C20-1663-0

IBM System/360 Operating System User Libraries

The purpose of this document is to illustrate, by means of a
program testing application, the creation, use, and maintenance
of user program libraries operating under the IBM System/360
Operating System. The program testing application was chosen
for illustrative purposes only and should not be construed as a
workable system as it stands. The information in this text is
based on information and components available at the time of the
initial release of Operating System/360. The use of Assembler E,
COBOL E, FORTRAN E, and Linkage Editor E is assumed. The
user should therefore refer to the following texts and their most
recent technical newsletters for the most complete, accurate,
and up-to-date information:

Programming

IBM System/360 Operating System: Utilities (C28-6586)

IBM System/360 Operating System: System Generation (C28-6554)

IBM System/360 Operating System: Linkage Editor (C28-6538)

IBM System/360 Operating System: Job Control Language (C28-6539)

IBM Systém/ 360 Operating System: System Programmer's Guide
(C28-6550)

y Syswm cowrRot Btocks c28. (L2¥

This text is a major revision of, and obsoletes IBM Operating System/360 User
Libraries, Preliminary Edition (Y20-0008). The major changes are on pages 12, 14,
22, 32, 34, and 37.

Copies of this and other IBM publications can be obtained through IBM branch
offices. Address comments concerning the contents of this publication to
IBM, Technical Publications Department, 112 East Post Road, White Plains, N.Y. 10601

© International Business Machines Corporation, 1966

IBM Technical Newsletter Re: Form No. C20-1663-0

This Newsletter No. N20-1010-0
Date February 15, 1967

Previous Newsletter Nos. None

IBM SYSTEM/360 OPERATING SYSTEM USER LIBRARIES

This technical newsletter amends the publication IBM System/360 Operating System User Libraries
(C20-1663-0). Make the corrections and additions listed below in existing copies of the publication.

Cover and Preface Pages

Add the following to the list of reference texts on both pages:

IBM System/360 Operating System: System Control Blocks (C28-6628)

Page 12

In the drawing at top of page, change the word above the volume containing the SYS1., PROCLIB
from "TESTVL'" to "SYSRES",

In the program listing below this drawing, add a comma at the end of the second line of item 4:
"DISP=(NEW, KEEP), ", Similarly, add a comma at the end of the second line of item 5. The
commas indicate continuation of the data definitions.
Page 32
In the Note at bottom of page, change the next to last line from:

require an additional parameter, that is VOLUME=SER-TESTVL,
to the following:

require two additional parameters, that is, VOLUME=SER=TESTVL and UNIT-2311,
Page 37
Add "(see C28-6628)" to the end of the next to last paragraph.
Note: File this newsletter at the back of the publication. It will provide a reference to changes,

a method of determining that all amendments have been received, and a check that the publication
contains the proper pages.

IBM Corporation, Technical Publications Dept., 112 E. Post Road, White Plains, N.Y. 10601

Printed in U.S.A. N20-1010-0 (C20-1663-0) Page 1 of 1

PREFACE

The purpose of this document is to illustrate the creation, use, and
maintenance of user program libraries operating under 0S/360. To
facilitate the explanation of interplay and control among the various
components of 0S/360, the application of program testing has been
chosen as a vehicle to demonstrate:

Library creation and use

Cataloged procedure creation and use
Library maintenance

Backup procedures

The program testing application, hereafter referred to as TESTS, was
chosen for illustrative purposes only and should not be construed as a
workable system as it stands. The information in this manual is based
on the information and components available at the time of the initial
release of 0OS/360. The use of Assembler E, COBOL E, FORTRAN E,
and Linkage Editor E is assumed.

The user should therefore refer to the following texts and their most
recent technical newsletters for the most complete, accurate, and

up~-to-date information:

IBM System/360 Operating System Utilities (C28-6586)

IBM System/360 Operating System System Generation (C28-6554)

IBM System/360 Operating System Linkage Editor (C28-6538)

IBM System/360 Operating System Job Control Language (C28-6539)

IBM System/360 Operating System System Programmer's Guide (C28-6550)

CONTENTS

Definition of a Library .

Overall Example — Program Testmg — "TESTS” .

The Test Cycle .
Overall Flow . . .
Creation of TESTS L1brar1es .
Volume Initialization
Library Naming and Creatlon
Utilization of TESTS .
Source Library .
Source Module Creatlon
Source Module Correction .
Object Module Creation .
Load Module Creation .
Execution of Load Modules .
Library Maintenance. . .
Reducing Extent Requlrements .
Purging Unused Members
Completed Programs
Library Backup — Audit Trail
Backup Copy
Reinitialize TESTS
Multiple Job Flow in TESTS

NeliNelNe N AV U S

14
14
14
14
14
19
26
29
29
30
30
37
37
40
43

LIST OF ILLUSTRATIONS

Figure 1. Libraries in TESTS system

Figure 2. Job flow of one program from source to execution: source program to
source library

Figure 3. Job flow of one program from source to execution: source program in
source library assembled into object library

Figure 4. Job flow of one program from source to execution: object module is link-

edited and becomes a load module in the load library (TEST. LOAD)

Figure 5. Job flow of one program from source to execution: execution of
program A13

Figure 6. To initialize the TESTS volume

Figure 7. To create the TESTS libraries and add a procedure that will add procedures

Figure 8. To add a procedure to SYS1. PROCLIB with ADDPROCS

Figure 9. To enter symbolic (source) module into the source library

Figure 10, Form for entering changes into the source library

Figure 11. To make corrections to the source library

Figure 12, Results of source correction

Figure 13. To compile or assemble a source module from the source library into the
object library

Figure 14, To create object modules using TESTS cataloged procedure for FORTRAN

Figure 15. To create object modules using TESTS cataloged procedure for COBOL

Figure 16. To linkage-edit multiple load modules in one Linkage Editor run

Figure 17. To test programs from the load library

Figure 18. Generalized compile-Linkage-Edit — Execute procedure

Figure 19. Increasing the available space in a PDS

Figure 20. To list TESTS system control data

Figure 21. To reduce extent requirements on a volume

Figure 22. To print and punch a source program and delete it from the source, object
and load libraries

Figure 23. PRINT, PUNCH, and DELETE

Figure 24. To concatenate utility control statements

Figure 25, To obtain a backup copy of the TESTS volume

Figure 26. Document received from BACKUP procedure

Figure 27. To reinitialize the TESTS volume

Figure 28. Document received from reinitializing the TESTS volume (see Figure 27

for execution)
Figure 29, Job flow of multiple programs from source to execution

DEFINITION OF A LIBRARY

A 'library' is a partitioned data set (PDS), which is a data set with one or
more sequentially organized members, residing on and not exceeding in
space one direct access volume. OS/360 libraries may be categorized as
follows:

1. Libraries required by 0S/360 for its operation, and residing on either
the system residence volume or some other direct access volume.

2, Libraries required when using certain processors or features of
0S/360 (for example, the COBOL and FORTRAN libraries), but not
required for the system to function.

3. Libraries defined, organized, and named by the user to best
accommodate the installation's requirements.

The libraries falling in category 1 and referred to in this document are:

SYS1, LINKLIB (Link library)
SYS1.PROCLIB (Procedure library)

Those falling in category 2 and referred to here are:

SYS1.MACLIB (Macro library)
SYS1.COBLIB (COBOL library)
SYS1.FORTLIB (FORTRAN library)

Full descriptions of these two categories may be found in C28-6554,

Libraries in category 3 may be given simple or qualified names. Since a
library is nothing more than a data set, it may be created during execution
of any job step by defining the library name, allocating space on a volume,
etc. (see "Library Naming and Creation'). While libraries in categories
1 and 2 are neither created nor named by the user, they may be accessed
and used as in category 3.

User programs may be located in the Link library. To execute such a
program, the user merely specifies the name of this program in the EXEC
statement.

User programs may also be located in a library created by the user
(category 3). To execute a program in a user-created library, the user
must define this library by inserting a data definition (DD) statement
(with a ddname of JOBLIB) prior to the EXEC statement or statements
requiring the use of this library. This DD statement causes OS/360 to
search the identified user's library for the program to be executed before
searching the Link library.

OVERALL EXAMPLE — PROGRAM TESTING — "TESTS"

In many installations the development and testing of applications
consumes a great deal of effort and time., While testing systems vary
from installation to installation, certain library maintenance methods
should be followed to take full advantage of the computing system.

The Test Cycle

The sample testing system example, TESTS, is based on the concept of
using a separate disk.pack exclusively for all program testing within an
installation. The basic reason for this approach is to isolate undebugged
programs and to ensure that they do not contaminate space on other
packs or the system residence volume.

TESTS is further thought of as a "'stacked testing' procedure in which
it is desirable to perform testing at convenient intervals during a shift
and thus stack all tests to be performed, mount the TESTS pack, and
perform the tests required. This approach will probably be valid for
most 0S/360 installations, at least in the early phases of their
development.

From an operations point of view, TESTS is thought of as an application
in which the user may specify certain standard procedures to be
performed in this test environment.

From a programmer's point of view the tests performed on his program
are done on a remote basis. The programmer must request the type of
test he wishes.

The TESTS system consists of three libraries, or PDS's. As shown in
Figure 1, a library is available for each of the following:

Source modules — programs in source language
Object modules — compiled programs or subroutines
- Load modules — Linkage Editor output (executable programs)

The programmer's first action is to request that his source module be
entered into the source library. Once this is done, he may request one
or more of the following:

1. Compilation

2., Modification of his source program

3. Linkage editing

4, Execution

5, Linkage editing to combine additional object or load modules
6. Compile — linkage edit — execute

Each of the modules (source, object, load) is retained in the appropriate
library until the test cycle has been completed and the programmer
wishes to remove it.

