W WewRIRET . W

SALES and SYSTEMS GUIDE

IBM System/360 Operating System
FORTRAN IV (H)

Program Logic Manual

Program Number 360S-FO-500

This publication describes the internal
design of the IBM System/360 Operating
System FORTRAN IV (H) compiler program.
Program Logic Manuals are intended for use
by IBM customer engineers involved in pro-
gram maintenance, and by system programmers
involved in altering the program design.
Program logic information is not necessary
for program operation and use; therefore,
distribution of this manual is limited to
persons with program maintenance or modi-

2 fication responsibilities.

RESTRICTED DISTRIBUTION

Y20-0012-0

PREFACE

This publication provides customer engi-
neers and other technical personnel with
information describing the internal organi-
zation and operation of the FORTRAN IV (H)
compiler. It is part of an integrated
library of IBM System/360 Operating System
Program Logic Manuals. Other publications
required for an understanding of the
FORTRAN IV (H) compiler are:

IBM System/360 Operating System: Princi-

ples of Operation, Form A22-6821

IBM System/360 Operating System: FORTRAN

IV, Form C28-6515-4

IBM System/360 Operating System: Intro-
duction to Control Program Logic, Pro-
gram Logic Manual, Form Z28-6605

IBM System/360 Operating System: FORTRAN
IV Programmer's Guide, Form C28-6602

Although not required, the following
manuals are related to this publication and
should be consulted:

IBM System/360 Operating System:
tial Access Methods, Program

Sequen-
Logic

Manual, Form Z28-6604

IBM System/360 Operating System: Con-
cepts and Facilities, Form C28-6535

IBM System/360 Operating System: Control
Program Services, Form C28-6541

IBM System/360 Operating System: Linkage
Editor, Program Logic Manual, Form
Z228-6610

IBM System/360 Operating System:
Generation, Form C28-6554

System

This manual consists of two parts:

1. An Introduction, describing the
FORTRAN IV (H) compiler as a whole,
including its relationship to the
operating system. The major compo-
nents of the compiler and the rela-
tionships among them are also des-
cribed.

2. A Body, containing a description of
each component. Each component is
described in sufficient detail to ena-
ble the reader to understand its oper-
ation, and to provide a frame of
reference for the comments and coding
supplied in the program listing. Com—
mon data, such as tables, blocks, and
work areas are discussed only to the
extent required to understand the
logic of each component. Flowcharts
and subroutine directories are includ-
ed at the end of this section.

Following the second part are a number
of appendixes, which .contain reference
material.

If more detailed information is
required, the reader should refer to the
comments, remarks, and coding in the

FORTRAN IV (H) program listing.

This publication was prepared for production using an IBM computer to

update the text and to

Printer using a special print chain.

control the page and 1line
impressions for photo-offset printing were obtained from an

format. Page
IBM 1403

This publication is intended for use by IBM personnel only and may not be made
available to others without the approval of local IBM management,

Address comments concerning this publication to the IBM Corporation, Programming
Systems Publications, Department D58, PO Box 390, Poughkeepsie, N,Y. 12602,

© International Business Machines Corporation, 1966

AN

-

CONTENTS

SECTION 1: INTRODUCTION . . . « « « « « 5 Reordering the Statement Number
Chain -« o« @ o« ¢ ¢ o o o o o« = « « 31
Purpose of the Compiler. 5 Gathering Backward Connection
Information « « « ¢« <« ¢« ¢ « < . . 31
The Compiler and Operating System/360. . 5 CORAL Processinge. « « « « « « = « « o 34
Translation of Data Text 34
Input/Output Data Flow . « . « « « « « « 5 Relative Address Assignment. . . . 34
Rechaining Data Text . . « 37
Compiler Organization. . . « « . .« . . . 6 Reserving Space in the Adcon
FORTRAN System Director 6 Table « o ¢ o ¢ o o ¢ o o o o« « « 37
Phase 10. . . . ¢ ¢ o ¢ ¢ o o « o « « 1 Producing a Storage Map. . « . . . 37
Phase 15. . ¢ ¢ ¢ o 6 o @ o o o o o « 1
Phase 20. -« o ¢ ¢ 0 = o o = o o o o -« 1 Phase 20 o ¢ ¢ « o o o « o« o « « o « « « 38
Phase 25. ¢ ¢ ¢ 4 @ @ o ¢ o o o o « &« 1 Control FlOWe ©w o « o « o o « « « « « 39
Phase 30. . ¢ o ¢ o o« ¢« o e « « « « « 8 Register Assignment « . . < 39
Basic Register Assignment. 40
Structure of the Compiler. 8 Full Register Assignment 42
Branching Optimization. U6
SECTION 2: DISCUSSION OF MAJOR Reserved Registers « U6
COMPONENTS. « ¢« « « « o @« o o o« « o =« « 9 Reserved Register Addresses. . . . U7

Block Determination and
FORTRAN System Director. . « « « « « « « 9 Subsequent Processing 47
Compiler Initialization 9 Structural Determination. 47
Parameter Processing . « « « « « « 9 Determination of Back Dominators . 52
Data Field Initialization. 9 Determination of Back Targets
Phase Loading « . « « « ¢« = =« « « « « 9 and Depth Numbers . . « « « « « « 52
9

Storage Distribution. Identifying and Ordering Loops

‘Phase 10 Storage « « « « « - « - - 10 for Processing. « « « <« <« <« «. . < 53
Phase 15 Storage . « . « 12 Busy-On-Exit Information. 54
Phase 20 Storage . . . B] Loop Selection. « « &« ¢« = & « « « « « 55
Input/Output Request Proce551ng e« o 14 Pointer to Back Target . . « . . - 56
Request Format <. . . 14 Pointer to Forward Target. 56
Request Processing « . . -« 14 Pointers to First and Last
Deletion of a Compilation 14 BlOCKS. « « o« ¢ o o o o o o « « « 57
Compiler Termination. . « « « « « « « 14 Loop Composite Matrixes. . . « . . 57
Text Optimization . . « < « « « « « o 57
Phase 10 ¢ ¢ ¢ ¢ ¢ o o o o o « o « « = « 14 Common Expression Elimination. . . 58
Source Statement Processing 15 Forward Movement . . . « « « . . - 59
Dispatcher Subroutine. 16 Backward Movement. < . . . 60
Preparatory Subroutine 16 Constant Expression Reordering . . 61
Keyword Subroutines. 16 Strength Reduction 65
Arithmetic Subroutines 17 Full Register Assignment During
Utility Subroutines. 18 Complete Optimization. « . . . « . . 66
Branching Optimization During
Phase 15 . ¢ ¢ ¢ ¢ ¢ @ ¢ ¢ e o o = « « « 19 Complete Optimization. 67

STALL Processing. « « « « o « « « « o 19
Rechaining Entries for Variables . 19 Phase 25 ¢ « ¢ ¢« o 4 o ¢ o o o o « =« o« « 67

Checking for Undefined Statement Text Information. ¢« « <« « « . 67
Numbers . « « ¢ ¢ o« ¢ & « « « « - 20 Adcon Table Entry Reservation. . . 70
Processing of Common Entries in Constant Processing. - . « « « . . 70
the Information Table 20 Variable and Array Processing: . . 71
Processing of Equivalence FORMAT Statement Processing. . . . 71
Entries in the Information NAMELIST Statement Processing. . . 71
Table v ¢« ¢ ¢ ¢ o o o =« o « « « - 20 Initialization Instructions. . . . 72
PHAZ15 ProcessSing « « « « « « « « « o 20 Adcon Table Processing . . « . . . 73
Text Blocking. « . 21 Phase 15 Data Text Processing. . . 73
Arithmetic Translation 204 Prologue and Epilogue Generation . 74
Gathering Constant/Variable Text Conversion. 74
Usage Information < . 27 External Symbol Dictionary. 78
Gathering Forward Connectlon Relocation Dictionary . . « -« . . « . 78

Informatlon e e o 8 s s e = o o « 29
Phase 30 v o o« @ o o« o« « « « « o« « =« =« « 18

Message Processing . « . « « « « =«

APPENDIX A: TABLES. . <« « « o« « o « «

Communication Table (NPTR)«
Classification Tables. « o « « « « « «

Information Table. « ¢« « « o .
Information Table Chains.
Chain Construction. . . . « o .
Operation of Information Table

Chains « v« ¢ ¢« @ ¢ o v o« o o o o «
Dictionary Chain Operation . . .
Statement Number Chain Operation
Common Chain Operation
Equivalence Chain Operation. . .
Literal Constant Chain Operation
Branch Table Chain Operation . .

Information Table Components. . .
Dictionary . . . « « « o « « «
Statement Number/Array Table . .
Common Table « « . « .
Literal Table. . . « « « « . .
Branch Table « « « « « &

.

Subprogram Table

Register Assignment Tables
Register Use Table« . . .

Operator Table e e ..
NAMELIST Dictionaries. . . «

Diagnostic Message Tables.
Error Table « « « « . .
Message Pointer Table

APPENDIX B: INTERMEDIATE TEXT
Phase 10 Intermediate Text
Intermediate Text Chains « o
Format of Intermediate Text
Entry . . . “« o e e e
Examples of Phase 10
Intermediate TexXt o o o o o « o

Phase 15/Phase 20 Intermediate
MOdificationsS .« « o & o o o o o o ©
Phase 15 Intermediate Text
ModificationS. « « « ¢ « o « « o o
Unchanged TeXt . « « « o « o « «
Phase 15 Data Text
Statement Number Text. . « « « .
Standard Texte o« « « o o « = « o«
Phase 20 Intermediate Text
Modification . .+ . . .+ <« < . .« .
Standard Text Formats Resultlng
from Phases 15 and 20 Processing .

APPENDIX C: ARRAYS. . & ¢ ¢ « « « « «

APPENDIX D: TEXT OPTIMIZATION
EXAMPLES. o o o« o o o o o o o o = o @
Example 1: Common Expression
Elimination . . « « <« <« « « .« .

78

-122

.122

.123

-126

.126
127

<127

<127

.128
.129

.129

-130

.130
.130

.130
.134
.138

-.140
<141

<142

.145
. 145

.146

-147

-148

.148

.148

.149
-149
.149

-150

.151

.154

. 154
.155

.155
.155
.159

-160

.161

-.170

.178

.178

Example 2: Forward Movement . .
Exarple 3: Backward Movement . .
Example 3': Simple-Store
Elimination . . « « « « .« <« . .
Example 4: Constant Expression
Reordering. . . - . .« e
Example 5: Strength Reductlon. .
APPENDIX E: IHCFCOMH: w o « o o « o« «
READ/WRITE routines. - -
READ/WRITE Statements Not U31ng
NAMELIST. o o o o o o o o o o =
READ/WRITE Statement Using
NAMELISTe « « « o o o = o = « =

Device Manipulation Routines
Write-To-Operator Routines
Utility Routines . < . . ¢ &« ¢« ¢ o & &
Conversion Routines.« . . .

APPENDIX F: JHCFIOSH:e @« @ o o o o o
Blocks And Table . o ¢ 2 o o @ o o « =
Unit Blocks+ = e e e s s
Unit Block Sectlons. e« e e s e e

Unit Assignment Table
Default Values . « « « « « « « «

Bufferinge. « o« o« « o« « o o o o o o o

Communication with the Control Program
OperatioNe « « « o o o = o 2 o« o = o
Initialization. « . « <« « « & « . .
No Previous Operation.
Previous Operation Read/erte. -
Previous Operation Backspace . .
Previous Operation Write
End-of-Data Set or Read Taking
"END=" EXit o« « ¢ @ « o = « .
Previous Operation Rewind. .
Reade ¢ ¢ o o o @ o o o = o « o« =
WEite o @ v @ @ 6 v o o o o o o =
Device Manipulation
BacksSpace. « « o o ¢ o « o w o
Rewind e o o o o
Write End-of-Data Set. « o e o
ClOSING o o o o o o o o @ o o « o

EXror ProcCesSsSing « « « o o « « o o o =

APPENDIX G: ADDRESS COMPUTATION

ARRAY ELEMENTS. « « « = « e o e o
Absorption of Constants in

Subscript Expressions

Arrays as Parameters

APPENDIX H: COMPILER STRUCTURE. . . .

APPENDIX I: DIAGNOSTIC MESSAGES . . .

INDEXae « o o o o o o o o o o o « o o =

.179
.180

.181

.182
.183

.185
-185
.185
.188
.188
.189
-189
-.190
.195
.195
-195
.195
.196
-196
-.196
.197
«197
.197
.197

-197
-197

-197
-198
-198
-198
-198
.198
.199
-199
.199

-199

-203

.203
- 204

. 205
-.214

.218

a

N

Figure 0.
Figure 1.

Input/Output Data Flow. . .
Storage Inventory for Phase
10 Normal, SF Skeleton, and Data Text
Figure 2. Chaining of Unused Text
Area Main Storage . « « « o « « o <
Figure 3. Format of Prepared Source
Statement e e e @ o o @
Figure 4. Text Blocklng “ e e e o e o
Figure 5. Text Reordering Via the
Pushdown Table. « <« « <« . . .
Figure 6. Forward Connection
Information . . . <« . ¢ ¢ &« & & .+ . .
Figure 7. Backward Connection
Information 2 . ¢ « o o o . .
Figure 8. Back Dominators« .
Figure 9. Back Targets and Depth
Numbers . . . « e e e e . e e
Figure 10.
or Additive-Additive Transformation .
Figure 11. Additive-Multiplicative
Transformation. . . « « « « « « « . .
Figure 12. Storage Layout for Text
Information Construction.
Figure 13. Information Table Chains .
Figure 14. Dictionary Chain
Figure 15. Format of Dictionary Entry
for variable.
Figure 16. Function of Each Subfleld
in the Byte A Usage Field of a
Dictionary Entry for a Variable . . .
Figure 17. Function of Each Subfield
in the Byte B Usage Field of a
Dictionary Entry for a Variable . . .
Figure 18. Format of Dictionary Entry
for variable After Sorting.
Figure 19. Format of Dictionary Entry
for Variable After Commom Block
Processing. « « « « o o o o o o o @« @
Figure 20. Format of Dictionary Entry
for Variable After PHAZ15 Processing.
Figure 21. Format of Dictionary Entry
for a vVariable After Relative Address
Assignment. . . < ¢ ¢ < 4 « « « o « =
Figure 22. Format of Dictionary Entry
for Constant. & & & « « & . .
Figure 23. Format of Dictionary Entry
for Constant After Sorting.
Figure 24. Format of Dictionary for
Constant After PHAZ15 Processing. . .
Figure 25. Format of Dictionary Entry
for Constant After Relative Address
Assignment. . . <« « « 4 o o o o « o
Figure 26. Format of a Statement
Number Entry. . . . « e .
Figure 27. Function of Each Subfleld
in the Byte A Usage Field of a
Statement Number Entry. . .
Figure 28. Function of Each Subfleld
in the Byte B Usage Field of a
Statement Number Entry.

. 6
- 11
. 13

. 16
. 23

. 25
. 30

. 33
. 49

. 51

Multiplicative-Multiplicative

. 62
. 63
. 69
127
.128

.130

.131

.131

.132

.133

.133

.133
.133
.134

.134

.134

.135

.135

.136

FIGURES

Figure 29. Format of Statement Number
Entry After the Processing of Phases
15, 20, and 25.

Figure 30. Function of Each Subfleld
in the Block Status Field

Figure 31. Format of Dimension Entry.

Figure 32. Format of a Common Block
Name ENtry. « « o ¢ o o o o o a « « =

Figure 33. Format of Common Block
Name Entry After Common Block
Processing. « « « o o o o © o o o o =

Figure 35. Format of an Equivalence
Group Entry « « <« o <« < o o o & & o o

Figure 36. Format of Equivalence
Group Entry After Equivalence
ProcessSinge « « « o o o o o o o « =

Figure 37. Format of Equivalence
Variable Entry.« « < « . .

Figure 38. Format of Equivalence
Variable Entry After Equivalence
PrOCeSSinga « o o o o o o o o o a « =

Figure 39. Format of Literal Constant
Entry « « « ¢« ¢« <« o o . .

Figure 40. Format of Literal Constant
Entry After Relative Address
Assignment ¢ e 2 e o « + o

Figure 41. Format of Literal Data
ENtry v o o o o o o o o o o o o 2 o «

Figure 42. Format on Initial Branch
Table Entry - - . -

Figure 43. Format of In1t1al Branch
Table Entry After Phase 25
Processing .« « ¢ o« o o « o o o o o o

Figure 44. Format of Standard Branch
Table Entry . . . e e e e e e e e

Figure 45. Format of Standard Branch
Table Entry After Phase 25
Processing « ¢ « o o o o « s o o o o

Figure 46. Format of Namelist Name
ENntry « ¢« ¢« o o 2o o o ¢ o o o o o o o

Figure 47. Format of Namelist
Variable Entry. -« . ¢ « . o

Figure 48. Format of Namelist Array
Entry « « o ¢ ¢ ¢ o ¢ o o o o o o o o

Figure 49. Intermediate Text Entry
FOrmat. « o v« o« o @ o o o o o o o « =

Figure 50. Phase 10 Normal Text . . .

Figure 51. Phase 10 Data Text

Figure 52. Phase 10 Namelist Text . .

Figure 53. Phase 10 Format Text. . . .

Figure 54. Phase 10 SF Skeleton Text .

Figure 55. Format of Phase 15 Data
Text ENtry. « o o o o o o o o o o o «

Figure 56. Function of Each Subfield
in Indicator Field of Phase 15 Data
TexXt ENtry. « o o o o o o o o o o o =

Figure 57. Format of Statement Number
TeXt ENtIYe o« o« o o o o o o o o « « =

Figure 58. Function of Each Subfield
in Indicator Field of Statement
Number Text Entry « « . . .

-136

.137
.138

-139

-139

-139

.140

.140

-140

140

-141
<141

.14l

.142

<142

~142
-1u6
.146
.146
-150
.152
-152
-153
-154
.154

-155

155

.156

-159

Figure 59.
Entry . .
Figure 60.
Entry . .
Figure 61.

Format of a Standard Text

e o * o a @ e« o a a « « « «159

Format of Phase 20 Text
@ e o e o e s e e « e« « - <160

Compiler Overlay Structure .206

.

TABLES

Table 1. Operators and Forcing Table 22. Global Assignment Tables. . .145
Strengths & . ¢ & o o . . 204 Table 23. Operator Table.1U46
Table 2. Item Types and Registers Table 24. Adjective Codes150
Assigned in Basic Register Table 25. Phase 15/20 Operators157
Assignment. . . . ¢ ¢ ¢ 4 < e « o .« o . 80 Table 26. Meanings of Bits in Mode

Table 3. Text Entry Types . . -« . « . . 58 Field of Standard Text Entry.160

Table 4. Operand Characteristics That Table 27. Status Field Bits and Their
Permit Simple-Store Elimination 61 MEaningS. « « « « ¢ « o o o o « = « « 2160

Table 5. FORMAT Statement Translation . 71 Table 28. Processing of Format Codes. .186
Table 6. FSD Subroutine Directory . . . 83 Table 29. IHCFCOMH Subroutine

Table 7. Phase 10 Source Statement DIirectory « « o« o o o o o « = = » <« = =194
Processing. « « « « « ¢« ¢ ¢« « = « « - .« 85 Table 30. IHCFIOSH Subroutine
Table 8. Phase 10 Subroutine DiYeCtOry o v o o = o o o 2 =« « = « = 2202
DIiYeCtOry « v« o« o o o o o o « « « « = « 86 Table 31. Phases and Their Segments . .207
Table 9. Phase 15 Subroutine Table 32. Segment-1 Composition207
DireCtOry « « « o o o o« ¢ o o« « =« « « « 96 Table 33. Segment-2 Composition208
Table 10. Criteria for Text Table 34. Segment-3 Composition208
Optimization. . . . « « « « « - « < . .110 Table 35. Segment-4 Composition208
Table 11. Phase 20 Subroutine Table 36. Segment-5 Composition208
Directory . .« « « ¢ ¢ v ¢ o o « « « - 2111 Table 37. Segment-6 Composition208
Table 12. Phase 20 Utility Table 38. Segment-7 Composition209
Subroutines < & . o . . 21184 Table 39. Segment-8 Composition209
Table 13. Phase 25 Subroutine Table 40. Segment-9 Composition209
DirectOry . « « o o @ o o = o o « « o 2117 Table 41. Segment-10 Composition. . . .210
Table 14. Phase 30 Subroutine Table 42. Segment-11 Composition. . . .210
DIirXectory « « o« o o o« o o « o « « « « 2121 Table 43. Segment-12 Composition. . . .210
Table 15. Communication Table Table 44. Segment-13 Composition. . . .211
(NPTR(2,35))e ¢ &« o ¢ ¢ v @ o o « « - 2123 Table 45. Segment-14 Composition. . . .211
Table 16. Keyword Pointer Table124 Table 46. Segment-15 Composition. . . .211
Table 17. Keyword Table125 Table 47. Segment-16 Composition. . . .211
Table 18. Operand Modes . . . «132 Table 48. Segment-17 Composition. . . .212
Table 19. Operand TYPES « « « « « « « <132 Table 49. Segment-18 Composition. . . .212
Table 20. Subprogram Table.1lu44 Table 50. Segment-19 Composition. . . .212
Table 21. Local Assignment Tables . . .145 Table 51. Segment-20 Composition. . . .213

CHARTS C\“

Chart 00. Compiler Control Flow . .
Chart 01. FSD Overall Logic
Chart 02. FSD Storage Distribution.
Chart 03. Phase 10 Overall Logic. .
Chart O4. Phase 15 Overall Logic. .
Chart 05. STALL Overall Logic . . .
Chart 06. PHAZ15 Overall Logic. . .
Chart 07. ALTRAN Control Flow . . .

80 Chart 17. Table Building (FWDPAS) . . .106
81 Chart 18. Local Assignment (BKPAS). . .107
82 Chart 19. Global Assignment (GLOBAS). .108
84 Chart 20. Text Updating (STXTR)109
Chart 21. Phase 25 (Initial Text Info

91 CONSt)e = ¢ o o o @ o o« o« « o« o « o « =115
92 Chart 22. Phase 25 (Text Conversion). .116
93 Chart 23. Phase 30 (IEKP30) Overall

94 LOGIiC v o « « o o o o o = o o =« o « « 2120
95 Chart 24. TIHCFCOMH Logic and Utilit

Chart 08. GENER - Text Generation
Chart 09. CORAL Overall Logic . .

¢ 6 8 8 s 8 3 B 0 B
O
(=]

e 8 & s 0 i & 2 2

Chart 10. Phase 20 Overall Logic. . 99 REN ¢ v 6 e o a o o o o o = o o » = » <191
Chart 11. Cmmn Xpressn Elmntn Chart 25. Implementation of RD/WR
(XPELIM). e e e o e e e o e « - - . 2100 Srce StIHNtS « @ « o o« o o « = « « « « 2192

Chart 12. Forward Movement (FORMOV) . .101 Chart 26. Dvce Mnpltn, WR to Oprtr,

Chart 13. Backward Movement (BACMOV). .102 RD/WR NMLST &« o« o « o o o o « « « « = =193

Chart 14. Constant Xprssn Reordrng Chart 27. IHCFIOSH Overall Logic. . . .200
(AGGLUT) e « « o o « o o o =« = o« « « « 2103 Chart 28. Execution-Time I/O Recovery

Chart 15. Strength Reduction (REDUCE) .104 PrOge o« o o o o o o o o o = =« « « = =« 201

Chart 16. Full Register Assignment
(REGAS) @« v v o« = « = o « o« o « o« « o« 2105

[SN
1

o

-~

This
tion describing the purpose of the

section contains general informa-
FORTRAN

Iv (H) compiler, its relationship to the
operating system, its input/output data
flow, its organization, and its structure.

PURPOSE OF THE COMPIILER

The IBM System/360 Operating System
FORTRAN IV (H) compiler transforms source
modules written in the FORTRAN 1V language
into object modules that are suitable for
input to the linkage editor for subsequent
execution on the System/360. At the user's
option, the compiler produces optimized
object modules (modules that can be execut-
ed with improved efficiency).

THE COMPILER AND OPERATING SYSTEM/360

The FORTRAN IV (H) compiler is a pro-
cessing program which communicates with the
System/360 Operating System control program
for input/output and other services. A
general description of the control program
is given in the publication IBM System/360
Operating System: Introduction to Control

Program Logic, Program Logic Manual.

A compilation, or a batch of compila-
tions, is requested using the job statement

SECTION 1: INTRODUCTION

(JOB), the execute statement (EXEC), and
data definition statements (DD). Alterna-
tively, cataloged procedures may be used.
A discussion of FORTRAN IV compilation and
the available cataloged procedures is given
in the publication IBM System/360 Operating
System: FORTRAN IV Programmer's Guide.

The compiler receives control from the
calling program (e.g., job scheduler or
another program that calls, links to, or
attaches the compiler). Once the compiler
receives control, it communicates with the

control program through the FORTRAN system
director, a part of the compiler that
controls compiler processing. After com-

piler processing is completed, control is
returned to the operating system.

INPUT/OUTPUT DATA FLOW

The source modules to be compiled are
read in from the SYSIN data set. Compiler
output is placed on the SYSLIN, SYSPRINT,
or SYSPUNCH data set, depending on the
options specified by the FORTRAN program-
mer. (The SYSPRINT data set 1is always
required for compilation.)

The overall data flow and the data sets
used for the compilation are illustrated in
Figure O.

Section 1: Introduction 5

/

SYSIN

Source
Module (s)

'

FORTRAN IV
(H) Compiler

Y

| | | | | |

SOURCE MAP LOAD DECK LIST For all
Option Option Option Option Option compilations
Object Module Object Module Obiect Error and
,3\°‘;'°|e Storage (ESD, TXT, (ESD, TXT, Pr:'f:m Warning
L?Pe Map RLD, and END RLD, and END Lkz@ messages
isting card images) card images) (if any)
SYSPRINT SYSPRINT SYSLIN SYSPUNCH SYSPRINT SYSPRINT

Figure 0. Input/Output Data Flow

COMPILER ORGANIZATION external symbol dictionary (ESD) contains
‘ the external symbols that have been defined
or referred to in the source module. The
The IBM System/360 Operating System relocation dictionary (RLD) contains infor-
FORTRAN IV (H) compiler consists of the mation about - address constants in the
FORTRAN system director, four logical pro- object module.
cessing phases (phases 10, 15, 20, and 25),
and an error-handling phase (phase30).

The functions of the components of the
Control 1is passed among the phases of compiler are described in the following
the compiler via the FORTRAN system direc- paragraphs.
tor. After each phase has been executed,
the FORTRAN system director determines the
next phase to be executed, and calls that
phase. The flow of control within the
compiler is illustrated in Chart 00.

The components of the compiler operating FORTRAN SYSTEM DIRECTOR
together produce an object module from a
FORTRAN source module. The object module

is acceptable as input to the 1linkage The FORTRAN system director (FSD) con-
editor, which prepares object modules for trols compiler processing. It initializes
relocatable loading and execution. compiler operation, calls the phases for

execution, and distributes. and keeps track

The object module consists of control of the main storage used during the compi-

dictionaries (external symbol dictionary lation. In addition, the FSD receives the

and relocation dictionary), text various input/output requests of the com-

(representing the actual machine instruc- piler phases and submits them to the con-
tions and data), and an END statement. The trol program.

.

»

PHASE 10

Phase 10
SYSIN data

accepts as input (from the
set) the individual source
statements of the source module. If a
source module 1listing 1is requested, the
source statements are recorded on the SYS-
PRINT data set. ‘Phase 10 converts each
source statement 1into a form usable as
input by succeeding phases. This usable
input consists of an intermediate text
representation (in operator-operand pair
format) of each source statement. In addi-
tion, phase 10 makes entries in an informa-
tion table for the variables, constants,
literals, statement numbers, etc., that
appear in the source statements. During
this conversion process, phase 10 also
analyzes the source statements for syntac-
tical errors. If errors are encountered,
phase 10 passes to phase 30 (by making
entries in the error table) the information
needed to print the appropriate error mes-
sages.

PHASE 15

Phase 15 gathers additional information
about the source module and modifies some
intermediate text entries to facilitate
optimization by phase 20 and instruction
generation by phase 25. Phase 15 is divid-
ed into three segments that perform the
following functions:

e The first segment adds data to the
information table about COMMON and
EQUIVALENCE statements so that main
storage space can be allocated correct-
ly in the object module.

e The next segment tranlates text entries
(in operator-operand pair format) rep-
resenting arithmetic operations into a
four-part form, which is needed for
optimization by phase 20 and
instruction-generation by phase 25.
This part of phase 15 also gathers
information about the source module

that is needed for optimization by
phase 20.

e The last segment of phase 15 assigns
relative addresses, and where
necessary, address constants to the

named variables and constants in the
source module. This segment also con-
verts intermediate text (in operator-
operand pair format) representing DATA

statements to a variable-initial value
form, which facilitates later
assignment of a constant value to a
variable. In addition, this segment

produces a storage map if the MAP

option is specified.

Phase 15 also passes to phase 30 the
information needed to print the appropriate
messages for the errors detected during

phase 15 processing. (This is done by
making entries in the error table.)
PHASE 20

Phase 20 processing depends on whether

or not optimization has been requested and,
if so, the degree of optimization desired.

If optimization has not been specified,
phase 20 assigns registers for use during
execution of the object module. However,
phase 20 does not take full advantage of
all registers and makes no effort to keep
frequently used quantities in registers to
eliminate the need for some wmachine
instructions.

If a moderate amount of optimization is
specified, phase 20 wuses all availakle
registers and keeps frequently used guanti-
ties in registers wherever possible. Phase
20 takes other measures to reduce the size
of the object module, and provides informa-
tion about operands to phase 25.

If complete optimization has been speci-
fied, phase 20 wuses other techniques to
make a more efficient object module. The
net result of these procedures is to elimi-
nate unnecessary instructions and to elimi-
nate needless execution of instructions.

During processing, phase 20 also records
directly on the SYSPRINT data set messages
describing any errors it detects.

PHASE 25

Phase 25 produces an object module from
the combined output of the preceding phases
of the compiler.

The text information (instructions and
data resulting from the compilation) is in
a relocatable machine 1language form. It
may contain unresolved external symbolic
cross references (i.e., references to sym-
bols that do not appear in the source
module). The external symbol dictionary
contains the information required by the
linkage editor to resolve external symbolic
cross references, and the relocation dic-
tionary contains the information needed by

the 1linkage editor to relocate the text
information.
Phase 25 places the object module

resulting from the compilation on the SY¥S-

Section 1: Introduction 7

LIN data set if the LOAD option is speci-
fied, and on the SYSPUNCH data set if the
DECK option is specified. Phase 25 also
produces an object module 1listing on the
SYSPRINT data set if the LIST option is
specified. Messages for any errors detect-
ed during phase 25 processing are also
recorded directly on SYSPRINT.

PHASE 30

Phase 30 ,is called after phase 15 pro-
cessing is completed only if errors are
detected by phases 10 or 15. Phase 30

records on the SYSPRINT data set messages
describing the detected errors.

