
.,,-.. , 

............ / 

File Number S360-21 
Order No. GC24-3414-7 DOS 

Systems Reference Library 

IBM System/360 
Disk and Tape Operating Systems 
Assembler Language 

This reference publication contains specifications 
for the IBM System/360 Disk and Tape Operating 
Systems Assembler Language (including macro 
instructions and conditional assembly facilities). 

The assembler language is a symbolic 
programming language used to write progra.ms for 
the IBM System/360. The language provides a 
convenient means for representing the machine 
instructions and related data necessary ,to progrant 
the IBM System/360. The IBM System/360 Disk and 
Tape Operating Systems Assembler Programs process 
the language and provide auxiliary functions 
useful in the preparation and documentation of a 
program, and include facilities for processing 
macro instructions. 

Part 1 of this publication is an introduction 
to the assembler language. 

Part 2 describes the basic functions of the 
assembler language. 

Part 3 describes the conditional assembly and 
macro facilities in the assembler language . 

TOS 



PREFACE 

This publication is a reference manual for 
the programmer using the assembler language 
(including macro definitions and condition­
al assembly facilities). This publication 
also contains information peculiar to the 
IBM System/360 Disk and Tape Operating Sys­
tems for the D and F assembler. 

Part 1 of this publication presents 
information common to all parts of the 
language. Part 2 contains specific infor­
mation concerning the symbolic machine 
instruction codes and the assembler program 
functions provided for the programmer's 
use. Part 3 of this publication describes 
the conditional assembly and macro facili­
ties in the assembler language. 

.A.ppendixes A through P follow Part 3. 
Appendixes A through F are associated with 
Parts 1 and 2 and present such items as a 
summary chart for constants, instruction 
listings, character set representations, 
and other aids to programming. Appendix 
G contains macro facility summary charts, 
and Appendix H discusses table capacities 
for various elements of the language. Appen­
dix I is a sample program and assembler 
listing description. Appendix J is a fea­
tures comparison chart of the IBM System/360 
asse~lers. Appendix K gives examples of the 
cards needed for assembler runs. Appendix L 
contains a description of how another ver­
sion of the assembler can be included in the 
core-image library. Appendix M describes 
the output produced by the assembler. 
Appendix N explains the diagnostic error 
messages that can be issued by the assembler. 
Appendix 0 contains self-relocating program 
techniques. Appendix P contains sample macro 
definitions. 

Prerequisite for a thorough understanding 
of this publication is a basic knowledge of 

Eighth Edition (January 1970) 

iBM System/360 machine concepts. The pub­
lications most closely related to this are: 

1. IBM System/360 Principles of Operation, 
Order No. GA22-682l. 

2. IBM System/360 Disk Operating System: 
Data Management Concepts, Order No. 
GC24-3427, or 
IBM System/360 Tape Operating System: 
Data Management Concepts, Order No. 
GC24-3430. 

3. IBM System/360 Disk Operating System: 
Supervisor and Input/Output Macros, 
Order No. GC24-S037 or 
IBM System/360 Tape Operating System: 
Supervisor and Input/Output Macros, 
Order No. GC24-S03S. 

4. IBM System/360 Disk Operating System: 
System Control and System Service Pro­
grams, Order No. GC24-S036 or 
IBM System/360 Tape Ope~ting System: 
System Control and System Service Pro­
grams, Order No. GC24-S034. 

S. IBM Systern/360 Disk Operating System: 
System Generation and Maintenance, 
Order No. GC24-S033 or 
IBM System/360 Tape Operating System: 
System Generation and Maintenance, 
Order No. GC24-S0lS. 

6. IBM System/360 Disk and Tape Operating 
Systems utility Macro Specifications, 
Order No. GC24-S042. 

Titles and abstracts of other related 
publications are listed in the IBM 
System/360 Bibliography, Order No. GA22-6822. 

This is a major revision of, and obsoletes, GC24-3414-6. All changes to the text, and small 
changes to illustrations, are indicated by a vertical line to the left of the change; changed or 

added illustrations are denoted by the symbol. to the left of the caption. 

This edition applies to: 
version 2, modification 5, of 360M - AS - 465 of the Tape Operating System, Assembler (D) 
version 3, modification 5, of 360N - AS - 465 of the Disk Operating System, Assembler (D) 
ve~ion 3, modification 7, of 360N - AS - 466 of the Disk Operating System, Assembler (F) 

and to all subsequent modifications until otherwise indicated in new editions or Technical 
Newsletters. Changes are periodically made to the specifications herein; before using this 
publication in connection with the operation of IBM systems, consult the latest SRL 
Newsletter, Form N20-0360, for the editions that are applicable and current. 

Requests for copies of IBM publications should be made to your IBM representative or to the 
IBM branch office serving your locality. 

A form is provided at the back of this publication for reader's comments. If the form has been 
removed, comments may be addressed to IBM Nordic Laboratory, Technical Communications, 
Box 962, S-18109 Lidingo 9, Sweden. 

© Copyright International B~siness Machines Corporation 1968, 1969, 1970 



.. ,.. " .. '!f.' .. i 

Technical Newsletter 
File Number S 36 0-21 

Re: Order No. GC24-3414-7 

This Newsletter No. GN 33- 8 076 

Date May 14, 1970 c;.J ,~yj.l.3 
Previous Newsletter Nos. None 

IBM SYSTEM/360 DISK AND TAPE OPERATING SYSTEMS 
ASSEMBLER LANGUAGE 

© IBM Corp. 1968, 1969, 1970 

This Technical Newsletter, a part of release 22/23 of IBM 
System/360 Disk Operating System, provides replacement pages 
for IBM System/360 Disk and Tape Operating Systems Assembler 
Language, GC24-3414-7. These replacement pages remain in 
effect for subsequent releases unless specifically altered . 
Pages to be inserted and/or removed are listed below. 

51, 52 
61, 62 
87, 88 

A change to the text or a small change to an illustration is 
indicated by a vertical line to the left of the change; a 
changed or added illustration is denoted by the symbol • to 
the left of the caption. 

Summary of Amendments 

• When PRINT NOGEN is specified, generated MNOTE messages with 
an asterisk in the severity-code field will appear in the 
listing. 

• One editorial change. 

File this cover letter at the back of the manual to provide a 
record of changes. 

IBM Nordic Laboratory, Technical Communications, Box 962, Lidingo 9, Sweden 

PRINTED IN U.S.A. 



c 

c 



o 

PART 1 -- INTRODUCTION TO THE 
ASSEMBLER LANGUAGE 

SECTION 1: INTRODUCTION •.••• 
Machine Features Required 
Compatibility . • • • • • 
The Assembler Language • • 

7 

Machine Operation Codes • • • • • 
Assembler Operation Codes 

7 
7 
8 
8 
9 
9 
9 
9 

Macro Instructions • • • • • • • • 
The Assembler Program • • . • • • • • • 

The Macro Generation and 
Conditional Assembly Section. 9 

The Assembly Section • • . • • 9 
Programmer Aids • • • • • • • . . • • • 10 
Assembler - DOS/TOS Relationships • • • 10 

SECTION 2: GENERAL INFORMATION • 11 
Assembler Language Coding Conventions • 11 

Coding Form • • • • • • 11 
Continuation Lines • . • • • 11 
Statement Boundaries . 11 
Statement Format . •• ..•. 13 
Summary of Instruction Format • . 14 
Comments Statements . • • . . • . 14 
Identification-Sequence Field • . 14 
Character Set • • •• .••. 14 

Assembler Language Structure . • 15 
Terms and Expressions. • • . • 15 

Terms . • . . . . . . . . 15 
Symbols • • • • • • • 17 
Self-Defining Terms • • • • • 18 
Location Counter Reference . . 19 
Literals . • • . • • • . • . • 20 
Symbol Length Attribute 

Reference •.••••••••• 21 
Expressions . . • • • . • • • . 21 

Evaluation of Expressions • • • . 22 
Absolute and Relocatable 

Expressions . • . • . . 22 

PART 2 -- BASIC FUNCTIONS OF THE 
ASSEMBLER LANGUAGE • • •• • • • • 24 

SECTION 3: ADDRESSING -- PROGRAM 
SECTIONING AND LINKING • • • • • • 24 

Addressing • • • • • • • • • • • •• 24 
Addresses -- Explicit and Implied •.. 24 
Base Register Instructions • • • • • 24 

Using -- Use Base Address 
Register • • • • • • • • • . • • 24 

Drop -- Drop Base Register •• 25 
Programming with the Using 
Instruction • • . • • 

Relative Addressing • • • • 
Program Sectioning and Linking • 

Control Sections • • • • • 
Control Section Location 
Assignment • • • • • • • 

• • 26 
• • 26 
• • 27 
• • 27 

· • 28 

iii 

Page of GC24-3414-7 
Revised August 21, 1970 
By TNL GN33-8087 

CONTENTS 

First Control Section .•••.•• 28 
START -- Start Assembly • • • 28 
CSECT -- Identify Control 
Section • • . . . • • . • • . • . 28 

Unnamed Control Section . • • • • 29 
DSECT -- Identify Dummy Section •• 29 

COM -- Define Blank Common Control 
Section • • • . • • • . • • • • • • 30 

Symbolic Linkages ..•.•.•.•• 31 
ENTRY -- Identify Entry-Point 

Symbol • • • • . . • • • • . . • • • 31 
EXTRN -- Identify External Symbol . • 31 

Addressing External Control 
Sections • . • • • • •. 32 

WXTRN -- Identify Weak External 
Symbol. . • • . . • • • . • . • • 32 

SECTION 4: MACHINE INSTRUCTIONS 
Machine Instruction Statements • 

Instruction Alignment and 
Checking . . • • • • . • • 

Operand Fields and Subfields • 
Lengths -- Explicit and Implied 

Machine Instruction Mnemonic Codes 
Machine Instruction Examples 

RR Format 
RX Format 
RS Format 
SI Format • • • • . . • • • 
SS Format • • • • 

Extended Mnemonic Codes 

SECTION 5: ASSEMBLER INSTRUCTION 

• • 33 
· 33 

• 33 
• 33 
• 34 
• 35 
• 35 
• 35 
• 36 
• 36 
• 36 

• • 36 
• 36 

STATEMENTS • . • • • • • • • 38 
Symbol Definition Instruction 38 

EQU --Equate Symbol. • . • • • 38 
Data Definition Instructions. 39 

DC -- Define Constant. .•.•• 39 
Operand Subfield 1: Duplication 
Factor • . • • • . • • . . . . • 40 

Operand Subfield 2: Type . . • • 40 
Operand Subfield 3: Modifiers .• 40 
Operand Subfield 4: Constant •• 42 

DS -- DEFINE STORAGE . • • . • • . . 48 
Special Uses of the Duplication 
Factor • • • • • . • • • • . • • 49 

CCW -- Define Channel Command Word • 50 
Listing Control Instructions. • . . • • 51 

TITLE Identify Assembl¥ Output. 51 
EJECT -- Start New Page. . . 51 
SPACE -- Space Listing • . • • • • . 52 
PRINT -- Print Optional Data . • • • 52 

Program Control Instructions •.•••• 53 
ICTL -- Input Format Control . • • . 53 
ISEQ -- Input Sequence Checking. 53 
PUNCH -- Punch a Card .••.•••. 54 
REPRO -- Reproduce Following Card. 54 
ORG -- Set Location Counter. • •• 54 
LTORG -- Begin Literal Pool. • • • • 55 

Special Addressing Consideration. 55 
CNOP -- Conditional No Operation • • 55 



COpy -- Copy Predefined Sour.ce 
Coding • • • • • • • • • • • 57 

END -- End Assembly •• • • • 57 

PART 3 -- CONDITIONAL ASSEMBLY AND 
MACRO FACILITIES IN THE ASSEMBLER 
LANGUAGE • . • • • • • • . • • • • • • 58 

SECTION 6: INTRODUCTION TO THE CON­
DITIONAL ASSEMBLY AND MACRO 
FACILITIES. • • • • • • . • • •• • 58 

The Macro Instruction Statement • • 58 
The Macro Definition • • • . • . . 58 
Source Statement Libraries • • • . . . • 59 
Varying the Generated Statements. • • • 59 

Variable Symbols. • • • • • • • • 59 
Types of Variable Symbols. • • 59 
Assigning Values to Variable 

Symbols . . • . . . . . . 59 
Global SET Symbols . . • • 60 

Organization of this Part of the 
Publication . • . • • . • • • • . 60 

SECTION 7: HOW TO PREPARE MACRO 
DEFINITIONS • • • . . . . • • • • 

MACRO -- Macro Definition Header • 
MEND -- Macro Defintion Trailer 
Macro Instruction Prototype 

Alternate Statement Form 
Model Statements • • • . • • • 
Symbolic Parameters • . • • • • 

Concatenating Symbolic 
Parameters with Other 
Characters or Other Symbolic 

• 61 
61 
61 

62 
• • 62 

· 63 

• . 64 
· 65 

Parameters. • • . • 
Comments Statements 

Copy Statements . • • . • • • • . 65 

SECTION 8: HOW TO WRITE 
MACRO INSTRUCTIONS 

Macro Instruction Operands 
Statement Form . • • • • • • • • 
Omitted Operands • . . • • 
Operand Sublists • . • • • • • 
Inner Macro Instructions • • 
Levels of Macro Instructions • 

SECTION 9: HOW TO WRITE CONDITIONAL 
ASSEMBLY INSTRUCTIONS • • • • 

SET Symbols . • • • • • • • . 
Defining SET Symbols • • • 
Using Variable Symbols • 

Attributes • . • • • . • • . " 

Type Attribute (TI) •... 
Length (LI), Scaling (SI), and 

Integer (II) Attributes •• 
Count Attribute (KI) .•• 
Number Attribute (N I ) •••• 
Assigning Integer Attributes to 

• 66 
· . 66 
· • 67 

67 
67 
68 
69 

70 
70 

· • 70 
70 

· • 71 
· . 72 

72 
• 73 

73 

Symbols . • • • • • • • 73 
Sequence Symbols 
LCLA,LCLB,LCLC -- Define SET Symbols •• 75 
SETA -- Set Arithmetic • .••••. 75 

iv 

Evaluation of Arithmetic 
Expressions. • • • . 76 

Using SETA Symbols • . • • • • • • 76 
SETC -- Set Character .•• 

Type Attribute 
Character Expression. 
Substring Notation. . 

Using SETC Symbols 
SETB -- Set Binary . • •• • • • . 

Evaluation of Logical 
Expressions • • . • • • 

Using SETB Symbols • . 
AIF -- Conditional Branch •• 
AGO -- Unconditional Branch. 
ACTR -- Conditional Assembly Loop 

Counter • • • • • • . • . • 
ANOP -- Assembly No Operation ••. 
Conditional Assembly Elements ••• 

SECTION 10: ADDITIONAL FEATURES. 
MEXIT -- Macro Definition Exit 
MNOTE Statement. • • • • • • • • • 
Global and Local Variable Symbols • 

Defining Local and Global SET 
Symbols • • • • •• • • • 

Using Global and Local SET 
Symbols. • • • • • • • • • • 

Subscripted SET Symbols • • • 
System Variable Symbols • • • • • • 

&SYSNDX -- Macro Instruction 
Index • • • • . • . . • • • 

&SYSECT -- Current Control 
Section • • . • • • • • • • 

&SYSLIST -- Macro Instruction 
Operand . . • • • . • • 

Keyword Macro Definitions and 
Instructions . • • • • • • • . 

Keyword Prototype •••• 
Keyword Macro Instruction. 

· 71 
• 77 
· 78 
• 78 
· 80 
• 80 

81 
82 
82 
83 

· 84 

· 84 
85 

86 
86 
86 
87 

88 

88 
90 
91 

91 

· 92 

93 

93.1 

· 94 
94 

Mixed-Mode Macro Definitions and 
Instructions •••••.•.. . . • • 96 

Mixed-Mode Prototype . • • • • . • 96 
Mixed-Mode Macro Instruction • . • 96 

Conditional Assembly Compatibility • • • 97 

APPENDIX A: EXTENDED BINARY CODED 
DECIMAL INTERCHANGE CODE (EBCDIC) • • . 98 

APPENDIX B: HEXADECIMAL-DECIMAL NUMBER 
CONVERSION TABLE •••.•.••••• 101 

APPENDIX C: MACHINE INSTRUCTION FORMAT.l06 

APPENDIX D: MACHINE INSTRUCTION 
MNEMONIC OPERATION CODES • .108 

APPENDIX E: ASSEMBLER INSTRUCTIONS ••• 117 

APPENDIX F: SUMMARY OF CONSTANTS ••• 120 

( 
\ 

\, ............. ,1 

,~ 
\ 

"-" 



/'_... APPENDIX G: MACRO FACILITY SUMMARY. 121 

"'-./ APPENDIX H: DICTIONARY AND SOURCE 

~) 

STATEMENT SIZES •• ••.•. 126 
Part 1: Dictionaries Used in Macro 

Generation •• • ••••• 126 
Part 2: Macro Mnemonic Table 

(D Assembler only) •••• 128 
Part 3: Source Statement Complexity­
Conditional Assembly and Macro 
Generation • • • • • • •• •• 128 

Part 4: Source Statement Complexity-
Assembler Statements • •.• 129 

Part 5: Print Control Statement 
Listing Restrictions ••• 130 

APPENDIX I: SAMPLE PROGRAM AND 
ASSEMBLER LISTING DESCRIPTION • 

ILLUSTRATIONS 

Figures 

3-1. 

4-1. 
5-1. 
5-2. 

5-3. 

5-4. 

5-5. 
p-l. 

D-2. 
G-l. 
G-2. 
G-3. 
G-4. 

Coding Form . • • 
Punched Card Form . . 
Assembler Language Structure-­
Machine, Assembler, and Macro 
Instructions. 
Multiple Base Register 
Assignment •. • 
Extended Mnemonic Codes 
Type Codes for Constants. 
Bit-Length Specification 
(Single Constant) . 
Bit Length Specification 
(Multiple Constants). 
Bit Length Specification 
(Multiple Operands) • . 
CNOP Alignment. . .• • 
List of Machine Instructions 
by Operation Code • • 
Machine Instruction Summary 
Macro Facility Elements 
Expressions • 
Attributes. •• 
'Vpriable Symbols. 

Tables 

131 

12 
12 

16 

26 
37 
40.1 

40.1 

40.1 

41 
56 

109 
110 
122 
123 

• .124 
.125 

5-1. Channel Command Word ..••... 51 

v 

APPENDIX J: ASSEMBLER LANGUAGES-­
FEATURES COMPARISON CHART • • • • . 140 

APPENDIX K: CARD INPUT FOR ASSEMBLY 
RUNS .•• 143 

APPENDIX L: REPLACING THE CURRENT 
ASSEMBLER 149 

APPENDIX M: OBJECT DECK OUTPUT . 150 

APPENDIX N: DIAGNOSTIC ERROR 
MESSAGES • 152 

APPENDIX 0: SELF-RELOCATING PROGRAM 
TECHNIQUES 163 

165 

167 

APPENDIX P: SAMPLE MACRO DEFINITIONS 

INDEX: 

K-l. 
K-2. 
K-3. 
K-4. 

K-5. 

K-6. 

K-7. 

L-l. 

L-2. 

M-l. 
M-2. 

M-3. 
M-4. 

N-l. 

Card Input for an Assembly . ~ . 143 
Device Assignments . • • . • . . 144 
Operating Considerations . . • . 144 
Card Input for Assembly, Linkage 
Editing, and Execution .. 145 

I/O Units Used by the Tape 
Assembler . . . . . . . • • . . 146 

I/O Units Used by the Disk 
Assembler . . . • • • •• . 147 

Card Input for Different 
Variations of Assembly, Linkage 
Editing, and Execution • . . . 148 

Card Input for Selecting Diffe-
rent Assembler Variants . 149 
Assembler Variants • • . . . • • 149 

Assembler Output Deck . • • 150 
Format of ESD, TXT, RLD, and· 

END Cards . . • • . . 
Format of the SYM Card • . 
Format of the REP Card • • 

Assembler Diagnostic Error 
Messages 

· 151 
• 151.1 
· 151.2 

• 152 





PART 1 -- INTRODUCTION TO THE ASSEMBLER LANGUAGE 

SECTION 1: INTRODUCTION 

computer programs may be expressed in 
machine language, i.e., language directly 
interpreted by the computer, or in a sym-. 
belic language, which is much more meaning­
ful to the programmer. The symbolic lan­
guage, however, must be translated into 
machine language before the computer can 
execute the program. This function is 
accomplished by an associated processing 
program called an assembler or a compiler. 

Of the various symbolic programmdng 
languages, assembler languages are closest 
to machine language in form antl content. 

The assembler language discussed in this 
manual is a symbolic programming language 
for the IBM System/360. It enables the 
programmer to use all IBM Systeml360 
machine functions, as if he were coding in 
IBM System/360 machine language. 

A program written in the assembler 
language will normally consist of three 
types of instructions: machine instructions, 
assembler instructions, and macro instruc­
tions. They are all coded in a language 
that can be interpreted by the assembler 
processor program. Machine instructions are 
transformed into machine language instruc­
tion by instruction. This language can be 
directly interpreted by the machine. Their 
functions are not described in this manual. 
Refer to IBM System/360 Principles of Opera­
tion (GA22-682l). 
----Assembler instructions are used by the 
assembler during processing to manipulate 
the source program written in the assembler 
language. They are described in this manual. 

IBM-supported macro instructions provide 
easy access to the control programs supplied 
by the system under which the installation is 
running. They are described in IBM 
System/360 Tape Operating System Supervisor 
and Input/Output Macros (GC24-5035) and in 
IBM System/360 Disk Operating System Super­
visor and Input/Output Macros (GC24 5037). 
The user can also write his own macro defi­
nitions to obtain easy access to precoded 
sections of code. Writing macro definitions 
is covered in this manual. 

Under DOS, two assemblers -- the D 
assembler and the F assembler are available. 
TOS offers only the D assembler. Two vari­
ants of the DOS and TOS D assemblers are 
available. Requirements of the different 
assemblers are discussed below. 

MACHINE FEATURES REQUIRED 

A minimum of 16,384, 24,576, or 65,536 
bytes of main storage as detailed below: 
16,384 (16K) bytes of main storage, of 
which at least 10,240 contiguous bytes 

must be available to the assembler. This 
is the core requirement for the 10K vari­
ant DOS and TOS D assemblers. 
24,576 (24K) bytes of main storage, of 
which at least 14,336· contiguous bytes 
must be available to the assembler. This 
is the core requirement for the 14K 
variant DOS and TOS D assemblers. 
65,536 (64K) bytes of main storage, of 
which at least 45,056 contiguous bytes 
must be available to the assembler. 
This is the core requirement for the 
44K DOS F assembler. 
NOTE: Additional storage, available to any 
of the assemblers, is used to expand assem­
bler tables. For details on how to call a 
specific assembler see Appendix K and the 
DOS and TOS System Generation publications 
(listed in Preface) . 

Standard instruction set 
One I/O Channel (either multiplexor or 
selector) 
One Card Reader (1442Nl, 2501, 2520Bl, 
or 2540)1 
One Card Punch (1442Nl, 1442N2, 2520, 
or 2540)1, if punched output is 
desired 
One Printer (1403, 1404 - continuous 
forms only, or 1443)1, if a printed 
listing is desired 
One 1052 Printer-Keyboard 
One 2311 or 2314 Disk Storage Drive. 
This has the DOS resident system pack. 

or 
One 2400-series Magnetic Tape Unit 
(either 7-track or 9-track). This has 
the TOS resident system. 
Three work files. Under the DOS D Assem­
bler, 10K Variant: either three disk 
storage extents or three magnetic tape 
units. The devices used must be all of 
the same type; i.e., three magnetic tape 
units, three 2311 disk storage extents, 
or three 2314 disk storage extents. 
Under the DOS D Assembler, 14K Variant, 
and the DOS F Assembler: any combination 
of disk storage extents and/or magnetic 
tape units. The disk storage devices 
used need not be of the same type as that 
of SYSRES. 
Under the TOS D Assembler, 10K and 14K 
Variants: three magnetic tape uJ?its. The 
devices used must be of the same type as 
that of SYSRES. 

lA 2400-series Magnetic Tape Unit may be sub­
stituted for this device. (It may be 7-track 
or 9-track. If 7-track is used the data con­
version feature is required and the tape must 
be set converter on, translator off, odd 
parity.) The 1052 Printer-Keyboard must be 
operable if device assignment .is tape. 

Introduction 7 



The allowable disk storage devices are the 
2311 apd 2314 Disk Storage Drives. The 
allowable magnetic tape units are 2400-
series Magnetic Tape units (eithe~ 7-
track or 9-track: if 7-track, the data 
conversion feature is required and the 
tape must be set converter on, translator 
off, odd parity). 

Under the DOS D Assembler, 10K Variant, 
only the system source statement library 
is supported. Under the DOS D Assembler, 
14K Variant, and the DOS F Assembler, a 
private source statement library is sup­
ported. Under the TOS D Assembler, 10K 
and 14K Variants, the standard priv~te 
library is supported. The device used 
for the private library must be of the 

'same type as that of SYSRES. 

For the 10K DOS and the 14K TOS D assem­
blers, the assemble-and-execute option is 
an alternative to the DECK option; both are 
not supported for the same assembly. For 
the 14K DOS D assembler and for the F assem­
bler, both options are supported in the 
same assembly. If the assemble-and-execute 
option is chosen, SYSLNK is a 2400-series 
Magnetic Tape Unit (9-track or 7-track with 
the data conversion feature) for the tape­
resident system, or a 2311 or 2314 Disk 
Storage extent (which may be on the system 
resident device) for the disk-resident 
system. 

If, under the F assembler and the 14K 
DOS D assembler LINK or CATAL options are 
chosen, the I/O requirements for both must 
be met. 

COMPATIBILITY 

within the Disk and Tape Operating Systems 
the assemblers can be used on System/360 
Models 30, 40, 50, 65, and 75, provided 
that main storage and input/output require­
ments are satisfied. The assemblers (disk 
and tape) will both accept the same source 
language input and produce identical object 
output. 

The IBM System/360 Disk and Tape Opera­
ting Systems Assembler assembles source pro- '.' 
grams written in the IBM System/360 Basic 
Programming Support Basic Assembler Lan­
guage, the Basic Programming Support Assem­
bler (8K Tape) Language, the IBM 7090/7094 
Support Package for IBM System/360 Assembler 
Language, and the IBM System/360 Basic 
Operating System (8K Disk) Language, with 
the following exceptions: 

1. The XFR assembler instruction, which is 
considered an invalid mnemonic opera­
tion code in DOS/TOS Operating Systems 
is not allowed. 

8 

2. Additional cards may be required in 
macro definitions (if used by the 
source program) to satisfy DOS/TOS 
Operating Systems macro requirements. 

'3. System macro instructions are changed, 
where necessary, to conform with the 
proper DOS/TOS requirements. 

4. An MNOTE assembler instruction whose 
operand entry consists solely of a 
message enclosed in apostrophes is 
given a severity code of one. 

5. AIF operand entries must not contain 
explicit binary zeros or ones. 

The DOS/TOS D assembler language is a 
subset of the Operating System assembler 
language. The DOS F assembler language 
implements the full Operating System assem­
bler language with the exception of DXD and 
CXD statements and the Q-type (DC or DS) 
constant. Source programs written in DOS/ 
TOS assembler language will be acceptable 
to the Operating System assemblers provided 
that system macro instructions are changed, 
where necessary, to conform with the proper 
Operating System requirements. Erroneous 
source input may be treated somewhat dif­
ferently by D and by F. 

V-type address constants which reference 
external data may be invalid under the 
Operating System Assembler if the program 
is segmented into an overlay structure. 

Note: The assignment, size, and order­
ing-or-literal pools may differ among the 
assemblers. 

Differences in conditional assembly 
instructions for IBM System/360 assemblers 
are described in Section 10 of this pub­
lication. 

THE ASSEMBLER LANGUAGE 

The basis of the assembler language is a 
collection of mnemonic symbols which rep­
resent: 

1. IBM System/360 machine language opera­
tion codes. 

2. Operations (auxiliary functions) to be 
performed by the assembler program. 

The language is augmented by other sym­
bols, supplied by the programmer, and used 
to represent storage addresses or data. 
Symbols are easier to remember and code 
than their machine language equivalents. 
Use of symbols greatly reduces programming 
effort and error. 

c 



,,,.. ........ '\ 

c 

Machine Operation Codes 

The assembler language provides mnemonic 
machine instruction operation codes for all 
machine instructions in the IBM System/360 
Universal Instruction Set, and extended 
mnemonic operation codes for the condi­
tional branch instruction. 

Assembler Operation Codes 

The assembler language also contains 
mnemonic assembler instruction operation 
codes, used to specify auxiliary functions 
to be performed by the assembler program. 
These are instructions to the assembler 
program itself and, with a few exceptions, 
do not result in the generation of any 
machine language code by the assembler 
program. Certain assembler instructions, 
i.e., conditional assembly instructions, 
affect the order of source statement assem­
bly and macro generation or the content of 
generated instructions. 

Macro Instructions 

The assembler language enables the program­
mer to define and use macro instructions. 
Macro instructions are represented by an 
operation code which, in turn, actually 
stands for a sequence of machine and/or 
assembler instructions that accomplish the 
desired function. 

Macro instructions used in preparing an 
assembler language source program fall into 
two categories: system macro instructions, 
provided by IBM, which relate the object 
program to components of the Basic Operat­
ing System, and macro instructions created 
by the programmer specifically for use in 
the program at hand, or for incorporation 
in a library, available for future use. 

Programmer-created macro instructions 
are used to simplify the writing of a pro­
gram and/or to ensure that a standard 
sequence of instructions is used to accom­
plish a desired function. 

For instance, the logic of a program may 
require the same instruction sequence to be 
executed again and again. Rather than code 
this entire sequence each time it is need­
ed, the programmer creates a macro 
instruction to represent the sequence, and 
then each time the sequence is needed, the 
programmer simply codes the macro 
instruction statement. During assembly, 
the sequence of instructions represented by 
the macro instruction is inserted in the 
object program. 

Part 3 of this publication discusses the 
conditional assembly and macro facilities. 

THE ASSEMBLER PROGRAM 

The assembler program, also referred to as 
the "assembler," processes source 
statements written in the assembler lan­
guage. The assembler is separated into an 
assembly section and a conditional assembly 
and macro generation section. 

The Macro Generation and Conditional 
Assembly Section 

Before source statements can be translated 
into actual macltine language, macro 
instructions and conditional assembly 
statements within the source program must 
be processed. The source program is read. 
Any programmer macro definitions which 
appear before the main portion of the pro­
gram are stored for use when the macro is 
referenced. (System macro definitions are 
retrieved from the source statement library 
and handled in the same way.) 

The main portion of the program is then 
processed. Whenever macro generation or 
conditional assembly is required, the gen­
erated or conditionally assembled text is 
inserted in the original source program. 
The resultant augmented source program is 
ready for input to the assembly section. 

The Assembly Section 

processing a source program involves the 
translation of source statements into 
machine language, the assignment of storage 
locations to instructions and other ele­
ments of the program, and the performance 
of the auxiliary assembler program func­
tions designated by the programmer. The 
output of the assembler program is the 
object program, a machine language equiva­
lent of the source program. The assembler 
program furnishes a printed listing of the 
source statements and object program state­
ments and additional information useful to 
the programmer in analyzing his program, 
such as error indications. The object 
program is in the format required by the 
linkage editor component of DOS/TOS. 

The amount of main and secondary storage 
allocated to the assembler program for use 
during processing determines the maximum 

Introduction 9 



number of certain language elements that 
may be present in the source program. For 
a discussion of these dependencies, see 
Appendix H. 

PROGRAMMER AIDS 

The assembler program provides auxiliary 
functions that assist the programmer in 
checking and documenting programs, in con­
trolling address assignment, in segmenting 
a program, in data and symbol definition, 
in generating macro instructions, and in 
controlling the assembly program itself. 
Mnemonic codes, specifying these functions, 
are provided in the language. 

Variety in Data Representation: Decimal, 
binary, hexadecimal, or character represen­
tation of machine language binary values 
may be employed by the programmer in writ­
ing source statements. The programmer 
selects the representation best suited to 
his purpose. 

Base Register Address Calculation: As 
discussed in the IBM System/360 Principles 
of Operation manual, the IBM System/360 
addressing scheme requires the designation 
of a base register (containing a base 
address value) and a displacement value in 
specifying a storage location. The assem­
bler assumes the clerical burden of calcu­
lating storage addresses in these terms for 
the symbolic addresses used by the program­
mer. The programmer retains control of 
base register usage and the values entered 
therein. 

Relocatability: The object programs pro­
duced by the assembler are in a format 
enabling relocation from the originally 
assigned storage area to any other suitable 
area. 

Sectioning and Linking: The assembler 
language and program provide facilities for 
partitioning an assembly into one or more 

, 10 

parts called control sections. Control 
sections may be added or deleted when link­
age editing the object program. Because . 
control sections do not have to be loaded 
contiguously in storage, a sectioned pro~ 
gram may be loaded and executed even though 
a continuous block of storage large enough 
to accommodate the entire program may not 
be available. 

The linking facilities of the assembler 
language and program allow symbols to be 
defined in one assembly and referred to in 
another, thus effecting a link between 
separately assembled programs. This per­
mits reference to data and/or transfer of 
control between programs. A 'discussion of 
sectioning and linking is in Section 3 
under Program Sectioning and Linking. 

Program Listings: A listing of the source 
program statements and the reSUlting object 
program statements may be produced by the 
assembler for each source program it assem­
bles. The programmer can partly control 
the form dnd content of the listing. 

Error Indications: As a source program is 
assembled, it is analyzed for actual or 
potential errors in the use of the assem­
bler language. Detected errors are indi­
cated in the program listing. 

ASSEMBLER - DOS/TOS RELATIONSHIPS 

The assembler program is'a component of IBM 
disk and tape operating systems and func­
tions under their control. DOS/TOS provides 
the assembler with input/output, library, 
and other services needed in assembling a 
source program. In a like manner, the 
object program produced by the assembler 
will normally operate under control of DOS/ 
TOS and depend on it for input/output and 
other services. In writing the sourCe pro­
gram, the programmer must include statements 
requesting the desired functions from DOS/ 
TOS. (See the Supervisor and Input/Output 
Macros publications listed in the Preface.) 

. "--. ... ./ 



o 

This section presents information about 
assembler language coding conventions, 
assembler source statement structure, 
addressing, and the sectioning and linking 
of programs. . 

ASSEMBLER LANGUAGE CODING CONVENTIONS 

This sUbsection discusses the general cod­
ing conventions associated with use of the 
assembler language. 

Coding Form 

A source program is a sequence of source 
statements that are punched into cards. A 
standard assembler card is shown in Figure 
2-2. These statements may be written on 
the standard coding form, X28-6509 (Figure 
2-1), provided by IBM. One line of coding 
on the form is punched into one card. The 
vertical columns on the form correspond to 
card columns. 

Space is provided on the form for pro­
gram identification and instructions to 
keypunch operators. None of this informa­
tion is punched into a card. 

The body of the form (Figure 2-1) is 
composed of two fields: the statement 
field,. columns 1-71, and the 
identification-sequence field, columns 
73-80. The identification-sequence field 
is not part of a statement and is discussed 
following the subsection Statement Format. 

SECTION 2: GENERAL INFORMATION 

The entries (i.e., coding) composing a 
statement occupy columns 1-71 of a 
statement line and. if needed, columns 
16-71 of successive continuation lines. 

continuation Lines 

When it is necessary to continue a state­
ment on another line the following rules 
apply. 

1. Enter any nonblank character in the 
continuation column (end column plus 
one) of the statement line. 

2. continue the statement on the next line, 
starting in the continue column. 
Columns to the left of the continue 
column must be blank. 

One continuation line is allowed for the 
D assembler and two continuation lines are 
allowed for the F assembler, except for 
source macro-instructions and macro proto­
type statements, which may have more than 
one continuation line (see Part 3). 

Statement Boundaries 

Source statements are normally contained in 
columns 1-71 of statement lines and columns 
16-71 of any continuation lines. There­
fore, columns 1, 71, and 16 are referred to 
as the "begin," "end," and "continue" 
columns, respectively. This convention may 
be altered by use of the Input Format Con­
trol (ICTL) assembler instruction discussed 
later in this publication. 

General Information 11 



IBM SyBleml360 Assembler Coding Form 

Figure 2-1. Coding Form 

/ I 
OP£JU,TlO-" 

1 
oO>EA1ND 

I I I 1 
NAME "NO COMMENTS 

I I I I I L J 
N ...... E OPERATION OPERAND COMMENTS 

t-oooTI'm O~ O,,"ERANO COMMENTS 

tn~ 000000000000000000000000000000000000000000000000000000000 OOOOOOUOO 
1234$17' ,101112'1314 1511 1711 11?IJ 2122ZJ2425 627211930 JI3231l435 p'1731JI40 414243444::; 647414"0 51525354$5 51 515"II( 6151135415 611J68&SJOnl 27374157611717110 

11111111 111111 111111 11111 11111 11111 11111 11111 11111 11111 11111 11111 111111 111111111 

22222222 222222 2222 t2 22222 22222 22222 22222 22222 22222 22222 22222 22222 222H2 222222222 

33333333 333333 333333 33-333 33333 33333 33333 33333 33333 33333 33333 33333 333333 333333333 

44444 44 4 444444 444 44 4 
' .... :1 IB~ SYSTEM/360 j:"'" 4 44 44 444444 4 4 4 4 44444 

55555555 555555 555555 555555 STANDARD ASSEMBLER CARD 555555 55555 555555 555555555 

66666666 666666 666666 66666 66666 66666 66666 66666 66666 66666 66666 66666 666666 666666666 

11111111 r"""""'11""'11""""""11'I1'I1"""I1""'I1"I1"111111111 . 
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 88 8 8 8 8 8 8 8! 8 8 8 8 8 8 8 8 8 6 S 3 8'! 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 888 

99999999 9 9 9 9 9 9 S ~ 9 999 999999999999999 9 9 999999 9 !~S 9 9 9 9 9 9 9 9 9999 9 ~J9 9 99 919 9 9 9 9 9 9 9 9 9 9 9 999 
\.. 1 2 3 4 5 I , I ;PJ 111213 1.15 'III 1I192U 21 22132415 S 27282'30 JI l13J~4 3J ,;'13.31404142 43444~ 6 4' 4149~O 51515] S45SS& SISlS,. 61121J54n6UII8U 70 nrnJn 14151£ n Jt 7910 ~ 

'_IIII!lO. 

Figure 2-2. Punched Card Form 

~ 
I . 

"'-_/ 

12 



o 

Statement Format 

There are two types of 
statements--instructions and commeqts. 

Instructions may consist of one to four 
entries in the statement field. They are, 
from left to right: a name entry, an 
operation entry, an operand entry, and a 
comments entry. These entries must be 
separated by one or more blanks, and must 
be written in the order stated. Total 
statement size is limited to 187 charac­
ters. If this limit is exceeded, the 
assembly listing may be incorrect for that 
statement. 

The coding form (Figure 2-1) is ruled to 
provide an eight-character name field, a 
five-character operation field, and a 
56-character operand and/or comments field. 

If desired, the programmer may disregard 
these boundaries and write the name, 
operation, operand, and comment entries in 
other positions, subject to the following 
rules: 

1. The entries must not extend beyond 
statement boundaries (either the con­
ventional boundaries, or as designated 
by the programmer via the ICTL 
instruction>. 

2. The entries must be in proper sequence, 
as stated above. 

3. The entries must be separated by one or 
more blanks. 

4. If used, a name entry must be written 
starting in the begin column. 

5. The name and operation entries must be 
completed in the first line of the 
statement, including at least one blank 
following the operation entry. 

, 
A description of the name, operation, 

operand, and comments entries follows: 

Name Entries: The name entry is a symbol, 
eight characters or fewer, created by the 
programmer to identify a statement. A name 
entry is usually optional, but, if present, 
must be entered with the first (or only) 
character appearing in the begin column. 
If the begin colUmn is blank, the assembler 
program assumes no name has been entered. 
Blanks must not appear within a name entry, 
whether the symbol was introduced directly 
by the programmer or indirectly by condi­
tional assembly or macro generation. 

operation Entries: The operation entry is 
the mnemonic operation code specifying the 
desired machine operation, macro, or assem-

ble~ function. An operation entry is man­
datory and must appear in the first state­
ment line, starting at least one position 
to the right of the begin column. Valid 
mnemonic operation codes for machine and 
assembler operations are contained in 
Appendices D and E of this publication. 
Valid operation codes consist of five char­
acters or fewer for machine or assembler 
operation codes, and eight characters or 

.fewer for macro-instruction operation 
codes. No blanks may appear within the 
operation entry. 

Operand Entries: Operand entries are the 
coding that identifies and describes data 
to be acted upon by the instruction, by 
indicating such things as storage loca­
tions, masks, storage-area lengthS, or 
types of data. 

Depending on the needs of the instruc­
tion, one or more operands may be written. 
operands are required for all machine 
instructions. 

Operands must be separated by commas. 
Blanks must not intervene between operands 
and the commas that separate them. 

The operands may not contain embedded 
blanks except as follows: 

If character representation is 
used to specify a constant, a 
literal, or immediate data in an 
operand, the character string may 
contain blanks, e.g., etAB Dt. 

comments Entries: comments are descri'ptive 
items of information about the program that 
are to be inserted in the program listing. 
All 256 valid characters,. including blanks, 
may be used in writing a comment. The 
entry cannot extend beyond the end column 
(normally column 71), and a blank must 
separate it from the operand. 

In instructions where an operand entry is 
optional but not present and a comments 
entry is desired, the absence of the operand 
entry must be indicated by a comma preceded 
and followed by one or more blanks, as 
follows: 

r------~----------T----------------------, 
tName tOperation IOperand I 
r-------+----------+----------------------~ 
I ICSECT " COMMENT I 
I I I I 
I I I I 
I I I I 
t lEND I, COMMENT I L _______ i __________ L ______________________ J 

Instruction Example: The following example 
illustrates the use of name, operation, 
operand, and comments entries. A compare 

General Information 13 



instruction has been named by the symbo~ 
COMP: the operation entry (CR) is the mne­
monic operation code for a register-to­
register compare operation, and the two 
operands (5,6) designate the two general 
registers whose contents are to be 
compared. The comments entry reminds the 
progranuner that he is comparing "new sum" 
to "old" with this instruction. 

r-----~---------~-------------------_, 
I Name I operation IOperand I 
~-----+-------+~-----------------~ 
ICOMP )CR )5,6 NEW SUM TO OLD I L _____ ~ _________ ~ ________ ~ __________ J 

Summary of Instruction Format 

The entries in an instruction must always 
be separated by at least one blank and must 
be in the following order: name, operation, 
operand(s), comment. 

Every statement requires an operation 
entry. Name and comment entries are 
optional. Opercand entries are required for 
all machine instructions and most assembler 
instructions. 

The name and operation entries must be 
completed in the first statement line, 
including at least one blank following the 
operation entry. 

The name and operation entries must not 
contain blanks. Operand entries must not 
haVe blanks preceding or following the . 
commas that separate them. 

A name entry must always start in the 
"begin" column. 

If the column after the end column is 
blank, the next line must start a new 
statement. If the column after the end 
column is not blank, the following line 
will be treated as a continuation line. 

All entries must be contained within the 
designated begin, end, and continue column 
boundaries. 

Comments Statements 

Comments statements are used to include a 
programmer's notes on an assembly listing. 
(These notes can be helpful during debug­
ging aQd maintenance of a program.) Com­
ments statements have no effect in the 
assembled program; they are only printed in 
the assembly listing and, therefore, may 

14 

appear at any point. Extensive notes, or 
comments, may be written by using a series 
of comments statements. 

There .are two types of comments state­
ments. One type, written with an asterisk 
(*> in the begin column, is used for com­
ments on the source program. The other 
type, written with a period 1n the begin 
column and followed by an asterisk, is used 
for comments on a macro-definition. This 
type is further described in Section 7. 

An example of the comments statement is: 
r------T-----------T------------------T---' 
I Name IOperation IOperand I I 
~------.L-__ ----.L-----------------+---~ 
I *THIS COMMENT IS CONTINUED ON I X I 
I ANOTHER LINE. I I L-__________________________________ --.L ___ J 

Identification-Sequence Field 

The identification-sequence field of the 
coding form (columns 73-80) is used to 
enter program identification and/or state­
ment sequence characters. The entry is 
optional. If the field, or a portion of 
it, is used for program identification, the 
identification is punched in the statement 
cards, and reproduced in the printed list­
ing of the source program. 

To aid in ~eeping source statements in 
order, the programmer may code an ascending 
sequence of characters in this field or a 
portion of it. These characters are 
punched into their respective cards, and, 
during assembly, the programmer may request 
the assembler to verify this sequence by 
use of the Input Sequence Checking (ISEQ) 
assembler instruction. This instruction is 
discussed in Section 5 under Program Con­
trol Instructions. 

Character Set 

Source statements are written using the 
following characters: 

Letters A through Z, and $, #, @ 

Digits o through 9 

Special 
Characters + - , = • * ( ) , / & blank 

These characters are represented by the 
card punch combinations and internal bit. 
configurations listed in Appendix A. In 
addition, any of the 256 punch combinations 
may be designated anywhere that characters 



may appear between paired apostrophes, in 
comments, and in macro instruction oper­
ands. 

ASSEMBLER LANGUAGE STRUCTURE 

The basic structure of the language can be 
stated as follows. 

A source statement is composed of: 

o A name entry (usually optional). 
o An operation entry (mandatory). 
• An operand entry (usually required). 
• A comments entry (optional). 

A name entry is: 

• A symbol. 

An operation entry is: 

• A mnemonic operation code representing 
a machine, assembler, or macro instruc­
tion. 

An operand entry is: 

o One or more operands composed of one or 
more expressions. An expression is 
composed of a term or an arithmetic 
combination of terms. In general, an 
operand entry should contain 50 or 
fewer terms (see Appendix H). 

Operands of machine instructions gener­
ally represent such things as storage loca­
tions, general registers, immediate data, 
or constant values. operands of assembler 

instructions provide the information needed 
by the assembler prograrnto perform the 
designated operation. 

Figure 2-3 depicts this structure. 
Terms shown in Figure 2-3 are classed as 
absolute or relocatable. Terms are abso­
lute or relocatable due to the effect of 
program relocation upon them. (Program 
relocation is the loading of the object 
program into storage locations other than 
those originally assigned by the assembler 
program.) A term is absolute if its value 
does not change upon relocation. A term is 
relocatable if its value changes upon relo­
cation. 

The following subsection, Terms and 
Expressions, discusses these items as out­
lined in Figure 2-3. 

TERMS AND EXPRESSIONS 

TERMS 

Every term represents a value. This value 
may be assigned by the assembler program 
(symbols, symbol length attribute, location 
counter reference) or may be inherent in 
the term itself (self-defining term, 
literal). 

An arithmetic combination of terms is 
reduced to a single value by the assembler 
program. 

The following material discusses each 
type of term and the rules for its use. 

General Information 15 



cp 
Name Entry 

Is a Symbol 
which is an 

Machine 
Instruction 

~-----1 

f--
Ordinary 
Symbol 
(ATorRT) 

or 
2 

cp 
Operation Entry 

I 
Is a Mnemonic 
Operation Code 

I 
1 I 

Assembler 
or Instruction 

cp 
1 

Operand Entry 

I 
One or more 
Operands that 
are composed 
of an 

I 
1 I I 1 

Macro or Instruction 
Exp or Exp(Exp) or Exp(Exp, Exp) 

Exp = Expression 

or I 
Arithmetic 

Variable 
Term Combination 

f-- Symbol 
of Terms 

or 

-

Decimal 
e~g., 15 

Sequence 
Symbol 

I 
A Symbol 
e.g., BETA 
(AT or RT) 

2 

I 
A Self­
defining 
Term (AT) 

I 
which may be 
anyone of 
the following 

I 
I 

which may be 
anyone of 
the following 

I 
A Location 

A Literal Counter Refer-
ence i.e., * e.g.,=F I 1259' 

(RT) CRT) 

I 
Hexadecimal 
e.g.,X IC4' 

Binary 
e.g.,B I 101 ' 

Character 
e.g .,C'AB9' 

I I 
Symbol Length 

Other Symbol 
Attribute Refer-

Attribute 
ence e.g., 

References (AT) 
L'Symbol (AT) 

AT=Absolute Term 

RT=Relocatable Term 

1 May be generated by combination of variable symbols and assembler language characters. (Conditional assembly only) 

2 Conditional assembly only. 

2 

Figure 2-3. Assembler Language Structure--Machine, Assembler, and Macro Instructions 

16 



~ ... 

Symbols 

A symbol is a character or combination of 
characters used to represent locations or 
arbitrary values. Symbols, through their 
use in name fields and in operands, provide 
the programmer w~th an efficient way to 
name and reference a program element. 
There-are three types of symbols: 

1. Ordinary symbols. 
2. Variable symbols. 
3. Sequence symbols. 

Ordinary symbols consist of one to eight 
letters and/or numbers, the first of which 
must be a letter. Such symbols are used to 
identify machine locations or arbitrary 
values. In the following sections. the 
occurrence of symbol refers to this type of 
term. Absolute symbols are ordinary sym­
bols whose values do not change upon pro­
gram relocation. Relocatable symbols are 
ordinary symbols whose values change upon 
relocation. 

The following are valid ordinary sym­
bols: 

READER 
A23456 
X4F2 
LOOP 2 
N 
S4 
CilB4 
$Al 
#56 

It is advisable to avoid using symbols 
beginning with IJ; they may conflict with 
~CS symbols (wElch begin with IJ). 

It is also advisable to avoid ustng 
symbols which ~e identical't a Ole name 

name ~e ~n a DTF statement with a 
single character suffix. For example, for 
the file name RECIN, IOCS generates the 
symbols: RECIN1, RECIN2, RECIN3, etc. 

The following ordinary symbols are 
invalid, for the reasons noted: 

256B 

RECORDAREA2 

BCD*34 

IN AREA 

First character is not 
alphabetic. 

More than eight characters. 

Contains a special character 
- an asterisk. 

contains a blank. 

Variable symbols must begin with an 
ampersand (&) followed by one to seven 
letters and/or numbers, the first of which 
must be a letter. Variable symbols are used 
within the source program or macro defini-

tion to allow difterent values to be assign­
ed to one symbol. A complete discussion of 
variable symbols appears in Part 3. 

Sequence symbols consist of a.period (.) 
followed by one to seven letters and/or 
numbers, the first of which must be a let­
ter. Sequence symbols are used to indicate 
the position of statements within the 
source program or macro definition. 
Through their use the programmer can vary 
the sequence in Which statements are proc­
essed by the assembler program. (See the 
complete discussion in Part 3). 

NOTE: Sequence symbols and variable symbols 
are used only for the macro language and for 
conditional assembly. Programmers who do 
not use these featu~es need not be concerned 
with these symbols. 

DEFINING SYMBOLS: The assembler assigns a 
value to each symbol appearing as a name 
entry in a source statement. The values 
assigned to symbols naming storage areas, 
instructions, constants, and control sec­
tions are the addresses of the leftmost 
bytes of the storage fields containing the 
named items. Since the addresses of these 
items may change upon program relocation, 
the symbols naming them are considered 
relocatable terms. 

A symbol used as a name entry in the 
Equate Symbol (EQU) assembler instruction 
is assigned a value designated in the oper­
and entry of the instruction. Since the 
operand entry may represent a relocatable 
value, or an absolute (i.e •• nonchanging) 
value, the symbol is considered a relocata­
ble term or an absolute term, depending on 
the value to which it is equated. 

The value of a symbol may not be nega­
tive and may not exceed 22~-1. 

A symbol is said to be defined when it 
appears as the name of a source statement. 
(A special case of symbol definition is 
discussed in Section 3, under "Program 
Sectioning and Linking"). 

Symbol definition also involves the 
assignment of a length attribute to the 
symbol. (The assembler maintains an inter­
nal table - the symbol table - in which the 
values and attributes of symbols are kept. 
When the assembler encounters a symbol in 
an operand, it refers to the table for the 
values associated with the symbol.) The 
length attribute of a symbol is the length, 
in bytes, of the storage field whose 
address is represented by the symbol. For 
example, a symbol naming an instruction 
that occupies four bytes of storage has a 
length attribute of 4. Note that there are 
exceptions to this rule; for example, in 
the case where symbol has been defined by 
an equate to location counter value (EQU *> 

General Information 17 



or to a self-defining term, the length 
attribute of the symbol is 1. These and 
other exceptions are noted under the 
instructions involved. The length attri­
bute is never affected by a duplication 
factor. 

PREVIOUSLY DEFINED SYMBOLS: The assembler 
language requires that symbols appearing in 
the operand entry of some instructions be 
previously defined. This simply means that 
the symbols, before their use in an oper­
and, must have appeared as the name entry 
of a prior statement. For example: 

SYM! 
SYM2 

MVC 
EQU 

A,B 
SYMl 

would be a valid sequence of COding. The 
same two instructions in reverse order 
would be invalid. 

GENERAL RESTRICTIONS ON SYMBOLS: A symbol 
may be defined only once in an assembly. 
While the same symbol may appear as the 
name of two or more statements before macro 
generation and conditional assembly, only 
one such statement should be generated. In 
addition, a symbol may be used in the name 
field more than once as a control section 
name (i.e., defined in the START, CSECT, or 
DSECT assembler statements described in 
Section 3) because the coding of a control 
section may be suspended and then resumed 
at any subsequent point. The CSECT or 
DSECT statement that resumes the section 
must be named by the same symbol that ini­
tially named the ,section; thus, the symbol 
that names the section must be repeated. • 
Such uEage is not considered to be duplica­
tion of a symbol definition. 

Self-Defining Terms 

A self-defining term is one whose value is 
inherent in the term. It is not assigned a 
value by the assembler program. For exam­
ple, the decimal self-defining term -- 15 

represents a value of fifteen. 

There are four types of self-defining 
terms: decimal, hexadecimal, binary, and 
character. Use of these terms is spoken of 
as decimal, hexadecimal, binary, or charac­
ter representation of the machine language 
binary value or bit configuration they 
represent. 

self-defining terms are classed as abso­
lute terms because the values they rep­
resent do not change upon program reloca­
tion. 

18 

USING SELF-DEFINING TERMS: Self-defining 
terms are the means of specifying machin~ , 
values or bit configurations without equat­
ing the values to symbols and using the 
symbols. Self-defining terms may be used 
to specify such program elements as immedi­
ate data, masks, registers y addresses, and 
address increments. 

The use of a self-defining term is quite 
distinct from the use of data constants or 
literals. When a self-defining term is 
used in a machine-instruction statement, 
its value is assembled into the instruc­
tion. When a data constant or literal is 
specified in the operand of an instruction, 
its address is assembled into the instruc­
tion. 

Decimal self-Defining Term: A decimal term 
is simply an unsigned decimal number writ­
ten as a sequence of decimal digits. High­
order zeros may be used (e.g.,007). 
Limitations on the value of the term depend 
on its use. For exarnple,a decimal term 
that deSignates a general register must 
have a value between 0 and 15 inclusively; 
one that represents an address must not 
exceed the size of storage. In any case, a 
decimal term may not consist of more than 
eight digits or exceed 16,777,215 (2 24-1). 
A decimal term is assembled as its binary 
eqUivalent. Some examples of decimal self­
defining terms are: 8, 147, 4092, 00021. 

Hexadecimal Self-Defining Term: A hexa­
decimal self-defining term is a sequ~nce of 
one to six hexadecimal digits. The digits 
must be enclosed in .single apostrophes and 
preceded by the letter X: X'C49'. 

Each hexadecimal digit is assembled as 
its four-bit binary equivalent. Thus, a 
hexadecimal term used to represent an 
eight-bit mask would consist of two hexa­
decimal digits. The maximum value of a 
hexadecimal term is X'FFFFFF'. 

The hexadecimal digits and their bit 
patterns are as follows: 

0- 0000 
1- 0001 
2- 0010 
3- 0011 

4- 0100 
5- 0101 
6- 0110 
7- 0111 

8- 1000 
9- 1001 
A- 1010 
B- 1011 

c- 1100 
D- 1101 
E- 1110 
F- 1111 

A table for converting from hexadecimal 
representation to decimal representation is 
provided in Appendix B • 

Binary Self-Defining Term: A binary self­
defining term is written as an unsigned 
sequence of l's and O's enclosed in 
apostrophes and preceded by the letter B, 
as follows: B' l0001101'. This term would 
appear in storage as shown, occupying one 
byte. A binary term may have up to 24 bits 

I~' 



represented. Padding with binary zeros is 
on the left. 

Binary representation is used primarily 
in designating bit patterns of masks or in 
logical operations. 

The following example illustrates a 
binary term us ed as a mask in a Test Under 
Mask (TM) instruction. The contents of 
GAMMA are to be tested, bit by bit, against 
the pattern of bits represented by the 
binary term. 

..----~----- T ----------, 
I Name I operation I operand 1 
I------+-------+~ -----i 
'ALPHA 'TM IGAMMA,B'10101101' 1 L-___ ~ _________ ~ ____________________ J 

Character Self-Defining Term: A character 
self-defining term consists of one to three 
characters enclosed by apostrophes. It 
must be preceded by the letter C. All 
letters, decimal digits, and special char­
acters may be used in a character term. ~n 
addition, any of the remainder of the 256 
punch combinations may be designated in a 
character self-defining term. Examples of 
character self-defining terms are as fol­
lows: 

C'/t 
C· ABC' 

C' , (blank) 
C'13' 

Because of the use of apostrophes in the 
assembler language and ampersands in the 
macro language as syntactic characters, the 
following rule must be observed when using 
these characters in a character term. 

For each apostrophe or ampersand desired 
in a character term, two apostrophes or 
ampersands must be written. FOr example, 
the character value A'# would be written as 
C'A"#', while an apostrophe followed by a 
blank and another apostrophe would be writ­
ten as C'" •• ,. 

Each character in the character sequence 
is assembled as its eight-bit code equiva­
lent (see Appendix A). The two apostrophes 
or ampersands that· must be used to rep­
resent a single apostrophe or ampersand 
within the character sequence are assembled 
as a single apostrophe or ampersand. 

Location Counter Reference 

A Location Counter is used to assign 
storage addresses to program statements. 
It is the assembler program's equivalent of 
the instruction counter in the computer. 

As each machine instruction or data area is 
assembled, the Location Counter is first 
adjusted to the proper boundary for the 
item, if adjustment is necessary, and then 
incremented by the length of the assembled 
item. Thus, it always points to the next 
available location. If the statement is 
named by a symbol, the value assigned to the 
symbol is the value of the Location Counter 
after boundary adjustment, but before addi­
tion of the length. 

The assembler maintains a Location 
Counter for each control section of the 
program and manipulates each Location 
Counter as previously described. Source 
statements for each section are assigned 
addresses from the Location Counter for 
that section. The Location Counter for 
each successively declared control section 
assigns locations in consecutively higher 
areas of storage. If a program has multi­
ple control sections, all statements iden­
tified as belonging to the first control 
section will be assigned from the Location 
Counter for section 1, the statements for 

; the second control section will be assigned 
from the Location Counter for section 2, 
etc. This procedure is followed whether 
the statements from different control sec­
tions are interspersed or written in con­
trol section sequence. 

The Location Counter setting can be 
controlled by using the START and ORG 
assembler instructions, which are described 
in Sections 3 and 5, respectively. The 
counter affected by either of these assem­
bler instructions is the counter for the 
control section in Which they appear. The 
maximum value for the Location counter is 
224t-1. 

The programmer may refer to the current 
value of the Location Counter at any place 
in a program, by using an asterisk in an 
operand. The asterisk represents the loca­
tion of the first byte of currently availa­
ble storage (i4e., after any required 
boundary adjustment). Using an asterisk in 
a machine-instruction statement is the same 
as placing a symbol in the name field of 
the statement and then using that symbol as 
an operand of the statement. Because a 
Location Counter is maintained for each 
control section, a Location counter ref­
erence designates the Location Counter for 
the section in which the reference appears. 

A reference to the Location Counter may 
be made in a literal address constant 
(i.e., the asterisk may be used in an 
address constant specified in literal 
form). The address of the instruction 
containing the literal is used for the 
value of the Location Counter. A Location 
Counter reference may not be used in a 
statement which requires the use of a 

General Information 19 



predefined symbol, w-ith the exception of 
the EQU and ORG assembler instructions. 

Literals 

A literal term is one of three basic ways 
to introduce data into a program. It is 
simply a constant preceded by an equal sign 
(=) • 

A literal represents data rather than a 
reference to data. The appearance of a 
literal in a source statement directs the 
assembler program to assemble the data 
specified by the literal, store this data 
in a "literal pool", and place the value 
(address) of the storage field containing 
the data in the operand field of the assem­
bled statement. 

Literals provide a means of entering 
constants (such as numbers for calculation, 
addresses, indexing factors, or words or 
phrases for printing out a message) into a 
program by specifying the constant in the 
operand of the instruction in which it is 
used. Thi~, is in contrast to using the DC 
assembler instruction to enter the data 
into the program, and then using the name 
of the DC instruction in the operand. Only 
one reference to a literal is allowed in a 
machine-instruction statement. 

A literal term may not be combined with 
any at her terms. 

A literal may not be used as the receiv­
ing field of an instruction that modifies 
storage. 

A literal may not be specified in an 
address constant (see Section 5, DC--Define 
Constant). A literal may not be specified 
in a shift instruction or an I/O instruc­
tion (HIO,TIO,SIO). 

A literal may not have an explicit base 
or an explicit index when specified in an 
instruction. 

The instruction coded below shows one 
USe of a literal. 

r-----~-----------~--------------------, I Name loperation I Operand I 
~------+------+- -----------i 
IGAMMA )L 110,=F·274' I L-____ ~ __________ ~ ___________________ J 

The statement GAMMA is a load instruc­
tion using a literal as the second operand. 
when assembled, the second operand of the 
instruction will be the address at which 
the binary value represented by F'274' is 
stored. 

NOTE: If the literal operand is a self-de­
fining term (X,C,B, or D), and the =.is 

20 

omitted the statement may assemble without 
error (see Using Self-Defining Terms) • 

In general, literals may be used wherev­
er a storage address is permitted as an 
operand. They may not, however, be used in 
any assembler instruction. Literals are 
considered reloc~table, because the address 
of the literal, rather than the literal 
itself, will be assembled in the statement 
that employs a literal. The assembler . 
generates the literals, collects them, and 
places them in a specific area of storage, 
as explained in the subsection "The Literal 
pool." A literal is not to be confused 
with the immediate data in an S1 instruc­
tion. Immediate data is assembled into che 
instruction. --

Literal Format: The assembler requires a 
description of the type of literal being 
specified as well as the literal itself. 
This descriptive information assists the 
assembler in assembling the literal cor­
rectly. The descriptive portion of the 
literal must indicate the format in which 
the constant is to be assembled. It may 
also specify the length'the constant is to 
occupy. 

The method of describing and specifying 
a constant as a literal is nearly identical 
to the method of specifying it in the oper­
and of a DC assembler instruction. The 
major difference is that the literal must 
start with an equal sign (=), which indi­
cates to the assembler that a literal fol­
lows. See the discussion of the DC assem­
bler instruction operand format (Section 5) 
for the means of specifying a literal. The 
type of literal designated in an instruc­
tion is not checked for correspondence with 
the operation code of the instruction. 

Some examples of literals are: 

=A(BETA) 
=F'1234' 

=C'ABC' 

address constant literal. 
a fixed-point number with 
a length of four bytes. 
a character literal. 

The Literal Pool: The literals processed 
by the assembler are collected and placed 
in a special area called the literal pool, 
and the location of the literal, rather 
than the literal itself, is assembled in 
the statement employing a literal. The 
positioning of the literal pool may be 
controlled by the programmer, if he so 
desires. Unless otherwise specified, the 
literal pool is placed at the end of the 
first control section. 

The programmer may also specify that 
multiple literal pools be created. Howev­
er, the sequence in which literals are 
ordered within the pool is controlled by 
the assembler. Further information on 
positioning the literal poolCs) is in Se~ 
tion 5 under LTORG--BEGIN LITERAL POOL-.---



\ 
,--- .. / 

o 

o 

Q~Eli£~~Li~g~ls: If duplicate literals 
occur within one literal pool, only one 
literal is stored. Literals are considered 
duplicates only if their specifications are 
identical. A literal will be stored, even 
if it appears to duplicate another literal, 
if it is an A-type address constant con­
taining any reference to the Location 
counter. 

The following examples illustrate the 
foregoing rules: 

X'FO' 
} Both are stored 

C'Ot 

XL3' 0 I } 

Both are stored 
HL3'O' 

A(*+4) } 
Both are stored 

A(*+4) 

X' FFFF'} 
Identical; the first is stored 

X, FFFF' 

§YillbD!~gn~h Attribute Reference 

The length attribute of a symbol may be I 
used as a term by coding L' followed by the 
symbol, as in: 

L'BETA 

The length attribute of BETA will be 
substituted for the term. The following 
example illustrates the use of L'symbol in 
moving a character constant into either the 
high-order or low-order end of a storage 
field. 

For ease in following the example, the 
length attributes of Al and B2 are men­
tioned. 

r-------T-----------T---------------------, 
I Name \ Operation I Operand J 

~-------t-----------+---------------------t 
I Al \ 05 \ CL8 I 
IB2 10: \CL2'AB' I 
IHIORD \MVC IA1(L'B2),B2 J 
\ LOORD IMVC \Al+L'Al-L'B2(L'B2),B2\ L _______ ~ ___________ ~ _____________________ J 

Ai names a storage field eight bytes in 
length and is assigned a length attribute 
of eight. B2 names a character constant 
two bytes in length and is assigned a 
length attribute of two. rhe statement 
named HIORD moves the contents of B2 into 

Page of GC24-3414-7 
Revised August 21, 1970 
By TNL GN33-8087 

the leftmost two bytes of Al. The term 
L'B2 in parentheses provides the length 
specification required by the instruction. 
When the instruction is assembled, the 
length is placed in the proper field of the 
machine instruction. 

The statement named LOORD moves the 
contents of B2 into the rightmost two bytes 
of Al. The combination of terms 
Al+L'Al-L'B2 results in the addition of the 
length of Ai to the beginning address of 
Ai, and the subtraction of the length of B2 
from this value. The result is the address 
of the seventh byte in field Al. The con­
stant represented by B2 is moved into Ai 
starting at this address. L'B2 in 
parentheses provides length specification 
as in BIORD. 

Note: The length attribute of * is equal 
to the length of the instruction in which 
it appears, except in an EQU to * instruc­
tion where the length attribute is 1. 

EXPRESSIONS 

Expressions, which are used in coding oper­
and entries for assembler language state­
ments, are composed of either a single term 
or an arithmetic combination of terms (see 
Figure G-2). Arithmetically combined 
terms, enclosed in parentheses, may be used 
in combination with terms outside the 
parentheses. For example: 

14+BETA-(GAMMA-LAMBDA) 

When terms in parentheses occur in com­
bination with other terms, like 
(GAM~A-LAMBDA) in the example, the paren­
thesized terms are reduced first to a sin­
gle value. This value may be absolute or 
relocatable, depending on the combination 
of terms. This value then is used in 
reducing the re~t of the combination to 
another single value. 

Parenthesized terms may be included 
within another set of terms in parentheses. 
For example: 

A+B-(C+D-(E+F)+10) 

This expression has two levels of 
parentheses. A level of parentheses is a 
left parenthesis and its matching right 
parenthesis. One level of parentheses 
surrounds E+F. The next higher level of 
parentheses surrounds C+D-(E+F)+lO. The 
innermost set of terms in parentheses (the 
lowest level) is evaluated first. 

The following are examples of valid 
expressions: 

General Information 21 



* AREA1+X'2D' 
*+32 
N-25 
FIELO+332 
rIELD 
(EXIT-ENTRY+1)+GO 

BETA*10 
B'101' 
C'ABC' 
29 
L'FIELD 
LAMBDA+GAMMA 
TEN/rwO 

=F'l234' 
ALPHA-BETA/(lO+AREA*L'FIELO)-100 
A*eA*(A*eA+1)+3*(B-3») 

The rules for coding expressions are: 

1. An expression may not start with an 
arithmetic operator, that is, +-/* 
Therefore, the expression -A+BETA is 
invalid. HONever, the expression 
O-A+BETA is valid. 

2. An expression may not contain two terms 
or' two operators in succession. 

3. An expression may not consist of more 
than 16 terms. 

4. An expression may not have more than 
five levels of parentheses. 

5. A multi-term expression may not contain 
a literal. 

A single term expression, e.g., 29, BErA, 
*, L'SYMBOL, takes on the value of the term 
involved. 

A multi-term expression, e.g., BETA+I0, 
ENTRY-EXIT, 25*10+A/B, is reduced to a 
single value, as follows: 

1. Each term is given its value. 

2. Arithmetic operations are performed 
left to right. Multiplication and 
division are done before addition and 
subtraction, e.g., A+B*C is evaluated 
as A+(B*C), not (A+B)*C. The computed 
result is the value of the expression. 

3. Every expression is computed to 32 bits, 
and then truncated to the rightmost 24 
bits. 

4. Division alw3.Ys yiel::ls an integer 
result; any fractional portion of the 
result is dropped. E.g.,. 1/2*10 yields 
a zero result, whereas 10*1/2 yields 5. 

5. Division by zero is valid and yields a 
zero result. 

Parenthesized expressions used in an 
expression are processed before the rest of 
the terms in the expression, e.g., in the 
expression A+BETA*(CON-I0), the term CON-lO 
is evaluated first and the resulting value 
used in computing the final value of the 
expression. 

22 

Negative values are carried in two's com­
plement form. Final values of expressions 
are the rightmost 24 bits of the results. 
Intermediate results have a range of -2 31 
through 231_1. However, the va~ue of an 
expression before truncation must be in 
the range -2 24 through 224-1 or the results 
will be meaningless. A negative result 
is considered to be a 3-byte positive value. 

NOTE: In A-type address constants, the 
full 32 bit final result is truncated on 
the left to fit the specified or implied 
length of the constant. 

Absolute and Relocatable Expressions 

An expression is called absolute if its 
value is unaffected by program relocation. 

An expression is called relocatable if 
its value changes upon program relocation. 

The two types of expressions, absolute 
and relocatable, take on these charac­
teristics from the term or terms composing 
them. The following material discusses 
this relationship. 

~Q2Q!~~~_~~E!~~§iQQI An absolute expres­
sion may be an absolute term or any arith­
metic combination of absolute terms. An 
absolute term may be an absolute symbol, 
any of the self-defining terms, or the 
length attribute reference. As indicated 
in Figure 2-2, all arithmetic operations 
are permitted between absolute terms. 

An absolute expression may contain relo­
eatable terms eRr) -- alone or in combina­
tion with absolute terrrs (AT) -- under the 
following conditions: 

1. There must be an even number of reloca­
t3.ble terms in the expression. 

2. 'rhe relocatableterms must be paired. 
Each pair of terms must have the same 
relocatability attribute, i.e., they 
appear in the same control section in 
this assembly (see Program Sectioning 
and Linking, section 3). Each pair 
must consist of terms with opposite 
signs • The paired terms do not have to 
be contiguous, e.g., RT+AT-RT. 

3. No relocatable expression may enter 
into a multiply or divide operation. 
Thus, RT-Rr*10 is invalid. However, 
CRT-RT) *10 is valid. 

The pairing of relocatable terms (with 
opposite signs and the same relocatability 
attribute) cancels the effect of reloca­
tion. Therefore the value represented by 
the paired terms remains constant, regard­
less of program relocation. For example, 
in the absolute expression A-Y+X, A is an 

.\ 
\, 

o 



o 

absolute term, and X and Yare relocatable 
terms with the same relocatability attri­
bute. If A equals 50, Y equals 25, and X 
equals 10, the value of the expression 
would be 35. If X and Yare relocated by a 
factor of 100 their values would then be 
125 and 110. However, the expression would 
still evaluate as 35 (50-125+110=35). 

An absolute expression reduces to a 
single absolute value. 

The following examples illustrate abso­
lute expressions. A is an absolute term; X 
and Yare relocatable terms with the same 
relocatability attribute. 

A-Y+X 
A 
A*A 
X-Y+A 
+-Y (a reference to the Location Counter 

must be paired with another relocata­
ble term from the same control sec­
tion, i.e., with the same relocatabil­
ity attribute) 

Relocatable Expressions: A relocatable 
expression is one whose value would change 
by n if the program in which it appears is 
relocated n bytes away from its originally 
assigned area of storage. 

A relocatable expression may be a relo­
eatable term. A relocatable expression may 
contain relocatable terms -- alone or in 
combination with absolute terms -- under 
the following conqitions: 

1. There must be an odd number of reloca­
table terms. 

2. All the relocatable terms but one must 
be paired. pairing is described in 
Absolute Expression. 

3. The unpaired term must not be directly 
preceded by a minus sign. 

4. No relocatable term may enter into a 
multiply or divide operation. 

A relocatable expression reduces to a 
single relocatable value. This value is 
the value of the odd relocatable term, 
adjusted by the values represented by the 
absolute terms and/or paired relocatable 
terms associated with it. 