(TESTVL

T
EST.SOU RCE

TEST.OBJECT

L ‘J TEST.LOAD
@ .

S
\ EXECUTE

1. Source code and modifications entered
2. Compilations

3. Link-edit runs

4. Program executions

Figure 1. Libraries in TESTS system

Overall Flow

Thus the programmer debugs his program using computer output. He
then updates and retests his program by requesting the appropriate
phases mentioned above, without having to continually maintain a source
deck throughout the complete compilation and testing cycle.

Once his program has been thoroughly tested, he may request (among
other things) the updated source deck, a listing, and the deletion of his
program from the three TEST libraries.

To illustrate the flow of operations that occur in the TESTS application
environment, two examples have been given. Both consist of a diagram-
matic representation of the job stream, the processing to occur, and the
libraries used, as well as a description of the function of each statement
in the job stream. The statements in the job stream are illustrative
rather than actual. The actual job control language and control state-
ments are specified in the detailed illustrations of each phase of the
TEST application.

The first example (Figures 2-5) illustrates the processing of A13, a
source program that is to be placed in the source module library
(TEST.SOURCE), assembled into an object module library
(TEST.OBJECT), link-edited into a load module library (TEST.LOAD)
and executed from TEST.LOAD,

The second example (see '"Multiple Job Flow in TESTS') illustrates the
flow of multiple programs operating in the TESTS environment and is
more meaningful as a summary of the contents of this document.

SYSRES

<>

IEBUPDAT

Al TESTVL

N

TEST.SOURCE
A2
0S/360 | | Al3
/] ,
N —
A3
SOURCE DECK
Al3
.7 ADD AI3
// EXEC PROC=NEWSORC
Al
Job Stream Processing Incurred
Al. EXEC PROC=NEWSORC Invokes cataloged procedure to place source
program on source library (see Figure 9).

A2, ADD Al3 Indicates the name of the source program, Al3.
A3. Source Deck The source statements that are entered into

TEST.SOURCE as A13.

Figure 2. Job flow of one program from source to execution: source program to
source library

SYSRES

\—__‘/

LINKEDIT
\—_——/

__comor

FORTRAN
'\-_—/

ASSEMBLER

TESTVL

TEST. OBJECT

Al3

B3

TEST. SOURCE

BI
= 0S/360

Al3

B2

B3,// SYSPUNCH DD AI3

// SYSIN DD Al3

// EXEC PROC=TESTASSM

Job Stream

Bl. EXEC PROC=TESTASSEM
B2. SYSIN DD A13 (Input)

B3. SYSPUNCH DD A13 (Output)

Processing Incurred

Invokes the cataloged procedure to assemble
the source module A13 (see Figure 13).

Represents the DD statement indicating the
name of the source module to be assembled.

Represents the DD statement indicating
that the member name A13 be assigned to the
output object module to go into TEST.OBJECT.

Figure 3. Job flow of one program from source to execution: source program in source
library assembled into object library

SYSRES

TESTVL
’\~_____/

ASSEMBLER Ai3

TEST.LOAD

TEST SOURCE

c3
/‘_\\
- A3
N 0S/360
v
£
c2 TEST. OBJECT

Al3
C2 ~INCLUDE AI3

Ci /7 EXEC PROC=TESTLINK

Job Stream Processing Incurred

Cl. EXEC PROC=TESTLINK Invokes the cataloged procedure to link-edit the
object module (see Figure 16),

C2. INCLUDE A1l13 Represents the Linkage Editor statement that
specifies the name of the object module to be
link-edited, A13.

C3. NAME A13 Represents the Linkage Editor statement that
specifies the name to be assigned to the output
load module going into the load library.

Figure 4. Job flow of one program from source to execution: object module is link-
edited and becomes a load module in the load library (TEST.LOAD)

D37/ QUTPUT A

D4 7// INPUT B

INPUT
8

D3

OU'I;XPUT TEST.SOURCE

360

TESTVL

Al3

_—/
TEST.0BJECT

Al3

Job Stream

D1.

D2,

*D3.

*D4.

JOBLIB TEST.LOAD

EXEC PGM=A13

OUTPUT A13

INPUT A13

Processing Incurred

Specifies to the control program that the
program to be executed resides in the library
named TEST.LOAD.

Specifies the member name, Al13, of the
program in the library to be executed.

Symbolically represents one or more DD
statements required to specify the devices and
data sets required for the output results of A13.

Symbolically represents one or more DD
statements required to specify the sources of
input data for A13.

*Must be specified by the programmer or set up as standard DD statements for input and

output at the user's descretion.

data set manipulation and control.

Note: It is not the intent of this document to stress test

Figure 5. Job flow of one program from source to execution: execution of program Al3

CREATION OF TESTS LIBRARIES

Two phases are required before TESTS may be put into operation:
(1) initialization and (2) library naming and creation.

Volume Initialization

In this phase the Independent Utility DASDI (see C28-6586) is used to
create a volume label and to allocate space for the Volume Table of
Contents (VTOC). Figure 6 shows the control statements required for
this phase. The volume serial number to be placed in the volume label
is TESTVL,

Library Naming and Creation

Three libraries (partitioned data sets) are required in the TESTS
environment (see note at end of this section). They will be named:

TEST.SOURCE — for source modules
TEST.OBJECT — for object modules
TEST.LOAD — for load modules

Although the three libraries in the TESTS example are not cataloged,
each library is assigned a two-element name. The reason for this is
that someone else may wish to refer to a data set called SOURCE. To
avoid duplication, the second person could call his library MY.SOURCE
instead of TEST.SOURCE.,

It is apparent that all users of a test volume could have unique names
for their libraries. However, if this were the case, each user would
have to develop his own procedure or use the TESTS procedures and
override certain DD cards.

The approach taken in the TESTS example is a more standardized one
permitting more accurate control, easier procedure specification, and
more convenient maintenance of the TESTS volume. This standardization,
however, requires the programmer to name his program according to
some convention.

A member (module) or program may have a name as large as eight
characters. Without some type of naming convention, two independent
programmers could name their programs by the same name — say,
MATRIX. This would be intolerable, especially if both programs were
expected to be in TESTS at the same time. Therefore, a naming con-
vention must be established. For our example we will assign a two-digit
code to individuals or departments. Thus department 23 will submit a
program named MATRIX23 to TESTS. It must retain this name at least
for the life of this program within TESTS.

Figure 7 shows the job control statements required to allocate space for
and create the three libraries as well as to enter a standard procedure,
described in the following paragraphs, into SYS1,PROCLIB. If is
desirable to develop standard procedures for the testing environment
such as those for updating source modules, linkage editing, compiling,
etc., and to place these procedures in the procedure library
(SYS1.PROCLIB). This document describes several of the procedures

- used in TESTS.

Since the entering of a procedure into the SYS1.PROCLIB is a procedure
itself, it will also be convenient to place that procedure in
SYS1.PROCLIB. This procedure (called ADDPROCS) was initially put
into the SYS1.PROCLIB via the UPDATE utility, as seen in Figure 7.
The use of ADDPROCS for adding a procedure to SYS1.PROCLIB is
illustrated in Figure 8.

It is possible to add to or delete from a procedure in SYS1.PROCLIB
through the UPDATE utility program. However, since a TESTS
procedure would represent relatively few cards, a change to the proce-
dure could also be accomplished by updating the original card deck, The
updated procedure deck would then be added to SYS1. PROCLIB using the
ADDPROCS procedure (Figure 8). Although the original procedure has
the same name as the new one, the ADDPROCS will remove the pointers
in SYS1.PROCLIB to the old one and point to the new procedure.

Although not illustrated, all procedures for TESTS have been entered
into SYS1.PROCLIB. Further references to these TESTS procedures
will assume their residence in SYS1.PROCLIB.

Note: Although not implemented in the TESTS examples, it would be
advantageous to preallocate space for all utility (work) data sets — for
example, SYSUT1 and SYSUT2 — at the same time that the TESTS
libraries are created (see Figure 7). I this were done, space allocation
for the utility (work) data sets would be avoided in subsequent procedures.

10

Card

1.
2.
3.
4.
5.
6.

Figure 6.

cc2

JOB YINITIALIZE DISK ON 191 TO VOLID=TESTVL®
MSG TUDEV=1403,TCADDR=00E

CADEF TODEV=2311,TOADDR=191,VOLID=SCRATCH
VLD NEWVOLID=TESTVL s CWNERID=INSTLWGRK

VTUCD STRTADR=0001,EXTENT=0009

END

Gl
.

by

oopawp

Narrative

JOB with comments.

Messages will be printed on the printer.

The specific pack to be initialized.

The volume will be called TESTVL and owner is INSTLWORK.
The VTOC will span nine tracks starting in cylinder 0, track 1.
END card indicating end of JOB to the DASDI utility.