STRUCTURE OF THE COMPILER

The FORTRAN IV (H) compiler is struc-
tured in a planned overlay fashion, which
consists of 20 segments. The root segment
is the FORTRAN system director. Each of
the remaining 19 segments constitutes a
phase or a logical portion of a phase. A
detailed discussion of the compiler's
planned overlay structure 1is given in
Appendix H.

The following paragraphs and associated
flowcharts at the end of this section
describe the major components of the
FORTRAN IV (H) compiler. Each component is
described to the extent necessary to
explain its function(s) and general opera-
tion.

FORTRAN SYSTEM DIRECTOR

The FORTRAN System Director (FSD) con-
trols compiler processing; its overall
logic is illustrated in Chart 0l. The FSD
receives control from the job scheduler if
the compilation is defined as a job step in
an EXEC statement. The FSD may also
receive control from another program
through use of one of the system macro-
instructions (CALL, LINK, or ATTACH).

The FSD performs compiler
initialization, phase loading, storage dis-
tribution (including storage inventory),
input/output request processing, compila-
tion deletion, and compiler termination.

COMPILER INITIALIZATION

The initialization of compiler process-
ing by the FSD consists of two steps:

¢ Parameter processing.
e Data field initialization.

Parameter Processing

When the FSD is given control, the
address of a parameter list with a single
entry is contained in a register. The
entry in that list contains a pointer to a
main storage area that contains an image of
the options (e.g., SOURCE, MAP) specified
for the compilation. The FSD scans this
storage area and sets indicators to reflect
the options specified. These indicators
are placed into the communication table
(refer to Appendix A, "Communication
Table") during data field initialization.

SECTION 2: DISCUSSION OF MAJOR COMPONENTS

Data Field Initialization

Data field initialization is concerned
with the communication table, which is a
central gathering area used to communicate
information among the phases of the compil-
er. It contains information such as:

e User specified optionms.

e Pointers indicating the next available
locations within the various storage
areas.

e Pointers to the initial entries in the
various types of chains (refer to
Appendix A, "Information Table" and
Appendix B, "Intermediate Text").

e Name of the source module being com-
piled.

e An indication of the phase currently in
control.

The various fields of the communication
table, which are filled during a compila-
tion, must be initialized before the next
compilation. To initialize this region,
the FSD clears it and places the option
indicators into the fields reserved for
then.

PHASE LOADING

The FSD loads and passes control to each
phase of the compiler by means of a stand-
ard calling sequence. The execution of the
call causes control to be passed to the
overlay supervisor, which calls program
fetch to read in the phase. Control is
then returned to the overlay supervisor,
which branches to the phase. The phases
are called for execution in the following
sequence: phase 10, phase 15, phase 20, and
phase 25. However, if errors are detected
by phase 10 or phase 15, phase 30 is called
after the completion of phase 15 process-
ing.

STORAGE DISTRIBUTION

Phases 10, 15, and 20 require main
storage space in which to construct the
information table (refer +to Appendix A,

Section 2: Discussion of Major Components 9

"Information Table") and to collect inter-
mediate text entries. These phases obtain
this storage space by submitting requests
to the FSD (at entry point GETCOR), which
allocates the required space, if available,
and returns to the requesting phase poin-
ters to both the beginning and end of the
allocated storage space. If main storage
space is not available, the FSD deletes the
compilation.

The main storage space available for
building the information table or for col-
lecting text entries is assembled into the
FSD in the form of define storage (DS)
statements. The distribution of the avai-
lable storage by the FSD depends upon the
phase requesting the storage. For this
reason, the remainder of this discussion is
divided into three parts: the first relat-
ing to phase 10, the second to phase 15,
and the third to phase 20.

Phase 10 Storage

Phase 10 can use all of the available
storage space for building the information
table and for collecting text entries. At
first, the FSD presents the entire block of
available main storage space to phase 10
for use in building the information table.
At each phase 10 request for main storage
in which to collect text entries, the FSD
reallocates a portion (i.e., a sub-block)
of the storage (first allocated to the
information table) for text collection, and
returns to phase 10 either via the communi-
cation table or the storage area P10A
(depending upon the type of text to be
collected in the sub-block; refer to Appen-
dix B, "Phase 10 Intermediate Text") poin-
ters to both the beginning and end of the

-allocated storage space. If the sub-klock
is allocated for phase 10 normal text, the
pointers are returned in the communication
table. If the sub-block is allocated for a
phase 10 text type other than normal text,
the pointers are returned via the storage
area P10A. After the storage has been
allocated, the FSD adjusts the end of the
information table downward by the size of
the allocated sub-block. This process is
repeated for each phase 10 request for main
storage space in which to collect text
entries. (If the last information table
entry and the sub-block to be allocated for
text collection would overlap, the availa-

10

ble storage 1is split, with one part being
allocated for building the information
table and the other for collecting text
entries.)

The size of each sub-block allocated for
the collection of phase 10 text entries
depends upon the type of the text entries
that are to be placed into the sub-block.
All sub-blocks allocated to contain the
same type of phase 10 text entries are of
the same size.

Sub-blocks to contain phase 10 text
entries are allocated in the order in which

requests for main storage are received.
(When phase 10 completely fills one sub-
block with text entries, it requests

another.) A request for a sub-block to
contain a particular type of text entries
may immediately follow a regquest for a
sub-block to contain another type of text
entries. Consequently, sub-blocks allocat-
ed to contain the same type of text entries
may be scattered throughout main storage.
The FSD must keep track of the sub-blocks
so that, at the completion of phase 10
processing, unused or unnecessary storage
may be allocated to phase 15. The manner
in which the FSD keeps track of sub-blocks
allocated to phase 10 is described in the
following paragraph.

Phase 10 Storage Inventory: The FSD
enploys a pointer table and chains (see
Figure 1) +to keep track of the sub-blocks
allocated for phase 10 text entries. If
the sub-block allocated is the first to be
used for the collection of a particular
type of phase 10 text, the FSD places a
pointer to that sub-block into the pointer
table. After the initial 1ink is esta-
blished, the size of the subk-block is
placed into the sub-block itself. If a
second sub-block is allocated for the same
purpose, the FSD places a pointer to it
into the first word of the first sub-block
allocated for that purpose. The size of
the sub-block is then placed 1into the
sub-block itself. If a third sub-block is
allocated for the same purpose, the same
procedure 1is followed, with a pointer to
the third sub-block being placed into the
first word of the second sub-block. Figure
1 illustrates this concept as applied to
sub-blocks allocated to contain phase 10
normal, SF skeleton, and data text. (The
pointer field of the last sub-block of each
type is always zero.)

N

C

FSD Pointer Table

~e—End

Available Storage

(initially all allocated
to information table)

Pointer
Pointer
Pointer)
Pointer Size
First sub-block allocated for
normal test entries
Pointer Size
First sub-block allocated for
SF skelton text entries
Pointer Size
First sub-block allocated for
data text entries
Pointer Size
Second sub-block allocated for
normal text entries
Pointer Size
Second sub-block allocated for
SF skelton text entries
_‘. . .
Pointer Size
Third sub-block allocated for
normal text entries
Pointer Size
Second sub-block allocated for
data text entries
0 Size
Last sub-block allocated for
SF skelton text entries
0 Size .
Last sub=block allocated for
data text entries
0 Size
Last sub-block allocated for
. normal text entries
i
+ Current Storage Available for Information Table
Start
* Current end of information table storage, which
may float downward if additional storage is
required by phase 10 for text collection
Figure 1. Storage Inventory for Phase 10 Normal, SF Skeleton, and Data Text

Section 2:

Discussion of Major Components

11

Phase 15 Storage

Phase 15, in collecting the text entries
that it creates, can use only those por-
tions of main storage that are (1) unused
by phase 10, and (2) occupied by phase 10
normal text entries that have been pro-
cessed by phase 15. The FSD first allo-
cates all unused storage (if necessary) to
phase 15. If this is not sufficient, the
FSD then allocates the storage occupied by
phase 10 normal text entries that have
undergone phase 15 processing.

The main
consists of:

storage not used by phase 10

¢ The portion between the last sub-block
allocated to phase 10 for text collec-
tion and the end of the information
table.

¢ Those portions of the sub-blocks allo-
cated to phase 10 that do not contain
text entries. (The last sub-block
allocated to each type of phase 10 text
may not be completely filled.)

After phase 10 processing is complete,
the FSD splits the storage area between the
last sub-block allocated to phase 10 and
the last information table entry, allocates
one part to the information table, and
treats the other part as an unused text
storage area. The individual portions of
unused storage, excluding the portion allo-
cated to the information table, are then
chained together (see Figure 2). The first
phase 15 request for storage for text
collection is satisfied with the unused
portion between the last sub-block allocat-
ed to phase 10 and the end of the informa-
tion table. Pointers to both the beginning
and end of the storage are passed to phase
15 via the communication table. Each sub-
sequent phase 15 request for text area
storage is satisfied with an unused portion
of a phase 10 sub-block. (Sub-block por-
tions are allocated in the order in which
they are chained.) Pointers to both the
beginning and end of the allocated sub-
block portion are passed to phase 15 via
the communication table. If an additional

request 1is received after the last sub-
block portion is allocated, the FSD
determines the last phase 10 normal text

entry that was processed by phase 15. The
FSD then frees and allocates to phase 15

12

the portion of storage occupied by phase 10
normal text entries between the first such
text entry and the last entry processed by
phase 15.

Phase 15 Storage Inventory: After the
processing of PHAZ15, the second segment of
phase 15, is completed, the FSD recovers
the sub-blocks that were allocated to phase
10 normal and SF skeleton text. These
sub-blocks are chained as extensions to the
storage space available at the completion
of PHAZ15 processing. The chain, which
begins in the FSD pointer table, connecting
the various available portions of storage
is scanned and when a zero pointer field is
encountered, a pointer to the first sub-
block allocated to phase 10 normal text is
placed into that field. The chain
connecting the various sub-blocks allocated
to phase 10 normal text is then scanned and
when a zero pointer field is encountered, a
pointer to the first sub-block allocated to
SF skeleton text is placed into that field.
Once the sub-blocks are chained in this
manner, they are available for allocation
to CORAL, the third segment of phase 15,
and to phase 20.

After the processing of CORAL is com-~
pleted, the FSD likewise recovers the sub-
blocks allocated for phase 10 data text.
The chain connecting the various portions
of available storage space is scanned and
when a zero pointer field is encountered, a
pointer to the first sub-block allocated
for phase 10 data text is placed into that
field. After the sub-blocks allocated for
phase 10 data text are 1linked into the
chain as described above, they, as well as
all other portions of storage space in the
chain, are available for allocation to
phase 20.

Phase 20 Storage

Each phase 20 request for storage space
is satisfied with a portion of storage
available at the completion of CORAL pro-
cessing. The portions of storage are
allocated to phase 20 in the order in which
they are chained. Pointers to both the
beginning and end to the storage allocated
to phase 20 for each request are placed
into the communication table.

O

I - End

Completely Filled with Phase 10 Text Entries

—= 0]
: Unused Portion
: of Sub-block

> Pointer

| Unused Portion
: of Sub-block

’_"} Pointer
Unused Portion

|
|
! of Sub-block
Pointer r

Unused Portion of Last Phase 10
Sub-block (first sub-block
portion allocated to Phase 15)

Available
Storage

1

Pointer

FSD first allocates this portion of unused storage to Phase 15.
Sub-block portions are then allocated in the order in which
they are chained together.

<+— End of information table.

(Fixed after phase 10 processing.)

Information Table

(- Start—=

Figure 2. Chaining of Unused Text Area Main Storage

Section 2: Discussion of Major Components 13

S

INPUT/OUTPUT REQUEST PROCESSING

The FSD routine IEKFCOMH receives the
input/output requests of the compiler phas-
es and submits them to BSAM (Basic Sequen-
tial Access Method) for implementation
(refer to IBM System/360 Operating System:
Sequential Access Methods, Program Logic
Manual.)

Request Format

Phase requests for input/output services
are made in the form of READ/WRITE state-
ments requiring a FORMAT statement. The
format codes that can appear in the FORMAT
statement associated with such READ/WRITE
requests are a subset of those available in
the FORTRAN IV language. The subset con-
sists of the following codes: Iw (output
only), Tw, Aw, wX, wH, and 2Zw (output
only).

Request Processing

To process input/output requests from
the compiler phases, the FSD performs a
series of operations, which are a subset of
those carried out by the IHCFCOMH/IHCFIOSH
combination (see Appendixes E and F) to
implement READ/WRITE statements requiring a
format.

DELETION OF A COMPILATION

The FSD deletes a compilation if either
of the following occurs:

® An error of error level code 16 (refer
to the publication IBM System/360 Oper-
ating System: FORTRAN IV Programmer's
Guide) is detected during the execution
of a processing phase.

¢ The value of the error 1level code
returned from phase 30 is 8 and the
LOAD option has not been specified.

In the former case, the phase detecting
the error passes control to the FSD at
entry point SYSDIR. If the error was
detected by phase 10, the FSD deletes the
compilation by calling phase 10, which
reads records (without processing them)
until the END statement is encountered.
Control is then returned to the FSD, which
initializes the compiler for the next com-
pilation. If the error was encountered in

14

a phase other than phase 10, the FSD simply
initializes the compiler for the next com-
pilation.

In the latter case, phase 30 returns
control to the FSD at the next sequential
instruction. If the error 1level code

passed to the FSD is 8 and the LOAD option
has not been specified, the FSD initializes
the compiler for the next compilation.

Note: Phase 25 returns an error level code
of 8 to the FSD if errors are detected
during the translation of FORMAT state-
ments. However, in this case, the FSD does
not delete the compilation if +the LOAD
option has not been specified.

COMPILER TERMINATION

The FSD terminates compiler processing
when an end-of-file is encountered in the
input data stream or when a permanent
input/output error is encountered. If,
after the deletion of a compilation or
after a source module has been completely
compiled, the first record read by phase 10
from the SYSIN data set contains an end-of-
file indicator, control is passed to the
FSD (at the entry point ENDFILE), which
terminates compiler processing by returning
control to the operating system. If a
permanent error is encountered during the
servicing of an input/output request of a
phase, control is passed to the FSD (at
entry point IBCOMRTN), which writes a

message stating that both the compilation
and job step are deleted. The FSD then
returns control to the operating system.

In either of the above cases, the FSD
passes to the operating system as a condi-
tion code the value of the highest error
level code encountered during compiler pro-
cessing. The value of the code is used to
determine whether or not the next job step
is to be performed.

PHASE 10

Phase 10 converts each FORTRAN source
statement into usable input to subsequent
phases of the compiler; its overall logic
is illustrated in Chart 03. Phase 10
conversion produces an intermediate text
representation of the source statement
and/or detailed information describing the
variables, constants, 1literals, statement
numbers, data set reference numbers, etc.,
appearing in the source statement. During
conversion, the source statement 1is ana-
lyzed for syntactical errors.

C

The intermediate text is a
defined internal representation (i.e.,
internal to the compiler) of a source
statement. It is developed by scanning the
source statement from left to right and by
constructing operator-operand pairs. In
this context, operator refers to such ele-
ments as commas, parentheses, and slashes,
as well as to arithmetic, relational, and
logical operators. Operand refers to such
elements as variables, constants, literals,
statement numbers, and data set reference
numbers. An operator-operand pair is a
text entry, and all text entries for the
operator-operand pairs of a source state-
ment are the intermediate text répresenta-
tion of that statement.

strictly

intermediate
They are:
state-

There are five types of
text developed by phase 10.
normal, data, namelist, format, and
ment function (SF) skeleton.

e Normal text is the intermediate text
representation of source statements
other than DATA, NAMELIST, FORMAT, and
statement functions.

intermediate text
statements and
in type state-

e Data text is the
representation of DATA
initialization values
ments.

e Namelist text is the intermediate text
representation of NAMELIST statements.

e Format text is the intermediate text
representation of FORMAT statements.

e SF skeleton text is the intermediate
text representation of statement func-
tions using sequence numbers as oper-
ands of the intermediate text entries.
The sequence numbers replace the dummy
arguments of the statement functions.
This type of text is, in effect, a
"skeleton" macro.

The various text types are discussed in
detail in Appendix B, "Intermediate Text."

The detailed information describing
operands includes such facts as whether a
variable is dimensioned (i.e., an array)
and whether the elements of an array are
real, integer, etc. Such information is
entered into the information table.

of five
statement
literal

The information table consists
components: dictionary,
number/array table, common table,
table, and branch table.

e The dictionary contains information
describing the constants and variables
of the source module.

e The statement number/array table con-

Section 2:

tains information describing the state-
ment numbers and arrays of the source
module.

¢ The common table contains information
describing COMMON and EQUIVALENCE dec-
larations.

e The literal table contains information
describing the 1literals of the source
module.

e The branch table contains information
describing statement numbers appearing
in computed GO TO statements.

A detailed discussion of the information
table is given in Appendix A, "Information
Table."

text and the informa-
tion table complement each other in the
actual code generation by the subsequent
phases. The intermediate text 1indicates
what operations are to be carried out on
what operands; the information table pro-
vides the detailed information describing
the operands that are to be processed.

The intermediate

SOURCE STATEMENT PROCESSING

To process source statements, each
record (one card image) of the source
module is first read into an input buffer
by a preparatory subroutine (GETCD). If a
source module 1listing is requested, the
record is recorded on an output data set
(SYSPRINT). Records are moved to an inter-
mediate buffer until a complete source
statement resides in that buffer. Unneces-
sary blanks are eliminated from the source
statement, and the statement is assigned a
classification code. A dispatcher subrou-
tine (DSPTCH) determines from the code
which subroutine is to continue processing
the source statement. Control is then
passed to that subroutine, which converts
the source statement to its intermediate
text representation and/or constructs
information table entries describing its
operands. After the entire source state-
ment has been processed, the next is read
and processed as described above. The
recognition of the END statement causes
phase 10 to complete its processing and
return control to the FSD, which calls
phase 15 for execution.

The functions of phase 10 are performed
by five groups of subroutines:

. Dispatcher subroutine.
. Preparatory subroutine.
. Keyword subroutines.

. Arithmetic subroutines.
. Utility subroutines.

Discussion of Major Components 15

Dispatcher Subroutine

The dispatcher subroutine (DSPTCH) con-
trols phase 10 processing. Upon receiving
control from the FSD, the DSPTCH subroutine
initializes phase 10 processing and then
calls the preparatory subroutine (GETCD) to
read and prepare the first source state-
ment. After the statement is prepared,
control is returned to DSPTCH, which deter-
mines if a statement number is associated
with the source statement being processed.
If there is a statement number, the DSPTCH

subroutine constructs a statement number
entry (refer to Appendix A, "Information
Table") for the statement number. A text

entry for the statement number is also
created. The DSPTCH subroutine then deter-
mines, from the code assigned to the source
statement (refer to "Preparatory
Subroutine”), which subroutine (either key-
word or arithmetic) is to continue the
processing of the statement, and passes
control to that subroutine. When the
source statement is completely processed,
control is returned to the DSPTCH subrou-
tine, which calls the preparatory subrou-
tine to read and prepare the mnext source
statement.

Preparatory Subroutine

The preparatory subroutine (GETCD) reads
each source statement, packs and classifies
it, and assigns it an intermal statement
number (ISN)2. Packing eliminates unneces-
sary blanks, which may precede the first
character, follow the last character, or be
imbedded within the source statement.
Classifying assigns a code to each type of
source statement. The code indicates to
the DSPTCH subroutine which subroutine is
to continue processing the source state-
ment. A description of the classifying
process, along with figures illustrating
the two tables (the keyword pointer table
and the keyword table) used in this pro-

cess, is given in Appendix A,
"Classification Tables." The ISN assigned
to the source statement 3is an internal

sequence number used to identify the source
statement. The source statement, after
being prepared, resides in the storage area
NCDIN in the format illustrated in Figure
3.

1logical IF statements are assigned two
internal statement numbers. The IF part is
given the first number and the "trailing"”
statement is given the next.

16

r
|Pointer to first character of

1)

|tFor arithmetic statements and statement
|functions, this field points to the first
|character of the packed statement.

|2End of statement marker.
L

h]

(1 word) |

|packed source statement beyond |
| keyword* |
t : i
| Internal statement number (1 word) |
L J
] 1
| Statement number indicator (#0 (1 word) |
|if present; 0 if not present) |
I8 J
¥ L)
|Classification code (1 word) |
b J
1) 1
| Statement number (5 words) |
L (]
L} 1
| Packed source statement (n words) |
L. 3
1] 1
| Group mark2 (1 word) |
b |
|

|

|

|

4

Figure 3. Format of Prepared Source State-

ment

Keyword Subroutines

A keyword subroutine exists for each
keyword source statement. A keyword source
statement is any permissable FORTRAN source
statement other than an arithmetic state-
ment or a statement function. The function
of each keyword subroutine is to convert
its associated keyword source statement (in
NCDIN) into input usable by subsequent
phases of the compiler. These subroutines
make use of the utility subroutines and, at
times, the arithmetic subroutines in per-
forming their functions. To simplify the
discussion of these subroutines, they are
divided into two groups:

1. Those that construct only information
table entries.

2. Those that construct information table
entries and develop intermediate text
representations.

Note: One keyword subroutine, namely that
which processes the IMPLICIT statement, is
not assigned to either of the above stated
groups. The processing performed by this
subroutine (XIMPC) is somewhat specialized.
The function of this subroutine is defined
in Table 8.

Table Entry Subroutines:
word subroutines

Only four key
belong to this group
(refer to Table 8). Each 1is associated
with a COMMON, DIMENSION, EQUIVALENCE, or
EXTERNAL key word statement.

The processing performed by these sub-
routines is similar. Each scans its asso-
ciated statement (in NCDIN) in a left-to-
right fashion and constructs appropriate
information table entries for each of the
operands of the statement. The types of
information table entries that can be
constructed by these subroutines are:
and

e Dictionary entries for variables

external names.

e Common block name entries for common
block names.

e Equivalence group entries for equival-
ence groups.
e Equivalence variable entries for the

variables in an equivalence group.
e Dimension entries for arrays.

The formats of these entries are given
in Appendix A, "Information Table."

Table entry and Text Subroutines: The
keyword subroutines, other than those that
are grouped as table entry subroutines,
belong to this group (refer to Table 38).
Each of these subroutines converts its
associated statement by developing an
intermediate text representation of the
statement, which consists of text entries
in operator-operand pair format, and con-
structing information table entries for the
operands of the statement. The processing
performed by these subroutines is similar
and is described in the following para-
graphs.

Upon receiving control from the DSPTCH
subroutine, the keyword subroutine asso-
ciated with the keyword statement being
processed places a special operator into a
text entry work area. This operator is
referred to as a primary adjective code and
defines the type (e.g., DO,ASSIGN) of the

statement. A left-to-right scan of the
source statement is then initiated. The
first operand is obtained, an information

table entry is constructed for the operand
and entered into the information table
(only if that operand was not previously
entered), and a pointer to the entry's
location in that table is placed into the
text entry work area. The mode (e.g.,
integer, real) and type (e.g., negative
constant, array) of the operand are then
placed into the work area. The text entry
thus developed is placed into the next
available location in the sub-block allo-
cated for text entries of the type being
created.

Scanning is resumed and the next opera-
tor is obtained and placed into the text
entry work area. The next operand is then

Section 2:

obtained, an information table entry is
constructed for the operand and entered
into the information table (again, only if
that operand was not previously entered),
and a pointer to the entry's 1location is
placed into the text entry work area. The
mode and type of the operand are placed
into the work area. The text entry is then
placed into the next available location in
the sub-block allocated for text entries of
the type being created.

This process is terminated upon recogni-
tion of the end of the statement, which is
marked by a special text entry. The spe-
cial text entry contains an end mark opera-
tor and the ISN of the source statement as
an operand.

Note: Certain keywork subroutines in this
group, namely those that process statements
that can contain an arithmetic expression
(e.g., IF and CALL statements) and those
that process statements that contain I/0
list items (e.g., READ/WRITE statements),
pass control to the arithmetic subroutines
to complete the processing of their asso-
ciated keyword statements.

Arithmetic Subroutines

subroutines (refer to
control from the DSPTCH
various keyword subrou-
of the utility subrou-
in performing their functions, which

The arithmetic
Table 8) receive
subroutine, or from
tines, and make use
tines
are to:

e Process arithmetic statements.

e Process statement functions.

e Complete the processing of certain key-
word statements (READ, WRITE, CALL, and
IF.)

The following paragraphs describe the
processing of the arithmetic subroutines

according to their functions.

Arithmetic Statement Processing: In pro-

cessing an arithmetic statement, the arith-
metic subroutines develop an intermediate
text representation of the statement, and
construct information table entries for its
operands. These subroutines accomplish
this by following a procedure similar to
that described for keyword (table entry and
text) subroutines.

If one operator is adjacent to another,
the first operator does not have an asso-
ciated operand. In the example A=B(I)+C,
the operator + has variable C as its
associated operand, whereas the operator)

Discussion of Major Components 17

has no associated operand.
has no associated operand, a
operand is assumed.

If an operator
zero (null)

Statement Function Processing: In convert-
ing a statement function to usable input to
subsequent phases of the compiler, the
arithmetic subroutines develop an inter-
mediate text representation of the state-
ment function wusing sequence numbers as

replacements for dummy arguments. These
subroutines also construct information
table entries for those operands that

appear to the right of the equal sign and
that do not correspond to dummy arguments.
The following paragraphs describe the pro-
cessing of a statement function by the
arithmetic subroutines.

When processing a statement function,
the arithmetic subroutines:

¢ Scan the portion of the statement func-
tion to the 1left of the equal sign,
obtain each dummy argument, assign each
dummy argument a sequence number (in
ascending order), and save the dummy
arguments and their associated sequence
numbers for subsequent use.

¢ Scan the portion of the statement func-
tion to the right of the equal sign and
obtain the first (or next) operand.

e Determine if the operand corresponds to
a dummy argument. If it does corres-
pond, its associated sequence number is
placed into the text entry work area.
If it does not correspond, a dictionary
entry for the operand is constructed
and entered into the information table,

and a pointer to the entry's location
is placed into the text entry work
area. (An opening parenthesis is used

as the operator of the first text entry
developed for each statement function
and a closing parenthesis is used as
the operator of the 1last text entry
developed for each statement function.)

e Place the text entry into the next
available location in the sub-block
allocated for SF skeleton text.

e Resume scanning, obtain the next opera-
tor, and place it into the text entry
work area.

¢ Obtain the operand to the right of this
operator and process it as described
above.

Keyword Statement Completion: In addition
to processing arithmetic statements and
statement functions, the arithmetic subrou-
tines also complete the processing of key-
word statements that may contain arithmetic
expressions or that contain I/0O list items.

18

The keyword subroutine associated with each
such keyword statement performs the initial
processing of the statement, but passes
control to the arithmetic subroutines at
the first possible occurrence of an arith-
metic expression or an I/0O list item. (For
example, the keyword subroutine that proc-
esses CALL statements passes control to the
arithmetic subroutines after it has pro-
cessed the first opening parenthesis of the
CALL, because the argument that follows
this parenthesis may be in the form of an

arithmetic expression.) The arithmetic
subroutines complete the processing of
these keyword statements in the normal

manner. That is, they develop text entries
for the remaining operator-operand pairs
and construct information table entries for
the remaining operands.

Utility Subroutines

The wutility subroutines (refer to Table
8) aid the keyword, arithmetic, and DSPTCH
subroutines in performing their functions.
The utility subroutines are divided into
the following groups:

Entry placement subroutines.
Text generation subroutines.
Collection subroutines.
Conversion subroutines.

Entry Placement Subroutines: The utility

subroutines in this group place the various
types of entries constructed by the key-
word, arithmetic, and DSPTCH subroutines
into the tables or text areas (i.e.,
sub-blocks) reserved for them.

Text Generation Subroutines: The utility

subroutines in this group generate text
entries (supplementary to those developed
by the keyword and arithmetic subroutines)
that:

e Control the execution of implied DO's
appearing in I/0 statements.

e Increment DO indexes and test them

against their maximum values.
e Signify the end of a source statement.
Collection Subroutines: These utility sub-
routines perform such functions as gather-
ing the next group of characters (i.e., a
string of characters bounded by delimiters)
in the source statement being processed,
and aligning variable names on a word
boundary for comparison to other variable
names. .

Conversion Subroutines: These utility sub-
routines convert integer, real, and complex

constants to their binary equivalents and,
if requested, verify that a converted con-
stant is of integer mode.

PHASE 15

Before phase 15 gains control, phase 10
has read the source statements, built the
information table, and restructured the
source statements into operator-operand
pairs. When given control, phase 15 proc-
esses common and equivalence entries in the
common table, translates the text of arith-
metic expressions, gathers information
about branches and variables, converts
phase 10 data text to a new text format,
assigns relative addresses to constants and
variables, and generates address constants
when needed, to serve as address referen-
ces. Thus, phase 15 modifies and adds to
the information table and translates phase
10 normal and data text to their phase 15
formats.

Phase 15 is divided into three overlay
segments, STALL, PHAZ15, and CORAL. Chart
04 shows the overall logic of the phase.

STALL processes both common and equival-
ence entries in the information table. It
finds the maximum size of each common
block, assigns locations to variables in
each common block, and plans the storing of
operands equated by EQUIVALENCE statements.

It also determines the head of arrays
referred to in EQUIVALENCE statements.
(The head is the 1lowest-valued starting

address of two or more arrays after their
repositioning has been planned by equival-
ence processing.) CORAL later wuses the
head during the computation of relative
addresses for variables and arrays.

PHAZ15 translates and reorders the text
entries for arithmetic expressions from the
operator-operand format of phase 10 to a
four-part form suitable for phase-20 pro-
cessing. The new order permits phase 25 to
generate machine instructions in the cor-
rect sequence. PHAZ15 blocks the text and
collects information describing the blocks.
The information, needed during the phase 20
optimization, includes tables on branching
locations, and on constant and variable
usage.

CORAL, the last overlay segment of phase
15, performs five functions. It first
converts phase 10 data text to a form more
easily evaluated by phase 25. CORAL then
assigns relative addresses to all varia-
bles, constants, and arrays. During one
phase of relative address assignment, CORAL
rechains phase 15 data text in order to
simplify the generation of text card images

Section 2:

by phase 25. CORAL also assigns address
constants, when needed, to serve as address
references for all operands. Lastly, as a
user option, CORAL prints a storage map of
named items (variables, arrays, and exter-
nal references) as recorded in the informa-
tion table.

STALL PROCESSING

STALL first rechains entries for varia-
bles in the dictionary by sorting alphabet-
ically the entries within each chain. The
rechaining frees storage in each entry for
later use by CORAL.

As a second function, STALL checks the
statement-number section of the information
table, noting undefined statement numbers.

STALL then processes common entries in
the information table. It computes the
offset (displacement) of each variable in a
common block from the start of the common
block. The offsets are subsequently used
to assign relative addresses to common
variables. The offsets are recorded in the
dictionary entries for the variables. The
total size of each common block is also
calculated. The block size is wused by
phase 25 to generate a control section for
the common block.

Lastly, STALL processes equivalence
entries in the information table. The
processing plans the placing of the oper-
ands of each equivalence group at the same
location in storage. During the processing
STALL recognizes a variable that must be
made equivalent to previously processed
variables in common.

Chart 05 shows the overall processing of
STALL.

