subroutine to be added to TEST. SOURCE .

Source statements for SUBA13.

Specifies JOBB, in this application the language translation.

Invokes the cataloged procedure for Assembler.

Represents the DD statement which specifies the name of the module (SUBA13) to be assembled.

Specifies to the assembler the name (SUBA13) to be given the output module on the object library.

(See line B2.) Second job step.

(See B3.) In this case, program A13 which has just been modified is to be recompiled.

(See B4.) The new object module will replace the one named A13 previpusly placed in the
object library.

Invokes the cataloged procedure for COBOL.

Specifies that the name of the COBOL source module to be compiled is B13.

Specifies that B13 is the name to be assigned to the compiled object module.

Processing Incurred

Job statement-start of JOBC. In this case, only one job step occurs.

Invokes the cataloged procedure to link-edit object modules into load modules.

Linkage Editor control statement indicating that the name of the first object module to be link
edited is B13.

Specifies that the resultant new load module which becomes a member of TEST. LOAD is to be
named B13.

Linkage Editor control statement indicating that the second object module to be link-edited is

called A13.

(See CS.) Indicates that SUBA13 is to be link-edited with A13.

Specifies that the resultant load module consisting of A13 and SUBA13 is to be entered into

TEST. LOAD and ASUB13.

Linkage Editor control statement indicating that the input for this load module will be object
modules C13 and D13.

Linkage Editor control statement specifying the resultant load module consisting of C13 and D13
should be entered on TEST. LOAD as CD13.

Job statement indicating start of JOBD.

JOBLm pOints to the library, TEST. LOAD, containing the programs to be executed in this job step.

SpeCifies that the first job step will execute program ASUB13, followed by the appropriate DD

statements defining the input and output data sets for this program.

The second job step will execute program B13. (See line 3.)

The third job step will execute program CD13. (See line 3,)

45

C20-1663-0

llrn~
®

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601
(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

()
N

l'
......
0'\
0'\
W
I
o

I
I

READER'S COMMENTS

IBM System/360 Operating System
User Libraries (C20-1663-0)

Your comments regarding this pubhcation will help us improve future editions. Please comment on the

usefulness and readability of the publication, suggest additions and deletions, and list specific errors and

omissions.

I USEFUlNESS AND READABILITY I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

. I
I
I
I
I
I

SUGGESTED ADDITIONS AND DELETIONS

: ERRORS AND OMISSIONS (give page numbers)

I
I
I
I
I
I
I
I
I
I
I
I
I
I

Name ____________________________ __

Title or Position~ __________ _

Address'---_________________ _

FOLD ON TWO LINES, STAPLE AND MAIL
No Postage Necessary if Mailed in U. S. A.

C20-1663-0

fold fold
... :

Attention: Technical Publications

fold

~rnllir
®

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE Will BE PAID BY ...

IBM Corporation

112 East Post Road

White Plains, N. Y. 10601

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601
(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

FIRST CLASS

PERMIT NO. 13.59

WHITE PLAINS, N.Y.

fold

()
N
o
I

......
0\
0\
w
I
o