To initialize the TESTS volume

11

sySRES

JOL //”“‘””"““~\\\
| THRU 9
BELOW e N~ TESTVL

n
<
w
ond
Y
2
o
(2]
U

w

TES

T.SOURCE

NN

i

A

I

TEST.OBJECT

[
i

-

EST.LOAD

|

PR

//INITAL JOB 007, INSTLWORK,MSGLEVEL=1
// EXEC PGM=IEBUPDAT,PARM=NEW
//5YSUT2 DD DSNAME=SYS1,PROCLIB,DISP=0LD
//SYSPRINT DD SYSOUT=A
//0D1 DD DSNAME=TEST.SOURCE,VOLUME=SER=TESTVL,UNIT=2311, *
/7 SPACE= (TRK, (50,10, 10)),DISP=(NEW,KEEP), *
/7 DCB=(,RECFM=F,BLKSIZE=80)

5. //DD2 DD DSNAME=TEST.OBJECT,VOLUME=SER=TESTVL,UNIT=2311, *
/7 SPACE=(TRK,(k00y20,10)),DISP=(NEW,KEEP)‘ *
// DCB=(4RECFM=F,BLKSIZE=80)

6. //DD3 DD DSNAME=TEST,LOAD,VOLUME=SER=TESTVL,UNIT=2311, *
/7 SPACE=(TRK,400,20,10)),DISP=(NEW,KEEP)
//SYSIN DD DATA '

7 W/ ADD ADDPROCS,01,0,1

‘ //PROC EXEC PGM=IEBUPDAT,PARM=NEW

8.{//SYSUT2 DD DSNAME=SYS1.PROCLIB,DISP=MOD
//SYSPRINT DD SYSOUT=A :

9 /+

1. Execute the utility UPDATE program (see C28-6586) in order to enter into
SYS1.PROCLIB a standard procedure for entering procedures into SYS1.
PROCLIB.

2. The data to follow will be put into SYS1.PROCLIB (SYSIN DD DATA).

3. Required by the utility.

4,5,6. DD cards which allocate space on TESTVL. Note that each library directory
will handle 10x(4 to 7) members. Therefore, at any one time, a library
directory can handle 10x6 (on the average) = 60 members. Note also that the
actual number of modules that can be stored in a library depends on the size of
the modules and the total space allocated to the data set.

7. Control statement for IEBUPDAT. It names the member to be added. In this
case it will be named ADDPROCS.

8. The job control language for the procedure called ADDPROCS.

9. Required by the utility and the control program.

Figure 7. To create the TESTS libraries and add a procedure that will add procedures

12

5.

1. //STEP EXEC ACDPROCS

2. //PROC.SYSIN LD CATA

3, o/ «ww-PADG ey NEWSORCE,01,0,1
//7NEWSORCE EXEC PGM=1EBUPDAT,PARM=NEW
//SYSPRINT DD SYSOUT=A

4 //75YSUT2 DD DSNAME=TEST.SOURCE,VOLUME=SER=TESTVL, *
/{4 UNIT=2311,D1SP=0LD
5‘ /. /
SYSRES

Executes the ADDPROCS procedure (see Figure 7) for entering a procedure into the
SYS1.PROCLIB.

DD * statement for the ADDPROCS procedure — that is, the member(s) follows.
Note: the DD name must be qualified with the step name of the procedure. The step
name is PROC (see Figure 7).

Required by the utility UPDATE (see C28-6586). The NEWSORCE name will be the
name of the member (procedure) that will be added.

The job control cards that will be entered as a procedure.

Required by the utility and the control program.

Note: Any procedure may be added in this manner. If multiple procedures are to be

added with one EXEC ADDPROCS, the ADD cards (with the procedure names and
associated job control statements to be entered) must be in binary collating
sequence.

Figure 8. To add a procedure to SYS1, PROCLIB with ADDPROCS

13

UTILIZATION OF TESTS

Source Library

The library called TEST.SOURCE contains source modules., Each
module is in source code (Assembler, FORTRAN, COBOL, PL/J).
The original source code is entered into the TEST.SOURCE PDS once.
After errors are detected via the debugging cycle, the programmer
requests changes to his source code, This method eliminates
voluminous card and tape handling since the source code is always on
disk.

SOURCE MODULE CREATION

By executing the NEWSORCE procedure, any set of symbolic coding may
be entered into the TEST.SOURCE library. This source coding then

" becomes a member of the source library, with a program name specified
by the programmer. Figure 9 illustrates this method. Note that
NEWSORCE assigns a sequence number to each source statement. This
sequence number can be referenced by the programmer when making
changes to the source module.

SOURCE MODULE CORRECTION

After a debugging run, changes to the original source code may be

needed. The procedure CHGSORCE allows the programmer to specify
which original source statement(s) he desires to have deleted (if any)

and whether he wishes new source statements added to the original source.

A standard TESTS form is illustrated to allow the subsequent additions
and deletions of source code (see Figure 10), The implementation of
these changes is shown in Figure 11, and the listed results indicating
what took place is shown in Figure 12,

Object Module Creation

Once the source modules have been entered on TEST,SOURCE, they are
processed by one of the language translators (Assembler, FORTRAN, PL/I,
or COBOL). The output of a language translator is defined as an object
module, which in this application becomes a member in the object

library (TEST.OBJECT).

14

@ 7%.
[SOURCE CODE MODULE

NUMER 00000000s 00000000, 05000010 00000010
T L7 ADD Elai0ls0e1
2. L 1 _m_1 L . TESTVL
P N e R A R
m 1 mne
SF EREC PRMCSMELAHRCE
11 11 []]

/o mn
000000000000 MB5vu00000000000000008000000000000000000 (

000
!!znsl 1011121314 1576 17 18 192021 222324 2526 27 252930 31 22 30 34 3536 37 38 38 40 4142 434 45 46 47 484550 51 5253 54 55 56 5 38 5060 ¥1 €2 §
[{ ERE ARV ARRRRRRRRE R AR RN AR R AR R AR AR A AR R R AR RN RRRRERRERRRERE R R
2222232422222222222222228222222222222222222222222222222222222221%

SYSL.PROCLIB
| 7 | |NEWSORCE] |

cc72 |
//NENSORCE EXEC PGM=I1EBUPDAT PARM=NEMW
//7SYSPRINT DD SYSOUT=A)
/75YS5UT2 DD DSNAME=TEST.SOURCEsVOLUME=SER=TESTVL, %
7/ UNIT=2311,DISP=0LD

Execute the NEWSORCE procedure.

NEWSORCE procedure in SYS1.PROCLIB.

Name the added member B13.

Sequence-number the source code, starting at 10 and incrementing by 10.
Symbolic code to be entered into TEST,SOURCE,

Required by IEBUPDAT (C28-6586) and reader-interpreter. (Note: Source code
for multiple members may be entered with one EXEC NEWSORCE; however, the
ADD card with the member name and associated source code must be in collating
sequence by member name.) v

SOl LW
.

Figure 9. To enter symbolic (source) module into the source library

15

91

GENERAL PURPOSE CARD PUNCH LAYOUT

NAME DEPT. BLDG. PHONE DATE
SHEET OF

| ———check square if to be punched

112|3|4|5]6]|7{8]|9([10]1|12]t3|14]15]16]17| 18] 19] 20]2i 222324252627232930|3|32333‘3536373939404I4243444546474849505l5253//r737475 6 77 '8 '9 180
vl BXEd |dHGS|ORCIE /A
/l/lclEas|orlclE. [s|yisiiN] D] [DIAITAIS]. Y
% name of g%
7 profram > /
v].l/ dungs |83 dl2), (o), 11 /
7 Fl1|Rs|T siTi
RV DELET)
./ DELET |¢dlglg) 917], [glopg! 25 B
v9].l/ DE|LET gd12igisp|. Y 2igis 9
1/ DELIET , \
.1/ DE|[LE/T) \ \
| [SOURCE|STh THMENTY FALLOW [SEQUANCE NUMEHH IN|c&. 74 4 90 \ \ s elgnlo
[Glol |Tio| 16413 588401
& WIR[TIE] (o o e|g]sT) Imlol, [z |YIRL IPlalylPle Il |2Alyl irls (7]oln e rel, lallolonir\ a7
% Rlu| el ¢]5lelgl7) _ /l98)
\
|
[/
V|/ b

\%“
[

1j2i3|4 |5 (67|89 |l0fn[i2|i3{14[15/16{17|18]|19{20 2I222324252627262930I3I32333 39 36| 37| 38| 39) 40| 41| 42| 43| 44 45; 4§ 47/ 48[49| 50 51 727374 (7S [r6 ¥7 78 9 BO

~
o~

Figure 10. Form for entering changes into the source library

- TELET 00002050 00002050 ' /4?/ \\\
me _/
/ nnnnyss B\

B S OURITECEEGry
inn _
° MRITE (s GO My LTk POy PR P L] s TODSTE - Hfmiﬁ*/ aoanizya
11 1 1 11 min '

7\
- /4?/ ﬂuﬂulﬁil\\
Vi

000000000

7273747576 77 1879 80

IRRRRRREE!

222?22?22
TESTVL—= TEST.SOURCE
| B3 |}REMOVE
MERGE
0S/360

SYS1.PROCLIB

| cHeORCE |,;]
==

i
S //CHGSORCE EXEC PGM=IEBUPDAT,PARM=MOD

//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=TEST.SOURCE,VOLUME=SER=TESTVL, *
/1 UNIT=2311,DISP=0LD
/7SYSUT2 DD DSNAME=TEST.SOURCE,VOLUME=SER=TESTVL, *
1/ UNIT=2311,DISP=0LD

2.

Invoke the CHGSORCE procedure,

CHGSORCE JCL in SYS1.PROCLIB.

Name of the program (member) to be changed — in this case B13,
Specified deletions of 80-character records and source code to be added.
Required by IEBUPDAT (C28-6586) and the Interpreter.

This DELET card is not required since both the old 1970 and 1980

would be automatically deleted and replaced by the new 1970 and 1980
source statements.

SO W N
.