Rechaining Entries for Variables

The STALL
rechaining entries

subroutine DCTSRT begins by
for variables in the
information table. Each dictionary entry
created by phase 10 contains two chain
address fields (refer to Appendix A,
"Information Table Components"). DCTSRT
frees one of the chain address fields for
later use by CORAL. It does this by
sorting alphabetically within each length
grouping and then rechaining the entries.
After the entries have been rechained, the
dictionary consists of one chain for each
variable-name length. The chains of
entries describing symbols of 3 or less
characters are arranged in descending

Discussion of Major Components 19

alphabetic order, while the chains of
entries describing symbols of U4 or more
characters are arranged in ascending alpha-
betic order. As an integral part of
rechaining, DCTSRT also constructs dic-
tionary entries for the imaginary parts of
complex variables and constants.

Checking for Undefined Statement Numbers

After subroutine DCTSRT has rechained
the dictionary, subroutine LABSCN checks
for undefined statement numbers. This
action is taken to insure that every state-
ment number that is referred to is also
defined. LABSCN scans the chain of state-
ment number entries in the information
table (refer to Appendix A, "Statement
Number/ Array Table") and examines a bit in
the byte A usage field of each such entry.
This bit 1is set by phase 10 to indicate

whether or not it encountered a definition
of that statement number. If the bit
indicates that the statement number is not
defined, LABSCN places an entry in the

error table for later processing by phase
30.

Processing of Common Entries in the
Information Table

After the statement numbers have been
checked, subroutine COMN processes common
entries in the information table. It com-
putes the offsets (displacements) of varia-
bles and arrays from the start of the
common block containing them and calculates
the total size in bytes of each common
block. COMN records the offsets in the
dictionary entries
the block size in the common table entry
for the name of the common block (refer to
Appendix A, "Common Table"). It also plac-
es a pointer to the common table entry for

the block name in the dictionary entry for
each variable or array in that common
block.

Processing of Equivalence Entries in the
Information Table

Subroutine EQU next gathers additional
information about equivalence groups and
the variables in them. It computes a group

20

for the variables and

head* and the offset (displacement) of each
variable in the group from this head. It
records this information in the common
table entries for the group and for the
variables, respectively (refer to Appendix
A, "Common Table"). EQU identifies and
flags in their dictionary entries variables
and arrays put into common via the EQUIVAL-
ENCE statement. It also error-checks the
variables and arrays to verify that the
associated common block has not been impro-
perly extended because of the equivalence
declaration. If a common block is legiti-
mately enlarged by an equivalence opera-
tion, sukroutine EQU recomputes the size of
the common block and enters the size into
the common table entry'for the name of the
common block.

If the name of a variable or array
appears in more than one equivalence group,
EQU recognizes the combination of groups
and modifies the dictionary entries for the
variables to indicate the equivalence oper-
ations. EQU checks arrays appearing in
more than one equivalence group to verify
that conflicting relationships have not
been established for the array elements.

During the processing of both common and
equivalence information, subroutine TESTBN
is given control to check that variables
and arrays fall on boundaries appropriate
to their defined types. If a variable or
array is improperly aligned, TESTBN places
an entry in the error table for processing
by phase 30.

PHAZ15 PROCESSING

The functions of PHAZ15 are text block-
ing, arithmetic translation, information
gathering, and reordering of the statement
number chain. Information gathering occurs
only if optimization has been selected; it
takes place concurrently with text blocking
and arithmetic translation during the same
scan of intermediate text. Reordering of
the statement number chain occurs after
PHAZ15 has completed the blocking, arith-
metic translation, and information gather-
ing.

PHAZ15 first divides intermediate text
into blocks for convenience in obtaining
information from the text. Each block
begins with a statement number definition
and ends with the text entry just preceding
the next statement number definition.

iThe head of a equivalence group is that
variable in the group from which all other
variables or arrays in the group can be
addresses by a positive displacement.

AN

g/

A
& ./

PHAZ15 records information describing a
text block in a statement number text entry
and in an information table statement num-
ber entry.

During the same scan of text in which
blocking occurs, PHAZ15 translates arith-
metic expressions. The conversion is from
the operation-operand pairs of phase 10 to
a four part format ("phase 15 text"). The
new format follows the sequence in which
algebraic operations are performed. In
general, phase 15 text is in the same order
in which phase 25 will generate machine
instructions.® PHAZ15 copies, unchanged
into the text area, phase 10 text that does
not require arithmetic translation or other
special handling.

During the building of phase 15 text for
a given block (if optimization has been
selected), PHAZ15 constructs tables of
information on the use of constants and
variables in that text block. It stores
information on variables and constants that
are used within a block, and variables that
are defined within a block. PHAZ15 also
gathers information on variables not first
used and then defined. The foregoing usage
information is recorded in the statement
number text for each block for later use by
phase 20.

Concurrently with text blocking, arith-
metic translation, and gathering of
constant/variable usage information, PHAZ15

discovers branching text entries and
records the branching or "connection"
information. This information, consisting

initially of a table of branches from each
text block ("forward connections"), is
stored in a special array. Branching
(connection) information is wused during
phase 20 optimization.

After PHAZ15 has completed the previous-
ly mentioned processing, it reorders the
statement number chain of the information
table. The original order of statement
numbers, as phase 10 recorded them, was in
order of their occurrence in source state-
ments as either definitions2? or operands.
The new sequence after phase 15 reordering
is according to source statement occurrence
as definitions only. The new order is
established to facilitate phase 20 process-
ing.

Lastly, PHAZ15 acquires a table of
"backward connection" information consist-
ing of branches into each statement number,

1If optimization is selected, phase 20 may
further manipulate the phase 15 text.

2A statement number occurs as a definition
when that statement number appears to the
left of a source statement.

Section 2:

or text block. PHAZ1S5 derives this infor-
mation from the forward connection informa-
tion it previously obtained. Thus, connec-
tion information is of two types, forward
and backward. PHAZ15 records a table of
branches from each text block and a table
of branches into each text block. Connec-
tion information of both types is used
during phase 20 optimization.

Charts 06, 07, and 08 depict the flow of
control during PHAZ15 execution.

Text Blocking

During its scan and conversion of phase
10 text, PHAZ15 sections the module into
text blocks, which are the basic unit upon
which the optimization and register assign-
ment processes of phase 20 operate. A text
block is a series of text entries that
begin with the text entry for a statement
number and end with the text entry that
immediately precedes the text entry for the
next statement number. When PHAZ15 encoun-
ters a statement number definition (i.e.,
the phase 10 text entry for a statement
number) it begins a text block. It does
this by constructing a statement number
text entry (refer to Appendix B, "Phase 15
Intermediate Text Modifications"). PHAZ15
also places a pointer to the statement
number text entry into the statement number
entry (information table) for the associat-
ed statement number.

PHAZ15 resumes its scan and converts the
phase 10 text entries following the state-
ment number definition to their phase 15
formats. After each phase 15 text entry is
formed and chained into text, PHAZ15 places
a pointer to that text entry into the P2
field of the previously constructed state-
ment number text entry. This field is
thereby continually updated to point to the
last phase 15 text entry.

When the next statement number defini-
tion is encountered, PHAZ15 begins the next
text block in the previously described
manner. A pointer to the text entry that
ends the preceding block has already been
recorded in the P2 field of the statement
number text entry that begins that block.
Thus, the boundaries of a text Dblock are
recorded in two places: the beginning of
the block is recorded in the associated
statement number entry (information table);
the end of the block is recorded in the P2
field of the associated statement number
text entry. All text blocks in the module
are identified in this manner.

Figure 4 illustrates the concept of text
blocking. In the figure, two text blocks

Discussion of Major Components 21

are shown: one beginning with statement
number 10; the other with statement number
20. The statement number entry for state-
ment number 10 contains a pointer to the
statement number text entry for statement
number 10, which contains a pointer to the

22

text entry that
statement number text entry for statement
number 20. Similar pointers exist for the
text block starting with statement number
20.

immediately precedes the

3

Statement Number Entry for
Statement Number 10
Kl

L]

PHASE 15 TEXT

Statement Number Entry for LDF* — 10
Statement Number 20]

NEY

I

LDF* - 20

* LDF is the mnemonic for the statement number operator
LDF* -

Figure 4. Text Blocking

Section 2: Discussion of Major Components 23

Arithmetic Translation

Arithmetic translation is the reordering
of arithmetic expressions in phase 10 text
format to agree with the order in which
algebraic operations are performed. Arith-
metic expressions may exist in IF, CALL,
ASSIGN, and GOTO statements and I/0 data-
list, as well as in arithmetic statements
and statement functions.

When PHAZ15 detects a primary adjective
code for a phase 10 text entry that may
need arithmetic +translation, it passes
control to the arithmetic translator
(ALTRAN) . For simple expressions not hav-
ing operator-operand pairs (terms) needing
further special handling, the arithmetic
translator reorders the expression so that
the terms appear in phase 15 text in the
order in which arithmetic operations should
be performed.

While reordering expressions, the arith-
metic translator determines whether or not
a term needs special handling before it can
be placed in the phase 15 text area.
(special handling is required for complex
expressions, terms involving unary minuses
(e.g., A=-B), subscripts, statement func-
tion references, etc.) If special handling
is required, one or more subroutines are
called to perform the needed processing.

After reordering and, if required, spe-
cial handling, subroutine GENER places the
processed text items in the phase 15 text
area in four-part format.

REORDERING ARITHMETIC EXPRESSIONS: The
reordering of arithmetic expressions is
done by means of a pushdown table. This

table is a last-in, first-out (LIFO) list.
After the table is initialized (i.e., the
first operator-operand pair of an arithmet-
ic expression is placed into the table),
the arithmetic translator (ALTRAN) compares
the operator of the next operator-operand
pair (term) in text with the operator of
the pair at the top of the pushdown table.
As a result of each comparison, either a
term is transferred from phase 10 text to
the table, or an operator and two operands
(triplet) are brought from the table to the
phase 15 text area, eliminating the top
term in the pushdown table.

The comparison made to determine whether
a term is to be placed into the pushdown or
whether a triplet is to be taken from the
pushdown is always between the operator of
a term in phase 10 text and the operator of
the top term in the table. Each comparison
is made on the basis of relative forcing
strength. A forcing strength is a value
assigned to an operator that determines
when that operator and its associated oper-

24

~ The relative values

ands are to be placed 1in phase 15 text.
of forcing strengths
reflect the hierarchy of algebraic opera-
tions. The forcing strengths for the var-

ious operators appear in Table 1.

Table 1. Operators and Forcing Strengths

T T]
| | Forcing |
| Operator | Strength |
F + {
|End Mark | 1 |
= [2 |
1 | 3 |
B | 6 [
-OR.	7
«AND.	8
« NOT.	9
-EQ., -NE.,	10
-GT., .LT.,	
.GE., .LE.	
+, =+ minus(11
1*, 7/	12 I
[+	13
(f --1left parenthesis after	14
a function name	

| (s --1left parenthesis after = 15 }
| an array name | |
I (| 16 I
L L 1]

When the arithmetic translator (ALTRAN)
encounters the first operator-operand pair
(phase 10 text entry) of a statement, the
pushdown table is empty. Since the tran-
slator cannot yet make a comparison between
text entry and table element, it enters the
first text entry in the top position of the
table. The translator then compares the
forcing strength of the operator of the
next text entry with that of the table
element. If the strength of the text
operator is greater than that of the top
(and only) table element, the text entry
(operator-operand pair) becomes the top
element of the table. The original top
element is effectively "pushed down" to the
next lower position. In Figure 5, the
number-1 section of the drawing shows the
pushdown table at this time.

The operator of the next text entry
(operator C--operand C at section 2) is
compared with the top table element

(operator B--operand B at section 1) in a
similar manner.

When a comparison of forcing strengths
indicates that the strength of the text
operator (operator C, section 2), is less

than or equal to that of the top table
element (operator B), the table element is
said to be "forced." The forced operator
(operator B) is placed in the new phase-15
text entry (section 3 of the figure) with
its operand (operand B) and the operand of
the next lower table entry (operand A).

\\\

AN

1. Text in Pushdown Table 2. Phase 10 Text Entries
Operator Operand Operator Operand
Top Element Op B Oprnd B Op C Oprnd C Current phase 10 text entry
Op A Oprnd A Op D Oprnd D Next phase 10 text entry

4. New Top Element of Pushdown

3. New Phase 15 Text Entry

Op A t L OpB t Oprnd A T Oprnd B
Operator Operand 1 Operand 2 Operand 3
NOTE: A phase 15 text entry having an arithmetic operator may be envisioned as
aperand 1 = operand 2 - operator - operand 3, where the equal sign is implied.
Figure 5. Text Reordering Via the Pushdown Table

Note that ALTRAN has generated a new oper-
and t (see section 3) called a "temporary."
A temporary is a compiler-generated operand
in which a preliminary result may be held
during object-module execution.! With oper-
ator B, operand B, and operand A (a
triplet) removed from the pushdown table,
the previously entered operator-operand
pair (operator A, section 1) now becomes
the top element of the table (section 4).
ALTRAN assigns the previously generated
temporary t as the operand of this pair.
This temporary represents the previous
operation (operator B--operand A--operand
B).

Comparisons and text-to-table exchanges
continue, a higher strength text operator
"pushing" a phase 10 text entry into the
table and a lower strength text operator
"forcing" the top table operator and its
operands (triplet) from the table. In each
case, the forced table items become the new
phase 15 text entry. An exception to the
general rule is a left parenthesis, which
has the highest forcing strength. Opera-
tors following the left parenthesis can be
forced from the table only by a right
parenthesis, although the intervening oper-
ators (between the parentheses) are of
lower forcing value. When the translator
reaches an end mark in text, its forcing

1A given temporary may be eliminated by
phase 20 during optimization.

Section 2:

strength of "1" forces all remaining ele-
ments from the table.

SPECIAL PROCESSING OF ARITHMETIC EXPRES-

SIONS:

As stated before, arithmetic tran-
slation involves reordering a group of
phase 10 text entries to produce a new
group of phase 15 text entries representing
the same source statement. Certain types
of entries, however, need special handling
(for example, subscripts and 1library
functions). When it has been determined
that special handling is needed, control is
passed to one or more other subroutines
(refer to Chart 07) that perform the
desired processing.

The following expressions and terms need
special handling before they are placed in
phase 15 text: complex expressions, terms
involving a unary minus, terms involving
powers of two, commutative expressions,
subscript expressions, routine or subpro-
gram references, statement function ref-
erences, and expressions involved in 1logi-
cal IF statements.

Complex Expressions: A complex expression

is converted into two expressions, a real
expression and an imaginary one. For real
elements in the expression, complex tempo-
raries are generated with zero in the

imaginary part and the real element in the
real part. For example, the complex
expression B + C + 25 is treated as:

Discussion of Major Components 25

1] i 1
| B + c + 25 |
| real real real |
b {
| B + C + 0 |
| imag imag imag |
L J

An expression is not treated as complex
if the "result" operand (left of the equal
sign in the source statement) is real. In
this case, the translator places only the
real part of the expression in phase 15
text. But if a complex multiplication,
division, or exponentiation is involved in
the expression, the real and imaginary
parts will appear 1in phase 15 text, but
only the real part of the result will be
used at execution time.

Terms Containing a Unary Minus: In terms
that contain unary minuses, the unary min-

uses are combined with additive operators
(+,-) to reduce the number of operators.
This combining, done by subroutines UNARY

and SWITCH, may result in reversed opera-
tors or operands or both in phase 15 text.
For example, -(B-C) becomes C-B, and A+(-B)
becomes A-B. This process reduces the
number of machine instructions that phase
25 must generate.

Operations Involving Powers of Two: Sever-
al kinds of special handling are provided
by subroutines UNARY and EXPON for opera-
tions involving powers of two. Multi-
plication and division by powers of two are
converted, respectively, to left and right
shift operations. A constant integer power
of two raised to a constant integer power
is converted to the equivalent left shift
operation. Lastly, a constant or variable
raised to a constant integer power between
-6 and +6 1is converted to a series of
multiplications (and a division into onme,
if necessary). This handling requires less
execution time than using an exponentiation
subroutine.

Commutative Operations: If an operation is
commutative (either operand can be operated
upon, such as in addition or
multiplication), the two operands are reor-
dered to agree with their chain order in
the dictionary.

Subscripts: Subroutines SBGLUT, SUBADD,
SUBMLT, and SUBSCR perform subscript pro-
cessing. Subscripted items are processed
one at a time throughout the subscript. If
the subscripted item itself is an expres-
sion, it is first processed via the tran-
slator. Text entries are then generated to
multiply the subscript variable by the
dimension factor and 1length. Each sub-
script item is handled in a similar manner.
When all subscript items have been pro-
cessed, phase 15 text entries are generated

26

to add all subscript values together to
produce a single subscript value.

In general, during compilation, con-
stants in subscript expressions are com-
bined, and their composite value is placed
in the displacement field of the phase 15
text entry for the subscript item. (Refer
to Appendix B, "Phase 15/Phase 20 Inter-
mediate Text Modifications.") Phase 25 uses
the value in the displacement field to
generate, in the resultant object instruc-
tions, the displacement for referring to
the elements in the array. This combining
of constants reduces the number of instruc-
tions needed during execution to compute
the subscript value.

Expressions Referring to In-Line Routines

or Subprograms: Expressions containing

references to 1in-line routines or subpro-
grams are processed by the following sub-
routines: FUNDRY, LIBRTN, NEGCHK, XPARAM,
BLTNFN, and DFUNCT.

Arguments that are expressions are
reduced by the translator to 'a single
"temporary," which is used as the argument.
If an argument is a subscripted variable,
subscript processing (previously discussed)
reduces the subscript to ‘a single sub-

scripted item. Either subroutine LIBRTN
(for references to 1library routines) or
subroutine BLTINFN (for references to in-

line routines) then conducts a series of
tests on the argument and perform the
processing determined by the results of the
tests.

If a function is not external and is in
the IFUNTB table (refer to Appendix A,
"Subprogram Table"), the IFUNT table is

scanned to determine if the required
routine is in-line. Then, the mode and
number of arguments are tested. If the

routine is in-line and the mode and number
of arguments are as expected, DFUNCT either
generates text or substitutes a special
operator (such as those for ABS or FLOAT)
in the phase 15 text so that phase 25 can
later expand the function. PHAZ15 provides
in-line routines itself.?® Instead of plac-
ing a special operator in text, PHAZ15
inserts a regular operator, such as the
operator for AND or STORE.

If the mode and/or number of arguments
in the function is not as expected, another
test 1is performed. The test determines if
a previous reference was made correctly for
these arguments. If the previous reference
was as expected, an error is assumed to

1BLTNFN expands the following functions:
TBIT, LAND, LOR, LXOR, ADDR, SNGL, REAL,
AIMAG, DCMPLX, CMPLX, DCONJG, and CONJG.

C

exist. Otherwise, the function is assumed
to be external.

If a function is external (either used
in an EXTERNAL statement or does not appear
in the IFUNTB table), text is generated to
load the addresses of any arguments that
are subscripted variables into a parameter
list in the adcon table. (If none of the
arguments are subscripted variables, the
load address items are not required.) A
text entry for a subprogram or function
call is then generated. The operator of
the text entry is for an external function
or subprogram reference. This entry points
to the dictionary entry for the name. The
text representation of the argument list is
then generated and placed into the phase 15
text chain.

If a function is not external, is in the
IFUNTB table, but does not represent an
in-line routine, text is generated to load
the addresses of any arguments that are
subscripted variables into a parameter list
in the adcon table. (If none of the
arguments are subscripted variables, the
load address items are not required.) A
text entry having a library function opera-
tor is generated. This entry points to the
IFUNTB entry for the function. The text
representation of the argument list is then
generated and placed into the phase 15 text
chain.

Expressions Containing Statement Function

References: For expressions containing
statement function references, the argu-

ments of the statement function text are
reduced to single operands (if necessary).
These arguments and their mode are stored
in an argument save table (NARGSV), which
serves as a dictionary for the statement
function skeleton pointed to by the dic-
tionary entry for the statement function
name. The argument save table is used in
conjunction with the usual pushdown proce-
dure to generate phase 15 text items for
the statement function reference. When the
translator encounters an operand that is a
dummy argument, the actual argument corres-
ponding to the dummy is looked up in the
argument save table and replaces the dummy
argument.

Logical Expressions: Subroutines ALTRAN,
ANDOR, RELOPS, and NOT perform a special

process, called anchor point, on logical
expressions containing relational opera-
tors, ANDs, ORs, and NOTs, so that, at

object time, unnecessary logical tests are
eliminated. With anchor-point

"optimization," only the minimum number of
object-time logical tests are made before a
branch or fall-through occurs. For exam-
ple, with anchor-point handling, the state-
ment IF (A .AND. B .AND. C) GO TO 500 will
produce (at object time) a branch to the

Section 2:

next statement if A is false, because B and
C need not be tested. Thus, only a minimum
number of operands will be tested. Without
anchor-point handling of the expression
during compilation, all operands would be
tested at object time. Similar special
handling occurs for text containing logical
ORs.

When a primary adjective code for a
logical 1IF statement or an end-of-DO IF is
placed in the pushdown table, a scan of
phase 10 text determines if the associated
statement can receive anchor-point han-
dling. The statement can receive anchor-
point handling if two conditions are met.
There must not be a mixture of ANDs and ORs
in the statement. A logical expression, if
it 1is in parentheses, must not be negated
by the NOT operator. If these two
conditions are not met, special handling of
the logical expression does not occur.

Gathering Constant/Variable Usage

Information

During the conversion of the phase 10
text entries that follow the beginning of a
text block (i.e., the text entries that
follow a statement number definition) to
phase 15 format, the PHAZ15 subroutine MATE
gathers usage information for the variables
and constants in that block. This informa-
tion is required during the processing of
the intermediate- and complete-optimized
paths through phase 20 (refer to "Phase
20", If optimized processing is not
selected, this information is not compiled.
Subroutine MATE records the usage informa-
tion in three fields (MVS, MVF, and MVX),
each 128 bits long, of the statement number
text entry for the block (refer to Appendix
B, "Phase 15 Intermediate Text
Modifications"). The MVS field indicates
which variables are defined (i.e., appear
in the operand 1 position of a text entry)
within the text of the block. The MVF
field indicates which variables, constants,
and base variables (refer to CORAL PROCESS-
ING, "Adcon and Base Variable Assignment")
are used (i.e., appear in either the oper-
and 2 or operand 3 position of a text
entry) within the text of the block. The
MVX field indicates which variables are not
first used and then defined (i.e., not
busy-on-entry) within the text of the
block.

Subroutine MATE records the usage infor-
mation for a variable or constant at a
specific bit location within the three
fields. (Base variables are processed dur-
ing CORAL PROCESSING.) The bit location at
which the usage information is recorded is
determined from the coordinate assigned to

Discussion of Major Components 27

the variable or constant when it is first
encountered in text.

Coordinates are assigned to variables
and constants in the following manner:

e The first 59 unique variables and/or
constants appearing in the text created
by phase 15 are assigned coordinates 2
through 60, respectively.! The coordi-
nates are assigned in order of increas-
ing coordinate number. (A coordinate
between 2 and 60 may be assigned to a
base variable if fewer than 59 unique
variables and constants appear in the
text.)

e The mnext 20 unique variables are
assigned coordinates 61 through 80,
respectively. The coordinates are
assigned in order of increasing coordi-
nate number. (If constants are encoun-
tered after coordinate 60 has been
assigned, they are not assigned coordi-
nates.)

e The coordinates 81 through 128 are
reserved for assignment to base varia-
bles (refer to CORAL PROCESSING, "Adcon
and Base Variable Assignment").

Subroutine MATE assigns the first varia-
ble or constant in phase 15 text a coordi-
nate number of 2, which indicates that the
usage information for that variable or
constant, regardless of the block in which
it appears, is to be recorded in bit
position 2 of the MVS, MVF, and MVX fields.
MATE assigns the second variable or con-
stant a coordinate number of 3 and records
its usage information in bit position 3 of

the three fields. MATE continues this
process until coordinate 60 has been
assigned to a variable or constant. After

coordinate number 60 has been assigned,
MATE only assigns coordinates to the next
20 unique variables. (MATE does not assign
coordinates to or gather usage information
for unique constants encountered after
coordinate number 60 has been assigned.)
It assigns these variables coordinates 61
through 80, respectively. It records the
usage information for each variable at the
assigned bit location in the three fields.
MATE does not assign coordinates to or
gather usage information for unique varia-
bles encountered after coordinate number 80
has been assigned.

Subroutine MATE uses a combination of
the MCOORD vector, the MVD table, and the
byte-C usage fields of the dictionary
entries (refer to Appendix A, "Dictionary")

iThe coordinate 1 1is assigned to simple
variables that are made equivalent to vari-
ables of different modes, and to arrays.

28

to assign, keep track of, and record coor-
dinate numbers. MCOORD contains the number
of the last coordinate assigned. The MVD
table is composed of 128 entries, with each
entry containing a pointer to the dictiona-
ry entry for the variable or constant to
which the corresponding coordinate number
is assigned or to the information takle
entry for the base variable to which the
corresponding coordinate is assigned. The
coordinate number assigned to a variable or
constant is recorded in the byte-C usage
field of the dictionary entry for that
variable or constant.

Subroutine MATE does not assign coordi-
nates to or record usage information for
unique constants encountered in text after
coordinate number 60 has been assigned and
unique variables encountered in text after
coordinate number 80 has been assigned. If

MATE encounters a new constant after coor-
dinate 60 has been assigned or a new
variable after coordinate 80 has been

assigned, it records a zero in the byte-C
usage field of its associated dictionary

entry. Phase 20 optimization deals only
with those constants and variables that
have been assigned coordinate numbers

greater than or equal to 2 and less than or
equal to 80.

After a phase 15 text entry has been
formed, subroutine MATE is given control to
determine and record the usage information
for the text entry. It examines the text
entry operands in the order: operand 2,
operand 3, operand 1. If operand 2 has not
been assigned a coordinate (indicating that
this is the first occurrence of the operand
in the module), subroutine MATE assigns it
the next coordinate, enters the coordinate
number into the byte-C usage field of the
dictionary entry for the operand, and plac-
es a pointer to that dictionary entry into
the MVD table entry associated with the
assigned coordinate number. After MATE has
assigned the coordinate, or if the operand
was previously assigned a coordinate, it
records the usage information for the oper-
and. The operand's associated coordinate
bit in the MVF field (of the statement
number text entry for the block containing
the text entry under consideration) is set
on, indicating that the operand is used in

the block. MATE executes a similar proce-
dure to process operand 3 of the text
entry.

If operand 1 of the text entry has not
been assigned a coordinate, MATE assigns it
the next and records the following usage
information for operand 1:

e Its associated coordinate bit in the
MVX field is set on only if the asso-
ciated coordinate bit in the MVF field
is not on. (If the associated MVF bit

€

is on, operand 1 of the text entry was
previously encountered in the block as
a use and therefore is not not busy-on-
entry.)

e Its associated coordinate bit in the
MVS field is set on, indicating that it
is defined within the block.

This process is repeated for all the
phase 15 text entries that are formed
following the construction of a statement

number text
construction

entry and preceding the
of the next statement number
text entry. When the next statement number
text entry is constructed, all the usage
information for the preceding block has
been recorded in the statement number text
entry that begins that block. The same
procedure is followed to gather the wusage
information for the next text block.

Gathering Forward Connection Information

An integral part of the processing of
PHAZ15 is the gathering of forward connec-

tion information, which indicates which
text blocks pass control to which other
text Dblocks. Forward connection informa-

tion is used during phase 20 optimization.

Subroutines TXTREG and TXTLAB
forward connection information in a table
called RMAJOR. Each RMAJOR entry is a
pointer to the statement number entry asso-
ciated with a statement number that is the
object of a branch or a fall-through.
Because each statement number entry con-
tains a pointer to the text block beginning
with its associated statement number text
entry (refer to "Text Blocking"), each
RMAJOR entry points indirectly to a text
block.

record

When PHAZ15 begins a new text block, it
places a pointer to the next available
entry in RMAJOR into the forward connection
field of the associated statement number
entry (refer to Appendix A, "Statement
Number/Array Table"). The statement number
entry associated with the text block there-
by points to the first entry in RMAJOR in
which the forward connection information
for that block is to be recorded.

PHAZ15 then processes the phase 10 text
entries following the statement number
definition that caused PHAZ15 to begin the
new text block. If it encounters a text
entry for a IF, GO TO, or compiler generat-
ed branch following the statement number

Section 2:

definition (and before the next), it passes
control to subroutine TXTREG, which records
in the next available entry in RMAJOR a
pointer to the statement number entry for
each statement number that may be branched
to as a result of the execution of the IF,
GO TO, or generated branch. A number of
such text entries may be encountered in the
text following the statement number defini-
tion and TXTREG records a pointer to the
statement number entry for each statement
number that may be branched to as a result
of execution. (If two or more branches to
the same statement number appear in the
text following the statement number defini-
tion and before the next, TXTREG makes only
entry in RMAJOR for the statement number to
be branched to.)

When PHAZ15 encounters the next state-
ment number definition, before beginning a
new text block, it passes control to sub-
routine TXTLAB, which records in RMAJOR the
fall-through connection information for the
current block. This is a pointer to the
statement number entry associated with the
next statement number definition. The cur-
rent text block may fall-through to the
next and, hence, this connection informa-
tion is required. The fall-through connec-
tion is flagged as the last for the current
block. When the fall-through connection
has been recorded, all the forward connec-
tion information for the text block has
been gathered. Each entry that has been
made in RMAJOR for the block, the first of
which is pointed to by the statement number
entry associated with the block and the
last of which is flagged as such, points
indirectly to a block to which that block
may pass control.

Figure 6 illustrates the end result of
gathering forward connection information
for sample text blocks. Only the forward
connection information for the blocks
beginning with statement numbers 10 and 20
is shown. In the figure, it is assumed
that:

¢ The block started by statement number
10 mway branch to the blocks started by
statement numbers 30 and 40 and will
fall-through to the block started by
statement number 20 if neither of the
branches is executed.

e The klock started by statement number
20 may branch to the blocks started by
statement numbers 40 and 50 and will
fall-through to the block started by
statement number 30 if neither of the
branches is executed.

Discussion of Major Components 29

Statement Number Entry for 10

PHASE 15 TEXT

RMAJOR

— 30

—» 40

— 20

Figure 6.

30

—» 40

— 50
— 30

10
Statement Number Entry for 20
—
I 20
Statement Number Entry for 30
| 30
Statement Number Entry for 40
—
40
Statement Number Entry for 50
50
|
| I

Forward Connection Information

LDF ’ | L—» 10
I

LDF I | i — 20
]

LDF | |] — 30
|

LDF l | ; — 40
]

LDF I | I - 50

Reordering the Statement Number Chain

After text blocking, arithmetic transla-
tion, and, if optimization has been speci-
fied, the gathering of constant/variable
usage information have been completed, sub-
routine VSETUP reorders the statement num-

ber chain of the information table (refer
to Appendix A, "Information Table"). The
original order of the entries in this

chain, as recorded by phase 10, was in the
order of the occurrence of their associated
statement numbers as either definitions or
operands. The new sequence of the entries
after reorderihg is according to the occur-
rence of their associated statement numbers
as definitions only.