For example, in the expression W-X+W-l0, 
wand X are relocatable terms with the same 
relocatability attribute. If initially W 
equals 10 and X equals 5, the value of the 
expression is 5. However, upon relocation 
this value will change. If a relocation 
factor of 100 is applied, the value of the 
expression is 105. Note that the value of 
the paired terms, W-X, remains constant at 
5 regardless of relocation. Thus, the new 
value of the expression, 105, is the" result 
of the value of the odd term (W) adjusted 
by the values of W-X and 10. 

The following examples illustrate relo­
eatable expressions. A is an absolute 
term, Wand X are relocatable terms with 
the same relocatability attribute, Y is a 
relocatable term with a different relocat­
ability attribute. 

Y-32>*A W-X+* 
W-X+Y 
* (reference to 

Location Counter) 

=F'1234' (literal) 
A*A+W-W+Y 
W-X+W 
Y 

General Information 23 



PART 2 -- BASIC FUNCTIONS OF THE ASSEMBLER LANGUAGE 

SECTION 3: ADDRESSING -- PROGRAM 
SECTIONING AND LINKING 

ADDRESSING 

The System/360 addressing technique 
requires the use of a base register, Which 
contains the base address, and a displace­
ment, which is added to the contents of the 
base register. The programmer may specify 
a symbolic address and request the assem­
bler to determine its storage address in 
terms of a base register and a displace­
ment. The programmer may rely on the 
assembler to perform this service for him 
by indicating which general registers are 
available for assignment and what values 
the assembler may assume each contains. 
The programmer may use as many or as few 
registers for this purpose as he desires. 
The only requirements are that, at the 
point of reference, a register containing 
an address from the same control section is 
available, and that this address is less 
than or equal to the address of the item to 
which the reference is being made. The 
difference between the two addresses may 
not exceed 4095 bytes. 

ADDRESSES -- EXPLICIT AND IMPLIED 

An address is composed of a displacement 
plus the contents of a base register. (In 
the case of RX instructions, the contents 
of an index register are also used to der­
ive the address.) 

The programmer writes an explicit 
address by specifying the displacement and 
the base register number. In designating 
explicit addresses a base register may not 
be combined with a relocatable symbol. 

Be writes an implied address by speci­
fying an absolute or relocatable address. 
The assembler has the facility to select a 
base register and compute a displacement, 
thereby generating an explicit address from 
an implied address, provided that it has 
been informed (1) what base registers are 
available to it and (2) what each contains. 
The programmer conveys this information to 

24 

the assembler through the USING and DROP 
assembler instructions. 

BASE REGISTER INSTRUCTIONS 

The USING and DROP assembler instructions 
enable programmers to use expressions rep­
resenting implied addresses as operands of 
machine-instruction statements, leaving the 
a'ssignment of base registers and the calcu­
lation of displacements to the assembler. 

In order to use symbols in the operand 
field of machine-instruction statements, 
the programmer must (1) indicate to the 
assembler, by means of a USING statement, 
that one or more general registers are 
available for use as base registers, (2) 
specify, by means of the USING statement, 
what value each base register contains, and 
(3) load each base register with the value 
he has specified for it. 

Having the assembler determine base 
registers and displacements relieves the 
programmer of separating each address into 
a displacement value and a base address 
value. This feature of the assembler will 
eliminate a likely source of programming 
errors, thus reducing the time required to 
check out programs. To take advantage of 
this feature, the programmer uses the USING 
and DROP instructions described in this 
SUbsection. The principal discussion of 
this feature follows the description of 
both instructions. 

USING -- Use Base Address Register 

The USING instruction indicates that one or 
more general registers are available for 
use as base registers. This instruction 
also states the base address values that 
the assembler may assume will be in the 
registers at object time. Note that a 
USING instruction does not load the reg­
isters specified. It is the programmer's 
responsibility to see that the specified 
base address values are placed into the 
,registers. Suggested loading methods are 
described in the SUbsection programming 
with the USING Instruction.. The typical 
form of the USING instruction statement is: 

,-" .. ,., 



r~ r-----,.-------T- --- , 
') I Name I Opera tion I Operand I 

'--./ -------+--------+------------~ rA I USING IFrom 2-17 expressionsl 

o 

Isequence I lof the form v,r1, I 
IsymbOl orl Ir2,r3, ••• ,r16 I 
~~~~se~-L _______ L _____________ J 

Operand v must be an absolute o~ reloca­
table expression with a value ranging from 
-22~ to +224-1. No literals are permitted. 
Operand v specifies a value that the assem­
bler can use as a base address. The other 
operands must be absolute expressions. The 
operand rl specifies the general register 
that can be assumed to contain the base 
address represented by operand v. Operands 
r2. r3, r4,. • • specify registers that 
can be assumed to contain V+4096, v+8192, 
v+12288,. • •• respectively. The values 
of the operands rl, r2, r3, ••• , r16 must 
be between 0 and 15. For example, the 
statement: 

r------,.----------~-----------------, I Name I Opera tion I Operand I 
1-----+-----+- -----~ 
I lOSING 1*,12,13 I L _______ ~-_______ __L_ _ ____________ J 

tells the assembler it may assume that the 
current value of the Location counter will 
be in general register 12 at object time, 
and that the current value of the Location 
counter, incremented by 4096, will be in 
general register 13 at object time. 

If the programmer changes the value in a 
base register currently being used, and 
wishes the assembler to compute displace­
ment from this value, the assembler must be 
told the new value by means of another 
USING statement. In the following sequence 
the assembler first assumes that the value 
of ALPHA is in register 9. The second 
statement then causes the assembler to 
assume that ALPHA+l000 is the value in 
register 9. 

r~----~ T -----------, 
I Name IOperation I Operand I 
r------+---------+----------------------~ 
I I USING I ALPHA, 9 I 
I I . I I 
I I • I I 
I I USING IALPHA+1000,9 I 
L-___ ~_ I ------_______ J 

If the programmer has to refer to the 
first 4096 bytes of storage, he can use 
general register 0 as a base register sub­
ject to the following conditions: 

1. The value of operand v must be either 
an absolute or relocatable zero or 
simply relocatable. 

2. Register 0 must be specified as operand 
rl. 

The assembler assumes that register 0 
contains zero. Therefore, regardless of the 
value of operand v, it calculates dis­
placements as if operand v were absolute 
or relocatable zero. The assembler also 
assumes that subsequent registers specified 
in the same USING statement contain 4096, 
8192, etc. 

NOTE: If register 0 is used as a base 
register, the program is not relocatable, 
despite the fact that operand v may be 
relocatable. The program can be made re­
locatable by: 

1. Replacing register 0 in the USING 
statement. 

2. Loading the new register with a re­
locatable value. 

3. Reassembling the program. 

DROP -- oropEase Register 

The DROP instruction specifies a previously 
available register that may no longer be 
used as a base register. The typical form 
of the DROP instruction statement is as 
follows: 

-------~---------T---------------------, r ~am~: __ t opera~~pera~~----------~ 
lA I DROP I Up to 16 absolute I 
\sequence I lexpressions of the I 
Isymbol orl I form rl,r2, I 
Inot used I I r3, ••• , r16 I L _______ ~ ___________ ~ _____________________ j 

The expressions indicate general reg­
isters previously specified in a USING 
statement that are now unavailable for base 
addressing. The following statement, for 
example, prevents the assembler from using 
registers 7 and 11: 

r------T-----------T-------------------, 
I Name IOperation I Operand I 
I------+----------+.------------------~ 
I I DROP 17 ,11 I L-----_L--_________ ~ ______________________ J 

It is not necessary to use a DROP state­
ment when the base address in a register is 
changed by a USING statement; nor are OROP 
statements needed at the end of the source 
program. 

A register made unavailable by a DROP 
instruction can be made available again by 
a subsequent OSING instruction. 

Addressing -- Program Sectioning and Linking 25 



PROGRAMMING WITH THE USING INSTRUCTION 

The USING (and DROP) instructions may be 
used anywhere in a program, as often as 
needed, to indicate the general registers 
that are available for use as base reg­
isters and the base address values the 
assembler may assume each contains at ex­
ecution time. Whenever an address is spec­
ified in a machine instruction statement, 
the assembler determines whether there is 
an available register containing a suitable 
base address. The USING instruction estab­
lishes addressability at assembly time, as­
suming that the registers assigned as base 
registers have been loaded with correc~ base 
addresses. Any reference to relocatable or 
absolute terms, which are to be assembled 
into the base-displacement form, such as 
names in the operand of a machine instruc­
tion or S-type address constant, must come 
after the pertinent USING instruction that 
makes the terms addressable. References to 
terms relocatable or otherwise in the' oper­
and of an A-type or y-type address constant 
do not have to be preceded by a USING state­
ment. A register is considered available 
for a relocatable address if it was assigned 
a relocatable value that 'is in the same con­
trol section as the address. A register as­
signed an absolute value is available for 
addressing absolute locations only. In 
either case the base address is considered 
suitable only if it is less than or equal to 
the address of the item to which the refer­
ence is made. The difference between the 
two addresses may not exceed 4095 bytes. In 
calculating the base register to be used, 
~he assembler always uses the available reg­
ister giving the smallest displacement. If 
there are two registers with the same value, 
the highest numbered register is used. 
r-------T-----------T---------------------l 
I Name I Opera tion I Operand ' , 

~-------+-------+--------------------~ 
IBEGIN IBALR 12,0 r 
, I US ING , • , 2 I 
I FIRST I. 1 I 
, , ., I 
I I · I I 
I LAST I·' I 
II END ,1 BEGIN I L-_____ ~ __________ ~ _____________________ J 

In the preceding sequence, the BALR 
instruction loads register 2 with the 
address of the first storage location 
immediately following. In this case, it is 
the address of the instruction named FIRST. 
The USING instruction indicates to the 
assembler that register 2 contains this 
location. When employing this method, the 
USING instruction must immediately follow 
the BALR instruction. No other USING or 
load instructions are required if the loca­
tion named LAST is within 4095 bytes of 
FIRST. 

In Figure 3-1, the BALR and LM instruc­
tions load registers 2--5. The USING 
instruction indicates to the assembler that 
these registers are available as base reg­
isters for addressing a maximum of 16,384 
consecutive bytes of storage,' beginning 
with the location named HERE. The number 
of addressable bytes may be increased or 
decreased by altering the number of reg­
isters designated by the USING and LM 
instructions and the number of address 
constants specified in the DC instruction. 

Note: Care must be taken when aSSigning 
base registers to avoid using, except under 
special circumstances: 
1. General registers 0, 1, 13, 14 and 15, 

as they are used by the system. 
2. Any register used explicitly or impli­

citly by a machine instruction. 

RELATIVE ADDRESSING 

Relative addressing is the technique of 
addressing instructions and data areas by 
designating their location in relation to 
the Location Counter or to some symbolic 
location. This type of addressing is 
always in bytes, never in bits, words, or 
instructions. ThUS, the expression *+4 
specifies an address that is four bytes 
greater than the current value of the Loca­
tion counter. In the sequence of instruc­
tions shown in the following example, the 
location of the CR machine instruction can 
be expressed in two ways, ALPHA+2 or 
BETA-4, because all of the mnemonics in the 
example are for 2-byte instructions in the 
RR format. 

r----------T---------~----------------------------------------------------------------, I Name I Operation I Operand I 

~----------+-----------+----------------------------------------------------------------~ 
'BEGIN IBALR 12,0 I 
I I USING IHERE,2,3,4,5 I 
I HERE I LM 13 ,5, BASEADDR I 
I IB I FIRST I 
IBASEADDR IDC IACHERE+4096,HERE+8192,HERE+12288) I 
I FIRST I. I J 
I I . I I 
I I· I I 

c 

I LAST I. I I 
I I END I BEGIN I C" L _________ .l. _________ ~ ___________________________________________________________ J /) 

.-' 

Figure 3-1. Multiple Base Register Assignment 

26 



r-----~--------~--------------------, - I Name IOperation I Operand I 
~\J-----+--------+--------------~ 

"---'.11 ALPHA I LR 13,4 I 
I )CR 14,6 I 
I I BCR 11,14 I 
I BETA JAR 12,3 1 
L _______ ~--________ _i---------------------J 

PROGRAM SECTIONING AND LINKING 

It is often convenient, or necessary, to 
write a large program in sections. The 
sections may be assembled separately, then 
combined subsequently into one program. 
The assembler provides facilities for 
creating multisectioned programs and sym­
bolically linking separately assembled 
programs or program sections. 

Sectioning a program is optional, and 
many programs can best be written without 
sectioning them. The programmer writing an 
unsectioned program need not concern him­
self with the subsequent discussion of 
program sections, Which are called control 
sections. He need not employ the CSECT 
instruction, which is used to identify the 
control sections of a multi section program. 
similarly, he need not concern himself with 
the discussion of symbolic linkages if his 
program neither requires a linkage to nor 
receives a linkage from another program. 
He may, however, wish to identify the pro­
gram and/or specify a tentative starting 
location for it, both of which may be done 
by using the START instruction. He may 
also want to employ the dummy section fea­
ture obtained by using the DSECT instruc­
tion. 

Note: Prog ram sectioning and linking is 
closely related to the specification of 
base registers for each control section. 
Sectioning and linking examples are provid­
ed under the heading Addressing External 
Control Sections. 

CONTROL SECTIONS 

The concept of program sectioning is a 
consideration at coding time, assembly 
time, and load time. To the programmer, a 
program is a logical unit. He may want to 
divide it into sections called control 
sections; if so, he writes it in such a way 
that control passes properly from one sec­
tion to another regardless of the relative 
phYSical position of the sections in stor­
age. A control section is a block of cod­
ing that can be relocated, independently of 

Page of GC24-3414-7 
Revised August 21, 1970 
By TNL GN33-8087 

other coding, at load time without altering 
or impairing the operating logic of the 
program. It is normally identified by the 
CSECT instruction. However, if it is 
desired to specify a tentative starting 
location, the START instruction may be used 
to identify the first control section. 

To the assembler, there is no such thing 
as a program; instead, there is a source 
module, which consists of one or more con­
trol sections. (However, the terms source 
module and program are often used inter­
changeably.) An unsectioned program is 
treated as a single control section. To the 
linkage editor, there are no programs, only 
control sections that must be fashioned into 
one or more phases. 

The output from the assembler is called 
an object module. It contains data required 
for linkage editor processing. The external 
symbol dictionary, which is part of the 
object module, contains information the 
linkage editor needs in order to complete 
cross-referencing between control sections, 
as it combines them into a program. The 
linkage editor can take control sections 
from various assemblies and combine them 
properly with the help of the corresponding 
external symbol dictionaries. Successful 
combination of separately assembled control 
sections depends on the techniques used to 
provide symbolic linkages between the con­
trol sections. 

Whether the programmer writes an unsec­
tioned program, a multi section program, or 
part of a multisection program, he still 
knows what eventually will be entered into 
storage, because he has described storage 
symbolically. He may not know where each 
section appears in storage, but he does 
know what storage contains. There is no 
constant relationship between control sec­
tions. Thus, knowing the location of one 
control section does not make another con­
trol section addressable by relative 
addressing techniques. 

There is a limit to the number of exter­
nal symbol dictionary entries. The total 
number of control sections (named, unnamed, 
and common control sections), dummy 
sections, unique symbols in EXTRN and WXTRN 
statements, and V-type address constants 
may not exceed 255. (The V-type address 
constant is described in Section 5 under 
DC -- Define Constant; the other external 
symbols are described in this section.) 
If the same symbol appears both in V-type 
address constant and in the name field of 
a START, CSECT, or DSECT statement, it is 
counted as two symbols. 

Addressing -- Program Sectioning and Linking 27 



Control Section Location Assignment 

Control section contents can be intermixed 
because the assembler provides a Location 
Counter for each control section. Control 
sections are assigned starting locations 
consecutively, in the same order as the 
control sections first occur in the pro­
gram. Each control section subsequent to 
the first begins at the next available 
double-word boundary. 

FIRST CONTROL SECTION 

The first control section of a program has 
the following special properties. 

1. The initial value of its location coun­
ter may be specified as an absolute 
value. 

2. It normally contains the literals 
requested in the source module, 
although their positioning can 
be altered. This is further 
explained under the discussion of 
the LTORG assembler instruction. 

START -- Start Assembly 

The START instruction may be used to give a 
name to the first (or only> control section 
of a source module. It may also be used 
to specify the initial value of the location 
counter for the first control section of the 
module. The typical form of the START 
instruction statement is as follows: 

r----------T-----------T------------------, 
I Name I operation Joperand I 
t----------+-----------t------------------i 
I Any ) START IA self-defining I 
Isymbol or I Iterm or not 1 
Inot used I I used 1 L __________ ~--_________ ~ __________________ J 

If a symbol names the START instruction, 
the symbol is established as the name of 
the control section. If not,. the control 
section is considered to be unnamed. All 
subsequent statements are assembled as part 
of that control section. This continues 
until an instruction identifying a different 
control section is encountered. A CSECT in­
struction named by the same symbol that 
names a START instruction is considered to 
identify the continuation of the control 
section first identified by the START. 
Similarly, an unnamed CSECT that occurs in 

28 

a program initiated by an unnamed START is 
considered to identify the continuation of ~ 
the unnamed control section. \. .. ./ 

The symbol in the name field is a valid 
relocatable symbol whose value represents 
the address of the first byte of the con­
trol section. It has a length attribute of 
one. 

The assembler uses the self-defining 
term specif!ed by the operand as the ini­
tial value of the location counter of the 
program. This value should be divisible by 
eight. For example, either of the follow­
ing statements: 

r-------T-----------T---------------------, 
I Name I Operation I Operand I 
f----t----------+-----------------~ 
IPROG2 I START 12040 I 
IPROG2 I START IX'7F8' I L-______ ~ __________ ~ _____________________ J 

could be used to assign the name PROG2 to 
the first control section and to set the 
initial value of the location counter to 2040. 
If the operand is omitted, the assembler 
sets the initial value to zero. The location 
counter is set at the next doubleword bound­
ary when the value of the START operand is 
not divisible by 8. 

Note: The START instruction may not be 
preceded by any type of assembler language 
statement that may either affect or depend 
upon the setting of the Location Counter. 

CSECT -- Identify Control Section 

The CSECT instruction identifies the begin­
ning or the continuation of a control sec­
tion. The typical form of the CSECT 
instruction statement is as follows: 

r----------r-----------T------------------, I Name I Operation I Operand I 
r----------+-----------t------------------i 
I Any I CSECT I Not used; should I 
I symbol or I I not be present I 
I not used I I I L-_________ i--_________ ~ __________________ J 

If a symbol names the CSECT instruction, 
the symbol is established as the name of 
the control section; otherwise the section 
is considered to be unnamed. All state­
ments following the CSECT are assembled as 
part of that control section until a state­
ment identifying a different control sec­
tion is encountered (i.e., another CSECT or 
a DSECT instruction>. 



,~ ... ........, 

'-) 

The symbol in the name field is a valid 
relocatable symbol whose value represents 
the address of the first byte of the con­
trol section. It has a length attribute of 
one. 

Several CSECT statements with the same 
name may appear within a source module. The 
first is considered to identify the begin­
ning of the control section; the rest iden­
tify the resumption of the section. Thus, 
statements from different control sections 
may be interspersed. They are properly 
assembled (assigned contiguous storage 
locations) as long as the statements from 
the various control sections are identified 
by the appropriate CSECT instructions. 

Under the Tape Operating System (TOS) a 
completely empty control section (CSECT) is 
flagged in error. 

Unnamed Control section 

If neither a named CSECT instruction nor 
START instruction appears at the beginning 
of the program, the assembler determines 
that it is to assemble an unnamed control. 
section as the first (or only) control 
section. There may be only one unnamed 
control section in a program. If one is 
initiated and is then followed by a named 
control section, any subsequent unnamed 
CSECT statements are considered to resume 
the unnamed control section. If it is 
desired to write a small program that is 
unsectioned, the progr.am does not need to 
contain a CSEC~ instruction. 

DSECT -- Identify Dummy Section 

A dummy section represents a control sec­
tion that is assembled but is not part of 
the object program. A dummy section is a 
convenient means of describing the layout 
of an area of storage without actually 
reserving the storage. (It is assumed that 
the storage is reserved either by some 
other part of this assembly or else by 
another assembly.) The DSECT instruction 
identifies the beginning or resumption of a 
dummy section. More than one dummy section· 
may be defined per assemblYr but each must 
be named. The typical form of the nSEcT 
instruction statement is as follows: 

r--- T -----~-----------------, 
I Name I Operation I Operand 1 
i-----+-- +__--------------i 
IAn InsECT lNot used; should 1 
lordinary I Inot be present I 
Isymbol or I I I 
la variable I I I 
I symbol I I I L _______ L _______ ...L ____________ -J 

The symbol in the name field is a valid 
relocatable symbol whose value represents 
the first byte of the section. It has a 
length attribute of one. 

Program statements belonging to dummy 
sections may be interspersed throughout the 
program or may be written as a unit. In 
either case, the appropriate DSECT instrUC­
tion should precede each set of statements. 
When mUltiple DSECT instructions with the 
same name are encountered, the first is 
considered to initiate the dummy section 
and the rest to continue it. 

Symbols that name statements in a dummy 
section may be used in USING instructions. 
Therefore, they may be used in program 
elements (e.g., machine-instructions and 
data definitions> that specify storage 
addresses. An example illustrating the use 
of a dummy section appears subsequently 
under "Addressing Dummy Sections." 

Note: A symbol that names a statement in 
a dummy section may be used in an A-type 
address constant only if it is paired with 
another symbol (with the opposite sign) 
from the same dummy section. 

Dummy Section Location Assignment: A Loca­
tion Counter is used to determine the rela­
tive locations of named program elements in 
a dummy section. The Location Counter is 
always set to zero at the beginning of the 
dummy section, and the location values 
assigned to symbols that name statements in 
the dummy section are relative to the ini­
tial statement in the section. 

Addressing Dummy Sections: The programmer 
may wish to describe the format of an area 
whose storage location will not be deter­
mined until the program is executed. He 
can describe the format of the area in a 
dummy section, and he can use symbols 
defined in the dummy section as the oper­
ands of machine instructions. To effect 
references to the storage area, he does the 
following: 

1. Provides a USING statement specifying 
both a general register that the assem­
bler can assign to the machine­
instructions as a base register and a 
value from the dummy section that the 
assembler may assume the register con­
tains. 

2. Ensures that the same register is load­
ed with the actual address of the stor­
age area. 

The values assigned to symbols defined 
in a dummy section are relative to the 
initial statement of the section. 

AddreSSing -- Program Sectioning ann Linking 29 



Page of GC24-3414-7 
Revised August 21, 1970 
By TNL GN33-8087 

Thus. all machine-instructions which 
refer to names defined in the dummy section 
will. at execution time. refer to storage 
locations relative to the address loaded 
into the register. 

An example is shown in the following 
coding. Assume that two independent modules 
(assembly 1 and assembly 2) have been loaded 
and are to be executed as a single overall 
program. Assembly 1 is an input routine 
that places a unit record in a specified 
area of storage, and places the address of 
that area in register 3. The input area is 
aligned on a fullword boundary. Then 
assembly 1 branches to assembly 2. Assembly 
2 processes the record, which has the fol­
lowing format: 

Columns 
1 
2 
3 and 4 
5 through 8 

Content 
INCOOE 
blank 
INPUTA 
INPUTB 

The coding shown in the example is from 
assembly 2. 

The input area is described in assembly 
2 by the DSECT control section named INAR­
EA. Portions of the input area (i.e •• 
record) that the programmer wishes to work 
with are named in the DSECT control section 
as shown. The assembler instruction USING 
INAREA,3 designates general register 3 as 
the base register to be used in addressing 
the OSECT control section, and that general 
register 3 is assumed to contain the 
address of INAREA. 

Assembly 1, during execution, loads the 
actual beginning address of the input area 
in general register 3. Because the symbols 
used in the OSECT section are defined rela-

I----------~------------r----------------, 1_~~~~ _____ ~-QE~E~~!2g--~-QE~E~gg--------J 
ASMBLY2 CSECT 
BEGIN BALR 

USING 

USING 
CLI 
BE 

ATYPE MVC 
MVC 

CNOP 
WORKA OS 
WORKB OS 

INAREA OSECT 
CNOP 

INCOOE OS 
OS 

INPUTA OS 
INPUTB OS 

2,0 
*,2 

INAREA,3 
INCOOE,C'A' 
ATYPE 

WORKA, INPUTA 
WORKB,INPUTB 

2,4 
H 
F 

0,4 
CLI 
CLI 
H 
F 

I END __________ L ____________ ~ _______________ _ 

30 

tive to the initial statement in the sec­
tion, the address values they represent, 
will, at the time of program execution, be 
the actual storage locations of the input 
area. 

The programmer must ensure that a section 
of code in his program is actually described 
by the dummy section which references it 
i.e., that data is properly aligned in both 
places. The OSECT named INAREA in the pre­
vious example adequately describes the sec­
tion of code introduced into assembly 1, as 
it was aligned on a full word boundary. 
f'urther, WORKA and WORKB will be aligned and 
contiguous to each other in the same way as 
INPUTA and INPUTB are. 

COM -- OEFJ~E BLANK COMMON CONTROL SECTION 

The COM assembler instruction identifies 
and reserves a common area of storage that 
may be referred to by independent modules 
that have been linked and loaded for exe­
cution as one overall prog~am. 

Only one blank common control section 
may be designated in a source module. 
However, more than one COM statement may 
appear within a module. The first identi­
fies the beginning of the blank common 
control section; the rest identify the 
resumption of the section. 

'--

When several modules are loaded, each 
designating a common control section, the 
amount of storage reserved is equal to the C-) 
longest common control section. The form ~ 
is: 

----------T-----------T---------------------, r Name I Opera tion J Operand I 
r-------+---------+--------------·-----~ 
IA I COM I Not used; should I 
I sequence I I not be present I 
Isymbol or I I ~ 
~o~~~:..d_L ________ L _______________ J 

The common area may be broken up into 
subfields through use of the OS and DC 
assembler instructions. Names of subfields 
are defined relative to the beginning of 
the common section. as in the OSECT control 
section. 

It is necessary to establish address­
ability relative to- a named statement with­
in COM since the COM statement itself can­
not have a name. In the following example, 
addressability to the common area of stor­
age is established relative to the named 
statement Xyz. 
r--------~--------------~------------------~ ,~~~~ ____ }---QE~E~~!2g--}-QE§E~gg----------i 

L 
USING 
MVC 

eDM 

8,=A(XYZ) 
XYZ,8 
POQ(16) ,=4C'ABCO' 

XYZ OS 16F 
lpOQ DS 16C 

~--------------~---------------------------



-_"\ No instructions or constants appearing 
\ ) in a common control section are assembled. 
'-- __ ./ Data can only be placed in a common control 

section through execution of the program. 

If the assignment of common storage is 
done in the same manner by each independent 
assembly, reference to a location in common 
by any assembly results in the same loca­
tion being referenced. When the blank 
common control section is assembled the 
initial value of the location counter is set 
to zero. 

SYMBOLIC LINKAGES 

Symbols may be defined in one module and 
referred to in another, thus effecting 
symbolic linkages between independently 
assembled program sections. The linkages 
can be effected only if the assembler is 
able to provide information about the link­
age symbols to the linkage editor, which 
resolves these linkage references. The 
assembler places the necessary information 
in the external symbol dictionary on the 
basis of the linkage symbols identified by, 
e.g., the ENTRY and EXTRN instructions. 
Note that these symbolic linkages are des­
cribed as linkages between independent 
modules; more specifically, they are link­
ages between independently assembled control 
sections. 

In the module where the linkage symbol 
is defined (i.e., used as a name), it must 
also be identified to the Linkage Editor 
and Assembler by means of the ENTRY assem­
bler instruction (unless the symbol is the 
name of a CSECT or START statement). It is 
identified as a symbol that names an entry 
point, which means that another module may 
use that symbol in order to effect a branch 
operation or data reference. The assembler 
places this information in the external 
symbol dictionary. 

Similarly, the module that uses a sym­
bol defined in some other module must 
identify it by the EXTRN or WXTRN assembler 
instruction. Since the definition of the 
symbol appears in another module, the 
assembler arbitrarily assigns a length 
attribute of 1 and a value of O. The assem­
bler places this information in the external 
symbol dictionary. 

Another way to obtain symbolic linkages 
is by using the V-type address constant. 
The subsection "Data Definition Instructions" 
in Section 5 contains the details pertinent 
to writing a V-type address constant. It 
is sufficient here to note that this con­
stant may be considered an indirect linkage 
point. It is created from an externally 
defined symbol, but that symbol does not 

Page of GC24-3414-7 
Revised August 21, 1970 
By TNL GN33-8087 

have to be identified by an EXTRN or WXTRN 
statement. The V-type address constant is 
intended to be used for external branch 
references (i.e., for effecting branches to 
other programs). Therefore, it should not 
be used for external data references (i.e., 
for referring to data in other modules) • 

ENTRY -- IDENTIFY ENTRY-POINT SYMBOL 

The ENTRY instruction identifies linkage 
symbols that are defined in the module 
where the ENTRY instruction appears. 
These symbols can be referred to in other 
modules. 

r--------~--------~--------------------, 
I Name IOperation I Operand I 

G--------+-----------+---------------------~ 
I
A I ENTRY lOne or more reloca- I 
sequence I Itable symbols, I 

Isymbol orl Iseparated by I 
Inot used I ,commas, that also , 
I , I appear as state- I 
I I 'ment names I L ________ ~ ___________ ~ ____________________ J 

A source module may contain a maximum of 
100 ENTRY symbols. ENTRY symbols which are 
not defined (not appearing as statement 
names), although invalid, will also count 
towards this maximum. 

An ENTRY statement operand may not con­
tain a symbol defined in a dummy section or 
in a blank common control section. An 
ENTRY statement containing a symbol defined 
in an unnamed control section can be pro­
cessed by the assembler, but the DOS/TOS 
Linkage Editor will not process the result­
ing deck. The following example identifies 
the statements named SINE and COSINE as 
entry points to the program. 

r-------T-----------~--------------------, 
I Name I Operation IOperand I 
~-------+-----------+---------------------~ I I ENTRY I SINE, COSINE I L _______ ~ ___________ ~ _____________________ J 

Note: Labels of START and CSECT statements 
are automatically treated as entry-points 
to a module. Thus they need not be identi­
fied by ENTRY statements. 

EXTRN -- IDENTIFY EXTERNAL SYMBOL 

The EXTRN instruction identifies linkage 
symbols used by one source module but identi­
fied in another module. Each external symbol 
must be identified. This includes symbols 

Addressing -- Program Sectioning and Linking 31 



Page of GC24-3414-7 
Revised August 21, 1970 
By TNL GN33-8087 

that refer to control section names. 
The format of the EXTRN statement is: 

r--;~~--T;;~~ti~~-T~~;;;~d---------------l 
L---------+----------+-----------------------~ I A I EXTRN lOne or more relocata- J 
I sequence I Ible symbols, separated I 
I symbol or I J by commas. I 
L.:1°~~~~ __ L ______ .1 _______________ .J 

The symbols in the operand field may not 
appear as names of statements in the module. 
The following example identifies three ex­
ternal symbols that have been used as 
operands in the module but are identified 
in some other module. 

r-------T-----------T---------------------, I Name I operation I Operand I 
~------+-----------+----------------------~ I I EXTRN IRATEBL,PAYCALC I 
I I EXTRN I WITHCALC I L _______ ~ ___________ ~ _____________________ J 

An example that employs the EXTRN 
instruction appears subsequently under 
"Addressing External Control Sections." 

Note 1: A V-type address constant does 
not have to be identified by an EXTRN 
statement. 

Note 2: Only one external symbol may be 
used in an expression. 

Addressing External Control Sections 

A cornmon way for a program to link to an 
external control section is to: 

1. Create a V-type address constant with 
the name of the external symbol. 

2. Load the constant into a general reg­
ister and branch to the control section 
via the register. 

32 

r--------T-----------~-----------, 
I Name I Operation I operand I 
~---------+-----------+-----------------~ 
IMAINPROG ICSECT I I 
I BEGIN I BALR J 2, 0 I 
I I USING 1*,2 I 
J J I I 
I I I I 
I I L 13, VCON I 
I 1 BALR (1, 3 I 
I 1 I l 
I I I I 
1 VCON I DC J V (SINE) I 
1 I END I BEGIN I L-----____ ~ _________ ~ __________________ J 

The combined number of control sections 
and dummy sections plus the number of 
unique symbols in EXTRN and WXTRN statements 
and V-type address constants may not exceed 
255. 
(EXTRN and WXTRN statements are discussed 
in this section; V-typ~ constants in Section 
5 under DC--Define Constant.) If the same 
symbol appears in a V-type address constant 
and in the name entry of a CSECT or DSECT 
statement, it is counted as two symbols. 

For example, to link to the control 
section named SINE, the preceding coding 
might be used. 

An external symbol naming data may be 
referred to as follows: 

1. Identify the external symbol with the 
EXTRN instruction, and create an 
address constant from the symbol. 

2. Load the constant into a general reg­
ister, and use the register for base 
addressing. 

For example, to use an area named 
RATETBL. which is in another control sec­
tion, the following coding might be used: 

r---------~-----------T-----------------, I Name lOperation I Operand I 
r----------+-----------+__-----------------~ 
IMAINPROG ICSECT I I 
IBEGIN IBALR 12,0 1 
1 I USING 1*.2 I 
I I I I 
1 I I I 
I I EXTRN I RATETBL I 
I 1 1 I 
I I I I 
I IL 14 ,RATEADDR I 
I I USING lRATETBL,4 I 
I IA 13,RATETBL I 
I 1 I I 
1 I I I 
IRATEAODR IDC I A (RATETBL) I 
I I END I BEGIN I L __________ ~ __________ ~ ___________________ J 

~ 
I '_ . ./ 



o 

WXTRN -- Identify Weak External Symbol 
(DOS Assembler 14K D only) 

The WXTRN statement has the same format 
and almost the same use as the EXTRN state­
ment. The only difference is that WXTRN 
suppresses the AUTOLINK function of the 
linkage editor for the symbols identified 
by it. Its format is: 

1-------------------------------------------, 
1 Name I Operation I Operand I 

I----------r-------------,------------------I I I I I A 1 WXTRN lone or more re- I 
I sequence I I locatable I 
: symbol or I I symbols, sep- I 
I not used ! ! arated by commas I 
-------------------------------------------

Page of GC24-3414-7 
Revised August 21, 1970 
By TNL GN33-8087 

The AUTOLINK (automatic library look-
up) function searches the relocatable li­
brary for any unresolved external references. 
If it finds the external reference, it 
includes the module where the reference 
appears in the phase produced by the linkage 
editor. 

For more detailed information on 
AUTOLINK refer to IBM System/360 Disk 
Operating System: System Control and System 
Service Programs (GC24-5036). 

Note: AUTOLINK will be suppressed for a 
symbol defined both in a V-type address 
constant and in a WXTRN statement. 

Addressing -- Program Sectioning and Linking 32.1 





o 

This section discusses the coding of the 
machine-instructions represented in the 
assembler language. The reader is reminded 
that the functions of each machine­
instruction are discussed in the principles 
of operation manual (see Preface). 

MACHINE-INSTRUCTION STATEMENTS 

Machine-instructions may be represented 
symbolically as assembler language 
statements. The symbolic format of each 
varies according to the actual machine­
instruction format, of Which there are 
five: RR, RX, RS, SI, and SSe Within each 
basic format, further variations are 
possible. 

The symbolic format of a machine­
instruction is similar to, but does not 
duplicate, its actual format. Appendix C 
illustrates machine format for the five 
classes of instructions. A mnemonic opera­
tion code is written in the operation 
field, and one or more operands are written 
in the operand field. Comments may be 
appended to a machine-instruction statement 
as previously explained in section 1. 

Any machine-instruction statement may be 
named by a symbol, which other assembler 
statements can use as an operand. The 
value attribute of the symbol is the 
address of the leftmost byte assigned to 
the assembled instruction. The length 
attribute of the symbol depends on the 
basic instruction format, as follows: 

Basic Format 
RR 
RX 
RS 
SI 
SS 

Length Attribute 
2 
4 
4 
4 
6 

Instruction Alignment and Checking 

All machine-instructions are aligned 
automatically by the assembler on half-word 
boundaries. If any statement that causes 
information to be assembled requires align­
ment, the bytes skipped are filled with 
hexadecimal zeros. All expressions that 
specify storage addresses are checked to 
insure that they refer to appropriate 
boundaries for the instructions in which 

SECTION 4: MACHINE-INSTRUCTIONS 

they are used. Register numbers are also 
checked to make sure that they specify the 
proper registers, as follows: 

1. Floating-point instructions must spec­
ify floating-point registers 0, 2, 4, 
or 6. 

2. Double-shift, full-word multiply, and 
divide instructions must specify an 
even-numbered general register in the 
first operand. 

OPERAND FIELDS AND SUBFIELDS 

Some symbolic operands are written as a 
single field and other operands are written 
as a field followed by one or two sub­
fields. For example, addresses consist' of 
the contents of a base register and a dis­
placement. An operand that specifies a 
base and displacement is written as a,dis­
placement field followed by a base register 
subfield, as follows: 40(5). In the RX 
format, both an index register subfield and 
a base register subfield are written as 
follows: 40(3,5). In the SS format, both a 
length subfield and a base register sub­
field are written as follows: 40(21,5). 

Appendix C shows two types of addressing 
formats for RX, RS, SI, and SS instruc­
tions. In each case, the first type shows 
the method of specifying an address expli­
citly, as a base register and displacement. 
The second type indicates how to specify an 
implied address as an expression. 

For example, a load multiple instruction 
(RS format) may have either of the follow­
ing symbolic operands: 

Rl.R3, 02 (B2) 
R1,R3,S2 

explicit address 
implied address 

Whereas D2 and B2 must be represented by 
absolute expressions, S2 may be represented 
either by a re1.ocatable or an absolute 
express ion. 

In order to use implied addresses, the 
following rules must be observed: 

1. The base register assembler instruc­
tions (USING and DROP) must be used. 

2. An explicit base register designation 
must not accompany the implied 
address. 

Machine-Instructions 33 



For example, assume that FIELD is a 
relocatable symbol, which has been assigned 
a value of 7400. Assume also that the 
assembler has been notified (by a USING 
instruction) that general register 12 cur­
rently contains a relocatable value of 4096 
and is available as a base register. The 
following example shows a machine­
instruction statement as it would be 
written in assembler language and as it 
would be assembled. Note that the value of 
02 is the difference between 7400 and 4096 
and that X2 is assembled as zero, since it 
was omitted. The assembled instruction is 
presented in hexadecimal: 

Assembler statement: 

ST 4,FIELD 

Assembled instruction: 

Op.Code Rl X2 B2 D2 
50 4 0 C CE8 

An address may be specified explicitly 
as a base register and displacement (and 
index register for RX instructions) by the 
formats shown in the first column of Table 
4-1. The address may be specified as an 
implied address by the formats shown in the 
second column. Observe that the two stor­
age addresses required by the SS instruc­
tions are presented separately: an implied 
address may be used for one while an expli­
cit address is used for the other. 

Table 4-1. Details of Address Specifi-
cation 

r------T----------------r-----------------, 
I Type IExplicit Addressl Implied Address I 
r------+----------------t-----------------~ 
I RX 102 (X2, B2) I S2 (X2) I 
I 102(,82) I S2 I 
I RS 102 (B2) I S2 I 
I SI ID1CR1) I Sl I 
I SS ID1(Ll,Bl) I Sl(Ll) I 
I ID1(L,Bl) I Sl(L) 1 
I ID2(L2,B2) I S2(L2) I L ______ ~ _______________ ~ _________________ J 

A comma must be written to separate 
operands. Parentheses must be written to 
enclose a subfield or subfields, and a 
comma must be written to separate two sub­
fields witl).in parentheses. When parenthe­
ses are used to enclose one suhfield, and 
the subfield is omitted, the parentheses 
must be omitted. In the case of two sub­
fields that are separated by a comma and 
enclosed by parentheses, the following 
rules apply: 

1. If both subfields are omitted, the 
separating comma and the parentheses 
must also be omitted. 

34 

2. 

3. 

L 
L 

2,48(4,5) 
2,FIELD (implied address) 

If the first subfield in the sequence 
is omitted, the comma that separates 
it from the second subfield is writ­
ten. The parentheses must also be 
written. 

MVC 32(l6,5),FIELD2 
MVC 32(,5) ,FIELD2 (implied length) 

If the second subfield in the sequence 
is omitted, the comma that separates 
it from the first subfield must be 
omitted. The parentheses must be 
written. 

MVC 32(16,5),FIELD2 
MVC FIELD1(16),FIELD2 (implied 

address) 

Fields and subfields in a symbolic oper­
and may be represented either by absolute 
or by relocatable expressions, depending on 
what the field requires. (An expression 
has been defined as consisting of one term 
or a series of arithmetically combined 
terms.) Refer to Appendix C for a detailed 
description of field requirements. 

Note: Blanks may not appear in an oper­
and unless provided by a character self­
defining term or a character literal. 
ThUS, blanks may not intervene between 
fields and the comma separators, between 
parentheses and fields, etc. 

LENGTHS -- EXPLICIT AND IMPLIED 

The length field in SS instructions can 
be explicit or implied. To imply a length, 
the programmer omits a length field from 
the operand. The omission indicates that 
the length field is either of the 
following: 

1. The length attribute of the expression 
specifying the displacement, if an, 
explicit base and displacement have 
been written. . 

2. The length attribute of the expression 
specifying the effective address, if 
the base and displacement have been 
implied. 

In either case~ the length attribute for 
an expression is the length of the leftmost 
term in the expression. The length attri­
bute of asterisk <*) is equal to the length 
of the instruction in which it appears, 
except that in an EQU to * statement, the 
length attribute is 1. 



C"" 
I 

By contrast, an eXplicit length is writ­
ten by the programmer in the operand as an 
absolute expression. The explicit length 
overrides any implied length. 

Whether the' length is explicit or 
implied, it is always an effective length. 
The value inserted into the length field of 
the assembled instruction is one;· less than 
the effective length in the machine­
instruction statement. 

Note: If a length field of zero is 
desired, the length may be stated as zero 
nr one. 

To summarize, the length required in an 
SS instruction may be specified explicitly 
by the formats shown in the first column of 
Table 4-2 or may be implied by the formats 
shown in the second column. Observe that 
the two lengths required in one of the 5S 
instruction formats are presented separate­
ly. An implied length may be used for one 
while an explicit length is used for the 
other. 

Table 4-2. Details of Length Specification 
in SS Instructions 

r-----------------~--------------------, 
\ Explicit Length \ Implied Length I 
t---------------t--------------i 
I D1(L1,B1} I D1 (,B1) 1 
I Sl(L1) I 51 I 
\ D1(L,B1) \ 01 (,B1) I 
\ 51(L) \ 51 I 
I D2(L2,B2) \ 02(,B2) I 
I S2(L2) I 52 I L _________________ ~ ______________________ J 

MACHINE-INSTRUCTION MNEMONIC CODES 

The mnemonic operation codes (shown in 
Appendix D ) are designed to be easily 
remembered codes that indicate the func­
tions of the instructions. The normal 
format of the code is shown below; the 
items in brackets are not necessarily pre­
sent in all codes: 

Verb [Modifier] (Data Type] (Machine Format1 

The verb. which is usually one or two 
characters, specifies the function. For 
example, A represents Add', and MV rep­
resents Move. The function may be further 
defined by a modifier. For example, the 
modifier L indicates a logical function, as 
in AL.for Add LOgical and MV is modified by 
C (MVC) to indicate Move Characters. 

Mnemonic codes for functions involving 
data usually indicate the data types, by 

letters that correspond to those for the 
data types in the DC assembler instruction 
(see Section 5). Furthermo~e, letters U 
and W have been added to indicate short and 
long, unnormalized floating-point opera­
tions, respectively. For example, AE indi­
cates Add Normalized Short, whereas AU 
indicates Add Unnormalized Short. Where 
applicable, full-word fixed-point data is 
implied if the data type is omitted. 

The letters R and I are added to the 
codes to indicate, respectively, RR and SI 
machine instruction formats. ThUS, AER 
indicates Add Normalized Short in the RR 
format. Functions involving character and 
decimal data types imply the S5 format. 

,~. 

MACHINE-INSTRUCTION EXAMPLES 

The examples that follow are grouped 
according to machine-instruction format. 
They illustrate the various symbolic oper­
and formats. All symbols employed in the 
examples must be assumed to be defined 
elsewhere in the same assembly. All sym­
bols that specify register numbers and 
lengths must be assumed to be equated else­
where to absolute values. 

Implied addressing, control section 
addressing, and the function of the U5ING 
assembler instruction are not considered 
here. For discussion of these considera­
tions and for examples of coding sequences 
that illustrate them, refer to Section 3, 
Program Sectioning and Linking, and ~ 
Register Instructions. 

RR Format 

r--------T-----------T-------------------, 
I Name IOperation I Operand I 
r-------+-------t------------------~ 
\ ALPHAl 1 LR 11, 2 I 
IALPHA2 ILR IREG1,REG2 I 
I BETA \5PM 115 1 
lGAMMA! ISVC 1250 I 
\GAMMA2 \5VC \ TEN \ L-______ ~ __________ ~ ____________________ J 

The operands of ALPHA1, BETA, and GAMMAl 
are decimal self-defining values, which are 
categorized as absolute expressions. The 
operands of ALPHA2 and GAMMA2 are symbols 
that are equated elsewhere to absolute 
values. 

Machine-Instructions 35 



RX Format 

..----~--------,.-----------------, 
I Name I Operation I Operand I 
I I I 1 
r-----+------+-----------~ 
1 ALP HAl 1 L 11 r 39 ( 4 , 10) 1 
IALPHA2 I L JREG1,39(4,TEN) I 
I BETAl I L 12, ZETA(4) I 
IBETA2 IL JREG2 r ZETA(REG4) 1 
IGAMMA1 JL 12rZETA I 
I GAMMA2 ILl REG2 , ZETA 1 
1 GAMMA3 I L 12, =F'1000' 1 
I LAMBDAl 1 L 1 3. 20 ( , 5) I L-_____ ~_____ ~ ____________ J 

Both ALPHA instructions specify explicit 
addresses; REGl and TEN are absolute sym­
bols. Both BETA instructions specify 
implied addresses, and both use index reg­
isters. Indexing is omitted from the GAMMA 
instructions. G~ and GAMMA2 specify 
implied addresses. The second operand of 
GAMMA3 is a literal. LAMBDAl specifies no 
indexing. 

RS Format 

r-------T--------~-----------------, 
I Name I Operation I Operand I 
r----+--------+-------------------~ 
IALPHA1 IBXH 11 r 2 r 20(14) I 
I ALPHA 2 IBXH IREG1,RE~2,20(REGD) I 
IALPHA3 IBXH IREG1.REG2,ZETA I 
I ALPHA 4 ISLL IREG2,1S I 
1 ALPHAS I SLL 1 REG2, 0(15) I L _______ ~---______ ~ ____________________ J 

Whereas ALPHAl and ALPHA2 specify ex­
plicit addresses, ALPHA3 specifies an 
implied address. ALPHA4 is a shift 
instruction shifting the contents of REG2 
left 15 bit positions. ALPHAS is a shift 
instruction shifting the contents of REG2 
left by the value contained in general 
register 15. . 

36 

SI Format 

..------~--------~--------------------, 
I Name I Operation 1 Operand I 
r--------t-------t-----------------~ . 
IALPHAl ICLI 140(9),X'40' I 
IALPHA2 ICLI 140(REG9),TEN 1 
IBETAl ICLI I ZETA, TEN I 
I BETA2 I CLI I ZETA, C' A' I 
IGAMMA! ISIO 140(9) I 
I GAMMA2 I SIO 10(9) I 
I GAMMA 3 ISIO 140(0) I 
IGAMMA4 ISIO I ZETA I L _______ ~ _________ ~ __________________ J 

The ALPHA instructions and GAMMAl-GAMMA3 
specify explicit addresses, whereas the 
BETA instructions and GAMMA4 specify 
implied addresses. GAMMA2 specifies a 
displacement of zero. GAMMA3 does not 
specify a base register. 

SS Format 

..-------T--------T----------------------, 
IName . 10perationioperand I 
r------+-------t-----------------~ 
IALPHA! lAP 140(9,S),30(6,7) I 
IALPHA2 I AP 140 (NINE, REGS) ,30 (L6, 7) 1 
IALPHA3 lAP IFIELD2,FIELDl I 
IALPHA4 lAP IFIELD2(9),FIELOl(6) I 
I BETA lAP IFIELD2(9),FIELDl I 
IGAMMAl IMVC 140(9,S),30(7) I 
IGAMMA2 IMVC 140(NINE,REGS),DEC(7) I 
IG~ IMVC I FIELD2,FIELDl I 
IGAMMA4 IMVC IFIELD2(9),FIELDl I L-_____ ~ _________ ~ __________________ J 

ALPHA!, ALPHA2, GAMMAl, and GAMMA2 spec­
ify explicit lengths and addresses. ALPHA3 
and GAMMA3 specify both implied length and 
implied addresses. ALPHA4 and GAMMA4 spec­
ify explicit length and implied addresses. 
BETA specifies an explicit length for 
FIEID2 and an implied length for FIELDl; 
both addresses are implied. 

EXTENDED MNEMONIC CODES 

For the convenience of the programmer, the 
assembler provides extended mnemonic codes, 
which allow conditional branches to be 
specified mnemonically as well as through 
the use of the BC machine-instruction. 
These extended mnemonic codes specify both 
the machine branch instruction and the 
condition on which the branch is to occur. 
The codes are not part of the universal set 
of machine-instructions, but are translated 

(~ 

..... _., .. 



o 

r---------------------------------------------------------------------------------------, IExtended Code Meaning Machine-Instruction I 

IB D2(X2,B2) Branch Unconditional BC 15,D2(X2,B2) I 
IBR R2 Branch Unconditional (RR format) BCR 15,R2 I 
INOP D2(X2,B2) No Operation BC 0,D2(X2,B2) I 
INOPR R2 No Operation (RR format) BCR 0,R2 I 
1 I 
1 Used After Compare Instructions 1 

IBH D2(X2,B2) Branch on High BC 2,D2(X2,B2) I 
lBL D2(X2,B2) Branch on Low BC 4,D2(X2,B2) I 
IBE D2(X2,B2) Branch on Equal BC B,D2(X2,B2) 1 
IBNH D2(X2,B2) Branch on Not High BC 13,D2(X2,B2) I 
IBNL D2(X2,B2) Branch on Not Low BC 11,D2(X2,B2) 1 
IBNE D2(X2,B2) Branch on Not Equal BC 7,D2(X2,B2) 1 
I I 
I Used After Arithmetic Instructions I 

lBO D2(X2,B2) Branch on Overflow BC 1,D2(X2,B2) I 
IBP D2(X2,B2) Branch on Plus BC 2,D2(X2,B2) I 
IBM D2(X2,B2) Branch on Minus BC 4,D2(X2,B2) I 
IBZ D2(X2,B2) Branch on Zero BC B,D2(X2,B2) I 
IBNP D2(X2,B2) Branch on Not Plus BC 13,D2(X2,B2) I 
IBNM D2(X2,B2) Branch on Not Minus BC 11,D2(X2,B2) I 
IBNZ D2(X2,B2) Branch on Not Zero BC 7,D2(X2,B2) I 
I I 
\ Used After Test Under Mask Instructions I 

\BO D2(X2,B2) Branch if Ones BC 1,D2(X2,B2) I 
IBM D2(X2,B2) Branch if Mixed BC 4,D2(X2,B2) I 
IBZ D2(X2,B2) Branch if Zeros BC B,D2(X2,B2) I 
IBNO D2(X2,B2) Branch if Not Ones BC 14,D2(X2,B2) I L _______________________________________________________________________________________ J 

Figure 4-1. Extended Mnemonic Codes 

by the assembler into the corresponding 
operation and condition combinations. 

The allowable extended mnemonic codes 
and their operand formats are shown in 
Figure 4-1, together with their machine­
instruction equivalents. Unless otherwise 
noted, all extended mnemonics shown are for 
instructions in the RX format. Note that 
the only difference between the operand 
fields of the extended mnemonics and those 
of their machine-instruction equivalents is 
the absence of the R1 field and the comma 
that separates it from the rest of the 
operand field. The extended mnemonic list, 
like the machine-instruction list, shows 
explicit address formats only. Each 
address can also be specified as an implied 
address. 

In the following examples, which illus­
trate the use of extended mnemonics, it is 
to be assumed that the symbol GO is defined 
elsewhere in the program. 

r------.-----------T----------------------, 
\ Name I Operation \Operand \ 
r------+-----------+----------------------~ 
\ I B 140 (3,6) \ 
\ 1 B 1 40 ( , 6) 1 
I 1 BL \ GO ( 3 ) I 
I IBL IGO I 
1 IBR 14 I 
L _____ L~~ ______ tG~~_) _____________ J 

The first two instructions specify an 
unconditional branch to an explicit 
address. The address in the first case is 
the sum of the contents of base register 6, 
the contents of index register 3, and the 
displacement 40; the address in the second 
instruction is not indexed. The third 
instruction specifies a branch on low to 
the address implied by GO as indexed by the . 
contents of index register 3; the fourth 
instruction does not specify an index reg­
ister. The next instruction is an uncondi­
tional branch to the address contained in 
register 4. The last instruction is a 
"no operation". It will not branch under 
any condition because the mask field is 
zero. 

Machine-Instructions 37 



Page of GC24-3414-7 
Revised August 21, 1970 
By TNL GN33-8087 

SECTION 5: ASSEMBLER INSTRUCTION STATEMENTS 

Just as machine instructions are used to 
request the computer to perform a sequence 
of operations dUring program execution 
time, so assembler instructions are 
requests to the assembler to perform cer­
tain operations during the assembly. 
Assembler-instruction statements, in 
contrast to machine-instruction statements, 
do not always cause machine-instructions to 
be included in the assembled program. 
Some. such as OS and DC. generate no 
instructions but do cause storage areas to 
be set aside for constants and other data. 
others, such as EQU and SPACE, are effec­
tive only at assembly time; they generate 
nothing in the assembled program and have 
no effect on the Location Counter. 

The following is a list of all the 
assembler instructions. 

Symbol Definition Instruction 
EQU - Equate Symbol 

Data Definition Instructions 
DC - Define constant 
OS - Define Storage 
CCW - Define Channel Command Word 

• Program Sectioning and Linking Instructions 

START - Start Assembly 
CSECT - Identify Control Section 
DSECT - Identify Dummy Section 
ENTRY - Identify Entry-Point Symbol 
EXTRN - Identify External Symbol 
WXTRN - Identify Weak External Symbol 
COM - Identify Blank Common Control 

• Base Register Instructions 
USING - Use Base Address Register 
DROP - Drop Base Address Register 

Listing Control Instructions 
TITLE - Identify Assembly output 
EJECT - Start New Page 
SPACE - space Listing 
PRINT - Print Optional Data 

Program Control Instructions 
ICTL - Input Format Control 
ISEQ - Input Sequence Checking 
ORG - Set Location Counter 
LTORG - Begin Literal Pool 
CNOP - Conditional No Operation 
COpy - Copy Predefined Source Coding 
END - End Assembly 
PUNCH - Punch a Card 
REPRO - Reproduce Following Card 

* Discussed in Section 3. 

38 

SYMBOL DEFINITION INSTRUCTION 

EQU -- EQUATE SYMBOL 

The EQU instruction is used to define a 
symbol by assigning to it the length, 
value, and relocatability attributes of an 
expression in the operand field. The typi­
cal form of the EQU instruction statement 
is as follows: 

r----------~----------~----------------, 
J Name I Operation I Operand I 
~---""7----+--------+------------~ JA var~able IEQU IAn expression I 
Isymbol or ~ I f 
Ian ordinaryl I I 
~~~~~1 ____ J _________ 1 ____________ J 

The expression in the operand field may 
be absolute or relocatable. Any symbols 
appearing in the expression must be pre­
viously defined • 

The symbol in the name field is given 
the same attributes as the expression in 
the operand field. The length attribute of 
the symbol is that of the leftmost (or 
only> term of the expression. When that 
term is * or a self-defining term, the 
length attribute is 1. The value attribute 
of the symbol is the value of the expres­
sion. 

The EQU instruction is the means of 
equating symbols to register numbers, 
immediate data, and other arbitrary values. 
The following examples illustrate how this 
might be done: 

r------~---------T---------------------, I Name IOperation iOperand I 
t-----+-------+---------------~ 
IREG2 IEQU 12 (general register) I 
I TEST IEQU )X'3F'(imrnediate data) I l-_____ ~ ________ ---i _____________________ J 

To reduce programming time, the program­
mer can equate symbols to frequently used 
expressions and then use the symbols as 
operands in place of the expressions. 
Thus, in the statement 

C) 



~' 

r-----~----------~--------------------, 
I Name loperation I Operand , 
~-----+------+- ---- --~ 
I I I I 
IFIELD IEQU IALPHA-BETA+GAMMA I 
L---__ --L--________ L- ---________ J 

FIELD is defined as ALPHA-BETA+GAMMA and 
may be used in place of it. Note, however, 
that ALPHA, BETA, and GAMMk must all be 
previously defined. If the final result of 
the expression is negative, the low order 
24 bits of the 2s complement is used. 

DATA DEFINITION INSTRUCTIONS 

There are three data definition instruction 
statements: Define Constant (DC), Define 
Storage (DS), and Define Channel Command 
Word (CCW). 

These statements are used to enter data 
constants into storage, to define and re­
serve areas of storage, and to specify the 
contents of channel command words. The 
statements may be narned by symbols so that 
other program statements can refer to the 
fields generated from them. The discussion 
of the DC instruction is far more extensive 
than that of the DS .instruction, because 
the DS instruction is written in the same 
format as the DC instruction and may speci­
fy some or all of the information that the 
DC instruction provides. only the function 
and treatment of the statements vary. For 
this reason, the DC instruction is present­
ed first and discussed in more detail than 
the DS instruction. 

DC -- DEFINE CONSTANT 

The DC instruction is used to provide con­
stant data in storage. It may specify one 
constant or a series of constants, thereby 
relieving the programmer of the necessity 
to write a separate data definition state­
ment for each constant desired. FUrther­
more, a variety of constants may be speci­
fied: fixed-point, floating-point, decimal, 
hexadecimal, character, and storage 
addresses. (Data constants are generally 
called constants unless they are created 
from storage addresses, in which case they 
are called address constants.) The typical 
form of the DC instruction statement is as 
follow.s: 

r---------T-----------T-------------------j 
: Name I Operation I Operand I 

,---------t-----------f-------------------J 

I Any I DC lOne operand (D as- : 
I symbol or: I sembler) or .one or I 
I not used I I more operands (F I 
: I I assembler) in the : 
I I : format described I 
I I I below, each separ- I 
: I I ated by a comma. I ----------L--------_______________________ J 

Each operand consists of four subfields; 
the first three describe the constant, and 
the fourth subfield provides the constant 
or constants. The first and third sub­
fields may be omitted, but the second and 
fourth must be specified. Note that more 
than one constant may be specified in the 
fourth subfield for most types of con-

·stants. Each constant so specified must be 
of the same type; the descriptive subfields 
that precede the constants apply to all of 
them. No blanks may occur within any of 
the subfields (unless provided as charac­
ters in a character constant or a character 
self-defining term), nor may they occur 
between the subfields of an operand. Sim­
ilarly, blanks may not occur between 
operands and the commas that separate them 
when mUltiple operands are being specified. 

The subfields of the DC operand are 
written in the following sequence: 

r------ ----------------, 
I Subfield I 
I 1 2 3 4 I 
t-----,.----,.-------T---------------~ 
IDUpli-ITypeIModifierslconstant(s) I 
Icationl I I I 
I Factor I I I I L-_____ ~ ____ ~-____ ~ _________________ J 

The symbol that names the DC instruction 
is the name of the constant (or first con­
stant if the instruction specifies more 
than one). Relative addressing (e.g., 
SYMBOL+2) may be used to address the var­
ious constants if more than one has been 
specified, because the number of bytes 
allocated to each constant can be deter­
mined. 

The value attribute of the symbol naming 
the DC instruction is the address of the 
leftmost byte (after any necessary 
alignment) ~f the first, or only, constant. 
The length attribute depends on two thingS: 
the type of constant being defined and the 
presence of a length specification. 
Implied lengths are assumed for the various 
constant types in the absence of a length 
specification. If more than one constant 
is defined, the length attribute is the 
length in bytes (specified or implied) of 
the first constant. 

Assembler Instruction Statements 39 



Boundary alignment also varies according 
to the type of constant being specified and 
the presence of a length specification. 
Some constant types are only aligned to a 
byte boundary, but the DS instruction can 
be used to force any type of word boundary 
alignment for them. This is explained 
under "DS -- Define Storage." Other con­
stants are aligned at various word boundar­
ies (half, full, or double) in the absence 
of a length specification. If length is 
specified, no boundary alignment occurs for 
such constants. 

Bytes that must be skipped in order to 
align the field at the proper boundary are 
not considered to be part of the constant. 
In other words, the Location Counter is 
incremented to reflect the proper boundary 
(if any incrementing is necessary) before 
the address value is established. Thus, 
the symbol naming the constant will not 
receive a value attribute that is the loca­
tion of a skipped byte. 

Any bytes skipped in aligning statements 
that do not cause information to be assem­
bled are not zeroed. Thus bytes skipped to 
align a DC statement are zeroed, and bytes 
skipped to align a DS statement are not 
zeroed. 

Appendix F summarizes, in chart form, 
the information concerning constants that 
is presented in this section. 

LITERAL DEFINITIONS: The reader is remind­
ed that the discussion of literals as 
machine-instruction operands (in Section 2) 
referred him to the description of the DC 
operand for the method of writing a literal 
operand. All subsequent operand specifi­
cations are applicable to writing literals, 
the only differences being: 

1. The literal is preceded by an = sign. 
2. Unsigned decimal values must be used 

to express the duplication factor and 
length modifier values. 

3. The duplica tion f actor may not be 
zero. 

4. S-type address constants may not be 
specified. 

5. Signed or unsigned decimal values must 
be used for exponent and scale modifi­
er values. 

Examples of literals appear throughout 
the balance of the DC instruction discus­
sion. 

Operand Subfield 1: Duplication Factor 

The duplication 'factor may be omitted. If 
specified, it causes the constant(s) to be 
generated the number of times indicated by 

40 

the factor. The factor may be specified 
either by an Unsigned decimal self-defining 
term or by a positive absolute expression 
that is enclosed by parentheses. The 
duplication factor is applied after the 
constant is assembled. All symbols in the 
expression must be previously defined~ 

Note that a duplication factor of zero 
is permitted except in a literal and 
achieves the same result as it would in a 
os instruction. A DC instruction with a 
zero duplication factor will not produce 
control dictionary entries. See "Forcing 
Alignment" under "OS -- Define Storage." 

Note: If duplication is specified for an 
address constant containing a Location 
Counter reference, the value of the Loca­
tion Counter used in each duplication is 
incremented by the length of the operand. 

Operand Subfield 2: Type 

The type subfield defines the type of con­
stant being specified. From the type 
specification, the assembler determines how 
it is to interpret the constant and trans­
late it into the appropriate machine for­
mat. The type is specified by a single­
letter code as shown in Figure 5-1. 

Further information about these 
constants is provided'in the discussion of 
the constants themselves under "Operand 
Sribfield 4: Constant." 

Operand Subfield 3: Modifiers 

Modifiers describe the length in bytes 
desired for a constant (in contrast to an . 
implied length), and the scaling and expo­
nent for the constant. If multiple modif·i­
ers are written, they must appear in this 
sequence: length, scale, exponent. Each is 
written and used as described in the fol­
lowing text. 

LENGTH MODIFIER: This is written as Ln, 
where n is either an unsigned decimal self­
defining term or a positive absolute 
expression enclosed by parentheses. Any 
symbols in the expression must be previous­
ly defined. The value of n represents the 
number of bytes of storage that are assem­
bled for the constant. The maximum value 
permitted for the length modifiers supplied 
for the various types of constants is sum­
marized in Appendix F. This table also 
indicates the implied length for each type 
of constant; the implied length is used 
unless a length modifier is present. A 
length mOdifier may be specified for any 
type of constant. However, no boundary 
alignment will be provided when a length 
modifier is given. 

,/--" 
I' 
',--.. _ .. / 



r------------------------------------------------, 
,Code Type of Constant Machine Format \ 

\ C Character 8-bit code for each character , 
I X Hexadecimal 4-bit code for each hexadecimal digit ,I 
, B Binary binary format 
, F Fixed-point Signed, fixed-point binary format; ,I 

, normally a full word 
, H Fixed-point Signed, fixed-point binary format; " 
, normally a half wOrd 
I E Floating-point Short floating-point format; II 
, normally a full word 
, D Floating-point Long floating-point format; " 
I normally a double word , 
I P Decimal Packed decimal format , 
, Z Decimal Zoned decimal format 
, A Address Value of address; normally a full word , 
I Y Address Value of address; normally a half word " 
, S Address Base register and displacement value; I 
, a half word 
I V Address Space reserved for external , 
, symbol addresses; each , 
I address normally a full word. I l _______________________________________________________________________________________ J 

Figure 5-1. Type Codes for Constants 

Bit-Length Specification (F assembler only) : 
The length of a constant, in bits, is spec­
ified by L.n, where n is specified as stated 
above and represents the number of bits in 
storage into which the constant is to be 
assembled. The value of n may exceed eight 
and is interpreted to mean an integral num-

bIY::ddin:rte by1te 

OOOlOOlOboOllOOO 
~ 

579 fill 

"'--'. ber of bytes plus so many bits. For exam- Figure 5-2. Bit-Length Specification 
(Single Constant) 

I pIe, L.20 is interpreted as a length of two 
~. bytes plus four bits. 

o 

Assembly of the first or only constant 
with bit-length specification starts on a 
byte boundary. The constant is placed in 
the high or low ,order end of the field de­
pending on the type of ,constant being 
specified. The constant is padded or trun­
cated to fit the field. If the assembled 
length does not leave the location counter 
set at a byte boundary, and another bit 
length constant does not immediately follow 
in the same statement, the remainder of the 
last byte used is filled with zeros. This 
leaves the location counter set at the next 
byte boundary. Figure 5-2 shows a fixed­
point constant with a specified bit-length 
of 13, as coded, and as it would appear in 
storage. Note that the constant has been 
padded on the left to bring it to its 
designated l3-bit length. 

As coded: 

,------T-----------T-----------7----------, 
I Name I Operation I Operand I 
I I I I r------T-----------T----------------------, 
I BLCON I DC I FL . 13 ' 579 ' I L ______ ~ ___________ l ______________________ _ 

In storage: 

The implied length of BLCON is two bytes. 
A reference to BLCON would cause the entire 
two bytes to be referenced. 

When bit-length specification is used in 
association with multiple constants (see 
"Operand Subfield 4: Constant" following), 
each succeeding constant in the list is 
assembled starting at the next available 
bit~ Figure 5-3 illustrates this. 

As coded: 

r------T-----------T----------------------I 
I Name I Operation I Operand I 
I I I I r------T-----------T----------------------. 
I BLMCON I DC I FL . 10 ' 161 , 21 , 57 ' I L ______ ~ ___________ l ______________________ J 

In storage: 

byte byte byte byte byte 

paddingl paddi~g 
0010100001~1 101~1100~00 

161 21 57 fill 

Figure 5-3. Bit-Length Specification 
(Multiple Constants) 

Assembler Instruction Statements 40.1 





The symbol used as a name entry in a DC 
assembler instruction takes on the length 
attribute of the first constant in the 
list; therefore'the implied length of 
BLMCON in Figure 5-3 is two bytes. 

If duplication is specified, filling 
occurs once at the end of the field occu­
pied by the duplicated constant(s) . 

When bit-length specification is used in 
association with mUltiple operands, assem­
bly of the constant(s) in each succeeding 
operand starts at the next available bit. 
Figure 5-4 illustrates this. 

As coded: 

--------T------r--------------------------, 
: IOper- I Operand I 
I Name I ation I I 
I I I I r-------T------r--------------------------, 
I BLMOCONIDC I FL.7'9' ,CL.IO'AB' ,XL.14'C4'1 L _______ 1 ______ L __________________________ ~ 

In storage: 

byte byte byte byte 

padding l J padding . 

~10011 000001 ~110001000 

byte 

L-.....,----J~ \ v ) J. 
9 I A I C 4 (f i 11 

'---v----' 
A plus 
first two 
bits of B 

Figure 5-4. Bit-Length Specification 
(Multiple Operands) 

In Figure 5-4, three different types of 
constants have been specified, one to an 
operand. Note that the character constant 
'AB' which normally would occupy 16 bits is 
truncated on the right to fit the 10-bit 
field designated. Note that filling occurs 
only at the end of the field occupied by 
all the constants. 

SCALE MODIFIER: This modifier is written 
as Sn, where n is either a decimal value or 
an absolute expression enclosed by paren­
theses. Any symbol in the expression must 
be previously defined. The decimal value 
or the parenthesized expression may be 
preceded by a sign; if none is present, a 
plus sign is assumed. The maximum values 
for scale modifiers are summarized in 
Appendix F. 

A scale modifier may be used with fixed­
point (F, H) and floating-point (E, D) 
constants only. It is used to specify the 

amount of internal scaling that is desired, 
as follows. 

Scale Modifier for Fixed-Point Constants: 
the scale modifier specifies the power of 
two by which the constant must be 
multiplied after it has been converted to 
its binary representation. Just as multi­
plication of a decimal number by a power of 
10 causes the decimal point to move, multi­
plication of a binary number by a power of 
two causes the binary point to move. This 
multiplication has the effect of moving the 
binary point away from its assumed position 
in the binary field: the assumed position 
being to the right of the rightmost posi­
tion. 

Thus, the scale modifier indicates ei­
ther of the following: (1) the number of 
binary positions to be occupied by the 
fractional portion of the binary number, or 
(2) the number of binary positions to be 
deleted from the integral portion of the 
binary number. A positive scale of x 
shifts the integral portion of the number x 
binary positions to the left, thereby re­
serving the rightmost x binary positions 
for the fractional portion. A negative 
scale shifts the integral portion of the 
number right, thereby deleting rightmost 
integral positions. If a scale modifier 
does not accompany a fixed-point constant 
containing a fractional part, the fraction­
al part is lost. 

In all cases where positions are lost 
because of scaling (or the lack of 
scaling), rounding occurs in the leftmost 
bit of the lost portion. The rounding is 
reflected in the rightmost position saved. 

Scale Modifier for Floating-Point Con­
stants: Only a positive scale modifier may 
be used with a floating-point constant. It 
indicates the number of hexadecimal posi­
tions that the fraction is to be shifted to 
the right. Note that this shift amount is 
in terms of hexadecimal positions, each of 
which is four binary positions. (A posi­
tive scaling actually indicates that the 
point is to be moved to the left. However, 
a floating-point constant is always con­
verted to a fraction, which is hexadeci­
mally normalized. The point is as~u~d ~o 
be at the left of the leftmost pos1t10n 1n 
the field. Since the point cannot be moved 
left, the fraction is shifted right.> 

ThUS, scaling that is specified for a 
floating-point constant provides an assem­
bled fraction that is unnormalized, i.e., 
contains hexadecimal zeros in the leftmost 
positions of the fraction. When the frac-

Assembler Instruction Statements 41 



tion is shifted, the exponent is adjusted 
accordingly to retain the correct magni­
tude. When hexadecimal positions are lost, 
rounding occurs in the leftmost hexadecimal 
position of the lost portion. The rounding 
is reflected in the rightmost hexadecimal 
position saved. 

EXPONENT MODIFIER: This modifier is writ­
ten as En, where n is either a decimal 
self-defining term or an absolute expres­
sion enclosed by parentheses. Any symbols 
in the expression must be previously 
defined. The decimal value or the paren­
thesized expression may be preceded by a 
sign; if none is present, a plus sign is 
assumed. The maximum values for exponent 
mOdifiers are summarized in Appendix F. 

An exponent modifier may be used with 
fixed-point (F, H) and floating-point (E, 
D) constants only. The modifier denotes 
the power of 10 by which the constant is to 
be multiplied before its conversion to the 

" proper internal format. 

This modifier is not to be confused with 
the exponent of the constant itself, which 
is specified as part of the constant and is 
explained under "Operand Subfield 4: Con­
stant." Both are denoted in the same 
fashion, as En. The exponent modifier 
affects each constant in the operand, 
whereas the exponent written as part of the 
constant only pertains to that constant. 
Thus, a constant may be specified with an 
exponent of +2, and an exponent modifier of 
+5 may precede the constant. In effect, 
the constant ,has an exponent of +7. 

Note that there is a maximum value, both 
positive and negative, listed in Appendix F 
for exponents. This applies to the expo­
nent modifier and to the sum of the expo­
nent modifier and the .exponent specified as 
part of the constant. 