Figure 11. To make corrections to the source library

17

8T

604 WK‘TETU:&;V;;NV,-.,~,.
605 FURMAT(213,4F10.2)
IYR=1YR+1 0000190
I=1 oQnolaln
SUURCE LINE INSERTED GO TO 603
C 00DUIT20
C BALANCE DUE IS LESS THAN MUNTHLY PAYMENT 00001930
C 00001940
606 PAYPRN=AMOUNT+PAYPRN 00001950
AMOUNT=0. 00001960
o/ DELET Q0001970,00001980
SUURCE LINE DELETED WRITE{S5,600)M0,1YRyPAYPRNyPAYINT,TODATE,AMOUNT
SQURCE LINE DELETED WRITE{5,602) ’
SCGURCE LINE INSERTED WRITE(Gy605)M0,IYRyPAYPRNyPAYINT o TGDATEy AMOUNT Y
SOURCE LINE INSERTED WRITE(6,607) 00001980
607 FURMAT(0/ 0%%x¥x%¥%k LOAN AMORTIZED xx¥kkkt /(v /0017951 0000T990 |
CALL CLGCKAITIME) 00002000
IDELTA={ITIMES-ITIME)/T6800 00002010
IF (IDELTA) 710,720,710 00002020 |
710 WRITE {64999) IDELTA 00002030 |
999 FORMAT (' TOTAL TIME = ',110,* SECONDS") 00002040
o/ DELET 00002050,00002050
SOURCE LINE DELETED 720 PAUSE 699999
GU TO 1 0000Z060
END 00002070
ABOVE NAME(B13 JFUUND IN NM DIRECTORY,TTR IS NUW ALTERED
END CF J0Bs «/ ENDBUP READ
*kkFF%%k HIGHEST CUNCGDE IN PROGRAM WAS 00

Figure 12. Results of source correction

A cataloged procedure named TESTASSM, using the assembler as the
language translator, compiles a source module from TEST,.SOURCE
into an object module. The name of each of the input source modules
from the source library, and the names of each of the output modules
to be entered in the object library (TEST.OBJECT), are specified in
the job stream for each language translator job step. This procedure
and the required DD statements specifying input and output are
illustrated in Figure 13. Similar procedures may be executed for
FORTRAN and COBOL (see Figures 14 and 15).

Load Module Creation

Object module output from language translators is in relocatable, but
not executable, format. Therefore, before execution, the object
modules must be processed by Linkage Editor so that they may become
executable load modules. In addition, adhering to 0S/360's basic
concept of modularity, modules that have been separately tested may
be combined by the Linkage Editor. Also, any editing or overlay

" structuring of existing object or load modules is done at this time.
Because in this application all object modules are in TEST.OBJECT and
all load modules are in TEST.LOAD, each has access to the others in
the TESTS environment, easing considerably the difficulties in locating
modules.

While the linkage editing can be done on a compile-linkage edit-execute
basis for each program to be tested within the TEST environment (see
Figure 18), the procedure to be discussed here addresses itself to a
single Linkage Editor run during which multiple load modules are
created, thereby reducing the number of times the processor is brought
into core storage.

Once the programs to be tested are in the TEST.OBJECT library as
object modules, they will be link-edited via the cataloged procedure
TESTLINK, onto the load module library (TEST.LOAD). This, then,
allows the programmer to reference these libraries for any additional
modules he may require by use of the Linkage Editor INCLUDE statement.

As illustrated below, the job stream for the Linkage Editor run, contains
(1) an EXEC statement calling for execution of the cataloged procedure
TESTLINK, (2) a DD * statement named TESTLINK.SYSLIN, which
indicates that the input specifications to Linkage Editor will follow in

the job stream, and (3) a set of Linkage Editor control statements
specifying the names of the input and output modules of each load module
to be created.

// EXEC PROC=TESTLINK

// TESTLINK.SYSLIN DD *
INCLUDE OBJPDS (object module name 1)
NAME load module name 1 (R)
INCLUDE OBJPDS (object module name 2)
NAME load module name 2 (R)

19

JOB STREAM

9.
. {//TESTASSM.SYSPUNCH DD DSNAME=TEST.OBJECT(AL3)
7 S

/ I‘ E//TESTASSM.SYSIN DD OSNAME=TEST.SOURCE{AL13) \

A—p

[/S5TEPA EXEC

PRCC=TESTASSM

TESTVL

\

0S/360
ASSEMBLER < Al3

TEST.SOURCE

SYS1.PROCLIB

TEST. OBJECT /

— Al3

~N_

2 //TESTASSHM EXEC PGM=IETASM c.e.72
//SYSUTL DD OSNAME=UTX,UNIT=2311,SPACE=({TRK y{50,10)), %
/7 VOLUME=SER=TESTVL
3 ! }//svsuT2 CD DSNAME=UTY UNIT=2311,SPACE={TRK,(50,10)), %
/7 VOLUME=SER=TESTVL
//SYSUT3 00 DSNAME=UTZ,UNIT=2311,SPACE={TRK,(50,10)),%
/7 VOLUME=SER=TESTVL
4. //SYSPRINT ED SYSOUT=A
5 //7SYSLIB DD DSNAME=SYS1.MACLIB,UNIT=2311,DI5P=0LD, ¥
/7 MOLUME=SER=111111
N~6—=>//SYSIN CD DSNAME=TEST.SOURCE UNIT=2311,01ISP=0LD, *
7/ VOLUME=SER=TESTVL
N——8->{//SYSPUNCH CO DSNAME=TEST.GBJECT,UNIT=2311,01SP=0LD, *
/7 VOLUME=SER=TESTVL

Underlined parameters are not necessary.

Figure 13. To compile or assemble a source module from the source library into the

object library

20

This EXEC statement in the job stream invokes the cataloged,
procedure TESTASSM.

This EXEC statement invokes the assembler IETASM.

Three DD statements defining the space and volume (TESTVL) on
which the three utility data sets required by the assembler should
be allocated.

SYSPRINT specifies that the assembly listing should be printed.

This SYSLIB DD statement specifies that SYS1.MACLIB, which is
required for the assembler, resides on the system residence volume,
111111,

SYSIN specifies the name of the library (TEST.SOURCE) containing
the input source modules, which will be used as input to the
assembler or compiler, and indicates that this library resides on
TESTVL.

TESTASSM.SYSIN specifies the name of the source module (A13) to be
assembled from the library and overrides the parameter in 6.

SYSPUNCH specifies that the library named (TEST.OBJECT) residing
on TESTVL is the library in which the object modules are to be
placed.

TESTASSM. SYSPUNCH specifies that the name of the object module
to be placed in TEST.OBJECT is Al3 and overrides the DSNAME
parameter in 8,

Figure 13 (continued).

21

ccT72
SYS1. PROCLIB . Y
//TESTFORTY EXEC PGM=I1EJFAAAO,,PARM='SIZE=50000"
//SYSPRINT DD SYSOUT=A
/7SYSUTL OD DSNAME=UT1,UNIT=2311,SPACE={TRK,(30,10)), |*

// VOLUME=SER=TESTVL
//7SYSUT2 CU DSNAME=UT2,UNIT=2311,SPACE=({TRK{30,10)), ¥
/7 VOLUME=SER=TESTVL
//SYSIN LD USNAME=TEST.SOURCEsUNIT=2311,01ISP=0LD, 3

7/ VOLUME=SER=TESTVL

Job stream to execute FORTRAN procedure

//TESTFORT,SYSLIN DD DSNAME=TEST.OBJECT(B13)

//TESTFORT.SYSIN CD DSNAME=TEST.SOURCE(B13)

/7 EXEC PROC=TESTFORT

v
SPECIFY THE NAMES

OF THE INPUT AND OUTPUT
MODULES FOR FORTRAN

Figure 14. To create object modules using TESTS cataloged procedure for FORTRAN

ccr2
SYS1.PROCLIB \
J/TESTCOBL EXEC PGM=IEPCBLOO
J/SYSUTL 0D DSNAME=UTA,UNIT=2311,SPACE=(TRK,(40,10)), [|*
/7 VOLUME=SER=TESTVL
7/SYSUT2 CD DSNAMESUTB,UNIT=2311,SPACE=(TRK,(40,100), [%|
/7 VOLUME=SER=TESTVL
//SYSUT3 DD OSNAMESUTC,UNIT=2311,SPACE=(TRK,(40,10)), [¥
7 VCLUME=SER=TESTVL
//SYSPRINT DD SYSOUT=A
/7SYSIN CD DSNAME=TEST.SUURCE,UNIT=2311,DISP=0LD, *
7 VOLUME=SER=TESTVL
/73YSPUNCH DD DSNAME=TEST.OBJECT ,UNIT=2311,015P=0L0, *
/7 _ VOLUME=SER=TESTVL

Job stream to execute COBOL procedure

//TESTCOBL.SYSPUNCH DD DSNAME=TEST.OBJECT(CD13)
. 2V OFUNLH A2 T 21

//7TESTCOBLLSYSIN DD ODSNAME=TEST.SOURCE{CD L_E}__)>

/7 EXEC PROC=TESTCUBL

SPECIFY THE NAMES
Underlined parameters are not necessary. OF THE INPUT AND OUTPUT

MODULES FOR COBOL
Figure 15. To create object modules using TESTS cataloged procedure for COBOL

22

To combine additional object modules in a load module, their names may
be specified in one INCLUDE statement (see item 1 below), or additional
INCLUDE statements may be inserted (see items 2 and 3 below).

1. INCLUDE OBJPDS (name 1, name 2, name 3)
2. INCLUDE OBJPDS (name 2)
3. INCLUDE OBJPDS (name 3)

Load modules from the load library may be combined with other modules
as follows:

INCLUDE SYSLMOD (load module name or names)

Additional specifications for each load module may be inserted between
the INCLUDE and NAME statements. If more than one module is to
comprise the load module, an ENTRY statement specifying the entry
point to be assigned to the load module should immediately precede the
NAME statement.