Although the actual reordering takes
place after the scan of the phase 10 text,
preparation for it takes place during the
scan. As each statement number definition
is encountered, a pointer to the related
statement number entry is recorded. Thus,
during the course of processing, a table of
pointers to statement number entries, which
reflects the order in which statement num-
bers are defined in the module, is built.
The order of the entries in this table also
reflects the order of the text blocks of
the module.

After the scan, VSETUP uses this table
to reorder the statement number entries.
It places the first table pointer into the
appropriate field of the communication
table (refer to Appendix A, "Communication
Table"); it places the second table pointer
into the chain field of the statement
number entry that 1is pointed to by the
pointer in the communication table; it
places the third table pointer into the
chain field of the statement number entry
that is pointed to by the chain field of
the statement number entry that is pointed
to by the pointer in the communication
table; etc. When VSETUP has performed this
process for all pointers in the table, the
entries in the statement number chain are
arranged in the order in which their asso-
ciated statement numbers are defined in the
module. The new order of the chain also
reflects the order of the text blocks of
the module.

Gathering Backward Connection Information

statement number chain has

and if optimization has
been specified, subroutine VSETUP gathers
backward connection information. This
information indicates which text blocks
receive control from which other text
blocks. Backward connection information is

After the
been reordered,

Section 2:

used extensively throughout phase 20 optim-
ization.

Subroutine VSETUP uses the reordered
statement number chain and the information
in the forward connection table (RMAJOR) to
determine the backward connections. It
records backward connection information in
a table called CMAJOR. Each CMAJOR entry
made by VSETUP for a particular text block
(block 1I) 1is a pointer to the statement
number entry for a block from which block I
may receive control. Because each state-
ment number entry contains a pointer to its
associated text block (refer to "Text
Blocking"), each CMAJOR entry for block I
points indirectly to a block from which
block I may receive control.

Subroutine VSETUP gathers kackward con-
nection information for the text blocks
according to the order of the statement

number chain; it first determines and
records the backward connections for the
text block associated with the initial

entry in the statement number chain; it
then gathers the backward connection infor-

mation for the block associated with the
second entry in the chain; etc.
For each text block, VSETUP initially

records a pointer to the next available
entry in CMAJOR in the backward connection

field (JLEAD) of the associated statement
number entry (refer to Appendix A,
"Statement Number/Array Table"). The

statement number entry thereby points to
the first entry in CMAJOR in which the
backward connection information for the
block is to be recorded.

Then, to determine the backward connec-
tion information for the block (block 1),
VSETUP obtains, in turn, each entry in the
statement number chain. (The entries are

obtained in the order in which they are
chained.) After VSETUP has obtained an
entry, it ©picks up the forward connection

field (ILEAD) of that entry. This field
points to the initial RMAJOR entry for the
text block associated with the obtained
statement number entry. (Recall that the
RMAJOR entries for a block indicate the
blocks to which that block may pass con-
trol.) VSETUP searches all RMAJOR entries
for the block associated with the obtained
entry for a pointer to the statement number
entry for block I. If such a pointer
exists, the text block associated with the
obtained statement number entry may pass
control to block I. Therefore, block I may
receive control from that block and VSETUP
records a pointer to its associated state-
ment number entry in the next available
entry in CMAJOR. VSETUP repeats this pro-
cedure for each entry in the statement num-
ber chain., Thus, it searches all RMAJOR en-
tries for pointers to the statement number

Discussion of Major Components 31

entry for block I and records in CMAJOR a
pointer to the statement number entry for
each text block from which block I may
receive control. VSETUP flags the last
entry in CMAJOR for block I. When the
statement number chain has been completely
searched, VSETUP has gathered all the back-
ward connection information for block I.
Each entry that VSETUP has made for block
I, the first of which is pointed to by the
statement number entry for block I and the
last of which is flagged, points indirectly
to a Dblock from which block I may receive
control.

Subroutine VSETUP gathers the backward
connection information for all blocks in
the above manner. When all of this infor-
mation has been gathered, control is
returned to the FSD, which calls CORAL, the
third segment of phase 15.

Figure 7 illustrates the end result of
the gathering of backward connection infor-

32

mation for sample text blocks. Only the
backward connections for the blocks begin-
ning with statement numbers 40 and 50 are
shown. In the figure, it is assumed that:

e The block started by statement number
40 may receive control from the execu-
tion of branch instructions that reside
in the Dblocks started by statement
numbers 10 and 20 and that it may
receive control as a result of a fall-
through from the block started by
statement number 30.

e The block started by statement number
50 may receive control from the execu-
tion of a branch instruction that
resides in the block started by state-
ment number 20 and that it may receive
control as a result of a fall-through
from the block started by statement
number u40.

C

&

‘ PHASE 15 TEXT
LDF | | ‘-’10
I—

Statement Number Entry for 10

LDF | | ‘ — 20

T 10]

Statement Number Entry for 20 >
—> — 10 2 I
— 20
* — 30 Statement Number Entry for 30
— 20 L
* —40 e LDF ‘ } > 40
|
Statement Number Entry for 40
e
[40
L
Statement Number Entry for 50 LoF ’ ‘
— 50
| 50 |
|

(-

Figure 7. Backward Connection Information

Section 2: Discussion of Major Components 33

CORAL PROCESSING

CORAL, the last overlay segment of phase
15, performs five functions. It first
converts phase 10 data text to a form more
easily evaluated by phase 25. CORAL then
assigns addresses relative to the start of
an object module to all symbolic operands
-- variables, constants, and arrays. Dur-
ing the assignment of relative addresses to
variables, CORAL rechains the data text in
order to simplify the generation of text
card images by phase 25. CORAL assigns
space in the address constant table
(NADCON) for unknown references -- call-by-
name variables, library routines, and name-
list names. This reserved space will be
filled by later phases. Lastly, as a user
option, CORAL prints a storage map of named
items -- variables, arrays, and external
references - as recorded in the
information table. (Chart 09 shows the
overall logic flow of CORAL).

Translation of Data Text

The first section of CORAL, subroutine
NDATA, translates data text entries from
their phase 10 format to a form more easily
processed by phase 25. Each phase 10 data
text entry (except for initial housekeeping
entries) contains a pointer to a variable
or constant in the information table. Each
variable in the series of entries is to be
assigned to a constant appearing in another
entry. Placed in separate entries, varia-
ble and constant appear to be unrelated.
In each phase 15 data text entry, after
translation, each related variable and con-
stant are paired (they appear in adjacent
fields of the same entry).

The following example shows how a series
of phase 10 data text entries are translat-
ed by NDATA to yield a smaller number of
phase 15 text entries, with each related
constant and variable paired. Assume a
statement appearing in the source module as
DATA, A,B/2*0/. The resulting phase 10
text entries appear as follows (ignoring
the chain, mode, and type fields, and the
two initial housekeeping entries):

34

Adjective

Code for: Pointer

Pointer to A
in dictionary

Pointer to B
in dictionary

2

Pointer to 0
in dictionary

0

[e S . o e s S e e, e e S S S e
e o e o e e e e e e e e e e]
OO ~ P SN Sy S Sy———

Note that the variables A and B and the
constant value 0 appear in separate text
entries. The NDATA translation of the
above phase 10 entries (ignoring the con-
tents of the indicator and chain fields,
and two optional fields needed for special
cases) appears as follows:

r T T L3 |
|Indicator| Chain |P1 Field |P2 Field |
b + - - i
		pointer	pointer
		to A in	to 0 in
		dictionary	dictionary
t + t—- $—— 4			
		pointer	pointer
		to B in	to 0 in
		dictionary	dictionary
L i L L J

In this case, each variable and its speci-

fied constant value appear in adjacent
fields of the same phase 15 text entry.
The reader should refer to Appendix B,
"Phase 15720 Intermediate Text

Modification" for the detailed format of
the phase 15 data text entry and the use of
the special fields not discussed.

Relative Address Assignment

The chief function of CORAL is to assign
relative addresses to the operands
(constants and variables) of the source
module. The addresses indicate the loca-
tions, relative to =zero, at which the
operands will reside in the object module
resulting from the compilation. The rela-

tive address assigned to an operand con-
sists of an address constant and a dis-
placement. These two elements, when added

together, form the relative address of the
operand. The address constant for an oper-
and is the base address value used to refer
to that operand in main storage. Address
constants are recorded in the adcon table
(NADCON) and are the elements to which the

A

relocation factor is added to relocate the
object module for execution. The displace-
ment for an operand indicates the number of
bytes that the operand is displaced from
its associated address constant. Displace-
ments are in the range of 0 to 4095 bytes.
The relative address assigned to an operand
is recorded in the information table entry
for that operand in the form of:

1. A numeric displacement from its asso-
ciated address constant.

2. A pointer to an information table
entry that contains a pointer to the
associated address constant in the
adcon table.

Relative addresses are assigned through
use of a location counter. This counter is
initially set to zero and is continually
updated by the size (in bytes) of the

operand to which an address 1is assigned.
The value of the location counter is used
to:

e Contain the displacement to be assigned
to the next operand.

o Determine when the next address con-

stant is to be established. (When the

location counter achieves a value in

excess of 4095, a new address constant

is established.)

CORAL assigns addresses to source module
operands in the following order:

¢ Constants.
e Variables.
¢ Arrays.

e Hollerith characters when used as argu-
ments.

¢ Equivalenced variables and arrays.

¢ Common variables and arrays, including
variables and arrays made common using
the EQUIVALENCE statement.

The manner in which addresses are assigned
to each of these operand types is described
in the following paragraphs. Because con-
stants, variables, and Hollerith characters
are processed in the same manner, they are
described together.

Constants, Variables, and Hollerith Charac-
ter Strings Used as Arguments: Subroutine
CONST first assigns relative addresses to
the constants of the module. Then, subrou-
tine VARA assigns addresses to the varia-
bles and Hollerith character strings. (In
the subsequent discussion, constants, vari-
ables, and Hollerith character strings are

Section 2:

referred to collectively as operands.) The
first operand is assigned a displacement of
zero, which is the initial value of the
location counter. Operands that are
assigned locations within the first 4096
bytes of the object module are not expli-
citly assigned an address constant. Such
operands use the base address value loaded
into reserved register 12 as their address
constant (refer to Phase 20, "Branching
Optimization"). The displacement is
recorded in the information table entry for
that operand. The location counter is then
updated by the size in bytes of the oper-
and.

The next operand is assigned a displace-
ment equal to the current value of the
location counter. The displacement is
recorded in the information table entry for
that operand. The location counter is then
updated, and tested to see if it exceeds
4095. If it does not, the next operand is
processed as described above.

If sufficient operands exist to cause
the location counter to achieve a value 1in
excess of 4095, the first address constant
is established. The value of this address
constant equals the location counter value
that caused its establishment. This
address constant becomes the current
address constant and is saved for subse-
quently assigned relative addresses. The
location counter is then reset to zero and
the next operand is considered.

After the first address constant is
established, it is used as the address
constant portion of the relative addresses
assigned to subsequent operands. The dis-
placement for these operands is equal to
the value of the location counter at the
time they are considered for relative
address assignment.

When the location counter again reaches
a value in excess of 4095, another address
constant 1is established. Its value is
equal to the current address constant plus
the displacement that caused the establish-
ment of the new address constant. This new
address constant then becomes current and
is used as the address constant for subse-
guent operands. The 1location counter is
then reset to zero and the next operand is
processed. This overall process is repeat-
ed until all operands (constant, variables,
and Hollerith strings) are processed.
Source module arrays are then considered
for relative address assignment.

Arrays: Subroutine VARA assigns each array
of the source module that is not in common
a relative address that is less than (by
the span of the array) the relative address
at which the array will reside in the
object module. (The concepts of span is

Discussion of Major Components 35

discussed in Appendix G.) The actual rela-
tive address at which an array will reside
in the object module is derived from the
sum of address constant and displacement
that are current at the time the array is
considered for relative address assignment.
The array span is subtracted from the
relative address to facilitate subscript
calculations.

VARA subtracts the span in one of two
ways. If the span is less than the current
displacement, it subtracts the span from
that displacement, and assigns the result
as the displacement portion of the relative
address for the array. In this case, the
address constant assigned to the array is
the current address constant. If the span
is greater than the current displacement,
VARA subtracts the span from the sum of the
current address constant and displacement.
The result of this operation is a new
address constant, which does not become the
current address constant. VARA assigns the
new address constant and a displacement of
zero to the array. It then adds the total
size of the array to the location counter,
obtains the next array, and tests the value
of the location counter. If the value of
the location counter does not exceed 4095,
VARA does not take any additional action
before it processes the next array. If the
location counter value exceeds 4095, VARA
establishes a new address constant, resets
the location counter, and processes the
next array. After all arrays have relative
addresses, VARA returns control to CORAL,
which calls subroutine EQVAR to assign
address to equivalence variables and arrays
that are not in common.

Equivalence Variables and Arrays Not in
Common: In assigning relative addresses to
equivalence variables and arrays, subrou-
tine EQVAR attempts to minimize the number
of required address constants by using, if
possible, previously established address
constants as the base addresses for equi-
valence elements. EQVAR processes equival-
ence information on a group-by-group basis,
and assigns a relative address, in turn, to
each element of the group. Prior to pro-
cessing, EQVAR determines the base value
for the group. The base value is the
relative address of the head® of the group.
The base value equals the sum of the
current address constant and displacement
(location counter value). After EQVAR has
determined the base value, it obtains the

first (or next) element of the group and
computes its relative address. The rela-
tive address for an element equals the sum

1The head of an equivalence group is the
variable in the group from which all other
variables or arrays in the group can be
addressed by a positive displacement.

36

of the base value for the group and the
offset of the element. The offset for an
element is the number of bytes that the
element is displaced from the head of the
group (refer to "Common and Equivalence
Processing™). EQVAR then compares the com-
puted relative address to the previously
established address constants. If an
address constant exists such that the dif-
ference between the computed relative
address and the address constant is less
than 4095, EQVAR assigns that address con-
stant to the equivalence element under
consideration. The displacement assigned
in this case is the difference between the
computed relative address of the element
and the address constant. EQVAR then proc-
esses the next element of the group.

If the desired address constant does not
exist, EQVAR establishes a new address
constant and assigns it +to the element.
The value of the new address constant is
the relative address of the element. EQVAR
then assigns the element a displacement of
zero, and processes the next element of the
group. When all elements of the group are
processed, EQVAR computes the base value
for the next group, 1if any. This base
value 1is equal to the base value of the
group just processed plus the size of that
group. The next group is then processed.

Common Variables and Arrays: Subroutine

COMVAR considers each common block of the
source module, in turn, for relative
address assignment. For each common block,
COMVAR assigns relative addresses to (1)
the variables and arrays of that block, and
(2) the variables and arrays equivalenced
into that common block. (The processing of
variables and arrays equivalenced into com-
mon is described in a later paragraph.)

Because common blocks are considered
separate control sections, COMVAR assigns
each common block of the source module a
relocatable origin of =zero. It achieves
the origin of =zero by assigning to the
first element of a common block a relative
address consisting of an address constant
and a displacement whose sum is zero. For
example, both the address constant and the
displacement for the first element in a
block can be zero. Also, the address
constant can be -16 and the displacement

+16. Note that the address constant in the
latter case is negative. Negative address
constants are permitted, and may be a

by-product of the assignment of addresses
to common variables and arrays. They
evolve from the manner in which the rela-
tive addresses are assigned to arrays. A
relative address assigned to an array is
equal to its actual relative address minus
the span of that array. The actual rela-
tive address of each array in a common
block is equal to the offset computed for

it during the common and equivalence pro-
cessing of the first segment of phase 15,
STALL. From the offset of each array in
the common block under consideration, COM-
VAR subtracts the span of that array. The
result then replaces the previously comput-
ed offset for the array. If the result of
one or more of these computations yields a
negative value, COMVAR uses the most nega-
tive as the initial address constant for
the common block. It then assigns each
element (variable or array) in the common
block a relative address. This address
consists of the negative address constant
and a displacement equal to the absolute
value of the address constant plus the
offset of the element.

If the computations which subtract spans
from offsets do not yield a negative value,
COMVAR establishes an address constant with
a value of zero as the initial address
constant for the common block. It then

assigns each element in the block a rela-
tive address consisting of the address
constant (with zero value) and a displace-

ment equal to the offset of the element.

If at any time the displacement to be
assigned to an element exceeds 4095, COMVAR
establishes a new address constant. This
address constant then becomes the current
address constant and is saved for inclusion
in subsequently assigned addresses. After
the new address constant is established,
the relative address assigned to each sub-
sequent element consists of the current
address constant and a displacement equal
to the offset of that element minus the
value of the current address constant.
After the entire common block is processed
variables and arrays that are equivalenced
into that common block are assigned rela-
tive addresses.

Variables and Arrays Equivalenced into Com-
mon: Subroutine COMVAR processes variables
and arrays that are equivalenced into com-
mon in much the same manner as EQVAR
processes those that are equivalenced, but
not into common. However, in this case,
the base value for the group is zero. Only
those address constants established for the
common block into which the variables and
arrays are equivalenced are acceptable as
address constants for those variables and
arrays.

Adcon and Base Variable Assignment: As
CORAL establishes a new address constant
and enters it into the adcon table, it also
places an entry in the information table.
This special entry, called an "adcon varia-
ble," points to the new address constant.
All operands that have been assigned rela-
tive addresses will have pointers to the
adcon variable for their address constant.
The adcon variables generated for operands

Section 2:

are assigned coordinates via MCOORD and
the MVD table. Coordinates 81 through 128
are reserved for base variables; however,
some base variables may be assigned coordi-
nates less than 81 if less than 80 coordi-
nates are assigned during the gathering of
variable and constant usage information.
(Refer to PHAZ15, "Gathering
Constant/Variable Usage Information.") Hav-
ing been assigned coordinates, the adcon
variables are now called base variables.
Only those operands receiving coordinate
assignments are available for full register
assignment during phase 20.

Rechaining Data Text

During the assignment of relative
addresses to variables, subroutine DATACH
rechains the data text entries. Their
previous chaining (set by phase 10) was
according to their order of appearance in
the source program. DATACH now chains the
data text entries according to the order of
relative addresses it assigns to variables.
Thus data text entries are now chained in
the same relative order in which the varia-
bles will appear in the object module.
This order simplifies the generation of
text card images by phase 25.

Reserving Space in the Adcon Table

After relative address assignment is
completed, subroutine EXTRNL reserves space
in the adcon table for certain special
references. It scans the operands of the
information table to detect any of these
references: call-by-name variables, names
of 1library routines, namelist names, and

external references. The byte-B usage
field of each information table entry
informs EXTRNL if a particular reference

belongs to one of these categories. For
each special reference that EXTRNL detects,
it reserves four bytes in the adcon table.
Phase 25 places the needed address con-
stants in the reserved spaces.

Producing a Storage Map

Lastly, as a user option, subroutine
STMAP produces a storage map of named
items. These items include wvariables,
arrays, function or subroutine references,
and statement functions (SF). For each of
these, except function or subroutine ref-
erences, the map contains the name, loca-
tion, type, and tag. (The tag indicates

Discussion of Major Components 37

whether a variable appeared in a COMMON or
EQUIVALENCE statement or in both. It is
set by phase 10 or by CORAL.) For a
function or subroutine reference the map
lists the name and whether the reference is
external or in IFUNTB table.

PHASE 20

The primary function of phase 20 is to
produce a more efficient object module
(perform optimization). However, even if
the applications programmer has specified
no optimization, phase 20 assigns registers
for use during execution of the object
module.

For a given compilation, the applica-
tions programmer may specify no optimiza-
tion, an intermediate amount of optimiza-
tion, or complete optimization. Thus, the
functions performed by phase 20 depend on
the optimization specified for the compila-
tion.

e If no optimization has been specified,
phase 20 assigns to intermediate text
entry operands the registers they will
require during object module execution
(this is called basic register
assignment). As part of this function,
phase 20 also provides information
about the operands needed by phase 25
to generate machine instructions. Both
functions are implemented in a single,
block-by-block, top-to-bottom (i.e.,
according to the order of the statement
number chain), pass over the phase 15
text output. The end result of this
processing is that the register and
status fields of the phase 15 text
entries are filled in with the informa-
tion required by phase 25 to convert
the text entries to machine language
form (refer to Appendix B, "Phase 20
Intermediate Text Modifications").
Basic register assignment does not take
full advantage of the available general
and floating-point registers, and it
does not specify the generation of
machine instructions that keep operand
values in registers (wherever possible)
for use in subsequent operations
involving them.

e If an intermediate amount of optimiza-
tion has been specified, two processes
are carried out:

1. The first process, call full reg-
ister assignment, performs the
same two functions as basic reg-
ister assignment. However, full
register assignment takes greater
advantage of available registers

38

and provides information that ena-
bles machine instructions to be
generated that keep operand values
in registers for subsequent opera-
tions. An attempt is also made to
keep the most frequently used
operands 1in registers throughout
the execution of the object
module. Full register assignment
requires a number of passes over
the phase 15 text. The basic unit
operated upon is the text block
(refer to phase 15, "Text
Blocking"). The end result of
full register assignment, like
that of basic register assignment,
is that the register and status
fields of the phase 15 text
entries are filled in with the
information required by phase 25.

2. The second process, called branch
optimization, generates RX-format
branch instructions in place of
RR-format branch instructions
wherever possible. The use of
RX-format branches eliminates the
need for an instruction to load
the branch address into a general
register. However, kranch optimi-
zation first requires that the
sizes of all text blocks in the
module be determined so that the
branch address can be found.

If complete optimization has been spec-
ified, other measures are taken to
improve object-module efficiency. Com-
plete optimization is performed on a
"loop-by-loop" basis. Therefore,
before processing can be initiated,
phase 20 must determine the structure
of the source module in terms of the
loops within it and the relationships
(nesting) among the loops. Then phase
20 determines the order in which loops
are processed, beginning with the

innermost (most frequently executed)
loop and proceeding outward. Complete
optimization involves three general

procedures:

1. The first, called text optimiza-
tion, eliminates unnecessary text
entries from the loop being pro-
cessed. For example, redundant
text entries are removed and,
wherever possible, text entries
are moved to outer 1loops, where
they will be executed less often.

2. The second procedure is full reg-
ister assignment, which is essen-
tially the same as in intermediate
optimization, but is more effec-
tive, because it is done on a
loop-by-loop basis.

-

3. The final procedure is branching
optimization, which is the same as
in the intermediate-optimized
path.

CONTROL FLOW

In phase 20, control flow may take one
of three possible paths, depending on the
level of optimization chosen (refer to
Chart 10). Phase 20 consists of a control
routine (LPSEL) and six routine groups.
The control routine controls execution of
the phase. 2All paths begin and end with
the control routine. The first group of
routines performs basic register assign-
ment. This group is only executed in the
control path for non-optimized processing.

The second group performs full register
assignment. Control passes through this
group in the paths for both
intermediate-optimization and complete-
optimization. The third group of routines
performs branch optimization and is also
used in the paths for both
intermediate-optimization and complete-

optimization. The fourth group determines
the structure of the source module and is
used only in the path for
complete-optimization. The fifth group
performs 1loop selection and again is only
executed in complete-optimization. The

final group performs text optimization and
is only used in complete-optimization.

The control routine governs the sequence
of processing through phase 20. The pro-
cessing sequence to be followed is deter-
mined from degree of optimization specified
by the FORTRAN programmer. If no optimiza-
tion is specified, the basic register
assignment routines are brought into play.
The unit of processing in this path is the
text block. Each block is passed by the
control routine to the basic register
assignment routines for processing. When
all blocks are processed, the control rou-
tine passes control to the FSD, which calls
phase 25.

When intermediate-optimization is speci-
fied, the control routine passes the entire
module to the full register assignment
routines and then to the routines that
compute the size of each text block. When
all block size information is gathered, the
control routine calls the routine that
computes, using the block size information,
the displacements required for branching

optimization. Control is then passed to
the FSD.
When the control path for complete

optimization is selected, the unit of pro-
cessing is a loop, rather than a block. 1In

Section 2:

this case, the control routines initially
pass control to the routines of phase 20
that determine the structure of the module.
When the structure is determined, control
is passed to the loop selection routines,
to select the first (innermost) loop to be
processed. The control routines then pass
control to the text-optimization routines
to process the loop. When text optimiza-
tion for a loop is completed, the control
routine marks each block in the 1loop as
completed. This action is taken to ensure
that the blocks are not reprocessed when a
subsequent (outer) loop is processed. The
control routine again passes control to the
loop selection routines to select the next
loop for text optimization. This process
is repeated until text optimization has
processed each 1loop in the module. (The
entire module is the last loop.)

After text optimization has processed
the entire module, the control routine
removes the block completed marks and con-
trol is passed to the loop selection rou-
tines to reselect the first loop. Control
is then passed to the full register assign-
ment routines. When full register assign-
ment for the loop is complete, the control
routine marks each block in the loop as
completed and passes control to the loop
selection routines to select the next loop.
This process is repeated for each loop in
the module. (The entire module is the last
loop.) When all loops are processed, the
control routine passes control to the rou-
tines that compute the size of each text
block and then to the routine that com-
putes, using the Dblock size information,
the displacements required for branching
optimization. Control is then passed to
the FSD.

REGISTER ASSIGNMENT

Two types of register assignment can be
performed by phase 20: basic and full.

Before describing either type, the concept
of status, which is integrally connected
with both types of assignment, is dis-

cussed.

Each text entry has associated operand
and base address status information that is
set up by phase 20 in the status field of
that text entry (refer to Appendix B,
"Phase 20 Intermediate Text Modification").
The status information for an operand or
base address indicates such things as
whether or not it is 1in a register and
whether or not it is to be retained in a
register for subsequent use; this informa-
tion indicates to phase 25 the machine
instructions that must be generated for
text entries.

Discussion of Major Components 39

The relationship of status to phase 25
processing is illustrated in the following
example. Consider a phase 15 text entry of
the form A =B + C. To evaluate the text
entry, the operands B and C must be added
and then stored into A. However, a number
of machine instruction sequences could be
used to evaluate the expression. If oper-
and B is in a register, the result can be
achieved by performing an RX-format add of
C to the register containing B, provided
that the base address of C is in a reg-

ister. (If the base address of C is not in
a register, it must be loaded before the
add takes place.) The result can then be

stored into A, again, provided that the
base address of A is in a register.

If both B and C are in registers, the
result can be evaluated by executing an
RR-format add instruction. The result can
then be stored into A. Thus, for phase 25
to generate code for the text entry, it
must have the status of operands and base
addresses of the text entry.

The following facts about status should
be kept in mind throughout the following
discussions of basic and full register
assignment:

i. Phase 20 indicates to phase 25 when it
is to generate code that 1loads oper-
ands and base addresses into reg-
isters, whether it is to generate code
that retains operands and base
addresses in registers, and whether
operand 1 is to be stored.

2. Phase 20 makes note of the operands
and base addresses that are retained
in registers and are available for
subsequent use.

Basic Register Assignment

Basic register assignment involves two
functions: assigning registers to the oper-

ands of the phase 15 text entries and
indicating the machine instructions to be
generated for the text entries. In per-

forming these functions, basic register
assignment does not use all of the availa-
ble registers, and it restricts the assign-
ment of those that it does use to special
types of items (i.e., operands and base
addresses). The registers assigned during
basic register assignment and the item(s)
to which each is assigned are outlined in
Table 2.

40

. are processed.

Table 2. Item Types and Registers Assigned
in Basic Register Assignment.
r L] 1
|Register | Item Type |
L 1 J
v T 1
Floating-Point	
Register	
0	Arithmetic text entry
	operands that are real.]
] 2	Imaginary part of the
	result of a complex func-
	tion.
General Purpose	
Register	
0-1	Arithmetic text entry
	operands that are inte-
	ger, or logical operands.
5	Branch addresses and
	selected logical operands
6	Operands that represent
	index values.
7	Base addresses
{	
14	1. Used for computed GO
	TO operationms.
	2. Logical result of
	comparison opera-
	tions.
15	Used for computed GO TO
	operations.
L. L J
Basic register assignment essentially
treats System/360 as if it had a single
branch register, a single base register,

and a single accumulator. Thus, operands
that are branch addresses are assigned the
branch register, base addresses are
assigned the base register, and arithmetic
operations are performed wusing a single
accumulator. (The accumulator used depends
upon the mode of the operands to be operat-
ed upon.)

The fact that basic register assignment

uses a single accumulator and a single base

register is the key to understanding how
text entries having an arithmetic operator
To evaluate the arithmetic
interaction of two operands using a single
accumulator, one of the operands must be in
the accumulator. The specified operation
can then be performed by using an RX-format
instruction. The result of the operation
is formed in the accumulator and is availa-
ble for subsequent use. Note that in
operations of this +type, neither of the
interacting operands remains in a register.

®

.corresponds to the result operand

Applying this concept to the processing
of text entries that are arithmetic in
nature, consider that a phase 15 text entry
representing the expression A =B + C is
the first of the source module. For this
text entry to be evaluated using a single
accumulator and base register, basic reg-
ister assignment must tell phase 25 to
generate machine code that:

e Loads the Jpase address of B into the
base register.

e TLoads B into the accumulator.

e Loads the base address of C into the
base register. (This instruction is
not necessary if C is assigned the same
base address as B.)

e Adds C to the accumulator (RX-format).

e Loads the base address of A into the
base register (if necessary).

e Stores the accumulated result in A.

If this coding sequence were executed,
two items would remain in registers: the
last base address loaded and the accumulat-
ed result. These items are available for
subsequent use.

Now consider that a text entry of the
form D= A + F immediately follows the
above text entry. In this case, A, which
corresponds to the result operand of the
previous text entry, is in the accumulator.
Thus, for this text entry, basic register
assignment specifies code that:

e Loads the base address of F into the
base register. (If the base address of
F corresponds to the last loaded base
address, this instruction is not neces-
sary.)

* Adds F to the accumulator (RX-format

add).

¢ Loads the base address of D into the
base register (if necessary).

¢ Stores the accumulated result in D.

The above coding sequences are the basic
ones specified by basic register assignment
for arithmetic operations. The first is
specified for text entries in which neither
operand 2 mnor operand 3 (see Figure 5)
(operand
1) of the preceding text entry. The second
is specified for text entries in which
either operand 2 or operand 3 corresponds
to the result operand. If operand 3 cor-
responds to the result operand, the two
operands exchange roles, except for divi-

Section 2:

sion. In the case of division,
is always in main storage.

operand 3

If both operands 2 and 3 correspond to
the result operand of the previous text
entry, an RR-format operation is specified
to evaluate the interactions of the oper-
ands.

In the actual process of basic register
assignment, a single pass is made over the
phase 15 text output. The basic unit
operated upon is the text block. As the
processing of each block is completed, the
next is processed. When all blocks are
processed, control is returned to the FSD.

Text blocks are processed in a top-to-
bottom manner, beginning with the first
text entry in the block. When all text
entries in a block are processed, the next
text block is processed similarly.

For any text entry, the machine code to
be generated is first specified by setting
up the status field of the text entry.
Registers are then assigned to the operands
and base addresses by filling in the
register fields of the text entry.

Status Setting: Subroutine SSTAT sets the
operand and base address status information
for a text entry in the following order:
operand 2, operand 2 base address, operand
3, operand 3 base address, operand 1, and
operand 1 base address.