Operand Subfield 4: Constant 

This subfield supplies the constant (or 
constants) described by the subfields that 
precede it. A data constant (all types 
except A,Y,S,and V) is enclosed by apos­
trophes. An address constant (types A, Y, 
S, and V) is enclosed by parentheses. To 
specify two or more constants in the sub­
field, the constants must be separated by 
commas and the entire sequence of constants 
must be enclosed by the appropriate delimi­
ters (i.e., apostrophes or parentheses). 
Thus, the format for specifying the 
constant(s)" is one of the following: 

Single 
Constant 

42 

Multiple 
Constants· 

'constant' 
(constant) 

'constant, ••• ,constant' 
(constant, ••• ,constant) 

• Not permitted for character, hexadecimal, 
and binary constants. 

All constant types except character (C), 
hexadecimal (X), binary (B), packed decimal 
(P), and zoned decimal (Z), are aligned on 
the proper boundary, as shown in Appendix 
F, unless a length modifier is specified. 
In the presence of a length modifier, no 
boundary alignment is performed. If the 
operand specifies more than one constant, 
any necessary alignment applies to the 
first constant only. Thus, for an operand 
that provides five full-word constants, the 
first would be aligned on a full-word 
boundary, and the rest would automatically 
fallon full-word boundaries. 

The total storage requirement of the 
operand is the product of the length times 
the number of constants in the operand 
times the duplication factor (If present) 
plus any bytes skipped for boundary align­
ment. 

If an address constant contains a Loca­
tion Counter reference, the Location Count­
er value that is used is the storage 
address of the first byte the constant will 
occupy. ThUS, if several address constants 
in the same instruction refer to the Loca­
tion Counter, the value of the Location 
Counter varies from constant to constant. 
Similarly, if a single constant is speci­
fied (and it is a Location Counter 
reference) with a duplication factor, the 
constant is duplicated with a varying Loca­
tion Counter value. 

E and H constants are converted as if 
they were D and F, respectively, and then 
shortened. 

The subsequent text describes each of 
the constant types and provides examples. 

Character Constant -- C: Any of the valid 
256 punch combinations may be designated in 
a character constant. Only one character' 
constant may be specified per statement. 

Special consideration must be given to 
representing apostrophes and ampersands as 
characters. Each apostrophe or ampersand 
desired as a character in the constant must 
be represented by a pair of apostrophes or 
ampersands. Only one apostrophe or amper­
sand appears in storage. 

The maximum length of a character con­
stant is 256 bytes. No boundary alignment 
is performed. Each character is translated 
into one byte. Double apostrophes or dou­
ble ampersands count as one character. If 



no length modifier is given, the size in 
bytes of the character constant is equal to 
the number of characters in the constant. 
If a length modifier is provided, the 
result varies as follows: 

1. If the number of characters in the 
constant exceeds the specified length, 
as many rightmost bytes as necessary 
are dropped. 

2. If the number of characters is less 
than the specified length, the excess 
rightmost bytes are filled with 
blanks. 

In the following example, the length 
attribute of FIELD is 12: 

r-------~----------~--------------------, 
I Name 10peration I Operand . I 
r------+----+_-----------~ 
IFIELD IDC IC'TOTAL IS 110' I L-______ ~ __________ ~ ____________________ J 

However, in this next example, the 
length attribute is 15, and three blanks 
appear in storage to the right of the zero: 

r----~-----------T---------------------, 
I Name 10peration I Operand I 
~-----+-------+---------------~ 
IFIELD IDC ICL1S'TOTAL IS 110' I L _____ ~ __________ ~ _____________________ J 

In the next example, the length attri­
bute of FIELD is 12, although 13 characters 
appear in the operand. The two ampersands 
count as only one byte. 

r------~-----------T---------------------, 
I Name IOperation I Operand I 
~------+-------+---------------~ 
IFIELD IDC IC'TOTAL IS &&10' I 
I I I I 
L-.....-_~ _______ ~_ _ _________ J 

Note that in the next example, a length 
of four has been specified, but there are 
five characters in the constant. 

r-------T----------~-------------------, 
I Name I Operation I Operand I 
r------+---------+- -----------~ 
IFIELD IDC 13CL4'ABCDE' I L ______ ~ ___________ ~ ____________________ J 

The generated constant would be: 

~ ABCDABCDABCD 

On the other hand, if the length had 

been specified as six instead of four, the 
generated constant would have been: 

ABCDEABCDE ABCDE 

Note that the same constant could be 
specified as a literal. 

r-------T----------~------------------, 
I Name IOperation IOperand I 
r---+--------+-----------------~ 
I IMVC IAREA(12),=3CL4'ABCDE'1 L--___ ~ __________ ~ _____________________ J 

Hexadecimal constant -- X: A hexadecimal 
constant consists of one or more of the 
hexadecimal digits, which are 0-9 and A-F. 
Only one hexadecimal constant may be speci­
fied per statement. The maximum length of 
a hexadecimal constant is 256 bytes (512 
hexadecimal digits). No word boundary 
alignment is performed. 

constants that contain an even number of 
hexadecimal digits are translated as one 
byte per pair of digits. If an odd number 
of digits is specified, the leftmost byte 
has the leftmost four bits filled with a 
hexadecimal zero, while the rightmost four 
bits contain the odd (first) digit. 

If no length modifier is given, the 
implied length of the constant is half the 
number of hexadecimal digits in the COll­

stant (assuming that a hexadecimal zero is 
added to an odd number of digits). If a 
length modifier is given, the constant is 
handled as follows: 

1. If the number of hexadecimal digit 
pairs exceeds the specified length, 
the necessary leftmost bits (and/or 
bytes) are dropped. 

2. If the number of hexadecimal digit 
pairs is less than the specified 
length, the necessary bits (and/or 
bytes) are added to the left and 
filled with hexadecimal zeros. 

An eight-digit hexadecimal constant 
provides a convenient way to set the bit 
pattern of a full binary word. The con­
stant in the following example would set 
the first and third bytes of a word to l's. 

r------T-----------T---------------------, 
I Name IOperation IOperand I 
r----+----------+----------------~ 
I IDS 10F I 
I TEST IDC IX'FFOOFFOO' I L _____ ~ ________ ~ ____________________ J 

The OS instruction sets the location 
counter to a full word-boundary_ 

Assembler Instruction Statements 43 



The next example uses a hexadecimal 
constant as a literal and inserts is into 
bits 24 through 31 of register 5. 

r-----~-----------~----------------------, 
IName IOperation 'Operand , 
r------+-----------+----------------------i 
I IIC 15,=X' FF' INSERT CHAR. , L-_____ L-__________ ~ ____________________ J 

In the following example, the digit A 
would be dropped, because five hexadecimal 
digits are specified for a length of two 
bytes: 

r----------T----------~-----------------~, 
I Name I operation I Operand ' I 
I--------+----------+-----------------i 
IALPHACON IDC 13XL2'A6F4E' I 
I I I I L __________ i _________ -i __________________ J 

The resulting constant would be 6F4E, 
which would occupy the specified two bytes. 
It would then be duplicated three times, as 
requested by the duplication factor. If it 
had merely been specified as X'A6F4E', the 
resulting constant would have had a hexa­
decimal zero in the leftmost position: 

OA6F4E 

Binary Constant -- B: A binary constant is 
written using l's and O's enclosed in apos­
trophes. only one binary ponstant may be 
specif ied in a statement. "Duplication and 
length may be specified. The maximum 
length of a binary constant is 256 bytes. 

The implied length of a binary constant 
is the number of bytes occupied by the 
constant including any padding necessary. 
padding or truncation takes place on the 
left. The padding bit used is a o. 

The following example shows the coding 
used to designate a binary constant. BCON 
would have a length attribute of one. 

r--------~---------~--------------------, I Name IOperation I Operand I 
~------+--------___+------------------i I BCON I DC , B'11011101' I 
!BTRUNC IDC !BL1'1001000ll' ! 
I BPAD IDC IBLl'lOl' I L-_______ i _________ --i ___________________ J 

BTRUNC would assemble with the leftmost 
bit truncated, as follows: 

00100011 

BPAD would assemble with five zeros as 
padding, as follows: 

44 

00000101 

Fixed-Point Constants -- F and H: A fixed­
pOint constant is written as a decimal 
number, which may be followed by a decimal 
exponent if desired. The number may be an 
integer, a fraction, or a mixed number 
(i.e., one with integral and fractional 
portions). The format of the constant is 
as follows: 

1. The number is written as a signed or 
unsigned decimal value. The decimal 
pOint may be placed before, within, or 
after the number, or it may be 
omitted, in which case the number is 
assumed to be an integer. A positive 
sign is assumed if an unsigned number 
is specified. Unless a scale modifier 
accompanies a mixed number or frac­
tion, the fractional portion is lost, 
as explained ,under Subfield 3: Modifi­
ers. 

2. The exponent is optional. If speci­
fied, it is written immediately after 
the number as En, where n is an 
optionally signed decimal value speci­
fying the exponent of the factor 10. 
The exponent may be in the range -85 
to +75. If an Unsigned exponent is 
specified, a plus sign is assumed. 
The exponent causes the value of the 
constant to be adjusted by the power 
of 10 that it specifies. The exponent 
may exceed the permissible range for 
exponents provided that the sum of the 
exponent and the exponent modifier do 
not exceed that range. 

The number is converted to a binary 
number. The binary number is then rounded 
and assembled into the proper field, 
according to the specified or implied 
length. If the value of the number exceeds 
the length specified or implied, the sign 
is lost, the necessary leftmost bits are 
truncated to the length of the field and 
the value is then assembled into the whole 
field. Any duplication factor that is 
present is applied after the constant is 
assembled. A negative number is carried in 
2's complement form. The resulting number 
will not differ from the exact value by 
more than one in the last place. 

An implied length of four bytes is 
assumed for a full-word (F) and two bytes 
for a half-word (H), and the constant is 
aligned to the proper full-word or half­
word boundary, if a length is not 
specified. However, any length up to and 
including eight bytes may be specified for 
either type of constant by a length modifi­
er, in which case no boundary alignment 
occurs. 

Maximum and m~n~mum values, exclusive of 
scaling, for fixed-point constants are: 



~ , 
I 

'"-"'" 

Length Max Min 
8 2 63-1 -2 63 

4 2 31-1 -2 31 

2 215-1 -215 

1 27-1 -2 7 

A field of three full-words is generated 
from the statement shown below. The loca­
tion attribute of CONWRD is the address of 
the leftmost byte of the first word, and 
the length attribute is four, the implied 
length for a full-word fixed-point con­
stant. The expression CONWRD+4 could be 
used to address the second constant (second 
word) in the field. 

r--------T----------~--------------------, 
I Name IOperation I Operand I 
r------+-----------+------------------~ 
ICONWRD IDC 13F'658474' I L-_______ ~ ___ ~ _____ ~_________ __J 

The next statement causes the generation 
of a two-byte field containing a negative 
constant. Notice that scaling has been 
specified in order to reserve six bits for 
the fractional portion of the constant. 

r---------T-----------T-------------------, 
I Name IOperation I Operand I 
r---------+-----------+-------------------~ 
I HALFCON 1 DC I HS6' -25. 46' I L-________ ~------_____ ~ _________________ J 

The next constant (3.50) is multiplied 
by 10 to the -2 before being converted to 
its binary format. The scale modifier 
reserves twelve bits for the fractional 
portion. 

r--------T-----------T-------------------, 
I Name I Operation I Operand I 
r------+----------+----------------~ 
I FULLCON IDC IHS12'3.50E-2' I L _________ ~ ___________ ~ ___________________ J 

The same constant could be specified as 
a literal: 

r------y----------T----------------------, 
I Name IOperation I Operand I 
r------+--------+------------------~ 
I lAB 1'7,=HS12'3.50E-2' 1 L-____ ~ __________ ~ __________ - ________ J 

The final example specifies three con­
stants. Notice that the scale modifier 
requests four bits for the fractional por­
tion of each constant. The four bits are 

provided whether or not the fraction 
exists. 

r----------T-----------T------------------, 
1 Name 1 Operation IOperand I 
r----------+-----------+------------------~ 
I THREE CON IDC IFS4'10,25.3.100' 1 L--________ ~ ________ ~ __________________ J 

Floating-Point Constants -- E and 0: A 
floating-point constant is written as a 
decimal number, which'may be followed by a 
decimal exponent, if desired. The number 
may be an integer, a fraction, or a mixed 
number (i.e., one with integral and frac­
tio'nal portions). The format of the con­
stant is as follows: 

1. The number is written as a signed or 
unsigned decimal value. The decimal 
point may be placed before, within, or 
after the number, or it may be omit­
ted, in which case, the number is 
assumed to be an integer. A positive 
sign is assumed if an unsigned number 
is specified. 

2. The exponent is optional. If speci­
fied, it is written immediately after 
the number as En, where n is an 
optionally signed decimal value speci­
fying the exponent of the factor 10. 
The exponent may exceed the permissi­
ble range for exponents, provided that 
the sum of the exponent and the expo­
nent modifier does not exceed that 
range. If an unsigned exponent is 
specified, a plus sign is assumed. 

Machine format for a floating-point 
number is in two parts: the portion con­
taining the exponent, which is sometimes 
called the characteristic, followed by the 
portion containing the fraction, which is 
sometimes called the mantissa. Therefore, 
the number specified as a floating-point 
constant must be converted to a fraction 
before it can be translated into the proper 
format. For example, the constant 27.35E2 
represents the number 27.35 times 10 to the 
2nd. Represented as a fraction, "it would 
be .2735 times 10 to the 4th, the exponent 
having been modified to reflect the shift­
ing of the decimal point. The exponent may 
also be affected by the presence of an 
exponent modifier, as explained under Oper­
and Subfield 3: Modifiers. 

The exponent is then translated into its 
binary equivalent, and the fraction is 
converted to a binary number. Scaling is 
performed if specified; if not, the frac­
tion is normalized (leading hexadecimal 
zeros are removed). Rounding of the frac­
tion is then performed according to the 
specified or implied length, and the number 

Assembler Instruction Statements 45 



is assembled into the proper field. Within 
the portion of the floating-point field 
allocated to the fraction, the hexadecimal 
point is assumed to be to the left of the 
leftmost hexadecimal digit, and the frac­
tion occupies the leftmost portion of the 
field. Negative fractions are carried in 
true representation, not in the 2's comple­
ment form. The resulting number will not 
differ from the exact value by more than 
one in the last place. 

An implied length of four bytes is 
assumed for a full-word (E) and eight bytes 
is assumed for a double-word (D). The 
constant is aligned at the proper word or 
double word boundary if a length is not 
specified. However, any length up to and 
including eight bytes may be specified for 
either type of constant by a length modifi­
er, in which case no boundary alignment 
occurs. 

Any of the following statements could be 
used to specify 46.415 as a positive, full­
word, floating-point constant: the last is 
a machine-instruction statement with a 
literal operand. Note that the last two, 
constants contain an exponent modifier. 

r-----~-----------T----------------------, 
I Name IOperation I Operand I 
I-----t------t-----------------~ 
I IDC IE'46.415' I 
I IDC IE'46415E-3' I 
I IDC IE'+464.15E-1' I 
J IDC IE'+.46415E+2' I 
I IDC IEE2'.46415' I 
I IAE 16,=EE2'.46415' I L ____ ~ __________ ~ _____________________ J 

The following would each be generated as 
double-word floating-point constants. 
r-------.---------T--------------------, 
I Name I operation I operand I 
r------t-----------t--------------------i I FLOAT. IDC IDE+4'+46,-3.729,+473'I L-____ ~ _____ ~ ____________________ J 

Decimal constants -- P and Z: A decimal 
constant is written as a signed or unsigned 
decimal value. If the sign is omitted, a 
plus sign is, assumed. The decimal point 
may be written wherever desired or may be 
omitted. Scaling and exponent modifiers 
may not be specified for decimal constants. 
The maximum length of a decimal constant is 
16 bytes. No word boundary alignment is 
performed. 

The placement of a decimal point in the 
definition does not affect the assembly of 
the constant in any way, because, unlike 
fixed-point and floating-point constants, a 
decimal constant is not converted to its 
binary equivalent. The fact that a decimal 

46 

constant is an integer, a fraction, or a 
mixed number is not pertinent to its ,~ 
generation. Furthermore, the decimal point 
is not assembled into the constant. The 
programmer may determine proper decimal 
point alignment eithe'r by defining his data 
so that the point is aligned or by select-
ing machine-instructions that will operate 
on the data properly (i.e., shift it for 
purposes of alignment). 

If zoned decimal format is specified 
(Z), each decimal digit is translated into 
one byte. The translation is done accord­
ing to the character set shown in Appendix 
A. The rightmost byte contains the sign as 
well as the rightmost digit. For packed 
decimal format (P), each pair of decimal 
digits is translated into one byte. The 
rightmost digit and the sign are translated 
into the rightmost byte. The bit configu­
ration for the digits is identical to the 
configurations for the hexadecimal digits 
0-9 as shown in Section 3 under 
"Hexadecimal Self-Defining Value." For 
both packed and zoned decimals, a plus sign 
is translated into the hexadecimal digit C, 
and a minus sign into the digit D. 

If an even number of packed decimal 
digits is specified, one digit will be left 
unpaired, because the rightmost digit is (~ 
paired with the sign. Therefore, in the ,~' 
leftmost byte, the leftmost four bits will 
be set to zeros and the rightmost four bits 
will contain the odd (first) digit. 

If no length modifier is given, the 
implied length for either constant is the 
number of bytes the constant occupies 
(taking into account the format, sign, and 
possible addition of zero bits for packed 
decimals). If a length modifier is given, 
the constant is handled as follows: 

1. If the constant requires fewer bytes 
than the length specifies, the neces­
sary number of bytes is added to the 
left. For zoned decimal format, the 
decimal digit zero is placed in each 
added byte. For packed decimals, the 
bits of each added byte are set to 
zero. 

2. If the constant requires more bytes 
than the length specifies, the neces­
sary number of leftmost digits or 
pairs of digits is dropped, depending 
on which format is specified. 

Examples of decimal constant definitions 
follow. 



o 

r------.-----------T----------------------, 
I Name I Operation I Operand I 
t----+--------+----------------~ 
I IDC IP'+1.25' I 
I I DC I z' - 543' I 
I IDC IZ'79.68' I 
I IDC IPL3'79.68' I L ______ ~ ___________ ~ ______________________ J 

The following statement specifies three 
packed decimal constants. The length modi­
fier applies to each packed decimal con­
stant. 

r--------T---------T---------------------, 
I Name I Operation I Operand I 
t----+-------+--------------------~ 
I DECIMALS I DC IPL8'+25.8,-3874,+2 •. 3' I L ________ ~ _________ ~ ______________________ J 

The last example illustrates the use of 
a packed decimal literal. 

r------T----------T----------------------, I Name IOperation I Operand I 
r----t------+-------------------i 
I IUNPK IOUTAREA,=PL2'.25' I L _____ ~ __________ ~ _____________________ J 

ADDRESS CONSTANTS: An address constant is 
a storage address that is translated into a 
constant. Address constants can be 
used for initializing base registers to 
facilitate the addressing of storage. 
Furthermore, they provide the means of 
communicating between control sections of a 
multisection program. However, storage 
addressing and control section communi­
cation are also dependent on the use of the 
USING assembler instruction and the loading 
of registers. coding examples that illus­
trate these considerations are provided in 
Section 3 under "Programming with the USing 
Instruction." 

An address constant, unlike other types 
of constants, is enclosed in parentheses. 
If two or more address constants are speci­
fied in a statement, they are separated by 
commas, and the entire sequence is enclosed 
by parentheses. There are four types of 
address constants: A, Y, S, and V. 

complex Relocatable Expressions: A complex 
relocatable expression can only be used in 
an A-type or y-type address constant. 
These expressions contain two or more 
unpaired relocatable terms and/or a nega­
tive relocatable term in addition to any 
absolute or paired relocatable terms that 
may be present. In contrast to relocatable 
expressions, complex relocatable expres­
sions may represent negative values. A 

complex relocatable expression might con­
sist of external symbols (which cannot be 
paired) and designate an address in an 
independent assembly that is to be linked 
and loaded with the assembly containing the 
address constant. 

The value of the expression is deter­
mined when the referenced control sections 
are loaded. Complex relocatable expres­
sions can be used to determine the distance 
between two control sections after they are 
loaded into main storage. 

A-Type Address Constant: This constant is 
specified as an absolute, relocatable, or 
complex relocatable expression. (Remember 
that an expression may be single term or 
multiterm.) The value of the expression is 
calculated to 32 bits as explained in Sec­
tion 2, with one exception: the maximum 
value of the expression may be 231-1. The 
value is then truncated on the left, if 
necessary, to the specified or implied 
length of the field and assembled into the 
rightmost bits of the field. The implied 
length of an A-type constant is four bytes 
and alignment is to a full-word boundary 
unless a length is specified, in which case 
no alignment will occur. The length that 
may be specified depends on the type of 
expression used for the constant; a length 
of 1-4 bytes (.1 (1 bit) to 4 bytes for 
DOS F) may be used for an absolute expres­
sion, while a length of 3 or 4 bytes may be 
used for a relocatable or complex relocat­
able expression. 

In the following examples, the field 
generated from the statement named ACON 
contains four constants, each of which 
occupies four bytes. Note that there is a 
LOcation Counter reference in one. The 
value of the Location Counter will be the 
address of the first byte allocated to the 
fourth constant. The second statement 
shows the same set of constants specified 
as literals (i.e., address constant 
literals). 
r----r---'---,-----------------------------, 
'Name I Op~r- I Operand I 
t I at~on I 1 
~---~------~-------------------------------~ 
lACON I DC I A (108, LOP, END-STRT,* +4096) I 
I \ LM \ 4,7,=A(108,LOP,END-STRT,*+4096)\ 
L ___ J ______ ~ _______________________________ J 

Note: When the Location Counter ref­
ere~occurs in a literal, as in the LM 
instruction above, the value of the Loca­
tion counter is the address of the first 
byte of the instruction. 

Y-type Address Constant: A Y-type address 
constant has much in common with the A-type 
constant. It, too, is specified as an 
absolute, relocatable, or complex relocata-

Assembler Instruction Statements 47 



Page of GC24-3414-7 
Revised August 21, 1970 
By TNL GN33-8087 

ble expression. The value of the expres­
sion is also calculated to 32 bits as 
explained in Section 2. However, the maxi­
mum value of the expression may be only 
2~5-1. The value is then truncated, if 
necessary, to the specified or implied 
length of the field and assembled into the 
rightmost bits of the field. The implied 
length of a y-type constant is two bytes 
and alignment is to a half-word boundary 
unless a length is specified, in which case 
no alignment occurs. The maximum length of 
a y-type address constant is two bytes. If 
length specification is used, a length of 
two bytes may be designated for a relocata­
ble or complex expression and 1 or 2 bytes 
(.1 (1 bit) to 2 bytes for DOS F) for an 
absolute expression. 

Warning: Specification of relocatable 
y-type address constants should be avoided 
in programs destined to be executed on 
machines having more than 32,767 bytes of 
storage capacity. 

S-Type Address Constant: The S-type 
address constant is used to store an 
address in base-displacement form. 

The constant may be specified in two 
ways: 

1. ·As an absolute or relocatable expres­
sion, e.g., S(BETA). 

2. As two absolute expressions, the first 
of Which represents the displacement 
value and the second, the base reg­
ister, e.g., S(400(13». 

The address value represented by the 
expression in (1) will be broken down by 
the assembler into the proper base register 
and displacement value. An S-type constant 
is assembled as a half word and aligned on 
a half-word boundary. The leftmost four 
bits of the assembled constant represents 
the base register designation, the remain­
ing 12 bits the displacement value. 

If length specification is used, only 
two bytes may be specified. S-type address 
constants may not be specified as literals. 

V-Type Address Constant: This constant is 
used to reserve storage for the address of 
an external symbol that is used for effect­
ing branches to other programs. The con­
stant may not be used for external data 
references. The constant is specified as 
one relocatable symbol, which need not be 
identified by an EXTRN statement. Whatever 
symbol is used is assumed to be an external 
symbol by virtue of the fact that it is 
supplied in a V-type address constant. To 
suppress the AUTOLINK function of the 
linkage editor for a constant identified in 

48 

a V-type address constant, the programmer ( __ '.' .. ', 
can identify it in a WXTRN statement (DOS 
Assembler 14K D only). 

Note that specifying a symbol as the 
operand of a V-type constant does not con­
stitute a definition of the symbol for this 
assembly. The implied length of a V-type 
address constant is four bytes, and bound­
ary alignment is to a full word. A length 
mQdifier may be used to specify a length of 
either three or four bytes, in which case 
no such boundary alignment occurs. In the 
following example, 12 bytes will be res­
erved, because there are three symbols. 
The value of each assembled constant will 
be zero until the program is loaded. 

r------~----------~--------------------, I Name IOperation I Operand I 
~--------+-----------+--------------------~ 
IVCONST IDC IV (SORT, MERGE, CALC) I L-_______ ~ _________ ~ ____________________ J 

DS -- DEFINE STORAGE 

The DS instruction is used to reserve areas 
of storage and to assign names to those 
areas. The use of this instruction is the 
preferred way of symbolically defining 
storage for work areas, input/output areas, 
etc. The typical form of the DS statement 
is: 

,------T-----------T----------------------l 
I Name I Operation I Operand I L ______ l ___________ ~ ______________________ J 

I I I I 
I Any I DS lOne operand (D assem- I 
I symbol I I bIer) or one or more I 
I or not I I operands (F assembler): 
I used : : in the format de:- I 
I I I scribed below, each I 
I I I separated by a comma. I L ______ ~ ___________ L ______________________ J 

The format of the DS operand is identi­
cal to that of the DC operand; exactly the 
same subfields are employed and are written 
in exactly the same sequence as they are in 
the DC operand. Although the formats are 
identical, there are two differences in the 
specification of subfields. They are: 

1. The specification of data (subfield 4) 
is optional in a DS operand, but it is 
mandatory in a DC operand. If a con­
stant is specified, it must be valid. 

2. The maximum length that may be speci­
fied for character (C) and hexadecimal 
(X) field types is 65,535 bytes rather 
than 256 bytes. 

If a DS operand specifies a constant in 
subfield 4, and no length is specified in 
subfield 3, the assembler determines the 
length of the data and reserves the 
appropriate amount of storage. It does not 

o 

C) 



assemble the constant. The ability to 
specify data and have the assembler calcu­
late the storage area that would be 
required for such data is a convenience to 
the programmer. If he knows the general 
format of the data that will be placed in 
the storage area during program execution, 
all he needs to do is show it as the fourth 
sUbfield in a OS operand. The assembler 
then determines the correct amount of stor­
age to be reserved, thus relieving the 
programmer of length considerations. 

If the oS instruction is named by a 
symbol, its value attribute is the location 
of the leftmost byte of the reserved area. 
The length attribute of the symbol is det­
ermined in the same manner as for a DC. 
Any positioning required for aligning the 
storage area to the proper type of boundary 
is done before the address value is deter­
mined. Bytes skipped for alignment are not 
set to zero. 

Each field type (e.g., hexadecimal, 
character, floating-point) is associated 
with certain characteristics (these are 
summarized in Appendix F). The associated 
characteristics will determine which field­
type code the programmer selects for the OS 
operand and what other information he adds, 
notably a length specification or a 
duplication factor. For example, the E 
floating-point field and the F fixed-point 
field both have an implied length of four 
bytes. The leftmost byte is aligned to a 
fUll-word boundary. ThUS,; either cOde 
could be specified if it were desired to 
reserve four bytes of storage aligned to a 
full-word boundary. To obtain a length of 
eight bytes, one could specify either the E 
or F field type with a length modifier of 
eight. However, a duplication factor would 
have to be used to reserve a larger area, 
because the maximum length specification 
for either type is eight bytes. Note also 
that specifying length would cancel any 
special boundary alignment. 

In contrast, packed and zoned decimal (P 
and Z), character (C), hexadecimal (X), and 
binary (B) fields have an implied length of 
one byte. Any of these codes, if used, 
would have to be accompanied by a length 
modifier, unless just one byte is to be 
reserved. Although no alignment occurs, 
the USe of C and X field types permits 
greater latitude in length specifications, 
the IOdximum for either type being 65,535 
bytes. (Note that this differs from the 
maximum for these types in a DC instruc­
tion.) Unless a field of one byte is 
desired, either the length must be speci­
fied for the C, X, 'P, Z, or B field types, 
or else the data must be specified (as the 
fourth subfield), so that the assembler can 
calculate the length. 

To define four 10-byte fields and one 
100-byte field, the respective OS state­
ments might be as follows: 

r------j-----------j----------------------, 
I Name IOperation I Operand I 
~------+----------+-------------------~ 
IFIELD IDS 14CL10 I 
IAREA IDS ICL100 I L ______ ~ ___________ i ______________________ J 

Although FIELD might have been specified 
as one 40-byte field, the preceding defini­
tion has the advantage of providing FIELD 
with a length attribute of 10. This would 
be pertinent when using FIELD as a SS 
machine-instruction operand. 

Additional examples of OS statements are 
shown below: 

r-----T---------T------------------------, 
IName IOperationlOperand I 
~-----+--------+-------------------------~ 
lONE IDS ICL80(one 80-byte field, I 
I I I length attribute of 80 I 
I TWO IDS 180C (80 one-byte fields, I 
I I I length attribute of one I 
I THREE I OS 16F(six full words, length I 
I I I attribute of four) I 
IFOUR IDS ID(one double word, length I 
I I I attribute of eight) I 
IFIVE IDS 14H(four half-words, 1 
I I I length attribute of I 
I I I two) I L-____ i ________ ~ _________________________ J 

Note: A OS statement causes the storage 
area-to be reserved but not set to zeros. 
No assumption should be made as to the 
contents of the reserved area. 

Special Uses of the DUplication Factor 

FORCING ALIGNMENT: The Location Counter 
can be forced to a double-word, full-word, 
or half-word boundary by using the 
appropriate field type (e.g., 0, F, or H) 
with a duplication factor of zero. This 
method may be used to obtain boundary 
alignment that otherwise would not be pro­
vided. For example, the following state­
ments would set the Location CoUnter to the 
next double-word boundary and then reserve 
storage space for a 128-byte field (whose 
leftmost byte would be on a double-word 
boundary) • 

Assembler Instruction Statements 49 



r-----T-----------T-----------------------, 
IName IOperation I Operand I 
r----+-------+----------------~ 
I IDS 100 I 
I AREA I OS I CL12 8 I L _____ ~ _________ ~ ______________________ J 

DEFINING FIELDS OF AN AREA: A OS instruc­
tion with a duplication factor of zero can 
be used to assign a name to an area of 
storage without actually reserving the 
area. Additional OS and/or DC instructions 
may then be used to reserve the area and 
assign names to fields within the area (and 
generate constants if DC is used). 

For example, assume that aO-character 
records are to be read into an area for 
processing and that each record has the 
following format: 

Positions 5-10 
Positions 11-30 
Positions 31-36 
Positions 47-54 
positions 55-62 

Payroll Number 
Employee Name 
Date 
Gross Wages 
Withholding Tax 

The following example illustrates how DS 
instructions might be used to assign a name 
to the record area, then define the fields 
of the area and allocate the storage for 
them. Note that the first statement names 
the entire area by defining the symbol 
RDAREA; the statement gives RDAREA a length 
attribute of ao bytes, but does not reserve 
any storage. Similarly, the fifth state­
ment names a 6-byte area by defining ·the 
symbol DATE; the three subsequent state­
ments actually define the fields of DATE 
and allocate storage for them. The second, 
ninth, and last statements are used for 
spacing purposes and, therefore, are not 
named. 

r------T-----------T---------------------, 
I Name I Operation I Operand I 
~-------+-----------+---------------------~ 
IRDAREA IDS OCL80 
I IDS CL4 
IPAYNO IDS CL6 
INAME IDS CL20 
I DATE IDS OCL6 
I DAY IDS CL2 
I MONTH IDS CL2 
I YEAR IDS CL2 
I IDS CL10 
I GROSS IDS CL8 
IFEDTAX IDS CL8 
I IDS CL18 L _______ ~ ___________ ~ ________________ - ___ _ 

50 

CCW -- DEFINE CHANNEL COMMAND WORD 

The CCW instruction provides a convenient 
way to define and generate an eight-byte 
Channel Command Word aligned at a ~9le­
word boundary. The internal machine format 
of a channel Command Word is shown in Table 
5-1. CCW will cause any bytes skipped to 
be zeroed. The typical form of the CCW 
instruction statement is: 

r~~~----rop~;~~i~~Top;~d---------------l 
L-_______ + _________ +---------------------~ 
I Any I CCW I Four operands, I 
Isymbol orl I separated by commas, I 
Inot used I Ispecifying the con- I 
I I Itents of the channel I 
I I I command word in I 
I I I the format I 
I I I described in the I 
I I I fol~owing text I ~ _______ ~ _______ ~ ___________________ J 

All four operands must appear. They are 
written, from left to right, as follows: 

1. An absolute expression that specifies 
the command code. This expression's 
value is right-justified in byte 1. 

2. An expression specifying the data 
address. The value of this expression 
is in bytes 2-4. 

3. An absolute expression that specifies 
the flags for bits 32-36 and zeros for 
bits 37-39. The value of this expres­
sion is right-justified in byte 5. 
(Byte 6 is set to zero.) 

4. An absolute expression that specifies 
the count. The value of this expres­
sion'is right-justified in bytes 7-8. 

The following is an exa~ple of a CCW 
statement: 

r-----T-----------T-----------------------, 
IName IOperation I Operand I 
~-----+---------+-------------------~ 
I ICCW 12 ,READAREA,X'48',80 I L-____ ~ __________ ~ ______________________ J 

Note that the form of the third operand 
sets bits 37-39 to zero, as required. The 
bit pattern of this operand is as follows: 

32-35 
0100 

36-39 
1000 

If there is a symbol in the name entry 
of the CCW instruction, it is assigned the 
address value of the leftmost byte of the 
channel command word. The length attribute 
of the symbol is eight. 

c 



o 

o 

Table 5-1. Channel Command Word 

r---------------------------------------~· 
I Byte I Bits I Usage I L ______ L _________ L ______________________ ~ 

I I I I 
I 1 I 0-7 I Command code I 

I 2-4 I 8-31 I Data address I 
: 5 : 32-36 I Flags I 
I I 37-39 I Must be zero I 

: 6 : 40-47 I Set to zero I 
I 7-8 I 48-63 I Count : 
~------~--------------------------------~ 
LISTING CONTROL INSTRUCTIONS 

The listing control instructions are used 
to identify an assembly listing and assem­
bly output cards, to provide blank lines in 
an assembly listing, and to designate how 
much detail is to be included in an assem­
bly listing. In no case are instructions 
or constants generated in the object pro­
gram. Listing control statements except 
PRINT are not printed, unless the state­
ment is continued. Then the first card of 
the statement will be printed. 

TITLE -- IDENTIFY ASSEMBLY OUTPUT 

The TITLE instruction enables the program­
mer to identify the assembly listing and 
assembly output cards. The typical form of 
the TITLE instruction statement is as fol­
lows: 

~----------------------~-----------------~ 
: Name I Operation I Operand : 
l----------J------------L-----------------~ 

A special TITLE One to 100 
symbol, a characters, 
sequence enclosed in 
symbol, a single 
variable apostrophes 

I symbol, or 
Lnot used --------_J ______________________________ J 

The name entry may contain a special 
symbol which is one to four alphabetic or 
numeric characters in any combination. The 
contents of the name entry are then punch­
ed into columns 73-76 of all the output 
cards for the program except those pro­
duced by the PUNCH and REPRO assembler 
instructions. Only the first TITLE state­
ment in a program may have a special symbol 
or variable symbol in the name entry. The 
name field of all subsequent TITLE state­
ments must be blank or contain a sequence 
symbol. 

The operand field may contain up to 100, 
characters enclosed in apostrophes. Any 
ampersands or apostrophes enclosed within 
the surrounding apostrophes must be rep­
resented by two ampersands or apostrophes. 

The double ampersands and apostrophes 
punched into a TITLE card appear as single 
ampersands and apostrophes in a TITLE state-

ment of an assembler listing. A single 
apostrophe between the enclosing apostrophes 
simply terminates the operand field. A 
single ampersand initiates an attempt to 
identify a variable symbol. If the variable 
symbol is not identifiable the statement is 
flagged as an error. 

However, it is the number of printed 
characters that are counted in the· total 
number of operand characters. The contents 
of the name and operand field are printed 
at the top of each page of the assembly 
listing. 

A program may contain more than one 
TITLE statement. Each TITLE statement pro­
vides the heading for pages in the assembly 
listing that follow it, until another TITLE 
statement is encountered. Each TITLE 
statement encountered after the first one 
causes the listing to be advanced to a new 
page (before the heading is printed) . 

For example, if the following state­
ment is the first TITLE statement to appear 
in a program: 

r------T--------~------T-----------------l 
I Name I Operatlon I Operand I 
I I I I I-------T---------------T-----------------, 
: PGMI I TITLE :' FIRST HEADING' I 
~------~---------------~-----------------~ 

then, PGMI is punched into all the output 
cards (columns 73-76) and this heading 
appears at the top of each page: FIRST 
HEADING. 

If the following statement occurs later 
in the same program: 

.------r---------------r-----------------, 
I Name I Operation : Operand I 
I-------~---------------~-----------------~ 
: I TITLE :' A NEW HEADING' I L ______ L _______________ L _________________ J 

then, PGMI is still punched into the output 
cards, but each following page begins with 
the heading: A NEW HEADING. 

No"te: The sequence number of the cards 
in the output deck is contained in columns 
77-80, except those produced by the PUNCH 
and REPRO assembler instructions. 

EJECT -- START NEW PAGE 

The EJECT instruction causes the ne~t line 
of the listing to appear at the top of a 
new page. This instruction provides a 
convenient way to separate routines in the 
program listing. The typical form of the 
EJECT instruction statement is as follows: 

Assembler Instruction Statements 51 



Page of GC24-3414-7 

Revised May 14, 1970 

By TNL GN33-8076 

1~---------T-------------I-----------------1 

I Name I Operation I Operand I 
~---------T-------------'-----------------4 I A I EJECT I Not used; shouldj 
I sequence I I be blank I 
1 symbol or 1 1 1 
1 d 1 1 1 
I, not use 1 1 1 L _________ ~ _____________ 4-________________ ~ 

If the next line of the listing would 
appear at the top of a new page without the 
EJECT instruction, the EJECT instruction 
has no immediate effect. If one or more 

.EJECT statements appear after the first 
EJECT, one or more pages are skipped. A 
TITLE instruction followed immediately by 
an EJECT instruction will result in a page 
with a title line and a statement heading 
line. Text following the EJECT instruction 
will begin at the top of the next page. 

SPACE -- SPACE LISTING 

The SPACE instruction is used to insert one 
or more blank lines in the listing. The 
typical form of the SPACE instruction 
statement is as follows: 

·r---------'-------------,-----------------~ 
1 Name : Operation I Operand : 
1 __________ -1 ______________ 1 __________ _______ 1 
1 1 1 1 
1 A 1 SPACE 1 A decimal value 1 

: sequence : : or not used I 
: symbol or I I I 
1 not used 1 1 1 L _________ ~ ______________ L ________________ J 

A decimal value is used to specify the 
number of blank lines to be inserted in the 
assembly listing. A blank operand causes 
one blank line to be inserted. If this 
value exceeds the number of lines remaining 
on the listing page, the statement will 
have the same effect as an EJECT statement. 

PRINT -- PRINT OPTIONAL DATA 

The PRINT instruction controls the content 
of the assembly listing. The typical form 
of the PRINT instruction is: 

r----------~------------------------------l 
1 Name : Operation I Operand 1 I ___________ L _____________ L ________________ ~ 

1 1 1 1 
1 A 1 PRINT lOne to three 1 

: sequence : : operands : 
I symbol or : : : 
1 not used 1 1 1 L __________ L _____________ L ________________ J 

52 

One to three of the following operands 
are used: 

ON 
or 

OFF 

GEN 

or 
NOGEN 

DATA 

or 
NODATA 

A listing is printed. 

No listing is printed. 

All statements generated by 
macro instructions are printed. 

Statements generated by macro 
instructions are not printed, 
except MNOTE messages which 
print regardless of NOGEN. 
However, the outer macro 
instruction itself will appear 
in the listing. 

Constants are printed out in 
full in the listing. 

Only the leftmost eight bytes 
(16 hexadecimal digits) are 
printed. 

A program may contain any number of 
PRINT statements. The conditions set by a 
PRINT statement are in effect until another 
PRINT statement is encountered. 

If an operand is omitted, it is assumed 
to be unchanged and continues according to 
its last specification. 

When OFF is specified, GEN and DATA have 
no effect. When NOGEN is specified, DATA 
has no effect for generated constants. 

If no PRINT statement is encountered, 
the following default option is assumed: 

r-------I------------~---I----------------l 
1 Name 1 Operatlon 1 Operand 1 

:--------r----------------1----------------~ 
1 1 PRINT 1 ON,NODATA,GEN: I ________ ~ ________________ J ________________ ~ 

For example, if the statement: 

,--------1----------------1----------------, 
: Name: Operation : Operand : 
r-------r----------------,----------------1· 
: : DC : XL256'QQ' I , ________ L ________________ ~ ________________ J 

appears in a program, 256 bytes of zeros 
are assembled. If the statement: 

I--------I------------~---I----------------l 
1 Name 1 Operatlon 1 Operand 1 

r-------r----------------1----------------~ 
1 1 PRINT 1 DATA 1 L _______ ~ ________________ ~ ________________ J 

~--, 

( 

\ 
'--' 



C) 

is the last PRINT statement to appear 
before the DC statement, all 256 bytes of 
zeros are printed in the assembly listing. 
However, if there are no previous PRINT 
statements, or: 

r-----~----------~----------------------, 
I Name I Operation I Operand I 
r----+----------+----------------~ 
I I PRINT I NODATA I L ___ ~ _________ _i__ ____________________ J 

is the last PRINT statement to appear 
before the DC statement, only eight bytes 
of zeros are printed in the assembly list­
ing. 

PROGRAM CONTROL INSTRUCTIONS 

The program control instructions are used 
to specify the end of an assembly, to set 
the Location Counter to a value or halfword 
boundary, to insert previously written 
coding in the program, to specify the 
placement of literals in storage, to check 
the sequence of input cards, to indicate 
statement format, and to punch a card. 
Except for the CNOP and COpy instructions, 
none of these assembler instructions gener­
ate instructions or constants in the object 
program. 

ICTL -- INPUT FORMAT CONTROL 

The ICTL instruction allows the programmer 
to alter the format of the statements in 
his source module. It can only be used to 
control statements that are read from the 
system input file (SYSIPT). It cannot be 
used to control the format of the input 
from the source statement library. State­
ments that are brought in from that library 
(through macro instructions or COpy instruc­
tions) are always assumed to be in the 
standard format. 

The ICTL statement must precede all 
other statements, and may only be used once. 
Its format is: 

r----------~----------~-----------------, 
I Name I Operation I Operand I 
~-----------+-----------+-----------------~ 
INot used, I ICTL I 1-3 decimal , 
1 must not 1 I values of the 1 
Ibe present I I form b,e,c 1 L _________ ~ _______ ~ _________________ J 

Operand b specifies the begin column of 
the source statement. It must always be 
specified, and must be from 1-40, inclu­
sive. Operand e specifies the end column 

Page of CC24-3414-7 
Revised Augu~t 21, 1970 
By TNL CN33-8087 

of the source statement. The end column, 
when specified, must be from 41-80, inclu­
sive; when not specified, it is assumed to 
be 71. The column after the end column is 
used to indicate whether the next card is a 
continuation card. Operand c specifies the 
continue column of the source statement. 
The continue column, when specified, must 
be from 2-40 and must be greater than b. 
If the continue column is not specified, or 
if column 80 is specified as the end 
column, the assembler assumes that there 
are no continuation cards, and all state­
ments must be contained on a single card. 
The operand forms b"c and b, are invalid. 

If no ICTL statement is used in the 
source program, the assembler assumes that 
1, 71, and 16 are the begin, end, and con­
tinue columns, respectively. 

The next' example designates the begin 
column as column 25. Since the end column 
is not specified, it is assumed to be 
column 71. No continuation cards are rec­
ognized because the continue column is not 
specified. 

r------T-----------T----------------------, I Name IOperation IOperand , 
r-----+---------+-------------------~ 
, I ICTL 125 1 l ______ ~ _________ ~ ______________________ J 

ISEQ -- INPUT SEQUENCE CHECKING // 

The ISEQ instruction is used to check the 
sequence of input cards. The typical form 
of the ISEQ instruction statement is as 
follows: 

r-----------T----------~-----------------, 
I Name 1 Operation I Operand I 

~-----------+-------+----------------~ 
INot used, 1 ISEQ 1 Two decimal I 
1 must not I I values of the I 
,be present 1 , form l,r, or . I 
, I I not used I l __________ ~ _________ ~ ________________ J 

The operands 1 and r, respectively, 
specify the leftmost and rightmost columns 
of the field in the input cards to be 
checked. Operand r must be equal to or 
greater than operand 1. Columns to be 
checked must not be between the "begin" and 
"end" columns. 

Sequence checking begins with the first 
card following the ISEQ statement. Compar­
ison of adjacent cards makes use of the 
eight-bit internal collating sequence. 
Each card checked must be higher than the 
preceding one. 

Assembler Instruction Statements 53 



An ISEQ statement with a blank operand 
terminates the operation. Checking may be 
resumed with another ISEQ statement. 

sequence checking is only performed on 
statements contained in the source program. 
Statements inserted by the COpy 
assembler-instruction or generated by a 
macro-instruction are not checked for 
sequence. 

PUNCH -- PUNCH A CARD 

The PUNCH assembler-instruction causes the 
data in the operand to be punched into a 
card. One PUNCH statement produces one 
punched card. As many PUNCH statements may 
be used as are necessary. The typical form 
is: 

r----,.-------T--------------1 
~-~~~--~~~::: ti~_~per:~~--------~ 
I A I PUNCH 11 to 80 characters I 
Isequence I lenclosed in I 
I symbol or I I apostrophes I 
~~t_~~_L-_______ L _______________ J 

Using character. representation, the 
operand is written as a string of up to 80 
characters enclosed in apostrophes. All 
characters, including blank, are valid. 
The poSition immediately to the right of 
the left apostrophe is regarded as column 
one of the card to be punched. The assem­
bly program does not process the data in 
the operand of a PUNCH statement other than 

REPRO -- REPRODUCE FOLLOWING CARD 

The REPRO assembler-instruction causes data 
on the following statement line to be 
punched into a card. The data is not proc­
essed; it is punched in a card and no sub­
stitution is performed for variable sym­
bols. No sequence number or identification 
is punched in the card. One REPRO instruc­
tion produces one punched card. The REPRO 
instruction may not appear before a macro­
definition. 

REPRO statements that occur before all 
statements composing the first or only 
control section will punch cards which 
precede all cards of the object deck. The 
form is: 