Any Linkage Editor control statements to create an overlay structure or
to edit the modules should be placed in the job stream preceding the
NAME statement as specified in the Linkage Editor manual (C28-6538).

The Linkage Editor procedure in Figure 16 (TESTLINK) produces a
module map and a list of all Linkage Editor control statements. If
additional or different processing options are desired, all parameters
required should be specified in the EXEC card, as shown in Figure 16,

FORTRAN and COBOL object modules require that SYS1, FORTLIB
and SYS1.COBLIB respectively be specified as the Linkage Editor
automatic call library (SYSLIB) (see C28-6538). Therefore, they have
been concatenated in the TESTLINK procedure. ‘

23

SYSRES

17. /7%

18, NAME CD13(R)
15. ENTRY START
14 INCLUDE SYSLMODICL3)

INCLUCE CBJPLS(813)

12. NAME B13(R)

H. INCLUBE GBJPDS{BL3)

10. NAME ASUBL13(R)

9, INCLUBE GBJPDS{AL3,SUBAL3)

8 V/7/TESTLINK.SYSLIN DD %

/7 EXEC PROC=TESTLINK,yPARM.TESTLINK="XREF,LIST,LET"

TESTVL
/-—.—\
v

TESTLOAD
osize0 @ |

A -

BI3

LINKEDIT A1\ /// ASUBI3 ci3

i LINKAGE . (9
SYS1.FORTLIB N—=> EDITOR TEST.OBJECT —

M SYS1.COBLIB

SYS1{.PROCL.IB

® L
:;\ A3
SUBAI3

QAT
\/4

(E)

2.} //TESTLINK EXEC PGM=LINKEDIT,PARM="'MAP,LIST?

3.1//7SYSLIB LD [(DSNAME=SYSL.FORTLIBUNIT=2311,D1SP=0LD, £ 3
¥
*

//
7/
7/

4| /7/S¥SUT1 DD DSNAME=UT1,UNIT=2311,SPACE=(TRK,{(60,101}),

= R=
DD DSNAME=SYS1.CO0BLIB,UNIT=2311,DISP=0LD,
=SER= 1

7/ VOLUME=SER=TESTVL
//SYSPRINT DD SYSQOUT=4A
3 7/0BJ4POS L0 DSNAME=TEST.OBJECT,UNIT=2311,D1SP=0LD, Ed
/7 VOLUME=SER=TESTVL '
//SYSLMOD 0D DSNAME=TEST.LUAD,UNIT=2311,DISP=0LD, e
// VOLUME=SER=TESTVL
1. The EXEC statement in the job stream invokes the cataloged

2.

procedure TESTLINK. PARM. TESTLINK='XREF, LIST, LET'
overrides the PARM field in the EXEC statement of the cataloged
procedure and will cause a cross-reference listing to be produced
instead of 2 memory map and put into effect the processing option
LET.

The EXEC statement invokes Linkage Editor and specifies processing

optiorls MAP and LIST (in this example they were overridden).

Figure 16, To linkage-edit multiple load modules in one Linkage Editor run

24

10,

11.

12,

13.

14,

15,

16.

17.

SYSLIB defines the automatic call library to Linkage Editor and con~-
catenates SYS1, FORTLIB and SYS1.COBLIB. This allows any
object modules to be processed, whether compiled by COBOL or
FORTRAN.

SYSUT1 specifies that the Linkage Editor's utility (work) data set be
allocated space on the volume TESTVL,

SYSPRINT specifies that the diagnostic messages, memory map, and
a list of Linkage Editor control statements processed should be
written on the printer.

This DD statement indicates that any reference to OBJPDS in Linkage
Editor control statements will refer to the object library (TEST.
OBJECT), which resides on volume TESTVL,

The SYSLMOD DD statement specifies that all load modules created
by Linkage Editor in this run will be placed in the load library
(TEST.LOAD), which resides on the volume TESTVL.

This specifies that the primary input data (SYSLIN) follows
immediately in the job stream.

This Linkage Editor control statément specifies that there are two
members, Al3 and SUBA13, in the library specified by the DD
statement named OBJPDS that will be the input to this load module.

This control statement specifies that the name of the first load module
to be placed in TEST.LOAD is ASUB13.

This control statement specifies that the input to the second load
module is the member named B13 on TEST.OBJECT.

This control statement specifies that the name of the second load
module to be entered in the load library is B13,

This statement specifies that member D13 on TEST.OBJECT will be
part of the third load module.

This specifies that C13, previously link-edited and on TEST.LOAD
(indicated by the SYSLMOD DD statement, which points to that library)
is to be combined with D13 as input to the third load module.

This ENTRY statement assigns an entry point named START to the
load module.

This NAME statement assigns the module name CD13 to the load
module containing C13 and D13 on TEST.LOAD,

/* denotes the end of the Linkage Editor input.

Figure 16 (continued).

25

Execution of Load Modules

Because all of the load modules now ready for execution are in the library

named TEST.LOAD, the JOBLIB DD statement required for execution
of each of the load modules to be tested is the same (see '""Definition of a
Library'). Therefore, the job stream required to execute any load
module will contain a JOB card, a JOBLIB DD statement pointing to
TEST.LOAD, an EXEC statement where PGM="member name to be
tested', followed by the appropriate DD statements for that particular
program. (See Figure 17 for an illustration of a job stream to test
programs in TEST, LOAD)., While it is possible to test multiple load
modules in one JOB, each as a separate job step, all using only one
JOBLIB statement, it should be noted that once an abnormal end of one
execution is encountered, the ensuing job steps will be bypassed.

//0UT CD SYSOUT=A

14
1/ VOLUME=SER=TESTVL
13 771N 0D DSNAME=DATA{ONE),UNIT=2311,DISP=0LD,
12 /7 EXEC PGM=F13 cC72
It //GUTFILE DD SYSOLT=A
10 7/INFILE OD DSNAME=INPUT,UNIT={2400,DEFER) LABEL=(,NL)
: - : TESTVL
9 EXEC PGM=CD13
A A
: o)
TEST.L0AD

\

7/FTC1F0O0L DO * &\

6 7/ EXEC PGM=B13 i{/’
=

e

DATA J \
FI :
™ 47,11,14 2
SYSOUT=A | N\ cois
7/ INPUT DC * e —
4 //0UTPUT DD SYSOUT=A
7/ EXEC PGM=ASUB13
) - o
1/ VOLUME=SER=TESTVL
2 ///30BLIB DD DSNAME=TEST.LOAD,UNIT=2311,DISP=(0LD,PASS),

mn

|/ /7/4CBD Jgoe CO7,1EST£XEC,MSGLEVEL=1 cor2

Figure 17. To test programs from the load library

26

10.

11.

12.

13.

14.

The JOB statement indicates that a new job, JOBD, follows.

JOBLIB indicates that before searching the Link library for the
programs to be executed, the library TEST.LOAD on volume TESTVL
should be searched.

The EXEC statement causes the program ASUB13 to be executed.

This DD statement indicates that the output (assigned the ddname
OUTPUT by the programmer) of ASUB13 is to go on the printer.

This DD statement specifies that the input data INPUT) for ASUB13
follows in the job stream.

The second job step indicated by this EXEC statement causes program
B13 to be read into core from TEST.LOAD and executed.

FTO3F001 is the ddname assigned by FORTRAN to the output data
set for B13, the printer.

FTO01F001 is the ddname assigned by FORTRAN to the DD statement
that specifies that B13's input data follows in the job stream.

The third job step causes program CD13 to be executed.
INFILE specifies that the input data set for CD13, INPUT, is on tape.
OUTFILE specifies that the results of CD13 are to be printed.

The fourth job step causes program F13 to be executed from
TEST.LOAD,

IN, the ddname defining the input data set for F13, indicates that it
is a member named ONE in the PDS named DATA.

OUT specifies that the results of F13 are to be printed.

Figure 17 (continued).

27

Job Stream

//TESTPROC JOB 007,INSTLTEST, MSGLEVEL=1
COMPILE // EXEC PROC=Q@)

// .SYSIN DD DSNAME=TEST.SOURCE ((B))
/@ X DD DSNAME=TEST.OBJECT ((B))

LINKEDIT // EXEC PROC=TESTLINK, PARM.TESTLINK='(D)'
//TESTLINK.SYSLIN DD*
INCLUDE OBJPDS ((®))
NAME ® (R)
/*

EXECUTE //TEST B JOB 007,INSTLEXEC, MSGLEVEL=1
//JOBLIB DD DSNAME=TEST.LOAD, DISP=(OLD, PASS).
VOLUME=SER=TESTVL

// EXEC PGM =&
// ® DD
/!l ® DD
/*
@ = Language Procedure Name
FORTRAN PROC=TESTFORT
COBOL PROC=TESTCOBL

ASSEMBLER PROC=TESTASSM
Member name, that is, name of program to be compiled
= Compiler output ddname

FORTRAN SYSLIN (See Figure 14)

COBOL SYSPUNCH

ASSEMBLER SYSPUNCH
% = Optional Linkage Editor parameters

@)
I

= Member name to be assigned to load module. E may equal B
= DD statements required to specify input and output data sets for
execution of the program.

Figure 18. Generalized compile~Linkage~Edit — Execute procedure

28 .

LIBRARY MAINTENANCE

Three types of maintenance are required to keep the three libraries
(source, object, load) to a manageable size:

1. Reducing the PDS's extent requirements
2. Purging unused members
3. Punching, listing, and deleting completed programs

Reducing Extent Requirements

The frequency with which the installation would wish to reduce the
extents of a PDS depends on the volume of testing being performed and
the original size of the PDS. Additional extents may be required, as
new members (programs) are added or updated in a library. As an
example, if a source program named MATRIX13 were originally put
into the source library and subsequently changed through the CHGSORCE
procedure, the original space for the MATRIX13 module would be
unavailable for use.