To set the status of operand 2, SSTAT
determines the relationship of that operand
to the result operand (operand 1) of the
previous text entry. If operand 2 is the
same as the result operand, SSTAT sets the
status of operand 2 to indicate that it is
in a register and, therefore, need not be
loaded; otherwise, it sets the status to
indicate that it is in main storage. SSTAT
uses a similar procedure to set the status
of operand 3.

To set the status of the base address of
operand 2, SSTAT determines the relation-

ship of that base address to the current
base address (see note). If they corres-
pond, SSTAT sets the status of the base

address of operand 2 to indicate that it is
in a register and, therefore, need not be
loaded; otherwise wise, it sets the status
to indicate that it is in main storage.

of the base
similar

SSTAT sets the statuses
addresses of operands 3 and 1 in a
manner.

Note: The current base address is the last
base address loaded for the purpose of

referring to an operand. This base address
remains current until a subsequent operand
that has a different base address is

Discussion of Major Components 41

encountered. When this occurs, the base
address of the subsequent operand must be
loaded. That base address then becomes the
carrent base address, etc.

SSTAT sets status of operand 1 to indi-
cate whether or not the result of the
interaction of operands 2 and 3 is to be
stored into operand 1. If operand 1 is
either an actual operand or a temporary
that is not used in the subsequent text
entry, it sets the status of operand 1 to
indicate that the store is to be performed;
otherwise, it sets the status to indicate
that a store into operand 1 is unnecessary.

Register Assignment: After the status
field of the text entry is completed,
subroutine SPLRA assigns registers to the

operands of the text entry and their asso-
ciated base addresses in the same order in
which statuses were set for them.

The assignment of registers depends upon
the statuses of the operands of the text
entry. To assign a register to operand 2,
SPLRA examines the status of that operand,
and, if necessary, of operand 3. If the
status of operand 2 indicates that it is in
a register or if the statuses of operands 2
and 3 indicate that neither is a register,
SPLRA assigns operand 2 a register. It
selects the register according to the type
of operand (refer to Table 2), and places
the number of that register into the R2
field of the text entry.

To assign a register to the base address
of operand 2, SPLRA determines the status
of operand 2. If the status of that
operand indicates that it is not in a
register, it assigns a register to the base
address of operand 2. The appropriate
register is selected according to Table 2,
and the regjster number is placed into the
B2 field of the text entry. If the status
of operand 2 indicates that it is in a
register, SPLRA does not assign a register
to the base address of operand 2. SPLRA
uses a similar procedure in assigning a
register +to the base address of operand 3.

If the status of operand 3 indicates
that it is in a register, SPLRA assigns the
appropriate register (refer to Table 2) to
that operand, and enters the number of that
register into the R3 field.

Operand 1 is always assigned a register.
SPLRA selects the register according to the
type of operand 1 (refer to Table 2), and
places the number of that register into the
Rl field.

The base address of operand 1 is
assigned a register only if the status of
operand 1 indicates that it is to be stored
into. If such is the case, SPLRA selects

42

the appropriate register, and records the
number of that register in the B1 field.
If the status of operand 1 indicates that
it is not to be stored into, SPLRA does not
assign a register to the base address of
operand 1.

When all the operands of the text entry
and their associated base addresses are
assigned registers, the next text entry is
obtained, and the status setting and reg-
ister assignment processes are repeated.
After all text entries in the block are
processed, control is returned to the con-
trol routine of phase 20, which then makes
the next block available to the basic
register assignment routines. When the
processing of all blocks is completed,
control is passed to the FSD.

Full Register Assignment

During full register assignment, as dur-
ing basic register assignment, registers
are assigned to the text entry operands and
their associated base addresses, and the
machine code to be generated for the text
entries is specified. To improve object

module efficiency, these functions are per-

formed in a manner that reduces the number
of instructions required to 1load base
addresses and operands. This process redu-
ces the number of required load instruc-
tions by taking greater advantage of all
available registers, by assigning the reg-
isters as needed to both base addresses and
operands, by keeping as many operands and
base addresses as possible in registers and
available for subsequent use, and by keep-
ing the most active base addresses and
operands in registers where they are avai-
lable for use throughout execution of the
entire object module.

During full register assignment, reg-
isters are assigned at two levels:
"locally" and "globally." Local assignment
is performed on a block-by-block basis.
Global assignment is performed on the basis

of the entire module (if intermediate-
optimization has been specified).

For local assignment, an attempt is made
to keep operands whose values are defined
within a block in registers and available
for use throughout execution of that block.
This is done by assigning an available
register to an operand at the point at
which its value is defined. (The value of
an operand is defined when that operand
appears in the operand 1 position of a text
entry.) The same register is assigned to
subsequent uses (i.e., operand 2 or operand
3 appearances) of that operand within the
block, thereby ensuring that the value of

the operand will be in the assigned reg-
ister and available for use. However, if
more than one subsequent use of the defined
operand occurs in the block, additional
steps must be taken to ensure that the
value of that operand is not destroyed
between uses. Thus, when the text entries
in which the defined operand is used are
processed, the code specified for them must
not destroy the contents of the register
containing the defined operand.

Because all available registers are used
during full register assignment, a number
of operands whose values are defined within
the block can be retained in registers at
the same time.

Applying the above concept to an exam-
ple, consider the following sequence of
phase 15 text entries;

A=X+Y
C=A+12
F=A+2C

A register is assigned to A at the point at
which its value is defined, namely in the
text entry A = X + Y. The same register is
assigned to the subsequent uses of A. The
value of A will be accumulated in the
assigned register and can be used in the
subsequent text entry C = A + Z. However,
because A is also used in the text entry
F=A+C, the contents of the register
containing A cannot be destroyed by the
code generated for the text entry
C =A + 2. Thus, when the text entry C = A
+ 7 1is processed, instructions are speci-
fied for that text entry that wuse the
register containing A, but that do not
destroy the contents of that register.

In the example, C is also defined and
subsequently used. To that defined operand
and its subsequent uses, a register is
assigned. The assigned register is differ-
ent from that assigned to A. The value of
C will be accumulated in the assigned
register and can be used in the next text
entry. The text entry F = A + C can then
be evaluated without the need of any 1load
operand instructions, because both the
interacting operands (A and C) are in

registers.

This type of processing typifies that
performed during local assignment for each
block. When all blocks are processed,
global assignment for the source module is
carried out.

Global assignment increases the effi-
ciency of the object module as a whole by
assigning registers to the most active
operands and base addresses. The activi-
ties of all operands and base addresses are
computed prior to global assignment. The

first register available for glokal assign-
ment is assigned to the most active operand
or base address; the next available reg-
ister is assigned to the next most active
operand or base address; etc. As each such
operand or base address is processed, a
text entry, the function of which is to
load the operand or base address into the
assigned register, is generated and placed
into the first block (i.e., entry block) of
the module. When the supply of operands
and base addresses, or the supply of avai-
lable registers, is exhausted, the process
is terminated.

All global assignments are recorded for
use in a subsequent text scan, which incor-
porates global assignments into the text
entries, and completes the processing of
operands that have neither been locally or
globally assigned to registers (e.g., an
infrequently used operand that is used in a
block but not defined in that block).

The full register assignment process is
divided into five areas of operation: con-
trol (subroutine REGAS), table building

(subroutine FWDPAS) , local assignment
(subroutine BKPAS), global assignment
(subroutine GLOBAS), and text wupdating

(subroutine STXTR). The control routine of
phase 20 (LPSEL) passes control to the full
register assignment control routine, which
directs the flow of control among the other
full register assignment routines.

The actual assignment of registers is
implemented through the use of tables built
by the table-building routine, with assis-
tance from the control routine. Tables are
built using the set of coordinate numbers
and associated dictionary pointers created
by phase 15 (MCOORD and MVD) for indexing.
The table-building routine constructs two
sets of parallel tables. One set, used by
the local assignment routine, contains
information about a text block; the second
set, used by the global assignment rou-
tines, contains information about the
entire module. (The local assignment and
global assignment tables are outlined in
Appendix A, "Register Assignment Tables.")

The flow of control through the full
register assignment routines is as follows:

1. The control routine (REGAS) makes a
pass over the MVD table and the dic-
tionary entries for the variables and
constants in the loop passes to it,
and constructs the eminence table
(EMIN) for the module, which indicates
the availability of the variables for
global assignment. The 7routine then
calls the table-building routine to
process the first block in the module.

2. The table-building routine (FWDPAS)

Section 2: Discussion of Major Compcnents 43

builds the required set of local
assignment tables for the block and,
at the same time, adds information to
the global assignment tables under
construction. It then passes control
to the 1local assignment routine to
process the block. When processing of
the block is completed, control is
returned to REGAS.

3. The 1local assignment routine (BKPAS)
uses the tables supplied for the block
to perform local register assignment,
and returns control to FWDPAS when its
processing is completed.

4. The control routine (REGAS) selects
the next block in the module, and
passes it to the table-building rou-
tine, which then passes control to the
local assignment routine. This pro-
cess continues until all blocks in the
module have been processed by the
table-building and 1local assignment
routines.

5. The control routine passes control to
the global assignment routine, which
performs global assignment for the
module.

6. When global assignment is complete,
the control routine calls the text
ypdating routine (STXTR) to complete
register assignment by entering the
results of global assignment into the
text entries for the module. Control
is then returned to the control rou-
tine of phase 20 (LPSEL).

Table Building for Register Assignment:
The table-building routine performs a for-
ward scan of the intermediate text entries
for the block under consideration and
enters information about each text entry
into the local and global tables (refer to
Appendix A, "Register Assignment Tables").
The 1local assignement tables can accommo-
date information for 100 text entries. If
a block contains more than 100 text
entries, the table-building routine builds
the local tables for the first 100 text
entries and passes this set of tables to
the local assignment routine. The 1local
assignment routine processes the text
entries represented in the set of local
tables. The table-building routine then
creates the 1local tables for the next 100
text entries in the block and passes them
to the local assignment routine. When the
table-building routine encounters the last
text entry for the block, it passes control
to the 1local assignment routine, although
there may be fewer than 100 entries in the
local tables.

contain information
and constants

The global tables
relating to variables

4y

referred to within the module, rather than
to text entries. The global tables can
accommodate information for 126 variables
and constants in a given module. Variables
and constants in excess of this number
within the module are not processed by the
global assignment routine.

Local assignment is
backward pass over the

Local Assignment:
implemented via a

text items for the block (or portion of a°

block) under consideration. The text items
are referred to by using the local assign-
ment tables, which supply pointers to the
text items.

The 1local assignment routine examines
each operand in the text for a block and
determines (from the local assignment
tables) if the operand is eligible for
local assignment. To be eligible, an oper-
and must be defined and wused (in that
order) within a block. Because local
assignment is performed via a backward pass
over the text, an eligible operand will be
encountered when it is used (i.e., in the
operand 2 or 3 position) before it is

defined.

When an operand of a text entry is
examined, the 1local assignment routine
(BKPAS) consults the local assignment

tables to determine that operand's eligi-
bility. If the operand is eligible, BKPAS
assigns a register to it. The register
assigned is determined by consulting- the
register usage table (TRUSE). TRUSE is a
work table that contains an entry for every
register that may be used by the local
assignment routine. A zero entry for a
particular register indicates that the reg-
ister is available for local assignment. A
nonzero entry indicates that the register
is wunavailable and identifies the variable
to which the register is assigned. The
register wusage table is modified each time
a register is assigned or freed.

BKPAS records the register assigned to
the wused operand in the local assignment
tables and in the text item containing the
used operand. It sets the status of the
operand in the text entry to indicate that
it is in a register. If subsequent uses of
the operand are encountered prior to the
definition of the operand, BKPAS uses the
register assigned to the first use, and
records its identity in the text item. It
then sets the status bits for the operand
to indicate that it is in a register and is
to be retained in that register.

When a definition of the operand is
encountered, BKPAS enters the register
assigned to the operand into the text item
and sets the status for the operand to
indicate its residence in a register. Once
the register is assigned to the operand at

its definition point, BKPAS frees the reg-
ister by setting the entry in the register
usage table to zero, making the register
available for assignment to another oper-
and.

If the block being processed contains a
CALL statement, no common variables may be
considered for local assignment and no real
operands can be assigned to registers
across that reference. 1In addition, if the
block contains a reference to a function
subprogram, no local assignment may be made
for real operands across the reference to
that function. The local assignment rou-
tine assumes that:

1. All mathematical functions return the
result in general register 0 or
floating-point register 0, according
to the mode of the function.

2. The
result is returned
register 2.

imaginary portion of a complex
in floating-point

If no register is available for assign-
ment to an eligible .operand, an overflow
condition exists. In this case, BKPAS must
free a previously assigned register for
assignment to the current operand. It
scans the local assignment tables and sel-
ects a register. It then modifies the
local assignment tables, text entries for
the block, and register usage table to
negate the previous assignment of the
selected register. The required register
is now available, and processing continues
in the normal fashion.

Global Assignment: The global assignment
routine (GLOBAS), unlike the local assign-
ment routine, does not process any of the
text entries for the module. The global
assignment routine operates only through
the set of global tables. The results of
global assignments are entered into the
appropriate text entries by the text updat-
ing routine.

Before assigning registers, the global
assignment routine modifies the glokal
assignment tables to produce a single
activity table for all operands and base
addresses in the module.

Global assignment is then performed
based on the activity of the eligible
operands and base addresses.

GLOBAS determines the eligibility of an
operand or base address by consulting the
appropriate entry in the global assignment
tables. Eligible operands are divided into
two categories: floating point and fixed
point. The two categories are processed
separately, with floating-point quantities
processed first.

Section 2:

A register usage table (RUSE) of the
same type as described under local assign-
ments (TRUSE) is used by the glokal assign-
ment routine. For each category of oper-
ands, GLOBAS selects the eligible operand
with the highest total activity and assigns
it the first available register of the same
mode. It records the assignment in the
register usage table and in the glokal
assignment tables. GLOBAS then selects the
eligible operand with the next highest
activity and treats it in the same manner.
Processing for each group continues until
the supply of eligible operands or the
supply of available registers is exhausted.

If the module contains any CALL state-
ments, real and common variables are ineli-
gible for global assignment. If the module
contains any references to function subpro-
grams no global assignment can be performed
for real quantities. In other words, if a
module contains both a reference to a
subroutine and to a function subprogram,
global assignment is restricted to integer
and logical operands that are nmot in com-
mon.

Text Updating: The text updating routine

(STXTR) completes full register assignment.
It scans each text entry within the series
of blocks comprising the module, looking at
operands 2, 3, and 1, in that order, within
each text entry. As each operand is pro-
cessed, STXTR interrogates the completed
global assignment table to determine if a

global assignment has been made for the
operand. If it has, STXTR enters the
number of the register assigned into the

text entry and sets the operand status bits
to indicate that the operand is in a
register and is to be retained in that
register.

If both a local and a global assignment
have been made for an operand, the global
assignment supersedes the local assignment
and STXTR records the number of the global-
ly assigned register 1in the text items
pertaining to that operand. It also sets
the status bits for such an operand to
indicate that it is in a register and is to
be retained in that register.

If a

register has not been assigned

either locally or globally for an operand,
STXTR determines and records in the text
entry the required base register for the

base address of that operand. If the base
address corresponds to one that has been
assigned a register during glokal assign-
ment, STXTR assigns the same register as
the base register for the operand. If a
register has not been assigned to the base
address of the operand during global
assignment, it assigns a spill register
(register 0 or 15) as the base register of
the operand. STXTR sets the operand's base

Discussion of Major Components 45

status bits to indicate whether or not the
base address is in a register. (The Dbase
address will be in a register if one was
assigned to it during global assignment.)
It then assigns the operand itself a spill
register (general register 0 or 1 or
floating-point register 0, depending upon
its mode).

As part of its text updating function,
STXTR allocates temporary storage where
needed for temporaries that have not been
assigned to a register, keeps track of the
allocated temporary storage, and completes
the register fields of text entries to
ensure compatability with phase 25. On
exit from the text updating routine, all
text items in the module are fully formed
and ready for processing by phase 25. The
text wupdating routine returns control to
the full register assignment control rou-
tine (REGAS) wupon completion of its func-
tions. REGAS, in turn, returns control to
the control routine of the phase (LPSEL).

BRANCHING OPTIMIZATION

This portion of phase 20 optimizes
branching within the object module. The
optimization is achieved by generating RX-

format branch instructions in place of
RR-format branch instructions wherever
possible.

The use of RX-format branches eliminates
the need for an instruction to 1load the
branch address into a general register
preceding each branching instruction.
Thus, branching optimization decreases the
size of the object module by one instruc-
tion for each RR-format branch instruction
in the object module that can be replaced
by an RX-format branch instruction. It
also decreases the number of address con-
stants required for branching.

Phase 20 optimizes branching instruc-
tions by calculating the size of each text
block (number of bytes of object code to be
generated for that block) and by determin-
ing those blocks that can be branched to
via RX-format branch instructioms.

Subroutine BLS calculates the sizes of
all text blocks after full register assign-
ment for the module is completed. Subrou-
tine LYT then uses the gathered block size
information to determine the blocks that
can be branched to by means of RX-format
branch instructions. BLS calculates the
number of bytes of object code by:

1. Examining each text item operation

code and the status of the operands
(i.e., in registers or not).

46

2. Determining, from a reference table,
the number of bytes of code that is to
ke generated for that text item.

BLS accumulates these values for each block
in the module. In addition, it increments
the block size count by the appropriate
number of bytes for each encountered ref-
erence to an in-line routine and for each
required prologue and epilogue, if a sub-
program program is being compiled (refer to

Phase 25, "Prologue and Epilogue
Generation").
After BLS computes all block sizes,

subroutine LYT determines those text blocks
that can be branched to wvia RX-format
branch instructions. A text block, once
converted to machine code, can be branched
to via an RX-format branch instruction if
the relative address of the beginning of
that block is displaced 1less than 4096
bytes from an address that is loaded into a
reserved register.

The following text discusses reserved
registers, the addresses loaded into them,
and the processing performed by LYT to
determine the source module blocks that can
be branched to via RX-format branch
instructions.

Reserved Registers

Reserved registers are allocated to con-
tain the starting address of the adcon
table and subsequent U4096-byte blocks of
the object module. The criterion used by
phase 20 in reserving registers for this
purpose is the number of text entries that
result from phase 15 processing. (Phase 15
counts the number of text entries that
result from its processing and passes the
information to phase 20.) For relatively
small source modules (approximately 70
source statements), phase 20 reserves only
one register. For sufficiently 1large
source modules (approximately 280 source
statements), a maximum of four is reserved.
The registers are reserved, as needed, in
the following order: register 13, 11, 10,
and 9.

Note: Phase 20 also reserves register 12
to contain the relative address of the
"constants" portion of text information
(see Figure 12). It is used to refer to
the constants and/or variables that occupy
locations within the first 4096 bytes of
the text information portion of the object
module.

Reserved Register Addresses

The addresses placed into the reserved
registers as a result of the execution of
the initijialization instructions (refer to
Phase 25, "Initialization Instruction")
are:

e Register 13 - address of main program
(or subprogram) save area.?l

e Register 11 (if reserved) - address of
the save area plus 4096.

* Register 10 (if reserved) - addxess of
the save area plus 2(4096).

¢ Register 9 (if reserved) - address of
the save area plus 3(4096).

Block Determination and Subsequent
Processing

Because the instructions resulting from
the compilation are entered into text
information immediately after the adcon
table (see Figure 12), certain text blocks
are displaced less than 4096 bytes from an
address in a reserved register. Such
blocks can be branched to by RX-format
branch instructions that use the address in
a reserved register as the base address for
the branch.

To determine the blocks that
branched to via RX-format branch
tions, subroutine LYT computes the dis-
placement (using the block size
information) of each block from the address
in the appropriate reserved register. The
first reserved register address considered
is that in register 13. If a block dis-
placed 1less than 4096 bytes from that
address exists, LYT enters the displacement
of that block (from the address) into the
statement number entry for the statement
number associated with the beginning of
that block. It also places in that state-
ment number entry an indication that the
block can be transferred to wvia an RX-
format branch instruction, and records the
number of the reserved register to be used
in that branch instruction.

can be
instruc-

When LYT has processed all blocks
displaced 1less than 4096 bytes from the
address in register 13, it processes those
displaced 1less than 4096 bytes from the

1Register 13 is used to refer to the adcon
table, which resides in text information
immediately after the initialization
instructions (see Figure 12).

Section 2:

dominator be

addresses in registers 11, 10, and 9 (if

reserved) in a similar manner.

The information placed in the statement
number entries is used during code genera-
tion, a phase 25 process, to generate
RX-format branch instructions.

STRUCTURAL DETERMINATION

To achieve complete optimization, the
structural determination routines of phase
20 (TOPO and BAKT) identify module 1loops
and specify the order in which they are to
be processed. Loops are identified by
analyzing the block connection information
gathered by phase 15 and recorded in the
forward connection (RMAJOR) and backward
connection (CMAJOR) tables. The connection
information indicates the flow of control
within the module and, therefore, reflects
which blocks pass control among themselves
in a cyclical fashion.

Loops are ordered for processing start-
ing with the innermost, or most often
executed, loop and working outward. The
inner-to-outer loop sequence is specifed so
that:

o Text entries will not be relocated into

loops that have already been
processed. 2
e The full register capabilities of

System/360 can first be applied to the
most frequently executed (innermost)
loop.

Loop identification is a sequential pro-
cess, which first requires that a back
determined for each text
block. The back dominator of a text block
(block I) is defined as the block nearest
to block I through which control must pass
before block I receives control for the
first time. The back dominators of all
text blocks must be determined before loop
identification can be continued. After all
back dominators have been determined, a
chain of back dominators is effectively
established for each block. This chain
consists of the back dominator of the
block, the back dominator of the back
dominator of the block, etc.

2The text optimization process relocates
text entries from within a loop to an outer
loop. Thus, if an outer 1loop were pro-
cessed first, text entries from an inner
loop might be relocated to the outer 1loop,
thereby requiring that the outer loop be
reprocessed.

Discussion of Major Components 47

Figure 8 illustrates the concept of back
dominators. Each block in the figure rep-
resents a text block. The blocks are
identified by single letter names. The
back dominator of each block is identified
and recorded above the upper right-hand
corner of that block.

When all back dominators are identified,

a back target and a depth number for each
text block are determined. A block (block

I) has a back target (block J) if:
e There exists a path from block I to
itself that does not pass through block
Je.

e Block J is the nearest block in the

48

chain of back dominators of block I
that has only one forward connection.

The text blocks constituting a loop are
identifiable because they have a common
back target, known as the back target of
the loop.

The depth number for a block indicates
the degree to which that block 1is nested
within 1loops. For example, if a block is
an element of a loop that is contained
within a 1loop with a depth number of onme,
that block has a depth number of two. All
blocks constituting the same loop (i.e.,
all blocks having a common target) have the
same depth number.

C
)

o
—» Z
=~

el

Lo

H

Exit

(,_ Figure 8. Back Dominators

Section 2: Discussion of Major Components 49

The depth numbers computed for the
blocks that comprise the various loops are
used to determine the order in which the
loops are to be processed.

Figure 9 illustrates the
back targets and depth numbers.
block 1in. the figure represents
block, which is identified by a single
letter name. In this figure, the back
target of each block is identified and
recorded above the upper right-hand corner
of that block. The depth number for the
block is recorded above the upper left-hand
corner of the block. Note that blocks that

concepts of
Again each
a text

pass control among themselves in a looping
fashion have a common back target and the
same depth number. Also note that the

blocks of the two inner loops have the same
depth numbers, although they have different
back targets.

When the back target and depth number of

each text block has been determined, 1loops
are identified and the order in which they

50

are to be processed is
loops are

specified. The
ordered according to the depth
number of their blocks. The loop whose
blocks have the highest depth number is
specified as the first to be processed; the
loop whose blocks have the next highest
depth number is specified as the second to
be processed; etc. When the processing
order of all 1loops has been established,
the innermost loop is selected for process-
ing.

describe the
structural

The following paragraphs
processing performed by the
determination routines to:

e Determine the back dominator of each
text block.

e Determine the back target
number of each text block.

and depth

e Identify and order loops for process-
ing.

O
v

1] A
N
1 4 A 2 } J
L
c 2 4 J
2 l C M
2 |
P 2 | ¢ L__,, K
F
2) c 1A
E 1A J

H

Exit

Figure 9. Back Targets and Depth Numbers

Section 2: Discussion of Major Components 51

Determination of Back Dominators

Subroutine TOPO determines the back dom-
inator of each text block by examining the
connection information for that block. The
first block processed by TOPO is the first
block (entry block) of the module. Blocks
on the first level (i.e., Dblocks that
receive control from the entry block) are
processed next. Second-level blocks (i.e.,
blocks that receive control from first-
level blocks) are then processed, etc.

TOPO assigns the entry block a back
dominator of zero, because it has no back
dominator; it records the zero in the back
dominator field of the statement number
entry for that block (refer to Appendix A,
"Statement Number/Array Table"). TOPO
assigns each block on the first 1level
either its actual back dominator or a
provisional back dominator. If a first-
level block receives control from only one
block, that block must be the entry block
and is the back dominator for the first-
level block. TOPO records a pointer to the
statement number entry for the entry block
in the back dominator field of the
statement number entry for the first level-
block. If a first-level block receives
control from more than one block, TOPO
assigns it a provisional back dominator,
which is the entry block of the module.
All blocks on the first level are processed
in this manner.

TOPO also assigns each block on the
second 1level either its actual back
dominator or a provisional back dominator.
If a second-level block receives control
from only one block, its back dominator is
the first-level block from which it
receives control. TOPO records a pointer
to the statement number entry for the
first-level block in the back dominator
field of the statement number entry for the
second-level block. If more than one block
passes control to a second-level block,
TOPO assigns that block a provisional back
dominator. The provisional back dominator
assigned is a first-level block that passes
control to the second-level block under
consideration. Processing of this type is
performed at each level until the last, or
exit, block of the module is processed.
TOPO then determines the actual back domi-
nators of blocks that were assigned provi-
sional back dominators.

For each block assigned a provisional
back dominator, subroutine TOPO makes a
backward trace over each path leading to
the Dblock (using CMAJOR). The blocks at
which two or more of the paths converge are
flagged as possible candidates for the back
dominator of the block. When all paths
have been treated, the relationship of each

52

possible candidate +to the other possible
candidates is examined. TOPO assigns the
candidate at the highest level (i.e., clo-
sest to the entry block of the module) as
the back dominator of the block under
consideration; it records a pointer to the
statement number entry for the assigned
back dominator in the back dominator field
of the statement number entry for the block
under consideration. After the back domi-
nators of all text blocks are identified,
subroutine BAKT determines the Lkack target
and depth number of each text block.

Determination of Back Targets and Depth

Numbers

Subroutine BAKT determines the back tar-
get of each text block through an analysis
of the backward connection information (in
CMAJOR) for that block. Block J 1is the
back target of block I if:

1. Block J 1is the nearest block in the

chain of back dominators of block I.

2. Block J has only one forward connec-
tion.

3. There exists a path from block I to
itself that does not pass through
block J.

If a block J exists that satisfies all

the above conditions except the second,
then the back target of block J is also the
back target of block I.

If a block J satisfying conditions 1 and
3 does not exist, then the back target of
block I is zero.

When the back target of a block is
identified, that block is also assigned a
depth number.

Back targets and depth numbers are det-
ermined for text blocks in the same order
as back dominators are determined for them.
The first block of the module is the first
processed; first-level blocks are consid-
ered next; etc.

BAKT assigns the first
both a back target and depth number of
zero, because it does not have a back
target and is not in a loop. It records
the depth number (zero) in the loop number
field of the statement number entry for the
entry block (refer to Appendix A,
"Statement Number/Array Table").

or entry block

The processing performed by BAKT for
each other block depends upon whether one
or more than one block passes control to

-~

that block. If more than one block passes
control to the block under consideration,
BAKT makes a backward trace over all paths
leading to that block to locate its primary
path. The primary path of a block (if one
exists) 1is a path that starts at that block
and converges on that block without passing
through any block in the chain of back
dominators of that block.

If such a path exists, BAKT obtains and
examines the nearest block in the chain of
back dominators of the block under consid-

eration. If the obtained block has a
single forward connection, BAKT' assigns
that block as the back target of the block
under consideration. BAKT then assigns a

depth number to the block. The number is
one greater than that of its back target,
because the block is in a loop, which must
be nested within the loop containing the
back target. BAKT records the depth number
in the loop number field of +the statement
number entry for the block.

If the obtained block has more than one
forward connection, BAKT assigns 1its back
target as the back target of the block
under consideration. BAKT then records in
the statement number entry for the block a
depth number one greater than that of its
back target.

If a Dblock that receives control from
two or more blocks does not have an asso-
ciated primary path, that block, if it is
in a loop at all, is in the same 1loop as
one of the blocks in its chain of back
dominators. To identify the loop contain-
ing the block (block I), BAKT obtains and
examines the nearest block to block I in
its chain of back dominators that has two
or more forward connections. BAKT makes a
backward trace over all paths leading to
the obtained block to determine whether ox
not block I is an element of such a path.
If block I is an element of such a path, it
is in the same loop as the obtained block,
and BAKT therefore assigns block I the same
back target and depth number as the
obtained block; it records the depth number
in the statement number entry for block I.

If block I is not an element of any path
leading to the obtained block, BAKT obtains
the next nearest block to block I in its
chain of back dominators that has two or
more forward connections and repeats the
process. If block I is not an element of
any path leading to any block in its chain
of back dominators, block I is not in a
loop, and BAKT assigns it both a back
target and depth number of zero.

A Dblock that receives control from only
one block, if it is in a loop at all, is in
the same loop as one of the blocks in its

Section 2:

chain of back dominators. To identify the
loop containing a block (block I) that
receives control from only one klock, BAKT

obtains and examines the nearest block to
block I in its chain of kack dominators
that receives control from two or more
blocks. BAKT makes a backward trace over
all paths leading to the obtained block to
locate its primary path (if any). If the
obtained block has a primary path, BAKT

retraces it to determine if block I is an
element of the path. If it is, block I is
in the same 1loop as the obtained block,

and, BAKT therefore assigns block I the
same back target and depth number as the
obtained block; it records the depth number
in the statement number entry for block I.

If the obtained block does not have a
primary path, or if it does have a primary
path, which, however, does not have block I
as an element, BAKT considers the next
nearest block to block I in its chain of
back dominators that receives control from
two or more blocks. The process is repeat-
ed until a primary path containing block I
is 1located (if any such path exists). If
block I is not in the primary path of any
block in its <chain of back dominators,
block I is not in a loop and BAKT assigns
it both a back target and depth number of
zexro.

Identifying and Ordering Loops for

Processing

Subroutine BAKT orders blocks for pro-
cessing on the basis of the determined kack
target and depth number information.
Blocks that have a common back target and
the same depth number constitute a 1loop.
BAKT flags the loop with the highest depth
number (therefore, the most deeply nested
loop) as the first loop to be processed.
It assigns the blocks constituting that
loop a loop number of one, indicating that

they form the innermost loop, which is the
first to wundergo complete optimization.
(BAKT records the wvalue 1 in the 1loop

nunber field of the statement number entry
for each block in that loop.) BAKT flags
the loop with the next highest depth number
as the second 1loop to be processed. It
assigns the blocks in that 1lcop a loop
number of two, indicating that they form
the second (or next outermost) loop to be
processed. (A wvalue of 2 is recorded in
the loop number field of the statement
number entry for each block in that loop.)
BAKT repeats this procedure until the loop
with a depth number of one is processed.
It then assigns the highest loop number to
the blocks with a depth number of zero,
indicating that they do not form a loop.