r-------~----------~---------------------, ,Name I Operation I operand I· 

IA-----t~;~------t~~;_~~d, -;~~ld---1 
'Isequence I Inot be present I 
I symbol ort r f 
~~~~~~~ _______ -L ____________ ~ 

The line to be reproduced may contain 
any combination of up to 80 characters. 
Characters may be entered starting in 
column 1 and continue through column 80 of 
the line. column 1 of the line corresponds 
to column 1 of the card to be punched. 

ORG -- SET LOCATION COUNTER 

The ORG instruction is used to alter the 
setting of the Location Counter for the 
current control section. The typical form 
of the ORG instruction statement is: 

causing it to be punched in a card. For .r--------T----------~--------------------, 
each apostrophe or ampersand desired in the I Name IOperation I Operand 1 
operand, two apostrophes or ampersands must ~--------+-----------+--------------------~ 
be written. The two apostrophes or amper- IA IORG IA relocatable ex- I 
sands are reduced to a single apostrophe or !sequence 1 Ipression or not used 1 
ampersand. However, they count as only one jsymbol orl I I 
character in __ the operand. ~ot _us~L ______ ~ ___________ __1 

PUNCH statements may occur anywhere 
within a program, except before macro­
definitions. They may occur within a 
macro-definition but not between a MEND 
statement and the beginning of the next 
macro. If a PUNCH statement occurs before 
the first control section, the resultant 
card will precede all other cards in the 
object program card deck; otherwise the 
card will be punched in place. No sequence 
number or identification is punched in the 
card. 

54 

Any symbols in the expression must have 
been ereviously defined. The unpaired 
relocatable symbol must be defined in the 
same control section in which the ORG 
statement appears. 

The Location Counter is set to the value 
of the expression in the operand. If the 
operand is omitted, the Location Counter is 
set to a location that is one byte higher 
than the maximum location assigned for the 
control section up to this point. 



,"' .. _'\ 
) 

\, ....... -'~I 

An ORG statement must not be used to 
specify a location below the beginning of 
the control section in which it appears. 
The effect would be to give the location 
counter a large value. For example, the 
statement: 
r------T-----------T----------------------, 
IName IOperation I Operand I 
~------+-----------+----------------------~ 
I IORG 1*-500 I L ______ ~ ___________ ~_ __J 

is invalid if it appears less than 500 
bytes from the beginning of the current 
control section. 

If it is desired to reset the Location 
Counter to the next available location in 

. the current control section, the following 
statement would be used: 

r------T-----------T----------------------, 
I Name IOperation I Operand I 

r-----+-----------+------------------~ 
I IORG I I L ______ ~ __________ ~ ______________________ J 

If previous ORG statements have reduced 
the Location Counter fOr the purpoSe of 
redefining a portion of the current control 
section, an ORG statQment with an omitted 
operand can then be used to terminate the 
effects of such statements and restore the 
LOcation Counter to its highest setting. 

LTORG -- BEGIN LITERAL POOL 

The LTORG instruction causes all literals 
since the previous LTORG or beginning of 
the program to be assembled at appropriate 
boundaries starting at the first double­
word boundary following the LTORG 
statement. If no literals follow the LTORG 
statement, alignment of the next instruc­
tion will occur. Bytes skipped are not 
zeroed. The typical form of the LTORG 
instruction statement is: 

.--------T-----------.--------------------, 
I Name I Operat ion I Operand I 
~-------+----------+---------------~ . 
I Any ILTORG INot used, should I 
I symbol I I not be present I 
lor not I I I 
Lu-=~~ __ l _______ L _____________ J 

The symbol represents the address of the 
first byte of the literal pool. It has a 
length attribute of one. 

The literal pool is organized into four 
segments within which the literals are 
stored in order of appearance, dependent on 
the divisibility properties of their object 
lengths (dup factor times total explicit 
or implied length). The first segment 
contains all literals whose object length 
is a multiple of eight. Those remaining 
literals with lengths divisible by four 
are stored in the second segment. The 
third segment holds the remaining even­
length literals. Any literals left over 
have odd lengths and are stored in the 
fourth segment. 

Since each literal pool begins at a 
double-word boundary, this guarantees that 
all segment one literals are double-word, 
segment two full-word, and segment three 
half-word aligned, with no space wasted 
except, possibly, at the pool origin. 

Literals from the following statement 
are in the pool, in the segments indicated 
by the circled numbers, 

MVC 
AD 
LM 
IC 
AD 

A (6),=3H'l' 
2,=0'1' 
3,S,=3F'l' 
2,=XLl'l' 
2,=0'2' 

Special Addressing Consideration 

Any literals used after the last LTORG 
statement in a program are placed at the 
end of the first control section. If there 
are no LTORG statements in a program, all 
literals used in the program are placed at 
the end of the first control section. In 
these circumstances the programmer must 
ensure that the first control section is 
always addressable. This means that the 
base address register for the first control 
section should not be changed through usage 
in subsequent control sections. If the 
programmer does not wish to reserve a reg­
ister for this purpose, he may place a 
LTORG statement at the end of each control 
section, thereby ensuring that all literals 
appearing in that section are addressable • 

CNOP -- CONDITIONAL NO OPERATION 

The CNOP instruction allows the programmer 
to align an instruction at a specific word 
boundary. If any bytes must be skipped in 
order to align the instruction properly, 
the assembler insures an unbroken instruc­
tion flow by generating no-operation 
instructions. This facility is useful in 

Assembler Instruction Statements 55 



creating calling sequences consisting of a 
linkage to a subroutine followed by parame­
ters such as channel command words <CCW). 

Figure 5-5 shows the position in a dou-//~-' 
ble word that each of these pairs specifies 
Note that both 0,4 and 2,4 specify two 
locations in a double word. 

The CNOP instruction insures the align­
ment of the Location counter setting to a 
half-word, word, or double-word boundary. 
If the Location counter is already properly 
aligned, the CNOP instruction has no 
effect. If the specified alignment 
requires the Location counter to be incre­
mented, one to three no-operation instruc­
tions are generated, each of which uses two 
bytes. 

The typical form of the CNOP instruction 
statement is as follows: 

r--------T-----------T---------------------, 
I Name I Operation I Operand I 
r-------+--------+-------------------~ 
I A I CNOP I Two absolute I 
I sequence 1 lexpressions of 1 
Isymbolorl Ithe form b,w I 
~~!_~~~l _______ l------------~ 

Any symbols used in the expressions in 
the operand field must have been previously 
defined. 

Assume that, the Location Counter is 
currently aligned at a double-word bounda­
ry. Then the CNOP instruction in this 
sequence: 

r------T-----------T----------------------, 
1 Name IOperation I Operand I 
~------+-----------+----------------------~ 
1 1 CNOP I 0, 8 I 
1 1 BALR I 2 , 14 I L-_____ ~ __________ ~ ____________________ J 

has no effect. However, this sequence: 

r------T-----------T----------------------, 
I Name I Operation I Operand I 
~------+-----------+----------------------~ 
I ICNOP 16,8 I 
I IBALR 12,14 I L-_____ ~ ___________ ~ ______________________ J 

causes three branch-on-conditions 
(no-operations) to be generated, thus 
aligning the BALR instruction at the last 
half-word in a double word as follows: 

Operand b specifies at which byte in a 
word or double word the Location Counter is 
to be set; b can be 0, 2, 4, or 6. Operand 
w specifies whether byte b is in a word 
(w=4) or double word (w=8). The following 
pairs of band ware valid: 

r------T-----------T----------------------, 
I Name I Operation I Operand I r-' 
~------+-----------+----------------------i I I BCR I a , a I \,,--' 
I IBCR 10,0 I 

0,4 
2,4 
0,8 _ 
2,8 
4,8 

6,8 

Specifies 

Beginning of a word 
Middle of a word 
Beginning of a double word 
Second half word 'of a double word 
Middle (third half word), of a dou­
ble word 
Fourth half word of a double word 

I IBCR 10,0 I 
I I BALR I 2, 14 I 
l------~--_________ ~ ______________________ J 

After the BALR instruction is generated, 
the Location Counter is at a double-word 
boundary, thereby insuring an unbroken 
instruction flow. 

Note: If the location counter is on an 
odd=nuffibered byte-boundary when a CNOP 
instruction is encountered, normal align­
ment occurs before the CNOP is processed. 

r------------------------------------------------------, 
I Double Word I 
r---------------------------T--------------------------~ 
I Word I Word I 
~-------------~------------+-------------T------------~ 
I Half word I Half word I Half word I Half word I 
~-----~-----+------T----+------T------+------T----i 
I Byte I Byte I Byte I Byte I Byte I Byte I Byte I Byte I 
~ ~ ~ ~------~------~------~-----~---~-~ I ------ ----- --- I 

10,4 2,4 0,4 2,4 I 
10,8 2,8 4,8 6,8 I l ______________________________________________________ J 

Figure 5-5. CNOP Alignment 

56 

/~' 
" 



COpy -- COpy PREDEFINED SOURCE CODING 

The COpy instruction obtains source-
language coding from a system library and 
includes it in the program currently being 
assembled. Under the DOS D Assembler, 10K 
Variant, the coding to be included is ob­
tained from the system source statement 
library. Under the DOS D Assembler, 14K 
Variant, and the DOS F Assembler, the coding 
to be included is obtained from the private 
source statement library, if one is assigned, 
or from the system source library, in that 
order of precedence. Under the TOS D Assem­
bler, 10K and 14K Variants, the coding to 
be included is obtained from the standard 
private library. The form of the COpy in­
struction statement is as follows: 

r----------~----------~-----------------, 
I Name I Operation I Operand I 
r-----------+-~---------+_----------------~ 
INot used, I COpy lOne symbol I 
Imust not I I I 
I be present I I I L-__________ ~ __________ ~ ________________ J 

The operand is a symbol that i~entifies 
the section of coding to be copied. The 
symbol must not be the same as the mnemonic 
operation code of a macro definition in 
the source statement library. 

The assembler inserts the requested 
coding immediately after the COPY statement 
is encountered. The requested coding may 
not contain another COpy statement. 

If identical COPY statements are encoun­
tered, the coding they request is brought 
into the program each time. 

COPYed text is always in the normal 
format and is not governed by ICTL usage. 
See Copy Statements in Section 7 for furth­
er information. The procedure for placing 
source language coding in the system 
library is described in the system Control 
and system service programs publication 
listed in the preface. 

END -- END ASSEMBLY 

The END instruction terminates the assembly 
of a program. It may also designate a 
point in the program or in a separately 
assembled program to which control may be 
transferred after the program is loaded. 
The END instruction must always be the last 
statement in the source program. 

The typical form of the END instruction 
statement is as follows: 

r----------~----------_.-----------------, 
I Name I Operation I Operand I 
r-----------+-----------+_----------------~ 
IA sequence I END I A relocatable 1 
Isymbol or 1 I expression or 1 
Inot present 1 I not present I L-__________ ~ _________ ~-______________ J 

The operand specifies the point to which 
control may be transferred when loading is 
complete. For example: 

r------~-----------T---------------------, 
IName IOperation IOperand 1 
r-------+-----------+---------------------~ 
1 NAME I CSECT 1 I 
I AREA IDS 150F I 
1 BEGIN IBALR 12,0 I 
I I USING 1·,2 I 
I I • 1 I 
I I . I I 
I I . I I 
I lEND I BEGIN I L-_____ ~ ___________ ~ _____________________ J 

NOTE: If macro instructions from the 
Source Statement Library are included 
in an assembly, errors detected during 
macro editing will be flagged after the 
END statement. The error messages do 
not follow the macro instructions, be­
cause the source statements are not 
available to the assembler during macro 
editing. Errors detected while editing 
Programmer Macros will be flagged in­
line. 

Assembler Instruction Statements 57 



PART 3 -- CONDITIONAL ASSEMBLY AND MACRO FACILITIES IN THE ASSEMBLER LANGUAGE 

SECTION 6: INTRODUCTION TO THE CONDITIONAL 
ASSEMBLY AND MACRO FACILITIES 

The DOS/TOS conditional assembly and macro 
facilities are part of the DOS/TOS assem­
bler language.' 

Conditional assembly allows one to spec­
ify assembler language statements which may 
or may not be assembled, depending upon 
conditions evaluated at assembly time. 
conditional assembly statements are used to 
define, set, change, and test values during 
the course of .the assembly itself. 

The conditional assembly instructions 
may be used to vary the sequence of state­
mentsgenerated for each occurrence of a 
macro instruction. Conditional assembly 
instructions may also be used outside 
macro definitions, i.e., among the assem­
bler language statements in the program. 

The macro facilities provide the pro­
grammerwith Cl convenient way of generating 
desired sequence~.ofmachine or certain 
assembler .iristructions many times in one or 
more programs .• ' This is accomplished by 
writing a macro definition. 

\, 

This macro·.definition is written only 
once, and a single statement, a macro 
instruction.statement, is written each time 
a programmer wants to generate the desired 
sequence of statements. 

The macro f'acili ties simplify the coding 
of programs, reduce the chance of program­
ming errors, and ensure that standard se­
quences of statements are used to accomplish 
desired functions. 

THE MACRO INSTRUCTION STATEMENT 

A macro instruction statement (also called 
a macroinstruction> is·a source program 
statement .used to provide information for 
generating machine and assembler instruc­
tions from a macro·definition. The gener­
ated instructions are source statements 
which are then processed by the assembler 
program. 

Three types of macro instructions may be 
written. Each type has a different form of 
operand. They are: 

58 

1. Positional (Sections 7 and 8). 

2. Keyword (Section 10). 

3. Mixed-mode (Section 10). 

Positional macro instruction operands 
are written in a fixed order. 

Keyword macro instruction operands can 
be written in any order. 

Mixed-mode macro instruction operands 
are a combination of both positional and 
keyword operands. That is, certain operand 
entries (positional) must be written in a 
fixed order; other operand entries 
(keyword) can be specified in any order. 

THE MACRO DEFINITION 

Before a macro instruction can be assem­
bled, a macro definition must be available 
to the assembler. 

A macro definition is a set of state­
ments that provide the assembler with: 

1. The name entry, mnemonic operation 
code, and the form of the macro 
instruction operand, and 

2. The sequence of statements the 
assembler uses when the macro 
instruction appears in the source 
program. 

Every macro definition consists of a 
macro definition header statement, a macro 
instruction prototype statement, a sequence 
of model statements, COPY statements, 
MEXIT, MNOTE, or conditional assembly 
instructions, and a macro definition trail­
er statement. 

The macro definition header and trailer 
statements denote the beginning and end, 
respectively, of a macro-definition. 

The macro instruction prototype state­
ment specifies the name entry, mnemonic 
operation code, and the type of the macro 
instruction operand. 

The model statements contained in a 
macro definition may be used by the 
assembler to generate machine instructions 
and certain assembler instructions that 
replace each occurrence of the macro 
instruction. 



The COpy statements may be used to copy 
model statements, MEXIT instructions, MNOTE 
instructions, and conditional assembly in­
structions from a source statement library 
into a macro definition. 

The MEXIT instruction can be used to 
terminate processing of a macro definition. 

The MNOTE instruction can be used to 
generate a message. 

The conditional assembly instructions 
may be used to vary the sequence of 
statements generated for each occurrence of 
a macro instruction. conditional assembly 
instructions may also be used outside 
macro definitions, i.e., among the assem­
bler language statements in the program. 

If a macro definition is in-line with an 
assembly, it is called a programmer macro. 

'SOURCE STATEMENT LIBRARIES 

The same macro definition may be made avail­
able to more than one source program by 
placing the macro definition in the system 
source statement library. The macro 
definition then becomes a system macro. 
This system library is a collection of' 
macro definitions that can be used by all 
the assembler language programs in an in­
stallation. Once a macro definition has 
been placed on the system source statement 
library it may be used by writing a cor­
responding macro instruction in a source 
:r;rogram. Macro definitions must be in the 
system source statement library under the 
same name as the prototype. The procedure 
for placing macro definitions in the sys­
tem source statement library is described 
in the System Control and System Service 
Programs publication listed in the Preface. 

System macro definitions provided by IBM 
are described in the Supervisor and Input/ 
Output Macros publication, also listed in ' 
the Preface. 

A macro definition may be made available 
to a specific assembly by placing the macro 
definition in a private source statement 
library. , If the private source statement 
library is assigned at the time of assembly, 
the macro definitions in the private source 
statement library may be used by writing a 
corresponding macro instruction in a source 
program. The macro definitions in the pri­
vate source statement library must be under 
the same name as the prototype. The pro­
cedure for placing macro definitions in the 
private source statement library is des­
cribed in the System Control and System 
Service Programs publication listed in the 
Preface. 

Editing errors in user-supplied macro 
definitions are foun9 at the time the macro 
is read from the source statement library, 
i.e., after the END card. To determine 
where these errors are, it is necessary to 
punch all such macros, including inner 
macros, and insert them then in the source 
program as programmer macros. To aid in 
debugging it is advisable to run all macros 
as programmer macros before incorporating 
them in a source statement library. 

VARYING THE GENERATED STATEMENTS 

Each time a macro instruction appears in 
the source program, it is replaced by the 
same sequence of assembler language state­
ments. conditional assembly instructions, 
however, may be used to vary the number and 
format of the generated statements. 

VARIABLE SYMBOLS 

A variable symbol is a type of symbol that 
is assigned various values by either th~ 
programmer or the assembler. Thus, var1a­
ble symbols allow different values to be 
assigned to one symbol. When the assembler 
uses a macro definition to determine what 
statements are to replace a macro 
instruction, variable symbols in the model 
statements are replaced with the current 
values assigned to them. 

A variable symbol is written as an 
ampersand followed by from one to seven 
letters and/or digits, the first of which 
must be a letter. 

Types of Variable Symbols 

There are three types of variable symbols: 
symbolic parameters, system variable sym­
bols, and SET symbols. The SET symbols are 
further broken down into SETA symbols, SETB 
symbols, and SETC symbols. The three types 
of variable symbols differ in how they are 
assigned values. 

Assigning Values to Variable Symbols 

Symbolic parameters are assigned valu~s by 
the programmer each time he writes a macro 
instruction. 

System variable symbols are assigned 
values by the assembler each time it proc­
esses a macro instruction. 

Introduction to the Macro Facilities 59 



SET symbols are assigned values by the 
programmer by means of conditional assembly 
instructions. 

Global SET Symbols 

The values assigned to SET symbols in one 
macro definition may be used in other 
macro definitions. All SET symbols used 
for this purpose must be defined as global 
SET symbols. All other SET symbols must be 
defined by the programmer as local SET 
symbols. Local SET symbols and the other 
variable symbols (that is, symbolic param­
et~rs and system variable symbols) are 
19CaI variable symbols. Global SET symbols 
are global variable symbols. 

t;~ 

ORGANIZATION OF THIS PART OF THE 
PUBLICATION 

Sections 7 and ~ describe the basic rules 

60 

for preparing macro definitions and for 
writing macro instructions. 

Section 9 describes the rules for writ­
ing conditional assembly instructions. 

Section 10 describes additional featUres 
including rules for defining glObal SET 
symbols, preparing keyword and mixed-mode 
macro definitions, and writing keyword and 
mixed-mode macro instructions. 

Appendix G contains a reference summary 
of the complete macro facilities. 

Examples of the use of the features of 
the language appear throughout the remain­
der of the publication. These examples 
illustrate the use of particular features. 
However, they are not meant to show the 
full versatility of the~e features. 

c' 



o 

o 

A macro definition consists of: 

1. A mac~o definition header statement. 
2. A macro instruction prototype state­

ment. 
3. Zero or more model statements, COPY 

statements, MEXIT, MNOTE, or condi­
tional assembly instruct,ions. 

4. A macro definition trailer statement. 

Except for MEXIT, MNOTE, and conditional 
assembly instructions, this section of the 
publication describes the statements that 
may be used to prepare macro definitions. 
Conditional assembly instructions are des­
cribed in Section 9. MEXIT and MNOTE 
instructions are described in Section 10. 

Macro-definitions in a source program 
must appear before all PUNCH and REPRO 
statements which appear in the main pro­
gram. Specifically, only the listing con­
trol instructions (EJECT, PRINT, SPACE, and 
TITLE), ICTL and ISEQ instructions, and 
comments statements may occur before the 
macro definitions. All but the ICTL 
instruction may appear between macro 
definitions if there is more than one 
definition in the source program. 

Note: A macro definition cannot appear 
within a macro definition. 

MACRO -- MACRO DEFINITION HEADER 

The macro definition header statement 
denotes the beginning of a macro 
definition. It must be the first statement 
in every macro definition. The form of 
this statement is: 

,------------'.,------------T---------------, 
: Name : Operation : Operand : 
I-------------~------~----+---------------i 
: Not used, : MACRO : Not used, must: 
: must no: : not be present: 
I be present I I I L ____________ ~ ___________ l _______________ l 

MEND -- MACRO DEFINITION TRAILER 

The macro definition trailer statement 
denotes the end of a macro definition. It 
must be the last statement in every macro 
definition. The form of this statement is: 

Page of GC24-3414-7 

Revised May 14, 1970 

by TNL GN33-8076 

SECTION 7: HOW TO PREPARE MACRO DEFINITIONS 

r------------~------------,---------------I 
: Name : Operation : Operand : 
~------------J------------~----------------I 
: A : MEND : Not used, must: 
:' sequence : : not be present: 
I, symbol or : I II 
I I 
t not used : I I L _________________________ ~ _______________ ~ 

This statement also tells the assembler 
to terminate processing of a macro defini­
tion. ~rocessing can be terminated at some 
other point in a macro definition through 
the MEXIT instruction. 

MACRO INSTRUCTION PROTOTYPE 

The macro instruction prototype statement 
(also called the prototype statement) 
specifies the name entry, mnemonic opera­
tion code, and the form of all macro 
instructions that refer to the macro 
definition. It must be the second state­
ment of every macro definition. The 
typical form of this statement is: 

r----------r---------r--------------------. 
: Name : Operation: Operand : 
I, ----- -----1""--------- t" - - ------ - ------------I 

: A symbolic: A symbol : Zero to 100 (200 for : 
: parameter: : F assembler) symbolic: 
: or not I I parameters, separatedl 
I used: : by commas : L __________ L _________ ~ ____________________ ~ 

The symbolic parameters are used in the 
macro definition to represent the name 
entry and operands of the corresponding 
macro instruction. A description of sym­
bolic parameters appears following Model 
Statements. 

The name entry of the prototype state­
ment may be unused or it may contain a 
symbolic parameter. 

The symbol in the operation entry is the 
mnemonic operation code that must appear in 
all macro instructions that refer to this 
macro definition. The mnemonic operation 
code must not be the same as the mnemonic 
operation code of another macro definition 
in the source program or of a machine 
instruction or assembler instruction. 

The operand may contain zero to 100 (200 
for F assembler) symbolic parameters 
separated by commas. 

How to Prepare Macro Definitions 61 



The following is a prototype statement. 

r-------r------------r--------------------. 
: Name : Operation :Operand : 
L-------r------------~---------------------I I I I I I' &NAME I MOVE I &TO, &FROM I L _______ L ____________ L ____________________ ~ 

Alternate Statement Form 

The prototype statement may be written in a 
form different from that used for machine 
or assembler instructions. The normal form 
is described in Part 1 of this publication. 
The alternate form described here allows 
the programmer to write an operand on each 
line, and allows the interspersing of oper­
ands and comments in the statement. 

In the alternate form, as in the normal 
form, the name and operation entries must 
appear on the first line of the statement, 
and at least one blank must follow the 
operation entry on that line. Both types 
of statement forms may be used in the same 
prototype statement. 

The rules for using the alternate state­
ment form are: 

1. If an operand is followed by a comma 
and a blank, and the column after the 
end column contains a nonblank character, 
the operand entry may be continued 
on the next line starting in the 
continue column. More than one oper-
and may appear on the same line. 

2. comments may appear after the blank 
that indicated the end of an operand, 
up to and including the end column. 

3. If the next line starts after the 
continue column, the information 
entered on that line is considered to 
be comments, and the operand field is 
considered terminated. Any subsequent 
continuation lines are considered to 
contain only comments. 

Note: A prototype statement may be 
written on as many continuation lines as is 
necessary to contain 100 (200 for F assem­
bler) operands and associated comments. 

The following examples illustrate: (1) 
the normal statement form, (2) the aleer­
nate statement form, and (3) the combina­
tion of both statement forms. 

62 

1-----------------------------------------1 ' 
: Name : Oper- :operand Comments I : 
: I ation I : l 
I---------L------~------------------------i, 
I NAMEl IOPl IOPERANDl,OPERAND2,OPERANIX: 
I I I D3 THE NORMAL FORM I I l-________ L ______ • ________________________ i_: 

I I I 
: NAME2 IOP2 I OPERANDI, THIS IS THE ALIX: 
I I : OPERAND2, OPERAND 3 , TERNA: XI 
: : I TE STATEMENT : xl 
I I I FORM I I 
, I I I I :---------T------T------------------------T-: 
I NAME3 IOP3 'OPERANDI, THIS IS A COMB:XI 
I I : OPERAND2 ,OPERAND3 ,OPERAN I Xl 
I : : D4 ,OPERAND5 INATION OF : XI 
I I I BOTH STATEMENT FORMATS : I I _________ l ______ l ________________________ .~ 

MODEL STATEMENTS 

Model statements are the macro definition 
statements from which the desired sequences 
of machine instructions and certain assem­
bler instructions are generated. Zero or 
more model statements may follow the proto­
type statement. A model statement consists 
of one to four entries. They are, from 
left to right, the name, operation, oper­
and, and comments entries. 

The name entry may be unused, or it may 
contain an ordinary symbol, a sequence 
symbol or a variable symbol, depending on 
the particular statement. (Neither * nor 
. * may be substi tuted in the begin column 
of a model statement.) 

The operation entry may contain any 
machine, assembler, or macro instruction 
mnemonic operation code, except COPY, END, 
ICTL, ISEQ, and PRINT; or it may contain a 
variable symbol. Variable symbols may not 
be used to generate the following mnemonic 
operation codes, nor may variable symbols 
be used in the name and operand entries of 
these instructions: COPY, END, ICTL, or 
ISEQ. Variable symbols may not be used to 
generate CSECT, DSECT, PRINT, REPRO, START, 
MACRO, MEND, MEXIT, LCLA, LCLB, LCLC, GBLA, 
GBLB, GBLC, SETA, SETB, SETC, AIF, AIFB, 
AGO, AGOB, ANOP, or macro instruction mne­
monic operation codes. Variable symbols 
may not be used to generate the name and 
operation code of the ACTR instruction. 

Variable symbols may also be used out­
side of macro definitions to generate mne­
monic operation codes with the preceding 
restrictions. 

Although COpy statements may not be used 
as model statements, they may be part of a 
macro definition. The use of COpy state­
ments is described under COpy Statements. 

i, 

(' 
\ , 
'--,/ 



--------, 
\, 

~) 

The operand entry may contain ordinary 
symbols or variable symbols. After sub­
stitution, the operand must not be greater 
than 127 (255 for F assembler) characters. 
Model statement fields must follow the 
rules for paired apostrophes, ampersnads, 
and blanks, as macro-instruction operands. 
(See "Macro-Instruction Operands" in 
section 8.) Sequence symbols must appear 
in the operand entry of AGO and AIF in­
structions. 

The comments entry may contain any 
combination of characters. Substitution by 
the use of variable symbols is not allowed. 

If a REPRO statement is used as a model 
statement, it must be explicitly written in 
the operation entry. It may not be gener­
ated as a result of replacing a variable 
symbol by its value. Also, the line fol­
lowing it may not contain variable symbols. 
substituted statements may not have blanks 
in any fields except between paired apos­
trophes. They may not have leading blanks 
in the name or operand fields. 

SYMBOLIC PARAMETERS 

A symbolic parameter is a type of variable 
symbol consisting of an ampersand followed 
by one to seven letters and/or numbers, the 
first of which must be a letter. Symbolic 
parameters appear in prototype and model 
statements. They are assigned values by 
the programmer when he writes a macro­
instruction. The programmer may vary 
statements that are generated for each 
occurrence of a macro-instruction by vary­
ing the values assigned to symbolic param­
eters. 

The programmer should not use &SYS as 
the first four characters of a symbolic 
parameter. 

The following are valid symbolic param­
eters: 

& READER 
&A23456 
&X4F2 

&LOOP2 
&N 
&S4 

The following are invalid symbolic pa­
rameters: 

CARD AREA 

&256B 

&AREA2456 

&BCD (34) 

(first character is not an 
ampersand) 

(first character after 
ampersand is not a 
letter) 

(more than seven characters 
after the ampersand) 

(contains a special charac­
ter other than initial 
ampersand) 

&IN AREA (contains a special charac­
ter, i.e., blank, other 
than initial ampersand) 

The following is an example of a macro­
definition. Note that the symbolic 
parameters in the model statements appear 
in the prototype statement. 

r-------T-----------T------------, 
I Name I Operation I Operand I 
~-------+-----------+------------~ 

Header I I MACRO I I 
Prototypel&NAME IMOVE I &TO,&FROM I 
Model I&NAME 1ST I 2, SAVE I 
Model I I L 12, &FROM I 
Model liST 12,&TO I 
Model I IL I 2, SAVE I 
Trailer I I MEND I I L _______ ~ __________ _i ____________ J 

Symbolic parameters in model statements 
are replaced by the characters of the 
macro-instruction operand that correspond 
to the symbolic parameters. 

In the following example the characters 
HERE, FIELDA, and FIELDB of the MOVE macro­
instruction correspond to the symbolic 
parameters &NAME, &TO, and &FROM, 
respectively, of the MOVE prototype state­
ment. 

r------T-----------T----------------------, 
I Name IOperation I Operand I 
~------+-----------+----------------------~ 
I HERE I MOVE IFIELDA,FIELDB I L-_____ ~ ___________ ~ ______________________ J 

Any occurrence of the symbolic parame­
ters & NAME, &TO, and &FROM in a model 
statement will be replaced by the charac­
ters HERE, FIELDA, and FIELDB, respective­
ly. If the preceding macro-instruction was 
used in a source program, the following 
assembler language statements would be 
generated: 

r------T-----------T----------------------, 
I Name I Operation I Operand I 
~------+-----------+----------------------~ 
I HERE 1ST I 2, SAVE I 
I I L I 2, F IELDB I 
liST 12,FIELDA I 
I I L I 2, SA VB I L-_____ ~ ___________ ~ ______________________ J 

The example below illustrates another 
use of the MOVE macro-instruction using 
different operands than those that appear 
in the preceding example. 

How to Prepare Macro-Definitions 63 



r-------T-----------.------------, 
I Name I Operation I Operand I 
~-------+-----------+------------~ 

Macro ILABEL IMOVE I IN, OUT I 
~-------+-----------+-------.----~ 

Generated I LABEL 1ST I 2, SAVE I 
Generated I IL 12,OUT I 
Generated I 1ST 12,IN I 
Generated I IL 12,SAVE I L _______ ~ ___________ ~ ___________ J 

If a symbolic parameter appears in the 
comments field of a model statement, it is 
not replaced by the corresponding charac­
ters of the macro-instruction. 

Concatenating Symbolic Parameters with 
Other Characters or Other Symbolic 
Parameters 

Concatenation is the process of linking or 
joining together in a sequence, with a 
specified order. To concatenate is to join 
together in a specified order. 

If a symbolic parameter in a model 
statement is immediately preceded or fol­
lowed by other characters or another sym­
bolic parameter, the characters that· cor­
respond to the symbolic parameter are com­
bined, in the order given, in the generated 
statement, with the other characters or the 
characters that correspond to the other 
symbolic parameter. This process is called 
concatenation. 

The macro-definition, macro-instruction, 
and generated statements in the following 
example illustrate these rules. 

r-----.-------~---------------, 
IName IOperationlOperand I 
~-----+---------+----------------~ 

Header I I MACRO I I 
Prototype I & NAME I MOVE I&TY,&P,&TO,&FROMI 
Model I&NAMEIST&TY I 2, SAVEAR EA I 
Model I IL&TY 12,&P&FROM I 
Model I I ST&TY 12, &P&TO I 
Model I I L&TY 12, SAVEAREA I 
Trailer I I MEND I I 

~-----+--------+----------------~ 
Macro IHERE IMOVE ID,FIELD,A,B I 

~-----+---------+---------------~ 
GeneratedlHERE ISTD 12,SAVEAREA I 
Generated I ILD 12,FIELDB I 
Generated I ISTD 12,FIELDA I 
Generated I ILD 12,SAVEAREA I L _____ ~ _________ ~ ________________ J 

The symbolic parameter &TY is used in 
each of the four model statements to vary 
the mnemonic operation code of each of the 

64 

generated statements. The character D in 
the macro-instruction corresponds to sym­
bolic parameter &TY. Since &TY is preceded 
by other characters (i.e., ST and L) in the 
model statements, the character that cor­
responds to &TY (i.e., D) is concatenated 
with the other characters to form the oper­
ation fields of the generated statements. 

The symbolic parameters &P, &TO, and 
&FROM are used in two of the model state­
ments to vary part of the operand fields of 
the corresponding generated statements. 
The characters FIELD, A, and B correspond 
to the symbolic parameters &P, &TO, and 
&FROM, respectively. Since &P is followed 
by &FROM in the second model statement, the 
characters that correspond to them (i.e., 
FIELD and B) are concatenated to form part 
of the operand field of the second generat­
ed statement. Similarly, FIELD and A are 
concatenated to form part of the operand 
field of the third generated statement. 

If the programmer wishes to concatenate 
a symbolic parameter with a letter, digit, 
left parenthesis, or period following the 
symbolic parameter he must immediately 
follow the symbolic parameter with a per­
iod. A period is optional "if the symbolic 
parameter is to be concatenated with anoth­
er symbolic parameter, or a special charac­
ter other than a left parenthesis or anoth­
er period that follows it. 

If a symbolic parameter is immediately 
followed by a period, then the symbolic 
parameter and the period are replaced by 
the characters that correspond to the sym­
bolic parameter. A period that immediately 
follOWS a symbolic parameter does not 
appear in the generated statement. 

The following macro-definition, macro­
instruction, and generated statements 
illustrate these rules. 

Header 
Prototype 
Model 
Model 
Model 
Model 
Trailer 

Macro 

Generated 
Generated 
Generated 
Generated 

r-----T---------T---------------, 
IName I Operation I Operand I 
~-----+---------+---------------~ 
I I MACRO I I 
I & NAME I MOVE I&P,&S,&Rl,&R2 I 
I&NAMEIST I&Rl,&S.(&R2) I 
I IL I&Rl,&P.B I 
liST I&Rl,&P.A I 
I IL I&Rl,&S.(&R2) I 
I I MEND I I 
~-----+---------+---------------; 
IHERE IMOVE IFIELD,SAVE,2,4 I 
~-----+---------+---------------~ 
IHERE 1ST 12,SAVE(4) I 
I IL 12,FIEIDB I 
I 1ST /2, FIELDA I 
I I L I 2, SP. VE ( 4) / L _____ ~ _________ ~ _______________ J 

\ ..... ,,/ 



o 

The symbolic parameter &P is used in the 
second and third model statements to vary 
part of the operand field of each of the 
corresponding generated statements. The 
characters FIELD of the macro instruction 
correspond to &P. Since &P is to be conca­
tenated with a letter (i.e., B and A) in 
each of the statements, a period immediate­
ly follows &P in each of the model state­
ments. The period does not appear in the 
generated statements. 

Similarly, symbolic parameter &S is used 
in the first and fourth model statements to 
vary the operand fields of the correspond­
ing generated statements. &S is followed 
by a period in each of the model state­
ments, because it is to be concatenated 
with a left parenthesis. The period does 
not appear in the generated statements. 

Comments Statements 

A model statement may be a comments state­
ment. A comments statement consists of an 
asterisk in the begin column, followed by 
comments. The comments statement is used 
by the assembler to generate an assembler 
language comments statement, just as other 
model statements are used by the assembler 
to generate assembler language statements. 

The programmer may also write comments 
statements in a macro definition which are 
not to be generated. These statements must 
have a period in the begin column, immedi­
ately followed by an asterisk and the com­
ments. 

The first statement in the following 
example will be used by the assembler to 
generate a comments statement; the second 
statement will not. 

r-----------------------------------------, 
I Name loperation 1 operand 1 

~------------------------------------~----~ 
I * THIS STATEMENT WILL BE GENERATED I 
1.* THIS ONE WILL NOT BE GENERATED I L _________________________________________ J 

The use of variable symbols for substi­
tution in comments statements is not 
allowed. The * or .* of a comment state­
ment, therefore, cannot be created by sub­
stitution for a variable symbol. 

COpy STATEMENTS 

A COpy statement is not a model statement. 
COpy statements may be used to copy model 
statements and MEXIT, MNOTE, and condi­
tional assembly instructions into a macro 
definition from a system library, just as 
they may be used outside macro definitions 
to copy source statements into an assembler 
language program. Under the DOS D Assembler, 
10K Variant, the coding to be included is 
obtained from the system source statement 
library. Under the DOS D Assembler, 14K 
Variant, and the DOS F Assembler, the coding 
to be included is obtained from the private 
source statement library, if one is assigned, 
or from the system source library, in that 
order of precedence. Under the TOS D Assem­
bler, 10K and 14K Variants, the coding to 
be included is obtained from the standard 
private library. 

The form of this statement is: 

r-----------T-----------T-----------------, 
I Name I Operation I Operand I 
~-----------+-----------+-----------------~ 
INot used, I COpy I A symbol I 
Imust not I 1 I 
Ibe present I I I L-__________ ~ __________ i_ ________________ J 

The symbol in the operand entry iden­
tifies the section of coding to be copied. 
The symbol must not be the same as the 
operation mnemonic of a macro definition 
in a source statement library. Any 
statement that may be used in a macro 
definition may be part of the copied 
coding, except MACRO, MEND, COPY, and 
prototype statements. 

statements COPYed into the program must 
obey the restrictions on ordering of state­
ments. For example, COpy must be between 
global and local declarations in the macro 
definition or in the main program if the 
COPYed text contains global and local· 
declarations. 

How to Prepare Macro Definitions 65 



SECTION 8: HOW TO WRITE MACRO INSTRUCTIONS 

The typical form of a macro instruction is: 

r----------T-----------.------------------, 
I Name I Operation I operand I 
~----------+-----------+------------------~ 
IA symbol, IMnemonic IZero to 100 (200 I 
I sequence I operation Ifor F assembler) I 
Isymbol, orlcode I operands , separ- I 
Inot used I lated by commas I L __________ ~ ___________ ~ __________________ J 

The name entry of the macro instruction 
may contain a symbol. The symbol will not 
be defined in the generation process unless 
a symbolic parameter appears in the name 
entry of the prototype and the same param­
eter appears in the name entry of a gener­
ated model statement. 

The operation entry contains the mnemon­
ic operation code of the macro instruction. 
The mnemonic operation code must be the 
same as the mnemonic operation code of a 
macro definition in the source program or 
in a source statement library. 

The macro definition with the same mne­
monic operation code is used by the assem­
bler to process the macro instruction. 
Under the DOS D Assembler, 10K Variant, 
the macro definition is obtained from an 
inline programmer macro definition or from 
the system source statement library, in 
that order of precedence. Under the DOS D 
Assembler, 14K Variant, and the DOS F Assem­
bler, the macro definition is obtained from 
an inline programmer macro definition, a 
private source statement library, if one is 
assigned, or the system source statement 
library, in that order of precedence. Under 
the TOS D Assembler, 10K and 14K Variants, 
the macro definition is obtained from an 
inline programmer macro definition or from 
the standard private library, in that order 
of precedence. 

The placement and order of the operands 
in the macro instruction may be determined 
by the placement and order of the symbolic 
parameters in the operand entry of the 
prototype statement. 

MACRO INSTRUCTION OPERANDS 

Any combination of up to 127 (255 for assem­
bler F) characters may be used as a macro 
instruction operand provided that the fol­
lowing rules concerning apostrophes, 
parentheses, equal signs, ampersands, 
commas, and blanks are observed. 

66 

Paired Apostrophes: An operand may contain 
one or more sequences of characters, each 
of which is enclosed within single apos­
trophes. (The sequence of characters 
itself may contain an even number of 
apostrophes). The single apostrophes, 
which enclose the sequence of characters, 
are called paired apostrophes. 

The first sequence of characters starts 
with the first apostrophe in the operand. 
Subsequent character sequences start with 
the first apostrophe after the apostrophe 
that ends the previous sequence of charac­
ters. 

In the following example, there are two 
sequences of characters enclosed within 
single apostrophes. Therefore, there are 
two sets of paired apostrophes: the first 
and fourth apostrophes, and the fifth and 
sixth apostrophes. 

'A"B'C'D' 

An apostrophe (not within paired 
apostrophes), immediately followed by a 
letter, and immediately preceded by the 
letter L (when L is preceded by any special 
character other than an ampersand), is not 
considered in determining paired apostroph­
es. For instance, the apostrophe in the 
following example is not considered. 

L'SYMBOL 
'AL'SYMBOL' is an invalid operand. 

Paired Parentheses: There must be an equal 
number of left and right parentheses. The 
nth left parenthesis must appear to the 
left of the nth right parenthesis. 

Paired parentheses are a left parenthe­
sis and a following right parenthesis with­
out any other parentheses intervening. If 
there is more than one pair, each addition­
al pair is determined by removing any pairs 
already recognized and reapplying the above 
rule for paired parentheses. For instance, 
in the following example the first and 
fourth, the second and third, and the fifth 
and sixth parentheses are each paired pa­
rentheses. 

(A(B)C)D{E) 

A parenthesis that appears between 
paired apostrophes is not considered in 
determining paired parentheses. For 
instance, in the following example the 
middle parenthesis is not considered. 

( ') , ) 

c 

c' 



o 

Equal Signs: An equal sign can only occur 
as the first character in an operand or 
between paired apostrophes or paired pa­
rentheses. The following examples illus­
trate these rules. 

=F' 32' 
'C=O' 
E(F=G) 

Ampersands: Except as noted under "Inner 
Macro Instructions," each sequence of con­
secutive ampersands must be an even number 
of ampersands. The following example 
illustrates this rule. 

&&123&&&& 

Commas: A comma indicates the end of an 
operand, unless it is placed between paired 
apostrophes or paired parentheses. The 
following example illustrates this rule. 

(A,B)C',' 

Blanks: Except as noted under Statement 
~, a blank indicates the end of the 
operand entry, unless it is placed between 
paired apostrophes. The following example 
illustrates this rule. 

The following are valid macro 
instruction operands: 

SYMBOL 
123 
X'189A' 
• 
L'NAME 
'TEN = 10' 
'COMMA IS ,. 

A+2 
(TO(S),FROM) 
0(2,3) 
=F'4096' 
AB&&9 
'PARENTHESIS IS )' 
'APOSTROPHE IS'" 

The following are invalid macro 
instruction operands: 

W'NAME 
5A)B 

(15 B) 

'ONE' IS '1' 

STATEMENT FORM 

(odd number of apostrophes ) 
(nUmber of left parentheses 

does not equal number of 
right parentheses) 

(blank not placed between 
paired apostrophes ) 

(blank not placed between 
paired apostrophes ) 

Macro in~tructions may be written using 
the same alternate form that can be used to 
write prototype statements. If this form 
is used, a blank does not always indicate 
the end of the operand entry. The 
alternate form is described in Section 7, 
under the subsection "Macro Instruction 
Prototype. " 

OMITTEO OPERANDS 

If an operand that appears in the prototype 
statement is omitted from the macro 
instruction, then the comma that would have 
separated it from the next operand must be 
present. If the last operand(s) is omitted 
from a macro instruction, then the comma(s) 
separating the last operand(s) from the 
next previous operand may be omitted. 

The following example shows a macro 
instruction preceded by its corresponding 
prototype statement. The macro instruction 
operands that correspond to the third and 
sixth operands of the prototype statement 
are omitted in this example. 

r------T-----------T----------------------, I Name loperation I operand , 
r------+-----------+----------------------~ 
I 1 EXAMPLE I&A,&B,&C,&D,&E,&F , 
I I EXAMPLE I 17,*+4"AREA,FIELD(6) , L ______ ~ ___________ ~ ______________________ J 

If the symbolic parameter that 
corresponds to an omitted operand is used 
in a model statement, a null character 
value (not a blank) replaces the symbolic 
parameter in the generated statement, i.e., 
in effect the symbolic parameter is 
removed. 

For example, the first statement below 
is a model statement that contains the 
symbolic parameter &C. If the operand that 
corresponds to &C was omitted from the 
macro instruction, the second statement 
below would be generated from the model 
statement. 

r----T ---.,.----------------, 
IName 'Operation IOperand I 
r------+----------+ ----------------~ I IMVC ITHERE&C.25,THIS I 
I IMVC I THERE25, THIS I L ______ ~ ___________ ~ ____________________ J 

OPERAND SUBLISTS 

An operand of a macro instruction may be a 
sUblist. 

Sublists provide the programmer with a 
convenient way to refer to: (1) a collec­
tion of macro instruction operands as a 
single operand, or (2) a single operand in 
a collection of operands. 

A sublist consists of one or more oper­
ands (suboperands) separated by commas and 
enclosed in paired parentheses. The entire 
sublist, including the parentheses, is 
considered to be one macro instruction 
operand. 

How to Write Macro Instructions 67 



Page of GC24-3414-7 
Revised August 21, 1970 
By TNt GN33-8087 

A suboperand is always treated as a 
character string. It is not possible to 
pass a suboperand containing a sublist to 
an inner macro instruction (a macro instruc­
tion used as a model statement in a macro 
definition). The inner macro would regard 
the operand as a character string during 
generation. 

Omitted suboperands are handled in the 
same way as omitted operands. If e) 
appears as an operand, however, it is 
treated as a character string, not as a 
sublist with all suboperands omitted. 

If a macro instruction is written in the 
alternate statement format, each sublist 
operand may be written on a separate line; 
the macro instruction may be written on as 
many lines as there are operands, including 
sublist operands. 

The limit of 127 characters (255 for 
assembler F) applies to an entire sublist 
including sub-operands, parentheses, and 
commas within these parentheses. 

If &Pl is a symbolic parameter in a 
prototype statement, and the corresponding 
operand of a macro-instruction is a sub­
list, then &Pl(n) may be used in a model 
statement to refer to the nth operand of 
the sublist, where n may be any arithmetic 
expression allowed in a SETA instruction. 
The SETA instruction is described in ~ 
tion 9. If &Pl is a symbolic parameter, 
and the corresponding operand of a macro 
instruction is a sublist, then &Pl refers 
to the entire sublist (including 
parentheses). 

If the sublist notation is used, but the 
operand is not a sublist, then &Pl(l) refers 
to the operand and &Pl(2) through &Pl(lOO) 
(&Pl(200) for assembler F) refer to null 
character value. If an operand has the 
form (), it is treated as a character 
string and not as a sublist. 

'For example, consider the following 
macro definition, macro instruction, and 
generated statements. 

r------~-----~---------------, I Name \ Operation I Operand I 
~------t---------t---------------i 

Header 1 1 MACRO I \ 
Prototype I \ADDNUM I &NUM, &REG, &AREA I 
Model I I L I &REG, &NUM(l) 1 
Model I IA I&REG,&NUM(2) I 
Model 1 \A I&REG,&NUM(3) I 
Model liST I &REG, &AREA 1 
Trailer 1 I MEND I I 

~------t---------+---------------i 
Macro \ IADONOM I (A,B,C) ,6,SUM l 
Generated I I L 16, A \ 
Generatedl IA 16,B I 
Generated I IA 16,C I 
Generated I 1ST 16,SUM 1 L ______ ~ ________ _i _______________ J 

68 

The operand of the macro instruction 
that corresponds to symbolic parameter &NUM 
is a sublist. One of the operands in the 
sublist is referred to in the operand entry 
of three of the model statements. For 
example, &NUMel) refers to the first oper­
and in the sublist corresponding to symbol­
ic parameter &NUM. The first operand of 
the sublist is A. Therefore, A replaces 
&NUM(l) to form part of the generated 
statement. 

Note: When referring to an operand in a 
sublist, the left parenthesis of the sub­
list notation must immediately follow the 
last character of the symbolic parameter, 
e.g., &NOMel). A period should not be 
placed between the left parenthesis and the 
last character of the symbolic parameter. 

A period may be used between these two 
characters only when the programmer wants . 
to concatenate the left parenthesis with 
the characters that the symbolic parameter 
represents. The following example shows 
what would be generated if a period 
appeared between the left parenthesis and 
the last character of the symbolic parame­
ter in the first model statement of the 
above example. 

r----T---------T-----------------, 
lNamelOperationlOperand I 
~----t---------t-----------------i 

Prototype I IADDNUM I&NUM,&REG,&AREA 1 
'( Model I I L I &REG, &NUM. (1) I 

~----+---------t-----------------i 
Macro 1 I ADDNUM I (A,B,C), 6, SUM I 

r----t---------t-----------------i 
Generated I IL 16,eA,B,C)(1) I L ____ ~ _________ ~ _________________ J 

The symbolic parameter &NUM is used in 
the operand entry of the model statement. 
The characters (A,B,C) of the macro 
instruction correspond to &NUM. Since &NUM 
is immediately followed by a period, &NUM 
and the period are replaced by (A,B,C). 
The period does not appear in the generated 
statement. The resulting generated 
statement is an invalid assembler language 
statement. 

INNER MACRO INSTRUCTIONS 

A macro instruction may be used as a model 
statement in a macro defini tion. Macro 
instructions used as model statements are 
called inner macro instructions. 

A macro instruction that is not used as 
a model statement is referred to as an 
outer macro instruction. 

(~~ 
... / 

r",\ 
( ) 
\.....j 



o 

Any symbolic parameters used in an inner 
macro-instruction are replaced by the 
corresponding operands of the outer macro­
instruction. 

The macro-definition corresponding to an 
inner macro-instruction is used to generate 
the statements that replace the inner 
macro-instruction. 

The ADDNUM macro-instruction of the 
previous example is used as an inner macro­
instruction in the following example. 

The inner macro-instruction contains two 
symbolic parameters, &S and &T. The 
characters (X,Y,Z) and J of the macro­
instruction correspond to &S and &T, 
respectively. Therefore, these characters 
replace the symbolic parameters in the 
operand entry of the inner macro­
instruction. 

The assembler then uses the macro­
definition that corresponds to the inner 
macro-instruction to generate statements to 
replace the inner macro-instruction. The 
fourth through seventh generated statements 
have been generated for the inner macro­
instruction. 

r----T--------~-----------------, 
IName IOperationl Operand I 
~---+-------+---------------~ 

Header I 1 MACRO I 1 
prototype ICOMP I&Rl,&R2,&S,&T,&U 1 
Model ISR I&Rl,&R2 I 
Model I C I &R1, &T I 
Model IBNE I &U I 

Inner 

Model 
Trailer 

Outer 

1---------+--------, 1 
IADDNUM I&S,12,&Tl I 
l-------+--------J 1 

&U IA I&Rl,&T I 
I MEND 1 I 
1 MACRO 1 1 
IADDNUM I&NUM,&REG,&AREA 1 
IL I&REG,&NUM(l) I 
IA I&REG,&NUM(2) I 
IA l&REG,&NUM(3} I 
1ST I&REG,&AREA I 
I MEND I I 

t----+---------+-----------------~ 
IK ICOMP 11 0,11,(X,Y,Z),J,KI 
~----+---------+-----------------~ 

Generated I ISR 110,11 1 
Generated I Ie 110,J 1 
Generated I IBNE IK 1 

I 1---------+-----, I 
Generated I IL 112,X 1 1 
Generated I IA 112,Y I I 
Generatedl IA 112,Z 1 I 
Generated I 1ST l12,J I I 

1 I-------+-----J I 
GeneratedlK IA 110,J 1 L ____ ~ ________ ~ _________________ J 

Note: An ampersand that is part of a 
symbolic parameter is not considered in 
determining whether a macro-instruction 
operand contains an even number of 
consecutive ampersands. 

LEVELS OF MACRO-INSTRUCTIONS 

A macro-definition that corresponds to an 
outer macro-instruction may contain any 
number of inner macro-instructions. The 
outer macro-instruction is called a first 
level macro-instruction. Each of the inner 
macro-instructions is called a second level 
macro-instruction. 

The macro-definition that corresponds to 
a second level macro-instruction may con­
tain any number of inner macro­
instruc·tions. These macro-instructions are 
called third level macro-instructions, etc. 

The number of levels of macro­
instructions that may be used depends upon 
the complexity of the macro-definition and 
the amount of storage available. This is 
described in detail in Appendix H. 

How to Write Macro-Instructions 69 



SECTION 9: HOW TO WRITE CONDITIONAL ASSEMBLY INSTRUCTIONS 

The conditional assembly instructions allow 
the programmer to: (1) define and assign 
values to SET symbols that can be used to 
vary parts of generated statements; and (2) 
vary the sequence of generated statements. 
Thus, the programmer can use these 
instructions to generate many different 
sequences of statements from the same 
macro-definition. 

There are 13 conditional assembly 
instructions, 10 of which are described in 
this section. The other three conditional 
assembly instructions -- GBLA, GBLB, and 
GBLC -- are descr ibed i.n Section 10. The 
instructions described in this section are: 

LCIA 
LCLB 
LCLC 

SETA 
SETB 
SETC 

AIF 
AGO 
ACTR 

ANOP 

The primary use of the conditional 
assembly instructions is in macro­
definitions. However, all of them may be 
used in an assembler language source 
program. 

Where the use of an instruction outside 
macro-definitions differs from its use 
within macro-definitions, the difference is 
described in the subsequent text. 

The LCLA, LCLB, and LCLC instructions 
are used to define and assign initial 
values to local SET symbols. 

The SETA, SETB, and SETC instructions 
may be used to assign arithmetic, binary, 
and character values, respectively, to SET 
symbols. The SETB instru.ction is described 
after the SETA and SETC instructions, 
b,ecause the operand of the SETB instruction 
is a combination of the operands of the 
SETA and SETC instructions. 

The AIF, AGO, and ANOP instructions may 
be used in conjunction with sequence sym­
bols to vary the sequence in which state­
ments are assembled. The programmer can 
test attributes assigned by the assembler 
to symbols or macro-instruction operands to 
determine which statements are to be proc­
essed. The ACTR instruction may be used to 
limit the number of AlP and AGO branches 
executed in any assembly. 

Examples illustrating the use of condi­
tional assembly instructions are included 
throughout this section. A chart summariz­
ing the elements that can be used in each 
instruction appears at the end of this 
section. 

70 

SET SYMBOLS 

SET symbols are one type of variable sym­
bol. The symbolic parameters discussed in 
Section 7 are another type of variable 
symbol. SET symbols differ from symbolic 
parameters in three ways: (1) where they 
can be used in an assembler language source 
program, (2) how they are assigned values, 
and (3) how the values assigned to them can 
be changed. 

Symbolic parameters can only be used in 
macro-definitions, whereas SET symbols can 
be used inside and outside macro­
definitions. 

SET symbols are assigned values by SETA, 
SETB, and SETC conditional assembly 
instructions and by local or global dec­
larations. 

Each symbolic parameter is assigned a 
single value for one use of a macro­
definition, whereas the values assigned to 
each SETA, SETB, and SETC symbol are not so ~ 
restricted. ( 

Defining SET Symbols 

SET symbols must be defined by the 
programmer before they are used. When a 
SET symbol is defined it is aSSigned an 
initial valUe. SET symbols may be assigned 
new values by means of the SETA, SETB, and 
SETC instructions. A SET symbol is defined 
when it appears as an operand of an LeLA, 
LCLB, or LCLe instruction. 

Using Variable Symbols 

The SETA, SETB, and SETC instructions may 
be used to change the values assigned to 
SETA, SETB, and SETC symbols, respectively. 
When a SET symbol appears in the name or 
operand entry of a statement, the current 
value of the SET symbol (i.e., the last 
value assigned to it) replaces the SET 
symbol in the statement. When a SETC sym-
bol appears in the operation entry of a 
statement, the current value of the SETC C' 
symbol replaces the SET symbol in the ..... / 
statement. 



For example, if &A is a symbolic parame­
ter, and the corresponding characters of 
the macro-instruction are the symbol HERE, 
then HERE replaces each occurrence of &A in 
the macro-definition. However, if &A is a 
SET symbol, the value assigned to &A can be 
changed, and a different value can replace 
various occurrences of &A in the macro­
definition. 

The same variable symbol may not be used 
as a symbolic parameter and as a SET symbol 
in the same macro-definition. 

The following illustrates this rule. 

r-----~-----------T---------------------, 
I Name \ operation I operand I 
~-------+-----------+---------------------~ 
I&NAME \ MOVE I&TO,&FROM I 
L _______ ~-__________ ~---------------------J 

If the statement above is a prototype 
statement, then &NAME, &TO, and &FROM may 
not be used as SET symbols in the macro­
definition. 

The same variable symbol may not be used 
as two different types of SET symbols in 
the same macro-definition. Similarly, the 
same variable symbol may not be used as two 
different types of SET symbols outside 
macro-definitions. 

For example, if &A is a SETA symbol in a 
macro-definition, it cannot be used as a 
SETC symbol in that definition. Similarly, 
if &A is a SETA symbol outside macro­
definitions, it cannot be used as a SETC 
symbol outside macro-definitions. 

The same variable symbol if declared 
local may be used in two or more macro­
definitions and outside macro-definitions. 
If such is the case, the variable symbol 
will be considered a different variable 
symbol each time it is used. 

For example, if &A is a variable symbol 
(either SET symbol or symbolic parameter) 
in one macro-definition, it can be used as 
a variable symbol (either SET symbol or 
symbolic parameter) in another definition. 
Similarly, if &A is a variable symbol (SET 
symbol or symbolic parameter) in a rnacro­
definition, it can be used as a SET symbol 
outside macro-definitions. 

All variable symbols may be concatenated 
with other characters in the same way as 
symbolic parameters. The rules for 
concatenation are .in Section 7 under toe 
sUbse·ction Model Statements. 

Variable symbols in macro-instructions 
are replaced by the values assigned to 
them, immediately prior to the start of 

processing the definition. If a SET symbol 
is used in the operand entry of a macro­
instruction, and the value assigned to the 
SET symbol is in the form of sUblist 
notation, the operand is not considered a 
sUblist. 

ATTRIBUTES 

The assembler assigns attributes to macro­
instruction operands and to symbols in the 
program. These attributes may be referred 
to only in conditional assembly 
instructions. 

There are six kinds of attributes. They 
are: type, length, scaling, integer, 
count, and number. 

If an outer macro-instruction operand is 
a symbol before substitution, then the 
attributes of the operand are the same as 
the corresponding attributes of the symbol. 
The symbol must appear in the name entry of 
an assembler language statement or in the 
operand entry of an EXTRN statement in the 
program. The statement must be outside 
macro-definitions and must not contain any 
variable symbols. 

If an inner macro-instruction operand i 
a symbolic parameter, then attributes of 
the operand are the same as the attributes 
of the corresponding outer macro­
instruction operand. 

Each attribute has a notation associated 
with it. The notations are: 

Attribute 
Type 
Length 
Scaling 
Integer 
Count 
Number 

Notation 
T' 
L' 
S' 
I' 
K' 
N' 

If a macro-instruction operand is a 
sUblist, the programmer may refer to the 
attributes of either the sublist or each 
operand in the sublist. The type, length, 
scaling, and integer attn butes of a 
sublist are the same as the corresponding 
attributes of the first operand in the 
sublist. 

All the a ttributes of macro-instruction 
operands may be referred to in conditional 
assembly instructions within macro­
definitions. However, only the type, 
length, scaling, and integer attributes of 
symbols may be referred to in conditional 
assembly instructions outside macro- defi­
nitions. Symbols appearing in the name 
entry of generated statements are not 
assigned attributes. 

Writing Conditional Assembly Instructions 71 



Page of GC24-3414-7 
Revised August 21, 1970 
By TNL GN33-B087 

The programmer may refer to an attribute 
in the following ways: 

1. In a statement that is outside macro­
definitions, he may write the notation 
for the attribute immediately followed 
by a symbol. (E.g., T'NAME refers to 
the type attribute of the symbol NAME.) 

2. In a statement that is in a macro­
definition, he may write the notation 
for the attribute immediately followed 
by a symbolic parameter. (E.g., 
L"NAME refers to the length attribute 
of the characters in the macro­
instruction that correspond to symbolic 
parameter 'NAME; L"NAME(2) refers to 
the length attribute of the second 
operand in the sublist that corresponds 
to symbolic parameter &NAME.) 

Type Attribute (T') 

The type attribute of a macro-instruction 
operand Or a symbol is a letter. 

The programmer may refer to a type 
attribute in the operand of a SETC instruc­
tion, or in character relations in the 
operands of SETS or AIF instruction, or in 
other instructions where use of the charac­
ter is valid. 

The following letterS are used for sym­
bols that name DC and OS statements and for 
outer macro-instruction operands that are 
symbols that name DC or DS statements. 

A 

B 
C 

·0 

E 

F 

G 

H 

K 

P 
R 

S 

v 

x 
y 

Z 

72 

A-type address constant, 
implied length, aligned. 
Binary constant. 
Character constant. 
Long floating-point constant, 
implied length, aligned. 
Short floating-point constant, 
implied length, aligned. 
Full-word fixed-point constant, 
implied length, aligned. 
Fixed-point constant, explicit 
length. 
Half-word fixed-point constant, 
implied length, aligned. 
Floating-point constant, 
explicit length. 
packed decimal constant. 
A-, g-, V-, or y-type address 
constant, explicit length. 
S-type address constant, 
implied length, aligned. 
V-type address constant, 
implied length, aligned. 
Hexadecimal constant. 
y-type address constant, 
implied length, aligned. 
Zoned decimal constant. 

The following letters are used for sym­
bols (and outer macro-instruction operands 
that are symbols) that name statements 
other than DC or DS statements, or that 
appear in the operand field of an EXTRN 
or WXTRN statement. 

I Machine instruction 
J Control Section Name 
M Macro instruction 
T EXTRN symbol 
W CCW instruction 
$ WXTRN symbol 

The follow1ng letters are used for inner 
and outer macrO-instruction operands only. 
N Self-defining term 
o Omitted operand 

.. 
The letter U (Undefined) is used for 

inner and outer macro-instruction operands 
that cannot be assigned any of the above 
letters. The type attribute of all liter­
als appearing as macro-instruction operands 
is U. This also is true for inner macro­
instruction operands that are ordinary 
symbols or variable symbols. Because the 
attributes are not available at the 
necessary time, this letter is also 
assigned to symbols that name EQU and LTORG 
statements, to any symbols occurring more 
than once in the name entry of source 
statements, and to all symbols naming DC 
and DS statements with expressions or vari­
able symbols as modifiers. The type attri­
bute also is undefined when the modifier 
expression consists solely of self-defining 
terms. 

The attributes of A, B, C, and 0 in the 
following examples are undefined: 

A DC 
B DC 
C DC 
o DC 

3 FL ( A- B) , 15 ' 
(A-B) F' 15' 
&X'l' 
FL(3-2)'l' 

Length (L'), Scaling (S'), and Integer (I') 
Attributes 

The length, scaling, and integer attributes 
of macro-instruction operands and symbols 
are numeric values. 

The length attribute of a symbol (or of 
a macro-instruction operand that is a 
symbol) is as described in Part I of this 
publication. Reference to the length 
attribute of a variable symbol is illegal 
except for symbolic parameters in SETA, 
SETB, and AIF statements. If the basic L' 
attribute is desired, it can be obtained as 
follows: 

'A SETC 'Z' 



o 

& B SETC • L' , , 
MVC &A.(&B&A),X 

After generation, this would result in 
MVC Z(L'Z),X 

Reference must not be made to the length 
attributes of symbols or macro-instruction 
operands whose type attributes are the 
letters M, N, 0, T, $, or U. 

Scaling and integer attributes are pro­
vided for symbols that name fixed-point, 
floating-point, and decimal DC or OS state­
ments. 

Fixed and Floating-foint: The scaling 
attribute of a fixed point or floating 
point number is the value given by the 
scale modifier. rhe integer attribute is a 
function of the scale and length attributes 
of the number. 

Decimal: The scaling attribute of a deci­
mal number is the number of decimal digits 
to the right of the decimal point. The 
integer attribute of a decimal number is 
the number of decimal digits to the left of 
the decimal point. 

Scaling and integer attributes are 
available for symbols and macro-instruction 
operands only if their type attributes are 
H, F, and G (fixed point); 0, E, and K 
(floating point); or P and Z (decimal). 

The programmer may refer to the length, 
scaling, and integer attributes in the 
operand field of a SETA instruction, or in 
arithmetic relations in the operand fields 
of SETB or AIF instructions. 

count Attribute (K') 

The programmer may refer to the count 
attribute of macro-instruction operands 
only. 

The count attribute is a value equal to 
the number of characters in the macro­
instruction operand after substituting for 
variable symbols, excluding commas. If the 
operand is a sublist, the count attribute 
includes the beginning and ending 
parentheses and the commas within the sub­
list. The count attribute of an omitted 
operand is zero. 

If a macro-instruction operand contains 
variable symbols, the characters that 
replace the variable symbols, rather than 
the variable symbols, are used to determine 
the count attribute. 

Page of GC24-3414-7 
Revised August 21, 1970 
By TNL GN33-8087 

The programmer may refer to the count 
attribute in the operand field of a SETA 
instruction, or in arithmetic relations in 
the operand fields of SETB and .AIF instruc­
tions that are part of a macro-definition. 

The programmer may refer to the number 
attribute of macro-instruction operands 
only. 

The number attribute is a value equal to 
the number of operands in an operand sub­
list. The number of operands in an operand 
sublist is equal to one plus the number of 
cOmmas that indicate the end of an operand 
in the sublist. 

The following examples illustrate this 
rule. 

(A,B,C,O,E) 
(A, , C, 0, E) 
(A,B,C,O) 
f, B, C, 0, E) 
(A, B, C, D, ) 
(A,B,C,D,,) 

5 operands 
5 operands 
4 operands 
5 operands 
5 operands 
6 operands 

If the macro-instruction operand is not 
a sUblist, the number attribute is one. If 
the macro-instruction operand is omitted, 
the number attribute is zero. 

The programmer may refer to the number 
attribute in the operand field of a SETA 
instruction, or in arithmetic relations in 
the operand fields of SETS and AIF instruc­
tions that are part of a macro-definition. 

The integer attribute is computed from the 
length and scaling attributes. 

Fixed_Point: The integer attribute of a 
fixed-point number is equal to eight times 
the length attribute of the number minus 
the scaling attribute minus one; i.e., 
1 1 =B*L'-S'-1. 

Each of the following statements d~f~nes 
a fixed-point field. The length attribute 
of HALFCON is 2, the scaling attribute is 
6, and the integer attribute is 9. The 
length attribute of ONECON is 4, the scal­
ing 3.ttribute is B, and the integer attri­
bute is 23. 

Writing Conditional Assembly InstructionS 73 



r---------T-----------T-------------------l 
1 Name 1 Operation 1 Operand I 
~---------+-----------+-------------------~ 
,HP.LFCON J DC 1 H36' -25. 93' I 
,ONECON I DC I FS8' 100. 3£-2' 1 L _________ ~ ___________ ~ ___________________ J 

!!Qating PQin!:..!.The integer attribute of a 
floating-point number is equal to two times 
the difference between the length attribute 
of the number and one, minus the scaling 
attribute; i.e., I'=2*(L'-1)-S'. 

Each of the following statements defines 
a floating-point value. rhe length attri­
bute of SHORT is 4, the scaling attribute 
is 2, and the integer attribute is 4. The 
length attribute of LONG is 8, the scaling 
attribute is 5, and the integer attribute 
is 9. 

r-------T-----------T---------------------l 
I Name I Operation I operand I 
~-------+-----------+---------------------~ 
'SHORT IDC IE52'46.415' I 
I LON:; IDC IDS5'-3.729' I L _______ ~ ___________ ~ _____________________ J 

Qg£imal~ The integer attribute of a packed 
jecimal number is equal to two times the 
length attribute of the number minus the 
scaling attribute minus one; i.e., 
r'=2*L'-S'-1. The integer attribute of a 
zoned decimal number is equal to the dif­
ference between the length attribute and 
the scaling attribute: i.e., I'=L'-S'. 

Each of the following statements defines 
a decimal field. The length attribute of 
FIRST is 2, the scaling attribute is 2, anj 
the integer attribute is 1. The length 
attribute of SECOND is 3, the scaling 
attribute is 0, and the integer attribute 
is 3. The length attribute of THIRD is 4, 
the scaling attribute is 2, and the integer 
attribute is 2. The length attribute of 
FOURTH is 3, the scaling attribute is 2, 
and the integer attribute is 3. 

r--------T-----------T--------------------, 
I Name I~peration I Operand I 
r--------+-----~-----+--------------------~ 
I FIRST IDC IP'+1.25' I 
I SECOND IDC IZ'-543' I 
I THIRD IDC IZ'79.68' I 
I FOURTH IDC IP'79.68' I L ________ ~ ___________ .l. ____________________ J 

74 

SEQUENCE SYMBOLS 

The name entry of a statement may contain a 
sequence symbol. Sequence symbols provide 
the programmer with the ability to vary the 
sequence in which statements are processed 
by the assembler. 

A sequence symbol is used in the operand 
entry of an AIF or AGO statement to refer 
to the statement named by the sequence 
symbol. 

A sequence symbol may be used in the 
name entry of any statement that does not 
contain a symbol or SET symbol, except a 
prototype statement, or a MACRO, leLA, 
leLa, LCLC, GBLA, GBLB, GBLC, ACTR, ICTL, 
ISEQ, or COpy instruction. 

A sequence symbol consists of a period 
followed by one through seven letters 
and/or digits, the first of which must be a 
letter. 

The following are valid sequence sym­
bols: 

• READER 
• LOOP2 
.N 

.A23456 
• X4F2 
.84 

The following are invalid sequence sym­
bols: 

CARDAREA (first character is not 
a period) 

.2468 (first character after 
period is not a letter) 

.AREA2456 (more than seven characters 
after period) 

.BCD%84 (contains a special character 
other than initial period) 

.IN P.REA (contains a special 
character, i.e., blank, 
other than initial period) 

If a sequence symbol appears in the name 
entry of a macro-instruction, and the cor­
responding prototype statement contains a 
symbolic parameter in the name entry, the 
sequence symbol does not replace the sy~ 
bolic parameter wherever it is used in the 
macro-definition. 

The following example illustrates this 
rule. 

~ . 
I I 

~/ 



;I" --.... ..... 

(~ 

r-------T-----------T-------------------, 
I Name IOperation I Operand I 
r---+----------+------------------~ . 
I IM~ I I 

1 I&NAME I MOVE I&TO,&FROM I 
2 I&NAME 1ST 12,SAVEAREA I 

I I L I 2 , & FROM \ 
I 1ST 12, &TO \ 
I IL \2,SAVEAREA I 
\ I MEND \ \ 
r----+----------+------------------1 

3 I.SYM I MOVE IFIELDA,FIELDB I 
r------+--------+-------------------1 

4 I 1ST 12,SAVEAREA \ 
\ IL 12,FIELDB I 
, 1ST 12,FIELDA I 
\ I L 12,SAVEAREA I L-_____ ~--_________ ~ _________________ J 

The symbolic parameter &NAME is used in 
the name entry of the prototype statement 
(statement 1) and the first model statement 
(statement 2). In the macro instruction 
(statement 3) a sequence symbol (.SYM) 
corresponds to the symbolic parameter 
&NAME. &NAME is not replaced by .SYM, and, 
therefore, the generated statement 
(statement 4) does not contain a name 
entry. 

LCLA,LCLB,LCLC -- DEFINE SET SYMBOLS 

The typical form of these instructions is: 
r-------T--------T---------------------, 
I Name I Operation I Operand I 
~---------+---------+--------------------~ 
INot used, 1 LCLA, lOne or more variable I 
Imust not ILCLB, or I symbols, that are I 
I be \ LCLC \ to be used as SET \ 
\ present \ Isymbols, separated \ 
I \. I by commas \ l ____ ---~ ________ ~ _____________________ J 

The LCLA, LCLB, and LCLC instructions 
are used to define and assign initial 
values to SETA, SETB, and SETC symbols, 
respectively. The SETA, SETB, and SETC 
symbols are assigned the initial values of 
0, 0, and null character value, respective­
ly. 

The programmer should not define any SET 
symbol whose first four characters are 
&SYS. 

All LeLA, LCLB, or LCLC instructions in 
a macro definition must appear immediately 
after the prototype statement and all GBLA, 
GBLB or GBLC instructions. All LCLA, LeLB, 
or LCLC instructions outside macro 
definitions must appear after all macro 
definitions in the source program, after 

all GBLA, GBLB, and GBLC instructions 
outside macro definitions, before all con­
ditional assembly instructions, and PUNCH 
and REPRO statements outside macro 
definitions, and before the first control 
section of the program. 

SETA -- SET ARITHMETIC 

The SETA instruction may be used to assign 
an arithmetic value to a SETA symbol. The 
form of this instruction is: 
r-------T----------~--------------------, 
\ Name \ Operation \ Operand \ 
~--------+-----------+--------------------~ 
\A SETA ISETA \A SETA arithmetic \ 
\ symbol I \ expression \ l--______ ~ __________ ~ ____________________ J 

The expression in the operand entry is 
evaluated as a signed 32-bit arithmetic 
value which is assigned to the SETA symbol 
in the name entry. The minimum and maximum 
allowable values of the expression are -2 31 

and +2 31-1, respectively. 

The expression may consist of one term 
or an arithmetic combination of terms. The 
terms that may be used alone or in 
combination with each other are self­
defining terms, variable symbols, and the 
length, scaling, integer, count, and number 
attributes. Self-defining terms are 
described in Part 1 of this publication. 

Note: A SETC variable symbol may appear 
in a SETA expression only if the value of 
the SETC variable is one to eight decimal 
digits. The decimal digits will be con­
verted to a positive arithmetic value. 

The arithmetic operators that may be 
used to combine the terms of an expression 
are + (addition), - (subtraction), 
• (multiplication), and / (division). 

An expression may not contain two terms 
or two operators in succession, nor may it 
begin with an operator. 

The following are valid operand fields 
of SETA instructions: 

&AREA+X'2D' 
&BETA*10 
L'&HERE+32 

I'&N/25 
&EXIT-S'&ENTRY+l 
29 

The following are invalid operand fields 
of SETA instructions: 

Writing Conditional Assembly Instructions 75 



&AREAX' C' 
&FIELD+­
-&DELTA*2 
*+32 

NAME/15 

(two terms in succession) 
(two operators in succession) 
(begins with an operator) 
(begins with an operator; 

two operators in succession) 
(NAME is not a valid term) 

EVALUATION OF ARITHMETIC EXPRESSIONS 

The procedure used to evaluate the arith­
metic expression in the operand of a SETA 
instruction is the same as that used to 
evaluate arithmetic expressions in assem­
bler language statements. The only 
difference between the two types of arith­
metic expressions is the terms that are 
allowed in each expression. 

The following evaluation procedure is 
used: 

1. Each term is given its numerical 
value. 

2. The arithmetic operations are per­
formed moving from left to right. 
However, multiplication and/or divi­
sion a re performed before addition and 
subtraction. 

3. The computed result is the value 
assigned to the SETA symbol in the 
name entry. 

The arithmetic expression in the operand 
entry of a SETA instruction may contain one 
or more sequences of arithmetically com­
bined terms that are enclosed in parenthe­
ses. A sequence of parenthesized terms may 
appear within another parenthesized 
sequence. 

The following are examples of SETA 
instruction operands that contain parenthe­
sized sequences of terms. 

(L'&HERE+32)*29 
&AREA+X'2D'/(&EXIT-S'&ENTRY+1) 
&BETA*10*(I'&N/25/(&EXIT-S'&ENTRY+1» 

The parenthesized portion or portions of 
an arithmetic expression are evaluated 
before the rest of the terms in the expres­
sion are evaluated. If a sequence of 
parenthesized terms appears within another 
parenthesized sequence, the innermost 
sequence is evaluated first. 

The SETA arithmetic expression can only 
have five levels of parentheses. The 
parentheses required in subscripting, sub­
string, and sublist notation count when 
determining these levels. A counter is 
maintained for each SETA statement and 

76 

increased by one for each occurrence of a 
variable symbol as well as the operation 
entry. The maximum value this counter'may 
attain is 35. (See Ap~endix H). 

Using SETA Symbols 

The arithmetic value assigned to a SETA 
symbol is substituted for the SETA symbol 
when it is used in an arithmetic relation. 
If the SETA symbol is not used in an arith­
metic expression, the arithmetic value is 
completely converted to an unsigned inte­
ger, with leading zeros removed. If the 
value is zero, it is converted to a single 
zero. 

The following example illustrates this 
rule: 

r------~-----------T-------------------, 
I Name I Operation I Operand I 
r----+-----------+-------------------~ 

I MACRO 
&NAME I MOVE &TO,&FROM 

I LCLA &A,&B,&C,&D 
1 &A I SETA 10 
2 &B I SETA 12 
3 &C I SETA &A-&B 
4 &0 I SETA &A+&C 

& NAME 1ST 2, SA VEAREA 
5 IL 2,&FROM&C 
6 1ST 2,&TO&D 

IL 2,SAVEAREA 
I MEND 

r----+----------+-----------------~ 
I HERE I MOVE IFIELDA,FIELDB I 
~-------+-----------+-------------------~ 
I HERE 1ST 12,SAVEAREA I 
I \L 12,FIELDB2 I 
liST 12,FIELOAB I 
I IL 12,SAVEAREA I L _______ ~ ________ ~ __________________ J 

Statements 1 and 2 assign to the SETA 
symbols &A and &B the arithmetic values +10 
and +12, respectively. Therefore, state­
ment 3 assigns the SETA symbol &C the 
arithmetic value -2. When &C is used in 
statement 5, the arithmetic value -2 is 
converted to the unsigned integer 2. When 
&C is used in statement 4, however, the 
arithmetic value -2 is used. Therefore, &D 
is assigned the arithmetic value +B. When 
&0 is used in statement 6, the arithmetic 
value +B is converted to the unsigned inte­
ger 8. 

The following example shows how the 
value assigned to a SETA symbol may be 
changed in a macro definition. 



J 

c) 

r-------T-----------T-------------------, 
I Name I Operation I Operand I 
t-------+-----------+_------------------~ 
I I MACRO I I 
I &NAME I MOVE I &TO, &FROM I 
I I LCLA I &A I 

1 I &A I SETA I 5 I 
I&NAME 1ST 12,SAVEAREA I 

2 I I L 12, &FROM&A I 
3 I&A I SETA 18 I 
4 liST 12,&TO&A 1 

1 I L 12, SAVEAREA 1 
I IMEND I I 
t-------+-----------+-----------------~ 
I HERE I MOVE IFIELDA,FIELDB I 
t-------+-----------+-------------------~ 
I HERE 1ST 12,SAVEAREA I 
I IL 12,FIELDB5 I 
liST 12,FIELDA8 I 
I IL 12,SAVEAREA I L _______ ~ ___________ ~ ___________________ J 

statement 1 assigns the arithmetic value 
+5 to SETA symbol &A. In statement 2, &A 
is converted to the unsigned integer 5. 
Statement 3 assigns the arithmetic value +8 
to &A. In statement 4, therefore, &A is 
converted to the unsigned integer 8, 
instead of 5. 

A SETA symbol may be used with a symbol­
ic parameter to refer to an operand in an 
operand sublist. If a SETA symbol is used 
for this purpose it must have been assigned 
a value in the range 1 to 100. 

Any expression that may be used in the 
operand of a SETA instruction may be used 
to refer to an operand in an operand sub­
list. 

Sublists are described in Section 8 
under Operand Sublists. 

The following macro-definition may be 
used to add the last operand in an operand 
sublist to the first operand in an operand 
sublist and store the result at the first 
operand. A sample macro-instruction and 
generated statements follow the macro­
definition. 

r----~-----------~-------------------, 
I Name I Operation I Operand I 
t------+-----------+_-------------------~ 
I I MACRO I I 

1 I IADDX I&NUMBER,&REG 1 
I ILCLA I &LAST I 

2 I&LAST ISETA \N'&NUMBER I 
I IL I&REG,&NUMBER(l) I 

3 I IA I &REG,&NUMBER(&LAST) I 
liST I&REG,&NUMBER(l) I 
I I MEND 1 1 
~------+-----------+--------------------~ 

4 I IADDX I (A,B,C,D,E), 3 \ 
~------+-----------+--------------------~ 
I IL 13,A I 
1 \A 13,E I 
I 1ST 13,A I l ______ ~ ___________ ~ ____________________ J 

&NUMBER is the first symbolic parameter 
in the operand entry of the prototype 
statement (statement 1). The corresponding 
characters, (A,B,C,D,E), of the macro­
instruction (statement 4) are a sUblist. 
Statement 2 assigns to &LAST the arithmetic 
value +5, which is equal to the number of 
operands in the sublist. Therefore, in 
statement 3, & NUMBER (&LAST) is replaced by 
the fifth operand of the sUblist. 

SETC -- SET CHARACTER 

The SETC instruction is used to assign a 
character value to a SETC symbol. The form 
of this instruction is: 

r---------T-----------T-------------------, 
I Name I Operation I Operand 1 
r---------+-----------+-------------------~ 
IA SETC ISETC lOne operand, of 1 
I symbol I Ithe form described I 
I \ 1 below 1 L-_______ ~ __________ ~ ___________________ J 

The operand may consist of the type 
attribute, a character expression, a 
substring notation, or a concatenation of 
substring notations and character expres­
sions. A SETA symbol may appear in the 
operand of a SETC statement. The result is 
the character representation of the decimal 
value, unsigned, with leading zeros 
removed. If the value is zero, one decimal 
zero is used. 

TYPE ATTRIBUTE 

The character value assigned to a SETC 
symbol may be a type attribute. If the 
type attribute is used, it must appear 

Writing Conditional Assembly Instructions 77 



alone in the operand field. The following 
example assigns to the SETC symbol &TYPE 
the letter that is the type attribute of 
the macro-instruction operand that corre­
sponds to the symbolic parameter &ABC. 

r------~----------~---------------------, 
I Name I Operation loperand I 
~-------t-----------+_--------------------i 
I&TYPE ISETC IT'&ABC I L _______ ~ ___________ ~ _____________________ J 

CHARACTER EXPRESSION 

A character expression consists of any 
combination of characters enclosed in apos­
trophes. The maximum length of a character 
expression is 127 characters. 

The character value enclosed in apos­
trophes in the operand field is assigned to 
the SETC symbol in the name entry. The 
maximum length character value that can be 
assigned to a SETC symbol is eight charac­
ters •. If a value greater than 8 is speci­
fied, the leftmost 8 characters will be 
used. 

EVALUATION OF CHARACTER EXPRESSIONS: The 
following statement assigns the character 
value AB%4 to the SETC symbol &ALPHA: 

r--------T-----------T-------------------, 
I Name I Operat ion I operand I 
r-------t-----------t--------------------i 
I&ALPHA ISETC l'AB%4' I L ________ ~ ___________ ~ ____________________ J 

More than one character expression may 
be concatenated into a single character 
expression by placing a period between the 
terminating apostrophe of one character 
expression and the opening apostrophe of 
the next character expression. For exam­
ple, either of the following statements may 
be used to assign the character value 
ABCDEF to the SETC symbol &BETA. 

r-------T----------~---------------------, 
I Name I Operation I Operand I 
~-----t-----------+_--------------------i 
I&BETA ISETC I'ABCDEF' I 
I&BETA ISETC I'ABC'.'DEF' I 
L _______ ~ ___________ ~ ___ ,-----------------J 

Two apostrophes must be used to rep­
resent a apostrophe that is part of a char­
acter expression. 

The following statement assigns the 
character value L'SYMBOL to the SETC symbol 
&LENGTH. 

78 

r---------~---------~-----------------l 
I Name IOperation 1 operand I 
I----------+-----t-----------------i 
I 'LENGTH ISETC I'L"SYMBOL' I L ________ -L-__________ ~ __________________ J 

Variable symbols may be concatenated 
with other characters in the operand field 
of a SETC instruction according to the 
general rules for concatenating variable 
symbols with other characters (see Section 
1) • 

If &ALPHA has been assigned the charac­
ter value AB%4, the following statement may 
be used to assign the character value 
AB%4RST to the variable symbol &GAMMA. 

r--------T----------~-------------------l 
I Name I Opera tion I operand I 
~--------t-----------+_-------------------~ 
I&GAMMA ISETC I'&ALPHA.RST' I L ________ ~ __________ ~ ____________________ J 

r--------T----~-----~--------------------, 
I Name I Opera tion I Operand I 
~--------+-----------t--------------------~ 
I&DELTA ISETC I '&ALPHA'.'RST' I L-_____ ~ ___________ ~ ____________________ J 

Two ampersands must be used to represent 
an ampersand that is not part of a variable 
symbol. Both ampersands become part of the 
character value assigned to the SETC sym­
bol. They are not replaced by a single 
ampersand. 

The following statement assigns the 
character value HALF&& to the SETC symbol 
&AND. 
r------~-----------~--------------------, 
I Name IOperation I Operand I 
~-------t-----------+__---------------i 
I &AND I SETC I' HALF & & ' I L-______ ~-__________ ~ ___________________ J 

In this example, 

r------~-----------~--------------------1 
I Name I operation IOperand I 
~-------+----------t------------------i 
I&A ISETC .I'&&BETA'(2,S) I L-_____ ~ ___________ ~ _____________________ J 

'&&BETA'(2,S) produces &BETA which is 
conSidered a character string, not a varia­
ble symbol. 

SUBSTRING NOTATION 

The character value assigned to a SETC 
symbol may be a substring character value. 
substring character values permit the pro-

\ ... ,. 

~ 
( 

, ........ ,~ ,,/ 



o 

gramrner to assign part of a character value 
to a SETC symbol. 

If the programmer wants to assign part 
of a character value to a SETC symbol, he 
must indicate to the assembler in the oper­
and of a SETC instruction: (1)' the charac­
ter value itself, and (2) the part of the 
character value he wants to assign to the 
SETC symbol. The concatenation of (1) and 
(2) in the operand of a SETC instruction is 
called a substring notation. The character 
value that is assigned to the SETC symbol 
in the name entry is called a substring 
character value. 

Substring notation consists of a charac­
ter expression, immediately followed by two 
arithmetic expressions that are separated 
from each other by a comma and are enclosed 
in parentheses. These parentheses count 
when determining the number of levels of 
parentheses. The two arithmetic expres­
sions may be any expression that is allowed 
in the operand of a SETA instruction. They 
may not be zero. 

The first expression indicates the first 
character (in the character expression) 
that is to be assigned to the SETC symbol 
in the name entry. The second expression 
indicates the number of consecutive charac­
ters in the character expression (starting 
with the character indicated by the first 
expression) that are to be assigned to the 
SETC symbol. If a substring specifies more 
characters than are in the character 
string, the number of available characters 
will be supplied. 

The maximum size character expression 
the substring character value can be chosen 
from is 127 characters. 

The following are valid substring nota­
tions: 

'&ALPHA' (2,5) 
'AB%4' (&AREA+2,1) 
'&ALPHA'.'RST' (6,&A) 
'ABC&GAMMA' (&A,&AREA+2) 

The following are invalid substring 
notations: 

, &BETA' ( 4 , 6) 
(blanks between character value 

and arithmetic expressions) 
'L"SYMBOL' (142-&XYZ) 

(only one arithmetic expression) 
'AB%4&ALPHA' (8 &FIELD*2) 

(arithmetic expressions 
not separated by a comma) 

'BETA'4,6 
(arithmetic expressions 

not enclosed in parentheses) 
'&ALPHA' (2,4)(1,1) 

(double SUbstring notation is not 
permitted) 

CONCATENATING SUBSTRING NOTATIONS AND CHAR­
ACTER EXPRESSIONS: Substring notations may 
be concatenated with character expressions 
in the operand of a SETC instruction. If a 
substring notation follows a character 
expression, the two may be concatenated by 
placing a period between the terminating 
apostrophe of the character expression and 
the opening apostrophe of the substring 
notation. 

For example, if &ALPHA has been assigned 
the character value AB%4, and &BETA has 
been assigned the character value ABCDEF, 
then the following statement assigns &GAMMA 
the character value AB%4BCD. 

r------~----------T---------------------, 
I Name IOperation \Operand \ 
r--------+----------+---------------------~ 
)&GAMMA \SETC \ '&ALPHA'.'&BETA'(2,3) \ L-_______ ~--_______ ~ _____________________ J 

If a substring notation precedes a char­
acter expression or another substring nota­
tion, the two may be concatenated by writ­
ing the opening apostrophe of the second 
item immediately after the closing paren­
thesis of the substring notation. 

The programmer may optionally place a 
period between the closing parenthesis of a 
substring notation and the opening apos­
trophe of the next item in the operand. 

If &ALPHA has been assigned the charac­
ter value AB%4, and &ABC has been assigned 
the character value 5RS, either of the 
following statements may be used to assign 
SWORD the character value AB%45RS. 

r------T---------r------------------------, 
\ Name I Operation I Operand I 
I------+---------+------------------~ 
I&WORD ISETC I'&ALPHA' (1,4)'&ABC' \ 
\&WORD ISETC I '&ALPHA' (1,4)'&ABC' (1,3) \ L-_____ ~ _________ ~ ________________________ J 

If a SETC symbol is used in the operand 
of a SETA instruction, the character value 
assigned to the SETC symbol must be one to 
eight decimal digits. 

If a SETA symbol is used in the operand 
of a SETC statement, the arithmetic value 
is converted to an unsigned integer with 
leading zeros removed. If th~value is 
zero, it is converted to a single zero. 

Writing Conditional Assembly Instructions 79 



Using SETC Symbols 

The character value assigned to a SETC 
symbol is substituted for the SETC symbol 
when it is used in the name, operation, or 
operand of a statement. 

For example, consider the following 
macro-definition, macro-instruction, and 
generated statements. 

,---------T---------~-----------------, I Name I Opera tion I Operand I 
r--------+------+-------------~ 
I I MACRO I I 
I & NAME I MOVE I&TO,&FROM I 
I I LCLC I & PREFIX I 

1 I&PREFIX ISETC I 'FIELD' I 
I &NAME 1ST 12,SAVEAREA I 

2 I IL 12,&PREFIX&FROM I 
3 I 1ST 12, &PREFIX&TO I 

I IL 12,SAVEAREA I 
I I MEND I I 
r----·--+-------+----------------~ 
I HERE I MOVE I A, B I 
r---------+-----------t-----------------~ 
I HERE 1ST 12, SAVEAREA I 
I IL )2,FIELDB I 
I 1ST 12,FIELDA I 
I /L 12,SAVEAREA I L _________ ~ __________ ~ _________________ J 

Statement 1 assigns the character value 
FIELD to the SETC symbol &PREFIX. In 
statements 2 and 3, &PREFIX is replaced by 
FIELD. 

The following example shows how the 
value assigned to a SETC symbol may be 
changed in a macro-definition. 

r---------T-----------.----------------, 
I Name I Operation I Operand I 
r-------+--------+----------------~ 
I I MACRO I I 
I&NAME I MOVE I&TO,&FROM I 
I I LCLC I & PREFIX I 

1 I & PREFIX I SETC I' FIELD' I 
I & NAME 1ST 12,SAVEAREA I 

2 I IL 12,&PREFIX&FROM I 
3 I &PREFIX I SETC I' AREA' I 
4 I 1ST 12,~PREFIX&TO I 

I IL 12,SAVEAREA I 
I I MEND I I 
r---------+-----------+-----------------~ 
I HERE I MOVE IA,B I 
l----------+----------+----~--------~ 
I HERE 1ST 12,SAVEAREA I 
I IL t2,FIELDB I 
I 1ST 12,AREAA I 
I IL 12,SAVEAREA I L _________ ~ __________ ~ _____________ J 

Statement 1 assigns the character value 
FIELD to the SETC symbol &PREFIX. There­
fore, &PREFIX is replaced by FIELD in 

80 

statement 2. Statement 3 assigns the char­
acter value AREA to &PREFIX. Therefore, 
&PREFIX is replaced by AREA, instead of 
FIELD, in statement 4. 

The following example illustrates the 
use of a substring notation as the operand 
field of a SETC instruction. 

,---------T-----------.-----------------, 
I Name I Operation I Operand I 
r---------t-----------+-----------------~ 
I I MACRO I I 
I&NAME I MOVE I&TO,&FROM I 
I ILCLC I & PREFIX I 

1 I~PREFIX ISETC 1'&TO'C1,S) I 
I & NAME 1ST, 12,SAVEAREA I 

2 I IL 12,&PREFIX&FROM I 
I I ST I 2 , & TO I 
I IL 12,SAVEAREA I 
I I MEND I I 
r---------+-----------+-----------------~ 
I HERE I MOVE IFIELDA,B I 
t---------+-----------+-----------------~ 
I HERE 1ST 12,SAVEAREA I 
I I L 12, FIELDB I 
I 1ST I2,FIELDA I 
I IL 12,SAVEAREA I L _________ ~-_________ i_ ________________ J 

Statement 1 assigns the substring char­
acter value FIELD (the first five'charac­
ters corresponding to symbolic parameter 
&TO) to the SETC symbol &PREFIX. There­
fore, FIELD replaces &PREFIX in statement 
2. 

SETB -- SET BINARY 

The SETB instruction may be used to assign 
the binary value 0 or 1 to a SErB symbol. 
The form of this instruction is: 

,--------T---------T----------------------, 
I Name I Operation I Operand I 
r--------+--------+----------------------~ 
IA SETB ISETB IA 0 or a 1,(0) or (1), I 
I symbol I lor a logical ex- I 
I I I pression enclosed in I 
I I I parentheses I l ________ ~ ______ .L ___________________ J 

The operand may contain a 0 or a 1 or a 
logical expression enclosed in parentheses. 
(No explicit binary zeros or ones are 
allowed in parentheses other than in the 
form (0) or (1).) A logical expression is 
evaluated to determine if it is true or 

r '--_. 

false; the SETB symbol in the name entry is /~ 
then assigned the binary value 1 or 0 cor- L'; 
responding to true or false, respectively. 



Note: The parentheses enclosing a logi­
\ cal expression do not count towards the 
) parenthesis level limit. 

A logic~l expression consists of one 
term or a logical combination of terms. 
The terms that may be used alone or in 
cornbina tion wi th each other are arithmetic 
relations, character relations, and SErB 
symbols. The logical operators used to 
combi ne the terms o.f an expression are AND, 
OR, and Nor. . 

A logical expression may not contain two 
terms 1n succession. A logical expression 
may contain t~o operators in succession 
only if the first operator is either AND or 
OR and the second operator is NOT. A logi­
cal expression may begin with the operator 
NOT. It may not begin with the operators 
AND or OR. 

An arithmetic relation consists of two 
arithmetic expressions connected by a rela­
tional operator. A character relation 
consists of two character strings connected 
by a relational operator. rhe relational 
operators are EQ (equal), NE (not equal), 
LT (less th~n), 3T (greater than), LE (less 
than or equal), and GE (greater than or 
eg:ual). 

Any expression that may be used in the 
operand of a SErA instruction, may be used 
as an arithmetic expression in the operand 
of a SETB instruction. Anything that may 
be used in the operand of a SETC instruc­
tion, may be used as a character string in 
the operand of a SErB instruction. rhis 
includes substring and type attribute nota­
tions. rhe maximum size of the character 
values that can be compared is 127 charac­
ters. If the two character values are of 
unequal length, then the shorter one will 
always compare less than the longer one, 
regardless of the characters present. 

The relational and logical operators 
must be immediately preceded and followed 
by at least one blank or other special 
character. Each relation mayor may not be 
enclosed in parentheses. If a relation is 
not enclosed in parentheses, it must be 
separated from the logical operators by at 
least one blank or other special character. 

The following are valid operand fields 
of SETB instructions: 

1 
(&AREA+2 Gr 29) 
(' AB%4' EQ '&ALPHA') 
(T'&ABC NE T'&XYZ) 
(T' &P12 EQ 'F') 

(&AREA+2 GT 29 OR &B) 
(NOT &B AND &AREA+X'2D' GT 29) 
('&C'EQ'MS') 

The following are invalid operand fields 
of SETB instructions: 

&S (not enclosed in parentheses) 

(T' &P12 EQ 'F' &B) 
(two terms in succession) 

('AB%4' EQ 'ALPHA' NOT &B) 
(the Nor operator must be 

preceded by AND or OR) 
(AND T' & P12 EQ 'F') 

(expression begins with AND) 

Evaluation of Logical Expressions 

The following procedure is used to evaluate 
a logical expression in the operand field 
of a SETB instruction: 

1. Each term (i.e., arithmetic relation, 
character relation, or SETB symbol) is 
evaluated and given its logical value 
(true or false). 

2. The logical operations are performed 
moving from left to right. However, 
NOTs are performed before ANDs, and 
AN Os are performed before ORs. 

3. The computed result is the value 
assigned to the SETB symbol in the 
name field. 

The logical expression in the operand of 
a SETB instruction may contain one or more 
sequences of logically combined terms that 
are enclosed in parentheses. A sequence of 
parenthesized terms may appear within 
another parenthesized sequence. 

The following are examples of SETB 
instruction operands that contain parenthe­
sized sequences of terms. 

(NOT(&B AND &AREA+X'2D' GT 29)) 
(&B fu~D(T'&P12 EQ'F'OR&B) 

The parenthesized portion or portions of 
a logical expression are evaluated before 
the rest of the terms in the expression are 
evaluatej. If a sequence of parenthesized 
terms appears within another parenthesized 
sequence, the innermost sequence is evalu­
ated first. 

Logical expressions may have only five 
levels of parentheses. Subscripting, 
substring notation, and logica~ expression 
nesting count when determining the level of 
parentheses. rhe parentheses surrounding 
the SETB operand do not count. A counter 
is maintained for each statement and is 

writing Conditional Assembly Instructions 81 



increased by one for each occurrence of a 
variable symbol and an operation entry. 
The maximum value this counter may attain 
is 35. See ~EEg~gix_~~ 

The logical value assigned to a SErB symbol 
is use1 for the SETB symbol appearing in 
the operand of an AIF instruction or anoth­
er SETB instruction. 

If a SETB symbol is used in the operand 
of a SETA instruction, or in arithnetic 
relations in the operands of AIF and SETB 
instructions, the binary values 1 (true) 
and 0 (false) are converted to the arith­
~etic values +1 and +0, respectively. 

If a SETB symbol is used in the operand 
of a SET~ instruction, in character rela­
tions in the operands of AIF and SETn 
instructions, or in any other statement, 
the binary values 1 (true) and 0 (false), 
are converted to the character values 1 and 
0, respectively. 

The following example illustrates these 
rules. It is assumed that L'&TO EQ 4 is 
true, 'and S'&TO EQ 0 is false. 

r-------T-----------7-------------------, 
1 Name I Operation IOperand I 
t-------+-----------+-------------------~ 
I I MACRO 1 I 
I&NAME I MOVE l&rO,&FROM I 
I I LCLA I &A1 I 
I I LeLB I &Bl, &B2 1 
I I LCLC I &Cl I 

1 1&81 ISErB I (L'&rO EQ 4) I 
2 1&82 ISETB I(S'&TO EQ 0) I 
3 I &Al \SErA I&Bl I 
4 I&Cl lSETC I '&B2' I 

I&NAME 1ST 12,SAVEAREA I 
I I L 12, &FROM&Al I 
liST 12,&TO&Cl 1 
IlL 12, SAVEAREA I 
I IMEND, \ 
t-------+-----------+-------------------~ 
1 HERE I MOVE: I FIELDA, FIELDB I 
t-------+-----------+-------------------~ 
I HERE 1ST , 2, SA. VEAREA I 
I I L 12 , FIELDBl I 
I I s·r 12, FIELDAO I 
1 I L 12 , SA VEAR EA 1 L _______ ~ ___________ ~ ___________________ J 

Because the operand of statement 1 is 
true, &B1 is assigned the binary value 1. 
rherefore, the arithmetic value +1 is sub­
stituted for &Hl in statement 3. Because 
the operand of statement 2 is false, &82 is 
assigned the binary value O. Therefore, 

82 

the character value 0 is substituted for 
&B2 in statement 4. 

AIF -- CONDlrIONAL BR~NCH 

The AIF instruction is used to alter condi­
tionally the sequence in which source pro­
gram statements are.processed by the assem­
bler. The typical form of this instruction 
is: 

r---------T---------T---------------------, 
1 Name ,OperationlOperand I 
~---------+---------+---------------------~ 
IA se- lAIF I~ logical expression I 
Iquence I lenclosed in paren- I 
Isymbol orl ltheses, immediately I 
Inot used I 1 followed by a I 
I I Isequence symbol I L ________ ~ _________ ~ _____________________ J 

Any logical expression that may be used 
in the operand of a SETB instruction may be 
used in the operand of an hIF instruction. 
However, the forms 

AIF (0), sequence symbol and 
AIF (1), sequence symbol 

are invalid. The sequence symbol in the 
operand must immediately follow the closing 
parenthesis of the logical expression. AIF 
operand entries must not contain explicit 
zeros or ones. 

Note: The parentheses enclosing the 
logical expression do not count toward the 
level limit. 

The logical expression in the operand is 
evaluatej to 1etermine if it is true or 
false. If the expression is true, the 
statement named by the sequence symbol in 
the operand is the next statement processed 
by the assembler; however, sequence check­
ing is not affected. If the expression is 
false, the next sequential statement is 
processed by the assembler. 

The statement named by the sequence 
symbol may precede or follow the AIr' 
instruction. 

If an AIF instruction is in a macro­
definition, then the sequence symbol in the 
operand must appear in the name entry of a 
statement in the definition. If an AIF 
instruction appears outside macro­
definitions, then the·sequence symbol in 
the operand must appear in the name entry 
of a statement outtiide macro-definitions. 

The following are valid operands of AIF 
instructions: 

\ ...... _ ... 



o 

(&AREA+X'2D' GT 29).READER 
(T'&P12 EQ 'F').THERE 

The following are invalid operands of 
AIF instructions: 

(T'&ABC NE T'&XYZ) 
• X4F2 
(T'&ABC NE T'&XYZ) 

(no sequence symbol) 
(no logical expression) 

.X4F2 
(blanks between logical 

expression and se­
quence symbol) 

The following macro-definition may be 
used to generate the statements needed to 
move a full-word fixed-point number from 
one storage area to another. The 
statements will be generated only if the 
type attribute of both storage areas is the 
letter F. 

r-----T---------T----------------------, 
IName IOperationlOperand I 
r-----+---------+----------------------~ 
I I MACRO I I 
I &N I MOVE I&T,&F I 

1 I IAlF I (T' &T NE T' &F) .END I 
2 I IAIF I(T'&T NE 'F').END I 
3 I&N 1ST 12 ,SAVEAREA I 

I IL 12 , &F I 
1 1ST 12, &T 1 
1 IL 12,SAVEAREA I 

4 I.END IMEND I I L ___ --~----_____ i ______________________ J 

The logical expression in the operand of 
statement 1 has the value true if the type 
attributes of the two macro-instruction 
operands are not equal. If the type attri­
butes are equal, the expression has the 
logical value false. 

Therefore, if the type attributes are 
not equal, statement 4 (the statement named 
by the sequence sy·mbol .END) is the next 
statement processed by the assembler. If 
the type attributes are equal, statement 2 
(the next sequential statement) is proc­
essed. 

The logical expression in the operand of 
statement 2 has the value true if the type 
attribute of the first macro-instruction 
operand is not the letter F. If the type 
attribute is the letter F, the expression 
has the logical value false. 

Therefore, if the type attribute is not 
the letter F, statement 4 (the statement 

.named by the sequence symbol .END) is the 
next statement processed by the assembler. 
If the type attribute is the letter F, 
statement 3 (the next sequential statement) 
is processed. 

AGO -- UNCONDITIONAL BRANCH 

The AGO instruction is used to uncondi­
tionally alter the sequence in which source 
program statements are processed by the 
assembler. The typical form of this 
instruction is: 

r----------T---------~--------------------, 
I Name I Opera tion I Operana I 
r----------+---------+--------------------~ 
I A sequence I AGO I A sequence symbol I 
Isymbol or I I I 
Inot used I I I L-_________ ~ ________ _L ____________________ J 

The statement named by the sequence 
symbol in the operand is the next statement 
processed by the assembler. 

The statement named by the sequence 
symbol may precede or follow the AGO 
instruction. 

If an AGO instruction is part of a 
macro-definition, then the sequence symbol 
in the operand must appear in the name 
entry of a statement that is in that defi­
nition. If an AGO instruction appears 
outside macro-definitions, then the 
sequence symbol in the operand must appear 
in the name entry of a statement outside 
macro-definitions. 

The following example illustrates the 
use of the AGO instruction. 

r-----~---------T----------------------, 
I Name I Operation I operand 1 
r------+---------+----------------------~ 
1 I MACRO I I 
I&NAME IMOVE I&T,&F I 

1 I IAIF I (T' &T EQ 'F') .FIRST I 
2 I 1 AGO I • END I 
3 I.FIRSTIAIF I (T'&T NE T'&F).END I 

I&NAME 1ST 12,SAVEAREA I 
IlL 12 , &F I 
liST 12,&T 1 
I IL 12,SAVEAREA I 

4 I.END I MEND I I L ______ ~ _________ ~ ______________________ J 

Statement 1 is used to determine if the 
type attribute of the first macro­
instruction operand is the letter F. If 
the type attribute is the letter F, 
statement 3 is the next statement processed 
by the assembler. If the type attribute is 
not the letter F, statement 2 is the next 
statement processed by the assembler. 

Statement 2 is used to indicate to the 
assembler that the next statement to be 

Writing Conditional Assembly Instructions 83 



processed is statement 4 (the statement 
named by sequence symbol .END). 

ACTR -- CONDITIONAL ASSEMBLY LOOP COUNTER 

The ACTR instruction is used to limit the 
number of AGO and AIF branches executed 
within a macro-definition or within the 
main source program. 

A separate ACTR statement may be used in 
each macro-definition and in the main pro­
gram. These counters are independent. 

The form of this instruction is: 

r----------T----------T-------------------, 
I Name loperation IOperand I 
r---------+---------+---------------~ 
,Not used I ACTR IAny valid SETA I 
I must not I I expression I 
Ibe present I I I L __________ L-_________ ~ ___________________ J 

This statement must immediately follow 
any global or local declarations, if any. 
This statement causes a counter to be set 
to the value in its operand. Each time an 
AGO or AIF branch is executed, the counter 
is decremented by one. If the count is 
zero before decrementing, the assembler 
takes one of two actions: 

1. If a macro definition is being proc­
essed, the processing of it and any macros 
above it in a nest is terminated, and the 
next statement in the main portion of the 
program is processed. 

2. If the main portion of the program is 
being processed, conditional assembly is 
terminated, and the portion of the program 
generated so far is assembled. 

If an ACTR statement is not given, the 
assumed value of the counter is 150 for the 
D assembler and 4096 for the F assembler. 

ANOP -- ASSEMBLY NO OPERATION 

The ANOP instruction facilitates condi­
tional and unconditional branching to 
statements named by symbols or variable 
symbols. 

84 

The typical form of this instruction is: 

r--------T-----------T--------------------, 
I Name I Operation I Operand I 
~-------+-----------+--------------------~ 
IA se- IANOP INot used, must not I 
Iquence I I be present I 
I symbol I I I L ________ 4-_________ -L ____________________ J 

If the programmer wants to use an AIF or 
AGO instruction to branch to another state­
ment, he must place a sequence symbol in 
the name entry of the statement to which he 
wants to branch. However, if the program­
mer has already entered a symbol or varia­
ble symbol in the name entry of that state­
ment, he cannot place a sequence symbol in 
the name entry. Instead, the programmer 
must place an ANOP instruction before the 
statement and then branch to the ANOP 
instruction. This has the same effect as 
branching to the statement immediately 
after the ANOP instruction. 

The following example illustrates the 
use of the ANOP instruction. 

r-------T----------~-------------------, 
I Name IOperation IOperand I 
t-------+---------+----------------~ 
I I MACRO I I 
I&NAME IMOVE I&T,&F I 
I I LCLC I &TYPE I 

1 I IAIF I CT'&T EQ 'F').FTYPE I 
2 I&TYPE ISETC I'E' I 
3 I.FTYPE IANOP I I 
4 J&NAME IST&TYPE 12,SAVEAREA I 

I IL&TYPE 12,&F I 
I IST&TYPE 12,&T I 
I IL&TYPE 12,SAVEAREA I 
I I MEND I I L _______ ~ _________ _L ____________________ J 

Statement 1 is used to determine if the 
type attribute of the first macro­
instruction operand is the letter F. If 
the type attribute is not the letter F, 
statement 2 is the next statement processed 
by the assembler. If the type attribute is 
the letter F, statement 4 should be 
processed next. However, since there is a 
variable symbol (&NAME) in the name field 
of statement 4, the required sequence sym­
bol (.FTYPE) cannot be placed in the name 
field. Therefore, an ANOP instruction 
(statement 3) must be placed before state­
ment 4. 

Then, if the type attribute of the first 
operand is the letter F, the next statement 
processed by the assembler is the statement 
named by sequence symbol .FTYFE. The value 
of &TYPE retains its initial null character 
value because the SETC instruction is not 
processed. Since .FTYPE names an ANOP 



o 

instruction, the next statement processed 
by the assembler is statement 4, the state­
ment following the ANOP instruction. 

CONDITIONAL ASSEMBLY ELEMENTS 

The following chart summarizes the elements 
that can be used in each conditional assem­
bly instruction. Each row in this chart 
indicates which elements can be used in a 
single conditional assembly instruction. 
Each column is used to indicate the condi­
tional assembly instructions in which a 
particular element can be used. 

The intersection of a column and a row 
indicates whether an element can be used in 
an instruction, and if so, in what fields 
of the instruction the element can be used. 
For example, the intersection of the first 
row and the first column of the chart indi­
cates that symbolic parameters can be used 
in the operand field of SETA instructions. 

r---------------------------T-----------------------------~-----, 
I Variable Symbols I I 1 
1---------------------------1 Attributes 1 1 
I I SET Symbols I I I 
I r--------------------+-----------------------------+_-----~ 
1 S.P. I SETA 1 SETB I SETC 1 T' 1 L' I s' 1 I' 1 K' 1 N' 1 S.S. 1 

r-------+-----~------~-----T------+----i----T----T----T----T----+------~ 
I I I I I I I I I I I I 1 
I SETA 1 0 IN, 0 I 0 1 0 3 I I 0 I 0 I 0 I 0 1 0 I I 
I 1 I 1 1 1 I I I I I I I 
~-------+------+------+------+------+----+----+----+----+----+----+------~ 
1 I I 1 I I I I I 1 I I I 
1 SETB I 0 I 0 1 N,O 1 0 I 01 I 0 2 I 0 2 I 0 2 I 0 2 I 0 2 I 1 
1 I I I I I I I I I 1 I I 
r-------+------+------+------+~-----+----+----+----+----+_---+----+------~ 
I 1 I 1 I I 1 I I 1 1 I I 
I SETC I 0 I 0 I 0 I N,O 1 0 I I I 1 1 I 1 
I I I 1 1 1 I 1 I I I 1 I 
r-------+------+------+_-----+------+----+----+----+----+_--~+----+_-----~ 
I I I I I I I I I I I I It I 
I AIF I 0 1 0 I 0 1 0 I Q1 1 0 2 1 0 2 I 0 2 1 0 2 1 0 2 1 N,O I 
1 I 1 I 1 1 1 1 1 I 1 I I 
r-------+------+------+------+_-----+----+_---+----+----+_---+----+------~ 
1 I 1 1 1 I 1 1 1 1 1 1 I 
1 AGO I I 1 1 1 I I I 1 I 1 . N, 0 1 
I I I I I I I I I I I I I 
r-------+-----+-----+------+------+----+----+----+----+----+----+----~ 
I 1 1 1 1 1 1 1 1 1 1 I I 
I ANOP I I I 1 1 1 1 1 I I I N 1 
r-------+------+------+------+------+----+----+----+----+----+----+------~ 
I ACTR 1 0 I 0 1 0 1 0 3 1 1 0 1 0 1 0 1 0 I 0 I I 
I I I I I I I I I I I I I L _______ ~ ____ ~ _____ ~ ______ ~ _____ ~ ____ ~ ____ ~ ___ ~ ____ ~ ____ ~ ____ ~ ______ J 

I I 
I 1 Only in character relations I 
1 2 Only in arithmetic relations 1 
I 3 Only if one to eight decimal digits 1 

1 I 
t Abbreviations 1 
1 1 
I N is Name L' is Length Attribute K' is count Attribute I 
lOis Operand S' is Scaling Attribute N' is Number Attribute 1 
I S.P. is Symbolic I' is Integer Attribute S.S. is Sequence Symbol 1 
t Parameter I L ___ ----______________________________________________________ J 

Writing Conditional Assembly Instructions 85 



SECTION 10: ADDITIONAL FEATURES 

The additional features of the assembler 
language allow the programmer to: 

1. Terminate processing of a macro-
definition. 

2. Generate error messages. 
3. Define global SET symbols. 
4. Define subscripted SET symbols. 
5. Use system variable symbols. 
6. Prepare keyword and mixed-mode macro­

definitions and write keyword and 
mixed-mode macro-instructions. 

MEXIT -- MACRO-DEFINITION EXIT 

The MEXIT instruction is used to indicate 
to the assembler that it should terminate 
processing of a macro-definition. The 
typical form of this instruction is: 

r------------T---------~----------------, 
I Name IOperation I Operand I 
~------------+-----------+----------------~ 
IA sequence IMEXIT INot used, I 
I symbol or I I must not be· I 
I not used I I present I L ____________ ~ ___________ i-_______________ J 

The MEXIT instruction may only be used 
in a macro-definition. 

If the assembler processes an MEXIT 
instruction that is in a macro-definition 
corresponding to an outer macro­
instruction, the next statement processed 
by the assembler is the next statement 
outside macro-definitions. 

If the assembler processes an MEXIT 
instruction that is in a macro-definition 
corresponding to a second or third level 
macrO-instruction, the next statement proc­
essed by the assembler is the next state­
ment after the second or third level macro­
instruction in the macro-definition, 
respectively. 

MEXIT should not be confused with MEND. 
MEND indicates the end of a macro­
definition. MEND must be the last 
statement of every macro-definition, 
including those that contain one or more 
MEXIT instructions. 

The following example illustrates the 
use of the MEXIT instruction. 

86 

I~ 

r-------T-----------j-------------------, 
IName I Operation I Operand I 
~-------+-----------+-------------------~ 
I I MACRO I I 
I&NAME I MOVE I&T,&F I 

1 I IAIF I (T'&T EQ 'F').OK I 
2 I IMEXIT I I 
3 I.OK IANOP I I 

I&NAME 1ST 12,SAVEAREA I 
I IL 12,&F I 
liST 12,&T I 
I IL 12,SAVEAREA I 
I I MEND I I L _______ i-__________ ~ ___________________ J 

Statement 1 is used to determine if the 
type attribute of the first macro­
instruction operand is the letter F. If 
the type attribute is the letter F, the 
assembler processes the remainder of the 
macro-definition starting with statement 3. 
If the type attribute is not the letter F, 
the next statement processed by the 
assembler is statement 2. Statement 2 
indicates to the assembler that it is to 

",-_,J' 

terminate processing of the macro- ~ 
definition. ~ , 

MNOTE STATEMENT 

The MNOTE instruction may be used to generate 
a message and to indicate what error severity 
code, if any, is to be associated with the 
message. The severity code is for the 
programmer's information only and is not 
used by the DOS assembler or control pro­
gram. The typical form of this instruction 
is: 

r----------~--------T--------------------, 
I Name IOperationlOperand I 
r----------+---------+--------------------~ 
IA sequencelMNOTE I See examples below. I 
Isymbol or I I I 
Inotused I I I L-________ ~ ________ ~ ____________________ J 

The operand entry of the MNOTE 
assembler-instruction may be written in one 
of the follOwing forms: 

1. severity-code, 'message' 
2. ,. message' 
3. 'message' 

For 2 and 3 above, the severity code is 
assumed to be one. 

" ' .... _ .. / 



.J 

o 

o 

The MNOTE instruction may only be used 
in a macro definition. Variable symbols 
may be used to generate the MNOTE mnemonic 
operation code, the severity code indicator, 
and the message. 

The resulting severity code indicator 
may be a decimal integer 0 to 255, blank, 
or an asterisk. The integers indicate the 
severity of the error. (0 is the least 
severe; 255 is the most severe). If the 
severity code indicator is blank or omit­
ted, 1 is assumed. If the severity code is 
an asterisk, the MNOTE is not considered an 
error message. Messages can be generated 
with substitution using variable symbols. 

The MNOTE statement appears in the list­
ing with a statement number at the point 
where it was generated. It appears even if 
PRINT NOGEN is specified. If the severity 
code indicator was an integer or a blank, 
this statement number is placed in a list 
of statement numbers of MNOTE and other 
error statements near the end of the assem­
bly listing. If the severity code is an 
asterisk, the statement number is not 
placed in this list. 

Since the message portion of the MNOTE 
operand is enclosed in apostrophes, two 
apostrophes must be used to represent a 
single apostrophe. Any variable symbols 
used in the message operand are replaced by 
values assigned to them. Two ampersands 
must be used to represent a single amper­
sand that is not part of a variable symbol. 

The following example illustrates the 
use of the MNOTE instruction. 

r-----r----------~----------------------l 
I Name I Operation I Operand I 
L ____ ~----------~----------------------~ 

: MACRO 
&NAMEIMOVE &T,&F 

1 : AIF (T'&T NE T'&F) .Ml 
2 \AIF (T'&T NE 'F') .M2 
3 & NAME I ST 2,SAVEAREA 

L 2,&F 
ST 2,&T 
L 2,SAVEAREA 

4 MNOTE *,'MOVE GENERATED' 
MEXIT 

5 .Ml MNOTE 8, 'TYPE NOT SAME' 
MEXIT 

6 .M2 MNOTE 8, 'TYPE NOT F' 
MEND L _____ ~ ________________________________ _ 

Statement 1 is used to determine if the 
type attributes of both macro instruction 
operands are the same. If they are, state­
ment 2 is the next statement processed by 
the assembler. If they are not, statement 
5 is the next statement processed by the 

Page of GC24-3414-7 

Revised May 14, 1970 
By TNL GN33-8076 

assembler. Statement 5 causes an error 
message -- 8,TYPE NOT SAME -- to be printed 
in the source program listing. 

Statement 2 is used to determine if the 
type attribute of the first macro instruc­
tion operand is the letter F. If the type 
attribute is the letter F, statement 3 is 
the next statement processed by the 
assembler. If the attribute is not the 
letter F, statement 6 is the next state­
ment processed by the assembler. State­
ment 6 causes an error message --
8,TYPE NOT F -- to be printed in the source 
program listing. Statement 4 is an MNOTE 
which is not treated as an error message. 

GLOBAL AND LOCAL VARIABLE SYMBOLS 

The following are local variable symbols: 

1. Symbolic parameters. 
2. Local SET symbols. 
3. System variable symbols. 

Global SET symbols are the only global 
variable symbols. 

The GBLA, GBLB, and GBLC instructions 
define global SET symbols, just as the 
LCLA, LCLB, and LCLC instructions define 
the SET symbols described in Section 9. 
Hereinafter, SET symbols defined by LCLA, 
LCLB, and LCLC instructions will be called 
local SET symbols. 

Global SET symbols may communicate 
values between statements in one or more 
macro definitions and statements outside 
macro definitions. However, local SET 
symbols communicate values between state­
ments in the same macro definition, or 
between statements outside macro defini­
tions. 

If a local SET symbol is defined in two 
or more macro definitions, or in a macro 
definition and outside macro definitions, 
the SET symbol is considered to be a 
different SET symbol in each case. How­
ever, a global SET symbol is the same SET 
symbol each place it is defined. 

A SET symbol must be defined as a 
global SET symbol in each macro definition 
in which it is to be used as a global SET 
symbol. A SET symbol must be defined as a 
global SET symbol outside macro defini­
tions, if it is to be used as a global 
SET symbol outside macro definitions. 

If the same SET symbol is defined as a 
global SET symbol in one or more places, 
and as a local SET symbol elsewhere, it is 
considered the same symbol wherever it is 

Additional Features 87 



defined as a global SET symbol, and a dif­
ferent symbol wherever it is defined as as 
local SET symbol. 

Defining Local and Global SET Symbols 

Local SET symbols are defined when they 
appear in the operand entry of an LCLA, 
LCLB, or LCLC instruction. These instruc­
tions are discussed in S'e"ction 9 under 
D"efi"n"inq SET SymhoTs. 

Global SET symbols are defined when 
they appear in the operand entry of a GBLA, 
GBLB, or GBLC instruction. The typical 
forms of these instructions are: 
r-----------T-------------I---------------I 
I Name I Operation I Operand , I , , , 

I------------~-------------T----------------
~ Not used, GBLA, One or more 
: must not GBLB, or variable 
, be present GBLC symbols that 
I are to be used 
I as global SET 
, symbols, sepa-
I rated by conunas, L ___________ ~ _____________ ~ _______________ ~ 

The GBLA, GBLB, and GBLC instructions 
define global SETA; SETB, and SETC symbols, 
respectively, and assign the same initia~, 
values as the corresponding types of local 
SET symbols. However, a global SET symbol 
is assigned an initial value by only the 
first GBLA, GBLB, or GBLC instruction proc­
essed in which the symbol appears. Subse­
quent GBLA, GBLB, or GBLC instructions 
processed by the assembler do not affect 
the value assigned to the SET symbol. 

The programmer should not define any 
global SET symbols whose first four charac­
ters are &SYS. 

If a GBLA, GBLB, or GBLC instruction 
is part of a macro definition, it must 
immediately follow the prototype statement, 
or another GBLA, GBLB, or GBLC instruction. 
GBLA, GBLB, and GBLC instructions outside 
macro definitions must appear after all 
macro definitions in the source program, 
before all conditional assembly instruc~ 
tions and PUNCH and REPRO statements out­
side macro definitions, and before the 
first control section of the program. 

All GBLA, GBLB, and GBLC instructions 
in a macro definition must appear before all 
LCLA, LCLB, and LCLC instructions in that 
macro definition. All GBLA, GBLB, and GBLC 
instructions outside macro definitions must 
appear before all LCLA, LCLB, and LCLC 
instructions outside macro definitions. 

88 

Using Global and Local SET Symbols 

The following examples illustrate the use 
of global and local SET symbols. Each 
example consists of two parts. The first 
part is an assembler language source pro­
gram. The second part shows the statements 
that would be generated by the assembler 
after it processed the statements in the 
source program. 

Example 1: This example illustrates how 
the same SET symbol can be used to communi­
cate (1) values between statements in the 
same macro definitions, and (2) different 
values between statements outside macro 
definitions. 

r-------.------------r-----------------, 
Name I Operation /Operand 
-------~------------~-----------------

f MACRO t 

& NAME LOADA 
1 LCLA &A 
2 &NAME LR 15,&A 
3 &A SETA &A+l 

MEND 

4 LCLA &A 
FIRST LOADA 

5 LR 15,&A 
LOADA 

6 LR 15,&A 
END FIRST 

-------,------------r-----------------, 
I FIRST I LR : 15,0 I 
I I LR , IS, a I 

I : LR : 15,0 I 
I I LR : 15, a : 
I , END I FIRST , L _______ ! ____________ L ________________ ~ 

&A is defined as a local SETA symbol in 
a macro definition (statement 1) and out­
side macro definitions (statement 4). 
&A is used twice within macro definition 
(statements 2 and 3) and twice outside 
macro definitions (statements 5 and 6). 

Since &A is a local SETA symbol in the 
macro definition and outside macro defi­
nitions, it is one SETA symbol in the macro 
definition, and another SETA symbol outside 
macro definitions. Therefore, statement 3 
(which is in t"he macro definition) does 
not affect the value used for &A in state­
ments 5 and 6 (which are outside macro 
definitions) • 

Examp"le 2: This example illustrates how a 
SET symbol can be used to communicate 
values between statements that are part of 
a macro definition and statements outside 
macro definitions. 

I, 



r-------T-----------T-------------------, 
I Name I Operation I Operand I 
r-------+-----------+-------------------~ 

MACRO 
&NAME LOADA 

1 GBLA &A 
2 &NAME LR 15, &A 
3 &A SETA &A+1 

MEND 

4 GBLA &A 
FIRST LOADA 

5 LR 15, &A 
LOADA 

6 LR 15,&A 
END FIRST 

r-------+-----------+-------------------~ 
IFIRST I LR 115, a I 
I I LR 115,1 I 
I ILR 115,1 I 
I ILR 115,2 I 
I I END IFIRST . I L _______ ~ __________ .L _________________ J 

&A is defined as a global SETA symbol in 
a macro-definition (statement 1) and out­
side macro-definitions (statement 4). &A 
is used twice within the macrO-definition 
(statements 2 and 3) and twice outside 
macro-definitions (statements 5 and 6). 

Since &A is a global SETA symbol in the 
macro-definition and outside macro­
definitions, it is the same SETA symbol in 
both cases. Therefore, statement 3 (which 
is in the macro-definition) affects the 
value used for &A in statements 5 and 6 
(which are outside macro-definitions). 

Example 3: This example illustrates how 
the same SET symbol can be used to 
communicate: (1) values between statements 
in one macro-definition, and (2) different 
values between statements in a.different 
macro-definition. 

&A is defined as a local SETA symbol in 
two different macro-definitions (statements 
1 and 4). &A is used twice within each 
macro-definition (statements 2,3,5 and 6). 

Since &A is a local SETA symbol in each 
macro-definition, it is one SETA symbol in 
one macro-definition, and another SETA 
symbol in the other macro-definition. 
Therefore, statement 3 (which is in one 
macro-definition) does not affect the value 
used for &A in statement 5 (which is in the 
other macro-definition). Similarly, state­
ment 6 does not affect the value used for 
&A in statement 2. 

r-----~---------T------------------, 
I Name IOperation IOperand I 
r-------+-----------+-------------------~ 

I MACRO 
&NAME I LOADA 

1 I LCLA &A 
2 &NAME ILR 15,&A 
3 &A I SETA &A+1 

I MEND 
I 
I MACRO 
I LOADB 

4 I LeLA &A 
5 ILR 15, &A 
6 &A I SETA &A+l 

I MEND 
I 

FIRST I LOADA 
I LOADB 
I LOADA 
I LOADB I 
lEND I FIRST 

r-------+---------+---------------~ 
I FIRST ILR 115,0 I 
I ILR 115, a I 
I ILR 115,0 I 
I ILR. 115,0 I 
I lEND I FIRST I L _______ .L-_________ ~ __________________ J 

Example 4: This example illustrates how a 
SET symbol can be used to communicate 
values between statements that are part of 
two different macro-definitions. 

r------~---------,.---------------, 
IName I Operation IOperand I 
r-------+-----------+-------------------~ 
I \ MACRO I 

&NAME I LOADA I 
1 IGBLA &A I 
2 &NAME ILR 15,&A I 
3 &A I SETA &A+1 I 

I MEND I 
I I 
I MACRO I 
I LOADB I 

4 IGBLA &A I 
5 ILR 15, &A I 
6 &A I SETA &A+l I 

I MEND I 
I I 

FIRST ILOADA I 
ILOADB I 
ILOADA I 
lLOADB I I 

I lEND I FIRST I 
r-------+---------+-------------------~ 
I FIRST ILR 115,0 I 
I ILR 115,1 I 
I ILR 115,2 I 
I ILR 115,3 I 
I I END I FIRST I L _______ .L---______ --.L ___________________ J 

Additional Features 89 



&A is defined as a global SETA symbol in 
two different macro-definitions (statements 
1 and 4). SA is used twice within each 
macro-definition (statements 2,3,5, and 6). 

Since &A is a global SETA symbol in each 
macro-definition, it is the same SETA sym­
bol in each macro-definition. Therefore, 
statement 3 (which is in one 
macro-definition) affects the value used 
for &A in statement 5 (which is in the 
other macro-definition). Similarly, state­
ment 6 affects the value used for &A in 
statement 2. 

Example 5: This example illustrates how 
the same SET symbol can be used to communi­
cate: (1) values between statements in two 
different macro-definitions, and (2) dif­
ferent values between statements outside 
macro-definitions. 

1 
2 
3 

4 
5 
6 

r-------T-----------~-------------------, 
I Name I Operation I Operand I 
t-------+-----------+-------------------~ 

SNAME 

& NAME 
SA 

&A 

MACRO I 
LOADA I 
GBLA &A I 
LR 15,&A I 
SETA &A+1 I 
MEND I 

MACRO 
LOADB 
GBLA 
LR 
SETA 
MEND 

&A 
15, &A 
&A+l 

I 
I 
I , 

7 LCLA &A 
FIRST , LOADA , 

I LOADB I 
8 ILR \15,&A 

1 LOADA I 
,LOADB I 

9 I LR 115, &A 
lEND I FIRST 

t-------+-----------+-------------------~ 
IFIRST ILR 115,0 I 
1 'LR 115,1 1 
1 ILR 115,0 I 
I I LR 115,2 I 
I I LR 115,3 I 
I I LR 115, a I 
I I END IFIRST I L _______ ~ ___________ ~ ___________________ J 

&A 'is defined as a global SETA symbol in 
two different macro-definitions (statements 
1 and 4), but it is defined as a local SETA 
symbol outside macro-definitions (statement 
7). &A is used twice within each macro­
definition and twice outside macro­
definitions (statements 2,3,5,6,8, and 9). 

90 

Since &A is a global SETA symbol in each 
macro-definition, it is the same SETA (~ 
symbol in each macro-definition. However, _ 
since &A is a local SETA symbol outside 
macro-definitions, it is a different SETA 
symbol outside macro-definitions. 

Therefore, statement 3 (which is in one 
macro-definition) affects the value used 
for &A in statement 5 (which is in the 
other macro-definition), but it does not 
affect the value used for &A in statements 
8 and 9 (which are outside 
macro-definitions). Similarly, statement 6 
affects the value used for &A in statement 
2, but it does not affect the value used 
for &A in statements 8 and 9. 

Subscripted SET Symbols 

Both global and local SET symbols may be 
defined as subscripted SET symbols. The 
local SET symbols defined in Section 9 were 
all nonsubscripted SET symbols. 

SUbscripted SET symbols provide the 
programmer with a convenient way to use one 
SET symbol plus a subscript to refer to 
many arithmetic, binary, or character 
values. 

A subscripted SET symbol consists of a 
SET symbol immediately followed by a sub­
script that is enclosed in parentheses. 
The subscript may be any arithmetic expres­
sion that is allowed in the operand of a 
SETA statement in the range of 1 to the 
specified dimension. 

Only five levels of parentheses are 
permitted in a SETA or SETB operand. 

The following are valid subscripted SET 
symbols. 

& READER (17) 
&A23456(&S4) 
&X4F2(25+&A2) 

The following are invalid subscripted 
SET symbols. 

&X4F2 
( 25) 
&X4F2 (25) 

(no subscript) 
(no SET symbol> 
(subscript does not 

immediately follow 
SET symbol) 

Defining Subscripted SET Symbols: If the 
programmer wants to use a subscripted SET 
symbol, he must write in a GBLA, GBLB, 
GBLe, LCLA, LCLB, or LCLC instruction, a 
SET symbol immediately followed by an 
Unsigned decimal integer enclosed in paren­
theses. The decimal integer, called a 

" .. _ .. / ' 



o 

o 

dimension, indicates the number of SET 
variables associated with the SET symbol. 
Every variable associated with a SET symbol 
is assigned an initial value that is the 
same as the initial value assigned to the 
corresponding type of nonsubcripted SET 
symbol. 

If a subscripted SET symbol is defined 
as global, the same dimension must be used 
with the SET symbol each time it is defined 
as global. 

The maximum dimension that can be used 
with a SETA, SETB, or SETC symbol is 255. 

A subscripted SET symbol may be used 
only if the declaration was subscripted. A 
nonsubscripted SET symbol may be used only 
if the declaration had no sUbscript. 

The following statements define the 
global SET symbols &SBOX, &WBOX, and &PSW, 
and the local SET symbol &TSW. &SBOX has 
50 arithmetic variables associated with it, 
&WBOX has 20 character variables, &PSW and 
&TSW each have 230 binary variables. 

r------T-----------T----------------------, 
I Name I Operation I Operand I 
r------+-----------+----------------------~ 
I IGBLA I&SBOX(50) I 
I I GBLC I &WBOX (20) I 
I IGBLB I&PSW(230) I 
I I LCLB I&TSW(230) I 
L ______ ~----------_~---___________________ J 

Using Subscripted SET Symbols: After the 
programmer has associated a number of SET 
variables with a SET symbol, he may assign 
values to each of the variables and use 
them in other statements. 

If the statements in the previous exam­
ple were part of a macro-definition, (and 
&A was defined as a SETA symbol in the same 
definition), the following statements could 
be part of the same macro-definition. 

r----------T---------~-----------------, 
I Name IOperation I Operand I 
r----------+-------+-----------------~ 

1 I&A I SETA 15 I 
2 I&PSW(&A) ISETB 1(6 LT 2) I 
3 I&TSW(9) ISETB I (&PSW(&A» I 
4 I IA 12,=F'&SBOX(45)' I 
5 I JCLI IAREA,C'&WBOX(17), I L-_________ ~ ______ ~ _________________ J 

Statement 1 assigns the arithmetic value 
S to the nonsubscripted SETA symbol &A. 
Statements 2 and 3 then assign the binary 
v~lue 0 to subscripted SETB symbols &PSW(S) 

and &TSW(9), respectively. Statements 4 
and S generate statements that add the 
value assigned to &SBOX(4S) to general 
register 2, and compare the value assigned 
to &WBOX(17) to the value stored at AREA, 
respectively. 

SYSTEM VARIABLE SYMBOLS 

System variable symbols are local variable 
symbols that are assigned values automat­
ically by the assembler. There are three 
system variable symbols: &SYSNDX, &SYSECT, 
and &SYSLIST. System variable symbols may 
be used in the name, operation and operand 
entries of statements in macro-definitions, 
but not in statements outside macro­
definitions. They may not be defined as 
symbolic parameters or SET symbols, nor may 
they be assigned values by SETA, SETB, and 
SETC instructions. 

&SYSNDX -- Macro-Instruction Index 

The system variable symbol &SYSNDX may be 
combined with other characters to create 
unique names for statements generated from 
the same model statement. 

&SYSNDX is assigned the four-digit 
number 0001 for the first macro-instruction 
processed by the assembler, and it is 
incremented by one for each subsequent 
inner and outer macro-instruction proc­
essed. 

If &SYSNDX is used in a model statement, 
SETC or MNOTE instruction, or a character 
relation in a SETB or AIF instruction, the 
value substituted for &SYSNDX is the four­
digit number of the macro-instruction being 
processed, including leading zeros. 

If &SYSNDX appears in arithmetic 
expressions (e.g., in the operand of a SETA 
instruction), the value used for &SYSNDX is 
an arithmetic value. 

Throughout one use of a macro defini­
tion, the value of &SYSNDX may be consid­
ered a constant, independent of any inner 
macro-instruction in that definition. 

The example in the next column illus­
trates these rules. It is assumed that the 
first macro-instruction processed, OUTER 1, 
is the 106th macro-instruction processed by 
the assembler. 

Additional Features 91 



statement 7 is the 106th macro­
instruction processed. Therefore, &SYSNDX 
is assigned the number 0106 for that macro­
instruction. The number 0106 is 
substituted for &SYSNDX when it is used in 
statements 4 and 6. statement 4 is used to 
assign the character value 0106 to the SETC 
symbol &NDXNUM. Statement 6 is used to 
create the unique name BOI06. 

1 

2 
3 

4 

5 
6 

r----------T-----------T----------------, 
I Name loperation 1 Operand 1 
r------+-------+--------------~ 

I MACRO 
IINNERl 
IGBLe 

A&SYSNDX I SR 
ICR 
IBE 
IB 

& NAME 

&NDXNUM 
& NAME 

I MEND 
I 
I MACRO 
IOUTERl 
IGBLC 
ISETC 
ISR 
IAR 
IINNERl 

B&SYSNDX IS 
I MEND 

&NDXNUM 
2,5 
2,5 
B&NDXNUM 
A&SYSNDX 

&NDXNUM 
• &SYSNDX' 
2,4 
2,6 

2,=F'1000' 

r---------+-------+------------~ 
7 IALPHA IOUTERl I I 
8 I BETA I OUTER! I I 
r------+------+--------------~ 
ALPHA ISR 12,4 

AOI07 

BOI06 
BErA 

AOI09 

IAR 12,6 
I SR 12,5 
ICR 12,5 
IBE IBOI06 
IB IAOI07 
IS 12,=F'1000' 
I SR 12,4 
IAR 1.2,6 
ISR 12,5 
ICR 12,5 
IBE IBOI08 
IB IA0109 

BOI08 IS 12,=F'1000' L-_______ .L _____ --.L~ ___________ _ 

Statement 5 is the 107th macro­
instruction processed. Therefore, &SYSNDX 
is assigned the number 0107 for that macro­
instruction. The number 0107 is 
substituted for &SYSNDX when it is used in 
statements 1 and 3. The number 0106 is 
substituted for the global SETC symbol 
&NDXNUM in statement 2. 

Statement 8 is the lOath macro­
instruction processed. Therefore, each 
occurrence of &SYSNDX is replaced by the 
number 0108. For example, statement 6 is 
used to create the unique name B0108. 

92 

When statement 5 is used to process the 
108th macro-instruction, statement 5 
becomes the 109th macro-instruction proc­
essed. Therefore, each occurrence of 
&SYSNDX is replaced by the number 0109. 
For example, statement 1 is used to create 
the unique name A0109. 

&SYSECT -- Current Control Section 

The system variable symbol &SYSECT may be 
used to represent the name of the control 
section in which a macro-instruction 
appears. For each inner and outer macro­
instruction processed by the assembler, 
&SYSECT is assigned a value that is the 
name of the control section in which the 
macro-instruction appears. 

When &SYSECT is used in a macro­
definition, the value substituted for 
&SYSECT is the name of the last CSECT, 
DSECT, or START statement that occurs 
before the macro-instruction. If no named 
CSECT, DSECT, or START statements occu+ 
before a macro-instruction, &SYSECT is 
assigned a null character value for that 
macro-instruction. . 

CSECT or DSECT statements processed in a 
macro-definition affect the value for 
&SYSECT for any subsequent inner macro­
instructions in that definition, and for 
any other outer and inner macro­
instructions. 

Throughout the use of a macro­
definition, the value of &SYSECT may be 
considered a constant, independent of any 
CSECT or DSECT statements or inner macro­
instructions in that definition. &SYSECT 
will take on the name of the last CSECT, 
DSECT, or START statement regardless of 
whether or not that statement is correct. 

The next example illustrates these 
rules. 

Statement 8 is the last CSECT, DSECT, or 
START statement processed before statement 
9 is processed. Therefore, &SYSECT is 
assigned the value MAINPROG for macro­
instruction OUTER! in statement 9. 
MAINPROG is substituted for &SYSECT when it 
appears in statement 6. 

Statement 3 is the last CSECT, DSECT, or 
START statement processed before statement 
4 is processed. Therefore, &SYSECT is 
assigned the value CSOUTl for macro-

~ 
I 

\ .......... / 

instruction INNER in statement 4. CSOUT1/---'" 
is substituted for &SYSECT when it appears i~_/ 
in statement 2. 



statement 1 is used to generate a CSECT 
statement for statement 4. This is the 
last CSECT, DSECT, or START statement that 
appears before statement 5. Therefore, 
&SYSECT is assigned the value INA for 
macro instruction INNER in statement 5. 
INA is substituted for &SYSECT when it 
appears in statement 2. 

1 
2 

3 

4 
5 
6 

7 

r----------T-----------T---------------, 
\ Name I Operation I Operand I 
r--------t---------t-------------i 

I MACRO 
I INNER 

&INCSECT ICSECT 
IDC 

CSOUT1 

\ MEND 
I 
I MACRO 
IOUTER1 
ICSECT 
IDS 
I INNER 
I INNER 
IDC 
I MEND 
I 
I MACRO 
IOUTER2 
IDC 

I I MEND 

&INCSECT 

A (&SYSECT) 

100C 
INA 
INB 
A( &SYSECT) 

A(&SYSECT) 

r--------t-----------t--------------i 
8 \MAINPROG ICSECT I I 

I IDS 1200C I 
9 I IOUTERl I I 

10 I IOUTER2 I I 
r-------+---------+---------~ 
I MAINPROG I CSECT I I 
I IDS 1200C I 
ICSOUT1 ICSECT I 
I IDS 1100e 
I INA ICSECT I 
I IDC IA(CSOUT1) 
I INB I CSECT I 
I IDC lACINA) 
I IDC IA(MAINPROG) 
I IDC IA{INB) I L ________ ~-_________ i_ _____________ J 

statement 1 is used to generate a CSECT 
statement for statement 5. This is the 
last CSECT, DSECT, or START statement that 
appears before statement 10. Therefore, 
&SYSECT is assigned the value INB for 
macro instruction OUTER2 in statement 10. 
INB is substituted for &SYSECT when it 
appears in statement 7. 

&SYSLIST - Accessing Positional Operands in 
a Macro Instruction 

The system variable symbol &SYSLIST pro­
vides the programmer with an alternative to 

(~ symbolic parameters for referring to pos­
~) i tiona 1 macro instruction operands. 

&SYSLIST may be coded, along with all 
other variable symbols (including symbolic 
parameters), in the model statements of any 
macro definition. (Tn the Tape Operating 
System (TOS) , &SYSLIST cannot be used in 
macro definitions having any keyword sym­
bolic parameters). When used to access a 
macro instruction operand, &SYSLIST is 
written with one or two subscripts: 

1. &SYSLIST(m) will access the positional 
macro instruction operand corresponding 
to the pOSitional operand subscript m. 
The programmer, therefore, does not have 
to define a positional parameter in the 
macro definition prototype statement. 
This allows him to access a different 
number of positional macro instruction 
operands in different calls to the same 
macro. The positional operand subscript 
m can be a self-defining term or an abso­
lute express~on, but its value must be 
a positive, whole number within the 
range of the number of operands permit­
ted in a macro instruction. 

Note: A null string will be generated 
in place of &SYSLIST(m) if: 

a. m=O 

b. m is greater than the number of pos­
itional operands in the macro 
instruction. 

c. m accesses a specifically omitted 
operand. 

The model statement containing 
&SYSLIST(m) will be flagged in error if: 

a. m is negative. 

b. m is greater than 100 (for the 
D Assembler) . 

m is greater than 200 (for the 
F Assembler) . 

2. &SYSLIST(m,n) accesses elements of pos­
itional operand sublists in macro 
instructions. The positional operand 
subsript m fulfills the same function 
as above, and is subjected to the same. 
restrictions. The positional operand 
sublist subscript n refers to the sub­
list element of the positional operand 
in a macro instruction corresponding to 
m. Again positional parameters need 
not have been previously defined in the 
macro definition prototype statement. 

Note: A null string will be generated 
in place of &SYSLIST(m,n), m > 0 and 
otherwise within its allowable range, 
if: 

Additional Features 93 



~ 

c 



J 

r---, 
U 

a. n=O 

b. n is greater than the number of ele­
ments in the positional operand sub­
list in the macro instruction. 

c. n accesses a specifically omitted 
operand sublist element. 

The type, length, scaling, integer, and 
count attributes of &SYSLIST(m) and 
&SYSLIST(m,n) and the number attributes of 
&SYSLIST(m) and &SYSLIST may be used in con­
ditional assembly instructions. Attributes 
are discussed in Section 9 under Attributes. 

N'&SYSLIST refers to the total number of 
positional operands in the macro instruction 
statement. When none have been called, 
N'&SYSLIST has the value O. If, however, 
some positional operands in the macro 
instruction are specifically omitted (by 
means of commas), N'&SYSLIST will include 
the omitted operands in its count (see 
MAC2 and MAC3 in the examples below). A 
sublist is considered to be one operand 
(see MAC3 below): 

Macro Instructions Nt &SYSLIST 

MAC 1 Kl=DS 0 

MAC 2 , ,Kl=DC 2 

MAC 3 FULL, , F, ( , l' , , 2 ' , , 3 ' ) , Kl=DC 4 

N'&SYSLIST(m) refers to the total num­
ber of elements in the macro instruction 
operand sublist corresponding to the pos­
itional operand subscript m. If the mth 
operand is omitted, N'&SYSLIST(m) is 0; if 
the mth operand is not a sublist, 
N'&SYSLIST(m) is 1. 

In the MAC3 macro instruction above: 

N'&SYSLIST(4) is 3 
N'&SYSLIST(5) is 0 
N'&SYSLIST(2) is 0 
N'&SYSLIST(l) is 1 

KEYWORD MACRO DEFINITIONS AND INSTRUCTIONS 

Keyword macro definitions provide the pro­
grammer with an alternate way of preparing 
macro definitions. 

A keyword macro definition enables a 
programmer to reduce the number of operands 
in each macro instruction that corresponds 
to the definition, and to write the oper­
ands in any order. 

The macro instructions that correspond 
to the macro definitions described in Sec­
tion 7 (hereinafter called positional ---­
macro instructions and positional macro 
definitions, respectively) require the 
operands to be written in the same order as 
the corresponding symbolic parameters in 
the operand entry of the prototype 
statement. 

Additional Features 93.1 



In a keyword macro definition, the pro­
grammer can assign values to any symbolic 
parameters that appear in the operand of 
the prototype statement. The value 
assigned to a symbolic parameter is substi­
tuted for the symbolic parameter, if the 
programmer does not write anything in the 
operand of the macro instruction to corres­
pond to the symbolic parameter. 

When a keyword macro instruction is 
written, the programmer need only write one 
operand for each symbolic parameter whose 
value he wants to change. 

Keyword macro definitions are'prepared 
the same way as positional macro 
definitions, except that the prototype 
statement is written differently, and 
&SYSLIST may not be used in the definition. 
The rules for preparing positional macro 
definitions are in Section 7. 

Keyword Prototype 

The typical form of this statement is: 

r------------T-----------T----------------, 
I Name I Operation I Operand I 
~------------+-----------+_---------------i 
IA symbolic IA symbol lOne to 100 (200 I 
I parameter I Ifor F assembler) I 
lor not used I loperands of the I 
I I ,form described t 
I f I below, separ- I 
I I lated by commas. I 
L---_________ ~ _________ i___ _____________ J 

Each operand must consist of a symbolic 
parameter, immediately followed by an equal 
sign and optionally followed by a value. 
Nested keywords are not permitted. 

A value that is part of an operand must 
immediately follow the equal sign. 

Anything that may be used as an operand 
in a macro instruction except variable 
symbols, may be used as a value in a 
keyword prototype statement. The rules for 
forming valid macro instruction operands 
are detailed in Section 8. 

The following are valid keyword proto­
type operands. 

&READER= 
& LOOP2=SYMBOL 
&S4==Ft 4096' 

The following are invalid keyword proto-

94 

type operands. 

CARD ARE A 
&TYPE 
&TWO =123 

&AREA= X'189A' 

(no symbolic parameter) 
(no equal sign) 
(equal sign does not 

immediately follow 
symbolic parameter) 
value does 
not immediately follow 
equal sign) 

The following keyword prototype state­
ment contains a symbolic parameter in the 
name entry and four operand entries in the 
operand. The first two operand entries 
contain values. The mnemonic operation 
code is MOVE. 

r------T-----------T----------------------, 
I Name I Operation IOperand I 
~------+-----------+----------------------i 
I&N I MOVE I&R=2,&A=S,&T=,&F= I L-_____ ~ ___________ ~ ______________________ J 

Keyword Macro Instruction 

After a programmer has prepared a keyword 
macro definition he may use it by writing a 
keyword macro instruction. 

The typical form of a keyword macro ~ 
instruction is: . ./ 

r--------~---------~--------------------, 
I Name I Operation I Operand I 
~---------+---------+_--------------------i 
IA syrnbol,IMnemonic !Zero to 100 operands I 
Isequence I operation I (200 for F assembler) I 
I symbol,orl code lof the form describedl 
Inot used I I below, separated by I 
I I , commas I L-________ ~ ________ ~ _____________________ J 

Each operand consists of a keyword 
immediately followed by an equal sign and 
an optional value. Nested keywords are not 
permitted. Anything that may be used as an 
operand in a positional macro instruction 
may be used as a value in a keyword macro 
instruction. The rules for forming valid 
positional macro instruction operands are 
detailed in Section 8. 

A keyword consists of one through seven 
letters and digits, the first of which must 
be a letter. 

The keyword part of each keyword macro 
instruction operand must correspond to one 
of the symbolic parameters that appears in 
the operand of the keyword prototype C 
statement. A keyword corresponds to a /' 



o 

symbolic parameter if the characters of the 
keyword are identical to the characters of 
the symbolic parameter that follow the 
ampersand. 

The following are valid keyword macro 
instruction operands. 

LOOP 2=SYMBOL 
S4=F' 4096' 
TO= 

The following are invalid keyword macro 
instruction operands. 

&X4F2=0(2,3) (keyword does not begin 
with a letter) 

CARDAREA=A+2 (keyword is more than 
seven characters) 

=(TO(S),(FROM» (no keyword) 

The operands in a keyword macro 
instruction may be written in any order. 
If an operand appeared in a keyword 
prototype statement, a corresponding oper­
and does not have to appear in the keyword 
macro instruction. If an operand is omit­
ted, the comma that would have separated it 
from the next operand need not be written. 

The following rules are used to replace 
the symbolic parameters in the statements 
of a keyword macro definition. 

1. If a symbolic parameter appears in the 
name entry of the prototype statement, 
and the name entry of the macro 
instruction contains a symbol, the 
symbolic parameter is replaced by the 
symbol. If the name entry of the 
macro instruction is unused or contains 
a sequence symbol, the symbolic param­
eter is replaced by a null character 
value. 

2. If a symbolic parameter appears in the 
operand of the prototype statement, and 
the macro instruction contains a key­
word that corresponds to the symbolic 
parameter, the value assigned to the 
keyword replaces the symbolic paramet­
er. 

3. If a symbolic parameter was assigned a 
value by a prototype statement, and the 
macro instruction does not contain a 
keyword that corresponds to the symbol­
ic parameter, the standard value 
assigned to the symbolic parameter 
replaces the symbolic parameter. oth­
erwise, the symbolic parameter is 
replaced by a null character value. 

Note: If a symbolic parameter value is a 
self-defining term the type attribute 
assigned to the value is the letter N. If 
a symbolic parameter value is omitted the 
type attribute assigned to the value is the 

letter o. All other values are assigned 
the type attribute U. 

The following keyword macro definition, 
keyword macro instruction, and generated 
statements illustrate these rules. 

statement 1 assign9 the values 2 and S 
to the symbolic parameters &R and &A, res­
pectively. Statement 6 assigns the values 
FA, FB, and THERE to the keywords T, F, and 
A, respectively. The symbol HERE is used 
in the name entry of statement 6. 

Since a symbolic parameter (&N) appears 
in the name entry of the prototype state­
ment (statement 1), and the corresponding 
characters (HERE) of the macro instruction 
(statement 6) are a symbol, &N is replaced 
by HERE in statement 2. 

r-----T----------T----------------------, 
IName IOperation IOperand I 
r-----+----------+----------------------~ 
I I MACRO I I 

1 I&N I MOVE I&R=2,&A=S,&T=,&F= I 
2 I&N 1ST I&R,&A I 
3 I IL I&R,&F I 
4 I I ST I &R, & T I 
5 I I L I &R, &A I 

I I MEND I I 
r-----+----------+----------------------~ 

6 I HERE I MOVE I T=FA, F=FB, A=THERE I 
r-----+----------+----------------------~ 
IHERE 1ST I 2, THERE I 
I IL 12,FB I 
liST 12,FA I 
I IL 12,THERE I L _____ ~ __________ ~ ______________________ J 

Since &T appears in the operand of 
statement 1, and statement 6 contains the 
keyword (T) that corresponds to &T, the 
value assigned to T (FA) replaces &T in 
statement 4. Similarly, FB and THERE 
replace &F and &A in statement 3 and in 
statements 2 and 5, respectively. Note 
that the value assigned to &A in statement 
6 is used instead of the value assigned to 
&A in statement 1. 

Since &R appears in the operand of 
statement 1, and statement 6 does not con­
tain a corresponding keyword, the value 
assigned to &R (2), replaces &R in state­
ments 2, 3, 4, and 5. 

Operand Sublists: The value assigned to a 
keyword and the value assigned to a symbol­
ic parameter may be an operand sublist. 
Anything that may be used as an operand 
sublist in a poSitional macro instruction 
may be used as a value in a keyword macro 
instruction and as a value in a keyword 
prototype statement. The rules for forming 
valid operand sublists are detailed in 
Section 8 under "Operand Sublists." 

Additional Features 95 



Keyword Inner Macro Instructions: Keyword 
and positional inner macro instructions may 
be used as model statements in either 
keyword or positional macro definitions. 

MIXED-MODE MACRO DEFINITIONS AND 
INSTRUCTIONS 

Mixed-mode macro definitions allow the 
programmer to use the features of keyword 
and positional macro definitions in the 
same macro definition. 

Mixed-mode macro definitions are pre­
pared the same way as positional macro 
definitions, except that the prototype 
statement is written differently. (In TOS 
&SYSLIST may not be used in the definition) . 
The rules for preparing positional macro 
definitions are in Section 7. 

Mixed-Mode Prototype 

The typical form of this statement is: 

r-----------T----------~-----------------, 
I Name I Operation I operand I 

t~-;yrnb~li~-~-;~bol --tTWO-tO-roo-(200--1 
I parameter I Ifor F assembler) I 
lor not usedl ,operands o~ the I 
I I Iform descrlbed I 
J I Ibelow, separated I 
l _________ .1 _________ .1!?X_~~~~~ _______ J 

The operands must be valid operands of 
positional and keyword prototype 
statements. All the positional operands 
must precede the first keyword operand. 
The rules for forming positional operands 
are discussed in Section 7 under Macro 
Instruction Prototype. The rules for 
forming keyword operands are discussed 
under Keyword Prototype. 

The following sample mixed-mode proto­
type statement contains three positional 
operands and two keyword operands. 

r-------T---------T----------------------, 
I Name I operation I Operand I 
~-------+---------+-----------------------~ 
I&N I MOVE I&TY,&P,&R,&TO=,&F= I L _____ ~.1 _________ .1 ______________________ J 

96 

Mixed-Mode Macro Instruction 

The typical form of a mixed-mode macro 
instruction is: 

,---------T---------T--------------------, 
I Name I operation I Operand I 
~--------+------+----------------~ 
IA symbol, I Mnemonic I Zero to 100 (200 for I 
Isequence loperationlF assembler) operands I 
Isymbol,orlcode lof the form describedl 

.Inot used I I below, separated by I 
I I J commas I L--______ .1-________ .1 _____________________ J 

The operand consists of two parts. The 
first part corresponds to the positional 
prototype operands. This part of the 
operand is written in the same way that the 
operand entry of a positional macro 
instruction is written. The rules for 
writing positional macro instructions are 
in Section 8. 

The second part of the operand 
corresponds to the keyword prototype oper­
ands. This part of the operand is written 
in the same way that the operand entry of a 
keyword macro instruction is written. The 
rules for writing keyword macro 
instructions are described under Keyword 
Macro Instruction. 

The following mixed-mode macro 
definition, mixed-mode macro instruction, 
and generated statements illustrate these 
facilities. 

r------T---------T--------------------, 
I Name IOperationl operand I 
~------+--------+----------------------~ 
I I MACRO I I 

1 I&N I MOVE I &TY,&P,&R,&TO=,&F= I 
I&N IST&TY I &R,SAVE I 
I I L&TY I &R, &P&F I 
I IST&TY I &R,&P&TO I 
I IL&TY I &R,SAVE I 
~------+---------+----------------------~ 

2 IHERE I MOVE I H,,2,F=FB,TO=FA I 
r------+---------+---------------------~ 
I HERE ISTH I 2,SAVE I 
I ILH I 2,FB I 
I ISTH I 2,FA I 
I I LH I 2 , SAVEl L-_____ .1 _________ .1 _____________________ J 

The prototype statement (statement 1) 
contains three positional operands (&TY,&P, 
and &R) and two keyword operands (&TO and 
&F). In the macro instruction (statement 
2) the positional operands are written in 
the same order as the positional operands 
in the prototype' statement (the second 

c 



o 

operand is omitted). The keyword operands 
are written in an order that is different 
from the order of keyword operands in the 
prototype statement. 

Mixed-mode inner macro-instructions may 
be used as model statements in mixed-mode, 
keyword, and positional macro-definitions. 
Keyword and positional inner macro­
instructions may be used as model 
statements in mixed-mode macro-definitions~ 

CONDITIONAL ASSEMBLY COMPATIBILITY 

Macro-definitions prepared for use with the 
other System/360 assemblers having macro 
language facilities may be used with the 
DOS/TOS Assembler provided that all SET 

symbols are declared in an appropriate LCLA, 
LCLB, LCLC, GBLA, GBLB, or GBLC statement. 
The AIFB and AGOB instructions are process­
ed by the DOS/TOS Assembler the same way that 
the· AIF and AGO instructions are processed. 
AIFB and AGOB instructions cause the count 
set up by the ACTR instruction to be decre­
mented exactly like the AGO and AIF in­
structions. 

Additional Features 97 



APPENDIX A: EXTENDED BINARY CODED DECIMAL INTERCHANGE CODE (EBCDIC) 

The following charts and the associated key 
show the bit configurations of the 256 
possible codes (characters) of the Extended 
BCD Interchange Code. To write a given 
character in binary, locate the character 
on the chart. The top row of coordinates 
equates to bit positions 0 and 1, the sec­
ond roW to bit positions 2 and 3, and the 
left row of coordinates equates to bit 
positions 4, 5, 6 and 7. 

Examples: 

Character A equals: 

top row - 11 (bit positions 0, 1) 

2nd row - 00 (bit positions 2, 3) 

left row - 0001 (bit positions 4, 5, 6 
and 7) 

Therefore, character A is shown as: 1100 
0001. 

Character $ equals: 

top row - 01 (bit positions 0, 1) 

2nd row - 01 (bit positions 2, 3) 

left row - 1011 (bit positions 4, 5, 6 
and 7) 

98 

Therefore, character $ is shown as: 
0101 1011. 

The coordinates on the bottom of the 
chart are the three zone punches required 
to reproduce the character in a punched 
card; the coordinates on the right side 
represent the numeric punches. 

Examples: 

Character A = bottom row - 12 punch 
right row - 1 punch 

Therefore, Character A is shown by a 12 
and a 1 punch in the same card column. 

Character $ = bottom row - 11 punch 
right row - 8 and 3 punches 

Therefore, Character $ is shown by 11, 
8, and 3 punches in the same card column. 

There are fifteen exceptions to the 
punching equated to bit positions. These 
exceptions are shown in the chart by cir­
cled numbers 1 through 15, and the substi­
tuted punching is shown below the chart 
under Exceptions. 

c 

c' 



Bit Positions 
01 0, I 

00 1 01 1 10 \11 
Bit Positions 

2,3 

0000 0000 

0001 0001 

0010 
" 

0010 

.. 00' 

~ 1/1' 

0- ~' 

0011 

0100 

0011 

0100 

0101 0101 

0110 0110 

0111 0111 

1000 1000 

1001 

01 Bit Positions 
0, I 

00 / 01 110111 
Bit Positions 

2,3 

1001 

1010 
" 

1010 

1011 

1100 

-5 
00' 

1011 
. .0 

~ ~. 1100 

1101 
"0. ;:: 
0 :~ 1101 

1110 
~ 

1110 
<ii 

1111 1111 

0) 12-0-9-8-1 ® No Punches ® 17-0 @ 
(3) 12-11-9-8-1 ® 12 @ 11-0 @ 

® 11-0-9-8-1 0 11 @ 0-8-2 @ 
8) 12-11-0-9-8-1 ® 12-11-0 @ a 

10 

00 I 01 110 111 

a i 

b k s 

c I t 

d m u 

e n v 

f 0 w 

9 p x 

h q y 

i r z 

10 

00 

0-1 

11-0-9-1 

12-11 

11 
Bit Positions 

0, I 

00 I 01 1
10 / 11 

Bit Positions 
2, 3 