Probably on a shift basis or daily basis, the installation would want to
obtain a picture of the situation. In order to do this, a procedure is
included here called TESTPEEK., This procedure allows the printing
of the TESTVL Volume Table of Contents, and the contents of each
library. Figure 20 illustrates the TESTPEEK procedure. Note that
only one card is required in the job stream to obtain the listings,
because the control statements for the utility IEHLIST are located in
SYS1.PROCLIB, cataloged under the name CNLPEEK2. The control
statements are called by the SYSIN DD statement in TESTPEEK, which,
of course, is also in SYS1,PROCLIB. An examination of the output,
with particular attention to the number of extents in each library, may
lead to the decision to reorganize the libraries if they contain much
space that is unavailable for use.

To perform this function, we MOVE (see C28-6586) the TESTVL

volume to itself, This particular utility program for each PDS specified,
examines the directory and moves it to the new PDS, It also places the
members in the top of the new PDS as illustrated in Figure 19.

To perform this for all the partitioned data sets on the entire TESTS
volume, a procedure called CLEAN can be used, which is illustrated

in Figure 21. Note that again only one card is required in the job stream
to perform the CLEAN procedure, because both the CLEAN procedure
and the IEHMOVE control statement required by it are on SYS1.PROCLIB.
The SYSIN DD in CLEAN calls the control statement which is cataloged
under the name CLEANI1,

29

A | B

c { F

} DIRECTORY {

UNAVAILABLE
SPACE

AVAILABLE
SPACE

Figure 19, Increasing the available space in a PDS

Purging Unused Members

From the listing received from the TESTPEEK procedure, it will be
desirable to audit the usefulness and timeliness of the various modules

(programs).

If it is determined, for instance, that a particular module is no longer
useful, the installation may run the utility IEHPROGM and scratch a
particular member from all libraries. A procedure for this has not been
included in this document, but it could be similar to the last three steps
in the SORCEDOC procedure (see Figure 22),

Completed Programs

After a program has completed its required testing and is performing
satisfactorily, it can be (1) moved to LINKLIB or a specific JOBLIB;
(2) used to obtain a copy on tape or cards, or to obtain a listing; etc.

One of the most common joint functions performed on a completed
program would be to (1) list the source code, (2) punch a source deck,
and (3) delete the program member from the source, object, and load
libraries. The SORCEDOC procedure, (see Figure 22) together with
the cataloged control statements that are also in SYS1. PROCLIB (see

30

MOVED PDS

Figure 23) will perform all these functions. To reduce the number of
cards required in the job stream (only four are required to print and
punch a program while deleting it from three libraries), the SORCEDOC
procedure uses several features of 0S/360:

1. The ability to execute a multiple-step procedure. (SORCEDOC
contains a number of EXEC statements.)

2. The ability to call utility control statements from a library rather
than placing them in the job stream.,

3. The ability to specify that a sequential data set is to be concatenated
with a PDS member, and the ability to continue a utility control
statement, (See '"Data Set Utilities' in C28-6586 for concatenation
restrictions.)

In this case (Figure 22) the name of the program to be printed, punched,
and scratched (entered in the job stream) is recorded in a newly created
temporary data set called TEMP (see point 1 in Figure 22) by the utility
IEBGENER. This temporary data set then supplies the name of the
program to the other utility programs in SORCEDOC. Note that the
SYSIN DD statements in steps 2-6 of SORCEDOC call a utility control
statement (2 member of a PDS) from SYSIN.PROCLIB. The following
DD statement, since it has no ddname, concatenated this temporary
data set with the control statement., Also note that each utility control
statement is prepared with an = sign in cc 71 (following MEMBER or
MEMBER NAME) and a continuation indicator in cc 72, Therefore, each
utility in steps 2-6 of SORCEDOC looks for the member name in TEMP
after reading the = sign of the control statement. (See Figure 24 for a
detailed illustration of the concatenation of the data sets and continuation
of the utility control statement.)

Further, it is important to observe that to print/punch a member using
the utility Print/Punch program, the detailed statement must be written
MEMBER NAME = XXXX, In the IEHPROGM utility, to scratch a
member, it must be specified as..., MEMBER = XXXX,

One of the most important features of the SORCEDOC approach is that

it protects the user from inadvertently scratching a library. If, for
example, a nonexistent member is specified or a member specification
was omitted from the job stream, the utility will not scratch the library,
since no member name was specified for the MEMBER or MEMRBER
NAME parameter.,

31

// EXEC TESTPEEK

SYSI.PROCLIB

cNLPEEK2 | 4| TESTPEEK [/]|

Vel

V

//PEEK2 EXEC PGM=IEHLIST

//7SYSPRINT DD SYSOUT=A

2.Y//0D1 DD VOLUME=SER=TESTVL,UNIT=2311,DISP=0LD
//SYSIN DD DSNAME=SYS1.PROCLIB(CNLPEEK2),DISP=0LD

)
°l

LISTVTOC VOL=2311=TESTVL

LISTVTIOC DUMP,VOL=2311=TESTVL

LISTPDS VOL=2311=TESTVL ,DSNAME=TEST.SOURCE
LISTPOS VOL=2311=TESTVL,0SNAME=TEST.OBJECT
LISTPLS VOL=2311=TESTVLOSNAME=TEST.LGAD

1'
2,
3.

4.

“TEST"
SYSTEM
CONTROL

Only one card required to obtain listings.

The procedure TESTPEEK located in SYS1. PROCLIB.

The control statements for the utility IEHLIST to list the desired data.
Note that these five statements are located in SYS1. PROCLIB under
the name CNLPEEK2. These statements are called by the DD State-
ment in TESTPEEK. A SYSIN DD * cannot reside in a cataloged
procedure.

Output results.

Note: In the TESTs environment it would be desirable to have the

SYS1.PROCLIB on the TESTVL volume, This would allow the

procedures for TESTs to be mounted only when the testing is in

process and would leave system residence SYS1. PROCLIB space

open for more universal procedures. It should be noted, however,

that if the SYS1. PROCLIB were on TESTVL and pointed to at IPL

time, DD cards in this writeup that reference SYS1. PROCLIB would

require &8 additional parametery that is, VOLUME=SEReTESTVL. § U ir= 234/
This would eliminate a catalog search.

Figure 20. To list TESTS system control data

32

// EXEC CLEAN

SYSI. PROCLR

[cLEAN |7 | cLEANI []

/4
//CLEAN EXEC PGM=1EHMOVE
J//SYSPRINT 0D SYSGUT=A
2,4//SYSUT1 DD UNIT=2311,VOLUME=SER=111111,01ISP=0LD
//002 DD UNIT=2311,VOLUME=SER=TESTVL,DISP=0LD
//SYSIN OD OSNAME=SYS1.PRCCLIB(CLEANL1},DISP=0LD

3. RGVE VOLUME=2311=TESTVL,T0=2311=TESTVL

L-NOT Cc.C.1

0S5/360

=

1. Onme card required to invoke the CLEAN procedure.

2. The CLEAN procedure is located in SYS1.PROCLIB.

3. Control statement for the utility IEHMOVE located in SYS1. PROCLIB under the name
CLEAN1, This single statement moves TESTS volume to itself,

4. Conceptually, the action that takes place. The running time depends on the number of
data sets and members within the data sets. The old data sets are deleted.

Figure 21. To reduce extent requirements on a volume

33

J /e
Al3

SYS1.PROCLIB

(O *

/ RECORD FIELD=(80,l,,l)

TESTVL

PROGRAM
LISTING

/// SORCEDOC.SYSUT! DD %

// EXEC SORCEDOC

PROGRAM
PUNCHED

//50RCEDOC EXEC PGM=I1EBGENER
//SYSPRINT DD SYSQUT=A
1 /7/5YSUT2 DD DSNAME= TEMP.UNIT 2311,VOLUME=SER=TESTVL,DISP=(NEW,KEEP), *
// DCB=(RECFM=F,BLKSIZE=80),SPACE={TRK,(2))
//SYSIN DO CuyMmMy
//51 EXEC PGM=1EBPTPCH
//SYSPRINT DD SYSOUT=A
//svsutl DD DSNAME=TEST.SOURCE,VOLUME=SER=TESTVL, *
2 UNIT=2311,DISP=0LD
//svsurz DD SYSOUT=A
//SYSIN DD DSNAME=SYS1.PROCLIB{PRTSORCL),DISP=0LD
/. _ DD _DSNAME=TEMP,VOLUME=SER=TESTVL,UNIT=2311,D1SP=0LD
//52 EXEC PGM=I1EBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUTL DD DSNAME=TEST.SOURCE,VOLUME=SER=TESTVL, L
3 /77 UNIT=2311,DISP=0LD 1
//SYSUT2 0D UNIT=00D
//SYSIN DD DSNAME=SYSL.PROCLIB{PCHSORC1),DISP=0LD —— :
_//__ DD _DSNAME=TEMP,VOLUME=SER=TESTVL,UNIT=2311,DISP=0LD
“//STAT TEXEC PGM=IEHPROGM
//001 DD VOLUME=SER=TESTVLUNIT=2311,DISP=0LD
4.{ //SYSPRINT DD SYSOUT=A
//SYSIN DD DSNAME=SYS1.PROCLIB{SCHSORCE),DISP=0LD
/4 DD DSNAME=TEMP,VOLUME=SER=TESTVL,UNIT=2311,DI5P=0LD
//5CH2 EXEC PGM=IEHPROGM
//001 DD VOLUME=SER=TESTVL,UNIT=2311,DISP=0LD
5. //SYSPRINT DD SYSOUT=A
//SYSIN DD DSNAME=SYS1.PROCLIB{SCHOBJCT},DISP=0LD
//__ _DD__DSNAME=TEMP,VOLUME=SER=TESTVL,UNIT=2311,DISP=0LD
T//SCH3 ~ EXEC PGM=IEHPROGM
//0D1 DD VOLUME=SER=TESTVL,UNIT=2311,DISP=0LD
6. { //SYSPRINT DD SYSOUT=A
//SYSIN DD DSNAME=SYS1.PROCLIB(SCHLOADT),DISP=0LD
/DD DSNAME=TEMP,VOLUME=SER=TESTVL,UNIT=2311,DISP=(0LD,DELETE)
A, JCL required to execute procedure SORCEDOC.
1. Brings program name (in this example, A13) from card reader and stores it in a
newly created sequential data set called TEMP.
2. Prints program — A1l3 (source).
3. Punches program — Al3 (source).,
4,5,6, Scratches member A13 from TEST.SOURCE, TEST.OBJECT, TEST.LOAD,

respectively.