Discussion of Major Components 53

If at any time, groups of blocks with
the same depth number but different back
targets are found, each group is in a
different 1loop. Therefore, each such loop
is, in turn, processed before blocks having
a lesser depth number are considered.
Thus, if the blocks of two loops have the
same depth number, BAKT assigns the blocks
of the first loop the next loop number. It
assigns the blocks of the second 1loop a
loop number one greater than that assigned
to the blocks of the first loop.

When loop numbers are assigned to the
blocks of all module loops, the order in
which the loops are to be processed has
been specified. Control is passed to the
routine that determines the busy-on-exit
information and then to the loop selection
routine to select the first (innermost)
loop to be operated upon. This loop con-
sists of all blocks having a loop number of
one.

BUSY-ON-EXIT INFORMATION

Before the module can be processed on a
loop-by-loop basis, information indicating
which variables are busy-on-exit from which
text blocks must be gathered. A variable
is busy immediately preceding a use of that
variable, but is not busy immediately
preceding a definition of that variable.
Thus, a variable is busy-on-exit from the
blocks which are along all paths connecting

a use and a prior definition of that
variable. This means that in subsequent
blocks the variable can be used before it

is defined. The busy-on-exit condition for
a variable assures that 1its proper value
exists in main storage or in a register
along each path in which it is subsequently
used.

Information about the regions in which a
variable is busy or not busy determines
whether or not a definition of that varia-
ble can be moved out of a loop. For
example, if a variable is busy-on-exit from
the back target of a loop, text optimiza-
tion (see "Text Optimization") would not
attempt to move to the back target a
redefinition of that variable, because, if
moved, the value of the variable, as it is
processed along various paths from the back
target, might not be the desired one.
Conversely, if the variable is not busy-on-
exit, the redefinition can be moved without
affecting the desired value of the
variable. Thus, text optimization respects
the redefinitions of variables that are
busy-on-exit from the back target of a
loop.

54

The information about regions in which a
variable is busy or not busy also deter-
mines whether or not loads and stores of a
register assigned to the variable are
required. For example, in full register
assignment (see "Full Register Assignment
During Complete Optimization"), variables
that are assigned registers during global
assignment and that are busy-on-exit from
the back target of the loop must have an
initializing load of the register placed
into the back target. The load is required
because the variable may be used before its
value is defined. Conversely, if the glo-
bally assigned variable is not busy-on-exit
from the back target, an initializing load
is unnecessary.

Phase 15 provides phase 20 with not
busy-on-entry information for each operand
that is assigned a coordinate (an MVD table
entry). The not busy-on-entry information
is recorded in the MVX field of the state-
ment number text entry for each text block
(see phase 15, "Gathering Constant/Variable
Usage Information"). An operand is not
busy-on-entry to a block, if in that block
that operand is only defined or defined
before it is used. Phase 20 converts the
not busy-on-entry information to busy-on-
entry information. An operand is busy-on-
entry to a block, if in that block that
operand is only used or used before it is
defined. Finally, phase 20 converts the
busy-on-entry information +to busy-on-exit
information. The backward connection
information in CMAJOR is used to make the
final conversion.

The routine that performs the conver-
sions is BIZX. This routine determines
busy-on-exit information for each constant,
variable, and base variable having an asso-
ciated MVD table entry or coordinate. How-
ever, because constants and base variables
are only used, they are busy-on-exit
throughout the entire module. Therefore,
the remainder of this discussion deals with
the determination of busy-on-exit informa-
tion for variables.

Because RETURN statements (exit blocks)
and references to subprograms not supplied
by IBM constitute implicit uses of varia-
bles in common, all common variables and
arguments to such subprograms are first
marked as busy-on-entry to exit blocks and
blocks containing the references. The com-
mon variables and arguments are found by
examining the information table entries for
all variables in the MVD table. The module
is then searched for blocks that are exit
blocks and that contain references to sub-

programs not supplied by IBM. The coordi-
nate bit for each previously mentioned
variable 1is set on in the MVF field of the

statement number text entry for each such
block, while the same coordinate bit in the

C

before it is defined).

MVX field is set off. This defines the
variable to be busy-on-entry to such a
block. During this process, a table, con-
sisting of pointers to exit blocks, is
built for subsequent use.

After the blocks discussed above have
been appropriately marked for common varia-
bles and arguments, BIZX, working with the
coordinate assigned to a variable, converts
the not busy-on-entry information for the
variable to a table of pointers to blocks
to which the variable is busy-on-entry.
(The not busy-on-entry information for the
variable 1is contained in the MVX fields of
the statement number text entries for the
various text blocks.) At the same time,
the variable's coordinate bit in each MVX
field ‘is set off.
and CMAJOR are then used to set on the MVX
coordinate bit in the statement number text
entry for each block from which the varia-
ble is busy-on-exit. This procedure is
repeated until all variables have been
processed. Control is then passed to the
control routine of phase 20 (LPSEL).

To convert not busy-on-entry information
to busy-on-entry information, BIZX starts
with the second MVD table entry, which
contains a pointer to the variable assigned
coordinate number two, and works down the
chain of text blocks. The associated MVX
coordinate bit in the statement number text

entry for each block is examined. If the
coordinate bit is off, the corresponding
MVF coordinate bit is inspected. If the

MVF coordinate bit is on, a pointer to the
associated text block 1is placed into the
busy-on-entry table. This defines the
variable to be busy-on-entry to the block
(i.e., the variable 1is used in the block
If the associated
MVX coordinate bit is on, indicating that
the variable is not busy-on-entry, BIZX
sets the bit off and proceeds to the next
block. This process is repeated until the
last text block has been processed.

After BIZX has set off the MVX coordi-
nate bit (associated with the variable
under consideration) in each statement num-
ber text entry and built a table of poin-
ters to blocks to which the wvariable is
busy-on-entry, it determines the blocks
from which the variable is busy-on-exit.

in the
(from

Starting with the first entry
busy-on-entry table, BIZX obtains
CMAJOR) pointers to all blocks that are
backward connections of that entry. Each
backward connecting block is examined to
determine whether or not it meets one of
three criteria, which are:

The busy-on-exit table

e The variable has already been marked as
busy-on-exit from the block.

e The block corresponds to the busy-on-
entry table entry being processed.

If the block meets one of these
criteria, the variable is busy-on-exit from
the block and its associated MVX coordinate
bit is set on. (The backward connections
of that block are not explored.)

If the backward connecting block does
not meet any one of these criteria, the
variable 1is marked as busy-on-exit from
that block and that block's backward con-
nections are, in turn, explored. The same
criteria are then applied to the backward
connecting blocks. The backward connection

paths are explored in this manner until a
block in every path satisfies one of the
criteria.

If, during the examination of the back-
ward connections, an entry block (i.e., a
block 1lacking backward connections) is
encountered, the blocks 1in the table of
exit blocks, which was previously built by
BIZX, are used as the backward connections
for the entry block. Processing then con-
tinues in the normal fashion.

When blocks in all backward connecting
paths have satisfied one of the criteria,
BIZX obtains the next entry in the busy-on-
entry table and repeats the process. This
continues until the busy-on-entry takle has
been exhausted.

When the busy-on-entry table has been
exhausted, the procedure of building the
busy-on-entry table and converting it to
busy-on-exit information 1is repeated for
the next MVD table entry. When all MVD
table entries have been processed, BIZX
passes control to LPSEL, which calls the

loop selection routines.

LOOP SELECTION

The 1loop selection routines of phase 20
(TARGET, BASVAR, and BSYONX) select the
loop to be processed and provide the text
optimization and full register assignment
routines with the information required to
process the loop.

The loop to be processed is selected
according to the value of a loop number
parameter, which 1is passed to the 1loop
selection routines. The control routine of
phase 20 (LPSEL) sets this parameter to one

e The block contains a definition of the after the process of structural
variable (i.e., the variable's MVS determination is complete. The loop selec-
coordinate bit is on). tion routine TARGET is called to select the

Section 2: Discussion of Major Components 55

loop whose blocks have a corresponding loop
number. The selected loop is then passed
to the text optimization routines. When
text optimization for the loop is complet-
ed, the control routine increments the
parameter by one, sets the loop number of
the blocks in the loop just processed to
that of their back target, and marks those
blocks as completed. The control routine
again calls TARGET, which selects the 1loop
whose blocks correspond to the new value of
the parameter. The selected loop is then
passed to the text optimization routines.
This process 1is repeated until the outer-
most loop has been text-optimized.

After text optimization has processed
the entire module (i.e., the last loop),
the control routine removes the block com-
pletion marks, initializes the loop number
parameter to 1, and passes control to
TARGET to reselect the first loop. Control
is then passed to the full register assign-
ment routines. When full register assign-
ment for the loop is completed, the control
routine marks the blocks of the 1loop as

completed. It then increments the paramet-
er by 1 and passes control to TARGET to
select the next loop. Full register

assignment is then carried out on the loop.
This process is repeated until the outer-
most loop has wundergone full register
assignment. (When full register assignment
has been carried out on the outermost loop,
the control routine passes control to the
routines that compute the size of each text
block and then to the routine that computes
the displacements required for branching
optimization.)

The 1loop selection routine TARGET uses
the value of the loop number parameter as a
comparand to select the 1loop to be pro-
cessed. TARGET compares the loop number
assigned to each text block to the paramet-
er. It marks each block having a loop
number corresponding to the value of the
parameter as an element of the loop to be
processed. It does this by setting on a
bit in the block status field of the
statement number entry for the block (refer
to Appendix A, "Statement Number/Array
Table"). When all such blocks are marked,
the loop has been selected.

The information required by the text
optimization and full register assignment
routines to process the loop consists of
the following:

e A pointer to the back target of the
loop.

e A pointer to the forward target of the
loop (if any).

56

e Pointers to both the first and last
blocks of the loop.

e The loop composite matrixes.

After the 1loop has been selected, this

required information is gathered.

Pointer to Back Target

The text optimization and full register
assignment routines place both relocated
and generated text entries into the back
target of the 1loop. Although the back
target of the loop was previously identifi-
ed during structural determination, it was
not saved. Therefore, its identity must be
determined again.

The loop selection routine TARGET deter-
mines the back target of the 1loop by
obtaining the first block of the selected
loop. It then analyzes the blocks in the
chain of back dominators of the first block
to 1locate the nearest block in the chain
that is outside the loop and that passed
control to only one block. That block is
the back target of the 1loop, and TARGET
saves a pointer to it for wuse 1in the
subsequent processing of the loop.

Pointer to Forward Target

The text optimization and full register
assignment routines place both relocated

and generated text entries into the forward

target of the loop. The forward target of
a loop (if it exists) is the single block
to which the loop passes control after its
execution is complete.

To locate the forward target (if any),
the loop selection routine BSYONX analyzes
the backward connection information (in
CMAJOR) for each block that is not in the
selected 1loop. It marks all such blocks
that receive control directly from a block
in the selected 1loop as exit blocks. If
only one exit block exists, that block is
the forward target of the 1loop. (The
forward target must not be entered from a
block not in the 1loop.) BSYONX saves a
pointer to the forward target for use in
the subsequent processing of the loop.

If the above condition is not met, the
loop does not have a defined forward tar-
get.

L

¢

Pointers to First and Last Blocks

The pointers to the first and 1last
blocks of the selected loop indicate to the
text optimization and full register assign-
ment routines where they are to initiate
and terminate their processing. To make
these pointers available, and loop selec-
tion routine TARGET merely determines the
first and last blocks of the selected 1loop
and saves pointers to them for use in the
subsequent processing of the 1loop. To
determine the first and last blocks, TARGET
searches the statement number chain for the
first and 1last entries having the current
loop number. The block associated with
those entries are the first and last in the
loop.

Loop Composite Matrixes

The loop composite matrixes, LMVS, LMVF,
and LMVX, provide the text optimization and
full register assignment routines with a
summary of which operands are defined with-
in the selected loop, which operands are
used within that loop, and which operands
are busy-on-exit from that loop. (An oper-
and is busy-on-exit from the loop if it is
used before it is defined in any path along
which control flows from the loop.)

The LMVS matrix indicates which operands
are defined within the loop. The loop
selection routine BASVAR forms LMVS by
combining, via or OR operation, the indivi-
dual MVS fields in the statement number
text entry of every block in the selected
loop.

The LMVF matrix indicates which operands
are used within the loop. BASVAR forms it
by combining, via an OR operation, the
individual MVF fields in the statement
number text entry of every block in the
selected loop.

The LMVX matrix indicates which operands
are busy-on-exit from the selected loop.
BSYONX forms it during its search for the
forward target of the loop. BSYONX exam-
ines the text entries of each block that is
not in the selected loop and that receives
control from a block in that loop. Any
operand in the text entries of such a block
that is either only used in the block or
used before it is defined is busy-on-exit
from the loop. BSYONX sets on the bit in
the LMVX matrix that corresponds to the
coordinate assigned to each such operand to
reflect that it (i.e., the operand) is
busy-on-exit from the loop.

Section 2:

interaction of entries in the

TEXT OPTIMIZATION

The text optimization process of phase
20 detects text entries within the 1loop
under consideration that do not contribute
to the loop's successful execution. These
non-essential text entries are either com-
pletely eliminated or are relocated to a
block outside of the current loop. Because
the most deeply-nested loops are presented
for optimization first, the number of text
entries in the most strategic sections of
the object module will approach a minimum.

The processing of text optimization is
divided into five logical sections: common
expression elimination, forward movement,
backward movement, strength reduction, and
constant expression reordering.

e Common expression elimination optimizes
the execution of a loop by eliminating
unnecessary re-computations of identi-
cal arithmetic expressions.

e Forward movement optimizes the execu-
tion of a loop by relocating to the
forward target computations essential
to the module but not essential to the
current loop.

¢ Backward movement optimizes the execu-
tion of a loop by relocating to the
back target computations essential to
the module but not essential to the
current loop.

e Constant expression reordering optimi-
zes the execution of a loop by reorder-
ing text entries involving the interac-
tion of constants. The resultant text
entry may be eliminated or may be
relocated into the kack target.

e Strength reduction optimizes the
incrementation of DO indexes and the
computation of subscripts within the
current loop. Modification of the DO
increment may allow multiplications to
be relocated into the back target. If
the DO increment 1is not busy-on-exit

from the loop, it mway be completely
replaced by a new DO increment that
becomes both a subscript value and a

test value at the bottom of the DO.

The first three of the above sections
are similar in that they examine text
entries in strict order of occurrence with-
in the loop.

The last two sections do mnot examine
individual text entries within the loop;
instead, the TYPES table, constructed prior
to their execution, is consulted for optim-
jization possibilities. Furthermore, an
TYPES takle

Discussion of Major Components 57

must

3,

4,

exist before processing can proceed.
The TYPES table contains pointers
5,
various types, their definitioms,

section(s)

The
to type
6, and 7 text entries. The
and the

of text optimization that pro- section

is

given

An

in Appendix D.

following text describes the pro-
cessing performed by each of the
of the text optimization.
illustrating the type of processing of each
These

sections
example

cess them are outlined in Table 3. Poin-
ters to type 1 and type 2 text entries are
not entered into the TYPES table. The
reason is that such types have already been
processed during backward movement.

examples should be referred to when reading
the text describing the processing of the
sections.

Table 3. Text Entry Types

r v H 1
| TYPE | DEFINITION | PROCESSED BY |
L] L d
T T L) 1
Type 1	A text entry having an absolute constant?®	Backward Movement
	in either the operand 2 or operand 3	
	position.	
b } . " 1		
Type 2	A text entry having stored constants? in	Backward Movement
	both the operand 2 and operand 3 positions.	‘
[l 4 - 1 J		
T T T)		
Type 3	An inert text entry (i.e., a text entry	Strength Reduction
	that is a function of itself and an addi-	
	tive constant; e.g., J=J+1)	
b J 1

) T T

| Type 4 | A subscript text entry | Constant Expression Reordering
L. 1 4

r -T T

| Type 5 | A text entry whose operand 1 (a temporary) | Strength Reduction and

| | is a function of a variable (or temporary) | Constant Expression Reordering

| | and a constant, and whose operator is | |
[l multiplicative (*, /, or). l J
[} T T 1
Type 6	A text entry whose operand 1 (a temporary)	Strength Reduction and
	is a function of a variable (or temporary)	Constant Expression Reordering
	and a constant, and whose operator is	
	additive (+, -, or +).	
I 1 1 4		
) T T 1		
Type 7	A branch text entry	Strength Reduction
e L i		
*Absolute constants are those that agree with the definition of numerical constants		
as stated in the publication IBM System/360 Operating System: FORTRAN IV.		
I		
22 stored constant is a variable that is not defined within a loop, and thus its		
value remains constant throughout execution of that loop.		
L 4

Common Expression Elimination

The object of common expression elimina-
tion, which is carried out by subroutine
XPELIM, 1is to eliminate any unnecessary
arithmetic expressions. This is accom-
plished by eliminating text entries, one at
a time, until the entire expression disap-
pears. An arithmetic text entry is unne-
cessary if it represents a value
(calculated elsewhere in the loop) that may
be used without modification. A value may
be used without modification if, between
appearances of the same computation, oper-

ands 2 and 3 of the text entry are not
redefined. The following paragraphs dis-
cuss the processing that occurs during

common expression elimination.

58

Within the current loop, XPELIM examines
each uncompleted block (i.e., a block that
is not part of an inner loop) for text
entries that are candidates for elimina-

tion. A text entry is a candidate if it
contains an arithmetic, 1logical, or sub-
script operator. Once a candidate is

found, XPELIM attempts to locate a matching
text entry. A text entry matches the
candidate if operand 2, operand 3, and the
operator of that text entry are identical
to those of the candidate. If either
operand 2 or 3 of the matching text entry
is redefined between that text entry and
the candidate, the match is not accepted.
The search for the wmatching text entry
takes place in the following locations:

as the candidate,

e In the same block

£ s

between the first text entry and the
candidate.

e In a back dominator (see note) of the
block in which the candidate resides.

Note: Only back dominators that are not
elements of previously processed loops
and that are within the confines of the
current loop are considered. The first
back dominator considered is the omne
nearest to the block being processed.
The next considered is the back domina-
tor of the nearest back dominator, etc.

When a matching text entry is found,
XPELIM performs elimination in the follow-
ing way:

¢ If operand 1 of the matching text entry
is not redefined between that text
entry and the candidate, XPELIM substi-
tutes that operand for operand 2 of the
candidate and converts the operator to
a store.

e If, on the other hand, operand 1 is
redefined, XPELIM generates a text
entry to save the value of operand 1 in
a temporary and inserts this text entry
into text immediately after the match-
ing text entry. It then replaces oper-
and 2 of the candidate with this tem-
porary, and converts the operator to a
store.

e Finally, if operand 1 of the candidate
is a temporary generated by phase 15,
XPELIM replaces all wuses of the tem-
porary with the new operand 2 of the
candidate and deletes the candidate.
Thus, the value of the matching text
entry 1is propagated forward for possi-
ble participation in another candidate.
This provides the link to the next text
item of the complete common expression.

All text entries in the block under
consideration are processed in the pre-
viously described manner. When the entire
block is processed, the next uncompleted
block in the loop is selected and its text
entries undergo common expression elimina-
tion. When all uncompleted blocks in the
loop are processed, control is returned to
the control routine of phase 20, which
passes control to the portion of phase 20
that continues text optimization through
forward movement.

The overall 1logic of common expression
elimination is illustrated in Chart 11. An
example of common expression elimination is
given in Appendix D.

Section 2:

Forward Movement

Forward movement, which is carried out
by subroutine FORMOV, optimizes a loop by
moving text entries from the 1loop to the
forward target of the loop, an area where
they are executed less often. If the 1loop
does not have a defined forward target,
forward movement is bypassed and backward
movement 1is initiated. Only text entries
that are not required in the loop are moved
during forward movement. An example of
such a text entry is one whose operand 1 is
not needed elsewhere in the 1loop. The
following paragraphs describe the process-
ing that occurs during forward movement.

Within the 1loop currently being optim-
ized, FORMOV examines each uncompleted
block in the chain of back dominators of
the forward target (starting with the near-
est back dominator of the forward target
and proceeding as described in common
expression elimination) for text entries
that are candidates for forward movement.
(The block is examined in a bottom-to-top
fashion.) A text entry is a candidate for
forward movement if:

e The text entry contains an arithmetic
or logical operator.

e Operand 1 of the text entry is not used
in another text entry in the loop.

When a candidate is found, FORMOV per-
forms forward movement of the candidate in
one of two ways:

e If the operands of the candidate are
not defined in the text entries between
candidate and the forward target, FOR-
MOV moves the entire candidate to the
beginning of the forward target.

e If an operand of the candidate is
defined and if the expression (i.e.,
operand 2-operator-operand 3) in the
candidate contains a variable and tem-
porary, joined by a commutative opera-
tor, FORMOV generates a text entry to
store the variable in a new temporary.
It then replaces the candidate with
this text entry, moves the candidate to
the forward target, and replaces the
variable with a reference to the new
temporary.

All the text entries in the block wunder
consideration are processed in the pre-
viously described manner. When the entire
block is processed, the next uncompleted
block in the 1loop that is also a back
dominator of the forward target is selected
and its text entries undergo forward move-
ment. When all uncompleted blocks that are
back dominators of the forward target and

Discussion of Major Components 59

within the confines of the loop are pro-
cessed, control is returned to the control
routine of phase 20, which passes control
to the portion of phase 20 that continues
text optimization through backward move-
ment.

The overall logic of forward movement is

illustrated in Chart 12. An example of
forward movement is given in Appendix D.

Backward Movement

Backward movement, which is performed by
subroutine BACMOV, moves text entries from
a loop to an area that 1is executed 1less
often, the back target of the loop. During
backward movement, each uncompleted block
in the loop being processed is examined for
text entries that are candidates for back-
ward movement. To be a candidate for
backward movement, a text entry must:

e Contain an arithmetic or logical opera-
tor.

e Have operands 2 and 3 that are not
defined within the loop.

When a candidate is found, BACMOV car-
ries out backward movement of that candi-
date in one of two ways:

e If operand 1 of the candidate is not
busy-on-exit from the back target of
the loop and if operand 1 of the

candidate is not defined elsewhere in
the 1loop, BACMOV moves the entire can-
didate to the back target of the 1loop.
(An operand is - not busy-on-exit from
the back target if that operand is
defined in the loop before it is used.)

e If operand 1 of the candidate is busy-
on-exit from the back target of the
loop or if it is defined elsewhere in
the loop, BACMOV generates a text entry
to perform the computation of the
expression in the candidate and store
the result in a new temporary. It
moves this text entry to the end of the
back target of the loop and then repla-

60

ces the expression in the candidate
with operand 1, the new temporary, of
the generated text entry.

All the text entries in the block wunder
consideration are processed in the pre-
viously described manner. When the entire
block is processed, the next uncompleted
block in the dloop is selected and its text
entries undergo backward movement. When
all uncompleted blocks in the 1loop are
processed,
trol routine of phase 20, which passes
control to the portion of phase 20 that
continues text optimization through
strength reduction.

The overall 1logic of backward movement
is illustrated in Chart 13. BAn example of
backward movement is given in Appendix D.

Two additional optimization processes
are performed concurrently with backward
movement. They are the elimination of
simple stores and of arithmetic expressions
that appear in text entries and are func-
tions of integer constants.

Elimination of Simple Stores: BACMOV

removes unnecessary simple stores (i.e.,
text entries of the form "operand 1 =
operand 2") from the block that is current-
ly wundergoing backward movement. The fol-
lowing paragraphs describe the processing
that occurs during simple-store elimina-
tion.

During the scan of each uncompleted
block for text entries to be moved to the
back target, BACMOV checks for simple
stores that are candidates for elimination.
A simple store is a candidate for elimina-
tion if its operand 1 is a variable.

When a candidate is found, BACMOV exam—
ines the characteristics of its operands to
determine if the candidate can be eliminat-
ed. The various combinations' of operand
characteristics that permit a candidate to
be eliminated are given in table 4. If the
characteristics of the operands of “the
candidate conform to any one of these ten
combinations, BACMOV eliminates the candi-
date.

control is returned to the con-.

C

Table 4.

Operand Characteristics That Permit Simple-Store Elimination

r T L) L) T L] 1
Operand 1	Operand 1	Operand 2	Operand 1 used	Operand 1 re-	Operand 1 redefined be-
busy-on-exit	refined	[redefined	in block below	defined below	low between redefini-
from block	below in	below in	redefinition	before redef-	{tion of operand 2 and
	block	block	of operand 2	inition of	first use of operand 1
				operand 2	that follows redefini-
					tion of operand 2
o $: $ $ $ {					
1. No] No	No	X	X	X	
t 1] 4 1 (] Jd					
r T T] T T 1					
2. No	Yes	No	X	X	X
% + t + + t 1					
3 Yes	Yes	No	X	X	X
[1 1 4 4 1 4					
v T T T 1 T 1					
4, No	No	Yes	No	X	X {
L 1 I 4 1 i d					
) T T T T T h]					
{5- No	Yes	Yes	No	Z	X
t 4] i 4 L 1					
r T T T T T 1					
6. No	Yes	Yes	Yes	Yes	X
t 4 1 4 4 1 4
v T T 1} T T 1
17. No | Yes | Yes | Yes | No | Yes |
L 1 1] 4 4 4 4
| 4 T T T T T 1
|8. Yes | Yes | Yes | No | pA | X |
b 1 i L 4 1 4
r T T T T T 1
19- Yes | Yes | Yes | Yes | Yes | X |
L | ! 1 4 4 4
r T T T 1 T h]
|10. Yes | Yes | Yes | Yes | No | Yes |
L L L 4L 4 4 4
v 1
|X = condition cannot exist because of previous characteristics of operands. |
|Z = characteristic is irrelevant. |
L ¥

It does this by replacing the uses of
operand 1 (of the candidate to be
eliminated) with operand 2 of the candidate
in text entries between either:

e The candidate and the first redefini-
tion of either operand.

e The candidate and the end of the block
(i.e., 1if a redefinition of either
operand does not occur).

candidate. An
elimination is

BACMOV then deletes the
example of simple-store
illustrated in Appendix D.

Elimination of Text Entry Expressions
Involving Integer Constants: During the
scan of a block for text entries to be
moved to the back target, BACMOV also
checks for text entries whose operators are
arithmetic and whose operands 2 and 3 are
both integer constants. When such a text
entry 1is found, BACMOV eliminates the
arithmetic expression in the text entry by:

e Calculating the result of the expres-
sion.

e Creating a new dictionary entry for the
result, which is a constant.

e Replacing the arithmetic expression
with the result.

Section 2:

The text entry is thereby reduced to a
simple store, which may be eliminated by
simple-store elimination.

Constant Expression Reordering

‘dered and

Constant expression reordering, which is
performed by subroutine AGGLUT, optimizes
the 1loop being processed by reducing the
number of calculations that must be per-
formed within the loop to evaluate arith-
metic operations involving constants. For
example, assume that the arithmetic opera-
tion A/3.0%4.0, represented by the pair of
text entries T=A/3.0 and T1=T*4.0, appears
within a loop. The number of calculations
that must be performed within the loop to
evaluate this operation can be reduced by
dividing 4.0 by 3.0 outside the loop and
inserting the result back into the loop in
such a fashion that the operation is reor-
simplified to A#*T2 (where T2
equals the result of 4.0 divided by 3.0).
The resultant text for the above operation
would appear as T1=A#*T2, which remains in
the loop, and T2=4.0/3.0, which is per-
formed outside the loop.

discuss the
constant

The following paragraphs
processing that occurs during
expression reordering.

Discussion of Major Components 61

Within the 1loop currently being pro-
cessed, AGGLUT examines each uncompleted
block for pairs of text entries that are
candidates for constant reordering. A pair
of text entries to be a candidate must meet
all of the following conditions:

e Both text entries have arithmetic oper-
ators.

e The expressions in both text entries
are functions of a variable (or
temporary) and a real constant (type 5
or type 6 text entries).

e Operand 1 of both text entries is a
temporary.

e The text entries have a common tempora-
ry that is defined in one text entry
and used in the other.

Note: The text entry in which the common
temporary is defined must precede the text
entry in which it is used.

A pair of text entries with these char-
acteristics represents an arithmetic opera-
tion that may be reordered and simplified
by means of transformations and an operator
table.

The transformations indicate the operand
movement required to reorder the expression
represented by the pair of candidate text
entries. There are two transformations:

1. One is applied to candidate pairs when
the text entries for both have either
multiplicative or additive operators.
The application of this transformation
(see Figure 10) reorders the operation
represented by the candidate pair and
simplifies its calculation by elimi-
nating a text entry. (The text entry
eliminated is the text entry of the
candidate pair in which the common
temporary is defined.)

2. The second transformation is applied
to candidate pairs, one text entry of
which has an additive operator (see
note), and the other of which has a
multiplicative operator. The applica-
tion of this transformation (see Fig-
ure 11) reorders the arithmetic
expression represented by the candi-
date pair and generates additive con-
stants, which may be subsequently used
to eliminate text entries.

Note: The text entry in which the common
temporary is defined must have the additive
operator.

: ‘—-‘~‘-_—-_‘-‘~—~§"“‘-—_._

(candidate pair)

T9 = T8/D

v
T10 = 7.0 * D

(computes result

| of constant interaction)
L

‘~—§~‘-‘-h~‘-~‘~“‘——~

\j
T9 = C/T10

(arithmetic expression
in reordered form)

s " o —— — — — — — — — G ——— c— — ————

)]
Note: This figure illustrates

|resultant text

text entries of which both have multiplicative operators.
entries, T10=7.0%*D and T9=C/T10, are obtained from the operator table. |

the movement of the operands of a candidate pair, the|

The operators in the]

|The text entry T10=7.0#*D which computes the result of the interaction of the constants, |

|is placed into the back target.
|constant.)
L

(In this application; D is assumed to be a

stored|

J

Figure 10.

62

Multiplicative-Multiplicative or Additive-Additive Transformation

C

T2 = RiD

T4 = D*4.0

(computes result
of constant interaction)

(candidate pair)

T2 = R*¥4.0 T3 = T2+TuH

(new definition of
common temporary)

Y Y

(arithmetic expression
in reordered form)

e . e . e e e s . S, e . e S e, e S e

|Note: This figure

illustrates the movement of the operands of a candidate pair.

s c— c— —— — —— — — — —— — ——————]

One|

| text entry contains an additive operator; the other contains a multiplicative operator.|

{The operators in the resultant text entries are obtained from the operator takle.
entry T4=D*4.0, which computes the result of the interaction of the constants, is|
application, D is

| text
|placed in the back target.
| constant.)

L

(In this

The|

assumed to be a stored)

1

Figure 11.

The operator table (refer to Appendix A,
"Operator Table") indicates the operators
that are required to reorder the arithmetic
operation represented by a pair of candi-
date text entires. Arguments to the table
are, respectively:

e The operator of the text entry in which
the common temporary is defined.

s The operator of the text entry in which
the common temporary is used.