~~~O~~ 
A J Q.£ I>~\t 
B K S 

C L T 

0 M U 

E N V 

F 0 W 

G P X 

H 0 Y 

I R Z 

11 

2 

3 

4 

5 

6 

7 

8 

9 

11 

-...;.. 

/1: •. 2. 
~ 

4 
~ 
r4 

~ 
~ 2 

Bit Positions 
0, I 

Bit Positions 
2, 3 

.. 
] 
"0. 
0 

Extended Binary Coded Decimal Interchange Code (Part 1 of 2) 

Appendix A 99 



Control Characters 

PF Punch Off BS Backspace PN Punch On 
HT Horizontal Tab IL Idle RS Reader Stop 
LC Lower Case BY Bypass UC Upper Case 
DL Delete LF Line Feed ET End of Transmission 
RE Restore EB End of Block SM Set Mode 
NL New Line PR Prefix SP Space 
OS Digit Select SOS Start of Significance FS Field Separator 

Seecial Graehic Characters 

¢ Cent Sign * Asterisk > Greater-than Sign 
Period, Decimal Point } Right Parenthesis ? Question Mark 

< Less-than Sign ; Semicolon : Colon 
( Left Parenthesis -, Log'ical NOT , Number Sign 

+ Plus Sign - Minus Sign, Hyphen @ At Sign 

I Vertical Bar, Logical OR / Slash I Prime, Apostrophe 
& Ampersand ' Comma = Equal Sign 
I Exclamation Point % Percent II Quotation Mark 

$ Dollar Sign - Underscore 

Bit Pattern Hole Pattern 
Examples Type Bit Positions 

I 01 234567 Zone Punches Di9it Punches 

PF Control Character 00 000100 12 -9 - 4 

% Special Graphic 01101100 0-8-4 

R Upper Case 11 01 1001 11 -;- 9 

a Lower Case 10000001 12 -0 - 1 

Control Character, 00 11 0000 12 - 11 - 0 -9 - 8 - 1 
function not yet 

I 
I 

assigned I 

Extended Binary coded Decimal Interchange Code (Part 2 of 2) 

100 



J 

C) 

APPENDIX B: HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE 

The table in this appendix provides for 
direct conversion of decimal and hexadeci­
mal numbers in these ranges: 
r--------------~-------------, I Hexadecimal I Decimal I 
~--------+-----------~ I 000 to FFF I 0000 to 4095 I ~ ____________ ~ _______________ J 

Decimal numbers (0000-4095) are given with­
in the 5-part table. The first two charac­
ters (high-order) of hexadecimal numbers 
(OOO-FFF) are given in the lefthand column 
of the table; the third character (x) is 
arranged across the top of each part of the 
table. 

To find the decimal eqUivalent of the 
hexadecimal number OC9, look for OC in the 
left column, and across that row under the 
column for x = 9. The decimal number is 
0201. 

To convert from decimal to hexadecimal, 
look up the decimal number within the table 
and read the hexadecimal number by a combi­
nation of the hex characters in the left 
column, and the value for x at the top of 
the column containing the decimal number. 

For example, the decimal number 123 has the 
hexadecimal equivalent of 07Bi the decimal 
number 1478 has the hexadecimal equivalent 
of 5C6. 

For numbers outside the range of the 
table, add the following values to the 
table 
r--------------T-----------, I Hexadecimal I Decimal I 
r-----------+--------~ 
I 1000 I 4096 I 
I 2000 I 8192 I 
I 3000 I 12288 I 
I 4000 I 16384 I 
I 5000 I 20480 I 
I 6090 I 24576 I 
I 7000 I 28672 I 
J 8000 I 32768 1 
I 9000 I 36864 I 
I AOOO I 40960 I 
I BOOO I 45056 I 
I COCO I 49152 I 
I 0000 I 53248 I 
I BOOO I 57344 I 
I FOOO I 61440 I L _____________ ~ _______ ---J 

Appendix B 101 



x = 0 1 2 3 4 5 6 7 8 9 A B C D E F c 
OOx 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 
01x 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 
02x 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 00Q7 
03x 0048 0049 0050 0051 0052 0053 0054 0055 00~6 0057 0058 0059 0060 0061 0062 0063 

04x 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0017 0078 0079 
05x 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095 
06x 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 
07x 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127 

08x 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 01143 
09x 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 
OAx 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175 
OBx 0176 0117 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191 

OCx 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207 
ODx 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223 
OEx 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 
OFx 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 

10·x 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 
l1x 0272 0273 0274 0275 0276 0217 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287 
l2x 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 
13x 0304 0305 0306 0307 0308 0309 0310 0311 0:'12 0313 0314 0315 0316 0317 0318 0319 

14x 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 
15x 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 
l6x 0352 0353 0354 0355 0356 0357 ·0358 0359 0360 0361 0362 0363 0364 0365 0366 0367 
17x 0368 0369 0370 0371 0372 0373 0374 0375 0376 0317 0378 0379 0380 0381· 0382 0383 

18x 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 
19x 0400 0401 0402 041>3 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 
lAx 0416 0417 0418 04l!> 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 
lBx 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 

lCx 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 
lDx 0464 0465 0466 0467 0468 0469 0470 0471 1)472 0473 0474 0475 0476 0417 0478 0479 
lEx 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 
lFx 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 

20x 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 
21x 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 
22x 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 
23x 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 

24x 0576 0571 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 
25x 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 
26x 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 
27x 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 

28x 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 Ob55 
29x 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 
2Ax 0672 0673 0674 0675 0676 0671 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 
2Bx 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 

2Cx 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 
2Dx 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 
2Ex 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 
2Fx 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 

30x 0768 0769 0770 0771 0772 0173 0174 0715 0776 0771 0718 0179 0780 0781 0782 0783 
31x 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 
32x 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 
33x 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 

34x 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 
35x 0848 . 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 
36x 0864 086s' 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0817 0878 0879 
37x 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 

38x 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 
39x 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 
3Ax 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 
3Bx 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 

3Cx 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 
3Dx 0976 0971 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 
3Ex 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 
3Fx 1008 1009 1010 1011 1012 1013 1014 1015 .1016 1017 1018 1019 1020 1021 1022 1023 

102 



') 
x = 0 1 2 3 4 5 6 7 8 9 A B C D E F 

40x 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 
41x 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 
42x 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 
43x 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 10tl6 1087 

44x 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 
45x 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 
46x 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 
47x 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 

48x 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 
49x 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 
4Ax 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 
4Bx 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 

4Cx 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 
4Dx 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 
4Ex 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 
4Fx 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 

50x 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 ,294 1295 
51x 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 
52x 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1)22 1323 1324 1325 1326 1327 
53x 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 

54x 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 
55x 1360 1361 1362 1363 1364 1365 13&6 1367 1368 1369 1370 1371 1372 1373 1374 1375 
56x 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 
57x 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 

58x 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 
59x 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 
SAx 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 
5Bx 1456 1457 1458 1459 1460 1461 146~ 1463 1464 1465 1466 1467 1468 1469 1470 1471 

'5Cx 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 
5Dx 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 
5Ex 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 
5Fx 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 

60x 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1!>51 
61x 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 
62x 1568 ~569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 
63x 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 

64x 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 
65x 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 
66x 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 
67x 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 

68x 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 
69x 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 
6Ax 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 
6Bx 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 

6Cx 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 
60x 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 
6Ex 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 
6Fx 1776 1777 1778 1779 1780 1781, 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 

70x 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 
71x 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 
72x 1.824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 
73x 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 lt155 

74x 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 
75x 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 18136 1887 
76x 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 
77x 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 

78x 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 
79x 1936 1937 1938 1939 1940 1941 1942 1943 19411 1945 1946 1947 1948 1949 1950 1951 
7Ax 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 
7Bx 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 

7Cx 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
7Dx 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
7Ex 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 
7Fx 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 204& 2047 Cj 

Appendix B 103 



x = i) 1 2 3 4 5 6 7 8 9 A B C 0 E F 

80x 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 
81x 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 
82x 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 
93x 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 

84x 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 
85x 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 
86x 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 
87x 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 

88x 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 21.90 2191 
89x 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 22')6 2207 
8Ax 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 
8Bx 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2i38 2239 

8Cx 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 
80x 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 
8Ex 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 
8Fx 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 

90x 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 
91x 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 
92x 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 
93x 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 

94x 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 
95x 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 
96x 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 
97x 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 

98x 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 
99x 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 
9Ax 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 
9Bx 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 

9Cx 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 
90x 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 
9Ex 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 
9Fx 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 

AOx 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 
Alx 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 
A2x 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 
A3x 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 

A4x 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 
A5x 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 
A6x 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 
A7x 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 

A8x 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 27(.0 2701 2702 2703 
A9x 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 
AAx 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 
ABx 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 

ACx 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 276!' '165 2766 2767 
AOx 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 
AEx 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 
AFx 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 

BOx 2816 281 7 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 
Blx 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 284; 
B2x 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 
B3x 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 

B4x 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 
B5x 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 
B6x 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 
B7x 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 

B8x 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 
B9x 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2971J 2975 
BAx 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 
BBx 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 

BCx 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 
BOx 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 
BEx 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 
BFx 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 

104 



-) 
x = 0 1 2 3 4 5 6 1 8 9 A B C D .E F 

COx 3012 3013 3014 3015 3016 .3011 3018 3019 3080 3081 3082 3083 3084 .)uo:> 3086 3081 
Clx 3088 3089 3090 3091 3092 3093 3094 3095 3096 3091 3098 3099 3100 3101 3102 3103 
C2x 3104 3105 3106 3101 3108 3109 3110 3111 3112 3113 3114 3115 3116 3111 3118 3119 
C3x 3120 3121 3122 3123 3124 3125 3126 3121 3128 3129 3130 3131 3132 3133 3134 3135 

C4x 3136 3131 3138 3139 3140 3141 3142 3143 3144 3145 3146 3141 3148 3149 3150 3151 
C5x 1152 3153 3154 3155 3156 3151 3158 3159 3160 3161 3162 3163 3164 3165 3166 3161 
C6x 3168 3169 3110 3111 3112 3113 3114 3115 3116 3111 3118 3119 3180 3181 3182 3183 
C1x 3184 3185 3186 3181 3188 3189 3190 3191 3192 3193 3194 3195 3196 3191 3198 3199 

C8x 3200 3201 3202 3203 3204 3205 3206 3201 3208 3209 3210 3211 3212 3213 3214 3215 
C9x 3216 3211 3218 3219 3220 3221 3222 3223 3224 3225 3226 3221 3228 3229 3230 3231 
CAx 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3241 
CBx 3248 3249 3250 3251 3252 3253 3254 3255 3256 3251 3258 3259 3260 3261 3262 3263 

CCx 3264 3265 3266 3261 3268 3269 3210 3211 3212 3273 3214 3215 3216 3211 3218 3219 
CDx 3280 3281 3282 3283 3284 3285 3286 3281 3288 3289 3290 3291 3292 3293 3294 3295 
CEx 3296 3291 3298 3299 3300 3301 3302 3303 3304 3305 3306 3301 3308 3309 3310 3311 
CFx 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3321 

DOx 3328 3329 3330 3331 3332 3333 3334 3335 3336 3331 3338 3339 3340 3341 3342 3343 
Dlx 3344 3345 3346 3341 3348 3349 3350 3351 3352 3353 3354 3355 3356 3351 3358 3359 
D2x 3360 3361 3362 3363 3364 3365 3366 3361 3368 3369 3310 3371 3312 3313 3314 3315 
D3x 3316 3371 3318 3319 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 

D4x 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3401 
D5x 3408 3409 3410 3411 3412 3413 3414 3415 3416 3411 3418 3419 3420 3421 3422 3423 
D6x 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3431 3438 3439 
D1x 3440 3441 3442 3443 3444 3445 3446 3441 3448 3449 3450 3451 3452 3453 3454 3455 

D8x 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3461 3468 3469 3470 3411 
D9x 3412 3413 3414 3415 3416 3411 3478 3419 3480 3481 3482 3483 3484 3485 3496 3481 
DAx 3488 3489 3490 3491 3492 3493 3494 3495 3496 3491 3498 3499 3500 3501 3502 3503 
DBx 3504 3505 3506 3501 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 

DCx 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 
DDx 3536 3531 3538 3539 3540 3541 3542 3543 3544 3545 3546 3541 3548 3549 3550 3551 
DEx 3552 3553 3554 3555 3556 3551 3558 3559 3560 3561 3562 3563 3564 3565 3566 3561 
DFx 3568 3569 3510 3511 3512 3513 3514 3515 3516 3511 3518 3519 3580 3581 35ij2 3583 

EOx 3584 3585 3586 3581 3588 3589 3590 3591 3592 3593 3594 3595 3596 3591 3598 3599 
Elx 3600 3601 3602 3603 3604 3605 3606 3601 3608 3609 3610 3611 3612 3613 3614 3615 
E2x 3616 3611 3618 3619 3620 3621 3622 3623 3624 3625 3626 3621 3628 3629 3630 3631 
E3x 3632 3633 3634 3635 3636 3631 3638 3639 3640 3641 3642 3643 3644 3645 3646 3641 

E4x 3648 3649 3650 3651 3652 3653 3654 3655 3656 3651 3658 3659 3660 3661 3662 36b3 
E5x 3664 3665 3666 3667 3668 3669 3610 3611 3612 3673 3614 3615 3616 3611 3678 3679 
E6x 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 
E1x 3696 3691 3698 3699 3100 3101 3102 3103 3104 3105 3106 3701 3108 3709 3710 3711 

E8x 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 
E9x 3128 3729 3730 3731 3732 3733 3134 3735 3736 3737 3738 3739 3740 3741 3742 3743 
EAx 3744 3745 3746 3147 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 
EBx 3160 3161 3762 3763 3764 3165 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 

ECx 3116 3171 3718 3779 3780 3781 3182 3783 3184 3785 3786 3787 3788 3789 3790 3791 
EDx 3792 3193 3794 3795 3196 3197 3798 3799 3800 3801 3802 3803 3804 3805 3806 31:107 
EEx 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 
EFx 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 31:139 

FOx 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3352 3853 3854 3855 
Flx 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 31:171 
F2x 3872 3813 3874 3815 3816 3811 3878 3879 3880 3881 3882 3883 3884 3885 3886 31la7 
F3x 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 

F4x 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 
F5x 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 
F6x 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 
F1x 3952 3953 3954 3955 3956 3951 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 

F8x 3968 3969 3970 3911 3972 3973 3914 3975 3976 3911 3978 3979 3980 3981 391:12 3983 
F9x 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 
FAx 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 
FBx 4016 4011 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 

FCx 4032 4033 4034 4035 4036 4031 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 
FDx 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 
FEx 4064 4065 4066 4067 4068 4069 4070 4011 4072 4073 4074 4075 4076 4011 4078 4079 

o FFx 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 

Appendix B 105 



APPENDIX C: MACHINE-INSTRUCTION FORMAT 

r----------------------------------~--------------------------~-----------------------, 
I I ASSEMBLER OPERAND I I 
I BASIC MACHINE FORMAT I FIELD FORMAT IAPPLlCABLE INSTRUCTIONS I 

~--T-------------------------------+---------------------------+------------------------~ 
I r---------T--T--' 
I 1 8 14 14 I 
1 1 Opera tion 1 1 I Rl, R2 All RR instructions 
I I Code I Rll R21 except SPM and SVC I L ________ ~ __ ~ __ J 

I r--------~--T--' 
I I 8 14 I I 

RRI I Operation I I I Rl SPM 
I I Code I Rll I I L ________ -i __ ~ __ J 

I r--------~-----, 
I I 8 I 8 I 
1 I Opera tion I I 
I 1 Code I I 1 I SVC 
I L ________ -i _____ J (See Notes 1, 6, 8, and 9) 

~--+-------------------------------+---------------------~----+------------------------i 
I I r--------~--T--T--~-' I I I 
I I I 8 14 14 I 4 1121 1 Rl, D2 (X2, B2) I I 
IRXI I Operation I I I 1 I 1 Rl,D2(,B2) IAII RX instructions I 
I I I Code IR11X21B21D21 I Rl,S2(X2) I I 
I I L ______ -1 __ l._~-_~ __ J I (See not es 1-4 , 7, and 9) I I 

r--+-------------------------------+---------------------------+------------------------~ 
I I r------~--T--T--T--' I I I 
I I 1 8 14 14 14 1121 I I I 
I I I Operation I I I I I I R1,R3,D2(B2) I BXH,BXLE,LM,STM I 
I I I Code IR11R31B21D21 I R1,R3,S2 I I I 1 L ________ -1 __ ~ __ l. __ l. __ J I I I 

IRSI I I I 
I I r------~--T-~-~--, I I I 
I I I 8 14 I 14 1121 I I I 
1 I I Operation 1 1 I 1 1 1 Rl,D2(B2) IAII shift instructions I 
I 1 1 Code 1 R11 I B2 1 D2 I 1 Rl, S2 1 I 
1 I L ________ -l. __ l._l. __ l. __ J 1 (See Notes 1-3,7, and 8) I I 

~--+-------------------------------+---------------------------+------------------------~ 
1 1 r--------~----T--T--' 1 1 1 
1 I 1 8 1 8 14 1121 1 IAII SI instructions 1 
1 1 1 Operation 1 I I 1 1 01 (B1), 12 1 except LPSW,SSM, 1 
1 1 1 Code 1 12 IB11Dli I Sl,I2 IH10,SIO,TIO,TCH,TS 1 1 1 l _________ ~ _____ l. __ l. __ J I I I 

ISII 1 1 1 
1 'r-------~---~--T--' 1 1 1 
I I I 8 1 14 1121 I I I 
I I I Operation, I I I I Dl(Bl) ILPSW,SSM,HIO,SI0, I 
I I I Code I IBIIDll 1 S1 IT10,TCH,TS I 
1 I L ________ -1 ___ l. __ l. __ J 1 (See Notes 2, 3, and 6-8) I 1 

~--+-------------------------------+--------------------------+------------------------~ 
I 1 r--------~-~--T--T--T--T--' I 1 1 
I 1 1 8 'I 4 I 4 1 4 112 14 1121 I I I 
I I 1 Operation I I I I I I II Dl(Ll,Bl),D2(L2,B2) IPACK,UNPK,MVO,AP, I 
I 1 1 code ILI1L21B11D11B21D21 1 Sl(Ll),S2(L2) I CP,DP,MP,SP, ZAP 1 
I I L ________ ~_~_l. __ l.__~_~_J 1 1 , 

ISSI 1 1 1 
I I r---------T--~--T-~--T--' 1 I 1 
I 1 1 8 I 8 I 4 11214 1121 I I I 
I I I Operation I I 1 I I I I D1(L,B1),D2(B2) INC,OC,XC,CIC,MVC,MVN, 1 
I I I Code I L IB11D11B21D21 I S1(L),S2 IMVZ,TR,TRT,ED,EDMK I 
I I L ________ -i __ ---l._-l._-l._-l. __ J I (See Notes 2,3,5, and 7) I I l __ l. _______________________________ ~ __________________________ l._ _______________________ J 

106 

c 



o 

Notes for APpendix C : 

1. R1, R2, and R3 are absolute expressions that specify general or floating-point reg­
isters. The general register numbers are 0 through 15; floating-point register num­
bers are 0, 2, 4, and 6. 