Figure 22. To print and punch a source program and delete it from the source, object

and load libraries

34

SYS1.PROCLIB

II2

PCHSORC! [}| PRTSORCt |3 SCHLOADT [| scHOBJCT | | SCHSORCE | |
. d 6. Y 5. ¥ 4.y
w PRINT® TYPGRG=PO,MAXNAME=1,MAXFLDS=1 cerl

‘TITLE ITEM=('*PRINT OF SOURCE PROGRAM®',48)

MEMBER NAME=%*

N'3"PUNCH TYPORG=PU,MAXNAME=1,CDSEQ=00000000,MAXFLDS=1

MEMBER NAME=%

cet
2

4| SCHSGRCE

SCRATCH DSNAME=TEST.SOURCE,VOL=2311=TESTVL,MEMBER=%

cct
)2

6. SCHLOADY

SCRATCH DSNAME=TEST.LOAU,VOL=2311=TESTVL,MEMBER=*%

CCL

[¢]

SCHOBJCT

SCRATCH DSNAME=TEST.OBJECT,VOL=2311=TESTVL MEMBER=%

Figure 23. PRINT, PUNCH, and DELETE

35

SORCEDOC

.
.

SYS1.PROCLIB

7#5CHL EXEC PGM=IEHPRUGM
//DD1 DD VOLUME=SER=TESTVL,UNIT=2311,DISP=0LD
4.4 //SYSPRINT 0L SYSUUT=A
//SYSIN DD DOSNAME=SYSL.PROCLIB{SCHSORCE) DISP=0LD
// DD DSNAME=TEMP,VOLUME=SER=TESTVL,UNIT=2311,DI5P=0LD™

SYSRES TESTVL

TEMP

-

:

QUTPUT DOCUMENT

SYSTEM SUPPURT UTILITIES ———— IEHPRUGHM cC7l
ccle
e e
0.1SCHSGRCE _ _ _Y _ _SCRATCH DSNAMESTEST.SOURCE,VOL=2311=TESTVL,MEMBER=* |
b _ A3 T

NCGRMAL END GF TASK RETURNED FRUM SCRATCH

UTILITY END

4. See Figures 22 and 23, the fourth step.
a, Utility control statement to scratch an unnamed member. The named member is
found on TEMP, which is concatenated with the control statement.
b. The concatenated sequential data set containing the member name.

Figure 24. To concatenate utility control statements

36

LIBRARY BACKUP - AUDIT TRAIL

Backup Copy

It is apparent that with such a system as described in this example, a
means of protection against unforeseen circumstances is mandatory.

It will be desirable to obtain a '"backup" of the TESTS volume as well as
a listing of its condition at the time a copy is made. The frequency with
which a backup copy should be made will depend upon the volume of
testing, but presumably a copy would be made at least once per shift or
at the end of a large test run where multiple tests were performed.

The overall procedure for obtaining a backup copy of the TESTS volume
is shown in Figure 25. Before executing the BACKUP procedure, a
standard volume label of "BACKUP'" must be written on a tape reel, with
the eleventh byte an EBCDIC zero. (see ¢2& £{2&)

Excluding the listing received from TESTPEEK, Figure 26 illustrates
the document received when the BACKUP procedure is executed.

37

[// EXEC TESTPEEK

// EXEC BACKUP
SYS1. PROCLIB

BACKUP BACKUP!

>(//BACKUP EXEC PGM=IEHMGOVE

J/SYSPRINT DD SYSOUT=A

//SYSUTL DD UNIT=2311,VOLUME=SER=111111,DI5P=0LD
/7801 Do UNIT=2400, VOLUME=SER=BACKUP,DISP=0LD
//8D2 Do UNIT=2311,VOLUME=SER=TESTVL,0ISP=0LD
//7SYSIN DD DSNAME=SYS1.PROCLIB{BACKUPL)DISP=0LD

2.

3. cory VGLUME=2311=TESTVL,TO0=2400=BACKUP

TESTVL

BACKUP

0S/360

DOCUMENT
SEE FIG.
26

1. Invokes the BACKUP procedure.

2. JCL for the BACKUP procedure.

3. Utility control statement for IEHMOVE,

4. Invokes the TESTPEEK procedure (see Figure 20).
A, Overall flow.

Figure 25. To obtain a backup copy of the TESTS volume

38

SYSTEM SUPPORT UTILITLIES ———— IEAMOVE

corPy VOLUME=2311=TESTVLy» T0O=2400=BACKUP
THE FUOLLUWING DATA SET IS BEING MUVED. TEST.OBJECT
IEH411I DATA SET TEST.OBJECT UNLOADED BECAUSE ACCESS METHOD NOT COMPATIBLE
DATA SET TEST.OBJECT HAS BEEN COPIED TO VOLUMELS)
BACKUP,0001
THE FOLLOWING DATA SET IS BEING MOVED. TEST.LOAD
1EH411I DATA SET TEST.LUAD UNLOADED BECAUSE ACCESS METHOD NOT COMPATIBLE
MEMBR ASUBL13 HAS BEEN UNLOGADED
MEMBR TEMPNAME HAS BEEN UNLUADED
DATA SET TEST.LOAD HAS BEEN COPIED TO VOLUME(S)
BACKUP,0002
Tht FOLLUWING DATA SET 1S BEING MUVED. TEST.SOURCE
iEH411I DATA SET TEST.SOURCE UNLOADED BECAUSE ACCESS METHOD NOT COMPATIBLE
MEMBEK B13 HAS BEEN UNLOADED

MEMBR TEMP HAS BEEN UNLOADED
DATA SET TEST.SOUKCE HAS BEEN COPIED TO VOLUMELS)
A, = BACKUP 0003 .

A. Note: These are sequence numbers assigned to the data sets on tape. These numbers
will be used to retrieve the libraries (see Figure 28).

Note also that all data sets have been put on tape in an "unloaded" version (C28-6586).
This is perfectly all right, because, when they are returned to disk, they are returned
as they were originally.

Figure 26. Document received from BACKUP procedure

39

Reinitialize TESTS

If the TESTS volume should be damaged, it must be reinstated to its
condition at the time the last BACKUP procedure was executed. Since
this reinitializing will be performed infrequently, the job control state-
ments to accomplish this are maintained in 2 card deck rather than in
SYS1.PROCLIB.

After a volume has been initialized using DASDI (see Figure 6), the
MOVE /COPY utility for data sets will copy the three data sets (source,
object, load) onto the disk volume (see Figure 27), If additional data
sets were on the original volume, these could be retrieved at this time
by reviewing the listing from the BACKUP procedure and observing the
sequence number of the data set (Figure 26). Figure 28 shows the
results of this copy of data sets from tape to TESTVL.

Note: The MOVE/COPY volume utility will MOVE/COPY with direct
access as the FROM device only. Since FROM (in the MOVE/COPY
volume utility) may not refer to a non-direct access device such as tape,
we must use the MOVE/COPY for data sets rather than volume in order
to retrieve the data sets from tape.

40

TOFT DSHAMESTELT, SOJRLEr TO=2 31 1=TESTYL s FROW=EA00=C BACKURs 00037
1 1 1
A L EST.LOAT: 10=251 I=TEE 1YL F ROM=2400=CBACKUPs 0002y
A i
ESTWL s FRO=E4 00=C BACK s D001+
1 1111

TONIT=Po1 1y YL E=ae = TE ST L s DI SF=T1L T
18 1 mnm 1

e
S
=

i} ifi] OHIT=2400: YOLUME=SER=FACKUR: D1SP=0L]
1] 1] 1 11 in n 1
T THIT=31 L WL ME=SER=111111s D1 SF=0L0

L | 1l |

FTITSPRINT OO SvEduT=R \

. T Far= IEAYE
pm 1
CPREINIT . JOB 007s INGTLHONF: MGLEVEL=1 ,

1 i

ime] 1 10

11 n it 1 1
HBoococBooocooooMEoNooNNoMocooBoMoooNooc000000000006000000000000000000006000000000.00
1234567890 NRBHEETNNNARDNBRTADNNRBHIITHN0N2LUERTEBNI VMBI SBUNCBUGETBROIRIUBET BB
[| ARRARARRI RRRRRE R AR R R R R R AR R R AR R RN E] AR AR R R AR R R R A R R AR R AR R R AR AR AR RRRRRRERRE R
222222222222.22222222I22222.22.222
33333330333333333303330033330333033300333
4444444444444 444444400044488 04444444 4444444444444444440040848884884444444444404
555050555555555555550555555555555 MW55
66666666665666666666666B666666666660666666666666666666666666666666666666666866
177171777177171771 7910717171717 17 111771771 7777717131717777712717171117711171717111717117711117171171
88888888888888883a/0838838888H8338838838308885388885868888888888888888888830888888888

99RoB9eH99999999993909999950999999999993999999999993999999999999999999999995§99999
12345678 910112131 151617181820 21 222324 25 26 27 28 28 30 31 32 33 34 35 36 37 36 39 40 41 42 43 44 45 46 47 48 49 50 51 5253 54 55 56 57 56 5360 61626364 656667686970 T 7273 74 7576 77 718 79 80
OUT PUT

(mssen)
DOCUMENT

BACKUP SEE FIG.