The operators obtained from the table
respectively:

are,

e The operator of the text entry used to
combine the constants.

¢ The operator of the text entry rep-
resenting a new definition of the com-
mon temporary if any is required.

e The operator of the text entry that
represents the arithmetic operation in
reordered form.

Note: If the operators of the candidate
pair are either both multiplicative or both
additive, a new definition of the common
variable is not required to reorder the
arithmetic operation.

Use of Transformations and Operator Table:
Subroutine AGGLUT uses the transformations
and the operator table in combination to
determine the text entries that are
required to reorder the arithmetic opera-
tion represented by the candidate pair. It

Section 2:

Additive-Multiplicative Transformation

determines the operands of the required
text entries from the appropriate transfor-
mation, which is selected according to the
nature of the operators of the candidate
pair. It determines the operators of the
required text entries by matching the oper-
ators of the candidate pair to the opera-
tors in the argument fields of the entries
in the operator table. When the entry
whose arguments match the operators in the
candidate pair is found, AGGLUT obtains the
functions (i.e., the operators to be used
in the required text entries) of that entry
and uses them as the operators of the
required text entries.

Residence of Text Entries After Reordering:

The text entries that result from the
processing carried out by subroutine AGGLUT
on a candidate pair occupy the following
locations:

¢ The text entry that computes the result
of the interactions of the constants
resides in the back target of the loop
(see note).

e The text entry representing a new defi-
nition of the common temporary, if any
such text entry is required, replaces
the text entry of the candidate pair in
which the common temporary was defined.

e The text entry representing the arith-
metic operation in reordered form
replaces the text entry of the candi-
date pair in which the common temporary
was used.

Discussion of Major Components 63

Note: This text entry does not exist if
the interacting constants are both abso-
lute. Prior to placing the resultant text
entries into their appropriate 1locations,
AGGLUT determines if both interacting con-
stants are absolute. If they are, it
computes the result of their interactions
and constructs a dictionary entry for the
result. The result is used as the
appropriate used operand of the text entry
that represents the arithmetic expression
in reordered form.

Processing Procedure: The left-most column
of the operator table is divided into three
groups:

e Group A--Multiplicative-multiplicative.
e Group B--Additive-Multiplicative.
e Group C--Additive-Additive.

The processing performed during constant
expression reordering follows the order of
these groups. AGGLUT first processes can-
didate pairs whose text entries both have
multiplicative operators, (i.e., pairs of
type 5 text entries); it next processes
candidate pairs, one text entry of which
has an additive operator (a type 6 text
entry) and the other a multiplicative oper-
ator (a type 5 text entry); and then
processes candidate pairs whose text
entries both have additive operators (pairs
of type 6 text entries).

During constant expression reordering,
AGGLUT first attempts to locate pairs of
type 5 (group A) text entries that are
candidates. If it finds any, it processes
them. AGGLUT then attempts to locate pairs
of text entries one of which is type 6 and
the other type 5 (group B) that are candi-
dates. If it locates any such pairs, it
processes them. (If any group B candidate
pairs are found, group A processing is
repeated.) Finally, AGGLUT attempts to
locate pairs of type 6 (group C) text
entries that are candidates. If it finds
any, it processes them.

All the candidate pairs in the block
under consideration are processed in the
previously described manner. When the
entire block is processed, the next uncom-
pleted block in the loop is selected and
its text entries undergo constant expres-
sion reordering. When all uncompleted
blocks in the loop are processed, control
is returned to the control routine, which
passes control to the portion of phase 20
that continues text optimization through
strength reduction.

The overall logic of constant expression
reordering is illustrated in Chart 14. An

64

example of this
Appendix D.

process is presented in

Additional Processing:

candidate pairs have

additional process, the
type 6 text entry, is
operand 1 of any of the remaining type 6
text entries 1is the index value of a
subscripted variable (e.g., X(s T4, where
T4 corresponds to operand 1 of a type 6
text entry). If such is the case, the
index value of the subscripted variable is
a function of a variable (or temporary) and
an additive constant. (Consider that the
index value is defined as Tu=T2+K, which is
a type 6 text entry.) Subroutine AGGLUT
renders the type 6 text entry unnecessary
and eliminates it by:

After all type 6
been processed, an
elimination of a

carried out if

e Reducing the index value of the sub-
scripted variable by the amount of the
additive constant that appears in the
type 6 text entry whose operand 1
corresponds to the index value.

¢ Tncreasing (by the above amount) either
of the two elements (displacement or
address constant) that combines with
the index value to yield the address of
the subscripted variable.

The address of a subscripted varia-
the index

Note:
ble is equal to the sum of (1)
value computed from the subscript paramet-
ers, (2) the displacement assigned to the
array containing the subscripted variable,
and (3) the address constant (base address)
assigned to the array containing the sub-
scripted variable.

AGGLUT reduces the index value of the
subscripted variable by the amount of the
additive constant by replacing the index
value with the used variable (or temporary)
of the type 6 text entry whose operand 1
corresponds to the index value.

Whether constant expression reordering
increases the displacement or the address
constant depends upon the nature of the
additive constant.

If the additive constant is an absolute
constant and its magnitude is such that,
when it is added to the displacement
assigned to the array containing the sub-
scripted variable, the result is less than
4096, AGGLUT incorporates the additive con-
stant into the displacement. It accom-
plishes this by adding the additive con-
stant to the contents of the DP field of
the subscript text entry (refer to Appendix
a, "Phase 15 Intermediate Text
Modifications"). (When phase 25 generates
machine code for the subscript text entry,
it adds the contents of the DP field to the

displacement assigned to the array that
contains the subscripted variable.)

If the additive constant is either an
absolute constant, whose magnitude is such
that the 4096 restriction is violated, or a
stored constant, AGGLUT incorporates the
additive constant into an address constant.

It does this by:

e Creating a new variable and replacing
the subscripted variable with the new
variable.

e Constructing a dictionary entry for the
new variable and assigning it an
address constant.

e Generating a text entry, the function
of which is to insert into the address
constant assigned to the new variable
the sum of the value of the address
constant assigned to the array contain-
ing the replaced subscript variable and
the additive constant.

e Placing the generated text entry into
the back target of the loop.

In either case, the address that results
from combining the index value, the dis-
placement, and the address constant
(associated with the subscript text entry
that results from constant expression
reordering) is equivalent to the address
that would result from combining the index
value, the displacement, and the address
constant associated with the original sub-
script text entry, where that text entry
left unchanged.

Strength Reduction

Strength reduction, which is performed
by subroutine REDUCE, optimizes loops that
are controlled by 1logical IF statements.
(DO loops are converted to loops controlled
by logical IF statements during Phase 10
processing.) Such 1loops are optimized by
modifying the expression (e.g., J<20) in
the IF statement; this enables certain text
entries to be moved from the loop to the
back target of the loop, an area of lower
frequency of execution. The processing of
strength reduction 1is divided into two
sections:

e Elimination of multiplicative text.
e Elimination of additive text.

Both of these sections perform strength
reduction, but each has a separate set of
criteria for considering a loop as a candi-
date for reduction. However, the manners

Section 2:

in which these sections implement reduction
are essentially the same.

Elimination of Multiplicative Text: To

eliminate multiplicative text, REDUCE exam-
ines the loop being processed to determine
if it is a candidate for strength reduc-
tion. The loop is a candidate if:

e The loop contains an inert text entry
(a type 3 text entry).

e Operand 1 of the inert text
used in another text entry (in the
loop) whose operator indicates multi-
plication and whose other used operand
is a constant® (a type 5 entry).

entry is

e Cperand 1 of the inert text entry is
the variable appearing in the expres-
sion of the 1logic IF statement that
controls the loop.

If the 1loop is a candidate, REDUCE
implements strength reduction in one of two
ways:
in the inert text

1. If the constants

entry and the multiplicative text
entry are both absolute constants,
REDUCE:

a. Calculates a new constant (X)
equal to the product of the abso-
lute constants.

b. Generates another inert text entry
and inserts it into the 1loop
immediately after the original
inert text entry. The additive
constant in this text entry is K.

c. Modifies the expression in the

logical IF by:

1. Replacing the branch variable
(see note) with operand 1 of
the generated inert text
entry.

2. Replacing the branch constant
(see note) with a constant
equal to the product of the
branch constant and K.

d. Deletes the original inert text
entry 1if operand 1 of that text
entry is not busy-on-exit from the
loop.

e. Moves the multiplicative text
entry to the back target of the
loop.

1This other text entry is referred to as a
multiplicative text entry.

Discussion of Major Components 65

f. Replaces operand 1 of the multi-
plicative text entry with operand
1 of the generated inert text
entry.

g. Replaces the uses of operand 1 of
the multiplicative text entry that
remain in the loop with operand 1
of the generated inert text entry.

Note: The branch variable is the variable
in the expression of the logical IF that is
tested to determine if the loop is to be
reexecuted. The branch constant is the
constant to which the branch variable is

compared. For example, IF (J<3) where J is
the branch variable and 3 is the branch
constant.

2. If either of the constants in the

inert text entry or the multiplicative
text entry 1is a stored constant,
REDUCE performs similar processing to
that described above. However, prior
to generating the inert text entry, it
generates two additional text entries
and places them into the back target
of the loop. The first text entry
multiplies the two constants.
1 of this text entry becomes the
additive constant in the generated

inert text entry. The second text
entry multiplies operand 1 of the
first generated text entry by the

branch constant. Operand 1 of the
second text entry becomes the new
branch constant of the logical IF.

Iif additional multiplicative text
entries exist within the loop, the above
process is repeated. Repetitive processing
of this type results in a number of gener-
ated inert text entries, which may be
eliminated from the loop by the processing
of the second section of strength reduc-
tion.

Elimination of Additive Text: To eliminate

additive text, REDUCE examines the loop
being processed to determine if it is a
candidate for strength reduction. The loop

is a candidate if:

e The loop contains an inert text
(type 3).

entry

e Operand 1 of the inert text entry is

used in the loop in another text entry
whose operator indicates addition2
(type 6).

If the loop is a candidate, the process-
ing performed by REDUCE to eliminate the
additive text entry is essentially the same

2This text entry is referred to

additive text entry.

as an

66

Operand

as that performed to eliminate a multi-

plicative text entry.

The overall logic of strength reduction
is illustrated in Chart 15. An example
showing both methods of strength reduction
is given in Appendix D.

FULL REGISTER ASSIGNMENT DURING COMPLETE
OPTIMIZATION

During complete optimization, full reg-
ister assignment is carried out on module
loops, rather than on the entire module, as
is the case for intermediate optimization.
Regardless of whether a loop or the entire
module is being processed, the full reg-
ister assignment routines operate essen-
tially in the same manner. However, the
optimization effect of full register
assignment, when carried out on a loop-by-
loop basis, 1is more pronounced. Because
the most deeply-nested loops are presented
for full register assignment first, the
number of register 1loads 1in the most
strategic sections of the object module
will approach a minimum. The processing of
a loop by full register assignment differs
from its processing of the entire module
only in the area of global assignment. An
understanding of the processing performed
on a loop, other than global assignment,
can be derived from the previous discussion
of full register assignment (refer to "Full
Register Assignment"). Global assignment
for a 1loop is described in the following
text.

When processing a 1loop, the glokbal
assignment routine (GLOBAS) incorporates
into the current loop, wherever possible,
the global assignments made to items (i.e.,
operands and base addresses) in previously
processed 1loops. It does this to ensure
that the same register is assigned in both
loops if an item eligible for global
assignment in the current loop was globally
assigned in a previously processed loop.

Before the global assignment routine
assigns an available register to the most
active item of the current loop, it deter-
mines whether that item was globally
assigned in a previously processed loop.
(As global assignment is carried out on
each loop, all global assignments for that
loop are recorded and saved for use when
the next loop is considered.) If the item
was not globally assigned in a previously
processed loop, GLOBAS assigns it the first
available register. If the item was glo-
bally assigned in a previously processed
loop, the global assignment routine then
determines whether the register assigned to
the item 1in the previously processed loop

is currently available. If that register
is available, GLOBAS also globally assigns
it to the same item in the current loop.
If the register 1is not available, the
global assignment of that item in the
previously processed loop cannot be incor-
porated into the current 1loop. GLOBAS
therefore assigns the item an available
register different from that assigned to it
in the previously processed 1loop. GLOBAS
selects the eligible item with the next
highest activity in the current 1loop and
treats it in the same manner. Processing
continues in this fashion until the supply
of eligible itéms or the supply of availa-
ble registers is exhausted.

As each global assignment is made to an
active item, GLOBAS checks to determine
whether or not that item is busy-on-exit
from the back target of the loop. If the
item is busy-on-exit, GLOBAS generates a
text entry to load that item into the
assigned register and inserts it into the
back target of the 1loop. The 1load is
required to guarantee that the item is in a
register and available for subsequent use
during loop execution. If the item is
not-busy-on-exit, the load text item is not
required. If any globally assigned item is
defined within the loop and is also busy-
on-exit from the loop, GLOBAS generates a
text entry to store that item on exit from
the loop. The generated store is needed to
preserve the value of such an operand for
use when it is required during the
execution of an outer loop.

GLOBAS records all global assignments
made for the current loop for use in the
subsequent updating scan (see "Full Reg-
ister Assignment") and also for incorpora-
tion, wherever possible, into subsequently
processed loops.

BRANCHING OPTIMIZATION DURING COMPLETE
OPTIMIZATION

During complete optimization, branching
optimization is carried out in the same
manner as during intermediate optimization.
After all 1loops have undergone full reg-
ister assignment, BLS is given control to
calculate the size of each block. When the
sizes of all blocks have been calculated,
subroutine LYT uses the block size informa-
tion to determine the blocks that can be
branched to by means of RX-format branch
instructions.

Section 2:

PHASE 25

Phase 25 produces an object module from
the combined output of the preceding phases
of the compiler. An object module consists
of four elements:

Text information.

External symbol dictionary.
Relocation dictionary.
Loader END record.

The text information (instructions and
data resulting from the compilation) is in
a relocatable machine 1language form. It
may contain unresolved external symbolic

cross references (i.e., references to sym-
bols that do not appear in the object
module). The external symbol dictionary

contains the information needed to resolve
the external symbolic cross references
appearing in the text information. The
relocation dictionary contains the informa-
tion needed to relocate the text informa-
tion for execution. The END record informs
the 1linkage editor of the length of the
object module and the address of its main
entry point.

An object module resulting from a compi-

lation consists of a single control sec-
tion, unless common blocks are associated
with the module. An additional control

section is included in the module for
common block.

each

The object module produced by Phase 25
is recorded on the SYSLIN data set if the
LOAD option is specified by the FORTRAN
programmer, and on the SYSPUNCH data set if
the DECK option is specified. If the LIST
option is specified, Phase 25 develops and
records on the SYSPRINT data set an assem-
bler language 1listing of the instructions
and data of the object module. Error
messages produced during phase 25 (if any)
are also recorded on the SYSPRINT data set.

TEXT INFORMATION

Text information consists of the machine
language instructions and data resulting
from the compilation. Each text informa-
tion entry (a TXT record) constructed by
phase 25 can contain up to 56 bytes of
instructions and data, the address of the
instrucitons and data relative to the
beginning of the control section, and an
indication of the control section that
contains them. A more detailed discussion
of the use and format of TXT records is
given in the publication IEM System/360
Operating System: Linkage Editor, Program

Logic_Manual.

Discussion of Major Components 67

The major portion of phase 25 processing
is concerned with text information con-
struction. In building text information,
phase 25 obtains each item that is to be
placed into text information, converts the
item to machine language form wherever
necessary, enters the item into a TXT
record, and places the relative address of
the item into the TXT record.

Phase 25 assigns relative addresses by

means of a 1location counter, which is
continually updated to reflect the location

68

at which the next item is to be placed into
text information. Whenever phase 25 begins
the construction of a new TXT record, it
inserts +the current value of the location
counter into the address field of the TXT
record. The address field of the TXT
record thereby indicates the relative
address of the instructions and data that
are placed into the record.

Figure 12 shows the layout of storage
that Phase 25 assumes in setting up text
information.

O

Address
Registers
12—
(Constants
Variable and Arrays
Translated FORMAT statements
and object-time name list
dictionaries
For main program or
Initialization Instructions subprogram main
ent oint
13 . Y p
Save Area
,JL, Address Constants L
T (Adcons) a
4096 I .
Bytes Prologue Fon: mc'nn entry
- point into
Epilogue subprogram only
n - Instructions L
- T (resulting from text conversion) T
4096 Subprogram Secondary Entry Coding For secondary
Bytes entry point into
Prologue a subprogram
Epilogue
10—
4096 L | H J-
Bytes -r nstructions ~
4 (resulting from text conversion)
99—
(/"

Figure 12.

Storage Layout for Text Information Construction

Section 2:

Discussion of Major Components 69

Phase 25 constructs text information by:

adcon table entries for the
of the

¢ Reserving
referenced statement numbers
module.

* Entering the constants of the source

module into TXT records.

¢ Reserving storage within text informa-
tion for the variables and arrays of
the module.

¢ Translating FORMAT statements (i.e.,
phase 10 format text) to a form recog-
nizable by IHCFCOMH and entering the
translated statements into TXT records.
(IHCFCOMH, a member of the operating
system library (SYS1l.FORTLIB), performs
object-time implementation of I/0
statements. IHCFCOMH is explained in
Appendix E.)

e Converting NAMELIST statements (i.e.,
phase 10 namelist text) to object-time
namelist dictionaries, which are used
by IHCFCOMH to implement READ-WRITE
statements using NAMELIST statements.

¢ Generating the main program or subpro-
gram initialization instructions and
entering them into TXT records.

e Completing the processing of the adcon
table entries and entering the resul-
tant entries into TXT records.

e Assigning the initial values, as speci-
fied, to the variables and arrays
appearing in phase 15 data text.

e Generating the prologue and epilogue

instructions for a subprogram and
entering these instructions into TXT
records.

e Converting phase 15/20 standard text
into System/360 machine code and enter-
ing the code into TXT records.

Chart 21 shows the 1logic of phase 25

processing, down to, but mnot including,
conversion of text to machine code.

Adcon Table Entry Reservation

Prior to beginning its construction of
text information, subroutine LYT1 reserves
address constants for the referenced state-
ment numbers of +the module and for the
statement numbers appearing in computed GO
TO statements. The address constants are

70

reserved so that the relative addresses of
the statements associated with such state-
ment numkbers can be recorded, and subse-
quently obtained during execution of the
object module, when branches to those
statements are required.

To reserve address constants for state-
ment numbers, subroutine LYT1 scans the
chain of statement number entries in the
statement number/array table. For each
encountered statement number that is ref-
erenced, LYT1 inserts into the appropriate
field of the associated statement number
entry a pointer to the next available entry
in the adcon table. The actual value to be
placed into the address constant set aside
for a statement number is determined during
text conversion (a subsequent phase 25
process), when the text representation of
that statement number is encountered.

Note: If Lkranching optimization is being
implemented, LYT1 only reserves address
constants for statement numbers that are
associated with text blocks that can not be
branched to via RX-format branch instruc-
tions.

After all statement numbers are pro-
cessed, address constants are likewise res-
erved for the statement numbers appearing
in computed GO TO statements. LYT1 scans
the branch table chain (refer to Appendix
A, "Branch Table"), and sets aside an entry
in the ADCON table for each statement
number for which a branch table entry was
constructed. It also records a pointer to
the address constant reserved for each fall
through statement number in the initial
branch table entry for that statement num-
ber. LYT1 does not record pointers to the
address constants set aside for the actual
statement numbers of the computed GO TO
statements in their associated standard
branch table entries. The values to be
placed into the address constants for
statement numbers in computed GO TO state-
ments are also determined during text con-
version.

Constant Processing

Subroutine INITIL obtains the constants
of the source module from their information
table entries and places them into text
information via TXT records. The address
field of each such record specifies rela-
tive addresses for the constants that cor-
respond to the relative addresses assigned
to them by CORAL in Phase 15.

&

Variable and Array Processing:

Subroutine INITIL reserves storage with-
in text information for the variables and
arrays of the module between the last
constant and the first translated FORMAT
statement, or the first object-time namel-
ist dictionary, if FORMAT statements do not

exist in the module. To accomplish this,
INITIL assigns to the first translated
FORMAT statement (or object-time namelist

dictionary) a relative address equal to the
number of bytes occupied by the constants,
variables, and arrays of the module.

FORMAT Statement Processing

If the source module contains READ/WRITE
statements requiring FORMAT statements, the
associate phase 10 format text must be put
into a form recognizable by IHCFCOMH. Sub-
routine FORMAT develops the necessary form
by obtaining the phase 10 intermediate text
representation of each FORMAT statement,
and tramslating each element (e.g., H for-
mat code and field count) of the statement
according to Table 5. FORMAT enters the
translated statement along with its rela-
tive address into TXT records. It also
inserts the relative address of the tran-
slated statement into the address constant

for the statement number associated with

the FORMAT statement.

NAMELIST Statement Processing

If the source module contains READ/WRITE
statements using NAMELIST statements, sub-
routine NLIST converts phase 10 namelist
text to object-time namelist dictionaries.
The object-time namelist dictionaries pro-
vide IHCFCOMH with the information required
to implement READ/WRITE statements using

namelists (refer to Appendix A, "Namelist
Dictionaries"). The dictionary developed
for each 1list in a NAMELIST statement

contains the following:
¢ An entry for the namelist name.

e Entries for the variables and arrays
associated with the namelist name.

¢ An end mark of 2zeros terminating the
list.
Each entry for a variable contains the

name, mode (e.g., integer*2 or real*4), and
relative address of the variable. Both the
address and the mode are obtained from the
dictionary entry for the variable.

Each entry for an
name of the array, the mode of its
ments,

array contains the
ele-

Table 5. FORMAT Statement Translation

r T) 1
| | | Translated Form (in hexadecimal) |
| FORMAT | b T T 4
| Specification | Description | 1st byte | 2nd byte | 3rxd byte |
[R 1 4 4] 4
1) T T 1] T 1
| | beginning of statement | 02 | | |
| n(| group count | ou | n | |
| n | field count | 06 | n | |
| np | scaling factor | 08 | n* | |
| Fw.d | F-conversion | 0A | w | 4 |
| Ew.d | E-conversion | oc | W | d |
| Dw.d | D-conversion | 0E | w | 4 |
| Iw | I-conversion | 10 | w | |
| Tn | column set | 12 | n | |
| Aw | A-conversion] 14 | w | |
| Lw | L-conversion | 16 | w | |
| nX | skip or blank | 18 | n | |
| nHtext | | | | |
| or | literal data | 1A | n | text |
["text! | | I | [
|) | group end | 1c | | |
| / | record end | 1E { | |
| Gw.d | G-conversion | 20 | w | d |
| | end of statement | 22 | | |
| Zw | Hexadecimal conversion | 24 | w | |
%. L L g 4 _{
| *The first hexadecimal bit of the byte indicates the scale factor sign (0 if positive, |
|1 if negative). The next seven bits contain the scale factor magnitude. |
L 4

Section 2:

Discussion of Major Components 71

the relative address of its first element,
and the information needed to locate a
particular element of the array. NLIST
obtains the above information, excluding
the array name, from the information table.

NLIST places the entries of the namelist
dictionary along with their relative
addresses into TXT records. It also places
the relative address of the beginning of
the namelist dictionary into the address
constant for the namelist name.

Initialization Instructions

Phase 25 generates the machine instruc-
tions for entry into a main program, a
subprogram, or a subprogram secondary entry
point. These instructions are referred to
as initialization instructions and are
divided into three catagories:

¢ Main program entry coding, which is
generated by subroutine ATTACH.

e Subprogram main entry coding, which is
generated by subroutine SUBR.

¢ Subprogram secondary entry coding,
which is generated by subroutine ENTRY.

Once generated, these instructions
entered into TXT records.

are

Main Program Entry Coding: The initializa-
tion instructions generated by subroutine
ATTACH for a main program perform the
following functions:

e Save the contents of general registers
14 through 12.

e Load the reserved registers with their
associated addresses. (The address
loaded into register 13 is that of the
save area. The address 1loaded into
register 11, if reserved, is that of
the save area plus 4096 bytes. The
address loaded into register 10, if
reserved, is that of the save area plus
8192 Dbytes. The address loaded into
register 9, if reserved, is that of the
save area plus 12288 bytes.)

e Load the address of the main program
save area into register 4, and store
register 4 into the save area of the
calling program.

e Save register 13 in the new save area.

e Load register 15 with the address of
IHCFCOMH.

72

e Branch and 1link to subroutine IBFINT
(arithmetic interruption subroutine of
IHCFCOMH) so that it can set the inter-
ruption mask.

e Load register 13 from register 4.
e Branch to apparent entry point.

e Load register 15 with the address of
IHCFCOMH.

e Branch and link to STOP entry point in
IHCFCOMH.

* Constant for STOP 0.

e Set up a save area that receives the
contents of the main program registers,
if a subprogram is called.

e Set up the address constants to be
loaded into the reserved registers.

Note: At execution time, subroutine IBFINT
is given control to set the interruption
mask.

Subprogram Main Entry Coding: The initial-
ization instructions generated by subrou-
tine SUBR for the main entry point into a
subprogram perform the following functions:

e Save the contents of general registers

14 through 12.

¢ Load the addresses of the prologue and
epilogue of the subprogram into reg-
isters. (For an explanation of prolo-
gue and epilogue, refer to "Prologue
and Epilogue Generation.")

e Load the reserved registers with their
associated addresses.

¢ Load the address of the save area of
the subprogram into register 13.

¢ Save the address of the save area of
the calling routine and the address of
the epilogue of the subprogram in the
save area of the subprogram.

e Branch to the prologue.

e Set up a save area in which the con-
tents of the registers wused by the
subprogram are saved, should that sub-
program, in turn, call another subpro-
gram.

e Set up address constants in which the

addresses of the prologue and epilogue

of the subprogram and the addresses to
be placed into the reserved registers
are inserted.

Subprogram Secondary Entry Coding: The
initialization instructions for a subpro-
gram secondary entry point are essentially
the same as those required for the main
entry point. For this reason, phase 25
makes use of a number of the initialization
instructions for the main entry point in
processing secondary entry points.

Main entry point initialization instruc-
tions that precede and include the instruc-
tion that loads the prologue and epilogue
addresses cannot be used, because each
secondary entry point has its own associat-
ed prologue and epilogue. Therefore, for
secondary entry points, subroutine ENTRY
generates initialization instructions that
perform the following functions:

e Save the contents of general registers
14 through 12.

e Load the addresses of the prologue and
epilogue of the secondary entry point
into registers.

e Branch to the subprogram main entry
point initialization instruction that
loads the reserved registers with their
associated addresses.

e Set up address constants in which the

addresses of the prologue and epilogue
of the secondary entry point are
placed.

Subprogram secondary entry coding does
not occupy storage within the
"Initialization Instructions"™ section of
text information (see Figure 12). That
section is reserved for:

e Main program entry coding, if the
source module being compiled is a main
program.

¢ Subprogram main entry coding, if a
subprogram is being compiled.

The initialization instructions for sec-
ondary entry points are generated by sub-
routine ENTRY when the text representation
of an ENTRY statement is encountered during
the processing of intermediate text. These
instructions reside in the "Instructions"”
section of text information.

Adcon Table Processing

Entries in the compile-time adcon table
consist of the true address constants (base

addresses) assigned by CORAL for 1local
constants and variables and for common
variables, pointers to information table

entries for arguments and external ref-

Section 2:

erence address constants, temporaries and
constants generated by phase 20, and res-
erved address constants, which are set
aside for statement numbers. The output
that the phase 25 subroutine NADOUT gener-
ates for the object-time adcon table con-
sists of TXT records and RLD records in the
case of true address constants. The RLD
records provide the information needed to
relocate the true address constants. (A
type 5 ESD is output for each common
block.) For argument address constants,
NADOUT obtains the relative addresses of
the arguments from their information table
entries and places them into TXT records.
It also includes RLD records for them. For
an external reference address constant,
NADOUT also includes a type 2 ESD record in

addition to the TXT and RLD records.
NADOUT outputs temporaries and generated
constants in TXT records. It does not

accompany them with RLD records.

NADOUT does not process address con-
stants for statement numbers and for state-
ment numbers appearing in computed GO TO
statements at this time. However, it res-
erves storage for them within the "address
constants" section of text information. It
does this by incrementing the location
counter by the number of address constants
set aside for such items times four. The
value of the updated location counter is
then assigned as the relative address of
the "prologue" if a subprogram is being
compiled or of the "instructions" if a main
program is being compiled.

As previously stated, the values to be
placed into the address constants for
statement numbers and statement numbers in
computed GO TO statements are determined
during text conversion, when that process
encounters the END statement.

Phase 15 Data Text Processing

The phase 25 subroutine DATOUT assigns
the 1initial values specified for variables
and arrays in phase 15 data text in the
following manner:

1. The relative address of the variable
or array to be assigned an initial
value or values is obtained and placed
into the address field of a TXT
record.

2. Each constant (one per variable) that
has been specified as an initial value
for the variable or array is then
obtained and entered into the TXT
record. (A number of TXT records may
be required if an array is being
processed.)

Discussion of Major Components 73

Such action effectively assigns the ini-
tial value, because the relative address of
the initial value has been set to equal the
relative address of its associated variable
or array element.

Proloque and Epilogue Generation

Phase 25 generates the machine code: (1)
to transmit parameters to a subprogram, and
(2) to return control to the calling rou-
tine after execution of the subprogram.
Parameters are transmitted to the subpro-
gram by means of a prologue. Return is
made to the calling routine by means of an
epilogue. Prologues and epilogues are pro-
vided for subprogram secondary entry points
as well as for the main entry point.

Proloque: A prologue (generated by subrou-
tine PROLOG) is a series of load and store

instructions that transmit the values of
"call by value" parameters and the address-
es of "call by name" parameters to the
subprogram. (These parameters are
explained in the publication IBM System/360
Operating System: FORTRAN IV.)

When subroutine PROLOG generates a pro-
logue, it enters the prologue into TXT
records and inserts its relative address

into the address constant reserved for the
prologue address during the generation of
initialization instructions.

Epiloque: An epilogue (generated by sub-
routine EPILOG) is a series of instructions
that (1) return to the calling routine the
values of "call by value" parameters (if
any), (2) restore the registers of the
calling routine, and (3) return control to
the calling routine. (If "call by value"
parameters do not exist, an epilogue con-
sists of only those instructions required
to restore the registers and to return
control.)

When subroutine EPILOG generates an epi-
logue, it enters the epilogue into TXT
records and inserts its relative address
into the address constant reserved for the
epilogue address during the generation of
initialization instructions. (When phase
25 encounters the text representation of a
RETURN statement, a branch to the epilogue
is generated.)

Residence of Proloques and Epiloques: The
prologues and epilogues for secondary entry
points do not reside in the "Prologue and
Epilogue" section of text information (see
Figure 12). This section is reserved for
the prologue and epilogue of the main entry
point. The prologue and epilogue for a
secondary entry point into a subprogram are

T4

generated immediately after the secondary
entry coding for the secondary entry point,
and reside in the "Instructions"™ section of
the text information following the secon-
dary entry coding.