2. 01 and 02 are absolute expressions that specify displacements. A value of 0 - 4095 
may be specified. 

3. B1 and B2 are absolute expressions that specify base registers. Register numbers are 
o - 15. 

4. X2 is an absolute expression that specifies an index register. Register numbers are 
o - 15. 

5. L, Ll, and L2 are absolute expressions that specify field lengths. An L expression 
can specify a value of 1 - 256. Ll and L2 expressions can specify a value of 1 - 16. 
In all cases, the assembled value will be one less than the specified value. 

6. I and I2 are absolute expressions that provide immediate data. The value of the 
expression may be 0 - 255. 

7. Sl and S2 are absolute or relocatable expressions that specify an address. 

B. RR, RS, and SI instruction fields that are blank under BASIC MACHINE FORMAT are not 
examined during instruction execution. The fields are not written in the symbolic 
operand, but are assembled as binary zeros. 

9. R1 specifies a 4-bit mask in the BC and BCR machine instructions. 

Appendix C 107 



APPENDIX D: MACHINE-INSTRUCTION MNEMONIC OPERATION CODES 

Figure D-l lists all machine operation codes 
and their associated assembler instructions 
and mnemonics in operation code order. 

Figure D-2 contains the mnemonic operation 
codes for all machine instructions that can 
be represented in assembler language, in­
cluding extended mnemonic operation codes. 
It is in alphabetic order by instruction. 
Indicated for each instruction are both the 
mnemonic and machine operation codes, 
explicit and ~mplicit operand formats, pro­
gram interruptions possible, and condition 
code set. 

The column headings in this appendix and 
the information each column provides follow. 

Instruction: This column contains the name 
of the instruction associated with the 
mnemonic operation code. 

Mnemonic Operation Code: This column gives 
the mnemonic 9peration code for the machine 
instruction. This is written in the opera­
tion field when coding the instruction. 

Machine Operation Code: This column contains 
the hexadecimal equivalent of the actual 
machine operation code. The operation code 
will appear in this form in most storage 
dumps and when displayed on the system con­
trol panel. For extended mnemonics, this 
column also contains the mnemonic code of 
the instruction from which the extended 
mnemonic is derived. 

108 

Operand Format: This column shows the 
symbol1c format of the operand field in 
both explicit and implicit form. For both 
forms, Rl, R2, and R3 indicate general 
registers in operands one, two, and three 
respectively. X2 indicates a general 
register used as an index register in the 
second operand. Instructions which require 
an index register (X2) but are not to be 
indexed are shown with a 0 replacing X2. 
L, Ll, and L2 indicate lengths for either 
operand, operand one, and operand two 
respectively. 

For the explicit format, Dl and D2 in­
dicate a displacement and Bl and B2 indicate 
a base register for operands one and two. 

For the implicit format, Dl, Bl, and D2, 
B2 are replaced by Sl and S2 which indicate 
.a storage address in operands one and two. 

Type of Instruction: This column gives the 
basic machine format of the instruction 
(RR, RX, SI, or SS). If an instruction is 
included in a special feature or is an 
extended mnemonic, this is also indicated. 

Program Interruptions Possible: This 
column indicates the possible program in­
terrupts for this instruction. The abbre­
viations used are: A - Addressing, S - ~ 
Specification, Ov - Overflow, P - Protection, ( . 
Op - Operation (if feature is not installed) I, '-----"" 

and Other - other interruptions which are 
listed. The type of overflow is indicated 
by: D - Decimal, E - Exponent, or F -
Fixed Point. 

Condition Code Set: The condition set as 
a result of this instruction is indicated 
in this column. (See legend following the 
table. ) 

C/ 
./ 



~ 
to 
to 
CD 
::s 
p. 
1-'. 
X 

o 

I-' 
o 
U) 

o 
• 

I-%j 
1-'. 

I.Q 
C 
Ii 
CD 

o 
I 

I-' 

t"i 
1-'. 
[/) 

rt 

o 
i-f'o 

~ 
PI 
(') 

:J 
1-'. 
::s 
CD 

H 
::s 
[/) 

rt 
Ii 
C 
(') 

rt 
1-'. 
o 
::s 
[/) 

tr 
I<: 

o 
to 
CD 
Ii 
PI 
rt 
1-'. 
o 
::s 
(J 
o 
p. 
CD 

f "'-, 

Ll 

RR Format 
Class 

/ Fixed-Point - \ 
Branching and Fullword Floating-Point Floating-Point 
Status Switching and Logical Long Short 

~ -ox- -lx- -2x- -3x-
XI 

I 
o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 

~ 

Load Positive •... LPR 
Load Negative ... LNR 
Load and Test .•.. LTR 
Load Complement •. LCR 

Set Program Mask ••• SPM AND •••.•..• NR 
Branch and Link. ••• BALR Compare Logical .. CLR 
Branch on Count ... BCTR OR ..•.•.•.• OR 
Branch/Condition ... BCR Exclusive OR •.•• XR 
Set Key .•.••••• SSK Load .•....•. LR 
Insert Key ••••••• ISK Compare •••.•.. CR 
Supervisor Call •••• SVC Add .....•... AR 

Subtract ...••.. SR 
Multiply ..•.... MR 
Divide ....••.. DR 
Add Logical ..... ALR 
Subtract Logical ••• SLR 

RS, SI Format 
Class 

Load Positive .•••• LPDR Load Positive ••••• LPER 
Load Negative ••.• LNDR Load Negative •••• LNER 
Load and Test ••••. LTDR Load and Test. ••.. LTER 
Load Complement ..• LCDR Load Complement .•• LCER 
Halve •..•••••• HDR Halve ••.•••••• HER 

Load ••••.•••• LDR 
Compare ••••••• CDR 
Add N ••••.••• ADR 
Subtract N . • • • • • SDR 

. Multiply ••••••• MDR 
Divide •.•••••• DDR 
Add U .•.••.••• AWR 
Subtrac t U . • . • • . SWR 

Load ..•••.••• LER 
Compare •••.••• CER 
Add N •••••••• AER 
Subtract ••.•••• SER 
Multiply ••.••.• MER 
Divide •.•..••• DER 
Add U ..••.••.• AUR 
Subtract .••...•. SUR 

/Branching Fixed-Point - - -- - -- - - --~ 

Status Switching Logical and 
and Shifting Input-Output r; -8x- -9x- -Ax- -Bx-

~I 
o Set System Mask ••• SSM Store Multiple .••• STM 
1 Test Under Mask ••. TM 
2 Load PSW ••••••• LPSW Move •••••••• MVI 
3 Diagnose..... • • Test and Set ••.•• TS 
4 Write Direct ••••• WRD AND .•••••.•• Nl 
5 Read Direct •••••• RDD Compare Logical •• CLI 
6 Branch/High ••••• BXH OR •••••••••. 01 
7 Branch/Low-Equal •• BXLE Exclusive OR •••• XI 
8 Shift Right SL ••••• SRL Load Multiple •••• LM 
9 Shift Left SL ••••• SLL 
A Shift Right S ••••• SRA 
B Shift Left S •••••• SLA 
C Shift Right DL •••• SRDL Start 1-0 •••••• SIO 
D Shift Left DL ••••• SLDL Test 1-0 ••••••• TlO 
E Shift Right D ••••• SRDA Halt 1-0 •••••• HIO 
F Shift Left D •••••• SLDA Test Channel •••• TCH 

Operation Code Notes 
U = Unnormalized 
S = Single 
D Double 
N Normalized 
SL Single Logical 
DL Double Logical 

RX Format 

I Fixed-Point Fixed-Point 

Class 

( 

"'--

Halfword Fullword Floating-Point Floating-Point 
and Branching and logical Long Short 

'" -4x- -5x- -6x- -7x- J 
~ 

Store ••••••••• STH Store •••••• " ST Store ••••••••• STD Store ••••••••• STE 
Load Address. • • • • LA 
Store Character • • • STC 
Insert Character • • • I C 
Execute ••••••• EX AND ••••• '" N 
Branch and Link. • • BAL Compare Logical.. CL 
Branch on Count ••• BCT OR......... 0 
Branch/Condition •• BC Exclusive OR • " X 
Load ••••••••• LH Load •••••• " L Load ••••••••• LD Load. • • • • • • • • LE 

9 Compare. • • • • • • CH Compare •••••• C Compare ••••••• CD Compare ••••••• CE 
A Add ••••••••• AH Add •••••• " A Add N •••••••• AD Add N •••••••• AE 
B Subtract....... SH Subtract •••• " S Subtract N. • • • • • SD Subtract N. • • • • • SE 
C Multiply ••••••• MH Multiply •••• " M Multiply ••••••• MD Multiply ••••••• ME 
D Divide ••••• " D Divide •••••••• DD Divide •••••••• DE 
E Convert-Decimal •• CVD Add Logical. • •• AL Add U •••••••• AW Add U •••.•••• AU 
F Convert-Binary CVB Subtract Logical.. SL Subtract U. • • • • • SW Subtract U. • • • • • SU 

I SS Format 
Class 

;--- logic~1 Decimal 

~ -- -Cx- -Dx- -Ex- -Fx-

x 

o 
I 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

L-

Move Numeric •• MVN 
Move Characters. • MVC 
Move Zone. • • • • MVZ 
AND •••••••• NC 
Compore Logical .• CLC 
OR ••••••••• OC 
Exclusive OR •••• XC 

T ronslate. • • • • • TR 
Translate ond Test. TRT 
Edit •••••••• ED 
Edit and Mark • . • EDMK 

Move with Offset •• MVO 
Pack ••••••••• PACK 
Unpack •••••••• UNPK 

Zera and Add •••• ZAP 
Compare ••••••• CP 
Add ••••••••• AP 
Subtract ••••.•• SP 
Multiply ••••••• MP 
Divide •••••••• DP 



Instruction Mnemonic Machine Operand Format 
Operation Operation 

Code Code Explicit Implicit 

Add A SA R I, 02(X2, B2) or RI, 02(, B2) RI,52(X2) or RI,52 
Add AR IA RI,R2 
Add Decimal AP FA 01 (Ll, BI), 02(L2,B2) 51(Ll), 52(L2)or 51,52 
Add Ha I fword AH 4A R I, 02(X2, B2)or R 1,02(, B2) R I , 52 (X2 )or R I , 52 
Add Logical AL 5E R I, 02(X2, B2)or RI, 02(, B2) RI, 52(X2)or RI, 52 

Add Logical ALR IE RI,R2 
Add Normalized, Long AD 6A R I, 02(X2, B2)or R 1,02(, B2) RI, 52 (X2)or RI, 52 
Add Normalized, Long AOR 2A RI,R2 
Add Normalized, Short AE 7A RI, 02(X2, B2)or RI, 02(,B2) R I, 52 (X2)or RI, 52 
Add Normalized, Short AER 3A RI,R2 

Add Unnormalized,Long AW 6E R I, 02(X2, B2)or R 1,02(, B2) RI, 52(X2)or RI, 52 
Add Unnormalized, Long AWR 2E RI,R2 
Add Unnormal ized, 5hort AU 7E RI, 02(X2, B2)or RI, 02(, B2) RI,52(X2)or RI,52 
Add Unnormal ized, 5hort AUR 3E RI,R2 
And Logical N 54 R I, 02(X2, B2)or R 1,02(, B2) RI,52(X2)or RI,52 

And Logical NC 04 01 (L, BI), 02(B2) 51(L),52 or 51,52 
And Logical NR 14 RI,R2 
And Logical Immediate NI 94 01 (BI),12 51,12 
Branch and Link BAL 45 R I, 02(X2, B2)or R 1,02(, B2) RI,52(X2)or RI, 52 
Branch and Li nk BALR 05 RI,R2 

Branch on Condition BC 47 RI, 02(X2, B2)or R 1,02(, B2) R I, 52(X2)or RI ,52 
Branch on Condition BCR 07 RI,R2 
Branch on Count BCT 46 R I, 02(X2, B2)or R 1,02(, B2) RI, 52(X2)or RI, 52 
Branch on Count BCTR 06 RI,R2 
Branch on Equal BE 47(BC 8) 02(X2, B2)or 02(, B2) 52(X2) or 52 

Branch on High BH 47(BC 2) 02(X2, B2)or 02(, B2) 52(X2) or 52 
Branch on Index High BXH 86 R I, R3, 02(B2) RI,R3,52 
Branch on I ndex Low or Equal BXLE 87 RI ,R3, 02(B2) RI, R3, 52 
Branch on Low BL 47(BC 4) 02(X2, B2)or 02(, B2) 52(X2} or 52 
Branch if Mixed BM 47(BC 4} 02(X2, B2)or 02(, B2) 52(X2) or 52 c 
Branch on Minus BM 47(BC 4} 02(X2, B2)or 02(, B2) 52(X2} or 52 
Branch on Not Equal BNE 47(BC 7) 02(X2, B2)or 02(, B2) 52(X2) or 52 
Branch on Not High BNH 47(BC 13} 02(X2, B2)or 02(, B2) 52(X2) or 52 
Branch on Not Low BNL 47(BC II) 02(X2, B2)or 02(,B2 ) 52(X2) or 52 
Branch on Not Minus BNM 47(BC II) 02(X2, B2}or 02(, B2} 52(X2} or 52 

Branch on Not Ones BNO 47(BC 14) 02(X2, B2)or 02(, B2) 52(X2) or 52 
Branch on Not Plus BNP 47(BC 13) 02(X2, B2)or 02(, B2) 52(X2) or 52 
Branch on Not Zeros BNZ 47(BC 7) 02(X2, B2)or 02(, B2) 52(X2) or 52 
Branch if Ones BO 47(BC I) 02(X2, B2)or 02(, B2) 52(X2) or 52 
Branch on Overflow BO 47(BC I) 02(X2, B2}or 02(, B2) 52(X2) or 52 

Branch on Plus BP 47(BC 2) 02(X2, B2)or 02(, B2) 52(X2) or 52 
Branch if Zeros BZ 47(BC 8) 02(X2, B2)or 02(, B2) 52(X2) or 52 
Branch on Zero BZ 47(BC 8) 02(X2, B2)or 02(, B2) 52(X2} or 52 
Branch Unconditional B 47(BC IS) 02(X2, B2)or 02(, B2) 52(X2) or 52 
Branch Unconditional BR 07(BCR IS; R2 

Compare Algebraic C 59 RI ,02(X2, B2)or RI, 02(,B2) RI ,52(X2 or RI ,52 
Compare Algebraic CR 19 RI,R2 
Compare Decimal CP F9. 01 (L I, BI), 02(L2, B2) 51 (Ll), 52(L2)or 51,52 
Compare Halfword CH 49 RI, 02(X2,B2}or RI ,02(,B2) R I, S2(X2) or RI ,52 
Compare Logical CL 55 R I, 02(X2, B2)or RI, 02(, B2) R I, 52(X2)or RI , 52 

Compare Logical CLC 05 01 (L, BI), 02(B2) 51(L),S2 or 51,52 
Compare Logical CLR IS RI,R2 
Compare Logical Immediate CLI 95 01 (B1), 12 SI,12 
Compare, Long CD 69 R I, 02(X2, B2)or R 1,02(, B2) RI, S2(X2)or RI, 52 
Compare, Long CDR 29 RI,R2 

Compare, Short CE 79 RI, 02(X2,B2)or RI, 02(,B2) RI,S2(X2)or RI ,52 
Compare, Short CER 39 RI,R2 
Convert to Binary CVB 4F RI, 02(X2, B2}or RI, 02(,B2) RI, S2(X2)or RI, 52 
Convert to Decimal CVO 4E RI ,02(X2, B2)or RI, 02(,B2) R I, 52(X2)or RI ,52 
,---. 

Figure D-2. Machine Instruction Summary (1 of 7) 

110 



Type of 
Program Interruption 

I nstruc ti on Possible Condition Code Set 
Instruction A S Ov P Op Other 00 01 10 11 

Add RX x x F Sum=O Sum<O Sum>O Overflow 
Add RR F Sum=O Sum<O Sum>O Overflow 
Add Decimal SS,Decimal x D x x Data Sum=O Sum<O Sum>O Overflow 
Add Halfword RX x x F Sum=O Sum<O Sum>O Overflow 
Add Logical RX x x Sum=O@ Sum 0(8) Sum= oeD Sum 0 CD 

Add Logical RR Sum=O® Sum= O® Sum= oeD Sum oCD 
Add Norma I ized, Long RX, Floating Pt. x x E x B,C R L M P 
Add Normalized, Long RR, Floating Pt. x E x B,C R L M P 
Add Normal ized, Short RX,Floating Pt. x x E x B,C R L M P 
Add Normalized, snort RR, Floating Pt. x E x B,C R L M P 

Add Unnormalized, Long RX, Floating Pt. x x E x C R L M P 
Aqd Unnormalized, Long RR, Floating Pt. x E x C R L M P 
Add Unnormalized, Short RX,FIOC?ting Pt. x x E x C R L M P 
Add Unnormal ized, Short RR,Floating Pt. x E x C R L M P 
Add Logical RX x x J K 

And LOgical SS x x J K 
And Logical RR J K 
And Logical Immediate SI x x J K 
Branch and Link RX N N N N 
Branch and Link RR N N N N 

Branch on Condition RX N N N N 
Branch on Condition RR N N N N 
Branch on Count RX N N N N 
Branch on Count RR N N N N 
Branch on Equa I RX, Ext.Mnemonic N N N N 

Branch on High RX, Ext. Mnemonic N N N N 
Branch on Index High RX, Ext. Mnemonic N N N N 
Branch on I ndex Low or Equal RX,Ext.Mnemonic N N N N 
Branch on Low RX, Ext .Mnemoni c N N N N 
Branch if Mixed RX,Ext.Mnemonic N N N N 

Branch on Minus RX,Ext.Mnemonic N N N N 
Branch on Not Equ~:JI RX, Ext. Mnemonic N N N N 
Branch on Not High RX,Ext.Mnemonic N N N N 
Branch on Not Low RX,Ext.Mnemonic N N N N 
Branch on Not Minus RX, Ext. Mnemani c N N N N 

Branch on Not Ones RX, Ext. Mnemoni c N N N N 
Branch on Not PI us RX,Ext.Mnemonic N N N N 
Branch on Not Zeros RX,Ext.Mnemonic N N N N 
Branch if Ones RX,Ext.Mnemonic N N N N 
Branch on Overflow RX, Ext.Mnemonic N N N N 

Branch on Plus RX, Ext. Mnemoni c N N N N 
Branch if Zeros RX,Ext. Mnemonic N N N N 
Branch on Zero RX, Ext. Mnemonic N N N N 
Branch Unconditional RX, Ext. Mnemonic N N N N 
Branch Unconditional RR, Ext. Mnemonic N N N N 

Compare Algebraic RX x x Z AA BB 
Compare Algebraic RR Z AA BB 
Compare Decimal SS,Decimal x x Data Z AA BB 
Compare Halfword RX x x Z AA BB 
Compare Logical RX x x Z AA BB 

Compare Logical SS x x Z AA BB 
Compare Logical RR x Z AA BB 
Compare Logical Immediate SI x Z AA BB 
Compare, Long RX,Floating Pt. x x x Z AA BB 
Compare, Long RR, Floating Pt. x x x Z AA BB 

Compare, Short RX, Floating Pt. x x x Z AA BB 
Compare, Short RR, Floating Pt. x x Z AA BB 

() Convert to Binary RX x x Data, F N N N N 
Convert to Decimal RX x x x N N N N 

Figure D-2. Mach1ne Instruct10n Summary (2 of 7) 

Appendix D 111 



Instruction 
Mnemonic Mochine Operand Format 
Operation Operation 

Code Code Explicit Implicit 

Divide 0 50 R 1, 02(X2, B2) or R1 , 02(, B2) R1, 52(X2) or R1,52 
Divide DR 10 R1,R2 
Divide Decimal OP FO 01, (11, B1), 02(l2, B2) 51 (11), 52(12)or 51,52 
Divide, long DO 60 R1,02(X2,B2),or R1,02(,B2) R1,52(X2) or R1, 52 
Divide, long OOR 20 R1,R2 

Divide, Short DE 70 R1 , 02(X2, B2)or R 1,02(, B2) R1,52(X2) or R1, 52 
Divide, 5hort OER 3D R1,R2 
Edit ED DE 01 (l, B1), 02(B2) 51(l),52 or 51,52 
Edit and Mark EOMK OF 01 (l, B1), 02(B2) 51(l),52 or 51,52 
Exclusive Or X 57 R1,02(X2,B2) or R1,02(,B2) Rl,52(X2) or R1, 52 

Exclusive Or XC 07 01 (l, B1), 02(B2) 51(l),52 or 51,52 
Exclusive Or XR 17 R1,R2 
Exclusive Or Immediate Xl 97 01(B 1), 12 51,12 
Execute EX 44 R1,02(X2,B2) or R1,02(,B2) R1,52(X2) R1,52 
Halve, long HOR 24 R1,R2 

Halve,5hort HER 34 R1,R2 
Halt I/O HIO 9E 01(B1) 
I nsert Character IC 43 Rl,02(X2,B2) or Rl,02(,B2) Rl,52(X2) orRl,52 
I nsert Storage Key 15K 09 R1,R2 
load l 58 R 1, 02(X2, B2) or R1 , 02(, B2) R1,S2(X2) or R1,52 

load lR 18 R1,R2 
load Address lA 41 R1,02(X2,B2) or R1,02(,B2) R1,52(X2) orR1,52 
load and Test lTR 12 R1,R2 
load and Test, long lTOR 22 Rl,R2 
load and Test, Short lTER 32 R1,R2 

load Complement lCR 13 R1,R2 
load Complement, long lCOR 23 Rl,R2 
load Complement, 5hort lCER 33 R1,R2 
load Ha I fword lH 48 R 1, 02(X2, B2) or Rl, 02(, B2) Rl,52(X2) orR1,52 
load, long lO 68 R1, 02(X2, B2) or R1, 02(,B2) R 1, 52(X2) or R1,52 

load, long lOR 28 R1,R2 
load Multiple lM 98 R1 , R3, 02(B2) R1, R3, 52 
load Negative lNR 11 Rl,R2 
load Negative, long lNOR 21 R1,R2 
load Negative, Short lNER 31 R1,R2 

load Positive lPR 10 R1,R2 
load Positive, long lPOR 20 R1,R2 
load Positive, Short lPER 30 R1,R2 
load P5W lPSW 82 01 (B1) 
load, Short lE 78 Rl,02(X2,B2) or Rl ,02(,B2) R1,52(X2) or R1,52 

load, 5hort lER 38 R1,R2 
Move Characters MVC 02 01 (l, B1), 02(B2) 51(l),52 or 51,52 
Move Immediate MVI 92 01(Bl),12 51,12 
Move Numerics MVN 01 01 (l, B1), 02(B2) 51(l),S2 or 51,52 
Move with Offset MVO Fl 01 (l1 ,B1), 02(l2, B2) 51(l1),52(l2)or 51,52 

Move Zones MVZ 03 01 (l, B1), 02(B2) 51(l),52 or 51,52 
Multiply M 5C R 1, 02(X2, B2)or R 1,02(, B2) R1,52(X2) orR1,52 
Multiply MR lC R1,R2 
Multiply Decimal MP FC 01 (ll, B 1), 02(l2, B2) 51 (L1), 52 (l2) or 51,52 
Mulitply Halfword MH 4C' R1, 02(X2. B2) or R1, 02(, B2) R1,52(X2) orRl,52 

Mul tiply, long MO 6C Rl,02(X2,B2) or R1,02(,B2) R1,52(X2) orR1,52 
Multiply, long MOR 2C R1,R2 
Multiply, 5hort ME 7C R1,02(X2,B2) or R1,02(,B2) R1,52(X2) orR1,52 
Multiply, 5hort MER 3C Rl,R2 
No Operation NOP 47(BC 0) 02(X2, B2) or 02(, B2) 52(X2) or 52 

Figure D-2. Machine Instruction Summary (3 of 7) 

112 



Type of Program Interruptions 
Instruction Possible Condition Code Set Instruction 

A SOV P Op Other 00 01 10 11 

Divide RX x x F N N N N 
Divide RR x F N N N N -Divide Decimal 55, Decimal x x x x 0, Data N N N N 
Divide, Long RX,Floating Pt. x x E x B, E N N N N 
Divide, Long RR, Floating Pt. x E x B,E N N N N 

Divide, Short RX, Floating Pt. x x E x B,E N N N N 
Divide, Short RR, Floating Pt. x E x B,E N N N N 
Edit 55, Decimal x x x Data 5 T U 
Edit and Mark 55, Decimal x x x Data 5 T U 
Exclusive Or RX x x J K 

Exc lusive Or 55 x x J K 
Exclusive Or RR J K 
Exclusive Or Immediate 51 x x J K 
Execute RX x x G (May be set by this instruction) 
Halve, Long RR, Floating Pt. x x N N N N 

Halve, Short RR, Floating Pt. x x N N N N 
Halt I/O 51 A DO CC GG KK 
I nsert Character RX x N N N N 
I nsert Storage Key RR x x x A N N N N 
Load RX x x N N N N 

Load RR N N N N 
Load Address RX N N N N 
Load and Test RR J L M 
Load and Test, Long RR, Floating Pt. x x R L M 
Load and Test, Short RR, Floating Pt. x x R L M 

Load Complement RR F P L M 0 
Load Complement, Long RR, Floating Pt. x x R L M 
Load Complement, 910rt RR, Floating Pt. x x R L M 
Load Halfword RX x x N N N N 
Load, Long RX, Floating Pt. x x x N N N N 

Load, Long RR, Floating Pt. x x N N N N 
Load Multiple RS x x N N N N 
Load Negative RR J L 
Load Negative, Long RR, Floating Pt. x x R L 
Load Negative, Short RR, Floating Pt. x x R L 

Load Positive RR F J M 0 
Load Positive, Long RR, Floating Pt. x x R L M 
Load Positive, Short RR, Floating Pt. x x R L M 
Load PSN 51 x x A QQ QQ QQ QQ 
Load, Short RX, Floati ng Pt. x x x N N N N 

Load, Short RR, Floating Pt. x x N N N N 
Move Characters 55 x x N N N N 
Move Immediate 51 x x N N N N 
Move Numerics 55 x x N N N N 
Move with Offset SS x x N N N N 

Move Zones 55 x x N N N N 
Multiply RX x x N N N N 
Multiply RR x N N N N 
Multiply Decimal 55, Decimal x x x x Data N N N N 
Multiply Halfword RX x x N N N N 

Multiply, Long RX, Floating Pt. x x E x B N N N N 
Multiply, Long RR, Floating Pt. x E x B N N N N 
Multiply, Short RX, Floating Pt. x x E x B N N N N 
Multiply, Short RR, Floating Pt. x E x B N N N N 
No Operation RX, Ext.Mnemonic N N N N 

Figure D-2. Machine Instruction Summary (4 of 7) 

Appendix D 113 



Instruction 
Mnemonic Machine Operand Format 
Operation Operation 

Code Code Explicit Implicit 

No Operation NOPR 07(BCR 0) R2 
Or Logical 0 56 R I, 02(X2, B2) or R

O

l, 02(, B2) Rl, S2(X2) or Rl,S2 
Or Logical OC 06 01 (L, Bl), 02(B2) S1(L), S2 or S1,S2 
Or Logical OR 16 Rl,R2 
Or Logical Immediate 01 96 01 (B1),12 S1,I2 
Pack PACK F2 01 (L I, Bl), 02(L2, B2) SI(Ll),S2(L2)or S1,S2 

Read Direct ROD 85 01 (B1),12 SI,I2 
Set Program Mask SPM 04 Rl 
Set System Key SSK 08 Rl,R2 
Set System Mask SSM 80 01(Bl) SI 
Shift Left Double Algebraic SLOA 8F Rl,02(B2) Rl, S2 

Shift Left Double Logical SLOL 80 Rl,02(B2) Rl,S2 
Shift Left Single Algebraic SLA 8B Rl,02(B2) Rl, S2 
Shift Left Single Logical SLL 89 Rl,02(B2) Rl,52 
Shift Right Double Algebraic SROA 8E RI,02(B2) Rl,52 
Shift Right Double Logical SROL 8C RI,02(B2) Rl,S2 

Shift Right Single Algebraic SRA 8A RI,02(B2) Rl, S2 
Shift Right Single Logical SRL 88 RI,02(B2) RI,S2 
Start I/O SIO 9C OI(BI) SI 
Store ST 50 R I, 02(X2, B2) or RI, 02(, B2) RI, S2(X2) or Rl, S2 
Store Character STC 42 R I, 02(X2, B2) or RI, 02(, B2 RI,02(X2) or RI,S2 

Store Halfword STH 40 R I, 02(X2, B2) or RI, 02(, B2) RI, S2(X2) or RI,S2 
Store Long STO 60 R I, 02(X2, B2) RI,S2(X2) or Rl,S2 
Store Multiple STM 90 Rl,R2,02(B2) RI,R2, S2 
Store Short STE 70 R I, 02(X2, B2) or Rl, 02(, B2) Rl,S2(X2) or RI,S2 
Subtract S 5B Rl,02(X2 Rl,S2(X2) or RI, S2 

Subtract SR IB Rl,R2 
Subtract Decimal SP FB 01 (L I, B 1), 02 (L2, B2) SI (Ll), S2(L2) or SI, S2 
Subtract Halfword SH 4B RI,02(X2,B2) or RI,02(,B2) Rl, S2(X2) or RI,S2 
Suobtract Logical SL 5F R I, 02(X2, B2) or R 1,02(, B2) RI, S2(X2) orRI,S2 
Subtract Logical SLR IF Rl,R2 

Subtract Normalized, Long SO 6B R I, 02(X2, B2) or RI, 02(, B2) Rl, S2(X2) or RI, S2 
Subtract Normalized, Long SOR 2B Rl,R2 
Subtract Normalized, Shor~ SE 7B RI ,02(X2, 82) or RI, 02(,82) RI, S2(X2) or RI ,S2 
Subtract Normal ized, SER 3B RI,R2 
Subtract Unnormalized, Long SW 6F RI,02(X2,B2) or RI,02(,B2) RI,S2(X2) orRl,S2 

Subtract Unnormalized, Long SWR 2F RI,R2 
Subtract Unnormalized, Short SU 7F R I, 02(X2, 82) or Rl, 02(, B2) RI,S2(X2) or Rl,S2 
Subtract Unnormalized, Short SUR 3F RI,R2 
Supervisor Call SVC OA I 
Test and Set TS 93 OI(BI) SI 

Test Channel TCH 9F OI(B1) SI 
Test I/O TlO 90 01 (81) SI 
Test Under Mask TM 91 01(BI),12 SI,12 
Translate TR DC 01 (L, 81),02(82) SI(L), S2 orSI,52 
Translate and Test TRT DO 01 (L, 81),02(82) SI (L), S2 orSl, S2 

Unpack UNPK F3 01 (ll, 81), 02(L2, 82) SI(Ll),S2(L2)or SI,S2 
Write Direct WRO 84 01 (81), 12 SI,I2 
Zero and Add Decimal ZAP F8 01 (Ll, B 1), 02(L2, 82) S1(Ll),S2(L2)or SI,S2 

Figure D-2. Machine Instructio~osummary (5 of 7) 

114 



Type of Prog ram Interruptions 
Instruction Possible Condition Code Set 

Instruction 
A 5 Ov P Op Other 00 01 10 11 

No Operation RR, Ext.Mnemonic N N N N 
Or Logical RX x x J K 
Or Logical SS x x J K 
Or Logical RR J K 
Or Logical Immediate SI x x J K 
Pack 55 x x N N N N 

Read Direct 51 x x x A N N N N 
Set Program Mask RR RR RR RR RR 
Set Storage Key RR x x x A N N N N 
Set System Mask SI x A N N N N 
Shift Left Double Algebraic RS x F J L M 0 

Shift Left Double Logical RS x N N N N 
Shift Left Single Algebraic RS F J L M 0 
Shift Left Single Logical RS N N N N 
Shift Right Double Algebraic RS x J L M 
Shift Right Double Logical RS x N N N N 

Shift Right Single Algebraic RS J L M 
Shift Right Single Logical RS N N N N 
Start I/O SI A MM CC EE AA 
Store RX x x x N N N N 
Store Character RX x x N N N N 

Store Hal fword RX x x x N N N N 
Store Long RX, Floating Pt. x x x x N N N N 
Store Multiple RS x x x N N N N 
Store Short RX, Floating Pt. x x x x N N N N 
Subtract RX x x F V X Y 0 

Subtract RR F V X Y 0 
Subtract Decimal SS, Decimal x o x x Data V X Y 0 
Subtract Halfword RX x x F V X Y 0 
Subtrac t Log i ca I RX x x W,H V,I W,I 
Subtract Logical RR W,H V,I W,I 

Subtract Normalized, Long RX, Floating Pt. x x E x S,C R L M Q 
Subtract Norma I ized, Long RR, Floating Pt. x E x S,C R L M Q 
Subtract Norma I ized, Short RX, Floating Pt. x x E x S,C R L M Q 
Subtract Normalized, Short RR, Floati ng Pt. x E x S,C R L M Q 
Subtract Unnormal ized, Long RX, Floating Pt. x x E x C R L M Q 

Subtract Unnormal ized, Long RR, Floating Pt. x E x C R L M Q 
Subtract Unnormalized, Short RX, Floating Pt. x x E x C R L M Q 
Subtract Unnormalized, Short RR, Floating Pt. x E x C R L M Q 
Supervisor Call RR N N N N 
Test and Set 51 x x SS TT 

Test Channel SI A JJ II FF HH 
Test I/o 51 A LL CC EE KK 
Test Under Mask 51 x UU VV WW 
Translate SS x x N N N N 
Tran,slate and Test 55 x PP NN 00 

Unpack SS x x N N N N 
Write Direct 51 x x A N N N N 
Zero and Add Decimal 55, Decimal x o x x Data J L M 0 

Figure D-2. Machine Instruction Summary (6 of 7) 

C) 
Appendix D 115 



Program Interruptions Possible 

Under Ov: D = Decimal 
E = Exponent 
F = Fixed Point 

Under Other: 
A 
B 
C 
D 
E 
F 
G 

Condition Code Set 

H No Carry 
I Carry 
J Result = 0 

Privileged Operation 
Exponent Underflow 
Significance 
Decimal Divide 
Floating Point Divide 
Fixed Point Divide 
Execute 

K Result is Not Equal to Zero 
L Result is Less Than Zero 
M Result is Greater Than Zero 
N Not Changed 
o Overflow 
P Result Exponent Underflows 
Q Result Exponent Overflows 
R Result Fraction = 0 
S Result Field Equals Zero 
T Result Field is Less Than Zero 
U Result Field is Greater Than Zero 
V Difference = 0 
W Difference is Not Equal to Zero 
X Difference is Less Than Zero 
Y Difference is Greater Than Zero 
Z First Operand Equals Second Operand 
AA First Operand is Less Than Second Operand 
BB First Operand is Greater Than Second Operand 
CC C SW Stored 
DD Channel and Subchannel not Working 
EE Channel or Subchannel Busy 
FF Channel OpE"rating in Burst Mode 
GG Burst Operation Terminated 
HH Channel Not Operational 
II Interruption Pending in Channel 
JJ Channel Avai lable 
KK Not Operational 
LL Available 
MM I/o Operation Initiated and Channel Proceeding With its Execution 
NN Nonzero Function Byte Found Before the First Operand Field is Exhausted 
00 Last Function Byte is Nonzero 
PP All Function Bytes Are Zero 
QQ Set According to Bits 34 and 35 of the New PSW Loaded 
RR Set According to Bits 2 and 3 of the Register Specified by Rl 
SS Leftmost Bit of Byte Specified = 0 
TT Leftmost Bit of Byte Specified = 1 
UU Selected Bits Are All Zeros; Mask is All Zeros 
VV Selected Bits Are Mixed (~eros and ones) 
WW Selected Bits Are All Ones 

Figure 0-2. Machine Instruction Summary (7 of 7) 

116 

C,: 



APPENDIX E: ASSEMBLER INSTRUCTIONS 

r----------~-----------------------------------l---------------------------------------, I Operation I I , 
, Entry I Name Entry , operand Entry I 
~-----------+-----------------------------------+---------------------------------------~ 
, ACTR , Not used, must not be present I An arithmetic SETA expression , 

~--------+_-------------------------t--------------------------------~ 
, AGO , A sequence symbol or not present 'A sequence symbol I 
I-------+_ ------+----------------------------------~ , AIF I A sequence symbol or not present 'A logical expression enclosed in , 
'I I parentheses, immediately followed byal 
'I I sequence symbol , 
~--------t----------------------+-----------------------------~ I ANOP I A sequence symbol 1 Not used, must not be present I 
r-----+------------------------+---------------------------~ 
, CCW I Any symbol or not present I Four operands, separated by commas I 

r---------+-------------------------------+-------------------------------------~ I CNOP , A sequence symbol or not present 'TWo absolute expressions, separated by' 
I I , a comma I 
r---------+-----------------------------------+--------------------------------------~ I COM I A sequence symbol or not present I Not used, should not be present I 
~----------+-------------------------+--------------------------------~ I COpy , Not used, must not be present , A symbol , 

1-------+---------------------------+---------------------------------~ 
, CSECT , Any symbol or not present , Not used, should not be present I 
r--------+------------------------+------------------------------~ , DC I Any symbol or not present lOne operand I 
l--------t---------------------+-------------------------------~ , DROP I A sequence symbol or not present 'One to sixteen absolute expressions, I 
I I , separated by commas , 

l--------+-------------------------+---- -----------------------~ 
1 DS 1 Any symbol or not present lone operand I 
r-------t--------------------------t---------------------------------~ 
I DSECT I A variable symbol or an 1 Not used, should not be present I 
, , ordinary symbol I I 
~----------t----------------------------------+-----------------------------------~ , EJECT , A sequence symbol or not present , Not used, should not be present , 
1-------+----------------------------+-----------------------------------~ 
, END I A sequence symbol , A relocatable expression , 
, I or not present I or not present I 
I------+---------------------------t---------------------------~ I ENTRY I A sequence symbol or not present lone or more relocatable symbols, sepa-I 
I I I rated by commas , 
r--------+-----------------------------+---------------------------------~ I EQU I A variable symbol or an I An absolute or relocatable expression I 
, , ordinary symbol I I 
r-------t-------------------------+-------------------------------~ 
I EXTRN I A sequence symbol or not present lOne or more relocatable symbols, sepa-I 
'I I rated by commas I 
~-------+---------------------------------+--------------------------------------~ 
I GBLA I Not used, must not be present lone or more variable symbols that are 1 
I I , to be used as SET symbols, separated , 
I I I by commas 2 I 
r---------+-------------------------+--------------------------------~ I GBLB , Not used, must not be present lOne or more variable symbols that are , 
I' I to be used as SET symbols. separated I 
I I I by commas2 I 
r-----------t----------------------------------t---------------------------------------~ I GBLC I Not used, must not be present , One Or more variable symbols that are I 
'I I to be used as SET symbols, separated I 
I I I by conunas2 I 
r----------+_---------------------------------+---------------------------------------~ 
, ICTL I Not used, must not be present lone to three decimal values, separated, 
I I I by comma s , L ___________ ~ ________________________________ ~ ______________________________________ J o 

Appendix E 117 



Page of GC24-3414-7 
Revised August 21, 1970 
By Tl'H. GN33-8087 

r-----------T-----------------------------------T---------------------------------------, I Operation I I I 
I Entry I Name Entry I Operand Entry I 
1---------+__------------------------+-----------------------------~ I ISEQ I Not used, must not be present I Two decimal values, separated by a I 
I I I comma I 
r-------+-------------------------+----------------------------~ 
1 LCLA I Not used, must not be present lOne or more variable symbols that are I 
1 I I to be used as SET symbols, separated I 
I I I by conunas 2 I 
1------------+----------------------------------+---------------------------------------i I ICLB J Not used, must not be present lOne or more variable symbols that are I 
I I I to be used as SET symbols, separated I 
I I I by commas 2 I 
r-----------+-------------------------+-------------------------------~ 
I LCIC I Not used, must not be present lOne or more variable symbols separated I 
I I I by commas 2 I 
r---------+_-------------------------+--------------------------------~ I LTORG I Any symbol or not present I Not used, should not be present I 
~-------+----------------------------+-----------------------------~ I MACR01 I Not used, must not be present I Not used, should not be present I 
~---------+--------. ·----------~--------+-------------------------------i I MEND1 I A sequence symbol or not present I Not used, must not be present I 
r-------t------------------------+--------------------------------~ I MEXIT1 I A sequence symbol or not present I Not used, must not be present I 
~------+--------------------------+----------------------------~ I MNOTE1 I A sequence symbol, a variable I A severity code, followed by a comma, I 
I I symbol or not present I followed by any combination of charac-I 
I I I ters enclosed in apostrophes I 
r----------+---------------------------+-------------------------------~ I ORG I A sequence symbol or not used I A relocatable expression or not used I 
~--------+-------------------------------+--------------------------------------~ I PRINT I A sequence symbol or not present lOne to three operands t 
~--------+---------------------------+-----------------------------~ I PUNCH I A sequence symbol or not present lOne to eighty characters enclosed in I 
I J I apostrophes I 
~----------+---------------------------+--------------------------------~ I REPRO I A sequence symbol or not used I Not used, must not be present I 
~-----------+-----------------------------------+---------------------------------------~ I SETA I A SETA symbol I An arithmetic expression I 
~---------+------------------------+-----------------------------~ I SETB I A SETB symbol I A 0 or a 1, or logical expression I 
I I I enclosed in parentheses I 
r----------+---------------------------------+--------------------------------------~ I SETC I A SETC symbol I A type attribute, a character expres- I 
I I I sion, a substring notation, or a con- I 
I I I catenation of character expressions I 
I I I and substring notations I 
r----------+----------------------------+---------------------------------i I SPACE I A sequence symbol or not present I A decimal self-defining term or not I 
I I I used I 
r-----------+--------------------------------+--------------------------------------~ I START I Any symbol or not present I A self-defining term or not used I 
r----------+_-------------------+----------.-----------------------~ 
I TITLE3 1 A special symbol (0 to 4 charac- lOne to 100 characters, enclosed in I 
I I ters), a sequence symbol, a I apostrophes I 
I I variable symbol, or not present I I 
r--------+_--------------------------+--------------------------------i I USING I A sequence symbol or not present I An absolute or relocatable expression I 
I I I followed by 1 to 16 absolute expres- I 
I I I sions, separated by commas I 
t---------+----------~----------------t-----------·----------------------1 

I: WXTRN 4 : A sequence symbol or not present lone or more relocatable symbols. sepa-I 
J 1 I rated by commas ,l ~--------_--L------________________________________________ . _____________________________ 1 
I I May only be used as part of a macro definition : 
: 2SET symbols may be defined as subscripted SET symbols. 1 

1 3See Section 5 for the description of the name entry. : 
1 

) 1 4DOS Asseml:>ler 14K D only. .l L _____________________________________________________ ----------------------------------

118 

o 



o 

ASSEMBLER STATEMENTS 

.---------------------------T-----------------------------T-----------------------------, 
I INSTRUCTION I NAME ENTRY I OPERAND ENTRY I 
r---------------------------+-----------------------------+-----------------------------~ 
IModel Statements 3 ~ IAn ordinary symbol, variable IAny combination of char- I 
I (A variable symbol or any Isymbol, sequence lacters (including variable I 
lassembler language mnemoniclsymbol, a combination of I symbols) I 
loperation code except COPY, I variable symbols and other I I 
lEND, ICTL, ISEQ, and PRINT Icharacters that is equivalent I I 
I I to a symbol, or not used I , 
r---------------------+------------------------+---------------------------~ 
Iprototype Statement1 IA symbolic parameter or IZero or more operands that I 
I Inot used lare symbolic parameters, I 
, I Iseparated by commas, followed I 
I I Iby zero or more operands I 
I I I (separated by commas) of the, 
, I I form symbolic parameter, , 
I I lequal sign, optional standard I 
I I I~~e I 
r-------------------------+-----------------------------+----------------------------~ 
'Macro Instruction IAn ordinary symbol, a IZero or more positional I 
IStatement1 Ivariable symbol, a sequence loperands separated by commas, I 
I I symbol, a combination of Ifollowed by zero or more I 
I Ivariable symbols and other Ikeyword operands (separated I 
, Icharacters that is equivalentlby commas) of the form I 
I Ito a symbol,2 or not used I keyword, equal Sign, value2 I 
r-------------------+---------------------------+--------------------------~ 
IAssembler Language IAn ordinary symbol, a var- IAny combination of characters I 
IStatement3 ~ liable symbol, a sequence I (including variable symbols) I 
I I symbol, a combination I I 
I lof variable symbols and I I 
I lother characters that is I I 
I I equivalent to a symbol, I I 
I I or not used I I L-__________________________ ~ _____________________________ ~ ____________________________ J 

1 May only be used as part of a macro definition. 
2 Variable symbols appearing in a macro instruction are 

replaced by their values before the macro instruction is 
processed. 

3 variable symbols may not be used to generate the follow­
ing mnemonic operation codes: ACTR, COPY, END, ICTL, 
CSECT, DSECT, ISEQ, PRINT, REPRO, and START. Variable 
symbols may not be used in the name and operand entries 
of the following instructions: COPY, END, ICTL, and ISEQ. 
Variable symbols may not be used in the name entry of the 
ACTR instruction. 

~ The line following a REPRO statement may not contain 
variable symbols. 

Appendix E 119 



APPENDIX F: SUMMARY OF CONSTANTS 

r------T---------T--------T--------T--------------~---------T---------~--------T---------, 
1 1 I 1 LENGTH , ,CON- I I 1 TRUN- , 
'TYPE I IMPLIED I I MODI- , I STANTS 'RANGE I RANGE ,CATION/, 
I AND 'LENGTH ,ALIGN-, FIER ,SPECIFIED I PER I FOR EX- I FOR ,PADDING 1 
I DELIM.I (BYTES)·I MENT I RANGE I BY I OPERAND I' PONENTS I SCALE 1 SIDE I 
~------+---------+--------+--------+--------~-----+---------+---------+--------+---------~ 
I C " 1 as I byte 1 1 to I characters lone I I 1 right 1 
1 I needed I , 256 (1), I" 1 , 

~------+---------t--------+--------+--------------+---------+---------+--------+---------~ 
, X " I as I byte '1 to ,hexadecimal ,one, , ,left, 
, 'needed 1 I 256 (1) I digi ts I I I I I 
~------+---------+--------+--------+--------------+---------t---------+--------+---------~ 
I B " I as ,byte I 1 to I binary lone' , ,left, 
I I needed , I 256 ,digits , , , , 1 

~------+---------+--------+--------+--------------+---------+---------+--------+---------~ 
IF" , 4 ,word, 1 to 8 I decimal , multiple' -85 to ,-187 to, left , 
I , I , , digits , , +75 I +346 I I 
~-----+---------+--------+--------+--------------+---------+---------+--------+---------~ 
I H " , 2 'half J 1 to 8 , decimal , multiple' -85 to I -187 ,left , 
I I ,word, , digits , , +75 I +346, , 
~------+---------t--------+--------+--------------+---------+---------t--------+---------~ 
, E " , 4 ,word, 1 to 8 I decimal I mUltiple I -85 to ,0 to 14, right , 
, , , , , d i gi ts , , + 75, , , 

r------+---------+--------+--------+--------------+---------+---------+--------+---------~ 
I D " , 8 , double , 1 to 8 , decimal , multiple' -85 to IOta 14, right , 
I , 'word I J digits 1 , +75, , I 
r------+---------+--------+_-------t--------------+---------+---------+--------+---------~ 
, P " I as I byte '1 to ,decimal I multiple, , ,left, 
, 'needed' , 16 J digits', , , , , 
~------+---------+--------+--------+--------------t---------+---------+_-------+---------~ 
, 2 " , as ,byte' 1to I decimal I multiple, I I left I 
, 'needed' , 16 , digits , I , , I 
r------+---------+--------+--------+--------------+---------t---------+--------+---------~ 
I A () J 4 J word ,1 to 4 I an absolute ,multiple, , I left , 
, , I , I expression I I I I I 
, I I ~--------t-----:..--------~ , , I I 
, , , I 3 or 4 , a relocatable, , , , , 
I , , , , or complex' , , I , 
, I I I , relocatable , , , , , 
, , , , 'expression' I , , , 
r------+---------t--------+_-------+--------------t---------+_--------t--------+---------~ 
, V () , 4 ,word, 3 or 4 , relocatable 'multiple' , I left I 
1 I , , , symbol I , , , , 
r------t---------+--------t--------t--------------t---------t---------+--------+---------~ 
, S () , 2 ,half, 2 only , one absolute , multiple' , , , 
I , ,word, , or relocatab-, , , , , 
, , , I , Ie expression' , I , , 
, I , I I or two absol-, , , , , 
, , , , , ute express- , , , , , 
, , , , lions: , , I , , 
, I , 1 , exp (exp) 1 I , , I 

~------+---------t--------+--------+--------------t---------+_--------t--------+---------~ 
, Y () I 2 ,half, 1 or 2 , an absolute ,multiple, , ,left 1 
I I I word I ,expression I , I , , 
I I , ~--------t--------------~ , , , , 
, , , , 2 only I a relocatable, , , , , 
, I , I , or complex' , , , , 
, , , , ,relocatable , , I I , 
, , I I 'expression I , , , I 
~--__ --~---------i--------i--------~--------------~---------i----_____ i-_______ i _________ ~ 
, I 
1(1) In a DS assembler instruction, C and X type constants may have length specification, 
, to 65535. , L _________________________________________________________________________________ J 

120 

(' 
\ 
.,,~../ 



u 

The four charts in this appendix summarize 
the macro facility described in Part 2 of 
this publication. 

Figure G-l indicates which macro facility 
elements may be used in the name and oper­
and entries of each statement. 

Figure G-2 is a summary of the expressions 
that may be used in macro-instruction 
statements. 

APPENDIX G: MACRO FACILITY SUMMARY 

Figure G-3 is a summary of the attributes 
that may be used in each expression. 

Figure G-4 is a summary of the variable 
symbols that may be used in each expression. 

Appendix G 121 



r '101 ioble Symbols 

Global SET Symbols Lacal SET Symbols System Variable Symbols 
Attl'ibute~ 

C Symbolic Sequence 
Statement Parameter SETA SETS SETC SETA SETS SETC 8.SYSNDX 8.SYSECT 8.SYSLIST Type Length Scaling I"teger Count Number Symbol 

MACRO 

Prototype Name 
Statement Operand 

GSLA Operand 

GSLS Operand 

GSlC Operand 

LCLA Operand 

LCLll Operand 

LCLC Operand 

Madel Nome Nome Nome Nome Name Name Name Nome Nome Nome Name 

$tote"Tient Operation Operation Operation Operation Operation o perotion Operation Operation Operation Operation 
Operand Operand Operand Operand Operand Operand Operand Operand Operand Operand 

COpy Nome 

SETA Ncme 
Operand3 

Nome 
Operand2 Operand Operand 9 Operand Operand 3 Operand

9 Operand Ope rand2 Operand Operand Operand Operand Operand 

SETS 
Operand6 

Name Nome 
Operond6 Operand Operand6 Operand6 Operand Ope rond6 Operand6 Ope,and 4 Opc rand6 Ope ro nd4 Ope rand5 OperandS Operand5 OperandS OperandS 

SETC Nome NOl":"le 

Operand Operand 7 OperandS Operand Operand 7 OperandS Operand Operand Operand Operand Opt-rond 

AIF 
Operand6 Operand6 Operand Operand 6 Operand 6 Operand Operand 6 Operand 6 Operand 4 Operand6 Ope,and 4 'OperandS OperandS Operand5 Operand5 Operand5 

Nome 
Operand 

AGO Nome 
Operand 

ACTR Ope rand2 Operand Operand 3 Operand 2 Operand Ope rand3 Operand2 Operand Ope rand2 Operand Operand Operand Operand Operand 

ANOP Nome 

MEXIT Nome 

MNOTE Operand Operand Operand Operand Operand Operand Operand Operand Operand Operand Nome 

MEND Name 

Outer Nome Name Name Name Name Nome Name ,/-""" 
Macro Operand Operand Operand Operand Operand Operand I 
Inner Name Ncme Name Name Name Name Name Name Name Name Ncme ,-,-/ 
Macro Operand Operand Operand Operand Operand Operand Operand Operand Operand Operand 

Assembler Name Name Name Name Name Name Name 

Language Operation Operation Operation Operation Operation Operation 
Statement Operand Operand Operand Operand Operand Operand 

1. Variable symbols in macro-instructions are replaced by their values before processing. 
2. Only if value is self-defining term. 
3. Converted to arithmetic ·1 or -r(). 
4. Only in character relations. 
5. Only in arithmetic relations. 
6. Only in arithmetic or character relations. 
7. Converted to unsigned number. 
8. Converted to character 1 or O. 
9. Only if one to eight decimal digits. 

Figure G-1. Macro Facility Elements 

c:" 
122 



'---- r--------T-----------------------.------------------------j------------------, 
t Expression I Arithmetic Expressions \ character Expressions \ Logical Expressions \ 
~------------+----------------------+------------------------+--------------------~ 
\ May 1. Self-defining terms \ 1. Any combination of \ 1. SETB symbols I 
I contain 2. Length, scaling, \ characters enclosed I 2. Arithmetic re- \ 
I integer, count, and \ in apostrophes \ lations 1 \ 

I number attributes \ 2. Any variable symbol I 3. Character re- I 
I 3. SETA and SETB symbols \ enclosed in apos- \ lations 2 \ 

I 4. SETC symbols whose \ trophes I I 
I value is 1-8 decimal I 3. A concatenation of I I 
I digi ts \ variable symbols and I I 
I 5. Symbolic parameters I other characters I I 
I if the corresponding I enclosed in apos- I I 
I operand is a self- I trophes I I 
\ defining term I 4. A request for a type I \ 
I 6. &SYSLlST(n) if the \ attribute. \ I 
I corresponding operand I I I 
I is a self-defining I \ I 
\ term I I I 
I 7. &SYSLIST(n,m) if the I I \ 
I corresponding operandi I I 
I is a self-defining I I I 
I term I I I 
I I 8. &SYSNDX I I I 
~------------+-------------------------+------------------------+-------------------~ 
\ operators I +,-,*, and / I concatenation , with a I AND, OR, and NOT t 
I are 1 parentheses permitted I period (.) I parentheses per- I 
I I I I mitted I 
~----------+---------------------+------------------------+-~--------------~ 
I Range I -231 to +2 31-1 I a through 127 (255 for I a (false) or 1 

·--",1 of values I I assembler F) characters. I 1 (true) I 
/ :------------+----------------------+----------------------+-------------------~ 
'-~/I May be I 1. SETA operands \ 1. SETC operands3 I 1. SETB operands I 

I used in I 2. Arithmetic relations I 2. Character relations 2 I 2. AlF operands \ 
I I 3. Subscripted SET I 3. SETA operands~ I I 
I I symbols I t I 
I I 4. &SYSLlST I I I 
I I 5. Substring notation t 1 \ 
I I 6. Sublist notation I I I 
I I 7. SETC operands I I I 
I I 8. ACTR operands I I I 
~------------+-------------------+-------------------------+------------------~ 
I 1 An arithmetic relation consists of two arithmetic expressions related by the opera-I 
I tors GT, LT, EQ, NE, GE, or LE. I 
I 2 A character relation consists of two character expressions related by the operator I 
I GT, LT, EQ, NE, GE, or LE. The type attribute notation and the substring notation I 
I may also be used in character relations. The maximum length of the character I 
I expressions that can be compared is 127 (255 for assembler F) characters. If the I 
I two character expressions are of unequal length, then the shorter one will always I 
I compare less than the longer. I 
I 3 Maximum of eight characters will be assigned. I 
I ~ If one to eight decimal digits. I L----. ____________________________________________________ --_____________________________ J 

Figure G-2. Expressions 

Appendix G 123 



r--------r------T-----------------T----------------------T---------------, 
I Attribute I Notation IMay be used with: IMay be used only if IMay be used in I 
I " 'type attribute is:, , 
~------t_-------+------------------+---------------------+---------------~ I Type I T' Isymbols outside I (May always be used) 11. SETC operand I 
I , I macro-definitions; , I fields I 
I , I symbolic parameters, , 12. Character 1 
I I I &SYSLIST(n), and 1 ,relations I 
, I I&SYSLIST(n,m) inside , 1 (SETB) I 
, 1 I macro-definitions 1 , I 
~----------t---------t_--------------------+-----------------------+-----------------~ 
I Length 1 L' ISymbols outside IAny letter except 1 Arithmetic I 
, I 1 macro-definitions; IM,N,O,T, and U I expressions I 
I I I symbolic parameters, , , I 
I I I &SYSLIST(n), and I I I 
, , I&SYSLIST(n,m) inside 1 1 I 
I , I macro-definitions I I I 
~---------+---------+----------------------+---------------------+-----------------~ 
I Scaling 'S' ISymbols outside IH,F,G,D,E,K,P, and Z I Arithmetic I 
I I I macro-definitions; , I expressions I 
I I I symbolic parameters, 1 , , 
I I I &SYSLIST (n), and I I I 
I I I&SYSLIST(n,m) inside I I I 
I , I macro-definitions I I , 
~-----------t----------+__------------------+----------------------+----------------~ 
I Integer I It ISymbols outside IH,F,G,D,E,K,P, and Z I Arithmetic I 
I I Imacro-definitions; I 'expressions I 
I I Isymbolic parameters, I I I 
1 I 1 &SYSLIST(n), and I I I 
I I I&SYSLIST(n,m) inside I I I 
1 I Imacro-definitions I I. I 
~----------t_---------+---------------------+---------------------t_----------------~ 
I count I K' 'Symbolic parameters IAny letter I Arithmetic I 
I I I corresponding to I 1 expressions I 
I I I macro-instruction I , I 
I , I operands, &SYSLIST , I I 
I , I (n), and &SYSLIST (n,m) 1 I I 
I I I inside macro-, I I 
, , I definitions , , , 
~----------+---------+__--------------------+-----------------------t_----------------i 
I Number ,N' 'Symbolic parameters, IAny letter ,Arithmetic, 
, I I&SYSLIST, and I I expressions I 
I I I &SYSLIST (n) inside , I I 
I I I macro-definitions , I I L-__________ ~ __________ ~ ___________________ ~ ______________________ ~ _______________ J 

Figure G-3. Attributes 

124 



r--------~-------T-----------T------------T------------------, 

1 Variable IDefined by: 1 Initialized, IValue c1.langed IMay be used in: 1 
I symbol I lor set to: I by: I I 
r-----------+----------+---------------+-----------+------------------~ I Symbolic1 I Prototype I corresponding I (Constant 11. Arithmetic expressions I 
I parameter I statement I macro-instruction 1 throughout I if operand is self- I 
I I I operand I definition) 1 defining term 1 
1 I I I 12. character expressions I 
r-------+_--------+-------------+----------+----------------------~ 
I SETA ILeLA or GBLA 10 I SETA 11. Arithmetic expressions 1 
1 I instruction I I instruction 12. Character expressions 1 
r------+_ ----+-----------+----------+--------------------~ 
I SETS ILCLB or GBLB 10 ISETB 11. Arithmetic expressions I 
I I instruction I 1 instruction 12. Character expressions I 
I I I I I 3. Logical expressions I 
~---------+----------+-------------+---------+-------------------~ 
ISETC ILCLC or GBLC INull character ISETC 11. Arithmetic expressions I 
I I instruction I value I instruction I if value is one to I 
I I I I I eight decimal digits I 
1 I I I 12. Character expressions 1 
~-----------+-----------+--------------+-------------+-------------------------~ 
I&SYSNDX1 IThe assembler I Macro-instruction I (Constant 11. Arithmetic expressions I 
I I I index I throughout 12. Character expressions I 
I I I I definition; I I 
1 I I lunique for I I 
I I I I each macro- I I 
1 I I I instruction) I I 
~------------+------------+-------------+------------+---------------------~ 
I&SYSECT1 IThe assemblerlControl section I(Constant ICharacter expressions I 
I I I in which macro- I throughout I I 
I I I instruction I definition; I I 
I I I appears I set by CSECT, I I 
I I I IDSECT, and I I 
I I I I START) I I 
r-----------+_-----------+-------------+--------------+--------------------~ 
I&SYSLIST1 IThe assemblerlNot applicable INot applicableIN'&SYSLIST in arithmetic I 
I I I I I expressions I 
~-------------+----------+------------+------------+--------------------~ 
I &SYSLIST(n) 1 IThe assemblerlcorresponding I <Constant 11. Arithmetic expressions I 
1 &SYSLIST(n,m) 1 I I macro-instruction I throughout I if operand is self- I 
I I I operand I definition) I defining term I 
I I I I 12. Character expressions I 
r-----------+_--------+-------------+-----------+-----------------------~ 
I 1 May only be used in macro-definitions. I '----_______________ _ _____________________________________ J 

Figure G-4. Variable Symbols 

Appendix G. 125 



Page of GC24-3414-7 
Revised August 21, 1970 
By TNL GN33-8087 

APPENDIX H: DICTIONARY AND SOURCE STATEMENT SIZES 

PART 1: DICTIONARIES USED IN MACRO GENERATION 

A. Dictionaries at Collection Time 

126 

Two or more dictionaries must be constructed to enable the macro generator portion 
of the assembler to accomplish macro generation and conditional assembly: a global 
dictionary and one or more local dictionaries. 

Global Dictionary 

A global dictionary containing macro instruction mnemonics and global SET variable 
names is built for the entire program. Dictionary entries are fitted into blocks 
of fixed size, 256 bytes for Assembler (D) and 1024 bytes for Assembler (F). 

Each block contains complete entries. If an entry cannot fit into the remainder 
of one block, it is put into the next block and bytes in the remainder are not 
used. The sizes of various kinds of dictionary entries are as follows: 

Macro Mnemonic Operation Code 10 bytes plus mnemonic * 

Global SET Variable Name 6 bytes plus name* (A dimensioned 
global SET variable is counted only 
once) 

Fixed Overhead 8 bytes for first block 
4 bytes for each succeeding block 
5 bytes for last block 

The maximum size of the global dictionary depends on the size of the partition 
and can be no greater than 64 blocks. Maximum dictionary sizes for Assembler (D) 
variants in the smallest possible partitions are as follows (in bytes): 

---------------------------------------1-------,-------1--------1-------, 
Parti tion size I 10K I 12K I 14K I 16K I, 

1-- --1--1--
1 I ' , I I , 1 1 

Q.~~_~~~~~~~~_L~L~c:.~~c:.~1:._____________ ~.-------l--------.l--------l-------I 
10K with tape work files I 512 I 1024 I 1536 I 2048 I 

I I r I " 
, I I I 

10K with disk work files I 512 1 1024 1 1536 I 1536 1 
1 1 1 1 1 
I 1 I 1 1 

14K I - : - : 1024 : 1536 ~ -----------------_______________________ 1 ______________ -' ________ , _______ 1 

An additional limitation on dictionary size is that the maximum number of distinct 
global symbols is 400. 

* One byte is used for each character in the name or mnemonic. 

\. 



\ 

Page of CC24-3414-7 
Revised August 21, 1970 
By TNL CN33-8087 

Local Dictionary 

A local dictionary containing ordinary symbols relevant to macro generation and 
conditional assembly, sequence symbols and local SET variable names is constructed 
for the main portion of the program. In addition, a local dictionary containing 
an entry for each local SET variable name, sequence symbol and prototype symbolic 
parameter declared within a macro definition is constructed for each different 
macro definition used in the program. Dictionary entries are fitted into blocks 
of fixed size, 256 bytes for Assembler (D) and 1024 bytes for Assembler (F). 

Each block contains complete entries. If an entry cannot fit into the remainder 
of one block, it is put into the next block and bytes in the remainder are not 
used. The sizes of various kinds of dictionary entries are as follows: 

Sequence Symbol Names 10 bytes plus name * (A reference to 
sequence symbols after definition, 
a backwards branch, causes an 
additional entry to be made in the 
local dictionary.) 

Local SET Variable Names 6 bytes plus name * (A dimensioned 
local SET variable is counted only 
once. ) 

Prototype Symbolic Parameters 

Relevant ordinary symbols 
appearing in the main 
portion of the program 

Fixed Overhead 

5 bytes plus name* 

10 bytes plus name* 

8 bytes for first block (32 bytes 
if a macro local dictionary) 

4 bytes for each succeeding block 
5 bytes for last block 

* One byte is used for each character in the name or mnemonic. 

The maximum size of a local dictionary depends on the size of the partition and 
can be no greater than 64 blocks. Maximum dictionary sizes for DOS Assembler (D) 
variants in the smaltest possible partitions are as follows (in bytes): 

--------------------------------------,-------.-------1-------,--------1 
Parti tion size I 10K I 12K I 14K I 16K II 

1--1--1-- I--
I I I I I I 
I DOS Assembler (D) variant I I I I I 

1---------------------------------------:-------- ------- ---------:--------1 
I I I I 
I 10K with tape work files I 1536 2048 2816 I 3072 I 
I I I I 
I I I I 
I 10K with disk work files I 1024 1536 2304 I 3072 I I I I I 
I I I I 

1 14K : 2048 1 2304 1 
I ______ --------------------------------~--------~-----__________ ~ _______ I 

Appendix G 126.1 



~\ 



B. 