-

28

A. Three COPY utility statements to retrieve the three TESTS libraries. Notice that the
sequence number (BACKUP, 0001) specification corresponds to the sequence number
assigned when BACKUP was executed (see Figure 26).

Figure 27. To reinitialize the TESTS volume

41

SYSTEM SUPPORT UTILITIES ——— IEHMOVE

<:>copy DSNAME=TEST JUBJECT»TO=2311=TESTVL s FRGM=2400=(BACKUP,0001)
DATA SET TEST.OBJECT HAS BEEN COPIED TU VULUME(S)
TESTVL

LoPY DSNAME=TEST .LUADyTO=2311=TESTVL,FRUM=2400=({BACKUP,0002)
MEMBER ASUBL3 HAS BEEN MOVED/COPIED.
MEMBER TEMPNAME HAS BEEN MUVED/CCOPIED.
DATA SET TEST.LOUAD HAS BEEN COPIED TO VOLUMEL(S)
TESTVL

coPy DSNAME=TEST «SUURCLE,»TO=2311=TESTVL +FROM=2400={BACKUP+0003)

MEMBER B13 HAS BEEN MUVED/CGPIED.
MEMBER TEMP HAS BEEN MOVED/COPIED.
DATA SET TEST.SOURCE HAS BEEN COPIED TO VOLUME(S)
TESTVL

1. Note: Although there were no members in this library, the data set still exists, and
the original space that had been allocated is still in effect.

Figure 28. Document received from reinitializing the TESTS volume (see Figure 27
for execution)

42

MULTIPLE JOB FLOW IN "TESTS"

Figure 29 illustrates the processing of multiple programs through the
TESTS environment. The purpose of this figure is to illustrate the
logical flow, rather than the actual format of the statements. The
operations involve programs Al3, SUBA13, B13, C13, and D13.

Al3. To be modified and reassembled.

SUBA13. To be entered as a new source module and link edited with
A13 to form the new executable module ASUB13.

B13. Entered as a new source module to be compiled by COBOL and

executed.

C13 and D13. Both have individually completed the test cycle and are
to be combined into a new load module (CD13) for execution. Both
are members of the object and load module libraries and could be
combined in either format. This example combines the object
modules.

The processing illustrated in Figure 29 has been separated into four jobs:

43

JOBA enters the source decks into the source library or modifies a

module already there.

JOBB assembles or compiles the source modules onto the object
library.

JOBC link-edits the object modules into the load library.

JOBD executes the programs from the JOBLIB (TEST. LOAD) in

~successive job steps.

D5/// EXEC PGM=CDI3

D4/// EXEC PGM= BI3

D3/// EXEC PGM= ASUBI3

b2 /77 JOBLIB DD TEST.LOAD

| —TEST 0BJECT

D13

c
ct/7/ JOBC JOB

BIO 7/ SYSPUNCH DD BI3
B9 77/ SYSIN DD BI3

B8 /// EXEC PROC=TESTCOBL
B7/// SYSPUNCH DD AI3

B6/// SYSIN DD AI3

N Y

B5/7/ EXEC PROC=TESTASSM

B4 7// SYSPUNCH DD SUBAI3
B3 7/ SYSIN DD SUBAI3

B2/// EXEC PROC=TESTASSM

BI(// JOBB JOB

A9/1$OURCE DECK (

SUBAI3
A8// ADD SUBAI3

Csvsres)

e

08/360

AA

—
oo

IEBUPDAT

A2,A5

B3\B8¢9

NGy

SOURCE DECK
A7/ BI3
A6 ./ ADD BI3

A5

// EXEC PROC=NEWSORCE

SOURCE DECK

(a4 >

A4/ A3

NV

0S/360

/

N

A3 CHNGE AI3

A2 /// EXEC PROC=CHGSORCE

Al/// JOBA JOB

44

Figure 29, Job flow of multiple programs from source to execution

ST. SOURCE

W

TESTVL

N
N~

TEST.OBJECT

Job Stream A

Al,
A2,
A3,
A4,
AS.
A6.
A7,
AS8.

A9,

//JOBA JOB

//EXEC PROC=CHGSORCE
./ CHNGE A13

SOURCE for A13

//EXEC PROC=NEWSORCE
./ ADD B13

B13

./ ADD SUBA13

SUBA13

Job Stream B :

B1.
B2,
B3,
B4,
B5,
B6.

B7.

BS.

B9,

B10,

//JOBB JOB

//EXEC PROC=TEST ASSM
//SYSIN DD SUBA13
//SYSPUNCH DD SUBA13
//EXEC PROC=TESTASSM
//SYSIN DD A13

//SYSPUNCH DD A13

//EXEC PROC=TESTCOBL
//SYSIN DD B13

//SYSPUNCH DD B13

Job Stream C

C1.
c2,

C3,

C4.

CS.

C6.

C7.

cs.

Co.

//JOBC JOB
//EXEC PROC=TESTLINK

INCLUDE B13

NAME B13

INCLUDE A13

INCLUDE SUBA13
NAME ASUB13 (R)
INCLUDE (C13,D13)
(Performs same function

as C5 and C6)

NAME CD13 (R)

Job Stream D

Di.
D2,

D3.

D4,

DS,

//JOBD JOB
//JOBLIB DD TEST. LOAD

//EXEC PGM=ASUB13
(DD statements for ASUB13
not shown)

//EXEC PGM=B13
(DD statements for B13 not shown)

//EXEC PGM=CD13
(DD statements for CD13
not shown)

Figure 29 (continued).

Processing Incurred

Job statement indicating start of JOBA.

Invokes the cataloged procedure to update programs already on the source library.
Indicates the nam;a of the program (A13) to be updated in the source library.

The source statements which will apdate A13,

Invokes the cataloged procedure to enter new programs in the source library.
Indicates the name of the program (B13) to be added to TEST,SOURCE.

The deck of source statements comprising B13,

(See A6.) In this case SUBA13 is the new subroutine to be added to TEST,SOURCE.

Source statements for SUBA13,

Specifies JOBB, in this application the language translation,

Invokes the cataloged procedure for Assembler,

Represents the DD statement which specifies the name of the module (SUBA13) to be assembled.
Specifies to the assembler the name (SUBA13) tc; be given the output module on the object library.
(See line B2,) Second job step,

(See B3.) In this case, program A13 which has just been modified is to be recompiled.

(See B4.) The new object module will replace the one named A13 previpusly placed in the
object library.

Invokes the cataloged procedure for COBOL.

Specifies that the name of the COBOL source module to be compiled is B13,
Specifies that B13 is the name to be assigned to the compiled object module.
Processing Incurred

Job statement-start of JOBC. In this case, only one job step occurs,

Tnvokes the cataloged procedure to link-edit object modules into load modules.

Linkage Editor control statement indicating that the name of the first object module to be link
edited is B13.

Specifies that the resultant new load module which becomes a member of TEST, LOAD is to be
named B13,

Linkage Editor control statement indicating that the second object module to be link-edited is
called A13,

(See C5.) Indicates that SUBA13 is to be link-edited with A13,
Specifies that the resultant load module consisting of A13 and SUBA13 is to be entered into

TEST.LOAD and ASUB13.

Linkage Editor control statement indicating that the input for this load module will be object
modules C13 and D13,

Linkage Editor control statement specifying the resultant load module consisting of C13 and D13
should be entered on TEST.LOAD as CD13,

Job statement indicating start of JOBD,
JOBLIB points to the library, TEST.LOAD, containing the programs to be executed in this job step.

Specifies that the first job step will execute program ASUB13, followed by the appropriate DD
statements defining the input and output data sets for this program.

The second job step will execute program B13.

(See line 3,)

The third job step will execute program CD13, (See line 3.)

C20-1663-0

JIBIM

®
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

0-£99T-02D "V 'S'fl UI pajuRd

READER'S COMMENTS

IBM System/360 Operating System
User Libraries (C20-1663-0)

Your comments regarding this publication will help us improve future editions. Please comment on the
usefulness and readability of the publication, suggest additions and deletions, and list specific errors and
omissions.

USEFULNESS AND READABILITY

SUGGESTED ADDITIONS AND DELETIONS

ERRORS AND OMISSIONS (give page numbers)

Name

Title or Position

Address

FOLD ON TWO LINES, STAPLE AND MAIL
No Postage Necessary if Mailed in U.S. A.

C20-1663-0

FIRST CLASS
PERMIT NO. 1359
WHITE PLAINS, N.,Y.

BUSINESS REPLY MAIL

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . . .

IBM Corporation
112 East Post Road
White Plains, N. Y. 10601

Attention: Technical Publications

ER

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
(USA Only)

IBM World Trade Corporation

821 United Nations Plaza, New York, New York 10017
(International)

R EEE]

sessersnee

sesesseer ettt ess s

D R I I I R N N N T YU S AP u

esesscacs

eeese cecssscscce

0-€997-02D °V ' S°Il Ul pajiid