Text Conversion

The final function of phase 25 is the
conversion of intermediate text into Oper-
ating System/360 machine code. (The text
conversion process is controlled by subrou-
tine MAINGN.) In converting the text,
phase 25 obtains each text entry and,
depending upon the nature of the operator
in the text entry, passes control to one of
seven processing paths to convert the text
entry.

The seven processing paths are:

Statement Number Processing.
ENTRY Statement Processing.
I/0 Statement Processing.
CALL Statement Processing.
Code Generation.

RETURN Statement Processing.
END Statement Processing.

The logic of text conversion is illus-

trated in Chart 22.

STATEMENT NUMBER PROCESSING: When the
operator of the text entry indicates a
statement number, MAINGN passes control to
subroutine LABEL. LABEL then inserts the
current value of the location counter,
which is the relative address of the state-
ment associated with the statement number,
into the address constant for the statement
number. When the associated statement is
converted to machine code and placed into
text information, it resides at an address
equal to the value placed into the address
constant. All branches to that statement
are effected through the use of the address
constant.

Note: If branching optimization is being
implemented, only statement number that can
not be branched to via RX format branch
instructions (i.e., statement numbers that
are not within the range of registers 13,
11, 10, and 9) are processed as described
above.

After the relative address has been
placed into the address constant for the
statement number, subroutine LABEL deter-
mines if that statement number appears in a
computed GO TO statement. If it does,
LABEL also inserts the relative address
into the appropriate field of the branch
table entry, or entries, for that statement
number. The relative address recorded in

the branch table entry is placed into the
storage reserved for it within text infor-
mation (refer to "Adcon Table Processing")
when the text representation of the END
statement is encountered.

ENTRY STATEMENT PROCESSING: When the oper-
ator of an intermediate text entry indi-
cates an ENTRY statement, subroutine MAINGN
passes control to subroutines ENTRY, PRO-
LOG, and EPILOG. These subroutines gener-
ate the following for the subprogram secon-
dary entry point:

entry coding
"Initialization

e Subprogram
(refer to the
Instructions").

secondary
section

e Prologue and epilogue (refer to
"Prologue and Epilogue Generation").

The machine code instructions that con-
stitute the above are entered into TXT
records.

I/0 STATEMENT PROCESSING:
tor of the text entry indicates

When the opera-
an I/0

statement, an I/0 list item, or the end of
an I/O 1list, MAINGN passes control to
subroutine IOSUB, which generates an

appropriate calling sequence to IHCFCOMH to

perform, at object-time, the indicated
operation.
The calling sequence generated for an

I/0 statement depends on the type of the
statement (e.g., READ, BACKSPACE). The
calling sequence generated for an I/0O 1list
item depends on the I/0 statement type with
which the 1list item is associated and on
the nature of the list item, i.e., whether
the item is a variable or an array. The
calling sequence generated for an end of an
I/0 list depends on whether the end 1I/0
list operator signals:

e The end of an I/0O list associated with

a READ/WRITE requiring a FORMAT state-
ment.

e The end of an I/0 list associated with
a READ/WRITE not requiring a FORMAT
statement.

Once the calling sequence is generated,
subroutine I0SUB enters it into TXT
records.

CALL STATEMENT PROCESSING: When the opera-
tor of the text entry indicates a CALL
statement, MAINGN passes control to subrou-
tine CALLER to generate a standard direct-
linkage calling sequence, which uses
general register 1 as the argument reg-

ister. The argument list is located in the
adcon table in the form of address con-
stants. Each address constant for an argu-

ment contains the relative address of the

Section 2:

argument. CALLER enters the calling

sequence into TXT records.

CODE _GENERATION: Code generation converts

operands of the text entry to be

text entries having operators other than
those for statement numbers and ENTRY,
CALL, I/0, RETURN, and END statements into
System/360 machine code. To convert the
text entry, code generation uses four
arrays and the information in the text
entry. The four arrays are:

¢ Register array. This array is reserved
for register and displacement informa-
tion.

¢ Directory array. This array contains
pointers to the skeleton arrays and the
bit strip arrays associated with opera-

tors in text entries that undergo code
generation.
e Skeleton array. A skeleton array

exists for each type of operator in an
intermediate text entry that is to be
processed by code generation. The
skeleton array for a particular opera-
tor consists of all the machine code
instructions, in skeleton form and in
proper sequence, needed to convert the
text entry containing the operator into
machine code. These instructions are
used in various combinations to produce
the desired object code. (The skeleton
arrays are shown in Appendix C.)

e Bit strip array. A bit strip array
exists for each type of operator in a
text entry that is to wundergo code
generation. The bit strip array for a
particular operator contains strips of
bits. One strip is selected for each
conversion involving the operator. The
bits in each strip are preset (either
on or off) in such a fashion that when
the strip is matched against the skele-
ton array, the strip indicates the
combination of instructions that is to
be used to convert the text entry.
(The bit strip arrays are shown with
their associated skeleton arrays in
Appendix C.)

In code generation, the actual base
registers and operational registers (i.e.,
registers in which calculations are to ke
performed), assigned by phase 20 to the
converted
to machine code, are obtained from the text
entry and placed into the register array.
Any displacements needed to load the base
addresses of the operands are also placed
into the register array. The displacements,
referred to in this context are the dis-
placements of the base addresses of the
operands from the start of the adcon tahle
containing the addresses. These displace-
ments are obtained from the information

Discussion of Major Components 75

table
action is
processing.

entries for the operands. This
taken to facilitate subsequent

The operator of the text entry to be

converted is used as an index to the
directory array. The entry in this direc-
tory array, which is pointed to by the

operator index, contains pointers to the
skeleton array and the bit strip array
associated with the operator.

The proper bit strip is then selected
from the bit strip array. The selection
depends on the status of operand 2 and
operand 3 of the text entry. This status
is set up by phase 20 and is indicated in
the text entry by four bits (see Appendix
A, "Phase 20 Intermediate Text
Modifications"): the first two bits indi-
cate the status of operand 2; the second
two bits indicate the status of operand 3.

The status of operand 2 and/or operand 3
can be one of the following:

00 The operand is in main storage and
is to remain there after the present
code generation. Therefore, if the
operand 1is loaded into a register
during the present code generation,
the contents of the register can be
destroyed without concern for the
operand.

01 The operand is in main storage and
is to be 1loaded into a register.
The operand is to remain in that
register for a subsequent code gen-
eration; therefore, the contents of
the register are not to be dest-
royed.

10 The operand is 1in a register as a
result of a previous code genera-
tion. After the register is used in
the present code generation process,
its contents can be destroyed.

11 The operand is in a register and is
to remain in that register for a
subsequent code generation. The
contents of the register are not to
be destroyed.

This four bit status field is used as an
index to select a bit strip from the bit
strip array associated with the operator.
The combination of instructions indicated
in the bit strip conforms to the operand
status requirements: i.e., if the status of
operand 2 is 11, the generated instructions
make use of the register containing operand
2 and do not destroy its contents. The
combination, however, excludes base load
instructions and the store into operand 1.

76

Once the bit strip is selected, it is
moved to a work area. The strip is modi-
fied to include any required base load
instructions. That is, bits are set on in
the appropriate positions of the bit strip
such that, when the strip is matched to the
skeleton array, the appropriate instruc-
tions for loading base addresses are
included in the object code. The skeletons
for these load instructions are part of the
skeleton array.

The code generation process determines
if the base address of operand 2 and/or
operand 3 must be loaded into a register by
examining the status of these base address-
es in the text entry. Such status is
indicated by four bits: the first two bits
indicate the status of the base address of
operand 2; the second two bits indicate the
status of the base address of operand 3.
If +this status field indicates that a base
address is to be loaded, the appropriate
bit in the bit strip is set on. (The bit
to be operated upon is known, because the
format of the skeleton array for the opera-
tor is known.)

Before the actual match of the bit strip
to the skeleton array takes place, the code
generation process determines:

¢ If the base address of operand 1 must
be loaded into a register.

¢ If the result produced by the actual
machine code for the text entry is to
be stored into operand 1.

This information is again indicated in the
text entry by four bits: the first two bits
indicate the status of the base address of
operand 1; the second two bits indicate
whether or not a store into operand 1 is to
be included as part of the object code. If
the base address of operand 1 is to be
loaded and/or if operand 1 is to be stored
into, the appropriate bit(s) in the bit
strip is set on.

The bit strip is then matched against
the skeleton array. Each skeleton instruc-
tion corresponding to a bit that is set on
in the bit strip is obtained and converted
to actual machine code. The operation code
of the skeleton instruction is modified, if
necessary, to agree with the mode of the
operand of the instruction. The mode of
the operand is indicated in the text entry.
The symbolic base, index, and operational
registers of the skeleton instructions are
replaced by actual registers.
operational registers to be used are con-
tained in the register array. If an oper-
and is to be indexed, the index register to
be used is obtained. (The index register
is saved during the processing of the text
entry whose operand 1 represents the actual

The base and

index value to be used.) The displacement
of the operand from its base address, if
needed, 1is obtained from the information
table entry for the operand. (The contents
of the displacement field are added to this
displacement if a subscript text entry is
being processed.) These elements are then
combined into a machine instruction, which
is entered into a TXT record. (If the
skeleton instruction that is being convert-
ed to machine code is a base load instruc-
tion, the base address of the operand is
obtained from the object-time adcon table.
The register (13) containing the address of
the adcon table and the displacement of the
operand's base address from the beginning
of the adcon table are contained in the
register array.)

Branch Processing: The
portion of phase 25 generates

code generation
the machine

code instructions to complete branching
optimization. The processing performed by
code generation, if branching optimization

is being implemented, 1is essentially the
same as that performed to produce an object
module in which branching is not optimized.
However, before a skeleton instruction
(corresponding to an on bit in the selected
and modified bit strip) is assembled into a
machine code instruction, code generation
determines if that instruction either:

¢ Loads into a register the address of an
instruction to which a branch is to be
made and which is displaced less than
4096 bytes from the address in a res-
erved register?t.

e Is an RR-format branch instruction that
branches to an instruction that is
displaced less than 4096 bytes from the
address in a reserved register2.

Note: A load candidate usually immediately
precedes a branch candidate in the skeleton
array.

Code generation determines if the
instruction to be branched to is displaced
less than 4096 bytes from an address in a
reserved register by interrogating an indi-
cator in the statement number entry for the
statement number associated with the block
containing the instruction to be branched
to. This indicator is set by phase 20 to
reflect whether or not that block is dis-
placed less than 4096 bytes from an address
in a reserved register.

The completion of branching optimization
proceeds in the following manner. If a

1This type of text entry is subsequently
referred to as a load candidate.

2This type of text entry is subsequently
referred to as a branch candidate.

Section 2:

skeleton instruction corresponding to an on
bit in the bit strip is a load condidate,
it is not included as part of the instruc-
tion sequence generated for the text entry
under consideration. If a skeleton
instruction corresponding to an on bit in
the bit strip is a branch candidate, it is
converted to an RX-format branch instruc-
tion. The conversion 1is accomplished by
replacing operand 2 (a register) of the
branch candidate with an actual storage
address of the form D (0,Br). D represents
the displacement of the instruction (to be
branched to) from the address that is in
the appropriate reserved register (Br).

If the instruction to be branched to is
the first in the text block, both the
displacement and the reserved register to
be used for the RX-format branch are
obtained from the statement number entry
associated with the block containing the
instruction. (This information is placed
into the statement number entry during
phase 20 processing.)

If the instruction to be branched to is
one that is subsequently to be included as
part of the instruction sequence generated
for the text entry under consideration3,
the displacement of the instruction from
the address in the appropriate reserved
register 1is computed and used as the dis-
placement of the RX-format branch instruc-

tion. The reserved register used in such a
case 1is the one indicated in the statement
number - entry associated with the block

containing the text entry currently being
processed by code generation.

RETURN STATEMENT PROCESSING: When the

operator of the text entry indicates a
RETURN statement, MAINGN passes control to
subroutine RETURN, which generates a branch
to the epilogue. The epilogue address is
obtained from the subprogram save area.
The address of the epilogue is placed into

the save area during the execution of
either the subprogram main entry coding or
the subprogram secondary entry coding
(refer to the section "Initialization

Instructions").

END STATEMENT PROCESSING: When the opera-

tor of the text entry indicates an END
statement, MAINGN passes control to subrou-
tine END, which completes the processing of
the module by entering the address con-
stants (i.e., relative addresses) for
statement numbers and statement numbers
appearing in computed GO TO statements into

3skeleton arrays for certain operators con-
tain RR format branch instructions that
transfer control +to other instructions of
that skeleton.

Discussion of Major Components 77

text information and by generating loader
END loader record.

Subroutine END enters the address con-
stant (i.e., relative address) for each
statement number and for each statement
number in a computed GO TO statement into a
TXT record. The address inserted into each
such record places the address constant
~into the storage reserved for it during
ADCON table processing.

The loader END record must be the last
record of the object module. Its functions
are to signal the end of the object module
and to inform the 1linkage editor of the
size (in bytes) of the control section and
the address of the main entry point of the
control section.

EXTERNAL SYMBOL DICTIONARY

The external symbol dictionary contains
entries for external symbols that are
defined or referred to within the module.
An external symbol is one that is defined
in one module and referred to in another.
One external symbol dictionary entry (an
ESD record) is constructed by phase 25 for
each external symbol it encounters. The
entry identifies the symbol by indicating
its type and location within the module.
The ESD records constructed by phase 25

are:

e ESD-0 This is a section definition
record for the source module being
compiled.

e ESD-1 This record defines an entry point
for the source module being com-
piled.

e ESD-2 This record is generated for an
external subprogram name.

e ESD-5 This is a section definition

record for a common block (either

named or blank).

For a more complete discussion of the
use and the format of these records, refer
to the publication IBM System/360 Operating
System: Linkaqe Editor, Program.- Logic
Manual.

RELOCATION DICTIONARY

The relocation dictionary is composed of
entries for the address constants of the
object module. Omne relocation dictionary
entry (an RLD record) is constructed by

78

25 for each address constant it
encounters. If the address constant is for
an external symbol, the RLD record iden-
tifies the address constant by indicating:

phase

e The control section to which the
address constant belongs.

‘e The location of the address constant

within the control section.

e The symbol in the external symbol dic-
tionary whose value is to be wused in
the computation of the address con-
stant.

If the address constant is for a 1local
symbol (i.e., a symbol that is located in
the same control section as the address
constant), the RLD record identifies the
address constant by indicating the control
section to which the address constant
belongs and its location within that con-
trol section.

For a more detailed discussion of the
use and format of an RLD record, refer to
the publication IBM System/360 Operating
System: Linkage Editor, Program Logic
Manual.

PHASE 30

Phase 30 records (on the SYSPRINT data
set) appropriate messages for syntactical
errors encountered during the processing of
phases 10 and 15; its overall logic is
illustrated in Chart 23. As eérrors are
encountered by these phases, error table
entries are created and placed into an
error table. Each such entry consists of
an internal statement number (i.e., a com-
piler generated number assigned to each
source statement for identification
purposes) for the statement that is in
error, and a message number. (If the error
cannot be localized to a particular state-
ment, no internal statement number is
entered in the error table entry. Phase 30
simulates the internal statement number
with a zero.)

Message Processing

- Using the message number in the error
table entry multiplied by four, phase 30
locates, within the message pointer table
(refer to Appendix A, "Diagnostic Message
Tables"), the entry corresponding to the
message number. This message pointer table
entry contains (1) the length of the mes-
sage associated with the message number,

f\

and (2) a pointer to the text of the
message associated with the message number.
After phase 30 obtains the pointer to the
message text, it constructs a parameter
list, which consists of:

e The internal statement number appearing
in the error table entry.

e A pointer to the message text associat-
ed with the message number.

¢ The length of the message.
¢ The message number.

Having constructed the parameter 1list,
phase 30 calls subroutine MSGWRT, which
writes the message on the SYSPRINT data
set. After the message is written, the
next error table entry is obtained and
processed as described above.

or 8) associated with the message number is
obtained from the error code table
(GRAVERR) by using the message number in
the error table entry as an index. The
error level code indicates the seriousness
of the encountered error. (See the publi-
cation IBM System/360 Operating System:
FORTRAN IV Programmer's Guide for explana-

.tions

of all the messages capable of being
generated by the compiler.) The obtained
error level code is saved for subsequent
use only if it is greater than the error
level codes associated with message numbers
appearing in previously processed error
table entries. Thus, after all error table
entries have been processed,. the highest
error level code (either 4 or 8) has been
saved. The saved error 1level code is
passed to the FSD when phase 30 processing
is completed. This code is used by the FSD
to determine whether or not the compilation
is to be deleted.

As each error table entry is being
processed, the error level code (either &
Section 2: Discussion of Major Components 79

Chart 00. Compiler Control Flow

Ledd VAa s 2 s s T2 T2
ERRRALRRERERRRR *FSD 01A2%
FROM

* B e e e e
* CALL ING *: >% INITIALIZE. *

PROGRAM * * CALL *
e e et L] * PHASE 10 *

R A T

v
N NG DWW NN TR
*PH10 03A2%
W e W e e e e R B
*CONVERT SOURCE *
*TO INFORMATION *
TABLE AND TEXT #
LRI T R e R S 22 2

v
HREERCO2HEHERRERR
FSD 01

A2%*
L O
* CALL *
* PHASE 15 *
*

*
LR

iil*lpzixlﬁililil
*PH1S 04B3%
o e e et o
* CONVERT PHASE *
*#10 TEXToASSIGN *

80

* ADDRESSES * X RE
I e T T * *
* E3 *
* *
EXRR
v i -
E3 HREHIELHHIFRRRRER HHHERE SRR IR KRR NN AN
*FSD 01A2% *PH20 10C1% *FSD 01A2% *PH25 21B1* &l-/‘
Hm e W o K W R R AND B e o) f e T ey ,
*#IF ERRORS,CALL >% ASSIGN REGIS— * > % CALL *- >* BUILD * =
*#30e NO ERRORSs *ERROR * TERSeOPTIMIZE * * PHASE 2S5 * * OBJECT *
* CALL PHASE 20 * #* IF REQUESTED # * MODULE *

L R e E s 2
ERROR

E I T e T T T

secccccsccccnse

* *
E e

L e e a s a]

v
L2223

X Kk
[N
@

T

XK

escseccsceccescscccacccccsccscsccsnsasn

v . .
G2 H R ER NN G4 HREERGSE R HERNRAKE .
PH30 23B3% ¥ *o * * .
et gt dutemtata il ok LOAD *o NO * DELETE * .
* OUTPUT * >* o OPTION o ¥—————>% COMPILATION * .
* ERROR * *oSPECIFIED* * * .
* SAG * *q o ¥ * * .
L e e e X, ok LR R R e S e RS .
* YES
- .
- .
. .
. v v .
- WRER R TR TR R R AR LR AR s .
- * * * CALL PHASE 10 * .
. * CALL * * TO READ TO * .
* PHASE 20 * * END CARD * .
* * *(IF NECESSARY) *
- * * * * o
- IR X RN IR H I REK .
. .
. 222 .
. * * .
- v * J5 *—> .
o R * * -
o * * kK v .
* E3 * o¥e

* * Js *,
- 22 2] X XR o * .
. * LAST .
. * A2 %< COMPILATION o% .
. * * . . .
- EER *q ¥ .
. *e o¥ .
. * YES .
.
.
.
v .
OPERATIONS HREXKSHERERER XN .
WITHIN DOTTED * TO * .
LINES * OPERATING * .
PERFORMED BY * SYSTEM * -
FSD R s e -
.
.
D R R R R R

Chart 01.

IEKAAOO

HEEEALEERERNAER

* *
* CALLING e

* PROGRAM *
BTN KKK NN

SEE TABLE 6 FOR A BRIEF
DESCRIPTION OF EACH
SUBROUTINE OF THE FSD.

RN

SYSDIR

FSD Overall Logic

HEHERAD KRR NRNR RN RN
* *
* PROCESS *
>% PARAMETERS *
* *
*
*

*
e)

HRRERATHR RN KRN
* *

* INITIALIZE
* FOR

* K Kk

* COMPILATION
*

NN NI KR NN

PE T T YVR T TR
*DSPTCH 03A2%
o R e W P — W= W —

>* BUILD TEXT %
* AND INFORM~ *
* ATION TABLE *
R EX R RS ST S LR LS

ENTRY POINT FOR
PHASE 10
SUBROUTINE OR

FOR SERIOUS
ERROR(LEVEL 16)

W ED DWW NN NN
* FROM *
* CALL ING *
* PHASE

A
LR e T

ENTRY POINT

FOR I/0
ERROR
v
o¥o IBCOMRTN
Fa2 *o

o* *o
«* PHASE 10
*e SUBROUTINE

*

*e ¥

v
R HKEG D RN
* *

FRN N FHE XN RREK
* FROM *
* 1BCOM# *
* *

RN NN TRN

* WRITE ERROR ¥ I
>% MESSAGE *<
*

* WITH CODE

* *
R e e

v
NO XXXR

EX 23]

ERRERJOAX R XKL REER
*

BE SURE
TO READ TO
END CARD

'ELL]
ok k KK

RN KRN RN

v
RN

* Kk
>
w

* kK

XN

Section 2:

>
|

v
ERRHEDL HEHRHXNRNN
* *

* RLECOVER
* UNUSED

* TEXT AREA
*
*

* X% %k Xk ok

R E T TR R R TS

E*CAix**il{
STALL 0sSB3
WK E kNN
*PROUCESS COMMON *
: AND EQUIVAL-~ :

e e N e s e T

v
EEZ 2R OIS 222 S
PHAZ1S 06B2%
Rt e e e et et Bt e
* PROCESS *
* PHASE 10 *
* TEXT *
A3 I NN

\
NN NE G N N NN NN N
* *

* RECOVER *
* UNUSED *
* TEXT AREA *
* *
* *

NN KRN ERNNR

\
KR L NN NRN XN
CORAL 09B2%
Hm W NN —H—X— R
* RELATIVE *
* ADDRESS *
* ASSIGNMENT *
R e e

v
ERREEGHHNERHRHREN
* *

* RECOVER

* UNUSED TEXT
* AREA

*

*

*
*
*
*
*

L R e

v
¥
H4 *o
«* ERROR *.
¥ ORrR *
* o WARNING MESS—
*o. AGES o¥
*, o

.
NO

v
EHRRER JHREEREEHEER

LPSEL 10C1
L e e i

* ASSIGN REGIS- *<

* TERS.OPTIMIZE *
* IF REQUESTED *
R e S R

ENTRY POINT
FOR_END-OF-—
ILE

F
ENCOUNTER

ENDFILE
HEERCSHEERERR RN
* FROM *
* PHASE 10 *

s RS e a2 s

v
ok
ES *.
o *o
YES o% s %o
—*. END FILE %
<MISPLACED.
* g -

v *e o¥
XX * NO

* %k
@
N

* K K

XXX

v
HRRNRESHAR XK RRE
* RETURN TO *

>* CALLING *
* PROGRAM *
I KK I NN NN
EE 223
* *
* FS *
* *
EE 2T

HEEERHGHE R HN XN HR
*IEKP30 23B3%
Rt ok e e e et e At
>* WRITE *
* MESSAGES :

*
HEREEERHEH KK HHETRK

Js *,

NO o* DELETE
% COMPILATION
*

| v
*XER
i * *
v * A3 ®
HHHEEICL KR KHHHIH * *
INITIL 21B1 *EER *ER
L s T * *
* BUILD ¥————D>% A3 *
* OBJECT * * *
MODULE EEXR

* U *
EXERREEAREERERERR

Discussion of Major Components

81

Chart 02. FSD Storage Distribution

ERERRC2HRERXHLENN
* *

*DETERMINE TYPE *
* OF TEXT AND *<
: AMOUNT *

e S e e e 2]

!
v
kg
D2 *o
¥ *eo
¥ MAIN *o NO
*o STORAGE o
*oAVAILABLE . %
*, ok
Xe o
* YES

v
HEEXRE2RERRXHERR
* *

* CHAIN ONTO *
* BLOCKS TO *
* RECOVER *
* LATER *
HEREREKREEEER RN

82

ENTRY POINT
FOR MAIN
STORAGE
REQUEST
GETCOR
HHEHB IR
FROM

* RO *
* REQUESTING *
* *

IR NNRRN

v
o¥e
c3 *o
¥ *o
YES o% PHASE 10 #*,
* CALLING ¥

¥
o
*, ¥
* NO
v
o¥e ok
D3 *e D4 *o
¥ * g ¥ * g
¥ I *e NO «* PHASE 20 *. YES
>%e FREE BLOCK o¥———>¥#, CALLING *-
*e AVAILABLE <% *o o« * l
* g ¥ *g ¥
He o *, oF
* YES * NO ERRKR
*01 *
* G2%
* *
' *
v v
EREEREIHRRERRAR LR P e s 2]
* CONVERT MAIN * * DETERMINE *
#STORAGE LIMITS * * AMOUNT OF *
>% TO SUBSCRIPTS *< * PHASE 10 TEXT *
* AND STORE * * PROCESSED *
* * * *
EE 222 222 22222l B33 TR
! v
o¥a
v I Fa *,
HREEE FREHRRRAHN o *,
* ZERO BLOCK * I YES % MAIN *. NO
* AND RETURN * *e STORAGE .
* ¥ AVAILABLE.*
NN RE *q ¥
*o o ¥ v
* L2
*01 *
* G2%
* ¥

Table 6. FSD Subroutine Directory

[Subroutinei Function j
i AFIXPI I Exponentiation of integers by integers. }
= AFRXPI = Exponentiation of reals by integers. :
= GETCOR { Allocates and keeps track of main storage used in the construction of the =
| | information table and for collecting text entries. |
{ IEKAAQO : Initializes compiler processing and calls the phases for execution. =
} IEKFCOMH ; Controls compile-time I/O. (Corresponds to IHCFCOMH; refer to Appendix :
| | E2) |
: IEKFIOCS : Interface between IEKFCOMH and BSAM. (Corresponds to IHCFIOSH; refer to :
| | Appendix F.) |
= IEKUATPT = Unit assignment table for IEKFIOCS. :
} IHCFMAXI : Maximizing service routine for integers. %
} IHCFMAXR { Maximizing service routine for reals. =
= SYSDIR } Deletes compilation if requested. }
} SYSTAB : Dumps internal text and tables. ;
i SYSTRC i Diagnostic trace routine. i

Section 2: Discussion of Major Components 83

Chart 03. Phase 10 Overall Logi_c

Py LR R R R YY)

ENTRY IS TO

.
DISPATCHER .
(DSPTCH) .
FEEREAD R ERER RN RE -
EREEALRERERRRER * * DISPATCHER(DSPTCH) . SEE TABLE 8 FOR_A
* FROM * * * DOTTED LINES- . DESCRIPTION OF THE
FSD #———e——>% INITIALIZE * osprcu CALL . SUBROUTINES OF
* * - PREPARATORY sus- . PHASE 10
E 2 T Y Y * * ROUTINE .
RE2 22222 2222222 s s -
L2 2 2] :
* * -
* B2 *—> .
* * .
RRNR o
l&lhlazl*illi&{l{ W R D RN NN NN RE :
GETCD * - XCLASS * .
l—’—}—*—l-l-ﬁ—l—* B e W B I B e W W -
#READSLISTs AND *————————>*PROCESS STATE- * .
*PREPARE SOURCE ¥ NT NUMBER % .
STATEMENT * n (!F PRESENT) .
**l*lil!li*l'l“*& ﬁl'lli*i&*lﬁ‘*!‘ﬁ .
.
.
.
.
.
.
EE 22 2 JeicE 2 22 2 2 2 2 222 :
* DETERMINE * o
* ROUTE FROM %
*CLASSIFICATION * .
%~ CODE .
ERA 2 i 2222222222222 :
.
.
.
v
R XD THRE N RE RN
* * SEE TABLE 7
* PROCESS *
* SOURCE *
* STATEMENT *
* *
R 22222 222222222l
v
o*e
E3 %,
¥ *q EZ 22T S22 R 22l
* * * TO PHASE 15 %
*o STATEMENT ok > VIA FSD *
*g ¥ * *
* g ¥ I NN RN N
, o
NO
HERE
|-
>* B2 *
*
Ea 2 2l

84

Table 7.

Phase 10 Source Statement Processing

r

T

T L}
Main Processing | |
Statement Type | Subroutine | Subroutines Used i
1 i 4
T 1 1
ARITHMETIC | XARITH | COMAST, GRPKEQ, MINSLS, PRELOG, RTPRQT, TXTBLD?|
.] 4 4
1 T 1
STATEMENT | XASF/XASF2 | GETWD, ERROR, PUTX, CSORN, SYMTLU |
| FUNCTION | | |
b } + 1
| DIMENSION | XDIM | GETWD, CSORN, ERROR, SYMTLU |
8] 1 J
L T T 1
| EQUIVALENCE | XEQUI | GETWD, SYMTLU, ERROR, LITCON]
[il X |
T T 1
COMMON] XCOMON | GETWD, SYMTLU, ERROR |
[4 J
L) L) R
EXTERNAL | XEXT | GETWD, ERROR, SYMTLU |
s]] 4
T 1 1 1
| TYPE (INTEGER, | XTYPE | GETWD, ERROR, SYMTLU, PUTX |
| REAL, ETC.) | | |
b $ + 1
| DO | Xpo | GETWD, ERROR, LITCON, SYMTLU, PUTX, CDOPAR I
L i I 4
r T T 1
| SUBROUTINE, CALL| XSUBPG | GETWD, ERROR, SYMTLU, PUTX |
| ENTRY, FUNCTION | | |
F + + {
| READ, WRITE, | XIOOP | GETWD, ERROR, CSORN, PUTX, LITCON |
| PRINT, PUNCH | | |
F : t 1
| NAMELIST | XNMLST | GETWD, SYMTLU, PUTX, ERROR |
1 [1 J
r T s 1
BACKSPACE,	XBCKRW	GETWD, SYMTLU, PUTX, ERROR
REWIND,		
END FILE		
: + !		
RETURN	XRETN	GETWD, CSORN, ERROR, PUTX
] 1 4		
T T i		
IF	XIF	PUTX, ERROR
b + + {		
ASSIGN	XASGN	GETWD, LITCON, ERROR, SYMTLU, PUTX
8 4 4 4		
v L) Ll 1		
BLOCK DATA	XBLOK	PUTX, ERROR
L } 4 4		
L} ! 1 L)		
FORMAT	XFMT	CSORN, PUTX
t 4 1
1) T T
| CONTINUE | XCONT | ERROR, PUTX
L [4
L] Ll L)
| GO TO | XGo | GETWD, ERROR, SYMTLU, LITCON, PUTX |
i 1 } J
r T T 1
| DATA | XDATA | GETWD, CSORN, ERROR, PUTX |
[8 } 1 4
¥ T T 1
| sTOP | XsTOP | PUTX |
8 [] 3
r T T 1
| PAUSE | XPUSE | GETWD, ERROR, CSORN, PUTX |
¢] 4 J
! 1 1]
| END | XEND | ERROR, PUTX |
b L 4 : {
| 2The subroutines used by subroutine XARITH employ the following utility subrou- |
| I
L 4

tines: GETWD, CSORN, PUTX,

COMPAT, ERROR, and SYMTLU.

Section 2: Discussion of