,., 
.I 

Dictionaries at Generation Time 

Page of GC24-3414-7 
Revised Aug\lSt 21, 1970 
By TNL GN33-8037 

To conserve storage during the actual conditional assembly and macro generation, the 
contents of the Global Dictionary and Local Dictionaries are restructured as follows: 

Global Dictionar~ 

Fixed Overhead 

Macro Mnemonic operation 

Global SETA dimensioned 

Global SETA undimensioned 

Global SETB dimens ioned 

Global SETB undimensioned 

Global SETC dimensioned 

Global SETC undimensioned 

Local Dictionar~ 

Fixed Overhead 

Sequence Symbols 

Local SETA dimensioned 

Local SETA undimensioned 

Local SETB dimensioned 

Local SETB undimensioned 

Local SETC dimensioned 

Local SETC undimensioned 

Code 

4 bytes plus word alignment 

3 bytes 

1 byte plus 4N 

4 bytes 

1 byte plus (N/8) 
[N/8 is rounded to the next highest integer] 

1 byte 

.1 byte plus 9N 

9 bytes 

20 bytes plus word alignment for the F assembler 
27 bytes plus word alignment for the D assembler 

5 bytes (when the size of the dictionary (see below) 
is less than 3000, only the first 40 symbols will 
require 5 bytes each) 

1 byte plus 4N 

4 bytes 

1 byte plus (N/8) 
[N/8 is rounded to the next highest integer] 

1 byte 

1 byte plus 9 N 

9 bytes 

Relevant ordinary symbols appearing 
in the main portion of the program 5 bytes 
(see Note) 

N = dimension 

Note: For the D assembler, only those ordinary symbols which appear in macro instruction 
operands are included in this table; for the F assembler, all ordinary symbols are 
included. As a result, the F assembler may overflow the Local Dictionary before the D 
assembler. 

The restructured Global Dictionary and the restructured Local Dictionary for the 
nain portion of the program must be resident in main storage. 

In addition, if the program contains any macro instructions, main storage is 
required for the largest LOcal Dictionary of the macro definitions being processed. 
FUrthermore, if any macro definitions contain inner macro instructions, main storage 
is required for all the restructured Local Dictionaries of all the macros in the 
nest. 

Appendix H 127 



Page of GC24-3414-7 
Revised August 21 1970 
By TNL GN33-8087 

In addition to those requirements specified above for the Local Dictionary of the main 
portion of the program, each macro definition Local Dictionary requires the following ~ 

for the parameter table: l 
1. Fixed Overhead 22 bytes 

2. Table Entries 
a. Character string 
b. Hexadecimal, binary, 

decimal, and character 
self-defining values 

c. Symbol 
d. Sublist 

L=Length of entry 
N=Number of entries in sublist 

3 bytes plus L 

7 bytes plus L 
9 bytes plus L 

10 bytes plus 2N bytes plus Y 

Y=Total length of table entries of a., b., and c. formats 

Each nested macro instruction also requires the following: 
Parameter pointer list 2 bytes plus 2N (N = the number of operands) 
Pointers to list in table 8 bytes plus word alignment 

The size of the dictionary depends on the partition size and the assembler variant 
used. Maximum dictionary sizes for Assembler (D) variants in the smallest possible 
partitions are as follows (in bytes): 

, ---------------------------------------,-------.-------,--------.-------, 
: Pa~ti tion size '10K 1 12K , 14K ,16K : 
, :--:--:--:-- 1 

:DOS Assembler (D) variant ::::: 
---------------------------------------~.-------.--------1-------- --------, , , 

10K with tape work files : 2050 3100: 4150 5000 
I , 

10K with disk work files : 1500 2400: 3600 4400 
I , , , 

14K :: 2750 3800 - _______________________________________ L _______________ J _________________ • 

PART 2: MACRO MNEMONIC TABLE (0 ASSEMBLER ONLY) 

As the source text is scanned, a table of macro mnemonics is constructed. There is an 
entry for each macro used or defined as a programmer macro in the program. The entries 
are made under the premise that every undefined operation is a system macro mnemonic. 
This table is then subsetted to locate and edit system macros from the library. 

An entry in this subsetted table consists of 9 bytes. with 10,240 or 14,336 contigu­
ous bytes of main storage available (see Machine Features Required) approximately 450 
distinct macro mnemonics can be handled. When this table overflows: processing continues 
with only those macros defined at that point. If additional storage is available, this 
table is expanded accordingly. 

128 



o 

Page of GC24-3414-7 

Revised Augu~t 21, 1970 
By TNL GN33-8087. 

PART 3: SOURCE STATEMENT COMPLEXITY - CONDITIONAL ASSEMBLY AND MACRO GENERATION 

For any statement except macro prototype or macro instructions, a counter is increased by 
one for each literal occurrence of the following: 

1. Ordinary Symbol 

a. Name, operation, or operand entry (when the operand count starts, the counter 
is decremented by one), or 

b. Operand of an EXTRN or WXTRN statement, or 

c. Operand of an attribute operator (L',T',I', etc. in a SETA, SETB or SETC 
expression, or 

d. operand of a machine or assembler instruction (only if in the main portion of 
the program) 

2. Variable Symbol 

3. Sequence Symbol 

Note 1: The maximum value the counter may attain is 35 for the D assembler and 50 
for the F assembler. 

Note 2: This restriction applies to the name and operation entry of a macro instruction 
or prototype taken as a unit. Each macro instruction or prototype operand (in sublist, 
each sublist operand) is also subject to the counter restriction. 

Examples of counts: 

Appendix H 128.1 





o 

1. 'B2 SETB CT' NAME EQ'W' OR '&C'.' A' EQ' AA') 
count:::3 

2. EXTRN ~,~, £, !£ 
count:::4 

PART 4: SOURCE STATEMENT COMPLEXITY - ASSEMBLER STATEMENTS 

A. D Assembler 

With 10,240 or 14,336 contiguous bytes of main storage available (see Machine Features 
Required), the size of any statement must be less than a certain limit. This limit is: 

1. 727 bytes for DC or DS statements. 
2. 743 bytes for all other statements. 

There are two formulas used to estimate the size (in bytes) of a statement. The greater 
of the two calculated values (S1 or S2) determines whether the statement is less than the 
given limit. In general, all statements can be processed if they contain 50 or fewer 
terms. If a statement contains more than 50 terms, the formulas should be used to deter­
mine if the statement can be processed, or if the statement should be shortened using EQU 
assembler instructions. (In the example for S1, if A+(B-C)*3 were equated to a symbol, 
that symbol could be used as the displacement field of the first operand.) The formulas 
for statement size, S1 and S2, follow. 

S1 = NB+ND+4(NLS+NSD)+6(NS+NL) 

N'B = the total number of bytes in name, operation, operand, and comments entries. 
(The maximum value of NB is 187.) 

ND = the number of operators and delimiters in the operand entry [except equal (:::), 
period (.), and apostrophe (')] 

NLS= the number of references to length attribute (L'SYMBOL), 

NSD = the number of self-defining terms, 

N S = the number of symbolic terms (including *), 

NL ::: the number of literal operands. 

Example: 

NAME MVC A+ (B-C) *3(L'D.5),=lSCLS'ABCDEFG' 
S1=39+9+4(1+4)+6(3+1) 

=92 bytes 

S2 = NB + 9(W1 + W2 + ••••••• +Wi+NE)+N ED 

(The maximum is 1.) 

NB ::: the total number of bytes in name. operation, operand, and comments entries. 
(The maximum value of NB is 187). 

ed · h 2 d .th. W1 +W2 •••••• +Wi = a weight associat w~th t e 1st. n, •••••••••• ~ express~on. 

Wi::: 1. if the expression is: 
a. absolute, 
b. simply relocatable, or 
c. in error. 

If the expression is complexly relocatable, Wi depends on the nUmber of 
unpaired control section numbers (N ESD>. 

r-----------------~---, 
IN ESD I Wi I 
r--------------+----~ 
11 I 1 I 
12, 3, 4, or S 1 2 I 
16, 7, 8, or 9 1 3 I 
110, 11, 12. or 131 4 I 
114, 15, or 16 I S I L _________________ ~ ____ J 

Appendix H 129 



NE = the number of expressions. 

NED = the number of expression delimiters. 

The rules for counting the number of expressions (NE) and the number of expression delim- (~~ 
iters (NED) are: 

1. Expression delimiters are commas and the terminating blank of an operand. 

2. Left and right parentheses can be part of an expression or can be expression delimi­
ters. A left or right parenthesis is an expression delimiter if it ends an expres­
sion. otherwise, it is part of an expression. 

Example 1: The operand is: 

5,6,A+20*B(6,7) 

The expression delimiters are the three commas, the left parenthesis [(l, the 
right parenthesis [)], and the terminating blank. 

The first, second, fourth, and fifth expressions all have a weight of 1. The 
third expression in the operand [A+20*B] has a weight of 1 (either B is abso­
lute, making the result absolute or simply relocatable 2E, B is relocatable 
so the expression is in error. 

52 = NB + 9 (WI + w2 + w3 + W4 + Ws + N E) + NED 

52 = NB + 9(1 + 1 + 1 + 1 + 1 + 5) + 6 

52 = NB + 96 bytes 

Example 2: The operand is: 

A+17*(C-D), (A+20) 

The number of expressions (NE) is 2. The first expression is A+17*(C-D). 
The second expression is (A+20). 

The number of expression delimiters (NE~ is 2 (the comma and the terminating 
blank). 

Example 3: The operand is: 

B. 

20 (5, 3) ,16 (5) 

There are 5 expressions and 7 expression delimiters. 

Expression 1 = 20 Expression Delimiter 1 = 
Expression 2 = 5 Expression Delimiter 2 = 
Expression 3 = 3 Expression Delimiter 3 = 
Expression 4 = 16 Expression Delimiter 4 = , 
Expression 5 = 5 Expression Delimiter 5 = ( 

Expression Delimiter 6 = ) 

F Assembler Expression Delimiter 7 = blank 

1. Generated statements may not exceed 272 characters. Statement length includes 
name, operation, operand, and comments. If a comments field exists, the blank 
separating the operand and the comments field is included in the statement 
length. The statement is truncated if it exceeds 272 characters. 

2. DC, OS and literal DCs cannot contain more than 32 operands per statement. 

PART 5: PRINT CONTROL STATEMENT LISTING RESTRICTIONS 

TITLE, SPACE and EJECT statements will not appear in the source listings unless the state­
ment is continued onto another card. Then the first card of the statement will be listed. (' 
If any of these three statements are generated by macro expansion, they will not be listed~_ / 
(regardless of continuation) if the current PRINT option is NOGEN. --'' 

130 



o 

o 

APPENDIX I: SAMPLE PROGRAM AND ASSEMBLER LISTING DESCRIPTION 

The assembler listing consists of five 
sections, ordered as follows: external 
symbol dictionary items; the source and 
object program statements; relocation 
dictionary items; symbol cross-reference 

table; and diagnostic messages. 
The following sample program illustrates 

an actual assembler listing. Several 
errors have been included to show their 
effect on an assembly. 

Gi ven: 

1. A TABLE with 15 entries, each 16 bytes long, having the following format: 

r-----------------------T----------------T---------------~------------, 
I NUMBER of items I SWITCHes I ADDRESS I NAME I L _______________________ ~ ________________ ~ ______________ -i _____________ J 

3 bytes 1 byte 4 bytes 8 bytes 

2. A LIST of items, each 16 bytes long, having the following format: 

r------------T----------------T-----------------------,.----------------, 
I NAME I SWITCHes I NUMBER of items I ADDRESS I L ____________ ~ ________________ ~ _______________________ ~ ________________ J 

8 bytes 1 byte 3 bytes 4 bytes 

Find: Any of the items in the LIST which occur in the TABLE and put the SWITCHes, 
NUMBER of items, and ADDRESS from that LIST entry into the corresponding TABLE 
entry. If the LIsr item does not occur in the TABLE, turn on the first bit in 
the SWITCHes byte of the LIST entry. 

The TABLE entries have been sorted by their NAME. 

Appendix I 131 



Page of GC24-3414-7 
Revised August 21, 1970 
By TNL GN33-8087 

CD 0@ Q) ~ EXTERNAL SYMBOL DICTIONARY PAGE 
SYMBOL TYPE 10 LENGTH LO 10 

PC 01 000000 0001eO 
SEARCH LO 000026 01 

EXTERNAL SYMBOL DICTIONARY (ESD) 

This section of the listing contains the 
external symbol dictionary information 
passed to the linkage-editor in the object 
module. The entries describe the control 
sections, external references, and entry 
points in the assembled program. There are 
five types of entries, shown along with 
with their associated fields. The circled 
numbers refer to the corresponding head­
ing in the sample listing. 

f::~:-:-:~-i-~i-~:-i-:~::-i-~:1 
~-------+------+----+------+--------+-----~ 
I X I SO I X I X I X I - I 

~-------+------+----+------+--------+-----~ 
I X I LD I - I X I - I X I 

~-------+------+----+------+--------+-----~ 
I X I ER I X I - I - I - I 
~-------+------+----+------+--------+-----~ 
I - I PC I X I X I X I - I 

~-------+------+----+------+--------+-----~ 
I I CM I X I X I X I I 
t-------t------+----t------t--------t-----i 
: X : WX : X : - : - I - : L _______ L ______ L ____ ~ ______ L ________ L ____ ~ 

I The X indicates entries accompanying I 
I each type designation. I L--_______________________________________ J 

132 

~ThiS column contains symbols that appear 

I 
in the name field of CSECT or START state­
ments, as operands of ENTRY, EXTRN, and 
WXTRN statements, or in the operand field 
of V-type address constants. 

~ThiS column contains the type designator 
for the entry, as shown in the table. 
The type designators are defined as: 

SO -- names section definition. The 
symbol appeared in the name 
field of a CSECT or START state­
ment. 

LD The symbol appeared as the oper­
and of an ENTRY statement. 

ER -- external reference. The symbol 
appeared as the operand of an 
EXTRN statement, or was defined 
as a V-type address constant. 

PC unnamed control section defini­
tion. 

CM common control section defini­
tion. 

wx weak external reference. The symbol 
appeared as the operand of a WXTffiT 
statement. 

~ThiS column contains the external symbol 
dictionary identification number (IO). C\) 
The number is a unique two digit hexa­
decimal number identifying the entry. 



\. 

~ 

~~) 

(2) @ 
EXAM SAMPLE PROGRAM 

@) @ @ 
LOC OBJECT CODE AODR1 AODR2 

...... ERROR ...... 

"' ..... 0- -- ---- ----

Revised August 21, 1970 
By TNL GN33-8087 

® 
PAGE 1 

@ @ @ @ 
STMT SOURCE STATEMENT DOS CL3-0 09/~/b7 

2 ....................................................................................................................... SAM~001 
3 .. THIS IS THE MACRO DEFINITION .. SAMPL002 
4 ........................................................................................................ SAMPL003 
5 MACRO SAMPLOU4 
6 MOVE &TO, &FROM SAMPLOO~ 
1 •• SAMPL006 
8 •• DEFINI: SETC SYMBOL SA~II)L007 
9 ." SAMPLooa 

10 LCLC &TYPE SAMPLOO,) 
11 ." SAMPLOIO 
12 •• CHECK NUMBER OF OPERANDS SAMPL011 
13 •• SAMPL012 
14 AIF IN'&SYSLIST NE 2).ERROR1 SAMPL013 
15 ." SAMPL014 
16 •• CHECK TYPE ATTRIBUTES OF OPERANDS SAMPL01~ 
17 •• SAMPL016 
18 AIF IT'&TO NE T·tFROM).ERROR2 SAMPL017 
19 AIF IT'&TO EQ 'c' OR T'tTO EQ 'G' OR T'tTO EO'K').TYPECGK SAMPL01H 
20 AIF IT'&TO EO '0' OR T'&TO EO 'E' OR T'tTO EO'H').TYPEDEH SAMPL019 
21 AIF IT'&TO EQ 'F').MOVE SAMPL020 
22 AGO .ERROR3 SAMPL021 
23 .TYPEDEH ANOP SAMPL022 
24 ." SAMPL023 
25 ." ASSIGN TYPE ATTRIBUTE TO seTC SYMBOL SAMPL024 
26 •• SAMPL025 
27 &TYPE SETC T'tTO SAMPL02f> 
28 .MOVE ANOP SAMPL021 
29 .. NEXT TWO STATEMENTS GENERATED FOR MOVE MACRO SAMPL02H 
30 L&TYPI:: 2,tFROM SAMPl029 
31 ST&TYPE 2.&10 SAMPLO)O 
32 MEXIT SAMPLOJI 
33 ." SAI-!PL032 
34 ." CHECK LENGTH ATTRIBUTES OF OPERANDS SAMPL033 
35 •• SAMPLO.34 
36 TYPECGK AIF IL'tTO NE L'&FROM OR L'&TO GT 2561.ERROR4 SAMPL03~ 

37 .. NEXT STATEMENT GENERATED FOR MOVE MACRO SAMPL036 
38 MVC &TO,&FROM SAMPL037 
39 MEXIT SAMPLOJ8 
40 .. SAMPL03~ 

41 ." ERROR MESSAGES FOR INVALID MUVE MACRO INS TRUC TI ONS SAMPL040 
42 ." SAMPL041 
43 .ERRORl MNOTE 1,'IMPROPER NUMBER OF OPERANDS, NO STATEMENTS GENl:RATl:D' SAMPL042 
44 MEXIT SAMPL04J 
45 .ERROR2 MNOTE 1,'OPERAND TYPES DIFFERENT, NO STATEMENTS GENERATED' SAMPL044 
46 MEXIT SAMPL045 
47 .ERROR3 MNOTE l,'IMPROPER OPERAND TYPES, NO STATEMENTS GENtRATtD' SAMPL046 
48 MEX IT SAMPL047 
49 .ERROR4 MNOTE 1,'IMPROPER OPERAND LENGTHS, NU STATeMENTS GENERATED' SAMPL048 
50 MEND SAMPL049 

It is used by the LD entry of the 
and by the relocation dictionary 
cross reference to the ESD. 

ESD 
to 

SOURCE AND OBJECT PROGRAM 

c;)The column contains the address of the 
symbol (hexadecimal notation) for SD and 
LD type entries, and zeros for ER and WX 
type entries. For PC and CM type entries, 
it indicates the beginning address of the 
control section. 

~ThiS column contains the assembled 
length, in bytes, of the control section 
(hexadecimal notation). 

0ThiS column contains, for LD type 
entries, the identification (ID) number 
assigned to the ESD entry that identi­
fies the control section in which the 
symbol was defined. 

This section of the 
the source statements 
object program. 

listing documents 
and the resulting 

(2)This is the deck identification. It is 
the symbol that appears in the name 
field of the first TITLE statement. 

~ThiS is the information taken from the 
operand field of a TITLE statement. 

o Listi ng page number. 

8 This column contains the assembled 
address (hexadecimal notation) of the 
object code. 

~ This column contains the object 
produced by the source statement. 
entries are always left-justified. 
notation is hexadecimal. Entries 

code 
The 
The 
are 

Appendix I 133 



o ® 
EXAM SAMPLE PROGRAM 

@ 
LOC 

000000 

000000 
000002 
000002 
000000 
000006 
OOOOOA 
OOOOOE 
000000 

@ 
OBJECT CODE 

05CO 

9857 C1A6 

45EO C024 
9180 C022 
4710 C018 

*-* ERROR *** 

ERROR 

000012 5820 500C 
000016 5020 1004 
00001A 9680 5008 
00001E 8156 C004 

000022 OAOE 
000024 
000080 

000025 00 

@ 
ADDRI ADDR2 

00024 

00008 

00024 

001A8 

00026 

0001A 

OOOOC 
00004 

00006 

001B4 
00048 
00001 

000026 947F C022 
00002A 9813 CIB2 
00002E 4111 C046 
000032 8830 0001 
000036 D507 5000 
00003C 4120 C04A 
000040 018E 

1008 00000 00008 
0004C 

000042 1B13 
000044 4620 C030 

-** ERROR *** 
00032 

000048 47~0 C050 00052 
00004C 1A13 
00004E 4620 C030 00032 
000052 9680 C022 00024 
000056 07FE 

r:.... 
W 

PAGE 2 

@ @ @ @ 
STMT SOURCE STATEMENT DOS CL3-0 09/~67 

52 *****.*.*****.****** •••• * •• * •• * •• ***.* •• * •• *.* •• ** •• ****** •• ****_.*-**. SAMPL050 
53 • MAIN ROUTINE * SAMPLOS1 
54 _.-.*.*--****---* •• ***** •• _ •• ***.****** •• ** •• *.** •• *.-.**.***-*.**.*.*- SAMPL052 
55 CSECT SAMPL053 
56 ENTRY SEARCH SAM~L054 
57 BEGIN BALR R12,O ESTABLISH ADDRESSABILITY OF PROGRAM SAMPL05~ 
58 USING *,R12 AND TELL THE ASSEMBLER SA~PL056 
59 LM R5,R7,=ACLISTAREA,16,LISTENDI lUAD LIST AREA PARAMS SAMPL051 
60 USING LIST,R5 REGISTER 5 POINTS TO THE LIST SAMPL058 
61 MORE BAL RI4,SEARCH FIND LIST ENTRY IN TABLE SAMPL05~ 
62 TM SWITCH,NONE CHECK TO SEE IF NAME WAS FUUND SAMPlO~O 

63 BO NOT THERE BRANCH IF NOT SAM?l061 
64 USING TA8LE,R1 REGISTER 1 NOW POINTS TO TABLE ENTRY SAMPL062 
65 MOVE TSWITCH,LSWITCH MOVE FUNCTIONS SAMPL063 

I,IMPROPER OPERAND TYPES, NO STATEMENTS GENtRATEU 66 
61 MOUE TNUMBER,LNUMBER FROM LIST ENTRY 

68 MOVE 
69+* NEXT 
10+ L 
11+ ST 
12 NOTTHERE 0 I 
73 BXlE 
14 EOJ 

TADDRESS,LADDRESS TO TABLE ENTRY 
TWO STATEMENTS GENERATED FOR MOVE MACRO 

2,lADDRESS 
2,TADDRESS 
L SW ITCH, NONE 
R5,R6,MORE 

TURN ON SWITCH IN LIST ENTRY 
LOOP THROUGH THE LIST 

15+* 360N-CL-453 EOJ 
76+ SVC 14 

END OF PRUGRAM, USER LIBRARY MACRO 
CHANGE LEVEL 3-0 

SAI-'.IJ L069 

SAMI'L01"J 
SAMPL 0 76 
SAM~L077 

77 SWITCH DS X SAM~l078 
18 NONE EQU X'80' SAMPl079 
19 .*****.***.*****.***.**-*******.**.**-* •• *.*****.**-**._.********.***** SAM?LOBO 
80 • BINARY SEARCH ROUTINE * SAMPL08l 
81 ****************--****-****.******._***.****.-**********---***-**-***-* SA~PLOa2 

82 SEARCH 
83 
84 
85 LOOP 
86 
81 
88 
89 

90 MORE 

NI 
lM 
lA 
SRL 
ClC 
BH 
BCR 
SR 

BCT 

91 B 
92 HIGHER AR 
93 BCT 
94 NOTFOUND 01 
95 BR 

SWITCH,255-NONE TURN OFF NOT FOUND SWITCH 
Rl,R3,=F'128,4,128' LOAD TABLE PARAMETERS 
Rl,TABLAR~A-16CRll GET ADDRESS OF MIDDLE ENTRY 
R3,l DIVIDE INCREMENT BY 2 
LNAME,TNAME COMPARE LIST ENTRY WITH TABLE ENTRY 
HIGHER BRANCH IF SHOULD BE HIGHER IN TABLE 
a,R14 EXIT IF fOUND 
Rl,R3 OTHERWISE IT IS LOWER IN THE TABLE 

SO SUBTRACT INCREMENT 
R2,LOOP LOOP 4 TIMES 

NOTFOUND 
R1,R3 
R2,LOOP 
SWITCH,NONE 
R14 

ARGUMENT IS NOT IN THE TABLE 
ADD INCREMENT 
lOOP 4 TIMES 
TURN ON NOT FOUND SWITCH 
EXIT 

SAMPLOH3 
SAMPLOd4 
SAMPLOa~ 
SAMPL 086 
SAMPL087 
SAMPL08b 
SAMPL009 

XSAMPL090 
SAMPL0'11 
SA~PLO?2 

SAt-lPl09J 
SAMPl094 
SAMPL095 
SAMPL09t;, 
SAMPLO'J1 

machine instructions or assembled con­
stants. Machine instructions are print­
ed in full with a blank inserted after 
every four digits (two bytes). Con­
stants may be only partially printed 
(see the PRINT assembler instruction in 

~This column contains the statement num­
ber. A plus sign (+) to the right of 
the number indicates that the statement 
was generated as the result of macro­
instruction processing. The maximum 
statement number is 65,535. If there 
are more than 65,535 statements, the 
statement number wraps-around. 

Assembler Instruction Statements) • 

€:V These two columns contain effective 
addresses (the result of adding together 
a base register value and displacement 
value) : 

1. The column headed ADDRt contains the 
effective address for the first 
operand of an SS or an SI instruction. 

2. The column headed ADDR2 contains the 
effective address of the second 
operand of any instruction referenc­
ing storage. 

Both address fields contain six digits; 
however, if the high order digit is a zero, 
it is not printed. 

134 

e This col umn contains the source program 
statement. The following items apply to 
this section of the listing: 

a. Source statements are listed, 
including those brought into the 
program by the COpy assembler 
instruction, and macro-definitions 
submitted with the main program 
for assembly. Listing control 
instructions are not printed, 
except for the following case:' 
PRINT is listed when PRINT ON is 
in effect and a PRINT statement is 
encountered. 



J 

,.---...\ 
) 

'_ .. / 

o 

0 ® 0 
EXAM SAMPLE PROGRAM PAGE 

@ @ @ @ @ ® @ 
LOC OBJECT CODE AOOR1 AOOR2 STMT SOURCE STATEMENT DOS CL3-0 09/~67 

17 
97 * SA,",P 099 
98 * THIS IS THE TABLE SAMtlL100 
99 * SAMi>L101 

000058 100 OS 00 SAMPL10i' 
000058 0000000000000000 101 TABLAREA DC XL8 '0' SAMPLI0J 
000060 C103D7C8C1404040 102 DC CL8'ALPHA' SAMPL104 
000068 0000000000000000 103 DC XL8'0' SAMPLI0~ 

000070 C2C5E3C140404040 104 DC CLS'BETA' SAMPL106 
000078 0000000000000000 105 DC XL8 '0' SAMPLI07 
000080 C4C5D3E3C1404040 106 DC CL8'DELTA' SAMPL10B 
0000S8 0000000000000000 107 DC XL8'O' SAMPL lor) 
000090 C5D7E2C903060540 108 DC CL8'EPSILON' SAMPL 110 
000098 0000000000000000 109 DC XLS'O' SAMPL 111 
OOOOAO CSE3C14040404040 110 DC CL8'ETA' SAMPll12 
0000A8 0000000000000000 111 DC XL8'0' SAMPll13 
COOOBO C7CI0404C1404040 112 DC ClS'GAMMA' SAMPL114 
0000B8 0000000000000000 113 DC XL8'0' SAMPll1~ 

OOOOCO C9D6E3C140404040 114 DC CLS'IOTA' SAMPl116 
OOOOC 8 0000000000000000 115 DC XL8'O' SAMPL117 
000000 D2CI0707C1404040 116 DC CL8'KAPPA' SAtJ,PLl1l:S 
000008 0000000000000000 117 DC XL8'0' SAMPLl19 
COOOEO 03CID4C2C4C14040 118 DC CL8'LAMBDA' SAMPlI211 
OOOOE 8 0000000000000000 119 DC Xl8'0' SAMP1l21 
OOOOFO D4E4404040404040 120 DC CLS'MU' SAMPL In 
OOOOF8 0000000000000000 121 DC XLS'O' SAMP1l2J 
000100 05t4404040404040 122 DC CLS'NU' SM1PL 1 '24 
000108 0000000000000000 123 DC XLS'O' SAMPl12,) 
000110 0604C9C3D906D540 124 DC CL8'OMICRON' SAMf>L llb 
000118 F040404040404040 125 DC CLS'O' 
000120 D1C8C94040404040 126 DC CL8'PHI' 
COO128 0000000000000000 127 DC XlS'O' 
000130 E2C9C7D4C1404040 128 DC Cl8'SIGMA' 
00013S 0000000000000000 129 DC XL8'O' 
000140 E9CSE3C140404040 130 DC Cl8'lETA' 

131 • 
132 * THIS IS THE LIST 
133 * 

000148 D3C104C2C4C14040 134 LISTAREA DC CL8'lAMBOA' 
000150 OA 135 DC X'OA' 
000151 000010 136 DC FL3'29' 
0001S4 00000000 137 DC AIBEGIN) 
000158 E9CSE3C140404040 138 DC CLa'lETA' 
000160 OS 139 OC X'05' 
000161 000005 140 DC FL3' 5' 
000164 00000032 141 DC AILOUP) 
00016a E3CaC5E3C1404040 142 DC Cla'THETA' 
000170 02 143 DC X'02' 
000171 000020 144 DC FL3'4S' 
000174 00000000 145 DC AIREGIN) 
00017S E3CIE44040404040 146 DC CL8 'TAU' 
000180 00 147 DC X'OO' 

b. Macro-definitions for system 
macro-instructions are not listed. 

c. The statements generated as the 
result of a macro-instruction fol­
low the macro-instruction in the 
listing. 

d. Assembler or machine instructions 
in the source program that contain 
variable symbols are listed twice: 
as they appear in the source 
input, and with values substituted 
for the variable symbols. 

e. Diagnostic messages are not listed 
in-line in the source and object 
program section. An error indica­
tor, ***ERROR***, appears follow­
ing the statement in error. The 
message appears in the diagnostic 
section of the listing. 

f. MNOTE messages are listed in-line 
in the source and object program 
section. An MNOTE indicator 
appears in the diagnostic section 
of the listing. The MNOTE message 

SM'P1l21 
SAMP1l28 
SAMPL 12J 
SAMPLl10 
SAMPLl31 
SA"IPl132 
SA~'PLID 

SAMPLl34 
SAMPL135 
SAMPL136 
SAMPllJ7 
SAMflLl3U 
SAMPl139 
SAMPL140 
SAMPll'.l 
SAMPL142 
SAMP114J 
SAMPll44 
SA~'PL 14~ 
SAMPl146 
SM'.Pl147 
SAMPL148 
SAMPL149 

format is: severity code, message 
text. 

g. The MNOTE* form of the MNOTE 
statement results in an in-line 
message only. An MNOTE indicator 
does not appear in the diagnostic 
section of the listing. 

h. When an error is found in a pro­
granooer macro-definition, it 1S 
treated like any other assembly 
error: the error indication 
appears after the statement in 
error, and a diagnostic is placed 
in the list of diagnostics. HoW­
ever, when an error is encountered 
during the expansion of a macro­
instruction (system or programmer 
defined), the error indication 
appears in place of the erroneous 
statement, which is not listed. 
The error indication appears fol­
lowing the last statement listed 
before the erroneous statement was 

Appendix I 135 



o ® 0 
EXAM SAMPLE PROGRAM PAG!: 4 

@) 
LOC 

000181 
000184 
0001S8 
000190 

000190 
000193 
000194 
000198 
0001AO 
0001Al 
0001A4 

000001 
000002 
000003 
000005 
000006 
000007 
OOOOOC 
OOOOOE 

000000 
000000 
000008 
000009 
OOOOOC 

000000 
000000 
000003 
000004 
OOOOOS 
000000 
0001A8 
0001B4 

i. 

j. 

k. 

1. 

136 

@ ® @ @ @ @ 
OBJECT CODE ADDR1 AODR2 STMT SOURCE STATEMENT UUS CL3-0 09/16167 

000000 148 DC 
@ 

FL3'O' SAMPLI'>O 
00000001 149 DC All) SAl-H'LI51 
03C9E2E340404040 150 DC CL8'L1ST' SM",PL 1:>2 

151 DC X'lG' SM11-'L 1 53 
••• ERROR ... 

0001CS 152 DC FL3'456' SAMPLI)4 
00 
00000000 153 DC AIO) SAMPL(5) 
C10307C8C1404040 154 LI STENO DC CL8'ALPHA' SAMfJLl'lo 
00 155 DC X'OO' SArJ.PLl~1 

000001 156 DC FL3'l' SAMPL15tl 
0000007B 157 DC A(123) SM1PL 1)9 

15B • SAMI-'L16O 
159 • THESE ARE THE SYMBOLIC REGISTERS SAHPl161 
160 • SAMPLI62 
161 R1 EQU 1 SAMPL16] 
162 R2 EQU 2 SAMPLI64 
163 R3 EQU 3 SAMI-'LI6:J 
164 R5 EQU 5 SAMf'Llbo 
165 R6 EQU 6 SM',PLlbl 
166 R7 EQU 7 SAMPLI6f.J 
167 R12 EQU 12 SAMPL16'J 
168 R14 EQU 14 SAt'PLI70 
169 • SAMPL 171 
170 • THIS IS THE FORMAT DEFINITION OF LIST ENTRIES SAt-'PI.! '2 
171 • SAMPL I 7J 
172 LIST DSECT SAt-:PLI'4 
173 LNAME OS CLS SAMf'L I 7') 
174 LSWITCH OS C SAMPll76 
175 LNUMBER OS Fl3 S AMPL 1 7.7 
116 LADDRESS OS F SAMPL17d 
171 • SAMf'lI79 
17S • THIS IS FORMAT DEFINITION Of TABLE ENTRIES SAMI-'L180 
179 • SAMPLltll 
180 TABLE DSECT SAMI-'l182 
1111 TNUMBER OS EL3 SAMPLlo3 
182 TSWnCH OS C SAMPl184 
183 TADDRESS OS F SAMPL18~ 

lS4 TNAME OS CLS S AMPL Ul6 
185 END BEGIN SA,.,1PL ltl7 

0000014800000010 1"86 =AILISTAREA,16,LISTEND) 
0000008000000004 187 =F'128,4,12S' 

encountered, and the 
diagnostic message is 
the list of diagnostics. 

associated 
placed in 

Literals will appear in the listing 
following an LTORG or the END 
statement or both. Literals are 
identified by the equals (=) sign 
preceding them. 

If the 
operand; 
appears 
(LOC). 

END statement contains an 
the transfer address 

in the location column 

In the case of CON, CSECT, and 
DSECT statements, the location 
field contains the beginning 
address of these control sections 
i.e., the first occurrence. 

For a USING statement, the loca­
tion field contains the value of 
the first operand. 

m. For LTORG and ORG statements, the 
location field contains the loca­
tion assigned to the literal pool 
or the value of the ORG operand. 

n. For an EQU statement the location 
field contains the value assigned. 

o. Generated statements always print 
in normal statement format. Be­
cause of this, it is possible for 
a generated statement to occupy 
two or more continuation lines on 
the listing. This is unlike 
source statements which are re­
stricted to one continuation line. 

e This field indicates the assembler level 
and version number, e.g., DOS CL2-l 
reads as DOS assembler level 2, version 
1. e Current date obtained from SET card. 

~ Identification-sequence field from the 
source statement. 

,.--... 

( 
\ .. - ... / 

(I 
' ....... / 



-'" 

~ 

o 

RELOCATION OICTIONARY PAGE 

@ @ @ ® 
POS. [Q REL.ID FLAGS AODRESS 

01 01 OC 000154 
01 01 OC 000164 
01 01 OC 000174 
01 01 OC 0OO1A8 
01 01 OC 0001BO 

RELOCATION DICTIONARY 

This section of the listing contains the 
relocation dictio~ary information passed to 
the linkage editor in the object module. 
The entries describe the address constants 
in the assembled program that are affected 
by relocation. 

e This column contains the external symbol 
dictionary ID number assigned to the ESD 
entry that describes the control section 
in which the address constant is used as 
an operand. 

~ThiS column contains the external symbol 
dictionary ID number assigned to the ESD 
entry that describes the control section 
in which the referenced symbol is 
defined. 

e The two-digit hexadecimal number in this 
colun~ is interpreted as follows: 

First Digit -- a zero indicates that the 
entry describes an A-type, 
a y-type, or a CCW address 
constant. 
a one indicates that the 
entry describes a V-type 
adjress constant. 

Second Digit the first three bits of 
this digit indicate the 
length and sign .of the 
address constant as fol­
lows: 

Bits 
00 
01 
10 
11 

o and 1 
1 byte 
2 bytes 
3 bytes 
4 bytes 

Bit 2 
0+ 
1 = -

~ This column contains the assembled 
address of the field where the address 
constant is stored. 

Appendix I 137 



CROSS-REFERENCE 

® LL @ @ @ 
SYMBOL LEN VALUE OEFN 

BEGIN 00002 000000 00057 0137 0145 01B5 
HIGHER 00002 00004C 00092 0087 
LAOORESS 00004 OOOOOC 00176 0070 
LIST 00001 000000 00172 0060 
1I STAREA 00008 000148 00134 0059 0186 
LISTEND 00008 000198 00154 0059 0186 
LNAME 00008 000000 00173 0086 
LNUMBER 00003 000009 00175 
LOOP 00004 000032 00085 0090 0093 0141 
lSWITCH 00001 000008 00174 0072 
MORE 00004 000006 00061 OOH 
,..ORE 00004 000006 00090 

6062 NONE 00001 000080 00078 0072 0082 0094 
NOTFOlJND 00004 000052 00094 0091 
NOTTHERE 00004 OOOOlA 00072 0063 
R1 00001 000001 00161 0064 0083 0084 0084 0089 
R12 00001 OOOOOC 00167 0057 0058 
R14 00001 OOOOOE 00168 0061 0088 0095 
R2 00001 000002 00162 0090 0093 
R3 00001 000003 00163 0083 0085 0089 0092 
R5 00001 000005 00164 0059 0060 0073 
R6 00001 000006 00165 0073 
R7 00001 000007 00166 0059 
SEARCH 00004 000026 00082 0056 0061 
SWITCH 00001 000024 00077 0062 0082 0094 
TABLAREA 00008 000058 00101 0084 
TABLE 00001 000000 00180 0064 
TAOORESS 00004 000004 00183 0071 
TNAME 00008 000008 00184 0086 
TNUMBER 00003 000000 00181 
TSWITCH 00001 000003 00182 

CROSS-REFERENCE 

This section of the listing information 
concerns symbols -- where they are defined 
and used in the program. 

€:V This column contains the symbols. 

8 This column states the length (decimal 
notation), in bytes, of the field occu­
pied by the symbol value. 

~ThiS column contains either the address 
the symbol represents, or a value to 
which the symbol is equated. 

8 This column contains the statement num-

138 

0092 

PAGE 

ber of the statement in which the symbol 
was defined. 

e This column contains the statement num­
bers of statements in which the syn~ol 
appears as an operand. 

The following notes apply to the cross­
referencing section: 

• Symbols appearing in V-type address 
constants do not appear in the cross­
reference listing. 

• A PRINT OFF listing control instruction 
does not affect the production of the 
cross-reference section of the listing. 

• Undefined symbols appear in the cross­
reference section. However, only the 
symbol column and the reference column 
have entries. 

;-
\ 
"-. .......... 

C~ 



..J 

EXAM DIAGNOSTICS PAGE 

@ @ 
STMT ERROR CODE 

3b IJQ073 
65 I JQ059 
b6 I JQ037 
67 IJQOBB 
90 I J0023 

151 IJQ039 

® 
MESSAGE 

ILLEGAL NAME FIELD 
UNDEFINED SEQUE~CE SYMBOL 
MNOTE STATEMENT 
UNDEFINED OPERATION CODE 
PREVIOUSLY DEFINED NAME 
INVALID DELIMITER 

b STATEMENTS FLAGGED IN THIS ASSEMBLY 

DIAGNOSTICS 

This section contains~the diagnostic 
messages issued as a result of error 
conditions enQountered in the program. 
Explanatory notes ~or each message are 
contained in Appendix N. 

~ThiS column contains the n~rnber of the 
statement in error. 

® This column contains the 
tifier. 

message 

~ThiS column contains the message. 

iden-

The following notes apply to the diag­
nostics section: 

• An MNOTE indicator of the form MNOTE 
STATE~£NT appears in the diagnostic 
section, if an MNOTE ~statement is 
issued by a macro-instruction. The 
MNOTE statement itself is in-line in 
the source and object 'program section 
of the listing. ' 

• A message identifier consists of six 
characters and is of the form~ 

IJQxxx 

IJYxxx 

IJQ 

IJY 

xxx 

identifies the is~uing agent as DOS/ 
TOS D assembler. 

identifies the issuing agent as DOS 
F assembler. 

is a unique number assigned to the 
message. 

• Two statistical messages may appear in 
the listing. They are: 

1. A message indicating the total number 
of statements in error. If no state­
ments are in error, the message 

NO STATEMENTS FLAGGED IN THIS ASSEMBLY 

is printed following the Cross-Reference 
section and no diagnostic section is 
printed. 

2. A message if one or more Y-type address 
constants appear in the program. 

AT LEAST ONE RELOCATABLE Y-TYPE 
CONSTANT IN ASSEMBLY. 

This message if issued, appears before 
the diagnostic section. 

Appendix Ir 139 



COMP ]\ ... qISO~~ 

Features not shown below are common to all assemblers. I n the chart: 
Dash Not allowed. 
X = As defined in Operating System/360 Assembler Language Manual. 

Basic 7090/7094 OS/360 
Model 20 Programming Support BPS 8K Tape, Assembler 

Feature Basic Support/360: Package BOS 8K Disk DOS, TOS DOSF 
Assembler Basic Assembler Assemblers D Assemblers Assembler 

Assembler 

No. of Continuation Cards/Statement 0 0 0 I I 2 
(exclusive of macro-instructions) 

I nput Character Code EBCDIC EBCDIC BCD & EBCDIC EBCDIC EBCDIC EBCDIC 

ELEMENTS: 

Maximum Characters per symbol 4 6 6 8 8 8 

Character self-defining terms I Char. only I Char. only X X X X 

Binary self-defining terms - - - - - - X X X 

Length attribute reference - - - - - - X X X 

Literals - - - - - - X X X 

Extended mnemonics - - - - X X X X 

Maximum Location Counter value 214_ I 216 _ I 224_ I 224_1 224_1 224_1 

Multiple Control Sections per assembly - - - - - - X X X 

EXPRESSIO NS: 

Operators + - + -* + -*/ + -*/ + -*/ + -*/ 

Number of terms 3 3 16 3 16 16 

Levels of parentheses - - - - - - I 5 5 

Complex relocatability - - - - - - X X X 

ASSEMBLER INSTRUCTIONS: 

DC and DS 

Expressions allowed as modifiers - - - - - - - - X X 

Multiple operands - - - - - - - - - - Less than 33 

Multiple constants in an operand - - - - - - Except X X 
Address 
Consts. 

Bit length specifications - - - - - - - - - - X 

Scale modifier - - - - - - X X X 

Exponent Modifier - - - - - - X X X 

DC types Only Except Except Except Q Except Q X· 
C, X, B, P, Z, B, V, Q 
H, Y,Q 'V, Y, S, Q 

DC dupl ication factor Except Y Except A X Except S X X 

*The DOS F Assembler does not allow Q-type address constants. 

140 



\ Basic 
) 

_./ 

Model 20 Programming 
Feature Basic Support/360: 

Assembler Basic 
Assembler 

DC duplication factor of zero Except Y - -
DC length modifier Except Except 

H, Y H, E, D 

DS types Only Only C, 
H C H, F, D 

DS length modi fer Only C Only C 

DS maximum length modifier 256 256 

DS consta~t subfield permitted - - - -
COpy - - - -
CSECT - - - -
DSECT -- --
ISEQ - - - -
LTORG - - - -
PRINT . - - -
TITLE - - - -
COM - - - -
ICTL - - 1 operand 

(lor 25 
only) 

USING 2 operands 2 operands 
(operand 1 (operand 1 
relocatable relocatable 
only) only) 

DROP 1 operand 1 operand 
only only 

CCW - - operand 2 
(relocatable 
only) 

ORG no blank no blank 
operand operand 

ENTRY 1 operand 1 operand 
only only 

EXTRN 1 operand 1 operand 
only only (max 14) 

WXTRN - - - -

CNOP -- 2 decimal 
digits 

PUNCH -- --
REPRO - - --
Iv\acro Instructions S/360 - -

Model 20 
ICCS only 

7090/7094 
Support BPS 8K Tape, 

BOS 8K Disk Package 
Assemblers Assembler 

- - Except S 

X X 

Only C, X 
H, F, D 

Only C X 

256 256 

- - X 

- - - -
- - X 

-- X 

- - X 

- - X 

- - X 

X X 

- - - -
1 operand X 

2-17 operands 6 operands 
(operand 1 
relocatable 
only) 

X 5 operands 

X X 

no blank X 
operand 

1 operand 1 operand 
only only 

1 operand 1 operand 
only only 

- - --
2 decimal 2 decimal 
digits digits 

- - X 

-- X 

- - X 

DOS, TOS 
D Assemblers 

X 

X 

X 

X 

65,535 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

DOS 14K 
D only 

X 

X 

X 

X 

Page of GC24-3414-7 
Revised August 21, 1970 
By TNL GN33-8087 

OS/360 
Assembler 
DOSF 
Assembler 

X 

X 

X 

X 

65,535 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

- -
X 

X 

X 

X 

Appendix J 141 



BPS 8K Tape, 05/360 
Macro Faci I ity Features BOS 8K Disk DOS, TOS Assembler 

Assemblers Assemblers 

Operand Subl ists - - X X 

Attributes of macro-instruction operands inside macro definitions and symbols used in - - X X 
conditional assembly instructions outside macro definitions. 

Subscripted SET symbols - - X X 

Maximum number of operands 49 100** 200 

Conditional assembly instructions outside macro definitions - - X X 

Maximum number of SET symbols 

global SETA 16 * * 

global SETB 128 * * 

global SETC 16 * * 

local SETA 16 * * 

local SETB 128 * * 

local SETC 0 * * 

*The number of SET symbols permitted by the Disk and Tape Operating Systems Assemblers and the Operating 
System Assembler is variable, dependent upon the available main storage. 

**Maximum number of operands in DOS assembler F is 200. 

Note: The maximum size of a character expression is 127 in DOS (assembler D) and TOS and 255 characters 
in OS and DOS (assembler F). 

142 



APPENDIX W: CARD INPUT FOR ASSEMBLY RUNS 

Figure K-l lists the control cards necessary to assemble a program. The card groups are 
listed in the order in which they must appear. All job control cards enter the system 
via SYSRDR, all others via SYSIPT. The same device may be a$signed for both SYSRDR ana. 
SYSIPT. If this device is a disk file, the combined file must be designated as SYSIN. 
Job Control st&~ements are described in the pUblications: IBM System/360 Disk Operating 
System, System Control and System Service Programs 'or IBM System/360 Tape Operating System, 
System Control and System Serv1ce Programs. The form numbers are listed in the preface. 

r--------------T-------------------T--------------------------------, 
\ Card Group \ Card Arrangement I Comments \ 
~--------------+-------------------+--------------------------------~ 
Job Control I I JOB •••• \ First card in group, always \ 

\ required. I 
I I 

II ASSGN SYSSLB, •• I Used when the source statement \ 
I library is on a separate I 
I (private) file. 1 I 
I I 

II ASSGN SYSIPr, •• ISource program input I 
I I 

I I A..c)SGN SYSLSr',.. \ Program listing I 
I I 

I I ASSGN SYS001, .... I } I 
II ASSGN SYS002, ••• \ Work files I 

\11 ASSGN SYS003, ••• I I 
I I 

II ASSGN SYSPCH, •• I Required when DECK I 
loption is specified. , 
I , , , 

I I ASSGN [;Y['LNK,.. 'Required when assemble-and- , 
I execute is specified. I , , 

II OPTION DECK, ••• ,Optional. Used to indicate , 
I desired assembler functions. I 
\ I 

I I I EXEC ASSEMBLY I Required. , 
~--------------+-------------------+--------------------------------~ 
'Assembler ISource Deck I Source statements (ma~hine, I 
'Input I , assembler,· and macro instruc-\ 
I \ 1 ti ons) • I 
\ I I I 
\ 11* I Indicates end-of- data set , 
I I I , 
r--------------+-------------------+--------------------------------~ 
IJob Control 1/ & lEnd of job statement I l ______________ ~ ___________________ .~ ________________________________ J 

lSYSSLB is assigned as follows: 

For DOS -- SYSSLB cannot be assigned for the 10K assembler. If SYSSLB is 
assigned for the 14K D assembler or the F assembler, it is concatenated with the 
source statement library on SYSRES. (The assembler searches first SYSSLB and 
thp.n the SYSRES library.) The 10K D assembler and -- if SYSSLB is not assigned 
-- the 14K D and F assemblers use only the source statement library of SYSRES. 

For TOS -- Both TOS assembler variants use either SYSSLB or the source state­
ment library on SYSRES. They use SYSSLB if it is assigned. If it is not 
assigned, they use the SYSRES library. 

Note 1: Only those assignments and options not already in effect are required. 

Note 2: Assignments for SYSIN and/or SYSOUT must be accomplished by permanent assign­
ments. For details see the publications for DOS and TOS system control and system ser­
vice programs (see preface) . 

Figure K-l. Card Input for an Assembly 

Appendix K 143 



I -Symbol:-Un;;- 1- - - - - - - - - - Function--::d ~i:- - - - - - - - - - - I 

r-- - SYSIPT - --f-
I (Required if. the SYSIN op- I 

tion is not used) 

1 

C - SYSRDR - ,- Job c;';o! st"t;':nt input dcy~. ,V,oy be tl.~rn~ J~v;;; os SYSiPi e~pt for combi~ input from IBM 2m 0-::2"314Disk"l (-' 
(Required if the SYSIN op- Extent (see SYSIN). 

1 
tion is not used) ,IBM 1442, 2520, or 2540 Card Read Punch, IBM 2501 Card Reader, IBM 2400-series Magnetic Tope Unit, or IBM 2311 or 2314 I "'-_" 

Disk Extent for the disk system. 

Sourc;;;ogram input devi~ May b;the-;;-me device asSYSRDR except for combined input fromlBM rnl or 2314 Disk Exte~ 
(see SYSI N). I 

IBM 1442, 2520, or 2540 Card Read Punch, IBM 2501 Card Reader, IBM 2400-series Magnetic Tape Unit (7- or 9-track), or 
IBM 2311, or 2314 Disk Extent for the disk system. If the Data Conversion feature was used to prepare the 7-track tape, it I 
must also be used to read the tape. The tape or disk records must be 80-byte unblocked records. 

1- SYSIN - --.,- Usedfura~binedinputmeforSYSRDRandSYSIPT~ - - - - - - - - - - - --I 
(Required for combined IBM 1442, 2520, or 2540 Card Read Punch, IBM 2501 Card Reader, IBM 2400-series Magnetic Tape Unit, or IBM 2311 or 2314 

1 
disk input. Optional for I Disk Extent for the disk system. 1 
combined card or tape SYSIN can be used in lieu of the SYSRDR and SYSIPT designation when the file is card or tape input. It must be used when the 
~u~ ____ 1_ ~iI~diskinput(disksystem~ly~ _________________ J 

SYSLST Program listing device. I I (Required if the SYSOUT 1 IBM 1403, 1404 (continuous forms only), or 1443 Printer. IBM 2400-series Magnetic Tape Unit (9-track, or 7-track with or with-
option is not used) out the Data Conversion feature) or IBM 2311 or 2314 Disk Extent for the disk system. 

1 I Listing on tape or disk appears as 121-character print images (a single forms-control byte followed by a 120-character line image)., 

r - SYSPCH -1- Obiectpro~ output devi;;:- -- -- -- -- -- --. -- -- -- -- -- -- -- -- -- -- --, 

I (Optional) IBM 1442, 2520, or 2540 Card Read Punch. IBM 2400-series Magnetic Tape Unit (9-track, or 7-track with the Data Conversion I 

1 I 
feature), or IBM 2311 or 2314 Disk Extent for the disk system. I 

Output on tape or disk is in 81-byte unblocked records. 
~ 1 Not used when ~A~ble-and-Ex~te~th~ODECK option is..!.:cified._ _ ______ ~ 

- SYSOUT - -.- Used for a combined output file for SYSLST and SYSPCH to a single tape unit. 1 (Optional_)_ _ __I __ IBM 2400-series Magnetic Tape Unit (9-tra~ o~track w~ t~a~o..::rsion f~re~ _______ -.J 
1 

SYSLNK 1 Used for temporary storage of assembler output. Required only when the Assemble-and-Execute option is specified. 1 
(Optional) IBM 2400-series Magnetic Tape Unit (9-track, or 7-track with the Data Conversion feature) for the tape system or IBM 2311 or 
~ _1_ ~3~D~Extent for the dis~te~ This extent may ~n~ ~e devic~a~ntains the DOS resident system. __ ~ 

SYSOOI Used for temporary work area during assembly. I I SYS002 I IBM 2400-series Magnetic Tape Unit (9-track, or 7-track with the Data Conversion feature) for either the tape or disk systems or 
SYS003 three IBM 2311 or 2314 Disk Extents for the disk system. These extents may be on the same device that contains the DOS resi-

I 1 (Requ ired) I dent system. 
For details of work file assignment see the publication for DOS system generation (see preface). 

t- - SYSSLB -t- Mu;be~e"de:i;;-ty;:s SYSRES. SeeAppendi:'"K:-Fig~-~ -- -- -- ---- -- -- -- --f 
~Ption:':- 2314) __ L ____________________ . _______________ ~ (~ 

NOTE: The 2311 or 2314 can be used for one or more of the symbolic units SYSRDR, SYSIPT, SYSIN, SYSPCH, or SYSLST only if a supervisor has been SYSGEN'd ',-__ /' 
that can accomodate input from disk storage or output to disk storage for these units. For details see the DOS system generation manual (see preface) 

Figure K-2. Device Assignments 

r,---------------------------------------------------. I Input and Output Using an IBM 1442 or 2520 Card Read Punch: 'Nhenever an IBM 1442 or 2520 Card Read Punch is assigned to SYSRDR, SYSIPT, or SYSIN and also I 
I to SYSPC~, ~ number of blank cards suffjci~nt for punching the output deck must follow the/* card which follows the assembler E~D statement in the source I 
L_~~ Th'~~':.~~r~~sly ~~~ the~r~~~lIowing~~'!:..:n~~c:.:ards~~~~t~ede~a~~~~~I~~~~. _____ J 

Figure K-3. Operating Considerations 

144 



\, 

'--) 

o 

r:---·---r---------T---------------------, 
ICard Group I Card Arrangement I Comments 

G~~~~cll-/;JOO~~----T~~~~cli~~~~:~~~~~ir~~-~ 
II ASSGN SYSRLB ... Used by the Linkage editor when the 

relocatable library is on a separate 
(private) file and previously assembled 
modules are to be included. 

II ASSGN SYSSLB ... Used when the source statement library 
is on a separate (private) file.! 

II ASSGN SYSIPT ... Source program input 

II ASSGN SYSLST ... Program listing 

II ASSGN SYSLNK ... Required for assemble-and-execute. 

II ASSGN SYSOOl ... 
II ASSGN SYS002 ... 
II ASSGN SYSOO3 ... 

} Work files 

II OPTION LINK .... Required. Used to indicate LINK option 
and any additional assembler functions 
desired. 

II EXEC ASSEMBLY Required 

~-----~----------L--------------------~ IAssembler Input Source Deck I Source statements (machine-, assembler-
I I land macro-instructions). NOTE: If th~ 
I 1 1 operand of the END statement is omit-

I 1 
I ted, a PHASE card must precede the II 

EXEC ASSEMBLY card or an ENTRY card 
I I I must follow the END statement (tape 
I I I system only) . 

1 I I I I J 1* I Indicates end-of-data set I 
(;-0-; ;0:t-;07 1-- ;~R-; -:.-: - - - r - - - - - - - - - - -- - - - - - - - --I 
I I I I 
1 I II EXEC LNKEDT I Calls the Linkage Editor I 

1 I I I EXEC I I I ______ ~ __________ L ____________________ ~ 

I Data I Data, if any II 
I I 
1 I 1* I End-of-data set indicator I 
t - - - - - - + - - - - - - - - - -I- - - - - - - - - - - -.- - - - - - - --1 
~~ .:~~~ - L:': ________ 1 ~~ ~ ~~ ~~::=::: ____________ I 

See Figure K-l 

Note 1: Only those assignments and options not already in effect are 
required. 

Note 2: Assignments for SYSIN andlor SYSOUT must be accomplished by 
permanent assignments. For details see the publications for DOS and 
TOS system control and system service programs (see preface) . 

, Figure K-4. Card Input for Assembly, Linkage Editing, and Execution 

Appendix K 145 



Note: 
Broken lines indicate 
where the Assembler 
input would be placed 
if SYSIPT were the 
same unit as SYSRDR. 

SYSLOG 

1 See Figure K-1. 

1& 

II EXEC ASSEMBLY 

Optional -iJII ASSGN SYSSLB, ••• 

I ASSGN SYSPCH,,,. 

II ASSGN SYSOO3, ••• 

II ASSGN SYSOO2, ••• 

II ASSGN SYSOOI, ••• 

II ASSGN SYSLNK, ••• 

II ASSG N SYSLST, ••• 

II ASSGN SYSIPT, ••• 
Optional II OPTION ••• 

II JOB •••• 

SYSRDR 

/--" 
I \ 
\ J 
\. / 

/'" 

I 
l J 

\ I 
........ ......::._ SYSLNK 

(Optional) 

--/ ."\ , 
, I 
\,/ 

I Figure K-S. I/O Units Used by the Tape Assembler 

146 

/- ...... " 
I , 

I 
/ 

SYSLST 

--, 
/ \ 

{ \ 
\ I 

-------- --, I 
( ~--
I I SYSIN p _______ ..J (Optional) 

,,--, 
I \ 
( \ 
\. I , / 
~­

SYSOUT 
(Optional) 

,...-, 
/ , 

( \ 

r------L-l / 
~ r-~-

L _________ J 
SYSPCH 
(Optional) 



o 

Note: 
Broken lines indicate 
where the Assembler 
input would be placed 
if SYSIPT were the 
some unit as SYSRDR. 

If SYSIPT and 
SYSRDR are the some 
disk unit I they must be a 
combined file assigned 
as SYSIN. 

Optional 

SYSSLB1 

(Optional) 

1 See Figure K-l 

Optional 

II ASSGN SYSIPT 

II OPTION ••• 

II JOB ...• 

SYSRDR 

/& 

---( '" 
--1 ..... ---),1 

./ '" / \ 
\ 
/ I 

---~- -/' II EXEC ASSEMBLY 
/- ....... 

.I 
I 

/ 
L 

I 
/ 

/ 

/ 

I 
I 

I 
I 

/ 

I 
I 

.., 
I 

I 
I 

..,."..-- ...... 
, " ,, __ k._ _"'" 

, 1..:--
I ' 1 
, ~ 1 

r-r------~--~ I I 
.... ~ ___ "I 

- --" 
- - (...... ..1.1 " :-J" ___ --

/ '\ 

\ I 
] 1 

I \ 
\ I r--------., I 

I ----" L::-'_ -
1( ...... - __ -1 I 
U r----.J 
I I 
1 
I I SYSIN 
'- I ...... _--." 

(Required if SYSRDR 
and SYSIPT are a 
combined disk file. 
Optional if SYSRDR 
and SYSIPT are a 
combined card or 
tape file.) 

,... -" 
/ \ 

I } 
\ I , / 

....... _-
",.,,----., 

/L~ __ ~ 
I \ 1 
( I I 

----------, . I 

I I .... i __ -) ..... , 
SYSOUT 
(Optional) 

\ ~, 
I \ \ 

, \ SYSOOI 
~_ '" I I SYS002 

,,- - I SYS003 
........ ~-

rs:YSPcH L..J.. _____ --~ (Optional) 

Figure K-6. I/O Units Used by the Disk Assembler 

Appendix K 147 ' 



r--------------------T--------------------T--------------------T------------------------, 
I I Assemble-and-executeIAssemble-and-executeIAssemble-and-execute I 
IAssemble-and-executel (Include object I (Include object 1 (Include object I 
I Iroutines from the Iroutines from cards) I routines from the I 
I I relocatable library) I I relocatable library 1 
I I 1 I and from cards) 1 

~--------------------+--------------------+--------------------+------------------------~ 
]// JOB ••• 1// JOB ••• // JOB ••• 1// JOB ••• 
I 1 I 
1// ASSGN SYSIPT,.. 1// ASSGN SYSIPT... // ASSGN SYSIPT... 1// ASSGN SYSIPT,_~. 
1 1 I 
1// ASSGN SYSLST, ••• 1// ASSGN SYSLST, ••• // ASSGN SYSLST,.. 1// ASSGN SYSLST, ••• 
I I 1 
1// ASSGN SYS001,.. 1// ASSGN SYS001,.. // ASSGN SYS001,.. 1// ASSGN SYS001, •• 
1// ASSGN SYS002,.. 1// ASSGN SYS002,.. // ASSGN SYS002,.. 1// ASSGN SYS002, •• 
1// ASSGN SYS003,.. 1// ASSGN SYS003,.. // ASSGN SYS003,.. 1// ASSGN SYS003, •• 
J I 1 
1// ASSGN SYSLNK, ••• 1// ASSGN SYSLNK, ••• // ASSGN SYSLNK, •• '1// ASSGN SYSLNK, •• 
I I I 
1// OPTION LINK,... 1// OPTION LINK,.. // OPTION LINK,.. 1// OPTION LINK, ••• 
I 1 I 
1// EXEC ASSEMBLY 1// EXEC ASSEMBLY 1// EXEC ASSEMBLY 1// EXEC ASSEMBLY 
~--------------------+--------------------+--------------------+------------------------~ 
ISource Deck I Source deck Isource deck ISource deck I 
1/* 1/* 1/* 1/* I 
~--------------------+--------------------+--------------------+------------------------~ 

INCLUDE SUBRl I INCLUDE I INCLUDE SUBRl I 
I I I 

INCLUDE SUBR2 IObject deck(s) I INCLUDE I 
I I I 
/* IObject deck(s) I 

1 1 
1/*' 
I 
I INCLUDE SUBR2 
I 
1 INCLUDE SUsRT 
I 

ENTRy.... ENTRy.... ENTRy..... I ENTRy ••••• 
I 

// EXEC LNKEDT // EXEC LNKEDT // EXEC LNKEDT 1// EXEC LNKEDT 
1 

1 
1 Any Job Cont.rol cards needed for the programs to be executed. 
I 
I / / EXEC I / / EXEC 1// EXEC I / / EXEC 
~--------------------+--------------------+--------------------+------------------------~ 
I Data, if any I Data, if any IData, if any IData, if any I 
1/* 1/* 1/* 1/* 1 
r--------------------+--------------------+--------------------+------------------------~ 
1/& 1/& 1/& 1/& I 

t----------------~---~------~-------------~-------------------~------------------------~ 
IIf SYSRDR and SYSIPT are different units, a /& card must be placed after the last I 
IEXEC card in SYSRDR, and should be placed after the last /* in SYSIPT. t 
\-----------------------------------------------------------------------:\ 

C: 

I Figure K-7. Card Input for Different Variations of Assembly, Linkage Editing and Execution. 

148 



The EXEC ASSEMBLY statement causes the job 
control program to look for a phase with 
the name ASSEMBLY in the Core Image 
Library and load it into main storage. 
Since duplicate names cannot appear in a 
library, and every version of the assembler 
processor has the same phase name, only one 
of them can be in the Core Image Library at 
a time. Therefore the variant best suited 
for the particular installation is normally 
included in the Core Image Library. The 
programmer can, however, select another 
variant from the Relocatable Library and 
include it in the Core Image Library 
instead of the variant that is already 
there. 

Figure L-l shows the Job Control cards 
required to bring a particular assembler 
variant from the Relocatable Library into 
the Core Image Library, and Figure L-2 
shows the valid assembler names (the names 
under which the variants would be cataloged 
in the Relocatable Library). After the 
variant has been included in the Core Image 
Library, it can be loaded and executed 
through the EXEC ASSEMBLY statement. 

II JOB CONDENSE 

II EXEC MAINT 

DELETC ASSE.ALL 

CONDS CL 

1& 

II JOB lINKASM 

II OPTION CATAL 

INCLUDE name* 

II EXEC LNKEDT 

1& 

This job not needed in TOS 

* 'name' selected from those listed in Figure K-5 

Figure L-l. Card Input for Selecting 
Different Assembler Variants 

Variants IJQT16, IJQD16TW, and IJQD16DW 
must be used if the assembler is to be run 
in less than 14K of available core. Vari­
ants IJQT32 and IJQD32 may be used if avail­
able core is never less than 14K. The IJQ 

APPENDIX L: REPLACING THE CURRENT ASSEMBLER 

IJQT32 and IJQD32 are generally faster than 
LJQT16 and IJQD16DW or IJQD16TW, respectively, 
because they have test I/O buffering and can 
use the additional core to build larger 
symbol tables. The difference in speed varies 
with the amount of additional core and the 
number of symbols in the assembly. 

Thus, if the assembly has few symbols or 
if only a small amount of additional core 
is available to a larger variant, the larger 
and smaller variants will be nearly equal in 
speed. 

For comparable assemblies, DOS assembler 
F (IJYASM) is up to 45% faster than DOS 
assembler D. 

Notel: The descriptions 16K and 32K refer 
to the machine size required to run the 10K 
and 14K variants respectively (except that 
the 14K variant can run on a System/360 
Model 30 with 24K of core). 

Note 2: Some installations have two or more 
assemblers in the Core Image Library. In 
such instances, the phase names have been 
changed to avoid duplicate names in the 
library. (Refer' to IBM System/360 Disk Oper­
ating System, System Generation and Maintenance, 
Form C24-5033 and IBM System/360 Tape Operating 
System, System Generation and Maintenance, 
Form C24-5015) . 

Name System Work Files1 Minimum Core2 

IJQD16DW DOS Disk 10,240 

IJQD16TW DOS Tape 10,240 

IJQD32 DOS Mixed 14,336 

IJYASM DOS Mixed 45,056 

IJQTl6 TOS Tape 10,240 

IJQT32 TOS Tape 14,336 

1. Mixed work files mean any combination of 2400-series 
tapes and/or 2311 and/or 2314 disk extents for SYS001, 
SYS002, and SYS003. In general, the assembler uses 
SYSOOland SYS,002 as serial files and SYS003 as a 
random access file. 

2. Minimum core refers to the minimum number of contigu-
ous bytes necessary for the particular assembler variant 
to function correctly. 

C
--- -" variants are D assemblers. varian~ IJYA~M 

) (the DOS F assembler) may be used1f ava11-
"- able core is never less than 45,056 bytes. I Figure L-2. Assembler Varj,ants 

Appendix L 149 



I APPENDIX M: OBJECT DECK OUTPUT 

Figure M-l lists the card groups that make up the output deck produced by the assembler. 
The groups are listed in the order in which they appear in the output deck. 

Note: No output deck will be produced when NODECK appears in the OPTION card. 

The formats of the ESD, TXT, RLD, END, and SYM cards are shown in Figures M-2 
and M-3. 

r---------------------------T----------------------------------, 
1 Card Group I Remarks I 
~---------------------------+----------------------------------~ 
Reproduce:1 Cards /These reproduced cards result / 

1 from REPRO or PUNCH instructions/ 
/ located b~fore STARr. / 

·1 
Symbol Table (SYM) Produced when SY'lvl appears in the 

External Symbol Dictionary 
(ESD) 

Problem Program 

1 

oprION card. 

Consists of text (TXT) and 
reproduced cards. The repro­
duced cards result from REPRO 
or PUNCH instructions located 
after STAR'r. 

Relocation Dictionary (RLD) /produced if relocatable constants 
/ are present. 
/ 

END Card /Produced as the last card of the 
/ output deck. 

~---------------------------~----------------------------------~ 
IQQject Deck Identification / 
1 / 
Irhe 4-character assembly identification label punched into I 
I the name entry of the first rITLE ca.rd in the source program I 
lis punched into columns 73-76 of each recor:1 in the object I 
I deck. If there is no label, these columns are left blank. I 
~------------------.--------------------------------------------~ 
IQQiect Deck Seguencing Numbering I 
I I 
IAn assembler-generated sequence number is punched into I 
Icolumns 77-80 of each card in the object deck. I L _________________________________________________ - _________ ~ __ J 

Figure M-l. Assembler Output Deck 

150 

c~ 



~) 

() 

Page of GC24-3414-7 
Revi!ed August 21, 1970 
By TNL GN33-8087 

The information in each card is in Extended Binary Coded Decimal Interchange Code. 

r--------T--------------------------------, 
IColumns lpunched ) 

~--------~--------------------------------~ 
IESD Card I 

~--------T-----------------------------4 
I 1 IMultiple punch (12-2-9). Iden- I 
I Itifies this as a loader card. I 
I I I 
I 2-4 IESD--External Symbol Dictionary I 
I Icard. I 

I I 
11-12 INumber of bytes of information I 

Icontained in this card. I 
I 1 

15-16 IExternal symbol identification 1 
Inumber (ESID) of the first SO, I 
IPC, WX, or ER on this card. I 
IRelates the SO, PC, WX, or ER I 
Ito a particular control section. I 
I I 

11-12 IVariable information. I 
I 8 positions. Name. I 
I 1 position. Type code to I 
lindicate SO, PC, LD, WX, or ER. I 
I 3 positions. Assembled I 

'lorigin. 1 
) 1 position. Blank. I 
I 3 positions. Control sectionl 
I length, if an 50-type or a PC- I 
ltype. If an LO-type, this field) 
)contains the external symbol I 
lidentification number (ESIO) of 1 
Ithe SO or PC containing the I 
I label. I 
I I 

13-16 IProgram identification taken I 
Ifrom the name field of the first) 
)TITLE statement. ) 
) ) 

I 11-80 lSequence number. I 
~--------~--------------------------------~ 
ITKT Card I 
~--------T--------------------------------~ 
I 1 )Multiple punch (12-2-9). I 
) IIdentifies this as a loader I 
I I car::l. I 
I 1 I 
1 2-4 ITXT--Text card. I 
1 I I 
) 6-8 IAssembled or1g~n (address of 1 
I I first byte to be loaded from ) 
I I this card).. 1 
I I I 
) 11-12 INumber of bytes of text to be I 
) )loaded. I 
J I I 
I 15-16 IExternal symbol identification J 
I Inumber (E5ID) of the control I 
I ) section (SO) containing the I 
) I text. I 
I ) I 
I 11-72 IUp to 56 bytes of text--data or I 
I )instructions to be loaded. 1 L ________ ~ _____ .. __________________________ J 

. Figure M-2. Format of ESD, TXT, RLD, and END 

r-------~--------------------------------, 
lColumns IPunched I 

~--------+--------------------------------~ 
I 73-76 )Program identification taken I 
I Ifrom the name field of the first) 
) I TITLE statement. I 
) I I 
I 77-80 ) Sequence number. ) 

~--------~--------------------------------~ 
IRLD Card I 

~--------T--------------------------------~ 
I 1 IMultiple punch (12-2-9). I 
) I I 
I 2-4 IRLD--Relocation Dictionary card. I 
) I I 
I 11-12 INumber of bytes of information I 
I ) contained in the card. I 
I I ) 
I 17-12 IVariable information (multiple I 
I litems). I 
I J 2 positions. Pointer to the I 
I Irelocation factor of the con- I 
) )tents of the load constant. ) 
1 I 2 positions. Pointer to the ) 

Irelocation factor of the control I 
Isections in which the load con­
)stant occurs. 
) 1 position. Flag indicating 
Itype of constant. 
1 3 positions. Assembled 
laddress of load constant. 
I 

13-16 )Program identification taken 
Ifrom the name field of the first 
)TITLE statement. 
) 

11-80 Isequence number. 

~--------~--------------------------------~ 
) END Car:i I 
t--------T--------------------------------~ 
) 1 ) Multiple punch (12-2-9). ) 
I I I 
I 2-4 I END I 
I I I 
I 6-8 )~ssembled or~g~n of the label ) 
I )supplied to the Assembler in the 
I lEND card (optional). 
I 1 
) 15-16 )ESID number of the control sec-
) Ition to which this END card 
1 ) refers. 
) I 
) 11-22 )Symbolic label supplied to the 
) IAssembler if this label was not 
) I defined within the assembly. 
) ) 
) 73-16 I Program identification taken 
) )from the name field of the firstl 
I lTIrLE statement. I 
I I ) 
I 11-80 )Sequence number. I L ________ ~ ________________________________ J 

Cards. 

Appendix M 151 



Columns 

1 
2-4 
5-10 
11-12 
13-14 
15-16 
17-72 
73-76 
77-80 

contents 

12-2-9 punch 
SYM 
Blank 
Number of bytes in the Variable Field 
Blank 
ESID 
The Variable Field (see below) 
Deck ID (from the first TITLE card) or blank 
Card sequence number 

The variable field (columns 17-72) contains up to 56 bytes of 
AUTOTEST text. The items making up the text are packed together; 
consequently the last card may contain less than 56 bytes of text 
in the variable field. The contents of the fields within an 
individual text item are, as follows: 

1. Organization (1 byte): 
Bi to: 0 
Bit 1: 1 
Bit 2: 1 
Bit 3: 1 
Bit 4: {IO = DC or DS 

= not DC or DS 
Bits 5-7: Length of name minus one. 

2. Address (3' bytes): displacement from base of control section. 

3. Sy~bol Name (1-8 bytes): sYITbolic name of the particular item. 

The following fields are present only for data-type items: 

4. Data Type (1 byte): 

X'OO' character 
X'04 ' hexadecimal 
X' 08' binary 
X'lO' full word, fixed point 
X'14' half word, fixed point 
X'18' single precision floating point 
X'lC' double precision floating point 
X' 20' A-type or Q-type address constant 
X'24' Y-type address conl?tant 
X' 28' S-type address constant 
X'2C' V-type address constant 
X'30' packed decimal 
X'34' zoned decimal 

5. Length (1-2 bytes): length of data item minus one. Occupies 
two bytes for cnaracter, hexadecimal and binary items; 
otherwise one. 

6. Multiplicity (1 byte): always X'Ol'. 

Figure M-3. Format of the SYM card. 

151.1 

C) 

c.) 



New text can be substituted for assembled 
text using the REP card. Each REP card 
must contain the assembled address of the 
first byte to be replaced and the identifi­
cation of the control section to which it 
refers, and may contain from two to 22 
bytes of text. The text is substituted, byte 
for byte, for the original text, beginning 
at the address specified. The address, the 
control section reference, and the new text 
must be stated in hexadecimal. The REP card 
must be placed after the TXT cards in the 
object module that it modifies. Its format 
is shown in Figure M-4. 

Columns 

1 

2-4 
5-6 
7-12 

13 
14-16 

17-70 

71-72 
73-80 

Figure M-4. 

Contents 

Multiple punch (12-2-9). 
Identifies this as a loader 
card. 
REP -- Replace text card. 
Blank. 
Assembled address of the 
first byte to be replaced 
(hexadecimal). Must be right 
justified with leading zeros 
if needed to fill the field. 
Blank. 
External symbol identifica­
tion number (ESID) of the 
control section (SD) contain­
ing the text (hexadecimal). 
Must be right justified with 
leading zeros if needed to 
fill the field. 
From one to eleven 4-digit 
hexadecimal fields separated 
by commas, each replacing two 
bytes. A blank indicates the 
end of information in this 
card. 
Blank. 
May be used for program iden­
tification. 

Format of the REP card. 

Appendix M 151.2 



Page of GC24-3414-7 
Revised J'.ugust 21, 1970 
By T:!'fL GN33-8087 

APPENDIX N: DIAGNOSTIC ERROR MESSAGES 

Diagnostic error messages are printed fol­
lowing the cross reference listing, in 
statement number order. The message code 
has the form IJQnnn for the D assembler and 
IJYnnn for the F assembler. Figure N-1 

lists the diagnostic messages and their 
message codes. If errors are encountered 
while editing library macros, the state­
ment number referenced will be that of the 
"END II statement. 

r- ----~f---------------------
, -------------, 

I Message I f 
I code I Message I Meaning I 

I 

r-------+------------------------------+---------------------------~ 
IJ~OOl IDUPLlCATION FACTOR .ERROR JDuplication factor: I 
IJYf I la. is zero in a literal. I 

I tb. is not a positive abso-I 
I I lute expression. I 

I I 
IJQL002 RELOCATABLE DUPLICATION FACTOR I Duplication factor is relo-I 
IJYI I eatable. I 

IJQr03 
IJY 

IJQ1O'04 
IJY! 
I JQlO ° 5 
IJY! 
IJQl006 
IJYJ 

LENGTH ERROR 

RELOCATABLE LENGTH 

S-TYPE CONSTANT IN LITERAL 

INVALID ORIGIN 

1 
IJQ~07 ILOCATION COUNTER ERROR 
IJYI I 

I 
IJQ~08 IINVALID DISPLACEMENT 
1JYf 1 

I 
I 
IMISSING OPERAND 

I I 
11. Out of permissible I 
I range. I 
12. Invalid specification. J 
I 1 
lLength is relocatable. ( 
I I 
IS-type constant in literal. I 
J I 
ILocation counter has been I 
Jreset to a value less than I 
Ithe starting address of the! 
lcontrol section. I 
I 
ILocation Counter has 
I exceeded 224 -1. 
I 
IDisplacement in an explicit 
laddress is not within 
10-4095. 
I 
IOperand is missing. IJQlo09 

IJY! 
IJQ'\910 
IJYj 

I 
I INCORRECT 

I 
REGISTER SPECIFICATION 1. Specification of 

register is greater 
than 15. 

I 
I 

2. Odd register is speci­
fied where an even 
register is required. 

I 
I 
I 
I 

IJQP11 I SCALE MODIFIER ERROR Scale modifier is: 
IIJY[ J a. too large. 
I J b. not an absolute expres-I 
I I sion. I 
I I I 
JIJQp12 IRELOCATABLE SCALE MODIFIER Scale modifier is not al- I 
IIJYI I Ilowed to be re10catable. I 
I I I I 
IIJQ~13 IEXPONENT MODIFIER ERROR IExponent is: I 
I IJY[ I I a. out of range. I 
I I lb. not specified as an J 
I I I absolute expression. I L-________ ~ ________________________________ i ___________________________ J 

Figure N-1. Assembler Diagnostic Error MeSStges (Part 1 of 14) 

152 

,', 

(-.. -.~~ 

o 



r------,.-------------------~--------------------_, } Message} , , 
'Code I Messa ge I Meaning I 
1----+------------------+---- -------------~ 
IIJQ~14 IRELOCATABLE EXPONENT MODIFIER I Exponent.modifier is not I 
,IJYf I I allowed to be relocatable. I 
I I 1 I 
IIJQP15 I INVALID LITERAL USAGE IA valid literal is used ille-I 
IIJYf I Igally, e.g., specifies a I 
I I Ireceiving field or a reg- 1 
1 I lister. 1 
I I 1 I 
lIJQf16 IINVALID NAME IName entry incorrectly speci-I 
IIJY I Ified -- I 
I I I a. contains more than 8 I 
I I t characters. I 
I I I b. does not begin with a I 
I I I letter. I 
I I IC. has a special character I 
I I I embedded. I 
I I I I 
IIJQP17 IDATA ITEM TOO LARGE IThe constant is too large I 
IIJYf I I for: I 
I , I a. the data type. l' 
I , lb. the explicit length. I 
, , I I 
lIJQp18 IINVALID SYMBOL lThe symbol specification is I 
IIJYj } linvalid, e.g., longer than 8 I 
I I \ characters, embedded special I 
, I ,character., 
IIJQro19 IEXTERNAL NAME ERROR 11. Identical name entry I 
IIJYf I I in a CSECT and a DSECT I 
, 1 I statement. I 
I I 12. Identical operands in one I 
J I I or more EXTRN/WXTRN state-I 
I I ments.' 
I I I I 
I IJci020 I INVALID IMMEDIATE FIELD .11. The immediate field is I 
I IJYJ I I not an absolute expres-
I I I sion. 
I I 2.. The value of the irnmedi-
I I I ate field is not in the 
, I } range 0-255. 
IIJ~021 I SYMBOL NOT PREVIOUSLY DEFINED I .. 
IIJY! I I A statement requJ.rJ.ng pre-
I 1 I defined symbols contains a 
I I 1 symbol not predefined. 

IIJci0 22 IESD TABLE OVERFLOW I The total number of control 1 
IIJY[ 1 1 sections, dummy sections, andl 
I I t unique symbols in EXTRN I 
I I I statements and V-type con- I 
I I t stants exceeds 255. t 
I I I I 
I IJQp.23 I PREVIOUSLY DEFINED NAME I The symbol in the name entry I 
I IJYf I I has appeared in the name I 
I 1 I entry of a previous state- I 
I I iment. I J. _______ .i _____________________ --'-__________________ --t 

\ Figure N-l. Assembler Diagnostic Error Messages (Part 2 of 14) 

Page of GC24-3414-7 
Revised August 21, 1970 
By TNL GN33-8087 

Appendix N 153 



Page of GC24-3414-7 
Revised August 21, 1970 
By TNL GN33-8087 

r-------T----------------------~------------------------------------, I Message I J l 
I Code I Message I Meaning r 
~-------+-----------------------+------------------------------------~ IIJQp24 UNDEFINED SYMBOL IA symbol being referenced has not ( 
IIJY[ been defined in the program. J 
I I 
IIJQ025 RELOCATABILITY ERROR 1. A relocatable or complex I 
IIJYJ relocatable.expression is speci-I 
I fied where an absolute expres- I 
1 sion is required. J 
I I 
IIJd026 TOO MANY LEVELS OF Expression specifies more than I 
IIJYf PARENTHESES 5 levels of parentheses. I 
I I 
I I.1oo 27 TOO MANY TERMS More than 16 terms specified in an I 
IIJYr expression. I 
I I 
IIJd028 REGISTER NOT USED A register specified in a DROP I 
IIJY[ statement is not currently in use. I 
I I 
JIJcto29 CCW ERROR Bits 37-39 of the Channel Command I 
IIJ~ Word are set to nonzero. I 
I J 
IIJ~30 INVALID CNOP Invalid range I 
IIJY[ I 
IIJ'Q>31 UNKNOWN TYPE Incorrect type design:1tion in a DC, I 
IIJYJ OS, or literal. I 
I I 
IJ'QP32 OP-CODE NOT ALLOWED TO Operation code allowed only in I 
IJ~ BE GENERATED source statement has been obtained t 

IJQl)33 
IJY( 

IJQ'P34 
I IJyf 
I 
I 
I 
I IJQ'P35 
J IJyf 

I 
I IJ'QP36 
IJyf 

IJC!037 
1JYf 

J ALIGNMENr ERROR 
I 
I 
I 
IINVA.LID OP-COOE 
I 
I 
I 
I 
IADORESSABILITY 
I 

OPERAND FIELD 
MUST BE BLANK 

ERROR 

MNOTE STATEMENT 

through sUbstitution of a value I 
for a variable symbol. \ 

Referenced address is not aligned tol 
the proper boundary for this l 
instruction. Ii 

)Invalid operation code: 
la. More than eight characters. 

~ 
I 
I 

I b. Operation entry not followed by I 
I a blank on same c:1rd. 
I 
IThe 
I the 
I 

referenced adjress is not within 
range of a USING instruction. 

IOperand found for an operation 
Icode which does not allow operands. 
I (This message may be produced by the 
!assembler if an operand is present 
lin a COM, EJECT, or LTORG statement 

I
When the operation field has been 
created by variable symbol substi­

Itution. Operands in these state­
Iments are not used but are not in 
lerror. ) 

• IAn MNOTE statement has been generat-
led from a macro definition. The 
Itext and severity code of the MNOTE 
Istatement is in-line in the listing. 

I 
I 

L _______ .1. _______________ . _____ ----L---------------------_____________ -1 

Figure N-l. Assembler Diagnostic Error Messages (Part 3 of 14) 

154 

c 



... "",- '.', 

,~.) 

n 
'--' 

Page of GC24-3414-7 
Revised August 21, 1970 
By TNL GN33-8087 

r-------r-----------------------r----------------------------------------1 
I Message I 
I Code I Message Meaning I 
--------t-----------------------~-----------------------------------------1 

IJQ}038IENTRY ERROR 1. More than 100 ENTRY operands in 
IJY this program. 

I 2. A symbol in the ENTRY operand: 
I a. appears in more than one 
I ENTRY s ta temen t . 

l
b. is undefined. 
c. is defined in a dummy sec-

I tion. 
I d. is defined in blank common. 

I
e. is equated to a symbol defined 

IJQ}039 I INVALID 
IJY I 

I 
I 
I , 

DELIMITER 

IJQ}040 GENERATED RECORD 
IJY TOO LONG 

IJQ}04l UNDECLARED VARIABLE 
IJY SYMBOL 

IJQ}042 SINGLE TERM LOGICAL 
IJY EXPRESSION IS NOT A 

SETB SYMBOL 

IJQ}043 SET SYMBOL PREVIOUSLY 
IJY DEFINED 

by an EXTRN or WXTRN statement. 
Any syntax error: 

1. A symbol has other than alpha­
meric characters. 

2. A symbol begins with other than 
alpha characters. 

3. Excessive right parenthesis. 
4. Equal sign encountered in a sUblist. 
5. Any terminating character er.­

countered in an unexpected place. 
6. Mispunched op code causes un­

expected syntax scan. 
7. A missing delimiter. 
8. A special character that is not 

a valid delimiter but is used as 
a delimiter. 

9. A delimiter used illegally. 
10. A missing operand; nothing 

appearing between delimiters. 
11. Unpaired parenthesis. 
12. An embedded blank. 

Record has more than 187 char­
acters 

Variable symbol is not declared in 
a define SET symbol statement or 
in a macro prototype. 

Single term logical expression is 
only valid for a SETB symbol. 

SET symbol previously defined. 

IJQ}044 SET SYMBOL USAGE A SET symbol has been declared as: 
IJY INCONSISTENT WITH 1. undimensioned but it is 

DECLARATION subscripted. 
, 2. subscripted but it is undimensioned. 

IJ~45 I ILLEGAL SYMBOLIC Attribute requested for a 
I IJY{ I PARAMETER variable symbol which is not a sym-
1 I Jbolic parameter 
. I 

: IJQp46 II AT LEAST 1 RELOCATABLE lOne or more relocatable Y-type con-
IJYf Y-TYPE CONSTANT IN lstants in assembly; relocation may 

I I ASSEMBLY I result in address greater than 2 
I I Ibytes in length. 
I I I 
IJ~47 I SEQUENCE SYMBOL I Sequence symbol previously 

t..:~ _..J :"~V.:?~LY ~~~~ _ -1 defined:- __________ ___ --.J 

Figure N-l. Assembler Diagnostic Error Messages (Part 4 of 14) 

Appendix N 155 



Page of GC24-3414-7 
Revised August 21, 1970 
By TNL GN33-8087 

r-----~-----------------------~-----------------------------------, 
I Message I I I 
I Code I Messa ge I Meaning I 
~----+--------- ----+-------------------------1 

IJQl048 I SYMBOLIC PARAMETER 11. symbolic parameter previously I 
IJYf I PREVIOUSLY DEFINED OR I defined. I 

I SYSTEM VARIABLE 12. System variable symbol declared I 
SYMBOL DECLARED AS I as a symbolic parameter. I 
SYMBOLIC PARAMETER I I 

I I 
IJQr49 VARIABLE SYMBOL MATCHESIVariable symbol matches a parameter. I 
IJY A PARAMETER I I 

IJQlOSO 
IJY[ 

INCONSISTENT GLOBAL 
DECLARATIONS 

J I 
IA global SET variable that is I 
Idefined in more than one macro defi-I 
Inition, or in a macro definition andl 
lin the source program, is inconsis- I 
Itent in SET type or dimension. I 
I I 

IJQPSl PROGRAMMER MACRO DEFIN-\Programmer macro prototype opera- I 
IJYI ITION PREVIOUSLY Ition entry is identical to a: I 

I DEFINED la. machine ~nstruction. I 
I lb. assembler instruction. J 
I IC. previous programmer macro I 
I I prototype. ~ 

I I IThis message is not produced when I 
I la programmer macro matches a system I 

I /macro. The programmer macro will I 
I I ,be assembled with no indication of 
I I the corresponding system macro. I 
I I I J 
IIJd052 INAME FIELD CONTAINS ISET symbol in name entry does I 
I IJY[ I ILLEGAL SET SYMBOL I not <=orrespond to SET statement I 
I I I type. I 
I I I r 
IIJ~S3 IGLoBAL DICATIONARY FULL I Global dictionary is full. Assembly I 
IIJ~ I lis terminated. See Appendix H for I 
I r I dictionary size limits. I 
IIJ~054 ILOCAL DICTIONARY FULL ILocal dictionary is full. Assembly I 
IIJYf I lis terminated. See Appendix H for I 
I t Idictionary size limits. I 
IIJQ~56 IARITHMETIC OVERFLOW I Intermediate or final result of an I 
IIJYI I (arithmetic operation is less than ~ 
I I 1-231 or greater than 2 31_1. t 
I I I 
IIJ~057 ISUBSCRIPT EXCEEDS 11. &SYSLST or symbolic parameter I 
I IJY[ I MAXIMUM DIMENSION I subscript: I 
I I I a. exceeds 100 (200 for F I 
I I I assembler) . I 
:: I b. is negative. I 
I I I 2 Symbolic parameter subscript is r 
I ; zero. t 
I I 3. SET symbol subscript exceeds I. 
t I dimension. I 
I J IOperand sequence symbol does not I 
IIJ~59 IUNDEFINED SEQUENCE lappear as a sequence symbol in a I 
J IJY( . J SYMBOL ~ name field. I 
-----------------------------------~ 

\. Figure N-l. Assembler Diagnostic Error Messages (Part 5 of 14) 

156 

c~ 



r-----~-------------------- -----------------------, 
\ Message I \ 
1 Code \ Message I Meaning I 
~-------+--------------------------+------------------------------------~ 
\IJ~060 I ILLEGAL ATTRIBUTE IL', Sf, or II requested for a I 
IIJYf I NOTATION \parameter whose type attribute does 
I \ I not allow these attributes to be 
1 I I requested. 

IIJQ)061 I ACTR COUNTER EXCEEDED \ Cond.i tional assembly loop counter 
\IJYJ \ ,exceeded -- conditional assembly 
I I lterminated. 
IIJQ~62 jGENERATED STRING GREATER Generated string is greater than 
IIJYf \THAN 127 [255J CHARACTERS 127 characters for D assembler 
1 I or 255 characters for F assembler. 
IIJQ~63 IEXPRESSION 1 OF SUBSTRING Expression 1 of substring is not 
IIJY[ \ IS ZERO OR MINUS allowed to be zero or minus. 
I \ 
IIJ~64 IEXPRESSION 2 OF 
IIJY( ISUBSTRING IS ZERO OR 
I I MINUS 
I I 
IIJQP65 IINVALID OR ILLEGAL TERM 
IIJY{ lIN ARITHMETIC RELATIONAL 

Expression 2 of substring is not 
allowed to be zero or minus. 

1. 

I I EXPRESSION 2. 

The parameter is not a 
self-defining term. 
The value of the SETC 

\ \ I 
\ \ I 
\ \ I 
I I I 

symbol used in the arithmetic 
expression is not composed of 
decimal digits. 

IIJQ1066 I UNDEFINED OR DUPLICATE Ii. A keyword operand occurs 
IJY[ I KEYWORD OPERAND I more than once in a macro 

1 I instruction. 
1 12. Keyword is not defined in 
I 1 prototype. 

I I. h b . . t IJ~067 IEXPRESSION 1 OF SUBSTRING IExpress~on 1 of t e su str~ng ~s no 
IJY{ \GREATER THAN LENGTH OF lallowed to be greater than the 

ICHARACTER EXPRESSION Ilength of the character expression 
I Ito which it refers. 

IJQ~68 \GENERATION TIME DICTIONARY I See Appendix H for dictionary 
IJyI I AREA OVERFLOWED Isize limits. 

I 1 
IJQ069 IEXPRESSION 2 OF SUBSTRING IExpression 2 of substring is not 
IJYJ IGREATER THAN 8 CHARACTERS lallowed to be greater than 8. 

r I I 
IIJQ070 IFLOATING POINT CHARACTER- IExponent too large for length of 
,IJ~ IISTIC OUT OF RANGE Idefining field, exponent modifier 
I I Ihas caused loss of all significant 
t I Idigits. 
I I I 
IIJ~071 IILLEGAL OCCURRENCE OF ILocal or Global declaration, or ACTRI 
IIJYf I LCL, GBL, OR ACTR I statement is out of proper sequence. I 
I I STATEMENT I I 
I I I I 
IIJQ~72 I ILLEGAL RANGE ON ISEQ IOperand of ISEQ statement has I 
IIJYf I STATEMENT I an illegal range. I l _______ ~ ________________________ ~_______________________________ 1 

Figure N-l. Assembler Diagnostic Error Messages (Part 6 of 14) 

Page of GC24-3414-7 
Revised August 21, 1970 
By Tl\'L GN33-8087 

Appendix N 157 



Page of GC24-~414-7 
Revised August 21, 1970 
By TNL GN33-8087 

r-------T----- --------~-----------------------------------_, 
I Message 1 I I 
I Code I Messa ge 1 Meaning I 
l------+---------------+---- ----------------~ 
IIJ~73 IILLEGAL NAME FIELD 11. Name entry required to be blank I 
IIJ~ 1 I is not blank. I 
I I 12 • Required name entry is missing. I 
I I 1 3. Name entry required to be a I 
I / I sequence symbol is not a se- I 
I I I quence symbol. J 

I I I I 
IIJ~74 IILLEGAL STATEMENT IN 1. statement encountered in COpy I 
/IJYI ICOPY CODE OR SYSTEM code is not legal in COpy code. I 
/ /MACRO 2. statement encountered in system I 
I / macro is not legal in system 
I , macro. , / 
I IjQlO75 I ILLEGAL STATEMENT 
IIJYf IOUTSIDE OF A MACRO 
I I DEFINITION 
1 1 

Statement allowed only in a macro 
definition encountered in OPEN code, 
e.g., period asterisk (.*), mnote 
statement. 

I I 
IIJ~76 /SEQUENCE ERROR Statement not in sequence specified 
IIJ~ I by ISEQ instruction. 
IIJQ~77 IILLEGAL CONTINUATION 1. Too many continuation cards. 
IIJYJ ICARD 12. Non blanks occur between the 
I' I begin and continue columns of 
I / / the continuation card. 
I I 13. Card not intended as continua-
I I / tion was treated as such be-
I J I cause of punch in continue 
I I I column of preceding card. 

I I f 
IIJQ~78 /MACRO MNEMONIC OP-CODE /Macro mnemonic operation code I 
IIJY[ ITABLE OVERFLOW Itable has an overflow. See Appendix/ 
" I H. , 

I " I IIJQ1079 IILLEGAL STATEMENT IN IThis operation is not allowed J 
IIJY! IMACRO DEFINITION Iwithin a macro definition. I 
I I , 
IIJ~80 IILLEGAL START CARD IStatements affecting, or depending 
IIJYI J ,upon, the location counter have been 
I I lencountered before a START state-
J I Jment. 
l' I I IJOl081 I ILLEGAL FORMAT IN GBL I An operand is not a variable symbol. 
I IJY{ ,OR LCL STATEMENT ) 
I) I 
IIJOl082 liLLEGAL DIMENSION IDimension is other than 1-255. 
IIJ~ ISPECIFICATION IN GBL 1 
I lOR LCL STATEMENT , 
I I I 
IIJQ~83 ISET STATEMENT NAME I The name entry of a SET 
IIJYI IFIELD NOT VARIABLE I statement must be a variable 
I I SYMBOL I symbol. 
I I I 
IIJQP84 I ILLEGAL OPERAND FIELD I Syntax invalid, e.g., AIF statement 
IIJ~ I FORMAT IN CONDITIONAL I operand does not start with a left 
I 'ASSEMBLY STATEMENT Iparenthesis or, sequence symbol 
I I Imissing in operand field of AIF or I 
I I I AGO statement. I L--_-.L _________________ ..L-_______________________ ---.-J 

Figure N-l. Assembler Diagnostic Error Messages (Part 7 of 14) 

158 



\ , 
\ .... ---/ 

C) 

Page of GC24-3414-7 
Revised August 21, 1970 
By TNL GN33-8087 

r-----~---------------------T----------------------------------------, 
I Message I I 1 
1 Code 1 Message 1 Meaning 1 
r-------+-----------------------+----------------------------------------~ 
IIJ~085 IINVALID SYNTAX IN 11. Invalid delimiter. I 
IIJYf 1 EXPRESSION 12. Too many terms in expression. 1 
1 1 13. Too many levels of parentheses. 
I 1 14 • Two operators in succession. 
I 1 1 
IIJQ086 IILLEGAL USAGE OF SYSTEM 1. 
IJYJ IVARIABLE SYMBOL 

1 
1 
I 
1 
I 
1 
I 
I 

IJQ087 NO ENDING APOSTROPHE 
IJYj 

IJQ088 
IJY[ 

IJQl089 
IJY[ 

IJ~90 
IJYJ 

UNDEFINED OPERATION 
CODE 

INVALID ATTRIBUTE 
NOTATION 

INVALID SUBSCRIPT 

I 
IIJQlO91 
IIJyI 

I 
I 
IINVALID SELF-DEFINING 
lTERM 

1 I 
I 
IIJQl..092 
IJYf 

I 
IINVALID FORMAT FOR 
I VARIABLE SYMBOL 
I 
I 
I 
I 
I 
I 

IJap93 IUNBALANCED PARENTHESES 
IJYI lOR EXCESSIVE LEFT 

1 PARENTHESES 
1 
I 

2. 

System variable symbol 
appears in: 
a. the name entry of a SET 

statement. 
b. a mixed-mode macro definition. 
c. a keyword macro definition. 
d. a GBL or LCL statement. 
&SYSLIST in context other than 
N' &SYSLIST. 

End of card encountered before an 
ending apostrophe. 

ISymbol in operation code field does not I, 

Icorrespond to a valid machine or assem­
Ibler operation code or to any operation I 
,code in a macro prototype statement. I 

\The argument of the attribute I 
Ireference must be a symbolic param- I 

leter and the statement must be I 
Iwithin a macro definition. I 

lSyntax error, e.g., no right parenthesis I 
lafter subscript, double subscript where I 
Isingle subscript is required, or single 1 
Isubscript where double subscript is I 
1 required. I 
I I 
11. Value is too large. I 
12. Value is inconsistent with the data I 
I type, e. g., hex for decimal, etc. 1 
1 I 
1. Variable symbol is longer I 

than 8 characters. I 
2. First character after the 

ampersand is not alphabetic. 
3. Failure to use double ampersand in 

TITLE card or character self­
defining term. 

End of statement or card encountered 
before all parenthesis levels are 
satisfied. May be caused by embedded 
blank or other unexpected terminator, 
or failure to have a punch in 
continuation column. 

J J 
tIJQ094 IINVALID OR ILLEGAL 11. Name not blank or variable symbol. 
IIJY[ INAME OR OPERATION IN 12. Variable symbol in name field is 
I I PROTOTYPE STATEMENT I subscripted. 
I I 13. Violation of rules for forming 
I I I variable symbol, (must begin with 
I I ampersand (&) followed by 1-7 
I I I letters and/or numbers first of 
I I I which must be a letter). I 
I I 1 4 . statement following 'MACRO' is I 
L ___ J ____________ , __ ~~ a_valid...!'~totyp.:.. statem-=nt:..- _ J 

I Figure N-l. Assembler Diagnostic Error Messages (Part 8 of 14) 

Appendix N 159 



Page of GC24-3414-7 
Revised August 21, 1970 
By TNL GN33-8087 

r---~------------------"------------------------------, 
I Message I I I 
,Code I Message 'Meaning , 

~-----+--------------+----------------------------i 
IIJY095 I ENTRY TABLE INumber of ENTRY symbols, i.e., 
I I OVERFLOW IENTRY instruction operands, 
I I ,exceeds 100. 
'IJ~096 'MACRO INSTRUCTION OR 'Macro instruction or prototype 
IIJYI IPROTOTYPE OPERAND I operand length exceeds 127 
I ,EXCEEDS 127 [225J ,characters for D assembler and 
I ,CHARACTERS IN , 255 characters for F assembler 
, I LENGTH , 
'IJQP97 J INVALID FORMAT IN MACRO 1. 
I IJYf INSTRUCTION OPERAND OR 2. 

Illegal equal sign (=). 

I PROTOTYPE PARAMETER 
A single ampersand (&) appears 
somewhere in the standard , 

I 
I 
I 
I 
I 
I , 
I 
I , , , 
I 
; 
I 
I 
I , , 
I , , , 
I , , 
I 

3. 

4. 

5. 

value assigned to a 
prototype keyword parameter. 
First character of a prototype 
parameter is not an ampersand. 
Prototype parameter is a 
subscripted variable symbol. 
Invalid usage of alternate 

6. 
format in prototype (see example) 
Nonsense prototype parameter, I 
e.g., &A* or &A&&. I 

Note: Occurrence of 
I CaUse only syntax to 
Ithe remainder of the 
I definition. 

I 
this error will I 
be checked for I 
macro t , 

Example: 

r----T----~----~-----------_, 
I I I I Continuation I 
I Name I Operation I Operandi Column I 
~--+------+------+-----------i 
J ,PROTO ,&A,&B, I , 
I' , or , , 
I ,PROTO I&A,&B, I X I 
" ,&C, I L ____ .L---____ ~ I ________ J 

'IJ~098 'EXCESSIVE NUMBER OF 
,IJY[ 'OPERANDS OR PARAMETERS 

,1. The prototype has more than 100 
(200 for F assembler) parameters. J 

12 • The macro instruction has more , I , 
I , , , I than 100 (200 for F assembler) , 

, operands. , 

I , 
'IJQ~99 I POSITIONAL MACRO 
I IJYI I INSTRUCTION OPERAND, 

J I 
IPositional macro instruction I 
loperand, prototype parameter, , 

, 'PROTOTYPE PARAMETER, lor extra comma follows keyword. I 
I 'OR EXTRA COMMA FOLLOWS I I 
, I KEYWORD 
IIJ~OO 'STATEMENT COMPLEXITY 
IIJYJ I EXCEEDED 

I I 
ISee Appendix H for statement com- J 
Iplexity limits. I 

I 
I IJQ~Oll EOD on SYSIN or 
I IJyI I 
I 1.-____ .1. ___ _ 

I I" 
SYSIPTIEnd-of-data reached before an END I 

statement was encountered. I _____ l ________________ ;.. _______________ J\ 

I Fiaure N-l. Assembler Diagnostic Error Messages (Part 9 of 14) 

160 

o 

c' 



, ) 
............... ""'" 

,---- -', 
I \ 

'-----./) 

rM~~g~-------------l------------------------l 
I Code I Message I Meaning I 
r-----~--------------~-----------------------~ 
IJ~02 INVALID OR ILLEGAL 1. Operands of ICTL statement are 
IJ~ ICTL out of range. 

I JQl1 0 3 
IJYJ 

I JQl1 0 4 
IJYI 

IJQ1105 
IJYI 

IJYI06 

I JQl1 0 7 
IJYJ 

I JQl1 0 8 
IJYf 

IJQP.09 
IJYJ 

ILLEGAL NAME IN 
OPERAND FIELD OF COpy 
CARD 

COpy CODE NOT FOUND 

EOD ON SOURCE STATE­
MENT LIBRARY 

NOT NAME OF DSECT 

INVALID OPERAND 

PREMATURE EOD 

PRECISION LOST 

I , 
I 

2. ICTL is not the first statement 
in the input deck. 

Syntax error, e.g., symbol has an 
illegal character or has more than 
8 characters. 

The operand of a COpy statement 
specified COpy text which cannot be 
found in the library. 

1. 

2. 

MEND statement missing from macro 
definition. 
While editing a macro, COpy code 
not found. Macro definition 
truncated. 

p. End-of-file encountered while read­
ing a macro or copy code. 

Referenced symbol expected to be DSECT 
name, but it is not. 

Operand unrecognizable, contains 
invalid value, or incorrectly 
specified. 
Indicates a machine error or an 
internal assembler error. 

High order information lost by 
attempting to express constant in a 
field not long enough to contain it. 

IJYIIO EXPRESSION VALUE 
TOO LARGE 

Value of expression greater than 
-16777216 to +16777215. 
Expressions in EQU and ORG statements 
are flagged if (1) they include terms 
previously defined as negative values, 
or (2) positive terms give a result 
of more than three bytes in magnatude. 
The error indication may be erroneous 
due to (1) the treatment of negative 
values as three-byte positive values, 
or (2) the effect of large positive 
values on the location counter if a 
control section begins with a START 
statement having an operand greater 
than zero, or a control section is 
divided into SUbsections. 

NOTE: Messages ending with an I are printed on 
both SYSLST and SYSLOG unless one of the messages 
indicates that SYSLST or an unidentifiable unit is 
defective, in which case they will appear on SYSLOG 
only. The messages appearing on SYSLOG will be 
prefaced by "A" regardless of which assembler pro­
duced them. 1101 and 1111 errors can be detected 
at any point during assembly -- amount of assembly 
listing printed is unpredictable. 1121 through 
115! errors are detected immediately upon assembly 
attempt -- no assembly listing is printed. In either 
case the assembly is terminated, the source is bypassed 
to a /* or EOF, and control is returned to the super­
visor via EOJ. The subsequent steps of a multiple 

L ____ ~te~~~B_~.:....?~:.. b~~s..:ed_~~::,.:...:~ey _a'::'~l~_de~::':iv.:.~_-.J 

Figure N-l. Assembler Diagnostic Error Messages (Part 10 of 14) 

Page of GC24-3414-7 
Revised August 21, 1970 
By TNL GN33-8087 

Appendix N 161 



Page of GC24-3414-7 
Revised August 21, 1970 
By TNL GN33-8087 

r--------.-------------------------r----------------------------------------------------, 
l Message I I I (' 

!--:~~:---J--~::::~: ________________ L-~::~~~~---------___________________________________ J \, ..... ,' 
IJQ}llOI 
IJY 

IJQ}lllI 
IJY 

ABORT--PERM I/O ERROR 
ON SYSxxx 

ABORT--UNEXPECTED 
EOF ON SYSxxx 

Cause: An unrecoverable error on the named file 
prevents further processing: If the named file 
is SYSxxx, the unit code of the DTF that caused 
the error does not match any valid unit. This is 
usually the result of an accidental overlap that 
destroys the DTF. 

This is probably a hardware error. 

System Action: The job step is terminated. 

Programmer Action: Rerun the job using another 
disk pack or tape reel, or use another unit for 
the disk pack or tape reel. 

If the problem recurs, do the following to complete 
your problem determination action: 

1. Execute the ROD cqmmand and EREP, and retain the 
output. 

2. Have the job stream and system log available. 

Operator Action: Execute the LISTIO command for 
SYSxxx to determine the physical unit to which it 
is assigned. Move the disk pack or tape reel to 
another physical device and reassign SYSxxx to that 
unit, 

2!'. 
mount another disk pack or tape reel and rerun 
the job. 

Cause: EOF has occurred on an assembler work file 
that does not support multi-volume files. It 
usually results from a short tape, 

2!'. 
a tape indicate reflective marker was read. 

This is probably a user error. 

System Action: The job step is terminated. 

Programmer Action: If the problem recurs, have the 
system log, printer output, and the job stream 
available to complete your problem determination 
action. 

Operator Action: If SYSxxx is assigned to a tape, 
mount a longer tape, or use a 1600 BPI tape drive 
instead of an 800 BPI drive, 

2!'. 
reassign the work files to disk and rerun the job, 

2!'. 
if SYSxxx is assigned to a disk, submit larger 
extents and rerun the job. 

~--------~-------------------------~----------------------------------------------------~ 

eFigure N-l. Assembler Diagnostic Error Messages ~Part 11 of 14) 

162 



Page of GC24-3414-7 
Revi~ed August 21, 1970 
By TNL GN33-8087 

r---------.------------------------j----------------------------------------------------1 
I Message I I I 

I '): Code : Message : Meaning : \,_~/ I __________ ~ ________________________ ~ ____________________________________________________ J 

C) 

IJQ}112I 
IJY 

IJQ l13I 

ABORT--INADEQUATE 
CORE FOR 32L @4J9 
ASSEMBLER 

ABORT--INVALID 
PHYSICAL UNIT FOR 
SYSxxx 

Cause: An attempt was made to execute the @2KJD 
assembler in less than 14K, or the F assembler in 
less than 44K. 

This is probably a user error. 

System Action: The job step is terminated. 

Programmer Action: If there is insufficient main 
storage available, you must link edit a smaller 
assembler. 

If the problem recurs, do the following to complete 
your problem determination action: 

1. Execute the MAP command and retain the output. 

2. Have the printer output available. 

Operator Action: Execute the MAP command to deter­
mine the partition size. Then allocate a larger 
partition for the assembly. 

Cause: The assignments for a work file(s) are not 
valid: 

• 

• 
• 
• 

The device type is not valid, or the assembler 
is link edited for different devices than those 
assigned •. 

The UA (unassign) or IGN (ignore) option was 
specified for the D assembler. 

The specified mode setting is not valid. 

For the D assembler, the work file device types 
are not consistent. (SYS003 is correct.) 

Only the first invalid unit is named in the message 

This is probably a user error. 

System Action: The job step is terminated. 

Programmer Action: Use the LISTIO output to deter­
mine the cause for the message. Use CSERV to 
display the phase named "ASSEMBLY" and check byte 
X'IC', bits 5,6, and 7 for the device type speci­
fied at link edit time as work files. 

Bit 5: 
Bit 6: 
Bit 7: 

1=2400 
1=2314 
1=2311 correct the assignments and 

resubmit the job. 

If the problem recurs, do the following to complete 
your problem determination action: 

1. Have the LISTIO and CSREV output available. 

2. Have the job stream and system output available. 

Operator Action: Issue the LISTIO command to check 
the assignments and enter the correct work file 
assignments if possible. L __________________________________ J ____________________________________________________ J 

(~-'\ .Figure N-l. Assembler Diagnostic Error Messages (Part 12 of 14) 
"--../ 

Appendix N 162.1 



Page of GC24-3414-7 
Revised August 21, 1970 
By TNL GN33-R087 

~~---------~-----------------------------------------------------------------------------~ I I I I 
I Message I I I 

: Code : Message : Meaning : 
~---------~------------------------4-----------------------------------------------------

IJQ 114I 

IJY l14I 

IJY llSI 

ABORT--NO UNIT 
ASSIGNED FOR 
SYSPCH 
(for D assembler) 

ABORT--NO UNIT 
ASSIGNED FOR SYSxxx 
(OPTION SYM) 
(for F assembler) 

ABORT--INVALID DUAL 
ASSGN SYSPCH­
SYSIPT [SYSLST] 

Cause: For the D assembler, the OPTION [DECK] is 
in effect and SYSPCH is not assigned. 

This is probably a user error. 

System Action: The job step is terminated. 

Programmer Action: Submit an assign for SYSPCH, 

or 

specify OPTION [NODECK] and resubmit the job. 

If the problem recurs, do the following to complete 
your problem determination action: 

1. Retain the LISTIO listing. 

2. Have the job stream, program listing, and system 
log available. 

Operator Action: Execute the LISTIO command and 
verify assignments. Submit an assign for SYSPCH 
and rerun the job. 

Cause: For the F assembler, a required unit 
(SYS001-SYS003 or a device required by an OPTION 
statement) is unassigned, or the IGN option is spe­
cified for the device. The IGN (ignore) option is 
valid for SYSPCH and SYSLST. 

This is probably a user error. 

System Action: The system terminates the job step. 

Programmer Action: Submit an assignment for the 
indicated logical unit, 

or 

correct the OPTION statement to eliminate the 
requirement and resubmit the job. 

If the problem recurs, have the LISTIO listing, the 
system log, the job stream, and the printer output 
available to complete your problem determination 
action. 

Operator Action: Execute the LISTIO command and 
verify the assignments. Submit an assign for the 
indicated logical unit and rerun the job. 

Cause: SYSPCH and SYSIPT are both assigned to the 
same-unit, which is not a l442Nl or 2S20Bl card 
reader, 

or 

SYSPCH and SYSLST are both assigned to the same 
unit, which is not a disk. 

~---------------------------------------------------------------------------------------~ 

eFigure N-l. Assembler Diagnostic Error Messages (Part 13 of 14) 

162.2 

(~'. 
'- .. , 



o 

Page of GC2<:-3414-7 
Revised August 21, 1970 
By TNL GN33-8087 

~----------------------------------------------------------------------------------------, I Message I I I 
I Code I Message I Meaning I 
~----------~-----------------------~-----------------------------------------------------~ 

This is probably a user error. 

System Action: The job step is terminated. 

Programmer Action: Check the LISTIO listing to 
determine the dual assignments. Reassign the indi­
cated logical units to separate devices, or the 
required device type. 

If the problem recurs, retain the LISTIO output, 
the job stream, system log, and supervisor listing 
to complete your problem determination action. 

Operator Action: Execute LISTIO to determine the 
current assignments. Reassign the two indicated 
logical units to separate devices or to the required I 
device type. I 

I 
~----------~-----------------------~-----------------------------------------------------~, 

• Figure N-l. Assembler Diagnostic Error Messag·es (Part 14 of 14) 

Appendix N 162.3 





APPENDIX 0: SELF-RELOCATING PROGRAM TECHNIQUES 

Self-relocating programs are executed in a 
multiprogramming environment and at any 
location in main storage. These programs 
may be located in either foreground area of 
main storage. A program that is self­
relocating must initialize its address 
constants, including Channel Command Words 
(CCWs), at execution time. The user must 
code his own self-relocating routine for 
execution after it is linkage edited and 
loaded into main storage. 

When codinq a self-relocating program, 
the programmer should take these points 
into consideration: 

1. All A-type address constants must be 
relocated. 

2. The IIO area addresses in all CCWs must 
be relocated. 

3. Address constants generated by Physical 
IOCS macros (EXCP, WAIT, etc.) must be 
relocated. 

4. LOgical Ioes macros can be self­
relocated using the OPENR macro. 

The following example program shows how 
a user may code a self-relocating program. 
This example uses the A-type constant and 
registers 1 and 2 although the user may use 
any of the other available registers if he 
chooses. 

This program contains six address 
constants. Two are A-type and two each are 
contained in the Command Control Block 
(CCB) and the Channel Command Word (CCW) 
macros. This procedure is used: 

1. The absolute addresses of the contents 
of the two A-type constants (EOFTAPE 
and CHA12) and the CCW for each ccn 
(PRINTCCW and TAPECCW) are loaded into 
a work register (Register 1). 

2. The work register is stored in the 
address constants [A (EOFTAPE) and 
A(CHA12)] and in their respective CCBs 
(PRINTCCB+8 and TAPECCB+8). 

3. The command code for the CCHS shares a 
full word with the IIO area address and 
must be reset after the 1/0 area 
address has been stored. This is done 
here by two methods: (a) saving the 
command code for the PRINTCCW in Reg­
ister 2 and then restoring it; (b) 
using the Move Immediate (MVI) instruc­
tion for the TAPECCW to set the command 
code. 

In the main routine of this program, 
note that register notation has been used 
with the EXCP and WAIT macros to avoid the 
generation of address constants by the 
macros themselves. The example of a self­
relocating program follows: 

Appendix 0 163 



SOURCE STATEMENT 

PRINT NOGEN 
PROGRAM START 0 

BALR 15,0 
USING *,15 

* ROUTINE TO RELOCATE ADDRESS CONSTANTS 
LA 1,PRINTCCW 
ST 1,PRINTCCB+8 
LA l,TAPECCW 
ST 1,TAPECCB+8 
LA 1, EOFTAPE 
ST 1,AEOFTAPE 
LA 1,CHA12 
ST 1, ACHA1.2 
IC 2,PRINTCCW 
LA 1,OUTAREA 
ST 1,PRINTCCW 
STC 2,PRINTCCW 
LA 1,INAREA 
ST 1,TAPECCW 
MVI TAPECCW,2 

* MAIN ROUTINE ••• READ TAPE AND PRINT 
READTAPE LA 1,TAPECCB 

CHECK 

CHA12 

EXCP (1) 

WAIT (1) 
L 10,AEOFrAPE 
BAL 14, CHECK 
MVC OUTAREA(10),INAREA 
MVC OUTAREA+15(70),INAREA+I0 
MVC OUTAREA+90(20),INAREA+80 
LA 1,PRINTCCB 
EXCP (1) 
WAIT (1) 
L 10, ACHA12 
BAL 14,CHECK 
B READ TAPE 
TM 4(1),1 
BCR 1,10 
BR 14 
MVI PRINTCCW,X'8B' 
EXCP (1) 
WAIT (1) 
MVI PRINTCCW,9 
BR 14 

EOFTAPE EOJ 

PRINTCCB 
TAPECCB 
PRINTCCW 
TAPECCW 
AEOFTAPE 
ACHA12 
OUTAREA 
INAREA 

164 

CNOP 
CCB 
CCB 
CCW 
CCW 
DC 
DC 
DC 
DC 
END 

0,4 
SYS004,PRINTCCW,X'0400' 
SYS001,TAPECCW 
9, OUTAREA,X' 20' ,110 
2,INAREA,X'20',100 
A(EOFTAPE) 
A(CHA12) 
CLll 0 ' , 
CLI00' , 
PROGRAM 

RELOCATE CCW ADDRESS 
IN CCB FOR PRINTER 

RELOCATE CCW ADDRESS 
IN CCB FOR INPUT TAPE 

*RELOCATE*·*·* 
* PROGRAM * 
* ADDRESS * 
·*·*CONSTANTS* 

SAVE PRINT CCW OP CODE 
RELOCATE OUTPUT AREA ADDRESS 

IN PRINTER CCW 
RESTORE PRINT CCW OP CODE 
RELOCATE INPUT AREA ADDRESS 

IN TAPE CCW 
SET TAPE CCW OP CODE TO READ 
RECORDS 
GET CCB ADDRESS 
READ ONE RECORD FROM TAPE 
WAIT FOR COMPL. OF I/O 
GET ADDRESS OF TAPE EOF ROUTINE 
GO TO UNIT EXCEPTION SUBROUTINE 
EDIT RECORD 

IN 
OUTPUT AREA 

GET CCB ADDRESS 
PRINT EDITED RECORD 
WAIT FOR COMPL. OF I/O 
GET ADDRESS OF CHAN 12 ROUTINE 
GO TO UNIT EXCEPTION SUBROUTINE 

CHECK FOR UNIT EXC. IN CCB 
YES-GO TO PROPER ROUTINE 
NO- RETURN TO MAINLINE 

SET SK TO CHAN 1 OP CODE 
SK TO CHAN 1 IM!I£DIATELY 
WAIT FOR COMPL. OF I/O 
SET PRINTER OP CODE TO WRITE 
RETURN TO MAINLINE 
END OF JOB 
ALIGN CCB'S TO FULL WORD 

c 



r-", I 
\ 

,,-_._j 

.--(, I 
"-_/ 

(---' \ 
\~ 

APPENDIX P. SAMPLE MACRO DEFINITIONS 

The macro definitions in this appendix The second macro definition is MOVE. 
are typical applications of the macro 
language and conditional assembly. Another 
macro definition is included as part of 
Appendix I. The definitions are presented 
along with statements generated from 
typical corresponding macro instructions. 

This macro is recursive; i.e., it calls 
itself as an inner macro. Compare this 
macro definition with MOVE in Appendix I. 
MOVE in Appendix I has more statements, 
however it functions differently and 
includes error checking facilities. 

The first macro definition is NOTE -­
a DOS system macro taken from the source 
statement library of the DOS assembler. 

MACRO 
£.LABEL NOTE £.FILEN 
.* IBM SYSTEM/360 TAPE/DISK OPERATING SYSTEM 
* CHANGE LEVEL 2-0 

AIF (Tt£'FILEN NE '0') .ONE 
MNOTE O,'NO FILENAt-1E SPECIFIED.SET TO ' , .. t , , 

£.LABEL L 1,=A(*) "****ERROR-PATCH DTF TABLE 
AGO .THREE 

.ONE AIF ('f..FILEN' (1,1) NE "').TWO 
AIF ('f.FILEN(1)' EQ 'I' ).FOUR 

f.LABEL LK 1,('FILEN(l) GET DTF TABLE ADDRESS 
AGO .THREE 

.TWO ANOP 
f.LABEL L 1,=A(f.FILEN) GET DTF TABLE ADDRESS 

ADDRESS 

.THREE L 15,16(1) GET LOGIC MODULE ADDRESS 

.FOUR 
£.LABEL 
.FIVE 

* 
* 
* 

* 
NNAME 

+* CHANGE 
+NNAME 
+ 
+ 

* 

+* CHANGE 
+ 
+ 

* 

+* CHANGE 
+ 
+ 
+ 

AGO 
ANOP 
L 
BAL 
MEND 

NOTE 
LEVEL 
L 
L 
BAl 

NOTE 
LEVEL 
L 
BAL 

NOTE 
LEVEL 
LR 
L 
BAl 

.FIVE 

15,16(1) GET LOGIC MODULE ADDRESS 
14, 12( 15) BRANCH TO NOTE ROUTINE 

STATEMENTS GENERATED FROM NOTE MACRO INSTRUCTIUNS 

SYMBOL AS OPERAND 

INFILE 
2-0 
1,=A(INFILE) GET DTF TABLE ADDRESS 
15, 16( 1) GET LOGIC MODULE ADDRESS 
14,12(15) BRANCH TO NOTE ROUTINE 

REGISTER 1 AS OPERAND 

( 1 ) 
2-0 
15,1611) GET LOGIC MODULE ADDRESS 
14,12(15) BRANCH TO NOTE ROUTINE 

OTHER REGISTER AS OPERAND 

(5 ) 
2-0 
1,5 GET DTF TABLE ADDRESS 
15,16(1) GET LOGIC MODULE ADDRESS 
14,12(15) BRANCH TO NOTE ROUTINE 

Appendix P 165 



* 

+* CHANGE 

+ 
+ 
+ 

&NAME 
.* 
.* .... 

&B 
.PN 
&NAME 
&A 
&8 

.00 
&NAME 
&A 

.. 
* 
* 

* 
MNAME 

+MNAME 

... 

+ 

... 

MNAME2 
+MNAME2 
+ 

+ 
+ 
+ 

* 

166 

OMITTED OPERAND 

NOTE 
LEVEL 2-0 

O,NO FILENAME SPECIFIED. SET TO '*' 
L 1,=A(*) "'****ERROR-PATCH DTF TABLE AUDRESS 
L 15,16(1) GET LOGIC MODULE ADDRESS 
BAL 14,12(15) BRANCH TO NOTE ROUTINE 

MACRO 
MOVE &FROM,&TO,&COUNT 

GBLA 
LCLA 
SETA 
AIF 
MVC 
SETA 
SETA 
MOVE 
MEXIT 
ANOP 
MVC 
SETA 
MEND 

RECURSIVE GENERAL PURPOSE MOVE MACRO 

&A 
&B 
&COUNT 
(&B LE 256).00 
&TO+&A.(256),&FROM+&A 
&A+256 
&8-256 

&FROM,&TO,&8 

&TO+&A.(&B),&FROM+&A 

° 

MOVE LESS THAN 256 BYTES 
256 BYTE MOVE 

CALL THYSELF 

LESS THAN 256 BYTE MOVE 
SET BACK TO 0 FOR NEXr CALL 

STATEMENTS GENERATED FROM MOVE MACRO INSTRUCTIONS 

MOVE LESS THAN 256 BYTES 

MOVE FRMAD,TOAD,l~O 
MVC TOAD+OCI50),FRMAD+0 LESS THAN 256 BYTE MOVE 

MOVE 256 BYTES 

MOVE FRMAD,TOAD,256 
MVC TOAD+0(256),FRMAD+O LESS THAN 256 BYTE MOVE 

MOVE 
MVC 
MVC 

MOVE 
MVC 
MVC 
MVC 

MOVE MORE THAN 256 SYTES 

FRMAD,TOAD,400 
TOAD+O(256),FRMAD+0 256 BYTE MOVE 
TOAD+256(144),FRMAO+256 LESS THAN 256 BYTE MOV~ 

MOVE MORE THAN 512 BYTES 

FRMAD,TOAD,520 
TOAD+O(256),FRMAD+O 256 BYTE MOVE 
TOAD+256(256),FRMAD+256 256 BYTE MOVE 
TOAO+512CS),FRMAD+512 LESS THAN 256 BYTE MOVE 

(' 

/' 
I 

'-._-,' 



o 

Indexes to systems reference library manuals are consolidated in IBM System/360 Disk Operating System Master Index 

(GC24-S036) and in IBM System/360 Tape Operating System Programming Index (GC24-S064). For additional information 

about any subject listed below, refer to other publications listed for the same subject in the consolidated index. • 

&SYS, restrictions on use 63, 75, 88 
&SYSECT (see Cur.rent control section name) 
&SYSLIST (~ee macro instruction operand) 
&SYSNDX (see macro instruction index) 
7090/7094 Support Package Assembler 8, 140 
Absolute terms 15 
ACTR instruction 84 
Address constants 47 

A-type 47 
Complex relocatable expressions 
Literals not allowed 20 
S-type 48 
v-type 48 
Y-type 47 

Address specification 
Addressing 24 

Dummy sections 
Explicit 24 

34 

29 

External control sections, 
Implied 24 
Relative 26 

AGO instruction 83 
Example 83 
Form of 83 
Inside macro definitions 

32 

83 

47 

Apostrophes (continued) 

MNOTE instruction 
Arithmetic expressions 

Arithmetic relations 
Evaluation procedure 
Invalid examples of 

87 

Operand sublists 77 
Operators allowed 75 
Parenthesized terms in 

evaluation of 76 
examples of 76 

81 
76 

76 

76 

SETA instruction 
SETB instruction 
Substring notation 

75 
80 

78 
Terms allowed 75 
Valid examples of 

Arithmetic relations 
Arithmetic variable 
Assembler instructions 

Statement 38 
Table 117 

75 

81 
91 

(see specific instructions) 

Assembler language 8 
Operand field of 83 Basic Programming Support 8, 140 
Outside macro definitions 
Sequence symbol in 83 

. Use of 83 
AIF instruction 

Example of 
Form of 82 

82 
82 

Inside macro definitions 
Invalid operand' fields of 
Logical expression in 82 
Operand field of 82 
Outside macro definitions 
Sequence symbols in 82 
Use of 82 
Valid operand fields of 

Alignment, boundary 
CNOP instruction for 
Machine instruction 

Ampersands in 

55 
33 

Chaxacter expressions 79 
Macro-instruction operands 
MNOTE instruction 87 
Symbolic parameters 63 
Variable symbols 59 

ANOP instruction 84 
Example of 84 
Form of 84 
Sequence symbol in 84 
Use of 84 

Apostrophes in 
Character expressions, 78 
Macro instruction operands 

83 

82 
83 

82 

83 

66 

66 

Coding conventions 11 
Comparison chart 140 
Macro facilities relation to 
Statement format 13 
Structure 15, 16 

Assembler program 
Basic functions 9 
DOS/TOS relationship 
Listing 131 
Output 27, 151 
Variants 149 

10 

58 

Assembler relationships 10 
Assembling a Program 143 

Assemble-and-execute 8, 145, 
Card Input 143, 145, l48 

148 

152 
Device Assignments 144 
Diagnostic Error Messages 
I/O Units Used 146, 147 
Operating Considerations 
Output 150 

144 

Assembly, terminating an 57 
Assembly no operation (see ANOP 

instruction) 
Attributes 71 

How referred to 72 
Inner macro instruction operands 
Kinds of 71 
Notations 71 
Operand sublists 71 
Outer macro instruction operands 
Summary chart of 124 

INDEX 

71 

71 

Index 167 



Attributes (continued) 
Use of 71 
(see also specific attributes) 

Basic Programming Support Assembler 8, 140 
Base registers 

Address calculation 10, 32, 34 
DROP instructions' 24 
Loading of 24 
USING instructions 24 

Binary constant 44 
Binary self-defining term 18 
Binary variable 91 
Bit length specification 40.1 

Multiple constants 40.1 
Multiple operands 41 
Duplicated constants 41 

Blanks 
Logical expressions 80 
Macro instruction operands 67 

CCW instruction 50 
Channel command word, defining 50' 
Character codes 98 
Character constant 42 
Character expressions 78 

Ampersands in 78 
Character relations 81 
Concatenating 79 
Examples of 78 
Periods and 78 
Apostrophes in 78 
SETB instructions 80 
SETC instructions 77 

Character relations 81 
Character self-defining term 19 
Character set 14, 15, 98 
Character variable 91 
CNOP instruction 55 
Coding form 12 
COM instruction 30 
Commas, macroinstruction operands 67 
Comments entries 13 
Comments statements 

Examples of 14, 65 
Model statements 65 
Not generated 65 

. Comparison chart 140 
Compatibility 

Assembler language 8 
Macro-definitions 97 

Complex relocatable expressions 47 
Concatenation 

Character expressions 78, 79 
Defined 64 
Examples of, 64 
Substring notations 78 

Conditional assembly elements, summary 
charts of 85, 123 

Conditional assembly instructions 
How to write 70 
Summary of 85 
Use of 70 
(see also specific instructions) 

Conditional branch (see AIF instruction) 
Constants (see also specific types) 

Defining (see DC instructions) 
Summary of 120 

Continuation lines 11 

168 

Conditional branch instruction 36 
Operand format 37 

Control section location assignment 28 
Control sections 

Blank common 30 
CSECT instruction 28 
Defined. 27 
DSECT instruction 29 
First control section, properties of 

28 
START instruction 28 
Unnamed 29 

COpy instruction 56 
COpy statements in macro definitions 

Form of 65 
Model statements, contrasted 65 
Operand field of 65 
Use of 65 

Count attribute 
Defined 73 
Notation 71 
Operand sublists 73 
Use of 73 
Variable symbols 73 

CSECT instruction, symbol in, length 
attribute of 28 

Current control section name (&SYSECT) 
Affected by CSECT, DSECT, START 93 
Example of 9'3 
Use of 93 

Data definition instructions 39 
Channel command words 50 
Constants 39 
Storages 48 

Data representation 10 
DC instruction 39 

Duplication factor operand subfield 40 
Operand subfield modifiers 40 
Type operand subfield 40 

Length modifier 40 
Scale modifier 41 
Exponent modifier 42 

Constant operand subfield 42 
Address-constants (see address 
constants) 

Binary constant 44 
Character constant 42 
Decimal-constants 46 
Fixed-point constants, 44 
Floating-point constants. 45 
Hexadecimal constant 43 
Type codes for 41 

Decimal constants 46 
Length modifier 46 
Length, maximum 46 
Packed 45 
Zoned 45 

Decimal field, integer attribute of 74 
Decimal self-defining terms 78 
Defining constants (see DC instruction) 
Defining storage (see DC instruction; 

DS instruction) 
Defining symbols 17, 70 
Diagnostic Error Messages 152 
Dimension, subscripted SET symbols 91 
Displacements 34 
Double-shift instruction 33 
DROP instruction 25, 33 



o 

DSinstruction 48 
Defining areas 49 
Forcing alignment 49 

DSECT instruction 29 
Dummy section location assignment 29, 31 
Duplication factor 40 

Forcing alignment 49 

Effective address length 35 
EJECT instruction 51 
END instruction 57, 
ENTRY instruction, 31 
Entry point symbol, identification of 31 
EQU instruction 38 
Equal signs, as macro instruction operands 

66 
Error message (see MNOTE instruction) 
Error Messages 152 

After END statement 
Explicit addressing 

Length 34 

57 
24, 34 

Exponent modifiers 42 
Expressions 21, 31 

Absolute 34 
Character 78 
Evaluation 22 
Logical 81 
Relocatable 34 
Summary chart of 124 

Extended mnemonic codes 36 
Operand format 37 
Table 108 

External control section, addressing of 
31 

External symbol, identification of 31 
EXTRN instruction 31 

First control section 28 
Fixed-point constants 44 

Format 44 
Positioning of 44 
Scaling 44 
Values m1n1murn and maximum 44, 45 

Fixed-point field, integer attribute of 
74 

Floating-point constants 45 
Alignment 46 
Format 45 
Scale modifiers 45 

Floating-point field, integer attribute 
of 74 

Format control, input 53 

GBLA instruction 
Form of 88 
Inside macro definitions 88 
Outside, macro definitions 88 
Use of 88 

GBLB instruction 
Form of 88 
Inside macro definitions 88 
Outside macro definitions 88 
Use of 88 

GBLC instruction 
Form of 88 

GBLC instruction (continued) 
Inside macro definitions 88 
Outside, macro definitions 88 
Use of 88 

General register zero, base register 
usage 25 

Generated statements, examples of 64 
Global SET symbols 

Defining 88 
Examples of 88, 90 
Local SET symbols, compared 87 
Using 88 

Global variable symbols 
Types of 87 
(see also global SET symbols, sub­
scripted SET symbols) 

Hexadecimal constants 43 
Hexadecimal-decimal conversion chart 98 
Hexadecimal self-defining terms 18 

II (see Integer attribute) 
ICTL instruction 52 
Identification-sequence field 14 
Identifying blank common control section 

30 
Identifying assembly output 51 
Identify dummy section 29 
Implied addressing 24, 34 

Length 34 
Implied length specification 34 
Inner macro instruction 

Defined 68 
Example of 69 
Symbolic parameters in 69 

Instruction alignment 33 
Instruction format 14 
Integer attributed 

Decimal fields 74 
Examples of 74 
Fixed-point fields 73 
Floating-point fields 74 
How to compute 74 
Notation 71 
Restrictions on use 74 
Use of 74 

ISEQ instruction 53 

KI (see Count attribute) 
Keyword 

Defined 94 
Keyword macro instruction 94 
Symbolic parameter and 93.1 

Keyword, inner macro instructions used 
in 95 

Keyword macro definition 
positional macro definitions 
compared 93.1 
Use 94 

Keyword macro instruction 
Example of 95 
Format of 94 
Keywords in 94 
Operands 58, 94 
Invalid examples 95 
Valid examples 95 

Index 169 



Keyword macro instruction (continued) 
Operand sublists in 95 
Keyword prototype statement 
Examples of 94 
Format of 94 
Operands 94 

Invalid examples 
Valid examples 

Standard values 

94 
94 

94 

L' (see Length attribute) 
LCLA instruction 

Form of 75 
Use of 75 

LCLB instruction 
Form of 75 
Use of 75 

LCLC instruction 
Form of 75 
Use of 75 

Length modifier 40 
Bit length specification 40.1 

Lengths explicit and implied 34 1 35 
Length attribute 

Defined 34, 72 
Examples 73 
Notation 71 
Restrictions on use 73 
Symbols 17, 73 
Use of 73 

Length modifier 40 
Length subfield 33 

Level of parentheses 21 
Library, copying coding form 56 
Linkage symbols (see also ENTRY instruc­

tion; EXTRN instruction) 
Entry point symbol 31 
~xternal symbol 31 
Linkage editor and 

use of 31 
Listing, spacing 52 
Listing control instructions 51 
Literal pools 20, 54, 55 

Segments one to four 55 
Literals 20 

Character 34 
DC instruction, used in 20 
Duplicate 21 
Format 20 
Literal pool, beginning 55 
Literal pools, multiple 20 
Treatment of self-defining term 20 

Local SET symbols 
Defining 88 
Examples of 88-90 
Global SET symbols, compared 87 
Using 88 

Local variable symbols 
Types of 87 
(see also local SET symbols) 
(see also subscripted SET symbols 

Location counter 38, 42, 47 
Predefined symbols 19 
References to 19 
Setting 54 

Logical expressions 
AIF instructions 82 

170 

Logical expressions (continued) 
Arithmetic relations 81 
Blanks in 81 

81 Character relations 
Evaluation of 81 
Invalid examples of 
Logical operators in 
Parenthesized terms in 

81 
81 

Evaluation of 81 
Examples of 81 

Relation operators in 81 
SETB instructions 80 
Terms allowed in 81 
Valid examples. of 81 

LTORG instruction 55 
Machine features required 7 
Machine instructions 33 

Alignment and checking 33 
Length 34 
Literals, limits on 20 
Mnemonic operation codes 35 
Operand fields and subfields 33 
Symbolic operand formats 35 

Machine-instruction mnemonic codes 35 
Alphabetical listing 108 

MACRO 
Form of 61 
Use 61 

Macro definition 
Compatibiltiy 97 
Defined 61 
Example of 63 
How to prepare 61 
Keyword (see Keyword macro definition) 
Mixed-mode (see Mixed-mode macro 
defini tion) 

Placement in source proqram 61 
Sample 133, 165, 166 
Use 61 

Macro definition exit (see MEXIT instruc­
tion) 

Machine instruction examples and format 
RR 33, 35 
RX 33, 36 
RS 33, 36 
SI 33, 36 
SS 33, 36 
Summary table 106 

Macro definition header statement (see 
MACRO) 

Macro definition trailer statement (see 
l>1END) 

Macro facility 
Additional features 86 
Comparison chart 142 
Relation to assembler language 58 
Summary 85, 121 

Macro instruction 
Defined 58 
Example of 67 
Form of 66 
How to write 66 
Levels of 69 
Inner 68 
Mnemonic operation code 66 
Name entry of 66 
Omitted operands 67 

Example of 67 

c 



Macro instrpction (continued) 
Operand entry of 66 
Operands 

Ampersands 66 
Blp.nks 67 
Commas 67 
Equal signs 66 
Paired parentheses 66 
Paired apostrophes 66 

Operand sublists 67 
Operation entry of 66 
Outer 68 
Statement form 
Types of 58 

67 

Used as model statement 68 
Macro instruction index (&SYSNDX) 

AIF instruction 91 
Arithmetic expressions 
Character relation 91 
Example 92 
MNOTE instruction 
SETH instruction 
SETC instruction 
Use of 91 

91 
91 
91 

91 

Macro instruction operand (&SYSLIST) 
Attributes of 93 
Use of 93, 96 
(see also symbolic parameters) 

Macro instruction prototype statement 
(see ,prototype statement) 

Macro instruction statement (see macro 
instruction) 

MEND 
Form of 61 
MEXIT instruction, contrasted 86· 
Use of 61 

MEXIT instruction 
Example of 86 
Form of 86 
MEND, contrasted 86 
Use of 86 

Mixed-mode macro definitions 
Positional macro definitions 
contrasted 96 

Use 96 
Mixed-mode macro instruction 

Example of 96 
Form of 96 
Operand field of 58, 96 

Mixed-mode prototype statement 
Example of 96 
Form of 96 
Operands of 96 

Mnemonic operation codes 35 
Extended 37 
Machine instruction 35 
Macro instruction 61 

MNOTE instruction 
Ampersands in· 86 
Error message 86 
Example of 86 
Operand entry of 86 
Apdstrophes in 86 
Severity code 86 
Use of 86 

Model statements 
Comments field of 63 
Comments statements 65 

Model statements (continued) 
Defined 62 
Name field of 62 
Operation field of 
Operand field of 
Use of 62 

62 
63 

N ' (see Number attribute) 
Name entries 13 
Number attribute 

Defined 73 
Notation 73 
Operand sublist 

Object deck 150 
Object module 27 

. Operands 
Entries 13 
Fields 33 

73 

Subfields 33, 34 
Symbolic 31, 33, 35 

Operand Sublist 
Alternate statement form 67 
Defined 67 
Example of 68 
Use of 67 

Operation codes 
Assembler 
Machine 9 

9 

Operations entries 
Operation field 33 
Ordinary symbol 17 
ORG instruction 54 

13 

Outer macro instruction defined 
Paired parentheses 66 
Paired apostrophes 66 
Parentheses in 

Arithmetic expressions 76 
Logical expressions 81 
Macro instruction operands 
Operand fields and subfields 
Paired 66 

Period in 
Character expressions 
Comments statements 
Concatenation 65 
Sequence symbols 74 

78 
65 

68 

66 
34 

positional macro definition (see macro 
definition) 

positional macro instruction (see macro 
instruction) 58 

Previously defined symbols 18 
PRINT instruction 52 
Program control instructions 53 
Program listings 10 
Program sectioning and linking 16, 24, 27 
Prototype statement 

Alternate 62 
Example of 62 
Form of 61 
Keyword (see keyword prototype state­
ment) 

Mixed-mode (see mixed-mode prototype 
statement) 

61 Name entry of 
Operand entry of 
Operation entry of 
Statement form 61 

61 
61 

Index 171 



Prototype statement (continued) 
Symbolic parameters in 61 
Use of 61 

PUNCH instruction 54 

Relational operators 81 
Relative addressing 26 
Relocatability 10, 15 

Attributes 31 
Program, general register zero 25 

Relocatable expressions 23, 33 
In USING instructions 25 

Relocatable symbols 17 
Relocatable terms 

Pairing of 22 
In relocatable expressions 23 

REP card 151.2 
REPRO instruction 54 
RR machine instruction format 33 

Length attribute 33 
Symbolic operands 35 

RS machine instruction format 33 
Address specification 34 
Length attribute 33 
Symbolic operands 35 

RX machine instruction format 33 
Address specification 34 
Length attribute 33 
Symbolic operands 35 

S' (see scaling attribute) 
Sample macro definitions 133, 165, 166 
Sample program 131 
Scale modifier 

Fixed-point constants 
Floating-point constants 

Scaling attribute 
Decimal fields 
Defined 73 

73 

Fixed-point fields 
Floating-point fields 
Notation 89 
Restrictions on use 
Symbols 73 
Use of 73 

73 

73 

41 

73 

Self-defining terms 18, 20 
Binary 18 
Character 
Decimal 
Hexadecimal 
Using 18 

19 
18 

18 

(see also specific terms) 
Sequence checking 53 
Sequence symbols 17, 74 

AGO instruction 83 
AIF instruction 82 
ANOP instruction 84 
How to write 73 
Invalid examples of 
Macro instruction 
Use of 74 
Valid examples of 

Set symbols 
Assigning values to 
Defin~ng 70 

74 
74 

74 

70 

41 

Symbolic parameters, contrasted 
Use 70 

172 

70 

Set symbols (continued) 
(see also local SET symbols) 
(see also global SET symbols) 
(see also subscripted SET symbols) 

SET variable 90 
SETA instruction 

Examples of 76, 77 
Form of 75 
Operand entry of 75 

Evaluation procedure 16 
Operators allowed 75 
Parenthesized terms 76 
Terms allowed 75 
Valid examples of 75 

Operand sublist 77 
Example 77 

SETB instruction 
Example of 82 
Form of 80 
Logical expression in 81 

Arithmetic relations 81 
Blanks in 81 
Character relations 81 
Evaluation of 81 
Operators allowed 81 

Operand entry of 80 
Invalid examples of 81 
Valid examples of 81 

SETC instruction 
Apostrophes 78 
Character expressions in 78 

Ampersands 78 
Periods 78 

Concatenation in 
Character expressions 79 
Substring notations 79 

Examples of 77-80 
Form of 77 
Operand entry of 77 
Substring notatjnns in 78 
Ar~thmetic expressions in 79 
Character expressions in 79 
Invalid examples of 79 
Valid examples of 79 

Type "attribute in 77 
Example of 78 

SETA symbol . 
Assigning values to 70 
Defining 70 
SETA instruction 76 
Using 76 

SETB symbol 
AIF instruction 82 
Assigning values to 70 
Defining 70 
SETA ins tructio:, 82 
SETB instruction 82 
SETC instruction 82 
Using 82 

SETC symbol 
Assigning values to 70 
Defining 70 
SETA instruction 81 
Using 80 

Severity Code 144 
Severity code in MNOTE instruction 87 
SI machine instruction format 39 

Address specification 34 



o 

SI machine instruction format (continued) 
Length attribute 33 
Symbolic operands 35 

Source module 27 
Source statement library defined 59 
SPACE instruction 52 
SS machine instruction format 33 

Address specification 34 
Length attribute 33 
Length fielo 34 
Symbolic operands 35 

START instruction 
Positioning of 27 
Unnamed control sections 28 

Statements 11, 13 
Boundaries 11 
Examples 13 
Macro instructions 66 
Prototype 61 
Summary of 119 

Storage, defining (see DS instruction) 
S-type address constant 48 
Sublist (see operand sublist) 
Subscripted SET symbols 

Defining 90 
Dimension of 91 
Examples 91 
How to write 90 
Invalid examples of 90 
Subscript of 91 
Using 91 

Examples 91 
Valid examples of 90 

Substring notation 
Arithmetic expressions in 79 
Character expression in 79 
Concatenating 79 
How to write 79 
Invalid example of 79 
SETB instruction 81 
SETC instruction 79 
Valid examples of 79 

SYM card 151.1 
Symbol definition, EQU instruction for 38 
Symbols 

Absolute 17 
Defining 17 
Length attributes 33 

Referring to 21 
Length, maximum 18 
Ordinary 17 
Previously defined 18 
Relocatable 17 
Restrictions 18 
Sequence 17, 74 
Symbol table capacity 126 
Types of 17 
Value attributes 33 
Variable 17 

Symbolic linkages 31 
ENTRY instruction 31 
EXTRN instruction 31 

rage of GC24-3414-7 
Rev';'~cd August 21, 1970 
By TNL GN33-8087 

Symbolic operands formats 
Symbolic parameter 

Comments field 
Concatenation of 

63 
64 

Defined 63 
How to write 63 
Invalid examples of 
Model statements 
Prototype statement 
Replaced by 63 

63 

Valid example of 63 

35 

63 

62 

System variable symbols 
Assigned values by assembler 
Defined 91 

91 

(see also specific system variable 
symbols) 

T' (see Type attribute) 

Tables, internal, capacity of 126 
Terms 

Expressions composed of 15 
Pairing of 22 

TITLE instruction 51 
Type attribute 

Defined 72 
Literals 72 
Macro instruction operands 72 
Notation 71 
SETC instruction 77 
Use 72 

Unconditional branch (see AGO instruction) 
Unnamed control section 28 
USING instruction 24, 33 

Variable symbols 17 
Assigning values to' 59 
Defined 59 
How to write 59 
Restrictions in use to generate 
operation codes 62 

Summary chart of 125 
System 92, 93 
Summary chart of 125 
Types of 59 
Use 59 
(see also specific variable symbols) 

V-type address constant 48 

WXTRN 32 

XFR instruction 8 

Y-type address constant 47 

Index 173 



GC24-3414-7 

( 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.I060t 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

\ 

/' 

C/) 
W 
0\ 
o 
I 
I\J ..... 

I 
I 

(~ 

'-- - / 


